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Abstract

In robotics, the area of deformable object manipulation receives far less attention than

that of rigid object manipulation. However, many objects in real life are deformable.

Research on deformable object manipulation is indispensable to equip robots with full

manipulation dexterity. Deformable linear object (DLO) is one type of deformable objects

that commonly presents in the industry and households, for instance, electrical cables for

power transfer, USB cables for data transfer, or ropes for dragging and lifting equipment.

In the context of H2020 VERSATILE, a project focusing on industrial automation using

robots, we focus our research on DLO manipulation via visual feedback.

One characteristic of deformable object manipulation is that the object shape changes

while being manipulated. Consequently, a research direction is to control the shape of the

object during manipulation. We tackle the shape control problem by using vision. Ini-

tially, we parameterize the shape with Fourier series, estimate and update the interaction

matrix online, and finally control the DLO shape.

In the subsequent research, instead of using human-defined features for parameteriza-

tion, we let the robot automatically learn feature vectors from visual data. We propose a

method that allows the robot to simultaneously generate a feature vector and the interac-

tion matrix from the same data. Our approach requires minimum data for initialization.

Learning and control can be done online in an adaptive manner. We can also apply the

method to rigid object manipulation directly without modification.

Neither of the two frameworks requires camera calibration, and both are verified with

simulation and real robotic experiments.

Another area of importance in deformable object manipulation is the utilization of

external contacts. The object deformation is defined in a configuration space of infinite

dimension. Nonetheless, the inputs from robots are limited. External contacts can and

should be used for manipulating deformable objects. We take a practical scenario in

the industry – cable routing with external contacts as the process to automate with our

robot. We propose a planning algorithm that allows the robot to use contacts for shaping

the cable and achieving the desired cable configuration. Real robotic experiments with

different contact placement scenarios further validate the algorithms.
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Résumé

En robotique, la manipulation d’objets déformables reçoit moins d’attention que celle

d’objets rigides. Pourtant, de nombreux objets dans la vie réelle sont déformables. La

recherche sur la manipulation d’objets déformables est indispensable pour doter les robots

d’une dextérité de manipulation totale. La difficulté majeure de ce problème est que

déformation de l’objet a un espace de configurations de dimensions infinie, tandis que

les entrées du robots sont limitées. Dans le cadre de VERSATILE, un projet H2020 axé

sur l’automatisation industrielle à l’aide de robots, nous avons axé nos recherches sur la

manipulation d’objets déformables linéaires (câbles) par retour visuel.

Une caractéristique de la manipulation des objets déformables est que la forme de

l’objet change pendant la manipulation. Par conséquent, un problème important consiste

à contrôler la forme de l’objet pendant la manipulation. Nous avons abordé le problème

du contrôle de forme en exploitant le retour visuel.

Dans un premier temps, nous avons représenté la forme de l’objet avec une série de

Fourier. Nous estimons et mettons à jour la matrice d’interaction en ligne, puis nous

concevons le contrôleur pour contrôler la forme.

Ensuite, au lieu d’utiliser une caractéristique définie par l’humain pour le paramétrage,

nous avons laissé le robot apprendre automatiquement les vecteurs de caractéristiques

à partir des données visuelles. Nous proposons une méthode qui permet au robot de

générer simultanément - et à partir des mêmes données - un vecteur de caractéristiques

ainsi que la matrice d’interaction. Cette méthode nécessite un minimum de données pour

l’initialisation. L’apprentissage et le contrôle peuvent être effectués en ligne de manière

adaptative. Nous pouvons appliquer la même méthode à la manipulation d’objets rigides,

directement et sans modification.

Ces deux travaux ne requièrent aucune calibration de la caméra et ont été validés avec

des expérimentations de robotique réelle.

Un autre domaine d’importance dans la manipulation d’objets déformables est l’utilisation

de contacts externes pour contrôler la forme de l’objet. Les contacts externes peuvent et

doivent être utilisés pour la manipulation d’objets déformables. Nous considérons un

scénario fréquent dans l’industrie - l’acheminement de câbles avec des contacts externes

comme processus à automatiser avec notre robot. Nous proposons un algorithme de plan-

ification qui permet au robot d’utiliser des contacts pour deformer le câble et pour obtenir

la configuration souhaitée. Des expériences robotiques réelles avec différents scénarios de

placement de contacts permettent de valider nos algorithmes.
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Chapter 1

Introduction

Humans are dexterous in manipulation. From an evolution perspective, the transition to

bipedal that free both hands for manipulation contributes significantly to human intelli-

gence [Newman and Newman, 2015]. Similarly, for robots to develop intelligent behavior,

one of the critical aspects is manipulation. Robotic manipulation, as a subfield of robotics,

has been studied for over four decades now. Most of the works assume that the object is

rigid – the object’s shape stays unchanged during manipulation. However, humans also

manipulate deformable objects, i.e., objects whose shape changes cannot be neglected.

Figure 1.1 shows multiple examples of humans manipulating deformable objects. The

ability to manipulate deformable objects is indispensable for robots to achieve full ma-

nipulation dexterity.

(a) Cable harness. (b) Folding clothes.

(c) Making pastry. (d) Picking fruits.

Figure 1.1: Examples of humans manipulating deformable objects.

Considering object deformation in robotic manipulation introduces new challenges in
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modeling, sensing, and control. We elaborate on these challenges one by one.

The modeling of deformable objects is a research topic in computer graphics. A re-

alistic model encompassing physical properties is often computationally heavy and not

suitable for real-time simulation [Moore and Molloy, 2007]. Sensing of deformation is usu-

ally done with vision or force. The extraction of the shape changes from sensory data is

non-trivial. Last but not least, deformation imposes new problems in manipulation con-

trol, as the shape of the object is not static anymore. One prominent problem with control

is underactuation. The inputs from the robots are limited, but the object’s deformation

has infinite degree of freedom (DoF).

Needless to say, we cannot tackle all three challenges within this thesis. Rather,

we focus on one specific topic that is the vision-based shape control of deformable linear

objects (DLOs), such as cables, ropes, wires to name a few. We start with a framework for

dual arm shape control, and then a generalized framework for both rigid and deformable

object manipulation is formulated. We explore the use of environmental contacts in

deformable object manipulation that enables robots to perform cable routing tasks.

1.1 Motivation

Robotic manipulation research has resulted in a huge number of methods and algorithms.

Only a small fraction of these are dedicated to deformable objects. Automatic manip-

ulation and shaping of deformable objects opens new doors for robotic applications in

areas like: surgical operation [King et al., 2009], agriculture [Li et al., 2011], food mak-

ing [Yamaguchi and Atkeson, 2016], household services [Bersch et al., 2011] and industrial

automation [Qin et al., 2019].

This thesis is supported by the H2020 VERSATILE project1 – a project which aims at

developing advanced robotic manipulation capabilities in industrial environments. One of

the most common deformable objects used in the industrial setting are DLOs that enable

data and power transfer. We usually need to manage them in an organized way, which

usually involves conforming them to designated shapes or configurations. Therefore, we

work on shaping DLO via visual feedback. Taking a step forward, we also develop a

generalized framework for both rigid and deformable object manipulation using vision.

1.2 Contribution

This thesis contributes to the state-of-the-art in deformable object (mainly DLOs) ma-

nipulation in terms of novel algorithms and applications for shape control, specifically:

• A cable shape control algorithm for a dual arm robot is presented in Chapter 4. The

1https://versatile-project.eu/.
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chapter is based on the paper [Zhu et al., 2018] “Dual-arm Robotic Manipulation

of Flexible Cables” 2.

• A unified object manipulation framework via visual feedback is presented in Chap-

ter 5. The chapter is based on [Zhu et al., 2020b] “Vision-based Manipulation of

Deformable and Rigid Objects Using Subspace Projections of 2D Contours” 3, under

review.

• A robotic manipulation planning utilizes environmental contacts for shaping DLOs

is presented in Chapter 6. The chapter is based on the paper [Zhu et al., 2020a]

“Robotic Manipulation Planning for Shaping Deformable Linear Objects With En-

vironmental Contacts” 4.

The videos of the experiments are all available on the Interactive Digital Humans (IDH)

group’s YouTube channel:

• Cable shape control: http://y2u.be/DPl_d7lbL84

• Unified object manipulation: http://y2u.be/gYfO2ZxZ5KQ

• Contact-based planning: http://y2u.be/7CdNQ4R_wT0

The work of this thesis also motivated a workshop at IROS 2020 on “Managing De-

formation: A Step Towards Higher Robot Autonomy” 5 where I am the main organizer.

1.3 Outline

The rest of the thesis is organized as follows:

Chapter 2: provides related works on deformable object manipulation and vision-

based control.

Chapter 3: introduces the basic concept of visual servoing, which we adopt in the

rest of this thesis. In addition, it provides a classification of DLOs based on [Henrich

et al., 1999]. In the last section, we develop a DLO model for validation of the proposed

algorithms.

Chapter 4: discusses dual arm vision-based DLO manipulation using Fourier param-

eterization based on [Zhu et al., 2018].

Chapter 5: discusses a unified vision-based scheme for manipulation of both rigid

and deformable object. The chapter is based on [Zhu et al., 2020b].

2https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8593780
3https://hal.archives-ouvertes.fr/hal-02558064/
4https://hal.archives-ouvertes.fr/hal-02303257/
5https://sites.google.com/view/madef-iros2020/home
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Chapter 6: introduces a planning framework that allows robots to perform the cable

routing task with environmental contacts. The chapter is based on [Zhu et al., 2020a].

Chapter 7: concludes the thesis and gives perspectives on future research.
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Chapter 2

Related Work

In this chapter, we review works that relate to the topic of this thesis. In the first section,

we explain the concept of deformation. Although in this thesis we adopt a model-free

approach for manipulation, it is crucial to review the works on deformation modeling,

thus give the rationale behind our choice. A survey on deformation modeling is presented

in Section 2.2. We dedicate Section 2.3 to previous works on sensor-based deformable

object manipulation. Section. 2.4 presents works on DLO manipulation. Since two

manipulation frameworks (Chapter 4 and 5) in this thesis are based on visual servoing,

in Section 2.5, we review research on visual servoing.

2.1 Deformation

Deformation in the context of the thesis denotes changes in the shape or size of an object

due to an applied force1. Depending on the resulting shape of the object after removing

the force, we can classify deformation as plastic, elastic, or elasto-plastic.

A plastic deformation means that the object remains in its deformed state (shape)

after the force is relaxed. An elastic deformation, on the contrary, entails that the object

returns to its original state (shape) after having removed the force. The elasto-plastic

deformation is somewhere in between: the object does not return to its original shape but

also does not stay in its deformed shape.

Stress (σ) and strain (ǫ) can describe deformation. Stress refers to the force applied

over an area and is measured in pressure units (N ·m−2). Strain measures the change in

length or angle of the object due to such force.

As shown in Fig. 2.1, the elasticity in deformation is measured by Young’s modulus

E [Askeland and Phule, 2003], which induces a linear relationship between stress and

strain [Callister et al., 2007]:

σ = Eǫ (2.1)

The Young’s modulus measures stiffness of the object. A large E implies high stiffness

and vice versa. It is a vital parameter to model elastic deformation, yet geometrical

linearity is not appropriate for large deformations, because only small deformations can

1Deformation caused by temperature is not taken into account in this thesis.
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Red: Elastic Region

Green: Plastic Region

Figure 2.1: The difference between elastic and plastic deformation by relationship between
stress and strain.

be modeled accurately [Nealen et al., 2006]. In the next section, we will discuss the means

of modeling deformation.

2.2 Deformation Modeling

Deformation modeling is not a subject of robotics but rather of computer graphics. How-

ever, since in this thesis we are dealing with deformable objects, it is necessary to review

models of deformation. In this section, we present the three most common models of

deformation: i) pure geometric, ii) mass-spring-damper, iii) finite element method.

2.2.1 Pure Geometric Model

A pure geometric model, as its name suggests, does not take into account the physics that

govern the deformation. The model consists of no knowledge of the mechanical property

of the object. The model accuracy is compromised for fast computation.

The geometric model normally uses a set of control points to construct curves or

surfaces. These control points are fitted with different spline functions, such as: Bezier

curve, B-spline, and Fourier series among others. Examples of these methods can be

found in [Bartels et al., 1987]. Instead of fitting control points, [Barr, 1987] introduced

operators that can be applied to control points hierarchically to obtain deformation. A

generalized method is later proposed by [Sederberg and Parry, 1986], which is known as

the FFD method. The FFD encloses the object with a hull (usually a cube). The object

deforms as the hull reshapes by the control points (see Fig. 2.2).

The FFD method received considerable attention in the research community. Re-

searchers proposed several modified versions of FFD. Coquillart developed the Animated

Free-Form Deformation (AFFD) [Coquillart and Jancene, 1991] and the Extended Free

Form Deformation (EFFD) [Coquillart, 1990] that allowed more intuitive control over
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(a) Original fish and en-
closed cube with control
points

(b) Deformed fish by
pulling the control points

(c) Deformed fish by
pulling the control points

Figure 2.2: A demonstration of FFD method on an animated fish.

deformation. More recently, [Schein and Elber, 2004] developed the Discontinuous Free

Form Deformation (DFFD) technique to better incorporate discontinuities in deformation.

The FFD and its extensions are typical geometric deformation models. They are used

in Computer-aided Design (CAD) applications as a geometric sculpting tool. Since there

is no information about the object’s physical properties, the obtained model is not able to

simulate the object realistically for real-time control purposes. For instance, the deformed

fish in Fig. 2.2c in not realistic but can be obtained by manipulating the control points.

2.2.2 Mass-Spring-Damper (MSD) model

One simple dynamical model is the Mass-Spring-Damper (MSD) model. Instead of only

considering the geometric points as in the previous section, the deformation model is

represented by a collection of discretized point masses connected with springs and dampers

in between (Fig. 2.3).

(a) Mass-spring-damper model (b) Point masses connected by mass-spring-
damper

Figure 2.3: Mass-spring-damper model explained.

7



Related Work 2.2. Deformation Modeling

The MSD model was initially used in facial modeling in computer graphics [Platt

and Badler, 1981], [Waters, 1987]. Later, it was applied to the simulation of skin and

muscle [Chadwick et al., 1989]. It can also be used to create animated locomotion for

snakes, worms [Miller, 1988] and fishes [Tu and Terzopoulos, 1994]. A MSD-based cloth

model is proposed in [Breen et al., 1994].

The MSD systems are intuitive, generally easy to implement, and computationally

efficient, making real-time animations possible. The main drawback associated with using

MSD systems is that the discrete model imposes significant approximations of the true

physics that would occur in a continuous body [Moore and Molloy, 2007].

2.2.3 Finite Element Method (FEM)

Finite element methods divide the object into a discrete mesh of smaller components re-

ferred to as finite elements. The more elements the model has, the more computation

is needed, and the more accurate the model will be. Compared to MSD methods which

directly employ a discrete model, Finite Element Method (FEM) starts with continuous

partial differential equations (PDEs) describing the deformation. These are then dis-

cretized over the single finite elements. The FEM result in a more accurate model, yet

more computationally demanding.

In deformation modeling, the FEM is widely applied, to name a few applications: skin

simulation [Benítez and Montáns, 2017], muscle [Chen, 1991], shape editing [Celniker and

Gossard, 1991], and cloth modeling [Etzmuß et al., 2003]. FEM is used in areas where

model accuracy is critical, such as surgical simulation [Berkley et al., 1999].

2.2.4 Summary

The above three methods for deformation modeling are ranked by model accuracy and

computational load in Fig. 2.4.

Computational load

M
o
d
e
l 
a
c
c
u
ra

c
y

FEM

MSD

FFD

Figure 2.4: Comparison of three deformation modeling methods concerning computational
load and model accuracy.
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The FFD and its variations, since no physical property is involved, are not suitable for

model-based robotic manipulation control of deformable objects. The two other methods

are capable of simulating deformable objects accurately. However, the model needs to be

identified before applying it to the real-time manipulation control. For different objects,

a re-identification is required. If these methods are employed, we will need to construct

offline different models before manipulating different objects. Therefore, instead of find-

ing a global deformation model for robotic manipulation, we tend to favor model-free

approaches. One prominent paper in this direction is [Berenson, 2013], where the au-

thor derived the interaction matrix based on the concept of diminishing rigidity. More

recent approach, [Hu et al., 2019] learned the mapping between the robotic end-effector’s

movement and the object’s deformation measurement with Gaussian process regression.

Model-free approaches produce more general manipulation schemes with minimum offline

modeling required. Besides, they are much less computationally demanding than MSD or

FEM-based approaches.

Nevertheless, they also have their drawbacks, which we will later discuss in detail in

Chapter 4 and 5.

2.3 Sensor-based Deformable Object Manipulation

Deformable object manipulation is an emerging area of research in the robotics community.

We distinguish different manipulation approaches depending on the sensor feedback.

2.3.1 Tactile/force-based Manipulation

As mentioned in Section 2.1, deformation is a result of force applied to the object. There-

fore, works have been done in manipulation based on tactile/force feedback.

Tactile information can be used to deduce deformation and thus feedback to control

manipulation [Delgado et al., 2015]. Moreover, it can detect/correct slips and regulate

grasping forces while manipulating deformable objects with a dynamic center of mass

[Kaboli et al., 2016].

Due to critical tactile information produced during manipulation, research has been

done in designing novel tactile sensors that can distinguish rigid and deformable objects

[Drimus et al., 2014].

Force sensing could be useful in detecting vibration. For example, [Yue and Henrich,

2002] achieved fast manipulation under vibration with force/torque feedback. Some of

the force-based methods make use of machine learning to derive manipulation strategies.

A neural network was trained in [Howard and Bekey, 2000] to model the effect of force on

deformable object manipulation. Recently, Lee et al. proposed a force-based manipulation

skill learning approach for deformable object manipulation [Lee et al., 2015].

9
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Since tactile and force information are often only locally available at contact points,

these approaches are more focused on grasping the object or in-hand manipulation of the

object. An object shape, instead, can represent the global deformation of that object.

Shapes are usually observed via vision, therefore in the next section, we review works in

vision-based manipulation.

2.3.2 Vision-based Manipulation

Another obvious indication of deformation is shapes. While force/tactile based approaches

usually require a model to infer deformation as an outcome of the force applied, vision

directly observes the resulting shape changes.

One of the initial works on the manipulation of deformable objects via visual feedback

is presented in [Inoue, 1984] to solve a knotting problem. Smith et al. developed a

relative elasticity model such that vision can be utilized without a physical model for the

manipulation task [Smith et al., 1996]. Acker and Henrich applied vision to detect contact

state changes [Acker and Henrich, 2003]. A hierarchical self-organizing neural network was

developed along with vision to select proper grasping points on the deformable objects

[Foresti and Pellegrino, 2004]. In recent research, Nair et al. combined learning and

visual feedback to manipulate ropes [Nair et al., 2017]. Navarro-Alarcon et al. presented

several papers focusing on vision-based deformable object manipulation. In his initial

work, [Navarro-Alarcon et al., 2013a] employed the Broyden update rule for interaction

matrix estimation, and a nonconservative Hamiltonian dynamical system to compute the

state feedback laws. A passivity-based controller was proposed in [Navarro-Alarcon et al.,

2013b] to deform object under inaccurate interaction matrix estimation. In this later work,

[Navarro-Alarcon and Liu, 2014] considered 6 DoF motion of the robot manipulator for the

manipulation task. However, the method used geometric features such as points, lines, and

curvature to name a few, which could only express certain kinds of deformation. Taking

a step further, in his latest work, [Navarro-Alarcon et al., 2016] proposed a generalized

feature based on Fourier series for manipulation. [Laranjeira et al., 2017] proposed a vision-

based management framework for tethers that link terrestrial mobile robots. Recently,

[Chi and Berenson, 2019] introduced a robust vision-based sensing of deformable objects

considering occlusion using Coherent Point Drift.

Other than receiving information locally, vision can provide global information on

object deformation. Due to this aspect, vision often contains noisy data that needs pre-

processing to yield a reasonable estimate of the deformation.

2.3.3 Multi-modal Manipulation

Since the problem of deformable object manipulation is complex, some researchers have

also considered utilizing multiple sensor modalities for manipulation.

10
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The author of [Hirai et al., 2001] presented one of the first multi-modal approaches

for deformable object manipulation, where they used both force and vision information.

In [Luo and Nelson, 2001], to observe changes in shapes, the authors applied an active

contour method and a FEM model with force feedback, to predict deformation. Later

[Huang et al., 2005] introduced a position/force hybrid control method that incorporates

visual information with force control for flexible tool manipulation.

The multi-modal method is a promising research direction. Nonetheless, how to com-

bine different sensor modalities to produce accurate state estimation of the deformable

objects for feedback control is one of the challenges in this area of research.

2.4 Deformable Linear Object Manipulation

In this section, we review the type of research that is closely related to this thesis – DLO

manipulation.

Compared with general deformable objects, DLOs are simpler to model. We dis-

tinguish two kinds of models: dynamical and topological. The former embeds physical

properties of the objects and the latter concerns only the topology.

A dynamic model considering bend, twist, and extensional deformations is proposed

in [Wakamatsu et al., 1995] using differential geometry. The shape of the DLO is solved by

an optimization on the total energy under constraints. Later, the authour of [Wakamatsu

and Hirai, 2004] used this model for grasping and manipulation of DLOs. The modeling

can also be solved with FEM. The dynamic 2D deformation of an inextensible linear

object was formulated using FEM in [Huang et al., 2008]. The method was claimed to be

computationally faster than the differential geometry method mentioned previously. The

author of [Yoshida et al., 2015] applied FEM for ring-shape objects for assembly tasks.

Dynamical models can compute the shape of the DLO under constraints. These models

are used when shape matters during manipulation.

Sometimes in DLO manipulation, topology rather than the exact shape is of interest,

for instance, tying and untangling DLOs. Knot theory [Murasugi, 2007] can be used

to develop a topological model for DLOs to solve the knotting problem. At an initial

step in this direction, [Phillips et al., 2002] proposed a simple model for knot tying. In

this model a rope in a loosely knotted configuration was pulled tight, and the knot was

preserved, using an impulse model for collision handling. The rope was modeled as a

spline of linear springs, with spheres placed on the control points to represent the rope

volume. The spheres tend to bunch up or stretch apart during the simulation, due to

the spring model, but collision handling did prevent the rope from passing through itself.

In addition, the model did not operate in real time. The author of [Brown et al., 2004]

took a step forward and formulated a knotting simulator capable of real-time simulation.

These simulators contributed to the later works on robot motion planning to the tying
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and untangle the DLO [Moll and Kavraki, 2006], [Ladd and Kavraki, 2004]. Researchers

also explored learning in solving the knotting problem. The author of [Takamatsu et al.,

2006] employed a learning from observation (LFO) paradigm for knot tying tasks. The

robot learned a set of motions needed from human demonstration to complete the task.

Knotting is of practical interest in medical and construction applications. A robotic knot

tying framework in surgeries was presented in [Kang and Wen, 2002]. Quadrocopters

performed aerial knot-tying which is an essential task in the aerial assembly of tensile

structures [Augugliaro et al., 2015].

Several research works are dedicated to manipulation planning of DLOs: A collision-

free path planner was developed in [Lamiraux and Kavraki, 2001] using a randomized

algorithm. A planner in [Moll and Kavraki, 2006] computed a path in the shape space

from one minimal energy curve to another while satisfying environmental constraints.

Bretl and McCarthy showed that the shape space of an elastic rod is a six-dimensional

smooth manifold [Bretl and McCarthy, 2014]. Later, the authors of [Borum and Bretl,

2015] took a step forward and proved the path-connectedness of this space.

2.5 Visual Servoing

Visual servoing or vision-based control is a crucial area of research in robotics. The use of

vision enables robots to observe and actively react to the environment. The visual servoing

scheme transforms visual information into a feature vector. The difference between the

current feature vector value and the desired one produces an error term. Then the scheme

tries to minimize this error by robot motion.

One of the first papers on visual servoing dates back to [Shirai and Inoue, 1973].

Since then, considerable effort has been made in the area. We refer interest readers to

[Chaumette and Hutchinson, 2006a] and [Chaumette and Hutchinson, 2007a] for a com-

prehensive tutorial on this subject. There are two classes of the visual servoing scheme:

Image-based Visual Servoing (IBVS) and Position-based Visual Servoing (PBVS). The

former uses the image data directly to generate feature vectors while the latter uses image

data for estimation of 3D position in space and then use it for the servoing task. Here we

focus on IBVS, which is the method adopted in our research.

Some commonly selected geometric features for IBVS are points, lines and moments

[Chaumette, 2004]. Kernel-based visual servoing [Kallem et al., 2007] combined feature

tracking and control using spatial sampling kernels to generate features to design feed-

back controllers, thus eliminates the need for image processing to obtain features. Similar

methods are referred to as Direct Visual Servoing (DVS). The DVS has received con-

siderable attention. Several high impact works were published in the field. Collewet

et al suggested using luminance of all pixels on the image for visual servoing [Collewet

et al., 2008], [Collewet and Marchand, 2011]. In the subsequent research, photometric mo-
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ments are considered as a new feature for visual servoing [Bakthavatchalam et al., 2013],

[Bakthavatchalam et al., 2018]. In the latest research, [Marchand, 2019] proposed a DVS

approach based on the Principal Component Analysis (PCA).

We intend to solve deformable object manipulation by IBVS. Therefore, methods and

algorithms are developed in the framework of IBVS considering this context.

The authors of [Navarro-Alarcon and Liu, 2017] introduced the concept of shape ser-

voing as a sub-field of visual servoing. The shape servoing research considers utilizing

visual feedback for controlling the shape of the object. We extended the approach to

consider a dual arm setup in [Zhu et al., 2018]. An expository paper on the topic is also

available in [Navarro-Alarcon et al., 2019].

In this thesis, we extend and propose new algorithms and frameworks in shape servo-

ing.
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Chapter 3

Preliminaries

In this chapter, we give a general introduction to key concepts of the thesis. Section 3.1

introduces a generalization of the visual servoing scheme [Chaumette and Hutchinson,

2006a], which we follow to develop our shape servoing algorithms. Section 3.2 addresses

the concept of DLOs and their classification. We develop a model for verifying our shape

servoing framework and present it in Section 3.2.2.

3.1 Visual Servoing

A unified description for all vision-based control is to minimize the error term e(t) in:

e(t) = s(m(t),a) − s∗, (3.1)

where s is the feature vector that consists of image measurements m and additional

knowledge of the system a [Chaumette and Hutchinson, 2006a].

Visual servoing approaches differ in the selection of the feature vector s. Once selected,

we compute the relationship between robot spatial velocity ṙ and resulting time derivative

of ṡ:

ṡ = Lṙ, (3.2)

in which L is the interaction matrix (or feature Jacobian) relating the two. Given a time

instant δt, we can write the discretized version of (3.2) as:

δs = Lδr, (3.3)

where δs = ṡδt and δr = ṙδt correspond to the step changes in robot motion and feature

vector respectively.

In general, it is not possible to obtain perfectly the interaction matrix. Thus its

approximation L̂ is often used to formulate control:

ṙ = −λL̂†ė, (3.4)

where † represents the Moore-Penrose pseudo-inverse. Similarly the discretized version of
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(3.4) is:

δr = −λL̂†e, (3.5)

The shape servoing problem [Navarro-Alarcon and Liu, 2017] also falls into the for-

mulation of (3.1). We will discuss it in detail in Chapter 4 and 5.

3.2 Deformable Linear Objects (DLOs)

Deformable Linear Objects commonly appear in household and industrial environment,

for instance, ropes, elastic rods, beams, and cables to name a few. The term “Linear”

refers to the shape of the object can be simplified as a curve/line as one dimension of the

object is dominant in length.

3.2.1 Classification on Deformation Characteristics

Henrich et al. proposed a classification of DLOs based on their deformation characteristics

[Henrich et al., 1999]:

Table 3.1: DLO classification with example objects reproduced from [Henrich et al., 1999].
N E- E+ P- P+

Description no defor-
mation

low elastic
deforma-
tion

high elastic
deforma-
tion

low plastic
deforma-
tion

high
plastic de-
formation

Linear objects
examples

short steal
tubes

short
spring
steal

long spring
steal

short iron
wires

ropes

The categorization between a + or - in Tab. 3.1 is dependent on whether gravity

alone can make the object deform. If it is the case, then the object is in the + category;

otherwise, it belongs to the - category.

The DLOs used in our experiment are in the E+ category (marked with red color on

the table).

3.2.2 Simulation Model of Deformable Linear Object

We adopt the model based on differential geometry [Wakamatsu and Hirai, 2004], where

the shape of the DLO can be solved by a constrained optimization. We simplify it for our

manipulation task by constraining the DLO to a 2D plane.

The deformation is expressed in terms of frame fields. Assume the total length of the

linear object is L. P (s) is a point at distance s from the left end of the linear object.

In Fig. 3.1, let O − xy be the fixed world coordinate on the plane. P − ζξ is the local
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coordinate attached to point P (s). Angle φ(s) specifies the rotation of P − ζξ around the

world frame z axis.

(a) Natural state (b) Deformed state

Figure 3.1: Coordinate systems describe deformation.

The rotational matrix that transforms O − xy into P − ζξ is:

A(φ) =





cosφ − sinφ

sinφ cosφ





Let ω = dφ

ds
be an infinitesimal rotation at point P (s). Then the following equation is

satisfied:
dA

ds
= A





0 −ω

ω 0





Since A is an orthonormal matrix, we have then:





0 −ω

ω 0



 = AT dA

ds

=





cosφ sinφ

− sinφ cosφ









− sinφdφ

ds
− cosφdφ

ds

− cosφdφ

ds
− sinφdφ

ds





The underlying principle in DLO modeling is that the potential energy of a deformable

object reaches its minimum for the object’s static shape [Wakamatsu et al., 1995]. In the

2D case, the total potential energy of the DLO is just the fluexual energy:

U = Uflex,

which can be computed by integration:

Uflex =
1

2

∫ L

0
Rf (

dφ

ds
)2ds,

with Rf a constant representing the flexural rigidity of the object.

Let us express φ(s) by a linear combination of basic functions e(s):

φ(s) =
n

∑

i=1

aiei(s) = a · e(s) (3.6)
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The basic function e(s) can be defined as:

e1 = 1,

e2 = s,

e2i+1 = sin
2πis

L
,

e2i+2 = cos
2πis

L
.

During manipulation, four geometry constraints can be imposed on the DLO. They are

the distance between two manipulation ends along the x and y axis: lx and ly; plus two

rotational angles at the two ends φ(0) and φ(L) as shown on Fig. 3.2.

The four constraints yields:

lx =
∫ L

0
cos(φ(s))ds,

ly =
∫ L

0
sin(φ(s))ds,

φ(0) = θ1,

φ(L) = θ2,

(3.7)

Figure 3.2: Geometrical constraints.

The final optimization problem is then:

min
a

1

2

∫ L

0
Rf (

dφ(s)

ds
)2ds (3.8)

subject to equality constraints in (3.7).

By solving the optimization problem, we obtain the shape of a DLO under specific

manipulation constraints. We solve the optimization problem by CasADi [Andersson
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 3.3: Example DLO shapes generated from the simulator

et al., 2019]. Figure 3.3 shows examples of shapes generated using our DLO simulator.

Each cable is of unit length and represented by K = 100 points (tunable in the simulator).

The simulator will be used later for testing the shape servoing frameworks 1. Note that

it is used only for verification of shape servoing algorithms, not for real-time simulation

of any DLO.

1The 2D simulator of the DLO was made publicly available at https://github.com/Jihong-Zhu/

cableModelling2D
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Chapter 4

Deformable Linear Object

Manipulation with Fourier-based

Features

As a starting point of the research, we focus on shaping DLO with a dual arm robot.

We aim at a shaping task which humans can perform with both hands (see Fig. 4.1).

In this chapter, we adopt the method in [Navarro-Alarcon and Liu, 2017] and propose a

framework to deform a DLO to a target shape via visual feedback. For better readability,

we replace the term DLO with cable in this chapter.

4.1 Introduction

Given a (reachable) desired cable shape, a human can deform the cable into such shape

relying on visual feedback without the need for re-grasping (see Fig. 4.1). This task is

easy for a human to do without even knowing the internal dynamics of the cable. For

robots, it remains a challenge.

4.1.1 Problem Statement

Let us consider a dual arm robot manipulating a cable on a 2D plane. The cable is a system

with unknown dynamics that accepts inputs from the robot. Each robot end-effector

applies three incremental inputs, respectively: two translations in the manipulation plane,

δx and δy, and one rotation δθ along the axis perpendicular to the manipulation plane

(see Fig. 4.2). The total number of inputs from the robot is six, specifically:

δr = [δx1 δy1 δθ1 δx2 δy2 δθ2]
T ∈ R

6. (4.1)

A static camera continuously observes the shape of the cable. The cable shape in the

camera image is represented as C = [u,v]T ∈ R
2×K , where u ∈ R

K and v ∈ R
K are

image coordinates of pixels sampled along the cable. We represent the desired cable shape

by C∗.
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(a) (b)

(c) (d)

Figure 4.1: Cable manipulation by humans(red color marks the desired shape).

robot manipulator initial position 

robot manipulator final position cable final shape 

cable initial shape 

Figure 4.2: Control inputs for dual arm cable manipulation.
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The problem we address is to use the control inputs δr to drive the cable from its

initial shape C0 to the desired shape C∗ using visual feedback.

4.2 Our Contributions

We propose a shape servoing algorithm to complete the task depicted in Fig. 4.1 for a

dual arm robot. A receding window approach ensures that the most recent data is used for

computing the interaction matrix relating the robot inputs and the shape changes. Then

this interaction matrix is used to compute the robot inputs. The algorithm is validated

by simulations and on a real robot setup.

4.3 Methods

To tackle the problem stated above, we first transform the cable shape into a feature

vector. After parameterizing the shape, we model the relationship between the robot

motion and the changes in the shape parameters locally by an interaction matrix. The

final step is to derive the control strategy to deform the cable into the desired shape based

on the interaction matrix. In this section, we describe each sub-task sequentially. The

overall shape servoing scheme is explained in Fig. 4.3.

cable 

extraction

Shape servo

controller

Interaction 

matrix

estimation

Fourier 

parameter

calculation

Figure 4.3: The cable manipulation scheme with a dual arm robot.
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4.3.1 Fourier-based Features

The ith sample point c(i) = [u(i), v(i)]T , i = 1, 2, . . . , K in C can be approximated using

a N th ordered Fourier series:

u(i) =
N

∑

j=1

[aj bj]





cos(jρi)

sin(jρi)



 + e,

v(i) =
N

∑

j=1

[cj dj]





cos(jρi)

sin(jρi)



 + f,

(4.2)

with

ρi = (i− 1)
π

K
.

The feature vector s in (4.2) is:

s = [a1 b1 . . . aN bN e c1 d1 . . . cN dN f ]T ∈ R
4N+2. (4.3)

This will later be used both in deformation model estimation and control. Below we show

how to solve for s given image data.

We can rewrite (4.2) as:

c(i) =





u(i)

v(i)



 =





fT (i) 0

0 fT (i)



 s. (4.4)

In (4.4), f(i) are the harmonics terms defined as:

f(i) = [cos ρi sin ρi . . . cos(Nρi) sin(Nρi) 1] ∈ R
2N+1. (4.5)

Using all K samples in C, we have:

C ′ = Gs, (4.6)

with:

C ′ = [c(1)T c(2)T . . . c(K)T ]T ∈ R
2K ,

G =























f(1) 0

0 f(1)
...

...

f(K) 0

0 f(K)























∈ R
2K×(4N+2).

In (4.6), C and G are known quantities. Therefore the feature vector s of shape C can
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be solved by linear least squares:

s = G†C,

where † represents the Moore-Penrose pseudo inverse: G† = (GT G)−1GT .

To ensure the pseudo inverse of G exists we need that:

rank(G) = 4N + 2 (4.7)

is fulfilled. A necessary condition for (4.7) is:

2K ≥ 4N + 2.

So we need to collect at least 2N + 1 samples to compute the feature vector.

4.3.2 Deformation Model Estimation

Feature vector s describes the cable shape. Locally, a small movement of the robot pro-

duces a tiny change in the cable shape, hence on the feature vector. From this observation,

at a given operating point, we can linearize the deformation model as:

δs = Lδr. (4.8)

Vector δr ∈ R
6 corresponds to robot motion, and δs ∈ R

4N+2 is the corresponding change

in the feature vector; L ∈ R
(4N+2)×6 is the local deformation matrix.

For the ith element of s, we can write:

δsi = δrT lT
i ,

where li is the ith row of L. Its transpose lT
i ∈ R

6.

To estimate lT
i , at the current instance tm, we collect M prior data of δsi and δrT

while the robot is moving:

σi =

















δsi(t1)

δsi(t2)
...

δsi(tM)

















∈ R
M ,R =

















δrT (t1)

δrT (t2)
...

δrT (tM)

















∈ R
M×6.

In the above equations, each si(tj) is the corresponding feature vector after robot motion

δrT (tj). Using R and σi we have:

σi = RlT
i , (4.9)
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and we can estimate li as

l̂T
i = (RT R)−1RT σi. (4.10)

Therefore, we can estimate every row of L. To successfully estimate L, the following

conditions must be satisfied:

• R must have full row rank.

If the condition is not satisfied, RT R in (4.10) will be singular. In practice, this

condition infers that within the time window {t1 − tN}, it is necessary that the robot

moves in all directions and rotates at least once. The condition makes perfect sense as if

one or more component(s) of δr is/are not active during the whole time period, and no

relationship can be derived between that/those component(s) and the feature vector.

To ensure that R has a full row rank, we can check the rank of R before the estimation

of L. If R does not fulfill the rank condition, we can:

• extend the time period until the rank condition is fulfilled or,

• apply Tikhonov regularization:

l̂T
i = (RT R + λI)−1RT σi. (4.11)

Last but not least, the time window {t1−tm} should be as short as possible while satisfying

both conditions to ensure that the local interaction matrix is valid.

4.3.3 Shape Servo Controller

Using the camera, we observe the current parametric shape of cable C. Given the target

shape C∗, both can be transformed to feature vectors s and s∗. The differences between

the current shape C and the desired shape C∗ can be characterized by the difference

between the feature vector of the two shapes:

δe = s∗ − s.

Using the estimated deformation model:

δs = L̂δr,

and consider δs = δe

δr = L̂†δe, (4.12)

The interaction matrix is a result of linearization in the vicinity of the current shape.

Therefore, a relatively small motion is preferred. To prevent excessive motion produced
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by (4.12), we calculate the input as:

δr =











δr, if ||δr||2 < rmax

rmax
δr

||δr||2
, otherwise

, (4.13)

where rmax is a positive scalar which serves as a saturation.

4.3.4 Receding Window Adaptation

Since equation (4.8) calculates a local interaction matrix, throughout manipulation, L

needs to be updated.

At instance tN , we estimate the local interaction matrix LN . Using the interaction

matrix, we can derive the one-step command δrN by (4.13). At tN+1 instance, we execute

the motion δrN . The cable is driven to a new shape with a new feature vector s(tN+1).

Therefore, we have a new set of data:











δs(tN+1) = s(tN+1) − s(tN),

δr(tN)
(4.14)

We add in the newly obtained data (4.14), and remove the first data δs(t1) and δr(t1).

The data window is shifted from {t1 − tN} to {t2 − tN+1}. Using the new data window

we can follow the same step and update LN to be LN+1.

The receding window approach makes sure that, at any instance, we are using the

newest data for estimating the interaction matrix.

4.4 Simulation

Using the DLO model developed in Chapter 3.2.2, we simulate the proposed framework.

The robot is holding both ends of the cable, thus imposes the constraints described in

(3.7) for the optimization problem:

lx =
∫ L

0
cos(φ(s))ds,

ly =
∫ L

0
sin(φ(s))ds,

φ(0) = θ1,

φ(L) = θ2,

(4.15)

The shape is solved with optimization. Our framework uses the computed shape from

the simulator (represented by a set of points) as the cable shape C, and the position and

orientation of both ends of the cable as robot inputs. The new inputs are computed by
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the framework, and then we put them as constraints for the optimization to solve for a

new shape.

(a) (b)

(c) (d)

Figure 4.4: Manipulation simulation on the cable model. The initial and target shape are
marked with dashed and solid blue, all the intermediate shapes are painted in black. The
red coordinates at two endpoints specify the rotation of two end-effectors.

In Fig. 4.4, we present four examples of the evolution of the cable shapes under

the proposed framework. The initial and target shape are marked with dashed and solid

blue. The intermediate shapes are painted in black. The red coordinates at two endpoints

specifying the rotation of two end-effectors.

The simulation shows that the controlled motion can successfully manipulate the cable

to the target shape. However, in the simulation, we consider every component in the

scheme is perfect and well synchronized, which is not always the case when it comes

to robot experiments. Therefore, in the next section, we show results from real robot

experiments.
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4.5 Robot Experiments

In this section, we introduce our setup for performing cable shaping tasks. Then, we

briefly present the image processing techniques for extracting the cable from the image.

In the end, we show and discuss the results of the experiments.

4.5.1 Hardware Setup

We use the BAZAR robot [Cherubini et al., 2019] equipped with two lightweight KUKA

LWR IV robots for the dual arm setup (see Fig. 4.6).

We design two grippers to ensure the manipulation of the cable without slipping (see

Fig. 4.5). In the left figure, the blue gear is attached to the robot. The black cylinder

represents the cable, and the yellow gear fastens the cable rigidly.

(a) Cable gripper mechanical design. (b) Cable gripper mounted on the
robot.

Figure 4.5: The cable gripper.

The cable is gripped by two end-effectors. An Allied Visionr AVT camera is placed

perpendicular to the manipulation plane to track the shape of the cable during manip-

ulation. The image resolution is 1936 × 1456. A Linux-based 64-bits PC processes the

image at a frame rate of 33.3Hz.

The overall hardware setup is showed in Fig. 4.6.

To test the robustness of the algorithm, we prepare two cables with different thick-

nesses. The diameter of the thin cable is 5.88 millimeters, and the thick cable is 7.66

millimeters. Under the same inputs from the robot, the two cables result in slightly

different shapes.
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Figure 4.6: The hardware setup for cable manipulation.

4.5.2 Image Processing

We simplify the environment by putting a whiteboard on the table to serve as the 2D

plane and using black cables for the manipulation. The color image is converted into a

grayscale image. Then by thresholding the grayscale image, we can segment the cable from

the image. The target shape is drawn on the whiteboard with red color markers. To detect

the target shape, we transform the image representation from Red-Green-Blue (RGB) to

Hue-Saturation-Value (HSV) and then apply thresholding to segment the red shape from

the image. Figure 4.7 shows the image processing under experimental conditions. We use

OpenCV for implementing the vision algorithms.

(a) Color image. (b) Cable segmentation. (c) Target shape.

Figure 4.7: Image processing.

4.5.3 Experiments

We calculate the target shape feature vector s∗ from the binary image of the target shape

(Fig. 4.7c) at the start of the control scheme. A camera continuously observes the shape
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of the cable. The feature vector of the cable is constantly updated to compute the local

deformation model and the control inputs. We choose N = 2 components of the Fourier

series in (4.2). This value is chosen for the reasons:

1. Cable shapes reachable by the dual-arm are not complex, N = 2 can produce a

reasonable approximation of the shape while N = 1 sometimes result in a bad

approximation.

2. A Larger N will result in more elements in the feature vector of the shape. Since

the inputs from the dual arm robot are always six, when N = 1, the dimension of

the feature vector is 4N + 2 = 6, making the system fully actuated. When N > 1,

with bigger N , the system becomes more and more underactuated, increasing the

possibility of control being attracted to a local minimum.

3. Increasing N will add in complexity of computation.

The following evaluation metric is designed to monitor the performance of the controller:

Φ =
||s∗ − s||

||s∗||
.

Lower Φ indicates better matches between the cable shape and the target shape.

To initialize L estimation, the robot executes a small motion that excites all compo-

nents in δr, so an initial estimation of L can be computed.

We test the algorithm on the thick cable with two different shapes. Figure 4.8 and 4.9

depict the experiments. The red color line is the target shape. In each figure, the initial

and final shape of the cable are presented in (a) and (d), respectively. Figure (b) and (c)

show the intermediate shapes while reaching the final shape.

(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Figure 4.8: Experiment 1 - Thick cable.
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(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Figure 4.9: Experiment 2 - Thick cable.

Figure 4.10 and 4.11 show the evolution of the performance metric during the manip-

ulation. The general trend of the performance metric is decreasing, and the final shape

overlaps the target shape, as shown in Figure 4.8 and 4.9.

Figure 4.10: Performance metric - Experiment 1.

To further test the robustness of our algorithm, we test it on a thinner cable. Figure

4.12 shows the shape servoing steps. Fig. 4.13 depicts the evolution of the performance

metric.

In the subsequent experiment, we change the initial configuration of the cable. Figure

4.14 shows the manipulation results. It proves that the algorithm is invariant to the initial

configuration of the cable.

The shape servoing tasks are performed with no knowledge of the deformation charac-

teristic of the cable. The algorithm is verified on two distinct cables to show robustness.

As the interaction matrices directly relates the robot motion to the shape changes on the

image, our method does not require camera calibration, i.e., for knowing the intrinsic and

extrinsic parameters of the camera.
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Figure 4.11: Performance metric - Experiment 2.

(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Figure 4.12: Experiment 3 - Thin cable.

Figure 4.13: Performance metric - Experiment 3.
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(a) Initial shape (b) Intermediate shape 1

(c) Intermediate shape 2 (d) Final shape

Figure 4.14: Experiment 4 - Thin cable, different starting configuration.

Fig. 4.15 shows one failure in reaching the target shape. Fig. 4.15a and 4.15b show

the initial shape and final shape of the cable, respectively, and the red line depicts the

target shape. The robot goes back and forth near the final shape and is not able to reach

the target shape.

(a) Initial shape (b) Final shape

Figure 4.15: Experiment 5 - Unreachable target.

The full video of the experiment can be found at http://y2u.be/DPl_d7lbL84.

The failure case may be due to under-actuation. With six inputs from the robot and

ten parameters to control, the system is underactuated. Also, the deformation model is

locally approximated, so if the target shape deviates too much from the initial shape,

without path planning, the control will more likely converge to a local minimum. The

approximation accuracy can also affect the convergence.

4.6 Conclusion

In this starting work on deformable object manipulation, we adopt the model-free method

proposed in [Navarro-Alarcon and Liu, 2017] and extend the method to a dual arm robot
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on the open contours. By introducing rotation and the second arm in the experiment, the

robot is able to perform cable deformation tasks as humans.

The Fourier-based parameterization results in an unnecessary large dimension of the

feature vector, which makes the control problem under-actuated. Due to the lack of a

global deformation model, we cannot prove the global convergence of the algorithm, nor

can we tell if a certain shape is reachable or not.

With the lesson learned from this starting research, in the next chapter, we present

a novel and generalized model-free solution for shape servoing of deformable and rigid

objects alike. As the subsequent and more thorough research in this direction, we will

present a more detailed theory and back it up with comprehensive experiments.
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Chapter 5

Subspace-based Object Manipulation

Humans are capable of manipulating both rigid and deformable objects. However, robotic

researchers tend to consider the manipulation of these two classes of objects as separate

problems. This chapter presents our efforts in formulating a generalized framework for

vision-based manipulation of both rigid and deformable objects, which does not require

prior knowledge of the object’s mechanical properties.

In classical visual servoing literature [Chaumette and Hutchinson, 2006b], the vector

s denotes the set of features selected to represent the object in the image. These features

represent both the object’s pose and its shape. We denote the process of selecting s as

parameterization. The aim of visual servoing is to minimize, through robot motion, the

feedback error e = s∗ − s between the desired s∗ and the current (i.e., measured) feature

s.

One of the initial works on vision-based manipulation of deformable objects is pre-

sented in [Inoue, 1984] to solve a knotting problem by a topological model. Smith et al.

developed a relative elasticity model, such that vision can be utilized without a physical

model for the manipulation task [Smith et al., 1996]. A classical model-free approach

in manipulating deformable objects is developed in [Berenson, 2013]. More recent re-

search [Lagneau et al., 2020] proposes a method for online estimation of the deformation

Jacobian, based on weighted least square minimization with a sliding window. In [Navarro-

Alarcon et al., 2014] and [Navarro-Alarcon and Liu, 2017], the vision-based deformable

objects manipulation is termed as shape servoing. An expository paper on the topic is

available in [Navarro-Alarcon et al., 2019]. A recent work on shape servoing of plastic

material was presented in [Cherubini et al., 2020].

For shape servoing, commonly selected features are curvatures [Navarro-Alarcon et al.,

2014], points [Wang et al., 2018] and angles [Navarro-Alarcon and Liu, 2013]. Laranjeira

et al. proposed a catenary-based feature for tethered management on wheeled and un-

derwater robots [Laranjeira et al., 2017, Laranjeira et al., 2020]. A more general feature

vector is that containing the Fourier coefficients of the object contour [Navarro-Alarcon

and Liu, 2017] and [Zhu et al., 2018]. Yet, all these approaches require the user to

specify a model, e.g., the object geometry [Wang et al., 2018, Navarro-Alarcon and Liu,

2013,Navarro-Alarcon et al., 2014] or a function [Laranjeira et al., 2017,Navarro-Alarcon

and Liu, 2017,Zhu et al., 2018] for selecting the feature. Alternative data-driven (hence,

modeling-free) approaches rely on machine learning. Nair et al. combine learning and
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visual feedback to manipulate ropes in [Nair et al., 2017]. The authors of [Hu et al., 2019]

employ deep neural networks to manipulate deformable objects given their 3D point cloud.

All these methods rely on (deep) connectionists models that invariably require training

through an extensive data set. The collected data has to be diverse enough to generalize

the model learnt by this type of networks. Furthermore, the above-mentioned methods

focus only on deformable object manipulation.

As for pose control of rigid objects, the trend in visual servoing is to find features

which are independent from the object characteristics. Following this trend, [Chaumette,

2004] proposes the use of image moments. More recently, researchers have proposed direct

visual servoing (DVS) methods, which eliminate the need for user-defined features and

for the related image processing procedures. The pioneer DVS works [Collewet et al.,

2008,Collewet and Marchand, 2011] propose using the whole image luminance to control

the robot, leading to “photometric” visual servoing. Bakthavatchalam et al. join the two

ideas by introducing photometric moments [Bakthavatchalam et al., 2013]. A subspace

method [Marchand, 2019] can further enhance the convergence of photometric visual

servoing, via Principal Component Analysis (PCA). This method was first introduced

for visual servoing in [Nayar et al., 1996]. In that work, using an eye-in-hand setup, the

image was compressed to obtain a low-dimensional vector for controlling the robot to a

desired pose. Similarly, the authors of [Deguchi and Noguchi, 1996] transformed the image

into a lower dimensional hyper surface, to control the robot position via in-hand camera

feedback. However, DVS generally considers rigid and static scenes, where the robot

controls the motion of the camera (eye-in-hand setup) to change only the image viewpoint,

and not the environment. This setup avoids breaking the Lambertian hypotheses, which

are needed for the methods to be applicable. For this reason, to our knowledge, DVS

was never applied to object manipulation, since changes in the pose and/or shape of the

object would break the Lambertian assumption.

Compared with above-mentioned works, our approach has the following original con-

tributions:

1. We introduce a new compact feedback feature vector – based on PCA of sampled

2D contours – which can be used for both deformable and rigid object manipulation.

2. We exploit the linear properties of PCA and of the local interaction matrix, to

initialize our algorithm with little data – the same data for feature vector extraction

and for interaction matrix estimation.

3. We report experiments using the same framework to manipulate objects with dif-

ferent unknown geometric and mechanical properties.

In a nutshell, we propose an efficient data-driven approach that allows manipulation of

an object regardless of its deformation characteristics. To the best of authors’ knowledge,

there has not been any similar framework proposed before.
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Rigid object target shape

Rigid object initial shape

camera

(a) Rigid objects

target shape

initial shape
camera camera

(b) Deformable objects

Figure 5.1: Vision-based manipulation of rigid and deformable objects. For rigid objects
(left): control pose (translation and rotation). For deformable objects (right): control the
pose, and also shape.

The chapter is organized as follows. Sect. 5.1 presents the problem. Sect. 5.2 outlines

the framework. Sect. 5.3 elaborates on the methods. In Sect. 5.4, we analyze and verify

the methods by numerical simulations. Then, Sect. 5.5 presents the robotic experiments

and we conclude in Sect. 5.6.

5.1 Problem Statement

In this work, we aim at solving object manipulation tasks with visual feedback. We rely

on the following hypotheses:

• The shape and pose of the object are represented by its 2-D contour on the image

as seen from a camera fixed in the robot workspace (eye-to-hand setup). We denote

this contour as

c = [p1 · · · pK ]T ∈ R
2K , (5.1)

where pj = [uj vj] ∈ I denotes the jth pixel of the contour in the image I.

• The contour is always entirely visible in the scene and there are no occlusions.

• One of the robot’s end-effectors holds one point of the object (we consider the

grasping problem to be already solved). At each control iteration i, its pose is

ri ∈ SE (3), and it can execute motion commands δri ∈ SE (3) that drive the robot

as ri+1 = ri + δri.

Problem Statement. Given a desired shape of the object, represented by its contour c∗,

we aim at designing a controller that generates a sequence of robot motions δr to drive

the initial contour to the desired one, by relying on visual feedback.
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The controller should work without any knowledge of the object physical character-

istics (i.e., for both rigid and deformable objects). Typically, since rigid and deformable

objects behave differently during manipulation, we set the following manipulation goals:

• Rigid objects: move them to a desired pose (see Fig. 5.1a).

• Deformable objects: move them to a desired pose with a desired shape (see Fig.

5.1b).

5.2 Framework Overview

In this section, we present an overview of the proposed approach motivated by the problem

analysis.

5.2.1 Problem Analysis

We can work directly on the object shape space by selecting the contour as the feature

vector s ≡ c ∈ R
2K . However, this will result in an unnecessarily large dimension of the

feature vector (e.g., if K = 50, s has 100 components). The high dimensional feature

vector increases the computation demand and complicates the control due to the high

under-actuation of the system. Therefore, instead of working directly on shape space,

we work on a feature vector space that has reduced dimensions. For that, we split the

problem into two sub-problems: parameterization and control, see Fig. 5.2.

Object shape space

(contour data)

Robot motion space

(task space)

Feature vector space

Initial

Target

Object characteristics

 + camera model

Parameterization

Control

Intermediate

Figure 5.2: Graphic representation of the vision-based manipulation problem, with its
two sub-problems, parameterization and control.

Parameterization consists in representing the shape contour via a compact feature

vector s ∈ R
k, such that k << 2K. We denote this representation as s = g(c).
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Control consists in computing robot motions δr1, δr2, . . . , so that the object’s repre-

sentation s converges to a desired target s∗. Control can be broken down to solving the

optimization problem:

r∗ = arg min
r

(f(r) − s∗) (5.2)

where s = f(r) denotes the mapping between robot pose and feature vector, which is

assumed to be smooth and often nonlinear. If we know the analytic solution to f(r),

we can solve (5.2) and obtain the target shape in a single iteration by commanding r∗.

However, the full mapping f(r) is the result of two subsequent mappings. A mapping

c = h(r) exists between the robot pose r and the resulting contour c. This, combined

with the parameterization mapping above yields: f(r) = g(h(r)). To solve for f(r), one

needs to have the analytic expressions of both h and g. While the latter comes from the

parameterization, the former (h) is difficult to obtain, since it encompasses both the object

characteristics and the camera projection model. For different objects and camera poses,

we expect different properties and camera parameters, therefore a different h. Even for g,

we would like our framework to automatically extract the feature vector without explicit

human definition. Therefore, unlike traditional approaches where g is user-defined and

known, in our framework, the robot has to infer g from sensor data, which in return makes

deriving g difficult.

A solution to this problem is to approximate the full mapping f(r) from sensor ob-

servations. Classic data-driven approaches typically require a long training phase to

collect vast and diverse data for approximating f(r). In some cases (robotics surgery

for instance), it is not possible to collect such data beforehand. Moreover, if the object

changes, new data has to be collected to retrain the model, leading to a cumbersome

process. In this work instead, we aim at doing the data collection online, with minimum

initialization.

Thus, instead of estimating the full nonlinear mapping f(r), we divide it into piece-

wise linear models [Sang and Tao, 2012] at successive equilibrium points. These models

are considered time invariant in the neighbourhood of the equilibrium points. We then

compute the control law for each linear model and apply it to the robot end-effector.

5.2.2 Proposed Methods

Given a target shape c∗, we define an intermediate local target c∗
i at each i = 1, 2, . . . (see

Fig. 5.2). At the ith instance, the robot autonomously generates a local mapping gi to

produce the feature vector si = gi(ci). The robot then finds the local mapping si = fi(ri)

online.

Consider at the current time instant i, the shape ci, the intermediate target c∗
i and
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the local parameterization gi, we can transform shape data into a feature vector by:

si = gi(ci), s∗
i = gi(c

∗
i ). (5.3)

The linearized version of s = f(r) centered at (si, ri) is then:

δsi = Liδri, (5.4)

with

Li =
∂fi

∂r
|r=ri

,

δsi = si+1 − si,

δri = ri+1 − ri.

(5.5)

The matrix Li represents a local mapping, referred to as the interaction matrix in the

visual servoing literature [Chaumette and Hutchinson, 2006b]. If Li can be estimated

online at each iteration i, then, we can design one-step control laws to drive si towards

s∗
i .

After the robot has executed the motion command δri, we update the next target to be

s∗
i+1, and so on, until it reaches the final (desired) target s∗. Although the validity region

of this local linear mapping is much smaller than that of the original nonlinear mapping,

it results in an online training with less data and reduced computational demand.

In the following section, we detail our proposed approach.

5.3 Methods

Figure 5.3 shows the building blocks for the overall framework. In this section, we focus

on the red dashed part of the diagram. We will elaborate on each red block in the

subsequent subsections. The blue block represents the image processing pipeline that will

be discussed in Sect. 5.5.1.

5.3.1 Feature Vector Extraction

There are many ways for parameterizing c to reduce its dimension. Since the interaction

matrix in (5.4) represents a linear mapping for the control, to be consistent, we look for

a linear transformation for the parameterization.

One of the prominent linear dimension reduction methods is Principal Component

Analysis (PCA). PCA finds a new orthogonal basis for high-dimensional data. This en-

ables projection of the data to lower dimension with the minimal sum of squared residuals.

We apply PCA to map c ∈ R
2K to s ∈ R

k.
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Figure 5.3: The block diagram that represents the overall framework.

To find the projection, we collect M images with different shapes of the object and

construct the data matrix Γ = [c1 c2 · · · cM ] ∈ R
2K×M . Then, we shift the columns of

Γ by the mean contour c̄ =
∑M

i=1 ci/M :

Γ̄ = [c1 − c̄ c2 − c̄ · · · cM − c̄] ∈ R
2K×M . (5.6)

We then compute the covariance matrix C = Γ̄T Γ̄, and apply Singular Value Decompo-

sition (SVD) to it:

C = UΣV T . (5.7)

Once we have obtained the eigenvector matrix U ∈ R
2K×2K , we can move on to select

the first k columns of U denoted by U (k) ∈ R
2K×k. Then, the 2K-dimensional contour

c can be projected into a smaller k-dimensional feature vector s as:

s = UT (k)(c − c̄) ∈ R
k. (5.8)

To assess the quality of this projection, we can compute the explained variance using

the eigenvalue matrix Σ ∈ R
2K×2K in (5.7). Denoting the diagonal entries of Σ as

σ1, · · · , σ2K , the explained variance of the first k components is:

Υ(k) =

∑k
j=1 σj

∑2K
j=1 σj

. (5.9)

where Υ is a scalar between 0 and 1 (since σj > 0, ∀j), indicating to what extent the k

components represent the original data (a larger Υ suggests a better representation).

At this stage, it should be clear for the reader that there is a crucial trade-off between

choosing a low or high value for the number of features, k. A low k will ease controllability

(given the limited robot inputs), whereas a high k will improve the data representation
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(by increasing Υ). In the next section, we explain how to select the best value of k.

5.3.2 Selection of the Feature Dimension k

Feature vector s ∈ R
k in (5.8) lies in the new orthonormal basis represented by the

columns of V in (5.7). Therefore, both s and its variation δs span a space of dimension

k. Similarly, r and δr span a space of dimension n.

From (5.4), we know that at each iteration, δs ∈ R
k is the result of a constant linear

mapping (L) on δr ∈ R
n. For an arbitrary number p of samples of small robot motions

δr: R =
[

δr1 · · · δrp

]

such that the mapping L stays constant, we have rank(R) ≤ n.

Using (5.4) we obtain

S = LR (5.10)

such that S =
[

δs1 · · · δsp.
]

. Each column of S is the result of corresponding robot motion.

To find the relationship between k and n, we introduce the following lemma [Strang, 1993]:

Lemma 1. rank(AB) ≤ min(rank(A), rank(B)).

Applying Lemma 1 to (5.10):

rank(S) ≤ min(rank(L), rank(R))

≤ rank(R) ≤ n.
(5.11)

Since δs ∈ R
k, the maximum dimension of rank(S) is k: rank(S) ≤ k. According to

(5.11), k ≤ n. Since a larger k yields a better approximation of the real shape data, the

value of k should be chosen as large as possible considering the condition k ≤ n. Therefore

we choose k = n.

5.3.3 Local Target Generation

Let us now explain how we generate a local desired contour c∗
i given current contour ci

and final desired contour c∗ (Algorithm 1). The overall shape error is given by:

ce = c∗ − ci. (5.12)

We define the intermediate desired contour as:

c∗
i = ci +

1

η
ce, (5.13)

with η = 1, 2, . . . an integer that ensures that c∗
i is a “good” local target for ci (i.e., the two

are similar). This means that if we project the intermediate local data using Ui ∈ R
2K×2K

(note that we are using the full projection matrix and not just the first k columns), the
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feature vector s∗
i = Ui(c

∗
i − c̄) ∈ R

2K should fulfil:

Ψ (k) =

∑k
j=1

∣

∣

∣s∗
i,j

∣

∣

∣

∑2K
j=1

∣

∣

∣s∗
i,j

∣

∣

∣

≥ ǫ, (5.14)

with ǫ ∈ ]0; 1[ a threshold and s∗
i,j the j-th component of s∗

i .

Algorithm 1 outlines the steps for computing the local intermediate targets, so that:

• they are near the final target,

• the corresponding feature vector can be extracted with the current learned projec-

tion matrix.

Remark 1. The reachability of a local target can only be verified with a global deforma-

tion model which we want to avoid identifying in our methods. We will further discuss

this issue in the Conclusion (Sect. 5.6).

Algorithm 1 Local target generation
localTargetFound = false
Ψ0 = 0
η = 1
while not localTargetFound do

c∗
i = ci + 1

η
(c∗ − ci)

s∗
i = Uic

∗
i

Ψη =
∑k

j=1

∣

∣

∣s∗
i,j

∣

∣

∣/
∑2K

j=1

∣

∣

∣s∗
i,j

∣

∣

∣

if Ψη ≥ ǫ or Ψη < Ψη−1 then
localTargetFound = true

η = η + 1

5.3.4 Interaction Matrix Estimation

Let us consider the current contour ci and the local target c∗
i . In this section, we show

how we can implement the PCA and model estimation together and online. We denote

the robot motions and corresponding object contours over the last M iterations (prior to

iteration i ≥ M) as:

∆Ri =
[

δri−M+1 δri−M+2 · · · δri

]

∈ R
n×M

Γi =
[

ci−M ci−M+1 ci−M+2 · · · ci

]

∈ R
2K×(M+1)

(5.15)

By selecting k = n, we compute the projection matrix Ui(n) ∈ R
2K×n, from Γi and c̄i

via (5.6) and (5.7). Then, using Ui, we project current contour ci, desired contour c∗
i and
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shape matrix Γi:

si = Ui(n)T (ci − c̄i) ∈ R
n,

s∗
i = Ui(n)T (c∗

i − c̄i) ∈ R
n,

Si = Ui(n)T Γ̄i =
[

si−M si−M+1 · · · si

]

∈ R
n×(M+1).

(5.16)

In (5.16), Γ̄i is normalized by c̄i as in (5.6). We can then compute ∆Si from (5.16), by

subtracting consecutive columns of Si:

∆Si =
[

δsi−M+1 δsi−M+2 · · · δsi

]

∈ R
n×M . (5.17)

Using ∆Si ∈ R
n×M and ∆Ri ∈ R

n×M we can now estimate the local interaction matrix

Li ∈ R
n×n at iteration i. We assume that near this iteration, the system remains linear

and time invariant: Li is constant. Using the local linear model (5.4), we can write the

following:

∆Si = Li∆Ri. (5.18)

Our goal then is to solve for Li, given ∆Si and ∆Ri. Note that this is an overdetermined

linear system (with n×M equations for n2 unknonwns). Let us consider ∆Ri ∈ R
n×M has

full row rank. Note this sufficiently implies M ≥ n. With this prerequisite, rank(∆Ri) =

n. Therefore, rank(∆Ri∆RT
i ) = n, and its inverse exists. We post multiply (5.18) by

RT
i :

∆SiR
T
i = Li∆Ri∆RT

i . (5.19)

Then, since ∆Ri∆RT
i is invertible, the Li that best fulfills (5.18) is:

L̂i = ∆Si∆RT
i (∆Ri∆RT

i )−1. (5.20)

This matrix is also the solution of the optimization problem

min
Li

n
∑

j=1

∥

∥

∥δσT
j − ∆RT

i lT
j

∥

∥

∥

2
, (5.21)

where σj and lj are respectively the jth row of ∆Si and Li. The detailed derivation is

presented in the Appendix.

If the full row rank condition of ∆Ri is not satisfied, rank(∆Ri∆RT
i ) < n and

∆Ri∆RT
i is singular. Then, instead of (5.20), we can use Tikhonov regularization:

L̂i = ∆Si∆RT
i (∆Ri∆RT

i + λI)−1. (5.22)

Practically, this implies that one or more inputs motions do not appear in ∆Ri.

Therefore, we cannot infer the relationship between these motions and the resulting feature
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vector changes. In this case it is better to increase M and obtain more data, so that ∆Ri

has full row rank.

Instead of computing the interaction matrix, it is also possible to directly compute its

inverse, since this guarantees better control properties, as explained in [Lapresté et al.,

2004]. With the same data, one can re-write (5.18) as:

L⊕
i ∆Si = ∆Ri. (5.23)

We can also solve (5.23) with Tikhonov regularization:

L̂⊕
i = ∆Ri∆ST

i (∆Si∆ST
i + λI)−1. (5.24)

5.3.5 Control Law and Stability Analysis

It is now possible to control the robot, using either of the following strategies:

δri = −αL̂
†
i (si − s∗

i ), (5.25)

if one estimates the interaction matrix with (5.22), where † denotes the pseudo-inverse,

or:

δri = −αL̂⊕
i (si − s∗

i ) (5.26)

if one estimates the inverse of the interaction matrix with (5.24). In both equations, α > 0

is an arbitrary control gain.

Proposition 1. Consider that locally, the model (5.4) closely approximates the interaction

matrix Li = L̂i. For M number of linearly independent displacement vectors δr such that

the interaction matrix L̂i is invertible, the update rule (5.25) asymptotically minimizes

the error ei = s∗ − si.

Proof. With δsi = si+1 − si, we can write (5.4) in discretized form as

si+1 = si + Liδri. (5.27)

The error dynamic

ei+1 = (1 − α)ei (5.28)

is asymptotically stable for α ∈ ]0; 1[. This can be proved by considering the Lyapunov

function

V(e) = eT e. (5.29)
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Using the error dynamic (5.28), one can derive:

∆V = V(ei+1) − V(ei)

= eT
i ((1 − α)2 − 1)ei < 0.

(5.30)

This proves the asymptotic stability of the error e locally by our inputs. �

5.3.6 Model Adaptation

Since both the projection matrix UT (n) and the interaction matrix are local approxima-

tions of the full nonlinear mapping, they need to be updated constantly. We choose a

receding window approach with the window size equal to M .

At current instance i, we estimate the projection matrix UT
i and local interaction

matrix Li with M samples of the most recent data. Using the interaction matrix, and the

a local target c∗
i , we can derive the one-step command δri by (5.25). Once we execute the

motion δri, a new contour data ci+1 is obtained. We move to the next instance i+ 1. A

new pair of input and shape data [δri, ci+1] is obtained. We shift the window by deleting

the oldest data in the window and add in the new data pair. Then, using the shifted

window, we compute one step control at i+ 1 instance.

The receding window approach ensures that, at each instance, we are using the latest

data to estimate the interaction matrix. The overall algorithm is initialized with small

random motions around the initial configuration. First, M samples of shape data and the

corresponding robot motions are collected. With this initialization, we can simultaneously

solve for the projection matrix and estimate the initial interaction matrix using the meth-

ods described in Sect. 5.3.1 and 5.3.4. Using the projection matrix and the initial/desired

shapes, we can then find an intermediate target as explained in Sect. 5.3.3.

We consider quasi-static deformation. Hence, at each iteration the system is in equi-

librium and can be linearized according to (5.4). The data that best captures the current

system are the most recent ones. The choice of M is a trade-off between locality and

richness. For fast varying deformations1, we would expect to reduce M as larger M will

hinder the locality assumption. Yet, if M is too small, it affects the estimation of L̂i (refer

to detailed discussion in Sect. 5.3.4).

5.4 Simulation results

In this section, we present the numerical simulations that we ran to validate our method.

1The notion of fast or slow varying depends on both the speed of manipulation, and on the objects
deformation characteristics (which affect the rate of change in shapes) with regard to the image processing
time.

48



Subspace-based Object Manipulation 5.4. Simulation results

5.4.1 Simulating the Objects

We ran simulations on MATLAB (R2018b) with two types of objects: a rigid box and a

deformable cable, both constrained to move on a plane. The rigid object is represented

by a uniformly sampled rectangular contour. The controllable inputs are its position

and orientation. For the cable, we developed a simulator, which is publicly available at

https://github.com/Jihong-Zhu/cableModelling2D. The simulator relies on the differen-

tial geometry cable model introduced in [Wakamatsu and Hirai, 2004], with the shape

defined by solving a constrained optimization problem. The underlying principle is that

the object’s potential energy is minimal for the object’s static shape [Wakamatsu et al.,

1995]. Position and orientation constraints – imposed at the cable ends – are input to the

simulator. The output is the sampled cable. Figures 5.4 - 5.6, 5.9, 5.10 show simulated

shapes of cables and rigid boxes. We choose K = 50 samples for both rigid objects and

cables. The camera perspective projection is simulated, with optical axis perpendicular

to the plane.

Figure 5.4: Six trials conducted to test various choices of feature dimension k for a cable.
In each sub-figure, the solid red lines are the initial shapes and the dashed black are the
shapes resulting from 10 random motions of the right tip (translations limited to ±5% of
the length, rotations limited to ±5◦).

5.4.2 Selecting the Feature Dimension k

To check condition k = n (see Sect. 5.3.2), we simulate 6 trials with distinct initial shapes

of a cable. The dimension of the robot motion vector δr is n = 3 (two translations and

one rotation of the right tip), and the motions are limited (each translation to ±5% of

the cable length and the rotation to ±5◦). For each trial, we command M = 10 random
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motions around the initial shape using our simulator. Figure 5.4 shows the 6 initial cable

shapes (solid red) and resulting shapes from 10 random movements (dashed black).

For each trial, we apply PCA to map the cable contour c ∈ R
2K to feature vector

s ∈ R
k, as explained in Sect. 5.3.1. We do this for k = 1, 2 and 3 and for each of these 18

experiments, we calculate the explained variance Υ(k) with (5.9). Table 5.1 shows these

explained variances. In all 6 trials, k = n = 3 yields explained variances very close to

1. This result confirms that choosing k = n as the dimension of the feature vector gives

an excellent representation of the shape data. It is also possible to select k = 2, since

the first two components can represent more than 99% of the variance. Nevertheless, the

simulation is noise-free. Therefore, although Υ(k) increases little from k = 2 to k = 3,

this increase is not related to noise but to an actual gain in data information.

Table 5.1: Explained variance Υ(k) for the 6 trials with small motion.
trial 1 trial 2 trial 3 trial 4 trial 5 trial 6

k = 1 0.727 0.795 0.871 0.847 0.847 0.705
k = 2 0.992 0.995 0.996 0.997 0.997 0.994
k = 3 0.999 0.999 0.999 0.999 0.999 0.999

At this stage, it is legitimate to ask how does this scale to larger movements? Fig.

5.5 illustrates 10 cable shapes generated by large movements (angle variation: [−π
2
, π

2
],

maximum translation: 106%). Again, we apply PCA (M = 10); Table 5.2 shows the Υ(k)

resulting from various values of k.

Table 5.2: Explained variance Υ(k) computed with large motion.
k 0 1 2 3 4 5

Υ(k) 0 0.5444 0.7218 0.8927 0.9919 0.9990

Figure 5.5: Ten distinctive cable shapes generated by large motion: angle variation:
[−π

2
, π

2
], maximum translation: 106% of the cable length.

Comparing Tables 5.1 and 5.2, it is noteworthy that Υ(4) with large motion is smaller

than Υ(2) with small motion. There are two possible explanation here. One is that when
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shapes stays local, the local linear mapping L in (5.4) remains constant and we need

less features to characterize it; the more the shape varies, the more more features we

need. Another possible explanation is that for larger motions, M = 10 shapes may be

insufficient for PCA. Likely, the larger the changes, the larger the number of shapes M

needed for proper PCA.

5.4.3 Manipulation of Deformable Objects

With our cable simulator, we can now test the controller to modify the shape from an

initial to a desired one. Again, the left tip of the cable is fixed, and we control the right

tip with n = 3 degrees of freedom (two translations and one rotation). Using the methods

described in Sect. 5.3, we choose window size M = 5, the Tikhonov factor λ = 0, the

local target threshold η = 0.8, the control gain α = 0.01. To quantify the effectiveness

of our algorithms in driving the contour to c∗, we define a scalar measure: the Average

Sample Error (ASE). At iteration i, with current contour ci it is:

ASE =
‖ci − c∗‖2

2K
. (5.31)

A small ASE indicates that the current contour is near the desired one. In Sect. 5.3.5,

we have proved that our controller asymptotically stabilizes the feature vector, s to s∗.

Hence, since we have also shown that s is a “very good” representation” of c, we also

expect our controller to drive c to c∗, thus ASE to 0. This measure is also used in the

real experiments.

Using the cable simulator, we compared the convergence of two control laws we pro-

posed (5.25) and (5.26) against a baseline algorithm in [Zhu et al., 2018] which uses Fourier

parameters as feature. To make methods compatible, we choose first order Fourier ap-

proximation. Note that this results in a feature vector of dimension of 6 (see [Zhu et al.,

2018]) which is still twice the number k used in our method. We also normalized the

computed control action and then multiplied with the same gain factor 0.01.

Figure 5.6 shows the evolution of the cable shapes towards the target using (5.26).

Figure 5.7 compares convergence of our methods against the Fourier-based method. We

can observe that our method provides compatible convergence using half the features.

Also directly computing of the inverse (5.26) provides faster convergence than (5.25). It

is noteworthy to point out that the Fourier-based method requires a different parameteri-

zation for closed and open contours (see [Navarro-Alarcon and Liu, 2017] and [Zhu et al.,

2018]), where in our framework, the parameterization can be kept the same.

Taking a step further, we consider the Broyden update law [Broyden, 1965], which

has been used to update the interaction matrix in classic visual servoing [Hosoda and

Asada, 1994,Jagersand et al., 1997,Chaumette and Hutchinson, 2007b] and shape servo-

ing [Navarro-Alarcon et al., 2013a]. Let us hereby show why it is not applicable in our
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framework.

The Broyden update is an iterative method for estimating Li at iteration i. Its stan-

dard discrete-time formulation is:

L̂i = L̂i−1 + β
δsi−1 − L̂iδri−1

δrT
i−1δri−1

δrT
i−1, ∀ri−1 6= 0 (5.32)

with β ∈ [0; 1] an adjustable gain. Using our simulator, we estimate the interaction matrix

using both Broyden update (with three different values of β) and our receding horizon

method (5.22). We then compare (with L̂ estimated with either method) the one-step

prediction of the resulting feature vector:

ŝi+1 = L̂iri + si, (5.33)

Figure 5.6: Cable manipulation with a single end-effector, moving the right tip. The blue
and black lines are the initial and intermediate shapes, respectively, and the dashed black
line is the target shape. The red frame indicates the end-effector position and orientation
generated by our controller.

Figure 5.7: The evolution of ASE of the simulated cable manipulation using our method
against the Fourier-based method as baseline. Top: left simulation in Fig. 5.6. Bottom:
right simulation in Fig. 5.6.
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with the ground truth si+1 from the simulator. The results (plotted in Fig. 5.8) show

that receding horizon outperforms all three Broyden trials. One possible reason is that the

components of s fluctuate since (at each iteration) a new matrix U is used. These varia-

tions cause the Broyden method to accumulate the result from old interaction matrices,

and therefore perform badly on a long term. This result contrasts with that of [Navarro-

Alarcon et al., 2013a], where the Broyden method performs well since there is a fixed

mapping from contour data to feature vector. Another advantage of the receding horizon

approach is that it does not require any gain tuning.

(a) Receding horizon s1 (b) Broyden update s1

(c) Receding horizon s2 (d) Broyden update s2

(e) Receding horizon s3 (f) Broyden update s3

Figure 5.8: Comparison – for estimating s – of the receding horizon approach (RH, left)
and of the Broyden update (right, with three values of β). The topmost, middle and
bottom plots show the one step prediction of s1, s2 and s3, respectively. In all plots, the
dashed red curve is the ground truth from the simulator. The plots clearly show that the
receding horizon approach outperforms all three Broyden trials.

5.4.4 Manipulation of Rigid Objects

The same framework can also be applied to rigid object manipulation. Consider the

problem of moving a rigid object to a certain position and orientation via visual feedback.

This time, the shape of the object does not change, but its pose will (it can translate

and rotate). We use the same M , λ, η and α as for cable manipulation. We compare

the convergence of two control laws proposed (5.25) and (5.26) against a baseline using

image moments [Chaumette, 2004]. The translation and orientation can be represented

with image moments and the analytic interaction matrix can be computed as explained

in [Chaumette, 2004]). To make methods compatible, we normalize the computed control

and then multiply it by the same factor 0.01.

Figure 5.9 shows two simulations where our controller successfully moves a rigid object

from an initial (blue) to a desired (dashed black) pose using control law (5.26). Figure
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Figure 5.9: Manipulation of a rigid object with a single end-effector (red frame). The
initial, intermediate and desired contours are respectively blue, solid black and dashed
black. Note that in both cases, our controller moves the object to the desired pose.

5.11 compares convergence of our methods against the image moments method. We can

observe that our method provides a slightly slower convergence. Directly computing the

inverse (5.26) provides a convergence similar to (5.25). Later, we will show why our

method is slower. Yet, the fact that it can be applied on both deformable and rigid

objects makes it stand out over the other techniques.

Figure 5.10: From an initial (red) pose, we generate 10 (dashed blue) random motions of
a rigid object.

Taking a step further, we would like to analyze locally what does each component of

the feature vector represent. To this end, we apply M = 10 random movements (rotation

range [−0.11, 0.09], maximum translation 15% of the width) to a rigid rectangular object

of length 5 times larger than width (see Fig. 5.10). We compute the projection matrix as

explained in Sect. 5.3.1, and transform the contour samples to feature vectors. Following

the rationale explained in Sect. 5.3.2, we set k = n = 3. Then, we seek the relationship

– at each iteration – between the object pose x, y, θ and the components of the feature

vector s generated by PCA. To this end, we use bivariate correlation [Feller, 2008] defined

by:

ρ =
E[(ξ − ξ̄)(ζ − ζ̄)]

σξσζ

, (5.34)

where ξ and ζ are two variables with expected values ξ̄ and ζ̄ and standard deviations σξ

and σζ . An absolute correlation |ρ| close to 1 indicates that the variables are highly cor-
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Figure 5.11: Evolution of ASE of the simulated rigid object manipulation using our
method against image moments. Top: left simulation in Fig. 5.9, Bottom: right simula-
tion in Fig. 5.9.

related. All the simulations in Fig. 5.10 exhibit similar correlation between the computed

feature vector and the object pose. In Table 5.3, we show one instance (Left first simu-

lation in Fig. 5.10) of the correlation between variables, with high absolute correlations

marked in red. It is clear from the table that each component in the feature vector relates

strongly to one pose parameter. We further demonstrate the correlation in Fig. 5.12,

where we plot the evolution of object poses and feature components. Note that s2 and θ

are negatively correlated. The slower convergence (compared to image moments) could

be as a result of non-unitary correlation between extracted features and object pose.

Table 5.3: Correlation ρ between s1, s2, s3 and x, y, θ.
x y θ

s1 -0.2819 -0.3343 0.9887
s2 0.2607 -0.8547 -0.0465
s3 0.9230 0.3629 -0.1426

5.5 Experiments

Figure 5.13 outlines our experimental setup. We use a KUKA LWR IV arm. We constrain

it to planar (n = 3) motions δr, defined in its base frame (red in the figure): two

translations δx and δy and one counterclockwise rotation δθ around z. A Microsoft

Kinect V2 observes the object2. A Linux-based 64-bit PC processes the image at 30 fps.

In the following sections, we first introduce the image processing for contour extraction,

then present the experiments.

2We only use the RGB image – not the depth – from the sensor.
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5.5.1 Image Processing

This section explains how we extract and sample the object contours from an image. We

have developed two pipelines, according to the kind of contours (See Fig. 5.14): open

(e.g., representing a cable) and closed. We hereby describe the two.

Figure 5.12: Progression of the auto-generated feature components (row 1, 3, 5: s1, s2,
s3) vs. object pose (row 2, 4, 6: x, y, θ). We have purposely arranged the variables with
high correlation with the same color.
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Kinect 2

Figure 5.13: Overview of the experimental setup.

Figure 5.14: Open (left) and closed (right) contours can be both represented by a sequence
of sample pixels in the image.
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5.5.1.1 Open Contours

The overall pipeline for extracting an open contour is illustrated in Fig. 5.15 and Algo-

rithm 2. On the initial image, the user manually selects a Region of Interest (ROI, see

Fig. 5.15a) containing the object. We then apply thresholding, followed by a morpho-

logical opening, to the image, to remove the noise and obtain a binary image as in Fig.

5.15b. This image is dilated to generate a mask (Fig. 5.15c), which is used as the new

ROI to detect the object on the following image. Figure 5.15e is the object after a small

manipulation motion and 5.15f shows the mask with the grey color which contains the

cable in Fig. 5.15e. On each binary image, we apply Algorithm 2 to uniformly sample

the object (see Fig. 5.15d, where the green box indicates the end-effector). This is the

contour c used by our controller.

(a) ROI (b) After thresholding (c) Mask

(d) Sampled data (e) Next image (f) Cable in the mask

Figure 5.15: Image processing steps needed to obtained the sampled open contour of an
object (here, a cable).

5.5.1.2 Closed Contours

The procedure is shown in Fig. 5.16. For an object with uniform color (in the experiment

blue), we apply HSV segmentation, followed by Gaussian blur of size 3, and finally the

OpenCV findContour function, to get the object contour. The contour is then re-sampled

using Algorithm 2. The starting point and the order of the samples is determined

by tracking the grasping point (red dot in Fig. 5.16d) and the centroid of the object

(blue dot). We obtain the vector connecting the grasping point to the centroid. Then,

the starting sample is the one closest to this vector, and we proceed along the contour
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(a) (b) (c) (d)

Figure 5.16: Image processing for getting a sampled closed contour: (a) original image,
(b) image after thresholding and Gaussian blur, (c) extracted contour, (d) finding the
starting sample and the order of the samples.

clockwise.

Algorithm 2 Generate fixed number of sampled data
Input: P ′ = [p′

1, · · · ,p′
L], original ordered sampled data and K, desired number of data

samples generated
Output: P = [p1, · · · ,pK ], re-sampled data.

1: compute the full length of L of P ′.
2: compute desired distance per sample: µ = L/K
3: k = 1, h = 1
4: dist = 0
5: pk = p′

l

6: while k ≤ K do
7: pnext = p′

h+1

8: d = ||p′
k+1 − pnext||2

9: if d+ dist ≤ µ then
10: dist = dist + d
11: pk+1 = pnext

12: k = k + 1, h = h+ 1
13: else
14: pk+1 = pk + µ

p′

k+1
−pnext

d

15: k = k + 1
16: dist = 0

5.5.2 Vision-based Manipulation

In this section, we present the experiments that we ran to validate our algorithms, also

visible at https://youtu.be/gYfO2ZxZ5KQ. To demonstrate the generality of our frame-

work, we tested it with:

• Rigid objects represented by closed contours,

• Deformable objects represented by open contours (cables),

• Deformable objects represented by closed contours (sponges).
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We carried out different experiments with a variety of initial and desired contours and

camera-to-object relative poses. The variety of both geometric and physical properties

demonstrates the robustness of our framework. The variety of camera-to-object relative

poses shows that—as usual in image-based visual servoing [Chaumette and Hutchinson,

2006b]—camera calibration is unnecessary. The algorithm and parameters are the same

in all experiments; the only differences are in the image processing, depending on the type

of contour (closed or open, see Sect. 5.5.1).

We obtain the desired contours by commanding the robot with predefined motions.

Once the desired contour is acquired, the robot goes back to the initial position, and then

should autonomously reproduce the desired contour. Again, we set the number of features

k = n = 3, and use K = 50 samples to represent the contour c. We set the window size

M = 5, both for obtaining the feature vector s and the interaction matrix L. The control

gain is 0.01, the local target threshold η = 0.8 and the Tikhonov factor λ = 0.01. At the

beginning of each experiment, the robot executes 5 steps of small3 random motions to

obtain the initial features and interaction matrix.

For all the experiments, we set the same termination condition at iteration i+ 1 using

ASE defined in (5.31) such that:

1. ASEi < 1 pixel and

2. ASEi+1 ≥ ASEi.

In the graphs that follow, we show the evolution of ASE in blue before the termination

condition, and in red after the condition (until manual stop by the operator).

Figure 5.17 presents 8 experiments, one per column. Columns 1 – 3, 4 – 6 and 7 – 8

show respectively manipulation of: cable, rigid object and sponge. The first row presents

the full RGB image obtained from Kinect V2. The second and third rows zoom in on the

manipulation at the initial and final iterations. We track the end-effector in the image

with a green marker for contour sampling. The desired and current contours are drawn

in red and blue, respectively.

Figure 5.18 shows the decreasing trend of error ASE for each experiment. The initial

increase of ASE in the experiments can be due to the random motion at the beginning of

the experiments. In general, we found that ASE is more noisy for the closed than for the

open contour. This discontinuity is visible in Figures 5.18c and 5.18d (zigzag evolution).

Such noise is likely introduced by the way we sampled the contour. When we have false

contour data, the value of ASE may encounter a sudden discontinuity. Figure 5.19 shows

examples of these false samples, output by the image processing pipeline. Despite these

errors, thanks to the “forgetting nature” of the receding horizon and to the relatively

small window size (M = 5), the corrupted data will soon be forgotten, and it will not

3The notion of small is relative, and usually dependent on the size of the object the robot is manipu-
lating. Refer to Sect. 5.3.1 (especially Fig. 5.4) for a discussion on this.
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Figure 5.17: Eight experiments with the robot manipulating different objects. From left
to right: a cable (columns 1 – 3), a rigid object (columns 4 – 6) and a sponge (columns
7 and 8). The first row shows the full Kinect V2 view, and the second and the third
columns zoom in to show the manipulation process at the first and last iterations. The
red contour is the desired one, whereas the blue contour is the current one. The green
square indicates the end-effector.

(a) cable – column 1 (b) cable – column 2 (c) cable – column 3 (d) rigid object – column
4

(e) rigid object – column 5 (f) sponge – column 6 (g) sponge – column 7 (h) sponge – column 8

Figure 5.18: Evolution of ei at each iteration i, for the 8 experiments of Fig. 5.17. The
black dashed lines indicate the threshold ASE = 1 pixel. The blue curves show ei until the
termination condition, whereas the red curves show the error until manual termination
by the human operator.

61



Subspace-based Object Manipulation 5.5. Experiments

hinder the overall manipulation task. Yet, the overall framework would benefit from a

more robust sensing strategy, as in [Chi and Berenson, ].

Figure 5.19: False contour data from the image can cause noise in ASE.

(a) (b) (c) (d)

(e) (f) (g) (h)
s

Figure 5.20: Two “move and shape” experiments grouped into two rows. The desired
contour (red dotted) is far from the initial one. This requires the robot to 1) move the
object, establish contact with the right – fixed – robot arm, 2) give the object the desired
shape, by relying on the contact. The first column shows the starting configuration, the
second column presents the contact establishment, and the third column zooms in to show
the alignment. The last column shows the final results.

Finally, since our framework can deal with both rigid and deformable objects, we

tested it in two experiments where the same object (a sponge) can be both rigid (in the

free space), and deformed (when in contact with the environment). These experiments

require the robot to: 1) move the object, establish contact, 2) give the object the desired

shape, by relying on the contact. Figure 5.20 presents these two original “move and

shape” servoing experiments with the corresponding errors ASE plotted in Fig. 5.21. We

use a second fixed robot arm to generate the deforming contact. As the figures and curves

show, both experiments were successful.

The success of the “move and shape” task is largely dependent on the contact estab-

lishment. However, even when the initial contact has some misalignment (see Fig. 5.20c
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(a) move and shape – row 1 (b) move and shape – row 2

Figure 5.21: The evolution of ei for the experiments of Fig. 5.20. The black dashed line
indicates the threshold ASE = 1. The blue curves show ei until the termination condition,
whereas the red curves show the error until manual termination by the human operator.

and 5.20g), our framework can still reduce the ASE to give a reasonable final configuration

(see Fig. 5.20h and Fig. 5.21b).

5.6 Conclusion

In this chapter, we propose algorithms to automatically and concurrently generate object

representations (feature vectors) and models of interaction (interaction matrices) from

the same data. We use these algorithms to generate the control inputs enabling a robot

to move and shape the said object, be it rigid or deformable. The scheme is validated

with comprehensive experiments, including a desired contour that requires both moving

and shaping. We believe it is unprecedented in previous research.

Our framework adopts a model-free approach. The system characteristics are com-

puted online with visual and manipulation data. We do not require camera calibration,

nor a priori knowledge of the camera pose, object size or shape. An open question remains

the management of 6 DOFs motions of arms. Indeed, while the proposed control strategy

can be easily generalized to 6 DOFs motions, it relies on a sufficiently accurate extraction

of feature vectors from vision sensors. A very challenging task is to generate complete

3D feature vectors of objects from a limited sensor set, due to partial view of objects and

occlusions.

The framework could benefit from robust sensing of deformation. In fact, one obvious

setback is that the representation and model of interaction are extremely local. Thus, they

cannot guarantee global convergence. In addition, our framework cannot infer whether

a shape is reachable or not. This drawback is solvable by using a global deformation

model for control. But as we mentioned earlier, a global model usually requires an offline

identification phase which we want to avoid. In fact, for different objects, we will need to

re-identify the model. There is a dilemma in using a global deformation model.

Maybe one of the possible solutions to this dilemma is to have both our method and

deep learning based methods running in parallel. While our scheme enables fast online

computation and direct manipulation, the extracted data can be used by a deep neural
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network to obtain a global interaction mapping. Once a global mapping is learned, it can

later be used for direct manipulation and to infer feasibility of the goal shape.
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Chapter 6

Deformable Linear Object

Manipulation Planning with

Contacts

Contact is an important concept in robotics. In physical Human-Robot Interaction

(pHRI), contact with humans is harmful and should be avoided or reduced. Collision

avoidance can be done with planning [Brock and Khatib, 2002]. In post contact phase,

methods could be used for reducing the impact [De Luca et al., 2006]. Proper contact

needs to be established for grasping an object [Roa and Suárez, 2015]. For humanoids,

contact can be used to achieve a given posture [Kheddar et al., 2019] or execute com-

plex tasks such as climbing stairs [Zhang et al., 2017] or a ladder [Vaillant et al., 2016].

In this chapter, we investigate the use of contacts in the context of deformable object

manipulation. To the best of our knowledge, few papers to date have investigated this

topic.

6.1 Introduction

Humans use contacts when manipulating deformable objects. For instance, when folding

a towel, we will place it on a flat surface to constrain deformation due to gravity. Another

example is when we make cable harnesses, usually a set of cylinder sticks are placed

to regulate the path a cable will follow. Specific contacts are designed for regulating

deformable objects such as hanging hooks for clothes. The reason behind the use of

external contacts lies in the fact that there are infinite degrees of freedom in the object

deformation [Guo et al., 2013], yet finite inputs from manipulators/hands. Often when

dealing with deformable objects, humans not only apply both hands, but also contacts in

the environment to regulate the object shape.

In robotic manipulation planning, contact with the environment is often considered un-

desired, thus should be avoided. A collision free path planner was developed in

[Lamiraux and Kavraki, 2001] using a randomized algorithm. A planner in

[Moll and Kavraki, 2006] computed a path in shape space from one minimal energy curve

to another while satisfying environmental constraints. Bretl and McCarthy showed that
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the shape space of an elastic cable is a six-dimensional smooth manifold

[Bretl and McCarthy, 2014]. Later, the authors of [Borum and Bretl, 2015] took a step

forward and proved path-connectedness of this space. Few papers have investigated ca-

ble manipulation with contacts in the environment. In a pioneer work [Henrich et al.,

1999], the authors presented the specification of contact states for linear objects with

polyhedral obstacles, and identified unstable/stable contact states. Acker and Henrich

further proposed visual features for the detection of contact state transitions in cable

manipulation [Acker and Henrich, 2003]. In a more recent research, the authors planned

cable manipulation strategies with a simulator in both free and contact space [Rous-

sel and Taïx, 2014]. Some works in deformable object manipulation exploited contact

for manipulation: plastic material shaping [Cherubini et al., 2018] and towel folding

[Maitin-Shepard et al., 2010] where some or all manipulation tasks were done with con-

tact compensating the gravity. Yet, these papers do not study the specific use of contact.

In this chapter, we tackle a practical scenario that uses contacts for shaping DLOs. In

cable harnesses, cables usually need to follow a designated path defined by a set of contacts

for easy management. Figure 6.1 shows a typical cable harness board with contacts. We

simplify the problem by considering circular contacts on the board. Our objective is

to establish a robotic manipulation framework that automates the cable routing process.

The robot plans its motion according to the contacts’ placement, detects the occurrence of

a contact, modifies its manipulation behaviour accordingly, and finally achieves a desired

configuration of the cable.

Figure 6.1: Cable routing using contact.

6.2 Problem Statement

The overall problem is depicted in Fig. 6.2. We consider contacts as small circles on the

2D plane. For a cable with sufficient length, given a starting end of the cable, with a list

of ordered small 1 circular contacts placed on the plane, the cable should be manipulated

1The radius of the contact is much smaller than the length of the cable.
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so that it follows the path defined by the contacts’ position and sequence. The order of

the contacts is known a priori by the robot. The cable must be shaped by each contact

sequentially and in the end reach the target position.

1

3 4

5

2

Contact

Final cable

configuration

Target to reach

Starting end of

the cable

Initial cable

configuration

Figure 6.2: A contact-based manipulation example to illustrate the problem. The order
of the contacts is given by the number besides each contact. This information is provided
a priori to the robot.

The cable should touch all contacts in the given order, without creating any loop.

We do not consider friction in this work, and neglect the cable’s deformation along the

tangential direction.

6.3 Our Contributions

To the best of our knowledge, contact-based cable routing relying on robotic manipulation

is still an open research problem. Yet, it is widely present in the industry (e.g., in cable

harness). We address this practical problem by a mathematical analysis of the contact

mobility. We propose an index to quantify the mobility. This index motivates our choice of

motion primitives. A motion planning framework using the primitives is then designed for

the robot to shape cables by contacts. Finally, we validate experimentally the framework,

and evaluate its performance using the proposed contact mobility index.

6.4 Framework overview

We utilize a dual arm robot for the cable manipulation task. The robot is equipped with

two end-effectors M (mobile) and F (fixed). We place F at a fixed pose to hold the

starting end of the cable. M holds the other end of the cable and is free to move on the

2D manipulation plane. An in-hand camera is mounted on M to provide visual feedback.

The framework consists of a planner and a vision-based contact detector. The planner

plans the motion for M given contacts and a target location. The detector identifies the

occurrence of a contact.
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6.5 Angular Contact Mobility Index (ACMI)

One way of analyzing the contact is by its mobility index, which measures the free motion

of the object in contact [Rimon and Burdick, 1998]. In this section, we introduce a novel

contact mobility index based on the angular range of motion. We term it ACMI.

The robot manipulates the cable on a plane. The cable is soft and can adapt to the

curvature of the contact object. In Fig. 6.3 we show an example. We construct a local

Cartesian coordinate frame Oxy at the center of the object. For any point ρ on the contact

curve, the direction of the contact force is denoted n(ρ). We consider the motion of the

cable relative to the contact. The direction of motion is a unit vector v(φ) = [cosφ sinφ]T

with φ (0 ≤ φ < 2π) the angle between the vector and x axis.

circular 

object

cable

contact

curve

direction

of motion

Figure 6.3: Example of a circular object in contact with a cable. The green vector is a
candidate direction of relative object/cable motion. Many other directions are possible.

Definition 1. Angular Contact Mobility Index (ACMI): the angle (in radians) that rep-

resents the range of directions the object can move to break free from the contact.

In Fig. 6.4, we consider – in four cases – the directions of motion of the contact object

(red circle) with regards to the cable. The direction v is parameterized by φ. We derive

the ACMI for these cases and finally provide a general expression for the ACMI.

When there is no contact (Fig. 6.4a), the break free (from contact) directions are

given by the following set:

R = {φ ∈ [0 , 2π)} . (6.1)

Since the object can move in all directions, the ACMI equals 2π.

For a single contact point ρ (Fig. 6.4b), the set of break free directions is defined by:

R(ρ) = {φ ∈ [0 , 2π) : n(ρ) · v(φ) > 0} . (6.2)
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This defines an open set of directions with only positive components in the direction of

n. The angular range in the R(ρ) is π. The ACMI equals π.

For the curved contact in Fig. 6.4c, the set of break free directions is expressed by:

R =
ρ2
⋂

ρ=ρ1

R(ρ). (6.3)

Noting ψ the contact curve angular range, if ψ ∈ (0, π] the ACMI is π − ψ.

Instead, if ψ ∈ (π, 2π] (see Fig. 6.4d), the ACMI equals 0. No matter which direction

the object moves, it cannot break free from the contact.

(a) No contact (b) Point contact (c) 0 < ψ ≤ π (d) π < ψ ≤ 2π

Figure 6.4: The ACMI in four contact cases, (a): no contact; (b): point contact; (c):
curved contact with 0 < ψ ≤ π; (d): curved contact with π < ψ ≤ 2π.

To sum up, we provide a quantitative definition of the ACMI:

ACMI =























2π, No contact,

π, Point contact,

max(0, π − ψ) Curved contact.

(6.4)

Using the ACMI, we quantify the free motion range due to the contact. The higher

the index, the larger the range of motion sufficient to break free from contact (i.e., it is

easier to lose contact).

Below we analyze two motions of the cable and their effects.

The first motion is termed rotation (see Fig. 6.5). Starting from an initial contact

point (ρ2 in Fig. 6.5), the ACMI is π. Consider the left segment of the cable fixed, and

perform an anti-clockwise rotation with center at the contact for the right segment: we

expect the contact point to become a curve. Then the length of the curve grows due to

this movement, so the ACMI decreases. The reverse motion will make the contact curve

shrink, and the ACMI increase.

The second motion is termed sliding. In case of contact point (Fig. 6.6a), sliding

corresponds to:

R(ρ) = {φ ∈ [0 , 2π) : n(ρ) · v(φ) = 0} . (6.5)

For a curved contact with two end points (Fig. 6.6b), we denote two edges of the
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Contact

initial
final

Figure 6.5: The effect of rotation on the ACMI

curve as ρ1 and ρ2 with n1 and n2 being the directions of the associated contact force.

Sliding corresponds to the direction within:

R1

⋃

R2, (6.6)

with

R1 = {φ ∈ [0 , 2π) : n1 · v(φ) = 0} ,

R2 = {φ ∈ [0 , 2π) : n2 · v(φ) = 0} .

In both figures we show an example of contact after sliding in a specific direction. The

sliding motion maintains the contact curve (point) and the ACMI stays unchanged.

Sliding direction

After slidingBefore sliding

(a) Point contact case

Before sliding After sliding

(b) Curved contact case

Figure 6.6: The effect of sliding on the ACMI.

In the next sections, we will relate robotic cable manipulation with these two motions.

Using the ACMI, we show in Section 6.9.3 that with the proposed framework, the robot

constructs and utilizes contacts for shaping the cable to reach a desired configuration.

6.6 Motion Primitives

In Fig. 6.7, we define the manipulation plane coordinate frame Fxy with an origin at the

position of the fixed end-effector F , and we attach a local coordinate frame Mxy to the

mobile end-effector M. The pose of M in Fxy is then qM = [xM yM θM]T ∈ R
3, with

θM the angle expressing orientation of Mxy with regard to Fxy.

The fixed end-effector F is designed such that it can either hold or release one end of

the cable. The mobile end-effector M always holds the other end of the cable. When F
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is holding, the length of the cable between the two end effectors is fixed. Then M rotates

the cable (Fig. 6.7a) with a fixed point on the cable as the rotation center. When F

releases, it allows M to pull the cable so that the length of the cable between the two

end-effectors increases (Fig. 6.7b).

(a)

cable before

cable after

(release)

motion

motion

(hold)

(b)

Figure 6.7: Motion primitives: (a). End-effector F holds while end-effector M rotates
the cable, (b). End-effector F releases while end-effector M pulls the cable.

We define two motion primitives for the dual arm robot to accomplish the task:

• rotate: F hold + M rotate.

• pull: F release + M pull.

6.7 Planner

In this section, we introduce planners for the robot motion. For each contact, the robot

executes the pull motion primitive to reach an initial pose for making contact and then the

rotate motion primitive to construct and use the contact. Since the cable length is much

larger than the contact radius, the radius is assumed to be neglectable in the section.

The flow chart describing the overall motion generated by the planner for n ordered

contacts is shown in Fig. 6.8.

6.7.1 Initial Pose Planner

The initial pose planner plans a discrete target pose for the mobile end-effector M around

each contact. We denoted the planned pose as q∗ = [p∗T θ∗]T , with p∗ = [xp∗ yp∗ ]T as

position and θ∗ as orientation.

Let us consider a general case in Fig. 6.9. We set the fixed point on the cable at

f = [xf yf ]T , the current contact at c = [xc yc]
T , the next contact at r = [xr yr]

T . The

fixed point is either at the origin of Fxy or the previous contact location which regulates

the cable.
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Pulling phase

Motion primitive: pull

contact flag

   contact = true

Reach the initial pose 

for rotate motion

Contact made

Reach the pose 

for pull motion 

start

True

Pre-contact phase

Motion primitive: rotate

Post-contact phase 

Motion primitive: rotate

Reach the final target

Motion primitive: pull

False

For the contact

Figure 6.8: Flow chart depicting the steps needed to reach the final target by contact-
based manipulation with n contacts.

Fixed point on 

the cable

Next contact

Current contact

feasible set

Figure 6.9: Position planning for a single contact.
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After having reached the planned pose we rotate with the center at f to construct a

contact, so the cable length is fixed. Thus, we have our first condition on p∗:

{

p∗ ∈ R
2

∣

∣

∣

∣

||
−−→
fp∗|| > ||

−→
fc||

}

. (6.7)

Otherwise, the cable cannot reach the contact by rotation.

We separate the plane into two half planes, by a line connecting the fixed point f and

the contact c. We denote the half plane with the next contact as P and the other one as

P ′. To reach the next contact, we need:

p∗ ∈ P ′. (6.8)

We envision M to be close the contact, because if it is far, more effort is needed to

bring the cable in contact. To this end, we impose a third condition:

{

p∗ ∈ R
2

∣

∣

∣

∣

||
−→
cp∗|| = d

}

, (6.9)

where ||−→cr|| > d > 0. In practical implementations, d should be set considering the end-

effector size (if too small, the end-effector may collide with the contact), and the camera

field of view (large d may jeopardize contact visibility).

By combining (6.7) - (6.9), we obtain a feasible set for p∗:

{

p∗ ∈ R
2

∣

∣

∣

∣

P ′ ∩
{

||
−−→
fp∗|| > ||

−→
fc||

}

∩
{

||
−→
cp∗|| = d

}

}

, (6.10)

which is illustrated in Fig. 6.9 (purple arc).

The local coordinate frame Mxy should have its positive x direction towards f (the

center of rotation). Thus, the target orientation θ∗ can be calculated as:

∆ = f − p∗,

θ∗ = arctan
y∆

x∆

(6.11)

Extending the method to multi-contact cases is straightforward. For each contact, the

fixed point f is at the previous contact (or at the origin of Fxy for the first contact). For

the last contact, the next contact r is at the target position. We calculate the planned

pose for each contact in the given order. Figure 6.10 shows a planning example.

Once the planned pose is reached, we go to the pre-contact phase.

6.7.2 Pre-contact Phase

In the pre-contact phase, the local planner generates motions to reach the contact. It

continuously receives contact detection information from a vision-based contact detector.
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Target to reach

Contact

1

3
4

5
2

Planned pose for 

Figure 6.10: Multiple contacts planning example. The order of the contacts is presented
by the numbering besides each contact, and known by the robot, which can then compute
the initial pose.

When a contact occurs, the robot moves to the post-contact phase and the planner changes

its behaviour.

In pre-contact phase, we rotate the cable to construct a contact. F will hold the cable

so that the cable length is fixed. We denote a set of planned rotational positions as:

Fixed end

Contact

Planned inital 

pose

Figure 6.11: Rotation to reach the contact.

P =
[

p1 p2 · · ·
]

, (6.12)

where pi is the planned position on the manipulation plane:

pi = [xi
p y

i
p]T ∈ R

2. (6.13)

The rotational direction can be either clockwise or anti-clockwise. In Fig. 6.11, with
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initial position of M at p∗, we define the two vectors:

l1 = p∗ − f ∈ R
2,

l2 = c − f ∈ R
2.

Using l1 and l2, we can formulate a 2 × 2 matrix:

L = [l1, l2] ∈ R
2×2. (6.14)

The rotational direction can be calculated by:

s = sgn(det |L|)











1, rotate anti-clockwise,

−1 rotate clockwise.
(6.15)

The radius for the rotation is

r = ||p∗ − f ||. (6.16)

We set the rotational step to be δθ. For each pi we set orientation θi = θ∗ + i δ θs. The

position vector pi = [xi
p y

i
p]T is then

pi = f + r





cos θi

− sin θi



 ∈ R
2. (6.17)

The full pose vector for M is [piT
θi]

T . A planning example is shown on Fig. 6.11. M

continues to rotate until contact occurs.

Since the contact is not on the robot but on the cable, contact forces cannot be directly

measured on the robot. In addition, the contact force can be very small, which makes

it hard to detect. Therefore, we use vision for the detection. We present the contact

detector in Section 6.8.

6.7.3 Post-contact Phase

Once a contact is made, the robot uses the contact to shape the cable, until a good

configuration is obtained for reaching the next planned initial pose (or to reach the target).

When a contact occurs, the robot has to adapt its manipulation behaviour. The example

overall motion is shown in Fig. 6.12. Let us denote the position of M at the time of

contact by p′. In the post-contact phase, contact c = [xc yc]
T becomes the new fixed

point, which is also the new center for rotation. The new rotation radius is:

r′ = ||p′ − c||. (6.18)

We re-plan the robot motion with the new center c and radius r′ in the same manner
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as in the pre-contact phase, and keep the rotational direction. As discussed in Section

6.5, this post-contact rotation enlarges the contact curve, so the ACMI decreases. This

way, the robot utilizes the contact for shaping the cable, and the contact is strengthened

by the motion.

From the initial planner we get the position of the next planned pose t. End-effector

M continues to rotate until it lies on the line connecting c and t. Then, the robot pulls

the cable towards t (see Fig. 6.12). Since we consider the radius of the circular contact

neglectable (r ≪ l), then in Fig. 6.13 we have:

−→ce = −→cρ + −→ρe ≈ −→ρe. (6.19)

The direction of the pull is the same as the sliding, which we analyzed in Section 6.5.

Therefore the ACMI stays unchanged during the pull, the cable maintains contact.

Fixed point on the cable

Next planned position

Contact

Current planned

position

pre-contact

planning

contact

occurs

post-contact

planning

Figure 6.12: Full rotational motion planning.

Next planned position

Contact

Sliding direction which 

keeps the ACMI

Edge on the contact 

curvature

End of the cable

Direction of pull

Figure 6.13: The pull can be regarded as a sliding motion.
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6.8 Contact Detector

We detect the contact by extracting three features on the in-hand camera image, respec-

tively: the locations of two ends of the cable segment and the contact. The detector is

active only when contact is in the image. For the ease of extraction, we use a white ma-

nipulation plane, a black cable and blue contacts. OpenCV is used for image processing.

Below is the procedure to extract these features:

• The blue contact can be found on the image with HSV thresholding. The contact

location is the centroid of the biggest detected blob (Fig. 6.14b).

• The image is converted to grey-scale and then binarized using uniform thresholding.

We use the Canny edge detector and then find contour to get the contours in the

image. The contour is white in Fig. 6.14c.

• The relative position of the cable end held by M and the camera is fixed, therefore

the hold end of the cable on the image can be found by finding the bottom point

on the contour in a small Region of Interest (ROI). (Fig. 6.14c orange ROI).

• The other end of the cable can be found by setting another ROI at the top of the

image. The upmost point on the contour within the ROI (green) can be regarded

as the location of the other end. (Fig. 6.14c).

The feature extraction results are shown in Fig. 6.14d with the end hold by the end-

effector M orange, the other end green, and the contact red.

Given the locations of the three features: orange eo = [uo vo]
T , green eg = [ug vg]T ,

and red er = [ur vr]
T on the image, we define two vectors:

vog = eo − eg,

vrg = er − eg.

We detect the contact by setting a angular threshold δv, and the contact is detected

when:

|∠(vog,vrg)| < δv.

6.9 Robotic Experiments

6.9.1 Hardware Setup

We use our BAZAR robot [Cherubini et al., 2019] which is equipped with two lightweight

KUKA LWR IV. Planning is carried out in the task space, then projected in the joint

space via inverse kinematics. To avoid kinematic singularities, we use adaptive damped
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(a) Original image. (b) contact location extraction.

(c) Contour of the cable, ROIs for cable
end location extraction.

(d) Image after processing with locations
of three features.

Figure 6.14: Extraction of the cable ends and the contact.

least squares [Chiaverini et al., 1991]. The trajectory generation is done by reflexxes

motion generation library [Kröger, 2011].

A table serves as the manipulation plane. We use cylinder screws as contacts and a

board with holes for easy insertion of contacts. A white wall paper covers the board, with

only the contacts standing out. The size of the manipulation plane is 0.5 m× 0.9 m.

Figure 6.15a shows the end-effector M. A cable can be firmly attached at the bottom

of it. An Intel Realsense D435 camera is mounted, with adjustable height from the bottom

(3 − 27cm). We only use the RGB images. The image resolution is 1920 × 1080. F is a

3D printed structure with 4 springs. When pressed on the table, it holds the cable; when

lifted, it lets the cable slide (Fig. 6.15b).

Figure 6.16 shows the coordinate frames. An ArUco marker [Garrido-Jurado et al.,

2016] is placed just below F to serve as the origin of the manipulation plane. The

manipulation plane is parallel to XY plane in the robot frame.

The transformation from any position [X Y Z]T ∈ RXY Z to [x y]T ∈ Fxy is given

by:

[x y]T = [X Y ]T − [XF YF ]T , (6.20)

where [XF YF ]T is the XY position of F in the robot frame.

6.9.2 Contact Localization

The location of contacts in the robot frame is obtained by commanding an initial upward

motion of M to capture an image of the manipulation plane with the ArUco marker.
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camera

cable holder

(a) End-effector M. (b) End-effector F .

Figure 6.15: Designs of the two end-effectors.

manipulation plane

ArUco marker

Robot frame

camera

Figure 6.16: Setup and coordinate frames.
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Using this image, with simple HSV thresholding, we find the blue contact locations on

the image plane. The projection equation from 3D to 2D is then:

[u v 1]T = DCT C
R[X Y Z 1]T , (6.21)

where D ∈ R
3×3, C ∈ R

3×4 are respectively distortion and camera matrices, and T C
R ∈

R
4×4 is the transformation from the robot to the camera frame. Both the depth Z and

T C
R can be obtained via ArUco. Given image coordinates u and v, the projection equation

(6.21) consists of two functions with two unknowns. Thus, we solve the robot frame

coordinate X and Y from u and v. The contacts’ order are given a prior to the robot.

6.9.3 Results

To validate our framework, we did 8 experiments with different contact configurations.

The video of the experiment can be found at http://y2u.be/7CdNQ4R_wT0. Figure 6.17

shows the manipulation time for each experiment scenario2. The majority of time is

dedicated to the rotation, during which the contact detector is active. We use a rotation

step of 0.02 rad. The rotation step is chosen based on our image processing rate (on average

60 milliseconds per image) for an accurate contact detection. A late detection will put

the cable in high tension. With faster image processing, we could reduce the execution

time in the rotation phase by taking larger rotation steps. This could be achieved – for

instance – by using smaller size images.

Figure 6.21 presents graphically all the multi-contact scenarios with nominal cable

configurations. In the figure, the contact and initial/target XY (Z is constant) locations

are given by vectors (in meters) expressed in the robot frame RXY Z. The initial pose of

M is [−0.05 0.65 π]T , and we set the target orientation for M as π.

Figure 6.18 shows the final configuration for these scenarios. The robot achieves all

these configurations by contact regulation. Figure 6.22 shows a step by step manipulation

process for scenario 8.

We can analyze the effect of robot motion on the ACMI for individual contact and

then for the overall experiment. For an experiment with n contacts, the initial overall

ACMI is 2πn. We expect the ACMI to decrease as the cable is regulated by each contact.

For instance, the initial overall ACMI for scenario 8 is 3 × 2π = 6π. Given the motion in

Fig. 6.19a, we can calculate the ACMI for the ith contact as shown on Fig. 6.19b:

ACMIi = 2π − π − αi − βi. (6.22)

The −π in (6.22) comes from the contact detected by the vision-based detector. We

2We developed a website indicating all the control and vision parameters
used in our experiments: https://jihong-zhu.github.io/robotics/2019/08/17/

Experiment-contact-based-manipulation.html.
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Figure 6.17: Total manipulation time for each scenario. Single contact cases: 1,2. Two
contacts cases: 3-5. Three contacts cases: 6-8.

(a) Scenario 3 (b) Scenario 4 (c) Scenario 5

(d) Scenario 6 (e) Scenario 7 (f) Scenario 8

Figure 6.18: Final cable configurations in six of the eight scenarios.

-0.6 -0.4 -0.2 0 0.2
meter

0.6

0.7

0.8

0.9

m
e
te

r

Fixed end effector pose

Target to reach

Initial pose Contact

Planned pose before 

contact

Planned pose after 

contact

Goal pose

1

23

Cable nominal

config

(a) Planned motion for scenario 8
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Figure 6.19: (a): Planned motion for scenario 8; (b): Example calculation of the ACMI
of contact 1 after the robot motion.
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consider a point contact is constructed. The αi > 0 is the rotation angle subsequent to

the contact detection. The βi ∈ [−π, π] is the rotation angle after pull until the next

contact is detected; βi is positive if the rotation after the pull has the same direction as

before the pull, and negative otherwise. For the last contact βn = 0 rad.

Figure 6.20: The nominal ACMI and the ACMI after the manipulation.

For the example on Fig. 6.19b, from the motion and contact locations we are able to

calculate α1 = 0.76 rad and β1 = −0.0862 rad (β is negative as the direction is different

from the rotation direction before the pull). The ACMI for contact is: 2π − π − 0.76 +

0.086 = 2.46 rad. ACMIs for the rest of contacts can be calculated in the same manner.

One simple measure to analyse overall contact mobility is by summing up the ACMI

of each contact for a given scenario. The total ACMI for a n contacts setup after robotic

manipulation can be calculated by (6.23):

T =
n

∑

i=1

ACMIi. (6.23)

For a given topology of contact locations (order known), and the start and target end-

effector positions, one could calculate the nominal total ACMI by the cable configuration.

Consider the example in Fig. 6.19, based on the nominal cable configuration (obtained

by connecting the start, contacts in order and the target sequentially), and the nominal

ACMI for the first contact is ψ1 which is the angle between the k1 and k2 (see Fig. 6.19).

Similarly, using (6.23) we can calculate total nominal ACMI for a given the topology.

Figure 6.20 presents a bar graph of comparison between the nominal and actual ACMI in

each scenario. The difference between the nominal ACMI and ACMI calculated from the

robot motion is very small. This confirms that with our framework the robot is able to

construct contact and to use it for shaping the cable to reach the desired configuration.

6.10 Conclusion

The work is a pioneer research which considers environmental contacts in deformable

object manipulation. In the robot experiments, we were constrained by the operational
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8
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7

4
5

3

3 contacts

2 contacts

Contact

cable nominal config:

Fixed end Target

The vector unit is meter

Figure 6.21: Manipulation experiments with more than one contact. Contacts are denoted
with black dots, and the nominal cable configuration is drawn with solid (2 contacts) and
dashed (3 contacts) lines

(a) Starting pose. (b) First contact. (c) Second contact. (d) Third contact. (e) Reach the final
pose.

Figure 6.22: Manipulation process for scenario 8.

space of the robot, and by the simple mechanical structure designed to hold the cable.

To extend the framework for more contacts one needs to consider: 1. re-grasping of the

cable, 2. using a mobile base to enlarge the robot operational space. We believe contacts

play a vital role in deformable objects manipulation. Currently, since we consider a robot

with fixed base, the number of contacts is limited, as is the robot operational space. With

a mobile base, one could enhance the robot operational range. In addition, since the

rationale behind a human using a specific contact for shaping is probably closely related

to cognitive science, some inspiration can be drawn from [Tee et al., 2018] for studying

how robots should use different contacts. In a nutshell, contact for deformable objects

manipulation is a rich area with a lot of new research opportunities. We hope this work

can be a starting point for future research.
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Chapter 7

Conclusion and Future Work

In this thesis, we have worked on robotic manipulation of DLOs using visual feedback.

First, we have extended the Fourier-based feedback method from [Navarro-Alarcon and

Liu, 2017] to work with a dual arm setup and open contours. Taking a step further,

we have proposed a novel scheme for manipulation of both deformable and rigid objects

alike. Finally, inspired by humans using contacts for manipulation, we have introduced a

framework that allows a dual arm robot to use environmental contacts for shaping DLOs.

7.1 Summary

We contribute to the state-of-the-art in robotic manipulation with both new algorithms

and applications. On the algorithm side, our manipulation scheme unifies the manipu-

lation of rigid and deformable objects. On the application side, our planning framework

utilizes environmental contacts to make a dual arm robot capable of executing cable

routing tasks.

We started by extending a model-free Fourier-based shape servoing scheme. In order

to validate our approach before the robotic experiment, we worked on modeling DLOs

to simulate our approach. The Fourier-based parameterization is general but requires an

unnecessarily large number of features.

We continued our research in seeking a generalized method for vision-based robotic

manipulation that works for both deformable and rigid objects. We decomposed the ma-

nipulation as two sub-tasks, namely parameterization and control. By keeping the model-

free setup, the control is done with a local linear interaction matrix. To be consistent

with the control, we introduced the corresponding linear parameterization method PCA.

This consistency in parameterization and control allowed us to investigate the properties

of this framework using fundamental theories in linear algebra. The resulting scheme was

validated on simulation, and with robotic manipulation of rigid and deformable objects.

Another area of research in this thesis considers environmental contacts for manip-

ulation. Instead of avoiding contact, we proposed a framework that utilizes them for

manipulation. The target application was cable routing with circular contacts. We in-

troduced an index namely ACMI to quantify the task executio. A vision-based contact

detector aided the planner by switching the planning behavior once contact was detected.
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With the proposed framework, the robot can perform cable routing tasks that have never

been done in previous robotic research.

We have demonstrated an initial step to generalize rigid and deformable object ma-

nipulation in one unified framework. On the other line of research, we have conducted

pioneering research on using environmental contacts for deformable object manipulation.

7.2 Limitation and Future Work

The contributions of this thesis is in the field of vision-based robotic manipulation. In

the following, we briefly discuss the limitations of the presented work and future lines of

research.

As we discussed in Chapter 5, the main limitations in both our model-free approaches

on shape servoing is the proof of global convergence. In Section 5.6, We referred to it as

the dilemma of a global deformation model. We do not explore 3D manipulation. If 3D

perception and object state estimation are robust enough, our methods could be extended

to 3D manipulation.

In contact-based deformable object manipulation, practically, the robot workspace

is limited as the base is fixed. A better and more reliable vision pipeline is the key

to integrate the control and planning under a vision-based framework. We should also

investigate whether contacts can be detected by other sensing modalities such as force.

On the theoretical side, our framework considers only DLOs with circular contacts, which

limits the application to the execution of only one kind of contact-based tasks.

We give the future work based on the limitation mentioned above. Note that the open

problems in the section are in the context of deformable object manipulation.

3D Manipulation: One of the most recent and promising works [Hu et al., 2018]

implemented 3D manipulation with a dual arm. However, the motion is limited to 3D

translations only. On multi-finger hand manipulation, [Ficuciello et al., 2018] proposed

manipulation of 3D objects with a FEM-based deformation model. Nevertheless, this

initial work was open-loop controlled. The complexity of 3D manipulation lies in both

state estimation and control. In the state estimation, vision is the primary tool. However,

it is subjected to light conditions and occlusions. On the control side, the problem is

under-actuated in nature for the infinite DoFs in object deformation.

Learning Simultaneously Local and Global Mapping: To address the dilemma

of a global deformation model, we could consider a two-layered hierarchical scheme. A

fast and local manipulation scheme enables manipulation with minimum initialization. At

the higher level, we could have a neural network based nonlinear function approximator

for learning the global mapping. In this way, we are simultaneously computing a local

and global model of the object. The combination is promising in resolving the issue of

convergence in the local model while minimizing the undesired offline training for using
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Conclusion and Future Work 7.2. Limitation and Future Work

a global deformation model before starting the control.

Multi-modal Manipulation: The integration of other sensing modalities such as

force, thermal (for considering deformation due to temperature) will be beneficial for

better state estimation of the object. Force gives crucial information on deformation,

which is currently lacking in most of the research. For plastic deformation, such as

manipulating a clothe or a rope, the force can detect dangerous action that might tear

the object apart. For elastic deformation, force thresholding may prevent damaging the

elasticity of the object.

Generalized Contacts: Another interesting direction is the generalization of con-

tacts in manipulation. One may find inspiration from cognitive science [Lewis, 2006,Säljö,

2002]. Works in affordance [Bærentsen and Trettvik, 2002, Jones, 2003] might also shed

light on how to generalize the use of contacts for deformable object manipulation.
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Appendix A

Appendix

The appendix contains prove of Lemma 1 in Section 5.3.1, and also the equivalence of

the solution (5.20) to the optimization problem we mentioned in Section 5.3.4.

A.1 Prove of the Lemma

rank(AB) ≤ min(rank(A), rank(B)).

Proof. For ease of notation, we consider A ∈ R
m×n, B ∈ R

n×k, and C = AB ∈ R
m×k.

We write B into column vectors:

B =
[

b1, b2, · · · , bk

]

(A.1)

We have:

C =
[

c1, c2, · · · , ck

]

=
[

Ab1,Ab2, · · · ,Abk

] (A.2)

The columns of C is linear combination of columns of A, thus

rank(C) = rank(AB) ≤ rank(A). (A.3)

Then, we write A into row vectors:

A =

















a1

a2

...

am

















(A.4)

We have:

C =

















c1

c2

...

cm

















=

















a1B

a2B
...

amB

















(A.5)
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Appendix A.2. Solution to the Optimization Problem

The rows of C is linear combination of rows of B, thus

rank(C) = rank(AB) ≤ rank(B). (A.6)

Combining (A.3) and (A.6), we have rank(AB) ≤ min(rank(A), rank(B)). �

A.2 Solution to the Optimization Problem

Given ∆Si ∈ R
n×M and ∆Ri ∈ R

n×M , we would like to find Li ∈ R
n×n given the

equation:

∆Si = Li∆Ri. (A.7)

We can solve (A.7) by the optimization problem min
Li

(J ) with

J =
n

∑

j=1

||δσT
j − ∆RT

i lT
j ||2, (A.8)

where σj and lj are respectively the jth row of ∆Si and Li ∈ R
n×n. The || · ||2 denote the

Euclidean norm. In this section, we want to show that the solution of the optimization

problem is equivalent to (5.20), that is:

L̂i = ∆Si∆RT
i (∆Ri∆RT

i )−1. (A.9)

We assume the same as in Section 5.3.4 that rank(∆Ri) = n.

We can decompose the solving of min
Li

(J ) into solving individual sub-problems. We

rewrite (A.8) into:

min
Li

(J ) = min
l1

(J1) + min
l2

(J2) + . . .+ min
ln

(Jn), (A.10)

where

Ji = ||δσT
j − ∆RT

i lT
j ||2, (A.11)

The individual optimization problem

min
li

(Ji) = min
li

||δσT
j − ∆RT

i lT
j ||2 (A.12)

is a standard linear least square problem (Ax = b):

∆RT
i lT

j = δσT
j . (A.13)

Its solution is:

lT
j = (∆Ri∆RT

i )−1∆Riδσ
T
j (A.14)
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Appendix A.2. Solution to the Optimization Problem

Transposing (A.14) on both side, we have:

lj = δσj∆RT
i (∆Ri∆RT

i )−1, (A.15)

Writing (A.15) in the matrix form:

L̂i = ∆Si∆RT
i (∆Ri∆RT

i )−1, (A.16)

which is exactly (A.9).
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