
HAL Id: tel-02971589
https://theses.hal.science/tel-02971589

Submitted on 19 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Topics in Complex and CR geometry
The Anh Ta

To cite this version:
The Anh Ta. Topics in Complex and CR geometry. Complex Variables [math.CV]. Université Paris-
Saclay, 2020. English. �NNT : 2020UPASM007�. �tel-02971589�

https://theses.hal.science/tel-02971589
https://hal.archives-ouvertes.fr


Th
ès

e 
de

 d
oc

to
ra

t
N
N
T:
2
0
2
0
U
PA

S
M
0
0
7

Topics in Complex and CR
geometry

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 574, École doctorale de Mathématiques
Hadamard (EDMH)

Spécialité de doctorat: Mathématiques fondamentales
Unité de recherche: Université Paris-Saclay, CNRS, Laboratoire de

mathématiques d’Orsay, 91405, Orsay, France
Référent: Faculté des sciences d’Orsay

Thèse présentée et soutenue en visioconférence totale,
le 30 septembre 2020, par

The Anh TA

Composition du jury:

Xiaonan MA Président
Professeur, Université de Paris
Damian BROTBEK Rapporteur & Examinateur
Professeur, Université de Lorraine
Chin-Yu HSIAO Rapporteur & Examinateur
Directeur de recherche (HDR), Academia Sinica
Julien DUVAL Examinateur
Professeur, Université Paris-Saclay
Elisha FALBEL Examinateur
Professeur, Sorbonne Université
Pawel NUROWSKI Examinateur
Professeur, Polish Academy of Sciences

Joël MERKER Directeur de thèse
Professeur, Université Paris-Saclay



Acknowledgments
First and foremost, I would like to express my sincere gratitude and appreciation to

my supervisor, Professor Joël Merker for his guidance, his kindness and his enormous
generosity. I would like to thank him for providing continuous helps and supports at every
step of my graduate study. I would like to thank him for always being patient and tolerant
with my numerous issues, and for offering invaluable advices about research and about
life. Everything I know about the subjects of this thesis, I learned from him, either from
many lessons he gave in his office or through our joint works. I would like to thank him
for sharing his knowledge and ideas, and for generously allowing me to join his research
projects which constitute this thesis.

I would like to thank the rapporteurs, Professor Damian Brotbek and Professor Chin-Yu
Hsiao, for sacrificing their time and their energy on reviewing and writing their reports for
my thesis.

I would like to thank Professor Damian Brotbek, Professor Julien Duval, Professor El-
isha Falbel, Professor Chin-Yu Hsiao, Professor Paweł Nurowski, Professor Xiaonan Ma
and Professor Joël Merker for accepting the invitations to become members of the jury for
my thesis defense.

I also would like to thank Wei-Guo Foo and Zhangchi Chen for their collaborations in
our joint works and their helps during my graduate study.

During my stay in Orsay, Professor Paweł Nurowski started a close collaboration with
my supervisor and I benefited greatly from his visits and his lectures. I would like to
thank him for sharing his deep knowledge about Cartan’s method of equivalence and his
openness.

I would like to thank Université Paris-Saclay and the Fondation Mathématique Jacques
Hadamard (FMJH) for their scholarship which gave me the opportunity to come and study
in France for the last 4 years. I also would like to thank Professor Frédéric Paulin and
Professor Stéphane Nonnenmacher for their helps with many administrative problems and
their advices.

My special thanks go to Professor Stéphane Nonnenmacher and Professor Joël Merker
for their helps which make it possible for me to organise my thesis defense on videocon-
ference.

Finally, I thank my family, Tâm and An, for accompanying me on this journey.



Contents

Résumé 6

Introduction 17

Chapter 1. Degrees d >
(√

n logn
)n and d >

(
n logn

)n in the Conjectures
of Green-Griffiths and of Kobayashi 27

1. Introduction 27
2. Preliminary: Link with Darondeau’s Work 28
3. End of Proof of Theorem 1.3 31
4. From Coordinates (t1, t2, . . . , tn) to Coordinates (w2, . . . , wn) 38
5. Approximations of multinomial quotients Mn

k2,...,kn
46
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Résumé

Ce mémoire contient des résultats de recherche en géométrie complexe et en géométrie
CR. Les sujets incluent les bornes de degré pour les hypersurfaces dans les problèmes liés
à l’hyperbolicité de Kobayashi (Chapitre 1), les problèmes d’équivalence et la construc-
tion de formes normales pour certaines classes d’hypersurfaces à 5-dimensions de Levi
dégénérés dans des espaces complexes (Chapitre 2 , Chapitre 3 et Chapitre 4), et des investi-
gations sur le lieu de fuite des courbures CR de Cartan sur les frontières de certaines variétés
CR 3-dimensionnelles (Chapitre 5 et Chapitre 6). Le thème commun ici est l’utilisation de
jets supérieurs dans diverses situations géométriques pour étudier les invariants des objets
géométriques, et l’utilisation intensive de programmes de calcul symbolique pour aider à
des calculs complexes. Décrivons plus en détail les principaux résultats.

De nouvelles bornes de degré pour les hypersurfaces dans les conjectures
de Green-Griffiths et de Kobayashi. Dans le Chapitre 1, nous étudions les degrés
d’hypersurfaces algébriques génériques dans les espaces projectifs complexes pour
lesquels les conjectures de Green-Griffiths et de Kobayashi sont vraies. La notion
d’hyperbolicité de Kobayashi est définie pour les espaces complexes généraux par la
non-dégénérescence de la métrique de Kobayashi (Voir [73]). Pour une variété complexe
compacte lisse X , un théorème de Brody [6] déclare que X est une hyperbolique de
Kobayashi si et seulement si toutes les courbes holomorphes entières f : C → X sont
constantes. Puisque dans ce Chapitre, nous ne considérerons que les hypersurfaces
algébriques lisses, nous prenons pour définition qu’une hypersurface est hyperbolique
de Kobayashi si toutes les courbes holomorphes entières sont constantes. La conjecture
d’hyperbolicité de Kobayashi pour les hypersurfaces déclare que

CONJECTURE (Kobayashi). Une hypersurface générique en Pn(C) de degré au moins
2n+ 1 est hyperbolique de Kobayashi.

Une notion liée à l’hyperbolicité de Kobayashi est celle de dégénérescence algébrique.
Une courbe holomorphe entière f : C → X sur une variété algébrique complexe X est
algébriquement dégénérée s’il existe une sous-variété algébrique propre Z de X telle que
f(C) ⊂ Z . La conjecture de Green-Griffiths stipule que

CONJECTURE (Green-Griffiths). Pour toute variété algébrique complexe lisse X de
type général, il existe une sous-variété algébrique propre Z de X telle que toutes les
courbes holomorphes entières non constantes sur X doivent se trouver dans Z.

Rappelons qu’une hypersurface dans l’espace projectif complexe n-dimensionnel est de
type général si et seulement si son degré est au moins n+ 2.

Après des activités de recherche intensives au cours des dernières décennies de
Siu [115], Demailly [28, 31] et d’autres, la conjecture d’hyperbolicité de Kobayashi est
maintenant connue pour être vraie pour les hypersurfaces génériques de degrés assez
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RÉSUMÉ 7

grands. Une nouvelle preuve a été récemment donnée par Brotbek [8]. Du côté de la
dégénérescence algébrique, le résultat saisissant de Diverio-Merker-Rousseau [34] démon-
tre la conjecture de Green-Griffiths pour les hypersurfaces génériques en Pn+1(C) de degré
au moins 2n

5 . Plus tard, Darondeau a grandement amélioré la borne à (5n)2nn dans son tra-
vail [25]. Il faut mentionner que nos résultats dans le Chapitre 1 sont largement obtenus en
poussant plus loin les arguments de positivité clés de [25] basés sur les idées de Bérczi [3].
Le principal outil technique sous ces développements est la technique des différentiels de
jets issue des travaux de Bloch [5] et développée en un outil puissant grâce aux travaux de
Green-Griffiths, Siu, Demailly, Merker et autres. D’autres méthodes incluent l’utilisation
des différentiels wronskiens par Brotbek [8] et des méthodes de géométrie équivariante par
Bérczi [3].

Après les résolutions impressionnantes de la conjecture de Kobayashi et de la conjec-
ture de Green-Griffiths pour les hypersurfaces génériques de degrés suffisamment élevés,
un prochain objectif naturel dans ce domaine de recherche est d’améliorer les degrés
d’hypersurfaces afin que les conjectures susmentionnées restent vraies. Pour le moment,
les limites optimales prédites semblent hors de portée avec l’utilisation des techniques
actuelles, néanmoins de nombreuses améliorations ont été obtenues pour le cas de la
conjecture de Green-Griffiths dans la percée de Diverio-Merker-Rousseau [34], par De-
mailly [29], Bérczi [3], et Darondeau [27]; et pour le cas de la conjecture de Kobayashi par
Deng [33] et Demailly [31] en rendant effective la méthode de Brotbek.

Nous renvoyons à l’article [31] de Demailly pour une enquête à jour et le récit le plus
récent sur le sujet.

Récemment, dans un développement surprenant, Riedl-Yang [114] a trouvé un lien étroit
entre les deux conjectures montrant que la validité d’une conjecture implique la validité de
l’autre dans une gamme convenable de degrés. De plus, en supposant qu’une conjecture est
vraie pour des limites de degrés optimales, alors une telle correspondance montre même la
validité de la conjecture restante également avec des limites de degrés optimales. Inspiré
par ce résultat intéressant, Merker expose un plan pour améliorer les limites des degrés dans
la conjecture de Green-Griffiths, et ainsi obtenir des améliorations à la fois pour la conjec-
ture de Kobayashi en poussant plus loin la technique connue dans les travaux antérieurs de
Darondeau [27]. Dans sa pré-impression [91] de 2018, Merker a obtenu le degré lié n2n

pour la conjecture de Kobayashi. Plus tard, dans un travail conjoint [94] avec Merker, nous
explorons plus avant cette ligne de pensée et obtenons les améliorations suivantes

THÉORÈME 0.1. (i) Pour n assez grand, toutes les courbes holomorphes entières non
constantes sur une hypersurface générique en Pn(C) de degré au moins (

√
n log n)n sont

algébriquement dégénérés.
(ii) Pour n assez grand, une hypersurface générique en Pn(C) de degré au moins

(n log n)n est hyperbolique de Kobayashi.

Equivalences rigides d’hypersurfaces rigides 2-nondégénérées en 5 dimensions
dans C3 de forme de Levi de rang constant 1. Dans le Chapitre 2, le Chapitre 3 et le
Chapitre 4, nous considérons deux cas particuliers, d’hypersurfaces à 5 dimensions dans
C3, de la domaine de recherche générale sur problème d’équivalence et problème de clas-
sification de sous-variétés réelles dans des espaces complexes sous l’action de transforma-
tions biholomorphes.

Le problème d’équivalence déclare que pour une hypersurface analytique réelle donnée
M dans Cn et un point P ∈ M , et une autre hypersurface donnée M ′ dans Cn et un autre
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point P ′ ∈M ′, existe-t-il un biholomorphisme (local) de Cn qui envoie M à M ′ et P à P ′?
Ceci conduit immédiatement à des recherches sur les invariants biholomorphes locaux de
(M,P ). Le problème de classification concerne alors la classification de toutes les hyper-
surfaces analytiques réelles jusqu’aux transformations biholomorphes, pour lesquelles on
espère généralement déterminer des représentants, peut-être jusqu’à quelques ambiguïtés,
pour chaque classe d’équivalence biholomorphique (i.e. formes normales).

Poincaré a été le premier à considérer le problème d’équivalence des hypersurfaces
réelles sous l’action de biholomorphismes dans des espaces complexes de dimensions
supérieures à 1. Dans un article [112] de 1907, il a discuté de la pertinence du problème
d’équivalence pour les hypersurfaces réelles dans C2 en donnant des arguments heuris-
tiques pour montrer que les hypersurfaces générales ne sont pas localement biholomor-
phes les unes par rapport aux autres . Il a ensuite proposé d’utiliser des méthodes issues
des systèmes dynamiques et de la mécanique céleste pour construire des formes normales
d’hypersurfaces dans des espaces complexes.

Puis en 1932, Élie Cartan [17] reprit le problème d’équivalence des hypersurfaces
tridimensionnelles dans C2 et donna une solution complète en termes de structures
géométriques sur les hypersurfaces, un cas particulier de ce que nous appelons maintenant
les connexions Cartan. Notez que le problème d’équivalence n’est intéressant que pour les
hypersurfaces non dégénérées de Levi, car le cas des hypersurfaces dégénérées de Levi est
assez facile en dimension complexe 2.

L’approche de forme normale de Poincaré et l’approche géométrique de É. Cartan a
été développé en une théorie à part entière dans l’article [23] de Chern et Moser, qui
résout le problème d’équivalence et le problème de classification des hypersurfaces Levi
nondégénérées dans toute dimension complexe n > 2. Après des études approfondies suite
aux travaux de Chern-Moser, nous avons maintenant une bonne compréhension de la classe
des hypersurfaces Levi nondégénérées.

Ce n’est qu’au début des années 2000 que les premières études sur les hypersurfaces
Levi dégénérés ont commencé à apparaître. Le premier cas intéressant à considérer est
la classe des hypersurfaces réelles à 5 dimensions dans C3 dont la forme Levi a le rang
constant 1. La première tâche est de déterminer des modèles localement homogènes, qui
jouent le rôle des sphères dans le cas de Levi nondégénéré. Le modèle homogène a été
déterminé après les travaux d’Ebenfelt [36], Gaussier-Merker [56] et Fels-Kaup [44] pour
être le modèle de Gaussier-Merker (voir ci-dessous).

Après avoir trouvé le modèle homogène, le problème d’équivalence pour les hypersur-
faces dégénérées de Levi dans C3 a été poursuivi par de nombreux groupes de mathémati-
ciens. La solution a été obtenue dans les travaux de Pocchiola [113, 93], Isaev-Zaitsev [68]
et Medori-Spiro [82]. Nous renvoyons au travail de Foo-Merker [49] pour un traitement
définitif avec tous les détails.

Dans le Chapitre 2 et le Chapitre 3, nous considérons une classe spéciale
d’hypersurfaces analytiques réelles 2-nondégénérées, rigides dans C3 ayant forme
de Levi de rang constant 1.

Nous allons résoudre le problème d’équivalence pour cette classe d’hypersurfaces sous
des transformations biholomophiques rigides en appliquant la méthode d’équivalence de
Cartan, qui se traduit par une réduction de type Cartan à {e}-structure (Chapitre 2). Ensuite,
nous résolvons le problème de classification en construisant dans ce cas une forme normale
de type Poincaré-Moser (Chapitre 3).
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La classe des hypersurfaces rigides, telle que popularisée par Isaev [63], est intermédi-
aire entre la classe des produits des hypersurfaces tridimensionnelles et R2, pour laquelle la
théorie est bien comprise , et la classe des hypersurfaces générales à 5 dimensions dans C3.
Cela permet beaucoup de simplifications par rapport au cas des hypersurfaces dégénérées
générales de Levi, tout en donnant lieu à une théorie intéressante, assez compliquée et
significative.

Plus tard, dans le Chapitre 4, nous développerons une théorie de la réduction de
type Poincaré-Moser pour la classe des hypersurfaces analytiques réelles générales 2-
nondégénérézs ayant forme Levi de rang constant 1 en C3, pas nécessaire rigide, sous
l’action du groupe complet de toutes les transformations biholomorphes.

Nous donnons maintenant un bref résumé des résultats dans le Chapitre 2 et le
Chapitre 3.

Une hypersurface analytique réelle M5 dans C3 est appelée rigide s’il existe des coor-
données complexes appropriées (z1, z2, w) de C3, avec w = u+ iv, de sorte que M puisse
être représenté sous forme de graphique

M : u = F (z1, z2, z1, z2),

où F est une fonction analytique à valeur réelle dans les variables z1, z2, z1, z2 et est in-
dépendante de la variable réelle v. Les transformations biholomorphes rigides de la forme

(z1, z2, w) 7−→ (f1(z1, z2), f2(z1, z2), aw + g(z1, z2))

où a ∈ R∗, préserve la propriété rigide des hypersurfaces dans C3. Nous étudierons
le problème d’équivalence pour la classe des hypersurfaces rigides, qui sont aussi 2-
nondégénérées et ont Levi forme de rang constant 1, sous l’action du groupe des trans-
formations biholomorphes locaux rigides.

Le fibré de structure CR T 1,0M = (C⊗ TM) ∩ T 1,0C3 est de rang réel constant 2. De
plus, T 1,0M est généré partout sur M par deux champs vectoriels L1,L2 donnés par

L1 =
∂

∂z1

− iFz1
∂

∂v
et L2 =

∂

∂z2

− iFz2
∂

∂v
.

La forme de Levi LF de M en un point p ∈M est définie sur T 1,0
p M par

LFp : T 1,0
p M × T 1,0

p M −→ C⊗ TpM modT 1,0
p M ⊕ T 1,0

p M,

(Xp, Yp) 7−→ i[X, Y ]p modT 1,0
p M ⊕ T 1,0

p M,

pour deux vecteurs tangents holomorphes quelconques Xp, Yp ∈ T 1,0
p M et leurs deux ex-

tensions arbitraires de champ de vecteurs holomorphes locaux X, Y près de p. La forme de
Levi est un invariant CR de M .

Lors de l’évaluation par rapport au cadre {L1,L2}, la forme de Levi peut être représen-
tée sous la forme d’un champ à valeur matricielle 2× 2

LFp = 2

Å
Fz1z1(p) Fz2z1(p)
Fz1z2(p) Fz2z2(p)

ã
.

On ne considère que l’hypersurface M dont la forme de Levi est de rang constant 1,
c’est-à-dire la matrice 2× 2

(
Fz1z1 (p) Fz2z1 (p)

Fz1z2 (p) Fz2z2 (p)

)
a rang constant 1 en tout point p ∈M . Sous

cette hypothèse de dégénérescence de Levi, le noyau de la forme de Levi en chaque point
donne naissance à un sous-fibré K1,0M de rang constant 1 du fibré de structure CR T 1,0M .
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Le sous-fibré K1,0M est généré par le champ de vectors K = kL1 + L2, avec la
fonction oblique k = −Fz2z1

Fz1z1
.

On rappelle maintenant le prochain invariant CR de M , la forme Freeman FF , qui est
donnée en un point p ∈M par

FFp : K1,0
p M ×

(
T 1,0
p MmodK1,0

p M
)
→ T 1,0

p M ⊕ T 1,0
p M modK1,0

p M ⊕ T 1,0
p M,

(Kp, Lp) 7−→ [K,L]p modK1,0
p M ⊕ T 1,0

p M,

pour deux vecteurs tangents quelconques Kp ∈ K1,0
p M et Lp ∈ T 1,0

p M , et leurs extensions
arbitraires des champs de vectors local: K comme section locale de K1,0M et L en tant
que section locale de T 1,0M près de p.

Nous faisons l’hypothèse que la forme Freeman de M est de rang constant 1 en
tout point p ∈ M . Notre hypersurface M est alors appelée 2-nondégénérée. La 2-
nondégénérescence de M équivaut à la condition que L1(k)(p) 6= 0,∀p ∈M .

Le modèle hypersurface de la classe des hypersurfaces rigides 2 nondégénérées de forme
Levi de rang constant 1 est le modèle de Gaussier-Merker

u =
z1z1 + 1

2
z2

1z2 + 1
2
z1

2z2

1− z2z2

dont l’algèbre de Lie des automorphismes CR rigides infinitésimaux est à 7 dimensions.
Dans un travail conjoint [46] avec Foo et Merker, nous effectuons la méthode

d’équivalence de Cartan pour obtenir la réduction à {e}-structure pour le problème
d’équivalence considéré comme suit

THÉORÈME 0.2. Il existe une fibré invariante 7-dimensionnel P 7 −→ M5 équipé des
coordonnées: (

z1, z2, z1, z2, v, c, c
)
,

avec c ∈ C, avec une collection de sept 1-forme complexe qui font un cadre pour TP 7,
noté: {

ρ, κ, ζ, κ, ζ, α, α
}

(ρ= ρ),

qui satisfont 7 équations de structure invariante de la forme:

dρ =
(
α + α

)
∧ ρ+ i κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ =
(
α− α

)
∧ ζ +

1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ,

avec les équations de structure conjuguée pour dκ, dζ , dα.

Les invariants primaires I0,V0 sont exprimés explicitement en termes des 5-jets de la
fonction graphique F de M . L’invariant secondaire Q0 peut être exprimé en termes de
différentiels des deux invariants primaires et de la fonction F . La disparition de I0 et V0

implique la disparition de Q0. Une hypersurface rigide 2-nondégénérée M en C3 de forme
Levi de rang constant 1 est localement équivalente au modèle de Gaussier-Merker sous une
transformation biholomorphique rigide si et seulement si I0 ≡ 0 et V0 ≡ 0.
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Formes normales d’hypersurfaces rigides 2-dimensionnelles 2-nondégénérées
dans C3 de forme Levi de rang constant 1. La seconde approche du problème
d’équivalence d’hypersurfaces dans des espaces complexes consiste à construire formes
normales. Proposé par Poincaré [112] et réalisé avec succès pour le cas des hypersurfaces
de Levi nondégénérées de toute dimension n > 2 par Chern et Moser [23]. Cette méthode
trouve son origine dans les domaines des systèmes dynamiques et de la mécanique céleste.
L’idée est d’appliquer successivement des changements biholomorphiques appropriés
de variables afin de simplifier au maximum l’expansion de la série de puissance en un
point choisi de la fonction graphique de l’hypersurface considérée. Le but est qu’après
des séries de normalisations généralement longues et élaborées, on espère atteindre un
représentant pour chaque classe d’équivalence d’hypersurfaces, pouvant aller jusqu’à
certaines ambiguïtés.

Conformément à la réduction de type Cartan aux structures {e}-dans l’approche
géométrique de Cartan et de ses disciples, nous utilisons le terme de réduction Poincaré-
Moser pour les formes normales obtenues en appliquant la méthode de Moser .

Dans un travail conjoint [22] avec Chen, Foo et Merker, très influencé par les travaux
récents [21] de Chen et Merker sur les formes normales de surfaces affines, nous suivons
la méthode de Moser de construire une réduction de type Poincaré-Moser pour des hyper-
surfaces rigides 2-nondégénérées en C3 de forme Levi de rang constant 1 sous l’action de
transformations biholomorphes rigides locales (Chapitre 3). Décrivons plus précisément la
procédure.

Tout d’abord, afin de réduire les complications lors de l’écriture de séries de puissance
dans de nombreuses variables, nous allons passer de la coordonnée (z1, z2, w) aux nouvelles
coordonnées (z, ζ, w) de C3, dans lequelM admet l’expansion de la série de puissance près
de l’origine comme

u =
∑

a+b+c+d>1

Fa,b,c,d z
aζbzcζ

d
.

Après avoir appliqué quelques transformations rigides préliminaires,M peut être amené
à une forme plus simple

u = zz + 1
2
z2ζ + 1

2
z2ζ +

∑
a+b+c+d>4
a+b>1
c+d>1

Fa,b,c,d z
aζbzcζ

d
.

Après avoir appliqué d’autres transformations rigides, les premières simplifications sig-
nificatives sont obtenues sous la forme prénormalisée de F (z, ζ, z, ζ) = zz + 1

2
z2ζ +

Oz(3) + Oζ(1), plus précisément:

0 = Fa,b,0,0 = F0,0,c,d,

0 = Fa,b,1,0 = F1,0,c,d,

0 = Fa,b,2,0 = F2,0,c,d,

sauf pour F1,0,1,0 = 1 et F2,0,0,1 = 1
2

= F0,1,2,0.
Nous sommes maintenant en mesure de représenterM comme une perturbation du mod-

èle de Gaussier-Merker:

u = F
(
z, ζ, z, ζ

)
= m(z, ζ, z, ζ) +G

(
z, ζ, z, ζ

)
,
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where m(z, ζ, z, ζ) =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1−ζζ . Dans le cadre d’une extension de série de puis-
sance de M , la série de puissance G doit satisfaire certaines contraintes, notamment
G = Oz,z(3).

Ensuite, nous attribuons les poids suivants à la coordonnée variables:

[z] := 1 =: [z], [ζ] := 0 =:
[
ζ
]
, [w] := 2 =: [w].

Pour aller plus loin, nous recherchons des transformations rigides qui stabilisent la
prénormalisation obtenue jusqu’à présent. L’idée est qu’après avoir composé avec un élé-
ment de groupe d’isotropie d’origine du modèle de Gaussier-Merker, on peut supposer que
la carte de normalisation a une expansion pondérée de la forme:

f = z + f2 + f3 + · · · , g = ζ + g1 + g2 + · · · , h = w + h3 + h4 + · · · ,

où fonctions holomorphes fν−1, gν−2, hν sont pondérés homogènes des poids correspon-
dants, pour ν = 3, 4, 5, . . . . Nous effectuons des transformations rigides holomorphes
successives:

z′ := z + fν−1, ζ
′ := ζ + gν−2, w

′ := w + hν ,

qui prennent l’hypersurface u = F = m +G sous une nouvelle forme u′ = F ′ = m′+G′,
avec G,G′ prénormalisé, afin de normaliser davantage G′.

Pour ν = 3, il ne reste que deux monômes de degré pondéré 3 (jusqu’à la conjugaison)
après la prénormalisation en G:

G3 = 2 Re
{
z3ζ G3,0,0,1 + z3ζ

2
G3,0,0,2

}
+ Oz,ζ,z,ζ(6),

et nous pouvons annihiler G′3,0,0,1 = 0.
Pour ν = 4, il ne reste plus que deux monômes:

G4 = 2 Re
{
z4ζ G4,0,0,1 + z3zζ G3,0,1,1

}
+ Oz,ζ,z,ζ(6),

et nous pouvons annihiler ImG′3,0,1,1 = 0.
Enfin, pour ν > 5, seule la transformation d’identité stabilise la prénormalisation et les

normalisations précédemment obtenues:

0 = G3,0,0,1 = G′3,0,0,1, 0 = ImG3,0,1,1 = ImG′3,0,1,1.

La réduction de type Poincaré-Moser que nous avons obtenue dans notre travail con-
joint [22] avec Chen, Foo et Merker, qui fait l’objet du Chapitre 3, peut maintenant être état
comme

THÉORÈME 0.3. Toute hypersurface rigide 2-nondégénérée analytique 5 dimensions
réelle M5 ⊂ C3 ayant la forme de Levi de rang constant 1 est équivalente, à travers un
biholomorphisme rigide local, à une hypersurface rigide analytique réelle ayant la fonction
graphique comme un perturbation du modèle de Gaussier-Merker:

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
+

∑
a,b,c,d>0
a+c>3

Ga,b,c,d z
aζbzcζ

d
,

où le reste G:
(1) est normalisé pour être d’ordre Oz,z(3);
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(2) satisfait aux conditions de prénormalisation G = Oz(3) + Oζ(1) = Oz(3) + Oζ(1):

Ga,b,0,0 = 0 = G0,0,c,d,

Ga,b,1,0 = 0 = G1,0,c,d,

Ga,b,2,0 = 0 = G2,0,c,d;

(3) satisfait d’autres conditions de normalisation:

G3,0,0,1 = 0 = G0,1,3,0,

ImG3,0,1,1 = 0 = ImG1,1,3,0.

De plus, deux de ces hypersurfacesM5 ⊂ C3 etM ′5 ⊂ C′3, toutes deux ramenées à une
telle forme normale, sont strictement biholomorphiquement équivalentes si et seulement s’il
existe deux constantes ρ ∈ R∗+, ϕ ∈ R, telles que pour tous les indices a, b, c, d:

Ga,b,c,d = G′a,b,c,d ρ
a+c−2

2 eiϕ(a+2b−c−2d).

Sous forme normale u = m + G, les invariants différentiels que nous avons obtenus
précédemment par la méthode d’équivalence de Cartan [46] prennent maintenant les
valeurs suivantes à l’origine

I0 = 4F3,0,0,2, V0 = −8F4,0,0,1, Q0 = 4 ReF3,0,1,1.

Réduction convergente de Poincaré-Moser pour les hypersurfaces 5-
dimensionnelles Levi dégénérées en C3. Dans le Chapitre 4, nous considérons le
problème de la construction de la réduction de type Poincaré-Moser pour la classe des
hypersurfaces 2-nondégénérées en 5 dimensions analytiques réelles générales M5 ⊂ C3,
non étant nécessaire rigide, sous l’action du groupe complet de toutes les transformations
biholomorphes de C3. L’approche est en général dans le même esprit avec le cas rigide,
mais les détails sont beaucoup plus impliqués, notamment dans la preuve de l’unicité de la
forme normale qui n’apparaît pas dans le cas rigide, et nécessite également de nouvelles
idées, notamment le adaptation dans ce cas de la récente remarquable construction de Lie
théorique des chaînes de Cartan-Moser par Merker [95].

La réduction de type Cartan à {e}-structure pour la classe d’hypersurfaces considérée a
été réalisée dans les travaux de Pocchiola [113, 93] et de Foo-Merker [49]. Notre construc-
tion peut être considérée comme l’équivalent théorique de la forme normale côté de Moser
de leur résultat géométrique côté Cartan. À ce stade, nous voulons souligner qu’en général,
la construction de formes normales pour des objets géométriques dans des espaces com-
plexes est difficile à réaliser, et peut même conduire à des problèmes complexes tels que la
divergence des formes normales formelles en raison de petits diviseurs comme dans le tra-
vail de Moser-Webster [104]. Ce n’est qu’avec les informations cruciales sur l’application
réussie de la méthode d’équivalence de Cartan et l’existence des invariants différentiels
avec des ordres précis fournis par la méthode géométrique de Pocchiola et Foo-Merker
que l’on peut espérer produire des transformations biholomorphes correctes pour éliminer
successivement les coefficients non invariants dans la série de puissance de M .

L’hypersurface M est représentée près de l’origine comme un graphe en coordonnées
(z, ζ, w = u+ iv) de C3 par

u = F (z, ζ, z, ζ, v)

où F est une série de puissance en variables z, ζ, z, ζ, v.
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Tout d’abord, nous notons que le modèle hypersurface dans ce cas est à nouveau le
modèle de Gaussier-Merker

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
,

mais maintenant sous l’action du groupe de toutes les transformations biholomorphes de
C3, l’algèbre de Lie des automorphismes CR infinitésimaux du modèle de Gaussier-Merker
est 10 dimensions, plus grande que dans le cas rigide.

Ensuite, nous adaptons la construction théorique de Lie des chaînes Cartan-Moser de
Merker [95] du cas des hypersurfaces Levi non dégénérées dans C2 au cas considéré dans
C3. Il en résulte deux jets invariants d’ordre 1 et 2, que nous appelons également chaînes
de Cartan-Moser.

En intégrant et en redressant n’importe quelle chaîne Cartan-Moser d’ordre 2, nous
obtenons la forme normale suivante pour M dans un travail conjoint [48] avec Foo et
Merker, qui est le résultat principal du Chapitre 4

THÉORÈME 0.4. Il existe une transformation biholomorphique locale Φ : (z, ζ, w) 7−→
(z′, ζ ′, w′) fixant l’origine, ce qui ramène (M, 0) à la forme normale

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ

+ 2 Re

ß
z3ζ

2
F3,0,0,2(v) + 3z2zζζ

2
F3,0,0,2(v)

™
+ 2 Re

ß
z5ζ F5,0,0,1(v) + z4ζ

2
F4,0,0,2(v)

+ z3z2ζ F3,0,2,1(v) + z3zζ
2
F3,0,1,2(v) + z3ζ

3
F3,0,0,3(v)

™
+ z3z3Oz,z(1) + z3ζ Oz,ζ,z(3) + z3ζ Oz,z,ζ(3) + ζζ Oz,z(3)Oz,z,ζ,ζ(2).

De plus, la transformation Φ peut être choisie uniquement de la forme

(z, ζ, w) 7−→
(
z + f>2(z, ζ, w), ζ + g>1(z, ζ, w), w + h>3(z, ζ, w)

)
,

avec fw(0) = 0 et Imhww(0) = 0.

Pour une hypersurface M en forme normale, les valeurs à l’origine des deux invarants
différentiels primaires de Pocchiola [113, 93, 49] sont

W0 = 4 F3,0,0,2(0) and J0 = 20 F5,0,0,1(0).

Calcul des courbures CR de Cartan des frontières des ellipsoïdes en C2 et des
tubes de Grauert autour des surfaces hyperboliques. La solution de Élie Cartan [17] en
1932 du problème d’équivalence des hypersurfaces analytiques réelles dans C2 montre en
particulier l’existence d’une fonction invariante CR à valeur complexe ICartan : M → C
avec la propriété que ICartan ≡ 0 si et seulement si M est biholomorphiquement équivalent
à la sphère dans C2. Un point p ∈ M est appelé CR-ombilical si ICartan(p) = 0. Une
vieille question de Chern et Moser dans [23] demande si le lieu des points CR-ombilicaux
d’une hypersurface compacte de Levi nondégénérée dans C2 peut être vide. En dimension
complexe 3 ou supérieure, Webster [118] a montré que pour les hypersurfaces ellipsoïdales
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génériques, le lieu de fuite des invariants de Cartan-Hachtroudi-Chern, la contrepartie de
dimension supérieure de ICartan , est en effet vide. Dans C2 de coordonnées (z = x +
iy, w = u+ iv), Huang et Ji [60] ont montré que le locus CR-ombilical de l’ellipsoïde

Ea,b : ax2 + y2 + bu2 + v2 = 1

n’est pas vide pour a, b > 1, (a, b) 6= (1, 1). La principale difficulté dans l’étude des
invariants de type CR de Cartan tient en grande partie à sa complexité écrasante. Par
exemple, Merker et Sabzevari ont estimé dans [87] que la formule explicitement développée
de ICartan de Ea,b en contient autant comme 40 000 termes.

Dans le Chapitre 5, nous étudions davantage le locus CR-ombilical de Ea,b à l’aide
de l’approche informatique de Merker-Sabzevari [87]. Plus précisément, dans un travail
conjoint [45] avec Foo et Merker, nous montrons que

THÉORÈME 0.5. Le lieu CR-ombilical de l’ellipsoïde Ea,b contient une courbe lisse
donnée par de simples équations explicites.

Pour une surface analytique réelle compacte fermée S, c’est un théorème de Bruhat et
Whitney [7] qu’il existe une variété complexe M c de dimension complexe 2, avec une
prolongement analytique totalement réelle de S dans M c. De plus, le travail [59] de
Guillemin et Stenzel fournit un Kähler potentiel plus élevé ρ défini dans un petit voisi-
nage de S dans M c. En particulier, pour chaque ε assez petit: 0 < ε 6 ε0 � 1, l’ensemble
Ωε := ρ−1

(
[0, ε)

)
, appelé le tube de Grauert de rayon ε autour de S, a une frontière forte-

ment pseudo-convexe C ω Mε := ρ−1(ε) contenu dans le surface complexe M c.
Récemment, Ebenfelt-Duong-Zaitsev [37] a donné des exemples de variétés CR Levi

nondégénérées en 3 dimensions, comme limites de tubes de Grauert minces autour du tore
plat 2-dimensionnel, ayant un locus CR-ombilical vide.

Dans un travail conjoint [47] avec Foo et Merker, qui constitue le Chapitre 6, nous
montrons que les frontières Mε de nombreux autres tubes de Grauert minces Ωε autour des
surfaces hyperboliques ont également un locus CR-ombilical vide

THÉORÈME 0.6. Pour ε > 0 assez petit, les parties réelle et imaginaire de ICartan ne
disparaissent nulle part à la frontière du tube de Grauert Mε.

Nous concluons cette introduction en mentionnant que les résultats de ce mémoire sont
obtenus dans nos travaux conjoints avec Joël Merker, Wei-Guo Foo et Zhangchi Chen, qui
ont tous paru sur arxiv.org sous forme de prépublication:

• Wei-Guo Foo, Joël Merker, The-Anh Ta, Parametric CR-umbilical Locus of Ellip-
soids in C2, Comptes Rendus Mathematique 356 (2018): 214-221.
arXiv:1707.06787
• Joël Merker, The-Anh Ta, Degrees d >

(√
n log n

)n and d >
(
n log n

)n in the
Conjectures of Green-Griffiths and of Kobayashi,
arXiv:1901.04042
• Wei-Guo Foo, Joël Merker, The-Anh Ta, Rigid equivalences of 5-dimensional 2-

nondegenerate rigid real hypersurfaces M5 ⊂ C3 of constant Levi rank 1,
arXiv:1904.02562
• Wei-Guo Foo, Joël Merker, The-Anh Ta, Nonvanishing of Cartan CR curvature

on boundaries of Grauert tubes around hyperbolic surfaces,
arXiv:1904.10203



16 RÉSUMÉ

• Zhangchi Chen, Wei-Guo Foo, Joël Merker, The-Anh Ta, Normal Forms for Rigid
C2,1 Hypersurfaces M5 ⊂ C3,
arXiv:1912.01655
• Wei-Guo Foo, Joël Merker, The-Anh Ta, On Convergent Poincaré-Moser Reduc-

tion for Levi Degenerate Embedded 5-Dimensional CR Manifolds,
arXiv:2003.01952



Introduction

This memoir contains research results in complex geometry and CR geometry. The top-
ics include degree bounds for hypersurfaces in Kobayashi hyperbolicity related problems
(Chapter 1), equivalence problems and construction of normal forms for certain classes of
Levi degenerate 5-dimensional hypersurfaces in complex spaces (Chapter 2, Chapter 3 and
Chapter 4), and investigations on the vanishing locus of Cartan CR curvatures on bound-
aries of some 3-dimensional CR manifolds (Chapter 5 and Chapter 6). The common theme
here is the use of higher jets in diverse geometric situations to investigate invariants of
geometric objects, and the extensive use of symbolic computational programs to help with
complicated calculations. Let us describe in more details the main results.

New degree bounds for hypersurfaces in the conjectures of Green-Griffiths and of
Kobayashi. In Chapter 1, we investigate degrees of generic algebraic hypersurfaces in the
complex projective spaces for which the conjectures of Green-Griffiths and of Kobayashi
holds true. The notion of Kobayashi hyperbolicity is defined for general complex spaces
by the nondegeneracy of the Kobayashi metric (See [73]). For a smooth compact complex
manifold X , a theorem of Brody [6] states that X is Kobayashi hyperbolic if and only if
all entire holomorphic curves f : C → X are constant. Since in this chapter, we will
only consider smooth algebraic hypersurfaces, we take for definition that a hypersurface is
Kobayashi hyperbolic if all entire holomorphic curves on it are constant. The Kobayashi
hyperbolicity conjecture for hypersurfaces states that

CONJECTURE (Kobayashi). A generic hypersurface in Pn(C) of degree at least 2n+ 1
is Kobayashi hyperbolic.

A related notion to Kobayashi hyperbolicity is that of algebraic degeneracy. An entire
holomorphic curve f : C → X on a complex algebraic variety X is algebraically de-
generate if there exists a proper algebraic subvariety Z of X such that f(C) ⊂ Z. The
Green-Griffiths conjecture states that

CONJECTURE (Green-Griffiths). For any smooth complex algebraic variety X of gen-
eral type, there exists a proper algebraic subvariety Z ofX such that all nonconstant entire
holomorphic curves on X must lie in Z.

Recall that a hypersurface in the n-dimensional complex projective space is of general
type if and only if its degree is at least n+ 2.

After intensive activities of research during the last few decades of Siu [115], De-
mailly [28, 31] and others, the Kobayashi hyperbolicity conjecture is now known to hold
true for generic hypersurfaces of large enough degrees. A new proof was recently given
by Brotbek [8]. On the side of algebraic degeneracy, the striking result of Diverio-Merker-
Rousseau [34] demonstrates the Green-Griffiths conjecture for generic hypersurfaces in
Pn+1(C) of degree at least 2n

5 . Later, Darondeau greatly improved the bound to (5n)2nn

17
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in his work [25]. It should be mentioned that our results in Chapter 1 are largely obtained
by pushing further the key positivity arguments of [25] based on Bérczi’s ideas [3]. The
main technical tool under these developments is the technique of jet differentials originated
from the work of Bloch [5] and developed into a powerful tool through the works of Green-
Griffiths, Siu, Demailly, Merker and others. Other methods include the use of Wronskian
differentials by Brotbek [8] and methods from equivariant geometry by Bérczi [3].

After the impressive resolutions of the Kobayashi conjecture and the Green-Griffiths
conjecture for generic hypersurfaces of high enough degrees, one natural next goal in this
research area is to improve on degrees of hypersurfaces so that the aforementioned con-
jectures still hold true. At the moment, the predicted optimal bounds seems to be out
of reach with the use of current techniques, nevertheless many improvements have been
obtained for the case of Green-Griffiths conjecture in the breakthrough of Diverio-Merker-
Rousseau [34], by Demailly [29], Bérczi [3], and Darondeau [27]; and for the case of
Kobayashi conjecture by Deng [33] and Demailly [31] by making effective the method of
Brotbek.

We refer to the paper [31] of Demailly for an up to date survey and the most recent
account of the subject.

Recently, in a surprising development, Riedl-Yang [114] found a close connection be-
tween the two conjectures showing that the validity of one conjecture implies the validity of
the other in a suitable range of degrees. Moreover, assuming one conjecture holds true for
optimal degree bounds, then such correspondence even shows the validity of the remaining
conjecture also with optimal degree bounds. Inspired by this interesting result, Merker sets
out a plan to improve the degree bounds in the Green-Griffiths conjecture, and so obtain im-
provements at once for the Kobayashi conjecture by pushing further the known technique
in the earlier work of Darondeau [27]. In his preprint [91] of 2018, Merker obtained the
degree bound n2n for the Kobayashi conjecture. Later, in a joint work [94] with Merker,
we explore further this line of thoughts of his and obtain the following improvements

THEOREM A. (i) For n large enough, all nonconstant entire holomorphic curves on a
generic hypersurface in Pn(C) of degree at least (

√
n log n)n are algebraically degenerate.

(ii) For n large enough, a generic hypersurface in Pn(C) of degree at least (n log n)n

is Kobayashi hyperbolic.

Rigid equivalences of 5-dimensional 2-nondegenerate rigid hypersurfaces in C3

having Levi form of constant rank 1. In Chapter 2, Chapter 3 and Chapter 4, we consider
two particular cases, of 5-dimensional hypersurfaces in C3, of the general research area on
equivalence problem and classification problem of real submanifolds in complex spaces
under the action of biholomorphic transformations.

The equivalence problem states that for a given real analytic hypersurface M in Cn and
a point P ∈ M , and another given hypersurface M ′ in Cn and another point P ′ ∈ M ′, is
there a (local) biholomorphism of Cn that sends M to M ′ and P to P ′? This immediately
leads to investigations on local biholomorphic invariants of (M,P ). The classification
problem then concerns with classifying all real analytic hypersurfaces up to biholomorphic
transformations, for which one usually hopes to determine representatives, possibly up to
some ambiguities, for each biholomorphic equivalence class (i.e. normal forms) .

Poincaré was the first to consider the equivalence problem of real hypersurfaces under
the action of biholomorphisms in complex spaces of dimensions greater than 1. In a pa-
per [112] of 1907, he discussed the relevance of equivalence problem for real hypersurfaces
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in C2 by giving heuristic arguments to show that general hypersurfaces are not locally bi-
holomorphic to each other. He then proposed to use methods from Dynamical Systems and
Celestial Mechanics to construct normal forms for hypersurfaces in complex spaces.

Then in 1932, Élie Cartan [17] took up the equivalence problem of 3-dimensional hy-
persurfaces in C2 and gave a complete solution in terms of geometric structures on the
hypersurfaces, a particular case of what we now call Cartan connections. Note that the
equivalence problem is only interesting for Levi nondegenerate hypersurfaces, as the case
of Levi degenerate hypersurfaces is rather easy in complex dimension 2.

Both the normal form approach of Poincaré and the geometric approach of É. Cartan
were developed into a full-fledged theory in the landmark paper [23] of Chern and Moser,
which solves the equivalence problem and the classification problem of Levi nondegenerate
hypersurfaces in any complex dimension n > 2. After extensive studies following the
work of Chern-Moser, we now have a fair understanding of the class of Levi nondegenerate
hypersurfaces.

It was only in early 2000’s that the first studies on Levi degenerate hypersurfaces started
to appear. The first interesting case to consider is the class of 5-dimensional real hyper-
surfaces in C3 whose Levi form has constant rank 1. The first task is to determine locally
homogeneous models, which play the role of the spheres in Levi nondegenate case. The ho-
mogeneous model was determined after the works of Ebenfelt [36], Gaussier-Merker [56]
and Fels-Kaup [44] to be the Gaussier-Merker model (see below).

After the homogeneous model was found, equivalence problem for Levi degenerate
hypersurfaces in C3 was pursued by many groups of mathematicians. The solution was
obtained in the works of Pocchiola [113, 93], Isaev-Zaitsev [68] and Medori-Spiro [82].
We refer to the work of Foo-Merker [49] for a definite treatment with full details.

In Chapter 2 and Chapter 3, we consider a special class of real analytic 2-nondegenerate,
rigid hypersurfaces in C3 having Levi form of constant rank 1. We will solve the equiva-
lence problem for this class of hypersurfaces under rigid biholomophic transformations by
applying Cartan’s method of equivalence, which results in a Cartan type reduction to {e}-
structure (Chapter 2). Next, we solve the classification problem by constructing Poincaré-
Moser type normal form in this case (Chapter 3).

The class of rigid hypersurfaces, as popularized by Isaev [63], is intermediate between
the class of products of 3-dimensional hypersurfaces and R2, for which the theory is well
understood, and the class of general 5-dimensional hypersurfaces in C3. This allows for a
lot of simplifications in comparison with the case of general Levi degenerate hypersurfaces,
while still gives rises to an interesting, complicated enough and meaningful theory.

Later on, in Chapter 4, we will develop a theory of Poincaré-Moser type reduction for the
class of general real analytic 2-nondegenerate hypersurfaces having Levi form of constant
rank 1 in C3, not necessary rigid, under the action of the full group of all biholomorphic
transformations.

We now give a brief summary of results in Chapter 2 and Chapter 3.
A real analytic hypersurface M5 in C3 is called rigid if there exist suitable complex

coordinates (z1, z2, w) of C3, with w = u+ iv, such that M can be represented as a graph

M : u = F (z1, z2, z1, z2),
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where F is a real-valued analytic function in variables z1, z2, z1, z2 and is independent of
the real variable v. The rigid biholomorphic transformations of the form

(z1, z2, w) 7−→ (f1(z1, z2), f2(z1, z2), aw + g(z1, z2))

where a ∈ R∗, preserve the rigid property of hypersurfaces in C3. We will study the equiva-
lence problem for the class of rigid hypersurfaces, which are also 2-nondegenerate and have
Levi form of constant rank 1, under the action of the group of local rigid biholomorphic
transformations.

The CR structure bundle T 1,0M = (C ⊗ TM) ∩ T 1,0C3 is of constant real rank 2.
Furthermore, T 1,0M is generated everywhere on M by two vector fields L1,L2 given by

L1 =
∂

∂z1

− iFz1
∂

∂v
and L2 =

∂

∂z2

− iFz2
∂

∂v
.

The Levi form LF of M at a point p ∈M is defined on T 1,0
p M by

LFp : T 1,0
p M × T 1,0

p M −→ C⊗ TpMmodT 1,0
p M ⊕ T 1,0

p M,

(Xp, Yp) 7−→ i[X, Y ]pmodT 1,0
p M ⊕ T 1,0

p M,

for any two holomorphic tangent vectors Xp, Yp ∈ T 1,0
p M and their arbitrary two local

holomorphic vector field extensions X, Y near p. The Levi form is a CR invariant of M .
When evaluating with respect to the frame {L1,L2}, the Levi form can be represented in
the form of a 2× 2 matrix-valued field

LFp = 2

Å
Fz1z1(p) Fz2z1(p)
Fz1z2(p) Fz2z2(p)

ã
.

We only consider hypersurfaceM whose Levi form is of constant rank 1, that is the 2×2

matrix
(
Fz1z1 (p) Fz2z1 (p)

Fz1z2 (p) Fz2z2 (p)

)
has constant rank 1 at every point p ∈M . Under this assumption

of Levi degeneracy, the kernel of the Levi form at each point gives rise to a subbundle
K1,0M of constant rank 1 of the CR structure bundle T 1,0M . The subbundle K1,0M is
generated by the vector field K = kL1 + L2, with the slant function k = −Fz2z1

Fz1z1
.

We now recall the next CR invariant of M , the Freeman form FF , which is given at a
point p ∈M by

FFp : K1,0
p M ×

(
T 1,0
p MmodK1,0

p M
)
→ T 1,0

p M ⊕ T 1,0
p MmodK1,0

p M ⊕ T 1,0
p M,

(Kp, Lp) 7−→ [K,L]pmodK1,0
p M ⊕ T 1,0

p M,

for any two tangent vectors Kp ∈ K1,0
p M and Lp ∈ T 1,0

p M , and their arbitrary local vector
field extensions: K as a local section of K1,0M and L as a local section of T 1,0M near p.

We make the assumption that the Freeman form of M is of constant rank 1 at every
point p ∈ M . Our hypersurface M is then called 2-nondegenerate. The 2-nondegeneracy
of M is equivalent to the condition that L1(k)(p) 6= 0,∀p ∈M .

The model hypersurface in the class of 2-nondegenerate, rigid hypersurfaces having
Levi form of constant rank 1 is the Gaussier-Merker model

u =
z1z1 + 1

2
z2

1z2 + 1
2
z1

2z2

1− z2z2

whose Lie algebra of infinitesimal rigid CR automorphisms is 7-dimensional.
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In a joint work [46] with Foo and Merker, we perform the Cartan’s method of equiva-
lence to obtain reduction to {e}-structure for the equivalence problem under consideration
as follows

THEOREM B. There exists an invariant 7-dimensional bundle P 7 −→ M5 equipped
with coordinates: (

z1, z2, z1, z2, v, c, c
)
,

with c ∈ C, together with a collection of seven complex-valued 1-form which make a frame
for TP 7, denoted: {

ρ, κ, ζ, κ, ζ, α, α
}

(ρ= ρ),

which satisfy 7 invariant structure equations of the form:

dρ =
(
α + α

)
∧ ρ+ i κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ =
(
α− α

)
∧ ζ +

1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ,

together with the conjugate structure equations for dκ, dζ , dα.

The primary invariants I0,V0 are expressed explicitly in terms of the 5-jets of the graph-
ing function F of M . The secondary invariant Q0 can be expressed in terms of differentials
of the two primary invariants and the function F . The vanishing of I0 and V0 implies the
vanishing of Q0. A 2-nondegenerate, rigid hypersurface M in C3 having Levi form of con-
stant rank 1 is locally equivalent to the Gaussier-Merker model under a rigid biholomorphic
transformation if and only if I0 ≡ 0 and V0 ≡ 0.

Normal forms of 5-dimensional 2-nondegenerate rigid hypersurfaces in C3 having
Levi form of constant rank 1. The second approach to the equivalence problem of hyper-
surfaces in complex spaces is by constructing normal forms. Proposed by Poincaré [112]
and successfully carried out for the case of Levi nondegenerate hypersurfaces in any di-
mension n > 2 by Chern and Moser [23]. This method has its origin from the fields of
Dynamical Systems and Celestial Mechanics. The idea is to apply successively suitable bi-
holomorphic changes of variables in order to simplify as much as possible the power series
expansion at a chosen point of the graphing function of the hypersurface under considera-
tion. The goal is that after usually long and elaborated series of normalizations, one hopes
to reach a representative for each equivalence class of hypersurfaces, possibly up to certain
ambiguities.

In accordance with Cartan type reduction to {e}-structures in the geometric approach of
Cartan and his followers, we use the term Poincaré-Moser reduction for the normal forms
obtained by applying Moser’s method.

In a joint work [22] with Chen, Foo and Merker, much influenced by the recent
work [21] of Chen and Merker on normal forms of affine surfaces, we follow Moser’s
method to construct a Poincaré-Moser type reduction for 2-nondegenerate, rigid hypersur-
faces in C3 having Levi form of constant rank 1 under the action of local rigid biholomor-
phic transformations (Chapter 3). Let us describe the procedure more precisely.
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First, in order to reduce the complications in writing power series in many variables, we
will switch from the coordinate (z1, z2, w) to new coordinates (z, ζ, w) of C3, in which M
admits power series expansion near the origin as

u =
∑

a+b+c+d>1

Fa,b,c,d z
aζbzcζ

d
.

After applying some preliminary rigid transformations, M can be brought to a simpler
form

u = zz + 1
2
z2ζ + 1

2
z2ζ +

∑
a+b+c+d>4
a+b>1
c+d>1

Fa,b,c,d z
aζbzcζ

d
.

After applying further rigid transformations, the first significant simplifications are ob-
tained in the prenormalized form of F (z, ζ, z, ζ) = zz + 1

2
z2ζ + Oz(3) + Oζ(1), more

precisely:

0 = Fa,b,0,0 = F0,0,c,d,

0 = Fa,b,1,0 = F1,0,c,d,

0 = Fa,b,2,0 = F2,0,c,d,

except for F1,0,1,0 = 1 and F2,0,0,1 = 1
2

= F0,1,2,0.
We are now in the position to represent M as a perturbation of the Gaussier-Merker

model:
u = F

(
z, ζ, z, ζ

)
= m(z, ζ, z, ζ) +G

(
z, ζ, z, ζ

)
,

where m(z, ζ, z, ζ) =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1−ζζ . As part of a power series expansion of M , the power
series G must satisfies certain constrains, in particular G = Oz,z(3).

Next, we assign the following weights to the coordinate variables:

[z] := 1 =: [z], [ζ] := 0 =:
[
ζ
]
, [w] := 2 =: [w].

To proceed further, we look for rigid transformations which stabilize the prenormaliza-
tion obtained so far. The idea is that after composing with some element of the isotropy
group of the origin of the Gaussier-Merker model, we can assume that the normalizing map
has weighted expansion of the form:

f = z + f2 + f3 + · · · , g = ζ + g1 + g2 + · · · , h = w + h3 + h4 + · · · ,

where holomorphic functions fν−1, gν−2, hν are weighted homogeneous of the correspond-
ing weights, for ν = 3, 4, 5, . . . . We perform successive holomorphic rigid transformations:

z′ := z + fν−1, ζ
′ := ζ + gν−2, w

′ := w + hν ,

which take the hypersurface u = F = m + G into new form u′ = F ′ = m′ + G′, with
G,G′ prenormalized, in order to normalize further G′.

For ν = 3, only two monomials of weighted degree 3 (up to conjugation) remain after
prenormalization in G:

G3 = 2 Re
{
z3ζ G3,0,0,1 + z3ζ

2
G3,0,0,2

}
+ Oz,ζ,z,ζ(6),

and we can annihilate G′3,0,0,1 = 0.
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For ν = 4, there are only two monomials remain:

G4 = 2 Re
{
z4ζ G4,0,0,1 + z3zζ G3,0,1,1

}
+ Oz,ζ,z,ζ(6),

and we can annihilate ImG′3,0,1,1 = 0.
Finally, for ν > 5, only the identity tranformation stabilizes the prenormalization and

the previously achived normalizations:

0 = G3,0,0,1 = G′3,0,0,1, 0 = ImG3,0,1,1 = ImG′3,0,1,1.

The Poincaré-Moser type reduction that we obtained in our joint work [22] with Chen,
Foo and Merker, which is the subject of Chapter 3, can now be state as

THEOREM C. Every real analytic 5-dimensional 2-nondegenerate rigid hypersurface
M5 ⊂ C3 having Levi form of constant rank 1 is equivalent, through a local rigid bi-
holomorphism, to a real analytic rigid hypersurface having the graphing function as a
perturbation of the Gaussier-Merker model:

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
+

∑
a,b,c,d>0
a+c>3

Ga,b,c,d z
aζbzcζ

d
,

where the remainder G:
(1) is normalized to be of order Oz,z(3);
(2) satisfies the prenormalization conditions G = Oz(3) + Oζ(1) = Oz(3) + Oζ(1):

Ga,b,0,0 = 0 = G0,0,c,d,

Ga,b,1,0 = 0 = G1,0,c,d,

Ga,b,2,0 = 0 = G2,0,c,d;

(3) satisfies further normalization conditions:
G3,0,0,1 = 0 = G0,1,3,0,

ImG3,0,1,1 = 0 = ImG1,1,3,0.

Furthermore, two such hypersurfaces M5 ⊂ C3 and M ′5 ⊂ C′3, both brought into
such a normal form, are rigidly biholomorphically equivalent if and only if there exist two
constants ρ ∈ R∗+, ϕ ∈ R, such that for all indices a, b, c, d:

Ga,b,c,d = G′a,b,c,d ρ
a+c−2

2 eiϕ(a+2b−c−2d).

In normal form u = m + G, the differential invariants that we obtained earlier by
Cartan’s method of equivalence [46] now take the following values at the origin

I0 = 4F3,0,0,2, V0 = −8F4,0,0,1, Q0 = 4 ReF3,0,1,1.

Convergent Poincaré-Moser reduction for general Levi degenerate 5-dimensional
hypersurfaces in C3. In Chapter 4, we consider the problem of constructing Poincaré-
Moser type reduction for the class of general real analytic 5-dimensional 2-nondegenerate
hypersurfaces M5 ⊂ C3, not necessary being rigid, under the action of the full group of all
biholomorphic transformations of C3. The approach is in general in the same spirit with the
rigid case, but the details are much more involved, especially in the proof of the uniqueness
of the normal form which does not appear in the rigid case, and also requires new ideas,
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notably the adaption into this case of the recent remarkable Lie theoretic construction of
Cartan-Moser chains by Merker [95].

The Cartan type reduction to {e}-structure for the class of hypersurfaces under consid-
eration was accomplished in the works of Pocchiola [113, 93] and of Foo-Merker [49]. Our
construction can be regarded as the Moser-side normal form theoretic counterpart to their
Cartan-side geometric result. At this point, we want to emphasize that in general, con-
struction of normal forms for geometric objects in complex spaces are difficult to achieve,
and can even lead to complicated issues such as divergence of formal normal forms due to
small divisors as in the work of Moser-Webster [104]. Only with the crucial informations
about successful application of Cartan’s method of equivalence and the existence of the
differential invariants with precise orders provided by the geometric method of Pocchiola
and Foo-Merker that one can hope to produce correct biholomorphic transformations to
succesively eliminate the noninvariant coeffients in the power series of M .

The hypersurface M is represented near the ogirin as a graph in coordinates (z, ζ, w =
u+ iv) of C3 by

u = F (z, ζ, z, ζ, v)

where F is a power series in variables z, ζ, z, ζ, v.
First, we note that the model hypersurface in this case is again the Gaussier-Merker

model

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
,

but now under the action of the group of all biholomorphic transformations of C3, the Lie al-
gebra of infinitesimal CR automorphisms of the Gaussier-Merker model is 10-dimensional,
larger than in the rigid case.

Next, we adapt the Lie theoretic construction of Cartan-Moser chains of Merker [95]
from the case of Levi nondegenerate hypersurfaces in C2 to the case under consideration
in C3. This results in two invariant jets of order 1 and 2, which we also call Cartan-Moser
chains.

By integrating and straightening any given Cartan-Moser chain of order 2, we obtain the
following normal form for M in a joint work [48] with Foo and Merker, which is the main
result of Chapter 4

THEOREM D. There exists a local biholomorphic transformation Φ : (z, ζ, w) 7−→
(z′, ζ ′, w′) fixing the origin, which brings (M, 0) to the normal form

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ

+ 2 Re

ß
z3ζ

2
F3,0,0,2(v) + 3z2zζζ

2
F3,0,0,2(v)

™
+ 2 Re

ß
z5ζ F5,0,0,1(v) + z4ζ

2
F4,0,0,2(v)

+ z3z2ζ F3,0,2,1(v) + z3zζ
2
F3,0,1,2(v) + z3ζ

3
F3,0,0,3(v)

™
+ z3z3Oz,z(1) + z3ζ Oz,ζ,z(3) + z3ζ Oz,z,ζ(3) + ζζ Oz,z(3)Oz,z,ζ,ζ(2).
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Furthermore, the transformation Φ can be choosen uniquely of the form

(z, ζ, w) 7−→
(
z + f>2(z, ζ, w), ζ + g>1(z, ζ, w), w + h>3(z, ζ, w)

)
,

with fw(0) = 0 and Imhww(0) = 0.

For a hypersurfaceM in normal form, values at the origin of the two primary differential
invarants of Pocchiola [113, 93, 49] are

W0 = 4 F3,0,0,2(0) and J0 = 20 F5,0,0,1(0).

Calculations of Cartan CR curvatures of the boundaries of ellipsoids in C2 and
of Grauert tubes around hyperbolic surfaces. The solution of Élie Cartan [17] in 1932
of the equivalence problem for real analytic hypersurfaces in C2 shows in particular the
existence of a complex valued CR invariant function ICartan : M → C with the prop-
erty that ICartan ≡ 0 if and only if M is biholomorphically equivalent to the sphere in
C2. A point p ∈ M is called CR-umbilical if ICartan(p) = 0. An old question of Chern
and Moser in [23] asks whether the locus of CR-umbilical points of a compact Levi non-
degenerate hypersurface in C2 can be empty. In complex dimension 3 or higher, it was
showed by Webster [118] that for generic ellipsoidal hypersurfaces, the vanishing locus of
the Cartan-Hachtroudi-Chern invariants, the higher dimensional counterpart of ICartan, is
indeed empty. In C2 with coordinates (z = x+ iy, w = u+ iv), Huang and Ji [60] showed
that the CR-umbilical locus of the ellipsoid

Ea,b : ax2 + y2 + bu2 + v2 = 1

is not empty for a, b > 1, (a, b) 6= (1, 1). The main difficulty in the study of Cartan
type CR invariants is largely due to its overwhelming complexity. For examples, it was
estimated by Merker and Sabzevari in [87] that the explicitly expanded formula of ICartan
of the Ea,b contains as many as 40 000 terms.

In Chapter 5, we investigate further CR-umbilical locus of Ea,b with the help of the
computational approach of Merker-Sabzevari [87]. More precisely, in a joint work [45]
with Foo and Merker, we show that

THEOREM E. The CR-umbilical locus of the ellipsoid Ea,b contains a smooth curve
given by simple explicit equations.

For a closed compact real-analytic surface S, it is a theorem of Bruhat and Whitney [7]
that there exists a complex manifold M c of complex dimension 2, together with an analytic
totally real embedding of S into M c. Moreover, the work [59] of Guillemin and Stenzel
provides a canonical Kähler potential ρ defined in a small neighborhood of S in M c. In
particular, for each ε small enough: 0 < ε 6 ε0 � 1, the set Ωε := ρ−1

(
[0, ε)

)
, called the

Grauert tube of radius ε around S, has strongly pseudoconvex C ω boundary Mε := ρ−1(ε)
contained in the complex surface M c.

Recently, Ebenfelt-Duong-Zaitsev [37] gave examples of 3-dimensional Levi nonde-
generate CR manifolds, as boundaries of thin Grauert tubes around the flat 2-dimensional
torus, having empty CR-umbilical locus.

In a joint work [47] with Foo and Merker, which constitutes Chapter 6, we show that the
boundaries Mε of many other thin Grauert tubes Ωε around hyperbolic surfaces also have
empty CR-umbilical locus
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THEOREM F. For ε > 0 small enough, the real and imaginary parts of ICartan vanish
nowhere on the boundary of the Grauert tube Mε.

We conclude this introduction by mentioning that results in this memoir are obtained
in our joint works with Joël Merker, Wei-Guo Foo and Zhangchi Chen, all of which have
appeared on arxiv.org in preprint form:

• Wei-Guo Foo, Joël Merker, The-Anh Ta, Parametric CR-umbilical Locus of Ellip-
soids in C2, Comptes Rendus Mathematique 356 (2018): 214-221.
arXiv:1707.06787
• Joël Merker, The-Anh Ta, Degrees d >

(√
n log n

)n and d >
(
n log n

)n in the
Conjectures of Green-Griffiths and of Kobayashi,
arXiv:1901.04042
• Wei-Guo Foo, Joël Merker, The-Anh Ta, Rigid equivalences of 5-dimensional 2-

nondegenerate rigid real hypersurfaces M5 ⊂ C3 of constant Levi rank 1,
arXiv:1904.02562
• Wei-Guo Foo, Joël Merker, The-Anh Ta, Nonvanishing of Cartan CR curvature

on boundaries of Grauert tubes around hyperbolic surfaces,
arXiv:1904.10203
• Zhangchi Chen, Wei-Guo Foo, Joël Merker, The-Anh Ta, Normal Forms for Rigid
C2,1 Hypersurfaces M5 ⊂ C3,
arXiv:1912.01655
• Wei-Guo Foo, Joël Merker, The-Anh Ta, On Convergent Poincaré-Moser Reduc-

tion for Levi Degenerate Embedded 5-Dimensional CR Manifolds,
arXiv:2003.01952



CHAPTER 1

Degrees d >
(√

n logn
)n and d >

(
n logn

)n in the Conjectures
of Green-Griffiths and of Kobayashi

Once first answers in any dimension to the Green-Griffiths and Kobayashi conjectures for
generic algebraic hypersurfaces Xn−1 ⊂ Pn(C) have been reached, the principal goal is to de-
crease (to improve) the degree bounds, knowing that the ‘celestial’ horizon lies near d > 2n.

For Green-Griffiths algebraic degeneracy of entire holomorphic curves, we obtain:

d >
(√
n logn

)n
,

and for Kobayashi-hyperbolicity (constancy of entire curves), we obtain:

d >
(
n logn

)n
.

The latter improves d > n2n obtained by Merker in arxiv.org/1807/11309/.
Admitting a certain technical conjecture I0 > Ĩ0, the method employed (Diverio-Merker-

Rousseau, Bérczi, Darondeau) conducts to constant power n, namely to:

d > 25n and, respectively, to: d > 45n.

This Chapter is based on our jointwork with Joël Merker, which has appeared in preprint form:
Joël Merker, The-Anh Ta, Degrees d >

(√
n log n

)n and d >
(
n log n

)n in the Conjectures
of Green-Griffiths and of Kobayashi, arXiv:1901.04042

1. Introduction

The goal is to establish that generic algebraic hypersurfaces of the projective space
satisfy the Green-Griffiths conjecture, as well as their complements, with improvements on
lower degree bounds.

THEOREM 1.1. For a generic hypersurface Xn−1 ⊂ Pn(C) of degree:

d >
(√

n logn
)n

(∀n> NGG),

(1) there exists a proper subvariety Y ⊂ Pn of codimension > 2 such that all nonconstant
entire holomorphic curves f : C −→ Pn\X are in fact contained in Y ⊃ f(C);
(2) there exists a proper subvariety W ⊂ X of codimension > 2 such that all nonconstant
entire holomorphic curves f : C −→ X are in fact contained in W ⊃ f(C).

This lower degree bound:

d > dGG(n) :=
(√

n logn
)n

improves d > (5n)2 nn of [25] and improves d > 2n
5 of [34]. In the demonstrations,

we will treat mainly the details of the complement case (1), since the computations in the
compact case (2) are essentially similar, thanks to Darondeau’s works [26, 24, 25].

By [114], any solution to the Green-Griffiths conjecture in all dimensions n for hy-
persurfaces of degrees d > dGG(n) implies a solution to the Kobayashi conjecture in all
dimensions n for hypersurfaces of degrees:

d > dK(n) := dGG(2n).

27
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Rounding off a small technical improvement of Theorem 1.1 in order to present only an
elegant degree bound, we obtain as a corollary the following

THEOREM 1.2. For a generic hypersurface Xn−1 ⊂ Pn(C) of degree:

d >
(
n logn

)n
(∀n> NK)

(1) Pn
∖
Xn−1 is Kobayashi-hyperbolically imbedded in Pn;

(2) Xn−1 is Kobayashi-hyperbolic.

An inspection of the end of Section 10 shows that the dimensions NGG and NK at which
these statements begin to hold true can be made effective.

Theorem 1.2 improves the degree bound d > n2n obtained in [91]. For standard pre-
sentations of the research field, and for up-to-date history, including degree bound compar-
isons, the reader is referred to the introductions of the articles [91, 114, 9, 30, 61, 32, 8, 25,
24, 26, 115, 3, 34], listed in chronological order of prepublication.

Under the technical assumption (or conjecture):

I0 > Ĩ0,

the explanation of which the reader will find in Section 2, and which is equivalent to Prob-
lem 4.2, we obtain better results.

THEOREM 1.3. If I0 > Ĩ0 holds true, then for a generic hypersurface Xn−1 ⊂ Pn(C) of
degree:

d > 2 5n
(∀n> 10),

the two conclusions (1) and (2) of Theorem 1.1 hold true.

Similarly, we also obtain as corollary the

THEOREM 1.4. Under the same technical assumption I0 > Ĩ0, the conclusions (1) and
(2) of Theorem 1.2 hold true in degree:

d > 4 5n
(∀n> 20).

Acknowledgments. In 2013, 2014, the first author exchanged with Lionel Darondeau.

2. Preliminary: Link with Darondeau’s Work

This section continues [25], and goes slightly beyond. The jet order κ = n will be
chosen equal to the dimension n, because some reflections on the concerned estimates
convince that any choice of κ > n cannot improve the degree bound anyway.

Let n > 1 be an integer. Let t1, . . . , tn be formal variables. Introduce:

C(t1, . . . , tn) :=
∏

16i<j6n

tj − ti
tj − 2 ti

∏
26i<j6n

tj − 2 ti
tj − 2 ti + ti+1

.

As explained in [25], this rational expression possesses an iterated Laurent series at the
origin as:

C(t) =
∑

k1,...,kn ∈ Z
k1+···+kn =0

Ck1,...,kn t
k1
1 · · · tknn ,
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for certain coefficients Ck1,...,kn; soon, this object C(t1, t2, . . . , tn) will be re-interpreted as
a standard converging power series C(w2, . . . , wn) in terms of alternative new variables
(w2, . . . , wn), hence it is not necessary to recall what an iterated Laurent series is.

For certain integer weights a1, . . . , an ∈ N∗, introduce also an expression which comes
from an application of the so-called holomorphic Morse inequalities:

f0(t) :=
(
a1t1 + · · ·+ antn

)n2

.

It expands:

f0(t) =
∑

m1,...,mn>0
m1+···+mn=n2

(n2)!

m1! · · · mn!

(
a1 t1

)m1 · · ·
(
an tn

)mn
,

by means of (integer) multinomial coefficients:

Mm1,...,mn :=
(n2)!

m1! · · · mn!
.

It is well known that the binomial
(

2n
n

)
is the unique largest one among all the

(
2n
i

)
with

0 6 i 6 2n. In fact, an application of Stirling’s asymptotic formula:

n! ∼
n→∞

√
2π n

(n
e

)n ï
1 +

1

12n
+

1

288n2
− 139

51 840n3
− 571

2 488 320n4
+ O

( 1

n5

)ò
,

shows that asymptotically as n −→∞:Ç
2n

n

å
∼ 22n

√
π n

ï
1− 1

8n
+

1

128n2
+

5

1024n3
− 21

32 768n4
+ O

( 1

n5

)ò
.

Similarly, the central multinomial coefficient:

Mn,...,n :=
(n2)!

n! · · · n!
=

(n2)!

(n!)n
,

happens to be the unique largest one, as states the next observation (see also Lemma 5.1).

LEMMA 2.1. For all integers m1, . . . ,mn > 0 with m1 + · · · + mn = n2 and
(m1, . . . ,mn) 6= (n, . . . , n), the corresponding multinomial coefficients are smaller than
the central one:

Mm1,...,mn < Mn,...,n.

PROOF. This amounts to verify that:
n!

m1!
· · · n!

mi!
· · · n!

mn!

?
< 1.

The mi = n are neutral, for n!
n!

= 1. By assumption, at least one mi 6= n.
• When mi < n, simplify:

n!

mi!
= n (n− 1) · · ·

(
mi + 1).

• When mi > n, simplify:
n!

mi!
=

1

(n+ 2)(n+ 1) · · ·mi

.
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After these simplifications:∏
16i6n

n!

mi!
=

∏
mi<n

(n− 0) (n− 1) · · · (mi + 1)∏
mi>n

(n+ 1)(n+ 2) · · ·mi

.

Since m1 + · · · + mn = n2, the number of factors in the numerator is the same as that
in the denominator, and since each factor upstairs is 6 n, while each factor downstairs is
> n+ 1, the result is indeed < 1. �

A further application of Stirling’s formula shows that, asymptotically as n −→∞:

(n2)!

n! · · · n!
∼ nn

2−n
2

+1 1

(2 π)
n−1
2

1

e
1
12

ï
1 +

31

360n2
+

5287

181 440n4
+ O

( 1

n6

)ò
.

TERMINOLOGY 2.2. Call the coefficient of tn1 · · · tnn in f0(t):

Ĩ0 :=
[
tn1 · · · tnn

](
f0(t)

)
=

(n2)!

n! · · · n!
an1 · · · ann

the central monomial.

Since a1, . . . , an ∈ N∗, this is a large integer. The notation Ĩ0 is borrowed from [25].
In fact, Appendices 1 and 2 of [25] provided almost all the details to verify that the

choice of weights:
ai := rn−i (16 i6n),

for some constant r independent of n, shall offer a degree bound in the Green-Griffiths
conjecture of the form:

d > constantn.

which would improve the current d & nn obtained in [25, 91].
For a certain nefness condition required to apply the holomorphic Morse inequalities, it

is necessary to have at least:
r > 3.

It is also allowed to take r larger, for instance:

r = 9 or r = 12 or r = 20,

but one should try not to choose r increasing with n, like for instance r =
√
n, since the

final degree bound would otherwise be (explanations will appear later):

d & (
√
n)n � constantn.

In [25], the choice was r := n, and this conducted to d & nn.
With a fixed (bounded) constant r > 3, the final degree bound for Green-Griffiths will

be close to:
d &

(
r (1 + ε(r))

)n
= constantn,

as we will verify in details later. The only remaining substantial piece of work to be done
is to solve the following
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PROBLEM 2.3. With the choice of weights:

a1 := rn−1, a2 := rn−2, . . . . . . , an−1 := r, an := 1,

to show that the coefficient of the monomial tn1 · · · tnn in the product C(t) · f0(t), namely:

I0 :=
[
tn1 · · · tnn

](
C(t1, . . . , tn) · f0(t1, . . . , tn)

)
is at least equal to the central monomial:

I0

?
> Ĩ0

=
(n2)!

(n!)n
r n

n(n−1)
2 .

In fact, several computer experiments convince that instead of I0
Ĩ0
> 1, a better inequality

seems to hold:
I0

Ĩ0

&
(
constantr

)n
,

for some constantr > 1 which depends on r, and is closer and closer to 1 when r increases.
So experimentally, I0 > Ĩ0 is more than true. The goal is to set up a proof.

We start in Section 3 by verifying that a proof of I0
Ĩ0
> 1 implies a degree bound for

Green-Griffiths of the announced form d > constantn; this task was already almost com-
pletely performed by Darondeau in [25].

Then in subsequent sections, we study the product C(t1, . . . , tn) and we establish I0 >
Ĩ0.

3. End of Proof of Theorem 1.3

It essentially suffices to read Appendices 1 and 2 of [25], with in mind that Darondeau’s
(simplifying) choice:

ai := nn−i (16 i6n),

should be replaced with the choice:

ai := rn−i (16 i6n),

where r > 3 is a fixed constant. Later, we will see that the choice r = 3 might expose
to some computational difficulties, while as soon that r > 9, a serendipitous positivity
property occurs. In any case, the estimates of the mentioned Appendix 2 were prepared in
advance to work for any choice of r = 3, 9, 12, 20, logn,

√
n, n, while they were applied

in [25] to r = n by lack of a solution to Problem 2.3. Before solving this problem in the
next sections, let us admit temporarily that it has a positive answer for a certain fixed:

9 6 r 6 20 (hypothesis throughout).

END OF PROOF OF THEOREM 1.3. In the notations of [25], the lower degree bound:

d > dGG(n)

is determined by the largest root of a certain polynomial equation:

dn I0 + dn−1 I1 + · · ·+ dn−p Ip + · · ·+ In = 0,
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with I0 > 0. Of course, I0 is the same as in Problem 2.3, hence we assume temporarily not
only that it is positive, but also that it is quite large:

I0

Ĩ0

> 1.

We refer to [25] for a presentation of the other coefficients Ip.

PROPOSITION 3.1. The polynomial in the degree d of a hypersurface Xn ⊂ Pn−1(C):

dn I0 + dn−1 I1 + · · ·+ dn−p Ip + · · ·+ d In−1 + In

takes positive values for all degrees:

d > 25n2 ·
(
r + 3

)n
.

=: dGG(n, r)

In fact, a glance at the end of the proof shows a slightly better, though more complicated:

dGG(n, r) :=
(
20n2 + 4n

)
· r3

(r − 1)3 (r + 3)
·
(
r + 3

)n
.

Theorem 1.3 terminates by checking on a computer that:

2 5n >
(
20n2 + 4n

)
· r3

(r − 1)3 (r + 3)
·
(
r + 3

)n
(∀n> 20),

for any choice of 9 6 r 6 20. �

PROOF OF PROPOSITION 3.1. In [25], the pôle order of so-called slanted vector fields
cn := n(n+ 2) is used. But the article [24] improves it to:

cn := 5n− 2.

Then with c := cn + 1, the quantity c+2
2

appears several times in [25], so we may read:

c+ 2

2
=

5n+ 1

2
.

Next, with:
ai := rn−i (16 i6n),

set:
µ(a) := 1 a1 + 2 a2 + · · ·+ n an,

and for all 1 6 p 6 n, set:

Ĩp :=
(n2)!

(n!)n
an1 · · · ann︸ ︷︷ ︸

recognize Ĩ0

(
2nµ(a)

)p ∑
16i1<···<ip6n

1

ai1
· · · 1

aip
,

Importantly, Lemma A.6 on page 1919 of Appendix 2 shows that:

|Ip|
Ĩp
6

5n+ 1

2
· |B|

(2nµ(a)h

a1

, . . . ,
2nµ(a)h

an

)
· |C|

( 1

a1

, . . . ,
1

an

)
(16 p6n).



3. END OF PROOF OF THEOREM 1.3 33

It is not necessary to dwell into details about the middle quantity |B|, since Lemma A.7 on
page 1920 shows that for any choice of weights a1, . . . , an:

|B|
(2nµ(a)h

a1

, . . . ,
2nµ(a)h

an

)
6
( 2n

2n− 1

)n+1

6 2 (∀n> 4 – exercise).

Consequently, we get:

|Ip|
Ĩp
6
(
5n+ 1

)
· |C|

( 1

a1

, . . . ,
1

an

)
(16 p6n).

Next, page 1914 uses the control:

|C|
( 1

a1

, . . . ,
1

an

)
6 Ĉ

( 1

a1

, . . . ,
1

an

)
,

by the ‘majorant’ series:

Ĉ
(
t1, . . . , tn

)
:=

∏
16i<j6n

tj − ti
tj − 2 ti

∏
26i<j6n

tj − 2 ti
tj − 2 ti − ti−1

.

Replacing the formal variables by the inverses of the weights, we get:

Ĉ
( 1

a1

, . . . ,
1

an−1

,
1

an

)
=

∏
16i<j6n

ai/aj − 1

ai/aj − 2

∏
26i<j6n

ai/aj − 2

ai/aj − 2− ai/ai−1

.

Since ai = rn−i for 1 6 i 6 n, this rewrites as:

Ĉ
( 1

rn−1
, . . . ,

1

r
,
1

1

)
=

∏
16i<j6n

rj−i − 1

rj−i − 2

∏
26i<j6n

rj−i − 2

rj−i − 2− 1
r

[Extract i = 1] =
∏

26j6n

rj−1 − 1

rj−1 − 2

∏
26i<j6n

ï
rj−i − 1

rj−i − 2◦

rj−i − 2◦
rj−i − 2− 1

r

ò
[Simplify] =

∏
26j6n

rj−1 − 1

rj−1 − 2

∏
26i<j6n

rj−i+1 − r
rj−i+1 − 2 r − 1

ò
[Rename indices] =

∏
16k6n−1

rk − 1

rk − 2

∏
26`6n−1

( r` − r
r` − 2 r − 1

)n−`
.

Using inequalities valid as soon as r > 4 hence for r > 9:

1

rk − 2
6

2

rk
(∀ k> 1),
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the first product is bounded by a universal constant, and even by a constant which decreases
as r increases:

∏
16k6n−1

(
1 +

1

rk − 2

)
6

∞∏
k=1

(
1 +

2

rk

)
= exp

Å ∞∑
k=1

log
(

1 +
2

rk

)ã
[log (1 + ε) 6 1 + ε] 6 exp

Å
2

r

∞∑
k=0

1

rk

ã
= exp

( 2

r − 1

)
[Computer help] 6 1 +

3

r
.

The second product is bounded by a constant power n− 2:

∏
26`6n−1

( r` − r
r` − 2 r − 1

)n−`
=

∏
26`6n−1

(
1 +

r + 1

r` − 2 r − 1

)n−`
6
Å ∏

26`6n−1

(
1 +

r + 1

r` − 2 r − 1

)ãn−2

6
Å ∞∏
`=2

(
1 +

r + 1

r` − 2 r − 1

)ãn−2

.

Let us estimate this constant, which depends on r:

α(r) :=
∞∏
`=2

(
1 +

r + 1

r` − 2 r − 1

)
.

LEMMA 3.2. For all r > 6, one has:

1 +
r + 1

r` − 2 r − 1
6 1 +

2

r`−1
(∀ `> 2).

PROOF. This is equivalent to:

4 r + 2 6 r` − r`−1
(∀ r> 6, ∀ `> 2),

which is easily checked, on a computer, to be true. �
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Hence we can majorize still assuming r > 9 throughout:

α(r) 6
∞∏
`=2

(
1 +

2

r`−1

)
= exp

Å ∞∑
`=0

log
(

1 +
2

r`+1

)ã
[log (1 + ε) 6 1 + ε] 6 exp

Å
2

r

∞∑
`=0

1

r`

ã
= exp

( 2

r − 1

)
[Computer help] 6 1 +

3

r
.

In summary, we have shown that:

|Ip|
Ĩp
6
(
5n+ 1

)
·
(

1 +
3

r

)
·
(

1 +
3

r

)n−2

(∀n> 2).

Next, we estimate, still with ai = rn−i for i = 1, . . . , n:

µ(a) = 1 · a1 + 2 · a2 + · · ·+ (n− 1) an−1 + n an

= 1 rn−1 + 2 rn−2 + · · ·+ (n− 1) r1 + n r0

= (n+ 1)
[
rn−1 + rn−2 + · · ·+ r1 + r0

]
− n rn−1 − (n− 1) rn−2 − · · · − 2 r1 − 1 r0

= (n+ 1)
rn − 1

r − 1

− n rn+1 − (n+ 1) rn + 1

(r − 1)2
,

the result in this last line being obtained simply by differentiating with respect to r the
classical:

rn + rn−1 + · · ·+ r2 + r + 1 =
rn+1 − 1

r − 1
.

A reduction to the same denominator contracts:

µ(a) =
rn+1 − (n+ 1) r + n

(r − 1)2

6
rn+1

(r − 1)2

=
r

(r − 1)2
rn.

Next, consider generally a polynomial of degree n > 1 with complex coefficients cp ∈
C:

c0 z
n + c1 z

n−1 + · · ·+ cn−1 z
1 + cn (c0 6= 0).

Abbreviate:
Kn := unique positive zero of zn − zn−1 − · · · − z − 1,
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which satisfies:
1 < Kn < 2 (close to 2).

THEOREM 3.3. [Fujiwara] The moduli of all roots of c0z
n + c1z

n−1 + · · · + cn are
bounded by:

max
∣∣roots

∣∣ 6 Kn︸︷︷︸
< 2

max
16p6n

p

 
|cp|
|c0|

. �

Now, come back to the polynomial dn I0 +dn−1 I1 + · · ·+In of Proposition 3.1. Thanks
to Fujiwara:

max
∣∣roots

∣∣ 6 2 max
16p6n

p

 
|Ip|
I0

[I0 > Ĩ0] 6 2 max
16p6n

p

 
|Ip|
Ĩ0

= 2 max
16p6n

p

√
|Ip|
Ĩp
· Ĩp
Ĩ0

[Seen above] 6 2 max
16p6n

p

√(
5n+ 1

) (
1 +

3

r

)n−1

· Ĩp
Ĩ0

6 2 max
16p6n

p

… (
5n+ 1

) (
1 +

3

r

)n−1

· max
16p6n

p

√
Ĩp

Ĩ0

= 2
(
5n+ 1

) (
1 +

3

r

)n−1

· max
16p6n

p

√
Ĩp

Ĩ0

·

Next, coming back to the definition of Ĩp, it remains to estimate the p-th roots of the
quotients:

Ĩp

Ĩ0

=
(
2nµ(a)

)p ∑
16i1<···<ip6n

1

ai1
· · · 1

aip︸ ︷︷ ︸
=: σp( 1

a1
,..., 1

an
)

,

which incorporate the p-th symmetric functions σp of the weight inverses 1
ai

. We start by
extracting the p-th root of

(
2nµ(a)

)p easily:

max
16p6n

p

√
Ĩp

Ĩ0

= 2nµ(a) · max
16p6n

p

 
σp

( 1

a1

, . . . ,
1

an

)
[Seen above] 6 2n

r

(r − 1)2
rn · max

16p6n

p

 
σp

( 1

a1

, . . . ,
1

an

)
.

LEMMA 3.4. One has:

max
16p6n

p

 
σp

( 1

a1

, . . . ,
1

an

)
= σ1

( 1

a1

, . . . ,
1

an

)
.
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PROOF. For positive real numbers b1, . . . , bn > 0, the renormalized symmetric func-
tions:

sp
(
b1, . . . , bn

)
:=

1(
n
p

) ∑
16i1<···<ip6n

bi1 · · · bip

=
1(
n
p

) σp (b1, . . . , bp
)
,

satisfy the classical Mac Laurin inequality:

s1 > 2
√
s2 > 3

√
s3 > · · · · · · > n

√
sn.

A modified version, useful to us, is:

ASSERTION 3.5. A similar, less fine, inequality, holds before renormalization:

σ1 > 2
√
σ2 > · · · · · · > p

√
σp > p+1

√
σp+1 > · · · · · · > n

√
σn.

PROOF. For 1 6 p 6 n− 1, we would deduce from Mac Laurin what we want:(
p

 
σp(
n
p

) known
> p+1

 
σp+1(
n
p+1

)) =⇒
(

p
√
σp

?
> p+1
√
σp+1

)
,

provided it would be true that:
p

»(
n
p

)
p+1

»(
n
p+1

) ?
> 1 (∀ 16 p6n−1).

We claim that such numerical inequalities hold true. Indeed, from the two visible minora-
tions:

n (n− 1) · · · (n− p+ 1) >
(
n− p

)p
,(

p+ 1
)p
> 1 · 2 · . . . · p,

comes:
n (n− 1) · · · (n− p+ 1)

1 · 2 · . . . · p
>

(n− p)p

(p+ 1)p
,

whence:ï
n (n− 1) · · · (n− p+ 1)

1 · 2 · . . . · p

òp+1

>
ï
n (n− 1) · · · (n− p+ 1)

1 · 2 · . . . · p
· (n− p)

(p+ 1)

òp
,

and this is exactly what we wanted:Ç
n

p

åp+1

>

Ç
n

p+ 1

åp
. �

Lastly, with b1 := 1
a1

, . . . , bn := 1
an

, we get:

σ1

( 1

a1

, . . . ,
1

an

)
> p

 
σp

( 1

a1

, . . . ,
1

an

)
(∀ 16 p6n),

which forces the maximum to be attained precisely when p = 1. �
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So we obtain:

max
16p6n

p

√
Ĩp

Ĩ0

6 2n
r

(r − 1)2
rn · σ1

( 1

a1

, . . . ,
1

an

)
.

and it only remains to estimate:

σ1

( 1

a1

, . . . ,
1

an−1

,
1

an

)
6

1

rn−1
+ · · ·+ 1

r
+ 1

6
r

r − 1
,

in order to finish the proof of Proposition 3.1:

max
∣∣roots

∣∣ 6 (
10n+ 2

) (
1 +

3

r

)n−1

· max
16p6n

p

√
Ĩp

Ĩ0

6
(
10n+ 2

) (
1 +

3

r

)n−1

· 2n r

(r − 1)2
rn · σ1

( 1

a1

, . . . ,
1

an

)
6
(
10n+ 2

) (r + 3)n−1

rn−1
· 2n r

(r − 1)2
rn · r

r − 1

=
(
20n2 + 4n

)
· r3

(r − 1)3 (r + 3)
·
(
r + 3

)n
6 25n2 ·

(
r + 3

)n
. �

4. From Coordinates (t1, t2, . . . , tn) to Coordinates (w2, . . . , wn)

The goal of this section is to transform both the product C(t) and the n2-power f0(t)
into more tractable expressions, by introducing the formal variables:

w2 :=
t1
t2
, w3 :=

t2
t3
, . . . . . . , wn :=

tn−1

tn
.

To enhance intuition, start by expanding the writing of the factors of two types in the
considered double big product:

C(t1, . . . , tn) =
t2 − t1
t2 − 2 t1

t3 − t1
t3 − 2 t1

· · · tn − t1
tn − 2 t1

t3 − t2
t3 − 2 t2

· · · tn − t2
tn − 2 t2

. . . ...
tn − tn−1

tn − 2 tn−1

t3 − 2 t2
t3 − 2 t2 + t1

· · · tn − 2 t2
tn − 2 t2 + t1

. . . ...
tn − 2 tn−1

tn − 2 tn−1 + tn−2

.
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To pass to the new variables, compute first for instance:

t2 − t1
t2 − 2 t1

=
1− t1

t2

1− 2 t1
t2

=
1− w2

1− 2w2

,

t3 − t1
t3 − 2 t1

=
1− t1

t3

1− 2 t1
t3

=
1− t1

t2

t2
t3

1− 2 t1
t2

t2
t3

=
1− w2w3

1− 2w2w3

,

t5 − 2 t2
t5 − 2 t2 + t1

=
1− 2 t2

t3

t3
t4

t4
t5

1− 2 t2
t3

t3
t4

t4
t5

+ t1
t2

t2
t3

t3
t4

t4
t5

=
1− 2w3w4w5

1− 2w3w4w5 + w2w3w4w5

.

Generally, with as above:

wi :=
ti−1

ti
(26 i6n),

we can transform all the factors of first type, for indices 2 6 i 6 j 6 n — mind the shift
i 7−→ i− 1 from the original definition of C(t):

Ei,j(t) :=
tj − ti−1

tj − 2 ti−1

=
1− ti−1

tj

1− 2 ti−1

tj

=
1− ti−1

ti
· · · tj−1

tj

1− 2 ti−1

ti
· · · tj−1

tj

=
1− wi · · ·wj

1− 2wi · · ·wj
=: Ei,j(w),

Similarly, for 3 6 i 6 j 6 n, again with the shift i 7−→ i− 1:

Fi,j(t) :=
tj − 2 ti−1

tj − 2 ti−1 + ti−2

=
1− 2 ti−1

tj

1− 2 ti−1

tj
+ ti−2

tj

=
1− 2 ti−1

ti
· · · tj−1

tj

1− 2 ti−1

ti
· · · tj−1

tj
+ ti−2

ti−1

ti−1

ti
· · · tj−1

tj

=
1− 2wi · · ·wj

1− 2wi · · ·wj + wi−1wi · · ·wj
=: Fi,j(w).

Consequently:

C(t1, t2, . . . , tn) = C(w2, . . . , wn) :=
1− w2

1− 2w2

1− w2w3

1− 2w2w3

· · · 1− w2w3 · · ·wn
1− 2w2w3 · · ·wn

1− w3

1− 2w3

· · · 1− w3 · · ·wn
1− 2w3 · · ·wn

. . . ...
1− wn

1− 2wn
1− 2w3

1− 2w3 + w2w3

· · · 1− 2w3 · · ·wn
1− 2w3 · · ·wn + w2w3 · · ·wn

. . . ...
1− 2wn

1− 2wn + wn−1wn
.
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This can be abbreviated as:

C(w) =
∏

26i6j6n

1− wi · · ·wj
1− 2wi · · ·wj

∏
36i6j6n

1− 2wi · · ·wj
1− 2wi · · ·wj + wi−1wi · · ·wj

=
∏

26i6j6n

Ei,j
∏

36i6j6n

Fi,j.

As is visible — and as was already visible before in variables (t1, . . . , tn) —, the terms
1−2wi · · ·wj that appear in the denominators of theEi,j cancel out with the same terms ap-
pearing in the numerators of the Fi,j , though only for 3 6 i 6 j 6 n. These simplifications
conduct to the shorter representation:

C(w2, . . . , wn) :=
1− w2

1− 2w2

1− w2w3

1− 2w2w3

· · · · · · · · · · · · · · · 1− w2w3 · · ·wn
1− 2w2w3 · · ·wn

1− w3

1− 2w3 + w2w3

· · · · · · 1− w3 · · ·wn
1− 2w3 · · ·wn + w2w3 · · ·wn

. . . ...
. . . ...

1− wn
1− 2wn + wn−1wn

,

which can be abbreviated as:

C(w2, . . . , wn) = E ′2(w2)E ′3(w2, w3) · · ·E ′n(w2, w3, . . . , wn)

F ′3,3(w2, w3) · · ·F ′3,n(w2, w3, . . . , wn)

. . . ...

F ′n,n(wn−1, wn),

that is to say:

C(w2, . . . , wn) =
∏

26j6n

1− w2 · · ·wj
1− 2w2 · · ·wj︸ ︷︷ ︸

=: E′j

∏
36i6j6n

1− wi · · ·wj
1− 2wi · · ·wj + wi−1wi · · ·wj︸ ︷︷ ︸

=: F ′i,j

.

Next, let us re-express in the wi variables:

f0(t) =
(
a1t1 + · · ·+ an−2tn−2 + an−1tn−1 + antn

)n2

=
(
a1

t1
tn

+ · · ·+ an−2
tn−2

tn
+ an−1

tn−1

tn
+ an

tn
tn

)n2 (
tn
)n2

=
(
rn−1w2 · · ·wn + · · ·+ r2wn−1wn + r wn + 1

)n2 (
tn
)n2

.
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To yet transform tn
2

n at the end, observe that:
1

(w2)n(w3)2n · · · (wn−1)n2−2n(wn)n2−n =
1(

t1
t2

)n ( t2
t3

)2n · · ·
( tn−2

tn−1

)n2−2n( tn−1

tn

)n2−n

=
1

tn1 t
n
2 · · · tnn−2 t

n
n−1

1

tn
2−n
n

=
tn

2

n

tn1 t
n
2 · · · tnn−2 t

n
n−1 t

n
n

,

whence:

f0(t) =

(
rn−1w2 · · ·wn + · · ·+ r2wn−1wn + r wn + 1

)n2

wn2 w
2n
3 · · · wn

2−2n
n−1 wn2−n

n

1

tn1 t
n
2 · · · tnn−1 t

n
n

.

Consequently, in Problem 2.3, the coefficient I0 of the monomial tn1 · · · tnn in the product
C(t) · f0(t) identifies with the constant term, namely the coefficient of w0

2 · · ·w0
n = 1, in

the product:(
rn−1w2 · · ·wn + · · ·+ r2wn−1wn + r wn + 1

)n2

wn2 w
2n
3 · · · w

n2−2n
n−1 wn

2−n
n

· 1− w2

1− 2w2

1− w2w3

1− 2w2w3
· · · · · · · · · · · · · · · 1− w2w3 · · ·wn

1− 2w2w3 · · ·wn
1− w3

1− 2w3 + w2w3
· · · · · · 1− w3 · · ·wn

1− 2w3 · · ·wn + w2w3 · · ·wn
. . .

...

. . .
...

1− wn
1− 2wn + wn−1wn

.

It is now appropriate to expand the n2 power in the numerator above plainly as:

1

(w2)n · · · (wn)n2−2n

∑
i1,...,in>0

i1+···+in=n2

(1)i1 (rwn)i2
(
r2wn−1wn

)i3 · · · (rn−1w2 · · ·wn
)in (n2)!

i1! i2! i3! · · · in!

Next, we would like to point out that C(w2, . . . , wn) is a product of rational expressions
which expand all in converging power series at the origin. More precisely, using the trivial
expansion:

E(x) :=
1− x

1− 2x
= 1 +

x

1− 2x

= 1 +
∞∑
i=1

2i−1 xi,

together with the expansion of Lemma 6.1 — with the convention that
(
`−1
−1

)
= 0 =(

`−1
`

)
— :

F (x, y) :=
1− y

1− 2 y + x y
= 1 +

y − x y
1− 2 y + x y

= 1 +
∞∑
`=1

y`
∑

06k6`

(−1)k xk
[
2`−1−k (`−1

k

)
+ 2`−k

(
`−1
k−1

)]
,
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and re-expressing:

C(w2, . . . , wn) =
∏

26j6n

E
(
w2 · · ·wj

) ∏
36i6j6n

F
(
wi−1, wi · · ·wj

)
,

and lastly, multiplying all the obtained converging power series, one can in principle receive
an expansion:

C(w2, . . . , wn) =
∞∑
k2=0

· · ·
∞∑

kn=0

Ck2,...,kn (w2)k2 · · · (wn)kn ,

which is holomorphic in a neighborhood of the origin. However, it is very delicate to reach
closed explicit expressions for these integer Taylor coefficients Ck2,...,kn , a difficulty which
lies at the very core of Problem 2.3.

In summary, the quantity I0 we want to determine, in order to show that it satisfies
I0 > Ĩ0, is the coefficient of the constant term w0

2 · · ·w0
n in a product consisting of 2 rows:

∞∑
k2=0

· · ·
∞∑

kn=0

Ck2,...,kn (w2)k2 · · · (wn)kn ·

· 1

(w2)n · · · (wn)n2−n

∑
i1,...,in>0

i1+···+in=n2

(1)i1 (rwn)i2
(
r2wn−1wn

)i3 · · · (rn−1w2 · · ·wn
)in (n2)!

i1! i2! i3! · · · in!
.

Clearly, the second row becomes, after reorganization, a Laurent series of the form:∑
−n6`2

· · ·
∑

−(n2−n)6`n

J`2,...,`n (w2)`2 · · · (wn)`n .

But because in the first row one always has k2, . . . , kn > 0, all Laurent monomials
(w2)`2 · · · (wn)`n in the second row for which `i > 1 for some 1 6 i 6 n do not con-
tribute to the determination of the desired constant term w0

2 · · ·w0
n. So the summation in

the second row can be truncated to:∑
−n6`260

· · ·
∑

−(n2−n)6`260

J`2,...,`n (w2)`2 · · · (wn)`n .

A supplementary change of indices followed by a reorganization conducts to an appropriate
reformulation of what is I0: the following statement will then constitute the very starting
point of our further explorations.

PROPOSITION 4.1. One has:

I0 =
[
w0

2 · · ·w0
n

] (
A(w2, . . . , wn) · C(w2, . . . , wn)

)
,

where:

A(w2, . . . , wn) :=
∑

06k26n
06k36n+k2
·····················
06kn−16n+kn−2
06 kn 6n+kn−1

(n2)!

(n− k2)!(n+ k2 − k3)! · · · (n+ kn−2 − kn−1)!(n+ kn−1 − kn)!(n+ kn)!
·

· r
n
n(n−1)

2

rk2+···+kn

1

(w2)k2 · · · (wn)kn
,
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and where C(w2, . . . , wn) is as before.

PROOF. We therefore rewrite:
1

wn2w
2n
3 · · ·w

(n−2)n
n−1 w

(n−1)n
n

∑
i1,...,in>0

i1+···+in=n2

(1)i1 (r wn)i2
(
r2wn−1wn

)i3 · · · (rn−2w3 · · ·wn−1wn
)in−1

(
rn−1w2w3 · · ·wn−1wn

)in ·
· (n2)!

i1! i2! i3! · · · in−1!in!
=

=:
∑
−n6`2

∑
−2n6`3

· · ·
∑

−(n−2)n6`n−1

∑
−(n−1)n6`n

J`2,`3,...,`n−1,`n (w2)`2(w3)`3 · · · (wn−1)`n−1(wn)`n ,

so that the correspondence between exponents is:

−n 6 `2 = in − n,
− 2n 6 `3 = in + in−1 − 2n,

· · · · · · · · · · · · · · · · · · · · ·
− (n− 2)n 6 `n−1 = in + in−1 + · · ·+ i3 − (n− 2)n,

− (n− 1)n 6 `n = in + in−1 + · · ·+ i3 + i2 − (n− 1)n.

Performing the harmless truncations `2 6 0, . . . , `n 6 0 leads then to the inequalities:

0 6 in 6 n,

0 6 in + in−1 6 2n,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 6 in + in−1 + · · ·+ i3 6 (n− 2)n,

0 6 in + in−1 + · · ·+ i3 + i2 6 (n− 1)n,

so that it suffices to consider, before multiplying by C(w2, . . . , wn), the truncated series:

A :=
∑

i1+···+in=n2

i1>0, ..., in>0
06in6n

06in+in−162n
·································

06in+in−1+···+i36(n−2)n
06in+in−1+···+i3+i26(n−1)n

1

wn−in2 w
2n−in−1−in
3 · · ·w(n−2)n−in−in−1−···−i3

n−1 w
(n−1)n−in−in−1−···−i3−i2
n

·

· ri2+2 i3+···+(n−2)in−1+(n−1)in · (n2)!

i1! i2! i3! · · · in−1! in!
.

To reach the expression shown by the proposition, introduce the new nonnegative integer
indices:

k2 := n− in (k2 > 0),

k3 := 2n− in−1 − in (k3 > 0),

· · · · · · · · · · · · · · · · · · · · · · · · · · · (·········),

kn−1 := (n− 2)n− i3 − · · · − in−1 − in (kn−1 > 0),

kn := (n− 1)n− i2 − i3 − · · · − in−1 − in (kn > 0).

To finish, three explanations are needed.
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Firstly, one has the inequalities:

0 6 k2 6 n,

0 6 k3 6 n+ k2,

because in > 0 and because:

k3 = n− in−1 + n− in = n− in−1︸ ︷︷ ︸
in−1>0

+k2 6 n+ k2.

Similarly:

0 6 k4 = 3n− in−2 − in−1 − in = n− in−2 + k3 6 n+ k3,

and so on up to:
0 6 kn−1 6 n+ kn−2,

0 6 kn 6 n+ kn−1.

Secondly, since:

k2+k3+· · ·+kn−1+kn = n
(
1+2+· · ·+(n−2)+(n−1)

)
−i2−2 i3−· · ·−(n−2) in−1−(n−1) in,

the exponent of r becomes:

i2 + 2 i3 + · · ·+ (n− 2) in−1 + (n− 1) in = n n(n−1)
2
− k2 − k3 − · · · − kn−1 − kn.

Thirdly and lastly, the factorials become:

in! = (n− k2)!,

in−1! =
(
n+ n− in − k3

)
! =

(
n+ k2 − k3

)
!,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
i2! =

(
− kn + (n− 1)n− i3 − · · · − in

)
! =

(
n+ kn−1 − kn

)
!,

i1! =
(
nn− (n+ kn−1 − kn)− · · · − (n+ k2 − k3)− (n− k2)

)
=
(
n+ kn

)
!.

These three explanations yield the expression of A(w2, . . . , wn) stated by the proposition.
�

Next, because only the quotient I0
Ĩ0

must be studied in order to reach the minoration

I0 > Ĩ0, we can divide everything in advance by the central monomial:

Ĩ0 =
(n2)!

n! · · · n!
r n

n(n−1)
2 .

Equivalently, we factor:

A =
(n2)!

n! · · · n!
r n

n(n−1)
2 ·

·
∑

06k26n
06k36n+k2
·····················
06kn−16n+kn−2
06 kn 6n+kn−1

n!

(n− k2)!

n!

(n+ k2 − k3)!
· · · n!

(n+ kn−2 − kn−1)!

n!

(n+ kn−1 − kn)!(n+ kn)!
·

· 1

rk2+k3+···+kn−1+kn

1

wk22 w
k3
3 · · ·w

kn−1

n−1 w
kn
n

,



4. FROM COORDINATES (t1, t2, . . . , tn) TO COORDINATES (w2, . . . , wn) 45

we keep the same nameA after eliminating the factor Ĩ0 on the first line, and we reformulate
our goal as a more precise

PROBLEM 4.2. For some specific choice of a fixed constant r > 3, to show that for any
n > 2, the coefficient of the constant monomial w0

2 · · ·w0
n in the product C(w) ·A(w) is at

least equal to 1, namely:

1 6
[
w0

2 · · ·w0
n

](
C(w2, . . . , wn) · A(w2, . . . , wn)

)
,

where:
C(w2, . . . , wn) :=

1− w2

1− 2w2

1− w2w3

1− 2w2w3

· · · 1− w2w3 · · ·wn
1− 2w2w3 · · ·wn

1− w3

1− 2w3

· · · 1− w3 · · ·wn
1− 2w3 · · ·wn

. . . ...
1− wn

1− 2wn
1− 2w3

1− 2w3 + w2w3

· · · 1− 2w3 · · ·wn
1− 2w3 · · ·wn + w2w3 · · ·wn

. . . ...
1− 2wn

1− 2wn + wn−1wn
,

and where:

A(w2, . . . , wn) :=
∑

06k26n
06k36n+k2
·····················
06kn−16n+kn−2
06 kn 6n+kn−1

n!

(n− k2)!

n!

(n+ k2 − k3)!
· · · n!

(n+ kn−2 − kn−1)!

n!

(n+ kn−1 − kn)!(n+ kn)!
·

· 1

rk2+k3+···+kn−1+kn

1

wk22 w
k3
3 · · ·w

kn−1

n−1 w
kn
n

.

Of course, under the hypothesis that the power series expansion of C(w) is known:

C(w2, . . . , wn) =
∞∑
k2=0

· · ·
∞∑

kn=0

Ck2,...,kn (w2)k2 · · · (wn)kn ,

the coefficient in question writes up as the sum:

CAn
n−1 :=

∑
06k26n
06k36n+k2
·····················
06kn−16n+kn−2
06 kn 6n+kn−1

n!

(n− k2)!

n!

(n+ k2 − k3)!
· · · n!

(n+ kn−2 − kn−1)!

n!

(n+ kn−1 − kn)!(n+ kn)!
·

· 1

rk2+k3+···+kn−1+kn
Ck2,k3,...,kn−1,kn ,

which should satisfy:

CAn
n−1

?
> 1 (∀n> 2).
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5. Approximations of multinomial quotients Mn
k2,...,kn

Let us attribute a name to the quotients of multinomial coefficients which have appeared
above:

Mn
k2,k3,...,kn−1,kn

:=
n!

(n− k2)!

n!

(n+ k2 − k3)!
· · · · · · n!

(n+ kn−1 − kn)!

n!

(n+ kn)!

=

(n2)!
(n−k2)! (n+k2−k3)! ··· (n+kn−1−kn)! (n+kn)!

(n2)!
n!n! ···n!n!

.

When k2 = k3 = · · · = kn−1 = kn = 0, this is just:

Mn
0,0,...,0,0 = 1.

LEMMA 5.1. For all indices (k2, k3, . . . , kn−1, kn) 6= (0, 0, . . . , 0, 0) in the domain:
0 6 k2 6 n,

0 6 k3 6 n+ k2,

·· · · · · · · · · · · · · · · · · · ·
0 6 kn−1 6 n+ kn−2,

0 6 kn 6 n+ kn−1,

there are strict inequalities:(
0 6

)
Mn

k2,k3,...,kn−1,kn
< 1,

with equality = 1 only when k2 = k3 = · · · = kn−1 = kn = 0.

PROOF. Coming back to the old (nonnegative) indices:
in = n− k2,

in−1 = n+ k2 − k3,

· · · · · · · · · · · · · · · · · · ·
i2 = n+ kn−1 − kn,
i1 = n+ kn,

which satisfy i1 + i2 + · · ·+ in−1 + in = nn = n2 and are not all equal to n — otherwise
all kλ = 0 —, we have to explain the inequalities:

n!

i1!

n!

i2!
· · · · · · n!

in−1!

n!

in!

?
< 1.

After a reordering, we can assume that:

i1 6= n, . . . . . . , iκ 6= n, iκ+1 = n, . . . . . . , in = n,

for a certain integer 1 6 κ 6 n. Since the factors n!
n!

= 1 have no effect, we are led to ask
whether:

n!

i1!
· · · · · · n!

iλ!
· · · · · · n!

iκ!

?
< 1.

Observing that:
i1 + · · ·+ iλ + · · ·+ iκ = κn,

let us distinguish two cases about these iλ for every 1 6 λ 6 κ:

iλ < n or iλ > n.



5. APPROXIMATIONS OF MULTINOMIAL QUOTIENTS Mn
k2,...,kn

47

When iλ < n, we simplify:
n!

iλ!
= n

(
n− 1

)
· · ·
(
iλ + 1

)
,

and when iλ > n, we simplify:
n!

iλ!
=

1

iλ (iλ − 1) · · · (n+ 1)
,

so that:
n!

i1!
· · · · · · n!

iλ!
· · · · · · n!

iκ!
=

∏
iλ<n

n (n− 1) · · · (iλ + 1)∏
iλ>n

iλ(iλ − 1) · · · (n+ 1)
.

Now, we observe that in this fraction the number of integer factors at numerator place is
equal to the number of integer factors at denominateur place, because the equality above:

κn =
∑

16λ6κ

iλ =
∑
iλ<n

iλ +
∑
iλ>n

iλ

can be rewritten as: ∑
iλ<n

(
n− iλ

)
=
∑
iλ>n

(
iλ − n

)
.

But each integer factor at denominator place is larger than all integer factors at numerator
place, so the fraction must be < 1. �

Visibly, in the quantity under study:

Mn
k2,k3,...,kn−1,kn

=
n!

(n− k2)!

n!

(n+ k2 − k3)!
· · · · · · n!

(n+ kn−1 − kn)!

n!

(n+ kn)!
,

there are two types of quotients:
n!

(n− k)!
with k > 0 and

n!

(n+ `)!
with ` > 0.

We can simplify, factorize, and rewrite the first type quotients as:

n!

(n− k)!
=

n (n− 1) · · · (n− k + 1)

1
= nk

(
1− 0

n

)(
1− 1

n

)
· · ·
(

1− k − 1

n

)
= nk

∏
06i6k−1

(
1− i

n

)
,

and the second type quotients as:
n!

(n+ `)!
=

1

(n+ `) · · · (n+ 1)
=

1(
1 + `

n

)
· · ·
(
1 + 1

n

)
n`

= n−`
∏

16j6`

(
1 +

j

`

)−1

.

In order to estimate the proximity to 1 of these products, let us take their logarithms:

log
∏

06i6k−1

(
1− i

n

)
= log

(
1− 0

n

)
+ log

(
1− 1

n

)
+ · · ·+ log

(
1− k − 1

n

)
6 0,
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and:

log
∏

16j6`

(
1 +

j

n

)−1

= − log
(

1 +
1

n

)
− log

(
1 +

2

n

)
− · · · − log

(
1 +

`

n

)
6 0.

Certainly, we have already seen implicitly in the proof of the previous Lemma 5.1 that
all the logarithms of these products are 6 0. But we are now searching for a minoration of
these coefficients:

Mn
k2,...,kn

> what?
For a reason that will become transparent just after a preliminary lemma, we will soon
restrict ourselves to suppose that:

k2 + k3 + · · ·+ kn−1 + kn 6
√
n.

LEMMA 5.2. For all 0 6 δ 6 3/5:

log
(
1− δ

)
> − δ − δ2,

and for all ε > 0:
− log

(
1 + ε

)
> − ε.

PROOF. The first inequality — which is in fact true for 0 6 δ 6 0, 683 as can be seen
with the help of a computer —:

− δ − δ2

2
− δ3

3
− δ4

4
− δ5

5
− · · ·

?
> − δ − δ2,

is equivalent to:
δ2

2

?
>

δ3

3
+
δ4

4
+
δ5

5
+ · · · .

In this inequality under questioning, let us insert a computable infinite sum:

1
?
>

2

3
δ
(
1 + δ + δ2 + · · ·

)
>

2

3
δ +

2

4
δ2 +

2

5
δ3 + · · · ,

in order to come to an elementary minoration:

1
?
>

2

3
δ

1

1− δ
⇐⇒ 3− 3 δ

yes
> 2 δ.

The second inequality log (1 + ε) 6 ε is well known. �

Now, let us suppose that:
k 6

√
n,

whence as soon as n > 4:
k − 1

n
<

1√
n
6

1

2
<

3

5
.

Then:
k−1∑
i=0

log
(

1− i

n

)
> −

k−1∑
i=0

i

n
−

k−1∑
i=0

i2

n2

= − (k − 1) k

2n
− (k − 1) k (2 k − 1)

6n2

= − k2

2n
+

k

2n
− k3

3n2
+

k2

2n2
− k

6n2
.
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The three terms here underlined have a positive contribution and we can even neglect
the second of them:

k

2n
+

k2

2n2
− k

6n2
>

k

2n

(
1− 1

3n

)
> 0.

Therefore, we obtain a useful minoration:
k−1∑
i=0

log
(

1− i

n

)
> − k2

2n
− k3

3n2
= − k2

2n
− k2

3n

k

n

[ k
n
6 1] > − k2

2n
− k2

3n

> − k
2

n
.

Next, for the quotients of second type which are present in the various Mn
k2,...,kn

, the
minoration work is easier:

−
∑̀
j=1

log
(

1 +
j

n

)
> −

∑̀
j=1

j

n

= − `2

2n
− `

2n

[` 6 `2] > − `
2

n
.

Without forgetting the powers nk and n−`, these estimates can now be summarized as
the following

LEMMA 5.3. For all 0 6 k 6 3
5
n:

n!

(n− k)!
> nk e−

k2

n

and for all 0 6 `:
n!

(n+ `)!
> n−` e−

`2

n . �

Importantly, we point out that there is a uniform minoration:

n!

(n+m)!
> n−m e−

m2

n ,

valid for all integers m ∈ Z, positive or negative, in the range:

− 3
5
n 6 m < ∞.

Notice that the exponential factor is always 6 1.
Next, thanks to all this, we will assume from now on that the range of the integers

k2, . . . , kn is restricted to:

0 6 k2 + k3 + · · ·+ kn−1 + kn 6

√
n

c(n)
,
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for some function c(n) −→
n→∞

∞ that will be chosen later — think for instance c(n) :=

log log logn. In particular, this implies that:

0 6 k2 6 3
5
n,

∣∣k2 − k3

∣∣ 6 √
n

c(n)
6 3

5
, . . . . . . ,

∣∣kn−1 − kn
∣∣ 6 √

n
c(n)
6 3

5
,

so that the lemma applies to minorize:

Mn
k2,k3,...,kn−1,kn

=
n!

(n− k2)!

n!

(n+ k2 − k3)!
· · · · · · n!

(n+ kn−1 − kn)!

n!

(n+ kn)!

> nk2◦ e
− k

2
2
n n−k2+k3

◦ e
− (k2−k3)

2

n · · · · · · n−kn−1+kn
◦ e
− (kn−1−kn)2

n n−kn◦ e
− k

2
n
n

= e−
1
n [k22+(k2−k3)2+···+(kn−1−kn)2+k2n]

= e−
1
n [2 k22−2 k2k3+k23+···+2 k2n−1−2 kn−1kn+2 k2n]

> e−
1
n [2 (k2+k3+···+kn−1+kn)2]

> e
− 1
n

2 n
c(n)2

= e
− 2
c(n)2 −→

n→∞
1.

We thus have proved the key

PROPOSITION 5.4. For any choice of function c(n)
n→∞−→ ∞, the quantities:

Mn
k2,k3,...,kn−1,kn

=
n!

(n− k2)!

n!

(n+ k2 − k3)!
· · · · · · n!

(n+ kn−1 − kn)!

n!

(n+ kn)!

enjoy the inequalities:

e
− 2
c(n)2 6 Mn

k2,k3,...,kn−1,kn
6 1,

when their indices range in the set:{(
k2, k3, . . . , kn−1, kn

)
∈ Nn : 0 6 k2 6 n,

0 6 k3 6 n+ k2,

· · · · · · · · · · · · · · · · · ·
0 6 kn−1 6 n+ kn−2,

0 6 kn 6 n+ kn−1,

k2 + k3 + · · ·+ kn−1 + kn 6

√
n

c(n)

}
. �

6. Majorant power series Ĉ(w2, . . . , wn) and its diagonalization Ĉ(x, . . . , x)

Now, come back to:

F (x, y) =
1− y

1− 2 y + x y

and observe that for all 3 6 i 6 n− 1:

1− xi−1

1− 2xi−1 + xi
= F

(
x, xi−1

)
.
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Its expansion:

F (x, y) = 1 +
y − x y

1− 2 y + x y

= 1 +
∞∑
`=1

y`
∞∑
k=0

xk Fk,`

will be (easily) computed soon. With F (x, y), introduce also — notice the single sign
change in the denominator:

F̂ (x, y) =
1− y

1− 2 y − x y
= 1 +

y + x y

1− 2 y − x y

= 1 +
∞∑
`=1

y`
∞∑
k=0

xk F̂k,`,

a new function which will act as a majorant series, in the sense that:∣∣Fk,`∣∣ 6 F̂k,` (∀ k> 0, ∀ `> 0).

Such inequalities are made transparent from the following clear explicit expressions, in
which just a factor (−1)k drops.

LEMMA 6.1. With the convention that
(
`−1
−1

)
= 0 =

(
`−1
`

)
, the power series expansions

are:

F (x, y) = 1 +
∞∑
`=1

y`
∑

06k6`

(−1)k xk
[
2`−1−k (`−1

k

)
+ 2`−k

(
`−1
k−1

)]
,

F̂ (x, y) = 1 +
∞∑
`=1

y`
∑

06k6`

xk
[
2`−1−k (`−1

k

)
+ 2`−k

(
`−1
k−1

)]
.

PROOF. Expand:

F (x, y) = 1 +
y − x y

1− y (2− x)

= 1 +
(
y − x y

) ∞∑
h=0

yh
(
2− x

)h
= 1 +

(
y − x y

) ∞∑
h=0

yh
∑

06m6h

(−1)m xm 2h−m
Ç
h

m

å
.

Two double sums must be reorganized. In the first one, replace h = `− 1 and m = k:
∞∑
h=0

yh+1
∑

06k6h

(−1)m xm 2h−m
Ç
h

m

å
=

∞∑
`=1

y`
∑

06k6`−1

(−1)k xk 2`−1−k

Ç
`− 1

k

å
,

and observe that the last sum can be extended to the range 0 6 k 6 `, thanks to the
convention. In the second one, replace h = `− 1 and m = k − 1:

−
∞∑
h=0

yh+1
∑

06m6h

(−1)m xm+1 2h−m
Ç
h

m

å
= −

∞∑
`=1

∑
16k6`

(−1)k−1 xk 2`−k
Ç
`− 1

k − 1

å
,

and observe that the term k = 0 in the sum can be included, thanks to the convention.
Adding these two expressions yield the stated power expansion of F (x, y).
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Next, for what concerns:

F̂ (x, y) = 1 +
y + x y

1− 2 y − x y

= 1 +
(
y + x y

) ∞∑
h=0

yh
(
2 + x

)h
= 1 +

(
y + x y

) ∞∑
h=0

yh
∑

06m6h

xm 2h−m
Ç
h

m

å
,

exactly the same transformations work, except that the (−1)m factor has disappeared. �

Next, our goal is to introduce a majorant power series Ĉ(w2, . . . , wn) for the power se-
riesC(w2, . . . , wn). As anticipated above, it is now clear by means of the triangle inequality
that: ∣∣Fk,`∣∣ 6 F̂k,`,(6.2)

for all k > 0 and all ` > 0. In terms of F (x, y) and of the already seen power series:

E(x) :=
1− x

1− 2x
=

∞∑
k=0

Ek x
k,

having positive coefficients E0 = 1 and Ek = 2k−1 for k > 1, we can write:

C
(
w2, . . . , wn

)
=

∏
26i6n

1− w2 · · ·wi
1− 2w2 · · ·wi∏

26i<j6n

1− wi+1 · · ·wj
1− 2wi+1 · · ·wj + wiwi+1 · · ·wj

=:
∏

26i6n

E
(
w2 · · ·wi

)
∏

26i<j6n

F
(
wi, wi+1 · · ·wj

)
.

Hence we may introduce similarly:

Ĉ
(
w2, . . . , wn

)
:=

∏
26i6n

E
(
w2 · · ·wi

)
∏

26i<j6n

F̂
(
wi, wi+1 · · ·wj

)
.

The expansions of the factors of the first product show as:

C
(
w2, . . . , wn

)
=

∏
26i6n

Å ∞∑
k=0

Ek
(
w2 · · ·wi

)kã
∏

26i<j6n

Å ∞∑
k=0

∞∑
`=0

Fk,`
(
wi
)k (

wi+1 · · ·wj
)`ã

=:
∑

k2,...,kn > 0

Ck2,...,kn
(
w2

)k2 · · · (wn)kn ,
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and similarly:

Ĉ
(
w2, . . . , wn

)
=

∏
26i6n

Å ∞∑
k=0

Ek
(
w2 · · ·wi

)kã
∏

26i<j6n

Å ∞∑
k=0

∞∑
`=0

F̂k,`
(
wi
)k (

wi+1 · · ·wj
)`ã

=:
∑

k2,...,kn > 0

Ĉk2,...,kn
(
w2

)k2 · · · (wn)kn .
Since all Ek > 0 and all F̂k,` > 0, we have all Ĉk2,...,kn > 0 as well — however, many

Ck2,...,kn are 6 −1.
Thanks to (6.2) and to the triangle inequality in expansions, we obtain:∣∣Ck2,...,kn∣∣ 6 Ĉk2,...,kn ,(6.3)

for all k2, . . . , kn > 0, which means that Ĉ is a majorant power series for C. Notice that:

Ck2,...,kn ∈ Z and Ĉk2,...,kn ∈ N.

Now, passing to the diagonal:{
w2 = · · · = wn =: x

}
,

we deduce for every k ∈ N, again by means of the triangle inequality:∣∣Ch∣∣ =

∣∣∣∣ ∑
k2+···+kn=h

Ck2,...,kn

∣∣∣∣
6

∑
k2+···+kn=h

∣∣Ck2,...,kn∣∣
[(6.3)] 6

∑
k2+···+kn=h

Ĉk2,...,kn =: Ĉh.

In fact, these integers Ĉh > 0 express as coefficients of the diagonal majorant series:

Ĉn−1(x) := Ĉ(x, . . . , x)

=
∏

26i6n

1− xi−1

1− 2xi−1

∏
26i<j6n

1− xj−i

1− 2xj−i − xj−i+1

=
∑

k2,...,kn>0

Ĉk2,...,kn x
k2 · · · xkn

=
∞∑
h=0

Å ∑
k2+···+kn=h

Ĉk2,...,kn

ã
xh =:

∞∑
h=0

Ĉh x
h.

Let us therefore state these observations as a
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LEMMA 6.4. The 1-variable products
/

series:

Cn−1(x) :=
n−1∏
i=1

1− xi

1− 2xi

n−1∏
i=2

( 1− xi−1

1− 2xi−1 + xi

)n−i
=

∞∑
h=0

Cn−1
h xh,

Ĉn−1(x) :=
n−1∏
i=1

1− xi

1− 2xi

n−1∏
i=2

( 1− xi−1

1− 2xi−1 − xi
)n−1

=
∞∑
h=0

Ĉn−i
h xh,

have coefficients satisfying the inequalities:∣∣Cn−1
h

∣∣ 6 Ĉn−1
h (∀h> 0). �

7. Positivity of diagonal sums coefficients Cn−1
h

Now, study the power series C(w2, . . . , wn) along the diagonal:{
w2 = · · · = wn =: x

}
,

that is to say, introduce:

Cn−1(x) := C
(
x, . . . , x

)
=

∞∑
k2=0

· · ·
∞∑

kn=0

Ck2,...,kn x
k2 · · ·xkn

=
∞∑
h=0

Å ∑
k2+···+kn=h

Ck2,...,kn

ã
xh

=:
∞∑
h=0

Cn−1
h xh,

in terms of certain integer coefficients Cn−1
h ∈ Z. In fact, coming back to the product

expression of C(w2, . . . , wn), we realize that in:

Cn−1(x) =
1− x

1− 2x

1− x2

1− 2x2
· · · · · · 1− xn−1

1− 2xn−1

1− x
1− 2x◦

· · · · · · 1− xn−2

1− 2xn−2
◦

. . . ...
1− x

1− 2x◦
1− 2x◦

1− 2x+ x2
· · ·

1− 2xn−2
◦

1− 2xn−2 + xn−1

. . . ...
1− 2x◦

1− 2x+ x2
,



7. POSITIVITY OF DIAGONAL SUMS COEFFICIENTS Cn−1
h 55

some simplifications indicated by underlinings conduct us to:

Cn−1(x) =
1− x

1− 2x

1− x2

1− 2x2

1− x3

1− 2x3
· · · · · · · · · · · · · · · · · · 1− xn−1

1− 2xn−1Å
1− x

1− 2x+ x2

ãn−2Å
1− x2

1− 2x2 + x3

ãn−3

· · · · · ·
Å

1− xn−2

1− 2xn−2 + xn−1

ã1

.

Furthermore, on the second line, the first fraction to the power (·)n−2 trivially simplifies
as:

1− x
(1− x)2

=
1

1− x
,

whence:

Cn−1(x) =
1− x

1− 2x

1− x2

1− 2x2

1− x3

1− 2x3
· · · · · · · · · · · · · · · · · · 1− xn−1

1− 2xn−1Å
1

1− x

ãn−2Å
1− x2

1− 2x2 + x3

ãn−3

· · · · · ·
Å

1− xn−2

1− 2xn−2 + xn−1

ã1

.

Let us focus on the second line, which we now call:

P n−1(x) :=

Å
1

1− x

ãn−2Å
1− x2

1− 2x2 + x3

ãn−3

· · · · · ·
Å

1− xn−2

1− 2xn−2 + xn−1

ã1

=:
∞∑
h=0

P n−1
h xh.

We believe that all the coefficients of the full product Cn−1(x) are positive, but a restricted
statement will be enough for our purposes.

LEMMA 7.1. For all indices h in the range:

0 6 h 6 b
√
nc

one has:
P n−1
h > 1,

Cn−1
h > 2h.

PROOF. First, we make the following transformation for each term in the product
P n−1(x): Å

1− xk

1− 2xk + xk+1

ãn−k−1

=

Å
1− xk

1− xk − (xk − xk+1)

ãn−k−1

=

Å
1

1− xk−xk+1

1−xk

ãn−k−1

=

Å
1

1− xk

1+x+···+xk−1

ãn−k−1

(16 k6n−2).

Using the expansion and factorization:

1

1− T
=
(

1 + T
) ∞∑

i=0

T 2i =
(

1 + T
)(

1 + T 2 + T 4 + T 6 + · · ·
)
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and substituting T = xk

1+x+···+xk−1 gives us:Å
1

1− xk

1+x+···+xk−1

ã1

=

Å
1 +

xk

1 + x+ · · ·+ xk−1

ãÅ ∞∑
i=0

( xk

1 + x+ · · ·+ xk−1

)2i
ã

=

Å
1 + x+ · · ·+ xk

1 + x+ · · ·+ xk−1

ãÅ ∞∑
i=0

( xk

1 + x+ · · ·+ xk−1

)2i
ã
.

We then put together these expansions of terms in the product P n−1(x) to obtain:

P n−1(x) =
(

1 + x
)n−2(

1 + x2 + x4 + x6 + · · ·
)n−2

.

Å
1 + x+ x2

1 + x

ãn−3Å
1 +

( x2

1 + x

)2

+
( x2

1 + x

)4

+ · · ·
ãn−3

· · · · · · · · ·

.

Å
1 + x+ · · ·+ xk−1 + xk

1 + x+ · · ·+ xk−1

ãn−k−1Å ∞∑
i=0

( xk

1 + x+ · · ·+ xk−1

)2i
ãn−k−1

· · · · · · · · ·

.

Å
1 + x+ · · ·+ xn−3 + xn−2

1 + x+ · · ·+ xn−3

ã1Å
1 +

( xn−2

1 + x+ · · ·+ xn−3

)2

+ · · ·
ã1

.

Notice that the product of the first terms in all lines admits simplification as follows:

(
1 + x

)n−2
Å

1 + x+ x2

1 + x

ãn−3

· · ·
Å

1 + · · ·+ xk−1 + xk

1 + · · ·+ xk−1

ãn−k−1

· · ·
Å

1 + · · ·+ xn−3 + xn−2

1 + · · ·+ xn−3

ã1

= (1 + x)(1 + x+ x2) · · · (1 + x+ · · ·+ xk) · · · (1 + x+ · · ·+ xn−2),

while the other terms can be expanded using

( ∞∑
i=0

T 2i
)m

=
(

1 + T 2 + T 4 + · · ·+ T 2j + · · ·
)m

=
∞∑
j=0

Ç
m+ j − 1

j

å
T 2j

= 1 +

Ç
m

1

å
T 2 +

Ç
m+ 1

2

å
T 4 + · · ·+

Ç
m+ j − 1

j

å
T 2j + · · · .
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The expansion of P n−1(x) now becomes

P n−1(x) =
(

1 + x
)(

1 + x+ x2
)
· · ·
(

1 + x+ · · ·+ xk
)
· · ·
(

1 + x+ · · ·+ xn−2
)

.

Å
1 +

Ç
n− 2

1

å
x2 +

Ç
n− 1

2

å
x4 +

Ç
n

3

å
x6 + · · ·

ã
.

Å
1 +

Ç
n− 3

1

å( x2

1 + x

)2

+

Ç
n− 2

2

å( x2

1 + x

)4

+ · · ·
ã

· · · · · · · · ·

.

Å ∞∑
i=0

Ç
n− k − 1 + i− 1

i

å( xk

1 + x+ · · ·+ xk−1

)2i
ã

· · · · · · · · ·

.

Å
1 +

( xn−2

1 + x+ · · ·+ xn−3

)2

+
( xn−2

1 + x+ · · ·+ xn−3

)4

+ · · ·
ã
.

Since we are only interested in the coefficients P n−1
h with 0 6 h 6 b

√
nc, we will ig-

nore the terms
(

xk

1+x+···+xk−1

)2i with k · 2i > n, i.e. with i > n
2k

. The first b
√
nc coefficients

in the power series expansion of P n−1(x) are the same as those of(
1 + x

)(
1 + x+ x2

)
· · ·
(

1 + x+ · · ·+ xk
)
· · ·
(

1 + x+ · · ·+ xn−2
)

.

Å
1 +

Ç
n− 2

1

å
x2 +

Ç
n− 1

2

å
x4 + · · ·+

Ç
n− 2 + b

√
n

2
c − 1

b
√
n

2
c

å
x2b

√
n
2
c
ã

.

Å
1 +

Ç
n− 3

1

å( x2

1 + x

)2

+ · · ·+
Ç
n− 3 + b

√
n

4
c − 1

b
√
n

4
c

å( x2

1 + x

)2b
√
n
4
c
ã

· · · · · · · · ·

.

Å
1 + · · ·+

Ç
n− k − 1 + b

√
n

2k
c − 1

b
√
n

2k
c

å( xk

1 + x+ · · ·+ xk−1

)2b
√
n

2k
c
ã

· · · · · · · · ·

.

Å
1 +

Ç
n− b

√
n

2
c − 1

1

å( xb
√
n
2
c

1 + x+ · · ·+ xb
√
n
2
c−1

)2
ã
.

Now it is clear that in order to show the positivity of P n−1
h for all 0 6 h 6 b

√
nc, it

suffices to prove that the product(
1 + x

)2b
√
n
4
c(

1 + x+ x2
)2b

√
n
6
c
· · ·
(

1 + x+ · · ·+ xb
√
n
2
c−1
)2

is divisible by(
1 + x

)(
1 + x+ x2

)
· · ·
(

1 + x+ · · ·+ xk
)
· · ·
(

1 + x+ · · ·+ xn−2
)
,

and at the same time that the quotient also has nonnegative coefficients.
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Note that for any j > 0, one has

1 + x+ · · ·+ xkj+k−1 =
(

1 + x+ · · ·+ xk−1
)(

1 + xk + x2k + · · ·+ xkj
)
,

that is 1 + x + · · · + xk−1 is divisible by 1 + x + · · · + xkj+k−1 with quotient having
nonnegative coefficients.

Now, we divide the set of indices
{

1, 2, . . . , (b
√
nc)2 − 1

}
into b

√
nc disjoint sets:{

b
√
ncj + 1, b

√
ncj + 2, . . . , b

√
ncj + b

√
nc
}

for j = 0, 1, . . . , b
√
nc − 1. Then, for each index k, the number of integers of the form

kj + k − 1 in the interval
{
b
√
nck + 1, b

√
nck + 2, . . . , b

√
nck + b

√
nc
}

is at least b
√
nc
k

.

Since 2b
√
n

2k
c 6 b

√
nc
k

, the polynomial
(

1 + x+ · · ·+ xk−1
)2b

√
n

2k
c

is divisible by

b
√
nc(k+1)∏

i=b
√
nck+1

(
1 + x+ · · ·+ xi

)
,

with quotient having nonnegative coefficients. Taking in account all the values of k =

1, 2, . . . , b
√
n

2
c − 1 , and making the product of all the b

√
n

2
c − 1 terms gives us the desired

divisibility.
At this point, notice further that the set

{
1, 2, . . . , b

√
nc
}
, corresponding to k = 0,

has not been used in obtaining the above divisibility. Thus, the first b
√
nc coefficients of

P n−1(x) are those of the product between(
1 + x

)(
1 + x+ x2

)
· · ·
(

1 + x+ · · ·+ xb
√
nc
)

and a power series having constant coefficient 1 and the first b
√
nc coefficients nonnegative.

This clearly implies the positivity of P n−1
h for all 0 6 h 6 b

√
nc.

For the first b
√
nc coefficients in the power series expansion of Cn−1(x), it is enough to

consider the product Å
1− x
1− 2x

ã
P n−1(x),

since all the remaining terms in the product Cn−1(x) have power series expansions with
nonnegative coefficients and constant coefficient 1. Now using the expansion

1− x
1− 2x

= 1 +
∞∑
i=1

2i−1xi,

we get

Cn−1
h = P n−1

h +
h∑
i=1

2i−1P n−1
h−i .

Since we have already showed that P n−1
h > 1 for all 0 6 h 6 b

√
nc , it follows that

Cn−1
h > 1 +

h∑
i=1

2i−1 = 2h
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for all 0 6 h 6 b
√
nc. This finishes our proof of the lemma. �

8. Cauchy inequalities

Next, we will set up a useful (and trivial) version of the Cauchy inequalities for power
series having nonnegative coefficients. We start by determining the radius of convergence
R > 0 of Cn−1(x) and the one R̂ > 0 of Ĉn−1(x), where, from Lemma 6.4:

Cn−1(x) :=
n−1∏
i=1

1− xi

1− 2xi

n−1∏
i=2

( 1− xi−1

1− 2xi−1 + xi

)n−i
,

Ĉn−1(x) :=
n−1∏
i=1

1− xi

1− 2xi

n−1∏
i=2

( 1− xi−1

1− 2xi−1 − xi
)n−1

,

LEMMA 8.1. The smallest moduli of poles of the two rational functions Cn−1(x) and
Ĉn−1(x) are:

R := 1
2

= 0.5 and R̂ :=
√

2− 1 ≈ 0.414 · · · .

PROOF. The moduli of the roots of the denominator of the first product
∏

16i6n−1
∗

1−2xi

appearing in Cn−1(x) are 1
2
, 1

2√2
, 1

3√2
, . . . , 1

n−1√2
, and the smallest among them is 1

2
. But

then in the disc
{
x ∈ C : |x| < 1

2

}
, we assert that all denominators in the second product

constituting Cn−1(x) are nowhere vanishing. Indeed, as already observed above, taking
account of the simplification for i = 2:

1− x2−1

1− 2x2−1 + x2
=

1

1− x
,

this second product writes as:( 1

1− x

)n−2
n−1∏
i=3

( ∗
1− 2xi−1 + xi

)n−i
.

Then the root 1 is certainly > 1
2
, while the subsequent denominators for 3 6 i 6 n are

nonvanishing when |x| 6 1
2
, because:∣∣1− 2xi−1 + xi

∣∣ > 1− 2 |x|i−1 − |x|i

> 1− 2
(

1
2

)i−1 −
(

1
2

)i
> 1− 2

(
1
2

)2 −
(

1
2

)3
= 3

8
> 0.

On the other hand, while the first product constituting Ĉn−1(x) is exactly the same, such
a simplification in the second product does not occur, and in fact, in:( ∗

1− 2x− x2

)n−2
n−1∏
i=3

( ∗
1− 2xi−1 − xi

)n−i
,

the same minoration for 3 6 i 6 n− 1 applies:∣∣1− 2xi−1 − xi
∣∣ > 1− 2 |x|i−1 − |x|i > 3

8
,

whereas the positive root
√

2− 1 of 1− 2x− x2 = 0 is smaller than 1
2
, and the other root

−1−
√

2 has (much) larger modulus. �
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Let therefore 0 < ρ <
√

2−1 be any radius in these convergence discs. A trivial version
of the Cauchy inequalities for power series having nonnegative coefficients is as follows.
From:

Ĉn−1(ρ) =
∞∑
h=0

Ĉn−1
h ρh,

it comes for any h ∈ N fixed, since all terms are > 0:

Ĉn−1(ρ) > Ĉn−1
h ρh.

Soon, we will take ρ = ρ(n)
>−→

n→∞
0, in fact:

ρ :=
1√
n

(later).

OBSERVATION 8.2. For any 0 < ρ <
√

2− 1 and every h ∈ N:

Ĉh 6
1

ρh
Ĉ(ρ). �

Section 11 provides an exploration of the way moduli of the elementary constituents
1−xk

1−2xk
and 1−x`

1−2x`−x`+1 vary with drastic oscillations on circles {|x| = ρ}.
Thanks to these basic Cauchy inequalities, we can now start to control the growth of

Ĉn−1(ρ).

9. Estimations of Ĉ(1
r
) and of C(1

r
)

At first, we reorganize Ĉn−1(x) from Lemma 6.4, writing its second product up to i = n
included instead of i = n− 1, using (∗)n−n = 1:

Ĉn−1(x) =
n−1∏
i=1

1− xi

1− 2xi

n∏
i=2

( 1− xi−1

1− 2xi−1 − xi
)n−i

=
n−1∏
i=1

1

1− 2xi︸ ︷︷ ︸
i=: k

n−1∏
i=1

(
1− xi

)
︸ ︷︷ ︸

i=: k

n∏
i=2

(
1− xi−1

)n−i
︸ ︷︷ ︸

i=: k+1

n∏
i=2

1

(1− 2xi−1 − xi)n−i︸ ︷︷ ︸
i=: k+1

=
n−1∏
k=1

1

1− 2xk

n−1∏
k=1

(
1− xk

)1
n−1∏
k=1

(
1− xk

)n−k−1
n−1∏
k=1

1

(1− 2xk − xk+1)n−k−1

=
n−1∏
k=1

1

1− 2xk

n−1∏
k=1

(
1− xk

)n−k n−1∏
k=1

1

(1− 2xk − xk+1)n−k−1
.

In order to set up a general statement, we will take:

x :=
1

r
,

with r = r(n) −→
n→∞

∞, always with 0 < 1
r
<
√

2− 1. In fact, to fix ideas, we shall assume
at least r > 10.

LEMMA 9.1. One has:
Ĉ
(

1
r

)
6 e

n
r

+12 n
r2 .
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PROOF. Take logarithm:

log Ĉ
(

1
r

)
=

n−1∑
k=1

Å
− log

(
1− 2

rk

)
+ (n− k) log

(
1− 1

rk

)
− (n− k − 1) log

(
1− 2

rk
− 1

rk+1

)ã
= − log

(
1− 2

r

)
+ (n− 1) log

(
1− 1

r

)
− (n− 2) log

(
1− 2

r
− 1

r2

)
−

− log
(

1− 2

r2

)
+ (n− 2) log

(
1− 1

r2

)
− (n− 3) log

(
1− 2

r2
− 1

r3

)
+

+
n−1∑
k=3

ß
− log

(
1− 2

rk

)
+ (n− k) log

(
1− 1

rk

)
− (n− k − 1) log

(
1− 2

rk
− 1

rk+1

)™
.

Now, employ the majorations valuable for 0 6 δ 6 0.5:

log
(
1− δ

)
6 − δ − 1

2
δ2,

− log
(
1− ε

)
6 ε+ ε2,

to get using the assumption r > 10:

log Ĉ
(

1
r

)
6

2

r
+

4

r2
+ (n− 1)

ï
− 1

r
− 1

2

1

r2

ò
+ (n− 2)

ï(2

r
+

1

r2

)
+
(2

r
+

1

r2

)2

︸ ︷︷ ︸
6 5
r2

ò
+

+
2

r2
+

4

r4︸ ︷︷ ︸
6 3
r2

+(n− 2)

ï
− 1

r2
−1

2

1

r4︸ ︷︷ ︸
< 0

ò
+ (n− 3)

ï( 2

r2
+

1

r3

)
+
( 2

r2
+

1

r3

)2

︸ ︷︷ ︸
6 4
r2

ò
+

+
n−1∑
k=3

ß
2

rk
+

4

r2k︸ ︷︷ ︸
6 3

rk

+ (n− k) log
(

1− 1

rk

)
︸ ︷︷ ︸

< 0

+(n− k − 1)

ï( 2

rk
+

1

rk+1

)
+
( 2

rk
+

1

rk+1

)2

︸ ︷︷ ︸
6 3

rk

ò™
6

1

r

[
2− n+ 1 + 2n− 4

]
+

1

r2

[
4− n

2
+ 1

2
+ n− 2 + 5n− 10 + 3− n+ 2 + 0 + 4n− 12

]
+

n−1∑
k=3

3

rk
[
1 + 0 + n− k − 1

]
6

1

r

[
n− 1

]
+

1

r2

[
17
2
n− 29

2

]
+

+
3

r3

1

1− 1
r

[
n
]

6
n

r
+ 9

n

r2
+ 3

n

r2
. �

Similarly to the expression:

Ĉ(x) =
n−1∏
k=1

1

1− 2xk

n−1∏
k=1

(
1− xk

)n−k n−1∏
k=1

1

(1− 2xk − xk+1)n−k−1
,
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we obtain by simply changing the last sign − to the sign + in the denominator of the third
product:

C(x) =
n−1∏
k=1

1

1− 2xk

n−1∏
k=1

(
1− xk

)n−k n−1∏
k=1

1

(1− 2xk + xk+1)n−k−1
.

LEMMA 9.2. One has:
Ĉ
(

1
r

)
C
(

1
r

) 6 e 17 n
r2 .

PROOF. This quotient writes as:

Ĉ
(

1
r

)
C
(

1
r

) =
n−2∏
k=1

(
1− 2 1

rk
+ 1

rk+1

1− 2 1
rk
− 1

rk+1

)n−k−1

,

since the terms for k = n− 1 drop. Take logarithm and use the above majorations:

log
Ĉ
(

1
r

)
C
(

1
r

) =
n−2∑
k=1

(
n− k − 1

) ï
log
(

1−
( 2

rk
− 1

rk+1

))
− log

(
1−

( 2

rk
+

1

rk+1

))ò
= (n− 2)

ï
log
(

1−
(2

r
− 1

r2

))
− log

(
1−

(2

r
+

1

r2

))ò
+

+ (n− 3)

ï
log
(

1−
( 2

r2
− 1

r3

))
− log

(
1−

( 2

r2
+

1

r3

))ò
+

+
n−2∑
k=3

(
n− k − 1

) ï
log
(

1−
( 2

rk
− 1

rk+1

))
︸ ︷︷ ︸

< 0

−log
(

1−
( 2

rk
+

1

rk+1

))ò
6
(
n− 2

) ï
−
(2

r ◦
− 1

r2

)
− 1

2

(2

r
− 1

r2

)2

︸ ︷︷ ︸
< 0

+
(2

r ◦
+

1

r2

)
+
(2

r
+

1

r2

)2

︸ ︷︷ ︸
6 5
r2

ò
+

+
(
n− 3

) ï
−
( 2

r2
− 1

r3

)
︸ ︷︷ ︸

< 0

−1

2

( 2

r2
− 1

r3

)2

︸ ︷︷ ︸
< 0

+
( 2

r2
+

1

r3

)
+
( 2

r2
+

1

r3

)2

︸ ︷︷ ︸
6 4
r2

ò
+

[ε+ ε2 6 2 ε] +
n−2∑
k=3

(
n− k − 1

) ï
0 + 2

( 2

rk
+

1

rk+1︸ ︷︷ ︸
6 3

rk

)ò
,

and notice, importantly, that the 1
r
-terms disappear, so that at the end:

log
Ĉ
(

1
r

)
C
(

1
r

) 6 (n− 2
) [ 7

r2

]
+
(
n− 3

) [ 4

r2

]
+ 6n

∞∑
k=3

1

rk

6 11n
1

r2
+ 6n

1

r2

1

r − 1
. �

Lastly, making the choice:
r :=

√
n a(n),
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with a function a(n) −→
n→∞

∞ tending slowly to infinity — think a(n) := log logn — and

satisfying at least a(n)� nε for any ε > 0, we want to minorize:

CR∞ := C
(

1
r

)
= C

(
1√

na(n)

)
.

LEMMA 9.3. One has:

C
(

1√
na(n)

)
> e

1
2

√
n

a(n) −→
n→∞

∞.

PROOF. Take logarithm:

logC
(

1
r

)
=

n−1∑
k=1

Å
− log

(
1− 2

rk

)
+
(
n− k

)
log
(

1− 1

rk

)
−
(
n− k − 1

)
log
(

1−
( 2

rk
− 1

rk+1

))ã
= − log

(
1− 2

r

)
+
(
n− 1

)
log
(

1− 1

r

)
−
(
n− 2

)
log
(

1−
(2

r
− 1

r2

))
−

− log
(

1− 2

r2

)
+
(
n− 2

)
log
(

1− 1

r2

)
−
(
n− 3

)
log
(

1−
( 2

r2
− 1

r3

))
+

+
n−1∑
k=3

ß
− log

(
1− 2

rk

)
+
(
n− k

)
log
(

1− 1

rk

)
−
(
n− 1− k

)
log
(

1−
( 2

rk
− 1

rk+1

))™
,

use the minorations:
− log

(
1− ε

)
> ε,

log
(
1− δ

)
> − δ − δ2,

to get:

logC
(

1
r

)
>

2

r
+
(
n− 1

) ï
− 1

r
− 1

r2

ò
+
(
n− 2

) ï2

r
− 1

r2

ò
+

+
2

r2
+
(
n− 2

) ï
− 1

r2
− 1

r4︸ ︷︷ ︸
>− 2

r2

ò
+
(
n− 3

) ï 2

r2
− 1

r3︸ ︷︷ ︸
> 1
r2

ò
+

+
n−1∑
k=3

ß
2

rk
+
(
n− k

) ï
− 1

rk
− 1

r2k︸ ︷︷ ︸
>− 2

rk

ò
+
(
n− k − 1

) ï 2

rk
− 1

rk+1︸ ︷︷ ︸
> 1

rk

ò™
>

1

r

[
2− n+ 1 + 2n− 4

]
+

1

r2

[
− n+ 1− n+ 2 + 2− 2n+ 4 + n− 3

]
+

+
n−1∑
k=3

1

rk
[
2− 2n+ 2 k + n− k − 1

]
=

1

r

[
n− 1

]
+

1

r2

[
− 3n+ 6

]
+

n−1∑
k=3

1

rk
[
−n+ k + 1︸ ︷︷ ︸
>−n+1

]
>
(
n− 1

) ï1

r
− 3

r2
−
∞∑
k=3

1

rk

ò
>
(
n− 1

) ï1

r
− 4

r2

ò
.
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Lastly, again with a(n)� nε:

logC

Å
1√

n a(n)

ã
>

n− 1√
n a(n)

− 4n− 4

n a(n)2︸ ︷︷ ︸
>−4

>
1

2

√
n

a(n)
. �

10. Final minorations

As explained at the end of Section 4, with a suitable choice of r, the goal is to show:

1
?
6

∑
06k26n
06k36n+k2
·····················
06kn−16n+kn−2
06 kn 6n+kn−1

Ck2,k3,...,kn−1,knMk2,k3,...,kn−1,kn

1

rk2+k3+···+kn−1+kn

=: CMR.

Abbreviate this domain range as:

∠� :=
{(
k2, k3, . . . , kn−1, kn

)
∈ Nn : 0 6 k2 6 n,

0 6 k3 6 n+ k2,

· · · · · · · · · · · · · · · · · ·
0 6 kn−1 6 n+ kn−2,

0 6 kn 6 n+ kn−1

}
.

Observe that: {
k2 + k3 + · · ·+ kn−1 + kn 6 n

}
⊂ ∠�,

hence a fortiori with a function c(n) −→
n→∞

∞ tending slowly to infinity to be chosen later:{
k2 + k3 + · · ·+ kn−1 + kn 6

√
n

c(n)

}
⊂ ∠�.

Introduce:

CMRT :=
∑

k2+···+kn6
√
n

c(n)

Ck2,...,knMk2,...,kn

1

rk2+···+kn
,

the letter ‘T’ standing for ‘Truncated’, with the Remainder:

CMR− CMRT =
∑

(k2,...,kn)∈∠�

k2+···+kn>1+
√
n

c(n)

Ck2,...,knMk2,...,kn

1

rk2+···+kn

=: CMRR.
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Along with these quantities, introduce also:

CMR+
T :=

∑
k2+···+kn6

√
n

c(n)
Ck2,...,kn

>0

Ck2,...,knMk2,...,kn

1

rk2+···+kn
(>0),

CMR−T :=
∑

k2+···+kn6
√
n

c(n)
Ck2,...,kn

<0

(
− Ck2,...,kn

)
Mk2,...,kn

1

rk2+···+kn
(>0),

two nonnegative quantities which decompose:

CMRT = CMR+
T − CMR−T .

In addition, without the multinomial-quotient coefficients, introduce:

CR :=
∑

(k2,...,kn)∈∠�

Ck2,...,kn · 1 ·
1

rk2+···+kn
,

CRT :=
∑

k2+···+kn6
√
n

c(n)

Ck2,...,kn · 1 ·
1

rk2+···+kn
,

CRR :=
∑

(k2,...,kn)∈∠�

k2+···+kn>1+
√
n

c(n)

Ck2,...,kn · 1 ·
1

rk2+···+kn
,

and similarly also:

CR+
T :=

∑
k2+···+kn6

√
n

c(n)
Ck2,...,kn

>0

Ck2,...,kn · 1 ·
1

rk2+···+kn
(> 0),

CR−T :=
∑

k2+···+kn6
√
n

c(n)
Ck2,...,kn

<0

(
− Ck2,...,kn

)
· 1 · 1

rk2+···+kn
(> 0).

Recall that we are choosing:

r(n) =
√
n a(n),

and we now endeavor to find a condition guaranteeing that the remainder
∣∣CMRR

∣∣ be small
in absolute value.

To this aim, choose in the Cauchy inequalities ρ := 1√
n

, apply Lemma 9.1:

Ĉ
(

1√
n

)
6 e12 e

√
n,

so that Observation 8.2 gives:

Ĉh 6
1(
1√
n

)h e12 e
√
n

(∀h> 0).
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Now, majorize the remainder:∣∣CMRR

∣∣ =

∣∣∣∣∣ ∑
(k2,...,kn)∈∠�

k2+···+kn>1+
√
n

c(n)

Ck2,...,knMk2,...,kn

1

rk2+···+kn

∣∣∣∣∣
6

∑
(k2,...,kn)∈∠�

k2+···+kn>1+
√
n

c(n)

∣∣Ck2,...,kn∣∣ · 1 · 1

rk2+···+kn

6
∑

k2+···+kn>1+
√
n

c(n)

∣∣Ck2,...,kn∣∣ 1

rk2+···+kn

6
∑

k2+···+kn>1+
√
n

c(n)

Ĉk2,...,kn
1

rk2+···+kn

=
∞∑

h=1+
√
n

c(n)

1

rh

∑
k2+···+kn=h

Ĉk2,...,kn

=
∞∑

h=1+
√
n

c(n)

1

rh
Ĉh,

and hence, thanks to what precedes:∣∣CMRR

∣∣ 6 ∞∑
h=1+

√
n

c(n)

1

rh
1(
1√
n

)h e12 e
√
n

= e12 e
√
n

∞∑
h=1+

√
n

c(n)

1(√
n
◦
a(n) 1√

n
◦

)h
= e12 e

√
n 1(
a(n)

)1+
√
n

c(n)

∞∑
h=0

( 1

a(n)

)h
= e12 e

√
n e−

(
1+
√
n

c(n)

)
log a(n) 1

1− 1
a(n)︸ ︷︷ ︸

6 2

6 2 e12 e−log a(n) e
√
n
[

1− log a(n)
c(n)

]
.

In order to insure that the right-hand side is small, since e−log a(n) −→
n→∞

0, it suffices to
choose:

c(n) := log a(n) −→
n→∞

∞,

to obtain: ∣∣CMRR

∣∣ 6 2 e12 e−log a(n) −→
n→∞

0.
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LEMMA 10.1. With c(n) = log a(n), it holds:

∣∣CMRR

∣∣ 6 ∑
k2+···+kn>1+

√
n

c(n)

Ĉk2,...,kn
1

rk2+···+kn

6 2 e12 e−log a(n). �

Further, it is now necessary to estimate the size of the first terms CMRT, and to show
that they are large. It will be useful that:

√
n

log a(n)
= o

(√
n
)

(n−→∞).

Introduce the quantities:

CR∞ :=
∑

k2,...,kn>0

Ck2,...,kn
1

rk2+···+kn
= Cn−1

(
1
r

)
,

CR+
∞ :=

∑
k2,...,kn>0
Ck2,...,kn>0

Ck2,...,kn
1

rk2+···+kn
,

CR−∞ :=
∑

k2,...,kn>0
Ck2,...,kn<0

(
− Ck2,...,kn

) 1

rk2+···+kn
,

ĈR∞ :=
∑

k2,...,kn>0

Ĉk2,...,kn
1

rk2+···+kn
= Ĉn−1

(
1
r

)
,

for which it is clear that:

CR+
∞ + CR−∞ 6 ĈR∞.

By Lemma 9.2:

ĈR∞
CR∞

6 e
17

a(n)2 ,

and next:

CR+
∞ + CR−∞ 6 ĈR∞ 6 e

17
a(n)2 CR∞ = e

17
a(n)2

(
CR+

∞ − CR−∞
)
,

from which it comes:

CR−∞
(

1 + e
17

a(n)2︸ ︷︷ ︸
> 2

)
6
(
e

17
a(n)2 − 1

)
CR+

∞,

whence:

CR−∞ 6 1
2

(
e

17
a(n)2 − 1

)
CR+

∞.(10.2)



68 1

Next, we want to minorize CMRT in order to show it is large:

CMRT = CMR+
T − CMR−T

=
∑

k2+···+kn6
√
n

c(n)
Ck2,...,kn

>0

Ck2,...,knMk2,...,kn

1

rk2+···+kn
−

−
∑

k2+···+kn6
√
n

c(n)
Ck2,...,kn

<0

(
− Ck2,...,kn

)
Mk2,...,kn

1

rk2+···+kn

[Proposition 5.4] >
∑

k2+···+kn6
√
n

c(n)
Ck2,...,kn

>0

Ck2,...,kn e
− 2
c(n)2

1

rk2+···+kn
−

[Lemma 5.1] −
∑

k2+···+kn6
√
n

c(n)
Ck2,...,kn

<0

(
− Ck2,...,kn

)
· 1 · 1

rk2+···+kn

= e
− 2
c(n)2 CR+

T − CR−T ,

but we yet need to compare these to the quantities CR±∞. Hence we estimate:∣∣CR+
∞ − CR+

T

∣∣ = CR+
∞ − CR+

T =
∑

k2+···+kn>1+
√
n

c(n)
Ck2,...,kn>0

Ck2,...,kn
1

rk2+···+kn

6
∑

k2+···+kn>1+
√
n

c(n)

Ĉk2,...,kn
1

rk2+···+kn

6 2 e12 e−log a(n)

and more simply:
−CR−T > −CR−∞,

since:
0 6 CR−∞ − CR−T =

∑
k2+···+kn>1+

√
n

c(n)
Ck2,...,kn<0

(
− Ck2,...,kn

) 1

rk2+···+kn
.

Thanks to all this:

CMRT > e
− 2
c(n)2 CR+

T − CR−T
> e

− 2
c(n)2

[
CR+

∞ − 2 e12 e−log a(n)
]
− CR−∞

hence applying the minoration (10.2) for −CR−∞:

CMRT > e
− 2
c(n)2

[
CR+

∞ − 2 e12 e−log a(n)
]
− 1

2

(
e

17
a(n)2 − 1

)
CR+

∞

= CR+
∞

[
e
− 2

(log a(n))2︸ ︷︷ ︸
−→
n→∞

1

−1
2

(
e

17
a(n)2 − 1︸ ︷︷ ︸
−→
n→∞

0

)]
− 2 e12 e−log a(n) e

− 2
(log a(n))2︸ ︷︷ ︸

−→
n→∞

0

.
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Since trivially:

CR+
∞ = CR∞ + CR−∞
> CR∞,

it comes:

CMRT > CR∞
[
e
− 2

(log a(n))2 − 1
2

(
e

17
a(n)2 − 1

)]
− 2 e12 e−log a(n) e

− 2
(log a(n))2 ,

whence using Lemma 9.3:

CMRT > e
1
2

√
n

a(n)

[
e
− 2

(log a(n))2 − 1
2

(
e

17
a(n)2 − 1

)]
− 2 e12 e−log a(n) e

− 2
(log a(n))2 .

Coming back to:

CMR > CMRT −
∣∣CMRR

∣∣
> CMRT − 2 e12 e−log a(n) e

− 2
(log a(n))2 ,

we obtain finally:

CMR > e
1
2

√
n

a(n)

[
e
− 2

(log a(n))2 − 1
2

(
e

17
a(n)2 − 1

)]
− 2 e12 e−log a(n)

(
1 + e

− 2
(log a(n))2

)
.

This minorant is > 1 for all n� N large enough.

PROOF OF THEOREM 1.1. Choose — think integer value —:

r :=
√
n

log n

2
.

Proposition 3.1 concludes for Xn−1 ⊂ Pn of degree at least:

dGG(n) :=
(√

n
log n

2
+ 3
)n

25n2

=
(√

n logn
)n 1

2n

Å
1 +

6√
n log n

ãn
25n2

=
(√

n logn
)n

e−n log 2 e
n log
(

1+ 6√
n logn

)
25n2

6
(√

n logn
)n

e−n log 2+ 6
√
n

logn 25n2︸ ︷︷ ︸
< 1 when n> NGG

. �
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PROOF OF THEOREM 1.2. Thanks to [114], Proposition 3.1 concludes for Xn−1 ⊂ Pn
of degree at least:

dK(n) :=

Å√
2n

log log (2n)

2
+ 3

ã2n

25
(
2n
)2

=

Å√
n√
2

log log (2n)

ã2n Å
1 +

3
√

2√
n log log (2n)

ã2n

100n2

=
(
n logn

)n (log log (2n)
)2n(

log n
)n 1

√
2

2n

Å
1 +

3
√

2√
n log log (2n)

ã2n

100n2

=
(
n logn

)n
e

2n log log log (2n)−n log logn−n log 2+2n log
(

1+ 3
√
2√

n log log (2n)

)
100n2

6
(
n logn

)n
e 2n log log log (2n)−n log logn−n log 2+ 2

√
n 3
√
2

log log (2n) 100n2︸ ︷︷ ︸
< 1 when n> NK

. �

11. Some inequalities on circles {|z| = ρ}

PROPOSITION 11.1. For every radius 0 6 ρ 6 1
4
, the functions:

Gk(z) :=
1− zk

1− 2 zk
(k> 1),

H`(z) :=
1− z`

1− 2 z` − z`+1
, (`> 1)

attain, on the circle
{
z ∈ C : |z| = ρ

}
, their maximum modulus at the real point z = ρ:

max
|z|=ρ

∣∣∣∣ 1− zk

1− 2 zk

∣∣∣∣ =
1− ρk

1− 2 ρk
(∀ k> 1),

max
|z|=ρ

∣∣∣∣ 1− z`

1− 2 z` − z`+1

∣∣∣∣ =
1− ρ`

1− 2 ρ` − ρ`+1
(∀ `> 1),

and with the choice ρ := 0.25, the graphs on the unit circle of the two quotient functions:

θ 7−→
∣∣Gk(ρ e

iθ)
∣∣

Gk(ρ)
and θ 7−→

|H`(ρ e
iθ)
∣∣

H`(ρ)
(−π6 θ6π)

show up, respectively, for the three choices k = 2, 5, 10 and the three choices ` = 2, 5, 10,
as:
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PROOF. Treat at first the Gk

(
ρ eiθ

)
with θ ∈ R, by squaring:∣∣1− ρk eikθ∣∣2∣∣1− 2 ρk eikθ
∣∣2 ?
6

(
1− ρk

)2(
1− 2 ρk

)2 (∀ θ∈R),

that is to say: (
1− ρk cos kθ

)2
+
(
− ρk sin kθ

)2(
1− 2 ρk cos kθ

)2
+
(
− 2 ρk sin kθ

)2

?
6

1− 2 ρk + ρ2k

1− 4 ρk + 4 ρ2k
,

or equivalently, after crossing/clearing the fractions:

0
?
6
(
1− 2 ρk + ρ2k

) (
1− 4 ρk cos kθ + 4 ρ2k

)
−
(
1− 4 ρk + 4 ρ2k

) (
1− 2 ρk cos kθ + ρ2k

)
= 1◦ − 4 ρk cos kθ + 4 ρ2k

◦

− 2 ρk + 8 ρ2k cos kθ◦ − 8 ρ3k

+ ρ2k

◦ − 4 ρ3k cos kθ + 4 ρ4k

◦

− 1◦ + 2 ρk cos kθ − ρ2k

◦

+ 4 ρk − 8 ρ2k cos kθ◦ + 4 ρ3k

− 4 ρ2k

◦ + 8 ρ3k cos kθ − 4 ρ4k

◦.

Visibly, 5 · 2 = 10 underlined terms annihilate by pairs:

0
?
6 2 ρk − 2 ρk cos kθ − 4 ρ3k + 4 ρ3k cos kθ

= 2 ρk
[
1− cos kθ − 2 ρ2k + 2 ρ2k cos kθ

]
,

and by luck, the obtained expression factorizes under a form which shows well that it takes
only nonnegative values because 0 6 ρ 6 0.25:

0
yes
6 2 ρk

(
1− 2 ρ2k

) (
1− cos kθ

)
(∀ k> 1, ∀ θ∈R).

Secondly, for the functions
(
H`(z)

)
`>1

, no such pleasant factorization is available. One
can then view these H`(z) as ‘perturbations’ of the G`(z), with the addition of − z`+1 at
the denominator. More precisely, starting from the desired inequality of which we take the
squared modulus: ∣∣1− ρ` ei`θ∣∣2∣∣1− 2 ρ` ei`θ − ρ`+1 ei(`+1) θ

∣∣2 ?
6

(
1− ρ`

)2(
1− 2 ρ` − ρ`+1

)2 ,



72 1

the ‘perturbing terms’ being underlined, after crossing/clearing the denominators, we are
led to establish an inequality which is a ‘perturbation’ of the one just done above:

0
?
6
(
1− 2 ρ` + ρ2`

) [(
1− 2 ρ` cos `θ − ρ`+1 cos (`+ 1)θ

)2
+
(
2 ρ` sin `θ + ρ`+1 sin (`+ 1)θ

)2
]

−
(
1− 4 ρ` + 4 ρ2` − 2 ρ`+1 + 4 ρ2`+1 + ρ2`+2

)[(
1− ρ` cos `θ

)2
+
(
ρ` sin `θ

)2
]
,

the perturbing terms being still underlined, that is to say:

0
?
6
(
1− 2 ρ` + ρ2`

) [
1− 4 ρ` cos `θ + 4 ρ2` cos2`θ + 4 ρ2` sin2`θ

− 2 ρ`+1 cos (`+ 1)θ + 4 ρ2`+1 cos `θ cos (`+ 1)θ + ρ2`+2cos2(`+ 1)θ

+ 4 ρ2`+1 sin `θ sin (`+ 1)θ + ρ2`+2 sin2(`+ 1)θ
]

−
(
1− 4 ρ` + 4 ρ2` − 2 ρ`+1 + 4 ρ2`+1 + ρ2`+2

) [
1− 2 ρ` cos `θ + ρ2` cos2`θ + ρ2` sin2`θ

]
.

Without redoing the calculation concerning the (principal, not underlined) terms, and using:

cos (`+ 1)θ cos (−`θ)− sin (`+ 1)θ sin (−`θ) = cos
(
(`+ 1− `) θ

)
,

we obtain:

0
?
6 2 ρ`

(
1− 2 ρ2`

) (
1− cos `θ

)
+
(
1− 2 ρ` + ρ2`

) [
− 2 ρ`+1 cos (`+ 1)θ + 4 ρ2`+1 cos θ + ρ2`+2

]
+
(
2 ρ`+1 − 4 ρ2`+1 − ρ2`+2

) [
1− 2 ρ` cos `θ + ρ2`

]
.

Now, organize the expansion of lines 2 and 3 in a convenient synoptic way:

− 2 ρ`+1 cos (`+ 1)θ + 4 ρ2`+1 cos θ + ρ2`+2
◦

+ 4 ρ2`+1 cos (`+ 1)θ − 8 ρ3`+1 cos θ − 2 ρ3`+2

− 2 ρ3`+1 cos (`+ 1)θ + 4 ρ4`+1 cos θ + ρ4`+2
◦

+ 2 ρ`+1 − 4 ρ2`+1 cos `θ + 2 ρ3`+1

− 4 ρ2`+1 + 8 ρ3`+1 cos `θ − 4 ρ4`+1

− ρ2`+2
◦ + 2 ρ3`+2 cos `θ − ρ4`+2

◦.

Only 4 = 2 · 2 terms annihilate by pairs, and the question is reduced to determine whether
there is nonnegativity:

0
?
6 2 ρ`

(
1− 2 ρ2`

) (
1− cos `θ

)
+ 2 ρ`+1

(
1− cos (`+ 1)θ

)
+ ρ2`+1

[
4 cos θ + 4 cos (`+ 1)θ − 4 cos `θ − 4

]
+ ρ3`+1

[
− 8 cos θ − 2 cos (`+ 1)θ + 8 cos `θ + 2

]
+ ρ3`+2

[
2 cos `θ − 2

]
+ ρ4`+1

[
4 cos θ − 4

]
=: f`,ρ(θ),
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for a certain family
(
f`,ρ
)06ρ61/4

16`
of 2π-periodic functions. Since this is trivially satisfied

when ρ = 0, we shall from now on assume that:

0 < ρ 6 1
4

= 0.25 (assumption).

For the first term of f`,ρ, since we have:

1 < 2
(
1− 2 · 0.252

)
6 2

(
1− 2 ρ2`

)
(∀ `> 1),

after division by ρ`, it would suffice to have, with certain new minorinzing functions:

g`,ρ 6 1
ρ`
f`,ρ,

the nonnegativity:

0
?
6 g`,ρ(θ)

:= 1− cos `θ + 2 ρ
(
1− cos (`+ 1)θ

)
+ ρ`+1

[
4 cos θ + 4 cos (`+ 1)θ − 4 cos `θ − 4

]
+ ρ2`+1

[
− 8 cos θ − 2 cos (`+ 1)θ + 8 cos `θ + 2

]
+ ρ2`+2

[
2 cos `θ − 2

]
+ ρ3`+1

[
4 cos θ − 4

]
.

For instance, again with the choice ρ := 0.25, the graphs on the unit circle of the
functions

θ 7−→ g`,ρ(θ) (−π6 θ6π)

show up, respectively, for the three choices ` = 2, 5, 10, as:

Since these functions g`,ρ are even, it suffices to establish their nonnegativity on [0, π].
Let us begin with examining their behavior in a right half-neighborhood of 0. Starting from:

0 = g`,ρ(0),

a positivity of the first derivatives of the g`,ρ would be welcome, at least on a small interval
like ]0, π

4`

]
.

LEMMA 11.2. For all real 0 < ρ 6 0.25 and for every integer ` > 1, one has:

g′`,ρ(θ) > 0 (∀ 0<θ6 π
4`

).

PROOF. Observe that this is true even when ρ = 0, since the function g`,0(θ) = 1 −
cos `θ has derivarive ` sin `θ > 0 on ]0, π

4`

]
. Anyway, we assume 0 < ρ 6 0.25.
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Our aim is to minorize this derivative:
g′`,ρ(θ) = ` sin `θ + 2 ρ (`+ 1) sin (`+ 1)θ

+ ρ`+1
[
− 4 sin θ − 4(`+ 1) sin (`+ 1)θ + 4` sin `θ

]
+ ρ2`+1

[
8 sin θ + 2(`+ 1) sin (`+ 1)θ − 8` sin `θ

]
+ ρ2`+2

[
− 2` sin `θ

]
+ ρ3`+1

[
− 4 sin θ

]
,

by a quantity which can be seen to be positive. However, we have to treat the special case
` = 1 separately, namely for all 0 < ρ 6 1

4
and for all 0 < θ 6 π

4
, we first check that:

g′1,ρ(θ) = sin θ + 4ρ sin 2θ + ρ2
[
− 8 sin 2θ

]
+ ρ3

[
4 sin 2θ

]
+ ρ4

[
− 6 sin θ

]
= sin θ

{
1 + 8ρ cos θ − ρ2 16 cos θ + ρ3 8 cos θ − ρ4 6

}
> sin θ

{
1◦ + 8 ρ 1√

2
− 1

42
16
◦

+ ρ3 8√
2
− ρ4 6

}
> ρ sin θ ·

{
8√
2

+ 02 8√
2
− 1

43
6
}

= ρ sin θ · 5, 563 · · ·
> 0.

So we may assume ` > 2. If we use the classical inequalities valid for ϕ ∈ [0, π]:

sinϕ > ϕ− 1
6
ϕ3 and − sinϕ > −ϕ,

we are conducted to ask ourselves whether:

g′`,ρ(θ) > `
(
`θ − 1

6
(`θ)3

)
+ 2 ρ (`+ 1)

(
(`+ 1)θ − 1

6
((`+ 1)θ)3

)
+ ρ`+1

[
− 4θ − 4(`+ 1) (`+ 1)θ + 4`

(
`θ − 1

6
(`θ)3

)]
+ ρ2`+1

[
8
(
θ − 1

6
θ3
)

+ 2 (`+ 1)
(
(`+ 1)θ − 1

6
((`+ 1)θ)3

)
− 8` `θ

]
+ ρ2`+2

[
− 2` `θ

]
+ ρ3`+1

[
− 4 θ

]
?
> 0 (∀ 0<θ6 π

4`
).

To have a better view, let us set:

t := ` θ, whence 0 < t 6 π
4
< 1,

and let us simplify this minorant by writing (`+ 1)θ = `+1
`
`θ = `+1

`
t:

g′`,ρ(θ) > ` t
(
1− 1

6
t2
)

+ 2 ρ (`+ 1) `+1
`
t
(
1− 1

6

(
`+1
`

)2
t2
)

+ ρ`+1
[
− 4

`
t− 4(`+ 1) `+1

`
t+ 4` t

(
1− 1

6
t2
)]

+ ρ2`+1
[
8 t
`

(
1− 1

6

(
t
`

)2)
+ 2 (`+ 1) `+1

`
t
(
1− 1

6

(
`+1
`

)2
t2
)
− 8` t

]
+ ρ2`+2

[
− 2` t

]
+ ρ3`+1

[
− 4

`
t
]

?
> 0 (∀ 0<θ6 π

4`
).
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In order to minorize this by an even simpler quantity, we can use, since ` > 2:

−
(
`+1
`

)2
> −

(
3
2

)2 and also − t2 > −1,

so that:

preceding minorant > ` t 5
6

+ 2 ρ (`+ 1) `+1
`
t 5

8

+ ρ`+1
[
− 2 t− 4 (`+ 1) 3

2
t+ 4 ` t 5

6

]
+ ρ2`+1

[
8 · 0 + 2 (`+ 1) 1 t 5

8
− 8 ` t

]
+ ρ2`+2

[
− 2 ` t

]
+ ρ3`+1

[
− 2 t

] ?
> 0,

and we even once more minorize this intermediate minorant by neglecting the term under-
lined and summing the expressions in brackets:

g′`,ρ(θ) > ` t 5
6

+ 0

+ ρ`+1
[
− 8 t+ 16

6
` t
]

+ ρ2`+1
[

5
4
t− 27

4
` t
]

+ ρ2`+2
[
− 2 ` t

]
+ ρ3`+1

[
− 2 t

] ?
> 0.

We conclude by a factorization and by a final computer check, still for all ` > 2:

g′`,ρ(θ) > t
{

5
6
`− ρ`+1

[
8 + 16

6
`
]
− ρ2`+1

[
5
4

+ 27
4
`
]
− ρ2`+2

[
2 `
]
− ρ3`+1

[
2
]}

> t
{

5
6
`− 0.25`+1

[
8 + 16

6
`
]
− 0.252`+1

[
5
4

+ 27
4
`
]
− 0.252`+2

[
2 `
]
− 0.253`+1

[
2
]}

> t · 1, 442 · · · . �

In summary, we have established for all ` > 1 the positivity on a starting interval:

0 < g`,ρ(θ) (∀ θ∈ ]0, π
4`

]),

and our next goal is to establish the positivity of this minoring function g`,ρ on the remaining
(large) subinterval of [0, π]:

0
?
< g`,ρ(θ) (∀ θ∈ [ π

4`
,π]).

We first finish the case ` = 1.

LEMMA 11.3. For all 0 < ρ 6 0.25, the function g1,ρ(θ) is positive on
[
π

4·1 , π].
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PROOF. Indeed:

g1,ρ(θ) = 1− cos θ + 2ρ
(
1− cos 2θ

)
+ ρ2

[
4 cos 2θ − 4

]
+ ρ3

[
− 2 cos 2θ + 2

]
+ ρ4

[
6 cos θ − 6

]
=
(
1− cos θ

) [
1− 6 ρ4

]
+
(
1− cos 2θ

) [
2ρ
(
1− 2 ρ+ ρ2

)]
>
(
1− 1√

2

) [
1− 6 · 0.254

]
+ nonnegative

= 0.286 · · ·
> 0. �

From now one, when we work on
[
π
4`
, π], we can therefore assume that:

` > 2.

LEMMA 11.4. For all 0 < ρ < 0.25 and every integer ` > 2, there is on
[
π
4`
, π] a

minoration:

0
?
< h`,ρ(θ) 6 g`,ρ(θ) 6 1

ρ`
f`,ρ(θ),

with the new:

h`,ρ(θ) := 1− cos `θ + 2ρ
(
1− cos (`+ 1)θ

)
− 18 ρ`+1.

Again with the choice ρ := 0.25, the graphs on the unit circle of the functions

θ 7−→ h`,ρ(θ) (−π6 θ6π)

show up, respectively, for the three choices ` = 2, 5, 10, as:

PROOF. Indeed, we minorize simply the reminders:

g`,ρ(θ) > 1− cos `θ + 2ρ
(
1− cos (`+ 1)θ

)
− ρ`+1

[
4 + 4 + 4 + 4

]
− ρ2`+1

[
8 + 2 + 8 + 2

]
− ρ2`+2

[
2 + 2

]
− ρ3`+1

[
4 + 4

]
,

and to even simplify the second line by replacing it by −18 ρ`+1 as announced, we assert
that:

−16 ρ`+1 − 20 ρ2`+1 − 4 ρ2`+2 − 8 ρ3`+1 > − 18 ρ`+1,
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simply since:

ρ`+1
(
1− 10 ρ` − 2 ρ`+1 − 4 ρ2`

)
> ρ`+1

(
1− 10 · 0.252 − 2 · 0.253 − 4 · 0.254

)
> ρ`+1

(
0.328 · · ·

)
> 0. �

It therefore remains to treat all the cases ` > 2. We start by looking at the subintervals[
π
4`
, 7π

4`

]
⊂
[
π
4`
, π].

LEMMA 11.5. For every real 0 < ρ 6 0.25 and every integer ` > 2:

0 < h`,ρ(θ) (∀ θ∈ [ π
4`
, 7π
4`

]).

PROOF. Since:
π
4
6 ` θ 6 7π

4

it comes:
1− cos `θ > 1− 1√

2
,

and since 1− cos (`+ 1)θ > 0 anyway, we can minorize:

h`,ρ(θ) > 1− cos `θ + 0− 18 ρ`+1

> 1− 1√
2
− 18 · 0.252+1

= 0.01164 · · · . �

We can now finish the case ` = 2. It remains to show positivity of h2,ρ(θ) on
[

7π
8
, π].

Since 21π
8
6 3 θ 6 3π, or equivalently 5π

8
6 3 θ − π 6 π, we can minorize:

h2,ρ(θ) = 1− cos 2θ + 2ρ
(
1− cos 3θ

)
− 18 ρ3

> 0 + 2ρ
[(

1− cos 5π
8

)
− 9 · 0.252

]
= 2ρ · 0.820 · · ·
> 0.

It still remains to treat all the cases ` > 3.

LEMMA 11.6. For every real 0 6 ρ 6 0.25 and every integer ` > 3, the function:

h`,ρ(θ) := 1− cos `θ + 2 ρ
(
1− cos (`+ 1)θ

)
− 18 ρ`+1

takes only positive values in the interval
[

7π
4`
, π]:

h`,ρ(θ) > 0 (∀ 7π
4`
6 θ6π).

PROOF. Using 1− cosϕ = 2 sin2 ϕ
2

, let us rewrite:

h`,ρ(θ) = 2 sin2 ` θ
2

+ 4 ρ sin2 (`+1) θ
2
− 18 ρ`+1.

At a point θ ∈
[

7π
4`
, π
]
, if we have either:

2 sin2 ` θ
2
− 18 ρ`+1 > 0 or 4 ρ sin2 (`+1) θ

2
− 18 ρ`+1 > 0,

then there is nothing to prove. We claim that the opposite inequalities cannot hold.

ASSERTION 11.7. For every ` > 3, there is no θ ∈
[

7π
4`
, π] at which:

sin2 ` θ
2
6 9 ρ`+1 and sin2 (`+1) θ

2
6 9

2
ρ`.
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PROOF. Suppose nevertheless that such a θ ∈
[

7π
4`
, π] exists. Modulo π, there exist two

unique representatives −π
2
< α, β 6 π

2
of:

` θ
2
− p π = α and (`+1) θ

2
− q π = β,

with certain unique integers p, q ∈ Z, whence:

sin2α = sin2 ` θ
2
6 9 ρ`+1 and sin2β = sin2 (`+1) θ

2
6 9

2
ρ`.

LEMMA 11.8. For all 0 6 |γ| 6 π
2
, one has the classical inequality |γ|

2
6 |sin γ| 6

|γ|. �

Consequently, using ρ1/2 6 0.251/2 = 1
2
, it comes:

|α|
2
6 |sinα| 6 3 ρ

`+1
2 6 3 1

2`+1 and |β|
2
6 |sin β| 6 3√

2
ρ
`
2 6 3√

2
1
2`
,

that is to say:
|α| 6 3 1

2`
and |β| 6 3

√
2 1

2`
.

From a chain of estimations:

3 1+
√

2
2`
> |β − α| =

∣∣ θ
2

+ (q − p) π
∣∣

>
∣∣1

2
7π
4`

+ (q − p) π
∣∣

> min
r∈Z

∣∣7π
8`
− r π

∣∣
[ 7π
8`
6 7π

64
] = 7π

8`

we obtain the inequality:
3 1+

√
2

2`
> 7π

8`
,

which is visibly false for large `, and which begins to be false when ` > 3:

3 1+
√

2
23

= 0.905 · · ·
no!
> 0.916 · · · = 7π

8·3 ,

This contradiction proves the assertion. �

The proof of Lemma 11.6 is complete. �

The proof of Proposition 11.1 is complete. �



CHAPTER 2

Rigid equivalences of 5-dimensional 2-nondegenerate rigid
real hypersurfaces M 5 ⊂ C3 of constant Levi rank 1

We study the local equivalence problem for real-analytic (C ω) hypersurfacesM5 ⊂ C3 which,
in some holomorphic coordinates (z1, z2, w) ∈ C3 with w = u+

√
−1v, are rigid in the sense that

their graphing functions:
u = F (z1, z2, z1, z2)

are independent of v. Specifically, we study the group Holrigid(M) of rigid local biholomorphic
transformations of the form:(

z1, z2, w
)
7−→

(
f1(z1, z2), f2(z1, z2), aw + g(z1, z2)

)
,

where a ∈ R\{0} and D(f1,f2)
D(z1,z2)

6= 0, which preserve rigidity of hypersurfaces.
After performing a Cartan-type reduction to an appropriate {e}-structure, we find exactly two

primary invariants I0 and V0, which we express explicitly in terms of the 5-jet of the graphing
function F ofM . The identical vanishing 0 ≡ I0(J5F ) ≡ V0(J5F ) then provides a necessary and
sufficient condition for M to be locally rigidly-biholomorphic to the known model hypersurface:

MLC : u =
z1z1 + 1

2
z21z2 + 1

2
z21z2

1− z2z2
.

We establish that dim Holrigid(M) 6 7 = dim Holrigid(MLC) always.
If one of these two primary invariants I0 6≡ 0 or V0 6≡ 0 does not vanish identically, then on

either of the two Zariski-open sets {p ∈ M : I0(p) 6= 0} or {p ∈ M : V0(p) 6= 0}, we show
that this rigid equivalence problem between rigid hypersurfaces reduces to an equivalence problem
for a certain 5-dimensional {e}-structure on M , that is, we get an invariant absolute parallelism on
M5. Hence dim Holrigid(M) drops from 7 to 5, illustrating the gap phenomenon.

This Chapter is based on our jointwork with Wei-Guo Foo and Joël Merker, which has appeared
in preprint form:

Wei-Guo Foo, Joël Merker, The-Anh Ta, Rigid equivalences of 5-dimensional 2-nondegenerate
rigid real hypersurfaces M5 ⊂ C3 of constant Levi rank 1, arXiv:1904.02562

1. Introduction

In appropriate affine coordinates (z1, z2, w) ∈ C3 with w = u +
√
−1v, a real-analytic

(C ω) real hypersurface M5 ⊂ C3 may locally be represented as the graph of a C ω function
F over the 5-dimensional real hyperplane Cz1 × Cz2 × R. When F is independent of v:

M : u = F (z1, z2, z1, z2),

the hypersurface is called rigid.
Its fundamental CR-bundle:

T 1,0M :=
(
C⊗R TM) ∩ T 1,0C3

is of complex rank 2 = CRdimM , as well as its conjugate T 0,1M = T 1,0M .
Relevant foundational material for CR geometry focused on the local biholomorphic

equivalence problem of C ω CR submanifolds M ⊂ CN has be set up in the memoir [89],
to which readers will be referred for details.

79
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The Levi forms at various points p ∈M are maps measuring Lie bracket non-involutivity
[89, p. 45]:

T 1,0
p M × T 1,0

p M −→ C ⊗R TpM mod
(
T 1,0
p M ⊕ T 0,1

p M
)
,(

Mp, Np

)
7−→ √

−1
[
M , N

]∣∣
p

mod
(
T 1,0
p M ⊕ T 0,1

p M
)
,

where M and N are any two local sections of T 1,0M defined near p which extend Mp =
M
∣∣
p

and Np = N
∣∣
p
, the result being independent of extensions.

Levi forms are known to be biholomorphically invariant. In terms of two natural intrin-
sic generators for T 1,0M :

L1 :=
∂

∂z1

− √−1Fz1
∂

∂v
and L2 :=

∂

∂z2

− √−1Fz2
∂

∂v
,

the Levi forms at all points p ∈M identify with the matrix-valued map:

LFM(p) := 2

Å
Fz1z1 Fz2z1
Fz1z2 Fz2z2

ã
(p).

Throughout this article, we will make two main (invariant) assumptions. The first one is
that the rank of LFM(p) be constant equal to 1 at every point p ∈M .

Since 2 = rank T 1,0M , this implies that there is a rank 1 Levi kernel subbundle:

K1,0M ⊂ T 1,0M,

which is generated by the vector field:

K := kL1 + L2,

incorporating the slant function:

k := −Fz2z1
Fz1z1

.

Indeed, a direct check convinces that both [K , L 1] and [K , L 2] vanish modulo T 1,0M⊕
T 0,1M . The known involutivity properties of the Levi kernerl subbundle K1,0M ⊂ T 1,0M
together with its conjugate K0,1M ⊂ T 0,1M then read as (see [89, pp. 72-73]):[

K1,0M, K1,0M
]
⊂ K1,0M,[

K0,1M, K0,1M
]
⊂ K0,1M,[

K1,0M, K0,1M
]
⊂ K1,0M ⊕ K0,1M.

Another fundamental function will also be needed in a while:

P :=
Fz1z1z1
Fz1z1

.

All this justifies the introduction of the so-called Freeman form ([89, p. 89]):

K1,0
p M ×

(
T 1,0
p M mod K1,0

p M
)
−→ T 1,0

p M ⊕ T 0,1
p M mod

(
K1,0
p M ⊕ T 0,1

p M
)
,(

Kp, Lp

)
7−→

[
K , L

]∣∣
p

mod
(
K1,0
p M ⊕ T 0,1

p M
)
,

where K and L are any two local sections of K1,0M and of T 1,0M defined near p which
extend Kp = K |p and Lp = L |p, the result being independent of extensions. In bases,
these Freeman forms at various points p ∈ M are simply maps C × C −→ C. They are
known to be biholomorphically invariant.
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Our second main (invariant) assumption will be that the rank of the Freeman form be
maximal equal to 1 at every point p ∈M . Such M are called 2-nondegenerate at p.

A computation:[
K ,L 1

]
=
[
kL1 + L2,L 1

]
= −L 1(k)L1 + k

[
L1,L 1

]
+
[
L2,L 1

]
◦

= −L 1(k)L1

shows that

M is 2-nondegenerate at p ∈M ⇐⇒ L 1(k)(p) 6= 0.

Next, for a C ω hypersurface M5 ⊂ C3, define the Lie pseudogroup:

Holrigid(M) :=

ß
h : M −→M local rigid biholomorphism

™
.

Its Lie algebra, obtained by differentiating 1-parameter local groups of rigid biholomor-
phisms, is:

Lie
(
Holrigid(M)

)
= holrigid(M)

:=

ß
X = A1(z1, z2)

∂

∂z1

+ A2(z1, z2)
∂

∂z2

+ (αw +B(z1, z2))
∂

∂w
:

(X +X)|M is tangent to M
™
,

where A1, A2, B are holomorphic functions of only (z1, z2), and where α ∈ R.
Our first result is the elementary

PROPOSITION 1.1. For the model hypersurface:

MLC : u =
z1z1 + 1

2
z2

1z2 + 1
2
z2

1z2

1− z2z2

,

the Lie algebra holrigid(MLC) of infinitesimal biholomorphisms is 7-dimensional, generated
by:

X1 =
√
−1∂w,

X2 = z1∂z1 + 2w∂w,

X3 =
√
−1z1∂z1 + 2

√
−1z2∂z2 ,

X4 = (z2 − 1)∂z1 − 2z1∂w,

X5 = (
√
−1 +

√
−1z2)∂z1 − 2

√
−1z1∂w,

X6 = z1z2∂z1 + (z2
2 − 1)∂z2 − z2

1∂w,

X7 =
√
−1z1z2∂z1 + (

√
−1z2

2 +
√
−1)∂z2 −

√
−1z2

1∂w.

Next, we conduct the Cartan process for rigid biholomorphic equivalences to this model
MLC, reaching a representation of a Lie algebra isomorphic to the dual of the one generated
by X1, . . . , X7.

THEOREM 1.2. A basis for the Maurer-Cartan forms on the local Lie group
Holrigid(MLC) is provided by 7-differential 1-forms:

{ρ, κ, ζ, κ, ζ, α, α},
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where ρ = ρ is real, which enjoys the 7 structure equations with constant coefficients:
dρ = (α + α) ∧ ρ+

√
−1κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ, dκ = α ∧ κ+ ζ ∧ κ,
dζ = (α− α) ∧ ζ, dζ = (α− α) ∧ ζ,
dα = ζ ∧ ζ, dα = ζ ∧ ζ.

This preliminary study of the model MLC then constitutes our guiding map within the
general problem. Recall that two fundamental functions expressed in terms of F are:

k := −Fz2z1
Fz1z1

and P :=
Fz1z1z1
Fz1z1

.

THEOREM 1.3. The equivalence problem under local rigid biholomorphisms of C ω

rigid real hypersurfaces {u = F (z1, z2, z1, z2)} in C3 whose Levi form has constant rank 1
and which are everywhere 2-nondegenerate reduces to classifying {e}-structures on the 7-
dimensional bundle M5×C equipped with coordinates (z1, z2, z1, z2, v, c, c) together with
a coframe of 7 differential 1-forms:

{ρ, κ, ζ, κ, ζ, α, α},
which satisfy invariant structure equations of the shape:

dρ = (α + α) ∧ ρ+
√
−1κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ = (α− α) ∧ ζ +
1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ,

conjugate equations for dκ, dζ , dα being understood.

Exactly two invariants are primary:

I0 := −1

3

K (L 1(L 1(k)))

L 1(k)2
+

1

3

K (L 1(k))L 1(L 1(k))

L 1(k)3

+
2

3

L1(L1(k))

L1(k)
+

2

3

L1(L1(k))

L 1(k)
,

V0 := −1

3

L 1(L 1(L 1(k)))

L 1(k)
+

5

9

Å
L1(L 1(k))

L 1(k)

ã2

−

− 1

9

L 1(L 1(k))P
L 1(k)

+
1

3
L 1(P)− 1

9
PP,

while one invariant, which is real valued (see equation 10.7), is secondary:

Q0 :=
1

2
L 1(I0)− 1

3

Å
P− L1(L1(k))

L1(k)

ã
I0 −

1

6

Å
P− L 1(L 1(k))

L 1(k)

ã
I0 −

1

2

K (V0)

L 1(k)
.

It is elementary to verify that both I0 and V0 vanish identically for MLC. As is known in
Cartan theory, the identical vanishing of all invariants provide constant coefficients Maurer-
Cartan equations of a uniquely defined Lie group. Hence as a corollary, we obtain the
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THEOREM 1.4. A 2-nondegenerate C ω constant Levi rank 1 local rigid hypersurface
M5 ⊂ C3 is rigidly biholomorphic to the model MLC if and only if

0 ≡ I0 ≡ V0. �

Next, when either I0 6≡ 0 or V0 6≡ 0, we may restrict considerations to either of the
Zariski-open subsets {p ∈ M : I0(p) 6= 0} or {p ∈ M : V0(p) 6= 0}, we may pursue the
Cartan process, and we obtain the

THEOREM 1.5. LetM5 ⊂ C3 be a local rigid 2-nondegenerate C ω constant Levi rank 1
hypersurface. If either I0 6= 0 or V0 6= 0 everywhere on M , the local rigid-biholomorphic
equivalence problem reduces to an invariant 5-dimensional {e}-structure on M .

In fact, once the last remaining group parameter c ∈ C∗ is seen to be normalizable from
either:

1

c
I0 = 1 or

1

cc
V0 = 1,

the proof is completed if one does not require to make explicit the {e}-structure on M .
Because of the size of computations, we will not attempt to set up such an explicit {e}-
structure.

Lastly, from general Cartan theory, we deduce the

COROLLARY 1.6. All such rigid M5 ⊂ C3 that are not rigidly-biholomorphic to the
model MLC satisfy

dim Holrigid(M) 6 5.

In continuation with these results, a further task appears: to classify up to rigid bi-
holomorphisms the ‘submaximal’ hypersurfaces with dim Holrigid(M) = 5 whose rigid bi-
holomorphic group is locally transitive. Another question would be to classify under rigid
biholomorphisms those rigidM5 ⊂ C3 that have identically vanishing Pocchiola invariants
0 ≡ W0 ≡ J0, hence which are equivalent toMLC, but under a general biholomorphism, not
necessarily rigid. Upcoming publications will be devoted to advances in these directions.

2. Recall on the geometry of CR real hypersurfaces

Let (z1, z2, w) be holomorphic coordinates in C3 with w = u+
√
−1v, and let M5 ⊂ C3

be a real-analytic, real hypersurface passing through the origin. Assuming that the real
hypersurface is smooth at the origin, and that the vector

∂

∂u

∣∣∣∣
0

/∈ T0M

does not lie in the vector subspace T0M ⊂ T0C3. The implicit function theorem therefore
implies the existence of a real analytic (denoted by C ω) graphing function such that M5 is
represented near the origin by

u = F (z1, z2, z̄1, z̄2, v).

DÉFINITION 2.1. The smooth real hypersurface M5 ⊂ C3 is rigid at the origin if M5

may be represented by a graphing function u = F (z1, z2, z̄1, z̄2), where the function F is
independent of v.

HYPOTHESIS 2.2. In the rest of the article, we will assume that M5 is rigid.
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The complexified tangent bundle CTM = TM ⊗RC inherits from CTC3 = TC3⊗RC
two biholomorphically invariant complex vector bundles

T 1,0M := CTM ∩ T 1,0C3, T 0,1M := CTM ∩ T 0,1C3 = T 1,0M.

The two vector fields

L1 :=
∂

∂z1

+ A1 ∂

∂v
and L2 :=

∂

∂z2

+ A2 ∂

∂v
,

with
A1 := −√−1Fz1 , and A2 := −√−1Fz2 ,

then form a T 1,0M frame. The differential 1-form

ρ0 = dv +
√
−1Fz1 dz

1 +
√
−1Fz2 dz

2 − √−1F z̄1 dz̄
1 − √−1F z̄2 dz̄

2

has the kernel
kerρ0 = {ρ0 = 0} = T 1,0M ⊕ T 0,1M.

By a formula in Merker-Pocchiola-Sabzevari [89], page 82, the Levi matrix is shown to be

2.3

Levi(M) =

Å
ρ0

(√
−1[L1,L 1]

)
ρ0

(√
−1[L2,L 1]

)
ρ0

(√
−1[L1,L 2]

)
ρ0

(√
−1[L2,L 2]

)ã
= 2

Å
Fz1z1 Fz2z1
Fz1z2 Fz2z2

ã
,

which is not identically zero if M is further assumed to be not Levi-flat. After a change of
coordinates in the (z1, z2) space, without loss of generality,

ρ0

(√
−1[L1,L 2]

)
= 2Fz1z̄1 6= 0

everywhere on M , and hence the vector field

T :=
√
−1[L1,L 1] = 2Fz1,z̄1

∂

∂v
:= `

∂

∂v
vanishes nowhere on M .

2.1. The rank 1 hypothesis. We will also make a further

HYPOTHESIS 2.4. The smooth real-analytic (rigid) real-hypersurface M5 is of constant
Levi rank 1.

With this hypothesis, the collection of 1-dimensional kernels K1,0
p M of the Levi form

at all points p ∈M spans a real-analytic sub-distribution of the T 1,0M bundle

K1,0M ⊂ T 1,0M,

satisfying the following inclusions

[K1,0M, K1,0M ] ⊂ K1,0M,

[K0,1M, K0,1M ] ⊂ K0,1M,

[K1,0M, K0,1M ] ⊂ K1,0M ⊕K0,1M.

To construct a generator K of the Levi kernel, introduce a slant function k satisfyingÅ
Fz1,z̄1 Fz2,z̄1
Fz1z̄2 Fz2z̄2

ãÅ
k
1

ã
=

Å
0
0

ã
.
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The first equation then implies that

k = −Fz2z̄1
Fz1z̄1

while the same k satisfies the second equation

kFz1z̄2 + Fz2z̄2 = 0

trivially by using the vanishing determinant of the matrix. Then the Levi kernel sub-bundle
K 1,0M ⊂ T 1,0M is of complex rank 1 and is generated by the vector field

K = kL1 + L2.

The slant function enjoys the following property

PROPOSITION 2.5 (See Merker-Pocchiola-Sabzevari [89]). The smooth real-analytic
(rigid) real hypersurface M is 2-nondegenerate in the sense of Freeman if and only if

L 1(k) 6= 0

everywhere on M .

In the rigid case, a direct calculation shows that

2.6

L1(k) = −−Fz1,z̄1Fz2z̄1z1 + Fz2z̄1Fz1z̄1z1
(Fz1z̄1)

2
,

L 1(k) =
−Fz1z̄1Fz2z̄1z̄1 + Fz2z̄1Fz1z̄1z̄1

(Fz1z̄1)
2

,

T (k) = 0.

Moreover, introduce the next fundamental function

P =
`z1
`

=
Fz1z̄1z1
Fz1z̄1

.

LEMMA 2.7 (See Pocchiola [113] or Foo-Merker [49]). The following 3 functional iden-
tities hold on M :

2.8

K (k̄) ≡ 0,

K (P) ≡ −PL1(k)−L1(L1(k)),

K (P) ≡ −PL 1(k)−L 1(L1(k)).

According to Pocchiola [113] page 37, there are 10 Lie bracket identities

2.9

[T ,L1] ≡ −PT ,

[T ,K ] ≡ L1(k)T + 0,

[T ,L 1] ≡ −PT ,

[T ,K ] ≡ L 1(k)T + 0,

[L1,K ] ≡ L1(k)L1

[L1,L 1] ≡ √−1T ,

[L1,K ] ≡ L1(k)L 1,

[K ,L 1] ≡ −L 1(k)L1,

[K ,K ] ≡ 0,

[L 1,K ] ≡ L 1(k)L 1.
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where the "+0" is deliberately added to show the difference from the general case. The
following 1-forms

2.10

ρ0 =
1

`

(
dv − A1dz1 − A2dz2 − Ā1dz̄1 − Ā2dz̄2

)
,

κ0 = dz1 − kdz2,

ζ0 = dz2,

κ̄0 = dz̄1 − k̄dz̄2,

ζ̄0 = dz̄2,

are, by a simple computation, dual to the corresponding vector fields T , L1, K , L 1, K .
Using the Cartan-Lie formula which states that for any smooth vector fields X , Y and any
smooth 1-form ω, one has

dω(X, Y ) = Xω(Y )− Y ω(X)− ω([X, Y ]),

the initial Darboux-Cartan structure is therefore obtained:

2.11

dρ0 = P ρ0 ∧ κ0 −L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ̄0 −L 1(k̄) ρ0 ∧ ζ̄0 +
√
−1κ0 ∧ κ̄0,

dκ0 = −L1(k) κ0 ∧ ζ0 + L 1(k) ζ0 ∧ κ̄0,

dζ0 = 0.

Here, conjugate equations for dκ0 and for dζ0 are not written, as they can be immediately
deduced.

3. Initial G-structure for rigid equivalences
of rigid real hypersurfaces

Our objective is to study absolute parallelism of rigid equivalences of rigid real hyper-
surfaces using Cartan method. We introduce the

DÉFINITION 3.1. Two local rigid real hypersurfaces at the origin are rigidly equivalent
if there exists a biholomorphic map of the form

ϕ : (z1, z2, w) 7→ (z′1, z
′
2, w

′) :=
(
f(z1, z2), g(z1, z2), aw + h(z1, z2)

)
,

for some a ∈ R×, and local holomorphic functions f , g, h, transforming one hypersurface
into the other.

To make sure that the definition makes sense, let M ′ be another rigid real hypersurface
in the target space of the form

w′ + w̄′

2
− F ′(z′1, z′2, z̄′1, z̄′2) = 0.

Then the pullback by ϕ of the defining function is

0 = a
w + w̄

2
+

Å
1

2
h(z1, z2) +

1

2
h̄(z̄1, z̄2)− F ′

(
f(z1, z2), g(z1, z2), f̄(z̄1, z̄2), ḡ(z̄1z̄2)

)ã
which is again a defining function of a rigid real hypersurface.



3. INITIAL G-STRUCTURE FOR RIGID EQUIVALENCES OF RIGID REAL HYPERSURFACES 87

Since ϕ is holomorphic, its differential ϕ∗ : CTC3 → CTC3 stablises the holomorphic
(1, 0) and the anti-holomorphic (0, 1) vector fields:

3.2
ϕ∗T

1,0M ⊆ T 1,0M,

ϕ∗T
0,1M ⊆ T 0,1M.

Furthermore, by the invariance of the Freeman forms, the pushforward maps ϕ∗ also re-
spects the Levi kernel distributions

ϕ∗K
1,0M ⊂ K1,0M.

Consequently, there exist functions f ′, c′ and e′ on M ′ such that

3.3
ϕ∗(K ) = f ′K ′,

ϕ∗(L1) = c′L ′
1 + e′K ′.

The difference with the articles of Pocchiola [113], Merker-Pocchiola [92] and Foo-Merker
[49] is that the rigid equivalence assumption made on the map ϕ : M → M ′ between two
rigid real hypersurfaces greatly simplifies the initial G-structure, especially because ϕ∗T
is a multiple of T ′ by a function that vanishes nowhere onM ′. In fact, ifR(z′1, z

′
2, z̄
′
1, z̄
′
2, v
′)

is any C ω function on M ′, then by definition of the pushforward of a vector field,
3.4

(ϕ∗T )

Å
R(z′1, z

′
2, z̄
′
1, z̄
′
2, v
′)

ã
= T (R ◦ ϕ)

= `
∂

∂v

(
R(f(z1, z2), g(z1, z2), f(z1, z2), g(z1, z2), av + Im(h(z1, z2)))

)
= a`

∂R

∂v′
◦ ϕ

= a
`

`′ ◦ ϕ

Å
`′ ◦ ϕ∂R

∂v′
◦ ϕ
ã

︸ ︷︷ ︸
=(T ′R)◦ϕ

= a
`

`′ ◦ ϕ
(T ′R) ◦ ϕ,

whence

ϕ∗T =
a`

`′
T ′.

Hence, there exists a real-valued function a′ nowhere vanishing on M ′ such that

ϕ∗T = a′T ′.

In fact, this function is determined since

3.5

a′T ′ = ϕ∗T = ϕ∗
(√
−1[L1,L 1]

)
=
√
−1[ϕ∗L1, ϕ∗L 1]

= c′c̄′
√
−1[L ′

1,L
′
1].

This implies that
a′ = c′c̄′.
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Summarising, we therefore have the following matrix

3.6 ϕ∗

à
T
L1

K
L 1

K

í
=

à
c′c̄′ 0 0 0 0
0 c′ e′ 0 0
0 0 f ′ 0 0
0 0 0 c̄′ ē′

0 0 0 0 f̄ ′

íà
T ′

L ′
1

K ′

L ′
1

K
′

í
.

Taking transposition of the matrix, one obtains the pullback formula for the two coframes

3.7 ϕ∗

à
ρ′0
κ′0
ζ ′0
κ̄′0
ζ̄ ′0

í
=

à
c′c̄′ 0 0 0 0
0 c′ 0 0 0
0 e′ f ′ 0 0
0 0 0 c̄′ 0
0 0 0 ē′ f̄ ′

íà
ρ0

κ0

ζ0

κ̄0

ζ̄0

í
In conclusion, for the rigid CR transformation between rigid CR real hypersurfaces, the
initial G-structure is constituted by the following 5 by 5 matricesà

cc̄ 0 0 0 0
0 c 0 0 0
0 e f 0 0
0 0 0 c̄ 0
0 0 0 ē′ f̄

í
with the free complex variables

c, f ∈ C− {0}, and e ∈ C.

4. Cartan equivalence method for the model case

Before starting the Cartan equivalence method for rigid equivalences of C ω smooth rigid
real hypersurfaces, a study of the equivalence method for the model case is necessary to
obtain a model {e}-structure, which will serve as a reference for the general case. Recall
that the model case is the tube over the future light cone, denoted by Pocchiola’s notation
as MLC, is locally defined by the the following rigid equation

u =
z1z̄1 + 1

2
z2

1 z̄2 + 1
2
z̄2

1z2

1− z2z̄2

.

The vector fields L1, K , L 1, K , T , which constitute a frame for the complexified
tangent bundle of MLC, thus have the following expressions

4.1

L1 =
∂

∂z1

− √−1
z̄1 + z1z̄2

1− z2z̄2

∂

∂v
,

K = − z̄1 + z1z̄2

1− z2z̄2

∂

∂z1

+
∂

∂z2

+
√
−1

2

z̄2
1 + 2z1z̄1z̄2 + z2

1 z̄
2
2

(1− z2z̄2)2

∂

∂v
,

T = − 2

1− z2z̄2

∂

∂v
,

and the slant function is given by

k = − z̄1 + z1z̄2

1− z2z̄2

.
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The initial coframe according to Pocchiola (model case) [113] has the form

4.2

ρ0 = −
√
−1

2
(z̄1 + z1z̄2) dz1 −

√
−1

4

z̄2
1 + 2z1z̄1z̄2 + z2

1 z̄
2
2

1− z2z̄2

dz2

+
√
−1

2
(z1 + z̄1z2) dz̄2 +

√
−1

4

z2
1 + 2z1z̄1z2 + z̄2

1z
2
2

1− z2z̄2

dz̄2 +
1

2
(−1 + z2z̄2) dv,

κ0 = dz1 +
z̄1 + z1z̄2

1− z2z̄2

dz2,

ζ0 = dz2,

which then satisfy the following structure equations

4.3

dρ0 =
z̄2

1− z2z̄2

ρ0 ∧ ζ0 +
z2

1− z2z̄2

ρ0 ∧ ζ̄0 +
√
−1κ0 ∧ κ̄0,

dκ0 =
z̄2

1− z2z̄2

κ0 ∧ ζ0 −
1

1− z2z̄2

ζ0 ∧ κ̄0,

dζ0 = 0.

In the case of rigid biholomorphisms as previously explained, the transformation group,
denoted by g, acts on the coframe (ρ0, κ0, ζ0) by the matrix

g =

Ñ
cc̄ 0 0
0 c 0
0 e f

é
while ignoring the T 0,1∗M counterpart. Its inverse

g−1 =

Ñ
1
cc̄

0 0
0 1

c
0

0 − e
cf

1
f

é
provides the following Maurer-Cartan matrix of 1-forms

dg · g−1 =

Ñ
α + ᾱ 0 0

0 α 0
0 δ ε

é
,

where the 1-forms α, δ, and ε take on the following expressions

4.4

α =
dc

c
,

δ =
de

c
− e

c

df

f
,

ε =
df

f
.
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Hence after some computation

4.5

dρ = (α + ᾱ) ∧ ρ− ez̄2

cf(1− z2z̄2)
ρ ∧ κ+

z̄2

f(1− z2z̄2)
ρ ∧ ζ

− ēz2

cf(1− z2z̄2)
ρ ∧ κ̄+

z2

f̄(1− z2z̄2)
ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ+
z̄2

f(1− z2z̄2)
κ ∧ ζ +

ce

cc̄f(1− z2z̄2)
κ ∧ κ̄− c

c̄f(1− z2z̄2)
ζ ∧ κ̄,

dζ = δ ∧ κ+ ε ∧ ζ +
ez̄2

cf(1− z2z̄2)
κ ∧ ζ +

e2

cc̄f(1− z2z̄2)
κ ∧ κ̄

+
e

ēf(1− z2z̄2)
ζ ∧ κ̄.

In the rest of the article, we will adopt the following order for the coefficients appearing in
front of the 2-forms:

4.6

ρ0 ∧ κ0
1

ρ0 ∧ ζ0
2

ρ0 ∧ κ0
3

ρ0 ∧ ζ0
4

κ0 ∧ ζ0
5

κ0 ∧ κ0
6

κ0 ∧ ζ0
7

ζ0 ∧ κ0
8

ζ0 ∧ ζ0
9

κ0 ∧ ζ0
10

.

Therefore, the 2-forms may be abbreviated as

4.7

dρ = (α + ᾱ) ∧ ρ+R1 ρ ∧ κ+R2 ρ ∧ ζ +R3 ρ ∧ κ̄+R4 ρ ∧ ζ̄
+
√
−1κ ∧ κ̄,

dκ = α ∧ κ+K5 κ ∧ ζ +K6 κ ∧ κ̄+K7 ζ ∧ κ̄,
dζ = δ ∧ κ+ ε ∧ ζ + Z5 κ ∧ ζ + Z6 κ ∧ κ̄+ Z8 ζ ∧ κ̄.

Observe that R3 = R1 and R4 = R2. We will then proceed with the absorption, which can
be done by replacing α, δ and ε with the new Maurer-Cartan 1-forms

4.8

α = α̂− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄ ,

δ = δ̂ − yρρ− yκκ− yζζ − yκ̄κ̄− yζ̄ ζ̄ ,
ε = ε̂− zρρ− zκκ− zζζ − zκ̄κ̄− zζ̄ ζ̄ .

for certain unknowns x•, y• and z•. Therefore the 2-forms may be re-written as

4.9

dρ = (α̂ + ¯̂α) ∧ ρ+ (R1 + xκ + x̄κ̄) ρ ∧ κ+ (R2 + xζ + x̄ζ̄) ρ ∧ ζ
+ (R3 + xκ̄ + xκ) ρ ∧ κ̄+ (R4 + xζ̄ + xζ) ρ ∧ ζ̄
+
√
−1κ ∧ κ̄,

dκ = α̂ ∧ κ+ (K5 + xζ) κ ∧ ζ + (K6 + xκ̄) κ ∧ κ̄− xρ ρ ∧ κ
+ xζ̄ κ ∧ ζ̄ +K7 ζ ∧ κ̄,

dζ = δ̂ ∧ κ+ ε̂ ∧ ζ − yρ ρ ∧ κ− zρ ρ ∧ ζ + (Z5 + yζ − zκ) κ ∧ ζ
+ (Z6 + yκ̄) κ ∧ κ̄+ (Z8 + zκ̄) ζ ∧ κ̄+ yζ̄ κ ∧ ζ̄ + zζ̄ ζ ∧ ζ̄ .
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This therefore leads to the following set of equations
4.10

xκ + xκ̄ = − ez̄2

cf(1− z2z̄2)
,

xζ + xζ̄ =
z̄2

f(1− z2z̄2)
,

xκ̄ + xκ = − ez2

c̄f(1− z2z̄2)
,

xζ̄ + xζ =
z2

f̄(1− z2z̄2)
,

xζ = − z̄2

f(1− z2z̄2)
,

xκ̄ = − ce

cc̄f(1− z2z̄2)
,

xρ = 0,

xζ̄ = 0,

yρ = 0,

zρ = 0,

yζ − zκ = − ez̄2

cf(1− z2z̄2)
,

yκ̄ = − e2

cc̄f(1− z2z̄2)
,

zκ̄ = − e

c̄f(1− z2z̄2)
,

yζ̄ = 0,

zζ̄ = 0.

These equations have solutions which result in the absorption of all the torsions except
K7, and hence

4.11

dρ = (α̂ + ¯̂α) ∧ ρ+
√
−1κ ∧ κ̄,

dκ = α̂ ∧ κ− c

c̄f(1− z2z̄2)
ζ ∧ κ̄,

dζ = δ̂ ∧ κ+ ε̂ ∧ κ.

As in Pocchiola (model case) [113], the essential torsion

− c

c̄f(1− z2z̄2)

may be normalised to 1 by making the following choice

f = − c

c̄(1− z2z̄2)
.

With this normalisation being made, we proceed with the second loop of the Cartan’s
equivalence method. The new transformation group then becomes

4.12

Ñ
ρ
κ
ζ

é
=

Ñ
cc̄ 0 0
0 c 0
0 e c

c̄

éÑ
ρ0

κ0

− 1
1−z2z̄2 ζ0

é
:=

Ñ
cc̄ 0 0
0 c 0
0 e c

c̄

éÑ
ρ0

κ0

ζ̂0

é
,

with a change of the base coframe (ρ0, κ0, ζ0) 7→ (ρ0, κ0, ζ̂0) via

ζ̂0 := − 1

1− z2z2

ζ0.

According to Pocchiola (model case) [113], the 2-forms become

4.13

dρ0 = −z̄2 ρ0 ∧ ζ̂0 − z2 ρ0 ∧ ¯̂
ζ0 +

√
−1κ0 ∧ κ̄0,

dκ0 = −z̄2 κ0 ∧ ζ̂0 + ζ̂0 ∧ κ̄0,

dζ̂0 = z2 ζ̂0 ∧ ¯̂
ζ0.
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Moreover, one has the following Maurer-Cartan matrix of 1-forms

4.14

Ñ
α + ᾱ 0 0

0 α 0
0 δ α− ᾱ

é
,

where

α =
dc

c
, and δ =

de

c
− e

c

Å
dc

c
− dc̄

c̄

ã
.

A computation by hand gives

dρ = (α + ᾱ) ∧ ρ+ z̄2
ec̄

c2
ρ ∧ κ− z̄2

c̄

c
ρ ∧ ζ + z2

ēc

c̄2
ρ ∧ κ̄− z2

c

c̄
ρ ∧ ζ̄ +

√
−1 κ ∧ κ̄,

= (α + ᾱ) ∧ ρ+R1 ρ ∧ κ+R2 ρ ∧ ζ̄ +R1 ρ ∧ κ̄+R2 ρ ∧ ζ̄ +
√
−1κ ∧ κ̄,

dκ = α ∧ κ− z̄2
c̄

c
κ ∧ ζ − e

c
κ ∧ κ̄+ ζ ∧ κ̄

= α ∧ κ+K5 κ ∧ ζ +K6 κ ∧ κ̄+ ζ ∧ κ̄,

dζ = δ ∧ κ+ (α− ᾱ) ∧ ζ − z̄2
ec̄

c2
κ ∧ ζ +

Å
−e2

c2
+ z2

eē

c̄2

ã
κ ∧ κ̄

+
(e

c
− z2

ēc

c̄2

)
ζ ∧ κ̄− z2

e

c̄
κ ∧ ζ̄ +

z2c

c̄
ζ ∧ ζ̄

= δ ∧ κ+ (α− ᾱ) ∧ ζ + Z5 κ ∧ ζ + Z6 κ ∧ κ̄+ Z8 ζ ∧ κ̄+ Z7 κ ∧ ζ̄ + Z9 ζ ∧ ζ̄ .

Then we proceed with the absorption by setting

α = α̂− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄ ,

δ = δ̂ − yρρ− yκκ− yζζ − yκ̄κ̄− yζ̄ ζ̄ ,

and we obtain

dρ = (α̂ + ¯̂α) ∧ ρ+ (R1 + xκ + xκ̄) ρ ∧ κ+ (R2 + xζ + xζ̄) ρ ∧ ζ
+ (R1 + xκ̄ + xκ) ρ ∧ κ̄+ (R2 + xζ̄ + xζ) ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α̂ ∧ κ− xρ ρ ∧ κ+ (K5 + xζ) κ ∧ ζ + (K6 + xκ̄) κ ∧ κ̄+ xζ̄ κ ∧ ζ̄ + ζ ∧ κ̄,

dζ = δ̂ ∧ κ+ (α̂− ¯̂α) ∧ ζ − yρ ρ ∧ κ+ (xρ − xρ) ρ ∧ ζ + (Z5 − xκ + yζ + xκ̄) κ ∧ ζ
+ (Z6 + yκ̄) κ ∧ κ̄+ Z7 κ ∧ ζ̄ + (Z8 − xκ + xκ̄) ζ ∧ κ̄+ (Z9 − xζ + xζ̄) ζ ∧ ζ̄ .
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This leads to another set of absorption equations

4.15

xκ + xκ̄ = −z̄2
ec̄

c2
,

xζ + xζ̄ = z̄2
c̄

c
,

xκ̄ + xκ = −z2
ēc

c̄2
,

xζ̄ + xζ = z2
c

c̄
,

xρ = 0,

xζ = z̄2
c̄

c
,

xκ̄ = −e

c
,

xζ̄ = 0,

yρ = 0,

xρ − xρ = 0,

−xκ + xκ̄ + yζ = −z̄2
ec̄

c2
,

yκ̄ = −e2

c2
+ z2 +

eē

c̄2
,

−xκ + xκ̄ = −e

c
+ z2

ēc

c̄2
,

−xζ + xζ̄ = −z2
c

c̄
.

The following equations

4.16

xκ̄ + xκ = −z2
ēc

c̄2
,

xκ̄ = −e

c
,

xκ̄ − xκ = −e

c
+ z2

ēc

c̄2

force us to conclude that e = 0, which is consistent with Pocchiola (model case) [113],
page 146, where he sets

d = −√−1
e2c̄

2c
.

In our case, d = 0 due to our rigidity assumption, and thus we are led to e = 0.
This new normalisation gives rise to the new transformation group,Ñ

ρ
κ
ζ

é
=

Ñ
cc̄ 0 0
0 c 0
0 0 c

c̄

éÑ
ρ0

κ0

ζ̂0

é
with the new Maurer-Cartan matrix

dg · g−1 =

Ñ
α + ᾱ 0 0

0 α 0
0 0 α− ᾱ

é
and the following 2-forms

4.17

dρ = (α + ᾱ) ∧ ρ− z̄2
c̄

c
ρ ∧ ζ − z2

c

c̄
ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ− z̄2
c̄

c
κ ∧ ζ + ζ ∧ κ̄,

dζ = (α− ᾱ) ∧ ζ + z2
c

c̄
ζ ∧ ζ̄ .

We will proceed with the absorption process by setting

α = α̂− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄ ,
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which leads to

4.18

dρ = (α̂ + ¯̂α) ∧ ρ+ (xζ + xζ̄ − z̄2
c̄

c
) ρ ∧ ζ + (xζ̄ + xζ − z2

c

c̄
) ρ ∧ ζ̄

+ (xκ + xκ̄) ρ ∧ κ+ (xκ + xκ) ρ ∧ κ̄+
√
−1κ ∧ κ̄,

dκ = α̂ ∧ κ− xρ ρ ∧ κ+ (xζ − z̄2
c̄

c
) κ ∧ ζ + xκ̄ κ ∧ κ̄+ xζ̄ κ ∧ ζ̄ + ζ ∧ κ̄,

dζ = (α̂− ¯̂α) ∧ ζ + (−xρ + xρ) ρ ∧ ζ + (−xκ + xκ̄) κ ∧ ζ + (xκ − xκ̄) ζ ∧ κ̄

+ (xζ̄ − xζ + z2
c

c̄
) ζ ∧ ζ̄ .

To remove all the torsions, one has to solve for x• the following system of linear equa-
tions

4.19

xζ + xζ̄ = z̄2
c̄

c
,

xζ̄ + xζ = z2
c

c̄
,

xκ + xκ̄ = 0,

xρ = 0,

xκ̄ = 0,

xζ̄ = 0,

xζ = z̄2
c̄

c
,

−xρ + xρ = 0,

−xκ + xκ̄ = 0,

xκ − xκ̄ = 0,

xζ̄ − xζ + z2
c

c̄
= 0.

This time the solution set is unambiguous:

xρ = 0, xκ = 0, xζ = z̄2
c̄

c
, xκ̄ = 0, xζ̄ = 0,

and since the degree of indeterminacy is zero, Cartan’s test tells us that there is no need for
prolongation. The absorption takes place and we get

4.20

dρ = (α̂ + ¯̂α) ∧ ρ+
√
−1κ ∧ κ̄,

dκ = α̂ ∧ κ+ ζ ∧ κ̄,
dζ = (α̂− ¯̂α) ∧ ζ.

The {e}-structure is then completed by the following

PROPOSITION 4.21. One has dα̂ = ζ ∧ ζ̄ .

PROOF. Applying the Poincaré derivative on both sides of the three equations above,
we get

(dα̂ + d ¯̂α) ∧ ρ = 0,4.22

(dα̂− ζ ∧ ζ̄) ∧ κ = 0,4.23

(dα̂− d ¯̂α) ∧ ζ = 0.4.24
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By applying complex conjugation to both sides of the third equation, one has an additional
relation

(dα̂− d ¯̂α) ∧ ζ̄ = 0.4.25

In the second equation 4.23, Cartan’s lemma provides a 1-form A so that

dα̂ = ζ ∧ ζ̄ + A ∧ κ.
Hence in 4.22, 4.24 and 4.25,

(dα̂ + d ¯̂α) ∧ ρ = A ∧ κ ∧ ρ+ Ā ∧ κ̄ ∧ ρ = 0,

(dα̂− d ¯̂α) ∧ ζ = A ∧ κ ∧ ζ − Ā ∧ κ̄ ∧ ζ = 0,

(dα̂− d ¯̂α) ∧ ζ̄ = A ∧ κ ∧ ζ̄ − Ā ∧ κ̄ ∧ ζ̄ = 0.

Wedging with ζ on both sides of the first equation, and by ρ on the second, we get

A ∧ κ ∧ ρ ∧ ζ + Ā ∧ κ̄ ∧ ρ ∧ ζ = 0,

A ∧ κ ∧ ρ ∧ ζ − Ā ∧ κ̄ ∧ ρ ∧ ζ = 0.

Similarly, wedging with ζ̄ on both sides of the first equation, and by ρ on the third, it comes

A ∧ κ ∧ ρ ∧ ζ̄ + Ā ∧ κ̄ ∧ ρ ∧ ζ̄ = 0,

A ∧ κ ∧ ρ ∧ ζ̄ − Ā ∧ κ̄ ∧ ρ ∧ ζ̄ = 0.

Therefore,

4.26

A ∧ κ ∧ ρ ∧ ζ = 0,

A ∧ κ ∧ ρ ∧ ζ̄ = 0.

This implies the existence of functions f and g with

A = fρ+ gκ.

Hence
dα̂ = ζ ∧ ζ̄ + fρ ∧ κ.

Substituting this into 4.24,

0 = (ζ ∧ ζ̄ + fρ ∧ κ− ζ̄ ∧ ζ − f̄ρ ∧ κ̄) ∧ ζ = fρ ∧ κ ∧ ζ − f̄ρ ∧ κ̄ ∧ ζ,
we conclude by linear independence of these 3-forms that f = 0. �

4.1. Summary. For the model case, there exists a coframe (ρ, κ, ζ, α, κ̄, ζ̄, ᾱ) satisfy-
ing the following structure equations

4.27

dρ = (α + ᾱ) ∧ ρ+
√
−1κ ∧ κ̄,

dκ = α ∧ κ+ ζ ∧ κ̄,
dζ = (α− ᾱ) ∧ ζ,
dα = ζ ∧ ζ̄ ,

along with the conjugates dρ, dκ̄, dζ̄ and dᾱ. Observe that α cannot be purely imaginary
as seen during the absorption of the final Cartan process. This therefore constitutes the
Maurer-Cartan constant coefficients equations for the 7 dimensional complex Lie algebra
of automorphisms of the model light cone MLC. We will confirm that this is autCR(MLC),
arguing by means of vector fields.
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5. Representation by vector fields

By a result of Gaussier-Merker [56, 57], it is known that the Lie algebra of infinitesimal
CR automorphisms of the tube over future light cone MLC is generated by the following 10
holomorphic vector fields

5.1

X1 =
√
−1∂w,

X2 = z1∂z1 + 2w∂w,

X3 =
√
−1z1∂z1 + 2

√
−1z2∂z2 ,

X4 = (z2 − 1)∂z1 − 2z1∂w,

X5 = (
√
−1 +

√
−1z2)∂z1 − 2

√
−1z1∂w,

X6 = z1z2∂z1 + (z2
2 − 1)∂z2 − z2

1∂w,

X7 =
√
−1z1z2∂z1 + (

√
−1z2

2 +
√
−1)∂z2 −

√
−1z2

1∂w,

X8 =
√
−1wz1∂z1 −

√
−1z2

1∂z2 +
√
−1w2∂w,

X9 = (z2
1 − wz2 − w)∂z1 + (2z1z2 + 2z1)∂z2 + 2wz1∂w,

X10 = (−√−1z2
1 +

√
−1wz2 − √−1w)∂z1 + (−2

√
−1z1z2 + 2

√
−1z1)∂z2 − 2

√
−1wz1∂w.

It can be shown that for each 1 6 i 6 10, the vector field X i + X i is tangent to MLC.
The commutator table of these 10 vector fields is as follows.

X1 X2 X3 X4 X5 X6 X7 X8 X9 X10

X1 0 2X1 0 0 0 0 0 −X2 −X5 −X4

X2 0 0 −X4 −X5 0 0 2X8 X9 X10

X3 0 X5 −X4 2X7 −2X6 0 −X10 X9

X4 0 4X1 −X4 −X5 X10 2X6 − 2X2 −2X7 + 2X3

X5 0 X5 −X4 X9 2X7 + 2X3 2X6 + 2X2

X6 0 −2X3 0 −X9 X10

X7 0 0 X10 X9

X8 0 0 0
X9 0 4X8

X10 0

It is therefore clear from the table above that the vector fields X1, . . . , X7 generate a
Lie sub-algebra, which we will denote by h. Next, we are going to find out which among
these 10 vector fields have integral curves that define local rigid automorphisms of C3 (in
the sense of Definition 3.1).

Recall that an integral curve of a vector field X on C3 is the map

γ : R→ C3

satisfying the following differential equation with initial condition:

5.2

dγ

dt

∣∣∣∣
γ(t)

= X|γ(t),

γ(0) = p.
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Usually such an integral curve at p is denoted by

exp(tX)(p) := γ(t) (γ(0)=p).

Due to the following identity

exp(−tX) exp(tX)(p) = p,

an integral curve therefore defines an automorphism of C3 for each fixed t:

5.3
exp(tX) : C3 −→ C3

p 7−→ exp(tX)(p).

For notational ease, we will let p1, p2 and p3 denote the coordinates of

γ(0) = (γ1(0), γ2(0), γ3(0)) = (p1, p2, p3).

5.1. Vector field X1. Integral curve:

(γ1(t), γ2(t), γ3(t)) = (p1, p2, p3 + it).

Therefore for each fixed t, the holomorphic map

(z1, z2, w) 7→ (z1, z2, w + it)

is rigid (we see it as a constant holomorphic function).

5.2. Vector field X2. Integral curve:

(γ1(t), γ2(t), γ3(t)) = (etp1, p2, e
2tp3).

Then for each fixed t, the holomorphic map

(z1, z2, w) 7→ (etz1, z2, e
2tw)

is rigid.

5.3. Vector field X3. Integral curve:

(γ1(t), γ2(t), γ3(t)) = (e
√
−1tp1, e

2
√
−1tp2, p3).

Therefore for each fixed t, the holomorphic map

(z1, z2, w) 7→ (e
√
−1tz1, e

2
√
−1tz2, w)

is rigid.

5.4. Vector field X4. Integral curve:

(γ1(t), γ2(t), γ3(t)) = ((p2 − 1)t+ p1, p2,−(p2 − 1)t2 − 2p1t+ p3).

For each fixed t, the holomorphic map

(z1, z2, w) 7→ ((z2 − 1)t+ z1, z2, w − ((z2 − 1)t2 + 2z1t))

is rigid.

5.5. Vector field X5. Integral curve:

(γ1(t), γ2(t), γ3(t)) = (p1 +
√
−1(p2 + 1)t, p2, p3 − 2

√
−1p1t+ (p2 + 1)t2).

For each fixed t, the holomorphic map

(z1, z2, w) 7→ (z1 +
√
−1(z2 + 1)t, z2, w − 2

√
−1z1t+ (z2 + 1)t2)

is therefore rigid.
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5.6. Vector field X6. The integral curve (γ1(t), γ2(t), γ3(t)) is given by the following
equations

5.4

γ1(t) =
2p1(1 + p2)et

(1 + p2)(1 + p2 + e2t(1− p2))
,

γ2(t) =
(1 + p2)− e2t(1− p2)

(1 + p2) + e2t(1− p2)
,

γ3(t) = p3 +
p2

1

1− p2

− 2p2
1

1− p2

1

(1 + p2) + (1− p2)e2t
.

For each fixed t, the holomorphic map

(z1, z2, w) 7→
Å

2z1(1 + z2)et

(1 + z2)(1 + z2 + e2t(1− z2))
,
(1 + z2)− e2t(1− z2)

(1 + z2) + e2t(1− z2)
,

w +
z2

1

1− z2

− 2z2
1

1− z2

1

(1 + z2) + e2t(1− z2)

ã
is therefore rigid.

5.7. Vector field X7. The integral curve (γ1(t), γ2(t), γ3(t)) is given by

γ1(t) =
√
−1p1

p2sinh(t) +
√
−1cosh(t)

,

γ2(t) =
−p2 − √−1tanh(t)
√
−1 + p2tanh(t)

,

γ3(t) = p3 +
p2

1sinh(t)

p2sinh(t) +
√
−1cosh(t)

.

Hence for each fixed t, the holomorphic map

(z1, z2, w) 7→
Å

iz1

z2sinh(t) +
√
−1cosh(t)

,
−z2 − √−1tanh(t)
√
−1 + z2tanh(t)

, w +
z2

1sinh(t)

z2sinh(t) +
√
−1cosh(t)

ã
is rigid.

One can deduce directly from the table that the Lie algebra h is neither semi-simple nor
reductive. Indeed, the Killing form applied to the first vector field vanishes

trace(ad(X1)ad(Xj)) = 0, (j=1,...,7)

and hence h is not semi-simple by Cartan’s criterion. Moreover, suppose by means of
reductio ad absurdum that h is reductive, then it has a decomposition

h = s⊕ z(h),

where s is a semi-simple Lie sub-algebra and z(h) is the centre of h. But it is clear from the
table that h has no element in the centre except the zero vector field, and hence

h = s

so that h is semi-simple, a contradiction.
We will now proceed to establish a link between the Maurer-Cartan coframe

5.5 (ρ, κ, ζ, α, κ̄, ζ̄, ᾱ)
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appearing in the structure equations in the previous sections, and the vector fields
X1, . . . , X7. In fact, let

∂ρ, ∂κ, ∂ζ , ∂α, ∂κ̄, ∂ζ̄ , ∂ᾱ

be the right-invariant vector fields that are respective duals to the 1-forms in equation 5.5,
and let h′ be the Lie algebra generated by these vector fields. In what follows, the link will
be established by seeking a Lie algebra isomorphism

5.6 τ : h −→ h′

between h and h′.
We make the following recall which can be found in Olver [109], page 257. Consider

a set of 1-forms θ = {θ1, . . . , θm} on a manifold M producing the fundamental structure
equations

dθi =
∑

16j<k6m

T ijk θ
j ∧ θk (i=1,...,m).

If ∂θi are the vector fields dual to θi, one has the following commutation relations

[
∂θj , ∂θk

]
= −

m∑
i=1

T ijk ∂θi (16i<j6m).

Following this formula, and if we adopt the order of indices

ρ < κ < ζ < α < κ̄ < ζ̄ < ᾱ,

the Maurer-Cartan structure equations in equation 4.27 therefore provide the following
commutator table of the vector fields:

∂ρ ∂κ ∂ζ ∂α ∂κ̄ ∂ζ̄ ∂ᾱ
∂ρ 0 0 0 ∂ρ 0 0 ∂ρ̄
∂κ 0 0 0 ∂κ −√−1∂ρ ∂κ̄ 0
∂ζ 0 0 0 ∂ζ −∂κ −∂α + ∂ᾱ −∂ζ
∂α −∂ρ −∂κ −∂ζ 0 0 ∂ζ̄ 0
∂κ̄ 0

√
−1∂ρ ∂κ 0 0 0 ∂κ̄

∂ζ̄ 0 −∂κ̄ −∂ᾱ + ∂α −∂ζ̄ 0 0 ∂ζ̄
∂ᾱ −∂ρ 0 ∂ζ 0 −∂κ̄ −∂ζ̄ 0

Let W 1, . . . , W 7 be the vector fields defined by

5.7

W 1 := −
√
−1

2
∂ρ,

W 2 := ∂α + ∂ᾱ,

W 3 := ∂ζ − ∂ζ̄ ,

W 4 := ∂κ − ∂κ̄,
W 5 := ∂κ + ∂κ̄,

W 6 := ∂ζ + ∂ζ̄ ,

W 7 := −∂α + ∂ᾱ.

Using the commutator table above, one has the following table of Lie brackets of various
vector fields W i:
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W 1 W 2 W 3 W 4 W 5 W 6 W 7

W 1 0 2W 1 0 0 0 0 0
W 2 0 0 −W 4 −W 5 0 0
W 3 0 W 5 −W 4 2W 7 −2W 6

W 4 0 4W 1 −W 4 −W 5

W 5 0 W 5 −W 4

W 6 0 −2W 3

W 7 0

which is the same as the commutator table of the vector fields X1, . . . , X7. Therefore the
map which sends for each i = 1, . . . , 7:

5.8

τ : h −→ h′

X i 7−→ τ(X i) := W i

defines a Lie algebra isomorphism. The following theorem summarises what has been done
so far for the rigid automorphisms of the model case:

THEOREM 5.9. The set of infinitesimal rigid CR-automorphisms of the tube over the
future light cone

MLC : (Rez1)2 − (Rez2)2 − (Rez3)2 = 0 Rez1 > 0,

is a 7-dimensional Lie sub-algebra of the set of all of its infinitesimal CR-automorphisms. A
basis for the Maurer-Cartan forms of the infinitesimal rigid CR-automorphisms is provided
by the 7 differential 1-forms ρ, κ, ζ , α, κ̄, ζ̄ , ᾱ on MLC × C which satisfy the following
Maurer-Cartan equations:

5.10

dρ = (α + ᾱ) ∧ ρ+
√
−1κ ∧ κ̄,

dκ = α ∧ κ+ ζ ∧ κ̄,
dζ = (α− ᾱ) ∧ ζ,
dα = ζ ∧ ζ̄ ,
dκ̄ = ᾱ ∧ κ̄+ ζ̄ ∧ κ,
dζ̄ = −(α− ᾱ) ∧ ζ̄ ,
dᾱ = −ζ ∧ ζ̄ .

Moreover, if {∂ρ, ∂κ, ∂ζ , ∂α, ∂κ̄, ∂ζ̄ , ∂ᾱ} is a set of right-invariant vector fields that are
dual to the respective coframe 1-forms {ρ, κ, ζ, α, κ̄, ζ̄, ᾱ}, then there is an isomorphism
of Lie algebras between the Lie algebra h′ generated by these vector fields, and the Lie
algebra of infinitesimal rigid automorphisms of the tube over the future light cone. �

6. The general case

The previous theorem shows that the Maurer-Cartan form that we have obtained, to-
gether with the structure equations, give a good setup for the equivalence problem. Recall
from equations 2.10 and 2.11 that the Darboux-Cartan structure equations are given by the
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1-forms {ρ0, κ0, ζ0} with

6.1

dρ0 = P ρ0 ∧ κ0 −L1(k) ρ0 ∧ ζ0 + P ρ0 ∧ κ̄0 −L 1(k̄) ρ0 ∧ ζ̄0 +
√
−1κ0 ∧ κ̄0,

dκ0 = −L1(k) κ0 ∧ ζ0 + L 1(k) ζ0 ∧ κ̄0,

dζ0 = 0.

In equation 3.7, the group transformation of the (1, 0) coframe is determined by the matrix

ω =

Ñ
ρ
κ
ζ

é
=

Ñ
cc̄ 0 0
0 c 0
0 e f

éÑ
ρ0

κ0

ζ0

é
:= gω0.

We will also continue to adopt the order of coefficients as stated in equation 4.6

7. Cartan process: first loop

Using the formula
dω = (dg)g−1ω + gdω0,

the Maurer-Cartan form is

(dg)g−1 =

Ñ
α + ᾱ 0 0

0 α 0
0 δ ε

é
,

where α, δ and ε are given by those in equation 4.4. A direct computation shows that

7.1

dρ = α ∧ ρ+ ᾱ ∧ ρ+

ÅP
c

+
eL1(k)

cf

ã
ρ ∧ κ+

ÅP̄
c̄

+
ēL 1(k̄)

c̄f̄

ã
ρ ∧ κ̄

+

Å−L1(k)

f

ã
ρ ∧ ζ +

Å−L 1(k̄)

f̄

ã
ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ+

Å−L1(κ)

f

ã
κ ∧ ζ +

Å
− eL 1(k)

c̄f

ã
κ ∧ κ̄+

Å
cL 1(k)

c̄f

ã
ζ ∧ κ̄,

dζ = δ ∧ κ+ ε ∧ ζ +

Å−eL1(k)

cf

ã
κ ∧ ζ +

Å−e2L 1(k)

cc̄f

ã
κ ∧ κ̄

+

Å
eL1(k)

c̄f

ã
ζ ∧ κ̄.

We proceed with the absorption by setting

α = α̂− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄ ,

δ = δ̂ − yρρ− yκκ− yζζ − yκ̄κ̄− yζ̄ ζ̄ ,
ε = ε̂− zρρ− zκκ− zζζ − zκ̄κ̄− zζ̄ ζ̄ .

Solving a system of linear equations to eliminate as many torsions as possible, one obtains

7.2

dρ = (α̂ + α̂) ∧ ρ+
√
−1κ ∧ κ̄,

dκ = α̂ ∧ κ+
cL 1(k)

c̄f
ζ ∧ κ̄,

dζ = δ̂ ∧ κ+ ε̂ ∧ ζ.
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Notice that the function

cL 1(k)

c̄

is nowhere vanishing, and hence the torsion that appears in dκ may be normalised to 1 by
setting

f =
cL 1(k)

c̄
.

8. Cartan process: second loop

With this normalisation, we proceed with a change of the base coframe

ζ̂0 := L 1(κ)ζ0,

so that the new transformation group becomesÑ
ρ
κ
ζ

é
=

Ñ
cc̄ 0 0
0 c 0
0 e c

c̄

éÑ
ρ0

κ0

ζ̂0

é
.

Observe that both functions vanish identically

T (k) ≡ 0, T (L1(k)) ≡ 0,

since both k and L1(k) are independent of v. Using equation (5.5) of Foo-Merker [49], the
new Darboux-Cartan structure equations become

8.1

dρ0 = P ρ ∧ κ0 −
L1(k)

L 1(k)
ρ ∧ ζ̂0 + P ρ0 ∧ κ̄0 −

L 1(k̄)

L1(k̄)
ρ0 ∧ ζ̂0 +

√
−1κ0 ∧ κ̄0,

dκ0 = −L1(k)

L 1(k)
κ0 ∧ ζ̂0 + ζ̂0 ∧ κ̄0,

dζ̂0 =
L1(L 1(k))

L 1(k)
κ0 ∧ ζ̂0 −

L 1(L 1(k))

L 1(k)
ζ̂0 ∧ κ0 +

L 1(k̄)

L1(k̄)
ζ̂0 ∧ ζ̂0.

Moreover, one has the following Maurer-Cartan matrix

(dg)g−1 =

Ñ
α + ᾱ 0 0

0 α 0
0 δ α− ᾱ

é
,

with the 1-forms

α =
dc

c
, δ =

de

c
− e

c

Å
dc

c
− dc̄

c̄

ã
.
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One obtains therefore

dρ = (α + ᾱ) ∧ ρ+

ÅP
c

+
L1(k)

L 1(k)

ec̄

c2

ã
ρ ∧ κ+

Å
− L1(k)

L 1(k)

c̄

c

ã
ρ ∧ ζ

+

ÅP̄
c̄

+
L 1(k̄)

L1(k̄)

ēc

c̄2

ã
ρ ∧ κ̄+

Å
− L 1(k̄)

L1(k̄)

c

c̄

ã
ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ+

Å
− L1(k)

L 1(k)

c̄

c

ã
κ ∧ ζ − e

c
κ ∧ κ̄+ ζ ∧ κ̄,

dζ = δ ∧ κ+ (α− ᾱ) ∧ ζ +

Å
− L1(k)

L 1(k)

ec̄

c2
+

L1(L 1(k))

L 1(k)

1

c

ã
κ ∧ ζ

+

Å
− e2

c2
+

L (k̄)

L1(k̄)

eē

c̄2
+

L 1(L 1(k))

L 1(k)

e

cc̄

ã
κ ∧ κ+

Å
e

c
− L 1(k̄)

L1(k̄)

ēc

c̄2
− L 1(L 1(k))

L 1(k)

1

c̄

ã
ζ ∧ κ̄

− L 1(k̄)

L1(k̄)

e

c̄
κ ∧ ζ̄ +

cL 1(k̄)

c̄L1(k̄)
ζ ∧ ζ̄ .

As before, we proceed with the absorption by setting

α = α̂− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄ ,

δ = δ̂ − yρρ− yκκ− yζζ − yκ̄κ̄− yζ̄ ζ̄ .

The equations that need attention are

xκ̄ + xκ = −P̄
c̄
− L 1(k̄)

L1(k̄)

ēc

c̄2
,

xκ̄ =
e

c
,

xκ̄ − xκ = −e

c
+

L 1(k̄)

L1(k̄)

ēc

c̄2
+

L 1(L 1(k))

L 1(k)

1

c̄
.

For the linear equations to have solutions, one therefore has to make the following choice
for e:

e =
c

c̄

Å
− 1

3
P̄ +

1

3

L 1(L 1(k))

L 1(k)

ã
.

We remark as well that in [49], a similar normalisation is done during second loop of
the Cartan process where the following choice for b is made:

b = −√−1c̄e +
√
−1

3
c

Å
L 1L 1(k)

L 1(k)
− P
ã
,

so that when b = 0 due to rigidity assumption, the same expression for e is also obtained.
At this stage, we set

B := −1

3
P̄ +

1

3

L 1(L 1(k))

L 1(k)
.
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9. Final loop

We make another change of base coframe by setting

ζ ′0 = ζ̂0 + Bκ0.

The new transformation group becomesÑ
ρ
κ
ζ

é
=

Ñ
cc̄ 0 0
0 c 0
0 0 c

c̄

éÑ
ρ0

κ0

ζ ′0

é
,

with the new Darboux-Cartan structure:

9.1

dρ0 =

Å
P + B L1(k)

L 1(k)

ã
ρ0 ∧ κ0 −

L1(k)

L 1(k)
ρ0 ∧ ζ ′0

+

Å
P + BL 1(k̄)

L1(k̄)

ã
ρ0 ∧ κ̄0 −

L 1(k̄)

L1(k̄)
ρ0 ∧ ζ̄ ′0

+
√
−1κ0 ∧ κ0

=

Å
P− PL1(k)

3L 1(k)
+

L 1(L 1(k))L1(k)

3L 1(k)2

ã
ρ0 ∧ κ0 −

L1(k)

L 1(k)
ρ0 ∧ ζ ′0

+

Å
P− PL 1(k)

3L1(k)
+

L1(L1(k))L 1(k)

3L 1(k)2

ã
ρ0 ∧ κ0 −

L 1(k)

L1(k)
ρ0 ∧ ζ

′
0

+
√
−1κ0 ∧ κ0

=: R1 ρ0 ∧ κ+ R2 ρ0 ∧ ζ ′0 + R1 ρ0 ∧ κ̄0 + R2 ρ0 ∧ ζ̄ ′0 +
√
−1κ0 ∧ κ̄0,

dκ0 = −L1(k)

L 1(k)
κ0 ∧ ζ ′0 − B κ0 ∧ κ̄0 + ζ ′0 ∧ κ̄0

= −L1(k)

L 1(k)
κ0 ∧ ζ ′0 +

ÅP
3
− L 1(L 1(k))

3L 1(k)

ã
κ0 ∧ κ0 + ζ ′0 ∧ κ0

=: K5 κ0 ∧ ζ ′0 + K6 κ0 ∧ κ̄0 + ζ ′0 ∧ κ̄0,

The 2-form dζ ′0 requires a bit of computation, as will be seen in the proof of the following

PROPOSITION 9.2. One has

dζ ′0 =

Å
− B L1(k)

L 1(k)
+

L1(L 1(k))

L 1(k)
− K (B)

L 1(k)

ã
κ0 ∧ ζ ′0 +

Å
− B2 + BL 1(L 1(k))

L 1(k)
−L 1(B)

ã
κ0 ∧ κ̄0

+

Å
B− L 1(L 1(k))

L 1(k)
− BL 1(k̄)

L1(k̄)

ã
ζ ′0 ∧ κ̄0 +

L 1(k̄)

L1(k̄)
ζ ′0 ∧ ζ̄ ′0

=: Z5 κ0 ∧ ζ ′0 + Z6 κ0 ∧ κ̄0 + Z8 ζ
′
0 ∧ κ̄0 + Z9 ζ

′
0 ∧ ζ̄ ′0.
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PROOF. Using the transformation ζ ′0 = ζ̂0+Bκ0, the 2-forms dζ̂0 and dκ0 are expressed
in terms of the new coframe (ρ, κ0, ζ

′
0) as

dζ̂0 =
L1(L 1(k))

L 1(k)
κ0 ∧ ζ ′0 − BL 1(k)

L1(k)
κ0 ∧ ζ

′
0 −
Å

L 1(L 1(k))

L 1(k)
+ BL 1(k)

L1(k)

ã
ζ ′0 ∧ κ0

+

Å
BL 1(L 1(k))

L 1(k)
+ BBL 1(k)

L1(k)

ã
κ0 ∧ κ0 +

L 1(k)

L1(k)
ζ ′0 ∧ ζ

′
0,

as well as

dκ0 = −L1(k)

L 1(k)
κ0 ∧ ζ ′0 − B κ0 ∧ κ0 + ζ ′0 ∧ κ0.

Moreover one has for the 1-form dB the following expansion

dB = T (B) ρ0 + L1(B) κ0 + K (B) ζ0 + L 1(B) κ0 + K (B)ζ0.

By rigidity assumption, T (B) ≡ 0; and by using the Assertion 7.4 on page 26 of Foo-
Merker [49],

K (B) = −BL 1(k).

Using these two observations, the 1-form dB is therefore

dB =

Å
L1(B)− BK (B)

L 1(k)

ã
κ0 +

K (B)

L 1(k)
ζ ′0 +

Å
L 1(B) + BBL 1(k)

L1(k)

ã
κ0 − BL 1(k)

L1(k)
ζ
′
0.

Substituting dζ̂0, dκ0 and dB in the following identity

dζ ′0 = dζ̂0 + dB ∧ κ0 + B dκ0

by the expressions computed above finishes the proof of the proposition. �

Explicitly,

9.3

dζ ′0 =

ÅPL1(k)

3L 1(k)
− L 1(L 1(k))L1(k)

3L 1(k)2
+

L1(L 1(k))

L 1(k)
+

K (P)

3L 1(k)

− K (L 1(L 1(k)))

3L 1(k)2
+

K (L 1(k))L 1(L 1(k))

3L 1(k)3

ã
κ0 ∧ ζ ′0

+

Å−P2

9
− PL 1(L 1(k))

9L 1(k)
+

5L 1(L 1(k))2

9L 1(k)2

− L 1(L 1(L 1(k)))

3L 1(k)
+

L 1(P)

3

ã
κ0 ∧ κ0

+

Å−P
3
− 2L 1(L 1(k))

3L 1(k)
+

PL 1(k)

3L1(k)
− L1(L1(k))L 1(k)

3L1(k)2

ã
ζ ′0 ∧ κ0

+
L 1(k)

L1(k)
ζ ′0 ∧ ζ

′
0.
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After transformation, the new 2-forms dρ, dκ and dζ become

dρ = (α + ᾱ) ∧ ρ+
1

c
R1 ρ ∧ κ+

c̄

c
R2 ρ ∧ ζ +

1

c̄
R1 ρ ∧ κ̄+

c

c̄
R2 ρ ∧ ζ̄ +

√
−1κ ∧ κ̄,

dκ = α ∧ κ+
c̄

c
K5 κ ∧ ζ +

1

c̄
K6 κ ∧ κ̄+ ζ ∧ κ̄,

dζ = (α− ᾱ) ∧ ζ +
1

c
Z5 κ ∧ ζ +

1

c̄2
Z6 κ ∧ κ̄+

1

c̄
Z8 ζ ∧ κ̄+

c

c̄
Z9 ζ ∧ ζ̄ .

By setting the new Maurer-Cartan 1-form as

α := α̂− xρρ− xκκ− xζζ − xκ̄κ̄− xζ̄ ζ̄ ,
with

9.4 xρ = 0, xκ = −1

c
R1 +

1

c
K̄6, xκ̄ =

1

c̄
B, xζ =

c̄L1(k)

cL 1(k)
, xζ̄ = 0,

the final absorbed equations become:

dρ = (α̂ + α̂) ∧ ρ+
√
−1κ ∧ κ̄,9.5

dκ = α̂ ∧ κ+ ζ ∧ κ̄,9.6

dζ = (α̂− α̂) ∧ ζ +
1

c
(Z5 − Z8) κ ∧ ζ +

1

c̄2
Z6 κ ∧ κ̄.9.7

10. The {e}-structure.

This time, for ease of notation, we write

S5 =
1

c
(Z5 − Z̄8) :=

1

c
I0, S6 =

1

c̄2
Z6 :=

1

c̄2
V0.

If we write
ψ := −S5ζ − S6κ̄,

equation 9.7 may be written otherwise as

dζ = (α̂− α̂) ∧ ζ + ψ ∧ κ.
Based on the model case in Section 4, one should obtain for dα̂ the following:

dα̂ = ζ ∧ ζ̄ + · · · ,
where the remaining terms are 2-forms that vanish in the model case. Taking exterior
derivatives of both sides of equations 9.5, 9.6 and 9.7:

10.1

0 = (dα̂ + dα̂) ∧ ρ,
0 = (dα̂− ζ ∧ ζ̄ + S5ζ ∧ κ̄) ∧ κ
0 = (dα̂− d ¯̂α) ∧ ζ − (α̂− ¯̂α) ∧ dζ + dψ ∧ κ− ψ ∧ α ∧ κ.

In the second equation of 10.1, Cartan’s lemma provides a 1-form A with

dα̂ = ζ ∧ ζ̄ − S5ζ ∧ κ̄+ A ∧ κ.
To study A, write it as a formal linear combination of the 1-forms with unknown coeffi-

cients:
A = Aρρ+ Aκκ+ Aζζ + Aα̂α̂ + Aκ̄κ̄+ Aζ̄ ζ̄ + A ¯̂α

¯̂α.
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From the first equation of 10.1, one obtains

Aζ̄ = S5, Aζ = 0, Aκ̄ is real, Aα̂ = A ¯̂α = 0,

and so

dα̂ = ζ ∧ ζ̄ − S5ζ ∧ κ̄+ Aρρ ∧ κ+ Aκ̄κ̄ ∧ κ+ S5ζ̄ ∧ κ.

Using this expression of dα̂ in the third equation of 10.1, the remaining coefficients of A
are therefore obtained:

Aρ = 0, 0 = 2Aκ̄ κ̄ ∧ κ ∧ ζ ∧ ζ̄ + ᾱ ∧ ψ ∧ κ ∧ ζ̄ + dψ ∧ κ ∧ ζ̄ .

We expand dψ so that

10.2
dψ ∧ κ ∧ ζ̄ = (−dS5 ∧ ζ − S5dζ − dS6 ∧ κ̄− S6dκ̄) ∧ κ ∧ ζ̄

= −((S5)κ̄ − (S6)ζ) κ ∧ κ̄ ∧ ζ ∧ ζ̄ + · · · ,

where (•)κ̄ denotes the covariant derivative of the function • with respect to κ̄ (and same
definition applies to (•)ζ). We could have concluded the {e}-structure by declaring

Aκ̄ = −1
2
((S5)κ̄ − (S6)ζ),

which is a secondary invariant.
To make sure that the equation does make sense, the term on the right needs to be

verified that it is real-valued. This requires some computation. First we need a lemma:

LEMMA 10.3. On the G-structure M × G2 with coordinates (z1, z2, z1, z2, v, c, c), let
F : M ×G2 → C be a function. Then

10.4

dF = c∂cF α̂ + c̄∂c̄F ¯̂α +

Å
1

cc̄
T (F )− cxρ∂cF − c̄xρ∂c̄F

ã
ρ

+

Å
1

c

Å
L1(F )− BK (F )

L 1(k)

ã
− cxκ∂cF − c̄xκ̄∂c̄F

ã
κ

+

Å
c̄

c

K (F )

L 1(k)
− cxζ∂cF − c̄xζ̄∂c̄F

ã
ζ

+

Å
1

c̄

Å
L 1(F )− BK (F )

L1(k)

ã
− cxκ̄∂cF − c̄xκ∂c̄F

ã
κ̄

+

Å
c

c̄

K̄ (F )

L1(k̄)
− cxζ̄∂cF − c̄xζ∂c̄F

ã
ζ̄

:= ∂α(F ) α + ∂α(F ) α + ∂ρ(F ) ρ+ ∂κ(F ) κ+ ∂ζ(F ) ζ

+ ∂κ(F ) κ+ ∂ζ(F ) ζ.

The proof of the lemma is done by straightforward computation which will be skipped.
With the solution to the absorption equations 9.4, we therefore have the following vector
fields:
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10.5

∂α := c∂c,

∂ρ :=
1

cc
T ,

∂κ :=
1

c

Å
L1 − B K

L 1(k)

ã
− c

Å
− 1

c
R1 +

1

c
K6

ã
∂c +

c

c
B∂c,

∂ζ =
c

c

K

L 1(k)
− c

L1(k)

L 1(k)
∂c,

while the vector fields ∂α, ∂κ, ∂ζ are respective complex conjugates of ∂α, ∂κ, ∂ζ . As a
result:

(S5)κ̄ − (S6)ζ =
1

cc̄

Å
L 1

(
I0

)
− B

K
(
I0

)
L (k)

+ BI0 −
K
(
V0

)
L (k)

ã
:=

1

cc
Q0

=
1

cc̄

Å
L 1(Z5)−L 1(Z8)− BK (Z5)

L1(k)
+ BK (Z8)

L1(k)
+ BZ5 − BZ8 −

K (Z6)

L 1(k)

ã
.

We will also need the following

LEMMA 10.6. One has the following identity

L 1(Z5)− K (Z6)

L 1(k)
= BK (Z5)

L1(k̄)
+ Z5K6 − Z6K5 −L1(Z8) + BK (Z8)

L 1(k)
+ Z8K6 + Z9Z6.

PROOF. We will compute the terms on the left-hand side by applying d2 ≡ 0 to the
third equation of equation 9.1. Doing so, while wedging on both sides of d2ζ ′0 = 0 with
ρ ∧ ζ̄ ′0, one should get

0 =
(
(Z5)κ̄0 − Z5K6 − Z5Z8 − (Z6)ζ′0 + Z6K5 + (Z8)κ0 + Z8Z5 − Z8K6 − Z9Z6

)
ρ0 ∧ κ0 ∧ κ̄0 ∧ ζ ′0 ∧ ζ̄ ′0.

Finally, for any function G independent of c, one uses the following formula

dG = T (G)ρ+

Å
L1(G)− BK (G)

L 1(k)

ã
κ0 +

K (G)

L 1(k)
ζ ′0

+

Å
L 1(G)− BK (G)

L 1(k)

ã
κ0 +

K (G)

L 1(k)
ζ
′
0.

The proof is therefore complete by applying this to (Z5)κ̄0 , (Z6)ζ′0 and (Z8)κ0 . �

Substituting the identity into Ak̄, one has therefore
10.7

−2Aκ̄ =
1

cc̄

Å
(−Z6K5 + Z9Z6)−L1(Z8)−L 1(Z8) + BK (Z8)

L 1(k)
+ BK (Z8)

L1(k)
− Z8B− Z8B

ã
,

and observing that Z9 = −K5, the coefficient Aκ̄ is thus real-valued, and the {e}-structure
is finally complete.

We have therefore proved Theorem 1.3.
In the interest of computations, the secondary invariant

Q0 :=
1

2

Å
L 1

(
I0

)
− B

K
(
I0

)
L1(k)

+ BI0 −
K
(
V0

)
L 1(k)

ã
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may further be simplified using the following:

PROPOSITION 10.8. Under the Levi degeneracy assumption, one has:

K (I0)

L1(k)
= −2I0.

PROOF. We remark here that the Levi-degeneracy condition is necessary to normalise
the expression and thus it cannot be dropped. It is implicitly used in dρ the first equation of
the following {e}-structure:

dρ = (α + α) ∧ ρ+
√
−1κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ = (α− α) ∧ ζ +
1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ.

Applying Poincaré derivative to the third equation dζ and using d2 ≡ 0, while wedging on
both sides with α ∧ α ∧ ρ ∧ κ, we obtain

0 = dα ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ− dα ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ

+ ∂ζ

Å
1

c
I0

ã
ζ ∧ κ ∧ ζ ∧ α ∧ α ∧ ρ ∧ κ,

where ∂ζ is the following vector field coming from equation 10.5:

∂ζ =
c

c

K

L1(k)
− c

L 1(k)

L1(k)
∂c.

Then using dα and dα from the {e}-structure, we obtain the desired identity. �

Thus we recover the expression of Q0 as appeared in the introduction.



CHAPTER 3

Normal Forms for Rigid C2,1 Hypersurfaces M 5 ⊂ C3

Consider a 2-nondegenerate constant Levi rank 1 rigid C ω hypersurface M5 ⊂ C3 in
coordinates (z, ζ, w = u+ iv):

u = F
(
z, ζ, z, ζ

)
.

The Gaussier-Merker model u =
zz+ 1

2 z
2ζ+ 1

2 z
2ζ

1−ζζ was shown by Fels-Kaup 2007 to be

locally CR-equivalent to the light cone {x21 + x22 − x23 = 0}. Another representation is
the tube u = x2

1−y .
Inspired by Alexander Isaev, we study rigid biholomorphisms:

(z, ζ, w) 7−→
(
f(z, ζ), g(z, ζ), ρ w + h(z, ζ)

)
=: (z′, ζ ′, w′).

The G-M model has 7-dimensional rigid automorphisms group.
A Cartan-type reduction to an {e}-structure was done by Foo-Merker-Ta in

arxiv.org/abs/1904.02562/. Three relative invariants appeared: V0, I0 (primary) and Q0

(derived). In Pocchiola’s formalism, Section 8 provides a finalized expression for Q0.
The goal is to establish the Poincaré-Moser complete normal form:

u =
zz + 1

2 z
2ζ + 1

2 z
2ζ

1− ζζ
+

∑
a,b,c,d∈N
a+c>3

Ga,b,c,d z
aζbzcζ

d
,

with 0 = Ga,b,0,0 = Ga,b,1,0 = Ga,b,2,0 and 0 = G3,0,0,1 = ImG3,0,1,1.
In terms of F , the numerators of V0, I0, Q0 incorporate 11, 52, 824 differential mono-

mials.
This Chapter is based on our jointwork with Zhangchi Chen, Wei-Guo Foo and Joël

Merker, which has appeared in preprint form:
Zhangchi Chen, Wei-Guo Foo, Joël Merker, The-Anh Ta, Normal Forms for Rigid

C2,1 Hypersurfaces M5 ⊂ C3, arXiv:1912.01655

1. Introduction

The problem of equivalence for CR manifolds was begun by Poincaré in 1907, who,
by a plain counting argument, pointed out that real hypersurfaces M3 ⊂ C2 must a priori
possess infinitely many invariants under biholomorphic transformations.

110
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Nous pourrons [. . . ] supposer que F est de la forme

F = X − Φ(Y,X,X ′),

et il y a alors
N ′ = (n+1)(n+2)(n+3)

6
− 1

coefficients arbitraires réels [. . . ]. Enfin, les équations de la transformation peuvent s’écrire

3 Z = ψ(z, z′), Z′ = ψ1(z, z′),

ψ et ψ1 étant deux fonctions analytiques complexes développables suivant les puissances de z et de z′: nous
avons besoin des termes jusqu’au ne ordre, ce qui fait

2
[ (n+1)(n+2)

2
− 1
]

coefficients arbitraires complexes, ou, ce qui revient au même,

N ′′ = 2n2 + 6n

coefficients arbitraires réels que nous appellerons les coefficients C. [112, pp. 194–195]

Thus in C2, there are more hypersurfaces, namely ∼ n3

6
, than there are biholomor-

phisms, namely ∼ 2n2, did argue Poincaré.
As in the theory that Lie erected in the end of the XIXth Century with his students

Engel, Scheffers, Kowalevski and others, the existence of (local) invariants creates a (local)
classification problem, not even terminated nowadays for hypersurfaces in C3.

Analogously, given the action of a finite-dimensional Lie group on a manifold M which
induces an action on (local) graphs embedded in M , Lie discovered that prolongations of
the G-action to jet bundles of sufficiently high order automatically create infinitely many
differential invariants [78, 109], hence various classification problems can be undertaken.

Throughout all of this memoir, concentrated on CR geometry, all CR manifolds will be
assumed real analytic (C ω). An elementary complex Frobenius theorem proved e.g. by
Paulette Libermann in [77], guarantees embedabbility in some CN. We will restrict our-
selves to the definite class of hypersurfaces M2n+1 ⊂ Cn+1, which are automatically CR.
Results for embedded hypersurfaces M2n+1 ⊂ Cn+1 of class C∞ or C K with K � 1 suffi-
ciently high can be formulated, and proofs easily adapted. In fact, only C ω hypersurfaces
M3 ⊂ C2 and M5 ⊂ C3 will be studied here.

The interest of studying rigidly equivalent — in Alexander Isaev’s terminology — rigid
hypersurfaces was pointed out to us during his February 2019 stay in Orsay. In recent
publications [64, 65, 66, 67], Alexander tackled to integrate Pocchiola’s zero CR curvature
equations W = 0 = J of tube and rigid 2-nondegenerate constant Levi rank 1 hypersurfaces
M5 ⊂ C3 (more will be said later).

A local hypersurface M2n+1 ⊂ Cn+1 with coordinates Z = (Z1, . . . , Zn+1) is said to be
rigid if there exists an infinitesimal CR automorphism, namely a vector field T tangent to
M of the form T = X +X with a nonzero holomorphic vector field X =

∑n+1
i=1 ai(Z) ∂Zi ,

which is transversal to the complex tangent space T cM in the sense that TM = T cM⊕RT .
After a local biholomorphic straightening, one makes X = i ∂

∂w
with w = Zn+1, and

tangency of X + X = 2 ∂
∂v

to M shows that, restricting considerations to dimensions
n + 1 = 2, 3, writing coordinates C2 3 (z, w) and C3 3 (z, ζ, w), the right-hand side C ω

graphing functions:

M3 : u = F (z, z), M5 : u = F (z, ζ, z, ζ),

are independent of v, where w = u+ i v:
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Alexander Isaev’s concept of rigid biholomorphic transformation is less popular or
widespread. In C2 and in C3, such are biholomorphisms of the form:

(z, w) 7−→
(
f(z), ρ w + g(z)

)
, (z, ζ, w) 7−→

(
f(z, ζ), g(z, ζ), ρ w + h(z, ζ)

)
,

where f , g, h are holomorphic of their arguments, independently of w, and where ρ ∈
R∗. The interest is that rigid biholomorphisms trivially send rigid hypersurfaces to rigid
hypersurfaces: they respect the pre-given CR symmetry, and much more will be explained
later.

As Poincaré did, but without assuming that the origin is left fixed, for any integer d > 1,
writing f(z) =

∑
06k6d fk z

k with fk ∈ C and similarly g(z) =
∑

gk z
k, the (rough)

“number” of rigid biholomorphisms of degree 6 d is the number of incoming real param-
eters, namely 2 (d + 1) + 1 + 2 (d + 1) = 4 d + 5 ∼ 4 d, while the (rough) “number” of
rigid hypersurfaces

{
u =

∑
j+k6d Fj,k x

jyk
}

of degree 6 d too, with Fj,k ∈ R, is equal to(
d+2

2

)
∼ 1

2
d2, hence much larger as d −→∞.

Similarly in C3, the (rough) “space” of rigid biholomorphisms of degree 6 d is of real
dimension:

2
(
d+2

2

)
+ 2

(
d+2

2

)
+ 1 + 2

(
d+2

2

)
= 3 (d+ 2)(d+ 1) + 1 ∼ 3 d2,

much smaller than the dimension of the “space” of hypersurfaces of degree 6 d too:(
d+4

4

)
∼ 1

24
d4.

To classify CR manifolds, two methods exist in the supermarket: that of Cartan, and
that of Moser.

Cartan devised a quite sophisticated and proteiform method of equivalence. Given a
manifold M equipped with a certain class of geometric, say CR here, structures, Cartan’s
method of equivalence consists in constructing a bundle π : P −→ M together with an
absolute (co)parallelism on P , namely a coframe of everywhere linearly independent 1-
forms θ1, . . . , θdimP on P such that:

P
Π //

π
��

P ′

π′

��
M

Φ
// M ′

• every local CR diffeomorphism Φ: M −→M ′ between two CR manifolds lifts uniquely
as a diffeomorphism Π: P −→ P ′ satisfying Π∗θ′i = θi for 1 6 i 6 dimP , with P ′ and
the θ′i similarly constructed;

• conversely, every diffeomorphism Π: P −→ P ′ commuting with projections π, π′ whose
horizontal part is a diffeomorphims M −→ M ′ and which satisfies Π∗θ′i = θi for 1 6 i 6
dimP , has a horizontal part which is Cauchy-Riemann diffeomorphism (or, more generally,
a diffeomorphism respecting the considered geometric structure).

[Beyond, there can exist Cartan connections associated to (modifications of) P −→M ,
but we will not need this concept.]
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Rexpressing the exterior differentials dθi and dθ′i from both sides in terms of the basic
2-forms provided by the two ambient coframes:

dθi =
∑
j<k

T ij,k(p) θ
j ∧ θk and dθ′

i
=
∑
j<k

T ′
i
j,k(p

′) θ′
j ∧ θ′k,

certain structure functions appear, defined for p ∈ P and for p′ ∈ P ′, and the exact pullback
relations Π∗θ′i = θi force individual invariancy of all them:

T ′
i
j,k

(
Φ(p)

)
= T ij,k(p) (∀ p∈P ).

As is known, Cartan’s method is computationally extremely intensive, especially in CR
geometry, where several normalizations and prolongations are required. Explicit expres-
sions of intermediate torsion coefficients which conduct to the final T ij,k(p) grow dramati-
cally in complexity.

One reason for such a complexity is the presence of large isotropy groups for the CR
automorphisms groups of (standard) models, which imposes a great number of steps. An-
other reason is the nonlinear character of differential algebraic polynomial expressions that
must be handled progressively. The last reason is that Cartan’s method studies geometric
structures at every point of the base manifold, and there is a price to pay for this generality.

In most existing references (cf. the bibliography), the trick that Cartan himself devised
to avoid nonlinear complications while retaining anyway some essential information, is the
so-called Cartan Lemma. It is explicit only at the level of linear algebra. Even admitting to
only deal with linear algebra computations, as Chern always did, Cartan’s method is often
long and demanding.

In his works, Moser usually searched for wisdom rather than simply knowledge, and thus he strongly empha-
sized developments of methods and insights over pushing a specific result to the limit. Accordingly, he sometimes
described the outcome of his own work as methods rather than theorems. [74, p. 1348]

Moser’s method is more ‘down to Earth’, computationally speaking, since it usually
proceeds at only one point, often the origin, of a manifold, manipulating power series
expanded at that point. Hence it needs geometric objects of class C ω, while adaptations to
the C∞ or C K�1 classes can concern only formal Taylor expansions at the point.

Coming from problems and techniques in Dynamical Systems and Celestial Mechanics,
Moser’s method consists in constructing certain normal forms for the objects studied, in
order to simplify them and hence to enable one to rapidly determine whether two given
objects are the same, up to equivalence.

For instance, for our rigid toy hypersurfaces {u = F (z, z)} in C2, assuming that they
are Levi nondegenerate at the origin:

u = zz + Oz,z(3) = zz +
∑
j+k>3

Fj,k z
jzk,

Moser’s game consists in applying several local rigid biholomorphisms in order to obtain
a simpler graphing function F (z, z), e.g. with as many as possible coefficients Fj,k = 0
disappearing, so that the equation becomes closest as possible to the model Heisenberg
sphere {u = zz}.

It is not difficult to realize that the isotropy subgroup of the origin, namely the group
of rigid biholomorphisms fixing (0, 0) ∈ C2, is 2-dimensional, and consists of weighted
scalings coupled with ‘horizontal rotations’:

z′ = ρ1/2 eiϕ z, w′ = ρw,(1.2)
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with ρ ∈ R∗ and ϕ ∈ R. Then Section 2 will elementarily show that one can annihilate all
Fj,0 = 0 = F0,k and all Fj,1 = 0 = F1,k as well, except of course F1,1 = 1, bringing any
two rigid hypersurfaces in M ⊂ C2 and M ′ ⊂ C′2 to the normalized forms:

u = zz +
∑
j,k>2

Fj,k z
jzk and u′ = z′z′ +

∑
j,k>2

F ′j,k z
′jz′

k
,

and then an analysis of what freedom remains in the group of rigid biholomorphisms will
(easily) show that only two real parameters remain free to send M in normal form to M ′

also in normal form, namely (ρ, ϕ) above. Moreover, it will follows that M and M ′ are
rigidly biholomorphically equivalent if and only if they exchange through such a trivial
scaling-rotation transformation, hence if and only if there exist ρ ∈ R∗+ and ϕ ∈ R such
that:

Fj,k = ρ
j+k−2

2 ei ϕ (j−k) F ′j,k (j > 2, k> 2).

Thus, once two normal forms are constructed, whether M ∼ M ′ or not can be straightfor-
wardly seen.

What is true of the toy will be true of higher dimensional CR objects. In particular,
crude normal forms cannot be made unique, they are defined only up to the action of a
certain finite-dimensional Lie group, namely the isotropy sugroup of the (always transitive)
model.

Beyond, in most circumstances, e.g. when F2,2 6= 0 above, one can push further Moser’s
method, and obtain normal forms for which all remaining coefficients Fj,k are uniquely
defined, so that Fj,k = F ′j,k exactly, with no isotropy ambiguity. This is analog to what one
can do in Cartan’s method when some curvature torsion coefficients are nonvanishing: one
can indeed normalize some group parameters present in some T ij,k further and further, and
thereby decrease the dimension of the bundle P −→ M , reducing it to smaller subbundles
P % P1 $ P2 % · · · .

In comparison to Cartan’s method, we repeat that one drawback of Moser’s method
is that it seems to capture invariants only at one point. Fortunately, Moser’s method can
be applied simultaneously to all nearby points, especially to determine all homogeneous
models of a given class of geometries, and in a CR context, this was done e.g. in Loboda’s
works [79, 80, 81].

Recently, Chen-Merker [21] found an alternative (probably known) method to capture
differential invariants at all points while working only at one point. This method avoids
then to move the origin everywhere nearby by translations, and it works most of the times,
namely when the group of transformations is only assumed transitive, either finite or infinite
dimensional, see especially [21, Sec. 12]. Hence this method clearly applies to the group
of rigid biholomorphisms. Chen-Merker studied mainly parabolic (real) surfaces S2 ⊂ R3

under the group of special affine transformations of R3, and developed an analog of Moser’s
method in this context.

Links between Affine Geometry and CR geometry have been studied in depth by
Alexander Isaev in his monograph [63]. Here, to a given a parabolic surface {u = F (x, y)},
namely a surface whose graphing function F satisfies everywhere:

Fxx 6= 0 ≡
∣∣∣∣ Fxx Fxy
Fyx Fyy

∣∣∣∣ ,
one can associate the tube hypersurface M5 ⊂ C3 defined as M5 := S2 × (iR)3. The
paper [100] shows that Pocchiola’s invariant W associated to M5 produces a seemingly



1. INTRODUCTION 115

new affine invariant Waff for parabolic S2 ⊂ R3. During Alexander Isaev’s stay in Orsay,
and after fruitful exchanges with Peter Olver, it became clear that an independent study of
affine differential invariants of parabolic surfaces S2 ⊂ R3 should be endeavoured, and this
was pushed to an end in [21].

There, by keeping memory of all terms in the power series that lie above those co-
efficients that are progressively normalized, Chen-Merker obtained certain (complicated)
differential-algebraic expressions made from Taylor coefficients at the origin, from which
one can straightforwardly recover differential invariants at every point. But traditionally
instead, people only look at lowest order currently normalized coefficients in each step, so
that computations remain simple.

Since the technique of [21] seems not to have been well developed or understood by
CR geometers up to now, we decided to write up the present memoir. Its main goal is to
construct a bridge:

Cartan’s method Moser’s method,

and exhibit how differential invariants pass from one side of the river to the other side,
computationally. Reading the toy Section 2 below is enough to understand the key arch-
ideas of such a bridge. We indeed first focus on the toy case of rigid equivalences of rigid
hypersurfaces in C2 (easily reached results), before passing to the not so simple case of rigid
equivalences in the rigid class denoted C2,1 by Alexander Isaev which consists, as written
above, of 2-nondegenerate constant Levi rank 1 hypersurfaces M5 ⊂ C3 with 0 ∈M .

In C2, on the Cartan side of the bridge, we construct in Section 2 an absolute parallelism
on P 5 := M3 × C equipped with coordinates (z, z, v, c, c) consisting of 5 differential 1-
forms: {

ρ, ζ, ζ, π, π
}

(ρ= ρ),

which satisfy invariant structure equations of the shape:

dρ = (π + π) ∧ ρ+ i ζ ∧ ζ,
dζ = π ∧ ζ, dζ = π ∧ ζ,
dπ = 1

cc
R ζ ∧ ζ, dπ = − 1

cc
R ζ ∧ ζ,

where there is only invariant function:

R :=
Fzzzz Fzz − Fzzz Fzzz

(Fzz)2
.

We show that M is rigidly equivalent to {u = zz} if and only if R(F ) ≡ 0.
On the Moser side of the bridge, starting from a given u =

∑
j+k>1 Fj,k z

jzk passing
by the origin, we perform as said above a few normalizing biholomorphisms in order to
reach:

0 = Fj,0 = F0,k (j > 1, k> 1),

1 = F1,1,

0 = Fj,1 = F1,k (j > 2, k> 2),
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and the key feature of the method is to keep track of all performed rigid biholomorphic
transformations, which will give us at the end:

u = zz +
[F2,2 F1,1 − F2,1 F1,2

F 3
1,1

]
z2z2 + z2z3

(
· · ·
)

+ z3z2
(
· · ·
)
,

and from this rational expression of the final F ′2,2 coefficient at the origin, it is easy to
recognize

/
reconstitute

/
translate Cartan’s invariant R(F ) at every point (up to a nowhere

vanishing factor const ·Fzz). Why this is so has already been explained in [21, Sec. 12] and
will not be repeated here.

PRINCIPLE 1.3. In all CR equivalence problems (and outside CR geometry too), there
exists a way of computing with power series at only one point which generates all Cartan-
like invariants together with their syzygies.

Because such a ‘bridge-principle’ has neither been constructed nor really noticed in CR
geometry, a joint forthcoming publication will tackle to build it also for nonrigid M5 ⊂ C3

that are 2-nondegenerate and have constant rank 1 Levi form, thereby recovering the full
explicit expressions of Pocchiola’s invariants W and J at every point, not only as number-
coefficients at one given point as in [75, Thm. 2].

The first question is: what is the appropriate local graphed model for 2-nondegenerate
constant Levi rank 1 hypersurfaces M5 ⊂ C3? Of course, it is known from the recent
Cartan-theoretic achievements in [68, 82, 92] that the local model is any neighborhood of
any smooth point of the tube in C3 over the light cone in R3 having equation x2

2− x2
3 = x2

1.
But it is not graphed! We claim that in different notations, this cone has local graphed
equation:

u =
x2

1− y
,

with x, y, u being the real parts of three complex coordinates on C3 3 (z, ζ, w). As
we agreed orally with Alexander Isaev, this is the best, most compact existing graphed
equation. It happens to also be the central model of parabolic surface S2 ⊂ R3 occurring
in [21].

The claim is easy. By CR-homogeneity, one can recenter at any smooth point, e.g. at
(0, 1, 1), write (1 + x2)2 − (1 + x3)2 = x2

1, factor, divide, get x2 − x3 =
x21

2+x2+x3
, and

linearly change coordinates.
However, this tube graphed equation contains many pluriharmonic terms:

w + w

2
=

(z + z)2

4− 2 ζ − 2 ζ
=

1

8
z2ζ +

1

8
z2ζ + · · · ,

that Moser’s method would compulsorily kill at the very beginning. Thus, u = x2

1−y is not
the right start. Similarly, u = x2 = 1

2
z2 + 1

2
z2 + · · · in C2 is not the right start from

Moser’s point of view.
The right graphed equation for the model light cone MLC ⊂ C3 in C2,1 was discovered

by Gaussier-Merker in [56]:

MLC : u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
=: m

(
z, ζ, z, ζ

)
,
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and before commenting about very funny zig-zag errors made in the field at that time, we
review the naive reasoning. Here, the letter m is from model. By luck, MLC is rigid!

Start with M5 ⊂ C3, with 0 ∈M , rigid, graphed as:

u = F (z, ζ, z, ζ).

Constant Levi rank 1 means, possibly after a linear transformation in C2
z,ζ , that:

Fzz 6= 0 ≡
∣∣∣∣ Fzz Fzζ
Fζz Fζζ

∣∣∣∣ =: Levi(F ),(1.4)

while 2-nondegeneracy means that:

0 6=
∣∣∣∣ Fzz Fzζ
Fzzz Fzzζ

∣∣∣∣ .(1.5)

By direct symbolic computations, Propositions 3.1 and 3.2 will establish invariancy of
these vanishing/nonvanishing properties under rigid changes of holomorphic coordinates.

At the origin, MLC of equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + Oz,ζ,z,ζ(4),

is obviously 2-nondegenerate, thanks to the cubic monomial 1
2
z2ζ which gives that (1.5)

at (z, ζ) = (0, 0) becomes | 1 0
∗ 1 | = 1. As for constant Levi rank 1, order two terms u =

zz + · · · show that this condition is true at the origin, and simple computations show
that (1.4) is identically zero: ∣∣∣∣∣∣

1
1−ζζ

z+zζ

(1−ζζ)2
z+zζ

(1−ζζ)2
(z+zζ)(z+zζ)

(1−ζζ)3

∣∣∣∣∣∣ ≡ 0 (– indeed!).

So how to easily produce one simple example? How MLC was born?
Normalizing the Levi form at the origin, one can assume F = zz + · · · . Hence the 2-

nondegeneracy determinant (1.5) becomes at the origin
∣∣ 1 0
∗ Fzzζ(0)

∣∣ = 1. Thus, a monomial
like 1

2
z2ζ must be present. Since F is real, its conjugate 1

2
z2ζ also comes:

u = F = zz + 1
2
z2ζ + 1

2
z2ζ +

∑
k>4

F k
(
z, ζ, z, ζ

)
;

here of course, the F k are homogeneous polynomials of degree k. Without remainders, i.e.
with all F k = 0, the cubic equation is not of constant Levi rank 1 (exercise).

The idea of Gaussier-Merker was to take the simplest possible successive F 4, F 5,
F 6, . . . in order to guarantee Levi(F ) ≡ 0. Thus, plug all this in:

0
?≡
∣∣∣∣ 1 + F 4

zz + F 5
zz + F 5

zz + · · · z + F 4
ζz + F 5

ζz + F 6
ζz + · · ·

z + F 4
zζ

+ F 5
zζ

+ F 6
zζ

+ · · · F 4
ζζ

+ F 5
ζζ

+ F 6
ζζ

+ · · ·

∣∣∣∣ .
At first, look at terms of order 2, get 0 = F 4

ζζ
− zz, integrate as the simplest possible

F 4 := zzζζ . Next, plug this F 4 in, chase only homogeneous terms of degree 3, get F 5
ζζ

=

z2ζ + z2ζ , and integrate most simply as F 5 := 1
2
z2ζ
(
ζζ
)

+ 1
2
z2ζ
(
ζζ
)
. Next, plug this F 5

in, get F 6
ζζ

= 4 zzζζ , integrate F 6 := zz
(
ζζ
)2, and so on.

An easy induction then shows that powers
(
ζζ
)k appear, and a geometric summation

reconstitutes the denominator 1
1−ζζ in the Gaussier-Merker model. 4
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Gaussier-Merker made an error when computing (by hand) the Lie algebra of infinitesi-
mal CR automorphisms of MLC, and found a 7-dimensional Lie algebra. This looked ‘co-
herent’ with a paper published by Ebenfelt in the Duke Mathematical Journal (year 2000),
which pretended to bound by 7 the dimension of the CR automorphism group of any C2,1

hypersurface M5 ⊂ C3 — but due to an incorrect expression of the initial G-structure,
Ebenfelt’s paper appeared later to be wrong. Experts of Cartan theory know how sensitive
can be any little error in normalizations

/
reductions of G-structures.

Then the masters Fels-Kaup of Lie transformation groups cleaned up the subject, show-
ing in [43], inter alia, that the Gaussier-Merker model is locally biholomorphically equiv-
alent to the tube over the light cone, so that everybody was wrong before. They proceeded
as follows.

Let S2×2 ≡ R3 ⊂ R2×2 be the space of all real symmetric 2 × 2 matrices. The open
set ΩC+ ⊂ S2×2 consisting of positive definite matrices has boundary the future light cone,
which may be represented as:

LC+ =

ßÅ
t+ x1 x2

x2 t− x1

ã
∈ S2×2 : t2 = x2

1 + x2
2, t > 0

™
.

The objects of study are the following tube domain — Siegel’s upper half plane up to the
factor i — and its boundary hypersurface:

H := ΩC+ × iS2×2 and T := LC+ × iS2×2.

The global CR automorphism group of T consists of just affine transformations, while the
global biholomorphic transformation group Aut(H) of the domain H is known for a long
time to consist of the 10-dimensional group of all biholomorphic transformations z 7−→
(az + ib)(icz + d)−1, where z = ( w z1

z1 z2 ) with (z1, z2, w) ∈ C3, and where ( a bc d ) belongs to
the real symplectic subgroup SP2(R) ⊂ SL4(R).

Differentiating this action yields that the algebra of infinitesimal automorphisms aut(H)
of the domain is equal to sp(2,R) ∼= so2,3(R), also 10-dimensional.

Fels-Kaup then asked how such automorphisms could be inherited by (transmitted to)
the boundary T = ∂H.

They chose a Cartan subalgebra of so2,3(R) represented by Rζ1 ⊕ Rζ2, where:

ζ1 := 2w ∂w and ζ2 := z1 ∂z1 + 2z2 ∂z2 ,

and they showed that any hypersurfaceM5 ⊂ C3 whose graphing function starts asw+w =
2z1z1 +z2

1z2 +z2
1z2 +O(4) such that hol(M, 0) includes ζ1 and iζ2 is locally homogeneous

if and only if hol(M, 0) also contains the two further infinitesimal transformations:

(1− z2) ∂z1 + 2z1 ∂w and − z1z2 ∂z1 + (1− z2
2) ∂w.

Analyzing further structure-theoretic features of the simple Lie algebra so2,3(R), they
showed that this holds if and only if the graphed equation reads as the Gaussier-Merker
model (up to a factor 2):

w + w =
2 z1z1 + z2

1z2 + z2
1z2

1− z2z2

,(1.6)

thus giving another natural way to produce this model. The main thing was that autCR is
10-dimensional, not 7!
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Fels-Kaup also deduced an explicit rational biholomorphism from this model (1.6) onto
a subdomain of T:

(z1, z2, w) 7−→ 1

1 + z2

Å
w + wz2 + z2

1

√
2 z1√

2 z1 1− z2

ã
.

At about the same time, Fels-Kaup in Acta Mathematica made the breakthrough of
classifying all homogeneous models M ∈ C2,1. They showed that, excepting the light
cone, all such M are in fact simply homogeneous — isotropy Lie subgroup reduced to
identity — and necessarily tube, namely biholomorphically equivalent to S2 + (iR)3, for
some surface S2 ⊂ R3 which is simply homogeneous with respect to the affine group
A3(R). Fels-Kaup’s complete classification is:

(1) S = {x2
1 + x2

2 = x2
3, x3 > 0} the future light cone;

(2a) S = {r(cost, sint, eωt) ∈ R3 : r ∈ R+ and t ∈ R} with ω > 0 arbitrary;

(2b) S = {r(1, t, et) ∈ R3 : r ∈ R+ and t ∈ R};

(2c) S = {r(1, et, eθt) ∈ R3 : r ∈ R+ and t ∈ R} with θ > 2 arbitrary;

(3) S = {c(t) + rc′(t) ∈ R3 : r ∈ R+ and t ∈ R}, where c(t) := (t, t2, t3) parametrizes
the twisted cubic {(t, t2, t3) : t ∈ R} in R3 and c′(t) = (1, 2t, 3t2).

The limit case ω = 0 in (2a) regives the future light cone (1), while the limit case
θ = 2 in (2c) gives {x ∈ R3 : x1x3 = x2

2 and x1, x2 > 0} which is locally linearly (but
not globally) equivalent to (1). These five (families of) surfaces are known to be pairwise
locally inequivalent under affine transformations ([35, 40]).

As spectacular as they were, the Fels-Kaup articles did not treat the equivalence prob-
lem for all hypersurfaces M5 ⊂ C3 in the class C2,1. Indeed, like in Riemannian geometry,
it is well known that homogeneous CR manifolds are rather rare in the set of all CR man-
ifolds. Although Lie-theoretic methods seem to be undoubtedly the best to determine ho-
mogeneous structures, they lose their power when dealing with generic, non-homogeneous,
structures. Only Cartan’s and Moser’s methods of equivalence are able to handle all geo-
metric objects of a given kind.

Thus, it was only in the years 2010’s that the three papers [68, 82, 92] achieved the
construction of 10-dimensional {e}-structure bundles (or Cartan connections) P 10 −→
M5.

Among these, only Pocchiola’s Ph.D. [113], published as [92], really performed suf-
ficiently advanced computations to determine what are the primary curvature invariants,
he called W and I. Let us review Pocchiola’s results. We also follow the article [49],
written because Alexander Isaev insisted that all details be made public, while Pocchiola
intensively used his computer.

Recall that we denote the class of (local) hypersurfaces M5 ⊂ C3 passing by the origin
0 ∈M that are 2-nondegenerate and whose Levi form has constant rank 1 as:

C2,1.

Consider therefore a not necessarily rigid hypersurface M5 ⊂ C3 which belongs to this
class C2,1, and which is graphed as:

u = F
(
z1, z2, z1, z2, v

)
.
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The two natural generators of T 1,0M and T 0,1M are:

L1 :=
∂

∂z1

− i Fz1
1 + i Fv

∂

∂v
and L2 :=

∂

∂z2

− i Fz2
1 + i Fv

∂

∂v
,

in the intrinsic coordinates (z1, z2, z1, z2, v) on M . We will use the abbreviations:

A1 := − i Fz1

1 + iFv

and A2 := − i Fz2

1 + iFv

.

Clearly, the real differential 1-form:

%0 := dv − A1 dz1 − A2 dz2 − A1
dz1 − A2

dz2

has kernel: {
%0 = 0

}
= T 1,0M ⊕ T 0,1M.

At various points:
p =

(
z1, z2, z1, z2, v

)
∈ M,

and in terms of %0, the hypothesis that M has everywhere degenerate Levi form writes as:

0 ≡ =

∣∣∣∣ %0

(
i [L1,L 1]

)
%0

(
i [L2,L 1]

)
%0

(
i [L1,L 2]

)
%0

(
i [L2,L 2]

) ∣∣∣∣ (p).
The hypothesis that the Levi form has constant rank equal to 1 — not to 0! — expresses

as the fact that the real CR-transversal vector field:

T := i
[
L1,L 1

]
= i

(
L1

(
A1)−L 1

(
A1
)) ∂
∂v

=: `
∂

∂v
,

has nowhere vanishing real coefficient:

` := i
(

A1

z1
+ A1 A1

v − A1
z1
− A1 A1

v

)
6= 0.

The Levi kernel bundle K1,0M ⊂ T 1,0M is then generated by:

K := k L1 + L2,

where:

k := −
L2

(
A1)−L 1

(
A2
)

L1

(
A1)−L 1

(
A1
)

is the fundamental slant function. As is known from [89, 113, 92], the hypothesis of 2-
nondegeneracy is then equivalent to the nonvanishing:

0 6= L 1(k).

Also, the conjugate field K generates the conjugate Levi kernel bundle K0,1M ⊂
T 0,1M . There also is a second fundamental function:

P :=
`z1 + A1 `v − `A1

v

`
.

Pocchiola conducted in [113] the Cartan equivalence method for such M5 ∈ C2,1 under
general (local) biholomorphic transformations. Reduction to an explicit {e}-structure was
later done in [49], after Alexander Isaev insisted through e-mail exchanges to do this as
was done in [68], though in a non-explicit way. However, such a task is not essential from
the point of view of Cartan’s theory, as was well understood by Pocchiola, and as we will
explain in a while.
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For now, introducing the five 1-forms:

ρ0 =
dv − A1dz1 − A2dz2 − A1

dz1 − A2
dz2

`
,

κ0 = dz1 − k dz2,

ζ0 = dz2,

κ0 = dz1 − k dz2,

ζ0 = dz2,

after very, very intensive computations, redone manually by Foo-Merker in [49] all
along ∼ 50 pages, Pocchiola obtained modifications

{
ρ, κ, ζ, κ, ζ

}
of these 1-forms{

ρ0, κ0, ζ0, κ0, ζ0

}
, together with four complicated 1-forms π1, π2, π1, π2 which satisfy

structure equations of the specific concise shape:

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ+(1.7)

+ R ρ ∧ ζ + i
1

c3 J0 ρ ∧ κ+
1

c
W0 κ ∧ ζ,

in which R is a secondary invariant:

R := Re

ñ
i

e

cc
W0 +

1

cc

Å
− i

2
L 1

(
W0

)
+
i

2

Å
− 1

3

L 1

(
L 1(k)

)
L 1(k)

+
1

3
P
ã

W0

ãô
,

expressed in terms of Pocchiola’s two primary invariants whose explicit expressions have
been confirmed in [49] (and also after [113] by Alexander Isaev in [64] assuming M is
rigid):

W0 := − 1

3

K
(
L 1

(
L 1(k)

))
L 1(k)2

+
1

3

K
(
L 1(k)

)
L 1

(
L 1(k)

)
L 1(k)3

+

+
2

3

L1

(
L1(k)

)
L1(k)

+
2

3

L1

(
L 1(k)

)
L 1(k)

+
i

3

T (k)

L 1(k)
,

J0 :=
1

6

L 1

(
L 1

(
L 1

(
L 1(k)

)))
L 1(k)

− 5

6

L 1

(
L 1

(
L 1(k)

))
L 1

(
L 1(k)

)
L 1(k)2

− 1

6

L 1

(
L 1

(
L 1(k)

))
L 1(k)

P +

+
20

27

L 1

(
L 1(k)

)3

L 1(k)3
+

5

18

L 1

(
L 1(k)

)2

L 1(k)2
P +

1

6

L 1

(
L 1(k)

)
L 1

(
P
)

L 1(k)
− 1

9

L 1

(
L 1(k)

)
L 1(k)

P P−

− 1

6
L 1

(
L 1

(
P
))

+
1

3
L 1

(
P
)

P− 2

27
P P P.

When M is assumed to be rigid for simplicity, the numerator of W0 contains 52 differential
monomials. WhenM is not assumed rigid, it contains hundreds of thousands of differential
monomials instead! Furthermore, the numerator of J0 is even huger!

Thus, as is known, the complexity increases spectacularly from rigid to nonrigid CR
manifolds. This justifies, in a way, to devote some mathematical works to rigid CR mani-
folds, as Alexander Isaev did, and as we do in the present memoir.
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The full {e}-structure obtained by Foo-Merker in [49] for nonrigidM5 ⊂ C3 shows that
a unique prolongation of G-structure is needed, introducing one further parameter t ∈ R,
together with a (very complicated) real modified Maurer-Cartan form Λ = dt + · · · and
that all appearing torsion coefficients are secondary invariants. The constructed bundle
P 10 −→M5 is equipped with ten coordinates:(

z1, z2, z1, z2, v, c, c, e, e, t
)
,

with c ∈ C∗, e ∈ C, t ∈ R, together with a collection of ten complex-valued 1-form which
make a frame for T ∗P 10, denoted:{

ρ, κ, ζ, κ, ζ, π1, π1, π2, π2, Λ
}

(ρ= ρ, Λ = Λ),

and which satisfy 10 invariant structure equations; however, we will not write the struc-
ture equations for dπ1, dπ1, dπ2, dπ2, dΛ, because they are not simple, and anyway, they
incorporate only secondary invariants.

Thus quite unexpectedly, Pocchiola discovered that all primary invariants appear before
prolongation of the equivalence problem, that is to say, they already appear at the beginning
of the story, in the structure equations (1.7).

This phenomenon is in some sense ‘counter-intuitive’ to CR geometers, since for Levi
nondegenerate CR structures M2n+1 ⊂ Cn+1, and for the corresponding second order PDE
systems, no curvatures appear after absorption before prolongation (summation convention
holds):

dω = ωα ∧ ωα + ω ∧ ϕ,
dωα = ωβ ∧ ϕαβ + ω ∧ ϕα,
dωα = ϕβα ∧ ωβ + ωα ∧ ϕ+ ω ∧ ϕα,

while primary and secondary invariants appear afterwards, e.g. like Sασβρ and Rα
βγ , Tαγβ in:

dϕαβ = 1
2
δαβ ψ ∧ ω − ϕ

γ
β ∧ ϕ

α
γ − ϕβ ∧ ωα − ϕα ∧ ωβ + δαβ ω

γ ∧ ϕγ +

+ Sασβρ ω
ρ ∧ ωσ +Rα

βγ ω
γ ∧ ω + Tαγβ ωγ ∧ ω.

Next, in the ‘flat case’ where both J0 ≡ 0 ≡ W0 vanish identically, which implies
R ≡ 0 too, Pocchiola’s structure equations reduce to constant coefficients:

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,(1.8)

dζ =
(
π1 − π1

)
∧ ζ + i π2 ∧ κ.

Then a key point is to show that after prolongation, precisely the structure equations of the
Gaussier-Merker model pop up, namely (conjugate equations are unwritten):

dρ = π1 ∧ ρ+ π1 ∧ ρ+ i κ ∧ κ,
dκ = π1 ∧ κ+ π2 ∧ ρ+ ζ ∧ κ,
dζ = i π2 ∧ κ+ π1 ∧ ζ − π1 ∧ ζ,
dπ1 = i κ ∧ π2 + ζ ∧ ζ + Λ ∧ ρ,
dπ2 = π2 ∧ π1 + ζ ∧ π2 + Λ ∧ κ,
dΛ = i π2 ∧ π2 + Λ ∧ π1 + Λ ∧ π1,
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and not the structure equations of any other kind of hypersurface M5 ⊂ C3. This was done
by Pocchiola at the very end of [113], not published in [92] for reasons of space.

In the meanwhile, Wei Guo Foo found that Pocchiola missed the presence of a purely
imaginary function h = iH with H = H in computations starting from (1.8), which could
have destroyed Pocchiola’s main result (!), because some (phantom) primary invariants
could have then existed in the structure equations for dπ1, dπ1, dπ2, dπ2, dΛ, exactly as in
Cartan-Chern-Moser’s computations!

Fortunately, this function h = iH could be shown to vanish, hence phantoms remained
phantoms, and the correction to the (unpublished) end of [113] will appear as [102], pre-
published at the end of [49]. Maybe Pocchiola just did not type a proper presentation, and
was anyway right in his manuscripts.

Lastly, we recall that Cartan adopted Lie’s principle of thought ([78, Chap. 1]), as we
do too, which admits that either a given differential invariant, call it P, is identically zero,
or is assumed to be nowhere zero, after restriction to an appropriate open subset:

P ≡ 0,

P

77

''
P 6≡ 0.

Mixed cases where some invariant is nonzero on some nonempty open subset and vanishes
on a nonempty closed subset are excluded from exploration.

Therefore there is essentially no necessity to set up an {e}-structure when W0 ≡ 0 ≡ J0,
because when either W0 6≡ 0, hence W0 6= 0 after restriction, or J0 6≡ 0, hence J0 6= 0 after
restriction, Cartan’s method commands to continue the group parameter normalizations!

Pocchiola indeed listened to captain Cartan, and was able to prove the

THEOREM 1.9. [113, 92, 49, 102] Only two primary invariants, W0 and J0, occur for
biholomorphic equivalences of C2,1 real analytic hypersurfaces M5 ⊂ C3, and:

0 ≡ W0 ≡ J0 ⇐⇒ M is equivalent to the Gaussier-Merker model.

Furthermore, when either W0 6= 0 or J0 6= 0, the equivalence problem reduces to a 5-
dimensional {e}-structure on M5.

As a corollary known from general Cartan theory, every non-flat M5 ∈ C2,1 has CR
automorphisms group of dimension 6 5. This confirmed the same dimensional gap esti-
mate 10 ↓ 5 obtained by Fels-Kaup in [44], who assumed M to be homogeneous from the
beginning.

Now, as said, we will work with rigid hypersurfaces, which is easier. Only in a future
publication will we complete the views of [75] by comparing them with Pocchiola’s results
in a deeper way, inspired by the present article.

We start by presenting the Moser side of the river. But before we really treat C2,1 hyper-
surfaces M5 ⊂ C3, let us explain first how we can get rid of infinity in the local Lie group
of rigid biholomorphisms by performing what we will call as in [75] a prenormalization,
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which is here, as we already saw, to reach:

u = zz +
∑
j,k>2

Fj,k z
jzk,(1.10)

with Fk,j = Fj,k.
How can we do this? Simple! First, starting from a general u =

∑
j+k>1 Fj,k z

jzk, we
get rid of all harmonic terms Fj,0 zj , F0,k z

k in the graphing function by setting:

z′ := z, w′ := w − 2
∑
j>1

Fj,0 z
j,

and we get a new graphed equation of the form (dropping primes):

u =
∑
j>1
k>1

Fj,k z
jzk.

By this, we have erased an infinite number of coefficients Fj,0, F0,k, which was possible
thanks to the infinite dimensionality of the group of rigid biholomorphisms. More precisely,
we have consumed 1 function of 1 complex variable.

Next, assuming Levi nondegeneracy at the origin, making an elementary linear transfor-
mation (exercise), we can assume:

u = zz +
∑
j+k>3
j, k>1

Fj,k z
jzk

= zz + z
(∑
j>2

Fj,0 z
j
)

+ z
(∑
k>2

F0,k z
k
)

+
∑
j>2
k>2

Fj,k z
jzk.

Here, the presence of the monomial zz is very advantageous in that it enables to capture all
monomials z zj and their conjugates z zk in a tricky but simple factorization, in which we
abbreviate Λ(z) :=

∑
j>2 Fj,0 z

j:

u =
(
z + Λ(z)

)(
z + Λ(z)

)
− Λ(z) Λ(z) +

∑
j>2
k>2

Fj,k z
jzk.

The same factorization idea will work soon for M5 ∈ C2,1. Then by making the biholo-
morphism:

z′ := z + Λ(z) = z + Oz(2), w′ := w,

it is not difficult to see (details in Section 2) that we come to the prenormalized form (1.10).
Observe that we have consumed a second infinity, again 1 function of 1 complex variable.

Why do we call this prenormal form? Firstly, because it is in a sense easily and almost
freely got from the assumptions. Secondly, because one key aspect of power series normal
forms is the progressive reduction of stability groups, not well emphasized in [71, 75]. The
reader is referred to Sections 13 and 16 of Chen-Merker [21] to see examples of curves
C1 ⊂ R2 and surfaces S2 ⊂ R3 modulo the group of special affine transformations for
which successive stability groups are explicitly described.

The presence of group structure reduction also in Moser’s theory of normal forms is
in surprising homology, not to say harmony, with Cartan’s method of equivalence, whose
main gist is group structure reduction.
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Plato’s Philosophy states that Mathematical objects are one and the same in their World.
Various theories elaborate different concept to grasp these Ideas. The more adequate the
concepts are, the more unitary they are. What we are claiming is again a good sign of Unity
in Mathematics.

Indeed, once a prenormalization is obtained, in order to normalize F (z, z) further, it is
natural to assume that the next rigid biholomorphic transformations (z, w) 7−→ (z′, w′) to
be used should keep unchanged the ‘shape’ of the prenormalization, namely send:

u = zz +
∑
j,k>2

Fj,k z
jzk to u′ = z′z′ +

∑
j,k>2

F ′j,k z
′jz′

k
.

This of course imposes many contraints on the map (z, w) 7−→ (z′, w′). And in the rigid
context, it is easy to see (in Section 2), that only a finite-dimensional Lie group remains.
Thus, after prenormalization is performed, one is led back to Lie’s original theory [78, 109]
in jet spaces for finite-dimensional continuous groups, which can be safely and naturally
applied, to finish.

Next, what about C2,1 rigid hypersurface M5 ⊂ C3? Quite the same!
In coordinates (z, ζ, z, ζ) ∈ C3, we start at the origin with:

u =
∑

a+b+c+d>1

Fa,b,c,d z
aζbzcζ

d
.

Abbreviating χ(z, ζ) :=
∑

a+b>1 Fa,b,0,0 z
aζb, we similarly get rid of pluriharmonic terms

thanks to z′ := z, ζ ′ := ζ , w′ := w − 2χ(z, ζ), receiving, after dropping primes, a right-
hand side graphing function F which satisfies:

0 = Fa,b,0,0 = F0,0,c,d.

Next, since M is 2-nondegenerate and has Levi form of rank 1 at the origin, it is not
difficult (see Section 5) to bring its cubic approximation to:

u = zz + 1
2
z2ζ + 1

2
z2ζ +

∑
a+b+c+d>4
a+b>1
c+d>1

Fa,b,c,d z
aζbzcζ

d
.

And now, the same idea of absorption by factorization pops up. But compared to M3 ⊂
C2, there is a difference: two nontrivial monomials zz (self-conjugate) and 1

2
z2ζ (with its

equivalent conjugate) can be used to absorb infinities. Writing them as z
(
z
)

and z2
(

1
2
ζ
)
,

we may therefore capture all holomorphic monomials behind z
(
· · ·
)

and behind z2
(
· · ·
)
,

by making the rigid biholomorphism:

z +
∑
a+b>1

Fa,b,1,0 z
aζb =: z′,

1
2
ζ +

∑
a+b>2

Fa,b,2,0 z
aζb =: ζ ′,

with unchanged w′ := w. The true story is a little more subtle, requires more care, and will
be told with rigorous details in Section 5.

Therefore, after having consumed three holomorphic functions of the two complex vari-
ables (z, ζ), we end up with a graph u = F (z, ζ, z, ζ) which is prenormalized in the sense
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that:
0 = Fa,b,0,0 = F0,0,c,d,

0 = Fa,b,1,0 = F1,0,c,d,

0 = Fa,b,2,0 = F2,0,c,d,

except of course F1,0,1,0 = 1 and F2,0,0,1 = 1
2

= F0,1,2,0. An equivalent way to express
prenormalization is to write that (exercise):

u = F = zz + 1
2
z2ζ + Oz(3) + Oζ(1).

The next task is to normalize F beyond prenormalization.
Because in C2 a general rigid hypersurface u = F = zz + Oz,z(3) is naturally repre-

sented as a perturbation of the (flat) model u = zz, we represent a general rigid M ∈ C2,1

as a perturbation of the Gaussier-Merker model:

u = F
(
z, ζ, z, ζ

)
= m(z, ζ, z, ζ) +G

(
z, ζ, z, ζ

)
,

but — warning! —, the remainder function G here cannot be arbitrary, it must be so that
Levi(m +G) ≡ 0.

Next, inspired by [75], we show in the key Proposition 5.7 that in prenormalized coor-
dinates, one necessarily has:

G = Oz,z(3).

Since the Gaussier-Merker function:

m(z, ζ, z, ζ) =
zz + 1

2
z2ζ + z2ζ

1− ζζ
is homogeneous of degree 2 in (z, z), this conducts us, as in [75], to assign the following
weights to the coordinate variables:

[z] := 1 =: [z], [ζ] := 0 =:
[
ζ
]
, [w] := 2 =: [w].

Similarly as for rigid M3 ⊂ C2, we next ask: which rigid transformations stabilize
prenormalization?, and we will again realize that only a finite-dimensional Lie group re-
mains.

Thus we take M in C3 3 (z1, z2, w) graphed as u = F = m + G and M ′ in C3 3
(z′1, z

′
2, w

′) graphed as u′ = F ′ = m′ +G′, with G prenormalized:

G = Oz(3) + Oζ(1) = Oz,z(3),(1.11)

(none condition implies the other), and the same about G′. The goal is to normalize further
G′.

Without waiting, we expand G in weighted homogeneous parts:

G =
∑
ν>3

Gν , Gν =
∑
a+c=ν

zazcGa,c(ζ, ζ),

and the same for G′, with, unlike in Moser’s theory for Levi nondegenerate hypersurfaces
in Cn+1, coefficient-functions Ga,c which are analytic, not polynomial.

The elementary Proposition 5.11 shows that, composing in advance with some element
of the 2-dimensional isotropy group (1.2) of the origin for the Gaussier-Merker model, we
can assume that the normalizing map has weighted expansion of the form:

f = z + f2 + f3 + · · · , g = ζ + g1 + g2 + · · · , h = w + h3 + h4 + · · · ,
(1.12)
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where, for ν = 3, 4, 5, . . . , the appearing holomorphic functions fν−1, gν−2, hν are
weighted homogeneous. Keeping good memory of this pre-composition, there will remain
at the end a 2-dimensional ambiguity in the obtained normal form.

As in Jacobowitz’s [71, Ch. 3] presentation of Moser’s method, with increasing weights
ν = 3, 4, 5, . . . , we shall perform successive holomorphic rigid transformations of the
shape:

z′ := z + fν−1, ζ ′ := ζ + gν−2, w′ := w + hν .

Then in the main Proposition 6.2, we will show that through any such biholomor-
phism (1.12) which transforms:

u = m+G3+· · ·+Gν−1+Gν+O(ν+1) into u′ = m+G′3+· · ·+G′ν−1+G′ν+O′(ν+1),

homogeneous terms are kept untouched up to order 6 ν − 1:

G′µ
(
z, ζ, z, ζ

)
= Gµ

(
z, ζ, z, ζ

)
(36µ6 ν−1),

while:

G′ν
(
z, ζ, z, ζ

)
= Gν

(
z, ζ, z, ζ

)
−2 Re

{
z+zζ

1−ζζ fν−1(z, ζ)+ (z+zζ)2

2(1−ζζ)2 gν−2(z, ζ)− 1
2
hν(z, ζ)

}
.

Here, the freedom, which consists of a triple {fν−1, gν−2, hν
}

of holomorphic functions
of the two complex variables (z, ζ), can be used to simplify

/
normalize G′ν in comparison

with Gν .
It is important to point out that in this paper, we dispense ourselves completely of mak-

ing a formal theory of normal form before conducting a geometric reduction to normal
form, we come directly to (geometric) heart.

Then we study the initial weights ν = 3, 4, 5, even restricting our attention firstly to
total degree a + b + c + d 6 5. In Section 7, we show that only two monomials (up to
conjugation) remain after prenormalization in:

G3 = 2 Re
{
z3ζ G3,0,0,1 + z3ζ

2
G3,0,0,2

}
+ Oz,ζ,z,ζ(6).

Using the freedom (1.12) and taking account of preservation of prenormalization, similarly
as in [21], we show that we can annihilate G′3,0,0,1 := 0. And then, we show that no other
Taylor coefficient of G3 can be normalized, if one requires preservation of G3,0,0,1 = 0 =
G′3,0,0,1

In particular, this implies that there is no invariant of (differential) order 4, and this
confirms the results of [51], to be reviewed and compared in a while.

Next, we study ν = 4, still with a + b + c + d 6 5, and there are again only two
monomials:

G4 = 2 Re
{
z4ζ G4,0,0,1 + z3zζ G3,0,1,1

}
+ Oz,ζ,z,ζ(6).

Using the freedom (1.12) and taking account of preservation of all preceding normaliza-
tions, we show that we can annihilate ImG′3,0,1,1 := 0. And then, we show that no other
Taylor coefficient of G4 can be normalized.

Lastly, for every remaining ν > 5, we verify that only the identity tranformation z′ = z,
ζ ′ = ζ , w′ = w, stabilizes prenormalization and:

0 = G3,0,0,1 = G′3,0,0,1, 0 = ImG3,0,1,1 = ImG′3,0,1,1.

namely we show that 0 = fν−1 = gν−2 = hν , necessarily.
Moser’s algorithm therefore terminates, and we may at last state our main
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THEOREM 1.13. Every hypersurface M5 ∈ C2,1 is equivalent, through a local rigid
biholomorphism, to a rigid C ω hypersurface M ′5 ⊂ C′3 which, dropping primes for target
coordinates, is a perturbation of the Gaussier-Merker model:

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
+

∑
a,b,c,d∈N
a+c>3

Ga,b,c,d z
aζbzcζ

d
,

with a simplified remainder G which:
(1) is normalized to be an Oz,z(3);
(2) satisfies the prenormalization conditions G = Oz(3) + Oζ(1) = Oz(3) + Oζ(1):

Ga,b,0,0 = 0 = G0,0,c,d,

Ga,b,1,0 = 0 = G1,0,c,d,

Ga,b,2,0 = 0 = G2,0,c,d;

(3) satisfies in addition the sporadic normalization conditions:
G3,0,0,1 = 0 = G0,1,3,0,

ImG3,0,1,1 = 0 = ImG1,1,3,0.

Furthermore, two such rigid C ω hypersurfaces M5 ⊂ C3 and M ′5 ⊂ C′3, both brought
into such a normal form, are rigidly biholomorphically equivalent if and only if there exist
two constants ρ ∈ R∗+, ϕ ∈ R, such that for all a, b, c, d:

Ga,b,c,d = G′a,b,c,d ρ
a+c−2

2 eiϕ(a+2b−c−2d).

Now, before talking about any bridge, we must survey the results of the article [51], from
Cartan’s side of the river. These results were finalized after the stay in Orsay of Alexander
Isaev, who raised the problem. The reader is referred to the introduction of [51] for more
extensive information.

Consider as before a rigid M5 ⊂ C3 with 0 ∈ M , which is 2-nondegenerate and has
Levi form of constant rank 1, i.e. belongs to the class C2,1, and which is graphed as:

u = F
(
z1, z2, z1, z2

)
.

The letter ζ is protected, hence not used instead of z2, since ζ will denote a 1-form. The
two natural generators of T 1,0M and T 0,1M are:

L1 := ∂z1 − i Fz1 ∂v and L2 := ∂z2 − i Fz2 ∂v,
in the intrinsic coordinates (z1, z2, z1, z2, v) on M . The Levi kernel bundle K1,0M ⊂
T 1,0M is generated by:

K := k L1 + L2, where k := − Fz2z1
Fz1z1

,

is the slant function. The hypothesis of 2-nondegeneracy is equivalent to the nonvanishing:

0 6= L 1(k).

Also, the conjugate K generates the conjugate Levi kernel bundle K0,1 ⊂ T 0,1M .
There is a second fundamental function, and no more:

P :=
Fz1z1z1
Fz1z1

.
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In the rigid case, it looks so simple! But in the nonrigid case, P has a numerator involving
69 differential monomials!

Foo-Merker-Ta produced in [51] reduction to an {e}-structure for the equivalence prob-
lem, under rigid (local) biholomorphic transformations, of such rigid M5 ∈ C2,1. They
constructed an invariant 7-dimensional bundle P 7 −→M5 equipped with coordinates:(

z1, z2, z1, z2, v, c, c
)
,

with c ∈ C, together with a collection of seven complex-valued 1-form which make a frame
for T ∗P 7, denoted: {

ρ, κ, ζ, κ, ζ, α, α
}

(ρ= ρ),

which satisfy 7 invariant structure equations of the form:

dρ =
(
α + α

)
∧ ρ+ i κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ =
(
α− α

)
∧ ζ +

1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ,

conjugate structure equations for dκ, dζ , dα being easily deduced.
Here, as in Pocchiola’s Ph.D., there are exactly two primary Cartan-curvature invariants:

I0 := − 1

3

K
(
L 1

(
L 1(k)

))
L 1(k)2

+
1

3

K
(
L 1(k)

)
L 1

(
L 1(k)

)
L 1(k)3

+

+
2

3

L1

(
L1(k)

)
L1(k)

+
2

3

L1

(
L 1(k)

)
L 1(k)

,

V0 := − 1

3

L 1

(
L 1

(
L 1(k)

))
L 1(k)

+
5

9

Å
L 1

(
L 1(k)

)
L 1(k)

ã2

−

− 1

9

L 1

(
L 1(k)

)
P

L 1(k)
+

1

3
L 1(P)− 1

9
P P.

One can check that Pocchiola’s W0 which occurs under general biholomorphic transforma-
tions of C3 (not necessarily rigid!), when written for a rigid M5 ⊂ C3, identifies with:

I0

(
F (z1, z2, z1, z2)

)
≡ W0

(
F (z1, z2, z1, z2)

)
.

Furthermore, there is one secondary invariant whose unpolished expression is:

Q0 :=
1

2
L 1

(
I0

)
− 1

3

Å
P−

L1

(
L1(k)

)
L1(k)

ã
I0 −

1

6

Å
P−

L 1

(
L 1(k)

)
L 1(k)

ã
I0 −

1

2

K (V0)

L 1(k)
.

Visibly indeed, the vanishing of I0 and V0 implies the vanishing of Q0. In fact, a conse-
quence of Cartan’s general theory is:

0 ≡ I0 ≡ V0 ⇐⇒ M is rigidly equivalent to the Gaussier-Merker model.

In [51], by deducing new relations from the structure equations above, it was proved that
Q0 is real-valued, but a finalized expression was missing there. A clean finalized expression
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of Q0, in terms of only the two fundamental functions k, P (and their conjugates), from
which one immediately sees real-valuedness, is:

Q0 := 2 Re

ß
1

9

K
(
L 1(k)

)
L 1

(
L 1(k)

)2

L 1(k)4
−

− 1

9

K
(
L 1

(
L 1(k)

))
L 1

(
L 1(k)

)
L 1(k)3

− 1

9

K
(
L 1(k)

)
L 1

(
L 1(k)

)
P

L 1(k)3
−

− 1

9

L1

(
L 1(k)

)
L 1

(
L 1(k)

)
L 1(k)2

+
1

9

K
(
L 1

(
L 1(k)

))
P

L 1(k)2
−

− 2

9

L1

(
L 1(k)

)
P

L 1(k)
− 1

9

L 1

(
L 1(k)

)
P

L 1(k)
+

1

3

L1

(
L 1

(
L 1(k)

))
L 1(k)

+
1

6
L 1(P)

™
− 1

9

∣∣P∣∣2 +
1

3

∣∣∣∣L 1

(
L 1(k)

)
L 1(k)

∣∣∣∣2.
Section 8 is devoted to provide the details of the necessary, nontrivial computations.
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2. Rigid Equivalences of Rigid Hypersurfaces in C2: A Toy Study

We first consider the equivalence problem of rigid hypersurfaces in C2 under the action
of rigid biholomorphic transformations. We will solve this problem with both Cartan’s
method of equivalence and Moser’s method of normal forms. The calculations here are
simple, and they will serve as a toy model for our more substantial problem in C3 later.
Throughout this section, we use the complex coordinates (z, w) on C2 with w = u + iv,
where u, v ∈ R.

We recall that a real analytic hypersurface in C2 is called rigid if it can be written
{
u =

F (z, z)
}

, where F is a converging power series in z, z. A local biholomorphic map of C2

of the form:

(z, w) 7−→
(
f(z), a w + g(z)

)
,(2.1)

with a ∈ R∗, c ∈ R, will be called called rigid. Most of the times, we will assume that the
origin is fixed, whence 0 = f(0) = g(0).

Since rigid transformations send rigid hypersurfaces to hypersurfaces which are again
rigid, it then makes sense to consider rigid equivalences of rigid hypersurfaces in C2, as we
do here. The homogeneous model here is (still) the Heisenberg sphere {u = zz}, whose
rigid automorphisms fixing the origin can be extracted from the set of general automor-
phisms of the sphere (exercise).
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As a starter, consider a rigid biholomorphic map (z, w) 7−→
(
f(z), a w + g(z)

)
=:

(z′, w′) between two hypersurfaces {u = F (z, z)} in C2 and {u′ = F ′(z′, z′)} in C2 too.
From:

F ′
(
f(z), f(z)

)
= F ′

(
z′, z′

)
= u′ = a u+ Re g(z) = aF (z, z) + 1

2
g(z) + 1

2
g(z),

it comes the fundamental equation, identically satisfied:

F ′
(
f(z), f(z)

)
≡ aF (z, z) + 1

2
g(z) + 1

2
g(z).(2.2)

LEMMA 2.3. Through a rigid biholomorphism between two rigid hypersurfaces {u =
F} and {u′ = F ′} in C2, it holds:

Fzz = 1
a

∣∣fz∣∣2 F ′z′z′ .
PROOF. Applying ∂z∂z eliminates g and g above and yields the result. �

Thus, Fzz is a relative invariant: it is nonvanishing in one system of coordinates if
and only if it is nonvanishing in any other system of coordinates. Of course, M is Levi
nondegenerate in the classical sense if and only if Fzz 6= 0. We will constantly assume that
this holds at every point.

2.4. Cartan’s method of equivalence. Consider a real analytic graphed hypersurface
M3 = {u = F (z, z)} passing through the origin in C2. Its holomorphic tangent space
T 1,0M := (C ⊗ TM) ∩ T 1,0C is a 1-dimensional complex vector bundle on M . One
can check directly that the vector field L := ∂

∂z
− iFz ∂∂v generates T 1,0M , in the intrin-

sic coordinates (z, z, v) on M . We abbreviate A := −i Fz so that L = ∂
∂z

+ A ∂
∂v

and
L = ∂

∂z
+ A ∂

∂v
.

Assume that M is everywhere Levi nondegenerate, namely Fzz 6= 0. Next, define the
real vector field T on M by T := −i [L ,L ] = ` ∂

∂v
, where ` := −2Fzz. As in [51],

introduce also the auxiliary function on M :

P :=
`z
`

=
Fzzz
Fzz

.

LEMMA 2.5. The vector fields T ,L ,L constitute a frame on C⊗TM , with Lie brack-
ets:[

T ,L
]

= −P T ,
[
T ,L

]
= −P T ,

[
L ,L

]
= − iT . �

Next, denote by ρ0, ζ0, ζ0 the (complex) 1-forms on M which are dual to the (complex)
vector fields T ,L ,L , respectively. More precisely, the expressions of ρ0, ζ0, ζ0 in terms
of dv, dz, dz are:

ρ0 := 1
`

(
dv − Adz − Adz

)
, ζ0 := dz, ζ0 = dz.

This gives us an initial coframe for C⊗ TM having structure equations:

dρ0 = P ρ0 ∧ ζ0 + P ρ0 ∧ ζ0 + i ζ0 ∧ ζ0,

dζ0 = dζ0 = 0.

We now look at the action of rigid transformations on M in order to setup an initial
G-structure. Observe that if a rigid biholomorphism h : (z, w) 7−→

(
f(z), aw + g(z)

)
=:

(z′, w′) fixing the origin maps a rigid hypersurface M ⊂ C2 to another rigid hypersurface
M ′ ⊂ C′2, then h sends T 1,0M to T 1,0M ′, i.e. h∗(T 1,0M) = T 1,0M ′. Without loss of
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generality, it can be assumed that the target M ′ = {u′ = F ′(z′, z′)} is also graphed, and is
equipped with a similar frame {T ′,L ′,L

′}. It follows that there exists a uniquely defined
nowhere vanishing function c′ : M ′ −→ C∗ so that h∗(L ) = c′L ′.

Similary, h∗(T ) = a′T + b′L + b
′
L
′
. From Definition 2.1, it is clear that h∗(∂v) =

a ∂v′ . Since T = ` ∂v and T ′ = `′ ∂v′ , it comes h∗(T ) = a `
`′

T ′. Hence b′ = 0.
Furthermore:

h∗(T ) = h∗
(
− i [L ,L ]

)
= − i

[
h∗(L ), h∗(L )

]
= − i

[
c′L ′, c′L

′]
= c′c′T ′,

with necessarily 0 ≡ L ′(c′) while expanding the bracket thanks to b′ = 0, and we conclude
that the function a′ = c′c′ is determined.

Consequently, under the action of h, the frame {T ,L ,L } changes as:

h∗

Ñ
T
L
L

é
=

Ñ
c′c′ 0 0
0 c′ 0
0 0 c′

éÑ
T ′

L ′

L
′

é
(c′ 6= 0).

This gives us the transfer relation between the two dual coframes, in terms of a nowhere
vanishing function c : M −→ C∗:

h∗

Ñ
ρ′0
ζ ′0
ζ
′
0

é
=

Ñ
cc 0 0
0 c 0
0 0 c

éÑ
ρ0

ζ0

ζ0

é
.

The initial G-structure is now obtained as follows. Such a function c is replaced by a
free variable c ∈ C∗, an unknown of the problem. The structure group is the 2-dimensional
Lie group of matrices of the form:

g =

Ñ
cc 0 0
0 c 0
0 0 c

é
(c 6= 0),

and we introduce the lifted coframe:Ñ
ρ
ζ
ζ

é
:= g ·

Ñ
ρ0

ζ0

ζ0

é
.

We are now in the position to apply Cartan’s method of equivalence to the G-structure
just obtained. First, we compute the Maurer-Cartan matrix as:

dg · g−1 =

Ñ
dc
c

+ dc
c

0 0
0 dc

c
0

0 0 dc
c

é
,

and there is only one (complex-valued) Maurer-Cartan form α := dc
c

. The structure equa-
tions are the following:

dρ =
(
α + α

)
∧ ρ+

1

c
P ρ ∧ ζ +

1

c
P ρ ∧ ζ + i ζ ∧ ζ,

dζ = α ∧ ζ,
dζ = α ∧ ζ.
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We proceed to absorption of torsion by introducing the modified Maurer-Cartan form:

π := α− 1
c

P ζ,
in terms of which the structure equations contract as:

dρ = (π + π) ∧ ρ+ i ζ ∧ ζ,
dζ = π ∧ ζ, dζ = π ∧ ζ.

At this point, no more absorption can be performed, because if one modifies the 1-form
π as π̃ := π − Aρ−B ζ − C ζ , which transforms the structure equations into:

dρ =
(
π̃ + π̃

)
∧ ρ− (B + C) ρ ∧ ζ − (B + C) ρ ∧ ζ + i ζ ∧ ζ,

dζ = π̃ ∧ ζ + Aρ ∧ ζ − C ζ ∧ ζ,

all the functions A, B, C must be zero to conserve the same shape. In other words, the
prolongation reduces to identity, and π is uniquely defined.

Therefore, Cartan’s process stops, and to finish, it remains to finalize the expression of:

dπ = dα◦ + 1
c
dc
c

P ∧ ζ − 1
c
dP ∧ ζ − 1

c
P dζ

= 0 + 1
c

(
π + 1

c
P ζ
)

P ∧ ζ − 1
c

(
Pz dz + Pz dz

)
∧ ζ − 1

c
Pπ ∧ ζ

= − 1
c

(
Pz

1
c
ζ + Pz

1
c
ζ
)
∧ ζ,

where we need to know
/

abbreviate just:

Pz = FzzzzFzz−Fzzz Fzzz
(Fzz)2

=: R,

whence:
dπ = 1

cc
R ζ ∧ ζ.

Visibly, R = R is real, because F = F is, whence Fzazc = Fzazc .

THEOREM 2.6. The equivalence problem under local rigid biholomorphisms of C ω

rigid real hypersurfaces {u = F (z, z)} in C2 whose Levi form is everywhere nondegen-
erate reduces to classifying {e}-structures on the 5-dimensional bundle M3 × C equipped
with coordinates (z, z, v, c, c) together with a coframe of 5 differential 1-forms:{

ρ, ζ, ζ, π, π
}

(ρ= ρ),

which satisfy invariant structure equations of the shape:

dρ = (π + π) ∧ ρ+ i ζ ∧ ζ,
dζ = π ∧ ζ, dζ = π ∧ ζ,
dπ = 1

cc
R ζ ∧ ζ, dπ = − 1

cc
R ζ ∧ ζ.

Another way to see that R = R is real from the structure equations is as follows, using
Poincaré’s relation:
0 = d ◦ dρ =

(
dπ + dπ

)
∧ ρ−

(
π + π

)
∧ dρ+ i dζ ∧ ζ − i ζ ∧ dζ

=
1

cc
R ζ ∧ ζ ∧ ρ+

1

cc
R ζ ∧ ζ ∧ ρ−

(
π + π

)[(
π + π

)
◦
∧ ρ+ i ζ ∧ ζ

]
+ i π ∧ ζ ∧ ζ − i ζ ∧ π ∧ ζ

=
1

cc

(
R−R

)
ρ ∧ ζ ∧ ζ.
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Thus, the only invariant here is:

R :=
Fzzzz Fzz − Fzzz Fzzz

(Fzz)2
.(2.7)

When R ≡ 0, the structure equations have constants coefficients, which shows, by Cartan’s
theory, that all rigid hypersurfaces with R ≡ 0 are rigidly equivalent to each other, and
equivalent to the model {u = zz}. There also are straightforward arguments to get this.

PROPOSITION 2.8. A rigid M = {u = F (z, z)} in C2 is rigidly biholomorphically
equivalent to the Heisenberg sphere {u′ = z′z′} if and only if:

0 ≡ R(F ) ≡ Fzzzz Fzz − Fzzz Fzzz.

PROOF. Recall that the condition R(F ) ≡ 0 is invariant under rigid biholomorphisms.
Trivially, F := zz implies R(F ) ≡ 0.
For the converse, Lemma 2.3 guarantees that M is of course Levi-nondegenerate too,

and by invariancy of R = 0, we can assume that F = zz + Oz,z(3).
Set G := Fzz, a function which is also real-valued, with G(0) = 1. Thus:

0 ≡ Gzz G−Gz Gz ⇐⇒
(
logG

)
zz
≡ 0.

Consequently logG(z, z) = ϕ(z) + ϕ(z) for some holomorphic function with ϕ(0) = 0,
whence G(z, z) = ψ(z) · ψ(z) with ψ(0) = 1, and

F (z, z) =

∫ z

0

ψ(ζ) dζ ·
∫ z

0

ψ(ζ) dζ =: f(z) · f(z),

with f(z) = z + Oz(2). Thus u = f(z) f(z), and the rigid biholomorphism z′ := f(z)
terminates. �

We know from Lemma 2.3 that Fzz is a relative invariant. What about R? It suffices to
examine how the numerator of R behaves under transformations.

LEMMA 2.9. Through a rigid biholomorphism (z, w) 7−→
(
f(z), a w + g(z)

)
=:

(z′, w′) between two rigid hypersurfaces {u = F} and {u′ = F ′} in C2, it holds:

Fzzzz Fzz − Fzzz Fzzz ≡ 1
a2

(
fz f z

)3
[
F ′z′z′z′z′ F

′
z′z′ − F ′z′z′z′ F ′z′z′z′

]
.

PROOF. Differentiate the fundamental identity (2.2) four appropriate times:

aFzz ≡ fz f z F
′
z′z′ ,

a Fzzz ≡ fzz f z F
′
z′z′ + fzf zfz F

′
z′z′z′ ,

a Fzzz ≡ fzf zz F
′
z′z′ + fzf zf z Fz′z′z′ ,

a Fzzzz ≡ fzzf zz F
′
z′z′ + fzzf zf z F

′
z′z′z′ + fzf zzfz F

′
z′z′z′ + fzf zfzf z F

′
z′z′z′z′ ,

perform the necessary products, substract, and get the result. �

2.10. Method of normal forms of Moser. In this subsection, following the method of
Moser, we will approach the equivalence problem for rigid hypersurfaces in C2 under
rigid biholomorphisms by constructing a normal form. Notice that although the problem is
(much) simpler than that considered by Moser for general hypersurfaces in C2, our problem
here is not a special case of what is already known.
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The goal is to simplify the defining function u = F (z, z) of a given hypersurface M3 ⊂
C2 as much as possible by applying rigid holomorphic changes of variables (z, w) 7→(
f(z), ρ w + g(z)

)
=: (z′, w′), with ρ ∈ R∗. We will find step by step changes, so that

the transformed graphing functions F ′ for successive M ′ =
{
u′ = F ′(z′, z′)

}
will contain

more and more zero coefficients.
Take a real analytic hypersurface M = {u = F (z, z)} passing through the origin in C2,

and expand:

u = 1
2

(
w + w

)
=
∑
j+k>1

Fj,k z
jzk,

with Fj,k = F k,j . At first, set z′ := z and:

w′ := w − 2
∑
j>1

Fj,0 z
j,

in order to subtract all harmonic monomials Fj,0 zj and F0,k z
k to obtain:

u′ =
∑
j>1
k>1

Fj,k z
jzk = F1,1 zz +

∑
j+k>3

j>1 and k>1

Fj,k z
jzk.

The invariant property F1,1 6= 0 characterizes Levi nondegeneracy of M at the origin
(hence in a neighborhood). Switching u 7−→ −u if necessary, we may assume F1,1 > 0.

Next, make the rigid biholomorphism z′ :=
√
F1,1 z with w′ := w, drop the prime,

single out monomials of degree 1 in either z or z, factorize, and point out remainders:

u = zz +
∑

j+k>3
j>1 and k>1

Fj,k√
F1,1

j+k
zjzk

= zz + z

Å
F2,1

F
3/2
1,1

z2 +
∑
j>3

Fj,1

F
(j+1)/2
1,1

zj
ã

+ z

Å
F1,2

F
3/2
1,1

z2 +
∑
k>3

F1,k

F
(1+k)/2
1,1

zk
ã

+
F2,2

F 2
1,1

z2z2 +
∑

j+k>5
j>2 and k>2

Fj,k

F
(j+k)/2
1,1

zjzk

=

Å
z +

F2,1

F
3/2
1,1

z2 +
∑
j>3

Fj,1

F
(j+1)/2
1,1

zj
ãÅ

z +
F1,2

F
3/2
1,1

z2 +
∑
k>3

F1,k

F
(1+k)/2
1,1

zk
ã
− F2,1 F1,2

F 3
1,1

z2z2 − z2z3
(
· · ·
)
− z3z2

(
· · ·
)

+

+
F2,2

F 2
1,1

z2z2 + z2z3
(
· · ·
)

+ z3z2
(
· · ·
)
.

Such a factorization suggests to perform the rigid biholomorphism:

z′ := z +
F2,1

F
3/2
1,1

z2 +
∑
j>3

Fj,1

F
(j+1)/2
1,1

zj,

again with untouched w′ := w. Its inverse is of the form z = z′
(
1 + z′2(· · · )

)
, so

O
(
zlzm

)
= O

(
z′lz′m

)
, and finally, dropping primes, we have proved the

PROPOSITION 2.11. Any rigid M =
{
u =

∑
Fj,k z

jzk
}

can be brought, by a rigid
biholomorphic transformation fixing the origin, to:

u = zz +
[F2,2 F1,1 − F2,1 F1,2

F 3
1,1

]
z2z2 + z2z3

(
· · ·
)

+ z3z2
(
· · ·
)
. �
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In other words:

0 = Fj,0 = F0,k (j > 1, k> 1),

1 = F1,1,

0 = Fj,1 = F1,k (j > 2, k> 2).

Can one normalize the graphing function F further? For instance, can one annihilate
some other Fj,k? Not much freedom is left, as states the next

LEMMA 2.12. If two rigid hypersurfaces in C2 having the form:

u = zz +
∑
j,k>2

Fj,k z
jzk and u′ = z′z′ +

∑
j,k>2

F ′j,k z
′jz′

k
,

are equivalent through a rigid biholomorphism fixing the origin, then there exist ρ ∈ R∗+
and ϕ ∈ R such that:

z′ = ρ1/2 eiϕ z, w′ = ρw.

In particular, this shows that the group of rigid transformations fixing the origin
of the Heisenberg sphere {u = zz} is 2-dimensional, generated by these obvious
rotation

/
dilation commuting transformations (solution of the exercise).

PROOF. Write as above (z′, w′) =
(
f(z), ρ w + g(z)

)
, with f(0) = 0 = g(0). The

fundamental equation (5.10) reads:

ρF (z, z) + 1
2
g(z) + 1

2
g(z) ≡ F ′

(
f(z), f(z)

)
.

Put z := 0, get g(z) ≡ 0. Thus:

ρ
(
zz + z2z2(· · · )

)
≡ f(z)f(z) + f(z)2f(z)2

(
· · ·
)
,

and using f(z) = O(z):
ρ zz ≡ f(z)f(z) + z2z2

(
· · ·
)
.

Invertibility of the Jacobian yields fz(0) 6= 0. Apply ∂z
∣∣
0

and get:

ρ z ≡ f(z) f
′
(0),

so f(z) = λ z for some λ ∈ C∗. Lastly, ρ = λλ, which concludes. �

COROLLARY 2.13. Two rigid hypersurfaces in C2:

u = zz +
∑
j,k>2

Fj,k z
jzk and u′ = z′z′ +

∑
j,k>2

F ′j,k z
′jz′

k
,

are rigidly biholomorphically equivalent if and only if there exist ρ ∈ R∗+ and ϕ ∈ R such
that:

Fj,k = ρ
j+k−2

2 ei ϕ (j−k) F ′j,k (j > 2, k> 2). �

At any point (z0, w0) ∈ M close to the origin, all these results are also valid, and using
the recentered holomorphic coordinates z − z0 and w − w0, one obtains:

u−u0 = (z−z0)
(
z−z0

)
+

4Fzzzz(z0)Fzz(z0)− 2Fzzz(z0) 2Fzzz(z0)

Fzz(z0)3
(z−z0)2

(
z−z0

)2
+· · · .

The (2, 2)-coefficient at various points z0 is, up to a power of Fzz in the denominator, ex-
actly equal to the relative invariant function R found in (2.7) by applying Cartan’s method.
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According to Lie’s principle of thought ([78, Chap. 1]), a relative invariant is assumed to
be either identically zero, or nowhere zero, after restriction to an appropriate open subset.
Since Proposition 2.8 already understood the branch R ≡ 0, it remains only to treat the
branch R 6= 0. This is left as an exercise.

3. Two Invariant Determinants for Hypersurfaces M5 ⊂ C3

Consider a rigid biholomorphism:

H : (z, ζ, w) 7−→
(
f(z, ζ), g(z, ζ), ρ w + h(z, ζ)

)
=:
(
z′, ζ ′, w′

)
(ρ∈R∗),

hence with Jacobian fzgζ − fζgz 6= 0, between two rigid C ω hypersurfaces:

w = −w+2F
(
z, ζ, z, ζ

)
=: Q and w′ = −w′+2F ′

(
z′, ζ ′, z′, ζ

′)
=: Q′.

Plugging the three components of H in the target equation:

ρw + h(z, ζ) + ρw + h(z, ζ) = 2F ′
(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)
,

and replacing w + w = 2F , one receives the fundamental equation expressing H(M) ⊂
M ′:

2 ρF
(
z, ζ, z, ζ

)
+ h(z, ζ) + h(z, ζ) ≡ 2F ′

(
f(z, ζ), g(z, ζ), f(z, ζ), g(z, ζ)

)
.

By differentiating it (exercise! use a computer!), one expresses as follows the invariancy
of the Levi determinant defined for general biholomorphisms [101] as:∣∣∣∣∣∣

Qz Qζ Qw

Qzz Qzζ Qzw

Qζz Qζζ Qζw

∣∣∣∣∣∣ = 22

∣∣∣∣∣∣
Fz Fζ −1
Fzz Fzζ 0
Fζz Fζζ 0

∣∣∣∣∣∣ .
PROPOSITION 3.1. Through any rigid biholomorphism:∣∣∣∣∣ F ′z′z′ F ′

z′ζ
′

F ′ζ′z′ F ′
ζ′ζ
′

∣∣∣∣∣ =
ρ2∣∣∣∣ fz fζ

gz gζ

∣∣∣∣ ∣∣∣∣ f z f ζ
gz gζ

∣∣∣∣
∣∣∣∣ Fzz Fzζ
Fζz Fζζ

∣∣∣∣ . �

Consequently, the property that the Levi form is of constant rank 1 is biholomorphically
invariant. The 2-nondegeneracy property [101] then expresses as the nonvanishing of:∣∣∣∣∣∣

Qz Qζ Qw

Qzz Qzζ Qzw

Qzzz Qzzζ Qzzw

∣∣∣∣∣∣ = 22

∣∣∣∣∣∣
Fz Fζ −1
Fzz Fzζ 0
Fzzz Fzzζ 0

∣∣∣∣∣∣ .
PROPOSITION 3.2. When the Levi form is of constant rank 1, through any rigid biholo-

morphism: ∣∣∣∣∣ F ′z′z′ F ′
z′ζ
′

F ′z′z′z′ F ′
z′z′ζ

′

∣∣∣∣∣ =
ρ2
(
gζ Fzz − gz Fζz

)3∣∣∣∣ fz fζ
gz gζ

∣∣∣∣3 ∣∣∣∣ f z f ζ
gz gζ

∣∣∣∣
∣∣∣∣ Fzz Fzζ
Fzzz Fzzζ

∣∣∣∣ . �

Recall that we denote the class of (local) hypersurfaces M5 ⊂ C3 passing by the origin
0 ∈M that are 2-nondegenerate and whose Levi form has constant rank 1 as:

C2,1.
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4. Rigid Infinitesimal CR Automorphisms of the Gaussier-Merker Model

The appropriate model MLC is rigid and was set up by Gaussier-Merker in [56] and
Fels-Kaup in [43]:

MLC : u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
=: m

(
z, ζ, z, ζ

)
.

It is a locally graphed representation of the tube in C3 over the future light cone in R3. The
10-dimensional simple Lie algebra of its infinitesimal CR automorphisms:

g := autCR
(
MLC

) ∼= so2,3(R),

has 10 natural generators X1, . . . , X10, which are (1, 0) vector fields having holomorphic
coefficients with Xσ +Xσ tangent to MLC. Assigning weights to variables, to vector fields,
and the same weights to their conjugates:

[z] := 1 [ζ] := 0, [w] := 2
[
∂z
]

:= − 1
[
∂ζ
]

:= 0
[
∂w
]

:= − 2,

(4.1)

this Lie algebra of vector fields isomorphic to so2,3(R) can be graded as:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where, as shown in [56, 51]:

g−2 := Span
{
i ∂w

}
,

g−1 := Span
{

(ζ − 1) ∂z − 2z ∂w, (i+ iζ) ∂z − 2iz ∂w
}
,

where g0 = gtrans
0 ⊕ giso

0 :

gtrans
0 := Span

{
zζ ∂z + (ζ2 − 1) ∂ζ − z2 ∂w, izζ ∂z + (i+ iζ2) ∂ζ − iz2 ∂w

}
,

giso
0 := Span

{
z ∂z + 2w ∂w, iz ∂z + 2iζ ∂ζ

}
,

while:
g1 := Span

{(
z2 − ζw − w) ∂z +

(
2zζ + 2z

)
∂ζ + 2zw ∂w,(

− iz2 + iζw − iw
)
∂z +

(
− 2izζ + 2iz

)
∂ζ − 2izw ∂w

}
,

g2 := Span
{
izw ∂z − iz2 ∂ζ + iw2 ∂w

}
.

Calling these X1, . . . , X10 in order of appearance, the five Xσ +Xσ for σ = 1, 2, 3, 4, 5
span TM5 while those for σ = 6, 7, 8, 9, 10 generate the isotropy subgroup of the origin.

5. Prenormalization

In coordinates (z, ζ, w) ∈ C3 with w = u + i v, consider a local C ω rigid hyper-
surface M5 ⊂ C3 graphed as u = F (z, ζ, z, ζ) passing through the origin. Expand∑

a+b+c+d>1 Fa,b,c,d z
aζbzcζ

d
, and define by conjugating only coefficients:

F
(
z, ζ, z, ζ

)
:=

∑
a+b+c+d>1

F a,b,c,d z
aζbzcζ

d
.

The reality u = u forces F (z, ζ, z, ζ) = F (z, ζ, z, ζ) which becomes:

F
(
z, ζ, z, ζ

)
≡ F

(
z, ζ, z, ζ

)
.
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The 4 independent derivations ∂z, ∂ζ , ∂z, ∂ζ commute. Applying 1
a!
∂az

1
b!
∂bζ

1
c!
∂cz

1
d!
∂d
ζ

at the
origin (0, 0, 0, 0), it comes:

F c,d,a,b = Fa,b,c,d.

With χ(z, ζ) := F (z, ζ, 0, 0) which is holomorphic, setting w′ := w − 2χ(z, ζ), we get:
w′+w′

2
= u′ = F

(
z, ζ, z, ζ

)
− χ(z, ζ)− χ

(
z, ζ
)

=: F ′
(
z, ζ, z, ζ

)
,

with now 0 ≡ F ′(z, ζ, 0, 0) ≡ F ′(0, 0, z, ζ).
By Ox(3), we mean a (remainder) function equal to x3(· · · ), where (· · · ) is any function

of one or several variables. By Ox,y(2), we mean x2(· · · ) + xy(· · · ) + y2(· · · ), and so on.

PROPOSITION 5.1. After a rigid biholomorphism, an M ∈ C2,1 satisfies:

F
(
z, ζ, z, 0

)
= zz + 1

2
ζz2 + Oz(3).

Employing the letter R for unspecified functions, this amounts to:

F
(
z, ζ, z, ζ

)
= zz + 1

2
ζz2 + z3 R

(
z, ζ, z

)
+ ζR

(
z, ζ, z, ζ

)
.(5.2)

We will use without mention:

R
(
z, ζ, z, ζ

)
= R

(
z, ζ, z

)
+ ζR

(
z, ζ, z, ζ

)
.

PROOF. We will perform rigid biholomorphisms of the form z′ = z′(z, ζ), ζ ′ =

ζ ′(z, ζ), w′ = w fixing 0. They transform u = F (z, ζ, z, ζ) into u′ = F ′(z′, ζ ′, z′, ζ
′
)

with:
F ′
(
z′, ζ ′, z′, ζ

′)
:= F

(
z(z′, ζ ′), ζ(z′, ζ ′), z(z′, ζ

′
), ζ(z′, ζ

′
)
)
,

hence they conserves F ′(z′, ζ ′, 0, 0) ≡ 0.
The Levi form being of rank 1 at 0, we may assume:

u = zz + O3

(
z, ζ, z, ζ

)
.

ASSERTION 5.3. After a rigid biholomorphism fixing 0:

F = zz + z2 R + ζR.

PROOF. We can decompose:

F
(
z, ζ, z, ζ

)
= F

(
z, ζ, z, 0

)
+ ζR = z

(
z + χ(z, ζ)

)
+ z2 R + ζR,

with χ = O(2). Then:

F =
(
z + χ

) (
z + χ

)
− z χ− χχ+ z2 R + ζR.

But χ = z2 R(z) + ζR(z, ζ) is absorbable, hence:

F =
(
z + χ

) (
z + χ

)
+ z2 R + ζR.

Thus, we perform the rigid biholomorphism z′ := z + χ(z, ζ), ζ ′ := ζ , with inverse:

z = z′ + Oz′,ζ′(2) = z′ + z′
2
R ′ + ζ ′R ′.

Hence z2 = z′2R ′ + ζ
′
R ′, and lastly:

F ′
(
z′, ζ ′, z′, ζ

′)
= z′z′ + z′

2
R ′ + ζ

′
R ′. �
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Next, dropping primes, specifying 3rd order (real) terms P = P3 in F = zz + P3 +
Oz,ζ,z,ζ(4), let us inspect the Levi determinant:

0 ≡
∣∣∣∣ 1 + Pzz + O2 Pζz + O2

Pzζ + O2 Pζζ + O2

∣∣∣∣ , whence 0 ≡ Pζζ ,

i.e. P is harmonic with respect to ζ when z, z are seen as constants. Thus taking account
of 0 ≡ P (z, ζ, 0, 0):

P = a z2z + a zz2 + ζ
(
b zz + c z2

)
+ ζ

(
b zz + c z2

)
+ ζ2

(
d z
)

+ ζ
2 (
d z
)
.

But Assertion 5.3 forces a = 0, b = 0, d = 0, whence:

u = zz + c ζ z2 + c ζz2 + Oz,ζ,z,ζ(4).

From Proposition 3.2, we know that c 6= 0, hence c ζ =: 1
2
ζ ′ conducts to:

u = zz + 1
2
z2ζ + 1

2
z2ζ + Oz,ζ,z,ζ(4) = zz + z2 R + ζR.(5.4)

Next, let us look at 4th order terms which depend only on (z, z), especially at the mono-
mial e z2z2 with e := F2,0,2,0 ∈ R. We can make e = 0 thanks to ζ ′ := ζ + e z2:

u = zz + 1
2

(
ζ + e z2

)
z2 + 1

2

(
ζ + e z2

)
z2 + z2R + ζR.

So we can assume F2,0,2,0 = 0. We then write:

u = zz + 1
2
z2 S

(
z, ζ, z

)
+ ζR

(
z, ζ, z, ζ

)
,

with S = ζ + Oz,ζ,z(2) and with no z2 monomial in the remainder. Hence with some
function τ(z) which is an Oz(3), and with some function ω(z, ζ) = Oz,ζ(1), we devise
which biholomorphism to perform:

u = zz + 1
2
z2
(
ζ + τ(z) + ζ ω(z, ζ) + z θ(z, ζ, z)

)
+ ζR

= zz + 1
2
z2
(
ζ + τ(z) + ζ ω(z, ζ)︸ ︷︷ ︸

=: ζ′, while z=: z′

)
+ z3 R + ζR.

ASSERTION 5.5. The inverse ζ = ζ ′ + O(2) = τ ′(z′) + ζ ′
[
1 + ω′(z′, ζ ′)

]
also satisfies

τ ′(z′) = Oz′(3).

PROOF. Indeed, by definition:

ζ ≡ τ ′(z) +
[
τ(z) + ζ

(
1 + ω(z, ζ)

)] [
1 + ω′

(
z, τ(z) + ζ

(
1 + ω(z, ζ)

))]
,

and it suffices to put ζ := 0 to get a concluding relation which even shows that ord0τ =
ord0τ

′:
0 ≡ τ ′(z) + τ(z)

[
1 + ω′

(
z, τ(z)

)]
. �

All this enables to reach the goal (5.2) since τ ′(z′) is absorbable in z′3R ′:

u = z′z′ + 1
2
z′

2
ζ ′ + z′

3
R ′ +

(
ζ
′
+ τ ′(z′) + ζ

′
ω′(z′, ζ

′
)
)

R ′. �

Coordinates like in Proposition 16.7 will be called prenormalized. Equivalently (exer-
cise):

0 = Fa,b,0,0 = F0,0,c,d,

0 = Fa,b,1,0 = F1,0,c,d,

0 = Fa,b,2,0 = F2,0,c,d,
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with only three exceptions F1,0,1,0 = 1 and F2,0,0,1 = 1
2

= F0,1,2,0. During the proof,
in (5.4), we obtained simultaneously:

u = F = zz + 1
2
z2ζ + Oz(3) + Oζ(1) = zz + 1

2
z2ζ + 1

2
z2ζ + Oz,ζ,z,ζ(4).(5.6)

Now, recall that the Gaussier-Merker model is homogeneous of degree 2 in z, z, when
ζ , ζ are treated as constants:

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
=: m

(
z, ζ, z, ζ

)
.

A general M ∈ C2,1 is just a perturbation of it:

u = F = m +G, with G := F −m = Oz,ζ,z,ζ(4).

PROPOSITION 5.7. In prenormalized coordinates, one has G = Oz,z(3).

PROOF. Expand:

m = zz
∑
i>0

ζ iζ
i
+ 1

2
z2
∑
i>0

ζ iζ
i+1

+ 1
2
z2
∑
i>0

ζ i+1ζ
i

= zz + 1
2
z2ζ + 1

2
z2ζ + Oz,ζ,z,ζ(4),

G =
∑
k>4

∑
a+b+c+d=k

Ga,b,c,d z
aζbzcζ

d
=:

∑
k>4

Gk.

Of course, F k = mk +Gk, with G2 = G3 = 0.

ASSERTION 5.8. For every k > 2, one has Gk = Oz,z(3).

PROOF. For some k > 4, assume by induction that G2, G3, . . . , Gk−1 are Oz,z(3),
whence:

G`
zz = Oz,z(1), G`

ζz = Oz,z(2) = G`
zζ
, G`

ζζ
= Oz,z(3) (16 `6 k−1).

Next, insert F =
∑

i>2 F
i in the Levi determinant:

0 ≡

∣∣∣∣∣∣
∑
i
F i
zz

∑
j
F j
ζz∑

i
F i
zζ

∑
j
F j

ζζ

∣∣∣∣∣∣ =
∑
`>4

Å∑
i+j=`
i,j>2

(
F i
zz F

j

ζζ
− F i

zζ
F j
ζz

)ã
.

Behind
∑

`, all terms are of constant homogeneous order i − 2 + j − 2 = ` − 4, hence
0 ≡

∑
i+j=` for each ` > 4. Take ` := k + 2 and expand:

0 ≡ F 2
zz F

k
ζζ

+
∑

36i6k−1

F i
zz F

k+2−i
ζζ

+ F k
zz F

2
ζζ◦
−

− F 2
zζ◦

F k
ζz −

∑
36i6k−1

F i
zζ
F k+2−i
ζz − F k

zζ
F 2
ζz◦
.

Observe from (5.6) that 1 ≡ F 2
zz while 0 ≡ F 2

ζζ
≡ F 2

zζ
≡ F 2

ζz. Of course, Levi determinant
vanishing holds for F := m:

0 ≡ m2
zz mk

ζζ
+

∑
36i6k−1

mi
zz mk+2−i

ζζ
+ mk

zz m2
ζζ◦
−

− m2
zζ◦

mk
ζz −

∑
36i6k−1

mi
zζ

mk+2−i
ζz −mk

zζ
m2
ζz◦
.
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Substituting the boxed term F k
ζζ

with mk
ζζ

+ Gk
ζζ

, solving for Gk
ζζ

, substituting as well
the other F `

·· = m`
·· +G`

··, and subtracting, we obtain:

−Gk
ζζ
≡

∑
36i6k−1

Å
mi
zz G

k+2−i
ζζ

+Gi
zz mk+2−i

ζζ
+Gi

zz G
k+2−i
ζζ

ã
−

−
∑

36i6k−1

Å
mi
zζ
Gk+2−i
ζz +Gi

zζ
mk+2−i
ζz +Gi

zζ
Gk+2−i
ζz

ã
.

Since we also have 3 6 k + 2 − i 6 k − 1, induction applies to all six products to get
Gk
ζζ

= Oz,z(3).

By integration, Gk = λk(z, ζ, z)+λ
k
(z, ζ, z)+Oz,z(3). After absorption in Oz,z(3), we

can assume that λk is of degree 6 2 in (z, z), hence contains only monomials zaζbzc with
a+ c 6 2 and a+ b+ c = k. So b > k − 2.

Further, Gk(z, ζ, 0, 0) ≡ 0 imposes λk(z, ζ, 0) ≡ 0. So 1 6 c 6 2. Consequently, λk

can contain only three monomials:

λk(z, ζ, z) = a zζk−1 + b zz ζk−2 + c z2ζk−2.

Since k > 4, we see that the conjugate λ
k
(z, ζ, z) is multiple of ζ

k−2>2
, hence:

Gk
(
z, ζ, z, 0

)
= λk(z, ζ, z) + λ

k
(z, 0, z)

◦
+ Oz,z(3).

Finally, because the prenormalized coordinates of Proposition 16.7 require
Gk(z, ζ, z, 0) = Oz(3), we reach λk(z, ζ, z) = Oz,z(3), which forces a = b = c = 0 = λk,
so as asserted Gk = Oz,z(3). �

In conclusion, G =
∑

Gk = Oz,z(3). �

According to [51], the Lie group G of rigid CR automorphisms of the Gaussier-Merker
model {u = m} has Lie algebra g−2 ⊕ g−1 ⊕ g0 of dimension 7, generated by X1, . . . , X7.
The 2-dimensional isotropy subgroup G0 ⊂ G of the origin 0 ∈ C3 has Lie algebra giso

0

generated by:

X6 := z ∂z + 2w ∂w, X7 := iz ∂z + 2iζ ∂ζ .

By computing the flows exp
(
tXσ

)
(z, ζ, w) for t ∈ R and σ = 6, 7, one verifies that G0

consists of scalings coupled with ‘rotations’:

z′ = ρ1/2 eiϕ z, ζ ′ = e2iϕ ζ, w′ = ρw (ρ∈R∗+, ϕ∈R).

Next, any holomorphic function e = e(z, w) decomposes in weighted homogeneous
terms as:

e(z, w) =
∑
a,b

ea,b z
aζb =

∑
k>0

Å∑
b

ek,b ζ
b

ã
zk =:

∑
k>0

ek.

Mind notation: for weights, indices ek are lower case, while for orders, as e.g. inGk before,
they were upper case. Similarly:

E
(
z, ζ, z, ζ

)
=
∑
k>0

Å ∑
a+c=k

(∑
b,d

Ea,b,c,d ζ
bζ
d
)
zazc
ã

=:
∑
k>0

Ek.
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According to what precedes, we can assume that both the source M and the target M ′

rigid hypersurfaces are prenormalized. Assume therefore that a rigid biholomorphism:

H : (z, ζ, w) 7−→
(
f(z, ζ), g(z, ζ), ρ w + h(z, ζ)

)
=:

(
z′, ζ ′, w′),

fixing the origin is given between:

u = F = zz + 1
2
z2ζ + Oz(3) = m +G =

zz+ 1
2
z2ζ+ 1

2
z2ζ

1−ζζ + Oz,z(3),

u′ = F ′ = z′z′ + 1
2
z′

2
ζ ′ + Oz′(3) = m′ +G′ =

z′z′+ 1
2
z′2ζ

′
+ 1

2
z′2ζ′

1−ζ′ζ′
+ Oz′,z′(3).

OBSERVATION 5.9. Scalings and rotations (z′, ζ ′, w′) 7−→
(
ρ1/2eiϕz′, e2iϕζ ′, ρw′

)
pre-

serve prenormalizations. �

Since T c0M = {w = 0} and T c0M
′ = {w′ = 0}, and since H∗T c0M = T c0M

′, we
necessarily have h = Oz,ζ(2). After the scaling w′ 7−→ 1

ρ
w′, we may therefore assume that

the last component of H is w + Oz,ζ(2).
Let us decompose the components of H in weighted homogeneous parts:

f = f0+f1+f2+f3+· · · , g = g0+g1+g2+· · · , h = h0+h1+h2+h3+h4+· · · .

Plug in the components of H in the target rigid equation w′+w′

2
= F ′(z′, ζ ′, z′, ζ

′
):

w + h(z, ζ) + w + h
(
z, ζ
)

= 2F ′
(
f(z, ζ), g(z, ζ), f

(
z, ζ
)
, g
(
z, ζ
))
,

and then, substitute w + w = 2F to get a fundamental equation, holding identically:

2F (z, ζ, z, ζ) + h(z, ζ) + h
(
z, ζ
)
≡ 2F ′

(
f(z, ζ), g(z, ζ), f

(
z, ζ
)
, g
(
z, ζ
))
.(5.10)

PROPOSITION 5.11. Possibly after a rotation (z′, ζ ′, w′) 7−→ (eiϕz′, e2iϕζ ′, w′), one
has:

f = z+f2 +f3 +· · · , g = ζ+g1 +g2 +· · · , h = w+h3 +h4 +· · · .

or equivalently: f0 = 0, f1 = z; g0 = ζ; h0 = 0, h1 = 0, h2 = w.

PROOF. Recall that F = m + G, that m = m2 and that G = G3 + G4 + · · · , with
the same about F ′ = m′ + G′. So F and F ′ have no terms of weights 0 or 1. Of course
f0 = f0(ζ), g0 = g0(ζ), h0 = h0(ζ) depend on ζ only.

In (5.10), pick terms of weight zero:

0 + h0(ζ) + h0(ζ) ≡ 2F ′
(
f0(ζ), g0(ζ), f 0(ζ), g0(ζ)

)
,

put ζ := 0, use F ′(z′, ζ ′, 0, 0) ≡ 0, and get h0 = 0.
Once again, pick in (5.10) terms of weight zero using F ′ = m′ + Oz′,z′(3):

0 ≡
f0(ζ)f 0(ζ) + 1

2
f0(ζ)2g0(ζ) + 1

2
f 0(ζ)g0(ζ)

1− g0(ζ)g0(ζ)
+ Of0(ζ),f0(ζ)(3).

We claim that f0(ζ) ≡ 0. Otherwise, f0 = c ζν +Oζ(ν+1) with c 6= 0, but on the right, the
monomial cc ζνζ

ν
cannot be killed — contradiction. This finishes examination of weight

zero, for it remains only 0 ≡ 0.
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Hence, pass to weight 1. We claim that h1 = 0. Of course, f1 = zf1(ζ) and h1 =
zh1(ζ). Since m′ is weighted homogeneous of degree 2, we have F ′ = Oz′,z′(2), and we
get from (5.10) what forces h1 = 0:

Oz,z(2) + z h1(ζ) + z h1(ζ) ≡ Ozf1(ζ),zf1(ζ)(2) ≡ Oz,z(2).

Before passing to weight 2, since f = zf1(ζ) + Oz(2) and g = g0(ζ) + zg1(ζ) + Oz(2),
the nonzero Jacobian

∣∣ fz fζ
gz gζ

∣∣ has value at the origin
∣∣ f1(0) 0
g1(0) g′0(0)

∣∣, hence f1(0) 6= 0 6= g′0(0).
Lastly, picking weighted degree 2 terms in (5.10), we get:

2 m(z, ζ, z, ζ) + z2h2(ζ) + z2h2(ζ) ≡ 2 m
(
zf1(ζ), g0(ζ), zf 1(ζ), g0(ζ)

)
.

This identity means that the map (z, ζ, w) 7−→
(
zf1(ζ), g0(ζ), w + z2h2(ζ)

)
is an au-

tomorphism of the Gaussier-Merker model fixing the origin, hence is a rotation, so that
f1(ζ) = eiϕ, g0(ζ) = e2iϕζ , h2(z, ζ) ≡ 0. Post-composing with the inverse rotation, we
attain the conclusion. �

QUESTION 5.12. Suppose given two rigid hypersurfaces prenormalized as before:

u = F = zz + 1
2
z2ζ + Oz(3) + Oζ(1) = m +G =

zz+ 1
2
z2ζ+ 1

2
z2ζ

1−ζζ + Oz,z(3),

u′ = F ′ = z′z′ + 1
2
z′

2
ζ ′ + Oz′(3) + O

ζ
′(1) = m′ +G′ =

z′z′+ 1
2
z′2ζ

′
+ 1

2
z′2ζ′

1−ζ′ζ′
+ Oz′,z′(3).

Is it true that the group of rigid biholomorphisms at the origin between them:

(z, ζ, w) 7−→
(
z + f(z, ζ), ζ + g(z, ζ), w + h(z, ζ)

)
=:

(
z′, ζ ′, w′

)
,

where f = f2 + f3 + · · · , g = g1 + g2 + · · · , h = h3 + h4 + · · · , is finite-dimensional ?

Here, the two appearing remainders Oz,z(3) and Oz(3) + Oζ(1) are different. By ex-
panding 1

/
(1− ζζ) we see that:

m = zz + 1
2
z2ζ + 1

2
z2ζ + ζζ

(
· · ·
)

= zz + 1
2
z2ζ + Oζ(1),

hence by subtraction, we get that G is more than just an Oz,z(3).

OBSERVATION 5.13. The remainder function satisfies G = Oz,z(3) = Oz(3) + Oζ(1).
�

The synthesis between these two conditions will be made in Section 7.

6. Weighted Homogeneous Normalizing Biholomorphisms

Now, inspired by Jacobowitz’s presentation [71] of Moser’s normal form in C2, Propo-
sitions 5.7 and 5.11 justify to introduce the spaces:

G :=
{
G = G(z, ζ, z, ζ) : G = G3 +G4 + · · ·

}
,

D :=
{(
z + f(z, ζ), ζ + g(z, ζ), w + h(z, ζ)

)
: f = f2 + f3 + · · · , g = g1 + g2 + · · · , h = h3 + h4 + · · ·

}
,

where lower indices denote homogeneous components with respect to the weighting (4.1)
defined by: [

zaζbzcζ
d]

= a+ c.



6. WEIGHTED HOMOGENEOUS NORMALIZING BIHOLOMORPHISMS 145

The goal is to use the ‘freedom’ space D of rigid biholomorphisms in order to ‘normalize’
as much as possible the remainder G in the graphed equation {u = m + G

}
of any given

hypersurface. Here, m =
zz+ 1

2
z2ζ+ 1

2
z2ζ

1−ζζ is homogeneous of weight 2.
Both G and D decompose as direct sums graded by increasing weights:

G = ∪
ν>3

Gν , Gν :=
{
Gν

}
,

D = ∪
ν>3

Dν , Dν :=
{(
fν−1, gν−2, hν

)}
,

and the (upcoming) justification for the shifts in Dν will be due to two multipliers:

mz = z+zζ

1−ζζ of weight 1 and mζ = (z+zζ)2

2 (1−ζζ)2 of weight 2.

One can figure out that G2 := m and G′2 := m′ are already finalized
/

normalized. With
increasing weights ν = 3, 4, 5, . . . , we shall perform successive holomorphic rigid trans-
formations of the shape:

z′ := z + fν−1, ζ ′ := ζ + gν−2, w′ := w + hν .(6.1)

When ν � 1 is high, it is intuitively clear that such transformations close to the identity
will preserve previously achieved low order normalizations; to make this claim precise, let
us follow and adapt [71, Chap. 3].

For µ > 0, denote by O(µ) power series whose monomials zaζbzcζ
d

are all of weight
a+ c > µ, and introduce the projection operators:

πµ

( ∑
a,b,c,d>0

Ta,b,c,d z
aζbzcζ

d
)

:=
∑
a+c6µ

∑
b,d>0

Ta,b,c,d z
aζbzcζ

d
.

PROPOSITION 6.2. Through any biholomorphism (6.1) which transforms:

u = m+G3+· · ·+Gν−1+Gν+O(ν+1) into u′ = m+G′3+· · ·+G′ν−1+G′ν+O′(ν+1),

homogeneous terms are kept untouched up to order 6 ν − 1:

G′µ
(
z, ζ, z, ζ

)
= Gµ

(
z, ζ, z, ζ

)
(36µ6 ν−1),

while:

G′ν
(
z, ζ, z, ζ

)
= Gν

(
z, ζ, z, ζ

)
−2 Re

{
z+zζ

1−ζζ fν−1(z, ζ)+ (z+zζ)2

2(1−ζζ)2 gν−2(z, ζ)− 1
2
hν(z, ζ)

}
.

Thus, by appropriately choosing (fν−1, gν−2, hν), we will be able to ‘kill’ many mono-
mials in Gν , hence make G′ν simpler, or normalized. Exercise: verify that in fact hν ≡ 0
necessarily, when F and F ′ are assumed to be prenormalized.

PROOF. As already seen, the fundamental equation, holding identically, is:

Re
(
w+ hν

)
= F (z, ζ, z, ζ) + Rehν ≡ F ′

(
z+ fν−1(z, ζ), ζ + gν−2(z, ζ), w+ hν(z, ζ)

)
.

Decomposing F = m +G, F ′ = m′ +G′ and reorganizing, it becomes:
(z + fν−1)(z + fν−1) + 1

2 (z + fν−1)2(ζ + gν−2) + 1
2 (z + fν−1)2(ζ + gν−2)

1− (ζ + gν−2)(ζ + gν−2)
−
zz + 1

2z
2ζ + 1

2z
2ζ

1− ζζ
− Rehν = G−G′.

A reduction of the left hand side to the same denominator shows after algebraic simpli-
fications:

(1− ζζ)
[
zfν−1 + zfν−1 + 1

2

(
2zfν−1ζ + z2gν−2

)
+ 1

2

(
2zfν−1ζ + z2gν−2

)]
+
(
ζgν−2 + ζgν−2

)(
zz + 1

2z
2ζ + 1

2z
2ζ
)

(1− ζζ)
(
1− ζζ − ζgν−2 − ζgν−2 − gν−2gν−2

) − Rehν .
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that this left-hand side is O(ν), hence has zero πν−1(•) = 0. Moreover, its homogeneous
degree ν part is obtained by taking only weighted degree zero terms in the denominator,
namely numerator

(1−ζζ)2 − Rehν , and one recognizes
/

reconstitutes mz, mζ as homogeneous mul-
tipliers of weights 1, 2:

πν

(
m′ −m− Rehν

)
= 2 Re

{
z+zζ

1−ζζ fν−1(z, ζ) + (z+zζ)2

2(1−ζζ)2 gν−2(z, ζ)− 1
2
hν(z, ζ)

}
.

It remains to treat πν(•) of the right-hand side:∑
36µ6ν

Gµ(z, ζ, z, ζ)− πν
( ∑

36µ6ν
G′µ
(
z + fν−1, ζ + gν−2, z + f ν−1, ζ + gν−2

))
.

ASSERTION 6.3. For each 3 6 µ 6 ν:

πν

(
G′µ
(
z + fν−1, ζ + gν−2, z + f ν−1, ζ + gν−2

))
= G′µ

(
z, ζ, z, ζ

)
.

PROOF. All possible monomials in G′µ with a+ c = µ > 3 after binomial expansion:(
z + fν−1

)a(
ζ + gν−2

)b(
z + fν−1

)c(
ζ + gν−2

)d
=
(
za + O(a− 1 + ν − 1)

)(
ζb + O(ν − 2)

)(
zc + O(c− 1 + ν − 1)

)(
ζ
d

+ O(ν − 2)
)

= zaζbzcζ
d

+ O(a+ c− 2 + ν),

have the simple projection πν(•) = zaζbzcζ
d

since a+ c− 2 + ν > 1 + ν. �

We therefore obtain an identity in which all arguments are (z, ζ, z, ζ):

2 Re
{
z+zζ

1−ζζ fν−1 + (z+zζ)2

2(1−ζζ)2 gν−2 − 1
2
hν

}
≡

∑
36µ6ν−1

(
Gµ −G′µ◦

)
+Gν −G′ν .

Applying πν−1 annihilates both the left-hand side and Gν − G′ν , whence Gµ = G′µ for
3 6 µ 6 ν − 1, which concludes. �

7. Normal Form

The assumption that the Levi form is of constant rank 1:

Fzz 6= 0 ≡ Fzz Fζζ − Fζz Fzζ ,

enables to solve identically as functions of (z, ζ, z, ζ):

Fζζ ≡
Fζz Fzζ
Fzz

.

By successively differentiating this identity and performing replacements, we get formulas.

LEMMA 7.1. For every jet multiindex (a, b, c, d) ∈ N4 with b > 1 and d > 1, abbreviat-
ing n := a+ b+ c+ d, there exists a polynomomial Pa,b,c,d in its arguments and an integer
Na,b,c,d > 1 such that:

F
zaζbzcζ

d ≡ 1(
Fzz
)Na,b,c,d

Pa,b,c,d

({
Fza′zc′

}
a′+c′6n

,
{
Fza′ζb′zc′

}b′>1
a′+b′+c′6n

,
{
F
za′zc

′
ζ
d′
}d′>1
a′+c′+d′6n

)
.

�

In other words, the Levi rank 1 assumption implies that all Taylor coefficients at the
origin of

∑
a,b,c,d Fa,b,c,d z

aζbzcζ
d

for which b > 1 and d > 1 are determined by the free
Taylor coefficients:{

Fa,0,c,0
}
a>0, c>0

∪ {
Fa,b,c,0

}
a>0, b>1, c>0

∪ {
Fa,0,c,d

}
a>0, c>0, d>1

.
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In subsequent computations, we will therefore normalize only these free (independent)
Taylor coefficients at the origin, while those (dependent) attached to monomials that are
multiple of ζζ will then be automatically determined by the formulas of Lemma 7.1.

As promised, we can now explore Observation 5.13 further. What precedes shows that
it is best appropriate to expand G with respect to (ζ, ζ):

G =
∑
a,c>0

Ga,0,c,0 z
azc +

∑
b>1

ζb
( ∑
a,c>0

Ga,b,c,0 z
azc
)

+
∑
d>1

ζ
d
( ∑
a,c>0

Ga,0,c,d z
azc
)

+
∑
b,d>1

∑
a,c>0

Ga,b,c,d z
aζbzcζ

d
.

The last quadruple sum gathers all dependent jets. We will abbreviate this remainder as
ζζ(· · · ). With different notations, we can therefore write:

G = a(z, z) +
∑
k>0

ζk+1 Πk(z, z) +
∑
k>0

ζ
k+1

Πk(z, z) + ζζ
(
· · ·
)
,

with a(z, z) ≡ a(z, z) real, but no reality constraint on the Πk(z, z).
Recall that G = Oz,z(3). In view of Proposition 6.2, we must, for every weight ν > 3,

extract Gν , while writing ζk+1 = ζ ζk:

Gν = aν,0 z
ν + aν−1,1 z

ν−1z + · · ·+ a1,ν−1 zz
ν−1 + a0,ν z

ν +

+
∑
k>0

ζ ζk
(
zν Πk,ν,0 + zν−1zΠk,ν−1,1 + · · ·+ zzν−1 Πk,1,ν−1 + zν Πk,0,ν

)
+

+
∑
k>0

ζ ζ
k
(
zν Πk,ν,0 + zν−1zΠk,ν−1,1 + · · ·+ zzν−1 Πk,1,ν−1 + zν Πk,0,ν

)
+

+ ζζ
(
· · ·
)
.

To reorganize all this in powers of (z, z), let us introduce the two collections for all
0 6 µ 6 ν of (anti)holomorphic functions (mind the inversion ν − µ←→ µ at the end):

Bν−µ,µ(ζ) :=
∑
k>0

ζk Πk,ν−µ,µ and Cν−µ,µ(ζ) :=
∑
k>0

ζ
k

Πk,µ,ν−µ.

The definition of these B•,• and C•,• enables us to emphasize that the obtained functions
ζ B•,•(ζ) and ζ C•,•(ζ) vanish when either ζ := 0 or ζ := 0, and we therefore obtain, taking
also account of the fact that Gν is real:

Gν = zν
(
aν,0 + ζ Bν,0(ζ) + ζ Cν,0(ζ)

)
+ zν−1z

(
aν−1,1 + ζ Bν−1,1(ζ) + ζ Cν−1,1(ζ)

)
+

+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·+

+ zzν−1
(
aν−1,1 + ζ Bν−1,1(ζ) + ζ Cν−1,1(ζ)

)
+ zν

(
aν,0 + ζ Bν,0(ζ) + ζ Cν,0(ζ)

)
+ ζζ

(
· · ·
)
.

Of course, all these weighted homogeneous functions Gν automatically satisfy Gν =
Oz,z(3), since ν > 3 thanks to Proposition 5.7. Now, Observation 5.13 also requires that
they satisfy, since they are real:

Gν = Oz(3) + Oζ(1) = Oz(3) + Oζ(1).(7.2)
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LEMMA 7.3. For each weight ν > 5, the function Gν satisfies (7.2) if and only if it is of
the form:

Gν = zν
(

0 + 0 + ζ Cν,0(ζ)
)

+ zν−1z
(

0 + 0 + ζ Cν−1,1(ζ)
)

+ zν−2z2
(

0 + 0 + ζ Cν−2,2(ζ)
)

+ zν−3z3
(
aν−3,3 + ζ Bν−3,3(ζ) + ζ Cν−3,3(ζ)

)
+ · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·+

+ z3zν−3
(
aν−3,3 + ζ Cν−3,3(ζ) + ζ Bν−3,3(ζ)

)
+ z2zν−2

(
0 + ζ Cν−2,2(ζ) + 0

)
+ z1zν−1

(
0 + ζ Cν−1,1(ζ) + 0

)
+ zν

(
0 + ζ Cν,0(ζ) + 0

)
+ ζζ

(
· · ·
)
.

Just after, we will treat the two weights ν = 3, 4 separately.

PROOF. Putting ζ := 0 above, it must hold that:

Oz(3) + 0 = Gν

∣∣
ζ=0

= zν
(
aν,0 + ζ Bν,0(ζ) + 0

)
+ zν−1z

(
aν−1,1 + ζ Bν−1,1(ζ) + 0

)
+

+ zν−2z2
(
aν−2,2 + ζ Bν−2,2(ζ) + 0

)
+ Oz(3) + 0.

Thus, all the appearing a•,• and B•,• should vanish, as stated, and the converse is clear. �

Proceeding similarly, the reader will find for ν = 3 that G3 satisfies (7.2) if and only if:

G3 = z3
(

0 + 0 + ζ C3,0(ζ)
)

+ z2z
(
0 + 0 + 0

)
+ zz2

(
0 + 0 + 0

)
+ z3

(
0 + ζ C3,0(ζ) + 0

)
+ ζζ

(
· · ·
)
,

as well as:
G4 = z4

(
0 + 0 + ζ C4,0(ζ)

)
+ z3z

(
0 + 0 + ζ C3,1(ζ)

)
+ z2z2

(
0 + 0 + 0

)
+ zz3

(
0 + ζ C1,3(ζ) + 0

)
+ z4

(
0 + ζ C4,0(ζ) + 0

)
+ ζζ

(
· · ·
)
.
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Now, consider a rigid biholomorphism z′ = f(z, ζ), ζ ′ = g(z, ζ), w′ = ρw + h(z, ζ)
between two rigid hypersurfaces M and M ′. Of course, as in Question 5.12, we may as-
sume that bothM andM ′ have already been prenormalized, and thanks to Proposition 5.11
also that f = f2 + f3 + · · · , g = g1 + g2 + · · · , ρ = 1, h = h3 + h4 + · · · .

The goal is to normalize M ′ even further, by means of appropriate choices of f , g, h.
We saw that it is natural to decomposeG = G3+G4+G5+· · · andG′ = G′3+G′4+G′5+

· · · in weighted homogeneous parts, and we just finished to express what prenormalization
means about these Gν and G′ν . Proceeding with increasing weights ν = 3, 4, 5, . . . , we
therefore consider biholomorphisms of the shape z′ = z+fν−1, ζ ′ = ζ+gν−2, w′ = w+hν ,
and we recall that Proposition 6.2 showed that:

G′ν
(
z, ζ, z, ζ

)
= Gν

(
z, ζ, z, ζ

)
−2 Re

{
z+zζ

1−ζζ fν−1(z, ζ)+ (z+zζ)2

2(1−ζζ)2 gν−2(z, ζ)− 1
2
hν(z, ζ)

}
.

The freedom to ‘normalize’ G′ν even more that Gν , namely the term −2 Re {· · · },
is parametrized by the complely free choice for the triple of holomorphic functions
(fν−1, gν−2, hν). However, prenormalizations should be left untouched.

LEMMA 7.4. At every weight level ν > 5, only the identity biholomorphic transforma-
tion z′ = z, ζ ′ = ζ , w′ = w stabilizes prenormalization in source and target spaces:

Gν(z, ζ, z, ζ) = Oz(3) + Oζ(1) = G′ν
(
z, ζ, z, ζ

)
,

or equivalently, the ‘freedom function’ respects prenormalization:

Oz(3)+Oζ(1) = 2 Re
{
z+zζ

1−ζζ fν−1(z, ζ)+ (z+zζ)2

2(1−ζζ)2 gν−2(z, ζ)−1
2
hν(z, ζ)

}
=: Φ(z, ζ, z, ζ),

if and only if 0 = fν−1 = gν−2 = hν .

PROOF. It is easy to verify that the vanishings Gν(z, ζ, 0, 0) ≡ 0 ≡ G′ν(z, ζ, 0, 0),
which hold from the very beginning (of Proposition 16.7) already suffice to force hν(z, ζ) ≡
0.

Next, write:

fν−1(z, ζ) = zν−1 f(ζ) = zν−1
(
f0 + f1 ζ + f2 ζ

2 + · · ·
)
,

gν−2(z, ζ) = zν−2 g(ζ) = zν−2
(
g0 + g1 ζ + g2 ζ

2 + · · ·
)
.

The goal is to show that f(ζ) ≡ 0 and g(ζ) ≡ 0.
Prenormalization being expressed modulo ζζ(· · · ), when we expand the two denomi-

nators of Φ, we have by luck 1
1−ζζ ≡ 1 and 1

2 (1−ζζ2)
≡ 1

2
, and hence it suffices to require

that:

Oz(3) + Oζ(1)
?
= 2 Re

{(
z + z ζ

)
zν−1

∑
k>0

fk ζ
k + 1

2

(
z + z ζ

)2
zν−2

∑
k>0

gk ζ
k
}
.
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Using ν > 5 to guarantee that there is no interference when extracting the first three powers
zν , zν−1z, zν−2z2, let us compute the three relevant terms of the freedom function:

Φ(z, ζ, z, ζ) =
(
z + zζ

)
zν−1

(
f0 + f1 ζ + f2 ζ

2 + · · ·
)

+
(
1
2 z

2 + zzζ + 1
2 z

2 ζ
2)
zν−2

(
g0 + g1 ζ + g2 ζ

2 + · · ·
)

+

+
(
z + zζ

)
zν−1

(
f0 + f1 ζ + f2 ζ

2
+ · · ·

)
+
(
1
2 z

2 + zzζ + 1
2 z

2ζ2
)
zν−2

(
g0 + g1 ζ + g2 ζ

2
+ · · ·

)
= zν

(
f0 ζ + f1 ζζ + f2 ζ

2ζ + · · ·◦ + 1
2 g0 ζ

2
+ 1

2 g1 ζζ
2

+ 1
2 g2 ζ

2ζ
2

+ · · ·
◦

)
+ zν−1z

(
f0 + f1 ζ + f2 ζ

2 + · · ·+ g0 ζ + g1 ζζ + g2 ζ
2ζ + · · ·◦

)
+ zν−2z2

(
1
2 g0 + 1

2 g1 ζ + 1
2 g2 ζ

2 + · · ·
)

+ z3
(
· · ·
)

+ ζζ
(
· · ·
)
.

Since the underlined terms can be absorbed into the remainder ζζ(· · · ), it remains only:

Φ(z, ζ, z, ζ) = 1
2
zν
(
2f0 ζ + g0 ζ

2)
+ zν−1z

(
f0 + f1 ζ + f2 ζ

2 + · · ·+ g0 ζ
)

+ 1
2
zν−2z2

(
g0 + g1 ζ + g2 ζ

2 + · · ·
)

+ z3
(
· · ·
)

+ ζζ
(
· · ·
)
.

Putting ζ := 0, the result should be an Oz(3), hence the first three lines should vanish, and
lines 2 and 3 conclude that f(ζ) ≡ 0 ≡ g(ζ), as aimed at. �

Next, inspect the two remaining weights ν = 3, 4. For ν = 3, again modulo ζζ(· · · ),
the freedom function is:

Φ3 ≡ 2 Re
{(
z+zζ

)
z2
(
f0+f1 ζ+f2 ζ

2+· · ·
)
+
(

1
2
z2+zzζ+1

2
z2ζ

2)
z1
(
g0+g1 ζ+g2 ζ

2+· · ·
)}
.

ASSERTION 7.5. Prenormalization Φ3 = Oz(3) + Oζ(1) is preserved if and only if:

0 = f0 + 1
2
g0, 0 = f1, 0 = f2, 0 = g0 + 1

2
g1, 0 = g2, . . . . �

Consequently, only 1 complex constant is free, f0, in terms of which:

g0 = − 2 f 0, g1 = − 4 f0.

With this, how can one normalize G′3 = G3 − Φ3 further? Still modulo ζζ(· · · ):

Φ3 ≡ z3
(
f0 ζ − f 0 ζ

2)
+ z2z (0) + zz2 (0) + z3

(
f 0 ζ − f0 ζ

2
)
,

hence:
G′3,0,0,1 = G3,0,0,1 − f0,

G′3,0,0,2 = G3,0,0,2 + f 0.

It is natural to normalize the lowest jet order 4 = 3 + 0 + 0 + 1 coefficient here.

ASSERTION 7.6. One can normalize G′3,0,0,1 := 0 by choosing f0 := G3,0,0,1. �

Once this is done, it is easy to see that preserving
/

maintaining the normalization:

G′3,0,0,1 = G3,0,0,1 = 0,

forces f0 = 0 above.
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ASSERTION 7.7. In prenormalized coordinates which satisfy in addition G3,0,0,1 = 0,
the coefficient:

G′3,0,0,2 = G3,0,0,2

is an invariant (at the origin). �

After such a normalization, we get:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + a z2z2 + Oz,ζ,z,ζ(5),

with, possible, a nonzero real constant a, and possibly, a remainder that is not prenormal-
ized.

Fortunately, we can apply the process of Proposition 16.7 to prenormalize again the
coordinates, making in particular a = 0, without perturbing the normalizations obtained up
to order 4 included.

Lastly, treat weight ν = 4. The freedom function modulo ζζ(· · · ), is:

Φ4 ≡ 2 Re
{(
z+zζ

)
z3
(
f0+f1 ζ+f2 ζ

2+· · ·
)
+
(

1
2
z2+zzζ+1

2
z2ζ

2)
z2
(
g0+g1 ζ+g2 ζ

2+· · ·
)}
.

ASSERTION 7.8. Prenormalization Φ4 = Oz(3) + Oζ(1) is preserved if and only if:

0 = f0 = f1 = f2 = · · · , 0 = g0 + g0 = g1 = g2 = · · · . �

Thus now, only 1 real degree of freedom is left:

g0 = i τ (τ ∈R).

With this, how can one normalize G′4 = G4 − Φ4 further? Still modulo ζζ(· · · ):

Φ4 ≡ z4
(
i
2
τ ζ

2)
+ z3z

(
i τ ζ

)
+ z2z2 (0) + zz3

(
− i τ ζ

)
+ z4

(
− i

2
τ ζ2

)
,

hence:
G′4,0,0,2 = G4,0,0,2 − i

2
τ,

G′3,0,1,1 = G3,0,1,1 − i τ,
G′2,0,2,0 = G2,0,0,2.

The third line shows an invariant. Notice also that G′4,0,0,1 = G4,0,0,1 is an invariant. We
choose to normalize the lowest jet order 3 + 0 + 1 + 1 = 5 coefficient here.

ASSERTION 7.9. One can normalize ImG′3,0,1,1 := 0 by choosing τ := ImG3,0,1,1. �

Once this is done, G′3,0,1,1 = G3,0,1,1 ∈ R is an invariant.

Again, we can re-apply the process of Proposition 16.7 to prenormalize the coordinates
without touching the lower order normalizations.

We already saw in Lemma 7.4 that for any weight ν > 5, no degree of freedom exists.
Since only 2 + 1 = 3 real degrees of freedom have been encountered, namely f0 ∈ C in
weight ν = 3 and Im g0 ∈ R in weight ν = 4, we conclude that the answer to Question 5.12
is positive.

All this enables us to conclude the present section by stating results which come from
our analysis.
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THEOREM 7.10. Every local rigid C ω graphed hypersurface M5 ⊂ C3 3 (z, ζ, w =
u+ i v) passing through the origin of equation:

u =
∑

a+b+c+d>1

Fa,b,c,d z
aζbzcζ

d
,

whose Levi form is of constant rank 1 and which is 2-nondegenerate:

Fzz 6= 0 ≡
∣∣∣∣ Fzz Fzζ
Fζz Fζζ

∣∣∣∣ and 0 6=
∣∣∣∣ Fzz Fzζ
Fzzz Fzzζ

∣∣∣∣ ,
is equivalent, through a local rigid biholomorphism:

(z, ζ, w) 7−→
(
f(z, ζ), g(z, ζ), ρ w + h(z, ζ)

)
=:

(
z′, ζ ′, w′

)
(ρ∈R∗),

to a rigid C ω hypersurface M ′5 ⊂ C′3 which, dropping primes for target coordinates, is a
perturbation of the Gaussier-Merker model — homogeneous of order 2 in (z, z) —:

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
+

∑
a,b,c,d∈N
a+c>3

Ga,b,c,d z
aζbzcζ

d
,

with a simplified remainder G which:
(1) is normalized to be an Oz,z(3);
(2) satisfies the prenormalization conditions G = Oz(3) + Oζ(1) = Oz(3) + Oζ(1), or
equivalently:

Ga,b,0,0 = 0 = G0,0,c,d,

Ga,b,1,0 = 0 = G1,0,c,d,

Ga,b,2,0 = 0 = G2,0,c,d;

(3) satisfies in addition the sporadic normalization conditions:

G3,0,0,1 = 0 = G0,1,3,0,

ImG3,0,1,1 = 0 = ImG1,1,3,0. �

There is of course no uniqueness of a rigid biholomorphic map which transfers M to
an M ′ satisfying all these normalization conditions (1), (2), (3), just because any post-
composition with a dilation-rotation map:

(z′, ζ ′, w′) 7−→
(
ρ1/2 eiϕ z′, e2iϕ ζ ′, ρ w′

)
= (z′′, ζ ′′, w′′) (ρ∈R∗+, ϕ∈R),

will transfer M ′ into an M ′′ = {u′′ = m′′ + G′′} which enjoys again the normalization
conditions (1), (2), (3), since one obviously has:

G′′a,b,c,d ρ
a+c−2

2 eiϕ(a+2b−c−2d) = G′a,b,c,d.

Remind that such dilation-rotation maps parametrize the 2-dimensional isotropy group
of the origin for the Gaussier-Merker model

{
u′ = m(z′, ζ ′, z′, ζ

′
)
}

. Fortunately, an ex-
amination of our analysis above can show that these two parameters ρ, ϕ are the only
ambiguity, since once one assumes that f = z + f2 + f3 + · · · , with no ρ1/2 eiϕ in front
of z, that g = ζ + g1 + g2 + · · · , and that h = w + h3 + h4 + · · · , with no ρ1/2 eiϕ, our
reasonings showed uniqueness (exercise) of the map to normal form.
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To finish, let us abbreviate the space of power series G = G(z, ζ, z, ζ) satisfying the
normalization conditions (1), (2), (3) as:

N2,1.

COROLLARY 7.11. Two rigid C ω hypersurfaces M5 ⊂ C3 and M ′5 ⊂ C′3 belonging
to C2,1, both brought into normal form:

u = m +G, G ∈ N2,1,

u′ = m′ +G′, G′ ∈ N′2,1,

are rigidly biholomorphically equivalent if and only if there exist two constants ρ ∈ R∗+,
ϕ ∈ R, such that for all a, b, c, d:

Ga,b,c,d = G′a,b,c,d ρ
a+c−2

2 eiϕ(a+2b−c−2d). �

Granted that hypersurfaces can be put into such a normal form, this criterion is quite
effective to determine whether two M,M ′ ∈ C2,1 are rigidly equivalent.

8. Finalized Expression of Q0

In this section, we revisit the secondary invariant Q0. Our goal is to transform Q0

into a new expression which makes transparent two interesting features of Q0: that it is
real-valued and of order 5 (not 6 as it was first obtained by Cartan’s method in [51]).
The calculations in the following are laborious, and for readers who are only interested in
the finalized expression of Q0, we suggest to use a mathematical software for symbolic
computations to have a quick and easy check to confirm that the finalized expression (8.2)
of Q0 indeed agrees with the expression of Q0 obtained previously in [51], which will be
recalled later in this section as the formula (8.5) .

PROPOSITION 8.1. The secondary invariant Q0 can be brought into the following form

Q0 = B I0 + B I0 − B B +
2

3
Re

ß
L1

[L1 L1(k)

L1(k)

]™
+

1

3
Re
(
L1(P)

)
.(8.2)

The rest of this section is devoted to the proof of Proposition 8.1. Let us first recall the
formulas of I0,V0,Q0 from [51].

(8.3) I0 = −1

3

K L1 L1(k)

(L1(k))2
+

1

3

K L1(k) L1 L1(k)

(L1(k))3
+

2

3

L1 L1(k)

L1(k)
+

2

3

L1 L1(k)

L1(k)
,

(8.4) V0 = −1

3

L1 L1 L1(k)

L1(k)
+

5

9

(L1 L1(k))2

(L1(k))2
− 1

9

L1 L1(k) P
L1(k)

+
1

3
L1(P)− 1

9
P P,

and

(8.5) Q0 =
1

2

ß
B I0 + L1(I0)− B K (I0)

L1(k)
− K (V0)

L1(k)

™
,

where

B =
1

3

(L1 L1(k)

L1(k)
− P

)
and B =

1

3

(L1 L1(k)

L1(k)
− P

)
.
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For convenience, we will do calculations with 3I0, 9V0, 18
∣∣L1(k)

∣∣2Q0 and 3B, 3B.

(8.6) 3I0 =
K L1(k) L1 L1(k)

(L1(k))3
− K L1 L1(k)

(L1(k))2
+ 2

L1 L1(k)

L1(k)
+ 2

L1 L1(k)

L1(k)
,

(8.7) 9V0 = 5
(L1 L1(k))2

(L1(k))2
− 3L1 L1 L1(k) + L1 L1(k) P

L1(k)
+ 3L1(P)− P P,

18
∣∣L1(k)

∣∣2Q0 =
[
3B 3I0 + 3L1(3I0)

]
L1(k) L1(k)(8.8)

− 3B K (3I0) L1(k)−K (9V0) L1(k),

with

3B =
L1 L1(k)

L1(k)
− P and 3B =

L1 L1(k)

L1(k)
− P.

In order to transform the expression (8.8) of 18
∣∣L1(k)

∣∣2Q0, we will make use of the
following identities.

LEMMA 8.9. We have the following identities:
(1) K (P) = −P L1(k)−L1 L1(k),
(2) K L1(P) = −L1(k) · 2Re

(
L1(P)

)
− P L1 L1(k)−L1 L1 L1(k),

(3) K (I0) = (−2) I0 ·L1(k).

PROOF. The identities (1) and (3) are obtained in Lemma 2.7 and Lemma 10.6 of [51],
respectively.

For the identity (2), we use the relation [K ,L1] = K L1−L1 K = −L1(k) L1 from
(2.9) of [51] to deduce that

K L1(P) = L1 K (P)−L1(k) L1(P)

= L1

[
− P L1(k)−L1 L1(k)

]
−L1(k) L1(P) (using (1))

= −L1(P) L1(k)− P L1 L1(k)−L1 L1 L1(k)−L1(k) L (P)

= −L1(k)
[
L1(P) + L1(P)

]
− P L1 L1(k)−L1 L1 L1(k)

= −L1(k) · 2Re
(
L1(P)

)
− P L1 L1(k)−L1 L1 L1(k).

�

PROOF OF PROPOSITION 8.1. We first substitute the identity (3) of Lemma (8.9) into
the term −3B K (3I0) L1(k) of 18

∣∣L1(k)
∣∣2Q0 to obtain

−3B K (3I0) L1(k) = −3B(−6I0 L1(k)) L1(k) = 2 · 3B · 3I0 L1(k)L1(k),

with which the sum on the right hand side of (8.8) can be rewritten as

18
∣∣L1(k)

∣∣2Q0 =
[
3B · 3I0 + 3B · 3I0

]
L1(k) L1(k) + 3L1(3I0)L1(k) L1(k)(8.10)

+ 3B · 3I0 L1(k) L1(k)−K (9V0)L1(k).

Observe that on the right hand side of (8.10), the first term is already real-valued, which
hints that we should keep it untouched until the very end of the proof. We proceed by trans-
forming the other terms so that the real-valuedness of the sum in (8.10) will be transparent.
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Our strategy is to look for terms that involve in P and P first. From the expression (8.6) of
3I0, one sees that the second term of the right hand side of (8.10) doesnot contain P and P.
Thus, we only need to extract parts involved in P and P from the last two terms of the right
hand side of (8.10).

Note that in the expression 3B · 3I0 =
(

L1 L1(k)

L1(k)
−P

)
· 3I0 = L1 L1(k)

L1(k)
3I0 −P · 3I0, the

only part involved in P and P is −P · 3I0. We will see that by extracting terms involved in
P and P in −K (9V0)L1(k), which is

(8.11) −K

ß
− L1 L1(k) P

L1(k)
+ 3L1(P)− P P

™
L1(k),

we will obtain a conjugate of −P · 3I0 ·L1(k) L1(k). Indeed, let us expand

−K

ß
− L1 L1(k) P

L1(k)
+ 3L1(P)− P P

™
L1(k)

=

ß
K
[

L1 L1(k) P
L1(k)

]
− 3 K L1(P) + 2P K (P)

™
L1(k)

=

ß
K
[

L1 L1(k)

L1(k)

]
P + L1 L1(k)

L1(k)
K (P)− 3 K L1(P) + 2P K (P)

™
L1(k)

=

ß[
K L1 L1(k)

L1(k)
− L1 L1(k) K L1(k)

(L1(k))2

]
P + L1 L1(k)

L1(k)

[
− P L1(k)−L1 L1(k)

]
−3
[
− L1(k) · 2Re

(
L1(P)

)
− P L1 L1(k)−L1 L1 L1(k)

]
+2P

[
− P L1(k)−L1 L1(k)

]™
L1(k) (using (1) and (2) of Lemma 8.9)

=

ß
P
[
− K L1(k) L1 L1(k)

(L1(k))2
+ K L1 L1(k)

L1(k)

]
− P L1 L1(k)

−L1 L1(k) L1 L1(k)

L1(k)
+ 6 L1(k) · Re

(
L1(P)

)
+ 3 P L1 L1(k)

+3 L1 L1 L1(k)− 2 P P L1(k)− 2 P L1 L1(k)

™
L1(k).

At this point, we extract −P L1(k) L1(k) · 3I0 to obtain

−K

ß
− L1 L1(k) P

L1(k)
+ 3L1(P)− P P

™
L1(k)

= −P L1(k) L1(k)

ß
K L1(k) L1 L1(k)

(L1(k))3
− K L1 L1(k)

(L1(k))2
+ 2L1 L1(k)

L1(k)
+ 2L1 L1(k)

L1(k)

™
+2P L1 L1(k) L1(k) + 2P L1 L1(k) L1(k)− P L1 L1(k) L1(k)

+L1 L1(k) L1 L1(k) L1(k)

L1(k)
+ 6 L1(k) L1(k) · Re

(
L1(P)

)
+ 3P L1 L1(k) L1(k)

+3L1 L1 L1(k) L1(k)− 2P P L1(k) L1(k)− 2P L1 L1(k) L1(k)
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= −P L1(k) L1(k) · 3I0 − L1 L1(k) L1 L1(k) L1(k)

L1(k)
+ 3L1 L1 L1(k) L1(k)

+2Re
(

L1 L1(k)

L1(k)
P
)

L1(k) L1(k) + 6L1(k) L1(k) Re
(
L1(P)

)
− 2 P P L1(k) L1(k)

= −P L1(k) L1(k) · 3I0 − L1 L1(k) L1 L1(k) L1(k)

L1(k)
+ 3L1 L1 L1(k) L1(k)

+2Re
(

L1 L1(k)

L1(k)
P
) ∣∣L1(k)

∣∣2 + 6
∣∣L1(k)

∣∣2 Re
(
L1(P)

)
− 2
∣∣P∣∣2 ∣∣L1(k)

∣∣2,
whose last 3 terms are real-valued.

Now, we substitute the just obtained expansion

(−1)K
{

(−1) L1 L1(k).P
L1(k)

+ 3L1(P)− P P
}
.L1(k)

= (−1) P L1(k) L1(k). 3I0 + (−1) L1 L1(k) L1 L1(k) L1(k)

L1(k)
+ 3 L1 L1 L1(k) L1(k)

+2 Re(L1 L1(k)

L1(k)
P).
∣∣L1(k)

∣∣2 + 6
∣∣L1(k)

∣∣2.Re(L1(P)) + (−2)
∣∣P∣∣2. ∣∣L1(k)

∣∣2
back into the expression (8.10) of 18

∣∣L1(k)
∣∣2Q0 to obtain

18
∣∣L1(k)

∣∣2Q0 =
[
3B 3I0 + 3B 3I0

]
L1(k) L1(k) + 3L1(3I0)L1(k) L1(k)

−P 3I0 L1(k) L1(k) + L1 L1(k)

L1(k)
3I0 L1(k) L1(k)

−K
{

5 (L1 L1(k))2

(L1(k))2
− 3L1 L1 L1(k)

L1(k)

}
L1(k)

−K
{
− L1 L1(k).P

L1(k)
+ 3L1(P)− P P

}
L1(k)

=
[
3B 3I0 + 3B 3I0

]
L1(k) L1(k) + 3L1(3I0)L1(k) L1(k)

−P 3I0 L1(k) L1(k) + L1 L1(k)

L1(k)
3I0 L1(k) L1(k)

−K
{

5 (L1 L1(k))2

(L1(k))2
− 3L1 L1 L1(k)

L1(k)

}
L1(k)

−P L1(k) L1(k) 3I0 − L1 L1(k) L1 L1(k) L1(k)

L1(k)

+3 L1 L1 L1(k) L1(k)− 2 Re
(

L1 L1(k)

L1(k)
P
) ∣∣L1(k)

∣∣2
+6
∣∣L1(k)

∣∣2 Re
(
L1(P)

)
− 2

∣∣P∣∣2 ∣∣L1(k)
∣∣2,
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which after rearranging gives

18
∣∣L1(k)

∣∣2Q0 =
[
3B 3I0 + 3B 3I0

]
L1(k) L1(k)

−
[
3I0 P + 3I0 P

]
L1(k) L1(k)

+ 3L1(3I0)L1(k) L1(k) +
L1 L1(k)

L1(k)
3I0 L1(k) L1(k)

−K
{

5
(L1 L1(k))2

(L1(k))2
− 3

L1 L1 L1(k)

L1(k)

}
L1(k)

− L1 L1(k) L1 L1(k) L1(k)

L1(k)
+ 3 L1 L1 L1(k) L1(k)

− 2 Re
(L1 L1(k)

L1(k)
P
) ∣∣L1(k)

∣∣2 + 6
∣∣L1(k)

∣∣2 Re
(
L1(P)

)
− 2

∣∣P∣∣2 ∣∣L1(k)
∣∣2.

(8.12)

Next, we want to extract a conjugate of L1 L1(k)

L1(k)
3I0 L1(k) L1(k) and a copy of

−3L1(3I0) L1(k) L1(k) from −K
{

5 (L1 L1(k))2

(L1(k))2
− 3L1 L1 L1(k)

L1(k)

}
L1(k).

We first expand

(8.13)
L1 L1(k)

L1(k)
3I0 L1(k) L1(k) = 3I0 L1 L1(k) L1(k)

=
K L1(k) (L1 L1(k))2 L1(k)

(L1(k))3
− K L1 L1(k) L1 L1(k) L1(k)

(L1(k))2

+2
L1L1(k) L1 L1(k) L1(k)

L1(k)
+ 2 L1 L1(k) L1 L1(k),

and

(8.14) −3 L1(3I0) L1(k) L1(k)

= 9
K L1(k) (L1 L1(k))2 L1(k)

(L1(k))3
− 9

K L1 L1(k) L1 L1(k) L1(k)

(L1(k))2

−3
K L1(k) L1 L1 L1(k) L1(k)

(L1(k))2
+ 3

K L1 L1 L1(k) L1(k)

L1(k)

−3
L1 L1(k) L1 L1(k) L1(k)

L1(k)
+ 3 L1L1 L1(k) L1(k)

+12
∣∣L1(k)

∣∣2 Re
(L1 L1(k) L1 L1(k)

(L1(k))2

)
− 12

∣∣L1(k)
∣∣2 Re

(L1L1 L1(k)

L1(k)

)
.



158 3

We now use the expansions (8.13) and (8.14) to expand −K
{

5 (L1 L1(k))2

(L1(k))2
−

3L1 L1 L1(k)

L1(k)

}
L1(k) as follows.

(8.15) −K
{

5
(L1 L1(k))2

(L1(k))2
− 3

L1 L1 L1(k)

L1(k)

}
L1(k)

=

ß[
− 10 L1 L1(k) K L1 L1(k)

(L1(k))2
+ 10 (L1 L1(k))2 K L1(k)

(L1(k))3

]
+
[
3 K L1 L1 L1(k)

L1(k)
− 3 L1 L1 L1(k) K L1(k)

(L1(k))2

]™
L1(k)

= 10 K L1(k) (L1 L1(k))2 L1(k)

(L1(k))3
− 10 L1 L1(k) K L1 L1(k) L1(k)

(L1(k))2

−3 L1 L1 L1(k) K L1(k) L1(k)

(L1(k))2
+ 3 K L1 L1 L1(k)

L1(k)

= 3I0 L1 L1(k) L1(k) + 9 K L1(k) (L1 L1(k))2 L1(k)

(L1(k))3
− 9 K L1 L1(k) L1 L1(k) L1(k)

(L1(k))2

−3 K L1(k) L1 L1 L1(k) L1(k)

(L1(k))2
+ 3 K L1L1 L1(k) L1(k)−2 L1 L1(k) L1 L1(k) L1(k)

L1(k)

−2 L1 L1(k) L1 L1(k)

= 3I0 L1 L1(k) L1(k)− 3L1(3I0) L1(k) L1(k) + L1 L1(k) L1 L1(k) L1(k)

L1(k)

−3 L1 L1 L1(k) L1(k)− 12
∣∣L1(k)

∣∣2 Re
(

L1 L1(k) L1 L1(k)

(L1(k))2

)
+12

∣∣L1(k)
∣∣2 Re

(
L1L1 L1(k)

L1(k)

)
− 2

∣∣L1 L1(k)
∣∣2.

Substituting the expansion (8.15) into the right hand side of (8.12) leads to

18
∣∣L1(k)

∣∣2Q0 =
[
3B 3I0 + 3B 3I0

]
L1(k) L1(k)

−
[
3I0 P + 3I0 P

]
L1(k) L1(k)

+ 3I0 L1 L1(k) L1(k) + 3I0 L1 L1(k) L1(k)

− 12
∣∣L1(k)

∣∣2 Re
(L1 L1(k) L1 L1(k)

(L1(k))2

)
+ 12

∣∣L1(k)
∣∣2 Re

(L1L1 L1(k)

L1(k)

)
+ 2

∣∣L1(k)
∣∣2 Re

(
− P L1 L1(k)

L1(k)
+ 3L1(P)

)
− 2

∣∣L1(k)
∣∣2 |P|2 − 2

∣∣L1 L1(k)
∣∣2.

(8.16)

At this point, we can see from the right hand side of (8.16) that Q0 is real valued and of
order 5, but observe that we can contract more terms into

∣∣L1(k)
∣∣2 3B 3B.



8. FINALIZED EXPRESSION OF Q0 159

Let us expand

(8.17)
∣∣L1(k)

∣∣23B 3B =
∣∣L1(k)

∣∣2 |P|2 − 2
∣∣L1(k)

∣∣2 Re
(PL1 L1(k)

L1(k)

)
+
∣∣L1 L1(k)

∣∣2.
By using the identity (8.17), we now substitute −2

∣∣L1(k)
∣∣2 3B 3B into the expan-

sion (8.16) of 18
∣∣L1(k)

∣∣2Q0 in order to obtain

(8.18) 18
∣∣L1(k)

∣∣2Q0 =

=
[
3B 3I0 + 3B 3I0

]
L1(k) L1(k)−

[
3I0 P + 3I0 P

]
L1(k) L1(k)

+3I0 L1 L1(k) L1(k) + 3I0 L1 L1(k) L1(k)− 2
∣∣L1(k)

∣∣2 3B 3B

−12
∣∣L1(k)

∣∣2 Re
(

L1 L1(k) L1 L1(k)

(L1(k))2

)
+ 12

∣∣L1(k)
∣∣2 Re

(
L1L1 L1(k)

L1(k)

)
+6
∣∣L1(k)

∣∣2 Re
(
− P L1 L1(k)

L1(k)
+ L1(P)

)
=
[
3B 3I0 + 3B 3I0

]
L1(k) L1(k) +

[
3I0 P + 3I0 P

]
L1(k) L1(k)

+3I0 L1 L1(k) L1(k) + 3I0 L1 L1(k) L1(k)− 2
∣∣L1(k)

∣∣2 3B 3B

+12
∣∣L1(k)

∣∣2 Re

ß
L1

[
L1 L1(k)

L1(k)

]™
+ 6

∣∣L1(k)
∣∣2 Re

(
L1(P)

)
.

At this point, a quick look at the first 4 terms on the right hand side of the expan-
sion (8.18) suggests that we should contract them as follows.[

3B 3I0 + 3B 3I0

]
L1(k) L1(k) +

[
3I0 P + 3I0 P

]
L1(k) L1(k)

+ 3I0 L1 L1(k) L1(k) + 3I0 L1 L1(k) L1(k)− 2
∣∣L1(k)

∣∣2 3B 3B
(8.19)

= L1(k) L1(k)

ß[
3B 3I0 + 3B 3I0

]
+
[
3I0 P + 3I0 P

]
+L1 L1(k)

L1(k)
3I0 + L1 L1(k)

L1(k)
3I0 − 2 · 3B 3B

™
= L1(k) L1(k)

ß[
3B 3I0 + 3B 3I0

]
+
[
3B 3I0 + 3B 3I0

]
− 2 · 3B 3B

™
= 2

∣∣L1(k)
∣∣2 ß[3B 3I0 + 3B 3I0

]
− 3B 3B

™
.

Substituting the contraction (8.19) into the right hand side of the expression (8.18) gives

18
∣∣L1(k)

∣∣2Q0 = 2
∣∣L1(k)

∣∣2 (3B 3I0 + 3B 3I0 − 3B 3B
)

+ 12
∣∣L1(k)

∣∣2 Re

ß
L1

[L1 L1(k)

L1(k)

]™
+ 6

∣∣L1(k)
∣∣2 Re

(
L1(P)

)
.

(8.20)
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Finally, simplifying the factor 18
∣∣L1(k)

∣∣2 on both side of (8.20) gives us the desired
expression (8.2) of Q0. �

When we fully expand Q0 from the expression (8.2) using the formulas of I0 and B,
we arrive at the following long expression of Q0, which only involves in the fundamental
functions k and P, and their derivatives:

Q0 =
2

9
Re

ß
K L1(k) (L1 L1(k))2

(L1(k))4

™
(8.21)

− 2

9
Re

ß
K L1 L1(k) L1 L1(k) + K L1(k) L1 L1(k) P

(L1(k))3

™
+

2

9
Re

ß
2 L1 L1(k) L1 L1(k) + K L1 L1(k) P

(L1(k))2

™
− 2

9
Re

ß
2 L1 L1(k) P + L1 L1(k) P

L1(k)

™
− 1

9
|P|2 +

1

3

∣∣∣∣L1 L1(k)

L1(k)

∣∣∣∣2
+

2

3
Re

ß
L1

[L1 L1(k)

L1(k)

]™
+

1

3
Re
(
L1(P)

)
.



CHAPTER 4

On Convergent Poincaré-Moser Reduction
for Levi Degenerate Embedded 5-Dimensional CR Manifolds

Firstly, applying Lie’s elementary theory for appropriate prolongations to jet spaces
of orders 1 and 2, we show that any C ω hypersurface M5 ⊂ C3 in the class C2,1 carries
two sorts of Cartan-Moser chains, that are of orders 1 and 2.

Secondly, integrating and straightening any given order 2 chain passing through any
point p ∈ M to be the v-axis in coordinates (z, ζ, w = u + i v) centered at p, without
setting up the formal theory in advance, we show that there exists a convergent change of
complex coordinates (z, ζ, w) 7−→ (z′, ζ ′, w′) fixing the origin in which γ is the v-axis
and in which M has Poincaré-Moser reduced equation (suppressing primes):

u = zz + 1
2 z

2ζ + 1
2 z

2ζ + zzζζ + 1
2 z

2ζζζ + 1
2 z

2ζζζ + zzζζζζ

+ 2Re
{
z3ζ

2
F3,0,0,2(v) + ζζ

(
3 z2zζ F3,0,0,2(v)

)}
+ 2Re

{
z5ζ F5,0,0,1(v) + z4ζ

2
F4,0,0,2(v) + z3z2ζ F3,0,2,1(v)

+ z3zζ
2
F3,0,1,2(v) + z3ζ

3
F3,0,0,3(v)

}
+ z3z3 Oz,z(1) + z3ζ Oz,ζ,z(3) + z3ζ Oz,z,ζ(3) + ζζ Oz,ζ,z,ζ(5),

where all monomials in ζζ(· · · ) gather dependent derivatives on which normalizations
act automatically.

Thirdly, starting from an M having preliminary normalized equation:

u = zz + 1
2 z

2ζ + 1
2 z

2ζ + zzζζ + Oz,ζ,z,ζ,v(5),

assigning weights [z] := 1, [ζ] := 0, [w] := 2, we show that a normalizing biholomor-
phism exists and is unique when it is assumed to be of the form:

z′ := z + f>2(z, ζ, w) ζ ′ := ζ + g>1(z, ζ, w), w′ := w + h>3(z, ζ, w),

0 = fw(0), 0 = Imhww(0).

The values at the origin of Pocchiola’s two primary Cartan-type relative differential
invariants are:

W0 = 4F3,0,0,2(0) and J0 = 20F5,0,0,1(0).

The proofs are detailed, accessible to non-experts. The computer-generated aspects
(forthcoming) have been reduced to a minimum here.

This Chapter is based on our jointwork with Wei-Guo Foo and Joël Merker, which
has appeared in preprint form:

Wei-Guo Foo, Joël Merker, The-Anh Ta, On Convergent Poincaré-Moser Reduction
for Levi Degenerate Embedded 5-Dimensional CR Manifolds, arXiv:2003.01952

1. Introduction

As explained in the survey introduction of [22], the appropriate local graphed model for
2-nondegenerate constant Levi rank 1 real analytic (C ω) hypersurfacesM5 ⊂ C3, generally
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graphed, in coordinates
(
z, ζ, w = u+ i v

)
as:

u = F
(
z, ζ, z, ζ, v

)
,

is the so-called Gaussier-Merker model:

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
=: m

(
z, ζ, z, ζ

)
.

Fels-Kaup [43] showed that its (connected) intersection with {|ζ| < 1} is biholomor-
phic to a Zariski-open subset of the complex tube S2

LC × iR3 over the real light cone
(Re z2)2 − (Re z3)2 = (Re z1)2. The light cone S2

LC ⊂ R3 is the maximally symmetric
non-flat parabolic surface, characterized, according to [21], by the vanishing of certain two
differential invariants.

By applying either Cartan’s method of equivalence, or Tanaka’s approach, several recent
works ([68, 82, 83, 113, 92, 49]) have been devoted to construct absolute parallelisms,
namely 10-dimensional {e}-structure bundles P 10 −→ M5 for such M5 ⊂ C3, invariantly
related to biholomorphic equivalences of such hypersurfaces.

By performing advanced electronic computations, Merker-Pocchiola [113, 92] found
that only two primary curvature invariants exist, denoted W and I. These intensive com-
putations have been redone manually by Foo-Merker in [49] all along ∼ 50 pages. One
obtains certain ‘horizontal’ (semi-basic) 1-forms

{
ρ, κ, ζ, κ, ζ

}
with ρ = ρ together with

four ‘vertical’ 1-forms π1, π2, π1, π2 which satisfy ‘compact’ structure equations of the
form:

dρ =
(
π1 + π1

)
∧ ρ+ i κ ∧ κ,

dκ = π2 ∧ ρ+ π1 ∧ κ+ ζ ∧ κ,
dζ =

(
π1 − π1

)
∧ ζ + i π2 ∧ κ+

+ R ρ ∧ ζ + i
1

c3 J0 ρ ∧ κ+
1

c
W0 κ ∧ ζ,

conjugate structure equations for dκ, dζ being easily deduced.
In Sections 20 and 24, we copy the expressions of the two primary relative differential

invariants W0 : M −→ C and J0 : M −→ C, while R is a certain (useless) secondary
invariant.

THEOREM 1.1. [113, 92, 49] Only two primary invariants, W0 and J0, occur for biholo-
morphic equivalences of 2-nondegenerate constant Levi rank 1 real analytic hypersurfaces
M5 ⊂ C3, and:

0 ≡ W0 ≡ J0 ⇐⇒ M is equivalent to the Gaussier-Merker model.

Furthermore, when either W0 6= 0 or J0 6= 0, the equivalence problem reduces to a 5-
dimensional {e}-structure on M5, and every non-flat M5 has CR automorphisms group of
dimension 6 5. �

In this article, our motivation is to view again these relative CR differential invariants
by putting the equation of such M5 ⊂ C3 into normal form, like Chern-Moser did in [23].
Generally, the Poincaré-Moser normal form [23] provides a distinguished choice of local
holomorphic coordinates for a hypersurface, in which its defining equation is approximated
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as far as possible by that of the local model, for instance in Cn+1 3 (z1, . . . , zn, w = u+i v),
a real hyperquadric:

u = |z1|2 + · · ·+ |zp|2 − |zp+1|2 − · · · − |zn|2.
Usually, a biholomorphic transformation bringing a hypersurface to a normal form at the
origin is defined up to composition with the automorphisms group of the model.

Two months ago, in [22], joint with Chen, we studied rigid C ω hypersurfacesM5 ⊂ C3:

u = F
(
z, ζ, z, ζ

)
=

∑
a,b,c,d>0

zaζbzcζ
d
Fa,b,c,d (Fa,b,c,d ∈C, Fc,d,a,b =Fa,b,c,d),

with graphing function F independent of v, which are everywhere 2-nondegenerate and of
constant Levi rank 1, under the rigid biholomorphisms group, a group which consists of
transformations of the form:

(z, ζ, w) 7−→
(
f(z, ζ), g(z, ζ), ρ w + h(z, ζ)

)
=:
(
z′, ζ ′, w′

)
,

having nonzero holomorphic Jacobian fzgζ − fζgz 6= 0, with ρ ∈ R∗. We established that
every such rigid M5 ⊂ C3 is rigidly equivalent to a ‘perturbation’ of the Gaussier-Merker
model:

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
+ 2 Re

{
F4,0,0,1 z

4ζ + ReF3,0,1,1 z
3zζ + F3,0,0,2 z

3ζ
2
}

+ z3z3 Oz,z(0) + 2 Re z3ζ Oz,z,ζ(2) + ζζ Oz,z(3) Oz,ζ,z,ζ(1).

Here, by writing ReF3,0,1,1, we mean that the (complex) coefficient F3,0,1,1 ∈ C has been
normalized to be real.

Furthermore, writing:

u = F
(
z, ζ, z, ζ

)
= m

(
z, ζ, z, ζ

)
+G

(
z, ζ, z, ζ

)
= m

(
z, ζ, z, ζ

)
+

∑
a,b,c,d∈N
a+c>3

Ga,b,c,d z
aζbzcζ

d
,

two such rigid C ω hypersurfacesM5 ⊂ C3 andM ′5 ⊂ C′3, both brought into such a normal
form, are rigidly biholomorphically equivalent if and only if there exist two constants ρ ∈
R∗+, ϕ ∈ R, such that for all a, b, c, d:

Ga,b,c,d = G′a,b,c,d ρ
a+c−2

2 eiϕ(a+2b−c−2d).

This means that the normal form is defined only up to the 2-dimensional action of the rigid
isotropy group of the origin:

(z, ζ, w) 7−→
(
ρ1/2 eiϕ z, e2iϕ ζ, ρw

)
(ρ∈R∗+, ϕ∈R),

Before making public this normal form, in [51], we produced Cartan-type reduction to
an {e}-structure for the equivalence problem, under rigid (local) biholomorphic transfor-
mations, of such rigidM5 that are 2-nondegenerate of constant Levi rank 1. We constructed
an invariant 7-dimensional bundle P 7 −→M5 equipped with coordinates:(

z1, z2, z1, z2, v, c, c
)
,

with c ∈ C, together with of seven 1-forms generating T ∗P 7, denoted:{
ρ, κ, ζ, κ, ζ, α, α

}
(ρ= ρ),
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which satisfy invariant structure equations of the form:

dρ =
(
α + α

)
∧ ρ+ i κ ∧ κ,

dκ = α ∧ κ+ ζ ∧ κ,

dζ =
(
α− α

)
∧ ζ +

1

c
I0 κ ∧ ζ +

1

cc
V0 κ ∧ κ,

dα = ζ ∧ ζ − 1

c
I0 ζ ∧ κ+

1

cc
Q0 κ ∧ κ+

1

c
I0 ζ ∧ κ.

We refer to [22] for explicit expressions of the two primary invariants I0,V0 : M −→ C,
and of the secondary invariant Q0 : M −→ R, which is real. Once M is put into normal
form as above, their values at the origin are:

I0 = 4F3,0,0,2 V0 = − 8F4,0,0,1 Q0 = 4 ReF3,0,1,1.

The goal of this article is to set up a rigorous convergent Poincaré-Moser normal form
for any everywhere 2-nondegenerate constant Levi rank 1 general (nonrigid) C ω hypersur-
face M5 ⊂ C3 under the full (not necessarily rigid) biholomorphisms group:

(z, ζ, w) 7−→
(
f(z, ζ, w), g(z, ζ, w), h(z, ζ, w)

)
.

Given such an M5 ⊂ C3 with 0 ∈ M , by examining terms of F up to order 4, it is
elementary to find a holomorphic system of coordinates in which it is:

u = F = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + Oz,ζ,z,ζ,v(5).

Since the Gaussier-Merker model is invariant under the complex scalings:

(z, ζ, w) 7−→
(
λ z, λ

λ
ζ, λλw

)
(λ∈C∗),

it is natural to assign the weights:

[z] := 1 =: [z], [ζ] := 0 =: [ζ], [w] := 2 =: [w].

Then by e>ν(z, ζ, w), we will mean a holomorphic function near the origin all of whose
monomials zaζbwe are of weight a+ 2 e > ν.

THEOREM 1.2. [Main] There exists a biholomorphism (z, ζ, w) 7−→ (z′, ζ ′, w′) fixing
0 which maps (M, 0) into (M ′, 0) of normalized equation (suppressing primes):

u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ

+ 2 Re
{
z3ζ

2
F3,0,0,2(v) + ζζ

(
3 z2zζ F3,0,0,2(v)

)}
+ 2 Re

{
z5ζ F5,0,0,1(v) + z4ζ

2
F4,0,0,2(v) + z3z2ζ F3,0,2,1(v)

+ z3zζ
2
F3,0,1,2(v) + z3ζ

3
F3,0,0,3(v)

}
+ z3z3 Oz,z(1) + z3ζ Oz,ζ,z(3) + z3ζ Oz,z,ζ(3) + ζζ Oz,z(3) Oz,ζ,z,ζ(2).

Furthermore, the map exists and is unique if it is assumed to be of the form:

z′ := z + f>2(z, ζ, w) ζ ′ := ζ + g>1(z, ζ, w), w′ := w + h>3(z, ζ, w),

0 = fw(0), 0 = Imhww(0).
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Equivalently, writing:

u = F =
∑

a,b,c,d>0

zaζbzcζ
d
Fa,b,c,d(v),

the normal form is defined by the general prenormalization conditions:

0 ≡Fa,b,0,0(v) ≡ F0,0,c,d(v),

0 ≡Fa,b,1,0(v) ≡ F1,0,c,d(v),

0 ≡Fa,b,2,0(v) ≡ F2,0,c,d(v),

with the obvious two exceptions F1,0,1,0(v) ≡ 1 and F0,1,2,0(v) ≡ 1
2
≡ F2,0,0,1(v), together

with the sporadic normalization conditions, listed by increasing order 4, 5, 6:

0 ≡ F3,0,0,1(v) ≡ F0,1,3,0(v),

0 ≡ F4,0,0,1(v) ≡ F0,1,4,0(v), 0 ≡ F3,0,1,1(v) ≡ F1,1,3,0(v),

0 ≡ F4,0,1,1(v) ≡ F1,1,4,0(v), 0 ≡ F3,0,3,0(v).

Without the above conditions z′ = z + f>2, ζ ′ = ζ + g>1, w′ = w + h>3 guarantee-
ing uniqueness, one can verify that a normalizing transformation is unique up to the right
action of the 5-dimensional stability group of the Gaussier-Merker model having the finite
equations:

z′ := λ
z + i α z2 +

(
i α ζ − i α

)
w

1 + 2i α z − α2z2 −
(
α2ζ − αα + i r

)
w
,

ζ ′ :=
λ

λ

ζ + 2i α z −
(
αα + i r

)
z2 +

(
α2 − i r ζ − αα ζ

)
w

1 + 2i α z − α2z2 −
(
α2ζ − αα + i r

)
w

,

w′ := λλ
w

1 + 2i α z − α2z2 −
(
α2ζ − αα + i r

)
w
,

where λ ∈ C∗, α ∈ C, r ∈ R are arbitrary.
Lastly, the values at the origin of Pocchiola’s two primary Cartan-type relative differen-

tial invariants are:

W0 = 4F3,0,0,2(0) and J0 = 20F5,0,0,1(0).

However, Poincaré-Moser normal forms or Cartan-Tanaka reductions to {e}-structures
are only a preliminary towards the understanding of the biholomorphic equivalence prob-
lem for embedded C ω CR submanifolds M ⊂ CN, quite far from any resolution, not even
to be termed ‘complete resolution’.

Indeed, focusing on CR geometry, we would like to indicate two ‘defects’ of Poincaré-
Moser normal forms in comparison to Cartan-Tanaka principal bundles.

• Moser-type CR normal forms are in fact incomplete in the sense that their invariants are
only relative, yet defined up to the action of a certain ambiguity (isotropy) group.

• Moser-type CR normal forms hold only at one point, hence are incapable to fully char-
acterize flatness as Cartan’s method does.

The main reason why Cartan’s method is more powerful is that it embraces computations
at every point of a given manifold. Objects manipulated by Cartan’s thought are (often
very complicated) rational differential expressions in partial derivatives of fundamental
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(graphing) functions. In comparison, objects manipulated by Moser’s method are only
plain Taylor coefficients, hence computations are much more elementary.

Fortunately, it is known that symmetries of a hypersurface can be read off from subse-
quently constructed deeper normal forms, not touched in the present paper, but forthcom-
ing.

These comments conduct us to at least formulate and raise a certain number of questions
showing that several mysteries remain.

QÀ How to get rid of ambiguity in Moser CR-normal forms? What are the true (absolute)
differential invariants? Can one retrieve Pocchiola’s dimension drop 10 ↓ 5? Can one link
Moser’s punctual invariants with Cartan’s invariants at every point?

QÁ In all possibly existing branches, how to find a minimal set of generators for the differ-
ential algebra of absolute differential invariants? Using either Moser’s or Cartan’s method?

QÂ In each branch, what are the differential relations (syzygies) between differential in-
variants?

QÃ How to implement the determination of CR-homogeneous models beyond naive Taylor
series manipulations at only one point? How to employ the theory of Lie? How to view
Cartan’s invariants in a Taylor series?

QÄ How to implement, from Moser’s side of the bridge, any sub-branch assumption that
requires that an ideal of differential invariants, or a collection of Taylor coefficients, vanish
(identically)?

To close this brief introduction, three aspects of the article should be emphasized.

AÀ Analogs of Cartan-Moser chains will be ‘discovered from scratch’ by applying a method
due to Lie, as in [95].

AÁ Detailed proofs for the existence of a convergent normal form, missing on arxiv.org,
will be offered to the reader.

AÂ The ‘formal theory’ will be developped after the ‘convergent theory’.

Acknowledgments. Zhangchi Chen provided the Maple figures of Sections 8 and 9.

2. C2,1 Hypersurfaces M5 ⊂ C3

Our object of study is the collection of real C ω hypersurfaces M5 ⊂ C3 whose Levi
form is of constant rank 1 at every point and that are everywhere 2-nondegenerate (see
below), a class that we will denote as:

C2,1.

Pick any point p ∈M and adapt affine holomorphic coordinates
(
z, ζ, w = u+i v

)
∈ C3

in which p is the origin, so that T0M ⊕ Ru = C3. From any C ω real defining equation for
M near p, the analytic implicit function theorem enables to solve for u as:

u = F
(
z, ζ, z, ζ, v

)
,

for some C ω graphing function F , the core object of our study. This F is expandable in
converging power series as:

F
(
z, ζ, z, ζ, v

)
=

∑
a+b+c+d+e>1

Fa,b,c,d,e z
aζbzcζ

d
ve,
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for some infinite collection of complex coefficients Fa,b,c,d,e ∈ C. Then by conjugating
only complex coefficients, define:

F
(
z, ζ, z, ζ, v

)
:=

∑
a+b+c+d+e>1

F a,b,c,d,e z
aζbzcζ

d
ve.

The reality u = u forces F (z, ζ, z, ζ, v) = F (z, ζ, z, ζ, v), that is:

F
(
z, ζ, z, ζ, v

)
≡ F

(
z, ζ, z, ζ, v

)
.(2.1)

Applying 1
a!
∂az

1
b!
∂bζ

1
c!
∂cz

1
d!
∂d
ζ

1
e!
∂ev at the origin (0, 0, 0, 0, 0), we obtain the (known) condi-

tion on the Fa,b,c,d,e ∈ C which guarantees reality of the graphing function:

Fc,d,a,b,e = Fa,b,c,d,e.

Later, we will expand F in powers of (z, ζ, z, ζ) only, by introducing:

F
(
z, ζ, z, ζ, v

)
=
∑
a,b,c,d

zaζbzcζ
d ∑

e

Fa,b,c,d,e v
e =:

∑
a,b,c,d

zaζbzcζ
d
Fa,b,c,d(v).

The reality of F is then equivalent to:

Fc,d,a,b(v) = Fa,b,c,d(v).(2.2)

In the literature [55, 56, 85, 44, 89, 68, 82, 83, 96, 49, 51], several equivalent definitions
of the class C2,1 exist. We propose a computational formulation of the two concepts of
constant Levi rank 1 and of 2-nondegeneracy, already shown in [22] when M is rigid,
namely when F is idenpendent of v.

For this, we need the complex graphed representation of any C ω hypersurfaceM5 ⊂ C3:

w = Q
(
z, ζ, z, ζ, w

)
,

with a C-valued analytic function Q which is obtained by solving for w in w+w
2

=

F
(
z, ζ, z, ζ, w−w

2i

)
, so that:

1
2
Q
(
z, ζ, z, ζ, w

)
+ 1

2
w ≡ F

(
z, ζ, z, ζ, 1

2i
Q
(
z, ζ, z, ζ, w

)
− 1

2i
w
)
.

Such an analytic function Q cannot be arbitrary, it must satisfy a compatibility condition
obtained by replacing w := Q in its last argument:

w ≡ Q
(
z, ζ, z, ζ, Q

(
z, ζ, z, ζ, w

))
.

3. Two Invariant Determinants

A local biholomorphism:

(z, ζ, w) 7−→
(
f(z, ζ, w), g(z, ζ, w), h(z, ζ, w)

)
=:
(
z′, ζ ′, w′

)
,

has nowhere vanishing holomorphic Jacobian determinant:

0 6=

∣∣∣∣∣∣
fz gz hz
fζ gζ hζ
fw gw hw

∣∣∣∣∣∣ .
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Suppose that it makes a biholomorphism between two C ω hypersurfaces both represented
by complex graphing functions:

w = Q
(
z, ζ, z, ζ, w

)
and w′ = Q′

(
z′, ζ ′, z′, ζ

′
, w′
)
.

Plugging the three components of the biholomorphism in the target equation, we get the
so-called fundamental identity:

h(z, ζ, w) = Q′
(
f(z, ζ, w), g(z, ζ, w), f(z, ζ, w), g(z, ζ, w), h(z, ζ, w)

)∣∣∣∣
w=Q(z,ζ,z,ζ,w)

,

which holds identically in the ring of converging power series C{z, ζ, z, ζ, w}.
By differentiating this identity (exercise!), one may express the invariancy of the Levi

form as a relation between the two Levi determinants defined as:∣∣∣∣∣∣
Qz Qζ Qw

Qzz Qzζ Qzw

Qζz Qζζ Qζw

∣∣∣∣∣∣ and

∣∣∣∣∣∣∣
Q′z′ Q′

ζ
′ Q′w′

Q′z′z′ Q′
z′ζ
′ Q′z′w′

Q′ζ′z′ Q′
ζ′ζ
′ Q′ζ′w′

∣∣∣∣∣∣∣ .
Indeed, abbreviate:

Lz :=
∂

∂z
+Qz(z, ζ, z, ζ, w)

∂

∂w
and Lζ :=

∂

∂ζ
+Qζ(z, ζ, z, ζ, w)

∂

∂w
.

PROPOSITION 3.1. Through any biholomorphism between real hypersurfaces {w =
Q} ⊂ C3 and {w′ = Q′} ⊂ C′3, one has:

∣∣∣∣∣∣∣
Q′z′ Q′

ζ
′ Q′w′

Q′z′z′ Q′
z′ζ
′ Q′z′w′

Q′ζ′z′ Q′
ζ′ζ
′ Q′ζ′w′

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣
fz fζ fw
gz gζ gw
hz hζ hw

∣∣∣∣∣∣
3

∣∣∣∣∣∣
f z f ζ fw
gz gζ gw
hz hζ hw

∣∣∣∣∣∣
1

1∣∣∣∣Lz(f) Lζ(f)
Lz(g) Lζ(g)

∣∣∣∣4
∣∣∣∣∣∣
Qz Qζ Qw

Qzz Qzζ Qzw

Qζz Qζζ Qζw

∣∣∣∣∣∣ .
�

Consequently, the property that the Levi form is of constant rank 1 is biholomorphically
invariant. The 2-nondegeneracy property [96] then expresses as the nonvanishing of:∣∣∣∣∣∣

Qz Qζ Qw

Qzz Qzζ Qzw

Qzzz Qzzζ Qzzw

∣∣∣∣∣∣ and

∣∣∣∣∣∣∣
Q′z′ Q′

ζ
′ Q′w′

Q′z′z′ Q′
zζ
′ Q′z′w′

Q′z′z′z′ Q′
z′z′ζ

′ Q′z′z′w′

∣∣∣∣∣∣∣ .
PROPOSITION 3.2. When the Levi form is of constant rank 1, through any biholomor-

phism between real hypersurfaces {w = Q} ⊂ C3 and {w′ = Q′} ⊂ C′3, one has:∣∣∣∣∣∣∣
Q′z′ Q′

ζ
′ Q′w′

Q′z′z′ Q′
z′ζ
′ Q′z′w′

Q′z′z′z′ Q′
z′z′ζ

′ Q′z′z′w′

∣∣∣∣∣∣∣∣∣∣∣∣∣
Qz Qζ Qw

Qzz Qzζ Qzw

Qzzz Qzzζ Qzzw

∣∣∣∣∣∣
=

∣∣∣∣∣∣
fz fζ fw
gz gζ gw
hz hζ hw

∣∣∣∣∣∣
3

∣∣∣∣∣∣
f z f ζ fw
gz gζ gw
hz hζ hw

∣∣∣∣∣∣
1

Å
Lζ(g)

∣∣∣∣ Qz Qw

Qzz Qzw

∣∣∣∣−Lz(g)

∣∣∣∣ Qz Qw

Qζz Qζw

∣∣∣∣ã3

∣∣∣∣Lz(f) Lζ(f)
Lz(g) Lζ(g)

∣∣∣∣6 ∣∣∣∣ Qz Qw

Qzz Qzw

∣∣∣∣3 .

�
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Recall that we denote the class of (local) hypersurfaces M5 ⊂ C3 passing through the
origin 0 ∈M that are 2-nondegenerate and whose Levi form has constant rank 1 as:

C2,1.

Repeatedly, we shall use the real expression of the Levi determinant:

Levi(F ) :=

∣∣∣∣∣∣∣∣∣∣∣∣

0 Fz Fζ −1
2

+ 1
2i
Fv

Fz Fzz Fζz
1
2i
Fzv

Fζ Fzζ Fζζ
1
2i
Fζv

−1
2
− 1

2i
Fv − 1

2i
Fzv − 1

2i
Fζv

1
4
Fvv

∣∣∣∣∣∣∣∣∣∣∣∣
.(3.3)

The next (known) statement applies to ρ := −u+ F .

LEMMA 3.4. [50] If M5 ⊂ C3 is implicitly defined by ρ
(
z, ζ, w, z, ζ, w

)
= 0 with a C ω

real function ρ = ρ satisfying ρw 6= 0, and if w = Q
(
z, ζ, z, ζ, w

)
is its associated complex

graphing function, then:∣∣∣∣∣∣∣∣
0 ρz ρζ ρw
ρz ρzz ρζz ρwz
ρζ ρzζ ρζζ ρwζ
ρw ρzw ρζw ρww

∣∣∣∣∣∣∣∣ = ρ4
w

∣∣∣∣∣∣
Qz Qζ Qw

Qzz Qzζ Qzw

Qζz Qζζ Qζw

∣∣∣∣∣∣ . �

We leave as an exercise to find some invariant determinant expressed in terms of F
which corresponds to the 2-nondegeneracy determinant of Proposition 3.2 in terms of Q.

4. Infinitesimal CR Automorphisms

In the class C2,1, the appropriate homogeneous model, named MLC, was set up by
Gaussier-Merker in [56] and Fels-Kaup in [43], see also [22]:

MLC : u =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
=: m

(
z, ζ, z, ζ

)
.

The letter m here stands for model.
The 10-dimensional simple Lie algebra of its infinitesimal CR automorphisms:

g := autCR
(
MLC

) ∼= so2,3(R),

has 10 natural generators X1, . . . , X10, which are (1, 0) vector fields in C3 having holomor-
phic coefficients with Xσ +Xσ tangent to MLC.

It is natural to assign the following weights to variables and to vector fields:

[z] := 1 [ζ] := 0, [w] := 2
[
∂z
]

:= − 1
[
∂ζ
]

:= 0
[
∂w
]

:= − 2.

(4.1)

The Lie algebra g = autCR(MLC) can be graded as:

g = g−2 ⊕ g−1 ⊕ g0 ⊕ g1 ⊕ g2,

where, as shown in [56, 51]:

g−2 := Span
{
i ∂w

}
,

g−1 := Span
{

(ζ − 1) ∂z − 2z ∂w, (i+ iζ) ∂z − 2iz ∂w
}
,
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where g0 = gtrans
0 ⊕ giso

0 :

gtrans
0 := Span

{
zζ ∂z + (ζ2 − 1) ∂ζ − z2 ∂w, izζ ∂z + (i+ iζ2) ∂ζ − iz2 ∂w

}
,

giso
0 := Span

{
z ∂z + 2w ∂w, iz ∂z + 2iζ ∂ζ

}
,

while:

g1 := Span
{(
z2 − ζw − w) ∂z +

(
2zζ + 2z

)
∂ζ + 2zw ∂w,(

− iz2 + iζw − iw
)
∂z +

(
− 2izζ + 2iz

)
∂ζ − 2izw ∂w

}
,

g2 := Span
{
izw ∂z − iz2 ∂ζ + iw2 ∂w

}
.

Calling these X1, . . . , X10 in order of appearance, the five Xσ +Xσ for σ = 1, 2, 3, 4, 5
span TM5 while those for σ = 6, 7, 8, 9, 10 generate the isotropy subgroup of the origin.

In fact, we will use the alternative names for the 5 generators of the isotropy subroup:

D := z ∂z + 2w ∂w,

R := iz ∂z + 2i ζ ∂ζ ,

I1 :=
(
z2 − ζw − w

)
∂z +

(
2 zζ + 2 z

)
∂ζ + 2 zw ∂w,

I2 :=
(
− i z2 + i ζw − i w

)
∂z +

(
− 2i zζ + 2i z

)
∂ζ − 2i zw ∂w,

J := i zw ∂z − i z2 ∂ζ + i w2 ∂w,

having commutator table:

D R I1 I2 J
D 0 0 I1 I2 2 J
R ∗ 0 −I2 I1 0
I1 ∗ ∗ 0 4 J 0
I2 ∗ ∗ ∗ 0 0
J ∗ ∗ ∗ ∗ 0

5. Fractional Representation of the Isotropy Group

By integrating iterated flows of D, R, I1, I2, J, it can be shown (exercise) that the isotropy
subgroup of the origin 0 ∈MLC in the Gaussier-Merker model has the finite equations:

z′ := λ
z + i α z2 +

(
i α ζ − i α

)
w

1 + 2i α z − α2z2 −
(
α2ζ − αα + i r

)
w
,

ζ ′ :=
λ

λ

ζ + 2i α z −
(
αα + i r

)
z2 +

(
α2 − i r ζ − αα ζ

)
w

1 + 2i α z − α2z2 −
(
α2ζ − αα + i r

)
w

,

w′ := λλ
w

1 + 2i α z − α2z2 −
(
α2ζ − αα + i r

)
w
,

where λ ∈ C∗, α ∈ C, r ∈ R are arbitrary.
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The Taylor expansions up to respective weighted orders 5, 4, 6, will soon be useful:
z′ = λ z

− i λα z2 − i λ αw
− λα2 z3 +

(
− 3λαα+ i λr

)
zw + i λα ζw

+ i λα3 z4 +
(
6i λα2α+ 3λαr

)
z2w +

(
λαr + i λα2α

)
w2 + 3λα2 zζw

+ λα4 z5 +
(
− 6i α2λr + 10λα3α

)
z3w − 6i λα3 z2ζw +

(
5λα2α2 − 6i λααr − λr2

)
zw2 +

(
− 2i λα2α− λαr

)
ζw2,

ζ ′ = 2i
λ

λ
α z +

λ

λ
ζ

+
(
− i λ

λ
r + 3

λ

λ
αα
)
z2 − 2i

λ

λ
α zζ +

λ

λ
α2 w

+
(
− 4i

λ

λ
α2α− 2

λ

λ
αr
)
z3 − 3

λ

λ
α2 z2ζ +

(
− 4i

λ

λ
αα2 − 2

λ

λ
αr
)
zw − 2

λ

λ
αα ζw

+
(
− 5

λ

λ
α3α+ 3i

λ

λ
α2r
)
z4 + 4i

λ

λ
α3 z3ζ +

(
− 10

λ

λ
α2α2 + 8i

λ

λ
ααr +

λ

λ
r2
)
z2w

+
(

8i
λ

λ
α2α+ 2

λ

λ
αr
)
zζw +

λ

λ
α2 ζ2w +

(
i
λ

λ
α2r − λ

λ
αα3

)
w2,

w′ = 0

+ λλw

− 2i λλα zw

− 3λλα2 z2w +
(
i λλr − λλαα

)
w2

+ 4i λλα3 z3 +
(
4i λλα2α+ 4λλαr

)
zw2 + λλα2 ζw2

+ 5λλα4 z4w +
(
10λλα3α− 10i λλα2r

)
z2w2 − 4i λλα3 zζw2 +

(
− λλr2 − 2i λλααr + λλα2α2

)
w3.

6. Lie Jet Theory

To apply Lie’s theory similarly as in [95], we must work with the five intrinsic, real,
coordinates (x, y, s, t, v) on M5, where:

z = x+ i y, ζ = s+ i t, w = u+ i v.

As in [95], we consider parametrized local real C ω curves passing by the origin

τ 7−→
(
x(τ), y(τ), s(τ), t(τ), τ

)
.

with v(τ) ≡ τ guaranteeing that the curve is not CR-tangential. We then use the parameter-
letter v instead of τ .

The eight independent coordinates corresponding to ẋ(v), ẏ(v), ṡ(v), ṫ(v), ẍ(v), ÿ(v),
s̈(v), ẗ(v) will be denoted:(

v, x, y, s, t, x1, y1, s1, t1, x2, y2, s2, t2
)
.

The first jet space is J1
1,4 ≡ R1+4+4, and the second jet space is J2

1,4 ≡ R1+4+4+4.
Any diffeomorphism (v, x, y, s, t) 7−→ (v′, x′, y′, s′, t′) lifts to jet spaces of any order.

Because the formulas rapidly become complicated [109, 85, 21], Lie linearized the action
of diffeomorphisms.

As in [95], we will apply Lie’s formulas. Start from a general vector field:

~v := ξ(v, x, y, s, t)
∂

∂v
+ϕ(v, x, y, s, t)

∂

∂x
+ψ(v, x, y, s, t)

∂

∂y
+λ(v, x, y, s, t)

∂

∂s
+µ(v, x, y, s, t)

∂

∂t
.
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Introduce the total differentiation operator:

Dv :=
∂

∂v
+x1

∂

∂x
+y1

∂

∂y
+s1

∂

∂s
+t1

∂

∂t
+x2

∂

∂x1

+y2
∂

∂y1

+s2
∂

∂s1

+t2
∂

∂t1
+x3

∂

∂x2

+y3
∂

∂y2

+s3
∂

∂s2

+t3
∂

∂t2
.

Then the second prolongation of ~v:

~v(2) = ~v + ϕ1
∂

∂x1

+ ψ1
∂

∂y1

+ λ1
∂

∂s1

+ µ1
∂

∂t1

+ ϕ2
∂

∂x2

+ ψ2
∂

∂y2

+ λ2
∂

∂s2

+ µ2
∂

∂t2
,

has coefficients ([78, 109, 85, 21]):
ϕ1 := Dv

(
ϕ− ξ x1

)
+ ξ x2, ψ1 := Dv

(
ψ − ξ y1

)
+ ξ y2, λ1 := Dv

(
λ− ξ s1

)
+ ξ s2, µ1 := Dv

(
µ− ξ t1

)
+ ξ t2,

ϕ2 := DvDv
(
ϕ− ξ x1

)
+ ξ x3, ψ2 := DvDv

(
ψ − ξ y1

)
+ ξ y3, λ2 := DvDv

(
λ− ξ s1

)
+ ξ s3, µ2 := DvDv

(
µ− ξ t1

)
+ ξ t3.

7. Intrinsic Isotropy Automorphisms of the Gaussier-Merker Model

We want to apply Lie’s prolongation formulas within the first jet space to our 5 vector
fields X = D, R, I1, I2, J. But these holomorphic (1, 0) fields were extrinsic, defined in C3.
We must therefore write up the five fields X + X in the intrinsic coordinates (x, y, s, t, v) ∈
M5

LC. By slight abuse, we keep the notation X instead of X + X:

D = x ∂x + y ∂y + 2v ∂v,

R = − y ∂x + x ∂y − 2t ∂s + 2s ∂t,

I1 =
[2x2s2 − 2 y2s2 + 2 y2 + 2xyt+ x2t2 − y2t2 + 2xyst− tv + s2tv + t3v + 2x2s

−1 + s2 + t2

] ∂

∂x

+
[− y2t− x2st− v + s2v + t2v − sv + s3v + st2v − x2t− 4xyt2 + y2st+ 2xy − 2xys2

1− s2 + t2

] ∂

∂y

+
[
2x− 2 yt+ 2xs

] ∂
∂s

+
[
2 y + 2 ys+ 2xt

] ∂
∂t

+
[− 4xy2t− 2x2ys− 2x2y + 2 y3s− 2xv + 2xs2v + 2xt2v − 2 y3

−1 + s2 + t2

] ∂

∂v
,

I2 =
[− y2t− x2st− 4xyt2 + y2st− sv + s3v + st2v + 2xy − 2xys2 + v − s2v − t2v − x2t

−1 + s2 + t2

] ∂

∂x

+
[− 2x2 + 2x2s2 + x2t2 − 2xyt− 2 y2s2 − y2t2 + 2xyst− tv + s2tv + t3v + 2 y2s

1− s2 + t2

] ∂

∂y

+
[
2xt− 2 y + 2 ys

] ∂
∂s

+
[
− 2xs+ 2x+ 2 yt

] ∂
∂t

+
[− 2xy2s+ 2xy2 + 4x2yt+ 2x3s+ 2x3 − 2 yv + 2 ys2v + 2 yt2v

−1 + s2 + t2

] ∂

∂v
,

J =
[− 2xy2t− x2ys− x2y + y3s− xv + xs2v + xt2v − y3

−1 + s2 + t2

] ∂

∂x

+
[−xy2s+ xy2 + 2x2yt+ x3s+ x3 − yv + ys2v + yt2v

1− s2 + t2

] ∂

∂y

+
[
2xy

] ∂
∂s

+
[
− x2 + y2

] ∂
∂t

+
[(v − s2v − t2v − x2s− x2 − 2xyt+ y2s− y2

)(
− v + s2v + t2v − x2 − x2s− 2xyt+ y2s− y2

)(
1− s2 − t2

)2 ] ∂

∂v
.
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8. Prolongation to the Jet Space of Order 1

As said, we work above the origin 0 ∈MLC.

~v(1)

0

~v

~v(1)
0

R4

J1
1,4

~v MLC

By Lie’s theory, any vector field ~v on the base M lifts as a vector field ~v(1) on the first
jet space J1

1,4 = R1+4+4.
Because our five intrinsic vector fields D, R, I1, I2, J vanish at v = x = y = s = t = 0,

their prolongations will automatically be tangent to the fiber
{

(0, 0, 0, 0, 0, x1, y1, s1, t1)
}

above (0, 0, 0, 0, 0) in the first jet space.
Lie’s formulas yield the very simple values of these first prolongations above the origin

v = x = y = s = t = 0:

∂x1 ∂y1 ∂s1 ∂t1
D(1) −x1 −y1 −2s1 −2t1

R(1) −y1 x1 −2t1 2s1

I
(1)
1 0 −1 2x1 2y1

I
(1)
2 1 0 −2y1 2y1

J(1) 0 0 0 0
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OBSERVATION 8.1. On R4 = R4
x1,y1,s1,t1

, there exists a unique
{

D(1),R(1), I
(1)
1 , I

(1)
2 , J(1)

}
-

invariant 2-dimensional submanifold Σ1
0 ⊂ R4, algebraic, graphed as:ñ
s1 = − 2x1y1,

t1 = x2
1 − y2

1,

Moreover, the complement R4\Σ1
0 is a unique (transitive) orbit under D(1), R(1), I

(1)
1 , I

(1)
2 ,

J(1).

PROOF. We can drop the fifth line of J(1) containing only zeros. With a1 and b1 being
parameters, any point of R4 can be written as (x1, y1, s1, t1) with:

s1 := − 2x1y1 + a1, t1 := x2
1 − y2

1 + b1.

Then replacing s1 and t1:Ü
−x1 −y1 −2s1 −2t1
−y1 x1 −2t1 2s1

0 −1 2x1 2y1

1 0 −2y1 2x1

ê
Gauss-pivot−−−−−−−→

Ü
0 0 −2a1 −2b1

0 0 −2b1 2a1

0 −1 2x1 2y1

1 0 −2y1 2x1

ê
.

This matrix has determinant −4a2
1 − 4b2

1, hence is of rank 4 when (a1, b1) 6= (0, 0). In the
corresponding locus, namely in R4

∖
Σ1

0, the five prolonged vector fields D(1), R(1), I
(1)
1 , I

(1)
2 ,

J(1) have everywhere rank 4, hence generate locally open orbits, so that R4
∖

Σ1
0 is a single

orbit under their action.
When a1 = b1 = 0, the above matrix has rank 2. In this 2-dimensional graphed locus,

the rank of D(1), R(1), I
(1)
1 , I

(1)
2 , J (1) is everywhere equal to 2, whence Σ1

0 is a single orbit
under their action. �

Thus, the model MLC has an invariant cone:

s1 + i t1 = i
(
x1 + i y1

)2
,

namely a cone invariant under the action of D(1), R(1), I
(1)
1 , I

(1)
2 , J(1). Soon, we will see

that every M5 ⊂ C3 in the class C2,1 also possesses an invariant cone at any of its points
p ∈M5.

9. Prolongation to the Jet Space of Order 2

Next, we increment the jet order by one unit. The second order Lie prolongations D(2),
R(2), I

(2)
1 , I

(2)
2 , J(2) have the following coefficients above the origin, v = x = y = s = t = 0:

∂x1 ∂y1 ∂s1 ∂t1 ∂x2 ∂y2 ∂s2 ∂t2
D(2) −x1 −y1 −2s1 −2t1 −3x2 −3y2 −4s2 −4t2

R(2) −y1 x1 −2t1 2s1 −y2 x2 −2t2 2s2

I
(2)
1 0 −1 2x1 2y1 2t1 − 4x2

1 − 4y2
1 −2s1 2x2 − 4y1t1 2y2 + 4x1s1

I
(2)
2 1 0 −2y1 2y1 −2s1 −2t1 − 4x2

1 − 4y2
1 −2y2 + 4x1t1 2x2 − 4x1s1

J(2) 0 0 0 0 0 0 2s1 + 4x1y1 2t1 − 2x2
1 + 2y2

1
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Of course, we pull this matrix back to Σ1
0, hence the last line becomes null. Keeping

only the first 4 lines, and performing a Gauss pivot, we get:â
0 0 0 0 6x21y1 + 6y31 − 3x2 −6x1y

2
1 − 6x31 − 3y2 −2x2y1−4y41

−2x1y2+4x4
1−4s2

−2y1y2+8x1y
3
1

+2x1x2+8x3
1y1−4t2

0 0 0 0 −2x31 − 2x1y
2
1 − y2 −2x21y1 − 2y31 + x2 2x1x2 − 2y1y2 − 2t2 2x1y2 + 2y1x2 + 2s2

0 −1 2x1 2y1 −2x21 − 6y21 4x1y1 2x2 − 4x21y1 + 4y31 2y2 − 8x1y
2
1

1 0 −2y1 2x1 4x1y1 −6x21 − 2y21 −2y2 + 4x31 − 4x1y
2
1 2x2 + 8x21y1

ì
.

The upper 2× 4 block, having 8 entries, then shows that x2, y2, s2, t2 can be uniquely and
consistently defined in terms of x1, y1, so that they define an invariant surface under the
action of D(2), R(2), I

(2)
1 , I

(2)
2 , J(2).

x1,y1,s1,t1

x2,y2,s2,t2R4

R4

0

0

R4
J1
1,4

J2
1,4

MLC

Σ2
0

OBSERVATION 9.1. On R8 = R4
x1,y1,s1,t1

× R4
x2,y2,s2,t2

, there exists a unique{
D(2),R(2), I

(2)
1 , I

(2)
2 , J(2)

}
-invariant 2-dimensional submanifold Σ2

0 ⊂ R8, algebraic,
graphed as: ñ

s1 = − 2x1y1,

t1 = x2
1 − y2

1,


x2 = 2 x2

1y1 + 2 y3
1,

y2 = − 2x3
1 − 2x1y

2
1,

s2 = − 2 y4
1 + 2x4

1,

t2 = 4 x3
1y1 + 4x1y

3
1.

Moreover, the complement R8\Σ2
0 is a unique orbit under the transitive action of D(2), R(2),

I
(2)
1 , I

(2)
2 , J(2).

J2
1,4

��

⊃ Σ2
0

��
J1

1,4

��

⊃ Σ1
0

��
M 3 0.
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PROOF. As said, we pull everything back to Σ1
0 having equations s1 = −2x1y1, t1 =

x2
1 − y2

1 . With a2, b2, c2, d2 being parameters, any point of R4
x2,y2,s2,t2

can be written as:ñ
x2 = 2 x2

1y1 + 2 y3
1 + a2,

y2 = − 2x3
1 − 2x1y

2
1 + b2,

ñ
s2 = − 2 y4

1 + 2x4
1 + c2,

t2 = 4 x3
1y1 + 4x1y

3
1 + d2.

Replacing x2, y2 without replacing s2, t2, the upper right 2× 4 block becomes:Å
−3a2 −3b2 −8y4

1 + 8x4
1 − 4s2 − 2y1a2 − 2x1b2 16x3

1y1 + 16x1y
3
1 − 4t2 − 2y1b2 + 2x1a2

−b2 a2 8x3
1y1 + 8x1y

3
1 − 2t2 + 2x1a2 − 2y1b2 −4x4

1 + 4y4
1 + 2s2 + 2x1b2 + 2y1a2

ã
.

Visibly, it is of rank 2 whenever (a2, b2) 6= (0, 0).
Thus, put in it a2 := 0 and b2 := 0:Å

0 0 −8y4
1 + 8x4

1 − 4s2 16x3
1y1 + 16x1y

3
1 − 4t2

0 0 8x3
1y1 + 8x1y

3
1 − 2t2 −4x4

1 + 4y4
1 + 2s2

ã
,

and now replace s2, t2, to get: Å
0 0 −4c2 −4d2

0 0 −2c2 2d2

ã
,

a submatrix which has maximal rank 2 if and only if (c2, d2) 6= (0, 0). This concludes. �

We have therefore shown that, to every (fixed) 1-jet at the origin 0 ∈MLC of the form:

j1
0 =

(
x1, y1, −2x1y1, x

2
1 − y2

1

)
is associated a unique second order jet at the origin:

j2
0 =

(
x1, y1, −2x1y1, x

2
1−y2

1, 2x2
1y1 +2y3

1, −2x3
1−2x1y

2
1, −2y4

1 +2x4
1, 4x3

1y1 +4x1y
3
1

)
,

and since Σ2
0 is invariant under the action of the stability group of the Gaussier-Merker

model, this association is invariant.
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Our next goal will be to transfer this invariancy property to any M5 ∈ C2,1. But sub-
tleties will spice up our job.

10. Road Map to Convergent Normal Form

A certain Lie-theoretic construction of Cartan-Moser chains for Levi nondegenerate hy-
persurfaces M3 ⊂ C2 was set up in [95] in order to be imitated when studying hypersur-
faces M5 ⊂ C3 in the class C2,1, in the present memoir. However, we will encounter not
only analogies, but also differences.

Recall that any Levi nondegenerateM3 ⊂ C2, taken at any point p ∈M , can be brought,
in local coordinates (z, w = u + iv) vanishing at p, to the preliminary normal form [95,
Prp. 2.2]:

v = zz + O(6),

where the remainder is weighted according to [z] := 1, [w] := 2. Furthermore, the ambi-
guity of such a punctual preliminary normalization, namely any map:

z′ = f1 + f2 + f3 + f4 + O(5), w′ = g1 + g2 + g3 + g4 + g5 + O(6),

which preserves this normalization, i.e. which sends v = zz + O(6) to v′ = z′z′ + O(6),
can be shown to be necessarily of the form [95, Prp. 2.4]:

z′ := λ z + 2iλα z2 +
(
− 4λα2

)
z3 +

(
− 8iλα3

)
z4

+ λαw +
(
3iλαα + λr

)
zw +

(
− 8λαα2 + 4iαλr

)
z2w

+
(
λαr + iλα2α

)
w2 + O(5),

w′ = λλw + 2iλλα zw +
(
− 4λλα2

)
z2w +

(
− 8iλλα3

)
z3w

+
(
iλλαα + λλr

)
w2 +

(
4iλλαr − 4λλα2α

)
zw2 + O(6),

and this form coincides exactly with the Taylor expansion, up to weighted orders 4, 5, of
the general stability group of the model {v = zz} −→ {v′ = z′z′}, which is well know to
be:

z′ =
λ (z + αw)

1− 2iα z − (r + iαα)w
, w′ =

λλw

1− 2iα z − (r + iαα)w
,

with arbitrary λ ∈ C∗, α ∈ C, r ∈ R.
One could then figure out that precisely similar statements hold for M5 ∈ C2,1. How-

ever, some ‘discrepancies’, which we will overcome, will occur. Indeed, let us briefly
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describe some differences, as a preliminary view on the technical road we will drive into
the forest.

Taking the weights [z] := 1, [ζ] := 1, [w] := 2, starting with u = F (z, ζ, z, ζ, v) passing
through the origin, by progressively normalizing the power series expansion of F , it is not
difficult to show that any M5 ∈ C2,1 can be brought to the form:

u = zz + 1
2
z2ζ + 1

2
z2ζ + Oz,ζ,z,ζ,v(4).

As we know from Section 5, the isotropy group of the Gaussier-Merker model is also
parametrized by 5 real constants λ ∈ C∗, α ∈ C, r ∈ R, and an expansion of the concerned
fractional formulas was provided there.

However, one can verify (exercise) that the stability group of the above punctual nor-
malization up to order 3 happens to be:

z′ := λ z +
( δ
λ
− 1

2

λ2

λ
β
)
z2 − 1

2

δ

λ
w,

ζ ′ :=
λ

λ
ζ + β z,

w′ := λλw + δ zw,

with arbitrary λ ∈ C∗, β ∈ C, δ ∈ C. This looks different from the stability group of the
model, shown in Section 5 and truncated to orders 2, 1, 3.

Next, it can be shown (and we will do it) that that any M5 ∈ C2,1 can be brought to the
form:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + Oz,ζ,z,ζ,v(5).

Lemma 20.1 will show that the stability of this equation reads as:

z′ := λ z − i λα z2 − i λαw − λ2

λ
β z3 +

(
i λr − 3

2
λαα− 1

4

λ2

λ
ε− 1

4
λε
)
zw + i λα ζw,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z + ε z2 − 2i

λ

λ
α zζ + β w,

w′ := λλw − 2i λλα zw −
(
2λλα2 + λ2β

)
z2w +

(
− λλαα + i λλ r

)
w2,

where λ ∈ C∗, α ∈ C, r ∈ R, β ∈ C, ε ∈ C are arbitrary parameters. Thus, in comparison
with the isotropy of the GM-model, shown in Section 5 and truncated to orders 3, 2, 4, there
are two ‘extra’ complex parameters, namely β, ε.

Also, in Proposition 20.3 we will normalize, still at the origin only:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z3ζ
2
F3,0,0,2,0 + z3ζ2 F3,0,0,2,0 + Oz,ζ,z,ζ,v(6),

and in Lemma 20.4, we will see that the stability group of this normal form is:
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z′ := λ z − i λα z2 − i λαw − λα2 z3 +
(
i λr − 3λαα+ 2i λαF3,0,0,2,0 − 2i λαF3,0,0,2,0

)
zw + i λα ζw

+ i λα3 z4 +
(

8i λα2α+ 1
2

λ2

λ
γ + 4

λ

λ
τ + 4λα2 F3,0,0,2,0 − 8λααF3,0,0,2,0

)
z2w + 3λα2 zζw + τ w2,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z +

(
3
λ

λ
αα − i λ

λ
r − 2i

λ

λ
αF3,0,0,2,0 + 6i

λ

λ
αF3,0,0,2,0

)
z2 − 2i

λ

λ
α zζ +

λ

λ
α2 w

+
(

2
λ

λ
αr − 4i

λ

λ
α2α− 2

λ2

λ
2 γ − 8

λ

λ
2 τ + 12

λ

λ
α2 F3,0,0,2,0 + 4

λ

λ
ααF3,0,0,2,0

)
z3 − 3

λ

λ
α2 z2ζ + γ zw

+
(
− 2

λ

λ
αα+ 4i

λ

λ
αF3,0,0,2,0 − 4i

λ

λ
αF3,0,0,2,0

)
ζw,

w′ := λλw − 2i λλα zw − 3λλα2 z2w +
(
− λλαα+ i λλ r

)
w2 + 4i λλα3 z3w

+
(

6i λλα2α+ 2λλαr + 2λτ + 4λλα2 F3,0,0,2,0 − 4λλααF3,0,0,2,0

)
zw2 + λλα2 ζw2.

where λ ∈ C∗, α ∈ C, r ∈ R, γ ∈ C, τ ∈ C are arbitrary. Thus, there are again two ‘extra’
complex parameters, namely γ, τ .

To realize a Moser-like normal form for hypersurfaces M5 ∈ C2,1 and to define analogs
of Cartan-Moser chains, we will therefore have to adapt a bit our ideas. Let us give a quick
summary.

To start with, we will pick any curve 0 ∈ γ ⊂ M which is CR-transversal in the sense
that γ̇ 6∈ T cM . It is well known that one can always straighten it to be γ = {(0, 0, iv)} ⊂
M , the v-axis. It is also well known that, after an appropriate biholomorphism, one can
make the graphing function F (z, ζ, z, ζ, v) to have no pluriharmonic terms, in the sense
that F (z, ζ, 0, 0, v) ≡ 0.

In Section 11 to 19, we will continue to prenormalize and even start to normalize F
further, without touching γ, namely by always stabilizing {(0, 0, iv)} ⊂M .

However, at some moment of the normalization process, exactly as what occurs [23, 71]
for Levi nondegenerate M3 ⊂ C2, one is ‘forced’ to perform additional normalizations
which bend the v-axis, hence destroy what was preserved up to this point. This fact
confirms that it was inappropriate to choose at the beginning any CR-transversal curve
0 ∈ γ ⊂M , ‘at random’.

It is at this crucial moment that the Cartan-Moser chains start to appear to eyes. By
appropriately interpreting the algebraic or geometric normalization conditions that force
to change the v-axis, one realizes that certain CR-transversal curves are invariant under
biholomorphisms of C2. Our goal is to view something similar and new about M5 ∈ C2,1.
We will do it.

The Lie-theoretical path taken in [95] consisted in normalizing the equation of M at
only one point, only up to order 5, which is quite elementary, can be done by hand or on a
computer, and does not employ (at all) the implicit function theorem. In this memoir, we
will conduct essentially the same method as in [95] but with two differences. Firstly, we
will prenormalize the equation of M not only at 0 but all along the v-axis γ ⊂ M (chosen
at random) and reach Proposition 19.4, until we come to the point where chains start to
appear to eyes. Then we will work only at 0, with power series expansions of orders 5, 6,
7, and ‘discover’ that the chains are the same as stated by Observations 8.1 and 9.1 for the
Gaussier-Merker model, notwithstanding the presence of extra complex parameters.

Once chains are known, we will go back to the starting point, and choose the CR-
transversal γ ⊂M to be a chain, then we will plainly apply all what was done for a random
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γ, and we will deduce that two normalizations of certain coefficients Fa,b,c,d(v) realize
themselves gratuitously thanks to chains, and lastly, we will obtain a complete Moser-like
normal form.

To terminate our mathematical work and get some uniqueness property, we will work
out the formal theory of the normal form only at the end of the paper.

11. Chain Straightening and Harmonic Killing

Start with any C2,1 hypersurface M ⊂ C3, passing by the origin 0 ∈ M . Since
T c0M

∼= C2, we can assume after a C-linear transformation that T c0M = Cz ×Cζ ×{0}, in
coordinates (z, ζ, w) ∈ C3.

The ‘game’ is to transform M progressively into more and more normalized hypersur-
faces. Each (partial) normalization step can represented by means of a biholomorphism
fixing the origin as:

C3 ⊃ (M5, 0)
normalize−−−−−−−→ (M ′5, 0) ⊂ C′3,(

z, ζ, w
)

−−−−−−−→
(
f(z, ζ, w), g(z, ζ, w), h(z, ζ, w)

)
=:
(
z′, ζ ′, w′

)
.

Without loss of generality, both hypersurfaces will be assumed, with w = u + iv and
w′ = u′ + iv′, to be C ω-graphed as:

u = F
(
z, ζ, z, ζ, v

)
and u′ = F ′

(
z′, ζ ′, z′, ζ

′
, v′
)
.

We may assume that T c0M = {w = 0} is left untouched, so that T c0′M
′ = {w′ = 0} too.

In fact, step by step, all previously achieved normalizations will be conserved while
performing any further normalization. Once M has been partly normalized to some new
M ′, we will erase primes to the obtained M ′ =: M , normalize once more, and so on.

Now, the hypothesis that the biholomorphism establishes a CR-diffeomorphism M
∼−→

M ′, expresses as saying that u′ = F ′ when u = F , namely:

0 = −Reh(z, ζ, w)+F ′
(
f(z, ζ, w), g(z, ζ, w), f(z, ζ, w), g(z, ζ, w), Imh(z, ζ, w)

)∣∣∣∣
w=F (z,ζ,z,ζ,v)+iv

.

Performing the indicated replacement w = F + i v yields

LEMMA 11.1. [Fundamental identity] The map (z′, ζ ′, w′) = (f, g, h) sends M =
{u = F} to M ′ = {u′ = F ′} if and only if:

0 ≡ − 1
2 h
(
z, ζ, F (z, ζ, z, ζ, v) + iv

)
− 1

2 h
(
z, ζ, F (z, ζ, z, ζ, v)− iv

)
+

+ F ′
(
f
(
z, ζ, F (z, ζ, z, ζ, v) + iv

)
, g
(
z, ζ, F (z, ζ, z, ζ, v) + iv

)
, f
(
z, ζ, F (z, ζ, z, ζ, v)− iv

)
,

g
(
z, ζ, F (z, ζ, z, ζ, v)− iv

)
, 1

2i h
(
z, ζ, F (z, ζ, z, ζ, v) + iv

)
− 1

2i h
(
z, ζ, F (z, ζ, z, ζ, v)− iv

))
,

holds identically in C{z, ζ, z, ζ, v}. �

Although this equation looks complicated, it must be dealt with. Progressive normaliza-
tions will make it more tractable.

One of the first tasks is to annihilate all pluriharmonic monomials Fa,b,0,0,e zaζbve in
(z, ζ), and their conjugates as well. For completeness, we explain in details how to do this
known normalization. We proceed in two steps.
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As already explained in Section 10, a CR-transversal curve with 0 ∈ γ ⊂ M is now at
first chosen ‘at random’, while a better choice will be made later, when the normalization
process will reach a certain deeper point.

LEMMA 11.2. Let γ : R −→ M be any local C ω curve with γ(0) = 0 ∈ M and
γ̇(0) 6∈ T c0M = {w = 0}. Then there exists a biholomorphism (z, ζ, w) 7−→ (z′, w′, ζ ′)
sending (stabilizing) T c0M = {w = 0} to T c0′M

′ = {w′ = 0} which sends γ to the curve
γ(t) = (0, 0, it) straightened along the v-axis.

Notice that the CR-transversal direction γ̇′(0) ∈ T0′M
′∖T c0′M ′ together with T c0′M

′ =
{w′ = 0} implies T0M

′ = {u′ = 0}.

PROOF. Write the curve as:

γ(t) =
(
ϕ(t), ψ(t), χ(t)

)
,

with some complex-valued analytic functions ϕ, ψ, χ. By assumption, χ̇(0) 6= 0. This
guarantees invertibility of the inverse holomorphic change of coordinates:

z := z′ + ϕ
(
− iw′

)
, ζ := ζ ′ + ψ

(
− iw′

)
, w := χ

(
− iw′

)
.

Similarly, the target (transformed) curve can be written γ′(t) =
(
ϕ′(t), ψ′(t), iχ′(t)

)
—

note the i factor —, and the pointwise correspondence between curves writes as:

ϕ(t) ≡ ϕ′(t)+ϕ
(
−i(iχ′(t))

)
, ψ(t) ≡ ψ′(t)+ψ

(
−i(iχ′(t))

)
, χ(t) ≡ χ

(
−i(iχ′(t))

)
.

This last identity yields t ≡ χ′(t) thanks to 0 6= χ̇(0). Replacing then χ′(t) := t inside the
first two identities concludes that 0 ≡ ϕ′(t) ≡ ψ′(t). �

Consequently, the graphing function of the transformed hypersurface writes, after eras-
ing primes:

M : u = F
(
z, ζ, z, ζ, v

)
with F = O(2) and also F (0, 0, 0, 0, v) ≡ 0. This last condition is technically needed for
the next second elementary normalization.

LEMMA 11.3. Starting from F = O(2) with F (0, 0, 0, 0, v) ≡ 0, there exists a biholo-
morphism of the form:

z′ := z, ζ ′ := ζ, w′ := w + h(z, ζ, w),

with h = O(2) and h(0, 0, w) ≡ 0 which transforms {u = F} to {u′ = F ′} satisfying:

0 ≡ F ′
(
z′, ζ ′, 0, 0, v′

)
≡ F ′(0, 0, z′, ζ

′
, v′
)
.

The second vanishing identity is a consequence of the first by conjugation, thanks
to (2.1). Equivalently, F ′a,b,0,0,e = 0 = F ′0,0,c,d,e for all integer indices. Notice that
F ′(0, 0, 0, 0, v′) ≡ 0 still holds.

PROOF. If such a biholomorphism exists, the fundamental identity of Lemma 11.1
shows that:

0 ≡ −F (z, ζ, z, ζ, v)− 1
2 h
(
z, ζ, F (z, ζ, z, ζ, v) + iv

)
− 1

2 h
(
z, ζ, F (z, ζ, z, ζ, v)− iv

)
+

+ F ′
(
z, ζ, z, ζ, v + 1

2i h
(
z, ζ, F (z, ζ, z, ζ, v) + iv

)
− 1

2i h
(
z, ζ, F (z, ζ, z, ζ, v)− iv

))
.(11.4)

Our goal is to make F ′(z′, ζ ′, 0, 0, v) ≡ 0.
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If this vanishing identity would hold, putting z := 0 =: ζ in (11.4) we would deduce:

0 ≡ −F (z, ζ, 0, 0, v)− 1
2
h
(
z, ζ, F (z, ζ, 0, 0, v) + i v

)
− 1

2
h
(
0, 0, F (z, ζ, 0, 0, v)− i v

)
+ 0.

(11.5)

We claim that such an identity can be employed in order to define h(z, ζ, w) uniquely, with
the supplementary condition that the last term −1

2
h of (11.5) is zero.

Indeed, thanks to F = O(2), we may apply the implicit function theorem to invert:

F (z, ζ, 0, 0, v) + i v =: ω ⇐⇒ v = T(z, ζ, ω) = − i ω + O(2).

Define therefore h(z, ζ, w) accordingly:

0 ≡ −F
(
z, ζ, T(z, ζ, ω)

)
− 1

2
h(z, ζ, ω)− 1

2
· 0.

Now, because F (0, 0, 0, 0, v) ≡ 0 by hypothesis, it comes 0 ≡ h(0, 0, ω), just by putting
z := 0 =: ζ in (11.5).

Consequently, the identity (11.5) is indeed realized with −1
2
h = 0. Finally, coming

back to (11.4)
∣∣
z=ζ=0

, we get in conclusion what we want:

0 ≡ 0 + F ′
(
z, ζ, 0, 0, v + 1

2i
h
(
z, ζ, F (z, ζ, 0, 0, v) + i v

)
− 0
)
. �

Thus, erasing primes, we have obtained the preliminary normalization:

u = F =
∑
a+b>1
c+d>1

zaζbzcζ
d
Fa,b,c,d(v) with Fa,b,c,d(v) :=

∑
e>1

Fa,b,c,d,e v
e.

In the sequel, we shall perform normalizing biholomorphisms which stabilize this form.

12. Prenormalization: Step I

To start with, let us expand:

u = zz F1,0,1,0(v) + zζ F1,0,0,1(v) + zζ F0,1,1,0(v) + ζζ F0,1,0,1(v) + Oz,ζ,z,ζ(3).

By assumption, the Levi matrix of F has rank 1 everywhere, hence in particular at the
origin. We compute this matrix:

Levi(F ) =

Ü
0 O(1) O(1) −1

2
+ O(2)

O(1) F1,0,1,0(0) + O(1) F0,1,1,0(0) + O(1) O(1)
O(1) F1,0,0,1(0) + O(1) F0,1,0,1(0) + O(1) O(1)

−1
2

+ O(2) O(1) O(1) O(1)

ê
,

where O(N) = Oz,ζ,z,ζ,v(N) for any integer N ∈ N. Hence at the origin (z, ζ, z, ζ, v) =
(0, 0, 0, 0, 0):

1 = rank

Å
F1,0,1,0(0) F0,1,1,0(0)
F1,0,0,1(0) F0,1,0,1(0)

ã
.

After a C-linear invertible transformation in the (z, ζ)-space, we can assume:

1 = F1,0,1,0(0) and 0 = F1,0,0,1(0) = F0,1,1,0(0) = F0,1,0,1(0),(12.1)

so that:
u = zz + Oz,ζ,z,ζ,v(3).
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LEMMA 12.2. There exists a biholomorphism of the form:

z′ := z ϕ(w), ζ ′ := ζ, w′ := w,

which transforms M = {u = F} into M ′ of equation:

u′ = z′z′ +
∑

(a,b,c,d)6=(1,0,1,0)
a+b>1, c+d>1

z′
a
ζ ′
b
z′
c
w′

d
F ′a,b,c,d(v

′).

PROOF. We write the source hypersurface as:

u = F = zz F1,0,1,0(v) + ζ
(
· · ·
)

+ ζ
(
· · ·
)

+ Oz,ζ,z,ζ(3),

and similarly for the target:

u′ = F ′ = z′z′ F ′1,0,1,0(v′) + ζ ′
(
· · ·
)

+ ζ
′ ( · · · )+ O

z′,ζ′,z′,ζ
′(3).

Through any map of the form being considered, since z′ = z (· · · ) and ζ ′ = ζ , it is clear
that the remainders correspond to one another:

ζ ′
(
· · ·
)

= ζ
(
· · ·
)
, O

z′,ζ′,z′,ζ
′(3) = Oz,ζ,z,ζ(3).

Since u = u′, the fundamental identity (11.1) writes:

0 ≡ −F
(
z, ζ, z, ζ

)
+ F ′

(
z ϕ
(
F + iv

)
, ζ, z ϕ

(
F − iv

)
, ζ, v

)
,

which implies, after taking account of the fact that remainders are the same and that v = v′:

0 ≡ − zz F1,0,1,0(v)

+ zz ϕ
(
F + iv

)
ϕ
(
F − iv

)
F ′1,0,1,0(v) + ζ

(
· · ·
)

+ ζ
(
· · ·
)

+ Oz,ζ,z,ζ(3).

Next, by Taylor expanding at i v, we get:

ϕ
(
iv + F

)
= ϕ(iv) + F

(
· · ·
)

= ϕ(iv) + Oz,ζ,z,ζ(2),

and by inserting this above, we obtain:

0 ≡ − zz F1,0,1,0(v)

+ zz ϕ(iv)ϕ(−iv)F ′1,0,1,0(v) + Oz,ζ,z,ζ(4) + ζ
(
· · ·
)

+ ζ
(
· · ·
)

+ Oz,ζ,z,ζ(3).

Identifying the coefficients of zz yields:

0 ≡ −F1,0,1,0(v) + ϕ(iv)ϕ(iv)F ′1,0,1,0(v).

We can normalize F ′1,0,1,0(v) ≡ 1 provided ϕ satisfies:

ϕ(iv)ϕ(−iv) ≡ F1,0,1,0(v).

Observing that F1,0,1,0(v) = F1,0,1,0(v) by the reality condition (2.2), it suffices to set:

ϕ(w) :=
»
F1,0,1,0

(
− i w

)
,

a function which is holomorphic thanks to F1,0,1,0(0) = 1. �

So, erasing primes, we have obtained:

u = zz +
∑

(a,b,c,d)6=(1,0,1,0)
a+b>1, c+d>1

zaζbzcζ
d
Fa,b,c,d(v).(12.3)
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13. Dependent and Independent Jets

Now, the assumption of Levi degeneracy states as the vanishing identity:

0 ≡ Levi(F ) :=

∣∣∣∣∣∣∣∣∣∣
0 Fz Fζ −1

2
+ 1

2i
Fv

Fz Fzz Fζz
1
2i
Fzv

Fζ Fzζ Fζζ
1
2i
Fζv

−1
2
− 1

2i
Fv − 1

2i
Fzv − 1

2i
Fζv

1
4
Fvv

∣∣∣∣∣∣∣∣∣∣
.

But the Levi form is not assumed to be identically zero, it is assumed to be constantly of
rank 1. With F = zz + O(3) in (12.3), this assumption expresses as the nonvanishing of
the minor:

0 6= Levi1(F ) :=

∣∣∣∣∣∣∣
0 Fz −1

2
+ 1

2i
Fv

Fz Fzz
1
2i
Fzv

−1
2
− 1

2i
Fv − 1

2i
Fzv

1
4
Fvv

∣∣∣∣∣∣∣ .
Expanding Levi2(F ) along its third column gives:

Fζζ · Levi1(F ) ≡ −Fζ

∣∣∣∣∣∣∣
Fz Fzz

1
2i
Fzv

Fζ Fzζ
1
2i
Fζv

−1
2
− 1

2i
Fv − 1

2i
Fzv

1
4
Fvv

∣∣∣∣∣∣∣
+ Fζz

∣∣∣∣∣∣∣
0 Fz −1

2
+ 1

2i
Fv

Fζ Fzζ
1
2i
Fζv

−1
2
− 1

2i
Fv − 1

2i
Fzv

1
4
Fvv

∣∣∣∣∣∣∣− 1
2i
Fζv

∣∣∣∣∣∣∣
0 Fz −1

2
+ 1

2i
Fv

Fz Fzz
1
2i
Fzv

Fζ Fzζ
1
2i
Fζv

∣∣∣∣∣∣∣ .
Expanding Levi1(F ) and dividing, we get a rational expression:

Fζζ ≡
P
(
Fz, Fζ , Fz, Fζ , Fv, Fzz, Fzζ , Fζz, Fzv, Fζv, Fzv, Fζv, Fvv

)
Fzz + FvFvFzz + i FzFzv − i FzFzv + FzFzFvv − FvFzFzv − FzFvFzv

,

whose numerator P is a certain universal polynomial, not depending on F . By assumption,
the denominator is nonvanishing (locally).

Differentiating this identity and successively performing appropriate replacements (ex-
ercise), we obtain

PROPOSITION 13.1. For all integers a, b, c, d, e ∈ N with b > 1 and d > 1, there exist a
polynomial Pa,b,c,d,e and an exponent Na,b,c,d,e ∈ N>1 such that:

F
zaζbzcζ

d
ve
≡

Pa,b,c,d,e

({
Fza′zc′ve′

}
a′+c′+e′6a+b+c+d+e

,
{
Fza′ζb′zc′ve′

}b′>1
a′+b′+c′+e′6a+b+c+d+e

,
{
F
za
′
zc
′
ζ
d′
ve
′
}d′>1
a′+c′+d′+e′6a+b+c+d+e

)
(
Fzz + FvFvFzz + i FzFzv − i FzFzv + FzFzFvv − FvFzFzv − FzFvFzv

)Na,b,c,d,e

Accordingly, as in [21], we will term:

Dependent derivatives :=
{
F
zaζbzcζ

d
ve

}b> 1, d> 1

a, b, c, d, e> 0
,

Independent derivatives :=
{
Fzazcve

}
a, c, e> 0

∪ {Fzaζbzcve}b> 1

a, c, e> 0
∪ {F

zazcζ
d
ve

}d> 1

a, c, e> 0
.

At the origin when we will progressively normalize the power series F , any modification
of the values of the independent derivatives of F at 0 will automatically transfer to the
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dependent derivatives of F at 0 via the formulas of Proposition 13.1. Thus, freedom of
normalization concerns only independent derivatives:

1
a!

1
b!

1
c!

1
d!

1
e!
∂az ∂

b
ζ ∂

c
z ∂

d
ζ
∂ev F

(
0, 0, 0, 0, 0

)
= Fa,b,c,d,e (b+d6 1).

For this reason, we will often write:

u = F = zz +
∑
a+c>3
a>1, c>1

zazc Fa,0,c,0(v) +
∑
b>1

zaζbzc Fa,b,c,0(v) +
∑
d>1

zazcζ
d
Fa,0,c,d(v)

+ ζζ
(
· · ·
)
,

pointing out that all terms behind ζζ (· · · ) are sorts of ‘remainder terms’. However, some
information will be needed about these remainders anyway while normalizing the main
independent derivatives. Indeed, regularly, we will come back to the Levi determinant (3.3).

14. Prenormalization: Step II

Now, we come back to (12.3), which we rewrite by selecting monomials having z1 as
single antiholomorphic component:

u = zz +
∑
a+b>1

(a,b)6=(1,0)

zaζbz1 Fa,b,1,0(v) +
∑
a+b>1
c>2

zaζbzc Fa,b,c,0(v) +
∑
a+b>1
d>1

zaζbzcζ
d
Fa,b,c,d(v)

= z
(
z +

∑
a+b>1

(a,b)6=(1,0)

zaζb Fa,b,1,0(v)
)

+ z2
(
· · ·
)

+ ζ
(
· · ·
)
.

LEMMA 14.1. There exists a biholomorphism of the form:

z′ := z + Λ(z, ζ, w) = z + Oz,ζ,w(2), ζ ′ := ζ, w′ := w,

which transforms M = {u = F} into M ′ of equation:

u′ = z′z′ + z′
2 ( · · · )+ ζ

′ ( · · · ).
PROOF. Set:

Λ(z, ζ, w) :=
∑
a+b>1

(a,b)6=(1,0)

zaζb Fa,b,1,0
(
− i w

)
= z2

(
· · ·
)

+ ζ
(
· · ·
)
.

Since F0,1,1,0(0) = 0 by (12.1), we indeed have Λ = Oz,ζ,w(2). Thus the equation of M
writes:

u = z
(
z + Λ(z, ζ, v)

)
+ z2

(
· · ·
)

+ ζ
(
· · ·
)
.

Restricting z′ = z + Λ(z, ζ,−iw) to M , Taylor expanding at (z, ζ, v), and using 0 ≡
F (z, ζ, 0, 0, v) we obtain:

z′ = z + Λ
(
z, ζ, v − iF

)
= z + Λ(z, ζ, v) + F

(
· · ·
)

= z + Λ(z, ζ, v) + z
(
· · ·
)

+ ζ
(
· · ·
)
,

hence replacing z + Λ(z, ζ, v) = z′ − z(· · · )− ζ(· · · ) and replacing ζ := ζ ′:

u′ = u = z
(
z′ − z

(
· · ·
)
− ζ

(
· · ·
))

+ z2
(
· · ·
)

+ ζ
(
· · ·
)

= z z′ + z2
(
· · ·
)

+ ζ
′ ( · · · ).
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Now, an inversion gives:

z + Λ = z + z2
(
· · ·
)

+ ζ
(
· · ·
)

= z′ ⇐⇒ z = z′ + z′
2 ( · · · )+ ζ ′

(
· · ·
)

=⇒ z2 = z′
2 ( · · · )+ ζ

′ ( · · · ),
which concludes:

u′ = z′z′ + z′
2 ( · · · )+ ζ

′ ( · · · ). �

Erasing primes, and using the fact that the graphing function is real, we obtain

COROLLARY 14.2. Any C ω hypersurface 0 ∈ M5 ⊂ C3 whose Levi form is of rank 1
at the origin can be brought to the form:

u = zz + z2z2
(
· · ·
)

+ z2ζ
(
· · ·
)

+ z2ζ
(
· · ·
)

+ ζζ
(
· · ·
)
. �

Next, as said, we need more information about the appearing dependent derivatives in
the remainder ζζ(· · · ). We start to really use the assumption that the Levi form ofM ∈ C2,1

has constant rank 1.

LEMMA 14.3. Any C ω hypersurface 0 ∈M5 ⊂ C3 whose Levi form is of constant rank
1 around the origin can be brought to the form:

u = zz + z2z2 Oz,z(0) + z2ζ Oz,ζ,z(0) + z2ζ Oz,z,ζ(0) + ζζ Oz,ζ,z,ζ(2).

PROOF. Indeed, from the equation of Corollary 14.2, rewritten by emphasizing the
remainder R, which is real, as:

u = zz + z2z2
(
· · ·
)

+ z2ζ
(
· · ·
)

+ z2ζ
(
· · ·
)

+ ζζ R,

the Levi determinant (3.3) writes:

0 ≡

∣∣∣∣∣∣∣∣
0 z + O(2) O(1) −1

2
+ O(2)

z + O(2) 1 + O(2) O(1) O(2)
O(1) O(1)

[
ζζR

]
ζζ

O(1)

−1
2

+ O(2) O(2) O(1) O(2)

∣∣∣∣∣∣∣∣ ,
where, for abbreviation, we denote shortly O(N) in the places of Oz,ζ,z,ζ(N), with N ∈ N.
Expanding the determinant along its first column and computing modulo O(2), we get:

0 ≡ −
(
z + O(2)

) ∣∣∣∣∣∣
z + O(2) O(1) −1

2
+ O(2)

O(1)
[
ζζR

]
ζζ

O(1)

O(2) O(1) O(2)

∣∣∣∣∣∣+ O(1)

∣∣∣∣∣∣
z + O(2) O(1) −1

2
+ O(2)

1 + O(2) O(1) O(2)
O(2) O(1) O(2)

∣∣∣∣∣∣
−
(
− 1

2
+ O(2)

) ∣∣∣∣∣∣
z + O(2) O(1) −1

2
+ O(2)

1 + O(2) O(1) O(2)
O(1)

[
ζζR

]
ζζ

O(1)

∣∣∣∣∣∣
= O(2) + O(2)− 1

4

[
ζζ R

]
ζζ

+ O(2),

whence:
R + ζ Rζ + ζ Rζ = O(2).

Then certainly R = Oz,ζ,z,ζ(1). Since R = R is real:

R = z A(v) + ζ B(v) + z A(v) + ζ B(v) + Oz,ζ,z,ζ(2),

and replacing R, Rζ , Rz above yields 0 ≡ A(v) ≡ 2B(v), so R = Oz,ζ,z,ζ(2). �



16. PRENORMALIZATION: STEP III 187

15. Expression of the Assumption of 2-Nondegeneracy at the Origin

Consequently, abbreviating α := F2,0,0,1,0 ∈ C, we may show cubic terms:

u = zz + α z2ζ + α z2ζ + Oz,ζ,z,ζ,v(4).

Writing u = 1
2
w + 1

2
w, and solving for w, we get:

w = Q
(
z, ζ, z, ζ, w

)
= −w + 2 zz + 2α z2ζ + 2α z2ζ + Oz,ζ,z,ζ,w(4).

Inserting this in the 3 × 3 invariant determinant of Proposition 3.2, we get, with O(N)
abbreviating Oz,ζ,z,ζ,w(N):

0 6=

∣∣∣∣∣∣
Qz Qζ Qw

Qzz Qzζ Qzw

Qzzz Qzzζ Qzzw

∣∣∣∣∣∣ =

∣∣∣∣∣∣
2z + O(2) 2αz2 + O(3) −1 + O(3)
2 + O(2) 4αz + O(2) O(2)

O(1) 4α + O(1) O(1)

∣∣∣∣∣∣ .
Expanding along the last column and computing modulo O(1):

0 6= − 8α + O(1).

So the assumption of 2-nondegeneracy at the origin means that α 6= 0. After the dilation
ζ 7−→ 1

2α
ζ , we obtain:

u = zz + 1
2
z2ζ + 1

2
z2ζ + Oz,ζ,z,ζ,v(4).

16. Prenormalization: Step III

Thus, we have obtained the partial normalization:

u = zz + z2ζ F0,1,2,0(v) + z2ζ F2,0,0,1(v) + z2z2 Oz,z(0) + z2ζ Oz,ζ,z(1) + z2ζ Oz,z,ζ(1) + ζζ Oz,ζ,z,ζ(2),

with F0,1,2,0(0) = 1
2

= F2,0,0,1(0).

LEMMA 16.1. There exists a biholomorphism of the form:

z′ := z, ζ ′ := ζ ψ(w), w′ := w,

with ψ(0) 6= 0, which normalizes F ′0,1,2,0(v′) ≡ 1
2
≡ F ′2,0,0,1(v′):

u′ = z′z′+1
2
z′

2
ζ ′+1

2
z′

2
ζ
′
+z′

2
z′

2
Oz′,z′(0)+z′

2
ζ ′Oz′,ζ′,z′(1)+z′

2
ζ
′
O
z′,z′,ζ

′(1)+ζ ′ζ
′
O
z′,ζ′,z′,ζ

′(2).

PROOF. It is obvious that O
z′,ζ′,z′,ζ

′(N) = Oz,ζ,z,ζ(N).
From the source equation:

u = zz + z2ζ F0,1,2,0(v) + z2ζ F2,0,0,1(v) + Oz,ζ,z,ζ(4),

with F0,1,2,0(0) = 1
2

= F2,0,0,1(0), the target equation will be of a similar form:

u′ = z′z′ + z′
2
ζ ′ F ′0,1,2,0(v′) + z′

2
ζ
′
F ′2,0,0,1(v′) + O

z′,ζ′,z′,ζ
′(4).

Since u = F and u = u′ = F ′, the fundamental equation writes:

0 ≡ −F
(
z, ζ, z, ζ, v

)
+ F ′

(
z, ζ ψ

(
F + iv

)
, z, ζ ψ

(
F − iv

)
, v
)
,

that is:
0 ≡ − zz − z2ζ F0,1,2,0(v)− z2ζ F2,0,0,1(v)−Oz,ζ,z,ζ(4)

+ zz + z2ζ ψ
(
F + iv

)
F ′0,1,2,0(v) + z2ζ ψ

(
F − iv

)
F ′2,0,0,1(v) + Oz,ζ,z,ζ(4).
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Next, by Taylor expanding at iv:

ψ
(
F + iv

)
= ψ(iv) + F

(
· · ·
)

= ψ(iv) + Oz,ζ,z,ζ(2),

we get:

0 ≡ − z2ζ
(
F0,1,2,0(v)−ψ(iv)F ′0,1,2,0(v)

)
−z2ζ

(
F2,0,0,1(v)−ψ

(
−iv

)
F ′2,0,0,1(v)

)
+Oz,ζ,z,ζ(4).

Thus, to normalize F ′0,1,2,0(v) ≡ 1
2
≡ F ′2,0,0,1(v), it suffices to set:

ψ(w) := 2F0,1,2,0

(
− i w

)
. �

So erasing primes, we have normalized:

u = zz + 1
2
z2ζ + 1

2
z2ζ + z2z2 F2,0,2,0(v) + z2z2 Oz,z(1)

+ z2ζ Oz,ζ,ζ(1) + z2ζ Oz,z,ζ(1) + ζζ Oz,ζ,z,ζ(2).(16.2)

Our next goal is to eliminate F2,0,2,0(v).

LEMMA 16.3. There exists a biholomorphism of the form:

z′ := z, ζ ′ := ζ + z2 ψ(w), w′ := w,

which normalizes F ′2,0,2,0(v′) ≡ 0:

u′ = z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′
+ z′

2
z′

2
Oz′,z′(1)

+ z′
2
ζ ′Oz′,ζ′,z′(1) + z′

2
ζ
′
O
z′,z′,ζ

′(1) + ζ ′ζ
′
O
z′,ζ′,z′,ζ

′(2).

PROOF. In (16.2), extract the real term F2,0,2,0(v) and split it:

u = zz + 1
2
z2
(
ζ + z2 F2,0,2,0(v)

)
+ 1

2
z2
(
ζ + z2 F2,0,2,0(v)

)
+ z2z2 Oz,z(1)

+ z2ζ Oz,ζ,z(1) + z2ζ Oz,z,ζ(1) + ζζ Oz,ζ,z,ζ(2).(16.4)

We claim that the biholomorphism which works is:

z′ := z, ζ ′ := ζ + z2 F2,0,2,0

(
− i w

)
, w′ := w.

The inverse is:
ζ = ζ ′ − z′2 F2,0,2,0

(
− i w′

)
= ζ ′ + z′

2 ( · · · ).
We verify first that all remainders correspond to one another:

z2z2 Oz,z(1) = z′
2
z′

2
Oz′,z′(1),

z2ζ Oz,ζ,z(1) = z′
2 (
ζ ′ + z′

2
(· · · )

)
Oz′,ζ′,z′(1)

= z′
2
ζ ′Oz′,ζ′,z′(1) + z′

2
z′

2 [
Oz′,z′(1) + ζ ′Oz′,ζ′,z′(0)

]
= z′

2
ζ ′Oz′,ζ,z′(1) + z′

2
z′

2
Oz′,z′(1),

ζζ Oz,ζ,z,ζ(2) =
(
ζ ′ + z′

2
(· · · )

) (
ζ
′
+ z′

2
(· · · )

)
Oz′,ζ′,z′,ζ

′(2)

= ζ ′ζ
′
Oz′,ζ′,z′,ζ

′(2) + ζ ′z′
2 [

Oz′,ζ′,z′(2) + ζ
′
Oz′,ζ′,z′,ζ

′(1)
]

+ ζ
′
z′

2 [
Oz′,z′,ζ

′(2) + ζ ′Oz′,ζ′,z′,ζ
′(1)

]
+ z′

2
z′

2 [
Oz′,z′(2) + ζ ′Oz′,ζ′,z′(1) + ζ

′
Oz′,z′,ζ

′(1) + ζ ′ζ
′
Oz′,ζ′,z′,ζ

′(0)
]

= z′
2
z′

2
Oz′,z′(1) + z′

2
ζ ′Oz′,ζ′,z′(1) + z′

2
ζ
′
Oz′,z′,ζ

′(1) + ζ ′ζ
′
Oz′,ζ′,z′,ζ

′(2).
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Next, using 0 ≡ F
(
0, 0, z, ζ, v

)
, and Taylor expanding at v′, we can write:

ζ = ζ ′ − z′2 F2,0,2,0

(
v′ − iF

)
= ζ ′ − z′2 F2,0,2,0(v′)− z′2 F

(
· · ·
)

= ζ ′ − z′2 F2,0,2,0(v′)− z′2
[
z (· · · ) + ζ (· · · )

]
= ζ ′ − z′2 F2,0,2,0(v′)− z′2

[
z′ (· · · ) + ζ ′(· · · )

]
.

Lastly, replacing z, ζ , z, ζ , u, v in terms of z′, ζ ′, z′, ζ
′
, u′, v′ in (16.4), we obtain what

was asserted:

u′ = z′z′ + 1
2
z′

2
(
ζ ′ − z′2 F2,0,2,0(v′)

◦
− z′3

(
· · ·
)
− z′2ζ ′

(
· · ·
)

+ z′
2
F2,0,2,0(v′)

◦

)
+ 1

2
z′

2
(
ζ
′ − z′2 F2,0,2,0(v′)

◦◦
− z′3

(
· · ·
)
− z′2ζ ′

(
· · ·
)

+ z′
2
F2,0,2,0(v′)

◦◦

)
+ z′

2
z′

2
Oz′,z′(1) + z′

2
ζ ′Oz′,ζ′,z′(1) + z′

2
ζ
′
O
z′,z′,ζ

′(1) + ζ ′ζ
′
O
z′,ζ′,z′,ζ

′(2)

= z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′

+ z′
2
z′

2
Oz′,z′(1) + z′

2
ζ ′Oz′,ζ′,z′(1) + z′

2
ζ
′
O
z′,z′,ζ

′(1) + ζ ′ζ
′
O
z′,ζ′,z′,ζ

′(2). �

Thus, dropping primes, we have reached the following normalization, where we show
all monomials in F which have z2 as only antiholomorphic part:

u = zz + 1
2
z2ζ + 1

2
z2ζ +

∑
a+c>5
a>2, c>2

zazc Fa,0,c,0(v) +
∑

a+b+c>4
b>1, c>2

zaζbzc Fa,b,c,0(v)

+
∑

a+c+d>4
a>2, d>1

zazcζ
d
Fa,0,c,d(v) +

∑
a+b+c+d>4
b>1, d>1

zaζbzcζ
d
Fa,b,c,d(v).

Now, we will work modulo z3 (· · · ) + ζ (· · · ), so the last two sums above disappear and
many terms in the first two sums as well, so that it remains:

u = zz + 1
2
z2

ï
ζ + 2

∑
a>3

za Fa,0,2,0(v) + 2
∑
a+b>2

b>1

zaζb Fa,b,2,0(v)

ò
+ z3

(
· · ·
)

+ ζ
(
· · ·
)
.(16.5)

LEMMA 16.6. The biholomorphism:

z′ := z, ζ ′ := ζ + 2
∑
a>3

za Fa,0,2,0
(
− i w

)
+ 2

∑
a+b>2

b>1

zaζb Fa,b,2,0
(
− i w

)
,

w′ := w,

transforms M into M ′ of equation:

u′ = z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′
+ z′

3 ( · · · )+ ζ
′ ( · · · ).

PROOF. As in [51], we write:

ζ ′ := ζ + τ(z, w) + ζ ω(z, ζ, w),

where:
τ = z3

(
· · ·
)

and ω = Oz,ζ,w(1).
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The inverse is certainly of the form ζ = ζ ′ + Oz′,ζ′,w′(2), hence:

ζ = ζ ′ + τ ′(z′, w′) + ζ ′ ω′(z′, ζ ′, w′),

with τ ′ = Oz′,w′(2) and ω′ = Oz′,ζ′,w′(1). We claim that τ ′ = z′3 (· · · ).
Indeed, replacing ζ ′ = τ(z, w) + ζ [1 + ω(z, ζ, ω)] into ζ = τ ′(z′, w′) + ζ ′ [1 +

ω′(z′, ζ ′, w′)], the following identity must hold in C{z, ζ, w}:

ζ ≡ τ ′(z, w) +
(
τ(z, w) + ζ [1 +ω(z, ζ, w)]

) [
1 +ω′

(
z, τ(z, w) + ζ [1 +ω(z, ζ, w)], w

)]
.

Putting ζ := 0, it comes:

0 ≡ τ ′(z, w) + τ(z, w)
[
1 + Oz,w(1)

]
≡ τ ′(z, w) + z3 (· · · )

[
1 + Oz,w(1)

]
.

Thus ζ = ζ ′ (· · · ) + z′3 (· · · ), which enables us to verify that remainders correspond as
follows:

ζ
(
· · ·
)

= ζ
′ ( · · · )+ z′

3 ( · · · ),
z3
(
· · ·
)

= z′
3 ( · · · ).

Next, using 0 ≡ F (z, ζ, 0, 0, 0), so that F = z(· · · ) + ζ(· · · ) = z′(· · · ) + ζ
′
(· · · ), we

have:

ζ ′ = ζ + 2
∑
a>3

za Fa,0,2,0
(
v − iF

)
+ 2

∑
a+b>2

b>1

zaζb Fa,b,2,0
(
v − iF

)
= ζ + 2

∑
a>3

za Fa,0,2,0(v) + F
(
· · ·
)

+ 2
∑
a+b>2

b>1

zaζb Fa,b,2,0(v) + F
(
· · ·
)
.

Lastly, coming back to (16.5), we conclude:

u′ = u = z′z′ + 1
2
z′

2 [
ζ ′ − ζ (· · · )− z (· · · )

]
+ z′

3 ( · · · )+ ζ
′ ( · · · )

= z′z′ + 1
2
z′

2
ζ ′ + z′

3 ( · · · )+ ζ
′ ( · · · ). �

Erasing primes, and using the fact that the graphing function is real, we obtain:

u = zz + 1
2
z2ζ + 1

2
z2ζ + z3z3

(
· · ·
)

+ z3ζ
(
· · ·
)

+ z3ζ
(
· · ·
)

+ ζζ
(
· · ·
)
.

It remains only to analyze the dependent-derivatives remainder ζζ
(
· · ·
)
. For this, we must

extract the single 4th order monomial zzζζ in the GM-model m(z, ζ, z, ζ). Then we realize
that behind ζζ(· · · ), there must be order 3 terms only.

PROPOSITION 16.7. [Prenormalization] Any hypersurface M5 ∈ C2,1 can be brought
to the prenormal form:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ

+ z3z3 Oz,z(0) + z3ζ Oz,ζ,z(0) + z3ζ Oz,z,ζ(0) + ζζ Oz,ζ,z,ζ(3).

PROOF. We write:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + z3z3

(
· · ·
)

+ z3ζ
(
· · ·
)

+ z3ζ
(
· · ·
)

+ ζζ R.

From Lemma 14.3, we already know that R = Oz,ζ,z,ζ(2).
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To get more, we look at the Levi determinant:

0 ≡

∣∣∣∣∣∣∣∣
0 z + zζ + O(3) 1

2
z2 + O(3) −1

2
+ O(4)

z + zζ + O(3) 1 + O(2) z + O(2) O(3)
1
2
z2 + O(3) z + O(2) zz +

[
ζζR

]
ζζ

O(3)

−1
2

+ O(4) O(3) O(3) O(4)

∣∣∣∣∣∣∣∣ .
Computing modulo O(3), so that the entries (2, 4), (3, 4), (4, 2), (4, 3), (4, 4) are ‘zero’, we
get:

0 ≡ −
(
− 1

2

) (
− 1

2

) ∣∣∣∣∣ 1 + O(2) z + O(2)
z + O(2) zz +

[
ζζR

]
ζζ

∣∣∣∣∣+ O(3).

that is: [
ζζR

]
ζζ
≡ O(3).

Thanks to the already known R = O(2):

R = Azz+B zζ+C zz+D zζ+E ζζ+D ζz+Gζζ+Azz+B zζ+Eζζ+Oz,ζ,z,ζ(3),

with both C = C and G = G real, hence:

O(3) ≡ R + ζ Rζ + ζ Rζ + ζζ Rζζ

≡ Azz + 2B zζ +
(
A+ C

)
zz + 2D zζ + 3E ζζ + 2D ζz + 4Gζζ + 2B zζ + 3E ζζ,

and this forces A = B = C = D = E = G = 0, whence R = Oz,ζ,z,ζ(3). �

17. Normalization F3,0,0,1(v) = 0

Now, we specify the unique term of order 4 in (z, ζ, z, ζ):

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + z3ζ F3,0,0,1(v) + z3ζ F3,0,0,1(v) + Oz,ζ,z,ζ(5).

Abbreviate:
ϕ(v) := F3,0,0,1(v).

LEMMA 17.1. The biholomorphism:

z′ := z + z2 ϕ(−iw) + 2 z3 ϕ(−iw)ϕ(−iw),

ζ ′ := ζ − 2 z ϕ(−iw) + 4 zζ ϕ(−iw)− 5 z2 ϕ(−iw)ϕ(−iw),

w′ := w,

transforms M into M ′ of equation:

u′ = z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′
+ z′z′ζ ′ζ

′
+ O

z′,ζ′,z′,ζ
′(5).

PROOF. On restriction to M where −iw = v − iF :

z′ := z + z2 ϕ
(
v − iF

)
+ 2 z3 ϕ

(
v − iF

)
ϕ
(
v − iF

)
,

ζ ′ := ζ − 2 z ϕ
(
v − iF

)
+ 4 zζ ϕ

(
v − iF

)
− 5 z2 ϕ

(
v − iF

)
ϕ
(
v − iF

)
,

hence Taylor expanding at v and using F = O(2):

z′ = z + z2 ϕ(v) + 2 z3 ϕ(v)ϕ(v) + Oz,ζ,z,ζ(4),

ζ ′ = ζ − 2 z ϕ(v) + 4 zζ ϕ(v)− 5 z2 ϕ(v)ϕ(v) + Oz,ζ,z,ζ(3).
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An expansion concludes:

z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′
+ z′z′ζ ′ζ

′
+ O

z′,ζ′,z′,ζ
′(5) =

=
(
z + z2 ϕ(v) + 2 z3 ϕ(v)ϕ(v)

)(
z + z2 ϕ(v) + 2 z3 ϕ(v)ϕ(v)

)
+ Oz,ζ,z,ζ(5)

+ 1
2

(
z + z2 ϕ(v)

)2 (
ζ − 2 z ϕ(v) + 4 zζ ϕ(v)− 5 z2 ϕ(v)ϕ(v)

)
+ Oz,ζ,z,ζ(5)

+ 1
2

(
z + z2 ϕ(v)

)2 (
ζ − 2 z ϕ(v) + 4 zζ ϕ(v)− 5 z2 ϕ(v)ϕ(v)

)
+ Oz,ζ,z,ζ(5)

+ zz
(
ζ − 2 z ϕ(v)

) (
ζ − 2 z ϕ(v)

)
+ Oz,ζ,z,ζ(5)

= zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + z3ζ ϕ(v) + z3ζ ϕ(v) + Oz,ζ,z,ζ(5). �

After this, although Fa,b,0,0(v) ≡ 0 for all (a, b), it is not necessarily still true that
prenormalization holds:

0
?≡ Fa,b,1,0(v) (∀ (a,b) 6= (1,0)),

0
?≡ Fa,b,2,0(v) (∀ (a,b) 6= (0,1)).

18. Repetition of Prenormalization

Fortunately, we can repeat the prenormalization. Indeed, let us write:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ +

∑
a+b+c+d>5
a+b>1, c+d>1

zaζbzcζ
d
Fa,b,c,d(v).

We will perform two biholomorphisms of the form:

z′ := z + Oz,ζ(4), ζ ′ := ζ + Oz,ζ(3), w′ = w,

so that normalizations of terms up to order 4 included will be stabilized and preserved.
Starting from:

u = z
(
z +

∑
a+b>4

zaζb Fa,b,1,0(v)
)

+ z2
(
· · ·
)

+ ζ
(
· · ·
)
,

we perform the following first biholomorphism, with z′ := z + Oz,ζ(4), ζ ′ := ζ , w′ := w,
which we restrict to M , using F = z(· · · ) + ζ(· · · ):

z′ := z +
∑
a+b>4

zaζb Fa,b,1,0(−iw)

= z +
∑
a+b>4

zaζb
[
Fa,b,1,0(v) + F

(
· · ·
)]

= z +
∑
a+b>4

zaζb Fa,b,1,0(v) + z
(
· · ·
)

+ ζ
(
· · ·
)
,

hence:
z′ − z′

(
· · ·
)
− ζ ′

(
· · ·
)

= z +
∑
a+b>4

zaζb Fa,b,1,0(v),
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so we can replace, using z′ = z + z4(· · · ) + ζ(· · · ) which gives by inversion z = z′ +
z′4(· · · ) + ζ ′(· · · ):

u′ = u =
(
z′ + z′

4
(· · · ) + ζ

′
(· · · )

) (
z′ − z′ (· · · )− ζ (· · · )

)
+ z′

2 ( · · · )+ ζ
′ ( · · · )

= z′z′ + z′
2 ( · · · )+ ζ

′ ( · · · ).
Next, erase primes, specify terms having z2 as only antiholomorphic part:

u = zz + 1
2

(
ζ + 2

∑
a+b>3

zaζb Fa,b,2,0(v)
)
z2 + z3

(
· · ·
)

+ ζ
(
· · ·
)
,

and perform the second biholomorphism:

z′ := z, ζ ′ := ζ + 2
∑
a+b>3

zaζb Fa,b,2,0(−iw), w′ := w.

Since −iw = v − iF on M , using F = z(· · · ) + ζ(· · · ), we have:

ζ ′ = ζ + 2
∑
a+b>3

zaζb Fa,b,2,0
(
v − iF

)
= ζ + 2

∑
a+b>3

zaζb Fa,b,2,0(v) + z
(
· · ·
)

+ ζ
(
· · ·
)
,

hence after an inversion:

ζ ′ − z′
(
· · ·
)
− ζ ′

(
· · ·
)

= ζ + 2
∑
a+b>3

zaζb Fa,b,2,0(v).

So using ζ ′ = ζ + z3(· · · ) + ζ Oz,ζ(2) which gives after inversion ζ = ζ ′ + z′3(· · · ) +
ζ ′Oz′,ζ′(2), and observing that remainders correspond to one another, we can replace:

u′ = u = z′z′ + 1
2
z′

2 (
ζ ′ − z′ (· · · )− ζ ′ (· · · )

)
+ z′

3 ( · · · )+ ζ
′ ( · · · )

= z′z′ + 1
2
z′

2
ζ ′ + z′

3 ( · · · )+ ζ
′ ( · · · ).

Since terms are unchanged up to order 5, and since the right-hand side is real, we have
reached:

u′ = z′z′+1
2
z′

2
ζ ′+1

2
z′

2
ζ
′
+z′z′ζ ′ζ

′
+z′

3
z′

3
Oz′,z′(0)+z′

3
ζ ′Oz′,ζ′,z′(1)+z′

3
ζ
′
O
z′,z′,ζ

′(1)+ζ ′ζ
′
O
z′,ζ′,z′,ζ

′(3).

LEMMA 18.1. Starting from:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ +

∑
a+b+c+d>5
a+b>1, c+d>1

zaζbzcζ
d
Fa,b,c,d(v),

there exists a biholomorphism of the form:

z′ = z + Oz,ζ(4), ζ ′ = ζ + Oz,ζ(3), w′ := w,

which transforms M into M ′ of equation:

u′ = z′z′+1
2
z′

2
ζ ′+1

2
z′

2
ζ
′
+z′z′ζ ′ζ

′
+z′

3
z′

3
Oz′,z′(0)+z′

3
ζ ′Oz′,ζ′,z′(1)+z′

3
ζ
′
O
z′,z′,ζ

′(1)+ζ ′ζ
′
O
z′,ζ′,z′,ζ

′(4).

PROOF. The only modification is the information about the dependent jets remainder
being an O(4) after ζ ′ζ

′
, which improves the previous O(3). The proof consists in exam-

ining the Levi determinant, and proceeds similarly as at the end of the proof of Proposi-
tion 16.7. �
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19. Normalization F3,0,1,1(v) = 0

Including order 5 terms from z3ζOz,z,ζ(1), three new terms appear:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ 2 Re
{
z3zζ F3,0,1,1(v) + z4ζ F4,0,0,1(v) + z3ζ

2
F3,0,0,2(v)

}
+ Oz,ζ,z,ζ(6),(19.1)

and we gather all remainder terms as an O(6).

LEMMA 19.2. There exists a biholomorphism of the form:

z′ := z, ζ ′ := ζ + i ϕ(−iw) z2, w′ := w,

with ϕ(v) ∈ R for v ∈ R, which normalizes:

ImF ′3,0,1,1(v′) ≡ 0.

PROOF. On restriction to M , the inverse writes:

ζ = ζ ′ − i ϕ(−iw) z′
2

= ζ ′ − i ϕ
(
v − iF

)
z′

2

= ζ ′ − i ϕ(v) z′
2

+ z′
2
F
(
· · ·
)

= ζ ′ − i ϕ(v′) z′
2

+ O
z′,ζ′,z′,ζ

′(4).

So we insert in (19.1) and we conclude:
u′ = u = z′z′ + 1

2 z
′2 (ζ ′ − i ϕ(v′) z′

2
+ O(4)

)
+ 1

2 z
′2 (ζ ′ + i ϕ(v′) z′

2
+ O(4)

)
+ z′z′

(
ζ ′ − i ϕ(v′) z′

2) (
ζ
′
+ i ϕ(v) z′

2)
+ 1

2 z
′2ζ ′ζ ′ζ

′
+ 1

2 z
′2ζ
′
ζ ′ζ
′

+ 2 Re
{
z′

3
z′ζ
′
F3,0,1,1(v′) + z′

4
ζ
′
F4,0,0,1(v′) + z′

3
ζ
′2
F3,0,0,2(v′)

}
+ Oz′,ζ′,z′,ζ

′(6)

= z′z′ + 1
2 z
′2ζ ′ + 1

2 z
′2ζ
′
+ z′z′ζ ′ζ

′
+ 1

2 z
′2ζ ′ζ ′ζ

′
+ 1

2 z
′2ζ
′
ζ ′ζ
′

+ z′
2
z′

2 [− i
2 ϕ(v′) + i

2 ϕ(v′)
]

+ 2 Re
{
z′

3
z′ζ
′ [
F3,0,1,1(v′)− i ϕ(v′)

]
+ z′

4
ζ
′
F4,0,0,1(v′) + z′

3
ζ
′2
F3,0,0,2(v′)

}
+ Oz′,ζ′,z′,ζ

′(6). �

Breaking routine, we do not erase primes.

LEMMA 19.3. There exists a biholomorphism whose inverse is of the form:

z′ := z eiϕ(−iw), ζ ′ := ζ e2iϕ(−iw) + ψ(−iw) z2, w′ := w,

with ϕ(v) ∈ R for v ∈ R, which normalizes u′ = F ′ above to u = F of the same shape,
but with:

ReF3,0,1,1(v) ≡ 0.

PROOF. Start with:
z′z′ = zz ei[ϕ(v−iF )−ϕ(v+iF )]

= zz ei[ϕ(v)+ϕv(v)(−iF )+F 2(··· )−ϕ(v)−ϕv(v)(iF )−F 2(··· )]

= zz e2ϕv(v)F+F 2(··· )

= zz
(
1 + 2ϕv(v)F + O(4)

)
= zz + 2ϕv(v) z2z2 + ϕv(v) zζz3 + ϕv(v) z3zζ + O(6).
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Next:

Re
(
z′

2
ζ ′
)

= Re
(
z2 e−2iϕ(iw)

[
ζ e2iϕ(−iw) + ψ(−iw) z2

])
= Re

(
z2ζ e2i[−ϕ(v+iF )+ϕ(v−iF )] + z2z2 e−2iϕ(v+iF ) ψ(v − iF )

)
= Re

(
z2ζ e2i[−ϕ(v)−ϕv(v)(iF )−F 2(··· )+ϕ(v)+ϕv(v)(−iF )+F 2(··· )]

)
+ z2z2 ψ(v) + O(6)

= Re
(
z2ζ e2[ϕv(v)+ϕv(v)]F+F 2(··· )

)
+ z2z2 ψ(v) + O(6)

= Re
(
z2ζ
[
1 + 4ϕv(v)

(
zz + O(3)

)
+ O(4)

])
+ z2z2 ψ(v) + O(6)

= 1
2
z2ζ + 1

2
z2ζ + z2z2 ψ(v) + 2ϕv(v) z3zζ + 2ϕv(v) z3zζ + O(6).

Lastly:

z′z′ζ ′ζ
′

=
(
zz + O(4)

) (
ζ e2iϕ(v)+F (··· ) + (ψ(v) + F (· · · )) z2

) (
ζ e−2iϕ(v)+F (··· ) + (ψ(v) + F (· · · )) z2

)
= zz

(
ζ + ψ(v) z2

) (
ζ + ψ(v) z2

)
+ O(6)

= zzζζ + zzζz2 ψ(v) + zz ψ(v) z2ζ + O(6).

Summing, we conclude by taking ψ(v) := −2ϕv(v) and ϕv(v) := −F ′3,0,1,1(v):

u′ = z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′
+ z′z′ζ ′ζ

′
+ 1

2
z′

2
ζ ′ζ ′ζ

′
+ 1

2
z′

2
ζ
′
ζ ′ζ
′

+ 2 Re
{
F ′4,0,0,1(v′) z′

3
z′ζ
′
+ F ′3,0,0,1z

′3z′ζ
′
+ F ′3,0,0,2(v′) z′

3
ζ
′2
}

+ O
z′,ζ′,z′,ζ

′(6)

= zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z2z2
[
2ϕv(v) + ψ(v)

]
+ 2 Re

{
2ϕv(v) + ψ(v) + ϕv(v) + F ′3,0,1,1(v)

}
+ 2 Re

{
F ′4,0,0,1(v) z4ζ + F ′3,0,0,2(v) z3ζ

2
}

+ Oz,ζ,z,ζ(6). �

PROPOSITION 19.4. For every hypersurface M5 ∈ C2,1, at any point p ∈ M , given
any CR-transversal curve p ∈ γ ⊂ M , there exist holomorphic coordinates (z, ζ, w) ∈ C3

vanishing at p in which γ is the v-axis and in which M has equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z3z3 Oz,z(0)

+ 2 Re
{

0 + z4ζ F4,0,0,1(v) + z3ζ
2
F3,0,0,2(v)

}
+ z3ζ Oz,ζ,ζ(2) + z3ζ Oz,z,ζ(2) + ζζ Oz,ζ,z,ζ(4).

PROOF. The annihilation of F3,0,1,1(v) ≡ 0 has been performed above. After that, it is
necessary to repeat prenormalization, as was done in Section 18, and this does not perturb
the normalizations done up to order 5 in (z, ζ, z, ζ).

Lastly, it remains to justify the vanishing order 4 of the dependent-derivatives remainder
ζζ
(
· · ·
)
. This can be done by examining the Levi determinant (3.3), similarly as was done

in e.g. the proof of Proposition 16.7. �
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20. Normalizations at the Origin

Now, we work at the origin. Expanding now in terms of all five variables (z, ζ, z, ζ, v),
and working modulo weighted order 6 terms, for the weights [z] = 1, [ζ] = 1, [w] = 2, we
have obtained:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z4ζ F4,0,0,1,0 + z4ζ F4,0,0,1,0 + z3ζ
2
F3,0,0,2,0 + z3ζ2 F3,0,0,2,0 + Oz,ζ,z,ζ,v(6).

To normalize further, we can assume that the target hypersurface has already been normal-
ized in the same way:

u′ = z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′
+ z′z′ζ ′ζ

′
+ 1

2
z′

2
ζ ′ζ ′ζ

′
+ 1

2
z′

2
ζ
′
ζ ′ζ
′

+ z′
4
ζ
′
F ′4,0,0,1,0 + z′

4
ζ ′ F ′4,0,0,1,0 + z′

3
ζ
′2
F ′3,0,0,2,0 + z′

3
ζ ′

2
F ′3,0,0,2,0 + O

z′,ζ′,z′,ζ
′
,v′(6).

But then, it is necessary to stabilize the normalization obtained up to order 4. With the
help of a computer, one can prove the following:

LEMMA 20.1. Any biholomorphic map of the form:

z′ := f1 + f2 + f3, ζ ′ := g1 + g2, w′ := h1 + h2 + h3 + h4,

where f1, f2, f3, g1, g2, h1, h2, h3, h4 are weighted homogeneous polynomials in (z, ζ, w)
of degrees equal to their indices, which stabilizes the normalization up to order 4:

zz+1
2
z2ζ+1

2
z2ζ+zzζζ+Oz,ζ,z,ζ,v(5) −→ z′z′+1

2
z′

2
ζ ′+1

2
z′

2
ζ
′
+z′z′ζ ′ζ

′
+O

z′,ζ′,z′,ζ
′
,v′(5)

is of the form:

z′ := λ z − i λα z2 − i λαw − λ2

λ
β z3 +

(
i λr − 3

2
λαα− 1

4

λ2

λ
ε− 1

4
λε
)
zw + i λα ζw,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z + ε z2 − 2i

λ

λ
α zζ + β w,

w′ := λλw − 2i λλα zw −
(
2λλα2 + λ2β

)
z2w +

(
− λλαα + i λλ r

)
w2,

where λ ∈ C∗, α ∈ C, r ∈ R, β ∈ C, ε ∈ C are arbitrary parameters. �

Compared to the expansions to orders 3, 2, 4 of the components of the isotropy group of
the Gaussier-Merker model shown in Section 5, two new parameters appear, namely β and
ε. This causes little trouble to define chains for M5 ∈ C2,1, analogous to the Cartan-Moser
chains for Levi nondegenerate M3 ⊂ C2 redefined in [95], because the linearization of the
above collection of maps (in fact a group) is:

z′ := λ z − i λαw,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z + β w,

w′ := λλw,

and this action, parametrized by 6 variables λ, λ, α, α, β, β, is transitive on 1-jets at the
origin (exercise), contrary to the linearization of the action of the isotropy group of the



20. NORMALIZATIONS AT THE ORIGIN 197

Gaussier-Merker model:

z′ := λ z − i λαw,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z +

λ

λ
α2w,

w′ := λλw,

in which β = λ
λ
α2 is a dependent parameter. This is why we obtained an invariant sub-

manifold Σ1
0 in Observation 8.1.

To resolve this little discrepancy, we must normalize to higher order at the origin.

So to normalize further, we will employ maps of the form:

z′ := λ z − i λα z2 − i λαw − λ2

λ
β z3 +

(
i λr − 3

2
λαα− 1

4

λ2

λ
ε− 1

4
λε
)
zw + i λα ζw

+
∑

a+b+2e=4

fa,b,e z
aζbwe,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z + ε z2 − 2i

λ

λ
α zζ + β w

+
∑

a+b+2e=3

ga,b,e z
aζbwe,

w′ := λλw − 2i λλα zw −
(
2λλα2 + λ2β

)
z2w +

(
− λλαα + i λλ r

)
w2

+
∑

a+b+2e=5

ha,b,e z
aζbwe.

Still on a computer, we verify

ASSERTION 20.2. Whatever map is chosen, one has:

F ′3,0,0,2,0 =
1

λ
F3,0,0,2,0. �

Furthermore, the map:

z′ := z + 2F4,0,0,1,0 z
3 − 2F4,0,0,1,0 zζw,

ζ ′ := ζ − 2F4,0,0,1,0w + 10 z2ζ F4,0,0,1,0,

w′ := w + 2 z2wF4,0,0,1,0,

normalizes F ′4,0,0,1,0 := 0 (exercise). What we have proved so far deserved to be stated as a

PROPOSITION 20.3. At every point p ∈ M5 of a hypersurface M5 ⊂ C3 in the class
C2,1, there exist holomorphic coordinates (z, ζ, w) ∈ C3 centered at p = (zp, ζp, wp) =
(0, 0, 0) in which M has equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z3ζ
2
F3,0,0,2,0 + z3ζ2 F3,0,0,2,0 + Oz,ζ,z,ζ,v(6). �

By applying the technique of Chen-Foo-Merker-Ta [22, Sections 9, 10], one can realize,
after rather hard computations, that there corresponds to this Taylor coefficient F3,0,0,2,0,
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the relative invariant W0 of Pocchiola, presented in [113, 92, 49]:

W0 := − 1

3

K
(
L 1

(
L 1(k)

))
L 1(k)2

+
1

3

K
(
L 1(k)

)
L 1

(
L 1(k)

)
L 1(k)3

+

+
2

3

L1

(
L1(k)

)
L1(k)

+
2

3

L1

(
L 1(k)

)
L 1(k)

+
i

3

T (k)

L 1(k)
,

Much more simply, by plugging this normalized F into this formula, we obtain its value
only at one point, namely at the origin:

W0 = 4F3,0,0,2,0.

Next, we determine the isotropy of this normalization.

LEMMA 20.4. Any biholomorphic map of the form:

z′ := f1+f2+f3+f4, ζ ′ := g1+g2+g3, w′ := h1+h2+h3+h4+h5,

where f1, f2, f3, f4, g1, g2, g3, h1, h2, h3, h4, h5, are weighted homogeneous polynomials
in (z, ζ, w) of degrees equal to their indices, which stabilizes the normalization up to order
5 included:

zz + 1
2 z

2ζ + 1
2 z

2ζ + zzζζ + 1
2 z

2ζζζ + 1
2 z

2ζζζ + F3,0,0,2,0 z
3ζ

2
+ F3,0,0,2,0 z

3ζ2 + Oz,ζ,z,ζ,v(6)

−→ z′z′ + 1
2 z
′2ζ ′ + 1

2 z
′2ζ
′
+ z′z′ζ ′ζ

′
+ 1

2 z
′2ζ ′ζ ′ζ

′
+ 1

2 z
′2ζ
′
ζ ′ζ
′
+ F ′3,0,0,2,0 z

′3ζ
′2

+ F ′3,0,0,2,0 z
′3ζ ′

2
+ Oz′,ζ′,z′,ζ

′
,v′(6),

is of the form:

z′ := λ z − i λα z2 − i λαw − λα2 z3 +
(
i λr − 3λαα+ 2i λαF3,0,0,2,0 − 2i λαF3,0,0,2,0

)
zw + i λα ζw

+ i λα3 z4 +
(

8i λα2α+ 1
2

λ2

λ
γ + 4

λ

λ
τ + 4λα2 F3,0,0,2,0 − 8λααF3,0,0,2,0

)
z2w + 3λα2 zζw + τ w2,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z +

(
3
λ

λ
αα − i λ

λ
r − 2i

λ

λ
αF3,0,0,2,0 + 6i

λ

λ
αF3,0,0,2,0

)
z2 − 2i

λ

λ
α zζ +

λ

λ
α2 w

+
(

2
λ

λ
αr − 4i

λ

λ
α2α− 2

λ2

λ
2 γ − 8

λ

λ
2 τ + 12

λ

λ
α2 F3,0,0,2,0 + 4

λ

λ
ααF3,0,0,2,0

)
z3 − 3

λ

λ
α2 z2ζ + γ zw

+
(
− 2

λ

λ
αα+ 4i

λ

λ
αF3,0,0,2,0 − 4i

λ

λ
αF3,0,0,2,0

)
ζw,

w′ := λλw − 2i λλα zw − 3λλα2 z2w +
(
− λλαα+ i λλ r

)
w2 + 4i λλα3 z3w

+
(

6i λλα2α+ 2λλαr + 2λτ + 4λλα2 F3,0,0,2,0 − 4λλααF3,0,0,2,0

)
zw2 + λλα2 ζw2.

where λ ∈ C∗, α ∈ C, r ∈ R, γ ∈ C, τ ∈ C are arbitrary parameters. �

In comparison to the normalization up to order 4, observe that the previous two supple-
mentary parameters have now been normalized:

β :=
λ

λ
α2,

ε := − 2i
λ

λ
αF3,0,0,2,0 + 6i

λ

λ
αF3,0,0,2,0 + 3

λ

λ
αα− i λ

λ
r.
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With this, the linearized isotropy has become the same as the one of the GM-model written
above:

z′ := λ z − i λαw,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z +

λ

λ
α2w,(20.5)

w′ := λλw.

This key fact will enable us to define, at every point of any C2,1 hypersurface M5 ⊂ C3,
a CR-invariant 1-jet locus Σ1

p ⊂ J1
M,p in the bundle of CR-transversal 1-jets of C ω curves

γ ⊂M .
We will follow the guide [95], which was prepared in advance on this purpose.

21. Point Translations of C ω Hypersurfaces M5 ⊂ C3

Consider as before a local C ω hypersurface M5 ⊂ C3 which is 2-nondegenerate and of
constant Levi rank 1, namely belongs to the class C2,1.

In coordinates (z, ζ, w) = (x+ iy, s+ it, u+ iv), assume that M is locally graphed as
u = F (z, ζ, z, ζ, v). At all points p = (zp, ζp, wp) ∈ M with up = F

(
zp, ζp, zp, ζp, vp

)
, let

us expand up to weighted order 5:

u = F
(
z, ζ, z, ζ, v

)
=

∑
a+b+c+d+2e65

(z−zp)a

a!

(ζ−ζp)b

b!

(z−zp)c

c!

(ζ−ζp)d

d!

(v−vp)e

e!
F
zaζbzcζ

d
ve

(
zp, ζp, zp, ζp, vp

)
+ O(6),

subtract u − up, translate coordinates z := z − zp, ζ := ζ − ζp, w := w − wp, and get a
family of hypersurfaces Mp ⊂ C3, parametrized by p ∈M and passing through the origin:

u = F p
(
z, ζ, z, ζ, v

)
=

∑
16a+b+c+d+2e65

zaζbzcζ
d
ve F p

a,b,c,d,e + Oz,ζ,z,ζ,v(6),

namely with F p(0, 0, 0, 0, 0) = 0, whose graphing function has coefficients:

F p
a,b,c,d,e := 1

a!
1
b!

1
c!

1
d!

1
e!
F
zaζbzcζ

d
ve

(
zp, ζp, zp, ζp, vp

)
,

analytically parametrized by p ∈ M . Thanks to this, working at only one point, namely at
the origin, we will treat all points p ∈M .

QUESTION 21.1. Are there analogs, on hypersurfaces M5 ∈ C2,1, of Cartan-Moser
chains [13, 13, 71, 95] for Levi nondegenerate hypersurfaces M3 ⊂ C2?

Thanks to Lemma 20.4, we will construct, at each point p ∈ M , an invariant surface in
the bundle of 1-jets of CR-transversal curves inM . So there will be an important difference
with Cartan-Moser chains for Levi nondegenerate M3 ⊂ C2: the phenomenon that there
exists a CR-transversal invariant object which is of order 1.

To view this object, similarly as in [95], we need to introduce bundles J1
M and J2

M of
1-jets and 2-jets of CR-transversal curves γ : R −→ M with γ̇ 6∈ T cγM nowhere complex-
tangential.
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22. CR-Invariant 1-Jets 2-codimensional Submanifold Σ1 ⊂ J1
M
∼= M5 × R4

In local coordinates for which M is locally graphed as u = F (z, ζ, z, ζ, v), at any point
p ∈M , the CR-transversal curves can be parametrized as:

v 7−→
(
x(v), y(v), s(v), t(v), v

)
∈ R5

x,y,z,t,v

with γ(0) = p = (xp, yp, sp, tp, vp).
The 4 + 4 = 8 independent coordinates corresponding to the first derivatives(

ẋ(v), ẏ(v), ṡ(v), ṫ(v)
)

and to the second derivatives
(
ẍ(v), ÿ(v), s̈(v), ẗ(v)

)
will be

denoted as follows:
J1
M :=

{(
xp, yp, sp, tp, vp, x

1
p, y

1
p, s

1
p, t

1
p, v

1
p

)}
= R5+4,

J2
M :=

{(
xp, yp, sp, tp, vp, x

1
p, y

1
p, s

1
p, t

1
p, v

1
p, x

2
p, y

2
p, s

2
p, t

2
p, v

2
p

)}
= R5+4+4.

Now, denote the translation map as:

τp : (z, ζ, w) −−−−−−−→
(
z − zp, ζ − ζp, w − wp

)
=: (z, ζ, w),

so that:
τp
(
M, p

)
=:
(
Mp, 0

)
.

Normalization
Φp

p
M

Translation
τp

0
Mp 0

NpΦp ◦ τp =: ϕ

u u

z, ζ, z, ζ, v z, ζ, z, ζ, v

Also, let the punctual (at the origin) normalization map constructed up to now, by Propo-
sition 20.3, be denoted by:

Φp : (Mp, 0) =
{
u =

∑
16a+b+c+d+2e65

F p
a,b,c,d,e z

aζbzcζ
d
ve + O(6)

}
−−−−−−−→ (Np, 0) =

{
u = zz + 1

2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z3ζ
2
F p

3,0,0,2,0 + z3ζ2 F p
3,0,0,2,0 + O(6)

}
.

According to the constructions done in Sections 11 to 19 and according to Proposition 20.3,
we know that Φp depends analytically on p.

Abbreviate:
ϕ := Φp ◦ τp,

and consider the diagram:

J1
M,p

ϕ(1)

//

��

J1
Np,0

��
(M, p) ϕ

// (Np, 0).

As in Observation 8.1, in the 1-jet fiber above 0 ∈ Np, introduce the surface:

Σ1
0 :=

{
(x1, y1, s1, t1) ∈ J1

Np,0 : s1 = −2x1y1, t1 = x2
1 − y2

1

}
.
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Using the first prolongation ϕ(1), define the 2-dimensional submanifold of J1
M,p:

Σ1
p := ϕ(1)−1(

Σ1
0

)
.

Since ϕ(1) is a diffeomorphism J1
M,p

∼−→ J1
Np,0, this Σ1

p is also graphed, say of the form:

s1
p = A

(
x1
p, y

1
p

)
, t1p = B

(
x1
p, y

1
p

)
,

with two C ω functionsA,B which depend on p, and depend also a priori on the normalizing
map ϕ.

Σ1 � � // J1
M,p

ϕ(1)

//

��

J1
Np,0

��

Σ1
_?

foo

ϕ(1)−1

yy

(M, p)
ϕ // (Np, 0)

The union:
∪
p∈M

Σ1
p =: Σ1 ⊂ J1

M

is a C ω submanifold of dimension 5 + 2 within J1
M which has dimension 5 + 4.

ASSERTION 22.1. This graphed surface Σ1
p ⊂ J1

M,p
∼= R4 is independent of the map

ϕ = Φp ◦ τp normalizing the initial hypersurface M of equation u = F (z, ζ, z, ζ, v) near
any of its points p ∈M , to:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z3ζ
2
F p

3,0,0,2,0 + z3ζ2 F p
3,0,0,2,0 + Oz,ζ,z,ζ,v(6).

PROOF. Suppose another such normalizing map is given:

(Np, 0)

ψ :=ϕ′◦ϕ−1

��

(M, p)

ϕ
66

ϕ′

++
(Np
′ , 0).

By Lemma 20.4 which holds for maps stabilizing the origin, ψ has linear terms exactly
equal to the linear terms of the isotropy group of the GM-model, for which we already
know, thanks to Observation 8.1, that:

ψ(1)
(
Σ1

0

)
= Σ′10 .

Hence in conclusion:

Σ′1p = ϕ
(1)
′
−1(

Σ′10
)

= ϕ
(1)
′
−1
(
ψ(1)

(
Σ1

0

))
= ϕ

(1)
′
−1
((
ϕ′ ◦ ϕ−1

)(1)(
Σ1

0

))
= ϕ(1)−1(

Σ1
0

)
= Σ1

p. �
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So at each point p ∈ M , there exists a CR-invariant, or biholomorphically invariant,
surface Σ1

p ⊂ J1
M,p. Therefore, it is natural to select only CR-transversal curves γ : R −→

M , γ(0) = p, such that γ̇(τ) ∈ Σ1
γ(τ) for every τ ∈ R.

But the ‘discovery’ of this CR-invariant submanifold Σ1
M ⊂ J1

M does not suffice, be-
cause the linear action:

z′ := λ z − i λαw,

ζ ′ :=
λ

λ
ζ + 2i

λ

λ
α z +

λ

λ
α2w,

w′ := λλw,

happens to be transitive on the invariant surface Σ1
0 ⊂ R4 of 1-jets, according to the fact

that the prolonged symmetry vector fields D(1), R(1), I
(1)
1 , I

(1)
2 , J(1), shown in Section 8, are

of rank 2 = dim Σ1
0 everywhere.

Remind from [13, 15, 71, 95] that Cartan-Moser chains were strictly of second order.
Hence, we need to explore deeper, and to normalize further, still at 0 ∈Mp. We will realize
that to each 1-jet j1

p ∈ Σ1
p, there is associated a unique invariant 2-jet j2

p = j2
p(j

1
p), as we

already saw when studying the GM-model in Section 9.

23. Order 1 Chains in C2,1 Hypersurfaces M5 ⊂ C3

So far, at the origin, we have constructed a normalizing map Φp, composed with a
translation map τp:

ϕ : (M, p)
τp−−−−−−−→ (Mp, 0)

Φp−−−−−−−→ (Np, 0),

which brings (M, p) to (Np, 0) at the origin of equation fully normalized up to order 5
included:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ 2 Re
{

0 + 0 + z3ζ
2
F p

3,0,0,2,0

}
+ Oz,ζ,z,ζ,v(6),

namely with 0 = F p
3,0,1,1,0 = F p

4,0,0,1,0, knowing that F p
3,0,0,2,0 is a relative invariant.

The differential ϕ∗ establishes isomorphisms:

TpM
∼−→ T0N

p,

T cpM
∼−→ T c0N

p,

Kc
pM

∼−→ Kc
0N

p,

where KcM ⊂ T cM is the Levi-kernel subbundle [89]. It follows that ϕ∗ establishes an
isomorphism between the 3-dimensional real quotient bundles:

TpM
/(
T cpM

/
Kc
pM
) ∼−→ T0N

p
/(
T c0N

p
/
Kc

0N
p
)
.

By definition, on these bundles T c/Kc, the Levi form of M is nondegenerate, of maximal
possible rank 1.

In a neighborhood of some reference point p0 ∈ M , we can take coordinates (z, w, ζ)
with z = x+iy, ζ = s+it, w = u+iv, so thatM is locally graphed as u = F (z, ζ, z, ζ, v),
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with (v, x, y, s, t) ∈ M5 being intrinsic coordinates, so that the Levi form of M is nonzero
near p0 along the intrinsic (1, 0) vector field:

L :=
∂

∂z
− i Fz

1 + i Fv

∂

∂v
.

We will let p ∼ p0 vary in a neighborhood of p0.
Taking jet coordinates (x1, y1, s1, t1) near p0 so that:

J1
M =

{
(v, x, y, s, t, x1, y1, s1, t1)

}
,

it follows from the above isomorphisms and from the definition of Σ1
0 ⊂ J1

Mp,0 that Σ1 ⊂
J1
M is locally defined near p0 as a graph:

s1 = A
(
v, x, y, s, t, x1, y1

)
, t1 = B

(
v, x, y, s, t, x1, y1

)
,

in terms of certain two C ω functions A, B, which vanish for x1 = y1 = 0. In this respect,
the first two coordinates (x1

p, y
1
p) of a 1-jet j1

p at some point p = (vp, xp, yp, sp, tp) ∈ M

near p0 should be thought of as being horizontal, and the last two coordinates (s1
p, t

1
p) as

being vertical.
An alternative presentation of CR-invariant CR-transversal 1-jets on hypersurfaces

M5 ⊂ C3 will be useful in a moment.

DÉFINITION 23.1. A 1-jet j1
p ∈ J1

M,p is said to be the jet of an order 1 chain at a point
p ∈M , or to belong to the invariant surface Σ1

p ⊂ J1
M,p, if, given any punctual normalizing

map from (M, p) to (Np, 0) up to order 5 as in Proposition 20.3:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ 2 Re
{

0 + 0 + z3ζ
2
F p

3,0,0,2,0

}
+ Oz,ζ,z,ζ,v(6),

which sends j1
p to a 1-jet at 0 ∈ Np having vanishing horizontal part:

ϕ(1)
(
j1
p

)
=
(
0, 0, s1

0, t
1
0

)
,

then in fact j1
p is the inverse image of the flat 1-jet at the origin:

j1
p = ϕ(1)−1(

0, 0, 0, 0
)
,

or equivalently s1
0 = t10 = 0.

This definition does not depend on the normalizing map Φp in ϕ = τp ◦ Φp, because if
another Φ′p is chosen, which leads to the diagram:

(Np, 0)

ψ :=ϕ′◦ϕ

��

(M, p)

ϕ
66

ϕ′

++
(Np
′ , 0),

with (Np
′ , 0) having an equation similar to the one of (Np, 0) above, then the ambiguity

map ψ := ϕ′ ◦ ϕ should stabilize the flat 1-jet, and for this to hold, we already know from
the formulas (20.5) that this forces α = 0.
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We will now employ this definition in two ways. It is clear that the graphed equations
of Σ1 ⊂ J1

M lead to a system of two first-order ordinary differential equations:

ṡ = A
(
v, x, y, s, t, ẋ, ẏ

)
, ṫ = B

(
v, x, y, s, t, ẋ, ẏ

)
,

the time parameter being v. For any choice of any two functions (x(v), y(v)) with
(x(0), y(0)) = (xp, yp), with (ẋ(0), ẏ(0)) 6= (0, 0), and with (s(0), t(0)) = (sp, tp), there
exists a unique local C ω solution to this system passing through p at ‘time’ v = 0, which is
a CR-transversal curve having tangents in Σ1

M .

TERMINOLOGY 23.2. Such a curve will be called an order 1 chain.

Later, when passing to order 2 chains, we will see that the large freedom in the choice
of arbitrary functions (x(v), y(v)) will drop.

Once order 1 chains are known, it is natural to restart the whole process of prenor-
malization and of partial normalization which begun in Section 11, by assuming that the
CR-transversal curve p ∈ γ ⊂M (not anymore chosen at random) is an order 1 chain.

Then, coming back to Proposition 19.4, but viewed at the origin up to order 6 in all
variables (z, ζ, z, ζ, v), we remember that we have constructed a normalizing map Φp, com-
posed with a translation map τp:

ϕ : (M, p)
τp−−−−−−−→ (Mp, 0)

Φp−−−−−−−→ (Np, 0),

which brings (M, p) to (Np, 0) at the origin of equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ 2 Re
{

0 + z4ζ F p
4,0,0,1,0 + z3ζ

2
F p

3,0,0,2,0

}
+ Oz,ζ,z,ζ,v(6),

without changing the CR-transversal curve 0 ∈ γ ⊂ M being the v-axis, hence having flat
1-jet at the origin.

ASSERTION 23.3. Then F p
4,0,0,1,0 = 0 holds automatically, without having the needs to

perform any further biholomorphism.

PROOF. Indeed, we already know that one can continue to normalize and make
F p

4,0,0,1,0 = 0 by means of the map:

z′ := z + 2F p
4,0,0,1,0 z

3 − 2F p
4,0,0,1,0 zζw,

ζ ′ := ζ − 2F p
4,0,0,1,0w + 10 z2ζ F p

4,0,0,1,0,

w′ := w + 2 z2wF p
4,0,0,1,0,

which we may call Ψ: (Np, 0) −→ (Np
′ , 0). We then reason as in [95, 9.5].

If F p
4,0,0,1,0 6= 0 would be nonzero, due to the presence in ζ ′ of the linear term

2F p
4,0,0,1,0w, this map Ψ would not stabilize the flat order 1 jet j1

0 = (0, 0, 0, 0), and so,
this would contradict Definition 23.1 applied to (M, p) := (Np, 0), to ϕ := Ψ, and to
(Np, 0) := (Np

′ , 0). �
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Lastly, coming again back to Proposition 19.4, we remember that we have constructed
a normalizing map which brings M near 0 ∈M to the equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z3z3 Oz,z(0)

+ 2 Re
{

0 + z4ζ F4,0,0,1(v) + z3ζ
2
F3,0,0,2(v)

}
+ z3ζ Oz,ζ,z(2) + z3ζ Oz,z,ζ(2) + ζζ Oz,ζ,z,ζ(4).

without changing any starting CR-transversal curve 0 ∈ γ ⊂ M . We now realize that
F4,0,0,1(v) ≡ 0 vanishes for free.

PROPOSITION 23.4. For every hypersurface M5 ∈ C2,1, at any point p ∈ M , given
any CR-transversal curve p ∈ γ ⊂ M which is an order 1 chain, there exist holomorphic
coordinates (z, ζ, w) ∈ C3 vanishing at p in which γ is the v-axis and in which M has
equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ z3z3 Oz,z(0)

+ 2 Re
{

0 + 0 + z3ζ
2
F3,0,0,2(v)

}
+ z3ζ Oz,ζ,z(2) + z3ζ Oz,z,ζ(2) + ζζ Oz,ζ,z,ζ(4).

PROOF. What was done an instant ago by Assertion 23.3 at the origin (z, ζ, w) =
(0, 0, 0) applies in fact at every point (0, 0, iv) along the v-axis, thanks to the fact that the
(pre)normalizations of Propositions 16.7 and 19.4 were achieved all along the v-axis. �

Because we know the existence of a CR-invariant surface Σ1
p ⊂ J1

M,p on which the
isotropy is transitive, we will assume that, starting with any fixed 1-jet j1

p ∈ Σ1
p, the partial

normalization map performed up to now sends j1
p to the flat 1-jet at 0 ∈ Mp, namely to

j1
0 = (0, 0, 0, 0). We will assume that subsequent normalizations stabilize this invariant flat

1-jet. For this, at the very beginning, we have to assume that the CR-transversal curve used
in Section 11, whose choice was left free, has 1-jet at the origin 0 equal to the flat 1-jet.
By surveying all normalizations done up to now, one realizes that the v-axis was always
stabilized, contained in M , hence the flat 1-jet was always preserved (implicitly).

Preserving the flat 1-jet at 0 corresponds to making α := 0 in the formulas of Section 9
and of Lemma 20.4. We state this explicitly as a

COROLLARY 23.5. The biholomorphic maps of Lemma 20.4 which stabilize punctual
normalizations of (Mp, 0) at the origin up to order 5 and which stabilize also the flat 1-jet
j1

0 = (0, 0, 0, 0) ∈ Σ1
0 read, with α := 0 and θ := γ, as:

z′ := λ z + i λ r zw +
(

1
2

λ2

λ
θ + 4

λ

λ
τ
)
z2w + τ w2,

ζ ′ :=
λ

λ
ζ − i λ

λ
r z2 +

(
− 2

λ2

λ
2 θ − 8

λ

λ
2 τ
)
z3 + θ zw,

w′ := λλw + i λλ r w2 + 2λτ zw2. �
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24. End of Point Normalization of C ω Hypersurfaces M5 ⊂ C3

Thus, we have to look at 6th order terms in the currently normalized equation of (Mp, 0),
which, taking account of the vanishing of the Levi determinant, are of the form (exercise):

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ + zzζζζζ

+ F p
3,0,0,2,0 z

3ζ
2

+ F p
3,0,0,2,0 z

3ζ2 + ζζ
(

3F p
3,0,0,2,0 z

2zζ + 3F p
3,0,0,2,0 zζz

2
)

+ z3z3 F p
3,0,3,0,0

+ 2 Re
{
z5ζ F p

5,0,0,1,0 + z4zζ F p
4,0,1,1,0 + z4ζ

2
F p

4,0,0,2,0

+ z3z2ζ F p
3,0,2,1,0 + z3zζ

2
F p

3,0,1,2,0

+ z3ζ
3
F p

3,0,0,3,0

}
+ Oz,ζ,z,ζ,v(7).

To normalize further order 6 terms, it is natural to assume that the normalizations up to
order 5 included are stabilized, and also that the flat 1-jet at the origin is stabilized as well.
Thus we will employ maps of the form:

z′ := λ z + i λ r zw +
(

1
2

λ2

λ
θ + 4

λ

λ
τ
)
z2w + τ w2 +

∑
a+b+2e=5

fa,b,e z
aζbwe,

ζ ′ :=
λ

λ
ζ − i λ

λ
r z2 +

(
− 2

λ2

λ
2 θ − 8

λ

λ
2 τ
)
z3 + θ zw +

∑
a+b+2e=4

ga,b,e z
aζbwe,

w′ := λλw + i λλ r w2 + 2λτ zw2 +
∑

a+b+2e=6

ha,b,e z
aζbwe.

LEMMA 24.1. One can annihilate:

F p
3,0,3,0,0 = 0 and

(
either F p

4,0,1,1,0 = 0 or F p
3,0,2,1,0 = 0

)
.

PROOF. By hand or on a computer, one verifies that the map:

z′ := z + 3
4
F p

3,0,3,0,0 zw
2,

ζ ′ := ζ,

w′ := w +
(

1
4
F p

3,0,3,0,0 + F p
3,0,3,0,0

)
w3,

makes F p ′
3,0,3,0,0 = 0. It is visible (eyes exercise) that this map stabilizes the flat 1-jet

j1
0 = (0, 0, 0, 0).

Next, assuming that F p
3,0,3,0,0 = 0 = F p ′

3,0,3,0,0, the map parametrized by τ ∈ C:

z′ := z + 2 τ z2w + τ w2 − τ ζw2,

ζ ′ := ζ − 4 τ zw + 4 τ zζw,

w′ := w + 2 τ zw2,
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also stabilizes the flat 1-jet j1
0 = (0, 0, 0, 0), and it transforms as follows the six remaining

coefficients:
F p ′

5,0,0,1,0 = F p
5,0,0,1,0 F p ′

4,0,1,1,0 = F p
4,0,1,1,0 − 2 τ , F p ′

4,0,0,2,0 = F p
4,0,0,2,0,

F p ′
3,0,2,1,0 = F p

3,0,2,1,0 + 2 τ, F p ′
3,0,1,2,0 = F p

3,0,1,2,0,

F p ′
3,0,0,3,0 = F p

3,0,0,3,0.

So one of the two mentioned coefficients can be normalized. �

A choice must be made. We then determine the stability group for both choices of
normalizations, again with the constraint of stabilizing the flat 1-jet j1

0 . Both choices lead
to the same stability group (exercise on a computer).

LEMMA 24.2. Any biholomorphic map of the form:

z′ := f1+f2+f3+f4+f5, ζ ′ := g1+g2+g3+g4, w′ := h1+h2+h3+h4+h5+h6,

where f1, f2, f3, f4, f5, g1, g2, g3, g4, h1, h2, h3, h4, h5, h6, are weighted homogeneous,
which stabilizes the normalization up to order 6 included:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ + zzζζζζ

+ F p
3,0,0,2,0 z

3ζ
2

+ F p
3,0,0,2,0 z

3ζ2 + ζζ
(

3F p
3,0,0,2,0 z

2zζ + 3F p
3,0,0,2,0 zζz

2
)

+ 0 + 2 Re
{
z5ζ F p

5,0,0,1,0 + 0 + z4ζ
2
F p

4,0,0,2,0

+ z3z2ζ F p
3,0,2,1,0 + z3zζ

2
F p

3,0,1,2,0

+ z3ζ
3
F p

3,0,0,3,0

}
+ Oz,ζ,z,ζ,v(7),

and which stabilizes the flat 1-jet at the origin, is of the form:

z′ := λ z + i λ r zw + 2
λ2

λ
χ z3w + ψ zw2,

ζ ′ :=
λ

λ
ζ − i λ

λ
r z2 − 4

λ2

λ
2 χ z

4 +
(
− 8

3

ψ

λ
+ 4

3

λ

λ
2 ψ −

1
3

λ

λ
r2
)
z2w + χw2,

w′ := λλw + i λλ r w2 + λ2χ z2w2 +
(
− 1

3
λλ r2 + 1

3
λψ + 1

3
λψ
)
w3.

where λ ∈ C∗, r ∈ R, ψ ∈ C, χ ∈ C are arbitrary parameters. �

Furthermore, with this map, if one stabilizes the normalization F4,0,1,1,0 = 0 = F p ′
4,0,1,1,0,

the other coefficients transform as:
F p ′5,0,0,1,0 = 1

λ3 F
p
5,0,0,1,0 0 = 0, F p ′4,0,0,2,0 = 1

λλ
F p4,0,0,2,0,

F p ′3,0,2,1,0 = 1

λλ
2F

p
3,0,2,1,0 − 2i 1

λλ
2F

p
3,0,0,2,0, F p ′3,0,1,2,0 = 1

λ
2 F

p
3,0,1,2,0,

F p ′3,0,0,3,0 = λ

λ
2 F

p
3,0,0,3,0,

while if one stabilizes the normalization F3,0,2,1,0 = 0 = F p ′
3,0,2,1,0, the other coefficients

transform as:
F p ′

5,0,0,1,0 = 1
λ3
F p

5,0,0,1,0 F p ′
4,0,1,1,0 = 1

λ2λ
2 F

p
4,0,1,1,0 − 2 τ , F p ′

4,0,0,2,0 = 1
λλ
F p

4,0,0,2,0,

0 = 2i λλ rF p
3,0,0,2,0, F p ′

3,0,1,2,0 = 1

λ
2 F

p
3,0,1,2,0,

F p ′
3,0,0,3,0 = λ

λ
2 F

p
3,0,0,3,0.
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This second choice happens to be less natural than the first one, because it forces to discuss
the dichotomy branching:

F p
3,0,0,2,0 = 0,

F p
3,0,0,2,0

55

))
F p

3,0,0,2,0 6= 0,

and when F p
3,0,0,2,0 6= 0, it leads to normalize the parameter r, which belongs to the isotropy

of the GM-model, and such a normalization is too early to be done.
Therefore, we choose the normalization F p ′

4,0,1,1,0 = 0.

By applying the technique of Chen-Foo-Merker-Ta [22, Sections 9, 10], one can realize,
after rather hard computations, that there corresponds to the Taylor coefficient F5,0,0,1,0, the
relative invariant J0 of Pocchiola, presented in [113, 92, 49]:

J0 :=
1

6

L 1

(
L 1

(
L 1

(
L 1(k)

)))
L 1(k)

− 5

6

L 1

(
L 1

(
L 1(k)

))
L 1

(
L 1(k)

)
L 1(k)2

− 1

6

L 1

(
L 1

(
L 1(k)

))
L 1(k)

P +

+
20

27

L 1

(
L 1(k)

)3

L 1(k)3
+

5

18

L 1

(
L 1(k)

)2

L 1(k)2
P +

1

6

L 1

(
L 1(k)

)
L 1

(
P
)

L 1(k)
− 1

9

L 1

(
L 1(k)

)
L 1(k)

P P−

− 1

6
L 1

(
L 1

(
P
))

+
1

3
L 1

(
P
)

P− 2

27
P P P.

Much more simply, by plugging this normalized F into this formula, we obtain its value
only at one point, namely at the origin:

J0 = 20F5,0,0,1,0.

25. Order 2 Chains in C2,1 Hypersurfaces M5 ⊂ C3

In Lemma 24.2, the presence of the free parameter χ ∈ C in the last term χw2, of order
4, of ζ ′ = λ

λ
ζ + · · · + χw2, shows that the flat second jet j2

0 = (0, 0, 0, 0, 0, 0, 0, 0) is not
invariant by transformations which stabilize the normalizations achieved up to now at order
6.

To define chains as in Definition 8.4 of [95], we need then to explore a bit further the
normalizations.

As we already know thanks to Proposition 16.7, it is possible, by some punctual nor-
malization, to also make, at order 7:

0 = F p
a,b,0,0,e (a+b+2e=7),

0 = F p
a,b,1,0,e (a+b+2e=6),

0 = F p
a,b,2,0,e (a+b+2e=5).

Once these normalizations are done, the condition that they are preserved forces χ = 0
(exercise).
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We therefore come to maps which express the ‘ambiguity’ of punctual normalizations
being of the form:

z′ := λ z + i λ r zw + ψ zw2,

ζ ′ :=
λ

λ
ζ − i λ

λ
r z2 +

(
− 8

3

ψ

λ
+ 4

3

λ

λ
2 ψ −

1
3

λ

λ
r2
)
z2w,

w′ := λλw + i λλ r w2 +
(
− 1

3
λλ r2 + 1

3
λψ + 1

3
λψ
)
w3.

Then such maps have the property that they send curves R1
v −→ R4

x,y,s,t of the form:

x = Ov(2), y = Ov(2), s = Ov(2), t = Ov(2),

to curves of the similar form:

x′ = Ov′(2), y = Ov′(2), s = Ov′(2), t = Ov′(2),

hence they stabilize the flat 2-jet j2
0 = (0, 0, 0, 0, 0, 0, 0, 0).

In conclusion, we have reached a point at which we can state an analog of Definition 8.4
in [95].

DÉFINITION 25.1. Given a hypersurface M5 ⊂ C3 in the class C2,1, a point p ∈ M , a
1-jet j1

p ∈ Σ1
p at p, given the translation map τp : (M, p) −→ (Mp, 0), and using any nor-

malizing map Φp : Mp −→ Np which sends (Mp, 0) to a hypersurface (Np, 0) of equation:

zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ

+ 2 Re
{

0 + 0 + F p
3,0,0,2,0 z

3ζ
2

+ ζζ
(
3 z2zζ F p

3,0,0,2,0

)}
+ 0 + 2 Re

{
z5ζ F p

5,0,0,1,0 + 0 + z4ζ
2
F p

4,0,0,2,0

+ z3z2ζ F p
3,0,2,1,0 + z3zζ

2
F p

3,0,1,2,0

+ z3ζ
3
F p

3,0,0,3,0

}
+ Oz,ζ,z,ζ,v(7),

with in addition:

0 = F p
a,b,0,0,e (a+b+2e=7),

0 = F p
a,b,1,0,e (a+b+2e=6),

0 = F p
a,b,2,0,e (a+b+2e=5),

and which also sends j1
p to the flat 1-jet j1

0 = (0, 0, 0, 0) at 0 ∈ Np, assign the 2-jet j2
p of

the chain at p ∈M associated with j1
p to be the inverse image of the flat 2-jet at 0 ∈ Np:

j2
p :=

(
Φp ◦ τp

)(2)−1(
0, 0, 0, 0, 0, 0, 0, 0

)
.

Thanks to the preceding reasonings, the result j2
p is independent of the normalizing map

Φp ◦ τp satisfying (Φp ◦ τp)(1)(j1
p) = (0, 0, 0, 0), the flat 1-jet at 0 ∈ Np.

Furthermore, there are C ω functions A, B, C, D, E, F , which can be made explicit in
terms of

{
Fa,b,c,d,e

}
16a+b+c+d+2e66

, such that equations of chains are, with time parameter
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v:

ṡ = A
(
v, x, y, s, t, ẋ, ẏ

)
,

ṫ = B
(
v, x, y, s, t, ẋ, ẏ

)
,

ẍ = C
(
v, x, y, s, t, ẋ, ẏ

)
,

ÿ = D
(
v, x, y, s, t, ẋ, ẏ

)
,

s̈ = E
(
v, x, y, s, t, ẋ, ẏ

)
,

ẗ = F
(
v, x, y, s, t, ẋ, ẏ

)
.

Integrability follows from the fact that Σ2
0 is a surface.

After that order 2 chains are known, it is natural to restart once more the whole process
of prenormalization and of partial normalization which begun in Section 11, by assuming
that the CR-transversal curve p ∈ γ ⊂ M (not anymore chosen at random) is an order 2
chain. In fact, to have a second order chain at a point p ∈ M , it suffices to prescribe two
real constants, the initial values ẋ(0), ẏ(0).

Then, coming back to Proposition 23.4, but viewed at the origin up to order 6 in all
variables (z, ζ, z, ζ, v), we remember that we have constructed a normalizing map Φp, com-
posed with a translation map τp:

ϕ : (M, p)
τp−−−−−−−→ (Mp, 0)

Φp−−−−−−−→ (Np, 0),

which brings (M, p) to (Np, 0) at the origin of equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ + zzζζζζ

+ z3z3 F p
3,0,3,0,0 + z3z3 Oz,z,v(1)

+ 2 Re
{

0 + 0 + z3ζ
2
F p

3,0,0,2,0 + ζζ
(
3 z2zζ F p

3,0,0,2,0

)}
+ 2 Re

{
z5ζ F p

5,0,0,1,0 + z4zζ F p
4,0,1,1,0 + z4ζ

2
F p

4,0,0,2,0

+ z3z2ζ F p
3,0,2,1,0 + z3zζ

2
F p

3,0,1,2,0

+ z3ζ
3
F p

3,0,0,3,0

}
+ Oz,ζ,z,ζ,v(7),

without changing the CR-transversal curve 0 ∈ γ ⊂ M being the v-axis, hence having flat
1-jet at the origin.

ASSERTION 25.2. Then F p
4,0,1,1,0 = 0 holds automatically, without having the needs to

perform any further biholomorphism.

PROOF. Indeed, from the proof of Lemma 24.1 we already know that with the choice:

τ :=
1

2
F p

4,0,1,1,0,

one can continue to normalize and make F p ′
4,0,1,1,0 = 0 by means of the map:

z′ := z + F p
4,0,1,1,0 z

2w − 1
2
F p

4,0,1,1,0 ζw
2 + 1

2
F p

4,0,1,1,0w
2,

ζ ′ := ζ − 2F p
4,0,1,1,0 zw + 2F p

4,0,1,1,0 ζw
2,

w′ := w + F p
4,0,1,1,0 zw

2,

which we may call Ψ: (Np, 0) −→ (Np
′ , 0). We then reason as in [95, 9.5]

If F p
4,0,1,1,0 6= 0 would be nonzero, due to the presence in z′ of the quadratic term

1
2
F p

4,0,1,1,0w
2, this map Ψ would not stabilize the flat order 2 jet j2

0 = (0, 0, 0, 0, 0, 0, 0, 0),
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and so, this would contradict Definition 25.1 applied to (M, p) := (Np, 0), to ϕ := Ψ, and
to (Np, 0) := (Np

′ , 0). �

26. Moser-like Normal Form for C2,1 Hypersurfaces M5 ⊂ C3

Lastly, coming again back to Proposition 19.4, all what precedes showed that, without
changing any starting order 2 chain 0 ∈ γ ⊂ M to be straighgtened to be the v-axis, we
have constructed a normalizing map (M, 0) −→ (N, 0) so that, in the equation of N , we
may (at last!) let appear all the terms of order 6 in (z, ζ, z, ζ):

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ + zzζζζζ

+ z3z3 F3,0,3,0(v) + z3z3 Oz,z(1)

+ 2 Re
{

0 + 0 + z3ζ
2
F3,0,0,2(v) + ζζ

(
3 z2zζ F3,0,0,2(v)

)}
+ 2 Re

{
z5ζ F5,0,0,1(v) + z4zζ F4,0,1,1(v)

◦
+ z4ζ

2
F4,0,0,2(v)

+ z3z2ζ F3,0,2,1(v) + z3zζ
2
F3,0,1,2(v)

+ z3ζ
3
F3,0,0,3(v)

}
+ z3ζ Oz,ζ,z(3) + z3ζ Oz,z,ζ(3) + ζζ Oz,ζ,z,ζ(5).

ASSERTION 26.1. The function F4,0,1,1(v) ≡ 0 vanishes for free.

PROOF. What was done an instant ago by Assertion 25.2 at the origin (z, ζ, w) =
(0, 0, 0) applies in fact at every point (0, 0, iv) along the v-axis, thanks to the fact that the
above graphed equation is the same all along the v-axis. �

PROPOSITION 26.2. There exists a biholomorphism of the form:

z′ := z ϕ(−iw), ζ ′ := ζ + χ(−iw) z2, w′ := i ψ(−iw),

with ψ(v) ∈ R for v ∈ R, which normalizes in addition F ′3,0,3,0(v′) ≡ 0.

PROOF. Left to the reader. Hint: imitate [95, Lm. 12.4]. �

In summary, we can state

THEOREM 26.3. [Existence of normal form] For every 2-nondegenerate hypersurface
M5 ∈ C2,1 whose Levi form has constant rank 1, at any point p ∈ M , given any order
2 CR-transversal chain p ∈ γ ⊂ M , there exist holomorphic coordinates (z, ζ, w) ∈ C3

vanishing at p in which γ is the v-axis and in which M has normalized equation:

u =
zz+ 1

2 z
2ζ+z2ζ

1−ζζ

+ z3z3 Oz,z(1) + 2Re
{
z3ζ

2
F3,0,0,2(v) + ζζ

(
3 z2zζ F3,0,0,2(v)

)}
+ 2Re

{
z5ζ F5,0,0,1(v) + z4ζ

2
F4,0,0,2(v) + z3z2ζ F3,0,2,1(v) + z3zζ

2
F3,0,1,2(v) + z3ζ

3
F3,0,0,3(v)

}
+ z3ζ Oz,ζ,z(3) + z3ζ Oz,z,ζ(3) + ζζ Oz,ζ,z,ζ(5).

�
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27. Consequence of Prenormalization on Dependent Jets

After the prenormalization Proposition 16.7, we know that we have:

u = F = m +G = m + z3z3 Oz,z(0) + z3ζ Oz,ζ,z(0) + z3ζ Oz,z,ζ(0) + ζζ Oz,ζ,z,ζ(3).

The next statement shows that the dependent-jets remainder is in addition an Oz,z(3).

PROPOSITION 27.1. In prenormalized coordinates, G = Oz,z(3).

This writing means here that G is of order 3 in (z, z), with coefficients being arbitrary
functions of (z, ζ, z, ζ, v), namely that:

G = z3
(
· · ·
)

+ z2z
(
· · ·
)

+ zz2
(
· · ·
)

+ z3
(
· · ·
)
.

PROOF. Since the coordinates are prenormalized, we have at least:

u = zz + 1
2
z2ζ + 1

2
z2ζ + Oz,ζ,z,ζ(4) = m +G.

Thus if we write:

G =
∑
κ>2

∑
a+b+c+d=κ

Ga,b,c,d(v) zaζbzcζ
d

=:
∑
κ>2

Gκ(v).

we have 0 = G2 = G3, which are certainly both Oz,z(3).
The proof will consist in examining, order by order, the Levi determinant for F =

m +G: ∣∣∣∣∣∣∣∣∣∣∣∣

0 Fz Fζ −1
2

+ 1
2i
Fv

Fz Fzz Fζz
1
2i
Fzv

Fζ Fzζ Fζζ
1
2i
Fζv

−1
2
− 1

2i
Fv − 1

2i
Fzv − 1

2i
Fζv

1
4
Fvv

∣∣∣∣∣∣∣∣∣∣∣∣
.

Reasoning by induction, assume, for some κ > 4, that G2, G3, . . . , Gκ−1 are all Oz,z(3).
For all 2 6 ` 6 κ− 1, it then follows that:

G`
z = Oz,z(2), G`

ζ = Oz,z(3), G`
v = Oz,z(3),

G`
z = Oz,z(2), G`

zz = Oz,z(1), G`
ζz = Oz,z(2), G`

zv = Oz,z(2),

G`
ζ

= Oz,z(3), G`
zζ

= Oz,z(2), G`
ζζ

= Oz,z(3), G`
ζv

= Oz,z(3),

G`
v = Oz,z(3), G`

zv = Oz,z(2), G`
ζv = Oz,z(3), G`

vv = Oz,z(3).

To capture information about Gκ, we may truncate modulo Oz,ζ,z,ζ(κ+ 1):

m ≡ m2 + m3 + · · ·+ mκ−2 + mκ−1 + mκ,

G ≡ G2 +G3 + · · ·+Gκ−2 +Gκ−1 +Gκ,

where, for any formal:

H =
∑

a,b,c,d>0

zaζbzcζ
d
Ha,b,c,d(v),
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and any µ > 0, we set:

Hµ :=
∑

a+b+c+d=µ

zaζbzcζ
d
Ha,b,c,d(v),

πµ(H) :=
∑

a+b+c+d6µ

zaζbzcζ
d
Ha,b,c,d(v).

We will insert F = m + G in the Levi determinant and apply the projection πκ−2(•) in
order to capture Gκ

ζζ
.

ASSERTION 27.2. Under the induction assumption, Gκ
ζζ

= Oz,z(3).

PROOF. Some further preliminaries are necessary. At first, for any formal function
L = L(z, ζ, z, ζ, v) which is an Oz,ζ,z,ζ(λ) for some λ > 0, it holds, with a shift, that:

πκ−2
(
L ·H

)
= πκ−2

(
πκ−2

(
L
)
· πκ−2−λ(H)).(27.3)

Next, with • and •,• denoting partial derivatives with respect to any of the variables z, ζ ,
z, ζ , we have:

πκ−2(m) = m2 + · · ·+ mκ−2, πκ−2(G) = G2 + · · ·+Gκ−2,

πκ−2
(
m•
)

= m2
• + · · ·+ mκ−2

• + mκ−1
• , πκ−2

(
G•
)

= G2
• + · · ·+Gκ−2• +Gκ−1• ,

πκ−2
(
m•,•

)
= m2

•,• + · · ·+ mκ−2
•,• + mκ−1

•,• + mκ
•,•, πκ−2

(
G•,•

)
= G2

•,• + · · ·+Gκ−2•,• +Gκ−1•,• ,+G
κ
•,•.

Also, we will be using various values λ = 0, 1, 2 of the integer λ > 0 above:

mz = z+zζ

1−ζζ = Oz,z(1), mz = z+zζ

1−ζζ = Oz,z(1),

mζ = 1
2

(z+zζ)2

(1−ζζ)2 = Oz,z(2), mζ = 1
2

(z+zζ)2

(1−ζζ)2 = Oz,z(2),

mzz = 1
1−ζζ = Oz,z(0), mζz = z+zζ

(1−ζζ)2 = Oz,z(1),

mzζ = z+zζ

(1−ζζ)2 = Ozz(1), mζζ = (z+zζ)2

(1−ζζ)3 = Oz,z(2).

Indeed, we start from:

0 ≡ πκ−2



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

0 mz +
∑

46j6κ−1
Gj
z mζ +

∑
46k6κ−1

Gk
ζ −1

2
− i

2

∑
46l6κ−2

Gl
v

mz +
∑

46i6κ−1
Gi
z mzz +

∑
46j6κ

Gj
zz mζz +

∑
46k6κ

Gk
ζz − i

2

∑
46l6κ−1

Gl
zv

mζ +
∑

46i6κ−1
Gi
ζ

mzζ +
∑

46j6κ
Gj

zζ
mζζ +

∑
46k6κ

Gk
ζζ

− i
2

∑
46l6κ−1

Gl
ζv

−1
2

+ i
2

∑
46i6κ−2

Gi
v

i
2

∑
46j6κ−1

Gj
zv

i
2

∑
46k6κ−1

Gk
ζv

1
4

∑
46l6κ−2

Gl
vv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣


.

Let us expand this determinant along its first row, using (27.3) in order to take account
of various useful negative shifts for the summations in the entries of the obtained 3 × 3
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determinants:

0 ≡ πκ−2

â
−
(

mz +
∑

46j6κ−1
Gj
z

)
∣∣∣∣∣∣∣∣∣∣∣

mz +
∑

46i6κ−2
Gi
z mζz +

∑
46k6κ−1

Gk
ζz − i

2

∑
46l6κ−2

Gl
zv

mζ +
∑

46i6κ−2
Gi
ζ

mζζ +
∑

46k6κ−1
Gk
ζζ
− i

2

∑
46l6κ−2

Gl
ζv

−1
2

+ i
2

∑
46i6κ−3

Gi
v

i
2

∑
46k6κ−2

Gk
ζv

1
4

∑
46l6κ−3

Gl
vv

∣∣∣∣∣∣∣∣∣∣∣

+
(

mζ +
∑

46k6κ−1
Gk
ζ

)
∣∣∣∣∣∣∣∣∣∣∣∣∣∣

mz +
∑

46i6κ−3
Gi
z mzz +

∑
46j6κ−2

Gj
zz − i

2

∑
46l6κ−3

Gl
zv

mζ +
∑

46i6κ−3
Gi
ζ

mzζ +
∑

46j6κ−2
Gj

zζ
− i

2

∑
46l6κ−3

Gl
ζv

−1
2

+ i
2

∑
46i6κ−4

Gi
v

i
2

∑
46j6κ−3

Gj
zv

1
4

∑
46l6κ−4

Gl
vv

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−
(
− 1

2
+ Oz,z(3)

)
∣∣∣∣∣∣∣∣∣∣∣

mz +
∑

46i6κ−1
Gi
z mzz +

∑
46j6κ

Gj
zz mζz +

∑
46k6κ

Gk
ζz

mζ +
∑

46i6κ−1
Gi
ζ

mzζ +
∑

46j6κ
Gj

zζ
mζζ +

∑
46k6κ

Gk
ζζ

−1
2

+ i
2

∑
46i6κ−2

Gi
v

i
2

∑
46j6κ−1

Gj
zv

i
2

∑
46k6κ−1

Gk
ζv

∣∣∣∣∣∣∣∣∣∣∣

ì
.

Now, apply the induction assumption, and simultaneously also, expand the last determi-
nant along its first column:

0 ≡ πκ−2

Ñ
−Oz,z(1)

∣∣∣∣∣∣
Oz,z(1) Oz,z(1) Oz,z(2)
Oz,z(2) Oz,z(2) Oz,z(3)
Oz,z(0) Oz,z(3) Oz,z(3)

∣∣∣∣∣∣+ Oz,z(2)

∣∣∣∣∣∣
Oz,z(1) Oz,z(0) Oz,z(2)
Oz,z(2) Oz,z(1) Oz,z(3)
Oz,z(0) Oz,z(2) Oz,z(3)

∣∣∣∣∣∣
+
(

1
2

+ Oz,z(3)
)

(
mz +

∑
46i6κ−1

Gi
z

) ∣∣∣∣∣∣∣
mzζ +

∑
46j6κ−1

Gj

zζ
mζζ +

∑
46k6κ−1

Gk
ζζ

i
2

∑
46j6κ−2

Gj
zv

i
2

∑
46k6κ−2

Gk
ζv

∣∣∣∣∣∣∣
−
(

mζ +
∑

46i6κ−1
Gi
ζ

) ∣∣∣∣∣∣∣
mzz +

∑
46j6κ−2

Gj
zz mζz +

∑
46k6κ−2

Gk
ζz

i
2

∑
46j6κ−3

Gj
zv

i
2

∑
46k6κ−3

Gk
ζv

∣∣∣∣∣∣∣
+
(
− 1

2
+ Oz,z(3)

) ∣∣∣∣∣∣∣
mzz +

∑
46j6κ

Gj
zz mζz +

∑
46k6κ

Gk
ζz

mzζ +
∑

46j6κ
Gzζ mζζ +

∑
46k6κ

Gk
ζζ

∣∣∣∣∣∣∣

è

.
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Taking account of 0 ≡
∣∣mzz mζz

mzζ mζζ

∣∣ in the last 2× 2 determinant, we may continue to expand:

0 ≡ Oz,z(3) + Oz,z(1)

∣∣∣∣ Oz,z(1) Oz,z(2)
Oz,z(2) Oz,z(3)

∣∣∣∣−Oz,z(2)

∣∣∣∣ Oz,z(0) Oz,z(1)
Oz,z(2) Oz,z(3)

∣∣∣∣
+
(
− 1

4
+ Oz,z(3)

)
mzz

∑
46k6κ

Gk
ζζ

+ mζζ

∑
46j6κ−2

Gj
zz +

( ∑
46j6κ−2

Gj
zz

)( ∑
46k6κ−2

Gk
ζζ

)
− mζz

∑
46j6κ−1

Gj

zζ
−mzζ

∑
46k6κ−1

Gk
ζz −

( ∑
46k6κ−2

Gk
ζz

)( ∑
46j6κ−2

Gj

zζ

)
 ,

that is:

Oz,z(3) ≡ mzz

( ∑
46k6κ−1

Gk
ζζ

+Gκ
ζζ

)
+ Oz,z(2) Oz,z(1) + Oz,z(1) Oz,z(3)

− Oz,z(1) Oz,z(2)−Oz,z(1) Oz,z(2)−Oz,z(2) Oz,z(2),

and reminding mzz = 1
1−ζζ , this gives the concluding identity:

Oz,z(3) = 1
1−ζζ G

κ
ζζ
. �

By integration,Gκ = λκ(z, ζ, z, v)+λ
κ
(z, ζ, z, v)+Oz,z(3). After absorption in Oz,z(3),

we can assume that λκ is of degree 6 2 in (z, z), hence contains only monomials zaζbzcve

with a+ c 6 2 and a+ b+ c = κ. So b > κ− 2.
Further, Gκ(z, ζ, 0, 0, v) ≡ 0 imposes λκ(z, ζ, 0, v) ≡ 0. So 1 6 c 6 2. Consequently,

λκ can contain only three monomials:

λκ(z, ζ, z, v) = a(v) zζκ−1 + b(v) zz ζκ−2 + c(v) z2ζκ−2.

Since κ > 4, we see that the conjugate λ
κ
(z, ζ, z, v) is multiple of ζ

κ−2>2
, hence:

Gκ
(
z, ζ, z, 0, v

)
= λκ(z, ζ, z, v) + λ

κ
(z, 0, z, v)

◦
+ Oz,z(3).

Finally, because the prenormalized coordinates of Proposition 16.7 require
Gκ(z, ζ, z, 0, v) = Oz,z(3), we reach λκ(z, ζ, z, v) = Oz,z(3), which forces
a = b = c = 0 = λκ, so as asserted Gκ = Oz,z(3). �

28. Consequence of Prenormalization on Equivalences

Thanks to Proposition 16.7, if we are given a holomorphic map H : (z, ζ, w) 7−→
(z′, ζ ′, w′) between two C2,1 hypersurfaces M5 ⊂ C3 and M ′5 ⊂ C′3, we can assume
that both hypersurfaces are prenormalized. In particular, Proposition 27.1 tells us that the
whole remainders after the GM-model part of their graphing functions is of order 3 in (z, z):

u = m +G = m + Oz,z(3) and u′ = m′ +G′ = m + Oz′,z′(3).

OBSERVATION 28.1. Complex scalings (z, ζ, w) 7−→
(
λz, λ

λ
ζ, λλw

)
with λ ∈ C∗

preserve prenormalizations as in Proposition 16.7. �

With λ := ρ ∈ R∗, this is
(
ρ1z, ρ0ζ, ρ2w

)
. Hence this observation suggests naturally

to assign the following weights to the three complex variables and their real and imaginary
parts:

[z] := 1 =: [z], [ζ] := 0 =: [ζ], [w] := 2 =: [w].
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Accordingly, let us decompose the components (f, g, h) ofH in weighted homogeneous
parts:

f = f0+f1+f2+f3 · · · , g = g0+g1+g2+· · · , h = h0+h1+h2+h3+h4+· · · .

PROPOSITION 28.2. If both M and M ′ are prenormalized, possibly after composing
with a complex dilation (z′, ζ ′, w′) 7−→

(
λz′, λ

λ
ζ ′, λλw′), one has f0 = 0, f1 = z, g0 = ζ ,

h0 = 0, h1 = 0, h2 = w, and the weighted homogeneous components of f , g, h are:

f = z+f2 +f3 +· · · , g = ζ+g1 +g2 +· · · , h = w+h3 +h4 +· · · .

Mind the fact that this does not mean that the map is Id+Oz,w,ζ(2), since in f2, there can
still be the linear term f0,0,2w, and in g1 + g2, there can still be the linear terms g1,0,0 z +
g0,0,1w.

PROOF. The fundamental identity expressing that we have a map M −→M ′ reads:

h0 + h1 + · · ·+ h0 + h1 + · · · = 2F ′
(
f0 + f1 + · · · , g0 + g1 + · · · ,

f0 + f1 + · · · , g0 + g1 + · · · , 1
2i

(
h0 + h1 + · · · − h0 − h1 − · · ·

))
.(28.3)

Observe that f0 = f0(ζ), g0 = g0(ζ), h0 = h0(ζ) depend only on ζ . This identity projected
to weight 0 becomes:

h0(ζ) + h0(ζ) ≡ 2F ′
(
f0(ζ), g0(ζ), f 0(ζ), g0(ζ), 1

2i
h0(ζ)− 1

2i
h0(ζ)

)
.

Put ζ := 0, use the assumption that there are no pluriharmonic terms (coordinates are
prenormalized), namely that 0 ≡ F ′(z′, ζ ′, 0, 0, v′), and get h0(ζ) ≡ 0.

Once again, look at (28.3), and get from F ′ = m′ +G′ = m′ + Oz′,z′(3):

0 ≡ 2 f0(ζ)f 0(ζ) + f0(ζ)2 g0(ζ) + f 0(ζ)2 g0(ζ)

1− g0(ζ)g0(ζ)
+ Of0(ζ),f0(ζ)(3).

We claim that f0(ζ) ≡ 0. Otherwise, f0 = e ζτ + Oζ(τ + 1) with e 6= 0 and τ ∈ N>1.
Hence:

0 ≡ 2 ee ζτζ
τ (

1 + Oζ,ζ(1)
)

+ ζ2τ (· · · ) + ζ
2τ

(· · · ) + Oζ,ζ

(
3 τ
)
,

and this forces ee = 0. So f0(ζ) ≡ 0, and (28.3) at weight 0, namely the identity above,
reduces to 0 = 0.

Next, examine weight 1. Certainly, f1 = zf1(ζ) and h1 = zh1(ζ), while g will not
participate here. Since m′ is weighted 2-homogeneous, as it contains zz, z2, z2 times
functions of (ζ, ζ), we have F ′ = Oz′,z′(2), so the identity:

z h1(ζ) + z h1(ζ) ≡ Ozf1(ζ),zf1(ζ)(2) = Oz,z(2),

forces h1(ζ) ≡ 0.
Next, expand in powers of z, w:

f = z f1(ζ) + z2(· · · ) + w(· · · ), g = g0(ζ) + z g1(ζ) + z2(· · · ) + w(· · · ), h = h2 + h3 + · · · ,
h2 = z2 ϕ(ζ) + wψ(ζ).

The holomorphic Jacobian at the origin is assumed to be invertible:

0 6=

∣∣∣∣∣∣
fz(0) fζ(0) fw(0)
gz(0) gζ(0) gw(0)
hz(0) hζ(0) hw(0)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
f1(0) 0 fw(0)
g1(0) g′0(0) gw(0)

0 0 hw(0)

∣∣∣∣∣∣ ,
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whence hw(0) 6= 0 and g′0(0) 6= 0 and also f1(0) 6= 0. Then the fundamental identity (28.3)
becomes in weight 2:

h2(ζ) + h2(ζ) ≡ 2 m′
(
zf1(ζ), g0(ζ), zf 1(ζ), g0(ζ)

)
,

that is, after replacing w = m + iv in h2:

z2 ϕ(ζ) + z2 ϕ(ζ) + m(z, ζ, z, ζ)
[
ψ(ζ) + ψ(ζ)

]
+ i v

[
ψ(ζ)− ψ(ζ)

]
≡

≡ 2 z f1(ζ) z f 1(ζ) + z2 f 1(ζ) g0(ζ) + z2 f1(ζ)2 g0(ζ)

1− g0(ζ) g0(ζ)
,

this holding identically in C{z, ζ, z, ζ, v}. This forces ψ(ζ) ≡ ρ to be constant, with
ρ ∈ R∗, and then ϕ(ζ) ≡ 0 necessarily.

It remains an identity:

m(z, ζ, z, ζ) 2 ρ ≡ 2 m′
(
zf1(ζ), g0(ζ), zf 1(ζ), g0(ζ)

)
,

which expresses that the map (z, ζ, w) 7−→
(
zf1(ζ), g0(ζ), ρ w

)
is an automorphism — in

fact a rigid automorphism, cf. [22] — of the Gaussier-Merker model. But we know from
Section 5, see the fractional expression ofw′ there, that this requires α = 0 and r = 0, while
only λ ∈ C∗ is free. Consequently, the map is of the form (f1, g0, h2) =

(
λz, λ

λ
ζ, λλw

)
.

Post-composing by the inverse map yields the conclusion. �

29. Uniqueness of Normal Form

Starting with a C ω hypersurface M5 ⊂ C3 which is 2-nondegenerate and of constant
Levi rank 1, at any point p ∈M , it is elementary to find holomorphic coordinates (z, ζ, w)
vanishing at p in which M has equation:

u = F = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + Oz,ζ,z,ζ,v(5).(29.1)

Such an equation can hence freely be taken as the starting point towards a complete nor-
malization of F (z, ζ, z, ζ, v).

In the preceding sections, we have in fact established the existence of a normal form for
M . We can now present a final uniqueness statement which will terminate our article.

THEOREM 29.2. Given M5 ⊂ C3 in the class C2,1 with 0 ∈M of the form:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + Oz,ζ,z,ζ,v(5),
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there exists a biholomorphism (z, ζ, w) 7−→ (z′, ζ ′, w′) fixing 0 which maps (M, 0) into
(M ′, 0) of normalized equation:

u′ = z′z′ + 1
2
z′

2
ζ ′ + 1

2
z′

2
ζ
′
+ z′z′ζ ′ζ

′
+ 1

2
z′

2
ζ ′ζ ′ζ

′
+ 1

2
z′

2
ζ
′
ζ ′ζ
′
+ z′z′ζ ′ζ

′
ζ ′ζ
′

+ 0 + z′
3
z′

3
Oz′,z′(1)

+ 2 Re
{

0 + 0 + z′
3
ζ
′2
F ′3,0,0,2(v′) + ζ ′ζ

′ (
3 z′

2
z′ζ
′
F ′3,0,0,2(v′)

)}
+ 2 Re

{
z′

5
ζ
′
F ′5,0,0,1(v′) + 0 + z′

4
ζ
′2
F ′4,0,0,2(v′)

+ z′
3
z′

2
ζ
′
F ′3,0,2,1(v′) + z′

3
z′ζ
′2
F ′3,0,1,2(v′)

+ z′
3
ζ
′3
F ′3,0,0,3(v′)

}
+ z′

3
ζ ′Oz′,ζ′,z′(3) + z′

3
ζ
′
O
z′,z′,ζ

′(3) + ζ ′ζ
′
Oz′,ζ′,z′(3) O

z′,ζ′,z′,ζ
′(2).

Furthermore, the map exists and is unique if it is assumed to be of the form:

z′ := z + f>2(z, ζ, w) ζ ′ := ζ + g>1(z, ζ, w), w′ := w + h>3(z, ζ, w),

0 = fw(0), 0 = Imhww(0).

Here of course, f>2 is of weight > 2, while g>1 is of weight > 1, and h>3 is of weight
> 3 for the currently useful weighting [z] := 1, [ζ] := 0, [w] := 2.

PROOF. By choosing a chain at 0 ∈M whose first jet is flat, directed along the v-axis,
one can verify (exercise) that all the constructions done in the preceding sections do indeed
give a biholomorphism of this specific form. So our job is to establish uniqueness.

Suppose therefore that two such normalizationsHι : (z, ζ, w) 7−→ (z+fι, ζ+gι, w+hι),
ι = 1, 2, are given:

M ′
1

H2◦H−1
1

��

M

H1

55

H2
))
M ′

2,

with 0 = fι,w(0) and 0 = Rehι,ww(0) for ι = 1, 2. We leave to the reader to verify that,
then, H := H2 ◦H−1

1 is also of the form (z, ζ, w) 7−→
(
z + f>2, ζ + g>1, w + h>3

)
also

with 0 = fw(0) and 0 = Imhww(0). For this, one has to take account of (29.1).
The theorem asserts that H1 = H2. Equivalently, H2 ◦ H−1

1 = Id. This will be offered
by the next independent key uniqueness statement. �
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THEOREM 29.3. For a given M5 ⊂ C3 in the class C2,1, if two normal forms N and N′
at some point p ∈M are constructed, with N having normalized equation:

u = zz + 1
2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ + zzζζζζ

+ 0 + z3z3 Oz,z(1)

+ 2 Re
{

0 + 0 + z3ζ
2
F3,0,0,2(v) + ζζ

(
3 z2zζ F3,0,0,2(v)

)}
+ 2 Re

{
z5ζ F5,0,0,1(v) + 0 + z4ζ

2
F4,0,0,2(v)

+ z3z2ζ F3,0,2,1(v) + z3zζ
2
F3,0,1,2(v)

+ z3ζ
3
F3,0,0,3(v)

}
+ z3ζ Oz,ζ,z(3) + z3ζ Oz,z,ζ(3) + ζζ Oz,ζ,z(3) Oz,ζ,z,ζ(2),

and with N′ having similarly normalized equation, and if the map (z, ζ, w) 7−→ (z′, ζ ′, w′)
between them is of the form:

z′ := z + f>2(z, ζ, w) ζ ′ := ζ + g>1(z, ζ, w), w′ := w + h>3(z, ζ, w),

0 = fw(0), 0 = Imhww(0),

then the map (z′, ζ ′, w′) = (z, ζ, w) is the identity, and the two normal forms N = N′
coincide.

PROOF. Equivalently, the graphing function F =
∑

a,b,c,d z
aζbzcζ

d
Fa,b,c,d(v) of N

satisfies the general prenormalization conditions:

0 ≡Fa,b,0,0(v) ≡ F0,0,c,d(v),

0 ≡Fa,b,1,0(v) ≡ F1,0,c,d(v),

0 ≡Fa,b,2,0(v) ≡ F2,0,c,d(v),

with the obvious two exceptions F1,0,1,0(v) ≡ 1 and F0,1,2,0(v) ≡ 1
2
≡ F2,0,0,1(v), together

with the sporadic normalization conditions, listed by increasing order 4, 5, 6:

0 ≡ F3,0,0,1(v) ≡ F0,1,3,0(v),

0 ≡ F4,0,0,1(v) ≡ F0,1,4,0(v), 0 ≡ F3,0,1,1(v) ≡ F1,1,3,0(v),

0 ≡ F4,0,1,1(v) ≡ F1,1,4,0(v), 0 ≡ F3,0,3,0(v),

and the same holds about F ′.
Accordingly, let us introduce:

S :=
{

(a, b, 0, 0), (0, 0, c, d), (a, b, 1, 0), (1, 0, c, d), (a, b, 2, 0), (2, 0, c, d)
}

∪
{

(3, 0, 0, 1), (0, 1, 3, 0), (4, 0, 0, 1), (0, 1, 4, 0), (3, 0, 1, 1), (1, 1, 3, 0), (4, 0, 1, 1), (1, 1, 4, 0), (3, 0, 3, 0)
}
.

Notice that S takes no dependent derivatives ζζ(· · · ), namely one always has b+ d 6 1 for
any (a, b, c, d) ∈ S.

For a general real converging power series vanishing at (z, ζ, z, ζ, v) = (0, 0, 0, 0, 0):

H =
∑

a,b,c,d,e

Ha,b,c,d,e z
aζbzcζ

d
ve (Hc,d,a,b,e =Ha,b,c,d,e),
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i.e. with H0,0,0,0,0 = 0, introduce the projection:

ΠS(H) :=
∑

(a,b,c,d)∈S

∞∑
e=0

Ha,b,c,d,e z
aζbzcζ

d
ve,

so that:

ΠS(F ) = zz+ 1
2
z2ζ+ 1

2
z2ζ and ΠS(F ′) = z′z′+ 1

2
z′

2
ζ ′+ 1

2
z′

2
ζ
′
.

By assumption (or because of Proposition 28.2), the map is of the form:

z′ = z+f2+f3+· · · , ζ ′ = ζ+g1+g2+· · · , w′ = w+h3+h4+· · · ,
that is, more precisely:

f =
∑
ν>3

fν−1 =
∑
ν>3

Å ∑
a+b+2e=ν−1

fa,b,e z
aζbwe

ã
,

g =
∑
ν>3

gν−2 =
∑
ν>3

Å ∑
a+b+2e=ν−2

ga,b,e z
aζbwe

ã
,

h =
∑
ν>3

hν =
∑
ν>3

Å ∑
a+b+2e=ν

ha,b,e z
aζbwe

ã
.

Let us introduce the projections:

πν−1(f) := fν−1, πν−2(g) := gν−2, πν(h) := hν ,

and also:
πν(H) :=

∑
a+b+c+d+2e=ν

Ha,b,c,d,e z
aζbzcζ

d
ve,

so that:
ΠS

(
πν(F )

)
= 0 = ΠS

(
πν(F

′)
)

(∀ ν > 3).

Also, let us introduce:
πν := π2 + · · ·+ πν .

Now, remind that m =
zz+ 1

2
z2ζ+z2ζ

1−ζζ is homogeneous of weight 2. Thanks to Proposi-
tion 27.1, we may write:

u = F = m +
∑
ν>3

Gν .

Then for a holomorphic function eµ = eµ(z, ζ, w) which is weighed µ-homogeneous, it
holds (exercise):

πµ
Å
eµ

(
z, ζ, i v + m(z, ζ, z, ζ) +

∑
ν>3

Gν

(
z, ζ, z, ζ, v

))ã
= eµ

(
z, ζ, i v + m

)
.(29.4)

Now, the fundamental identity expressing that (z + f, ζ + g, w+ h) is a map N −→ N′
writes:

0 ≡ −Re
(
w + h3 + h4 + · · ·

)
+ F ′

(
z + f2 + f3 + · · · , ζ + g1 + g2 + · · · ,

z + f 2 + f 3 + · · · , ζ + g1 + g2 + · · · , Im
(
w + h3 + h4 + · · ·

))
.(29.5)
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In order to prove that (f, g, h) = (0, 0, 0), we may proceed progressively, by induction
on ν > 3:

(•3) (f2, g1, h3) = (0, 0, 0);

(•ν−1)
(
fµ−1, gµ−2, hµ

)
= (0, 0, 0) for µ = 3, . . . , ν − 1 and some ν > 4 implies that(

fν−1, gν−2, hν
)

= (0, 0, 0).

Therefore, let us examine first the fundamental identity in weight ν = 3, remember-
ing that this identity already holds true in weights 0, 1, 2 — according to (the proof of)
Proposition 28.2, or according to our hypothesis —:

0 ≡ π3

Å
− Re

(
w + h3

)
+ m′

(
z + f2, ζ + g1, z + f 2, ζ + g1

)
+ F ′3

(
z + f2, ζ + g1, z + f 2, ζ + g1

)ã
≡ π3

Å
− m− F3 − Reh3 + m′

(
z + f2, ζ + g1, z + f 2, ζ + g1

)ã
+ F ′3

(
z, ζ, z, ζ

)
,

since m′ is weighted homogeneous of degree 2, since we use here (29.4). Equivalently:

F3

(
z, ζ, z, ζ

)
−F ′3

(
z, ζ, z, ζ

)
≡ π3

(
m′
(
z+f2, ζ+g1, z+f 2, ζ+g1

)
−m

(
z, ζ, z, ζ

))
−Reh3

(
z, ζ,m+iv

)
.

Generally, for any ν > 3, starting from the induction assumption expressed by (•ν−1)
above, the same reasoning (exercise) conducts to the identity:

Fν
(
z, ζ, z, ζ

)
−F ′ν

(
z, ζ, z, ζ

)
≡ πν

(
m′
(
z+fν−1, ζ+gν−2, z+f ν−1, ζ+gν−2

)
−m

(
z, ζ, z, ζ

))
−Rehν

(
z, ζ,m+iv

)
.

Observe that:

mz = z+zζ

1−ζζ and mζ = 1
2

(z+zζ)2

(1−ζζ)2 .

LEMMA 29.6. One has:

πν
(

m′
(
z + fν−1, ζ + gν−2, z + f ν−1, ζ + gν−2

)
−m

(
z, ζ, z, ζ

))
= 2 Re

{
z+zζ

1−ζζ fν−1

(
z, ζ, m + iv

)
+ 1

2
(z+zζ)2

(1−ζζ)2 gν−2

(
z, ζ, m + iv

)}
.

PROOF. The reader is referred to [22, Prp. 6.2] which provides all arguments. �

Next, let us apply ΠS(•) to the above identity, multiplied by 2, namely to:

2Fν − 2F ′ν ≡ πν
(
2 m′ − 2 m

)
− 2 Rehν ,

so that all monomials in the left-hand side disappear due to our assumption that both N and
N′ are in normal form:

0 ≡ ΠS

Å
πν
(
2 m′ − 2 m

)
− 2 Rehν

ã
≡ ΠS

Å
2 Re

{
2 z+zζ

1−ζζ fν−1

(
z, ζ, m + iv

)
+ (z+zζ)2

(1−ζζ)2 gν−2

(
z, ζ, m + iv

)
− hν

(
z, ζ, m + iv

)}ã
.

Then for all monomials zaζbzcζ
d
ve with (a, b, c, d) ∈ S and a+ b+ c+ d+ 2e = ν, we

obtain a system of linear equations:

(Eν) : 0 = La,b,c,d,e

({
fa′,b′,e′

}
a′+b′+2e′=ν−1

,
{
ga′,b′,e′

}
a′+b′+2e′=ν−2

,
{
ha′,b′,e′

}
a′+b′+2e′=ν

)
.
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On the other hand, by considering the complete f = f2 + f3 + · · · , the complete g =
g1 + g2 + · · · , and the complete h = h3 +h4 + · · · — not to be confused with the previous
(z′, ζ ′, w′) = (z, ζ, w)+(f, g, h) —, we can introduce the analog ‘complete’ linear system:

0 ≡ ΠS

Å
2 Re

{
2 z+zζ

1−ζζ f
(
z, ζ, m + iv

)
+ (z+zζ)2

(1−ζζ)2 g
(
z, ζ, m + iv

)
− h
(
z, ζ, m + iv

)}ã
,

which, similarly, after extracting the coefficients of all monomials zaζbzcζ
d
ve with

(a, b, c, d) ∈ S and any e ∈ N, can be abbreviated as:

(E) : 0 = La,b,c,d,e
(
f•,•,•, g•,•,•, h•,•,•

)
((a,b,c,d)∈S, e∈N).

The key and elementary observation is that, because m + iv is (weighted) 2-
homogeneous, the full system (E) splits into the linear subsystems (Eν) having separate
unknowns

(
fν−1, gν−2, hν

)
:

(E) = (E3) ∪ (E4) ∪ · · · ∪ (Eν) ∪ · · · .

Therefore:(
(E) =⇒ (f, g, h) = (0, 0, 0)

)
⇐⇒

(
(Eν) =⇒

(
fν−1, gν−2, hν

)
= (0, 0) for all ν > 3

)
.

The interest of this equivalence is that one will be able to gather all powers ve for e ∈ N in
order to deal with functions of the real variable v ∈ R, and hence, extract only coefficients
of powers zaζbzcζ

d
, as we will see in a while.

Thus, we are left with establishing the following main technical statement, which will
close the proof of Theorem 29.3. �

THEOREM 29.7. In weighted expansions, assume that f = f2 + f3 + · · · , that g =
g1 + g2 + · · · , and that h = h3 + h4 + · · · vanish at the origin and satisfy in addition:

0 = fw(0) and 0 = Imhww(0).

If, for all (a, b, c, d) ∈ S and all e ∈ N:

0 =
[
zaζbzcζ

d
ve
]Å

2 Re
{

2 z+zζ

1−ζζ f
(
z, ζ,m+iv

)
+ (z+zζ)2

(1−ζζ)2 g
(
z, ζ,m+iv

)
−h
(
z, ζ,m+i v

)}ã
,

then (f, g, h) = (0, 0, 0).

PROOF. For some reason of technical simplification, to be explained in a little interlude
below, we now decide to ‘shift’ to the representation v = F (z, ζ, z, ζ, u) instead of u =
F (z, ζ, z, ζ, v), where u = Rew and v = Imw as always.

The hypotheses become (exercise), instead:

0 = fw(0) and 0 = Rehww(0),

and also, for all (a, b, c, d) ∈ S and all e ∈ N:

0 =
[
zaζbzcζ

d
ue
]Å

2 Re
{

2 z+zζ

1−ζζ f
(
z, ζ, u+im

)
+ (z+zζ)2

(1−ζζ)2 f
(
z, ζ, u+im

)
+i h

(
z, ζ, u+im

)}ã
.

Because S does not contain any dependent-jet monomial ζζ(· · · ) by its very definition
given above, we may compute everything modulo ζζ(· · · ), and this will simplify our task.
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Thus, by expanding:

m =
zz + 1

2
z2ζ + 1

2
z2ζ

1− ζζ
= zz + 1

2
z2ζ + 1

2
z2ζ + zzζζ + 1

2
z2ζζζ + 1

2
z2ζζζ + zzζζζζ + · · · ,

we visibly have:
m ≡ zz + 1

2
z2ζ + 1

2
z2ζ,

mz ≡ z + zζ,

mζ ≡ 1
2
z2 + zzζ + 1

2
z2ζ

2
,

mz ≡ z + zζ,

mζ ≡ 1
2
z2 + zζz + 1

2
z2ζ2.

We will also need (little exercise), still modulo ζζ(· · · ):

m2 ≡ z2z2 + zζz3 + z3zζ + 1
4
z4ζ

2
+ 1

4
ζ2z4,

m3 ≡ z3z3 + 3
2
z2ζz4 + 3

2
z4z2ζ

2
+ 3

4
z5zζ

2
+ 3

4
zz5ζ

2
+ 1

8
z6ζ

3
+ 1

8
ζ3z6,

m mζ ≡ 1
2
zz3 + 1

4
ζz4 + 5

4
z2zζ + z3zζ

2
+ 1

4
z4ζ

3
,

m mz ≡ zz2 + 1
2
ζz3 + 3

2
z2zζ + 1

2
z3ζ

2
,

m2 mz ≡ z2z3 + zζz4 + 2 z3z2ζ + 1
4
ζ2z5 + 5

4
z4zζ

2
+ 1

4
z5ζ

3
.

Assuming therefore that the graphing equation v = F = m + G is solved with respect
to v, not to u, with arguments (z, ζ, w) = (z, ζ, u + im), the Moser (linear) operator is
defined as:

L(f, g, h) := 2 mz f + 2 mz f + 2 mζ g + 2 mζ g + i h− i h.

Given a holomorphic function e = e(w), we may Taylor expand at u:

e
(
u+ im

)
= e(u) + ew(u) [im] + eww(u)

[
− m2

2

]
+ ewww(u)

[
− i m3

6

]
+ · · ·

=: e+ e′ [im] + e′′
[
− m2

2

]
+ e′′′

[
− i m3

6

]
+ · · · ,

and we can abbreviate derivatives using primes, even without writing the argument u. Let
us now make the promised little interlude.

The other choice of graphing u = F = m+G leads to e(w) = e(iv+m) which expands
as:

e
(
iv + m

)
= e(iv) + ew(iv) [m] + eww(iv)

[m2

2

]
+ ewww(iv)

[m3

6

]
+ · · · .

It is then convenient to consider the composed function of one real variable:

v 7−→ e(iv) =: E(v),

which satisfies:
d
dv
E(v) = i ew(iv) ⇐⇒ − i E ′(v) = ew(iv),

d2

dv2
E(v) = − eww(iv) ⇐⇒ −E ′′(v) = eww(iv),

d3

dv3
E(v) = − i ewww(iv) ⇐⇒ i E ′′′(v) = ewww(iv).
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Thus:

e
(
iv + m

)
= E(v)− i E ′(v) [m]− E ′′(v)

[m2

2

]
+ i E ′′′(v)

[m3

6

]
+ · · · ,

e
(
− iv + m

)
= E(v) + i E

′
(v) [m]− E ′′(v)

[m2

2

]
− i E ′′′(v)

[m3

6

]
+ · · · ,

and similarly for the conjugate. If by convention, we then make the abuse of notation to
denote e instead of E, that is e(v) instead of E(v) = e(iv), we can abbreviate, without
writing the arguments iv or −iv:

e
(
iv + m

)
= e+ e′

[
− im

]
+ e′′

[
− m2

2

]
+ e′′′

[
i m3

6

]
+ · · · ,

e
(
− iv + m

)
= e+ e′

[
im
]

+ e′′
[
− m2

2

]
+ e′′′

[
− i m3

6

]
+ · · · .

This can be applied to functions e = fj,k or e = gj,k or e = hj,k in the useful expansions:

f =
∑
j

∑
k
zjζk fj,k(w), g =

∑
j

∑
k
zjζk gj,k(w), h =

∑
j

∑
k
zjζk hj,k(w).

But in these last paragraphs of our paper, we decided to choose v = F in order to simplify
a bit the presentation, so that e = e(u) = E(u) and there will be no abuse of notation.

We can write the Moser operator as:

L(f, g, h) = T1 + T1 + T2 + T2 + T3 + T3.

Computing modulo ζζ(· · · ), start with:

T3 ≡
∑
j

∑
k
zjζk i hj,k

(
u+ im)

≡
∑
j

∑
k
zjζk

{
i hj,k + h′j,k

[
−m

]
+ h′′j,k

[
− i

2
m2]+ h′′′j,k

[
1
6

m3]+ · · ·
}

≡
∑
j

∑
k
zjζk

{
hj,k [i] + h′j,k

[
− zz − 1

2
z2ζ − 1

2
z2ζ
]

+ h′′j,k
[
− i

2
z2z2 − i

2
zζz3 − i

2
z3zζ − i

8
z4ζ

2 − i
8
ζ2z4

]
+ h′′′j,k

[
1
6
z3z3 + 1

4
z2ζz4 + 1

4
z4z2ζ

2
+ 1

8
z5zζ

2
+ 1

8
zz5ζ

2
+ 1

48
z6ζ

3
+ 1

48
ζ3z6

]
+ · · ·

}
≡

∑
j

∑
k

{
hj,k

[
izjζk

]
+ h′j,k

[
− zj+1ζkz − 1

2
zjζk+1z2 − 1

2
zj+2ζkζ

]
+ h′′j,k

[
− i

2
zj+2ζkz2 − i

2
zj+1ζk+1z3 − i

2
zj+3ζkzζ − i

8
zj+4ζkζ

2 − i
8
zjζk+2z4

]
+ h′′′j,k

[
1
6
zj+3ζkz3 + 1

4
zj+2ζk+1z4 + 1

4
zj+4ζkz2ζ

2
+ 1

8
zj+5ζkzζ

2
+ 1

8
zj+1ζkz5ζ

2
+ 1

48
zj+6ζkζ

3
+ 1

48
zjζk+3z6

]
+ · · ·

}
.

The useful expression of T3 is obtained by plain complex conjugation.
Next, going only to derivatives of gj,k up to order 1, which will be enough, we obtain,

without intermediate explanations:

T2 ≡
∑
j

∑
k

{
gj,k
[
zjζkz2 + 2zj+1ζkzζ + zj+2ζkζ

2]
+ g′j,k

[
izj+1ζkz3 + i

2z
jζk+1z4 + 5i

2 z
j+2ζkz2ζ + 2izj+3ζkzζ

2
+ i

2z
j+4ζkζ

3]
+ · · ·

}
.

Lastly, going to derivatives of order 2 of the fj,k:

T1 ≡
∑
j

∑
k

{
fj,k
[
2zjζkz + 2zj+1ζkζ

]
+ f ′j,k

[
2izj+1ζkz2 + izjζk+1z3 + 3izj+2ζkzζ + izj+3ζkz2

]
+ f ′′j,k

[
− 1

2z
j+2ζkz3 − 1

2z
j+1ζk+1z4 − zj+3ζkz2ζ − 1

8z
jζk+2z5 − 5

8z
j+4ζkzζ

2 − 1
8z
j+5ζkζ

3]
+ · · ·

}
.

Now, patiently, in 0 = T1 + T2 + T3 + T1 + T2 + T3, we chase coefficients zaζbzcζ
d

for all (a, b, c, d) ∈ S, and each time, we obtain linear combinations of (differentiated)
functions of u. Using a computer helps to avoid mistakes.
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We hence obtain several groups of linear differential equations in the functions fj,k(u),
gj,k(u), hj,k(u). We begin with three major groups coming from (part of) the prenormal-
ization assumption and which imply a certain agreeable ‘nilpotency phenomenon’, well
known to also hold for Levi nondegenerate hypersurfaces ([23, 71, 95]). Figures help to
grasp the inequalities we are stating below, which show certain regions R∗h, R∗f , R∗g.

j

k

R1
h

(R1
h) 0 = i hj,k(u) for (j, k, 0, 0) ∈ S with j > 3 or with k > 1. This yields, without

writing the argument u of the hj,k(u), that h is a relative polynomial in (z, ζ):

h = h0,0 + h1,0 z + h2,0 z
2.

j

k

R2
fR1

f

(R1
f ) 0 = 2 f0,k(u) for (j, k, 1, 0) ∈ S with j = 0 and k > 2.

(R2
f ) 0 = 2 fj,k(u)− h′j−1,k(u) for (j, k, 1, 0) ∈ S with j > 1 and: with k > 2 when

j = 1; with k > 1 when j = 2, 3; with k > 0 when j > 4. This yields relative polynomial-
ness of:

f = f0,1 ζ + f1,1 zζ

+ f0,0 + f1,0 z + f2,0 z
2 + f3,0 z

3.
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R3
g

j

k

R1
g R2

g

R4
g

(R1
g) 0 = g0,k − 1

2
h′0,k−1 for (j, k, 2, 0) ∈ S with j = 0 and k > 3.

(R2
g) 0 = g1,k − 1

2
h′1,k−1 + 2i f ′0,k for (j, k, 2, 0) ∈ S with j = 1 and k > 2.

(R3
g) 0 = gj,k − 1

2
h′j,k−1 + 2if ′j−1,k − i

2
h′′j−2,k for (j, k, 2, 0) ∈ S with j > 2 and k > 1

excepting (j, k) = (2, 1).

(R4
g) 0 = gj,0 + 2if ′j−1,0 − i

2
h′′j−2,0 , for (j, k, 0, 0) ∈ S with j > 5 and k = 0.

All this also yields relative polynomialness of:

g = g0,2 ζ
2

+ g0,1 ζ + g1,1 zζ + g2,1 z
2ζ

+ g0,0 + g1,0 z + g2,0 z
2 + g3,0 z

3 + g4,0 z
4.

To prove that (f, g, h) = (0, 0, 0), it suffices to prove that the 3 + 6 + 9 remaining
functions of u, namely h0,0, h1,0, h2,0 and f0,1, f1,1, f0,0, f1,0, f2,0, f3,0, and g0,2, g0,1, g1,1,
g2,1, g0,0, g1,0, g2,0, g3,0, g4,0 are identically zero.

For this, we have to examine the remaining groups of linear ordinary differential equa-
tions with (a, b, c, d) ∈ S.

Firstly (first group), the equations for (j, k, 0, 0) ∈ S outside the region R1
h are:

0 = i h0,0 − i h0,0,(0, 0, 0, 0)

0 = 2 f 0,0 + i h1,0,(1, 0, 0, 0)
0 = g0,0 + i h2,0.(2, 0, 0, 0)

The conjugate equations are not written, should be understood, and will in fact be consid-
ered later.
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Secondly (second group), the equations for (j, k, 1, 0) ∈ S outside R1
f ∪R2

f are:

0 = 2 f0,0 − i h1,0 [Already seen],(0, 0, 1, 0)

0 = 2 f1,0 − h′0,0 − h
′
0,0 + 2 f 1,0,(1, 0, 1, 0)

0 = 2 f2,0 + g1,0 − h′1,0 − 2i f
′
0,0,(2, 0, 1, 0)

0 = 2 f3,0 − h′2,0 − i g′0,0,(3, 0, 1, 0)

0 = 2 f0,1 + 2 f 0,0,(0, 1, 1, 0)

0 = 2 f1,1 − h′0,1◦ + 2 g0,0.(1, 1, 1, 0)

Notice that the last equation let appear h0,1(u), which we already know is identically zero.
Again, the conjugate equations are understood.

Thirdly (third group), the equations for (j, k, 2, 0) outside R1
g ∪R2

g ∪R3
g ∪R4

g are:

0 = g0,0 − i h2,0 [Already seen],(0, 0, 2, 0)

0 = g1,0 + 2 f 2,0 − h
′
1,0 + 2i f ′0,0 [Already seen],(1, 0, 2, 0)

0 = g2,0 + g2,0 − 2i f
′
1,0 + 2i f ′1,0 − i

2
h′′0,0 + i

2
h
′′
0,0,(2, 0, 2, 0)

0 = g3,0 − i g′1,0 + 2i f ′2,0 − i
2
h′′1,0 − f

′′
0,0,(3, 0, 2, 0)

0 = g4,0 + 2i f ′3,0 − i
2
h′′2,0 − 1

2
g′′0,0,(4, 0, 2, 0)

0 = g0,1 + 2 f 1,0 − 1
2
h
′
0,0 − 1

2
h′0,0,(0, 1, 2, 0)

0 = g1,1 + 2 g1,0 − 1
2
h′1,0 − 3i f

′
0,0 + 2i f ′0,1,(1, 1, 2, 0)

0 = g2,1 − 1
2
h′2,0 − 5i

2
g′0,0 + 2i f ′1,1 − i

2
h′′0,1◦

,(2, 1, 2, 0)

0 = g0,2 + g0,0 − 1
2
h′0,1◦

.(0, 2, 2, 0)

Notice that the last two equations let appear h0,1(u), which we already know is identically
zero.

Fourthly (fourth group) and lastly, we list the sporadic equations:

0 ≡ 2 f2,0 − 1
2
h′1,0 − i f

′
0,0,(3, 0, 0, 1)

0 ≡ 1
6
h′′′0,0 + 1

6
h
′′′
0,0 − f ′′1,0 − f

′′
1,0 + i g′2,0 − i g′2,0,(3, 0, 3, 0)

0 ≡ 2 f3,0 − 1
2
h′2,0 − i

2
g′0,0,(4, 0, 0, 1)

0 ≡ 2 g2,0 − i g′0,1 − i f
′
1,0 + 3i f ′1,0 + i

2
h
′′
0,0 − i

2
h′′0,0,(3, 0, 1, 1)

0 ≡ 2 g3,0 − i
2
g′1,0 + 3i f ′2,0 − i

2
h′′1,0 − f

′′
0,0.(4, 0, 1, 1)

Now, the assumptions of Theorem 29.7 can be reformulated by comparing the two rep-
resentations:

f>2 =
∑
j

∑
k
zjζk fj,k(u), g>1 =

∑
j

∑
k
zjζk gj,k(u), h>3 =

∑
j

∑
k
zjζk hj,k(u),
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and one realizes that:
0 = f(0, 0, 0) = g(0, 0, 0) = h(0, 0, 0) ⇐⇒ 0 = f0,0(0) = g0,0(0) = h0,0(0),

f = f2 + f3 + · · · =⇒ f1,0(0) = 0,

h = h3 + h4 + · · · =⇒ h′0,0(0) = 0,

fw(0) = 0 ⇐⇒ f ′0,0(0) = 0,

Rehww(0) = 0 ⇐⇒ Reh′′0,0(0) = 0.

The proof of Theorem 29.7 will hence be finished with the next statement. �

PROPOSITION 29.8. If 3 + 6 + 9 analytic functions h0,0, h1,0, h2,0 and f0,1, f1,1, f0,0,
f1,0, f2,0, f3,0, and g0,2, g0,1, g1,1, g2,1, g0,0, g1,0, g2,0, g3,0, g4,0 of the real variable u ∈ R
with:
0 = f0,0(0) = f1,0(0), 0 = g0,0(0), 0 = h0,0(0),

0 = f ′0,0(0), 0 = h′0,0(0) = Reh′′0,0(0),

satisfy the above system of four groups of linear ordinary differential equations, then they
all vanish identically.

PROOF. From the first two groups of equations and conjugate equations, we may solve:

h0,0 := h0,0,

h1,0 := 2i f 0,0, h1,0 := − 2i f0,0,

h2,0 := i g0,0, h2,0 := − i g0,0,

f 1,0 := − f1,0 + h′0,0,

f2,0 := − 1
2
g1,0 + 2i f

′
0,0, f 2,0 := − 1

2
g1,0 − 2i f ′0,0,

f3,0 := i g′0,0, f 3,0 := − i g′0,0,
f0,1 := − f 0,0, f 0,1 := − f0,0,

f1,1 := − g0,0, f 1,1 := − g0,0.

Once this is done, these first two groups of equations become just 0 = 0, while the third
group becomes1:

0
2020
= g2,0 + g2,0 − 2i h′′0,0 + 4i f ′1,0,

0
3020
= g3,0 − 2i g′1,0 − 4 f

′′
0,0, 0

2030
= g3,0 + 2i g′1,0 − 4 f ′′0,0,

0
4020
= g4,0 − 2 g′′0,0, 0

2040
= g4,0 − 2 g′′0,0,

0
0120
= g0,1 − 2 f1,0 + h′0,0, 0

2001
= g0,1 + 2 f1,0 − h′0,0,

0
1120
= g1,1 + 2 g1,0 − 6i f

′
0,0, 0

2011
= g1,1 + 2 g1,0 + 6i f ′0,0,

0
2120
= g2,1 − 5i g′0,0, 0

2021
= g2,1 + 5i g′0,0,

0
0220
= g0,2 + g0,0, 0

2002
= g0,2 + g0,0,

1 — mind the fact that because we have sometimes solved e in terms of e for certain functions e = e(u),
the obtained equations are not all pairwise conjugates on certain lines, and this is normal —
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and the fourth, last, sporadic group becomes:

0
3001
= 2i f

′
0,0 − g1,0, 0

0130
= − 2i f ′0,0 − g1,0,

0
3030
= − 2

3
h′′′0,0 + i g′2,0 − i g′2,0,

0
4001
= i g′0,0, 0

0140
= − i g′0,0,

0
3011
= 2 g2,0 − i g′0,1 − i h′′0,0 + 4i f ′1,0, 0

1130
= 2 g2,0 + i g′0,1 − 3i h′′0,0 + 4i f ′1,0,

0
4011
= 2 g3,0 − 6 f

′′
0,0 − 2i g′1,0, 0

1140
= 2 g3,0 − 6 f ′′0,0 + 2i g′1,0.

Hence, from the third group, we can solve:

g2,0 := − g2,0 − 4i f ′1,0 + 2i h′′0,0,

g3,0 := 2i g′1,0 + 4 f
′′
0,0, g3,0 := − 2i g′1,0 + 4 f ′′0,0,

g4,0 := 2 g′′0,0, g4,0 := 2 g′′0,0,

g0,1 := 2 f1,0 − h′0,0, g0,1 := − 2 f1,0 + h′0,0,

g1,1 := 6i f
′
0,0 − 2 g1,0, g1,1 := − 6i f ′0,0 − 2 g1,0,

g2,1 := 5i g′0,0, g2,1 := − 5i g′0,0,

g0,2 := − g0,0, g0,2 := − g0,0,

and after that, all equations of the third group reduce to 0 = 0. Then the equations of the
fourth group become:

0
3001
= 2i f

′
0,0 − g1,0, 0

0130
= − 2i f ′0,0 − g1,0,

0
3030
= 4

3
h′′′0,0 + 2i g′2,0 − 4 f ′′1,0,

0
4001
= i g′0,0, 0

0140
= − i g′0,0,

0
3011
= 2 g2,0 − 2i h′′0,0 + 6i f ′1,0, 0

1130
= − 2 g2,0 − 2i f ′1,0,

0
4011
= 2 f

′′
0,0 + 2i g′1,0, 0

1140
= 2 f ′′0,0 − 2i g′1,0.

From this, we can solve, thanks to the assumption g0,0(0) = 0:

g0,0 = 0, g0,0 = 0,

g1,0 = − 2i f ′0,0, g1,0 = 2i f
′
0,0,

g2,0 := − 2i f ′1,0.

The remaining equations become:

0
3030
= 4

3
h′′′0,0 − 2 f ′′1,0,

0
3011
= − 2i h′′0,0 + 4i f ′1,0,

0
4011
= − 2 f

′′
0,0 0

1140
= −2 f ′′0,0.

Differentiating once the second equation, using 0 6=
∣∣ 4

3
−2

−2i 4i

∣∣, we get:

h′′′0,0 = 0, f ′′1,0 = 0.
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But we have assumed 0 = h0,0(0) = h′0,0(0) = Reh′′0,0(0), and we know from the beginning
that h0,0 = h0,0 is real. So h0,0 = 0.

Back to 3011
= above, we get f ′1,0 = 0. Also, we have assumed that f1,0(0) = 0. So

f1,0 = 0.
Lastly, f ′′0,0 = 0 together with f ′0,0(0) = 0 gives f0,0 = 0. This concludes everything. �



CHAPTER 5

Parametric CR-umbilical Locus of Ellipsoids in C2

For every real numbers a > 1, b > 1 with (a, b) 6= (1, 1), the curve parametrized by θ ∈ R
valued in C2 ∼= R4

γ : θ 7−→
(
x(θ) +

√
−1 y(θ), u(θ) +

√
−1 v(θ)

)
with components:

x(θ) :=
»

a−1
a (ab−1)

cos θ, y(θ) :=
»

b (a−1)
ab−1

sin θ, u(θ) :=
»

b−1
b (ab−1)

sin θ, v(θ) := −
»

a (b−1)
ab−1

cos θ,

has image contained in the CR-umbilical locus:

γ(R) ⊂ UmbCR
(
Ea,b

)
⊂ Ea,b

of the ellipsoid Ea,b ⊂ C2 of equation a x2 + y2 + b u2 + y2 = 1.
This Chapter is based on our jointwork with Wei-Guo Foo and Joël Merker, which has appeared

in the publication:
Wei-Guo Foo, Joël Merker, The-Anh Ta, Parametric CR-umbilical Locus of Ellipsoids in C2,

Comptes Rendus Mathematique 356 (2018): 214-221. arXiv:1707.06787

1. Introduction

In 1932, Élie Cartan [13, 15, 16] showed that a local real-analytic (C ω) hypersurface
M3 ⊂ C2 is determined up to local biholomorphic equivalence by a single invariant func-
tion:

IMCartan : M −→ C,
together with its (covariant) derivatives with respect to a certain coframe of differential 1-
forms on an 8-dimensional principal bundle P 8 −→ M . In coordinates (z, w) =

(
x +

√
−1 y, u+

√
−1 v
)

on C2, whenever M is:
• either a complex graph: {

(z, w) ∈ C2 : w = Θ
(
z, z, w

)}
,

• or a real graph: {
(z, w) ∈ C2 : v = ϕ(x, y, u)

}
,

• or represented in implicit form:{
(z, w) ∈ C2 : ρ

(
z, w, z, w

)
= 0
}
,

it is known that IMCartan depends on the respective 6-jets:

J6
z,z,w Θ, J6

x,y,u ϕ, J6
z,w,z,w ρ.

The invariancy of IMCartan means that, for any local biholomorphism h : C2 −→ C2,
setting M ′ := h(M), it holds at every point p ∈M that:

IM ′Cartan

(
h(p)

)
= ν(p) IMCartan(p) (∀ p∈M),

231
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for some nowhere vanishing (local) function ν : M −→ C\{0}. This guarantees that the
locus of CR-umbilical points:

UmbCR(M) :=
{
p ∈M : IMCartan(p) = 0

}
is intrinsic. Furthermore, when M is connected, it is well known that UmbCR(M) contains
an open set ∅ 6= V ⊂ M if and only if M is spherical, in the sense of being locally
biholomorphic to the unit sphere S3 ⊂ C2.

In 1974, Chern-Moser [23] raised the problem whether ∅ 6= UmbCR(M) for compact
Levi nondegenerate C ω hypersurfaces M2N−1 ⊂ CN when N > 2. This (simple!) paper
attacks the more specific:

QUESTION 1.1. Can UmbCR(M) be described explicity?

But because IMCartan is ‘too complicated’ as confirmed in [88, 90], the question is nontriv-
ial even in simplest nonspherical examples like e.g. real ellipsoids introduced and studied
by Webster in [117, 118].

In CN>2 ∼= R2N>4 equipped with coordinates zi = xi +
√
−1 yi, an ellipsoid is the image

of the unit sphere:

S2N−1 :=
{

z ∈ CN : |z1|2 + · · ·+ |zN|2 = 1
}
,

through a real affine transformation of R2N, hence has equation the form:∑
16i6N

(
αi x2

i + βi y2
i

)
= 1,(Eα,β)

with real constants αi > βi > 0 — replace zi 7−→ √
−1 zi if necessary.

The complex geometry of ellipsoids (Segre varieties, dynamics) began in Webster’s
seminal article [117], in which it was verified that two ellipsoids Eα,β ∼= Eα′,β′ are biholo-
morphically equivalent if and only if up to permutation:

αi − βi
αi + βi

=
α′i − β′i
α′i + β′i

(16 i6 N).

Replacing zi 7−→ 1√
βi

zi and setting ai := αi
βi

, whence 1 6 ai, leads to a convenient
representation: ∑

16i6N

(
ai x2

i + y2
i

)
= 1.(Ea1,...,aN )

Yet an alternative view, due to Webster in [118], is:∑
16i6N

(
zizi + Ai (z2

i + z2
i )
)

= 1,(EA1,...,AN )

obtained by setting Ai := ai−1
2ai+2

, whence 0 6 Ai <
1
2
, so that ai = 1+2Ai

1−2Ai
, then by changing

coordinates zi =:
√

1− 2Ai z′i, and then by dropping primes.
In CN when N > 3, what corresponds to the invariant IMCartan is the Hachtroudi-Chern

tensor Sαβρσ with indices 1 6 α, β, ρ, σ 6 N, and the concerned CR-umbilical locus:

UmbCR(M) :=
{
p ∈M : Sβσαρ (p) = 0, ∀α, ρ, β, σ

}
,

is known, through local biholomorphisms h : CN −→ CN as above, to enjoy

h
(
UmbCR(M)

)
= UmbCR

(
h(M)

)
.
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THEOREM 1.2. ([118]) In CN>3, if 0 < A1 < · · · < AN <
1
2
, then:

∅ = UmbCR
(
EA1,...,AN

)
. �

This motivated Huang-Ji in [60] to study the question for compact C ω hypersurfaces
M ⊂ C2. If M = {ρ = 0}, the expected dimension of:

UmbCR(M) =
{

0 = ρ = Re ICartan = Im ICartan
}

should be 4− 3 = 1, although this is not rigorous, for R is not algebraically closed!

THEOREM 1.3. (Implicitly proved in [60]) Every real ellipsoid Ea,b ⊂ C2 of equation:

a x2 + y2 + b u2 + v2 = 1 (a> 1, b> 1, (a,b) 6= (1,1))

enjoys:
dimR UmbCR(M) > 1. �

In other words, it contains at least some (real algebraic!) curve.
What curve? Simple? Complicated?
Can what follows be considered as a satisfactory answer?

THEOREM 1.4. For every real numbers a > 1, b > 1 with (a, b) 6= (1, 1), the curve
parametrized by θ ∈ R valued in C2 ∼= R4:

γ : θ 7−→
(
x(θ) +

√
−1 y(θ), u(θ) +

√
−1 v(θ)

)
with components:

x(θ) :=
»

a−1
a (ab−1)

cos θ, y(θ) :=
»

b (a−1)
ab−1

sin θ,

u(θ) :=
»

b−1
b (ab−1)

sin θ, v(θ) := −
»

a (b−1)
ab−1

cos θ,

has image contained in the CR-umbilical locus:

γ(R) ⊂ UmbCR
(
Ea,b
)
⊂ Ea,b

of the ellipsoid Ea,b ⊂ C2 of equation a x2 + y2 + b u2 + v2 = 1.

In other words:
IEa,b
Cartan

(
γ(θ)

)
= 0 (∀ θ∈R).

As is known for ellipsoids, Cartan’s invariant IEa,b
Cartan exhibits a high complexity, e.g.

∼ 40 000 terms in [88]. So this theorem might be interpreted as a somewhat unexpectedly
nice and simple description of UmbCR

(
Ea,b
)
!

All computations of this paper were done by hand.

2. Explicit Expression of Cartan’s CR-Invariant I

In C2 equipped with coordinates (z, w) =
(
x+

√
−1 y, u+

√
−1 v
)
, consider a connected

real-analytic (C ω) 3-dimensional hypersurface:

M3 :=
{

(z, w) ∈ C2 : ρ(z, w, z, w) = 0
}
,

with ρ = ρ, and with dρ
∣∣
M

never zero. Local or global M , compact or open, bounded or
unbounded, can be equally treated.

The two vector fields:

L := − ρw
∂

∂z
+ ρz

∂

∂w
and L := − ρw

∂

∂z
+ ρz

∂

∂w
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generate T 1,0M and T 0,1M .
If h : C2 −→ C2 is a local biholomorphism:

(z, w) 7−→
(
f(z, w), g(z, w)

)
=: (z′, w′),

if M = {ρ = 0} and M ′ = {ρ′ = 0} are two C ω hypersurfaces, if h(M) ⊂ M ′, there is a
nowhere vanishing function µ : M −→ C\{0} such that:

µ(z, w, z, w) ρ(z, w, z, w) ≡ ρ′
(
f(z, w), g(z, w), f(z, w), g(z, w)

)
,

whence in C{z, w, z, w} (exercise):

µ
(
− ρw

∂

∂z
+ ρz

∂

∂w

)
=
(
fzgw − fwgz

) (
− ρ′w′

∂

∂z′
+ ρ′z′

∂

∂w′

)
.

Furthermore, the Levi determinant:

Levi(ρ) := −

∣∣∣∣∣∣
0 ρz ρw
ρz ρzz ρwz
ρw ρzw ρww

∣∣∣∣∣∣
= ρzρzρww − ρzρwρzw − ρwρzρzw + ρwρwρzz,

enjoys (exercise):

µ3 L(ρ) =
(
fzgw − fwgz

) (
f zgw − fwgz

)
L(ρ′) (onM).

DÉFINITION 2.1. A smooth hypersurface M3 ⊂ C2 is called Levi nondegenerate at a
point p ∈M if:

0 6= L(p).

From now on, all M will be assumed smooth and Levi nondegenerate at every point,
without further mention.

When 0 6= ρw(p) = ρw(p) at a point p = (zp, wp) ∈ M , the implicit function theorem
represents M as a complex graph:

w = Θ
(
z, z, w

)
or equivalently: w = Θ

(
z, z, w

)
,

in terms of a C ω defining function Θ. A similar graphed representation exists at points
q = (zq, wq) ∈M at which 0 6= ρz(q) = ρz(q).

Differentiating the identity:

0 ≡ ρ
(
z,Θ

(
z, z, w

)
, z, w

)
(inC{z,z,w}),

once with respect to z, z, w yields:

0 ≡ ρz + Θz ρw,

0 ≡ ρz + Θz ρw,

0 ≡ ρw + Θw ρw,
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and next twice with respect to zz, zz, zw, zz, zw, ww gives:

0 ≡ ρzz + 2 Θz ρzw + Θz Θz ρww + Θzz ρw,

0 ≡ ρzz + Θz ρzw + Θz ρzw + Θz Θz ρww + Θzz ρw,

0 ≡ ρzw + Θz ρww + Θw ρzw + Θz Θw ρww + Θzw ρw,(2.2)
0 ≡ ρzz + 2 Θz ρzw + Θz Θz ρww + Θzz ρw,

0 ≡ ρzw + Θz ρww + Θw ρzw + Θz Θw ρww + Θzw ρw,

0 ≡ ρww + 2 Θw ρww + Θw Θw ρww + Θww ρw.

It holds that: {
ρw 6= 0

}
=
{

Θw 6= 0
}

(inM).

DÉFINITION 2.3. Call M spherical if it is locally biholomorphic to:

S3 :=
{

(z, w) ∈ C2 : zz + ww = 1
}
.

When M is connected, the principle of analytic continuation guarantees propagation of
this property. Next, set:

∆ := −Θw Θzz + Θz Θzw.

LEMMA 2.4. At a point p ∈ {Θw 6= 0}:

M is Levi nondegenerate at p ⇐⇒ ∆(p) 6= 0. �

Levi nondegeneracy being a biholomorphically invariant feature, spherical M are so
since S3 is.

Without restricting assumptions like e.g. rigidity or tubity ([63]), an explicit, complete
characterization of sphericity in terms of some defining function for a hypersurface M3 ⊂
C2 appeared in October 2009 as arxiv.org/abs/0910.1694/, cf. also [108, 60]. To recall it, set:

2 :=
∆

−Θw

,

and use instead:

L := − 1

ρw
L

=
∂

∂z
− Θz

Θw

∂

∂w
.

THEOREM 2.5. ([86]) At a point p ∈ {Θw 6= 0}, the hypersurface M is spherical if and
only if, near p:

0 ≡ 1

2
L

Å
1

2
L

Å
1

2
L

Å
1

2
L
(

Θzz

)ããã
. �

Exchanging z ←→ w yields a similar formula at points q ∈ {ρz 6= 0}.
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COROLLARY 2.6. In {ρw 6= 0} = {Θw 6= 0}, a partly expanded characterization of
sphericity is:

0 ≡ L
4
(Θzz)

24
−

− 6
L (2) L

3
(Θzz)

25
− 4

L
2
(2) L

2
(Θzz)

25
− L

3
(2) L (Θzz)

25
+

+ 15

[
L (2)

]2
L

2
(Θzz)

26
+ 10

L (2) L
2
(2) L (Θzz)

26
−

− 15

[
L (2)

]3
L (Θzz)

27
. �

Without presenting details, it is known that Cartan’s treatment of the concerned biholo-
morphic equivalence problem brings a single invariant function:

IMCartan : M −→ C,

other invariants being (covariant) derivations of it, and that:

M is spherical ⇐⇒ 0 ≡ IMCartan.

NOTATION 2.7. For two functions I1 : M −→ C and I2 : M −→ C, write:

I2 + I1,

when there is a nowhere vanishing function µ : M −→ C\{0} such that:

I2 = µ I1.

For instance:

IMCartan +
Å

1

2
L

ã4(
Θzz

)
.

Now, translate the formula of Corollary 2.6 to the case where M is given in implicit
representation:

0 = ρ
(
z, w, z, w

)
.

Set:
Hessian(ρ) := ρzρz ρww − 2 ρzρw ρzw + ρwρw ρzz,

with (exercise) on {ρw 6= 0}:

Θzz = − Hessian(ρ)

ρwρwρw
.

Remind the Levi determinant:

Levi(ρ) := ρzρzρww − ρzρwρzw − ρwρzρzw + ρwρwρzz,

that satisfies on {ρw 6= 0}:
Levi(ρ) + ∆,

i.e. more precisely (exercise) thanks to (2.2):

Levi(ρ) = − ρw ρw ρw ∆.
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COROLLARY 2.8. On {ρw 6= 0}, up to a nowhere vanishing function:

IMCartan + I[w],

where:

I[w] := 12
(
ρw
)9 ßïLevi(ρ)

ρ2w

ò3
L
4
Å

Hessian(ρ)

ρ3w

ã
−

− 6

ï
Levi(ρ)

ρ2w

ò2
L

Å
Levi(ρ)

ρ2w

ã
L
3
Å

Hessian(ρ)

ρ3w

ã
− 4

ï
Levi(ρ)

ρ2w

ò2
L
2
Å

Levi(ρ)

ρ2w

ã
L
2
Å

Hessian(ρ)

ρ3w

ã
−
ï

Levi(ρ)

ρ2w

ò2
L
3
Å

Levi(ρ)

ρ2w

ã
L

Å
Hessian(ρ)

ρ3w

ã
+

+ 15
Levi(ρ)

ρ2w

ï
L

Å
Levi(ρ)

ρ2w

ãò2
L
2
Å

Hessian(ρ)

ρ3w

ã
+ 10

Levi(ρ)

ρ2w
L

Å
Levi(ρ)

ρ2w

ã
L
2
Å

Levi(ρ)

ρ2w

ã
L

Å
Hessian(ρ)

ρ3w

ã
−

− 15

ï
L

Å
Levi(ρ)

ρ2w

ãò3
L

Å
Hessian(ρ)

ρ3w

ã™
.

�

Furthermore, exchanging z ←→ w, there is an exact formal coincidence (exercise!):

I[z] = I[w].

In [99], an alternative formula for an equivalent invariant M + I[w] is discussed, but it
incorporates 5! = 120 terms instead of 7 above, and is less cleaned up or finalized to really
compute exciting things (by hand!).

3. Pullback to an Exceptional Curve on an Ellipsoid

To prove Theorem 1.4, it suffices to verify that:

0
?
= γ∗

(
I[w]

)
(θ) (∀ θ∈R).

Drop the factor 12 (ρw)9 + 1, and call T1, T2, T3, T4, T5, T6, T7 the seven concerned
terms, so that the goal becomes:

0
?
= γ∗

(
T1

)
+ γ∗

(
T2

)
+ γ∗

(
T3

)
+ γ∗

(
T4

)
+ γ∗

(
T5

)
+ γ∗

(
T6

)
+ γ∗

(
T7

)
.

Hand computations provide formulas of the shape:

T1 = 1
8

√
−1 (a− 1)

N1

D ,

T2 = 3
4

√
−1 (a− 1)

N2

D ,

T3 = 1
2

√
−1 (a− 1)

N3

D ,

T4 = 1
8

√
−1 (a− 1)

N4

D ,

T5 = 15
8

√
−1 (a− 1)

N5

D ,

T6 = 5
4

√
−1 (a− 1)

N6

D ,

T7 = 15
8

√
−1 (a− 1)

N7

D ,
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with, in denominator place:

D :=
(√

a cos θ − √−1
√
b sin θ

)8 (
a b− 1

)Å b− 1

a b− 1

ã11
2

,

with numerator 1:

N1 := cos7θ
[
499 a9/2b3 + 625 a9/2b2 − 233 a7/2b3 + 205 a9/2b− 631 a7/2b2 + 15 a9/2 − 415 a7/2b− 65 a7/2

]
+
√
−1 cos6θ sin θ

[
2887 a4b7/2 + 4401 a4b5/2 − 1297 a3b7/2 + 1905 a4b3/2 − 4059 a3b5/2 + 215 a4b1/2 − 3327 a3b3/2 − 725 a3b1/2

]
+ cos5θ sin2θ

[
− 7023 a7/2b4 − 13021 a7/2b3 + 3013 a5/2b4 − 7105 a7/2b2 + 11011 a5/2b3 − 1075 a7/2b+ 11059 a5/2b2 + 3141 a5/2b

]
+
√
−1 cos4θ sin3θ

[
− 9267 a3b9/2 − 20989 a3b7/2 + 3757 a2b9/2 − 14101 a3 b5/2 + 16279 a2b7/2 − 2683 a3b3/2 + 19891 a2b5/2 + 7113 a2b3/2

]
+ cos3θ sin4θ

[
7113 a5/2b5 + 19891 a5/2b4 − 2683 a3/2b5 + 16279 a5/2b3 − 14101 a3/2b4 + 3757 a5/2b2 − 20989 a3/2b3 − 9267 a3/2b2

]
+
√
−1 cos2θ sin5θ

[
3141 a2b11/2 + 11059 a2b9/2 − 1075 ab11/2 + 11011 a2b7/2 − 7105 ab9/2 + 3013 a2b5/2 − 13021 ab7/2 − 7023 ab5/2

]
+ cos1θ sin6θ

[
− 725 a3/2b6 − 3327 a3/2b5 + 215 a1/2b6 − 4059 a3/2b4 + 1905 a1/2b5 − 1297 a3/2b3 + 4401 a1/2b4 + 2287 a1/2b3

]
+
√
−1 sin7 θ

[
− 65 ab13/2 − 415 ab11/2 + 15 b13/2 − 631 ab9/2 + 205 b11/2 − 233 ab7/2 + 625 b9/2 + 499 b7/2

]
,

with numerator 2:

N2 := cos7θ
[
− 165 a9/2b3 − 193 a9/2 b2 + 93 a7/2b3 − 67 a9/2b+ 205 a7/2b2 − 7 a9/2 + 115 a7/2b+ 19 a7/2

]
+
√
−1 cos6θ sin θ

[
− 925 a4b7/2 − 1389 a4b5/2 + 505 a3b7/2 − 627 a4b3/2 + 1341 a3b5/2 − 83 a4b1/2 + 975 a3b3/2 + 203 a3b1/2

]
+ cos5θ sin2θ

[
2177 a7/2b4 + 4141 a7/2b3 − 1145 a5/2b4 + 2359 a7/2b2 − 3673 a5/2b3 + 395 a7/2b− 3367 a5/2b2 − 887 a5/2b

]
+
√
−1 cos4θ sin3θ

[
2777 a3b9/2 + 6649 a3b7/2 − 1397 a2b9/2 + 4711 a3b5/2 − 5449 a2b7/2 + 983 a3b3/2 − 6211 a2b5/2 − 2063 a2b3/2

]
+ cos3θ sin4θ

[
− 2063 a5/2b5 − 6211 a5/2b4 + 983 a3/2b5 − 5449 a5/2b3 + 4711 a3/2b4 − 1397 a5/2b2 + 6649 a3/2b3 + 2777 a3/2b2

]
+
√
−1 cos2θ sin5θ

[
− 887 a2b11/2 − 3367 a2b9/2 + 395 ab11/2 − 3673 a2b7/2 + 2359 ab9/2 − 1145 a2b5/2 + 4141 ab7/2 + 2177 ab5/2

]
+ cos1θ sin6θ

[
203 a3/2b6 + 975 a3/2b5 − 83 a1/2b6 + 1341 a3/2b4 − 627 a1/2b5 + 505 a3/2b3 − 1389 a1/2b4 − 925 a1/2b3

]
+
√
−1 sin7 θ

[
19 ab13/2 + 115 ab11/2 − 7 b13/2 + 205 ab9/2 − 67 b11/2 + 93 ab7/2 − 193 b9/2 − 165 b7/2

]
,

with numerator 3:

N3 := cos7θ
[
− 91 a9/2b3 − 109 a9/2b2 + 65 a7/2b3 − 37 a9/2b+ 115 a7/2b2 − 3 a9/2 + 55 a7/2b+ 5 a7/2

]
+
√
−1 cos6θ sin θ

[
− 499 a4b7/2 − 777 a4b5/2 + 349 a3b7/2 − 357 a4b3/2 + 771 a3b5/2 − 47 a4b1/2 + 483 a3b3/2 + 77 a3b1/2

]
+ cos5θ sin2θ

[
1143 a7/2b4 + 2281 a7/2b3 − 781 a5/2b4 + 1369 a7/2b2 − 2143 a5/2b3 + 247 a7/2b− 1723 a5/2b2 − 393 a5/2b

]
+
√
−1 cos4θ sin3θ

[
1407 a3b9/2 + 3589 a3b7/2 − 937 a2b9/2 + 2761 a3b5/2 − 3199 a2b7/2 + 643 a3b3/2 − 3271 a2b5/2 − 993 a2b3/2

]
+ cos3θ sin4θ

[
− 993 a5/2b5 − 3271 a5/2b4 + 643 a3/2b5 − 3199 a5/2b3 + 2761 a3/2b4 − 937 a5/2b2 + 3589 a3/2b3 + 1407 a3/2b2

]
+
√
−1 cos2θ sin5θ

[
− 393 a2b11/2 − 1723 a2b9/2 + 247 ab11/2 − 2143 a2b7/2 + 1369 ab9/2 − 781 a2b5/2 + 2281 ab7/2 + 1143 ab5/2

]
+ cos1θ sin6θ

[
77 a3/2b6 + 483 a3/2b5 − 47 a1/2b6 + 771 a3/2b4 − 357 a1/2b5 + 349 a3/2b3 − 777 a1/2b4 − 499 a1/2b3

]
+
√
−1 sin7 θ

[
5 ab13/2 + 55 ab11/2 − 3 b13/2 + 115 ab9/2 − 37 b11/2 + 65 ab7/2 − 109 b9/2 − 91 b7/2

]
,
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with numerator 4:

N4 := cos7θ
[
− 75 a9/2b3 − 91 a9/2b2 + 75 a7/2b3 − 25 a9/2b+ 91 a7/2b2 − a9/2 + 25 a7/2b+ a7/2

]
+
√
−1 cos6θ sin θ

[
− 391 a4b7/2 − 639 a4b5/2 + 391 a3b7/2 − 285 a4b3/2 + 639 a3b5/2 − 29 a4b1/2 + 285 a3b3/2 + 29 a3b1/2

]
+ cos5θ sin2θ

[
839 a7/2b4 + 1831 a7/2b3 − 839 a5/2b4 + 1165 a7/2b2 − 1831 a5/2b3 + 197 a7/2b− 1165 a5/2b2 − 197 a5/2b

]
+
√
−1 cos4θ sin3θ

[
947 a3b9/2 + 2779 a3b7/2 − 947 a2b9/2 + 2401 a3b5/2 − 2779 a2b7/2 + 593 a3b3/2 − 2401 a2b5/2 − 593 a2b3/2

]
+ cos3θ sin4θ

[
− 593 a5/2b5 − 2401 a5/2b4 + 593 a3/2b5 − 2779 a5/2b3 + 2401 a3/2b4 − 947 a5/2b2 + 2779 a3/2b3 + 947 a3/2b2

]
+
√
−1 cos2θ sin5θ

[
− 197 a2b11/2 − 1165 a2b9/2 + 197 ab11/2 − 1831 a2b7/2 + 1165 ab9/2 − 839 a2b5/2 + 1831 ab7/2 + 839 ab5/2

]
+ cos1θ sin6θ

[
29 a3/2b6 + 285 a3/2b5 − 29 a1/2b6 + 639 a3/2b4 − 285 a1/2b5 + 391 a3/2b3 − 639 a1/2b4 − 391 a1/2b3

]
+
√
−1 sin7 θ

[
ab13/2 + 25 ab11/2 − b13/2 + 91 ab9/2 − 25 b11/2 + 75 ab7/2 − 91 b9/2 − 75 b7/2

]
,

with numerator 5:

N5 := cos7θ
[
63 a9/2b3 + 69 a9/2b2 − 45 a7/2b3 + 25 a9/2b− 75 a7/2b2 + 3 a9/2 − 35 a7/2b− 5 a7/2

]
+
√
−1 cos6θ sin θ

[
339 a4b7/2 + 509 a4b5/2 − 237 a3b7/2 + 237 a4b3/2 − 511 a3b5/2 + 35 a4b1/2 − 315 a3b3/2 − 57 a3b1/2

]
+ cos5θ sin2θ

[
− 763 a7/2b4 − 1521 a7/2b3 + 521 a5/2b4 − 909 a7/2b2 + 1431 a5/2b3 − 167 a7/2b+ 1143 a5/2b2 + 265 a5/2b

]
+
√
−1 cos4θ sin3θ

[
− 927 a3b9/2 − 2409 a3b7/2 + 617 a2b9/2 − 1841 a3b5/2 + 2139 a2b7/2 − 423 a3b3/2 + 2191 a2b5/2 + 653 a2b3/2

]
+ cos3θ sin4θ

[
653 a5/2b5 + 2191 a5/2b4 − 423 a3/2b5 + 2139 a5/2b3 − 1841 a3/2b4 + 617 a5/2b2 − 2409 a3/2b3 − 927 a3/2b2

]
+
√
−1 cos2θ sin5θ

[
265 a2b11/2 + 1143 a2b9/2 − 167 ab11/2 + 1431 a2b7/2 − 909 ab9/2 + 521 a2b5/2 − 1521 ab7/2 − 763 ab5/2

]
+ cos1θ sin6θ

[
− 57 a3/2b6 − 315 a3/2b5 + 35 a1/2b6 − 511 a3/2b4 + 237 a1/2b5 − 237 a3/2b3 + 509 a1/2b4 + 339 a1/2b3

]
+
√
−1 sin7 θ

[
− 5 ab13/2 − 35 ab11/2 + 3 b13/2 − 75 ab9/2 + 25 b11/2 − 45 ab7/2 + 69 b9/2 + 63 b7/2

]
,

with numerator 6:

N6 := cos7θ
[
39 a9/2b3 + 43 a9/2b2 − 39 a7/2b3 + 13 a9/2b− 43 a7/2b2 + a9/2 − 13 a7/2b− a7/2

]
+
√
−1 cos6θ sin θ

[
199 a4b7/2 + 315 a4b5/2 − 199 a3b7/2 + 141 a4b3/2 − 315 a3b5/2 + 17 a4b1/2 − 141 a3b3/2 − 17 a3b1/2

]
+ cos5θ sin2θ

[
− 419 a7/2b4 − 919 a7/2b3 + 419 a5/2b4 − 577 a7/2b2 + 919 a5/2b3 − 101 a7/2b+ 577 a5/2b2 + 101 a5/2b

]
+
√
−1 cos4θ sin3θ

[
− 467 a3b9/2 − 1399 a3b7/2 + 467 a2b9/2 − 1201 a3b5/2 + 1399 a2b7/2 − 293 a3b3/2 + 1201 a2b5/2 + 293 a2b3/2

]
+ cos3θ sin4θ

[
293 a5/2b5 + 1201 a5/2b4 − 293 a3/2b5 + 1399 a5/2b3 − 1201 a3/2b4 + 467 a5/2b2 − 1399 a3/2b3 − 467 a3/2b2

]
+
√
−1 cos2θ sin5θ

[
101 a2b11/2 + 577 a2b9/2 − 101 ab11/2 + 919 a2b7/2 − 577 ab9/2 + 419 a2b5/2 − 919 ab7/2 − 419 ab5/2

]
+ cos1θ sin6θ

[
− 17 a3/2b6 − 141 a3/2b5 + 17 a1/2b6 − 315 a3/2b4 + 141 a1/2b5 − 199 a3/2b3 + 315 a1/2b4 + 199 a1/2b3

]
+
√
−1 sin7 θ

[
− ab13/2 − 13 ab11/2 + b13/2 − 43 ab9/2 + 13 b11/2 − 39 ab7/2 + 43 b9/2 + 39 b7/2

]
,
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with numerator 7:
N7 := cos7θ

[
− 27 a9/2b3 − 27 a9/2b2 + 27 a7/2b3 − 9 a9/2b+ 27 a7/2b2 − a9/2 + 9 a7/2b+ a7/2

]
+
√
−1 cos6θ sin θ

[
− 135 a4b7/2 − 207 a4b5/2 + 135 a3b7/2 − 93 a4b3/2 + 207 a3b5/2 − 13 a4b1/2 + 93 a3b3/2 + 13 a3b1/2

]
+ cos5θ sin2θ

[
279 a7/2b4 + 615 a7/2b3 − 279 a5/2b4 + 381 a7/2b2 − 615 a5/2b3 + 69 a7/2b− 381 a5/2b2 − 69 a5/2b

]
+
√
−1 cos4θ sin3θ

[
307 a3b9/2 + 939 a3b7/2 − 307 a2b9/2 + 801 a3b5/2 − 939 a2b7/2 + 193 a3b3/2 − 801 a2b5/2 − 193 a2b3/2

]
+ cos3θ sin4θ

[
− 193 a5/2b5 − 801 a5/2b4 + 193 a3/2b5 − 939 a5/2b3 + 801 a3/2b4 − 307 a5/2b2 + 939 a3/2b3 + 307 a3/2b2

]
+
√
−1 cos2θ sin5θ

[
− 69 a2b11/2 − 381 a2b9/2 + 69 ab11/2 − 615 a2b7/2 + 381 ab9/2 − 279 a2b5/2 + 615 ab7/2 + 279 ab5/2

]
+ cos1θ sin6θ

[
13 a3/2b6 + 93 a3/2b5 − 13 a1/2b6 + 207 a3/2b4 − 93 a1/2b5 + 135 a3/2b3 − 207 a1/2b4 − 135 a1/2b3

]
+
√
−1 sin7 θ

[
ab13/2 + 9 ab11/2 − b13/2 + 27 ab9/2 − 9 b11/2 + 27 ab7/2 − 27 b9/2 − 27 b7/2

]
.

END OF PROOF OF THEOREM 1.4. The sum:
1
8

N1(θ) + 3
4

N2(θ) + 1
2

N3(θ) + 1
8

N4(θ) + 15
8

N5(θ) + 5
4

N6(θ) + 15
8

N7(θ) = 0,

is indeed (visually!) identically null. �



CHAPTER 6

Nonvanishing of Cartan CR curvature on boundaries
of Grauert tubes around hyperbolic surfaces

We show that the boundaries of thin strongly pseudoconvex Grauert tubes, with respect to
the Guillemin-Stenzel Kähler metric canonically associated with the Poincaré metric on closed
hyperbolic real-analytic surfaces, has nowhere vanishing Cartan CR-curvature. This result provides
a wealth of examples of compact 3-dimensional Levi nondegenerate CR manifolds having no CR-
umbilical point.

We provide two proofs utilizing two recent formulas for determining the Cartan CR-curvature
of any local C 6-smooth hypersurfaces in C2. One was obtained in 2012 by the second named
author joint with Sabzevari, and it is an expanded explicit formula, valid for locally graphed hy-
persurfaces, containing millions of terms. The other formula, which we published in 2018 when
studying Webster’s ellipsoidal hypersurfaces, is not expanded, but more suitable for calculations
with a hypersurface in C2 that is represented as the zero locus of some implicit — but ‘simple’ in
some sense, e.g. quadratic — defining function.

We also discuss Grauert tubes constructed with respect to extrinsic metrics depending on em-
beddings in complex surfaces, together with a certain combinatorics of product metrics.

This Chapter is based on our jointwork with Wei-Guo Foo and Joël Merker, which has appeared
in preprint form:

Wei-Guo Foo, Joël Merker, The-Anh Ta, Nonvanishing of Cartan CR curvature on boundaries
of Grauert tubes around hyperbolic surfaces, arXiv:1904.10203

1. Introduction

The equivalence problem for local real-analytic hypersurfaces with respect to local bi-
holomorphisms in C2 was first studied by Poincaré [112], and was later solved by Car-
tan [17] with the introduction of the so-called method of equivalence. The theory was
later developed in Cn+1 by Chern and Moser [23], and resulted in the set up of invariant
CR-curvatures, called Cartan curvatures in complex dimension 2, and Hachtroudi-Chern
curvatures when n > 3.

For a long time, little was known about these curvatures due to their high computational
complexity. Nonetheless, Webster [118], and later Huang and Ji [60] were able to inves-
tigate the case of real ellipsoidal hypersurfaces. In recent years, new variants and explicit
formulas (see [37, 88, 90, 45]) made it possible to determine the vanishing locus of the Car-
tan curvatures for new classes of 3-dimensional CR manifolds. For instance, we were able
to find a whole explicit curve of points of vanishing Cartan curvature on general ellipsoids
in C2 in [45].

In their landmark paper [23, p. 247], Chern and Moser raised the following

PROBLEM 1.1. Are there compact strictly pseudoconvex hypersurfaces M3 ⊂ C2 with-
out CR-umbilical points? Are there such manifolds diffeomorphic to the sphere S3 ⊂ C2.

It is well known that a standard 2-torus in R3 has no Riemannian-umbilic point. Simi-
larly, it is not difficult to verify ([37]) that the boundaries of thin Grauert tubes around the

241
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flat 2-dimensional torus T2 = S1 × S1 ⊂ C2 have empty CR-umbilical locus. Thus, a
topological restriction like M3 ∼= S3 must be assumed.

In this paper, we are interested in the question of whether a similar phenomenon holds
for higher genus surfaces. Let therefore S be a closed compact real-analytic (C ω) sur-
face of genus > 2 which is hyperbolic in the sense that its universal cover is the unit disc
D ⊂ C. As a special case of a theorem of Bruhat and Whitney [7] in dimension 2, S ad-
mits an extrinsic complexification, namely there exists a complex manifold M c of complex
dimension 2, together with an analytic totally real embedding of S into M c. Moreover,
the work [59] of Guillemin and Stenzel provides a canonical Kähler potential ρ defined
in a small neighborhood of S in M c (see Section 2 below). In particular, for each ε with
0 < ε 6 ε0 � 1, the set Ωε := ρ−1

(
[0, ε)

)
, called the Grauert tube of radius ε around S,

has strongly pseudoconvex C ω boundary Mε := ρ−1(ε) contained in the complex surface
M c, to which Cartan’s method of equivalence applies. Our main result is the following.

THEOREM 1.2. There exists 0 < ε0 � 1 such that for every ε with 0 < ε 6 ε0, the
real and imaginary parts of the primary complex Cartan curvature vanish nowhere on the
boundary of Mε.

Equivalently:

COROLLARY 1.3. The boundaries of these Mε have no CR-umbilical point. �

So far, our construction of the Grauert tubes Ωε take a complete intrisic point of view,
since the Guillemin-Stenzel potential is obtained only from a given intrinsic metric on
the surface S. It is then natural to look at the Grauert tubes from an extrinsic point of
view, that is we consider the surface S as being totally really embedded in a given (local)
complex surface equipped with a given metric. Already in the case of a torus embedded
in the standard C2, the extrinsic contruction will provide several new examples of compact
hypersurfaces without CR-umbilical points (see Example 7.4). Further constructions in this
vein are provided in Section 7.

This paper is organized as follows. In Section 2, we recall the construction of the canon-
ical Kähler potential of Guillemin and Stenzel in [59], and we find an explicit formula for
the potential in the case of hyperbolic surfaces. Section 3 discusses two standard exam-
ples of complexification of the round sphere and the flat torus. In Section 4, we work out
the defining function for the Grauert tube around the Poincaré upper half-plane. The for-
mula then will be used in Section 5 to calculate the Cartan curvatures on the boundaries of
Grauert tubes of hyperbolic surfaces by explicit expressions given in [88] and [45], and to
show that the Cartan curvatures do not vanish for small enough radii. Section 6 explains in
details how nonvanishing of the Cartan curvature on the boundary of Grauert tubes around
hyperbolic surfaces can be deduced from the calculations in Section 5. Finally, in Section 7,
we discuss some extrinsic constructions of Grauert tubes based on product metrics.

2. The Canonical Kähler Potential on Grauert Tubes

For any compact real-analytic (C ω) manifold M of dimension n > 1, Bruhat and
Whitney showed in [7] that there exists an n-dimensional complex manifold M c, and a
real-analytic embedding M ↪→ M c which is totally real, i.e. such that the real tangent
spaces to M contain no complex lines in the complex tangent spaces to M c. The C ω

changes of charts Rn 3 x 7−→ x′ = ϕ(x) ∈ Rn for M , where x = (x1, . . . , xn), become
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Cn 3 z 7−→ z′ = ϕ(z) ∈ Cn, where z = x +
√
−1 y ∈ Cn, and where ϕ(z) means substi-

tuting z for x in the punctual convergent power series of ϕ, giving the complex manifold
structure of M c. The Taylor coefficients of such C ω diffeomorphisms ϕ = ϕ are real,
the complex conjugation z 7−→ z transfers coherently as z′ = ϕ(z), which shows that
M = Fix(σ) is the set of fixed points of the antiholomorphic involution σ : M c −→ M c

obtained from z 7−→ z in any chart.
Also by substituting z for x in power series, every C ω function f : M −→ R extends

uniquely as a holomorphic function f c : U c −→ C with f c
∣∣
M

= f , in some open neigh-
borhood U c of M in M c : M ⊂ U c ⊂ M c, and f

∣∣
M
≡ 0 if and only if f c ≡ 0 in some

subneighborhood V c : M ⊂ V c ⊂ U c.
According to Grauert [58], there exists a C∞ strictly plurisubharmonic function

ρ : U c −→ [0, 1) defined in some open neighborhood U c of M in M c, with ρ ◦σ = ρ,M =
ρ−1(0), dρ

∣∣
M
≡ 0, and such that ρ has no critical point in V c\M , for some subneigh-

borhood V c : M ⊂ V c ⊂ U c. Hence for all small enough ε : 0 < ε 6 ε0 � 1, the
domain Ωε = {ρ < ε}, a tubular neighborhood of M in M c, has C∞ strictly pseudoconvex
boundary Mε = {ρ = ε}, and is called the Grauert tube of radius ε around M .

When the manifold M is equipped with some C ω Riemannian metric g, Guillemin and
Stenzel gave in [59] a very elegant construction of such a strictly plurisubharmonic function

ρ = ρg : M c −→ [0, 1)

uniquely associated to g that will be called the canonical Kähler potential on M c. Their
construction can be summarized as follows.

Embed M ↪→ M ×M by x 7−→ (x, x) and let W be an open neighborhood of M in
M ×M . If W is thin enough, for any pair (x, u) ∈ W , the local uniqueness and distance
minimizing properties of geodesics with respect to g guarantees that distg(x, u) is the g-
length of the geodesic from x to u, and an inspection of the g-length formula convinces
that the (symmetric) squared distance function:

f(x, u) :=
(
distg(x, u)

)2
(x, u∈W )

is C ω, hence can be complexified.
Since in local coordinates, we will denote x = (x1, . . . , xn) and u = (u1, . . . , un) in

Rn and introduce z := x +
√
−1 y with w := u +

√
−1 v in Cn, let us denote a pair of

points in the global abstract product similarly as (z, w) ∈ M c ×M c, and let us abbreviate
σ : M c −→M c as z 7−→ z. Also, let us use the embedding:

M c 3 z 7−→
(
z, z
)
∈ M c ×M c,

compatible with x 7−→ (x, x) which makesM c totally real inM c×M c, and letW c be a thin
open neighborhood of M c in M c ×M c invariant under the conjugation (z, w) 7−→

(
w, z

)
and satisfying W = W c ∩ (M ×M).
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M

Mc

W c

W c

Mc

W

W

M

Then f(x, u) complexifies as f c(z, w) defined and holomorphic for (z, w) ∈ W c, with
f c
∣∣
M
≡ f and enjoys the symmetry f c(w, z) = f c(z, w). Furthermore, the reality condi-

tion f(x, u) = f(x, u) of f yields via complexification:

f c(z, w) ≡ f c
(
z, w

)
,

hence putting w := z, and using the symmetry, we see the reality:

f c(z, z) ≡ f c
(
z, z
)
≡ f c(z, z).

PROPOSITION 2.1. ([59], p. 565) The real-valued function f c
(
z, z
)

is equal to 0 on
M ↪→M c ×M c and takes values < 0 outside M .

So in W c
∖
{f c = 0}, the square root

√
f c is 2 : 1-valued, and the canonical Kähler

potential ρ = ρg is defined to be:

ρ := −f c,(2.2)

so that
√
ρ is well defined in R+.

Finally, a consequence of Gauss’ orthogonality lemma ([59], p. 564) which provides the
annihilation:

0 ≡ det

Å
∂2
√
f

∂xi∂yj
(x, y)

ã
(∀ (x,y)∈W\M),

yields via complexification the Monge-Ampère equation:

0 ≡ det

Å
∂2√ρ
∂zi∂wj

(z, w)

ã
(∀ (z,w)∈W c\Mc).

In [59], Guillemin and Stenzel established the uniqueness of the Kähler metric ω :=
√
−1 ∂∂ρg on M c satisfying this and restricting to g = ω

∣∣
M

on M .
Of particular interest to us is the computational fact that ρ = ρg has explicit, workable

expressions once g is given, especially in the case of surfaces.
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3. Two Examples: Round Sphere and Flat Torus

EXAMPLE 3.1. [59, Section 4] Consider M := S2 to be the 2-dimensional sphere:

S2 :=
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 + x2
3 = 1

}
,

equipped with the standard round metric, whence the squared geodesic distance between
two points x, y ∈ S2 is:

f
(
x, y
)

=
(

2 arcsin
(

1
2

»
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2

))2

.

The Bruhat-Whitney complexification of S2 can be represented extrinsically as:

(S2)c :=
{

(z1, z2, z3) ∈ C3 : z2
1 + z2

2 + z2
3 = 1

}
,

and on it, we have the useful relation:

(Im z1)2 + (Im z2)2 + (Im z3)2 =
(
z1z1 + z2z2 + z3z3 − 1

)/
2.

The complexification of f is:

f c
(
z, w

)
=
(

2 arcsin
(

1
2

»
(z1 − w1)2 + (z2 − w2)2 + (z3 − w3)2

))2

,

hence letting w := z and using the two identities:

arcsin
(√
−1 t
)

=
√
−1 arcsinh(t), 2 arcsinh t = arccosh

(
1 + 2 t2

)
,

we get:

f c
(
z, z
)

=

Å
2 arcsin

(
± √−1

»
(Im z1)2 + (Im z2)2 + (Im z3)2

)ã2

=

Å
± 2

√
−1 arcsinh

(»(
z1z1 + z2z2 + z3z3 − 1

)/
2
)ã2

= −
(

arccosh
(
z1z1 + z2z2 + z3z3

))2

,

whence, coming back to the definition (2.2) of ρ := − f c, we obtain:

ρ
(
z, z
)

=
(

arccosh
(
z1z1 + z2z2 + z3z3

))2

.(3.2)

EXAMPLE 3.3. [37, Section 3] Consider M := T2 = R2
/

(2πZ2) to be the flat torus. Its
complexification is M c := C2

/
(2πZ2). The geodesic distance between two close points

on T2 is computed along straight lines within the flat universal cover
(
R2, dEucl

)
. So, in a

fundamental domain for T2 on R2, the squared distance and its complexification are

f
(
(x1, x2), (y1, y2)

)
= (x1 − y1)2 + (x2 − y2)2,

f c
(
(z1, z2), (w1, w2)

)
= (z1 − w1)2 + (z2 − w2)2,

hence letting (w1, w2) = (z1, z2)c, we get by the definition (2.2) of ρ := − f c:

ρ
(
z, z
)

= 4 (Im z1)2 + 4 (Im z2)2.(3.4)
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4. Semi-global Grauert Tube Around Poincaré’s Upper Half-Plane

For our purpose, we need to find the Kähler potential ρ locally on the Bruhat-Whitney
complexification of any compact C ω surface S of genus > 2. When S is viewed as a
Riemann surface, the uniformization theorem ([52, Chap. 27]) states that its universal cover
is the upper half-plane H = {z ∈ C : Im(z) > 0}, and that:

S ∼= H
/
π1(S).

We will then transfer geometric objects from H to S.
But in this section, our calculations will be done entirely in H = {(x1, x2) ∈ R : x2 >

0}, viewed as a real C ω surface equipped with the Poincaré metric ds2 =
dx21+dx22

x22
. Since the

squared Poincaré distance between two points (x1, x2) and (y1, y2) of H, with x2, y2 > 0,
is:

f
(
(x1, x2), (y1, y2)

)
=
(

arccosh
(
1 + (x1−y1)2+(x2−y2)2

2x2y2

))2

,

it comes by complexification

f c
(
(z1, z2), (z1, z2)

)
=
(

arccosh
(
1− 2 (Im z1)2+(Im z2)2

(Re z2)2+(Im z2)2

))2

,(4.1)

with z1 = Re z1+
√
−1 Im z1 and z2 = Re z2+

√
−1 Im z2, provided that certain inequalities are

satisfied by Im z1 and Im z2 for this formula to be meaningful. Here, the complexification of
H reads as:

Hc :=
{

(z1, z2) ∈ C2 : Re z2 > 0
}
.

LEMMA 4.2. The domain of definition of f c in Hc contains:{
(Im z1)2 < (Re z2)2

}
.

PROOF. Indeed, the argument 1 − 2Q of arccosh in (4.1) is real and 6 1. But with
s = σ +

√
−1 t, for cosh s to be real 6 1, since its imaginary part:

2 Im
(
cosh s

)
= 2 Im

(
eσ+it + e−σ−it

)
=
(
eσ − e−σ

)
sin t,

vanishes if and only if t ≡ 0 modπ, and since coshσ > 1 whenever σ ∈ R\{0}, necessarily
s =

√
−1 t ∈ √−1R, hence:

arccosh
(
1− 2Q

)
=:

√
−1T ∈ √−1R

for some T ∈ R, whence:

1− 2Q = cosh
(√
−1T

)
= cosT (T ∈R).

Then −1 6 cosT 6 1 forces:

− 1 6 1− 2 (Im z1)2+(Im z2)2

(Re z2)2+(Im z2)2
6 1,

the first inequality being equivalent to (Im z1)2 6 (Re z2)2, while the second holds trivially.
�

For later convenience, let us rewrite the local complex coordinates as z1 = u +
√
−1 v

and z2 = x+
√
−1 y. Furthermore, let us restrict our considerations to the subdomain of the

above domain {v2 6 x2} defined by:

0 6 1− 2 y2+v2

x2+y2
6 1 ⇐⇒ 2y2 + v2 6 x2,

which guarantees that arccosh
(
1− 2 y2+v2

x2+v2

)
is single valued in [0, π

2

]
.
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{
2y2 + v2 6 x2

}
Ωε

y

v

x, u
0

Drawing H = {x > 0} as a single right half-axis in order to keep two directions for the
y- and v-axes, this domain {2y2 + v2 < x2} looks like a "security cone" which will contain
all subsequent Grauert tubes Ωε.

Then by the relation:
arccosh (t) =

√
−1 arccos t (06 t6 1),

we get from (4.1) in this subdomain {2 y2 + v2 6 x2} of Hc:

f c = −
(

arccos
(
1− 2 y2+v2

x2+v2

))2

,

hence coming back to (2.2):

ρ =
(

arccos
(
1− 2 y2+v2

x2+y2

))2

.(4.3)

LEMMA 4.4. For every 0 < ε <
(
π
2

)2, the Grauert tube around H in Hc for the canoni-
cal Kähler potential associated with the Poincaré metric on H:

Ωε :=
{(
u+

√
−1 v, x+

√
−1 y

)
∈ Hc :

√
ρ (u, v, x, y) <

√
ε
}
,

has C ω strongly pseudoconvex boundary ∂Ωε = {ρ = ε} of equation:

2v2 −
(
1− cos

√
ε
)
x2 +

(
1 + cos

√
ε
)
y2 = 0.

PROOF. Since the function arccos is a decreasing C ω diffeomorphism [0, 1) −→ (0, π
2

]
,

we have:

arccos
(
1− 2 y2+v2

x2+y2

)
<
√
ε ⇐⇒ 1− 2 y2+v2

x2+y2
> cos

√
ε

⇐⇒ 2v2 −
(
1− cos

√
ε
)
x2 +

(
1 + cos

√
ε
)
y2︸ ︷︷ ︸

=: rε(u,v,x,y)

< 0.
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Since x > 0, the term 2x dx in the differential drε guarantees that ∂Ωε = {rε = 0} is
geometrically smooth at every point.

Furthermore, with w := u+
√
−1 v and z := x+

√
−1 y, dropping pluriharmonic terms:

rε ≡ ww −
(
1− cos

√
ε
)
zz
2

+
(
1 + cos

√
ε
)
zz
2
,

we see that rε is strictly plurisubharmonic, whence Ωε = {rε < 0} is strongly pseudocon-
vex. �

In particular, the result holds for thin tubes corresponding to 0 < ε�
(
π
2

)2.

5. Calculation of the Complex Cartan Curvature of ∂Ωε ⊂ Hc

In [37], the authors proved the non-existence of CR-umbilical points on the boundaries
of Grauert tubes around flat tori by showing the nonvanishing of a certain invariant de-
terminant introduced in [38], which vanishes exactly when the Cartan curvatures vanish.
In this paper, we shall use an explicit expression of Cartan curvatures obtained before by
the second named author and Sabzevari in [88, 90] for locally graphed hypersufaces, and
alternatively a formula in [45] for hypersurfaces given as zero locus of implicit functions.

For a C 6-smooth Levi-nondegenerate real 3-dimensional hypersurface M ⊂ C2 repre-
sented in complex coordinates z = x+

√
−1 y, w = u+

√
−1 v by a local graphing function:

v = ϕ(x, y, u),

the Cartan essential curvatures of M are two real invariants ∆1, ∆4 expressed in [88, The-
orem 1.1] by following a Tanaka approach, explicitly in terms of J6

x,y,uϕ, both containing
more than 1, 500, 000 terms when expanded.

An equivalent approach [90] closer to Cartan’s [17] can be summarized as follows.
Local generators of T 1,0M and T 0,1M are:

L :=
∂

∂z
− ϕz
√
−1 + ϕu

∂

∂u
and L :=

∂

∂z
− ϕz
−√−1 + ϕu

∂

∂u
,

and their commutator:

T :=
√
−1
[
L ,L

]
= `

∂

∂u

incorporates the real coefficient, so-called Levi factor:

` := 2
ϕzz(1 + ϕ2

u)−
√
−1ϕzϕzu +

√
−1ϕzϕzu − ϕzϕzuϕu − ϕzϕzuϕu + ϕzϕzϕuu

(1 + ϕ2
u)

2
,

which is nowhere vanishing if and only if M is Levi nondegenerate.
Abbreviating the coefficients of L and L as:

A := − ϕz
√
−1 + ϕu

and A := − ϕz
−√−1 + ϕu

,

then in terms of the following key function (the expansion of which is 1 page long):

P :=
`z − `Au + A`u

`
,
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the (single) essential Cartan complex invariant expresses in non-expanded form as:

I :=
1

6

1

cc3

(
− 2 L

(
L
(
L
(
P
)))

+(5.1)

+ 3 L
(
L
(
L
(
P
)))
− 7P L

(
L
(
P
))

+

+ 4P L
(
L
(
P
))
−L

(
P
)
L
(
P
)

+ 2P P L
(
P
))
,

and a comparison with [88] done at the end of [90] shows that it also expresses as:

I =
4

cc3

(
∆1 +

√
−1 ∆4

)
,

where the quantity c ∈ C\{0} is a group parameter of a certain initial G-structure, and it
has the following signification.

Suppose there really is a local biholomorphic equivalence h : C2 −→ C2 which transfers
M into M ′ := h(M), so that in some appropriate target coordinates z′ = x′ +

√
−1 y′,

w′ = u′ +
√
−1 v′, the (localized) image is also graphed as:

v′ = ϕ′
(
x′, y′, u′

)
.

Compute similarly L ′, L
′
, `′, P

′
, I′, but extract parts independent of group parameters:

I = 1
cc3

I• and I′ = 1

c′c′3
I′•.

Because the differential h∗ : TC2 −→ TC2 leaves invariant complex tangents, whence
h∗
(
T 1,0M

)
= T 1,0M ′, there is a nowhere vanishing function c′ : M ′ −→ C\{0} such that:

h∗
(
L
)

= c′L ′.

At a basic level, it is an easy exercise ([98, p. 44]) to express the invariancy of the levi
factors ` and `′ through the biholomorphism h as:

` = c′ c′ `′,

and at a higher level, a standard feature of Cartan’s method of equivalence then shows that:

I• = c′c′
3
I′,

which justifies, since c′ 6= 0 vanishes nowhere, the invariancy, under changes of holomor-
phic coordinates, of the following

DÉFINITION 5.2. A point p ∈M at which I(p) = 0 is called a CR-umbilical point.

In continuation with Lemma 4.4 above, we are now ready to state and to establish the
main proposition. Inside the complexification of Poincaré’s upper half-plane:

Hc =
{(
u+

√
−1 v, x+

√
−1 y

)
∈ C2 : x > 0

}
,

consider for every 0 < ε <
(
π
2

)2 the hypersurface:

Mε := ∂Ωε =
{(
u+

√
−1 v, x+

√
−1 y

)
∈ Hc : v2 −

(1−cos
√
ε

2

)
x2 +

(1+cos
√
ε

2

)
y2 = 0

}
.

PROPOSITION 5.3. All hypersurfaces Mε ⊂ Hc with 0 < ε <
(
π
2

)2 have no CR-
umbilical point.
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PROOF. The plain global linear biholomorphism of Hc:

w′ := w, z′ := z

√
1+cos

√
ε

2
,

transforms Mε into:

M ′
ε :=

{(
u′ +

√
−1 v′, x′ +

√
−1 y′

)
∈ Hc : v′

2 − 1−cos
√
ε

1+cos
√
ε
x′

2
+ y′

2
= 0
}
,

and it is appropriate to set — mind the change varepsilon 7−→ epsilon —:

ε :=
√

1−cos
√
ε

1+cos
√
ε
,

so that the equation of M ′
ε := M ′

ε becomes a bit simpler (dropping the primes):

v2 − ε2 x2 + y2 = 0.

Since this fractional map ε 7−→ ε(ε) has derivative:

d

dε

√
1−cos

√
ε

1+cos
√
ε

=
1

2
√
ε

sin(
√
ε)√

1−cos
√
ε

1+cos
√
ε

(
1 + cos

√
ε
)2

everywhere positive, it is a C ω diffeomorphism (0, π
2

4

)
−→ (0, 1), so that the new ε varies

plainly in the open unit real segment:

0 < ε < 1.

Reminding that x > 0, this new equation:

y2 + v2 = ε2 x2,

shows that, a bit similarly as for the flat torus in Example 3.3, either v 6= 0 or y 6= 0 at any
point.

Suppose therefore firstly that v 6= 0. For the C ω graph:

v =
√
ε2 x2 − y2,

a direct calculation of I from the formula (5.1), by hand or with help of a computer, pro-
vides a compact, serendipitous expression:

I• = − 9

16

1− ε4(
ε2x2 − y2

)2

(
x+

√
−1 y

)2(
x− √−1 y

)2 ,

which visibly vanishes nowhere since x > 0 whence (x+
√
−1 y)4 6= 0.

Suppose secondly that y 6= 0. Since only points with v = 0 are not already examined,
assume v = 0. For the C ω graph:

y =
√
ε2 x2 − v2,

at points with v = 0, another direct calculation of the invariant I from (5.1) also provides a
compact, nowhere vanishing expression:

I• =
9

16

(1− ε2)

(ε+
√
−1)2 ε4 x4

,

and this completes the proof of inexistence of CR-umbilical points on Mε. �
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SECOND PROOF OF PROPOSITION 5.3. The formula (5.1), explicit as it is, usually
gives long and complicated expression for the combined complex-valued Cartan invari-
ant I. This reality is due to the iterated process of taking roots, derivatives, quotients, etc.
when the graphing function of the hypersurfaces under consideration is not simple, includ-
ing taking roots for example (see, for example, the formulas given in [90] and [41]). There
are instances where the hypersurfaces actually have much simpler representation by mean
of implicit functions. An example is the case of general ellipsoidal hypersurfaces in C2 con-
sidered in [45], where a direct calculation from the formula (5.1) for a graphing function of
the ellipsoids gives a very complicated expression for I, while an alternative formula (cf.
[45, Corollary 12]) applied to simple implicit defining functions of the ellipsoids allows
one to see a whole curve of CR-umbilical points. As the implicit defining function of Mε

is also very simple, we shall use the formulation in [45] to verify the nonvanishing of the
Cartan curvature of Mε once again.

Let us recall the necessary formulas from [45]. For a Levi nondegenerate analytic hy-
persurface M in C2 given by an implicit defining function:

0 = F (z, w, z̄, w̄),

we set

L := −Fw
∂

∂z
+ Fz

∂

∂w
,

L := −Fw
∂

∂z̄
+ Fz̄

∂

∂w
,

h(F ) := FzFzFww − 2FzFwFzw + FwFwFzz,

l(F ) := Fz̄FzFww − Fz̄FwFzw − FwFzFz̄w + FwFwFzz̄.

THEOREM 5.4. ([45]) On the domain {Fw 6= 0}, the Cartan invariant I of M vanishes
exactly on the zero locus of

I[w] := 12
(
Fw
)9 ( 7∑

i=1

Ii
)
,(5.5)

where

I1 =
( l(F )
F 2
w

)3 · L4(h(F )
F 3
w

)
,

I2 = −6
( l(F )
F 2
w

)2 · L
( l(F )
F 2
w

)
· L3(h(F )

F 3
w

)
,

I3 = −4
( l(F )
F 2
w

)2 · L2( l(F )
F 2
w

)
· L2(h(F )

F 3
w

)
,

I4 = −
( l(F )
F 2
w

)2 · L3( l(F )
F 2
w

)
· L
(h(F )
F 3
w

)
,

I5 = 15 l(F )
F 2
w
·
[
L
( l(F )
F 2
w

)]2

· L2(h(F )
F 3
w

)
,

I6 = 10 l(F )
F 2
w
· L
( l(F )
F 2
w

)
· L2( l(F )

F 2
w

)
· L
(h(F )
F 3
w

)
,

I7 = −15
[
L
( l(F )
F 2
w

)]3

· L
(h(F )
F 3
w

)
.

With this formula (5.5) for checking the nonvanishing of the Cartan curvature at hand,
we now return to our hypersurface Mε. We again take advantage of the elementary biholo-
morphic transformation as above, and consider the equivalent model M ′

ε whose defining
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function writes v2− ε2x2 + y2 = 0, with 0 < ε < 1. Switching the notation for coordinates
in order to reach Fw 6= 0, namely using instead:

z = u+
√
−1 v and w = x+

√
−1 y,

we can then rewrite:

v2 − ε2x2 + y2 =
(
z−z̄

2
√
−1

)2 − ε2
(
w+w

2

)2
+
(
w−w
2
√
−1

)2

= − 1
4

[
(z − z̄)2 + (1 + ε2)(w2 + w2)− 2(1− ε2)ww

]
=: − 1

4
F (z, w, z̄, w),

so that M ′
ε = {F = 0}, and then as wanted we have the nowhere vanishing:

Fw = (1 + ε2) 2w − 2(1− ε2)w = 4 (ε2x+
√
−1 y) 6= 0

on M ′
ε thanks to our constant assumption x > 0. Thus, the vanishing locus of I[w] is exactly

the set of CR-umbilical points of M ′
ε in this case.

Now, direct calculation from the formula (5.5), by hand or preferably on a computer,
and keeping in mind that on M ′

ε we always have v2 = ε2x2 − y2, gives us:

I[w] =
27

64
ε8(1− ε4)w2w6

=
27

64
ε8(1− ε4)(x− √−1y)2(x+

√
−1y)6.

It is then evident that I[w] is everywhere nonzero on M ′
ε because x > 0. This completes

our second justification of the inexistence of CR-umbilical points on Mε
∼= M ′

ε.

PROOF. 6. Transfer to Hyperbolic Genus g > 2 Compact Surfaces

Now, let S be a closed compact oriented C ω surface of genus g > 2, considered as
a Riemann surface. The Poincaré-Köbe uniformization theorem provides a holomorphic
covering:

τ : H −→ S ∼= H
/
π1(S).

The Poincaré metric ds2
H = λ

(
dx2

1 + dx2
2

)
with λ := 1

x22
on H has constant Gaussian

curvature:

− 1

2λ

( ∂2

∂x2
1

+
∂2

∂x2
2

)(
logλ

)
= − 1,

and is furthermore kept invariant by all elements of the group AutH ∼= PSL(2,R) of
holomorphic automorphisms of H:(

AutH
)∗(

ds2
H
)

= ds2
H,

which acts transitively (and isometrically) on the homogeneous space H.
Furthermore, the group of all covering automorphisms of H τ−→ S happens to be a

discrete subgroup:
Aut
(
H τ−→ S

)
⊂ PSL(2,R) = AutH.

Consequently (and as is well known), ds2
H descends by push-forward, independently of

preimage points, as a metric on S:

ds2
S := τ∗

(
ds2

H
)
,

having the same curvature −1.
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Next, forget the holomorphic structure on S, consider now S as a C ω real surface
equipped with this C ω metric ds2

S , and denote the Bruhat-Whitney complexification of
S by Sc. Then Section 2 gives by complexification a unique strictly plurisubharmonic C ω

Kähler potential ρ : Sc −→ R+ whose sublevel sets:

∆ε := {ρ < ε} ⊂ Sc,

for all small enough 0 < ε 6 ε0 � 1, are strongly pseudoconvex domains bounded by the
C ω hypersurfaces:

∂∆ε = {ρ = ε}.
Here, ε0 might well be quite small, depending on the convergence radii of the real-analytic
objects that are complexified.

LEMMA 6.1. Shrinking ε0 > 0 if necessary, Mε has no CR-umbilical point for all
0 < ε 6 ε0.

PROOF. The uniformizing map, viewed as a C ω map τ : H −→ S, also complexifies to
become a holomorphic map:

Hc ⊃ V c τc−→ U c ⊂ Sc,

where V c is some open neighborhood of H in Hc: H ⊂ V c ⊂ Hc , possibly narrowing
much as one reaches ∂H = {x2 = 0}, and where U c is also an open neighborhood of S in
Sc: S ⊂ U c ⊂ Sc.

Since τ : H −→ S is a covering map, hence a local C ω diffeomorphism, each point
p ∈ S has a small open neighborhood p ∈ Up ⊂ S on which there exist C ω-diffeomorphic
inverses of τ , namely maps:

χp : Up
∼−→ χp(Up) =: Vχp(p) ⊂ H,

that are uniquely defined as soon as a central point χp(p) ∈ τ−1(p) ⊂ H has been chosen
in the fiber to fix a level. Shrinking Up if necessary, the complexification χcp of χp(p) is also
locally biholomorphic at p.

By compactness of S ⊂ Sc, there exists a finite open cover U c
1 , . . . , U

c
K ⊂ Sc of S:

S ⊂ U c
1 ∪ · · · ∪ U c

K ⊂ U c
(K> 1),

together with biholomorphic inverses of the complexification τ c : V c −→ U c:

χck : U c
k

∼−→ χck
(
U c
k

)
=: V c

k ⊂ Hc
(16 k6 K).

If necessary, shrink ε0 > 0 so that, for all 0 < ε 6 ε0:

∆ε ⊂ ∆ε0 b U c
1 ∪ · · · ∪ U c

K.

Now, take any point q ∈ ∂∆ε. How to convince oneself that the Cartan CR-curvatures
of the strongly pseudoconvex hypersurface ∂∆ε is nonzero at q?

This is very simple. For sure, q ∈ U c
k for some 1 6 k 6 K. Remind also the tube

Ωε ⊂ Hc. Then because the metric on S is the push-forward of Poincaré’s metric on H,
the tubes Ωε and ∆ε correspond to each other, namely χck sends ∆ε∩U c

k biholomorphically
onto Ωε ∩ V c

k with:
χck
(
q
)
∈ ∂Ωε,

and since the nonvanishing of Cartan CR-curvatures is a biholomorphically invariant prop-
erty, Proposition 5.3 offers what was wanted. �
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With some basic knowledge on Fuchsian groups, we can also provide a

VARIATION ON THE PROOF OF LEMMA 6.1. As already seen, the quotient map:

τ : H −→ S ∼= H
/
π1(S)

is locally isometric. Abbreviate:

G := Aut
(
H τ−→ S

)
∼= π1(S).

DÉFINITION 6.2. A fundamental domain for S is an open subset D ⊂ H whose G-
translates cover:

H =
⋃
g∈G

g(D),

being mutually disjoint:
∅ = D ∩ g(D) (∀ g ∈G \ {Id}),

and which has the further property of being locally finite in the sense that each compact
subset K b H meets only finitely many G-images of D.

THEOREM 6.3. ([2, Chap. 9]) Relatively compact fundamental domains D b H having
piecewise C ω boundary consisting of 4g geodesic segments always exist on the universal
cover τ : H −→ S of any genus g > 2 compact Riemann surface. �

Then in place of a (rough) finite Borel-Lebesgue covering S ⊂ U1 ∪ · · · ∪ UK as used
in the first proof, we can employ a geometrically more meaningful covering. For such a
fundamental domain D ⊂ H of S, there is an atlas of S consisting of 4g + 1 open charts:

• V0 := D itself;

• slightly thickened thin neighborhoods V1, . . . , V4g of the 4g sides of D.

Further, one can arrange that the restrictions:

τ : Vi −→ τ(Vi) =: Ui ⊂ S (i= 0, 1, ..., 4 g)

are C ω diffeomorphisms. Complexifying their inverses χi : Ui
∼−→ Vi as:

χci : U c
i

∼−→ V c
i

we can now reason similarly as in the first proof, and this concludes. �

REMARK 6.4. We observe the following interesting facts about the (non)vanishing of
the essential curvatures ∆1 and ∆4 on the boundaries of Grauert tubes of small radii around
closed surfaces S.

(1) If S is the 2-sphere with the standard round metric, both ∆1 and ∆4 vanish
identically.

(2) If S is a 2-dimensional flat torus, we leave as an exercise to the reader to verify
that ∆1 never vanishes, while ∆4 vanishes identically.

(3) If S is a closed genus g > 2 hyberbolic surface, then both ∆1 and ∆4 vanish
nowhere.
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7. Grauert Tubes with Respect to Extrinsic Metrics

In Section 2, Grauert tubes are constructed with respect to metrics obtained from given
intrinsic Riemannian metrics on surfaces. In this section, we look at constructions of
Grauert tubes around surfaces from an extrinsic point of view. More precisely, let us con-
sider a totally real embedding of a surface S into a complex manifold X of complex di-
mension 2. We will identify the surface S with its image under the embedding, so that S
is viewed as a submanifold of X . A given Riemannian metric dX on X always induces an
extrinsic metric on S and the Grauert tubes Ωε around S also can be defined with respect
to dX as Ωε := {x ∈ X : dX(x, S) < ε} for small enough positive ε.

Recall that for a real n−dimensional submanifoldM of a complex n−dimensional man-
ifold X , a point p of M is called a complex point if the tangent vector space of M at p
contains at least one complex line with respect to the complex structure J ∈ End(TX) on
the tangent bundle of X , that is TpM ∩ J(TpM) 6= {0}. An embedding of M into X is
called a totally real embedding if M does not contain any complex point.

It is known that every affine n-dimensional totally real vector subspace V ⊂ Cn is
affinely holomorphically equivalent to Rn ⊂ Cn. It is also known that every C ω real n-
dimensional submanifold M ⊂ Cn is locally holomorphically equivalent to Rn ⊂ Cn,
namely at any point p ∈ M , there is an open neighborhood p ∈ U ⊂ Cn and a biholomor-
phism h : U

∼−→ h(U) =: V with h(p) = 0 such that h
(
M ∩ U

)
= Rn ∩ V . Hence an

alternative description of maximally real C ω submanifolds M ⊂ Cn is as follows.

DÉFINITION 7.1. A real n-dimensional C ω submanifoldM of a complex n-dimensional
manifold X is totally real if there exists a family indexed by α ∈ A of biholomorphisms:

ϕα : Uα
∼−→ ϕα

(
Uα
)

=: Vα ⊂ X

with Uα ⊂ Cn open, with Vα ⊂ X open, with X =∪αVα, such that:

• if ϕα(0) 6∈M , then ϕα
(
Uα
)
∩M = ∅;

• if ϕα(0) ∈M , then the restriction:

ϕα
∣∣
Rn∩Uα

: Rn ∩ Uα
∼−→ M ∩ Vα,

is a C ω real diffeomorphism.

EXAMPLE 7.2. By looking at the standard complex atlas of the complex projective
space CPn, it is clear that RPn is totally real in CPn. On RPn, there is a canonical round
metric induced from the round metric on its double cover Sn. The Guillemin-Stenzel metric
associated to this round metric on CPn is nothing but the Fubini-Study metric on CPn. The
complexified manifold (Sn)c is a double cover of CPn, which is a real 2n−dimensional
submanifold in the S1−fibration S2n+1 of CPn.

EXAMPLE 7.3. Of particular interest for us here is the fact that a product of two totally
real submanifolds is also totally real, which is evident from either definition.

EXAMPLE 7.4. Let us look at Example 3.3 once again, this time from an extrinsic point
of view. Consider a 2-dimensional real vector subspace V of C2 which passes through the
origin, with coordinates (z, w) ∈ C2. The intersections of V with the z-axis and w-axis are
two real line. Therefore V can be written in exactly one of the following three forms.
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Case 1: V =
{
y = αx, v = β u

}
, where α, β are real. The Grauert tube Ωε(V ) of radius ε

around V with respect to the standard distance in C2 is given by:{
(x+

√
−1 y, u+

√
−1 v) ∈ C2 :

(αx− y)2

(α2 + 1)2
+

(βu− v)2

(β2 + 1)2
< ε2

}
.

In order to obtain a compact hypersurface, we take the quotient Ω̃ε(V ) of Ωε(V ) by the
translations by 2π on each real coordinates of V . Then Ω̃ε(V ) can be embedded into C2 as:{

(z, w) ∈ C2 :
(

log
∣∣e √−1 z

1+
√
−1α
∣∣)2

+
(

log
∣∣e √−1w

1+
√
−1 β
∣∣)2

< ε2
}
.

Any point on the boundary of Ω̃ε(V ) admits the same local defining function as its preimage
on the boundary of Ωε(V ). Solving the local defining function for the variable v gives the
graph:

v = βu− (β2 + 1)

 
ε2 − (αx− y)2

(α2 + 1)2
.

A direct calculation of the Cartan invariant using the formula (5.1) provides:

J• =
−9 (α +

√
−1)9 (−α +

√
−1)11 (β +

√
−1)16 (−β +

√
−1)16 ε8

(−αx+ y + ε+ a2ε)8 (αx− y + ε+ a2ε)8
,

and this result is nowhere vanishing. So the boundary of Ω̃ε(V ) also does not contain any
CR-umbilical point.
Case 2: V =

{
x = 0, v = βu

}
, where β is again real. The Grauert tube of radius ε around

V with respect to the standard distance in C2 is now given by:

Ωε(V ) =
{

(x+
√
−1 y, u+

√
−1 v) ∈ C2 : x2 +

(βu− v)2

(β2 + 1)2
< ε2

}
.

A point on the boundary of Ω̃ε(V ) or of Ωε(V ) admits the local graphing function:

v = βu− (β2 + 1)
√
ε2 − x2,

of which the (relative) Cartan curvature can be computed from the formula (5.1) to be:

J• =
9 (β2 + 1)16 ε8

(x2 − ε2)8
.

Thus, the (relative) invariant J• is also nowhere vanishing on the boundary.
Note that Ω̃ε(V ) can be embedded into C2 as:{

(z, w) ∈ C2 :
(
log |ez|

)2
+
(

log
∣∣e √−1w

1+
√
−1 β
∣∣)2

< ε2
}
.

Case 3: V =
{
x = 0 = u

}
. A point on Ω̃ε(V ) which can be embedded into C2 as:{

(z, w) ∈ C2 :
(
log |ez|

)2
+
(
log |ew|

)2
< ε2

}
,

now admits the local defining function

x2 + u2 = ε2.

In this case, we do not obtain a local graphing function of the form v = φ(x, y, u), but
a simple calculation using the alternative formula (5.5) for the implicit defining function



7. GRAUERT TUBES WITH RESPECT TO EXTRINSIC METRICS 257

F (z, w, z̄, w) = ( z+z̄
2

)2 + (w+w
2

)2 − ε2 shows that the relative invariant J• is proportional
to:

27 (x2 + u2)4

64
=

27 ε8

64
.

So it is evident that the boundary of Ω̃ε(V ) also does not contain any CR-umbilical point.

For two given Riemannian manifolds (X, dX), (Y, dY ), the distance dX×Y with respect
to the product metric on X × Y is:

d2
X×Y

(
(x1, y1), (x2, y2)

)
= d2

X(x1, x2) + d2
Y (y1, y2),(7.5)

assuming that X, Y are uniquely geodesic, i.e. there exists a unique geodesic between any
two points.

Our next examples of Grauert tubes in C×C will be constructed with respect to products
of two extrinsic metrics on C ⊃ R. For the two possible component metrics on C, we will
consider the three standard ones: flat, elliptic and hyperbolic.

• Flat metric on C. Denote by dFlat the flat Pythagorean metric on C 3 x+
√
−1 y. Consider

the totally real line VFlat = {y = 0} in UFlat = C. The flat distance from any point z ∈ UFlat

to VFlat is:

dFlat

(
z, VFlat

)
=
∣∣Im(z)

∣∣ = |y|.(7.6)

• Elliptic metric on CP1. For the elliptic metric dEll, we look at the local chart U0 = {[1 :
z] : z ∈ C} of CP1. Since (CP1, dEll) is not uniquely geodesic, we consider a small
neighborhood UEll = {[1 : z] : |z| < δ} of [1 : 0] in U0, which is uniquely geodesic
for small positive δ thanks to the fact that the injective radius of (CP1, dEll) is positive.
Then VEll = {[1 : Re(z)] : Re(z) < δ} is totally real in UEll.

LEMMA 7.7. The elliptic distance from any point (x, y) ≈ [1 : (x +
√
−1 y)] of UEll to

VEll is given by:

dEll

(
(x, y), VEll

)
= arccos

( √
1 + x2√

1 + x2 + y2

)
.(7.8)

PROOF. A point [1 : (x +
√
−1 y)] of CP1 corresponds to the point(

1√
1+x2+y2

, x√
1+x2+y2

, y√
1+x2+y2

)
of S2 embedded in R3, and a point [1 : α] of VEll

corresponds to
(

1√
1+α2 ,

α√
1+α2 , 0

)
.

Now dEll

(
(x, y), VEll

)
is exactly the spherical distance between P =(

1√
1+x2+y2

, x√
1+x2+y2

, y√
1+x2+y2

)
and the arc {Qα = ( 1√

1+α2 ,
α√

1+α2 , 0) : α > 0},
that is:

cos dEll

(
(x, y), VEll

)
= max

α>0

〈P,Qα〉
|P | |Qα|

.
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Using the Cauchy-Schwartz inequality, we have:

〈P,Qα〉
|P | |Qα|

=
1 + αx√

1 + α2
√

1 + x2 + y2

6

√
1 + α2

√
1 + x2

√
1 + α2

√
1 + x2 + y2

=

√
1 + x2√

1 + x2 + y2
,

where the maximum is attained at α = x. �

• Hyperbolic metric on H. For the hyperbolic metric dHyp, we may consider a small open
neighborhood U of 0 in the Poincaré disc, and the totally real interval U ∩ {Im(z) = 0}
in U , but it is more convenient to work with the corresponding domain UHyp = {z =
x +

√
−1 y} of U on the upper-half plane model, which is an open neighborhood of √−1 .

The corresponding totally real interval in UHyp is VHyp = UHyp ∩ {Re(z) = 0}.

LEMMA 7.9. The hyperbolic distance from any point (x, y) ≈ z = x+
√
−1 y in UHyp to

VHyp is given by:

dHyp

(
(x, y), VHyp

)
= arccosh

(√x2 + y2

y

)
.(7.10)

PROOF. Recall that for a hyperbolic triangle on the upper-half plane with angles A, B,
C and opposite sides of lengths a, b, c, the rule of sine reads:

sinA

sinh a
=

sinB

sinh b
=

sinC

sinh c
.

Thus, given the angle A and the side a, the side b is of maximal length when B = π
2

because the function sinh is monotone and because:

sinh b = sinB
sinh a

sinA
6

sinh a

sinA
.

It follows that to find the hyperbolic distance from a given point z = x +
√
−1 y to the

line VHyp, we look at the geodesic line passing through z and orthogonal to VHyp, which is
the half-circle on the upper-half plane model with centre at 0 and of radius |z| =

√
x2 + y2.

This geodesic line intersects VHyp at the point
(
0,
√
x2 + y2

)
≈ 0 +

√
−1

√
x2 + y2. Thus,

we have:

dHyp

(
(x, y), VHyp

)
= dHyp

(
(x, y), (0,

√
x2 + y2)

)
= arccosh

(
1 +

(x− 0)2 + (y −
√
x2 + y2)2

2y
√
x2 + y2

)
= arccosh

(√x2 + y2

y

)
. �

We are now in position to give some non-trivial examples of Grauert tubes with respect
to extrinsic metrics.
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PROPOSITION 7.11. The Grauert tubes of radius ε with respect to the product metric
d1×d2 around the totally real submanifold V1×V2 inU1×U2 admit local defining functions:

ρ(x, y, u, v) :=
[
d1

(
(x, y), V1

)]2
+
[
d2

(
(u, v), V2

)]2
< ε2,

where (Ui, Vi, di) for i = 1, 2 is one of the three models:(
UFlat, VFlat, dFlat

)
,

(
UEll, VEll, dEll

)
,

(
UHyp, VHyp, dHyp

)
. �

In particular, we obtain six examples of Grauert tubes with respect to the corresponding
extrinsic product metrics.

REMARK 7.12. Notice here that our examples are of local nature, and not compact.
When both d1 and d2 are flat metrics, one recovers the local graphing function of the flat
torus as in Example 3.3, since:[

dFlat

(
(x, y), VFlat

)]2
+
[
dFlat

(
(u, v), VFlat

)]2
= y2 + v2.

However, the remaining five examples are very different from those obtained from intrinsic
metrics in Example 3.1, Example 3.3 and Lemma 4.4. Thus, the Grauert tubes around
the same totally real manifolds with respect to intrinsic and extrinsic metrics look very
different.

LEMMA 7.13. In terms of:

H :=

 
ε2 −

[
arccosh

√
x2 + y2

y

]2

and of:

E :=

√
ε2 −

[
arccos

√
1 + x2√

1 + x2 + y2

]2

,

the local defining functions for the boundaries of the Grauert tubes of radius ε with respect
to the product metrics are given by Table 1.

PROOF. We only treat the case of the product between the hyperbolic and flat metrics,
in which the local graphing function is given by:

ρ(x, y, u, v) =

ï
arccosh

(√x2 + y2

y

)ò2

+ v2 < ε2,(7.14)

while the calculations for the other cases can be done in a similar way.
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TABLE 1

Product metrics Defining functions

dFlat ⊕ dFlat v =
√
ε2 − y2

dEll ⊕ dFlat v = (ε2 − arcsin y√
1+x2+y2

)1/2

dHyp ⊕ dFlat v = (ε2 − arcsinh x
y
)1/2

dHyp ⊕ dHyp v = u
sinhH

dEll ⊕ dHyp v = u
sinhE

dEll ⊕ dEll v =
1+
√

1−4(1+u2)(sinE)2

2 sinE

The defining function for the boundary of the Grauert tube is obtained by solving the
equation ρ = ε2 for the variable v as follows:

ρ = ε2 =⇒ arccosh
(√x2 + y2

y

)
=
√
ε2 − v2

=⇒
√
x2 + y2

y
= cosh

(√
ε2 − v2

)
=⇒ 1 +

x2

y2
=
[
cosh

(√
ε2 − v2

)]2
=
[
sinh

(√
ε2 − v2

)]2
+ 1

=⇒ x

y
= sinh

(√
ε2 − v2

)
.

So, the defining function belongs to the rigid case with the graph:

v =
»
ε2 − arcsinh

(
x
y

)
. �

Unfortunately, except for the case of dFlat⊕dFlat, the expressions of the Cartan invariant
obtained by calculations with either formula (5.1) or (5.5), though explicit, are overwhelm-
ingly complicated, and so do not allows us to see the CR-umbilical locii.
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