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Résumé

Cette thèse réalisée à l'Institut de Calcul Intensif (ICI) de Centrale Nantes, en collab-
oration avec le Laboratoire de recherche en Hydrodynamique, Énergétique et Environ-
nement Atmosphérique (LHEEA), est dédiée à la simulation numérique d'éoliennes �ot-
tantes. Elle a été �nancée par WEAMEC (West Atlantic Marine Energy Community),
et s'intègre dans la stratégie de recherche et développement de la région Pays de la Loire
en énergies marines renouvelables.

L'objectif de cette thèse a été le développement d'un simulateur d'éoliennes �ot-
tantes utilisant des méthodes d'une haute précision. Cette approche est complémentaire
des technologies actuellement utilisées dans l'industrie pour la simulation d'éoliennes �ot-
tantes. Celles-ci sont bien plus e�caces grâce aux approximations importantes réalisées
dans la modélisation de la physique. Les coûts de calcul engendrés par l'approche nou-
vellement développée sont rédhibitoires dans le cadre d'une utilisation industrielle, mais
o�rent d'autres perspectives. La simulation haute performance permet une description
�ne de la physique des phénomènes �uides apparaissant autour des éoliennes �ottantes.
La validation du design des structures peut être e�ectuée à l'aide de tels outils. Les
approches �nes permettent également une calibration des méthodes de simulation indus-
trielles, qui intègrent des termes dé�nis empiriquement. Ces enjeux sont présentés dans
le Chap. 1.

La thèse a eu pour objectif le développement d'un simulateur d'éoliennes �ottantes à
partir de la bibliothèque logicielle ICI-tech, dédiée à la simulation d'écoulements avec des
approches haute-performance. Une résolution des équations de Navier-Stokes dans un for-
malisme Variational MultiScale est e�ectuée pour obtenir une description �ne des écoule-
ments �uides. Un maillage de calcul unique est généré grâce à un processus d'adaptation
de maillage automatique, les di�érentes phases du domaine de calcul étant représentées
à l'aide de fonctions de phase de type "level-set". La résolution des équations de Navier-
Stokes est réalisée par éléments �nis, dans une formulation monolithique. Un schéma de
convection-réinitialisation est utilisé pour transporter les di�érentes phases �uides dans
le domaine de calcul. Le maillage automatiquement généré est anisotrope, ce qui permet
de limiter le nombre de points dans le maillage de calcul, tout en conservant une bonne
représentation des géométries simulées. Les coûts de calcul engendrés restent malgré
tout importants, et un formalisme hautement parallélisé permet de les distribuer, via un
déploiement sur des supercalculateurs.

La méthodologie introduite peut être séparée en deux étapes principales. En premier
lieu, la représentation des di�érentes géométries dans le domaine de calcul est nécessaire
pour l'établissement d'écoulements précis. Le paradigme de frontières immergées est dé-
taillé dans le Chap. 2, à partir des fonctions de phase. L'optimisation de cette méthode,
e�ectuée à l'aide d'une structure "octree", est présentée en détail. La dépendance de
cette dé�nition vis-à-vis du maillage de calcul est discutée, et la méthode d'adaptation
de maillage a posteriori, automatique et anisotrope est introduite. La gestion du par-
allélisme est présentée ensuite, avant une application à des cas d'éoliennes �ottantes.
Les résultats d'immersion considèrent la précision de la reconstruction et l'e�cacité des
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méthodes implémentées. Des tests de scalabilité ont été réalisés, ainsi qu'une caractéri-
sation des résultats d'immersion en fonction des principaux paramètres dé�nissant la
reconstruction. Les performances parallèles de l'immersion sont satisfaisantes.

La résolution des écoulements est la deuxième grande phase des calculs, qui peut
être e�ectuée à partir d'un maillage initial correctement dé�ni. La méthodologie suivie
est détaillée dans le Chap. 3. Après une introduction présentant les enjeux des équa-
tions de Navier-Stokes, le paradigme éléments-�nis pour leur résolution est exposé, et
la formulation Variational MultiScale incompressible en vitesse et pression est décrite.
A�n de déduire les écoulements, la viscosité et la masse volumique du �uide doivent
être connues en chaque point du maillage de calcul. L'établissement de lois de mélange
est détaillé, ainsi que le transport des phases. La description de la méthodologie suivie
pour obtenir les écoulements se termine avec des détails sur le processus de résolution
en lui-même. Une deuxième section de ce chapitre se concentre sur le développement
d'outils numériques dédiés à la simulation d'éoliennes �ottantes. Un dispositif de calcul
de forces a posteriori est dé�ni, et un bassin de houle numérique est mis en place. Pour
�nir, un formalisme d'interaction �uide/structure implémenté dans la cadre de la thèse
est détaillé.

ICI-tech a été utilisé dans d'autres travaux pour simuler des écoulements visqueux.
À l'inverse, le développement d'un simulateur d'éoliennes �ottantes implique des �ux
aérodynamiques et hydrodynamiques plus turbulents. Les comportements des �ux dans
ces circonstances sont beaucoup plus erratiques, et engendrent une complexité plus im-
portante dans les simulations. Des étapes de véri�cation et validation ont été nécessaires,
et sont exposées dans le Chap. 4. Durant une première phase, les écoulements autour
de pro�ls ont été étudiés, a�n notamment de véri�er et valider l'aérodynamique. Les cas
tests utilisés ont été dé�nis dans cet objectif, avec des écoulements de plus en plus turbu-
lents et des pro�ls représentatifs de pales d'éoliennes. Une deuxième phase a été dédiée à
la véri�cation de la propagation de champs de houle. L'in�uence du maillage anisotrope
a été particulièrement étudiée. Une dernière phase de validation s'est focalisée sur le
formalisme d'interaction �uide/structure. Les résultats ont été globalement décevants,
comme le montre la liste non exhaustive suivante. Les forces aérodynamiques évaluées sur
les pro�ls ont été surestimées, tandis que la dissipation numérique a été importante lors
de la propagation de champs de vagues. L'adaptation de maillage anisotrope a notam-
ment eu un impact important sur la qualité des résultats. Les tests de �ottaison destinés
à valider l'interaction �uide/structure ont aussi abouti sur des di�érences notables avec
les mesures expérimentales, mais proches de résultats obtenus avec des méthodes simi-
laires. Di�érentes pistes sont proposées en vue d'améliorer la qualité des simulations, se
concentrant sur l'adaptation de maillage ou l'ordre d'interpolation des éléments �nis.

Les conclusions principales des di�érents chapitres ont été résumées dans le Chap. 5.
Des résultats préliminaires ont présenté les enjeux du développement d'un simulateur
d'éoliennes �ottantes. Dans ce cadre, des ébauches de cas 3D ou de champs de vagues
irréguliers ont été simulés. À partir des résultats du chapitre précédent, les limitations
actuelles du solveur ont été discutées. Des perspectives à court, moyen et long terme
pour le développement d'un simulateur plus précis ont été proposées.
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This thesis was realized within the scope of the EOS project, funded by the WEst At-
lantic Marine Energy Community (WEAMEC). The objective of WEAMEC is to federate
the Marine Renewable Energy (MRE) ecosystem of �Pays de la Loire� French Region,
in the �elds of research, innovation and training. More than 60 industrialists and 30
research institutions are now involved in the development of MRE at the regional scale.
Around 45 projects are supported, and several PhDs have already been defended. All the
themes related to MREs are considered, ranging from o�shore law and techno-economics,
to topics focusing on the systems operating o�shore. All the technologies of MREs are
regarded: tidal and wave energy, Ocean Thermal Energy Conversion, and o�shore wind
energy, either bottom-�xed or �oating.

The EOS project associates the High Perfomance Computing Institute (ICI) of Cen-
trale Nantes and the Research Laboratory in Hydrodynamics, Energetics and Atmo-
spheric Environment (LHEEA) of Centrale Nantes. It is dedicated to the development
of a high-�delity numerical model for the simulation of Floating O�shore Wind Turbines
(FOWTs). The software platform ICI-tech, developed at ICI, initially in the context of
viscous �ows, is used in this project. The works realized during the PhD and detailed in
this thesis consisted in di�erent developments, veri�cation and validation steps aiming
at adapting the software platform to the simulation of FOWTs. This Chap. provides a
context and introduces the issues raised by this new paradigm. FOWTs are presented in
Sec. 1.1, which details its main components. A review of the literature concerning the
simulation of FOWTs is realized in Sec. 1.2. The scope of this thesis and a comprehensive
description of its outcomes are then detailed in Sec. 1.3.

1.1 State of the art on �oating o�shore wind turbines

1.1.1 Why �oating o�shore wind turbines ?

If wind energy has been exploited by humanity for a millennium, its development on an
industrial scale only started at the end of the 20th century. In the literature, two main
topologies prevailed: Horizontal-Axis WTs (HAWTs) and Vertical-Axis WTs (VAWTs),
presented in Fig. 1.1. Nevertheless, only HAWTs have been deployed on an industrial-
scale, thanks to a better power absorption performance as well as fewer vibration issues.
Over the last 20 years, the installed capacity of WTs has been multiplied by 40 (17.4 GW
in 2000, 700 GW in 2019). The evolution of the size of WTs is presented in Yaramasu
et al. (2015). The rotor diameter has almost tripled (80 m in 2000 for 2 MW HAWTs,
220m for the Haliade-X 12MW WT announced by GeneralElectrics (2019)), while the
turbine capacity was multiplied by six, from 2 MW to 12MW. In this thesis, the focus is
placed on horizontal-axis WTs.

The number of WT Megawatts installed each year in Europe has progressively in-
creased since 2000 according to WindEurope (2018a), and wind energy now provides 18%
of the energy production capacities in Europe. Onshore WTs have been operating for
several decades, and thus represent about 90% of the whole wind capacity. Technology
research WTs has essentially focused over the last decades on an optimization of the de-
sign, especially for blades, and rely on a viable industrial base. Experience in installation,
maintenance or connection to the electrical grid contributed to bringing wind energy to
a leading spot among renewable energies in Europe.

However, the production capacity of onshore WTs is limited by other factors. First
of all, onshore wind is rather turbulent, which decreases the production capacity and can
lead to more fatigue on blades. The impact of the turbines on their environment is also
a strong limitation, as larger rotors generate heavier nuisances that can interact with
wildlife or human activities. The intermittency of wind energy production is another
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Figure 1.1: Horizontal-Axis Wind Turbine (left) and Vertical-Axis Wind Turbine (right),
from Bazilevs et al. (2015).

issue often raised by opponents, as both too weak or too strong winds lead to a stop in
production. Fig. 1.2 presents the wind energy capacity factor, the ratio between the elec-
trical power produced and the total wind power capacity. This factor for onshore wind
is of 22%, which means that, on average, the electricity produced corresponds to about
a fourth of the installed onshore wind capacity. Due to poor wind quality preventing
the turbines from operating at their nominal power conversion speed, this factor may be
slightly increased through modernization of ancient blades but will remain rather low.

Figure 1.2: Statistics about wind energy in Europe in 2018, from WindEurope (2019).

For all those reasons, wind farms have been installed at sea since the early 2000s. The
�rst farms used bottom-�xed foundations, directly installed on the seabed, and today
all the commercial o�shore wind farms use this concept in Europe. O�shore winds are
stronger, more constant and less turbulent, as illustrated by Fig. 1.3. Fig. 1.2 shows
that the better winds found o�shore enable to improve drastically the capacity factor
over the onshore wind, at 37%, while the turbulence is usually weaker o�shore than
onshore. Moreover, even if the design of the turbines is similar in o�shore or onshore
situations, WindEurope (2018b) noted in 2018 that 6MW -turbines are commonly chosen
for o�shore wind farms installation, while 2MW -WTs are installed onshore. Given the
capacity factors and the nominal power of turbines installed, a rapid computation shows
that, in 2017, the average production of 10 o�shore turbines was equivalent to the one of
32 onshore turbines. As the actual trend is to transition to even bigger o�shore turbines,
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this gap may grow very rapidly.

Figure 1.3: Wind resource in Western Europe, from European Wind Atlas of Troen and
Petersen (1989).

In 2018 the contribution of o�shore wind to European energy production was essen-
tially provided by the bottom-�xed industry. The major part of the commercial farms
currently installed is located in Northern Europe, in the North Sea or o�shore Denmark.
The nature of the foundations used for bottom-�xed WTs, hammered or lying on the
seabed, are well suited for the relatively small depths found in those regions. However,
the loads applied to the structures, as well as the complexity of the installation procedure,
reduce the competitiveness of bottom-�xed o�shore WTs when the water depth is supe-
rior to 60 meters, as stated in James and Ros (2015). Fig. 1.4 presents the bathymetry
in Western Europe, and must be regarded in combination with the wind resource map
depicted in Fig. 1.3. Very few sites feature the combination of strong winds and shallow
waters, which limits the potential of �xed o�shore wind. As an example, the strong
winds found on the Mediterranean coast of France cannot be exploited with bottom-
�xed WTs. Other, more insidious factors limit the potential of the bottom-�xed wind
energy. The repetitive impact of waves on the structures is inducing fatigue, which may
limit the operating lifetime of the WTs. The impact of biofouling on the structures is
also a concern, currently addressed through several research projects as it can modify
the resonance frequencies of the supports. Finally, the major part of the WTs installed
being monopiles, they are hammered inside the seabed. This procedure is very noisy,
particularly dangerous for marine mammals, which imposes the use of sound protections
rather complicated to set up.

These limitations can be tackled by the installation of FOWTs, which is seen as an
important way of development for wind energy. The major technological breakdown
brought by the �oaters o�ers new possibilities for the installation of wind farms, which
could take part in the energy transition. The exploitation of wind using FOWTs has
already started in Scotland, where a �rst pilot wind farm was installed in 2017. Pro-
totypes are also operating o�shore France, UK, Norway or Japan, see James and Ros
(2015). Floaters enable the installation of WTs in areas where the water depth reaches
300 meters, which increases the number of sites available for FOWT settling. Using
�oaters enables the towing of structures, which can reduce the complexity of the WT
installation compared to bottom-�xed turbines. Heavy-going maintenance procedures
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Figure 1.4: Bathymetry in Europe, from EMODnet (2019).

can be optimized in the same way. The major counterpoints to the use of �oaters are
related to motions induced by the combination of sea and wind e�ects, and its impact
on both the performances of the turbines and the fatigue induced.

As a conclusion, FOWTs are the next instruments of the wind energy to be industri-
ally deployed. They allow the deployment in o�shore areas where strong, constant winds
o�er a potential for an important production, but where the depth prevent the installa-
tion of bottom-�xed turbines. The technologies are not mature yet, which justi�es the
development of high-�delity simulation engines allowing to optimize the design of the
di�erent prototypes available.

1.1.2 Horizontal-axis wind turbines

Composition of a WT

Nowadays, a consensus has been established around horizontal-axis WTs. Rapin and
Noël (2010) recalled that starting researches on the subject concerned both upwind and
downwind concepts, with various numbers of blades. The downwind concepts were sup-
planted because of aerodynamic instabilities, the rotor being strongly impacted by the
wake generated by the mast of the turbine. Similarly, the fatigue generated by the
two-bladed rotor concepts condemned their industrial use. The industrial convergence
is now established around upwind, three-bladed WTs, known as the Danish concept.
This technology presents several advantages since, thanks to its geometry, the loads are
well balanced over the whole rotor. Its energy production is also among the most e�cient.

Today, most horizontal-axis WTs share the topology presented in Fig. 1.5. Three
composite blades are composed of airfoils mounted on a shaft. This forms the rotor,
which is put in rotation by the wind. A gearbox is connected to the rotor, and placed in
a nacelle disposed at the top of a mast. The gearbox accelerates the rotation speed pro-
vided by the wind energy, and its high-speed shaft is connected to a generator. Another
technology, known as direct drive, connects directly the rotor to the generator. Getting
rid of the gearbox reduces the electrical chain and the risk of failure, but increases the
complexity of the installation procedure. For further details about gearboxes and the
direct drive concept, see Polinder et al. (2006). The rotation speed of the rotor can be
managed thanks to pitch controllers correcting the inclination of the blades. Electricity
is produced and transmitted to a transformer located down the mast. This ends the
energy conversion chain at the scale of a turbine. The electricity produced by each WT
is gathered at the scale of the wind farm, which generates issues that are not addressed
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in this document.

Figure 1.5: Description of a WT, from National Renewable Energy Laboratory (NREL).

Several challenges have been related to WTs. First of all, the elements composing
them are disposed at the top of the mast. The center of gravity of the turbine is very high,
which raises issues concerning its stabilization, especially in the �oating wind context,
where huge turbines are �xed on moving structures.

Aerodynamics of WTs and farm e�ects

An operational WT extracts energy from the ambient wind thanks to its blades. The
ambient wind is turbulent and unsteady. Thus, the behavior of the boundary layers de-
veloping on the blades is very hard to predict. The interaction between the wind and the
rotor generates vortices, which have a dynamic in�uence on the turbine and on the wake.
The tower shadow modi�es the wind distribution and complicates the studies. At the
scale of the blade, dynamic stall, which corresponds to boundary layer detachment, may
be observed. This particular e�ect deteriorates the lift applied on the blade locally. For
all those reasons, the phenomena occurring around the turbine are rather unpredictable.

The rotational speed of the turbine can be determined from its design and from the
wind speed observed at the rotor. A simple analysis is su�cient to show that the rotation
of blades is extremely fast. Leroy (2018) realized a study on a horizontal-axis FOWT,
whose TSR is 7 for a wind speed of 11.6m.s−1. The speed of the tip of the blades for
this test case is thus 7 times faster than the ambient wind speed, at 81.2m.s−1. Conse-
quently, the aerodynamic velocity observed at the tip of blades is represented mostly by
the relative wind speed, generated by the rotation of the blades. The velocity of the �ow
is considerable, which tends to increase the computational e�ort required to represent
the aerodynamics.

The �ow around WT blades can be characterized using the Reynolds number Re, a
very classical dimensionless measure in aerodynamics. For a �uid of dynamic viscosity
η and of density ρ, its �ow of velocity u around an object of characteristic length L is
written in Eq. (1.1). The Reynolds number provides information about the boundary
layers developing around objects under the action of �uid �ows. For Re ≈ 1, the �ow
is mainly attached to the geometries. When Re increases, turbulent structures can be
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observed, even if the transition between laminar and turbulent �ow directly depend on
the geometries simulated. For Re > 103, the �ow is usually unsteady. In the case of WT,
the Re numbers around a WT blade is computed from the properties of the surrounding
ambient �ow, and uses the local chord of blade sections as characteristic length. The Re
observed around the tip of blades reach orders of magnitude of 106. This results in the
generation of highly turbulent �ows in the wake of the turbine, which are hard to predict.

Re =
ρuL

η
(1.1)

The WTs operating for industrial use are installed in wind farms. Aside from grid
integration and other electrical considerations, the wake interactions e�ects occurring at
the farm's scale are a very important topic. Whenever a WT is operating, the aerody-
namic �ows around it are highly perturbed. Consequently, the operational behavior of
the WTs located in the wake is strongly modi�ed. The incoming air�ow is much more
turbulent, which reduces the energy production and generates fatigue on the structures,
thus reducing the life span of the turbines. A famous illustration of this e�ect is presented
in Fig. 1.6. This picture, taken at the Horns Rev wind farm, depicts clouds appearing
in the wake of WTs because of the pressure drop. Strong interactions can be highlighted
between the downwind turbines and the wake of the upwind one. As mentioned before,
a majority of the turbines are no longer operating in the optimal conditions, and limit
the production of the whole wind farm.

Figure 1.6: Wind farms wake e�ects: clouds appearing in the wake of WTs at the Horns
Rev wind farm (Denmark). Picture taken by Christian Steiness, 12 February 2008.

As a wind farm intends to produce as much energy as possible, the operational time
spent in the situation of Fig. 1.6 must be reduced as much as possible. To that extent,
the design of wind farms needs to be optimal. Wind roses are measured at the wind
farm location, and turbines are placed depending on the prevailing wind. Active control
strategies can be implemented, where an upwind turbine is yawed in order to de�ect the
wake, which can avoid the downwind turbines.

Controlling WTs

The objective of WTs is to extract electricity from the wind through a mechanical chain.
The wind impacting the blades generate a lift force, which initiates and maintains the
rotation of the WT rotor through the torque generated. The intensity of the lift force
depends on wind speed and on the orientation of the blade. The action of the wind on
the blades also generate a drag force, which is aligned with the in�ow and induces a
thrust. Control is applied to the WTs to both optimize the energy production and the
lifetime of the machine. The objective of control is to keep torque and thrust as close as

7



possible from the optimal WT con�guration.

An example of the control strategy is displayed in Fig. 1.7 for a 2MW-WT. Di�erent
operating modes can be identi�ed from this curve: when the wind is too weak, typically
lower than 3m.s−1, the WT is stopped. When the wind increases but remains inferior
to the rated wind speed, commonly around 15m.s−1, the production is maximized. The
rated wind speed is the wind speed which optimizes the performances of the WT, i.e., the
optimal operational situation. The blades of the WT are actuated to produce as much
as possible, which returns a production at the nominal power of the WT. The tip speed
ratio (TSR), which characterizes the rotation speed of the tip of the blades regarding the
ambient wind speed, is optimized at the rated wind speed. It reaches a value of around
7, which corresponds to the ideal TSR for 3-bladed, upwind WTs. When the wind speed
increases again, the performances of the WT have to be altered by controlling the pitch
angles of blades to keep producing at the nominal power. The reduction of production
is necessary to preserve the integrity of the electrical chain. In this operating mode, the
TSR of the rotor is progressively reduced. When too strong winds are observed, with,
e.g., stormy winds reaching 25m.s−1, the turbine is stopped.
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Figure 1.7: Theoretical power curve of a 6MW -WT.

The rotor needs to be aligned as well as possible with the incoming wind, to reach
optimal production and to better balance the loads, and thus to limit fatigue. This align-
ment is obtained with active control of the nacelle's yaw angle, as depicted in Fig. 1.5.
Once correct alignment is observed, a common strategy to limit the production of the
turbine is to control the blades in pitch. This idea can be regarded from a 2D point of
view, as the sections of the blades are aerodynamic pro�les. Increasing the pitch angle
increases the relative wind angle of attack of the blade sections having the major con-
tributions for power production. This correction facilitates the apparition of the stall,
situation for which the lift is largely decreased. Applied individually or collectively on
each of the blades for a uniform wind, it allows distributing the e�orts applied on the ro-
tor. When the turbine needs to be stopped, for high wind speeds or during maintenance,
the pitch of the blade is brought to a situation where the production is minimal, tending
towards zero. A security brake is also activated on the shaft, to guarantee an immobile
rotor.

One of the challenges of the control laws is to identify the mode in which the turbine
is operating. Even if the nacelle is equipped with an anemometer and a wind vane, or
sometimes a Lidar, those sensors are located in the wake of the turbine. Their signals are
largely perturbed by the wake generated by the rotor, and are not particularly reliable.
Moreover, the relative wind impacting the blades is not uniform, and the information
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obtained at the rotor may not be su�cient for accurate active control. Consequently,
the pitch of the blade is commonly ruled by the loads measured on the blades. This
technique allows to account for non-uniform distribution of wind, as the pitch is controlled
separately on blades, through a balance of loads among the whole rotor.

1.1.3 Floating o�shore wind turbines

If the conception of WTs is the same for �oating purposes as for onshore one, the stronger
winds found o�shore, the smaller interaction with human activities and the technological
advances pave the way for the use of giant WTs. As an answer to resource, transport or
social acceptance issues, the industry tends to favor o�shore wind.

While onshore turbines usually have a 2MW nominal power, the �oating farm in-
stalled o�shore Scotland during the second semester of 2017 is composed of 6MW tur-
bines. However, the current development trend is to design even larger turbines, e.g.,
with General Electrics announcing in 2018 the commercialization of a 12MW turbine.
James and Ros (2015) noted that the industry currently think of bigger WTs as a way
to reduce the Levelized Cost Of Energy (LCOE) of o�shore wind.

The development of FOWTs has accelerated over the last decade, as the �rst full-
scale prototypes were installed around 2010. James and Ros (2015) did an overview
of the di�erent designs currently developed or tested, with emphasis put on technology
readiness and on the di�erent challenges to meet before industrial production. While
many prototypes have been studied, they were all composed of: a �oater to ensure
stability, a WT disposed on the �oater, several mooring lines for stationkeeping, and an
electric cable to connect the turbine to the grid. The di�erent elements are presented in
the upcoming Subsecs.

Floaters

There are a lot of challenges to answer when designing a WT �oater. First of all, the
�oater needs to provide buoyancy and stability for the whole structure, and both the
massive size of the engines and the gravity center of the turbine located upwards makes
it very challenging. As the e�orts applied on the blades are transmitted to the �oating
support through the tower, a strong overturning moment can be imposed, especially on
huge turbines. These aerodynamic e�ects are coupled to the wave-induce loads, gener-
ated by the swell and the waves directly on the �oater. These multiple complex e�ects
impacting the dynamics of the �oater are hard to predict accurately.

Another objective is to limit the uncontrolled motion of the FOWTs, to keep the best
alignment possible between the rotor and the wind. The idea, in the context of FOWTs,
is to optimize the LCOE. Reducing the cost of the �oater is a way to reduce the costs,
and should be an industrial objective to help the �oating wind energy reaching maturity.
The understanding of the phenomena acting on FOWTs is necessary for this optimiza-
tion. Today, the di�culty to model meteorological states with precision, along with the
strength of extreme events encountered o�shore, e.g., centennial waves, often lead to an
oversizing of the �oater. The same issue needs to be solved for the operational expendi-
tures (OPEX), as the lifespan of a �oater will be counted in decennials. More generally,
the initial and recurrent costs of the �oater are, as well as the production capacity of the
WT, key indicators for the feasibility of an o�shore wind farm. Consequently, the devel-
opment of optimal stability criteria for �oaters is critical for the �oating wind industry,
as a compromise between low expenses and robustness will need to be found.

Several types of �oaters have been proposed since the beginning of the researches on
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(a) Three di�erent concepts of �oaters, spar (left), TLP (middle)
and barge (right), from Butter�eld et al. (2005).

(b) Example of a semi-submersible
�oater, the Dutch Tri�oater.

Figure 1.8: Di�erent concepts of �oaters.

the subject. They are largely inspired by the technologies used in the oil industry. Three
main types of �oaters exist, as listed by Butter�eld et al. (2005) and depicted in Fig. 1.8.
On the left of the picture, a spar buoy is presented. This ballast-stabilized concept relies
on a ballast, disposed deep down under the water surface, for its stability. This mass
enables to bring down the gravity center of the whole structure under its center of buoy-
ancy, which guarantees stability. In the middle, the family of mooring-lines-stabilized
�oaters is presented. This concept is very di�erent from the spar one, as the standalone
assembly of the turbine and the �oater is unstable. Very good stability is provided by
the tension in the mooring lines, and this concept is thus named Tension Leg Platform
(TLP). The third concept of �oater is the barge. This technology is designed to have a
huge waterplane area, which compensates for the tilting moment induced by the e�orts
applied on the rotor. A last design, derived from barges, is also presented in Fig. 1.8.
This concept, known as semi-submersible (semi-sub), has hydrodynamic properties close
to those of the barges. If usually comes with three columns interconnected, forming a
support on which the turbine can be mounted. Compared to barges, the design of a semi-
sub is more complex, but reduces the quantity of materials required for its construction.

To classify �oaters, a methodology based on a stabilization triangle can be used, as
presented in Fig. 1.9. Each edge of the triangle corresponds to one of the three stabiliza-
tion modes available for a �oating structure: using a ballast, the tension in the mooring
lines or buoyancy. While an approximative positioning is proposed on the illustration,
geometries, materials or mooring choices have an impact on the position of each �oater
inside this triangle. This methodology enables to store the di�erent technologies while
de�ning the in�uence of any type of stabilization, and Butter�eld et al. (2005) showed
that the contribution of the three types should be approximatively the same to minimize
costs.

The prototypes developed initially were composed of steel for the major part. This
design was inherited from marine experience, bottom-�xed foundations and o�shore oil
engineering, but a major drawback can be found for steel. The cost of a steel-�oater
tends to be very important, and some prototypes now start to consider concrete as
an alternative. Concrete is also lighter, which o�ers the possibility to design smaller
�oaters. Even if �oaters designed in concrete are heavier, their cost remains lower, which
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Figure 1.9: Classi�cation of di�erent �oaters in a stabilization triangle, by Borg and
Collu (2015).

is pro�table in a context where CAPEX has to be reduced as much as possible. Some
prototypes have even been developed to be built either in steel or in concrete, depending
on the opportunities occurring for each project, e.g. the barge from IDEOL.

Mooring lines

The mooring lines are critical for the stabilization of the FOWTs. They guarantee the
stationkeeping, which preserves the electrical cable to encounter high curvatures, but can
also provide necessary stability in the case of TLP. Three di�erent designs of mooring
lines are used in the context of FOWT, depending on the prototypes installed and on
the seabed. They are presented in Fig. 1.10.

Figure 1.10: Di�erent mooring concepts: catenary lines (left) ; tension-leg moorings
(center) ; taut-leg moorings (right).

The �rst concept uses catenary lines, which stabilize the FOWTs with its own weight.
At least three massive lines, usually crafted in metal, are attached to the �oater on one
hand, while the other end is anchored to the seabed. When loads are applied to the
�oating structure, the inertia of the mooring lines limits its movements. This technology
is not suited for TLP FOWTs, whose structural de�nition requires mooring lines bringing
tension as a matter of stability. This tension-leg concept relies on shorter lines anchoring
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the �oater to the seabed, commonly using synthetic �ber or wire ropes, which can largely
reduce the CAPEX invested in mooring lines. The last technology, the taut-leg mooring,
has been developed as an intermediate between catenary and TLP. The taut-leg concept
features tension in the mooring lines, which are not oriented vertically as for TLP but
form an angle of about 45◦. This technique provides interesting stability, uses cheaper
lines than catenary, and is less challenging to install than the TLP concept.

Electrical connection

The connection of a wind farm to the grid is performed using high-tension electrical
cables. Those cables are buried into the seabed to limit potential degradations. The
most common technology used for electricity transport is alternative current (AC), as
commonly used onshore. However, the losses when electricity is transported on long dis-
tances using AC increase rapidly. A solution is to use transformers to regularly reamplify
the electrical signal received, but this solution makes the energy distribution chain more
complex, thus increasing the risk of failure. As the tendency is now to install wind farms
far o�shore, high-voltage direct current (HVDC) is another option, detailed by Kirby
et al. (2001). HDVC lines are less expensive, as shorter cables are needed, and encounter
limited losses during electricity transport. However, this strategy requires the construc-
tion of appropriated energy conversion installations onshore. This research subject is not
further explored in the future developments.

1.2 Numerical simulation of FOWTs

Numerical simulation of wind turbines is a topic that has emerged over the last decades,
following an important rise in the number of wind turbines installed onshore. The de-
velopment of accurate and computationally e�cient techniques helped the industry to
reach maturity, while several codes were validated against experimental data. The �rst
o�shore wind turbines were bottom-�xed, which established a convergence point between
wind and marine renewable energy sectors. In this bottom-�xed context, the aerodynam-
ics and hydrodynamics can be studied separately, given the minor actions of air on the
supports and of water on the rotor. The impact of the waves on the structure require
appropriated dimensioning, which is realized thanks to an accurate comprehension of the
hydrodynamics. The motions of the o�shore bottom-�xed turbines are comparable to the
ones of onshore WTs, and, consequently, the aerodynamic models designed for onshore
wind are still applicable. This ability to split the coupled problem between aerodynamic
and hydrodynamic ones reduces the complexity of the studies. On the contrary, FOWTs
are much more impacted by environmental conditions, and the air/water interactions
cannot be neglected.

The di�culties encountered with basin experimentations highlight the importance
of numerical simulation of FOWTs, which is presented in this Sec. The resolution of
the aerodynamics of WTs is presented in Sec. 1.2.1. The simulation techniques used for
the hydrodynamics are presented in Sec. 1.2.2. Di�erent methodologies applied to the
simulation of FOWTs are presented in Sec. 1.2.3.

1.2.1 Aerodynamic of wind turbines

The simulation of FOWTs is a growing �eld, which bene�ts from the experiences gath-
ered by the onshore wind community. Similarities can be found in the modeling of the
rotor. Even if the �oating context increases the interdependency between aero- and hy-
drodynamics, the reduced computational e�ort justi�ed the application of the e�cient
methodologies developed for onshore wind to the o�shore context. This Subsec. focuses
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on the numerical methods used to simulate WTs in the onshore context. Some of those
methods are directly applicable to the simulation of FOWTs.

Wind modeling

In a prelude to the simulation of WTs, the representation of accurate aerodynamics is
necessary to guarantee the quality of the results obtained. The wind pro�le as a function
of the altitude, the Atmospheric Boundary Layer (ABL), has been particularly studied,
and is still under particular attention as the WTs grow bigger. The wind speeds are null
at the ground and progressively increase, before reaching a plateau. The behavior of the
ABL directly depends on the terrain surrounding the area observed and of the air stability
in the atmosphere. The general description of ABLs focuses essentially on the de�nition
of correct wind speeds and directions. As presented in Sempreviva et al. (2010), some
di�erences can be found between onshore and o�shore ABLs. The simulation of ABLs
relies on the imposition of boundary conditions as input when Navier-Stokes (NS) solvers
are considered. A focus was placed on the generation of coherent boundary conditions
in Blocken et al. (2007).

Wind also comes with small, vanishing aerodynamic e�ects, which nonetheless have
an important impact on WTs. Those aggregated e�ects form the turbulence, which has
an impact on energy production and on the lifespan of WTs. The characteristics of
turbulence, small and vanishing, makes it very expensive to compute. The size lK and
the duration τK of the smallest events, known as the Kolmogorov scales, are expressed
in Eqs. 1.2 with η viscosity and ε the average rate of dissipation of turbulence kinetic
energy.

lK =

(
η3

ε

)1/4

(1.2a)

τK =
(η
ε

)1/2
(1.2b)

A coarse approximation of ε writes ε = U3/L, with U and L respectively the reference
velocity and length. For a �ow of Re = 1M around a tip of WT blade of section L = 1m,
the order of magnitude of the small scales are lK = O(10−5)m and τK = O(10−4)s. In
order to capture all the physics, mesh cells of size inferior to lK are necessary, which
requires huge computational resources. Consequently, several wind modeling techniques
are either considering inviscid wind or intending to capture the e�ects characterized by
a long reference time. The representation of turbulence is possible with an accurate
resolution of the NS equations, i.e., with LES- or DNS-type formulations, as described
in Sec. 3.1.

Rotor representation

Di�erent modeling strategies have been developed. The most accurate one consists in
the representation of the whole blades, which are tracked during their revolutions. A �rst
approximation simpli�es the geometry of the blades, to reduce the computational e�ort
associated. Simpler, quasi-steady approaches only consider the pressure drop occurring
around the WTs, and forget the motion of the blades. All these models aim at measuring
the e�orts applied on the rotor by the wind, to evaluate the aerodynamic perturbations
generated by the WTs. To that extent, rotor models can be used in a coupling with
a �ow solver. The de�nition of the relative wind at the rotor is better described with
coupled simulations, and the perturbations form a wake of particular interest for farm
considerations. The next paragraphs present di�erent rotor models.
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The simplest rotor model is the Actuator Disk (AD) method, used in Sørensen and
Myken (1992). An axial, steady potential �ow is considered. The rotor is represented
as a porous disk, through which the �ow can travel, at the cost of a pressure drop. An
evaluation of the thrust and power coe�cients measured at the turbine can be obtained,
which allows measuring the energy produced. They are labeled CT and CP , and are
presented in Eqs. (1.3) with u∞ the ambient velocity and ud the velocity traveling through
the disk. This approximation is particularly used in the context of wind farms, where
a huge number of turbines have to be simulated. However, the wake induced by an AD
does not take into account the rotation of the rotor.

CT = 4a(1− a) (1.3a)

CP = 4a(1− a)2 (1.3b)

a =
u∞ − ud
u∞

(1.3c)

Another technique, the Blade Element Momentum (BEM) method, is an e�cient
approach computationally speaking to obtain an estimation of the loads applied on a
WT rotor. An extensive study of BEM can be found in Lanzafame and Messina (2007),
and a comparison between BEM and AD techniques can be found in Madsen et al.
(2007). This method operates as a standalone method, combining the AD theory and
blade element considerations. Consequently, this method is valid for steady and axial
�ows only. From the speci�cation of blade geometry, especially the aerodynamic pro�les
de�ning the blade sections, drag and lift coe�cients are computed, which enable the
determination of forces. They are respectively named CD and CL, and are expressed in
Eqs. (1.4), with u the velocity of the �ow and A the surface of the airfoil. The drag and
lift coe�cients of the airfoil CD,a and CL,a, which depend on α the orientation of the
airfoil and on Re the Reynolds number of the �ow, are determined from tabulated data.
This method has been widely used, but the results presented in Eqs. (1.4) are valid for
aligned, steady �ow. This situation is utopian, and several corrections have thus been
proposed from empirical considerations.

CD =
1

2
ρuACD,a (α,Re)

CL =
1

2
ρuACL,a (α,Re)

(1.4)

The empirical corrections, presented by Hansen et al. (2006), provide an extension
of the BEM towards real operational situations. Among the major corrections, the dy-
namic in�ow model provides an adaptation of BEM when the wake is not established.
It allows to correct the evaluation of aerodynamic coe�cients when brutal angle shifts
are observed. A second correction is the yaw/tilt model, which considers the misalign-
ment between the wind and the rotor. The forces applied on the blades are pondered
depending on their position, and the blades positioned upwind induce weaker velocities
than those located in the wake. A third correction considers the dynamic stall. When
the pitch of blades is modi�ed, a detachment of the boundary layers may occur. In clas-
sical BEM, the drop in CL is directly applied. The dynamic stall technique provides a
better smoothing to CL, through a repartition of the shift along a certain time. Another
correction, known as Prandtl's tip loss, takes into account the vortices generated at the
tip of the blades. A last addition to the BEM can be used to generate realistic wind
pro�les. This method has progressively lost in�uence, as accurate wind repartition can
now be obtained thanks to a coupling between BEM and CFD solvers. Those di�erent
corrections enable to adapt BEM to operational WT situations. However, this applica-
tion keeps considering a potential �ow, and misses turbine/wake interactions.
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Another set of methods rely on an inviscid characterization of the �ow around the
WT blades, and on the propagation of the aerodynamic e�ects. The BEM can be used
on a blade section to generate vortices at the tip of the blade, which will then form the
wake. The vortices are propagated, which allows performing dynamic simulation of the
WT wake. A prescribed motion of the vortices can be de�ned, using a constant wake
velocity for the advection. This method is known as Prescribed Vortex Wake (PVW). An
extension of this method considers free motion for the vortices, where each vortex under-
goes the in�uence of all the others. This method, known as Free-Vortex Wake (FVW),
provides an interesting behavior in the sense that a vortex previously generated has an
impact on the newest. The dynamic behavior induced o�ers the potential to simulate
accurate wakes when the relative wind at the rotor is varying, e.g., when a �oating WT
is considered. The free-vortex methods provide better precision than BEM, especially for
thin aerodynamic e�ects, as stated in Blondel et al. (2016). The authors noted that this
limitation may disqualify BEM for �oating wind applications, where the �uid-structure
interactions are considerable. However, the computational e�ort required by the FVW
approach is considerable, as the wake generation requires the propagation of many vor-
tices. A FVW method is presented in Sebastian and Lackner (2012b). Extensions of this
approach can be realized to get an enhanced precision. This was done, e.g., by Pinon
et al. (2017) to account for the turbulence in the wake. Their study was oriented towards
the simulation of tidal turbines, for which the turbulence issues are more important.
Still, this modi�ed FVW method is applicable to WT simulation.

All the previous methods considered inviscid �ows. To account for the viscosity of
the �ow, the Navier-Stokes equations have to be solved. The �ow solvers developed can
be coupled with the AD or BEM methods previously presented. To get a better repre-
sentation of WTs, the Actuator Line (AL) method was developed. The AL models the
rotor as a set of lines, as presented in Shen (2002). Di�erent sections of the blade are
studied, and the theoretical force applied by the �ow on each section is evaluated using
BEM approaches. Those forces are sent back to the �ow solver, and create perturba-
tions in the wake of the turbine. This technique generates a dynamic, rotating wake.
The additional computational cost compared to AD is notable, but for the study of a
single WT, several authors preferred AL which provides unsteadiness. For pure aero-
dynamic simulations, this formulation allows to study the unsteady �ow behind a WT
using monophasic simulations, as realized by Benard et al. (2018). An extension of this
method is performed with surfaces instead of sections for the force evaluation, as in Shen
et al. (2007), to create the Actuator Surface (AS) method. Even if the idea is similar,
AS is supposed to bring additional precision. However, little improvements are observed
from AL to AS, and the increased computational e�ort tends to limit the propagation of
this method.

The last rotor representation technique requires an exact reconstruction of the blade
geometries, along with an accurate assembly of the rotor. This approach is extremely
expensive computationally, as the aerodynamic boundary layers have to be captured on
all the blades. A WT is simulated using this approach in Bazilevs et al. (2011a). While
the BEM can be used as an industrial technology in terms of rapidity, the FVW can be
used only in R&D processes, and the full-representation technique may be a�ordable just
for validation of softwares computationally cheaper. However, it o�ers the opportunity
to couple an aeroelastic solver with the �uid solver used, which allows observing very
thin e�ects completely overlooked by the other approaches. This strategy was developed,
e.g., in Bazilevs et al. (2011b) of Quallen and Xing (2016).
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Coupling with CFD solvers

As already mentioned, the less expensive numerical methods used to represent the solver
consider inviscid �ow. This approximation is acceptable to get approximative results,
but CFD solvers are required when accurate numerical simulations are realized. Those
applications need a precise representation of the wind at the rotor, which sometimes
interacts with the wake. Complex terrains require the modeling of the obstacles perturb-
ing the �ows, and turbulence may be important under certain conditions. All of these
characteristics require the use of a �ow solver.

The �ow solver refers to the resolution of the NS equations, which is introduced in
Sec. 3.1. In a WT context, the simulation aims at obtaining a correct representation
of the wind distribution in time and space. Depending on the precision required in the
simulations, di�erent approaches can be used for the NS resolution. Among the di�erent
options presented in Krogstad and Eriksen (2013), a major part used a RANS formu-
lation of the NS equations, while some used LES. These formulations are presented in
Sec. 3.1.

The simulation of a FOWT needs to be regarded as a �uid-structure interaction
problem. The presence of the structures modify the �ows, which have an impact on
the motion, and potentially deformations, of the aforementioned structures. A coupling
needs to be established between the WT model and the �ow solver to realized WT sim-
ulation. The coupling strategy directly depends on the kind of rotor modeling selected.
When standalone methods such as BEM are used for WT simulation, communication is
established between the �ow solver and the WT model. The ambient wind computed
thanks to the �ow solver are used as input of the rotor model. The outputs from WT
modeling are brought back to the �ow solver, in particular to perturb the WT wake. On
the contrary, when intrusive methods such as full-rotor reconstruction are used, the forces
and wake induced by the WT are directly deduced from the aerodynamic circulations,
i.e., from the �ow solver results. Di�erent coupling strategies can then be implemented,
which are presented with more details in Sec. 3.1.

Particular attention needs to be placed in the selection of the models used for both
the �ow solver and the WT modeling. The accuracy of these models in space and time
needs to be similar, to obtain numerical errors balanced between the two models used.
Along with the coupling strategies, the de�nition of the models must be representative
of the test case simulated too.

Limitations towards direct o�shore applications

The �oating technologies are highly impacted by both wind and waves. Strong meteo-
rological events induce the motion of the �oating structure, which modi�es the relative
wind at the rotor's hub. Sebastian and Lackner (2011) showed that under weak wind
conditions, a pitch-back of the �oating structure generates interactions between the ro-
tor and its wake. Those aerodynamic e�ects are not observed in onshore context, and
consequently, the classical onshore simulation engines do not handle it. Moreover, with
the trend of going far o�shore, the size of the WTs tends to rise. Wind speeds de�ned
by the atmospheric boundary layer cannot be considered constant over the whole rotor
traveling area. This observation limits the application of models considering only the
wind speed at the hub, even if this statement shall be moderated concerning o�shore
situations, as stated by Sark et al. (2019). The models widely used for bottom-�xed
wind need to be adapted to account for the structure motion. The hydrodynamic loads
applied on the �oater have to be captured accurately, to guarantee a good estimation of
the displacements encountered.
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1.2.2 Hydrodynamics

The in�uence of the waves on the structures supporting FOWTs is a critical point for
the development of the technologies. The understanding of the dynamics of waves, along
with a correct numerical representation, is crucial to obtain an accurate simulation of
FOWTs. The challenges related to hydrodynamics are presented in this Subsec.

Wave theories

The characterization of waves is necessary to measure correctly the movements of a
FOWT. The hydrodynamics are ruled by the NS equations, which have long been pro-
hibitively expensive to solve. Several approaches allowing to obtain approximative results
at a moderate cost have been developed, and are brie�y presented in the following.

The �rst approach historically considered is the potential theory. This expression
of the velocity potential is obtained thanks to the resolution of a Laplace equation,
which is simpli�ed from the NS equations considering an inviscid and irrotational �ow.
The linearized potential theory applies to waves of small amplitude only, but non-linear
approaches consider any kind of waves. The Boundary Element Method provides an
e�cient resolution, using Green functions to simplify the problem. This method returns
kinematic and dynamic description of the free-surface. A linearization of the problem
obtained enables to obtain a �rst approximation of the velocity potential. This results
in an expression of the free-surface elevation.

An extension can be performed towards high order methods, taking advantage of a
spectral basis and a Taylor expansion in the resolution, as presented in Ducrozet et al.
(2016). While these methods provide an e�cient and accurate representation of the tar-
geted free-surface, the perturbations induced by a �oating structure does not perturb the
free-surface elevation in the wake.

The resolution of the NS equations is the upgrade of the potential �ow formulation in
terms of precision. It handles FSI but comes with much higher computational expenses.
However, no expression describing the Free-Surface (FS) can be directly derived from the
NS equations. Consequently, the generation of waves has to be handled di�erently. It
imposes to go back to the sources of waves in nature: the wind and the swell.

Numerical generation of waves for CFD

The computational cost imposed by the generation of waves from natural sources is con-
siderable. A common approach to tackle this limitation is to simulate smaller domains,
where targeted wind/wave conditions can be reproduced. The development of Numerical
Wave Tanks (NWTs) has enabled the generation of high-precision wave �elds, critical to
measure the hydrodynamic impacts on �oating structures. Inspired by the experimen-
tal studies, the NWTs reproduce the main characteristics of water tanks: a wave-maker
transmits energy to the water for the generation of waves ; a numerical beach limits the
re�exion of the waves on the basin end. Coherent boundary conditions along with an
appropriated domain de�nition enable to generate a wave �eld, obtained thanks to a res-
olution of the NS equations, in a preferential direction. A literature review of numerical
wave tanks is proposed by Windt et al. (2018) in the context of wave energy converters,
where similar challenges are observed when compared to the �oating wind context.

Five wave generation techniques can be distinguished, and are presented in Fig. 1.11.
In (a), the relaxation area methods acquire the solution of the NS equations as a com-
bination of a targeted solution and a computed one. The waves are generated thanks
to the targeted solution, which is non-zero only in the relaxation area and decays from
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Figure 1.11: Wave generation (a)�(e) and absorption (f)�(k) in numer-
ical wave tanks, from Windt et al. (2018).

the sides of the domain, de�ned from wave theory. In (b) and (c), boundary conditions
are applied on domains and provide energy to the neighboring water. Those domains
are respectively �xed or moving, which characterizes the static boundary or dynamic
boundary methods. In (d), the mass source method consists in successive addition and
removing of mass. In (e), the impulse source approach uses a source term which is inte-
grated into the momentum equation. Those last two techniques necessarily generate two
waves propagated in both directions.

The re�exion of waves in NWTs can be limited using di�erent approaches. Six fam-
ilies of techniques are identi�ed by Windt et al. (2018), and presented in Fig. 1.11. In
(f)�(h), the three methods presented are similar to (a)�(c), mentioned in the previous
paragraph concerning wave generation. This time, the target is obviously to extract
all the energy from the incoming waves. In (i), the numerical beaches de�ne regions
where the energy of waves is dissipated. This can be achieved with viscosity increase,
velocity canceling, or damping terms in the momentum equation. In (j), the physical
de�nition of the domain integrates a geometry reproducing a beach, where waves break
and, consequently, dissipate their energy. Finally, in (k), the last technique is to de�ne a
larger domain, where mesh cells can be coarsened at the rear. The numerical dissipation
induced allows limiting the re�exion observed.

The generation of waves needs to be done regarding a particular sea state. The
energy transported by the waves is highly dependent on the amplitude and frequency of
the wave train studied. The excitation of the structures impacted by this particular wave
train can have a huge in�uence on the motion or deformations observed, as resonance
may appear. The validation of �ow solvers and tank de�nitions is necessary, as well as
the characterization of the sea states modeled. To that extent, the wave distribution
observed at certain locations has been widely studied, e.g. the JONSWAP spectrum in
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the North Sea.

FSI of �oating structures

The subject of FSI is very important for the description of the dynamic of a FOWT. The
objects on which FSI is realized need to be represented as accurately as possible, and
the resolution should return the motions of the bodies under the action of hydrodynamic
forces. The major issues of FSI are 1) to evaluate the forces applied by the waves on the
structures, 2) to calculate the displacements of the �oating objects, and 3) to compute
the action of the structures on the surrounding water. Di�erent methods used for �oating
FSI are presented in the following.

For slender bodies, wave-induced loads may be calculated through the Morison equa-
tion, proposed by Morison et al. (1950). This empirical formulation combines inertia and
drag terms to evaluate the forces applied by waves on a structure. This method intro-
duce simpli�cations, which reduce largely the computational costs. However, the viscous
e�ects are completely canceled, which prevents its application to turbulent �ows. While
the Boundary Element Method de�nes the waves from the water �uxes, the Morison
equation evaluates the forces applied to immersed structures. An important number of
approaches returning the forces have been developed, some of them are listed by Borg
and Collu (2015). They all come with their pros and cons, but often focus on simple
geometries. This can become a limitation whenever the structures studied are complex,
e.g. when a semi-submersible �oater is modeled. This expression of the forces is stan-
dalone, but can also be coupled with a linear potential theory.

The movements of the structures may also be obtained from the linear potential �ow
theory. The resolution is performed in the frequency domain, for both waves and body
movements of small amplitudes. The Cummins equation, detailed by Cummins (1962),
enables to bring back the results to the temporal domain. The movements of oscillatory
objects under a wave �eld can be determined from this resolution. Terms inherited from
the Morison theory can be included in the Cummins equation. This formulation is sup-
posed to bring better accuracy to the dynamic of the �oater. However, this equation
contains a memory term, which needs the knowledge of all the past velocities of the
structure. Consequently, this equation is not solved in its original form, but must be
treated to eliminate this particular term.

Another FSI approach considers the potential theory of the second order. The con-
struction of Quadratic Transfer Functions (QTFs) is possible from this theory. Two main
types of transfer functions can be built, which focus on particular wave frequencies. Con-
sequently, a family will be able to represent accurately the high frequencies applied on a
structure, while the other models e�ciently the low frequencies. As an example, Paik and
Roesset (1996) dedicated an hydrodynamic study using QTFs to tension-leg platforms,
application close from the problematic of FOWTs.

CFD models can be used to get a �ow �eld perturbed by the movements of the struc-
ture, at a much higher computational expense. CFD can be realized in di�erent ways,
using a single solver for both hydrodynamic and structural movements, or with coupled
solvers. A particular requirement is the capture of both the free-surface and the struc-
tures. The evaluation of the forces can be obtained from one of the techniques detailed
previously. Another approach is to determine the forces directly from the pressure ap-
plied by the �uid on the object, e.g., from a structural solver.

Once the �oating structure is represented, the dynamic of the system is solved. The
movements of the structure can be either prescribed or solved. Prescribed motions are
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user-de�ned, and do not respect the e�orts provided by the surrounding �ows. On the
contrary, the solved motions directly depend on the forces applied to the �oater. The
e�orts are deduced from the �ow, and may be measured locally from the �uid dynamics.
The contributions induced by the displaced object can then be used to impact the sur-
rounding water.

In the context of rigid structures, the force applied on 3 di�erent points of an object
is required to solve its movements. However, hydrodynamic loads may induce deforma-
tions of the object, and elasticity could be required to get accurate simulations. The
integration of a structural solver has not been found in the literature in a �oating wind
context. The relevance of this study regarding the small deformations observed is the
main reason, along with the important computational e�ort induced.

A key aspect of FOWT is the interaction with the mooring lines, as evoked in Sub-
sec. 1.1.3. To prevent the �oating structures from drifting, the moorings must absorb
important hydrodynamic loadings. Di�erent modeling approaches have been proposed,
and are presented in an exhaustive study by Davidson and Ringwood (2017). The sim-
plest one consists in representing each mooring line as a unique sti�ness matrix, in a weak
coupling. Better precision is achieved with springs modeling the di�erent mooring lines,
whose sti�ness de�nes the span of movements allowed for the �oating object. A more
advanced approach considers the dynamics or a catenary line, modeled as a succession of
weights interconnected using springs. These di�erent models interact with the �oating
structure by communicating the forces applied by the mooring lines on the attach points
placed on the structure itself.

1.2.3 Existing numerical simulation tools for FOWTs

This Sec. intends to make an inventory of the methods currently used to simulate FOWTs.
In this particular Subsec., a focus is placed on the solutions used by the industry as design
tools. The discussion is extended by an overview of the methods developed during the
last decade, which targeted high accuracy in the results. A particular focus is placed on
the models at the edge in terms of accuracy, basically CFD ones.

Engineering solutions for the simulation of FOWTs

The solutions used in the industry to design and certify FOWTs need to be as e�cient
as possible. The simulations tools providing rapid answers are favored compared to
accurate and computationally expensive codes. An overview of the di�erent softwares
used for FOWT simulation in the industry is presented by DNV-GL (2019): 9 simulate
complete FOWTs, and 4 are pure hydrodynamic softwares. The methods listed in the
following paragraphs for industry use are described in Subsec. 1.2.1 for aerodynamics
and in Subsec. 1.2.2 for hydrodynamics. The presence of hydrodynamic codes in this list
allows reducing the computational expenses. They come with a precomputed hydrody-
namic database, providing for every simple geometry the corresponding hydrodynamic
coe�cients.

The aerodynamics are handled in a majority of codes by BEM, using empirical cor-
rections. Half of the aerodynamic codes also have a PVW method implemented. The
other methods are rather con�dential: only one code features FVW, and CFD is available
for aerodynamics in two softwares. Even if they could bring a higher �delity to physics,
those methods are not favored over BEM, because of their longer computational times.

The evaluation of hydrodynamic loads can be realized in almost every software using
a Morison equation. For better accuracy, FOWT aero/hydro softwares can solve a Cum-
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mins equation with Morison drag. The calibration required by those methods for any
geometry or sea state is emphasized by DNV-GL (2019). Experimental studies or CFD
may be used as references. The pure hydrodynamic codes consider QTF evaluated from
potential �ow theories, which bring more �exibility, especially when the in�uence of the
wind is negligible. However, in the context of FOWTs, the in�uence of the wind on the
structures is rarely minor. Consequently, calibration is often required for QTF models
too. The authors noted that, despite their high computational expenses, CFD provides a
far better representation and understanding of the hydrodynamics around FOWTs. The
study of extreme sea states using CFD instead of multiple situations with simpler models
is a way to validate the behavior of �oating supports.

The structural modeling of FOWTs is realized in engineering simulation tools using
either multi-body system or �nite element formulations. The reason for using rather
accurate models for structures is advocated by the aeroelasticity, which is crucial to get
a precise understanding of the dynamics of WT blades.

The moorings can be handled using sti�ness approaches in every simulation code. A
large majority of softwares can take advantage of quasi-static models, while �nite ele-
ment methods and multi-body system approaches have been implemented in half of the
models. Results with an interesting �delity can be obtained thanks to �nite elements
or multi-body systems. These representations allow understanding precisely the behav-
ior of catenary lines, using a representation as connected beams. The e�ciency of the
computations is guaranteed by the 1D characterization of the mooring lines, which still
provides interesting reliability.

As a summary, the FOWT industry intends to simulate as precisely as possible, given
particularly strict time constraints. In a 3D, multi-physics context, fast and accurate are
currently incompatible. Consequently, the computational expenses are reduced thanks
to simpli�cations in the most expensive computational physical models: the aero- and
hydrodynamics. The most used aerodynamic model, the BEM, has been corrected ex-
tensively, but keeps important physical shortcomings. The hydrodynamic models rely on
a potential wave theory, which considers the water inviscid, and need to be calibrated
before application to FOWTs. The need to get reference solutions to tune the engineer-
ing models brought researchers to more accurate methods, which are presented in the
following.

High-precision simulation of FOWTs in the research community

The di�erent limitations and approximations induced by the engineering codes lead to
further studies, providing higher precision. Experimental studies are a way to validate
the behavior of those codes. This is also the case of new numerical methods, usually
more expensive but bene�ting of successive technological advances to become a�ordable.
CFD is an approach which attracted attention in the context of FOWTs.

The simulation of FOWTs using CFD is a fairly new topic, which has emerged during
the last decade. It comes as a combination of challenges, inherited from WT simulation,
ocean engineering or �uid-structure interaction. The simulations require huge computa-
tional domains, while small-scale e�ects need to be represented. The same behavior is
computed on the time frame, as long simulations are needed, while vanishing e�ects can
be observed. The meshing of the computational domain can become a burden, as the
geometries of the �oaters used are often complex. For all those reasons, CFD simulation
of FOWTs remained a rather con�dential topic. Several di�erent CFD models exist, and
each has its characteristic precision. Following the increase in the computing resources
available, CFD models have been enriched to simulate the physics as accurately as pos-
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sible. The coming paragraphs present the evolution of CFD-simulation codes towards a
higher level of �delity to physics.

The better known and one of the �rst numerical tools used for the simulation of
FOWTs is OpenFAST (previously FAST), from the NREL. OpenFAST has been devel-
oped for various wind energy usages, from wind farms to FOWTs. It is thought of as a
set of standalone codes, which can be easily coupled. Add-ons speci�c to each utilization
have been developed, e.g. Aerodyn, Moordyn or HydroDyn for respectively aero-, moor-
ings and hydro-dynamics. The study of Jonkman (2007) and the distribution of FAST
has accelerated the development of the studies on FOWTs. Since then, a large number
of researches have been realized using FAST, alone or coupled with other codes, e.g.,
by Sebastian and Lackner (2012a), Kvittem et al. (2012) or Coulling et al. (2013). The
versatility of OpenFAST, illustrated by the number of add-ons available, allows gener-
ating di�erent type of data. The most commonly regarded output are the movements
of the FOWTs, the loads applied on the structures and the aerodynamic torque. These
datasets provide critical information concerning the energy production and the stability
of the platforms. However, the numerical approximations realized in OpenFAST tend
to provide results with errors due to the modelization of the physical phenomena. The
comparison against other codes, which provide a better accuracy at a higher computa-
tional cost, has been a recent research topic. As an example, Leroy et al. (2019) coupled
a seakeeping software with OpenFAST's AeroDyn and a FVW code, and compared the
results obtained with each method.

To tackle the computational e�ort required for a complete FOWT simulation, an
option is to simulate the dynamics of only one component of the simulation. Many au-
thors adapted their developments realized on aerodynamics in the context of onshore
WTs to FOWTs. A correction of a FVW method is proposed by Sebastian and Lackner
(2012b). A coupling between a RANS solver from the commercial code FLUENT and an
unsteady BEM is realized in Tran and Kim (2015). The representation of an exact rotor
is achieved by Wu and Nguyen (2016), and a RANS solver implemented in OpenFOAM
is used. These studies focuses on the aerodynamics, particularly on the wind at the rotor
and on the power production. Compared to onshore wind, the topic of wake e�ects is less
present in the literature. The current research seems to focus more on the prototypes
and their dynamic. The possibility to draw analogies between onshore and o�shore wind
farms is probably be the reason for it.

Another approach focused on hydrodynamics, to study the �ows around structures
or to characterize the �oaters, e.g., Nematbakhsh et al. (2015) or Beyer et al. (2015).
These hydrodynamic studies characterized the dynamic of the �oating structures. The
motion of the �oater and its harmonics are the most common information presented.
Some studies even studied the tension in the mooring lines.

More advanced simulations arose during the past years. They consist in coupled
aero/hydro studies of a rigid FOWT, realized using CFD approaches. The coming para-
graphs present the numerical methods used in these particular situations. The abbrevi-
ations presented in the coming paragraphs are explicited in Chap. 3.1.

The approach developed by Calderer (2015) consists in the coupling of a far-�eld
solver, generating realistic environmental data, with a near-�eld solver, where the FOWT
is studied. The free-surface interface is described using a level-set function, and a LES-
FVM monolithic approach solves both the aerodynamics and hydrodynamics. The WT
rotor is represented using an AL method, and the forces applied by catenary moorings
are obtained from a linearization of the lines. The FOWT is placed in a wave tank,
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where the generation of waves is realized thanks to a source-term wave-maker. A sponge
layer is used as a numerical beach. A non-uniform structured mesh is used for the �uid
domain, while the FSI is enabled by a meshing of the structure. The simulations realized
focused on the dynamic of the FOWT under realistic sea states, but no error estimation
is provided.

Leble and Barakos (2016) coupled three di�erent solvers, allowing to get a test case
representative of a FOWT. The hydrodynamics were ruled by a SPH solver, while a
Multi-Body Model and moorings representation account for rigid �oater movements. A
Finite Volume solver using a RANS formulation of the NS equations (RANS-FVM) was
used for aerodynamics, and a full description of the WT rotor is performed. The waves
are generated using a hinged wave maker, and dissipated using a slope on the other end.
A body-�tted mesh describes the rotor geometries, and a sliding plan is used to prevent
the remeshing.

A di�erent strategy is chosen by Quallen and Xing (2016), where the rotor is again
exactly represented. A Delayed Detached-Eddy Simulation formulation of the NS equa-
tions is chosen, i.e., a LES approach is used far from WT, while a RANS one rules
near-�ow. A FVM solver permits the resolution of the air�ow, while the free-surface,
de�ned using a level-set approach, is enforced using BCs. A coupling is established with
a mooring line model, and a controller is implemented to control the WT. The meshing
is handled using an overset of regular grids of various precision. The aerodynamic forces
and the motion of both the rotor and the platform are presented. Once again, no errors
have been measured, as this study operates as a proof of concept for the coupling of the
di�erent solvers used.

Yan et al. (2016) took advantage of an isogeometric analysis to fully represent a
FOWT, and used a level-set function to model the free-surface. A virtual-work struc-
tural solver is implemented, and coupled to the �uid one. The full system was solved
using a monolithic LES-FEM approach. The mooring lines are represented using sets of
articulated beams. Particular attention was given to the hydrodynamics, and a piston-
type wave-maker is used for the wave generation. An ALE framework is used for the
meshing of the computational domain, which allows accounting for the displacements of
the di�erent phases represented. The dynamics of the platform are veri�ed against refer-
ence data obtained using a simpli�ed approach, which highlighted a good overall shape
and notable di�erences in amplitude. The dynamics of the platform are then presented.

Liu et al. (2017) computed the aerodynamic and hydrodynamic e�ects using Open-
FOAM with a RANS-FVM solver, where a VoF approach de�nes the free-surface. The
WT rotor is represented exactly thanks to a body-�tted meshing. A static modeling
of the moorings is performed with a connection of weights. The waves are generated
from BCs, while a sponge layer prevents the re�exion of waves. A rotating mesh handles
the motion of the WT, and a chimera grid approach enables the communication with a
background �xed mesh. This study is the most complete in terms of results presented, as
the simulator is validated against downscaled FOWT experiments. The pressure coe�-
cient around FOWT blades are compared against experimental data, which validated the
aerodynamics. The force measured on the mooring lines and the motion of the �oating
platform are also validated. Aerodynamic thrust, torque, and FOWT motion are then
presented for a steady wind and regular waves.
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1.3 Aim and scope of this thesis

The developments presented in Sec. 1.2 introduced the principles governing the numerical
simulation of FOWTs. An overview of the di�erent methods used during engineering pro-
cesses and the evolution of highly-accurate simulations was performed in Subsec. 1.2.3.
Among the di�erent approaches available for the simulation of FOWTs, this thesis aims
at developing high-accuracy numerical tools at the edge. This answers to a need to
bring more physics in this �eld, and intends to provide thin representations of the �ows
around FOWTs. The results obtained with such methods enable to calibrate, or extend
the engineering models currently used. It may highlight e�ects of particular importance,
especially for the hydrodynamics around �oating supports with complex geometries. The
high-accuracy results obtained will also have the potential to feed machine learning ap-
proaches.

CFD is a way to reach a high level of understanding of the dynamics of FOWTs,
through the resolution of modi�ed NS equations. Among the di�erent CFD techniques
available, it is important to distinguish the levels of accuracy o�ered by the NS for-
mulations available. This thesis focuses on a formulation providing the best precision
achievable when working at the scale of a FOWT. The shortcomings of the CFD ap-
proach are linked to the computational expenses required to run it, especially as high
precision requires expensive computations. The application of high-accuracy CFD to the
simulation of FOWTs is dependent on the optimization of both the numerical methods
and the computational platforms used, such as supercomputers. These topics are dis-
cussed in this thesis.

During this thesis, developments have been realized towards the adaptation of the
software platform ICI-tech to the simulation of FOWTs. ICI-tech proposes a full-CFD ap-
proach, where all the geometries immersed in the computational domain are represented.
The reconstruction of elements takes advantage of an implicit boundary approach and of
an automatically-adapted, anisotropic meshing engine. The anisotropy enables to reduce
the number of mesh points used to precisely represent the geometries, and thus limits
the computational footprint of the simulations. The NS problem is then solved under a
VMS-FEM formulation, in a monolithic approach. These numerical tools are massively
parallelized, which allows the deployment of ICI-tech on supercomputers. These methods
allow simulating accurately the �ows, while the parallelism and numerical optimization
enable the realization of large-scale simulations. This highlights the potential for ICI-tech
to provide an accurate representation of the loads applied on FOWTs.

The numerical tools implemented in ICI-tech can be split into two major parts. The
�rst set is composed of the methods related to the reconstruction of immersed geometries.
They are presented in Chap.2, where an application to the reconstruction of FOWTs is
performed. The second set of methods corresponds to the resolution of the NS problem.
The numerical tools involved are presented in Chap.3, along with the di�erent develop-
ments related to the simulation of FOWTs. ICI-tech has long been used for the accurate
modeling of viscous �ows, while a FOWT operates in a quasi-inviscid environment. In
Chap. 4, validation steps towards the simulation of accurate high-Reynolds �ow and hy-
drodynamics are realized. The perspectives and developments further required for the
adaptation of ICI-tech to the simulation of FOWTs are presented in Chap. 5.
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Chapter 2

Implicit boundary representation
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2.1 Reconstruction and level-set method

To perform simulations on FOWTs, the geometries describing the FOWTs must be rep-
resented in the computational domain. This process will be described as reconstruction
or immersion in this document. In order to reconstruct the FOWTs, two major tech-
niques can be used. The �rst one uses meshes �tting exactly to the geometries. This
methodology, followed in the context of FOWT e.g., by Yan et al. (2016) or Quallen and
Xing (2016), positions points of the computational mesh on the frontiers of the struc-
tures. This allows computing e�ciently the loads applied to the FOWTs. However, the
de�nition of the body-�tted mesh is challenging, especially when moving objects are sim-
ulated. This limitation is better handled by the other reconstruction approach, which
considers implicit boundaries. With this method, the geometries to represent are de�ned
from the positioning of mesh points or mesh cells inside or outside the object to immerse.
The consideration of the mesh areas detected inside the body de�nes the reconstructed
body. The main advantage of this technique is that any background mesh can be used.
The reconstruction is dependent on the mesh used, which needs to be re�ned around the
frontiers of the immersed geometries to get accurate results. However, the computation
of the e�orts applied to the structures becomes more challenging, as, statistically, no
mesh point will be placed on the frontier of the objects. An immersed method is used
for the simulation of FOWTs by, e.g., Liu et al. (2017) or Tran and Kim (2018). This
implicit boundary method is used in ICI-tech too. The numerical framework linked to
the reconstruction of immersed geometries is presented in this Sec.

2.1.1 Theory of the mesh immersion using level-set functions

The reconstruction of �oating wind turbines in ICI-tech is achieved thanks to a mesh
immersion procedure, which uses level-set functions. This technique is a way to de�ne
interfaces implicitly in a computational domain, which can be applied to any phase of the
domain. A level-set function Φ de�nes the frontier of the immersed phase it represents
through the points x for which Φ(x) = 0. It shall also respect ∇Φ = 0 at the interface
of the phases, in order to get a proper resolution of transport problems, necessary for
the simulation of �uid phases. This method is indeed particularly suited for the repre-
sentation of �uid interfaces. An early application to two-phase �ows was proposed by
Sussman et al. (1994).

This approach is implemented in ICI-tech as following. The reconstruction process
considers the position of each point of the computational mesh, and compares it to the
objects to immerse. The only requirement for this methodology is the existence of a
frontier for each object, from where an interior and an exterior can be de�ned. This
authorizes the evaluation of a signed-distance function α to this frontier at each point
of the computational domain. The de�nition of α is presented in Eq. (2.1), for the
immersion of an object ω of frontier Γ in a computational domain Ω. Note that no
restrictions exist for the geometry of ω, which can even be de�ned as an assembly of
non-connected elements.

α =

{
d(x,Γ) if x ∈ ω
−d(x,Γ) if x /∈ ω , x ∈ Ω. (2.1)

Γ is de�ned by the locations where α = 0, while the interior corresponds to α > 0
and the exterior to α < 0. The reconstruction of ω can be achieved using a function
�ltering the values of α, e.g., with a Heaviside function returning 1 for the interior and
0 for the exterior. Such a function introduces discontinuities, through the de�nition of a
sharp interface. This formulation is not problematic for visualization purposes, but gets
more challenging as numerical simulations must be conducted. In a multiphase context,
when an implicit boundary method is used for the reconstruction, the de�nition of sharp
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interfaces generates singularities in the cells crossing Γ. The application of mixing laws on
these cells will be problematic. As an illustration, for a high-density ratio between ω and
the outside, the highest value of density will have much higher in�uence, independently
on the proportion of the cell located inside ω. A solution to suppress the discontinuity is
to spread the transition from ω to the outside along several cells. A level-set function Φε,
presented in Eq. (2.2), can be designed to characterize this transition. It takes advantage
of the properties of the hyperbolic tangent function, quasi-linear if α is close from zero
and quasi-constant if |α| → ∞. This formulation concentrates the gradient of the level-
set function around Γ. This will be a clear advantage over α, for which |∇α| = 1, once
the transport of immersed phases will be required.

Φε(α) = ε tanh
(α
ε

)
. (2.2)

This level-set function allows the de�nition of a smoothed Heaviside function Hε,
which is presented in Eq. (2.3). A transition is established around Γ, while Hε ranges
from 0 to 1, to conserve the properties of a Heaviside function.

Hε(α) =
1

2

(
1 +

Φε(α)

ε

)
(2.3)

An example of reconstruction is proposed for a complex geometry in a 1m × 1m
square. The distance function α, drawn in Fig. 2.1a, has a gradient of constant norm in
space, which translates to a uniform evolution of the distance �eld. A comparison can
be made with Hε built for ε = 10−2m, shown in Fig. 2.1b. A clear transition is observed
around Γ in this case, while the isosurfaces α = 0 and Hε = 0 are identical. Both α
and Hε have been obtained with the mesh from Fig. 2.1c. This mesh was generated
for this particular test case and features the expected precision in the transition area.
The guidelines used for the generation of meshes propose to use 10 mesh cells across the
transition area, which correspond to a minimum mesh size of ε/10.

(a) Signed-distance function α
and isoline α = 0m.

(b) Smoothed Heaviside Hε for
ε = 10−2m.

(c) ε = 10−3m.

Figure 2.1: Immersion of a geometry ω.

The parameter ε operates as a controller of the transition area: increasing ε widens
the smoothing region, while decreasing it tends towards a sharp interface. This statement
is valid only if the computational mesh features enough points in the transition area. An
illustration of the reconstructions achieved with three di�erent values of ε is presented
in Figs. 2.2a, 2.2b and 2.2c. The reconstruction of the immersed object is clearly in�u-
enced by ε, as Fig. 2.2c has a behavior closer to a sharp interface than the other test
cases. These results were obtained using meshes containing enough mesh points in the
transition areas. Consequently, the size of mesh cells around Γ is smaller for ε = 10−3m
than for ε = 10−1m.
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(a) ε = 10−1m. (b) ε = 10−2m. (c) ε = 10−3m.

Figure 2.2: Smoothed Heaviside functions, for various ε.

This level-set approach for mesh immersion is heavily dependent on the precision of
the mesh used. As previously mentioned, an important number of mesh points is re-
quired in the transition area to represent accurately the geometries, as well as the physic
properties. The construction of Φε is realized from α, which is evaluated at each point
of the computational mesh. Hence, a large majority of points needs to be concentrated
around Γ, i.e., in the region where the representation of the level-set function is critical
for the quality of the reconstruction. Coupling this approach with an automatic mesh
generation procedure handles this dependency. This utility is presented in Sec. 2.2. An
illustration is provided by the meshes drawn in Figs. 2.3, related to the reconstructions
found in Figs. 2.2.

(a) ε = 10−1m. (b) ε = 10−2m. (c) ε = 10−3m.

Figure 2.3: Computational meshes related to Figs. 2.2, for various ε.

The illustrations presented in this Subsec. highlight the importance of ε and the
tight relation established between it and the meshing. This now needs to be regarded
with a focus on the geometries simulated. A �rst observation concerns the size of the
computational mesh. The number of mesh points required in the transition around Γ
is constant, while the area of this region decreases. To conserve the resolution of the
background mesh while decreasing ε, the number of points in the computational mesh
thus needs to be increased. This behavior is con�rmed by the meshes presented in
Figs. 2.3a�2.3c. The number of mesh points is constant in those meshes, and decreasing
ε reduces largely the size of cells far from Γ. Consequently, a very thin description of the
geometries may lead to a prohibitive computational e�ort. A second remark concerns the
choice of ε in comparison with the size of the objects to represent. When small geometries
need to be represented, using a too big ε and its corresponding mesh, the minimal size
of cells can be too important to allow a good capture of the thin e�ects. An example
is presented for a modi�cation of the geometry used in this Subsec., as a little hole is
added in the object. The reconstruction is realized using ε = 10−1m in Fig. 2.4a and
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with ε = 10−2m in Fig. 2.4b. The results obtained with the larger ε show a perturbation
of Hε around the hole, but no hole can be detected using the isoline Hε = 1/2. Using
a smaller ε and thus a thinner mesh, the hole is perceived. The same type of error can
be observed for small variations at the surface of immersed objects or for sharp angles.
The level-set tends to blur the interface, and the isoline Hε = 1/2 can �nally be closer
from an "averaged" value of Hε than from the real interface. These observations remain
valid for any ω. The choice of ε will always be an important step in the reconstruction
of a geometry in ICI-tech.

(a) ε = 10−1m (b) ε = 10−2m

Figure 2.4: Reconstruction of modi�ed object with mesh, Hε and isoline Hε = 1/2, for
various ε.

2.1.2 Immersion of objects represented by a set of elements

The reconstruction of immersed objects relies on ω. A lot of options are available, as
the only requirement is the de�nition of a frontier Γ splitting the space between interior
and exterior. The simplest technique relies on α being a function of the space, returning
a scalar �eld. This approach gives easily Hε but is inapplicable to complex geometries.
FOWTs fall in the second category, and thus must be represented by di�erent manners.
A common approach is to discretize the surface of the FOWT Γ. A set of elements,
e.g., NURBS or facets, is connected to form a mesh, can be used to characterize ω. The
de�nition of each element determines its orientation. Thanks to a proper positioning of
the elements, an interior can be obtained. The distance α is then deduced from it.

The determination of α is necessary to get Hε. As a scalar �eld is required, this
evaluation needs to be performed at each point x of the computational mesh. When α is
de�ned using a function of the space f(x), Hε is easily determined, as Hε(α) = Hε(f(x)).
But when ω is de�ned using a set of elements, the evaluation of α must be done in two
steps. At �rst, the distance |α| has to be measured. The closest element among the set
has to be found and selected, for each point x. This forces the evaluation of many dis-
tances if no optimization is conducted, which causes the computational e�ort to increase
very rapidly with the number of points in the domain. On a second time, the sign of α
has to be determined. This step is almost immediate, thanks to the orientation of the
closest element. In particular situations, e.g., when considering a mesh cloud, no infor-
mation on the sign of alpha can be obtained from the closest element, here point. The
determination of the surface's orientation becomes much trickier. Neighborhoods around
the closest point need to be considered, which brings considerable numerical challenges.
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A method is proposed in Santoso (2018).

When a set of elements de�nes ω, the detection of the closest element must be done
for each point of the domain mesh. The computational burden linked to the number
of distances evaluated is accentuated by the fact that, for some points, several candi-
dates are selected as closest. Their orientation may be di�erent, which can imply for the
computational point a switch between interior or exterior. An illustration is presented
for the distance to a set of oriented elements, here segments, when such a situation is
observed. Two segments are considered: B, bold horizontal blue, and R, bold inclined
red, both featuring their normal pointing towards the exterior. From the point of view
of a single segment, its interior is de�ned by the hatched semi-plan positioned opposite
of the normal (slash direction for B, backslash one for R). The double-hatched and un-
hatched regions explicitly determine respectively an interior and an exterior for both B
and R. On the contrary, single-hatched regions present an ambiguity. It is necessary
to choose between interior and exterior without falling into default choices. The �rst
criterion can be the distance to B or R, considering that the closest element provides the
most interesting information. However, even with this segregation, two areas, colored
in green, remain undetermined. For a point of the computational mesh located in these
regions, the distance to B is identical to the distance to R. To �nally make a choice, the
quality of the projection onto the elements can be evaluated, and the most important
one corresponds to the most representative element, thus allowing to segregate between
interior or exterior.

B

R
Figure 2.5: Illustration of the distance to a set of two segments B and R as a function of
a point position in the plan. Hatched: interiors de�ned by each segment. Green, colored:
Regions where the quality of projection is required.

The de�nition of the immersion procedure considers an object to reconstruct ω which
can be composed of a union of separate geometries. The level-set function representing
ω needs to account for all of these objects, which requires the construction of a signed-
distance α. Some collisions can be found between these geometries, which need to be
accounted for during the de�nition of α. A simple illustration can be made with a naive
schema of a bus drawn in Fig. 2.6: a rectangle represents the body of the bus, while tires
are modeled thanks to small cylinders. The level-set function Φε of ω needs to account
only for Γ, and not for the frontiers of the immersed shapes. The de�nition of Φε thus
needs to exclude the dashed boundaries in Fig. 2.6. This is done simply through the
evaluation of several signed-distances, one for each geometry composing ω. During the
construction of α, the highest value returned by the distance computations is favored,
i.e., the innermost position found by the union of geometries. This paradigm enables
to de�ne ω as a union. Other options, such as intersections or subtractions could be
considered, but have not been implemented for the moment.

The procedure detailed above is not complicated, but can rapidly become a burden
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Figure 2.6: Illustration of an object formed by the union of distinct geometries. Plain:
isoline Φε = 0 de�ning Γ. Dashed: Frontiers of the geometries excluded from Γ.

when the meshes provided come with defaults. If the orientation of either B or R is
wrong, the interior de�ned will be completely unrealistic. However, with the meshing
engines used nowadays, those serious mistakes are barely encountered. More common
are the joint issues, when the point presumably shared by B and R is slightly de�ected
for one of those elements. This leads to major errors, e.g., if R's top point is positioned
slightly above B's one. Following the algorithm presented in the previous paragraph,
the green-colored region located on top of Fig. 2.5 is consequently considered inside the
object. Alignment errors occur too, when mesh cells are slightly de�ected, which creates
asperities on presumably smooth surfaces. All these sources of error impose the set-up
of securities, tuned for each object reconstructed, which complicate the immersion pro-
cedure.

Moreover, the computational complexity brought by this methodology becomes con-
siderable when a M -elements mesh is immersed in a N -points computational mesh. The
complexity of the level-set approach as presented in the previous paragraphs is N ×M ,
mostly due to the distances to evaluate. The determination of the interior being es-
sentially composed of if-loops, its cost is reduced. The optimization of the immersion
procedure can be reduced in two ways. The �rst one is to parallelize the computations,
which allows speeding-up the evaluation of α by measuring distances on several cores.
The set of elements can also be split, allowing each processor to load only the elements
meaningful in its computational area. This enables to consider a huge set of elements,
which could hardly be loaded by a single processor, and therefore should not be dupli-
cated on each core. The opportunities o�ered by the parallelism are interesting if either
M or N is reasonably increased, and are available in ICI-tech. Yet, for extremely expen-
sive cases, e.g., when both M and N rocket, the complexity becomes too important even
for a highly-parallelized platform. The computational costs can then be reduced through
the construction of a tree structure. The implementation of a tree, named "octree" for
3D applications, is detailed in Subsec. 2.1.3. Note that the usage of the name octree is
generalized in the following to describe the tree structure implemented.

2.1.3 Tree-optimization of the reconstruction procedure

The mesh immersion procedure comes at a high computational cost whenever the mesh
immersed is composed of a huge number of elements, as stated in Subsec. 2.1.2. As α still
has to be determined for each point of the computational mesh, optimization can essen-
tially be conducted on the evaluation of α for a given point. This was realized through
the implementation of a tree-structure. These algorithmic constructions are commonly
used to reduce the computational complexity in numerical codes. Tree-structures have
various �elds of application, and are commonly used for mesh generation, e.g., by Ahrabi
et al. (2017) or Kudela et al. (2016).

This study proposes to use tree-structures for the optimization of the reconstruction
process. The elements composing the object to represent are segregated depending on
their position. For a given point, the tree-browsing then allows selecting the closest el-
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ements of the immersed mesh, and distances can be evaluated on them only. Both the
construction of the tree and the determination of the closest element is realized using
bounding boxes, to reduce the computational expenses. Di�erent de�nitions are possible
for the bounding boxes, which are detailed by Ding et al. (2004). The implementation
presented here uses axis-aligned bounding boxes, the least expensive method computa-
tionally, which is e�cient for small, convex elements.

The de�nition of the tree-structure allows largely reducing the number of distances to
compute during the evaluation of α. The complexity of the algorithm is brought down,
within a theoretical minimum of N × log(M). The addition of the tree structure into
the mesh immersion procedure can be split into two steps. The �rst one consists in the
construction of the octree, while the second one focuses on the evaluation of α. Both are
detailed in the following.

Figure 2.7: Octree re�nement procedure, through recursive divisions of the computational
domain. On the left is highlighted the re�nement of a tree element into 8 new elements.
The cube on the right presents the geometrical positions of the octree elements.

Construction of the tree structure

This data storage concept is built recursively from the set of M elements de�ning the
immersed geometry, independently from the computational mesh. The bounding box of
the whole set of elements is constructed, and all the elements are allocated to the domain
created. This composes the initial tree. Re�nement steps are then processed, and the
tree domain considered is split into two segments of equal length along each dimension.
Subdomains, or children, are generated, as presented in Fig. 2.7 in 3D. Note that the
name octree comes from the 3D behavior of the tree, which splits each domain into 8 sub-
domains during the re�nement procedure. After a re�nement step, the elements must not
be contained in the initial octree domain, but are allocated to every child they intersect.
This allows elements to be duplicated if they intersect several children. After a re�ne-
ment step, each child is examined with emphasis on the numbers of elements it contains.
If a subdomain remains empty, i.e., no elements intersect it, it is immediately deleted.
If too many elements are found in this child, the re�nement procedure is repeated in
this particular subdomain. The recursivity continues until, either an acceptable number
of elements is obtained in the deepest subdomains (leaf), or the maximal depth of the
octree is reached.

The number of elements allowed per leaf Nmax and the depth of the octree needs
to be determined for each set. The objective of this procedure is to split the elements
between octree leaves. The best e�ciency of the tree structure is obtained with a small
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Nmax, even if the number of leaves is considerable. The idea behind this choice is that
the number of distance to elements is reduced when small leaves are considered. The
�lters brought on the evaluation of the distance perform better in this con�guration.
The depth of the octree should be chosen correspondingly, as smaller leaves are acquired
from more re�nements. At the same time, Nmax needs to account for the geometry of
the set considered. The concentration of elements in certain areas limits the potential
of the octree, e.g., when more than Nmax elements are connected to a single point. The
octree leaves located in this region will reach the maximal depth of the octree, and the
elements can be duplicated onto a huge number of neighbor leaves. Consequently, the
de�nition of the octree depth can be done from the relative size of the elements compared
to the bounding box on which the set is located. The determination of Nmax can then
be realized from the concentration of cells expected in those areas.

An illustration of the methodology generating a tree structure of maximum depth 4
is drawn in Figs. 2.8, from the example of a set of elements presented in Fig. 2.8a. For
a matter of clarity, the initial octree domain is de�ned using the black square, and not
from the bounding box of the elements. The rest of the procedure remains identical,
and Fig. 2.8b presents the octree obtained after the �rst re�nement. The subdomain
containing a number of elements inferior to the one required is not re�ned, and the re-
sult obtained after a second re�nement is shown in Fig. 2.8c. The empty subdomains
are deleted. After 2 more re�nements, the �nal octree is obtained. It is presented in
Fig. 2.9a. The cells drawn in red correspond to the octree leaves.

(a) Object immersed in a 2D do-
main.

N<Nmax

(b) Octree after a re�nement
step.

N<Nmax

Ø Ø Ø Ø

ØØ

Ø

Ø Ø

(c) Octree after two re�nement
steps.

Figure 2.8: Re�nement for the construction of an octree.

The repartition of elements into the children is handled using axis-aligned bounding
boxes. This de�nition consists in determining the maximal and minimal positions of
each element along each axis, which o�er di�erent advantages. First of all, these boxes
are very easy to determine, both computationally speaking and considering data access.
It also allows reducing the computational e�ort for the determination of the intersec-
tions with the octree domains, as boxes and tree domains are oriented along the same
axis. Finally, this choice enables to generalize the octree to very di�erent usage, from,
e.g., �bers to 3D facets used to de�ne surface meshes. The main drawback brought by
these bounding boxes lies in the intersections with the octree domains when huge and/or
highly-stretched elements are considered. This leads to multiplying duplicated elements
in leaves they may not intersect. Another limitation is found when very long elements are
positioned, proportionally to the size of the computational domain, as again the elements
may be highly duplicated.
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This strategy characterizes the "tree" class used in object-oriented programming. It
is composed of a spatial domain and, either a set of elements contained inside the class,
or pointers towards its children, which are obtained after re�nement. The �nal tree has
as entry point an object of type "tree", which contains the bounding box of the geometry
to reconstruct as spatial domain and pointers towards each of its children. The elements
composing the immersed geometry are split between all the leaves of the octree, hence
none are contained at the depth zero if children exist. Every child contains its spatial
domain, and either a set of elements or pointers towards its children. This pattern is
reproduced recursively.

Evaluation of the signed-distance using the tree structure

Once the tree structure is built, the evaluation of α can start. Two major improvements
are observed. First of all, for a given point of the computational mesh, the octree enables
to select the closest elements from the point considered, i.e., the "best candidates" for
the determination of α. To that extent, the notion of leaves is essential. The second
advantage is brought by the bounding boxes. During the process of selecting the best
candidates, no exact evaluation of the distance from the current mesh point to any ele-
ment of the immersed geometry is performed. An upper bound of this distance, obtained
thanks to the bounding box of the element, is preferred. The computational cost of an
exact evaluation can indeed be very expensive to compute when the encapsulated ele-
ment is complex. This choice allows computing a very limited number of exact distances
during the evaluation of α, especially when small elements compose the object to recon-
struct. As already mentioned, it also guarantees the versatility of the mesh immersion
procedure, as any geometry can be immersed in the octree using its bounding box.

The methodology used for the evaluation of α begins with the determination of the
closest leaf Lc from the computational point P considered. This is achieved using a
recursive browsing of the octree. For an object of type "tree", the presence of geometry
elements is tested. If some are found, the minimal distance from the spatial domain of
the current tree object to P is measured. If none exists, then the tree object contains
children, on which the same procedure is recursively applied. Using this function at
the entry point of the octree allows �nding the closest leaf from the point considered.
The application of this approach on the test case introduced in Figs. 2.8 is detailed
in Figs. 2.9. The octree presented in Fig. 2.9a is returned at the end of the re�nement
process. For the point P considered on Fig. 2.9b, the leaf drawn in green is the closest one.

Ø

(a) Final tree structure obtained.

Ø
P

(b) Usage of the closest element.

 

 

Ø
P

(c) Candidate leafs.

Figure 2.9: Determination of the closest element for a given computational point.

Once the closest leaf Lc has been determined, there is still incertitude about the
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leaf in which is located the closest element. Theoretically, it can be contained in any
of the leaves intersecting a disc of center P and of radius the maximal distance to the
spatial domain of the leaf. Graphically, it corresponds to the dashed black circle found
on Fig. 2.9b, which intersect 7 leaves. However, using a browsing of the elements con-
tained inside Lc, the size of this circle can be reduced. The maximal distance to the
bounding boxes of the elements contained in Lc is evaluated, and the minimal one dc is
selected. Considering dc, as it is initially de�ned as a maximal distance to a bounding
box, at least one element has a distance to P which is smaller than dc. Consequently,
the closest element is located in a disc of center P and of radius dc, which corresponds to
the plain blue circle drawn in Fig. 2.9b. The number of leaves potentially containing the
closest element is reduced. In the example provided on the illustrations, only 3 leaves
are intersected. They are colored in green. The elements contained in the leaves selected
are browsed, and the minimal distance between the mesh point and their bounding box
is measured. When the value obtained is inferior to dc, the real distance from the mesh
point to the element is measured. The closest element, and then α, are deduced from
the real distances evaluated.

The procedure detailed above highlights the interdependence between the tree struc-
ture and the localization of the elements representing ω. The octree is built from the
positioning of the di�erent elements, and relies heavily on it to evaluate the distances
to mesh points. Displacing some elements may move them from octree leaves to others.
In these conditions, the octree needs to be updated to guarantee the quality of the dis-
tance evaluation procedure. After one iteration, the elements representing the geometry
immersed are examined, to identify if they moved from octree leaves to others. Under
particular situations, when the displacements of the elements have a limited impact on
the structure of the octree, basic modi�cations focusing essentially on the assignment of
elements to children can be su�cient. But when the whole tree structure is modi�ed,
the simplest approach is to reconstruct the octree. The computational costs induced by
the reconstruction procedure have to be taken into account, even if the results presented
in Sec. 2.4 tend to show that they are quasi negligible.

2.2 Mesh adaptation

Mesh adaptation is essential for the mesh immersion procedure detailed in Sec. 2.1, but
is also a self-standing software unit of ICI-tech. The mesh adaptation intends to increase
the precision of the simulations through modi�cations of the computational mesh. A
focus is placed on areas of interest, which can be prescribed or automatically generated.
They can be de�ned either a priori, from the speci�cation of a physical problem, or a
posteriori, from the results of simulations.

Several mesh adaptation strategies can be found in the literature. The h-adaptation
strategy consists in local re�nements of the computational mesh, with additions of mesh
points. Smaller cells are designed, e.g., through successive divisions of cells along each
dimension, as in Wackers et al. (2014). A mesh of higher resolution is found in the zones
of interest, which improves the results of the simulations. The r-adaptation keeps an
identical number of point, but tends to move points towards the areas of interest of the
mesh, as in Béal et al. (2001). This method is lighter computationally speaking, but does
not interfere with the number of points in the mesh, which has to be correctly chosen
since the beginning of the simulations. A last approach is known as p-re�nement. Instead
of displacing the mesh points, it focuses on the order of interpolation, which is enriched
in areas of interest. This strategy can be combined with the h-adaptation, as in Ahrabi
et al. (2017), in order to capture very small e�ects without using extremely thin meshes.
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The di�erent references proposed to illustrate the meshing strategies re�ne the mesh
identically along each dimension, thus generating isotropic meshes. Another approach
evaluates the requirement to re�ne the mesh along each dimension, and deform the mesh
correspondingly. The mesh obtained after adaptation is anisotropic. Very small mesh
sizes are observed along the dimensions where events occur, while large lengths are found
when the domain is uniform locally along straight lines. Anisotropic meshes have at-
tracted attention, as it allows to largely reduce the number of points in the discretization
of computational domains. This meshing technique is used, e.g., by Formaggia and Per-
otto (2001) or Frey and Alauzet (2005).

In this thesis, an anisotropic a posteriori h-adaptation strategy, proposed by Coupez
(2011), is used in a P1-Finite Element paradigm. From the results of the simulation, this
method builds an error estimator, which is then post-treated to deform the mesh. The
construction of the error estimator is presented in Subsec. 2.2.2, while the adaptation
procedure itself is detailed in Subsec. 2.2.1. A more comprehensive description of the
mesh adaptation procedure, and of its usage, is described in Subsec. 2.2.3.

2.2.1 Anisotropic mesh adaptation with a metric �eld

The mesh adaptation procedure used in this thesis takes advantage of a Riemannian
metric �eldM, built on the computational domain. At each point of the domain's mesh,
a base related to the local mesh size in the Euclidean space can be considered. The
metric operates as a distorting mirror: using a transition to a Riemann space, it deforms
the perception of the distances observed in the Euclidean base. In practice, the Riemann
space comes with a scalar product that is di�erent from the classical Euclidean one. The
scalar products are presented in Eq. (2.4) for two vectors v and w of the Euclidean space.

Euclidean 〈v, w〉 = tvw (2.4a)

Riemannian 〈v, w〉M = tvMw (2.4b)

The evaluation of the distances in both spaces can be deduced from these expressions,
and are given in Eq. (2.5).

Euclidean ‖v‖ =
√
tvv (2.5a)

Riemannian ‖v‖M =
√
tvMv (2.5b)

A Riemann base is obtained, which rescales the mesh locally, from the eigenvalues λ1

and λ2 ofM. An illustration is presented in Fig. 2.10 for the perception in the Riemann
space of a reference element. The same behavior can be found in a 3D context. How-
ever, even if the reference is rescaled from the Riemann point of view, the mesh in the
Euclidean space is not modi�ed.

The mesh adaptation procedure used in ICI-tech intends to use very thin mesh cells
in the regions of interest. As some phenomena are developed with preferential directions,
anisotropic meshing is a good opportunity to reduce the computational e�ort while keep-
ing a similar precision. The mesh adaptation procedure relies heavily on Riemannian
distance evaluation. A metric �eldM is built to account for the variations observed in
the domain. At each point of the computational mesh, the objective of the mesh adap-
tation is to visualize a length of 1 for every edge of the mesh in the Riemannian space.
From an analogy with Fig. 2.10, the transformation drawn in Fig. 2.11 is obtained. To
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Figure 2.10: Deformation of a reference element using the metric �eldM.

see an orthonormal base in the Riemannian space, a deformed base is required in the
Euclidean space. The mesh cell obtained is anisotropic, small in the horizontal direction,
large in the vertical one. These characteristics are typical of, e.g., horizontally-oriented
�ows.

Euclidean Riemannian
1/λ1

λ2
1

1

1

Figure 2.11: Riemannian distance evaluation for the anisotropic mesh adaptation.

The mesh adaptation tools apply this framework to every edge of the computational
mesh. At a given point Xi of the mesh, each edge connected to Xi needs to be considered.
This condition would write as in Eq. (2.6), with Γ(i) the set of points connected to Xi,
Xij = Xj −Xi for j ∈ Γ(i) andM a metric to determine.

∀j ∈ Γ(i), 〈Xij , Xij〉M = 1 (2.6)

As Xij is split between Xi and Xj , and because the metric �eld is built at the points
of the computational mesh, this condition is formulated as a sum over the neighborhood
of each point. The condition obtained is written in Eq. (2.7), with |Γ(i)| number of points
in Γ(i). ∑

j∈Γ(i)

〈Xij , Xij〉Mi
= |Γ(i)| (2.7)

By deriving this equation, an expression can be obtained for the metric at each node
Mi, presented in Eq. (2.8) for d dimension of the domain considered and⊗ tensor product
operator.

Mi =
1

d |Γ(i)|

 ∑
j∈Γ(i)

Xij ⊗Xij

−1

(2.8)

An exact solution of this equation is expensive to determine, as a matrix inversion is
required for each point of the computational mesh. The value ofM can be determined
at a lower computational cost through the resolution of an optimization problem, as in
Eq. (2.9).

Mi = arg min
M

 ∑
j∈Γ(i)

(
〈Xij , Xij〉M − 1

)2 (2.9)
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The theory developed in Coupez (2011) precises that the Eqs. (2.8) and (2.9) are
equivalent when at least one non-degenerate element is connected to Xi. This condition
is almost trivial, as it can be ful�lled despite a very low mesh regularity. These di�erent
steps detailed in this Subsec. allow, for any point Xi of a non-degenerated mesh, to build
a metric �eld measuring any edge connected to Xi as unity in the Riemannian space. The
formulation obtained depends only on the topology of the mesh, but does not account
for other parameters, e.g. �uid �ows. The coming Subsec. presents the construction of
the metric that minimizes the interpolation error of a solution �eld u.

2.2.2 Metric construction using a posteriori error estimator

The adaptation of mesh cells as presented previously rely on the de�nition of areas of
interest. These areas can be user-de�ned, when the evolution of the physical problem
in space is small. A more polyvalent approach uses error estimators, which evaluate the
error produced in the computational domain. Error estimators can be de�ned a priori,
from the interpolation error produced on a mesh regarding a reference solution, strat-
egy followed by, e.g., Formaggia and Perotto (2001). This implies to possess information
about the output required, which is not evident in the context of complex �ows. Another
approach considers a posteriori error estimators, which are built from the outputs of sim-
ulations. The interpolation error produced by the resolution is evaluated. Some of these
methods use a Hessian of a scalar �eld, see, e.g., Frey and Alauzet (2005). Others prefer
a recovery gradient from the given scalar �eld, such as proposed by Almeida et al. (2000).

The mesh adaptation process presented here is based on the equidistribution of the
error in all the computational domain. A �rst, intuitive parallel with unity vectors in
Riemannian space can be drawn. An a posteriori error estimator is built at each node
of the computational mesh. The mesh is adapted in areas of interest de�ned from this
estimator: high-error areas need to be re�ned, while low error regions can be coarsened.
The evolution of the error is examined along the edges of the mesh, where points can
be inserted if the values found are too large. A metric �eld is built from edge errors in
order to deform the mesh, always with an error homogenization goal. Scaling factors
are de�ned for each dimension, as well as the metric �eld, from which the anisotropic
characteristic of the mesh arises.

The adaptation depends on the construction of the error estimator. A generic intro-
duction of the mesh adaptation procedure, realized in Coupez (2011), de�nes the error
estimator e as a function of a scalar �eld u. This de�nition arises from Céa's lemma,
which bounds the interpolation error, as written in Eq. (2.10). The value of e and u at
the point Xi are expressed, respectively, ei and Ui.

‖ei‖ < c‖u− Ui‖ (2.10)

In the context of P1 meshes, u is interpolated using �rst-order polynomials. The
scalar �eld obtained is written uh. The gradient of the uh, written ∇uh, is discontinuous,
constant per mesh cell only. However, the projection of the gradient on an edge remains
continuous. An evaluation of the error produced along each edge is proposed in Eq. (2.11).
This formula paves the way for the construction of a Clément interpolant, as explained
by Carstensen (2006), and uses the Hessian matrix, which is expensive to evaluate. This
can be avoided through the de�nition of a recovery gradient, built from a projection of
∇u on the edges of the mesh. This correction is dedicated to the de�nition of an error
estimator avoiding the construction of a Hessian.

|(∇uh −∇u (Xi)) ·Xij | ≤ max
Y ∈[Xi,Xj ]

∣∣∇2u(Y )Xij ·Xij

∣∣ (2.11)
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The �rst step consists in the reconstruction of a P1 gradient G of uh, de�ned at each
point of the mesh. The error estimator expressed on an edge, presented in Eq. (2.13), is
deduced from the reconstructed gradient, given in Eq. (2.12).

Gi = dMiUi (2.12)

eij = |Gij ·Xij | (2.13)

This formulation of the error is valid only on a complete edge. A generalization
onto portions of edges is possible using the P1 interpolation characteristics, following the
expression proposed in Eq. (2.14). A maximization of the error produced on an edge can
be performed at the same time.

eij(s) = |Gij(s) · sXij | ≤ s2eij , s ∈ R+ (2.14)

The whole error ε generated on an element K is then evaluated, from the di�erence
between u and uh. The di�erent equations proposed in this Subsec. translate to an
estimation of the error produced on an element, as a function of eij and of the area/volume
of K, written |K|. The expressions obtained for 2D and 3D applications are presented in
Eq. (2.15).

εK, 2D =
1

8
|K|

∑
i,j=1,..,d

eij (2.15a)

εK, 3D =
1

30
|K|

∑
i,j=1,..,d

eij (2.15b)

The equation obtained states that controlling eij for all the edges of an element
implies the control of the interpolation error realized on this element. This is highly
compatible with the metric formulation presented in Subsec. 2.2.1. The metricMi can
be built using the error estimator eij . Whenever the Riemann scalar product is used, the
target of the adaptation is to obtain an error of 1 along each edge, i.e., to equidistribute
the error. A well-adapted mesh consequently positions nodes regarding the error, and
not the topology or mesh size. Moreover, the distribution of the error in all the domain
allows generating errors of similar orders of magnitude for each cell. The metric used in
this formulation is presented in Eq. (2.16).

Mi =
(

1
d

∑
j∈Γ(i) s

2
ijXij ⊗Xij

)−1

with


sij =

(
λ
eij

)−1

λ =

(∑
i

∑
j∈Γ(i) e

p
p+2
ij

Nn

) p+2
p

(2.16)

The parameter Nn corresponds to the maximal number of nodes allowed in the mesh.
This correction provides a safeguard to the mesh adaptation procedure. In the case when
the error rockets locally, the adaptation tends to re�ne the mesh towards a very thin
network. This may require a very important number of nodes in the mesh, which may be
una�ordable. Thanks to the limitation of the number of nodes, the computational e�ort
can be reduced. However, this correction prevents the control of the error as detailed
previously. The quality of the mesh generated thus needs to be examined with careful
attention. Limiting the number of nodes in the mesh does not prevent the adaptation to
diving into the error-rocketing region. Adding a maximal error tends to limit the size of
mesh cells, and is a way to avoid in�nitely small cells. Similarly, a null error over an edge
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eij tends to resize this edge towards an in�nite one. In order to tackle these limitations,
the corrections presented in Eq. (2.17) are applied to eij , with εmin and εmax parameters
ruling respectively the minimal and maximal values allowed for eij . eij = max

(
|Gij ·Xij | , εmin |Xij |2

)
eij = min

(
|Gij ·Xij | , εmax |Xij |2

) (2.17)

During the adaptation procedure, the mesh is either re�ned or dere�ned locally.
Depending on the value of sij , points can be inserted or suppressed. As the stretching
coe�cients sij are evaluated along the edges, the point addition process is simpli�ed.
The edge concerned is split, and the elements adjacent to this edge are split too, in order
to integrate the newly created point. The node suppression process applied to a point
Xi considers its neighborhood Γ(i). A point Xj of Γ(i) is selected, and the new mesh
cells are created through a connection of the di�erent points of Γ(i) to Xj . Illustrations
of these procedures are presented in Fig. 2.12.

Xi

Xj

Xi

Xj

Xk

Xi

Xj

Xk

Xj

Xk

Figure 2.12: Procedure for point addition (up) and removal (down).

2.2.3 Mesh adaptation in practice

The theory presented in the previous Subsecs. details the adaptation as introduced by
Coupez (2011). Mathematically, the metric formulation shows the potential to adapt
a mesh through a single execution of the process presented above. However, this ideal
view is contradicted by computational considerations. Corrections brought to eij bring
new constraints, with a maximal number of nodes Nn allowed, or through addition and
removal of mesh nodes. Hence, iterations are required to get a fully adapted mesh, auto-
matically generated from a potentially coarse initial mesh. A huge share of mesh nodes
tends to be gathered in the areas of interest, de�ned using a combination of the level-set
functions obtained from mesh immersion. More generally, any scalar �eld derivable twice
can be used for the adaptation. As an example, when the resolution of the NS equations
is achieved, the velocities found in the �ow can be taken into account too.

The mesh adaptation procedure is used to generate meshes adapted on the di�erent
level-set functions represented in the domain. This operates as a prelude to NS resolu-
tions, which requires adapted meshes to guarantee the convergence of the schemes. The
adaptation procedure starts from a potentially coarse initial mesh. The immersion of the
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di�erent geometries represented in the domain is performed. Level-set functions of poor
precision are constructed, due to the unadapted mesh. The adaptation is realized using
an error estimator established from the level-set functions, as presented previously. The
inaccurate reconstruction of the phases generates high gradients in the level-set functions,
which are identi�ed by the adaptation procedure as areas to re�ne. A new reconstruction
is performed, and the same procedure is repeated. After several iterations, an adapted,
anisotropic mesh is obtained.

An example of adapted meshes generated from a level-set function was presented
in Figs. 2.3a�2.3c. These Figs., generated with three di�erent ε, show three levels of
precision. The minimal size of mesh cells is �xed to ε/10, which translates to a coarser
representation in Fig. 2.3a, while Fig. 2.3c provides the best precision in a very thin layer
only. This example featured only one level-set function. Yet similar results are obtained
when adaptation is performed on several geometries. The di�erent level-set functions
just need to be linearly weighted, to form a single scalar �eld.

This aforementioned example is presented for a sequential application. The recon-
struction procedure is integrated into ICI-tech, a massively parallelized software platform.
The parallelism consists in the distribution of the computations on a cluster, composed
of several processors. The computational mesh is split among the di�erent cores implied
in the simulation, which requires several implementations, introduced in the coming Sec.

2.3 Highly-parallelized framework in ICI-tech

The development of ICI-tech relies on a highly-parallelized architecture, which allows
deploying it on clusters. The computational domain is partitioned, to take advantage
of the important number of cores. The parallel meshing as implemented in ICI-tech is
presented in Subsec. 2.3.1.To guarantee the e�ciency of the parallelism, computational
bottlenecks need to be suppressed, or at least reduced. The di�erent utilities composing
ICI-tech thus need to be optimized. The parallel implementation of the mesh immersion
and mesh adaptation procedures into ICI-tech is presented, respectively, in Subsecs. 2.3.2
and 2.3.3.

2.3.1 Parallel meshing in ICI-tech

The parallelism relies on a partitioning to separate the computational domain into di�er-
ent areas, allocated to the processors on which the simulation platform is deployed. The
computational mesh is split, and the mesh points and cells are allocated to the di�erent
cores, without any geographical bias. This technique allows spreading the computational
load, each processor getting a sensibly equal proportion of the mesh. Each core contains
a local mesh, and the association of all local meshes forms the whole computational
mesh. An illustration is proposed in Fig. 2.13, where a mesh is colored by the processor
simulating locally.

During the deployment on a cluster, the partitioning process separates the mesh
points and cells among the di�erent CPUs used. Each point or cell is positioned on a
single processor only, with points de�ned by its coordinates and cells by the identi�ers of
the points composing it. However, when a point is used to de�ne cells allocated to distinct
CPUs, one of these cells is located on a core where the point is not. To get a self-standing
representation of this cell and to limit the communications between the processors, this
point has to be duplicated. A "ghost" point is created, which is distinguished from the
local points of the core. The creation of local points is realized at the interfaces between
the areas of di�erent processors. The parallelism implies a rise in the number of points
in memory, through the addition of ghost points. This increase directly depends on the
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Figure 2.13: Computational mesh colored by the processor on which mesh points are
stored.

ratio between the number of points in the computational domain and the number of
CPUs on the cluster.

2.3.2 Parallel reconstruction in ICI-tech

The optimization of the mesh immersion procedure is presented in Subsec. 2.1.3, for a
computational mesh of N points and for a set of elements M . The implementation of
an octree enables to reduce the expenses linked to the immersion, without any consider-
ations regarding M or N . The parallelism allows splitting the di�erent meshes, in order
to limit N and M through the use of multiple cores.

The limitation of N is done naturally, following a simple partitioning on np pro-
cessors as presented in Subsec. 2.3.1. The immersion is done for each computational
point through the evaluation of Hε, without considering the ghosts. Consequently, each
processor will need to compute Hε for approximatively N/np points, instead of N in a
sequential run. This leverage gains importance and in�uence when N rises.

A complementary approach acts on M . The simplest parallel mesh immersion algo-
rithm would duplicate the set of M elements onto each core, before the reconstruction
starts. However, for a given computational point, the mesh immersion procedure as
presented in Sec. 2.1 needs only the closest element from the set of M . Geographical
segregation of the set of elements can be done for each CPU, based on the location of the
computational points it contains. This o�ers the potential to select only the meaningful
elements, to move from M to Mp < M . This reduction in the load of the set has an
impact on the evaluation of Hε, even if the elements suppressed are mostly located far
from the computational point, and are thus �ltered by the octree. The other impact of
this reduction is the distribution of the set ofM elements into sets of smaller size, located
in interest areas regarding each processor. This may allow the reconstruction when M is
too important to be loaded on a single core, and therefore can not be shared with each
CPU of the cluster.

2.3.3 Mesh adaptation in the highly parallelized context of ICI-tech

The mesh adaptation procedure is parallelized with a particular regard on the di�erent
areas belonging to each processor. Each CPU re�nes automatically the mesh in its region,
excepted its frontier cells. As previously noted, the points linked to these cells can be
duplicated among di�erent processors. As the adaptation realized by each CPU may not
be identical, to avoid ambiguities, these cells are not adapted. After a remeshing step,
the domain is repartitioned to redistribute the computational loads, as all the processors
need to handle a similar number of nodes. During the repartitioning, the frontier cells,
which have not been modi�ed, are preferably moved inside a CPU. This allows redimen-
sioning these cells in the next remeshing iterations, which is necessary for a well-adapted
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mesh. After several adaptation increments, the di�erent iterations ensure that all the
cells have been adapted.

During the remeshing process, some mesh points and cells are moved from a CPU
to another one. This step requires communications between the di�erent processors, to
transfer the missing points and cells to the receiving CPU.

2.4 Representation of WTs in ICI-tech

This Sec. presents di�erent test cases considering the immersion of FOWTs in ICI-tech.
The surface mesh of a small-scaled FOWT is used in the di�erent studies presented
hereafter. Successively, the immersion of one FOWT, of 100 FOWTs, and a scalability
study are performed.

2.4.1 Reconstruction of a single WT

A �rst application case considers the immersion of a single, small-scaled FOWT, com-
posed of a WT and its semi-submersible �oater of approximative size 2m× 2m× 2.5m.
The Figs. 2.14 present the steps followed. The surface mesh of a prototype studied in
wind �ume by Lacaze et al. (2014), composed of approximatively 75K oriented triangles,
is immersed in a computational mesh of about 120K points. A view of this mesh is pro-
posed in Fig. 2.14a. A slice of the mesh obtained at the end of the immersion procedure
is presented in Fig. 2.14b. This slice intersects the rotor, and consequently, the high
concentration of points a�ords to guess the position of the blades. The parameter ε used
to generate the mesh, to de�ne the width of the adaptation area, is of about 1/1000-th
of the overall WT size. The order of precision of the immersion is of the centimeter for a
full-scale WT, which is appropriated for visualization purposes. The reconstructed WT
depicted in Fig. 2.14c looks similar to the surface mesh immersed, even if some impreci-
sions can be found in challenging regions, such as the tip of blades.

(a) Immersed surface
mesh

(b) Slice of adapted mesh (c) Isosurface Φε = 0
of the reconstructed
FOWT

Figure 2.14: Reconstruction of a scaled-down FOWT

As explained in Sec. 2.2, the computational mesh is generated from the level-set Φεε
of the reconstructed geometries, here the down-scaled FOWT. An error estimator is built
from Φε, to detect the areas requiring more adaptation. The errors observed are due to
the discretization of the computational domain. Even if the solutions are exact at the
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nodes of the mesh, these positions are discrete. The Finite Element framework imple-
mented in ICI-tech uses linear interpolation to de�ne the values of the di�erent �elds
outside of these points. The linear description is suited for an exact representation of
planes only. In a context where complex geometries are represented, especially curved
surfaces, the exact description of the immersed objects then relies on the addition of
points in the domain. As the minimal size of cells is limited to ε/10, the description of
complex geometries, e.g., sharp angles or regions of strong curvature, can not be inde�-
nitely improved. The highest values (e > 2) provided by the error estimator for a fully
adapted mesh of 200K points, with ε = 2 · 10−2m and ε = 2 · 10−3m, can be viewed
in Figs. 2.15. These areas are concentrated around the surface of the immersed FOWT.
For ε = 2 · 10−2m, the errors are exclusively found around the sharp interfaces of the
immersed mesh, e.g., the trailing edge of the WT blades. Thin regions such as the heave
plates of the �oater or the tip of blades also generate errors around it, up to a distance
corresponding approximatively to ε. With ε = 2 · 10−3m, the errors are much better
spread along the frontiers of the FOWT, in all the regions where the surfaces are not
plane.

(a) ε = 2 · 10−2m (b) ε = 2 · 10−3m

Figure 2.15: Isovolume of the error estimator e > 2, for di�erent ε.

Two observations can be made from the error estimator �elds printed. First of all,
a coarse ε struggles to capture accurately the sharp interfaces, as the minimal size of
mesh cells is limited. The errors are naturally concentrated in these regions. With a
thinner ε, these areas are better represented, thus the adaptation of the mesh can focus
on other regions. The second observation concerns the value of the error estimator for
each test case. Intuitive thinking could state that, as the reconstruction is less precise
with a coarser ε, the error estimator would reach higher values. On the contrary, the
number of areas concerned by e > 2 is more important with ε = 2 · 10−3m than with
ε = 2 · 10−2m. This can be related to the second derivatives on the level-set functions,
from which the error estimator is built. In particular, the derivation makes a ε−1 term
appear, which tends to increase e when ε decreases. Moreover, the error is dimensionless
and measured along the edges of the mesh. The adimensioning process forces a division
by the length of the edge, which also increases the estimation of the error.

The evolution of the errors estimated with the parameter ε can be studied more
precisely. Several reconstructions of the FOWT represented by the surface mesh from
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Fig. 2.14a have been performed, with a constant load for the mesh, at 200K points.
The width of adaptation ε is varied, and the errors obtained are measured. The L2-
and in�nite-errors, respectively written ‖e‖2 and ‖e‖∞, produced on the computational
points of Ω are considered. The de�nitions are presented in Eq. (2.18), with ei the value
of the error estimator at a point i.

‖e‖2 =

(∫
Ω
e2
i

)1/2

(2.18a)

‖e‖∞ = max |ei| (2.18b)

The errors are drawn in Fig. 2.16 as a function of ε. The error curves obtained con�rm
the behavior observed in Figs. 2.15, with the error estimator e tending to return higher
values when ε is decreased. Even if this statement can be tampered. The variation of
both the L2- and in�nite-errors measured remain in an order of magnitude, while ε is
divided by 100. The variation is particularly limited for ‖e‖∞, which characterizes the
highest error detected by the error estimator. The rise in ‖e‖2 depicts a global increase in
the errors found in the computational domain. This can be linked with the explanations
previously proposed, with the ε−1 term and mesh size involved. A drop is observed in
e‖∞ with ε = 10−3m, while the evolution of ‖e‖2 plateaued. This probably �nds its
origin in the number of computational points available in the mesh. The adaptation
starts to struggle to generate a well-adapted mesh, even if the reconstruction provided
correct results.
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Figure 2.16: Estimation of the error produced during the immersion of a WT, with
computational meshes of 200K points and a varying ε.

It is important to note that the error estimator, for all the information it provides, is
highly dependent on the mesh generated. Moreover, it can not be used to evaluate the
precision of the reconstruction performed. To that extent, a criterion has been de�ned
to measure the di�erence between the immersed geometry and the iso-surface Φε = 0
reconstructed. This criterion is inspired by the Hausdor� distance, which characterizes
the di�erence between two surfaces A and B, as written in Eq. (2.19).

d(A,B) = max

{
sup
x∈A

(
inf
y∈B

d(x, y)

)
, sup
y∈B

(
inf
x∈A

d(y, x)

)}
(2.19)
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(a) Distance from A computational mesh to B immersed geometry.

(b) Distance from B computational mesh to A immersed geometry.

Figure 2.17: Distances measured for the construction of the Hausdor� distance with A
mesh representing the immersed FOWT and B iso-surface Φε = 0 with ε = 10−1m. Plot
of the distance scaling from 0 to 10−1m, zoom around a blade.

The construction of a Hausdor� distance would require the computation from A to B
and from B to A. Following this approach, A corresponds to the mesh representing the
immersed object, and B to the iso-surface Φε = 0 reconstructed. In practice, both A and
B are discretized using surface meshes of triangles. One of these meshes is considered
as computational, and the distances are measured from each point to the set of triangles
composing the other mesh. Even if the distance from the points of A to the surface of B
is not equivalent to the distance from A to B, the position of mesh points concentrated
around the interfaces allows this approximation. During an application to the immersion
of a FOWT, the most challenging region to represent is the rotor, as thin geometries need
to be represented. A Hausdor� distance is computed between the immersed mesh of a
FOWT A, drawn in Fig. 2.14a, and the meshed iso-surface Φε = 0 B, obtained thanks to
Paraview. When a poor reconstruction is performed, e.g., with ε = 10−1m in Figs. 2.17,
the tip of blades are rarely represented. The evaluation of the distances as presented
in Fig. 2.17a is much more representative of the quality of the reconstruction than the
results obtained in Fig. 2.17b.

Similarly, even when a much thinner representation is achieved, e.g., with ε = 10−3m
drawn in Figs. 2.18, the evaluation of the distances between A and B returns higher
values. The regions where these errors are important are located in the most challenging
places, e.g., at the trailing edge. For these reasons, only the distance from A to B is
considered in the following. The "error" produced during the reconstruction is thus
represented using the distance from the immersed mesh of a FOWT to the reconstructed
iso-surface Φε = 0. The expression written in Eq. (2.20) is used.

eAB = sup
x∈A

(
inf
y∈B

d(x, y)

)
(2.20)

The evolution of the reconstruction error eAB with ε is plotted in Fig. 2.19 for the
immersion of the FOWT presented Fig. 2.14a. Two di�erent phases are observed on the
curve. From ε = 10−1m to ε = 2 · 10−2m, a very rapid decrease is observed. This e�ect
is related to the minimal size of mesh cells diminishing, allowing to better capture the
challenging areas, e.g., the tip of blades. From ε = 2 · 10−2m to ε = 10−3m, the decrease
is much slower. The geometries are globally well represented, and decreasing ε allows
small improvements, which tend to better model small, local geometries. This whole
development can be summarized from the identi�cation of the red, dashed line. On the
right of this line, i.e., with large ε, huge errors are made during the reconstruction, and
whole sections of the geometry are not captured. On the left of this line, with small ε,
local improvements are performed at each decrease of ε, which provides a slow evolution
of eAB.
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(a) Distance from A computational mesh to B immersed geometry.

(b) Distance from B computational mesh to A immersed geometry.

Figure 2.18: Distances measured for the construction of the Hausdor� distance with A
mesh representing the immersed FOWT and B iso-surface Φε = 0 with ε = 10−3m. Plot
of the distance scaling from 0 to 10−3m, zoom around a blade.
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Figure 2.19: Error eAB measured after the reconstruction of a FOWT, for di�erent ε.

As this function is based on an upper bound of the distance, local imprecisions in
the mesh can have a huge impact on eAB, especially when ε is high. An illustration can
be given from the example used for ε = 5 · 10−2m. The size of mesh cells is not thin
enough to get a good representation of the tip of blades, which has distances on the order
of 10−2m. When mesh points happen to be correctly positioned, the tip of blades can
be properly reconstructed. On the contrary, an ill-positioned point has a huge in�uence
on eAB. The di�erences observed on Fig. 2.20 between the blade located on the left
and the ones on the right provide a good example. The blade on the left is rather well
reconstructed, as the distance is higher than 10−2m only for challenging areas, such as
the tip or the trailing edge. On the contrary, the tip of the other blades is not recon-
structed, which leads to a considerable distance in these regions and �nally a�ects on
eAB. An important variability is expected for eAB. The estimation of the error realized
during the mesh adaptation procedure will be much lower for the blade located on the
left. As equidistribution of the error is targeted, the mesh around this blade will be
coarsened during the next adaptation step, while re�nement is expected around the two
other blades. This justi�es the rapid variations of eAB between adaptation increments,
which questions the accuracy of the positions of points with the largest ε on Fig. 2.19.

A remark concerning the generation of an adapted mesh can be done, from the study
of the computational mesh presented in Fig. 2.14b. The slice of the mesh highlights the
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Figure 2.20: Distance eAB with A mesh representing the immersed FOWT and B iso-
surface Φε = 0 with ε = 5 · 10−2m. Plot of the distance scaling from 0 to 10−2m.

presence of coarse cells far from the turbines. This mesh, which is too coarse for �ow
simulations, can be re�ned to be used at the beginning of a computation. The adaptation
procedure coupled with the resolution of the NS problem generates re�nement based on
the velocity of the �ow, which will lead to thinner cells in areas of interest. Note that
more than one billion points are required to obtain the same precision with a regular grid.

This case allows highlighting the computational savings provided by the octree. The
construction of the octree was performed as presented in Subsec. 2.1.3 with a limit of
200 elements per subdomain and a max depth of 12. The cost of the evaluation of
distances during the immersion of the wind turbine mesh in the adapted computational
mesh is presented in Tab. 2.1. The focus has been placed on the computation of the
distances because this step features the highest complexity. Moreover, the evaluation of
the distances is often required during a simulation cycle, as explained in Subsec. 2.1.1,
and its optimization is an absolute need. The computational time required for distance
evaluations is divided by about 235 only by the addition of the octree. The browsing
of the octree to select the closest neighbors for each point enabled to largely reduce
the number of distances to evaluate. In this application case, only 0.081% of the exact
distances from computational points to mesh facets are processed. The cost of the octree
browsing increases the average time needed to compute a distance by a factor of about
5, which is reasonable considering the large reduction in the number of evaluations done.
This example assesses the huge interest of the octree structure for distance computation
algorithm, and by extension for mesh immersion procedure.

Distances evaluated Time for distance evaluation Time per distance (s)
No Octree ∼ 8693M (100%) 9min, 51s (100%) 6.8.10−8

Octree ∼ 7M (0.081%) 2.5s (0.4%) 3.5.10−7

Table 2.1: In�uence of octree for wind turbine immersion

2.4.2 Reconstruction of a large number of wind turbines

The octree implementation intended to limit the complexity of the distance algorithm.
An idea of the scalability of the immersion procedure is obtained with a test case of 100
FOWTs. The WT mesh presented in Fig. 2.14a was duplicated 100 times, and the meshes
obtained were randomly dispersed in a computational domain of size 50m×50m×2.5m.
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As a matter of comparison, the dimensions of the computational domain used for the
reconstruction of a single wind turbine were 2m × 2m × 2.5m. The immersed mesh
consequently features 100 times more facets, the results of immersion are presented in
Figs. 2.21 and 2.22.

Figure 2.21: Reconstruction of 100 �oating wind turbines

This test case is not representative of an operational wind farm in terms of position-
ing or of meshing. Here the level-set functions are used only for the representation of the
FOWTs, without any free-surface or dynamic considerations. However, this e�ort was
realized in order to prove the consistency of the mesh adaptation procedure in the situ-
ation of a large number of WTs. Very small mesh elements are required to mesh the tip
of wind turbines, inside a large computational domain. The mesh adaptation procedure
can detect these e�ects on randomly-positioned WTs, which would be impossible with
traditional approaches re�ning the computational mesh in identi�ed interest areas.

Figure 2.22: Zoom on 3 WTs and mesh slice

The computational mesh used for the immersion contains 18M nodes for the same
precision as in the single turbine test case. The number of nodes used has been multiplied
by about 150, while the immersed mesh was 100 times bigger. The main reason for this
rise is the increased size of the computational domain. Despite these test case-related
considerations, the rise in the number of nodes needed has been well limited. Moreover,
the rise of computational times can be controlled with a corresponding increase in the
number of processors used.

The colors depicted on the wind turbines in Fig. 2.21 correspond to the partitions
used for the immersion. The location of the areas considered by the di�erent CPUs is not
prede�ned, which explains that small, divided-up color regions appear on the FOWTs.
This test case was quantitative, and do not present the computational times.
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2.4.3 Scalability of the immersion of FOWTs

The scalability of the immersion procedure is studied in this Subsec. from the test cases
of immersed FOWTs. Two di�erent studies are presented: they consist, respectively,
in weak and hard speed-up studies. The speed-up characterizes the acceleration of the
simulations when parallelism is involved, to evaluate the potential gains and losses due
to the size of the cluster used. The perfect speed-up would be obtained by dividing
the computational times by NCPU when the number of CPUs is multiplied by NCPU .
This value is purely theoretical. As the number of processors rises, the cost due to the
communications increases. The problem can be ill-suited for parallel computations, e.g.,
because of a small number of points in the computational mesh. All those reasons tend to
provide, when the number of CPU is multiplied by NCPU , a computational time divided
by a factorM < NCPU . the objective is obviously to get a factorM/NCPU as close from
1 as possible.

Several parameters can be tuned to optimize parallel simulations. Among them, the
most important is the number of CPUs involved. Speed-up studies intend to evaluate
the in�uence of the number of processors used in the simulations. There is a di�erence in
paradigm between weak and hard speed-up. The weak speed-up intends to keep the com-
putational load similar on the CPUs, and to run di�erent test cases of various sizes. The
number of points in the computational mesh is thus multiplied by NCPU , exactly like the
number of processors. Weak speed-up then presents the time required to solve each test
case. An ideal parallelized test case will return the same time expends for the di�erent
values of NCPU . However, whenever a simulation is distributed on several processors, the
e�ciency of the resolution is never ideal. Communication between the processors, parti-
tioning and parallel bottlenecks limit the scalability. Thanks to weak speed-up studies,
the computational e�ort put into the set-up of the parallelism, e.g. due to the communi-
cations or the partitioning, can be evaluated. The e�ciency of the resolution when the
size of the test case rises is also crucial information before running massive simulations.
The hard speed-up uses another paradigm. The test case is now �xed, and only the
number of processors varies. The computational time would ideally be divided by NCPU

when the number of CPUs is multiplied by NCPU . This process presents the acceleration
observed on a given test case with di�erent NCPU , which o�ers the potential to evaluate
the parallelization procedure as a whole. The ε was identical for the di�erent simulations,
in order to reach the same level of precision. A converged mesh was reached in both case.

Case Nodes/core Adaptation (s) Immersion (s) I/O (s)
1 WT 25K 6.2K 62 7.1
10 WTs 24.9K 8.2K (×1.3) 119 (×1.9) 20.1 (×2.8)

100 WTs 26.5K 9.8K (×1.6) 667 (×10.8) 140 (×19.7)

Table 2.2: Weak speed-up study with 6 WTs per processor

A reconstruction of FOWTs described by the mesh depicted in Fig. 2.14a is realized
with di�erent numbers of processors and a constant precision of the reconstruction, again
on the order of the decimeter for a full-scale turbine. The simulations started from a
coarse initial mesh and took 50 increments to perform full adaptation, leading to a fully
adapted mesh. The parameters used to generate the octree were also kept constant.
The data in Tab. 2.2 form a weak speed-up study, performed with a constant number
of 6 CPUs per FOWT, for 1, 10 and 100 turbines. The adaptation, which corresponds
to about 95% of the overall computational time, has proven to be very scalable. This
observation was already done in Digonnet et al. (2017), for massively parallel isotropic
and anisotropic meshing, on simpler test cases. The immersion, which showed interest-
ing scalability for 10 turbines, tended to be limited by the octree parameters for the last
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case. However, an interesting behavior is observed between the 1WT and 10WTs test
cases. Finally, the I/Os seem to be the least scalable part of the reconstruction proce-
dure. The writing of the output �les is at stake here, and the only option to accelerate
it would be to use binary �les. This weak speed-up study highlights the scalability of
the reconstruction procedure. It also emphasizes the importance of a good tuning of the
octree, suited to the test case considered. The addition of elements in the representa-
tion of the immersed geometries shall lead to a deeper octree, in order to remain e�cient.
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Figure 2.23: Time required to reconstruct 10 WTs with a varying number of processors.
The total time presented is composed of both the adaptation, immersion and I/O's
expenses.

A hard speed-up study was also performed, with the reconstruction of 10 WTs using
a mesh of 250K points and a varying number of processors. The results are presented
in Fig. 2.23. Even if the computational costs for the adaptation are not presented, the
logarithmic scale view make it similar to the "total" one. The scalability of the recon-
struction procedure is again interesting, as the same tendency was observed for both
the adaptation and the immersion. While an ideal slope of −1 can be reached for the
scalability curves, a slope of approximatively −0.85 is obtained, which is satisfying. This
means that, when the number of CPUs is multiplied by kCPU , the computational time
is divided by k0.85

CPU These studies prove the capacity of ICI-tech to handle large compu-
tational loads. However, in order to evaluate its potential for o�shore wind applications,
the focus must also be placed on the solver, which is done in the following.

2.5 Conclusion on the reconstruction of FOWTs

This Chap. presents the implicit boundary technique implemented in ICI-tech. An ex-
haustive presentation of the methodology used for the reconstruction of objects can be
found in Sec. 2.1. The mesh adaptation on which the mesh immersion relies for the
accuracy of the results is detailed in Sec. 2.2. The integration of those bricks inside the
highly-parallelized framework of ICI-tech is detailed in Sec. 2.3. Finally, an application
of these techniques to the simulation of FOWTs is proposed in Sec. 2.4.

During the developments of all the utilities presented hereafter, an orientation to-
wards the optimization of the computational costs has clearly been given. This thesis
followed these guidelines, particularly during the development of the reconstruction pro-
cedure onto a new ICI-tech platform. The octree has been developed for the immersion
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of random elements, with a focus on the e�ciency and reliability of the methods used.
The reconstruction of FOWTs shows interesting results, both in terms of precision or of
scalability. The representation of a large number of FOWTs show potential for ICI-tech's
mesher to represent very small objects dispersed in large computational domains.

The developments also intended to produce a versatile tree-structure, suited for var-
ious �elds of application. The octree produced can be used for the reconstruction of any
geometry de�ned using di�erent types of elements, thanks to a systematic recourse to
bounding boxes. The development of the octree was realized as a software brick, to again
increase its potential. This technological choice allows the call to the tree-structure for
other HPC requirements, e.g., to cut huge meshes. This allows splitting large sets of
elements, impossible to load by each processor, into several smaller sets.
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Chapter 3

Numerical framework for the

resolution of the �ows around

FOWTs
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The simulation of FOWTs requires the modeling of both the aerodynamic and hy-
drodynamic e�ects acting around the structures. The correct representation of these
phenomena is critical for the design of a FOWT, which will frequently be under the
e�ect of extreme environmental conditions. Currently, simpli�ed approaches are used in
the industry for the simulation of FOWTs. As explained in Chap. 1, rotor models are
currently used, to limit the computational expenses linked to the resolution of the aero-
dynamics. The hydrodynamics are also solved using simpli�ed, cheaper methods, e.g.,
with the Morison equation. These approaches can provide satisfying results for particular
measures, e.g., loads applied to the structures, under speci�c environmental conditions
and once they are calibrated.

The de�nition of accurate simulators of FOWTs, on which the �ows are accurately
solved, is a complementary approach to the industrial solutions. The data required for
the calibration can be obtained at a reduced cost thanks to thin numerical simulation,
especially when experimentations are too hard and/or expensive to set up. The accu-
rate resolution of �ows around FOWTs is also interesting to highlight speci�c, unsteady
and dynamic e�ects appearing in particular conditions, that may be hard to reproduce in
experiments. Moreover, a precise resolution of the �ows is necessary to consider the �uid-
structure interaction of high accuracy, especially with �oating structures. For all those
reasons, the developments of softwares allowing a thin resolution of the �ows around
FOWTs is interesting.

The description of the �ows is obtained in theory from the Navier-Stokes equations.
This problem is considered in an incompressible formulation in this thesis. Under this
con�guration, it solves the velocity and pressure of the �ow, depending on the properties
of the �uid and on the environmental conditions speci�ed for the computational domain.
Some generalities about the resolution of the Navier-Stokes equations are proposed in
Sec. 3.1.

The resolution of the Navier-Stokes equations is coupled in this work to the recon-
struction techniques and mesh adaptation introduced in Chap. 2. Interesting compat-
ibility is found between those methods, with the potential to simulate accurately the
behavior of FOWTs. The geometries are represented exactly, using the reconstruction
technique and the mesh adaptation procedure. A high concentration of computational
points is found around the surface of the FOWT, which allows capturing the �uid �ows
up to the boundary layers. The computational costs induced by this approach are con-
siderable, as a thin meshing is required for both the geometries and the �uid e�ects.
However, the level of accuracy enabled by this methodology is very important. The tem-
poral and spatial discretization, along with the type of resolution of the Navier-Stokes
equations, are critical for the precision of the results. The methodology followed for the
resolution and the issues related to it are presented in Sec. 3.2.

The numerical simulation of FOWTs requires the representation of the environmental
conditions under which the systems are operating. Moreover, the movements of the
FOWT need to be representative of the one observed in reality. To that extent, several
implementations have been realized within the scope of the thesis, to make the simulations
of FOWTs possible. The di�erent additions are presented in Sec. 3.3.

3.1 Generalities on the resolution of the incompressible Navier-

Stokes problem

The Navier-Stokes (NS) equations rule the evolution of �uid �ow. Their resolution is a
challenge, that is addressed in this Sec. Di�erent approaches to simulate incompressible
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�uid �ows using the NS equations expressed in velocity in pressure are presented. The
approximations required in the formulation of the NS problem for its resolution are
presented in Subsec. 3.1.1, while the di�erent issues related to the resolution itself are
evoked in Subsec. 3.1.2.

3.1.1 Modeling the �ow with the Navier-Stokes equations

This thesis is dedicated to the simulation of FOWTs, which imposes the consideration of
multiphase �ows. The level-set approach presented in Chap. 2 allows the determination
of the properties of the �uid everywhere in the computational domain. The next step
consists in the resolution of the �ows. This Subsec. intends to present the di�erent
techniques used to represent the �ows. The application of the Navier-Stokes problem
to continuum media in an incompressible formulation and the equations at stake are
presented. The issues raised by turbulence are examined in a second time.

Navier-Stokes equations

The Navier-Stokes (NS) problem de�nes the behavior of the �uids, and is composed of
two equations: one guarantees the continuity of the solutions obtained, while the sec-
ond one states that the momentum will be conserved. The problem is presented in the
following in velocity and pressure, as this formulation is used in the context of �oating
wind turbines.

The continuity equation states that, for any volume inside the computational domain,
the mass entering the volume is equal to the mass leaving it. The continuity equation
for a �uid is presented in Eq. (3.1), with ρ �uid density, u �uid velocity, t time and ∇
di�erential operator.

∂ρ

∂t
+∇ · (ρu) = 0. (3.1)

This document is focusing on �ows around �oating wind turbines. The �uids simu-
lated are water and air which, in this context, may be considered incompressible. In this
case, the density of the �uids is constant, and the continuity condition can be rewritten.
A physical interpretation of this phenomenon is possible with water going through a
tunnel: no compression is allowed, so, to satisfy the continuity condition, the velocity
outwards is increased. Hence, Eq. (3.1) is reduced to Eq. (3.2).

∇ · u = 0. (3.2)

The momentum equation is the second one composing the NS problem. It states
that the momentum is conserved locally at each point of the domain. This equation
is presented in Eq. (3.3) for an incompressible formulation with p the pressure, η the
viscosity and f the exterior force, e.g. gravity or another mass force.

ρ(
∂u

∂t
+ u · ∇u)− η∆u +∇p = f. (3.3)

The comprehension of �uid �ows requires the resolution of the NS equations. The
problem is solved on a domain Ω of frontier Γ, where the NS equations are veri�ed.
This formulation is completed by an initial solution u0 and by Dirichlet and Neumann
boundary conditions (BCs), applied respectively on ΓD and ΓN , verifying ΓD ∪ ΓN = Γ
and ΓD ∩ΓN = ∅. The viscous tensor σ and the unit vector normal to ΓN appear in this
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expression. The whole incompressible NS problem then reads:

∇ · u = 0 in Ω

ρ(∂u∂t + u · ∇u)− η∆u +∇p = f in Ω

u = α in ΓD

σ · u = β in ΓN

u(t = 0) = u0 in Ω

(3.4)

However, no trivial solution can be found for the NS problem. The existence of smooth
solutions to the NS problem in 3D with given initial solution has even been named as a
Millennium Prize problem in mathematics. This limitation is due to the non-linear term
u·∇u appearing in the momentum equation. Consequently, as continuous solutions of the
NS problem are not known, the domain Ω has to be discretized to enable the acquisition
of approximate solutions. Another issue intrinsic to the NS problem is the turbulence.
This phenomenon becomes very complex when the Reynolds number of the �ow rises,
which generates an important computational load. A common approach is to modify the
formulation of the NS equations to handle the turbulence. Di�erent levels of accuracy can
be achieved, depending on the alternative problem solved. These formulations are tightly
linked with the discretization chosen for Ω. These topics are detailed in the following.

Modeling turbulence with the Navier-Stokes equations

The turbulence is a physical phenomenon characterized by vortices appearing in a dis-
turbed �uid �ow. If a viscous �uid is considered, its contribution will be minor com-
pared to the viscous e�ects. However, when high Reynolds-number �ows are considered,
e.g. aerodynamic e�ects, the comprehension of turbulence is critical for a good represen-
tation of the phenomena occurring.

The vortices initially induced by �uid e�ects have a direct in�uence on its vicin-
ity, and progressively lose energy, dispersed in the neighboring �uid. Smaller vortices
are generated, create even smaller eddies, which �nally vanish as the viscosity of the
�uid becomes dominant. This cascade of energy has been characterized by Kolmogorov
(1941). From this observation, an accurate simulation of the �uid imposes the capture
of all the vortices, i.e. to use a discretization thinner than the size of the smallest eddies.
However, in the case of high-Reynolds �ows the computational cost required for both the
meshing and the resolution of �ows imposes the usage of a simpli�ed formulation of the
NS problem, as depicted in Fig. 3.1. The biggest challenge comes with the non-linear
term in u · ∇u, which generates the turbulence and is complex to approximate. In the
next paragraphs, three main approaches used for the resolution of the NS problem are
presented.

The Direct Numerical Simulation (DNS) formulation of the NS problem is an ap-
proach that intends to solve all the scales of the �ow, followed, e.g., by Scardovelli and
Zaleski (1999). This approach requires the capture of each eddy contained in the �ow, to
measure its evolution and decay. The precision required is deduced from the Kolmogorov
cascade, with a characteristic length depending on the Reynolds number of the �ow.

DNS is currently una�ordable for engineering cases featuring complex geometries and
high-Reynolds �ows such as �oating wind, as the resolution required in the discretization
of the computational domain leads to prohibitive meshing. This technique is nowadays
most commonly used for turbulence studies on academic test cases. Some authors now
focus on WT blades, e.g., Ducoin et al. (2017) for a Savonius-type VAWT. However,
future advances in the computational area could pave the way for highly accurate engi-
neering simulations.
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Figure 3.1: Kolmogorov cascade and formulations of the NS problem, from Bakker (2006).
DNS solves all the scales of the �ow, while RANS models the major part of turbulence.
LES operates as an intermediate approach.

The RANS formulation of the NS equations is a paradigm that aims at modeling all
the turbulence in the �ow, at reasonable computational expenses. The strategy is to
reduce the computational expenses through �ltering of the turbulent structures, to keep
only the constant part of the �ow. This can be viewed as a time-averaging of the NS
equations, i.e. a resolution of the NS problem ignoring the ∂u/∂t term. The in�uence
of turbulence is modeled, through a term included in the NS problem. RANS can be
modi�ed to make it time-dependent, when the evolution of the system can be expressed
using boundary conditions varying slowly. This approach is called URANS, for Unsteady
RANS, and was used, e.g., by Quallen and Xing (2016) in the context of FOWTs.

The computational expenses are largely reduced thanks to the RANS formulation of
the NS problem. The time-averaging allows getting an idea of the �ow with the simula-
tion of a single time step. Vortices are not tracked, which allows a coarser discretization
of the domain, and consequently faster simulations. However, the results obtained do not
highlight the perturbations observed in the �ow, as proposed in Fig. 3.2. URANS tackles
the time-constant limitation, even if the �ow resolved will still have a smooth behavior.
Some phenomena are also impossible to represent using time-averaged NS equations, one
of the best known being the Karman vortices.

LES is an intermediate approach between RANS and DNS in terms of precision and
computational e�ort. The turbulent structures are resolved up to a certain characteristic
length. The end of the energy cascade is matched using viscous terms representing the
subgrid-energy decay of the vortices. An extensive study of the turbulence modeling in
LES is performed by Meneveau and Katz (2000).

Mathematically, the LES formulation of the NS equations is created by a scale sep-
aration in velocity u = uh + u′, uh being the resolved velocity and u′ the small scale
one. The non-linear term of the NS equations generates a closure problem, where the
subgrid-scale stress needs to be modeled. More information can be found in Hughes et al.
(1998).

VMS is an alternative approach proposed by Hughes et al. (1998) and Codina et al.
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Figure 3.2: Turbulent jet solved with di�erent formulations of the NS equations from
Maries et al. (2012): DNS (left), LES (center), and RANS (right).

(2017), operating as an implicit LES. A similar scale decomposition is processed in VMS,
and two distinct problems are built: a large-scale one and a subscale one, both of them
including each velocity components uh and u′. The subscale velocity u′ is approximated
analytically using the �ne-scale problem, and replaced back into the coarse-scale one.
This allows building a formulation providing a similar precision to LES, without any
explicit correction of the problem.

Mixed techniques have also been developed to obtain precision and computational
e�ort located somewhere in-between LES and RANS. E.g. Detached Eddy Simulation
(DES) is a combination of the RANS and LES paradigms, used in particular for simu-
lation around bodies. To limit the precision required for the mesh around the body, a
RANS approach is used in this region. On the contrary, the resolution of accurate far
�ow is achieved thanks to LES.

3.1.2 Resolving numerically the �ow from the Navier-Stokes equations

As mentioned previously, the resolution of the NS problem is not straightforward. When-
ever complex geometries are simulated, approximated formulations of the NS equations
are required. But even with those modi�ed formulations, no immediate solutions can be
obtained. The resolution is achieved in practice thanks to a discretization of the area
where the NS equations are solved. Similarly, a discretization in time is required. More-
over, as this thesis focuses on the simulation of FOWTs, the problematic of �uid-structure
interaction (FSI) needs to be discussed. The upcoming Subsubsecs. present those issues.

Spatial discretization techniques and meshing

The discretization of the geometries is critical for an accurate resolution of the NS equa-
tions. The �rst step is the de�nition of an appropriated computational domain, depicting
as well as possible the shape and characteristics of the problem simulated. A point set
is built to represent the computational domain, and transformed into a mesh. The
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distribution of the points de�ne cells of various size in the domain, which translate to
�uctuating levels of precision achievable. Yet, as mentioned in Subsec. 3.1.1, the choice
of a formulation for the NS equation also has a huge impact on the accuracy of the
results obtained. Consequently, as for any simulation, the numerical framework chosen
for the resolution of the NS problem and the mesh generated needs to be compatible.
To that extent, di�erent sources of errors must be regarded. First of all, the size of
the mesh cells need to be appropriated everywhere in the computational domain. The
characteristics of the �ow being di�erent depending on many factors, e.g., geometries or
boundary conditions, this target length can vary in the domain. Moreover, the results
obtained with a given formulation written need to converge towards a solution when the
mesh becomes thinner. This converged solution needs to be validated, compared with
experimental results, to prove the accuracy of the solver used. Successive re�nements
of an initial coarse mesh should then provide solutions converging towards the "reality".
Finally, the numerical error produced by the formulation of the NS equations must be
put in perspective with the spatial error generated by the mesh. To illustrate these
statements, the NS frameworks described in Subsec. 3.1.1 can be considered. A time-
averaged, turbulence-modeled RANS formulation evaluated with a very thin DNS mesh
makes no sense, as it leads to prohibitive computational e�ort for only minor improve-
ments. Likewise, a DNS formulation evaluated on a RANS mesh will provide poor results.

Di�erent types of connections can be used. The most common are composed in 2D
of triangles or quadrilaterals, while 3D meshes use for the major part tetrahedra or hex-
ahedra. Aside from these di�erent mesh types, two major families of meshes exist: a
structured mesh reproduces a particular pattern, and its connectivity is de�ned spatially
; on the contrary, unstructured meshing generates irregular grids. Di�erent approaches
can be used to solve the NS problem, suited for certain kinds of discretization. Some of
them are detailed in the coming paragraphs.

The Finite Di�erence Method takes advantage of a structured mesh to optimize the
computations. The equation is written at each of the computational points, and accounts
for the values at the neighbor nodes. This technique is applicable with structured meshes
only, when the distance between two connected grid points is easily evaluable. The whole
set of equations can be reformulated into a matricial formulation, which is then solved.
This method allows evaluating the equations considered at every computational points,
and is relatively a�ordable. However, the formulation is solved exactly only at the grid
points, and do not account for the phenomena occurring elsewhere. This type of results
is reliable when thin grids are considered. The combination of small distances between
points and homogeneous grid translates to an important computational e�ort. A �nite
di�erence solver with a LES formulation of the NS equations is used for the simulation
of wind farms by Joulin et al. (2019).

The Finite Volume Method does not consider the point net, but instead relies on con-
trol volumes de�ned around each node for the resolution. The equations to be solved are
written on the whole control volume, and transferred to its frontiers. A �ux formulation
appears, which is conservative and consequently allows the resolution. The problem is
constructed under a matricial format for the resolution. Both structured or unstructured
meshes can be used with this framework. This achieves mass conservation during the
simulation, making this technique rather popular for the resolution of the �uid �ows.
Calderer (2015) used a �nite volume solver for the resolution of the NS equations under
a LES formulation in the context of FOWTs.

The Finite Element Method (FEM) also considers cells for its resolution. Again, the
equations are written on a whole element. The approach relies on the linearization of the
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solution on each element, using solutions at the nodes of the mesh and base functions
for interpolation. The initial equation, also named strong formulation, is not directly
solved in FEM. Weak formulations, built from the integral over an element of the strong
formulation multiplied by test functions. The whole problem, applied to all the elements
simultaneously, is written under a matrix formulation and solved. FEM meshes can be
either structured or unstructured. Yan et al. (2016) used a FEM framework to solve the
NS equation in a LES formulation for the simulation of FOWTs.

Figure 3.3: Comparison of FEM results obtained with �rst- and second-order base func-
tions.

The precision of the results obtained with the FEM is directly dependent on the
linearization chosen for each element. To that extent, the order of the interpolation is
critical. Higher-order schemes will require the resolution at more Gauss interpolation
points and uses more base functions. However, the precision achieved with higher order
can be largely improved, which allows coarsening the mesh used. A 1D illustration of
this statement can be found in Fig. 3.3. The results obtained enable a much better �tting
of the desired solution, while the function is evaluated at the same number of points.
This technique provides another possibility in the control of the discretization error when
using FEM.

Several techniques using particle approaches have been developed over the years.
These methods do not require a mesh to solve the �ows, but only a set of points. In par-
ticular, the Smoothed-particle hydrodynamics (SPH) and the Lattice Boltzmann method
(LBM) have attracted a lot of attention. In SPH the displacement of the �uid is inherited
from the movements of the particles, which are solved from the NS equations. SPH is
e�cient to solve free-surface �ows, particularly for �uids of low viscosity. However, in an
air/water context, no aerodynamic results are provided by SPH, and another solver needs
to be coupled to it for FOWT simulation. Leble and Barakos (2016) used a SPH solver
to solve the hydrodynamics for the simulation of a FOWT. In LBM the NS problem is
not solved. The movement of the particles is obtained after the resolution of the discrete
Boltzmann equation, which includes a collision model that can be adapted to the context
simulated. The Boltzmann method, similarly to the Finite Di�erence approach, needs a
regular grid, which limits its application in the context of FOWTs. An example of WT
simulation using the Boltzmann method is proposed by Deiterding and Wood (2016).

Time discretization techniques

Just like the computational domain has to be discretized, the presence of a derivative
over time in the NS equations imposes a time discretization. The NS problem will be
solved at distinct instants of the time, separated by a time step. The choice of the time
step at each instant needs to be well thought to capture the �uid e�ects required by
both the numerical formulation and the spatial discretization. To that extent, the char-
acteristic time ruling the evolution of phenomena need to be regarded in correspondence
with the meshing. As an example, a DNS formulation requires the capture of small,
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vanishing vortices, thus requiring a very thin meshing, and consequently very small time
steps. The time step can be optimized during a computation. Time adaptation tools
evaluate the �ow in the computational domain at a given instant, and de�ne a time step
guaranteeing both a good control of the time error and an optimized computational e�ort.

When discretizing in time, two di�erent paradigms can be chosen for the resolution
at the time step n + 1: the solution can either depend on the results at the time step
n, or anticipate the evolution towards the timestep n + 1. This writes as presented in
Eqs. (3.5) for the resolution of Ax + b. The �rst option is known as explicit, while the
second is implicit. {

xn+1 = Axn + b

xn+1 = (I −A)−1b
(3.5)

When the problem to solve is non-linear in time, the in�uence of the time-discretization
is crucial for the accuracy of the simulation. In particular, the numerical schemes are
known to provide convergence issues when the time step chosen is too large. The respect
of the Courant�Friedrichs�Lewy (CFL) condition is necessary to ensure convergence in
this situation. The CFL condition is presented in Eq. (3.6), with ∆t time step, ∆xi mesh
size along each each dimension, uxi velocity of the �ow along each dimension, Cmax a
constant.

∆t
∑
i

uxi
∆xi

< Cmax (3.6)

The value of the constant Cmax depends on the schemes used. If explicit schemes are
used, Cmax is about 1, but its value for implicit schemes is larger. Implicit schemes con-
sequently allow higher time steps than explicit ones. The schemes presented in Eq. (3.5)
share the same convergence rate, 1, which means that when the time step is divided by
N , the error is too. Schemes with higher convergence rates can be de�ned, e.g. Runge-
Kutta ones, which can reach order 4. The higher-order schemes are usually built as
mixed explicit-implicit, as the non-linear evolution of the solutions are better approxi-
mated when both the previous and the current solutions are considered. An example
which provides a second-order accuracy, known as the Crank-Nicholson scheme, is given
in Eq. (3.7).

xn+1 = (I −Ai)−1(Axxn + b) (3.7)

Boundary conditions

The NS problem presented in Eq. (3.4) requires boundary conditions (BCs). BCs are
imposed in particular regions of the computational domain considered, to impose the
�ow in those areas. The most common types of conditions are, namely: the Dirichlet
ones, which impose a value for a variable of the problem ; the Neumann ones, which
characterize a �ux for one of those variables. The BCs are commonly imposed on the
borders of the domain, to de�ne the in�ow and out�ow. They can also be applied in
the inside, especially when geometries are dispersed in the domain. The BCs are always
applied on the variables of the problem considered, and consequently, NS resolutions
involve conditions in velocity and �ux.

The BCs are necessary to build the problem, thus they have to be imposed before the
resolution of the NS equations. The integration of the BCs is then performed through
the discretization schemes. The resolution uses the information provided to solve the
problem. Each discretization method uses the BCs in a di�erent manner, but the concept
behind the resolution is always to communicate them through the neighboring mesh
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points or elements. The matricial formulation of the NS problem then allows the full
resolution, with in�uence accorded to the BCs.

Fluid-structure interaction

When a �uid �ow around geometries is simulated, the correct representation of the ob-
jects dispersed in the domain is critical to get accurately resolved �ows. The physical
shape of the objects must be well reproduced, and their in�uence on the �ow has to be
correctly taken into account. If the objects have a �ow-driven motion, the in�uence of
the �ow on their movements is critical, but the perturbations induced by the objects on
the neighboring �ow are very important to capture too. If the objects are deformable,
the forces applied by the �ow on the boundaries of the objects are required to measure
the deformations induced.

Two di�erent methodologies can be followed for the resolution of FSI. The parti-
tioned approach relies on two di�erent solvers, a solid and a �uid one, which are used
independently. The �uid solver is used to generate a �uid �ow, whose results are in-
putted inside the structural solver. In particular, the forces applied by the �uid on the
structures are necessary to measure the de�ection of the geometries. A weakly-coupled
partitioned approach conserves the results obtained by both solvers and advances to the
next time step. On the contrary, a strongly-coupled one continues to iterate alternatively
on �uid and structural solver, until a convergence condition is achieved. The use of two
standalone solvers imposes the coupling of softwares already existing. The only challenge
is the organization of the coupling, which can become a real challenge. Weakly-coupled
FSI solutions tend to be unstable, while the convergence of hard-coupled partitioned pro-
cedures can be very time-consuming. This strategy was followed by Leble and Barakos
(2016) in the context of FOWTs. A monolithic approach considers both the �uid and
structural e�ects using a single solver. A solution needs to be implemented, which solves
the NS equations in the �uid, and a structural problem in the solid. This direct solving
can be very expensive computationally, as the system may be hard to build and/or slow
to converge. However, this approach allows to use a single mesh, and largely reduces
the communications between the solvers. Yan et al. (2016) used a quasi-direct coupling,
derived from a monolithic approach, to handle the FSI of FOWTs.

The representation of the geometries can be realized in several ways. The most
straightforward one is to use body-�tted meshes. Those meshes of the computational
domain feature holes at the position of the di�erent objects, whose boundary is meshed
exactly. An example can be found on Fig. 3.4 for a NACA 0008 pro�le. Boundary
conditions can be applied on the borders of the object to de�ect the �ow, and obtain a
resolution around a body. This technique enables to accurately de�ne a geometry, and
consequently to obtain a correct representation of the �ow. Once the �ow is solved, if
needed, the forces can be computed directly on the frontier of the object. The body-�tted
mesh is, in this situation, also solution-�tted. This choice imposes, when the object is
deformed or displaced, to remesh all the domain has from scratch. To tackle these limita-
tions, techniques such as the Arbitrary Lagrangian-Eulerian (ALE) approach have been
developed. The ALE permits remeshing when the displacements of the mesh points are
small. When an appropriated time discretization is used, ALE makes the mesh follow
the motion of the structure. FSI simulation of WT blades was realized by Bazilevs et al.
(2011b) with a ALE formulation moving the �uid mesh.

An alternative to body-�tted meshing considers bodies reconstructed implicitly, e.g. us-
ing the immersed boundary approach. This methodology uses a unique mesh and a
signed-distance function to reconstruct the object. The points of the computational
mesh are segregated between inside and outside the object to represent. Hence, the
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Figure 3.4: Body-�tted mesh around a NACA 0008 pro�le, for a low Reynolds �ow
(Re = 100).

geometry obtained in the computation does not exactly represent the object, but is de-
pendent on the quality of the meshing around its frontiers. Remeshing is still necessary,
but can be achieved using the signed-distance function. Once the representation of the
immersed object is accurate, mixing laws can be applied to characterize the �uid or solid
at each computational point. The �uid and solid problems can then be solved. Hachem
et al. (2012) used an immersed volume method for �uid/solid simulations.

This formulation is appropriated for both the monolithic or partitioned FSI ap-
proaches. The meshing inside the computational domain allows solving directly the
structure equation on this mesh inside a monolithic formulation, but an overset grid can
also be used. Two di�erent frameworks can be used to de�ne implicit boundaries, which
are exempli�ed in the following for the immersion of a �uid. The �rst one is the Volume
of Fluid (VoF) approach. The computational mesh is examined, and the proportion of
�uid found in each cell is measured. This method is e�cient, but the cells with a very
low proportion of �uid tend to complicate the resolution of the �ows. The second ap-
proach uses level-set functions, which are based on the signed-distance from each point
of the mesh to the interface of the �uid represented. This signed-distance obtained is
rearranged to obtain a smooth-Heaviside function, which is able to represent accurately
the interfaces of the �uid immersed. This approach increases the computational costs,
and is challenging when the interior of the object is hard to de�ne. It also represents
more precisely the interfaces. In the context of �uid �ows, both methods require the res-
olution of a transport equation to solve the position of the �uid's free-surface iteratively
in time.

A last consideration about FSI meshing can be done on the de�nition of the boundary
conditions at the borders of the computational domain. The �ow is naturally de�ected
when geometries are positioned in an air�ow. If the computational domain is too small,
the de�nition of the BCs can provide additional perturbations to the �ow, thus gen-
erating imprecise results, even if a good convergence is achieved for the solver. Those
con�nement e�ects must be avoided, as they compromise the good representation of the
system simulated.

3.1.3 Navier-Stokes equations for high-resolution simulations of FOWTs

This thesis focused on accurate simulations of FOWTs. This Subsec. highlight the consid-
erations behind the development of a simulator providing high-accuracy. As mentioned
in Sec. 1.2, the resolution of the Navier-Stokes equations provides the best precision
among the di�erent strategies followed for the simulation of FOWTs. In Sec. 1.1, the
issues associated to the simulation of a realistic operational FOWTs are presented. As a
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recall, sea states need to be reproduced, as well as the aerodynamics. The interactions of
the FOWT with its environment are required, and several di�erent situations need to be
distinguished. The aerodynamic e�orts applied on the blades, and the rotor behavior are
important to characterize the energy produced by the FOWT. The motion of the whole
structures, and the deformation linked, e.g., to aeroelasticity, would be needed to get the
best precision. The dynamic of the moorings is also very important, to ensure that the
stationkeeping of the FOWT is assured.

The set-up of an accurate framework for the resolution of the dynamics of a FOWT
requires the handling of a three-phase simulation. Two �uids (air and water) de�ne a
free-surface, which intersect a solid (the FOWT) evolving at its surface. The FOWT
endures a �ow-driven motion, which is limited by moorings. The resolution needs to
handle both the �uid and solid behaviors, hence a coupling is required. The de�nition
of a hard coupling strategy, based on a monolithic approach, has the best potential in
terms of precision.

To limit the coupling between �uid softwares, the aerodynamics and hydrodynamics
can be solved using a single software. This choice requires the capture of the air/water
interface, and its tracking in time. To that extent, an immersed volume approach is re-
quired, along with an appropriated meshing of the free-surface. Either the same method-
ology can be used for the de�nition of the solid structures, or a body-�tted mesh needs
to be de�ned. In the �rst situation, a lot of e�ort needs to be placed in the positioning
of computational point around the �uid/solid interface, while the other strategy imposes
the de�nition, at each time iteration, of a FOWT-�tted computational mesh.

The accuracy of the �ow resolved depends on the formulation chosen for the NS
equations. A DNS paradigm is unachievable computationally, which pushes LES-type
formulations forward. The computational mesh cells thus need to capture the largest
eddies characterizing the Kolmogorov cascade, which impose the use of relatively thin
meshes. As high-Reynolds �ows are observed for FOWT simulations, the turbulence
generated reduces the size locally required for mesh cells. This small size of mesh cells
cannot be used everywhere in the computational domain, because of the e�orts it gen-
erates in terms of memory and resolution. Re�ned areas need to be de�ned, in interest
areas where the �uid and solid e�ects will be important. The generation of this mesh can
be done using user-de�ned interest zones, generating higher-resolution patches. Another
strategy consists in automatic adaptation, which re�nes the mesh in regions de�ned from
simulation results.

The resolution of the NS problem is performed on the computational mesh gener-
ated. Among the spatial discretization methods evoked in this Sec., an optimal accuracy
is obtained using Finite Volumes or Finite Elements Methods. The Finite Di�erence
and Lattice-Boltzmann approaches are competitive only on regular grids, which com-
promises their accuracy for multiphase �ows, while the SPH method can solve only the
hydrodynamics. From the order of convergence of the error produced spatially, a time
discretization scheme of corresponding order can be selected.

The representation of the rotor is another issue for a simulator of FOWT. In a frame-
work solving the NS equations, two di�erent alternatives are found. A model can be
used to account for the e�ect of the WT rotor, among the solutions proposed in Sub-
sec. 1.2.1. The other option consists in the representation of all the geometries, including
the blades. This option induces a higher computational e�ort due to blade meshing and
all the aerodynamic e�ects developing around. It also o�ers the potential to simulate all
the physics with better precision. Similarly, models can be used to account for moorings
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in the simulations, which provide various levels of precision. An optimal simulation would
still consider each mooring line and conduct an elasticity study on the fully meshed on it.

In the set-up of a simulator of FOWTs, a consideration can be made about the bound-
ary conditions. As realistic sea states and wind pro�les have to be generated, a lot of
attention needs to be placed in the de�nition of BCs at the inlet. A propagation of the
wave �eld must be realized in order to reproduce sea conditions before it impacts the
FOWT. This allows getting rid of perturbations that may produced by wave generation
techniques. The implementation of slip BCs on the sides of the domain constrains well
the water �ux. However, the dynamics at the free-surface may be impacted near the
sides. The FOWT simulated thus needs to be placed in the middle of a rather large
computational domain. Similarly, the aerodynamic e�ects are impacted by the presence
of BCs too close from the rotor. In the meantime, constraining all the computational
domain to impose the �uxes is not a�ordable, as it would break the incompressibility
condition. Areas must be left "open", where recirculation may be established during the
resolution. These perturbations must be limited, e.g., through the addition of viscous
layers.

The numerical methodology followed during this thesis for the development of a
platform dedicated to the simulation of FOWTs use several prescriptions detailed in this
Subsec. The preliminary works realized up to now imply that some simpli�cations are
still used in the design of the simulator, while other topics are not considered at all.
In the following, Sec. 3.2 details the numerical framework for the resolution of the NS
equations in ICI-tech, while Sec. 3.3 presents the implementations and advances relative
to the simulation of FOWTs.

3.2 Monolithic �nite element formulation for the incom-

pressible Navier-Stokes equations

The incompressible Navier-Stokes equations, whose resolution is introduced in Sec. 3.1,
are recalled in Eq. (3.8).



∇ · u = 0 in Ω

ρ(∂u∂t + u · ∇u)− η∆u +∇p = f in Ω

u = α in ΓD

σ · u = β in ΓN

u(t = 0) = u0 in Ω

(3.8)

As already mentioned, the resolution of the NS problem requires advanced computa-
tional techniques. This Sec. presents the Finite Element framework used in ICI-tech.

3.2.1 Finite Element formulation

A Finite Element (FE) approach is used in ICI-tech to handle the resolution of the
NS problem. The theory of FE relies on the de�nition of Sobolev spaces, presented
in Eqs. (3.9), on which the solution is approximated. These spaces are de�ned on the
computational domain Ω, with L2(Ω) the space of functions whose square is integrable
on Ω.
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H1(Ω) =
{
u ∈ L2(Ω) | Du ∈ L2(Ω)

}
(3.9a)

V =
{
u ∈ L2(Ω) | u = α in ΓD

}
(3.9b)

Q =

{
u ∈ L2(Ω)

∣∣∣∣ ∫
Ω
udΩ = 0

}
(3.9c)

V0 =
{
u ∈ H1(Ω) | u = 0, at ∂Ω

}
(3.9d)

The scalar product of L2(Ω) (., .) is de�ned as following.

∀(u, v) ∈ L2(Ω), (u, v) =

∫
Ω
uvdΩ (3.10)

The FE method relies on a weak formulation of the equations considered. As opposed
to the strong formulation, which writes R(u) = f for R di�erential operator and u, f
de�ned on Ω, the weak formulation considers the scalar product by a function de�ned
on Ω. The weak formulation is written in Eqs. (3.11) for, respectively, the integral or the
scalar product formulations.

∀v ∈ L2(Ω),

∫
Ω
R(u)vdΩ =

∫
Ω
fvdΩ (3.11a)

∀v ∈ L2(Ω), (R(u), v) = (f, v) (3.11b)

The resolution of Eqs. (3.11) consists in obtaining a solution u respecting the weak
formulation, which is equivalent to solving R(u) = f . However, it is almost impossible
to �nd an analytical solution to this type of problem, especially in the context of the
NS equations. To that extent, a discretization of the problem is proposed. The compu-
tational domain Ω is discretized and split into simplexes K. The set of K, written Th,
forms the computational mesh. New FE spaces can be de�ned, Vh and Qh, presented
in Eqs. (3.12), correspond to �rst-order FE written for a velocity/pressure problem.
However, a FE formulation being P1 in velocity and in pressure does not respect the
Brezzi-Babushka condition, which generates numerical instabilities. An enrichment of
the velocity is performed thanks to the space V0,h. This de�nes a P1+/P1 FE formu-
lation, abbreviated P1-FE in the following. The spaces use the notations C0(Ω) and
P 1(K) describing respectively the space of functions continuous on Ω and the space of
polynomials of degree 1 on K.

Vh =
{
uh
∣∣ uh ∈ C0(Ω), ∀K, uh|K ∈ P 1(K)n

}
(3.12a)

V0,h = {uh | uh ∈ Vh, ∀K, uh = 0 on ∂K} (3.12b)

Qh =
{
ph
∣∣ ph ∈ C0(Ω), ∀K, ph|K ∈ P 1(K)

}
(3.12c)

The resolution of the FE problem is achieved on each element K through a linear
combination of the contributions of each point i of K. Shape functions Ni of P 1(K)
are de�ned, respecting Ni(j) = 1 if i = j and Ni(j) = 0 if i 6= j, for i and j of K.
The interpolated solution at a point X located in K, simplex composed of DK nodes, is
written in Eqs. (3.13). The value of u at the node i is written ui. In the context of P1-FE,
uh|K for a random x ∈ K depends only on node values. In the context of higher-order
FE, more interpolation points are required. The same behavior is found for ph.

uh|K(x) =

DK∑
i=1

uiNi(x) (3.13)
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The FE approach considers an interpolated �eld in each element K. The precision of
the results directly depends on the order of interpolation, i.e., the degree of the polyno-
mials Ni. In the context of P1-FE, the shape functions Ni are of order 1, which translates
to ∇uh and ∇ph being constant in K. This approximation generates errors, which can
be tackled in di�erent ways. The interpolation order can be increased, the size of K can
be reduced.

The resolution of the Navier-Stokes equations can not be directly realized with the
P1+/P1 formalism introduced. First of all, as mentioned in Subsec. 3.1.1, the turbulence
of the �ow needs to be modeled. Several approaches have been proposed, which rely on
the modi�cation of the NS equations to characterize the subgrid-scale �ow. The second
issue with the current P1+/P1 paradigm appears when convective �ows are considered.
The solutions tend to integrate numerical oscillations, which require the addition of sta-
bilization terms to be suppressed. As Re numbers around WT blades have an order of
magnitude of 106, the �ows are clearly convection-dominant. A resolution performed in
a P1+/P1 formulation would thus generate numerical oscillations. Instead of consider-
ing modi�ed NS equations, the methodology followed in this thesis uses a Variational
MultiScale (VMS) paradigm. This formulation proposes an analytical approximation of
the subgrid-scale turbulence, which integrates stabilization terms suited for a FE reso-
lution. In the following, the resolution of the incompressible NS equations in the VMS
framework is described.

3.2.2 Variational MultiScale of the Navier-Stokes equations

The weak form of the incompressible NS problem is presented in a variational form
in Eq. (3.14) with u the velocity and p the pressure. From here on, a di�erentiation
is established in the notations between velocity and pressure, as they are represented
respectively by vector and scalar �elds. Compared to the NS problem written in Eq. (3.8).

∀(v, q) ∈ V0 ×Q,{
ρ(∂tu,v) + ρ(u · ∇u,v) + 2ηε(u) : ε(v)− (p,∇ · v) = (f ,v)

(∇ · u, q) = 0

(3.14)

ICI-tech uses a Variational MultiScale (VMS) formulation as presented by Hachem
et al. (2010) to solve the NS problem. The variational formulation considers a FE expres-
sion of the NS equations, with the weak form presented previously. The VMS paradigm
operates as an implicit-LES (Large Eddy Simulation). Velocity and pressure are split be-
tween the coarse scales, which are solved, and sub-grid scales, which are modeled. To link
this with the developments proposed in Subsec. 3.2.1, the coarse-scale contributions cor-
respond to the results obtained from interpolation on each simplex K. The subgrid-scale
ones correspond to the error produced by the FE approximation. The complementary
spaces to V , V0 and Q can be de�ned. They are presented in Eqs. (3.15). The scale
separation induced in velocity in pressure is written in Eqs. (3.16).

V = Vh + V ′ (3.15a)

V0 = V0,h + V ′0 (3.15b)

Q = Qh +Q′ (3.15c)

u = uh + u′ (3.16a)

p = ph + p′ (3.16b)
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The NS problem obtained after this scale separation is presented in Eq. (3.17). This
set of equations features both coarse and small scales. In LES, a viscous term is incor-
porated in the NS equations to compensate for the e�ect of the subgrid-scale turbulence.
In VMS, the NS problem is reformulated to add implicitly the contributions from the
subgrid-scale velocities in the formulation.

∀(vh, qh) ∈ Vh ×Qh, ∀(v′, q′) ∈ V ′ ×Q′,
ρ (∂t (uh + u′) , (vh + v′))Ω + ρ ((uh + u′) · ∇ (uh + u′) , (vh + v′))Ω

+ (2ηε (uh + u′) : ε (vh + v′))Ω − ((ph + p′) ,∇ · (vh + v′))Ω = (f , (vh + v′))Ω

(∇ · (uh + u′) , (qh + q′))Ω = 0

(3.17)
The orthogonality between coarse and small scales o�er to split Eq. (3.17) into a

coarse-scale and a sub-scale problem. They are written respectively in Eq. (3.18) and
Eq. (3.19).

∀(vh, qh) ∈ Vh ×Qh, ∀(v′, q′) ∈ V ′ ×Q′,
ρ (∂t (uh + u′) ,vh)Ω + ρ ((uh + u′) · ∇ (uh + u′) ,vh)Ω

+ (2ηε (uh) : ε (vh))Ω − (ph + p′,∇ · vh)Ω = (f ,vh)Ω

(∇ · (uh + u′) , qh)Ω = 0

(3.18)

∀(vh, qh) ∈ Vh ×Qh, ∀(v′, q′) ∈ V ′ ×Q′,
ρ (∂t (uh + u′) ,v′)Ω + ρ ((uh + u′) · ∇ (uh + u′) ,v′)Ω + (2ηε (u′) : ε (v′))Ω

− (ph + p′,∇ · v′)Ω = (f ,v′)Ω

(∇ · (uh + u′) , q′)Ω = 0

(3.19)

The VMS formulation relies on a reformulation of the �ne scale problem. Some
simpli�cations can be considered in Eq. (3.19). The crossed viscous terms can be ne-
glected. The pressure subscales are modeled, see Eqs. (3.20). Two more approximations
are considered by Hachem et al. (2010). The subscales are treated as quasi-static, which
returns ∂tu′ = 0. The subscale velocity is neglected in convective velocity, so that
(uh + u′) · ∇ (uh + u′) ≈ uh · ∇ (uh + u′). These last two approximations are mentioned
in Codina et al. (2017) as perturbing the NS problem.

Stabilization terms and residuals are introduced in Eqs. (3.20), along with the ap-
proximation realized for the �ne-scale pressure p′. The expression of τC is inherited from
Codina (2000), where c1 and c2 are two constants and h de�nes a characteristic length
of the element.

p′ ≈ τCRC (3.20a)

RM = f − ρ∂tuh − ρ
(
uh + u′

)
· ∇uh −∇ph (3.20b)

RC = −∇ · uh (3.20c)

τC =

((
η

ρ

)2

+

(
c2

c1

‖u‖K
h

)2
)1/2

(3.20d)

A simpli�ed subscale problem is obtained.

∀(vh, qh) ∈ Vh ×Qh, ∀(v′, q′) ∈ V ′ ×Q′,{
ρ (uh · ∇u′,v′)Ω + (2ηε (u′) : ε (v′))Ω + (∇p′,v′)Ω = (RM ,v′)Ω

(∇ · u′, q′)Ω = (RC , q′)Ω

(3.21)
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The resolution of velocity/pressure equations requires an enrichment of the formula-
tion. Residual-free bubble shape functions bK are de�ned. The small scale velocities can
be rewritten as in Eq. (3.22).

u′ =
∑
K∈TK

u′KbK (3.22)

The P1 characteristics of the FE considered here o�er to express u′ at the scale of
each simplex K as a function of RM . This approximation can be combined with an
upwind correction of the bubble shape functions, to stabilize the convective terms of the
Navier-Stokes equations. The formulation obtained is similar to a Streamline Upwind
Petrov-Galerkin (SUPG) framework, with small-scale velocities u′, which can �nally be
expressed as depicted in Eqs. (3.23). The term buK refers to the upwind corrections
brought to the bubbles.

u′K = τKRM (3.23a)

τK =
bK
∫
K (bK + buK) dΩ

ρ
(
uh · ∇bK, buK

)
K + (2µε (bK) : ε (bK))K

(3.23b)

Substituting back the �ne-scale equations obtained into the coarse-scale ones, the
�nal NS VMS problem can be de�ned. The full problem, expressed with P1-FE and
solved in ICI-tech, is presented in Eq. (3.24)

∀(vh, qh) ∈ V0,h ×Qh,

ρ (∂tuh + uh,∇uh,vh)Ω + (2ηε (uh) : ε (vh))Ω − (ph,∇ · vh)Ω + (∇uh, qh)Ω

− (f ,vh)Ω +
∑

K∈Th τK (ρ (∂tuh + uh.∇uh) +∇ph − f , ρuh∇vh)K
+
∑

K∈Th τK (ρ (∂tuh + uh · ∇uh) +∇ph − f ,∇qh)K
+
∑

K∈Th (τC∇ · uh,∇ · vh)K = 0

(∇.uh, qh)−
∑
K∈Th (τKRM ,∇ · qh)Ω = 0

(3.24)
The characteristic length of the element h is evaluated locally. In the context of

anisotropic meshing, the determination of h is a challenge. For an element K, edges
of various sizes can be found, without any guarantee on their orientations. To account
for this e�ect, Coupez and Hachem (2013) used a local de�nition of h on each simplex
K, where the local velocity of the �ow is considered. This expression is presented in
Eq. (3.13), with VK the vertices of K and Ni the shape functions of K.

hK =
2 |uh|∑VK

i=1 |uh · ∇Ni|
(3.25)

3.2.3 Mixing laws

The incompressible NS equations require the knowledge of the characteristics of the �ow
at each point of the computational mesh. In particular, the viscosity η and the density ρ
de�ne the behavior �uid �ows for a given problem. Mixing laws are applied to interpolate
them from the properties of the di�erent materials or �uids in the simulation.

The context of multiphase �ows requires the representation of several phases. To
that extent, di�erent mixing laws have to be applied. In ICI-tech, these mixing laws
are resolved successively. For the immersion of two phases of level-set Φ1 and Φ2 , the
procedure presented in Eqs. (3.26) is followed. The viscosities η1, η2 and ηd characterize
the two phases and the computational domain. The level-set functions allow to design

69



Heaviside functions H1 and H2. The procedure presented hereafter is valid for a three-
phases �ow using a linear law for each immersion. A generalization can obviously be
realized to more complicated multiphase �ows, with more phases and di�erent laws.

η′ = Hη1 + (1−H)ηd (3.26a)

η = Hη2 + (1−H)η′ (3.26b)

A linear law based on a Heaviside function H is presented in Eq. (3.27) for the
immersion of an object of viscosity ηo in a domain of viscosity ηd. The construction of
H is performed at each computational point, which helps to build a scalar �eld for η.
The de�nition of H tends to characterize the a�liation of the current point to the phases
considered, which allows a correct interpolation.

η = Hηo + (1−H)ηd (3.27)

Di�erent choices are available concerning the Heaviside function used for the immer-
sion. The only requirement for H is to de�ne a bijection in the transition area returning
results between 0 and 1. However, a constraint arises from the numerical framework used
in ICI-tech. For the case of two �uids, the only information known at each time step
about their interface is provided by the level-set function Φε. Consequently, H needs
to be de�ned from Φε for the construction of �uid/�uid mixing law. For the sake of
generalization, the de�nition of H is performed in ICI-tech from Φε, and is thus written
Hε.

The compatibility of the mixing laws with the adaptive meshing presented in Sec. 2.2
is very interesting. The mixing law rules the evolution of η and ρ, and require a �ne
meshing to be represented precisely at the interfaces. In ICI-tech, the adaptive meshing
is, in particular, de�ned by Φε. This implies the mesh to be adapted in the region where
the level-set function evolves.

The de�nition of the mixing law needs to account for this, as the evolution of η and ρ
needs to be concentrated in the region where the gradient of Φε is the highest. If not, the
smoothing of the �uid properties can be imprecise, does not represent well the problem
simulated, and computational issues may arise. In ICI-tech, this is achieved through the
introduction of a parameter emix, which characterizes the width of the mixing region. The
level-set function Φε, de�ned in Sec. 2.1 for α signed-distance, is recalled in Eq. (3.28).
An option for Hε, built using Φε to answer the meshing issues, is presented in Eq. (3.29)
and plotted in Fig. 3.5.

Φε(α) = ε tanh
(α
ε

)
(3.28)

Hε(Φε) =


0 if 1

2

(
1 + Φε

emix

)
< −emix

1
2

(
1 + Φε

emix

)
if − emix < 1

2

(
1 + Φε

emix

)
< emix

1 if 1
2

(
1 + Φε

emix

)
> emix

(3.29)

The illustration highlights the importance of a thinner mixing area. The level-set
�gures the regions where the mesh is re�ned, mostly where the Hessian of Φε is impor-
tant. These areas coincide for emix = ε/2, which guarantees a good representation of the
interfaces. On the contrary, H tends to widen as emix gets closer from ε, which opens
the door to variations in η in coarsely-meshed zones. With emix = ε, Hε de�nes mixing
laws of width ε. As the transition in �uid properties must be spread on several mesh
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Figure 3.5: Second derivative of Φε (Eq. (3.28)) and Hε (Eq. (3.29)) for ε = 1 and various
emix.

cells, emix = ε/4 is rejected. Finally, emix = ε/2 seems to be the most e�cient option
among the three proposed in Fig. 3.5.

The drop of d2Φε
dα2 around the α = 0 shows the limits of the adaptation based on

Φε only. The re�nement of mesh cells in this region is not constrained, which can lead
to important errors. However, the mixing law is quasi-linear in this region, thanks
to this characteristic of the hyperbolic tangent. Consequently, only a few mesh cells
allow producing a small interpolation error. Moreover, this area is located in-between
two highly re�ned regions. The coherence of the mesh generated tends to reduce the
target size of cells, which generates a "proximity re�nement". If the precision achieved
using the mesh generated automatically using Φε is not su�cient, the adaptation can be
enriched thanks to recourse to a Dirac function δadapt, de�ned as a derivative of Hε. The
adaptation is then done on Φε+δadapt. The expression of δadapt is presented in Eq. (3.30),
and a comparison between Φε and δadapt is drawn in Fig. 3.6. The addition of the Dirac
function in the adaptation procedure allows to consider the plain curve from Fig. 3.6 to
obtain the mesh concentration. The adapted area will feature more points around α = 0,
which improves the description of the interfaces.

δadapt =
1

2ε

(
1−

(
Φε

ε

)2
)

(3.30)

The construction of η proposed in Eq. (3.27) uses a linear interpolation. This law
is the most straightforward to build. However, when large disparities are encountered,
other laws may be more appropriated. This approach may be required for, e.g., the
density drop observed at the surface of the sea, where the order of magnitude of the
ration ρwater/ρair is of 103. Di�erent laws can be used for the interpolation. Logarithmic
and inverse laws are presented in Eqs. (3.31), and drawn in Fig. 3.7. The variety of
interpolations available, along with the di�erent options for Hε, enable to design mixing
laws suited for various problems. The inverse and logarithmic laws are valid for strictly
positive values, which is always the case for the physical properties η and ρ.

log(η) = Hε log(ηo) + (1−Hε) log(ηd) (3.31a)
1

η
= Hε

1

ηo
+ (1−Hε)

1

ηd
(3.31b)

71



−3 −2 −1 0 1 2 3
0

0.5

1

1.5

α

| d
2Φε
dα2 |+ |

d2δadapt

dα2 |

| d
2Φε
dα2 |

| d
2δadapt

dα2 |

Figure 3.6: Second derivatives of Φε (Eq. (3.28)) and δadapt (Eq. (3.30)) for ε = 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
100

101

102

H

η

Linear

Logarithmic

Inverse

Figure 3.7: Di�erent interpolation techniques applicable to mixing laws.
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3.2.4 Movements of phases

During a simulation of FOWTs, the phases represented in the domain, e.g., the �oat-
ing structure, the rotor or the sea, need to be moved. Two di�erent situations need to
be distinguished, the prescribed movements and the solved ones. To draw a compari-
son with a simulation of FOWTs, the rotation of WT blades can be user-de�ned, i.e.,
prescribed since the beginning of the simulation, or solved, i.e., deduced from the aero-
dynamic e�orts applied on it. Independently of the type of movements considered, the
determination of the new phase follows the same objective: the level-set Φε at the next
time iteration needs to be computed. To that extent, the new Φε needs to respect all the
mathematical requirements of a level-set function, but also has to accurately represent
the phase. Among the properties, the gradient of the level-set near the interface Γ has
to respect ‖∇Φε‖Γ = 1, which can require particular numerical treatment. The accuracy
of the representation is mostly dependent on good compatibility between the physical
problem simulated, the simulation parameters and the mesh adaptation.

When the movements of the phase to displace are prescribed, this step is straightfor-
ward. The new phase is known explicitly, with a variety of options available. The signed-
distance α or the level-set function Φε can be directly prescribed, or the movements can
be de�ned from the coordinate system of the object. This paradigm is often followed for
rigid objects, which follow a simple path. In this situation, the tracking of the interface
with time is simpli�ed. The prescribed de�nition of the parameters allow a complete re-
construction of the phases at each time increment, which respects ‖∇Φε‖Γ = 1 by nature.

When the movements of the phases need to be solved, the determination of the new
positions is more challenging. The geometry represented by a Heaviside function needs
to be moved, and eventually deformed, from the velocities of the surrounding �ow. Once
again, two di�erent situations can be considered: the solved movements of rigid solids,
whose treatment is detailed in the context of buoyancy in Subsec. 3.3.3, and the move-
ments of �uids. The movement of deformable solids is a last case, which is not considered
in this thesis. Even if, for accurate simulation of FOWTs, the aeroelasticity corresponds
to this type of solved movements.

The �uid �ows impose the tracking of the interface, represented by Φε, during the
simulation. The movements of �uids are realized in ICI-tech through the resolution of
an advection problem, which solves the transport of level-set functions. The advection
equation is presented in Eq. (3.32) for a �uid phase of frontier Γ represented by a level-set
function Φε of characteristic width ε, and with u the velocity of the �ow. The transport
is solved by considering the hyperbolic equation.{

∂Φε
∂t + u · ∇Φε = 0

Φε(t = 0) = Φε,0

(3.32)

By construction, the gradient of Φε needs to be 1 around Γ. However, the resolution
of this advection equation does not conserve this behavior. The gradient of the level-set
advected Φa

ε does not respect ‖∇Φa
ε‖Γ = 1. A correction step needs to be added for Φε

to respect the gradient condition at the next time iteration. A common approach is to
reinitialize Φa

ε through the resolution of a Hamilton�Jacobi equation, which introduces
a virtual time to reconstruct Φε from Φa

ε . This reinitialization step considers Φa
ε , and

performs a redistancing, to respect the condition on the gradient at Γ. This procedure
allows obtaining a level-set at the next time step respecting all the condition enumerated
previously. However, the resolution of multiple problems, the advection one and some
reinitialization steps, is required before obtaining the distribution of Φε at the next time
step.
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In ICI-tech, the transport and the reinitialization are combined in a single problem.
The convective-reinitialization method, developed by Ville et al. (2011), is used. This
approach allows to both transport and reinitialize the gradient of the level-set, through
the resolution of a single problem. A virtual time τ and a function Φv

ε , sharing the zeros
of Φa

ε , are introduced. The convective reinitialization problem, written in Eq. (3.33) for
Φv
ε , contains transport and redistancing features. The sign function S is de�ned, and

g(Φε) = 1 − (Φε/ε)
2 corresponds to the analytical gradient of the level-set function,

computed from a derivation of the theoretical expression of Φε. This new problem is
written with a total derivative instead of a partial one, as an Eulerian framework is used.{

dΦvε
dτ + S (Φa

ε) (‖∇Φv
ε‖2 − g(Φv

ε)) = 0

Φv
ε(τ = 0) = Φa

ε(t)
(3.33)

A velocity U and a parameter λ are introduced in Eq. (3.34).

U = S(Φt
ε)
∇Φv

ε

‖∇Φv
ε‖2

(3.34a)

λ =
dτ

dt
(3.34b)

A reformulation of Eq. (3.33) to bringU out allows reformulating this set of equations
as an advection problem, set down with τ . A multiplication of this advection problem
by λ enables to come back to time derivatives. The problem obtained is presented in
Eq. (3.35). {

dΦvε
dt + λU · ∇Φv

ε = λS (Φa
ε) g(Φv

ε)

Φv
ε(τ = 0) = Φa

ε(t)
(3.35)

The recourse to Φv
ε is not necessary, as the resolution is performed in one step. The

�nal convective-reinitialization is presented in Eq. (3.37). This formulation integrates
the expression of the derivative of Φε drawn in Eq. (3.36). This �nal problem allows
solving the transport, while conserving the correct description of ∇Φε.

dΦε

dt
=
∂Φε

∂t
+ u · ∇Φε (3.36)

{
∂Φε
∂t + (u + λU) · ∇Φε = λS (Φε) g(Φε)

Φε(t = 0) = Φε,0

(3.37)

The term dΦε/dt is linearized using a backward Euler time scheme, which allows
building a linear system. The numerical instabilities due to the convection, discussed
in Subsec. 3.2.2, are eliminated thanks to the addition of SUPG terms. The stabilized
linear system is �nally solved using PETSc.

3.2.5 Monolithic resolution of the Navier-Stokes equations

The resolution of the �ow problem is realized in ICI-tech using the utilities previously
presented in this Sec. The problem of Eq. (3.24) needs to be transformed into a linear
system Ax = b, which is solved using PETSc. Several terms presented in this Sec. are
not suited for a resolution. In particular, the time derivatives and non-linear terms found
in Eq. (3.24) have to be adapted to be handled numerically.

The time dependency is handled through time discretization. The formulation pro-
posed in ICI-tech uses an Euler implicit scheme. This means that, to compute xn =
x(t = tn), any x in Ax = b is considered as xn itself. This behavior tends to enrich the
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matrix A, and leads to a higher complexity during the implementation, compared to an
explicit scheme considering xn−1. However, much better robustness is obtained with this
choice. The order of evolution of the error is of 1, which means that, when the time step
is divided by N , the error is divided by N too. The time discretization should always
be regarded in perspective with the spatial discretization. Those two methods enable to
get a solution to the NS equations, but both produce errors, which have to be kept in
the same orders of magnitude.

The advection term u · ∇u in Eq. (3.24) is non-linear. To build a linear problem,
this term must be linearized. In ICI-tech, a linearization in time is performed, based on
the implicit Euler time scheme discussed previously. The details of the linearization are
presented in Eqs. (3.38).

un+1 · ∇un+1 = (un + (un+1 − un)) · ∇ (un + (un+1 − un))

=un · ∇un + (un+1 − un) · ∇un + un · ∇(un+1 − un)

+ (un+1 − un) · ∇(un+1 − un)

=un+1 · ∇un + un · ∇un+1 − un · ∇un

(3.38)

In the last step of the procedure, the term (un+1 − un) · ∇(un+1 − un) disappears.
This approximation is realized because the term generated is of the second order in time,
as it can be veri�ed with a Taylor expansion.

Once the matricial problem has been set up, ICI-tech takes advantage of PETSc to
solve the �nal system in parallel. A preconditioner is used to optimize the conditioning
of the matrix, here an Incomplete LU by blocks. Iterative solvers are used to solve the
NS VMS problem in a P1-FE formulation. A Biconjugate Gradient Stabilized solver has
been used during the thesis.

3.3 Numerical utilities of ICI-tech for the simulation of FOWTs

To simulate FOWTs in real operational conditions, the resolution of the NS equations is
only a small part of the problem. The rotor, the hydrodynamic behavior of the �oating
platform or the moorings are among the subjects that have to be addressed.

In ICI-tech, the representation of a rigid rotor is realized using a full-geometry re-
construction. The numerical assets presented in Chap. 2 handle this step by themselves,
and no further implementations have been needed to accurately model a static WT rotor.
The developments included in ICI-tech focused on the rotation of the whole structure.
The reconstruction of the moving rotor relies on successive immersions of the rotor mesh.
The implementation of the octree was able to largely reduce the costs linked to mesh
immersion. This postponed the implementation of a utility rotating the computational
mesh to follow the rapid movements of the rotor. Prescribed rotation of the WT blades
only requires the correction of the positioning of the rotor immersed mesh. The resolu-
tion of solved movements for the rotor requires the computation of the e�orts applied on
the blades. This evaluation of forces is described in Subsec.3.3.1.

The hydrodynamics can be viewed from two di�erent points of view. The �rst one
considers the impact of the sea on the FOWT. To that extent, an accurate representa-
tion of real sea states is important. In particular, the numerical generation of waves is
a key feature of a FOWT simulator. Simulation tools can only work with domains of
�nite size, and small mesh cells are required for the representation of the free-surface.
FSI is required in the context of FOWTs, which is expensive computationally. All these
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reasons force the recourse to small, bounded domains, where waves have to be generated
arti�cially. The di�erent developments realized concerning numerical wave tanks are
presented in Subsec. 3.3.2.

The second one focuses on the motion induced on and by the �oating structure. The
incoming wave �eld has an impact on the FOWT, which generates loads. The �oating
structure is thus put in movement. The de�nition of those displacements is necessary
to obtain an accurate simulation of a FOWT. The displacements of the FOWT then
have a direct impact on the surrounding water, which perturbs the hydrodynamics. The
buoyancy and FSI simulation tools are presented in Subsec. 3.3.3. Even if this thesis has
not been focused on moorings, this subject is brie�y discussed in this Subsec. too.

3.3.1 A posteriori computation of forces applied on an immersed body

The computation of the force applied on an object is not trivial in the context of mesh
immersion, as the adapted mesh obtained is not body-�tted. The absence of points
located exactly on the frontier of the immersed geometries prevents the direct acquisition
of the loads. However, the concentration of points around the interfaces enables to
measure those forces rather accurately. Instead of measuring the local normal constraint
Tlocal applied on the exact boundary of an object ω of interface Γ, as in Eq. (3.39),
the force needs to be measured on a volume surrounding ω. This is done using the
approach developed by Brackbill et al. (1992), which uses a Dirac function δε, presented
in Eq. (3.41). This Dirac function is built as a derivative of the Heaviside function Hε,
which respects Eq. (3.42). The function peaks for Φε = 0, and progressively decays as
it moves away from Γ. The integral of Tlocal pondered by δε is considered, which allows
to measure an approximation Fε of F, written in Eq. (3.40). The in�uence of the �ows
on Γ follows the trend of δε. The contributions of Tlocal are maximal around Γ, and
progressively decay.

F =

∫
Γ
TlocaldS (3.39)

Fε =

∫
Ω
δεTlocaldV (3.40)

δε =
1

2ε

(
1−

(
Φε

ε

)2
)

= ∇Hε (3.41)

∫
Ω
δεdV

ε→0−−−→
∫

Γ
dS (3.42)

Di�erent Dirac functions δ can be de�ned for the computation of forces. Several con-
straints exist though. If ω is deformable, the only information characterizing Γ known
at each time step is Φε. Consequently, the de�nition of δ is generalizable if its expres-
sion is built from Φε. The connection between the computation of forces and the mesh
adaptation procedure needs to be regarded too. The support of δ can be de�ned as the
width of the region where δ 6= 0. The support of the Dirac function used needs to be
included inside the highly adapted regions. Regarding this de�nition, the support of δε
is in�nite, even if δε rapidly tends towards 0. A virtual support can thus be de�ned for
δε using a threshold. This could help to evaluate the compatibility of δε with the mesh
adaptation based on Φε. However, as δε = ∇Hε, the mesh generated will naturally be
adapted in the areas where δε has in�uence. Finally, even if δ does not need to be even
by de�nition, this characteristic facilitates some developments.

The forces are computed a posteriori from the results of velocity u and pressure
p obtained after the NS resolution. A reconstructed velocity gradient is built and the
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stress tensor σ is computed at every point of the mesh, with η the viscosity and I the
identity matrix. The local normal stress is computed in Eq. (3.43a). The de�nition of
a vector normal to ω is necessary at that point, but as the computational points are
not disposed along Γ, its determination is not immediate. It has been chosen to de�ne
n as a normalized gradient of Φε. This allows computing n at every point of the mesh
using existing data. This also sets a natural �lter, as n is non-zero around Γ only. The
force Fε applied on ω is then deduced from an integration of the local normal constraints
ponderated by δε over Ω, as presented in Eq. (3.39).

Tlocal = σ · n (3.43a)

σ = η(∇u + t∇u)− pI (3.43b)

n = − 1

‖∇Φε‖
∇Φε (3.43c)

This formulation is inherited from the smoothed Heaviside function de�nition. The
ε parameter, characterizing the width of the transition area, is de�ning the span of the
integration zone. The convergence of Fε towards F when the width of the transition area
tends towards zero has been established by Brackbill et al. (1992). Consequently, the
precision of the force representation is directly dependent on ε, i.e., the quality of the
force obtained is determined by the accuracy achieved within the immersion process.

When the immersion of a solid object ω is considered, the velocity of the �ow inside
the object is null. The only contributions of the �ow are coming from the outside of ω.
Consequently, the evaluation of the force applied on an object by a surrounding �ow must
focus on the exterior of ω only. The de�nition proposed in Eq. (3.41) is not suited for
this usage, as δε provides the same in�uence to the interior or the exterior. To account
for the exterior �ow only, a truncated Dirac function δtε is de�ned. The expression of δtε
is written in Eq. (3.44), and a comparison of δε and δtε is drawn in Fig. 3.8.

δtε(Φ) =

{
2δε if Φ ≤ 0

0 if Φ > 0
(3.44)
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Figure 3.8: Dirac and truncated Dirac functions for ε = 1.

The truncated Dirac must respect the condition written in Eq. (3.42) to be used for
the force computation. This de�nition is enables by the even characteristic of δε. For a
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1D test case as plotted in Fig. 3.8, the development presented in Eq. (3.45) is trivial.

∫
δtεdΦ =

∫
Φ≤0

2δεdΦ (3.45a)

=

∫
δεdΦ (3.45b)

In the context of a random, closed object in 2D or 3D, this statement becomes wrong.
The regions where δ has high in�uence and corresponding, respectively, to the interior
or the exterior of ω, do not have the same area. This statement is illustrated in Fig. 3.9
for the case of a circle (hatched). The support of δ de�nes the support area, between the
dashed circles. The interior zone, hatched and colored in red, is smaller than the exterior
one, colored in blue. Moving from δε to δtε skips the red interior area, to evaluate the
force in the blue exterior region only. The reasoning of Eq. (3.45) can be reproduced,
this time using limits. The developments are presented in Eqs. (3.46).

Figure 3.9: Dirac support around on circle (bold line) de�ning the interior (red, hatched)
and the exterior (blue).

∫
Ω
δεdV =

∫
Ω,Φ≤0

δεdV +

∫
Ω,Φ≥0

δεdV (3.46a)∫
Ω,Φ≤0

δεdV
ε→0−−−→

∫
Ω,Φ≥0

δεdV (3.46b)∫
Ω
δεdV

ε→0−−−→
∫

Γ
dS (3.46c)

From the �rst equation of Eq. (3.45), which remains valid, and from Eqs. (3.46), the
respect of the condition from Eq. (3.42) is established for δε. This allows to compute
the force applied by the �uid on an immersed geometry. A validation of the method
presented in this Subsec. is proposed in Sec. 4.3.

3.3.2 Numerical wave tank

The numerical generation of waves is a critical point for the simulation of FOWTs. This
is realized in ICI-tech in a Numerical Wave Tank (NWT) de�ned as a closed computa-
tional domain, rectangle in 2D and cuboid in 3D. Free-slip boundary conditions are used
to retain the water located inside, except on top of the computational domain, where
the �ows are freed to respect the incompressibility. The initial pressure is �xed in this
area to the atmospheric one. A 2D example of NWT is found in Fig. 3.10, for a water
depth of 5m and 10m of air. At a point, parasitic velocities disturbed the computations,
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forcing the implementation of a viscous area on top of the computational domain. In
this region, where the viscosity of the �ow was higher, the velocity of the �ow is also pre-
scribed horizontal. This correction prevented the creation of recirculation going through
the borders of the domain.

P=0

Figure 3.10: NWT with imposed pressure on top and with free-slip conditions on bottom,
left and right.

As evoked in Subsec. 1.2.2, di�erent methods can be used to generate waves. All of
them focus on energy supply. Among them, two have been selected and implemented in
ICI-tech: the dynamic boundary and the source-term approaches. A sponge layer method
is also used to prevent the re�exion of waves at the end of the domain. The sponge layer
approach consists in the creation of a numerical absorption area, where the energy of the
incoming waves is dissipated. The �ow entering the sponge layer progressively loses its
energy, which results in smaller velocities. An illustration of the interest of a sponge layer
is presented in Fig. 3.11. The blue curve, which corresponds to a case when no absorbing
area was implemented, is highly perturbed at the right-hand side of the domain. These
e�ects arise when a transport equation is solved near a wall, and generate numerical
issues. The convergence in the resolution of the �ows is harder to establish, and a lot of
computational e�ort is required in terms of meshing. On the contrary, the red curve is
progressively damped, which facilitates the computations. These utilities are presented
in the following.

Figure 3.11: Comparison between two wave �eld. Red: With sponge layer on the right-
hand side. Blue: Without sponge layer.

The tools presented in the following have been implemented in ICI-tech to aim at
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developing a demonstrator of FOWT. Examples of NWTs can be found in Sec. 5.2 for
preliminary works for the set-up of a FOWT demonstrator. The validation of the hydro-
dynamics, especially focusing on the propagation of wave �elds, is presented in Sec. 4.2.

Wave generation

Several wave generation methods exist in the literature, which have been listed in Sub-
subsec. 1.2.2. Two of them have been implemented in ICI-tech: a physical wave maker,
and a source-term wave generator. They are presented in the following.

The �rst wave generation method implemented consists in displacing a moving rigid
solid, on which boundary conditions are applied. The solid is located at the left-hand
side of the domain, to generate a wave �eld going through all the domain. The BCs
de�ned on Fig. 3.10 are conserved, and a sponge layer is added. The NWT obtained is
presented in Fig. 3.12. The sponge layer is represented using a gradation to highlight the
progressive absorption of the energy in this area.

P=0

Figure 3.12: NWT integrating a dynamic boundary wave generator (left, red) and a
sponge layer (right, gradation, green).

The �rst category of wave generators implemented in ICI-tech is the dynamic bound-
aries one, composed of two types of wave makers. The �rst type corresponds to a piston,
moved horizontally only. This representation is simple and e�cient, but lacks precision
as the whole column of water in contact with the piston is excited. A more advanced
model considers a hinged wave maker, which mostly energizes the free-surface (FS). This
model provides most of the energy to the water located near the FS, which is closer from
reality. The de�nition of the boundary conditions applied on the wave generator is ob-
tained using the software HOS-NWT (for High Order Spectral - Numerical Wave Tank),
developed by Ducrozet et al. (2012). Using as input a prescribed wave �eld, HOS-NWT
is able to provide the position and velocity of a wave maker, either of piston or hinged
type. In the NWT as considered by HOS-NWT, presented in Figs. 3.13, di�erent wave
�elds can be represented, from monochromatic to irregular ones representing real sea
states. The imposition of the BCs follows a simple procedure. At a given time step, the
position of the wave generator is updated. The velocity is imposed from the boundary
conditions of the moving solid, and the waves are generated and propagated through the
resolution of the Navier-Stokes equations and of an advection problem.

This procedure o�ers important �exibility. The construction of a moving solid in the
domain is rather straightforward, and its motion is directly imported from HOS-NWT.
The main limitation comes from the characteristics of physical wave generators. They
tend to create water perturbations near the wake maker, which rapidly decay. However,
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(a) NWT in HOS, with the wave maker in grey. (b) Two types of wave
makers, piston (top)
and hinged-type (bot-
tom).

Figure 3.13: Description of the NWT de�ned in HOS-NWT, from Ducrozet et al. (2012).

these e�ects are time-consuming, and may lead to inaccuracy in the simulations. A way
to tackle those turbulent issues is to increase the viscosity of the �uids in the computa-
tion. This improves the convergence of the schemes and thus reduces the computational
expenses, but modi�es the �ow. Even if the di�erences obtained are minor, the per-
turbations induced in the �ows around structures are largely modi�ed. The FSI, which
is a key element of an accurate study of FOWT, is deeply altered. Consequently, this
technique can be used to model accurate wave �elds, but struggles once FSI studies have
to be realized.

A source-term wave generation process, used by Calderer (2015), has been imple-
mented too. Contrarily to the dynamic BCs method, this approach does not need any
physical wave makers. The waves are this time generated by source-terms, which act di-
rectly in the momentum equation of the NS problem. The modi�ed momentum equation
is presented in Eq. (3.47).

ρ(
∂u

∂t
+ u · ∇u)− η∆u +∇p = f + ρS (3.47)

The source term S which appears in this Eq. can be viewed as a modulator of gravity
along the FS. In the context of a monochromatic wave �eld of amplitude A, of wavelength
k, of frequency ω and of phase shift θ, the source terms applied directly on the FS SFS
can be expressed at any time t and position x. The relation can be found in Eq. (3.48).
The terms nFS and CFS correspond, respectively, to the outward normal to the FS and
a constant depending on the wave parameters.

SFS = CFS sin(ωt− θ)nFS (3.48)

However, the meshing of the computational domain prevents from imposing the source
function at a unique point. The excitations of the source have to be shared among several
points located around the FS, but also in an interest zone. In a similar approach to the
one developed in Eq. (3.42) for the evaluation of forces, the source term can be applied
to the FS using a Dirac function δε. This Dirac function can be built from the level-set
representing the FS Φε, e.g., using Eq. (3.41). Similarly to the procedure followed in
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Subsec. 3.3.1, this smoothing function allows moving from integration over the whole
volume to a limit towards an integration along the FS. This can be summarized by
Eq. 3.42, with Ω the computational domain and Γ the FS.

The source-term theory considers an energy supply concentrated around the FS, from
which waves can be propagated. To that extent, the source term has to be applied only
to a certain region of the FS. In the context of a 2D wave maker, the theoretical source
needs to be nodal. A new discretization has to be processed, this time along x. Had a
3D case being considered, the source term could have been nodal, but it could also be
applied along a line. For a nodal source, two discretizations would have been needed,
along the axis x and y as de�ned in Fig. 3.13a. For a line-source, the 2D expression can
be kept, with a normalization linked to the length of the NWT along the transversal
direction. The development proposed hereafter consider a 2D NWT only.

A Dirac function characterizing the width of the source area along the x direction
needs to be de�ned. For the application of a source term SFS around a point located
on the FS, at x = xS , the Eq. (3.49a) needs to be respected, which implies the limit
presented in Eq. (3.49b).

∫
Γ
δxSFSdS

x→0−−−→ SFS(xS) (3.49a)∫
Ω
δεδxSFSdV

ε,x→0−−−−→ SFS(xS) (3.49b)

Several di�erent formulations are available for δx. The one proposed by Calderer
(2015) is used, and is presented in Eq. (3.50). The parameter εx represents half the
width of the source area, while x′ is the translation of x being null in the middle of the
source area.

δx =

{
1

2εx

(
1 + cos

(
πx′

εx

))
if − εx < x′ < εx

0 otherwise.
(3.50)

These two Dirac functions allow to de�ne a region, in which the source function S can
be applied. The expression of S is presented in Eq. (3.51a). The vector n is built at each
point as in Eq. (3.43c). The terms g, ρw and ρFS of Eq. (3.51b) correspond respectively
to the gravity constant, the density of water, and ρ(Φε = 0). It forces the width of the
source region along x to be smaller than kx.

S = C sin(ωt− θ)δεδxn (3.51a)

C =
Aρwg

2

ρFSω2

εxk(π2 − ε2
xk

2)

π2 sin(kεx)
(3.51b)

The generation of waves is less expensive computationally compared to the dynamic
BCs method. There is no need to represent a solid in the domain, which leads to a
reduction in both the number of nodes in the mesh and the cost of remeshing. A higher
cost is required in the implementation, as the momentum equation has to be modi�ed. A
correction of the NS implementation is required for this method. In ICI-tech, the P1-FE
VMS NS problem presented in Eq. (3.24) has to be modi�ed, to integrate the corrections
of the momentum equation proposed in Eq. (3.47). In practice, this step is not that chal-
lenging, as S can be treated in a similar way as f ; instead of considering f in Eq. (3.24),
Eq. (3.47) requires the use of f +ρS. Consequently, after implementation, this method is
e�cient to generate a monochromatic wave �eld. A �rst limitation of this method arises
when a complex wave �eld is required. Theoretically, this method o�ers to generate com-
plex wave �elds, using a decomposition in monochromatic waves. Consider a complex
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P=0

δε

δx

Interest region

Figure 3.14: NWT integrating a source-term wave generator (circled, red) and sponge
layers (gradation, green).

wave �eld composed of N monochromatic waves of parameters (Ai, ki, ωi, θi)i∈N,i<N . The
source term related to the complex wave �eld Sc writes as in Eq. (3.52). The constant
Ci is similar to the one de�ned in Eq. (3.51b).

Sc =
∑
i<N

(Ci sin(ωiti − θi)) δεδxn (3.52)

This de�nition seems to o�er great potential for the simulation of complex waves.
However, Choi and Yoon (2009) and Ha et al. (2013) obtained dissipation at certain
frequencies. More generally, they struggled to conserve the spectrum used in the genera-
tion after propagation of the wave �eld. Consequently, this methodology can be used to
simulate simple test cases, when a monochromatic wave �eld is considered. Preliminary
results can be obtained at a reduced cost, and basic FSI can be realized. However, the
source-term wave generation method may be disquali�ed when complex wave �elds are
simulated.

The di�erent options considered for NWTs in ICI-tech have been illustrated using 2D
test cases, for the sake of simplicity. Note that 3D implementation has also been realized
for all the di�erent NWTs. In the context of physical wave makers, the de�nition of a
3D wave tank is straightforward. A single wave maker can generate a monochromatic
wave �eld independent from the transversal position in the NWT. To generate more
complex �ows, HOS-NWT enables to discretize the physical wave maker, and provides
the motions of each wave maker. For source-term wave makers, the generation of wave
�elds can be realized from either a source point or a source line positioned on the FS.

Absorption of waves

The generation of waves in a small, closed domain also imposes to damp the waves
arriving at the right end of the NWT. If it is not done, a re�exion of the incoming wave
train would perturb the �ows in all the computational domain. Sponge layers have to
be designed, as already mentioned in this Subsec. Several approaches have been tested,
which intended to dissipate the energy of the waves. The most promising one is the
relaxation approach, which relies on the blending of a target solution βt, determined
analytically, into the computed one βc. In the general theory, the function β can be
the velocity of the �ow or the FS elevation. The relaxation function γ characterizes the
relative positioning of the current point into the sponge layer. It varies from 0 at the
beginning of the relaxation area to 1 at its end, and is 0 elsewhere. The relation solved
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is written in Eq. (3.53).

β = γβt + (1− γ)βc (3.53)

For the design of an absorbing area, the relaxation of the velocities of the �ow is
realized towards a target solution ut = 0. The determination of γ leads to many di�erent
possibilities. A theoretical requirement noted by Engsig-Karup et al. (2007) is that the
derivative of γ should vanish at the borders of the relaxation area. In this thesis, the
function de�ned by Bonnefoy et al. (2006) and written in Eq. (3.54) is used, as it answers
the condition presented for xs ∈ [0; 1] in the sponge layer, with xs = 0 where β = βc is
required.

γ = x2
s(3− 2xs) (3.54)

3.3.3 Buoyancy and Fluid-Structure Interaction

The �oating ability is a necessity for a FOWT, as its name suggests. Fluid-Structure
Interaction (FSI) tools are required, to account for the e�ect of the environment on the
FOWT, but also the response of the �oating structure to perturb its near �ow. A rigid-
body motion has been implemented in ICI-tech, within a master thesis integrated into
the scope of the PhD. The movement of a FOWT is solved in a 6 Degrees of Freedom
(DoF) way. The resolution of the movements is integrated into the monolithic framework
developed for the resolution of the Navier-Stokes equations.

Rigid-body motion

The movements of a rigid solid ω can be split between translation and rotation. The
relation ruling it is presented in Eq. (3.55), for u and x respectively velocity of the �ow
and position at a point of the solid. U and R correspond to the translation and rotation
vectors characterizing the rigid-body motion, and ∧ is the cross-product operator.

u(x, t) = U + x ∧R (3.55)

The evaluation of U and R can be realized thanks to a minimization problem, pre-
sented in Eqs. (3.56). Theoretically, the couple (U ,R) determined using three points or
using all the points of the computational domain located inside ω should be identical,
as the motion of three points de�nes the dynamics of a rigid body. The consideration of
more than three points is a way to eliminate numerical bias, that could arise in particular
situations, with e.g., aligned points.

min
U,ω

(∫
ω
‖ϕ(u, x)‖2

)
(3.56a)

ϕ(u, x) = U + x ∧R− u (3.56b)

The minimal values of U and R can be found when the conditions presented in
Eq.(3.57) are ful�lled. {

∂ϕ
∂U = 0
∂ϕ
∂R = 0

(3.57)

Once the couple (U,R) has been determined, the resolution of the new position of
the rigid body can be determined. Each point de�ning the object could be displaced
individually. However, as the representation of the object may be represented by a mesh
gathering a huge number of points, this step can be time-consuming. The properties of a
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rigid-body motion are exploited, and the referential related to the object is updated from
the initial coordinate system. The new position is detailed in Eq. (3.58), for a referential
of origin O and of axis ei.Ot+∆t = O0 + ∆t (U +O0 ∧R)

eit+∆t = 1

‖ei0+∆tei0∧R‖
(ei0 + ∆tei0 ∧R)

(3.58)

This procedure takes advantage of the rigid characteristics of the immersed object.
This inherits from the position of a rigid geometry, which can be split between a trans-
lation and a rotation from the original coordinate system. The reconstruction can thus
be performed in a reference frame, before the object is translated and rotated into its
real position. This procedure allows using an octree, which does not need to be rebuilt
at each time increment. More generally, the savings highlighted in Sec. 2.4 are of partic-
ular interest here, as the object studied needs to be reconstructed at each time increment.

A last remark considers the data required for the resolution of the rigid-body motion.
The velocity and pressure need to be computed inside the object to immerse, to be able
to determine accurately U and R. Hence, the presence of the solid must be considered
in the resolution of the �ow, to get velocity and pressure distributions representative of
a rigid solid.

Determination of the �ow inside a rigid-body

The focus is placed now on the evaluation of the velocity and pressure inside the im-
mersed solid ω, of level-set Φε. An additional rigidity constraint is added to the classical
incompressible Navier-Stokes problem presented in Eq. (3.4). This constraint is written
in Eq. (3.59), with εs the deformation-rate tensor of the solid. The momentum equation
of the Navier-Stokes problem is also modi�ed to integrate a rigidity constraint τs, for the
computational points located inside ω.

εs(u) = 0 (3.59)

The new Navier-Stokes equations dedicated to FSI with a rigid body ω, which includes
this new condition, is presented in Eq. (3.60). This formulation uses the Heaviside
description of ω, Hε. The addition of this function enables to create a generic expression,
valid everywhere in the computational domain.

ρ(∂u∂t + u · ∇u)− η∆u−Hε∇ · τ +∇p = f in Ω

∇ · u = 0 in Ω

Hεεs(u) = 0 in Ω

(3.60)

This modi�ed Navier-Stokes problem is then expressed in a VMS paradigm, following
the procedure introduced in Subsec. 3.2.2. However, the addition of the rigidity constraint
complicates the resolution of the �ows. This di�culty is overcome through the addition
of an augmented Lagrangian coupled to an iterative Uzawa scheme. The computation
of ut+1 and pt+1 velocity and pressure at the time increment t + 1 is done iteratively,
from the values of ut, pt and τt. The Uzawa iterations consider successive resolutions of
Eq. (3.61), with u0 = ut, p0 = pt and τ0 = τt.

∀(v, q) ∈ V0 ×Q,
ρ
(
∂tu

k+1,v
)

+ ρ
(
uk+1 · ∇uk+1,v

)
+
(
2ηε(uk+1) +Hε(α)(τk + 2ηrPτ (ε(uk+1))), ε(v)

)
−
(
pk+1,∇ · v

)
= (f ,v)(

∇ · uk+1, q
)

= 0

(3.61)
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After each resolution of Eq. (3.61), uk+1 and pk+1 have been determined. Follow-
ing the paradigm of the augmented Lagrangian theory, the value of τk is updated, as
presented in Eq. 3.62. The parameter r is a penalty coe�cient, and Pτ is a projection
operator.

τk+1 = τk + 2ηrPτ (ε(uk+1)) (3.62)

The execution moves outside the Uzawa loop once the convergence condition ‖uk+1−
uk‖ < εtol is met, with εtol speci�ed tolerance. The converged values of velocity and
pressure de�ne to the solved �ows at the next time iteration, i.e., ut+1 = uk+1 and
pt+1 = pk+1. The determination of velocity and pressure at the next time step allows
computing the motions of the immersed object, following the rigid-motion theory previ-
ously exposed.

The utilities presented above allow performing FSI with rigid-bodies. This is applied
in this context to a FOWT �oating freely under the action of buoyancy. In this partic-
ular situation, a FOWT under the action of a wave �eld is subject to drift. The correct
behavior of a FOWT, in particular the stationkeeping, would be obtained through the
addition of mooring models. The representation of moorings lines have not been consid-
ered in this thesis, and should be regarded in further studied extending the simulator of
FOWTs. Di�erent approaches dedicate to their modeling have been brie�y discussed in
Subsec. 1.2.2.

3.4 Conclusion of the numerical framework

This Chap. presented the numerical framework used in ICI-tech for the resolution of the
�ow problem. A particular focus has been placed on the incompressible Navier-Stokes
equations. Generalities about the resolution of a �ow problem using the Navier-Stokes
equations have been provided in Sec. 3.1. The monolithic resolution of the Navier-Stokes
problem, formulated in a VMS paradigm for a FE framework, is detailed in Sec. 3.2. The
developments and implementations realized in the context of FOWTs within the scope
of this thesis have been presented in Sec. 3.3.

Only minor modi�cations were brought into the monolithic framework for the �ow
resolution during this thesis. The VMS formulation of the Navier-Stokes problem, based
on P1-FE, has not been modi�ed. The di�erent approximations detailed in Subsec. 3.2.2,
concerning, e.g., quasi-static sub-scales, have been questioned in the context of FOWTs.
However, no reimplementation was realized within the scope of this thesis, even if the
solver as currently developed seemed more suited for low-Re �ows.

The most notable contributions to the development of the software concerned the
implementation of bricks intending to enable the de�nition of a FOWT simulator. A
method for the evaluation of the loads applied on the surface of an immersed object has
been implemented. This development gives the potential to measure the e�orts applied
on a FOWT, which is both critical for design purposes. A FSI framework has been
implemented within a master thesis for rigid bodies of complex geometries, which will
handle the buoyancy, a necessary tool for the simulation of FOWTs. These additions to
the software platform are wider than the particular application of FOWTs.

The �nal contribution of this thesis to the numerical extension of ICI-tech came with
the development of a NWT. Several wave generation techniques have been considered,
with physical and source-term wave makers. A sponge layer method was implemented
for the absorption of the energy at the borders of the NWT, to reduce the computational
expenses and facilitate the convergence of the schemes.
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Chapter 4

Veri�cation and validation towards

the simulation of operating FOWTs
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4.1 Monophasic veri�cation and validation � Towards high-

Reynolds �ows

The adaptation of ICI-tech to the context of �oating wind energy requires the simulation
of high-Reynolds �ows, with Re reaching several million. On the contrary, ICI-tech
was commonly used for the simulation of viscous �ows, e.g., by Ville et al. (2011) of
Betancourt (2017). A validation process is required, to guarantee the quality of the
simulations. This Sec. presents the di�erent steps followed for this validation from low-
Re to high-Re �ows in Subsecs. 4.1.1 to 4.1.3.

4.1.1 Low-Reynolds steady �ow around a con�ned cylinder

In the study of Schäfer et al. (1996), test cases of �xed objects under the e�ect of con-
�nement were submitted to several research teams to produce a numerical benchmark.
The �rst test case considers a cylinder in a water tunnel. The objective behind this study
is to evaluate the drag and lift forces generated by a low-Reynolds �ow (Re = 20) on a
simple geometry. The action of the �uid on the bodies creates a drag force. Con�nement
is established, as the walls are located near the geometries. A slight de�ection of the
object, which is not positioned in the middle of the wind �ume, also creates a lift force.
Steady and unsteady test cases are detailed in the study.

This Subsec. focuses on steady test cases only. This choice is motivated by the
veri�cation required for the evaluation of forces detailed in Subsec. 3.3.1, which is easily
performed on steady test cases. These applications also veri�es the behavior of the solver
for low-Reynolds �ows. The study from Schäfer et al. (1996) intended to measure the
drag and lift coe�cients applied by the �ow on the cylinder, along with the length of
the recirculation area and the pressure drop observed. A focus is here placed on drag
and lift coe�cients Cd and Cl. They are written in Eqs. (4.1), with ρ the �uid density,
u the freestream velocity, A the cross-sectional area and F the force computed with the
method presented in Subsec. 3.3.1. The vector ex is aligned with the in�ow, and ey is
the vector normal to it, see Fig. 4.5.

Cd =
2

ρu2A
F · ex (4.1a)

Cl =
2

ρu2A
F · ey (4.1b)

The steady test cases selected consist in a cylinder disposed inside a water tunnel.
The �ow is propagated rightwards at a Reynolds number of 20, with a Poiseuille in�ow.
In this situation, the cross-sectional area A corresponds to the product of the diameter
of the cylinder by the width of the tunnel. To reproduce the test case, no-slip boundary
conditions are imposed at the borders of the domain and inside the cylinder. The inlet
imposes a Poiseuille �ow, while the outlet is opened. The drag and lift coe�cients are
measured around the cylinder. In their study, Schäfer et al. (1996) compared the results
from several CFD codes, which used a LES formulation of the Navier-Stokes equations
with di�erent discretizations in time and space. They de�ned bounds for Cd and Cl for
the di�erent test cases. A comparison is drawn between those bounds and the results
obtained using ICI-tech.

The simulations realized with ICI-tech start from an initial mesh re�ned around the
cylinder. The mesh is regularly adapted during the transitory regime, until a converged,
steady �ow is obtained. The objective being to evaluate a steady �ow, the transitional
results are not considered. To that extent, the choice of the time step is not critical, as
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Figure 4.1: 2D steady test case of cylinder in con�nement, from Schäfer et al. (1996).

soon as the aerodynamic e�ects, limited at Re = 20, are well captured. The number
of nodes in the computation is �xed, to limit the in�uence of this parameter on the
simulations. This study then allows evaluating the action of the width of the level-set ε,
presented in Sec. 2.1, on the precision of the steady values of Cd and Cl. Mesh convergence
studies are realized. The width of the adapted area varies with ε, thus the automatically-
generated meshes provide a varying precision around the cylinder. Corresponding time
steps are used, depending on the minimal mesh size to respect the CFL condition.

2D con�ned cylinder

The �rst test case consists in a 2D cylinder con�ned in a water tunnel. The speci�cations
of the test case are presented in Fig. 4.1. In this situation, the cross-sectional area A
is restricted to the diameter of the cylinder, hence A = 0.1m. The expression of the
Poiseuille in�ow is presented in Eq. (4.2), with uM = 0.3m.s−1 the maximal velocity of
the �ow.

uinlet = 4uMy(H − y)/H2 · ex (4.2)

The con�guration of the test case simulated with ICI-tech is presented in Figs. 4.2.
The velocity pro�le of the converged steady �ow is drawn, with the corresponding com-
putational mesh. The mesh adaptation procedure tended to re�ne the cells in the areas
where important variations are observed. In particular, the surroundings of the cylinder
and the boundary layers developing at y = 0m and y = 0.41m need many mesh points for
their representation. The aerodynamic coe�cients are evaluated around in the cylinder,
in an area de�ned from the level-set function. The evaluation of the forces acting on the
cylinder presented in Subsec. 3.3.1 requires an important number of mesh cells around
the free-surface. The zoom presented for a con�guration of ε = 10−4m and for 30K
points in the computational mesh shows that the transition area is properly represented.
An example of simulation conducted with ε = 10−2m is presented in Figs. 4.3, where
transitional and steady regimes can be highlighted.

A mesh convergence study is proposed, which focuses on the aerodynamic coe�cients
evaluated as a function of ε. For values of ε scaling from 10−2m to 10−4m, the converged
Cd and Cl are compared to evaluate their dependency towards the level-set representa-
tion. The zoom presented in Fig. 4.2b corresponds to the smallest ε simulated in the
upcoming mesh convergence study. The number of mesh cells around the interface of
the cylinder guarantees that, independently of the ε used for the test cases simulated,
the meshing of the object will be correctly realized. The values obtained using ICI-tech
are compared to bounds provided by Schäfer et al. (1996) in Figs. 4.4. The evaluation
of the drag coe�cient provides an acceptable accuracy independently of the ε chosen.
Compared to the bounds of reference, the maximal error generated is inferior to 1%, and
diminishes with ε. The evaluation of the lift coe�cient is much more challenging. The
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(a) View of the computational mesh around the cylinder, colored
by the velocity magnitude.

(b) Zoom on the interface of the cylin-
der, colored by the level-set.

Figure 4.2: View of the computational mesh for the test case of a 2D con�ned cylinder
at Re = 20 and with ε = 10−4m, for a 30K-points mesh.
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Figure 4.3: Evolution of the drag and lift coe�cients as a function of the time, for a
simulation realized with ε = 10−2m and ∆t = 10−2s.
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order of magnitude of Cl is of 10−2. The force to evaluate is of about 10−5N , which
gives more in�uence to numerical errors arising. Still, the evaluation of Cl realized with
ICI-tech is on the right order of magnitude, even if no convergence is established. A
case could be made for simulation with lower ε, to check if a convergence is established.
These test cases are not presented here, as a transition to 3D with those parameters is
unrealistic. The level of accuracy achieved is considered interesting, especially for the
drag coe�cient. The dependency of the force evaluation method seems to be dependent
on the mesh used, particularly when small loads need to be measured.
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Figure 4.4: Steady values of aerodynamic coe�cients measured around a 2D con�ned
cylinder, with meshes of 30K nodes and various ε.

3D con�ned cylinder

The 3D test case is an extension of the 2D simulation presented previously, as detailed
in Fig. 4.5. The geometry of the test case is similar, except for the cylinder positioned
30cm further from the inlet. The Poiseuille �ow is modi�ed to keep the Reynolds number
of the �ow constant. Its expression is written in Eq. (4.3), with uM = 0.45m.s−1 the
maximal velocity of the �ow and H the height and width of the tunnel.

uinlet = 16uMyz(H − y)(H − z)/H4 · ex (4.3)

An illustration of the simulation processed is presented in Figs. 4.6, with an example
of mesh used during the computations as depicted in Fig. 4.6a. The mesh presented is
re�ned in the same areas than the 2D one from Fig. 4.2a. The di�erences in the velocity
pro�le are related to the position of the cylinder, further from the inlet in this second
situation.

Mesh convergence studies are realized with meshes containing respectively 60K and
300K nodes, and with ε in the same range as in the 2D test case. Only the test cases with
ε = 10−4m became una�ordable for the 3D test cases considered. The results obtained
are presented in Figs. 4.7. The evolution of Cd and Cl as a function of ε, for di�erent
mesh sizes, are examined. They are compared to the bounds provided by Schäfer et al.
(1996), which are plotted on each Fig. The di�erent Cd measured are in the bounds
provided with large values of ε, which suggests that relatively accurate results can be
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Figure 4.5: 3D steady test case of cylinder in con�nement, from Schäfer et al. (1996).

(a) Slice of the adapted mesh, for ε = 10−2m. (b) Velocities of the steady �ow drawn on a slice,
with the inlet on the left and the cylinder in black.

Figure 4.6: Steady �ow around a 3D cylinder at Re = 20 simulated with a 300K-points
mesh, focusing on the inlet and cylinder region.
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obtained with ε/2r = 0.1, r being the radius of the cylinder. While ε reaches smaller
values, the results become approximative, and out of the bounds. This e�ect is observed
more rapidly with 60K points, which suggests that it corresponds to a lack of points in
the computational mesh. For ε = 2·10−4m, both meshes of 60K and 300K points provide
Cd evaluation outside the bounds. This observation is due to the number of points in the
mesh, which is not su�cient to reach mesh sizes of 2 ·10−5m around the whole surface of
the cylinder. Concerning Cl, the values measured are much more erratic. With both test
cases, the coe�cient varies a lot outside the bounds prescribed. The small value of Cl, of
about 10−2, is partly responsible for this, as the total force measured around the cylinder
is on the order of 10−5N . The evaluation of such a small force from the integration of the
constraint around the cylinder gives a lot of importance to the disposition of the mesh.
The remeshing thus has a huge in�uence on the measurements. This dependency will
have to be examined with more attention in further studies. Increasing the number of
points in the simulations may be a way to improve the evaluation of Cl. As the focus of
this thesis goes to higher-Re �ows, representative of operational WTs, the lift coe�cients
measured will be much more important. The results of Cd were thus considered su�cient
to transition towards �ows at higher Re.
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Figure 4.7: Aerodynamic coe�cients in a mesh convergence study around a 3D cylinder,
with meshes of 60K and 300K nodes.

4.1.2 Moderate-Reynolds �ows around NACA pro�les

Steady test case at Re = 2000

A veri�cation with higher-Reynolds �ows is now realized, based on the test cases pro-
posed by Rossi et al. (2016). The �rst test case studied concerns simulations of a �xed
2D NACA 0008 airfoil in a constant, uniform �ow of Re = 2000. An orientation of 4◦

is prescribed for the NACA pro�le, which enables the installation of a steady, laminar
�ow around it. The �ow is directed rightwards. The results provided by ICI-tech are
compared with the one from Rossi et al. (2016), which are obtained thanks to a 2D
Di�used Vortex Hydrodynamics (DVH) method. This pure meshless approach proved
to be accurate for those applications. In particular, the numerical di�usion observed in
the DVH simulations is particularly reduced. The DVH approach was validated against
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(a) Adapted mesh generated.

(b) Vorticity �eld obtained with a DVH method by Rossi et al. (2016)
(up), and with ICI-tech (down).

Figure 4.8: Steady �ow around a NACA 0008 pro�le with an incidence of 4◦ atRe = 2000,
with ε = 2 · 10−2m and 60K nodes in the computational mesh.

a FVM code for the particular applications presented in this Subsec.

The mesh used for the simulation with ICI-tech and the results obtained are presented
in Figs. 4.8. From an initial mesh re�ned around the airfoil, the successive adaptation
steps and the formation of aerodynamic e�ects create concentrations of mesh points in
the wake of the pro�le. The mesh visualized features a high concentration of nodes at the
leading edge of the NACA pro�le, as well as in the wake. Despite this, the FE approach
used in ICI-tech still induces too much dissipation, even if similar pro�les of vorticity
are observed. This phenomenon appears despite the mesh adaptation procedure, which
tends to position the mesh cells in the areas of the domain where events occur.

Aside from visual considerations, the comparison with the DVH method enables to
characterize the dynamic performances of ICI-tech for moderate-Reynolds �ows. The
drag and lift coe�cients, written in Eqs. (4.1), can be studied as a function of the time
by replacing A cross-section area with c chord of the airfoil. A comparison between the
results obtained with the DVH method and with ICI-tech is presented in Fig. 4.9. The
set of results obtained using ICI-tech presented in these curves was generated thanks to
meshes of 300K points, with a varying de�nition of the level-set around the airfoil. A
�xed number of nodes in the computational mesh is used in the simulations, and the
meshes are adapted correspondingly to ε. The results show only a little dependence on
ε for Cd. The converged value is di�erent from the one provided by the DVH method,
and decreasing ε seems to have a reduced impact on the quality of the drag evaluated.
The transitional behavior of the di�erent Cd is similar to the DVH results. Concerning
Cl, the dependence towards ε is more important. However, the convergence in ε tends
to increase the di�erences with the DVH results. Moreover, the transitional regime high-
lights important di�erences between the results from ICI-tech and the DVH approach,
independently from the ε chosen. This observation questions the ability to simulate
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accurately unsteady �ows at moderate Reynolds with the numerical methods currently
implemented in ICI-tech.
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Figure 4.9: Aerodynamic coe�cients measured as a function of the time around a 3D
NACA 0008 with meshes of 300K nodes, with various ε.

The evolution of the converged drag and lift coe�cients with the meshing has been
studied more precisely. Mesh convergence studies are presented in Fig. 4.10, with a con-
stant number of nodes. The width ε around the airfoil is progressively decreased, and the
convergence of Cd and Cl is overlooked. Two di�erent computational loads are studied,
one with 60K nodes, the second one with 300K nodes. The parameter ε scales from
10−1m to 10−4m, except for the test case with ε = 10−4m and 60K mesh points, which
reached the limits of the meshing. The de�nition of small cells would require an increase
in the number of points in the mesh, which is constrained. These studies con�rm the
trend shown on Figs. 4.9. The sensitivity of the converged Cd to ε is limited, as the error
produced compared to the DVH method goes from around 11% at ε = 10−1m to about
5% at ε = 10−4m. Concerning Cl, high values of ε produce a poor evaluation of Cl, while
a convergence seems to be established for lower ε, with a 4% error compared to the DVH
approach. The evolution of both Cd and Cl for 300K-nodes meshes is relatively smooth,
while with 60K points, reaching ε ≈ 10−3 provide irregular values. The existence of con-
vergence could be hard to prove with meshes of 60K mesh points only. Yet the precision
reached with 60K points is quite similar to the one achieved with 300K points.

The di�erences observed in the transitory regime still need to be investigated. An ex-
planation to the overestimation of the aerodynamic coe�cients may be found in Fig. 4.11,
which depicts a comparison of the pressure coe�cient Cp measured around the NACA
pro�le using the DVH method and ICI-tech. The expression of Cp is written in Eq. (4.4),
with p∞, ρ∞ and u∞ respectively pressure, density and velocity of the far, unperturbed
�ow. For a matter of clarity of the Fig., only the curve corresponding to ε = 4 · 10−3m
is represented.

Cp =
p− p∞
1
2ρ∞u

2
∞

(4.4)

The pro�le of Cp computed with this ε is representative of the results obtained with
ICI-tech. In particular, the di�erent simulations show di�erences at the trailing edge,
which corresponds to x/c = 0.5. The results obtained using ICI-tech compared to the
DVH ones underestimate the pressures over the area of the pro�le where x/c > −0.3,
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Figure 4.10: Steady values of aerodynamic coe�cients measured around a 3D NACA
0008 with meshes of 60K and 300K nodes, with various ε.

while the minimum pressure measured at the leading edge is overestimated. Those di�er-
ences in the distribution of pressure around the airfoil imply modi�cations in the �ows,
which may explain the transitional behavior of the lift coe�cient. Di�erent reasons may
justify the imprecision of the Cp measurements, as the airfoil is reconstructed from a mesh
representing the NACA 0008. The de�nition provided by this mesh is highly dependent
on the number of points it contains, and on the position of these points on the surface.
A linear interpolation is realized between those points, which tends to add imprecisions.
Several datasets, for some of them featuring a considerable number of points, have been
immersed to limit the dependency towards this meshing. The reconstruction of the air-
foil also introduces some errors, as the level-set function is linearly interpolated in the
�nite elements. The errors due to the reconstruction vanish as ε tends towards zero.
The pressure coe�cients measured around the airfoil for di�erent ε did not highlight this
expected behavior. The �ow around the airfoil can also be incorrect due to the meshing
around the airfoil. However, the important number of points combined to constant re-
sults obtained with various ε disquali�ed this explanation. Another proposition is valid
for the trailing edge only. The mesh representing the NACA 0008 is sharp at the trailing
edge, and needs to be reconstructed. More than elsewhere, the minimal mesh size has
a huge impact on the representation of the airfoil. At the tip of the NACA pro�le, the
sharp edge reaches a size inferior to the minimal mesh size. Thus, the reconstruction
will encounter an error on the order of magnitude of hmin, even for converged adapted
meshes. An illustration is proposed on Figs. 4.12, for the immersion of the NACA 0008
with two di�erent ε. The smallest one present a much better reconstructed airfoil, which
generate a more accurate �ow. If this observation may explain the Cp di�erences at the
trailing edge, it is hard to imagine it having an in�uence all along the suction side of the
airfoil. The last proposition, perhaps the more promising one, would consider the solver,
which may not be suited for Re on the order of the thousand.

Unsteady test case at Re = 900

To evaluate the in�uence of the di�erences observed on the lift coe�cient between ICI-
tech and the DVH code, unsteady test cases can be considered. A comparison is presented
between DVH results from Rossi et al. (2018) and ICI-tech. A NACA 0010 pro�le is po-
sitioned in a constant, uniform in�ow at a Re of 900, with an orientation angle α = 30◦.
This test case has several advantages. It remains in a �eld of Re similar to the one pre-
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Figure 4.11: Pressure coe�cient measured around the NACA 0008 (leading edge at
x/c = −0.5, trailing edge at x/c = 0.5) for ε = 4 · 10−3m and 300K computational
points. Comparison between ICI-tech data simulated with ε = 4 · 10−3m and DVH
results.

(a) ε = 10−1m. (b) ε = 4 · 10−3m.

Figure 4.12: Mesh around the trailing edge of a NACA 0008 reconstructed from an
immersed mesh (red, bold). Reconstruction performed on the background mesh, recon-
structed NACA in black.
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(a) Airfoil and near-wake. (b) Focus on the airfoil.

Figure 4.13: Meshing around a NACA 0010 with an orientation α = 30◦ at Re = 900, at
tU/c = 100. Computational mesh of 30K points, with ε = 2 · 10−2m

viously considered. Another advantage concerns the results obtained, which are hardly
periodic. A simulation has been run on a 2D example with ε = 2 · 10−3m and 30K
points in the computational mesh. The meshes obtained during the computations after
automatic adaptation are presented in Figs. 4.13. The objective of the simulation is to
measure the aerodynamic coe�cients in an unsteady context. Consequently, the re�ne-
ment focuses mostly on the surroundings of the airfoil, and gathers there the major part
of the mesh points. This type of meshing is acceptable to focus on the airfoil. In the
wake, the lack of nodes forms larger cells, which induce numerical dissipation. The accu-
racy of the far wake measured with this mesh is thus questionable. As no recirculation
is observed, the low density of mesh points in this region deteriorates the quality of the
wake, which will be advected and does not impact the airfoil. The measurement of the
aerodynamic coe�cients is, consequently, independent from the representation of the far
wake. The width ε = 2 · 10−3m has been selected from the results of Figs. 4.10, as it
provides interesting precision at a reduced cost.

The drag and lift measured are plotted in Figs. 4.14, where they are compared to the
results from Rossi et al. (2018). The plots are presented on two di�erent �gures to depict
clearly the overall dynamics of the aerodynamic coe�cients. A quasi-oscillatory behavior
is expected for both Cd and Cl after the transitional regime. The results computed with
ICI-tech compare well with the one obtained with the DVH method in terms of shape.
The slight bump observed before each peak of Cd is well reproduced over the span of
time, so are the slope variations observed at the beginning of each Cl decrease. The phase
is well reproduced too. For tu/c varying between 40 and 100, 21 periods are observed
on both the curves provided by ICI-tech and the DVH approach. The Strouhal number,
which characterizes the frequency of vortex shedding, is St = 0.35 for both ICI-tech
and the DVH method, which is satisfying. A small, constant phase shift is observed,
which is due to the time required for the establishment of the permanent regime, less
important with ICI-tech. The major di�erence observed corresponds to the amplitudes
of Cd and Cl, which are overestimated by ICI-tech. The mean drag and lift in the perma-
nent regime are respectively C̄d = 0.84 and C̄l = 1.26, while the DVH method returned
C̄d,DVH = 0.77 and C̄l,DVH = 1.15. The di�erence produced by ICI-tech compared to the
DVH approach is of 9.1% for C̄d and 9.5% for C̄l.

A zoom on the steady state results is presented in Fig. 4.15 for tU/C in [60, 80], where
a phase shift is introduced in the results from ICI-tech for the sake of visualization. The
overestimation of the aerodynamic coe�cients is notable on this zoom. The overall shape
of the curves remains satisfying. The results progressively become out of phase during
this time lapse, which suggests that the dynamic of the vortex sheddings could not be
correctly reproduced. However, the observations realized based on Figs. 4.14 show that
it has only a minor global impact.
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(a) DVH results from Rossi et al. (2018).
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(b) Results from ICI-tech with ε = 2 · 10−3m and 30K mesh points.

Figure 4.14: Aerodynamic coe�cients around a NACA 0010 with an orientation of 30◦,
for an unsteady �ow at Re = 900.

The results presented can be linked with the overestimation of Cd and Cl already
observed in the transitory regime on Figs. 4.9, and on the steady-state on Figs. 4.10.
The 9%-error approximatively found in this unsteady test case for Cd is similar to the
one observed on steady lows. Concerning Cl, the gap probably has its origin in the tran-
sitional errors observed on Figs. 4.9.

To conclude on the results obtained with Re = O(103), two distinct behaviors have
been highlighted for Cd and Cl. The transitional behavior of Cd does not seem to be a
problem. The main question for Cd is the convergence of the steady-state, which is very
slow with ε. Concerning Cl, the convergence of the steady-state is highly dependent on
ε, yet an appropriated choice leads to smaller steady-state errors than for Cd. However,
ICI-tech overestimates Cl in the transitional regime. Those observations lead to a 10%
overestimation of both aerodynamic coe�cients measured on a simple unsteady test case.
The number of nodes in the computations does not seem to be the blocking point, same
for the choice of ε. The in�uence of the time step or a thinner mesh adaptation on the
computations may be a starting point for future studies.

4.1.3 High-Reynolds, steady �ows around a section of WT blade

Even if the results obtained with moderate-Reynolds �ows were far from those expected,
a test case more representative of operating WTs was tested. A test case with a Reynolds
number Re = 1.6M is considered here, which is on the order of magnitude of the �ows
developing around the tip of WT blades. The test case of Bak et al. (2000) is reproduced,
which studied a NACA 63-415 pro�le with di�erent angles of attack α in a wind �ume.
The geometry of the airfoil allows keeping the boundary layers attached to the pro�le at
high-Reynolds number �ows.
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Figure 4.15: Aerodynamic coe�cients around a NACA 0010 with an orientation of 30◦,
for an unsteady �ow at Re = 900. Zoom on the area where tU/c ∈ [60; 80], with a phase
shift on ICI-tech's results to present a comparison on phase.

The computational test case models a 3D airfoil, of section de�ned as a NACA 63-
415 of chord 0.6m, positioned inside a wind tunnel where a constant, uniform in�ow is
prescribed. A mesh of 500K nodes is used to discretize the computational domain of
dimensions 20mm× 1.9m, with ε = 2 · 10−3m, while the airfoil is represented using 100
points. Illustrations presenting the mesh used and an example of result can be found in
Figs. 4.16. Converged Cd and Cl are measured on the airfoil, for di�erent inclinations. In
comparison with the experimental study, only several angles of attacks have been tested
with ICI-tech. While Bak et al. (2000) sampled α in [−5; 25] with steps of 1, the study
conducted with ICI-tech considered only the multiples of 4 in [−4; 20]. Even if the set of
results generated is reduced, a clear tendency can be highlighted.

The aerodynamic coe�cients Cd and Cl computed are presented in Figs. 4.17. The
drag provided by ICI-tech is not in accordance with the experimental measurements.
For α = −4◦ or α = 0◦, the order of magnitude of Cd is correct, but the tendency of
a decreased e�ort is not observed. When the angle of attack increases, from α = 4◦ to
α = 12◦, the di�erences between the numerical and the experimental data reach almost
an order of magnitude. As higher angles of attack are reached, e.g., for α = 20◦, the
di�erences measured are reduced. Concerning the lift coe�cient, the simulations from
ICI-tech compare well with the experimental campaign for α ≤ 4◦. However, as the angle
of attack is increased, the airfoil is placed in a stall con�guration, which is missed by
ICI-tech. The Cl evaluated continues to increase, while the experimental measurements
identi�ed a decrease.

The large errors identi�ed can be partly linked to the discretization of the NACA 63-
415. The value chosen ε = 2 · 10−3m is particularly large in the context of a Re = 1.6M
�ow. However, the quality of the discretization is such that decreasing ε highlights the
errors produced by the mesh representing the airfoil, as drawn in Fig. 4.18. This illus-
tration, proposed in a 2D case with ε = 2 · 10−3m, shows the perturbations appearing at
the surface of the airfoil when ε decreases. The imprecisions of the discretization of the
NACA pro�le are of about 10−3m, which is largely superior to the minimal mesh size
hmin = ε/10 for ε = 2 · 10−3m. Numerical roughness is generated, mostly around the
leading edge where the in�uence of the discretization is the highest. This lack of detail
tends to increase the drag, independently of the solver or representation method used.
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(a) Slice of the 3D mesh around the airfoil.

(b) Velocity vectors and colored by pressure.

Figure 4.16: Illustration of a NACA 63-415 with an orientation α = 8◦ at Re = 1.6M .

0 10 20

10−2

10−1

100

α (◦)

C
d

Experimental

ICI-tech

(a) Drag coe�cient Cd.

0 10 20

0

1

2

3

α (◦)

C
l

Experimental

ICI-tech

(b) Lift coe�cient Cl.

Figure 4.17: Aerodynamic coe�cients measured using ICI-tech around a 2D NACA 63-
415, for di�erent angles of attack and with ε = 5 ·10−2m, compared against experimental
data from Bak et al. (2000).
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Figure 4.18: Reconstruction of a NACA 63-415 immersed using a cloud of 100 points,
with ε = 2 · 10−3m, and mesh used. Scales in meters.

Moreover, when the angle of attack increases, the highest pressure around the airfoil is
concentrated in this area. As the discretization is imprecise, the �ows generated are not
exact, and thus the pressure distribution is not appropriated. This roughness will make
the lift coe�cient measured questionable, especially when high angles of attack position
the poorly-discretized leading edge in high pressure regions. The generation of a repre-
sentation of the airfoil with a higher resolution is critical for the realization of high-Re
studies on a NACA 63-415. The de�nition of the geometry of the airfoil is not straight-
forward, as it is derived from the potential �ow desired around a theoretical pro�le, see
Theodorsen (1933). The implementation of such a generator is still to be done. The
better de�nition of the airfoil will improve the quality of the reconstruction, and pave
the way for the use of thinner ε.

A smaller ε for the representation of an airfoil of enhanced precision should bring
higher accuracy to the simulations. This will allow the generation of smaller mesh cells,
which enables the capture of lower turbulent scales. The representation of the boundary
layers will be improved through a more appropriated tracking of their dynamics. This is
necessary, e.g., for the detection of stall, and more generally, for a precise evaluation of
the aerodynamic coe�cients.

A FOWT operates under the action of both the air and the sea. For the simulation
of FOWTs, the veri�cation and validation steps presented in this Sec. are necessary
to guarantee the accuracy of the aerodynamics. At the same time, the generation of
wave �elds is important, to quantify the loads applied on the �oater and to measure its
displacements. The upcoming Sec. focuses on the generation and propagation of wave
�elds with ICI-tech.

4.2 Hydrodynamic veri�cation � Generation and propaga-

tion of monochromatic wave �elds

This Sec. intends to use the numerical tools of ICI-tech to represent sea states as accu-
rately as possible. The generation of wave �elds has been an important part of the works
realized within the scope of this thesis. The validation steps processed with di�erent wave
makers are presented in the following. Among the objectives of this study, the quanti�ca-
tion of the e�ects produced by the anisotropic mesh adaptation procedure is important,
as it is not classical for marine applications in the literature. Comparisons are drawn
between wave �elds depending on tuned simulation parameters, in domains meshed us-
ing isotropic (Subsec. 4.2.1) or anisotropic (Subsec. 4.2.2) paradigms. Source-term and
physical wave makers are compared for each type of meshing, from the implementations
proposed in Subsec. 3.3.2. The realization of no-�ow tests for hydrostatic cases is a con-
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(a) Whole domain. (b) Zoom on the re�ned
area.

Figure 4.19: Mesh of the computational domain used for wave generation using a source-
term wave maker. Scales in meters.

sequence of those studies, and the results are presented in Subsec. 4.2.3.

In this Sec., multiphase �ows are considered, which force the representation of several
phases. Di�erent interface thicknesses may be used for the phases. As this Sec. focuses
on the propagation of wave �elds, the interface thickness of the free-surface is always
named ε. When other phases will be considered, their characteristics will be detailed on
a case-by-case basis.

It must be noted that the simulations presented in this Sec. have been realized with
erroneous de�nition for the sponge layer, lately detected. The simulations could not be
generated again, because of the considerable time expenses required. An impact can be
identi�ed on the simulations, especially around the sponge area. On the contrary, the
early propagation of waves is only slightly modi�ed by this error.

4.2.1 Veri�cation of the solver using constant, isotropic meshes

Wave �eld generated using a source-term wave maker

The accurate simulation of sea states requires the validation of the solver under certain
conditions. The generation and propagation of waves is studied using the utilities pre-
sented in Subsec. 3.3.2, i.e., the source-term and physical wave makers. The resolution
of the NS equations always tend to create dissipation, especially with low orders in space
and time. A particular focus is thus placed on the propagation of wave �elds, in order
to limit the numerical dissipation.

The damping observed on propagated waves is studied in NWTs. In order to identify
the contributions of the solver to the damping observed, a constant mesh, uniformly and
isotropically adapted around the free-surface, is used. The mesh adaptation procedure
is unactivated, to suppress its eventual e�ects on the simulations.

A �rst test case considers a source-term wave generator. The considered mesh features
cells of size h = 5 ·10−3m, concentrated in a region of 0.2m-width around the y = 0-axis.
The corresponding mesh contains 426K nodes, and is drawn in Figs. 4.19. The mesh
used is coherent with the test case simulated. A level-set function of ε = 5 · 10−2m is
de�ned to represent a monochromatic wave �eld of amplitude 2.5 · 10−2m, of frequency
1s−1 and of wavelength 2m, while a water depth of 5m is considered. These parameters
imply a crest-to-crest vertical distance of ε. Consequently, the transition of the level-
set function is represented using 10 cells, while a period of the wave is split among 400
cells. The source terms being applied in the transition area of the level-set function, see
Subsec. 3.3.2, a correct representation can be obtained using the mesh presented. The
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Figure 4.20: Source area generating the wave �eld, scaling from zero in blue regions to an
oscillating maximal value in the red area, and mesh used for the representation. Scales
in meters.

source term for an extreme positioning of the free-surface is presented in Fig. 4.20 for a
wave crest. The source area remains inside the densely-meshed region, which guarantees
the correct generation of the wave �eld.

The propagated wave �elds from the simulations realized with ICI-tech are presented
in Fig. 4.21. Two curves are plotted, for ∆t = 10−2s and ∆t = 10−3s, both have been
obtained with the same mesh. The source term is acting on the free-surface between
x = 22m and x = 24m, and the waves are then propagated in both the x- and (−x)-
directions. A �rst observation concerns the damping, which is much more important
with ∆t = 10−2s. The numerical dissipation, with the highly-re�ned mesh used, is tack-
led using ∆t = 10−3s. The phase does not seem to be very sensitive to the numerical
dissipation, which mostly acts on the amplitude of the oscillations. Two other observa-
tions can be made. The waves generated are not oscillating exactly around y = 0, i.e.,
the mean free-surface height is upper than y = 0. This tendency is probably coming
from the wave generation technique, which modulates the gravity in the source area.
The simulation starts with an upwards-directed wave, obtained thanks to a decrease in
gravity. Thus, an integration over the time of the gravity force will return smaller values
than the reality, except at the end of the generation periods. The second observation
concerns the ∆t = 10−2s-curve. The oscillations have a similar amplitude in the source
region, but the free-surface solved is located slightly below the ∆t = 10−3s one. This
may be due to mass loss induced by the numerical dissipation, which tends to reduce
the energy provided by the source to the free-surface. Finally, even if they can hardly
be identi�ed on the Fig., parasitic velocities are found on the sides of the domain, where
the free-surface is not supposed to move. These velocities are concentrated around the
air/water interface, where a density drop is found. They tend to disturb the transport
of the free-surface, even if they disappear once waves are propagated.

A more detailed study of the wave �eld generated in proposed in Figs. 4.22, based on
the contributions propagated rightwards. The position of wave crests and their height
are studied in comparison to a reference number given to each peak. This procedure
allows to study speci�cally the propagation, to check if the velocity of the wave �eld is
constant, and the numerical dissipation. The �rst seven peaks are studied, i.e., those
located between x = 23m and x = 33m. The position of peaks found in Fig. 4.22a is
found to be linear, even if the prescribed wavelength of 2m is not respected. A measured
wavelength of 1.54m is found, which may be due to the wave generation technique. The
amplitudes of the peaks, presented in Fig. 4.22b, needs to be regarded closely. The �rst
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Figure 4.21: Wave �eld of amplitude 2.5 · 10−2m, of frequency 1s−1 and of wavelength
2m simulated with ICI-tech using an isotropic mesh, with ε = 5 · 10−2m and di�erent
time steps. Red, plain: ∆t = 10−2s. Blue, dashed: ∆t = 10−3s. Green area: source
generation area.

crest, with a peak number of 1, is still located in the generation area, which tends to
increase its amplitude. Between the next �ve crests, only a 2% di�erence is observed
between the extreme positions of the peaks. The last crest, which also provides the
smallest amplitude, is due to the hydrodynamic e�ects observed at the beginning of the
simulation, which tend to prevent the generation of waves due to inertia. The wave �eld
generated with the source-term wave maker tends to overestimate the amplitude of the
wave �eld, while the wavelength is not properly respected. This questions the accuracy
of the wave maker implemented, even if such a study allows getting �rst evaluations of
the numerical dissipation observed during the propagation of wave �elds.

Wave �eld generated using a physical wave maker

A new test case is presented, which uses this time a physical, hinged wave maker as
de�ned in Subsec. 3.3.2. A monochromatic wave �eld of amplitude 0.1m, of frequency
0.5s−1 and of wavelength 6m is created by a wave maker in a 5m-depth NWT, actioned
thanks to HOS-NWT's outputs. The physical wave maker relies on the enforcing of
boundary conditions using a physical object de�ned inside the computational domain.
This object is moved, and BCs are imposed regarding data provided by HOS-NWT. The
computational mesh has to take these elements into account. The mesh generated is
presented in Figs. 4.23. The meshing around the free-surface is comparable to the one
used for the source-term NWT, except that it is wider to account for the larger waves
generated. The interface thickness ε of the level-set representing the water phase is de-
�ned smaller than the one used with the source-term wave generator, at 1 ·10−2m instead
of 5 · 10−2m. This choice is motivated by the behavior of the free-surface around the
wave maker, which needs to be re�ned to guarantee good accuracy of the results. The
precision of the results can still be ensured by the number of mesh cells found in the
transition area, which is of about 10. As explained in Subsec. 3.3.2, complex hydrody-
namic e�ects appear near the piston, and rapidly vanish as they move away. To limit the
computational load linked with those turbulent e�ects and to increase the stability of the
simulations, the viscosity of the �uids are multiplied by 100. As the free-surface �ows are
inertia-dominated, this correction is supposed to produce limited errors. This increased
viscosity is used in all the simulations involving a physical wave maker presented in this
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Figure 4.22: Study of the wave crests propagated rightwards on Fig. 4.21.

(a) Whole domain. (b) Zoom on the triple point
(water, air, piston).

Figure 4.23: Mesh of the computational domain used for the generation of waves using
a physical wave maker. Scales in meters.

thesis.

Compared to the mesh from Figs. 4.19, the one generated is more sophisticated. As
the piston is placed on the left-hand side of the domain, its geometry needs to be meshed.
The regions around the piston also need to be re�ned speci�cally, to avoid extreme aero-
dynamic events. These modi�cations imply a higher computational load, highlighted
by the size of the mesh generated, of 1.19M points. The presence of a physical wave
maker in the domain also creates a triple point, at the interface of three di�erent phases.
Here the free-surface, i.e., the air/water interface, is excited by the solid. The conver-
gence of the schemes is more challenging in this area, thus a thin meshing is required in
this region, and the computational cost increases. The addition of patches is justi�ed
by the study focusing on the free-surface on a �xed mesh. The focus is placed on the
accuracy of the wave �eld generated, and not on the reduction of the computational load.

The mesh presented is used in simulations realized with ICI-tech. The results ob-
tained are presented in Fig. 4.24. The simulations performed with ∆t = 10−2s come with
a non-negligible damping, along with important mass losses. This results in an averaged
free-surface level progressively going down, which considerably deteriorates the quality
of the resolution. Yet, the wave �eld obtained is in phase with the prescribed one. These
mass losses may be directly linked with the temporal discretization of the problem, as
the motion of the wave maker is more important between two time increments with a
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Figure 4.24: Monochromatic wave �eld of amplitude 0.1m, of frequency 0.5s−1 and
of wavelength 6m at t = 30s simulated with ICI-tech using an isotropic mesh, with
ε = 1 · 10−2m and di�erent time steps. Black, dotted: wave �eld from HOS-NWT. Red,
plain: ∆t = 10−2s. Blue, dashed: ∆t = 10−3s. Scales in meters.

large time step. The transition between water to wave maker in cells may be too fast for
a good resolution of the �ows. The simulation that ran with ∆t = 10−3s features smaller
damping, and no mass losses are observed. A phase shift appears in this con�guration,
which has not been found in any other simulation. More investigations are conducted
to con�rm or in�rm this observation. The incorrect implementation of the sponge layer
used when those results were generated may be the origin of this phase shift. This ten-
dency was not observed on the previous test case, as the propagation of the wave �eld
did not reach the sponge layers. The free-surface at the right-hand side of the domain
is perturbed, because of parasitic velocities generated in this area. Still, only a minor
impact is found on the wave �eld generated, as these velocities tend to disappear when
the wave train is propagated.

To conclude on the quality of the waves generated using isotropic meshes, the di�erent
results presented in this Subsec. highlight the potential to simulate accurate monochro-
matic wave �elds using ICI-tech. Depending on the time step chosen, di�erent levels of
damping were observed. Mass losses could be identi�ed when a physical wave maker was
used, in a situation featuring damping too. Phase shift has been highlighted in only one
con�guration, where it looked like a perturbation impacted strongly the results. The
source-term simulations also proved that rather large ε regarding the wave amplitude are
acceptable. Those di�erent observations are rather satisfying, as accurate wave trains
could be generated. However, the simulations presented have been realized using massive
meshes, between 500K and 1M computational points in 2D. Getting the same level of
re�nement in 3D involves an extreme computational load, especially with one or several
FOWTs in the domain. Moreover, the time step required to limit the damping is small for
cases where monochromatic wave �elds are simulated. The in�uence of the time step for
the simulation of monochromatic wave �elds of higher frequency or smaller wave length
is still to be investigated. These studies have not been realized partly because of the time
needed to process the computations. To simulate 30s of physical time, with a load of
10K computational points per core and a time step ∆t = 10−3s, about 72h are required.
Still, further observations could change the interpretation of the results presented. In
particular, damping and/or mass losses may increase from monochromatic to irregular
wave �eld simulations if ∆t is kept identical. Irregular wave �elds represent real sea
states, where waves of small wavelength or high frequency may occur. The dependency
towards the time step and mesh size seems to be important. Consequently, the time and
space discretizations will need to be designed for the most challenging waves, leading to
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(a) Whole domain. (b) Zoom on the free-surface.

Figure 4.25: Anisotropic mesh of the computational domain used for the generation of
waves using source terms. Scales in meters.

small mesh sizes and time steps. This kind of observation would question the capacity of
the current solver to solve accurately irregular wave �elds, especially for 3D situations,
where diminishing the mesh size increases rapidly the computational e�ort.

4.2.2 Propagation of monochromatic wave �elds using automatic, anisotropic

mesh adaptation

The isotropic simulations presented in the previous Subsec. do not exploit all the po-
tential of ICI-tech. Meshes of 426K to 1M nodes are considerable, especially for 2D
applications. If it is a�ordable in 2D, such a precision becomes prohibitive in 3D. Conse-
quently, a transition towards an anisotropic meshing is realized. During the simulation,
the mesh will be adapted on the free-surface and on the velocities. This aims at capturing
the physical e�ects as accurately as possible, and thus to transport the free-surface with
the best precision. The test cases from Subsec. 4.2.1 were replicated, this time with an
activation of the mesh adaptation procedure.

Wave �eld generated using a source-term wave maker

The test case using a source-term wave generator is reproduced, this time using an
automatically-generated anisotropic mesh. An important number of nodes, 100K, is
used to guarantee the quality of the meshing of the free-surface. The mesh obtained
is presented in Figs. 4.25, in particular with a focus on the free-surface. The meshing
around the free-surface is not uniform. The "intensity" of the meshing is de�ned as
depicted in Fig. 3.5. By default, the adaptation is performed from the error estimator,
built on the second derivative of the level-set, which tends to create an unadapted area
around the free-surface. A Dirac function then needs to be de�ned. The adaptation is
pondered between the level-set and the Dirac functions to concentrate mesh cells in this
zone. Similarly to the test case presented in Subsec. 4.2.1, a monochromatic wave �eld of
amplitude 2.5 · 10−2m, of frequency 1s−1 and of wavelength 2m is generated. In order to
reproduce the study done using an isotropic mesh, the same width of the water level-set
ε = 5 · 10−2m and the identical two time steps ∆t = 10−2s and ∆t = 10−3s are used.
In both of the simulations, the remeshing is performed every 11 increments, i.e., every
0.11s for ∆t = 10−2s and every 1.1 · 10−2s for ∆t = 10−3s.

The results are presented in Fig. 4.26. Despite a thin meshing around the free-
surface, featuring a precision similar to the one obtained in the isotropic test case, im-
portant damping is observed with both time steps. While ∆t = 10−2s generates waves
of correct amplitude in the source area, rapid damping deteriorates the wave �eld. With
∆t = 10−3s, the damping is slightly reduced. However, the waves generated are of
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Figure 4.26: Wave �eld of amplitude 2.5 · 10−2m, of frequency 1s−1 and of wavelength
2m simulated at t = 10s with ICI-tech using an anisotropic mesh, with ε = 5 · 10−2m
and di�erent time steps. Blue, dashed: ∆t = 10−3s. Red, plain: ∆t = 10−2s. Green
area: source generation area.

smaller amplitude, which is surprising. The e�ects of remeshing may induce additional
dissipation, which perturbs the generation of the wave �eld.

To validate the behavior of the wave generation procedure coupled to the automatic
mesh adaptation, a comparison is drawn on the same test case, this time at ∆t = 10−3s,
with di�erent mesh adaptation frequencies. The results are presented in Fig. 4.27, where
the dashed, blue curve corresponds to an adaptation every 1.1 · 10−2s, as already pre-
sented. The green curve corresponds to an adaptation every 0.11s, which limits the
impact of the remeshing on the results. The waves measured in the source generation
area con�rm the impact of the mesh adaptation on the quality of the waves generated.
With a decreased adaptation frequency, less damping is observed in the impulsing area.
However, damping is still largely observed in the propagation of the waves, in proportions
comparable to the test case with adaptation every 1.1 · 10−2s.

In terms of numerical dissipation, the data plotted in Fig. 4.27 can be compared to
the results obtained with an isotropic meshing presented in Fig. 4.21. A rapid comparison
of the free-surface elevations for ∆t = 10−3s and similar con�guration, except for the
computational mesh, highlight a major damping obtained with the anisotropic meshing.
To verify that this dissipation is not produced by the wave-generation method, a similar
study is conducted with a physical wave maker.

Wave �eld generated using a physical wave maker

The in�uence of the mesh adaptation is tested for a physical wave generation procedure
too. The test case considered in Subsec. 4.2.1 is reproduced. A monochromatic wave
�eld of amplitude 0.1m, of frequency 0.5s−1 and of wavelength 6m is prescribed. The
free-surface is represented using ε = 10−2m. An anisotropic mesh of 50K nodes is used,
re�ned around both the free-surface and the piston. The initial mesh is presented in
Figs. 4.28a. The reduction of the number of cells is realized in the anisotropic mesh
adaptation thanks to the deformation of mesh cells to follow the demarcation of the ge-
ometries immersed. Consequently, compared to an isotropic mesh, the concentration of
cells around both the free-surface and the piston is similar only in the direction normal to
the geometries. In the other directions, when the phases immersed have plane surfaces,
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Figure 4.27: Wave �eld of amplitude 2.5 · 10−2m, of frequency 1s−1 and of wavelength
2m simulated with ICI-tech at t = 10s using an anisotropic mesh, with ε = 5 · 10−2m,
∆t = 10−3s and adaptation every 11 time increments. Blue, dashed: adaptation every
1.1 · 10−2s. Green, plain: adaptation every 0.11s. Green area: source generation area.

(a) Whole domain. (b) Zoom on the free-surface
near the triple point.

Figure 4.28: Anisotropic mesh of the computational domain used for the generation of
waves using a physical wave maker. Scales in meters.

the concentration of cells tends to be largely reduced. An increase in the number of
nodes tends to limit the deformations of mesh cells, as remaining mesh points are placed
in the interest areas.

The results obtained for this test case, which are presented in Fig. 4.29, do not re-
produce the level of accuracy from isotropic simulations. Di�erent time steps of 10−2s
and 10−3s are used, with adaptation every 7 · 10−2s or 7 · 10−3s. For both of these simu-
lations, important damping is observed. This damping is accentuated with ∆t = 10−3s
and adaptation every 7 ·10−3s. On the contrary, in isotropic simulations, a reduced time
step tended to reduce the damping. This highlights a direct link between the adaptation
of the computational mesh and the damping. This simulation provides results in phase
with the prescribed one, as well as the one obtained with ∆t = 10−2s. On the contrary,
a phase shift is progressively established with ∆t = 10−3s and adaptation every 7 ·10−2s.
The displacements of the mesh are not frequent enough to follow the wave being trans-
ported. The propagation of the wave reaches the limit of the adapted area, where the
size of mesh cells tends to increase rapidly. The transport is less accurate when solved
on large cells, which explains the progressive phase delay. At the right-hand side of the
domain, the di�erences found around x = 40m are due to the sponge layer, which is
designed di�erently between HOS and ICI-tech. Except for the phase shift, whose origin
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Figure 4.29: Monochromatic wave �eld of amplitude 0.1m, of frequency 0.5s−1 and of
wavelength 6m at t = 20s simulated with ICI-tech using an anisotropic mesh, with
ε = 1 · 10−2m and di�erent time steps. Black, dotted: wave �eld from HOS-NWT. Red,
plain: ∆t = 10−2s, adaptation every 7 · 10−2s. Blue, dashed: ∆t = 10−3s, adaptation
every 7 · 10−3s. Green, dash-dotted: ∆t = 10−3s, adaptation every 7 · 10−2s. Scales in
meters.

has already been discussed regarding the implementation of the sponge layer, the conclu-
sions drawn here are in accordance with those from the simulations using a source-term
wave maker and mesh adaptation.

The results obtained with the anisotropic meshing are globally disappointing. With
a minimal mesh size similar to the one used with isotropic test cases and a huge number
of nodes in the computational meshes, the accuracy achieved in isotropic situations could
not be reproduced. Several corrections enable to limit the damping observed, e.g. through
a reduction of the time step or works on the adaptation frequency, but remain insu�-
cient. The origins of the numerical dissipation are hard to identi�ed. The shares of the
NS resolution at each time step or of the mesh adaptation itself have not been quanti-
�ed. Moreover, if an isotropic mesh guarantees that the numerical dissipation will be
more or less equivalent at each time step, this statement can not be transposed to the
case of anisotropic meshes. The mesh adaptation is de�ned using an a posteriori error
estimator, thus the mesh produced at an instant t is optimal for the previous time step
t−∆t, with mesh cells located around the free-surface. When the characteristics of the
simulations are correctly chosen, the physical e�ects reproduced have a slow evolution
regarding the mesh sizes and time iterations, which guarantee the quality of the results.
However, in the context of free-surface �ows, the transport of the di�erent phases moves
the �uid interface towards the borders of the adapted area, which tends to increase the
numerical dissipation per time step. To that extent, the increasing numerical dissipation
created at each time step could play an important role in the deterioration of the wave
�eld. Once again, a quanti�cation of this e�ect would be required, along with a compar-
ison with the dissipations created by the mesh adaptation procedure. A simple outlook
on the dissipation produced per time increment is illustrated in Fig. 4.30. The height
of the di�erent peaks and curves and their evolution with time would be interesting to
know. A numerical dissipation progressively increasing per time step is proposed, which
is reinitialized at each adaptation. The fact that a newly adapted mesh reduces the dis-
sipation produced at each time increment seems indubitable, which explains the shape
of the dashed curve. This is not the case for the regularity, periodicity or relative sizes of
the di�erent contributions to numerical dissipation. A comprehensive comparison could
give guidelines for the de�nition of an optimal adaptation frequency. The ideal would be
to link it with physical parameters, which seems possible for monochromatic wave �elds,
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maybe less for real sea states.
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Figure 4.30: Simple view of the rate of dissipation per time increment during a simulation
with periodic mesh adaptations.

Another limitation may be due to the de�nition of the anisotropic meshing as it is
presently de�ned, and its relation with the physics. The adapted area is based exclusively
on the level-set function representing the free-surface. Consequently, a thin meshing is
obtained only in an area of width ε around the free-surface. This de�nition mostly ig-
nores the water dynamics below the water level, which play an important role in the
propagation of wave �elds. Moreover, the anisotropic characteristic derived from the
level-set function is able to detect the curvature of the free-surface to adapt on it. But
when waves of small steepness are de�ned, mesh cells stretched in the direction of the
propagation of the wave �eld tend to be generated. The reduction of the number of
mesh cells in this direction reduces the de�nition of the waves, which tends to increase
the numerical damping produced. An immediate correction is to limit the stretching of
mesh cells. However, this leads to an increase in the number of mesh points used in
the computations, which reduces the potential of the anisotropic meshing, in particular
for 3D applications. As the mesh used in the anisotropic simulations is adapted in a
quasi-isotropic way around the free-surface, it must not be the source of the damping
observed in this Subsec.

This thesis focused on the development of a simulator for FOWTs. To that extent, 3D
applications need to be considered, for which the use of isotropic meshes is unrealistic.
The propagation of wave �elds realized with anisotropic meshes thus needs to be im-
proved. A preliminary study, aiming at developing test cases integrating the anisotropic
mesh adaptation procedure to propagate wave �elds more accurately, has been realized.
A framework is developed for the de�nition of a re�ned mesh under the free-surface, i.e.,
where the hydrodynamic e�ects are expected to have the greatest impact on the shape of
the waves simulated. This re�nement is a way to conserve the anisotropic characteristic,
while constraining the mesh size in an attempt to reduce the numerical dissipation. The
procedure detailed in the following acts as a patch, positioned under the free-surface,
where a thinner mesh is generated.

The condition presented in Eq. (4.5) de�nes the areas where the computational mesh
needs to be re�ned. The level-set of the water phase Φε is used, along with the amplitude
of the wave �eld generated Aw. A threshold ratio rThr allows to easily tune the size of
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the re�ned zone. {
Φε > 0

y > −rThrAw
(4.5)

The mesh can then be adapted thanks to a tuning of the metric �eld presented in
Sec. 2.2. The modi�cation of the mesh intends to control the size of the mesh cells along
both the x and y direction. To that extent, a metric �eld similar to the one presented in
Eq. (4.6) is required in the re�ned area, with hx and hy the sizes of the mesh in the x
and y directions.

Mi =

[
1/h2

x 0
0 1/h2

y

]
(4.6)

The methodology followed here takes advantage of both the adaptation on the free-
surface and a further re�nement based on geometrical criteria. The de�nition of the met-
ric as realized in Subsec. 2.2.2 needs to be conserved, while supplementary constraints
are de�ned in Eq. (4.6). To restrict the implementations to high-level encoding, a de�ni-
tion of the new metric �eld in two steps has been realized. The adaptation is �rst done
exclusively on Φε. The metric �eld Mi obtained is then summed with the expression
proposed in Eq. (4.6). In the area to re�ne, the initial eigenvalues ofMi correspond to
the local mesh size along each direction. With well-tuned prescribed mesh sizes, 1/h2

x

and 1/h2
y are much higher than the eigenvalues, and thus get the most attention in the

remeshing. In the areas being adapted by both steps, this procedure tends to generate
thinner mesh cells, which increases the computational costs and the expected precision
of the simulations.

The tuning of the parameters hx and hy is a key feature of this re�nement area. This
topic is commonly discussed, e.g., in Calderer et al. (2018). In order to get a �rst idea of
the level of re�nement required, a rather thin description of the re�ned zone is proposed,
using Eqs. (4.7). This de�nition allows getting 100 cells along a wavelength, and 20 cells
from crest to trough.

hx =
λw
100

(4.7a)

hy =
Aw
10

(4.7b)

This mesh generation process is suited for monochromatic wave �elds, as an ampli-
tude Aw has to be provided. It does not account for regions where the re�nement is not
required, e.g., in the sponge layer. Improvements could easily be designed and imple-
mented, from a modi�cation of the condition in Eq. (4.5). However, the point followed
here was to improve the description of the propagated wave �eld on a 2D test case. Lit-
tle attention was thus placed on the optimization of the meshing. Similarly, a thinner
tuning of hx and hy could lead to either better precision achieved with the results, or to
a reduced computational load.

A zoom on a mesh generated using this methodology is presented in Fig. 4.31. The
test case considered here uses a physical wave maker, even if the mesh re�nement pro-
posed is independent of the wave generation tools. The computational domain, similar
to the one presented previously, is meshed using about 150K points and uses ε = 10−2m.
Several comments can be made about the distribution of nodes. An important concen-
tration is again found around the piston and the free-surface. In addition, the regions
respecting Eq. (4.5) are re�ned too. The adapted area is widened, especially under wave
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Figure 4.31: Anisotropic mesh for the simulation of a monochromatic wave �eld of am-
plitude 0.1m, of frequency 0.5s−1 and of wavelength 6m at t = 20s, re�ned under the
free-surface. Zoom on the free-surface. Scales in meters.

crests. The wave �elds obtained with di�erent con�gurations are presented in the fol-
lowing.

The �rst con�guration tested consisted in the determination of rThr, threshold ratio
from Eq. (4.5). A monochromatic wave �eld of amplitude 0.1m, of frequency 0.5s−1 and
of wavelength 6m is prescribed. The di�erent wave �elds presented in Fig. 4.32 compare
the results of ICI-tech simulations against output data from HOS-NWT. A test case was
run without the additional re�nement, while the other test cases respected rThr = 3 and
rThr = 5. The free-surfaces plotted show very similar data for rThr = 3 and rThr = 5,
with reduced damping compared to the last con�guration. For a matter of computational
e�ciency, these results have been obtained with a time step ∆t = 10−2s, which provided
damping even for thin, isotropic meshes. The improvement observed in the propagation
of the wave �elds advocates the use of re�nement under the free-surface. Still, the sen-
sitivity of the results to the variations of rThr would need to be investigated. In the
following, rThr = 3 is conserved, in more accurate studies.

Another in�uence of the re�nement under the free-surface is to concentrate a high
number of computational points around the free-surface. From this observation, the
in�uence of the mesh adaptation is expected to be slightly less important than for a clas-
sical anisotropic mesh generation. Once again, a monochromatic wave �eld of amplitude
0.1m, of frequency 0.5s−1 and of wavelength 6m is prescribed. The dependency of the
results towards the adaptation frequency is tested for ε = 10−2m and ∆t = 10−3s. Both
free-surfaces are found to have the same period. In terms of amplitude, the highest adap-
tation frequency, with mesh updates every 7·10−3s, underperforms compared to the other
test cases, considering, respectively, adaptation every 3.5 · 10−2s and 7 · 10−2s. The last
two cases provide very similar results. As only di�erence, the free-surface adapted every
7 ·10−2s is slightly less damped, but seems to encounter more mass losses. Despite the in-
creasing precision of the results, the results obtained with the anisotropic adaptation are
still a bit damped, even if the mesh is re�ned under the free-surface. A 8.5%-error is still
found in terms of amplitude, from a rapid evaluation of the crest located next to x = 25m.

Further studies are required to increase again the precision of the wave �elds prop-
agated. The re�nement realized under the free-surface follows the paradigm proposed
in a previous paragraph. The size of cells along the x-direction is reduced thanks to
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Figure 4.32: Monochromatic wave �eld of amplitude 0.1m, of frequency 0.5s−1 and
of wavelength 6m at t = 20s simulated with ICI-tech using an anisotropic mesh re�ned
under the free-surface. Simulations realized with ε = 10−2m, ∆t = 10−2s, and adaptation
every 7 · 10−2s. Black, dotted: Wave �eld from HOS-NWT. Red, plain: No re�nement.
Blue, dashed: rThr = 3. Green, dash-dotted: rThr = 5. Scales in meters.

Figure 4.33: Monochromatic wave �eld of amplitude 0.1m, of frequency 0.5s−1 and of
wavelength 6m at t = 20s simulated with ICI-tech using an anisotropic mesh re�ned
under the free-surface (rThr=3). Simulations realized with ε = 10−2m, ∆t = 10−3s,
and di�erent adaptation frequencies. Black, dotted: Wave �eld from HOS-NWT. Red,
plain: Adaptation every 7 · 10−3s. Blue, dashed: Adaptation every 3.5 · 10−2s. Green,
dash-dotted: Adaptation every 7 · 10−2s. Scales in meters.
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(a) Mesh colored by the level-set function. (b) Parasitic velocities, scaled linearly from 0m.s−1

to umax = 3 · 10−3m.s−1.

Figure 4.34: No-�ow test with a constant isotropic mesh (hmin = 5 ·10−3m) after a single
time increment, for ∆t = 10−3s and ε = 5 · 10−2m. Scales in meters.

the parameter hx introduced, while a discretization of the areas under the free-surface
is performed. The improvement of the results is notable, but optimization could still be
realized. Several options can be discussed. The �rst one considers the level of re�nement
prescribed in the studies realized. A unique discretization was tested, with 100 cells
to represent a wavelength and 20 cells between crest and trough. Alternative distribu-
tions of cells in the re�ned areas would be necessary to get a good comprehension of the
in�uence of the mesh under the free-surface.

4.2.3 No-�ow tests

In a NWT, the regions located far from the wave generators follow a hydrostatic behavior
at the beginning of the simulations. The free-surface is supposed to be at rest, but the
simulation presented in this Sec. highlighted the creation of parasitic velocities. They
appear in the areas where a density drop is observed, especially with isotropic meshes.
They can be identi�ed on Fig. 4.21 for x < 10m and x > 35m, where the free-surface
is disturbed. The presence of parasitic velocities is to avoid in the context of NWTs,
as the propagation of waves is directly impacted by the perturbations. These velocities
are due to the iterative solver used, which minimizes a residual. The minimization is
stopped when a convergence condition is met. If the rate of convergence is not su�cient,
perturbations of important magnitude may be generated.

The parasitic velocities generated by isotropic and anisotropic meshes are compared
for an identical test case. A water basin of dimensions 60mm is de�ned, with a water
depth of 5m. An initially still free-surface is considered, and no external perturbations
are prescribed. The simulations are run with ε = 5 · 10−2m, hmin = 5 · 10−3m and
∆t = 10−3s. The adaptation is forced, to reach the minimal mesh size around the free-
surface. Thus, the only di�erence between those test cases consist in the meshing, which
is thinner along the horizontal direction in the isotropic case. The evolution of the ve-
locities generated after a single time step are examined. The results obtained present
an homogeneous distribution of the parasitic velocities along the free-surface. Zooms on
the air/water interface present views of those velocities drawn for isotropic meshing, see
Figs. 4.34, and anisotropic meshing, in Fig. 4.35. The scale of the velocities presented
in those Figs. is linear from 0 to umax. In the isotropic case, the magnitude of the high-
est velocities is umax = 3 ·10−3m.s−1, while umax = 7 ·10−4m.s−1 in the anisotropic case.

A �rst observation concerns the repartition of the velocities, that are all located in
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(a) Mesh colored by the level-set function. (b) Parasitic velocities, scaled linearly from 0m.s−1

to umax = 7 · 10−4m.s−1.

Figure 4.35: No-�ow test with a constant anisotropic mesh (hmin = 5 · 10−3m) after a
single time increment, for ∆t = 10−3s and ε = 5 · 10−2m. Scales in meters.

the transition area of the level-set, around the free-surface. More precisely, the parasitic
velocities appear when a density drop is observed. With the isotropic and anisotropic
test cases, the di�erence between both umax is of an order of magnitude. This is due to
the meshing, much coarser in the x-direction in the anisotropic test case. This induces
numerical dissipation, which tends to reduce the parasitic velocities observed. Moreover,
while in the isotropic test case the velocities have no preferential direction, the anisotropic
application generates a vertical bias. The reason is again the meshing in the x-direction.

Several studies have been realized reduce the impact of those velocities on the sim-
ulations using anisotropic meshes. In particular, their evolution with the time step ∆t
or the smallest mesh sizes hmin have been studied, and are plotted in Figs. 4.36. It is
important to note that, due to the anisotropic characteristic of the mesh, the evolution
of hmin involves variations of the mesh size following the level-set, and consequently the
density drop. As soon as the simulations times are reduced, the evolution of hmin acts
exclusively on the mesh size in the vertical direction. The results obtained show a small
dependency in ∆t, while a �rst-order convergence is measured in hmin. This means that,
to divide umax by 10, hmin must be divided by 10 too. Consequently, the reduction of
the parasitic velocities needs to be realized through the use of a thinner mesh, at least in
the vertical direction. This behavior is observed independently of the level-set width ε.
The pressure drop measured on each mesh cell seems to rule the apparition of parasitic
velocities: the highest the drop, the largest the perturbations. The convergence rate
can be put in perspective with the orders of convergence of the schemes used for the
NS simulations, of the �rst order both in time and space. Increasing the order of those
schemes would be a way to reduce them without diminishing hmin too much.

The resolution along the horizontal direction has an impact on the results, as high-
lighted by the di�erences between isotropic and anisotropic simulations. The wave �elds
presented, e.g., in Fig. 4.21, suggest that the parasitic velocities mostly have an in�uence
on solutions in areas where the waves are small and recently appeared. This behavior is
observed both for anisotropic or isotropic simulations. As anisotropic meshes are re�ned
horizontally when waves of strong curvature are found, the in�uence of the hmin on the
horizontal re�nement will be limited. The areas concerned by parasitic velocities will
mostly be meshed as in Fig. 4.35 rather than Fig. 4.34. A di�erent situation could be
found with enhanced meshing under the free-surface, depending on the waves simulated
and criteria considered. These situations will need to be regarded in a case-by-case basis.
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Figure 4.36: Residual velocities obtained using anisotropic meshes at t = 2 · 10−2s for
various ∆t and hmin, with ε = 5 · 10−2m.

Another approach consists in increasing the rate of convergence achieved during the
resolution of the problem, which is formulated in velocity and pressure. However, in
a hydrostatic situation, the converged pressure is in the range of 105Pa for a depth
about 1m, while the velocities are supposed to converge towards 0m.s−1. The risk is
for the solver to focus on the convergence on the pressure, and to overlook the errors on
the velocity. Consequently, the preconditioning of the problem needs to be particularly
e�cient to obtain small residual velocities. This study will be important for the validation
of a new solver dedicated to the simulation of free-surface �ows.

4.3 Veri�cation and validation of the FSI and application

to buoyancy

This Sec. proposes a validation of the di�erent utilities implemented in ICI-tech for the
FSI of FOWTs and presented in Sec. 3.3. This study has been realized within a master
thesis integrated into the scope of the PhD. Two main topics need to be regarded: the
evaluation of forces applied on structures, and the driven motion of buoys. In a �rst
time, a veri�cation of the forces applied on a static object are measured, and convergence
studies are presented in Subsec. 4.3.1. Free motions of �oating solids intersecting a free
surface are then studied in Subsec. 4.3.2. Two-dimensional test cases are presented, where
vertical and rotational motions are considered separately.

4.3.1 Veri�cation of the buoyancy force applied on a cylinder

The �rst case tested intends to validation the computation of the force presented in
Subsec. 3.3.1, realized within a master's thesis. A cylinder of density ρ = 500kg.m−3 is
completely submerged under water, de�ned as a �uid of density ρ = 1000kg.m−3 and
of viscosity η = 0.001kg.m−1.s−1. Its diameter is D = 0.1524m and the computational
domain is of size 20D, the cylinder being located at its center. The exact solution is given
by the Archimedes' principle: the resultant buoyant force Fan is equal to the weight of the
displaced �uid. The results obtained are compared to those from Borazjani et al. (2008)
and Calderer (2015), which used a LES formulation of the Navier-Stokes equations and

118



10−3 10−2 10−1
10−2

10−1

100

101

102

103

h(m)

E
rr
o
r

ICI-tech

Calderer (2015)

Borazjani et al. (2008)

Figure 4.37: Static buoyant cylinder, convergence of the error of the computed buoyant
force with the interface thickness, for the fully immersed case. Comparison with results
from Calderer (2015) and Borazjani et al. (2008).
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Figure 4.38: Static buoyant cylinder, convergence of the error of the computed buoyant
force with the number of mesh nodes, for the fully immersed case.

a Finite Volume approach with immersed boundaries. The error E, written in Eq. (4.8),
is measured.

E =
|Ffluid − Fan|

Fan
(4.8)

A log-log plot showing the convergence of the error is printed in Fig. 4.37. Di�erent
adapted meshes of minimal mesh size hmin being D/25, D/50, D/100, and D/200 are
considered. As explained in Chap. 2, the width of the level-set representing the immersed
object respects hmin = ε/10.

The standard method from Borazjani et al. (2008) overpredicts the buoyancy force
on the cylinder, and has a �rst-order rate of convergence. The PPBC method detailed
in Calderer (2015) provides errors lower of one order of magnitude than the standard
method, also with a better convergence rate, of 1.8. The approach followed in ICI-tech
presents a good order of magnitude and a similar convergence rate than the standard
method.

The number of mesh nodes has been increased to 200K. This avoids a limitation of
the convergence rate due to the number of computational points. A similar convergence
is highlighted by Fig. 4.38. As the order of the discretizations over time and space are
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Figure 4.39: Static buoyant cylinder: convergence of the error of the computed buoyant
force with the interface thickness, for the half immersed case. Comparison with results
from Calderer (2015) and Borazjani et al. (2008).

both of 1, the rate of convergence obtained is satisfying.

A similar study is proposed for the same cylinder, this time half immersed. An im-
portant modi�cation of the test case is required, as a free-surface, de�ning the air/water
interface, has to be represented. This three-phase is more challenging, as important drops
in η and ρ are observed between air and water. In particular, the density variations were
shown to generate parasitic velocities in Subsec. 4.2.3. The meshing of the free-surface
also induces a higher computational e�ort. A triple point appears at the meeting point
of the three phases, which also requires a particular treatment. Still, the error between
the exact buoyancy force, given by Archimedes' principle, and the numerical evaluation
can be computed as detailed in Eq. (4.8).

The convergence of the error is presented in Fig. 4.39 with di�erent adapted meshes
of 100K nodes, of minimal mesh size h being D/25, D/50, D/100, and D/200. A
good order of magnitude and the same convergence rate are achieved, even if the mesh
adaptation densi�es the mesh around the free-surface. The same behavior is observed
for meshes of 200K points, which shows that 100K nodes should be largely enough to
test these types of cases. The comparison with the results presented by Borazjani et al.
(2008) and Calderer (2015) provide a similar tendency compared to the fully-immersed
case. The rate of convergence achieved with ICI-tech compares well against the standard
method, while the PPBC method provides a higher convergence rate.

4.3.2 Validation of the FSI solver for driven motions of �oating struc-

tures

This Subsec. intends to apply the FSI framework developed in Subsec. 3.3.3 to the case
of buoyancy required in the context of FOWTs. This particular case requires the simula-
tion of three-phases: the FOWT, the water, and the air. Two di�erent level-set functions
are required, one representing the FOWT, the second one modeling the free-surface. A
triple point appears at each intersection of the three-phase and a higher complexity is
induced. No particular treatment of these points has been realized in the FSI framework.

Two benchmarks are considered in the following, both focusing on driven motion. The
free, vertical decay of a cylinder is studied, from an initial non-equilibrium position to an
equilibrium one. The free decay of a rectangular solid in rotation, up to equilibrium, is
also simulated. The results obtained using the methodology developed are compared with
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(a) Free decay of a cylinder: schematic de-
scription of the cylinder con�guration given in
Calderer (2015) and studied experimentally in
It	o (1977).

(b) Free decay of a cylinder: snapshots of the cylinder
position and the water and air interface surface, for a
mesh with N = 100000 nodes, ε = 0.005D and ∆t =
5 · 10−4s.

Figure 4.40: Free decay of a cylinder released over a free-surface. Description of the test
case and illustration of the results from ICI-tech.

other authors, whose results have been gathered in Calderer (2015). An experimental
study from It	o (1977) is considered, along with two numerical methods. The �rst one is
a standard immersed-boundaries approach, presented by Borazjani et al. (2008), which
was extended in Calderer (2015) through corrections of the force evaluation around the
solid. This Subsec. intends to demonstrate the capabilities of the FSI modi�ed level-set
formulation to interact with a free-surface.

Free decay of a cylinder

The test case considered here uses the cylinder de�ned in Subsec. 4.3.1, which is re-
leased from an initial position located over its equilibrium. To recall, the cylinder of
density ρ = 500kg.m−3 is horizontal and piercing the free-surface. Its diameter is again
D = 0.1524m and the computational domain is still of size 20D, with no-slip conditions
imposed at the walls. The test case is illustrated in Fig. 4.40a. The cylinder presents a
single degree of freedom (vertical) and is going to oscillate until attaining its equilibrium
position (counterbalance of Archimedes' force), resulting in no-velocity. Furthermore,
the maximum Reynolds number attained, based on the cylinder diameter, the water
properties, and the maximum velocity, is 30K.

Two di�erent interface thicknesses have been considered in our computations, cor-
responding to D/200 and D/50, with 100K-points meshes. The time step is computed
from the CFL condition and thus di�erent for the two cases. First trials indicated that
the lowest value should be around ∆t = 5 · 10−4s. Calderer (2015) tested the same
case with di�erent mesh sizes on uniform and non-uniform meshes, the latter still being
uniform around the solid object and having a mesh size that varies far from it.

Snapshots of the cylinder position are presented in Fig. 4.40b. The deformation of
the free-surface is important, generating radiation waves. A close view of the triple point
shows that there is a remaining air layer at the junction. The computed normalized
position of the cylinder, determined by Eq. 4.9, is used to compare the results obtained
by Calderer (2015) and It	o (1977). This Eq. considers yCG, the vertical position of the
center of gravity of the cylinder, tracked in time. Parameters de�ning the test case are
used too, d = 1.22m the water depth and h0 = 0.0254m initial position of the cylinder
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Figure 4.41: Free decay of a cylinder: normalized position of the cylinder, for an interface
thickness of D/200, a mesh with 100K nodes, and ∆t = 5 · 10−4s.

above the free-surface.

y∗(t) =
yCG(t)− d

h0
(4.9)

The results from ICI-tech are compared in Fig. 4.41 with the experimental ones of
It	o (1977), which have also been used to validate the immersed boundary methods of
Calderer (2015). The frequency of the oscillation observed does not match the experi-
mental one. Interestingly, the standard method from Borazjani et al. (2008) encounters
the same problem, while the PPCB approach from Calderer (2015) performs better. The
position of the cylinder oscillates with a higher amplitude than expected, showing that
the radiation damping is underpredicted in this situation.

The damping observed on ICI-tech's simulations for interface thickness of D/200 can
be compared to the one from It	o (1977) using the quanti�cation of pseudo-oscillations.
The �rst three peak positions of the cylinder are selected, as a strong damping limits the
precision of the identi�cation of further peaks. The amplitude of the peaks is plotted in
Fig. 4.42 as a function of the time. The di�erences observed for the pseudo-period are
notable, reaching 20% for the third peak. Even if the precision of the measures induce
uncertainties, the pseudo-period measured is largely outside the error bounds. Based
on the three �rst peaks identi�ed, the average pseudo-period computed with ICI-tech is
1.10s, while the experimental one is 0.92s. This characterizes a slower evolution of the
cylinder. Similarly, important di�erences are measured for the amplitude. The decays
follow an exponential law exp(γt). An identi�cation of the parameter γ for the decays
returned −1.41s−1 for ICI-tech's simulations and −1.87s−1 for the experimental study.
The smaller coe�cient γ computed with ICI-tech characterizes a slower decay.

Further analysis can be conducted with a focus on the pseudo periods. In the context
of a free decay, the expression of the pseudo-period, written in Eq. (4.10), depends on
the mass of the object m, on the added-mass madd, and on the hydrostatic sti�ness KH .

T = 2π

√
m+madd

KH
(4.10)

As the veri�cation of KH was realized in Subsec. 4.3.1 and the mass of the system
is correctly speci�ed, the di�erences arising in the decay of the cylinder certainly come
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Figure 4.42: Study of the peak positions of the cylinder during the pseudo-oscillatory
decay, as a function of the pseudo-period.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4

−0.5

0

0.5

1

t(s)

N
o
rm

a
li
ze
d
p
o
si
ti
o
n

It	o (1977)

ICI-tech ε = D/200

ICI-tech ε = D/50

Figure 4.43: Free decay of a cylinder: normalized position of the cylinder, for an interface
thickness of D/200 and D/50, a mesh with 100K nodes and ∆t = 5 · 10−4s.

from the added-mass term. Further investigations on the FSI framework will be required
to get a better comprehension of these decay errors.

Another important study concerns the sensitivity of the decay towards ε, i.e., the
variations found with coarser or thinner meshes. Fig. 4.43 compares the results obtained
for two di�erent interface thicknesses, showing the degradation of the result with an in-
creasing ε, in terms of amplitude. The frequency remains similar for both ε.

The average error can be computed from Eq. 4.11, with yexp the experimental position
of the vertical center of gravity, given in It	o (1977), and n is the total number of time
steps.

E =
1

n

√√√√ n∑
i=1

(yCG(ti)− yexp(ti))2 (4.11)

The error obtained is 1.12 · 10−3m for ε = D/200 and 1.34 · 10−2m for ε = D/50.
As a point of comparison, Calderer (2015) has obtained, with other immersed boundary
methods, between E = 6.13 · 10−4m and E = 1.28 · 10−3m for interface thicknesses of
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(a) Free decay of a rectangle bar:
schematic description of the rectangular
bar con�guration given in Calderer (2015)
and studied experimentally in Jung et al.
(2006).

(b) Free decay of a rectangular bar: snapshot of the bar
position and the water and air interface surface, for a mesh
with 100K nodes, ε = D/200 and ∆t = 5 · 10−4s. Pertur-
bation of the system is high and has required several trials
of the numerical parameters to achieve convergent results.

Figure 4.44: Free decay of a rectangle bar through a free-surface. Description of the test
case and illustration of the results from ICI-tech.

the order of D/200.

In conclusion, the di�erences between the simulations realized in ICI-tech and ex-
periments show that the methodology has given promising, preliminary results. Correct
orders of magnitude are met, with similar tendencies compared to the works from Boraz-
jani et al. (2008), which share the same order of convergence in the error studies. Further
investigation will be necessary to match more accurately the experimental results.

Free decay of a rectangular bar in rotation

To validate the rotational motion of the solid object, a second test case is used. It is
described and simulated in Calderer (2015), and experimentally studied in Jung et al.
(2006). A rectangular bar of length of 0.3m, of height of H = 0.2m and of depth of 1m
is considered. The large width of the bar leads to the assumption that studying a 2D
set-up is su�cient to evaluate the accuracy. The bar is placed in a 35m-long computa-
tional domain, with a water depth of 0.9m. The center of gravity of the bar coincides
with the position of the free-surface and the solid is, at the beginning, inclined with an
angle of 15◦. Boundary conditions imposed are slip conditions (v · n = 0) on the borders
of the computational domain. The di�erent geometrical parameters of the test case are
illustrated in Fig. 4.44a.

As for the cylinder case, two di�erent interface thicknesses are considered, corre-
sponding to H/200 and H/50, being H the height of the channel (H = 0.2m). Adapted
meshes of 100K points are used, and the time step is computed from the CFL condition
for both cases.

Stability was hard to establish in this test case, due to the complexity of the interface
near the object and to its motion, as presented in Fig. 4.44b. Strong deformations of the
free-surface are observed, while the rectangular shape is conserved over the simulation
thanks to the mesh adaptation procedure.

Results provided by ICI-tech are compared with the experimental ones of Jung et al.
(2006) in Fig. 4.45, by plotting the evolution in time of the angle of inclination. The
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Figure 4.45: Free decay of a rectangular bar: numerical angle of inclination of the bar
obtained with our code; experimental data of Jung et al. (2006) and numerical results
from Calderer (2015). Mesh with N = 100K nodes, ε = D/200 and ∆t = 5 · 10−4s.
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Figure 4.46: Study of the peak positions of the rectangle during the pseudo-oscillatory
decay, as a function of the pseudo-period.

method predicts qualitatively the evolution of the angle of inclination, but still does not
have the same amplitude. Numerical results of Calderer (2015) are also presented, show-
ing that he gets better accuracy by introducing some damping in the equation of motion
of the solid object. Important errors are observed in terms of frequency too.

As for the case of the cylinder, the pseudo-oscillations observed during the decay
with ICI-tech simulations can be compared against experimentations, this time from
Jung et al. (2006). The amplitudes of rotation are plotted as a function of the pseudo-
period in Fig. 4.46. Similarly to the cylinder vertical decay, the rotation of the rectangle
simulated with ICI-tech return longer pseudo-periods and higher amplitudes. As for
the previous test case, an exponential law can be used to �t the decays, of the form
15exp(−γt). The coe�cient γ of the simulations from ICI-tech is −0.47s−1, which the
experimental one is −0.79s−1. As for the cylinder test case, a slower decay is identi�ed,
which can probably be related to the added-mass e�ects. The average pseudo-period
from ICI-tech's simulations is 0.72s while Jung et al. (2006) identi�ed a 0.61s one, which
characterizes a slower evolution of the decay.
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Figure 4.47: Free decay of a rectangular bar: in�uence of the interface thickness and
comparison with the experimental data from Jung et al. (2006).

Once again, a comparison between two di�erent ε done in Fig. 4.47 highlights an
important variation in terms of amplitude, as observed for the free-decay of the cylinder
previously studied. A higher ε leads to a damped motion. For this test case, a phase shift
is also observed when ε is varied. Further studies would be needed to get a better com-
prehension of the phenomena generating these errors on the period. The pseudo-periods
are increased with a smaller ε, which widens the gap between experimental and ICI-tech's
results. This observation tends to show that decreasing ε optimizes the quality of the
simulations. Further studies with smaller ε would be required to check this supposition.

However, ε = D/200 already generates a considerable computational e�ort, as a
minimal mesh size ofD/2000 needs to be achieved around the immersed object. A smaller
mesh size will probably improve the results. At the same time, the simulation of 3D,
operational FOWT test cases with such a precision is unachievable. The developments
of other utilities or resolution methods will be required for an accurate simulation of
�oating structures.

4.4 Conclusion on the numerical results

This Chap. presented the simulations and results realized towards the development of
a simulator of FOWTs. Two di�erent paradigms were followed: the validation of the
numerical framework was realized, besides of developments linked to the de�nition of a
demonstrator. The validation of the �ows was split between aerodynamics, in Sec. 4.1,
and hydrodynamics, in Sec. 4.2. A validation of the FSI was proposed in Sec. 4.3.

The aerodynamic studies focused on �ows around �xed geometries, represented using
implicit boundary methods. The aerodynamic coe�cients measured around the bodies
were compared with numerical studies and experimental data, while the wake was not
regarded. The results obtained during the aerodynamic validation deteriorated as the
Re number of the �ows considered rose, with errors arising. The consideration of �rst-
order �nite elements can be linked to the low precision achieved with rising Re. The
linear interpolation of the phase in each �nite element requires, in order to represent
phenomena, a very thin meshing. In the context of rising Re, the characteristic length
of turbulent structures decreases, which requires corresponding reductions in local mesh

126



sizes. Similarly, the �rst-order time discretization implies the use of smaller time steps.

The validation of the hydrodynamics focused on the generation and propagation of
waves. Monochromatic wave �elds were studied, mainly in 2D, and generated using two
di�erent methods. The recourse to thin, isotropic meshes tended to return wave �elds
approaching the target solution. Using the anisotropic, automatic meshing as presented
in Sec. 2.2, the propagation of waves highlighted the presence of damping. Several studies
were done to reduce this numerical dissipation, which could be reduced, but not erad-
icated. The in�uence of the mesh adaptation procedure on the damping produced was
identi�ed, but not quanti�ed. Aside from the amplitude of the wave �elds simulated, the
frequencies observed were generally found satisfying. Similarly to the conclusions drawn
for the aerodynamic validation, an extension of the �nite element method to higher or-
ders of interpolation has the potential to limit the errors produced.

The Sec. focusing on the FSI framework intended to validate the tools implemented
into ICI-tech for the simulation of FOWTs. A �rst step considered the evaluation of
forces, from two cases computing the buoyancy force on an immersed cylinder. Free-
decay, driven test cases were then studied, to validate the FSI framework. The test
cases simulated were representative of a FOWT, as a three-phase �ow was considered,
with a free-surface and triple points. The decay in translation provided results with
some bias, that could be put in perspective with methods of similar precision. On the
contrary, the test case focusing on rotational decay was subject to failures, and generated
important errors, both in terms of amplitude and period. Still, the added-mass e�ects
looked overlooked. A poor representation of these hydrodynamic contributions tended
to limit the accuracy achieved with ICI-tech on buoyant test cases.
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Chapter 5

Conclusion and perspectives
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In this thesis, the steps followed towards the adaptation of the software platform
ICI-tech to the simulation of FOWTs have been presented. After an introduction on
the simulation of FOWTs in the literature, the numerical methods for the representation
and the simulation implemented in ICI-tech have been introduced. A paradigm for the
resolution of the incompressible NS equations in a VMS formulation is presented, which
takes advantage of level-set functions and P1-FEM. The numerical results have �nally
been presented in Chap. 4. The di�erent conclusions from the thesis are presented in
Sec. 5.1. A presentation of preliminary developments towards a simulator of FOWTs is
presented in Sec. 5.2. Finally, the perspectives obtained from those results are presented
in Sec. 5.3.

5.1 Conclusion

The numerical simulations realized within the scope of this thesis can be split between
the representation of the geometries and test cases aiming at developing a FOWT demon-
strator. The observations made from the results presented in Chaps. 2 and 4 highlighted
several facts, which are detailed in the following.

5.1.1 Representation of the geometries

The methodology for the resolution of multiphase �ows in ICI-tech uses a unique mesh.
The representation of the geometries is a self-standing software unit, which uses level-
set functions for the reconstruction of the immersed geometries. The mesh immersion
process has been optimized using an octree, as detailed in Chap. 2. The computational
gains have been quanti�ed thanks to speed-up tests. The di�erent simulations presented
in this Chap. highlight the potential of ICI-tech to reconstruct one or several FOWTs.
The level of accuracy of the representation can be adjusted, which is important given
the geometry of WT blades. This tool looks optimized and suited for the representation
of FOWT. The implementation oriented towards an optimization of the computational
costs allows its use for the simulation of FOWTs. Its integration into ICI-tech's massively
parallel framework allows deployments on clusters. All those characteristics pave the way
for an accurate representation of one or several FOWTs, on large computational domains.

5.1.2 Solver veri�cation and validation

The validation of the solver realized in Chap. 4 intends to simulate FOWTs as accurately
as possible. To that extent, the aerodynamics and hydrodynamics have been consid-
ered. Di�erent behaviors have been highlighted. The evaluation of the aerodynamic
coe�cients around several pro�les provided results of precision decreasing with the rise
of the Reynolds number. The VMS solver currently used is not suited for high-Re �ows.
Approximations made in the development of the VMS subscales, which are considered
quasi-static and neglect the convective velocity, probably have the most in�uence on the
imprecisions observed.

On the contrary, preliminary hydrodynamic studies considering an isotropic mesh
showed a propagation of a monochromatic wave �eld with very limited damping. Even if
this study is not su�cient to prove the capability of ICI-tech to simulate accurate wave
�elds, it shows that the numerical methods used already provide interesting precision
for the simulation of free-surface �ows. This can be tempered by the results obtained in
Subsec. 5.2.4 on irregular wave �elds. The di�erent simulations regarding the propagation
of wave �elds in this thesis have been realized with an implementation of the sponge
layer integrating an error. The results presented allowed to select the most meaningful
simulations, which will be redone to evaluate the in�uence of this error. In particular,
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this may explain the phase shift appearing on the waves located near the sponge layer
for the simulations using a physical wave maker.

5.1.3 In�uence of the anisotropic meshing on the propagation of waves

The in�uence of the anisotropic meshing on the generation and propagation of waves
has been studied in Chap. 4. The errors produced by the meshing have been quanti�ed
through a comparison with results obtained using isotropic meshes, for which undamped
wave �elds could be generated. On the contrary, anisotropic meshes tended to induce
numerical dissipation. Both the shape of the mesh generated, the frequency of adaptation
and the time step used in the simulations seem to have a high impact on the quality of the
results. If several developments have been realized, the damping could be reduced, but
not eradicated. The in�uences of the time-stepping and of the spatial discretization have
been examined. A mesh patch enhancing the precision of the results has been proposed,
for an application to 2D test cases. The action of the mesh adaptation on free-surface
�ows have been identi�ed and discussed, but not quanti�ed.

5.2 First developments towards a demonstrator of FOWTs

The veri�cation and validation of the solvers towards the simulation of FOWTs have been
introduced in Chap. 4. This Sec. intends to present preliminary works and simulations
realized for the development of a demonstrator of FOWT. A basic version of FOWT
simulator is proposed, which considers a �xed FOWT in a monochromatic wave �eld.
Several implementations have been realized with that objective in mind. The generation
of complex wave �elds and 3D wave makers have been considered, while the rotation of the
rotor has been realized from the immersion procedure. Simple, prospective simulations
proved the potential to represent a single FOWT in a wave �eld. Given the reconstruction
of a huge number of WTs realized in Chap. 2, a case can be made for the simulation of
several FOWTs in a NWT, in order to highlight their interactions. This would obviously
require the validation of the solver on the aero- and hydrodynamics applications. More
generally, this Sec. presents the challenges behind the development of a demonstrator of
FOWTs.

5.2.1 Rotation of rigid WT blades

The rotation of WT blades has been implemented in ICI-tech, following the exact rep-
resentation of the geometries. To that extent, the WT blades are reconstructed from
their surface mesh. The mesh immersion techniques introduced in Chap. 2 are used. In
order to accurately represent the blades, the rotation speed and the axis of rotation of
the whole rotor are required. In the context of a rigid FOWT, no deformations of the
structures are considered. The �oater and the rotor are joined together, and thus share
a coordinate system. Consequently, the rotation axis of the WT can be deduced from
orientations of the �oater, which are dependent on the buoyancy of the whole structure.
The rotation speed can then be either prescribed or deduced from the torque generated
by the forces applied on the WT blades.

This approach remains valid as soon as the di�erent structures involved are rigid.
In the context of �exible blades, aeroelasticity will be needed for both the tower and
the blades of the WT. Note that only a few works have been realized concerning this
topic, especially because the complexity of the physical problem is considerable. The
validation of monophasic �ows around airfoils tended to show that the aerodynamics
are solved inaccurately at high Re using the P1-VMS solver implemented in ICI-tech.
Consequently, aside from the rotation utility, no further developments or simulations
have been done. They will be required to reproduce the exact behavior of a FOWT.
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Figure 5.1: Surface mesh of a blade from a DanAero NM80 WT, used in the test case
from the IEA Wind Task 29.

Once a solver will have been validated at high Reynolds number, the aeroelasticity will
be a must-have for an accurate representation of WTs.

5.2.2 Preliminary works on IEAWind Task 29

During the thesis, ICI joined the Task 29 of the International Energy Agency dedicated
to wind energy (IEA Wind). This task aims at improving the aerodynamic numerical
models for WTs, with a focus on WT design codes. Experimental tunnel studies and
on-site operating data have been acquired to provide comparison and validation data.
The fourth phase of the IEA Wind Task 29 consists in the simulation of the aerodynamics
of a WT blade, which are compared against full-scale �eld measurements. The test case
proposed to the community considered the rotation of a blade from a DanAero NM80
WT, represented by the mesh presented in Fig. 5.1. The objective is to compare lifting
line codes with CFD solvers, using the forces, torque and moments applied on the blade.
The CFD solvers can also provide velocity and pressure �elds. As the validation steps
presented in Sec. 4.1 were not satisfying, no simulations realized with ICI-tech have been
submitted to the Task 29.

The integration of the ICI inside the IEA Wind Task 29 will be pro�table for future
developments. The tunnel data provided consider airfoils and �ows representative of WT
operating. The di�erent airfoils studied are de�ned as sections of the DanAero NM80
WT, and tested at �ows whose Re is representative of operational conditions. This data
set will enable the validation of a new VMS solver for high-Re �ows. The validation will
be possible on 2D airfoils, on di�erent sections of the WT with their corresponding local
Re. On-site data are also provided, but will only be pro�table for long-term validation.

5.2.3 Simpli�ed FOWT demonstrator

A simpli�ed simulation of FOWT has been realized to operate as a proof of concept in
terms of meshing. The FOWT presented in Sec. 2.4 is immersed in a NWT of length
50m and of width 20m, where a still water of depth 5m is de�ned. A wave �eld of large
amplitude is generated using a physical wave maker, and the FOWT is set immobile,
with a �xed rotor. A mesh of 1M nodes, particularly re�ned at the free-surface and
around the FOWT, is used. A view of the results obtained is presented in Fig. 5.2.
No particular attention was placed on the quality and/or physical scales of the simula-
tion. This test case was only dedicated to the observation of the interactions between
the FOWT and the free-surface. Perturbations of the free-surface due to the FSI can be
observed locally around the FOWT, and the forces applied to the structure could be mea-
sured to check the implementation of the utilities. This particular test case was realized
with ε = 10−2m for both the FOWT, the free-surface and the piston, and a time step of
∆t = 10−2s was used. Those parameters are particularly coarse, as the demonstrator was
realized with computational e�ciency in mind instead of accuracy. Despite this low-cost
de�nition, the simulation of 1s of physical time required 2h40, with 14K computational
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Figure 5.2: Proof of concept for the set-up of a FOWT demonstrator: �xed FOWT, with
�xed rotor, in a monochromatic wave �eld.

points per core. Optimization are possible in the design of the test case, but ε and ∆t
will also need to be adjusted to get a better precision, especially around the FOWT for ε.

This work, coupled to the di�erent developments presented in this Chap., enables to
imagine the future NWT for FOWT testing based on ICI-tech. However, to simulate
accurately the behavior of a FOWT, several advances will be required, aside from the
validation of the solver. First of all, the WT must be operating. The rotor must be
put in motion, which dramatically complicates the aerodynamics around it. The FOWT
also needs to �oat, and moorings will be needed for stationkeeping. Finally, the waves
generated must have a physical sense, and be representative of real sea states. Irregular
wave spectra can be used, and reduced-scale test cases must consider similitude laws. If
the moorings are not addressed in this thesis, the other two subjects are evoked in the
following.

5.2.4 Towards a representation of real sea states

The de�nition of a FOWT demonstrator requires the positioning of the FOWT inside a
wave �eld. The veri�cation of the solver realized in Sec. 4.2 focuses on monochromatic
wave �elds only, which are not representative of complex sea states. The upcoming
paragraphs focus on two di�erent characteristics of the open sea: the 3D propagation of
waves, and the combination of many waves to form an irregular wave �eld. These topics
are brie�y discussed, as the simulations introduced have been realized in a prospective
way.

The development of a 3D NWT has thus been realized. The two di�erent methods
used in the validation process presented in Sec. 4.2, namely the source-term and physical
wave generation methods, have been implemented. Using the source-term, 3D monochro-
matic wave �elds can be generated thanks to minor modi�cations introducing a transverse
wavelength in the formulation presented in Subsec. 3.3.2, as detailed in Calderer (2015).
This method being suited for monochromatic waves only, the solution favored uses the
physical wave maker, moved from HOS-NWT outputs. A NWT of length 50m, of width
30m and of depth 5m has been designed, with 11 distinct wave makers positioned on the
left of the domain. The results obtained are presented in Figs. 5.3, for the generation of
a monochromatic wave �eld of amplitude 0.1m, of frequency 0.5s−1 and of wavelength
6m. A mesh of 800K nodes is anisotropically adapted in the computational domain,
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(a) Wave �eld generated, with wavemakers at the lowest values of
x.

α≈10.2°

(b) Wave �eld generated,
viewed from top, with orien-
tation measured.

Figure 5.3: 3D NWT for the generation of a monochromatic wave �eld of angle α = 10◦,
with wave crests in blue and the wave makers on the left.

the free-surface is represented using ε = 10−2m, and a time step of 10−2s is used for
the NS resolution. The wave �eld obtained is largely damped, which is due to both the
meshing and the time stepping. The objective of this simulation was to validate the
behavior of the 3D wave generator. The wave �eld obtained corresponded quite well to
the prescribed wave �eld, as its approximative orientation is of 10.2◦. Some expected
perturbations are observed near the borders of the domain, because of the slip-conditions
imposed. They only have a minor in�uence on the wave �eld in the middle of the domain,
where the FOWT is supposed to be positioned, which is satisfying. More investigations
will be needed once a validated monochromatic wave �eld will have been generated in 2D.

Aside from the 3D perspective, a complex sea state is formed by combined waves,
of di�erent amplitudes and frequencies. The representation of an irregular wave �eld is
critical in the development of a NWT. In order to represent coherent waves, an irreg-
ular wave �eld has been represented from HOS-NWT following a JONSWAP spectrum
of signi�cant wave height 5 · 10−2m, of peak period 1s, and of shape factor 3.3. For
a 1/100th-scaled FOWT such as presented in Sec. 2.4, this wave �eld corresponds to a
full-scale one with signi�cative height 5m and peak period 10s, i.e., a severe sea state. A
2D study has been realized, with an isotropic mesh similar to the ones used in Sec. 4.2
for the representation of the computational domain. The level-set of the free-surface is
de�ned with ε = 10−2m. The free-surface elevations obtained at t = 20s for ∆t = 10−3s
are compared against HOS outputs in Fig. 5.4. This con�guration is selected as it pro-
vides the best results on monochromatic wave �elds, in particular with largely reduced
damping. The curves immediately highlight the lack of precision achieved in this con-
�guration. The wave �eld solved by ICI-tech is noisy, and those perturbations induce
important errors for both the amplitude and the phase of the successive waves. The
damping of the wave �eld is reduced, as the biggest waves can still be guessed on ICI-
tech results. The order of magnitude of the wave �eld solved remains comparable with
the one prescribed by HOS. However, the phase shift is increased as the waves are trans-
ported, which induces important errors. Moreover, the residual velocities discussed in
Subsec. 4.2.3 induce here large perturbations. They tend to disturb the free-surface far
from the wave maker, which then have an impact on the waves of small amplitude or
wavelength. In order to simulate accurately irregular wave �elds, the problem of the
parasitic velocities will need to be solved.
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Figure 5.4: Irregular wave �eld from a JONSWAP spectrum, with signi�cant wave height
0.05m, peak period 1s, and shape factor 3.3. Black, dotted: Free-surface prescribed by
HOS-NWT. Red, plain: Simulation realized with ICI-tech using an isotropic mesh, with
∆t = 10−3s. Scales in meters.

Even if the isotropic results are disappointing, a comparative study can be realized
using anisotropic meshes of 50K nodes. Similarly to the studies realized in Sec. 4.2,
the anisotropic characteristic enables to reduce the computational load induced by the
meshing, and allows to translate to 3D test cases. The same time steps ∆t = 10−2s and
∆t = 10−3s, along with adaptation every 7 ·10−2s and 7 ·10−3s, are compared in Fig. 5.5.
A rapid look at the results highlights the lack of accuracy of ICI-tech with an anisotropic
meshing. The amplitude of the waves is largely reduced compared to HOS-NWT's pre-
scriptions, and the waves of small wavelengths are not captured. The time step of 10−2s
is particularly not suited for such an erratic wave �eld, as even the amplitude of the
last-generated wave is largely underestimated. The simulations ran with ∆t = 10−3s
seem to provide a better representation of the structures of huge wavelength, but do not
capture the small waves too. With x > 10m, no simulation presented in Fig. 5.5 is able
to give an idea of the target wave �eld. In comparison with the facts observed in Sec. 4.2,
the frequency of mesh adaptation has here only a small impact. The poor quality of the
free-surfaces generated overshadows its in�uence, which is limited to slight modi�cations
of amplitude or phase. The poor results could �nd their origins in several factors. The
in�uence of the time step can be linked with the di�culty to predict waves of di�erent
periods, and even smaller time steps could provide better results. The meshing may not
be appropriated for this wave �eld, even if the minimum mesh size is similar to the one
used for the isotropic meshing. The in�uence of the water dynamics below the surface,
already discussed in Subsec. 4.2.2, could be a starting point.

In order to obtain real sea state in the NWT, a combination of the last two simula-
tions, respectively 3D and irregular wave �elds, is required. The generation of 3D wave
�elds using HOS-NWT seems to generate proper wave �elds in terms of orientation, at
least in the monochromatic situation tested. This provides a preliminary veri�cation of
the implementation of the 3D NWT. The concerns about numerical dissipation remain,
in both of the simulations presented. Obviously, the level of accuracy is not acceptable
to consider a coupling, and those simulations have not been realized for the moment.
An accurate representation of irregular wave �elds would �rst be needed in 2D, with
an isotropic meshing. The criteria de�ned from this study could then be used for the
simulation of accurate 2D irregular wave �elds using anisotropic meshes. A coupling will
be considered once this last step will be reached. Using the parameters de�ned in the
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Figure 5.5: Irregular wave �eld simulated at t = 20s with target from a JONSWAP
spectrum, of signi�cant wave height 0.05m, peak period 1s, and shape factor 3.3. Results
of the simulations obtained with ICI-tech using an anisotropic mesh. Black, dotted: Free-
surface prescribed by HOS-NWT. Red, plain: ∆t = 10−2s, adaptation every 7 · 10−2s.
Blue, dashed: ∆t = 10−3s, adaptation every 7 · 10−3s. Green, dash-dotted: ∆t = 10−3s,
adaptation every 7 · 10−2s. Scales in meters.

corresponding simulation, the resolution of real sea states will be on the way.

5.3 Perspectives

Given the numerical methods used by ICI-tech and the computational load induced, high
accuracy in the representation of the physics simulated is required, as already stated in
Chap. 1. ICI-tech has the potential to be used for the validation and calibration of
engineering codes. Consequently, for an application of ICI-tech to the simulation of
FOWTs, a lot of current limitations of the model developed will have to be addressed.
Those modi�cations may be applied from short- to long-term basis, depending on the
priorities de�ned for both this project and the other activities of ICI.

5.3.1 Higher-order FEM

The development of higher-order FEM is already in process within other projects at ICI.
This study initially focused on the representation of FOWTs at a reduced cost, before
considering the validation of a �rst-order �nite element solver. A new solver is currently
being implemented at ICI, which provides higher orders of precision both in space and
time. In time, numerical schemes of higher complexity are used to compute the values
of velocity and pressure provided by the NS equations at the next time step. In space, a
higher order consists in changing from linear interpolation functions for polynomials of
higher orders. This imposes using more interpolation points within each �nite element.
The computational load per element rises, but the accuracy of the resolution increases.

A higher order of interpolation of the FEM increases the accuracy of the problem
solved, which �nally improves the results obtained. As mentioned in Sec. 3.1, the orders
of accuracy in time and space need to be similar, in order to balance the approximation
errors between space and time. The numerical schemes will thus need to be modi�ed, in
order to provide a convergence similar to the one in space. The corollary to the rise in
order is that bigger mesh cells and time steps can be used for the same accuracy than
with P1-FEM.
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The impact of higher-order FEM on the simulations of FOWT will probably be
positive. The additional precision should have an impact on the quality of the results,
while the increased computational at equivalent meshing will need to be justi�ed. The
solver will need to undergo validation representative of the operational cases for both
the aero- and hydrodynamics. Concerning the aerodynamics, the higher-order solver will
o�er to represent more accurately the turbulent e�ects with an identical mesh. This will
allow a better representation of the �ows around WT blades, which should improve the
evaluation of the aerodynamic coe�cients. From a free-surface point of view, the higher
order should reduce the numerical damping observed, which will provide �exibility to the
simulation procedure.

5.3.2 Mesh adaptation for the propagation of waves

Currently, the simulation of wave �elds with anisotropic mesh adaptation tends to create
numerical damping, with origins in both the adaptation frequency and in the cell size.
Further works will be needed to reach the accuracy achieved with isotropic meshing us-
ing anisotropic meshes. Several options may be considered on a short-term basis. The
anisotropic mesher is an important tool developed at ICI, and its use is necessary for the
realization of accurate, large-scale simulations of FOWTs.

Working on the frequency of adaptation is important, as it moves the mesh calls
towards areas of the computational domain where they are needed. A small frequency
of adaptation may lead to poorly positioned mesh cells, which translate to inaccurate
results. On the contrary, too frequent adaptations may induce damping and/or approx-
imations in the results, due to the interpolation realized during the adaptation process.
The determination of the correct frequency of adaptation has to be done regarding the
test case simulated before each simulation. The de�nition of guidelines in the context
of wave generation is still to be done. The quanti�cation of the numerical dissipation
induced by the adaptation itself will be required. The numerical damping provoked by
not adapting the mesh will also need to be addressed, i.e., when the mesh unadapted for
a few time steps become less and less suited to the capture of the wave dynamics.

By nature, anisotropic meshing induces another limitation for wave propagation. The
anisotropic characteristic tends to stretch the mesh cells appearing near the free-surface,
which reduces the number of cells describing each wave period. However, a limited
number of cells in the direction of the wave propagation tends to generate numerical
dissipation, which turns into damping. The propagation of wave �elds using anisotropic
adaptation has been particularly regarded recently, but still, no satisfying results have
been obtained. A continuity of this study should focus on the production of anisotropic
meshes enabling an accurate propagation of the wave �elds. The limitation of the stretch-
ing of mesh cells around the free-surface may be a starting point, even if it will partly
tackle the advantages linked to anisotropic meshing. The evolution of the damping with
the transition towards solvers of higher orders will need to be examined.

The anisotropic adaptation as realized at the moment may also have an importance.
Even if the re�ned areas are, theoretically, exclusively de�ned using the error estimator, in
practice several constraints are used. As an example, the minimal mesh size is constrained
to prevent the mesher to request "in�nitely" small mesh sizes at singularities. This
criterion allows to generate an acceptable mesh even if, e.g., the de�nition of the test
case features sharp interfaces. Some other constraints are related to the quality of the
mesh, e.g. to guarantee a minimum background mesh size or to avoid highly-stretched
cells. The number of points in the computational mesh is also constrained, for user-
friendliness. The result is a mesh adaptation process which does not respect exactly the
prescribed error estimator, and introduces some bias in the meshing. A comeback to
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a lower-level mesh adaptation can be a viable option to optimize the representation of
waves. This approach would consider exclusively the error estimator in the adaptation
process, with a target error to respect on each element. This paradigm can not be
followed for the simulation of a wave �eld generated using a source-term wave maker, as
the meshing of the source area has to be enriched. The representation of a physical wave
maker induces more computational constraints, and should not include any singularity,
i.e., sharp angle. But no theoretical limitation shall arise from this test case. The
propagation of wave �elds in this con�guration can be studied and compared to results
obtained with isotropic meshing. A rapid comparison will provide �rst information about
the potential of anisotropic meshing to not only represent the wave �eld, but also to
propagate it.

5.3.3 Mid- to long-term perspectives for an accurate FOWT simulator

The realization of a FOWT simulator needs to represent one or several FOWTs in their
operational con�guration. To that extent, the de�nition of a wind/wave simulator is re-
quired, with both �uids being solved accurately. The di�erent components of the FOWT
must also be addressed. The investigations realized during this PhD concerned mostly
the solver, for which validation test cases were run for aero- and hydrodynamics. De-
spite the poor validation results obtained, the design of a simple NWT has been realized
during the thesis. Several utilities have been implemented, such as rigid-rotor rotation
or buoyancy, but a lot of work is still to be done.

First of all, the validation of hydrodynamics seems to be more advanced than the
aerodynamic one. Following this observation, it makes more sense to focus on the next
developments on the design of an accurate hydrodynamic model. To that extent, a mid-
term focus could be the development of an advanced NWT, enabling the simulation of
accurate sea state and the reaction of a FOWT to it. This model requires the represen-
tation of moorings, and of their action on the �oater. The NWT obtained could provide
interesting load evaluation of the loads applied by waves on the structure, and which
forces are applied on the moorings. This type of study could also model the electrical
cable connected to the FOWT.

The NWT de�ned would not include the aerodynamics, which are rather important
for FOWTs. Aside from the validation of the solver for high-Re �ows, several works will
be required for the simulation of an operational WT. Realistic wind conditions require a
turbulent in�ow, as well as the de�nition of an ABL. The aerodynamics of the ambient
wind will need to be validated to be used for the simulation of FOWTs. These devel-
opments will allow the resolution of accurate �ows around WTs with rigid rotors. This
simulator will already provide interesting results, but is not exactly representative of an
operational FOWT. The aeroelasticity will be needed, as well as control laws. These last
developments may be needed on a long-term perspective for ICI-tech.

A simulator of FOWT integrating the di�erent propositions formulated in this Sub-
sec. would be able to provide an important precision for the simulation of one or multiple
FOWTs. The validation and calibration of engineering codes could be realized with such
a simulation engine, as already mentioned. The path proposed for the de�nition of this
simulator with ICI-tech has been realized regarding the situation currently found at ICI.
It is subject to evolve, if other opportunities are found.

Once the simulator of FOWTs will have been de�ned, several extensions will be avail-
able. Three propositions are made in the following paragraphs, with di�erent targets.
The �rst one presents a natural way to extend the simulator to study wake interactions.
The second one focuses on the environmental conditions under which a FOWT is operat-
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ing. The last one proposes a development towards the simulation of a �oating wind farm.

The massively-parallel framework of ICI-tech will easily allow the simulation of sev-
eral FOWTs. This transition will rely on the robust partitioning strategies detailed in
2.3 to represent the di�erent FOWTs. Theoretically, no limitation exist for the number
of FOWTs represented in the computational domain. A major constraint corresponds to
the size of the cluster on which ICI-tech will be deployed, i.e., on the number of cores
available for the simulation. The representation of a large number of FOWTs proved
to be scalable, as presented in Sec.2.4. The resolution of the Navier-Stokes equation in
the computational domain is also well parallelized, and the number of points realized
for the resolution around each FOWT should not di�er much. The most constraining
factor will be the wake generated by the upwind WTs, which will need additional points
at each instant to conserve a good representation of the aerodynamics propagated in the
computational domain. This type of simulation would obviously be extremely expensive
compared to the reduced-order approaches currently used in the industry. They could
still have a utility for the evaluation of potential complex coupled aero/hydro e�orts
arising from farm e�ects.

The simulator of FOWT produced will also be dependent on the boundary conditions
prescribed at the inlet. Currently, the generation of sea states in ICI-tech can be realized
using physical wave makers. This type of de�nition allows de�ning realistic sea states,
e.g., as proposed in Subsec. 5.2.4 following a JONSWAP spectrum. This approach gen-
erates an approximation of real sea states. A higher �delity could be reached using a
simulation of the interactions between the wind and the free-surface, which generate the
sea states. Environmental data could be used as inlet of this wave generator, which would
be much larger than the regular NWT. Time will be needed to generate waves from these
air/water interactions, which could ultimately be used to feed the NWT in inlet. The
aerodynamics and hydrodynamics would be more representative of real environmental
conditions under which FOWTs are operating.

The last proposition focuses on the potential level of accuracy provided by the
methodology detailed in this thesis. The numerical framework of ICI-tech has one of
the highest potential to simulate precisely the �ows around FOWTs. The development
of a versatile simulator of FOWT would give the opportunity to generate a lot of highly-
accurate data. This amount of data could be used to feed machine-learning codes. Many
data-driven paradigms may be followed to reduce the complexity of the computations.
A �rst approach could be to realize a series of computations focusing on the rotor of the
FOWT, with di�erent atmospheric conditions. The data produced could be used, e.g., to
feed a neuron network, allowing the de�nition of a black box returning the out�ow from
a speci�ed in�ow. Future simulations could then skip the representation of the rotor,
expensive step as the geometries and the evolution of the boundary layers are complex to
represent. This reduction of the computational load would pave the way for large scale
simulations, at the scale of a wind farm.

All the potential developments presented are dedicated to the development of an
accurate framework for the simulation of FOWTs. Di�erent points of views have been
regarded, always with a focus on the level of precision provided by the framework. Accu-
rate simulators will have a role to play in the �oating wind industry, as a complementary
approach to the set-up of prototypes, experimental studies or computationally-cheap de-
sign codes. They can help calibrating industrial softwares, and bring the ability to study
speci�c parts of the structures, to get a better understanding of the dynamics of FOWTs.
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Titre :  Simulations CFD avec adaptation de maillage anisotrope : application à la simulation 
d’éoliennes offshore. 

Mots clés : CFD ; équations de Navier-Stokes ; frontières immergées ; éoliennes flottantes 

Résumé : Le calcul des performances et des 
efforts appliqués sur une éolienne offshore est 
actuellement réalisé à l'aide d’outils basés sur 
des approches quasi-statiques. Ces approches 
sont intéressantes pour leur vitesse de calcul, 
elles sont cependant perfectibles suivant la 
méthode de mise en œuvre et suivant les cas de 
chargement étudiés.  Une approche alternative 
consiste à utiliser la modélisation CFD. Cette 
thèse s’intéresse à des méthodes d’une haute 
précision, ayant le potentiel de fournir des 
écoulements et efforts précis. 
La plateforme logicielle hautement parallélisée 
ICI-tech est utilisée dans cette thèse. Elle se 
base sur une résolution des équations de 
Navier-Stokes dans une approche multi-échelle, 
effectuée à l’aide d’éléments finis stabilisés. La  
 

représentation des phases dans le domaine de 
calcul est réalisée grâce à une méthode 
frontières immergées. Des implémentations ont 
été réalisées dans ICI-tech afin de pouvoir 
simuler des éoliennes flottantes. L’interaction 
fluide-structure et un bassin de houle 
numérique ont notamment été considérés. 
Un processus de vérification et validation s’est 
intéressé au comportement du solveur dans 
des conditions reproduisant celles impactant 
des éoliennes flottantes. Le niveau de précision 
atteint par les écoulements à haut Reynolds et 
la propagation de champs de houle s’est avéré 
être décevant. L’influence du maillage 
anisotrope sur les résultats obtenus a été 
quantifiée. Plusieurs pistes visant à améliorer 
la précision des simulations ont été introduites. 
 

 

Title : CFD simulation with anisotropic mesh adaptation: application to floating offshore wind 
turbines. 

Keywords : CFD ; Navier-Stokes equations ; immersed boundaries ; floating wind turbines 

Abstract : The simulation of Floating Offshore 
Wind Turbines (FOWTs) is a tool to help this 
technology reach an industrial scale. Nowadays, 
low-precision numerical methods are used for 
the dimensioning of the structures, as they 
involve a reduced computational effort. This 
PhD thesis focused on the development of 
highly-accurate numerical methods, with a 
potential to provide a thin description of the 
flows and efforts around FOWTs. 
The simulations presented in this thesis have 
been realized on the highly-parallelized software 
platform ICI-tech. A resolution of the Navier-
Stokes equations in a Variational MultiScale 
formulation is performed using Stabilized Finite 
Elements. The representation of the different 
phases in the computational domain is achieved 
  

using immersed boundary methods. Several 
numerical tools have been implemented in ICI-
tech towards an application to the simulation of 
FOWTs. A fluid-structure interaction paradigm 
has been set up, and a numerical wave tank 
has been defined. 
Verification and validation studies have been 
realized to assess the solver results for 
environmental conditions representative of 
those observed for operating FOWT. The 
accuracy achieved for both the aerodynamics 
at high Reynolds numbers and the propagation 
of wave fields has been disappointing. The 
influence of the anisotropic meshing on the 
results presented has been quantified. Several 
options aiming at increasing the accuracy of 
the simulations have been discussed. 
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