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Résumé français

Introduction

Les travaux sur les métamatériaux ont pris leur essor au tournant des années 2000 suite no-

tamment aux publications de D.R. Smith “Composite Medium with Simultaneously Negative

Permeability and Permittivity” et de J. B. Pendry “Negative Refraction Makes a Perfect Lens”.

Très rapidement, à la suite des métamatériaux volumiques 3D, sont apparues les métasurfaces,

une version 2D des métamatériaux ne comportant qu’une seule cellule dans l’épaisseur. Ces

métasurfaces présentent l’avantage de réduire les pertes et d’ouvrir la porte à de nouvelles fonc-

tionnalités. En particulier, en introduisant des modulations spatiales à l’échelle de la longueur

d’onde, il devient alors possible de manipuler l’onde incidente pour créer des phénomènes de

réfraction ou de transmission anormaux. Ces métasurfaces prennent tout leur intérêt pour des

applications antennaires de type reflectarray, transmitarray, antenne à cavité Fabry-Perot ou

à onde de fuite. Dans la majorité des cas, la conception de ces métasurfaces repose sur une

représentation des propriétés de la métasurface, à l’aide d’impédances de surface ou de coeffi-

cients de réflexion/transmission locaux, qui, d’une part requiert une forte densité d’éléments, et

d’autre part, prend en compte les interactions entre éléments de manière approximative.

La démarche adoptée dans cette thèse est de chercher à dépasser ces approches conven-

tionnelles pour, en particulier, améliorer les performances des métasurfaces électroniquement

reconfigurables. Les applications visées en priorité sont les antennes capables de pointer leur

faisceau dans différentes directions, opérant aux fréquences microondes. Le manuscrit comporte

une introduction générale, un état de l’art sur les métasurfaces reconfigurables, quatre chapitres

sur les travaux réalisés et une conclusion. Les travaux réalisés sont décomposés en deux thèmes:

les métaréseaux et les métasurfaces éparses.
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Métaréseaux

Les métaréseaux ont été introduits en 2017 par Y. Ra’di et al. (Ref. [45]). Ils sont constitués

de réseaux de fils arrangés périodiquement. Ces fils sont structurés à une échelle petite devant

la longueur d’onde de sorte qu’il soit possible d’introduire une impédance linéique (électrique

ou magnétique) effective. En revanche, dans la direction perpendiculaire, les distances sont de

l’ordre de la longueur d’onde. Les propriétés de ces fils se répètent périodiquement avec une

période généralement plus grande que la longueur d’onde (définissant ainsi une “supercellule”

élémentaire) ce qui est à l’origine d’ordres diffractés propagatifs.

Le chapitre 2 du manuscrit est consacré au développement de modèles analytiques qui per-

mettent de calculer les amplitudes des ordres diffractés en fonction des impédances des fils. La

configuration étudiée est celle d’un métaréseau placé devant un plan parfaitement réflecteur.

Plus particulièrement, deux formules sont établies :

• la première relie les amplitudes diffractées aux intensités parcourant les fils Eq. (2.9);

• la seconde – qui n’est autre que l’équation d’Ohm – relie l’intensité parcourant le fil,

l’impédance du fil chargé, son impédance d’entrée, les effets des autres fils via les coefficients

de mutuelles impédances et le champ excitateur Eq. (2.11).

Par ailleurs, il est montré que l’énergie réfléchie peut être arbitrairement répartie parmi M

ordres diffractés dès que le nombre de fils N par supercellule est égal à M . Dans le cas général,

les impédances des fils doivent comporter une partie réactive ainsi qu’une partie active ou à

pertes ce qui peut s’avérer très difficile à réaliser. Toutefois, il a pu être montré qu’un contrôle

précis du champ proche à l’aide de fils supplémentaires permet de réaliser cette répartition

entre ordres propagatifs en s’affranchissants de la présence d’éléments actifs ou à pertes, donc

avec uniquement des éléments capacitifs ou inductifs. Ce résultat a été validé numériquement

et expérimentalement en réalisant des réflexions anormales avec des supercellules comportant

N = 2M éléments purement réactifs. Les performances obtenues sont très élevées. Par exemple,

dans le cas d’une réflexion à 80◦ pour une incidence normale, l’efficacité mesurée en chambre

anéchoïde est supérieure à 95%. Les réalisations expérimentales ont porté sur des métaréseaux

électriques (champ électrique parallèle au fils) mais la théorie a également été développée pour

des métaréseaux magnétiques (champ magnétique parallèle au fils).
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Approximation périodique locale et aide à la conception

L’approximation périodique locale (LPA) joue un rôle crucial dans la conception des méta-

surfaces (Ref. [75] et [112]). Elle consiste à placer un motif élémentaire au sein d’un réseau

périodique et à calculer numériquement les coefficients de réflexion et de transmission. Ensuite

ces coefficients (ou les impédances qui en sont déduites) sont utilisés dans des arrangements non

périodiques. Cette approche est inappropriée pour des métaréseaux où les interactions entre

éléments sont prises en compte (rigoureusement) par ailleurs et où la distance entre éléments

est susceptible de changer. En fait, il faut disposer d’un paramètre (impédance linéique par

exemple) spécifique au fil indépendamment des autres fils et des caractéristiques du substrat.

Une procédure a été développée pour cela dans le chapitre 3. Elle comporte toujours un calcul,

à l’aide d’une simulation numérique, du coefficient de réflexion d’une cellule élémentaire assortie

de conditions de périodicité. Ce coefficient de réflexion est utilisé pour remonter à l’intensité

moyenne qui parcourt le fil; ce courant est ensuite introduit dans un modèle analytique qui

soustrait les contributions du substrat et des autres fils. Cette nouvelle LPA a été développée

pour les métaréseaux électriques et magnétiques.

La procédure de conception des métaréseaux est également détaillée dans ce chapitre. Les

premiers paramètres à fixer sont la période et l’angle d’incidence de l’onde. Le nombre de modes

propagatifs est alors donné par la formule classique des réseaux de diffraction. L’épaisseur du

substrat est ensuite choisie de manière à éviter la présence de modes guidés dans le substrat. En

parallèle, il faut concevoir un motif qui permette d’accéder à une gamme suffisante d’impédance

quand on modifie un (ou plusieurs) de ses paramètres géométriques. On prépare alors, à l’aide de

la LPA et de simulations numériques sur une cellule élémentaire, une bibliothèque d’impédances

linéiques correspondant à l’ensemble des paramètres géométriques possibles. Pour résumer, les

amplitudes des ordres diffractés sont fonction du nombre de fils et de l’intensité qui les parcourt

Eq. (2.9); ces intensités sont reliées aux impédances via l’équation d’Ohm Eq. (2.11) et ces

impédances sont reliées aux paramètres géométriques des motifs grâce à la LPA. Il reste donc

à mettre en place une procédure d’optimisation qui permette de trouver les paramètres qui

satisfont les objectifs en termes d’amplitude des ordres diffractés. L’algorithme retenu pour

cette optimisation est celui de l’essaim de particules. Il est important de noter que les boucles

d’optimisation ne font appel à aucune simulation “full-wave”. Celles-ci sont faites une fois pour

toutes lors du choix du motif élémentaire et ne portent que sur une cellule élémentaire assortie
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de conditions périodiques.

Dans ce chapitre, pour illustrer la LPA et la méthode d’optimisation, deux exemples

numériques et un exemple expérimental sont présentés. Dans les deux exemples numériques,

le premier porte sur un métaréseau magnétique aux fréquences microondes et le deuxième sur

un métaréseau électrique dans le domaine infrarouge. La démonstration expérimentale a été

faite sur un métaréseau électrique aux fréquences microondes.

Métasurfaces conformes éparses

Les métaréseaux permettent de contrôler exactement l’énergie réfléchie dans les directions des

ordres diffractés. Toutefois, ils souffrent de plusieurs limitations :

• leur caractère périodique ne leur permet de diriger l’énergie que selon un ensemble fini de

directions, fixé par la dimension de la période et l’angle d’incidence (ce nombre peut être

relativement élevé dans le cas de fils comportant des éléments accordables ce qui permet

de faire varier le nombre d’éléments par période et donc sa taille);

• ils requièrent des surfaces planes;

• ils doivent être éclairés par une onde plane.

Dans le chapitre 4, la démarche appliquée aux métaréseaux est généralisée à des surfaces

cylindriques quelconques éclairées par une onde cylindrique quelconque. De plus, le réseau de

fils n’a plus aucun caractère de périodicité. Les distances entre fils peuvent être quelconques à

condition d’être suffisantes pour que les interactions entre ces fils, qui sont structurés, puissent

être représentées par des interactions entre des fils de diamètre nul. Il s’agit donc de métasurfaces

à faible densité que nous appelons métasurfaces éparses. Concrètement, le champ rayonné par

un réseau périodique infini de fil Eq. (2.4) qui s’exprimait par une somme de fonctions de

Hankel, chacune étant pondérée par le courant du fil considéré, devient Eq. (4.1) une somme finie

(autant que de fils) de fonctions de Green pondérées par un courant. L’équation d’Ohm qui relie

l’intensité et le courant parcourant le fil est inchangée si ce n’est que les coefficients d’impédances

mutuelles doivent également être calculés à l’aide de fonctions de Green Eqs. (4.2)–(4.4). Cette

formulation montre bien que le problème résolu est global et que chaque contribution issue de

chaque fil est bien prise en compte. Pour obtenir le diagramme de rayonnement désiré et pour

une géométrie donnée, il faut encore déterminer le nombre de fils à placer et leur impédance.
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Pour estimer le nombre de fils nécessaires, on décompose en série de Fourier, selon l’angle polaire,

le diagramme que l’on désire obtenir. Si 2M + 1 coefficients sont nécessaires pour obtenir une

bonne approximation du diagramme désiré alors il faudra au moins 2M + 1 fils. Comme pour

les métaréseaux, les impédances requises dans ces conditions peuvent exiger des éléments actifs

ou des pertes. En pratique, il faut donc un nombre d’éléments supérieur à 2M + 1.

Par rapport aux métaréseaux, la mise en œuvre de cette approche demande une étape sup-

plémentaire qui est le calcul des fonctions de Green. Dans la thèse, ce calcul est réalisé à l’aide

du logiciel COMSOL. Chaque fil est positionné et excité successivement. Le champ ainsi calculé

est relevé en champ lointain et aux emplacements des autres fils (pour le calcul des impédances

mutuelles). Ensuite la démarche est identique à celle utilisée pour les métaréseaux. Il faut

toutefois modifier l’objectif de la procédure d’optimisation qui ne porte plus sur les amplitudes

des ordres diffractés mais sur, par exemple, les caractéristiques du diagramme en champ lointain

ou en champ proche. Cette nouvelle approche est illustrée par plusieurs exemples validés à l’aide

de simulations “full-wave” :

• réalisation d’un diagramme en forme de cardioïde;

• antenne semi-cylindrique d’épaisseur λ/6;

• antenne à cavité plane fermée par une métasurface éparse avec étude de l’influence du

nombre de fils.

Une réalisation expérimentale a également été conduite sous la forme d’une antenne semi-

cylindrique, excitée par deux dipôles et fermée une métasurface éparse souple. Trois différentes

métasurfaces ont été testées (cf. Fig. 4.6). Il est important de souligner que dans ces exemples, la

métasurface fonctionne en transmission bien qu’elle ne présente qu’une réponse électrique. Cette

caractéristique est à mettre en regard avec les approches conventionnelles pour les métasurfaces

fonctionnant en transmission qui généralement exigent de combiner une réponse électrique avec

une réponse magnétique. En outre l’approche utilisée ici est globale et n’est pas confrontée

aux limitations des approches conventionnelles qui imposent la conservation de la composante

normale du vecteur de Poynting.

Métasurfaces reconfigurables fortement non locales

Le chapitre 5 présente une métasurface reconfigurable destinée à un fonctionnement de type

reflect-array. Elle comporte 21 lignes de chacune 24 cellules élémentaires. Chaque cellule élémen-

9



taire comporte une diode varactor couplée à une ligne inductive de manière à réaliser les impé-

dances linéiques nécessaires. L’ensemble de ces 21 lignes est connecté à une carte d’alimentation,

elle-même pilotée par un Raspberry Pi. Avant la partie expérimentale, on revient sur le caractère

non local de l’approche développée dans le chapitre 4 et ses avantages par rapport aux approches

locales. Le cas considéré est celui de la réflexion anormale pour une incidence normale. Sont

comparés, à l’aide de simulations 2D, les diagrammes d’une métasurface à gradient sans pertes,

d’une métasurface à gradient avec pertes (pour limiter les lobes secondaires) et d’une métasur-

face éparse non locale. Il apparait que, pour les forts angles de réflexion anormale, l’approche

non locale est la seule qui permet de conjuguer de faibles lobes secondaires et une forte efficac-

ité. De plus, en relevant le champ réfléchi à proximité de la métasurface et en procédant à une

analyse de Fourier, la présence d’ondes de surface apparait clairement. La cellule élémentaire

comporte trois niveaux: un niveau supérieur composé d’une ligne chargée par une diode varac-

tor, un niveau intermédiaire avec une ligne jouant le rôle d’inductance et le niveau inférieur avec

le circuit de polarisation des diodes. Cette cellule a été optimisée pour fournir les impédances

requises en minimisant les pertes en se basant sur les caractéristiques des diodes fournies par le

constructeur. Ces données n’étant valides que pour des fréquences inférieures à 50 MHz, une

étape de caractérisation est indispensable. Les résultats de cette étape ont conduit d’ailleurs au

développement d’une deuxième version de cellules élémentaires.

Pour tester la cellule élémentaire, une tension identique est appliquée à toutes les diodes de la

métasurface et l’on enregistre pour des fréquences comprises entre 8 et 16 GHz (ou 6.5 and 11.5

GHz pour la deuxième version), le coefficient de réflexion spéculaire sous une incidence de 5◦

ou de 45◦ pour la deuxième version (Fig. 5.9). La comparaison avec les simulations numériques

permet d’établir l’évolution de la capacité de la diode en fonction de la tension appliquée ainsi

que la valeur de la résistance parasite. Au final, on établit l’évolution de l’impédance de la cellule

en fonction de la tension pour différentes fréquences (Fig. 5.10). Ces résultats sont finalement

introduits dans l’algorithme d’optimisation qui détermine les tensions conduisant au diagramme

de rayonnement requis. Expérimentalement, la métasurface est éclairée par un cornet situé à 35

cm de celle-ci. L’ensemble est monté sur une plateforme rotative tandis qu’un cornet récepteur

fixe est placé à une distance de 4 m. Les diagrammes de rayonnement ont été mesurés pour un

grand nombre de configurations montrant la possibilité de dépointer le faisceau réfléchi sur une

très large plage de directions (Fig. 5.12) ou de créer plusieurs faisceaux (Fig. 5.13). Chacune de

ces configurations résulte de l’optimisation de 21 tensions. L’efficacité de cette métasurface a
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été évaluée en séparant les pertes par absorption dans les diodes et dans les lignes micro-rubans

(par effet Joule) des pertes par diffusion dans les lobes secondaires. Typiquement, les pertes par

absorption à 10 GHz sont de 50% à 60% tandis que les pertes par diffusion sont généralement de

10 à 15%. La directivité obtenue a été comparée à celle d’une ouverture uniforme et elle s’avère

être à peine 2 dB en dessous.

Cette métasurface reconfigurable a également été utilisée à des fins de focalisation en champ

proche. Dans ce cas, la métasurface est éclairée sous incidence normale par un cornet placé à

125 cm. Le champ au voisinage de la métasurface est relevé à l’aide d’une sonde qui permet

d’accéder à l’amplitude et à la phase du champ électrique total. Différentes expériences ont

été conduites en faisant varier la distance de focalisation et le nombre de points de focalisation.

Dans tous les cas, un excellent accord entre expérience et simulation est observé. L’analyse des

expériences montre que la taille du point focal ainsi obtenu est inférieure à la tâche d’Airy (on

obtient par exemple une taille de 0.45λ à une distance de λ, soit une ouverture numérique de

0.98 alors que la tâche d’Airy est de 0.61λ/NA). Enfin, une transformée de Fourier discrète a été

appliquée aux champs relevés juste à proximité de la métasurface (à λ/10). La présence d’ondes

de surface apparait sans ambiguïtés, de la même façon qu’elle était apparue dans les simulations

de réflexion anormale en début de ce chapitre. Le comportement fortement non local de cette

métasurface est ainsi clairement établi.

Principaux résultats et perspectives

Cette thèse a permis d’établir plusieurs résultats importants :

• à l’aide de métaréseaux, l’énergie incidente peut être redistribuée arbitrairement dans les

ordres diffractés à condition d’avoir autant de fils par période que d’ordres diffractés. Ce

cas requiert des impédances comportant des éléments actifs ou à pertes. Il est cependant

possible d’ajuster le champ proche en augmentant le nombre de fils par période et ainsi de

réaliser une réflexion anormale parfaite avec des impédances purement réactives;

• une nouvelle approximation périodique locale a été développée. A l’instar de la LPA

classique, elle repose sur le calcul numérique de la cellule élémentaire assortie de conditions

de périodicité mais les résultats sont introduits dans une nouvelle expression qui permet

de soustraire les effets des couplages et du substrat. Il devient alors possible de concevoir

une métasurface à faible densité d’éléments, avec des cellules élémentaires quelconques
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pouvant notamment incorporer des éléments accordables;

• la démarche utilisée pour les métaréseaux a été généralisée à des surfaces quelconques

comportant des ensembles de fils non périodiques et éclairés par une onde cylindrique

quelconque. Dans cette approche, le champ rayonné est exprimé à l’aide d’une somme

de fonctions de Green pondérées par les intensités parcourant les fils. Ces fonctions de

Green sont calculées à l’aide de simulations numériques 2D. Les paramètres des cellules

élémentaires (géométrie ou tension appliquée à un élément accordable), conduisant aux

impédances qui assurent les intensités nécessaires pour l’obtention du diagramme de ray-

onnement recherché, sont obtenus par optimisation par essaims particulaires;

• une métasurface éparse reconfigurable a été conçue et testée. Elle permet de rediriger

efficacement l’onde incidente sur un très large domaine angulaire. Elle permet aussi de

focaliser l’énergie incidente sous la limite de diffraction. En outre, il a été possible de

montrer son comportement fortement non local.

Ce travail ouvre de multiples perspectives :

• la réalisation de métasurfaces conformes reconfigurables;

• le développement de métasurfaces éparses 2D. Les réseaux de fils devraient alors être

remplacés par des réseaux de dipôles. Il n’est toutefois pas certain que ce modèle soit

suffisamment précis pour décrire des motifs de la taille de ceux habituellement rencontrés;

• la formation simultanée de faisceaux pointant dans différentes directions pour des

fréquences différentes;

• la réalisation de métaréseaux ou de métasurfaces éparses pour des applications en op-

tique, car toutes les approches théoriques développées dans cette thèse sont directement

transposables aux longueurs d’onde optique;

• le développement de métaréseaux ou de métasurfaces éparses en acoustique;

• le développement de métasurfaces conformes reconfigurables exploitant des déformations

mécaniques.
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General Introduction

From long ago, composite structures have been serving to go beyond characteristics of natural

materials. A leap further from classical composites was made when the concept of metamaterials

emerged as a way to knowingly engineer properties of artificial structures and adapt them to

real-life applications. By an electromagnetic metamaterial, one generally understands a bulk

structure represented by a periodic arrangement of subwavelength meta-atoms designed to ob-

tain rare or non-natural effective material parameters (permittivity, permeability and magneto-

electric coupling). Although the idea of adjusting material parameters of composites has been

known at least from the beginning of the 20th century, an active research on metamaterials

was initiated in 2000 by the experimental work “Composite Medium with Simultaneously Neg-

ative Permeability and Permittivity” of D. R. Smith et al. and the theoretical work “Negative

Refraction Makes a Perfect Lens” of J. B. Pendry. Soon after metamaterials, metasurfaces,

as one-meta-atom-thick metamaterials, were proposed to reduce the effect of material losses in

bulk structures. By creating spatial modulation in the metasurface design at the wavelength

scale, it becomes possible to perform wavefront transformations such as anomalous reflection

and transmission, for example. Thus, metasurfaces found their application in antennas and

have been studied, in particular, to improve performances of reflectarray and transmitarray

antennas, Fabry-Perot cavity and leaky-wave antennas. Macroscopic models, based on electric

and magnetic surface impedances or local reflection and transmission coefficients, were brought

to facilitate the design of metasurfaces. However, the macroscopic character of these models

substantially rubs out microscopic features of metasurfaces, such as the density of elements

and mutual interactions between them, and results in appearance of fundamental performance

limitations of metasurface-based antennas.

This PhD thesis focuses on advancement of current state-of-the-art electrically reconfigurable
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metasurface-based antennas presented in the First Chapter. Within the framework of the the-

sis, the existing macroscopic models are put aside and metasurfaces are considered as arrays

of discrete scatterers. To solve the inverse scattering problem and be able to create desirable

radiation patterns while taking into account all interactions between elements of a metasurface,

the manuscript develops novel analytical and numerical models. Specifically, the manuscript

focuses on sparse arrays, periodic or not, of wires engineered at the subwavelength scale. The

results of the work are presented in four chapters. In the Second Chapter, an analytical model

for periodic arrays of wires, called metagratings, is developed. In contrast to conventional meta-

surfaces, metagratings are essentially discrete structures and cannot be described in terms of

surface impedances. Theoretical conditions of arbitrary control of the diffraction patterns with

metagratings, whose period is composed of multiple individually-engineered wires, are estab-

lished and importance of the near-field regulation is highlighted. In particular, the question

of the number of degrees of freedom necessary for manipulation of propagating diffraction or-

ders at will is studied. A semi-analytical design procedure of microwave metagratings and an

experimental validation of the developed concept is presented. In the Third Chapter, an ana-

lytical retrieval technique is developed and allows one to consider arbitrarily structured wires

with the help of full-wave simulations. The developed design approach is validated by means of

three-dimensional full-wave simulations for metagratings operating from microwave to optical

domains and experimentally at microwave frequencies. In the Fourth Chapter, the analytical

model of metagratings is generalized, from planar periodic, to arbitrarily-shaped non-periodic

distributions of wires by means of numerical calculation of a Green’s function. The concept

of conformal sparse metasurfaces is presented. A design procedure of conformal sparse meta-

surfaces is demonstrated through the examples of semi-cylindrical and cavity-excited sparse

metasurfaces. Designs of several semi-cylindrical sparse metasurfaces with different functionali-

ties are validated experimentally at microwave frequencies, where beam-steering and excitation

of multiple beams are demonstrated. Finally, in the Fifth Chapter, the analytical model of sparse

metasurface is applied to design a reconfigurable planar sparse metasurface. A fabricated sample

is exploited to experimentally demonstrate dynamic control of the far-field radiation pattern and

the near-field intensity distribution. As such, beam-steering, manipulation of multiple beams

(up to six), subdiffraction focusing and manipulation of multiple focal spots are demonstrated.
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Chapter 1
State-of-the-art on reconfigurable

metasurfaces for antenna applications
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1.1. INTRODUCTION

1.1.
Introduction

From long ago, composite structures have been serving to go beyond characteristics of nat-

ural materials. A leap further from classical composites was made when the concept of meta-

materials emerged as a way to knowingly engineer properties of structures and adapt them to

real-life applications. Metasurfaces representing themselves as electrically very thin structures

have been proposed as planar alternatives to metamaterials to exhibit light manipulation pos-

sibilities in various frequency domains, extending from microwave to visible frequencies. As

such, metasurfaces have been used to perform functions including anomalous reflection and re-

fraction [1, 2, 3, 4, 5, 6], deflection [7, 8, 9, 10, 11], lensing [7, 8, 12, 13, 14, 15], thin-film

cloaking [16, 17, 18], coupling of propagating waves to surface waves [19, 20, 21], optical vortex

beams generation [22, 23, 24, 25, 26, 27], and holographic imaging [28, 29, 30, 31, 32, 33], to

name a few.

Nowadays, there is an increasing research interest in reconfigurable (or tunable) metasurfaces

capable of dynamically changing their properties under external stimuli and integrate different

functionalities in a single system [34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50,

51, 52, 53, 54, 55, 56, 57]. This activity is triggered by ongoing fundamental research on time-

modulated and nonreciprocal systems [58, 59, 60, 61, 62, 63, 64, 65, 66, 67] on one hand and novel

emerging applications on another hand. As such, concepts of analogue computing, computer

vision, Internet of Things (IoT), smart homes and smart cities [52, 50, 53, 54, 55] create an

ever increasing demand for compact, versatile and efficient microwave devices to manipulate

electromagnetic wavefronts.

SONDRA laboratory and I are interested in the potential of using electrically reconfigurable

metasurfaces for radar applications in the framework of this PhD Thesis. The foreseen work is

exploratory in nature and does not imply implementation of a device answering concrete spec-

ifications. However, operating frequencies of experimental samples built to validate theoretical

concepts were set to 5 GHz and 10 GHz. In what follows, I review state-of-the-art developments

in the field of electrically reconfigurable metasurfaces, without intending to cover all works pre-

sented on the subject. Instead, I aim to present basic concepts and tools for describing and

designing reconfigurable metasurfaces, understand their limitations and a source of these limi-

tations, demonstrate principal configurations of metasurface-base reconfigurable antennas and
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CHAPTER 1

challenges of characterizing a reconfigurable metasurface.

1.2.
Binary phase-state metasurfaces

A major type of reconfigurable metasurfaces for wavefront manipulation is represented by bi-

nary phase-state metasurfaces. Although such terms as “digital”, “coding” and “programmable”

metasurfaces were introduced in 2014 by T. J. Cui in Ref. [37], binary elements were used as

building blocks of reflectarrays and transmitarrays before that [68, 69, 70, 71, 35, 72, 73]. Mean-

while, it should be noted that the problem of phase discretization was initially addressed in the

general context of phased arrays which I do not intend to cover here [74]. In order to avoid

using different terms for essentially the same physical structures, in what follows I use the term

“binary phase-state metasurfaces”. The operational principle of these metasurfaces is based on

switching the local phase response φm,n, i.e. the phase of the local reflection (or transmission)

coefficient, of constituting meta-atoms between different discrete values. For example, a 1-bit

element, see an example in Fig. 1.1, provides two phase states: 0 and π. In the case of a reflective

metasurface, it effectively corresponds to either perfect magnetic conductor (PMC) or perfect

electric conductor (PEC) local boundary conditions. The local reflection (or transmission) coef-

ficient is calculated as a reflection coefficient of a plane wave form a periodic array of elements,

all in the same state [75]. In the majority of works presented in the literature, the choice of the

state relies on a simple theoretical model [72]

φ(xm, ym) = φreq(xm, ym)− φinc(xm, ym), (1.1)

where φreq(xm, ym) and φinc(xm, ym) are the required phase for desired wavefront transforma-

tion and the phase of the incident wave at the location xm, ym of the mth unit cell. They

depend on the antenna configuration (reflectarray, Fabry-Perot and etc.) and the type of the

excitation source (plane-wave illumination, patch antenna and etc.). The phase φ(xm, ym) (0

or π in case of 1-bit unit cell) corresponds to the phase of the local reflection (or transmission)

coefficient from the corresponding unit cell. The phase φinc(xm, ym) equals zero in case of a

normally incident plane-wave illumination and φinc(xm, ym) = −k0
√
x2
m + y2

m +D2 in case of

an illumination created by a point source, where k0 is the free-space wavenumber. The phase

distribution required to perform beam-steering at elevation angle θ and azimuthal angle ϕ is

−k0(sin[θ] cos[ϕ]xm + sin[θ] sin[ϕ]ym). It should be noted that Eq. (1.1) remains valid for con-
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1.2. BINARY PHASE-STATE METASURFACES

Figure 1.1: (a) An illustration of a binary phase-state metasurface illuminated by a normally incident
plane wave. (b) A schematics of a unit cell loaded with a PIN diode. (c) A circuit model of a PIN
diode in ON and OFF states. (d) Radiation patterns and the local reflection coefficient from a binary
phase-state unit cell [76].

tinuous phase tuning metasurfaces (discussed further) as well.

By embedding tunable elements in every meta-atom, which change their properties under

external stimuli, a metasurface as a whole can be controlled to adaptively synthesize a large range

of antenna patterns. One usually harnesses resonances in meta-atoms to achieve a sufficiently

large phase difference between the incident and scattered waves. However, it is not an easy task

to design a resonant meta-atom exhibiting 2π-phase response. The choice of tunable elements is

mainly determined by the amount of losses introduced in the target frequency range. Generally,

one can distinguish digital and analog tunable elements, both of them can be used to implement

a binary phase-state metasurface. In the microwave frequency range, one usually uses digital

PIN diodes and RF-MEMS or analog varactor diodes and liquid crystals [72]. At THz, optical

and visible frequencies, graphene, semiconductor and phase-change materials are in particular

suggested to implement reconfigurable metasurfaces [77, 78].

A PIN diode contains an intrinsic semiconductor layer between the p- and n-type lay-

ers. When reverse biased, a small series junction capacitance leads to a relatively high diode

impedance, while a forward bias current removes the junction capacitance and leaves the diode

in a low-impedance state. A varactor diode produces a junction capacitance that varies smoothly

with reverse bias voltage, thus providing an electrically adjustable reactive lumped element. PIN

and varactor diodes are based on a mature technology and are easily available off-the-shelf and

they do not require having an expertise either. It makes them the best choice in many designs

of reconfigurable metasurfaces at microwave frequencies [35, 37, 39, 41, 42, 43, 44, 48, 50]. Rela-

tively high ohmic losses are the well-known drawback of PIN and varactor diodes which imposes

18



CHAPTER 1

Figure 1.2: (a) A photograph of the experimental sample, two of five segments of the reconfigurable
metasurface are mounted. (b) A schematic of the designed reconfigurable unit cell. (c) The amplitude
and the phase of the local reflection coefficient for the two states of the unit cell [79].

limitations on their use. On the other hand, RF-MEMS technology is characterized by very

low losses up to mm-wave frequencies, virtually zero power consumption, high linearity, and

possibility of monolithic integration [72]. Unfortunately, the technology is not yet mature and

reliable enough for uncomplicated incorporation in the design of a meta-atom. Liquid crystals

can be a compromise between the amount of losses and simplicity of the technology, especially at

frequencies around 100 GHz. A reconfigurability mechanism implemented on the base of a liquid

crystal harnesses its property of changing dielectric permittivity under an external electric field

created between two electrodes when applying a bias voltage. An appropriately chosen type of a

metasurface-based antenna (reflectarray, transmitarray, Fabry-Perot, leaky-wave, etc.) together

with an advanced theoretical design approach might also allow one to reduce the effect of lossy

tunable elements.

Implementation examples

In this subsection, I describe state-of-the-art examples of binary phase-state reconfigurable meta-

surfaces used in different antenna configurations and demonstrating different examples of beam-

forming.
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1.2. BINARY PHASE-STATE METASURFACES

Figure 1.3: (a),(b) A schematic of the assembled experimental sample (a) and its photograph in an
anechoic chamber (b). (c)–(f) Experimental results of beam-steering in different planes and at different
frequencies. The panels (c) and (d) correspond to x0z and y0z planes, respectively, the operating fre-
quency is 11.1 GHz. The panels (e) and (f) correspond to x0z and y0z planes, respectively, the operating
frequency is 14.3 GHz [79].

Reflectarray configuration. An exceptional beam-steering performance was demonstrated in

Ref. [79] in X- and Ku-bands by the binary phase-state reconfigurable metasurface developed by

H. Yang et al. in 2017. A photograph of the experimental sample is shown in Fig. 1.2(a). The

layout of the metasurface repeats a general one of reflecting metasurfaces and is represented by an

array of resonant scatterers on top of a metal-backed dielectric substrate. The array represents

a quadratic lattice with the period of 12 mm, which approximately corresponds to λ0/2 (λ0 is

the central vacuum wavelength). The scatterers are implemented as patch antennas loaded with

PIN diodes (MACOM’s MADP-000907-14020), as shown by the schematics of the unit cell in

Fig. 1.2 . In order to achieve a desirable response at two operating frequencies (11.1 GHz and

14.3 GHz), a parametric study was performed by means of 3D full-wave simulations with respect

to the width and the length of the patch and the height of the substrate. The PIN diode was

modeled in simulations as an equivalent circuit according to the manufacturer’s datasheet: RL

circuit for ON state and LC circuit for OFF state. The comparison of characterization results

obtained in simulations and experiment are shown in Fig. 1.2(c). The losses attributed to the

reconfigurable elements do not exceed 1 dB and 1.5 dB at the two frequencies, respectively.

The developed design was realized by means of the printed circuit board technology (PCB)
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Figure 1.4: (a) A schematic of the designed reconfigurable unit cell. (b) The amplitude and the phase
of the local transmission coefficient. (c) Error (in degrees) of the position of the main beam in case of
the continuous phase tuning and 1-bit phase quantization, when Eq. (1.1) is used to established required
phase profile [35].

in the fabricated sample containing 40 by 40 unit cells (total of 1600 unit cells). Each unit cell

is controlled individually through a bias network appearing on the back side of the sample. The

sample is illuminated by a corrugated conical horn antenna with the focal diameter ratio being

0.83 and the offset of 20◦ from z-axis as illustrated by Figs. 1.3(a) and (b). The beam-steering

performances of the fabricated experimental sample are summarized in Figs. 1.3(c)–(f) for the

two frequencies. The level of side lobes does not exceed −16 dB independently of the scanning

angle. A slight asymmetry is present in the steering performance in y0z plane because of the feed

offset in this plane. At 14.3 GHz the beam-steering up to approximately ±40◦ is demonstrated

because of grating lobes that appear outside the 48.4◦ angular range, the element periodicity

is 12 mm (0.57λ at 14.3 GHz). The results at the two operating frequencies demonstrate an

exceptionally good performance of the proposed binary phase-state metasurface by the authors.

Transmitarray configuration. A binary phase-state metasurface exhibiting exceptional

beam-steering capabilities at X-band in the transmitarray configuration was presented in Ref. [35]

by A. Clemente et al. in 2013. A reconfigurable unit cell comprising a transmitting metasurface

is more complicated than its reflecting counterpart discussed above. Indeed, additionally to

providing a large phase difference between incident and transmitted waves, a unit cell should

have a negligible reflection in order not to deteriorate the efficiency. 2π-range phase control

while maintaining full transmission is not possible to achieve for co-polarization with a single

array of scatterers on top of a substrate (single-layer design) [73]. An array of scatterers with

electric-only response creates symmetric scattered field in the forward and backward directions.
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1.2. BINARY PHASE-STATE METASURFACES

Figure 1.5: (a) A schematic and photographs of the assembled experimental sample. (b) Experimental
results of beam steering in H-plane (top) and E-plane (central). The bottom panel compares measured
and simulated gain of the sample. (c) Experimental results of beam-shaping. The top and bottom panels
correspond to H- and E-planes, respectively. The operating frequency is 9.8 GHz [35].

In order to break this symmetry an effective magnetic response can be created by using multi-

layer designs. The authors have developed a three-layer reconfigurable unit cell represented by

receiving and transmitting patch antennas on outer faces connected by a metallic via through

a ground plane on the inner face. Only the transmitting patch antenna is loaded with two PIN

diodes, a schematic of the design is shown in Fig. 1.4(a). The total area of a unit cell is 15× 15

mm2 corresponding to λ0/2 periodicity at 10 GHz. The grating lobes do not appear over the

metasurface bandwidth, from 9 GHz to 10.6 GHz, and in the range of beam-steering angles

from −70◦ to 70◦ from the broadside. The receiving patch is connected to the ground plane

by two metallic vias and the transmitting patch is connected to the bias line by two metallic

vias. In this configuration both diodes are switched in opposite states by means of a single bias

line. The unit cell demonstrates 1-bit tunable response as demonstrated in Fig. 1.4(b). The

frequency response of the unit cell was, on the one hand, studied by means of 3D full-wave

simulations with periodic boundary conditions and Floquet ports and on the other hand, tested

experimentally by embedding a fabricated unit cell in a rectangular waveguide [71].

The proposed design of a unit cell was realized by means of PCB technology and a meta-
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Figure 1.6: (a) The top panel demonstrates a schematic of the designed reconfigurable unit cell. The
bottom panel demonstrates the phase of the local reflection coefficient. (b)–(e) Photographs of the exper-
imental sample (b),(d),(e) and field-programmable gate array (c) [37].

surface consisting of 20 by 20 unit cells (total of 400 unit cells) was fabricated. Each unit cell

is controlled individually through a bias network plugged along the edges of the sample. The

sample is fed by a linearly-polarized pyramidal horn antenna having a gain of 11.1 dBi at 10

GHz. The horn is fixed at normal incidence as illustrated by Fig. 1.5(a). The focal diameter

ratio can be adjusted in the range from 0.44 to 0.92. Photographs of the assembled sample are

shown in Fig. 1.5(a).

Although only two phase states are available, the authors demonstrated theoretically,

Fig. 1.4(c), that the error in the steering angle is negligible, when accounting for the beamwidth,

and comparable to the case when a continuous phase tuning can be performed. The beam steer-

ing capabilities of the binary phase-state metasurface were demonstrated up to ±70◦ in H-plane

and ±40◦ in E-plane, see Fig. 1.5(b). The beam-steering range in E-plane was mainly limited

by experimental equipment the authors used. The level of side lobes does not exceed −10 dB

up to ±60◦ and increases to approximately −7 dB for ±70◦. The measured directions of the

main beam corresponds well to theoretical predictions. Although the radiation pattern degrades

significantly when increasing the steering angle, the experimental results demonstrated by the

authors are among the best examples that can be found in literature.

Manipulation of multiple beams and beam-shaping. While beam-shaping and manipu-
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1.2. BINARY PHASE-STATE METASURFACES

Figure 1.7: Simulation (a),(b) and experimental (c),(d) results of excitation of multiple beams with the
reconfigurable binary phase-state metasurface. The operating frequency is 8.6 GHz [37].

lation of multiple beams is well studied for non-reconfigurable metasurfaces [80, 81, 6, 82], there

are not many examples of reconfigurable metasurfaces demonstrating such capabilities.

When a binary phase-state metasurface is illuminated by a plane wave, multiple beams can

be generated by applying establishing a periodic phase distribution along its aperture [37]. In

2014, T.J. Cui et al. presented a design of a reconfigurable subwavelength unit cell providing

1-bit control of the phase response in X-band as demonstrated in Fig. 1.6(a) [37]. The size of

the unit cell is 0.17λ by 0.17λ at central operating frequency conversely to the examples demon-

strated above. One PIN diode per unit cell is used as a tunable element. A binary phase-state

metasurface was fabricated on the base of this design by means of the PCB technology and a

field-programmable gate array (FPGA) was developed to control the phase distribution along

the aperture. Figures 1.6(b)–(e) show photographs of the sample. Simulation and experimental

results of excitation of multiple beam are presented in Fig. 1.7. Although establishing a peri-

odic phase profile represents a very simple way to obtain multiple beams, it significantly lacks

flexibility to accurately control directions of main beams and the level of side lobes. Indeed, the

authors did not use any theoretical tool that would predict a binary phase profile required to

established desirable radiation pattern. It results in overall poor beam-forming efficiency.

This problem can be approached by implementing an optimization procedure to achieve a de-

sirable radiation pattern. For example, apart from the beam-steering in Ref. [35], A. Clemente et

al. also demonstrated beam-shaping capabilities of their transmitting metasurface by synthesis-
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Figure 1.8: Simulation (a)–(c) and experimental (d)–(f) results of beam-shaping and excitation of mul-
tiple beams. The top row demonstrates the phase distribution along the metasurface in each configuration.
The operating frequency is 11.1 GHz [43].

ing a flat-top beam pattern, as illustrated in Fig. 1.5(c). A genetic algorithm was realized to find

the required phase profile along the metasurface at 9.8 GHz operating frequency. The beamwidth

was set to 80◦ − 90◦ and the level of ripples was set less than 2 in the main beam and the level

of side lobes was set below −20 dB. This mask is shown in Fig. 1.5(c) by the dashed lines. The

resulted phase profile from the optimization procedure is shown in the inset of Fig. 1.5(c). The

measured and simulated radiation patterns in E- and H-planes are demonstrated in the same

figure. Although a good agreement between the experiment and the simulation is observed, the

authors pointed out that the discrepancies might stem from, on the one hand, the measurement

procedure performed in a 3m-long anechoic chamber where the far-field conditions are not met,

and on the other hand, the spill-over radiation from the feeding horn and the diffraction from

the edges of the sample could also contribute to the mismatch.
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Figure 1.9: Schematic illustration to the principle of scattering-pattern shift in analogy to the Fourier
Transform. (a)–(c) Phase patterns of a cross, gradient distribution, and their modulus, respectively. (d)–
(f) Scattering patterns calculated by FFT from the phase patterns in the panels (a)–(c), respectively.
(g)–(h) The analogical frequency spectra of the coding patterns in the panels (a)–(c), respectively [83].

In 2016, H. Yang et al. approximated the radiation from a reflecting binary phase-state

metasurface by the array factor AF(θ, ϕ)

AF(θ, ϕ) =
N∑
m=1

exp [j (φ(xm, ym) + k0 sin[θ] cos[ϕ]xm + k0 sin[θ] sin[ϕ]ym)] (1.2)

and used a genetic algorithm to optimize the phase distribution φ(xm, ym) along the aperture.

The authors used the same metasurface as in Ref. [79] which is discussed above and shown in

Fig. 1.2. Figure 1.8 demonstrates simulation and experimental results of beam-shaping (panels

(a),(b) and (d),(e)), and excitation of three beams (panels (c) and (f)).

On the other hand, the synthesis of information theory and the concept of binary phase-state

metasurfaces led to another way of wavefront manipulation. In 2016, S. Liu et al. demonstrated

in Ref. [83] that by performing Fourier operations on binary phase-states along a metasurface

and using the convolution theorem, a shift can be imposed on the radiation pattern created by

a metasurface-based antenna. It allows steering the pattern to a desired direction as schemat-

ically shown in Fig. 1.9. The required phase distribution can be obtained by the modulus of

two phase-mask matrices under the assumption that the amplitude of the local reflection coeffi-

cient is independent from the phase. The authors validated the concept by means of numerical

simulations and demonstrated manipulation of multiple beams with a binary phase-state meta-
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surface. However, the level of side lobes remains unoptimized and the spurious radiation can be

significant, especially when a realistic binary unit cell, as shown for example in Fig. 1.2(c), is

considered. This conclusion is confirmed by experimental works published in 2020 by the group

of Prof. T. J. Cui [84, 85].

1.3.
Continuous phase tuning metasurfaces

The implementation of continuous phase tuning metasurfaces can be traced back to the works

of W. Lam et al. in 1988 [86], R. Waterhouse et al. in 1993 [87], L. B. Sjogren et al. in 1994 [88],

Sievenpiper et al. in 2003 [89] and S. Hum et al. in 2004 and 2005 [90, 91]. In contrast to their

binary phase-state counterparts, continuous phase tuning metasurfaces promise a more flexible

solution of integrating multiple functionalities in a single metasurface and achieving real-time

reconfigurablity due to their electromagnetic response that can be modified continuously with

applied external stimuli. In order to implement a continuous phase tuning metasurface, analog

tunable elements such as varactor diodes and liquid crystals are used.

1.3.1 Implementation examples

In this subsection, I describe state-of-the-art examples of continuous phase tuning metasurfaces

used in different antenna configurations, operating at different frequencies and demonstrating

different examples of beam-forming.

Reflectarray configuration. There are many examples of continuous phase tuning metasur-

faces where the reconfigurability is implemented by means of semiconductor devices such as

varactor diodes. In this case, the phase tuning mechanism is implemented by adjusting the

resonant response of scatterers (e.g. patch antennas) constituting a metasurface. On the other

hand, the technology of liquid crystals (LCs) provides another way to achieve reconfigurability

by modifying the local material properties of the substrate [93, 94, 95, 96, 92]. The permittiv-

ity of LCs changes when applying a quasi-static electric field. Particularly, nematic LCs have

demonstrated one of the best properties at microwave and mm-wave frequencies [96]. Resonant

scatterers are non-reconfigurable in such a configuration and placed on top of the substrate.

In 2015, G. Perez-Palomino et al. reported an implementation of a continuous phase tuning

metasurface based on the reconfigurable response of nematic LCs for antenna application in the
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Figure 1.10: (a)–(c) A schematic of a continuous phase tuning metasurface using a liquid crystal. (a)
A layout of a unit cell with dimensions (mm): Py = 1.145, Px = 1.093, Lxl = 0.707, Lx2 = 0.748, Lx3 =
0.792, Lyl = 0.20, Ly2 = 0.211, Ly3 = 0.20, Dl = 0.171, D2 = 0.096, D3 = 0.042, hLC = 0.075. (b)
A reflectarray configuration. (c) Top (left) and bottom (right) views of the metasurface. (d) Simulation
and experimental results of the unit cell phase response at 100 GHz vs. the applied (root mean square)
bias voltage. The results for two incidence angles (30◦ and 45◦) are shown. The AC bias voltage has the
frequency of 0.33 Hz and the shape of a square wave [92].

reflectarray configuration [92]. The developed reconfigurable unit cell, shown in Fig. 1.10(a),

is composed of three parts: (i) a quartz wafer with three parallel dipoles of different lengths

printed on its bottom face; (ii) a silicon wafer with the ground plane on its top face; (iii) a LC

cavity inserted between the two wafers. The used LC is the mixture GT3-23001 manufactured by

Merck. The unit cell size is 1.145×1.093 mm2 that corresponds to 0.38λ0×0.36λ0 at the central

operating frequency of 100 GHz. The geometrical parameters of the elements constituting the

unit cell were selected to achieve a linear dependence of the phase on the frequency (in the range

from 94 to 104 GHz) and a dynamic phase range approaching 2π. The fabricated metasurface is

composed of 54×52 unit cells and a conical horn antenna (Millitech SGH-08) is used as a source.

Figure 1.10(b) demonstrates a schematic of the assembled sample. In order to achieve beam-
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Figure 1.11: (a) A photograph of the experimental setup. (b)–(d) Experimental results of beam-steering
at 96 GHz (b), 100 GHz (c) and 104 GHz (d) [92].

steering in elevation plane, see Fig. 1.10(b), a bias network allowing control of the unit cells

by rows was implemented. Bias lines connect the printed dipoles as illustrated in Fig. 1.10(c).

The bias network is powered by an AC voltage source. Simulated and experimentally measured

phase response of the metasurface when equal voltages are applied to all unit cells are shown in

Fig. 1.10(d) and the 330◦ dynamic range of the phase tuning is obtained. The modeling of the

considered unit cell was performed by the authors in Ref. [97].

Measurements of the radiation patterns were performed in an anechoic chamber. A photo-

graph of the experimental sample is shown 1.11(a). Experimental results of beam-steering in

the range from −5◦ to −60◦ at three different frequencies are shown in Figs. 1.11(b)–(d). At 100

GHz, for example, the level of side lobes increases from −18 dB when steering away from the

specular direction (−25◦), but remains below −13 dB independently from the steering angle.

However, as the authors pointed out, the beam-steering beyond −60◦ produces a significant

increase of spurious radiation because of the phase errors resulted from using the local peri-

odic approximation. The main reason of the pattern degradation within the steering range is

that the amplitude of the local reflection coefficient is different for different values of the phase.

Nonetheless, the experimental results demonstrated by the authors are among the best in the

literature on LC-based continuous phase tuning metasurfaces.
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Figure 1.12: (a) A schematic of a metasurface-based Fabry-Perot cavity antenna. The inset figure
shows a layout of the design of the unit cell, all dimensions are in mm. (b) The phase of the reflection
coefficient from designed reconfigurable metasurface. (c) Simulation results of the directivity vs. the
frequency for different capacitances of varactor diodes. The directivity of the feeding patch antenna is
plotted for comparison. (d) Photographs and a schematic of the assembled experimental sample [98].

Fabry-Perot cavity configuration. Generally, a Fabry-Perot cavity antenna is represented by

a source inserted between a ground plane and a partially reflecting surface (PRS). In 2010 [98],

S. N. Burokur et al. reported a reconfigurable metasurface used as a PRS of a Fabry-Perot cavity

antenna, as displayed in Fig. 1.12(a). The authors developed a bi-layer unit cell represented by

inductive and capacitive grids, as shown in the inset of Fig. 1.12(a). The inductive and capacitive

grids are mutually orthogonal, the electric field is parallel to the inductive grid. The dimensions

of the unit cell were optimized via 3D full-wave simulations for the operating frequency of 2 GHz.

An electronic reconfigurability is achieved by loading the capacitive grid with varactor diodes.

It allows one to adjust reflection and transmission coefficients of the metasurface in a continuous

manner. The metasurface is built as a periodic array of the designed unit cells. When changing

the bias voltage applied to varactor diodes, their capacitance changes and so does the phase

of the reflection coefficient. Figure 1.12(b) demonstrates how this phase changes for different

values of the capacitance of the varactor diodes (BB857 from Infineon Technologies). When

reducing the capacitance, the resonance shifts to higher frequencies.

Figure 1.12(c) demonstrates simulation results of reconfigurable frequency response, the

directivity of the metasurface-based antenna is compared to the directivity of the feeding patch.

It is important to note that the authors used a wideband patch antenna (operating frequency
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band is 1.8 − 2.7 GHz) to feed the cavity, it facilitates the implementation of the wideband

frequency agility of the antenna system. A 400 mm by 400 mm metasurface (corresponding to

20 by 20 unit cells) was fabricated on the base of the developed design, four patch antennas

were used to excite the cavity. RF chokes are used to avoid high frequency currents going to

the bias system. A photograph and a schematic of the assembled experimental sample is shown

in Fig. 1.12(d). Figure 1.13 shows experimental results and demonstrates that when changing

the bias voltage (from 0 to 24 V), the cavity resonance frequency shifts. A well-defined beam is

observed at each resonant frequency. Thus, the implemented reconfigurable metasurface allowed

the authors to achieve continuous phase tuning and demonstrate smooth frequency agility of

otherwise a narrow-band Fabry-Perot cavity antenna.

In order to implement beam-steering with a Fabry-Perot antenna, a phase gradient must be

created along the partially reflecting surface. In Ref. [99], R. Guzmán-Quirós et al. proposed

an electrically reconfigurable Fabry-Perot antenna capable of beam-steering in elevation and

azimuth planes at a given frequency. In contrast to the previous example, a reconfigurable

metasurface is placed at the bottom of the cavity. The metasurface realizes a high impedance

surface (HIS) and is represented by an array of rectangular patches. The reconfigurability is

achieved by loading the patches with varactor diodes. A partially reflecting surface covering the

cavity is non-reconfigurable and creates a predefined reflection phase. Figure 1.14(a) shows the

principal scheme of the assembled antenna.

The operation principle of the suggested reconfigurable Fabry-Perot antenna is based on

changing the propagation constant of a leaky-wave excited in the cavity by adjusting the sur-

face impedance of the reconfigurable metasurface. The authors performed the analysis of the

dispersion of the leaky-wave with respect to the capacitance of varactor diodes by modeling a

unit cell as a transverse equivalent network shown in Fig. 1.14(b). PEC (PMC) walls are used

to model propagation of a TE (TM) leaky-wave along the y-direction (x-direction). Although

the impedances of PRS and HIS depend on the polarization, the dispersion curves shown in

Fig. 1.14(c) almost coincide for TE and TM leaky-waves. The authors observed that there are

two different regimes of propagation of leaky-waves: (i) up to approximately 0.25 pF the leaky-

wave is propagating and radiates in free space with the corresponding steering angle; (ii) for the

capacitance greater than 0.25 pF, electromagnetic band gap appears and the leaky-wave becomes

evanescent along the antenna aperture and the radiation is suppressed. Therefore, by individu-

ally adjusting the surface impedance of separate sectors of the metasurface, the leaky-wave can
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Figure 1.13: The panels (a),(c),(e),(g) demonstrate far-field intensity as function of the frequency and
the elevation angle in E-plane. The panels (b),(d),(f),(h) demonstrate measured radiation patterns in
E- and H-planes at the frequencies of maximum gain. The bias voltages and corresponding operating
frequencies are 0 V and 1.9 GHz in the panels (a) and (b), 5 V and 2.02 GHz in the panels (c) and (d),
12 V and 2.16 GHz in the panels (e) and (f), 24 V and 2.31 GHz in the panels (g) and (h) [98].

be directed at a desired azimuth angle. In the considered work, the authors equally divided the

metasurface into four such sectors that can be controlled individually (Fig. 1.14(d)). Meanwhile

the elevation angle is adjusted by changing the bias voltage applied to the varactor diodes (and,

thus, their capacitance) according to the dispersion curves highlighted in Fig. 1.14(c) by hollow

circles.

The designed reconfigurable Fabry-Perot antenna was fabricated by means of the PCB tech-

32



CHAPTER 1

Figure 1.14: (a) A schematic of a metasurface-based reconfigurable Fabry-Perot antenna. (b) A layout
of a unit cell design (left) and the transverse equivalent network for TE- and TM-polarized leaky-waves.
(c) Elevation scanning angle vs. the capacitance of varactor diodes at 5.5 GHz operating frequency. (d)
The table shows azimuth scanning angle as function of activated sectors of the reconfigurable metasurface
[99].

nology. A figure of the assembled prototype is shown on the left of Fig. 1.15(a) and the photo-

graph on the right shows the reconfigurable metasurface. Figure 1.15(b) demonstrates simulation

and experimental results of beam-steering at different azimuth planes and elevation angles. Al-

though the concept allows realizing beam-steering at arbitrary azimuth angles, the experimental

results show very limited beam-steering capabilities in the elevation plane. Furthermore, when

increasing the steering angle, the beam deforms and the level of side lobes increases. The ap-

proach lacks flexibility and the radiation performance cannot be improved by optimizing the

local (not only sectorial) surface impedance. A possibility of a more complex beam-forming

performance (beam-shaping and control of multiple beams) was not discussed.
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Figure 1.15: (a) Photographs of the assembled antenna prototype (left) and the reconfigurable metasurface
(right). (b) Simulation and experimental results of normalized radiation patterns at 5. GHz operating
frequency for different azimuth and elevation steering angles [99].

Conformal transmitarray configuration. The design of a conformal metasurface is generally

based on Eq. (1.1) [100, 101, 102, 103, 104, 105, 106, 107], where a proper spatial distribution of

local reflection (transmission) coefficient should be established along the reflecting (transmitting)

metasurface. On the other hand, more rigorously, metasurfaces can be described by means of

generalized sheet transition conditions [108]. Unfortunately, such a theoretical modelling of

conformal metasurfaces appears to be exceptionally challenging, demanding accurate analysis

of the metasurface geometry and dealing with curvilinear coordinates [109].

To the best of my knowledge, until recently there have been no reports on experimental

implementation of conformal and reconfigurable metasurface-based antennas, neither in reflec-

tarray nor in transmitarray configurations. In the end of 2019, H. Li et al. demonstrated in
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Figure 1.16: (a),(b) The principle of beam-steering with a semi-cylindrical metasurface antenna when
being illuminated by a single feeding antenna (a) or multiple feeding antennas (b). (c),(d) Results of 2D
simulations of a semi-cylindrical metasurface. The panel (c) demonstrates distributions of the electric
field for beam-steering at 0◦, 25◦ and 50◦. The panel (d) shows corresponding far-field radiation patterns
[100].

Ref. [100] dynamic beam-steering with a semi-cylindrical reconfigurable metasurface whose op-

eration principle is based on adjusting the local transmission coefficient according to Eq. (1.1).

A schematic of the operational principle is shown in Fig. 1.16(a), where rj is the location of

the jth unit cell and Sj shows a desired direction of the main beam. A distinct feature of the

metasurface-based antenna presented by the authors is that a feeding system is represented by

three independent antennas activated one at a time, see Fig. 1.16(b). Two-dimensional full-wave

simulations were performed in order to validate the operational principle. Figures 1.16(c) and

(d) demonstrate, respectively, the distribution of the electric field and the far-field radiation

pattern for three examples of beam-steering when two different feeding sources are used. In the

simulations, the semi-cylindrical metasurface has a radius of 400 mm and is divided into 50 unit

cells. The operating frequency is 5.75 GHz. From the simulations, it is particularly observed

that the level of side lobes can be reduced at off-broadside steering angles when rotating the

excitation source (Fig. 1.16(d)).

The unit cell is represented by two single-layer PCBs separated by 5 mm air gap. A capacitive
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Figure 1.17: (a) A schematic of the designed unit cell, all the dimensions are in mm. (b) Simula-
tion results of the amplitude and the phase of the transmission coefficient. (c),(d) Photographs of the
assembled experimental sample (c) and the experimental setup (d) [100].

element is printed on top face of each layer and is loaded with a varactor diode (Skyworks

SMV1405). The layers have the thickness of 0.5 mm, which makes them flexible and allows one

to conform the metasurface to a semi-cylindrical surface. The dynamic range of capacitances of

the varactor is from 2.6 pF to 0.6 pF for the DC bias voltage from 0 V to 30 V. A schematic

of the unit cell design and its dimensions are shown in Fig. 1.17(a). The unit cell has a size of

approximately λ0/4 at the central operating frequency of 5.75 GHz. To study the response of the

designed unit cell, the authors performed 3D full-wave simulations and the SPICE model was

used to describe the SMV1405 varactor diode. The amplitude and the phase of the transmission

coefficient are plotted in Fig. 1.17(b) for different values of the capacitance of the varactor diodes.

On the basis of the developed design, a reconfigurable metasurface was fabricated and con-

formed to a semi-cylindrical metallic frame as shown in Fig. 1.17(c). The two layers composing

the metasurface consist of 850 unit cells, 50 in a row and 17 in a column. A DC bias voltage

(from 0 V to 30 V) can be independently applied to each column via the implemented bias

network, the bias lines span along the horizontal edges of the sample, outside the metasurface

area, as shown in Fig. 1.17(c). It allows one to perform beam-steering in horizontal plane, the
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radiation pattern in the other plane mostly repeats that of the source. The feeding system is

represented by three linear arrays of patch antennas, where each array has 4 patches. The arrays

point in different directions (0◦ and ±50◦) and used to illuminate the different regions of the

metasurface.

Figure 1.18: (a) Measured amplitude and phase of the transmission coefficient at 5.75 GHz. (b),(c)
Experimental results of beam-steering at broadside (0◦). The panel (b) demonstrates S-parameters of
the three patch antenna arrays used to illuminate the metasurface. The panel (c) compares the radiation
patterns at 5.75 GHz of the central source antenna alone and with the metasurface. (d)–(f) Beam-steering
performances at 5.75 GHz when using the central (a), the right (e) and the left (f) feeding antennas
[100].

An experimental characterization of the fabricated sample is of particular importance, the

metasurface is used in a non-planar configuration and the conventional procedure may not
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be accurate. The authors performed experimental measurements in an anechoic chamber as

shown by Fig. 1.17(d). To calculate the transmission coefficient, the authors measured the S21

parameter between the 1st patch antenna array and the receiving horn antenna in the presence

and the absence of the metasurface. The other two patch antenna arrays were connected to a

matched load. In the first configuration, equal voltages were applied to all varactors; the second

configurations is used for normalization. The transmission coefficient calculated in this way at

5.75 GHz is plotted in Fig. 1.18(a). 195◦ dynamic range of the phase is achieved when changing

the voltage from 0 V to 19 V. The difference between the amplitude of the transmission coefficient

obtained from simulations (Fig. 1.17(b)), and experiments may originate from the features of the

sample itself (such as the metallic frame) and inaccuracies of the experimental characterization

procedure.

Figures 1.18(b)–(f) present the results of beam-steering in the horizontal plane. Necessary

bias voltages are found by means of Fig. 1.18(a) and Eq. (1.1) and the authors modeled the

incident wave as a cylindrical wave. For the case of radiation at broadside, the authors present

the frequency dependence of S11 parameter, as displayed in Fig. 1.18(b). It characterizes the

matching of the feeding system, on the one hand, and the power reflected from the metasurface

back to the source, on the other hand. Figure 1.18(c) allows one to see the impact of the

metasurface on the radiation pattern in comparison to the radiation pattern of the source (patch

antenna array radiating at 0◦, see Fig. 1.18(c)). The beamwidth is reduced from approximately

72◦ to 8◦. The instantaneous bandwidth is estimated as 100 MHz. The beam steering in the

range ±30◦ at 5.75 GHz is demonstrated in Fig. 1.18(d) when the metasurface is illuminated by

the central source radiating at 0◦. The level of side lobes changes in the range from −12.3 dB

to −5.0 dB for radiation from 0◦ to 30◦. When further increasing the steering angle, the level

of side lobes raises as well. The authors got around the problem by introducing two additional

feeding antennas rotated at ±50◦ with respect to the central one. Each feeding antenna is

responsible for its narrow steering range. Figures 1.18(e) and (f) demonstrate beam-steering at

5.75 GHz beyond ±30◦ when the metasurface is illuminated by the patch antenna array at +50◦

and −50◦, respectively. The level of side lobes remains below −9.6 dB in these cases.

Overall, the authors demonstrated good beam-steering performance which, however, requires

using multiple feeding antennas switched on selectively. A possibility of a more complex beam-

forming performance (beam-shaping and control of multiple beams) was not discussed.
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1.3.2 Huygens’ metasurfaces

In 2013, C. Pfeiffer and A. Grbic presented in Ref. [110] the concept of Huygens’ metasurfaces

on the basis of the electromagnetic equivalence principle [111]. The electric and magnetic fields

in a source-free region are determined by their tangential components along a closed surface.

By the equivalence principle, the fields inside and outside the surface are obtained by placing

over the surface suitable electric- and magnetic-current densities which satisfy the boundary

conditions

n12 × (H2(r)−H1(r)) = Js(r), n12 × (E2(r)−E1(r)) = −Ms(r), (1.3)

where n12 is a unit vector orthogonal to the surface and pointing outside it, the vector r cor-

responds to a point on the surface, Js and Ms are equivalent electric- and magnetic-current

densities, H1,2 and E1,2 are the magnetic and electric fields. The index 1 and 2 corresponds to

the region inside and outside the closed surface, respectively. C. Pfeiffer and A. Grbic proposed

to substitute the fictitious currents by polarization currents excited in electric- and magnetic-

impedance sheets by an impinging wave

Js(r) = 1
2Yes(r) (E1(r) + E2(r)) , Ms(r) = 1

2Zms(r) (H1(r) + H2(r)) , (1.4)

where Yes(r) and Zms(r) are electric surface admittance and magnetic surface impedance. Dense

arrays of engineered scatterers are used to implement required surface impedances. Generally,

both electric and magnetic responses are required in order to achieve asymmetric scattering. To

achieve a magnetic response it is not necessary to use magnetic particles, an effective magnetic

response can be obtained from an asymmetric ensemble of electric-only scatterers. The local

periodic approximation allows one to relate the surface impedances with the local reflection

coefficient R(r) and the local transmission coefficient T (r) [112]

Yes(r) = 2 (1− T (r)−R(r))
η (1 + T (r) +R(r)) , Zms(r) = 2η ((1− T (r) +R(r))

1 + T (r)−R(r) . (1.5)

The theoretical framework developed by C. Pfeiffer and A. Grbic and represented by Eqs. (1.3)–

(1.5) allows one to further advance the ideas behind reflectarray and transmitarray antennas and

light propagation with phase discontinuities [1]. On the one hand, more complex than beam-

steering and more efficient than within the framework of Ref. [1], wavefront transformations
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Figure 1.19: (a) A schematic of the experimental setup. The inset figure shows photographs of the
fabricated unit cell, frontside (right) and backside (left). (b) The phase and the amplitude of the local
transmission coefficient under different applied bias voltages (c) Experimental results of the near-field
scanning at 6.9 GHz, the focal spot is consequently moved along a trace of the letter “N” [47].

were performed by means of Huygens’ metasurfaces, as for example, Bessel [110, 113, 114] and

Airy [115] beams excitation. On the other hand, the concept allowed one to find fundamental

performance limitation of metasurfaces for wavefront manipulation in terms of efficiency [116,

117, 118, 119].

Generally, to implement a Huygens’ metasurface characterized by electric- and magnetic-

impedance densities, dense arrays (64 elements per λ2
0 area) of meta-atoms are used. Both

complicated designs of reconfigurable meta-atoms and ohmic losses inherent in tunable elements

made it very challenging, especially in optical and visible domains [120, 121, 51, 78, 77], to imple-

ment reconfigurability in Huygens’ metasurfaces. To the best of my knowledge, reconfigurable

Huygens’ metasurfaces were experimentally demonstrated only in a couple of studies presented

in literature [36, 47, 122]. For instance, dynamic focusing with an electronically reconfigurable
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Huygens’ metasurface was presented in 2017 by K. Chen et al. in Ref. [47]. The authors im-

plemented a single row of the metasurface and embedded it inside a parallel-plate waveguide,

as illustrated in Fig. 1.19(a), to emulate an infinite array. The inset of the same figure shows

a photograph of the designed unit cell incorporating varactor diodes as tunable elements. The

size of the unit cell is λ0/4.35 by λ0/6.21 at the central operating frequency of 6.9 GHz. The

experimental results of the metasurface characterization appear in Fig. 1.19(b) and show the

phase and the amplitude of the local transmission coefficient. Figure 1.19(c) demonstrates exper-

imental capabilities of the designed metasurface for dynamic focusing at 6.9 GHz. The authors

estimated the total efficiency of the focusing, defined as the power measured in the focal spot

over the input power, by approximately 36% . As it was also pointed out by the authors, the

modest efficiency is due to lossy tunable elements and inaccuracies in the phase and amplitude

of the local transmission coefficient.

1.4.
Conclusion

In this Chapter, I reviewed the main theoretical and experimental developments in the field

of reconfigurable metasurfaces for antenna applications. Experimental performances of reconfig-

urable metasurfaces operating within major theoretical approaches, binary phase-state and con-

tinuous phase tuning, and built around different tunable elements, PIN diodes, varactor diodes

and liquid crystals, were analysed in detail. Utilization of metasurfaces in reflectarray, transmi-

tarray, Fabry-Perot cavity and conformal transmitarray antenna configurations were considered.

Beam-steering and beam-shaping capabilities and the potential of manipulating multiple beams

by the considered metasurface-based antenna systems were discussed. To compare, the best

and the worst results were demonstrated, respectively, by the binary phase-state metasurface

in reflectarray configuration and the continuous phase tuning metasurface implementing a HIS

in a Fabry-Perot cavity antenna. However, it should be noted that the performance efficiency

is not the only restraint for the choice of an antenna configuration. Other characteristics such

as geometric dimensions and shape, complexity of a feeding system and operating frequency

bandwidth can be important factors as well.
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1.4.1 Advantages and disadvantages of conventional approaches

The main advantage of binary phase-state and continuous phase tuning metasurfaces is the

simple theoretical model expressed in the form of Eq. (1.1). This model allows one to achieve

good efficiency of beam-steering up to 60◦ from the broadside. However, the presented state-of-

the-art experimental results show that this theoretical approach is best suited for reflectarray

and transmitarray antenna configurations. It shows moderate beam-steering performances for

Fabry-Perot cavity and conformal transmitarray configurations. Furthermore, it was revealed

that there are strong limitations in terms of efficiency and level of side lobes for beam-steering

at larger angles [118, 119]. For performing beam-shaping and manipulating multiple beams,

Eq. (1.1) should be complemented with optimization procedures. In Refs. [35, 79], a genetic

algorithm was implemented to that end. This solution is however limited to reflectarray and

transmitarray configurations and was not demonstrated for compact metasurface-based antenna

systems such as a Fabry-Perot cavity antenna.

A crucial point of the development of a reconfigurable metasurface is the design of a unit

cell. The design is performed within the local periodic approximation [75, 112], when the elec-

tromagnetic response of a unit cell in a nonuniform array is approximated by its response in a

corresponding periodic arrangement. It allows one to avoid time-consuming numerical compu-

tations of large-area metasurfaces and significantly accelerate the design procedure. Ideally, a

unit cell should be engineered to exhibit, under an external stimulus, the phase response in the

full 2π-range. Meanwhile, the amplitude response should be kept independent from the stimu-

lus. Unfortunately, there is not a single unit cell realized in practice that would possess such a

behavior. Indeed, in order to achieve strong interaction of an electrically small unit cell with an

incident wave, one harnesses resonant particles. The presence of electromagnetic resonances and

losses (dielectric losses in a substrate, conduction losses in metals or losses in tunable elements)

always implies a nonuniform amplitude response and results in a nonuniform absorption over

the aperture of a metasurface. It further deteriorates the beam-forming efficiency performed

in accordance with Eq. (1.1) under the assumption of a uniform distribution of the amplitude

of the local reflection (transmission) coefficient. Furthermore, the local periodic approximation

does not allow to account for mutual interactions between unit cells in a metasurface exhibiting

actually a nonuniform response along its aperture. The assumption of the local periodicity can

be overcome by more detailed analyses that account for mutual coupling effects by simulating
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each radiating cell with its actual neighbouring cells [123, 124]. However, these more elaborate

techniques are not widely used.

Neither Eq. (1.1) nor the design procedure within the local periodic approximation sets

constraints on the total size of a unit cell. According to the theory of antenna arrays [125],

the size of a unit cell should be λ0/2 by λ0/2 to avoid the appearance of grating lobes at

the operating frequency. However, as it was seen throughout the state-of-the-art examples,

the shortest dimension of a unit cell composing a reconfigurable Huygens’ metasurface can

be as small as λ0/6.21 [47]. Although Huygens’ metasurfaces promise to improve efficiency of

wavefront manipulation [118, 119, 126, 117, 127, 128, 129, 130, 131] in comparison to conventional

approach, a higher density of unit cells might lead to increased absorption (because of losses in

tunable elements) and reduced total efficiency.

Summarizing the aforesaid, the motivation for the research executed in this Thesis can be

formulated as follows

• Fundamental performance limitations of binary phase-state and continuous phase tuning

metasurfaces;

• Inaccuracies of the design procedure based on the conventional local periodic approxima-

tion;

• Open question of the density of unit cells composing a metasurface and its impact on the

absorption;

• Limited capabilities and moderate efficiency of antenna configurations such as Fabry-Perot

cavity and conformal transmitarray antennas.
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2.1. INTRODUCTION

2.1.
Introduction

A diffraction grating, defined as a periodic optical structure with infinite extent in one

direction diffracts waves incident on its surface [132]. Being imposed by the periodicity of a

grating, which can be of the order of a free-space wavelength or greater, an incident wave is

scattered as propagating diffraction orders only in certain directions. Back at the beginning

of the 20th century, the problem of intensity distribution among diffraction orders produced

by a grating was referred to as one of the most important topic in optics [133]. The intensity

distribution is defined by the geometric profile of a grating and its period, both can be arbitrary

in a general case. It makes a rigorous analysis particularly difficult. A particular class of gratings

maximizing the intensity in a given diffraction order referred to as blazed gratings was studied

in detail [133, 134, 135, 136] and perfect blazing was demonstrated in nonspecular direction

when there are only two propagating orders [137, 138]. Classical blazed gratings are three-

dimensional (3D) structures that generally take the form of right-angle sawtooths [139, 138],

sinusoidal shape [138] and rectangular grooves [137, 138].

In the last decade, metasurfaces have been applied to mimic blazed gratings functional-

ity [140]. While in the First Chapter, I refer to any structured surface as a metasurface, in this

case metasurfaces presented in the literature are essentially dense structured surfaces. In course

of extensive research, effective-medium theoretical models were established to arbitrary control

reflection and refraction of an incident plane wave [1, 110]. Then a metasurface is characterized

by a surface impedance and represents a planar grating. Perfect (without spurious scattering

in the far-field) refraction in the first diffraction order and beam splitting in transmission with

equal excitation of -1st and 1st diffraction orders by means of passive and lossless bianisotropic

metasurfaces were presented in Refs. [117, 141, 142] and [126], respectively. To achieve per-

fect nonspecular reflection with passive and lossless metasurfaces, auxiliary surface waves have

to be additionally excited [126, 129, 143, 144]. Otherwise, it is required to engineer active

and lossy response of a metasurface [118, 119, 143]. Although it seems possible to design such

metasurfaces, the design procedure is not well-defined [143, 144]. Multichannel reflection with

metasurfaces was also demonstrated in Ref. [6].

In 2017, Y. Ra’di et al. in Ref. [145] and A. Epstein et al. in Ref. [146] demonstrated theo-

retically and via 3D full-wave simulations the possibility of perfect nonspecular reflection [145]
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and beam-splitting [146] with a periodic array of meta-atoms over a perfect electric conductor

(PEC) and consisting of a single meta-atom per period. Such type of structures, periodic arrays

of meta-atoms with the inter-element distance being of the order of the operating wavelength,

were called metagratings. In strong contrast to a metasurface, the sparse arrangement of scat-

terers does not allow one to describe a metagrating in terms of surface impedances or local

reflection and transmission coefficients. On the other hand, a rigorous microscopic model of a

metagrating together with judicious engineering of the electromagnetic response of meta-atoms

allow one to overcome the fundamental limitations of metasurfaces in terms of efficiency.

In this Chapter, I build a microscopic analytical model of one-dimensional (1D) reflective

metagratings with multiple meta-atoms composing a period. Traditionally, in 1D gratings there

is a profile modulation in one direction and a translational symmetry in the other. In 1D

metagratings, identical meta-atoms are arranged in a line to form a wire along the translation

invariant direction such that it becomes possible to define an averaged macroscopic quantity

like an impedance density [146]. A reflective configuration implies that wires are placed on

top of a metal-backed dielectric substrate, as illustrated in Fig. 2.1. Then, a theoretical study

on the number of different wires necessary for total control of propagating diffraction orders is

performed. To experimentally validate theoretical findings, I design several metagratings based

on concrete physical structures. Finally, a comparison in terms of efficiency with conventional

gradient metasurfaces is made.

2.2.
Total control of diffraction pattern

2.2.1 Inverse scattering problem

A metagrating is modeled as a 1D periodic array of polarization line currents excited in thin

loaded wires by a TE-polarized plane wave incident at an angle θ and having the electric field

along the wires. I consider a reflective-type metagrating when the wires are placed on top of

a perfect electric conductor (PEC)-backed dielectric substrate. Schematics of the system under

consideration is depicted in Fig. 2.1(a). The incident plane wave is reflected from the grounded

substrate resulting in the excitation field of the following form

E(exc)
x (y, z ≤ −h) =

(
e−jβ0z +RTE

0 ejβ0(z+2h)
)
e−jk sin[θ]y. (2.1)
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2.2. TOTAL CONTROL OF DIFFRACTION PATTERN

Figure 2.1: System under consideration: a periodic array of thin loaded wires (represented by color
cylinders) placed on a PEC-backed dielectric substrate having relative permittivity εs, permeability µs and
thickness h. The array is excited by a plane wave incident at the angle θ (black arrow). Propagating
diffraction orders are illustrated by red arrows.

Thus, the grounded substrate should be carefully chosen in order to provide efficient excitation

of line currents, i.e. h ∼ λ/(4
√
εsµs − sin(θ)2).

Since the illuminated structure is periodic, with the period L, the scattered field E(sct)
x (y, z <

−h) can be represented as a superposition of plane waves

E(sct)
x (y, z < −h) =

+∞∑
m=−∞

ATE
m e−jξmy+jβmz. (2.2)

The plane waves have the tangential and normal components of wave vector equal to ξm =

k sin(θ) + 2πm/L and βm =
√
k2 − ξ2

m, respectively, with k being the wavenumber of free space.

A simple model of metagratings allows one to find the amplitudes ATE
m analytically. Indeed, a

single electric line current J(r) = Iδ(y, z)x0 radiates a cylindrical wave with the electric field in

the form of Hankel function of the second kind zeroth order H(2)
0 [k

√
y2 + z2] (see Ref. [147])

Ex(y, z) = −kη4 IH
(2)
0 [k

√
y2 + z2], Ey = Ez = 0, (2.3)

where η is the characteristic impedance of free space. The electric field created by an infinite

array of N equidistant line currents per period L is given by the following series

Ex(y, z) = −kη4

N∑
q=1

∞∑
n=−∞

Iqe
−jk sin[θ]nLH

(2)
0 [k

√
(y − nL− (q − 1)d)2 + z2], (2.4)

where the phase exp[−jk sin[θ]nL] appears because of the plane wave illumination at angle θ.
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The Poisson’s formula applied to the series of the Hankel functions

+∞∑
n=−∞

f(nL) =
+∞∑

m=−∞

∫ +∞

−∞

dw

L
f(w)e−j

2πm
L

w,

f(nL) = e−jk sin[θ]nLH
(2)
0 [k

√
(y − nL− (q − 1)d)2 + z2] (2.5)

is used to express the series (2.4) as a faster converging series of plane waves

Ex(y, z) = − kη2L

N∑
q=1

∞∑
m=−∞

Iqe
jξm(q−1)d

βm
e−jξmy−jβm|z|. (2.6)

The Fourier transformation of the Hankel function is given by the following formula

+∞∫
−∞

dwH
(2)
0 [k

√
(y − w)2 + z2]e−jξmw = 2e

−jξmy−jβm|z|

βm
. (2.7)

The magnetic fields corresponding to Eqs. (2.3) and (2.6) can be found by means of the Maxwell’s

equations

Hy(y, z) = j

kη

∂Ex(y, z)
∂z

, Hz(y, z) = − j

kη

∂Ex(y, z)
∂y

. (2.8)

The effect of the grounded substrate on the field radiated by the array can be derived in the

same manner as in Ref. [148]. After some algebra, one would arrive at the following expressions

for the amplitudes of the reflected plane waves (2.2)

ATE
m = − kη2L

(1 +RTE
m )ejβmh

βm

N∑
q=1

Iqe
jξm(q−1)d + δm0R

TE
0 e2jβ0h, (2.9)

where δm0 is the Kronecker’s delta representing the specular reflection of the incident wave from

the grounded substrate and RTE
m is the Fresnel’s reflection coefficient

RTE
m = jγTE

m tan[βsmh]− 1
jγTE
m tan[βsmh] + 1 ,

γTE
m = ksηsβm

kηβsm
, βsm =

√
εsµsk2 − ξ2

m, ηs = η

√
µs
εs
, ks = k

√
εsµs. (2.10)

Equation (2.9) reveals that each of N line currents in a supercell contributes to each of the

reflected plane waves through the discrete Fourier transformation of the sequence Iq. Although

there is an infinity of reflected plane waves, only a finite number M = r + l + 1 of them is

scattered in the far-field corresponding to propagating diffraction orders and determining the

diffraction pattern. r and l are the largest integers such that Im(βr) = 0 and Im(β−l) = 0. Thus,
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currents Iq can be considered as degrees of freedom to control the amplitudes of propagating

diffraction orders. Assigning arbitrary values to the amplitudes ATE
m , −l ≤ m ≤ r, one can find

corresponding necessary currents Iq in a unique manner when the number of wires N equals to

the number of propagating diffraction orders M .

2.2.2 Load-impedance density

Each polarization line current is excited in a thin wire characterized by its input-impedance

Zin and load-impedance Zq densities. The currents Iq found when solving the inverse scatter-

ing problem (2.9) can be obtained by loading wires with proper load-impedance densities Zq

calculated by means of Ohm’s law

ZqIq = E(exc)
q − ZinIq −

N∑
p=1

Z(m)
qp Ip. (2.11)

The right-hand side of Eq. (2.11) represents the total electric field at the location of the qth

wire, E(exc)
q represents the excitation field (2.1), Z(m)

qp are the mutual-impedance densities which

account for the interaction between the wires and between the wires and the grounded substrate.

Mutual impedance densities Z(m)
qp take into consideration the interaction of the qth wire (located

in the zeroth period) with the substrate and adjacent wires and being expressed via the following

formulas

Z(m)
qq = kη

2

+∞∑
n=1

cos[k sin[θ]nL]H(2)
0 [knL] + kη

2L

+∞∑
m=−∞

RTE
m

βm

Z(m)
qp = kη

4

+∞∑
n=−∞

H
(2)
0 [k|(q − p)d− nL|]e−jk sin[θ]nL

+ kη

2L

+∞∑
m=−∞

ejξm(p−q)dR
TE
m

βm
, q 6= p. (2.12)

The series containing RTE
m correspond to the interaction with the substrate. The electric field

at the location of the qth wire in the zeroth period created by the rest of qth wires and all other

wires (q 6= p) is associated with the first terms constituting Z(m)
qq and Z(m)

qp , respectively.

2.2.3 Reactive metagratings

A reactive metagrating redistributes the energy of the incident wave between M propagating

diffraction orders. Then, the desired amplitudes ATE
m , −l ≤ m ≤ r, (when assuming a unitary
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amplitude of the incident wave) must satisfy the following condition

r∑
m=−l

∣∣∣ATE
m

∣∣∣2 βm
β0

= 1, (2.13)

where
∣∣∣ATE

m

∣∣∣2 βm/β0 is the part of the incident energy going in the mth diffraction order. Al-

though total control of the diffraction pattern is possible with N = M wires per supercell, the

currents found from (2.9) in a general case correspond to active and/or lossy load-impedance

densities Zq calculated afterwards from (2.11). Since in practice it can be challenging to engi-

neer judiciously the real part of a complex load-impedance density, one is particularly interested

in purely reactive solutions of Eq. (2.11). Equations (2.9) and (2.11) represent two systems of

coupled equations. While, on the one hand, currents Iq should ensure desirable amplitudes of

propagating diffraction orders, they should also satisfy the conditions of passivity and absence

of loss Re(Zq) = 0 expressed as follows

Re

E(exc)
q −

N∑
p=1

Z(m)
qp Ip

 I∗q
 = Re[Zin]|Iq|2, (2.14)

where the asterisk symbol stands for the complex conjugate. Equation (2.14) represents a set of

N quadratic algebraic equations with real and imaginary parts of currents being the variables

and simply means that the qth current radiates all the power spent on its excitation. Additional

M (complex-valued) currents are required to satisfy Eq. (2.14). Thus, N = 2M reactively-

loaded wires per supercell are necessary for establishing arbitrary diffraction patterns exactly.

Although there can be many wires per period, the distance between them is of the order of

λ/4 (λ is the operating wavelength), which does not allow one to perform homogenization and

introduce surface impedance generally used to describe metasurfaces.

From the physical point of view, the additionalM wires are used to set the amplitudes ATE
m of

the surface waves (or nonpropagating diffraction orders, m > r and m < −l) which would ensure

Eq. (2.14). For a better understanding, let me consider an example of a perfect reflection in the

1st diffraction order of a plane wave at normal incidence (r = l = 1). The period L is fixed such

that there are M = 3 propagating diffraction orders in total: -1st, 0th and 1st. In this case, one

has to cancel the two remaining propagating orders and the necessary number of wires per period

N equals 6. First of all, one sets the amplitudes of the plane waves in the far-field as ATE
−1 = 0,

ATE
0 = 0 and ATE

1 = ejφ1
√
β0/βm, where φ1 is the phase of the anomalously reflected wave.
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Figure 2.2: Far-field scattering patterns from finite size metagratings under normally incident plane wave
obtained by means of 2D full-wave COMSOL simulations. Each finite size metagrating has 8 supercells.
Numbers next to each lobe represent the part of power in a given lobe. All represented examples aim
to demonstrate equal distribution of incident power between all excited propagating diffraction patterns.
(a)–(d) Period L = 2 × 30/(sin(65o)), there are five propagating diffraction orders. (a) −2nd and 2nd

orders are excited. (b) −2nd, −1st, 1st and 2nd orders are excited. (c) −2nd and 1st orders are excited.
(d) −2nd, −1st and 1st orders are excited.

Then the currents Iq (q = 1, 2, ..., 6) found from Eq. (2.9) (m = −3,−2, ..., 2) are substituted

into Eq. (2.14). The unknown (complex) amplitudes ATE
−3 , ATE

−2 and ATE
2 of the surface waves

are found by solving Eq. (2.14), which automatically ensures reactive load-impedance densities

Zq calculated afterwards from Eq. (2.11).

2.2.4 Proof-of-concept via 2D simulations

The developed approach allows one to realize arbitrary diffraction patterns with passive struc-

tures illuminated by a plane wave. Figures 2.2 and 2.3 demonstrate different configurations of

the far-field scattering pattern from metagratings of two different periods. The scattering pat-

tern was obtained with 2D full-wave simulations performed by means of COMSOL Multiphysics

as described below. Metagratings in Figs. 2.2 and 2.3 were designed to equally split the power of

normally incident plane wave between excited propagating diffraction orders. Numbers next to

each lobe represent the part of total power carried by a given beam. The imperfection are only
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Figure 2.3: (a)–(d) Period L = 3 × 30/(sin(70o)), there are seven propagating diffraction orders. (a)
0th and 1st orders are excited. (b) All orders are excited apart from 0th and −1st. (c) only −2nd order
is excited. (d) All propagating orders are excited.

due to the finite size of metagratings in the y-direction, i.e. finite number of periods. Indeed, the

scattering problem for finite size objects is more complex than in case of infinite, truly periodic

structures. Strictly speaking, the developed theory is valid for finite size metagratings only when

an incident wave effectively illuminates a metagrating’s area much greater than its period and

much less than its whole size. For instance, it is the case for a Gaussian beam with the waist

wGB such that 1� wGB/L� Ns (Ns is the total number of supercells).

A COMSOL model for 2D full-wave simulations of metagratings can be built in the following

way. The principal element of a metagrating is a polarization line current which is modeled in

COMSOL as surface current density assigned to the boundary of a circle, as shown in Fig. 2.4.

The radius of the circle reff should be equal to the effective radius of a thin wire in order to get

the correct value of the input-impedance density. It is important to exclude from the model the

interior of the circles, otherwise one would get an incorrect value of the input-impedance density.

The surface current density Jes is set as follows: Ex/Zq/(2πreff )x0 (Zq is the load-impedance

density of the qth thin wire). The array of circles is placed on a PEC-backed substrate (the

circles’ centers are on the top of the substrate) as shown in Fig. 2.4. In order to excite the model
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Figure 2.4: Schematics of the 2D COMSOL model used for simulating metagratings. The white regions
inside the circles are excluded from the model. Polarization line currents of effective radius reff (radius
of the circles, it represents the input-impedance density) are simulated as surface current density: Jes =
Ex/Zq/(2πreff )x0 (x0 is the unit vector in the x direction). The total number of line currents (circles)
is number of line currents per period times the number of periods.

I use scattered field formulation and set a background field. The rest of the model is standard

and can be understood from Fig. 2.4.

2.3.
Design, 3D simulations and experiments

Once the necessary load-impedance densities are known, one has to come up with a practical

implementation of the loads. In a general case, capacitive and inductive loads are required

for such design implementation. As a proof of concept, I demonstrate the design procedure

for metagratings operating at microwave frequencies near 10 GHz. Thin metallic wires are

realized as PEC strips having the input-impedance density Zin = kηH
(2)
0 [kw/4]/4 with H

(2)
0

being the Hankel function of the second kind and w being the width of strips. Capacitive

and inductive responses can be achieved with the printed microstrip capacitors and inductors

schematically shown in Fig. 2.5. Load-impedance density Zc of the printed capacitors can be

approximately calculated by means of analytical formulas for the grid impedance of a PEC strips

based capacitive grid [149, 150, 151]

Zc = −jκc
ηeff
2Aα, α = keffB

π
ln
[

1
sin[πw2B ]

]
, (2.15)

where A is the arms’ length, κc is a scaling parameter, ηeff = η/
√
εeff , keff = k

√
εeff , εeff =

(1+εs)/2, α is the grid parameter and B is the period along the x-direction. The formula (2.15)

was already used in the context of metagratings in Ref. [148]. Since PEC strips act intrinsically
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Figure 2.5: Schematics of implementation at microwave frequencies of capacitively (left) and inductively
(right) loaded PEC strips.

as inductors themselves (=[Zin] > 0), the inductive load can be implemented by modulating

the effective length of the strip through a meandering design process [151]. Then, the inductive

load-impedance Zi density can be estimated as

Zi = j
1
κi

leff=[Zin]
B

, leff = C

(
B

D
− 1

)
, =[Zin] ≈ −kη2π

(
ln
[
kw

8

]
+ γ

)
, (2.16)

where leff is the effective length of the meander, κi is a scaling parameter, C and D are the pa-

rameters of the meander, see Fig. 2.5, and γ ≈ 0.5772 is the Euler constant. Formula (2.16) is a

rough approximation of the inductive load-impedance since it does not take into account the in-

teraction between the meander strips and capacitive response on the incident wave. Geometrical

parameters w, B and D are the same for all unit cells and fixed. Parameters A and C are found

from Eqs. (2.15) and (2.16) for each unit cell accordingly to load-impedance densities calculated

beforehand. The last step of the design procedure is to additionally adjust parameters A and

C by performing a parametric sweep with respect to the scaling parameters κc and κi which

are the same for different unit cells. In contrast to the design procedure of metasurfaces, here I

perform simulations of a whole supercell having κc and κi as the only two free parameters. This

allows one to account for interaction between unit cells and immediately arrive at the ultimate

design. A more detailed description of the design procedure based on concrete examples is given

below.

The importance of the near-field control can be demonstrated by considering a simple ex-

ample of a nonspecular reflection at extreme angles [126, 143, 144]. Namely, I consider the

reflection of a normally incident plane wave at the angle of 80◦. In this studied case, there

are only three propagating diffraction orders (-1st, 0th and 1st), as shown by the schematics in
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Figure 2.6: Power management between propagating diffraction orders by the considered metagratings
with six and ten unit cells per period: schematics (top row) and simulation data (bottom row). Result for
infinite and finite size metagratings are presented. Figures in the top row depict excited (green lobes) and
canceled (red lobes) propagating diffraction orders corresponding to the plots in the bottom row showing
the 3D full-wave simulated frequency responses of the metagratings (i.e. part of total power scattered
in a given diffraction order versus frequency). (a), (b) Example of nonspecular reflection at an angle
of 80◦ by means of a metagrating with N = 6 unit cells per period. The finite size metagrating has 16
supercells. (c), (d) Example when out of five plane waves reflected in the far-field, only the first (1/3 of
total power) and second (2/3 of total power) propagating diffraction orders are excited with a metagrating
having N = 10 unit cells in a period. The finite size metagrating has 8 supercells. In both examples,
normal incidence is assumed.

Fig. 2.6(a). Thus, for realizing the anomalous reflection one has to cancel scattering in the -1st

and 0th diffraction orders, which requires six loaded wires per supercell implemented by passive

and lossless elements. The second example I consider is the splitting of the normally incident

plane wave into two reflected plane waves propagating at 30◦ (first diffraction order) and 80◦

(second diffraction order). In contrast to commonly demonstrated examples of beam splitting,

here the incident wave power is not equally distributed between the excited diffraction orders.

Particularly, I design the sample to steer 1/3 of the total power in the first diffraction order and

2/3 in the second one. This scenario is schematically depicted in Fig. 2.6(c) where there are five

propagating diffraction orders controlled by ten loaded wires in a supercell.

These two metagratings were designed to operate at 10 GHz (λ ≈ 30 mm). In order to get

the load-impedance densities, I start by setting the amplitudes of propagating diffraction orders.

In the first case of nonspecular reflection of normally incident plane wave at 80◦, period of the
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Figure 2.7: Outline of the metagratings supercells geometry performing (a) nonspecular reflection at 80◦

(wI = 0.25 mm, BI = 3 mm and DI = 0.6 mm) and (b) beam splitting in the first (1/3 of power) and
second (2/3% of power) diffraction orders (wII = 0.25 mm, BII = 3.75 mm and DII = 0.75 mm). The
used substrate is the F4BM220 with εs = 2.2(1− j10−3), µs = 1, thickness of the substrate is h = 5 mm.
Each unit cell of the metagratings is numbered in correspondence with Tab. 2.1.

structure is LI = 30/ sin(80◦) mm and there are three propagating diffraction orders A−1 = 0,

A0 = 0 and A1 = 1/
√

cos(80◦). It requires six polarization line currents per period separated

by the distance dI = LI/6. The complex amplitudes of three nonpropagating diffraction orders

A−3, A−2 and A2 are found by numerically solving the system of equations (2.14). After all

six amplitudes are known, I calculate the six polarization currents Iq form Eq. (2.9). Then,

the load-impedance densities are found from Eq. (2.11). The same procedure is repeated for

the other metagrating performing the splitting of normally incident plane wave between the

first (1/3 of power) and second (2/3 of power) propagating diffraction orders. Period of the

metagrating is LII = 2× 30/ sin(80◦) mm and there are ten polarization line currents separated

by the distance dII = LII/10. The complex amplitudes of the five propagating diffraction orders

are set as A−2 = 0, A−1 = 0, A0 = 0, A1 =
√

1
3/
√

1− (λ/LII)2 and A2 =
√

2
3/ cos(80◦). Again,

the complex amplitudes of nonpropagating diffraction orders A−5, A−4, A−3, A3 and A4 are

solutions of Eq. (2.14). Computed load-impedance densities can be found in Table 2.1.

To design experimental samples parameters w, B and D are fixed and kept the same for

all unit cells in a metagrating, as shown in Fig. 2.7. In order to find parameters A and C of

each unit cell I use equations (2.15) and (2.16) presented in the main text and 3D full-wave

simulations of a metagrating single supercell (as the ones in Fig. 2.7) with imposed periodic

boundary conditions. We perform a parametric sweep with respect to the scaling parameters κc

and κi until the model acts as desired. For the first and second samples the optimal parameters

are κc = 0.9, κi = 1.35 and κc = 0.92, κi = 2.66, respectively. It is important to note that

the scaling parameters are independent of the unit cell. In contrast to the design procedure

of metasurfaces, here I perform simulations of a whole supercell having κc and κi as the only
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Load-impedance density (η/λ) Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10
Nonspecular reflection −j10.6 −j6.27 −j12.2 j12.5 j22.4 −j15.7 − − − −

Beam splitting −j9.32 −j6.88 −j2.77 −j8.57 −j2.60 −j6.03 −j4.10 j0.38 j13.0 −j8.98
Geometrical parameters (mm) A1 A2 A3 C4 C5 A6 − − − −

Nonspecular reflection 2.0 3.3 1.7 2.9 5.2 1.3 − − − −
Geometrical parameters (mm) A1 A2 A3 A4 A5 A6 A7 C8 C9 A10

Beam splitting 1.7 2.3 5.6 1.8 6.0 2.6 3.8 0 7.0 1.7

Table 2.1: Parameters of metagratings presented in the main text. The indexes correspond to the numbered
unit cells in Fig. 2.7.

Figure 2.8: Fabricated samples and comparison of the simulation and experimental data. (a), (b)
Photograph of the samples performing (a) nonspecular reflection at 80◦ (N = 6) and (b) splitting into
two plane waves propagating at 30◦ and 80◦ (N = 10). (c), (d) Experimentally measured and numerically
simulated scattering patterns: (c) nonspecular reflection at 10.1 GHz (main beam has 93% of total power),
(d) unequal splitting into two plane waves at 9.95 GHz (there are 31.5% of power in the 1st order and
63.5% in the second one).

two free parameters. In this way I account for interaction between different unit cells and

immediately arrive at the ultimate design. Geometrical parameters of the fabricated samples

are specified in Table 2.1.

The two metagratings were fabricated and tested in the following three steps. First, by

means of 3D full-wave simulations, I test the metagratings designs in an infinite array config-

uration by imposing periodic boundary conditions to a single supercell and by assuming plane

wave illumination. Figures 2.6(b) and (d) demonstrate the frequency response of the infinite

metagratings. It is seen that the efficiency is above 95% in both considered examples at the

frequency of operation. The remaining 5% power is dissipated as heat in the substrate due to

dielectric losses and as spurious scattering due to imperfections of the design. In a second step,

58



CHAPTER 2

3D full-wave simulations are used to test finite size physical metagratings with a number of

supercells corresponding to that used for fabrication of the experimental samples. In order to

be able to further compare the results of these simulations to the experimental data, features

of the experimental setup have to be taken into account. The fabricated samples have been

tested in an anechoic chamber dedicated to radar cross section (RCS) bistatic measurements.

Transmitting and receiving horn antennas are mounted on a common circular track of 5 m ra-

dius. Physical sizes of the experimental samples are approximately 480 mm (y-direction) by

160 mm (x-direction), as illustrated in Figs. 2.8(a) and (b). Thus, the wavefront of the incident

wave in the y-direction cannot be approximated by a plane wave. To take this configuration into

account, simulations are performed assuming a cylindrical incident wave with periodic boundary

conditions applied in the x-direction. The scattered fields are calculated on a circle enclosing

the metagratings and are then extrapolated to a 5 m radius with the help of the Chu-Stratton

formula [152, 153]. Details on the simulation data processing technique are given in Subsec-

tions 2.3.1 and 2.3.2. Figures 2.6(b) and (d) allow one to compare the efficiency of the finite size

metagratings with the ideal case of the infinite metagratings. The discrepancy in Fig. 2.6(d) at

low frequencies stems from disappearance of the second orders, which clearly has an impact on

the performance of a finite size metagrating. However, this issue is yet to be studied. Finally,

I compare the simulation results of the finite size metasurfaces with experimental data. In the

current experiment, the transmitter is fixed and the receiver moves with 0.5◦ step. The mini-

mum angle value between the transmitter and the receiver for the scanning is 4◦. Under this

experimental setup configuration, it is not possible to measure specular reflection. Therefore,

the performance of the fabricated samples can be estimated from the simulation data depicted

in Figs. 2.6(b) and (d). Figures 2.8(c) and (d) compare the measured and simulated scattered

patterns, where a very good agreement can be observed.

2.3.1 Near far-field and Chu-Stratton formula

In the measurement setup shown in Fig. 2.9(a), the distance between the antennas and the

sample is 5 m. This distance is not large enough to assume that the measurements are performed

under the far-field condition. Indeed, the physical dimensions of the experimental samples are

approximately 480 mm in the y-direction by 160 mm in the x-direction, as shown in Figs. 2.8(a)

and (b). Thus, the wavefront of the incident wave in the y-direction cannot be approximated

by a plane wave. To take it into account, simulations of the finite number of supercells (shown
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Figure 2.9: (a) Photograph of the experimental setup used to measure the scattering patterns. (b) 2D
cross section of the 3D full-wave simulation model of a finite size metagrating. The red curve depicts
the circle where the scattered fields were extracted. (c) Power scattering pattern from a metallic plate of
length 485 mm simulated numerically under different conditions and compared to the experimental curve,
frequency is 10 GHz.

in Fig. 2.7) were performed assuming a cylindrical incident wave (phase center is 5 m away)

with periodic boundary conditions applied in the x-direction. In order to correctly compare the

simulation and measurement results, I harness the Chu-Stratton integration formula [153, 152]

to extrapolate the field calculated on the circle C1 of radius 258.7 mm (red curve in Fig. 2.9(b))

enclosing the sample to the circle C2 with 5 m radius

E(y2, z2) = 1
4π

∮
C1

(jωµ[m×H(y1, z1)] + [m×E(y1, z1)]

×∇ +[mE(y1, z1)]∇)G(y2 − y1, z2 − z1)dl. (2.17)

Here y2 and z2 are the coordinates of a point belonging to C2, the integrand contains the fields

computed on C1, G is the free space green function and m is the unit normal vector directed
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outward C1. The radius of C1 was chosen as half length of simulated metagratings (16 and 8

supercells were simulated in the two cases) plus half of the central operating wavelength (15

mm). As the simulations are performed with periodic boundary conditions in the x-direction, a

2D symmetry is assumed and thus, I used G(y, z) = jH
(2)
0 [k

√
y2 + z2]/4 as a Green function.

Fig. 2.9(c) demonstrates the importance of the Chu-Stratton formula. It compares the

scattering patterns from a metallic plate measured experimentally and obtained via numerical

simulations under different conditions: (i) the metallic plate is under the normally incident plane

wave, far-field is calculated; (ii) the metallic plate is under the cylindrical wave illumination,

phase center is at the distance 5 m, far-field is calculated; (ii) the metallic plate is under the

cylindrical wave illumination, scattered field is processed by means of Chu-Stratton formula and

pattern at the distance 5 m is built.

2.3.2 Calculation of the power scattered in given diffraction order

The diffraction pattern appeared when a plane wave reflects from an infinite metagrating is

represented by a finite number of plane waves propagating at certain angles. The power scattered

in the mth propagating diffraction order is then calculated as |ATE
m |2βm/β0 (assuming unit

amplitude of the incident wave). However, when it comes to a finite size periodic structure

under a plane-wave-like illumination the pattern of the scattered field is much more complex.

The following formula is used to estimate the part of total power scattered αm(ν) in a given

diffraction order

αm(ν) =
(∫ θm2

θm1

P (ν, θ)dθ
)/ r∑

m=−l

∫ θm2

θm1

P (ν, θ)dθ

 . (2.18)

Here, P (ν, θ) represents the power scattered in the receiving angle θ, with ν being the frequency.

The integration is performed only over the receiving angle range of half the maximum power

of the beam corresponding to the mth diffraction order. The summation in the denominator

includes all propagating diffraction orders at the frequency ν. Angles θm1 and θm2 are found

as follows. First, I accurately localize the maximum of the mth diffraction order around the

receiving angle sin−1(ξm/k). Then, θm1 and θm2 correspond to the −3 dB of the power attenuation

from the found maximum value.
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2.4.
Comparison to gradient metasurfaces

In this Section, I would like to compare theoretical efficiencies of multi-element metagratings

and conventional gradient metasurfaces well-studied in the literature, see for e.g. Refs. [1, 118,

119]. The anomalous reflection of a normally incident plane wave at an angle ϕ is chosen as a

benchmark functionality, and TE polarization is considered. Passive gradient metasurfaces are

compared to reactive metagratings.

A gradient metasurface can be described by means of the local reflection coefficient R(y), the

passivity condition implies that |R(y)| ≤ 1. The generalized law of reflection [1] suggests that

a constant phase gradient −k sin(ϕ) should be created along a metasurface in order to reflect a

normally incident plane wave at a desired angle ϕ. It makes the local reflection coefficient to be

R(y) = exp[−jk sin(ϕ)y] and corresponds to a reactive metasurface.

More rigorously, the local reflection coefficient can be found from the ansatz of the incident

(i) and the reflected (r) waves and by means of the electromagnetic equivalence principle [119]

R(y) = −1 +
2
(
E

(i)
x (y, 0) + E

(r)
x (y, 0)

)
E

(i)
x (y, 0) + E

(r)
x (y, 0) + η

(
H

(i)
y (y, 0) +H

(r)
y (y, 0

) . (2.19)

The incident wave is a normally incident plane wave, the reflected wave is a plane wave propa-

gating at the angle ϕ from the broadside

E(i)
x (y, z) = e−jkz, H(i)

y (y, z) = 1
η
e−jkz,

E(r)
x (y, z) = e−jk(sin[ϕ]y−cos[ϕ]z), H(r)

y (y, z) = −cos[ϕ]
η

e−jk(sin[ϕ]y−cos[ϕ]z). (2.20)

The resulted amplitude of the local reflection coefficient in this case can take values less than

1. It implies that a gradient metasurface should implement control of both the phase and the

amplitude of the local reflection coefficient through engineering of the local absorption.

To calculate the theoretical efficiency of the anomalous reflection by a gradient metasurface,

I perform 2D full-wave simulations by means of COMSOL Multiphysics. In simulations, a gra-

dient metasurface is modeled as a boundary condition and characterized by an input-impedance

Zin(y). A schematic of the simulation model is shown in Fig. 2.10(a). The input-impedance is
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Figure 2.10: (a) A schematic of 2D COMSOL model used to simulate gradient metasurfaces. (b) Spatial
profile of the amplitude |R(y)| of the local reflection coefficients Eq. (2.19) corresponding to the anomalous
reflection at 30◦ (solid curve) and 80◦ (dashed curve). (c) Efficiency vs. the angle of anomalous reflec-
tion. The blue and green curves correspond to a constant phase-gradient metasurface [1] and a gradient
metasurface implementing local phase and amplitude control [119]. Normally incident plane-wave illumi-
nation is assumed. The red star corresponds to the experimental efficiency of the metagrating performing
the anomalous reflection at 80◦ as demonstrated in Section 2.3.

found from the local reflection coefficient R(y) by means of the following expression

Zin(y) = η
1 +R(y)
1−R(y) . (2.21)

Figure 2.10(c) demonstrate theoretical efficiencies of gradient metasurfaces implementing local

phase control according to the generalized law of reflection (blue curve) and local phase and am-

plitude as required by the ansatz of the fields in Eq. (2.20). The efficiency of both metasurfaces

drops to 0 when approaching 90◦. It should be noted that while in the first case the efficiency

decreases due to spurious scatterings in parasitic propagating diffraction orders, in the second

case the spurious scattering is completely suppressed but the power dissipates in a metasurface
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as heat. It is also seen that a constant phase-gradient metasurface outperforms (in terms of total

efficiency) a more sophisticated gradient metasurface requiring engineering local absorption. As

it was shown theoretically in Section 2.2, a multi-element reactive metagrating can be engineered

to perfectly redirect the incident wave in a desired diffraction order, the corresponding efficiency

is, obviously, 1 independently of the angle of anomalous reflection. Experimental validation pre-

sented in Section 2.3 endorses exceptionally high efficiency of the designed metagrating, red star

in Fig. 2.10(c), in comparison to theoretical efficiencies of conventional gradient metasurfaces.

2.5.
Magnetic metagratings

In the previous sections, I have discussed in details the physics of metagratings built-up from

loaded wires excited by the electric field. However, the theoretical approach can be generalized

on magnetic metagratings represented by a one-dimensional array of magnetically polarizable

wires placed on top of a PEC-backed dielectric substrate. Microscopically, a magnetic wire can

be envisaged as a dense, deeply subwavelength, array of identical magnetic particles arranged

in a line. The next two subsections explain in detail the physics of magnetic metagratings for

diffraction pattern manipulation.

2.5.1 Radiation of an array of magnetic currents

When excited by an external magnetic field, the radiation of a magnetic wire is modeled by the

radiation of a magnetic line current. A single magnetic line current M(r) = V δ(y, z)x0 radiates

a TM-polarized wave with the magnetic field being along the x-direction [147]

Hx(y, z) = − k

4ηV H
(2)
0

[
k
√
y2 + z2

]
, Hy = 0, Hz = 0, (2.22)

where H(2)
0

[
k
√
y2 + z2

]
is the Hankel function of the second kind and zeroth order. Conse-

quently, the magnetic field radiated by a periodic phased array of magnetic line currents

M(r) = x0

N∑
q=1

+∞∑
n=−∞

Vqe
−jk sin(θ)nLδ(y − nL− (q − 1)d, z) (2.23)

is given by the series of Hankel functions

Hx(y, z) = − k

4η

N∑
q=1

+∞∑
n=−∞

Vqe
−ik sin[θ]nLH

(2)
0 [k

√
(y − nL− (q − 1)d)2 + z2]. (2.24)
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By means of the Poisson’s formula (2.7), the radiation of the periodic array (2.24) can be

expressed as the series of plane waves

Hx(y, z) = − k

2ηL

N∑
q=1

+∞∑
m=−∞

1
βm

Vqe
jξm(q−1)de−jξmye−jβm|z|. (2.25)

The introduction of a PEC-backed dielectric substrate is accounted via the Fresnel’s reflection

coefficient and, thus, the magnetic field outside the substrate (z < −h) can be found to be

Hx(y, z < −h) = − k

2ηL

N∑
q=1

+∞∑
m=−∞

(1 +RTM
m )ejβmh

βm
Vqe

jξm(q−1)de−jξmy+jβmz, (2.26)

where

RTM
m = −jγ

TM
m tan[βsmh]− 1

jγTM
m tan[βsmh] + 1 , γTM

m = kηsβ
s
m

ksηβm
. (2.27)

2.5.2 Inverse scattering problem

When the magnetic line currents are excited in magnetically polarizable wires by an incident

TM-polarized plane wave at the angle θ, the scattered magnetic field can be represented as a

superposition of plane waves

H(sct)
x (y, z < −h) =

+∞∑
m=−∞

ATM
m e−jξmy+jβmz. (2.28)

Amplitudes of the plane waves are found from Eq. (2.26) and can be expressed as follows

ATM
m = − k

2ηL
(1 +RTM

m )ejβmh

βm

N∑
q=1

Vqe
jξm(q−1)d + δm0R

TM
0 e2iβ0h (2.29)

where δm0 is the Kronecker delta representing the reflection of the incident wave from the PEC-

backed substrate.

It can be noticed that the result of Eq. (2.29) could be obtained from Eq. (2.9) by applying

duality relations [147]: E→ H, H→ −E, I → V and η → 1/η. Since the PEC-backed dielectric

substrate is not replaced by the corresponding dual equivalent (PMC-backed substrate) in case

of a magnetic metagrating, one has to additionally make the following substitution RTEm → RTMm .

As in the case of TE polarization treated above, Eq. (2.29) demonstrates that the mag-

netic line currents contribute to the scattered plane waves via the discrete Fourier transform∑N
q=1 Vqe

jξm(q−1)d. Magnetic line currents Vq can thus be used to control propagating diffraction

orders. Necessary currents Vq can be obtained by loading wires with appropriate load-admittance
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densities Yq found from Ohm’s law

YqVq = H(exc)
x ((q − 1)d,−h)− YinVq −

N∑
p=1

Y (m)
qp Vp. (2.30)

The right-hand side of Eq. (2.30) represents the total magnetic field at the location of the

qth wire. The incident TM-polarized plane wave together with its specular reflection from the

grounded substrate create the external excitation field

H(exc)
x (y, z ≤ −h) =

(
e−jβ0z +RTM

0 ejβ0(z+2h)
)
e−jk sin(θ)y. (2.31)

The input-admittance density Yin characterizes the self-interaction of the qth wire. On the other

hand, the mutual-admittance densities Y (m)
qp take into account the interaction with the substrate

and adjacent wires. The magnetic field created by qth line current from all periods (except the

zeroth one) is given by the following series

− k

2ηVq
+∞∑
n=1

cos[k sin[θ]nL]H(2)
0 [knL]. (2.32)

The magnetic field created by all other line currents can be accounted for as follows

− k

4η

N∑
p=1,p 6=q

Vp

+∞∑
n=−∞

e−jk sin[θ]nLH
(2)
0 [k|(q − p)d− nL|]. (2.33)

The waves reflected from the PEC-backed substrate create the following magnetic field at the

location of the qth wire (zeroth period)

− k

2ηL

N∑
p=1

Vp

+∞∑
m=−∞

ejξm(p−q)dR
TM
m

βm
. (2.34)

However, in contrast to the case of TE polarization discussed in Section 2.2, the series in

Eq. (2.34) does not converge when q = p. Indeed, RTM
m goes to (εs − 1)/(εs + 1) when m

tends to infinity, βm ∼ −jm for large m. The divergence can be avoided by using the Poisson’s

formula backwards. To that end, I perform the following transformation of the series

+∞∑
m=−∞

RTM
m

βm
=

+∞∑
m=−∞

1
βm

(
RTM
m − εs − 1

εs + 1

)
+ εs − 1
εs + 1

+∞∑
m=−∞

1
βm

. (2.35)

The first series on the right hand side of Eq. (2.35) now converges while the second one contains

the singularity and should be transformed by means of the Poisson’s formula in the following
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way

εs − 1
εs + 1

+∞∑
m=−∞

1
βm

= L
εs − 1
εs + 1

+∞∑
n=1

e−jk sin[θ]nLH
(2)
0 [knL] + L

2
εs − 1
εs + 1H

(2)
0 [kr0]. (2.36)

Summarizing Eqs. (2.32), (2.33), (2.34) and (2.36), one arrives at the explicit expression for the

mutual-admittance density

Y (m)
qp = k

4η

+∞∑
n=−∞

e−ik sin[θ]nLH
(2)
0 [k|(q − p)d− nL|] + k

2ηL

+∞∑
m=−∞

ejξm(p−q)dR
TM
m

βm
, q 6= p,

Y (m)
qq = εs − 1

εs + 1
k

4ηH
(2)
0 [kr0] +

(
1 + εs − 1

εs + 1

)
k

2η

+∞∑
n=1

cos[k sin[θ]nL]H(2)
0 [knL]

+ k

2ηL

+∞∑
m=−∞

1
βm

(
RTM
m − εs − 1

εs + 1

)
. (2.37)

Equations (2.29),(2.30) and (2.37) allow one to calculate load-admittance densities to estab-

lish a desired diffraction pattern. In order to deal only with reactive load-admittance densities,

one has to additionally satisfy the equation of power conservation

Re

H(exc)
x ((q − 1)d,−h)−

N∑
p=1

Y (m)
qp Vp

V ∗q
 = Re[Yin]|Vq|2. (2.38)

When satisfying this equation, arbitrary diffraction patterns for TM polarization can be con-

structed with reactive magnetic metagratings. Practical implementation of polarizable particles

composing a magnetic wire is considered in the following chapter.

2.6.
Conclusion

In this Chapter, I have presented analytical models of multi-element electric and magnetic

metagratings operating in the reflective configuration. It has been shown that the power of

an incident wave can be arbitrarily redistributed between different M propagating diffraction

orders by means of N = M loaded wires in a supercell. In a general case, it requires loading

wires with engineered active and lossy elements, which appears to be exceptionally challeng-

ing in practice. However, I also demonstrated that accurate adjustment of the near-field (via

nonpropagating diffraction orders) facilitating to establish power balance with purely reactive

metagratings becomes possible by introducing additional wires in a supercell. Meanwhile, it is

important to note that no strict proof has been provided regarding the exact number of reactive
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wires (in a supercell) necessary to arbitrarily control the diffraction pattern in a general case.

Equation (2.14) represents a set of quadratic equations with complex-valued coefficients and

real-valued roots (Re[Iq] and Im[Iq]). Since Eq. (2.14) involves such operators as Re, complex

conjugate and modulus, it is not an ordinary algebraic equation and a rigorous mathematical

analysis becomes particularly difficult. Therefore, in each particular situation the number of

reactive wires should be found individually.

To validate the theoretical findings, several examples to establish desired diffraction patterns

with N = 2M reactive wires per period have been demonstrated via 2D full-wave simulations.

For an experimental validation, I have demonstrated the design procedure of electric metagrat-

ings at microwave frequencies by using printed capacitor and inductor as building blocks for

loaded-wires. The experimental validation results represent extreme examples in the control of

diffraction patterns which are challenging or impossible to realize by other means. For instance,

in order to perform large angle nonspecular reflection using a scalar reflective metasurface, one

has to significantly rely on numerical optimization techniques [143, 144]. Otherwise, one has to

design a three layer scalar metasurface emulating omega-bianisotropic response or a tensorial

reflective metasurface [126, 129]. It is also interesting to note that when looking at the pho-

tographs of the fabricated metagratings shown in Figs. 2.8(a) and (b), one could reasonably

argue that they remind a lot of conventional dense metasurfaces and, therefore, can be homog-

enized and described in terms of surface impedances. However, such an attempt would lead to

the conclusion that the metagratings locally radiate and absorb (real part of surface impedance

would take positive and negative values), when in fact they are reactive structures. It highlights

yet another time the importance of adopted theoretical models, which may lead to opposite

conclusions even though being applied to describe the same physical structures.

Although the proof-of-concept demonstration is done at microwave frequencies under the

assumption of TE polarization, the main theoretical result is general. Significantly decreasing the

number of unit cells per wavelength (compared to metasurfaces) greatly relaxes the fabrication

constraints which makes it easier to develop metagratings operating in the optical domain and

capable of controlling all propagating diffraction orders. Moreover, recent advances in the area

of manipulating acoustic wavefronts [154, 155, 156, 157] suggest that the developed theory

can be also generalized for the needs of the acoustics community. The possibility to develop

metagratings operating at different frequency ranges as well as for other domains of physics such

as acoustics opens an avenue for a plethora of applications.
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3.1. INTRODUCTION

3.1.
Introduction

A metasurface is represented by a distribution of engineered subwavelength scatterers over

a surface and can be described by means of surface impedances. It can perform wavefront

transformations when the surface impedances are spatially modulated [1, 110]. The local periodic

approximation (LPA) plays a crucial role in designing such metasurfaces [75, 112] and has been

already used for long time as it is discussed in the First Chapter. The LPA serves to estimate

scattering properties of a unit cell embedded in a nonuniform array. To that end, the unit

cell is placed in a corresponding uniform array whose reflection and transmission coefficients

are then attributed to it in the nonuniform array. Scattering parameters of a uniform array

are usually calculated from full-wave numerical simulations. However, there are particularly

simple cases (e.g. metallic patches) that can be treated analytically [150, 151]. Importantly,

scattering parameters of a unit cell obtained with the LPA represent its integral characteristics

and sum up contributions from the substrate, a meta-atom and the interaction between meta-

atoms forming the uniform array. It makes scattering parameters change, when one thickens the

substrate or changes the inter-element distance without altering a meta-atom. The analytical

model of metagratings is based on their discrete representation and allows to calculate the

interaction between neighboring wires. It therefore requires characterizing a loaded-wire with

proper parameters, which depends on neither the substrate nor the inter-wire distance. Input-

and load-impedance densities are the parameters that characterize a loaded-wire. It makes the

conventional LPA unsuitable to that end.

Practically, a wire is constituted from subwavelength meta-atoms arranged in a line. The

electromagnetic response of a wire, input- and load-impedance densities, is determined by

geometrical parameters of constituting meta-atoms. Initially, metagratings were designed ei-

ther by performing 3D full-wave numerical optimization of a whole metagrating’s period, as

in Ref. [145], or semi-analytically, as discussed in the Second Chapter and demonstrated in

Refs. [158, 146, 148]. While the first approach can be very time consuming when it comes to

designing metagratings having many wires per period, the second one allows one to consider only

very simple meta-atom designs such as printed capacitors and inductors [146, 148, 159] or dielec-

tric cylinders [158]. Although semi-analytical approaches represent a simple tool for designing

metagratings, it has to be completed with a phenomenological scaling parameter which is found

70



CHAPTER 3

by means of 3D full-wave simulations of an entire supercell and, thus, is not unique for different

supercells [146, 159]. In this Chapter, I develop an analog of the LPA to design metagratings

with the help of 3D full-wave numerical simulations. To conform with the above mentioned

requirements, the LPA is accompanied with an analytical procedure allowing to subtract the

contributions from the substrate and the interaction with neighboring wires in a uniform array.

In comparison to a straightforward numerical optimization, it significantly reduces the time

spent on the design of metagratings since within the LPA one deals with a single unit cell at a

time. Conversely to analytical models, simulation-based approaches are advantageous for being

able to consider complex designs of meta-atoms and account for such practical aspects as finite

thickness of the metal cladding, conduction and dielectric losses. Next in the Chapter, I combine

the analytical model developed in the Second Chapter and the LPA with an optimization proce-

dure to solve the inverse scattering problem and find an optimal number of wires in a supercell.

The optimization procedure allows to tackle the problem of the number of wires in a supercell

outlined in the end of the Second Chapter. The developed design procedure is validated by

means of 3D full-wave simulations and experimentally.

3.2.
Retrieval procedure

I consider reflecting metagratings operating either under TE or TM incident wave polariza-

tion. Therefore, each wire composing a metagrating can be characterized by a scalar electric

impedance density Zq (or scalar magnetic admittance density Yq in the case of a wire possess-

ing a magnetic response). Previously, I have distinguished between load- and input-impedance

densities which I do not separate in the present Chapter dealing only with impedance density as

the principal characteristic of a wire. To be more accurate, I assume that the impedance density

represents the sum of the load-impedance density and reactive part of the input-impedance den-

sity. The reason for such an adjustment is that it is difficult to define input-impedance density

for a complex design of a wire.

According to the LPA, in order to find the impedance density, a wire from a nonuniform

array (Fig. 3.1(a)), is placed in the corresponding uniform array of period d illuminated by a

plane wave incident at angle θ, as illustrated in Fig. 3.1(b). I start by describing a way to retrieve

electric-impedance Zq and magnetic-admittance Yq densities from scattering parameters. Since

Zq (Yq) represents itself as a complex number and an electric (magnetic) line current radiates TE
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Figure 3.1: (a) Schematic diagram of a metagrating: a periodic array of thin wires placed on a dielectric
substrate backed by a metal plate and having relative permittivity εs, permeability µs and thickness h.
The array is excited by a plane wave incident at an angle θ. (b) Schematic diagram of a uniform array
of wires characterized by the same impedance density Zq. The inset represents the different meta-atoms
composing a wire. (c) Principal model used in numerical simulations to calculate the reflection coefficient
from a uniform array of wires implemented with meta-atoms.

(TM) wave, it is sufficient to deal only with the complex amplitude of the specularly reflected

TE (TM) plane wave.

3.2.1 Electric response, TE polarization

An electric polarization line current I, excited by TE plane wave in a wire composing the uniform

array, is linked to the complex amplitude ATE0 of the electric field of the specularly reflected

wave via the following formula

I = −2d
kη

(ATE
0 −RTE

0 e2iβ0h)β0
(1 +RTE

0 )ejβ0h
. (3.1)

Indeed, the scattered electric field can be represented via a plane-wave expansion and only a

single wire per period is considered within the LPA. Then, the amplitudes of these plane waves
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can be obtained from Eq. (2.9) by setting N = 1

ATE
m = − kη2L

(1 +RTE
m )ejβmh

βm
I + δm0R

TE
0 e2jβ0h. (3.2)

The amplitude of the specularly reflected wave corresponds to m = 0 and used to express the

current I in Eq. (3.1). The Fresnel’s reflection coefficient RTE
m from the substrate backed by

perfect electric conductor (PEC) is given by Eq. (2.10). When the metal backing the dielectric

substrate cannot be modeled as PEC, one has to correspondingly modify the reflection coefficient.

Since it is assumed that wires have a deeply subwavelength cross section, polarization currents

are modeled mathematically by Dirac delta function δ(y, z). Consequently, the interaction with

the substrate and between adjacent wires can be taken into consideration analytically by means

of the mutual-impedance density Zm found from Eq. (2.12) as Z(m)
qq

Zm = kη

2

+∞∑
n=1

cos[k sin[θ]nL]H(2)
0 [knd] + kη

2d

+∞∑
m=−∞

RTEm
βm

. (3.3)

It allows one to obtain the characteristic of a wire itself, independent of the substrate’s thickness

h and the inter-wire distance d. Electric-impedance density Zq of a wire is found from Ohm’s

law as follows

Zq = E0
I
− kη

4 − Zm, (3.4)

where E0 = (1 + RTE0 ) exp[jβ0h] represents the value of the external electric field (incident

wave plus its reflection from the metal-backed substrate) at the location of the wire y = 0

and z = −h. The radiation resistance of a wire is equal to kη/4 being independent of its

particular implementation as it follows from power conservation conditions [149]. It is important

to note that mutual-impedance density depends only on the period of the uniform array and

parameters of the metal-backed substrate, but does not depend on the current I. It means

that the impedance density given by Eq. (3.4) accurately represents the characteristic of the

corresponding wire in a nonuniform array.

3.2.2 Magnetic response, TM polarization

The case of TM polarization and wires possessing magnetic response can be treated with the

help of duality relations [147]: E→ H, H→ −E, I → V and η → 1/η. Since the metal-backed

dielectric substrate is not replaced by the corresponding dual equivalent, I have to additionally

make the following substitution RTE0 → RTM0 . Thus, from Eq. (3.1), one can arrive at the
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formula for retrieving the magnetic current V from the complex amplitude of the magnetic field

of the specularly reflected plane wave

V = −2dη
k

(ATM0 −RTM0 e2iβ0h)β0
(1 +RTM0 )ejβ0h

, (3.5)

where RTM0 is the Fresnel’s reflection coefficient from the metal-backed substrate of a TM-

polarized plane wave at incidence angle θ. As previously, the interaction with the substrate and

between adjacent wires can be taken into account by means of the mutual-admittance density

Ym calculated analytically in Eq. (2.37) and reduced to

Ym =
(

1 + εs − 1
εs + 1

)
k

2η

+∞∑
n=1

cos[k sin[θ]nL]H(2)
0 [knd]

+ k

2dη

+∞∑
m=−∞

1
βm

(
RTMm − εs − 1

εs + 1

)
+ εs − 1
εs + 1

k

4η . (3.6)

Then, the magnetic admittance density Yq can be found as

Yq = H0
V
− k

4η − Ym. (3.7)

Here H0 = (1 + RTM0 ) exp[jβ0h] is the value of the external magnetic field at the wire located

at y = 0 and z = −h, k/(4η) represents the radiation conductance.

3.2.3 Look-up table

In practice, a wire is implemented by arranging identical subwavelength meta-atoms in a line.

The ultimate goal of the developing approach is to construct a look-up table linking geometrical

parameters of meta-atoms with corresponding impedance (admittance) densities. To that end,

one can use 3D full-wave numerical simulations software. Here I demonstrate simulation results

obtained with the help of COMSOL Multiphysics. It allows one to take into account such

practical features of meta-atoms as dielectric and conduction losses, finite thickness of metallic

traces and etc. A geometry of a simulation model is schematically shown in Fig. 3.1(c). It

consists of two principal parts: a considered unit cell, illustrated as a printed inductance on a

metal-backed dielectric substrate, and an air region. Periodic boundary conditions are imposed

on the side faces. The model is excited by a periodic port assigned to the face of the air region

opposite to the unit cell, highlighted by the red color in Fig. 3.1(c). The periodic port creates a

plane wave incident at angle θ. It is important to take into account the angle θ as meta-atoms
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are usually spatially dispersive [112]. The thickness of the air region equals operating vacuum

wavelength λ which is normally enough to register only the amplitude of the specular reflection

eliminating higher order evanescent modes. The periodic port is also used as a listening port to

calculate the scattering parameter S11. It is related to the complex amplitude A0 in Eq. (3.1)

as

S11 = ATE0 e−2iβ0(h+λ). (3.8)

In the case of TM polarization

S11 = −ATM0 e−2iβ0(h+λ). (3.9)

3.3.
Optimization-aided design procedure

This section provides a step-by-step guide to design metagratings by means of the local

periodic approximation. The case of TE polarization and electric metagrating is considered

without loss of generality. The design procedure can be decomposed into four main steps, as

outlined in the flowchart depicted in Fig. 3.2. The design procedure begins by setting the period

L of a metagrating and the incidence angle θi of a plane-wave illumination. It defines the set

of Floquet-Bloch modes representing the scattered field. Diffraction angles of the propagating

diffraction orders θm can be found via the grating formula: L(sin[θm]− sin[θi]) = mλ, where m

represents the number of an order. The amplitudes ATE
m of the Floquet-Bloch modes are given

by Eq. (2.9) which I repeat here for sake of the reader’s convenience

ATE
m = − kη2L

(1 +RTE
m )ejβmh

βm

N∑
q=1

Iqe
jξm(q−1)d + δm0R

TE
0 e2jβ0h. (3.10)

Next, an appropriate dielectric substrate for a given frequency range is chosen: its thickness h and

relative permittivity εs should not support propagation of waveguide modes in the frequency

range of interest. Waveguide modes are analog of surface plasmon-polaritons responsible for

well-known grating anomalies (or Wood’s anomalies) in optics. The presence of waveguide

modes also implies divergence of certain Fresnel’s reflection coefficients RTE
m that manifests

itself in significant numerical errors. Thus, in order to select a good substrate for a given

period L of a metagrating, one can plot the absolute value of the first few Fresnel’s reflection

coefficients corresponding to nonpropagating diffraction orders as a function of the substrate’s

parameters (thickness and permittivity) and avoid poles. As a rule of thumb, a substrate with
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Figure 3.2: A flowchart of the design procedure of a metagrating.

low permittivity and thickness of the order of λ/(4√εs) is a good candidate for the design

of metagratings. Although it is known that thin substrates are better for avoiding waveguide

modes, they might not allow efficient excitation of polarization current in wires as the excitation

field vanishes at the ground plate.

The second step is independent of the first one and requires to design a meta-atom (or meta-

atoms) that will form the wires of a metagrating. To that end, the local periodic approximation

is used. A meta-atom’s design should provide a wide range of achievable impedance densities of

a corresponding wire when changing its geometrical parameters (or an external bias if there are

embedded tunable elements).

Each desired configuration of the diffraction pattern requires different set of impedance

densities which obey Ohm’s law:

ZqIq = E(exc)
q − kη

4 Iq −
N∑
p=1

Z(m)
qp Ip. (3.11)

The incident plane wave plus its specular reflection from the PEC backed substrate act as an
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Figure 3.3: A block diagram of a particle swarm optimization algorithm.

external excitation E(exc)
q = (1 + RTE

0 ) exp[jβ0h− jξ0(q − 1)d] of polarization currents Iq. The

scattered field is established depending on excited currents and in accordance with Eq. (3.10). In

the third step of the procedure, one finds impedance densities of wires composing a metagrating

and required to establish a desired diffraction pattern. In general case, arbitrarily chosen ampli-

tudes ATE
m of propagating diffraction orders, as it is stressed in Section 2.2, require impedance

densities that have Re[Zq] 6= 0 and imply engineering of active and/or lossy elements. Including

additional wires in the period and satisfying the power conservation conditions

Re

E(exc)
q −

N∑
p=1

Z(m)
qp Ip

 I∗q
 = kη

4 |Iq|
2, (3.12)

makes it sufficient to use purely reactive loads. On the other hand, any realistic passive meta-

atom possesses inevitable resistive response whether because of conduction and/or dielectric

losses or embedded lossy tunable elements (such as varactor diodes, for instance). Although the

LPA allows one to account for these practical aspects of a meta-atom’s design, the capacity to

judiciously engineer Re[Zq] independently from Im[Zq] can be very limited. Furthermore, the
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Impedance density (η/λ) Z1 Z2 Z3 Z4 Z5 Z6 Z7
Microwaves: TE −i4.87 −i1.16 i6.88 i17.16 −i0.33 i3.97 −i0.81
Infrared: TE −i0.30 −i3.06 −i3.20 i3.61 −i1.63 −i1.04 −i11.59

Admittance density (ηλ) Y1 Y2 Y3 Y4 Y5 Y6 Y7
Microwaves: TM −i3.61 i4.42 i0.89 i3.05 i0.31 i0.71 i4.51

Geometrical parameters (mm) A1 A2 A3 A4 A5 A6 A7
Microwaves: TE 1.48 (cap. uc) 2.74 (cap. uc) 3.08 (ind. uc) 7.88 (ind. uc) 3.26 (cap. uc) 10.33 (cap. uc) 2.94 (cap. uc)

Geometrical parameters (mm) Rout,1 Rout,2 Rout,3 Rout,4 Rout,5 Rout,6 Rout,7
Microwaves: TM 1.348 1.4065 1.382 1.397 1.378 1.381 1.4071

Geometrical parameters (nm) w1, B1, g1 w2, B2, g2 w3, B3, g3 w4, tm,4 = w4 w5, B5, g5 w6, B6, g6 w7, B7, g7
Infrared: TE 175, 1600, 350 59, 800, 100 53, 800, 100 73 (ind. uc) 157, 800, 100 260, 800, 100 137, 800, 350

Table 3.1: Parameters of the metagratings demonstrated as examples in Section 3.4. The indexes cor-
respond to the numbered wires in Figs. 3.6(a) and 3.8(a). The other parameters are fixed and given in
the captions to Figs. 3.4, 3.5 and 3.7. Where it is necessary the type of a used unit cell (uc) is specified
in the brackets. In the example demonstrated by Fig. 3.6(b), inductive unit cells are represented only by
meanders with the parameters B/C = 3 illustrated in Fig. 3.4(c).

set of equations (3.12) should be modified to the following set of inequalities

Re

E(exc)
q −

N∑
p=1

Z(m)
qp Ip

 I∗q
 > kη

4 |Iq|
2 (3.13)

which accounts for the resistance of wires and indicates that the power received by a wire is

greater than the power it radiates. In many situations it is preferable to minimize the impact

of Re[Zq] resulting in increased ohmic losses. Instead of elaborating on the analytical procedure

developed in the Second Chapter and justifying the number of wires per period, the inverse

scattering problem can be efficiently solved by means of a numerical optimization procedure. As

optimization parameters, it uses geometrical parameters of meta-atoms (or external biases) and

the number of wires per period. The geometrical parameters of meta-atoms are related to the

impedance density of a wire in the look-up table constructed by means of the LPA. In their turn,

impedance densities determine polarization currents and, consequently, amplitudes of diffraction

orders found from Eqs. (3.11) and (3.10). The objective function may vary depending on the

needs. The one that I used to equally split the incident wave between an arbitrary number of

propagating diffraction orders when minimizing the parasitic scattering in the far-field is given

as

f(Zq) = tt

∏
n∈D
|ATE

n |2βn/β0

/ r∑
m=−l

|ATE
m |2βm/β0

t . (3.14)

Here, D represents a discrete set of desired orders and t is the size of this set, M = r + l + 1

is the total number of propagating diffraction orders. As a concrete optimization algorithm, I

implemented a particle swarm optimization, as illustrated by the block diagram in Fig. 3.3, which

showed better performances than a real-valued genetic algorithm. Once the optimal impedance

densities are found, the second step of the design procedure is completed.
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Figure 3.4: Examples and characteristics of unit cells that can be used to compose wires in a metagrating.
The top row represents the schematics of printed capacitor (a) and inductances (c) and (e). The bottom
row demonstrates impedance densities found by means of the LPA as functions of geometrical parameters
of unit cells and corresponding (from (b) to (f)), respectively, to wires built up from printed capacitor
shown in figure (a) and printed inductances in figures (c) and (e). Other parameters are fixed: dielectric
substrate is F4BM220 of permittivity εs = 2.2(1−10−3j) and thickness h = 5 mm, B = 3.75 mm, d = 15
mm, w = 0.25 mm, (B/C = 3 in figure (d) and B/C = 5 in figure (f)). Working frequency is set to
10 GHz, corresponding to the vacuum wavelength of 30 mm. Normally incident plane wave is assumed
where electric field is oriented along the B dimension.

The fourth and the final step of the design procedure is to compose a supercell out of the

designed meta-atoms with optimized geometrical parameters and validate the final design using

3D full-wave numerical simulations. It is important to note that the developed optimization

procedure itself does not include full-wave simulations and utilizes only numerical arrays calcu-

lated beforehand. It makes the optimization and the development of a final design much faster

than in the case when only direct optimization of a supercell is performed.

3.4.
Numerical examples via 3D simulations

In order to validate the developed design procedure, I first employ the LPA to construct look-

up tables and then implement metagratings to control propagating diffraction orders. In what
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Figure 3.5: (a) Schematic of a unit cell based on two split ring resonators and having an inversion
center. (b) Zoom view of the magnetic meta-atom with defined parameters. (c) Calculated by means of
the LPA, admittance density of the wire built up from the magnetic meta-atoms versus the outer radius
Rout of the split ring resonator. Other parameters are fixed: no substrate (air is considered as spacer),
h = 3.75 mm, B = 3.75 mm, d = 15 mm, s = 0.15 mm, g = 0.20 mm. Working frequency is set to 10
GHz (vacuum wavelength of 30 mm). Normally incident plane wave is assumed where magnetic field is
oriented along the B dimension.

follows, I focus on two frequency domains: microwave (operating vacuum wavelength 30 mm)

and infrared (operating vacuum wavelength 4 µm). Table 3.1 provides the impedance (admit-

tance) densities as well as the geometrical parameters of the wires composing the metagratings

demonstrated in this section.

3.4.1 Microwave frequency range

I start by considering simple meta-atoms represented by printed capacitors and inductors,

schematically shown in Fig. 3.4, that I have already considered in the Second Chapter. Such

practical aspects of the design as finite thickness of the copper traces (tm = 35 µm) and dielec-

tric losses introduced by the substrate (F4BM220, εs = 2.2 with loss tangent 10−3) are taken

into account in simulations. Figure 3.4 shows the impedance densities calculated by means

of the developed LPA at 10 GHz, the corresponding vacuum wavelength λ is 30 mm. It is

seen that with printed capacitor and inductor at hand, one is able to cover a broad range of

impedance densities (imaginary part) that is normally enough to realize any diffraction pattern

for TE polarization. It is important to note that wires can exhibit significant resistive response

at resonance (Fig. 3.4(f)), which should be kept in mind when designing metagratings. If one

compares the results of the LPA with the analytical models described by Eqs. (2.15) and (2.16),

one would see a very good agreement for the imaginary part of the impedance density for small

values of the parameter A. Meanwhile, the resonance in Fig. 3.4(f) appearing when decreasing

the parameter C cannot be captured by such a simple analytical formula as Eq. (2.16).

In order to build a magnetic metagrating operating under a TM-polarized illumination, I use
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Figure 3.6: (a) Schematic of a metagrating having period 7λ/2 (λ is the operating vacuum wavelength)
and exciting seven propagating diffraction orders under normally incident plane wave. The red and green
beams represent suppressed and equally excited orders, respectively. (b), (c) Simulated frequency response
(normalized power scattered in propagating diffraction orders versus frequency) of the metagrating oper-
ating under (b) TE and (c) TM polarizations and establishing the diffraction pattern illustrated by the
panel (a). Both metagratings are designed to operate at 10 GHz. Impedance and admittance densities as
well as geometrical parameters of the wires composing the metagratings are given in Tab. 3.1.

split ring resonators (SRRs) excited by the magnetic field and possessing an effective magnetic

response. Figure 3.5(a) illustrates the schematics of the unit cell which at close look consists of

two SRRs separated by a short distance as seen from the close-up in Fig. 3.5(b). The unit cell

has an inversion center allowing to eliminate the bianisotropic response attributed to single and

double SRRs [160, 161]. In order to adjust the response of a wire represented by a 1D array of

SRRs, I use the outer radius Rout as a tuning parameter. The result of applying the LPA to find

an equivalent admittance density is shown in Fig. 3.5(c). Due to the small separation distance

between the two SRRs it is possible to obtain strong magnetic response with the outer radius

being of the order of λ/20. As in the case of TE polarization discussed above, it is seen that

when approaching the resonance there is a drastic increase of the real part of the admittance

density resulting in enhanced absorption.

In order to validate calculated impedance and admittance densities, an electric and a mag-

netic metagratings establishing a prescribed diffraction pattern are designed based only on the

data from Figs. 3.4 and 3.5. The particle swarm optimization is used to solve the inverse scatter-
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ing problem and construct a desired diffraction pattern. Particularly, the splitting of a normally

incident plane wave equally between four propagating diffraction orders (-3rd, -1st, +2nd and

+3rd) out of seven existing is demonstrated. Schematically, it is illustrated in Fig. 3.6(a). To

that end, the result of the optimization procedure have shown that it is sufficient to have seven

reactive wires per period, with the inter-wire distance being λ/2. Figures 3.6(b) and (c) demon-

strate simulated frequency responses of the electric and magnetic metagratings designed for 10

GHz operation. Overall, one can see that despite all practical limitations, the designed meta-

gratings almost perfectly perform the desired splitting of the incident wave. It should be noted

that the response of the electric metagrating, shown in Fig. 3.6(b), is more broadband than the

one of the magnetic metagrating (Fig. 3.6(c)). It is naturally explained by the resonant behavior

of the considered SRR-based unit cell, as shown in Fig. 3.5(b). Indeed, printed capacitor and

inductor used for the electric metagrating do not exhibit resonances as shown by Figs. 3.4(b)

and (d). The other feature of the magnetic metagrating is the enhanced level of absorption when

comparing to the electric metagrating. However, it does not deteriorate the overall performance

of the magnetic metagrating.

3.4.2 Infrared frequency range

In this subsection, I give an example of possible designs of meta-atoms that can be used as build-

ing blocks for metagratings operating at infrared frequencies. The chosen operation frequency

is 75 THz corresponding to the vacuum wavelength of 4 µm. In order to implement capacitive

and inductive meta-atoms for infrared domain, I consider metallic (gold) rectangular wires with

and without an introduced air gap. Gold elements are placed on top of a dielectric substrate

(silicon dioxide) backed with gold as illustrated by Figs. 3.7(a) and (b). The capacitive response

is attributed to the gap between two parts of the wire. By changing the width of the gap and the

cross section area of the wire one is able to adjust the capacitive response. The inductance of a

metallic wire is determined only by its cross section area. While the design of these meta-atoms

is relatively simple, it allows one to obtain impedance densities in a quite wide range of values as

shown in Figs. 3.7(c) and (d). Interestingly, the real part of the impedance density remains very

small due to nonresonant response of the unit cells even though the simulation model takes into

account ohmic losses in gold and silicon dioxide. It is worthwhile to note that a single straight

metallic wire may not be sufficient when a strong inductive response (large positive imaginary

part of the impedance density) is required. Cross section area is usually restricted by fabrication
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Figure 3.7: (a), (b) Schematic diagrams of (a) two gold patches and (b) a gold wire exhibiting capacitive
and inductive responses, respectively. The gold elements are placed on a silicon dioxide layer backed by
a gold plating. (c), (d) Impedance densities calculated by means of the LPA as functions of geometrical
parameters of the unit cells and corresponding, respectively, to wires built up from gold patches shown
in the panel (a) and gold wires in the panel (b). Other parameters are fixed: the silicon dioxide layer
has permittivity εs ≈ 1.93 and thickness h = 700 nm, d = 2 µm, w = 200 nm, tm = 200 nm (tm = w
in case of the panel (d)), g = 350 nm. Working frequency is set to 75 THz (the corresponding vacuum
wavelength is 4 µm). Normally incident plane wave is assumed where the electric field is oriented along
the B dimension.

tolerances that does not allow one to infinitely reduce it. Meandering can be a solution, as in

Figs. 3.4(c) and (e), though it might complicate the fabrication.

In order to validate calculated impedance densities, I demonstrate a design of an infrared

metagrating equally splitting a normally incident plane wave between three propagating diffrac-

tion orders (-2nd, 0th and +3rd), while the rest four are suppressed. A schematics is shown

in Fig. 3.8(a). As in the examples of the microwave metagratings demonstrated in the previ-

ous subsection, the infrared metagrating is built-up of seven wires per period. The design is

performed relying on the data from Fig. 3.7 and the analytical model described in the Second

Chapter. Simulated frequency response of the infrared metagrating is shown in Fig. 3.8(b). The

incident wave is equally, within a range of several percentages, distributed by the metagrating

between desired diffraction orders. Furthermore, it is seen that the scattering in the parasitic,
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Figure 3.8: (a) A schematics of a metagrating with the period of 7λ/2 (λ is the operating vacuum wave-
length) and exciting seven propagating diffraction orders under normally incident plane wave. The red
and green beams represent suppressed and equally excited orders, respectively. (b) Simulated frequency
response (normalized power scattered in different propagating diffraction orders versus frequency) of the
metagratings operating under TE polarization and establishing the diffraction pattern illustrated by fig-
ure (a). The metagrating is designed for 75 THz operating frequency. Impedance densities as well as
geometrical parameters of the wires composing the metagrating are given in Tab. 3.1.

-3rd, -1st, +1st and +2nd, propagating orders remains suppressed in a wide frequency range due

to the nonresonant nature of the meta-atoms. The absorption constitutes only 2% of the total

incident power. The 5% level of scattering losses can be further reduced by introducing in the

period additional wires as discussed in the Second Chapter.

To conclude this subsection, let me make a few practical comments. Extracted impedance

densities shown in Fig. 3.7, slightly depend on the exact permittivity of gold since the skin

depth at 75 THz constitutes approximately 25 nm, being less than the geometrical dimensions

of the elements. In the simulations, dielectric permittivities of gold and silicon dioxide were

taken from Refs. [162] and [163], respectively. Silicon dioxide was chosen as a substrate due to

its low loss and low refractive index at 4 µm wavelength. It allows one to use a thick substrate

while avoiding excitation of waveguide modes. If the dielectric substrate is thin, it may not be

possible to model real wires as having infinitely small cross section area and accurately account

for the interaction with the substrate. Another practical feature is that between gold parts and

a silicon dioxide substrate there is usually a thin chromium (or titanium) adhesion layer of a

few nm thickness. Although all practical aspects should be taken into account while designing

an experimental sample, I do not expect that the influence of such a thin intermediate layer can

lead to a qualitative change and therefore, I did not include it in the simulation model.
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3.5.
Experimental validation

In order to perform an experimental proof-of-concept demonstration, I design three experi-

mental samples of metagratings operating at 10 GHz and excited by a normally incident plane

wave. The prescribed functionalities of these three samples are schematically illustrated in

Figs. 3.9(a)–(c). The first sample manages three diffraction orders, maximizing the power scat-

tered in the +1st order and suppressing scattering in the the −1st and 0th orders. The period is

L = λ/ sin(60◦), which corresponds to 60◦ anomalous reflection. It is composed of three wires

per period, which is the minimum number of wires required to achieve an asymmetric diffrac-

tion pattern for plane-wave illumination at normal incidence. The second and third samples, is

each composed of five wires per period of length L = 2λ/ sin(50◦). It allows one to control five

diffraction orders: −2nd, −1st, 0th, +1st and +2nd. The second sample maximizes the power

scattered in the +1st propagating diffraction order and thus performs small angle anomalous

reflection, corresponding to approximately 23◦ at 10 GHz. The third sample equally excites

the −2nd and +1st orders while suppressing the three others. As a substrate, F4BM220 with

the permittivity εs = 2.2(1 − j10−3) and of h = 5 mm thickness is selected. To achieve such

performances, it is enough to consider only capacitively-loaded wires. A schematic of a capac-

itive unit cell is shown in Fig. 3.10(a). Parameters w and B are fixed to 0.25 mm and 3 mm,

respectively. The arm’s length A of the printed capacitance is used as a tuning parameter for

the load-impedance density. The load-impedance densities are first extracted from the S11 pa-

rameter of the unit cell as required by the LPA and then plotted as function of A in Fig. 3.10(b).

Although being built for two different parameters d, λ/[3 sin(60◦)] and 2λ/[5 sin(50◦)], the two

curves in Fig. 3.10(b) almost coincide. It shows that the analytical model complementing the

LPA to take into account the interaction between adjacent wires and the substrate, allows one

to obtain the impedance density of a wire itself and not of a corresponding array. However,

it is well known that the electric response of a microstrip printed capacitance depends on the

relative permittivity of the substrate as well [150, 164]. It is due to the fact that a strong and

highly localized electric field penetrating the substrate is established in the gap between the two

arms of the printed capacitor. Being microscopic, this effect cannot be taken into account by

the macroscopic model employed in the LPA to account for the interaction with the substrate.

Thus, when substituting a substrate, changing its permittivity, one has to repeat the whole
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Figure 3.9: (a)–(c) Schematics of prescribed diffraction patterns established by the three different de-
signed metagratings with: (a) nonspecular reflection at an angle of 60◦ with N = 3 unit cells per period,
(b) nonspecular reflection at an angle of 23◦ with N = 5 unit cells per period, and (c) equal excitation of
the −2nd and +1st orders out of five diffraction orders, respectively. The green and red beams correspond
to excited and suppressed diffraction orders, respectively. (d)–(f) Measurement results of the scattered
power in the [6 GHz – 18 GHz] frequency range. (g)–(i) Power management in the excited diffracting
orders and scattering losses, the roman digits correspond to the highest propagating diffraction order in a
given frequency range.

design procedure from the beginning. The developed optimization procedure is brought to find

arm’s lengths of printed capacitors according to the prescribed diffraction patterns and the re-

sults of the design procedure are listed in Table 3.2. Photographs of the fabricated metagratings

are displayed in Figs. 3.11(a)–(c) and their physical size is approximately 480 mm (y-direction)

by 160 mm (x-direction).

The samples are tested by means of the same experimental setup as the one described in the

Section 2.3. A schematic representation of the experimental setup is shown in Figs. 3.11(d) and

(e). In the current experiments, the transmitter is fixed and the receiver moves with 1◦ step and

the minimum angle between the transmitter and receiver for the scanning is 4◦. In order to be

able to measure the specular reflection, the transmitter is fixed at ∓2◦. Thus, the experiments

are conducted in two steps: when the transmitter is fixed at ∓2◦, the receiver moves form ±2◦

to ±90◦.
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Figure 3.10: (a) A schematic illustration of a capacitive unit cell: printed capacitor on top of a grounded
dielectric substrate. (b) Load-impedance density of the printed capacitance extracted from specular re-
flection. d ≈ 11.6 mm for the first sample and d ≈ 15.7 mm in case of the second and third samples.
Geometrical parameters are: w = 0.25 mm, B = 3 mm and h = 5 mm and operating frequency is set to
10 GHz. The corresponding input-impedance density is calculated as kηH(2)

0 [kw/4]/4. Thickness of the
metallic cladding is 35 µm.

Table 3.2: Found optimal load-impedance densities (left) and corresponding arm’s lengths of printed
capacitors (right) implemented in the fabricated metagratings. The indexes correspond to the numbered
unit cells in Figs. 3.9(a)–(c).

Loads (η/λ) Z1 Z2 Z3 Z4 Z5 Arm’s length (mm) A1 A2 A3 A4 A5
Sample 1 −j30.3 −j6.35 −j1.57 - - Sample 1 0.37 3.25 8.70 - -
Sample 2 −j3.77 −j0.43 −j31.2 −j7.06 −j5.27 Sample 2 5.23 11.2 0.33 2.91 3.90
Sample 3 −j3.75 −j4.84 j0.05 −j2.94 −j8.86 Sample 3 5.25 4.22 12.3 6.28 2.27

Figures 3.9(d)–(f) present angle measurements of the scattered power in the frequency range

spanning from 6 to 18 GHz. It is clearly observed that the positions of the main lobes (corre-

sponding to diffraction orders) are in perfect agreement with the results given by the grating

formula θm = sin−1(mc/(νL) + sin[θi]) (represented by black dashed curves). Here, c is the

speed of light in vacuum and ν is the frequency. In order to estimate the efficiency of the sam-

ples and be able to compare to 3D full-wave simulations of a supercell, I employ here the same

method as in the Second Chapter, see Subsection 2.3.2. Figures 3.9(g)–(i) show the performance

of the experimental samples (solid curves obtained by means of Eq. (2.18)) as function of the

frequency, scattering losses represent the power scattered in undesired diffraction orders. The

dashed curves demonstrate the results obtained from 3D full-wave simulations (a supercell with

imposed periodic boundary conditions and excited by a periodic port). By comparing the solid

and dashed curves, one can observe a good agreement between the experimental and simulation

results.

Although the samples were designed to operate at a single frequency (10 GHz), it is seen

that the scattering losses remain low in a wide range of frequencies. One of the most important

factors affecting an operating frequency range is the frequency response of unit cells. Resonant
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Figure 3.11: (a)–(c) Photograph of the first, second and third samples (from top to bottom, respectively).
(d), (e) Schematics of the experimental setup: to measure the scattering range of angles from −90◦ to
90◦ the experiment is performed in the two steps illustrated by figures (d) and (e).

Figure 3.12: (a) Computational results of the normalized power scattered by a reflective metagrating
(having three reactive wires per period L = λ/ sin(60◦)) in the +1st diffraction order vs. the frequency.
Normally incident plane wave is assumed. Optimal reactive load-impedance densities are found at each
frequency. (b) Absolute value of the Fresnel’s reflection coefficient corresponding to the second (nonprop-
agating in the considered frequency range) diffraction order.

elements, in a general manner, significantly decrease an operating frequency range as shown in

the Sections 2.3 and 3.4. As demonstrated by Fig. 3.10(b), capacitively-loaded wires used to

construct experimental samples do not exhibit resonances at 10 GHz. Since each metagrating

was designed to handle a certain number of propagating diffraction orders, it is expected that

the scattering losses increase when approaching frequencies where the number of propagating

diffraction orders changes (corresponding to different areas in Figs. 3.9(g)–(i) labeled with roman

digits). While it is the case for the second and third samples, the performance of the first one

decreases far before the appearance of the second propagating diffraction orders, as shown in

Fig. 3.9(g). It unveils yet another crucial factor influencing an operating frequency range: exci-

88



CHAPTER 3

tation of waveguide modes discussed in the very beginning of Section 3.3. Although I managed

to avoid waveguide modes around the design frequency of 10 GHz, they may appear at lower or

higher frequencies and this is exactly what happens in the case of the first sample. Waveguide

modes are eigenmodes of the grounded substrate and their eigenfrequencies correspond to poles

of the Fresnel’s reflection coefficients RTE
m . At the eigenfrequency of a waveguide mode, the

incident plane wave is not only specularly reflected from the grounded substrate, but it is also

partially coupled to the waveguide mode. The excitation field E(exc)
q in Eq. (3.11) is no longer

represented by the sum of the incident wave and its specular reflection from the grounded sub-

strate. It should be modified to include the waveguide mode, which cannot be done within the

framework of an infinite periodic structure. Indeed, an excited waveguide mode exponentially

grows along the propagation direction (one can track the analogy with a receiving leaky-wave

antenna) meaning that the phase factor exp(−jk sin[θi]L) providing the field evolution over a

period of the structure along the y-direction will be modified as well. Specifically, the absolute

value of the factor will be different from unit, which leads to the divergence of the field when

y → +∞ or y → −∞. In the case of the first sample, a waveguide mode is excited at the

frequency when the Fresnel’s reflection coefficient RTE
2 diverges. It should be noted that in the

considered frequency range, Fresnel’s reflection coefficients corresponding to other nonpropagat-

ing diffraction orders are regular. In the experimental and simulation data, the waveguide mode

manifests itself in the resonance observed around 16.4 GHz, as shown in Figs. 3.9(d) and (g). As

demonstrated in Fig. 3.12, the excitation of the waveguide mode can be suppressed by choosing

a thinner substrate (for e.g. 2.5 mm instead of 5 mm) which enables restoring the performance

over the entire range of frequencies where there are three propagating diffraction orders (see

blue curves in Fig. 3.12). Figure 3.12(a) presents the computational results of maximizing at

each frequency the power of a normally incident plane wave coupled to the +1st propagating

diffraction order, where reactive impedance densities of three wires composing a period of a

metagrating are assumed. Alternatively, eigenfrequencies and the number of waveguide modes

in a given frequency range can be changed by adjusting the relative permittivity of the substrate

or the period of the structure.
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3.6.
Conclusion

In this Chapter, I have presented a simulation-based design approach to construct metagrat-

ings in the “wire by wire” manner. It represents an analog of the local periodic approximation

that has been used to design space modulated metasurfaces and in comparison to a brute force

numerical optimization (that deals straight with a whole supercell of a metagrating), it can con-

siderably reduce the time spent on the design. Indeed, let me assume that each wire constituting

a N -wires period of a metagrating has only one parameter to be adjusted and this parameter

takes in total P different values during a parametric sweep. Then, one would have to perform

PN 3D full-wave simulations in order to cover all possible combinations of parameters of wires

and find optimal configuration of a metagrating’s supercell [assuming no “smart” algorithms

(like genetic) are employed]. Clearly, this number strongly depends on the number of wires

constituting a supercell N . Meanwhile, the LPA deals with one unit cell at a time, which makes

the number of required 3D full-wave simulations to be as small as P and it does not depend on

the number N . As an example, I have validated the developed approach via 3D full-wave simu-

lations by demonstrating designs of metagratings controlling diffraction patterns at microwave

and infrared frequencies for both TE and TM polarizations. Both electric metagratings (TE

polarization) required two different types of meta-atoms (capacitive and inductive) and overall I

have performed 2P simulations, while the magnetic metagrating required a single type of a meta-

atom and, thus, only P simulations. Finally, simple and accurate analytical model describing

metagratings allows one to subtract the impact of the metal-backed dielectric substrate and the

interaction between neighboring wires. It makes the developed local periodic approximation not

only fast but also a rigorous approach to design metagratings represented by nonuniform arrays

of wires, in bright contrast to metasurfaces. Importantly, the permittivity of the substrate may

have a microscopic effect which cannot be accounted for in the analytical retrieval procedure.

The analytical model of 1D metagratings is effective in the translation invariant direction and

disregards related microscopic effects. For example, changing the permittivity may have an im-

pact on strong field localization in metallic gaps, as in the case of printed capacitors, and lead to

a change in the impedance density. However, there is no need to repeat 3D simulations, if one

decides to modify the thickness of the substrate (not its permittivity) or the inter-wire distance.

To solve the inverse scattering problem and find an optimal number of wires per period in
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each particular configuration, I have developed an optimization procedure on the basis of particle

swarm optimization algorithm. As optimization parameters, the procedure uses geometrical

parameters of meta-atoms related to retrieved impedance densities. Together with the analytical

model of metagratings it allows one to solve the inverse scattering problem numerically but

without involving 3D full-wave simulations of supercells, which makes the procedure fast. At

the same time, one does not have to deal with mathematically complex Eq. (2.14) to determine

the number of reactive wires per period necessary to set up a desired diffraction pattern. Instead,

the number of wires is included in the list of optimization parameters, which, however, does not

slow the optimization procedure significantly.

The design procedure in the form of the LPA and optimization procedure has been validated

by means of both 3D full-wave simulations and experimentally. In both cases, the optimization

procedure resulted in metagratings having, in a period, as few as one reactively-loaded wire

per propagating diffraction order. The simulation results were obtained for both electric and

magnetic metagratings operating at microwave and optical frequencies. Next, I have designed

and tested three experimental samples able to establish prescribed diffraction patterns in a

wide frequency range. The experimental results have demonstrated a good agreement with 3D

full-wave simulations. Furthermore, I have identified the main factors affecting the operating

frequency range of metagratings: frequency response of constituting wires, appearance of new

propagating diffraction orders and excitation of waveguide modes.

91



3.6. CONCLUSION

92



Chapter 4
Conformal sparse metasurfaces

Contents
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.2 Theoretical concept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.1 Inverse radiation problem . . . . . . . . . . . . . . . . . . . . . . . . . . 96

4.2.2 Numerical example via 2D simulation . . . . . . . . . . . . . . . . . . . 99

4.2.3 Optimization-aided design . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.3 Numerical examples via 3D simulations . . . . . . . . . . . . . . . . . 102

4.3.1 Semi-cylindrical sparse metasurface . . . . . . . . . . . . . . . . . . . . . 103

4.3.2 Cavity-excited sparse metasurface . . . . . . . . . . . . . . . . . . . . . 104

4.4 Experimental validation . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

93



4.1. INTRODUCTION

4.1.
Introduction

A commonly accepted definition of a conformal array antenna is specified by the IEEE

Standard Definition of Terms for Antennas (IEEE Std 145-2013 [165]) as follows:

conformal antenna [conformal array]: An antenna [an array] that conforms to a surface

the shape of which is determined by considerations other than electromagnetic: for example,

aerodynamic or hydrodynamic.

Indeed, a present-day airplane carries many antennas for navigation and communication systems.

Integrating these antennas into its aerodynamic shape is highly desirable to avoid protruding

parts. The same is true for high-speed trains and other vehicles. On the other hand, the

emerging concepts of the IoT, smart homes and smart cities demand antenna integration in

various household items and urban places to make the antenna less disturbing and more hidden

for the human perception. Contrary to the IEEE definition, conformal antennas may have

their shape determined for certain beam-forming specifications such as the shape of a beam

and beam-steering angular range. As such, antennas composed of elements on the surface of

a cylinder, sphere, or cone are also called conformal [166]. Finally, conformal array antennas

do not only allow one to meet the aerodynamic specifications of aircrafts and satellites but also

break the fundamental constraint of their planar counterparts. For instance, the aperture of a

flat metasurface antenna vanishes when the beam steering angle increases [167].

The history of conformal arrays can be traced back to the investigation of circular arrays

of dipoles [166] by H. Chireix in 1936 [168], H. L. Knudsen in 1936 [169] and the French RIAS

radar system in th 1990s [170, 171]. A particular interest in circular arrays can be explained by

their rotational symmetry which allows to perform 360◦ beam-steering relatively easy. Recently,

metasurface have been proposed to transfer such benefits of reflectarray- and transmitarray-

antenna configurations as a straightforward design procedure, simple feeding system and low-

cost fabrication [101, 102, 107, 100]. Additionally, conformal metasurface can be used to improve

performances of antenna radomes or even make them reconfigurable to facilitate beam-steering

at large angles. As it is also discussed in the First Chapter, the design of a conformal metasurface

is generally relies on a proper spatial distribution of the local reflection or transmission coefficient
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Figure 4.1: Illustration of an arbitrarily-shaped sparse metasurface transforming an arbitrary impinging
wave into multiple beams.

established over the latter metasurface [100, 101, 102, 103, 104, 105, 106, 107]. A more rigorous

analysis of conformal metasurfaces [109] utilizes generalized sheet transition conditions [108].

Unfortunately, this theoretical model deals with curvilinear coordinates and demands accurate

analysis of the metasurface geometry, which makes the analysis exceptionally challenging. The

design of conformal metasurface also involves analysis of the feeding source. In the reflectarray-

and transmitarray-antenna configurations the simplest source is used: a horn antenna. It,

however, makes the overall dimensions of an antenna system large. On the other hand, compact

metasurface-based antennas were presented in Fabry-Perot cavity [98, 101, 172, 128, 173] and

leaky-wave configurations [174, 175, 176, 113, 177, 130].

Although metagratings demonstrate an exceptional efficiency in controlling diffraction pat-

terns, they are essentially periodic structures excited by a “periodic” illumination such as a

plane wave. The periodicity makes the functionality of metagrating limited to control a dis-

crete set of scattered plane waves. Furthermore, a plane-wave-like illumination assumes that in

practice a feeding source is placed far from a metagrating that significantly reduces the feed-

ing efficiency. In this Chapter, I elaborate on the analytical model of metagratings and show

how numerical calculation of a Green’s function can be employed to design conformal sparse

metasurfaces capable of creating arbitrary radiation patterns for arbitrary external excitations.

Conversely to metagratings, sparse metasurface are non-periodic structures. However, similarly
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to metagratings, sparse metasurfaces have the inter-element distance of the order of the operat-

ing wavelength and can be described in terms of neither surface impedance nor local reflection

and/or transmission coefficients being not subject to fundamental efficiency limitations as their

“dense” counterparts [116, 118, 119, 126, 117]. At the same time, the sparseness allows to es-

tablish a global theoretical model and get a microscopic insight into the theoretical analysis of

conformal metasurfaces. The proposed approach does not use any complex local coordinate

system matched to a particular geometry such that arbitrarily-shaped metasurfaces can be con-

sidered without any accommodation. Finally, it is detailed how to realize these conformal sparse

metasurfaces. To describe the design procedure, sparse metasurfaces of different geometries illu-

minated by an arbitrary complex wave configuration are demonstrated by means of 3D full-wave

simulations and experimentally at microwave frequencies.

4.2.
Theoretical concept

4.2.1 Inverse radiation problem

In order to introduce the concept, I consider the case of TE polarization and a 2D geometry. A

translation symmetry is assumed along one of the three spatial dimensions. A sparse metasurface

is composed of a finite set ofN loaded wires distributed along the surface of an arbitrarily-shaped

dielectric substrate, as illustrated in Fig. 4.1. The wires are oriented along the translation-

invariant direction. Microscopically, a loaded wire represents itself as a chain of subwavelength

meta-atoms. On the other hand, macroscopically, I model a loaded wire as uniform and having

a deeply subwavelength effective radius r0.

Electric field directed along x-axis of a background wave radiated by external sources excites

polarization currents in the loaded wires. However, here I do not impose any condition on the

external sources unlike plane wave excitation used for majority of metasurfaces presented in

literature. The polarization currents Iq excited in the wires can shape the field radiated by a

sparse metasurface in accordance with the following equation:

Ex(r, ϕ) = E(ext)
x (r, ϕ) +

N∑
q=1

Gxx(r, ϕ; rq)Iq, (4.1)

where r and ϕ are polar coordinates: radius and polar angle, respectively. The total field

Ex(r, ϕ) is represented by the superposition of the wave radiated by external sources E(ext)
x (r, ϕ)
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and waves G(r, ϕ; rq)Iq scattered by the wires, with G(r, ϕ; rq) being a Green’s function corre-

sponding to the qth wire at rq. As the considered system does not have a translational symmetry

in the 2D plane, a Green’s function G(r, ϕ; rq) is a function of the observation point r and the

position of the wire rq (not their difference). Importantly, E(ext)
x (r) and a Green’s function

should be calculated in the presence of the substrate and all other non-engineered elements of

the sparse metasurface (such as for e.g., the substrate supporting external sources).

Sparse configuration of the metasurface allows one to accurately take into account the inter-

actions between the wires via Ohm’s law

ZqIq = E(ext)
x (rq)−

N∑
p=1

Z(m)
qp Ip. (4.2)

A load-impedance density Zq is a characteristic of a loaded wire and can be engineered for

instance by tuning the geometrical parameters of meta-atoms constituting a wire. The right-

hand side of Eq. (4.2) represents the total electric field at the position of the qth wire, where

Z(m)
qp = −Gxx(rq, rp) (4.3)

is the mutual-impedance density (the electric field created by the pth wire at the position of the

qth wire). The separation between two neighboring wires can be arbitrary as long as polarization

currents in wires can be approximated by a 2D delta function. As it is demonstrated further,

this simple model works surprisingly well even for complex designs. The self-action of the qth

wire and its interaction with a substrate and an environment is accounted via

Z(m)
qq = − 1

2πr0

∮
Gxx(r; rq)dr, (4.4)

where the integration is performed over the circumference of the wire of effective radius r0.

Although being very simple, Eq. (4.2) has an important practical implication: it allows one to

know in advance the impact of one polarization current on another and to accordingly adjust the

load-impedance densities. Conceptually, it means that the developed approach is global, being

in strong contrast with theoretical models of phase gradient metasurfaces which are essentially

local.

Meanwhile, by appropriately choosing Zq and the number of wires N , one is able to construct

desirable radiation patterns. Each term on the right-hand side of Eq. (4.1) at a given distance
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r (r 6= |rq| for all q) can be approximated by a partial Fourier sum over the polar angle ϕ:

E(ext)
x (r, ϕ) =

M∑
n=−M

C(ext)
n einϕ, Gxx(r, ϕ; rq) =

M∑
n=−M

C(q)
n einϕ. (4.5)

M is the maximum Fourier harmonic defined as the minimum number M such that

|C(ext,q)
±|M+r||/max|C(ext,q)

n | � 1 (4.6)

for all r = 1, 2,... . The number M might affect many parameters (such as geometrical param-

eters and material properties of a sample, the distance r) but the most important one is the

physical aperture max[|rq − rp|]. The larger the aperture the greater is M . Evidently, the total

electric field Ex(r, ϕ) can also be represented by a partial Fourier sum
∑M
n=−M Cme

inϕ and the

relation between the Fourier coefficients is as follows:

Cn = C(ext)
n +

N∑
q=1

C(q)
n Iq, (4.7)

where C(ext)
n and C(q)

n are known. When a sparse metasurface is composed of at least N = 2M+1

loaded wires one can establish arbitrary azimuthal field distributions within the functional space

of the 2M + 1 Fourier harmonics by adopting the Fourier coefficients Cn.

Corresponding load-impedance densities can be found from Eq. (4.2) after solving Eq. (4.7)

with respect to Iq, which in this case has a single solution. Indeed, the matrix composed of

coefficients C(q)
n is not degenerate since Gxx(r, ϕ; rq) related to different points rq are linearly

independent. On the other hand, symmetries of the systems should be respected, e.g. a linear

array of wires in vacuum radiates symmetrically and there is an additional constraint between the

Fourier coefficients Cn = C−n. As a matter of fact, there is no guarantee that analytically found

Zq would not require implementing active and/or lossy elements since <[Zq] 6= 0 in a general

case. In order to additionally deal with only reactive load-impedance densities Zq = i=[Zq], one

might need a number of wires N ≥ 2M + 1 for constructing arbitrary radiation patterns, as

discussed in the Second Chapter. Essentially, the procedure described in this paragraph allows

one to know in advance all possible configurations of the azimuthal field for a given geometry

of metasurface and number of wires. It includes practical parameters such as beamwidth and

side-lobes level.

To conclude this subsection, it should be noted that a crucial point of the above analysis is
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Figure 4.2: (a),(b) Two-dimensional COMSOL simulation model: a cylindrical substrate of 50 mm
radius is placed in the air region surrounded by a PML layer. The model is excited by an elementary
source consequently placed at the positions of the wires. The elementary source is represented by a hollow
disk of radius r0 = 0.25/4 mm (its interior is excluded from the model) with applied at the red circe
electric current density boundary condition 1/(2πr0) A/m. (c)–(f) Green’s function calculated in the
far-field region (c),(e) and on the outer face of the substrate (d),(f) regions when the elementary source
is at the position of the 2nd (c),(d) and the 5th (e),(f) wires.

a Green’s function which, being defined for an arbitrary finite-size system, does not have any

applicable analytical form. Instead, I suggest to compute it numerically with the help of full-

wave simulations. To that end, I built a 2D simulation model using the commercially available

finite-element-method software COMSOL Multiphysics. Figures 4.2(a) and (b) demonstrate a

schematics of the implemented simulation model used in the example shown in what follows.

An elementary unit source is consequently placed at the different positions of loaded wires rq,

q = 1, 2, ..., N . More precisely, this source is a hollow disk of radius r0 with an electric surface

current density used as a boundary condition and set equal to 1/(2πr0) A/m. The electric field

created by the source is recorded at each position along the substrate. There is no need to know

a Green’s function over the whole 2D plane but only at certain points. Namely, one extracts

the electric field at the positions of the wires to construct the matrix of mutual-impedance

densities Z(m)
qp and find input-impedance densities Z(in)

q and to control azimuthal wavefront at

the distance r. In beam-forming applications, far-field calculations should be performed and the

electric field in the far-field as a function of the azimuthal angle is recorded.

4.2.2 Numerical example via 2D simulation

Let me consider a simple example of a cylindrical sparse metasurface for far-field manipulation.

The radius of the metasurface is fixed to 5λ0/6 (λ0 is the vacuum operating wavelength) and

it is excited by a point source placed in the center, creating a cylindrical background wave as
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Figure 4.3: (a) Profile of the electric field created by a cylindrical sparse metasurface. The metasurface
is represented by 21 loaded wires uniformly distributed along a cylindrical substrate of thickness λ0/120
and having the relative permittivity 2.2. The metasurface is excited by a point source placed in its center.
(b) Zoom of a part of the sparse metasurface. (c) |C(q)

n |/max[|C(q)
n |] (d) |C(ext)

n |/max[|C(ext)
n |] vs. the

number n of Fourier harmonic. (e) Load-impedance densities required to approximate the “heart” shaped
far-field pattern. (f) Comparison of the far-field pattern created by the sparse metasurface (solid curve)
and the ideal “heart” shape (dashed curve).

illustrated in Figs. 4.3(a) and (b). Due to the symmetry, the Green’s function Gxx(r, ϕ; rq)

corresponding to different positions of wires placed on the cylindrical substrate is simply shifted

with respect to the angle ϕ. It means that in order to find the parameter M , one has to analyse

the Fourier decomposition of the background wave and of the Green’s function corresponding to a

position of a single wire. Figures 4.2(a) and (b) demonstrate a schematics of the simulation model

used to calculate the Green’s function. The Green’s function corresponding to the positions of

the 2nd and 5th wires is shown in Figs. 4.2(c)-(f). Following the definition in Eq. (4.6), from

Figs. 4.3(c) and (d), it can be seen that it is enough to have N = 2× 10 + 1 = 21 wires in order

to be able to construct all possible far-field radiation patterns within the Fourier space of 21

harmonics exp[inϕ]. As an illustrative example, one can reconstruct in the far-field the shape of

a “heart” after the required corresponding load-impedance densities are found from Eqs. (4.7)

and (4.2). The desired far-field pattern is given by the following analytical function

Eff (ϕ) = Aejθ
(

sin[ϕ]
√

cos[ϕ]
sin[ϕ] + 7/5 − 2 sin[ϕ] + 2

)
, (4.8)
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where A and θ were optimized to ensure Re[Zq] ≥ 0 and equal 0.3 and 4.96 rad, respectively. The

required load-impedance densities are plotted in Fig. 4.3(e) and correspond to passive elements

(<[Zq] > 0). The real part of Zq can be engineered in a similar fashion as proposed in in

Ref. [151]. Resulted far-field pattern is depicted in Fig. 4.3(f) and compared to the ideal shape

of a “heart” defined by Eq. (4.8). Figure 4.3(a) shows the corresponding profile of the electric

field in the proximity to the metasurface. In order to improve the accuracy of approximating

some ideal curve, one needs to increase M which can be done by increasing the size of the

metasurface (the radius in the considered case). Finally, it should be noted that, to best of my

knowledge, there is no analytical formula for the Green’s function of a system with a cylindrical

substrate.

4.2.3 Optimization-aided design

After establishing the geometry of a sparse metasurface (flat, cylindrical, or any other shape),

excitation type and positions of N wires, one calculates a Green’s function Gxx(r, ϕ; rq) and the

background field E
(ext)
x (r, ϕ) radiated by external sources. With Eqs. (4.1) and (4.2), a rela-

tion between the radiated field and load-impedance densities is established and the procedure

related to Eq. (4.7) is used to find the number of wires and to determine possible functional

characteristics of a sparse metasurface such as beamwidth and side-lobes level in beam-forming

applications. It is important to note that the beam-forming represents only a subset of all possi-

ble far-field configurations when the power is maximized only in certain directions. Therefore, it

might not be required to control all 2M+1 of the Fourier harmonics and a lesser number of wires

than N = 2M + 1 can be used for beam-forming. To solve the inverse scattering problem, the

optimization procedure developed in Section 3.3 of the Third Chapter is used here with the only

modification being the objective function. Indeed, Eqs. (4.1) and (4.2) represent substitutions of

Eqs. (3.10) and (3.11). The discrete spectrum of propagating diffraction orders is substituted by

the continuous function of the electric field which is discretized in the optimization procedure.

The discretization is as fine as it is necessary to take into account all side lobes. The following

objective function can be used to construct a single beam at the angle ϕ∗ and minimize the level

of side-lobes

f(Gq) = 20 log10

[
|Eff (ϕ∗)|

maxϕ |Eff (ϕ)|

]
, (4.9)

where Eff (ϕ) is the total electric field in the far-field region, the function max finds the maximum

among discrete values of Eff (ϕ). The maximum of |Eff (ϕ)|2 is searched in all directions of a
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discretized far-field pattern except from the range of angles corresponding to the desired beam.

The optimization parameters are the geometrical parameters of meta-atoms composing the wires

and the number of wires. Figure 3.3 shows a block diagram of the implemented particle swarm

optimization.

4.3.
Numerical examples via 3D simulations

In this section, I provide several examples of designs of conformal sparse metasurfaces operat-

ing in the microwave frequency range and demonstrating different beam-forming functionalities.

The metasurfaces demonstrated in what follows represent a set of loaded wires uniformly dis-

tributed along the top face of a dielectric substrate (the bottom face is metal-free). Operating

in the transmission mode, the metasurfaces transform an incident wavefront from one side into

a desired wavefront on the other side. The designs are developed with the optimization-aided

procedure and verified by means of 3D full-wave simulations. The impact of using different

number of wires composing a sparse metasurface is analysed.

The design of loaded wires is performed within the local periodic approximation developed in

the Third Chapter. The wires are built up from printed capacitors (left design of Fig. 4.4(a)) and

inductors (right design of Fig. 4.4(a)), which provide a wide range of accessible load-impedance

densities as shown in Figs. 4.4(b) and 4.5(a) for target 5 GHz and 10 GHz frequencies, respec-

tively. A particular importance of the LPA should be emphasized: Sparse metasurfaces cannot

be designed as their dense counterparts. In the design procedure it is important to retrieve

the load-impedance density of a loaded wire which is its proper characteristic and depends on

neither the substrate thickness nor the inter-wire distance, see Section 3.5. The developed local

periodic approximation in this work allows one to do it.

It should be noted that the term corresponding to Z(m)
qq in Ohm’s law (Eq. (4.2)) accounts for

both the self-interaction and the interaction with a substrate and an environment, while in the

LPA the mutual-impedance density subtracted on the right-hand side of Eq. (3.4) corresponds

only to the interaction with a substrate and other wires in the uniform array. Therefore, Eq. (3.4)

should be accordingly modified by subtracting from the right-hand side the self-interaction term

which, luckily, can be accounted by a simple analytical expression −kηH(2)
0 (kreff )/4. The final
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expression of the equation allowing one to retrieve the load-impedance density is as follows

Zq = E0
I
− kη

4 H
(2)
0 (kreff )− Zm, (4.10)

where Zm is still given by Eq. (3.3). However, since transmitting metasurfaces are considered

in this Chapter and, therefore, there is no a ground plane behind the dielectric substrate, one

should modify as follows the expression for the Fresnel’s reflection coefficient RTE
m appearing in

Eqs. (3.1), (3.3) and (3.4)

RTE
m =

j
2

(
βm
βsm
− βsm

βm

)
tan(βsmh)

1 + j
2

(
βm
βsm

+ βsm
βm

)
tan(βsmh)

. (4.11)

Here βm =
√
k2 − ξ2

m and βsm =
√
εsk2 − ξ2

m are normal components of the wavevector of the

mth Floquet-Bloch mode outside and inside the substrate, respectively, ξm = k sin(θ) + 2πm/d

is the tangential component of the wavevector, d is the inter-wire distance and h is the thickness

of the substrate.

4.3.1 Semi-cylindrical sparse metasurface

In the first example, I demonstrate a sparse metasurface operating at 5 GHz (vacuum wavelength

λ0 ≈ 60 mm) and conformed to a semi-cylindrical shape of 1.67λ0 = 100 mm radius. N = 29

loaded wires are uniformly distributed along the top face of a λ0/120 = 0.5 mm thick and

5.25λ0 = 315 mm long F4BM220 substrate and serve to control 2M + 1 = 29 independent

Fourier harmonics of the far-field as follows from Eqs. (4.6) and (4.7). The metasurface is

illuminated by a point source put at λ0/4 distance above a PEC wall joining the two ends of the

semi-cylinder as shown in the inset of Fig. 4.4(c). In order to emulate the 2D configuration of

the considered theoretical model, a narrow strip of the metasurface (of λ0/6 width) is embedded

in between two PEC plates which form a parallel-plate waveguide. The source is represented

by a coaxial probe exciting the TEM waveguide mode. A schematics of the system is shown in

Fig. 4.4(c).

Figures 4.4(d)–(f) demonstrate three different configurations of the far-field corresponding

to three different designs of semi-cylindrical sparse metasurfaces. The directivity plotted in

Figs. 4.4(d)–(f) is the two-dimensional directivity which is calculated as follows

D(ϕ) = 2π|Eff (ϕ)|2
/∫ 2π

0
|Eff (ϕ)|2dϕ. (4.12)
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Figure 4.4: (a) Schematics of a printed capacitance (left) and inductance (right), w = 0.25 mm
(r0 = w/4, see Ref. [149]). (b) Retrieved load-impedance densities (only imaginary parts are shown)
of capacitively- and inductively-loaded wires at 5 GHz. (c) 3D schematic of a semi-cylindrical sparse
metasurfaces having 29 wires. The inset figure shows 2D schematic. (d)–(f) Two-dimensional direc-
tivity vs. angle of engineered radiation patterns. Predictions of the theoretical model (solid red curves)
are compared to the results of 3D full-wave simulations of three different designs of sparse metasurfaces
(dashed blue curves). The used substrate is F4BM220 of 0.5 mm thickness. Operating frequency is 5
GHz, λ0 ≈ 60 mm.

The results of 3D simulations (dashed blue curves) are compared to the corresponding far-field

patterns predicted by the analytical model in Eq. (4.1) (solid red curves). An almost perfect

agreement is observed between the two. It proves a high accuracy of the established design

procedure based on the LPA, even though a plane-wave excitation is used when retrieving

the load-impedance density (Eq. (4.10)). Because of a very narrow, λ0/6, aperture in the

transverse direction, the radiation pattern presents a wide beam in the E-plane and therefore

a 3D fan-shaped beam. However, if the distance between two PEC plates exceeds λ0/2, higher

order waveguide modes can be excited. It leads to a nonuniform field distribution along the

x-direction which was assumed to be translation invariant. This problem can be overcome and

a much narrower beam can be achieved in the E-plane by elaborating on the excitation source

as discussed in the following Section.

4.3.2 Cavity-excited sparse metasurface

In the second example, I consider flat sparse metasurfaces placed on the top of an open rectan-

gular PEC cavity excited by a coaxial probe. Results for two configurations with 10 and 20 wires

are presented. For the given aperture size of 5λ0, the number 2M + 1 of independent Fourier
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Figure 4.5: (a) Retrieved load-impedance densities (only imaginary parts are shown) of capacitively- and
inductively-loaded wires at 10 GHz, w = 0.25 mm. Schematics of the printed capacitor and inductor are
shown in Fig. 4.4(a). (b), (c) 3D schematics of cavity-excited flat sparse metasurfaces having 10 (b)
and 20 (c) wires. The inset figures show 2D schematics of the corresponding configurations. (d)–(f)
Two-dimensional directivity vs. angle of engineered radiation patterns corresponding to the results of 3D
full-wave simulations of six different designs of sparse metasurfaces. Performances obtained with 10 wires
and λ0/2 inter-wire distance (solid red curves) are compared to the ones with 20 wires and λ0/4 inter-
wire distance (dashed blue curves). The used substrate is F4BM220 of 1.5 mm thickness, the cavity height
is λ0

√
n/2 ≈ 33.54 mm, where n is the cavity length (5λ0) divided over the wavelength λ0. Operating

frequency is 10 GHz, λ0 ≈ 30 mm.

harmonics forming the far-field equals 42. While neither 10 nor 20 wires is enough to arbitrar-

ily control 42 Fourier harmonics, it is possible to perform efficient beam-forming. Schematics

of the configurations is shown in Figs. 4.5(b) and (c). Figures 4.5(d)–(f) demonstrate engi-

neered radiation patterns obtained via 3D full-wave simulations and compare the performances

of 10- and 20-element sparse metasurfaces. The comparison represents an important result: two

times more wires lead to maximum of only 2 dBi improvement of the directivity. Therefore,

one should carefully choose the number of wires as comparable performances can be achieved

with a lesser effort what can be especially advantageous for reconfigurable designs. Fortunately,

the presented analytical model allows one to optimize the number of elements by considering

beforehand computed Green’s function and without involving 3D full-wave simulations of real

designs.

4.4.
Experimental validation

For an experimental validation of the conformal antenna system, I designed three sparse

metasurfaces using extremely thin (λ0/240 = 0.25 mm) flexible substrates F4BM220, the pho-
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Figure 4.6: (a) A photograph of fabricated sparse metasurfaces on a thin flexible substrate. (b), (c)
Photographs of an assembled experimental prototype: (b) the front side and (c) the back side. (d) A
schematic of the side view of a PCB of the excitation source. (e), (f) Schematics of the top face (e) and
the inner face (f) of the PCB. The schematics contain all the information necessary to design the source
used to excite the samples in the experiment. The design is performed following Ref. [178].

tographs are shown in Fig. 4.6(a). The samples operating in the microwave frequency range with

a central frequency fixed at 5 GHz were fabricated by means of conventional printed circuit board

(PCB) technology. Each sample is composed of twenty nine wires equidistantly distributed along

a 5.25λ0 ≈ 315 mm long substrate, making the separation between two neighbouring wires ap-

proximately equal to λ0/5. The ultra-thin samples are then conformed to create semi-cylindrical

surfaces of 100 mm radius. A photograph of the assembled prototype is presented in Figs. 4.6(b)

and (c). The external source exciting the samples is represented by two microstrip dipole anten-

nas printed on a metal-backed substrate, whose design was performed following Ref. [178] and is

detailed in Figs. 4.6(d)–(f). Each dipole is excited via an electromagnetically coupled microstrip

line printed below it and fed by a coaxial probe.

The three samples are designed to show different beam-forming performances: a single broad-

side beam at 0◦, a steered beam at 40◦ and a multibeam configuration with two beams at ±30◦

from broadside. The inverse scattering problem is solved by maximizing power in the desired di-

rection and minimizing the side-lobes level (with respect to the geometrical parameters A and B

of the loaded wires) radiated by the sparse metasurface in desired directions, and the maximiza-
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Figure 4.7: (a),(b) Schematic illustration of the experimental setup used to measure the gain of the
samples. (c)–(f) Measured gain of experimental samples: (c) Sample 1, (d) Sample 2, (e) Sample 3
and (f) the excitation source inside the parallel-plate waveguide when there is no any sample inserted.

tion procedure is implemented as particle swarm optimization. The different configurations are

experimentally validated by radiation patterns measurements performed in an anechoic cham-

ber. A horn antenna used a receiver is kept fixed and the assembled prototype is mounted on a

rotating platform as shown in Fig. 4.7(a). Figures 4.7(c)–(e) present experimentally measured

gain for the three samples. The gain G(ϕ) is found with the help of a reference horn antenna

with known radiation characteristics by means of the following formula

G(ϕ) = Gref + LPD + P (ϕ)−max
ϕ

[Pref (ϕ)], (4.13)

where Gref = 11.8 dBi is the gain of the reference horn antenna at 5 GHz provide by the manu-

facturer in the datasheet, LPD = 2 dB is the measured insertion loss of the power divider, P (ϕ)

is the measured radiation pattern created by a sample and Pref (ϕ) is the measured radiation

pattern of the reference horn antenna. Importantly, measured gain is 3D, in contrast to the

2D directivity calculated by means of Eq. (4.12) and plotted in Figs. 4.4 and 4.5. The level of

spurious scattering (at operating frequencies) does not exceed −12 dB for the first sample, −9

dB for the second one and −13 dB for the third one. Figure 4.7(f) allows one to compare the

radiations patterns created by the sparse metasurfaces to that of the excitation source alone.
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Element number Sample 1 Sample 2 Sample 3
Element type B, mm A, mm Element type B, mm A, mm Element type B, mm A, mm

1 capacitor 10 3,31 capacitor 10 2,58 capacitor 10 1,39
2 capacitor 10 4,78 capacitor 10 5,68 capacitor 5 1,04
3 capacitor 10 1,58 capacitor 10 4,46 capacitor 10 3,47
4 inductor 10 5,45 capacitor 5 1,06 capacitor 5 1,30
5 capacitor 10 4,81 capacitor 5 1,86 capacitor 10 0,53
6 capacitor 5 0,88 capacitor 10 4,46 capacitor 10 4,72
7 capacitor 5 1,99 capacitor 10 2,32 inductor 5 7,29
8 capacitor 10 4,73 capacitor 10 4,73 capacitor 5 1,53
9 capacitor 10 2,41 inductor 10 5,62 capacitor 5 1,18
10 capacitor 10 1,16 capacitor 5 0,45 capacitor 10 0,56
11 capacitor 10 4,31 capacitor 10 7,64 capacitor 10 1,33
12 capacitor 10 3,30 capacitor 10 3,85 capacitor 5 1,07
13 capacitor 10 0,60 capacitor 5 1,29 capacitor 5 1,04
14 capacitor 10 3,52 capacitor 10 2,78 capacitor 10 6,89
15 capacitor 10 3,42 capacitor 10 4,72 capacitor 5 0,97
16 capacitor 10 3,52 capacitor 10 1,64 capacitor 10 6,89
17 capacitor 10 0,60 inductor 10 4,20 capacitor 5 1,04
18 capacitor 10 3,30 capacitor 10 0,84 capacitor 5 1,07
19 capacitor 10 4,31 capacitor 10 0,74 capacitor 10 1,33
20 capacitor 10 1,16 capacitor 10 3,57 capacitor 10 0,56
21 capacitor 10 2,41 capacitor 5 0,82 capacitor 5 1,18
22 capacitor 10 4,73 inductor 10 3,00 capacitor 5 1,53
23 capacitor 5 1,99 capacitor 10 2,25 inductor 5 7,29
24 capacitor 5 0,88 capacitor 10 3,34 capacitor 10 4,72
25 capacitor 10 4,81 capacitor 5 1,29 capacitor 10 0,53
26 inductor 10 5,45 capacitor 10 1,41 capacitor 5 1,30
27 capacitor 10 1,58 capacitor 10 0,65 capacitor 10 3,47
28 capacitor 10 4,78 capacitor 10 0,35 capacitor 5 1,04
29 capacitor 10 3,31 capacitor 5 1,49 capacitor 10 1,39

Table 4.1: Geometrical parameters of the samples. Schematics of capacitor and inductor elements is
illustrated in Fig. 4.4(a). The parameter w is the same for all elements and equals 0.25 mm, the thickness
of the copper cladding is 35 µm.

4.5.
Conclusion

In this Chapter, I have generalized the analytical model of metagratings to structures that

I call sparse metasurfaces. The generalization is based on the knowledge of a Green’s function

of a considered metasurface configuration, i.e. its geometry and material parameters. Since

the model suggests that arbitrary configurations can be considered, it has been proposed to

calculate a Green’s function for each particular configuration numerically with the help of full-

wave simulations. On the basis of the analytical model in the form of Eqs. (4.1) and (4.2)

and Fourier transformation (4.7), it has been demonstrated that arbitrary desired radiation

patterns can be obtained with a sufficient number of wires found from Eq. (4.6). To validate

this conclusion, 2D simulations have been performed to show that a cylindrical metasurface

excited by a point source at its center can be used to create such an arbitrary radiation pattern

as the shape of a “heart”. Furthermore, a theoretical analysis of Eqs. (4.6) and (4.7) can be
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used to approach problems of superdirectivity [179] and subdiffraction focusing [180]. It is

important to note that the inverse radiation problem solved by means of Eq. (4.7) does not

guarantee in a general case a solution in the form of reactive (or even passive) load-impedance

densities of wires. To overcome this problem and to solve the inverse radiation problem for

beam-forming applications, the analytical model of sparse metasurface has been accompanied

by an optimization procedure, which represents a generalization of the one demonstrated in

the Third Chapter. The design approach has been validated by 3D full-wave simulations and

experimentally. Particularly, with the help of the optimization procedure, the impact of the

number of wires on beam-steering efficiency has been studied. It has been demonstrated that

when increasing the number of wires, the level of side lobes can be decreased. However, practical

aspects (such as complexity, cost and etc.) of the final design of a sparse metasurface should

be taken into account when selecting the number of wires. It can be particularly important

for the design of a reconfigurable sparse metasurface. For the experimental validation three

semi-cylindrical sparse metasurface have been designed to demonstrate different beam-forming

functionalities: a single beam at the broadside, a single beam steered at 40◦ from the broadside

and two beams at ±30◦ from the broadside. The experiments have been performed at microwave

frequencies, but the theory is valid in any frequency range and may inspire research on novel

applications of conformal metasurfaces at THz, optical and visible frequencies.

It is crucial to note that in the demonstrated simulation and experimental examples, the

sparse metasurfaces are transmitting while possessing only electric response. On the other

hand, conventional phase-gradient approach [1] to design transmitting metasurfaces demands

implementing an effective magnetic response additionally to an electric one. An effective mag-

netic response can be conventionally engineered by considering multilayer design of metasur-

faces [128, 117]. Both responses are necessary to achieve 2π-range phase response and be able

to establish a required phase gradient along a metasurface [73]. A more rigorous approach is

certainly based on engineering the electric and magnetic surface impedances [110, 116, 112, 109]

and sometimes magneto-electric coupling [181, 117, 182], to manipulate wavefronts according

to the electromagnetic equivalence principle [111, 110]. Following the theory presented in this

study, realizing only electric response can be sufficient for an efficient control of wavefronts

that might significantly simplify the design and fabrication of wavefront manipulation devices.

Furthermore, one is able to overcome the fundamental efficiency constraint of conventional meta-

surfaces imposed by the conservation of normal power flow density [126, 143, 144].
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To conclude, a method to consequently design conformal sparse metasurfaces without ap-

pealing to a complex theory has been demonstrated. The versatility of the approach allows one

to consider different metasurface geometries and arbitrary excitation sources within the same

framework. Interestingly, sparse metasurfaces implemented on flexible substrates can be also ad-

vantageous for realizing a reconfigurability mechanism based on mechanical deformations [104].

It can represent a fruitful approach to create an adaptive response without complicating a design

with tunable elements (which also often bring additional ohmic losses) and bias networks.
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Strongly non-local reconfigurable sparse
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5.1. INTRODUCTION

5.1.
Introduction

In the context of this PhD, I am interested in reconfigurable metasurface for radar appli-

cations. Following the review on state-of-the-art developments presented in the First Chapter,

there are two major types of reconfigurable metasurfaces for wavefront manipulation: binary

phase-state and continuous phase tuning metasurfaces. The operational principle of these meta-

surfaces is based on adjusting the local phase response of constituting meta-atoms in accordance

with Eq. (1.1). Naturally, it is not an easy task to design a resonant meta-atom exhibiting 2π-

phase response. Generally, single-layered transmissive configuration does not allow to achieve 2π

phase shift and in most cases, several layers are used [73]. At microwave frequencies, PIN diodes

and varactor diodes are usually implemented in meta-atoms for reconfigurability mechanism.

While PIN diodes can offer only two different states (on and off), they have been widely used

in digital meta-atoms to achieve binary phase states [35, 37, 39, 41, 42, 43, 44, 46, 48, 50, 52,

53, 54, 56]. Varactor diodes on their side provide a more flexible solution in achieving real-time

reconfigurablity since the capacitance value can be modified continuously with a change in ap-

plied bias voltage. As such, dispersion compensation and dynamic functionality switching have

been demonstrated in varactor-based metasurfaces [36, 45, 47, 49, 55, 122]. It should be noted

that complicated designs of reconfigurable meta-atoms and ohmic losses inherent in electronic

elements hold back the wide application of more advanced concepts of Huygens’ [110, 116, 128]

and bianisotropic metasurfaces [118, 117, 126] for reconfigurable metasurfaces. To the best of my

knowledge, there are only a couple of studies that demonstrated experimentally reconfigurable

Huygens’ metasurfaces [36, 47].

While it can be advantageous to consider complex designs of reconfigurable meta-atoms,

there are fundamental limitations on the performance of metasurfaces as a result of the lo-

cal normal power flow conservation condition [116, 117, 118, 119]. Indeed, metasurfaces are

theoretically considered as continuous surface impedances [108, 110, 112] and, being of deeply

subwavelength thickness, they effectively realize an abrupt discontinuity of the electromagnetic

field while forcing the equality between entering and leaving local power flows [116, 117]. In the

case of an impenetrable (reflecting) metasurface, only the tangential component of power flow

exists in its proximity [118]. A theoretical solution proposed to overcome this limitation sug-

gests implementing a strongly non-local metasurface [126, 129, 144], which implies existence of a
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Figure 5.1: (a) An illustration of a strongly non-local reconfigurable sparse metasurface converting
a normally incident wave into an anomalously reflected wave via an excited surface wave. The surface
wave propagates long the metasurface and manifests its strongly non-local response. The electronic control
module represents a multichannel DC voltage source run by a Raspbery Pi nano-computer. (b) A close-up
of a region of the sparse metasurface.

substantial interaction between distant parts of the metasurface via surface waves propagating

along it. So far, strong non-locality has never been implemented in conventional reconfigurable

metasurfaces, making therefore their efficiency suffer from dissipation of energy in parasitic

directions.

In this Chapter, I employ the analytical model of sparse metasurfaces presented in the Fourth

Chapter to design a planar reconfigurable sparse metasurface operating in the reflectarray config-

uration and capable of controlling both far-field and near-field radiations. Theoretical efficiency

of such a sparse metasurface in beam-steering application is compared to that of conventional

gradient metasurfaces. After that, I design an electronically reconfigurable unit cell follow-

ing the approach of the Third Chapter and experimentally characterize the fabricated sparse

metasurface. Finally, I demonstrate experimentally the control of far-field radiation patterns

and near-field focusing. The developed approach represents a radically new paradigm to dy-

namically manipulate electromagnetic wavefronts and allows me to experimentally demonstrate

extreme examples of far-field and near-field functionalities such as beam-steering, multi-beam

manipulation and subdiffraction focusing. The analysis of performances of the sample reveals

indirect and direct evidences of its strongly non-local behavior.

5.2.
Theoretical model

A sparse metasurface cannot be described in terms of local reflection and/or transmission

coefficients and continuous surface impedances. Specifically, here we deal with a reflective sparse

metasurface represented by a finite array of N loaded wires placed on top of a metal-backed
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Figure 5.2: (a), (b) Schematic of the simulation model (COMSOL Multiphysics) used to calculate
Green’s function. The model is represented by four principal parts: (i) PEC-backed dielectric substrate,
(ii) an elementary source at the position of the qth wire, (iii) the substrate is placed in an air region, (iv)
PML layer of λ0-thickness surrounds the air region. PEC and PML stand for perfect electric conductor
and perfectly matched layer, respectively. The elementary source is represented by a hollow disk with
surface current density 1/(2πr0) A/m applied as a boundary condition (red circle), r0 is the radius of the
disc equal 0.25/4 mm in my simulations. (c)–(f) Simulated distributions of the electric field. The panel
(c) shows the normally incident cylindrical (background) wave with the phase center 35 cm away from
the substrate. The panel (d) shows the scattered wave when the cylindrical wave impinges the PEC-backed
dielectric substrate. The panels (e) and (f) show the electric field created by the elementary source at
the positions of the 2nd (e) and 11th (f) wires.

dielectric substrate, as presented in Fig. 5.1(a). From the microscopic perspective, a loaded

wire is built up of subwavelength meta-atoms arranged in a line, as schematically shown in

Figure 5.1(b). Such system can be studied theoretically in accordance with the approach pre-

sented in the Fourth Chapter. Structured wires can be accurately approximated and modeled

as uniform and having a deeply subwavelength effective radius r0. The electric field of an inci-

dent wave polarized along the x-direction excites polarization currents in the loaded wires. The

incident wave can be arbitrary and not only a plane wave. Each current Iq radiates the electric

field Gq(y, z)Iq, with Gq(y, z) being the Green’s function corresponding to the qth wire at yq

(zq = 0). Then, the total scattered field Ex(y, z) is a superposition (4.1) of waves re-radiated by

the wires and the incident wave reflected in the specular manner from the substrate E(r)
x (y, z)

Ex(y, z) = E(r)
x (y, z) +

N∑
q=1

Gq(y, z)Iq. (5.1)
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Figure 5.3: (a)–(d) Examples of the Green’s function calculated for the positions of 2nd and 11th wires
in the far-field (a), (b) and in the plane of wires (c), (d). (e) The normally incident cylindrical wave
reflected from the PEC-backed dielectric substrate in the far-field. (f) The excitation field (incident wave
plus its reflection from the PEC-backed substrate) in the plane of wires.

The scattering pattern is determined by values of the currents. Meanwhile, each current Iq is

related via Ohm’s law (4.2) to a load-impedance density Zq of the corresponding wire and the

total electric field induced at its position

ZqIq = E(exc)
x (yq, 0)−

N∑
p=1

Z(m)
qp Ip, (5.2)

with mutual-impedance densities being

Z(m)
qp = −Gp(yq, 0), Z(m)

qq = − 1
2πr0

∮
Gq(y, z)dl, (5.3)

the integration is performed over the circumference of the qth elementary source. Desirable scat-

tering patterns can then be tailored by judiciously choosing Zq and engineering the meta-atoms

composing a wire. For instance, the inverse scattering problem can be solved by maximizing

power scattered by the metasurface in desirable directions in the far-field or spots in the near-field

focusing with respect to load-impedance densities. The maximization procedure is implemented

as particle swarm optimization as detailed in the Third and Fourth Chapters.

Since this study deals with a complex finite-size system, there is not an applicable analytical

formula for a Green’s function. Following the results of the Fourth Chapter, I built a 2D

simulation model using a commercially available FEM-based software, COMSOL Multiphysics,
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to calculate Green’s functions. The model is represented by a finite-size grounded dielectric

substrate placed in free space. An elementary source is consequently placed at the positions of

loaded wires, i.e. yq = qd (q = 1, 2, ..., N , zq = 0). The schematic of the model is shown in

Fig. 5.2, where a detailed description of the elementary source is also given in the caption. Since

there is no need to know the Green’s function over the whole 2D plane, we extract the electric

field created by the source only at certain locations: (i) at the top of the dielectric substrate

to construct the matrix of mutual-impedance densities Z(m)
qp , (ii) in the far-field to show beam-

forming performances, and (iii) in the desired focal plane to perform near-field focusing. Typical

plots of the Green’s function corresponding to different positions of wires are shown in Fig. 5.3.

See also Fig. 5.2(e) and (f) for snapshots of the electric field created by the elementary source.

Additionally to the Green’s function, one needs to know the incident wave reflected from

the metal-backed dielectric substrate (in the absence of wires). The incident wave is created by

an excitation source and is assumed to be given. In this work, the excitation source is a horn

antenna with the phase center being 35 cm away from the sample. I approximate the incident

wave by a cylindrical wave with its origin at the phase center of the horn antenna (Fig. 5.2(c)).

Figure 5.3(e) shows the angular dependence of the incident wave reflected in the far-field (see also

Fig. 5.2(d)). The incident wave plus its reflection from the metal-backed substrate constitute

the excitation electric field, Fig. 5.3(f), which induces polarization currents in the wires.

5.3.
Comparison to gradient metasurfaces

In order to estimate the efficiency of a sparse metasurface in comparison to a densely-

packed traditional gradient metasurface based on the control of the local reflection coefficient,

let me proceed by considering several examples of beam-steering at different angles. A sparse

metasurface is represented by N reactively-loaded wires equidistantly distributed along the top

surface of a PEC-backed dielectric substrate and the distance between two neighboring wires is

d. Two cases are considered when N = 21, d = λ0/2 and N = 42, d = λ0/4. In these examples

demonstrated by means of 2D full-wave simulations, the wires are modeled as hollow cylinders

of radius r0 with an electric surface current density boundary condition Ex(y, z)/(2πr0)/Zq,

Re[Zq] = 0.

A gradient metasurface is represented by an electric sheet with the surface impedance Zgr(y)

on top of a PEC-backed dielectric substrate and also modeled as an electric surface current
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density boundary condition Ex(y, z)/Zgr(y). I consider two main types of gradient metasurfaces

which implement control of only the phase or both the phase and the amplitude of the local

reflection coefficient. In the first case, the surface impedance Zgr(y) is purely imaginary and

calculated as follows [119] for the anomalous reflection at angle θ

Zgr(y) = jη

(
tan

[
φ(y)

2

]
−

cot
[
]k0
√
εsh

]
√
εs

)−1

, φ(y) = k0

(√
D2 + y2 − y sin[θ]

)
. (5.4)

In the second case, Re[Zgr] can be greater than zero meaning that the local absorption can be

adjusted in order to improve the scattering efficiency of a gradient metasurface. The surface

impedance is found from the local reflection coefficient R(y) as follows [119]

Zgr(y) = η

(
1−R(y)
1 +R(y) + j

cot
(
k0
√
εsh

)
√
εs

)−1

. (5.5)

In its turn, the reflection coefficient is found from the ansatz of the incident (i) and the reflected

(r) waves

R(y) = −1 +
2
(
E

(i)
x (y, 0) + E

(r)
x (y, 0)

)
E

(i)
x (y, 0) + E

(r)
x (y, 0) + η

(
H

(i)
y (y, 0) +H

(r)
y (y, 0

) . (5.6)

The incident wave is a cylindrical wave with the center at y = 0, z = D and the reflected wave

is a plane wave propagating at the angle θ from the broadside

E(i)
x (y, z) = H

(2)
0 [k0

√
y2 + (z −D)2],

H(i)
y (y, z) = j (z −D)√

y2 + (z −D)2
H

(2)
1 [k0

√
y2 + (z −D)2],

E(r)
x (y, z) = Ae−jk0(sin[θ]y+cos[θ]z), H(r)

y (y, z) = −A cos[θ]
η

e−jk0(sin[θ]y+cos[θ]z). (5.7)

The amplitude of the plane wave A is chosen to ensure |R(y)| ≤ 1 along the metasurface.

In simulations, the operating frequency is set to be 10 GHz (λ0 ≈ 30 mm). The excitation

is set as a TE-polarized cylindrical wave incident at 0◦ (normal incidence) and having the phase

center D = 35 cm away from the center of the metasurfaces. Figure 5.5 demonstrates results

of beam-steering from 10◦ to 70◦ obtained with sparse and gradient metasurfaces. It is seen

that a gradient metasurface controlling only the phase of the local reflection coefficient shows

an increase in the level of side lobes when the steering angle increases. The −10 dB level of side

lobes is achieved around 60◦ of the steering angle and quickly increases when going beyond this

angle (compare blue dashed curves in Figs. 5.5(e) and (f)). When the amplitude of the local
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reflection coefficient can be adjusted additionally to the phase, the level of side lobes remains

low independently of the steering angle while the power in the main lobe constantly decreases

because of the increasing absorption. Figures 5.5(c)–(f) demonstrate how the level of the main

lobe lowers from −1 dB in the panel (c) to −4 dB in the panels (e) and (f). On the other hand,

a sparse metasurface allows one to keep simultaneously low level of side lobes and high power

in the main lobe independently on the steering angle. Furthermore, in strong contrast with

a densely-packed gradient metasurface the inter-element distance in a sparse metasurface is as

large as λ0/2 and can be decreased to λ0/4 when large steering angles are desired.

A key feature of a sparse metasurface, allowing one to outperform a gradient metasurface at

large angles of anomalous reflection, is its strong non-locality. To better illustrate this mecha-

nism, let me consider yet another example of extreme anomalous reflection at −65◦ when the

cylindrical incident wave is at 45◦ as shown in the inset of Fig. 5.6(a). Such a configuration

makes the separation between the specular reflection and the anomalously reflected wave equal

to 110◦. Figure 5.6(a) compares the radiation patterns created by a sparse metasurface with

the λ0/2 inter-wire distance (red solid curve) and gradient metasurfaces (blue dashed and green

dot-dashed curves). The gradient metasurface implementing control of the phase of the local

reflection coefficient (blue dashed curve) exhibits strong spurious scattering in the far-field which

makes the power scattered in the desired direction twice less than in case of the sparse meta-

surface. On the other hand, introducing local absorption to reduce the level of side lobes (green

dot-dashed curve) even further reduces the power in the main beam. To expose a strongly non-

local response, I extract the scattered near-field at the distance λ0/10 above the metasurfaces

and perform discrete Fourier transform [183]. More precisely, the spectrum of the near-field is

calculated as follows

em(z) = 1
P

P∑
n=1

E(sct)
x (yn, z) exp

[
j

2πynm
L

]
, (5.8)

where E(sct)
x (yn, z) is the complex amplitude of the scattered electric field recorded at the coor-

dinate yn and at the distance z from a metasurface, em(z) is the mth Fourier coefficient, P is

the total number of measured points, m = −P−1
2 , . . . , P+1

2 and L is the length of the scanning

area which coincides with the size of a metasurface. From Eq. (5.8), the tangential component

of the wavevector can be defined as ky = 2πm/L. Then, the normalized tangential wavevector

is ky/k0 = mλ0/L. The plot of the near-field spectrum demonstrated in the Fig. 5.6(e) shows

the dependence of
∣∣∣ em(λ0/10)

max[em(λ0/10)]

∣∣∣2 from the normalized tangential wavevector mλ0/L. The vis-
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Figure 5.4: (a) A sparse metasurface demonstrating an anomalous reflection when being illuminated
by a cylindrical wave. The sparse metasurface is represented by a finite array of wires having different
load-impedance densities Zq. (b) A periodic array of wires having all the same load-impedance density Zq.
The array is illuminated by a normally incident plane wave and the reflection coefficient R is calculated
by means of Eqs. (3.1) and (3.4).

ible spectrum corresponds to the range of ky/k0 from −1 to 1. The waves outside the visible

range correspond to evanescent surface waves decaying with distance from a metasurface. A

strong peak manifesting a surface wave is present in the near-field spectrum corresponding to

the sparse metasurface as highlighted by the red trace in Fig. 5.6(e). Although the interaction

between elements of the sparse metasurface decreases with distance and well localized, as shown

in Fig. 5.6(f), the surface wave propagates along the whole metasurface, representing a collective

effect. Conversely, the spectra of the scattered near-field above the gradient metasurfaces (blue

and green dots in Fig. 5.6(e)) do not exhibit any signature of surface waves.

The radiation patterns created by the gradient metasurfaces and shown in Fig. 5.6(a) cor-

respond to the spatial profiles of the amplitude and the phase of the local reflection coefficient

depicted in Figs. 5.6(b)–(d). In order to highlight the fact that one cannot apply the approach

based on controlling the local reflection coefficient to design a sparse metasurface, in Figs. 5.6(b)–

(d) there are also red points corresponding to the amplitude and the phase of the fictitious local

reflection coefficient established along the sparse metasurface. While the meaning of the local

reflection coefficient is clear in the case of a phase-gradient metasurface, it might not be that ob-

vious for a sparse metasurface. Indeed, a sparse metasurface cannot be homogenized and, thus,

it cannot be described in terms of a continuous local reflection coefficient. To demonstrate the

example of Fig. 5.6(a), optimal load-impedance densities of wires constituting a sparse metasur-

face are found by assuming and following the procedure described in the previous section. After

that, the reflection coefficient from a corresponding periodic array of loaded wires is calculated

analytically by means of Eqs. (3.1) and (3.4) assuming that Zq is known. Figure 5.4 outlines
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this procedure.

Figure 5.5: Simulation results of beam-steering at different angles performed by a sparse metasurface
(solid red curves), a gradient metasurface implementing only local phase control (dashed blue curves)
and a gradient metasurface implementing local phase and amplitude control (dot-dashed green curves).
Normalized radiation patterns are plotted. In the panels (a)–(d) the sparse metasurface is composed of 21
wires with the inter-wire distance of λ0/2. In the panels (e),(f) the number of wires in sparse metasurface
is increased to 42 while the inter-wire distance is reduced to λ/4 to maintain the same aperture size of 315
mm. The gradient metasurfaces also have the aperture of 315 mm. The external excitation is a normally
incident cylindrical wave having the center at 35 cm away from metasurfaces. The operating frequency
set in the simulations is 10 GHz.
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Figure 5.6: (a) Simulation results of beam-steering at −65◦ performed by a sparse metasurface (solid
red curves), a gradient metasurface implementing only local phase control (dashed blue curves) and a gra-
dient metasurface implementing local phase and amplitude control (dot-dashed green curves). Normalized
radiation patterns are plotted. The inset figure illustrates the incident (left) and reflected (right) waves.
The sparse metasurface is composed of 21 wires with the inter-wire distance of λ0/2. The metasurfaces
have the same aperture of 315 mm. The relative permittivity of substrates is εs = 2.2 and the thick-
ness is 2.65 mm. The external excitation is a cylindrical wave incident at 45◦ and having the center at
35 cm away from the center of the metasurfaces. The operating frequency set in the simulations is 10
GHz. (b)–(d) Corresponding amplitude (b) and phase (c),(d) of the local reflection coefficient along
the metasurfaces. The local reflection coefficient corresponding to the sparse metasurface (red circles) is
fictitious as explained in the main text. (e) Spectrum of the electric field above (at the distance λ0/10)
the metasurfaces. (f) Plot of the matrix of mutual-impedance densities of the sparse metasurface.
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5.4.
Reconfigurable sparse metasurface

By gaining control over load-impedance densities Zq of the wires, one is able to adjust

the currents Iq and manipulate the scattered field dynamically. In order to realize real-time

control over load-impedance densities at microwave frequencies, I use a radio-frequency varactor

diode where the capacitance can be tuned by an applied bias voltage. Two different designs of

reconfigurable meta-atoms were developed and tested in the course of the work. The schematic

layouts are shown in Figs. 5.7(a) and (b). The design procedure is based on the local periodic

approximation established in the Third Chapter; the conventional design methods of dense

metasurfaces being not applicable for sparse metasurfaces (see for e.g. Ref. [112]). The design

of the second reconfigurable meta-atom, presented in Fig. 5.7(b), evolves from the first one and

better accounts for Ohmic losses of the chosen varactor diode. Three principal parts of the

elementary cell can be distinguished in both designs: a varactor loaded microstrip line (top),

a microstrip line (middle), and a bias line (alongside). The microstrip lines together with the

varactor diode form an equivalent parallel RLC circuit. The middle microstrip line plays the

role of an inductance that allows one to effectively decrease the minimal capacitance of the

varactor diode and expand the dynamic range of accessible load-impedance densities Zq without

increasing the density of meta-atoms. The latter is extremely important when one tends to

decrease the Ohmic losses of varactor diodes. The bias voltage is applied to the varactor diode

through the metallized via connecting the top and bottom layers.

On the basis of the developed designs, two experimental samples were fabricated using printed

circuit board (PCB) technique and surface-mount component soldering. Similar to the numerical

examples considered above, both samples are composed of 21 loaded wires, each represented by

a chain of the designed meta-atoms. Close-up photographs of the fabricated samples are shown

in Figs. 5.7(c) and (d). The samples represent six-layer PCBs with the bottom layer reserved

for the bias network of the varactor diodes. Three woven-glass dielectric substrates F4BM220

(relative permittivity is 2.2, loss tangent is 0.001) were used: the two top substrates correspond

to the specifications given in Figs. 5.7(a) and (b), the thickness of the bottom substrate not

shown in Fig. 5.7 is 0.5 mm. Thickness of the copper cladding is 35 µm. Selected varactor

diode (MAVR-011020-1411) has capacitance varying in the range from 0.045 pF to 0.25 pF as

specified by the manufacturer in the datasheet [184]. Metallic vias of 0.25 mm radius are used
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to apply bias voltage to varactors. In the datasheet, the characterization of the varactor diode is

presented at 1 MHz for the capacitance range and at 50 MHz for the quality factor. Therefore,

a more accurate characterization of the varactor diode in the target frequency range (around 10

GHz) is required.

Individual control of each wire in the metasurface is implemented by a bias network appearing

behind the metal-backed substrate and powered by an electronic control module. The module

was developed upstream and consists of a Raspberry Pi 3 B+, an ARM processor single board

nano-computer, and a stack of two electronic cards integrating 16 independent DC voltage

outputs each. A photograph of the electronic control module is shown in Fig. 5.7(e). The nano-

computer is used as an operating unit for the two electronic cards and allows one to control the

DC voltage of each of the 32 outputs from 0 to 30 V. To facilitate the control, a human-machine

interface in Python was developed. On the electronic side, each card is supplied with a fixed

voltage of 30 V and operational amplifiers are used in a comparator assembly to control the

voltage of each output. Each output is therefore controlled via the nano-computer using the

SPI communication protocol.

Once a reconfigurable metasurface is fabricated, it should be characterized. The aim of the

experimental characterization of a sample is to establish the dependence between the applied

biasing voltage V and the load-impedance density of the loaded wires comprising a sparse

metasurface. Photographs and schematics of experimental setups are shown in Fig 5.8. The

setup in Figs. 5.8(a) and (b) is used for sample 1 and the incidence angle is set to 5◦ to avoid

the appearance of grating lobes at frequencies above 10 GHz. The measurements are performed

up to 16 GHz. For sample 2, the setup shown in Figs. 5.8(c) and (d) is used, the incidence

angle is 45◦ and the highest frequency is 11.5 GHz. The frequency dependence of the complex

amplitude of the specularly reflected wave from the sample as a function of the applied bias

voltage is measured. The same bias voltage is applied to all varactor diodes. The complex

amplitude is normalized to the one measured from a metallic plate of the same size and thickness

as the sample. The absolute value of the reflection coefficient is plotted in Figs. 5.9(a) and (e)

for sample 1 and sample 2, respectively. Then, the experimental frequency dependencies are

correlated with the ones obtained via 3D full-wave numerical simulations of the unit cells shown

in Figs. 5.7(a) and (b) with applied periodic boundary conditions (see Figs. 5.9 (b) and (f)).

In the simulations, the varactor diode is modeled as a lumped RC-circuit with the impedance

Zv = Rv − j/(ωCv), where Rv is the series resistance and Cv is the capacitance. It is assumed
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that Rv and Cv depend on neither the frequency nor the bias voltage. The parameter Rv was

used to match the depth and the width of the resonances obtained in simulations to the ones

observed experimentally. Eventually, Rv was estimated to be 8.5 Ω to allow one to accurately

predict in simulations the parameters of the experimental resonances at lower frequencies (up to

approximately 10.5 GHz) within the approximation that Rv and Cv are frequency independent.

By comparing the positions of the experimental and theoretical resonances (Figs. 5.9(c) and

(g)), I obtain the relation between the bias voltage and the varactor’s capacitance presented in

Figs. 5.9(d) and (h). The small difference between the extracted dependencies Cv(v) for sample

1 and 2, Figs. 5.9(d) and (h), may stem from inaccuracies of the model of the varactor diode

and/or the characterization procedure itself. In any case, as experimental results presented in

what follows suggest, these inaccuracies do not affect the performance significantly. Eventually,

with Cv = Cv(V ) known, one is able to find Zq = Zq(V ).

Figure 5.10 demonstrates the retrieved dependencies of the load-impedance density on the

bias voltage for both samples at different frequencies and allows one to compare the two designs.

The target central frequency was chosen to be 10 GHz. At this frequency, sample 1 exhibits a

strongly resonant response where the dynamic range of the reactance corresponds to a narrow

range of bias voltages. This and the enhanced resistance due to the resonance resulted in a

very poor performance of sample 1 at this frequency as followed from to the adopted theoretical

model in Section 5.2. However, as it is demonstrated by Figs. 5.10(b)–(d), when increasing the

frequency the resonance widens and shifts to higher bias voltages. It actually suggests that

by reducing the density of unit cells in the x-direction (increasing the length of the segments

constituting a wire) the desired reconfigurable response can be obtained at the target frequency.

Furthermore, when reducing the density, the number of lossy varactor diodes decreases also and

one can expect that the overall absorption will be lower. Based on these conclusions, the design

of sample 2 was developed. Figures 5.10(e)–(h) show the retrieved load-impedance density in the

frequency range from 8.5 GHz to 10 GHz. At 10 GHz frequency, sample 2 demonstrates a wide

capacitive response within a broad range of bias voltages that allows convenient experimental

reconfigurability. In what follows, only the experimental results obtained with sample 2 are

demonstrated.
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Figure 5.7: (a), (b) Schematics of an elementary varactor-loaded meta-atoms composing experimental
samples 1 (a) and 2 (b). All the dimensions are given in millimeters. (c), (d) Photographs of the
fabricated experimental samples 1 (c) and 2 (d), approximately equal areas of the samples are shown.
(e) A photograph of the electronic control module.

Figure 5.8: Photographs (a),(c) and schematics (b),(d) of the experimental setups used to characterize
sample 1 (a),(b) and sample 2 (c),(d).
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5.4. RECONFIGURABLE SPARSE METASURFACE

Figure 5.9: Experimentally measured (a), (e) and simulated (b), (f) amplitudes of the specularly
reflected wave vs. the frequency). In the experiment, the bias voltage was changed in the range from 0
to 15 V. In the simulation, a parametric sweep with respect to the capacitance of the modeled varactor
diode was performed in the range from 0.05 to 0.25 pF according to the datasheet [184]. (c), (g) The
dependence of the resonance frequency on the bias voltage (red solid curve, measured experimentally) and
on the capacitance (blue dashed curve, simulated). (d), (h) The dependence of the capacitance on the bias
voltage retrieved from the panels (c) and (g), respectively. The panels (a)–(d) and (e)–(h) correspond
to the sample 1, Fig. 5.7(c), and the sample 2, Fig. 5.7(d), respectively.
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Figure 5.10: Retrieved load-impedance density of the varactor-loaded wire constituting the sparse meta-
surface vs. the bias voltage. The panels show examples at different frequencies indicated in top right
corner. It is seen how the position of the resonance shifts when the frequency is changed. The panels
(a)–(d) and (e)–(h) correspond to the sample 1, Fig. 5.7(c), and the sample 2, Fig. 5.7(d), respectively.
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5.5. EXPERIMENTAL RESULTS: BEAM-FORMING

5.5.
Experimental results: beam-forming

The experimental setup used to demonstrate the dynamic far-field manipulation capabilities

of the proposed metasurface is schematically illustrated in Fig. 5.11(a), and photographs of the

setup are shown in Figs. 5.11(b) and (c). The sample and a feeding horn antenna are both placed

on a rotating platform to be used as a transmitter and the radiation pattern is measured by a

receiving horn antenna. The feeding horn is placed approximately 35 cm away from the sample,

which makes it a compact radiation system. However, other sources (like a patch antenna) can

also be used in order to excite the sample and further reduce the size of the system.

In the first set of measurements, the incidence angle is set to 0◦ in concordance with the

numerical example above, and the operating frequency is fixed to 10 GHz. Figures 5.12(a)–

(c) demonstrate dynamic beam steering from 10◦ up to 65◦ at three different frequencies: 9

GHz, 9.5 GHz and 10 GHz. The spurious scattering in the far-field region remains low being

in good agreement with the numerical results of Fig. 5.5. Even though a sparse metasurface

is considered, the employed design approach does not impose any restriction on the achievable

beam-steering angle, which is in strong contrast with periodic metasurfaces. More complex

examples of beam-forming are illustrated in Fig. 5.13(a), which demonstrates the ability to

dynamically control the number of radiated beams. When applying successive sequence of

pre-registered bias voltage profiles plotted in Fig. 5.13(b), one beam is firstly radiated at 60◦,

then two symmetrical beams at −30◦ and 30◦, and three beams centered around 0◦. The

number of beams is only limited by the beamwidth and, thus, the physical aperture of the

metasurface. Figure 5.13(c) shows simultaneous excitation of six beams at desired angles. As in

the case of a single beam, dynamic steering beam-steering of multiple beams can be performed as

demonstrated in Figs. 5.13(d)–(f) on the example of two beams at 9.5 GHz. It should be noted

that the level of side lobes does not increase when changing the number of beams. Moreover,

in all examples shown in Fig. 5.13 the level of side lobes does not exceed −10 dB. The high

scattering efficiency of the sample is due to the rigorous theoretical model behind. It accounts

for the mutual interactions between the elements, considers real-type excitation (non-planar

incident wavefront in our specific case) and precisely solves the inverse scattering problem.

The instantaneous operating bandwidth of the sample also depends on the configuration and

is estimated to be 5%. On the other hand, the reconfigurability mechanism allows the sample
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Figure 5.11: A schematic illustration (a) and photographs (b), (c) of the experimental setup to measure
far-field radiation patterns.

to demonstrate frequency agility over a broad frequency range around centre frequency of 9.25

GHz (16%). Section 5.6 provides additional details on the performances of the sample for beam-

steering applications demonstrated in Figs. 5.12(a)–(c).

5.5.1 Indirect evidence of strongly non-local response

To conform the conditions of the numerical example shown in Fig. 5.6 and also highlight the

sample’s agility with respect to the excitation, the incidence angle is changed to 45◦. The

operating frequency is fixed to 10 GHz. Figure 5.12(d) demonstrates dynamic beam steering from

20◦ up to −70◦, and the side-lobes level, being well beyond the limits of gradient metasurfaces

for large steering angles as discussed in details in Section 5.3. As follows from the conclusions

derived when analyzing Figs. 5.6(a) and (e), the efficient large-angle anomalous reflection serves

as an indirect manifestation of a strong non-locality by the fabricated reconfigurable sparse

metasurface.
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Figure 5.12: Experimental examples of beam-steering capabilities of the sample. The panels (a)–(c)
demonstrate beam-steering at three different frequencies when the feeding horn antenna is at normal
incidence: 9 GHz (a), 9.5 GHz (b) and 10 GHz (c). The panel (d) demonstrates beam-steering at
10 GHz when the feeding horn antenna is at 45◦ incidence. The panel (e) shows applied bias voltages
corresponding to the examples of the panel (d).
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Figure 5.13: Experimental examples of exciting and manipulating multiple beams with the sample. The
panel (a) demonstrates dynamic control of the number of beams at 10 GHz. The panel (b) shows corre-
sponding bias voltages applied to the wires in the examples of the panel (a). The panel (c) demonstrates
the excitation of six beams at 10 GHz. The panels (d)–(f) demonstrate symmetric steering of two beams
at 9.5 GHz. The sample is illuminated by a single horn antenna at normal incidence, the distance between
the horn and the sample is 35 cm.
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5.6. ANALYSIS OF BEAM-STEERING EFFICIENCY

5.6.
Analysis of beam-steering efficiency

The total efficiency of the sample can be computed by means of the following formula

εtot = (1−A)εsct, (5.9)

where A is the absorption (the portion of the incident power absorbed by the sample) and εsct

is the portion of the reflected power scattered in desired directions (lobes). The absorption can

be calculated as follows

A = 1−
∫ 90◦

−90◦
PS(ϕ)dϕ

/∫ 90◦

−90◦
PMP (ϕ)dϕ, (5.10)

where PS(ϕ) and PMP (ϕ) are, respectively, the measured power scattered from the sample (in

different configurations) and the metallic plate of the same size (see Fig. 5.11). The incidence

angle and the distance to the illuminating horn antenna are kept the same for the sample and

the metallic plate. The scattering efficiency can be estimated by integrating the power in the

desired lobe over the total reflected power

εsct =
∫

lobe
PS(ϕ)dϕ

/∫ 90◦

−90◦
PS(ϕ)dϕ. (5.11)

As it can be seen from Fig. 5.14, the absorption and the scattering efficiency depend on the

configuration of the sample. It should be noted that while we consider the scattering efficiency

with respect to the total reflected power, in many studies the efficiency is estimated with respect

to the discrete number of diffraction orders. The level of absorption can be further reduced at

lower frequencies. At the target frequency range of 10 GHz, varactor diodes are relatively lossy

and the retrieved resistance of used varactor diodes is 8.5 Ω.

It can be also useful to compare the directivity of the radiation pattern produced by the

sample with the one created by a uniform aperture. The directivity of the uniform aperture is

considered to be the practical maximum of an antenna’s directivity. Therefore, one can make

conclusions about the scattering efficiency of the sample. The 2D radiation pattern produced
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by a uniform aperture is given by [125]

PUA(ϕ) =

cos[ϕ]
sin
[
ka
2 (sin[ϕ]− sin[ϕmax])

]
ka
2 (sin[ϕ]− sin[ϕmax])

2

, (5.12)

where k is the wavenumber in free space, a = Nd = 315 mm is the aperture size and ϕmax is

the direction of the maximum power. The 2D directivity D is the power radiated in a given

direction over the averaged total power

D = 360◦P (ϕ)
/∫ 90◦

−90◦
P (ϕ)dϕ. (5.13)

The angle ϕmax in Eq. (5.12) is the steering angle corresponding to the one in a considered

configuration of the sample. Figure 5.15 allows one to compare the 2D directivity of the sample

in the configurations of Fig. 5.12 and the uniform aperture.

To summarize, the estimated level of absorption lies in the range from 0.5 to 0.7 and de-

pends on the particular configuration. Generally, the highest scattering efficiency corresponds

to smaller steering angles, but even for 55◦ and 65◦ it reaches 90% and 85%, respectively. Cal-

culated 2D directivity of the sample confirms high scattering efficiency when being compared to

the 2D directivity of the uniform aperture. Indeed, for small steering angles the directivity of

the sample is approximately 2 dBi less than of the uniform aperture. The difference is less than

1 dBi for large angles.

I do not consider here the efficiency in the configurations of the sample corresponding to

excitation of multiple beams as each beam changes differently with respect to the frequency and

it is not trivial to define the scattering efficiency in these cases.
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Figure 5.14: Calculated absorption (a)–(c) and scattering efficiency (d)–(f) of the experimental sample
in different configurations. These data are related to the radiation patterns shown in Fig. 5.12. The
panels (a) and (d) correspond to the panel (a) of Fig. 5.12, the panels (b) and (d) correspond to the
panel (b) of Fig. 5.12 and the panels (c) and (d) correspond to the panel (c) of Fig. 5.12. The color code
corresponds to the one of Figs. 5.12(a)–(c).
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Figure 5.15: Calculated 2D directivity of the radiation patterns created by the sample in different con-
figurations compared to the corresponding directivity of a uniform aperture. The panels (a),(c),(e)
correspond to the sample and the panels (b),(d),(f) correspond to the uniform aperture. The panels (a)
and (b) correspond to the panel (a) of Fig. 5.12, the panels (c) and (d) correspond to the panel (b) of
Fig. 5.12 and the panels (e) and (f) correspond to the panel (c) of Fig. 5.12. The color code corresponds
to the one of Figs. 5.12(a)–(c).
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5.7.
Experimental results: Near-field focusing

To further demonstrate the vast capabilities of the approach in manipulating fields, I have

studied the flexibility and efficiency of the proposed reconfigurable metasurface for dynamic

shaping of the near-field. To that end, the following objective function was selected

f(Vq) = tt

∏
n∈D
|Enf (yn, zf )|2

/(∫ ymax

ymin

|Enf (y, zf )|2dy
)t
,

Enf (y, zf ) = E(r)
x (y, zf ) +

N∑
q=1

Gq(y, zf )Iq. (5.14)

It maximizes the field intensity at desired focal points (yn, zf ) defined by the index n and

minimizes the level of secondary lobes in the given focal plane, D represents a discrete set of

desired points and t is the size of this set. The coordinates ymin and ymax in the integral

correspond to the lateral boundaries of the scanned region infront of the sample. Currents Iq

are related to load-impedance densities Zq via Eq. (5.2). In its turn, the load-impedance density

is related to the bias voltage Vq via the characterization procedure and Figs. 5.10(e)–(h).

Another experimental setup was mounted to measure the distribution of the electric field

(both the phase and the amplitude) in front of the sample with a moving dielectric probe as

shown in Fig. 5.16. The sample, in this case, is illuminated at normal incidence by a cylindrical

wave radiated by a horn antenna, as illustrated by the corresponding measured electric field

profile in Fig. 5.17(a). In the first sequence of voltage settings, the sample acts as a high

numerical aperture (NA) diffractive lens and focuses the incident wave at the distance λ as

shown in Fig. 5.17(b). With the physical aperture of the sample being 21λ0/2 = 315 mm and

the focal length of λ ≈ 31.6 mm, the NA is approximately 0.98. The experimentally measured

spot size being 0.47λ, which is smaller (for the given NA) than the size of Airy spot 0.61λ/NA

establishing the diffraction limit [185, 186], demonstrates subdiffraction focusing. Meanwhile,

the minimum spot size of a subdiffraction focal point is found to be 0.38λ/NA [180]. The depth

of focus (DOF), characterized as full width of the focal spot in the longitudinal direction at half

maximum, is experimentally measured to be 1.3λ, which agrees very well with the theoretical

estimation DOF = λ/(1 −
√

1−NA2) ≈ 1.25λ [180]. The imaging efficiency and the level of

secondary lobes are 68% and −8.5 dB in this configuration, respectively. The imaging efficiency

εimg is calculated as the reflected power in the focal spot divided over the total reflected power
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Figure 5.16: A schematic illustration (a) and photographs (b),(c) of the experimental setup to measure
distribution of the electric field.

in the focal plane

εimg =
(∫ y2

y1
|Ex(y, zf )− E(inc)

x (y, zf )|2dy
)/(∫ ymax

ymin

|Ex(y, zf )− E(inc)
x (y, zf )|2dy

)
, (5.15)

where the coordinates y1 and y2 refer to the lateral limits of the focal spot.

By changing the applied voltage sequence and thus the load-impedance densities, one can

move the focal spot further away from the sample and change the NA of the lens, from 0.98 in

Fig. 5.17(b) to 0.83 in Fig. 5.17(d). The spot size of 0.67λ is still smaller than the size 0.74λ

of the corresponding Airy spot. Multiple subdiffraction focal spots can also be created and

independently controlled (Fig. 5.17(e) and Figs. 5.18 and 5.19), demonstrating the high efficiency

and manipulation flexibility of the real-time reconfigurable metasurface. In Figs. 5.17(d) and

(e), the measured DOF and its corresponding theoretical estimation is, respectively, 2.4λ and

2.26λ. The imaging efficiency and the level of secondary lobes are measured to be 78% and −12
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dB for the λ distance single focal point configuration and 88% and −10.9 dB in the case of the

3λ distance double focal points.

5.7.1 Direct evidence of strongly non-local response

Extracting the amplitude and phase of the electric field in the proximity of the sample allows one

to directly observe surface waves manifesting strong non-locality. Performing discrete Fourier

transform (Eq. (5.8)) on the measured electric field at the distance λ/10 from the metasurface

reveals two strong peaks outside the visible range (ky/k0 > 1), as shown in Figure 5.17(c).

The peaks correspond to two surface waves propagating along the sample in opposite directions.

Although the surface waves contribute to the aperture field creating the subdiffraction focal spot,

being evanescent they are not responsible for breaking the diffraction limit for focal length of λ.

Indeed, the spectrum of the field in the focal plane consists in only propagating waves as shown

in Fig. 5.20. On the other hand, if one moves the focal point closer to the metasurface, surface

waves can be used to perform super-focusing and achieve the spot size much less than that of

the subdiffraction limit (0.38λ, NA ≈ 1). To that end a denser, but still sparse, metasurface is

required. In Fig. 5.21, an example of a sparse metasurface with the inter-wire distance of λ0/4

demonstrates focusing of the incident wave at λ/10 focal length to the spot size of 0.15λ. In

strong contrast to the phenomenon of super-oscillations [180], which also allows to overcome the

subdiffraction limit, the level of side lobes remains very low due to the surface waves contributing

significantly to the formation of the focal spot as revealed. The results are also compared to the

case of λ0/2 inter-wire distance and 21-wire metasurface, it is seen that the level of secondary

lobes is much lower with the 41-wire metasurface and λ0/4 inter-wire distance.
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Figure 5.17: (a) The measured electric field of the incident wave radiated by the transmitting horn
antenna. (b), (d), (e) The measured normalized intensity of the scattered wave |Ex(y, z)−E(inc)

x (y, z)|2
for three different configurations of the reconfigurable sparse metasurface: single focal point at the distance
λ (b) and 3λ (d), when frequency is 9.5 GHz, (e) two focal points at the distance 3λ, when frequency
is 10 GHz. (c) Spectrum of the electric field along the sample measured at the distance λ/10 from the
sample in the configuration presented in the panel (b), showing surface waves propagating in opposite
directions along the metasurface. (f) Bias voltages applied to each wire in the different configurations
shown in the panels (b),(d),(e).
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Figure 5.18: Different examples of creating three focal spots at 9.5 GHz. The panels (a)–(c) and (d)–(f)
show experimental and corresponding simulation results, respectively.
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Figure 5.19: Different examples of creating three (a), four (b) and five (c) focal spots at 10 GHz. The
panels (a)–(c) and (d)–(e) show experimental and corresponding simulation results, respectively.
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Figure 5.20: Experimental data when the sample performs a single spot on-axis focusing at λ distance.
The panels (a) and (c) show 1D spatial profiles of the scattered electric field measured (a) in the proximity
to the sample (at λ/10 distance) and (c) in the focal plane (at λ distance). The corresponding 2D spatial
distribution of the normalized intensity is shown in Fig. 5.17(b). The panels (b) and (c) show normalized
spectrum of the scattered electric field (b) at λ/10 distance and (d) in the focal plane (λ distance).
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Figure 5.21: The panels (a) and (b) show 2D spatial distributions of the normalized intensity obtained
from the simulation model of focusing at λ/10 by sparse metasurfaces composed of 41 (a) and 21 (b)
reactively-loaded wires. The inset figures in the panels (a) and (b) are close-ups of the corresponding
regions. The inter-wire distances are 7.5 mm for the 41-wire metasurface and 15 mm for the 21-wire
metasurface. The dielectric substrate is the same in both cases, the relative permittivity is 2.2 and the
thickness is 2.65 mm, respectively. The panel (c) shows 1D spatial profiles of the normalized intensities
in the focal planes. The panels (d) is the close-up of the corresponding regions in the panel (c). The
panels (e) and (g) show 1D spatial profiles of the scattered electric field recorded in the proximity to
the sparse metasurface (at λ/10 distance). The panels (f) and (h) show normalized near-field spectrum
corresponding to the panels (e) and (g), respectively.
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5.8.
Conclusion

In this Chapter, I have demonstrated the application of the analytical model developed for

sparse metasurfaces presented in the Fourth Chapter for the design and analysis of reconfigurable

sparse metasurfaces. The main practical consequence of this work is that I have demonstrated a

little bit counter-intuitive result: by reducing the density of meta-atoms and, thus, complexity

of the sparse metasurface design and its fabrication, one is actually able to outperform con-

ventional metasurfaces which often requires a more sophisticated design. It can be especially

useful for implementation of reconfigurable metasurfaces at optical and visible frequencies where

they suffer a lot from efficiency problems. The design procedure is no longer based on a simple

adjustment of the phase response of a meta-atom according to Eq. (1.1), but on calculating a

Green’s function, accurately modelling the excitation source and solving the inverse scattering

problem. As a direct endorsement of the proposed approach, a reconfigurable sparse metasur-

face loaded with controllable varactor diodes has been proposed to efficiently and dynamically

manipulate fields in both near-field and far-field regions with an arbitrary incident wave illumi-

nation. The analytical model has thus demonstrated its robustness with respect to inaccuracies

of the simple characterization procedure of the sample and varactor diodes, inaccuracies of the

positioning the feeding horn with respect to the sample and its idealistic modeling as a point

source. Fundamentally, I have experimentally demonstrated direct and indirect evidences of

surface waves propagating along the reconfigurable sparse metasurface manifesting its strongly

non-local response and allowing to perform subdiffraction focusing and anomalous reflection

at extreme angles beyond limits of conventional metasurface designs. Furthermore, excitation

and dynamic control of multiple beams (up to six) in the far-field and multiple focal spots in

the near-field have been demonstrated. The ability of the proposed sparse metasurface to dy-

namically manipulate near- and far-fields in real-time should pave the way to applications in

reconfigurable devices such as lenses, antennas and imaging systems with superior performances.
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General Conclusions and Outlooks

In the course of this PhD, I have studied conventional concepts and tools to describe and design

reconfigurable metasurfaces, determined their limitations and the source of these limitations. In

literature, metasurfaces are generally described by means of local reflection and transmission

coefficients or electric and magnetic surface impedances which, being effective-medium models,

substantially rub out microscopic features of a metasurface design and fundamentally limit

its efficiency. I have also studied principal configurations of metasurface-based reconfigurable

antennas and tunable elements used to implement a reconfigurability mechanism at microwave

frequencies. The main results of this part of the research work have been summarized in the

First Chapter. In the rest four chapters of the manuscript, I have developed and presented

microscopic analytical models and design approaches of one-dimensional arrays of structured

wires for manipulation of electromagnetic waves.

In the Second Chapter, a theoretical model for periodic arrays of scatterers, which I refer

to as metagratings, has been presented. The question of the number of degrees of freedom

necessary for the manipulation of propagating diffraction orders at will has been studied. Thus,

it has been shown that the power of an incident wave can be arbitrarily redistributed betweenM

propagating diffraction orders by means of N = M loaded wires per period. Since it generally

requires engineering active and lossy loads, I have also demonstrated that accurate adjustment of

the near-field is possible by introducing additional wires in a supercell and facilitates the power

balancing with purely reactive metagratings. A semi-analytical design procedure of microwave

metagratings and an experimental validation of the developed concept has been presented. Even

though the fabricated metagratings remind a lot of conventional dense metasurfaces, an attempt

to describe them in terms of surface impedances would lead to a contradictory conclusion:

resulted surface impedances would have non-trivial real parts (positive or negative), when in
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fact the structures are purely reactive. It highlights yet another time the importance of adopted

theoretical models which may lead to opposite conclusions, even when applied to describe the

same physical structures.

In the Third Chapter, an analytical retrieval approach has been developed, which, when

accompanied by full-wave simulations, has allowed to consider arbitrarily complex geometries

of meta-atoms for metagratings and sparse metasurfaces operating from microwave to optical

domains. In bright contrast to the local periodic approximation used for designing conventional

metasurfaces, the simple and accurate analytical formulas have been proposed in the manuscript

to subtract the field induced on the central wire by the metal-backed dielectric substrate and

the neighboring wires. It makes the developed design approach not only fast but also a rigorous

one to design metagratings and conformal sparse metasurfaces represented by nonuniform and

non-planar arrays of wires. The approach has been validated by means of numerous 3D full-wave

simulations and experimental tests of periodic metagratings, semi-cylindrical sparse metasurfaces

and reconfigurable planar sparse metasurfaces, which shows its wide generality.

In the Fourth Chapter, the analytical model of metagratings has been generalized from pla-

nar to arbitrarily-shaped distributions of engineered wires by means of numerical calculation of

a Green’s function. The concept of conformal sparse metasurfaces has been introduced and rep-

resents a radically new approach to design metasurfaces of desired geometries within the same

framework and without any adaptation. In strong contrast to metagratings, sparse metasurfaces

are considered as non-periodic structures that can be excited by arbitrary external sources and

are not functionally confined to manipulating diffraction orders. To solve the inverse scattering

problem and find an optimal number of wires for constructing conformal sparse metasurfaces

in each particular configuration, an optimization procedure has been developed on the basis of

particle swarm optimization algorithm. The high accuracy of the developed analytical model

and the design procedure of conformal sparse metasurfaces have been demonstrated through

examples of semi-cylindrical and cavity-excited sparse metasurfaces. Designs of several semi-

cylindrical sparse metasurfaces with different functionalities have been validated experimentally

at microwave frequencies, where beam-steering and excitation of multiple beams are demon-

strated. In all examples, excitation fields are complex and if conventional design approaches

were used, it would deteriorate the efficiency of metasurfaces as discussed in the First Chap-

ter. On the other hand, the developed analytical model allows one to include in the analysis

all features of the excitation field and significantly improve the efficiency of metasurfaces in
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comparison to conventional approaches. It is also crucial to note that in the demonstrated sim-

ulation and experimental examples, the sparse metasurfaces are transmitting while possessing

only electric response and being represented by single-layer designs. Meanwhile, conventional

approaches to design transmitting metasurfaces demand implementing an effective magnetic

response additionally to an electric one or using multilayer designs.

Finally, in the Fifth Chapter, the analytical model of sparse metasurfaces has been applied

to design a reconfigurable planar sparse metasurface incorporating varactor diodes as tunable

elements. A fabricated sample has experimentally demonstrated dynamic far-field and near-

field control. Namely, beam-steering beyond 60◦, excitation and dynamic control of multiple

beams (up to six) in the far-field and multiple focal spots in the near-field have been shown.

Manipulation of multiple beams and focal spots has been demonstrated under the illumination of

single horn antenna and, thus, does not require multiple feeding sources. Extreme examples of an

anomalous reflection at −70◦ under the illumination of a wave incident at 45◦ and high numerical

aperture subdiffraction focusing have fundamentally revealed indirect and direct evidences of

surface waves propagating along the reconfigurable sparse metasurface manifesting its strongly

non-local response. In the results of the work, the analytical model has proved its robustness

with respect to inaccuracies of the characterization procedure of the sample, inaccuracies of the

experimental setup in positioning the feeding horn with respect to the sample and idealistic

modeling of the horn as a point source.

To conclude, I believe that future works in the following directions can be particularly fruitful:

• Reconfigurable conformal sparse metasurface can be developed by merging the re-
sults of the Fourth and Fifth Chapters. However, a particular focus should be made on
characterization of a fabricated conformal metasurface. The procedure used for planar
reconfigurable metasurface may not be directly applicable in case of conformal designs.
Particularly, the characterization of a unit cell in a waveguide or a cavity can prove use-
ful when corresponding analytical formulas are developed to retrieve the impedance of a
reconfigurable element and not of a whole unit cell.

• Two-dimensional sparse metasurfaces composed of 2D arrays of electric dipoles will
allow one to perform 2D beam-steering and simultaneously deal with both polarizations
without involving magnetic meta-atoms. The models of arrays of wires developed in
the manuscript can be quite easily generalized to two-dimensional distributions of point
dipoles. However, the model of a point dipole may not be accurate for scatterers of a finite
size and particular care should be taken to develop a more precise approximation.

• Independent beam-forming at different frequencies will allow sparse metasurfaces
to further approach the functionality of active electrically scanned antenna arrays. A pos-
sible way to approach this problem is to implement an optimization procedure that would
take into account frequency dispersion of meta-atoms. However, before that, a theoretical
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study should be performed on the possibility and limitations of such a functionality with
passive structures.

• Optical metagratings and sparse metasurfaces: Although the proof-of-concept
demonstrations have been done at microwave frequencies, the main theoretical results
are independent of the frequency. Compared to dense metasurfaces widely studied by
the optical community [1, 187, 188], significantly decreasing the number of unit cells per
wavelength can greatly relax the fabrication constraints and makes it easier to develop
metagratings and sparse metasurfaces operating in the optical domain and capable of
manipulating wavefronts.

• Acoustical metagratings and sparse metasurfaces: Recent advances in the area of
manipulating acoustic wavefronts [154, 155, 156, 157] suggest that the developed theory
can be also generalized for the needs of the acoustics community. The possibility to develop
metagratings for other domains of physics opens an avenue for a plethora of applications.

• Reconfigurable conformal metasurfaces based on mechanical deformations: Sparse
metasurfaces implemented on flexible substrates can be also advantageous to realize a re-
configurability mechanism based on mechanical deformations [104]. It can represent a
fruitful approach to create an adaptive response without complicating a design with tun-
able elements (which also often bring additional ohmic losses) and bias networks.
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Titre: Métasurfaces éparses conformes et reconfigurables: modèles analytiques avancés et applications an-
tennaires

Mots clés: Métaréseau, Fonction de Green, Métasurface Conforme, Métasurface Reconfigurable, Dépointage
de Faisceau, Focalisation

Résumé: Cette thèse de doctorat traite des métasur-
faces constituées de diffuseurs sub-longueur d’onde
conçus pour contrôler les fronts d’ondes électromag-
nétiques. Elle introduit des modèles analytiques et
numériques inédits qui résolvent le problème de diffu-
sion inverse en tenant compte des interactions entre
éléments de la métasurface. Le manuscrit se con-
centre plus particulièrement sur des réseaux, péri-
odiques ou non, de fils structurés, permettant la réal-
isation d’antennes reconfigurables électroniquement.
Le manuscrit est divisé en deux grandes parties, l’une
sur des arrangements périodiques de fils appelés mé-
taréseaux et l’autre sur des métasurfaces éparses sans
caractère périodique. Dans les deux cas, des réal-
isations expérimentales dans le domaine microon-
des viennent appuyer les développements théoriques.
Dans la première partie, les conditions théoriques
conduisant à un contrôle total des ordres de diffrac-
tion rayonnés par des métaréseaux, dont la période
est composée de plusieurs fils structurés individuelle-
ment, sont établies et l’importance du contrôle du
champ proche est alors soulignée. Par ailleurs, une

expression analytique des paramètres effectifs des fils,
s’appuyant sur une simulation numérique, a égale-
ment été établie. Il devient ainsi possible d’exploiter
des géométries quelconques pour des métaréseaux
fonctionnant dans les domaines allant des microon-
des à l’optique. Dans la deuxième partie de la thèse,
le modèle analytique des métaréseaux, réservé aux
distributions périodiques planes, est généralisé aux
distributions non périodiques de fils disposés sur des
surfaces quelconques en s’appuyant sur le calcul de la
fonction de Green. Ce concept est appliqué à des mé-
tasurfaces éparses intervenant dans une cavité Fabry-
Perot ou dans une antenne semi-cylindrique. Enfin,
la démarche est utilisée pour concevoir une métasur-
face éparse plane reconfigurable. Un prototype a été
réalisé et utilisé pour démontrer expérimentalement
le contrôle dynamique de l’onde, en champ lointain
et en champ proche, via des applications telles que le
dépointage de faisceau, la création de faisceaux mul-
tiples ou encore la focalisation au-delà de la limite de
diffraction.

Title: Conformal and reconfigurable sparse metasurfaces: advanced analytical models and antenna applica-
tions

Keywords: Metagrating, Green’s function, Conformal Metasurface, Reconfigurable Metasurface, Beam-
steering, Focusing

Abstract: This PhD thesis deals with electromag-
netic metasurfaces for wavefront manipulation rep-
resented by arrays of scatterers engineered at sub-
wavelength scale. The manuscript develops novel an-
alytical and numerical models that allow one to solve
the inverse scattering problem by taking into account
all interactions between elements of a metasurface.
Specifically, the manuscript focuses on sparse arrays,
periodic or not, of structured wires for the applica-
tion to electronically reconfigurable antennas. The
manuscript is divided into two main parts, one on
periodic arrangements of wires called metagratings
and one on sparse metasurfaces when there is no pe-
riodicity imposed. Each part is endorsed by exper-
iments performed at microwave frequencies. In the
first part, theoretical conditions for arbitrary con-
trol of the diffraction patterns with metagratings,
whose period is composed of multiple individually-
engineered wires, are established and importance of

the near-field regulation is highlighted. Moreover, an
analytical retrieval technique is developed and allows
one to consider, with the help of full-wave simula-
tions, arbitrarily structured wires for metagratings
operating from microwave to optical domains. In
the second part of the thesis, the analytical model of
metagratings is generalized, from planar periodic, to
arbitrarily-shaped non-periodic distributions of wires
by means of numerical calculation of a Green’s func-
tion. The concept is applied to design sparse meta-
surfaces in Fabry-Perot cavity and semi-cylindrical
antenna configurations. Finally, the approach is ap-
plied to design a reconfigurable planar sparse meta-
surface. A fabricated sample is exploited to experi-
mentally demonstrate dynamic control of the far-field
radiation pattern and the near-field intensity distri-
bution. As such beam-steering, multi-beam manipu-
lation and subdiffraction focusing are shown.
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