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Title	:	Model	Checking	Self	Modifying	Code	

	

Abstract	:		

A	Self	modifying	code	is	code	that	modifies	its	own	instructions	during	execution	time.	It	is	

nowadays	widely	used,	especially	in	malware	to	make	the	code	hard	to	analyse	and	to	detect	by	

anti-viruses.	Thus,	the	analysis	of	such	self	modifying	programs	is	a	big	challenge.	Pushdown	

Systems	(PDSs)	is	a	natural	model	that	is	extensively	used	for	the	analysis	of	sequential	programs	

because	it	allows	to	accurately	model	procedure	calls	and	mimic	the	program’s	stack.	In	this	thesis,	

we	propose	to	extend	the	PushDown	System	model	with	self-modifying	rules.	We	call	the	new	

model	Self-Modifying	PushDown	System	(SM-PDS).	A	SM-PDS	is	a	PDS	that	can	modify	its	own	set	

of	transitions	during	execution.	First,	we	show	how	SM-PDSs	can	be	used	to	naturally	represent	

self-modifying	programs	and	provide	efficient	algorithms	to	compute	the	backward	and	forward	

reachable	configurations	of	SM-PDSs.		Then,	we	consider	the	LTL	model-checking	problem	of	self-

modifying	code.	We	reduce	this	problem	to	the	emptiness	problem	of	Self-modifying	Büchi	

Pushdown	Systems	(SM-BPDSs).		We	also	consider	the	CTL	model-checking	problem	of	self-

modifying	code.	We	reduce	this	problem	to	the	emptiness	problem	of	Self-modifying	Alternating	

Büchi	Pushdown	Systems	(SM-ABPDSs).		We	implement	our	techniques	in	a	tool	called	SMODIC.	

We	obtained	encouraging	results.	In	particular,	our	tool	was	able	to	detect	several	self-modifying	

malwares;	it	could	even	detect	several	malwares	that	well-known	anti-viruses	such	as	McAfee,	

Norman,	BitDefender,	Kinsoft,	Avira,	eScan,	Kaspersky,	Qihoo-360,	Avast	and	Symantec	failed	to	

detect.	
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Titre	:	Vérification	de	Code	Auto-modifiant	

	

Résumé	:	Le	code	auto-modifiant	est	un	code	qui	modifie	ses	propres	instructions	pendant	le	

temps	d'exécution.	Il	est	aujourd'hui	largement	utilisé,	notamment	dans	les	logiciels	malveillants	

pour	rendre	le	code	difficile	à	analyser	et	être	détecté	par	les	anti-virus.	Ainsi,	l'analyse	de	tels	

programmes	auto-modifiants	est	un	grand	défi.	Pushdown	System(PDSs)	est	un	modèle	naturel	qui	

est	largement	utilisé	pour	l'analyse	des	programmes	séquentiels	car	il	permet	de	modéliser	

précisément	les	appels	de	procédures	et	de	simuler	la	pile	du	programme.	Dans	cette	thèse,	nous	

proposons	d'étendre	le	modèle	du	PDS	avec	des	règles	auto-modifiantes.	Nous	appelons	le	

nouveau	modèle	Self-Modifying	PushDown	System	(SM-	PDS).	Un	SM-PDS	est	un	PDS	qui	peut	

modifier	l’ensemble	des	règles	de	transitions	pendant	l'exécution.	Tout	d'abord,	nous	montrons	

comment	les	SM-PDS	peuvent	être	utilisés	pour	représenter	des	programmes	auto-modifiants	et	

nous	fournissons	des	algorithmes	efficaces	pour	calculer	les	configurations	accessibles	des	SM-

PDSs.	Ensuite,	nous	résolvons	le	problème	de	vérification	de	propriétés	LTL	et	CTL	pour	le	code	

auto-modifiant.	Nous	implémentons	nos	techniques	dans	un	outil	appelé	SMODIC.	Nous	avons	

obtenu	des	résultats	encourageants.	En	particulier,	notre	outil	est	capable	de	détecter	plusieurs	

logiciels	malveillants	auto-modifiants	;	il	peut	même	détecter	plusieurs	logiciels	malveillants	que	

les	autres	logiciels	anti-virus	bien	connus	comme	McAfee,	Norman,	BitDefender,	Kinsoft,	Avira,	

eScan,	Kaspersky,	Qihoo-360,	Avast	et	Symantec	n'ont	pas	pu	détecter.	
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Résumé Détaillé

Un code auto-modifiant est un code qui modifie ses propres instructions pen-

dant le temps d’exécution. Il est aujourd’hui largement utilisé, principalement

pour rendre les programmes difficiles à comprendre. Par exemple, le code auto-

modifiant est largement utilisé pour protéger la propriété intellectuelle des logi-

ciels, car il permet d’inverser du code. Il est également abondamment utilisé

par les auteurs de malwares afin d’obscurcir leur code malveillant et de le rendre

difficile à analyser par les analyseurs statiques et les anti-virus. Il existe plusieurs

types d’implémentations pour les codes auto-modifiants. Packing consiste à ap-

pliquer des techniques de compression pour réduire la taille du fichier exécutable.

Ceci convertit le fichier exécutable en une forme où le contenu exécutable est

caché. Ensuite, le code est ”déballé” au moment de l’exécution. Un tel code em-

ballé est auto-modifiant. Le chiffrement est une autre technique pour cacher le

code. Il utilise une sorte d’opérations inversibles pour cacher le code exécutable

à l’aide d’une clé de cryptage. Ensuite, le code est ”décrypté” au moment de

l’exécution. Les programmes cryptés sont auto-modifiants. Ces deux formes de

codes auto-modifiants ont été bien étudiés dans la littérature et pourraient être

traitées par plusieurs outils de décryptage.

Dans cette thèse, nous considérons un autre type de code auto-modifiant,

causé par des instructions auto-modifiantes, où le code est traité comme des

données qui peuvent donc être lues et écrites par des instructions auto-modifiantes.

Ces instructions auto-modifiantes sont généralement des instructions de mov,

puisque le mov peut accéder à la mémoire, la lire et y écrire. Pour ce faire, nous

devons d’abord trouver un modéle adéquat pour de tels programmes. PushDown

Systems (PDSs) est connu pour être un modèle naturel pour les programmes

séquentiels, car il permet de suivre les contextes des différents appels dans le pro-

gramme. De plus, les systèmes PushDown permettent d’enregistrer et d’imiter

la pile du programme, ce qui est très important pour la détection des malwares.

En effet, pour vérifier si un programme est malveillant, les anti-virus commen-

cent par identifier les appels qu’il fait aux fonctions API. Pour échapper à ces

contrôles, les auteurs de malwares essaient d’obscurcir les appels qu’ils font au
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système d’exploitation en utilisant des pushs et des sauts. Il est donc important

de pouvoir suivre la pile pour détecter de tels appels obscurs. C’est pourquoi

les systèmes PushDown ont été utilisés pour modéliser des programmes binaires

afin de détecter les malwares. Cependant, ces travaux ne tiennent pas compte

des malwares qui utilisent du code auto-modifiant, car les systèmes PushDown

ne sont pas capables de modéliser des instructions auto-modifiantes.

Pour surmonter cette limitation, nous proposons dans cette thèse d’étendre

le modéle du système PushDown avec des règles auto-modifiantes. Nous ap-

pelons ce nouveau modèle le système SM-PDS (Self-Modifying PushDown Sys-

tem). En gros, un SM-PDS est un PDS qui peut modifier son propre ensemble de

transitions pendant l’exécution. Nous montrons comment les SM-PDS peuvent

être utilisés pour représenter naturellement des programmes auto-modifiants. Il

s’avère que les SM-PDS sont équivalents aux PDS standards. Nous montrons

comment traduire un SM-PDS en PDS standard. Cette traduction est exponen-

tielle. Par conséquent, il n’est pas efficace d’effectuer l’analyse de vérification

du modèle sur le PDS équivalent. Nous proposons donc dans cette thèse des

algorithmes directs pour les SM-PDS.

Analyse de l’accessibilité du code auto-modifiant

Tout d’abord, nous considérons le problème de l’accessibilité. Nous proposons

des algorithmes directs pour calculer les ensembles d’accessibilité avant (post∗)

et arrière (pre∗) pour les SM-PDS. Ceci permet d’effectuer efficacement l’analyse

d’accessibilité pour les programmes auto-modifiants. Nos algorithmes sont basés

sur (1) la représentation d’ensembles réguliers (potentiellement infinis) de config-

urations de SM-PDS en utilisant des automates à états finis, et (2) l’application de

procédures de saturation sur les automates à états finis afin de prendre en compte

l’effet de l’application des règles du SM-PDS. Ces résultats ont été publiés dans

ICECCS 2017.

Vérification de propriétés LTL pour le code auto-modifiant
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Au chapitre 3, nous proposons un algorithme direct de vérification de propriétés

LTL pour les SM-PDS. Notre algorithme est basé sur la réduction du problème de

vérification de propriétés LTL au problème du vide de Büchi Pushdown Systems

auto-modifiants(SM-BPDSs). Intuitivement, on obtient ce SM-BPDS en prenant

le produit du SM-PDS avec un automate de Büchi acceptant une formule LTL

ϕ. Ensuite, on résout le problème du vide d’un SM-BPDS en calculant ses re-

peating heads. Ce calcul est basé sur le calcul de configurations labellisées pre∗

en appliquant une procédure de saturation sur des automates finis labellisés. Ces

résultats sont publiés dans ICECCS 2019.

Vérification de propriétés CTL pour le code auto-modifiant

Au chapitre 4, nous examinons le problème de vérification de propriétés CTL

pour les SM-PDS. Ceci permet de détecter les comportements malveillants de

type CTL sur du code auto-modifiant. Nous réduisons ce problème au problème

de la vérification du vide de Self-modifying Alternating Büchi Pushdown Systems

(SM-ABPDSs), et nous proposons un algorithme qui calcule un automate fini qui

caractérise l’ensemble des configurations acceptées par les SM-ABPDS.

SMODIC : un outil d’analyse de code auto-modifiant

Nous avons implémenté nos techniques dans un outil d’analyse de code auto-

modifiant appelé SMODIC. Nous avons utilisé avec succès SMODIC pour modéliser

et vérifier plus de 900 codes binaires auto-modifiants. En particulier, nous avons

appliqué SMODIC pour la détection des logiciels malveillants, puisque les logi-

ciels malveillants utilisent généralement des instructions auto-modifiantes, et que

les comportements malicieux peuvent être décrits par des formules LTL ou CTL.

Dans nos expériences, SMODIC a pu détecter 895 malwares et prouver que 19

programmes bénins étaient bénins. SMODIC a également été capable de détecter

plusieurs logiciels malveillants que des antivirus connus tels que Bit-Defender,

Kinsoft, Avira, eScan, Kaspersky, Avast et Symantec n’ont pas détectés. SMODIC
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peut être trouvé à https://lipn.univ-paris13.fr/~xin/smodic/index.html.

————————————————–
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1

Introduction

Self-modifying code is code that modifies its own instructions during execution

time. It is nowadays widely used, mainly to make programs hard to under-

stand. For example, self-modifying code is extensively used to protect software

intellectual property, since it makes reverse code engineering harder. It is also

abundantly used by malware writers in order to obfuscate their malicious code

and make it hard to analyse by static analysers and anti-viruses.

There are several kinds of implementations for self-modifying codes. Packing

[36] consists in applying compression techniques to make the size of the executable

file smaller. This converts the executable file to a form where the executable con-

tent is hidden. Then, the code is “unpacked” at runtime before execution. Such

packed code is self-modifying. Encryption is another technique to hide the

code. It uses some kind of invertible operations to hide the executable code with

an encryption key. Then, the code is “decrypted” at runtime prior to execu-

tion. Encrypted programs are self-modifying. These two forms of self-modifying

codes have been well studied in the litterature and could be handled by several

unpacking tools such as [43, 45].

In this thesis, we consider another kind of self-modifying code, caused by self-

modifying instructions, where code is treated as data that can thus be read

and written by self-modifying instructions. These self-modifying instructions

are usually mov instructions, since mov can access memory, and read and write

to it. For example, consider the program shown in Figure 1.1. For simplification

matters, we suppose that the addresses’ length is 1 byte. The binary code is

given in the left side, while in the right side, we give its corresponding assembly

1



1. INTRODUCTION

0x0 push 0x3

0x2 push 0b

0x4 mov 0x2 0xc

0x7 push %ebx

0x9 jmp 0x2

0x0 push 0x3

0x2 jmp 0b

0x4 mov 0x2 0xc

0x9 jmp 0x2

0xb dec %ebx

CFG a CFG b

0xb  dec  %ebx

CFGs

0x7 push %ebx

0x0      push 0x3

0x2      push 0b

0x4     mov 0x2 0xc

0x7     push %ebx

0x9    jmp 0x2

0xb    dec  %ebx

 ff 03

 ff 0b

c6 02 0c

 ff 01

0c 02

48 01

Binary Codes Assemblyaddress

Codes

0x2 push 0b

0x2   jmp 0b

After Execution of 
mov 0x2 0xc

Figure 1.1: A Simple Example of Self-modifying Codes

code obtained by translating syntactically the binary code at each address. For

example, ff is the binary code of the instruction push, thus, the first line is

translated to push 0x3, the second line to push 0b, etc. Let us execute this

code. First, we execute push 0x3, then push 0b, then mov 0x2 0xc. This last

instruction will replace the first byte at address 0x2 by 0xc. Thus, at address

0x2, ff 0b is replaced by 0c 0b. Since 0c is the binary code of jmp, this means

the instruction push 0b is replaced by jmp 0xb. Therefore, this code is self-

modifying. If we treat it blindly, without looking at the semantics of the different

instructions, we will extract from it the Control Flow Graph CFG a, whereas its

correct Control Flow Graph is CFG b. You can see that the mov instruction was

able to modify the instructions of the program successfully via its ability to read

and write the memory.

In this thesis, we consider the analysis of self-modifying programs where the

code is modified by mov instructions. To this aim, we first need to find an

adequate model for such programs. PushDown Systems (PDSs) is known to be a

natural model for sequential programs [42], as it allows to track the contexts of

the different calls in the program. Moreover, PushDown Systems allow to record

and mimic the program’s stack, which is very important for malware detection.

Indeed, to check whether a program is malicious, anti-viruses start by identifying

the calls it makes to the API functions. To evade these checks, malware writers

try to obfuscate the calls they make to the Operating System by using pushes

and jumps. Thus, it is important to be able to track the stack to detect such
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obfuscated calls. This is why PushDown Systems were used in [13, 14] to model

binary programs in order to perform malware detection. However, these works

do not consider malwares that use self-modifying code, as PushDown Systems

are not able to model self-modifying instructions.

To overcome this limitation, we propose in this thesis to extend the PushDown

System model with self-modifying rules. We call the new model Self-Modifying

PushDown System (SM-PDS). Roughly speaking, a SM-PDS is a PDS that can

modify its own set of transitions during execution. We show how SM-PDSs can

be used to naturally represent self-modifying programs. It turns out that SM-

PDSs are equivalent to standard PDSs. We show how to translate a SM-PDS to

a standard PDS. This translation is exponential. Thus, performing the model-

checking analysis on the equivalent PDS is not efficient. We propose then in this

thesis direct model-checking algorithms for SM-PDSs.

1.1 Reachability Analysis of Self Modifying Code

First, we consider the reachability problem. We propose direct algorithms to

compute the forward (post∗) and backward (pre∗) reachability sets for SM-PDSs.

This allows to efficiently perform reachability analysis for self-modifying pro-

grams. Our algorithms are based on (1) representing regular (potentially infinite)

sets of configurations of SM-PDSs using finite state automata, and (2) applying

saturation procedures on the finite state automata in order to take into account

the effect of applying the rules of the SM-PDS. These results were published in

[46]. They are described in Chapter 2.

1.2 LTL Model Checking of Self Modifying Code

In Chapter 3, we propose a direct LTL model checking algorithm for SM-PDSs.

Our algorithm is based on reducing the LTL model checking problem to the

emptiness problem of Self Modifying Büchi Pushdown Systems (SM-BPDSs). In-

tuitively, we obtain this SM-BPDS by taking the product of the SM-PDS with

a Büchi automaton accepting an LTL formula ϕ. Then, we solve the emptiness

problem of a SM-BPDS by computing its repeating heads. This computation is

3
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based on computing labelled pre∗ configurations by applying a saturation proce-

dure on labelled finite automata. These results are published in [47].

1.3 CTL Model Checking of Self Modifying Code

In Chapter 4, we consider the CTL model-checking problem for SM-PDSs. This

allows to detect CTL-like malicious behaviors on self-modifying code. We reduce

this problem to the emptiness checking problem of Self-modifying Alternating

Büchi Pushdown Systems (SM-ABPDSs), and we propose an algorithm that com-

putes a finite automaton that characterizes the set of configurations accepted by

the SM-ABPDS.

1.4 SMODIC: A Model Checker for Self Modi-

fying Code

We implemented our techniques in a tool for self-modifying code analysis called

SMODIC. We successfully used SMODIC to model-check more than 900 self-

modifying binary codes. In particular, we applied SMODIC for malware de-

tection, since malwares usually use self-modifying instructions, and since mali-

cious behaviors can be described by LTL or CTL formulas. In our experiments,

SMODIC was able to detect 895 malwares and to prove that 19 benign programs

were benign. SMODIC was also able to detect several malwares that well-known

antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and

Symantec failed to detect. SMODIC can be found in

https://lipn.univ-paris13.fr/~xin/smodic/index.html.

1.5 Related Works

Reachability analysis and LTL/CTL model-checking of pushdown systems was

considered e.g. in [6, 20, 39, 42]. Our algorithms are extensions of these works.

Model checking and static analysis approaches have been widely used to an-

alyze binary programs, for instance, in [7, 12, 14, 15, 19, 21, 29, 29, 33]. These

works cannot handle self-modifying code.
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1.5 Related Works

Cai et al. [18] use a Hoare-logic-style framework to describe self-modifying

code by applying local reasoning and separation logic, and treating program code

uniformly as regular data structure. However, [18] requires programs to be man-

ually annotated with invariants. In [36], the authors describe a formal semantics

for self-modifying codes, and use that semantics to represent self-unpacking code.

This work only deals with packing and unpacking behaviours, it cannot cap-

ture self-modifying instructions as we do. In [16], Bonfante et al. provide an

operational semantics for self-modifying programs and show that they can be

constructively rewritten to a non-modifying program. All these specifications

[16, 18, 36] are too abstract to be used in practice.

In [1], the authors propose a new representation of self-modifying code named

State Enhanced-Control Flow Graph (SE-CFG). SE-CFG extends standard con-

trol flow graphs with a new data structure, keeping track of the possible states

programs can reach, and with edges that can be conditional on the state of the

target memory location. It is not easy to analyse a binary program only using its

SE-CFG, especially that this representation does not allow to take into account

the stack of the program.

[34] propose abstract interpretation techniques to compute an over-approximation

of the set of reachable states of a self-modifying program, where for each control

point of the program, an over-approximation of the memory state at this control

point is provided. [28] combine static and dynamic analysis techniques to anal-

yse self-modifying programs. Unlike our self-modifying pushdown systems, these

techniques [28, 34] cannot handle the program’s stack.

Unpacking binary code is considered in [23, 27, 32, 36]. These works do not

consider self-modifying mov instructions.

There are a lot of tools that can deal with binary code analysis [2, 3, 4, 8,

9, 10, 11, 13, 14, 22, 24, 25, 26, 37, 38, 44]. POMMADE [13, 14] is a malware

detector based on LTL and CTL model-checking of PDSs. STAMAD [24, 25, 26]

is a malware detector based on PDSs and machine learning. However, all these

tools cannot handle self-modifying code. The only tools that we know of and that

can deal with self-modifying code are BE-PUM [17] and CoDisasm [5].

BE-PUM (Binary Emulation for PUshdown Model) [17] focuses on generating

CFG (Control Flow Graph) of malwares. BE-PUM can construct a pushdown

model from x86 binaries in an on-the-fly manner. Concolic testing is applied to

5
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determine the precise destinations of branches for indirect jumps. This tool can

deal with self-modifying code caused by modifying the destinations of indirect

jumps, including overwriting the return address of a function (in the stack). But

it cannot handle self-modifying instructions.

CoDisasm [5] is a tool that focuses on the disassembly of x86 code that in-

cludes self-modifying instructions and code overlapping. CoDisasm deals only

with disassembling the code. It does not consider model-checking problems of

code. Currently, we use Jakstab [22] to disassemble binary code. CoDisasm

might help our disassembly process and make it more precise. We plan to use

CoDisasm in the future (instead of Jakstab) and see whether it will improve the

precision of our extracted CFGs.

1.6 Thesis Organization

In Chapter 2, we give the definition of SM-PDS and show how a SM-PDS can de-

scribe self-modifying codes. We also present our direct algorithms for reachability

analysis of SM-PDSs. Chapter 3 shows how to reduce the LTL model checking

problem of SM-PDSs to the emptiness problem of self-modifying büchi pushdown

systems. We tackle the CTL model checking problem on SM-PDSs in Chapter 4.

Chapter 5 presents the tool SMODIC that implements our algorithms.
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2

Reachability Analysis of Self

Modifying Code

A Self modifying code is code that modifies its own instructions during execu-

tion time. It is nowadays widely used, especially in malware to make the code

hard to analyse and to detect by anti-viruses. Thus, the analysis of such self

modifying programs is a big challenge. Pushdown Systems (PDSs) is a natural

model that is extensively used for the analysis of sequential programs because it

allows to accurately model procedure calls and mimic the program’s stack. In this

chapter, we propose to extend the PushDown System model with self-modifying

rules. We call the new model Self-Modifying PushDown System (SM-PDS). A

SM-PDS is a PDS that can modify its own set of transitions during execution. We

show how SM-PDSs can be used to naturally represent self-modifying programs

and provide efficient algorithms to compute the backward and forward reachable

configurations of SM-PDSs. We implemented our techniques in a tool and ob-

tained encouraging results. In particular, we successfully applied our tool for the

detection of self-modifying malware.

2.1 An Example of A Self-modifying Code

Fig. 2.1 shows how malware can use self-modifying instructions to evade from

static analysis techniques. This figure shows a fragment of the malware Bagle.J

equipped with such self-modifying instructions. First let us recall the semantics

7



2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

of the mov instruction. It copies the data item referred to by its second operand

(register or memory location) into its first operand. In Fig. 2.1, in the box on the

left, we give, respectively, the binary code, the addresses of the different instruc-

tions, and the corresponding assembly code, obtained by translating syntactically

the binary code at each address. For example, ff is the binary code of the instruc-

tion push. Thus, the first line is translated to push 0b. The second instruction

mov 0x2 0xc will replace the first byte at address 0x2 by 0xc. Thus, at address

0x2, ff 0b is replaced by 0c 0b, i.e., the instruction push 0b is replaced by jmp

0b. If we analyse this code without taking into account the fact that mov 0x2

0xc is a self-modifying instruction, then, we will obtain the Control Flow Graph

“CFG a”, and we will reach the conclusion that the Bagle malicious behaviour

implemented at address 0b by the API functions RegCreateKeyA, RegDeleteVal-

ueA, and RegCloseKey is not reachable. However, the actual CFG is “CFG b”,

where the malicious fragment of the malware Bagle.J that starts at address 0b is

reached and will be executed.

It can be seen from this example that self-modifying codes can make malware

detection harder, and that the mov instruction is able to modify instructions of

the program successfully via its ability to read and write the memory. Thus, it

is crucial to be able to analyse this kind of self-modifying code.

     0x2      push 0b

    0x4     mov 0x2 0xc

  0x7     push %ebx

 0x9      jmp 0x2

   0xb      push 80000001h

 ff 0b

c6 02 0c

 ff 01

0c 02

68 01 00 00 08

Binary Codes Assemblyaddress

Bagle.J code fragment

 ff 15 00800010    0x10    call RegCreateKeyA

 ff 15 08800010     0x26    call RegCloseKey

 ff 15 00804000    0x1A    call RegDeleteValueA

0x2 

push 0b
0x7 

push ebx

0x9 

jmp 0x2

CFG b

0x2 

jmp 0b

0xb 

push 
8000001h

0x10 

call
RegCreateKey

A

… …

After executing 
 mov 0x2 0xc

0x2 

push 0b
0x4 

mov 0x2 0xc

0x7 

push ebx
0x9 

jmp 0x2

CFG a

0xb 

push 8000001h

0x26
call RegCloseKey

0x1A
call 

RegDelete

ValueA

0x4 
mov 0x2 0xc

jmp 0b

Figure 2.1: An Example of Self-modifying Code
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2.2 Self Modifying Pushdown Systems

2.2 Self Modifying Pushdown Systems

2.2.1 Definition

We introduce in this section our new model: Self-modifying Pushdown Systems.

Definition 1 A Self-modifying Pushdown System (SM-PDS) is a tuple P =

(P,Γ,∆,∆c), where P is a finite set of control points, Γ is a finite set of stack

symbols, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of transition rules, and ∆c ⊆

P × (∆ ∪ ∆c) × (∆ ∪ ∆c) × P is a finite set of modifying transition rules. If

((p, γ), (p′, w)) ∈ ∆, we also write 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆. If (p, r1, r2, p
′) ∈ ∆c, we

also write p
(r1,r2)

−֒−−−→ p′ ∈ ∆c. A Pushdown System (PDS) is a SM-PDS where

∆c = ∅.

Intuitively, a Self-modifying Pushdown System is a Pushdown System that

can dynamically modify its set of rules during the execution time: rules ∆ are

standard PDS transition rules, while rules ∆c modify the current set of transition

rules: 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆ expresses that if the SM-PDS is in control point p

and has γ on top of its stack, then it can move to control point p′, pop γ and

push w onto the stack, while p
(r1,r2)

−֒−−−→ p′ ∈ ∆c expresses that when the PDS is

in control point p, then it can move to control point p′, remove the rule r1 from

its current set of transition rules, and add the rule r2. Formally, a configuration

of a SM-PDS is a tuple c = (〈p, w〉, θ) where p ∈ P is the control point, w ∈ Γ∗

is the stack content, and θ ⊆ ∆ ∪∆c is the current set of transition rules of the

SM-PDS. θ is called the current phase of the SM-PDS. When the SM-PDS is a

PDS, i.e., when ∆c = ∅, a configuration is a tuple c = (〈p, w〉,∆), since there is no

changing rule, so there is only one possible phase. In this case, we can also write

c = 〈p, w〉. Let C be the set of configurations of a SM-PDS. A SM-PDS defines a

transition relation ⇒P between configurations as follows: Let c = (〈p, w〉, θ) be a

configuration, and let r be a rule in θ, then:

1. if r ∈ ∆c is of the form r = p
(r1,r2)

−֒−−−→ p′, such that r1 ∈ θ, then

(〈p, w〉, θ) ⇒P (〈p′, w〉, θ′), where θ′ = (θ \ {r1}) ∪ {r2}. In other words,

the transition rule r updates the current set of transition rules θ by remov-

ing r1 from it and adding r2 to it.

9



2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2. if r ∈ ∆ is of the form r = 〈p, γ〉 →֒ 〈p′, w′〉 ∈ ∆, then (〈p, γw〉, θ) ⇒P

(〈p′, w′w〉, θ). In other words, the transition rule r moves the control point

from p to p′, pops γ from the stack and pushes w′ onto the stack. This

transition keeps the current set of transition rules θ unchanged.

Let ⇒∗
P be the transitive, reflexive closure of ⇒P . We define

i
⇒ as follows:

c
i
⇒ c′ iff there exists a sequence of configurations c0 ⇒P c1 ⇒P ... ⇒P ci s.t.

c0 = c and ci = c′ Given a configuration c, the set of immediate predecessors

(resp. successors) of c is preP(c) = {c′ ∈ C : c′ ⇒P c} (resp. postP(c) = {c′ ∈

C : c ⇒P c′}). These notations can be generalized straightforwardly to sets of

configurations. Let pre∗P (resp. post∗P) denote the reflexive-transitive closure of

preP (resp. postP). We omit the subscript P when it is understood from the

context.

Example 1 Let P = (P,Γ,∆,∆c) be a SM-PDS where p = {p1, p2, p3, p4}, Γ =

{γ1, γ2, γ3}, ∆ = {r1 : 〈p1, γ1〉 →֒ 〈p2, γ2γ1〉, r2 : 〈p2, γ2〉 →֒ 〈p3, ǫ〉, r3 : 〈p4, γ1〉 →֒

〈p2, γ2γ3〉}, ∆c = {r′ : p3
(r1,r3)

−֒−−−→ p4}. Let c0 = (〈p1, γ1γ1〉, θ0) where θ0 =

{r1, r2, r
′}. Applying rule r1, we get (〈p1, γ1γ1〉, θ0) ⇒P (〈p2, γ2γ1γ1〉, θ0). Then,

applying rule r2, we get (〈p2, γ2γ1γ1〉, θ0) ⇒P (〈p3, γ1γ1〉, θ0). Then, applying rule

r′, we get (〈p3, γ1γ1〉, θ0) ⇒P (〈p4, γ1γ1〉, θ1) where r′ is self-modifying, thus, it

leads the SM-PDS from phase θ0 = {r1, r2, r
′} to phase θ1 = θ0 \ {r1} ∪ {r3} =

{r2, r3, r
′}. Then, applying rule r3, we get (〈p4, γ1γ1〉, θ1) ⇒P (〈p2, γ2γ3γ1〉, θ1).

Then, applying rule r2 again, we get (〈p2, γ2γ3γ1〉, θ1) ⇒P (〈p3, γ3γ1〉, θ1).

2.2.2 From SM-PDSs to PDSs

A SM-PDS can be described by a PDS. This is due to the fact that the number

of phases is finite, thus, we can encode phases in the control points of the PDS:

Let P = (P,Γ,∆,∆c) be a SM-PDS, we compute the PDS P ′ = (P ′,Γ,∆′) as

follows: P ′ = P × 2∆∪∆c . Initially, ∆′ = ∅. For every θ ∈ 2∆∪∆c , r ∈ θ:

1. If r = 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆ ∩ θ, we add 〈(p, θ), γ〉 →֒ 〈(p′, θ), w〉 to ∆′

2. if r = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c ∩ θ, then for every γ ∈ Γ, we add 〈(p, θ), γ〉 →֒

〈(p′, θ′), γ〉 to ∆′, where θ′ = (θ \ {r1}) ∪ {r2}.

It is easy to see that:
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Proposition 1 (〈p, w〉, θ) ⇒P (〈p′, w′〉, θ′) iff 〈(p, θ), w〉 ⇒P ′ 〈(p′, θ′), w′〉.

Proof:

⇒: We will show that if (〈p, w〉, θ) ⇒P (〈p′, w′〉, θ′), then we have 〈(p, θ), w〉 ⇒P ′

〈(p′, θ′), w′〉. There are two cases depending on the form of the rule that led to

this transition.

• Case θ = θ′ : it means that the transition does not correspond to a self-

modifying transition rule. Thus there is a rule r ∈ θ of the form r =

〈p, γ〉 →֒ 〈p′, u′〉 that led to this transition. Let u be such that w =

γu, w′ = u′u. By the construction rule of the PDS P ′, we have 〈(p, θ), γ〉 →֒

〈(p′, θ), u′〉 ∈ ∆′. Therefore, 〈(p, θ), γu〉 ⇒P ′ 〈(p′, θ), u′u〉 holds. This im-

plies that 〈(p, θ), w〉 ⇒P ′ 〈(p′, θ), w′〉.

• Case θ 6= θ′ : it means that the transition corresponds to a self-modifying

transition rule. Thus there is a rule r ∈ θ of the form p
(r1,r2)

−֒−−−→ p′ that

led to this transition. Let u be such that w = γu, w′ = γu. By the

construction rule of the PDS P ′, we have 〈(p, θ), γ〉 →֒ 〈(p′, θ′), γ〉 ∈ ∆′

where θ′ = (θ\{r1}) ∪ {r2}. Therefore, 〈(p, θ), γu〉 ⇒P ′ 〈(p′, θ′), γu〉 holds.

This implies that 〈(p, θ), w〉 ⇒P ′ 〈(p′, θ′), w′〉.

⇐: We will show that if 〈(p, θ), w〉 ⇒P ′ 〈(p′, θ′), w′〉, then (〈p, w〉, θ) ⇒P (〈p′, w′〉, θ′).

Let γ ∈ Γ, u, u′ ∈ Γ∗ be such that w = γu, w′ = u′u. There are two cases.

• Case θ = θ′. Let r = 〈(p, θ), γ〉 →֒ 〈(p′, θ), u′〉 ∈ ∆′ be the rule that led

to the transition. By the construction of PDS P ′, there must exist a rule

r ∈ θ such that r = 〈p, γ〉 →֒ 〈p′, u′〉. Therefore, (〈p, γu〉, θ) ⇒P (〈p, u′u〉, θ)

holds. This implies that (〈p, w〉, θ) ⇒P (〈p, w′〉, θ′).

• Case θ 6= θ′. Let r = 〈(p, θ), γ〉 →֒ 〈(p′, θ′), γ〉 ∈ ∆′ be the rule leading to

the transition and u′ = γ. By the construction of PDS P ′, there must exist

a rule r ∈ θ such that r = p
(r1,r2)

−֒−−−→ p′ where θ′ = (θ\{r1}) ∪ {r2}. There-

fore, (〈p, γu〉, θ) ⇒P (〈p′, γu〉, θ′) holds. This implies that (〈p, w〉, θ) ⇒P

(〈p, w′〉, θ′).

✷

Thus, we get:
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Theorem 2.2.1 Let P = (P,Γ,∆,∆c) be a SM-PDS, we can compute an equiv-

alent PDS P ′ = (P ′,Γ,∆′) such that |∆′| =
(
|∆| + |∆c| · |Γ|

)
· 2O(|∆|+|∆c|) and

|P ′| = |P | · 2O(|∆|+|∆c|).

2.2.3 From SM-PDSs to Symbolic PDSs

Instead of recording the phases θ of the SM-PDS in the control points of the equiv-

alent PDS, we can have a more compact translation from SM-PDSs to symbolic

PDSs [42], where each SM-PDS rule is represented by a single, symbolic tran-

sition, where the different values of the phases are encoded in a symbolic way

using relations between phases:

Definition 2 A symbolic pushdown system is a tuple P = (P,Γ, δ), where P is

a set of control points, Γ is the stack alphabet, and δ is a set of symbolic rules of

the form: 〈p, γ〉
R

−֒−−−→ 〈p′, w〉, where R ⊆ 2∆∪∆c × 2∆∪∆c is a relation.

A symbolic PDS defines a transition relation ❀P between SM-PDS configu-

rations as follows: Let c = (〈p, γw′〉, θ) be a configuration and let 〈p, γ〉
R

−֒−−−→

〈p′, w〉 be a rule in δ, then: (〈p, γw′〉, θ) ❀P (〈p′, ww′〉, θ′) for (θ, θ′) ∈ R.

Let ❀
∗
P be the transitive, reflexive closure of ❀P . Then, given a SM-PDS

P = (P,Γ,∆,∆c), we can compute an equivalent symbolic PDS P ′ = (P,Γ,∆′)

such that: Initially, ∆′ = ∅;

• For every 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆, add 〈p, γ〉
Rid

−֒−−−→ 〈p′, w〉 to ∆′, where Rid

is the identity relation.

• For every r = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c and every γ ∈ Γ, add 〈p, γ〉
R

−֒−−−→ 〈p′, γ〉

to ∆′, where R = {(θ1, θ2) ∈ 2∆∪∆c × 2∆∪∆c | r ∈ θ1 and θ2 = (θ1 \ {r1}) ∪

{r2}}.

It is easy to see that:

Proposition 2 (〈p, w〉, θ) ⇒P (〈p′, w′〉, θ′) iff (〈p, w〉, θ) ❀P ′ (〈p′, w′〉, θ′).

Proof:

⇒: we will show that if (〈p, w〉, θ) ⇒P (〈p′, w′〉, θ′), then (〈p, w〉, θ) ❀P ′ (〈p′, w′〉, θ′).

There are two cases depending on the form of the rule that led to this transition.
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• Case θ = θ′, it means that the transition does not correspond to a self-

modifying transition rule. Thus there is a rule r ∈ θ of the form r =

〈p, γ〉 →֒ 〈p′, u′〉 that led to this transition. Let u be such that w = γu, w′ =

u′u. By construction of the symbolic pushdown system P ′, 〈p, γ〉
Rid

−֒−−−→

〈p′, u′〉 ∈ ∆′, therefore, (〈p, γu〉, θ) ❀P ′ (〈p′, u′u〉, θ) holds. This implies

that (〈p, w〉, θ) ❀P ′ (〈p′, w′〉, θ′).

• Case θ 6= θ′, it means that the transition corresponds to a self-modifying

transition rule. Thus there is a rule r ∈ θ of the form r = p
(r1,r2)

−֒−−−→

p′ that led to this transition and θ′ = (θ\{r1}) ∪ {r2}. Let u be such

that w = γu, w′ = γu. By construction of the symbolic pushdown system

P ′, 〈p, γ〉
R

−֒−−−→ 〈p′, γ〉 ∈ ∆′ and R = {(θ, θ′) ∈ 2∆∪∆c × 2∆∪∆c | r ∈

θ and θ′ = (θ \ {r1}) ∪ {r2}}, therefore, (〈p, γu〉, θ) ❀P ′ (〈p′, γu〉, θ′) holds.

This implies that (〈p, w〉, θ) ❀P ′ (〈p′, w′〉, θ′).

⇐: we will show that if (〈p, w〉, θ) ❀P ′ (〈p′, w′〉, θ′), then (〈p, w〉, θ) ⇒P (〈p′, w′〉, θ′).

Let γ ∈ Γ, u, u′ ∈ Γ∗ be such that w = γu, w′ = u′u. There are two cases.

• Case θ = θ′. Let 〈p, γ〉
Rid

−֒−−−→ 〈p′, u′〉 ∈ ∆′ be the rule applied to this tran-

sition. By the construction of the symbolic pushdown system P ′, there must

exist a rule r ∈ θ s.t. r = 〈p, γ〉 →֒ 〈p′, u′〉 ∈ ∆. Therefore, (〈p, γu〉, θ) ⇒P

(〈p′, u′u〉, θ) holds. This implies that (〈p, w〉, θ) ⇒P (〈p′, w′〉, θ′).

• Case θ 6= θ′. Let 〈p, γ〉
R

−֒−−−→ 〈p′, γ〉 ∈ ∆′ be the rule applied to this

transition with w′ = γu. By the construction of the symbolic pushdown

system P ′, there must exist a rule r ∈ θ of the form r = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c

s.t. R = {(θ1, θ2) ∈ 2∆∪∆c × 2∆∪∆c | r ∈ θ1 and θ2 = (θ1 \ {r1}) ∪ {r2}}.

Therefore, θ′ = (θ\{r1})∪{r2} and (〈p, γu〉, θ) ❀P ′ (〈p′, γu〉, θ′) hold. This

implies that (〈p, w〉, θ) ❀P ′ (〈p′, w′〉, θ′).

✷

Thus, we get:

Theorem 2.2.2 Let P = (P,Γ,∆,∆c) be a SM-PDS, we can compute an equiv-

alent symbolic PDS P ′ = (P ′,Γ,∆′) such that |P ′| = |P |, |∆′| = |∆| + |∆c| · |Γ|,

and the size of the relations used in the symbolic transitions is 2O(|∆|+|∆c|).

13



2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.3 Modeling Self-modifying Code with SM-PDSs

2.3.1 Self-modifying Instructions

There are different techniques to implement self-modifying code. We consider in

this work code that uses self-modifying instructions. These are instructions that

can access the memory locations and write onto them, thus changing the instruc-

tions that are in these memory locations. In assembly, the only instructions that

can do this are the mov instructions. In this case, the self-modifying instructions

are of the form mov l v, where l is a location of the program that stores executable

data and v is a value. This instruction replaces the value at location l (in the

binary code) with the value v. This means if at location l there is a binary value

v′ that is involved in an assembly instruction i1, and if by replacing v′ by v, we

obtain a new assembly instruction i2, then the instruction i1 is replaced by i2.

E.g., ff is the binary code of push, 40 is the binary code of inc, 0c is the binary

code of jmp, c6 is the binary code of mov, etc. Thus, if we have mov l ff, and if at

location l there was initially the value 40 01 (which corresponds to the assembly

instruction inc %edx), then 40 is replaced by ff, which means the instruction

inc %edx is replaced by push 01. If at location l there was initially the value

c6 01 02 (which corresponds to the assembly instruction mov edx 0x2), then c6

is replaced by ff, which means the instruction mov edx 0x2 is replaced by push

02.

Note that if the instructions i1 and i2 do not have the same number of

operands, then mov l v will, in addition to replacing i1 by i2, change several

other instructions that follow i1. Currently, we cannot handle this case, thus we

assume that i1 and i2 have the same number of operands.

Note also that mov l v is self-modifying only if l is a location of the program

that stores executable data, otherwise, it is not; e.g., mov eax v does not change

the instructions of the program, it just writes the value v to the register eax.

Thus, from now on, by self-modifying instruction, we mean an instruction of the

form mov l v, where l is a location of the program that stores executable data.

Moreover, to ensure that only one instruction is modified, we assume that the

corresponding instructions i1 and i2 have the same number of operands.

14
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2.3.2 From Self-modifying Code to SM-PDS

We show in what follows how to build a SM-PDS from a binary program. We

suppose we are given an oracle O that extracts from the binary code a corre-

sponding assembly program, together with informations about the values of the

registers and the memory locations at each control point of the program. In our

implementation, we use Jakstab [22] to get this oracle. We translate the assembly

program into a self-modifying pushdown system where the control locations store

the control points of the binary program and the stack mimics the program’s

stack. The non self-modifying instructions of the program define the rules ∆ of

the SM-PDS (which are standard PDS rules), and can be obtained following the

translation of [13] that models non self-modifying instructions of the program by

a PDS.

As for the self-modifying instructions of the program, they define the set of

changing rules ∆c. As explained above, these are instructions of the formmov l v,

where l is a location of the program that stores executable data. This instruction

replaces the value at location l (in the binary code) with the value v. Let i1 be

the initial instruction involving the location l, and let i2 be the new instruction

involving the location l, after applying the mov l v instruction. As mentioned

previously, we assume that i1 and i2 have the same number of operands (to

ensure that only one instruction is modified). Let r1 (resp. r2) be the SM-PDS

rule corresponding to the instruction i1 (resp. i2). Suppose from control point n

to n′, we have this mov l v instruction, then we add n
(r1,r2)

−֒−−−→ n′ to ∆c. This is

the SM-PDS rule corresponding to the instruction mov l v at control point n.

2.4 Representing Infinite Sets of Configurations

of a SM-PDS

Multi-automata were introduced in [6, 20] to finitely represent regular infinite

sets of configurations of a PDS. A configuration c = (〈p, w〉, θ) of a SM-PDS

involves a PDS configuration 〈p, w〉, together with the current set of transition

rules (phase) θ. To finitely represent regular infinite sets of such configurations,

we extend multi-automata in order to take into account the phases θ:

15



2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Definition 3 Let P = (P,Γ,∆,∆c) be a SM-PDS. A P-automaton is a tuple

A = (Q,Γ, T, P, F ) where Γ is the automaton alphabet, Q is a finite set of states,

P × 2∆∪∆c ⊆ Q is the set of initial states, T ⊂ Q×
(
(Γ ∪ {ǫ})

)
×Q is the set of

transitions and F ⊆ Q is the set of final states.

If
(
q, γ, q′

)
∈ T , we write q γ−→T q

′. We extend this notation in the obvious

manner to sequences of symbols: (1) ∀q ∈ Q, q ǫ−→T q, and (2) ∀q, q′ ∈ Q, ∀γ ∈ Γ∪

{ǫ}, ∀w ∈ Γ∗ for w = γ0γ1 · · · γn, q
γw−−→T q

′ iff ∃q′′ ∈ Q, q γ−→T q
′′ and q′′ w−→T q

′. If

q
w
−→T q′ holds, we say that q

w
−→T q′ is a path of A. A configuration (〈p, w〉, θ)

is accepted by A iff A contains a path (p, θ) γ0−−→T q1
γ1−−→T q2 · · · qn

γn−−→T q where

q ∈ F . Let L(A) be the set of configurations accepted by A. Let C be a set of

configurations of the SM-PDS P . C is regular if there exists a P-automaton A

such that C = L(A).

2.5 Efficient Computation of pre∗ images

Let P = (P,Γ,∆,∆c) be a SM-PDS, and let A = (Q,Γ, T, P, F ) be a P-

automaton that represents a regular set of configurations C ( C = L(A)). To

compute pre∗(C), one can use the translation of Section 2.2.2 to compute an

equivalent PDS, and then apply the algorithms of [6, 20]. This procedure is

too complex since the size of the obtained PDS is huge. One can also use the

translation of Section 2.2.3 to compute an equivalent symbolic PDS, and then

use the algorihms of [42]. However, this procedure is not optimal neither since

the number of elements of the relations considered in the rules of the symbolic

PDSs are huge. We present in this section a direct and more efficient al-

gorithm that computes pre∗(C) without any need to translate the SM-PDS to

an equivalent PDS or symbolic PDS. We assume w.l.o.g. that A has no tran-

sitions leading to an initial state. We also assume that the self-modifying rules

r = p
(r1,r2)

−֒−−−→ p′ in ∆c are such that r 6= r1. This is not a restriction since a

rule of the form r = p
(r,r2)

−֒−−−→ p′ can be replaced by these rules that meet this

constraint: r = p
(r⊥,r⊥)
−֒−−−→ pi and pi

(r,r2)
−֒−−−→ p′, where r⊥ is a new fake rule that

we can add to all phases.

The construction of Apre∗ follows the same idea as for standard pushdown

systems (see [6, 20]). It consists in adding iteratively new transitions to the
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2.5 Efficient Computation of pre∗ images

automaton A according to saturation rules (reflecting the backward application

of the transition rules in the system), while the set of states remains unchanged.

Therefore, let Apre∗ be the P-automaton (Q,Γ, T ′, P, F ), where T ′ is computed

using the following saturation rules: initially T ′ = T .

α1: If r = 〈p, γ〉 →֒ 〈p1, w〉 ∈ ∆, where w ∈ Γ∗. For every θ ⊆ ∆∪∆c s.t. r ∈ θ,

if there exists in T ′ a path π = (p1, θ)
w−→T q, then add ((p, θ), γ, q) to T ′.

α2: if r = p
(r1,r2)

−֒−−−→ p1 ∈ ∆c for every θ ⊆ ∆ ∪ ∆c s.t. r ∈ θ, r2 ∈ θ and for

every γ ∈ Γ, if there exists in T ′ a transition t = (p1, θ)
γ−→T q, then add

((p, θ′), γ, q) to T ′ where θ = (θ′ \ {r1}) ∪ {r2}.

The procedure above terminates since there is a finite number of states and

phases.

Let us explain intuitively the role of the saturation rule (α1). Let r = 〈p, γ〉 →֒

〈p′, w〉 ∈ ∆. Consider a path in the automaton of the form (p′, θ′) w−→T ′ q w′

−−→T ′ qF ,

where qF ∈ F . This means, by definition of P-automata, that the configuration

c = (〈p′, ww′〉, θ′) is accepted by Apre∗ . If r is in θ′, then the configuration

c′ = (〈p, γw′〉, θ′) is a predecessor of c. Therefore, it should be added to Apre∗ .

This configuration is accepted by the run (p, θ′) γ−→T ′ q w′

−−→T ′ qF added by rules

(α1).

Rule (α2) deals with modifying rules: Let r = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c. Consider

a path in the automaton of the form (p′, θ′) γ−→T ′ q w′

−−→T ′ qF , where qF ∈ F . This

means, by definition of P-automata, that the configuration c = (〈p′, γw′〉, θ′) is

accepted by Apre∗ . If r and r2 are in θ′, then the configuration c′ = (〈p, γw′〉, θ)

is a predecessor of c, where θ′ = (θ \ {r1}) ∪ {r2}. Therefore, it should be added

to Apre∗ . This configuration is accepted by the run π′ = (p, θ) γ−→T ′ q w′

−−→T ′ qF

added by rules (α2).

Thus, we can show that:

Theorem 2.5.1 Apre∗ recognizes pre∗(L(A)).

Before proving this theorem, let us illustrate the construction on 2 examples.

Example 2 Let us illustrate the procedure by an example. Consider the SM-PDS

with control points P = {p0, p1, p2, p3, p4, p5} and ∆,∆c as shown in the left half

17
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Δ :Δ :

r1 : ⟨p0, γ0⟩ ↪ ⟨p1, γ1γ0⟩r1 : ⟨p0, γ0⟩ ↪ ⟨p1, γ1γ0⟩     
r2 : ⟨p5, γ1⟩ ↪ ⟨p2, γ2γ0⟩r2 : ⟨p5, γ1⟩ ↪ ⟨p2, γ2γ0⟩

r3 : ⟨p2, γ2⟩ ↪ ⟨p3, ϵ⟩r3 : ⟨p2, γ2⟩ ↪ ⟨p3, ϵ⟩
         

r4 : ⟨p4, γ0⟩ ↪ ⟨p0, ϵ⟩r4 : ⟨p4, γ0⟩ ↪ ⟨p0, ϵ⟩

r5 : ⟨p1, γ1⟩ ↪ ⟨p4, γ0⟩r5 : ⟨p1, γ1⟩ ↪ ⟨p4, γ0⟩

Δ
c

:Δ
c

:

 r′ ! : p3r′ ! : p3

θ0 = {r5, r2, r3, r4, r′ !}θ0 = {r5, r2, r3, r4, r′ !}

p0, θ0p0, θ0 s1s1 s2s2

γ0γ0 γ0γ0

p0, θ0p0, θ0 s1s1 s2s2

γ0γ0 γ0γ0

γ2

p4, θ0p4, θ0

γ0

p1, θ0p1, θ0

γ1

p3, θ1p3, θ1

γ0

p2, θ1p2, θ1

p5, θ1p5, θ1

γ1

↪ p4

(r1, r5)

Figure 2.2: The automata A (left) and Apre∗ (right)

of Fig. 2.2. Let A be the automaton that accepts the set C = {(〈p0, γ0γ0〉, θ0)},

also shown on the left where (p0, θ0) is the initial state and s2 is the final state.

The result of the algorithm is shown in the right half of Fig. 2.2. The result is

obtained through the following steps:

1. First, we note that (p0, θ0)
ǫ
−→T ′ (p0, θ0) holds. Since 〈p0, ǫ〉 occurs on the

right hand side of rule r4 and r4 ∈ θ0, then Rule (α1) adds the transition

(p4, θ0)
γ0
−→ (p0, θ0) to T

′.

2. Now that we have (p4, θ0)
γ0
−→T ′ (p0, θ0), since r5 ∈ θ0, Rule (α1) adds

(p1, θ0)
γ1
−→ (p0, θ0) to T

′.

3. Since we have (p4, θ0)
γ0
−→T ′ (p0, θ0), the self-modifying transition r′ ∈ θ0

can be applied. Thus, Rule (α2) adds (p3, θ1)
γ0
−→ (p0, θ0) to T ′ where θ1 =

(θ0 \ {r5}) ∪ {r1} = {r1, r2, r3, r4, r
′}.

4. Since (p3, θ1)
ǫ
−→ (p3, θ1) and r3 ∈ θ1, Rule (α1) adds (p2, θ1)

γ2
−→ (p3, θ1) to

T ′.

5. Then, there is a path (p2, θ1)
γ2
−→T ′ (p3, θ1)

γ0
−→T ′ (p0, θ0). Since 〈p2, γ2γ0〉

occurs on the right hand side of r2 and r2 ∈ θ1, then Rule (α1) adds the

transition (p5, θ1)
γ1
−→ (p0, θ0) to T

′.
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6. No further additions are possible. Thus, the procedure terminates.

p0, θ0p0, θ0 s1s1 s2s2

γ0γ0 γ0γ0

Δ :Δ :

r1 : ⟨p1, γ1⟩ ↪ ⟨p0, γ0⟩r1 : ⟨p1, γ1⟩ ↪ ⟨p0, γ0⟩   
r2 : ⟨p2, γ2⟩ ↪ ⟨p1, γ1⟩r2 : ⟨p2, γ2⟩ ↪ ⟨p1, γ1⟩

r3 : ⟨p3, γ0⟩ ↪ ⟨p2, ϵ⟩r3 : ⟨p3, γ0⟩ ↪ ⟨p2, ϵ⟩
  

r4 : ⟨p4, γ1⟩ ↪ ⟨p3, γ0γ2⟩r4 : ⟨p4, γ1⟩ ↪ ⟨p3, γ0γ2⟩

r5 : ⟨p0, γ0⟩ ↪ ⟨p4, ϵ⟩r5 : ⟨p0, γ0⟩ ↪ ⟨p4, ϵ⟩
  

r6 : ⟨p2, γ2⟩ ↪ ⟨p5, γ1⟩r6 : ⟨p2, γ2⟩ ↪ ⟨p5, γ1⟩

r7 : ⟨p2, γ2⟩ ↪ ⟨p5, ϵ⟩r7 : ⟨p2, γ2⟩ ↪ ⟨p5, ϵ⟩

Δc :Δc :

 
r1
c : p5r1
c : p5

 
r2

c : p5r2
c : p5

 
r3

c : p2r3
c : p2

  
r4

c : p4r4
c : p4  

θ0 = {r1, r2, r3, r4, r5, r1
c , r2

c , r3
c , r4

c }θ0 = {r1, r2, r3, r4, r5, r1
c , r2

c , r3
c , r4

c }

p0, θ0p0, θ0 s1s1 s2s2

p1, θ0p1, θ0

γ1

p4, θ0p4, θ0

γ1γ0

p5, θ1p5, θ1

γ1

p5, θ2p5, θ2

γ0

γ0

θ1 = {r1, r3, r4, r5, r6, r1
c , r2

c , r3
c , r4

c }

θ0 = {r1, r2, r3, r4, r5, r1
c , r2

c , r3
c , r4

c }

θ2 = {r2, r3, r4, r5, r7, r1
c , r2

c , r3
c , r4

c }

p2, θ1p2, θ1

γ0 γ0

γ2

p3, θ1p3, θ1

γ0

p4, θ1p4, θ1

p0, θ1p0, θ1

γ0

γ1

p2, θ0p2, θ0

γ2

p3, θ0p3, θ0

γ0

γ2

γ1

γ1

γ2

γ1

θ3 = {r3, r4, r5, r6, r7, r1
c , r2

c , r3
c , r4

c }

p5, θ3p5, θ3γ0 p2, θ3p2, θ3γ2

γ0

p3, θ3p3, θ3

γ0

p4, θ3p4, θ3

γ1

p0, θ3p0, θ3

γ0

p2, θ2p2, θ2

γ0

γ2

p3, θ2p3, θ2

γ0

p4, θ2p4, θ2

γ1

p0, θ2p0, θ2 γ0

γ1

γ2

γ2

γ0

γ1

γ2
↪

↪

p2

↪

↪

(r6, r2)

(r7, r1)

(r2, r6)

(r1, r7)

p3

p0

p4

Figure 2.3: The automata A (left) and Apre∗ (right)

Example 3 Let us give another example. Consider the SM-PDS with control

points P = {p1, p2, p3, p4, p5} and ∆,∆c as shown in the left half of Fig. 2.3. Let

A be the automaton that accepts the set C = {(〈p0, γ0γ0〉, θ0)} where (p0, θ0) is

the initial state and s2 is the final state as shown on the left. The result Apre∗ of

the algorithm is on the right half of Fig. 2.3. The result is obtained through the

following steps:

1. Since (p0, θ0)
γ
−→T ′ s1 and r1 ∈ θ0, then Rule (α1) adds (p1, θ0)

γ1
−→ s1 to T ′.

2. Since (p1, θ0)
γ1
−→T ′ s1 and r2 ∈ θ0, Rule (α1) adds the transition (p2, θ0)

γ2
−→

s1 to T ′.

3. Since (p2, θ0)
ǫ
−→T ′ (p2, θ0) and r3 ∈ θ0, Rule (α1) adds the transition

(p3, θ0)
γ0
−→ (p2, θ0) to T

′.

4. Then, there is a path (p3, θ0)
γ0
−→T ′ (p2, θ0)

γ2
−→T ′ s1 and r4 ∈ θ0, Rule α1

adds the transition (p4, θ0)
γ1
−→ s1 to T ′.

5. Because (p4, θ0)
ǫ
−→T ′ (p4, θ0) and r5 ∈ θ0, Rule (α1) adds the transition

(p0, θ0)
γ0
−→ (p4, θ0) to T

′.
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6. Since (p0, θ0)
γ0
−→T ′ (p4, θ0) and r1 ∈ θ0, Rule (α1) adds the transition

(p1, θ0)
γ1
−→ (p4, θ0) to T ′. Then, since r2 ∈ θ0, Rule (α1) adds the tran-

sition (p2, θ0)
γ2
−→ (p4, θ0) to T

′.

7. Since there is a path (p3, θ0)
γ0
−→T ′ (p2, θ0)

γ2
−→T ′ (p4, θ0) and r4 ∈ θ0, Rule

(α1) adds (p4, θ0)
γ1
−→ (p4, θ0) to T

′.

8. Since (p4, θ0)
γ1
−→T ′ s1, (p4, θ0)

γ1
−→T ′ (p4, θ0) and r1c , r2 ∈ θ0, Rule (α2) adds

(p5, θ1)
γ1
−→ s1 and (p5, θ1)

γ1
−→ (p4, θ0) to T ′ where θ1 = (θ0 \ {r2}) ∪

r6 = {r1, r3, r4, r5, r6, r
1
c , r

2
c , r

3
c , r

4
c}. For the same reason, since (p0, θ0)

γ0
−→T ′

(p4, θ0), (p0, θ0)
γ
−→T ′ s1 and r1,∈ θ1, r

2
c ∈ θ0, Rule (α2) adds the transitions

(p5, θ2)
γ0
−→ (p4, θ0) and (p5, θ2)

γ0
−→ s1 to T ′ where θ2 = (θ0 \ {r1}) ∪ {r7} =

{r2, r3, r4, r5, r7, r
1
c , r

2
c , r

3
c , r

4
c}.

9. Since (p5, θ1)
γ1
−→T ′ s1, (p5, θ1)

γ1
−→T ′ (p4, θ0) and r6 ∈ θ1, Rule (α1) adds the

transitions (p2, θ1)
γ2
−→ s1 and (p2, θ1)

γ2
−→ (p4, θ0) to T

′.

10. Since (p2, θ1)
ǫ
−→T ′ (p2, θ1) and r3 ∈ θ1, Rule (α1) adds (p3, θ1)

γ0
−→ (p2, θ1).

11. Because there are paths (p3, θ1)
γ0
−→T ′ (p2, θ1)

γ2
−→T ′ (p4, θ0) and (p3, θ1)

γ0
−→T ′

(p2, θ1)
γ2
−→T ′ s1, Rule (α1) adds the transitions (p4, θ1)

γ1
−→ (p4, θ0) and

(p4, θ1)
γ1
−→ s1 to T ′.

12. Since (p4, θ0)
ǫ
−→T ′ (p4, θ0) and r5 ∈ θ1, Rule (α1) adds (p0, θ1)

γ0
−→ (p4, θ1).

13. Now we have (p0, θ1)
γ0
−→T ′ (p4, θ1) and r2c , r1 ∈ θ1, Rule (α2) adds the

transition (p5, θ3)
γ0
−→ (p4, θ1) to T

′ where θ3 = {r3, r4, r5, r6, r7, r
1
c , r

2
c , r

3
c , r

4
c}.

For the same reason, since (p3, θ1)
γ0
−→ (p2, θ1) and r

3
c , r6 ∈ θ1, Rule α2 adds

the transition (p2, θ0)
γ0
−→ (p2, θ1) to T

′ because θ0 = (θ1 \ {r6}) ∪ {r2}.

14. Since (p5, θ3)
ǫ
−→T ′ (p5, θ3) and r7 ∈ θ3, Rule (α1) adds the transition

(p2, θ3)
γ2
−→ (p5, θ3) to T

′.

15. Because (p2, θ3)
ǫ
−→T ′ (p2, θ3) and r3 ∈ θ3, Rule (α1) adds the transition

(p3, θ3)
γ0
−→ (p2, θ3) to T

′. Then, since there is a path (p3, θ3)
γ0
−→T ′ (p2, θ3)

γ2
−→T ′

(p5, θ3) and r4 ∈ θ3, Rule (α1) adds the transition (p4, θ3)
γ1
−→ (p5, θ3) to T

′.

Then, since r5 ∈ θ3, Rule (α1) adds the transition (p0, θ3)
γ0
−→ (p4, θ3) to T

′.
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16. Since (p3, θ3)
γ0
−→T ′ (p2, θ3) and r3c ∈ θ3, Rule (α2) adds the transition

(p2, θ2)
γ0
−→T ′ (p2, θ3) to T ′ where (θ3 \ {r6}) ∪ {r2} = θ2. Meanwhile,

since (p2, θ3)
γ2
−→ (p5, θ3) and r4c , r7 ∈ θ3, Rule (α2) adds the transition

(p4, θ1)
γ2
−→ (p5, θ3) to T

′ where (θ3 \ {r7}) ∪ {r1} = θ1.

17. Because r7 ∈ θ2 and (p5, θ2)
ǫ
−→T ′ (p5, θ2), Rule (α1) adds the transition

(p2, θ2)
γ2
−→ (p5, θ2) to T

′.

18. Since (p2, θ2)
ǫ
−→T ′ (p2, θ2) and r3 ∈ θ2, Rule (α1) adds (p3, θ2)

γ0
−→T ′ (p2, θ2)

to T ′. Then, there is a path (p3, θ2)
γ0γ2
−−→

∗

T ′ (p5, θ2), since r4 ∈ θ2, Rule (α1)

adds the transition (p4, θ2)
γ1
−→T ′ (p5, θ2) to T ′. Then, since (p5, θ2)

ǫ
−→T ′

(p5, θ2) and r5 ∈ θ2, Rule (α1) adds the transition (p0, θ2)
γ0
−→ (p4, θ2) to T

′.

19. Now we have (p2, θ2)
γ2
−→T ′ (p5, θ2) and (p2, θ2)

γ0
−→T ′ (p2, θ3), since r

4
c , r7 ∈

θ2, Rule α2 adds the transitions (p4, θ0)
γ2
−→ (p5, θ2) and (p4, θ0)

γ0
−→ (p2, θ3)

to T ′ where (θ2 \ {r7}∪){r1} = θ0.

20. Since (p4, θ2)
γ1
−→T ′ (p5, θ2) and r2, r

1
c ∈ θ2, Rule (α2) adds the transition

(p5, θ3)
γ1
−→ (p5, θ2) to T

′ where (θ2 \ {r2}) ∪ {r6} = θ3.

21. Since (p5, θ3)
γ1
−→T ′ (p5, θ2) and r6 ∈ θ3, Rule (α1) adds the transition

(p2, θ3)
γ2
−→ (p5, θ2) to T

′.

22. No further additions are possible, so the procedure terminates.

2.5.1 Proof of Theorem 2.5.1

Let us now prove Theorem 2.5.1. To prove this theorem, we first introduce the

following lemma.

Lemma 1 For every configuration (〈p, w〉, θ0) ∈ L(A), if (〈p′, w′〉, θ) ⇒∗
P (〈p, w〉, θ0),

then (p′, θ)
w′

−→T ′ q for some final state q of Apre∗.

Proof: Assume (〈p′, w′〉, θ)
i
⇒P (〈p, w〉, θ0). We proceed by induction on i.

Basis. i = 0. Then θ = θ0, p
′ = p and w = w′. Since (〈p, w〉, θ0) ∈ L(A), we

have (p, θ0)
w
−→T ′ q always holds for some final state q i.e. (p′, θ)

w′

−→T ′ q holds.

Step. i > 0. Then there exists a configuration (〈p′′, u〉, θ′′) such that

(〈p′, w′〉, θ) ⇒P (〈p′′, u〉, θ′′)
i−1
⇒P (〈p, w〉, θ0)
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We apply the induction hypothesis to (〈p′′, u〉, θ′′)
i−1
⇒ (〈p, w〉, θ0), and obtain

(p′′, θ′′) u−→T ′ q for q ∈ F .

Let w1, u1 ∈ Γ∗, γ′ ∈ Γ be such that w′ = γ′w1, u = u1w1. Let q
′ be a state of

Apre∗ s.t.

(p′′, θ′′) u1−−→T ′q′ w1−−→T ′q (1)

There are two cases depending on which rule is applied to get (〈p′, w′〉, θ) ⇒

(〈p′′, u〉, θ′′).

1. Case (〈p′, w′〉, θ) ⇒ (〈p′′, u〉, θ′′) is obtained by a rule of the form: 〈p′, γ′〉 →֒

〈p′′, u1〉 ∈ ∆. In this case, θ′′ = θ. By the saturation rule α1, we have

(p′, θ′′) γ′−−→T ′q′ (2)

Putting (1) and (2) together, we can obtain that

π = (p′, θ′′) γ′−−→T ′q′ w1−−→T ′q (3)

Thus, (p′, θ′′) γ′w1−−−→T ′ q i.e. (p′, θ) w′

−−→ q for some final state q ∈ F .

2. Case (〈p′, w′〉, θ) ⇒ (〈p′′, u〉, θ′′) is obtained by a rule of the form p′
(r1,r2)

−֒−−−→

p′′ ∈ ∆c. I.e θ′′ 6= θ. In this case, u1 = γ′. By the saturation rule α2, we

obtain that

(p′, θ) γ′−−→T ′q′ where θ′′ = θ\{r1} ∪ {r2}. (4)

Putting (1) and (4) together, we have the following path

(p′, θ) γ′−−→T ′q′ w1−−→T ′q. I.e. (p′, θ) w′

−−→T ′q for q ∈ F (5)

✷

Lemma 2 If a path π = (p, θ)
w
−→T ′ q for θ ⊆ ∆ ∪∆c is in Apre∗, then

(I) (〈p, w〉, θ) ⇒∗ (〈p′, w′〉, θ0) holds for a configuration (〈p′, w′〉, θ0) s.t.

(p′, θ0)
w′

−−→T q in the initial P-automaton A;

(II) Moreover, if q is an initial state i.e. in the form (p, θ), then w′ = ǫ.
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Proof: Let Apre∗ = (Q,Γ, T, P, F ) be the P-automaton computed by the sat-

uration procedure. In this proof, we use −−→
i T ′

to denote the transition relation

of Apre∗ obtained after adding i-transitions using the saturation procedure. In

particular, since initially Apre∗ = A, Apre∗ contains the path (p′, θ0)
w′

−−→T q where

(〈p′, w′〉, θ0) ∈ L(A), then we write (p′, θ0)
w′

−−→
0 T

q.

Let i be an index such that π = (p, θ)
w

−−→
i T ′

q holds. We shall prove (I) by

induction on i. Statement (II) then follows immediately from the fact that initial

states have no incoming transitions in A.

Basis. i = 0. Since (〈p, w〉, θ) ⇒∗ (〈p, w〉, θ) always holds, take then p = p′, w =

w′ and θ0 = θ.

Step. i > 0. Let t = ((p1, θ1), γ, q
′) be the i-th transition added to Apre∗ and

j be the number of times that t is used in the path (p, θ)
w

−−→
i T ′

q. The proof is

by induction on j. If j = 0, then we have (p, θ)
w

−−→
i−1 T ′

q in the automaton, and

we apply the induction hypothesis (induction on i) then we obtain (〈p, w〉, θ) ⇒∗

(〈p′, w′〉, θ0) for a configuration (〈p′, w′〉, θ0) s.t. (p′, θ0)
w′

−−→T q in the initial P-

automaton A. So assume that j > 0. Then, there exist u and v such that

w = uγv and

(p, θ)
u

−−→
i−1 T ′

(p1, θ1)
γ

−−→
i T ′

q′
v

−−→
i T ′

q (1)

The application of the induction hypothesis (induction on i) to (p, θ)
u

−−→
i−1 T ′

(p1, θ1) (notice that (p1, θ1) is an initial state) gives that

(〈p, u〉, θ) ⇒∗ (〈p1, ǫ〉, θ1) (2)

There are 2 cases depending on whether transition t was added by saturation

rule α1 or α2.

1. Case t was added by rule α1: There exist p2 ∈ P and w2 ∈ Γ∗ such that

r = 〈p1, γ〉 →֒ 〈p2, w2〉 ∈ ∆ ∩ θ1 (3)

and Apre∗ contains the following path:

π′ = (p2, θ1)
w2−−→
i−1 T ′

q′
v

−−→
i T ′

q (4)
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Applying the transition rule r gets that

(〈p1, γv〉, θ1) ⇒ (〈p2, w2v〉, θ1) (5)

By induction on j (since transition t is used j − 1 times in π′), we get from

(4) that

(〈p2, w2v〉, θ1) ⇒
∗ (〈p′, w′〉, θ0) s.t. (p

′, θ0)
w′

−−→T ′q in the initial P-automaton A

(6)

Putting (2) ,(5) and (6) together, we can obtain that

(〈p, w〉, θ) = (〈p, uγv〉, θ) ⇒∗ (〈p1, γv〉, θ1) ⇒ (〈p2, w2v〉, θ1) ⇒
∗ (〈p′, w′〉, θ0)

such that (p′, θ0)
w′

−−→T q in the initial P-automaton A

2. Case t was added by rule α2 : there exist p2 ∈ P and θ′′ ⊆ ∆∪∆c such that

p1
(r1,r2)

−֒−−−→ p2 ∈ ∆c ∩ θ
′′, θ′′ = (θ1\{r1}) ∪ {r2} (7)

and the following path in the current automaton ( self-modifying rule won’t

change the stack) with r ∈ θ′′ :

(p2, θ
′′)

γ
−−→
i−1 T ′

q′
v

−−→
i T ′

q (8)

Applying the transition rule, we can get from (7) that

(〈p1, γv〉, θ1) ⇒ (〈p2, γv〉, θ
′′) (9)

We can apply the induction hypothesis (on j) to (8), and obtain

(〈p2, γv〉, θ
′′) ⇒∗ (〈p′, w′〉, θ0) s.t. (p

′, θ0)
w′

−−→T q in the initial P-automaton A

(10)

From (2),(9) and (10), we get

(〈p, w〉, θ) = (〈p, uγv〉, θ) ⇒∗ (〈p1, γv〉, θ1) ⇒ (〈p2, γv〉, θ
′′) ⇒∗ (〈p′, w′〉, θ0)

such that (p′, θ0)
w′

−−→T q in the initial P-automaton A.
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✷

Then, we can prove Theorem 2.5.1:

Proof: Let (〈p, w〉, θ) be a configuration of pre∗(L(A)). Then (〈p, w〉, θ) ⇒∗

(〈p′, w′〉, θ0) for a configuration (〈p′, w′〉, θ0) s.t. (p′, θ0)
w′

−−→T ′q is a path in A for

q ∈ F . By lemma 1, we can obtain that there exists a path (p, θ)
w
−→T ′ q for some

final state q of Apre∗ . So (〈p, w〉, θ) is recognized by Apre∗ .

Conversely, let (〈p, w〉, θ) be a configuration accepted by Apre∗ i.e. there exists

a path (p, θ)
w
−→T ′ q in Apre∗ for some final state q ∈ F . By Lemma 2, there exists

a configuration (〈p′, w′〉, θ0) s.t. there exist a path (p′, θ0)
w′

−→T q in the initial

automaton A and (〈p, w〉, θ) ⇒∗ (〈p′, w′〉, θ0). Because q is a final state, we have

(〈p′, w′〉, θ0) ∈ L(A) i.e. (〈p, w〉, θ) ∈ pre∗(L(A)).

✷

2.6 Efficient Computation of post∗ Images

Let P = (P,Γ,∆,∆c) be a SM-PDS, and let A = (Q,Γ, T, P, F ) be a P-

automaton that represents a regular set of configurations C ( C = L(A)). Sim-

ilarly, it is not optimal to compute post∗(C) using the translations of Sections

2.2.2 and 2.2.3 to compute equivalent PDSs or symbolic PDSs, and then apply

the algorithms of [20, 42]. We present in this section a direct and efficient

algorithm that computes post∗(C). We assume w.l.o.g. that A has no transitions

leading to an initial state. Moreover, we assume that the rules of ∆ are of the

form 〈p, γ〉 →֒ 〈p′, w〉, where |w| ≤ 2. This is not a restriction, indeed, a rule of

the form 〈p, γ〉 →֒ 〈p′, γ1 · · · γn〉, n > 2 can be replaced by the following rules:

• 〈p, γ〉 →֒ 〈p1, a1γn〉

• 〈p1, a1〉 →֒ 〈p2, a2γn−1〉

• 〈p2, a2〉 →֒ 〈p3, a3γn−2〉

• · · · ,

• 〈pn−2, an−2〉 →֒ 〈p′, γ1γ2〉
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As previously, the construction of Apost∗ consists in adding iteratively new

transitions to the automaton A according to saturation rules (reflecting the for-

ward application of the transition rules in the system). We define Apost∗ to

be the P-automaton (Q′,Γ, T ′, P, F ), where T ′ is computed using the follow-

ing saturation rules and Q′ is the smallest set s.t. Q ⊆ Q′ and for every

r = 〈p, γ〉 →֒ 〈p′, γ1γ2〉 ∈ ∆, qθp′γ1 ∈ Q′ where qθp′γ1 is the new state labelled

with p′, γ1 and θ: initially T ′ = T ;

β1: If r = 〈p, γ〉 →֒ 〈p′, ǫ〉 ∈ ∆ and there exists in T ′ a path π = (p, θ) γ−→T ′ q

with r ∈ θ, then add ((p′, θ), ǫ, q) to T ′.

β2: If r = 〈p, γ〉 →֒ 〈p′, γ′〉 ∈ ∆ and there exists in T ′ a path π = (p, θ) γ−→T ′ q

with r ∈ θ, then add ((p′, θ), γ′, q) to T ′.

β3: If r = 〈p, γ〉 →֒ 〈p′, γ1γ2〉 ∈ ∆ and there exists in T ′ a path π = (p, θ) γ−→T ′ q

with r ∈ θ. Add t′ = ((p′, θ), γ1, q
θ
p′γ1

) and t′′ = (qθp′γ1 , γ2, q) to T
′.

β4: if r = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c and there exists in T ′ a path π = (p, θ) γ−→T ′ q,

where γ ∈ Γ with r ∈ θ, and r1 ∈ θ, then add t′ = ((p′, θ′), γ, q) where

θ′ = (θ \ {r1}) ∪ {r2}}.

The procedure above terminates since there is a finite number of states and

phases.

Let us explain intuitively the role of the saturation rules above. Consider a

path in the automaton of the form (p, θ) γ−→T ′ q w′

−−→T ′ qF , where qF ∈ F . This

means, by definition of P-automata, that the configuration c = (〈p, γw′〉, θ) is

accepted by Apost∗ .

Let r = 〈p, γ〉 →֒ 〈p′, ǫ〉 ∈ ∆. If r is in θ, then the configuration c′ =

(〈p′, w′〉, θ) is a successor of c. Therefore, it should be added to Apost∗ . This

configuration is accepted by the run (p′, θ) ǫ−→T ′ q w′

−−→T ′ qF added by rules (β1).

If θ contains the rule r = 〈p, γ〉 →֒ 〈p′, γ′〉 ∈ ∆, then the configuration c′ =

(〈p′, γ′w′〉, θ) is a successor of c. Therefore, it should be added to Apost∗ . This

configuration is accepted by the run (p′, θ) γ′−−→T ′ q w′

−−→T ′ qF added by rules (β2).

If r = 〈p, γ〉 →֒ 〈p′, γ1γ2〉 ∈ ∆ is in θ, then the configuration c′ = (〈p′, γ1γ2w
′〉, θ)

is a successor of c. Therefore, it should be added to Apost∗ . This configuration is

accepted by the run (p′, θ) γ1−−→T ′ qθp′γ1
γ2−−→T ′ q w′

−−→T ′ qF added by rules (β3).
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Rule (β4) deals with modifying rules: Let r = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c. If r and

r1 are in θ, then the configuration c′ = (〈p′, γw′〉, θ′) is a successor of c, where

θ′ = (θ \{r1})∪{r2}. Therefore, it should be added to Apost∗ . This configuration

is accepted by the run (p′, θ′) γ−→T ′ q w′

−−→T ′ qF added by rules (β4).

Thus, we can show that:

Theorem 2.6.1 Apost∗ recognizes the set post∗(L(A)).

Before proving this theorem, let us illustrate the construction on 2 examples.

p0, θ0p0, θ0 s1s1 s2s2

γ0γ0 γ0γ0

Δ :Δ :

r1 : ⟨p0, γ0⟩ ↪ ⟨p1, γ1γ0⟩r1 : ⟨p0, γ0⟩ ↪ ⟨p1, γ1γ0⟩     
r2 : ⟨p1, γ1⟩ ↪ ⟨p2, γ2γ1⟩r2 : ⟨p1, γ1⟩ ↪ ⟨p2, γ2γ1⟩

r3 : ⟨p2, γ2⟩ ↪ ⟨p3, γ0⟩r3 : ⟨p2, γ2⟩ ↪ ⟨p3, γ0⟩          
r4 : ⟨p4, γ0⟩ ↪ ⟨p1, ϵ⟩r4 : ⟨p4, γ0⟩ ↪ ⟨p1, ϵ⟩

r5 : ⟨p2, γ2⟩ ↪ ⟨p4, γ1⟩r5 : ⟨p2, γ2⟩ ↪ ⟨p4, γ1⟩

Δc :Δc :

 
r′! : p3r′! : p3

θ0 = {r1, r2, r3, r4, r′ !}θ0 = {r1, r2, r3, r4, r′ !}

p0, θ0p0, θ0 s1s1 s2s2

γ0γ0 γ0γ0

p1, θ0p1, θ0 q
θ0
p1γ1

q
θ0
p1γ1

γ1

γ0

p2, θ0p2, θ0 q
θ0
p2γ2

q
θ0
p2γ2

γ2

γ1

p3, θ0p3, θ0

γ0

p4, θ1p4, θ1

γ0

p1, θ1p1, θ1

ϵ

p2, θ1p2, θ1
q

θ1
p2γ2

q
θ1
p2γ2

γ2
γ1

γ1

(r3, r5)
↪ p4

Figure 2.4: The automata A (left) and Apost∗ (right)

Example 4 Let us illustrate this procedure by an example. Consider the SM-

PDS shown in the left half of Fig. 2.4 and the automaton A from Fig. 2.4 that

accepts the set C = {(〈p0, γ0γ0〉, θ0)} where (p0, θ0) is the initial state and s2 is

the final state. Then the result Apost∗ of the algorithm is shown in the right half

of Fig. 2.4. The result is derived through the following steps:

1. First, since (p0, θ0)
γ0
−→T ′ s1 and r1 ∈ θ0, Rule (β3) generates a new state

qθ0p1γ1 and adds the two transitions: (p1, θ0)
γ1
−→ qθ0p1γ1 and qθ0p1γ1

γ0
−→ s1 to T ′.

2. Since (p1, θ0)
γ1
−→T ′ qθ0p1γ1 and r2 ∈ θ0, Rule (β3) generates a new state qθ0p2γ2

and adds two transitions : (p2, θ0)
γ2
−→ qθ0p2γ2 and qθ0p2γ2

γ1
−→ qθ0p1γ1 to T ′.
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3. Because (p2, θ0)
γ2
−→T ′ qθ0p2γ2 and r3 ∈ θ0, Rule (β1) adds the transition

(p3, θ0)
γ0
−→ qθ0p2γ2 to T ′.

4. Since (p3, θ0)
γ0
−→T ′ qθ0p2γ2 and r

′ ∈ θ0, Rule (β4) adds the transition (p4, θ1)
γ0
−→

qθ0p2γ2 to T ′ where θ1 = (θ0 \ {r3}) ∪ {r5} = {r1, r2, r4, r5, r
′}.

5. Since (p4, θ1)
γ0
−→T ′ qθ0p2γ2 and r4 ∈ θ1, Rule (β1) adds the transition (p1, θ1)

ǫ
−→

qθ0p2γ2 to T ′.

6. Then, since there is a path (p1, θ1)
γ1
−→

∗

T ′ qθ0p1γ1 and r2 ∈ θ1, Rule (β3)

generates new state qθ1p2,γ2 and adds two transitions (p2, θ1)
γ2
−→ qθ1p2,γ2 and

qθ1p2,γ2
γ1
−→ qθ0p1γ1 to T ′.

7. Since (p2, θ1)
γ2
−→T ′ qθ1p2,γ2 and r5 ∈ θ1, Rule (β2) adds the transition (p4, θ1)

γ1
−→

qθ1p2,γ2 to T ′.

8. No unprocessed matches remain. The procedure terminates.

p0, θ0p0, θ0 s1s1 s2s2

γ0γ0 γ0γ0

Δ :Δ :

r1 : ⟨p0, γ0⟩ ↪ ⟨p1, γ1γ0⟩r1 : ⟨p0, γ0⟩ ↪ ⟨p1, γ1γ0⟩   
r2 : ⟨p1, γ1⟩ ↪ ⟨p2, γ2γ1⟩r2 : ⟨p1, γ1⟩ ↪ ⟨p2, γ2γ1⟩

r3 : ⟨p2, γ2⟩ ↪ ⟨p3, γ1⟩r3 : ⟨p2, γ2⟩ ↪ ⟨p3, γ1⟩      
r4 : ⟨p4, γ1⟩ ↪ ⟨p0, ϵ⟩r4 : ⟨p4, γ1⟩ ↪ ⟨p0, ϵ⟩

r5 : ⟨p0, γ1⟩ ↪ ⟨p5, γ0⟩r5 : ⟨p0, γ1⟩ ↪ ⟨p5, γ0⟩      
r6 : ⟨p2, γ1⟩ ↪ ⟨p4, γ0⟩r6 : ⟨p2, γ1⟩ ↪ ⟨p4, γ0⟩

Δ
c

:Δ
c

:

 r
1
c

: p3r
1
c

: p3

 r
2
c

: p4r
2
c

: p4

 r
3
c

: p4r
3
c

: p4

 r
4
c

: p5r
4
c

: p5

θ0 = {r1, r2, r3 . r4, r
1
c
, r

2
c
, r

3
c
, r

4
c
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Figure 2.5: The automata A (left) and Apost∗ (right)

Example 5 Let us illustrate this procedure by another example. Consider the

SM-PDS shown in the left half of Fig. 2.5 where (p0, θ0) is the initial state and

s2 is the final state. The result Apost∗ of the algorithm is shown in the right half

of Fig. 2.5 obtained as follows:
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1. First, since (p0, θ0)
γ0
−→T ′ s1 and r1 ∈ θ0, Rule (β3) generates a new state

qθ0p1γ1 and adds two transitions: (p1, θ0)
γ1
−→ qθ0p1γ1 and qθ0p1γ1

γ0
−→ s1 to T ′.

2. Since (p1, θ0)
γ1
−→T ′ qθ0p1γ1 and r2 ∈ θ0, Rule (β3) generates a new state qθ0p2γ2

and adds two transitions: (p2, θ0)
γ2
−→ qθ0p2γ2 and qθ0p2γ2

γ1
−→ qθ0p1γ1 to T ′.

3. Because (p2, θ0)
γ2
−→T ′ qθ0p2γ2 and r3 ∈ θ0, Rule (β2) adds (p3, θ0)

γ1
−→ qθ0p2γ2 to

T ′.

4. Since (p3, θ0)
γ1
−→T ′ qθ0p2γ2 and r1c , r1 ∈ θ0, Rule (β4) adds the transition

(p4, θ1)
γ1
−→ qθ0p2γ2 to T ′ where θ1 = (θ0 \ {r1}) ∪ {r5}.

5. Since (p4, θ1)
γ1
−→T ′ qθ0p2γ2 and r4 ∈ θ1, Rule (β1) adds the transition (p0, θ1)

ǫ
−→

qθ0p2γ2 to T ′. Then there is a path (p0, θ1)
γ1
−→

∗

T ′ qθ0p1γ1, since r5 ∈ θ1, Rule (β2)

adds the transition (p5, θ1)
γ0
−→ qθ0p1γ1 to T ′.

6. Since (p5, θ1)
γ0
−→T ′ qθ0p1γ1 and r4c , r5 ∈ θ1, Rule (β4) adds the transition

(p0, θ0)
γ0
−→ qθ0p1γ1 to T ′ where (θ1 \ {r5}) ∪ {r1} = θ0.

7. Since (p0, θ0)
γ0
−→T ′ qθ0p1γ1 and r1 ∈ θ0, Rule (β3) adds the transitions (p1, θ0)

γ1
−→

qθ0p1γ1 and qθ0p1γ1
γ0
−→ qθ0p1γ1 to T ′.

8. Because (p4, θ1)
γ1
−→T ′ qθ0p2γ2 and r2c ∈ θ1, Rule (β4) adds the transition

(p2, θ2)
γ1
−→ qθ0p2γ2 to T ′.

9. Since (p2, θ2)
γ1
−→T ′ qθ0p2γ2 and r6 ∈ θ2, Rule (β2) adds the transition (p4, θ2)

γ0
−→

qθ0p2γ2 to T ′.

10. Since p4, θ2
γ0
−→T ′ qθ0p2γ2 holds and r6, r

3
c ∈ θ2, Rule (β4) adds the transition

(p5, θ1)
γ0
−→ qθ0p2γ2 to T ′.

11. Then, since (p5, θ1)
γ0
−→T ′ qθ0p2γ2 and r4c ∈ θ1, Rule (β4) adds the transition

(p0, θ0)
γ0
−→ qθ0p2γ2 to T ′.

12. Since r1 ∈ θ0 and (p0, θ0)
γ0
−→T ′ qθ0p2γ2, Rule (β3) adds two transitions:

(p1, θ0)
γ1
−→ qθ0p1γ1 and qθ0p1γ1

γ0
−→ qθ0p2γ2 to T ′.

13. No more rules can be applied. Thus, the procedure terminates.
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2.6.1 Proof of Theorem 2.6.1

Let us now prove Theorem 2.6.1. To prove this theorem, we first show the fol-

lowing lemma:

Lemma 3 For every configuration (〈p, w〉, θ0) ∈ L(A), if (〈p, w〉, θ0) ⇒
∗ (〈p′, w′〉, θ)

then we have a path π = (p′, θ)
w′

−−→T ′ q for some final state q of Apost∗.

Proof:

Let i be the index s.t. (〈p, w〉, θ0)
i
⇒ (〈p′, w′〉, θ) holds. We proceed by induc-

tion on i.

Basis. i = 0. Then p′ = p, w = w′ and θ0 = θ. Since (〈p, w〉, θ0) ∈ L(A), we

have (p, θ0)
w

−−→T ′ q for some final state q that implies π = (p′, θ)
w′

−−→T ′ q is a

path of Apost∗ .

Step. i > 0. Then there exists a configuration (〈p′′, u〉, θ′′) with

(〈p, w〉, θ0)
i−1
⇒ (〈p′′, u〉, θ′′) ⇒ (〈p′, w′〉, θ)

By applying the induction hypothesis (induction on i), we can get that

(p′′, θ′′)
u

−−→T ′ q for some q ∈ F (1)

Then, let γ ∈ Γ, u1, w1 ∈ Γ∗ be such that u = γu1, w
′ = w1u1. Let q1 be a

state of Apost∗ s.t. we have the following path in Apost∗ :

(p′′, θ′′)
γ
−→T ′ q1

u1−−→T ′q (2)

There are two cases depending on whether (〈p′′, u〉, θ′′) ⇒ (〈p′, w′〉, θ) is corre-

sponding to a self-modifying transition (i.e. (θ′′ = θ)) or not.

1. Case: θ′′ = θ. Then there exists a transition rule r : 〈p′′, γ〉 →֒ 〈p′, w1〉 ∈ ∆

s.t. r ∈ θ. There are three possible cases depending on the length of w1 :

- Case |w1| = 0 i.e. w1 = ǫ, by applying the saturation rule β1, we can

get

(p′, θ)
ǫ
−→T ′ q1 (3)

Putting (2) and (3) together, we can have (p′, θ)
ǫ
−→T ′ q1

u1−−→T ′ q i.e.

(p′, θ)
w′

−→T ′ q for some final state q of Apost∗ .
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2.6 Efficient Computation of post∗ Images

- Case |w1| = 1, then let γ′ ∈ Γ s.t. w1 = γ′. By applying the saturation

rule α2, we can get

(p′, θ)
γ′

−→T ′ q1 (4)

Putting (2) and (4) together, we can have (p′, θ)
γ′

−→T ′ q1
u1−−→T ′ q i.e.

(p′, θ)
w′

−→T ′ q for some final state q of Apost∗ .

- Case |w1| = 2, let γ′0, γ
′
1 ∈ Γ be such that w1 = γ′0γ

′
1. By applying the

saturation rule α3, we can get

(p′, θ)
γ′0−−→T ′qθp′γ′0

γ′1−−→T ′q1 (5)

Putting (2) and (5) together, then we have a path (p′, θ)
γ′0−→T ′ qθp′γ′0

γ′1−→T ′

q1
u1−→T ′ q i.e. (p′, θ)

w′

−→T ′ q for some final state q of Apost∗ .

2. Case θ′′ 6= θ. Then there exists a self-modifying transition rule s.t. r :

p′′
(r1,r2)

−֒−−−→ p′ ∈ ∆c ∩ θ
′′ and γ = w1 and θ = (θ′′\{r1}) ∪ {r2}.

By applying rule β4 to (2), we have the following path in the automaton:

(p′, θ)
γ
−→T ′ q1

u1−→T ′ q (5)

i.e. (p′, θ)
w′

−→T ′ q for some final state q of Apost∗ .

✷

Lemma 4 If a path π = (p, θ)
w
−→T ′ q is in Apost∗, then the following holds:

(I) if q is a state of A, then (〈p′, w′〉, θ0) ⇒∗ (〈p, w〉, θ) for a configuration

(〈p′, w′〉, θ0) such that (p′, θ0)
w′

−→T q is a path in the initial P-automaton A;

(II) if q is a new state of the form q = qθ1p1γ1, then (〈p1, γ1〉, θ1) ⇒
∗ (〈p, w〉, θ).

Proof: Let Apost∗ = (Q′,Γ, T ′, P, F ) be the P-automaton computed by the

saturation procedure. In this proof, we use −−→
i T ′

to denote the transition relation

→T ′ of Apost∗ obtained after adding i transitions using the saturation procedure.

Let i be an index such that (p, θ)
w

−−→
i T ′

q holds. We prove both parts of the

lemma by induction on i.
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Basis. i = 0. Only (I) applies. Thus, p′ = p, θ0 = θ and w = w′. (〈p′, w′〉, θ) ⇒∗

(〈p′, w′〉, θ) always holds.

Step. i > 1. Let t be the i-th transition added to the automaton. Let j be the

number of times that t is used in (p, θ)
w

−−→
i T ′

q. A has no transitions leading to

initial states, and the algorithm does not add any such transitions; therefore, if t

starts in an initial state, t can only be used at the start of the path.

The proof is by induction on j. If j = 0, then we have (p, θ)
w

−−→
i−1 T ′

q. We

apply the induction hypothesis (induction on i) then we obtain that there exists

a configuration (〈p′, w′〉, θ0) s.t. (〈p′, w′〉, θ0) ⇒
∗ (〈p, w〉, θ) and (p′, θ0)

w′

−→T q is

a path of initial P-automaton A. So assume that j > 0. We distinguish three

possible cases:

1. If t was added by the rule β1, β2 or β3, then t = ((p1, θ1), v, q1), where v = ǫ

or v = γ1. Then, necessarily, j = 1 and there exists the following path in

the current automaton:

(p, θ) = (p1, θ1)
v

−−→
i T ′

q1
w1−−→
i−1 T ′

q (1)

There are 2 cases depending on whether transition t was added by rule β4

or not.

- Case t was added by rule β4: there exists a self-modifying transition

rule such that r = p2
(r1,r2)

−֒−−−→ p1 ∈ ∆c, and there exists the following

path in the current automaton:

(p2, θ2)
v

−−→
i−1 T ′

q1
w1−−→
i−1 T ′

q, θ1 = θ2\{r1} ∪ {r2} (2)

By induction on (i), we get from (2) that there exists a configuration

(〈p′, w′〉, θ0) s.t. (p
′, θ0)

w′

−→T q is a path in the initial P-automaton A:

(〈p′, w′〉, θ0) ⇒
∗ (〈p2, vw1〉, θ2) (3)

By applying the rule p2
(r1,r2)

−֒−−−→ p1, we get that

(〈p2, vw1〉, θ2) ⇒ (〈p1, vw1〉, θ1) (4)

32



2.6 Efficient Computation of post∗ Images

Thus, putting (3) and (4) together, we get that there exists a configura-

tion (〈p′, w′〉, θ0) s.t. (p
′, θ0)

w′

−→T q is a path in the initial P-automaton

A and:

(〈p′, w′〉, θ0) ⇒
∗ (〈p2, vw1〉, θ2) ⇒ (〈p1, w〉, θ1) = (〈p, w〉, θ) (5)

- Case t is added by β1 or β2: then there exists p2 ∈ P , γ2 ∈ Γ such that

r = 〈p2, γ2〉 →֒ 〈p1, v〉 ∈ ∆ (6)

and Apost∗ contains the following path:

(p2, θ1)
γ2

−−→
i−1 T ′

q1
w1−−→
i−1 T ′

q (7)

By induction on (i), We can get from (7) that there exists a configura-

tion (〈p′, w′〉, θ0) s.t. (p
′, θ0)

w′

−→T q is a path in the initial P-automaton

A and:

(〈p′, w′〉, θ0) ⇒
∗ (〈p2, γ2w1〉, θ1) (8)

Thus, putting (6) and (8) together, we have that there exists a con-

figuration (〈p′, w′〉, θ0) s.t. (p′, θ0)
w′

−→T q is a path in the initial P-

automaton A and:

(〈p′, w′〉, θ0) ⇒
∗ (〈p2, γ2w1〉, θ1) ⇒ (〈p1, w〉, θ1) = (〈p, w〉, θ) (9)

2. If t is the first transition added by rule β3 i.e. t is in the form of ((p1, θ
′′), γ1, q

θ1
p1γ1

).

If this transition is new, then there are no transitions outgoing from qθ1p1γ1 .

So the only path using t is (p1, θ
′′)

γ1
−−→
i T ′

qθ1p1γ1 . For this path, we only need

to prove part (II), and (〈p1, γ1〉, θ1) ⇒
∗ (〈p1, γ1〉, θ1) holds trivially.

3. Let t = (qθ1p1γ1 , γ
′′, q′) be the second transition added by saturation rule β3.

Then there exist u, v ∈ Γ∗ s.t. w = uγ′′v and the current automaton

contains the following path:

(p, θ)
u

−−→
i−1 T ′

qθ1p1γ1
γ′′

−−→
i T ′

q′
v

−−→
i T ′

q (10)

Because t was added via the saturation rule, then there exist p2 ∈ P , γ2 ∈ Γ

and a rule of the form

〈p2, γ2〉 →֒ 〈p1, γ1γ
′′〉 ∈ ∆ ∩ θ1 (11)
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and Apost∗ contains the following path:

(p2, θ1)
γ2

−−→
i−1 T ′

q′
v

−−→
i T ′

q (12)

We apply the induction hypothesis on i and obtain that

(〈p1, γ1〉, θ1) ⇒
∗ (〈p, u〉, θ) (13)

We apply the induction hypothesis on i to obtain that there exists a config-

uration (〈p′, w′〉, θ0) s.t. (p
′, θ0)

w′

−→T q is a path in the initial P-automaton

A and:

(〈p′, w′〉, θ0) ⇒
∗ (〈p2, γ2v〉, θ1) (14)

Thus, putting (11) (13) and (14) together, we have that there exists a

configuration (〈p′, w′〉, θ0) s.t. (p′, θ0)
w′

−→T q is a path in the initial P-

automaton A and:

(〈p′, w′〉, θ0) ⇒
∗ (〈p2, γ2v〉, θ1) ⇒ (〈p1, γ1γ

′′v〉, θ1) ⇒
∗ (〈p, uγ′′v〉, θ) = (〈p, w〉, θ)

(15)

✷

Then we continue to prove Theorem 2.6.1:

Proof: Let (〈p′, w′〉, θ) be a configuration of post∗(L(A)). Then there exists

a configuration (〈p, w〉, θ0) such that there exists a path (p, θ0)
w
−→T q in the

initial automaton A and (〈p, w〉, θ0) ⇒
∗ (〈p′, w′〉, θ). By Lemma 3, we can have

(p′, θ)
w′

−→T ′ q for q is a final state of Apost∗ . So (〈p′, w′〉, θ) is recognized by Apost∗ .

Conversely, let (〈p′, w′〉, θ) be a configuration recognized by Apost∗ . Then there

exists a path (p′, θ)
w′

−→T ′ q in Apost∗ for some final state q. By Lemma 4, since q is

a final state, we have (〈p, w〉, θ0) ⇒
∗
P (〈p′, w′〉, θ) s.t. there exists a configuration

(〈p, w〉, θ0) s.t. (p, θ0)
w
−→T ′ q is a path in the initial automaton A i.e. (〈p, w〉, θ0) ∈

L(A). Therefore, (〈p′, w′〉, θ) ∈ post∗(L(A))

✷
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2.7 Experiments

2.7.1 Our Algorithms vs. Standard pre∗ and post∗ Algo-

rithms of PDSs

We implemented our algorithms in a tool. To compare the performance of our

algorithms against the approach that consists in translating the SM-PDS into an

equivalent PDS or symbolic PDS and then apply the standard post∗ and pre∗

algorithms for PDSs and symbolic PDSs [20, 42], we first applied our tool on

randomly generated SM-PDSs of various sizes. The results of the comparision

using the pre∗ (resp. post∗) algorithms are reported in Table 2.1 (resp. Table

2.2).

In Table 2.1, Column |∆| + |∆c| is the number of transitions of the SM-

PDS (changing and non changing rules). Column SM-PDS gives the cost it

takes to apply our direct algorithm to compute the pre∗ for the given SM-PDS.

Column PDS shows the cost it takes to get the equivalent PDS from the SM-

PDS. Column Symbolic PDS reports the cost it takes to get the equivalent

Symbolic PDS from the SM-PDS. Column Result1 reports the cost it takes to

get the pre∗ analysis of Moped [42] for the PDS we got. Column Total1 is

the total cost it takes to translate the SM-PDS into a PDS and then apply the

standard pre∗ algorithm of Moped (Total1=PDS+Result1). Column Result2

reports the cost it takes to get the pre∗ analysis of Moped for the symbolic

PDS we got. Column Total2 is the total cost it takes to translate the SM-

PDS into a symbolic PDS and then apply the standard pre∗ algorithm of Moped

(Total2=Symbolic PDS+Result2). ”error” in the table means failure of Moped,

because the size of the relations involved in the symbolic transitions is huge.

Hence, we mark − for the total execution time. You can see that our direct

algorithm (Column SM-PDS) is much more efficient.

Table 2.2 shows the performance of our post∗ algorithm. The meaning of the

columns are exactly the same as for the pre∗ case, but using the post∗ algorithms

instead. You can see from this table that applying our direct post∗ algorithm on

the SM-PDS is much better than translating the SM-PDS to an equivalent PDS

or symbolic PDS, and then applying the standard post∗ algorithms of Moped.

Going through PDSs or symbolic PDSs is less efficient and leads to memory out

in several cases.
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2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.7.2 Malware Detection

Self-modifying code is widely used as an obfuscation technique for malware writ-

ers. Thus, we applied our tool for malware detection.

Example SM-PDS PDS

Email-Worm.Win32.Klez.b Y N

Backdoor.Win32.Allaple.b Y N

Email-Worm.Win32.Avron.a Y N

Email-Worm.Win32.Anar.a Y N

Email-Worm.Win32.Anar.b Y N

Email-Worm.Win32.Bagle.a Y N

Email-Worm.Win32.Bagle.am Y N

Email-Worm.Win32.Bagle.ao Y N

Email-Worm.Win32.Bagle.ap Y N

Email-Worm.Win32.Ardurk.d Y N

Email-Worm.Win32.Atak.k Y N

Email-Worm.Win32.Atak.g Y N

Email-Worm.Win32.Hanged Y N

Table 2.3: Malware Detection

We consider self-modifying versions of 13 well known malwares. In these

versions, the malicious behaviors are unreachable if one does not take into account

that the self-modifying piece of code will change the malware code: if the code

does not change, the part that contains the malicious behavior cannot be reached;

after executing the self-modifying code, the control point will jump to the part

containing the malicious behavior.

We model such malwares in two ways: (1) first, we take into account the

self-modifying piece of code and use SM-PDSs to represent these programs as

discussed in Section 2.3.2, (2) second, we don’t take into account that this part

of the code is self-modifying and we treat it as all the other instructions of the

program. In this case, we model these programs by a standard PDS following the

translation of [13].

The results are reported in Table 2.3, Column Example reports the name of

the worm. Column SM-PDS shows the result obtained by applying our method
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2.7 Experiments

to check the reachability of the entry point of the malicious block. Column PDS

gives the result if we apply the traditional PDS translation of programs (without

taking into account the semantics of self modifying code) method to check the

reachability of the entry point of the malicious block. Y stands for yes (the

program is malicious) and N stands for no (the program is benign). As it can

be seen, our techniques that go through SM-PDS to model self modifying code is

able to conclude that the entry point of the malicious block is reachable, whereas

the standard PDS translation from programs fails to reach this conclusion.
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3

LTL Model-Checking of

Self-modifying Code

In this chapter, we consider the LTL model-checking problem of SM-PDSs. We

reduce this problem to the emptiness problem of Self-modifying Büchi PushDown

Systems (SM-BPDSs).

3.1 LTL Model-Checking of SM-PDSs

3.1.1 The linear-time temporal logic LTL

Let At be a finite set of atomic propositions. LTL formulas are defined as follows

(where A ∈ At):

ϕ := A | ¬ϕ | ϕ1 ∨ ϕ2| Xϕ | ϕ1Uϕ2

Formulae are interpreted on infinite words over 2At. Let ω = ω0ω1... be an

infinite word over 2At. We write ωi for the suffix of ω starting at ωi. We denote

ω |= ϕ to express that ω satisfies a formula ϕ:
ω |= A ⇐⇒ A ∈ ω0

ω |= ¬ϕ ⇐⇒ ω 2 ϕ

ω |= ϕ1∨ϕ2 ⇐⇒ ω |= ϕ1 or ω |= ϕ2

ω |= Xϕ ⇐⇒ ω1 |= ϕ

ω |= ϕ1Uϕ2 ⇐⇒ ∃i ≥ 0, ωi |= ϕ2 and ∀0 ≤ j < i, ωj |= ϕ1

The temporal operators G (globally) and F (eventually) are defined as follows:

Fϕ = (A ∨ ¬A)Uϕ and Gϕ = ¬F¬ϕ. Let W (ϕ) be the set of infinite words that
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3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

satisfy an LTL formula ϕ. It is well known that W (ϕ) can be accepted by Büchi

automata:

Definition 4 A Büchi automaton B is a quintuple (Q,Γ, η, q0, F ) where Q is

a finite set of states, Γ is a finite input alphabet, η ⊆ (Q × Γ × Q) is a set

of transitions, q0 ∈ Q is the initial state and F ⊆ Q is the set of accepting

states. A run of B on a word γ0γ1... ∈ Γω is a sequence of states q0q1q2... s.t.

∀i ≥ 0, (qi, γi, qi+1) ∈ η. An infinite word ω is accepted by B if B has a run on ω

that starts at q0 and visits accepting states from F infinitely often.

Theorem 3.1.1 [30] Given an LTL formula ϕ, one can effectively construct a

Büchi automaton Bϕ which accepts W (ϕ).

3.1.2 Self Modifying Büchi Pushdown Systems

Definition 5 A Self Modifying Büchi Pushdown Systems (SM-BPDS) is a tuple

BP = (P,Γ,∆,∆c, G) where P is a set of control locations, G ⊆ P is a set of

accepting control locations, ∆ ⊆ (P × Γ) × (P × Γ∗) is a finite set of transition

rules, and ∆c ⊆ P × 2∆∪∆c × 2∆∪∆c × P is a finite set of modifying transition

rules in the form p
(σ,σ′)

−֒−−−→ p′ where σ, σ′ ⊆ ∆ ∪∆c.

Let ⇒BP be the transition relation between configurations as follows: Let θ ⊆

∆ ∪∆c, γ ∈ Γ, w ∈ Γ∗, and p ∈ P , then

1. If r : 〈p, γ〉 →֒ 〈p′, w′〉 ∈ ∆ and r ∈ θ, then (〈p, γw〉, θ) ⇒BP (〈p′, w′w〉, θ).

2. If r : p
(σ,σ′)

−֒−−−→ p′ ∈ ∆c, σ ∩ θ 6= ∅ and r ∈ θ, then (〈p, γw〉, θ) ⇒BP

(〈p′, γw〉, θ′) where θ′ = θ\σ ∪ σ′.

A run π of BP is a sequence of configurations π = c0c1... s.t. ci ⇒BP ci+1

for every i ≥ 0. π is accepting iff it infinitely often visits configurations having

control locations in G.

Let c and c′ be two configurations of the SM-BPDS BP. The relation ⇒r
BP

is defined as follows: c ⇒r
BP c′ iff there exists a configuration (〈g, u〉, θ), g ∈ G

s.t. c ⇒∗
BP (〈g, u〉, θ) ⇒+

BP c′. We remove the subscript BP when it is clear

from the context. We define
i
⇒ as follows: c

i
⇒ c′ iff there exists a sequence of

configurations c0 ⇒BP c1 ⇒BP ...⇒BP ci s.t. c0 = c and ci = c′.
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3.1 LTL Model-Checking of SM-PDSs

A head of SM-BPDS is a tuple (〈p, γ〉, θ) where p ∈ P , γ ∈ Γ and θ ⊆ ∆∪∆c.

A head ((p, γ), θ) is repeating if there exists v ∈ Γ∗ such that (〈p, γ〉, θ) ⇒r
BP

(〈p, γv〉, θ). The set of repeating heads of SM-BPDS is called RepBP .

We assume w.l.o.g. that for every rule in ∆c of the form r : p
(σ,σ′)

−֒−−−→ p′,

r /∈ σ.

3.1.3 From LTL Model-Checking of SM-PDSs to the empti-

ness problem of SM-BPDSs

Let P = (P,Γ,∆,∆c) be a self modifying pushdown system. Let At be a set

of atomic propositions. Let ν : P → 2At be a labelling function. Let π =

(〈p0, w0〉, θ0)(〈p1, w1〉, θ1)... be an execution of the SM-PDS P . Let ϕ be an LTL

formula over the set of atomic propositions At. We say that

π |=ν ϕ iff ν(p0)ν(p1) · · · |= ϕ

Let (〈p, w〉, θ) be a configuration of P . We say that (〈p, w〉, θ) |=ν ϕ iff P has

a path π starting at (〈p, w〉, θ) such that π |=ν ϕ.

Our goal in this chapter is to perform LTL model-checking for self-modifying

pushdown systems. Since SM-PDSs can be translated to standard (symbolic)

pushdown systems, one way to solve this LTL model-checking problem is to com-

pute the (symbolic) pushdown system that is equivalent to the SM-PDS, and then

apply the standard LTL model-checking algorithms on standard PDSs [42]. How-

ever, this approach is not efficient (as will be witnessed later in the experiments).

Thus, we need a direct approach that performs LTL model-checking on the SM-

PDS, without translating it to an equivalent PDS. Let Bϕ = (Q, 2At, η, q0, F )

be a Büchi automaton that accepts W (ϕ). We compute the SM-BPDS BPϕ =

(P × Q,Γ,∆′,∆′
c, G) by performing a kind of product between the SM-PDS P

and the Büchi automaton Bϕ as follows:

1. if r = 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆ and (q, ν(p), q′) ∈ η, then 〈(p, q), γ〉 →֒

〈(p′, q′), w〉 ∈ ∆′. Let prod(r) be the set of rules of ∆′ obtained from the

rule r, i.e., rules of ∆′ of the form 〈(p, q), γ〉 →֒ 〈(p′, q′), w〉.
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3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

2. if a rule r = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c and (q, ν(p), q′) ∈ η, then (p, q)
(σ,σ′)

−֒−−−→

(p′, q′) ∈ ∆′
c where σ = prod(r1), σ

′ = prod(r2). Let prod(r) be the

set of rules of ∆′ obtained from the rule r, i.e., rules of ∆′
c of the form

(p, q)
(σ,σ′)

−֒−−−→ (p′, q′).

3. G = P × F .

We can show that:

Theorem 3.1.2 Let (〈p, w〉, θ) be a configuration of the SM-PDS P. (〈p, w〉, θ) |=ν

ϕ iff BPϕ has an accepting run from (〈(p, q0), w〉, prod(θ)) where prod(θ) is the

set of rules of ∆ ∪∆c obtained from the rules of θ as described above.

Thus, LTL model-checking for SM-PDSs can be reduced to checking whether

a SM-BPDS has an accepting run. The rest of the chapter is devoted to this

problem.

3.2 The Emptiness Problem of SM-BPDSs

From now on, we fix a SM-BPDS BP = (P,Γ,∆,∆c, G). We can show that BP

has an accepting run starting from a configuration c if and only if from c, it can

reach a configuration with a repeating head:

Proposition 3 A SM-BPDS BP has an accepting run starting from a configu-

ration c if and only if there exists a repeating head ((p, γ), θ) such that c ⇒∗
BP

(〈p, γw〉, θ) for some w ∈ Γ∗.

Proof: “ ⇒ ”: Let σ = c0c1... be an accepting run starting at configuration c

where c0 = c and ci = (〈pi, wi〉, θi). We construct an increasing sequence of indices

i0, i1... with a property that once any of the configurations cik is reached, the rest

of the run never changes the bottom |wik |−1 elements of the stack anymore. This

property can be written as follows:

|wi0 |= min{|wj| | j ≥ 0}

|wik |= min{|wj| | j > ik−1}, k ≥ 1
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3.2 The Emptiness Problem of SM-BPDSs

Because BP has only finitely many different heads, there must be a head (〈p, γ〉, θ)

which occurs infinitely often as a head in the sequence ci0ci1 .... Moreover, as some

g ∈ G becomes a control location infinitely often, we can find a subsequence of

indices ij0 , ij1 , ... with the following property: for every k ≥ 1, there exist v, w ∈ Γ∗

cijk = (〈p, γw〉, θ) ⇒r (〈p, γvw〉, θ) = cijk+1

Because w is never looked at or changed in this path, we can have (〈p, γ〉, θ) ⇒r

(〈p, γv〉, θ). This proves this direction of the proposition.

“ ⇐ ”: Because (〈p, γ〉, θ) is a repeating head, we can construct the following run

for some u, v, w ∈ Γ∗, θ′ ⊆ (∆ ∪∆c) and g ∈ G:

c⇒∗ (〈p, γw〉, θ) ⇒∗ (〈g, uw〉, θ′) ⇒+ (〈p, γvw〉, θ) ⇒∗ (〈g, uvw〉, θ′) ⇒+ (〈p, γvvw〉, θ) ⇒∗ ...

Since g occurs infinitely often, the run is accepting. ✷

Thus, since there exists an efficient algorithm to compute the pre∗ of SM-

PDSs [46], the emptiness problem of a SM-BPDS can be reduced to computing

its repeating heads.

3.2.1 The Head Reachability Graph G

Our goal is to compute the set of repeating heads RepBP , i.e., the set of heads

(〈p, γ〉, θ) such that there exists v ∈ Γ∗, (〈p, γ〉, θ) ⇒r (〈p, γv〉, θ). I.e., (〈p, γ〉, θ) ⇒∗

(〈p, γv〉, θ) s.t. this path goes through an accepting location in G. To this aim,

we will compute a finite graph G whose nodes are the heads of BP of the form

((p, γ), θ), where p ∈ P , γ ∈ Γ and θ ⊆ ∆∪∆c; and whose edges encode the reach-

ability relation between these heads. More precisely, given two heads ((p, γ), θ)

and ((p′, γ′), θ′), ((p, γ), θ)
b
−→ ((p′, γ′), θ′) is an edge of the graph G means that the

configuration (〈p, γ〉, θ) can reach a configuration having (〈p′, γ′〉, θ′) as head, i.e.,

it means that there exists v ∈ Γ∗ s.t. (〈p, γ〉, θ) ⇒∗ (〈p′, γ′v〉, θ′). Moreover, we

need to keep the information whether this path visits an accepting location in G

or not. This information is recorded in the label of the edge b: b = 1 means that

the path visits an accepting location in G, i.e. that (〈p, γ〉, θ) ⇒r (〈p′, γ′v〉, θ′).

Otherwise, b = 0. Therefore, if the graph G contains a loop from a head ((p, γ), θ)

to itself such that this loop goes through an edge labelled by 1, then ((p, γ), θ)
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3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

is a repeating head. Thus, computing RepBP can be reduced to computing the

graph G and finding 1-labelled loops in this graph.

More precisely, we define the head reachability graph G as follows:

Definition 6 The head reachability graph G is a tuple (P × Γ× 2∆∪∆c , {0, 1}, δ)

such that ((p, γ), θ)
b
−→ ((p′, γ′), θ′) is an edge of δ iff:

1. there exists a transition rc : p
(σ,σ′)

−֒−−−→ p′ ∈ θ ∩∆c, γ = γ′, θ′ = θ \ σ ∪ σ′,

and b = 1 iff p ∈ G;

2. there exists a transition 〈p, γ〉 →֒ 〈p′, γ′〉 ∈ θ∩∆, θ = θ′ and b = 1 iff p ∈ G;

3. there exists a transition 〈p, γ〉 →֒ 〈p′′, γ1γ
′〉 ∈ θ ∩ ∆, for γ1 ∈ Γ, p′′ ∈ P ,

s.t. (〈p′′, γ1〉, θ) ⇒
∗
BP (〈p′, ǫ〉, θ′), and b = 1 iff p ∈ G or (〈p′′, γ1〉, θ) ⇒

r
BP

(〈p′, ǫ〉, θ′)

Let G be the head reachability graph. We define −→
i

as follows: let ((p, γ), θ) and

((p′, γ′), θ′) be two heads of BP. We write ((p, γ), θ) −→
i
((p′, γ′), θ′) iff ∃ booleans

b1, b2...bi ∈ {0, 1}, ∃ heads ((pj, γj), θj), 0 ≤ j ≤ i s.t. G contains the following

path ((p0, γ0), θ0)
b1−→ ((p1, γ1), θ1)

b2−→ ...
bi−→ ((pi, γi), θi) where ((p0, γ0), θ0) =

((p, γ), θ) and ((pi, γi), θi) = ((p′, γ′), θ′).

Let →∗ be the reflexive transitive closure of the graph relation
b
−→, and let →r

be defined as follows: Given two heads ((p, γ), θ) and ((p′, γ′), θ′), ((p, γ), θ) →r

((p′, γ′), θ′) iff there is in G a path between ((p, γ), θ) and ((p′, γ′), θ′) that goes

through a 1-labelled edge, i.e., iff there exist heads ((p1, γ1), θ1) and ((p2, γ2), θ2)

s.t. ((p, γ), θ) →∗ ((p1, γ1), θ1)
1
−→ ((p2, γ2), θ2) →

∗ ((p′, γ′), θ′).

We can show that:

Theorem 3.2.1 Let BP = (P,Γ,∆,∆c, G) be a self-modifying Büchi pushdown

system, and let G be its corresponding head reachability graph. A head ((p, γ), θ)

of BP is repeating iff G has a loop on the node ((p, γ), θ) that goes through a

1-labeled edge.

To prove this theorem, we first need to prove the following lemma:

Lemma 5 The relations →∗ and →r have the following properties: For any heads

((p, γ), θ1) and ((p′, γ′), θ2):
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3.2 The Emptiness Problem of SM-BPDSs

(a) ((p, γ), θ1) →
∗ ((p′, γ′), θ2) iff (〈p, γ〉, θ1) ⇒

∗ (〈p′, γ′v〉, θ2) for some v ∈ Γ∗.

(b) ((p, γ), θ1) →
r ((p′, γ′), θ2) iff (〈p, γ〉, θ1) ⇒

r (〈p′, γ′v〉, θ2) for some v ∈ Γ∗.

Proof: “⇒”: Assume ((p, γ), θ1) −→
i
((p′, γ′), θ2). We proceed by induction on i.

(a) Basis. i = 0. In this case, ((p, γ), θ1) = ((p′, γ′), θ2), then we can get

(〈p, γ〉, θ1) ⇒
∗ (〈p, γ〉, θ1) = (〈p′, γ′〉, θ2)

Step. i > 0. Then there exist p1 ∈ P, γ′′ ∈ Γ∗ and θ′ ⊆ ∆ ∪∆c such that

((p, γ), θ1) −→
1

((p1, γ
′′), θ′) −−→

i−1
((p′, γ′), θ2). From the induction hypothesis,

there exists u ∈ Γ∗ such that (〈p1, γ
′′〉, θ′) ⇒∗ (〈p′, γ′u〉, θ2)

Since ((p, γ), θ1) → ((p1, γ
′′), θ′), we have (〈p, γ〉, θ1) ⇒∗ (〈p1, γ

′′w〉, θ′) for

w ∈ Γ∗, hence (〈p, γ〉, θ1) ⇒
∗ (〈p′, γ′uw〉, θ2).

The property holds.

(b) ((p, γ), θ1) →
r ((p, γ), θ1) cannot hold for the case i = 0.

Basis. i = 1. In this case, ((p, γ), θ1) →r ((p′, γ′), θ2), then we can get

p ∈ G and (〈p, γ〉, θ1) ⇒
r (〈p′, γ′〉, θ2). The property holds.

Step. i > 0. As done in the proof of part (a) of this lemma, there exists

p1, γ
′′ ∈ Γ, θ′′ ⊆ ∆ ∪ ∆c s.t. ((p, γ), θ1) −→

1
((p1, γ

′′), θ′) −−→
i−1

((p′, γ′), θ2).

Then if ((p, γ), θ1) →r ((p′, γ′), θ2), either ((p1, γ
′′), θ′) →r ((p′, γ′), θ2) or

((p, γ), θ1)
1
−→ ((p1, γ

′′), θ′) holds. In the first case i.e. ((p1, γ
′′), θ′) →r

((p′, γ′), θ2), by the induction hypothesis, we can have (〈p1, γ
′′〉, θ′) ⇒r

(〈p′, γ′u〉, θ2), hence, (〈p, γ〉, θ1) ⇒
r (〈p′, γ′u〉, θ2) holds

The second case depends on the rule applied to get ((p, γ), θ1)
1
−→ ((p1, γ

′′), θ′)

according to Definition 6.

- If this edge corresponds to a transition rc : p
(σ,σ′)

−֒−−−→ p1 ∈ θ1, then

γ = γ′′, θ′ = θ1\σ ∪ σ′ and p ∈ G. Since we can obtain (〈p, γ〉, θ1) ⇒BP

(〈p1, γ〉, θ
′) ⇒∗ (〈p′, γ′uw〉, θ2) from part (a) and p ∈ G, then (〈p, γ〉, θ1) ⇒

r

(〈p1, γ〉, θ
′) ⇒∗ (〈p′, γ′uw〉, θ2). This implies that (〈p, γ〉, θ1) ⇒

r (〈p′, γ′v〉, θ2)

for some v ∈ Γ∗.
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- If this edge corresponds to a transition r : 〈p, γ〉 →֒ 〈p1, γ
′′〉 ∈ θ1 ∩

∆, then θ′ = θ1 and p ∈ G. Since we can obtain (〈p, γ〉, θ1) ⇒BP

(〈p1, γ
′′〉, θ1) ⇒

∗ (〈p′, γ′uw〉, θ2) from part (a) and p ∈ G, then

(〈p, γ〉, θ1) ⇒
r (〈p1, γ

′′〉, θ1) ⇒
∗ (〈p′, γ′uw〉, θ2).

This implies that (〈p, γ〉, θ1) ⇒
r (〈p′, γ′v〉, θ2) for some v ∈ Γ∗.

- If this edge corresponds to a transition r : 〈p, γ〉 →֒ 〈p′′, γ1γ
′′〉 ∈ θ1,

then either p ∈ G or (〈p′′, γ1〉, θ1) ⇒
r (〈p1, ǫ〉, θ

′) holds. If p ∈ G, then

we have (〈p, γ〉, θ1) ⇒
r (〈p′′, γ1γ

′′〉, θ1). Otherwise, (〈p′′, v1γ
′′w〉, θ1) ⇒

r

(〈p1, γ
′′w〉, θ′). Since we can obtain (〈p1, γ

′′〉, θ′) ⇒∗ (〈p′, γ′u〉, θ2) from

part (a). Therefore, (〈p, γ〉, θ1) ⇒
r (〈p1, γ

′′〉, θ′) ⇒∗ (〈p′, γ′u〉, θ2). This

implies that (〈p, γ〉, θ1) ⇒
r (〈p′, γ′v〉, θ2) for some v ∈ Γ∗.

‘⇐”: Assume (〈p, γ〉, θ1)
i
⇒ (〈p′, γ′v〉, θ2). We proceed by induction on i.

(a) Basis. i = 0. In this case, v = ǫ and (〈p, γ〉, θ1) = (〈p′, γ′〉, θ2), then

((p, γ), θ1) →
∗ ((p′, γ′), θ2) holds.

Step. i > 0. Then there exist p1 ∈ P, u ∈ Γ∗ and θ′ ⊆ ∆ ∪ ∆c such that

(〈p, γ〉, θ1)
1
⇒ (〈p1, u〉, θ

′)
i−1
⇒ (〈p′, γ′v〉, θ2). There are 2 cases:

1. Case θ′ = θ1 : There must exist a rule r : 〈p, γ〉 →֒ 〈p1, u〉 ∈ ∆ such that

r ∈ θ′ and |u| ≥ 1. Let l denote the minimal length of the stack on the

path from (〈p1, u〉, θ1) to (〈p
′, γ′v〉, θ2). Then u can be written as u′′γ1u

′

where |u′| = l−1 (that means u′ will remain on the stack for the path).

Furthermore, there exists p′′′ such that (〈p1, u
′′〉, θ1) ⇒

∗ (〈p′′′, ǫ〉, θ′′) for

some θ′′ ⊆ (∆c ∪∆). We have (〈p, γ〉, θ1)
k
⇒ (〈p′′′, γ1u

′〉, θ′′) for k < i.

By the induction on i, we have ((p, γ), θ1) →
∗ ((p′′′, γ1), θ

′′). Because u′

has to remain on the stack for the rest of the path, v is of the form v′u′

for some v′ ∈ Γ∗. That means (〈p′′′, γ1〉, θ
′′)

j
⇒ (〈p′, γ′v′〉, θ2) for j <

i. By the induction hypothesis, ((p′′′, γ1), θ
′′) →∗ ((p′, γ′), θ2) holds.

Moreover, we have ((p, γ), θ1) →∗ ((p′′′, γ1), θ
′′), hence ((p, γ), θ1) →∗

((p′, γ′), θ2).
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2. Case θ′ 6= θ1 : There must be a rule rc : p
(σ,σ′)

−֒−−−→ p1 ∈ ∆c such

that rc ∈ θ1 and σ ∩ θ1 6= ∅, then θ′ = θ1 \ σ ∪ σ′. After the ex-

ecution of rc, the content of the stack will remain the same, thus,

u = γ. Then (〈p, γ〉, θ1)
1
⇒ (〈p1, γ〉, θ

′)
i−1
⇒ (〈p′, γ′v〉, θ2). By the in-

duction hypothesis to (〈p1, γ〉, θ
′)
i−1
⇒ (〈p′, γ′v〉, θ2), we can obtain that

((p1, γ), θ
′) →∗ ((p′, γ′), θ2). Since (〈p, γ〉, θ1)

1
⇒ (〈p1, γ〉, θ

′), then we

can have a path ((p, γ), θ1) → ((p1, γ), θ
′) →∗ ((p′, γ′), θ2) that implies

((p, γ), θ1) →
∗ ((p′, γ′), θ2). The property holds.

(b) (〈p, γ〉, θ1) ⇒
r (〈p, γ′v〉, θ1) is impossible in 0 steps.

Basis. i = 1. (〈p, γ〉, θ1) ⇒
r (〈p, γ〉, θ1), then p ∈ G. Thus, ((p, γ), θ1) →

r

((p, γ), θ1) holds.

Step. i > 1. (〈p, γ〉, θ1) ⇒
r (〈p′, γ′v〉, θ2) holds, then there exist p1 ∈ P, u ∈

Γ∗ and θ′ ⊆ ∆ ∪ ∆c such that (〈p, γ〉, θ1)
1
⇒ (〈p1, u〉, θ

′)
i−1
⇒ (〈p′, γ′v〉, θ2).

Thus, either (〈p, γ〉, θ1) ⇒r (〈p1, u〉, θ
′) or (〈p1, u〉, θ

′) ⇒r (〈p′, γ′v〉, θ2)

holds.

The first case implies p ∈ G. There are 2 cases:

1. Case θ′ = θ1 : then as in the previous proof of part (a), we can have

a path ((p, γ), θ1) →
∗ ((p′′′, γ1), θ

′′) →∗ ((p′, γ′), θ2). Since p ∈ G, we

get by Definition 6 ((p, γ), θ1) →
∗ ((p′′′, γ1), θ

′′) →∗ ((p′, γ′), θ2). Thus,

we have that ((p, γ), θ1) →
r ((p′, γ′), θ2). The property holds.

2. Case θ′ 6= θ1: then as in the previous proof of part (a), we can have

a path ((p, γ), θ1) → ((p1, γ), θ
′) →∗ ((p′, γ′), θ2). Since p ∈ G, we

get ((p, γ), θ1)
1
−→ ((p1, γ), θ

′) →∗ ((p′, γ′), θ2). Thus, we have that

((p, γ), θ1) →
r ((p′, γ′), θ2). The property holds.

In the second case, (〈p1, u〉, θ
′) ⇒r (〈p′, γ′v〉, θ2) holds. As previously, there

are 2 cases:

1. Case θ′ = θ1 : then as in case (a) we have (〈p1, u〉, θ1) ⇒
∗ (〈p′′′, γ1u

′〉, θ′′)

and (〈p′′′, γ1〉, θ
′′) ⇒∗ (〈p′, γ′v′〉, θ2). If (〈p1, u〉, θ1) ⇒r (〈p′, γ′v〉, θ2),

then either
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(〈p1, u〉, θ1) ⇒
r (〈p′′′, γ1u

′〉, θ′′) or (〈p′′′, γ1〉, θ
′′) ⇒r (〈p′, γ′v′〉, θ2).

- If (〈p1, u〉, θ1) ⇒r (〈p′′′, γ1u
′〉, θ′′), let u′′ ∈ Γ∗ s.t. u = u′′γ1u

′

and (〈p1, u
′′〉, θ1) ⇒r (〈p′′′, ǫ〉, θ′′), then, we have ((p, γ), θ1) →r

((p′′′, γ1), θ
′′). We have (〈p, γ〉, θ1)

k
⇒ (〈p′′′, γ1u

′〉, θ′′) for k < i. By

the induction on i, we have ((p, γ), θ1) →
∗ ((p′′′, γ1), θ

′′). Because

u′ has to remain on the stack for the rest of the path, v is of the

form v′u′ for some v′ ∈ Γ∗.

That means (〈p′′′, γ1〉, θ
′′)

j
⇒ (〈p′, γ′v′〉, θ2) for j < i. By the in-

duction hypothesis, ((p′′′, γ1), θ
′′) →∗ ((p′, γ′), θ2) holds. More-

over, we have ((p, γ), θ1) →∗ ((p′′′, γ1), θ
′′), hence ((p, γ), θ1) →∗

((p′, γ′), θ2). So we can have a path ((p, γ), θ1) →
∗ ((p′′′, γ1), θ

′′) →∗

((p′, γ′), θ2), thus we have that ((p, γ), θ1) →
r ((p′, γ′), θ2);

- If (〈p′′′, γ1〉, θ
′′) ⇒r (〈p′, γ′v′〉, θ2), then by the induction hypothesis

we have ((p′′′, γ1), θ
′′) →r ((p′, γ′), θ2). Thus, we can have a path

((p, γ), θ1) →∗ ((p′′′, γ1), θ
′′) →∗ ((p′, γ′), θ2), then we have that

((p, γ), θ1) →
r ((p′, γ′), θ2);

2. Case θ′ 6= θ1 : then (〈p1, γ〉, θ
′) ⇒r (〈p′, γ′v〉, θ2). By the induction

hypothesis we have ((p1, γ), θ
′) →r ((p′, γ′), θ2). Since (〈p, γ〉, θ1)

1
⇒

(〈p1, γ〉, θ
′)
i−1
⇒ (〈p′, γ′v〉, θ2).

By the induction hypothesis to (〈p1, γ〉, θ
′)
i−1
⇒ (〈p′, γ′v〉, θ2), we can ob-

tain that ((p1, γ), θ
′) →∗ ((p′, γ′), θ2). Since (〈p, γ〉, θ1)

1
⇒ (〈p1, γ〉, θ

′),

then we can have a path ((p, γ), θ1) → ((p1, γ), θ
′) →∗ ((p′, γ′), θ2).

Thus, we have that ((p, γ), θ1) →
r ((p′, γ′), θ2);

Thus, the property holds.

✷

Proof of Theorem 3.2.1

We can now prove Theorem 3.2.1.

Proof: Let ((p, γ), θ) be a repeating head, then there exists some v ∈ Γ∗, θ ⊆

∆c ∪∆ such that (〈p, γ〉, θ) ⇒r (〈p, γv〉, θ). By Lemma 5, this is the case if and

only if ((p, γ), θ) →r ((p, γ), θ). From the definition of →r, that means that there

exist heads ((p1, γ1), θ
′) and ((p2, γ2), θ

′′) such that ((p, γ), θ) →∗ ((p1, γ1), θ
′)

1
−→

((p2, γ2), θ
′′) →∗ ((p, γ), θ). Then ((p, γ), θ), ((p1, γ1), θ

′) and ((p2, γ2), θ
′′) are all
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in the same loop with a 1-labelled edge. Conversely, whenever ((p, γ), θ) is in

a component with such an edge, ((p, γ), θ) →r ((p, γ), θ) holds, then Lemma 5

implies that (〈p, γ〉, θ) ⇒r (〈p, γv〉, θ) which means that ((p, γ), θ) is a repeating

head.

✷

3.2.2 Labelled configurations and labelled BP-automata

To compute G, we need to be able to compute predecessors of configurations of

the form (〈p′, ǫ〉, θ′), and to determine whether these predecessors were backward-

reachable using some control points in G (item 3 in Definition 6). To solve this

question, we will label configurations (〈p′′, w〉, θ) s.t. (〈p′′, w〉, θ) ⇒∗ (〈p′, ǫ〉, θ′)

by 1 if this path went through an accepting location in G, i.e., if (〈p′′, w〉, θ) ⇒r

(〈p′, ǫ〉, θ′), and by 0 if not. To this aim, we define a labelled configuration as a

tuple [(〈p, w〉, θ), b], s.t. (〈p, w〉, θ) is a configuration and b ∈ {0, 1}.

Multi-automata were introduced in [6, 20] to finitely represent regular infinite

sets of configurations of a PDS. Since a labelled configuration c = [(〈p, w〉, θ), b]

of a SM-PDS involves a PDS configuration 〈p, w〉, together with the current set

of transition rules (phase) θ, and a boolean b, in order to take into account the

phases θ, and these new 0/1-labels in configurations, we extend multi-automata

to labelled BP-automata as follows:

Definition 7 Let BP = (P,Γ,∆,∆c, G) be a SM-BPDS. A labelled BP-automaton

is a tuple A = (Q,Γ, T, I, F ) where Γ is the automaton alphabet, Q is a finite set

of states, I ⊆ P × 2∆∪∆c ⊆ Q is the set of initial states, T ⊂ Q ×
(
(Γ ∪ {ǫ}) ×

{0, 1}
)
×Q is the set of transitions, F ⊆ Q is the set of final states.

If
(
q, [γ, b], q′

)
∈ T , we write q

[γ,b]
−−−→T q

′. We extend this notation in the obvious

way to sequences of symbols: (1) ∀q ∈ Q, q
[ǫ,0]
−−−→T q, and (2) ∀q, q′ ∈ Q, ∀b ∈

{0, 1}, ∀w ∈ Γ∗ for w = γ0...γn+1, q
[w,b]
−−−→T q

′ iff ∃q0, ..., qn ∈ Q, b0, ..., bn+1 ∈

{0, 1}, b = b0 ∨ b1 ∨ ... ∨ bn+1 and q
[γ0,b0]−−−−→T q0

[γ1,b1]−−−−→T q1 · · · qn
[γn+1,bn+1]−−−−−−−→T q

′. If

q
[w,b]
−−→T q

′ holds, we say that

q
[w,b]
−−→T q

′ and q
[γ0,b0]−−−−→T q0

[γ1,b1]−−−−→T q1 · · · qn
[γn+1,bn+1]−−−−−−−→T q

′ is a path of A.
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A labelled configuration [(〈p, w〉, θ), b] is accepted by the automaton A iff there

exists a path (p, θ)
[γ0,b0]−−−−→T q1

[γ1,b1]−−−−→T q2 · · · qn
[γn,bn]−−−−→T qn+1 in A such that w =

γ0γ1 · · · γn, b = b0 ∨ b1 ∨ ... ∨ bn, (p, θ) ∈ I, and qn+1 ∈ F . Let L(A) be the set of

labelled configurations accepted by A.

3.2.3 Computing pre∗
(
(〈p′, ǫ〉, θ′)

)

Given a configuration of the form (〈p′, ǫ〉, θ′), our goal is to compute a labelled

BP-automaton Apre∗
(
(〈p′, ǫ〉, θ′)

)
that accepts labelled configurations of the form

[c, b] where c is a configuration and b ∈ {0, 1} such that c ⇒∗ (〈p′, ǫ〉, θ′) (i.e.,

c ∈ pre∗
(
(〈p′, ǫ〉, θ′)

)
) and b = 1 iff this path went through final control points,

i.e., c⇒r (〈p′, ǫ〉, θ′). Otherwise, b = 0.

Let p ∈ P , we define B(p) = 1 if p ∈ G and B(p) = 0 otherwise.

Apre∗
(
(〈p′, ǫ〉, θ′)

)
= (Q,Γ, T, I, F ) is computed as follows: Initially, Q = I =

F = {(p′, θ′)} and T = ∅. We add to T transitions as follows:

α1: If r = 〈p, γ〉 →֒ 〈p1, w〉 ∈ ∆. If there exists in T a path (p1, θ)
[w,b]
−−−→T q

(in case |w| = 0, we have w = ǫ) with r ∈ θ. Then, add (p, θ) to I, and(
(p, θ), [γ,B(p) ∨ b], q

)
to T .

α2: if r = p
(σ,σ′)

−֒−−−→ p1 ∈ ∆c and there exists in T a transition (p1, θ)
[γ,b]
−−−→T q

with r ∈ θ, where γ ∈ Γ. Then add (p, θ′) to I, and
(
(p, θ′), [γ,B(p)∨ b], q

)

to T , for θ′ such that θ = θ′ \ σ ∪ σ′.

The procedure above terminates since there is a finite number of states and

phases. Note that by construction, F = {(p′, θ′)}, and, since initially Q =

{(p′, θ′)}, states of Apre∗
(
(〈p′, ǫ〉, θ′)

)
are all of the form (p, θ) for p ∈ P and

θ ⊆ ∆ ∪∆c.

Let us explain the intuition behind rule (α1). Let r = 〈p, γ〉 →֒ 〈p1, w〉 ∈ ∆. Let

c = (〈p1, ww
′〉, θ) and c′ = (〈p, γw′〉, θ). Then, if c⇒∗ (〈p′, ǫ〉, θ′), then necessarily,

c′ ⇒∗ (〈p′, ǫ〉, θ′). Moreover, c′ ⇒r (〈p′, ǫ〉, θ′) iff either c ⇒r (〈p′, ǫ〉, θ′) or p ∈ G

(i.e. B(p) = 1). Thus, we would like that if the automaton Apre∗
(
(〈p′, ǫ〉, θ′)

)

accepts the labelled configuration [c, b] (where b = 1 means c ⇒r (〈p′, ǫ〉, θ′)),

then it should also accept the labelled configuration [c′, b ∨ B(p)] (b ∨ B(p) = 1

means c′ ⇒r (〈p′, ǫ〉, θ′)). Thus, if the automaton Apre∗
(
(〈p′, ǫ〉, θ′)

)
contains a
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path of the form π = (p1, θ)
[w,b1]
−−−→T q

[w′,b2]
−−−→T qf where qf ∈ F that accepts

the labelled configuration [c, b], then the automaton should also accept the la-

belled configuration [c′, b ∨ B(p)]. This configuration is accepted by the run

(p, θ)
[γ,B(p)∨b1]−−−−−−−→T q

[w′,b2]−−−−→T qf added by rule (α1).

Rule (α2) deals with modifying rules: Let r = p
(σ,σ′)

−֒−−−→ p1 ∈ ∆c. Let c =

(〈p1, γw
′〉, θ) and c′ = (〈p, γw′〉, θ′′) s.t. θ = θ′′\σ ∪ σ′. Then, if c ⇒∗ (〈p′, ǫ〉, θ′),

then necessarily, c′ ⇒∗ (〈p′, ǫ〉, θ′). Moreover, c′ ⇒r (〈p′, ǫ〉, θ′) iff either c ⇒r

(〈p′, ǫ〉, θ′) or p ∈ G (i.e. B(p) = 1). Thus, we need to impose that if the

automaton Apre∗
(
(〈p′, ǫ〉, θ′)

)
contains a path of the form (p1, θ)

[γ,b1]
−−−→T q

[w′,b2]
−−−→T

qf (where qf ∈ F ) that accepts the labelled configuration [c, b], b = b1 ∨ b2 (b = 1

means c⇒r (〈p′, ǫ〉, θ′)), then necessarily, the automatonApre∗
(
(〈p′, ǫ〉, θ′)

)
should

also accept the labelled configuration [c′, b∨B(p)]. This configuration is accepted

by the run (p, θ′′)
[γ,B(p)∨b1]
−−−−−−→T q

[w′,b2]
−−−→T qf added by rule (α2).

Before proving that our construction is correct, we introduce the following

definition:

Definition 8 Let Apre∗
(
(〈p′, ǫ〉, θ′)

)
= (Q,Γ, T, P, F ) be the labelled P-automaton

computed by the saturation procedure above. In this section, we use −→
i T

to denote

the transition relation of Apre∗
(
(〈p′, ǫ〉, θ′)

)
obtained after adding i transitions us-

ing the saturation procedure above. Let us notice that due to the fact that initially

Q = {(p′, θ′)} and due to rules (α1) and (α2) that at step i add only transitions

of the form (p, θ)
γ
−→T q for a state q that is already in the automaton at step

i − 1, then, states of Apre∗
(
(〈p′, ǫ〉, θ′)

)
are all of the form (p, θ) for p ∈ P and

θ ⊆ ∆ ∪∆c.

We can show that:

Lemma 6 Let p, p′′ ∈ P and θ, θ′′ ⊆ ∆ ∪ ∆c. Let w ∈ Γ∗ and b ∈ {0, 1}. If a

path (p, θ)
[w,b]
−−−→T (p

′′, θ′′) is in Apre∗
(
(〈p′, ǫ〉, θ′)

)
, then (〈p, w〉, θ) ⇒∗ (〈p′′, ǫ〉, θ′′).

Moreover, if b = 1, then (〈p, w〉, θ) ⇒r (〈p′′, ǫ〉, θ′′).

Proof: Initially, the automaton contains no transitions. Let i be an index such

that (p, θ)
[w,b]
−−→

i T
(p′′, θ′′) holds. We proceed by induction on i.

Basis. i = 0, then (p′′, θ′′)
[ǫ,0]
−−→

0 T
(p′′, θ′′). This means p′′ = p′, θ′′ = θ′. Since

initially Q = {(p′, θ′)}, then (〈p′′, ǫ〉, θ′′) ⇒∗ (〈p′′, ǫ〉, θ′′) always holds.
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Step. i > 0. Let t =
(
(p1, θ1), [γ, b1], (p0, θ0)

)
be the i-th transition added to

Apre∗ and j be the number of times that t is used in the path (p, θ)
[w,b]
−−→

i T
(p′′, θ′′).

The proof is by induction on j. If j = 0, then we have (p, θ)
[w,b]
−−→
i−1 T

(p′′, θ′′) in

the automaton, and we apply the induction hypothesis (induction on i) then

we obtain (〈p, w〉, θ) ⇒∗ (〈p′′, ǫ〉, θ′′). So assume that j > 0. Then, there exist

u, v ∈ Γ∗, b′, b′′ ∈ {0, 1} such that w = uγv, b = b′ ∨ b1 ∨ b
′′ and

(p, θ)
[u,b′]
−−−→
i−1 T

(p1, θ1)
[γ,b1]
−−−→

i T
(p0, θ0)

[v,b′′]
−−−→

i T
(p′′, θ′′) (1)

The application of the induction hypothesis (induction on i) to (p, θ)
[u,b′]
−−−→
i−1 T

(p1, θ1) gives that

(〈p, u〉, θ) ⇒∗ (〈p1, ǫ〉, θ1), moreover, if b′ = 1, (〈p, u〉, θ) ⇒r (〈p1, ǫ〉, θ1) (2)

There are 2 cases depending on whether transition t was added by saturation rule

α1 or α2.

1. Case t was added by rule α1: There exist p2 ∈ P and w2 ∈ Γ∗ such that

r = 〈p1, γ〉 →֒ 〈p2, w2〉 ∈ ∆ ∩ θ1 (3)

and Apre∗ contains the following path:

π′ = (p2, θ1)
[w2,b2]
−−−−→
i−1 T

(p0, θ0)
[v,b′′]
−−−→

i T
(p′′, θ′′), b1 = b2 ∨B(p1) (4)

Applying the transition rule r, we get that

(〈p1, γv〉, θ1) ⇒ (〈p2, w2v〉, θ1) (5)

By induction on j (since transition t is used j − 1 times in π′), we get from

(4) that

(〈p2, w2v〉, θ1) ⇒
∗ (〈p′′, ǫ〉, θ′′)

moreover, if b2 ∨ b
′′ = 1, (〈p2, w2v〉, θ1) ⇒

r (〈p′′, ǫ〉, θ′′)
(6)

Putting (2), (5) and (6) together, we can obtain that
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(〈p, w〉, θ) = (〈p, uγv〉, θ) ⇒∗ (〈p1, γv〉, θ1) ⇒ (〈p2, w2v〉, θ1) ⇒
∗ (〈p′′, ǫ〉, θ′′)

Furthermore, if b = b′ ∨ b1 ∨ b
′′ = 1, then b′ = 1 or b1 ∨ b

′′ = 1.

For the first case, b′ = 1, then we can have (〈p, u〉, θ) ⇒r (〈p1, ǫ〉, θ1) from

(2). Thus, we can obtain that (〈p, uγv〉, θ) ⇒r (〈p1, γv〉, θ1) ⇒
∗ (〈p′′, ǫ〉, θ′′)

i.e. (〈p, w〉, θ) ⇒r (〈p′′, ǫ〉, θ′′).

The second case b1 ∨ b
′′ = 1 i.e. B(p1) ∨ b2 ∨ b

′′ = 1 implies that B(p1) = 1

(that means p1 ∈ G and (〈p1, γv〉, θ1) ⇒
r (〈p′′, ǫ〉, θ′′)) or b2 ∨ b

′′ = 1 (that

implies (〈p2, w2v〉, θ1) ⇒
r (〈p′′, ǫ〉, θ′′) from (6)). Therefore, (〈p, w〉, θ1) ⇒

r

(〈p′′, ǫ〉, θ′′).

2. Case t was added by rule α2 : there exist p2 ∈ P and θ2 ⊆ ∆∪∆c such that

r = p1
(σ,σ′)

−֒−−−→ p2 ∈ ∆c ∩ θ2, θ2 = (θ1\σ) ∪ σ
′ (7)

and the following path in the current automaton ( self-modifying rule won’t

change the stack) with r ∈ θ2 :

(p2, θ2)
[γ,b′1]−−−→
i−1 T

(p0, θ0)
[v,b′′]
−−−→

i T
(p′′, θ′′), b1 = B(p1) ∨ b

′
1 (8)

Applying the transition rule, we can get from (7) that

(〈p1, γv〉, θ1) ⇒ (〈p2, γv〉, θ2) (9)

We can apply the induction hypothesis (on j) to (8), and obtain

(〈p2, γv〉, θ2) ⇒
∗ (〈p′′, ǫ〉, θ′′, )

moreover, if b′1 ∨ b
′′ = 1, (〈p2, γv〉, θ2) ⇒

r (〈p′′, ǫ〉, θ′′)
(10)

From (2),(9) and (10), we get

(〈p, w〉, θ) = (〈p, uγv〉, θ) ⇒∗ (〈p1, γv〉, θ1) ⇒ (〈p2, γv〉, θ2) ⇒
∗ (〈p′′, ǫ〉, θ′′)

Furthermore, if b = b′ ∨ b1 ∨ b
′′ = 1 , then b′ = 1 or b1 ∨ b

′′ = 1.
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For the first case, b′ = 1, then we can have (〈p, u〉, θ) ⇒r (〈p1, ǫ〉, θ1) from

(2). Thus, we can obtain that (〈p, uγv〉, θ) ⇒r (〈p1, γv〉, θ1) ⇒
∗ (〈p′′, ǫ〉, θ′′)

i.e. (〈p, w〉, θ) ⇒r (〈p′′, ǫ〉, θ′′). The second case b1 ∨ b
′′ = 1 i.e. B(p1)∨ b

′
1 ∨

b′′ = 1 implies that B(p1) = 1 (that means p1 ∈ G and (〈p1, γv〉, θ1) ⇒r

(〈p′, ǫ〉, θ′)) or b′1 ∨ b′′ = 1 (that implies (〈p2, γv〉, θ2) ⇒r (〈p′′, ǫ〉, θ′′) from

(10)) i.e. (〈p, w〉, θ1) ⇒r (〈p′, ǫ〉, θ′). Therefore, we can get that if b = 1,

then (〈p, w〉, θ1) ⇒
r (〈p′′, ǫ〉, θ′′).

✷

Lemma 7 If there is a labelled configuration [(〈p, w〉, θ), b] such that (〈p, w〉, θ) ⇒∗

(〈p′, ǫ〉, θ′), then there is a path (p, θ)
[w,b]

−−−→T (p
′, θ′) in Apre∗

(
(〈p′, ǫ〉, θ′)

)
. More-

over, if (〈p, w〉, θ) ⇒r (〈p′, ǫ〉, θ′), then b = 1.

Proof: Assume (〈p, w〉, θ)
i
⇒ (〈p′, ǫ〉, θ′). We proceed by induction on i.

Basis. i = 0. Then θ = θ′, p′ = p and w = ǫ. Initially, we have that Q =

{(p′, θ′)}, therefore, by the definition of →T , we have (p′, θ′)
ǫ
−→T (p′, θ′). We

cannot have (〈p′, ǫ〉, θ′) ⇒r (〈p′, ǫ〉, θ′) in 0-step.

Step. i > 0. Then there exists a configuration (〈p′′, u〉, θ′′) such that

(〈p, w〉, θ) ⇒ (〈p′′, u〉, θ′′)
i−1
⇒ (〈p′, ǫ〉, θ′)

We apply the induction hypothesis to (〈p′′, u〉, θ′′)
i−1
⇒ (〈p′, ǫ〉, θ′), and obtain that

there exists in Apre∗
(
(〈p′, ǫ〉, θ′)

)
a path (p′′, θ′′)

[u,b′′]
−−−−→T (p

′, θ′). If (〈p′′, u〉, θ′′) ⇒r

(〈p′, ǫ〉, θ′), b′′ = 1.

Let (p0, θ0) be a state of Apre∗ . Let w1, u1 ∈ Γ∗, γ ∈ Γ, b′′0, b
′′
1 ∈ {0, 1} be such

that w = γw1, u = u1w1, b
′′ = b′′0 ∨ b

′′
1 and

(p′′, θ′′)
[u1,b′′0 ]−−−−→T (p0, θ0)

[w1,b
′′
1 ]−−−−→T (p

′, θ′) (6)

There are two cases depending on which rule is applied to get (〈p, w〉, θ) ⇒

(〈p′′, u〉, θ′′).

1. Case (〈p, w〉, θ) ⇒ (〈p′′, u〉, θ′′) is obtained by a rule of the form: 〈p, γ〉 →֒

〈p′′, u1〉 ∈ ∆. In this case, θ′′ = θ. By the saturation rule α1, we have

(p, θ′′)
[γ,b0]−−−→T (p0, θ0), b0 = B(p) ∨ b′′0 (7)
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Putting (1) and (2) together, we can obtain that

π = (p, θ′′)
[γ,b0]−−−→T (p0, θ0)

[w1,b
′′
1 ]−−−−→T (p

′, θ′) (8)

Thus, (p, θ′′)
[γw1,b0∨b′′1 ]−−−−−−−→T (p

′, θ′) i.e. (p, θ)
[w,b]
−−−→T (p

′, θ′) where b = b0 ∨ b
′′
1.

2. Case (〈p, w〉, θ) ⇒ (〈p′′, u〉, θ′′) is obtained by a rule of the form p
(σ,σ′)

−֒−−−→

p′′ ∈ ∆c i.e θ′′ 6= θ. In this case, u1 = γ. By the saturation rule β2, we

obtain that

(p, θ)
[γ,b0]−−−→T (p0, θ0) where θ

′′ = θ\{r1} ∪ {r2}, b0 = B(p) ∨ b′′0. (9)

Putting (1) and (4) together, we have the following path

(p, θ)
[γ,b0]−−−→T (p0, θ0)

[w1,b
′′
1 ]−−−−→T (p

′, θ′) i.e. (p, θ)
[w,b]
−−−→T (p

′, θ′) where b = b0 ∨ b
′′
1

(10)

Furthermore, if (〈p, w〉, θ) ⇒r (〈p′, ǫ〉, θ′), then (〈p, w〉, θ) ⇒r (〈p′′, u〉, θ′′) or

(〈p′′, u〉, θ′′) ⇒r (〈p′, ǫ〉, θ′).

For the first case, (〈p, w〉, θ) ⇒r (〈p′′, u〉, θ′′), then p ∈ G i.e. B(p) = 1. For

the second case, (〈p′′, u〉, θ′′) ⇒r (〈p′, ǫ〉, θ′), we can get b′′ = 1 (from induction

hypothesis). Thus, b = b0 ∨ b
′′
1 = B(p) ∨ b′′0 ∨ b

′′
1 = B(p) ∨ b′′ = 1. Therefore, if

(〈p, w〉, θ) ⇒r (〈p′, ǫ〉, θ′), then we can obtain b = 1.

✷

From these two lemmas, we get:

Theorem 3.2.2 Let [c, b] be a labelled configuration.

Then [c, b] is in L(Apre∗
(
(〈p′, ǫ〉, θ′)

)
iff c ∈ pre∗

(
(〈p′, ǫ〉, θ′)

)
. Moreover, c ⇒r

(〈p′, ǫ〉, θ′) iff b = 1.

Proof: Let [(〈p, w〉, θ), b] be a configuration of pre∗
(
(〈p′, ǫ〉, θ′)

)
).

Then (〈p, w〉, θ) ⇒∗ (〈p′, ǫ〉, θ′). By Lemma 6, we can obtain that there exists a

path (p, θ)
[w,b]
−−→T (p′, θ′) in Apre∗

(
(〈p′, ǫ〉, θ′)

)
.

So [(〈p, w〉, θ), b] is in L(Apre∗
(
(〈p′, ǫ〉, θ′)

)
). Moreover, if (〈p, w〉, θ) ⇒r (〈p′, ǫ〉, θ′),

then b = 1.
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Conversely, let [(〈p, w〉, θ), b] be a configuration accepted by Apre∗
(
(〈p′, ǫ〉, θ′)

)

i.e. there exists a path (p, θ)
[w,b]
−−→T (p′, θ′) in Apre∗

(
(〈p′, ǫ〉, θ′)

)
. By Lemma

7, (〈p, w〉, θ) ⇒∗ (〈p′, ǫ〉, θ′) i.e. (〈p, w〉, θ) ∈ pre∗(L(A)). Moreover, if b = 1,

(〈p, w〉, θ) ⇒r (〈p′, ǫ〉, θ′).

✷

3.2.4 Computing the Head Reachability Graph G

Based on the definition of the Head Reachability Graph G, and on Theorem 3.2.2,

we can compute G as follows. Initially, G has no edges.

α′
1: if rc : p

(σ,σ′)
−֒−−−→ p′ ∈ ∆c, then for every phase θ such that rc ∈ θ and every

γ ∈ Γ, we add the edge ((p, γ), θ)
B(p)
−−→ ((p′, γ), θ0) to the graph G, where

θ0 = θ \ σ ∪ σ′.

α′
2: if r : 〈p, γ〉 →֒ 〈p0, γ0〉 ∈ ∆, then for every phase θ such that r ∈ θ, we add

the edge ((p, γ), θ)
B(p)
−−→ ((p0, γ0), θ) to the graph G.

α′
3: if r : 〈p, γ〉 →֒ 〈p0, γ0γ

′〉 ∈ ∆, then for every phase θ such that r ∈ θ, we add

to the graph G the edge ((p, γ), θ)
B(p)
−−→ ((p0, γ0), θ). Moreover, for every

control point p′ ∈ P and phase θ′ such that Apre∗
(
(〈p′, ǫ〉, θ′)

)
contains a

transition of the form t = (p0, θ)
[γ0,b]−−−→T (p

′, θ′), we add to the graph G the

edge ((p, γ), θ)
b∨B(p)
−−−−→ ((p′, γ′), θ′).

Items α′
1 and α

′
2 are obvious. They respectively correspond to item 1 and item

2 of Definition 6 (since B(p) = 1 iff p ∈ G). Item α′
3 is based on Lemma 5 and

on item 3 of Definition 6. Indeed, it follows from Lemma 5 that Apre∗
(
(〈p′, ǫ〉, θ′)

)

contains a transition of the form (p0, θ)
[γ0,b]−−−→T (p

′, θ′) implies that (〈p0, γ0〉, θ) ⇒
∗

(〈p′, ǫ〉, θ′), and if b = 1, then (〈p0, γ0〉, θ) ⇒
r (〈p′, ǫ〉, θ′). Thus, in this case, the

edge ((p, γ), θ)
b∨B(p)
−−−−→ ((p′, γ′), θ′) is added to G (item 3 of Definition 6) since

〈p, γ〉 →֒ 〈p0, γ0γ
′〉 ∈ ∆.
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3.3 Experiments

3.3.1 Our approach vs. standard LTL for PDSs

We implemented our approach in a tool and we compared its performance against

the approaches that consist in translating the SM-PDS to an equivalent standard

(or symbolic) PDS, and then applying the standard LTL model checking algo-

rithms implemented in the PDS model-checker tool Moped [42]. All our exper-

iments were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of memory. To

perform the comparison, we randomly generate several SM-PDSs and LTL for-

mulas of different sizes. The results (CPU Execution time) are shown in Table

3.1 and 3.2. Column Size is the size of SM-PDS (S1 for non-modifying tran-

sitions ∆ and S2 for modifying transitions ∆c). Column LTL gives the size of

the transitions of the Büchi automaton generated from the LTL formula (using

the tool LTL2BA[31]). Column SM-PDS gives the cost of our direct algorithm

presented in this thesis. Column PDS shows the cost it takes to get the equiv-

alent PDS from the SM-PDS. Column Result reports the cost it takes to run

the LTL PDS model-checker Moped [42] for the PDS we got. Column Total is

the total cost it takes to translate the SM-PDS into a PDS and then apply the

standard LTL model checking algorithm of Moped (Total=PDS+Result). Col-

umn Symbolic PDS reports the cost it takes to get the equivalent Symbolic PDS

from the SM-PDS. Column Result1 is the cost to run the Symbolic PDS LTL

model-checker Moped. Column Total1 is the total cost it takes to translate the

SM-PDS into a symbolic PDS and then apply the standard LTL model checking

algorithm of Moped. You can see that our direct algorithm (Column SM-PDS )

is much more efficient than translating the SM-PDS to an equivalent (symbolic)

PDS, and then run the standard LTL model-checker Moped. Translating the

SM-PDS to a standard PDS may take more than 20 days, whereas our

direct algorithm takes only a few seconds. Moreover, since the obtained

standard (symbolic) PDS is huge, Moped failed to handle several cases (the time

limit that we set for Moped is 20 minutes), whereas our tool was able to deal

with all the cases in only a few seconds.
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Size LTL SM-PDS PDS Result Total Symbolic PDSResult1 Total1

S1 : 5, S2 : 2 |δ|:15 0.07s 0.09s 0.01s 0 .10s 0.08s 0.00s 0.08s

S1 : 5, S2 : 3 |δ|:8 0.06s 0.08s 0.01s 0.09s 0.09s 0.00s 0.09s

S1 : 11, S2 : 4 |δ|:8 0.16s 0.13s 0.05s 0.18s 0.10s 0.00s 0.10s

S1 : 5, S2 : 3 |δ|:10 0.06s 0.15s 0.01s 0.16s 0.09s 0.00s 0.09s

S1 : 110, S2 : 4 |δ|:8 0.34s 186.10s 0.79s 186.99s 0.35s 0.00s 0.35s

S1 : 255, S2 : 8 |δ|:8 0.39s 281.02s 0.94s 281.96s 4.82s 0.05s 4.87s

S1 : 255, S2 : 8 |δ|:10 0.42s 281.02s 0.97s 281.99s 4.82s 0.06s 4.88s

S1 : 110, S2 : 4 |δ|:15 0.28s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s

S1 : 255, S2 : 8 |δ|:15 0.46s 281.02s 1.92s 282.94s 4.82s 0.08s 4.90s

S1 : 110, S2 : 4 |δ|:20 0.37s 186.10s 1.05s 187.15s 0.35s 0.06s 0.41s

S1 : 255, S2 : 8 |δ|:20 0.55s 281.02s 1.97s 282.99s 4.82s 0.17s 4.99s

S1 : 255, S2 : 8 |δ|:25 0.59s 281.02s 1.23s 282.99s 4.82s 0.24s 5.36s

S1 : 2059, S2 : 7 |δ|:8 0.86s 19525.01s 20.71s 19545.72s 20.70s error -

S1 : 2059, S2 : 9 |δ|:8 1.49s 19784.7s 79.12s 19863.32 128.12s error -

S1 : 2059, S2 : 11 |δ|:8 3.73s 30011.67s 168.15s 30179.82s 261.07s error -

S1 : 2059, S2 : 11 |δ|:28 6.88s 30011.67s 169.55s 30180.22s 261.07s error -

S1 : 3050, S2 : 10 |δ|:8 5.21s 39101.57s killed - 438.27s error -

S1 : 3090, S2 : 10 |δ|:8 5.86s 40083.07s killed - 438.69s error -

S1 : 3050, S2 : 10 |δ|:20 7.24s 39101.57s killed - 438.27s error -

S1 : 3090, S2 : 10 |δ|:30 8.38s 40083.07s killed - 438.69s error -

S1 : 3090, S2 : 10 |δ|:25 8.89s 40083.07s killed - 438.69s error -

S1 : 4050, S2 : 10 |δ|:8 9.21s 81408.91s killed - 699.19s error -

S1 : 4050, S2 : 10 |δ|:28 11.64s 81408.91s killed - 699.19s error -

S1 : 4058, S2 : 11 |δ|:8 9.83s 93843.37s killed - 802.07s error -

S1 : 4058, S2 : 11 |δ|:25 13.59s 93843.37s killed - 802.07s error -

S1 : 5050, S2 : 11 |δ|:8 10.34s 173943.37s killed - 921.16s error -

S1 : 5090, S2 : 11 |δ|:8 10.52s 179993.54s killed - 929.32s error -

S1 : 5090, S2 : 11 |δ|:10 12.89s 179993.54s killed - 929.32s error -

S1 : 6090, S2 : 11 |δ|:8 13.49s 190293.64s killed - 1002.73s error -

S1 : 6090, S2 : 11 |δ|:10 15.81s 190293.64s killed - 1002.73s error -

S1 : 6090, S2 : 11 |δ|:40 32.39s 190293.64s killed - 1002.73s error -

S1 : 7090, S2 : 11 |δ|:25 39.86s 198932.32s killed - 1092.28s error -

S1 : 7090, S2 : 11 |δ|:30 43.24s 198932.32s killed - 1092.28s error -

S1 : 9090, S2 : 11 |δ|:8 29.98s 199987.98s killed - 1128.19s error -

S1 : 9090, S2 : 11 |δ|:20 45.29s 199987.98s killed - 1128.19s error -

Table 3.1: Our approach vs. standard LTL for PDSs (Part 1)
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Size LTL SM-PDS PDS Result Total Symbolic PDSResult1 Total1

S1 : 10050, S2 : 12 |δ|:8 48.53s 2134587.14s killed - 1469.28s error -

S1 : 10050, S2 : 12 |δ|:25 59.69s 2134587.14s killed - 1469.28s error -

S1 : 10050, S2 : 12 |δ|:30 61.42s 2134587.14s kille d - 1469.28s error -

S1 : 10150, S2 : 12 |δ|:35 64.17s 2134633.28s killed - 1469.28s error -

S1 : 10150, S2 : 14 |δ|:8 58.34s 2181975.64s killed - 2849.96s error -

S1 : 10150, S2 : 14 |δ|:40 82.72s 2181975.64s killed - 2849.96s error -

S1 : 10150, S2 : 12 |δ|:40 76.61s 2134633.28s killed - 1469.28s error -

S1 : 10150, S2 : 16 |δ|:45 89.83s 2211008.82s killed - 3665.59s error -

S1 : 10150, S2 : 12 |δ|:60 97.56s 2134633.28s killed - 1469.28s error -

S1 : 10150, S2 : 12 |δ|:65 105.89s 2134633.28s killed - 1469.28s error -

S1 : 10150, S2 : 16 |δ|:65 134.45s 2211008.82s killed - 3665.59s error -

S1 : 10180, S2 : 16 |δ|:65 175.29s 2134643.52s killed - 3689.83s error -

S1 : 10180, S2 : 16 |δ|:78 214.36s 2134643.52s killed - 3689.83s error -

Table 3.2: Our approach vs. standard LTL for PDSs (Part 2)

3.3.2 Malicious Behavior Detection on Self-Modifying Code

3.3.2.1 Specifying Malicious Behaviors using LTL.

As described in [14], several malicious behaviors can be described by LTL formu-

las. We give in what follows four examples of such malicious behaviors and show

how they can be described by LTL formulas:

Registry Key Injecting: In order to get started at boot time, many malwares

add themselves into the registry key listing. This behavior is typically imple-

mented by first calling the API function GetModuleFileNameA to retrieve the

path of the malware’s executable file. Then, the API function RegSetValueExA

is called to add the file path into the registry key listing. This malicious behavior

can be described in LTL as follows:

φrk = F
(
call GetModuleF ileNameA ∧ F( call RegSetV alueExA)

)

This formula expresses that if a call to the API function GetModuleFile-

NameA is followed by a call to the API function RegSetValueExA, then probably

a malware is trying to add itself into the registry key listing.

Data-Stealing: Stealing data from the host is a popular malicious behavior
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that intend to steal any valuable information including passwords, software codes,

bank information, etc. To do this, the malware needs to scan the disk to find the

interesting file that he wants to steal. After finding the file, the malware needs to

locate it. To this aim, the malware first calls the API function GetModuleHan-

dleA to get a base address to search for a location of the file. Then the malware

starts looking for the interesting file by calling the API function FindFirstFileA.

Then the API functions CreateFileMappingA and MapViewOfFile are called to

access the file. Finally, the specific file can be copied by calling the API function

CopyFileA. Thus, this data-stealing malicious behavior can be described by the

following LTL formula as follows:

φds = F(call GetModuleHandleA ∧ F(call F indFirstF ileA

∧ F (call CreateF ileMappingA ∧ F (call MapV iewofFile ∧ F call CopyF ileA))))

Spy-Worm: A spy worm is a malware that can record data and send it using the

Socket API functions. For example, Keylogger is a spy worm that can record the

keyboard states by calling the API functions GetAsyKeyState and GetKeyState

and send that to the specific server by calling the socket function sendto. Another

spy worm can also spy on the I/O device rather than the keyboard. For this, it

can use the API function GetRawInputData to obtain input from the specified

device, and then send this input by calling the socket functions send or sendto.

Thus, this malicious behavior can be described by the following LTL formula:

φsw = F
(
(call GetAsyncKeyState ∨ call GetRawInputData) ∧ F(call sendto ∨

call send)
)

Appending virus: An appending virus is a virus that inserts a copy of its code

at the end of the target file. To achieve this, since the real OFFSET of the virus’

variables depends on the size of the infected file, the virus has to first compute

its real absolute address in the memory. To perform this, the virus has to call

the sequence of instructions: l1: call f ; l2: ....; f : pop eax;. The instruction call

f will push the return address l2 onto the stack. Then, the pop instruction in f

will put the value of this address into the register eax. Thus, the virus can get

its real absolute address from the register eax. This malicious behavior can be

described by the following LTL formula:

φav =
∨

F
(
call ∧X(top-of-stack = a) ∧G¬

(
ret ∧ (top-of-stack = a)

))

where the
∨

is taken over all possible return addresses a, and top-of-stack=a

is a predicate that indicates that the top of the stack is a. The subformula
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call ∧X(top-of-stack = a) means that there exists a procedure call having a as

return address. Indeed, when a procedure call is made, the program pushes its

corresponding return address a to the stack. Thus, at the next step, a will be on

the top of the stack. Therefore, the formula above expresses that there exists a

procedure call having a as return address, such that there is no ret instruction

which will return to a.

Note that this formula uses predicates that indicate that the top of the stack

is a. Our techniques work for this case as well: it suffices to encode the top of the

stack in the control points of the SM-PDS. Our implementation works for this

case as well and can handle appending viruses.

3.3.2.2 Applying our tool for malware detection.

We applied our tool to detect several malwares. We use the unpack tool unpacker

[45] to handle packers like UPX, and we use Jakstab [22] as disassembler. We

consider 160 malwares from the malware library VirusShare [49], 184 malwares

from the malware library MalShare [35], 288 email-worms from VX heaven [48]

and 260 new malwares generated by NGVCK, one of the best malware generators.

We also choose 19 benign samples from Windows XP system. We consider self-

modifying versions of these programs. In these versions, the malicious behaviors

are unreachable if the semantics of the self-modifying instructions are not taken

into account, i.e., if the self-modifying instructions are considered as “standard”

instructions that do not modify the code, then the malicious behaviors cannot be

reached. To check this, we model such programs in two ways:

1. First, we take into account the self-modifying instructions and model these

programs using SM-PDSs as described in Section 2.3.2. Then, we check

whether these SM-PDSs satisfy at least one of the malicious LTL formulas

presented above. If yes, the program is declared as malicious, if not, it is

declared as benign. Our tool was able to detect all the 892 self-modifying

malwares as malicious, and to determine that benign programs are benign.

We report in Tables 3.5, 3.6, 3.7 and 3.8 the results we obtained. Column

Size is the number of control locations, Column Result gives the result of

our algorithm: Yes means malicious and No means benign; and Column

cost gives the cost to apply our LTL model-checker to check one of the LTL

properties described above.
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2. Second, we abstract away the self-modifying instructions and proceed as if

these instructions were not self-modifying. In this case, we translate the

binary codes to standard pushdown systems as described in [13]. By using

PDSs as models, none of the malwares that we consider was detected as

malicious, whereas, as reported in Tables 3.5, 3.6, 3.7 and 3.8 , using self-

modifying PDSs as models, and applying our LTL model-checking algorithm

allowed to detect all the 892 malwares that we considered.

Note that checking the formulas φrk, φds, and φsw could be done using multiple

pre∗ queries on SM-PDSs using the pre∗ algorithm of Section 2.5. However, this

would be less efficient than performing our direct LTL model-checking algorithm,

as shown in Tables 3.3, 3.4, where Column Size gives the number of control

locations, Column LTL gives the time of applying our LTL model-checking al-

gorithm; and Column Multiple pre∗ gives the cost of applying multiple pre∗ on

SM-PDSs to check the properties φrk, φds, and φsw. It can be seen that apply-

ing our direct LTL model checking algortihm is more efficient. Furthermore, the

appending virus formula φav cannot be solved using multiple pre∗ queries. Our

direct LTL model-checking algorithm is needed in this case. Note that some of

the malwares we considered in our experiments are appending viruses. Thus, our

algorithm and our implementation are crucial to be able to detect these malwares.
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4

CTL Model-Checking of

Self-modifying Code

In this chapter, we reduce the CTL model-checking problem of self-modifying

code to the emptiness problem of Self-Modifying Alternating Büchi Pushdown

Systems (SM-ABPDSs).

4.1 CTL Model-Checking of SM-PDSs

4.1.1 The Computation Tree Logic CTL

Let At be a finite set of atomic propositions. CTL formulas over At are defined

as follows (where A ∈ At):

ϕ ::= A | ¬A | ϕ∨ϕ| ϕ∧ϕ | AXϕ | EXϕ | A[ϕUϕ] |E[ϕUϕ] | A[ϕŨϕ] |E[ϕŨϕ].

Given a CTL formula ϕ, the closure cl(ϕ) is the set of all the subformulae of

ϕ, including ϕ. Let P = (P,Γ,∆,∆c) be a SM-PDS, ν : P → 2At be a labelling

function mapping to each control location p ∈ P a set of atomic propositions.

The satisfiability relation of a CTL formula ϕ at a configuration (〈p0, w0〉, θ0)

(denoted by (〈p0, w0〉, θ0) |=ν ϕ) is defined as follows:

• (〈p0, w0〉, θ0) |=ν A iff A ∈ ν(p0),

• (〈p0, w0〉, θ0) |=ν ¬A iff A /∈ ν(p0),

• (〈p0, w0〉, θ0) |=ν ϕ1 ∨ ϕ2 iff (〈p0, w0〉, θ0) |=ν ϕ1 or (〈p0, w0〉, θ0) |=ν ϕ2,

• (〈p0, w0〉, θ0) |=ν ϕ1 ∧ ϕ2 iff (〈p0, w0〉, θ0) |=ν ϕ1 and (〈p0, w0〉, θ0) |=ν ϕ2,
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4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

• (〈p0, w0〉, θ0) |=ν AXϕ iff (〈p1, w1〉, θ1) |=ν ϕ for every successor (〈p1, w1〉, θ1) of

(〈p0, w0〉, θ0),

• (〈p0, w0〉, θ0) |=ν EXϕ iff (〈p1, w1〉, θ1) |=ν ϕ for some successor (〈p1, w1〉, θ1) of

(〈p0, w0〉, θ0),

• (〈p0, w0〉, θ0) |=ν A[ϕ1Uϕ2] iff for every path (〈p0, w0〉, θ0)(〈p1, w1〉, θ1) · · · of P start-

ing from (〈p0, w0〉, θ0), ∃i ≥ 0 s.t. (〈pi, wi〉, θi) |=ν ϕ2 and ∀0 ≤ j < i, (〈pj , wj〉, θj) |=ν

ϕ1.

• (〈p0, w0〉, θ0) |=ν E[ϕ1Uϕ2] iff there exists a path (〈p0, w0〉, θ0)(〈p1, w1〉, θ1) · · · of P

starting from (〈p0, w0〉, θ0), ∃i ≥ 0 s.t. (〈pi, wi〉, θi) |=ν ϕ2, ∀0 ≤ j < i, (〈pj , wj〉, θj) |=ν

ϕ1.

• (〈p0, w0〉, θ0) |=ν A[ϕ1Ũϕ2] iff for every path (〈p0, w0〉, θ0)(〈p1, w1〉, θ1) · · · of P start-

ing from (〈p0, w0〉, θ0), ∀i ≥ 0, if (〈pi, wi〉, θi) 2ν ϕ2, then ∃0 ≤ j < i, (〈pj , wj〉, θj) |=ν

ϕ1.

• (〈p0, w0〉, θ0) |=ν E[ϕ1Ũϕ2] iff ∃ a path (〈p0, w0〉, θ0)(〈p1, w1〉, θ1) · · · of P starting

with (〈p0, w0〉, θ0), s.t. ∀i ≥ 0, if (〈pi, wi〉, θi) 2ν ϕ2, then ∃0 ≤ j < i, (〈pj , wj〉, θj) |=ν

ϕ1.

Standard CTL operators can be expressed by the above operators: EFψ =

E[trueUψ], AFψ = A[trueUψ], EGψ = E[falseŨψ], AGψ = A[falseŨψ].

4.1.2 Self-modifying Alternating Büchi Pushdown Systems

Definition 9 A Self Modifying Alternating Büchi Pushdown System (SM-ABPDS)

is a tuple BP = (P,Γ,∆,∆c, F ), where P is a finite set of control points, Γ

is a finite set of stack symbols, F is the set of final states, ∆ ⊆ (P × Γ) ×

22
∆∪∆c∪{−} × 2P×Γ∗

is a finite set of transition rules in the form 〈p, γ〉 ֒
[σ1,··· ,σn]
−−−−−→

{〈p1, w1〉, · · · , 〈pn, wn〉} where [σ1, · · · , σn] is an ordered set and ∀1 ≤ i ≤ n, σi is

either a set of rules σi ⊆ ∆∪∆c or σi = −, and ∆c ⊆ P ×2∆∪∆c ×2∆∪∆c ×P is a

finite set of modifying transition rules in the form p ֒
(σ,σ′)
−−−→ p′ where σ, σ′ ⊆ ∆∪∆c.

A configuration of a SM-ABPDS is a tuple of the form (〈p, w〉, θ) where p ∈ P ,

w ∈ Γ∗ and θ ⊆ ∆ ∪∆c is the current phase.

BP defines the transition relation⇒BP⊆ (P×Γ∗×2∆∪∆c)×2(P×Γ∗×2∆∪∆c ) between

configurations as follows: Let θ ⊆ ∆ ∪∆c, γ ∈ Γ, w ∈ Γ∗, and p ∈ P , then:

1. If r : 〈p, γ〉 ֒
[σ1,··· ,σm]
−−−−−−→ {〈p1, w1〉, · · · , 〈pm, wm〉} is a rule in ∆∩ θ, if either for

every 1 ≤ i ≤ m, σi = − or ∃1 ≤ i ≤ m, σi ∩ θ 6= ∅, then (〈p, γw〉, θ) ⇒BP

{(〈pi, wiw〉, θ)|σi = −, 1 ≤ i ≤ m} ∪ {(〈pi, wiw〉, θ)|σi ∩ θ 6= ∅, 1 ≤ i ≤ m}.
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4.1 CTL Model-Checking of SM-PDSs

2. If r : p ֒
(σ,σ′)
−−−→ p′ is a rule in ∆c ∩ θ , then (〈p, w〉, θ) ⇒BP {(〈p′, w〉, θ′)}, θ′ =

θ\σ ∪ σ′.

Intuitively, [σ1, · · · , σm] in the transition r : 〈p, γ〉 ֒
[σ1,··· ,σm]
−−−−−−→ {〈p1, w1〉, · · · , 〈pm, wm〉}

ensures that for a given configuration (〈p, γw〉, θ), for every 1 ≤ i ≤ n, (〈pi, wiw〉, θ)

is in the set of immediate successor iff

- either for every 1 ≤ j ≤ n, σj = −;

- or σi = − and ∃j 6= i, 1 ≤ j ≤ n s.t. σj ∩ θ 6= ∅

- or σi ∩ θ 6= ∅

Note that − means that there is no constraint on whether θ contains a rule in σi

or not.

For every c ∈ P × Γ∗ × 2∆∪∆c and C ⊆ P × Γ∗ × 2∆∪∆c , if c ⇒BP C then

c is an immediate predecessor of C and C is an immediate successor of c. Let

⇒∗
BP⊆ (P × Γ∗ × 2∆∪∆c) × 2(P×Γ∗×2∆∪∆c ) be the reflexive transitive closure of

⇒BP defined as follows: (1) ∀c ∈ P × Γ∗ × 2∆∪∆c , c ⇒∗
BP {c}, (2) if c ⇒BP

C, then c ⇒∗
BP C, and (3) if c ⇒BP {c1, ...cn} and ci ⇒

∗
BP Ci for every 1 ≤

i ≤ n, then c ⇒∗
BP

⋃n

i=1Ci. Given a set of configurations C, we define the

sets preBP(C), pre
∗
BP(C) and pre+BP(C) as follows: preBP(C) = {c ∈ P × Γ∗ ×

2∆∪∆c |∃C ′ ⊆ C s.t. C ′ is an immediate successor of c}, pre∗BP(C) = {c ∈ P ×

Γ∗ × 2∆∪∆c , ∃C ′ ⊆ C s.t. c ⇒∗
BP C ′} and pre+BP(C) = preBP ◦ pre∗BP(C). We

omit the subscript BP when it is clear from the context.

A run ρ of BP starting from an initial configuration c0 is a tree whose root

is labelled by c0 and whose other nodes are labelled by configurations of P ×

Γ∗ × 2∆×∆c . A node of ρ labelled by configuration c has n children labelled by

c1, . . . , cn, respectively, iff c ⇒BP {c1, ...cn}. A path c0c1 · · · of a run ρ is an

infinite sequence of configurations s.t. c0 is the root of ρ and ci+1 is one child of

ci. A path is accepting iff it visits some configurations with control locations in F

infinitely often. A run is accepting iff all its paths are accepting. A configuration

c is accepted by BP iff it is the root of a run accepted by BP . The language of

BP , L(BP), is the set of configurations accepted by BP .

We assume w.l.o.g. that for every rule in ∆c of the form r : p ֒
(σ,σ′)
−−−→ p′, r /∈ σ.

Representing potentially infinite sets of configurations of SM-ABPDSs.
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4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Alternating Multi-Automata (AMA) were introduced in [6] to finitely represent

regular sets of configurations of an alternating PDS. In order to adapt AMA to

represent regular sets of SM-ABPDS, we extend this notion taking phases into

account as follows:

Definition 10 Let BP = (P,Γ,∆,∆c, F ) be a SM-ABPDS. An Extended Al-

ternating Multi-Automaton (EAMA) is a tuple A = (Q,Γ, T, I, QF ) where I ⊆

P × 2∆∪∆c ⊆ Q is the set of initial states, T ⊆ Q × (Γ ∪ {ǫ}) × 2Q is the set of

transitions, QF ⊆ Q is a finite set of final states.

Let →T be the transition relation defined as follows: (1) ∀q ∈ Q, q
ǫ
−→T {q} where

ǫ is the empty word; (2) if (q, γ, {q1, · · · , qn}) ∈ T, q
γ
−→T {q1, · · · , qn}; and (3) if

q
γ
−→T {q1, · · · , qn} and qi

w
−→T Qi for every 1 ≤ i ≤ n, then q

γw
−→T

⋃n

i=1Qi.

A configuration (〈p, w〉, θ) is accepted by the EAMA A iff (p, θ) ∈ I and ∃ Q′ ⊆

QF such that (p, θ) w−→TQ
′. Let L(A) be the set of configurations accepted by

A. Let C be a set of configurations of the SM-ABPDS BP . C is regular if there

exists an EAMA A such that C = L(A).

4.1.3 From CTL Model-Checking of SM-PDSs to the empti-

ness problem of SM-ABPDSs

Let P = (P,Γ,∆,∆c) be a Self Modifying Pushdown System with an initial

configuration c0 = (〈p0, w0〉, θ0). We suppose w.l.o.g. that P has a bottom stack

symbol ♯ ∈ Γ that is never popped from the stack i.e. there is no transition

rule of the from 〈p, ♯〉 →֒ 〈p′, w〉 ∈ ∆. Given a set of atomic propositions At,

let ν : P → 2At be a labeling function that associates each control location to

a set of atomic propositions. Let ϕ be a CTL formula over At. Our goal is

to check whether c0 |=ν ϕ. This can be done by translating the SM-PDS into

an equivalent PDS as described in Chapter 2, and then applying the standard

CTL model-checking algorithm for PDSs [40]. However, as will be shown in the

experiments section (Section 4.3), this approach is not efficient. Thus, we need

a direct algorithm that operates directly on the SM-PDS without translating it

into a PDS. We provide in this section a direct algorithm that performs CTL

model-checking on SM-PDSs. To this aim, we will compute a kind of product of

the SM-PDS with ϕ: we construct a Self Modifying Alternating Büchi Pushdown
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4.1 CTL Model-Checking of SM-PDSs

System BPϕ s.t. BPϕ accepts a configuration c iff c |=ν ϕ. Thus, determining

whether c0 |=ν ϕ can be reduced to checking whether c0 ∈ L(BPϕ).

Let BPϕ = (P ′,Γ,∆′,∆′
c, F ) be the SM-ABPDS defined as follows: P ′ =

P ×cl(ϕ) ∪P cl(ϕ), where P cl(ϕ) is the set of control locations in the form pψ where

p ∈ P and ψ ∈ cl(ϕ), F = {[p, a]| a ∈ cl(ϕ) ∩ At and a ∈ ν(p)} ∪ {[p,¬a]|¬a ∈

cl(ϕ), a ∈ At and a /∈ ν(p)} ∪ P × clŨ(ϕ) where clŨ(ϕ) is the set of formulae of

cl(ϕ) in the form E[ψ1Ũψ2] or A[ψ1Ũψ2]. In what follows, to compute ∆′ and

∆′
c, every rule r ∈ ∆ ∪∆c leads to a set of rules {r′1, · · · , r

′
n} of ∆′ ∪∆′

c, we call

this set of rules prod(r). Moreover, let prodE(r) ⊆ prod(r) be the set of rules

generated from r using subformulas of the form EXψ1, E[ψ1Uψ2] or E[ψ1Ũψ2](

see below for more details about prod(r) and prodE(r)).

The transition relations ∆′ and ∆′
c (resp. the sets prod(r) and prodE(r), for

every r ∈ ∆ ∪ ∆c) are the smallest sets of transitions (resp. of sets of rules)

defined as follows: Initially, ∆′ = ∆′
c = ∅, prodE(r) = ∅ and prod(r) = ∅, ∀

r ∈ ∆ ∪∆c. ∀p ∈ P , ∀ψ ∈ cl(ϕ) and ∀γ ∈ Γ, we have:

1. if ψ = a, a ∈ At and a ∈ ν(p); 〈[p, a], γ〉 ֒
[−]
−−→ 〈[p, a], γ〉 ∈ ∆′

2. if ψ = ¬a, a ∈ At and a /∈ ν(p); 〈[p, ψ], γ〉 ֒
[−]
−−→ 〈[p, ψ], γ〉 ∈ ∆′

3. if ψ = ψ1 ∨ψ2; 〈[p, ψ], γ〉 ֒
[−]
−−→ 〈[p, ψ1], γ〉 ∈ ∆′ and 〈[p, ψ], γ〉 ֒

[−]
−−→ 〈[p, ψ2], γ〉 ∈ ∆′

4. if ψ = ψ1 ∧ ψ2; 〈[p, ψ], γ〉 ֒
[−,−]
−−−→ {〈[p, ψ1], γ〉, 〈[p, ψ2], γ〉} ∈ ∆′

5. if ψ = EXψ1, then:

(a) if p ∈ PN , for every R = 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆, R′ = 〈[p, ψ], γ〉 ֒
[−]
−−→

〈[p′, ψ1], w〉 ∈ ∆′, R′ ∈ prodE(R) and R
′ ∈ prod(R) ( R′ ∈ prod(R) means

that R′ is generated from R and R′ ∈ prodE(R) means that R′ is generated

from R using a formula of the form EXψ1, E[ψ1Uψ2] or E[ψ1Ũψ2].)

(b) if p ∈ PC , for every R = p
(r1,r2)

−֒−−−→ p′ ∈ ∆c, R′ = [p, ψ] ֒
(σ,σ′)
−−−→ [p′, ψ1] ∈ ∆′

c

where σ = prod(r1), σ
′ = prod(r2), R

′ ∈ prodE(R) and R′ ∈ prod(R)

6. if ψ = AXψ1, then:

(a) if p ∈ PN , let {R1 = 〈p, γ〉 →֒ 〈p1, w1〉, · · · , Rn = 〈p, γ〉 →֒ 〈pn, wn〉} be

the set of all the rules of ∆ that have 〈p, γ〉 in the left-hand-side. Then,

R′ = 〈[p, ψ], γ〉 ֒
[σ1,··· ,σn]
−−−−−−→ {〈[p1, ψ1], w1〉, · · · , 〈[pn, ψ1], wn〉} ∈ ∆′, where for

every 1 ≤ i ≤ n, σi = prodE(Ri) and R′ ∈ prod(Ri).
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(b) if p ∈ PC , let {R1 = p ֒
(r1,r′1)−−−−→ p1, · · · , Rn = p

(rn,r′n)
−֒−−−→ pn} be the set of all

the rules of ∆c that have p in the left-hand-side. Then, for every γ ∈ Γ,

R′
⊥ = 〈[p, ψ], γ〉 ֒

[σ1,··· ,σn]
−−−−−−→ {〈pψ1 , γ〉, · · · , 〈p

ψ
n , γ〉} ∈ ∆′ and for every 1 ≤ i ≤

n, R′
i : p

ψ
i ֒

(σ,σ′)
−−−→ [pi, ψ1] ∈ ∆′

c, where for every 1 ≤ i ≤ n, σi = prodE(Ri),

σ = prod(ri), σ
′ = prod(r′i), and for every 1 ≤ i ≤ n, R′

⊥,R
′ ∈ prod(Ri).

7. if ψ = E[ψ1Uψ2], then 〈[p, ψ], γ〉 ֒
[−]
−−→〈[p, ψ2], γ〉 ∈ ∆′ and:

(a) if p ∈ PN , for every R = 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆,

R′ = 〈[p, ψ], γ〉 ֒
[−,−]
−−−→{〈[p, ψ1], γ〉, 〈[p

′, ψ], w〉} ∈ ∆′, R′ ∈ prodE(R) and

R′ ∈ prod(R).

(b) if p ∈ PC , for every R = p ֒
(r1,r′1)−−−−→ p′ ∈ ∆c, then for every γ ∈ Γ, R′

⊥ =

〈[p, ψ], γ〉 ֒
[−,−]
−−−→ {〈[p, ψ1], γ〉, 〈p

ψ, γ〉} ∈ ∆′ and pψ ֒
(σ,σ′)
−−−→ [p′, ψ] ∈ ∆′

c where

σ = prod(r1), σ
′ = prod(r′1), R′

⊥, R
′ ∈ prodE(R) and R

′
⊥, R

′ ∈ prod(R).

8. if ψ = A[ψ1Uψ2], then 〈[p, ψ], γ〉 ֒
[−]
−−→〈[p, ψ2], γ〉 ∈ ∆′, and:

(a) if p ∈ PN , let {R1 = 〈p, γ〉 →֒ 〈p1, w1〉, · · · , Rn = 〈p, γ〉 →֒ 〈pn, wn〉} be

the set of all the rules of ∆ that have 〈p, γ〉 in the left-hand-side. Then,

R′ = 〈[p, ψ], γ〉 ֒
[−,σ1,··· ,σn]
−−−−−−−→ {〈[p, ψ1], γ〉, 〈[p1, ψ], w1〉, · · · , 〈[pn, ψ], wn〉} ∈ ∆′

where for every 1 ≤ i ≤ n, σi = prodE(Ri), and R
′ ∈ prod(Ri).

(b) if p ∈ PC , let {R1 = p
(r1,r′1)

−֒−−−→ p1, · · · , Rn = p
(rn,r′n)
−֒−−−→ pn} be the set of all

the rules of ∆c that have p in the left-hand-side. Then, ∀1 ≤ i ≤ n, for every

γ ∈ Γ, R⊥ : 〈[p, ψ], γ〉 ֒
[−,σ1,··· ,σn]
−−−−−−−→ {〈[p, ψ1], γ〉, 〈p

ψ
1 , γ〉, · · · , 〈p

ψ
n , γ〉} ∈ ∆′

and R′
i : p

ψ
i ֒

(σ,σ′)
−−−→ [pi, ψ] ∈ ∆′

c where for every 1 ≤ i ≤ n, σi = prodE(Ri),

σ = prod(ri), σ
′ = prod(r′i) and R⊥, R

′
i ∈ prod(Ri).

9. if ψ = E[ψ1Ũψ2], then 〈[p, ψ], γ〉 ֒
[−,−]
−−−→{〈[p, ψ2], γ〉, 〈[p, ψ1], γ〉} ∈ ∆′ and:

(a) if p ∈ PN , then for every R = 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆,

R′ = 〈[p, ψ], γ〉 ֒
[−,−]
−−−→{〈[p, ψ2], γ〉, 〈[p

′, ψ], w〉} ∈ ∆′, R′ ∈ prodE(R) and

R′ ∈ prod(R).

(b) if p ∈ PC , then for every R = p
(r1,r′1)

−֒−−−→ p′ ∈ ∆c, for every γ ∈ Γ, R⊥ =

〈[p, ψ], γ〉
[−,−]

−֒−−−→ {〈[p, ψ2], γ〉, 〈p
ψ, γ〉} ∈ ∆′ and R′ : pψ ֒

(σ,σ′)
−−−→ [p′, ψ] ∈

∆′
c where σ = prod(r1), σ

′ = prod(r′1), R⊥, R
′ ∈ prodE(R) and R⊥, R

′ ∈

prod(R).
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10. if ψ = A[ψ1Ũψ2], then 〈[p, ψ], γ〉 ֒
[−,−]
−−−→{〈[p, ψ2], γ〉, 〈[p, ψ1], γ〉} ∈ ∆′, and:

(a) if p ∈ PN , let {R1 = 〈p, γ〉 →֒ 〈p1, w1〉, · · · , Rn = 〈p, γ〉 →֒ 〈pn, wn〉}

be the set of all the rules of ∆ that have 〈p, γ〉 in the left-hand-side.

Then for every 1 ≤ i ≤ n, σi = prodE(Ri), R
′ = 〈[p, ψ], γ〉 ֒

[−,σ1,··· ,σn]
−−−−−−−→

{〈[p, ψ2], γ〉, 〈[p1, ψ], w1〉, · · · , 〈[pn, ψ], wn〉} ∈ ∆′ and R′ ∈ prod(Ri).

(b) if p ∈ PC , let {R1 = p
(r1,r′1)

−֒−−−→ p1, · · · , Rn = p
(rn,r′n)
−֒−−−→ pn} be the set of

all the rules of ∆c that have p in the left-hand-side. Then, for every γ ∈

Γ, R⊥ = 〈[p, ψ], γ〉 ֒
[−,σ1,··· ,σn]
−−−−−−−→ {〈[p, ψ2], γ〉, 〈p

ψ
1 , γ〉, · · · , 〈p

ψ
n , γ〉} ∈ ∆′, ∀1 ≤

i ≤ n, σi = prodE(Ri) and for every 1 ≤ i ≤ n,R′
i : p

ψ
i ֒

(σ,σ′)
−−−→ [pi, ψ] ∈ ∆′

c

where σ = prod(ri), σ
′ = prod(r′i) and R⊥, R

′
i ∈ prod(Ri).

Let prod(∆) = {r′ ∈ ∆′ | ∃r ∈ ∆, r′ ∈ prod(r)} be the set of rules of ∆′

that are generated from ∆. Let δ = ∆′ \ prod(∆) be the set of rules of ∆′ that

are not generated from any rule of ∆ nor ∆c (e.g., the rules computed by items

1, 2, 3 and 4 are in δ). These rules δ are independent of ∆ and ∆c. They are

introduced by the structure of ϕ. Thus, they need to be present in all the phases

of BPϕ. Let then θ ⊆ ∆ ∪∆c be a phase of P . Its corresponding phase in BPϕ

is β(θ) = prod(θ) ∪ δ, where prod(θ) = {r′ ∈ ∆′ ∪∆′
c | ∃r ∈ θ, r′ ∈ prod(r)}.

Let us explain the above construction intuitively. The above automaton BPϕ

can be seen as a kind of product of the SM-PDS P with the formula ϕ. For

ψ ∈ cl(ϕ), (〈p, w〉, θ) |=ν ψ iff BPϕ accepts a configuration
(
〈[p, ψ], w〉, β(θ)

)
. We

give in what follows the intuition behind all the items above:

If ψ = a ∈ At, then ∀w ∈ Γ∗, θ ⊆ ∆ ∪ ∆c, (〈p, w〉, θ) |=ν ψ iff a ∈ ν(p).

Hence, the automaton BPϕ should accept a run starting from (〈[p, a], w〉, β(θ))

iff a ∈ ν(p). [p, a] ∈ F iff a ∈ ν(p). Thus, the loop added in (〈[p, a], w〉, β(θ)) by

Item 1 makes sure that BPϕ accepts this run.

If ψ = ¬a, then ∀w ∈ Γ∗, θ ⊆ ∆∪∆c, (〈p, w〉, θ) |=ν ψ iff a /∈ ν(p). Hence, the

automaton BPϕ should accept a run starting from (〈[p,¬a], w〉, β(θ)) iff a /∈ ν(p).

[p,¬a] ∈ F iff a /∈ ν(p). Thus, the loop in (〈[p,¬a], w〉, β(θ)) added by Item 2

ensures that BPϕ accepts this run.

If ψ = ψ1 ∨ ψ2, then ∀w ∈ Γ∗, θ ⊆ ∆ ∪∆c, (〈p, w〉, θ) |=ν ψ iff ( (〈p, w〉, θ) |=ν

ψ1 or (〈p, w〉, θ) |=ν ψ2 ). Thus, BPϕ accepts a run starting from (〈[p, ψ1 ∨

ψ2], w〉, β(θ)) iff BPϕ has an accepting run starting from (〈[p, ψ1], w〉, β(θ)) or

(〈[p, ψ2], w〉, β(θ)). This is ensured by Item 3. Item 4 is similar to Item 3, it
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handles the case ψ = ψ1 ∧ ψ2 where (〈p, w〉, θ) satisfies ψ iff it satisfies both ψ1

and ψ2.

If ψ = EXψ1, then ∀w ∈ Γ∗, θ ⊆ ∆ ∪ ∆c, (〈p, w〉, θ) |=ν ψ iff an immediate

successor (〈p′, w′〉, θ′) of (〈p, w〉, θ) satisfies ψ1. Thus, BPϕ has an accepting run

from (〈[p, ψ], w〉, β(θ)) iff it can accept a run from (〈[p′, ψ1], w
′〉, β(θ′)) . There are

two cases depending on whether p ∈ PN or p ∈ Pc, because the form of the rules

of the SM-PDS depends on whether p ∈ PN or p ∈ Pc: if p ∈ PN , then necessarily,

the rules that can be applied from p are of the form 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆, whereas

if p ∈ Pc, then necessarily, the rules that can be applied from p are of the form

r : p
(r1,r2)

−֒−−−→ p′ ∈ ∆c. Thus, if p ∈ PN , then BPϕ has an accepting run from

(〈[p, ψ], γu〉, β(θ)) iff there exists a rule 〈p, γ〉 →֒ 〈p′, w〉 ∈ ∆ such that BPϕ has

an accepting run from (〈[p′, ψ1], wu〉, β(θ)). This is ensured by Item 5(a). If

p ∈ Pc, then BPϕ has an accepting run from (〈[p, ψ], γu〉, β(θ)) iff there exists

a rule r : p
(r1,r2)

−֒−−−→ p′ ∈ ∆c ∩ θ such that BPϕ has an accepting run from

(〈[p′, ψ1], γu〉, β(θ
′)), where θ′ = (θ\{r1}) ∪ {r2}. This is ensured by Item 5(b).

If ψ = AXψ1, then ∀w ∈ Γ∗, θ ⊆ ∆∪∆c, (〈p, w〉, θ) |=ν ψ iff every immediate

successor (〈p′, w′〉, θ′) of (〈p, w〉, θ) satisfies ψ1. Thus, BPϕ has an accepting run

from (〈[p, ψ], w〉, β(θ)) iff it can accept a run from all its immediate successors

(〈[p′, ψ1], w
′〉, β(θ′)). As previously, there are two cases depending on whether

p ∈ PN or p ∈ Pc: if p ∈ PN , let γ ∈ Γ and u ∈ Γ∗ such that w = γu. Let then

{〈p, γ〉 →֒ 〈p1, w1〉, · · · , 〈p, γ〉 →֒ 〈 pm, wm〉} be the set of all the rules of ∆ ∩ θ

that have 〈p, γ〉 in the left-hand-side. Then, BPϕ has an accepting run from

(〈[p, ψ], γu〉, β(θ)) iff BPϕ has an accepting run from every (〈[pi, ψ1], wiu〉, β(θ)),

1 ≤ i ≤ m. This is ensured by Item 6(a). Note that Item 6(a) considers all

the rules Ri : 〈p, γ〉 →֒ 〈pi, wi〉 that are in ∆ (even those that are not in θ),

then the constraints [σ1, · · · , σn] of the rule R
′ of Item 6(a) ensures that only the

Ri’s that are in θ are applied. Note also that in R′, σi = prodE(Ri) ensures that

σi ∩ β(θ) 6= ∅ iff Ri ∩ θ 6= ∅. Here taking σi = prod(Ri) is not correct because

R′ ∈ prod(Ri) and so in this case, σi ∩ β(θ) would always be nonempty. On the

other hand, if p ∈ Pc, let {p ֒
(r1,r′1)−−−→ p1, · · · , p

(rm,r′m)
−֒−−−→ pm} be the set of all the

rules of ∆c ∩ θ that have p in the left-hand-side. Then BPϕ has an accepting run

from (〈[p, ψ], γu〉, β(θ)) iff BPϕ has an accepting run from (〈[pi, ψ1], γu〉, β(θi)),

for every 1 ≤ i ≤ m, where θi = (θ\{ri}) ∪ {ri
′}. This is ensured by Item

6(b). As previously, Item 6(b) considers all the rules Ri : p
(ri,r

′

i)
−֒−−−→ pi that
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are in ∆c (even those that are not in θ), then the constraints [σ1, · · · , σn] of the

rule R′
⊥ = 〈[p, ψ], γ〉 ֒

[σ1,··· ,σn]
−−−−−→ {〈pψ1 , γ〉, · · · , 〈p

ψ
n , γ〉} of Item 6(b) ensures that

only the Ri’s that are in θ are applied. Then R′
i : pψi ֒

(σ,σ′)
−−−→ [pi, ψ1] ensures

BPϕ has an accepting run from (〈pψi , γu〉, β(θ)) iff BPϕ has an accepting run

from (〈[pi, ψ1], γu〉, β(θi)) where θi = (θ\{ri}) ∪ {ri
′} for 1 ≤ i ≤ n. Note

that σ′ = prod(ri) and σ′ = prod(r′i), then β(θi) = β(θ) \ σ ∪ σ′. Thus, BPϕ

has an accepting run from (〈[p, ψ], γu〉, β(θ)) iff BPϕ has an accepting run from

(〈[pi, ψ1], γu〉, β(θi)) for every 1 ≤ i ≤ n.

If ψ = E[ψ1Uψ2], then ∀w ∈ Γ∗, θ ⊆ ∆ ∪ ∆c, (〈p, w〉, θ) |=ν ψ iff either it

satisfies ψ2 or it satisfies ψ1 and there exists an immediate successor satisfying ψ.

Thus, BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)) iff:

1. BPϕ has an accepting run from (〈[p, ψ2], w〉, β(θ)). This is handled by the

rules 〈[p, ψ], γ〉 ֒
[−,−]
−−−→{〈[p, ψ2], γ〉, 〈[p, ψ1], γ〉} introduced by Item 7.

2. or BPϕ has an accepting run from both (〈[p, ψ1], w〉, β(θ)) and

(〈[p′, ψ], w′〉, β(θ′)) where (〈p′, w′〉, θ′) is an immediate successor of (〈p, w〉, θ)).

There are two cases depending on whether p ∈ PN or p ∈ PC : the case

p ∈ PN is handled by Item 7(a). Its intuition is similar to the intuition

behind the previous items. Let then p ∈ PC . Then there exists a rule

r : p
(r1,r′1)

−֒−−−→ p′ ∈ θ ∩ ∆c such that BPϕ has an accepting run from both

(〈[p, ψ1], w〉, β(θ)) and (〈[p′, ψ], w〉, β(θ′)), where θ′ = θ\{r1)∪{r1
′}. This is

ensured by the rule R⊥ = 〈[p, ψ], γ〉
[−,−]

−֒−−−→ {〈[p, ψ2], γ〉, 〈p
ψ, γ〉} ∈ ∆′ and

R′ : pψ ֒
(σ,σ′)
−−−→ [p′, ψ] ∈ ∆′

c added by Item 7(b).

The case ψ = A[ψ1Uψ2] is handled in a similar way using Items 8. If ψ =

E[ψ1Ũψ2], then ∀w ∈ Γ∗, θ ⊆ ∆∪∆c, (〈p, w〉, θ) |=ν ψ iff it satisfies ψ2 and either

it satisfies also ψ1, or it has a successor (〈p′, w′〉, θ′) that satisfies ψ. Then, BPϕ

has an accepting run from (〈[p, ψ], w〉, θ) iff BPϕ has an accepting run from both

((〈[p, ψ2], w〉, β(θ)) and (〈[p, ψ1], w〉, β(θ))), or it has an accepting run from both

((〈[p, ψ2], w〉, β(θ)) and (〈[p′, ψ], w′〉, β(θ′))). This case is handled by Items 9. To

ensure that the runs on which ψ2 always holds are accepted, we add [p, ψ] in F .

The case where ψ = A[ψ1Ũψ2] is handled similarly by Items 10.

We can show that:
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Theorem 4.1.1 Let (〈p, w〉, θ) be a configuration of the SM-PDS P. (〈p, w〉, θ) |=ν

ϕ iff BPϕ has an accepting run from (〈[p, ϕ], w〉, β(θ)).

Proof: (⇒) : Suppose (〈p, w〉, θ) |=ν ψ, we show that BPϕ has an accepting run

from (〈[p, ψ], w〉, β(θ)) by induction on the structure of ψ.

Case ψ = a : Since (〈p, w〉, θ) |=ν ψ, then a ∈ ν(p). By the definition of BPϕ,

[p, a] ∈ F and ∀γ ∈ Γ, r : 〈[p, a], γ〉 ֒
[−]
−→ 〈[p, a], γ〉 ∈ ∆′ and r ∈ δ (since it is not

from ∆ nor ∆c). Then, r ∈ β(θ) and there is a loop in (〈[p, ψ], w〉, β(θ)). Hence,

BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)).

Case ψ = ¬a : Since (〈p, w〉, θ) |=ν ψ, then a /∈ ν(p). By the definition of BPϕ,

[p,¬a] ∈ F and ∀γ ∈ Γ, r : 〈[p,¬a], γ〉 ֒
[−]
−→ 〈[p,¬a], γ〉 ∈ ∆′ and r ∈ δ (since it

is not from ∆ nor ∆c). Then, r ∈ β(θ) and there is a loop in (〈[p, ψ], w〉, β(θ)).

Hence, BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)).

Case ψ = ψ1∨ψ2 : Since (〈p, w〉, θ) |=ν ψ, then (〈p, w〉, θ) |=ν ψ1 or (〈p, w〉, θ) |=ν

ψ2. By applying the induction hypothesis, BPϕ has an accepting run from the

configuration (〈[p, ψ1], w〉, β(θ)) or (〈[p, ψ2], w〉, β(θ)). Since r1 : 〈[p, ψ], γ〉 ֒
[−]
−→

〈[p, ψ1], γ〉 ∈ ∆′ is s.t. r1 ∈ δ and r2 : 〈[p, ψ], γ〉 ֒
[−]
−→ 〈[p, ψ2], γ〉 ∈ ∆′ is s.t. r2 ∈ δ.

Then r1, r2 ∈ β(θ) and we can get that (〈[p, ψ], w〉, β(θ)) ⇒BP (〈[p, ψ1], w〉, β(θ))

and (〈[p, ψ], w〉, β(θ)) ⇒BP (〈[p, ψ2], w〉, β(θ)). So BPϕ has an accepting run from

(〈[p, ψ], w〉, β(θ)).

Case ψ = ψ1 ∧ ψ2 : it is similar to case ψ = ψ1 ∨ ψ2.

Case ψ = EXψ1 : Since (〈p, w〉, θ) |=ν ψ, then there exists an immediate succes-

sor (〈p1, w1〉, θ1) of (〈p, w〉, θ) s.t. (〈p1, w1〉, θ1) |=ν ψ1. By applying the induction

hypothesis, BPϕ has an accepting run from (〈[p1, ψ1], w1〉, β(θ1)). There are two

cases depending on whether p ∈ PN or not.

- Case p ∈ PN , then θ1 = θ. Since (〈p1, w1〉, θ) is an immediate successor

of (〈p, w〉, θ), there exist w′′ ∈ Γ∗ s.t. w = γw′′, w1 = w′w′′ and R =

〈p, γ〉 →֒ 〈p1, w
′〉 ∈ ∆ ∩ θ. By the construction Item 5, we can obtain

R′ = 〈[p, ψ], γ〉 ֒
[−]
−→ 〈[p1, ψ1], w

′〉 ∈ ∆′ and R′ ∈ prod(R). Since prod(θ) =

{r′ ∈ ∆′ ∪∆′
c | ∃r ∈ θ, r′ ∈ prod(r)} and R ∈ θ, then R′ ∈ prod(θ). Thus,

R′ ∈ β(θ) and (〈[p, ψ], w〉, β(θ)) ⇒BP (〈[p1, ψ1], w1〉, β(θ)). Hence, BPϕ has

an accepting run from (〈[p, ψ], w〉, β(θ)).
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- Case p ∈ PC , then θ1 = θ\{r1} ∪ {r2} for a transition rule R = p
(r1,r2)

−֒−−−→

p1 ∈ ∆c ∩ θ. There exist γ ∈ Γ and w′′ ∈ Γ∗ s.t. w1 = w = γw′′.

Thus, we can obtain R′ = [p, ψ] ֒
(σ,σ′)
−−−→ [p′, ψ1] ∈ ∆′

c, σ = prod(r1), σ
′ =

prod(r2), R
′ ∈ prodE(R) and R′ ∈ prod(R). Since prod(θ) = {r′ ∈

∆′ ∪ ∆′
c | ∃r ∈ θ, r′ ∈ prod(r)} and R, r1 ∈ θ, then R′ ∈ β(θ) and

σ ∩ prod(θ) 6= ∅. Based on rule R, θ1 = θ\{r1} ∪ {r2}, then β(θ1) =

prod(θ1) ∪ δ = (prod(θ\{r1} ∪ {r2}) ∪ δ. Since σ = prod(r1) and σ′ =

prod(r2), then we can obtain β(θ1) = β(θ)\σ ∪ σ′. Thus, we can have that

(〈[p, ψ], w〉, β(θ)) ⇒BP (〈[p1, ψ1], w〉, β(θ1)). Hence, BPϕ has an accepting

run from (〈[p, ψ], w〉, β(θ)).

Case ψ = AXψ1 : there are 2 cases depending on whether p ∈ PN or not.

- Case p ∈ PN . Let then γ ∈ Γ and u ∈ Γ∗ be such that w = γu. Let S =

{R1 = 〈p, γ〉 →֒ 〈p1, u1〉, · · · , Rn = 〈p, γ〉 →֒ 〈pn, un〉} be the set of all the

rules of ∆ that have 〈p, γ〉 on the left hand-side. Then, by Item 6(a), we ob-

tain that R′ = 〈[p, ψ], γ〉 ֒
[σ1,··· ,σn]
−−−−−→ {〈[p1, ψ1], w1〉, · · · , 〈[pn, ψ1], wn〉} ∈ ∆′,

for every 1 ≤ i ≤ n, σi = prodE(Ri). Let {Ri1 = 〈p, γ〉 →֒ 〈pi1 , ui1〉, · · · , Rik =

〈p, γ〉 →֒ 〈pik , uik〉} be the set of rules of S ∩ θ. Let wij = uiju, 1 ≤

j ≤ k, then {(〈pi1 , wi1〉, θ), · · · , (〈pik , wik〉, θ)} is an immediate successor

of (〈p, w〉, θ). Since (〈p, w〉, θ) |=ν ψ, then (〈pij , wij〉, θ) |=ν ψ1 for every

j, 1 ≤ j ≤ k. By applying the induction hypothesis, BPϕ has an accepting

run from (〈[pij , ψ1], wij〉, β(θ)). Since prod(θ) = {r′ ∈ ∆′ ∪∆′
c | ∃r ∈ θ, r′ ∈

prod(r)} and Ri ∈ θ, then R′ ∈ β(θ). Since σi = prodE(Ri) , σl ∩ β(θ) 6= ∅

if l ∈ {i1, · · · , ik} and σl∩β(θ) = ∅ if l /∈ {i1, · · · , ik}, then using R′, we get

that (〈[p, ψ], w〉, β(θ)) ⇒BP {(〈[pi1 , ψ1], wi1〉, β(θ)), · · · , (〈[pik , ψ1], wik〉, β(θ))}.

Since BPϕ has an accepting run from (〈[pij , ψ1], wij〉, β(θ)), then, BPϕ has

an accepting run from (〈[p, ψ], w〉, β(θ)).

- Case p ∈ PC . Let then γ ∈ Γ and u ∈ Γ∗ be such that w = γu. Let

S = {R1 = p
(r1,r′1)

−֒−−−→ p1, · · · , Rn = p
(rn,r′n)

−֒−−−→ pn} be the set of all the rules

of ∆c that have p on the left hand-side. Then, by Item 6(b), we obtain that

R′
⊥ = 〈[p, ψ], γ〉 ֒

[σ1,··· ,σn]
−−−−−→ {〈pψ1 , γ〉, · · · , 〈p

ψ
n , γ〉} ∈ ∆′, for every 1 ≤ i ≤ n,

σi = prodE(Ri) and for every 1 ≤ i ≤ n, R′
i : p

ψ
i ֒

(σ,σ′)
−−−→ [pi, ψ1] ∈ ∆′

c where

for every 1 ≤ i ≤ n, σi = prodE(Ri), σ = prod(ri), σ
′ = prod(r′i) and R

′
i ∈
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prod(Ri). Let {Ri1 = p
(ri1 ,r

′

i1
)

−֒−−−→ pi1 , · · · , Rik = p
(rik ,r

′

ik
)

−֒−−−→ pik〉} be the set

of rules of S ∩ θ. Then {(〈pi1 , γu〉, θi1), · · · , (〈pik , γu〉, θik)} is an immediate

successor of (〈p, w〉, θ) where θij = (θ\{rij})∪{r′ij}. Since (〈p, w〉, θ) |=ν ψ,

then (〈pij , γu〉, θij) |=ν ψ1 for every j, 1 ≤ j ≤ k. By applying the induction

hypothesis, BPϕ has an accepting run from (〈[pij , ψ1], γu〉, β(θij)). Since

prod(θ) = {r′ ∈ ∆′ ∪∆′
c | ∃r ∈ θ, r′ ∈ prod(r)} and Ri ∈ θ, then R′

i, R
′
⊥ ∈

β(θ). Since σl = prodE(Rl) , σl∩β(θ) 6= ∅ if l ∈ {i1, · · · , ik} and σl∩β(θ) =

∅ if l /∈ {i1, · · · , ik}, then using R′
⊥, we get that (〈[p, ψ], w〉, β(θ)) ⇒BP

{(〈pψi1 , w〉, β(θ)), · · · , (〈p
ψ
ik
, w〉, β(θ))}. For every j, 1 ≤ j ≤ k, using R′

ij
, we

get that (〈pψi1 , w〉, β(θ)) ⇒BP (〈[pij , ψ1], γu〉, β(θ) \ σ ∪ σ′). Since β(θij) =

prod(θij)∪δ = (prod(θ\{rij}∪{r′ij})∪δ, then β(θij) = β(θ)\σ∪σ′ for every

σ = prod(rij) and σ
′ = prod(r′ij). Thus, we can obtain that

(〈[p, ψ], w〉, β(θ)) ⇒∗
BP {(〈[pi1 , ψi1 ], w〉, β(θi1)), · · · , (〈[pik , ψ1], w〉, β(θik))}.

Since BPϕ has an accepting run from (〈[pij , ψ1], wij〉, β(θ)), then, BPϕ has

an accepting run from (〈[p, ψ], w〉, β(θ)).

Case ψ = E[ψ1Uψ2] : Since (〈p, w〉, θ) |=ν ψ, then there exists a path

ρ : (〈p0, w0〉, θ0), (〈p1, w1〉, θ1), (〈p2, w2〉, θ2) · · ·

from (〈p, w〉, θ) (i.e. (〈p0, w0〉, θ0) = (〈p, w〉, θ)) such that there exists i ≥ 0,

(〈pi, wi〉, θi) |=ν ψ2 and for every 0 ≤ j < i, (〈pj, wj〉, θj) |=ν ψ1. Thus, by

applying the induction hypothesis, we obtain that BPϕ has an accepting run from

(〈[pi, ψ2], wi〉, β(θi)) and for every 0 ≤ j < i, BPϕ has an accepting run from the

configuration (〈[pj, ψ1], wj〉, β(θj)). We first show that BPϕ has an accepting run

from (〈[pi, ψ], wi〉, β(θi)).

By the construction Item 7, r′ = 〈[pi, ψ], γ〉 ֒
[−]
−→〈[pi, ψ2], γ〉 ∈ ∆′ s.t. r′ ∈ δ (since

it is not constructed from ∆ nor ∆c). Then, r′ ∈ β(θi). Thus, we have that

(〈[pi, ψ], wi〉, β(θi)) ⇒BP (〈[pi, ψ2], wi〉, β(θi)). Hence, BPϕ has an accepting run

from (〈[pi, ψ], wi〉, β(θi)). If i = 0, then (〈[p, ψ], w〉, β(θ)) = (〈[pi, ψ], wi〉, β(θi))

and BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)). Otherwise if i > 0, we

show that BPϕ has an accepting run from (〈[pj, ψ], wj〉, β(θj)), 1 ≤ j < i, by

induction on l = i− j. (Note that (〈[p, ψ], w〉, β(θ)) = (〈[p0, ψ], w0〉, β(θ0))).
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- Basis. l = 1. Then (〈pi, wi〉, θi) is an immediate successor of (〈pj, wj〉, θj).

If pj ∈ PN , then there exists R = 〈pj, γ〉 →֒ 〈pi, w
′〉 ∈ ∆ ∩ θj. By the

construction Item 7(a), R′ : 〈[pj, ψ], γ〉 ֒
[−,−]
−−−→{〈[pj, ψ1], γ〉, 〈[pi, ψ], w

′〉} ∈

∆′ and R′ ∈ prod(R). Since prod(θ) = {r′ ∈ ∆′ ∪ ∆′
c | ∃r ∈ θ, r′ ∈

prod(r)} and R ∈ θ, then R′ ∈ prod(θ). Thus, R′ ∈ β(θ) and we can

have (〈[pj, ψ], wj〉, β(θj)) ⇒BP {(〈[pj, ψ1], wj〉, β(θj)), (〈[pi, ψ], wi〉, β(θj))}.

Hence, BPϕ has an accepting run from the configuration (〈[pj, ψ], wj〉, β(θj)).

Otherwise if pj ∈ PC , for everyR = pj
(r1,r2)

−֒−−−→ pi ∈ ∆c ∩θj, for every γ ∈ Γ,

R′
⊥ = 〈[pj, ψ], γ〉 ֒

[−,−]
−−−→ {〈[pj, ψ1], γ〉, 〈pj

ψ, γ〉} ∈ ∆′ and R′ : pj
ψ ֒

(σ,σ′)
−−−→

[pi, ψ] ∈ ∆′
c where σ = prod(r1), σ

′ = prod(r2) s.t. R′
⊥, R

′ ∈ prod(R).

Then, we can obtain that:

(〈[pj, ψ], wj〉, β(θj)) ⇒BP {(〈[pj, ψ1], wj〉, β(θj)), (〈pj
ψ, wj〉, β(θj))}.

Since R, r1 ∈ θj and θi = θj\{r1} ∪ {r2}, then β(θi) = prod(θi) ∪ δ =

prod(θj\{r1}∪{r2})∪δ. Thus, β(θi) = β(θj)\σ∪σ
′ and (〈pj

ψ, wj〉, β(θj)) ⇒BP

{(〈[pi, ψ], w)〉, β(θi)}. Hence, BPϕ has an accepting run from the configu-

ration (〈[pj, ψ], wj〉, β(θj)).

- Step. l > 1. Then there exists (〈pj+1, wj+1〉, θj+1) s.t. (〈pj, wj〉, θj) ⇒P

(〈pj+1, wj+1〉, θj+1) ⇒∗
P (〈pi, wi〉, θi). By applying the induction hypothe-

sis (induction on l), we can obtain that BPϕ has an accepting run from

(〈[pj+1, ψ], wj+1〉, β(θj+1)). Since (〈pj, wj〉, θj) |=ν ψ1, by applying the in-

duction hypothesis (induction on the structure of ψ), BPϕ has an accepting

run from (〈[pj, ψ1], wj〉, β(θj)). There are two cases depending on whether

pj ∈ PN or not.

- Case pj ∈ PN , then there exists R = 〈pj, γ〉 →֒ 〈pj+1, w
′〉 ∈ ∆∩ θj. By

the construction, R′ = 〈[pj, ψ], γ〉֒
[−,−]
−−−→{〈[pj, ψ1], γ〉, 〈[pj+1, ψ], w

′〉} ∈

∆′ s.t. R′ ∈ prod(R). Since prod(θj) = {r′ ∈ ∆′ ∪ ∆′
c | ∃r ∈ θj, r

′ ∈

prod(r)} and R ∈ θ, then R′ ∈ prod(θj). Thus, R
′ ∈ β(θj) and we can

have

(〈[pj, ψ], wj〉, β(θj)) ⇒BP {(〈[pj, ψ1], wj〉, β(θj)), (〈[pj+1, ψ], wj+1〉, β(θj))}.

So, BPϕ has an accepting run from the configuration (〈[pj, ψ], wj〉, β(θj)).
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- Case pj ∈ PC , for every R = pj
(r1,r2)

−֒−−−→ pj+1 ∈ ∆c ∩ θj, there exist

γ ∈ Γ and w′′
j ∈ Γ∗ s.t. wj = γw′′

j , then R′
⊥ = 〈[pj, ψ], γ〉 ֒

[−,−]
−−−→

{〈[pj, ψ1], γ〉, 〈pj
ψ, γ〉} ∈ ∆′ and R′ : pj

ψ ֒
(σ,σ′)
−−−→ [pi, ψ] ∈ ∆′

c where

σ = prod(r1), σ
′ = prod(r2) s.t. R

′ ∈ prod(R).

Then, (〈[pj, ψ], wj〉, β(θj)) ⇒BP {(〈[pj, ψ1], wj〉, β(θj)), (〈pj
ψ, wj〉, β(θj))}.

Since prod(θj) = {r′ ∈ ∆′∪∆′
c | ∃r ∈ θj, r

′ ∈ prod(r)} and R ∈ θj, then

R′ ∈ prod(θj). Thus, R
′ ∈ β(θj). Since R, r1 ∈ θj and θj+1 = θj\{r1}∪

{r2}. Then β(θj+1) = prod(θj+1) ∪ δ = prod(θj\{r1} ∪ {r2})∪δ.

So, β(θj+1) = β(θj)\σ ∪ σ′. Then, we have (〈pj
ψ, wj〉, β(θj)) ⇒BP

{(〈[pj+1, ψ], wj〉, β(θj+1))}. Hence, BPϕ has an accepting run from the

configuration (〈[pj, ψ], wj〉, β(θj)).

Thus, BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)).

Case ψ = A[ψ1Uψ2] is similar the the case ψ = E[ψ1Uψ2].

Case ψ = E[ψ1Ũψ2] : Since (〈p, w〉, θ) |=ν E[ψ1Ũψ2], then there exists a path

(〈p0, w0〉, θ0), (〈p1, w1〉, θ1), (〈p2, w2〉, θ2) · · ·

from (〈p, w〉, θ) (i.e. (〈p0, w0〉, θ0) = (〈p, w〉, θ)) such that

1. either for every i ≥ 0, (〈pi, wi〉, θi) |=ν ψ2

2. or there exists i ≥ 0 s.t. (〈pi, wi〉, θi) |=ν ψ1 and for every 0 ≤ j ≤ i,

(〈pj, wj〉, θj) |=ν ψ2

First let us consider item 2, it can be proved that BPϕ has an accepting run

from (〈[p, ψ], w〉, β(θ)) by applying the induction on i − j similar to the case

ψ = E[ψ1Uψ2].

Let’s consider item 1, we will show that BPϕ has an accepting run from

(〈[p, ψ], w〉, β(θ)). Let us construct an accepting run ρ of BPϕ as follows. (Note

that (〈[p, ψ], w〉, β(θ)) = (〈[p0, ψ], w0〉, β(θ0))).

Let (〈[p0, ψ], w0〉, θ0) be the root of ρ. For every k ≥ 0,

• if pk ∈ PN , then we have that

(〈[pk, ψ], wk〉, β(θk)) ⇒BP {(〈[pk, ψ2], wk〉, β(θk)), (〈[pk+1, ψ], wk+1〉, β(θk+1))}.
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In this case, we let (〈[pk, ψ2], wk〉, β(θk)) and (〈[pk+1, ψ], wk+1〉, β(θk+1)) be

the children of (〈[pk, ψ], wk〉, β(θk)). By applying the induction hypothesis

to (〈pk, wk〉, θk) |=ν ψ2, we obtain that BPϕ has an accepting run ρk from

(〈[pk, ψ2], wk〉, β(θk)).

We replace the child (〈[pk, ψ2], wk〉, β(θk)) in ρ by the run ρk. By the above

construction, we obtain an infinite run ρ of BPϕ s.t. ρ has an infinite path

(〈[p0, ψ], w0〉, β(θ0)), (〈[p1, ψ], w1〉, β(θ1)), · · ·

and all the other paths infinitely often visit some accepting control locations.

Since for every k ≥ 0, [pk, ψ] ∈ F , we obtain that each path of ρ infinitely

often visits some accepting control locations i.e. BPϕ has an accepting run

from (〈[p, ψ], w〉, β(θ)).

• If pk ∈ PC , (〈[pk, ψ], wk〉, β(θk)) ⇒BP {(〈[pk, ψ2], wk〉, β(θk)), (〈p
ψ
k , wk〉, β(θk))}

and (〈pψk , wk〉, β(θk)) ⇒BP {(〈[pk+1, ψ], wk+1〉, β(θk+1))}. In this case, we

let (〈[pk, ψ2], wk〉, β(θk)) and (〈pψk , wk〉, β(θk)) be the children of (〈[pk, ψ], wk〉, β(θk))

and (〈[pk+1, ψ], wk+1〉, β(θk+1)) be the child of (〈pψk , wk〉, β(θk)). By apply-

ing the induction hypothesis to (〈pk, wk〉, θk) |=ν ψ2, we obtain that BPϕ

has an accepting run ρk from (〈[pk, ψ2], wk〉, β(θk)). We replace the child

(〈[pk, ψ2], wk〉, β(θk)) in ρ by the run ρk. By the above construction, we

obtain an infinite run ρ of BPϕ s.t. ρ has an infinite path

(〈[p0, ψ], w0〉, β(θ0)) · · · , (〈p
ψ
k , wk〉, β(θk)), (〈[pk+1, ψ], wk+1〉, β(θk+1)) · · ·

and all the other paths infinitely often visit some accepting control locations.

Since for every k ≥ 0, [pk, ψ] ∈ F , we obtain that each path of ρ infinitely

often visits some accepting control locations i.e. BPϕ has an accepting run

from (〈[p, ψ], w〉, β(θ)).

Case ψ = A[ψ1Ũψ2]: it can be proved as for the case ψ = E[ψ1Ũψ2].

(⇐) : Suppose BPϕ has an accepting run from the configuration (〈[p, ψ], w〉, β(θ)),

we show that (〈p, w〉, θ) |=ν ψ by induction on the structure of ψ.

Case ψ = a: Since BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)), then ∀γ ∈ Γ,

〈[p, a], γ〉 ֒
[−]
−→〈[p, a], γ〉 ∈ ∆′ ∩ β(θ). So, [p, a] ∈ F and a ∈ ν(p). Hence,

(〈p, w〉, θ) |=ν ψ.
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Case ψ = ¬a: Since BPϕ has an accepting run from (〈[p,¬a], w〉, β(θ)), then

∀γ ∈ Γ, 〈[p,¬a], γ〉 ֒
[−]
−→〈[p,¬a], γ〉 ∈ ∆′ ∩ β(θ). So, [p,¬a] ∈ F and a /∈ ν(p).

Hence, (〈p, w〉, θ) |=ν ψ.

Case ψ = ψ1 ∨ ψ2: Since BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)),

then BPϕ has an accepting run from (〈[p, ψ1], w〉, β(θ)) or BPϕ has an accepting

run from (〈[p, ψ2], w〉, β(θ)). By applying the induction hypothesis, we get that

(〈p, w〉, θ) |=ν ψ1 or (〈p, w〉, θ) |=ν ψ2. This implies that (〈p, w〉, θ) |=ν ψ.

Case ψ = ψ1 ∧ ψ2: it is similar to the case ψ = ψ1 ∨ ψ2.

Case ψ = EXψ1 : it is similar to the case ψ = AXψ1.

Case ψ = AXψ1 : Since BPϕ has an accepting run from (〈[p, ψ], w〉, β(θ)). There

are two cases depending on whether p ∈ PN or not.

- Case p ∈ PN . Then suppose there exists an immediate successor

{(〈[p1, ψ1], w1〉, β(θ)), · · · , (〈[pn, ψ1], wn〉, β(θ))}

of (〈[p, ψ], w〉, β(θ)) in the accepting run such that

(〈[p, ψ], w〉, β(θ)) ⇒BP {(〈[p1, ψ1], w1〉, β(θ)), · · · , (〈[pn, ψ1], wn〉, β(θ))}

By applying the induction hypothesis, we get that (〈pi, wi〉, θi) |=ν ψ1 for

1 ≤ i ≤ n. By the construction, the immediate successors in P of (〈p, w〉, θ)

are (〈p1, w1〉, θ), · · · , (〈pn, wn〉, θ). Thus, we obtain that (〈p, w〉, θ) |=ν ψ.

- Case p ∈ PC . Then suppose there exists a successor

{(〈[p1, ψ1], w1〉, β(θ)), · · · , (〈[pn, ψ1], wn〉, β(θ))}

of (〈[p, ψ], w〉, β(θ)) in the accepting run such that

(〈[p, ψ], w〉, β(θ)) ⇒BP {(〈pψ1 , w〉, β(θ)), · · · , (〈p
ψ
n , w〉, β(θ))}

⇒BP {(〈[p1, ψ1], w1〉, β(θ1)), · · · , (〈[pn, ψ1], wn〉, β(θn))}.

Then BPϕ has an accepting run from (〈[pi, ψ1], wi〉, β(θi)) for each i : 1 ≤

i ≤ n. By applying the induction hypothesis, we get that (〈pi, wi〉, θi) |=ν ψ1

for 1 ≤ i ≤ n. By the construction of Item 6(b), there exists R′
⊥ =
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〈[p, ψ], γ〉 ֒
[σj1 ,··· ,σjm ]
−−−−−−−→ {〈pψ1 , γ〉, · · · , 〈p

ψ
n , γ〉} s.t. {1, · · · , n} ⊆ {j1, · · · , jm}

where the constraint [σj1 , · · · , σjm ] ensures that only the Ri’s that are in

θ (R1, · · · , Rn) are applied, and there exist R′
i : pψi ֒

(σ,σ′)
−−−→ [pi, ψ1] where

σ = prod(ri) and σ
′ = prod(r′i) ensuring that θi = (θ \ {ri}) ∪ {r′i}. Thus,

we can obtain that the set of all transition rules of the SM-PDS in ∆c ∩ θ

that have p in the left-hand side are {R1 = p
(r1,r′1)

−֒−−−→ p1, · · · , Rn =

p
(rn,r′n)

−֒−−−→ pn}. Then, the immediate successors of (〈p, w〉, θ) in P are

(〈p1, w〉, θ1), · · · , (〈pn, w〉, θn). Thus we obtain that (〈p, w〉, θ) |=ν ψ.

Case ψ = E[ψ1Uψ2] : Let ρ be the accepting run from (〈[p, ψ], w〉, β(θ)). By the

construction, every configuration (〈[pi, ψ], wi〉, β(θi)) in ρ has

• either two children (〈[pi, ψ1], wi〉, β(θi)) and (〈qi, wqi〉, β(θi)), where

1. If pi ∈ PN , (〈qi, wqi〉, β(θi)) is of the form (〈[pi+1, ψ], wi+1〉, β(θi)).

2. If pi ∈ PC , (〈qi, wqi〉, β(θi)) is of the form (〈pψi , wi〉, β(θi)) whose child

is (〈[pi+1, ψ], wi+1〉, β(θi+1)).

• or only one child (〈[pi, ψ2], wi〉, β(θi))

Since ρ is an accepting run, there exists a configuration (〈[pn, ψ], wn〉, β(θn))

in ρ s.t. (〈[pn, ψ], wn〉, β(θn)) has only one child (〈[pn, ψ2], wn〉, β(θn)). In particu-

lar, there exists a path of ρ of the form (〈q0, wq0〉, β(θ0)), · · · , (〈qn, wqn〉, β(θn)) · · ·

where (〈q0, wq0〉, β(θ0)) = (〈[p, ψ], w〉, β(θ)) and (〈qn, wqn〉, β(θi)) = (〈[pn, ψ], wn〉, β(θn)).

Then, BPϕ has an accepting run from (〈qi, wqi〉, β(θi)) of the form (〈[pi, ψ], wi〉, β(θi))

for every i : 0 ≤ i < n.

• If pi ∈ PN , (〈[pi, ψ], wi〉, β(θi)) in ρ has either two children (〈[pi, ψ1], wi〉, β(θi))

and (〈[pi+1, ψ], wi+1〉, β(θi)) or has only one child (〈[pi, ψ2], wi〉, β(θi)). Since

BPϕ has an accepting run from (〈[pn, ψ], wn〉, β(θn)) in ρ and i < n, then

(〈[pi, ψ], wi〉, β(θi)) ⇒BP {(〈[pi, ψ1], wi〉, β(θi)), (〈[pi+1, ψ], wi+1〉, β(θi))}. Thus,

BPϕ has an accepting run from (〈[pi, ψ1], wi〉, β(θi)).

• If pi ∈ PC , (〈[pi, ψ], wi〉, β(θi)) in ρ has either two children (〈[pi, ψ1], wi〉, β(θi))

and (〈pψi , wi〉, β(θi)) whose child is (〈[pi+1, ψ], wi+1〉, β(θi+1)) or has only one

child (〈[pi, ψ2], wi〉, β(θi)). Since BPϕ has an accepting run from (〈[pn, ψ], wn〉, β(θn))
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in ρ and i < n, then (〈[pi, ψ], wi〉, β(θi)) ⇒BP {(〈[pi, ψ1], wi〉, β(θi)), (〈p
ψ
i , wi〉, β(θi))}

and (〈pψi , wi〉, β(θi)) ⇒BP {(〈[pi+1, ψ], wi+1〉, β(θi+1))}. Thus, BPϕ has an

accepting run from (〈[pi, ψ1], wi〉, β(θi)).

BPϕ has an accepting run from (〈[pn, ψ2], wn〉, β(θn)) and (〈[pi, ψ1], wi〉, β(θi)) for

i < n. By applying the induction hypothesis, we get that (〈pn, wn〉, θn) |=ν ψ2

and (〈pi, wi〉, θi) |=ν ψ1 for i < n. Since (〈p1, w1〉, θ1), · · · , (〈pn, wn〉, θn) · · · is a

run of P , we obtain that (〈p, w〉, θ) |=ν ψ.

Case ψ = A[ψ1Uψ2]: it is similar with the case ψ = E[ψ1Uψ2].

Case ψ = E[ψ1Ũψ2]: Let ρ be the accepting run from (〈[p, ψ], w〉, β(θ)). By the

construction, every configuration (〈[pi, ψ], wi〉, β(θi)) in ρ has two children:

1. either (〈[pi, ψ2], wi〉, β(θi)) and (〈qi, wqi〉, β(θi)) where

• if pi ∈ PN , then qi is of the form (〈[pi+1, ψ], wi+1〉, β(θi+1));

• if pi ∈ PC , then (〈qi, wqi〉, β(θi)) is of the form (〈pψi , wi〉, β(θi) whose

child is (〈[pi+1, ψ], wi+1〉, β(θi+1)).

2. or (〈[pi, ψ1], wi〉, β(θi)) and (〈[pi, ψ2], wi〉, β(θi)).

First, we consider Case 1.

Since ρ is an accepting run, there exists an infinite path of ρ of the form

(〈q0, wq0〉, β(θ0)), · · · , (〈qi, wqi〉, β(θi)) · · ·

where (〈q0, wq0〉, β(θ0)) = (〈[p, ψ], w〉, β(θ)) and BPϕ has an accepting run from

(〈[pi, ψ2], wi〉, β(θi)) for every i ≥ 0.

By applying the induction hypothesis ( the fact that BPϕ has an accepting

run from (〈[pi, ψ2], wi〉, β(θi))), we get that (〈pi, wi〉, θi) |=ν ψ2 for every i ≥ 0.

By the construction, we get that (〈p0, w0〉, θ0), · · · , (〈pn, wn〉, θn), · · · is a run of

P with (〈p0, w0〉, θ0) = (〈p, w〉, θ) and (〈p, w〉, θ) |=ν ψ.

Let’s consider Case 2. Let (〈[pn, ψ], wn〉, β(θn)) be a configuration in ρ whose chil-

dren are (〈[pn, ψ1], wn〉, β(θn)) and (〈[pn, ψ2], wn〉, β(θn)). Then BPϕ has an infi-

nite path (〈[p0, ψ], w0〉, β(θ0)), · · · , (〈[pn, ψ], wn〉, β(θn)), (〈[pn, ψ1], wn〉, β(θn)), · · · ,

where (〈[p0, ψ], w0〉, β(θ0)) = (〈[p, ψ], w〉, β(θ)). Each configuration (〈[pi, ψ], wi〉, β(θi))
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in this path has children (〈[pi, ψ2], wi〉, β(θi)) and (〈[pi+1, ψ], wi+1〉, β(θi+1)) or

(〈pψi , wi〉, β(θi)) whose child is (〈[pi+1, ψ], wi+1〉, β(θi+1)). So BPϕ has an accepting

run from (〈[pn, ψ1], wn〉, β(θn)) and BPϕ has an accepting run from (〈[pi, ψ2], wi〉, β(θi))

for every 1 ≤ i ≤ n. By applying the induction hypothesis, (〈pn, wn〉, θn) |=ν ψ1

and (〈pi, wi〉, θi) |=ν ψ2 for each i : 1 ≤ i ≤ n. Thus,

(〈p0, w0〉, θ0), (〈p1, w1〉, θ1), · · · , (〈pn, wn〉, θn) · · ·

is a run of P with (〈p0, w0〉, θ0) = (〈p, w〉, θ). Thus, (〈p, w〉, θ) |=ν ψ.

Case ψ = A[ψ1Ũψ2] : this case is similar to the case ψ = E[ψ1Ũψ2].

✷

Therefore, CTL model-checking for SM-PDSs can be reduced to the problem

of determining whether a SM-ABPDS has an accepting run.

4.2 Computing the language of a SM-ABPDS

From now on, we fix a SM-ABPDS BP = (P,∆,∆c,Γ, F ). We show in this section

that the set of configurations accepted by BP is regular and can be effectively

represented by an EAMA (extended Alternating Multi-automaton). To this aim,

we first characterize the set of configurations L(BP) from which BP has an

accepting run. Then we use this characterization to compute an EAMA that

accepts it.

4.2.1 Characterizing L(BP)

Let (Xi)i≥0 be the following sequence: X0 = P ×Γ∗× 2∆∪∆c , and for every i ≥ 0,

Xi+1 = Pre+BP
(
Xi ∩ (F × Γ∗ × 2∆∪∆c)

)
. Let YBP =

⋂
i≥0Xi. We can show that

L(BP) = YBP :

Theorem 4.2.1 A SM-ABPDS BP has an accepting run starting from a config-

uration (〈p, w〉, θ) iff (〈p, w〉, θ) ∈ YBP .

Proving this theorem is based on the following lemma:

Lemma 8 BP has a run ρ starting from a configuration (〈p, w〉, θ) s.t. each

path of ρ visits configurations with control locations in F at least k times iff

(〈p, w〉, θ) ∈ Xk.
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Indeed, let c ∈ X1. Then c has a successor C ⊆ F × Γ∗ × 2∆∪∆c (since X1 =

Pre+BP(X0∩(F×Γ∗×2∆∪∆c))). Therefore, BP has a run starting from c that visits

some configuration p ∈ F at least once. X2 = Pre+BP
(
X1∩(F×Γ∗×2∆∪∆c)

)
, thus

∀c′ ∈ X2, a run starting from c′ will visit configurations in X1 ∩ (F ×Γ∗× 2∆∪∆c)

at least once; and thus, it visits configurations with control locations in F at least

twice. Thus, we can get by induction that ∀k ≥ 1, for every configuration c in

Xk, BP has a run that visits configurations with control locations in F at least

k times.

Proof: (⇒) : We proceed by induction on k.

Basis. k = 0. In this case, we can directly obtain that (〈p, w〉, θ) ∈ X0.

Step. k ≥ 1. Let (〈p1, w1〉, θ1), · · · , (〈pn, wn〉, θn) be the first nodes of ρ that are

visited in each path of ρ such that pi ∈ F . Then we get (1) (〈p, w〉), θ) ⇒BP

{(〈p1, w1〉), θ1), · · · , (〈pn, wn〉, θn)}. (2) for every 1 ≤ i ≤ n, pi ∈ F. (3) for every

1 ≤ i ≤ n, BP has a run ρi from the configuration (〈pi, wi〉, θi) s.t. all the paths

of ρi can visit some configurations with control locations in F at least k−1 times.

By applying the induction hypothesis to (3), we can get that (〈pi, wi〉, θi) ∈

Xk−1 for each 1 ≤ i ≤ n. Since pi ∈ F , then (〈pi, wi〉, θi) ∈ Xk−1∩F ×Γ∗×2∆∪∆c .

Moreover, since Xk = Pre+(Xk−1∩F×Γ∗×2∆∪∆c), we have that (〈p, w〉, θ) ∈ Xk.

(⇐) : In this direction, let’s proceed by induction on k. It is obvious when k = 0.

we only need to prove that BP has a run ρ from the configuration (〈p, w〉, θ) such

that each path of ρ can visit some configurations with control locations in F and

least k times for k ≥ 1.

Since (〈p, w〉, θ) ∈ Xk for Xk = Pre+(Xk−1 ∩ F × Γ∗ × 2∆∪∆c), we obtain that

(〈p, w〉), θ) ⇒BP {(〈p1, w1〉), θ1), · · · , (〈pn, wn〉, θn)} and (〈pi, wi〉, θi) ∈ Xk−1∩F×

Γ∗ × 2∆∪∆c for every 1 ≤ i ≤ n.

By applying the induction hypothesis, we can get that BP has a run ρi starting

from (〈pi, wi〉, θi) s.t. every path of ρi can visit some configurations with control

locations in F at least k− 1 times. Thus, BP has a run ρ from the configuration

(〈p, w〉, θ) such that each path of ρ can visit some configuration with the control

location in F at least k times. ✷

Then we can prove Theorem 4.2.1:
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Proof: (⇒) : In this direction, we show that if (〈p, w〉, θ) /∈ YBP , then BP has

no accepting run from (〈p, w〉, θ).

Since (〈p, w〉, θ) /∈ YBP and YBP =
⋂
i≥0Xi, there exists k ≥ 0 s.t. (〈p, w〉, θ) /∈ Xk.

Assume BP has an accepting run from (〈p, w〉, θ). Then, by Lemma 8, all runs

from the configuration (〈p, w〉, θ) can visit configurations with control location in

F at least k times, we can get that (〈p, w〉, θ) ∈ Xk which contradicts the fact

that (〈p, w〉, θ) /∈ Xk. Thus, BP has no accepting run from the configuration

(〈p, w〉, θ).

(⇐) : We prove that if (〈p, w〉, θ) ∈ YBP , then BP has an accepting run from

(〈p, w〉, θ). Since YBP = Pre+(YBP ∩ F × Γ∗ × 2∆∪∆c) (note that YBP is a

fix point of Pre+(X ∩ F × Γ∗ × 2∆∪∆c)), then there exists a set of configu-

rations {(〈p1, w1〉, θ1), · · · , (〈pn, wn〉, θn)} ⊆ YBP ∩ F × Γ∗ × 2∆∪∆c such that

(〈p, w〉, θ) ⇒BP {(〈p1, w1〉, θ1), · · · , (〈pn, wn〉, θn)}. Thus, we can obtain that

(〈pi, wi〉, θi) ∈ YBP , pi ∈ F .

Then we will construct a finite run (tree) ρ with root (〈p, w〉, θ), the leaves of ρ are

{(〈p1, w1〉, θ1), · · · , (〈pn, wn〉, θn)} and the inner nodes are the successors during

the derivation of (〈p, w〉, θ) ⇒BP {(〈p1, w1〉, θ1), · · · , (〈pn, wn〉, θn)}. Every path

of ρ can visit some configurations with control locations in F at least once.

Since (〈pi, wi〉, θi) ∈ YBP , we can repeatedly construct a corresponding tree ρi

for the configuration (〈pi, wi〉, θi). Then the leaf (〈pi, wi〉, θi) in ρ can be replaced

by the tree ρi and we can obtain a new tree whose every path can visit some

configuration with control location in F at least twice. Then we can infinitely

repeat this procedure to leaves of the latest tree. Then each path of the latest tree

can visit some configurations with control locations in F infinitely often. Thus,

BP has an accepting run ρ. ✷

4.2.2 Computing YBP
In this section, our goal is to compute YBP . We show that this set can be effectively

represented by an EAMA A = (Q,Γ, T, I, Qf ), where Q ⊆ P × 2∆∪∆c × N ∪

{qf}, I ⊆ P × 2∆∪∆c × N is the set of initial states and qf is the final state

(Qf = {qf}). Following [41], we propose a saturation procedure to compute

A iteratively. Algorithm 1 below computes A. Intuitively, it computes the
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different Xi’s iteratively. Each iteration step i computes an EAMA Ai. States

of Ai are of the form (p, θ)i, where p ∈ P and θ ⊆ ∆ ∪∆c. There are two loops

in the algorithm: the outer loop (loop1) and the inner loop (loop2). As will be

explained later, if the sequence (Xi) is strictly decreasing, the outer loop won’t

terminate. So we introduce two projections to force termination as follows: for

every S ⊆ P × 2∆∪∆c × N ∪ {qf}:

π−1(S) =




{qi|qi+1 ∈ S} ∪ {qf} if qf ∈ S or ∃q1 ∈ S

{qi|qi+1 ∈ S} else.

πi(S) = {qi|∃1 ≤ j ≤ i s.t. qj ∈ S} ∪ {qf |qf ∈ S}

Algorithm 1 Computation of YBP

1: Initially: i = 0, T = {(qf , γ, {qf})}, ∀γ ∈ Γ, p ∈ P, θ ⊆ ∆ ∪∆c, (p, θ)
0 = qf .

2: Repeat (we call this loop loop1)

3: i := i+ 1;

4: ∀(p, θ)i−1 in the current automaton s.t. p ∈ F ,

add (p, θ)i
ǫ
−→ (p, θ)i−1 to T

5: Repeat (we call this loop loop2)

6: if r : 〈p, γ〉֒
[σ1,··· ,σn]
−−−−−→{〈p1, w1〉, · · · , 〈pn, wn〉} ∈ ∆ ∩ θ

7: if (∃k, 1 ≤ k ≤ n : σk ∩ θ 6= ∅ or ∀k, 1 ≤ k ≤ n, σk = −)

8: Add (p, θ)i
γ
−→ SQ to T ,

where SQ = {q ∈ Qk|(pk, θ)
i wk−→T Qk, 1 ≤ k ≤ n s.t. σk = − or σk ∩ θ 6= ∅}.

9: if r : p ֒
(σ,σ′)
−−−→ p′ ∈ ∆c ∩ θ, s.t.

10: (p′, θ′)i
γ
−→T Q and θ′ = θ\σ ∪ σ′

11: Then, add (p, θ)i
γ
−→ Q to T .

12: Until No new transition rule can be added.

13: Remove from T the transition rules (p, θ)i
ǫ
−→ (p, θ)i−1, for every p ∈ F.

14: Replace every (p, θ)i
γ
−→ S in T by (p, θ)i

γ
−→ πi(S), ∀p ∈ P, γ ∈ Γ, S ⊆ Q

15: Until i > 1 and for every p ∈ P, γ ∈ Γ, θ ∈ 2∆∪∆c , S ⊆ P × 2∆∪∆c × {i} ∪

{qf}, (p, θ)
i γ
−→ S ∈ T ⇐⇒ (p, θ)i−1 γ

−→ π−1(S) ∈ T.

Intuitively, at each step i, every state (p, θ) is represented by state (p, θ)i in

Ai. For every (p, θ) ∈ I, Ai recognizes a configuration (〈p, w〉, θ) if (p, θ)i
ω
−→T qf .

A0 is the automaton obtained by Line 1. It accepts X0 = P × Γ∗ × 2∆∪∆c . At
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the beginning of each iteration, an ǫ-transition in the form (p, θ)i
ǫ
−→T (p, θ)i−1 is

added in Line 4 for every (p, θ) ∈ F × 2∆∪∆c in the current automaton. This

allows to get L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c). Lines 5-12 (loop2) is the saturation

procedure that computes Pre∗BP
(
L(Ai−1)∩ (F ×Γ∗ × 2∆∪∆c)

)
. They ensure that

if θ is a phase such that 〈p, γ〉֒
[σ1,··· ,σn]
−−−−−→{〈p1, w1〉, · · · , 〈pn, wn〉} ∈ ∆∩θ, s.t. either

∃k, 1 ≤ k ≤ n, σk∩θ 6= ∅ or ∀k, 1 ≤ k ≤ n, σk = −, and for every k s.t. σk∩θ 6= ∅

or σk = −, (〈pk, wkw〉, θ) ∈ L(Ai) (i.e., (pk, θ)
i wkw−−→T qf ), then (〈p, γw〉, θ) should

also be in L(Ai) (since it is a predecessor of {(〈pk, wkw〉, θ), 1 ≤ k ≤ n}). I.e.,

T should contain the path (p, θ)i
γw
−→T qf . This path is added thanks to Line 8.

Moreover, if θ is a phase such that 〈p, γ〉 ֒
(σ,σ′)
−−−→ p′ ∈ ∆c ∩ θ and (〈p′, γw〉, θ′) ∈

L(Ai) (i.e., (p′, θ′)i
γw
−→T qf ), where θ

′ = θ\σ ∪ σ′; then (〈p, γw〉, θ) should also

be in L(Ai) (since it is a predecessor of (〈p′, γw〉, θ′)). I.e., T should contain the

path (p, θ)i
γw
−→T qf . This path is added thanks to Line 11. Line 13 removes the

ǫ-transition added by Line 4. This leads to Pre+BP
(
L(Ai−1)∩ (F × Γ∗ × 2∆∪∆c)

)
.

Let Algorithm A be Algorithm 1 without Line 14. Then, if Algorithm A

terminates, it computes YBP . However, if the sequence Xi is strictly decreasing,

Algorithm A never terminates. Lines 14-15 are then used to force termination.

Indeed, thanks to the substitution of Line 14, at the end of step i, states of the

form (p, θ)j, for j < i become useless and can be removed. Line 15 checks then

whether at step i, the transitions of Ai are “the same” than those of Ai−1. If this

is the case, the algorithm terminates. Termination of the algorithm then follows

from the fact that step i adds less transitions than step i− 1. Intuitively, this is

due to the fact that L(Ai) ⊆ L(Ai−1), because step i computes Pre+BP
(
L(Ai−1)∩

(F × Γ∗ × 2∆∪∆c)
)
and A0 accepts P × Γ∗ × 2∆∪∆c . Thus, we can show that:

Theorem 4.2.2 Algorithm 1 always terminates and produces YBP .

To prove Theorem 4.2.2, we need the following lemma:

Lemma 9 In Algorithm 1, for every γ ∈ Γ, w ∈ Γ∗, p ∈ P, S ⊆ Q; at each step

i ≥ 1, the following holds:

(a) if (p, θ)i
γ
−→ S ∈ T , then (p, θ)i−1 γ

−→ π−1(πi(S)) ∈ T .

(b) if (p, θ)i
w
−→T S, then (p, θ)i−1 w

−→T π
−1(πi(S)).
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Proof: We proceed by induction on i.

Basis. i = 1. In this case, whenever a transition rule (p, θ)1
γ
−→ S is added

to T by either the saturation procedure (Lines 2-12) or the substitution (Line

14), we can get that π−1(π1(S)) = {qf}. Since (p, θ)0 = {qf} and qf
γ
−→ {qf} in

T , we obtain that (p, θ)0
γ
−→ {qf}. Hence, (p, θ)

0 γ
−→ π−1(π1(S)). Therefore, the

statement (a) holds.

For statement (b). In this case, we can have that π−1(π1(S)) = {qf}. If

(p, θ)1
w
−→T S, We need to show that (p, θ)0

w
−→T π−1(π1(S)). Since (p, θ)0

γ
−→

{qf} and qf
γ′

−→ {qf} for γ, γ′ ∈ Γ, we obtain that (p, θ)0
w
−→T π

−1(π1(S)) (since

π−1(π1(S)) = {qf}) for every S ⊆ P × 2∆∪∆c × {0, 1} ∪ {qf}. The ǫ-case (w = ǫ)

is trivial (since (p, θ)0
ǫ
−→T {(p, θ)0} and either (p, θ)1

ǫ
−→T {(p, θ)0} if p ∈ F or

(p, θ)1
ǫ
−→T {(p, θ)1}.) Hence, the statement (b) holds.

Step. i > 1. Let k be the number of transition rules added at the step i. We

proceed by induction on k.

- Basis. k = 0. there is no transition rule added in the form of (p, θ)i
γ
−→ S

which implies that the statement (a) holds. For every (p, θ)i
w
−→T S, we

get that there is a path (p, θ)i
ǫ
−→T (p, θ)i−1 w

−→T S in the automaton for

some S ⊆ P × 2∆∪∆c × {i − 1} ∪ {qf} if p ∈ F or (p, θ)i
ǫ
−→T S with

S = {(p, θ)i} and w = ǫ. Since (p, θ)i−1 ǫ
−→T (p, θ)i−1 and π−1(πi(S)) = S,

we have (p, θ)i−1 ǫ
−→T (p, θ)i−1 w

−→T π
−1(πi(S)). This implies the statement

(b) holds.

- Step. k ≥ 1.

For statement (a). Let t = (p, θ)i
γ
−→ S be the k-th transition rule added

by the saturation procedure. Then there exist 1 ≤ j ≤ n and θj ⊆ ∆ ∪∆c

s.t. (pjl , θjl)
i
wjl−−→T Sjl where {j1, · · · , jm} ⊆ {1, · · · , n}, 1 ≤ l ≤ m. There

are 2 cases depending on whether t is added by Line 8 or not.

(I) if t is added by Line 8, then there exists a transition rule

r : 〈p, γ〉֒
[σ1,··· ,σn]
−−−−−→{〈p1, w1〉, · · · , 〈pn, wn〉} ∈ ∆ ∩ θ

in BP where θj = θ s.t. ∃i : 1 ≤ i ≤ n, σi∩ θ 6= ∅ or σi = − for every

1 ≤ i ≤ n.
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Let {σj1 , · · · , σjm} be the set of σ s.t. σjl ∩ θ 6= ∅ or σjl = − for

1 ≤ l ≤ m. Then there exist (pjl , θ)
i
wjl−−→T Sjl for every 1 ≤ l ≤ m s.t.

S = {q ∈ Sx|x ∈ {j1, · · · , jm}} i.e. S =
⋃m

l=1 Sjl .

(II) if t is added by Line 11, then there exists a transition rule

r : p ֒
(σ,σ′)
−−−→ pj ∈ ∆c ∩ θ in BP where θj = θ\σ ∪ σ′. In this case,

n = j = 1. Then, there exists (pj, θj)
i γ
−→T Sj s.t. S = Sj. We rewrite

(pj, θj)
i γ
−→T Sj of the form (pjl , θjl)

i
wjl−−→T Sjl where jl = 1, θjl = θj

and wjl = γ.

By applying the induction hypothesis on i to (pjl , θjl)
i
wjl−−→T Sjl for each

l : 1 ≤ l ≤ m, we can obtain that (pjl , θjl)
i−1

wjl−−→T π
−1(πi(Sjl)). Therefore,

we only need to prove that there exists Rjl s.t. π
i−1(Rjl) = π−1(πi(Sjl)) for

every 1 ≤ l ≤ m and (pjl , θjl)
i−1

wjl−−→T Rjl exists in the current automaton

during the (i− 1)-th iteration of loop1. If the derivation of (pjl , θjl)
i−1

wjl−−→T

π−1(πi(Sjl)) does not use any transition rule added by the substitution at

Line 14, then, (pjl , θjl)
i−1

wjl−−→T π−1(πi(Sjl)) exists during the saturation

procedure at the (i − 1)th iteration. Otherwise, there is a transition rule

qi−1 γ′

−→T R which is used in the derivation of (pjl , θjl)
i−1

wjl−−→T π
−1(πi(Sjl))

and is obtained by replacing qi−1 γ′

−→T R′ at line 14 where R = πi−1(R′).

Let us decompose (pjl , θjl)
i−1

wjl−−→T π
−1(πi(Sjl)) as follows:

- wjl = uγ′v with u, v ∈ Γ∗,

- (pjl , θjl)
i−1 u

−→T G ∪ {qi−1} with G ⊆ P × 2∆∪∆c × {i− 1} ∪ {qf}

- G
γ′v
−→T G

′

- R
v
−→T G

′′

- π−1(πi(Sjl)) = G′ ∪G′′

By applying the induction hypothesis on i to R
v
−→T G′′, there exists G′′′

s.t. R′ v
−→T G′′′ is obtained by applying the saturation procedure at the

(i − 1)th iteration and G′′ = πi−1(G′′′). Thus, there must exist Rjl s.t.

πi−1(Rjl) = π−1(πi(Sjl)) and the derivation of (pjl , θjl)
i−1

wjl−−→T Rjl uses

transition rules added by the substitution at Line 14 less often than the

derivation of (pjl , θjl)
i−1

wjl−−→T Sjl .
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Similarly, we can apply the same reasoning to (pjl , θjl)
i−1

wjl−−→T Rjl to show

that there exists R′
jl
s.t. (pjl , θjl)

i−1
wjl−−→T R′

jl
holds during the saturation

procedure at the (i − 1)th iteration. Thus, the statement (a) holds. If a

transition rule (p, θ)i
γ
−→ πi(S) is added by the substitution at line 14 due

to the transition t = (p, θ)i
γ
−→ S, then the statement (a) still holds.

For statement (b). Let us consider the statement (b) where we show

that if (p, θ)i−1 w
−→T S, then (p, θ)i−1 w

−→T π−1(πi(S)). Then, suppose t =

(p0, θ0)
i γ
−→ {qi1, · · · , q

i
n, q

i−1
n+1, · · · , q

i−1
n+n′} be the k-th transition rule added

by either the saturation procedure or the substitution (line 14). Let x be

the number of times that t is used in the path (p, θ)i
w
−→T S. We proceed

by induction on x. In the basic case when x = 0, the property holds by

applying the induction hypothesis on k. Let us consider the case where

x > 0. Then, there exist u, v ∈ Γ∗ s.t. w = vγu and there exist the

following path in the current automaton:

- (p, θ)i
v
−→T G ∪ {(p0, θ0)

i} for some G ⊆ Q where t is not used in the

derivation of (p, θ)i
v
−→T G ∪ {(p0, θ0)

i}

- G
γu
−→ G′.

- qij
u
−→T Sj for every j : 1 ≤ j ≤ n.

- qi−1
j

u
−→T Sj for every j : n+ 1 ≤ j ≤ n+ n′.

- S = G′ ∪
⋃n+n′

j=1 Sj.

By applying the induction hypothesis on k to (p, θ)i
v
−→T G ∪ {(p0, θ0)

i},

we can obtain that (p, θ)i−1 v
−→T π−1(πi(G)) ∪ {(p0, θ0)

i−1}. By applying

the induction hypothesis on x to G
γu
−→ G′ and qij

u
−→T Sj, we get that

π−1(πi(G))
γu
−→T π

−1(πi(G′)) and qi−1
j

u
−→T π

−1(πi(Sj)) for every j : 1 ≤ j ≤

n. By applying the statement (a) to (p0, θ0)
i γ
−→ {qi1, · · · , q

i
n, q

i−1
n+1, · · · , q

i−1
n+n′},

we can get that (p0, θ0)
i−1 γ

−→ {qi−1
1 , · · · , qi−1

n+n′}.

Since π−1(πi(S)) = π−1(πi(G′))∪
⋃n

j=1 π
−1(πi(Sj))∪

⋃n+n′

j=n+1 Sj, we get that

(p, θ)i−1 w
−→T π

−1(πi(S)). Thus, the statement (b) holds.

✷
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In order to show that there exists a fix-point s.t. the termination condition of

loop1 is true, let Algorithm C be Algorithm 1 without Line 15 i.e. without the

termination condition of loop1. We show that there exists a fix-point n such that

L(An) = L(An+1).

Lemma 10 Let n ≥ 1 be the first number in Algorithm C s.t. for every p ∈

P, γ ∈ Γ, S ⊆ (P × 2∆∪∆c × {n + 1}) ∪ {qf}, θ ⊆ ∆ ∪∆c, (p, θ)
n+1 γ

−→ S ∈ T ⇔

(p, θ)n
γ
−→ π−1(S) ∈ T . For every i ≥ n, L(Ai+1) = L(An).

Proof: Since (p, θ)i+1 γ
−→ S will be replaced by (p, θ)i+1 γ

−→ πi+1(S) by line 14,

then each path (p, θ)i+1 w
−→T {qf} only uses states in the form of P × 2∆∪∆c ×

{i + 1} ∪ {qf}. It is sufficient to prove that for every (p, θ) ∈ P × 2∆∪∆c , γ ∈

Γ, (p, θ)i+1 γ
−→ {qi+1

1 , · · · , qi+1
m } ∈ T ⇔ (p, θ)n

γ
−→ {qn1 , · · · , q

n
m} ∈ T by induction

on i.

Basis. i = n. We can get directly from the condition of n that

(p, θ)n+1 γ
−→ {qn+1

1 , · · · , qn+1
m } ∈ T ⇔ (p, θ)n

γ
−→ {qn1 , · · · , q

n
m} ∈ T (0)

Step. i > n. By applying the induction hypothesis (induction on i), then we

obtain that for every (p, θ) ∈ P × 2∆∪∆c , γ ∈ Γ,

(p, θ)i
γ
−→ {qi1, · · · , q

i
m} ∈ T ⇔ (p, θ)n

γ
−→ {qn1 , · · · , q

n
m} ∈ T (1)

Since the result of (1), (p, θ)i+1 γ
−→ {qi+1

1 , · · · , qi+1
m } is added based on Ai, for

every (p, θ) ∈ P × 2∆∪∆c , γ ∈ Γ, we obtain that:

(p, θ)i+1 γ
−→ {qi+1

1 , · · · , qi+1
m } ∈ T ⇔ (p, θ)n+1 γ

−→ {qn+1
1 , · · · , qn+1

m } ∈ T

From (0), we get that

(p, θ)i+1 γ
−→ {qi+1

1 , · · · , qi+1
m } ∈ T ⇔ (p, θ)n

γ
−→ {qn1 , · · · , q

n
m} ∈ T

✷

Lemma 11 In Algorithm 1, ∀i ≥ 1, after line 13, Ai accepts Pre
+
(
L(Ai−1)∩

(F × Γ∗ × 2∆∪∆c)
)
.
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Proof:

To prove this lemma, we first show that each configuration c accepted by Ai after

Line 13 is such that c ∈ Pre+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
, then we show that

each configuration c ∈ Pre+
(
L(Ai−1)∩ (F ×Γ∗× 2∆∪∆c)

)
is accepted by Ai after

Line 13.

(⇒:) Suppose (〈p, w〉, θ) is a configuration accepted by Ai after Line 13, we show

that (〈p, w〉, θ) ∈ Pre+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
. Since there is no path of

the form (p, θ)i
ǫ
−→T {qf} after Line 13, then we get that |w| ≥ 1. Then there

exist γ ∈ Γ, u ∈ Γ+ and S ⊆ Q s.t. w = γu, t = (p, θ)i
γ
−→ S ∈ T and S

u
−→T {qf}.

There are 2 cases depending on whether t is added by Line 8 or Line 11. Let r

be the transition rule used to add t.

- Case t is added by Line 8: then there exists a rule

r : 〈p, γ〉֒
[σ1,··· ,σn]
−−−−−→{〈p1, w1〉 · · · 〈pn, wn〉} ∈ ∆ s.t. r ∈ θ, and either σj =

− for every j : 1 ≤ j ≤ n or ∃j : 1 ≤ j ≤ n s.t. σj ∩ θ 6= ∅, S =

{q ∈ Sj|(pj, θ)
i
wj

−→T Sj, 1 ≤ j ≤ n, σj ∩ θ 6= ∅ or σj = −}.

This implies that {(〈pj, wju〉, θ)|1 ≤ j ≤ n, σj ∩ θ 6= ∅ or σj = −} ⊆

Pre∗
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
.

Thus, we get that (〈p, γu〉, θ) ∈ Pre+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
. The

property holds.

- Case t is added by Line 11: then there exists a rule r : p ֒
(σ,σ′)
−−−→ p1 ∈ ∆c

s.t. r ∈ θ, θ1 = θ\σ ∪ σ′. We get that (p1, θ1)
i γ
−→T S1. This implies that

{(〈p1, γu〉, θ1)} ⊆ Pre∗
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)

Thus, we get that (〈p, γu〉, θ) ∈ Pre+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
. The

property holds.

(⇐:) Suppose (〈p, w〉, θ) ∈ Pre+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
, we show that

(〈p, w〉, θ) is accepted by Ai after Line 13. Since Pre+
(
L(Ai−1) ∩ (F × Γ∗ ×

2∆∪∆c)
)
= Pre∗

(
Pre

(
L(Ai−1)∩(F×Γ∗×2∆∪∆c)

))
, we obtain that Pre+

(
L(Ai−1)∩

(F × Γ∗ × 2∆∪∆c)
)
is the limit of the infinite sequence {Ci}i≥0 given by C0 =

Pre
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
and Cj+1 = Cj ∪ Pre(Cj) for every j ≥ 0

(Cj ⊆ Cj+1 for j ≥ 0). Thus, we only need to show that for every j ≥ 0,

(〈p, w〉, θ) ∈ Cj, there exists a path (p, θ)i
w
−→T {qf} inAi whose derivation doesn’t
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use any transition rule in the form of qi
ǫ
−→ {qi−1}. We proceed by induction on

j.

Basis. j = 0. By applying the saturation procedure (Lines 5-12), Ai can accept

C0 if only the out-coming states in the form of (p, θ)i of the added transition

rules are regarded as initial states. Moreover, these transition rules are in the

form of (p, θ)i
γ
−→ Q for some Q ⊆ P × 2∆∪∆c × {i − 1} ∪ {qf}. Thus, for every

configuration (〈p, w〉, θ) ∈ C0, Ai has a path of the form (p, θ)i
w
−→T {qf} whose

derivation doesn’t use any transition rule in the form of qi
ǫ
−→ {qi−1}.

Step. j ≥ 1. For every configuration (〈p, w〉, θ) ∈ Cj, since Cj = Cj−1 ∪

Pre(Cj−1), we have (〈p, w〉, θ) ∈ Cj−1 or (〈p, w〉, θ) ∈ Pre(Cj−1).

If (〈p, w〉, θ) ∈ Cj−1, the result follows from the induction hypotheses.

If (〈p, w〉, θ) ∈ Pre(Cj−1), there are 2 cases depending on whether it corresponds

to a self-modifying rule or not.

- If there exists a transition rule r : 〈p, γ〉֒
[σ1,··· ,σn]
−−−−−→{〈p1, w1〉, · · · , 〈pn, wn〉} ∈

∆ s.t. r ∈ θ either ∃k : 1 ≤ k ≤ n, σk ∩ θ 6= ∅ or ∀k : 1 ≤ k ≤ n, σk = −,

and u ∈ Γ∗ s.t. w = γu and (〈pk, wku〉, θ) ∈ Cj−1 for 1 ≤ k ≤ n s.t.

σk ∩ θ 6= ∅ or σk = −. By applying the induction hypothesis, we obtain

that Ai has a path (pk, θ)
i wk−→T Qk

u
−→T {qf} for 1 ≤ k ≤ n, σk ∩ θ 6= ∅ or

σk = −. Applying the saturation rule, we obtain that (p, θ)i
γ
−→ SQ where

SQ = {q ∈ Qk|(pk, θ)
i wk−→T Qk, 1 ≤ k ≤ n, σk ∩ θ 6= ∅ or σk = −}. This

implies that Ai has a path (p, θ)i
γ
−→ SQ

u
−→T {qf} whose derivation doesn’t

use any transition rule in the form of qi
ǫ
−→ {qi−1}. The property holds.

- If there exists a transition rule r : p ֒
(σ,σ′)
−−−→ p1 ∈ ∆c ∩ θ s.t. θ1 = θ\σ ∪ σ′

and (〈p1, wu〉, θ1) ∈ Cj−1. By applying the induction hypothesis, we obtain

that Ai has a path (p1, θ1)
i w
−→T Qk

u
−→T {qf}. Applying the saturation rule,

we obtain that (p, θ)i
γ
−→ Q1. This implies that Ai has a path (p, θ)i

γ
−→

Q1
u
−→T {qf} whose derivation doesn’t use any transition rule in the form of

qi
ǫ
−→ {qi−1}. The property holds.

Thus, Ai accepts Pre
+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
. ✷

Lemma 12 In Algorithm C (Algorithm 1 without Line 15), ∀i ≥ 0,
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(a) for every accepting run ρ of BP from (〈p, w〉, θ) ∈ P × Γ∗ × 2∆∪∆c, there

exists a path (p, θ)i
w
−→T {qf} in Ai and for every decomposition (p, θ)i

u
−→T

Q
v
−→T {qf} of the path (p, θ)i

w
−→T {qf}, if Q 6= {qf}, then for all (p′, θ′)i

or (p′, θ′)i−1 in Q\{qf}, some path of the run ρ will reach (〈p′, v〉, θ′) i.e.

(〈p, w〉, θ) ⇒∗ (〈p′, v〉, θ′)

(b) YBP ⊆ L(Ai) after substitution at line 14.

Proof: We proceed by induction on i.

Basis. i = 0. The statement (a) holds directly from the fact that for every

configuration (〈p, w〉, θ) ∈ P ×Γ∗ × 2∆∪∆c , there exists a path (p, θ)0
w
−→T {qf} in

the initial automatonA0 and for every decomposition (p, θ)0
u
−→T Q

v
−→T {qf}, Q =

{qf}. Then, statement (b) holds from the fact that YBP ⊆ P×Γ∗×2∆∪∆c = L(A0).

Step. i ≥ 1. For the statement (a). Let H(ρ) be the maximum number of steps

required by the paths of ρ from root ((〈p, w〉, θ)) to reach some configuration with

control locations in F . We apply a nested induction on H(ρ).

- Basis. H(ρ) = 0. Since the root of ρ is (〈p, w〉, θ), we can obtain that

(〈p, w〉, θ) ∈ F ×Γ∗×2∆∪∆c . By the transition rule added to the automaton

during the i-th iteration by line 4, we can get that (p, θ)i
ǫ
−→ {(p, θ)i−1} is a

transition rule of Ai. Then, by applying the induction hypothesis on i, the

result immediately follows.

- Step. H(ρ) ≥ 1. Let ρ1, · · · , ρn be the sub-trees of ρ whose root is the

children of the root (〈p, w〉, θ). Let p1, · · · , pn ∈ P , w1, · · · , wn ∈ Γ∗, γ ∈ Γ

and θ1 ⊆ ∆ ∪ ∆c be such that w = γw′ and the roots of the sub-trees of

ρ are (〈p1, w1w
′〉, θ1), · · · , (〈pn, wnw

′〉, θn). There are 2 cases depending on

whether (θ = θj) for every j : 1 ≤ j ≤ n or not.

- Case θj = θ for every j : 1 ≤ j ≤ n. Then ρ1, · · · , ρn are the accepting

runs of BP from configurations (〈p1, w1w
′〉, θ), · · · , (〈pn, wnw

′〉, θ) and

there exists r : 〈p, γ〉֒
[σj1 ,··· ,σjm ]
−−−−−−−→{〈pj1 , wj1〉, · · · , 〈pjm , wjm〉} ∈ ∆ s.t.

r ∈ θ, {1, · · · , n} ⊆ {j1, · · · , jm} and for every 1 ≤ j ≤ n, σj∩θ 6= ∅ or

σj = −. Note that for the constraint [σj1 , · · · , σjm ], either ∃1 ≤ l ≤ m,

σjl ∩ θ 6= ∅ or ∀1 ≤ l ≤ m, σjl = −. Since H(ρ) ≥ 1 (p /∈ F ), we can

get H(ρj) < H(ρ) for 1 ≤ j ≤ n. Thus we apply the nested induction
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hypothesis on H(ρj), we can get that there exists a path (pj, θ)
i
wjw

′

−−−→T

{qf} in Ai and for every decomposition (pj, θ)
i u
−→T Q

v
−→T {qf} of the

path (pj, θ)
i
wjw

′

−−−→T {qf}, if Q 6= {qf}, then for all (p′, θ′)k ∈ Q\{qf}

with k ∈ {i, i−1}, some path of the run ρj will reach the configuration

(〈p′, v〉, θ′).

Moreover, there exists a path (pj, θ)
i

wj

−→T Qj
w′

−→T {qf} in Ai for

every j : 1 ≤ j ≤ n and by applying the saturation procedure, we

get that (p, θ)i
γ
−→

⋃n

j=1Qj
w′

−→T {qf} in Ai. Then for every decom-

position (p, θ)i
u
−→T Q

v
−→T {qf} of the path ((p, θ)i

γw′

−−→T {qf}), if

Q 6= {qf}, then for all (p′, θ′)k ∈ Q\{qf} with k ∈ {i, i−1}, some path

of the run ρ will reach the configuration (〈p′, v〉, θ′). Thus, we can have

(〈p, w〉, θ) ⇒∗ (〈p′, v〉, θ′).

- Case θj 6= θ, then there exists a transition rule r in θ, r : p ֒
(σ,σ′)
−−−→

pj ∈ ∆c and θj = θ\σ ∪ σ′. In this case, wj = γ and j = 1. Thus,

the root of ρj is (〈pj, wjw
′〉, θj). Since H(ρ) ≥ 1 (p /∈ F ), we can get

H(ρj) < H(ρ). Thus we apply the induction hypothesis on H(ρj), we

can get that there exists a path (pj, θj)
i
wjw

′

−−−→T {qf} in Ai and for every

decomposition (pj, θj)
i u
−→T Q

v
−→T {qf} of the path (pj, θj)

i
wjw

′

−−−→T {qf}

where uv = wjw
′, if Q 6= {qf}, then for all (p′, θ′)k ∈ Q\{qf} with

k ∈ {i, i − 1}, some path of the run ρj will reach the configuration

(〈p′, v〉, θ′).

Moreover, there exists a path (pj, θj)
i
wj

−→T Qj
w′

−→T {qf} in Ai and by

applying the saturation procedure, we get that (p, θ)i
γ
−→ Qj

w′

−→T {qf}

in Ai. Thus, for every decomposition (p, θ)i
u
−→T Q

v
−→T {qf} of the

path (p, θ)i
γw′

−−→T {qf}, if Q 6= {qf}, then for all (p′, θ′)k ∈ Q\{qf}

with k ∈ {i, i− 1}, some path of the run ρ will reach the configuration

(〈p′, v〉, θ′) i.e. (〈p, w〉, θ) ⇒∗ (〈p′, v〉, θ′).

For the statement (b). Since YBP = Pre+(YBP ∩ F × Γ∗ × 2∆∪∆c) and by the

induction hypothesis YBP ⊆ L(Ai−1), we get that

YBP ⊆ Pre+(L(Ai−1) ∩ F × Γ∗ × 2∆∪∆c) (1)

By Lemma 11, we get that just before the substitution at Line 14, Ai accepts
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Pre+(L(Ai−1) ∩ F × Γ∗ × 2∆∪∆c). Thus, it is sufficient to prove that for every

configuration (〈p, w〉, θ) ∈ YBP , Ai accepts (〈p, w〉, θ) after the substitution at

Line 14. Let n be the number of transition rules substituted at Line 14. For all

m ≤ n, let Am
i be the automaton obtained by substituting m transition rules.

We show that YBP ⊆ L(Am
i ) by induction on m.

• Basis. m = 0. We directly get that YBP ⊆ L(A0
i ).

• Step. m ≥ 1. By applying the induction hypothesis, we can get that

YBP ⊆ L(Am−1
i ). If L(Am−1

i ) ⊆ L(Am
i ), the result follows from the fact

that YBP ⊆ L(Am−1
i ). Otherwise, if L(Am−1

i )\L(Am
i ) 6= ∅, let (〈p, w〉, θ)

∈ L(Am−1
i )\L(Am

i ) be some configuration s.t. |w| is the minimum of

{|w′| | (〈p′, w′〉, θ′) ∈ L(Am−1
i )\L(Am

i )} s.t. (〈p, w〉, θ) ∈ YBP . Then we

prove by contradiction that (〈p, w〉, θ) should not be in YBP .

For every path of the form (p, θ)i
w
−→T {qf} in Am−1

i , there exist u ∈ Γ+, v ∈

Γ∗ and q ∈ P such that w = uv and (p, θ)i
u
−→T Q ∪ { (q, θ′)i−1}

v
−→T {qf}

in Am−1
i and Am

i doesn’t have {(q, θ′)i}
v
−→T {qf}. (Otherwise, (〈p, w〉, θ) ∈

L(Am
i )). By the statement(a), for each accepting run ρ of BP starting from

(〈p, w〉, θ), one path of this run ρ will reach such a configuration (〈q, v〉, θ′).

It is sufficient to show that (〈q, v〉, θ′) /∈ YBP .

Now let us show that (〈q, v〉, θ′) /∈ YBP . If (〈q, v〉, θ′) /∈ L(Am−1
i ), by ap-

plying the induction hypothesis on m, we get that (〈q, v〉, θ′) /∈ YBP . If

(〈q, v〉, θ′) ∈ L(Am−1
i ), then (〈q, v〉, θ′) ∈ L(Am−1

i )\L(Am
i ). If (〈q, v〉, θ′) ∈

YBP , then |v| < |w| which contradicts the fact that |w| is the minimum of

{|w′| | (〈p′, w′〉, θ′) ∈ L(Am−1
i )\L(Am

i )} s.t. (〈p, w〉, θ) ∈ YBP . Thus, we can

obtain that (〈q, v〉, θ′) /∈ YBP .

✷

Then, we can prove Theorem 4.2.2:

Proof: We prove termination and correctness.

Termination: There are two loops in Algorithm 1. Thus, we will prove those

two loops both terminate.
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Loop2: Suppose loop2 is in the ith iteration of loop1. Since only states of the

form (p, θ)i ∈ P ×2∆∪∆c ×{i} can be added into A at the ith iteration, we obtain

that Loop2 only add a finite number of transition rules at the ith iteration. This

implies that ∀i ≥ 1, loop2 always terminates at the i-th iteration.

Loop1 : Now we consider the termination of Loop1. For every i ≥ 1, Line 14

ensures that at the end of the ith iteration, every transition rule in the current

automaton is in the form of (p, θ)j
γ
−→ S for every j ≤ i, S ⊆ (P × 2∆∪∆c ×

{j}) ∪ {qf}. Thus, by the Lemma 9(a), at (i + 1)th iteration with i ≥ 1, either

the termination condition at Line 15 is satisfied or the number of transitions is

strictly smaller than in the ith iteration. Therefore, Algorithm 1 terminates.

Correctness: Let n > 1 be the fix-point of Algorithm 1 s.t. for every p ∈

P, γ ∈ Γ, R ⊆ P×2∆∪∆c×{n}∪{qf}, (p, θ)
n γ
−→ R ∈ T ⇐⇒ (p, θ)n−1 γ

−→ π−1(R) ∈

T holds. Then L(An) = L(An−1). We will show that L(An) = YBP .

If we remove the termination condition of loop1 i.e. if we consider Algorithm

C, by Lemma 10 and Lemma 9(b) and the fact that L(A0) = P × Γ∗ × 2∆∪∆c ,

we have that for all i ≥ n:

L(Ai) = L(Ai−1) =, · · · ,= L(An) ⊆ L(An−1) ⊆ L(A0). (1)

- Let us first show that L(An) ⊆ YBP : Since YBP =
⋂
i≥0Xi and Xi+1 =

Pre+
(
Xi∩ (F ×Γ∗×2∆∪∆c)

)
, then it is sufficient to prove that L(Ai) ⊆ Xi

for every i ≥ 0. We proceed by induction on i.

• Basis. i = 0. L(A0) ⊆ X0 always holds.

• Step. i > 0. By applying the induction hypothesis (induction on i),

we get that L(Ai−1) ⊆ Xi−1. By the definition of Xi = Pre+(Xi−1 ∩

(F × Γ∗ × 2∆∪∆c)), we can have that

Pre+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
⊆ Xi (2)

By Lemma 11, ∀i ≥ 1, Ai accepts Pre
+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)

before Line 14 of the algorithm. By Lemma 9(b), Line 14 only removes

configurations from Ai ( Line 15 can only reduce the language of Ai),

we can obtain that:

L(Ai) ⊆ Pre+
(
L(Ai−1) ∩ (F × Γ∗ × 2∆∪∆c)

)
(3)

From (2) and (3), we can get that L(Ai) ⊆ Xi.
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- Now, we show that YBP ⊆ L(An): It directly follows from Lemma 12(b).

Therefore, we show that YBP = L(An).

✷

Thus, it follows from Theorems 4.1.1, 4.2.1 and 4.2.2 that:

Corollary 1 Let P be a SM-PDS, ν : P → 2At be a labelling function, and ϕ be

a CTL formula over At. Then, we can compute an EAMA A that characterizes

the set of configurations (〈p, w〉, θ) of P such that (〈p, w〉, θ) |=ν ϕ.

4.3 Experiments

4.3.1 Our algorithm vs. standard CTL on PDSs

We implemented our algorithm in a tool and we compared its performance with

the approach that consists in translating the SM-PDS to an equivalent standard

PDS, and then applying the standard CTL model checking algorithm imple-

mented in the PDS model-checker tool PuMoC [40]. All our experiments were

run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of memory. To perform this

comparision, we randomly generate several SM-PDSs and CTL formulas. Our re-

sults (CPU Execution time) are shown in Table 4.1. Column |∆|+ |∆c| indicates

the size of the transition rules. Column formula size shows the size of the CTL

formula. Column SM-PDS is the cost of our direct algorithm. Column To PDS

reports the cost it takes to get the equivalent PDS from the SM-PDS. Column

PDS is the cost used to run standard CTL model checking for the equivalent

PDS in PuMoC. Column Total Time is the whole cost it takes to translate the

SM-PDS into a PDS, and then apply the PDS CTL model-checking algorithm of

PuMoC [40] (Total Time= To PDS + PDS). Column Result1 is the result of

our approach and Result2 is the result of PuMoC [40], where Y means yes the

formula is satisfied and N means no, the formula is not satisfied. “-” means out

of memory. It can be seen that our direct approach is much more efficient, and

that it terminates in all the cases, whereas going through CTL model-checking

of PDSs gets out of memory in most of the cases. Translating the SM-PDS
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to a standard PDS may take more than 24 days, whereas our direct

algorithm takes only a few seconds.

4.3.2 Malicious Behavior Detection on Self-Modifying Code

4.3.2.1 Specifying malicious behaviors using CTL.

We applied our tool to detect several self-modifying malwares. Indeed, as shown

in [40], several malicious behaviors can be described by CTL formulas. We give

in what follows an example of such a malicious behavior.

Spyware (Scanning the Disk). The aim of a spyware is to steal information

from the host. To do this, it has to scan the disk of the host in order to find the

interesting file that he wants to steal. If a file is found, it will run a payload to

steal it, then continues searching the next file. If a directory is found, it will enter

this path and continues scanning. This malicious behaviour is present e.g. in the

notorious spyware Flame: It first calls the function FindFirstFileW to search the

first object in the given path, then, it will check whether the function call succeeds

or not. If the function call fails, it will call the function GetLastError. Otherwise

it will call either the function FindFirstFileW again if it finds a directory or

the function FindNextFileW to search for the next object. We can specify this

behavior in CTL as follows:

φspy = EF
(
call F indF irstF ileW ∧AF

(
call GetLastError

∨call F indF irstF ileW ∨ call F indNextF ileW
))

This formula states that there exists a path where the function FindF irstF ileW

is called, then, in all the future paths, the program either calls GetLastError

(if FindF irstF ileW failed) or calls FindF irstF ileW (if a directory is found)

or calls FindNextF ileW (to search for the next file). Scanning a disk can be a

behavior of a benign program. To avoid false alarms, we can combine this CTL

formula with other formulas describing other malicious behaviors expressing the

payload (such as sending a file) to determine whether the binary code is a mal-

ware or not. Note that, the formula is branching time and cannot be described

as a LTL formula.
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|∆|+ |∆c| formula SM-PDS To PDS PDS Total Time Result1 Result2

C
T
L
M
o
d
el

C
h
ec
k
in
g

5 + 2 2 0.27s 0.09s 0.25s 0.34s Y Y

6 + 4 5 0.36s 0.21s 0.45s 0.66s Y Y

8 + 4 12 2.88s 0.35s 3.41s 3.76s Y Y

10 + 4 18 3.71s 0.39s 3.85s 4.24s Y Y

20 + 4 15 3.84s 0.62s 3.94s 4.56s N N

30 + 4 8 4.01s 2.20s 4.79s 6.99s Y Y

35 + 4 20 5.13s 2.36s 6.53s 8.89s Y Y

50 + 8 6 7.86s 4.92s 8.04s 12.96s N N

80 + 8 15 8.46s 5.06s 10.31s 15.37s Y Y

80 + 8 20 9.57s 5.06s 10.79s 15.85s Y Y

110 + 8 6 8.83s 5.25s 11.42s 16.64s N N

110 + 8 15 9.01s 5.25s 12.98s 18.13s N N

110 + 8 20 10.24s 5.25s 13.44s 18.69s Y Y

120 + 10 10 9.59s 5.70s 12.32s 18.02s N N

120 + 10 20 11.48s 5.70s 14.87s 20.57s Y Y

250 + 8 6 13.22s 9.13s 18.94s 28.07s N N

250 + 8 15 18.37s 9.13s 21.11s 30.24s Y Y

500 + 8 6 20.51s 17.02s 29.25s 46.27s N N

600 + 9 8 23.34s 295.24s 57.79s 353.03s Y Y

600 + 9 15 28.88s 295.24s 63.16s 358.40s Y Y

600 + 9 25 35.39s 295.24s 69.82s 365.06s Y Y

1000 + 10 6 35.11s 3251.02s 7127.41s 10378.43s N N

1100 + 10 8 37.34s 3251.02s 7319.82s 10570.84s Y Y

1100 + 10 45 83.63s 3251.02s - - N -

1500 + 8 30 60.71s 2182.78s 13821.34s 16004.12s N N

2000 + 10 18 49.48s 5529.30s - - Y -

2000 + 10 36 61.13s 5529.30s - - N -

2100 + 10 15 60.74s 5544.69s - - Y -

2500 + 8 30 68.55s 3981.93s - - N -

3000 + 7 10 65.84s 5167.27s - - Y -

3000 + 7 22 78.51s 5167.27s - - N -

3500 + 8 6 70.83s 6105.60s - - N -

3500 + 10 6 75.91s 9219.18s - - N -

3500 + 10 20 93.37s 9219.18s - - Y -

3800 + 10 30 99.06s 9295.24s - - N -

3850 + 10 8 93.20s 9308.01s - - Y -

3850 + 10 30 115.52s 9308.01s - - N -

4000 + 10 20 125.81s 10002.28s - - N -

4200 + 8 15 121.16s 9599.37s - - Y -

4500 + 8 23 136.72s 9881.85s - - Y -

4500 + 11 5 139.95s 40290.27s - - Y -

4800 + 11 10 142.13s 42184.85s - - Y -

4800 + 11 15 153.22s 42184.85s - - Y -

5500 + 10 20 196.46s 45745.44s - - Y -

Table 4.1: Our approach vs. standard algorithms for PDSs for CTL model check-
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4.3 Experiments

4.3.2.2 Applying our tool for malware detection.

We applied our tool to detect several malwares. We consider 400 email-worms, 30

worms and 100 viruses from VX heaven [48] and 260 new malwares generated by

NGVCK. We also choose 19 benign samples from Windows XP system (win32).

We consider self-modifying versions of these programs. In these versions, the mali-

cious behaviors are unreachable if the semantics of the self-modifying instructions

are not taken into account, i.e., if the self-modifying instructions are considered

as “standard” instructions that do not modify the code, then the malicious be-

haviors cannot be reached. As previously, first, we abstract away the semantics

of the self-modifying instructions and model such programs as standard PDSs

as described in [40], and perform CTL model-checking for PDSs to determine

whether the programs contain any malicious behavior. In this case, none of

the programs was declared as malicious. Then, we use SM-PDSs to model these

programs, thus, taking self-modifying instructions into consideration. Then, we

check whether these SM-PDSs satisfy any malicious CTL formula in our database.

If yes, the program is declared as malicious. If not, it is declared as benign. In

our experiments (we have 790 malwares), our tool was able to detect all these

programs as malicious (whereas when we model these programs using standard

PDSs and abstract away self-modifying instructions, none of these programs was

detected as malicious). Our tool was also able to determine that benign programs

are benign. We report in Tables 4.2, 4.3 and 4.4 the results we obtained. Col-

umn Size gives the number of control locations, Column Result shows the result

of our algorithm: Yes means malicious and No means benign; and Column cost

gives the cost in seconds. You can see that our CTL model checking approach

allows to detect all the malicious programs in a few seconds.
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5

SMODIC: A Model Checker for

Self Modifying Code

In this chapter, we present SMODIC, a model checker for self-modifying binary

code that use self-modifying mov instructions. In SMODIC, such binary code is

modeled using Self Modifying Pushdown Systems (SM-PDS). SMODIC takes as

input either a self-modifying binary code or a self modifying pushdown system.

It can then perform reachability analysis and LTL/CTL model-checking for these

models. SMODIC first adapts the tool Jakstab [22] to get the Control Flow

Graph from the binary code. Then, it translates this CFG into a SM-PDS. It

then implements the algorithms presented in the previous chapters to perform

reachability analysis and LTL/CTL model-checking for this model.

We successfully used SMODIC to model-check more than 900 self-modifying

binary codes. In particular, we applied SMODIC for malware detection. In our

experiments, SMODIC was able to detect 895 malwares and to prove that 19

benign programs were benign. SMODIC was also able to detect several mal-

wares that well-known antiviruses such as Bit-Defender, Kinsoft, Avira, eScan,

Kaspersky, Avast, and Symantec failed to detect. SMODIC can be found in

https://lipn.univ-paris13.fr/~xin/smodic/index.html.
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5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING
CODE

5.1 Architecture

The Architecture of SMODIC is shown in Figure. 5.1. SMODIC takes as input

either a binary program or a SM-PDS. SMODIC can perform both reachability

analysis and LTL/CTL model checking.

Binary 

Code

SM-

PDS

input

or

Jakstab

LTL 

formula
API

 information

Assembly

State

Oracle

SMODIC
A sequence of  
API functions

Model
Builder

Yes/No

Reachability
Component

LTL 
Component

CTL
Component

SM-PDS

CTL 

formula

CFG

Figure 5.1: Architecture of SMODIC

If the input of SMODIC is a binary program, it is passed to the component

Oracle. This component is based on the disassembler Jakstab [22]. It takes as

input a binary program, and outputs its corresponding assembly program, its

corresponding Control Flow Graph (CFG) equipped with the assembly instruc-

tion corresponding to each edge, together with informations about the called API

functions, and the different values of the registers and memory addresses at each

control point (state). All these outputs are fed to the componentModel Builder

that will compute the corresponding SM-PDS.

The Reachability component takes as input a SM-PDS, and a sequence of

API functions, and applies the reachability algorithms of Chapter 2 to check

whether the SM-PDS has a run that calls these API functions in this order. For

example, if we consider the sequence f1, f2, f3, then Reachability component

checks whether the SM-PDS has a run that calls first f1, then f2, then f3.

The LTL component takes as input a SM-PDS and an LTL formula, and

applies the algorithms of Chapter 3 to check whether the SM-PDS satisfies the

LTL formula. Similarly, the CTL component takes as input a SM-PDS and

a CTL formula, and applies the algorithms of Chapter 4 to check whether the

SM-PDS satisfies the CTL formula.
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5.2 Experiments

SMODIC McAfee Norman BitDefender Kinsoft Avira eScan Kaspersky Qihoo360 Avast Symantec

100% 27.6% 22.1% 33.1% 14.4% 28.3% 21.4% 56.2 % 35.9% 50.7% 77.9%

Table 5.1: SMODIC vs. Well-known Anti-viruses

5.2 Experiments

5.2.1 Analysing Self-modifying Binary Code

We successfully applied SMODIC to perform reachability analysis and LTL/CTL

model-checking for binary code and for Self-Modifying Pushdown systems. The

results are summarized in Tables 2.1, 2.2, 3.1, 3.2 and 4.1. SMODIC was also

able to detect 895 malwares and to prove that 19 benign programs are benign.

The experimental results are summarized in Tables 3.5, 3.6, 3.7, 3.8, 4.2, 4.3 and

4.4.

5.2.2 Comparison with Well-known Anti-viruses

We also compare our tool against well-known and widely used antiviruses. In

order to have a fair comparision, we need to consider new malwares, since the

anti-viruses know the signatures of all the known malwares. Thus, the challenge

for the anti-viruses is to detect new malwares. To this aim, we use the sophisti-

cated malware generator NGVCK available at VX Heavens [48] to generate new

malwares. Then we obfuscate these malwares with self-modifying code. Then,

we feed these malwares to SMODIC and to well-known antiviruses such as Bit-

Defender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast, and Symantec to

detect them. Our tool was able to detect all these programs as malicious, whereas

none of the well-known antiviruses was able to detect all these malwares. Table

5.1 reports the detection rates of our tool and the well-known anti-viruses.

5.3 Description of SMODIC

Let us show how to use SMODIC. The commands to launch the tool are as follows:

- SMODIC <option1> < modelfile> < option2 > <formula>

Option1 specifies the input file of SMODIC:
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CODE

- M: the input is a SM-PDS model.

- B: the input is a binary program

Option2 specifies the model checking strategy:

- L: use the LTL model checking algorithm

- C: use the CTL model checking algorithm

- R1: perform the Reachability Analysis using pre∗

- R2: perform the Reachability Analysis using post∗

The model file can be either a binary program or a SM-PDS (.smpds file). The

output have three files: one for the Control Flow Graph, one for assembly codes,

and one for the generated SM-PDS. A SM-PDS consists of four parts: a finite set

of standard PDS transition rules, a finite set of self-modifying transition rules,

an initial phase (the initial set of transition rules) and an initial configuration

(initial control location equipped with the stack contents).

Figure 5.2: The Output of SMODIC

Figure 5.3: A Segment of Disassembly Codes

In order to show this, we will use the following command to check whether

the program cmd.exe can eventually call the API function GetModuleA or not.

For this case, we execute the following command:
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5.3 Description of SMODIC

- SMODIC B malware/cmd.exe L <>getmodulea

Figure 5.4 is the snapshot of the command to start SMODIC. In this com-

mand, “B” is Option1 specifying that the input is a binary program. “L” specifies

that the strategy of model checking is LTL. <> getmodulea is the LTL formula

F (call GetModuleA).

Figure 5.4: An Example to Run SMODIC

The output have three files: cfg.dot contains the control flow graph (Figures

5.5 and 5.6 are two segments of cfg.dot: the control locations corresponding to

the instructions are given in Figure 5.5, and the edges between control locations

are given in Figure 5.6), cmd.asm contains the assembly code equipped with

informations about the API functions (Figure 5.3 is a fragment of this file), and

model.smpds contains the SM-PDS (Figure 5.7 is a segment of the SM-PDS

transition rules). This file contains in addition an initial configuration (the initial

control point with the stack contents and the initial set of transition rules). The

three files are shown in Fig. 5.2.

Figure 5.5: Control Locations with Instructions

5.3.1 Reachability Analysis in SMODIC

Let us show how to use SMODIC to perform reachability analysis on SMPDSs
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Figure 5.6: A Segment of Edges between Locations

and self-modifying code. To start the reachability analysis, we need to specify

the options. Let us consider Option1 B, and Option2 R2(or R1). We also need to

specify the sequence of API functions. For example, to perform the reachability

analysis on the sequence of API functions “Call GetModuleA”, “Call CopyFile”

, “call SendFile”, we put the names of the functions in lowercase and use the

symbol “;” to separate the names. To use the post∗ approach to check whether

the above sequence of API functions can be reached or not, we use the following

command (see Fig. 5.8):

- ./SMODIC B malware/cmd.exe R2 getmodulea;copyfile;sendfile

The result is shown in Fig. 5.9.

We also can run reachability analysis on SM-PDSs. Then, we need to specify

the options. We make Option1 M, and Option2 R2(or R1). We also need to spec-

ify the target configuration. For example, we can execute reachability analysis

using the post∗ approach to check if configuration 〈p0, r0〉 can be reached or not

by the following command:

- ./SMODIC M input.smpds R2 p0:r0

The output of SMODIC is the automaton representing the set of reachable con-

figurations. SMODIC also tells whether the target configuration is reached or

not.

5.3.2 LTL and CTL in SMODIC

First, we will introduce the syntax of LTL/CTL used in SMODIC. To be able
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5.3 Description of SMODIC

Figure 5.7: A Segment of SM-PDS Transition Rules

Figure 5.8: An Example to Start SMODIC for Reachability Analysis

to use SMODIC, you need to be familiar with the syntax of the logics LTL and

CTL. The implementation of LTL and CTL operators in SMODIC is as follows:

For LTL:

- Propositional Symbols: true, false and any lowercase string.

- Boolean operators: !(negation), -> (implication), <->(equivalence), &&

(and), || (or).

- Temporal operators: []p(p always holds), <> p (eventually p holds), pUq (

p holds until q holds), and Xp (p holds next time).
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Figure 5.9: The Result of the Example for Reachability Analysis

For CTL:

- Propositional Symbols: tt(true),ff(false) and any lowercase string.

- Boolean operators: !(negation), -> (implication), <->(equivalence), &&

(and), || (or).

- Path quantifiers: A (for all paths) and E (there exists a path).

- Temporal operators: Xp (p holds next time), pRq (p holds until q does’t

hold), pUq (p holds until q holds).

5.4 Applying SMODIC for Malware Detection

We show how to apply LTL/CTL model checking to malware detection. Let us

take a spy worm as example. Such a worm can record data and send it using the

Socket API functions. For example, Keylogger is a spy worm that can record the

keyboard states by calling the API functions GetAsyKeyState and GetKeyState

and send this to the specific server by calling the socket function sendto. This

behavior can be specified by the following LTL formula:

φsw = F
(
(call GetAsyncKeyState ∨ call GetRawInputData) ∧ F(call sendto ∨

call send)
)
.

To check whether the program cmd.exe satisfies this formula or not, first, we

need to rewrite this formula to the form supported by our tool SMODIC. Because

all the propositions are lowercase strings, we rewrite API function calls (like call

GetAsyncKeyState) by removing the word ”call” and changing the name of the
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5.4 Applying SMODIC for Malware Detection

function in lowercase string. The operators are in spin syntax. Thus, formula

φsw is rewritten as:

<>
(
(getasynckeystate||getrawinputdata)&& <> (sendto||send)

)

Figure 5.10: Command for LTL Model Checking

So, we can check whether the program cmd.exe satisfies this formula or not

by using the following command (shown in Figure 5.10):

./SMODIC B malware/cmd.exe L <>
(
(getasynckeystate||

getrawinputdata)&& <> (sendto||send)
)
.

Figure 5.11: Result of LTL Model Checking

The result is shown in Figure 5.11. The result of the computation is that

there is no accepting run. The output of the tool is No, i.e. cmd.exe is not a

spyware.
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6

Conclusion

6.1 Summary

In this thesis, we propose a new formal model for self-modifying code called Self

Modifying Pushdown System(SM-PDS). It is an extension of standard Pushdown

Systems (PDS) with self-modifying transition rules that modify the set of the rules

of the PDS during the execution. This allows to represent the self-modifying

instructions of the program. We also proposed several corresponding model-

checking algorithms for this SM-PDS model and implemented them in a tool:

SMODIC to perform the analysis of self-modifying code and malware detection.

Modeling Self-modifying Code: In Chapter 2, we introduce our new model:

SM-PDS. This new model allows us to present the self-modifying code by self-

modifying transition rules. A SM-PDS is a Pushdown System that can dynam-

ically modify its set of rules during the execution time: rules that are not self-

modifying rules are standard PDS transition rules, while self-modifying rules

modify the current set of transition rules. We show how SM-PDSs can be used

to naturally represent self-modifying programs. It turns out that SM-PDSs are

equivalent to standard PDSs. We show how to translate a SM-PDS to a standard

PDS. This translation is exponential. Thus, performing the model-checking anal-

ysis on the equivalent PDS is not efficient. We propose then in this thesis direct

algorithms to perform reachability and LTL/CTL model checking on SM-PDSs.

Rechability Analysis of Self-Modifying Code: In Chapter 2, we propose

direct algorithms to compute the forward (post∗) and backward (pre∗) reachabil-
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6. CONCLUSION

ity sets for SM-PDSs. Our algorithms are based on representing regular sets of

configurations of SM-PDSs using finite state automata, and applying saturation

procedures on these automata.

LTL Model Checking of Self-modifying Code: In Chapter 3, we propose

a direct LTL model checking algorithm for SM-PDSs. Our algorithm is based

on reducing the LTL model checking problem to the emptiness problem of Self

Modifying Büchi Pushdown Systems (SM-BPDSs). Intuitively, we obtain this

SM-BPDS by taking the product of the SM-PDS with a Büchi automaton accept-

ing an LTL formula ϕ. Then, we solve the emptiness problem of an SM-BPDS

by computing its repeating heads. This computation is based on computing la-

belled pre∗ configurations by applying a saturation procedure on labelled finite

automata.

CTL Model Checking of Self-modifying Code: In Chapter 4, we consider

the CTL model-checking problem for SM-PDSs. This allows to detect CTL-

like malicious behaviors on self-modifying code. We reduce this problem to the

emptiness checking of Self-modifying Alternating Büchi Pushdown Systems (SM-

ABPDS), and we propose an algorithm that computes a finite automaton that

characterizes the set of configurations accepted by the SM-ABPDS.

SMODIC: A Model Checker for Self-modifying Code: we implemented

our techniques in a tool for self-modifying code analysis called SMODIC. We

successfully used SMODIC to model-check more than 900 self-modifying binary

codes. In particular, we applied SMODIC for malware detection, since malwares

usually use self-modifying instructions, and since malicious behaviors can be de-

scribed by LTL or CTL formulas. In our experiments, SMODIC was able to de-

tect 895 malwares and to prove that 19 benign programs were benign. SMODIC

was also able to detect several malwares that well-known antiviruses such as

Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and Symantec failed to

detect. SMODIC can be found in

https://lipn.univ-paris13.fr/~xin/smodic/index.html.

6.2 Future Work

The results presented in this thesis can be extended in several ways :
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6.2 Future Work

Precise Model for Self-modifying Code: As described in Section 2.3, during

the construction of the SM-PDS, we need to assume that instructions i1 and i2

have the same number of operands where i1 is replaced by i2 because of some self-

modifying instructions. If instructions i1 and i2 do not have the same number

of operands, then the corresponding self-modifying instruction, in addition to

replacing i1 by i2, changes several other instructions that follow i1. As mentioned

in Section 2.3, our translation from a self-modifying binary program to a SM-PDS

can only handle the case where i1 and i2 have the same number of operands. In

the future, we plan to improve our SM-PDS model so that it can handle the case

where i1 and i2 do not have the same number of operands.

Precise Control Flow Reconstruction: In our implementation, the control

flow reconstruction is not very precise. This step is based on the tool Jakstab

[22] as disassembler. But Jakstab will sometimes ran into some situations where

the value set analysis cannot be processed and the reconstruction of the control

flow will stop. This holds, in many cases such as: (1) some values of the registers

and possible values of memory addresses are unknown and are represented by any

possible values (the⊤ value); or (2) the destination of some indirect jumps cannot

be computed. In the future, we plan to come up with new approaches to construct

more precise control flow graphs from binary code to make the procedure of

disassembling more precise.

Precise Malicious Behavior Description: In our experiments, we use stan-

dard LTL/CTL formulas to describe malicious behaviors. It was shown in [13, 14]

that SCTPL and SLTPL are more precise and concise to represent malicious be-

haviors. SCTPL and SLTPL are logics that extend LTL and CTL with variables,

quantifiers and predicates over the stack. In the future, we plan to propose

SCTPL/SLTPL model checking algorithms for SM-PDS. This would allow to

have more precise and concise algorithms for self-modifying code analysis and

malware detection.
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