Model checking self modifying code
 Xin Ye

To cite this version:

Xin Ye. Model checking self modifying code. Logic in Computer Science [cs.LO]. Université Paris Cité;
East China normal university (Shanghai), 2019. English. NNT: 2019UNIP7010 . tel-02972592

HAL Id: tel-02972592
https://theses.hal.science/tel-02972592
Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Université de Paris
 En cotutelle avec East China Normal University
 École Doctorale de Sciences Mathématiques de Paris-Centre (ED 386) Laboratoire d'informatique de Paris Nord

Model Checking Self Modifying Code

Par Xin Ye

Thèse de doctorat en informatique

Dirigée par Tayssir Touili et Jifeng He

Présentée et soutenue publiquement à Villetaneuse le 30/09/2019

Guillaume Bonfante : Maître de Conférences HDR, LORIA, Université de Lorraine, rapporteur Jifeng He : Professeur, East China Normal University, co-directeur de thèse Laure Petrucci : Professeur, LIPN, Université Paris 13, Présidente du jury

Mihaela Sighireanu : Maître de Conférences HDR, IRIF, Université Paris Diderot, examinatrice Jean-Marc Talbot : Professeur, Université d'Aix-Marseille, rapporteur

Tayssir Touili : Directrice de recherche, CNRS, LIPN, Université Paris 13, directrice de thèse Valérie Viet Triem Tong: Professeur, CentraleSupelec, examinatrice

Abstract

: A Self modifying code is code that modifies its own instructions during execution time. It is nowadays widely used, especially in malware to make the code hard to analyse and to detect by anti-viruses. Thus, the analysis of such self modifying programs is a big challenge. Pushdown Systems (PDSs) is a natural model that is extensively used for the analysis of sequential programs because it allows to accurately model procedure calls and mimic the program's stack. In this thesis, we propose to extend the PushDown System model with self-modifying rules. We call the new model Self-Modifying PushDown System (SM-PDS). A SM-PDS is a PDS that can modify its own set of transitions during execution. First, we show how SM-PDSs can be used to naturally represent self-modifying programs and provide efficient algorithms to compute the backward and forward reachable configurations of SM-PDSs. Then, we consider the LTL model-checking problem of selfmodifying code. We reduce this problem to the emptiness problem of Self-modifying Büchi Pushdown Systems (SM-BPDSs). We also consider the CTL model-checking problem of selfmodifying code. We reduce this problem to the emptiness problem of Self-modifying Alternating Büchi Pushdown Systems (SM-ABPDSs). We implement our techniques in a tool called SMODIC. We obtained encouraging results. In particular, our tool was able to detect several self-modifying malwares; it could even detect several malwares that well-known anti-viruses such as McAfee, Norman, BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast and Symantec failed to detect.

Keywords : Self-modifying Code, Model-checking, Pushdown System, Malware Detection, LTL, CTL, Reachability Analysis, Binary Code.

Titre : Vérification de Code Auto-modifiant

Résumé : Le code auto-modifiant est un code qui modifie ses propres instructions pendant le temps d'exécution. Il est aujourd'hui largement utilisé, notamment dans les logiciels malveillants pour rendre le code difficile à analyser et être détecté par les anti-virus. Ainsi, l'analyse de tels programmes auto-modifiants est un grand défi. Pushdown System(PDSs) est un modèle naturel qui est largement utilisé pour l'analyse des programmes séquentiels car il permet de modéliser précisément les appels de procédures et de simuler la pile du programme. Dans cette thèse, nous proposons d'étendre le modèle du PDS avec des règles auto-modifiantes. Nous appelons le nouveau modèle Self-Modifying PushDown System (SM- PDS). Un SM-PDS est un PDS qui peut modifier l'ensemble des règles de transitions pendant l'exécution. Tout d'abord, nous montrons comment les SM-PDS peuvent être utilisés pour représenter des programmes auto-modifiants et nous fournissons des algorithmes efficaces pour calculer les configurations accessibles des SMPDSs. Ensuite, nous résolvons le problème de vérification de propriétés LTL et CTL pour le code auto-modifiant. Nous implémentons nos techniques dans un outil appelé SMODIC. Nous avons obtenu des résultats encourageants. En particulier, notre outil est capable de détecter plusieurs logiciels malveillants auto-modifiants ; il peut même détecter plusieurs logiciels malveillants que les autres logiciels anti-virus bien connus comme McAfee, Norman, BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast et Symantec n'ont pas pu détecter.

Mots clefs : Code auto-modifiant, Vérification, Pushdown System, Détection de Malware, l'analyse de l'accessibilité, code binaire, LTL, CTL.

Résumé Détaillé

Un code auto-modifiant est un code qui modifie ses propres instructions pendant le temps d'exécution. Il est aujourd'hui largement utilisé, principalement pour rendre les programmes difficiles à comprendre. Par exemple, le code automodifiant est largement utilisé pour protéger la propriété intellectuelle des logiciels, car il permet d'inverser du code. Il est également abondamment utilisé par les auteurs de malwares afin d'obscurcir leur code malveillant et de le rendre difficile à analyser par les analyseurs statiques et les anti-virus. Il existe plusieurs types d'implémentations pour les codes auto-modifiants. Packing consiste à appliquer des techniques de compression pour réduire la taille du fichier exécutable. Ceci convertit le fichier exécutable en une forme où le contenu exécutable est caché. Ensuite, le code est "déballé" au moment de l'exécution. Un tel code emballé est auto-modifiant. Le chiffrement est une autre technique pour cacher le code. Il utilise une sorte d'opérations inversibles pour cacher le code exécutable à l'aide d'une clé de cryptage. Ensuite, le code est "décrypté" au moment de l'exécution. Les programmes cryptés sont auto-modifiants. Ces deux formes de codes auto-modifiants ont été bien étudiés dans la littérature et pourraient être traitées par plusieurs outils de décryptage.

Dans cette thèse, nous considérons un autre type de code auto-modifiant, causé par des instructions auto-modifiantes, où le code est traité comme des données qui peuvent donc être lues et écrites par des instructions auto-modifiantes. Ces instructions auto-modifiantes sont généralement des instructions de mov, puisque le mov peut accéder à la mémoire, la lire et y écrire. Pour ce faire, nous devons d'abord trouver un modéle adéquat pour de tels programmes. PushDown Systems (PDSs) est connu pour être un modèle naturel pour les programmes séquentiels, car il permet de suivre les contextes des différents appels dans le programme. De plus, les systèmes PushDown permettent d'enregistrer et d'imiter la pile du programme, ce qui est très important pour la détection des malwares. En effet, pour vérifier si un programme est malveillant, les anti-virus commencent par identifier les appels qu'il fait aux fonctions API. Pour échapper à ces contrôles, les auteurs de malwares essaient d'obscurcir les appels qu'ils font au
système d'exploitation en utilisant des pushs et des sauts. Il est donc important de pouvoir suivre la pile pour détecter de tels appels obscurs. C'est pourquoi les systèmes PushDown ont été utilisés pour modéliser des programmes binaires afin de détecter les malwares. Cependant, ces travaux ne tiennent pas compte des malwares qui utilisent du code auto-modifiant, car les systèmes PushDown ne sont pas capables de modéliser des instructions auto-modifiantes.

Pour surmonter cette limitation, nous proposons dans cette thèse d'étendre le modéle du système PushDown avec des règles auto-modifiantes. Nous appelons ce nouveau modèle le système SM-PDS (Self-Modifying PushDown System). En gros, un SM-PDS est un PDS qui peut modifier son propre ensemble de transitions pendant l'exécution. Nous montrons comment les SM-PDS peuvent être utilisés pour représenter naturellement des programmes auto-modifiants. Il s'avère que les SM-PDS sont équivalents aux PDS standards. Nous montrons comment traduire un SM-PDS en PDS standard. Cette traduction est exponentielle. Par conséquent, il n'est pas efficace d'effectuer l'analyse de vérification du modèle sur le PDS équivalent. Nous proposons donc dans cette thèse des algorithmes directs pour les SM-PDS.

Analyse de l'accessibilité du code auto-modifiant

Tout d'abord, nous considérons le problème de l'accessibilité. Nous proposons des algorithmes directs pour calculer les ensembles d'accessibilité avant (post*) et arrière ($p r e^{*}$) pour les SM-PDS. Ceci permet d'effectuer efficacement l'analyse d'accessibilité pour les programmes auto-modifiants. Nos algorithmes sont basés sur (1) la représentation d'ensembles réguliers (potentiellement infinis) de configurations de SM-PDS en utilisant des automates à états finis, et (2) l'application de procédures de saturation sur les automates à états finis afin de prendre en compte l'effet de l'application des règles du SM-PDS. Ces résultats ont été publiés dans ICECCS 2017.

Vérification de propriétés LTL pour le code auto-modifiant

Au chapitre 3, nous proposons un algorithme direct de vérification de propriétés LTL pour les SM-PDS. Notre algorithme est basé sur la réduction du problème de vérification de propriétés LTL au problème du vide de Büchi Pushdown Systems auto-modifiants(SM-BPDSs). Intuitivement, on obtient ce SM-BPDS en prenant le produit du SM-PDS avec un automate de Büchi acceptant une formule LTL φ. Ensuite, on résout le problème du vide d'un SM-BPDS en calculant ses repeating heads. Ce calcul est basé sur le calcul de configurations labellisées pre* en appliquant une procédure de saturation sur des automates finis labellisés. Ces résultats sont publiés dans ICECCS 2019.

Vérification de propriétés CTL pour le code auto-modifiant

Au chapitre 4, nous examinons le problème de vérification de propriétés CTL pour les SM-PDS. Ceci permet de détecter les comportements malveillants de type CTL sur du code auto-modifiant. Nous réduisons ce problème au problème de la vérification du vide de Self-modifying Alternating Büchi Pushdown Systems (SM-ABPDSs), et nous proposons un algorithme qui calcule un automate fini qui caractérise l'ensemble des configurations acceptées par les SM-ABPDS.

SMODIC : un outil d'analyse de code auto-modifiant

Nous avons implémenté nos techniques dans un outil d'analyse de code automodifiant appelé SMODIC. Nous avons utilisé avec succès SMODIC pour modéliser et vérifier plus de 900 codes binaires auto-modifiants. En particulier, nous avons appliqué SMODIC pour la détection des logiciels malveillants, puisque les logiciels malveillants utilisent généralement des instructions auto-modifiantes, et que les comportements malicieux peuvent être décrits par des formules LTL ou CTL. Dans nos expériences, SMODIC a pu détecter 895 malwares et prouver que 19 programmes bénins étaient bénins. SMODIC a également été capable de détecter plusieurs logiciels malveillants que des antivirus connus tels que Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast et Symantec n'ont pas détectés. SMODIC
peut être trouvé à https://lipn.univ-paris13.fr/~xin/smodic/index.html.

Acknowledgements

It has been an unforgettable and extraordinary experience of my Ph.D. years at LIPN, not only from the scientific perspective, but also from personal willpower. Here, I would like to take the opportunity to sincerely acknowledge all the people who helped and supported me in different ways. I would not have done it without them. First of all, I sincerely thank my two supervisors, Prof. Tayssir Touili and Prof. Jifeng He for giving me the opportunity to write this thesis. Prof. Tayssir Touili is also an excellent teacher. Thanks so much for her excellent and patient support and supervision throughout these four-year Ph.D. study. Without her detailed comments, this thesis cannot be completed. I would like to thank Prof. Jifeng He, my supervisor in China. His attitude in research inspired me a lot. Without his support, I cannot finish my thesis. Their attitude and devotion to the science encourages me all the time, and will continue inspiring me and be a role model for me in the rest of our lives.

My special thanks go to Prof. Guillaume Bonfante and Prof. JeanMarc Talbot who kindly agreed to be my thesis referees. I would like to thank them for the valuable remarks.

I would like to thank Prof. Laure Petrucci and Prof. Valérie Viet Triem Tong who kindly agreed to be the members of my jury. My special thanks to Prof. Mihaela Sighireanu. I would like to thank her not only for accepting to be a member of my defense jury, but also for her help when I arrived in Paris to start my Ph.D study. Without her help, I might have no place to stay for my first year in Paris.

I am very grateful to many staff members of the Laboratoire d'Informatique de Paris Nord (LIPN) for their logistics help. I would like to thank

Ms. Amina Hariti, the secretary of the doctoral school for the help with the paper work.

Many thanks to all my labmates both in LIPN and Shanghai for being there, for sharing good and bad times, for the encouragements.

I also would like to take it as an honor to express my thanks to my friends for their supportive influences in my life all the way. I thank them very much for coming to my life and helping me in any way.

Finally I would like to express my deep sense of gratitude to my ever loving big family. My parents, aunts, uncles and cousins have given me numerous encouragement and support. I would like to thank my dearest mother Yuying and father Jinshou, who give me unconditional support, love, and encouragement in my life. Thank you so much, my dearest families.

Contents

1 Introduction 1
1.1 Reachability Analysis of Self Modifying Code [3
1.2 LTL Model Checking of Self Modifying Code 3
1.3 CTL Model Checking of Self Modifying Code 4
1.4 SMODIC: A Model Checker for Self Modifying Code 4
1.5 Related Works 4
1.6 Thesis Organization 6
2 Reachability Analysis of Self Modifying Code 7
2.1 An Example of A Self-modifying Code 7
2.2 Self Modifying Pushdown Systems 9
2.2.1 Definition 9
2.2.2 From SM-PDSs to PDSs 10
2.2.3 From SM-PDSs to Symbolic PDSs 12
2.3 Modeling Self-modifying Code with SM-PDSs 14
2.3.1 Self-modifying Instructions 14
2.3.2 From Self-modifying Code to SM-PDS 15
2.4 Representing Infinite Sets of Configurations of a SM-PDS 15
2.5 Efficient Computation of pre* images 16
2.5.1 Proof of Theorem 2.5.1 21
2.6 Efficient Computation of post* Images 25
2.6.1 Proof of Theorem 2.6.1 30
2.7 Experiments 35
2.7.1 Our Algorithms vs. Standard pre* and post* Algorithms of PDSs 35
2.7.2 Malware Detection 38
3 LTL Model-Checking of Self-modifying Code 41
3.1 LTL Model-Checking of SM-PDSs 41
3.1.1 The linear-time temporal logic LTL 41
3.1.2 Self Modifying Büchi Pushdown Systems 42
3.1.3 From LTL Model-Checking of SM-PDSs to the emptiness problem of SM-BPDSs 43
3.2 The Emptiness Problem of SM-BPDSs 44
3.2.1 The Head Reachability Graph \mathcal{G} 45
3.2.2 Labelled configurations and labelled $\mathcal{B} \mathcal{P}$-automata 51
3.2.3 Computing $\operatorname{pr} e^{*}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ 52
3.2.4 Computing the Head Reachability Graph \mathcal{G} 58
3.3 Experiments 59
3.3.1 Our approach vs. standard LTL for PDSs 59
3.3.2 Malicious Behavior Detection on Self-Modifying Code 61
3.3.2.1 Specifying Malicious Behaviors using LTL. 61
3.3.2.2 Applying our tool for malware detection. 63
4 CTL Model-Checking of Self-modifying Code 71
4.1 CTL Model-Checking of SM-PDSs 71
4.1.1 The Computation Tree Logic CTL 71
4.1.2 Self-modifying Alternating Büchi Pushdown Systems 72
4.1.3 From CTL Model-Checking of SM-PDSs to the emptiness problem of SM-ABPDSs 74
4.2 Computing the language of a SM-ABPDS 89
4.2.1 Characterizing $L(\mathcal{B P})$ 89
4.2.2 Computing $Y_{\mathcal{B P}}$ 91
4.3 Experiments 104
4.3.1 Our algorithm vs. standard CTL on PDSs 104
4.3.2 Malicious Behavior Detection on Self-Modifying Code 105
4.3.2.1 Specifying malicious behaviors using CTL. 105
4.3.2.2 Applying our tool for malware detection. 107
5 SMODIC: A Model Checker for Self Modifying Code 111
5.1 Architecture 112
5.2 Experiments 113
5.2.1 Analysing Self-modifying Binary Code 113
5.2.2 Comparison with Well-known Anti-viruses 113
5.3 Description of SMODIC 113
5.3.1 Reachability Analysis in SMODIC 115
5.3.2 LTL and CTL in SMODIC 116
5.4 Applying SMODIC for Malware Detection 118
6 Conclusion 121
6.1 Summary 121
6.2 Future Work 122
References 125

1

Introduction

Self-modifying code is code that modifies its own instructions during execution time. It is nowadays widely used, mainly to make programs hard to understand. For example, self-modifying code is extensively used to protect software intellectual property, since it makes reverse code engineering harder. It is also abundantly used by malware writers in order to obfuscate their malicious code and make it hard to analyse by static analysers and anti-viruses.

There are several kinds of implementations for self-modifying codes. Packing [36] consists in applying compression techniques to make the size of the executable file smaller. This converts the executable file to a form where the executable content is hidden. Then, the code is "unpacked" at runtime before execution. Such packed code is self-modifying. Encryption is another technique to hide the code. It uses some kind of invertible operations to hide the executable code with an encryption key. Then, the code is "decrypted" at runtime prior to execution. Encrypted programs are self-modifying. These two forms of self-modifying codes have been well studied in the litterature and could be handled by several unpacking tools such as [43, 45].

In this thesis, we consider another kind of self-modifying code, caused by selfmodifying instructions, where code is treated as data that can thus be read and written by self-modifying instructions. These self-modifying instructions are usually mov instructions, since mov can access memory, and read and write to it. For example, consider the program shown in Figure 1.1. For simplification matters, we suppose that the addresses' length is 1 byte. The binary code is given in the left side, while in the right side, we give its corresponding assembly

1. INTRODUCTION

Figure 1.1: A Simple Example of Self-modifying Codes
code obtained by translating syntactically the binary code at each address. For example, $f f$ is the binary code of the instruction push, thus, the first line is translated to push 0×3, the second line to push 0 b , etc. Let us execute this code. First, we execute push $0 x 3$, then push $0 b$, then mov $0 x 2$ 0xc. This last instruction will replace the first byte at address $0 x 2$ by $0 x c$. Thus, at address $0 x 2$, ff 0 b is replaced by 0 c 0 b . Since 0 c is the binary code of jmp , this means the instruction push $0 b$ is replaced by $j m p 0 x b$. Therefore, this code is selfmodifying. If we treat it blindly, without looking at the semantics of the different instructions, we will extract from it the Control Flow Graph CFG a, whereas its correct Control Flow Graph is CFG b. You can see that the mov instruction was able to modify the instructions of the program successfully via its ability to read and write the memory.

In this thesis, we consider the analysis of self-modifying programs where the code is modified by mov instructions. To this aim, we first need to find an adequate model for such programs. PushDown Systems (PDSs) is known to be a natural model for sequential programs [42], as it allows to track the contexts of the different calls in the program. Moreover, PushDown Systems allow to record and mimic the program's stack, which is very important for malware detection. Indeed, to check whether a program is malicious, anti-viruses start by identifying the calls it makes to the API functions. To evade these checks, malware writers try to obfuscate the calls they make to the Operating System by using pushes and jumps. Thus, it is important to be able to track the stack to detect such
obfuscated calls. This is why PushDown Systems were used in [13, 14] to model binary programs in order to perform malware detection. However, these works do not consider malwares that use self-modifying code, as PushDown Systems are not able to model self-modifying instructions.

To overcome this limitation, we propose in this thesis to extend the PushDown System model with self-modifying rules. We call the new model Self-Modifying PushDown System (SM-PDS). Roughly speaking, a SM-PDS is a PDS that can modify its own set of transitions during execution. We show how SM-PDSs can be used to naturally represent self-modifying programs. It turns out that SMPDSs are equivalent to standard PDSs. We show how to translate a SM-PDS to a standard PDS. This translation is exponential. Thus, performing the modelchecking analysis on the equivalent PDS is not efficient. We propose then in this thesis direct model-checking algorithms for SM-PDSs.

1.1 Reachability Analysis of Self Modifying Code

First, we consider the reachability problem. We propose direct algorithms to compute the forward (post *) and backward (pre ${ }^{*}$) reachability sets for SM-PDSs. This allows to efficiently perform reachability analysis for self-modifying programs. Our algorithms are based on (1) representing regular (potentially infinite) sets of configurations of SM-PDSs using finite state automata, and (2) applying saturation procedures on the finite state automata in order to take into account the effect of applying the rules of the SM-PDS. These results were published in [46]. They are described in Chapter 2.

1.2 LTL Model Checking of Self Modifying Code

In Chapter 3, we propose a direct LTL model checking algorithm for SM-PDSs. Our algorithm is based on reducing the LTL model checking problem to the emptiness problem of Self Modifying Büchi Pushdown Systems (SM-BPDSs). Intuitively, we obtain this SM-BPDS by taking the product of the SM-PDS with a Büchi automaton accepting an LTL formula φ. Then, we solve the emptiness problem of a SM-BPDS by computing its repeating heads. This computation is

1. INTRODUCTION

based on computing labelled pre* configurations by applying a saturation procedure on labelled finite automata. These results are published in 47].

1.3 CTL Model Checking of Self Modifying Code

In Chapter 4, we consider the CTL model-checking problem for SM-PDSs. This allows to detect CTL-like malicious behaviors on self-modifying code. We reduce this problem to the emptiness checking problem of Self-modifying Alternating Büchi Pushdown Systems (SM-ABPDSs), and we propose an algorithm that computes a finite automaton that characterizes the set of configurations accepted by the SM-ABPDS.

1.4 SMODIC: A Model Checker for Self Modifying Code

We implemented our techniques in a tool for self-modifying code analysis called SMODIC. We successfully used SMODIC to model-check more than 900 selfmodifying binary codes. In particular, we applied SMODIC for malware detection, since malwares usually use self-modifying instructions, and since malicious behaviors can be described by LTL or CTL formulas. In our experiments, SMODIC was able to detect 895 malwares and to prove that 19 benign programs were benign. SMODIC was also able to detect several malwares that well-known antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and Symantec failed to detect. SMODIC can be found in
https://lipn.univ-paris13.fr/~xin/smodic/index.html.

1.5 Related Works

Reachability analysis and LTL/CTL model-checking of pushdown systems was considered e.g. in [6, 20, 39, 42]. Our algorithms are extensions of these works.

Model checking and static analysis approaches have been widely used to analyze binary programs, for instance, in [7, 12, 14, 15, 19, 21, 29, 29, 33]. These works cannot handle self-modifying code.

Cai et al. [18] use a Hoare-logic-style framework to describe self-modifying code by applying local reasoning and separation logic, and treating program code uniformly as regular data structure. However, [18] requires programs to be manually annotated with invariants. In [36], the authors describe a formal semantics for self-modifying codes, and use that semantics to represent self-unpacking code. This work only deals with packing and unpacking behaviours, it cannot capture self-modifying instructions as we do. In [16], Bonfante et al. provide an operational semantics for self-modifying programs and show that they can be constructively rewritten to a non-modifying program. All these specifications [16, 18, 36] are too abstract to be used in practice.

In [1], the authors propose a new representation of self-modifying code named State Enhanced-Control Flow Graph (SE-CFG). SE-CFG extends standard control flow graphs with a new data structure, keeping track of the possible states programs can reach, and with edges that can be conditional on the state of the target memory location. It is not easy to analyse a binary program only using its SE-CFG, especially that this representation does not allow to take into account the stack of the program.
[34] propose abstract interpretation techniques to compute an over-approximation of the set of reachable states of a self-modifying program, where for each control point of the program, an over-approximation of the memory state at this control point is provided. [28] combine static and dynamic analysis techniques to analyse self-modifying programs. Unlike our self-modifying pushdown systems, these techniques [28, 34] cannot handle the program's stack.

Unpacking binary code is considered in [23, 27, 32, 36]. These works do not consider self-modifying mov instructions.

There are a lot of tools that can deal with binary code analysis [2, 3, 4, 8, 8 , 99, 10, 11, 13, 14, 22, 24, 25, 26, 37, 38, 44]. POMMADE [13, 14] is a malware detector based on LTL and CTL model-checking of PDSs. STAMAD [24, 25, 26] is a malware detector based on PDSs and machine learning. However, all these tools cannot handle self-modifying code. The only tools that we know of and that can deal with self-modifying code are BE-PUM [17] and CoDisasm [5].

BE-PUM (Binary Emulation for PUshdown Model) 17 focuses on generating CFG (Control Flow Graph) of malwares. BE-PUM can construct a pushdown model from x86 binaries in an on-the-fly manner. Concolic testing is applied to

1. INTRODUCTION

determine the precise destinations of branches for indirect jumps. This tool can deal with self-modifying code caused by modifying the destinations of indirect jumps, including overwriting the return address of a function (in the stack). But it cannot handle self-modifying instructions.

CoDisasm [5] is a tool that focuses on the disassembly of x86 code that includes self-modifying instructions and code overlapping. CoDisasm deals only with disassembling the code. It does not consider model-checking problems of code. Currently, we use Jakstab [22] to disassemble binary code. CoDisasm might help our disassembly process and make it more precise. We plan to use CoDisasm in the future (instead of Jakstab) and see whether it will improve the precision of our extracted CFGs.

1.6 Thesis Organization

In Chapter 2, we give the definition of SM-PDS and show how a SM-PDS can describe self-modifying codes. We also present our direct algorithms for reachability analysis of SM-PDSs. Chapter 3 shows how to reduce the LTL model checking problem of SM-PDSs to the emptiness problem of self-modifying büchi pushdown systems. We tackle the CTL model checking problem on SM-PDSs in Chapter 4. Chapter 5 presents the tool SMODIC that implements our algorithms.

2

Reachability Analysis of Self Modifying Code

A Self modifying code is code that modifies its own instructions during execution time. It is nowadays widely used, especially in malware to make the code hard to analyse and to detect by anti-viruses. Thus, the analysis of such self modifying programs is a big challenge. Pushdown Systems (PDSs) is a natural model that is extensively used for the analysis of sequential programs because it allows to accurately model procedure calls and mimic the program's stack. In this chapter, we propose to extend the PushDown System model with self-modifying rules. We call the new model Self-Modifying PushDown System (SM-PDS). A SM-PDS is a PDS that can modify its own set of transitions during execution. We show how SM-PDSs can be used to naturally represent self-modifying programs and provide efficient algorithms to compute the backward and forward reachable configurations of SM-PDSs. We implemented our techniques in a tool and obtained encouraging results. In particular, we successfully applied our tool for the detection of self-modifying malware.

2.1 An Example of A Self-modifying Code

Fig. 2.1 shows how malware can use self-modifying instructions to evade from static analysis techniques. This figure shows a fragment of the malware Bagle.J equipped with such self-modifying instructions. First let us recall the semantics

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

of the mov instruction. It copies the data item referred to by its second operand (register or memory location) into its first operand. In Fig. 2.1, in the box on the left, we give, respectively, the binary code, the addresses of the different instructions, and the corresponding assembly code, obtained by translating syntactically the binary code at each address. For example, ff is the binary code of the instruction push. Thus, the first line is translated to push $0 b$. The second instruction mov $0 x 20 x c$ will replace the first byte at address $0 x 2$ by $0 x c$. Thus, at address 0 x 2 , ff 0 b is replaced by $0 \mathrm{c} 0 b$, i.e., the instruction push 0 b is replaced by jmp Ob. If we analyse this code without taking into account the fact that mov 0x2 0xc is a self-modifying instruction, then, we will obtain the Control Flow Graph "CFG a", and we will reach the conclusion that the Bagle malicious behaviour implemented at address 0b by the API functions RegCreateKeyA, RegDeleteValueA, and RegCloseKey is not reachable. However, the actual CFG is "CFG b", where the malicious fragment of the malware Bagle.J that starts at address 0 b is reached and will be executed.

It can be seen from this example that self-modifying codes can make malware detection harder, and that the mov instruction is able to modify instructions of the program successfully via its ability to read and write the memory. Thus, it is crucial to be able to analyse this kind of self-modifying code.

Binary Codes	address	Assembly
		After executing mov 0x2 0xc
ff Ob	0x2	push Ob \longrightarrow jmp 0b
c6 02 0c	0×4	mov 0x2 0xc
ff 01	0x7	push \%ebx
Oc 02	0x9	jmp 0x2
6801000008	0xb	push 80000001h
ff 1500800010	0×10	call RegCreateKeyA
ff 1500804000	$0 \times 1 \mathrm{~A}$	call RegDeleteValueA
ff 1508800010	0×26	call RegCloseKey
Bagle.J	ode frag	ment

Figure 2.1: An Example of Self-modifying Code

2.2 Self Modifying Pushdown Systems

2.2.1 Definition

We introduce in this section our new model: Self-modifying Pushdown Systems.

Definition 1 A Self-modifying Pushdown System (SM-PDS) is a tuple $\mathcal{P}=$ $\left(P, \Gamma, \Delta, \Delta_{c}\right)$, where P is a finite set of control points, Γ is a finite set of stack symbols, $\Delta \subseteq(P \times \Gamma) \times\left(P \times \Gamma^{*}\right)$ is a finite set of transition rules, and $\Delta_{c} \subseteq$ $P \times\left(\Delta \cup \Delta_{c}\right) \times\left(\Delta \cup \Delta_{c}\right) \times P$ is a finite set of modifying transition rules. If $\left((p, \gamma),\left(p^{\prime}, w\right)\right) \in \Delta$, we also write $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$. If $\left(p, r_{1}, r_{2}, p^{\prime}\right) \in \Delta_{c}$, we also write $p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}$. A Pushdown System (PDS) is a SM-PDS where $\Delta_{c}=\emptyset$.

Intuitively, a Self-modifying Pushdown System is a Pushdown System that can dynamically modify its set of rules during the execution time: rules Δ are standard PDS transition rules, while rules Δ_{c} modify the current set of transition rules: $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$ expresses that if the SM-PDS is in control point p and has γ on top of its stack, then it can move to control point p^{\prime}, pop γ and push w onto the stack, while $p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}$ expresses that when the PDS is in control point p, then it can move to control point p^{\prime}, remove the rule r_{1} from its current set of transition rules, and add the rule r_{2}. Formally, a configuration of a SM-PDS is a tuple $c=(\langle p, w\rangle, \theta)$ where $p \in P$ is the control point, $w \in \Gamma^{*}$ is the stack content, and $\theta \subseteq \Delta \cup \Delta_{c}$ is the current set of transition rules of the SM-PDS. θ is called the current phase of the SM-PDS. When the SM-PDS is a PDS, i.e., when $\Delta_{c}=\emptyset$, a configuration is a tuple $c=(\langle p, w\rangle, \Delta)$, since there is no changing rule, so there is only one possible phase. In this case, we can also write $c=\langle p, w\rangle$. Let \mathcal{C} be the set of configurations of a SM-PDS. A SM-PDS defines a transition relation $\Rightarrow_{\mathcal{P}}$ between configurations as follows: Let $c=(\langle p, w\rangle, \theta)$ be a configuration, and let r be a rule in θ, then:

1. if $r \in \Delta_{c}$ is of the form $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime}$, such that $r_{1} \in \theta$, then $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, w\right\rangle, \theta^{\prime}\right)$, where $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$. In other words, the transition rule r updates the current set of transition rules θ by removing r_{1} from it and adding r_{2} to it.

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2. if $r \in \Delta$ is of the form $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w^{\prime}\right\rangle \in \Delta$, then $(\langle p, \gamma w\rangle, \theta) \Rightarrow_{\mathcal{P}}$ $\left(\left\langle p^{\prime}, w^{\prime} w\right\rangle, \theta\right)$. In other words, the transition rule r moves the control point from p to p^{\prime}, pops γ from the stack and pushes w^{\prime} onto the stack. This transition keeps the current set of transition rules θ unchanged.

Let $\Rightarrow_{\mathcal{P}}^{*}$ be the transitive, reflexive closure of $\Rightarrow_{\mathcal{P}}$. We define $\stackrel{i}{\Rightarrow}$ as follows: $c \stackrel{i}{\Rightarrow} c^{\prime}$ iff there exists a sequence of configurations $c_{0} \Rightarrow_{\mathcal{P}} c_{1} \Rightarrow_{\mathcal{P}} \ldots \Rightarrow_{\mathcal{P}} c_{i}$ s.t. $c_{0}=c$ and $c_{i}=c^{\prime}$ Given a configuration c, the set of immediate predecessors (resp. successors) of c is $\operatorname{pre}_{\mathcal{P}}(c)=\left\{c^{\prime} \in \mathcal{C}: c^{\prime} \Rightarrow_{\mathcal{P}} c\right\}$ (resp. post $_{\mathcal{P}}(c)=\left\{c^{\prime} \in\right.$ $\left.\left.\mathcal{C}: c \Rightarrow_{\mathcal{P}} c^{\prime}\right\}\right)$. These notations can be generalized straightforwardly to sets of configurations. Let pre $e_{\mathcal{P}}^{*}$ (resp. post $\mathcal{P}_{\mathcal{P}}^{*}$) denote the reflexive-transitive closure of $\operatorname{pre}_{\mathcal{P}}$ (resp. post $\boldsymbol{\mathcal { P }}_{\mathcal{P}}$. We omit the subscript \mathcal{P} when it is understood from the context.

Example 1 Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a $S M-P D S$ where $p=\left\{p_{1}, p_{2}, p_{3}, p_{4}\right\}, \Gamma=$ $\left\{\gamma_{1}, \gamma_{2}, \gamma_{3}\right\}, \Delta=\left\{r_{1}:\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{2}, \gamma_{2} \gamma_{1}\right\rangle, r_{2}:\left\langle p_{2}, \gamma_{2}\right\rangle \hookrightarrow\left\langle p_{3}, \epsilon\right\rangle, r_{3}:\left\langle p_{4}, \gamma_{1}\right\rangle \hookrightarrow\right.$ $\left.\left\langle p_{2}, \gamma_{2} \gamma_{3}\right\rangle\right\}, \Delta_{c}=\left\{r^{\prime}: p_{3} \xrightarrow{\stackrel{\left(r_{1}, r_{3}\right)}{\longrightarrow}} p_{4}\right\}$. Let $c_{0}=\left(\left\langle p_{1}, \gamma_{1} \gamma_{1}\right\rangle, \theta_{0}\right)$ where $\theta_{0}=$ $\left\{r_{1}, r_{2}, r^{\prime}\right\}$. Applying rule r_{1}, we get $\left(\left\langle p_{1}, \gamma_{1} \gamma_{1}\right\rangle, \theta_{0}\right) \Rightarrow_{\mathcal{P}}\left(\left\langle p_{2}, \gamma_{2} \gamma_{1} \gamma_{1}\right\rangle, \theta_{0}\right)$. Then, applying rule r_{2}, we get $\left(\left\langle p_{2}, \gamma_{2} \gamma_{1} \gamma_{1}\right\rangle, \theta_{0}\right) \Rightarrow_{\mathcal{P}}\left(\left\langle p_{3}, \gamma_{1} \gamma_{1}\right\rangle, \theta_{0}\right)$. Then, applying rule r^{\prime}, we get $\left(\left\langle p_{3}, \gamma_{1} \gamma_{1}\right\rangle, \theta_{0}\right) \Rightarrow_{\mathcal{P}}\left(\left\langle p_{4}, \gamma_{1} \gamma_{1}\right\rangle, \theta_{1}\right)$ where r^{\prime} is self-modifying, thus, it leads the SM-PDS from phase $\theta_{0}=\left\{r_{1}, r_{2}, r^{\prime}\right\}$ to phase $\theta_{1}=\theta_{0} \backslash\left\{r_{1}\right\} \cup\left\{r_{3}\right\}=$ $\left\{r_{2}, r_{3}, r^{\prime}\right\}$. Then, applying rule r_{3}, we get $\left(\left\langle p_{4}, \gamma_{1} \gamma_{1}\right\rangle, \theta_{1}\right) \Rightarrow_{\mathcal{P}}\left(\left\langle p_{2}, \gamma_{2} \gamma_{3} \gamma_{1}\right\rangle, \theta_{1}\right)$. Then, applying rule r_{2} again, we get $\left(\left\langle p_{2}, \gamma_{2} \gamma_{3} \gamma_{1}\right\rangle, \theta_{1}\right) \Rightarrow_{\mathcal{P}}\left(\left\langle p_{3}, \gamma_{3} \gamma_{1}\right\rangle, \theta_{1}\right)$.

2.2.2 From SM-PDSs to PDSs

A SM-PDS can be described by a PDS. This is due to the fact that the number of phases is finite, thus, we can encode phases in the control points of the PDS: Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a SM-PDS, we compute the $\operatorname{PDS} \mathcal{P}^{\prime}=\left(P^{\prime}, \Gamma, \Delta^{\prime}\right)$ as follows: $P^{\prime}=P \times 2^{\Delta \cup \Delta_{c}}$. Initially, $\Delta^{\prime}=\emptyset$. For every $\theta \in 2^{\Delta \cup \Delta_{c}}, r \in \theta$:

1. If $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta \cap \theta$, we add $\langle(p, \theta), \gamma\rangle \hookrightarrow\left\langle\left(p^{\prime}, \theta\right), w\right\rangle$ to Δ^{\prime}
2. if $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c} \cap \theta$, then for every $\gamma \in \Gamma$, we add $\langle(p, \theta), \gamma\rangle \hookrightarrow$ $\left\langle\left(p^{\prime}, \theta^{\prime}\right), \gamma\right\rangle$ to Δ^{\prime}, where $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$.

It is easy to see that:

Proposition $1(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$ iff $\langle(p, \theta), w\rangle \Rightarrow_{\mathcal{P}^{\prime}}\left\langle\left(p^{\prime}, \theta^{\prime}\right), w^{\prime}\right\rangle$.

Proof:

\Rightarrow : We will show that if $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$, then we have $\langle(p, \theta), w\rangle \Rightarrow_{\mathcal{P}^{\prime}}$ $\left\langle\left(p^{\prime}, \theta^{\prime}\right), w^{\prime}\right\rangle$. There are two cases depending on the form of the rule that led to this transition.

- Case $\theta=\theta^{\prime}$: it means that the transition does not correspond to a selfmodifying transition rule. Thus there is a rule $r \in \theta$ of the form $r=$ $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, u^{\prime}\right\rangle$ that led to this transition. Let u be such that $w=$ $\gamma u, w^{\prime}=u^{\prime} u$. By the construction rule of the $\operatorname{PDS} \mathcal{P}^{\prime}$, we have $\langle(p, \theta), \gamma\rangle \hookrightarrow$ $\left\langle\left(p^{\prime}, \theta\right), u^{\prime}\right\rangle \in \Delta^{\prime}$. Therefore, $\langle(p, \theta), \gamma u\rangle \Rightarrow_{\mathcal{P}^{\prime}}\left\langle\left(p^{\prime}, \theta\right), u^{\prime} u\right\rangle$ holds. This implies that $\langle(p, \theta), w\rangle \Rightarrow_{\mathcal{P}^{\prime}}\left\langle\left(p^{\prime}, \theta\right), w^{\prime}\right\rangle$.
- Case $\theta \neq \theta^{\prime}$: it means that the transition corresponds to a self-modifying transition rule. Thus there is a rule $r \in \theta$ of the form $p \xrightarrow{\stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow}} p^{\prime}$ that led to this transition. Let u be such that $w=\gamma u, w^{\prime}=\gamma u$. By the construction rule of the PDS \mathcal{P}^{\prime}, we have $\langle(p, \theta), \gamma\rangle \hookrightarrow\left\langle\left(p^{\prime}, \theta^{\prime}\right), \gamma\right\rangle \in \Delta^{\prime}$ where $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$. Therefore, $\langle(p, \theta), \gamma u\rangle \Rightarrow_{\mathcal{P}^{\prime}}\left\langle\left(p^{\prime}, \theta^{\prime}\right), \gamma u\right\rangle$ holds.

 Let $\gamma \in \Gamma, u, u^{\prime} \in \Gamma^{*}$ be such that $w=\gamma u, w^{\prime}=u^{\prime} u$. There are two cases.
- Case $\theta=\theta^{\prime}$. Let $r=\langle(p, \theta), \gamma\rangle \hookrightarrow\left\langle\left(p^{\prime}, \theta\right), u^{\prime}\right\rangle \in \Delta^{\prime}$ be the rule that led to the transition. By the construction of $\operatorname{PDS} \mathcal{P}^{\prime}$, there must exist a rule $r \in \theta$ such that $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, u^{\prime}\right\rangle$. Therefore, $(\langle p, \gamma u\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p, u^{\prime} u\right\rangle, \theta\right)$ holds. This implies that $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p, w^{\prime}\right\rangle, \theta^{\prime}\right)$.
- Case $\theta \neq \theta^{\prime}$. Let $r=\langle(p, \theta), \gamma\rangle \hookrightarrow\left\langle\left(p^{\prime}, \theta^{\prime}\right), \gamma\right\rangle \in \Delta^{\prime}$ be the rule leading to the transition and $u^{\prime}=\gamma$. By the construction of $\operatorname{PDS} \mathcal{P}^{\prime}$, there must exist a rule $r \in \theta$ such that $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime}$ where $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$. Therefore, $(\langle p, \gamma u\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, \gamma u\right\rangle, \theta^{\prime}\right)$ holds. This implies that $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}$ $\left(\left\langle p, w^{\prime}\right\rangle, \theta^{\prime}\right)$.

Thus, we get:

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Theorem 2.2.1 Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a $S M-P D S$, we can compute an equivalent PDS $\mathcal{P}^{\prime}=\left(P^{\prime}, \Gamma, \Delta^{\prime}\right)$ such that $\left|\Delta^{\prime}\right|=\left(|\Delta|+\left|\Delta_{c}\right| \cdot|\Gamma|\right) \cdot 2^{\mathcal{O}\left(|\Delta|+\left|\Delta_{c}\right|\right)}$ and $\left|P^{\prime}\right|=|P| \cdot 2^{\mathcal{O}\left(|\Delta|+\left|\Delta_{c}\right|\right)}$.

2.2.3 From SM-PDSs to Symbolic PDSs

Instead of recording the phases θ of the SM-PDS in the control points of the equivalent PDS, we can have a more compact translation from SM-PDSs to symbolic PDSs 42], where each SM-PDS rule is represented by a single, symbolic transition, where the different values of the phases are encoded in a symbolic way using relations between phases:

Definition $2 A$ symbolic pushdown system is a tuple $\mathcal{P}=(P, \Gamma, \delta)$, where P is a set of control points, Γ is the stack alphabet, and δ is a set of symbolic rules of the form: $\langle p, \gamma\rangle \xrightarrow{R}\left\langle p^{\prime}, w\right\rangle$, where $R \subseteq 2^{\Delta \cup \Delta_{c}} \times 2^{\Delta \cup \Delta_{c}}$ is a relation.

A symbolic PDS defines a transition relation $\sim_{\mathcal{P}}$ between SM-PDS configurations as follows: Let $c=\left(\left\langle p, \gamma w^{\prime}\right\rangle, \theta\right)$ be a configuration and let $\langle p, \gamma\rangle \stackrel{R}{\longrightarrow}$ $\left\langle p^{\prime}, w\right\rangle$ be a rule in δ, then: $\left(\left\langle p, \gamma w^{\prime}\right\rangle, \theta\right) \sim_{\mathcal{P}}\left(\left\langle p^{\prime}, w w^{\prime}\right\rangle, \theta^{\prime}\right)$ for $\left(\theta, \theta^{\prime}\right) \in R$. Let $\sim_{\mathcal{P}}^{*}$ be the transitive, reflexive closure of $\sim_{\mathcal{P}}$. Then, given a SM-PDS $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$, we can compute an equivalent symbolic $\operatorname{PDS} \mathcal{P}^{\prime}=\left(P, \Gamma, \Delta^{\prime}\right)$ such that: Initially, $\Delta^{\prime}=\emptyset$;

- For every $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$, add $\langle p, \gamma\rangle \stackrel{R_{i d}}{\longrightarrow}\left\langle p^{\prime}, w\right\rangle$ to Δ^{\prime}, where $R_{i d}$ is the identity relation.
- For every $r=p \stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow} p^{\prime} \in \Delta_{c}$ and every $\gamma \in \Gamma, \operatorname{add}\langle p, \gamma\rangle \stackrel{R}{\longrightarrow}\left\langle p^{\prime}, \gamma\right\rangle$ to Δ^{\prime}, where $R=\left\{\left(\theta_{1}, \theta_{2}\right) \in 2^{\Delta \cup \Delta_{c}} \times 2^{\Delta \cup \Delta_{c}} \mid r \in \theta_{1}\right.$ and $\theta_{2}=\left(\theta_{1} \backslash\left\{r_{1}\right\}\right) \cup$ $\left.\left\{r_{2}\right\}\right\}$.

It is easy to see that:
Proposition $2(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$ iff $(\langle p, w\rangle, \theta) \sim_{\mathcal{P}^{\prime}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$.

Proof:

\Rightarrow : we will show that if $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$, then $(\langle p, w\rangle, \theta) \sim_{\mathcal{P}^{\prime}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$. There are two cases depending on the form of the rule that led to this transition.

- Case $\theta=\theta^{\prime}$, it means that the transition does not correspond to a selfmodifying transition rule. Thus there is a rule $r \in \theta$ of the form $r=$ $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, u^{\prime}\right\rangle$ that led to this transition. Let u be such that $w=\gamma u, w^{\prime}=$ $u^{\prime} u$. By construction of the symbolic pushdown system $\mathcal{P}^{\prime},\langle p, \gamma\rangle \stackrel{R_{i d}}{\longrightarrow}$ $\left\langle p^{\prime}, u^{\prime}\right\rangle \in \Delta^{\prime}$, therefore, $(\langle p, \gamma u\rangle, \theta){\sim \mathcal{P}^{\prime}}\left(\left\langle p^{\prime}, u^{\prime} u\right\rangle, \theta\right)$ holds. This implies that $(\langle p, w\rangle, \theta) \sim_{\mathcal{P}^{\prime}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$.
- Case $\theta \neq \theta^{\prime}$, it means that the transition corresponds to a self-modifying transition rule. Thus there is a rule $r \in \theta$ of the form $r=p \xrightarrow{\left(r_{1}, r_{2}\right)}$ p^{\prime} that led to this transition and $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$. Let u be such that $w=\gamma u, w^{\prime}=\gamma u$. By construction of the symbolic pushdown system $\mathcal{P}^{\prime},\langle p, \gamma\rangle \xrightarrow{R}\left\langle p^{\prime}, \gamma\right\rangle \in \Delta^{\prime}$ and $R=\left\{\left(\theta, \theta^{\prime}\right) \in 2^{\Delta \cup \Delta_{c}} \times 2^{\Delta U \Delta_{c}} \mid r \in\right.$ θ and $\left.\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}\right\}$, therefore, $(\langle p, \gamma u\rangle, \theta) \sim \mathcal{P}^{\prime}\left(\left\langle p^{\prime}, \gamma u\right\rangle, \theta^{\prime}\right)$ holds. This implies that $(\langle p, w\rangle, \theta) \sim_{\mathcal{P}^{\prime}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$.
$\Leftarrow:$ we will show that if $(\langle p, w\rangle, \theta) \sim_{\mathcal{P}^{\prime}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$, then $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$. Let $\gamma \in \Gamma, u, u^{\prime} \in \Gamma^{*}$ be such that $w=\gamma u, w^{\prime}=u^{\prime} u$. There are two cases.
- Case $\theta=\theta^{\prime}$. Let $\langle p, \gamma\rangle \stackrel{R_{i d}}{\longrightarrow}\left\langle p^{\prime}, u^{\prime}\right\rangle \in \Delta^{\prime}$ be the rule applied to this transition. By the construction of the symbolic pushdown system \mathcal{P}^{\prime}, there must exist a rule $r \in \theta$ s.t. $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, u^{\prime}\right\rangle \in \Delta$. Therefore, $(\langle p, \gamma u\rangle, \theta) \Rightarrow_{\mathcal{P}}$ $\left(\left\langle p^{\prime}, u^{\prime} u\right\rangle, \theta\right)$ holds. This implies that $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$.
- Case $\theta \neq \theta^{\prime}$. Let $\langle p, \gamma\rangle \xrightarrow{R}\left\langle p^{\prime}, \gamma\right\rangle \in \Delta^{\prime}$ be the rule applied to this transition with $w^{\prime}=\gamma u$. By the construction of the symbolic pushdown system \mathcal{P}^{\prime}, there must exist a rule $r \in \theta$ of the form $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}$ s.t. $R=\left\{\left(\theta_{1}, \theta_{2}\right) \in 2^{\Delta \cup \Delta_{c}} \times 2^{\Delta \cup \Delta_{c}} \mid r \in \theta_{1}\right.$ and $\left.\theta_{2}=\left(\theta_{1} \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}\right\}$. Therefore, $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$ and $(\langle p, \gamma u\rangle, \theta) \sim \mathcal{P}^{\prime}\left(\left\langle p^{\prime}, \gamma u\right\rangle, \theta^{\prime}\right)$ hold. This implies that $(\langle p, w\rangle, \theta) \leadsto \mathcal{P}^{\prime}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$.

Thus, we get:

Theorem 2.2.2 Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a $S M-P D S$, we can compute an equivalent symbolic PDS $\mathcal{P}^{\prime}=\left(P^{\prime}, \Gamma, \Delta^{\prime}\right)$ such that $\left|P^{\prime}\right|=|P|,\left|\Delta^{\prime}\right|=|\Delta|+\left|\Delta_{c}\right| \cdot|\Gamma|$, and the size of the relations used in the symbolic transitions is $2^{\mathcal{O}\left(|\Delta|+\left|\Delta_{c}\right|\right)}$.

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.3 Modeling Self-modifying Code with SM-PDSs

2.3.1 Self-modifying Instructions

There are different techniques to implement self-modifying code. We consider in this work code that uses self-modifying instructions. These are instructions that can access the memory locations and write onto them, thus changing the instructions that are in these memory locations. In assembly, the only instructions that can do this are the mov instructions. In this case, the self-modifying instructions are of the form mov $l v$, where l is a location of the program that stores executable data and v is a value. This instruction replaces the value at location l (in the binary code) with the value v. This means if at location l there is a binary value v^{\prime} that is involved in an assembly instruction i_{1}, and if by replacing v^{\prime} by v, we obtain a new assembly instruction i_{2}, then the instruction i_{1} is replaced by i_{2}. E.g., ff is the binary code of push, 40 is the binary code of inc, 0 c is the binary code of jmp, c6 is the binary code of mov, etc. Thus, if we have mov l ff, and if at location l there was initially the value 4001 (which corresponds to the assembly instruction inc $\% \mathrm{edx}$), then 40 is replaced by ff, which means the instruction inc $\%$ edx is replaced by push 01. If at location l there was initially the value c6 0102 (which corresponds to the assembly instruction mov edx 0×2), then c6 is replaced by ff , which means the instruction mov edx 0 x 2 is replaced by push 02.

Note that if the instructions i_{1} and i_{2} do not have the same number of operands, then mov $l v$ will, in addition to replacing i_{1} by i_{2}, change several other instructions that follow i_{1}. Currently, we cannot handle this case, thus we assume that i_{1} and i_{2} have the same number of operands.

Note also that mov $l v$ is self-modifying only if l is a location of the program that stores executable data, otherwise, it is not; e.g., mov eax v does not change the instructions of the program, it just writes the value v to the register eax. Thus, from now on, by self-modifying instruction, we mean an instruction of the form mov $l v$, where l is a location of the program that stores executable data. Moreover, to ensure that only one instruction is modified, we assume that the corresponding instructions i_{1} and i_{2} have the same number of operands.

2.3.2 From Self-modifying Code to SM-PDS

We show in what follows how to build a SM-PDS from a binary program. We suppose we are given an oracle \mathcal{O} that extracts from the binary code a corresponding assembly program, together with informations about the values of the registers and the memory locations at each control point of the program. In our implementation, we use Jakstab [22] to get this oracle. We translate the assembly program into a self-modifying pushdown system where the control locations store the control points of the binary program and the stack mimics the program's stack. The non self-modifying instructions of the program define the rules Δ of the SM-PDS (which are standard PDS rules), and can be obtained following the translation of [13] that models non self-modifying instructions of the program by a PDS.

As for the self-modifying instructions of the program, they define the set of changing rules Δ_{c}. As explained above, these are instructions of the form mov $l v$, where l is a location of the program that stores executable data. This instruction replaces the value at location l (in the binary code) with the value v. Let i_{1} be the initial instruction involving the location l, and let i_{2} be the new instruction involving the location l, after applying the mov $l v$ instruction. As mentioned previously, we assume that i_{1} and i_{2} have the same number of operands (to ensure that only one instruction is modified). Let r_{1} (resp. r_{2}) be the SM-PDS rule corresponding to the instruction i_{1} (resp. i_{2}). Suppose from control point n to n^{\prime}, we have this mov $l v$ instruction, then we add $n \stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow} n^{\prime}$ to Δ_{c}. This is the SM-PDS rule corresponding to the instruction mov $l v$ at control point n.

2.4 Representing Infinite Sets of Configurations of a SM-PDS

Multi-automata were introduced in [6, 20] to finitely represent regular infinite sets of configurations of a PDS. A configuration $c=(\langle p, w\rangle, \theta)$ of a SM-PDS involves a PDS configuration $\langle p, w\rangle$, together with the current set of transition rules (phase) θ. To finitely represent regular infinite sets of such configurations, we extend multi-automata in order to take into account the phases θ :

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Definition 3 Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a $S M$-PDS. A \mathcal{P}-automaton is a tuple $\mathcal{A}=(Q, \Gamma, T, P, F)$ where Γ is the automaton alphabet, Q is a finite set of states, $P \times 2^{\Delta \cup \Delta_{c}} \subseteq Q$ is the set of initial states, $T \subset Q \times((\Gamma \cup\{\epsilon\})) \times Q$ is the set of transitions and $F \subseteq Q$ is the set of final states.

If $\left(q, \gamma, q^{\prime}\right) \in T$, we write $q \xrightarrow{\gamma}_{T} q^{\prime}$. We extend this notation in the obvious manner to sequences of symbols: (1) $\forall q \in Q, q \xrightarrow{\epsilon}_{T} q$, and (2) $\forall q, q^{\prime} \in Q, \forall \gamma \in \Gamma \cup$ $\{\epsilon\}, \forall w \in \Gamma^{*}$ for $w=\gamma_{0} \gamma_{1} \cdots \gamma_{n}, q \xrightarrow{\gamma w}_{T} q^{\prime}$ iff $\exists q^{\prime \prime} \in Q, q \xrightarrow{\gamma}_{T} q^{\prime \prime}$ and $q^{\prime \prime} \xrightarrow{w}_{T} q^{\prime}$. If $q{ }^{w}{ }_{T} q^{\prime}$ holds, we say that $q{ }^{w}{ }_{T} q^{\prime}$ is a path of \mathcal{A}. A configuration $(\langle p, w\rangle, \theta)$ is accepted by \mathcal{A} iff \mathcal{A} contains a path $(p, \theta){\xrightarrow{\gamma_{0}}}_{T} q_{1}{ }^{\gamma_{1}}{ }_{T} q_{2} \cdots q_{n}{ }^{\gamma_{n}}{ }_{T} q$ where $q \in F$. Let $L(\mathcal{A})$ be the set of configurations accepted by \mathcal{A}. Let \mathcal{C} be a set of configurations of the SM-PDS \mathcal{P}. \mathcal{C} is regular if there exists a \mathcal{P}-automaton \mathcal{A} such that $\mathcal{C}=L(\mathcal{A})$.

2.5 Efficient Computation of pre* images

Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a SM-PDS, and let $\mathcal{A}=(Q, \Gamma, T, P, F)$ be a \mathcal{P}_{-} automaton that represents a regular set of configurations $\mathcal{C}(\mathcal{C}=L(\mathcal{A}))$. To compute $\operatorname{pr}^{*}(\mathcal{C})$, one can use the translation of Section 2.2 .2 to compute an equivalent PDS, and then apply the algorithms of [6, 20]. This procedure is too complex since the size of the obtained PDS is huge. One can also use the translation of Section 2.2 .3 to compute an equivalent symbolic PDS, and then use the algorihms of [42]. However, this procedure is not optimal neither since the number of elements of the relations considered in the rules of the symbolic PDSs are huge. We present in this section a direct and more efficient algorithm that computes $\operatorname{pre}^{*}(\mathcal{C})$ without any need to translate the SM-PDS to an equivalent PDS or symbolic PDS. We assume w.l.o.g. that \mathcal{A} has no transitions leading to an initial state. We also assume that the self-modifying rules $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime}$ in Δ_{c} are such that $r \neq r_{1}$. This is not a restriction since a rule of the form $r=p \xrightarrow{\left(r, r_{2}\right)} p^{\prime}$ can be replaced by these rules that meet this constraint: $r=p \xrightarrow{\left(r_{\perp}, r_{\perp}\right)} p_{i}$ and $p_{i} \xrightarrow{\left(r, r_{2}\right)} p^{\prime}$, where r_{\perp} is a new fake rule that we can add to all phases.

The construction of $\mathcal{A}_{\text {pre* }}$ follows the same idea as for standard pushdown systems (see [6, 20]). It consists in adding iteratively new transitions to the
automaton \mathcal{A} according to saturation rules (reflecting the backward application of the transition rules in the system), while the set of states remains unchanged. Therefore, let $\mathcal{A}_{\text {pre }}$ be the \mathcal{P}-automaton $\left(Q, \Gamma, T^{\prime}, P, F\right)$, where T^{\prime} is computed using the following saturation rules: initially $T^{\prime}=T$.
α_{1} : If $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w\right\rangle \in \Delta$, where $w \in \Gamma^{*}$. For every $\theta \subseteq \Delta \cup \Delta_{c}$ s.t. $r \in \theta$, if there exists in T^{\prime} a path $\pi=\left(p_{1}, \theta\right) \xrightarrow{w}{ }_{T} q$, then add $((p, \theta), \gamma, q)$ to T^{\prime}.
α_{2} : if $r=p \xrightarrow{\stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow}} p_{1} \in \Delta_{c}$ for every $\theta \subseteq \Delta \cup \Delta_{c}$ s.t. $r \in \theta, r_{2} \in \theta$ and for every $\gamma \in \Gamma$, if there exists in T^{\prime} a transition $t=\left(p_{1}, \theta\right) \xrightarrow{\gamma}_{T} q$, then add $\left(\left(p, \theta^{\prime}\right), \gamma, q\right)$ to T^{\prime} where $\theta=\left(\theta^{\prime} \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$.

The procedure above terminates since there is a finite number of states and phases.
Let us explain intuitively the role of the saturation rule $\left(\alpha_{1}\right)$. Let $r=\langle p, \gamma\rangle \hookrightarrow$ $\left\langle p^{\prime}, w\right\rangle \in \Delta$. Consider a path in the automaton of the form $\left(p^{\prime}, \theta^{\prime}\right) \xrightarrow{w} T_{T^{\prime}} q \xrightarrow{w^{\prime}} T_{T^{\prime}} q_{F}$, where $q_{F} \in F$. This means, by definition of \mathcal{P}-automata, that the configuration $c=\left(\left\langle p^{\prime}, w w^{\prime}\right\rangle, \theta^{\prime}\right)$ is accepted by $\mathcal{A}_{\text {pre }}$. If r is in θ^{\prime}, then the configuration $c^{\prime}=\left(\left\langle p, \gamma w^{\prime}\right\rangle, \theta^{\prime}\right)$ is a predecessor of c. Therefore, it should be added to $\mathcal{A}_{\text {pre }}$. This configuration is accepted by the run $\left(p, \theta^{\prime}\right) \xrightarrow{\gamma}_{T^{\prime}} q \xrightarrow{w^{\prime}}{ }_{T^{\prime}} q_{F}$ added by rules $\left(\alpha_{1}\right)$.

Rule $\left(\alpha_{2}\right)$ deals with modifying rules: Let $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}$. Consider a path in the automaton of the form $\left(p^{\prime}, \theta^{\prime}\right) \xrightarrow{\gamma} T_{T^{\prime}} q \xrightarrow{w^{\prime}} q_{F}$, where $q_{F} \in F$. This means, by definition of \mathcal{P}-automata, that the configuration $c=\left(\left\langle p^{\prime}, \gamma w^{\prime}\right\rangle, \theta^{\prime}\right)$ is accepted by $\mathcal{A}_{\text {pre* }}$. If r and r_{2} are in θ^{\prime}, then the configuration $c^{\prime}=\left(\left\langle p, \gamma w^{\prime}\right\rangle, \theta\right)$ is a predecessor of c, where $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$. Therefore, it should be added to $\mathcal{A}_{\text {pre }}$. This configuration is accepted by the run $\pi^{\prime}=(p, \theta) \xrightarrow{\gamma}{ }_{T^{\prime}} q \xrightarrow{w^{\prime}}{ }_{T^{\prime}} q_{F}$ added by rules $\left(\alpha_{2}\right)$.

Thus, we can show that:
Theorem 2.5.1 $\mathcal{A}_{\text {pre* }}$ recognizes pre $(L(\mathcal{A}))$.
Before proving this theorem, let us illustrate the construction on 2 examples.
Example 2 Let us illustrate the procedure by an example. Consider the SM-PDS with control points $P=\left\{p_{0}, p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ and Δ, Δ_{c} as shown in the left half

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Δ :
$r_{1}:\left\langle p_{0}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma_{0}\right\rangle \quad r_{2}:\left\langle p_{5}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{2}, \gamma_{2} \gamma_{0}\right\rangle$
$r_{3}:\left\langle p_{2}, \gamma_{2}\right\rangle \hookrightarrow\left\langle p_{3}, \epsilon\right\rangle \quad r_{4}:\left\langle p_{4}, \gamma_{0}\right\rangle \hookrightarrow\left\langle p_{0}, \epsilon\right\rangle$
$r_{5}:\left\langle p_{1}, \gamma_{1}\right\rangle \hookrightarrow\left\langle p_{4}, \gamma_{0}\right\rangle$
Δ_{c} :
$r^{\prime}: p_{3} \xrightarrow{\left(r_{1}, r_{5}\right)} p_{4}$
$\theta_{0}=\left\{r_{5}, r_{2}, r_{3}, r_{4}, r^{\prime}\right\}$

Figure 2.2: The automata \mathcal{A} (left) and $\mathcal{A}_{\text {pre* }}$ (right)
of Fig. 2.2. Let \mathcal{A} be the automaton that accepts the set $C=\left\{\left(\left\langle p_{0}, \gamma_{0} \gamma_{0}\right\rangle, \theta_{0}\right)\right\}$, also shown on the left where $\left(p_{0}, \theta_{0}\right)$ is the initial state and s_{2} is the final state. The result of the algorithm is shown in the right half of Fig. 2.2. The result is obtained through the following steps:

1. First, we note that $\left(p_{0}, \theta_{0}\right){\stackrel{\epsilon}{T^{\prime}}}\left(p_{0}, \theta_{0}\right)$ holds. Since $\left\langle p_{0}, \epsilon\right\rangle$ occurs on the right hand side of rule r_{4} and $r_{4} \in \theta_{0}$, then Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{0}}\left(p_{0}, \theta_{0}\right)$ to T^{\prime}.
2. Now that we have $\left(p_{4}, \theta_{0}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}\left(p_{0}, \theta_{0}\right)$, since $r_{5} \in \theta_{0}$, Rule $\left(\alpha_{1}\right)$ adds $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}}\left(p_{0}, \theta_{0}\right)$ to T^{\prime}.
3. Since we have $\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{0}}{ }_{T^{\prime}}\left(p_{0}, \theta_{0}\right)$, the self-modifying transition $r^{\prime} \in \theta_{0}$ can be applied. Thus, Rule $\left(\alpha_{2}\right)$ adds $\left(p_{3}, \theta_{1}\right) \xrightarrow{\gamma_{0}}\left(p_{0}, \theta_{0}\right)$ to T^{\prime} where $\theta_{1}=$ $\left(\theta_{0} \backslash\left\{r_{5}\right\}\right) \cup\left\{r_{1}\right\}=\left\{r_{1}, r_{2}, r_{3}, r_{4}, r^{\prime}\right\}$.
4. Since $\left(p_{3}, \theta_{1}\right) \xrightarrow{\epsilon}\left(p_{3}, \theta_{1}\right)$ and $r_{3} \in \theta_{1}$, Rule $\left(\alpha_{1}\right)$ adds $\left(p_{2}, \theta_{1}\right) \xrightarrow{\gamma_{2}}\left(p_{3}, \theta_{1}\right)$ to T^{\prime}.
5. Then, there is a path $\left(p_{2}, \theta_{1}\right){\xrightarrow{\gamma_{2}}}_{T^{\prime}}\left(p_{3}, \theta_{1}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}\left(p_{0}, \theta_{0}\right)$. Since $\left\langle p_{2}, \gamma_{2} \gamma_{0}\right\rangle$ occurs on the right hand side of r_{2} and $r_{2} \in \theta_{1}$, then Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{5}, \theta_{1}\right) \xrightarrow{\gamma_{1}}\left(p_{0}, \theta_{0}\right)$ to T^{\prime}.
6. No further additions are possible. Thus, the procedure terminates.

Figure 2.3: The automata \mathcal{A} (left) and $\mathcal{A}_{\text {pre }}$ (right)

Example 3 Let us give another example. Consider the SM-PDS with control points $P=\left\{p_{1}, p_{2}, p_{3}, p_{4}, p_{5}\right\}$ and Δ, Δ_{c} as shown in the left half of Fig. 2.3. Let \mathcal{A} be the automaton that accepts the set $C=\left\{\left(\left\langle p_{0}, \gamma_{0} \gamma_{0}\right\rangle, \theta_{0}\right)\right\}$ where $\left(p_{0}, \theta_{0}\right)$ is the initial state and s_{2} is the final state as shown on the left. The result $\mathcal{A}_{\text {pre* }}$ of the algorithm is on the right half of Fig. 2.3. The result is obtained through the following steps:

1. Since $\left(p_{0}, \theta_{0}\right) \xrightarrow{\gamma}_{T^{\prime}} s_{1}$ and $r_{1} \in \theta_{0}$, then Rule $\left(\alpha_{1}\right)$ adds $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}} s_{1}$ to T^{\prime}.
2. Since $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} s_{1}$ and $r_{2} \in \theta_{0}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{2}}$ s_{1} to T^{\prime}.
3. Since $\left(p_{2}, \theta_{0}\right) \xrightarrow{\epsilon}_{T^{\prime}}\left(p_{2}, \theta_{0}\right)$ and $r_{3} \in \theta_{0}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{3}, \theta_{0}\right) \xrightarrow{\gamma_{0}}\left(p_{2}, \theta_{0}\right)$ to T^{\prime}.
4. Then, there is a path $\left(p_{3}, \theta_{0}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}\left(p_{2}, \theta_{0}\right){\xrightarrow{\gamma_{2}}}_{T^{\prime}} s_{1}$ and $r_{4} \in \theta_{0}$, Rule α_{1} adds the transition $\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{1}} s_{1}$ to T^{\prime}.
5. Because $\left(p_{4}, \theta_{0}\right) \xrightarrow[\rightarrow]{\epsilon}_{T^{\prime}}\left(p_{4}, \theta_{0}\right)$ and $r_{5} \in \theta_{0}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{0}, \theta_{0}\right) \xrightarrow{\gamma_{0}}\left(p_{4}, \theta_{0}\right)$ to T^{\prime}.
6. Since $\left(p_{0}, \theta_{0}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}\left(p_{4}, \theta_{0}\right)$ and $r_{1} \in \theta_{0}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}}\left(p_{4}, \theta_{0}\right)$ to T^{\prime}. Then, since $r_{2} \in \theta_{0}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{2}}\left(p_{4}, \theta_{0}\right)$ to T^{\prime}.
7. Since there is a path $\left(p_{3}, \theta_{0}\right) \xrightarrow{\gamma_{0}} T_{T^{\prime}}\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{2}} T_{T^{\prime}}\left(p_{4}, \theta_{0}\right)$ and $r_{4} \in \theta_{0}$, Rule $\left(\alpha_{1}\right)$ adds $\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{1}}\left(p_{4}, \theta_{0}\right)$ to T^{\prime}.
8. Since $\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} s_{1},\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}}\left(p_{4}, \theta_{0}\right)$ and $r_{c}^{1}, r_{2} \in \theta_{0}$, Rule $\left(\alpha_{2}\right)$ adds $\left(p_{5}, \theta_{1}\right) \xrightarrow{\gamma_{1}} s_{1}$ and $\left(p_{5}, \theta_{1}\right) \xrightarrow{\gamma_{1}}\left(p_{4}, \theta_{0}\right)$ to T^{\prime} where $\theta_{1}=\left(\theta_{0} \backslash\left\{r_{2}\right\}\right) \cup$ $r_{6}=\left\{r_{1}, r_{3}, r_{4}, r_{5}, r_{6}, r_{c}^{1}, r_{c}^{2}, r_{c}^{3}, r_{c}^{4}\right\}$. For the same reason, since $\left(p_{0}, \theta_{0}\right){ }^{\gamma_{0}}{ }_{T^{\prime}}$ $\left(p_{4}, \theta_{0}\right),\left(p_{0}, \theta_{0}\right) \xrightarrow{\gamma}_{T^{\prime}} s_{1}$ and $r_{1}, \in \theta_{1}, r_{c}^{2} \in \theta_{0}$, Rule $\left(\alpha_{2}\right)$ adds the transitions $\left(p_{5}, \theta_{2}\right) \xrightarrow{\gamma_{0}}\left(p_{4}, \theta_{0}\right)$ and $\left(p_{5}, \theta_{2}\right) \xrightarrow{\gamma_{0}} s_{1}$ to T^{\prime} where $\theta_{2}=\left(\theta_{0} \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{7}\right\}=$ $\left\{r_{2}, r_{3}, r_{4}, r_{5}, r_{7}, r_{c}^{1}, r_{c}^{2}, r_{c}^{3}, r_{c}^{4}\right\}$.
9. Since $\left(p_{5}, \theta_{1}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} s_{1},\left(p_{5}, \theta_{1}\right) \xrightarrow{\gamma_{1}} T^{\prime}\left(p_{4}, \theta_{0}\right)$ and $r_{6} \in \theta_{1}$, Rule $\left(\alpha_{1}\right)$ adds the transitions $\left(p_{2}, \theta_{1}\right) \xrightarrow{\gamma_{2}} s_{1}$ and $\left(p_{2}, \theta_{1}\right) \xrightarrow{\gamma_{2}}\left(p_{4}, \theta_{0}\right)$ to T^{\prime}.
10. Since $\left(p_{2}, \theta_{1}\right) \xrightarrow{\epsilon_{T^{\prime}}}\left(p_{2}, \theta_{1}\right)$ and $r_{3} \in \theta_{1}$, Rule $\left(\alpha_{1}\right)$ adds $\left(p_{3}, \theta_{1}\right) \xrightarrow{\gamma_{0}}\left(p_{2}, \theta_{1}\right)$.
11. Because there are paths $\left(p_{3}, \theta_{1}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}\left(p_{2}, \theta_{1}\right) \xrightarrow{\gamma_{2}}{ }_{T^{\prime}}\left(p_{4}, \theta_{0}\right)$ and $\left(p_{3}, \theta_{1}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}$ $\left(p_{2}, \theta_{1}\right) \xrightarrow{\gamma_{2}} T_{T^{\prime}} s_{1}$, Rule $\left(\alpha_{1}\right)$ adds the transitions $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{1}}\left(p_{4}, \theta_{0}\right)$ and $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{1}} s_{1}$ to T^{\prime}.
12. Since $\left(p_{4}, \theta_{0}\right) \xrightarrow{\epsilon}_{T^{\prime}}\left(p_{4}, \theta_{0}\right)$ and $r_{5} \in \theta_{1}$, Rule $\left(\alpha_{1}\right)$ adds $\left(p_{0}, \theta_{1}\right) \xrightarrow{\gamma_{0}}\left(p_{4}, \theta_{1}\right)$.
13. Now we have $\left(p_{0}, \theta_{1}\right) \xrightarrow{\gamma_{0}} T_{T^{\prime}}\left(p_{4}, \theta_{1}\right)$ and $r_{c}^{2}, r_{1} \in \theta_{1}$, Rule $\left(\alpha_{2}\right)$ adds the transition $\left(p_{5}, \theta_{3}\right) \xrightarrow{\gamma_{0}}\left(p_{4}, \theta_{1}\right)$ to T^{\prime} where $\theta_{3}=\left\{r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, r_{c}^{1}, r_{c}^{2}, r_{c}^{3}, r_{c}^{4}\right\}$. For the same reason, since $\left(p_{3}, \theta_{1}\right) \xrightarrow{\gamma_{0}}\left(p_{2}, \theta_{1}\right)$ and $r_{c}^{3}, r_{6} \in \theta_{1}$, Rule α_{2} adds the transition $\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{0}}\left(p_{2}, \theta_{1}\right)$ to T^{\prime} because $\theta_{0}=\left(\theta_{1} \backslash\left\{r_{6}\right\}\right) \cup\left\{r_{2}\right\}$.
14. Since $\left(p_{5}, \theta_{3}\right){\xrightarrow{T^{\prime}}}\left(p_{5}, \theta_{3}\right)$ and $r_{7} \in \theta_{3}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{2}, \theta_{3}\right) \xrightarrow{\gamma_{2}}\left(p_{5}, \theta_{3}\right)$ to T^{\prime}.
15. Because $\left(p_{2}, \theta_{3}\right) \xrightarrow[\rightarrow]{\epsilon}_{T^{\prime}}\left(p_{2}, \theta_{3}\right)$ and $r_{3} \in \theta_{3}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{3}, \theta_{3}\right) \xrightarrow{\gamma_{0}}\left(p_{2}, \theta_{3}\right)$ to T^{\prime}. Then, since there is a path $\left(p_{3}, \theta_{3}\right) \xrightarrow{\gamma_{0}} T_{T^{\prime}}\left(p_{2}, \theta_{3}\right) \xrightarrow{\gamma_{2}} T_{T^{\prime}}$ $\left(p_{5}, \theta_{3}\right)$ and $r_{4} \in \theta_{3}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{4}, \theta_{3}\right) \xrightarrow{\gamma_{1}}\left(p_{5}, \theta_{3}\right)$ to T^{\prime}. Then, since $r_{5} \in \theta_{3}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{0}, \theta_{3}\right) \xrightarrow{\gamma_{0}}\left(p_{4}, \theta_{3}\right)$ to T^{\prime}.
16. Since $\left(p_{3}, \theta_{3}\right) \xrightarrow{\gamma_{0}}{ }_{T^{\prime}}\left(p_{2}, \theta_{3}\right)$ and $r_{c}^{3} \in \theta_{3}$, Rule $\left(\alpha_{2}\right)$ adds the transition $\left(p_{2}, \theta_{2}\right) \xrightarrow{\gamma_{0}} T^{\prime}\left(p_{2}, \theta_{3}\right)$ to T^{\prime} where $\left(\theta_{3} \backslash\left\{r_{6}\right\}\right) \cup\left\{r_{2}\right\}=\theta_{2}$. Meanwhile, since $\left(p_{2}, \theta_{3}\right) \xrightarrow{\gamma_{2}}\left(p_{5}, \theta_{3}\right)$ and $r_{c}^{4}, r_{7} \in \theta_{3}$, Rule $\left(\alpha_{2}\right)$ adds the transition $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{2}}\left(p_{5}, \theta_{3}\right)$ to T^{\prime} where $\left(\theta_{3} \backslash\left\{r_{7}\right\}\right) \cup\left\{r_{1}\right\}=\theta_{1}$.
17. Because $r_{7} \in \theta_{2}$ and $\left(p_{5}, \theta_{2}\right) \xrightarrow{\epsilon}_{T^{\prime}}\left(p_{5}, \theta_{2}\right)$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{2}, \theta_{2}\right) \xrightarrow{\gamma_{2}}\left(p_{5}, \theta_{2}\right)$ to T^{\prime}.
18. Since $\left(p_{2}, \theta_{2}\right) \xrightarrow{\epsilon}_{T^{\prime}}\left(p_{2}, \theta_{2}\right)$ and $r_{3} \in \theta_{2}$, Rule $\left(\alpha_{1}\right)$ adds $\left(p_{3}, \theta_{2}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}\left(p_{2}, \theta_{2}\right)$ to T^{\prime}. Then, there is a path $\left(p_{3}, \theta_{2}\right) \xrightarrow{\gamma_{0} \gamma_{2} *}\left(p_{5}, \theta_{2}\right)$, since $r_{4} \in \theta_{2}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{4}, \theta_{2}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}}\left(p_{5}, \theta_{2}\right)$ to T^{\prime}. Then, since $\left(p_{5}, \theta_{2}\right) \xrightarrow{\epsilon} T_{T^{\prime}}$ $\left(p_{5}, \theta_{2}\right)$ and $r_{5} \in \theta_{2}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{0}, \theta_{2}\right) \xrightarrow{\gamma_{0}}\left(p_{4}, \theta_{2}\right)$ to T^{\prime}.
19. Now we have $\left(p_{2}, \theta_{2}\right){\xrightarrow{\gamma_{2}}}_{T^{\prime}}\left(p_{5}, \theta_{2}\right)$ and $\left(p_{2}, \theta_{2}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}}\left(p_{2}, \theta_{3}\right)$, since $r_{c}^{4}, r_{7} \in$ θ_{2}, Rule α_{2} adds the transitions $\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{2}}\left(p_{5}, \theta_{2}\right)$ and $\left(p_{4}, \theta_{0}\right) \xrightarrow{\gamma_{0}}\left(p_{2}, \theta_{3}\right)$ to T^{\prime} where $\left(\theta_{2} \backslash\left\{r_{7}\right\} \cup\right)\left\{r_{1}\right\}=\theta_{0}$.
20. Since $\left(p_{4}, \theta_{2}\right) \xrightarrow{\gamma_{1}} T^{\prime}\left(p_{5}, \theta_{2}\right)$ and $r_{2}, r_{c}^{1} \in \theta_{2}$, Rule $\left(\alpha_{2}\right)$ adds the transition $\left(p_{5}, \theta_{3}\right) \xrightarrow{\gamma_{1}}\left(p_{5}, \theta_{2}\right)$ to T^{\prime} where $\left(\theta_{2} \backslash\left\{r_{2}\right\}\right) \cup\left\{r_{6}\right\}=\theta_{3}$.
21. Since $\left(p_{5}, \theta_{3}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}}\left(p_{5}, \theta_{2}\right)$ and $r_{6} \in \theta_{3}$, Rule $\left(\alpha_{1}\right)$ adds the transition $\left(p_{2}, \theta_{3}\right) \xrightarrow{\gamma_{2}}\left(p_{5}, \theta_{2}\right)$ to T^{\prime}.
22. No further additions are possible, so the procedure terminates.

2.5.1 Proof of Theorem 2.5.1

Let us now prove Theorem 2.5.1. To prove this theorem, we first introduce the following lemma.

Lemma 1 For every configuration $\left(\langle p, w\rangle, \theta_{0}\right) \in L(\mathcal{A})$, if $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \Rightarrow_{\mathcal{P}}^{*}\left(\langle p, w\rangle, \theta_{0}\right)$, then $\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ for some final state q of $\mathcal{A}_{\text {pre }}$.
Proof: Assume $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \stackrel{i}{\Rightarrow} \mathcal{P}\left(\langle p, w\rangle, \theta_{0}\right)$. We proceed by induction on i.
Basis. $i=0$. Then $\theta=\theta_{0}, p^{\prime}=p$ and $w=w^{\prime}$. Since $\left(\langle p, w\rangle, \theta_{0}\right) \in L(\mathcal{A})$, we have $\left(p, \theta_{0}\right) \xrightarrow{w}_{T^{\prime}} q$ always holds for some final state q i.e. $\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ holds.
Step. $i>0$. Then there exists a configuration $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ such that

$$
\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \Rightarrow_{\mathcal{P}}\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \stackrel{i-1}{\Rightarrow} \mathcal{P}\left(\langle p, w\rangle, \theta_{0}\right)
$$

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

We apply the induction hypothesis to $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \stackrel{i-1}{\Rightarrow}\left(\langle p, w\rangle, \theta_{0}\right)$, and obtain $\left(p^{\prime \prime}, \theta^{\prime \prime}\right) \xrightarrow{u}{ }_{T^{\prime}} q$ for $q \in F$.

Let $w_{1}, u_{1} \in \Gamma^{*}, \gamma^{\prime} \in \Gamma$ be such that $w^{\prime}=\gamma^{\prime} w_{1}, u=u_{1} w_{1}$. Let q^{\prime} be a state of $\mathcal{A}_{\text {pre* }}$ s.t.

$$
\begin{equation*}
\left(p^{\prime \prime}, \theta^{\prime \prime}\right) \xrightarrow{u_{1}} T_{T^{\prime}} q^{\prime} \xrightarrow{w_{1}} T^{\prime} q \tag{1}
\end{equation*}
$$

There are two cases depending on which rule is applied to get $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \Rightarrow$ ($\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}$).

1. Case $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \Rightarrow\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ is obtained by a rule of the form: $\left\langle p^{\prime}, \gamma^{\prime}\right\rangle \hookrightarrow$ $\left\langle p^{\prime \prime}, u_{1}\right\rangle \in \Delta$. In this case, $\theta^{\prime \prime}=\theta$. By the saturation rule α_{1}, we have

$$
\begin{equation*}
\left(p^{\prime}, \theta^{\prime \prime}\right) \xrightarrow{\gamma^{\prime}} T_{T^{\prime}} q^{\prime} \tag{2}
\end{equation*}
$$

Putting (1) and (2) together, we can obtain that

$$
\begin{equation*}
\pi=\left(p^{\prime}, \theta^{\prime \prime}\right){\xrightarrow{\gamma^{\prime}}}_{T^{\prime}} q^{\prime} \xrightarrow{w_{1}} T_{T^{\prime}} q \tag{3}
\end{equation*}
$$

Thus, $\left(p^{\prime}, \theta^{\prime \prime}\right) \xrightarrow{\gamma^{\prime} w_{1}}{ }_{T^{\prime}} q$ i.e. $\left(p^{\prime}, \theta\right) \xrightarrow{w^{\prime}} q$ for some final state $q \in F$.
2. Case $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \Rightarrow\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ is obtained by a rule of the form $p^{\prime} \xrightarrow{\stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow}}$ $p^{\prime \prime} \in \Delta_{c}$. I.e $\theta^{\prime \prime} \neq \theta$. In this case, $u_{1}=\gamma^{\prime}$. By the saturation rule α_{2}, we obtain that

$$
\begin{equation*}
\left(p^{\prime}, \theta\right){\xrightarrow{\gamma^{\prime}}}_{T^{\prime}} q^{\prime} \text { where } \theta^{\prime \prime}=\theta \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\} . \tag{4}
\end{equation*}
$$

Putting (1) and (4) together, we have the following path

$$
\begin{equation*}
\left(p^{\prime}, \theta\right) \xrightarrow{\gamma^{\prime}}{ }_{T^{\prime}} q^{\prime} \xrightarrow{w_{1}} T_{T^{\prime}} q \text {. I.e. }\left(p^{\prime}, \theta\right) \xrightarrow{w^{\prime}}{ }_{T^{\prime}} q \text { for } q \in F \tag{5}
\end{equation*}
$$

Lemma 2 If a path $\pi=(p, \theta) \xrightarrow{w}_{T^{\prime}} q$ for $\theta \subseteq \Delta \cup \Delta_{c}$ is in $\mathcal{A}_{\text {pre }}$, then
(I) $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ holds for a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right) \xrightarrow{w^{\prime}}{ }_{T} q$ in the initial \mathcal{P}-automaton \mathcal{A};
(II) Moreover, if q is an initial state i.e. in the form (p, θ), then $w^{\prime}=\epsilon$.

Proof: Let $\mathcal{A}_{\text {pre }}=(Q, \Gamma, T, P, F)$ be the \mathcal{P}-automaton computed by the saturation procedure. In this proof, we use $\vec{i}_{T^{\prime}}$ to denote the transition relation of $\mathcal{A}_{\text {pre }}$ obtained after adding i-transitions using the saturation procedure. In particular, since initially $\mathcal{A}_{\text {pre }}=\mathcal{A}, \mathcal{A}_{\text {pre* }}$ contains the path $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ where $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \in L(\mathcal{A})$, then we write $\left(p^{\prime}, \theta_{0}\right){\underset{0}{w^{\prime}}}_{T} q$.
Let i be an index such that $\pi=(p, \theta) \xrightarrow[i_{T}]{w} q$ holds. We shall prove (I) by induction on i. Statement (II) then follows immediately from the fact that initial states have no incoming transitions in \mathcal{A}.

Basis. $i=0$. Since $(\langle p, w\rangle, \theta) \Rightarrow^{*}(\langle p, w\rangle, \theta)$ always holds, take then $p=p^{\prime}, w=$ w^{\prime} and $\theta_{0}=\theta$.

Step. $i>0$. Let $t=\left(\left(p_{1}, \theta_{1}\right), \gamma, q^{\prime}\right)$ be the i-th transition added to $\mathcal{A}_{\text {pre }}$ and j be the number of times that t is used in the path $(p, \theta) \underset{i_{T}}{w} q$. The proof is by induction on j. If $j=0$, then we have $(p, \theta) \xrightarrow[{ }_{i-1}]{T_{T}} q$ in the automaton, and we apply the induction hypothesis (induction on i) then we obtain $(\langle p, w\rangle, \theta) \Rightarrow^{*}$ $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ for a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right) \xrightarrow{w^{\prime}}{ }_{T} q$ in the initial \mathcal{P}_{-} automaton \mathcal{A}. So assume that $j>0$. Then, there exist u and v such that $w=u \gamma v$ and

$$
\begin{equation*}
(p, \theta) \underset{i-1}{u}\left(p_{1}, \theta_{1}\right){\underset{i}{\prime}}_{\gamma}^{T^{\prime}} q^{\prime} \xrightarrow[i]{v} T_{T^{\prime}} q \tag{1}
\end{equation*}
$$

The application of the induction hypothesis (induction on i) to $(p, \theta) \xrightarrow[i_{i-1} T_{T^{\prime}}]{u}$ (p_{1}, θ_{1}) (notice that $\left(p_{1}, \theta_{1}\right)$ is an initial state) gives that

$$
\begin{equation*}
(\langle p, u\rangle, \theta) \Rightarrow^{*}\left(\left\langle p_{1}, \epsilon\right\rangle, \theta_{1}\right) \tag{2}
\end{equation*}
$$

There are 2 cases depending on whether transition t was added by saturation rule α_{1} or α_{2}.

1. Case t was added by rule α_{1} : There exist $p_{2} \in P$ and $w_{2} \in \Gamma^{*}$ such that

$$
\begin{equation*}
r=\left\langle p_{1}, \gamma\right\rangle \hookrightarrow\left\langle p_{2}, w_{2}\right\rangle \in \Delta \cap \theta_{1} \tag{3}
\end{equation*}
$$

and $\mathcal{A}_{\text {pre* }}$ contains the following path:

$$
\begin{equation*}
\pi^{\prime}=\left(p_{2}, \theta_{1}\right){\underset{i-1}{w_{T^{\prime}}}}_{q^{\prime}}^{{\underset{i}{i}}_{T^{\prime}}^{v}} q \tag{4}
\end{equation*}
$$

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Applying the transition rule r gets that

$$
\begin{equation*}
\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) \tag{5}
\end{equation*}
$$

By induction on j (since transition t is used $j-1$ times in π^{\prime}), we get from (4) that
$\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right) \xrightarrow{w^{\prime}}{ }_{T^{\prime}} q$ in the initial \mathcal{P}-automaton \mathcal{A}

Putting (2), (5) and (6) together, we can obtain that
$(\langle p, w\rangle, \theta)=(\langle p, u \gamma v\rangle, \theta) \Rightarrow^{*}\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$
such that $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ in the initial \mathcal{P}-automaton \mathcal{A}
2. Case t was added by rule α_{2} : there exist $p_{2} \in P$ and $\theta^{\prime \prime} \subseteq \Delta \cup \Delta_{c}$ such that

$$
\begin{equation*}
p_{1} \xrightarrow{\left(r_{1}, r_{2}\right)} p_{2} \in \Delta_{c} \cap \theta^{\prime \prime}, \theta^{\prime \prime}=\left(\theta_{1} \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\} \tag{7}
\end{equation*}
$$

and the following path in the current automaton (self-modifying rule won't change the stack) with $r \in \theta^{\prime \prime}$:

$$
\begin{equation*}
\left(p_{2}, \theta^{\prime \prime}\right){\underset{i-1}{\gamma}}_{T^{\prime}} q^{\prime} \xrightarrow[i_{T^{\prime}}]{v} q \tag{8}
\end{equation*}
$$

Applying the transition rule, we can get from (7) that

$$
\begin{equation*}
\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, \gamma v\right\rangle, \theta^{\prime \prime}\right) \tag{9}
\end{equation*}
$$

We can apply the induction hypothesis (on j) to (8), and obtain $\left(\left\langle p_{2}, \gamma v\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right) \xrightarrow{w^{\prime}} q$ in the initial \mathcal{P}-automaton \mathcal{A}

From (2), (9) and (10), we get

$$
(\langle p, w\rangle, \theta)=(\langle p, u \gamma v\rangle, \theta) \Rightarrow^{*}\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, \gamma v\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)
$$

such that $\left(p^{\prime}, \theta_{0}\right) \xrightarrow{w^{\prime}}{ }_{T} q$ in the initial \mathcal{P}-automaton \mathcal{A}.

Then, we can prove Theorem 2.5.1:
Proof: Let $(\langle p, w\rangle, \theta)$ be a configuration of $\operatorname{pre}^{*}(L(\mathcal{A}))$. Then $(\langle p, w\rangle, \theta) \Rightarrow^{*}$ $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ for a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right) \xrightarrow{w^{\prime}}{ }_{T^{\prime}} q$ is a path in \mathcal{A} for $q \in F$. By lemma 1, we can obtain that there exists a path $(p, \theta) \xrightarrow{w}_{T^{\prime}} q$ for some final state q of $\mathcal{A}_{\text {pre }}$. So $(\langle p, w\rangle, \theta)$ is recognized by $\mathcal{A}_{\text {pre }}$.

Conversely, let $(\langle p, w\rangle, \theta)$ be a configuration accepted by $\mathcal{A}_{p r e^{*}}$ i.e. there exists a path $(p, \theta) \xrightarrow{w}_{T^{\prime}} q$ in $\mathcal{A}_{\text {pre* }}$ for some final state $q \in F$. By Lemma 2 , there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. there exist a path $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ in the initial automaton \mathcal{A} and $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$. Because q is a final state, we have $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \in L(\mathcal{A})$ i.e. $(\langle p, w\rangle, \theta) \in \operatorname{pre}^{*}(L(\mathcal{A}))$.

2.6 Efficient Computation of post* Images

Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a SM-PDS, and let $\mathcal{A}=(Q, \Gamma, T, P, F)$ be a \mathcal{P}_{-} automaton that represents a regular set of configurations $\mathcal{C}(\mathcal{C}=L(\mathcal{A}))$. Similarly, it is not optimal to compute $\operatorname{post}^{*}(\mathcal{C})$ using the translations of Sections 2.2 .2 and 2.2 .3 to compute equivalent PDSs or symbolic PDSs, and then apply the algorithms of [20, 42]. We present in this section a direct and efficient algorithm that computes post* (\mathcal{C}). We assume w.l.o.g. that \mathcal{A} has no transitions leading to an initial state. Moreover, we assume that the rules of Δ are of the form $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle$, where $|w| \leq 2$. This is not a restriction, indeed, a rule of the form $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma_{1} \cdots \gamma_{n}\right\rangle, n>2$ can be replaced by the following rules:

- $\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, a_{1} \gamma_{n}\right\rangle$
- $\left\langle p_{1}, a_{1}\right\rangle \hookrightarrow\left\langle p_{2}, a_{2} \gamma_{n-1}\right\rangle$
- $\left\langle p_{2}, a_{2}\right\rangle \hookrightarrow\left\langle p_{3}, a_{3} \gamma_{n-2}\right\rangle$
-•••,
- $\left\langle p_{n-2}, a_{n-2}\right\rangle \hookrightarrow\left\langle p^{\prime}, \gamma_{1} \gamma_{2}\right\rangle$

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

As previously, the construction of $\mathcal{A}_{\text {post }}$ consists in adding iteratively new transitions to the automaton \mathcal{A} according to saturation rules (reflecting the forward application of the transition rules in the system). We define $\mathcal{A}_{\text {post* }}$ to be the \mathcal{P}-automaton ($Q^{\prime}, \Gamma, T^{\prime}, P, F$), where T^{\prime} is computed using the following saturation rules and Q^{\prime} is the smallest set s.t. $Q \subseteq Q^{\prime}$ and for every $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma_{1} \gamma_{2}\right\rangle \in \Delta, q_{p^{\prime} \gamma_{1}}^{\theta} \in Q^{\prime}$ where $q_{p^{\prime} \gamma_{1}}^{\theta}$ is the new state labelled with p^{\prime}, γ_{1} and θ : initially $T^{\prime}=T$;
β_{1} : If $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \epsilon\right\rangle \in \Delta$ and there exists in T^{\prime} a path $\pi=(p, \theta) \xrightarrow{\gamma_{T^{\prime}} q}$ with $r \in \theta$, then add $\left(\left(p^{\prime}, \theta\right), \epsilon, q\right)$ to T^{\prime}.
β_{2} : If $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma^{\prime}\right\rangle \in \Delta$ and there exists in T^{\prime} a path $\pi=(p, \theta) \xrightarrow{\gamma}{ }_{T^{\prime}} q$ with $r \in \theta$, then add $\left(\left(p^{\prime}, \theta\right), \gamma^{\prime}, q\right)$ to T^{\prime}.
β_{3} : If $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma_{1} \gamma_{2}\right\rangle \in \Delta$ and there exists in T^{\prime} a path $\pi=(p, \theta) \xrightarrow{\gamma}_{T^{\prime}} q$ with $r \in \theta$. Add $t^{\prime}=\left(\left(p^{\prime}, \theta\right), \gamma_{1}, q_{p^{\prime} \gamma_{1}}^{\theta}\right)$ and $t^{\prime \prime}=\left(q_{p^{\prime} \gamma_{1}}^{\theta}, \gamma_{2}, q\right)$ to T^{\prime}.
β_{4} : if $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}$ and there exists in T^{\prime} a path $\pi=(p, \theta) \xrightarrow{\gamma_{T^{\prime}}} q$, where $\gamma \in \Gamma$ with $r \in \theta$, and $r_{1} \in \theta$, then add $t^{\prime}=\left(\left(p^{\prime}, \theta^{\prime}\right), \gamma, q\right)$ where $\left.\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}\right\}$.

The procedure above terminates since there is a finite number of states and phases.

Let us explain intuitively the role of the saturation rules above. Consider a path in the automaton of the form $(p, \theta) \xrightarrow{\gamma}_{T^{\prime}} q \xrightarrow{w^{\prime}} T^{\prime} q_{F}$, where $q_{F} \in F$. This means, by definition of \mathcal{P}-automata, that the configuration $c=\left(\left\langle p, \gamma w^{\prime}\right\rangle, \theta\right)$ is accepted by $\mathcal{A}_{\text {post** }}$.

Let $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \epsilon\right\rangle \in \Delta$. If r is in θ, then the configuration $c^{\prime}=$ $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ is a successor of c. Therefore, it should be added to $\mathcal{A}_{\text {post** }}$. This configuration is accepted by the run $\left(p^{\prime}, \theta\right) \xrightarrow{\epsilon_{T^{\prime}}} q \xrightarrow{w^{\prime}} T^{\prime} q_{F}$ added by rules $\left(\beta_{1}\right)$.

If θ contains the rule $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma^{\prime}\right\rangle \in \Delta$, then the configuration $c^{\prime}=$ $\left(\left\langle p^{\prime}, \gamma^{\prime} w^{\prime}\right\rangle, \theta\right)$ is a successor of c. Therefore, it should be added to $\mathcal{A}_{\text {post** }}$. This configuration is accepted by the run $\left(p^{\prime}, \theta\right) \xrightarrow{\gamma^{\prime}} T^{\prime} q \xrightarrow{w^{\prime}} T^{\prime} q_{F}$ added by rules $\left(\beta_{2}\right)$.

If $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma_{1} \gamma_{2}\right\rangle \in \Delta$ is in θ, then the configuration $c^{\prime}=\left(\left\langle p^{\prime}, \gamma_{1} \gamma_{2} w^{\prime}\right\rangle, \theta\right)$ is a successor of c. Therefore, it should be added to $\mathcal{A}_{\text {post** }}$. This configuration is accepted by the run $\left(p^{\prime}, \theta\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} q_{p^{\prime} \gamma_{1}}^{\theta} \xrightarrow{\gamma_{2}} T_{T^{\prime}} q \xrightarrow{w^{\prime}} q_{T^{\prime}} q_{F}$ added by rules $\left(\beta_{3}\right)$.

Rule $\left(\beta_{4}\right)$ deals with modifying rules: Let $r=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}$. If r and r_{1} are in θ, then the configuration $c^{\prime}=\left(\left\langle p^{\prime}, \gamma w^{\prime}\right\rangle, \theta^{\prime}\right)$ is a successor of c, where $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$. Therefore, it should be added to $\mathcal{A}_{\text {post** }}$. This configuration is accepted by the run $\left(p^{\prime}, \theta^{\prime}\right) \xrightarrow{\gamma}_{T^{\prime}} q \xrightarrow{w^{\prime}} T_{T^{\prime}} q_{F}$ added by rules $\left(\beta_{4}\right)$.

Thus, we can show that:
Theorem 2.6.1 $\mathcal{A}_{\text {post** }}$ recognizes the set post* $(L(\mathcal{A}))$.
Before proving this theorem, let us illustrate the construction on 2 examples.

Figure 2.4: The automata \mathcal{A} (left) and $\mathcal{A}_{\text {post }}{ }^{*}$ (right)

Example 4 Let us illustrate this procedure by an example. Consider the SMPDS shown in the left half of Fig. 2.4 and the automaton \mathcal{A} from Fig. 2.4 that accepts the set $C=\left\{\left(\left\langle p_{0}, \gamma_{0} \gamma_{0}\right\rangle, \theta_{0}\right)\right\}$ where $\left(p_{0}, \theta_{0}\right)$ is the initial state and s_{2} is the final state. Then the result $\mathcal{A}_{\text {post* }}$ of the algorithm is shown in the right half of Fig. 2.4. The result is derived through the following steps:

1. First, since $\left(p_{0}, \theta_{0}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}} s_{1}$ and $r_{1} \in \theta_{0}$, Rule $\left(\beta_{3}\right)$ generates a new state $q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and adds the two transitions: $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $q_{p_{1} \gamma_{1}}^{\theta_{0}} \xrightarrow{\gamma_{0}} s_{1}$ to T^{\prime}.
2. Since $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}}{ }_{T^{\prime}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $r_{2} \in \theta_{0}$, Rule $\left(\beta_{3}\right)$ generates a new state $q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and adds two transitions : $\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{2}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $q_{p_{2} \gamma_{2}}^{\theta_{0}} \xrightarrow{\gamma_{1}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ to T^{\prime}.

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

3. Because $\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{2}} T_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{3} \in \theta_{0}$, Rule $\left(\beta_{1}\right)$ adds the transition $\left(p_{3}, \theta_{0}\right) \xrightarrow{\gamma_{0}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
4. Since $\left(p_{3}, \theta_{0}\right) \xrightarrow{\gamma_{0}} T_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r^{\prime} \in \theta_{0}$, Rule $\left(\beta_{4}\right)$ adds the transition $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{0}}$ $q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime} where $\theta_{1}=\left(\theta_{0} \backslash\left\{r_{3}\right\}\right) \cup\left\{r_{5}\right\}=\left\{r_{1}, r_{2}, r_{4}, r_{5}, r^{\prime}\right\}$.
5. Since $\left(p_{4}, \theta_{1}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{4} \in \theta_{1}$, Rule $\left(\beta_{1}\right)$ adds the transition $\left(p_{1}, \theta_{1}\right) \xrightarrow{\epsilon}$ $q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
6. Then, since there is a path $\left(p_{1}, \theta_{1}\right) \xrightarrow{\gamma_{1}}{ }_{T^{\prime}}^{*} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $r_{2} \in \theta_{1}$, Rule $\left(\beta_{3}\right)$ generates new state $q_{p_{2}, \gamma_{2}}^{\theta_{1}}$ and adds two transitions $\left(p_{2}, \theta_{1}\right) \xrightarrow{\gamma_{2}} q_{p_{2}, \gamma_{2}}^{\theta_{1}}$ and $q_{p_{2}, \gamma_{2}}^{\theta_{1}} \xrightarrow{\gamma_{1}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ to T^{\prime}.
7. Since $\left(p_{2}, \theta_{1}\right) \xrightarrow{\gamma_{2}} T_{T^{\prime}} q_{p_{2}, \gamma_{2}}^{\theta_{1}}$ and $r_{5} \in \theta_{1}$, Rule $\left(\beta_{2}\right)$ adds the transition $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{1}}$ $q_{p_{2}, \gamma_{2}}^{\theta_{1}}$ to T^{\prime}.
8. No unprocessed matches remain. The procedure terminates.

Figure 2.5: The automata \mathcal{A} (left) and $\mathcal{A}_{\text {post* }}$ (right)

Example 5 Let us illustrate this procedure by another example. Consider the SM-PDS shown in the left half of Fig. 2.5 where $\left(p_{0}, \theta_{0}\right)$ is the initial state and s_{2} is the final state. The result $\mathcal{A}_{\text {post* }}$ of the algorithm is shown in the right half of Fig. 2.5 obtained as follows:

1. First, since $\left(p_{0}, \theta_{0}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}} s_{1}$ and $r_{1} \in \theta_{0}$, Rule $\left(\beta_{3}\right)$ generates a new state $q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and adds two transitions: $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $q_{p_{1} \gamma_{1}}^{\theta_{0}} \xrightarrow{\gamma_{0}} s_{1}$ to T^{\prime}.
2. Since $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}}{ }_{T^{\prime}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $r_{2} \in \theta_{0}$, Rule $\left(\beta_{3}\right)$ generates a new state $q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and adds two transitions: $\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{2}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $q_{p_{2} \gamma_{2}}^{\theta_{0}} \xrightarrow{\gamma_{1}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ to T^{\prime}.
3. Because $\left(p_{2}, \theta_{0}\right) \xrightarrow{\gamma_{2}} T_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{3} \in \theta_{0}$, Rule $\left(\beta_{2}\right)$ adds $\left(p_{3}, \theta_{0}\right) \xrightarrow{\gamma_{1}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
4. Since $\left(p_{3}, \theta_{0}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{c}^{1}, r_{1} \in \theta_{0}$, Rule $\left(\beta_{4}\right)$ adds the transition $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{1}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime} where $\theta_{1}=\left(\theta_{0} \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{5}\right\}$.
5. Since $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{4} \in \theta_{1}$, Rule $\left(\beta_{1}\right)$ adds the transition $\left(p_{0}, \theta_{1}\right) \xrightarrow{\epsilon}$ $q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}. Then there is a path $\left(p_{0}, \theta_{1}\right) \xrightarrow{\gamma_{1}}{ }_{T^{\prime}}^{*} q_{p_{1} \gamma_{1}}^{\theta_{0}}$, since $r_{5} \in \theta_{1}$, Rule $\left(\beta_{2}\right)$ adds the transition $\left(p_{5}, \theta_{1}\right) \xrightarrow{\gamma_{0}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ to T^{\prime}.
6. Since $\left(p_{5}, \theta_{1}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $r_{c}^{4}, r_{5} \in \theta_{1}$, Rule $\left(\beta_{4}\right)$ adds the transition $\left(p_{0}, \theta_{0}\right) \xrightarrow{\gamma_{0}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ to T^{\prime} where $\left(\theta_{1} \backslash\left\{r_{5}\right\}\right) \cup\left\{r_{1}\right\}=\theta_{0}$.
7. Since $\left(p_{0}, \theta_{0}\right) \xrightarrow{\gamma_{0}}{ }_{T^{\prime}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $r_{1} \in \theta_{0}$, Rule $\left(\beta_{3}\right)$ adds the transitions $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}}$ $q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $q_{p_{1} \gamma_{1}}^{\theta_{0}} \xrightarrow{\gamma_{0}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ to T^{\prime}.
8. Because $\left(p_{4}, \theta_{1}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{c}^{2} \in \theta_{1}$, Rule $\left(\beta_{4}\right)$ adds the transition $\left(p_{2}, \theta_{2}\right) \xrightarrow{\gamma_{1}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
9. Since $\left(p_{2}, \theta_{2}\right) \xrightarrow{\gamma_{1}} T_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{6} \in \theta_{2}$, Rule $\left(\beta_{2}\right)$ adds the transition $\left(p_{4}, \theta_{2}\right) \xrightarrow{\gamma_{0}}$ $q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
10. Since $p_{4}, \theta_{2}{\xrightarrow{\gamma_{0}}}_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ holds and $r_{6}, r_{c}^{3} \in \theta_{2}$, Rule $\left(\beta_{4}\right)$ adds the transition $\left(p_{5}, \theta_{1}\right) \xrightarrow{\gamma_{0}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
11. Then, since $\left(p_{5}, \theta_{1}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ and $r_{c}^{4} \in \theta_{1}$, Rule $\left(\beta_{4}\right)$ adds the transition $\left(p_{0}, \theta_{0}\right) \xrightarrow{\gamma_{0}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
12. Since $r_{1} \in \theta_{0}$ and $\left(p_{0}, \theta_{0}\right){\xrightarrow{\gamma_{0}}}_{T^{\prime}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$, Rule $\left(\beta_{3}\right)$ adds two transitions: $\left(p_{1}, \theta_{0}\right) \xrightarrow{\gamma_{1}} q_{p_{1} \gamma_{1}}^{\theta_{0}}$ and $q_{p_{1} \gamma_{1}}^{\theta_{0}} \xrightarrow{\gamma_{0}} q_{p_{2} \gamma_{2}}^{\theta_{0}}$ to T^{\prime}.
13. No more rules can be applied. Thus, the procedure terminates.

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.6.1 Proof of Theorem 2.6.1

Let us now prove Theorem 2.6.1. To prove this theorem, we first show the following lemma:

Lemma 3 For every configuration $\left(\langle p, w\rangle, \theta_{0}\right) \in L(\mathcal{A})$, if $\left(\langle p, w\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ then we have a path $\pi=\left(p^{\prime}, \theta\right) \xrightarrow{w^{\prime}} T^{\prime} q$ for some final state q of $\mathcal{A}_{\text {post** }}$.

Proof:

Let i be the index s.t. $\left(\langle p, w\rangle, \theta_{0}\right) \stackrel{i}{\Rightarrow}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ holds. We proceed by induction on i.

Basis. $i=0$. Then $p^{\prime}=p, w=w^{\prime}$ and $\theta_{0}=\theta$. Since $\left(\langle p, w\rangle, \theta_{0}\right) \in L(\mathcal{A})$, we have $\left(p, \theta_{0}\right) \xrightarrow{w} T_{T^{\prime}} q$ for some final state q that implies $\pi=\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ is a path of $\mathcal{A}_{\text {post* }}$.
Step. $i>0$. Then there exists a configuration $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ with

$$
\left(\langle p, w\rangle, \theta_{0}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \Rightarrow\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)
$$

By applying the induction hypothesis (induction on i), we can get that

$$
\begin{equation*}
\left(p^{\prime \prime}, \theta^{\prime \prime}\right) \xrightarrow{u}_{T^{\prime}} q \text { for some } q \in F \tag{1}
\end{equation*}
$$

Then, let $\gamma \in \Gamma, u_{1}, w_{1} \in \Gamma^{*}$ be such that $u=\gamma u_{1}, w^{\prime}=w_{1} u_{1}$. Let q_{1} be a state of $\mathcal{A}_{\text {post }}$ s.t. we have the following path in $\mathcal{A}_{\text {post* }}$:

$$
\begin{equation*}
\left(p^{\prime \prime}, \theta^{\prime \prime}\right) \xrightarrow{\gamma}_{T^{\prime}} q_{1} \xrightarrow{u_{1}} T_{T^{\prime}} q \tag{2}
\end{equation*}
$$

There are two cases depending on whether $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \Rightarrow\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ is corresponding to a self-modifying transition (i.e. $\left(\theta^{\prime \prime}=\theta\right)$) or not.

1. Case: $\theta^{\prime \prime}=\theta$. Then there exists a transition rule $r:\left\langle p^{\prime \prime}, \gamma\right\rangle \hookrightarrow\left\langle p^{\prime}, w_{1}\right\rangle \in \Delta$ s.t. $r \in \theta$. There are three possible cases depending on the length of w_{1} :

- Case $\left|w_{1}\right|=0$ i.e. $w_{1}=\epsilon$, by applying the saturation rule β_{1}, we can get

$$
\begin{equation*}
\left(p^{\prime}, \theta\right) \stackrel{\epsilon}{\rightarrow}_{T^{\prime}} q_{1} \tag{3}
\end{equation*}
$$

Putting (2) and (3) together, we can have ($\left.p^{\prime}, \theta\right) \xrightarrow{\epsilon}_{T^{\prime}} q_{1} \xrightarrow{u_{1}} T_{T^{\prime}} q$ i.e. $\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ for some final state q of $\mathcal{A}_{\text {post }}$.

- Case $\left|w_{1}\right|=1$, then let $\gamma^{\prime} \in \Gamma$ s.t. $w_{1}=\gamma^{\prime}$. By applying the saturation rule α_{2}, we can get

$$
\begin{equation*}
\left(p^{\prime}, \theta\right){\xrightarrow{\gamma^{\prime}}}_{T^{\prime}} q_{1} \tag{4}
\end{equation*}
$$

Putting (2) and (4) together, we can have ($\left.p^{\prime}, \theta\right){\xrightarrow{\gamma^{\prime}}}_{T^{\prime}} q_{1} \xrightarrow{u_{1}} T_{T^{\prime}} q$ i.e. $\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ for some final state q of $\mathcal{A}_{\text {post }}$.

- Case $\left|w_{1}\right|=2$, let $\gamma_{0}^{\prime}, \gamma_{1}^{\prime} \in \Gamma$ be such that $w_{1}=\gamma_{0}^{\prime} \gamma_{1}^{\prime}$. By applying the saturation rule α_{3}, we can get

$$
\begin{equation*}
\left(p^{\prime}, \theta\right){\xrightarrow{\gamma_{0}^{\prime}}}_{T^{\prime}} q_{p^{\prime} \gamma_{0}^{\prime}}^{\theta} \xrightarrow{\gamma_{1}^{\prime}} T_{T^{\prime}} q_{1} \tag{5}
\end{equation*}
$$

Putting (2) and (5) together, then we have a path $\left(p^{\prime}, \theta\right){\xrightarrow{\gamma_{0}^{\prime}}}_{T^{\prime}} q_{p^{\prime} \gamma_{0}^{\prime}}^{\theta}{\xrightarrow{\gamma_{1}^{\prime}}}_{T^{\prime}}$ $q_{1} \xrightarrow{u_{1}} T_{T^{\prime}} q$ i.e. $\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ for some final state q of $\mathcal{A}_{\text {post }}{ }^{*}$.
2. Case $\theta^{\prime \prime} \neq \theta$. Then there exists a self-modifying transition rule s.t. r : $p^{\prime \prime} \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c} \cap \theta^{\prime \prime}$ and $\gamma=w_{1}$ and $\theta=\left(\theta^{\prime \prime} \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$.
By applying rule β_{4} to (2), we have the following path in the automaton:

$$
\begin{equation*}
\left(p^{\prime}, \theta\right) \stackrel{\gamma}{\rightarrow}_{T^{\prime}} q_{1}{\xrightarrow{u_{1}}}_{T^{\prime}} q \tag{5}
\end{equation*}
$$

i.e. $\left(p^{\prime}, \theta\right) \xrightarrow{w^{\prime}} T_{T^{\prime}} q$ for some final state q of $\mathcal{A}_{\text {post }}{ }^{*}$.

Lemma 4 If a path $\pi=(p, \theta) \xrightarrow{w}_{T^{\prime}} q$ is in $\mathcal{A}_{\text {post** }}$, then the following holds:
(I) if q is a state of \mathcal{A}, then $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}(\langle p, w\rangle, \theta)$ for a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ such that $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ is a path in the initial \mathcal{P}-automaton \mathcal{A};
(II) if q is a new state of the form $q=q_{p_{1} \gamma_{1}}^{\theta_{1}}$, then $\left(\left\langle p_{1}, \gamma_{1}\right\rangle, \theta_{1}\right) \Rightarrow^{*}(\langle p, w\rangle, \theta)$.

Proof: Let $\mathcal{A}_{\text {post* }}=\left(Q^{\prime}, \Gamma, T^{\prime}, P, F\right)$ be the \mathcal{P}-automaton computed by the saturation procedure. In this proof, we use $\underset{{ }_{i}}{ }$ to denote the transition relation $\rightarrow_{T^{\prime}}$ of $\mathcal{A}_{\text {post }^{*}}$ obtained after adding i transitions using the saturation procedure.

Let i be an index such that $(p, \theta) \xrightarrow[i^{\prime}]{\vec{w}} q$ holds. We prove both parts of the lemma by induction on i.

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Basis. $i=0$. Only (I) applies. Thus, $p^{\prime}=p, \theta_{0}=\theta$ and $w=w^{\prime} .\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \Rightarrow^{*}$ ($\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta$) always holds.

Step. $i>1$. Let t be the i-th transition added to the automaton. Let j be the number of times that t is used in $(p, \theta) \xrightarrow[i_{T}]{\vec{w}} q . \mathcal{A}$ has no transitions leading to initial states, and the algorithm does not add any such transitions; therefore, if t starts in an initial state, t can only be used at the start of the path.

The proof is by induction on j. If $j=0$, then we have $(p, \theta) \xrightarrow[i_{i-1}]{T^{\prime}} q$. We apply the induction hypothesis (induction on i) then we obtain that there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}(\langle p, w\rangle, \theta)$ and $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ is a path of initial \mathcal{P}-automaton \mathcal{A}. So assume that $j>0$. We distinguish three possible cases:

1. If t was added by the rule β_{1}, β_{2} or β_{3}, then $t=\left(\left(p_{1}, \theta_{1}\right), v, q_{1}\right)$, where $v=\epsilon$ or $v=\gamma_{1}$. Then, necessarily, $j=1$ and there exists the following path in the current automaton:

$$
\begin{equation*}
(p, \theta)=\left(p_{1}, \theta_{1}\right){\underset{i}{v}}_{T^{\prime}}^{v} q_{1}{\underset{i-1}{w_{1}}}_{T^{\prime}} q \tag{1}
\end{equation*}
$$

There are 2 cases depending on whether transition t was added by rule β_{4} or not.

- Case t was added by rule β_{4} : there exists a self-modifying transition rule such that $r=p_{2} \xrightarrow{\left(r_{1}, r_{2}\right)} p_{1} \in \Delta_{c}$, and there exists the following path in the current automaton:

$$
\begin{equation*}
\left(p_{2}, \theta_{2}\right){\underset{i-1}{ }{ }_{T^{\prime}}}_{v}^{q_{1}}{\underset{i-1}{T_{T^{\prime}}}}_{w_{1}} q, \theta_{1}=\theta_{2} \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\} \tag{2}
\end{equation*}
$$

By induction on (i), we get from (2) that there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ is a path in the initial \mathcal{P}-automaton \mathcal{A} :

$$
\begin{equation*}
\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p_{2}, v w_{1}\right\rangle, \theta_{2}\right) \tag{3}
\end{equation*}
$$

By applying the rule $p_{2} \xrightarrow{\left(r_{1}, r_{2}\right)} p_{1}$, we get that

$$
\begin{equation*}
\left(\left\langle p_{2}, v w_{1}\right\rangle, \theta_{2}\right) \Rightarrow\left(\left\langle p_{1}, v w_{1}\right\rangle, \theta_{1}\right) \tag{4}
\end{equation*}
$$

Thus, putting (3) and (4) together, we get that there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ is a path in the initial \mathcal{P}-automaton \mathcal{A} and:

$$
\begin{equation*}
\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p_{2}, v w_{1}\right\rangle, \theta_{2}\right) \Rightarrow\left(\left\langle p_{1}, w\right\rangle, \theta_{1}\right)=(\langle p, w\rangle, \theta) \tag{5}
\end{equation*}
$$

- Case t is added by β_{1} or β_{2} : then there exists $p_{2} \in P, \gamma_{2} \in \Gamma$ such that

$$
\begin{equation*}
r=\left\langle p_{2}, \gamma_{2}\right\rangle \hookrightarrow\left\langle p_{1}, v\right\rangle \in \Delta \tag{6}
\end{equation*}
$$

and $\mathcal{A}_{\text {post* }}$ contains the following path:

$$
\begin{equation*}
\left(p_{2}, \theta_{1}\right){\xrightarrow[i-1]{\gamma_{T^{\prime}}}}_{\gamma_{2}}^{q_{1} \xrightarrow[i-1]{w_{T^{\prime}}}} q \tag{7}
\end{equation*}
$$

By induction on (i), We can get from (7) that there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ is a path in the initial \mathcal{P}-automaton \mathcal{A} and:

$$
\begin{equation*}
\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p_{2}, \gamma_{2} w_{1}\right\rangle, \theta_{1}\right) \tag{8}
\end{equation*}
$$

Thus, putting (6) and (8) together, we have that there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ is a path in the initial \mathcal{P} automaton \mathcal{A} and:

$$
\begin{equation*}
\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p_{2}, \gamma_{2} w_{1}\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{1}, w\right\rangle, \theta_{1}\right)=(\langle p, w\rangle, \theta) \tag{9}
\end{equation*}
$$

2. If t is the first transition added by rule β_{3} i.e. t is in the form of $\left(\left(p_{1}, \theta^{\prime \prime}\right), \gamma_{1}, q_{p_{1} \gamma_{1}}^{\theta_{1}}\right)$. If this transition is new, then there are no transitions outgoing from $q_{p_{1} \gamma_{1}}^{\theta_{1}}$. So the only path using t is $\left(p_{1}, \theta^{\prime \prime}\right) \xrightarrow[i]{\gamma_{T^{\prime}}} q_{p_{1} \gamma_{1}}^{\theta_{1}}$. For this path, we only need to prove part (II), and $\left(\left\langle p_{1}, \gamma_{1}\right\rangle, \theta_{1}\right) \Rightarrow{ }^{*}\left(\left\langle p_{1}, \gamma_{1}\right\rangle, \theta_{1}\right)$ holds trivially.
3. Let $t=\left(q_{p_{1} \gamma_{1}}^{\theta_{1}}, \gamma^{\prime \prime}, q^{\prime}\right)$ be the second transition added by saturation rule β_{3}. Then there exist $u, v \in \Gamma^{*}$ s.t. $w=u \gamma^{\prime \prime} v$ and the current automaton contains the following path:

$$
\begin{equation*}
(p, \theta) \underset{i-1}{u}{ }_{T^{\prime}}^{\prime} q_{p_{1} \gamma_{1}}^{\theta_{1}}{\xrightarrow[i]{\gamma_{T^{\prime}}^{\prime \prime}}}_{q^{\prime}}^{\xrightarrow[i]{ }^{v}} q \tag{10}
\end{equation*}
$$

Because t was added via the saturation rule, then there exist $p_{2} \in P, \gamma_{2} \in \Gamma$ and a rule of the form

$$
\begin{equation*}
\left\langle p_{2}, \gamma_{2}\right\rangle \hookrightarrow\left\langle p_{1}, \gamma_{1} \gamma^{\prime \prime}\right\rangle \in \Delta \cap \theta_{1} \tag{11}
\end{equation*}
$$

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

and $\mathcal{A}_{\text {post* }}$ contains the following path:

$$
\begin{equation*}
\left(p_{2}, \theta_{1}\right){\underset{i-1}{ }{ }_{T^{\prime}} q^{\prime} \xrightarrow[i]{l}_{T^{\prime}}^{v}}^{v} \tag{12}
\end{equation*}
$$

We apply the induction hypothesis on i and obtain that

$$
\begin{equation*}
\left(\left\langle p_{1}, \gamma_{1}\right\rangle, \theta_{1}\right) \Rightarrow^{*}(\langle p, u\rangle, \theta) \tag{13}
\end{equation*}
$$

We apply the induction hypothesis on i to obtain that there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right) \xrightarrow{w^{\prime}}{ }_{T} q$ is a path in the initial \mathcal{P}-automaton \mathcal{A} and:

$$
\begin{equation*}
\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p_{2}, \gamma_{2} v\right\rangle, \theta_{1}\right) \tag{14}
\end{equation*}
$$

Thus, putting (11) (13) and (14) together, we have that there exists a configuration $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right)$ s.t. $\left(p^{\prime}, \theta_{0}\right){\xrightarrow{w^{\prime}}}_{T} q$ is a path in the initial \mathcal{P}_{-} automaton \mathcal{A} and:

$$
\begin{equation*}
\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p_{2}, \gamma_{2} v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{1}, \gamma_{1} \gamma^{\prime \prime} v\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p, u \gamma^{\prime \prime} v\right\rangle, \theta\right)=(\langle p, w\rangle, \theta) \tag{15}
\end{equation*}
$$

Then we continue to prove Theorem 2.6.1:
Proof: Let $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ be a configuration of $\operatorname{post}^{*}(L(\mathcal{A}))$. Then there exists a configuration $\left(\langle p, w\rangle, \theta_{0}\right)$ such that there exists a path $\left(p, \theta_{0}\right) \xrightarrow{w}_{T} q$ in the initial automaton \mathcal{A} and $\left(\langle p, w\rangle, \theta_{0}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$. By Lemma 3, we can have $\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ for q is a final state of $\mathcal{A}_{\text {post** }}$. So $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ is recognized by $\mathcal{A}_{\text {post }}$. Conversely, let $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ be a configuration recognized by $\mathcal{A}_{\text {post** }}$. Then there exists a path $\left(p^{\prime}, \theta\right){\xrightarrow{w^{\prime}}}_{T^{\prime}} q$ in $\mathcal{A}_{\text {post** }}$ for some final state q. By Lemma 4 , since q is a final state, we have $\left(\langle p, w\rangle, \theta_{0}\right) \Rightarrow_{\mathcal{P}}^{*}\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right)$ s.t. there exists a configuration $\left(\langle p, w\rangle, \theta_{0}\right)$ s.t. $\left(p, \theta_{0}\right) \xrightarrow{w}_{T^{\prime}} q$ is a path in the initial automaton \mathcal{A} i.e. $\left(\langle p, w\rangle, \theta_{0}\right) \in$ $L(\mathcal{A})$. Therefore, $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta\right) \in \operatorname{post}^{*}(L(\mathcal{A}))$

2.7 Experiments

2.7.1 Our Algorithms vs. Standard pre* and post* Algorithms of PDSs

We implemented our algorithms in a tool. To compare the performance of our algorithms against the approach that consists in translating the SM-PDS into an equivalent PDS or symbolic PDS and then apply the standard post* and pre* algorithms for PDSs and symbolic PDSs [20, 42], we first applied our tool on randomly generated SM-PDSs of various sizes. The results of the comparision using the pre * (resp. post*) algorithms are reported in Table 2.1 (resp. Table 2.2 .

In Table 2.1, Column $|\Delta|+\left|\Delta_{c}\right|$ is the number of transitions of the SMPDS (changing and non changing rules). Column SM-PDS gives the cost it takes to apply our direct algorithm to compute the pre* for the given SM-PDS. Column PDS shows the cost it takes to get the equivalent PDS from the SMPDS. Column Symbolic PDS reports the cost it takes to get the equivalent Symbolic PDS from the SM-PDS. Column Result1 reports the cost it takes to get the pre* analysis of Moped [42] for the PDS we got. Column Total1 is the total cost it takes to translate the SM-PDS into a PDS and then apply the standard pre* algorithm of Moped (Total1=PDS+Result1). Column Result2 reports the cost it takes to get the pre* analysis of Moped for the symbolic PDS we got. Column Total2 is the total cost it takes to translate the SMPDS into a symbolic PDS and then apply the standard pre* algorithm of Moped (Total2=Symbolic PDS+Result2). "error" in the table means failure of Moped, because the size of the relations involved in the symbolic transitions is huge. Hence, we mark - for the total execution time. You can see that our direct algorithm (Column SM-PDS) is much more efficient.

Table 2.2 shows the performance of our post* algorithm. The meaning of the columns are exactly the same as for the pre* case, but using the post* algorithms instead. You can see from this table that applying our direct post* algorithm on the SM-PDS is much better than translating the SM-PDS to an equivalent PDS or symbolic PDS, and then applying the standard post* algorithms of Moped. Going through PDSs or symbolic PDSs is less efficient and leads to memory out in several cases.

－	лолә	GNGLEX SZİ90\％	s¢9．0¢0才6	7I．8II		GN66历フ8 s97•8Z	$8+0909$
－	лолıә	gNLZ0L× S6T668	6İ0LZ\＆8	S89：26		GNL6モア s89＊LZ	$8+89$ It
－	лоллә	GN070I 8 s 20.668	sてだも0678	SL6．L6		GNL6E $>$ şだ 61	$8+8907$
－	лолıә	GNEL0L× SL0 Z08	S6T＇L0¢L8	s89．76	GNL0¢8 Stc．80才t8	GWZEEE 28 s90＊8L	$2+8907$
－	лоллә		s\％ 82.767	sct．9］		GW98Z＞s66•LI	$6+09$ I \mathcal{L}
－	лоллә		SLL＇LI008	sZ2．8I		GNZ88＞s98｀LI	$6+0908$
－	лолıә	GN09 \times ¢ SZİ8ZI	S87．97L6z	s87．${ }^{\circ}$		GNZgZ 88 s80．2	$6+660 z$
－	лоллә	GNLSL \times SZİもてI		s6I＇t	GNZ65 $>$ StE06I	GNZE 8 Scoit	$8+6607$
－	лолıә	gNETLX s0L．07	s6z＊6796I	s6I＇t	GNELL＞ST｀Gz¢6I	GNEZ®＞ş8＊E	$8+6907$
SLLELLI	SLL． 6	GN8¢g \times s0İもZI	s60．7ち¢9	s60T	GNILLI 28 s8¢c9	GN0LE $8886 . \square$	L＋668I
ST8．9I	Stı ${ }^{\text {a }}$		s99．909LI	S97． 7	GNLII $>$ sでも0¢II	GNL6 ${ }^{\text {S }} 6$ F $^{\circ} \mathrm{L}$	0I＋600I
S¢f゙ IZ	s\％0．0	GN92 P8 SLT゙LZ	S97＊ 967	Sco 0	GN98 8 SLだ96z	GNGI \％sc900	$8+9 ¢ 7$
s08．7	St0．0	GN0Lア S6L．\％	SIZ ${ }^{\circ}$	SI0．0	GNSLP S0Z®	GNLI ${ }^{\text {SGF＊}}$	0I＋0ZI
SLL＇ 6	s00．0	GN88 SLL．	s9［ ${ }^{\circ} \mathrm{C}$	SL0．0	GN9 ${ }^{\text {a }}$ Sctc	GINL8 S88：0	0L＋0LI
SL8＇t	St0 0	GW98 s08＊	S97．${ }^{\circ}$	s\％0．0	GNTX Stİ\＆	GWE8 STE．0	$L+\varepsilon \square$
s01．0	s00．0	GINz 8 S0I．0	SGT．0	s00．0	GNE P8 Sctio	GNZ 28 sZİ0	$\varepsilon+\varepsilon[$
s01．0	${ }^{\text {s }} 00{ }^{\circ} 0$	GNZ 8 S0I．0	sct．0	s00．0	GNE $>$ SgT0	GNT 88 S0I．0	$\varepsilon+\varepsilon[$
s01．0	s00．0	GIJz 88 S0T00	SGT ${ }^{\circ} 0$	S00．0	GNE 28 Sctio	GNE 88 s80\％0	$\varepsilon+0$［
ZIE70L	\％．［nsəy			LTInsəy	SGd	SGd－JS	${ }^{\mid} \nabla \nabla\|+\|\nabla\|$

$\|\Delta\|+\left\|\Delta_{c}\right\|$	SM-PDS	PDS	Result1	Total1	Symbolic PDS	Result2	Total2
$10+3$	0.12s \& 2MB	0.15 s \& 3MB	0.00s	0.15 s	$0.10 \mathrm{~s} \& 2 \mathrm{MB}$	0.00s	0.10s
$13+3$	0.12s \& 2MB	$0.15 \mathrm{~s} \& 3 \mathrm{MB}$	0.00 s	0.15 s	$0.10 \mathrm{~s} \& 2 \mathrm{MB}$	0.00s	0.10s
$43+7$	0.28s \& 2MB	3.44 s \& 4MB	0.04 s	3.48s	$4.80 \mathrm{~s} \& 5 \mathrm{MB}$	0.02s	4.82 s
$110+10$	0.36s \& 8MB	$5.15 \mathrm{~s} \& 6 \mathrm{MB}$	0.01 s	5.16 s	$2.71 \mathrm{~s} \& 8 \mathrm{MB}$	0.00s	2.71 s
$120+10$	0.39s \& 13MB	$5.20 \mathrm{~s} \& 15 \mathrm{MB}$	0.01s	5.21 s	2.79 s \& 10MB	0.01s	2.80s
$255+8$	0.44s \& 15MB	295.41 s \& 86 MB	0.05s	295.46 s	$21.41 \mathrm{~s} \& 76 \mathrm{MB}$	0.02s	21.43 s
$1009+10$	$1.48 \mathrm{~s} \& 97 \mathrm{MB}$	11504.2s \& 117MB	2.56 s	11506.76s	14.10s \& 471MB	1.75 s	15.85 s
$1899+7$	3.47s \& 212MB	6538 s \& 171MB	3.89 s	6541.89s	124.10s \& 558MB	2.71 s	126.81 s
$2059+8$	$4.03 \mathrm{~s} \& 323 \mathrm{MB}$	19525.1s \& 113MB	3.99s	19528.99s	20.70s \& 713 MB	error	-
$2099+8$	$4.15 \mathrm{~s} \& 332 \mathrm{MB}$	19031s \& 192MB	3.99s	19034.99s	124.12s \& 757MB	error	-
$2099+9$	4.95 s \& 352MB	29742s \& 198MB	4.18 s	29746.18s	128.12s \& 760MB	error	-
$3060+9$	5.71s \& 388MB	29993.05s \& 241MB	18.12s	30011.17s	261.07s \& 610MB	error	-
$3160+9$	5.79s \& 415MB	29252.05 s \& 257 MB	26.10s	29278.15 s	162.55 s \& 611MB	error	-
$4058+7$	7.56s \& 364MB	81408.51s \& 307MB	91.68s	81500.19s	802.07s \& 1013MB	error	-
$4058+8$	9.76s \& 387MB	82812.51s \& 399MB	91.71s	82904.22 s	899.07s \& 1020MB	error	-
$4158+8$	$11.85 \mathrm{~s} \& 487 \mathrm{MB}$	$83112.51 \mathrm{~s} \& 401 \mathrm{MB}$	97.28s	83209.79 s	899.19s \& 1021MB	error	-
$5050+8$	13.04s \& 498MB	93912.51s \& 498MB	112.53 s	94025.04 s	205.12s \& 375MB	error	-

Table 2.2: Our direct post* algorithm vs. standard post* algorithms of PDSs

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.7.2 Malware Detection

Self-modifying code is widely used as an obfuscation technique for malware writers. Thus, we applied our tool for malware detection.

Example	SM-PDS	PDS
Email-Worm.Win32.Klez.b	Y	N
Backdoor.Win32.Allaple.b	Y	N
Email-Worm.Win32.Avron.a	Y	N
Email-Worm.Win32.Anar.a	Y	N
Email-Worm.Win32.Anar.b	Y	N
Email-Worm.Win32.Bagle.a	Y	N
Email-Worm.Win32.Bagle.am	Y	N
Email-Worm.Win32.Bagle.ao	Y	N
Email-Worm.Win32.Bagle.ap	Y	N
Email-Worm.Win32.Ardurk.d	Y	N
Email-Worm.Win32.Atak.k	Y	N
Email-Worm.Win32.Atak.g	Y	N
Email-Worm.Win32.Hanged	Y	N

Table 2.3: Malware Detection
We consider self-modifying versions of 13 well known malwares. In these versions, the malicious behaviors are unreachable if one does not take into account that the self-modifying piece of code will change the malware code: if the code does not change, the part that contains the malicious behavior cannot be reached; after executing the self-modifying code, the control point will jump to the part containing the malicious behavior.

We model such malwares in two ways: (1) first, we take into account the self-modifying piece of code and use SM-PDSs to represent these programs as discussed in Section 2.3.2, (2) second, we don't take into account that this part of the code is self-modifying and we treat it as all the other instructions of the program. In this case, we model these programs by a standard PDS following the translation of [13].

The results are reported in Table 2.3, Column Example reports the name of the worm. Column SM-PDS shows the result obtained by applying our method
to check the reachability of the entry point of the malicious block. Column PDS gives the result if we apply the traditional PDS translation of programs (without taking into account the semantics of self modifying code) method to check the reachability of the entry point of the malicious block. Y stands for yes (the program is malicious) and N stands for no (the program is benign). As it can be seen, our techniques that go through SM-PDS to model self modifying code is able to conclude that the entry point of the malicious block is reachable, whereas the standard PDS translation from programs fails to reach this conclusion.
2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

3

LTL Model-Checking of Self-modifying Code

In this chapter, we consider the LTL model-checking problem of SM-PDSs. We reduce this problem to the emptiness problem of Self-modifying Büchi PushDown Systems (SM-BPDSs).

3.1 LTL Model-Checking of SM-PDSs

3.1.1 The linear-time temporal logic LTL

Let $A t$ be a finite set of atomic propositions. LTL formulas are defined as follows (where $A \in A t$):

$$
\varphi:=A|\neg \varphi| \varphi_{1} \vee \varphi_{2}|X \varphi| \varphi_{1} U \varphi_{2}
$$

Formulae are interpreted on infinite words over $2^{A t}$. Let $\omega=\omega^{0} \omega^{1} \ldots$ be an infinite word over $2^{A t}$. We write ω_{i} for the suffix of ω starting at ω^{i}. We denote $\omega \models \varphi$ to express that ω satisfies a formula φ :
$\omega \models A \Longleftrightarrow A \in \omega^{0}$
$\omega \models \neg \varphi \Longleftrightarrow \omega \nvdash \varphi$
$\omega \models \varphi_{1} \vee \varphi_{2} \Longleftrightarrow \omega \models \varphi_{1}$ or $\omega \models \varphi_{2}$
$\omega \models X \varphi \Longleftrightarrow \omega_{1} \models \varphi$
$\omega \models \varphi_{1} U \varphi_{2} \Longleftrightarrow \exists i \geq 0, \omega_{i} \models \varphi_{2}$ and $\forall 0 \leq j<i, \omega_{j} \models \varphi_{1}$
The temporal operators G (globally) and F (eventually) are defined as follows: $F \varphi=(A \vee \neg A) U \varphi$ and $G \varphi=\neg F \neg \varphi$. Let $W(\varphi)$ be the set of infinite words that

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

satisfy an LTL formula φ. It is well known that $W(\varphi)$ can be accepted by Büchi automata:

Definition 4 A Büchi automaton \mathcal{B} is a quintuple $\left(Q, \Gamma, \eta, q_{0}, F\right)$ where Q is a finite set of states, Γ is a finite input alphabet, $\eta \subseteq(Q \times \Gamma \times Q)$ is a set of transitions, $q_{0} \in Q$ is the initial state and $F \subseteq Q$ is the set of accepting states. A run of \mathcal{B} on a word $\gamma_{0} \gamma_{1} \ldots \in \Gamma^{\omega}$ is a sequence of states $q_{0} q_{1} q_{2} \ldots$ s.t. $\forall i \geq 0,\left(q_{i}, \gamma_{i}, q_{i+1}\right) \in \eta$. An infinite word ω is accepted by \mathcal{B} if \mathcal{B} has a run on ω that starts at q_{0} and visits accepting states from F infinitely often.

Theorem 3.1.1 [30] Given an LTL formula φ, one can effectively construct a Büchi automaton \mathcal{B}_{φ} which accepts $W(\varphi)$.

3.1.2 Self Modifying Büchi Pushdown Systems

Definition 5 A Self Modifying Büchi Pushdown Systems (SM-BPDS) is a tuple $\mathcal{B P}=\left(P, \Gamma, \Delta, \Delta_{c}, G\right)$ where P is a set of control locations, $G \subseteq P$ is a set of accepting control locations, $\Delta \subseteq(P \times \Gamma) \times\left(P \times \Gamma^{*}\right)$ is a finite set of transition rules, and $\Delta_{c} \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times 2^{\Delta \cup \Delta_{c}} \times P$ is a finite set of modifying transition rules in the form $p \stackrel{\left(\sigma, \sigma^{\prime}\right)}{\longrightarrow} p^{\prime}$ where $\sigma, \sigma^{\prime} \subseteq \Delta \cup \Delta_{c}$.

Let $\Rightarrow_{\mathcal{B P}}$ be the transition relation between configurations as follows: Let $\theta \subseteq$ $\Delta \cup \Delta_{c}, \gamma \in \Gamma, w \in \Gamma^{*}$, and $p \in P$, then

1. If $r:\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w^{\prime}\right\rangle \in \Delta$ and $r \in \theta$, then $(\langle p, \gamma w\rangle, \theta) \Rightarrow_{\mathcal{B P}}\left(\left\langle p^{\prime}, w^{\prime} w\right\rangle, \theta\right)$.
2. If $r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime} \in \Delta_{c}, \sigma \cap \theta \neq \emptyset$ and $r \in \theta$, then $(\langle p, \gamma w\rangle, \theta) \Rightarrow_{\mathcal{B P}}$ $\left(\left\langle p^{\prime}, \gamma w\right\rangle, \theta^{\prime}\right)$ where $\theta^{\prime}=\theta \backslash \sigma \cup \sigma^{\prime}$.

A run π of $\mathcal{B P}$ is a sequence of configurations $\pi=c_{0} c_{1} \ldots$ s.t. $c_{i} \Rightarrow_{\mathcal{B P}} c_{i+1}$ for every $i \geq 0 . \pi$ is accepting iff it infinitely often visits configurations having control locations in G.

Let c and c^{\prime} be two configurations of the SM-BPDS $\mathcal{B P}$. The relation $\Rightarrow_{\mathcal{B P}}^{r}$ is defined as follows: $c \Rightarrow_{\mathcal{B} \mathcal{P}}^{r} c^{\prime}$ iff there exists a configuration $(\langle g, u\rangle, \theta), g \in G$ s.t. $c \Rightarrow_{\mathcal{B} \mathcal{P}}^{*}(\langle g, u\rangle, \theta) \Rightarrow_{\mathcal{B} \mathcal{P}}^{+} c^{\prime}$. We remove the subscript $\mathcal{B P}$ when it is clear from the context. We define $\stackrel{i}{\Rightarrow}$ as follows: $c \stackrel{i}{\Rightarrow} c^{\prime}$ iff there exists a sequence of configurations $c_{0} \Rightarrow_{\mathcal{B} \mathcal{P}} c_{1} \Rightarrow_{\mathcal{B P}} \ldots \Rightarrow_{\mathcal{B} \mathcal{P}} c_{i}$ s.t. $c_{0}=c$ and $c_{i}=c^{\prime}$.

A head of SM-BPDS is a tuple $(\langle p, \gamma\rangle, \theta)$ where $p \in P, \gamma \in \Gamma$ and $\theta \subseteq \Delta \cup \Delta_{c}$. A head $((p, \gamma), \theta)$ is repeating if there exists $v \in \Gamma^{*}$ such that $(\langle p, \gamma\rangle, \theta) \Rightarrow_{\mathcal{B} \mathcal{P}}^{r}$ $(\langle p, \gamma v\rangle, \theta)$. The set of repeating heads of SM-BPDS is called Rep $p_{\mathcal{B P}}$.

We assume w.l.o.g. that for every rule in Δ_{c} of the form $r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime}$, $r \notin \sigma$.

3.1.3 From LTL Model-Checking of SM-PDSs to the emptiness problem of SM-BPDSs

Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a self modifying pushdown system. Let $A t$ be a set of atomic propositions. Let $\nu: P \rightarrow 2^{A t}$ be a labelling function. Let $\pi=$ $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \ldots$ be an execution of the $\operatorname{SM}-\mathrm{PDS} \mathcal{P}$. Let φ be an LTL formula over the set of atomic propositions $A t$. We say that

$$
\pi \models_{\nu} \varphi \text { iff } \nu\left(p_{0}\right) \nu\left(p_{1}\right) \cdots \models \varphi
$$

Let $(\langle p, w\rangle, \theta)$ be a configuration of \mathcal{P}. We say that $(\langle p, w\rangle, \theta) \models_{\nu} \varphi$ iff \mathcal{P} has a path π starting at $(\langle p, w\rangle, \theta)$ such that $\pi \models_{\nu} \varphi$.

Our goal in this chapter is to perform LTL model-checking for self-modifying pushdown systems. Since SM-PDSs can be translated to standard (symbolic) pushdown systems, one way to solve this LTL model-checking problem is to compute the (symbolic) pushdown system that is equivalent to the SM-PDS, and then apply the standard LTL model-checking algorithms on standard PDSs [42]. However, this approach is not efficient (as will be witnessed later in the experiments). Thus, we need a direct approach that performs LTL model-checking on the SMPDS, without translating it to an equivalent PDS. Let $\mathcal{B}_{\varphi}=\left(Q, 2^{A t}, \eta, q_{0}, F\right)$ be a Büchi automaton that accepts $W(\varphi)$. We compute the $\operatorname{SM}-\operatorname{BPDS} \mathcal{B P}_{\varphi}=$ $\left(P \times Q, \Gamma, \Delta^{\prime}, \Delta_{c}^{\prime}, G\right)$ by performing a kind of product between the SM-PDS \mathcal{P} and the Büchi automaton \mathcal{B}_{φ} as follows:

1. if $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$ and $\left(q, \nu(p), q^{\prime}\right) \in \eta$, then $\langle(p, q), \gamma\rangle \hookrightarrow$ $\left\langle\left(p^{\prime}, q^{\prime}\right), w\right\rangle \in \Delta^{\prime}$. Let $\operatorname{prod}(r)$ be the set of rules of Δ^{\prime} obtained from the rule r, i.e., rules of Δ^{\prime} of the form $\langle(p, q), \gamma\rangle \hookrightarrow\left\langle\left(p^{\prime}, q^{\prime}\right), w\right\rangle$.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

2. if a rule $r=p \stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow} p^{\prime} \in \Delta_{c}$ and $\left(q, \nu(p), q^{\prime}\right) \in \eta$, then $(p, q) \stackrel{\left(\sigma, \sigma^{\prime}\right)}{\longrightarrow}$ $\left(p^{\prime}, q^{\prime}\right) \in \Delta_{c}^{\prime}$ where $\sigma=\operatorname{prod}\left(r_{1}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{2}\right)$. Let $\operatorname{prod}(r)$ be the set of rules of Δ^{\prime} obtained from the rule r, i.e., rules of Δ_{c}^{\prime} of the form $(p, q) \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left(p^{\prime}, q^{\prime}\right)$.
3. $G=P \times F$.

We can show that:
Theorem 3.1.2 Let $(\langle p, w\rangle, \theta)$ be a configuration of the $S M-P D S \mathcal{P} .(\langle p, w\rangle, \theta) \models_{\nu}$ φ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left(p, q_{0}\right), w\right\rangle, \operatorname{prod}(\theta)\right)$ where $\operatorname{prod}(\theta)$ is the set of rules of $\Delta \cup \Delta_{c}$ obtained from the rules of θ as described above.

Thus, LTL model-checking for SM-PDSs can be reduced to checking whether a SM-BPDS has an accepting run. The rest of the chapter is devoted to this problem.

3.2 The Emptiness Problem of SM-BPDSs

From now on, we fix a $\operatorname{SM}-\operatorname{BPDS} \mathcal{B P}=\left(P, \Gamma, \Delta, \Delta_{c}, G\right)$. We can show that $\mathcal{B P}$ has an accepting run starting from a configuration c if and only if from c, it can reach a configuration with a repeating head:

Proposition 3 A SM-BPDS $\mathcal{B P}$ has an accepting run starting from a configuration c if and only if there exists a repeating head $((p, \gamma), \theta)$ such that $c \Rightarrow_{\mathcal{B} \mathcal{P}}^{*}$ $(\langle p, \gamma w\rangle, \theta)$ for some $w \in \Gamma^{*}$.

Proof: " \Rightarrow ": Let $\sigma=c_{0} c_{1} \ldots$ be an accepting run starting at configuration c where $c_{0}=c$ and $c_{i}=\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right)$. We construct an increasing sequence of indices $i_{0}, i_{1} \ldots$ with a property that once any of the configurations $c_{i_{k}}$ is reached, the rest of the run never changes the bottom $\left|w_{i_{k}}\right|-1$ elements of the stack anymore. This property can be written as follows:

$$
\begin{gathered}
\left|w_{i_{0}}\right|=\min \left\{\left|w_{j}\right| \mid j \geq 0\right\} \\
\left|w_{i_{k}}\right|=\min \left\{\left|w_{j}\right| \mid j>i_{k-1}\right\}, k \geq 1
\end{gathered}
$$

Because $\mathcal{B} \mathcal{P}$ has only finitely many different heads, there must be a head $(\langle p, \gamma\rangle, \theta)$ which occurs infinitely often as a head in the sequence $c_{i_{0}} c_{i_{1}} \ldots$. Moreover, as some $g \in G$ becomes a control location infinitely often, we can find a subsequence of indices $i_{j_{0}}, i_{j_{1}}, \ldots$ with the following property: for every $k \geq 1$, there exist $v, w \in \Gamma^{*}$

$$
c_{i_{j_{k}}}=(\langle p, \gamma w\rangle, \theta) \Rightarrow^{r}(\langle p, \gamma v w\rangle, \theta)=c_{i_{j_{k+1}}}
$$

Because w is never looked at or changed in this path, we can have $(\langle p, \gamma\rangle, \theta) \Rightarrow^{r}$ $(\langle p, \gamma v\rangle, \theta)$. This proves this direction of the proposition.
" $\Leftarrow "$: Because $(\langle p, \gamma\rangle, \theta)$ is a repeating head, we can construct the following run for some $u, v, w \in \Gamma^{*}, \theta^{\prime} \subseteq\left(\Delta \cup \Delta_{c}\right)$ and $g \in G$:
$c \Rightarrow^{*}(\langle p, \gamma w\rangle, \theta) \Rightarrow^{*}\left(\langle g, u w\rangle, \theta^{\prime}\right) \Rightarrow^{+}(\langle p, \gamma v w\rangle, \theta) \Rightarrow^{*}\left(\langle g, u v w\rangle, \theta^{\prime}\right) \Rightarrow^{+}(\langle p, \gamma v v w\rangle, \theta) \Rightarrow^{*} \ldots$
Since g occurs infinitely often, the run is accepting.

Thus, since there exists an efficient algorithm to compute the pre* of SMPDSs [46], the emptiness problem of a SM-BPDS can be reduced to computing its repeating heads.

3.2.1 The Head Reachability Graph \mathcal{G}

Our goal is to compute the set of repeating heads Rep $\mathcal{B P}$, i.e., the set of heads $(\langle p, \gamma\rangle, \theta)$ such that there exists $v \in \Gamma^{*},(\langle p, \gamma\rangle, \theta) \Rightarrow^{r}(\langle p, \gamma v\rangle, \theta)$. I.e., $(\langle p, \gamma\rangle, \theta) \Rightarrow^{*}$ $(\langle p, \gamma v\rangle, \theta)$ s.t. this path goes through an accepting location in G. To this aim, we will compute a finite graph \mathcal{G} whose nodes are the heads of $\mathcal{B P}$ of the form $((p, \gamma), \theta)$, where $p \in P, \gamma \in \Gamma$ and $\theta \subseteq \Delta \cup \Delta_{c}$; and whose edges encode the reachability relation between these heads. More precisely, given two heads $((p, \gamma), \theta)$ and $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right),((p, \gamma), \theta) \xrightarrow{b}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$ is an edge of the graph \mathcal{G} means that the configuration $(\langle p, \gamma\rangle, \theta)$ can reach a configuration having $\left(\left\langle p^{\prime}, \gamma^{\prime}\right\rangle, \theta^{\prime}\right)$ as head, i.e., it means that there exists $v \in \Gamma^{*}$ s.t. $(\langle p, \gamma\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta^{\prime}\right)$. Moreover, we need to keep the information whether this path visits an accepting location in G or not. This information is recorded in the label of the edge $b: b=1$ means that the path visits an accepting location in G, i.e. that $(\langle p, \gamma\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta^{\prime}\right)$. Otherwise, $b=0$. Therefore, if the graph \mathcal{G} contains a loop from a head $((p, \gamma), \theta)$ to itself such that this loop goes through an edge labelled by 1 , then $((p, \gamma), \theta)$

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

is a repeating head. Thus, computing $\operatorname{Rep}_{\mathcal{B} \mathcal{P}}$ can be reduced to computing the graph \mathcal{G} and finding 1-labelled loops in this graph.

More precisely, we define the head reachability graph \mathcal{G} as follows:
Definition 6 The head reachability graph \mathcal{G} is a tuple $\left(P \times \Gamma \times 2^{\Delta \cup \Delta_{c}},\{0,1\}, \delta\right)$ such that $((p, \gamma), \theta) \xrightarrow{b}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$ is an edge of δ iff:

1. there exists a transition $r_{c}: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime} \in \theta \cap \Delta_{c}, \gamma=\gamma^{\prime}, \theta^{\prime}=\theta \backslash \sigma \cup \sigma^{\prime}$, and $b=1$ iff $p \in G$;
2. there exists a transition $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, \gamma^{\prime}\right\rangle \in \theta \cap \Delta, \theta=\theta^{\prime}$ and $b=1$ iff $p \in G$;
3. there exists a transition $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime \prime}, \gamma_{1} \gamma^{\prime}\right\rangle \in \theta \cap \Delta$, for $\gamma_{1} \in \Gamma, p^{\prime \prime} \in P$, s.t. $\left(\left\langle p^{\prime \prime}, \gamma_{1}\right\rangle, \theta\right) \Rightarrow_{\mathcal{B} \mathcal{P}}^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, and $b=1$ iff $p \in G$ or $\left(\left\langle p^{\prime \prime}, \gamma_{1}\right\rangle, \theta\right) \Rightarrow_{\mathcal{B} \mathcal{P}}^{r}$ $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$

Let \mathcal{G} be the head reachability graph. We define $\underset{i}{ }$ as follows: let $((p, \gamma), \theta)$ and $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$ be two heads of $\mathcal{B P}$. We write $((p, \gamma), \theta) \rightarrow_{i}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$ iff \exists booleans $b_{1}, b_{2} \ldots b_{i} \in\{0,1\}, \exists$ heads $\left(\left(p_{j}, \gamma_{j}\right), \theta_{j}\right), 0 \leq j \leq i$ s.t. \mathcal{G} contains the following path $\left(\left(p_{0}, \gamma_{0}\right), \theta_{0}\right) \xrightarrow{b_{1}}\left(\left(p_{1}, \gamma_{1}\right), \theta_{1}\right) \xrightarrow{b_{2}} \ldots \xrightarrow{b_{i}}\left(\left(p_{i}, \gamma_{i}\right), \theta_{i}\right)$ where $\left(\left(p_{0}, \gamma_{0}\right), \theta_{0}\right)=$ $((p, \gamma), \theta)$ and $\left(\left(p_{i}, \gamma_{i}\right), \theta_{i}\right)=\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$.

Let \rightarrow^{*} be the reflexive transitive closure of the graph relation \xrightarrow{b}, and let \rightarrow^{r} be defined as follows: Given two heads $((p, \gamma), \theta)$ and $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right),((p, \gamma), \theta) \rightarrow^{r}$ $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$ iff there is in \mathcal{G} a path between $((p, \gamma), \theta)$ and $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$ that goes through a 1-labelled edge, i.e., iff there exist heads $\left(\left(p_{1}, \gamma_{1}\right), \theta_{1}\right)$ and $\left(\left(p_{2}, \gamma_{2}\right), \theta_{2}\right)$ s.t. $((p, \gamma), \theta) \rightarrow^{*}\left(\left(p_{1}, \gamma_{1}\right), \theta_{1}\right) \xrightarrow{1}\left(\left(p_{2}, \gamma_{2}\right), \theta_{2}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$.

We can show that:
Theorem 3.2.1 Let $\mathcal{B P}=\left(P, \Gamma, \Delta, \Delta_{c}, G\right)$ be a self-modifying Büchi pushdown system, and let \mathcal{G} be its corresponding head reachability graph. A head $((p, \gamma), \theta)$ of $\mathcal{B P}$ is repeating iff \mathcal{G} has a loop on the node $((p, \gamma), \theta)$ that goes through a 1-labeled edge.

To prove this theorem, we first need to prove the following lemma:
Lemma 5 The relations \rightarrow^{*} and \rightarrow^{r} have the following properties: For any heads $\left((p, \gamma), \theta_{1}\right)$ and $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$:
(a) $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$ iff $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ for some $v \in \Gamma^{*}$.
(b) $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$ iff $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ for some $v \in \Gamma^{*}$.

Proof: " \Rightarrow ": Assume $\left((p, \gamma), \theta_{1}\right) \underset{i}{\rightarrow}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. We proceed by induction on i.
(a) Basis. $i=0$. In this case, $\left((p, \gamma), \theta_{1}\right)=\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$, then we can get $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\langle p, \gamma\rangle, \theta_{1}\right)=\left(\left\langle p^{\prime}, \gamma^{\prime}\right\rangle, \theta_{2}\right)$

Step. $i>0$. Then there exist $p_{1} \in P, \gamma^{\prime \prime} \in \Gamma^{*}$ and $\theta^{\prime} \subseteq \Delta \cup \Delta_{c}$ such that $\left((p, \gamma), \theta_{1}\right) \xrightarrow[1]{\rightarrow}\left(\left(p_{1}, \gamma^{\prime \prime}\right), \theta^{\prime}\right) \underset{i-1}{\longrightarrow}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. From the induction hypothesis, there exists $u \in \Gamma^{*}$ such that $\left(\left\langle p_{1}, \gamma^{\prime \prime}\right\rangle, \theta^{\prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u\right\rangle, \theta_{2}\right)$
Since $\left((p, \gamma), \theta_{1}\right) \rightarrow\left(\left(p_{1}, \gamma^{\prime \prime}\right), \theta^{\prime}\right)$, we have $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p_{1}, \gamma^{\prime \prime} w\right\rangle, \theta^{\prime}\right)$ for $w \in \Gamma^{*}$, hence $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u w\right\rangle, \theta_{2}\right)$.
The property holds.
(b) $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left((p, \gamma), \theta_{1}\right)$ cannot hold for the case $i=0$.

Basis. $i=1$. In this case, $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$, then we can get $p \in G$ and $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime}\right\rangle, \theta_{2}\right)$. The property holds.

Step. $i>0$. As done in the proof of part (a) of this lemma, there exists $p_{1}, \gamma^{\prime \prime} \in \Gamma, \theta^{\prime \prime} \subseteq \Delta \cup \Delta_{c}$ s.t. $\left((p, \gamma), \theta_{1}\right) \rightarrow\left(\left(p_{1}, \gamma^{\prime \prime}\right), \theta^{\prime}\right) \xrightarrow[i-1]{\longrightarrow}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Then if $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$, either $\left(\left(p_{1}, \gamma^{\prime \prime}\right), \theta^{\prime}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$ or $\left((p, \gamma), \theta_{1}\right) \xrightarrow{1}\left(\left(p_{1}, \gamma^{\prime \prime}\right), \theta^{\prime}\right)$ holds. In the first case i.e. $\left(\left(p_{1}, \gamma^{\prime \prime}\right), \theta^{\prime}\right) \rightarrow^{r}$ $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$, by the induction hypothesis, we can have $\left(\left\langle p_{1}, \gamma^{\prime \prime}\right\rangle, \theta^{\prime}\right) \Rightarrow^{r}$ $\left(\left\langle p^{\prime}, \gamma^{\prime} u\right\rangle, \theta_{2}\right)$, hence, $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} u\right\rangle, \theta_{2}\right)$ holds

The second case depends on the rule applied to get $\left((p, \gamma), \theta_{1}\right) \xrightarrow{1}\left(\left(p_{1}, \gamma^{\prime \prime}\right), \theta^{\prime}\right)$ according to Definition 6.

- If this edge corresponds to a transition $r_{c}: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p_{1} \in \theta_{1}$, then $\gamma=\gamma^{\prime \prime}, \theta^{\prime}=\theta_{1} \backslash \sigma \cup \sigma^{\prime}$ and $p \in G$. Since we can obtain $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow_{\mathcal{B} \mathcal{P}}$ $\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u w\right\rangle, \theta_{2}\right)$ from part (a) and $p \in G$, then $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}$ $\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u w\right\rangle, \theta_{2}\right)$. This implies that $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ for some $v \in \Gamma^{*}$.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

- If this edge corresponds to a transition $r:\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, \gamma^{\prime \prime}\right\rangle \in \theta_{1} \cap$ Δ, then $\theta^{\prime}=\theta_{1}$ and $p \in G$. Since we can obtain $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow_{\mathcal{B P}}$ $\left(\left\langle p_{1}, \gamma^{\prime \prime}\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u w\right\rangle, \theta_{2}\right)$ from part (a) and $p \in G$, then

$$
\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p_{1}, \gamma^{\prime \prime}\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u w\right\rangle, \theta_{2}\right)
$$

This implies that $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ for some $v \in \Gamma^{*}$.

- If this edge corresponds to a transition $r:\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime \prime}, \gamma_{1} \gamma^{\prime \prime}\right\rangle \in \theta_{1}$, then either $p \in G$ or $\left(\left\langle p^{\prime \prime}, \gamma_{1}\right\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p_{1}, \epsilon\right\rangle, \theta^{\prime}\right)$ holds. If $p \in G$, then we have $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \gamma_{1} \gamma^{\prime \prime}\right\rangle, \theta_{1}\right)$. Otherwise, $\left(\left\langle p^{\prime \prime}, v_{1} \gamma^{\prime \prime} w\right\rangle, \theta_{1}\right) \Rightarrow^{r}$ $\left(\left\langle p_{1}, \gamma^{\prime \prime} w\right\rangle, \theta^{\prime}\right)$. Since we can obtain $\left(\left\langle p_{1}, \gamma^{\prime \prime}\right\rangle, \theta^{\prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u\right\rangle, \theta_{2}\right)$ from part (a). Therefore, $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p_{1}, \gamma^{\prime \prime}\right\rangle, \theta^{\prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} u\right\rangle, \theta_{2}\right)$. This implies that $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ for some $v \in \Gamma^{*}$.
' $\Leftarrow ":$ Assume $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{i}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$. We proceed by induction on i.
(a) Basis. $i=0$. In this case, $v=\epsilon$ and $\left(\langle p, \gamma\rangle, \theta_{1}\right)=\left(\left\langle p^{\prime}, \gamma^{\prime}\right\rangle, \theta_{2}\right)$, then $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$ holds.

Step. $i>0$. Then there exist $p_{1} \in P, u \in \Gamma^{*}$ and $\theta^{\prime} \subseteq \Delta \cup \Delta_{c}$ such that $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{1}{\Rightarrow}\left(\left\langle p_{1}, u\right\rangle, \theta^{\prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$. There are 2 cases:

1. Case $\theta^{\prime}=\theta_{1}$: There must exist a rule $r:\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, u\right\rangle \in \Delta$ such that $r \in \theta^{\prime}$ and $|u| \geq 1$. Let l denote the minimal length of the stack on the path from $\left(\left\langle p_{1}, u\right\rangle, \theta_{1}\right)$ to $\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$. Then u can be written as $u^{\prime \prime} \gamma_{1} u^{\prime}$ where $\left|u^{\prime}\right|=l-1$ (that means u^{\prime} will remain on the stack for the path). Furthermore, there exists $p^{\prime \prime \prime}$ such that $\left(\left\langle p_{1}, u^{\prime \prime}\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$ for some $\theta^{\prime \prime} \subseteq\left(\Delta_{c} \cup \Delta\right)$. We have $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{k}{\Rightarrow}\left(\left\langle p^{\prime \prime \prime}, \gamma_{1} u^{\prime}\right\rangle, \theta^{\prime \prime}\right)$ for $k<i$. By the induction on i, we have $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right)$. Because u^{\prime} has to remain on the stack for the rest of the path, v is of the form $v^{\prime} u^{\prime}$ for some $v^{\prime} \in \Gamma^{*}$. That means $\left(\left\langle p^{\prime \prime \prime}, \gamma_{1}\right\rangle, \theta^{\prime \prime}\right) \stackrel{j}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v^{\prime}\right\rangle, \theta_{2}\right)$ for $j<$ i. By the induction hypothesis, $\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$ holds. Moreover, we have $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right)$, hence $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}$ $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$.
2. Case $\theta^{\prime} \neq \theta_{1}$: There must be a rule $r_{c}: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p_{1} \in \Delta_{c}$ such that $r_{c} \in \theta_{1}$ and $\sigma \cap \theta_{1} \neq \emptyset$, then $\theta^{\prime}=\theta_{1} \backslash \sigma \cup \sigma^{\prime}$. After the execution of r_{c}, the content of the stack will remain the same, thus, $u=\gamma$. Then $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{1}{\Rightarrow}\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$. By the induction hypothesis to $\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$, we can obtain that $\left(\left(p_{1}, \gamma\right), \theta^{\prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Since $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{1}{\Rightarrow}\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right)$, then we can have a path $\left((p, \gamma), \theta_{1}\right) \rightarrow\left(\left(p_{1}, \gamma\right), \theta^{\prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$ that implies $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. The property holds.
(b) $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p, \gamma^{\prime} v\right\rangle, \theta_{1}\right)$ is impossible in 0 steps.

Basis. $i=1 .\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\langle p, \gamma\rangle, \theta_{1}\right)$, then $p \in G$. Thus, $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}$ $\left((p, \gamma), \theta_{1}\right)$ holds.

Step. $i>1$. $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ holds, then there exist $p_{1} \in P, u \in$ Γ^{*} and $\theta^{\prime} \subseteq \Delta \cup \Delta_{c}$ such that $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{1}{\Rightarrow}\left(\left\langle p_{1}, u\right\rangle, \theta^{\prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$. Thus, either $\left(\langle p, \gamma\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p_{1}, u\right\rangle, \theta^{\prime}\right)$ or $\left(\left\langle p_{1}, u\right\rangle, \theta^{\prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ holds.

The first case implies $p \in G$. There are 2 cases:

1. Case $\theta^{\prime}=\theta_{1}$: then as in the previous proof of part (a), we can have a path $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Since $p \in G$, we get by Definition $6\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Thus, we have that $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. The property holds.
2. Case $\theta^{\prime} \neq \theta_{1}$: then as in the previous proof of part (a), we can have a path $\left((p, \gamma), \theta_{1}\right) \rightarrow\left(\left(p_{1}, \gamma\right), \theta^{\prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Since $p \in G$, we get $\left((p, \gamma), \theta_{1}\right) \xrightarrow{1}\left(\left(p_{1}, \gamma\right), \theta^{\prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Thus, we have that $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. The property holds.

In the second case, $\left(\left\langle p_{1}, u\right\rangle, \theta^{\prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$ holds. As previously, there are 2 cases:

1. Case $\theta^{\prime}=\theta_{1}$: then as in case (a) we have $\left(\left\langle p_{1}, u\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime \prime}, \gamma_{1} u^{\prime}\right\rangle, \theta^{\prime \prime}\right)$ and $\left(\left\langle p^{\prime \prime \prime}, \gamma_{1}\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \gamma^{\prime} v^{\prime}\right\rangle, \theta_{2}\right)$. If $\left(\left\langle p_{1}, u\right\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$, then either

$$
\left(\left\langle p_{1}, u\right\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime \prime}, \gamma_{1} u^{\prime}\right\rangle, \theta^{\prime \prime}\right) \text { or }\left(\left\langle p^{\prime \prime \prime}, \gamma_{1}\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v^{\prime}\right\rangle, \theta_{2}\right) .
$$

- If $\left(\left\langle p_{1}, u\right\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime \prime}, \gamma_{1} u^{\prime}\right\rangle, \theta^{\prime \prime}\right)$, let $u^{\prime \prime} \in \Gamma^{*}$ s.t. $u=u^{\prime \prime} \gamma_{1} u^{\prime}$ and $\left(\left\langle p_{1}, u^{\prime \prime}\right\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$, then, we have $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}$ $\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right)$. We have $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{k}{\Rightarrow}\left(\left\langle p^{\prime \prime \prime}, \gamma_{1} u^{\prime}\right\rangle, \theta^{\prime \prime}\right)$ for $k<i$. By the induction on i, we have $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right)$. Because u^{\prime} has to remain on the stack for the rest of the path, v is of the form $v^{\prime} u^{\prime}$ for some $v^{\prime} \in \Gamma^{*}$. That means $\left(\left\langle p^{\prime \prime \prime}, \gamma_{1}\right\rangle, \theta^{\prime \prime}\right) \stackrel{j}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v^{\prime}\right\rangle, \theta_{2}\right)$ for $j<i$. By the induction hypothesis, $\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$ holds. Moreover, we have $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right)$, hence $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}$ $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. So we can have a path $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right) \rightarrow^{*}$ $\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$, thus we have that $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$;
- If $\left(\left\langle p^{\prime \prime \prime}, \gamma_{1}\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v^{\prime}\right\rangle, \theta_{2}\right)$, then by the induction hypothesis we have $\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Thus, we can have a path $\left((p, \gamma), \theta_{1}\right) \rightarrow^{*}\left(\left(p^{\prime \prime \prime}, \gamma_{1}\right), \theta^{\prime \prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$, then we have that $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right) ;$

2. Case $\theta^{\prime} \neq \theta_{1}$: then $\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$. By the induction hypothesis we have $\left(\left(p_{1}, \gamma\right), \theta^{\prime}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Since $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{1}{\Rightarrow}$ $\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$.
By the induction hypothesis to $\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \gamma^{\prime} v\right\rangle, \theta_{2}\right)$, we can obtain that $\left(\left(p_{1}, \gamma\right), \theta^{\prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Since $\left(\langle p, \gamma\rangle, \theta_{1}\right) \stackrel{1}{\Rightarrow}\left(\left\langle p_{1}, \gamma\right\rangle, \theta^{\prime}\right)$, then we can have a path $\left((p, \gamma), \theta_{1}\right) \rightarrow\left(\left(p_{1}, \gamma\right), \theta^{\prime}\right) \rightarrow^{*}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$. Thus, we have that $\left((p, \gamma), \theta_{1}\right) \rightarrow^{r}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta_{2}\right)$;

Thus, the property holds.

Proof of Theorem 3.2.1

We can now prove Theorem 3.2.1.
Proof: Let $((p, \gamma), \theta)$ be a repeating head, then there exists some $v \in \Gamma^{*}, \theta \subseteq$ $\Delta_{c} \cup \Delta$ such that $(\langle p, \gamma\rangle, \theta) \Rightarrow^{r}(\langle p, \gamma v\rangle, \theta)$. By Lemma 5, this is the case if and only if $((p, \gamma), \theta) \rightarrow^{r}((p, \gamma), \theta)$. From the definition of \rightarrow^{r}, that means that there exist heads $\left(\left(p_{1}, \gamma_{1}\right), \theta^{\prime}\right)$ and $\left(\left(p_{2}, \gamma_{2}\right), \theta^{\prime \prime}\right)$ such that $((p, \gamma), \theta) \rightarrow^{*}\left(\left(p_{1}, \gamma_{1}\right), \theta^{\prime}\right) \xrightarrow{1}$ $\left(\left(p_{2}, \gamma_{2}\right), \theta^{\prime \prime}\right) \rightarrow^{*}((p, \gamma), \theta)$. Then $((p, \gamma), \theta),\left(\left(p_{1}, \gamma_{1}\right), \theta^{\prime}\right)$ and $\left(\left(p_{2}, \gamma_{2}\right), \theta^{\prime \prime}\right)$ are all
in the same loop with a 1-labelled edge. Conversely, whenever $((p, \gamma), \theta)$ is in a component with such an edge, $((p, \gamma), \theta) \rightarrow^{r}((p, \gamma), \theta)$ holds, then Lemma 5 implies that $(\langle p, \gamma\rangle, \theta) \Rightarrow^{r}(\langle p, \gamma v\rangle, \theta)$ which means that $((p, \gamma), \theta)$ is a repeating head.

3.2.2 Labelled configurations and labelled $\mathcal{B P}$-automata

To compute \mathcal{G}, we need to be able to compute predecessors of configurations of the form $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, and to determine whether these predecessors were backwardreachable using some control points in G (item 3 in Definition 6). To solve this question, we will label configurations $\left(\left\langle p^{\prime \prime}, w\right\rangle, \theta\right)$ s.t. $\left(\left\langle p^{\prime \prime}, w\right\rangle, \theta\right) \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ by 1 if this path went through an accepting location in G, i.e., if $\left(\left\langle p^{\prime \prime}, w\right\rangle, \theta\right) \Rightarrow^{r}$ $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, and by 0 if not. To this aim, we define a labelled configuration as a tuple $[(\langle p, w\rangle, \theta), b]$, s.t. $(\langle p, w\rangle, \theta)$ is a configuration and $b \in\{0,1\}$.

Multi-automata were introduced in [6, 20] to finitely represent regular infinite sets of configurations of a PDS. Since a labelled configuration $c=[(\langle p, w\rangle, \theta), b]$ of a SM-PDS involves a PDS configuration $\langle p, w\rangle$, together with the current set of transition rules (phase) θ, and a boolean b, in order to take into account the phases θ, and these new $0 / 1$-labels in configurations, we extend multi-automata to labelled $\mathcal{B P}$-automata as follows:

Definition 7 Let $\mathcal{B P}=\left(P, \Gamma, \Delta, \Delta_{c}, G\right)$ be a $S M$-BPDS. A labelled $\mathcal{B P}$-automaton is a tuple $\mathcal{A}=(Q, \Gamma, T, I, F)$ where Γ is the automaton alphabet, Q is a finite set of states, $I \subseteq P \times 2^{\Delta \cup \Delta_{c}} \subseteq Q$ is the set of initial states, $T \subset Q \times((\Gamma \cup\{\epsilon\}) \times$ $\{0,1\}) \times Q$ is the set of transitions, $F \subseteq Q$ is the set of final states.

If $\left(q,[\gamma, b], q^{\prime}\right) \in T$, we write $q \xrightarrow{[\gamma, b]}{ }_{T} q^{\prime}$. We extend this notation in the obvious way to sequences of symbols: (1) $\forall q \in Q, q \xrightarrow{[\epsilon, 0]}{ }_{T} q$, and (2) $\forall q, q^{\prime} \in Q, \forall b \in$ $\{0,1\}, \forall w \in \Gamma^{*}$ for $w=\gamma_{0} \ldots \gamma_{n+1}, q \xrightarrow{\lfloor w, b]}{ }_{T} q^{\prime}$ iff $\exists q_{0}, \ldots, q_{n} \in Q, b_{0}, \ldots, b_{n+1} \in$ $\{0,1\}, b=b_{0} \vee b_{1} \vee \ldots \vee b_{n+1}$ and $q \xrightarrow{\left[\gamma_{0}, b_{0}\right]}{ }_{T} q_{0}{\xrightarrow{\left[\gamma_{1}, b_{1}\right]}}_{T} q_{1} \cdots q_{n} \xrightarrow{\left[\gamma_{n+1}, b_{n+1}\right]}{ }_{T} q^{\prime}$. If $q \xrightarrow{[w, b]} T q^{\prime}$ holds, we say that
$q \xrightarrow{[w, b]}{ }_{T} q^{\prime}$ and $q \xrightarrow{\left[\gamma_{0}, b_{0}\right]} T_{T} q_{0} \xrightarrow{\left[\gamma_{1}, b_{1}\right]}{ }_{T} q_{1} \cdots q_{n} \xrightarrow{\left[\gamma_{n+1}, b_{n+1}\right]} T_{T} q^{\prime}$ is a path of \mathcal{A}.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

A labelled configuration $[(\langle p, w\rangle, \theta), b]$ is accepted by the automaton \mathcal{A} iff there exists a path $(p, \theta) \xrightarrow{\left[\gamma_{0}, b_{0}\right]}{ }_{T} q_{1} \xrightarrow{\left[\gamma_{1}, b_{1}\right]} q_{T} q_{2} \cdots q_{n} \xrightarrow{\left[\gamma_{n}, b_{n}\right]}{ }_{T} q_{n+1}$ in \mathcal{A} such that $w=$ $\gamma_{0} \gamma_{1} \cdots \gamma_{n}, b=b_{0} \vee b_{1} \vee \ldots \vee b_{n},(p, \theta) \in I$, and $q_{n+1} \in F$. Let $L(\mathcal{A})$ be the set of labelled configurations accepted by \mathcal{A}.

3.2.3 Computing $\operatorname{pr}^{*}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$

Given a configuration of the form $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, our goal is to compute a labelled $\mathcal{B} \mathcal{P}$-automaton $\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ that accepts labelled configurations of the form $[c, b]$ where c is a configuration and $b \in\{0,1\}$ such that $c \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ (i.e., $\left.c \in \operatorname{pr} e^{*}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)\right)$ and $b=1$ iff this path went through final control points, i.e., $c \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$. Otherwise, $b=0$.

Let $p \in P$, we define $B(p)=1$ if $p \in G$ and $B(p)=0$ otherwise.
$\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)=(Q, \Gamma, T, I, F)$ is computed as follows: Initially, $Q=I=$ $F=\left\{\left(p^{\prime}, \theta^{\prime}\right)\right\}$ and $T=\emptyset$. We add to T transitions as follows:
α_{1} : If $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w\right\rangle \in \Delta$. If there exists in T a path $\left(p_{1}, \theta\right) \xrightarrow{[w, b]}{ }_{T} q$ (in case $|w|=0$, we have $w=\epsilon$) with $r \in \theta$. Then, add (p, θ) to I, and $((p, \theta),[\gamma, B(p) \vee b], q)$ to T.
α_{2} : if $r=p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p_{1} \in \Delta_{c}$ and there exists in T a transition $\left(p_{1}, \theta\right) \xrightarrow{[\gamma, b]}{ }_{T} q$ with $r \in \theta$, where $\gamma \in \Gamma$. Then add $\left(p, \theta^{\prime}\right)$ to I, and $\left(\left(p, \theta^{\prime}\right),[\gamma, B(p) \vee b], q\right)$ to T, for θ^{\prime} such that $\theta=\theta^{\prime} \backslash \sigma \cup \sigma^{\prime}$.

The procedure above terminates since there is a finite number of states and phases. Note that by construction, $F=\left\{\left(p^{\prime}, \theta^{\prime}\right)\right\}$, and, since initially $Q=$ $\left\{\left(p^{\prime}, \theta^{\prime}\right)\right\}$, states of $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ are all of the form (p, θ) for $p \in P$ and $\theta \subseteq \Delta \cup \Delta_{c}$.
Let us explain the intuition behind rule (α_{1}). Let $r=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w\right\rangle \in \Delta$. Let $c=\left(\left\langle p_{1}, w w^{\prime}\right\rangle, \theta\right)$ and $c^{\prime}=\left(\left\langle p, \gamma w^{\prime}\right\rangle, \theta\right)$. Then, if $c \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, then necessarily, $c^{\prime} \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$. Moreover, $c^{\prime} \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ iff either $c \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ or $p \in G$ (i.e. $B(p)=1)$. Thus, we would like that if the automaton $\mathcal{A}_{\text {pre }^{*}}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ accepts the labelled configuration $[c, b]$ (where $b=1$ means $c \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$), then it should also accept the labelled configuration $\left[c^{\prime}, b \vee B(p)\right](b \vee B(p)=1$ means $\left.c^{\prime} \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$. Thus, if the automaton $\mathcal{A}_{p r e^{*}}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ contains a
path of the form $\pi=\left(p_{1}, \theta\right) \xrightarrow{\left[w, b_{1}\right]} T T \xrightarrow{\left[w^{\prime}, b_{2}\right]}{ }_{T} q_{f}$ where $q_{f} \in F$ that accepts the labelled configuration $[c, b]$, then the automaton should also accept the labelled configuration $\left[c^{\prime}, b \vee B(p)\right]$. This configuration is accepted by the run $(p, \theta) \xrightarrow{\left[\gamma, B(p) \vee b_{1}\right]}{ }_{T} q \xrightarrow{\left[w^{\prime}, b_{2}\right]}{ }_{T} q_{f}$ added by rule $\left(\alpha_{1}\right)$.

Rule $\left(\alpha_{2}\right)$ deals with modifying rules: Let $r=p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p_{1} \in \Delta_{c}$. Let $c=$ $\left(\left\langle p_{1}, \gamma w^{\prime}\right\rangle, \theta\right)$ and $c^{\prime}=\left(\left\langle p, \gamma w^{\prime}\right\rangle, \theta^{\prime \prime}\right)$ s.t. $\theta=\theta^{\prime \prime} \backslash \sigma \cup \sigma^{\prime}$. Then, if $c \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, then necessarily, $c^{\prime} \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$. Moreover, $c^{\prime} \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ iff either $c \Rightarrow^{r}$ $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ or $p \in G$ (i.e. $B(p)=1$). Thus, we need to impose that if the automaton $\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ contains a path of the form $\left(p_{1}, \theta\right) \xrightarrow{\left[\gamma, b_{1}\right]} T_{T} q \xrightarrow{\left[w^{\prime}, b_{2}\right]}{ }_{T}$ q_{f} (where $\left.q_{f} \in F\right)$ that accepts the labelled configuration $[c, b], b=b_{1} \vee b_{2}(b=1$ means $\left.c \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$, then necessarily, the automaton $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ should also accept the labelled configuration $\left[c^{\prime}, b \vee B(p)\right]$. This configuration is accepted by the run $\left(p, \theta^{\prime \prime}\right) \xrightarrow{\left[\gamma, B(p) \vee b_{1}\right]}{ }_{T} q \xrightarrow{\left[w^{\prime}, b_{2}\right]} T q_{f}$ added by rule $\left(\alpha_{2}\right)$.

Before proving that our construction is correct, we introduce the following definition:

Definition 8 Let $\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)=(Q, \Gamma, T, P, F)$ be the labelled \mathcal{P}-automaton computed by the saturation procedure above. In this section, we use \vec{i}_{T} to denote the transition relation of $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ obtained after adding i transitions using the saturation procedure above. Let us notice that due to the fact that initially $Q=\left\{\left(p^{\prime}, \theta^{\prime}\right)\right\}$ and due to rules $\left(\alpha_{1}\right)$ and $\left(\alpha_{2}\right)$ that at step i add only transitions of the form $(p, \theta) \stackrel{\gamma}{\rightarrow}_{T} q$ for a state q that is already in the automaton at step $i-1$, then, states of $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ are all of the form (p, θ) for $p \in P$ and $\theta \subseteq \Delta \cup \Delta_{c}$.

We can show that:
Lemma 6 Let $p, p^{\prime \prime} \in P$ and $\theta, \theta^{\prime \prime} \subseteq \Delta \cup \Delta_{c}$. Let $w \in \Gamma^{*}$ and $b \in\{0,1\}$. If a path $(p, \theta) \xrightarrow{[w, b]}{ }_{T}\left(p^{\prime \prime}, \theta^{\prime \prime}\right)$ is in $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$, then $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$. Moreover, if $b=1$, then $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$.

Proof: Initially, the automaton contains no transitions. Let i be an index such that $(p, \theta) \xrightarrow[i]{[w, b]}{ }_{T}\left(p^{\prime \prime}, \theta^{\prime \prime}\right)$ holds. We proceed by induction on i.

Basis. $i=0$, then $\left(p^{\prime \prime}, \theta^{\prime \prime}\right) \xrightarrow[0_{0}]{[\epsilon, 0]}\left(p^{\prime \prime}, \theta^{\prime \prime}\right)$. This means $p^{\prime \prime}=p^{\prime}, \theta^{\prime \prime}=\theta^{\prime}$. Since initially $Q=\left\{\left(p^{\prime}, \theta^{\prime}\right)\right\}$, then $\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$ always holds.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Step. $i>0$. Let $t=\left(\left(p_{1}, \theta_{1}\right),\left[\gamma, b_{1}\right],\left(p_{0}, \theta_{0}\right)\right)$ be the i-th transition added to $\mathcal{A}_{\text {pre* }}$ and j be the number of times that t is used in the path $(p, \theta) \xrightarrow[i]{[w, b]}\left(p^{\prime \prime}, \theta^{\prime \prime}\right)$. The proof is by induction on j. If $j=0$, then we have $(p, \theta) \xrightarrow[i-1]{\left.{ }_{T} w, b\right]}\left(p^{\prime \prime}, \theta^{\prime \prime}\right)$ in the automaton, and we apply the induction hypothesis (induction on i) then we obtain $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$. So assume that $j>0$. Then, there exist $u, v \in \Gamma^{*}, b^{\prime}, b^{\prime \prime} \in\{0,1\}$ such that $w=u \gamma v, b=b^{\prime} \vee b_{1} \vee b^{\prime \prime}$ and

$$
\begin{equation*}
(p, \theta) \xrightarrow[i-1]{\left[\frac{\left[u, b^{\prime}\right]}{}\right.}\left(p_{1}, \theta_{1}\right) \xrightarrow[i]{\left[\gamma, b_{1}\right]}\left(p_{0}, \theta_{0}\right) \xrightarrow[i]{\left[v, b^{\prime \prime}\right]}\left(p_{T}^{\prime \prime}, \theta^{\prime \prime}\right) \tag{1}
\end{equation*}
$$

The application of the induction hypothesis (induction on i) to $(p, \theta) \xrightarrow[i-1]{\left[u, b^{\prime}\right]}{ }_{T}$ $\left(p_{1}, \theta_{1}\right)$ gives that

$$
\begin{equation*}
(\langle p, u\rangle, \theta) \Rightarrow^{*}\left(\left\langle p_{1}, \epsilon\right\rangle, \theta_{1}\right), \text { moreover, if } b^{\prime}=1,(\langle p, u\rangle, \theta) \Rightarrow^{r}\left(\left\langle p_{1}, \epsilon\right\rangle, \theta_{1}\right) \tag{2}
\end{equation*}
$$

There are 2 cases depending on whether transition t was added by saturation rule α_{1} or α_{2}.

1. Case t was added by rule α_{1} : There exist $p_{2} \in P$ and $w_{2} \in \Gamma^{*}$ such that

$$
\begin{equation*}
r=\left\langle p_{1}, \gamma\right\rangle \hookrightarrow\left\langle p_{2}, w_{2}\right\rangle \in \Delta \cap \theta_{1} \tag{3}
\end{equation*}
$$

and $\mathcal{A}_{\text {pre* }}$ contains the following path:

$$
\begin{equation*}
\pi^{\prime}=\left(p_{2}, \theta_{1}\right) \xrightarrow[i-1]{T}{\underset{T}{\left[w_{2}, b_{2}\right]}}^{i}\left(p_{0}, \theta_{0}\right){\xrightarrow[i]{\left[v, b^{\prime \prime}\right]}}_{T}\left(p^{\prime \prime}, \theta^{\prime \prime}\right), \quad b_{1}=b_{2} \vee B\left(p_{1}\right) \tag{4}
\end{equation*}
$$

Applying the transition rule r, we get that

$$
\begin{equation*}
\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) \tag{5}
\end{equation*}
$$

By induction on j (since transition t is used $j-1$ times in π^{\prime}), we get from (4) that

$$
\begin{align*}
\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) & \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right) \\
\text { moreover, if } b_{2} \vee b^{\prime \prime}=1,\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) & \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right) \tag{6}
\end{align*}
$$

Putting (2), (5) and (6) together, we can obtain that
$(\langle p, w\rangle, \theta)=(\langle p, u \gamma v\rangle, \theta) \Rightarrow^{*}\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$
Furthermore, if $b=b^{\prime} \vee b_{1} \vee b^{\prime \prime}=1$, then $b^{\prime}=1$ or $b_{1} \vee b^{\prime \prime}=1$.
For the first case, $b^{\prime}=1$, then we can have $(\langle p, u\rangle, \theta) \Rightarrow^{r}\left(\left\langle p_{1}, \epsilon\right\rangle, \theta_{1}\right)$ from (2). Thus, we can obtain that $(\langle p, u \gamma v\rangle, \theta) \Rightarrow^{r}\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$ i.e. $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$.

The second case $b_{1} \vee b^{\prime \prime}=1$ i.e. $B\left(p_{1}\right) \vee b_{2} \vee b^{\prime \prime}=1$ implies that $B\left(p_{1}\right)=1$ (that means $p_{1} \in G$ and $\left.\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)\right)$ or $b_{2} \vee b^{\prime \prime}=1$ (that implies $\left(\left\langle p_{2}, w_{2} v\right\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$ from (6)). Therefore, $\left(\langle p, w\rangle, \theta_{1}\right) \Rightarrow^{r}$ $\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$.
2. Case t was added by rule α_{2} : there exist $p_{2} \in P$ and $\theta_{2} \subseteq \Delta \cup \Delta_{c}$ such that

$$
\begin{equation*}
r=p_{1} \stackrel{\left(\sigma, \sigma^{\prime}\right)}{\longrightarrow} p_{2} \in \Delta_{c} \cap \theta_{2}, \theta_{2}=\left(\theta_{1} \backslash \sigma\right) \cup \sigma^{\prime} \tag{7}
\end{equation*}
$$

and the following path in the current automaton (self-modifying rule won't change the stack) with $r \in \theta_{2}$:

$$
\begin{equation*}
\left(p_{2}, \theta_{2}\right){\underset{i-1}{\left[\gamma, b_{1}^{\prime}\right]}}_{T}\left(p_{0}, \theta_{0}\right){\xrightarrow[i]{\left[v, b^{\prime \prime}\right]}}_{T}\left(p^{\prime \prime}, \theta^{\prime \prime}\right), \quad b_{1}=B\left(p_{1}\right) \vee b_{1}^{\prime} \tag{8}
\end{equation*}
$$

Applying the transition rule, we can get from (7) that

$$
\begin{equation*}
\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, \gamma v\right\rangle, \theta_{2}\right) \tag{9}
\end{equation*}
$$

We can apply the induction hypothesis (on j) to (8), and obtain

$$
\begin{array}{r}
\left(\left\langle p_{2}, \gamma v\right\rangle, \theta_{2}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime},\right) \\
\text { moreover, if } b_{1}^{\prime} \vee b^{\prime \prime}=1,\left(\left\langle p_{2}, \gamma v\right\rangle, \theta_{2}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right) \tag{10}
\end{array}
$$

From (2), (9) and (10), we get

$$
(\langle p, w\rangle, \theta)=(\langle p, u \gamma v\rangle, \theta) \Rightarrow^{*}\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow\left(\left\langle p_{2}, \gamma v\right\rangle, \theta_{2}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)
$$

Furthermore, if $b=b^{\prime} \vee b_{1} \vee b^{\prime \prime}=1$, then $b^{\prime}=1$ or $b_{1} \vee b^{\prime \prime}=1$.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

For the first case, $b^{\prime}=1$, then we can have $(\langle p, u\rangle, \theta) \Rightarrow^{r}\left(\left\langle p_{1}, \epsilon\right\rangle, \theta_{1}\right)$ from (2). Thus, we can obtain that $(\langle p, u \gamma v\rangle, \theta) \Rightarrow^{r}\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow^{*}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$ i.e. $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$. The second case $b_{1} \vee b^{\prime \prime}=1$ i.e. $B\left(p_{1}\right) \vee b_{1}^{\prime} \vee$ $b^{\prime \prime}=1$ implies that $B\left(p_{1}\right)=1$ (that means $p_{1} \in G$ and $\left(\left\langle p_{1}, \gamma v\right\rangle, \theta_{1}\right) \Rightarrow^{r}$ $\left.\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ or $b_{1}^{\prime} \vee b^{\prime \prime}=1$ (that implies $\left(\left\langle p_{2}, \gamma v\right\rangle, \theta_{2}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$ from (10)) i.e. $\left(\langle p, w\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$. Therefore, we can get that if $b=1$, then $\left(\langle p, w\rangle, \theta_{1}\right) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, \epsilon\right\rangle, \theta^{\prime \prime}\right)$.

Lemma 7 If there is a labelled configuration $[(\langle p, w\rangle, \theta), b]$ such that $(\langle p, w\rangle, \theta) \Rightarrow^{*}$ $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, then there is a path $(p, \theta) \xrightarrow{[w, b]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right)$ in $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$. Moreover, if $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, then $b=1$.
Proof: Assume $(\langle p, w\rangle, \theta) \stackrel{i}{\Rightarrow}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$. We proceed by induction on i.
Basis. $i=0$. Then $\theta=\theta^{\prime}, p^{\prime}=p$ and $w=\epsilon$. Initially, we have that $Q=$ $\left\{\left(p^{\prime}, \theta^{\prime}\right)\right\}$, therefore, by the definition of \rightarrow_{T}, we have $\left(p^{\prime}, \theta^{\prime}\right) \stackrel{\epsilon}{\rightarrow}_{T}\left(p^{\prime}, \theta^{\prime}\right)$. We cannot have $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ in 0-step.
Step. $i>0$. Then there exists a configuration $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ such that

$$
(\langle p, w\rangle, \theta) \Rightarrow\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)
$$

We apply the induction hypothesis to $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \stackrel{i-1}{\Rightarrow}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, and obtain that there exists in $\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ a path $\left(p^{\prime \prime}, \theta^{\prime \prime}\right) \xrightarrow{\left[u, b^{\prime \prime}\right]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right)$. If $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{r}$ $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right), b^{\prime \prime}=1$.

Let $\left(p_{0}, \theta_{0}\right)$ be a state of $\mathcal{A}_{\text {pre }}$. Let $w_{1}, u_{1} \in \Gamma^{*}, \gamma \in \Gamma, b_{0}^{\prime \prime}, b_{1}^{\prime \prime} \in\{0,1\}$ be such that $w=\gamma w_{1}, u=u_{1} w_{1}, b^{\prime \prime}=b_{0}^{\prime \prime} \vee b_{1}^{\prime \prime}$ and

$$
\begin{equation*}
\left(p^{\prime \prime}, \theta^{\prime \prime}\right) \xrightarrow{\left[u_{1}, b_{0}^{\prime \prime}\right]}{ }_{T}\left(p_{0}, \theta_{0}\right) \xrightarrow{\left[w_{1}, b_{1}^{\prime \prime}\right]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right) \tag{6}
\end{equation*}
$$

There are two cases depending on which rule is applied to get $(\langle p, w\rangle, \theta) \Rightarrow$ ($\left.\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$.

1. Case $(\langle p, w\rangle, \theta) \Rightarrow\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ is obtained by a rule of the form: $\langle p, \gamma\rangle \hookrightarrow$ $\left\langle p^{\prime \prime}, u_{1}\right\rangle \in \Delta$. In this case, $\theta^{\prime \prime}=\theta$. By the saturation rule α_{1}, we have

$$
\begin{equation*}
\left(p, \theta^{\prime \prime}\right){\xrightarrow{\left[\gamma, b_{0}\right]}}_{T}\left(p_{0}, \theta_{0}\right), b_{0}=B(p) \vee b_{0}^{\prime \prime} \tag{7}
\end{equation*}
$$

Putting (1) and (2) together, we can obtain that

$$
\begin{equation*}
\pi=\left(p, \theta^{\prime \prime}\right) \xrightarrow{\left[\gamma, b_{0}\right]}{ }_{T}\left(p_{0}, \theta_{0}\right) \xrightarrow{\left[w_{1}, b_{1}^{\prime \prime}\right]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right) \tag{8}
\end{equation*}
$$

Thus, $\left(p, \theta^{\prime \prime}\right) \xrightarrow{\left[\gamma w_{1}, b_{0} \vee b_{1}^{\prime \prime}\right]_{T}}\left(p^{\prime}, \theta^{\prime}\right)$ i.e. $(p, \theta) \xrightarrow{[w, b]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right)$ where $b=b_{0} \vee b_{1}^{\prime \prime}$.
2. Case $(\langle p, w\rangle, \theta) \Rightarrow\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ is obtained by a rule of the form $p \stackrel{\left(\sigma, \sigma^{\prime}\right)}{\longrightarrow}$ $p^{\prime \prime} \in \Delta_{c}$ i.e $\theta^{\prime \prime} \neq \theta$. In this case, $u_{1}=\gamma$. By the saturation rule β_{2}, we obtain that

$$
\begin{equation*}
(p, \theta) \xrightarrow{\left[\gamma, b_{0}\right]}{ }_{T}\left(p_{0}, \theta_{0}\right) \text { where } \theta^{\prime \prime}=\theta \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\}, b_{0}=B(p) \vee b_{0}^{\prime \prime} . \tag{9}
\end{equation*}
$$

Putting (1) and (4) together, we have the following path
$(p, \theta){\xrightarrow{\left[\gamma, b_{0}\right]}}_{T}\left(p_{0}, \theta_{0}\right) \xrightarrow{\left[w_{1}, b_{1}^{\prime \prime}\right]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right)$ i.e. $(p, \theta) \xrightarrow{[w, b]} T_{T}\left(p^{\prime}, \theta^{\prime}\right)$ where $b=b_{0} \vee b_{1}^{\prime \prime}$

Furthermore, if $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, then $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$ or $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$.

For the first case, $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right)$, then $p \in G$ i.e. $B(p)=1$. For the second case, $\left(\left\langle p^{\prime \prime}, u\right\rangle, \theta^{\prime \prime}\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, we can get $b^{\prime \prime}=1$ (from induction hypothesis). Thus, $b=b_{0} \vee b_{1}^{\prime \prime}=B(p) \vee b_{0}^{\prime \prime} \vee b_{1}^{\prime \prime}=B(p) \vee b^{\prime \prime}=1$. Therefore, if $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, then we can obtain $b=1$.

From these two lemmas, we get:
Theorem 3.2.2 Let $[c, b]$ be a labelled configuration.
Then $[c, b]$ is in $L\left(\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)\right.$ iff $c \in \operatorname{pre}^{*}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$. Moreover, $c \Rightarrow^{r}$ $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ iff $b=1$.

Proof: Let $[(\langle p, w\rangle, \theta), b]$ be a configuration of $\left.\operatorname{pre}^{*}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)\right)$.
Then $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$. By Lemma 6, we can obtain that there exists a path $(p, \theta) \xrightarrow{[w, b]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right)$ in $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$.
So $[(\langle p, w\rangle, \theta), b]$ is in $L\left(\mathcal{A}_{p r e^{*}}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)\right)$. Moreover, if $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, then $b=1$.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Conversely, let $[(\langle p, w\rangle, \theta), b]$ be a configuration accepted by $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ i.e. there exists a path $(p, \theta) \xrightarrow{[w, b]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right)$ in $\mathcal{A}_{\text {pre }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$. By Lemma 7. $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$ i.e. $(\langle p, w\rangle, \theta) \in \operatorname{pr} e^{*}(L(A))$. Moreover, if $b=1$, $(\langle p, w\rangle, \theta) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$.

3.2.4 Computing the Head Reachability Graph \mathcal{G}

Based on the definition of the Head Reachability Graph \mathcal{G}, and on Theorem 3.2.2, we can compute \mathcal{G} as follows. Initially, \mathcal{G} has no edges.
α_{1}^{\prime} : if $r_{c}: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime} \in \Delta_{c}$, then for every phase θ such that $r_{c} \in \theta$ and every $\gamma \in \Gamma$, we add the edge $((p, \gamma), \theta) \xrightarrow{B(p)}\left(\left(p^{\prime}, \gamma\right), \theta_{0}\right)$ to the graph \mathcal{G}, where $\theta_{0}=\theta \backslash \sigma \cup \sigma^{\prime}$.
$\alpha_{2}^{\prime}:$ if $r:\langle p, \gamma\rangle \hookrightarrow\left\langle p_{0}, \gamma_{0}\right\rangle \in \Delta$, then for every phase θ such that $r \in \theta$, we add the edge $((p, \gamma), \theta) \xrightarrow{B(p)}\left(\left(p_{0}, \gamma_{0}\right), \theta\right)$ to the graph \mathcal{G}.
$\alpha_{3}^{\prime}:$ if $r:\langle p, \gamma\rangle \hookrightarrow\left\langle p_{0}, \gamma_{0} \gamma^{\prime}\right\rangle \in \Delta$, then for every phase θ such that $r \in \theta$, we add to the graph \mathcal{G} the edge $((p, \gamma), \theta) \xrightarrow{B(p)}\left(\left(p_{0}, \gamma_{0}\right), \theta\right)$. Moreover, for every control point $p^{\prime} \in P$ and phase θ^{\prime} such that $\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ contains a transition of the form $t=\left(p_{0}, \theta\right) \xrightarrow{\left[\gamma_{0}, b\right]}{ }_{T}\left(p^{\prime}, \theta^{\prime}\right)$, we add to the graph \mathcal{G} the edge $((p, \gamma), \theta) \xrightarrow{b \vee B(p)}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$.

Items α_{1}^{\prime} and α_{2}^{\prime} are obvious. They respectively correspond to item 1 and item 2 of Definition 6 (since $B(p)=1$ iff $p \in G$). Item α_{3}^{\prime} is based on Lemma 5 and on item 3 of Definition 6. Indeed, it follows from Lemma 5 that $\mathcal{A}_{\text {pre* }}\left(\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)\right)$ contains a transition of the form $\left.\left(p_{0}, \theta\right) \xrightarrow{\left[\gamma_{0}, b\right]}\right\rangle_{T}\left(p^{\prime}, \theta^{\prime}\right)$ implies that $\left(\left\langle p_{0}, \gamma_{0}\right\rangle, \theta\right) \Rightarrow^{*}$ $\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$, and if $b=1$, then $\left(\left\langle p_{0}, \gamma_{0}\right\rangle, \theta\right) \Rightarrow^{r}\left(\left\langle p^{\prime}, \epsilon\right\rangle, \theta^{\prime}\right)$. Thus, in this case, the edge $((p, \gamma), \theta) \xrightarrow{b \vee B(p)}\left(\left(p^{\prime}, \gamma^{\prime}\right), \theta^{\prime}\right)$ is added to \mathcal{G} (item 3 of Definition 6) since $\langle p, \gamma\rangle \hookrightarrow\left\langle p_{0}, \gamma_{0} \gamma^{\prime}\right\rangle \in \Delta$.

3.3 Experiments

3.3.1 Our approach vs. standard LTL for PDSs

We implemented our approach in a tool and we compared its performance against the approaches that consist in translating the SM-PDS to an equivalent standard (or symbolic) PDS, and then applying the standard LTL model checking algorithms implemented in the PDS model-checker tool Moped 42]. All our experiments were run on Ubuntu 16.04 with a $2.7 \mathrm{GHz} \mathrm{CPU}, 2 \mathrm{~GB}$ of memory. To perform the comparison, we randomly generate several SM-PDSs and LTL formulas of different sizes. The results (CPU Execution time) are shown in Table 3.1 and 3.2. Column Size is the size of SM-PDS (S_{1} for non-modifying transitions Δ and S_{2} for modifying transitions Δ_{c}). Column LTL gives the size of the transitions of the Büchi automaton generated from the LTL formula (using the tool LTL2BA[31]). Column $S M-P D S$ gives the cost of our direct algorithm presented in this thesis. Column $P D S$ shows the cost it takes to get the equivalent PDS from the SM-PDS. Column Result reports the cost it takes to run the LTL PDS model-checker Moped [42] for the PDS we got. Column Total is the total cost it takes to translate the SM-PDS into a PDS and then apply the standard LTL model checking algorithm of Moped (Total=PDS+Result). Column Symbolic PDS reports the cost it takes to get the equivalent Symbolic PDS from the SM-PDS. Column Result $_{1}$ is the cost to run the Symbolic PDS LTL model-checker Moped. Column Total l_{1} is the total cost it takes to translate the SM-PDS into a symbolic PDS and then apply the standard LTL model checking algorithm of Moped. You can see that our direct algorithm (Column SM-PDS) is much more efficient than translating the SM-PDS to an equivalent (symbolic) PDS, and then run the standard LTL model-checker Moped. Translating the SM-PDS to a standard PDS may take more than 20 days, whereas our direct algorithm takes only a few seconds. Moreover, since the obtained standard (symbolic) PDS is huge, Moped failed to handle several cases (the time limit that we set for Moped is 20 minutes), whereas our tool was able to deal with all the cases in only a few seconds.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Size	LTL	SM-PDS	PDS	Result	Total	Symbolic PDS	Result 1	Total ${ }_{1}$
$S_{1}: 5, S_{2}: 2$	$\|\delta\|: 15$	0.07s	0.09s	0.01 s	0.10 s	0.08 s	0.00 s	0.08s
$S_{1}: 5, S_{2}: 3$	$\|\delta\|: 8$	0.06s	0.08s	0.01 s	0.09 s	0.09 s	0.00s	0.09s
$S_{1}: 11, S_{2}: 4$	$\|\delta\|: 8$	0.16s	0.13 s	0.05s	0.18 s	0.10 s	0.00s	0.10 s
$S_{1}: 5, S_{2}: 3$	$\|\delta\|: 10$	0.06s	0.15 s	0.01 s	0.16 s	0.09 s	0.00 s	0.09 s
$S_{1}: 110, S_{2}: 4$	$\|\delta\|: 8$	0.34s	186.10 s	0.79s	186.99s	0.35 s	0.00 s	0.35 s
$S_{1}: 255, S_{2}: 8$	$\|\delta\|: 8$	0.39s	281.02 s	0.94 s	281.96 s	4.82 s	0.05 s	4.87 s
$S_{1}: 255, S_{2}: 8$	\| $\delta \mid: 10$	0.42s	281.02 s	0.97s	281.99 s	4.82 s	0.06s	4.88 s
$S_{1}: 110, S_{2}: 4$	$\|\delta\|: 15$	0.28s	186.10s	1.05 s	187.15 s	0.35 s	0.06 s	0.41 s
$S_{1}: 255, S_{2}: 8$	\| $\delta \mid: 15$	0.46s	281.02 s	1.92 s	282.94 s	4.82 s	0.08s	4.90 s
$S_{1}: 110, S_{2}: 4$	$\|\delta\|: 20$	0.37s	186.10s	1.05 s	187.15 s	0.35 s	0.06 s	0.41 s
$S_{1}: 255, S_{2}: 8$	\| $\delta \mid: 20$	0.55s	281.02 s	1.97 s	282.99 s	4.82s	0.17 s	4.99 s
$S_{1}: 255, S_{2}: 8$	$\|\delta\|: 25$	0.59s	281.02 s	1.23 s	282.99 s	4.82 s	0.24 s	5.36 s
$S_{1}: 2059, S_{2}: 7$	$\|\delta\|: 8$	0.86s	19525.01 s	20.71s	19545.72 s	20.70s	error	-
$S_{1}: 2059, S_{2}: 9$	$\|\delta\|: 8$	1.49s	19784.7s	79.12s	19863.32	128.12 s	error	-
$S_{1}: 2059, S_{2}: 11$	$\|\delta\|: 8$	3.73s	30011.67 s	168.15 s	30179.82 s	261.07 s	error	-
$S_{1}: 2059, S_{2}: 11$	$\|\delta\|: 28$	6.88s	30011.67 s	169.55 s	30	261.07 s	error	-
$S_{1}: 3050, S_{2}: 10$	$\|\delta\|: 8$	5.21s	39101.57 s	killed	-	438.27 s	error	-
$S_{1}: 3090, S_{2}: 10$	$\|\delta\|: 8$	5.86s	40083.07 s	killed	-	438.69 s	error	-
$S_{1}: 3050, S_{2}: 10$	$\|\delta\|: 20$	7.24s	39101.57 s	killed	-	438.27 s	error	-
$S_{1}: 3090, S_{2}: 10$	$\|\delta\|: 30$	8.38s	40083.07 s	kille	-	438.69 s	error	-
$S_{1}: 3090, S_{2}: 10$	$\|\delta\|: 25$	8.89s	40083.07s	killed	-	438.69 s	error	-
$S_{1}: 4050, S_{2}: 10$	$\|\delta\|: 8$	9.21s	81408.91 s	killed	-	699.19 s	error	-
$S_{1}: 4050, S_{2}: 10$	$\|\delta\|: 28$	11.64s	81408.91s	killed	-	699.19 s	error	-
$S_{1}: 4058, S_{2}: 11$	$\|\delta\|: 8$	9.83s	93843.37s	killed	-	802.07 s	error	-
$S_{1}: 4058, S_{2}: 11$	$\|\delta\|: 25$	13.59s	93843.37s	killed	-	802.07 s	error	-
$S_{1}: 5050, S_{2}: 11$	$\|\delta\|: 8$	10.34 s	173943.37s	killed	-	921.16 s	error	-
$S_{1}: 5090, S_{2}: 11$	$\|\delta\|: 8$	10.52s	179993.54s	killed	-	929.32 s	error	-
$S_{1}: 5090, S_{2}: 11$	$\|\delta\|: 10$	12.89s	179993.54 s	killed	-	929.32 s	error	-
$S_{1}: 6090, S_{2}: 11$	$\|\delta\|: 8$	13.49 s	190293.64 s	killed	-	1002.73 s	error	-
$S_{1}: 6090, S_{2}: 11$	$\|\delta\|: 10$	15.81s	190293.64 s	killed	-	1002.73 s	error	-
$S_{1}: 6090, S_{2}: 11$	$\|\delta\|: 40$	32.39s	190293.64 s	killed	-	1002.73 s	error	-
$S_{1}: 7090, S_{2}: 11$	$\|\delta\|: 25$	39.86s	198932.32 s	killed	-	1092.28s	error	-
$S_{1}: 7090, S_{2}: 11$	$\|\delta\|: 30$	43.24s	198932.32s	killed	-	1092.28 s	error	-
$S_{1}: 9090, S_{2}: 11$	$\|\delta\|: 8$	29.98 s	199987.98 s	killed	-	1128.19 s	error	-
$S_{1}: 9090, S_{2}: 11$	$\|\delta\|: 20$	45.29 s	199987.98s	killed	-	1128.19 s	error	-

Table 3.1: Our approach vs. standard LTL for PDSs (Part 1)

Size	LTL	SM-PDS	PDS	Result	Total	Symbolic PDS	Result $_{1}$	Total $_{1}$
$S_{1}: 10050, S_{2}: 12$	$\|\delta\|: 8$	$\mathbf{4 8 . 5 3 s}$	2134587.14 s	killed	-	1469.28 s	error	-
$S_{1}: 10050, S_{2}: 12$	$\|\delta\|: 25$	$\mathbf{5 9 . 6 9 s}$	2134587.14 s	killed	-	1469.28 s	error	-
$S_{1}: 10050, S_{2}: 12$	$\|\delta\|: 30$	$\mathbf{6 1 . 4 2 s}$	2134587.14 s	kille d	-	1469.28 s	error	-
$S_{1}: 10150, S_{2}: 12$	$\|\delta\|: 35$	$\mathbf{6 4 . 1 7 s}$	2134633.28 s	killed	-	1469.28 s	error	-
$S_{1}: 10150, S_{2}: 14$	$\|\delta\|: 8$	$\mathbf{5 8 . 3 4 s}$	2181975.64 s	killed	-	2849.96 s	error	-
$S_{1}: 10150, S_{2}: 14$	$\|\delta\|: 40$	$\mathbf{8 2 . 7 2 s}$	2181975.64 s	killed	-	2849.96 s	error	-
$S_{1}: 10150, S_{2}: 12$	$\|\delta\|: 40$	$\mathbf{7 6 . 6 1 s}$	2134633.28 s	killed	-	1469.28 s	error	-
$S_{1}: 10150, S_{2}: 16$	$\|\delta\|: 45$	$\mathbf{8 9 . 8 3 s}$	2211008.82 s	killed	-	3665.59 s	error	-
$S_{1}: 10150, S_{2}: 12$	$\|\delta\|: 60$	$\mathbf{9 7 . 5 6 s}$	2134633.28 s	killed	-	1469.28 s	error	-
$S_{1}: 10150, S_{2}: 12$	$\|\delta\|: 65$	$\mathbf{1 0 5 . 8 9 s}$	2134633.28 s	killed	-	1469.28 s	error	-
$S_{1}: 10150, S_{2}: 16$	$\|\delta\|: 65$	$\mathbf{1 3 4 . 4 5 s}$	2211008.82 s	killed	-	3665.59 s	error	-
$S_{1}: 10180, S_{2}: 16$	$\|\delta\|: 65$	$\mathbf{1 7 5 . 2 9 s}$	2134643.52 s	killed	-	3689.83 s	error	-
$S_{1}: 10180, S_{2}: 16$	$\|\delta\|: 78$	$\mathbf{2 1 4 . 3 6 s}$	2134643.52 s	killed	-	3689.83 s	error	-

Table 3.2: Our approach vs. standard LTL for PDSs (Part 2)

3.3.2 Malicious Behavior Detection on Self-Modifying Code

3.3.2.1 Specifying Malicious Behaviors using LTL.

As described in [14], several malicious behaviors can be described by LTL formulas. We give in what follows four examples of such malicious behaviors and show how they can be described by LTL formulas:

Registry Key Injecting: In order to get started at boot time, many malwares add themselves into the registry key listing. This behavior is typically implemented by first calling the API function GetModuleFileNameA to retrieve the path of the malware's executable file. Then, the API function RegSetValueExA is called to add the file path into the registry key listing. This malicious behavior can be described in LTL as follows:
$\phi_{r k}=\mathbf{F}($ call GetModuleFileNameA $\wedge \mathbf{F}($ call RegSetValueExA $))$
This formula expresses that if a call to the API function GetModuleFileNameA is followed by a call to the API function RegSetValueExA, then probably a malware is trying to add itself into the registry key listing.

Data-Stealing: Stealing data from the host is a popular malicious behavior

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

that intend to steal any valuable information including passwords, software codes, bank information, etc. To do this, the malware needs to scan the disk to find the interesting file that he wants to steal. After finding the file, the malware needs to locate it. To this aim, the malware first calls the API function GetModuleHandleA to get a base address to search for a location of the file. Then the malware starts looking for the interesting file by calling the API function FindFirstFileA. Then the API functions CreateFileMappingA and MapViewOfFile are called to access the file. Finally, the specific file can be copied by calling the API function CopyFileA. Thus, this data-stealing malicious behavior can be described by the following LTL formula as follows:
$\phi_{d s}=\mathbf{F}$ (call GetModuleHandle $A \wedge \mathbf{F}$ (call FindFirstFile A
$\wedge \mathbf{F}($ call CreateFileMapping $A \wedge \mathbf{F}($ call MapViewof File $\wedge \mathbf{F}$ call CopyFileA $)$) $)$)
Spy-Worm: A spy worm is a malware that can record data and send it using the Socket API functions. For example, Keylogger is a spy worm that can record the keyboard states by calling the API functions GetAsyKeyState and GetKeyState and send that to the specific server by calling the socket function sendto. Another spy worm can also spy on the I/O device rather than the keyboard. For this, it can use the API function GetRawInputData to obtain input from the specified device, and then send this input by calling the socket functions send or sendto. Thus, this malicious behavior can be described by the following LTL formula:
$\phi_{s w}=\mathbf{F}(($ call GetAsyncKeyState \vee call GetRawInputData $) \wedge \mathbf{F}($ call sendto \vee call send))

Appending virus: An appending virus is a virus that inserts a copy of its code at the end of the target file. To achieve this, since the real OFFSET of the virus' variables depends on the size of the infected file, the virus has to first compute its real absolute address in the memory. To perform this, the virus has to call the sequence of instructions: l_{1} : call $f ; l_{2}$: ...; f : pop eax;. The instruction call f will push the return address l_{2} onto the stack. Then, the pop instruction in f will put the value of this address into the register eax. Thus, the virus can get its real absolute address from the register eax. This malicious behavior can be described by the following LTL formula:

$$
\phi_{a v}=\bigvee \mathbf{F}(\text { call } \wedge \mathbf{X}(\text { top-of-stack }=a) \wedge \mathbf{G} \neg(r e t \wedge(\text { top-of-stack }=a)))
$$

where the \bigvee is taken over all possible return addresses a, and top-of-stack $=a$ is a predicate that indicates that the top of the stack is a. The subformula
call $\wedge \mathbf{X}($ top-of-stack $=a)$ means that there exists a procedure call having a as return address. Indeed, when a procedure call is made, the program pushes its corresponding return address a to the stack. Thus, at the next step, a will be on the top of the stack. Therefore, the formula above expresses that there exists a procedure call having a as return address, such that there is no ret instruction which will return to a.

Note that this formula uses predicates that indicate that the top of the stack is a. Our techniques work for this case as well: it suffices to encode the top of the stack in the control points of the SM-PDS. Our implementation works for this case as well and can handle appending viruses.

3.3.2.2 Applying our tool for malware detection.

We applied our tool to detect several malwares. We use the unpack tool unpacker [45] to handle packers like UPX, and we use Jakstab [22] as disassembler. We consider 160 malwares from the malware library VirusShare [49], 184 malwares from the malware library MalShare [35], 288 email-worms from VX heaven 48] and 260 new malwares generated by NGVCK, one of the best malware generators. We also choose 19 benign samples from Windows XP system. We consider selfmodifying versions of these programs. In these versions, the malicious behaviors are unreachable if the semantics of the self-modifying instructions are not taken into account, i.e., if the self-modifying instructions are considered as "standard" instructions that do not modify the code, then the malicious behaviors cannot be reached. To check this, we model such programs in two ways:

1. First, we take into account the self-modifying instructions and model these programs using SM-PDSs as described in Section 2.3.2. Then, we check whether these SM-PDSs satisfy at least one of the malicious LTL formulas presented above. If yes, the program is declared as malicious, if not, it is declared as benign. Our tool was able to detect all the 892 self-modifying malwares as malicious, and to determine that benign programs are benign. We report in Tables 3.5, 3.6, 3.7 and 3.8 the results we obtained. Column Size is the number of control locations, Column Result gives the result of our algorithm: Yes means malicious and No means benign; and Column cost gives the cost to apply our LTL model-checker to check one of the LTL properties described above.

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

2. Second, we abstract away the self-modifying instructions and proceed as if these instructions were not self-modifying. In this case, we translate the binary codes to standard pushdown systems as described in [13]. By using PDSs as models, none of the malwares that we consider was detected as malicious, whereas, as reported in Tables 3.5, 3.6, 3.7 and 3.8, using selfmodifying PDSs as models, and applying our LTL model-checking algorithm allowed to detect all the 892 malwares that we considered.

Note that checking the formulas $\phi_{r k}, \phi_{d s}$, and $\phi_{s w}$ could be done using multiple pre* queries on SM-PDSs using the pre* algorithm of Section 2.5. However, this would be less efficient than performing our direct LTL model-checking algorithm, as shown in Tables 3.3, 3.4, where Column Size gives the number of control locations, Column LTL gives the time of applying our LTL model-checking algorithm; and Column Multiple pre* gives the cost of applying multiple pre* on SM-PDSs to check the properties $\phi_{r k}, \phi_{d s}$, and $\phi_{s w}$. It can be seen that applying our direct LTL model checking algortihm is more efficient. Furthermore, the appending virus formula $\phi_{a v}$ cannot be solved using multiple pre* queries. Our direct LTL model-checking algorithm is needed in this case. Note that some of the malwares we considered in our experiments are appending viruses. Thus, our algorithm and our implementation are crucial to be able to detect these malwares.

Example	Size	LTL	Multiple pre	Example	Size	LTL	Multiple pre*
Tanatos.b	12315	16.261 s	46.635 s	Netsky.c	45	0.002 s	0.092 s
Win32.Happy	23	0.042 s	0.075 s	Mydoom.c	155	0.014 s	0.206 s
Netsky.a	45	0.047 s	0.085 s	MyDoom-N	16980	30.231 s	98.418 s
Mydoom.y	26902	12.462 s	102.559 s	Mydoom.j	22355	11.262 s	111.617 s
klez-N	6281	3.252 s	78.419 s	Mydoom.v	5965	3.971 s	83.988 s
klez.c	30	0.039 s	0.088 s	Netsky.b	45	0.057 s	0.183 s
Repah.b	221	2.428 s	8.852 s	Gibe.b	5358	4.229 s	17.239 s
Magistr.b	4670	3.699 s	93.818 s	Ardurk.d	1913	0.482 s	3.212 s
Netsky.d	45	0.083 s	0.123 s	klez.f	27	0.054 s	4.518 s
Kelino.l	495	0.326 s	5.468 s	Kipis.t	20378	23.345 s	48.689 s
klez.d	31	0.085 s	0.291 s	Plage.b	395	0.291 s	3.138 s
Kelino.g	470	0.672 s	3.446 s	Urbe.a	123	0.376 s	2.981 s
klez.e	27	0.094 s	0.482 s	Magistr.b	4670	3.987 s	53.235 s
Magistr.a.poly	36989	49.863 s	159.195 s	Spam.Tedroo.AB	487	0.924 s	4.894 s
Adon.1703	37	0.358 s	0.884 s	Adon.1559	37	0.255 s	4.088 s
Akez	273	0.136 s	1.863 s	Alcaul.d	845	0.165 s	0.392 s
Alaul.c	355	0.109 s	5.757 s	fsAutoB.F026	245	1.698 s	4.503 s
Haharin.A	210	1.462 s	4.318 s	Haharin.dr	235	1.558 s	4.312 s
LdPinch.BX.DLL	2010	6.965 s	8.128 s	LdPinch.Win32.5558	2015	6.907 s	8.981 s
LdPinch.fmye	1845	6.194 s	9.232 s	Win32/Togalffn	590	2.023 s	3.978 s
LdPinch-15	580	1.008 s	3.957 s	LdPinch.e	578	1.185 s	3.392 s
Tanatos.b	12315	16.261 s	46.635 s	Netsky.c	45	0.002 s	0.092 s
Win32.Happy	23	0.042 s	0.075 s	Mydoom.c	155	0.014 s	0.206 s
Netsky.a	45	0.047 s	0.085 s	MyDoom-N	16980	30.231 s	98.418 s
Mydoom.y	26902	12.462 s	102.559 s	klez-N	6281	3.252 s	78.419 s
Mydoom.j	22355	11.262 s	111.617 s	Mydoom.v	5965	3.971 s	83.988 s
klez.c	30	0.039 s	0.088 s	Netsky.b	45	0.057 s	0.183 s
Repah.b	221	2.428 s	8.852 s	Magistr.b	4670	3.699 s	93.818 s
Gibe.b	5358	4.229 s	17.239 s	Ardurk.d	1913	0.482 s	3.212 s
Netsky.d	45	0.083 s	0.123 s	klez.f	27	0.054 s	4.518 s
Kelino.l	495	0.326 s	5.468 s	Kipis.t	20378	23.345 s	48.689 s

Table 3.3: Multiple $p r e^{*}$ v.s. our direct LTL model-checking algorithm (part 1)

s6ta zs	SLELLI	8276		scel ${ }^{\text {chi }}$	s6st＇t	288	Y！়o¢
selı 62	st8t＇tz	ธ886	O sozeupe	S608＇もを\％	St97＇zL	¢8L0¢	1987！${ }^{\text {¢ }}$
s889．9	5629\％	\＆L6L	p－y．mp．ry	S665．0	S870 0	$9^{9} 6$	шо．ıpu ${ }^{\text {b }}$
sel6＇t	s $68 \mathrm{~F}^{\text {a }}$ I	0 2\％		sL60＇t	s0tぁ＇I	965	
Ster 9	s6zc．z	¢0\％		S986：6	S878．I	09ZI	
StI9 6	s\％ot＇z	¢ ¢ $¢$	66โ9z0z•！ıшәŋ	slze＇il	s¢60 ${ }^{\circ} \mathrm{t}$	026	
S8L6．8	s¢z0＇z	069		SLC6 6	S800．t	089	gI－ч0u！dPT
S668\％	sc8i＇I	829		SI86：8	sL06．9	¢ ¢0z	
stez 6	St6r＇9	9f81	әКшу чри！dРТ	s881．8	S¢96．9	0102	TTG XG чЈи！dРТ
scos＇t	S869 ${ }^{\text {I }}$	¢ヵて	9704＊gołnvsf	s8tét	sz9t＇I	0 \％	
stiet ${ }^{\text {d }}$	S899．I	98%	мр＂uмхчен	SLGL ${ }^{\circ} \mathrm{G}$	s6010	$9 ¢ 8$	$)^{\text {¢ne }}$ IV
s66800	sc9\％${ }^{\circ} 0$	978	p．nexiv	se98．${ }^{\text {I }}$	s98．0	\＆L	zวy
S880＇t	sqgz\％	28	69ct uopy	St88．0	s8980	28	ع02L＇uopy
ST68＊	Stz6．0	28%	gv＊oorpaL uredS	S810．91	SL66．9	08tぁ	
SZGF＇St	sq0z：9	0tet		S68L $\%$ L	SL68．9	08It	תeqSys
SZSt＇9tz	SZ96： 76	960ts		S9ti 8 ¢て	${ }^{\text {s } 669}{ }^{\text {76 }}$	82919	
SLI0＊867	st91．86	96819		S¢86．${ }^{\text {\％}}$	s0なゃ 0	872	
S6tL＇\％	82 CO	886	шоор $\chi_{\text {N }}$	St69＇\％	S¢88．0	0ヵて	јле－еұоите．ля
s897．98	sfect9	0269	$\mathrm{N}^{\text {mooog }}{ }^{\text {¢ }} \mathrm{N}$	s675 801	sec9 9	¢969	
s970．76	S686．9	9869		seze：01	se0t 0	98%	
Sc86 4	s96z\％ 0	98%		s980 6	szze\％0	08%	$\mathrm{y}^{\text {unoop } S_{\mathrm{J}}}$
S876．8	${ }^{\text {s } 667 \% 0}$	07%		S896． 6	S6680	9 9\％	
sc9 ${ }^{\circ} 8$	sLOE：0	876		SGSt． 9	s8870	986	
S9t6．${ }^{\text {c }}$	s6ちで0	07%	эizem ${ }_{\text {ctieug }}$	şLI．9	sでで0	08%	
scezec	SL86\％	0297	q－77storen	st87．0	St6000	27	ә＇zəサ
sq64．69	S¢98 ${ }^{\circ} 67$	68698		sL86．${ }^{\text {\％}}$	s928．0	86 L	
s8eL＇¢	st67＇0	968		S9币t＇¢	s\％2900	02t	8．ои！̣әу
	TLT	әZ！	ә［durex＇t		TLT	әz！ 5	ә¢durex＇t

Example	Size	Result	cost	Example	Size	Result	cost	Example	Size	Result	cost
Tanatos.b	12315	Yes	16.261 s	Netsky.c	45	Yes	0.002s	Win32.Happy	23	Yes	0.042s
Netsky.a	45	Yes	0.047s	Mydoom.c	155	Yes	0.014s	MyDoom-N	16980	Yes	30.231 s
Mydoom.y	26902	Yes	12.462 s	Mydoom.j	22355	Yes	11.262s	klez-N	6281	Yes	3.252s
klez.c	30	Yes	0.039s	Mydoom.v	5965	Yes	3.971s	Netsky.b	45	Yes	0.057 s
Repah.b	221	Yes	2.428 s	Gibe.b	5358	Yes	4.229 s	Magistr.b	4670	Yes	3.699s
Netsky.d	45	Yes	0.083 s	Ardurk.d	1913	Yes	0.482 s	klez.f	27	Yes	0.054s
Kelino. 1	495	Yes	0.326 s	Kipis.t	20378	Yes	25.345 s	klez.d	31	Yes	0.085s
Kelino.g	470	Yes	0.672s	Plage.b	395	Yes	0.291s	Urbe.a	123	Yes	0.376 s
klez.e	27	Yes	0.094s	Magistr.b	4670	Yes	3.987s	Magistr.a.poly	36989	Yes	49.863s
Mydoom.M@mm	5965	Yes	5.633s	MyDoom. 54464	5935	Yes	5.939s	MyDoom.N!worm	5970	Yes	6.152s
Win32.Runouce	51678	Yes	92.692s	Win32.Chur.A	51895	Yes	98.161s	Win32.CNHacker.C	51095	Yes	94.952s
Win32.Mydoom! ${ }^{\text {a }}$	215	Yes	0.481 s	Mydoom.o@MM!zip	257	Yes	0.298s	W.Mydoom.kZ2L	228	Yes	0.729s
Mydoom-EG [Trj]	230	Yes	0.242s	Email.Worm.W32!c	220	Yes	0.249 s	W32.Mydoom.L	235	Yes	0.288 s
Worm.Mydoom-5	228	Yes	0.307s	Mydoom.CJDZ-5239	225	Yes	0.392s	Mydoom.DN.worm	220	Yes	0.299s
Win32.Mydoom.R	230	Yes	0.322s	Win32.Mydoom.dlnpqi	235	Yes	0.296s	Mydoom.o@MM!zip	235	Yes	0.403 s
Sramota.avf	240	Yes	0.383 s	BehavesLike.Mydoom	238	Yes	0.278 s	Win32.Mydoom. 288	248	Yes	0.410 s
Mydoom.ACQ	19210	Yes	39.662s	Mydoom.ba	19423	Yes	38.269s	Mydoom.ftde	19495	Yes	39.583s
Worm.Anarxy	210	Yes	1.913s	Malware!15bf	220	Yes	2.017s	Anar.A. 2	140	Yes	1.993s
Win32.Anar.a	215	Yes	1.631s	nar. 24576	240	Yes	2.738 s	Worm-email.Anar.S	155	Yes	2.093s
HLLW.NewApt	4230	Yes	6.954s	Win32.Worm.km	4405	Yes	7.396s	Newapt.Efbh	4550	Yes	7.254s
NewApt!generic	4815	Yes	9.002s	NewApt.A@mm	4485	Yes	8.159s	Newapt.Win32.1	4155	Yes	7.885s
W32.W.Newapt.A!	5015	Yes	8.925s	Worm.Mail.NewApt.a	51550	Yes	9.083s	malicious. 154966	5155	Yes	9.291 s
Win32.Yanz	2250	Yes	4.357 s	Yanzi.QTQX-0894	2120	Yes	4.109s	Win32.Yanz.a	2410	Yes	4.465s
Win32.Skybag	4180	Yes	6.891 s	Skybag.A	4310	Yes	6.205 s	Netsky.ah@MM	4480	Yes	6.991s
Skybag.b	4955	Yes	6.892 s	Worm.Skybag-1	4820	Yes	7.119s	Win32.Agent. R	4490	Yes	7.898s
Skybag [Wrm]	4985	Yes	7.482s	Skybag.Dvgb	4830	Yes	7.564s	Netsky.CI.worm	4550	Yes	7.180s

${ }^{\text {s } 868.1}$	${ }^{\text {sa }}$ 入	${ }_{961}$		568\％${ }^{\text {² }}$	${ }^{\text {s }}$ ，λ	98 I		S¢f8＇z	${ }^{\text {s }}$ ， X	OSI	
s\％87＇I	${ }^{\text {sp，}}$ ，	017		${ }^{\text {s } 689}{ }^{\text {c }} \mathrm{z}$	${ }^{5} \mathrm{P}$ Х	${ }_{9} 90$		S0tt＇I	${ }^{\text {sə }}$ ，	¢61	
S980 ${ }^{\circ}$	${ }^{\text {sa }}$ 人	¢L9	山яіə！əәиə	sg ${ }^{\text {c }} 6$	${ }^{\text {s }}$ ，λ	909		sgieg．\quad	${ }^{\text {s }}$ ，λ	069	
S788．I	${ }^{\text {sa }}$ 人	069		sg8t．t	${ }^{\text {sa }} \mathrm{X}$	¢09	6890 т ¢Ји！дबт	S0t9＇I	${ }^{\text {s }}$ ， X	0t9	709Z \times Cdsue！ox
S98 L^{\prime} I	${ }^{\text {sa }}$ ，	889		s78\％＇t	${ }^{\text {a }}$ 入	069	шиом＇HIG＇ояовт	S820．${ }^{\text {I }}$	${ }^{\text {sa }}$ ，	969	
sezo ${ }^{\text {c }}$	${ }^{\text {s }} \mathrm{\lambda}$ \}	069	щıг；	sc8t．t	${ }^{\text {sa }}$ 人	829		S800．${ }^{\text {L }}$	${ }^{\text {sad }}$ ，	089	¢I－पәu！${ }^{\text {dPT }}$
${ }^{\text {s }}$ ¢ 6.9	${ }^{\text {s }}$ ，λ	0267	у：məН＇zєш！	s¢60．9	${ }^{5} \mathrm{\partial}$ 人	0108	［［xL］HIV－чәu！dPT	${ }^{\text {S } 8688^{\circ}}$	${ }^{\text {sa }}$ ，	0¢z¢	
s¢669	${ }^{\text {s }}$ ，λ	0667		scoo 2	sax^{1}			SLI6．9	${ }^{\text {s }}$ ，λ	0818	LZ－чขu！${ }^{\text {dPT }}$
s861．9	${ }^{\text {sa }}$ 人	9867	ne－чэu！dPT［o．LLMSd	5786．9	${ }^{\text {s }} \mathrm{\lambda}$	9862		S687：8	${ }^{\text {s }} \mathrm{\lambda}$ 人	0¢tE	
sL069	${ }^{\text {s }}$ 入	¢10z	8999 ¢0u！dPT	St6\％ 9	${ }^{5} \mathrm{D}$ 人	9 9 8 I		S¢96．9	${ }^{\text {sa }}$ ，	0208	
SLCLCS	${ }^{\text {s }} \mathrm{S}^{1}$	¢06I	［＇ч0u！${ }^{\text {a }} \mathrm{MSd}$	5880．c	${ }^{\text {s }}$ ，λ	808I		Sc68＇t	${ }^{\text {sa }}$ ，	¢8LI	00§＇पэи！${ }^{\text {d，}}$
	${ }^{9} \mathrm{X}$ 人	908	－mosuey－uetoril	s890＇t	${ }^{5} \mathrm{\lambda}$	062		${ }^{\text {S } 60688}$	${ }^{\text {s }}$ ，${ }^{\text {人 }}$	862	sијqоэə¢
${ }^{\text {s } 680} 0^{\circ} \mathrm{z}$	${ }^{\text {sa }}$ 人	028	＇эеяq ue！o．iL	5876．${ }^{\text {I }}$	${ }^{\text {s }}$ ，λ	928		Sg67．I	${ }^{\text {sa }}$ 人	188	
selz 9	${ }^{\text {sa }}$ ，	9 StE	＇ystr numsoo／ue［o．x	s866．9	${ }^{\text {sa }}$ ，	0 0tc		S680． 2	${ }^{\text {sa }}$ 人	L¢89	
${ }^{\text {s } 660} 0^{\circ} \mathrm{g}$	${ }^{\text {sa }}$ ，	8688	＇gołn Vsje $78 . \mathrm{M}$	s¢80．9	${ }^{\text {s }}$ ，λ	0098		s9t9＇t	${ }^{\text {s }}$ ，λ	96 ± 8	
S870．I	${ }^{s}{ }^{1} \mathrm{X}$	$8 ¢ 7$	yeZ	SL6z＇8	${ }^{\text {s }}$ ，λ	8989		S8St＇I	${ }^{\text {s }}$ ，λ	\％\％s	
SL6z＇6	${ }^{\text {sa }}$ ，	L969		s665 0	${ }^{\text {s }}$ ， X	296	\＆LZLI08โ•ท！əuәワ	St67：88	${ }^{\text {sa }}$ ，	¢8L0¢	1986Г כ！̣әиŋ
s878．L	${ }^{\text {sa }}$ 入	096I		S\％0t＇\％	${ }^{5} \lambda$	¢¢¢	6619707 ว！！əшә引	s660＇t	${ }^{\text {s }}$ ，λ	026	
St97＇zL	${ }^{\text {s }}$ ，λ	88108	198\％1 כ！̣әшә	s629＇8	${ }^{\text {s }}$ 入	\＆16I	p－ymp．x	s870 0	${ }^{\text {s }}$ ，	96	wo．pu ${ }^{\text {a }}$
${ }^{\text {s }} 6622^{\circ} \mathrm{E}$	${ }^{\text {sa }}$ 人	288		sct9 6	${ }^{\text {s }}$ ，λ	8989	$q \cdot$ ¢！	sze99	${ }^{\text {s }}$ ， X	0tct	\％นәછ
SI8t＇tz	${ }^{\text {sa }}$ ，	¢876	O sozeue $_{\text {L }}$	SLELEL	${ }^{5}{ }^{2} \mathrm{X}$	8276	g －reəq．8ng	S69t＇t	${ }^{5}{ }^{2} \mathrm{X}$	288	צ！়o¢
S06z＇9	${ }^{\text {sa }}$ ，	9692	bor．чэи！dPT	Stz8． 2	${ }^{9} \mathrm{X}$ 人	8989	нG•！！əиәワ	s 796.97	${ }^{\text {sa }}$ ，	980GI	
¢68t＇\＆	${ }^{\text {sa }}$ 人	\＆\＆t	661970z＇•．əшәŋ	s 2266°	${ }^{\text {sp}}$ 入	980¢		s 6980	${ }^{\text {s² }}$ 入	¢¢¢	
7500	$7{ }^{\text {nss }}$ y	${ }^{\text {2z！}}$	ә才duex］	1800	7 ［nsəy	${ }^{\text {2Z！}}$ S	ә才duexar	7500	7［ ${ }^{\text {nsə }}$	${ }^{\text {zz！}}$ S	

Example	Size	Result	cost	Example	Size	Result	cost	Example	Size	Result	cost
calculation.exe	9952	No	18.352 s	cisvc.exe	4105	No	3.631 s	simple.exe	52	No	0.001s
shutdown.exe	2529	No	0.397 s	loop.exe	529	No	9.249 s	cmd.exe	1324	No	13.466 s
notepad.exe	10529	No	24.583 s	java.exe	800	No	15.852 s	java.exe	21324	No	42.373 s
sort.exe	8529	No	29.789s	bibDesk.exe	32800	No	50.279 s	interface.exe	1005	No	8.462 s
ipv4.exe	968	No	4.186 s	TextWrangler.exe	14675	No	45.221 s	sogou.exe	45219	No	55.259 s
game.exe	34325	No	82.424s	cycle.tex	9014	No	42.555 s	calender.exe	892	No	35.039s
SdBot.zk	3430	Yes	23.242s	Virus.Gen	661	Yes	9.437 s	AutoRun.PR	240	Yes	4.181s
Adon. 1703	37	Yes	0.358 s	Adon. 1559	37	Yes	0.255 s	Spam.Tedroo.AB	487	Yes	0.924 s
Akez	273	Yes	0.136 s	Alcaul.d	845	Yes	0.165 s	Alaul.c	355	Yes	0.109s
Virus.klk	5235	Yes	15.863 s	Virus.Win32.Agent	5340	Yes	15.968 s	Hoax.Gen	5455	Yes	13.569 s
eHeur.Virus02	420	Yes	4.985 s	Akez. 11255	440	Yes	3.985 s	Akez.Win32.1	455	Yes	4.008 s
Weird.10240.C	430	Yes	3.929s	PEAKEZ.A	450	Yes	2.998 s	Virus.Weird.c	473	Yes	3.302 s
W95/Kuang	435	Yes	2.985 s	Radar01.Gen	465	Yes	4.005 s	Akez.Win32.5	490	Yes	3.958 s
Haharin.A	210	Yes	1.462 s	fsAutoB.F026	245	Yes	1.698 s	Haharin.dr	235	Yes	1.558 s
NGVCK1	329	Yes	0.933 s	NGVCK2	455	Yes	1.109 s	NGVCK3	2300	Yes	1.388 s
NGVCK4	550	Yes	1.149 s	NGVCK5	1555	Yes	1.825 s	NGVCK6	1698	Yes	1.689 s
NGVCK7	6902	Yes	14.524 s	NGVCK8	2355	Yes	4.254 s	NGVCK9	281	Yes	13.301 s
NGVCK10	2980	Yes	9.262 s	NGVCK11	5965	Yes	11.456s	NGVCK12	4529	Yes	10.094s
NGVCK13	2210	Yes	8.902 s	NGVCK14	5358	Yes	10.294 s	NGVCK15	970	Yes	1.912 s
NGVCK16	658	Yes	0.935 s	NGVCK17	913	Yes	1.392 s	NGVCK18	90	Yes	0.094 s
NGVCK19	1295	Yes	6.958 s	NGVCK20	4378	Yes	15.449 s	NGVCK21	31	Yes	0.097 s
NGVCK22	370	Yes	0.898s	NGVCK23	3955	Yes	9.498 s	NGVCK24	6924	Yes	11.983s
NGVCK25	8127	Yes	15.018s	NGVCK26	4970	Yes	9.982 s	NGVCK27	7989	Yes	13.197s
NGVCK28	227	Yes	0.098s	NGVCK29	960	Yes	0.692s	NGVCK30	89	Yes	0.088s
NGVCK31	550	Yes	0.875 s	NGVCK32	60	Yes	0.059s	NGVCK33	65	Yes	0.069s
NGVCK34	5990	Yes	9.848s	NGVCK35	4590	Yes	10.178s	NGVCK36	825	Yes	2.934 s

Table 3.7: Experimental Results (part 3)

S918．89	${ }^{\text {sa }}$ ，	もでもを	¢0гYD＾ŋn	s8660	${ }^{\text {s }}$ ，	9tI	поLYD＾〇n	s887\％ 0	${ }^{\text {s }} \mathrm{X}$ ，	98	
S697．0	${ }^{\text {s }}$ ，λ	± 02		slit＇t	${ }^{\text {sa }}$ 人	9 CL		${ }^{\text {st960 }}$	${ }^{\text {s }} \mathrm{X} \mathrm{X}$	¢68	00LYOム⿹N
segit	${ }^{\text {sa }}$ 入	891	66YO＾Юก	s6ze． 0	${ }^{\text {T，}}$	827	86YDム⿹弔	sflzig	${ }^{\text {s }} \mathrm{\lambda}$		L6YOMЮN
s96r．g	${ }^{\text {s }}$ ，	6679	96YDイゆN	St6z\％ 0	${ }^{\text {s }}$ 入	629］	¢6YOム号	s9tio	${ }^{\text {sp }}$ 入	OgL	モ6YOム号
stz0 0	${ }^{\text {s }}$ ，${ }^{\text {d }}$	86	¢6YОД⿹弔	${ }^{\text {sen }} 660$	${ }^{\text {sa }}$ 入	69	乙6YOム⿹勹	St00．0	${ }^{\text {s }} \mathrm{\lambda} \mathrm{X}$	07	L6YOムפN
sege Li	${ }^{\text {sa }}$ 入	¢78L7	06YO＾פ¢	s980\％${ }^{\text {\％}}$	${ }^{9} \mathrm{X}$ 人	089	68YOム号	${ }^{\text {s } 78988}$	${ }^{\text {s }} \mathrm{\lambda}$	97t9	88YOイЮn
stı9 ¢	${ }^{\text {s }}$ ，${ }^{\text {人 }}$	6762	28YO＾⿹N	SZLe 0	${ }^{\text {s }}$ ，	9702	98YO＾ضN	${ }^{\text {s } 077667}$	${ }^{\text {s }} \mathrm{\lambda}$	†7065	98YO＾פN
StIz \％	${ }^{\text {sa }}$ 入	e9ate	ゅ8YОム⿹弔	s9te00	${ }^{\text {s }} \mathrm{\lambda}$ ，	6928	๕8YOム⿹N	sc90＇0	${ }^{\text {sa }}$ ，	186\％	78YO\＠N
s972．${ }^{\text {\％}}$	${ }^{\mathrm{s}} \mathrm{\lambda} \mathrm{X}$	6869	L8YOムפN	sezz\％ 0	${ }^{\text {s }}$ ， X	968	L9YOム号	S861．0	${ }^{\text {s }} \mathrm{X}$	$\angle 2 L$	99YOイツN
S968\％78	${ }^{\text {s }} \mathrm{\lambda}$ 人	\＆Lzgt	08YOム⿹弔	s08600	${ }^{\text {s }} \mathrm{\lambda}$ 人	98Lt	6LYOム，	S860¢ ¢	${ }^{\text {s }} \mathrm{\lambda} \mathrm{X}$	897\＆8	8LYOムפN
s699．6	${ }^{\text {sa }}$ 入	8961	LLYDイゆN	s87toI	${ }^{5} \mathrm{~J}$ 人	0689	92YOム⿹N	s $2000^{\text {＇}}$	${ }^{59} \mathrm{X}$	06	¢LYDイЮN
S820 62	${ }^{\text {s }}$ ，	8206	๖¢YOムضn	szgo ${ }^{\text {I }}$	${ }^{\mathrm{s}} \mathrm{X}^{1}$	6 6 ¢	\＆LYOムضN	${ }^{\text {st6 }} 60$	${ }^{\text {sa }}$ 人	18	ఒLYOMЮN
SL964	${ }^{\text {sa }}$ 入	0もて¢	LLYO＾פN	S661＇ヶを	${ }^{\text {sa }}$ 入	0986	0นYOム⿹勹	s\％90＇8	${ }^{\text {s }}$ ，	$0 ¢$ ¢t	69YОムநn
s $700{ }^{\text {a }}$ I	${ }^{\text {s }}$ ，${ }^{\text {d }}$	89	99YO＾פN	s¢66．8	${ }^{\text {s }}$ ，	9989	¢9YOム⿹N	sL86＇I	${ }^{\text {s }} \mathrm{X}$ 人	\＆Ľ	
sz99\％	${ }^{\text {sa }}$ 入	8907	¢9YОлضn	s66761	${ }^{\text {s }}$ ，λ	8188	79YOム⿹N	S9L6＇もて	${ }^{59} \mathrm{X}$	0700	โ9YОム⿹弔
Sq70 88	${ }^{\text {s }}$ ，λ	7967	09YOム，	S669\％	${ }^{\text {a }}$ ，	818	6яYOム号	5899．8z	${ }^{\text {s }} \mathrm{\lambda}$	0796	89YOムפN
s 887^{\prime}＇88	${ }^{\text {sa }}$ 入	29978	ц¢YО＾פN	S68t＇gi	${ }^{\text {s }} \mathrm{\lambda}$ 人	8179	9¢YOムضN	S892．88	${ }^{\text {s }} \mathrm{X}$ 人	0zGzI	¢¢YO＾ضn
Sc68．LI	${ }^{\text {sax }}$ 入	8888	ゅ¢YOムضN	S680 0	${ }^{\text {sa }}$ 入	gI	๕¢YDム⿹N	${ }^{\text {s } 688.0}$	${ }^{\text {sa }}$ ，	0zs	乙¢YОムЮn
S¢87：89	${ }^{s}{ }^{1} \mathrm{X}$	01868	โ¢YO＾ضn	S69661	${ }^{\text {sa }}$ ，	0188	0¢YOム的	sc6ecgz	${ }^{\text {s }} \mathrm{X}$ ，	0z¢zI	
S969 ${ }^{\text {¢ ¢ }}$	${ }^{\text {sa }}$ 入	0186		S896．${ }^{\text {\％}}$	${ }^{\text {s }} \mathrm{\lambda}$ 人	¢¢8		S886．0	${ }^{\text {s }}$ ，	078	9๖ทОл⿹弔
sc69＇tI	${ }^{\text {s }}$ ，${ }^{\text {a }}$	0676		s900＇li	${ }^{\text {s }}$ ，${ }^{\text {d }}$	ctzg	モบロム号	${ }^{5} 086 \cdot \square$	$\mathrm{s}^{\text {g }}$ 人	0789	๕ษทОлЮл
S¢80 ¢ ${ }^{\text {c }}$	${ }^{\text {sa }}$ ，	0678	ชセบอ八⿹弔	St02\％	${ }^{9} \mathrm{X}$ 人	O96	亡ับロムソn	${ }^{\text {stz6 }} 0$	${ }^{59} \mathrm{X}$	07	0ヵYOム号
S850．I	${ }^{\text {sa }} \mathrm{\lambda}$	968	6\＆YOム，	s¢60＇${ }^{\text {I }}$	${ }^{\text {sa }} \mathrm{\lambda}$	OgI	8\＆YOム，	s866．0	${ }^{\text {s }} \mathrm{\lambda}$ ，	08	L\＆YOムפN
7500	7 nsay $^{\text {n }}$	วZIS	ग¢¢uexG	7800	$7\left[\mathrm{~ns}\right.$ ¢ ${ }^{\text {c }}$	əZIS	ә才duexat	7500	7nnsay	2z！S	गृduexg

4

CTL Model-Checking of Self-modifying Code

In this chapter, we reduce the CTL model-checking problem of self-modifying code to the emptiness problem of Self-Modifying Alternating Büchi Pushdown Systems (SM-ABPDSs).

4.1 CTL Model-Checking of SM-PDSs

4.1.1 The Computation Tree Logic CTL

Let $A t$ be a finite set of atomic propositions. CTL formulas over $A t$ are defined as follows (where $A \in A t$):
$\varphi::=A|\neg A| \varphi \vee \varphi|\varphi \wedge \varphi| A X \varphi|E X \varphi| A[\varphi U \varphi]|E[\varphi U \varphi]| A[\varphi \widetilde{U} \varphi] \mid E[\varphi \widetilde{U} \varphi]$.
Given a CTL formula φ, the closure $\operatorname{cl}(\varphi)$ is the set of all the subformulae of φ, including φ. Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a SM-PDS, $\nu: P \rightarrow 2^{A t}$ be a labelling function mapping to each control location $p \in P$ a set of atomic propositions. The satisfiability relation of a CTL formula φ at a configuration $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)$ (denoted by $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \varphi$) is defined as follows:

- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} A$ iff $A \in \nu\left(p_{0}\right)$,
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \neg A$ iff $A \notin \nu\left(p_{0}\right)$,
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \varphi_{1} \vee \varphi_{2}$ iff $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \varphi_{1}$ or $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \varphi_{2}$,
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \varphi_{1} \wedge \varphi_{2}$ iff $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \varphi_{1}$ and $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} \varphi_{2}$,

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} A X \varphi$ iff $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \models_{\nu} \varphi$ for every successor $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right)$ of $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)$,
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} E X \varphi$ iff $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \models_{\nu} \varphi$ for some successor $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right)$ of $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)$,
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} A\left[\varphi_{1} U \varphi_{2}\right]$ iff for every path $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \cdots$ of \mathcal{P} starting from $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right), \exists i \geq 0$ s.t. $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \varphi_{2}$ and $\forall 0 \leq j<i,\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \models_{\nu}$ φ_{1}.
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} E\left[\varphi_{1} U \varphi_{2}\right]$ iff there exists a path $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \cdots$ of \mathcal{P} starting from $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right), \exists i \geq 0$ s.t. $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \varphi_{2}, \forall 0 \leq j<i,\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \models_{\nu}$ φ_{1}.
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} A\left[\varphi_{1} \widetilde{U} \varphi_{2}\right]$ iff for every path $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \cdots$ of \mathcal{P} starting from $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right), \forall i \geq 0$, if $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \nvdash_{\nu} \varphi_{2}$, then $\exists 0 \leq j<i,\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \models_{\nu}$ φ_{1}.
- $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right) \models_{\nu} E\left[\varphi_{1} \widetilde{U} \varphi_{2}\right]$ iff \exists a path $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \cdots$ of \mathcal{P} starting with $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)$, s.t. $\forall i \geq 0$, if $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \nvdash_{\nu} \varphi_{2}$, then $\exists 0 \leq j<i,\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \models_{\nu}$ φ_{1}.
Standard CTL operators can be expressed by the above operators: $\operatorname{EF} \psi=$ $\mathbf{E}[\operatorname{true} \mathbf{U} \psi], \mathbf{A F} \psi=\mathbf{A}[\operatorname{true} \mathbf{U} \psi], \mathbf{E G} \psi=\mathbf{E}[$ false $\widetilde{U} \psi], \mathbf{A G} \psi=\mathbf{A}[$ false $\widetilde{U} \psi]$.

4.1.2 Self-modifying Alternating Büchi Pushdown Systems

Definition 9 A Self Modifying Alternating Büchi Pushdown System (SM-ABPDS) is a tuple $\mathcal{B P}=\left(P, \Gamma, \Delta, \Delta_{c}, F\right)$, where P is a finite set of control points, Γ is a finite set of stack symbols, F is the set of final states, $\Delta \subseteq(P \times \Gamma) \times$ $2^{2^{\Delta \cup \Delta_{c} \cup\{-\}}} \times 2^{P \times \Gamma^{*}}$ is a finite set of transition rules in the form $\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}$ $\left\{\left\langle p_{1}, w_{1}\right\rangle, \cdots,\left\langle p_{n}, w_{n}\right\rangle\right\}$ where $\left[\sigma_{1}, \cdots, \sigma_{n}\right]$ is an ordered set and $\forall 1 \leq i \leq n, \sigma_{i}$ is either a set of rules $\sigma_{i} \subseteq \Delta \cup \Delta_{c}$ or $\sigma_{i}=-$, and $\Delta_{c} \subseteq P \times 2^{\Delta U \Delta_{c}} \times 2^{\Delta U \Delta_{c}} \times P$ is a finite set of modifying transition rules in the form $p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime}$ where $\sigma, \sigma^{\prime} \subseteq \Delta \cup \Delta_{c}$. A configuration of a SM-ABPDS is a tuple of the form $(\langle p, w\rangle, \theta)$ where $p \in P$, $w \in \Gamma^{*}$ and $\theta \subseteq \Delta \cup \Delta_{c}$ is the current phase.
$\mathcal{B P}$ defines the transition relation $\Rightarrow_{\mathcal{B} \mathcal{P}} \subseteq\left(P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right) \times 2^{\left(P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)}$ between configurations as follows: Let $\theta \subseteq \Delta \cup \Delta_{c}, \gamma \in \Gamma, w \in \Gamma^{*}$, and $p \in P$, then:

1. If $r:\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{m}\right]}\left\{\left\langle p_{1}, w_{1}\right\rangle, \cdots,\left\langle p_{m}, w_{m}\right\rangle\right\}$ is a rule in $\Delta \cap \theta$, if either for every $1 \leq i \leq m, \sigma_{i}=-$ or $\exists 1 \leq i \leq m, \sigma_{i} \cap \theta \neq \emptyset$, then $(\langle p, \gamma w\rangle, \theta) \Rightarrow_{\mathcal{B P}}$ $\left\{\left(\left\langle p_{i}, w_{i} w\right\rangle, \theta\right) \mid \sigma_{i}=-, 1 \leq i \leq m\right\} \cup\left\{\left(\left\langle p_{i}, w_{i} w\right\rangle, \theta\right) \mid \sigma_{i} \cap \theta \neq \emptyset, 1 \leq i \leq m\right\}$.
2. If $r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime}$ is a rule in $\Delta_{c} \cap \theta$, then $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle p^{\prime}, w\right\rangle, \theta^{\prime}\right)\right\}, \theta^{\prime}=$ $\theta \backslash \sigma \cup \sigma^{\prime}$.

Intuitively, $\left[\sigma_{1}, \cdots, \sigma_{m}\right]$ in the transition $r:\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{m}\right]}\left\{\left\langle p_{1}, w_{1}\right\rangle, \cdots,\left\langle p_{m}, w_{m}\right\rangle\right\}$ ensures that for a given configuration $(\langle p, \gamma w\rangle, \theta)$, for every $1 \leq i \leq n,\left(\left\langle p_{i}, w_{i} w\right\rangle, \theta\right)$ is in the set of immediate successor iff

- either for every $1 \leq j \leq n, \sigma_{j}=$-;
- or $\sigma_{i}=-$ and $\exists j \neq i, 1 \leq j \leq n$ s.t. $\sigma_{j} \cap \theta \neq \emptyset$
- or $\sigma_{i} \cap \theta \neq \emptyset$

Note that - means that there is no constraint on whether θ contains a rule in σ_{i} or not.

For every $c \in P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$ and $C \subseteq P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$, if $c \Rightarrow{ }_{\mathcal{B} \mathcal{P}} C$ then c is an immediate predecessor of C and C is an immediate successor of c. Let $\Rightarrow{ }_{\mathcal{B} \mathcal{P}}^{*} \subseteq\left(P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right) \times 2^{\left(P \times \Gamma^{*} \times 2^{\Delta U \Delta_{c}}\right)}$ be the reflexive transitive closure of $\Rightarrow_{\mathcal{B P}}$ defined as follows: (1) $\forall c \in P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}, c \Rightarrow_{\mathcal{B} \mathcal{P}}^{*}\{c\}$, (2) if $c \Rightarrow_{\mathcal{B P}}$ C, then $c \Rightarrow_{\mathcal{B} \mathcal{P}}^{*} C$, and (3) if $c \Rightarrow_{\mathcal{B P}}\left\{c_{1}, \ldots c_{n}\right\}$ and $c_{i} \Rightarrow_{\mathcal{B} \mathcal{P}}^{*} C_{i}$ for every $1 \leq$ $i \leq n$, then $c \Rightarrow_{\mathcal{B} \mathcal{P}}^{*} \bigcup_{i=1}^{n} C_{i}$. Given a set of configurations C, we define the sets $\operatorname{pre}_{\mathcal{B P}}(C), \operatorname{pre}_{\mathcal{B} \mathcal{P}}^{*}(C)$ and $\operatorname{pre}_{\mathcal{B} \mathcal{P}}^{+}(C)$ as follows: $\operatorname{pre}_{\mathcal{B} \mathcal{P}}(C)=\left\{c \in P \times \Gamma^{*} \times\right.$ $2^{\Delta \cup \Delta_{c}} \mid \exists C^{\prime} \subseteq C$ s.t. C^{\prime} is an immediate successor of $\left.c\right\}, \operatorname{pre}_{\mathcal{B} \mathcal{P}}^{*}(C)=\{c \in P \times$ $\Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}, \exists C^{\prime} \subseteq C$ s.t. $\left.c \Rightarrow_{\mathcal{B} \mathcal{P}}^{*} C^{\prime}\right\}$ and $\operatorname{pre}_{\mathcal{B} \mathcal{P}}^{+}(C)=\operatorname{pre}_{\mathcal{B} \mathcal{P}} \circ \operatorname{pre}_{\mathcal{B} \mathcal{P}}^{*}(C)$. We omit the subscript $\mathcal{B P}$ when it is clear from the context.

A run ρ of $\mathcal{B P}$ starting from an initial configuration c_{0} is a tree whose root is labelled by c_{0} and whose other nodes are labelled by configurations of $P \times$ $\Gamma^{*} \times 2^{\Delta \times \Delta_{c}}$. A node of ρ labelled by configuration c has n children labelled by c_{1}, \ldots, c_{n}, respectively, iff $c \Rightarrow_{\mathcal{B} \mathcal{P}}\left\{c_{1}, \ldots c_{n}\right\}$. A path $c_{0} c_{1} \cdots$ of a run ρ is an infinite sequence of configurations s.t. c_{0} is the root of ρ and c_{i+1} is one child of c_{i}. A path is accepting iff it visits some configurations with control locations in F infinitely often. A run is accepting iff all its paths are accepting. A configuration c is accepted by $\mathcal{B P}$ iff it is the root of a run accepted by $\mathcal{B P}$. The language of $\mathcal{B} \mathcal{P}, L(\mathcal{B P})$, is the set of configurations accepted by $\mathcal{B P}$.

We assume w.l.o.g. that for every rule in Δ_{c} of the form $r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime}, r \notin \sigma$.

Representing potentially infinite sets of configurations of SM-ABPDSs.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Alternating Multi-Automata (AMA) were introduced in [6] to finitely represent regular sets of configurations of an alternating PDS. In order to adapt AMA to represent regular sets of SM-ABPDS, we extend this notion taking phases into account as follows:

Definition 10 Let $\mathcal{B P}=\left(P, \Gamma, \Delta, \Delta_{c}, F\right)$ be a $S M-A B P D S$. An Extended Alternating Multi-Automaton (EAMA) is a tuple $\mathcal{A}=\left(Q, \Gamma, T, I, Q_{F}\right)$ where $I \subseteq$ $P \times 2^{\Delta \cup \Delta_{c}} \subseteq Q$ is the set of initial states, $T \subseteq Q \times(\Gamma \cup\{\epsilon\}) \times 2^{Q}$ is the set of transitions, $Q_{F} \subseteq Q$ is a finite set of final states.

Let \rightarrow_{T} be the transition relation defined as follows: (1) $\forall q \in Q, q \rightarrow_{T}\{q\}$ where ϵ is the empty word; (2) if $\left(q, \gamma,\left\{q_{1}, \cdots, q_{n}\right\}\right) \in T, q \xrightarrow{\gamma}_{T}\left\{q_{1}, \cdots, q_{n}\right\}$; and (3) if $q \xrightarrow{\gamma}_{T}\left\{q_{1}, \cdots, q_{n}\right\}$ and $q_{i}{ }^{w}{ }_{T} Q_{i}$ for every $1 \leq i \leq n$, then $q \xrightarrow{\gamma w} \bigcup_{i=1}^{n} Q_{i}$.

A configuration $(\langle p, w\rangle, \theta)$ is accepted by the EAMA \mathcal{A} iff $(p, \theta) \in I$ and $\exists Q^{\prime} \subseteq$ Q_{F} such that $(p, \theta) \xrightarrow{w}_{T} Q^{\prime}$. Let $L(\mathcal{A})$ be the set of configurations accepted by \mathcal{A}. Let \mathcal{C} be a set of configurations of the SM-ABPDS $\mathcal{B P} . \mathcal{C}$ is regular if there exists an EAMA \mathcal{A} such that $\mathcal{C}=L(\mathcal{A})$.

4.1.3 From CTL Model-Checking of SM-PDSs to the emptiness problem of SM-ABPDSs

Let $\mathcal{P}=\left(P, \Gamma, \Delta, \Delta_{c}\right)$ be a Self Modifying Pushdown System with an initial configuration $c_{0}=\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)$. We suppose w.l.o.g. that \mathcal{P} has a bottom stack symbol $\sharp \in \Gamma$ that is never popped from the stack i.e. there is no transition rule of the from $\langle p, \sharp\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$. Given a set of atomic propositions $A t$, let $\nu: P \rightarrow 2^{A t}$ be a labeling function that associates each control location to a set of atomic propositions. Let φ be a CTL formula over At. Our goal is to check whether $c_{0} \models_{\nu} \varphi$. This can be done by translating the SM-PDS into an equivalent PDS as described in Chapter 2, and then applying the standard CTL model-checking algorithm for PDSs [40]. However, as will be shown in the experiments section (Section 4.3), this approach is not efficient. Thus, we need a direct algorithm that operates directly on the SM-PDS without translating it into a PDS. We provide in this section a direct algorithm that performs CTL model-checking on SM-PDSs. To this aim, we will compute a kind of product of the SM-PDS with φ : we construct a Self Modifying Alternating Büchi Pushdown

System $\mathcal{B} \mathcal{P}_{\varphi}$ s.t. $\mathcal{B} \mathcal{P}_{\varphi}$ accepts a configuration c iff $c \models_{\nu} \varphi$. Thus, determining whether $c_{0} \models_{\nu} \varphi$ can be reduced to checking whether $c_{0} \in L\left(\mathcal{B P} \mathcal{P}_{\varphi}\right)$.

Let $\mathcal{B} \mathcal{P}_{\varphi}=\left(P^{\prime}, \Gamma, \Delta^{\prime}, \Delta_{c}^{\prime}, F\right)$ be the SM-ABPDS defined as follows: $P^{\prime}=$ $P \times \operatorname{cl}(\varphi) \cup P^{c l(\varphi)}$, where $P^{c l(\varphi)}$ is the set of control locations in the form p^{ψ} where $p \in P$ and $\psi \in \operatorname{cl}(\varphi), F=\{[p, a] \mid a \in \operatorname{cl}(\varphi) \cap A t$ and $a \in \nu(p)\} \cup\{[p, \neg a] \mid \neg a \in$ $c l(\varphi), a \in A t$ and $a \notin \nu(p)\} \cup P \times c l_{\widetilde{U}}(\varphi)$ where $c l_{\widetilde{U}}(\varphi)$ is the set of formulae of $c l(\varphi)$ in the form $E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$ or $A\left[\psi_{1} \widetilde{U} \psi_{2}\right]$. In what follows, to compute Δ^{\prime} and Δ_{c}^{\prime}, every rule $r \in \Delta \cup \Delta_{c}$ leads to a set of rules $\left\{r_{1}^{\prime}, \cdots, r_{n}^{\prime}\right\}$ of $\Delta^{\prime} \cup \Delta_{c}^{\prime}$, we call this set of rules $\operatorname{prod}(r)$. Moreover, let $\operatorname{prod}_{E}(r) \subseteq \operatorname{prod}(r)$ be the set of rules generated from r using subformulas of the form $E X \psi_{1}, E\left[\psi_{1} U \psi_{2}\right]$ or $E\left[\psi_{1} \widetilde{U} \psi_{2}\right]($ see below for more details about $\operatorname{prod}(r)$ and $\left.\operatorname{prod}_{E}(r)\right)$.

The transition relations Δ^{\prime} and Δ_{c}^{\prime} (resp. the sets $\operatorname{prod}(r)$ and $\operatorname{prod}_{E}(r)$, for every $r \in \Delta \cup \Delta_{c}$) are the smallest sets of transitions (resp. of sets of rules) defined as follows: Initially, $\Delta^{\prime}=\Delta_{c}^{\prime}=\emptyset, \operatorname{prod}_{E}(r)=\emptyset$ and $\operatorname{prod}(r)=\emptyset, \forall$ $r \in \Delta \cup \Delta_{c} . \forall p \in P, \forall \psi \in c l(\varphi)$ and $\forall \gamma \in \Gamma$, we have:

1. if $\psi=a, a \in A t$ and $a \in \nu(p) ;\langle[p, a], \gamma\rangle \xrightarrow{[-]}\langle[p, a], \gamma\rangle \in \Delta^{\prime}$
2. if $\psi=\neg a, a \in A t$ and $a \notin \nu(p) ;\langle[p, \psi], \gamma\rangle \xrightarrow{[-]}\langle[p, \psi], \gamma\rangle \in \Delta^{\prime}$
3. if $\psi=\psi_{1} \vee \psi_{2} ;\langle[p, \psi], \gamma\rangle \stackrel{[-]}{\hookrightarrow}\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle \in \Delta^{\prime}$ and $\langle[p, \psi], \gamma\rangle \stackrel{[-]}{\longrightarrow}\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle \in \Delta^{\prime}$
4. if $\psi=\psi_{1} \wedge \psi_{2} ;\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle,\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle\right\} \in \Delta^{\prime}$
5. if $\psi=E X \psi_{1}$, then:
(a) if $p \in P_{N}$, for every $R=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta, R^{\prime}=\langle[p, \psi], \gamma\rangle \stackrel{[-]}{\longrightarrow}$ $\left\langle\left[p^{\prime}, \psi_{1}\right], w\right\rangle \in \Delta^{\prime}, R^{\prime} \in \operatorname{prod}_{E}(R)$ and $R^{\prime} \in \operatorname{prod}(R)\left(R^{\prime} \in \operatorname{prod}(R)\right.$ means that R^{\prime} is generated from R and $R^{\prime} \in \operatorname{prod}_{E}(R)$ means that R^{\prime} is generated from R using a formula of the form $E X \psi_{1}, E\left[\psi_{1} U \psi_{2}\right]$ or $E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$.)
(b) if $p \in P_{C}$, for every $R=p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}, R^{\prime}=[p, \psi] \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p^{\prime}, \psi_{1}\right] \in \Delta_{c}^{\prime}$ where $\sigma=\operatorname{prod}\left(r_{1}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{2}\right), R^{\prime} \in \operatorname{prod}_{E}(R)$ and $R^{\prime} \in \operatorname{prod}(R)$
6. if $\psi=A X \psi_{1}$, then:
(a) if $p \in P_{N}$, let $\left\{R_{1}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w_{1}\right\rangle, \cdots, R_{n}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{n}, w_{n}\right\rangle\right\}$ be the set of all the rules of Δ that have $\langle p, \gamma\rangle$ in the left-hand-side. Then, $R^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \cdots,\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle\right\} \in \Delta^{\prime}$, where for every $1 \leq i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$ and $R^{\prime} \in \operatorname{prod}\left(R_{i}\right)$.
(b) if $p \in P_{C}$, let $\left\{R_{1}=p \stackrel{\left(r_{1}, r_{1}^{\prime}\right)}{\longrightarrow} p_{1}, \cdots, R_{n}=p \stackrel{\left(r_{n}, r_{n}^{\prime}\right)}{\longrightarrow} p_{n}\right\}$ be the set of all the rules of Δ_{c} that have p in the left-hand-side. Then, for every $\gamma \in \Gamma$, $R_{\perp}^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle p_{1}^{\psi}, \gamma\right\rangle, \cdots,\left\langle p_{n}^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$ and for every $1 \leq i \leq$ $n, R_{i}^{\prime}: p_{i}^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p_{i}, \psi_{1}\right] \in \Delta_{c}^{\prime}$, where for every $1 \leq i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$, $\sigma=\operatorname{prod}\left(r_{i}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{i}^{\prime}\right)$, and for every $1 \leq i \leq n, R_{\perp}^{\prime}, R^{\prime} \in \operatorname{prod}\left(R_{i}\right)$.
7. if $\psi=E\left[\psi_{1} U \psi_{2}\right]$, then $\langle[p, \psi], \gamma\rangle \xrightarrow{[-]}\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle \in \Delta^{\prime}$ and:
(a) if $p \in P_{N}$, for every $R=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$,
$R^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle,\left\langle\left[p^{\prime}, \psi\right], w\right\rangle\right\} \in \Delta^{\prime}, R^{\prime} \in \operatorname{prod}_{E}(R)$ and $R^{\prime} \in \operatorname{prod}(R)$.
(b) if $p \in P_{C}$, for every $R=p \xrightarrow{\left(r_{1}, r_{1}^{\prime}\right)} p^{\prime} \in \Delta_{c}$, then for every $\gamma \in \Gamma, R_{\perp}^{\prime}=$ $\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle,\left\langle p^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$ and $p^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p^{\prime}, \psi\right] \in \Delta_{c}^{\prime}$ where $\sigma=\operatorname{prod}\left(r_{1}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{1}^{\prime}\right), R_{\perp}^{\prime}, R^{\prime} \in \operatorname{prod}_{E}(R)$ and $R_{\perp}^{\prime}, R^{\prime} \in \operatorname{prod}(R)$.
8. if $\psi=A\left[\psi_{1} U \psi_{2}\right]$, then $\langle[p, \psi], \gamma\rangle \xrightarrow{[-]}\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle \in \Delta^{\prime}$, and:
(a) if $p \in P_{N}$, let $\left\{R_{1}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w_{1}\right\rangle, \cdots, R_{n}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{n}, w_{n}\right\rangle\right\}$ be the set of all the rules of Δ that have $\langle p, \gamma\rangle$ in the left-hand-side. Then, $R^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[-, \sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle,\left\langle\left[p_{1}, \psi\right], w_{1}\right\rangle, \cdots,\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle\right\} \in \Delta^{\prime}$ where for every $1 \leq i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$, and $R^{\prime} \in \operatorname{prod}\left(R_{i}\right)$.
(b) if $p \in P_{C}$, let $\left\{R_{1}=p \stackrel{\left(r_{1}, r_{1}^{\prime}\right)}{\longrightarrow} p_{1}, \cdots, R_{n}=p \stackrel{\left(r_{n}, r_{n}^{\prime}\right)}{\longrightarrow} p_{n}\right\}$ be the set of all the rules of Δ_{c} that have p in the left-hand-side. Then, $\forall 1 \leq i \leq n$, for every $\gamma \in \Gamma, R_{\perp}:\langle[p, \psi], \gamma\rangle \xrightarrow{\left[-, \sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle,\left\langle p_{1}^{\psi}, \gamma\right\rangle, \cdots,\left\langle p_{n}^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$ and $R_{i}^{\prime}: p_{i}^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p_{i}, \psi\right] \in \Delta_{c}^{\prime}$ where for every $1 \leq i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$, $\sigma=\operatorname{prod}\left(r_{i}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{i}^{\prime}\right)$ and $R_{\perp}, R_{i}^{\prime} \in \operatorname{prod}\left(R_{i}\right)$.
9. if $\psi=E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$, then $\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle\right\} \in \Delta^{\prime}$ and:
(a) if $p \in P_{N}$, then for every $R=\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$, $R^{\prime}=\langle[p, \psi], \gamma\rangle \quad \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle\left[p^{\prime}, \psi\right], w\right\rangle\right\} \in \Delta^{\prime}, R^{\prime} \in \operatorname{prod}_{E}(R)$ and $R^{\prime} \in \operatorname{prod}(R)$.
(b) if $p \in P_{C}$, then for every $R=p \xrightarrow{\left(r_{1}, r_{1}^{\prime}\right)} p^{\prime} \in \Delta_{c}$, for every $\gamma \in \Gamma, R_{\perp}=$ $\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle p^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$ and $R^{\prime}: p^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p^{\prime}, \psi\right] \in$ Δ_{c}^{\prime} where $\sigma=\operatorname{prod}\left(r_{1}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{1}^{\prime}\right), R_{\perp}, R^{\prime} \in \operatorname{prod}_{E}(R)$ and $R_{\perp}, R^{\prime} \in$ $\operatorname{prod}(R)$.
10. if $\psi=A\left[\psi_{1} \widetilde{U} \psi_{2}\right]$, then $\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle\right\} \in \Delta^{\prime}$, and:
(a) if $p \in P_{N}$, let $\left\{R_{1}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w_{1}\right\rangle, \cdots, R_{n}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{n}, w_{n}\right\rangle\right\}$ be the set of all the rules of Δ that have $\langle p, \gamma\rangle$ in the left-hand-side. Then for every $1 \leq i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right), R^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[-, \sigma_{1}, \cdots, \sigma_{n}\right]}$ $\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle\left[p_{1}, \psi\right], w_{1}\right\rangle, \cdots,\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle\right\} \in \Delta^{\prime}$ and $R^{\prime} \in \operatorname{prod}\left(R_{i}\right)$.
(b) if $p \in P_{C}$, let $\left\{R_{1}=p \stackrel{\left(r_{1}, r_{1}^{\prime}\right)}{\longrightarrow} p_{1}, \cdots, R_{n}=p \stackrel{\left(r_{n}, r_{n}^{\prime}\right)}{\longrightarrow} p_{n}\right\}$ be the set of all the rules of Δ_{c} that have p in the left-hand-side. Then, for every $\gamma \in$ $\Gamma, R_{\perp}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[-, \sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle p_{1}^{\psi}, \gamma\right\rangle, \cdots,\left\langle p_{n}^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}, \forall 1 \leq$ $i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$ and for every $1 \leq i \leq n, R_{i}^{\prime}: p_{i}^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p_{i}, \psi\right] \in \Delta_{c}^{\prime}$ where $\sigma=\operatorname{prod}\left(r_{i}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{i}^{\prime}\right)$ and $R_{\perp}, R_{i}^{\prime} \in \operatorname{prod}\left(R_{i}\right)$.

Let $\operatorname{prod}(\Delta)=\left\{r^{\prime} \in \Delta^{\prime} \mid \exists r \in \Delta, r^{\prime} \in \operatorname{prod}(r)\right\}$ be the set of rules of Δ^{\prime} that are generated from Δ. Let $\delta=\Delta^{\prime} \backslash \operatorname{prod}(\Delta)$ be the set of rules of Δ^{\prime} that are not generated from any rule of Δ nor Δ_{c} (e.g., the rules computed by items $1,2,3$ and 4 are in δ). These rules δ are independent of Δ and Δ_{c}. They are introduced by the structure of φ. Thus, they need to be present in all the phases of $\mathcal{B} \mathcal{P}_{\varphi}$. Let then $\theta \subseteq \Delta \cup \Delta_{c}$ be a phase of \mathcal{P}. Its corresponding phase in $\mathcal{B} \mathcal{P}_{\varphi}$ is $\beta(\theta)=\operatorname{prod}(\theta) \cup \delta$, where $\operatorname{prod}(\theta)=\left\{r^{\prime} \in \Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta, r^{\prime} \in \operatorname{prod}(r)\right\}$.

Let us explain the above construction intuitively. The above automaton $\mathcal{B} \mathcal{P}_{\varphi}$ can be seen as a kind of product of the SM-PDS \mathcal{P} with the formula φ. For $\psi \in \operatorname{cl}(\varphi),(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff $\mathcal{B} \mathcal{P}_{\varphi}$ accepts a configuration $(\langle[p, \psi], w\rangle, \beta(\theta))$. We give in what follows the intuition behind all the items above:

If $\psi=a \in A t$, then $\forall w \in \Gamma^{*}, \theta \subseteq \Delta \cup \Delta_{c},(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff $a \in \nu(p)$. Hence, the automaton $\mathcal{B} \mathcal{P}_{\varphi}$ should accept a run starting from $(\langle[p, a], w\rangle, \beta(\theta))$ iff $a \in \nu(p) .[p, a] \in F$ iff $a \in \nu(p)$. Thus, the loop added in $(\langle[p, a], w\rangle, \beta(\theta))$ by Item 1 makes sure that $\mathcal{B} \mathcal{P}_{\varphi}$ accepts this run.

If $\psi=\neg a$, then $\forall w \in \Gamma^{*}, \theta \subseteq \Delta \cup \Delta_{c},(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff $a \notin \nu(p)$. Hence, the automaton $\mathcal{B} \mathcal{P}_{\varphi}$ should accept a run starting from $(\langle[p, \neg a], w\rangle, \beta(\theta))$ iff $a \notin \nu(p)$. $[p, \neg a] \in F$ iff $a \notin \nu(p)$. Thus, the loop in $(\langle[p, \neg a], w\rangle, \beta(\theta))$ added by Item 2 ensures that $\mathcal{B} \mathcal{P}_{\varphi}$ accepts this run.

If $\psi=\psi_{1} \vee \psi_{2}$, then $\forall w \in \Gamma^{*}, \theta \subseteq \Delta \cup \Delta_{c},(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff $\left((\langle p, w\rangle, \theta) \models_{\nu}\right.$ ψ_{1} or $\left.(\langle p, w\rangle, \theta) \models_{\nu} \psi_{2}\right)$. Thus, $\mathcal{B} \mathcal{P}_{\varphi}$ accepts a run starting from $\left(\left\langle\left[p, \psi_{1} \vee\right.\right.\right.$ $\left.\left.\left.\psi_{2}\right], w\right\rangle, \beta(\theta)\right)$ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run starting from $\left(\left\langle\left[p, \psi_{1}\right], w\right\rangle, \beta(\theta)\right)$ or $\left(\left\langle\left[p, \psi_{2}\right], w\right\rangle, \beta(\theta)\right)$. This is ensured by Item 3. Item 4 is similar to Item 3, it

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

handles the case $\psi=\psi_{1} \wedge \psi_{2}$ where $(\langle p, w\rangle, \theta)$ satisfies ψ iff it satisfies both ψ_{1} and ψ_{2}.

If $\psi=E X \psi_{1}$, then $\forall w \in \Gamma^{*}, \theta \subseteq \Delta \cup \Delta_{c},(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff an immediate successor $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$ of $(\langle p, w\rangle, \theta)$ satisfies ψ_{1}. Thus, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$ iff it can accept a run from $\left(\left\langle\left[p^{\prime}, \psi_{1}\right], w^{\prime}\right\rangle, \beta\left(\theta^{\prime}\right)\right)$. There are two cases depending on whether $p \in P_{N}$ or $p \in P_{c}$, because the form of the rules of the SM-PDS depends on whether $p \in P_{N}$ or $p \in P_{c}$: if $p \in P_{N}$, then necessarily, the rules that can be applied from p are of the form $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$, whereas if $p \in P_{c}$, then necessarily, the rules that can be applied from p are of the form $r: p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c}$. Thus, if $p \in P_{N}$, then $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], \gamma u\rangle, \beta(\theta))$ iff there exists a rule $\langle p, \gamma\rangle \hookrightarrow\left\langle p^{\prime}, w\right\rangle \in \Delta$ such that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p^{\prime}, \psi_{1}\right], w u\right\rangle, \beta(\theta)\right)$. This is ensured by Item $5(\mathrm{a})$. If $p \in P_{c}$, then $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], \gamma u\rangle, \beta(\theta))$ iff there exists a rule $r: p \xrightarrow{\left(r_{1}, r_{2}\right)} p^{\prime} \in \Delta_{c} \cap \theta$ such that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p^{\prime}, \psi_{1}\right], \gamma u\right\rangle, \beta\left(\theta^{\prime}\right)\right)$, where $\theta^{\prime}=\left(\theta \backslash\left\{r_{1}\right\}\right) \cup\left\{r_{2}\right\}$. This is ensured by Item $5(\mathrm{~b})$.

If $\psi=A X \psi_{1}$, then $\forall w \in \Gamma^{*}, \theta \subseteq \Delta \cup \Delta_{c},(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff every immediate successor $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$ of $(\langle p, w\rangle, \theta)$ satisfies ψ_{1}. Thus, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$ iff it can accept a run from all its immediate successors $\left(\left\langle\left[p^{\prime}, \psi_{1}\right], w^{\prime}\right\rangle, \beta\left(\theta^{\prime}\right)\right)$. As previously, there are two cases depending on whether $p \in P_{N}$ or $p \in P_{c}$: if $p \in P_{N}$, let $\gamma \in \Gamma$ and $u \in \Gamma^{*}$ such that $w=\gamma u$. Let then $\left\{\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w_{1}\right\rangle, \cdots,\langle p, \gamma\rangle \hookrightarrow\left\langle p_{m}, w_{m}\right\rangle\right\}$ be the set of all the rules of $\Delta \cap \theta$ that have $\langle p, \gamma\rangle$ in the left-hand-side. Then, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], \gamma u\rangle, \beta(\theta))$ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from every $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i} u\right\rangle, \beta(\theta)\right)$, $1 \leq i \leq m$. This is ensured by Item 6(a). Note that Item 6(a) considers all the rules $R_{i}:\langle p, \gamma\rangle \hookrightarrow\left\langle p_{i}, w_{i}\right\rangle$ that are in Δ (even those that are not in θ), then the constraints $\left[\sigma_{1}, \cdots, \sigma_{n}\right.$] of the rule R^{\prime} of Item 6(a) ensures that only the R_{i} 's that are in θ are applied. Note also that in $R^{\prime}, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$ ensures that $\sigma_{i} \cap \beta(\theta) \neq \emptyset$ iff $R_{i} \cap \theta \neq \emptyset$. Here taking $\sigma_{i}=\operatorname{prod}\left(R_{i}\right)$ is not correct because $R^{\prime} \in \operatorname{prod}\left(R_{i}\right)$ and so in this case, $\sigma_{i} \cap \beta(\theta)$ would always be nonempty. On the other hand, if $p \in P_{c}$, let $\left\{p \xrightarrow{\left(r_{1}, r_{1}^{\prime}\right)} p_{1}, \cdots, p \xrightarrow{\left(r_{m}, r_{m}^{\prime}\right)} p_{m}\right\}$ be the set of all the rules of $\Delta_{c} \cap \theta$ that have p in the left-hand-side. Then $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], \gamma u\rangle, \beta(\theta))$ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{1}\right], \gamma u\right\rangle, \beta\left(\theta_{i}\right)\right)$, for every $1 \leq i \leq m$, where $\theta_{i}=\left(\theta \backslash\left\{r_{i}\right\}\right) \cup\left\{r_{i}{ }^{\prime}\right\}$. This is ensured by Item 6 (b). As previously, Item 6(b) considers all the rules $R_{i}: p \stackrel{\left(r_{i}, r_{i}^{\prime}\right)}{\longrightarrow} p_{i}$ that
are in Δ_{c} (even those that are not in θ), then the constraints $\left[\sigma_{1}, \cdots, \sigma_{n}\right]$ of the rule $R_{\perp}^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle p_{1}^{\psi}, \gamma\right\rangle, \cdots,\left\langle p_{n}^{\psi}, \gamma\right\rangle\right\}$ of Item 6(b) ensures that only the R_{i} 's that are in θ are applied. Then $R_{i}^{\prime}: p_{i}^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p_{i}, \psi_{1}\right]$ ensures $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle p_{i}^{\psi}, \gamma u\right\rangle, \beta(\theta)\right)$ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{1}\right], \gamma u\right\rangle, \beta\left(\theta_{i}\right)\right)$ where $\theta_{i}=\left(\theta \backslash\left\{r_{i}\right\}\right) \cup\left\{r_{i}{ }^{\prime}\right\}$ for $1 \leq i \leq n$. Note that $\sigma^{\prime}=\operatorname{prod}\left(r_{i}\right)$ and $\sigma^{\prime}=\operatorname{prod}\left(r_{i}^{\prime}\right)$, then $\beta\left(\theta_{i}\right)=\beta(\theta) \backslash \sigma \cup \sigma^{\prime}$. Thus, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], \gamma u\rangle, \beta(\theta))$ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{1}\right], \gamma u\right\rangle, \beta\left(\theta_{i}\right)\right)$ for every $1 \leq i \leq n$.

If $\psi=E\left[\psi_{1} U \psi_{2}\right]$, then $\forall w \in \Gamma^{*}, \theta \subseteq \Delta \cup \Delta_{c},(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff either it satisfies ψ_{2} or it satisfies ψ_{1} and there exists an immediate successor satisfying ψ. Thus, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$ iff:

1. $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p, \psi_{2}\right], w\right\rangle, \beta(\theta)\right)$. This is handled by the rules $\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle\right\}$ introduced by Item 7 .
2. or $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from both $\left(\left\langle\left[p, \psi_{1}\right], w\right\rangle, \beta(\theta)\right)$ and $\left(\left\langle\left[p^{\prime}, \psi\right], w^{\prime}\right\rangle, \beta\left(\theta^{\prime}\right)\right)$ where $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$ is an immediate successor of $\left.(\langle p, w\rangle, \theta)\right)$. There are two cases depending on whether $p \in P_{N}$ or $p \in P_{C}$: the case $p \in P_{N}$ is handled by Item 7 (a). Its intuition is similar to the intuition behind the previous items. Let then $p \in P_{C}$. Then there exists a rule $r: p \xrightarrow{\left(r_{1}, r_{1}^{\prime}\right)} p^{\prime} \in \theta \cap \Delta_{c}$ such that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from both $\left(\left\langle\left[p, \psi_{1}\right], w\right\rangle, \beta(\theta)\right)$ and $\left(\left\langle\left[p^{\prime}, \psi\right], w\right\rangle, \beta\left(\theta^{\prime}\right)\right)$, where $\theta^{\prime}=\theta \backslash\left\{r_{1}\right) \cup\left\{r_{1}{ }^{\prime}\right\}$. This is ensured by the rule $R_{\perp}=\langle[p, \psi], \gamma\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle,\left\langle p^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$ and $R^{\prime}: p^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p^{\prime}, \psi\right] \in \Delta_{c}^{\prime}$ added by Item $7(\mathrm{~b})$.

The case $\psi=A\left[\psi_{1} U \psi_{2}\right]$ is handled in a similar way using Items 8. If $\psi=$ $E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$, then $\forall w \in \Gamma^{*}, \theta \subseteq \Delta \cup \Delta_{c},(\langle p, w\rangle, \theta) \models_{\nu} \psi$ iff it satisfies ψ_{2} and either it satisfies also ψ_{1}, or it has a successor $\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right)$ that satisfies ψ. Then, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \theta)$ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from both $\left(\left(\left\langle\left[p, \psi_{2}\right], w\right\rangle, \beta(\theta)\right)\right.$ and $\left.\left(\left\langle\left[p, \psi_{1}\right], w\right\rangle, \beta(\theta)\right)\right)$, or it has an accepting run from both $\left(\left(\left\langle\left[p, \psi_{2}\right], w\right\rangle, \beta(\theta)\right)\right.$ and $\left.\left(\left\langle\left[p^{\prime}, \psi\right], w^{\prime}\right\rangle, \beta\left(\theta^{\prime}\right)\right)\right)$. This case is handled by Items 9. To ensure that the runs on which ψ_{2} always holds are accepted, we add $[p, \psi]$ in F. The case where $\psi=A\left[\psi_{1} \widetilde{U} \psi_{2}\right]$ is handled similarly by Items 10 .

We can show that:

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Theorem 4.1.1 Let $(\langle p, w\rangle, \theta)$ be a configuration of the $\operatorname{SM}-P D S \mathcal{P} .(\langle p, w\rangle, \theta) \models_{\nu}$ φ iff $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \varphi], w\rangle, \beta(\theta))$.

Proof: (\Rightarrow) : Suppose $(\langle p, w\rangle, \theta) \models_{\nu} \psi$, we show that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$ by induction on the structure of ψ.

Case $\psi=a$: Since $(\langle p, w\rangle, \theta) \models_{\nu} \psi$, then $a \in \nu(p)$. By the definition of $\mathcal{B} \mathcal{P}_{\varphi}$, $[p, a] \in F$ and $\forall \gamma \in \Gamma, r:\langle[p, a], \gamma\rangle \xrightarrow{[-]}\langle[p, a], \gamma\rangle \in \Delta^{\prime}$ and $r \in \delta$ (since it is not from Δ nor Δ_{c}). Then, $r \in \beta(\theta)$ and there is a loop in $(\langle[p, \psi], w\rangle, \beta(\theta))$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.

Case $\psi=\neg a$: Since $(\langle p, w\rangle, \theta) \models_{\nu} \psi$, then $a \notin \nu(p)$. By the definition of $\mathcal{B} \mathcal{P}_{\varphi}$, $[p, \neg a] \in F$ and $\forall \gamma \in \Gamma, r:\langle[p, \neg a], \gamma\rangle \xrightarrow{[-]}\langle[p, \neg a], \gamma\rangle \in \Delta^{\prime}$ and $r \in \delta$ (since it is not from Δ nor $\left.\Delta_{c}\right)$. Then, $r \in \beta(\theta)$ and there is a loop in $(\langle[p, \psi], w\rangle, \beta(\theta))$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.

Case $\psi=\psi_{1} \vee \psi_{2}$: Since $(\langle p, w\rangle, \theta) \models{ }_{\nu} \psi$, then $(\langle p, w\rangle, \theta) \models_{\nu} \psi_{1}$ or $(\langle p, w\rangle, \theta) \models_{\nu}$ ψ_{2}. By applying the induction hypothesis, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from the configuration $\left(\left\langle\left[p, \psi_{1}\right], w\right\rangle, \beta(\theta)\right)$ or $\left(\left\langle\left[p, \psi_{2}\right], w\right\rangle, \beta(\theta)\right)$. Since $r_{1}:\langle[p, \psi], \gamma\rangle \xrightarrow{[-]}$ $\left\langle\left[p, \psi_{1}\right], \gamma\right\rangle \in \Delta^{\prime}$ is s.t. $r_{1} \in \delta$ and $r_{2}:\langle[p, \psi], \gamma\rangle \stackrel{[-]}{\hookrightarrow}\left\langle\left[p, \psi_{2}\right], \gamma\right\rangle \in \Delta^{\prime}$ is s.t. $r_{2} \in \delta$. Then $r_{1}, r_{2} \in \beta(\theta)$ and we can get that $(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B P}}\left(\left\langle\left[p, \psi_{1}\right], w\right\rangle, \beta(\theta)\right)$ and $(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B P}}\left(\left\langle\left[p, \psi_{2}\right], w\right\rangle, \beta(\theta)\right)$. So $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.

Case $\psi=\psi_{1} \wedge \psi_{2}$: it is similar to case $\psi=\psi_{1} \vee \psi_{2}$.
Case $\psi=E X \psi_{1}$: Since $(\langle p, w\rangle, \theta) \models_{\nu} \psi$, then there exists an immediate successor $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right)$ of $(\langle p, w\rangle, \theta)$ s.t. $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right) \models_{\nu} \psi_{1}$. By applying the induction hypothesis, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \beta\left(\theta_{1}\right)\right)$. There are two cases depending on whether $p \in P_{N}$ or not.

- Case $p \in P_{N}$, then $\theta_{1}=\theta$. Since $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta\right)$ is an immediate successor of $(\langle p, w\rangle, \theta)$, there exist $w^{\prime \prime} \in \Gamma^{*}$ s.t. $w=\gamma w^{\prime \prime}, w_{1}=w^{\prime} w^{\prime \prime}$ and $R=$ $\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, w^{\prime}\right\rangle \in \Delta \cap \theta$. By the construction Item 5, we can obtain $R^{\prime}=\langle[p, \psi], \gamma\rangle \stackrel{[-]}{\longrightarrow}\left\langle\left[p_{1}, \psi_{1}\right], w^{\prime}\right\rangle \in \Delta^{\prime}$ and $R^{\prime} \in \operatorname{prod}(R)$. Since $\operatorname{prod}(\theta)=$ $\left\{r^{\prime} \in \Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta, r^{\prime} \in \operatorname{prod}(r)\right\}$ and $R \in \theta$, then $R^{\prime} \in \operatorname{prod}(\theta)$. Thus, $R^{\prime} \in \beta(\theta)$ and $(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B P}}\left(\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \beta(\theta)\right)$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.
- Case $p \in P_{C}$, then $\theta_{1}=\theta \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\}$ for a transition rule $R=p \stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow}$ $p_{1} \in \Delta_{c} \cap \theta$. There exist $\gamma \in \Gamma$ and $w^{\prime \prime} \in \Gamma^{*}$ s.t. $w_{1}=w=\gamma w^{\prime \prime}$. Thus, we can obtain $R^{\prime}=[p, \psi] \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p^{\prime}, \psi_{1}\right] \in \Delta_{c}^{\prime}, \sigma=\operatorname{prod}\left(r_{1}\right), \sigma^{\prime}=$ $\operatorname{prod}\left(r_{2}\right), R^{\prime} \in \operatorname{prod}_{E}(R)$ and $R^{\prime} \in \operatorname{prod}(R)$. Since $\operatorname{prod}(\theta)=\left\{r^{\prime} \in\right.$ $\left.\Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta, r^{\prime} \in \operatorname{prod}(r)\right\}$ and $R, r_{1} \in \theta$, then $R^{\prime} \in \beta(\theta)$ and $\sigma \cap \operatorname{prod}(\theta) \neq \emptyset$. Based on rule $R, \theta_{1}=\theta \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\}$, then $\beta\left(\theta_{1}\right)=$ $\operatorname{prod}\left(\theta_{1}\right) \cup \delta=\left(\operatorname{prod}\left(\theta \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\}\right) \cup \delta\right.$. Since $\sigma=\operatorname{prod}\left(r_{1}\right)$ and $\sigma^{\prime}=$ $\operatorname{prod}\left(r_{2}\right)$, then we can obtain $\beta\left(\theta_{1}\right)=\beta(\theta) \backslash \sigma \cup \sigma^{\prime}$. Thus, we can have that $(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B P}}\left(\left\langle\left[p_{1}, \psi_{1}\right], w\right\rangle, \beta\left(\theta_{1}\right)\right)$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.

Case $\psi=A X \psi_{1}$: there are 2 cases depending on whether $p \in P_{N}$ or not.

- Case $p \in P_{N}$. Let then $\gamma \in \Gamma$ and $u \in \Gamma^{*}$ be such that $w=\gamma u$. Let $S=$ $\left\{R_{1}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{1}, u_{1}\right\rangle, \cdots, R_{n}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{n}, u_{n}\right\rangle\right\}$ be the set of all the rules of Δ that have $\langle p, \gamma\rangle$ on the left hand-side. Then, by Item 6(a), we obtain that $R^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \cdots,\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle\right\} \in \Delta^{\prime}$, for every $1 \leq i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$. Let $\left\{R_{i_{1}}=\langle p, \gamma\rangle \hookrightarrow\left\langle p_{i_{1}}, u_{i_{1}}\right\rangle, \cdots, R_{i_{k}}=\right.$ $\left.\langle p, \gamma\rangle \hookrightarrow\left\langle p_{i_{k}}, u_{i_{k}}\right\rangle\right\}$ be the set of rules of $S \cap \theta$. Let $w_{i_{j}}=u_{i_{j}} u, 1 \leq$ $j \leq k$, then $\left\{\left(\left\langle p_{i_{1}}, w_{i_{1}}\right\rangle, \theta\right), \cdots,\left(\left\langle p_{i_{k}}, w_{i_{k}}\right\rangle, \theta\right)\right\}$ is an immediate successor of $(\langle p, w\rangle, \theta)$. Since $(\langle p, w\rangle, \theta) \models_{\nu} \psi$, then $\left(\left\langle p_{i_{j}}, w_{i_{j}}\right\rangle, \theta\right) \models_{\nu} \psi_{1}$ for every $j, 1 \leq j \leq k$. By applying the induction hypothesis, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i_{j}}, \psi_{1}\right], w_{i_{j}}\right\rangle, \beta(\theta)\right)$. Since $\operatorname{prod}(\theta)=\left\{r^{\prime} \in \Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta, r^{\prime} \in\right.$ $\operatorname{prod}(r)\}$ and $R_{i} \in \theta$, then $R^{\prime} \in \beta(\theta)$. Since $\sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right), \sigma_{l} \cap \beta(\theta) \neq \emptyset$ if $l \in\left\{i_{1}, \cdots, i_{k}\right\}$ and $\sigma_{l} \cap \beta(\theta)=\emptyset$ if $l \notin\left\{i_{1}, \cdots, i_{k}\right\}$, then using R^{\prime}, we get that $(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{i_{1}}, \psi_{1}\right], w_{i_{1}}\right\rangle, \beta(\theta)\right), \cdots,\left(\left\langle\left[p_{i_{k}}, \psi_{1}\right], w_{i_{k}}\right\rangle, \beta(\theta)\right)\right\}$. Since $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i_{j}}, \psi_{1}\right], w_{i_{j}}\right\rangle, \beta(\theta)\right)$, then, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.
- Case $p \in P_{C}$. Let then $\gamma \in \Gamma$ and $u \in \Gamma^{*}$ be such that $w=\gamma u$. Let $S=\left\{R_{1}=p \xrightarrow{\left(r_{1}, r_{1}^{\prime}\right)} p_{1}, \cdots, R_{n}=p \stackrel{\left(r_{n}, r_{n}^{\prime}\right)}{\longrightarrow} p_{n}\right\}$ be the set of all the rules of Δ_{c} that have p on the left hand-side. Then, by Item 6(b), we obtain that $R_{\perp}^{\prime}=\langle[p, \psi], \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle p_{1}^{\psi}, \gamma\right\rangle, \cdots,\left\langle p_{n}^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$, for every $1 \leq i \leq n$, $\sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right)$ and for every $1 \leq i \leq n, R_{i}^{\prime}: p_{i}^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p_{i}, \psi_{1}\right] \in \Delta_{c}^{\prime}$ where for every $1 \leq i \leq n, \sigma_{i}=\operatorname{prod}_{E}\left(R_{i}\right), \sigma=\operatorname{prod}\left(r_{i}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{i}^{\prime}\right)$ and $R_{i}^{\prime} \in$

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

$\operatorname{prod}\left(R_{i}\right)$. Let $\left.\left\{R_{i_{1}}=p \stackrel{\left(r_{i_{1}}, r_{i_{1}}^{\prime}\right)}{\longrightarrow} p_{i_{1}}, \cdots, R_{i_{k}}=p \xrightarrow{\left(r_{i_{k}}, r_{i_{k}}^{\prime}\right)} p_{i_{k}}\right\rangle\right\}$ be the set of rules of $S \cap \theta$. Then $\left\{\left(\left\langle p_{i_{1}}, \gamma u\right\rangle, \theta_{i_{1}}\right), \cdots,\left(\left\langle p_{i_{k}}, \gamma u\right\rangle, \theta_{i_{k}}\right)\right\}$ is an immediate successor of $(\langle p, w\rangle, \theta)$ where $\theta_{i_{j}}=\left(\theta \backslash\left\{r_{i_{j}}\right\}\right) \cup\left\{r_{i_{j}}^{\prime}\right\}$. Since $(\langle p, w\rangle, \theta) \models_{\nu} \psi$, then $\left(\left\langle p_{i_{j}}, \gamma u\right\rangle, \theta_{i_{j}}\right) \models_{\nu} \psi_{1}$ for every $j, 1 \leq j \leq k$. By applying the induction hypothesis, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i_{j}}, \psi_{1}\right], \gamma u\right\rangle, \beta\left(\theta_{i_{j}}\right)\right)$. Since $\operatorname{prod}(\theta)=\left\{r^{\prime} \in \Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta, r^{\prime} \in \operatorname{prod}(r)\right\}$ and $R_{i} \in \theta$, then $R_{i}^{\prime}, R_{\perp}^{\prime} \in$ $\beta(\theta)$. Since $\sigma_{l}=\operatorname{prod}_{E}\left(R_{l}\right), \sigma_{l} \cap \beta(\theta) \neq \emptyset$ if $l \in\left\{i_{1}, \cdots, i_{k}\right\}$ and $\sigma_{l} \cap \beta(\theta)=$ \emptyset if $l \notin\left\{i_{1}, \cdots, i_{k}\right\}$, then using R_{\perp}^{\prime}, we get that $(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B} \mathcal{P}}$ $\left\{\left(\left\langle p_{i_{1}}^{\psi}, w\right\rangle, \beta(\theta)\right), \cdots,\left(\left\langle p_{i_{k}}^{\psi}, w\right\rangle, \beta(\theta)\right)\right\}$. For every $j, 1 \leq j \leq k$, using $R_{i_{j}}^{\prime}$, we get that $\left(\left\langle p_{i_{1}}^{\psi}, w\right\rangle, \beta(\theta)\right) \Rightarrow_{\mathcal{B} \mathcal{P}}\left(\left\langle\left[p_{i_{j}}, \psi_{1}\right], \gamma u\right\rangle, \beta(\theta) \backslash \sigma \cup \sigma^{\prime}\right)$. Since $\beta\left(\theta_{i_{j}}\right)=$ $\operatorname{prod}\left(\theta_{i_{j}}\right) \cup \delta=\left(\operatorname{prod}\left(\theta \backslash\left\{r_{i_{j}}\right\} \cup\left\{r_{i_{j}}^{\prime}\right\}\right) \cup \delta\right.$, then $\beta\left(\theta_{i_{j}}\right)=\beta(\theta) \backslash \sigma \cup \sigma^{\prime}$ for every $\sigma=\operatorname{prod}\left(r_{i_{j}}\right)$ and $\sigma^{\prime}=\operatorname{prod}\left(r_{i_{j}}^{\prime}\right)$. Thus, we can obtain that

$$
(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B} \mathcal{P}}^{*}\left\{\left(\left\langle\left[p_{i_{1}}, \psi_{i_{1}}\right], w\right\rangle, \beta\left(\theta_{i_{1}}\right)\right), \cdots,\left(\left\langle\left[p_{i_{k}}, \psi_{1}\right], w\right\rangle, \beta\left(\theta_{i_{k}}\right)\right)\right\} .
$$

Since $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i_{j}}, \psi_{1}\right], w_{i_{j}}\right\rangle, \beta(\theta)\right)$, then, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.

Case $\psi=E\left[\psi_{1} U \psi_{2}\right]$: Since $(\langle p, w\rangle, \theta) \models_{\nu} \psi$, then there exists a path

$$
\rho:\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right),\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right),\left(\left\langle p_{2}, w_{2}\right\rangle, \theta_{2}\right) \cdots
$$

from $(\langle p, w\rangle, \theta)$ (i.e. $\left.\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)=(\langle p, w\rangle, \theta)\right)$ such that there exists $i \geq 0$, $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{2}$ and for every $0 \leq j<i,\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \models_{\nu} \psi_{1}$. Thus, by applying the induction hypothesis, we obtain that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and for every $0 \leq j<i, \mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from the configuration $\left(\left\langle\left[p_{j}, \psi_{1}\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)$. We first show that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$.
By the construction Item $7, r^{\prime}=\left\langle\left[p_{i}, \psi\right], \gamma\right\rangle \xrightarrow{[-]}\left\langle\left[p_{i}, \psi_{2}\right], \gamma\right\rangle \in \Delta^{\prime}$ s.t. $r^{\prime} \in \delta$ (since it is not constructed from Δ nor Δ_{c}). Then, $r^{\prime} \in \beta\left(\theta_{i}\right)$. Thus, we have that $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right) \Rightarrow_{\mathcal{B} \mathcal{P}}\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$. If $i=0$, then $(\langle[p, \psi], w\rangle, \beta(\theta))=\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$. Otherwise if $i>0$, we show that $\mathcal{B P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right), 1 \leq j<i$, by induction on $l=i-j$. (Note that $\left.(\langle[p, \psi], w\rangle, \beta(\theta))=\left(\left\langle\left[p_{0}, \psi\right], w_{0}\right\rangle, \beta\left(\theta_{0}\right)\right)\right)$.

- Basis. $l=1$. Then $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right)$ is an immediate successor of $\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right)$. If $p_{j} \in P_{N}$, then there exists $R=\left\langle p_{j}, \gamma\right\rangle \hookrightarrow\left\langle p_{i}, w^{\prime}\right\rangle \in \Delta \cap \theta_{j}$. By the construction Item $7(\mathrm{a}), R^{\prime}:\left\langle\left[p_{j}, \psi\right], \gamma\right\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p_{j}, \psi_{1}\right], \gamma\right\rangle,\left\langle\left[p_{i}, \psi\right], w^{\prime}\right\rangle\right\} \in$ Δ^{\prime} and $R^{\prime} \in \operatorname{prod}(R)$. Since $\operatorname{prod}(\theta)=\left\{r^{\prime} \in \Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta, r^{\prime} \in\right.$ $\operatorname{prod}(r)\}$ and $R \in \theta$, then $R^{\prime} \in \operatorname{prod}(\theta)$. Thus, $R^{\prime} \in \beta(\theta)$ and we can have $\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{j}, \psi_{1}\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right),\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{j}\right)\right)\right\}$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from the configuration $\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)$. Otherwise if $p_{j} \in P_{C}$, for every $R=p_{j} \stackrel{\left(r_{1}, r_{2}\right)}{\longrightarrow} p_{i} \in \Delta_{c} \cap \theta_{j}$, for every $\gamma \in \Gamma$, $R_{\perp}^{\prime}=\left\langle\left[p_{j}, \psi\right], \gamma\right\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p_{j}, \psi_{1}\right], \gamma\right\rangle,\left\langle p_{j}^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$ and $R^{\prime}: p_{j}{ }^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}$ $\left[p_{i}, \psi\right] \in \Delta_{c}^{\prime}$ where $\sigma=\operatorname{prod}\left(r_{1}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{2}\right)$ s.t. $\quad R_{\perp}^{\prime}, R^{\prime} \in \operatorname{prod}(R)$. Then, we can obtain that:

$$
\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{j}, \psi_{1}\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right),\left(\left\langle p_{j}{ }^{\psi}, w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)\right\} .
$$

Since $R, r_{1} \in \theta_{j}$ and $\theta_{i}=\theta_{j} \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\}$, then $\beta\left(\theta_{i}\right)=\operatorname{prod}\left(\theta_{i}\right) \cup \delta=$ $\operatorname{prod}\left(\theta_{j} \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\}\right) \cup \delta$. Thus, $\beta\left(\theta_{i}\right)=\beta\left(\theta_{j}\right) \backslash \sigma \cup \sigma^{\prime}$ and $\left(\left\langle p_{j}{ }^{\psi}, w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right) \Rightarrow_{\mathcal{B} \boldsymbol{P}}$ $\left\{\left(\left\langle\left[p_{i}, \psi\right], w\right)\right\rangle, \beta\left(\theta_{i}\right)\right\}$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from the configuration $\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)$.

- Step. $l>1$. Then there exists $\left(\left\langle p_{j+1}, w_{j+1}\right\rangle, \theta_{j+1}\right)$ s.t. $\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \Rightarrow_{\mathcal{P}}$ $\left(\left\langle p_{j+1}, w_{j+1}\right\rangle, \theta_{j+1}\right) \Rightarrow{ }_{\mathcal{P}}^{*}\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right)$. By applying the induction hypothesis (induction on l), we can obtain that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{j+1}, \psi\right], w_{j+1}\right\rangle, \beta\left(\theta_{j+1}\right)\right)$. Since $\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \models_{\nu} \psi_{1}$, by applying the induction hypothesis (induction on the structure of ψ), $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{j}, \psi_{1}\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)$. There are two cases depending on whether $p_{j} \in P_{N}$ or not.
- Case $p_{j} \in P_{N}$, then there exists $R=\left\langle p_{j}, \gamma\right\rangle \hookrightarrow\left\langle p_{j+1}, w^{\prime}\right\rangle \in \Delta \cap \theta_{j}$. By the construction, $R^{\prime}=\left\langle\left[p_{j}, \psi\right], \gamma\right\rangle \xrightarrow{[-,-]}\left\{\left\langle\left[p_{j}, \psi_{1}\right], \gamma\right\rangle,\left\langle\left[p_{j+1}, \psi\right], w^{\prime}\right\rangle\right\} \in$ Δ^{\prime} s.t. $R^{\prime} \in \operatorname{prod}(R)$. Since $\operatorname{prod}\left(\theta_{j}\right)=\left\{r^{\prime} \in \Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta_{j}, r^{\prime} \in\right.$ $\operatorname{prod}(r)\}$ and $R \in \theta$, then $R^{\prime} \in \operatorname{prod}\left(\theta_{j}\right)$. Thus, $R^{\prime} \in \beta\left(\theta_{j}\right)$ and we can have
$\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{j}, \psi_{1}\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right),\left(\left\langle\left[p_{j+1}, \psi\right], w_{j+1}\right\rangle, \beta\left(\theta_{j}\right)\right)\right\}$.
So, $\mathcal{B P}{ }_{\varphi}$ has an accepting run from the configuration $\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)$.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

- Case $p_{j} \in P_{C}$, for every $R=p_{j} \xrightarrow{\left(r_{1}, r_{2}\right)} p_{j+1} \in \Delta_{c} \cap \theta_{j}$, there exist $\gamma \in \Gamma$ and $w_{j}^{\prime \prime} \in \Gamma^{*}$ s.t. $w_{j}=\gamma w_{j}^{\prime \prime}$, then $R_{\perp}^{\prime}=\left\langle\left[p_{j}, \psi\right], \gamma\right\rangle \xrightarrow{[-,-]}$ $\left\{\left\langle\left[p_{j}, \psi_{1}\right], \gamma\right\rangle,\left\langle p_{j}{ }^{\psi}, \gamma\right\rangle\right\} \in \Delta^{\prime}$ and $R^{\prime}: p_{j}{ }^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p_{i}, \psi\right] \in \Delta_{c}^{\prime}$ where $\sigma=\operatorname{prod}\left(r_{1}\right), \sigma^{\prime}=\operatorname{prod}\left(r_{2}\right)$ s.t. $R^{\prime} \in \operatorname{prod}(R)$. Then, $\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right) \Rightarrow_{\mathcal{B P} \mathcal{P}}\left\{\left(\left\langle\left[p_{j}, \psi_{1}\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right),\left(\left\langle p_{j}{ }^{\psi}, w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)\right\}$. Since $\operatorname{prod}\left(\theta_{j}\right)=\left\{r^{\prime} \in \Delta^{\prime} \cup \Delta_{c}^{\prime} \mid \exists r \in \theta_{j}, r^{\prime} \in \operatorname{prod}(r)\right\}$ and $R \in \theta_{j}$, then $R^{\prime} \in \operatorname{prod}\left(\theta_{j}\right)$. Thus, $R^{\prime} \in \beta\left(\theta_{j}\right)$. Since $R, r_{1} \in \theta_{j}$ and $\theta_{j+1}=\theta_{j} \backslash\left\{r_{1}\right\} \cup$ $\left\{r_{2}\right\}$. Then $\beta\left(\theta_{j+1}\right)=\operatorname{prod}\left(\theta_{j+1}\right) \cup \delta=\operatorname{prod}\left(\theta_{j} \backslash\left\{r_{1}\right\} \cup\left\{r_{2}\right\}\right) \cup \delta$. So, $\beta\left(\theta_{j+1}\right)=\beta\left(\theta_{j}\right) \backslash \sigma \cup \sigma^{\prime}$. Then, we have $\left(\left\langle p_{j}{ }^{\psi}, w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right) \Rightarrow_{\mathcal{B P}}$ $\left\{\left(\left\langle\left[p_{j+1}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j+1}\right)\right)\right\}$. Hence, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from the configuration $\left(\left\langle\left[p_{j}, \psi\right], w_{j}\right\rangle, \beta\left(\theta_{j}\right)\right)$.

Thus, $\mathcal{B P}{ }_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.
Case $\psi=A\left[\psi_{1} U \psi_{2}\right]$ is similar the the case $\psi=E\left[\psi_{1} U \psi_{2}\right]$.
Case $\psi=E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$: Since $(\langle p, w\rangle, \theta) \models_{\nu} E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$, then there exists a path

$$
\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right),\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right),\left(\left\langle p_{2}, w_{2}\right\rangle, \theta_{2}\right) \cdots
$$

from $(\langle p, w\rangle, \theta)$ (i.e. $\left.\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)=(\langle p, w\rangle, \theta)\right)$ such that

1. either for every $i \geq 0,\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{2}$
2. or there exists $i \geq 0$ s.t. $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{1}$ and for every $0 \leq j \leq i$, $\left(\left\langle p_{j}, w_{j}\right\rangle, \theta_{j}\right) \models_{\nu} \psi_{2}$

First let us consider item 2, it can be proved that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$ by applying the induction on $i-j$ similar to the case $\psi=E\left[\psi_{1} U \psi_{2}\right]$.

Let's consider item 1 , we will show that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$. Let us construct an accepting run ρ of $\mathcal{B} \mathcal{P}_{\varphi}$ as follows. (Note that $\left.(\langle[p, \psi], w\rangle, \beta(\theta))=\left(\left\langle\left[p_{0}, \psi\right], w_{0}\right\rangle, \beta\left(\theta_{0}\right)\right)\right)$.

Let $\left(\left\langle\left[p_{0}, \psi\right], w_{0}\right\rangle, \theta_{0}\right)$ be the root of ρ. For every $k \geq 0$,

- if $p_{k} \in P_{N}$, then we have that

$$
\left(\left\langle\left[p_{k}, \psi\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right),\left(\left\langle\left[p_{k+1}, \psi\right], w_{k+1}\right\rangle, \beta\left(\theta_{k+1}\right)\right)\right\} .
$$

In this case, we let $\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$ and $\left(\left\langle\left[p_{k+1}, \psi\right], w_{k+1}\right\rangle, \beta\left(\theta_{k+1}\right)\right)$ be the children of $\left(\left\langle\left[p_{k}, \psi\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$. By applying the induction hypothesis to $\left(\left\langle p_{k}, w_{k}\right\rangle, \theta_{k}\right) \models_{\nu} \psi_{2}$, we obtain that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run ρ_{k} from $\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$.
We replace the child $\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$ in ρ by the run ρ_{k}. By the above construction, we obtain an infinite run ρ of $\mathcal{B} \mathcal{P}_{\varphi}$ s.t. ρ has an infinite path

$$
\left(\left\langle\left[p_{0}, \psi\right], w_{0}\right\rangle, \beta\left(\theta_{0}\right)\right),\left(\left\langle\left[p_{1}, \psi\right], w_{1}\right\rangle, \beta\left(\theta_{1}\right)\right), \cdots
$$

and all the other paths infinitely often visit some accepting control locations. Since for every $k \geq 0,\left[p_{k}, \psi\right] \in F$, we obtain that each path of ρ infinitely often visits some accepting control locations i.e. $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.

- If $p_{k} \in P_{C},\left(\left\langle\left[p_{k}, \psi\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right) \Rightarrow_{\mathcal{B} \mathcal{P}}\left\{\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right),\left(\left\langle p_{k}^{\psi}, w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)\right\}$ and $\left(\left\langle p_{k}^{\psi}, w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{k+1}, \psi\right], w_{k+1}\right\rangle, \beta\left(\theta_{k+1}\right)\right)\right\}$. In this case, we let $\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$ and $\left(\left\langle p_{k}^{\psi}, w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$ be the children of $\left(\left\langle\left[p_{k}, \psi\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$ and $\left(\left\langle\left[p_{k+1}, \psi\right], w_{k+1}\right\rangle, \beta\left(\theta_{k+1}\right)\right)$ be the child of $\left(\left\langle p_{k}^{\psi}, w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$. By applying the induction hypothesis to $\left(\left\langle p_{k}, w_{k}\right\rangle, \theta_{k}\right) \models_{\nu} \psi_{2}$, we obtain that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run ρ_{k} from $\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$. We replace the child $\left(\left\langle\left[p_{k}, \psi_{2}\right], w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right)$ in ρ by the run ρ_{k}. By the above construction, we obtain an infinite run ρ of $\mathcal{B} \mathcal{P}_{\varphi}$ s.t. ρ has an infinite path

$$
\left(\left\langle\left[p_{0}, \psi\right], w_{0}\right\rangle, \beta\left(\theta_{0}\right)\right) \cdots,\left(\left\langle p_{k}^{\psi}, w_{k}\right\rangle, \beta\left(\theta_{k}\right)\right),\left(\left\langle\left[p_{k+1}, \psi\right], w_{k+1}\right\rangle, \beta\left(\theta_{k+1}\right)\right) \cdots
$$

and all the other paths infinitely often visit some accepting control locations. Since for every $k \geq 0,\left[p_{k}, \psi\right] \in F$, we obtain that each path of ρ infinitely often visits some accepting control locations i.e. $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$.

Case $\psi=A\left[\psi_{1} \widetilde{U} \psi_{2}\right]$: it can be proved as for the case $\psi=E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$.
(\Leftarrow) : Suppose $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from the configuration $(\langle[p, \psi], w\rangle, \beta(\theta))$, we show that $(\langle p, w\rangle, \theta) \models{ }_{\nu} \psi$ by induction on the structure of ψ.
Case $\psi=a$: Since $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$, then $\forall \gamma \in \Gamma$, $\langle[p, a], \gamma\rangle \quad \xrightarrow{[-]}\langle[p, a], \gamma\rangle \in \Delta^{\prime} \cap \beta(\theta)$. So, $[p, a] \in F$ and $a \in \nu(p)$. Hence, $(\langle p, w\rangle, \theta) \models_{\nu} \psi$.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Case $\psi=\neg a$: Since $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \neg a], w\rangle, \beta(\theta)$), then $\forall \gamma \in \Gamma,\langle[p, \neg a], \gamma\rangle \xrightarrow{[-]}\langle[p, \neg a], \gamma\rangle \in \Delta^{\prime} \cap \beta(\theta)$. So, $[p, \neg a] \in F$ and $a \notin \nu(p)$. Hence, $(\langle p, w\rangle, \theta) \models{ }_{\nu} \psi$.

Case $\psi=\psi_{1} \vee \psi_{2}$: Since $\mathcal{B P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$, then $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p, \psi_{1}\right], w\right\rangle, \beta(\theta)\right)$ or $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p, \psi_{2}\right], w\right\rangle, \beta(\theta)\right)$. By applying the induction hypothesis, we get that $(\langle p, w\rangle, \theta) \models_{\nu} \psi_{1}$ or $(\langle p, w\rangle, \theta) \models_{\nu} \psi_{2}$. This implies that $(\langle p, w\rangle, \theta) \models_{\nu} \psi$.

Case $\psi=\psi_{1} \wedge \psi_{2}$: it is similar to the case $\psi=\psi_{1} \vee \psi_{2}$.
Case $\psi=E X \psi_{1}$: it is similar to the case $\psi=A X \psi_{1}$.
Case $\psi=A X \psi_{1}$: Since $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$. There are two cases depending on whether $p \in P_{N}$ or not.

- Case $p \in P_{N}$. Then suppose there exists an immediate successor

$$
\left\{\left(\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \beta(\theta)\right), \cdots,\left(\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle, \beta(\theta)\right)\right\}
$$

of $(\langle[p, \psi], w\rangle, \beta(\theta))$ in the accepting run such that

$$
(\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B} \mathcal{P}}\left\{\left(\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \beta(\theta)\right), \cdots,\left(\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle, \beta(\theta)\right)\right\}
$$

By applying the induction hypothesis, we get that $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{1}$ for $1 \leq i \leq n$. By the construction, the immediate successors in \mathcal{P} of $(\langle p, w\rangle, \theta)$ are $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta\right)$. Thus, we obtain that $(\langle p, w\rangle, \theta) \models_{\nu} \psi$.

- Case $p \in P_{C}$. Then suppose there exists a successor

$$
\left\{\left(\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \beta(\theta)\right), \cdots,\left(\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle, \beta(\theta)\right)\right\}
$$

of $(\langle[p, \psi], w\rangle, \beta(\theta))$ in the accepting run such that

$$
\begin{aligned}
& (\langle[p, \psi], w\rangle, \beta(\theta)) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle p_{1}^{\psi}, w\right\rangle, \beta(\theta)\right), \cdots,\left(\left\langle p_{n}^{\psi}, w\right\rangle, \beta(\theta)\right)\right\} \\
& \quad \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{1}, \psi_{1}\right], w_{1}\right\rangle, \beta\left(\theta_{1}\right)\right), \cdots,\left(\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)\right\} .
\end{aligned}
$$

Then $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ for each $i: 1 \leq$ $i \leq n$. By applying the induction hypothesis, we get that $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{1}$ for $1 \leq i \leq n$. By the construction of Item 6(b), there exists $R_{\perp}^{\prime}=$
$\langle[p, \psi], \gamma\rangle \xrightarrow{\left[\sigma_{j_{1}}, \cdots, \sigma_{j_{m}}\right]}\left\{\left\langle p_{1}^{\psi}, \gamma\right\rangle, \cdots,\left\langle p_{n}^{\psi}, \gamma\right\rangle\right\}$ s.t. $\{1, \cdots, n\} \subseteq\left\{j_{1}, \cdots, j_{m}\right\}$ where the constraint $\left[\sigma_{j_{1}}, \cdots, \sigma_{j_{m}}\right]$ ensures that only the R_{i} 's that are in $\theta\left(R_{1}, \cdots, R_{n}\right)$ are applied, and there exist $R_{i}^{\prime}: p_{i}^{\psi} \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}\left[p_{i}, \psi_{1}\right]$ where $\sigma=\operatorname{prod}\left(r_{i}\right)$ and $\sigma^{\prime}=\operatorname{prod}\left(r_{i}^{\prime}\right)$ ensuring that $\theta_{i}=\left(\theta \backslash\left\{r_{i}\right\}\right) \cup\left\{r_{i}^{\prime}\right\}$. Thus, we can obtain that the set of all transition rules of the SM-PDS in $\Delta_{c} \cap \theta$ that have p in the left-hand side are $\left\{R_{1}=p \stackrel{\left(r_{1}, r_{1}^{\prime}\right)}{\longleftrightarrow} p_{1}, \cdots, R_{n}=\right.$ $\left.p \xrightarrow{\left(r_{n}, r_{n}^{\prime}\right)} p_{n}\right\}$. Then, the immediate successors of $(\langle p, w\rangle, \theta)$ in \mathcal{P} are $\left(\left\langle p_{1}, w\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w\right\rangle, \theta_{n}\right)$. Thus we obtain that $(\langle p, w\rangle, \theta) \models_{\nu} \psi$.

Case $\psi=E\left[\psi_{1} U \psi_{2}\right]$: Let ρ be the accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$. By the construction, every configuration $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ in ρ has

- either two children $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and $\left(\left\langle q_{i}, w_{q_{i}}\right\rangle, \beta\left(\theta_{i}\right)\right)$, where

1. If $p_{i} \in P_{N},\left(\left\langle q_{i}, w_{q_{i}}\right\rangle, \beta\left(\theta_{i}\right)\right)$ is of the form $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i}\right)\right)$.
2. If $p_{i} \in P_{C},\left(\left\langle q_{i}, w_{q_{i}}\right\rangle, \beta\left(\theta_{i}\right)\right)$ is of the form $\left(\left\langle p_{i}^{\psi}, w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ whose child is $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i+1}\right)\right)$.

- or only one child $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$

Since ρ is an accepting run, there exists a configuration $\left(\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$ in ρ s.t. $\left(\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$ has only one child $\left(\left\langle\left[p_{n}, \psi_{2}\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$. In particular, there exists a path of ρ of the form $\left(\left\langle q_{0}, w_{q_{0}}\right\rangle, \beta\left(\theta_{0}\right)\right), \cdots,\left(\left\langle q_{n}, w_{q_{n}}\right\rangle, \beta\left(\theta_{n}\right)\right) \cdots$ where $\left(\left\langle q_{0}, w_{q_{0}}\right\rangle, \beta\left(\theta_{0}\right)\right)=(\langle[p, \psi], w\rangle, \beta(\theta))$ and $\left(\left\langle q_{n}, w_{q_{n}}\right\rangle, \beta\left(\theta_{i}\right)\right)=\left(\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$. Then, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle q_{i}, w_{q_{i}}\right\rangle, \beta\left(\theta_{i}\right)\right)$ of the form $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ for every $i: 0 \leq i<n$.

- If $p_{i} \in P_{N},\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ in ρ has either two children $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i}\right)\right)$ or has only one child $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$. Since $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$ in ρ and $i<n$, then $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right),\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i}\right)\right)\right\}$. Thus, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$.
- If $p_{i} \in P_{C},\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ in ρ has either two children $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and $\left(\left\langle p_{i}^{\psi}, w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ whose child is $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i+1}\right)\right)$ or has only one $\operatorname{child}\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$. Since $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

in ρ and $i<n$, then $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right) \Rightarrow_{\mathcal{B P}}\left\{\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right),\left(\left\langle p_{i}^{\psi}, w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)\right\}$ and $\left(\left\langle p_{i}^{\psi}, w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right) \Rightarrow_{\mathcal{B} \mathcal{P}}\left\{\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i+1}\right)\right)\right\}$. Thus, $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$.
$\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{n}, \psi_{2}\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$ and $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ for $i<n$. By applying the induction hypothesis, we get that $\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right) \models_{\nu} \psi_{2}$ and $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{1}$ for $i<n$. Since $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right) \cdots$ is a run of \mathcal{P}, we obtain that $(\langle p, w\rangle, \theta) \models_{\nu} \psi$.

Case $\psi=A\left[\psi_{1} U \psi_{2}\right]$: it is similar with the case $\psi=E\left[\psi_{1} U \psi_{2}\right]$.
Case $\psi=E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$: Let ρ be the accepting run from $(\langle[p, \psi], w\rangle, \beta(\theta))$. By the construction, every configuration $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ in ρ has two children:

1. either $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and $\left(\left\langle q_{i}, w_{q_{i}}\right\rangle, \beta\left(\theta_{i}\right)\right)$ where

- if $p_{i} \in P_{N}$, then q_{i} is of the form $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i+1}\right)\right)$;
- if $p_{i} \in P_{C}$, then $\left(\left\langle q_{i}, w_{q_{i}}\right\rangle, \beta\left(\theta_{i}\right)\right)$ is of the form $\left(\left\langle p_{i}^{\psi}, w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right.$ whose child is $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i+1}\right)\right)$.

2. or $\left(\left\langle\left[p_{i}, \psi_{1}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$.

First, we consider Case 1.
Since ρ is an accepting run, there exists an infinite path of ρ of the form

$$
\left(\left\langle q_{0}, w_{q_{0}}\right\rangle, \beta\left(\theta_{0}\right)\right), \cdots,\left(\left\langle q_{i}, w_{q_{i}}\right\rangle, \beta\left(\theta_{i}\right)\right) \cdots
$$

where $\left(\left\langle q_{0}, w_{q_{0}}\right\rangle, \beta\left(\theta_{0}\right)\right)=(\langle[p, \psi], w\rangle, \beta(\theta))$ and $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ for every $i \geq 0$.

By applying the induction hypothesis (the fact that $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$, we get that $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{2}$ for every $i \geq 0$. By the construction, we get that $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right), \cdots$ is a run of \mathcal{P} with $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)=(\langle p, w\rangle, \theta)$ and $(\langle p, w\rangle, \theta) \models_{\nu} \psi$.

Let's consider Case 2. Let $\left(\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$ be a configuration in ρ whose children are $\left(\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$ and $\left(\left\langle\left[p_{n}, \psi_{2}\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$. Then $\mathcal{B} \mathcal{P}_{\varphi}$ has an infinite path $\left(\left\langle\left[p_{0}, \psi\right], w_{0}\right\rangle, \beta\left(\theta_{0}\right)\right), \cdots,\left(\left\langle\left[p_{n}, \psi\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right),\left(\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right), \cdots$, where $\left(\left\langle\left[p_{0}, \psi\right], w_{0}\right\rangle, \beta\left(\theta_{0}\right)\right)=(\langle[p, \psi], w\rangle, \beta(\theta))$. Each configuration $\left(\left\langle\left[p_{i}, \psi\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$
in this path has children $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ and $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i+1}\right)\right)$ or $\left(\left\langle p_{i}^{\psi}, w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ whose child is $\left(\left\langle\left[p_{i+1}, \psi\right], w_{i+1}\right\rangle, \beta\left(\theta_{i+1}\right)\right)$. So $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{n}, \psi_{1}\right], w_{n}\right\rangle, \beta\left(\theta_{n}\right)\right)$ and $\mathcal{B} \mathcal{P}_{\varphi}$ has an accepting run from $\left(\left\langle\left[p_{i}, \psi_{2}\right], w_{i}\right\rangle, \beta\left(\theta_{i}\right)\right)$ for every $1 \leq i \leq n$. By applying the induction hypothesis, $\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right) \models{ }_{\nu} \psi_{1}$ and $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \models_{\nu} \psi_{2}$ for each $i: 1 \leq i \leq n$. Thus,

$$
\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right),\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right) \cdots
$$

is a run of \mathcal{P} with $\left(\left\langle p_{0}, w_{0}\right\rangle, \theta_{0}\right)=(\langle p, w\rangle, \theta)$. Thus, $(\langle p, w\rangle, \theta) \models_{\nu} \psi$. Case $\psi=A\left[\psi_{1} \widetilde{U} \psi_{2}\right]$: this case is similar to the case $\psi=E\left[\psi_{1} \widetilde{U} \psi_{2}\right]$.

Therefore, CTL model-checking for SM-PDSs can be reduced to the problem of determining whether a SM-ABPDS has an accepting run.

4.2 Computing the language of a SM-ABPDS

From now on, we fix a SM-ABPDS $\mathcal{B P}=\left(P, \Delta, \Delta_{c}, \Gamma, F\right)$. We show in this section that the set of configurations accepted by $\mathcal{B P}$ is regular and can be effectively represented by an EAMA (extended Alternating Multi-automaton). To this aim, we first characterize the set of configurations $L(\mathcal{B P})$ from which $\mathcal{B P}$ has an accepting run. Then we use this characterization to compute an EAMA that accepts it.

4.2.1 Characterizing $L(\mathcal{B P})$

Let $\left(X_{i}\right)_{i \geq 0}$ be the following sequence: $X_{0}=P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$, and for every $i \geq 0$, $X_{i+1}=\operatorname{Pre}_{\mathcal{B} \mathcal{P}}^{+}\left(X_{i} \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$. Let $Y_{\mathcal{B P}}=\bigcap_{i \geq 0} X_{i}$. We can show that $L(\mathcal{B P})=Y_{\mathcal{B P}}:$

Theorem 4.2.1 ASM-ABPDS $\mathcal{B P}$ has an accepting run starting from a configuration $(\langle p, w\rangle, \theta)$ iff $(\langle p, w\rangle, \theta) \in Y_{\mathcal{B P}}$.

Proving this theorem is based on the following lemma:
Lemma $8 \mathcal{B P}$ has a run ρ starting from a configuration $(\langle p, w\rangle, \theta)$ s.t. each path of ρ visits configurations with control locations in F at least k times iff $(\langle p, w\rangle, \theta) \in X_{k}$.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Indeed, let $c \in X_{1}$. Then c has a successor $C \subseteq F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$ (since $X_{1}=$ $\operatorname{Pr}_{\mathcal{B} \mathcal{P}}^{+}\left(X_{0} \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$). Therefore, $\mathcal{B P}$ has a run starting from c that visits some configuration $p \in F$ at least once. $X_{2}=\operatorname{Pr}_{\mathcal{B} \mathcal{P}}^{+}\left(X_{1} \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$, thus $\forall c^{\prime} \in X_{2}$, a run starting from c^{\prime} will visit configurations in $X_{1} \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)$ at least once; and thus, it visits configurations with control locations in F at least twice. Thus, we can get by induction that $\forall k \geq 1$, for every configuration c in $X_{k}, \mathcal{B P}$ has a run that visits configurations with control locations in F at least k times.
Proof: (\Rightarrow) : We proceed by induction on k.
Basis. $k=0$. In this case, we can directly obtain that $(\langle p, w\rangle, \theta) \in X_{0}$.
Step. $k \geq 1$. Let $\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right)$ be the first nodes of ρ that are visited in each path of ρ such that $p_{i} \in F$. Then we get $\left.(1)(\langle p, w\rangle), \theta\right) \Rightarrow_{\mathcal{B P}}$ $\left.\left\{\left(\left\langle p_{1}, w_{1}\right\rangle\right), \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right)\right\}$. (2) for every $1 \leq i \leq n, p_{i} \in F$. (3) for every $1 \leq i \leq n, \mathcal{B} \mathcal{P}$ has a run ρ_{i} from the configuration $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right)$ s.t. all the paths of ρ_{i} can visit some configurations with control locations in F at least $k-1$ times.

By applying the induction hypothesis to (3), we can get that $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \in$ X_{k-1} for each $1 \leq i \leq n$. Since $p_{i} \in F$, then $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \in X_{k-1} \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$. Moreover, since $X_{k}=\operatorname{Pre}^{+}\left(X_{k-1} \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)$, we have that $(\langle p, w\rangle, \theta) \in X_{k}$. (\Leftarrow) : In this direction, let's proceed by induction on k. It is obvious when $k=0$. we only need to prove that $\mathcal{B P}$ has a run ρ from the configuration $(\langle p, w\rangle, \theta)$ such that each path of ρ can visit some configurations with control locations in F and least k times for $k \geq 1$.

Since $(\langle p, w\rangle, \theta) \in X_{k}$ for $X_{k}=\operatorname{Pr}^{+}\left(X_{k-1} \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)$, we obtain that $\left.(\langle p, w\rangle), \theta) \Rightarrow_{\mathcal{B} \mathcal{P}}\left\{\left(\left\langle p_{1}, w_{1}\right\rangle\right), \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right)\right\}$ and $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \in X_{k-1} \cap F \times$ $\Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$ for every $1 \leq i \leq n$.

By applying the induction hypothesis, we can get that $\mathcal{B P}$ has a run ρ_{i} starting from $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right)$ s.t. every path of ρ_{i} can visit some configurations with control locations in F at least $k-1$ times. Thus, $\mathcal{B P}$ has a run ρ from the configuration $(\langle p, w\rangle, \theta)$ such that each path of ρ can visit some configuration with the control location in F at least k times.

Then we can prove Theorem 4.2.1:

Proof: (\Rightarrow) : In this direction, we show that if $(\langle p, w\rangle, \theta) \notin Y_{\mathcal{B P}}$, then $\mathcal{B P}$ has no accepting run from $(\langle p, w\rangle, \theta)$.

Since $(\langle p, w\rangle, \theta) \notin Y_{\mathcal{B P}}$ and $Y_{\mathcal{B P}}=\bigcap_{i \geq 0} X_{i}$, there exists $k \geq 0$ s.t. $(\langle p, w\rangle, \theta) \notin X_{k}$. Assume $\mathcal{B P}$ has an accepting run from $(\langle p, w\rangle, \theta)$. Then, by Lemma 8, all runs from the configuration $(\langle p, w\rangle, \theta)$ can visit configurations with control location in F at least k times, we can get that $(\langle p, w\rangle, \theta) \in X_{k}$ which contradicts the fact that $(\langle p, w\rangle, \theta) \notin X_{k}$. Thus, $\mathcal{B P}$ has no accepting run from the configuration $(\langle p, w\rangle, \theta)$.
(\Leftarrow) : We prove that if $(\langle p, w\rangle, \theta) \in Y_{\mathcal{B P}}$, then $\mathcal{B P}$ has an accepting run from $(\langle p, w\rangle, \theta)$. Since $Y_{\mathcal{B} \mathcal{P}}=\operatorname{Pr}^{+}\left(Y_{\mathcal{B} \mathcal{P}} \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)$ (note that $Y_{\mathcal{B} \mathcal{P}}$ is a fix point of $\left.\operatorname{Pr}^{+}\left(X \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$, then there exists a set of configurations $\left\{\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right)\right\} \subseteq Y_{\mathcal{B P}} \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$ such that $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{B} \mathcal{P}}\left\{\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right)\right\}$. Thus, we can obtain that $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \in Y_{\mathcal{B P}}, p_{i} \in F$.

Then we will construct a finite run (tree) ρ with root $(\langle p, w\rangle, \theta)$, the leaves of ρ are $\left\{\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right)\right\}$ and the inner nodes are the successors during the derivation of $(\langle p, w\rangle, \theta) \Rightarrow_{\mathcal{B} \mathcal{P}}\left\{\left(\left\langle p_{1}, w_{1}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n}\right\rangle, \theta_{n}\right)\right\}$. Every path of ρ can visit some configurations with control locations in F at least once.

Since $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right) \in Y_{\mathcal{B P}}$, we can repeatedly construct a corresponding tree ρ_{i} for the configuration $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right)$. Then the leaf $\left(\left\langle p_{i}, w_{i}\right\rangle, \theta_{i}\right)$ in ρ can be replaced by the tree ρ_{i} and we can obtain a new tree whose every path can visit some configuration with control location in F at least twice. Then we can infinitely repeat this procedure to leaves of the latest tree. Then each path of the latest tree can visit some configurations with control locations in F infinitely often. Thus, $\mathcal{B P}$ has an accepting run ρ.

4.2.2 Computing $Y_{\mathcal{B P}}$

In this section, our goal is to compute $Y_{\mathcal{B P}}$. We show that this set can be effectively represented by an EAMA $\mathcal{A}=\left(Q, \Gamma, T, I, Q_{f}\right)$, where $Q \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times \mathbb{N} \cup$ $\left\{q_{f}\right\}, I \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times \mathbb{N}$ is the set of initial states and q_{f} is the final state $\left(Q_{f}=\left\{q_{f}\right\}\right)$. Following [41], we propose a saturation procedure to compute \mathcal{A} iteratively. Algorithm 1 below computes \mathcal{A}. Intuitively, it computes the

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

different X_{i} 's iteratively. Each iteration step i computes an EAMA \mathcal{A}_{i}. States of \mathcal{A}_{i} are of the form $(p, \theta)^{i}$, where $p \in P$ and $\theta \subseteq \Delta \cup \Delta_{c}$. There are two loops in the algorithm: the outer loop (loop 1) and the inner loop (loop 2). As will be explained later, if the sequence (X_{i}) is strictly decreasing, the outer loop won't terminate. So we introduce two projections to force termination as follows: for every $S \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times \mathbb{N} \cup\left\{q_{f}\right\}$:

$$
\begin{aligned}
& \pi^{-1}(S)= \begin{cases}\left\{q^{i} \mid q^{i+1} \in S\right\} \cup\left\{q_{f}\right\} & \text { if } q_{f} \in S \text { or } \exists q^{1} \in S \\
\left\{q^{i} \mid q^{i+1} \in S\right\} & \text { else. }\end{cases} \\
& \pi^{i}(S)=\left\{q^{i} \mid \exists 1 \leq j \leq i \text { s.t. } q^{j} \in S\right\} \cup\left\{q_{f} \mid q_{f} \in S\right\}
\end{aligned}
$$

```
Algorithm 1 Computation of \(Y_{\mathcal{B P}}\)
    Initially: \(i=0, T=\left\{\left(q_{f}, \gamma,\left\{q_{f}\right\}\right)\right\}, \forall \gamma \in \Gamma, p \in P, \theta \subseteq \Delta \cup \Delta_{c},(p, \theta)^{0}=q_{f}\).
        Repeat (we call this loop loop \({ }_{1}\) )
            \(i:=i+1\);
            \(\forall(p, \theta)^{i-1}\) in the current automaton s.t. \(p \in F\),
    add \((p, \theta)^{i} \xrightarrow{\epsilon}(p, \theta)^{i-1}\) to \(T\)
            Repeat (we call this loop loop \({ }_{2}\) )
                if \(r:\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle p_{1}, w_{1}\right\rangle, \cdots,\left\langle p_{n}, w_{n}\right\rangle\right\} \in \Delta \cap \theta\)
                if \(\left(\exists k, 1 \leq k \leq n: \sigma_{k} \cap \theta \neq \emptyset\right.\) or \(\left.\forall k, 1 \leq k \leq n, \sigma_{k}=-\right)\)
                    Add \((p, \theta)^{i} \xrightarrow{\gamma} S_{Q}\) to \(T\),
    where \(S_{Q}=\left\{q \in Q_{k} \mid\left(p_{k}, \theta\right)^{i} \xrightarrow{w_{k}} Q_{T}, 1 \leq k \leq n\right.\) s.t. \(\sigma_{k}=-\) or \(\left.\sigma_{k} \cap \theta \neq \emptyset\right\}\).
            if \(r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime} \in \Delta_{c} \cap \theta\), s.t.
            \(\left(p^{\prime}, \theta^{\prime}\right)^{i} \xrightarrow{\gamma}_{T} Q\) and \(\theta^{\prime}=\theta \backslash \sigma \cup \sigma^{\prime}\)
                    Then, add \((p, \theta)^{i} \xrightarrow{\gamma} Q\) to \(T\).
            Until No new transition rule can be added.
            Remove from \(T\) the transition rules \((p, \theta)^{i} \xrightarrow{\epsilon}(p, \theta)^{i-1}\), for every \(p \in F\).
            Replace every \((p, \theta)^{i} \xrightarrow{\gamma} S\) in \(T\) by \((p, \theta)^{i} \xrightarrow{\gamma} \pi^{i}(S), \forall p \in P, \gamma \in \Gamma, S \subseteq Q\)
        Until \(i>1\) and for every \(p \in P, \gamma \in \Gamma, \theta \in 2^{\Delta \cup \Delta_{c}}, S \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times\{i\} \cup\)
    \(\left\{q_{f}\right\},(p, \theta)^{i} \xrightarrow{\gamma} S \in T \Longleftrightarrow(p, \theta)^{i-1} \xrightarrow{\gamma} \pi^{-1}(S) \in T\).
```

Intuitively, at each step i, every state (p, θ) is represented by state $(p, \theta)^{i}$ in \mathcal{A}_{i}. For every $(p, \theta) \in I, \mathcal{A}_{i}$ recognizes a configuration $(\langle p, w\rangle, \theta)$ if $(p, \theta)^{i}{ }^{\omega}{ }_{T} q_{f}$. \mathcal{A}_{0} is the automaton obtained by Line 1. It accepts $X_{0}=P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$. At
the beginning of each iteration, an ϵ-transition in the form $(p, \theta)^{i} \xrightarrow{\epsilon}_{T}(p, \theta)^{i-1}$ is added in Line 4 for every $(p, \theta) \in F \times 2^{\Delta \cup \Delta_{c}}$ in the current automaton. This allows to get $L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)$. Lines 5-12 $\left(\right.$ loop $\left._{2}\right)$ is the saturation procedure that computes $\operatorname{Pr}_{\mathcal{B} \mathcal{P}}^{*}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$. They ensure that if θ is a phase such that $\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle p_{1}, w_{1}\right\rangle, \cdots,\left\langle p_{n}, w_{n}\right\rangle\right\} \in \Delta \cap \theta$, s.t. either $\exists k, 1 \leq k \leq n, \sigma_{k} \cap \theta \neq \emptyset$ or $\forall k, 1 \leq k \leq n, \sigma_{k}=-$, and for every k s.t. $\sigma_{k} \cap \theta \neq \emptyset$ or $\sigma_{k}=-, \quad\left(\left\langle p_{k}, w_{k} w\right\rangle, \theta\right) \in L\left(\mathcal{A}_{i}\right)\left(\right.$ i.e., $\left.\left(p_{k}, \theta\right)^{i} \xrightarrow{w_{k} w} q_{f}\right)$, then $(\langle p, \gamma w\rangle, \theta)$ should also be in $L\left(\mathcal{A}_{i}\right)$ (since it is a predecessor of $\left\{\left(\left\langle p_{k}, w_{k} w\right\rangle, \theta\right), 1 \leq k \leq n\right\}$). I.e., T should contain the path $(p, \theta)^{i} \xrightarrow{\gamma w} q_{f}$. This path is added thanks to Line 8 . Moreover, if θ is a phase such that $\langle p, \gamma\rangle \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p^{\prime} \in \Delta_{c} \cap \theta$ and $\left(\left\langle p^{\prime}, \gamma w\right\rangle, \theta^{\prime}\right) \in$ $L\left(\mathcal{A}_{i}\right)$ (i.e., $\left.\left(p^{\prime}, \theta^{\prime}\right)^{i} \xrightarrow{\gamma w}_{T} q_{f}\right)$, where $\theta^{\prime}=\theta \backslash \sigma \cup \sigma^{\prime}$; then $(\langle p, \gamma w\rangle, \theta)$ should also be in $L\left(\mathcal{A}_{i}\right)$ (since it is a predecessor of $\left(\left\langle p^{\prime}, \gamma w\right\rangle, \theta^{\prime}\right)$). I.e., T should contain the path $(p, \theta)^{i} \xrightarrow{\gamma w}_{T} q_{f}$. This path is added thanks to Line 11. Line 13 removes the ϵ-transition added by Line 4 . This leads to $\operatorname{Pr}_{\mathcal{B} \mathcal{P}}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$.

Let Algorithm A be Algorithm 1 without Line 14. Then, if Algorithm A terminates, it computes $Y_{\mathcal{B P}}$. However, if the sequence X_{i} is strictly decreasing, Algorithm A never terminates. Lines 14-15 are then used to force termination. Indeed, thanks to the substitution of Line 14, at the end of step i, states of the form $(p, \theta)^{j}$, for $j<i$ become useless and can be removed. Line 15 checks then whether at step i, the transitions of \mathcal{A}_{i} are "the same" than those of \mathcal{A}_{i-1}. If this is the case, the algorithm terminates. Termination of the algorithm then follows from the fact that step i adds less transitions than step $i-1$. Intuitively, this is due to the fact that $L\left(\mathcal{A}_{i}\right) \subseteq L\left(\mathcal{A}_{i-1}\right)$, because step i computes $\operatorname{Pr} e_{\mathcal{B} \mathcal{P}}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\right.$ $\left.\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$ and \mathcal{A}_{0} accepts $P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$. Thus, we can show that:

Theorem 4.2.2 Algorithm 1 always terminates and produces $Y_{\mathcal{B P}}$.
To prove Theorem 4.2.2, we need the following lemma:

Lemma 9 In Algorithm 1, for every $\gamma \in \Gamma, w \in \Gamma^{*}, p \in P, S \subseteq Q$; at each step $i \geq 1$, the following holds:
(a) if $(p, \theta)^{i} \xrightarrow{\gamma} S \in T$, then $(p, \theta)^{i-1} \xrightarrow{\gamma} \pi^{-1}\left(\pi^{i}(S)\right) \in T$.
(b) if $(p, \theta)^{i} \xrightarrow{w}_{T} S$, then $(p, \theta)^{i-1} \xrightarrow{w}_{T} \pi^{-1}\left(\pi^{i}(S)\right)$.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Proof: We proceed by induction on i.
Basis. $i=1$. In this case, whenever a transition rule $(p, \theta)^{1} \xrightarrow{\gamma} S$ is added to T by either the saturation procedure (Lines 2-12) or the substitution (Line 14), we can get that $\pi^{-1}\left(\pi^{1}(S)\right)=\left\{q_{f}\right\}$. Since $(p, \theta)^{0}=\left\{q_{f}\right\}$ and $q_{f} \xrightarrow{\gamma}\left\{q_{f}\right\}$ in T, we obtain that $(p, \theta)^{0} \xrightarrow{\gamma}\left\{q_{f}\right\}$. Hence, $(p, \theta)^{0} \xrightarrow{\gamma} \pi^{-1}\left(\pi^{1}(S)\right)$. Therefore, the statement (a) holds.
For statement (b). In this case, we can have that $\pi^{-1}\left(\pi^{1}(S)\right)=\left\{q_{f}\right\}$. If $(p, \theta)^{1} \xrightarrow{w}_{T} S$, We need to show that $(p, \theta)^{0} \xrightarrow{w}_{T} \pi^{-1}\left(\pi^{1}(S)\right)$. Since $(p, \theta)^{0} \xrightarrow{\gamma}$ $\left\{q_{f}\right\}$ and $q_{f} \xrightarrow{\gamma^{\prime}}\left\{q_{f}\right\}$ for $\gamma, \gamma^{\prime} \in \Gamma$, we obtain that $(p, \theta)^{0} \xrightarrow{w}_{T} \pi^{-1}\left(\pi^{1}(S)\right)$ (since $\left.\pi^{-1}\left(\pi^{1}(S)\right)=\left\{q_{f}\right\}\right)$ for every $S \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times\{0,1\} \cup\left\{q_{f}\right\}$. The ϵ-case $(w=\epsilon)$ is trivial (since $(p, \theta)^{0} \xrightarrow[\rightarrow]{\epsilon}_{T}\left\{(p, \theta)^{0}\right\}$ and either $(p, \theta)^{1} \stackrel{\epsilon}{\rightarrow}_{T}\left\{(p, \theta)^{0}\right\}$ if $p \in F$ or $(p, \theta)^{1} \stackrel{\epsilon}{\rightarrow}_{T}\left\{(p, \theta)^{1}\right\}$.) Hence, the statement (b) holds.

Step. $i>1$. Let k be the number of transition rules added at the step i. We proceed by induction on k.

- Basis. $k=0$. there is no transition rule added in the form of $(p, \theta)^{i} \xrightarrow{\gamma} S$ which implies that the statement (a) holds. For every $(p, \theta)^{i} \xrightarrow{w}_{T} S$, we get that there is a path $(p, \theta)^{i} \xrightarrow{\epsilon}_{T}(p, \theta)^{i-1} \xrightarrow{w}_{T} S$ in the automaton for some $S \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times\{i-1\} \cup\left\{q_{f}\right\}$ if $p \in F$ or $(p, \theta)^{i} \xrightarrow{\epsilon}_{T} S$ with $S=\left\{(p, \theta)^{i}\right\}$ and $w=\epsilon$. Since $(p, \theta)^{i-1} \xrightarrow{\epsilon}_{T}(p, \theta)^{i-1}$ and $\pi^{-1}\left(\pi^{i}(S)\right)=S$, we have $(p, \theta)^{i-1} \xrightarrow{\epsilon}_{T}(p, \theta)^{i-1} \xrightarrow{w}_{T} \pi^{-1}\left(\pi^{i}(S)\right)$. This implies the statement (b) holds.
- Step. $k \geq 1$.

For statement (a). Let $t=(p, \theta)^{i} \xrightarrow{\gamma} S$ be the k-th transition rule added by the saturation procedure. Then there exist $1 \leq j \leq n$ and $\theta_{j} \subseteq \Delta \cup \Delta_{c}$ s.t. $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i} \xrightarrow{w_{j_{l}}} S_{j_{l}}$ where $\left\{j_{1}, \cdots, j_{m}\right\} \subseteq\{1, \cdots, n\}, 1 \leq l \leq m$. There are 2 cases depending on whether t is added by Line 8 or not.
(I) if t is added by Line 8 , then there exists a transition rule

$$
r:\langle p, \gamma\rangle \stackrel{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}{\longrightarrow}\left\{\left\langle p_{1}, w_{1}\right\rangle, \cdots,\left\langle p_{n}, w_{n}\right\rangle\right\} \in \Delta \cap \theta
$$

in $\mathcal{B P}$ where $\theta_{j}=\theta$ s.t. $\exists i: 1 \leq i \leq n, \sigma_{i} \cap \theta \neq \emptyset$ or $\sigma_{i}=-$ for every $1 \leq i \leq n$.

Let $\left\{\sigma_{j_{1}}, \cdots, \sigma_{j_{m}}\right\}$ be the set of σ s.t. $\sigma_{j_{l}} \cap \theta \neq \emptyset$ or $\sigma_{j_{l}}=-$ for $1 \leq l \leq m$. Then there exist $\left(p_{j_{l}}, \theta\right)^{i} \xrightarrow{w_{j_{l}}}{ }_{T} S_{j_{l}}$ for every $1 \leq l \leq m$ s.t. $S=\left\{q \in S_{x} \mid x \in\left\{j_{1}, \cdots, j_{m}\right\}\right\}$ i.e. $S=\bigcup_{l=1}^{m} S_{j_{l}}$.
(II) if t is added by Line 11 , then there exists a transition rule $r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p_{j} \in \Delta_{c} \cap \theta$ in $\mathcal{B} \mathcal{P}$ where $\theta_{j}=\theta \backslash \sigma \cup \sigma^{\prime}$. In this case, $n=j=1$. Then, there exists $\left(p_{j}, \theta_{j}\right)^{i} \xrightarrow{\gamma}_{T} S_{j}$ s.t. $S=S_{j}$. We rewrite $\left(p_{j}, \theta_{j}\right)^{i} \xrightarrow{\gamma}_{T} S_{j}$ of the form $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i} \xrightarrow{w_{j_{l}}} S_{j_{l}}$ where $j_{l}=1, \theta_{j_{l}}=\theta_{j}$ and $w_{j_{l}}=\gamma$.

By applying the induction hypothesis on i to $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i} \xrightarrow{w_{j_{l}}} S_{T}$ for each $l: 1 \leq l \leq m$, we can obtain that $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} \pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)$. Therefore, we only need to prove that there exists $R_{j_{l}}$ s.t. $\pi^{i-1}\left(R_{j_{l}}\right)=\pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)$ for every $1 \leq l \leq m$ and $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} R_{j_{l}}$ exists in the current automaton during the $(i-1)$-th iteration of $l o o p_{1}$. If the derivation of $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}}{ }_{T}$ $\pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)$ does not use any transition rule added by the substitution at Line 14, then, $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} \pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)$ exists during the saturation procedure at the $(i-1)$ th iteration. Otherwise, there is a transition rule $q^{i-1}{\xrightarrow{\gamma^{\prime}}}_{T} R$ which is used in the derivation of $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} \pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)$ and is obtained by replacing $q^{i-1}{\xrightarrow{\gamma^{\prime}}}_{T} R^{\prime}$ at line 14 where $R=\pi^{i-1}\left(R^{\prime}\right)$. Let us decompose $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} \pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)$ as follows:

- $w_{j_{l}}=u \gamma^{\prime} v$ with $u, v \in \Gamma^{*}$,
- $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow[\rightarrow]{u}_{T} G \cup\left\{q^{i-1}\right\}$ with $G \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times\{i-1\} \cup\left\{q_{f}\right\}$
- $G{\xrightarrow{\gamma^{\prime} v}}_{T} G^{\prime}$
- $R \stackrel{v}{\rightarrow}_{T} G^{\prime \prime}$
- $\pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)=G^{\prime} \cup G^{\prime \prime}$

By applying the induction hypothesis on i to $R \stackrel{v}{\rightarrow}_{T} G^{\prime \prime}$, there exists $G^{\prime \prime \prime}$ s.t. $R^{\prime} \xrightarrow{v}_{T} G^{\prime \prime \prime}$ is obtained by applying the saturation procedure at the ($i-1$)th iteration and $G^{\prime \prime}=\pi^{i-1}\left(G^{\prime \prime \prime}\right)$. Thus, there must exist $R_{j_{l}}$ s.t. $\pi^{i-1}\left(R_{j_{l}}\right)=\pi^{-1}\left(\pi^{i}\left(S_{j_{l}}\right)\right)$ and the derivation of $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} R_{j_{l}}$ uses transition rules added by the substitution at Line 14 less often than the derivation of $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} S_{j_{l}}$.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Similarly, we can apply the same reasoning to $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} R_{T} R_{j_{l}}$ to show that there exists $R_{j_{l}}^{\prime}$ s.t. $\left(p_{j_{l}}, \theta_{j_{l}}\right)^{i-1} \xrightarrow{w_{j_{l}}} R_{j_{l}}^{\prime}$ holds during the saturation procedure at the $(i-1)$ th iteration. Thus, the statement (a) holds. If a transition rule $(p, \theta)^{i} \xrightarrow{\gamma} \pi^{i}(S)$ is added by the substitution at line 14 due to the transition $t=(p, \theta)^{i} \xrightarrow{\gamma} S$, then the statement (a) still holds.

For statement (b). Let us consider the statement (b) where we show that if $(p, \theta)^{i-1} \xrightarrow{w}_{T} S$, then $(p, \theta)^{i-1} \xrightarrow{w}_{T} \pi^{-1}\left(\pi^{i}(S)\right)$. Then, suppose $t=$ $\left(p_{0}, \theta_{0}\right)^{i} \xrightarrow{\gamma}\left\{q_{1}^{i}, \cdots, q_{n}^{i}, q_{n+1}^{i-1}, \cdots, q_{n+n^{\prime}}^{i-1}\right\}$ be the k-th transition rule added by either the saturation procedure or the substitution (line 14). Let x be the number of times that t is used in the path $(p, \theta)^{i}{ }^{w}{ }_{T} S$. We proceed by induction on x. In the basic case when $x=0$, the property holds by applying the induction hypothesis on k. Let us consider the case where $x>0$. Then, there exist $u, v \in \Gamma^{*}$ s.t. $w=v \gamma u$ and there exist the following path in the current automaton:

- $(p, \theta)^{i} \xrightarrow{v}_{T} G \cup\left\{\left(p_{0}, \theta_{0}\right)^{i}\right\}$ for some $G \subseteq Q$ where t is not used in the derivation of $(p, \theta)^{i} \xrightarrow{v}_{T} G \cup\left\{\left(p_{0}, \theta_{0}\right)^{i}\right\}$
- $G \xrightarrow{\gamma u} G^{\prime}$.
- $q_{j}^{i} \xrightarrow{u}_{T} S_{j}$ for every $j: 1 \leq j \leq n$.
- $q_{j}^{i-1} \xrightarrow{u}_{T} S_{j}$ for every $j: n+1 \leq j \leq n+n^{\prime}$.
- $S=G^{\prime} \cup \bigcup_{j=1}^{n+n^{\prime}} S_{j}$.

By applying the induction hypothesis on k to $(p, \theta)^{i} \stackrel{v}{\rightarrow}_{T} G \cup\left\{\left(p_{0}, \theta_{0}\right)^{i}\right\}$, we can obtain that $(p, \theta)^{i-1} \stackrel{v}{\rightarrow}_{T} \pi^{-1}\left(\pi^{i}(G)\right) \cup\left\{\left(p_{0}, \theta_{0}\right)^{i-1}\right\}$. By applying the induction hypothesis on x to $G \xrightarrow{\gamma u} G^{\prime}$ and $q_{j}^{i}{ }_{\rightarrow}^{u} S_{j}$, we get that $\pi^{-1}\left(\pi^{i}(G)\right) \xrightarrow{\gamma u}{ }_{T} \pi^{-1}\left(\pi^{i}\left(G^{\prime}\right)\right)$ and $q_{j}^{i-1} \xrightarrow{u}_{T} \pi^{-1}\left(\pi^{i}\left(S_{j}\right)\right)$ for every $j: 1 \leq j \leq$ n. By applying the statement (a) to $\left(p_{0}, \theta_{0}\right)^{i} \xrightarrow{\gamma}\left\{q_{1}^{i}, \cdots, q_{n}^{i}, q_{n+1}^{i-1}, \cdots, q_{n+n^{\prime}}^{i-1}\right\}$, we can get that $\left(p_{0}, \theta_{0}\right)^{i-1} \xrightarrow{\gamma}\left\{q_{1}^{i-1}, \cdots, q_{n+n^{\prime}}^{i-1}\right\}$.
Since $\pi^{-1}\left(\pi^{i}(S)\right)=\pi^{-1}\left(\pi^{i}\left(G^{\prime}\right)\right) \cup \bigcup_{j=1}^{n} \pi^{-1}\left(\pi^{i}\left(S_{j}\right)\right) \cup \bigcup_{j=n+1}^{n+n^{\prime}} S_{j}$, we get that $(p, \theta)^{i-1} \xrightarrow{w}_{T} \pi^{-1}\left(\pi^{i}(S)\right)$. Thus, the statement (b) holds.

In order to show that there exists a fix-point s.t. the termination condition of $l o o p_{1}$ is true, let Algorithm C be Algorithm 1 without Line 15 i.e. without the termination condition of loop $_{1}$. We show that there exists a fix-point n such that $L\left(\mathcal{A}_{n}\right)=L\left(\mathcal{A}_{n+1}\right)$.

Lemma 10 Let $n \geq 1$ be the first number in Algorithm C s.t. for every $p \in$ $P, \gamma \in \Gamma, S \subseteq\left(P \times 2^{\Delta \cup \Delta_{c}} \times\{n+1\}\right) \cup\left\{q_{f}\right\}, \theta \subseteq \Delta \cup \Delta_{c},(p, \theta)^{n+1} \xrightarrow{\gamma} S \in T \Leftrightarrow$ $(p, \theta)^{n} \xrightarrow{\gamma} \pi^{-1}(S) \in T$. For every $i \geq n, L\left(\mathcal{A}_{i+1}\right)=L\left(\mathcal{A}_{n}\right)$.
Proof: Since $(p, \theta)^{i+1} \xrightarrow{\gamma} S$ will be replaced by $(p, \theta)^{i+1} \xrightarrow{\gamma} \pi^{i+1}(S)$ by line 14, then each path $(p, \theta)^{i+1} \xrightarrow{w}_{T}\left\{q_{f}\right\}$ only uses states in the form of $P \times 2^{\Delta \cup \Delta_{c}} \times$ $\{i+1\} \cup\left\{q_{f}\right\}$. It is sufficient to prove that for every $(p, \theta) \in P \times 2^{\Delta \cup \Delta_{c}}, \gamma \in$ $\Gamma,(p, \theta)^{i+1} \xrightarrow{\gamma}\left\{q_{1}^{i+1}, \cdots, q_{m}^{i+1}\right\} \in T \Leftrightarrow(p, \theta)^{n} \xrightarrow{\gamma}\left\{q_{1}^{n}, \cdots, q_{m}^{n}\right\} \in T$ by induction on i.

Basis. $i=n$. We can get directly from the condition of n that

$$
\begin{equation*}
(p, \theta)^{n+1} \xrightarrow{\gamma}\left\{q_{1}^{n+1}, \cdots, q_{m}^{n+1}\right\} \in T \Leftrightarrow(p, \theta)^{n} \xrightarrow{\gamma}\left\{q_{1}^{n}, \cdots, q_{m}^{n}\right\} \in T \tag{0}
\end{equation*}
$$

Step. $i>n$. By applying the induction hypothesis (induction on i), then we obtain that for every $(p, \theta) \in P \times 2^{\Delta \cup \Delta_{c}}, \gamma \in \Gamma$,

$$
\begin{equation*}
(p, \theta)^{i} \xrightarrow{\gamma}\left\{q_{1}^{i}, \cdots, q_{m}^{i}\right\} \in T \Leftrightarrow(p, \theta)^{n} \xrightarrow{\gamma}\left\{q_{1}^{n}, \cdots, q_{m}^{n}\right\} \in T \tag{1}
\end{equation*}
$$

Since the result of $(1),(p, \theta)^{i+1} \xrightarrow{\gamma}\left\{q_{1}^{i+1}, \cdots, q_{m}^{i+1}\right\}$ is added based on \mathcal{A}_{i}, for every $(p, \theta) \in P \times 2^{\Delta \cup \Delta_{c}}, \gamma \in \Gamma$, we obtain that:

$$
(p, \theta)^{i+1} \xrightarrow{\gamma}\left\{q_{1}^{i+1}, \cdots, q_{m}^{i+1}\right\} \in T \Leftrightarrow(p, \theta)^{n+1} \xrightarrow{\gamma}\left\{q_{1}^{n+1}, \cdots, q_{m}^{n+1}\right\} \in T
$$

From (0), we get that

$$
(p, \theta)^{i+1} \xrightarrow{\gamma}\left\{q_{1}^{i+1}, \cdots, q_{m}^{i+1}\right\} \in T \Leftrightarrow(p, \theta)^{n} \xrightarrow{\gamma}\left\{q_{1}^{n}, \cdots, q_{m}^{n}\right\} \in T
$$

Lemma 11 In Algorithm 1, $\forall i \geq 1$, after line 13, \mathcal{A}_{i} accepts $\operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\right.$ $\left.\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Proof:

To prove this lemma, we first show that each configuration c accepted by \mathcal{A}_{i} after Line 13 is such that $c \in \operatorname{Pre}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$, then we show that each configuration $c \in \operatorname{Pre}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$ is accepted by \mathcal{A}_{i} after Line 13.
$(\Rightarrow:)$ Suppose $(\langle p, w\rangle, \theta)$ is a configuration accepted by \mathcal{A}_{i} after Line 13 , we show that $(\langle p, w\rangle, \theta) \in \operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$. Since there is no path of the form $(p, \theta)^{i}{ }_{\rightarrow}^{\epsilon_{T}}\left\{q_{f}\right\}$ after Line 13, then we get that $|w| \geq 1$. Then there exist $\gamma \in \Gamma, u \in \Gamma^{+}$and $S \subseteq Q$ s.t. $w=\gamma u, t=(p, \theta)^{i} \xrightarrow{\gamma} S \in T$ and $\left.S \xrightarrow{u} T q_{f}\right\}$. There are 2 cases depending on whether t is added by Line 8 or Line 11. Let r be the transition rule used to add t.

- Case t is added by Line 8: then there exists a rule
$r:\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle p_{1}, w_{1}\right\rangle \cdots\left\langle p_{n}, w_{n}\right\rangle\right\} \in \Delta$ s.t. $r \in \theta, \quad$ and either $\sigma_{j}=$ - for every $j: 1 \leq j \leq n$ or $\exists j: 1 \leq j \leq n$ s.t. $\sigma_{j} \cap \theta \neq \emptyset, S=$ $\left\{q \in S_{j} \mid\left(p_{j}, \theta\right)^{i}{\xrightarrow{w_{j}}}_{T} S_{j}, 1 \leq j \leq n, \sigma_{j} \cap \theta \neq \emptyset\right.$ or $\left.\sigma_{j}=-\right\}$.
This implies that $\left\{\left(\left\langle p_{j}, w_{j} u\right\rangle, \theta\right) \mid 1 \leq j \leq n, \sigma_{j} \cap \theta \neq \emptyset\right.$ or $\left.\sigma_{j}=-\right\} \subseteq$ $\operatorname{Pre}^{*}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$.
Thus, we get that $(\langle p, \gamma u\rangle, \theta) \in \operatorname{Pre}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$. The property holds.
- Case t is added by Line 11: then there exists a rule $r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p_{1} \in \Delta_{c}$ s.t. $r \in \theta, \theta_{1}=\theta \backslash \sigma \cup \sigma^{\prime}$. We get that $\left(p_{1}, \theta_{1}\right)^{i} \stackrel{\gamma}{\rightarrow}_{T} S_{1}$. This implies that $\left\{\left(\left\langle p_{1}, \gamma u\right\rangle, \theta_{1}\right)\right\} \subseteq \operatorname{Pr}^{*}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$
Thus, we get that $(\langle p, \gamma u\rangle, \theta) \in \operatorname{Pre}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$. The property holds.
$(\Leftarrow:)$ Suppose $(\langle p, w\rangle, \theta) \in \operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$, we show that $(\langle p, w\rangle, \theta)$ is accepted by \mathcal{A}_{i} after Line 13. Since $\operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times\right.\right.$ $\left.\left.2^{\Delta \cup \Delta_{c}}\right)\right)=\operatorname{Pr} e^{*}\left(\operatorname{Pre}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)\right.$), we obtain that $\operatorname{Pr} e^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\right.$ $\left.\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$ is the limit of the infinite sequence $\left\{C_{i}\right\}_{i \geq 0}$ given by $C_{0}=$ $\operatorname{Pre}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$ and $C_{j+1}=C_{j} \cup \operatorname{Pre}\left(C_{j}\right)$ for every $j \geq 0$ $\left(C_{j} \subseteq C_{j+1}\right.$ for $\left.j \geq 0\right)$. Thus, we only need to show that for every $j \geq 0$, $(\langle p, w\rangle, \theta) \in C_{j}$, there exists a path $(p, \theta)^{i} \xrightarrow{w}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i} whose derivation doesn't
use any transition rule in the form of $q^{i} \xrightarrow{\epsilon}\left\{q^{i-1}\right\}$. We proceed by induction on j.

Basis. $j=0$. By applying the saturation procedure (Lines $5-12$), \mathcal{A}_{i} can accept C_{0} if only the out-coming states in the form of $(p, \theta)^{i}$ of the added transition rules are regarded as initial states. Moreover, these transition rules are in the form of $(p, \theta)^{i} \xrightarrow{\gamma} Q$ for some $Q \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times\{i-1\} \cup\left\{q_{f}\right\}$. Thus, for every configuration $(\langle p, w\rangle, \theta) \in C_{0}, \mathcal{A}_{i}$ has a path of the form $(p, \theta)^{i}{ }^{w}{ }_{T}\left\{q_{f}\right\}$ whose derivation doesn't use any transition rule in the form of $q^{i} \xrightarrow{\epsilon}\left\{q^{i-1}\right\}$.
Step. $\quad j \geq 1$. For every configuration $(\langle p, w\rangle, \theta) \in C_{j}$, since $C_{j}=C_{j-1} \cup$ $\operatorname{Pre}\left(C_{j-1}\right)$, we have $(\langle p, w\rangle, \theta) \in C_{j-1}$ or $(\langle p, w\rangle, \theta) \in \operatorname{Pre}\left(C_{j-1}\right)$.
If $(\langle p, w\rangle, \theta) \in C_{j-1}$, the result follows from the induction hypotheses.
If $(\langle p, w\rangle, \theta) \in \operatorname{Pre}\left(C_{j-1}\right)$, there are 2 cases depending on whether it corresponds to a self-modifying rule or not.

- If there exists a transition rule $r:\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{1}, \cdots, \sigma_{n}\right]}\left\{\left\langle p_{1}, w_{1}\right\rangle, \cdots,\left\langle p_{n}, w_{n}\right\rangle\right\} \in$ Δ s.t. $r \in \theta$ either $\exists k: 1 \leq k \leq n, \sigma_{k} \cap \theta \neq \emptyset$ or $\forall k: 1 \leq k \leq n, \sigma_{k}=-$, and $u \in \Gamma^{*}$ s.t. $w=\gamma u$ and $\left(\left\langle p_{k}, w_{k} u\right\rangle, \theta\right) \in C_{j-1}$ for $1 \leq k \leq n$ s.t. $\sigma_{k} \cap \theta \neq \emptyset$ or $\sigma_{k}=-$. By applying the induction hypothesis, we obtain that \mathcal{A}_{i} has a path $\left(p_{k}, \theta\right)^{i} \xrightarrow{w_{k}}{ }_{T} Q_{k} \xrightarrow{u}_{T}\left\{q_{f}\right\}$ for $1 \leq k \leq n, \sigma_{k} \cap \theta \neq \emptyset$ or $\sigma_{k}=-$. Applying the saturation rule, we obtain that $(p, \theta)^{i} \xrightarrow{\gamma} S_{Q}$ where $S_{Q}=\left\{q \in Q_{k} \mid\left(p_{k}, \theta\right)^{i} \xrightarrow{w_{k}} Q_{k}, 1 \leq k \leq n, \sigma_{k} \cap \theta \neq \emptyset\right.$ or $\left.\sigma_{k}=-\right\}$. This implies that \mathcal{A}_{i} has a path $(p, \theta)^{i} \xrightarrow{\gamma} S_{Q}{ }^{u}{ }_{T}\left\{q_{f}\right\}$ whose derivation doesn't use any transition rule in the form of $q^{i} \xrightarrow{\epsilon}\left\{q^{i-1}\right\}$. The property holds.
- If there exists a transition rule $r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)} p_{1} \in \Delta_{c} \cap \theta$ s.t. $\theta_{1}=\theta \backslash \sigma \cup \sigma^{\prime}$ and $\left(\left\langle p_{1}, w u\right\rangle, \theta_{1}\right) \in C_{j-1}$. By applying the induction hypothesis, we obtain that \mathcal{A}_{i} has a path $\left.\left(p_{1}, \theta_{1}\right)^{i}{ }^{w}{ }_{T} Q_{k}{ }_{\rightarrow}^{u} T q_{f}\right\}$. Applying the saturation rule, we obtain that $(p, \theta)^{i} \xrightarrow{\gamma} Q_{1}$. This implies that \mathcal{A}_{i} has a path $(p, \theta)^{i} \xrightarrow{\gamma}$ $Q_{1} \xrightarrow{u}{ }_{T}\left\{q_{f}\right\}$ whose derivation doesn't use any transition rule in the form of $q^{i} \xrightarrow{\epsilon}\left\{q^{i-1}\right\}$. The property holds.

Thus, \mathcal{A}_{i} accepts $\operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$.

Lemma 12 In Algorithm C (Algorithm 1 without Line 15), $\forall i \geq 0$,

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

(a) for every accepting run ρ of $\mathcal{B P}$ from $(\langle p, w\rangle, \theta) \in P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$, there exists a path $(p, \theta)^{i} \xrightarrow{w}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i} and for every decomposition $(p, \theta)^{i} \xrightarrow{u}_{T}$ $Q \xrightarrow{v}_{T}\left\{q_{f}\right\}$ of the path $(p, \theta)^{i} \xrightarrow{w}_{T}\left\{q_{f}\right\}$, if $Q \neq\left\{q_{f}\right\}$, then for all $\left(p^{\prime}, \theta^{\prime}\right)^{i}$ or $\left(p^{\prime}, \theta^{\prime}\right)^{i-1}$ in $Q \backslash\left\{q_{f}\right\}$, some path of the run ρ will reach $\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$ i.e. $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$
(b) $Y_{\mathcal{B P}} \subseteq L\left(\mathcal{A}_{i}\right)$ after substitution at line 14 .

Proof: We proceed by induction on i.
Basis. $i=0$. The statement (a) holds directly from the fact that for every configuration $(\langle p, w\rangle, \theta) \in P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$, there exists a path $(p, \theta)^{0} \xrightarrow{w}_{T}\left\{q_{f}\right\}$ in the initial automaton \mathcal{A}_{0} and for every decomposition $(p, \theta)^{0} \xrightarrow{u}_{T} Q \xrightarrow{v}_{T}\left\{q_{f}\right\}, Q=$ $\left\{q_{f}\right\}$. Then, statement (b) holds from the fact that $Y_{\mathcal{B P}} \subseteq P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}=L\left(\mathcal{A}_{0}\right)$.
Step. $i \geq 1$. For the statement (a). Let $H(\rho)$ be the maximum number of steps required by the paths of ρ from root $((\langle p, w\rangle, \theta))$ to reach some configuration with control locations in F. We apply a nested induction on $H(\rho)$.

- Basis. $H(\rho)=0$. Since the root of ρ is $(\langle p, w\rangle, \theta)$, we can obtain that $(\langle p, w\rangle, \theta) \in F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$. By the transition rule added to the automaton during the i-th iteration by line 4 , we can get that $(p, \theta)^{i} \xrightarrow{\epsilon}\left\{(p, \theta)^{i-1}\right\}$ is a transition rule of \mathcal{A}_{i}. Then, by applying the induction hypothesis on i, the result immediately follows.
- Step. $H(\rho) \geq 1$. Let $\rho^{1}, \cdots, \rho^{n}$ be the sub-trees of ρ whose root is the children of the root $(\langle p, w\rangle, \theta)$. Let $p_{1}, \cdots, p_{n} \in P, w_{1}, \cdots, w_{n} \in \Gamma^{*}, \gamma \in \Gamma$ and $\theta_{1} \subseteq \Delta \cup \Delta_{c}$ be such that $w=\gamma w^{\prime}$ and the roots of the sub-trees of ρ are $\left(\left\langle p_{1}, w_{1} w^{\prime}\right\rangle, \theta_{1}\right), \cdots,\left(\left\langle p_{n}, w_{n} w^{\prime}\right\rangle, \theta_{n}\right)$. There are 2 cases depending on whether $\left(\theta=\theta_{j}\right)$ for every $j: 1 \leq j \leq n$ or not.
- Case $\theta_{j}=\theta$ for every $j: 1 \leq j \leq n$. Then $\rho^{1}, \cdots, \rho^{n}$ are the accepting runs of $\mathcal{B P}$ from configurations $\left(\left\langle p_{1}, w_{1} w^{\prime}\right\rangle, \theta\right), \cdots,\left(\left\langle p_{n}, w_{n} w^{\prime}\right\rangle, \theta\right)$ and there exists $r:\langle p, \gamma\rangle \xrightarrow{\left[\sigma_{j_{1}}, \cdots, \sigma_{j_{m}}\right]}\left\{\left\langle p_{j_{1}}, w_{j_{1}}\right\rangle, \cdots,\left\langle p_{j_{m}}, w_{j_{m}}\right\rangle\right\} \in \Delta$ s.t. $r \in \theta,\{1, \cdots, n\} \subseteq\left\{j_{1}, \cdots, j_{m}\right\}$ and for every $1 \leq j \leq n, \sigma_{j} \cap \theta \neq \emptyset$ or $\sigma_{j}=-$. Note that for the constraint $\left[\sigma_{j_{1}}, \cdots, \sigma_{j_{m}}\right]$, either $\exists 1 \leq l \leq m$, $\sigma_{j_{l}} \cap \theta \neq \emptyset$ or $\forall 1 \leq l \leq m, \sigma_{j_{l}}=-$. Since $H(\rho) \geq 1(p \notin F)$, we can get $H\left(\rho^{j}\right)<H(\rho)$ for $1 \leq j \leq n$. Thus we apply the nested induction
hypothesis on $H\left(\rho^{j}\right)$, we can get that there exists a path $\left(p_{j}, \theta\right)^{i}{\xrightarrow{w_{j} w^{\prime}}}_{T}$ $\left\{q_{f}\right\}$ in \mathcal{A}_{i} and for every decomposition $\left(p_{j}, \theta\right)^{i} \xrightarrow{u}_{T} Q \xrightarrow{v}_{T}\left\{q_{f}\right\}$ of the path $\left(p_{j}, \theta\right)^{i} \xrightarrow{w_{j} w^{\prime}}{ }_{T}\left\{q_{f}\right\}$, if $Q \neq\left\{q_{f}\right\}$, then for all $\left(p^{\prime}, \theta^{\prime}\right)^{k} \in Q \backslash\left\{q_{f}\right\}$ with $k \in\{i, i-1\}$, some path of the run ρ^{j} will reach the configuration $\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$.
Moreover, there exists a path $\left(p_{j}, \theta\right)^{i}{\xrightarrow{w_{j}}}_{T} Q_{j}{\xrightarrow{w^{\prime}}}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i} for every $j: 1 \leq j \leq n$ and by applying the saturation procedure, we get that $(p, \theta)^{i} \xrightarrow{\gamma} \bigcup_{j=1}^{n} Q_{j}{\xrightarrow{w^{\prime}}}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i}. Then for every decomposition $(p, \theta)^{i} \xrightarrow{u}_{T} Q \xrightarrow{v}_{T}\left\{q_{f}\right\}$ of the path $\left((p, \theta)^{i}{\xrightarrow{\gamma w^{\prime}}}_{T}\left\{q_{f}\right\}\right)$, if $Q \neq\left\{q_{f}\right\}$, then for all $\left(p^{\prime}, \theta^{\prime}\right)^{k} \in Q \backslash\left\{q_{f}\right\}$ with $k \in\{i, i-1\}$, some path of the run ρ will reach the configuration $\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$. Thus, we can have $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$.
- Case $\theta_{j} \neq \theta$, then there exists a transition rule r in $\theta, r: p \xrightarrow{\left(\sigma, \sigma^{\prime}\right)}$ $p_{j} \in \Delta_{c}$ and $\theta_{j}=\theta \backslash \sigma \cup \sigma^{\prime}$. In this case, $w_{j}=\gamma$ and $j=1$. Thus, the root of ρ^{j} is $\left(\left\langle p_{j}, w_{j} w^{\prime}\right\rangle, \theta_{j}\right)$. Since $H(\rho) \geq 1(p \notin F)$, we can get $H\left(\rho^{j}\right)<H(\rho)$. Thus we apply the induction hypothesis on $H\left(\rho^{j}\right)$, we can get that there exists a path $\left(p_{j}, \theta_{j}\right)^{i} \xrightarrow{w_{j} w^{\prime}}{ }_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i} and for every decomposition $\left(p_{j}, \theta_{j}\right)^{i} \xrightarrow{u}_{T} Q \xrightarrow{v}_{T}\left\{q_{f}\right\}$ of the path $\left(p_{j}, \theta_{j}\right)^{i}{\xrightarrow{w_{j} w^{\prime}}}_{T}\left\{q_{f}\right\}$ where $u v=w_{j} w^{\prime}$, if $Q \neq\left\{q_{f}\right\}$, then for all $\left(p^{\prime}, \theta^{\prime}\right)^{k} \in Q \backslash\left\{q_{f}\right\}$ with $k \in\{i, i-1\}$, some path of the run ρ^{j} will reach the configuration $\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$.
Moreover, there exists a path $\left(p_{j}, \theta_{j}\right)^{i}{\xrightarrow{w_{j}}}_{T} Q_{j}{\xrightarrow{w^{\prime}}}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i} and by applying the saturation procedure, we get that $(p, \theta)^{i} \xrightarrow{\gamma} Q_{j}{\xrightarrow{w^{\prime}}}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i}. Thus, for every decomposition $(p, \theta)^{i} \xrightarrow{u}_{T} Q \xrightarrow{v}_{T}\left\{q_{f}\right\}$ of the path $(p, \theta)^{i} \xrightarrow{\gamma w^{\prime}}{ }_{T}\left\{q_{f}\right\}$, if $Q \neq\left\{q_{f}\right\}$, then for all $\left(p^{\prime}, \theta^{\prime}\right)^{k} \in Q \backslash\left\{q_{f}\right\}$ with $k \in\{i, i-1\}$, some path of the run ρ will reach the configuration $\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$ i.e. $(\langle p, w\rangle, \theta) \Rightarrow^{*}\left(\left\langle p^{\prime}, v\right\rangle, \theta^{\prime}\right)$.

For the statement (b). Since $Y_{\mathcal{B P}}=\operatorname{Pre}^{+}\left(Y_{\mathcal{B P}} \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)$ and by the induction hypothesis $Y_{\mathcal{B P}} \subseteq L\left(\mathcal{A}_{i-1}\right)$, we get that

$$
\begin{equation*}
Y_{\mathcal{B} \mathcal{P}} \subseteq \operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right) \tag{1}
\end{equation*}
$$

By Lemma 11, we get that just before the substitution at Line $14, \mathcal{A}_{i}$ accepts

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

$\operatorname{Pre}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap F \times \Gamma^{*} \times 2^{\Delta U \Delta_{c}}\right)$. Thus, it is sufficient to prove that for every configuration $(\langle p, w\rangle, \theta) \in Y_{\mathcal{B P}}, A_{i}$ accepts $(\langle p, w\rangle, \theta)$ after the substitution at Line 14. Let n be the number of transition rules substituted at Line 14. For all $m \leq n$, let \mathcal{A}_{i}^{m} be the automaton obtained by substituting m transition rules. We show that $Y_{\mathcal{B P}} \subseteq L\left(\mathcal{A}_{i}^{m}\right)$ by induction on m.

- Basis. $m=0$. We directly get that $Y_{\mathcal{B P}} \subseteq L\left(\mathcal{A}_{i}^{0}\right)$.
- Step. $m \geq 1$. By applying the induction hypothesis, we can get that $Y_{\mathcal{B P}} \subseteq L\left(\mathcal{A}_{i}^{m-1}\right)$. If $L\left(\mathcal{A}_{i}^{m-1}\right) \subseteq L\left(\mathcal{A}_{i}^{m}\right)$, the result follows from the fact that $Y_{\mathcal{B P}} \subseteq L\left(\mathcal{A}_{i}^{m-1}\right)$. Otherwise, if $L\left(\mathcal{A}_{i}^{m-1}\right) \backslash L\left(\mathcal{A}_{i}^{m}\right) \neq \emptyset$, let $(\langle p, w\rangle, \theta)$ $\in L\left(\mathcal{A}_{i}^{m-1}\right) \backslash L\left(\mathcal{A}_{i}^{m}\right)$ be some configuration s.t. $|w|$ is the minimum of $\left\{\left|w^{\prime}\right| \mid\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right) \in L\left(\mathcal{A}_{i}^{m-1}\right) \backslash L\left(\mathcal{A}_{i}^{m}\right)\right\}$ s.t. $\quad(\langle p, w\rangle, \theta) \in Y_{\mathcal{B} \mathcal{P}}$. Then we prove by contradiction that $(\langle p, w\rangle, \theta)$ should not be in $Y_{\mathcal{B P}}$.

For every path of the form $(p, \theta)^{i} \xrightarrow{w}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i}^{m-1}, there exist $u \in \Gamma^{+}, v \in$ Γ^{*} and $q \in P$ such that $w=u v$ and $(p, \theta)^{i} \xrightarrow{u}_{T} Q \cup\left\{\left(q, \theta^{\prime}\right)^{i-1}\right\} \xrightarrow{v}_{T}\left\{q_{f}\right\}$ in \mathcal{A}_{i}^{m-1} and \mathcal{A}_{i}^{m} doesn't have $\left\{\left(q, \theta^{\prime}\right)^{i}\right\}{ }^{v}{ }_{T}\left\{q_{f}\right\}$. (Otherwise, $(\langle p, w\rangle, \theta) \in$ $\left.L\left(\mathcal{A}_{i}^{m}\right)\right)$. By the statement(a), for each accepting run ρ of $\mathcal{B} \mathcal{P}$ starting from $(\langle p, w\rangle, \theta)$, one path of this run ρ will reach such a configuration $\left(\langle q, v\rangle, \theta^{\prime}\right)$. It is sufficient to show that $\left(\langle q, v\rangle, \theta^{\prime}\right) \notin Y_{\mathcal{B P}}$.

Now let us show that $\left(\langle q, v\rangle, \theta^{\prime}\right) \notin Y_{\mathcal{B} \mathcal{P}}$. If $\left(\langle q, v\rangle, \theta^{\prime}\right) \notin L\left(\mathcal{A}_{i}^{m-1}\right)$, by applying the induction hypothesis on m, we get that $\left(\langle q, v\rangle, \theta^{\prime}\right) \notin Y_{\mathcal{B P}}$. If $\left(\langle q, v\rangle, \theta^{\prime}\right) \in L\left(\mathcal{A}_{i}^{m-1}\right)$, then $\left(\langle q, v\rangle, \theta^{\prime}\right) \in L\left(\mathcal{A}_{i}^{m-1}\right) \backslash L\left(\mathcal{A}_{i}^{m}\right)$. If $\left(\langle q, v\rangle, \theta^{\prime}\right) \in$ $Y_{\mathcal{B P}}$, then $|v|<|w|$ which contradicts the fact that $|w|$ is the minimum of $\left\{\left|w^{\prime}\right| \mid\left(\left\langle p^{\prime}, w^{\prime}\right\rangle, \theta^{\prime}\right) \in L\left(\mathcal{A}_{i}^{m-1}\right) \backslash L\left(\mathcal{A}_{i}^{m}\right)\right\}$ s.t. $(\langle p, w\rangle, \theta) \in Y_{\mathcal{B P}}$. Thus, we can obtain that $\left(\langle q, v\rangle, \theta^{\prime}\right) \notin Y_{\mathcal{B P}}$.

Then, we can prove Theorem 4.2.2.
Proof: We prove termination and correctness.

Termination: There are two loops in Algorithm 1. Thus, we will prove those two loops both terminate.

Loop $_{2}$: Suppose loop ${ }_{2}$ is in the i th iteration of loop $_{1}$. Since only states of the form $(p, \theta)^{i} \in P \times 2^{\Delta \cup \Delta_{c}} \times\{i\}$ can be added into \mathcal{A} at the i th iteration, we obtain that Loop_{2} only add a finite number of transition rules at the i th iteration. This implies that $\forall i \geq 1$, loop $_{2}$ always terminates at the i-th iteration.
$L o o p_{1}$: Now we consider the termination of Loop $_{1}$. For every $i \geq 1$, Line 14 ensures that at the end of the i th iteration, every transition rule in the current automaton is in the form of $(p, \theta)^{j} \xrightarrow{\gamma} S$ for every $j \leq i, S \subseteq\left(P \times 2^{\Delta \cup \Delta_{c}} \times\right.$ $\{j\}) \cup\left\{q_{f}\right\}$. Thus, by the Lemma 9 (a), at $(i+1)$ th iteration with $i \geq 1$, either the termination condition at Line 15 is satisfied or the number of transitions is strictly smaller than in the i th iteration. Therefore, Algorithm 1 terminates.

Correctness: Let $n>1$ be the fix-point of Algorithm 1 s.t. for every $p \in$ $P, \gamma \in \Gamma, R \subseteq P \times 2^{\Delta \cup \Delta_{c}} \times\{n\} \cup\left\{q_{f}\right\},(p, \theta)^{n} \xrightarrow{\gamma} R \in T \Longleftrightarrow(p, \theta)^{n-1} \xrightarrow{\gamma} \pi^{-1}(R) \in$ T holds. Then $L\left(\mathcal{A}_{n}\right)=L\left(\mathcal{A}_{n-1}\right)$. We will show that $L\left(\mathcal{A}_{n}\right)=Y_{\mathcal{B P}}$.

If we remove the termination condition of $l o o p_{1}$ i.e. if we consider Algorithm C, by Lemma 10 and Lemma 9(b) and the fact that $L\left(\mathcal{A}_{0}\right)=P \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}$, we have that for all $i \geq n$:

$$
\begin{equation*}
L\left(\mathcal{A}_{i}\right)=L\left(\mathcal{A}_{i-1}\right)=, \cdots,=L\left(\mathcal{A}_{n}\right) \subseteq L\left(\mathcal{A}_{n-1}\right) \subseteq L\left(\mathcal{A}_{0}\right) \tag{1}
\end{equation*}
$$

- Let us first show that $L\left(\mathcal{A}_{n}\right) \subseteq Y_{\mathcal{B P}}$: Since $Y_{\mathcal{B} \mathcal{P}}=\bigcap_{i \geq 0} X_{i}$ and $X_{i+1}=$ $\operatorname{Pre}^{+}\left(X_{i} \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$, then it is sufficient to prove that $L\left(\mathcal{A}_{i}\right) \subseteq X_{i}$ for every $i \geq 0$. We proceed by induction on i.
- Basis. $i=0 . L\left(\mathcal{A}_{0}\right) \subseteq X_{0}$ always holds.
- Step. $i>0$. By applying the induction hypothesis (induction on i), we get that $L\left(\mathcal{A}_{i-1}\right) \subseteq X_{i-1}$. By the definition of $X_{i}=\operatorname{Pr} e^{+}\left(X_{i-1} \cap\right.$ $\left.\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$, we can have that

$$
\begin{equation*}
\operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right) \subseteq X_{i} \tag{2}
\end{equation*}
$$

By Lemma 11, $\forall i \geq 1, \mathcal{A}_{i}$ accepts $\operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right)$ before Line 14 of the algorithm. By Lemma 9 (b), Line 14 only removes configurations from \mathcal{A}_{i} (Line 15 can only reduce the language of \mathcal{A}_{i}), we can obtain that:

$$
\begin{equation*}
L\left(\mathcal{A}_{i}\right) \subseteq \operatorname{Pr}^{+}\left(L\left(\mathcal{A}_{i-1}\right) \cap\left(F \times \Gamma^{*} \times 2^{\Delta \cup \Delta_{c}}\right)\right) \tag{3}
\end{equation*}
$$

From (2) and (3), we can get that $L\left(\mathcal{A}_{i}\right) \subseteq X_{i}$.

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

- Now, we show that $Y_{\mathcal{B P}} \subseteq L\left(\mathcal{A}_{n}\right)$: It directly follows from Lemma 12 (b). Therefore, we show that $Y_{\mathcal{B P}}=L\left(\mathcal{A}_{n}\right)$.

Thus, it follows from Theorems 4.1.1, 4.2.1 and 4.2.2 that:

Corollary 1 Let \mathcal{P} be a SM-PDS, $\nu: P \rightarrow 2^{A t}$ be a labelling function, and φ be a CTL formula over At. Then, we can compute an EAMA \mathcal{A} that characterizes the set of configurations $(\langle p, w\rangle, \theta)$ of \mathcal{P} such that $(\langle p, w\rangle, \theta) \models_{\nu} \varphi$.

4.3 Experiments

4.3.1 Our algorithm vs. standard CTL on PDSs

We implemented our algorithm in a tool and we compared its performance with the approach that consists in translating the SM-PDS to an equivalent standard PDS, and then applying the standard CTL model checking algorithm implemented in the PDS model-checker tool PuMoC [40]. All our experiments were run on Ubuntu 16.04 with a $2.7 \mathrm{GHz} \mathrm{CPU}, 2 \mathrm{~GB}$ of memory. To perform this comparision, we randomly generate several SM-PDSs and CTL formulas. Our results (CPU Execution time) are shown in Table 4.1. Column $|\Delta|+\left|\Delta_{c}\right|$ indicates the size of the transition rules. Column formula size shows the size of the CTL formula. Column SM-PDS is the cost of our direct algorithm. Column To PDS reports the cost it takes to get the equivalent PDS from the SM-PDS. Column PDS is the cost used to run standard CTL model checking for the equivalent PDS in PuMoC. Column Total Time is the whole cost it takes to translate the SM-PDS into a PDS, and then apply the PDS CTL model-checking algorithm of PuMoC [40] (Total Time $=$ To PDS + PDS). Column Result1 is the result of our approach and Result2 is the result of PuMoC [40], where Y means yes the formula is satisfied and N means no, the formula is not satisfied. "-" means out of memory. It can be seen that our direct approach is much more efficient, and that it terminates in all the cases, whereas going through CTL model-checking of PDSs gets out of memory in most of the cases. Translating the SM-PDS
to a standard PDS may take more than 24 days, whereas our direct algorithm takes only a few seconds.

4.3.2 Malicious Behavior Detection on Self-Modifying Code

4.3.2.1 Specifying malicious behaviors using CTL.

We applied our tool to detect several self-modifying malwares. Indeed, as shown in [40], several malicious behaviors can be described by CTL formulas. We give in what follows an example of such a malicious behavior.
Spyware (Scanning the Disk). The aim of a spyware is to steal information from the host. To do this, it has to scan the disk of the host in order to find the interesting file that he wants to steal. If a file is found, it will run a payload to steal it, then continues searching the next file. If a directory is found, it will enter this path and continues scanning. This malicious behaviour is present e.g. in the notorious spyware Flame: It first calls the function FindFirstFileW to search the first object in the given path, then, it will check whether the function call succeeds or not. If the function call fails, it will call the function GetLastError. Otherwise it will call either the function FindFirstFileW again if it finds a directory or the function FindNextFileW to search for the next object. We can specify this behavior in CTL as follows:

$$
\begin{aligned}
\phi_{s p y}=\mathbf{E F} & (\text { call FindFirstFileW } \wedge \mathbf{A F}(\text { call GetLastError } \\
& \vee \text { call FindFirstFile } W \vee \text { call FindNextFileW })
\end{aligned}
$$

This formula states that there exists a path where the function FindFirstFileW is called, then, in all the future paths, the program either calls GetLastError (if FindFirstFileW failed) or calls FindFirstFileW (if a directory is found) or calls FindNextFileW (to search for the next file). Scanning a disk can be a behavior of a benign program. To avoid false alarms, we can combine this CTL formula with other formulas describing other malicious behaviors expressing the payload (such as sending a file) to determine whether the binary code is a malware or not. Note that, the formula is branching time and cannot be described as a LTL formula.
4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

	$\|\Delta\|+\left\|\Delta_{c}\right\|$	formula	SM-PDS	To PDS	PDS	Total Time	Result 1	Result2
$\begin{aligned} & 60 \\ & . \vec{g} \\ & 0 \\ & 0 \\ & 0 \\ & \overrightarrow{0} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$5+2$	2	0.27 s	0.09 s	0.25 s	0.34 s	Y	Y
	$6+4$	5	0.36 s	0.21 s	0.45 s	0.66 s	Y	Y
	$8+4$	12	2.88 s	0.35 s	3.41 s	3.76 s	Y	Y
	$10+4$	18	3.71 s	0.39s	3.85 s	4.24 s	Y	Y
	$20+4$	15	3.84s	0.62s	3.94s	4.56 s	N	N
	$30+4$	8	4.01 s	2.20 s	4.79 s	6.99 s	Y	Y
	$35+4$	20	5.13s	2.36 s	6.53 s	8.89 s	Y	Y
	$50+8$	6	7.86s	4.92s	8.04 s	12.96s	N	N
	$80+8$	15	8.46s	5.06s	10.31s	15.37 s	Y	Y
	$80+8$	20	9.57 s	5.06s	10.79s	15.85 s	Y	Y
	$110+8$	6	8.83 s	5.25 s	11.42s	16.64s	N	N
	$110+8$	15	9.01s	5.25 s	12.98s	18.13s	N	N
	$110+8$	20	10.24s	5.25 s	13.44s	18.69s	Y	Y
	$120+10$	10	9.59s	5.70s	12.32s	18.02s	N	N
	$120+10$	20	11.48s	5.70s	14.87s	20.57s	Y	Y
	$250+8$	6	13.22s	9.13 s	18.94s	28.07 s	N	N
	$250+8$	15	18.37s	9.13 s	21.11s	30.24s	Y	Y
	$500+8$	6	20.51s	17.02s	29.25s	46.27 s	N	N
	$600+9$	8	23.34s	295.24 s	57.79s	353.03 s	Y	Y
	$600+9$	15	28.88s	295.24s	63.16s	358.40s	Y	Y
	$600+9$	25	35.39s	295.24s	69.82s	365.06s	Y	Y
	$1000+10$	6	35.11s	3251.02s	7127.41s	10378.43s	N	N
	$1100+10$	8	37.34s	3251.02s	7319.82s	10570.84s	Y	Y
	$1100+10$	45	83.63s	3251.02s	-	-	N	-
	$1500+8$	30	60.71s	2182.78 s	13821.34s	16004.12s	N	N
	$2000+10$	18	49.48s	5529.30s	-	-	Y	-
	$2000+10$	36	61.13s	5529.30s	-	-	N	-
	$2100+10$	15	60.74s	5544.69s	-	-	Y	-
	$2500+8$	30	68.55 s	3981.93s	-	-	N	-
	$3000+7$	10	65.84s	5167.27s	-	-	Y	-
	$3000+7$	22	78.51s	5167.27s	-	-	N	-
	$3500+8$	6	70.83s	6105.60s	-	-	N	-
	$3500+10$	6	75.91s	9219.18s	-	-	N	-
	$3500+10$	20	93.37s	9219.18s	-	-	Y	-
	$3800+10$	30	99.06s	9295.24s	-	-	N	-
	$3850+10$	8	93.20s	9308.01s	-	-	Y	-
	$3850+10$	30	115.52 s	9308.01s	-	-	N	-
	$4000+10$	20	125.81 s	10002.28s	-	-	N	-
	$4200+8$	15	121.16s	9599.37s	-	-	Y	-
	$4500+8$	23	136.72s	9881.85s	-	-	Y	-
	$4500+11$	5	139.95s	40290.27s	-	-	Y	-
	$4800+11$	10	142.13s	42184.85s	-	-	Y	-
	$4800+11$	15	153.22s	42184.85s	-	-	Y	-
	$5500+10$	20	196.46s	45745.44s	-	-	Y	-

Table 4.1: Our approach vs. standard algorithms for PDSs for CTL model check-

4.3.2.2 Applying our tool for malware detection.

We applied our tool to detect several malwares. We consider 400 email-worms, 30 worms and 100 viruses from VX heaven [48] and 260 new malwares generated by NGVCK. We also choose 19 benign samples from Windows XP system (win32). We consider self-modifying versions of these programs. In these versions, the malicious behaviors are unreachable if the semantics of the self-modifying instructions are not taken into account, i.e., if the self-modifying instructions are considered as "standard" instructions that do not modify the code, then the malicious behaviors cannot be reached. As previously, first, we abstract away the semantics of the self-modifying instructions and model such programs as standard PDSs as described in [40], and perform CTL model-checking for PDSs to determine whether the programs contain any malicious behavior. In this case, none of the programs was declared as malicious. Then, we use SM-PDSs to model these programs, thus, taking self-modifying instructions into consideration. Then, we check whether these SM-PDSs satisfy any malicious CTL formula in our database. If yes, the program is declared as malicious. If not, it is declared as benign. In our experiments (we have 790 malwares), our tool was able to detect all these programs as malicious (whereas when we model these programs using standard PDSs and abstract away self-modifying instructions, none of these programs was detected as malicious). Our tool was also able to determine that benign programs are benign. We report in Tables $4.2,4.3$ and 4.4 the results we obtained. Column Size gives the number of control locations, Column Result shows the result of our algorithm: Yes means malicious and No means benign; and Column cost gives the cost in seconds. You can see that our CTL model checking approach allows to detect all the malicious programs in a few seconds.

4．CTL MODEL－CHECKING OF SELF－MODIFYING CODE

S67＇¢	${ }^{\text {sp }}$ 入	088	8ว \cdot əpreg	SLI＇ti	${ }^{\text {s }}$ ，	966		s\％だ68	${ }^{5} \mathrm{\lambda}$ 人	069¢	qe• $\cdot \mathrm{forg}$
sLEOT	${ }^{\text {s }}{ }^{1}$ ，	¢16I	［＇че\％	9．91	${ }^{\text {s }}$ ，λ	86ヶて	S．Ye7\％	sqe．ti	${ }^{59} \mathrm{X}$	9007	J Yeq\％
s98：88I	${ }^{\text {sa }}$ 入	0679	е．surə¢	SSt．E68	${ }^{\text {sp }}$ 入	0288I	q ＇souS．iy		${ }^{\text {sa }}$ 入	0\＆2IL	D．fdemən
St9．9t	${ }^{\text {sa }}$ 入	Cte\％	$7 \cdot{ }^{\text {® Peg }}$	${ }^{\text {s }} 6.15$	${ }^{\text {sp }}$ ，	98	y \cdot ə®og	${ }^{\text {s } 66.68 ~}$	${ }^{\text {sa }}$ ，	LILS	ш•ə ${ }^{\text {®reg }}$
s08：IL	${ }^{\text {s，}}$ 入	LOG9	әә＇чәи！¢РТ	SLI＇c9	${ }^{\text {sp }}$ 入	0878	$0^{2 \cdot \text { чои！}}$ ¢рт	scout	${ }^{\text {sp，}}$ ，	gith	zве чэи！dPT
S 262 LI	${ }^{\text {sa }}$ 入	961		SIL－2t	sa λ	906も		s69．ts	${ }^{\text {sa }}$ 入	9872	
S80． Lz	${ }^{\text {sa }}$ 入	979［	qч чヤu！${ }^{\text {dPT }}$	sze ce	s λ	9t98		s¢ ¢¢9	${ }^{\text {s }}$ ， X	9 ± 18	qq＇पәu！${ }^{\text {d }}$／
S6ヶ＇z9\％	${ }^{\text {sa }}$ 入	L6LIL		S62．c0z	${ }^{\text {sp }}$ 入	gilli	$\mathrm{V} \cdot \mathrm{d}$ demən	Stz＇liz	${ }^{\text {sa }}$ ，	984LI	
SL0 29	${ }^{\text {sa }}$ 入	906 L	L－¢วu！d MSd	588．99	${ }^{\text {sa }}$ 人	808I	भd＇чэu！dpt＇MSd	se6．ta	${ }^{\text {a }}$ ，	88LI	00才＇чри！дबт
sLL＇69	${ }^{\text {sax }}$ 入	L969	8u＇чpu！${ }^{\text {dPT }}$	s6I． 6	${ }^{\text {s，}}$ 入	$\angle 97$	8LZLI08！•．！əшə	St6．881	${ }^{\text {sp，}}$ ，	88108	
St8．67	${ }^{\text {s．x }}$ ，	0gzt		sc8\％ 78	${ }^{\text {s，}}$ ，	¢¢t		¢66 77	${ }^{\text {sa }}$ ，	026	
S67688	${ }^{\text {sa }}$ 入	96761	әрч\％шооор Λ_{N}	SLL：88E	${ }^{\text {sa }}$ ，	8766I		SLE 68 ¢	${ }^{\text {a }}$ ，	0LZ6I	ODV＇moop ¢ $_{\text {N }}$
szt ${ }^{\text {c }}$	${ }^{\text {sa }}$ 入	8ャマ		$\mathrm{sio}^{\circ} \mathrm{z}$	sod	88%	moop $\wedge_{\mathrm{T}} \mathrm{N}$	${ }^{\text {sto }}$ LI	${ }^{\text {sa }}$ 入	0ャマ	
${ }^{\text {sto }}$ \％	${ }^{\text {sp }}$ 入	98%		S66．＇	${ }^{\text {sad }}$	98%		sz7．08	${ }^{59}$ 入	$0 ¢ \%$	y＇uoop κ_{J}
scg 9 m	${ }^{\text {sp }}$ 入	8\＆L		S8L＇gt	${ }^{\text {sa }}$ ，	9869		561．g2	${ }^{\text {s }} \mathrm{X}$	${ }_{9} 969$	
s¢96 69t	${ }^{\text {sa }} \mathrm{X}$	68698		SL6＇ter	${ }^{\text {sa }} \mathrm{X}$	029t	q：7¢5！89］	St6．8	${ }^{\text {sa }}$ 入	27	ә z ¢Y
SLI＇6	${ }^{\text {sax }}$ ，	¢6I	e．$\partial \mathrm{q} \cdot \mathrm{n}$ ，	S96．	${ }^{\text {¢ }}$ 入	${ }_{9} 68$	$q \cdot 8 \mathrm{~m}_{\text {Id }}$	S80＇z\％	${ }^{93}$ 入	02t	8．ои！${ }^{\text {¢ }}$ ¢
S¢60	${ }^{\text {a }}$ 入	18	p＇zoty	sti＇tzi	${ }^{\mathrm{s}} \mathrm{\lambda} \mathrm{X}$	8280z	$7 \cdot$ SId！y	sto＇tz	${ }^{59} \mathrm{X}$	¢67	
sec $L^{\circ} 0$	${ }^{\text {sa }}$ 入	22	٪＇zə ${ }^{\text {¢ }}$	${ }^{50} 0^{\circ} \mathrm{z}$	${ }^{\text {s }}$ 入	¢L6L	p－ympiv	s28．	${ }^{\text {s }} \mathrm{X}$ 人	Gt	
s69．8\％	${ }^{\text {s }}$ ，	0297	q－7stored	St0 28	sə入	8989	q－əq！	s92．$\%$ I	${ }^{\text {sə }}$ ，	L 27	q－¢еdәу
${ }^{\text {SLS }} 68$	${ }^{\text {sp }}$ 入	97	q－Kysqən	Stice8	sə入	9969	${ }^{\text {a moop } \Lambda_{\text {J }}}$	${ }^{5} 62 . \%$	${ }^{\text {sa }}$ 入	08	
SL0 \％ 89	${ }^{\text {sa }} \mathrm{X}$	1879	N －zə ${ }^{\text {P }}$	s¢6． LL	sed^{1}	99867		SLL＇Zgt	$\mathrm{s}^{\mathrm{s}} \mathrm{\lambda}$	Z0697	$\Lambda \cdot$ woop Λ_{J}
Stit 62	${ }^{\text {sp }}$ 入	9 9729	ə $\mathrm{KYŞ}^{\text {¢ }}$ N	S6L．62	${ }^{\text {sax }}$ 入	¢Ll9	Y：Sysqən	se8．8	${ }^{\text {sp }}$ 人	08%	$x \cdot \mathrm{Yys} \ddagger$ N
SLLEL	${ }^{\text {s }}$ 入	9089		ste：92	s λ	¢t09	d． Cys 7 ¢ N	Stで69	${ }^{\text {s² }}$ ，	8099	นә $\%$ ¢Y¢ร
sL\＆\＆ぁ	${ }^{\text {sa }}$ 入	gil		s90．6z	${ }^{\text {sp }}$ 人	89	K．Kyşən	sc8． tz	${ }^{\text {s }}$ 入	GG	x：Syşan
S $¢ 6.8 \pm 8$	${ }^{\text {sa }} \mathrm{X}$	08691	$\mathrm{N}^{- \text {uroog }}{ }^{\text {S }} \mathrm{N}$	Stit ${ }^{\text {d }}$	${ }^{\text {sa }}$ 入	gsi	${ }^{\text {muoop } \Lambda_{\mathrm{N}}}$	s¢f： 6 L	${ }^{\text {sa }}$ 入	gt	e：Syşən
568：cz	${ }^{\text {on }}$	768	әхәтәриәге	STLGL	${ }^{\mathrm{O}} \mathrm{N}$	もL06	хә7әрК๐	Sti＇ter	${ }^{\circ} \mathrm{N}$	¢ze\％¢	әхәәшк．я
Stt＇t0¢	${ }^{\text {on }}$	6LZ9才	־по．8	S60 ¢9	o^{N}	929才I		setto	${ }^{\circ} \mathrm{N}$	896	әхว \dagger ¢ λ ¢！
sqz 8 I	${ }^{\circ} \mathrm{N}$	900 L	әхә•әәелгәұи！	S62．Eたて	${ }^{\mathrm{o}} \mathrm{N}$	00878	әхә’чรəด¢！${ }^{\text {¢ }}$	sti＇tz	O^{N}	6798	әхәヶ．1оя
SLO＇z7I	${ }^{\text {on }}$	๖て¢Lz	әхәәеле！	SLI．6L	${ }^{\mathrm{O}} \mathrm{N}$	008	әхәелее！	sLL•8	O_{N}	67900	әхә－prdәұои
s9861	${ }^{\mathrm{o}} \mathrm{N}$	モて¢L	әхว ${ }^{\text {¢ }}$ ¢и	S82．LI	${ }^{\circ} \mathrm{N}$	67 S	әхә•doo［	569 \％	${ }^{\circ} \mathrm{N}$	6Z9\％	әхә•иморұпчя
SLI ${ }^{\text {e }}$	on	89	әхәәә¢uب！	s¢7\％ 18	${ }^{\mathrm{o}} \mathrm{N}$	901t	әхәəว＾ร！	Ste．9L	o^{N}	7¢66	әхә＇ио！ұепитез
7500	7［ns9y	ә乙！	शगurexg	7500	7 ${ }^{\text {nss }}$ y	әz！ 5		750	$7{ }^{\text {nsxa }}$	әz！${ }^{\text {S }}$	

Example	Size	Result	cost	Example	Size	Result	cost	Example	Size	Result	cost
calculation.exe	9952	No	76.34 s	cisvc.exe	4105	No	31.22 s	simple.exe	52	No	3.17 s
shutdown.exe	2529	No	23.52 s	loop.exe	529	No	11.78 s	cmd.exe	1324	No	19.36s
notepad.exe	10529	No	68.77 s	java.exe	800	No	19.17s	java.exe	21324	No	122.07 s
sort.exe	8529	No	74.12 s	bibDesk.exe	32800	No	243.79s	interface.exe	1005	No	18.25 s
ipv4.exe	968	No	24.43 s	TextWrangler.exe	14675	No	65.09 s	sogou.exe	45219	No	301.14 s
game.exe	34325	No	234.14s	cycle.tex	9014	No	75.44s	calender.exe	892	No	25.39 s
Adson. 1651	39	Yes	0.44s	Adson. 1734	42	Yes	0.43 s	Alcaul.d	40	Yes	0.48 s
Adon. 1703	37	Yes	0.39 s	Adon. 1559	37	Yes	0.35 s	Alcaul.i	48	Yes	0.44 s
Alcaul.o	33	Yes	0.29 s	Alcaul.d	845	Yes	0.165s	Alaul.c	355	Yes	0.109s
Alcaul.j	45	Yes	0.56 s	Alcaul.m	23	Yes	0.19 s	Evol.a	53	Yes	7.09s
Alcaul.e	32	Yes	1.93s	Alcaul.h	34	Yes	3.95 s	Alcaul.g	25	Yes	4.18 s
Alcaul.b	19	Yes	0.12 s	Alcaul.f	23	Yes	1.99 s	Alcaul.k	28	Yes	2.31 s
Alcaul. 1	27	Yes	0.95 s	Klinge	45	Yes	64.15s	Akez.Win32.5	490	Yes	53.18s
Oroch. 3982	31	Yes	1.49 s	Anar.a	22	Yes	1.27 s	Anar.b	25	Yes	1.58 s
Bagle.dp	235	Yes	3.52 s	Bagle.dv	175	Yes	6.14 s	Bagle.ds	328	Yes	7.29 s
Bagle.e	30	Yes	1.52 s	Bagle.eb	185	Yes	3.87s	Bagle.ee	198	Yes	3.88 s
Bagle.dn	198	Yes	6.07 s	Bagle.ej	188	Yes	5.11 s	Bagle.ff	355	Yes	8.07s
Bagle.ex	197	Yes	5.96s	Bagle.ev	183	Yes	6.50s	Bagle.en	192	Yes	9.99s
Predec.h	2650	Yes	58.34 s	Predec.i	2855	Yes	63.58 s	Predec.j	2835	Yes	62.37s
Predec.b	2830	Yes	61.77 s	Predec.c	2858	Yes	64.02s	Predec.d	2826	Yes	61.11s
Predec.e	2850	Yes	67.97 s	Predec.f	2895	Yes	69.50s	Predec.g	2829	Yes	66.59s
Haharin	355	Yes	13.52 s	Ditex.a	25	Yes	1.46 s	Oroch. 5420	75	Yes	9.42 s
Adson. 1651	39	Yes	0.44 s	Adson. 1734	42	Yes	0.43s	Alcaul.d	40	Yes	0.48 s
Adon. 1703	37	Yes	0.39s	Adon. 1559	37	Yes	0.35s	Alcaul.i	48	Yes	0.44s
Alcaul.o	33	Yes	0.29 s	Alcaul.d	845	Yes	0.165 s	Alaul.c	355	Yes	0.109s
Alcaul.j	45	Yes	0.56 s	Alcaul.m	23	Yes	0.19s	Evol.a	53	Yes	7.09s
Alcaul.e	32	Yes	1.93s	Alcaul.h	34	Yes	3.95 s	Alcaul.g	25	Yes	4.18 s
Alcaul.b	19	Yes	0.12 s	Alcaul.f	23	Yes	1.99s	Alcaul.k	28	Yes	2.31 s
Alcaul. 1	27	Yes	0.95 s	Klinge	45	Yes	64.15s	Akez.Win32.5	490	Yes	53.18s
Oroch. 3982	31	Yes	1.49 s	Anar.a	22	Yes	1.27 s	Anar.b	25	Yes	1.58 s
Bagle.dp	235	Yes	3.52 s	Bagle.dv	175	Yes	6.14 s	Bagle.ds	328	Yes	7.29 s
Bagle.e	30	Yes	1.52 s	Bagle.eb	185	Yes	3.87s	Bagle.ee	198	Yes	3.88 s
Bagle.dn	198	Yes	6.07 s	Bagle.ej	188	Yes	5.11 s	Bagle.ff	355	Yes	8.07 s
Bagle.ex	197	Yes	5.96s	Bagle.ev	183	Yes	6.50 s	Bagle.en	192	Yes	9.99s

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

5

SMODIC: A Model Checker for Self Modifying Code

In this chapter, we present SMODIC, a model checker for self-modifying binary code that use self-modifying mov instructions. In SMODIC, such binary code is modeled using Self Modifying Pushdown Systems (SM-PDS). SMODIC takes as input either a self-modifying binary code or a self modifying pushdown system. It can then perform reachability analysis and LTL/CTL model-checking for these models. SMODIC first adapts the tool Jakstab [22] to get the Control Flow Graph from the binary code. Then, it translates this CFG into a SM-PDS. It then implements the algorithms presented in the previous chapters to perform reachability analysis and LTL/CTL model-checking for this model.

We successfully used SMODIC to model-check more than 900 self-modifying binary codes. In particular, we applied SMODIC for malware detection. In our experiments, SMODIC was able to detect 895 malwares and to prove that 19 benign programs were benign. SMODIC was also able to detect several malwares that well-known antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and Symantec failed to detect. SMODIC can be found in
https://lipn.univ-paris13.fr/~xin/smodic/index.html.

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING CODE

5.1 Architecture

The Architecture of SMODIC is shown in Figure. 5.1. SMODIC takes as input either a binary program or a SM-PDS. SMODIC can perform both reachability analysis and LTL/CTL model checking.

Figure 5.1: Architecture of SMODIC
If the input of SMODIC is a binary program, it is passed to the component Oracle. This component is based on the disassembler Jakstab [22]. It takes as input a binary program, and outputs its corresponding assembly program, its corresponding Control Flow Graph (CFG) equipped with the assembly instruction corresponding to each edge, together with informations about the called API functions, and the different values of the registers and memory addresses at each control point (state). All these outputs are fed to the component Model Builder that will compute the corresponding SM-PDS.

The Reachability component takes as input a SM-PDS, and a sequence of API functions, and applies the reachability algorithms of Chapter 2 to check whether the SM-PDS has a run that calls these API functions in this order. For example, if we consider the sequence f_{1}, f_{2}, f_{3}, then Reachability component checks whether the SM-PDS has a run that calls first f_{1}, then f_{2}, then f_{3}.

The LTL component takes as input a SM-PDS and an LTL formula, and applies the algorithms of Chapter 3 to check whether the SM-PDS satisfies the LTL formula. Similarly, the CTL component takes as input a SM-PDS and a CTL formula, and applies the algorithms of Chapter 4 to check whether the SM-PDS satisfies the CTL formula.

5.2 Experiments

SMODIC	McAfee	Norman	BitDefender	Kinsoft	Avira	eScan	Kaspersky	Qihoo360	Avast	Symantec
$\mathbf{1 0 0 \%}$	27.6%	22.1%	33.1%	14.4%	28.3%	21.4%	56.2%	35.9%	50.7%	77.9%

Table 5.1: SMODIC vs. Well-known Anti-viruses

5.2 Experiments

5.2.1 Analysing Self-modifying Binary Code

We successfully applied SMODIC to perform reachability analysis and LTL/CTL model-checking for binary code and for Self-Modifying Pushdown systems. The results are summarized in Tables 2.1, 2.2, 3.1, 3.2 and 4.1. SMODIC was also able to detect 895 malwares and to prove that 19 benign programs are benign. The experimental results are summarized in Tables 3.5, 3.6, 3.7, 3.8, 4.2, 4.3 and 4.4.

5.2.2 Comparison with Well-known Anti-viruses

We also compare our tool against well-known and widely used antiviruses. In order to have a fair comparision, we need to consider new malwares, since the anti-viruses know the signatures of all the known malwares. Thus, the challenge for the anti-viruses is to detect new malwares. To this aim, we use the sophisticated malware generator NGVCK available at VX Heavens [48] to generate new malwares. Then we obfuscate these malwares with self-modifying code. Then, we feed these malwares to SMODIC and to well-known antiviruses such as BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast, and Symantec to detect them. Our tool was able to detect all these programs as malicious, whereas none of the well-known antiviruses was able to detect all these malwares. Table 5.1 reports the detection rates of our tool and the well-known anti-viruses.

5.3 Description of SMODIC

Let us show how to use SMODIC. The commands to launch the tool are as follows:

- SMODIC <option1> < modelfile> < option2 > <formula>

Option1 specifies the input file of SMODIC:

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING CODE

- M: the input is a SM-PDS model.
- B: the input is a binary program

Option2 specifies the model checking strategy:

- L: use the LTL model checking algorithm
- C: use the CTL model checking algorithm
- R1: perform the Reachability Analysis using pre*
- R2: perform the Reachability Analysis using post*

The model file can be either a binary program or a SM-PDS (.smpds file). The output have three files: one for the Control Flow Graph, one for assembly codes, and one for the generated SM-PDS. A SM-PDS consists of four parts: a finite set of standard PDS transition rules, a finite set of self-modifying transition rules, an initial phase (the initial set of transition rules) and an initial configuration (initial control location equipped with the stack contents).

Figure 5.2: The Output of SMODIC

Figure 5.3: A Segment of Disassembly Codes
In order to show this, we will use the following command to check whether the program cmd.exe can eventually call the API function GetModuleA or not. For this case, we execute the following command:

- SMODIC B malware/cmd.exe L <>getmodulea

Figure 5.4 is the snapshot of the command to start SMODIC. In this command, " B " is Option1 specifying that the input is a binary program. "L" specifies that the strategy of model checking is LTL. $<>$ getmodulea is the LTL formula F (call GetModuleA).

Figure 5.4: An Example to Run SMODIC

The output have three files: cfg.dot contains the control flow graph (Figures 5.5 and 5.6 are two segments of cfg.dot: the control locations corresponding to the instructions are given in Figure 5.5, and the edges between control locations are given in Figure 5.6), cmd.asm contains the assembly code equipped with informations about the API functions (Figure 5.3 is a fragment of this file), and model.smpds contains the SM-PDS (Figure 5.7 is a segment of the SM-PDS transition rules). This file contains in addition an initial configuration (the initial control point with the stack contents and the initial set of transition rules). The three files are shown in Fig. 5.2.

Figure 5.5: Control Locations with Instructions

5.3.1 Reachability Analysis in SMODIC

Let us show how to use SMODIC to perform reachability analysis on SMPDSs

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING CODE

316	"0x4ad05080"	-> "0x4ad1903e"	[color="\#000000", label="T"];
317	"0x4ad0512c"	-> "0x4ad05131"	[color="\#000000"];
318	"0x4ad05184"	-> "0x4ad05189"	[color="\#000000"];
319	"0x4ad04d52"	-> "0x4ad04d57"	[color="\#000000"];
320	"0x4ad84e93"	-> "0x4ad04e98"	[color="\#000000"];
321	"0x4ad05071"	-> "0x4ad05077"	[color="\#000000", label="F"];
322	"0x4ad0161a"	-> "0x4ad0161f"	[color="\#000000"];
323	"0x4ad01661"	-> "0x4ad01667"	[color="\#000000", label="F"];
324	"0x4ad05098"	-> "0x4ad0509b"	[color="\#000000"];
325	"0x4ad11d2b"	-> "0x4ad11d30"	[color="\#000000"];
326	"0x4ad04e87"	-> "0x4ad04e88"	[color="\#000000"];
327	"0x4ad0514f"	\rightarrow "0x4ad03fdd"	[color="\#000000"];
328	"0x4ad0505b"	-> "0x4ad05060"	[color="\#000000"];
329	"0x4ad050a9"	-> "0x4ad050aa"	[color="\#000000"];
330	"0x4ad03ffa"	-> "0x4ad03ffb"	[color="\#000000"];
331	"0x4ad04d50"	-> "0x4ad04d62"	[color="\#000000", label="T"];
332	"0x4ad05129"	-> "0x4ad0512c"	[color="\#000000"];
333	"0x4ad19068"	-> "0xff0002e0"	[color="\#000000"];
334	"0x4ad01626"	-> "0x4ad0162a"	[color="\#000000"];
335	"0xff000670"	-> "0x4ad04d5d"	[color="\#000000"];
336	"0x4ad03feb"	-> "0x4ad03fee"	[color="\#000000"];
337	"0x4ad01641"	-> "0x4ad01648"	[color="\#000000"];
338	"0xff000610"	-> "0x4ad11d36"	[color="\#000000"];
339	"0x4ad0164b"	-> "0x4ad0164e"	[color="\#000000"];
340	"0x4ad01667"	-> "0x4ad01669"	[color="\#000000"];
341 342	"0x4ad03fe9"	-> "0x4ad03feb"	[color="\#000000"];

Figure 5.6: A Segment of Edges between Locations
and self-modifying code. To start the reachability analysis, we need to specify the options. Let us consider Option1 B, and Option2 R2(or R1). We also need to specify the sequence of API functions. For example, to perform the reachability analysis on the sequence of API functions "Call GetModuleA", "Call CopyFile" , "call SendFile", we put the names of the functions in lowercase and use the symbol ";" to separate the names. To use the post* approach to check whether the above sequence of API functions can be reached or not, we use the following command (see Fig. 5.8):

- ./SMODIC B malware/cmd.exe R2 getmodulea;copyfile;sendfile

The result is shown in Fig. 5.9.
We also can run reachability analysis on SM-PDSs. Then, we need to specify the options. We make Option1 M, and Option2 R2(or R1). We also need to specify the target configuration. For example, we can execute reachability analysis using the post* approach to check if configuration $\left\langle p_{0}, r_{0}\right\rangle$ can be reached or not by the following command:

- ./SMODIC M input.smpds R2 p0:r0

The output of SMODIC is the automaton representing the set of reachable configurations. SMODIC also tells whether the target configuration is reached or not.

5.3.2 LTL and CTL in SMODIC

First, we will introduce the syntax of LTL/CTL used in SMODIC. To be able

Figure 5.7: A Segment of SM-PDS Transition Rules

Figure 5.8: An Example to Start SMODIC for Reachability Analysis
to use SMODIC, you need to be familiar with the syntax of the logics LTL and CTL. The implementation of LTL and CTL operators in SMODIC is as follows:

For LTL:

- Propositional Symbols: true, false and any lowercase string.
- Boolean operators: !(negation), -> (implication), <->(equivalence), \&\& (and), || (or).
- Temporal operators: []p (p always holds), $<>p$ (eventually p holds), $p U q$ (p holds until q holds), and $X p$ (p holds next time).

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING CODE

Figure 5.9: The Result of the Example for Reachability Analysis

For CTL:

- Propositional Symbols: tt(true),ff(false) and any lowercase string.
- Boolean operators: !(negation), -> (implication), <-> (equivalence), \&\& (and), || (or).
- Path quantifiers: A (for all paths) and E (there exists a path).
- Temporal operators: $X \mathrm{p}$ (p holds next time), $\mathrm{p} R \mathrm{q}$ (p holds until q does't hold), $\mathrm{p} U \mathrm{q}$ (p holds until q holds).

5.4 Applying SMODIC for Malware Detection

We show how to apply LTL/CTL model checking to malware detection. Let us take a spy worm as example. Such a worm can record data and send it using the Socket API functions. For example, Keylogger is a spy worm that can record the keyboard states by calling the API functions GetAsyKeyState and GetKeyState and send this to the specific server by calling the socket function sendto. This behavior can be specified by the following LTL formula:
$\phi_{s w}=\mathbf{F}(($ call GetAsyncKeyState \vee call GetRawInputData $) \wedge \mathbf{F}($ call sendto \vee call send)).

To check whether the program cmd.exe satisfies this formula or not, first, we need to rewrite this formula to the form supported by our tool SMODIC. Because all the propositions are lowercase strings, we rewrite API function calls (like call GetAsyncKeyState) by removing the word "call" and changing the name of the

5.4 Applying SMODIC for Malware Detection

function in lowercase string. The operators are in spin syntax. Thus, formula $\phi_{s w}$ is rewritten as:

$$
<>((\text { getasynckeystate } \| \text { getrawinputdata }) \& \&<>(\text { sendto } \| \text { send }))
$$

Figure 5.10: Command for LTL Model Checking

So, we can check whether the program cmd.exe satisfies this formula or not by using the following command (shown in Figure 5.10):
./SMODIC B malware/cmd.exe L <> ((getasynckeystate\| getrawinputdata) $\& \&<>($ sendto $\|$ send $)$).

Figure 5.11: Result of LTL Model Checking

The result is shown in Figure 5.11. The result of the computation is that there is no accepting run. The output of the tool is No, i.e. cmd.exe is not a spyware.
5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING CODE

6

Conclusion

6.1 Summary

In this thesis, we propose a new formal model for self-modifying code called Self Modifying Pushdown System(SM-PDS). It is an extension of standard Pushdown Systems (PDS) with self-modifying transition rules that modify the set of the rules of the PDS during the execution. This allows to represent the self-modifying instructions of the program. We also proposed several corresponding modelchecking algorithms for this SM-PDS model and implemented them in a tool: SMODIC to perform the analysis of self-modifying code and malware detection.

Modeling Self-modifying Code: In Chapter 2, we introduce our new model: SM-PDS. This new model allows us to present the self-modifying code by selfmodifying transition rules. A SM-PDS is a Pushdown System that can dynamically modify its set of rules during the execution time: rules that are not selfmodifying rules are standard PDS transition rules, while self-modifying rules modify the current set of transition rules. We show how SM-PDSs can be used to naturally represent self-modifying programs. It turns out that SM-PDSs are equivalent to standard PDSs. We show how to translate a SM-PDS to a standard PDS. This translation is exponential. Thus, performing the model-checking analysis on the equivalent PDS is not efficient. We propose then in this thesis direct algorithms to perform reachability and LTL/CTL model checking on SM-PDSs.

Rechability Analysis of Self-Modifying Code: In Chapter 2, we propose direct algorithms to compute the forward (post*) and backward (pre*) reachabil-

6. CONCLUSION

ity sets for SM-PDSs. Our algorithms are based on representing regular sets of configurations of SM-PDSs using finite state automata, and applying saturation procedures on these automata.

LTL Model Checking of Self-modifying Code: In Chapter 3, we propose a direct LTL model checking algorithm for SM-PDSs. Our algorithm is based on reducing the LTL model checking problem to the emptiness problem of Self Modifying Büchi Pushdown Systems (SM-BPDSs). Intuitively, we obtain this SM-BPDS by taking the product of the SM-PDS with a Büchi automaton accepting an LTL formula φ. Then, we solve the emptiness problem of an SM-BPDS by computing its repeating heads. This computation is based on computing labelled pre* configurations by applying a saturation procedure on labelled finite automata.

CTL Model Checking of Self-modifying Code: In Chapter 4, we consider the CTL model-checking problem for SM-PDSs. This allows to detect CTLlike malicious behaviors on self-modifying code. We reduce this problem to the emptiness checking of Self-modifying Alternating Büchi Pushdown Systems (SMABPDS), and we propose an algorithm that computes a finite automaton that characterizes the set of configurations accepted by the SM-ABPDS.

SMODIC: A Model Checker for Self-modifying Code: we implemented our techniques in a tool for self-modifying code analysis called SMODIC. We successfully used SMODIC to model-check more than 900 self-modifying binary codes. In particular, we applied SMODIC for malware detection, since malwares usually use self-modifying instructions, and since malicious behaviors can be described by LTL or CTL formulas. In our experiments, SMODIC was able to detect 895 malwares and to prove that 19 benign programs were benign. SMODIC was also able to detect several malwares that well-known antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and Symantec failed to detect. SMODIC can be found in
https://lipn.univ-paris13.fr/~xin/smodic/index.html

6.2 Future Work

The results presented in this thesis can be extended in several ways :

Precise Model for Self-modifying Code: As described in Section 2.3, during the construction of the SM-PDS, we need to assume that instructions i_{1} and i_{2} have the same number of operands where i_{1} is replaced by i_{2} because of some selfmodifying instructions. If instructions i_{1} and i_{2} do not have the same number of operands, then the corresponding self-modifying instruction, in addition to replacing i_{1} by i_{2}, changes several other instructions that follow i_{1}. As mentioned in Section 2.3, our translation from a self-modifying binary program to a SM-PDS can only handle the case where i_{1} and i_{2} have the same number of operands. In the future, we plan to improve our SM-PDS model so that it can handle the case where i_{1} and i_{2} do not have the same number of operands.

Precise Control Flow Reconstruction: In our implementation, the control flow reconstruction is not very precise. This step is based on the tool Jakstab [22] as disassembler. But Jakstab will sometimes ran into some situations where the value set analysis cannot be processed and the reconstruction of the control flow will stop. This holds, in many cases such as: (1) some values of the registers and possible values of memory addresses are unknown and are represented by any possible values (the T value); or (2) the destination of some indirect jumps cannot be computed. In the future, we plan to come up with new approaches to construct more precise control flow graphs from binary code to make the procedure of disassembling more precise.

Precise Malicious Behavior Description: In our experiments, we use standard LTL/CTL formulas to describe malicious behaviors. It was shown in [13, 14] that SCTPL and SLTPL are more precise and concise to represent malicious behaviors. SCTPL and SLTPL are logics that extend LTL and CTL with variables, quantifiers and predicates over the stack. In the future, we plan to propose SCTPL/SLTPL model checking algorithms for SM-PDS. This would allow to have more precise and concise algorithms for self-modifying code analysis and malware detection.

References

[1] A.Bertrand, M.Matias, and D.Koen. A model for self-modifying code. In International Workshop on Information Hiding, 2006.
[2] Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum. Codesurfer/x86-a platform for analyzing x86 executables*. In Compiler Construction: 14th International Conference, CC 2005, Held as Part of the Joint European Conferences on Theory and Practice of Software, ETAPS 2005, Edinburgh, UK, April 4-8, 2005. Proceedings, volume 3443, page 250. Springer, 2005.
[3] Sébastien Bardin, Philippe Herrmann, Jérôme Leroux, Olivier Ly, Renaud Tabary, and Aymeric Vincent. The bincoa framework for binary code analysis. In International Conference on Computer Aided Verification, pages 165-170. Springer, 2011.
[4] Jean Bergeron, Mourad Debbabi, Jules Desharnais, Mourad M Erhioui, Yvan Lavoie, Nadia Tawbi, et al. Static detection of malicious code in executable programs. Int. J. of Req. Eng, 2001(184-189):79, 2001.
[5] Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Benjamin Rouxel, Fabrice Sabatier, and Aurélien Thierry. Codisasm: medium scale concatic disassembly of self-modifying binaries with overlapping instructions. In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communications Security, pages 745-756. ACM, 2015.
[6] A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown Automata: Application to Model Checking. In International Conference on Concurrency Theory, 1997.

REFERENCES

[7] Laura Bozzelli. Complexity results on branching-time pushdown model checking. Theoretical computer science, 379(1-2):286-297, 2007.
[8] David Brumley, Cody Hartwig, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam, Dawn Song, and Heng Yin. Bitscope: Automatically dissecting malicious binaries. Technical report, Technical Report CS-07-133, School of Computer Science, Carnegie Mellon, 2007.
[9] David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz. Bap: A binary analysis platform. In International Conference on Computer Aided Verification, pages 463-469. Springer, 2011.
[10] Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting selfmutating malware using control-flow graph matching. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, pages 129-143. Springer, 2006.
[11] Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Josselin Feist, Marie-Laure Potet, and Jean-Yves Marion. Binsec/se: A dynamic symbolic execution toolkit for binary-level analysis. In IEEE 23rd International Conference on Software Analysis, Evolution, and Reengineering (SANER), volume 1, pages 653-656. IEEE, 2016.
[12] Javier Esparza, Antonín Kučera, and Stefan Schwoon. Model-checking ltl with regular valuations for pushdown systems. In International Symposium on Theoretical Aspects of Computer Software, pages 316-339. Springer, 2001.
[13] F.Song and T.Touili. Efficient malware detection using model-checking. In International Symposium on Formal Methods, 2012.
[14] F.Song and T.Touili. Ltl model-checking for malware detection. In International Conference on Tools and Algorithms for the Construction and Analysis of Systems, 2013.
[15] G.Balakrishnan, T.W. Reps, N.Kidd, A.Lal, J.Lim, et al. Model checking x86 executables with codesurfer/x86 and WPDS++. In International Conference on Computer Aided Verification, 2005.
[16] G.Bonfante, J.Marion, and D.Reynaud-Plantey. A computability perspective on self-modifying programs. In 2009 Seventh IEEE International Conference on Software Engineering and Formal Methods, 2009.
[17] Nguyen Minh Hai, O Mizuhito, and Quan Thanh Tho. Pushdown model generation of malware. Technical report, Technical report, Japan Advanced Institute of Science and Technology, Japan, 2014.
[18] H.Cai, Z.Shao, and A.Vaynberg. Certified self-modifying code. ACM SIGPLAN Notices, 42(6), 2007.
[19] J.Bergeron], M.Debbabi, et al. Static detection of malicious code in executable programs. Int. J. of Req. Eng, 2001(184-189), 2001.
[20] J.Esparza, D.Hansel, P.Rossmanith, and S.Schwoon. Efficient algorithms for model checking pushdown systems. In International Conference on Computer Aided Verification, 2000.
[21] J.Kinder, S.Katzenbeisser, C.Schallhart, and H.Veith. Detecting malicious code by model checking. In International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment, 2005.
[22] H.Veith J.Kinder. Jakstab: A static analysis platform for binaries. In International Conference on Computer Aided Verification, 2008.
[23] K.Coogan, S.Debray, T.Kaochar, and G.Townsend. Automatic static unpacking of malware binaries. In 16th Working Conference on Reverse Engineering, 2009.
[24] K.Dam and T.Touili. Malware detection based on graph classification. In International Conference on Information Systems Security and Privacy, 2017.
[25] K.Dam and T.Touili. Learning malware using generalized graph kernels. In Proceedings of the 13th International Conference on Availability, Reliability and Security, 2018.
[26] K.Dam and T.Touili. Precise extraction of malicious behaviors. In IEEE 42nd Annual Computer Software and Applications Conference, 2018.

REFERENCES

[27] K.Gyung et al. Renovo: A hidden code extractor for packed executables. In Proceedings of the 2007 ACM workshop on Recurring malcode, 2007.
[28] K.Roundy and B.Miller. Hybrid analysis and control of malware. In International Workshop on Recent Advances in Intrusion Detectio, 2010.
[29] M.Christodorescu, S.Jha, S.Seshia, D.Song, and R.Bryant. Semantics-aware malware detection. In Security and Privacy, 2005 IEEE Symposium on.
[30] M.Vardi and P.Wolper. Reasoning about infinite computations. Inf. Comput., 115(1), 1994.
[31] P.Gastin and D.Oddoux. Fast ltl to büchi automata translation. In International Conference on Computer Aided Verification, 2001.
[32] P.Royal, M.Halpin, et al. Polyunpack: Automating the hidden-code extraction of unpack-executing malware. In 22nd Annual Computer Security Applications Conference (ACSAC'06), 2006.
[33] P.Singh and A.Lakhotia. Static verification of worm and virus behavior in binary executables using model checking. In IEEE Systems, Man and Cybernetics SocietyInformation Assurance Workshop, 2003.
[34] S.Blazy, V.Laporte, and D.Pichardie. Verified abstract interpretation techniques for disassembling low-level self-modifying code. Journal of Automated Reasoning, 56(3), 2016.
[35] S.Cutler. malshare. https://malshare.com.
[36] S.Debray, K.Coogan, and G.Townsend. On the semantics of self-unpacking malware code. Tech. rep. University of Arizona, Computer Science, 2008.
[37] Axel Simon and Julian Kranz. The gdsl toolkit: Generating frontends for the analysis of machine code. In Proceedings of ACM SIGPLAN on Program Protection and Reverse Engineering Workshop 2014, page 7. ACM, 2014.
[38] Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager, Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam,
and Prateek Saxena. Bitblaze: A new approach to computer security via binary analysis. In International Conference on Information Systems Security, pages 1-25. Springer, 2008.
[39] Fu Song and Tayssir Touili. Efficient CTL model-checking for pushdown systems. In CONCUR 2011 - Concurrency Theory - 22nd International Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011. Proceedings, pages 434-449, 2011.
[40] Fu Song and Tayssir Touili. Pumoc: a ctl model-checker for sequential programs. In 2012 Proceedings of the 27th IEEE/ACM International Conference on Automated Software Engineering, pages 346-349, 2012.
[41] Fu Song and Tayssir Touili. Efficient ctl model-checking for pushdown systems. Theoretical Computer Science, 549:127-145, 2014.
[42] S.Schwoon. Model-checking pushdown systems. PhD thesis, Technische Universität München, Universitätsbibliothek, 2002.
[43] EnSilo Research Team. Self-modifying code unpacking tool using dynamorio. https://github.com/BreakingMalware/Selfie.
[44] Aditya Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan Driscoll, Matt Elder, Tycho Andersen, and Thomas Reps. Directed proof generation for machine code. In International Conference on Computer Aided Verification, pages 288-305. Springer, 2010.
[45] Unpacker Tool. Automated unpacking: A behaviour based approach. https: //github.com/malwaremusings/unpacker.
[46] T.Touili and X.Ye. Reachability analysis of self modifying code. In $\underline{22 n d}$ International Conference on Engineering of Complex Computer Systems (ICECCS), 2017.
[47] T.Touili and X.Ye. Ltl model checking for self modifying code. In 24th International Conference on Engineering of Complex Computer Systems (ICECCS), 2019.
[48] V.Heaven. V.heavens. http://vxer.org/lib/.

REFERENCES

[49] VirusShare. vxshare. https://virusshare.com.

