N

N
N

HAL

open science

Model checking self modifying code
Xin Ye

» To cite this version:

Xin Ye. Model checking self modifying code. Logic in Computer Science [cs.LO]. Université Paris Cité;

East China normal university (Shanghai), 2019. English. NNT: 2019UNIP7010 . tel-02972592

HAL Id: tel-02972592
https://theses.hal.science/tel-02972592
Submitted on 20 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://theses.hal.science/tel-02972592
https://hal.archives-ouvertes.fr

GNORMa;
PARIS]
:DIDEROT : "
‘ i ZRBPAEAYG
Université de Paris
EAST CHINA NORMAL
UNIVERSITY

Université de Paris
En cotutelle avec
East China Normal University

Ecole Doctorale de Sciences Mathématiques de Paris-Centre (ED 386)

Laboratoire d'informatique de Paris Nord

Model Checking Self Modifying Code

Par Xin Ye
Theése de doctorat en informatique

Dirigée par Tayssir Touili et Jifeng He

Présentée et soutenue publiqguement a Villetaneuse le 30/09/2019

Guillaume Bonfante : Maitre de Conférences HDR, LORIA , Université de Lorraine, rapporteur
Jifeng He : Professeur, East China Normal University, co-directeur de thése
Laure Petrucci : Professeur, LIPN, Université Paris 13, Présidente du jury
Mihaela Sighireanu : Maitre de Conférences HDR, IRIF, Université Paris Diderot, examinatrice
Jean-Marc Talbot : Professeur, Université d'Aix-Marseille, rapporteur
Tayssir Touili : Directrice de recherche, CNRS, LIPN, Université Paris 13, directrice de thése

Valérie Viet Triem Tong: Professeur, CentraleSupelec, examinatrice

Title : Model Checking Self Modifying Code

Abstract :

A Self modifying code is code that modifies its own instructions during execution time. It is
nowadays widely used, especially in malware to make the code hard to analyse and to detect by
anti-viruses. Thus, the analysis of such self modifying programs is a big challenge. Pushdown
Systems (PDSs) is a natural model that is extensively used for the analysis of sequential programs
because it allows to accurately model procedure calls and mimic the program’s stack. In this thesis,
we propose to extend the PushDown System model with self-modifying rules. We call the new
model Self-Modifying PushDown System (SM-PDS). A SM-PDS is a PDS that can modify its own set
of transitions during execution. First, we show how SM-PDSs can be used to naturally represent
self-modifying programs and provide efficient algorithms to compute the backward and forward
reachable configurations of SM-PDSs. Then, we consider the LTL model-checking problem of self-
modifying code. We reduce this problem to the emptiness problem of Self-modifying Biichi
Pushdown Systems (SM-BPDSs). We also consider the CTL model-checking problem of self-
modifying code. We reduce this problem to the emptiness problem of Self-modifying Alternating
Biichi Pushdown Systems (SM-ABPDSs). We implement our techniques in a tool called SMODIC.
We obtained encouraging results. In particular, our tool was able to detect several self-modifying
malwares; it could even detect several malwares that well-known anti-viruses such as McAfee,
Norman, BitDefender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast and Symantec failed to
detect.

Keywords : Self-modifying Code, Model-checking, Pushdown System, Malware Detection, LTL, CTL,
Reachability Analysis, Binary Code.

Titre : Vérification de Code Auto-modifiant

Résumé : Le code auto-modifiant est un code qui modifie ses propres instructions pendant le
temps d'exécution. Il est aujourd'hui largement utilisé, notamment dans les logiciels malveillants
pour rendre le code difficile a analyser et étre détecté par les anti-virus. Ainsi, I'analyse de tels
programmes auto-modifiants est un grand défi. Pushdown System(PDSs) est un modéle naturel qui
est largement utilisé pour I'analyse des programmes séquentiels car il permet de modéliser
précisément les appels de procédures et de simuler la pile du programme. Dans cette thése, nous
proposons d'étendre le modeéle du PDS avec des régles auto-modifiantes. Nous appelons le
nouveau modéle Self-Modifying PushDown System (SM- PDS). Un SM-PDS est un PDS qui peut
modifier I’ensemble des régles de transitions pendant I'exécution. Tout d'abord, nous montrons
comment les SM-PDS peuvent étre utilisés pour représenter des programmes auto-modifiants et
nous fournissons des algorithmes efficaces pour calculer les configurations accessibles des SM-
PDSs. Ensuite, nous résolvons le probléme de vérification de propriétés LTL et CTL pour le code
auto-modifiant. Nous implémentons nos techniques dans un outil appelé SMODIC. Nous avons
obtenu des résultats encourageants. En particulier, notre outil est capable de détecter plusieurs
logiciels malveillants auto-modifiants ; il peut méme détecter plusieurs logiciels malveillants que
les autres logiciels anti-virus bien connus comme McAfee, Norman, BitDefender, Kinsoft, Avira,
eScan, Kaspersky, Qihoo-360, Avast et Symantec n'ont pas pu détecter.

Mots clefs : Code auto-modifiant, Vérification, Pushdown System, Détection de Malware, I'analyse
de l'accessibilité, code binaire, LTL, CTL.

Résumé Détaillé

Un code auto-modifiant est un code qui modifie ses propres instructions pen-
dant le temps d’exécution. Il est aujourd’hui largement utilisé, principalement
pour rendre les programmes difficiles a comprendre. Par exemple, le code auto-
modifiant est largement utilisé pour protéger la propriété intellectuelle des logi-
ciels, car il permet d’inverser du code. Il est également abondamment utilisé
par les auteurs de malwares afin d’obscurcir leur code malveillant et de le rendre
difficile & analyser par les analyseurs statiques et les anti-virus. Il existe plusieurs
types d’implémentations pour les codes auto-modifiants. Packing consiste a ap-
pliquer des techniques de compression pour réduire la taille du fichier exécutable.
Ceci convertit le fichier exécutable en une forme ou le contenu exécutable est
caché. Ensuite, le code est ”déballé” au moment de ’exécution. Un tel code em-
ballé est auto-modifiant. Le chiffrement est une autre technique pour cacher le
code. Il utilise une sorte d’opérations inversibles pour cacher le code exécutable
a 'aide d’'une clé de cryptage. Ensuite, le code est "décrypté” au moment de
I'exécution. Les programmes cryptés sont auto-modifiants. Ces deux formes de
codes auto-modifiants ont été bien étudiés dans la littérature et pourraient étre
traitées par plusieurs outils de décryptage.

Dans cette these, nous considérons un autre type de code auto-modifiant,
causé par des instructions auto-modifiantes, ou le code est traité comme des
données qui peuvent donc étre lues et écrites par des instructions auto-modifiantes.
Ces instructions auto-modifiantes sont généralement des instructions de mov,
puisque le mov peut accéder a la mémoire, la lire et y écrire. Pour ce faire, nous
devons d’abord trouver un modéle adéquat pour de tels programmes. PushDown
Systems (PDSs) est connu pour étre un modele naturel pour les programmes
séquentiels, car il permet de suivre les contextes des différents appels dans le pro-
gramme. De plus, les systemes PushDown permettent d’enregistrer et d’imiter
la pile du programme, ce qui est tres important pour la détection des malwares.
En effet, pour vérifier si un programme est malveillant, les anti-virus commen-
cent par identifier les appels qu’il fait aux fonctions API. Pour échapper a ces

controles, les auteurs de malwares essaient d’obscurcir les appels qu’ils font au

iii

systeme d’exploitation en utilisant des pushs et des sauts. Il est donc important
de pouvoir suivre la pile pour détecter de tels appels obscurs. C’est pourquoi
les systemes PushDown ont été utilisés pour modéliser des programmes binaires
afin de détecter les malwares. Cependant, ces travaux ne tiennent pas compte
des malwares qui utilisent du code auto-modifiant, car les systemes PushDown
ne sont pas capables de modéliser des instructions auto-modifiantes.

Pour surmonter cette limitation, nous proposons dans cette these d’étendre
le modéle du systeme PushDown avec des regles auto-modifiantes. Nous ap-
pelons ce nouveau modele le systeme SM-PDS (Self-Modifying PushDown Sys-
tem). En gros, un SM-PDS est un PDS qui peut modifier son propre ensemble de
transitions pendant ’exécution. Nous montrons comment les SM-PDS peuvent
étre utilisés pour représenter naturellement des programmes auto-modifiants. 1l
s’avere que les SM-PDS sont équivalents aux PDS standards. Nous montrons
comment traduire un SM-PDS en PDS standard. Cette traduction est exponen-
tielle. Par conséquent, il n’est pas efficace d’effectuer 'analyse de vérification
du modele sur le PDS équivalent. Nous proposons donc dans cette these des

algorithmes directs pour les SM-PDS.

Analyse de ’accessibilité du code auto-modifiant

Tout d’abord, nous considérons le probleme de 'accessibilité. Nous proposons
des algorithmes directs pour calculer les ensembles d’accessibilité avant (post™)
et arriere (pre*) pour les SM-PDS. Ceci permet d’effectuer efficacement ’analyse
d’accessibilité pour les programmes auto-modifiants. Nos algorithmes sont basés
sur (1) la représentation d’ensembles réguliers (potentiellement infinis) de config-
urations de SM-PDS en utilisant des automates a états finis, et (2) Papplication de
procédures de saturation sur les automates a états finis afin de prendre en compte
Ieffet de I'application des regles du SM-PDS. Ces résultats ont été publiés dans
ICECCS 2017.

Vérification de propriétés LTL pour le code auto-modifiant

v

Au chapitre 3, nous proposons un algorithme direct de vérification de propriétés
LTL pour les SM-PDS. Notre algorithme est basé sur la réduction du probleme de
vérification de propriétés LTL au probleme du vide de Biichi Pushdown Systems
auto-modifiants(SM-BPDSs). Intuitivement, on obtient ce SM-BPDS en prenant
le produit du SM-PDS avec un automate de Biichi acceptant une formule LTL
w. Ensuite, on résout le probleme du vide d’'un SM-BPDS en calculant ses re-
peating heads. Ce calcul est basé sur le calcul de configurations labellisées pre*
en appliquant une procédure de saturation sur des automates finis labellisés. Ces
résultats sont publiés dans ICECCS 2019.

Vérification de propriétés CTL pour le code auto-modifiant

Au chapitre 4, nous examinons le probleme de vérification de propriétés CTL
pour les SM-PDS. Ceci permet de détecter les comportements malveillants de
type CTL sur du code auto-modifiant. Nous réduisons ce probleme au probleme
de la vérification du vide de Self-modifying Alternating Biichi Pushdown Systems
(SM-ABPDSs), et nous proposons un algorithme qui calcule un automate fini qui

caractérise ’ensemble des configurations acceptées par les SM-ABPDS.

SMODIC : un outil d’analyse de code auto-modifiant

Nous avons implémenté nos techniques dans un outil d’analyse de code auto-
modifiant appelé SMODIC. Nous avons utilisé avec succes SMODIC pour modéliser
et vérifier plus de 900 codes binaires auto-modifiants. En particulier, nous avons
appliqué SMODIC pour la détection des logiciels malveillants, puisque les logi-
ciels malveillants utilisent généralement des instructions auto-modifiantes, et que
les comportements malicieux peuvent étre décrits par des formules LTL ou CTL.
Dans nos expériences, SMODIC a pu détecter 895 malwares et prouver que 19
programmes bénins étaient bénins. SMODIC a également été capable de détecter
plusieurs logiciels malveillants que des antivirus connus tels que Bit-Defender,

Kinsoft, Avira, eScan, Kaspersky, Avast et Symantec n’ont pas détectés. SMODIC

peut étre trouvé a https://lipn.univ-paris13.fr/~xin/smodic/index.html.

vi

https://lipn.univ-paris13.fr/~xin/smodic/index.html

Acknowledgements

It has been an unforgettable and extraordinary experience of my
Ph.D. years at LIPN, not only from the scientific perspective, but
also from personal willpower. Here, I would like to take the opportu-
nity to sincerely acknowledge all the people who helped and supported
me in different ways. I would not have done it without them. First
of all, I sincerely thank my two supervisors, Prof. Tayssir Touili and
Prof. Jifeng He for giving me the opportunity to write this thesis.
Prof. Tayssir Touili is also an excellent teacher. Thanks so much for
her excellent and patient support and supervision throughout these
four-year Ph.D. study. Without her detailed comments, this thesis
cannot be completed. I would like to thank Prof. Jifeng He, my su-
pervisor in China. His attitude in research inspired me a lot. Without
his support, I cannot finish my thesis. Their attitude and devotion
to the science encourages me all the time, and will continue inspiring

me and be a role model for me in the rest of our lives.

My special thanks go to Prof. Guillaume Bonfante and Prof. Jean-
Marc Talbot who kindly agreed to be my thesis referees. I would like

to thank them for the valuable remarks.

I would like to thank Prof. Laure Petrucci and Prof. Valérie Viet
Triem Tong who kindly agreed to be the members of my jury. My
special thanks to Prof. Mihaela Sighireanu. I would like to thank her
not only for accepting to be a member of my defense jury, but also
for her help when I arrived in Paris to start my Ph.D study. Without

her help, I might have no place to stay for my first year in Paris.

[am very grateful to many staff members of the Laboratoire d'Informatique
de Paris Nord (LIPN) for their logistics help. I would like to thank

Ms. Amina Hariti, the secretary of the doctoral school for the help
with the paper work.

Many thanks to all my labmates both in LIPN and Shanghai for being

there, for sharing good and bad times, for the encouragements.

I also would like to take it as an honor to express my thanks to my
friends for their supportive influences in my life all the way. I thank

them very much for coming to my life and helping me in any way.

Finally I would like to express my deep sense of gratitude to my ever
loving big family. My parents, aunts, uncles and cousins have given
me numerous encouragement and support. I would like to thank my
dearest mother Yuying and father Jinshou, who give me unconditional
support, love, and encouragement in my life. Thank you so much, my
dearest families.

Contents

1 Introduction
1.1 Reachability Analysis of Self Modifying Code
1.2 LTL Model Checking of Self Modifying Code
1.3 CTL Model Checking of Self Modifying Code
1.4 SMODIC: A Model Checker for Self Modifying Code
1.5 Related Works oo
1.6 Thesis Organization

2 Reachability Analysis of Self Modifying Code
2.1 An Example of A Self-modifying Code
2.2 Self Modifying Pushdown Systems
2.2.1 Definition
2.2.2 From SM-PDSstoPDSs
2.2.3 From SM-PDSs to Symbolic PDSs
2.3 Modeling Self-modifying Code with SM-PDSs
2.3.1 Self-modifying Instructions
2.3.2 From Self-modifying Code to SM-PDS
2.4 Representing Infinite Sets of Configurations of a SM-PDS
2.5 Efficient Computation of pre* images
2.5.1 Proof of Theorem 2511
2.6 Efficient Computation of post* Images
2.6.1 Proof of Theorem2.6.11
2.7 Experiments Lo

2.7.1 Our Algorithms vs. Standard pre* and post* Algorithms of

1X

B EEEREBEH

SN

-
SH=

£

CONTENTS

3 LTL Model-Checking of Self-modifying Code 41
3.1 LTL Model-Checking of SM-PDSs (4T
3.1.1 The linear-time temporal logic LTL 41l
3.1.2 Self Modifying Biichi Pushdown Systems [42]
3.1.3 From LTL Model-Checking of SM-PDSs to the emptiness
problem of SM-BPDSs 43]
3.2 The Emptiness Problem of SM-BPDSs 44
3.2.1 The Head Reachability Graph G 451
3.2.2 Labelled configurations and labelled BP-automata 511
3.2.3 Computing pre*(((p’, €), 9’))
3.2.4 Computing the Head Reachability Graph G B8]
3.3 Experiments HOl
3.3.1 Our approach vs. standard LTL for PDSs bYS)
3.3.2 Malicious Behavior Detection on Self-Modifying Code . . . [(]
3.3.2.1 Specifying Malicious Behaviors using LTL. [G]l
3.3.2.2 Applying our tool for malware detection. 63]
4 CTL Model-Checking of Self-modifying Code [71]
4.1 CTL Model-Checking of SM-PDSs [71
4.1.1 The Computation Tree Logic CTL [71]
4.1.2 Self-modifying Alternating Biichi Pushdown Systems . . . [[2
4.1.3 From CTL Model-Checking of SM-PDSs to the emptiness
problem of SM-ABPDSs 74l
4.2 Computing the language of a SM-ABPDS 89]
4.2.1 Characterizing L(BP) L. k)
4.2.2 Computing Yap OT]
4.3 Experiments 104
4.3.1 Our algorithm vs. standard CTL on PDSs o4
4.3.2 Malicious Behavior Detection on Self-Modifying Code . . .
4.3.2.1 Specifying malicious behaviors using CTL.
4.3.2.2 Applying our tool for malware detection. 107
5 SMODIC: A Model Checker for Self Modifying Code A1l
5.1 Architecture
5.2 Experiments 113]

CONTENTS

5.2.1 Analysing Self-modifying Binary Code 113

5.2.2 Comparison with Well-known Anti-viruses 113

5.3 Description of SMODIC 113
5.3.1 Reachability Analysis in SMODIC

5.3.2 LTL and CTL in SMODIC 110

5.4 Applying SMODIC for Malware Detection 118

6 Conclusion 127l
6.1 Summary 21
6.2 Future Work 122
References [125]

x1

CONTENTS

xil

1

Introduction

Self-modifying code is code that modifies its own instructions during execution
time. It is nowadays widely used, mainly to make programs hard to under-
stand. For example, self-modifying code is extensively used to protect software
intellectual property, since it makes reverse code engineering harder. It is also
abundantly used by malware writers in order to obfuscate their malicious code
and make it hard to analyse by static analysers and anti-viruses.

There are several kinds of implementations for self-modifying codes. Packing
[36] consists in applying compression techniques to make the size of the executable
file smaller. This converts the executable file to a form where the executable con-
tent is hidden. Then, the code is “unpacked” at runtime before execution. Such
packed code is self-modifying. Encryption is another technique to hide the
code. It uses some kind of invertible operations to hide the executable code with
an encryption key. Then, the code is “decrypted” at runtime prior to execu-
tion. Encrypted programs are self-modifying. These two forms of self-modifying
codes have been well studied in the litterature and could be handled by several
unpacking tools such as [43], 45].

In this thesis, we consider another kind of self-modifying code, caused by self-
modifying instructions, where code is treated as data that can thus be read
and written by self-modifying instructions. These self-modifying instructions
are usually mov instructions, since mov can access memory, and read and write
to it. For example, consider the program shown in Figure[I.1} For simplification
matters, we suppose that the addresses’ length is 1 byte. The binary code is

given in the left side, while in the right side, we give its corresponding assembly

1. INTRODUCTION

0x0 push 0x3 0x0 push 0x3

L
i

Binary Codes address Assembly

After Execution of

0x2 push Ob] [0x2 jmp Ob] 0x2 push Ob

)

ff 03 0x0 push 0x3 mov 0x2 Oxc
' * #0b 0x2 push Ob —» 0x2 jmpOb
! ff 01 0x7 push %ebx
Oc 02 0x9 jmp Ox2
48 01 Oxb dec %ebx

0x9 jmp 0x2 0x9 jmp 0x2

Codes

Oxb dec %ebx Oxb dec %ebx

CFGa CFGb
CFGs

Figure 1.1: A Simple Example of Self-modifying Codes

code obtained by translating syntactically the binary code at each address. For
example, ff is the binary code of the instruction push, thus, the first line is
translated to push 0x3, the second line to push Ob, etc. Let us execute this
code. First, we execute push 0x3, then push Ob, then mov 0x2 Oxc. This last
instruction will replace the first byte at address 0x2 by Oxc. Thus, at address
0x2, ff Ob is replaced by Oc 0b. Since Oc is the binary code of jmp, this means
the instruction push Ob is replaced by jmp Oxb. Therefore, this code is self-
modifying. If we treat it blindly, without looking at the semantics of the different
instructions, we will extract from it the Control Flow Graph CFG a, whereas its
correct Control Flow Graph is CFG b. You can see that the mov instruction was
able to modify the instructions of the program successfully via its ability to read
and write the memory.

In this thesis, we consider the analysis of self-modifying programs where the
code is modified by mov instructions. To this aim, we first need to find an
adequate model for such programs. PushDown Systems (PDSs) is known to be a
natural model for sequential programs [42], as it allows to track the contexts of
the different calls in the program. Moreover, PushDown Systems allow to record
and mimic the program’s stack, which is very important for malware detection.
Indeed, to check whether a program is malicious, anti-viruses start by identifying
the calls it makes to the API functions. To evade these checks, malware writers
try to obfuscate the calls they make to the Operating System by using pushes
and jumps. Thus, it is important to be able to track the stack to detect such

1.1 Reachability Analysis of Self Modifying Code

obfuscated calls. This is why PushDown Systems were used in [I3] 14] to model
binary programs in order to perform malware detection. However, these works
do not consider malwares that use self-modifying code, as PushDown Systems
are not able to model self-modifying instructions.

To overcome this limitation, we propose in this thesis to extend the PushDown
System model with self-modifying rules. We call the new model Self-Modifying
PushDown System (SM-PDS). Roughly speaking, a SM-PDS is a PDS that can
modify its own set of transitions during execution. We show how SM-PDSs can
be used to naturally represent self-modifying programs. It turns out that SM-
PDSs are equivalent to standard PDSs. We show how to translate a SM-PDS to
a standard PDS. This translation is exponential. Thus, performing the model-
checking analysis on the equivalent PDS is not efficient. We propose then in this
thesis direct model-checking algorithms for SM-PDSs.

1.1 Reachability Analysis of Self Modifying Code

First, we consider the reachability problem. We propose direct algorithms to
compute the forward (post*) and backward (pre*) reachability sets for SM-PDSs.
This allows to efficiently perform reachability analysis for self-modifying pro-
grams. Our algorithms are based on (1) representing regular (potentially infinite)
sets of configurations of SM-PDSs using finite state automata, and (2) applying
saturation procedures on the finite state automata in order to take into account
the effect of applying the rules of the SM-PDS. These results were published in
[46]. They are described in Chapter 2.

1.2 LTL Model Checking of Self Modifying Code

In Chapter 3, we propose a direct LTL model checking algorithm for SM-PDSs.
Our algorithm is based on reducing the LTL model checking problem to the
emptiness problem of Self Modifying Biichi Pushdown Systems (SM-BPDSs). In-
tuitively, we obtain this SM-BPDS by taking the product of the SM-PDS with
a Biichi automaton accepting an LTL formula . Then, we solve the emptiness

problem of a SM-BPDS by computing its repeating heads. This computation is

1. INTRODUCTION

based on computing labelled pre* configurations by applying a saturation proce-

dure on labelled finite automata. These results are published in [47].

1.3 CTL Model Checking of Self Modifying Code

In Chapter 4, we consider the CTL model-checking problem for SM-PDSs. This
allows to detect CTL-like malicious behaviors on self-modifying code. We reduce
this problem to the emptiness checking problem of Self-modifying Alternating
Biichi Pushdown Systems (SM-ABPDSs), and we propose an algorithm that com-
putes a finite automaton that characterizes the set of configurations accepted by
the SM-ABPDS.

1.4 SMODIC: A Model Checker for Self Modi-
fying Code

We implemented our techniques in a tool for self-modifying code analysis called
SMODIC. We successfully used SMODIC to model-check more than 900 self-
modifying binary codes. In particular, we applied SMODIC for malware de-
tection, since malwares usually use self-modifying instructions, and since mali-
cious behaviors can be described by LTL or CTL formulas. In our experiments,
SMODIC was able to detect 895 malwares and to prove that 19 benign programs
were benign. SMODIC was also able to detect several malwares that well-known
antiviruses such as Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and
Symantec failed to detect. SMODIC can be found in
https://lipn.univ-parisl13.fr/~xin/smodic/index.html.

1.5 Related Works

Reachability analysis and LTL/CTL model-checking of pushdown systems was

considered e.g. in [6, 20] B89, 42]. Our algorithms are extensions of these works.
Model checking and static analysis approaches have been widely used to an-

alyze binary programs, for instance, in [7, 12], 14, 15 19 21, 29, 29 B3]. These

works cannot handle self-modifying code.

https://lipn.univ-paris13.fr/~xin/smodic/index.html

1.5 Related Works

Cai et al. [I8] use a Hoare-logic-style framework to describe self-modifying
code by applying local reasoning and separation logic, and treating program code
uniformly as regular data structure. However, [18] requires programs to be man-
ually annotated with invariants. In [36], the authors describe a formal semantics
for self-modifying codes, and use that semantics to represent self-unpacking code.
This work only deals with packing and unpacking behaviours, it cannot cap-
ture self-modifying instructions as we do. In [I6], Bonfante et al. provide an
operational semantics for self-modifying programs and show that they can be
constructively rewritten to a non-modifying program. All these specifications

[16], 18] [36] are too abstract to be used in practice.

In [1], the authors propose a new representation of self-modifying code named
State Enhanced-Control Flow Graph (SE-CFG). SE-CFG extends standard con-
trol flow graphs with a new data structure, keeping track of the possible states
programs can reach, and with edges that can be conditional on the state of the
target memory location. It is not easy to analyse a binary program only using its
SE-CFG, especially that this representation does not allow to take into account

the stack of the program.

[34] propose abstract interpretation techniques to compute an over-approximation
of the set of reachable states of a self-modifying program, where for each control
point of the program, an over-approximation of the memory state at this control
point is provided. [2§] combine static and dynamic analysis techniques to anal-
yse self-modifying programs. Unlike our self-modifying pushdown systems, these
techniques [28] [34] cannot handle the program’s stack.

Unpacking binary code is considered in [23, 27, 32, 36]. These works do not
consider self-modifying mov instructions.

There are a lot of tools that can deal with binary code analysis |2, [3] 4] 8]
9, [10], [11], 3] 14] 22, 24, 25] 26], 37, 38| 44]. POMMADE [13| [14] is a malware
detector based on LTL and CTL model-checking of PDSs. STAMAD [24], 25, 26]
is a malware detector based on PDSs and machine learning. However, all these
tools cannot handle self-modifying code. The only tools that we know of and that
can deal with self-modifying code are BE-PUM [17] and CoDisasm [5].

BE-PUM (Binary Emulation for PUshdown Model) [17] focuses on generating
CFG (Control Flow Graph) of malwares. BE-PUM can construct a pushdown

model from x86 binaries in an on-the-fly manner. Concolic testing is applied to

1. INTRODUCTION

determine the precise destinations of branches for indirect jumps. This tool can
deal with self-modifying code caused by modifying the destinations of indirect
jumps, including overwriting the return address of a function (in the stack). But
it cannot handle self-modifying instructions.

CoDisasm [5] is a tool that focuses on the disassembly of x86 code that in-
cludes self-modifying instructions and code overlapping. CoDisasm deals only
with disassembling the code. It does not consider model-checking problems of
code. Currently, we use Jakstab [22] to disassemble binary code. CoDisasm
might help our disassembly process and make it more precise. We plan to use
CoDisasm in the future (instead of Jakstab) and see whether it will improve the

precision of our extracted CFGs.

1.6 Thesis Organization

In Chapter 2, we give the definition of SM-PDS and show how a SM-PDS can de-
scribe self-modifying codes. We also present our direct algorithms for reachability
analysis of SM-PDSs. Chapter 3 shows how to reduce the LTL model checking
problem of SM-PDSs to the emptiness problem of self-modifying biichi pushdown
systems. We tackle the CTL model checking problem on SM-PDSs in Chapter 4.
Chapter 5 presents the tool SMODIC that implements our algorithms.

2

Reachability Analysis of Self
Modifying Code

A Self modifying code is code that modifies its own instructions during execu-
tion time. It is nowadays widely used, especially in malware to make the code
hard to analyse and to detect by anti-viruses. Thus, the analysis of such self
modifying programs is a big challenge. Pushdown Systems (PDSs) is a natural
model that is extensively used for the analysis of sequential programs because it
allows to accurately model procedure calls and mimic the program’s stack. In this
chapter, we propose to extend the PushDown System model with self-modifying
rules. We call the new model Self-Modifying PushDown System (SM-PDS). A
SM-PDS is a PDS that can modify its own set of transitions during execution. We
show how SM-PDSs can be used to naturally represent self-modifying programs
and provide efficient algorithms to compute the backward and forward reachable
configurations of SM-PDSs. We implemented our techniques in a tool and ob-
tained encouraging results. In particular, we successfully applied our tool for the

detection of self-modifying malware.

2.1 An Example of A Self-modifying Code

Fig. shows how malware can use self-modifying instructions to evade from
static analysis techniques. This figure shows a fragment of the malware Bagle.J

equipped with such self-modifying instructions. First let us recall the semantics

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

of the mov instruction. It copies the data item referred to by its second operand
(register or memory location) into its first operand. In Fig. 2.1] in the box on the
left, we give, respectively, the binary code, the addresses of the different instruc-
tions, and the corresponding assembly code, obtained by translating syntactically
the binary code at each address. For example, ££ is the binary code of the instruc-
tion push. Thus, the first line is translated to push 0b. The second instruction
mov 0x2 Oxc will replace the first byte at address 0x2 by Oxc. Thus, at address
0x2, £f Ob is replaced by Oc Ob, i.e., the instruction push Ob is replaced by jmp
Ob. If we analyse this code without taking into account the fact that mov 0x2
Oxc is a self-modifying instruction, then, we will obtain the Control Flow Graph
“CFG a”, and we will reach the conclusion that the Bagle malicious behaviour
implemented at address 0b by the API functions RegCreateKeyA, RegDeleteVal-
ueA, and RegCloseKey is not reachable. However, the actual CFG is “CFG b”,
where the malicious fragment of the malware Bagle.J that starts at address 0b is
reached and will be executed.

It can be seen from this example that self-modifying codes can make malware
detection harder, and that the mov instruction is able to modify instructions of
the program successfully via its ability to read and write the memory. Thus, it

is crucial to be able to analyse this kind of self-modifying code.

Binary Codes

ff Ob
c6 02 Oc
ff 01

ff 1500800010
ff 15 00804000

ff 15 08800010

address Assembly

0x2

0x4
0x7

Ox1A

After executing
mov 0x2 Oxc
pushOb — jmp Ob
mov 0x2 Oxc
push %ebx

Oc 02 0x9 jmp Ox2 0x2 0x7
X Ox4 X
68 01 00 00 08 8X1b0 push 80000001h push Ob push ebx .
X

call RegCreateKeyA

call RegDeleteValueA

0x26 cal'l‘ ﬁegCIoseKey

Bagle.J code fragment

0x2 ox4
push Ob mov 0x2 Oxc p

CFGa

0x9

Oxb
push soooootn

jmp 0x2

0x10

Oxb
push
80000011

call call
RegCreateKey e
CFGb

0x26

—_call RegCloseKey,

Figure 2.1: An Example of Self-modifying Code

2.2 Self Modifying Pushdown Systems

2.2 Self Modifying Pushdown Systems

2.2.1 Definition

We introduce in this section our new model: Self-modifying Pushdown Systems.

Definition 1 A Self-modifying Pushdown System (SM-PDS) is a tuple P =

(P,T',A,A.), where P is a finite set of control points, I' is a finite set of stack

symbols, A C (P x I') x (P x I'*) is a finite set of transition rules, and A. C

P x (AUA,) x (AUA,) x P is a finite set of modifying transition rules. If

((p,7), (P, w)) € A, we also write (p,y) — (p',w) € A. If (p,r1,7r9,p") € A., we
(r1,72)

also write p ——— p' € A.. A Pushdown System (PDS) is a SM-PDS where
A, =10.

Intuitively, a Self-modifying Pushdown System is a Pushdown System that
can dynamically modify its set of rules during the execution time: rules A are
standard PDS transition rules, while rules A. modify the current set of transition
rules: (p,7) — (p',w) € A expresses that if the SM-PDS is in control point p
and has ~ on top of its stack, then it can move to control point p’, pop v and
push w onto the stack, while p & p' € A, expresses that when the PDS is
in control point p, then it can move to control point p’, remove the rule r; from
its current set of transition rules, and add the rule 5. Formally, a configuration
of a SM-PDS is a tuple ¢ = ({p,w), #) where p € P is the control point, w € I'*
is the stack content, and 8 C A U A, is the current set of transition rules of the
SM-PDS. @ is called the current phase of the SM-PDS. When the SM-PDS is a
PDS, i.e., when A, = (), a configuration is a tuple ¢ = ({p, w), A), since there is no
changing rule, so there is only one possible phase. In this case, we can also write
¢ = (p,w). Let C be the set of configurations of a SM-PDS. A SM-PDS defines a
transition relation =-p between configurations as follows: Let ¢ = ((p,w),) be a
configuration, and let r be a rule in 6, then:

1.if r € A, is of the form r = p & p’, such that r; € 6, then

((p,w),0) =p ((p/,w),d), where 0 = (0 \ {r1}) U {r2}. In other words,
the transition rule r updates the current set of transition rules ¢ by remov-

ing r, from it and adding r to it.

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2. if r € A is of the form r = (p,v) — (p/,w’) € A, then ((p,yw),0) =p
((p',w'w),). In other words, the transition rule r moves the control point
from p to p’, pops v from the stack and pushes w’ onto the stack. This

transition keeps the current set of transition rules ¢ unchanged.

Let =7 be the transitive, reflexive closure of =p. We define = as follows:
¢ = ¢ iff there exists a sequence of configurations ¢y =p ¢; =p ... =p ¢ s.t.
co = ¢ and ¢; = ¢ Given a configuration ¢, the set of immediate predecessors
(resp. successors) of ¢ is prep(c) = {c¢ € C : ¢ =p ¢} (resp. postp(c) = {c €
C : ¢ =p }). These notations can be generalized straightforwardly to sets of
configurations. Let prej, (resp. post;) denote the reflexive-transitive closure of
prep (resp. postp). We omit the subscript P when it is understood from the

context.

Example 1 Let P = (P,I', A, A.) be a SM-PDS where p = {p1,p2,p3,ps}, I' =
{71772,73}; A= {7’1 : <p1771> — <p277271>,7"2 : <p2772> — <p3,€>,7”3 : <p4,71> —

(P2,7273)}, Ac = {1 : p3 ‘% paf. Let co = ((p1,71m),00) where 0y =
{ry,ra, 7"} Applying rule v, we get ({(p1,1171),00) =» ((p2,727171),60). Then,
applying rule ro, we get ({p2, v27171),00) =r ((P3,7171),60). Then, applying rule
', we get ((ps,1171),600) =p (P4, 171),61) where v’ is self-modifying, thus, it
leads the SM-PDS from phase 0y = {ry,r2,7'} to phase 01 = 0y \ {r1} U {rs} =
{ro, 73,7}, Then, applying rule r3, we get ({ps,17),01) =r ({(P2,72737),01)-

Then, applying rule ro again, we get ({p2, ¥2y371),01) =p ((p3,V371),061).

2.2.2 From SM-PDSs to PDSs

A SM-PDS can be described by a PDS. This is due to the fact that the number
of phases is finite, thus, we can encode phases in the control points of the PDS:
Let P = (P,T',A,A.) be a SM-PDS, we compute the PDS P = (P',T,A’) as
follows: P’ = P x 2A2YA¢<_ TInitially, A’ = (). For every 0 € 28V r € ¢:

L Ifr=(p,7) = (P w) € ANG, we add ((p,0),7) — (0, 0), w) to A’

(r1,m2)

2. if r =p—-+-—p € A.N0, then for every v € I', we add ((p,0),7) —
((p',0'),7) to A, where ¢ = (0 \ {ri}) U {rz}.

It is easy to see that:

10

2.2 Self Modifying Pushdown Systems

Proposition 1 ((p,w),0) =p ((p',w'),0) iff ((p,0),w) =p ((p',0),w).

Proof:
=: We will show that if ((p, w),8) =p ((p/,w’),8), then we have ((p,0),w) =p
((p',0),w'). There are two cases depending on the form of the rule that led to

this transition.

e Case 0 = ' : it means that the transition does not correspond to a self-
modifying transition rule. Thus there is a rule r € 6 of the form r =
(p,y) — (p/,u') that led to this transition. Let u be such that w =
~yu,w = u'u. By the construction rule of the PDS P’ we have ((p, 0),~) —
((p/,0),u') € A’. Therefore, ((p,0),vu) =p ((p/,0),u'u) holds. This im-
plies that ((p,0),w) =» ((¢/,0),w').

e Case 6 # ' : it means that the transition corresponds to a self-modifying

transition rule. Thus there is a rule » € 6 of the form p % ' that
led to this transition. Let u be such that w = ~u,w’ = ~yu. By the
construction rule of the PDS P’, we have ((p,0),v) — ((p/,0),7) € A
where ¢ = (0\{r1}) U {r2}. Therefore, ((p,0),vu) =» ((p',0'),yu) holds.

This implies that ((p,), w) =5 ((p/,0'),w').
<: We will show that if ((p, 0), w) =p ((p/,0'),w’), then ((p,w),0) =p ((p',w'),).

Let v € I, u,u’ € T'* be such that w = yu, w’ = u'u. There are two cases.

e Case 0 = 0. Let r = ((p,0),7) — ((¢/,0),u') € A" be the rule that led
to the transition. By the construction of PDS P’, there must exist a rule
r € 0 such that r = (p,v) — (p/,). Therefore, ((p,yu),8) =» ({p,u'u),0)
holds. This implies that ((p,w),0) =p ({p,w’),0").

e Case 0 £ 0. Let r = ((p,0),7) — ((p,0'),7) € A" be the rule leading to
the transition and v’ = . By the construction of PDS P’ there must exist

(r1,m2)

a rule r € 0 such that r = p ——— p’ where 6’ = (0\{r1}) U {ra}. There-
fore, ({p,vu),0) =p ((p',vu),0) holds. This implies that ({p,w),0) =p

((p, '), 0).

Thus, we get:

11

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Theorem 2.2.1 Let P = (P,I', A, A.) be a SM-PDS, we can compute an equiv-
alent PDS P' = (P',T,A') such that |A'| = (JA] + |A| - |T]) - 20UAFIAD gnd
/| = | P| - 20081 +1A)

2.2.3 From SM-PDSs to Symbolic PDSs

Instead of recording the phases 6 of the SM-PDS in the control points of the equiv-
alent PDS, we can have a more compact translation from SM-PDSs to symbolic
PDSs [42], where each SM-PDS rule is represented by a single, symbolic tran-
sition, where the different values of the phases are encoded in a symbolic way

using relations between phases:

Definition 2 A symbolic pushdown system is a tuple P = (P,T',6), where P is
a set of control points, I is the stack alphabet, and ¢ is a set of symbolic rules of
the form: (p,~) SR, (p',w), where R C 28Y3¢ x 28VA¢ s g relation.

A symbolic PDS defines a transition relation ~»p between SM-PDS configu-
rations as follows: Let ¢ = ((p,yw'),) be a configuration and let (p,~) LN
(p',w) be a rule in ¢, then: ({(p,yw'),0) ~p ((p,ww'),d) for (6,0") € R.
Let ~% be the transitive, reflexive closure of ~»p. Then, given a SM-PDS
P = (P,I',A A,), we can compute an equivalent symbolic PDS P’ = (P, T", A’)
such that: Initially, A’ = (;

Riq

e For every (p,v) — (p',w) € A, add (p,y) —— (p',w) to A’, where R4

is the identity relation.

(r1,m2)

e Foreveryr =p———— p’ € A and every v € I, add (p,) ML ',
to A', where R = {(0y,0,) € 282 x 28Y2¢ | r €) and 0y = (0, \ {r1}) U

{r2}}-

It is easy to see that:

Proposition 2 ((p,w),0) =p ((p',w'),0) iff ((p,w),0) ~p ((p',w'),0).

Proof:
= we will show that if ((p, w),) =» ((p,w’),0), then ((p, w),) ~p ((p', '), 0").

There are two cases depending on the form of the rule that led to this transition.

12

2.2 Self Modifying Pushdown Systems

e Case § = ¢, it means that the transition does not correspond to a self-
modifying transition rule. Thus there is a rule » € 6 of the form r =
(p,7) = (p/,u) that led to this transition. Let u be such that w = yu,w" =
uw'u. By construction of the symbolic pushdown system P’, (p,) &
(p',u')y € A, therefore, ((p,vu),0) ~p ((p',u'n),0) holds. This implies

that ({p,w),0) ~p ((p,0"),8").

e Case 0 # ¢, it means that the transition corresponds to a self-modifying
transition rule. Thus there is a rule » € 0 of the form r = p (ro.r2)
p’ that led to this transition and 6 = (0\{ri}) U {re}. Let u be such
that w = ~yu,w’ = ~u. By construction of the symbolic pushdown system
P’ (p,7) LN (p/,7) € A" and R = {(0,0") € 28R x 28U | p ¢
0 and 0 = (0 \ {r1}) U {rs}}, therefore, ((p,yu),0) ~p ((p',yu),d") holds.
This implies that ((p,w),0) ~p ({p',w'),0").

«: we will show that if ((p, w), 0) ~p ((p',w'), "), then ({p,w),0) =p ((p’,w'),).
Let v € T',u,u’ € I'* be such that w = yu,w’ = v'u. There are two cases.

Riq

e Casef = 0. Let (p,7) ——— (p/,u’) € A’ be the rule applied to this tran-
sition. By the construction of the symbolic pushdown system P’ there must
exist a rule r € 0 s.t. r = (p,y) — (P, u’) € A. Therefore, ({p,yu),0) =p
((p,v'u), 0) holds. This implies that ((p, w),0) =p ((p/,w'),0).

e Case 0 # 0. Let (p,7) ML (p',v) € A’ be the rule applied to this
transition with w’ = ~yu. By the construction of the symbolic pushdown

(r1,r2)

system P’, there must exist a rule r € # of the form r = p peA,
st. R = {(0;,0;) € 2898 x 28U | € f and O, = (6, \ {r1}) U {r2}}.
Therefore, 8" = (0\{r1}) U{re} and ((p,yu),0) ~p ((p',yu),d) hold. This
implies that ((p,w),8) ~p ({(p',w'),0").

Thus, we get:

Theorem 2.2.2 Let P = (P,I', A, A.) be a SM-PDS, we can compute an equiv-
alent symbolic PDS P' = (P',I', A") such that |P'| = |P|, |A’| = |A] + A - [T,

and the size of the relations used in the symbolic transitions is 20UAIFAD

13

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.3 Modeling Self-modifying Code with SM-PDSs

2.3.1 Self-modifying Instructions

There are different techniques to implement self-modifying code. We consider in
this work code that uses self-modifying instructions. These are instructions that
can access the memory locations and write onto them, thus changing the instruc-
tions that are in these memory locations. In assembly, the only instructions that
can do this are the mov instructions. In this case, the self-modifying instructions
are of the form mov [v, where [is a location of the program that stores executable
data and v is a value. This instruction replaces the value at location [(in the
binary code) with the value v. This means if at location [there is a binary value
v’ that is involved in an assembly instruction iy, and if by replacing v' by v, we
obtain a new assembly instruction 75, then the instruction ¢, is replaced by is.
E.g., £f is the binary code of push, 40 is the binary code of inc, Oc is the binary
code of jmp, c6 is the binary code of mov, etc. Thus, if we have mov [£f, and if at
location [there was initially the value 40 01 (which corresponds to the assembly
instruction inc %edx), then 40 is replaced by ff, which means the instruction
inc %edx is replaced by push 01. If at location [there was initially the value
c6 01 02 (which corresponds to the assembly instruction mov edx 0x2), then c6
is replaced by ff, which means the instruction mov edx 0x2 is replaced by push
02.

Note that if the instructions 4; and i, do not have the same number of
operands, then mov [v will, in addition to replacing i; by iy, change several
other instructions that follow ;. Currently, we cannot handle this case, thus we

assume that 7; and i5 have the same number of operands.

Note also that mov [v is self-modifying only if [is a location of the program
that stores executable data, otherwise, it is not; e.g., mov eax v does not change
the instructions of the program, it just writes the value v to the register eax.
Thus, from now on, by self-modifying instruction, we mean an instruction of the
form mov | v, where [is a location of the program that stores executable data.
Moreover, to ensure that only one instruction is modified, we assume that the

corresponding instructions ¢; and i, have the same number of operands.

14

2.4 Representing Infinite Sets of Configurations of a SM-PDS

2.3.2 From Self-modifying Code to SM-PDS

We show in what follows how to build a SM-PDS from a binary program. We
suppose we are given an oracle O that extracts from the binary code a corre-
sponding assembly program, together with informations about the values of the
registers and the memory locations at each control point of the program. In our
implementation, we use Jakstab [22] to get this oracle. We translate the assembly
program into a self-modifying pushdown system where the control locations store
the control points of the binary program and the stack mimics the program’s
stack. The non self-modifying instructions of the program define the rules A of
the SM-PDS (which are standard PDS rules), and can be obtained following the
translation of [13] that models non self-modifying instructions of the program by
a PDS.

As for the self-modifying instructions of the program, they define the set of
changing rules A.. As explained above, these are instructions of the form mov [v,
where [is a location of the program that stores executable data. This instruction
replaces the value at location [(in the binary code) with the value v. Let i; be
the initial instruction involving the location [, and let 75 be the new instruction
involving the location [, after applying the mov [v instruction. As mentioned
previously, we assume that i; and iy have the same number of operands (to
ensure that only one instruction is modified). Let r; (resp. 72) be the SM-PDS

rule corresponding to the instruction i; (resp. i2). Suppose from control point n
to n/, we have this mov [v instruction, then we add n &) n' to A.. This is

the SM-PDS rule corresponding to the instruction mov [v at control point n.

2.4 Representing Infinite Sets of Configurations
of a SM-PDS

Multi-automata were introduced in [6, 20] to finitely represent regular infinite
sets of configurations of a PDS. A configuration ¢ = ({p,w),0) of a SM-PDS
involves a PDS configuration (p,w), together with the current set of transition
rules (phase) #. To finitely represent regular infinite sets of such configurations,

we extend multi-automata in order to take into account the phases 6:

15

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Definition 3 Let P = (P,T',A,A.) be a SM-PDS. A P-automaton is a tuple
A=(Q,I'\T, P, F) where I is the automaton alphabet, Q) is a finite set of states,
P x 2898 C Q) is the set of initial states, T C Q x (T'U{e})) x Q is the set of
transitions and F' C Q) 1is the set of final states.

If (q,fy,q’) € T, we write ¢ —+7¢. We extend this notation in the obvious
manner to sequences of symbols: (1) Vg € Q,q -1 ¢, and (2) Vq,q¢' € Q,Vy € T'U
{e},Yw € T* for w =971 -V, ¢ L7 ¢ T 3¢" € Q,q L7 ¢" and ¢" 7 ¢ If
q¢ S7 ¢ holds, we say that ¢ =7 ¢ is a path of A. A configuration ({(p,w),#)
is accepted by A iff A contains a path (p,0)>rq—57q - - - ¢ —2>7q where
q € F. Let L(A) be the set of configurations accepted by A. Let C be a set of
configurations of the SM-PDS P. C is regular if there exists a P-automaton 4
such that C = L(A).

2.5 Efficient Computation of pre* images

Let P = (P,I';A,A.) be a SM-PDS, and let A = (Q,I',7,P,F) be a P-
automaton that represents a regular set of configurations C (C = L(A)). To
compute pre*(C), one can use the translation of Section to compute an
equivalent PDS; and then apply the algorithms of [0 20]. This procedure is
too complex since the size of the obtained PDS is huge. One can also use the
translation of Section to compute an equivalent symbolic PDS, and then
use the algorihms of [42]. However, this procedure is not optimal neither since
the number of elements of the relations considered in the rules of the symbolic
PDSs are huge. We present in this section a direct and more efficient al-
gorithm that computes pre*(C) without any need to translate the SM-PDS to
an equivalent PDS or symbolic PDS. We assume w.l.o.g. that A has no tran-
sitions leading to an initial state. We also assume that the self-modifying rules

r=p ‘% p’ in A, are such that r # ;. This is not a restriction since a

(r,r2)

rule of the form r» = p ———— p’ can be replaced by these rules that meet this
constraint: r = p % p; and p; & p’, where r | is a new fake rule that
we can add to all phases.

The construction of A,..- follows the same idea as for standard pushdown

systems (see [6, 20]). It consists in adding iteratively new transitions to the

16

2.5 Efficient Computation of pre* images

automaton A according to saturation rules (reflecting the backward application
of the transition rules in the system), while the set of states remains unchanged.
Therefore, let A« be the P-automaton (Q),I',7", P, F'), where T" is computed

using the following saturation rules: initially 77 = T.

ap: Ifr=(p,7) = (p1,w) € A, where w € T'*. For every 6 C AUA.s.t. r €6,
if there exists in 7" a path m = (py, 0) =7 ¢, then add ((p,0),,q) to T".

(r1,72)

ag: ifr=p————p € A, for every 0 C AUA, s.t. r € 0,75 € 0 and for
every v € I, if there exists in 7" a transition ¢t = (p1,6) 7 ¢, then add

((p,0"),7v,q) to T" where 6 = (0" \ {r1}) U {rs2}.

The procedure above terminates since there is a finite number of states and
phases.
Let us explain intuitively the role of the saturation rule (o). Let r = (p,v) —
(p',w) € A. Consider a path in the automaton of the form (p, 0') =1 ¢ BUA——
where gr € F. This means, by definition of P-automata, that the configuration
c = ((p,ww'),0) is accepted by A,.e-. If r is in @, then the configuration
d = ((p,yw'),8) is a predecessor of c. Therefore, it should be added to A
This configuration is accepted by the run (p,0") - q —3/—>T/ qr added by rules
(o).

Rule (ay) deals with modifying rules: Let r = p & p € A.. Consider
a path in the automaton of the form (p’,0") L7 q s qr, where qr € F. This
means, by definition of P-automata, that the configuration ¢ = ({p/,yw’), ') is
accepted by A« If r and ry are in ¢, then the configuration ¢ = ((p,yw'),)
is a predecessor of ¢, where 6’ = (6 \ {r1}) U {ry}. Therefore, it should be added
to A,.e«. This configuration is accepted by the run @' = (p,8) L7 ¢ s g
added by rules ().

Thus, we can show that:
Theorem 2.5.1 A, recognizes pre*(L(.A)).

Before proving this theorem, let us illustrate the construction on 2 examples.

Example 2 Let us illustrate the procedure by an example. Consider the SM-PDS
with control points P = {pg, p1, P2, P3,Pa, Ps} and A, A. as shown in the left half

17

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

60 = {7’5,7297'3,'”4,7’,}

Y0 Yo
(O

2P 10) < AP1-N1v0) T2 APs11) < (D2 VaYo)
2P 12) = (p3s€) 74 1 Py Y0) < (P €)
: <pla 71> g <p4’ 70>

':p3 — 5 Py

70

("1»”5)

Figure 2.2: The automata A (left) and A+ (right)

of Fig. [2.9. Let A be the automaton that accepts the set C = {({po,V070):00)},
also shown on the left where (po,6y) is the initial state and sq is the final state.
The result of the algorithm is shown in the right half of Fig. [2.9 The result is
obtained through the following steps:

1.

First, we note that (po,00) 7 (po,6o) holds. Since (py,€) occurs on the
right hand side of rule ry and ry € 0y, then Rule (o) adds the transition

(pa; 00) =% (po,0o) to T'.

Now that we have (py, o) V—°>T, (po,6o), since r5 € 6y, Rule (o) adds
(p1,600) = (po, o) to T,

Since we have (ps,00) > (po,6o), the self- modifymg transition r' € 6,
can be applied. Thus, Rule (as) adds (ps,01) = (po,8o) to T' where ; =

(O \ {rs}) U{ri} = {ri,ra, 3, 74,7 }.

. Since (p3,91) (p3,01) and r3 € 61, Rule (ov) adds (p2,6,) — 2 (p3,61) to

T

Then, there is a path (ps,6;) REN (p3,61) LI (po,6o). Since (pa,¥270)
occurs on the right hand side of ro and ro € 60y, then Rule (o) adds the
transition (ps,01) = (po,0o) to T'.

18

2.5 Efficient Computation of pre* images

6. No further additions are possible. Thus, the procedure terminates.

Yo Y0
D)

A
1 {pun) © po o) 12 {pum) © (P11

Oy = {11y, 13, 1, 75, rl)2 r3 r“}
@ 0y = {1, 1y rysrs ey 1 12,03, 1)
0, = {ry,r3, 14,15, 15, r re r} r4}

{13, 1y, 15, 1, r7r r 13 r"}

3=

73:{P310) © (Pos€) 1y {pyp11) © Py 1002)
75 (P00} © (Par€) s (P212) & (Psi11)
r7:(Pp12) < (Ps €)

A .

c -

1.
re:ps

2
re

rg Py e P

4. T
rlip, 1:17) P

b=

s (r9,1p)

(r6:72)
—

Po

{1y, 1y Py 1y 15, 1L P2 12, 12)

Figure 2.3: The automata A (left) and A~ (right)

Example 3 Let us give another example. Consider the SM-PDS with control
points P = {p1, ps, p3, pa, ps} and A, A, as shown in the left half of Fig. [2.3 Let
A be the automaton that accepts the set C' = {({po,Y070),60)} where (po,bo) is
the initial state and sq is the final state as shown on the left. The result Ay~ of

the algorithm is on the right half of Fig. [2.3. The result is obtained through the
following steps:

1.

2.

Since (po, o) 2+ 51 and 1 € 0y, then Rule (an) adds (py,6) 2= 51 to T'.

Y2

Since (p1,6o) s sy and ry € 8y, Rule (1) adds the transition (ps,6y) —
sy to T".

Since (p2,90) S (p2,00) and 73 € 6y, Rule (oy) adds the transition
(3, 00) = (p2,60) to T".

Then, there is a path (ps,00) ~>r (p2,00) =70 51 and 14 € 6y, Rule oy
adds the transition (py,0p) = 51 to T'.

Because (p4,90) S (pa,00) and rs € 0, Rule (o) adds the transition
(pO;QO) (p4,00) to T".

19

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

6. Since (po,ﬁo) s (pa,00) and r1 € 6y, Rule (o) adds the transition
(p1,6y) = (p4,6’0) to T'. Then, since o € 0y, Rule (an) adds the tran-
sition (pa, 0) 2 (pa,6) to T'.

7. Since there is a path (p3, 6o) 2 (p2,6o) HEN. (ps1,00) and r4 € by, Rule
(a1) adds (pa,00) = (pa, 6o) to T".

8. Since (py, o) o 81, (p4, 00) AL (ps,60) and rl,ry € 0y, Rule (o) adds
(ps,01) 2 s1 and (ps,01) = (pa,00) to T' where 6, = (A \ {7“2})
re = {ri, s, 7“4,7’5, re, i 12 13 14}, For the same reason, since (pg,) —>1
(p4,6o), (po, 00) S 51 and 1, € 01, 12 € 0, Rule (o) adds the transitions
(ps,02) = (pa,00) and (ps,02) = s1 to T" where 65 = (6o \ {r1}) U {rs} =
{ro,m3,ra 15, 77, mE w2 r3 ril

9. Since (ps,01) 2o 51, (ps,61) Lo (p4,90) and rg € 01, Rule (1) adds the
transitions (pg,01) = s1 and (pa,61) 2> (pa,6o) to T'.

10. Since (py, 61) <1 (p2,61) and r3 € 0y, Rule (o) adds (ps,01) 2> (pa,6:).

11. Because there are paths (ps,01) —>70 (pa, 1) =10 (pa, 00) and (ps, 61) Soq
(p2,61) 2y s, Rule (ov) adds the transitions (p4,61) AN (p4,60) and
(pa, 61) Mg to T,

12. Since (p4, o) S (p4,6o) and r5 € 0,1, Rule (a1) adds (po,01) — 20 (pa,61).

13. Now we have (p0,91) LI (ps,01) and r2, 71 € 01, Rule () adds the

transition (ps, 03) —> (ps, 01) to T" where O3 = {rs, 4,75, 16, 77,7, 72,73, 14

cr'cr'crc

For the same reason, since (ps, 6’1) (p2,01) and 13,16 € 01, Rule oy adds
the transition (pa,0y) = (pa,61) to T because 6y = (01 \ {r¢}) U {rs}.

14. Since (P5793) o (ps,0s) and 17 € 05, Rule (o) adds the transition
(p2, 03) 2 (ps,03) to T".

15. Because (p2,93) S (pa,0s) and ry5 € 03, Rule (o) adds the transition
(3, 03) = (pg,03) toT". Then, since there is a path (ps, 65) 7—0>T/ (p2, 03) Do
(ps,03) and r4 € 03, Rule (ay) adds the transition (py,03) — (ps,03) to T'.
Then, since r5 € 03, Rule (ay) adds the transition (py, 0s) —> (pg,03) to T".

20

2.5 Efficient Computation of pre* images

16. Since (p3,03) > (po,0s) and r> € 05, Rule (o) adds the transition
(p2,02) g (pa,03) to T' where (B3 \ {r¢}) U {ros} = 6. Meanwhile,
since (p2,03) s (ps,03) and r* r; € 05, Rule (as) adds the transition
(pa, 91) (ps,05) to T" where (05 \ {r7}) U {r} = 0.

17. Because T7 € 0y and (ps,0:) =7 (ps,02), Rule (ov) adds the transition
(p2792) (p5,92) to T,

18. Since (pa,09) S (pa,02) and r3 € 09, Rule (o) adds (ps, 6s) 20 (p2, 02)

to T'. Then, there is a path (ps3,0s) %T, (ps,02), since ry € 6y, Rule (av)

adds the transition (ps,02) —>p (ps,02) to T'. Then, since (ps,0s) =
(ps, 02) and r5 € 0y, Rule (ay) adds the transition (po,02) — (pa, 62) to T'.

19. Now we have (pa,02) 2510 (ps,6) and (p2,92) s (pa, 0s), since rdry €
03, Rule oy adds the transitions (ps, 00) 2> (ps,62) and (ps, 00) = (pa,63)
to T" where (09 \ {r:}U){r1} = 0o.

20. Since (p4,82) AT (ps,02) and 79,7} € 0y, Rule (o) adds the transition
(ps, 93) > (ps, 02) to T' where (03 \ {r2}) U {re} = 05.

21. Since (p5,93) r (ps,6s) and r¢ € B3, Rule (ov) adds the transition
(p2,03) (ps,02) to T".

22. No further additions are possible, so the procedure terminates.

2.5.1 Proof of Theorem [2.5.1]

Let us now prove Theorem [2.5.1l To prove this theorem, we first introduce the

following lemma.

Lemma 1 For every configuration ((p, w), 60y) € L(A), if ((p',w'),0) =% ((p,w), bp),
then (p', 0) —>T/ for some final state q of Apyex.

Proof: Assume ((p/,w’),0) S ({p, w), by). We proceed by induction on 1.

Basis. i = 0. Then 6 = 6y,p' = p and w = w'. Since ({p,w), 90) L(A), we
have (p, 6y) —>7+ q always holds for some final state ¢ i.e. (p/,6) —>T/ g holds.

Step. i > 0. Then there exists a configuration ({p”,u),8"”) such that

(7, w'),0) =5 (0, 1),0") Sp ((p,w), 6o)

21

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

We apply the induction hypothesis to ((p”,u),0") = ((p,w),by), and obtain

(p",0") =7 q for g € F.
Let wy,u; € T'*,%" € T be such that v’ = y'wy, u = uyw;. Let ¢’ be a state of
Ay s.t.
(", 0") " d g (1)

There are two cases depending on which rule is applied to get ((p/,w’),0) =
(", u), 0").

1. Case ((p/,w'),0) = ((p",u),0") is obtained by a rule of the form: (p',~') —

(p",u1) € A. In this case, 8" = 6. By the saturation rule «;, we have

W0 2)
Putting (1) and (2) together, we can obtain that
T =, 0") o g (3)

Thus, (p',0") S, qie (p,0) ' ¢ for some final state q € F.

(r1,72)

2. Case ((p',w'"),0) = ((p”,u),d") is obtained by a rule of the form p/
p" € A.. Le 6" # 0. In this case, u; = . By the saturation rule ay, we
obtain that

(0, 0)Ls7vq" where 0" = 6\ {r,} U {rs}. (4)

Putting (1) and (4) together, we have the following path

(P, 9)i>T/q’ﬂ>T/q. Le. (¢, G)L,>T/q forqge F (5)

Lemma 2 If a path m = (p,0) =7 q for 0 C AUA, is in Ay~ then

(I) ({(p,w),0) =" ((p/,w'),8) holds for a configuration ((p’,w’),6y) s.t.

(¢, 00)-L57q in the initial P-automaton A;

(II) Moreover, if q is an initial state i.e. in the form (p,0), then w' = e.

22

2.5 Efficient Computation of pre* images

Proof: Let A, = (Q,I',T, P,F) be the P-automaton computed by the sat-
uration procedure. In this proof, we use — to denote the transition relation
of A, obtained after adding i—transition; gs/ing the saturation procedure. In
particular, since initially A,..« = A, A+ contains the path (p', 6y) —w;>T q where

((p',w'),0y) € L(A), then we write (p/, 6p) wT>T q.

Let i be an index such that 7 = (p,#) —— ¢ holds. We shall prove (I) by
i
induction on i. Statement (II) then follows immediately from the fact that initial

states have no incoming transitions in A.

Basis. i = 0. Since ({p,w),8) =* ((p,w),0) always holds, take then p = p/,w =

w’ and 0y = 6.

Step. i > 0. Let t = ((p1,61),7,¢) be the i-th transition added to A, and
j be the number of times that ¢ is used in the path (p,#)— ¢. The proof is
i

by induction on j. If j = 0, then we have (p, Q)Twl>T/q in the automaton, and
we apply the induction hypothesis (induction on) then we obtain ((p, w), §) =*
((p/,w'), 6) for a configuration ((p/,w'),6) s.t. (¢,600)-“+rq in the initial P-
automaton A. So assume that 5 > 0. Then, there exist u and v such that
w = uyv and

(p.O)= (1,00 d'—>

i—1 v /q (1)

T

The application of the induction hypothesis (induction on 7) to (p,) —u—1>
11— T/
(p1,61) (notice that (pp,6;) is an initial state) gives that

({p,w),0) =" ({p1,€),61) (2)

There are 2 cases depending on whether transition ¢ was added by saturation

rule ay or ap.

1. Case t was added by rule a;: There exist po € P and ws € I'* such that

r=(p1,7) = (P2, w2) € AN b (3)

and A,,.~ contains the following path:

7= (p2,0h) — ¢ — q (4)
=1 v i T

23

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Applying the transition rule r gets that
((pr,7v), 01) = ((p2, wov), 0h) (5)

By induction on j (since transition ¢ is used j — 1 times in 7'), we get from

(4) that

({pa, wav), 61) =* (', w'), 6p) s.b. (9, 00)—7vq in the initial P-automaton A
(6)

Putting (2) ,(5) and (6) together, we can obtain that

((p,w), 0) = ({p, uyv), 0) =" ({p1,70), 1) = ({p2, w2v),01) =" ({p',w'), 00)
such that (p/, 90)—3/—>Tq in the initial P-automaton A

2. Case t was added by rule ay : there exist p, € P and 8”7 C AUA. such that

(r1,72)

pr———pr € AN 0" = (0:\{r1}) U {r:} (7)

and the following path in the current automaton (self-modifying rule won’t
change the stack) with r € 6" :
(p2.0")—> d = ¢ (8)
i—1 7 i T

Applying the transition rule, we can get from (7) that
((p1,70),01) = ({p2,70), 6") (9)
We can apply the induction hypothesis (on j) to (8), and obtain

((pa,y0),0") =* (', w'), 60) s.t. (1, 00)~57q in the initial P-automaton A
(10)

From (2),(9) and (10), we get

(<p7 w>79> = (<p7 U’Y?}>,¢9) =" (<p177U>791) = (<p2770>79//> =" ((plvw/>7‘90>

such that (p/, 00)—“’/—>Tq in the initial P-automaton A.

24

2.6 Efficient Computation of post* Images

Then, we can prove Theorem [2.5.1f

Proof: Let ((p,w),#) be a configuration of pre*(L(A)). Then ((p,w),0) ="
((p/,w'), 6) for a configuration ((p/,w'),6) s.t. (p,00)~“+rq is a path in A for
q € F. By lemma 1, we can obtain that there exists a path (p, #) <7 ¢ for some
final state ¢ of Ap.e«. So ({p,w),H) is recognized by A e-.
Conversely, let ((p,w), #) be a configuration accepted by A, i.e. there exists
a path (p,0) =7 qin Ay~ for some final state ¢ € F. By Lemma 2, there exists
a configuration ({p’,w’),fy) s.t. there exist a path (p/,6p) &T ¢ in the initial
automaton A and ((p,w),) =* ((p',w'),0y). Because ¢ is a final state, we have
((p',w'),0p) € L(A) ie. ((p,w),d) € pre*(L(A)).
([

2.6 Efficient Computation of post* Images

Let P = (P,I;A;A.) be a SM-PDS, and let A = (Q,I',7,P, F) be a P-
automaton that represents a regular set of configurations C (C = L(.A)). Sim-

ilarly, it is not optimal to compute post*(C) using the translations of Sections

[2.2.2] and [2.2.3] to compute equivalent PDSs or symbolic PDSs, and then apply

the algorithms of [20, 42]. We present in this section a direct and efficient
algorithm that computes post*(C). We assume w.l.o.g. that 4 has no transitions
leading to an initial state. Moreover, we assume that the rules of A are of the
form (p,v) — (p/,w), where |w| < 2. This is not a restriction, indeed, a rule of

the form (p,7y) < (p',71 -+ Ya), n > 2 can be replaced by the following rules:
o (p.7) = (pr,a1 M)
o (p1,a1) = (p2, a2yn-1)

° (pz,az> — <p37a3'7n72>

SN

<pn—2v an—2> — <p/,7172>

25

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

As previously, the construction of A, consists in adding iteratively new
transitions to the automaton A according to saturation rules (reflecting the for-
ward application of the transition rules in the system). We define A, to
be the P-automaton (Q',I',T", P, F), where T" is computed using the follow-
ing saturation rules and @’ is the smallest set s.t. @ C @' and for every
r = (p,y) = P, € A,qg,71 € () where qz,hy1 is the new state labelled
with p/, v, and 0: initially 7" = T;

Br: Ifr = (p,v) = (p/,¢) € A and there exists in 7" a path 7 = (p,0) L1 ¢
with 7 € 0, then add ((p',0),¢€,q) to T".

Bo: It r = (p,v) = (p',7') € A and there exists in 7" a path 7 = (p,0) L1 ¢
with 7 € 0, then add ((p',0),v',q) to T".

Bs: Ifr = (p,7) = (P, 7172) € A and there exists in 7" a path 7 = (p,0) 51 ¢
with 7 € 6. Add ¢ = ((¢,0),m,4.,) and t" = (¢, 72, q) to T".

By ifr =p & p' € A, and there exists in 7" a path 7 = (p,0) L7 q,

where v € ' with r € 0, and r, € 60, then add t' = ((p/,0'),7,q) where

0/ = (0\{r}) U {r}}

The procedure above terminates since there is a finite number of states and
phases.

Let us explain intuitively the role of the saturation rules above. Consider a
path in the automaton of the form (p,) sz q -7 qr, where g € F. This
means, by definition of P-automata, that the configuration ¢ = ((p,yw'),0) is
accepted by Aposi--

Let r = (p,v) — (P',e) € A. If r is in 0, then the configuration ¢ =
((p';w'),0) is a successor of c. Therefore, it should be added to Aps+. This
configuration is accepted by the run (p,0) <1 ¢ s g added by rules (B1)-

If 6 contains the rule r = (p,v) < (p',7) € A, then the configuration ¢ =
((p',7'w'),0) is a successor of c¢. Therefore, it should be added to Ayys+. This
configuration is accepted by the run (p/,0) e g -5 gr added by rules (B2).

Ifr = (p,7) — (P, 1172) € Aisin 0, then the configuration ¢ = ({(p/, y1720'),)
is a successor of c. Therefore, it should be added to A,,s+. This configuration is
accepted by the run (p',0) =7 qﬁ’w 22500 g 570 qp added by rules (S3).

26

2.6 Efficient Computation of post* Images

(r1,72)

Rule (8;) deals with modifying rules: Let r = p ———— p’ € A.. If r and
r1 are in €, then the configuration ¢ = ({p,yw'), ') is a successor of ¢, where
¢ = (0\ {r1})U{r2}. Therefore, it should be added to A,,s+. This configuration
is accepted by the run (p',0") 257 ¢ 1 ¢ added by rules (84).

Thus, we can show that:
Theorem 2.6.1 A, recognizes the set post*(L(A)).

Before proving this theorem, let us illustrate the construction on 2 examples.

Y Yo
DO

A
1 :{por0) < (P1ve) T2 i{PLn) AP Tary)
r3: (P2 12) < {P3 7o) 74 {Ps¥o) © (P1 €)
15 :{P272) < {Pa11)
A

(13, 75)

r/:PS — = Dy

Oy = {r,rp 13,14, 7'}

Figure 2.4: The automata A (left) and Ajoq (right)

Example 4 Let us illustrate this procedure by an example. Consider the SM-
PDS shown in the left half of Fig. and the automaton A from Fig. that
accepts the set C' = {({po,Y070),00)} where (po,0) is the initial state and sy is
the final state. Then the result Ayosi= of the algorithm is shown in the right half
of Fig. [2.4 The result is derived through the following steps:

1. First, since (po,00) —>1+ 51 and r1 € 0y, Rule (B3) generates a new state

qg(llﬂ and adds the two transitions: (p,6o) MEN qg‘l)% and qg(l)71 D sy to T,

2. Since (p1,0y) Lo qgtl)ﬂy1 and 1y € 0y, Rule (B3) generates a new state g%

P22
-y . 2, 6, 2 LN /
and adds two transitions : (p2, 6y) — @y and Gy — Qo to T.

27

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

3. Because (p,09) Lop Qggw and r3 € 0y, Rule (B1) adds the transition
Yo

(ps, 00) = ¢5., to T".
4. Since (ps, 0p) LI qgg72 andr’ € 0y, Rule (B4) adds the transition (py, 01) 2,
ng’m to T" where 0y = (0o \ {r3}) U {rs} = {r1,r2,74,75,7'}.

5. Since (p4,01) 2 qf,g72 andry € 01, Rule (3,) adds the transition (py, 0;) =
0
quw to T".

6. Then, since there is a path (pi,6;) 7—1>*T/ qf:(l)w1 and ry € 01, Rule (533)
generates new state

91 n 90 !
ooy " Dpim to 1"

qum and adds two transitions (ps,61) 2> qf,;ﬁ2 and

7. Since (pg, 1) Lo qﬁém andrs € 01, Rule (B) adds the transition (py, 01) —»

toT'.

01
qp2 Y2

8. No unprocessed matches remain. The procedure terminates.

- 1,2 ,3 4
Oy = {1, 3, 1gy 1, 15,12, 10)

Yo 1]
)

1:{Po 10} = (P11ire) 2 i P11) & (P2 vany)

- Nl 4
O = {ryra g rs,re,rord, vt}

— 1,2 ,3 4
Oy = {1y, gy 15, Ty Ty T T2, T2)

<

-

31 {Pe1) S Pen) 1ai (Pen) © (Po€)
s {Po:) O (Ps: 7o) Te: (Pu11) © {Pas o)
A

¢
1. (r1,75)
reipy == p,
3. 7g)
r2ip, L)“ $ P

(76:73)
Rip, &,

(rs,rp)
ips L,

— 1,2 ,3 4
O = {r sy Ty 1o, 15,72, 17)

Figure 2.5: The automata A (left) and A,os+ (right)

Example 5 Let us illustrate this procedure by another example. Consider the
SM-PDS shown in the left half of Fig. where (po, by) is the initial state and
So 15 the final state. The result Ayosi» of the algorithm is shown in the right half
of Fig. obtained as follows:

28

2.6 Efficient Computation of post* Images

10.

11.

12.

15.

. First, since (po,0y) ~>p s1 and r1 € 6y, Rule (B3) generates a new state

., and adds two transitions: (py,6o) MEN g, and ., L sy to T
Since (p1,00) T qf,‘;% and ro € 6y, Rule (3) generates a new state qgg72

0o

6o 7 6o /
T2y and q — Gy 10 T

e 72
and adds two transitions: (pg,6y) — s

Because (pz, b)) REN Qggw and r3 € 0y, Rule (p2) adds (ps, o) o, Qggw to
1.

. Since (ps,0y) Dop Qggw and rl,r1 € 6y, Rule (B4) adds the transition

(pa, 01) 2 ¢, to T" where 6, = (0 \ {r1}) U {rs}.

Since (py, 1) AT qf,g72 andry € 01, Rule (31) adds the transition (po, 1) —
q‘gg,y2 to T'. Then there is a path (pg,61) —> qz(l’,h, since 15 € 01, Rule (B2)

adds the transition (ps,01) — qg(l’71 toT".

Since (ps,01) T ¢, and rirs € 61, Rule (81) adds the transition
(po, o) = g% to T" where (61 \ {r5}) U {r} = by.

Tprm

Since (po, 0o) 2 qg(lhy1 andry € 0y, Rule (f3) adds the transitions (py, 6p) 2,

6() 90 "o 90 /
qpl’Yl and qp1'¥1 — qpl’Yl to T".

Because (p4,01) 51 g, and r2 € 01, Rule (fs) adds the transition

(pa, 02) ngw to T".

Since (pa, 02) L qf)gw andrg € Oy, Rule (P2) adds the transition (py, 6) 2,

ng'm to T".
Since py, 0y ngw holds and re,r> € 0, Rule (B4) adds the transition

(ps,01) 2 o, to T".

Then, since (ps,61) Lop g%, and r} € 0y, Rule (B4) adds the transition

(po, o) = ng72 to T".

Since r € by and (pg,0p) v ngw’ Rule (Bs) adds two transitions:

71] 0 Yo 0, /
(p1,60) — pyy and Tpiys — pgy, 10 T

No more rules can be applied. Thus, the procedure terminates.

29

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.6.1 Proof of Theorem [2.6.1]

Let us now prove Theorem [2.6.1] To prove this theorem, we first show the fol-

lowing lemma:

Lemma 3 For every configuration ({p,w),6y) € L(A), if ((p, w), by) =* ({p/,w’),)
then we have a path m = (p',0) ——1 q for some final state q of Apost=-

Proof:
Let i be the index s.t. ({p,w),f) = ((p’,w’),d) holds. We proceed by induc-

tion on %.

Basis. i = 0. Then p’ = p, w = w' and 6y = 0. Since ({p,w),6y) € L(A), we
have (p,6y) —=7 q for some final state ¢ that implies 7 = (p/,0) — ¢ is a
path of A+

Step. i > 0. Then there exists a configuration ((p”,u),0”) with

((p,w), 80) = (0", u),0") = (s w'),0)

By applying the induction hypothesis (induction on i), we can get that

(p",0") —51v q for some g € F (1)

Then, let v € T', ug,w; € I'* be such that v = yu;, w' = wyu;. Let ¢ be a

state of A,os+ s.t. we have the following path in A,s-:

(",0") S0 1 —S10g (2)
There are two cases depending on whether ((p”,u),0”) = ((p',w’),) is corre-
sponding to a self-modifying transition (i.e. (¢” = 0)) or not.

1. Case: 6" = 0. Then there exists a transition rule r : (p”,v) < (p/,w;) € A
s.t. r € 6. There are three possible cases depending on the length of w; :

- Case |wy| = 0 i.e. wy; = ¢, by applying the saturation rule f;, we can
get
(¥, 0) =1 ¢ (3)

Putting (2) and (3) together, we can have (p',0) < ¢ 237/ q i.e.
(p,0) =7/ q for some final state g of A+

30

2.6 Efficient Computation of post* Images

- Case |wy| =1, then let 7/ € T s.t. w; = +/. By applying the saturation
rule s, we can get
(', 0) =1 @ (4)
Putting (2) and (4) together, we can have (p',0) i>T/ G~ q e,
(p',0) L1 q for some final state ¢ of Aposts .
- Case |wy| = 2, let 5,71 € T' be such that wy = ~(v]. By applying the

saturation rule a3, we can get

(v',9) imqﬁ% g (5)

Putting (2) and (5) together, then we have a path (p/, 6) % qg,%,) LN

@ S ogie (p,0) w—/>T/ q for some final state ¢ of A+

2. Case 0" # 6. Then there exists a self-modifying transition rule s.t. r :
(r1,r2)
/!

p———p € AcNO" and v = wy and 6 = (0"\{r}) U {rs}.
By applying rule g, to (2), we have the following path in the automaton:

¥,0) S g1 B q (5)

ie. (p,0) i);p/ q for some final state g of Appsi+.

Lemma 4 If a path © = (p,0) <7 q is in Ay, then the following holds:

(1) if q is a state of A, then ((p',w’),0y) =" ((p,w),0) for a configuration
((p',w'), 00) such that (p',00) 7 q is a path in the initial P-automaton A;

(I) if q is a new state of the form q = % , then ((p1,11),01) =* ({p,w),0).

P11’

Proof: Let A, = (Q,I,T',P,F) be the P-automaton computed by the

saturation procedure. In this proof, we use — to denote the transition relation

’

(K
—r of Apps» Obtained after adding ¢ transitions using the saturation procedure.

Let i be an index such that (p,6) — ¢ holds. We prove both parts of the
i

lemma by induction on 1.

31

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

Basis. i = 0. Only (I) applies. Thus, p' = p, 6y = 0 and w = w'. ({p/,w'),0) =*
((p',w'),0) always holds.

Step. © > 1. Let t be the i-th transition added to the automaton. Let j be the
number of times that ¢ is used in (p,#) — ¢. A has no transitions leading to
initial states, and the algorithm does not Zaddl any such transitions; therefore, if ¢
starts in an initial state, ¢ can only be used at the start of the path.

The proof is by induction on j. If ;7 = 0, then we have (p,0) —w1—> q. We

apply the induction hypothesis (induction on i) then we obtain that there exists
a configuration ({p/,w'),) s.t. ((p/,w'),0y) =* ({p,w),0) and (p',0y) =7 q is
a path of initial P-automaton A. So assume that 7 > 0. We distinguish three

possible cases:

1. If t was added by the rule 3y, 5 or 53, then t = ((p1,61),v,¢1), where v = €
or v = 7;. Then, necessarily, 7 = 1 and there exists the following path in

the current automaton:

(p,0) = (p1,61) — ¢ —> ¢ (1)
i T i—1 v

There are 2 cases depending on whether transition ¢ was added by rule (4

or not.

- Case t was added by rule ,: there exists a self-modifying transition
(r1,m2)

rule such that r = po ——— p; € A., and there exists the following
path in the current automaton:
(p2,02) —:—1>T/ ¢ —Z%)T/ q,01 = 0x\{r1} U{ra} (2)

By induction on (i), we get from (2) that there exists a configuration
((p',w'), 00) s.t. (p',0y) =1 q is a path in the initial P-automaton A:

(', w'), 00) =" ((p2, vwr),) (3)
(r1,r2)

By applying the rule py —— p;, we get that

((p2; vwn), 02) = ({p1, vw1),01) (4)

32

2.6 Efficient Computation of post* Images

Thus, putting (3) and (4) together, we get that there exists a configura-
tion ({p/,w'), 0) s.t. (p,0p) =1 qis a path in the initial P-automaton
A and:

(<p/7 w/>7 90) =" (<p27 UU)1>, 92) = (<p17 U)>7 91) = <<p7 ’U)>, 0) (5)
- Case t is added by (3, or [y: then there exists p, € P, 7, € I' such that

r = (p2,v2) <= (p1,v) € A (6)

and A,,s- contains the following path:

(p2,01) ‘72—> qQ1 —w% q (7>
i—1 T i—1 T

By induction on (z), We can get from (7) that there exists a configura-
tion ((p',w'),00) s.t. (p',00) w—,>T ¢ is a path in the initial P-automaton
A and:

((p', '), 60) =~ ((p2,v2w1), 1) (8)

Thus, putting (6) and (8) together, we have that there exists a con-
figuration ((p',w’),6y) s.t. (p',60) —>r q is a path in the initial P-

automaton A and:

((p, w'), 00) = ((p2; y2wr), 01) = ({p1, w), 01) = ((p,w),0) (9)

2. If t is the first transition added by rule fs i.e. ¢ is in the form of ((py, 0"), 71, qﬁiw)'
If this transition is new, then there are no transitions outgoing from qziw'

So the only path using t is (py,0”) - For this path, we only need

T qzi%'
to prove part (II), and ((p1,71),61) =" ({p1,7),61) holds trivially.

3. Let t = <q217177// ,q') be the second transition added by saturation rule fs.
Then there exist u, v € I'* s.t. w = wy”v and the current automaton

contains the following path:

u o, ;v
.0) 22, oo =2, 4, (10)

Because t was added via the saturation rule, then there exist p, € P, v € I’

and a rule of the form

(p2,72) = (p1,M7") € ANG (11)

33

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

and A,,s+ contains the following path:

(p2,91),7—2> q/% q (12)
i—1 v T

We apply the induction hypothesis on ¢ and obtain that

(1, 71), 01) = ((p,w), 0) (13)

We apply the induction hypothesis on i to obtain that there exists a config-
uration ((p',w’),6y) s.t. (p',6) w—/>T ¢ is a path in the initial P-automaton
A and:

(0, w'), 60) =" ({p2,72v), 1) (14)

Thus, putting (11) (13) and (14) together, we have that there exists a
configuration ((p/,w'),0) s.t. (p',0y) —7r q is a path in the initial P-

automaton A and:

(P, w'), 00) =" ({p2,720), 1) = ((pr,117"v), 01) =" ({p,uy"v),0) = ({p, w),)
(15)

O

Then we continue to prove Theorem [2.6.1}

Proof: Let ((p/,w'),0) be a configuration of post*(L(.A)). Then there exists
a configuration ({p,w),#) such that there exists a path (p,fy) —r ¢ in the
initial automaton A and ((p,w),) =* ((p',w’),d). By Lemma 3, we can have
(p',0) w—/>T/ q for ¢ is a final state of Aps+. So ((p/,w’), 8) is recognized by A,psp+.
Conversely, let ((p',w’),0) be a configuration recognized by A,os+. Then there
exists a path (p', 0) iU/—>T/ q in A,uq+ for some final state ¢. By Lemma 4, since ¢ is
a final state, we have ((p,w),8y) =5 ((p',w’),8) s.t. there exists a configuration
((p,w),0) s.t. (p,0p) 7 qis a path in the initial automaton Ai.e. ((p,w),6y) €
L(A). Therefore, ({(p/,w'),0) € post*(L(A))

O

34

2.7 Experiments

2.7 Experiments

2.7.1 Our Algorithms vs. Standard pre* and post* Algo-
rithms of PDSs

We implemented our algorithms in a tool. To compare the performance of our
algorithms against the approach that consists in translating the SM-PDS into an
equivalent PDS or symbolic PDS and then apply the standard post* and pre*
algorithms for PDSs and symbolic PDSs [20, [42], we first applied our tool on
randomly generated SM-PDSs of various sizes. The results of the comparision
using the pre* (resp. post*) algorithms are reported in Table (resp. Table
73)

In Table Column |A| 4 |A.| is the number of transitions of the SM-
PDS (changing and non changing rules). Column SM-PDS gives the cost it
takes to apply our direct algorithm to compute the pre* for the given SM-PDS.
Column PDS shows the cost it takes to get the equivalent PDS from the SM-
PDS. Column Symbolic PDS reports the cost it takes to get the equivalent
Symbolic PDS from the SM-PDS. Column Resultl reports the cost it takes to
get the pre* analysis of Moped [42] for the PDS we got. Column Totall is
the total cost it takes to translate the SM-PDS into a PDS and then apply the
standard pre* algorithm of Moped (Totall=PDS+Resultl). Column Result2
reports the cost it takes to get the pre* analysis of Moped for the symbolic
PDS we got. Column Total2 is the total cost it takes to translate the SM-
PDS into a symbolic PDS and then apply the standard pre* algorithm of Moped
(Total2=Symbolic PDS+Result2). "error” in the table means failure of Moped,
because the size of the relations involved in the symbolic transitions is huge.
Hence, we mark — for the total execution time. You can see that our direct
algorithm (Column SM-PDS) is much more efficient.

Table shows the performance of our post* algorithm. The meaning of the
columns are exactly the same as for the pre* case, but using the post* algorithms
instead. You can see from this table that applying our direct post* algorithm on
the SM-PDS is much better than translating the SM-PDS to an equivalent PDS
or symbolic PDS, and then applying the standard post* algorithms of Moped.
Going through PDSs or symbolic PDSs is less efficient and leads to memory out

in several cases.

35

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

A+ A SM-PDS PDS Resultl Totall Symbolic PDS Result2 | Total2
10+ 3 0.08s & 2MB 0.15s & 3MB 0.00s 0.15s 0.10s & 2MB 0.00s 0.10s
13+3 0.10s & 2MB 0.15s & 3MB 0.00s 0.15s 0.10s & 2MB 0.00s 0.10s
13+3 0.12s & 2MB 0.15s & 3MB 0.00s 0.15s 0.10s & 2MB 0.00s 0.10s
4347 0.24s &3MB 3.44s &4MB 0.02s 3.46s 4.80s &5MB 0.01s 4.81s

110 4 10 0.38s &7MB 5.15s &6MB 0.01s 5.16s 2.71s &8MB 0.00s 2.71s

120 4 10 0.42s &11MB 5.20s &15MB 0.01s 5.21s 2.79s &10MB 0.01s 2.80s
255+ 8 0.65s & 15MB 295.41s & 86MB 0.05s 295.46s 21.41s & 7T6MB 0.02s 21.43s

1009 + 10 1.49s &97MB 11504.2s & 117MB 2.46s 11506.66s 14.10s &471MB 1.74s 15.84s

1899 + 7 2.98s & 210MB 6538s & 171MB 4.09s 6542.09s 124.10s & 558MB 2.71s 173.71s

2059 + 8 3.82s &423MB 19525.1s &113MB 4.19s 19529.29s 20.70s &713MB error -

2099 +- 8 4.05s & 32MB 19031s & 192MB 4.19s 19035.19s | 124.12s & 757MB error -

2099 +9 7.08s & 252MB 29742s & 198MB 4.28s 29746.28s | 128.12s & 760MB error -

3060 +9 | 11.36s & 282MB | 29993.05s & 241MB | 18.72s | 30011.77s | 261.07s & 610MB error -

31604+9 | 11.99s & 285MB | 29252.05s & 257TMB | 26.15s 29278.2s 162.55s & 611MB error -

4058 +7 | 18.06s & 332MB | 81408.51s &307MB 92.68s | 81501.19s | 802.07s &1013MB error -

4058 +8 | 19.42s & 397TMB | 82812.51s &399MB 91.91s | 82904.42s | 899.07s & 1020MB error -

4158 4 8 21.68s &491MB | 83112.51s &401MB 97.68s 83210.19 | 899.19s &1021MB error -

5050 4 8 23.26s &499MB | 93912.51s &298MB 118.12 | 94030.63s | 205.12s &375MB error -

Table 2.1: Our direct pre* algorithm vs. standard pre* algorithms of PDSs

36

2.7 Experiments

SS(1d JO swyjLIoS[R 350d pIepuris "SA WYILIOZR ,250d 1991Ip IN() :g'C 9[qeL

- 10110 | qINGLE %3 STI'G0T | SPO'GTOT6 | SESTIT | dINS6F SICTI6E6 | AINS6V 28 SVO'ET | S+ 050G

- 10110 | INTZOT 29 S61°668 | S6L'60ES | S8T'L6 | INTOV 23 SIC'ZITES | AINLSY 28 SG8'TT | 8+ 8CI¥

- 10110 | gINOZOT 23 SLO'668 | STTF06TS | STL'T6 | ING6E 29 STSTISTS | FINLSE 78 S9L°6 | S+ 8S0F

- 1010 | GINETOT 23 SL0°Z08 | S6T'00GTS | S89'T6 | EINLOE 29 STS'SOFIS | TINFIE 28 S9C°L | L+ 8S0F

- 1010 | INTT9 23 SGG'Z9T | SST'SLT6T | SOT'9Z | €INLST 29 SC0°TST6T | FINSTP 28 S6L4°S | 6+ 091¢

- 1010 | gINOT9Z SLO'T9Z | SLT'TT00E | STT'ST | INTIE 29 SC0'€6667 | CTINSSE 28 STL'S | 6+ 090€

- 10110 | gIN09L 23 STI'STT | SST'OVL6T | SST'F qINS6T 29 STFL6C | IINTSE 78 SS6°F | 6+ 660T

- 10110 | GINLGL %3 STITCT | S66'VE06T | S66°€ dINT612 STE06T dINCEE?® SST'F | 8+ 660T

- 10110 dINETL? SOL'0T | S66'STS6T | S66'¢ | INETT 29 ST'GCe6T | GINETE® S€0'F | 8+ 650C
SIS9ZT | SIL'C | EINSSS 29 SOT'FET | S68°TFCO | S68°€ FINTLT 23 SREGI dINCIZ 78 SLV'E | L+ 6681

SGR'GT | SGL'T GINTLY 2 SOTFT | S9L'90GTT | S9¢'¢ | GINLIT 29 STFOSTT | INL6 28 SSF'T | 0T + 6001
SEF'IC | ST00 dIN9L 23 STV 1 SOT'G6T $60°0 qIN9S 23 STV 663 qINGT 78 STH'0 8 +6Gg
S08°C ST0'0 JINOT 23 S6L'C STZ'S ST0'0 GINGT? S0T'G GINET 78 S6€°0 | 0T+ 02T
STL'T $00°0 JINSZ STLT SOT'G ST0°0 dIN9ZS SCT'S dINS 73 S9€°0 0T + 01T
S8 20°0 qING 23 S08°F SShe 700 JINT & SThe dINT 73 S8Z°0 L+er
S01°0 $00°0 dINGZ S0T0 SGT°0 $00°0 JINEZ SCT'0 dINT 78 STT'0 e+er
SOT'0 $00°0 qINEZ SOT0 SGT'0 S00°0 dINE 23 SCT'0 qINT 78 STT°0 ¢+ 01

CIeI0L, | gHmsoy SAd syoquuiAg IR0, | THmsoy sad SAd-INS I°v| + V|

37

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

2.7.2 Malware Detection

Self-modifying code is widely used as an obfuscation technique for malware writ-

ers. Thus, we applied our tool for malware detection.

Example SM-PDS
Email-Worm.Win32.Klez.b Y
Backdoor.Win32.Allaple.b
Email-Worm.Win32.Avron.a
Email-Worm.Win32.Anar.a
Email-Worm.Win32.Anar.b
Email-Worm.Win32.Bagle.a
Email-Worm.Win32.Bagle.am
Email-Worm.Win32.Bagle.ao
Email-Worm.Win32.Bagle.ap
Email-Worm.Win32.Ardurk.d
Email-Worm.Win32.Atak.k
Email-Worm.Win32.Atak.g
Email-Worm.Win32.Hanged

=
o
0

e e A e A e e e I o
Z|\Zz|z|Z2|Zz|z2|Z2|z2|Z2|Z2|Z2|2]| =

Table 2.3: Malware Detection

We consider self-modifying versions of 13 well known malwares. In these
versions, the malicious behaviors are unreachable if one does not take into account
that the self-modifying piece of code will change the malware code: if the code
does not change, the part that contains the malicious behavior cannot be reached;
after executing the self-modifying code, the control point will jump to the part
containing the malicious behavior.

We model such malwares in two ways: (1) first, we take into account the
self-modifying piece of code and use SM-PDSs to represent these programs as
discussed in Section [2.3.2] (2) second, we don’t take into account that this part
of the code is self-modifying and we treat it as all the other instructions of the
program. In this case, we model these programs by a standard PDS following the
translation of [13].

The results are reported in Table Column Example reports the name of
the worm. Column SM-PDS shows the result obtained by applying our method

38

2.7 Experiments

to check the reachability of the entry point of the malicious block. Column PDS
gives the result if we apply the traditional PDS translation of programs (without
taking into account the semantics of self modifying code) method to check the
reachability of the entry point of the malicious block. Y stands for yes (the
program is malicious) and N stands for no (the program is benign). As it can
be seen, our techniques that go through SM-PDS to model self modifying code is
able to conclude that the entry point of the malicious block is reachable, whereas

the standard PDS translation from programs fails to reach this conclusion.

39

2. REACHABILITY ANALYSIS OF SELF MODIFYING CODE

40

3

LTL Model-Checking of
Self-modifying Code

In this chapter, we consider the LTL model-checking problem of SM-PDSs. We
reduce this problem to the emptiness problem of Self-modifying Biichi PushDown
Systems (SM-BPDSs).

3.1 LTL Model-Checking of SM-PDSs

3.1.1 The linear-time temporal logic LTL

Let At be a finite set of atomic propositions. LTL formulas are defined as follows

(where A € At):
o= Al | o1 V| Xo| pUps

Formulae are interpreted on infinite words over 24*. Let w = w%!... be an
infinite word over 24¢. We write w; for the suffix of w starting at w’. We denote

w = ¢ to express that w satisfies a formula :

wEA = Acuw’

wEp <= wkyp

Wl p1Vpy = wiE g orw =g

wEXp <= w Ep

wEeUps <= 30> 0,w; =2 and V0 < j < i,w; = 1

The temporal operators G (globally) and F (eventually) are defined as follows:
Fo=(AV-A)Uyp and Gp = =F-p. Let W(¢) be the set of infinite words that

41

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

satisfy an LTL formula . It is well known that W () can be accepted by Biichi

automata:

Definition 4 A Biichi automaton B is a quintuple (Q,T,n,qo, F) where Q 1is
a finite set of states, I is a finite input alphabet, n C (Q x I' x Q) is a set
of transitions, qo € @ is the initial state and F C @ is the set of accepting
states. A run of B on a word voy;... € 'Y is a sequence of states qoqi1qs-.. S-t.
Vi >0, (g, %, Giv1) € 1. An infinite word w is accepted by B if B has a run on w

that starts at qo and visits accepting states from F infinitely often.

Theorem 3.1.1 [30] Given an LTL formula ¢, one can effectively construct a

Biichi automaton B, which accepts W (yp).

3.1.2 Self Modifying Biichi Pushdown Systems

Definition 5 A Self Modifying Biichi Pushdown Systems (SM-BPDS) is a tuple
BP = (P,I';A,A.,G) where P is a set of control locations, G C P is a set of
accepting control locations, A C (P x I') x (P x I'*) is a finite set of transition
rules, and A, C P x 2898¢ x 28YAc » P s q finite set of modifying transition
rules in the form p <(U—UI)> p' where o,0" C AUA,.

Let =pp be the transition relation between configurations as follows: Let 6 C
AUA,veTl,wel* andp € P, then

1 Ifr:(p,y) = (P, w') € A andr € 0, then ((p,yw),0) =5p ((¢'; w'w),0).

(0,0")

2. Ifr:p———p €A, 0Nl #0 andr €0, then ((p,yw),0) =pp
((p', yw),0") where 0 =0\o Uo’.

A run m of BP is a sequence of configurations m = coCy... S.t. ¢; =pp Cii1
for every i > 0. m is accepting iff it infinitely often visits configurations having
control locations in G.

Let ¢ and ¢ be two configurations of the SM-BPDS BP. The relation =%p
is defined as follows: ¢ =pp ¢ iff there exists a configuration ({g,u),0), g € G
st. ¢ =%p ((9,u),0) =%p . We remove the subscript BP when it is clear
from the context. We define =~ as follows: ¢ L iff there exists a sequence of

configurations co =pp ¢1 =Bp ... =pp ¢ S.t. co =c and ¢; = .

42

3.1 LTL Model-Checking of SM-PDSs

A head of SM-BPDS is a tuple ({p,7),0) wherep € P,y €T and 0 C AUA.,.
A head ((p,7),0) is repeating if there exists v € I'* such that ({p,7),0) =gp
((p,yv),0). The set of repeating heads of SM-BPDS is called Repgp.

(0,0")

We assume w.l.o.g. that for every rule in A, of the form r : p ——— p/,

ré¢o.

3.1.3 From LTL Model-Checking of SM-PDSs to the empti-
ness problem of SM-BPDSs

Let P = (P,I';A,A,) be a self modifying pushdown system. Let At be a set
of atomic propositions. Let v : P — 24! be a labelling function. Let 7 =
({po, wo), o) ((p1,w1),61)... be an execution of the SM-PDS P. Let ¢ be an LTL

formula over the set of atomic propositions At. We say that

Ty e it v(po)v(pr) -

Let ((p,w), #) be a configuration of P. We say that ((p,w),) =, ¢ iff P has
a path 7 starting at ({(p,w), #) such that © =, ¢.

Our goal in this chapter is to perform LTL model-checking for self-modifying
pushdown systems. Since SM-PDSs can be translated to standard (symbolic)
pushdown systems, one way to solve this LTL model-checking problem is to com-
pute the (symbolic) pushdown system that is equivalent to the SM-PDS, and then
apply the standard LTL model-checking algorithms on standard PDSs [42]. How-
ever, this approach is not efficient (as will be witnessed later in the experiments).
Thus, we need a direct approach that performs LTL model-checking on the SM-
PDS, without translating it to an equivalent PDS. Let B, = (Q,24,n,q0, F)
be a Biichi automaton that accepts W (). We compute the SM-BPDS BP, =
(P x Q,I'A’, AL G) by performing a kind of product between the SM-PDS P

and the Biichi automaton B, as follows:

Lif r = (p,y) = (,w) € A and (¢,v(p).q) € 7, then ((p.q),7) <
(p',q),w) € A’. Let prod(r) be the set of rules of A’ obtained from the

rule 7, i.e., rules of A’ of the form ((p, q),~v) < (¢, ¢), w).

43

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

(r1,m2) (o,0")

2. ifaruler =p—-—p € A, and (¢,v(p),q) € n, then (p,q) ——
(p'.q') € AL where 0 = prod(ri1),0’ = prod(ry). Let prod(r) be the

set of rules of A’ obtained from the rule r, i.e., rules of A/ of the form
(0,0")

(p,q) —— (', ¢).

3. G=PxF.

We can show that:

Theorem 3.1.2 Let ({p,w),0) be a configuration of the SM-PDSP. ({p,w),0) [,
@ iff BP, has an accepting run from ({(p, qo), w), prod(8)) where prod(6) is the
set of rules of AU A, obtained from the rules of 6 as described above.

Thus, LTL model-checking for SM-PDSs can be reduced to checking whether
a SM-BPDS has an accepting run. The rest of the chapter is devoted to this

problem.

3.2 The Emptiness Problem of SM-BPDSs

From now on, we fix a SM-BPDS BP = (P,I', A, A.,G). We can show that BP
has an accepting run starting from a configuration c¢ if and only if from ¢, it can

reach a configuration with a repeating head:

Proposition 3 A SM-BPDS BP has an accepting run starting from a configu-
ration c if and only if there exists a repeating head ((p,v),0) such that ¢ =%p
({p,yw), @) for some w € T'*.

Proof: “ = 7. Let 0 = ¢yc;... be an accepting run starting at configuration ¢
where ¢y = c and ¢; = ((p;, w;), 6;). We construct an increasing sequence of indices
10, 71... with a property that once any of the configurations ¢;, is reached, the rest
of the run never changes the bottom |w;, |—1 elements of the stack anymore. This

property can be written as follows:
|wi|= min{|w;| | j = 0}

|wiy|[= min{fwy| | j > ix1}, k> 1

44

3.2 The Emptiness Problem of SM-BPDSs

Because BP has only finitely many different heads, there must be a head ((p,), 0)
which occurs infinitely often as a head in the sequence c;,¢;,.... Moreover, as some
g € G becomes a control location infinitely often, we can find a subsequence of
indices i, %, , ... with the following property: for every k > 1, there exist v, w € I'*

cijk = (<p7 7w>7 0) =" (<p7 ﬂva>7 0) = Cijk-H

Because w is never looked at or changed in this path, we can have ({p,v),0) ="

({p,yv),0). This proves this direction of the proposition.

“<«7: Because ({p,7),0) is a repeating head, we can construct the following run
for some u,v,w € I'*, ' C (AUA,) and g € G:

*

c=" ((p,yw),0) =" ({g,ww),) = ({p,yow),0) =" ({g,uvw),0) =" ((p,yvvw),) =" .

Since g occurs infinitely often, the run is accepting. a

Thus, since there exists an efficient algorithm to compute the pre* of SM-
PDSs [46], the emptiness problem of a SM-BPDS can be reduced to computing

its repeating heads.

3.2.1 The Head Reachability Graph G

Our goal is to compute the set of repeating heads Reppp, i.e., the set of heads
((p,7), 0) such that there exists v € I'*, ((p,7),0) =" ({p,yv),0). Le., ((p,7),0) =*
({p,yv),0) s.t. this path goes through an accepting location in G. To this aim,
we will compute a finite graph G whose nodes are the heads of BP of the form
((p,7),0), wherep € P,y € I"and § C AUA_; and whose edges encode the reach-
ability relation between these heads. More precisely, given two heads ((p,7),)
and ((p',7),0"), ((p,7),0) LN ((p',7),¢) is an edge of the graph G means that the
configuration ((p,), #) can reach a configuration having ((p’,~'),¢') as head, i.e.,
it means that there exists v € I'* s.t. ((p,7),0) =* ((p',7'v),d'). Moreover, we
need to keep the information whether this path visits an accepting location in G
or not. This information is recorded in the label of the edge b: b = 1 means that
the path visits an accepting location in G, i.e. that ((p,7v),8) =" ((p',~'v),0').
Otherwise, b = 0. Therefore, if the graph G contains a loop from a head ((p,), 0)
to itself such that this loop goes through an edge labelled by 1, then ((p,7),#)

45

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

is a repeating head. Thus, computing Reppp can be reduced to computing the
graph G and finding 1-labelled loops in this graph.
More precisely, we define the head reachability graph G as follows:

Definition 6 The head reachability graph G is a tuple (P x T' x 2893 {0 1}, 4)
such that ((p,7),0) LN ((p',7),0) is an edge of § iff:

1. there exists a transition r. : p & pPeEINA,y=+,0=0\ocUd,
andb=1iff p e G;

2. there exists a transition (p,v) < (p',7) € 0NA,0 =0 andb=1iff p € G;

3. there exists a transition (p,7v) — P",) € 0NA, fory €T, p" € P,
s.t. ((p//771>70) :>;<377 (<p/7€>70/)7 and b =1 Zﬁp € G or ((p//771>70) :>%P
('), 8')

Let G be the head reachability graph. We define — as follows: let ((p,7),0) and
((p',7),8) be two heads of BP. We write ((p, 7),10) — ((p',7),0") iff 3 booleans
bi,by...b; € {0,1}, 3 heads ((pj,v;),0,),0 < j <1 s.tl. G contains the following
path ((po.70),00) > (01, 1).60) = o = ((pin7).6:) where ((po.). 00) =
((p,7).0) and ((pi, 7). 6:) = (P, 7). 0").

Let —* be the reflexive transitive closure of the graph relation i), and let —"
be defined as follows: Given two heads ((p,7v),0) and ((p',7),0), ((p,7),0) ="
((p',7),¢) iff there is in G a path between ((p,7),0) and ((p',7),0") that goes
through a 1-labelled edge, i.e., iff there exist heads ((p1,71),601) and ((pa,~2),02)

st ((0:7),0) =" ((p1,m),01) = ((p2,72), 02) = (B, 7). 0').

We can show that:

Theorem 3.2.1 Let BP = (P, A, A, G) be a self-modifying Biichi pushdown
system, and let G be its corresponding head reachability graph. A head ((p,~),0)

of BP is repeating iff G has a loop on the node ((p,7),0) that goes through a
1-labeled edge.

To prove this theorem, we first need to prove the following lemma:

Lemma 5 The relations —* and —" have the following properties: For any heads
((p,7), 1) and ((p',7"),02):

46

3.2 The Emptiness Problem of SM-BPDSs

(a) ((p,7),01) =* ((¥',7),02) tff ((p,7),01) =* ((¥/,Y'v),0) for some v € T'*.
(b) ((p,7),61) =" ((P',7),02) iff ({p,7),61) =" ({p/,"'v),02) for some v € I'*.

Proof: “=": Assume ((p,), 91) ((p',7'),6). We proceed by induction on i.

(a) Basis. ¢ = 0. In this case, ((p,7),61) = ((p/,7),02), then we can get
({p,7),00) =" (), 01) = (/7). 02)

Step. i > 0. Then there exist p; € P,7” € I'* and 6/ C A U A, such that
((p,7), 91) ((p1,7"),0") — ((p',v),02). From the induction hypothesis,
there ex1sts u € I' such that ((p1,7"),0) =" ((p',y'u), 62)

Since ((p,7),01) — ((p1,7"),0'), we have ({p,v),61) = ({(p1,7"w),0") for
w € I, hence ((p,7),61) =" ((p/,y'uw),).

The property holds.

(b) ((p,7),01) =" ((p,7),61) cannot hold for the case ¢ = 0.

Basis. ¢ = 1. In this case, ((p,7),0:1) =" ((¢/,7),02), then we can get
p € G and ((p,7),01) =" ((p',7'),02). The property holds.

Step. ¢ > 0. As done in the proof of part (a) of this lemma, there exists
pi,y" € 10" C AU A st ((p,7),60) — ((1,77),0) —> (/7). 02).
Then if ((p,7),601) =" ((',7'), b2), cither ((p1,7"),0") =" ((1,7'), 02) or
((p,7),61) = ((p1,7"),#) holds. In the first case ie. ((p1,7"),0) —
((p',7'),62), by the induction hypothesis, we can have ({(p1,7"),8) ="

((p',~'u), 6y), hence, ({p,7),01) =" ({p',7'u),0) holds

The second case depends on the rule applied to get ((p,), «91) ((p1,7"),0")
according to Definition [6]

’

- If this edge corresponds to a transition r. : p & p1 € 61, then
v=7",0 =0;\c Uos’ and p € G. Since we can obtain ({(p,7),01) =pp
((p1,7),0") =* ({(p/,Yuw), 63) from part (a) and p € G, then ({(p,7),0;) ="
({p1,7),0') =* ((¥',v'uw), 6). This implies that ((p,7),60:) =" ((',7'v), 0=)

for some v € T™*.

47

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

- If this edge corresponds to a transition r : (p,v) < (p1,7”) € 61N
A, then ¢ = 0; and p € G. Since we can obtain ((p,7),61) =sp
((p1,7"),61) =" ((p',y'uw), B2) from part (a) and p € G, then

({p, 1), 01) =" ({p1,7"), 61) =" (P, 7" uw), 62).
This implies that ((p,v),61) =" ({(p’,7'v), 02) for some v € I'*.

- If this edge corresponds to a transition r : (p,y) — (p”, ") € 64,
then either p € G or ((p”,m),01) =" ({p1,¢€),0") holds. If p € G, then
we have ((p,7),601) =" ((p”,17"),61). Otherwise, ({(p", v17"w),0;) ="
({p1,7"w),0"). Since we can obtain ((p1,~"),8) =* ((p',v'u),02) from
part (a). Therefore, ((p,v),61) =" ((p1,7"),8) =* ({p',y'u),0s). This
implies that ((p,v),61) =" ((p',7'v), 02) for some v € I'*.

‘<=": Assume ((p,7),0:) =N ((p',7'v), 62). We proceed by induction on i.

(a) Basis. ¢ = 0. In this case, v = € and ((p,7),61) = ({p',7'),02), then
((pv 7)791) —* ((p/,'y/),eg) holds.

Step. i > 0. Then there exist p; € P,u € I'* and / C A U A, such that
((p,7),01) = ((p1,u),0") = = ((p',7'v),02). There are 2 cases:

1. Case# = 0 : There must exist arule r : (p,y) < (p1,u) € A such that
r €6 and |u| > 1. Let [denote the minimal length of the stack on the
path from ((p;,u), 6,) to ({p/,7'v),02). Then u can be written as u”~v
where |v/| = [—1 (that means «' will remain on the stack for the path).
Furthermore, there exists p”’ such that ((pl, ", 01) =* ((p”,€),0") for
some 6" C (A.UA). We have ((p,7), 91) ((p", mu'),0") for k < i.
By the induction on i, we have ((p,v),601) =" ((p”',71),6"). Because v
has to remain on the stack for the rest of the path v is of the form v'u/
for some v/ € I'*. That means ((p”,11),0") = ((p/,7'V'),) for j <
i. By the induction hypothesis, ((p”,71),0") —=* ((p',7'),02) holds.
Moreover, we have ((p,7v),01) —=* ((p”',71),0"), hence ((p,7),01) —

((¥',7),02).

48

3.2 The Emptiness Problem of SM-BPDSs

2. Case 0" # 01 : There must be a rule r. : p & p1 € A, such

that r. € 6; and 0N # 0, then " = 0; \ cUo’. After the ex-
ecution of r., the content of the stack Will remain the same, thus,
u=7. Then ({p,7),0:) = ((p1,7).0') = ((#/,7'v),6). By the in-
duction hypothesis to ((p1,7),¢) = ((p',7'v),02), we can obtain that
((p1.7).8) =" ('), 62). Since ({p.7),61) = ((p1,7).6"), then we
can have a path ((p,7),01) = ((p1,7),0") = ((¢p',7'),02) that implies
((p,7),01) =* ((p',7),02). The property holds.

(b) ({(p,7),61) =" ({p,7'v),0,) is impossible in 0 steps.

Basis. i = 1. ({p,7),601) =" ({p,7),01), then p € G. Thus, ((p,7),01) —
((pa 7),91) holds.

Step. i > 1. ({p,7),01) =" ((p',7'v), 62) holds then there exist p; € P,u €
I'* and 0" C A UA, such that ((p,v),0;) = (<p1, u),d) = = ((p',7'v), 0s).
Thus, either (<p77>>91) =" (<p17 >7‘9,) or ((pla >7‘9,) =" (< ,”)/1)> ‘92)
holds.

The first case implies p € G. There are 2 cases:

1. Case @ = 0; : then as in the previous proof of part (a), we can have
a path ((p,7),61) — ((p”’ m),0") =* ((p',7'),02). Since p € G, we
get by Definition [6] ((p,7), 61) =* (0", 711),0") =* ((p'.7'),62). Thus,
we have that ((p,v),61) =" ((p',7'),02). The property holds.

2. Case 0" # 6;: then as in the previous proof of part (a), we can have

a path ((p7’7)791) - ((plvfy)ae/) _>* ((plvfy/)?eZ)' Since p S G7 we
get ((0,7),01) = ((p1,7),8") —=* ((#',7),65). Thus, we have that
((p,7),601) =" ((p',7"),62). The property holds.

In the second case, ({p1,u),0") =" ((p',~y'v),02) holds. As previously, there

are 2 cases:

1. Case#' = 0, : then as in case (a) we have ((py, u),6) = ((p"", 1 u) 6")

and ((p/,/7/71>70/,) =" (<p/’,ylvl>’62)' If (<p17u>781) =" << Y >702)7
then either

49

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

({pr,), 61) =" (",), 07) or ((p",), 0") =" ({0, 7'V), 62).

- If ((p1,u),01) =" (< "oy, 07), let v’ o€ T sit. u = u'pu

and ((p1,u”),601) =" ((p"”,€),0"), then we have ((p,7),61) —
((p",7),0"). We have ({p, >,91) (", mu'),0") for k <i. By
the mductlon on 7, we have ((p,7),01) =* ((p”",711),0"). Because
v’ has to remain on the stack for the rest of the path, v is of the
form v'u’ for some v € I'™*.
That means ((p",71),0") = 2 ((p',7'0"),0,) for j < i. By the in-
duction hypothesis, ((p ’”,71) ") —=* ((p/,7'),02) holds. More-
over, we have ((p,v),601) —* ((p"”,m),0"), hence ((p,7),01) —
((p',7),0,). So we can have a path ((p,v),61) =* ((p"',11),0") —=*
((p',7), 0s), thus we have that ((p,7),6:1) =" ((p',7), 62);

- IE((p",m),0") =" ((p/,7'V'), 0s), then by the induction hypothesis
we have ((p ”’,fyl) 0") =" ((p',7'),0). Thus, we can have a path
((p,7),01) =* (", m),0") =* ((p',7),0), then we have that
((:7), 01) =" (P,), 02);

2. Case 0" # 0, : then ((p1,7),0") =" ((p',7'v),0). By the induction
hypothesis we have ((p1,7),0") =" ((p',7'),02). Since ({p,7),0:) =
((p1,7),0) = (P, 7'0), 02).

By the induction hypothesis to ({p1,7),0") = = ((p',7'v), 0s), we can ob-

tain that ((p1,7), 8') =° ((¢/,7), 62)- Since ((p,7),61) = ((p1,7),),
then we can have a path ((p,v),61) — ((p1,7),0") —=* ((¢',7),02).

Thus, we have that ((p,v),601) =" ((p',7'), 02);

Thus, the property holds.

Proof of Theorem [3.2.1]

We can now prove Theorem |3.2.1}

Proof: Let ((p,7),0) be a repeating head, then there exists some v € I'*,0 C
A.U A such that ({p,7),0) =" ({p,7v),6). By Lemma5 this is the case if and
only if ((p,7),0) =" ((p,7),0). From the definition of —", that means that there
exist heads ((p1,7),0) and ((p2,72),0") such that ((p,7),0) =* ((p1,7), ") EN
((p2712),8) = ((7),0)- Then ((p,7),0), (pr, 1), @) and ((ps, 1), ") are al

50

3.2 The Emptiness Problem of SM-BPDSs

in the same loop with a 1-labelled edge. Conversely, whenever ((p,),#) is in
a component with such an edge, ((p,7),0) =" ((p,7),8) holds, then Lemma
implies that ((p,7),0) =" ((p,vv),0) which means that ((p,7),#) is a repeating
head.

O

3.2.2 Labelled configurations and labelled BP-automata

To compute G, we need to be able to compute predecessors of configurations of
the form ((p', €),¢'), and to determine whether these predecessors were backward-
reachable using some control points in G (item 3 in Definition [6)). To solve this
question, we will label configurations ((p”,w),0) s.t. ((p”,w),0) =* ((¢',€),0)
by 1 if this path went through an accepting location in G, i.e., if ({(p”, w),0) ="
((p,€),0"), and by 0 if not. To this aim, we define a labelled configuration as a
tuple [((p, w),0),b], s.t. ({p,w),0) is a configuration and b € {0, 1}.
Multi-automata were introduced in [6l [20] to finitely represent regular infinite
sets of configurations of a PDS. Since a labelled configuration ¢ = [({p, w), 8), b|
of a SM-PDS involves a PDS configuration (p, w), together with the current set
of transition rules (phase) 0, and a boolean b, in order to take into account the
phases 6, and these new 0/1-labels in configurations, we extend multi-automata

to labelled BP-automata as follows:

Definition 7 Let BP = (P,I', A, A., G) be a SM-BPDS. A labelled BP-automaton
is a tuple A = (Q,T,T, 1, F) where T is the automaton alphabet, Q) is a finite set
of states, I C P x 2898 C Q s the set of initial states, T C Q x ((I' U {e}) x
{0, 1}) x () 1is the set of transitions, ' C @ is the set of final states.

If (q,[v,b],¢') € T, we write ¢ M ¢/, We extend this notation in the obvious
way to sequences of symbols: (1) Vg € Q,qibo]—)T q, and (2) Vq,¢' € Q,Vb €

{0,1},Yw € I'* forw = 70...fyn+1,qM>Tq’ iff 3q0,....,q0 € Q,bg,...,0n41 €

{0, 1}, b = bo Vv b1 V..V bn+1 and q hO’bO]/TqO hhbl]/qu s anTq,. If
[w,b]

q ——7 ¢ holds, we say that
b .
q M>T ¢ and g2y g Dbl g g, Lmibeiily o s 8 path of A.

o1

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

A labelled configuration [({(p,w),0),b] is accepted by the automaton A iff there
exists a path (p,0) hO’b‘)]\qu hl’bl]\qu : "an}an_i_l in A such that w =
YY1 Y, b=bo Vb1 V...Vby,, (p,0) €1, and q,+1 € F. Let L(A) be the set of

labelled configurations accepted by A.

3.2.3 Computing p””e*((@/; €), 9’))

Given a configuration of the form ((p/,€),6’), our goal is to compute a labelled
BP-automaton Ay (((p',€),¢’)) that accepts labelled configurations of the form
[c,b] where ¢ is a configuration and b € {0,1} such that ¢ =* ((p,€),¢) (ie.,
c € pre*(((p,€),#))) and b = 1 iff this path went through final control points,
e, c="((p,e€),0). Otherwise, b = 0.
Let p € P, we define B(p) =1 if p € G and B(p) = 0 otherwise.
Apes (D', €),6)) = (Q,I,T,1,F) is computed as follows: Initially, Q = I =
F={@{,0)} and T = 0. We add to T transitions as follows:
ap: If r = (p,y) — (p1,w) € A. If there exists in 7" a path (pi,6) Lol g
(in case |w| = 0, we have w = ¢€) with » € #. Then, add (p,0) to I, and

((p,0), [y, B(p) V1], q) to T.

/

ag: if r=p & p1 € A, and there exists in T a transition (py, G)M)Tq

with r € 0, where v € I". Then add (p,¢’) to I, and ((p,#¢'), [y, B(p) V b],q)
to T, for ¢ such that 6 =60\ o Uo’.

The procedure above terminates since there is a finite number of states and
phases. Note that by construction, F' = {(p/,6)}, and, since initially @) =
{(p,0)}, states of Ay« (((p',€),0')) are all of the form (p,6) for p € P and
6 C AUA..

Let us explain the intuition behind rule (ay). Let r = (p,v) — (p1,w) € A. Let
¢ = ((p1,ww'),0) and ¢ = ((p,yw'),d). Then, if c =* ((¢, €),0’), then necessarily,
d =*((p,€),0). Moreover, ¢ =" ((p/,¢€),0) iff either ¢ =" ({(p',€),0") or p € G
(i.e. B(p) = 1). Thus, we would like that if the automaton A,.-(((¢',€),6'))
accepts the labelled configuration [c,b] (where b = 1 means ¢ =" ((p/,¢€),0')),
then it should also accept the labelled configuration [¢/,bV B(p)] (bV B(p) =1
means ¢ =" ((p',€),0')). Thus, if the automaton A..-(((p',€),6’)) contains a

52

3.2 The Emptiness Problem of SM-BPDSs

[w,b1] [w’,b2]

path of the form © = (p1,0) ST >r qf where gy € F that accepts

the labelled configuration [c,b], then the automaton should also accept the la-

belled configuration [¢/,b V B(p)]. This configuration is accepted by the run
(p 0) [77B(P)Vb1]>Tq [w’,ba]

Rule (a3) deals with modifying rules: Let r = p & p1 € A, Let ¢ =
((p1,yw'),0) and ¢ = ((p,yw'),0") s.t. 8 = §"\oc Ud’. Then, if c =* ((p',€), '),
then necessarily, ¢ =* ((p/,¢€),0'). Moreover, ¢ =" ((p,€),0') iff either ¢ ="

((p',e),0") or p € G (i.e. B(p) = 1). Thus, we need to impose that if the
['Y’bl}\T q [w/7b2}

1 qr added by rule (o).

automaton A+ (((p',€),6’)) contains a path of the form (p, 6)
¢r (where ¢y € F') that accepts the labelled configuration [c,b],0 =b; V by (b=1
means ¢ =" ({p', €),0')), then necessarily, the automaton Ay (((p', €), ")) should

also accept the labelled configuration [¢’, bV B(p)]. This configuration is accepted
by the run (p7 9//) [v,B(p)Vbi] T4 [w’,b2]

1 ¢ added by rule ().

Before proving that our construction is correct, we introduce the following

definition:

Definition 8 Let A, (P, €),0)) = (Q,I, T, P, F) be the labelled P-automaton
computed by the saturation procedure above. In this section, we use — to denote
the transition relation of Aye- (P, €),0')) obtained after adding i tmgsz‘tions us-
ing the saturation procedure above. Let us notice that due to the fact that initially
Q =A{,0)} and due to rules (1) and (ag) that at step i add only transitions
of the form (p,0) Lr g for a state q that is already in the automaton at step
i — 1, then, states of Aye-(((p,€),0")) are all of the form (p,0) for p € P and
0 CAUA..

We can show that:

Lemma 6 Let p,p” € P and 0,0" C AUA,.. Let w € I'* and b € {0,1}. If a
path (p, 0) M>T(p”,0”) is in Apes (', €),0")), then ((p,w),0) =* ((p",¢€),0").

Moreover, if b= 1, then ((p,w),0) =" ({p",€),0").

Proof: Initially, the automaton contains no transitions. Let ¢ be an index such
[w,b]

that (p,0) —— (p”,0"”) holds. We proceed by induction on 1.
i
Basis. i =0, then (p”,0") HGEN (p”,0"). This means p” = p', 0" = '. Since

0 7
initially @ = {(p/,0')}, then ({p”,€),0") =* ((p”",€),0") always holds.

53

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Step. i > 0. Let t = ((pl, 1), [y, b1], (po, 60)) be the i-th transition added to
Ay« and j be the number of times that ¢ is used in the path (p, Q)M (p”,0").
T

The proof is by induction on j. If j = 0, then we have (p, 0)% (p”,0") in
T

i
the automaton, and we apply the induction hypothesis (induction on 7) then

we obtain ((p,w),8) =* ((p”,€),0"). So assume that j > 0. Then, there exist
u,v € I, ¥, 0" € {0,1} such that w = uyv, b =08V b V" and

[u,b'] [v,b1] [v,b"]
0.0 (10022 (o) 2 07, 07))
The application of the induction hypothesis (induction on i) to (p, 8) [ibl—}>
i1 7

(p1,61) gives that
(<p7 'LL>, 6) =" <<p17 6)7 01)7 moreover, if v = 17 (<p7 U>, 9) =" (<p17 6>7 61) (2)
There are 2 cases depending on whether transition ¢ was added by saturation rule

a1 OI (Xa.

1. Case t was added by rule a;: There exist ps € P and ws € ['* such that

r = (p1,7y) < (P2, wa) € ANy (3)

and A,,.~ contains the following path:

wa2,b2 v,b"’
7= (o, 0) <25 (po,00) S (0,67, bi=boV B(p) (4)
11— T (2

Applying the transition rule r, we get that
((p1, 70}, 01) = ((p2, wav), 61) ()

By induction on j (since transition ¢ is used j — 1 times in 7’), we get from
(4) that

((p2, wav), 01) =" ((p",€),0")
moreover, if by V " =1, ({py, wav),01) =" ((p",€),0")

(6)

Putting (2), (5) and (6) together, we can obtain that

o4

3.2 The Emptiness Problem of SM-BPDSs

(<p7 w>70> = (<p7 U”YU>79) :>* (<p1>’77f>791) = (<p2;w27)>701) :>* (<p//7€>79//)
Furthermore, if b =0 Vb, Vb’ =1,thent =1or by Vb = 1.

For the first case, i’ = 1, then we can have ((p,u),0) =" ({(p1,¢€),0:1) from
(2). Thus, we can obtain that ((p, uyv),0) =" ((p1,7v),01) =" ((p”,¢€),0")

. ((p,w),0) =" ((p",€),0").

The second case by V" =11i.e. B(p;)V by VY =1 implies that B(p;) =1
(that means p; € G and ((p1,vv),0:) =" ((p”,€),0")) or by V" =1 (that
implies ((pq, wav),61) =" ((p”,€),0”) from (6)). Therefore, ((p,w), ;) ="
((p",€),0").

. Case t was added by rule ay : there exist ps € P and #; C AUA, such that

/

r= pl‘ﬂ> P2 € AcNby, 0y = (01\o) U0’ (7)

and the following path in the current automaton (self-modifying rule won’t
change the stack) with r € 6, :

[7b/] 'U,b”
(p2.02) 70 (0o 00) 5 (0F0"), =B VE ()

Applying the transition rule, we can get from (7) that

({p1,70), 01) = (P2, 70), b2) (9)

We can apply the induction hypothesis (on j) to (8), and obtain

((p2,7v), 02) =" ((p", €),0",)
moreover, if b} V" =1, ({p2, yv),02) =" ({p", €),0")

From (2),(9) and (10), we get

((p, w),0) = ({p,uyv),0) =7 ((p1,70),01) = ((p2,7v),02) =" ((p", €),6")

Furthermore, if b =0 Vb, V' =1, thend =1or b V' = 1.

55

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

For the first case, i’ = 1, then we can have ((p,u),6) =" ((p1,¢€),6:1) from
(2). Thus, we can obtain that ((p,uyv),0) =" ({p1,yv),0:1) =* ((p”,¢€),0")
ie. ({(p,w),8) =" ((p",€),0"). The second case by V" =11ie. B(p;) VbV
b" = 1 implies that B(p;) = 1 (that means p; € G and ({p1,yv),01) =
((p’,e},&’)) or by VI =1 (that implies ((p2,vv),02) =" ((p”,¢€),0") from
(10)) ie. ((p,w),61) =" ((¢',€),0). Therefore, we can get that if b = 1,
then (5}, 02) " (1, 0%

Lemma 7 If there is a labelled configuration [((p, w), @), b] such that ({p,w),d) =*
((p',€),0), then there is a path (p,0) ol (0,0 in Ape- (((Ps€),8)). More-
over, if ((p,w),0) =" ((¢',€),0'), then b= 1.

Proof: Assume ((p,w),0) = ((p',€),0"). We proceed by induction on i.

Basis. ¢ = 0. Then # = ¢',p) = p and w = e. Initially, we have that Q =
{(p',0")}, therefore, by the definition of —7, we have (p',0) =r (p/,0'). We
cannot have ((p',€),8) =" ((p/,€),0") in O-step.

Step. i > 0. Then there exists a configuration ((p”,u),#"”) such that

((p,w),) = ((p",u),0") = ((0,€),0)

We apply the induction hypothesis to ((p”, u),8") = = ((p,€),0'), and obtain that
there exists in Ay« (¢, €),0)) apath (p”,6") =5 SCLAN r(p,0). If ((p",u),0") ="
({p',€),6), 0" = 1.

Let (po,6p) be a state of Ape+. Let wy,u; € I,y € T, by, b € {0,1} be such

that w = ywy, u = uywq, b"” = by vV b and
(»” ell)LT<p0790)—>T(,0') (6)

There are two cases depending on which rule is applied to get ({p,w),0) =
(", u), 6").
1. Case ({p,w),0) = ({(p",u),0”) is obtained by a rule of the form: (p,v) —

(", ur) € A. In this case, 8" = 6. By the saturation rule «;, we have

(p, 0" 25 1 (o, 60), bo = B(p) V b, (7)

56

3.2 The Emptiness Problem of SM-BPDSs

Putting (1) and (2) together, we can obtain that
™= (p,0") 15 (po,) 1 (0, 0) (8)

Thus, (p, 0”) 222201, 7 0 ve. (p,) 25 (p/, ') where b = by V b

(0,07)

2. Case ({(p,w),0) = ((p",u),0") is obtained by a rule of the form p ———
p’ € A.ie 0" # 6. In this case, u; = . By the saturation rule (35, we
obtain that

(p, 9)[—>T(p07 0o) where 0" = 0\{ri} U{ry},bo = B(p) Vb5. (9)

Putting (1) and (4) together, we have the following path

(p,)22 1 (o, 00) 2L () e (p,)25 (0, @) where b = by Vb
(10)

Furthermore, if ((p,w),0) =" ((¢',€),0'), then ((p,w),0) =" ((p",u),0") or
((p",u), 0") =" (¢, €),0).

For the first case, ((p,w),0) =" ((p",u),0"), then p € G i.e. B(p) = 1. For
the second case, ((p”,u),0") =" ((p',€),0'), we can get b = 1 (from induction
hypothesis). Thus, b = by V 0] = B(p) V by Vb = B(p) V" = 1. Therefore, if
((p,w),0) =" ((p,€),0'), then we can obtain b = 1.

From these two lemmas, we get:

Theorem 3.2.2 Let [c,b] be a labelled configuration.
Then [c,b] is in L(Apye (0 €),0)) iff ¢ € pre*(((¢,€),0)). Moreover, ¢ ="
((p',€),0) iff b= 1.

Proof: Let [({p,w),0),b] be a configuration of pre*(((p/,€),6))).
Then ((p, >) =* ((¢',€),0'). By Lemma[f] we can obtain that there exists a
pe: (0 0) “%r (.0) in Ay (91.).)).

So [({p,w),0),b] is in L(Apy e (((p’, €), 0’))). Moreover, if ((p,w),0) =" ({p',€),¢),
then b = 1.

o7

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Conversely, let [((p,w),6),b] be a configuration accepted by Ay« (((¢', €),¢'))
i.e. there exists a path (p,) MT (p',0) in Ay (((9,€),60')). By Lemma
[(p,w).0) = ((#,6).0) ie. ({p,w),0) € pre*(L(A)). Moreover, if b = 1,

({p, w),0) =" (¢, €),6").

3.2.4 Computing the Head Reachability Graph G

Based on the definition of the Head Reachability Graph G, and on Theorem [3.2.2

we can compute G as follows. Initially, G has no edges.

ayifrep ‘ﬂ) p’ € A, then for every phase such that r. € 6 and every
v € I, we add the edge ((p,v),0) —> 5@, ((p',7),00) to the graph G, where
bp=0\oUdo"

ab: i (p,y) = (po,) € A, then for every phase 6 such that r € 0, we add
the edge ((p.7),6) = ((po.70), 6) to the graph G.

ag: it (p,y) <= (po,107') € A, then for every phase 6 such that r € 6, we add
to the graph G the edge ((p,7),0) —> @), ((po,70),0). Moreover, for every
control point p’ € P and phase ¢ such that .Apre*((<p’ ,€), 0)) contains a

transition of the form t = (po, 6) M>T(p’, '), we add to the graph G the

bvB / ! /
edge ((p,7),0) LALIUN (). 0).

Items o and o, are obvious. They respectively correspond to item 1 and item
2 of Definition [6] (since B(p) = 1 iff p € G). Item o is based on Lemma [f| and
on item 3 of Definition |§| Indeed, it follows from Lemmathat Apres (D' €),6))

contains a transition of the form (pg, 6) MT(])’, ¢') implies that ((po,Y0),0) ="

((p',€),0"), and if b = 1, then ({(po,70),0) =" ({p',€),0"). Thus, in this case, the
edge ((p,7),0) WD), ((p',7),0) is added to G (item 3 of Definition @) since

(p,7) = (po,07Y) € A.

58

3.3 Experiments

3.3 Experiments

3.3.1 Our approach vs. standard LTL for PDSs

We implemented our approach in a tool and we compared its performance against
the approaches that consist in translating the SM-PDS to an equivalent standard
(or symbolic) PDS, and then applying the standard LTL model checking algo-
rithms implemented in the PDS model-checker tool Moped [42]. All our exper-
iments were run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of memory. To
perform the comparison, we randomly generate several SM-PDSs and LTL for-
mulas of different sizes. The results (CPU Execution time) are shown in Table
and [3.2l Column Size is the size of SM-PDS (S; for non-modifying tran-
sitions A and Sy for modifying transitions A.). Column LTL gives the size of
the transitions of the Biichi automaton generated from the LTL formula (using
the tool LTL2BA[31]). Column SM-PDS gives the cost of our direct algorithm
presented in this thesis. Column PDS shows the cost it takes to get the equiv-
alent PDS from the SM-PDS. Column Result reports the cost it takes to run
the LTL PDS model-checker Moped [42] for the PDS we got. Column Total is
the total cost it takes to translate the SM-PDS into a PDS and then apply the
standard LTL model checking algorithm of Moped (Total=PDS+Result). Col-
umn Symbolic PDS reports the cost it takes to get the equivalent Symbolic PDS
from the SM-PDS. Column Result; is the cost to run the Symbolic PDS LTL
model-checker Moped. Column Total; is the total cost it takes to translate the
SM-PDS into a symbolic PDS and then apply the standard LTL model checking
algorithm of Moped. You can see that our direct algorithm (Column SM-PDS)
is much more efficient than translating the SM-PDS to an equivalent (symbolic)
PDS, and then run the standard LTL model-checker Moped. Translating the
SM-PDS to a standard PDS may take more than 20 days, whereas our
direct algorithm takes only a few seconds. Moreover, since the obtained
standard (symbolic) PDS is huge, Moped failed to handle several cases (the time
limit that we set for Moped is 20 minutes), whereas our tool was able to deal

with all the cases in only a few seconds.

59

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Size LTL [SM-PDS| PDS Result| Total [Symbolic PDS|Result,|[Total;
Sy1:5,52:2 ||6]:15] 0.07s 0.09s 0.01s | 0 .10s 0.08s 0.00s | 0.08s
S1:5,5:3 |]6]:8| 0.06s 0.08s 0.01s | 0.09s 0.09s 0.00s | 0.09s
Sp:11,85:4 |[6]:8] 0.16s 0.13s 0.05s 0.18s 0.10s 0.00s | 0.10s
S1:5,5:3 |[0]:10, 0.06s 0.15s 0.01s | 0.16s 0.09s 0.00s | 0.09s

Sy :110,852 :4 [|0|:8| 0.34s | 186.10s | 0.79s | 186.99s 0.35s 0.00s | 0.35s
Sy :255,52:8 [[0]:8| 0.39s | 281.02s | 0.94s | 281.96s 4.82s 0.05s | 4.87s
S1:255,89 :8 ||0]:10[0.42s | 281.02s | 0.97s | 281.99s 4.82s 0.06s | 4.88s
Sy : 110,59 : 4 [|6]:15/ 0.28s | 186.10s | 1.05s | 187.15s 0.35s 0.06s | 0.41s
S1:255,89 :8 ||0]:15| 0.46s | 281.02s | 1.92s | 282.94s 4.82s 0.08s | 4.90s
Sy : 110,59 : 4 [|6]:20] 0.37s | 186.10s | 1.05s | 187.15s 0.35s 0.06s | 0.41s
Sy : 255,59 : 8 [|6]:20] 0.55s | 281.02s | 1.97s | 282.99s 4.82s 0.17s | 4.99s
Sy : 255,59 :8 [|6]:25| 0.59s | 281.02s | 1.23s | 282.99s 4.82s 0.24s | 5.36s
Sy : 2059, 52 : 7|16]:8| 0.86s |19525.01s | 20.71s |19545.72s 20.70s error -
S1:2059,S52 :9(0]:8] 1.49s | 19784.7s | 79.12s|19863.32 128.12s error -
Sy :2059,89 : 11] [6]:8 | 3.73s [30011.67s [168.15s/30179.82s 261.07s error -
Sy : 2059, 55 : 11]|]:28| 6.88s |30011.67s [169.55s/30180.22s 261.07s error -
Sp 3050, 5 : 10] [6]:8 | 5.21s [39101.57s | killed - 438.27s error -
Sp:3090, S5 : 10] [6]:8 | 5.86s |40083.07s | killed - 438.69s error -
S : 3050, 52 : 10(]6]:20] 7.24s |39101.57s | killed - 438.27s error -
S : 3090, So : 10(/6]:30, 8.38s | 40083.07s | killed - 438.69s error -
S1: 3090, .57 : 10||6]:25| 8.89s |40083.07s | killed - 438.69s error -
Sy : 4050, 82 : 10| [6]:8 | 9.21s |81408.91s | killed - 699.19s error -
Sy : 4050, Ss : 10]|]:28| 11.64s | 81408.91s | killed - 699.19s error -
Sp:4058,5 : 11| |9]:8 | 9.83s |93843.37s | killed - 802.07s error -
Sy : 4058, 5o : 116]:25 13.59s | 93843.37s | killed - 802.07s error -
S1: 5050, 5 : 11| |9]:8 | 10.34s {173943.37s| killed - 921.16s error -
S1:5090, 59 : 11} [6]:8 | 10.52s (179993.54s| killed - 929.32s error -
Sp: 5090, Ss : 11]|]:10 12.89s (179993.54s| killed - 929.32s error -
S1:6090,5s : 11| |9]:8 | 13.49s {190293.64s| killed - 1002.73s error -
Sp: 6090, Ss : 11]|]:10[15.81s (190293.64s| killed - 1002.73s error -
S1: 6090, 57 : 11|]6]:40] 32.39s {190293.64s| killed - 1002.73s error -
Sp: 7090, Ss : 11]|9]:25| 39.86s (198932.32s| killed - 1092.28s error -
Sp: 7090, Ss : 11]|6]:30(43.24s (198932.32s| killed - 1092.28s error -
S1:9090, 55 : 11| |9]:8 | 29.98s {199987.98s| killed - 1128.19s error -
S1:9090, Ss : 11]|5]:20(45.29s (199987.98s| killed - 1128.19s error -
Table 3.1: Our approach vs. standard LTL for PDSs (Part 1)

60

3.3 Experiments

Size |[LTL[SM-PDS| PDS |Result|TotallSymbolic PDS|Result:|Total,]
Sy : 10050, So : 12| [6]:8 | 48.53s [2134587.14s| killed | - 1469.28s error -
S1: 10050, Ss : 12||6]:25| 59.69s [2134587.14s| killed | - 1469.28s error -
S : 10050, So : 12]|]:30 61.42s (2134587.14slkille d| - 1469.28s error -
S1:10150, Sy : 12/|0]:35| 64.17s [2134633.28s| killed | - 1469.28s error -
S1: 10150, S9 : 14| |6]:8 | 58.34s (2181975.64s| killed | - 2849.96s error -
Sy : 10150, So : 14(|6]:40| 82.72s 2181975.64s| killed | - 2849.96s error -
S1: 10150, Sy : 12/|6]:40| 76.61s |2134633.28s| killed | - 1469.28s error -
Sy : 10150, So : 16(|0]:45| 89.83s [2211008.82s| killed | - 3665.59s error -
S1: 10150, Sy : 12/|6]:60| 97.56s [2134633.28s| killed | - 1469.28s error -
Sp : 10150, So : 12]|]:65(105.89s(2134633.28s| killed | - 1469.28s error -
Sy : 10150, So : 16(|]:65{134.45s(2211008.82s| killed | - 3665.59s error -
S1: 10180, Sy : 16|0|:65(175.29s(2134643.52s| killed | - 3689.83s error -
S1: 10180, 52 : 16|0]:78/214.36s|2134643.525] killed | - 3689.83s €error -

Table 3.2: Our approach vs. standard LTL for PDSs (Part 2)

3.3.2 Malicious Behavior Detection on Self-Modifying Code
3.3.2.1 Specifying Malicious Behaviors using LTL.

As described in [14], several malicious behaviors can be described by LTL formu-
las. We give in what follows four examples of such malicious behaviors and show

how they can be described by LTL formulas:

Registry Key Injecting: In order to get started at boot time, many malwares
add themselves into the registry key listing. This behavior is typically imple-
mented by first calling the API function GetModuleFileNameA to retrieve the
path of the malware’s executable file. Then, the API function RegSetValueExA
is called to add the file path into the registry key listing. This malicious behavior
can be described in LTL as follows:

¢, = F(call GetModuleFileNameA AF(call RegSetValueExA))

This formula expresses that if a call to the API function GetModuleFile-
NameA is followed by a call to the API function RegSetValueExA, then probably

a malware is trying to add itself into the registry key listing.

Data-Stealing: Stealing data from the host is a popular malicious behavior

61

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

that intend to steal any valuable information including passwords, software codes,
bank information, etc. To do this, the malware needs to scan the disk to find the
interesting file that he wants to steal. After finding the file, the malware needs to
locate it. To this aim, the malware first calls the API function GetModuleHan-
dleA to get a base address to search for a location of the file. Then the malware
starts looking for the interesting file by calling the API function FindFirstFileA.
Then the API functions CreateFileMappingA and MapViewOfFile are called to
access the file. Finally, the specific file can be copied by calling the API function
CopyFileA. Thus, this data-stealing malicious behavior can be described by the
following LTL formula as follows:

¢as = F(call GetModuleHandleA A F(call FindFirstFileA

AF (call CreateFileMappingA AF (call MapViewofFile NF call CopyFileA))))

Spy-Worm: A spy worm is a malware that can record data and send it using the
Socket, API functions. For example, Keylogger is a spy worm that can record the
keyboard states by calling the API functions GetAsyKeyState and GetKeyState
and send that to the specific server by calling the socket function sendto. Another
spy worm can also spy on the 1/O device rather than the keyboard. For this, it
can use the API function GetRawlnputData to obtain input from the specified
device, and then send this input by calling the socket functions send or sendto.
Thus, this malicious behavior can be described by the following LTL formula:

Gsw = F((call GetAsyncKeyState V call GetRawInputData) A F(call sendto V
call send))

Appending virus: An appending virus is a virus that inserts a copy of its code
at the end of the target file. To achieve this, since the real OFFSET of the virus’
variables depends on the size of the infected file, the virus has to first compute
its real absolute address in the memory. To perform this, the virus has to call
the sequence of instructions: [y: call f; ly:; f: pop eax;. The instruction call
f will push the return address Il onto the stack. Then, the pop instruction in f
will put the value of this address into the register eax. Thus, the virus can get
its real absolute address from the register eax. This malicious behavior can be
described by the following LTL formula:
¢ar =\ F (call A X (top-of-stack = a) A G—(ret A (top-of-stack = a)))

where the \/ is taken over all possible return addresses a, and top-of-stack=a

is a predicate that indicates that the top of the stack is a. The subformula

62

3.3 Experiments

call \ X(top-of-stack = a) means that there exists a procedure call having a as
return address. Indeed, when a procedure call is made, the program pushes its
corresponding return address a to the stack. Thus, at the next step, a will be on
the top of the stack. Therefore, the formula above expresses that there exists a
procedure call having a as return address, such that there is no ret instruction
which will return to a.

Note that this formula uses predicates that indicate that the top of the stack
is a. Our techniques work for this case as well: it suffices to encode the top of the
stack in the control points of the SM-PDS. Our implementation works for this

case as well and can handle appending viruses.

3.3.2.2 Applying our tool for malware detection.

We applied our tool to detect several malwares. We use the unpack tool unpacker
[45] to handle packers like UPX, and we use Jakstab [22] as disassembler. We
consider 160 malwares from the malware library VirusShare [49], 184 malwares
from the malware library MalShare [35], 288 email-worms from VX heaven [4§]
and 260 new malwares generated by NGVCK, one of the best malware generators.
We also choose 19 benign samples from Windows XP system. We consider self-
modifying versions of these programs. In these versions, the malicious behaviors
are unreachable if the semantics of the self-modifying instructions are not taken
into account, i.e., if the self-modifying instructions are considered as “standard”
instructions that do not modify the code, then the malicious behaviors cannot be

reached. To check this, we model such programs in two ways:

1. First, we take into account the self-modifying instructions and model these
programs using SM-PDSs as described in Section [2.3.2 Then, we check
whether these SM-PDSs satisfy at least one of the malicious LTL formulas
presented above. If yes, the program is declared as malicious, if not, it is
declared as benign. Our tool was able to detect all the 892 self-modifying
malwares as malicious, and to determine that benign programs are benign.
We report in Tables [3.5] and [3.§] the results we obtained. Column
Size is the number of control locations, Column Result gives the result of
our algorithm: Yes means malicious and No means benign; and Column
cost gives the cost to apply our LTL model-checker to check one of the LTL

properties described above.

63

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

2. Second, we abstract away the self-modifying instructions and proceed as if
these instructions were not self-modifying. In this case, we translate the
binary codes to standard pushdown systems as described in [13]. By using
PDSs as models, none of the malwares that we consider was detected as
malicious, whereas, as reported in Tables [3.5 and , using self-
modifying PDSs as models, and applying our LTL model-checking algorithm

allowed to detect all the 892 malwares that we considered.

Note that checking the formulas ¢, ¢4s, and ¢, could be done using multiple
pre* queries on SM-PDSs using the pre* algorithm of Section 2.5. However, this
would be less efficient than performing our direct LTL model-checking algorithm,
as shown in Tables 3.3 B.4] where Column Size gives the number of control
locations, Column LTL gives the time of applying our LTL model-checking al-
gorithm; and Column Multiple pre* gives the cost of applying multiple pre* on
SM-PDSs to check the properties ¢,k, @45, and ¢g,. It can be seen that apply-
ing our direct LTL model checking algortihm is more efficient. Furthermore, the
appending virus formula ¢,, cannot be solved using multiple pre* queries. Our
direct LTL model-checking algorithm is needed in this case. Note that some of
the malwares we considered in our experiments are appending viruses. Thus, our

algorithm and our implementation are crucial to be able to detect these malwares.

64

3.3 Experiments

11ed) Wy)II03e SUNDLYD-[opou 1991Ip INO s'A o4d S[dIMIN :€°¢ 9lg®e
1 ILIOS] Booyo-[op TIT p * [ADNA 19eL

S689'8¥ SCYE'ET | 8LEOT 3-stdryf S89¥°G S9ze0 | C6¥ [rour[ay]
SRIG'F S¥S0°0 L2 Jzory SETT0 S€80°0 97 PrAYsION
Se1Te SZRF'0 | €161 pmpIy S6ET LT S6cCV | 8G€¢Q qeqr
S318°€6 S669°¢ | 0L9¥ q1ISISRIN 268’8 SQeV'e | 1¢¢ qedoy
SE8T'0 SL50°0 97 qA5[s1oN $880°0 $6£0°0 0€ 273y
S886°€8 STL6'E | G969 ATTIOOPAT SLI9TTIT SE9T'TT | GGETT ["uoopAN
S6T'8L STST'E | 1829 N-Zo1 $655°20T SCI¥'CT | G069% A oOpATY
S8T¥°86 STEZ0€ | 08691 N-woo(4AN SG80°0 SL70°0 97 eANSION
$902°0 S¥10°0 qai O OOPAT SGL0°0 Sgv0°0 € Addepgeuipy
S260°0 S200°0 97 2A¥sIN SGE9'9F ST9%°9T | ST€CT qsojeue],
ST6E'E SGRT'T | 8.G o pPuUIIPT SLG6°€ S800'T | 08S GT-pPUIgpPT
$816°¢ s€c0'c | 069 eS0T, /ZEUI STET6 SP6T'9 | SPST ofuy youI P
SI86'S SL06°9 | STOZ || 89GS CEUIM UoUIIPT S8TT'S $G96'9 | 010¢ | TI1A X UPuldp]
SCIEV S8GG'T | Q€T Ip uLreyeR SRTE¥ Sg9¥'1 | 01¢ Y utreyey
S€0S¥ S869°T | ¢G¥e 9201 goMmysj SLGL°G S60T°0 | ¢ge oery
S26£°0 SG9T°0 | ¢GF8 pTedTy S€98'T S9ET'0 | €% e
S880°F SGGT0 LE 6GGT UOPY Sp88°0 S8GE0 L€ €0LT UOpYy
SY68'¥ SVg6'0 | LS¥ gV 001pag, uredg SGBT'6GT SE98°6F | 6869¢ | A(od e aisidey
SGET €S SL86°¢ | 0L9¥ q 1SISRIN SZ8Y°0 S760°0 yré 97y
SI86'C $9L6°0 | €21 ©'aqI() SOV¥ € SgL9°0 | OLF grourpayy
SRET'¢ ST6°0 | S6€ q-oderq ST6°0 $G80°0 € przopy]
S689°8¥ SCYE'EC | 8LE0T 3-stdryf S89¥°¢G S9ze'0 | C6¥ [rour[ay|
SQIS¥ S¥S0°0 Yré Jzory SETT0 S€80°0 97 PrAYsION
A SZRY'0 | €161 pYmMpIy SQI8°€6 $669°¢ | 0L9¥ q TSISRIN
S6£T LT S6CCT | 8G€S qroqr 68’8 SQe¥'e | 1¢¢ qeday
SE8T'0 $.50°0 97 qAs[syoN $880°0 $6£0°0 0€ 273y
S886°€8 STL6'E | G968 ATTIOOPAT S6T¥'8L STST'E | 1829 N-Zo[y
SLT9'TTT SZ9C'TT | GGETT ["umoopAN S6SS°T0T SE9V'ST | G069% A ToopAN
SRT7°86 STEZ0€ | 08691 N-woo4AN $G80°0 SL¥0°0 57 eAysjoN
$902°0 S¥10°0 dai O TOOPATN $GL0°0 SgV0°0 € Addepygeuipy
S260°0 SZ00°0 97 £33N SGE9'9F ST9%'9T | ST1€CT qrsojeue,
K24d ardiyny TI1 971G ordurexy K24 ordrymN TI1 9ZIg ordurexy

65

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Example Size LTL Multiple pre* Example Size LTL Multiple pre*
Kelino.g 470 0.672s 3.446s Plage.b 395 0.291s 3.138s
Urbe.a 123 0.376s 2.981s Magistr.a.poly 36989 | 49.863s 159.195s
klez.e 27 0.094s 0.482s Magistr.b 4670 3.987s 53.235s
Mydoom-EG|Trj] 230 0.242s 6.172s Email. W32!lc 220 0.249s 5.946s
W32.Mydoom.L 235 0.288s 6.452s Mydoom.5 228 0.307s 8.163s
Mydoom.cjdz5239 225 0.392s 9.968s Mydoom.DN.worm 220 0.299s 8.928s
Mydoom.R 230 0.322s 9.086s Win32.Mydoom 235 0.296s 7.985s
Mydoom.o@MM!zip | 235 0.403s 10.323s MyDoom.54464 5935 | 5.939s 94.026s
Mydoom.M@mm 5965 5.633s 108.129s MyDoom.N 5970 | 6.152s 86.468s
Sramota.avf 240 0.383s 2.691s Mydoom 238 0.278 2.749s
Win32.Mydoom.288 | 248 0.410s 2.983s Win32.Chur. A 51895 | 98.161s 298.047s
Win32.Runouce 51678 | 92.692s 248.146s Win32.CNHacker 51095 | 94.952s 245.452s
Win32.Skybag 4180 | 6.891s 13.739s Skybag.A 4310 | 6.205s 15.452s
Netsky.ah@MM 4480 | 6.991s 16.018s Spam.Tedroo.AB 487 0.924s 4.894s
Adon.1703 37 0.358s 0.884s Adon.1559 37 0.255s 4.088s
Akez 273 0.136s 1.863s Alcaul.d 845 0.165s 0.392s
Alaul.c 355 0.109s 5.757s Haharin.dr 235 1.558s 4.312s
Haharin.A 210 1.462s 4.318s fsAutoB.F026 245 1.698s 4.503s
LdPinch.BX.DLL 2010 | 6.965s 8.128s LdPinch.fmye 1845 | 6.194s 9.232s
LdPinch..5558 2015 | 6.907s 8.981s LdPinch.e 578 1.185s 3.392s
LdPinch-15 580 1.008s 3.957s Win32/Togalrfn 590 2.023s 3.978s
LdPinch.by 970 4.092s 11.327s Generic.2026199 433 2.402s 9.614s
LdPinch.arr 1250 1.848s 9.986s Troj.LdPinch.er 205 2.529s 6.154s
LdPnch-Fam 195 1.440s 4.097s LdPinch.Gen.3 210 1.482s 4.973s
Androm 95 0.028s 0.192s Ardurk.d 1913 | 3.679s 5.588s
Generic.12861 30183 | 72.264s 224.809s Tanatos.O 9284 | 21.481s 79.773s
Jorik 837 4.159s 11.733s Bugbear-B 9278 | 17.737s 52.549s

Table 3.4: Multiple pre* v.s. our direct LTL model-checking algorithm (part 2)

66

3.3 Experiments

(T 9red) synsoy [eyuowiLiodxy] :G'g S[qeT,

SOST"L SO | 06Sh uLom 1) As1oN Sl) SoX | 068F q8A-Seq4yg ST8YL SOk | G86F [t SeqAyg
S868°L SN 067¥ YR8y gEUI S6TT L SN 0287 [-8eqANG TIIOp SZ68°9 SOx GG6¥ qSeq4yg
ST66°9 EIN 08¥¥ ININOYEAYSION SC0%'9 SN 01€¥ YV 9eqAys ST68°9 SOx 08T¥ FeqANS ZEUM
SGOV' ¥ SOx 017 ©ZURL GEUIA S60T'F SOx 0G1¢ 7680-XOLY 1zuex SLGET SOK 0533 ZUR ZEUTN
ST6%°6 SOx GSTS 9967C 1 snomIfeut s€80°6 SOA | 0GGTG | e dymoON TR\ WLION || SGE6'S SOK GTOSG | iV 1demoN M GEM
SGRY'L SOX GSTY ['zeuIp ydemoN S6ST'S SOX a8 ¥ wup ¥ dy maN 006 SOX GI8Y RISCLEHILIEA IS
SPGT L SOx 05S¥ gy rdesaN S96¢°L SOX GOFY WY ULIOAN "G EUTAN $7G6°9 SOx 0€eh 1dymaN MTTH
S€60°C SOX GGT | STTRUY [RWO-ULIOA\ || S8EL'C SOx 0ve 9.5V Teu STEY'T SOX ¢Te ©IIRUY ZEUIAN
SE66'T SOx oFT gy ey SLT0'G SOx 02g ST FEREIN 5 SET6'T SOK 01% AXTRUY TULIOA\
SERG'6E | SOX | S6F6T 9p1 WOOPAT S69C°8C | SOK | €T¥6I ©q WOOPAT\ $299°6S | SOX | 01261 OOV WOoOopA
SOTV0 SOX QPG | 88 WOOPAN'ZEUIAN || S8LT°0 SoX 8EG | WOOPAJNaYIJseAryay || SE]E0 LN 07e Jar ejouIerg
SEOT°0 SO ¢eg | diZiNINDO WOOPAIN || S965°0 SO ¢eg | Ibdup woopAN ZEUIM || SETE0 SO 0€C | Y WOOPAN'ZEUIM
$662°0 SOx 0¢g | WIOM N WOOPAN || SZ6E0 SOx ¢Te 6£5G-Z LD WoopAN $L0€°0 SOX 8¢ | G-WOOPAN ULIOA
$88%°0 SOx cee T WOOPAN GEA S6%3°0 EIN (144 DjZE M TWIOA [rety Se¥e0 SOK 0z | [fa1] DE-woopAy
S62L°0 EIN Ctdd TEZ WOOPAIN A\ $86%°0 SN L9¢ d1zj NN O WOOPATN SIS0 SOX GIG | OiWOOPAN ZEUI
SEG6'76 | SPA | G60TG | D'INPRHND CEUIM || STIT'86 | SOA | G681¢ VD) gEUI A SC69°C6 | SOA | 8L9TG | 9OMOUNY ZEUIA\
STST'9 SOX 0L6G | ULIOM|N WOO(AN S6£6°C SOx GE6S V9FPE oo AN S€E9'S SOK C96G | WY WOOPATN
SE98°6Y | SPA | 6869¢ Afod e 13s13€ |\ $.86°¢€ SOx 0,97 q TSI S760°0 SOK L3 9" Zoy
$92£°0 SOX €el ©aqIn ST6%°0 SOX G6e qrageld S2L9°0 SOK 0L¥ grourfayf
SG80°0 SOX e przopy SGPE'GT | SOA | 8LE0T ysudryg $9z€°0 SOx G67 [rour[ay]
SPS0°0 SIS L J 7o SZ8Y°0 SOx €161 prympIy S€80°0 SOX 57 PAYsIoN
$669°¢ SOx 097 q IySISeIy S65C' SOx 8GEG qoqr ST SOX 130G q edoy
$L80°0 SOx 97 qAxsIoN S1L6'€ SOx G966 A'THOOPATN S6€0°0 SOK 0€ 0'Zopy
SgST'E SOx 1829 N-Zopy SE9TTT | SOA | GGETT ["umoop AN SCOV'CT | SPA | 0693 KL moopAN
STEC0E | oK | 08691 N-woo4N SFT0°0 Sox Gq1 O OOPATN SL¥0°0 SOx g7 eANsjoN
Sgv0°0 SOx €¢C Addep geuipy SZ00°0 SO 57 A¥sION ST9Z'9T | SPA | GT€TT q'sojeure],
1500 nsoyg 971§ ordurexy 1500 nsoy 971§ ordurexy 1500 nsoyg 971§ ordurexy

67

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Example Size | Result cost Example Size | Result cost Example Size | Result cost
Agent.xpro 533 Yes 0.352s Vilsel.lhb 15036 Yes 4.972s Generic.2026199 433 Yes 3.489s
Vilsel.lhb 15036 Yes 26.962s Generic.DF 5358 Yes 7.821s LdPinch.aoq 7695 Yes 6.290s
Jorik 837 Yes 4.159s Bugbear-B 9278 Yes 17.737s Tanatos.O 9284 Yes 21.481s
Gen.2 1510 Yes 5.632s Gibe.b 5358 Yes 9.615s Generic26. AXCN 837 Yes 3.792s
Androm 95 Yes 0.028s Ardurk.d 1913 Yes 3.679s Generic.12861 30183 Yes 72.264s
LdPinch.by 970 Yes 4.092s Generic.2026199 433 Yes 2.402s LdPinch.arr 1250 Yes 1.848s
Generic.12861 30183 Yes 88.294s Generic.18017273 267 Yes 0.192s LdPinch.mg 5957 Yes 9.297s
Script.489524 522 Yes 1.458s Generic.DF 5358 Yes 8.291s Zafi 433 Yes 1.028s
GenericKD4047614 | 3495 Yes 4.646s Win32.Agent.es 3500 Yes 6.083s W32.HfsAutoB. 3398 Yes 5.092s
Trojan.Sivis-1 5351 Yes 7.029s Win32.Siggen.28 5440 Yes 6.998s Trojan/Cosmu.isk. 5345 Yes 6.273s
Trojan.17482-4 381 Yes 1.495s Delphi.Gen 375 Yes 1.948s Trojan.bbac. 370 Yes 2.089s
Delfobfus 798 Yes 3.909s Troj.Undef 790 Yes 4.068s Trojan-Ransom. 805 Yes 5.1195
LDPinch.400 1783 Yes 4.893s PSW.LdPinch.plt 1808 Yes 5.088s PSW.Pinch.1 1905 Yes 5.7578
LdPinch.BX.DLL 2010 Yes 6.965s LdPinch.fmye 1845 Yes 6.194s LdPinch.5558 2015 Yes 6.907s
TrojanSpy.Lydra.a | 3450 Yes 8.289s Trojan.StartPage 2985 Yes 5.982s || PSWTroj.LdPinch.au | 2985 Yes 6.198s
LdPinch-21 3180 Yes 6.917s LdPinch-R 3025 Yes 7.005s LdPinch.Gen.2 2990 Yes 6.992s
Graftor.46303 3230 Yes 5.898s LdPinch-ATH [Trj] 3010 Yes 6.095s Win32.Heur.k 2970 Yes 5.950s
LdPinch-15 580 Yes 1.008s LdPinch.e 578 Yes 1.185s Win32/Togalrfn 590 Yes 2.023s
PSW.LdPinch.mj 595 Yes 1.078s Gaobot.DIH.worm 590 Yes 1.482s LDPinch.DF!tr.pws 588 Yes 1.736s
TrojanSpy.Zbot 610 Yes 1.610s LDPinch.10639 605 Yes 1.185s SillyProxy.AM 590 Yes 1.882s
LdPinch.mjlc 590 Yes 4.5345s || LdPinch.gen!Eldorado | 605 Yes 3.955s Generic!BT 615 Yes 2.085s
LdPnch-Fam 195 Yes 1.440s Troj.LdPinch.er 205 Yes 2.529s LdPinch.Gen.3 210 Yes 1.482s
Malware.wsc 150 Yes 2.843s malicious.7aa9fd 185 Yes 2.189s WS.LDPinch.400 195 Yes 1.898s

Table 3.6: Experimental Results (part2)

3.3 Experiments

(¢ 11ed) symnsey [ejuewiLiodxy :4°¢ S[qRL

SPE6'C | SR | GT8 9EMDADN SQLT'OT | SO | 06ST SEMDADN SP8°6 | SOA | 066G | FEMOADN
$690°0 | SOA 69 CEMDADN S6G0°0 | SO 09 ZEIDADN SGL8'0 | SOR | 0GG TEMDADN
S880°0 | SOA 68 0€3OADN SZ69°0 | SOX | 096 62 IDOADN $860°0 | SOA | LeT STIDADN
SL6T'ET | SOK | 6S6L LZIDADN SZ86'6 | SOA | 0.6V 9GMOADN SRT0GT | oA | LIS | GTIDADN
SE86'TT | SOA | ¥T69 PZIDADN S67'6 | SOX | GG6E €CIDADN $368°0 | SOX | 0LE ZTIDADN
SL60°0 | SOA I¢ TZIDADN S6YP'GT | SO | SLEP 0ZIDADN $8G6'9 | SOR | 62T | 6TMDADN
SP60°0 | SOX 06 STSIDADN SZ6ET | SOX | €16 LIMDADN SGE6'0 | SOX | 899 9TIOADN
SZI6T | SOX | 0.6 STMOADN SP6C0T | SOA | 8GEC PIMOADN ST06'S | SA | 012C | E€IMDADN
SP60°0T | SOA | 6TCY CTSIOADN SOGV'TT | SOA | G96C TTMOADN ST9Z'6 | SOA | 0862 | OIMOADN
STOE'ET | SOX | T8¢ 63DADN SPGET | SOA | GGEC SMDADN SPESFT | SR | 2069 LIDADN
S689°T | SOA | 8691 93OADN SGZ8'T | SOX | GGeT SIDADN S6YT'T | SOR | 0GG PIDADN
SR8E'T | A | 00€C EOADN S60T'T | Sox | G SIDADN SE6'0 | SOX | 6T€ MDADN
SEG'T | SR | GEC Ip-uLeyR S60°T | SOA | GIz 950" goMY's STOV'T | SR | 01¢ VULt er
SRC6'C | SOR | 06 GZEUMZOY || SG00F | SOK | GOF WD) TOTepeY SG86'C | SOA | cgp | Sweny/gem
SZ0e'e | SR | eLb O PIIOA SIITA $366'c | SOA | 0CF vV Zavad S626'¢ | SOA | 087 | D'0FGOT'PIA
S800F7 | SeA | GGp ['ZEWM ZONY || SG86'¢ | SoX | OFF GCETT 20NV SG86F | SOX | 0ZF | GOSWIIA IO
S6OC'ET | SOA | GGFG U9 "XRO[] SR06'GT | SOA | OFES | OBV ZEUIM'SIIIA || SE9R'GT | SOX | GEeS B SNIIA
S60T'0 | SOA | g o'uery SGOT'0 | SOR | GF8 preory S9ET'0 | SOR | €L ZoNY
SPg6'0 | SeA | L8p | dyooIpaLuredg || seez0 | SoA L€ 65CT UOpPY S8GE0 | S9X L€ €0LT'UOpy
SISTT | S9X | 07 U oy SLEV'6 | SR | 199 WO SIITA SZYT'es | SR | 0gve {2'30€IPS
S6£0°GE | ON 268 0X0"I0pURD SGEG'TF | ON | 7106 X03'9[040 SPEy'es | ON | Goepe | oxooureS
S6GT GG ON 610ST axo'no30s STZC ¥ ON GLOVT | OXO I9[BURIA\IXDT, SOQT'¥ ON Q96 oxo Adr
SZOF'8 | ON | S00T 0xX0"00R103UT $6L2°0S | ON | 008z€ oxo{soqIq S68L°6Z | ON | 6298 0X971108
SeLETV | ON | FEele oxo-eAR[SZE8'ST | ON 008 oxo"eAR(SE8GFE | ON | 68501 | oxo'pedejou
SQOV'ET | ON | Tgel OX0"pTD S672’6 | ON 62S oxo dooy .60 | ON | 629¢ | oXorumopinys
ST000 | ON s oxo-ordus STE0'e | ON | GOTF 9X9"DASID SgGe'ST | ON | TG66 | oXo'uome[nores
1509 NS9Oy | ozZIg ordurexr 1500 IMsoy | ozIg ordurexr] 1500 Imsoy | ozIg ordurexr]

69

3. LTL MODEL-CHECKING OF SELF-MODIFYING CODE

Example Size | Result cost Example Size | Result cost Example Size | Result cost
NGVCK37 80 Yes 0.998s NGVCK38 | 150 Yes 1.093s NGVCK39 395 Yes 1.048s
NGVCK40 40 Yes 0.921s NGVCK41 | 950 Yes 0.704s NGVCK42 | 8290 Yes 15.085s
NGVCK43 | 6220 Yes 2.930s NGVCK44 | 5215 Yes 11.006s || NGVCK45 | 9290 Yes 14.595s
NGVCK46 320 Yes 0.928s NGVCK47 | 834 Yes 2.958s NGVCK48 | 9810 Yes 14.696s
NGVCK49 | 12320 Yes 25.395s || NGVCK50 | 8810 Yes 19.969s || NGVCK51 | 39810 Yes 68.283s
NGVCK52 520 Yes 0.289s NGVCK53 15 Yes 0.089s NGVCKb54 | 8883 Yes 11.393s
NGVCK55 | 12520 Yes 38.768s || NGVCK56 | 6218 Yes 15.489s || NGVCK57 | 32562 Yes 83.482s
NGVCKS58 | 9520 Yes 23.658s || NGVCK59 | 818 Yes 2.592s NGVCK60 | 12962 Yes 38.025s
NGVCK61 | 10020 Yes 24.976s || NGVCK62 | 8818 Yes 19.299s || NGVCK63 | 2068 Yes 3.662s
NGVCK64 273 Yes 1.987s NGVCKG65 | 5855 Yes 8.995s NGVCKG66 68 Yes 1.002s
NGVCK69 | 4150 Yes 8.052s NGVCK70 | 9860 Yes 24.199s || NGVCKT71 | 3240 Yes 7.951s
NGVCKT2 31 Yes 0.591s NGVCKT73 | 549 Yes 1.052s NGVCK74 | 9078 Yes 29.078s
NGVCK75 90 Yes 1.002s NGVCK76 | 5890 Yes 10.128s || NGVCKT77 | 1958 Yes 9.559s
NGVCK78 | 33468 Yes 75.008s || NGVCKT79 | 4735 Yes 10.980s || NGVCKS80 | 45273 Yes 82.396s
NGVCKG66 T Yes 0.198s NGVCK67 | 895 Yes 0.223s NGVCKS81 | 6939 Yes 2.726s
NGVCKS82 | 2931 Yes 0.463s NGVCKS83 | 8759 Yes 10.316s || NGVCKS84 | 34563 Yes 53.244s
NGVCKS85 | 19024 Yes 29.220s || NGVCKS86 | 1026 Yes 0.572s NGVCKS87 | 7929 Yes 5.671s
NGVCKS88 | 6126 Yes 8.682s NGVCKS89 | 580 Yes 2.036s NGVCK90 | 27843 Yes 17.353s
NGVCK91 20 Yes 0.001s NGVCK92 59 Yes 0.903s NGVCK93 98 Yes 0.021s
NGVCK94 150 Yes 0.146s NGVCK95 | 1679 Yes 0.294s NGVCK96 | 6299 Yes 5.196s
NGVCK97 | 4496 Yes 5.272s NGVCK98 | 428 Yes 0.329s NGVCK99 158 Yes 1.153s
NGVCK100 | 895 Yes 0.961s || NGVCKI101 | 745 Yes 1.117s || NGVCK102 | 704 Yes 0.269s
NGVCK103 86 Yes 0.282s || NGVCK104 | 145 Yes 0.998s || NGVCK105 | 24124 Yes 68.816s

Table 3.8: Experimental Results (part 4)

70

4

CTL Model-Checking of
Self-modifying Code

In this chapter, we reduce the CTL model-checking problem of self-modifying
code to the emptiness problem of Self-Modifying Alternating Biichi Pushdown
Systems (SM-ABPDSs).

4.1 CTL Model-Checking of SM-PDSs

4.1.1 The Computation Tree Logic CTL

Let At be a finite set of atomic propositions. CTL formulas over At are defined
as follows (where A € At):

pu=A|-AloVe|lpNp| AXp | EXp | AlpUy] |ElpUg] | AlpUsg] |ElpUs).

Given a CTL formula ¢, the closure cl(p) is the set of all the subformulae of
¢, including ¢. Let P = (P, I, A, A.) be a SM-PDS, v : P — 24 be a labelling
function mapping to each control location p € P a set of atomic propositions.
The satisfiability relation of a CTL formula ¢ at a configuration ({pg,wo),)
(denoted by ({(po,wo),b) . ¢) is defined as follows:

o ({(po, wo), 00) v A iff A € v(py),

({po, wo), bo) =v A iff A & v(po),

® ((po,wo),00) Fv 1V w2 iff ({po, wo),00) Fv ¢1 or ({po, wo), o) Fv 2,
e ({po, wo), 00) Fuv 1 A 2 it ((po, wo), 00) Fuv ¢1 and ((po, wo), bo) Fv ¥,

71

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

o ((po,wo),bp) Fr AXp iff ((p1,w1),01) =, ¢ for every successor ((p1,w1),0;) of
({po, wo), 0o),

e ((po,wp),6p) E, EXpiff ((p1,w1),01) v ¢ for some successor ((pi,w;),0;) of
({po, wo), bo),

e ((po,wo),b0) F=u Alp1Uo] iff for every path ({po, wo), o) ((p1,w1),61) --- of P start-
ing from ((po,wo),00), Fi > 0 s.t. ({pi,ws),0;) = w2 and V0 < j < i, ((pj, wj),0;) =
$1.

® ({(po, wo),b) v Elp1Upo] iff there exists a path ((po, wo),00)((p1,w1),01) - of P
starting from ((po, wo),6o), Fi > 0 s.t. ((ps, wi),0;) =0 2, VO < j <1, ((pj,w;),0;) =
1.

o ({(po, o), 00) =y Alp1Ucps] iff for every path ((po,wo), 00)({p1,w1),01) -+ of P start-
ing from ((po,wo), 6o), Vi > 0, if ((pi, ws), ;) ¥y, 2, then 30 < 5 < i, ((pj, w;),0;) v
$1.

o ((po,wo),00) v Elp1Ugs] iff 3 a path ((pg,wo),00)((p1,w1),01)--- of P starting
with ((po,wo),6o), s.t. Vi > 0, if ((ps, w;),0;) #y 2, then 30 < j < i, ((pj,w;),0;) =
1.

Standard CTL operators can be expressed by the above operators: EFy =
E[trueUy], AFy = AltrucUy], EGy = E[falseUy)], AGyp = A[falseU)).

4.1.2 Self-modifying Alternating Biichi Pushdown Systems

Definition 9 A Self Modifying Alternating Biichi Pushdown System (SM-ABPDS)
is a tuple BP = (P,I',A,A., F), where P is a finite set of control points, T’
is a finite set of stack symbols, F' is the set of final states, A C (P x I') x

[o1,,0n]

2288 U{=} 5 oPXT" s finite set of transition rules in the form (p,7) ————
{{p1,w1), -, (Pn,wn)} where (o1, ,0,] is an ordered set and V1 < i < n,o; is
either a set of rules 0; C AUA, or 0; = —, and A, C P x 285 x 28UAc x P s q
finite set of modifying transition rules in the form p ((U—UI)> p where o,0" C AUA..
A configuration of a SM-ABPDS is a tuple of the form ({p,w),8) where p € P,
w e ™ and 0 C AUA., is the current phase.

X 2AUAC

BP defines the transition relation =zpC (P x [* x 28VA) x 2(PxT") between

configurations as follows: Let # C AUA., v €', w € I'*, and p € P, then:

L Ifr: (p,7) o1, om] {{p1,w1), -, (Pm, W)} is a rule in AN, if either for
every 1 <i<m,o; =— or 31 <i < m,o; NG #, then ({p,yw),0) =pp
{({ps, wyw),0)|o; = —, 1 < i <m} U{({ps, w;w),0)|o; NG #£0,1<i<m}.

72

4.1 CTL Model-Checking of SM-PDSs

2. Ifr:p (w’—a,)>p’ is a rule in A.N@ , then ((p,w),0) =pp {({p',w),0)},0 =

o Ua'.

[0'1’”')0-771/}

Intuitively, [oq, - -+ , 0,] in the transition 7 : (p,v) ——— {(p1,w1), -+, (Pm, W) }
ensures that for a given configuration ((p, yw),), for every 1 <i < n, ({p;, w;w), 0)

is in the set of immediate successor iff
- either for every 1 < j <n,0; = —;
~oroy=—and Jj £, 1 <j<nst. o;,NO#£D
-oro; NG #£0

Note that — means that there is no constraint on whether 6 contains a rule in o;
or not.

For every ¢ € P x I'* x 28Y%¢ and C' C P x I'* x 28Y%¢ if ¢ =3p C then
¢ is an immediate predecessor of C' and C' is an immediate successor of c. Let
=2,C (P x I* x 28UAc) 5 9(PXI"x237%¢) ho the reflexive transitive closure of
=pp defined as follows: (1) Ve € P x I'* x 2898 ¢ =%, {c}, (2) if ¢ =pp
C, then ¢ =%, C, and (3) if ¢ =pp {c1,...cp,} and ¢; =%p C; for every 1 <
i < n, then ¢ =%, U, C;. Given a set of configurations C, we define the
sets pregp(C), pregp(C) and prefy(C) as follows: pregp(C) = {c € P x I'™* x
28VAc |3C" C C' s.t. € is an immediate successor of ¢}, pregs(C) = {c € P x
[* x 28U8< 30" C C s.b. ¢ =§p C'} and prefp(C) = pregp o prejp(C). We
omit the subscript BP when it is clear from the context.

A run p of BP starting from an initial configuration ¢ is a tree whose root
is labelled by ¢y and whose other nodes are labelled by configurations of P x
['* x 28%8¢ A node of p labelled by configuration ¢ has n children labelled by
Cly ..., Cp, Tespectively, iff ¢ =pp {c1,...c,}. A path cyeq -+ of a run p is an
infinite sequence of configurations s.t. ¢y is the root of p and ¢;;; is one child of
¢;. A path is accepting iff it visits some configurations with control locations in F’
infinitely often. A run is accepting iff all its paths are accepting. A configuration
c is accepted by BP iff it is the root of a run accepted by BP. The language of
BP, L(BP), is the set of configurations accepted by BP.

(0y0")

We assume w.l.o.g. that for every rule in A, of the form r : p ——= p/, r ¢ 0.

Representing potentially infinite sets of configurations of SM-ABPDSs.

73

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Alternating Multi-Automata (AMA) were introduced in [6] to finitely represent
regular sets of configurations of an alternating PDS. In order to adapt AMA to
represent regular sets of SM-ABPDS, we extend this notion taking phases into

account as follows:

Definition 10 Let BP = (P,T,A,A., F) be a SM-ABPDS. An Extended Al-
ternating Multi-Automaton (EAMA) is a tuple A = (Q,I,T,1,Qr) where I C
P x 28Y%: C is the set of initial states, T C Q x (T'U {e}) x 2% is the set of

transitions, Qr C @ is a finite set of final states.

Let —1 be the transition relation defined as follows: (1) Vg € Q,q <1 {q} where

¢ is the empty word; (2) if (¢,7, {q1, ** .qn}) € T, ¢ 27 {@, - ,q.}; and (3) if
q 7 {q1,-+ ,qn} and ¢; =7 Q; for every 1 <i < n, then ¢ X Ui, Q:.

A configuration ({p,w),d) is accepted by the EAMA A iff (p,#) € [and 3 Q' C
QF such that (p,0)—>7Q’. Let L(A) be the set of configurations accepted by
A. Let C be a set of configurations of the SM-ABPDS BP. C is regular if there
exists an EAMA A such that C = L(A).

4.1.3 From CTL Model-Checking of SM-PDSs to the empti-
ness problem of SM-ABPDSs

Let P = (P,T,A,A.) be a Self Modifying Pushdown System with an initial
configuration ¢y = ({po, wo),). We suppose w.l.o.g. that P has a bottom stack
symbol § € T' that is never popped from the stack i.e. there is no transition
rule of the from (p,f) — (p/,w) € A. Given a set of atomic propositions At,
let v : P — 24! be a labeling function that associates each control location to
a set of atomic propositions. Let ¢ be a CTL formula over At. Our goal is
to check whether ¢y |=, ¢. This can be done by translating the SM-PDS into
an equivalent PDS as described in Chapter 2, and then applying the standard
CTL model-checking algorithm for PDSs [40]. However, as will be shown in the
experiments section (Section , this approach is not efficient. Thus, we need
a direct algorithm that operates directly on the SM-PDS without translating it
into a PDS. We provide in this section a direct algorithm that performs CTL
model-checking on SM-PDSs. To this aim, we will compute a kind of product of
the SM-PDS with ¢: we construct a Self Modifying Alternating Biichi Pushdown

74

4.1 CTL Model-Checking of SM-PDSs

System BP,, s.t. BP, accepts a configuration c iff ¢ |=, . Thus, determining
whether ¢ =, ¢ can be reduced to checking whether ¢q € L(BP,,).

Let BP, = (P',I',A’, A, F)) be the SM-ABPDS defined as follows: P' =
P xcl(p) UPU®) where P¥) is the set of control locations in the form p¥ where
p€ Pand ¢ € c(p), F={[p,a]| a € cl(p) N At and a € v(p)} U{[p, ~a]|-a €
cl(e),a € At and a ¢ v(p)} U P x cli(p) where cli(g) is the set of formulae of
cl(p) in the form E[1 U] or Al Uthy). In what follows, to compute A’ and
Al every rule r € AU A, leads to a set of rules {r},--- , 7} of A’UA! we call
this set of rules prod(r). Moreover, let prodg(r) C prod(r) be the set of rules
generated from using subformulas of the form EXty, E[tUtbs] or E[ib Uthy(
see below for more details about prod(r) and prodg(r)).

The transition relations A" and A/ (resp. the sets prod(r) and prodg(r), for
every 1 € AU A,) are the smallest sets of transitions (resp. of sets of rules)
defined as follows: Initially, A" = A/ = 0, prodg(r) = 0 and prod(r) = 0, V
re AUA.. Vp e P,V € cl(p) and Vy € T, we have:

1. if = a,a € At and a € v(p); ([p,al,7) L ([p,a],y) € A

(-]

2. if ¢ =—a,a€ Al andagél/(p); <[7¢]77> — <[7¢]77> €A
(-]

3. if?ﬁ = ¢1 \/¢2; <[p7¢]a’7> — <[p> ¢1]77> € A" and ([p, ¢]77> i) <[p> w2]57> €A’

4 = g Aos ([, 8], 7) <= {{[p, 1],), ([],)} € A
5. if ¢ = EXq, then:

(a) if p € Py, for every R = (p,7) — (p,w) € A, R' = ([p,¥],7) L

([P, 1],w) € A", R € prodg(R) and R’ € prod(R) (R € prod(R) means
that R’ is generated from R and R’ € prodg(R) means that R’ is generated
from R using a formula of the form EX1, E[tp1U1s] or E[th;Utbs).)

(b) it p € P, for every R=p P eD, R =py] 2% [] € A

where o = prod(r1),o’ = prod(re), R' € prodg(R) and R’ € prod(R)

(r1,m2)

6. if ¢ = AX 1y, then:

(a) if p € Py, let {R1 = (p,7) — (pr,w1),--, Ry = (p,7) = (pn,wn)} be
the set of all the rules of A that have (p,7) in the left-hand-side. Then,

[0, ,0n]

R/ = <[»UJ],W - {<[p17wl}awl>7 e 7<[pna¢1]7wn>} € Ala where for
every 1 <i<mn, o; =prodg(R;) and R’ € prod(R;).

75

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

(b)

(ri,r7) (rnory)

ifpe Po,let {R1 =p——p1, - ,Ry =p —— pp} be the set of all
the rules of A. that have p in the left-hand-side. Then, for every v € T,

[o1,+ 0]

RIL = <[7¢]77> — {<qu77>7 7<p$77>} € A/ and for every 1 S l S
(oy0")

n, R;, p;ﬂ — [p’mwl] S A/

(3]

where for every 1 < i < n,o0; = prodg(R;),
o = prod(r;), o’ = prod(r}), and for every 1 <i <n, R'| ,R' € prod(R;).

7. if v = Bl Utia], then ([p,4],7) < ([p, ¥a],7) € A' and:

(a)

(b)

if p € Py, for every R = (p,v) — (p',w) € A,

R = ([p,¢],7) ‘@{QP,wl],’Y),([p’,w],wﬂ € A', R' € prodg(R) and

R’ € prod(R).

(7‘1,7“/1)

p € A, then for every v € I', R/, =

(ol 7) == {lpwnl), (¥, 1)} € A and p¥ <255 [/,] € AL where
o = prod(r1),0’ = prod(r}), R ,R € prodg(R) and R ,R € prod(R).

if p € Po, for every R = p

(-]

8. if ¢ = A[¢1U¢2]a then <[p7 ¢]77> (—><[p7 1/}2]77> € A/’ and:

(a)

if p € Py, let {R1 = (p,7) = (pr,w1),-+, Bn = (p,7) < (pn,wn)} be
the set of all the rules of A that have (p,7) in the left-hand-side. Then,

R = (Ip, ¢],7) 2 (U, gl), dlpr, il wn), - ([, 9 wa)} € A
where for every 1 < i <n, o; = prodg(R;), and R’ € prod(R;).

if p e Po, let {R; :p&pl,--- ,Rn:pMpn} be the set of all
the rules of A, that have p in the left-hand-side. Then, V1 < i < n, for every

v €T, R (Il y) ST (i), 0y, D) € A
and R} :p;p 27, [pi, ¥] € AL where for every 1 < i < n,o0; = prodg(R;),

o = prod(r;), o' = prod(r}) and R, , R, € prod(R;).

[_’_

9. if = E[p1 U], then ([p,1],7) <=5 {{[p,], 7}, ([p, 1],)} € A and:

(a)

(b)

if p € Py, then for every R = (p,7) <= (p/,w) € A,

R = (p,o],7) = {{(p, ol 1), (I 6], w)} € A, R € prodp(R) and

R’ € prod(R).

(7‘1,7"/1)

if p € Po, then for every R =p ——— p' € A, for every y € T, R}
[777}
<[7¢]77> E— {<[p7¢2]7’7>7<pw7’7>} € A’ and R/ p’¢' — [p/’,"/)]

S
Al where o = prod(r),0’ = prod(r}), R;,R € prodg(R) and R, R’ €
prod(R).

(0,0")

76

4.1 CTL Model-Checking of SM-PDSs

10. i % = A[paUs], then ([p, 0], 7) <—5{([p,],), ([p, 1], 7)} € A, and:

(a) if p € Py, let {R1 = (p,7) = (prw1), - Rn = (p,7) = (Pn,wn)}
be the set of all the rules of A that have (p,v) in the left-hand-side.
Then for every 1 < i < n, o; = prodg(R;), R' = ([p,¢],7) M
{<Lp’ ¢2]’7>’ <[p171/]]7w1>7 T 7<[n7¢]7wn>} € A"and R € p’rOd(RZ)

(T17Tl1) (T’ﬂvr'iz)

(b) if p € Po,let {Ry =p —— p1,--+, Ry, = p —— pu} be the set of

all the rules of A, that have p in the left-hand-side. Then, for every v €

TRy = {(p,], 7) 2%l (i ol 1), 00, 7), - () € AT, VL <

i < n,o; = prodg(R;) and for every 1 < i < n, R/ :pg} M [pi, Y] € AL
where o = prod(r;), o’ = prod(r;) and R, , R, € prod(R;).

Let prod(A) = {r' € A" | 3r € A, € prod(r)} be the set of rules of A’
that are generated from A. Let § = A’ \ prod(A) be the set of rules of A’ that
are not generated from any rule of A nor A, (e.g., the rules computed by items
1, 2, 3 and 4 are in §). These rules § are independent of A and A.. They are
introduced by the structure of ¢. Thus, they need to be present in all the phases
of BP,. Let then § € AU A, be a phase of P. Its corresponding phase in BP,,
is 5(6) = prod(#) U ¢, where prod(0) = {r' € A'UAL | Ir € 0,r" € prod(r)}.

Let us explain the above construction intuitively. The above automaton BP,,
can be seen as a kind of product of the SM-PDS P with the formula ¢. For
Y e cl(p), ((p,w),0) =, ¢ iff BP, accepts a configuration (([p, Y], w), 5(9)). We
give in what follows the intuition behind all the items above:

If v = a € At, then Yw € T*, 0 C AU A, ((p,w),0) =, ¢ iff a € v(p).
Hence, the automaton BP, should accept a run starting from (([p, a],w), 5(6))
iff a € v(p). [p,a] € Fiff a € v(p). Thus, the loop added in ({[p, a], w), (0)) by
Item 1 makes sure that BP, accepts this run.

If ¢p = =a, then Yw € T*,0 C AUA,, ({p,w),0) =, ¥ iff a ¢ v(p). Hence, the
automaton BP,, should accept a run starting from ({[p, ~al], w), 3(0)) iff a & v(p).
[p,—a] € F iff a ¢ v(p). Thus, the loop in (([p, —al, w), 5(f)) added by Item 2
ensures that BP, accepts this run.

If o =)y Vb, then Vw € I, C AUA,, ({(p,w),0) =, ¥ iff (((p,w),0) =,
Yy or ((p,w),0) =, o). Thus, BP, accepts a run starting from (([p, 1 V
o), w), 5(0)) iff BP, has an accepting run starting from (([p,¢1],w),5(6)) or
({[p, o), w), 5(0)). This is ensured by Item 3. Item 4 is similar to Item 3, it

7

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

handles the case 1) = ¥ A 1y where ((p, w),) satisfies ¢ iff it satisfies both 1/,
and 1)s.

If ¢ = EXty, then Yw € T'*,0 C AUA,, ({p,w),0) |, ¢ iff an immediate
successor ((p',w’),8') of ({(p,w),d) satisfies ¢;. Thus, BP, has an accepting run
from (([p,], w), 5(0)) iff it can accept a run from ({[p’, 1], w’), B(#")) . There are
two cases depending on whether p € Py or p € P,, because the form of the rules
of the SM-PDS depends on whether p € Py or p € P.: if p € Py, then necessarily,
the rules that can be applied from p are of the form (p,~v) < (p',w) € A, whereas
if p € P., then necessarily, the rules that can be applied from p are of the form
rip fM) p' € A.. Thus, if p € Py, then BP, has an accepting run from
(([p,], yu), B(8)) iff there exists a rule (p,v) — (p',w) € A such that BP, has
an accepting run from ({[p’,¢1], wu), 5(#)). This is ensured by Item 5(a). If
p € P, then BP, has an accepting run from ({[p,], yu), 3(0)) iff there exists

(7”177"2)

arule r : p ———— p’ € A. N0 such that BP, has an accepting run from
([p', Yn],yu), B(0")), where & = (0\{r1}) U {ro}. This is ensured by Item 5(b).
If p = AX 9y, then Vw € T*,0 C AUA,, ({(p,w),0) =, ¢ iff every immediate
successor ((p',w’),8') of ({p,w),) satisfies ¢;. Thus, BP,, has an accepting run
from (([p,¥],w),B(#)) iff it can accept a run from all its immediate successors
(([p',Un],w'), 5(0")). As previously, there are two cases depending on whether
p€ PyorpéeP.:ifpe Py,let v €I and u € I'" such that w = yu. Let then
{{p,v) = (pr,w1), -, (p,7) = { Pm,wm)} be the set of all the rules of AN§
that have (p,7) in the left-hand-side. Then, BP, has an accepting run from
({[p, Y], yu), B(8)) iff BP, has an accepting run from every ({[p;, ¢1], wiu), 5(6)),
1 < i < m. This is ensured by Item 6(a). Note that Item 6(a) considers all
the rules R; : (p,7) — (pi,w;) that are in A (even those that are not in),
then the constraints [0y, -, 0,] of the rule R’ of Item 6(a) ensures that only the
R;’s that are in 6 are applied. Note also that in R’ 0; = prodg(R;) ensures that
o,NB(0) # 0 iff R; N6 # 0. Here taking o; = prod(R;) is not correct because
R’ € prod(R;) and so in this case, o; N B(0) would always be nonempty. On the
other hand, if p € P., let {p M Pl 5P M Pm) be the set of all the
rules of A,M @ that have p in the left-hand-side. Then BP, has an accepting run
from (([p,], yu), B(9)) iff BP, has an accepting run from (([p;, ¥1],yu), 5(6;)),

for every 1 < i < m, where 6; = (0\{r;}) U {r;’}. This is ensured by Item

6(b). As previously, Item 6(b) considers all the rules R; : p (% p; that

78

4.1 CTL Model-Checking of SM-PDSs

are in A, (even those that are not in 6), then the constraints [oq,- - ,0,] of the
rule R, = ([p,¢],7) A7 onl, {0V), (p¥, 1)} of Ttem 6(b) ensures that
only the R;’s that are in # are applied. Then R : p;p Lo, [pi, 1] ensures
BP, has an accepting run from (p?,yu), B(6)) iff BP, has an accepting run
from ({[p;, ¥1],vu), 5(6;)) where 6; = (0\{r;}) U {r//} for 1 < i < n. Note
that ¢’ = prod(r;) and ¢’ = prod(r}), then B(6;) = 5(0) \ o U ¢’. Thus, BP,,
has an accepting run from (([p, ¥, vu), 5(6)) iff BP, has an accepting run from
(([pi, ¥n],yu), B(6;)) for every 1 < i <n.

If v = E[1Ut], then Yw € T, 0 C AUA,, ((p,w),0) =, ¢ iff either it
satisfies 1), or it satisfies 11 and there exists an immediate successor satisfying 1.
Thus, BP,, has an accepting run from ({[p,¢], w), 8(0)) iff:

1. BP, has an accepting run from (([p, 1], w), 8(#)). This is handled by the
rules ([p,¥],7) <=5 {{[p,va].7), {[p. 1], 7)} introduced by Ttem 7.

2. or BP, has an accepting run from both ({[p, ¢1],w), 5(#)) and

([p',¥],w"), B(8")) where ({p',w'),) is an immediate successor of ({p, w),#)).
There are two cases depending on whether p € Py or p € FPg: the case
p € Py is handled by Item 7(a). Its intuition is similar to the intuition
behind the previous items. Let then p € Ps. Then there exists a rule

(Thrll)

r:p———p € 60N A, such that BP, has an accepting run from both

({[p, 1], w), 5(0)) and ({[p,], w), (")), where ' = O\{ry)U{r'}. This is
ensured by the rule B, = ([p, ¢}, 7) ———— {{[p,v2],7), (¥, 7)} € A and
R :p¥ Lo, [P/,] € AL added by Item 7(b).

The case ¢ = Ay, U,] is handled in a similar way using Items 8. If 1) =
E[wlﬁwg], then Vw € T*,0 C AUA,, ({(p,w),0) =, 9 iff it satisfies 1) and either
it satisfies also ¢y, or it has a successor ((p’,w’), ') that satisfies 1. Then, BP,,
has an accepting run from (([p,], w), 8) iff BP, has an accepting run from both
(({[p, o], w), 5(6)) and (([p, 1], w),5(H))), or it has an accepting run from both
(({[p, o], w), 5(8)) and ({[p’,¢],w’), F(#"))). This case is handled by Items 9. To
ensure that the runs on which v, always holds are accepted, we add [p,] in F.
The case where ¢ = Ay U 5] is handled similarly by Items 10.

We can show that:

79

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Theorem 4.1.1 Let ((p, w), 0) be a configuration of the SM-PDSP. ((p,w),0) =,
@ iff BP, has an accepting run from (([p, @], w), 5(9)).

Proof: (=) : Suppose ({p,w),) k=, ¥, we show that BP, has an accepting run
from (([p,], w), 5(#)) by induction on the structure of .

Case ¢ = a : Since ((p,w),0) =, ¢, then a € v(p). By the definition of BP,,
[p,al € Frand Yy € T, r: ([p,a],7) I, ([p,al,v) € A" and r € ¢ (since it is not
from A nor A.). Then, r € 3(0) and there is a loop in ({[p,], w), 8(#)). Hence,
BP, has an accepting run from (([p,], w), 5(6)).

Case 1) = —a : Since ((p,w),0) |=, 1, then a ¢ v(p). By the definition of BP,,
[p,—al € Fand Vy € I, v : ([p, —al,) I, (lp,—al,v) € A" and r € § (since it
is not from A nor A.). Then, r € (#) and there is a loop in (([p, ¢], w), 5(8)).
Hence, BP, has an accepting run from (([p, 9], w), 5(9)).

Case = Vs - Since ((p,), 8) =, . then ({p,w),0) |, 1 or ({p,w), 6) b=,
1y. By applying the induction hypothesis, BP, has an accepting run from the
configuration (([p, 1], w), 5(0)) or ({[p, 1], w), 5(f)). Since ry : ([p,¥],7) I,
([p,1],7) € A'is s.t. € § and 15 : ([p, Y], 7) I, ([p, o], 7) € Alis s.t. 79 € 6.
Then r1,73 € 5(0) and we can get that (([p,¢],w), (0)) =sp ({[p,11], w), 5(0))
and (([p, ¥],w), B(0)) =pp (([p, 2], w), B(8)). So BP, has an accepting run from

(([p, ¥], w), 5(6)).
Case ¢ = 91 Ay : it is similar to case ¥ = 1)1 V ¥s.

Case) = EX1); : Since ({p,w),) =, 1, then there exists an immediate succes-
sor ((p1,w1),0:1) of ({p,w),0) s.t. ((p1,w1),01) =, 1. By applying the induction
hypothesis, BP, has an accepting run from (([p1,¢1],w1), 8(61)). There are two

cases depending on whether p € Py or not.

- Case p € Py, then 6; = 6. Since ((p1,w1),0) is an immediate successor
of ({p,w),0), there exist w” € I'" st. w = yw”,w; = w'w” and R =
(p,y) = (p,w') € ANEG. By the construction Item 5, we can obtain
R = ([p,v],7) I, ([p1,Yn],w") € A" and R' € prod(R). Since prod(0) =
{r'"e AVUAL | Ire€b,r € prod(r)} and R € 0, then R’ € prod(#). Thus,
R' € (0) and ({[p, ¥],w), B(0)) =psp ({[p1,¥1],w1), B(0)). Hence, BP,, has

an accepting run from (([p,], w), 5(0)).

80

4.1 CTL Model-Checking of SM-PDSs

(r1,72)

- Case p € Py, then 6, = 0\{r1} U {ro} for a transition rule R = p ———
p1 € A.N6@. There exist v € T and w” € T™ st. w; = w = yw
Thus, we can obtain R’ = [p,] Lo, [P/, 1) € AL, o = prod(r),a
prod(ry), R € prodg(R) and R' € prod(R). Since prod(f) = {r'
A'UAL | Ir € 0,7 € prod(r)} and R,r; € 6, then R' € (3(f) and
o N prod(0) # 0. Based on rule R, 6; = 6\{ri} U {r2}, then 5(6;) =
prod(6,) Ud = (prod(0\{r1} U {re}) Ud. Since ¢ = prod(r;) and o' =
prod(ry), then we can obtain $(6;,) = f(0)\o U ¢’. Thus, we can have that
([p, Y], w), B(O)) =pp (([p1,¢1],w), 5(61)). Hence, BP, has an accepting

run from ({[p, Y], w), B(0)).

Case 1) = AX1); : there are 2 cases depending on whether p € Py or not.

- Case p € Py. Let then v € I and u € I'* be such that w = yu. Let S =
{R1 = (p.7) = (pr,wa), - Ry = (p,7) = (pn, un)} be the set of all the
rules of A that have (p,~) on the left hand-side. Then, by Item 6(a), we ob-

[o1,,0n]

tain that B = {[p, 4],7) < ((pu,galwn),) {lpws], wn)} € A,
forevery 1 < i <n, 0; = prodg(R;). Let {R;, = (p,v) <= (Diy, wiy), -+ , R, =
(p,v) = (pip.us,)} be the set of rules of SN O. Let w;, = wu, 1 <
Jj < k, then {((pi,wy),0), -, ((pi,,wi,),0)} is an immediate successor
of ({p,w),6). Since ({p,w),6) b=, b, then ({py, wi,),6) b=y vy for every
J,1 < j < k. By applying the induction hypothesis, BP, has an accepting
run from ({[p;;, ¥1], wy,), B(6)). Since prod(0) = {r' € A'UA, | Ir € 0,7
prod(r)} and R; € 0, then R’ € $(0). Since o; = prodg(R;) , o,NL(6) # 0
ifl € {iy, - ,ix} and oyNPB(O) = D if 1 & {iy,- - ,ix}, then using R, we get
that ({[p, ¥}, w), B(0)) =sp {({[pir, 1], wi,), B(0)), - - -, ([piy., ¥l wi,), B(9))}-
Since BP,, has an accepting run from ({[p;;, V1], w;,), 3(6)), then, BP, has
an accepting run from ({[p,], w), 5(0)).

- Case p € Pc. Let then v € T' and uw € I'* be such that w = ~yu. Let

(ri,r1) (o)

S={Ri=p——p1, -, R, =p—— p,} be the set of all the rules
of A, that have p on the left hand-side. Then, by Item 6(b), we obtain that

[1, O'n] .
R/J_ = <[p7 1/}]77> {<qu)7>7 a<p277>} € A/a for every 1 S 1 S n,
(0.0")

0; = prodg(R;) and for every 1 < i < n, R, : p! <=2 [pi,¢1] € AL where
for every 1 < i < n,o; = prodg(R;), o = prod(r;),c’ = prod(r;) and R €

81

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

(T’ilﬂ";l) (Tik7r7/jk)

prod(R;). Let {R;, =p——— piy, -, Ry, =p—— p;,)} be the set
of rules of SN . Then {((pi,,vw),0:,),- -, ((Di,yu),6;,)} is an immediate
successor of ((p, w),0) where 0;; = (0\{r;;})U{r; }. Since ((p,w),0) =, ¢,
then ((pi;, yu),0;,) . 1 for every j,1 < j < k. By applying the induction
hypothesis, BP, has an accepting run from ({[p;;, ¥1],vu), 3(6;,)). Since
prod(8) ={r' e A'UAL | 3r € 6,7 € prod(r)} and R; € 6, then R, R, €
B(0). Since 0, = prodg(R;) , oyNB(0) # Vifl € {iy,--- iy} and ;N B(A) =
0 if I ¢ {iy, - ,ix}, then using R, we get that ({[p,¢], w),B(0)) =5p
{((pﬁ,w%ﬁ(é’)), e ,((pi,w%ﬁ(@))}. For every j,1 < j <k, using R; , we
get that ((p?,), B(0)) =sp ((Ipi, va), 1), B(6) \ 0 U o). Since B(6y,) =
prod(0;;) U6 = (prod(0\{r;,} U{r;,}) U4, then 5(6;;) = B(0)\oUo’ for every
o = prod(r;;) and o' = prod(r;,). Thus, we can obtain that

(([pa ¢]=w>>5(6)) :>;S’P {(<[pi171/)i1]7w>76(0i1>)7 T 7<<[p7:k71/)1]7w>7ﬁ<9ik>>}‘

Since BP,, has an accepting run from ({[p;;, ¥1],w;), 3(¢)), then, BP, has
an accepting run from ({[p, ¢], w), 5(0)).

Case ¢ = E[i)1U1ly] : Since ((p,w),) =, ¥, then there exists a path

P ({po, wo), 0o), ((p1,w1),01), ((p2, wa),02) - - -

from ((p,w),0) (i.e. ({(po,wo),6p) = ({p,w),0)) such that there exists ¢ > 0,
((pi,wi),0;) =, ¥2 and for every 0 < j < 4, ({pj,w;),0;) =, 1. Thus, by
applying the induction hypothesis, we obtain that BP, has an accepting run from
(([pi, o), ws), B(6;)) and for every 0 < j < i, BP, has an accepting run from the
configuration (([p;, ¢1],w;), B(6;)). We first show that BP, has an accepting run

from ({[p;, ¥], w;), 5(6;)).

By the construction Item 7, ' = ([p;, ¥],7) <ﬂ>([pi, o], y) € A’ st 1’ € § (since
it is not constructed from A nor A.). Then, ' € [(6;). Thus, we have that
(([ps, V], wi), B(0:)) =Bp ([pi, 2], wi), B(6;)). Hence, BP, has an accepting run
from (([pi, o], w), B(8). 1 i = 0, then (([p,], w), B9)) = ({[pi, ¥], w3, A(6))
and BP, has an accepting run from (([p,], w), 5(#)). Otherwise if i > 0, we
show that BP, has an accepting run from (([p;, ¢],w;),5(0;)), 1 < j < i, by

induction on [=i — j. (Note that ({[p,¥],w), 5(6)) = ({[po,], wo), 5(6o)))-

82

4.1 CTL Model-Checking of SM-PDSs

- Basis. [= 1. Then ((p;, w;),6;) is an immediate successor of ((p;,w,), ;).

If p; € Py, then there exists R = (p;,y) — (p;,w') € AN6;. By the
. [_7_]

construction Item 7(a), R’ : ([p;,¥],7) ——{{lpj,v1],7), {pi,¥], ')} €

A" and R € prod(R). Since prod(f) = {r' € AYUAL | Ir € 0,7 €

prod(r)} and R € 0, then R' € prod(f). Thus, R' € ((f) and we can

have ({[p;,], wy), B(6;)) =sp {({[pj, v1], wy), 66;)), ([ps,], wi), B(0;))}-
Hence, BP, has an accepting run from the configuration (([p;, ¢'], w;), 5(6;)).

(Tl 7T2)

Otherwise if p; € P, for every R = pj ———— p; € A.Nb;, for every v € T,
[_?_}

Ry = ([p;.¥].7) —= {{lpj, 1], 7). (¥, 7)} € A" and R : p;¥

[pi,] € AL where o = prod(ry),c’ = prod(ry) st. R|,R € prod(R).

Then, we can obtain that:

({lps, v) wy), B(0)) =sp {([ps, ¥a],wy), B(0)), ((p;*,w;), B(0;))}-
Since R,m € 0; and 6; = 0;\{r1} U {ro}, then 5(6;) = prod(6;) U =
prod(0;\{r1}U{ra})Us. Thus, 5(6;) = B(0;)\cUs’ and ({p;*,w;), B(6;)) =sp
{{([pi,¥],w)), B(6;)}. Hence, BP, has an accepting run from the configu-
ration (([p;, ¥], w;), 6(6;))-

(o,0")

- Step. [> 1. Then there exists ((pj+1,wjt1),0541) st. ((p;,w;),0;) =p
((pj+1,wj41),0541) =5 ((pi,wi),0;). By applying the induction hypothe-
sis (induction on [), we can obtain that BP, has an accepting run from
(([pjt1,], wjga), B(041)). Since ((pj,w;),0;) =y 1, by applying the in-
duction hypothesis (induction on the structure of ¢), BP,, has an accepting
run from (([pj, ¢¥1],w;), B(6;)). There are two cases depending on whether
pj € Py or not.

- Case p; € Py, then there exists R = (p;,7) = (pj+1,w’) € ANf,. By

the construction, B = {[p;, ¥],7) =5 {{[p;, ¢1], 1), {[pj1,],)} €
A’ st. R € prod(R). Since prod(f;) = {r' € A'UA! | Ir € §;,r" €
prod(r)} and R € 6, then R’ € prod(§;). Thus, R’ € 5(6;) and we can
have

([ps, 01, w;5), B(85)) = sp {({[ps: 1 ws), B(85)), [Py, ¥ wina), 5(65)) -
So, BP, has an accepting run from the configuration ({[p;, ¥, w;), 5(0;)).

83

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

(r1,72)

- Case p; € P, for every R = pj ———— pjy1 € A.N6;, there exist
v € I'and wj € T st. w; = qwj, then R = ([p;,¢],7) S
{<[p]71/}1]77>7<pjw77>} € A/ and R/ : pjw (:7) [pmw] € A/c where
o =prod(ry),d’ = prod(ry) s.t. R € prod(R).
Then, ({[p;, ¥l w;), B(6;)) =5p {({[ps; ¥1], wy), B(0;)), ((p;¥,wy), BO;))}-
Since prod(0;) = {r' € A'UA! | 3Ir € 6;,7" € prod(r)} and R € 6;, then
R € p?”Od(Qj>. Thus, R € 5(9]) Since R,y € 0]‘ and ‘9j+1 = Qj\{rl}u
{ro}. Then B(0j11) = prod(0j+1) Ud = prod(8;\{r} U {ra})Usd.
So, B(0j+1) = B(0;)\o U o’. Then, we have ((p;*,w;),5(0;)) =5p
{(([pj+1,v],w;), B(0j41))}. Hence, BP, has an accepting run from the

configuration ({[p;, ¥],w;), 8(6;)).
Thus, BP,, has an accepting run from ({[p,], w), 3(6)).
Case 1) = A[); U] is similar the the case ¢ = E[thUtbs)].
Case ¢ = E[tUthy] : Since ({p, w),8) k=, E[t1 U], then there exists a path

({po; wo), bo), ((p1,w1), 1), ({p2, w2), 02) - --
from ((p,w),0) (i.e. ({po,wo),) = ({p,w),H)) such that
1. either for every i > 0, ((pi, ws), 6;) =, 2

2. or there exists i > 0 s.t. ((pi,w;),0;) =, Y1 and for every 0 < j < i,
({pj w5), 65) Fv P2

First let us consider item 2, it can be proved that BP, has an accepting run

from ({[p,], w), 5(0)) by applying the induction on i — j similar to the case
¥ = E[thUts].

Let’s consider item 1, we will show that BP, has an accepting run from

(([p, ¥],w), B(0)). Let us construct an accepting run p of BP,, as follows. (Note

that (([p,], w), 8(0)) = ({[po, ¥], wo), B(6h)))-
Let ({[po, ¥], wo), 0o) be the root of p. For every k > 0,

e if p, € Py, then we have that

(([pr, Y], wi), B(Ok)) =8p {(([pr, 2], wi), BOk)), (([Pet1, V] Wit1), B(Or41))}-

84

4.1 CTL Model-Checking of SM-PDSs

In this case, we let (<[pk7 wQ]a wk)? ﬁ(ek)) and (<[pk+17 w]a wk+1>7 ﬁ(ekJrl)) be
the children of ({[pg,], w), 8(0x)). By applying the induction hypothesis

to ({pr, wk), k) = 2, we obtain that BP, has an accepting run pj, from
(([px, Yol wi), B(Ok)).

We replace the child ({[pg, 12, wk), B(0x)) in p by the run p,. By the above
construction, we obtain an infinite run p of BP, s.t. p has an infinite path

({[po, 1, wo), B(00)), ({[pr, ¥], wi), B(O1)), - -+

and all the other paths infinitely often visit some accepting control locations.
Since for every k > 0, [px,] € F, we obtain that each path of p infinitely

often visits some accepting control locations i.e. BP,, has an accepting run

from ({[p,¥],w), B(H)).

I pi € Po, ([pr: 0], we), BOk)) =sp { (ks Vo), wi), B(0)), () wi), B(0k))}
and (<pZ7wk>a5(‘9k)> =p {({[Prs1, V], Wkt1), B(Ok+1))}. In this case, we

let ({[pg, o], wk), B(0x)) and ((p}f, wg), B(0)) be the children of ({[pg, V], wg), B(Ok))

and (<[pk+17 TP]; wk—i—l)wg(gk—i-l)) be the child of ((p/;f7 wk>7 6(0k>) BY apply_
ing the induction hypothesis to ((pg,wy),0k) = 12, we obtain that BP,,

has an accepting run py from (([pk, 12|, wi), 5(0)). We replace the child
({[pk, 2], wg), B(Or)) in p by the run p,. By the above construction, we

obtain an infinite run p of BP, s.t. p has an infinite path

({[po, Y], wo), B(B)) -~ ((py, wi), BOk)), ([Prsr, Y], win), B(Bh)) -+

and all the other paths infinitely often visit some accepting control locations.
Since for every k > 0, [px,] € F, we obtain that each path of p infinitely

often visits some accepting control locations i.e. BP, has an accepting run

from (([p, ¢],w), 5(8)).

Case 1) = A[wlﬁwg]: it can be proved as for the case 1) = E[wlsz/}g].

(<) : Suppose BP, has an accepting run from the configuration (([p, ¢],w), 5(6)),
we show that ((p,w),0) =, ¢ by induction on the structure of).

Case ¢ = a: Since BP,, has an accepting run from (([p, ¢'], w), 3(9)), then Vy € T,

[-]

([p,al,v) <=(p,al,y) € A"NB(A). So, [p,a] € F and a € v(p). Hence,

((p,w),0) =0 .

85

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Case ¢ = —a: Since BP, has an accepting run from (([p, —al,w), 5(¢)), then
¥y € I, (p,~al,7) (p,~al,7) € AN B). So, [p,~a] € F and a ¢ vi(p).
Hence, ((p,w),6) |=, .

Case 1) = 91 V : Since BP, has an accepting run from (([p,], w),5(8)),
then BP,, has an accepting run from ({[p, ¢1],w), 5(0)) or BP, has an accepting
run from ({[p, s], w), 5(6)). By applying the induction hypothesis, we get that

((p,w),0) =0 ¥1 or ({p,w),0) |5, . This implies that ((p,w),0) |=, ¢.

Case 1) = 1 A1)y it is similar to the case 1 = ¥ V .

Case ¢ = FX1); : it is similar to the case ¥ = AX 1.

Case 1 = AX1; : Since BP, has an accepting run from ({[p, ¥'], w), 8(6)). There

are two cases depending on whether p € Py or not.

- Case p € Py. Then suppose there exists an immediate successor

{([p1s], wi), B(0)), -+ s ({[pns ¥r], wa), B(6))}

of ({[p,¥],w), B(#)) in the accepting run such that

((lp, ¥], w), B(0)) =5p {({[pr, 1], wi), B(O)), -+, ({[pn, U], wa), B(0))}

By applying the induction hypothesis, we get that ((p;, w;),0;) =, 1 for
1 <4 < n. By the construction, the immediate successors in P of ({p,w),0)
are ((p1,w1),0), -, ({(pn,wn),d). Thus, we obtain that ({p,w),8) =, 1.

- Case p € Pc. Then suppose there exists a successor

{(p1,], w1), 5(0)), -+, ({[pn; Y], wn), 5(0)) }
of ({[p,¥],w), B(#)) in the accepting run such that
(([p, Tﬂ]’ w),ﬁ(@)) =BP {(<p11p>w>’ 6(9))7 T (<pﬁ>w>7 6(9))}
=BP {(<[P17¢1],w1>a 5(01))7) (<[pna ¢1]v wn)vﬁ(en»}

Then BP, has an accepting run from (([p;, ¢1], w;), B(6;)) for each 7 : 1 <
i < n. By applying the induction hypothesis, we get that ((p;, w;),6;) E, 1
for 1 < ¢ < n. By the construction of Item 6(b), there exists R'| =

86

4.1 CTL Model-Checking of SM-PDSs

qp ¢4 > L———_———$ {<p17 >7"'a<p$’7>} s.t. {1,"',%} g;{jlv"'ajm}

where the constraint [o;,,--- ,0;,] ensures that only the R;’s that are in
0 (Ry,---,R,) are applied, and there exist R, : w {270, [pi, 1] where

o = prod(r;) and o’ = prod(r}) ensuring that 6; = (9 \ {r:}) U{ri}. Thus,
we can obtain that the set of all transition rules of the SM-PDS in A. N6
(r1,m1)

that have p in the left-hand side are {R; = p ——— p1,--- , R, =

p <M> pn}- Then, the immediate successors of ({p,w),d) in P are
((p1,w),01), -+, ({pn,w), 0,). Thus we obtain that ({(p,w),0) =, ¥

Case ¢ = E[iUt)s] : Let p be the accepting run from ({[p,], w), (0)). By the
construction, every configuration ({[p;, ¥], w;), 5(6;)) in p has

e cither two children ({[p;, 1], w;), 8(6;)) and ({g;, w,,), 5(6;)), where

L. If p; € Pn, ({giswy,), B(6;)) is of the form (([pi+1, Y], wit1), B(6:)).
(¢

2. If p; € Po, ((qi,wy,), B(6:)) is of the form ((p?,w;), B(6;)) whose child
is (([pis1, V], wis1), B(0i11))-

e or only one child ({[p;, 2], w;), B(6;))

Since p is an accepting run, there exists a configuration ({[p,,], w,), 5(6,))
in ps.t. ({[pn, V], wn), B(0,)) has only one child ({[py, 1], w,), 5(6,)). In particu-
lar, there exists a path of p of the form ({qo, wg,), 5(60)), -, ({qn, Wy,), B(6)) - - -

where ({go, wqo), 5(6)) = ({[p, ¥], w), B(0)) and ((gn, wg,), B(0:)) = ({[Pn, V], wn), 5(63))-
Then, BP,, has an accepting run from ((g;, w,), 3(6;)) of the form (([p;, ¥, w;), 8(6;))

for every ¢ : 0 < i < n.

o Ifp; € Py, ({[pi, ¥], w;), B(6;)) in p has either two children (([p;, ¢1], w;), 5(6;))
and ({[pi+1, Y], wiy1), B(6:)) or has only one child ({[p;, 2], wi), B(6:)). Since
BP, has an accepting run from ({[p,,], w,), 5(0,)) in p and i < n, then

([pi,], wi), B(0:)) =sp {({[pi; 1], wi), B6:)), (([pig, ¥], wisa), B(0:))}. Thus,
BP, has an accepting run from (([p;, V1], w;), 3(6;)).

o Ifp; € Po, ({[ps, V], w:), 5(6;)) in p has either two children ({[p;, 1], w;), 5(6;))
and ((p?, w;), B(6;)) whose child is (([pi41, %], wiz1), B(6i41)) or has only one
child ({[pi, V2], w;), B(6;)). Since BP,, has an accepting run from ({[p,, ¥], wy), 5(0x))

87

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

inp and 1 < n, then (<[i;¢]; wl>7ﬁ(91>) =BP {(<[pivw1]7wi>vﬁ<9i>>v ((pf’,w),ﬁ(@l))}
and ((p!,wi), B(6:)) =p {({[Pis1,¥], wit1), B(i41))}. Thus, BP, has an
accepting run from ({[p;, ¥1], w;), B(6;)).

BP, has an accepting run from ({[py, V2], wy), 8(6,)) and ({[p;, V1], w:), 5(6;)) for
i < n. By applying the induction hypothesis, we get that ((p,,w,),0,) E, 12

and ((p;,w;),0;) =, ¥, for i < n. Since ((p1,w1),01), -, ({(Pn,wn),0,) -+ is a
run of P, we obtain that ((p,w),0) =, ¢

Case 1) = A[p)1U1)y]: it is similar with the case ¢ = E[Urs].

Case ¢ = E[1),U1bs]: Let p be the accepting run from ({[p, ¢], w), (6)). By the
construction, every configuration ({[p;,], w;), 8(6;)) in p has two children:

1. either (([pi, ¥2], w:), B(6;)) and ((g;,wy,), B(0;)) where

e if p; € Py, then g, is of the form (([pit1,], wit1), B(0i+1));

e if p; € Py, then ((g;,wy,), 5(6;)) is of the form ((p?,w;), 3(6;) whose
child is ({[pi+1, ¥], wit1), B(0it1))-

2. or (<[pz,¢1],wz>,6(9z)) and (([pza¢2];wz>vﬂ(el))

First, we consider Case 1.

Since p is an accepting run, there exists an infinite path of p of the form

(g0, wao), B(00)); -~ (i wqi), 5(63)) -+

where ((qo, wg,), B(6)) = (([p, ¥], w), 5(#)) and BP, has an accepting run from

(<[p,“ 77D2]7 w’i>7 6(01)) for every { Z 0.
By applying the induction hypothesis (the fact that BP, has an accepting

run from (([pi, ¥o], wi), B(6:))), we get that ((p;,wi),0;) v Y2 for every i > 0.
By the construction, we get that ({(pg,wo),6o), -, ({Pn,wn),0n), -+ is a run of

P with ((po, wo), o) = ({p,w),d) and ((p,w),0) =, ¥
Let’s consider Case 2. Let (([pn, ¥], wn), 5(6,)) be a configuration in p whose chil-
dren are ({[pn, 1], wn),)) and (([pn, ¥2], wy), B(6,)). Then BP, has an infi-

(n
nite path ({[po, ¥}, wo), B(00)), -+ ({[pn, ¥, wn), B(6n)), (([pn; ¥1], wn), B(6n)), -+ -,
where (([po, ¥], wo), 5(60)) = ({[p, ¥], w), B(0)). Each configuration ({[p, ¢], wi), 5(6:))

88

4.2 Computing the language of a SM-ABPDS

in this path has children ({[p;, s, w;), 8(6;)) and ({[pi+1,¥], wit1), 5(0i+1)) or
((p?, w;), B(6;)) whose child is ({[ps11, %], wit1), B(0ir1)). So BP, has an accepting

run from (([py, ¥1], wy), 5(0,)) and BP,, has an accepting run from (([p;, ¥2|, w;), 5(6;))
for every 1 < i < n. By applying the induction hypothesis, ({p,, w,),0,) =, U1
and ({p;,w;),0;) =, 1 for each i: 1 <4 < n. Thus,

(<p07 w0>7 00)) (<p17w1>a 91)7 Ty (<pna wn>7 gn) e
is a run of P with ((po, wo),0) = ({p,w),d). Thus, ((p,w),d) =, .
Case 1) = A[tp;U1)] : this case is similar to the case ¢ = E[th,Utbs].

Therefore, CTL model-checking for SM-PDSs can be reduced to the problem
of determining whether a SM-ABPDS has an accepting run.

4.2 Computing the language of a SM-ABPDS

From now on, we fix a SM-ABPDS BP = (P, A, A.,T', F'). We show in this section
that the set of configurations accepted by BP is regular and can be effectively
represented by an EAMA (extended Alternating Multi-automaton). To this aim,
we first characterize the set of configurations L(BP) from which BP has an
accepting run. Then we use this characterization to compute an EAMA that

accepts it.

4.2.1 Characterizing L(BP)

Let (X;)i>0 be the following sequence: X, = P x I'* x 2492 and for every i > 0,
Xiy1 = Prefp (XZ- N(F x I x 2AUAC)). Let Ygp = ﬂizo X;. We can show that
L(BP) = ngi

Theorem 4.2.1 A SM-ABPDS BP has an accepting run starting from a config-
uration <<p7 w>70) Zﬁ (<p7w>79) € YB73~

Proving this theorem is based on the following lemma:

Lemma 8 BP has a run p starting from a configuration ({p,w),8) s.t. each

path of p wisits configurations with control locations in F at least k times iff

({p, w), 0) € Xi.

89

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Indeed, let ¢ € X;. Then c has a successor C C F x I'* x 28Y3¢ (since X; =
Prefs(XoN(F xT* x28Y8¢))). Therefore, BP has a run starting from c that visits
some configuration p € F at least once. X = Prefy (XiN(FxT*x2472<)) thus
V¢ € X, a run starting from ¢ will visit configurations in X; N (F x ['* x 28UA¢)
at least once; and thus, it visits configurations with control locations in F at least
twice. Thus, we can get by induction that Vk > 1, for every configuration ¢ in
X, BP has a run that visits configurations with control locations in F' at least
k times.

Proof: (=) : We proceed by induction on k.
Basis. k£ = 0. In this case, we can directly obtain that ((p, w),) € Xo.

Step. k£ > 1. Let ({p1,w1),61), -, ({Pn,wn),0,) be the first nodes of p that are
visited in each path of p such that p; € F. Then we get (1) ({(p,w)),0) =pp
{({p1,w1)),01), -, (P, wn),0,)}. (2) for every 1 < i < n,p; € F. (3) for every
1 <i <n, BP has a run p; from the configuration ((p;, w;), ;) s.t. all the paths
of p; can visit some configurations with control locations in F' at least £ —1 times.

By applying the induction hypothesis to (3), we can get that ((p;, w;),0;) €
X1 for each 1 < i < n. Since p; € F, then ({p;, w;),0;) € Xj_1NF x T'* x 284,
Moreover, since X, = Pret (X;_iNF xI'* x 28Y2¢) we have that ((p, w),0) € Xj.

(<) : In this direction, let’s proceed by induction on k. It is obvious when k& = 0.
we only need to prove that BP has a run p from the configuration ((p, w), #) such
that each path of p can visit some configurations with control locations in F' and
least k times for k£ > 1.

Since ((p,w),0) € X} for X}, = Pre*(X;_1 N F x I'* x 28Y3¢) we obtain that

((p,w>),6) =BP {((pl,w1>),91), T, ((pnawn>79n)} and ((pi7wi>79i) € Xp_1NE'x
[* x 28Y2¢ for every 1 < i < n.

By applying the induction hypothesis, we can get that BP has a run p; starting
from ((p;, w;),6;) s.t. every path of p; can visit some configurations with control
locations in F' at least k — 1 times. Thus, BP has a run p from the configuration
({p, w), 8) such that each path of p can visit some configuration with the control

location in F' at least k times. O

Then we can prove Theorem [4.2.1}

90

4.2 Computing the language of a SM-ABPDS

Proof: (=) : In this direction, we show that if ((p,w),0) ¢ Ysp, then BP has

no accepting run from ({p, w),).

Since ((p, w), 0) ¢ Ygp and Ygp = (5, Xi, there exists k > 0s.t. ({p,w),0) ¢ Xj.
Assume BP has an accepting run from ((p,w),). Then, by Lemma [§] all runs
from the configuration ({p, w), #) can visit configurations with control location in
F at least k times, we can get that ((p,w),0) € Xj; which contradicts the fact
that ((p,w),0) ¢ X. Thus, BP has no accepting run from the configuration
((p, w), 0).

(<) : We prove that if ({p,w),0) € Ygp, then BP has an accepting run from
({p,w),0). Since Ygp = Pre*(Ygp N F x I'* x 28Y2¢) (note that Yzp is a
fix point of Pre*(X N F x I'* x 28Y3¢)) then there exists a set of configu-
rations {({p1,w1),01), -+, (P, wn),0,)} C Ypp N F x [* x 28Y3< guch that
((p,w),0) =pp {((p1,w1),61), -, ((Pn,wn),0,)}. Thus, we can obtain that
(i wi), 6;) € Yp,pi € F.

Then we will construct a finite run (tree) p with root ((p, w), #), the leaves of p are
{({p1,w1),01),- -, ({Pn,wy),0,)} and the inner nodes are the successors during
the derivation of ((p,w),0) =gp {((p1,w1),01), -+, ((Pn,wn),0,)}. Every path
of p can visit some configurations with control locations in F' at least once.
Since ((p;, w;),0;) € Ypp, we can repeatedly construct a corresponding tree p;
for the configuration ({p;, w;),6;). Then the leaf ((p;, w;), ;) in p can be replaced
by the tree p; and we can obtain a new tree whose every path can visit some
configuration with control location in F' at least twice. Then we can infinitely
repeat this procedure to leaves of the latest tree. Then each path of the latest tree
can visit some configurations with control locations in F infinitely often. Thus,

BP has an accepting run p. O

4.2.2 Computing Yzp

In this section, our goal is to compute Yzp. We show that this set can be effectively
represented by an EAMA A = (Q,T,T,1,Q;), where Q C P x 284 x NU
{qs}, I C P x 2892 x N is the set of initial states and ¢; is the final state
(Qr = {qs}). Following [41I], we propose a saturation procedure to compute

A iteratively. Algorithm 1 below computes A. Intuitively, it computes the

91

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

different X;’s iteratively. Each iteration step i computes an EAMA A;. States
of A; are of the form (p,)", where p € P and § C A U A,. There are two loops
in the algorithm: the outer loop (loop;) and the inner loop (loops). As will be
explained later, if the sequence (X;) is strictly decreasing, the outer loop won'’t
terminate. So we introduce two projections to force termination as follows: for
every S C P x 2898 x NU {q;}:

{¢'l¢t € S} U{qs} ifgreSordiges

TSy =4 "
{¢'lq" € S} else.

(S) ={¢'|31 < j <ist. ¢ € S}U{qslqs € S}

Algorithm 1 Computation of Yzp
1: Imitially: ¢ = 0,7 = {(¢s,v. {¢s})},Vy €T, pe PO CAUA, (p,0)° = ¢;.
2: Repeat (we call this loop loop;)
3: =14+ 1;
4: V(p,0)! in the current automaton s.t. p € F,
add (p,0) = (p,) to T
Repeat (we call this loop loops)
if (o) G w), (D wa)} € AND
if(Gk,1<k<n:opNOF#£DorVk,1<k<n,o=-)
Add (p,0) > Sg to T,
where Sg = {q € Qi|(pk,0) ~7 Qr, 1 <k <nst. op=—or o, NG # O}

(0,0")

9: ifr:p—59p €A.NH, s.t.

10: (p,0) 5p Q and §' = H\o U o’

11: Then, add (p,0)" = Q to T.

12: Until No new transition rule can be added.

13: Remove from 7' the transition rules (p,)" = (p,8)""!, for every p € F.
14: Replace every (p,0)" = S in T by (p,0)" 5 7%(S),¥pe P,y €T,S CQ

15 Until i > 1 and for every p € P,y € T, 0 € 283 S C P x 283« x {i} U
{0/}, (0, 0)' 5 S €T <= (p,0) ' L '(S) eT.

Intuitively, at each step i, every state (p,) is represented by state (p,)" in
A;. For every (p,0) € I, A; recognizes a configuration ((p,w),0) if (p,0)" <7 q;-.
Aj is the automaton obtained by Line 1. It accepts Xy = P x I'* x 28V2¢ At

92

4.2 Computing the language of a SM-ABPDS

the beginning of each iteration, an e-transition in the form (p,8)* =1 (p,#)' ! is
added in Line 4 for every (p,6) € F x 22Y2¢ in the current automaton. This
allows to get L(A;_1) N (F x I'* x 28Y4¢) " Lines 5-12 (loop,) is the saturation
procedure that computes Pregp (L(A;—1) N (F x ['* x 28Y4¢)). They ensure that

if f is a phase such that (p, 7>(M>{(p1, wi), (P, wp) } € ANG, s.t. either
k1 <k <n,opN0 #DorVk,1 <k <n,o, =—, and for every k s.t. o,N6 # ()
or o, = —, ({pr, wyw), 0) € L(A) (i-e., (pr, 0)" 1 qy), then ({p,yw), §) should

also be in L(A;) (since it is a predecessor of {((px, wrw),0),1 < k < n}). lLe.,
T should contain the path (p,8)" 25 ¢s. This path is added thanks to Line 8.
Moreover, if # is a phase such that (p,~) N P € A.N0O and ((p',yw),0) €
L(A) (ie., (/,0) 251 qp), where ¢ = 0\c U ¢’; then ((p,yw),#) should also
be in L(A;) (since it is a predecessor of ((p,yw),')). Le., T should contain the
path (p,0)" 257 ¢s. This path is added thanks to Line 11. Line 13 removes the
e-transition added by Line 4. This leads to Pregp (L(Aj—1) N (F x I* x 2894<)),
Let Algorithm A be Algorithm 1 without Line 14. Then, if Algorithm A
terminates, it computes Ygp. However, if the sequence X; is strictly decreasing,
Algorithm A never terminates. Lines 14-15 are then used to force termination.
Indeed, thanks to the substitution of Line 14, at the end of step %, states of the
form (p,6)’, for j < i become useless and can be removed. Line 15 checks then
whether at step i, the transitions of A; are “the same” than those of A;_;. If this
is the case, the algorithm terminates. Termination of the algorithm then follows
from the fact that step ¢ adds less transitions than step ¢ — 1. Intuitively, this is
due to the fact that L(A;) C L(A;_1), because step i computes Prejy(L(A;—1) N
(F x T* x 28Y8¢)) and Ay accepts P x I'* x 2894 Thus, we can show that:

Theorem 4.2.2 Algorithm 1 always terminates and produces Ypp.

To prove Theorem 4.2.2) we need the following lemma:

Lemma 9 In Algorithm 1, for everyy € T,w € I, p e P,.S C Q; at each step
1 > 1, the following holds:

(a) if (p,0) 5 S €T, then (p,0) ' L 71 (x%(9)) € T.

(b) if (p,0)" =71 S, then (p,0) ' S 7 H(7(9)).

93

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Proof: We proceed by induction on i.

Basis. i = 1. In this case, whenever a transition rule (p,0)' & S is added
to T by either the saturation procedure (Lines 2-12) or the substitution (Line
14), we can get that 7~ (7%(S)) = {qs}. Since (p,0)° = {qs} and ¢; = {g;} in
T, we obtain that (p,0)° = {qs}. Hence, (p,0)° = 7~ (x'(S)). Therefore, the
statement (a) holds.

For statement (b). In this case, we can have that 7= '(7*(S)) = {q;}. If
(p,0)' 1 S, We need to show that (p,0)° Ly 7' (x'(S)). Since (p,0)° =
{q;} and ¢ N {qs} for v,7" € T, we obtain that (p,0)° = 7~ (7(S)) (since
7171 (S)) = {qs}) for every S C P x 2292 x {0,1} U {qs}. The e-case (w = ¢)
is trivial (since (p,#)° <7 {(p,0)°} and either (p,0)' <7 {(p,0)°} if p € F or
(p,) =1 {(p,0)'}.) Hence, the statement (b) holds.

Step. ¢+ > 1. Let k be the number of transition rules added at the step i. We

proceed by induction on k.

- Basis. k = 0. there is no transition rule added in the form of (p,8)" 5 S
which implies that the statement (a) holds. For every (p,0)" 1 S, we
get that there is a path (p,0)" S (p,0)! %4 S in the automaton for
some S C P x 28V x i —1} U {q;} if p € F or (p,0)" =¢ S with
S ={(p,0)"} and w = e. Since (p,0) " 57 (p,0) ' and 7~ 1(7%(S)) = S,
we have (p,0) ! 5S¢ (p,0) " Sp 771(7%(S)). This implies the statement
(b) holds.

- Step. k£ > 1.

For statement (a). Let t = (p,0)" = S be the k-th transition rule added
by the saturation procedure. Then there exist 1 < j <n and §; C AUA,
s.t. (pj,0;) /. S; where {j1, -+ ,jm} C{1,---,n},1 <1 < m. There
are 2 cases depending on whether ¢ is added by Line 8 or not.

(I) if ¢ is added by Line 8, then there exists a transition rule

P o,)T L), (D wa) Y € ANG

in BP where §; =0 s.t. 3i:1<i<n, 0;N0 # 0 or o; = — for every
1< <n.

94

4.2 Computing the language of a SM-ABPDS

Let {oj,,---,0j,.} be the set of o s.t. 0, N0 # 0 or 0, = — for
1 <1 < m. Then there exist (p;,,)" %T S, for every 1 <1 <m s.t.
S={qeSilve{ji, - jmt}tie. S=UL 5.

(IT) if ¢ is added by Line 11, then there exists a transition rule

(0,0")

r:p——>p; € A.N6O in BP where 6; = 0\c U ¢’. In this case,
n=j=1. Then, there exists (p;,0;)" =r S; s.t. S =S;. We rewrite
(p;,0;)" Lo S; of the form (pj,,6;,)! /N S;, where j; = 1, 6;, = 0,

and wj, = .

By applying the induction hypothesis on i to (pj,, ;)" S/ S;, for each
[:1<1<m, we can obtain that (p;,6;,)" " Salren m1(7"(S},)). Therefore,
we only need to prove that there exists R;, s.t. 771 (R;,) = 7 1(7%(S},)) for
every 1 <1 <m and (p;,,0;,)" " Sl Rj, exists in the current automaton
during the (i — 1)-th iteration of loop;. If the derivation of (p;,, 6, "' —r
7 1(7"(S},)) does not use any transition rule added by the substitution at
Line 14, then, (p;, ;)" i 71 (7(S},)) exists during the saturation
procedure at the (i — 1)th iteration. Otherwise, there is a transition rule
¢~ L7 R which is used in the derivation of (pjy, 0;,)7"F g mL(m(S,,))
and is obtained by replacing ¢! 2y R’ at line 14 where R = Y R).
Let us decompose (p;;,0;,)"! SN w1 (7(S},)) as follows:

- wj, = wy'v with u,v € I'*,

- (p,,0;,)7F = GU{¢" '} with G C P x 28Y%% x {i — 1} U {q;}

-G G

- R 57 G"

R (R(S,) = GU G
By applying the induction hypothesis on i to R —7 G”, there exists G””
st. R 2 G" is obtained by applying the saturation procedure at the
(i — 1)th iteration and G” = 7*~'(G"). Thus, there must exist Rj, s.t.
7 HR;,) = 7 1(7'(S;,)) and the derivation of (p;,,6;)"" Sli Rj, uses

transition rules added by the substitution at Line 14 less often than the
derivation of (p;,,6;,)" " Sl Sj,-

95

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Similarly, we can apply the same reasoning to (p;,,6;,)"* S/ Rj, to show
that there exists R) s.t. (pj,0;)"" Sl R holds during the saturation
procedure at the (i — 1)th iteration. Thus, the statement (a) holds. If a
transition rule (p,#)" = 7(S) is added by the substitution at line 14 due
to the transition t = (p,#)* - S, then the statement (a) still holds.

For statement (b). Let us consider the statement (b) where we show

that if (p,0)"' 5, S, then (p,0)' L 7 1(7%(S)). Then, suppose t =
(po,00)" = {di, -+ .d%,qh, -+ .d;h,} be the k-th transition rule added

by either the saturation procedure or the substitution (line 14). Let = be
the number of times that ¢ is used in the path (p,0)" S¢ S. We proceed
by induction on x. In the basic case when x = 0, the property holds by
applying the induction hypothesis on k. Let us consider the case where
x > 0. Then, there exist u,v € I'* s.t. w = vyu and there exist the

following path in the current automaton:

- (p,0)" 31 G U{(po,0)"} for some G C Q where t is not used in the
derivation of (p,)" %7 G U {(po,00)"}

-GG

- q <7 S for every j: 1< j<n.

- gt Sp Sjforevery jin4+1<j<n+n.

- S=G"U UM”, S;.

Jj=1

By applying the induction hypothesis on k to (p,6)" = G U {(po,6o)'},
we can obtain that (p,0)' S 7747 (G)) U {(po,)" '}. By applying
the induction hypothesis on z to G =% G’ and qj- <7 S, we get that
1 7(G)) Lop 71 (7(G")) and ¢t = (7(S;)) for every j:1 $j <
n. By applying the statement (a) to (po, 6p)° RN {¢, - .4, qi;rll, e ,q;;ln,},
we can get that (po,80)" " = {¢\"!,--- NS

Since 7! (7(S5)) = 7~ (7(G")) U, 7~ H(7'(S})) UU;L;:L;I S;, we get that
(p,0)' Zp 771 (7(S)). Thus, the statement (b) holds.

96

4.2 Computing the language of a SM-ABPDS

In order to show that there exists a fix-point s.t. the termination condition of
loop; is true, let Algorithm C be Algorithm 1 without Line 15 i.e. without the

termination condition of loop;. We show that there exists a fix-point n such that

L(An) = L(An 1)

Lemma 10 Let n > 1 be the first number in Algorithm C s.t. for every p €
PyeTl,SC(Px22% xn+1)U{gyt, 0 CAUA, ()" 5 SeT <
(p,0)" L 7=1(S) € T. For every i >n, L(Ai1) = L(A,).

Proof: Since (p,d)*" = S will be replaced by (p,0)+! L 7+1(S) by line 14,
then each path (p,#)"*! Z54 {g;} only uses states in the form of P x 2494
{i + 1} U {qs}. It is sufficient to prove that for every (p,0) € P x 2898 ~ ¢
L. (p,)" 5 {gi™ - @i € T = (p,6)" 5 {qF, - ¢4} € T by induction

on 1.

¢ X

Basis. i« = n. We can get directly from the condition of n that
0" H{Gat e T & (0" > {gf, - any €T (0)

Step. i > n. By applying the induction hypothesis (induction on), then we
obtain that for every (p,0) € P x 2893 ~ € T,

.0 54, €T " H{q, g} €T (1)

Since the result of (1), (p,)" 2 {¢i™, .-, ¢i+'} is added based on A;, for
every (p,0) € P x 2892 ~ € T', we obtain that:

(p,0) = {ai™, g eT & ()" S gt - g eT

From (0), we get that

(p> Q)H_l - {qH_l» ' ’qgl} SRR (p7 e)n l> {Q?7 e ,Qzl} eT

Lemma 11 In Algorithm 1,Vi > 1, after line 13, A; accepts Pre* (L(A;—1) N
(F x T* x 28Y48¢)),

97

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Proof:

To prove this lemma, we first show that each configuration c accepted by A; after
Line 13 is such that ¢ € Pret(L(A;—;) N (F x ['* x 28Y3¢)) | then we show that
each configuration ¢ € Pre™(L(A;_1) N (F x I'* x 24Y3¢)) is accepted by A; after
Line 13.

(=) Suppose ({p, w), 0) is a configuration accepted by .A; after Line 13, we show
that ({p,w),0) € Pre™(L(A;_1) N (F x I'* x 28Y4¢)). Since there is no path of
the form (p,0)" =7 {q;} after Line 13, then we get that |w| > 1. Then there
existy e, ueTTand SC Qst. w=~u,t=(p,0) >SS eTand S S {qr}-
There are 2 cases depending on whether ¢ is added by Line 8 or Line 11. Let r

be the transition rule used to add ¢.

- Case t is added by Line 8: then there exists a rule

[0'11"' ,O'n}

r:(p,yy)——"—={(p1,w1) - - (Pn,wn)} € A st. r €6, and either g; =
—forevery j: 1 <j<mnor3dj:1<j<nst o,N0#0 5=
{qE SJ|(p],9)l ﬂ)j“ Sj,]_ S] STL,O'J‘QQ#Q)OI' 0; = —}

This implies that {((p;, w;u),0)|1 < j < n,o;,N0 # 0 or 0; = —} C
Pre*(L(Ai_y) N (F x T* x 28UAc)).

Thus, we get that ((p,yu),0) € Pret(L(Ai—1) N (F x I'* x 28Y4¢)). The
property holds.

- Case t is added by Line 11: then there exists a rule r : p M p1 € A,

st. 7 €0, 0, =0\oUg’. We get that (p;,01)" -7 Si. This implies that
{({p1,7u),01)} C Pre*(L(Ai_1) N (F x I'* x 28Y4<))

Thus, we get that ((p,yu),6) € Pre™(L(A;i_1) N (F x T'* x 28Y2¢)). The
property holds.

(«<:) Suppose ((p,w),f) € Pre™(L(Ai_;) N (F x I'* x 28Y2<)) we show that
({p,w),0) is accepted by A; after Line 13. Since Pre*(L(A;—1) N (F x I'* x
2898)) = Pre*(Pre(L(A;—1)N(FxT*x2472<))), we obtain that Pre™ (L(A;_1)N
(F x I'* x 24Y3¢)) is the limit of the infinite sequence {C;};>o given by Cy =
Pre(L(A;—y) N (F x T x 28Y%¢)) and Cj1 = C; U Pre(C;) for every j > 0
(C; € Cjyq for 5 > 0). Thus, we only need to show that for every j > 0,
((p,w),0) € Cj, there exists a path (p,)" <1 {q;} in A; whose derivation doesn’t

98

4.2 Computing the language of a SM-ABPDS

use any transition rule in the form of ¢° = {¢*~'}. We proceed by induction on
-

Basis. j = 0. By applying the saturation procedure (Lines 5-12), A; can accept
Cp if only the out-coming states in the form of (p,#)’ of the added transition
rules are regarded as initial states. Moreover, these transition rules are in the
form of (p,0)" 5 Q for some Q C P x 2894 x {i — 1} U {¢s}. Thus, for every
configuration ({p,w),#) € Cy, A; has a path of the form (p,0)" =7 {g;} whose
derivation doesn’t use any transition rule in the form of ¢° = {¢"~'}.

Step. j > 1. For every configuration ((p,w),0) € Cj, since C; = Cj_y U
Pre(C;_1), we have ((p,w),0) € Cj_1 or ((p,w),0) € Pre(C;_1).

If ((p,w),0) € Cj_1, the result follows from the induction hypotheses.

If ({(p,w),8) € Pre(C;_;), there are 2 cases depending on whether it corresponds
to a self-modifying rule or not.

[o1

- If there exists a transition rule r : (p, 'y><;an]>{<p1,w1), o (pnywy) } €
Ast. refeither Ik : 1 <k<mno,NO#PorVk:1<k<n,op=—,
and v € I st. w = yu and ((pg, wpu),0) € C;j—y for 1 < k < n st.
0, N # 0 or o, = —. By applying the induction hypothesis, we obtain
that A; has a path (pg,0)" 57 Qr =71 {qs} for 1 <k <n,0,N0F#0 or
0, = —. Applying the saturation rule, we obtain that (p,)" % Sg where
So = {q € Qul(pr,0)" Z57 Qr,1 <k <n,0,00 # Boroy, =—}. This
implies that A; has a path (p,0)" 2 S v {qs} whose derivation doesn’t
use any transition rule in the form of ¢° = {¢’~'}. The property holds.

- If there exists a transition rule r : p M p1r € A.NBO st 6 =0\cUdo

and ((p1,wu), 0;) € Cj_;1. By applying the induction hypothesis, we obtain
that A; has a path (p1,01)" =7 Qr —7 {g;}. Applying the saturation rule,
we obtain that (p,#)" 2 @Q,. This implies that .4; has a path (p,8)" >
Q1 =7 {gs} whose derivation doesn’t use any transition rule in the form of

¢" = {¢""'}. The property holds.

Thus, A; accepts Pre* (L(A;_1) N (F x I'* x 2898¢)), O

Lemma 12 In Algorithm C (Algorithm 1 without Line 15), Vi > 0,

99

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

(a) for every accepting run p of BP from ({p,w),0) € P x T'* x 2893 there
exists a path (p,0)" =1 {q;} in A; and for every decomposition (p,0)" <
Q =7 {as} of the path (p,0)" =1 {as}, if @ # {as}, then for all (p/,0)’
or (p/,0) 1 in Q\{qs}, some path of the run p will reach ((p',v),0') i.e.
((p,), 0) =" ({p',v),)

(b) Ysp C L(A;) after substitution at line 14.

Proof: We proceed by induction on .

Basis. i = 0. The statement (a) holds directly from the fact that for every
configuration ((p,w),f) € P x I'* x 2894¢ there exists a path (p,0)° =7 {q;} in
the initial automaton Ay and for every decomposition (p, 0)° =7 Q =71 {g;},Q =
{q;}. Then, statement (b) holds from the fact that Yzp C PxI™*x22Y2 = [(Ay).

Step. i > 1. For the statement (a). Let H(p) be the maximum number of steps
required by the paths of p from root (({p,w), 0)) to reach some configuration with

control locations in F'. We apply a nested induction on H(p).

- Basis. H(p) = 0. Since the root of p is ({(p,w),0), we can obtain that
((p,w),0) € F xT'* x 2894 By the transition rule added to the automaton
during the i-th iteration by line 4, we can get that (p,0)" = {(p,0)" '} is a
transition rule of A;. Then, by applying the induction hypothesis on i, the

result immediately follows.

- Step. H(p) > 1. Let p',---, p™ be the sub-trees of p whose root is the
children of the root ({p,w),0). Let p1,--+ ,pp € P, wy, -+ ,w, € T* v €T
and 6; € AU A, be such that w = yw" and the roots of the sub-trees of
p are ((p1,wiw'),01), -, ({(pn, wyw'),0,). There are 2 cases depending on

whether (6 = 6;) for every j: 1 < j <n or not.

- Case 0; = 0 for every j : 1 < j < n. Then p',--- , p" are the accepting
runs of BP from configurations ((py, wiw’),0), -+, ({(pn, wyw'),d) and
there exists r : (p, 7>M{(pjl,wj1>,--- ADjswin)} €A st
ref, {1,---,n} C{j1, ,Jm}and forevery 1 < j <n,o;N0 # 0 or
o; = —. Note that for the constraint [o},,--- ,0;,], either 31 <1 < m,
g, N0 #£0orvl<Ii<m,o; =—. Since H(p) > 1 (p ¢ F), we can

get H(p’) < H(p) for 1 < j < n. Thus we apply the nested induction

100

4.2 Computing the language of a SM-ABPDS

hypothesis on H(p’), we can get that there exists a path (p;, 0)’ R Ao
{q;} in A; and for every decomposition (p;,) < Q = {q;} of the

path (p;,0)" ==z {¢s}, it Q # {¢s}, then for all (¢o/,6)" € Q\{¢s}
with k € {i,i—1}, some path of the run p’ will reach the configuration

(', v), 0").

Moreover, there exists a path (p;,6)’ A Q; w—/>T {g¢s} in A; for
every j : 1 < 7 < n and by applying the saturation procedure, we
get that (p,0)" - Ui, Q; o {qs} in A;. Then for every decom-
position (p,0)" =7 Q ¢ {qs} of the path ((p,6)’ 7—wl>T {qs}), if

Q # {qs}, then for all (p/,0')* € Q\{q;} with k € {i,i— 1}, some path
of the run p will reach the configuration ((p’,v),¢). Thus, we can have

({p, w), 0) =" (¢, 0),0).

- Case 0; # 0, then there exists a transition rule r in 0, r : p (@)
p; € Acand 6; = 6\o Uo’. In this case, w; = v and j = 1. Thus,
the root of p7 is ({p;, w;w'),0;). Since H(p) > 1 (p ¢ F), we can get
H(p’) < H(p). Thus we apply the induction hypothesis on H(p’), we
can get that there exists a path (p;, 6;)’ %T {¢s} in A; and for every
decomposition (p;, 0;)" S0 Q Sy {qy} of the path (p;, 6;)" %T {qr}
where uv = w;w', if Q # {q;}, then for all (p/,0")* € Q\{q;} with
k € {i,i — 1}, some path of the run p’ will reach the configuration
(', v),0).

Moreover, there exists a path (p;, 6;)’ iy Q; 2/—>T {qs} in A; and by
applying the saturation procedure, we get that (p,#)" 2 Q; w—/>T {qr}
in A;. Thus, for every decomposition (p,)" <7 Q <7 {g;} of the

path (p,0)" “=r {gs}, if Q # {qs}, then for all (p/,6")" € Q\{qs}
with k € {i,i— 1}, some path of the run p will reach the configuration

(¢, 0),0) ie. ((p,w),0) =~ ((p,0),0).

For the statement (b). Since Ypp = Pret(Ypp N F x I'* x 28Y3¢) and by the
induction hypothesis Ygp C L(A;_1), we get that

Yip C Pret(L(A; 1) N F x T* x 2894¢) (1)

By Lemma we get that just before the substitution at Line 14, A; accepts

101

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Pret(L(A;_1) N F x T'* x 28Y3<¢) Thus, it is sufficient to prove that for every
configuration ({p,w),d) € Ypp, A; accepts ({(p,w),0) after the substitution at
Line 14. Let n be the number of transition rules substituted at Line 14. For all
m < n, let A" be the automaton obtained by substituting m transition rules.
We show that Yzp C L(A") by induction on m.

e Basis. m = 0. We directly get that Ygp C L(AY).

e Step. m > 1. By applying the induction hypothesis, we can get that
Yap C LA™Y, If L(A™Y) C L(AM), the result follows from the fact
that Ysp C L(A”'). Otherwise, if L(A" D\L(AT) # 0, let ({p,w),0)
€ LA™ Y\L(A™) be some configuration s.t. |w| is the minimum of
{Jw'| | ({(p',w'),0") € LA \L(A™} st. ((p,w),0) € Ygp. Then we
prove by contradiction that ((p,w),) should not be in Yzp.

For every path of the form (p,0) <1 {q;} in A7""', there exist u € T, v €
I'* and ¢ € P such that w = wv and (p,0)" =7 QU { (¢,0")" '} =7 {qs}
in A7! and A™ doesn’t have {(q,¢)'} =7 {q;}. (Otherwise, ({p,w),) €
L(A™)). By the statement(a), for each accepting run p of BP starting from
({p, w), d), one path of this run p will reach such a configuration ({q,v),6").
It is sufficient to show that ({(g,v),8') ¢ Ygp.

Now let us show that ((g,v),0) ¢ Ygp. If ({q,v),0') ¢ L(A"'), by ap-
plying the induction hypothesis on m, we get that ((¢,v),0") ¢ Ygp. If
(0,0},) € LAT™), then ({g,0),0) € LA N\L(AD). T ((g,0), 8) €
Ysp, then |v| < |w| which contradicts the fact that |w]| is the minimum of
{Jw'| | ((p/,w'),0") € LA \L(A™)} s.t. ({p,w),0) € Ygp. Thus, we can
obtain that ({q,v),0") ¢ Ypp.

Then, we can prove Theorem [4.2.2}

Proof: We prove termination and correctness.

Termination: There are two loops in Algorithm 1. Thus, we will prove those

two loops both terminate.

102

4.2 Computing the language of a SM-ABPDS

Loopsy: Suppose loops is in the ith iteration of loop;. Since only states of the
form (p,)" € P x 22894 x {i} can be added into A at the ith iteration, we obtain
that Loops only add a finite number of transition rules at the ith iteration. This
implies that V2 > 1, loops always terminates at the ¢-th iteration.

Loop, : Now we consider the termination of Loop,. For every ¢ > 1, Line 14
ensures that at the end of the ith iteration, every transition rule in the current
automaton is in the form of (p,0)7 = S for every j < i, S C (P x 2892 x
{j}) U{qs}. Thus, by the Lemma [9f(a), at (i + 1)th iteration with ¢ > 1, either
the termination condition at Line 15 is satisfied or the number of transitions is

strictly smaller than in the 7th iteration. Therefore, Algorithm 1 terminates.

Correctness: Let n > 1 be the fix-point of Algorithm 1 s.t. for every p €
Py €T, RC Px28x {n}U{g}, (p,0)" 5> R T <= (p,0)" ' > 7 Y(R) €
T holds. Then L(A,) = L(A,-1). We will show that L(A,) = Ysp.

If we remove the termination condition of loop, i.e. if we consider Algorithm
C, by Lemma [10] and Lemma [9[b) and the fact that L(Ag) = P x T'* x 2894

we have that for all ¢ > n:
L(A;) = L(Ai-1) =, ,= L(A,) € L(A,-1) € L(Ao). (1)

- Let us first show that L(A,) C Ypp: Since Ypp = ()5, Xi and Xiyy =
Pret (Xi N(F xT* x QAUAC)), then it is sufficient to prove that L(A4;) C X;
for every ¢ > 0. We proceed by induction on 1.

e Basis. i = 0. L(Ay) C X always holds.

e Step. ¢ > 0. By applying the induction hypothesis (induction on i),
we get that L(A; 1) C X; ;. By the definition of X; = Pre™(X;_1 N
(F x I'* x 28Y4¢)) we can have that

Pret (L(Ai—1) N (F x I x 289%)) C X; (2)

By Lemma , Vi > 1, A; accepts Pret (L(A;—) N (F x T'* x 28V8¢))
before Line 14 of the algorithm. By Lemma @(b), Line 14 only removes
configurations from A; (Line 15 can only reduce the language of A4;),

we can obtain that:
L(A;) C Pret (L(Ai—1) N (F x T x 2898¢)) (3)

From (2) and (3), we can get that L(A4;) C X,.

103

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

- Now, we show that Ysp C L(A,): It directly follows from Lemma [12|(b).

Therefore, we show that Ysp = L(A,).

Thus, it follows from Theorems [4.1.1], [4.2.1] and [4.2.2] that:

Corollary 1 Let P be a SM-PDS, v : P — 24 be a labelling function, and ¢ be
a CTL formula over At. Then, we can compute an EAMA A that characterizes
the set of configurations ({p,w),0) of P such that ({p,w),0) =, ¢.

4.3 Experiments

4.3.1 Our algorithm vs. standard CTL on PDSs

We implemented our algorithm in a tool and we compared its performance with
the approach that consists in translating the SM-PDS to an equivalent standard
PDS, and then applying the standard CTL model checking algorithm imple-
mented in the PDS model-checker tool PuMoC [40]. All our experiments were
run on Ubuntu 16.04 with a 2.7 GHz CPU, 2GB of memory. To perform this
comparision, we randomly generate several SM-PDSs and CTL formulas. Our re-
sults (CPU Execution time) are shown in Table[4.1] Column |A|+|A.| indicates
the size of the transition rules. Column formula size shows the size of the CTL
formula. Column SM-PDS is the cost of our direct algorithm. Column To PDS
reports the cost it takes to get the equivalent PDS from the SM-PDS. Column
PDS is the cost used to run standard CTL model checking for the equivalent
PDS in PuMoC. Column Total Time is the whole cost it takes to translate the
SM-PDS into a PDS, and then apply the PDS CTL model-checking algorithm of
PuMoC [0] (Total Time= To PDS + PDS). Column Resultl is the result of
our approach and Result2 is the result of PuMoC [40], where Y means yes the

W

formula is satisfied and N means no, the formula is not satisfied. means out
of memory. It can be seen that our direct approach is much more efficient, and
that it terminates in all the cases, whereas going through CTL model-checking

of PDSs gets out of memory in most of the cases. Translating the SM-PDS

104

4.3 Experiments

to a standard PDS may take more than 24 days, whereas our direct

algorithm takes only a few seconds.

4.3.2 Malicious Behavior Detection on Self-Modifying Code
4.3.2.1 Specifying malicious behaviors using CTL.

We applied our tool to detect several self-modifying malwares. Indeed, as shown
in [40], several malicious behaviors can be described by CTL formulas. We give

in what follows an example of such a malicious behavior.

Spyware (Scanning the Disk). The aim of a spyware is to steal information
from the host. To do this, it has to scan the disk of the host in order to find the
interesting file that he wants to steal. If a file is found, it will run a payload to
steal it, then continues searching the next file. If a directory is found, it will enter
this path and continues scanning. This malicious behaviour is present e.g. in the
notorious spyware Flame: It first calls the function FindFirstFileW to search the
first object in the given path, then, it will check whether the function call succeeds
or not. If the function call fails, it will call the function GetLastError. Otherwise
it will call either the function FindFirstFileW again if it finds a directory or
the function FindNextFileW to search for the next object. We can specify this

behavior in CTL as follows:

¢spy = EF (call FindFirstFileW A AF (call GetLastError

Veall FindFirstFileW V call FindNethz’leW))

This formula states that there exists a path where the function FindFirst FileW
is called, then, in all the future paths, the program either calls GetLastError
(if FindFirstFileW failed) or calls FindFirstFileW (if a directory is found)
or calls FindNextFileWW (to search for the next file). Scanning a disk can be a
behavior of a benign program. To avoid false alarms, we can combine this CTL
formula with other formulas describing other malicious behaviors expressing the
payload (such as sending a file) to determine whether the binary code is a mal-
ware or not. Note that, the formula is branching time and cannot be described

as a LTL formula.

105

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Al 4+ |A¢| | formula | SM-PDS | To PDS PDS Total Time | Resultl | Result2
542 2 0.27s 0.09s 0.25s 0.34s Y Y
6+4 5 0.36s 0.21s 0.45s 0.66s Y Y
8§+4 12 2.88s 0.35s 3.41s 3.76s Y Y
10+ 4 18 3.71s 0.39s 3.85s 4.24s Y Y
2044 15 3.84s 0.62s 3.94s 4.56s N N
30+4 8 4.01s 2.20s 4.79s 6.99s Y Y
3544 20 5.13s 2.36s 6.53s 8.89s Y Y
50+ 8 6 7.86s 4.92s 8.04s 12.96s N N
80+ 38 15 8.46s 5.06s 10.31s 15.37s Y Y
80+ 8 20 9.57s 5.06s 10.79s 15.85s Y Y
110+ 8 6 8.83s 5.258 11.42s 16.64s N N
11048 15 9.01s 5.25s 12.98s 18.13s N N
110+ 8 20 10.24s 5.25s 13.44s 18.69s Y Y
120 4+ 10 10 9.59s 5.70s 12.32s 18.02s N N
120 + 10 20 11.48s 5.70s 14.87s 20.57s Y Y
25048 6 13.22s 9.13s 18.94s 28.07s N N
250 + 8 15 18.37s 9.13s 21.11s 30.24s Y Y
500 + 8 6 20.51s 17.02s 29.25s 46.27s N N
600 + 9 8 23.34s 295.24s 57.79s 353.03s Y Y
%D 6004+ 9 15 28.88s 295.24s 63.16s 358.40s Y Y
fv) 600 + 9 25 35.39s 295.24s 69.82s 365.06s Y Y
6 1000 + 10 6 35.11s 3251.02s 7127.41s 10378.43s N N
% 1100 + 10 8 37.34s 3251.02s 7319.82s 10570.84s Y Y
§ 1100 4+ 10 45 83.63s 3251.02s - - N -
ﬁ 1500 + 8 30 60.71s 2182.78s | 13821.34s | 16004.12s N N

© | 2000+ 10 18 49.48s 5529.30s - - Y

2000 + 10 36 61.13s 5529.30s - - N -
2100 + 10 15 60.74s 5544.69s - - Y -
2500 + 8 30 68.55s 3981.93s - - N -
3000 + 7 10 65.84s 5167.27s - - Y -
3000 4 7 22 78.51s 5167.27s - - N -
3500 + 8 6 70.83s 6105.60s - - N -
3500 + 10 6 75.91s 9219.18s - - N -
3500 + 10 20 93.37s 9219.18s - - Y -
3800 + 10 30 99.06s 9295.24s - - N -
3850 + 10 8 93.20s 9308.01s - - Y -
3850 + 10 30 115.52s | 9308.01s - - N -
4000 + 10 20 125.81s | 10002.28s - - N -
4200 + 8 15 121.16s | 9599.37s - - Y -
4500 + 8 23 136.72s | 9881.85s - - Y -
4500 + 11 5 139.95s | 40290.27s - - Y -
4800 + 11 10 142.13s | 42184.85s - - Y -
4800 + 11 15 153.22s | 42184.85s - - Y -
5500 + 10 20 196.46s | 45745.44s - - Y -

Table 4.1: Our approach vs. standard algorithms for PDSs for CTL model check-

ing

106

4.3 Experiments

4.3.2.2 Applying our tool for malware detection.

We applied our tool to detect several malwares. We consider 400 email-worms, 30
worms and 100 viruses from VX heaven [48] and 260 new malwares generated by
NGVCK. We also choose 19 benign samples from Windows XP system (win32).
We consider self-modifying versions of these programs. In these versions, the mali-
cious behaviors are unreachable if the semantics of the self-modifying instructions
are not taken into account, i.e., if the self-modifying instructions are considered
as “standard” instructions that do not modify the code, then the malicious be-
haviors cannot be reached. As previously, first, we abstract away the semantics
of the self-modifying instructions and model such programs as standard PDSs
as described in [40], and perform CTL model-checking for PDSs to determine
whether the programs contain any malicious behavior. In this case, none of
the programs was declared as malicious. Then, we use SM-PDSs to model these
programs, thus, taking self-modifying instructions into consideration. Then, we
check whether these SM-PDSs satisfy any malicious CTL formula in our database.
If yes, the program is declared as malicious. If not, it is declared as benign. In
our experiments (we have 790 malwares), our tool was able to detect all these
programs as malicious (whereas when we model these programs using standard
PDSs and abstract away self-modifying instructions, none of these programs was
detected as malicious). Our tool was also able to determine that benign programs
are benign. We report in Tables [4.2] and the results we obtained. Col-
umn Size gives the number of control locations, Column Result shows the result
of our algorithm: Yes means malicious and No means benign; and Column cost
gives the cost in seconds. You can see that our CTL model checking approach

allows to detect all the malicious programs in a few seconds.

107

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Example Size | Result cost Example Size | Result cost Example Size | Result cost
calculation.exe | 9952 No 76.34s cisvc.exe 4105 No 31.22s simple.exe 52 No 3.17s
shutdown.exe 2529 No 23.52s loop.exe 529 No 11.78s cmd.exe 1324 No 19.36s
notepad.exe 10529 No 68.77s java.exe 800 No 19.17s java.exe 21324 No 122.07s
sort.exe 8529 No 74.12s bibDesk.exe 32800 No 243.79s interface.exe 1005 No 18.25s
ipvd.exe 968 No 24.43s TextWrangler.exe | 14675 No 65.09s sogou.exe 45219 No 301.14s
game.exe 34325 No 234.14s cycle.tex 9014 No 75.44s calender.exe 892 No 25.39s
Netsky.a 45 Yes 19.12s Mydoom.c 155 Yes 4.14s MyDoom-N 16980 Yes 343.93s
Netsky.x 55 Yes 21.85s Netsky.y 68 Yes 29.06s Netsky.z 115 Yes 43.37s
Netsky.gen 5508 Yes 59.24s Netsky.p 6015 Yes 76.32s Netsky.m 6805 Yes 73.77s
Netsky.r 230 Yes 8.83s Netsky.k 6115 Yes 79.79s Netsky.e 6245 Yes 79.44s
Mydoom.y 26902 Yes 452.77s Mydoom.j 22355 Yes 211.93s klez-N 6281 Yes 63.07s
klez.c 30 Yes 2.79s Mydoom.v 5965 Yes 283.11s Netsky.b 45 Yes 29.51s
Repah.b 221 Yes 12.76s Gibe.b 5358 Yes 37.01s Magistr.b 4670 Yes 43.59s
Netsky.d 45 Yes 1.87s Ardurk.d 1913 Yes 12.08s klez.f 27 Yes 0.73s
Kelino.1 495 Yes 21.01s Kipis.t 20378 Yes 121.11s klez.d 31 Yes 0.95s
Kelino.g 470 Yes 22.08s Plage.b 395 Yes 1.96s Urbe.a 123 Yes 9.17s
klez.e 27 Yes 3.94s Magistr.b 4670 Yes 231.97s || Magistr.a.poly | 36989 Yes 469.63s
Mydoom.M 5965 Yes 75.19s MyDoom.54464 5935 Yes 45.78s Mydoom.e 138 Yes 46.53s
Mydoom.R 230 Yes 30.22s Mydoom.dlnpqi 235 Yes 1.99s Mydoom.o 235 Yes 2.01s
Sramota.avf 240 Yes 11.01s Mydoom 238 Yes 2.01s Mydoom.288 248 Yes 3.12s
Mydoom.ACQ | 19210 Yes 439.57s Mydoom.ba 19423 Yes 238.77s || Mydoom.ftde | 19495 Yes 339.29s
LdPinch.by 970 Yes 42.92s Generic.2026199 433 Yes 32.83s LdPinch.arr 1250 Yes 49.84s
Generic.12861 | 30183 Yes 188.94s || Generic.18017273 267 Yes 9.19s LdPinch.mg 5957 Yes 69.77s
LDPinch.400 1783 Yes 54.93s PSW.LdPinch.plt | 1808 Yes 55.88s PSW.Pinch.1 1905 Yes 57.07s
Newapt.F 11785 Yes 211.24s Newapt.A 11715 Yes 205.79s Newapt.E 11797 Yes 252.49s
LdPinch.bb 8145 Yes 63.13s LdPinch.br 3645 Yes 33.52s LdPinch.hb 1645 Yes 21.08s
LdPinch.v 7235 Yes 51.69s LdPinch.tk 4906 Yes 47.11s LdPinch.awp 195 Yes 17.97s
LdPinch.aaz 4145 Yes 41.05s LdPinch.c0 8230 Yes 65.17s LdPinch.ee 6501 Yes 71.30s
Bagle.m 5111 Yes 39.92s Bagle .k 35 Yes 1.92s Bagle.t 3345 Yes 45.64s
Newapt.C 11730 Yes 924.92s Krynos.b 18370 Yes 893.45s Jeans.a 6490 Yes 188.36s
Atak.f 2005 Yes 11.35s Atak.g 2498 Yes 16.69s Atak.1 1914 Yes 10.37s
Bagle.ab 5690 Yes 89.42s Bagle.ef 995 Yes 54.11s Bagle.eg 380 Yes 25.49s

Table 4.2: Experimental Results (part 1)

108

4.3 Experiments

(z 9red)symsoy ejuowitodxy :g'F S[qe],

S66°6 EIN z61 uo-o[dey 8059 SOX €81 Ao o[deg 896°G SoX L61 xo'9[deg
SL0°8 Sox GGE Jorseg STT°G Sox 881 fo-ar8eq SL0°9 SOx 861 up-ardegg
S88°¢ SOx 86T 00-0[deg SL8°¢ SOX G681 qo-o[seqg sge'1 SoX 0€ o'a[deq
S65°L EIN 8¢ spro[deq SY1°9 SOK GLT Apro[deg sgee SN cee dp-ordeg
S8G°T SOx 514 q reuwy 8LT'T SOX (& erIRuyY S6%°1 SOX 1€ Z86£ Y2010
SQT°€S EN 06% | SCEUIMZNY || SGT'H9 LN 57 a3uI[y] SG6°0 SOx L3 ['Tedy
STEC SOX 8% {mesry $66°'T SOx €c Jmeory SgT0 SOx 61 qnesy
SQT'¥ SOx 614 3'medry SC6°E SOX Ve [esty S€6°'T SOx e o'nesyy
60" SOx €g e[oAy S6T°0 SOx €c wrned[y $96°0 SOx 97 [‘meory
S60T°0 EIN cqe omery SG9T°0 SOX ar8 prnesy $62°0 SOX e o' [nes[y
Sl SOX 3% rnesy SGE0 SOx L 6GGT UOpY S6£°0 SOX L €0L1 Uopy
S8F°0 SOX o prnesy S€F0 SOK oy yEL1 uospy Sl SOx 6€ 1691 UOSpy
STV'6 SOx) 0G7S Y2010 SO7°'1 SOx 14 ©XI(] SgGeT SOx ege ULTeTRE]
865799 SOX 628% 8-09parg S0S°69 SOX G68C Joaparg $L6°L9 SOX 0G8% 9'09pal
SIT'T9 EIN 928% proopald sz019 SOx 8GRC 0'00pal SLL'T9 SoX 0€8¢ q'29paid
8LE°29 SOX GESE [-o0pa1g $86°¢9 SOx GGRE 1'09paI] SPE'8G SOX 059¢ [00paid
S66°6 SOx c61 o oSy S0S°9 SOX €81 A9 o[deyg $96°G SOx 161 x0'9[3eyg
$L0°8 SOx age porseg STT'G Sox 88T fo-or3eg sL0°9 SOx 861 up-a[deq
$88°¢ EN 86T 00-0[deyg 8.8°¢ SOX G681 qo-o[deyg SgS'T SOx 0€ o'a[deq
S6G°L SOX Cr4s spro[deq SPT°9 SOx GLT Apro[deqg Srdats SoX ces dp-ordeg
$8¢°T SOx 614 q reuy SLT'T SOx (& BIIRUY S6%°1 SOx e 286£ Y2010
SRT'€S SOx 067 | SCEUWANZY || SGT'F9 SOx 97 o8Iy SG6°0 SOx L ['TedTy
SIEC SOx 8¢ A nesy S66°'T SOX €z JTeory SgT'0 SOX 61 q ey
SQT'¥ EIN 614 8'mesry SG6°E SOx ve Unesty S€6°'T SN 43 onenyy
S60°L SOx g LRG| S6T°0 SOK €2 ur[nesry 8960 SOX g7 [eory
S60T°0 SOx ege oery SG9T°0 SOX ar8 pnesy $65°0 SOx e o' [nedTy
SP7°0 SOx 3% res[y SGE0 Sox L€ 6GGT UOPY S6€°0 SOx L €0L1 UOpY
S8¥F°0 Sox 1)7% prnesy S€F°0 SoX oy peLT uospy SPH°0 SOX 6¢ 1691 uospy
S6£°GT ON z68 oxo"IopuL[ed || SFHGL ON 7106 x03°9[240 SPTH€C | ON | Goeve oxo"oures
SPT'T06 | ON | 616ST 9X9 0508 $60°G9 ON | GLOPT | X0 I[SURIMIXOL, || SEF'T¢ ON 896 oxo padr
SGT'8T ON GOOT | oxo'ededYuLl || SGL'EFG | ON | 008CE ox9"Nsa(IqIq SETyL ON 6258 9X9'1108
$,02eT | ON | ¥2€le oxoese SLT'61 ON 008 oxoese $LL°89 ON | 68G0T | oxo'pedojou
S9E'6T ON veel oX0"puId SQLTT ON 625 oxo°doo] S¢S ET ON 6¢SC | oxo umOpINYS
mﬁﬂ.m OZ Nm @N@.QMQEE wNN.ﬁm OZ moﬁﬂ 99X IASTO mﬂm.wN OZ Nmma @N@.ZOEGMSUEO
1500 sy 971§ ordurexy 1500 nsoy 971§ ordurexy 1500 sy 971§ ordurexy

109

4. CTL MODEL-CHECKING OF SELF-MODIFYING CODE

Example Size | Result cost Example Size | Result cost Example Size | Result cost
Netsky.a 45 Yes 19.12s Mydoom.c 155 Yes 4.14s MyDoom-N 16980 Yes 343.93s
Netsky.x 55 Yes 21.85s Netsky.y 68 Yes 29.06s Netsky.z 115 Yes 43.37s
Netsky.gen 5508 Yes 59.24s Netsky.p 6015 Yes 76.32s Netsky.m 6805 Yes 73.77s
Netsky.r 230 Yes 8.83s Netsky.k 6115 Yes 79.79s Netsky.e 6245 Yes 79.44s
Mydoom.y 26902 Yes 452.77s Mydoom.j 22355 Yes 211.93s klez-N 6281 Yes 63.07s
klez.c 30 Yes 2.79s Mydoom.v 5965 Yes 283.11s Netsky.b 45 Yes 29.51s
Repah.b 221 Yes 12.76s Gibe.b 5358 Yes 37.01s Magistr.b 4670 Yes 43.59s
Netsky.d 45 Yes 1.87s Ardurk.d 1913 Yes 12.08s klez.f 27 Yes 0.73s
Kelino.l 495 Yes 21.01s Kipis.t 20378 Yes 121.11s klez.d 31 Yes 0.95s
Kelino.g 470 Yes 22.08s Plage.b 395 Yes 1.96s Urbe.a 123 Yes 9.17s
klez.e 27 Yes 3.94s Magistr.b 4670 Yes 231.97s || Magistr.a.poly | 36989 Yes 469.63s
Mydoom.M 5965 Yes 75.19s MyDoom.54464 5935 Yes 45.78s Mydoom.e 138 Yes 46.53s
Mydoom.R 230 Yes 30.22s Mydoom.dlnpqi 235 Yes 1.99s Mydoom.o 235 Yes 2.01s
Sramota.avf 240 Yes 11.01s Mydoom 238 Yes 2.01s Mydoom.288 248 Yes 3.12s
Mydoom.ACQ | 19210 Yes 439.57s Mydoom.ba 19423 Yes 238.77s || Mydoom.ftde | 19495 Yes 339.29s
LdPinch.by 970 Yes 42.92s Generic.2026199 433 Yes 32.83s LdPinch.arr 1250 Yes 49.84s
Generic.12861 | 30183 Yes 188.94s || Generic.18017273 267 Yes 9.19s LdPinch.mg 5957 Yes 69.77s
LDPinch.400 1783 Yes 54.93s || PSW.LdPinch.plt | 1808 Yes 55.88s PSW.Pinch.1 1905 Yes 57.07s
Newapt.F 11785 Yes 211.24s Newapt.A 11715 Yes 205.79s Newapt.E 11797 Yes 252.49s
LdPinch.bb 8145 Yes 63.13s LdPinch.br 3645 Yes 33.52s LdPinch.hb 1645 Yes 21.08s
LdPinch.v 7235 Yes 51.69s LdPinch.fk 4906 Yes 47.11s LdPinch.awp 195 Yes 17.97s
LdPinch.aaz 4145 Yes 41.05s LdPinch.c0 8230 Yes 65.17s LdPinch.ee 6501 Yes 71.30s
Bagle.m 5111 Yes 39.92s Bagle.k 35 Yes 1.92s Bagle.t 3345 Yes 45.64s
Newapt.C 11730 Yes 924.92s Krynos.b 18370 Yes 893.45s Jeans.a 6490 Yes 188.36s
Atak.f 2005 Yes 11.35s Atak.g 2498 Yes 16.69s Atak.] 1914 Yes 10.37s
Bagle.ab 5690 Yes 89.42s Bagle.ef 995 Yes 54.11s Bagle.eg 380 Yes 25.49s
Predec.h 2650 Yes 58.34s Predec.i 2855 Yes 63.58s Predec.j 2835 Yes 62.37s
Predec.b 2830 Yes 61.77s Predec.c 2858 Yes 64.02s Predec.d 2826 Yes 61.11s
Predec.e 2850 Yes 67.97s Predec.f 2895 Yes 69.50s Predec.g 2829 Yes 66.59s
Haharin 355 Yes 13.52s Ditex.a 25 Yes 1.46s Oroch.5420 75 Yes 9.42s

Table 4.4: Experimental Results(part 3)

110

SMODIC: A Model Checker for
Self Modifying Code

In this chapter, we present SMODIC, a model checker for self-modifying binary
code that use self-modifying mov instructions. In SMODIC, such binary code is
modeled using Self Modifying Pushdown Systems (SM-PDS). SMODIC takes as
input either a self-modifying binary code or a self modifying pushdown system.
It can then perform reachability analysis and LTL/CTL model-checking for these
models. SMODIC first adapts the tool Jakstab [22] to get the Control Flow
Graph from the binary code. Then, it translates this CFG into a SM-PDS. It
then implements the algorithms presented in the previous chapters to perform
reachability analysis and LTL/CTL model-checking for this model.

We successfully used SMODIC to model-check more than 900 self-modifying
binary codes. In particular, we applied SMODIC for malware detection. In our
experiments, SMODIC was able to detect 895 malwares and to prove that 19
benign programs were benign. SMODIC was also able to detect several mal-
wares that well-known antiviruses such as Bit-Defender, Kinsoft, Avira, eScan,
Kaspersky, Avast, and Symantec failed to detect. SMODIC can be found in

https://lipn.univ-parisl3.fr/~xin/smodic/index.html.

111

https://lipn.univ-paris13.fr/~xin/smodic/index.html

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING
CODE

5.1 Architecture

The Architecture of SMODIC is shown in Figure. SMODIC takes as input
either a binary program or a SM-PDS. SMODIC can perform both reachability
analysis and LTL/CTL model checking.

SMODIC
A sequence of _| Reachability
Qs API functions | Component
input
LTL
- Model | SM-PD formula_ [~ LTL
Binary »| Jakstab Builder| 4 ~| Component
or CTL
@l‘\’ c cTL t
SM- omponen L——p Yes/No

PDS

Figure 5.1: Architecture of SMODIC

If the input of SMODIC is a binary program, it is passed to the component
Oracle. This component is based on the disassembler Jakstab [22]. It takes as
input a binary program, and outputs its corresponding assembly program, its
corresponding Control Flow Graph (CFG) equipped with the assembly instruc-
tion corresponding to each edge, together with informations about the called API
functions, and the different values of the registers and memory addresses at each
control point (state). All these outputs are fed to the component Model Builder
that will compute the corresponding SM-PDS.

The Reachability component takes as input a SM-PDS, and a sequence of
API functions, and applies the reachability algorithms of Chapter 2 to check
whether the SM-PDS has a run that calls these API functions in this order. For
example, if we consider the sequence f1, fs, f3, then Reachability component
checks whether the SM-PDS has a run that calls first f;, then f5, then fs.

The LTL component takes as input a SM-PDS and an LTL formula, and
applies the algorithms of Chapter 3 to check whether the SM-PDS satisfies the
LTL formula. Similarly, the CTL component takes as input a SM-PDS and
a CTL formula, and applies the algorithms of Chapter 4 to check whether the
SM-PDS satisfies the CTL formula.

112

5.2 Experiments

SMODIC

McAfee | Norman | BitDefender | Kinsoft | Avira | eScan | Kaspersky | Qihoo360 | Avast

Symantec

100%

27.6% 22.1% 33.1% 14.4% | 28.3% | 21.4% 56.2 % 35.9% 50.7%

77.9%

Table 5.1: SMODIC vs. Well-known Anti-viruses

5.2 Experiments

5.2.1 Analysing Self-modifying Binary Code

We successfully applied SMODIC to perform reachability analysis and LTL/CTL
model-checking for binary code and for Self-Modifying Pushdown systems. The
results are summarized in Tables 2.2 B.] and [4.1l SMODIC was also

able to detect 895 malwares and to prove that 19 benign programs are benign.

The experimental results are summarized in Tables [3.5] 3.6}, 3.7, 3.8 and
4.4

5.2.2 Comparison with Well-known Anti-viruses

We also compare our tool against well-known and widely used antiviruses. In
order to have a fair comparision, we need to consider new malwares, since the
anti-viruses know the signatures of all the known malwares. Thus, the challenge
for the anti-viruses is to detect new malwares. To this aim, we use the sophisti-
cated malware generator NGVCK available at VX Heavens [48] to generate new
malwares. Then we obfuscate these malwares with self-modifying code. Then,
we feed these malwares to SMODIC and to well-known antiviruses such as Bit-
Defender, Kinsoft, Avira, eScan, Kaspersky, Qihoo-360, Avast, and Symantec to
detect them. Our tool was able to detect all these programs as malicious, whereas
none of the well-known antiviruses was able to detect all these malwares. Table

reports the detection rates of our tool and the well-known anti-viruses.

5.3 Description of SMODIC

Let us show how to use SMODIC. The commands to launch the tool are as follows:
- SMODIC <optionl> < modelfile> < option2 > <formula>

Optionl1 specifies the input file of SMODIC:

113

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING
CODE

- M: the input is a SM-PDS model.

- B: the input is a binary program
Option2 specifies the model checking strategy:
- L: use the LTL model checking algorithm

- C: use the CTL model checking algorithm
- R1: perform the Reachability Analysis using pre*

- R2: perform the Reachability Analysis using post*
The model file can be either a binary program or a SM-PDS (.smpds file). The

output have three files: one for the Control Flow Graph, one for assembly codes,
and one for the generated SM-PDS. A SM-PDS consists of four parts: a finite set
of standard PDS transition rules, a finite set of self-modifying transition rules,
an initial phase (the initial set of transition rules) and an initial configuration

(initial control location equipped with the stack contents).

& cfg.dot
B cmd.asm

R model_smpds

Figure 5.2: The Output of SMODIC

0x4ad016la: oushl $0x4ad1f1b2
%fs:0, %seax
%gax

0x4ad01626: 0x10(%esp), %eax

0x4ad0162a: %ehp, 0x10(%esp)

0x4ad0l162e: 0x10(%esp), %ehp,
0x4ad01632: %eax, %esp

-8(%ehp), %eax
% —24(%ehp)

-4(%ebp), %eax

0x4ad01641: $oxFFFFrfff, —4(sehp)
0x4ad01648:

0x4ad0164b:

0x4ad0164e: L ea;

0x4ad01654: -

0x4ad0165a: may.l 0x4ad33b90, %egax ; from: @x4ad@3fef(MAY)

%ax, %eax
0x4ad04d48 ; targets: 0x4ad04d48(MAY),

0x4ad01667: $0x0 ; from: @x4ad01661(MAY), 0x4ad@4d75(MAY)
0x4ad01669: %eax ; targets: unresolved

0x4ad0166b: ret $0x4 ; targets: 0x4ad@3ff4(MAY) ; from:
0x4ad11d36 (MAY)

Figure 5.3: A Segment of Disassembly Codes

In order to show this, we will use the following command to check whether
the program cmd.exe can eventually call the API function GetModuleA or not.

For this case, we execute the following command:

114

5.3 Description of SMODIC

- SMODIC B malware/cmd.exe L. <>getmodulea

Figure [5.4] is the snapshot of the command to start SMODIC. In this com-
mand, “B” is Optionl specifying that the input is a binary program. “L” specifies
that the strategy of model checking is LTL. <> getmodulea is the LTL formula
F (call GetModuleA).

[X] B dist — -bash — 80x24
[Xin-MBP:dist yexin$./SMODIC B samples/cmd.exe <>getmodulea
SMODIC is working
samples/cmd.exeJakstab STARTS working
Running Jakstab in/Users/yexin/NetBeansProjects/SMODIC/dist
Analysis Manager Istance is generating and Jakstab is working

Analysis Manager is generating and Jakstab is working

ConfigurableProgram is loading and Jakstab is working

Figure 5.4: An Example to Run SMODIC

The output have three files: cfg.dot contains the control flow graph (Figures
5.5 and [5.6] are two segments of cfg.dot: the control locations corresponding to
the instructions are given in Figure [5.5 and the edges between control locations
are given in Figure , cmd.asm contains the assembly code equipped with
informations about the API functions (Figure |5.3|is a fragment of this file), and
model.smpds contains the SM-PDS (Figure is a segment of the SM-PDS
transition rules). This file contains in addition an initial configuration (the initial
control point with the stack contents and the initial set of transition rules). The
three files are shown in Fig.

"'0x4ad@50cc" [label="0x4ad050cc\nmovl 0x4ad34874, %ecx"l;
[label: npushl § b8"];
[label
"@x4ad@3fes" [label:
"0x4ad01637" [label
"0x4ade511le" [label
"0x4ad@51le" [label:

npushl "1;
"0x4ad@3fed\ncall 0x4adol6la"];
"0x4ad@1637\nmovl -8(%ebp), %eax"l;
"0x4ad@511e\npushl %eax"];
"0x4ade511e\npushl %eax"];

[label nmovl @x8(%ebp), %esi"l;

[label: norl sexffffffff, oxdad2fase"];

[label norl sexffffffff, oxd4ad2fa5e"];
""0x4ad@3fed" [label="0x4ad03fe4\ncall 0x4ad0l6la"];
"'0x4ad@514f" [label="0x4ad0514f\ncall 0x4ad03fdd"];
"0x4ade4d7e0" "'0x4ad@4d70\nmovl %eax, 0x4ad33b90"];

"0x4ad@510d" x4ad@510d\nleal -36(%ebp), %eax"];
"@x4ad@514f" x4ade514f\ncall @x4ade3fdd"];

"0x4ad01626" x4ad@1626\nmov1 @x10(%esp), %eax"];
"0x4ade3ff4" x4ad@3ffa\nmovl %ebx, -4(%ebp)"l;
"0x4ad19049" [1. x4ad19049\ncmpl $0xe, 0x84(%ecx)"];
"ox4ad@513e" x4ade513e\nmovl __initenv@msvcrt.dll, %ecx"];
"0x4ad19049" x4ad19049\ncmpl $0xe, Ox84(%ecx)"];
"'0x4ad01636" x4ad@1636\npushl %edi"];

[label=" nmovl %eax, Ox4ad2fa54"];
"'@x4ad01636" [label="0x4ad@1636\npushl %edi"];

[label=' ncmpl $0x4550, (%ecx)"];
"0x4ad04e8c" [label="0x4ad04e8c\nandl $0x0, (%esi)"l;

Figure 5.5: Control Locations with Instructions

5.3.1 Reachability Analysis in SMODIC

Let us show how to use SMODIC to perform reachability analysis on SMPDSs

115

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING

316 "0x4ad05080" -> "0x4ad1903e" [color="#000000", label="T"];
317 "0x4ad@512c" -> "0x4ad05131" [color="#000000"];
318 "0x4ad05184" —> "0x4ad05189" [color="#000000"];
319 "0x4ado4ds2" "0x4ad04d57" [color="#000000"];
320 "0x4ad04e93" -> "0x4ad04e98" [color="#000000"];
321 "0x4ad05071" —> "0x4ad05077" [color="#000000", label="F"];
322 "0x4ado16la") "'#000000"] ;
323 0 " " [color="#000000" , label="F"];
324 '#000000"] ;
325 "0xd4ad11ld2b" " [color="#000000"];
326 "0x4ad04e87" " [color="#000000"] ;

327 "0x4ad0514f" "@x4ad03fdd"
328 "0x4ad@505b"
329 "@x4ad050a9"

330 "0x4ado3ffa"

"0x4ad05060"
""0x4ad050aa"
"0x4ad03ffb"

331 "0x4ad04d5 "0x4ad04d62"

332 "0x4ad05129" "@x4ad@512c" [color="#000000"];
333 "0x4ad19068" "0xff0002e0" [color="#000000"];
334 "0x4ad01626" "0x4ad0162a" [color="#000000"];
335 "oxff000670" —> "0x4ade4d5d" [color="#000000"];
336 "0x4ade3feb" -> "0x4ade3fee" [color="#000000"];
337 "0x4ad01641" -> "0x4ad01648" [color="#000000"];
338 "0xff000610" —> "0x4ad11d36" [color="#000000"];
339 "0x4ad0164b" "0x4ad0164e" [color="#000000"];
340 "0x4ad01667" "'0x4ad01669" [color="#000000"];
341 "0x4ado3fe9" —> "0x4ade3feb" [color="#000000"];

342 "0x4ad0l64e" -> "0x4ad01654" [color="#000000"];

Figure 5.6: A Segment of Edges between Locations

and self-modifying code. To start the reachability analysis, we need to specify
the options. Let us consider Optionl B, and Option2 R2(or R1). We also need to
specify the sequence of API functions. For example, to perform the reachability
analysis on the sequence of API functions “Call GetModuleA”, “Call CopyFile”
, “call SendFile”, we put the names of the functions in lowercase and use the
symbol “” to separate the names. To use the post* approach to check whether
the above sequence of API functions can be reached or not, we use the following

command (see Fig. [5.8]):
- ./SMODIC B malware/cmd.exe R2 getmodulea;copyfile;sendfile

The result is shown in Fig. [5.9]

We also can run reachability analysis on SM-PDSs. Then, we need to specify
the options. We make Optionl M, and Option2 R2(or R1). We also need to spec-
ify the target configuration. For example, we can execute reachability analysis
using the post* approach to check if configuration (pg,ro) can be reached or not

by the following command:
- ./SMODIC M input.smpds R2 p0:r0

The output of SMODIC is the automaton representing the set of reachable con-
figurations. SMODIC also tells whether the target configuration is reached or

not.

5.3.2 LTL and CTL in SMODIC

First, we will introduce the syntax of LTL/CTL used in SMODIC. To be able

116

5.3 Description of SMODIC

h
<p3,r22><p92, $0x4ad1f1b2r22>
<p3,r26><p92, $0x4ad1f1b2r26>
1<p3, r25><p92, $0x4adifib2r25>
1<p3,r30><p92,$0x4ad1fib2r30>
<p3,rll><p92, $0x4ad1fib2ril>
<p3, r5><p92,$0x4ad1lflb2r5>
1<p3, r40><p92, $0x4ad1flb2r40>
i1<p3, r35><p92, $0x4ad1f1lb2r35>
1<p3,rl8><p92,$0x4adlflb2ris8>
1<p3, ri><p92, $0x4ad1iflb2ri>
1<p3, r17><p92,$0x4adlflb2ri17>
<p3,r15><p92, $0x4ad1fib2ris>
<p3, r3><p92, $0x4ad1lflb2r3>

i<p3, r31><p92, $0x4ad1f1b2r31>
1<p3, r2><p92, $0x4ad1flb2r2>
<p3,ré><p92,$0x4adiflb2ro>
<p3, r34><p92, $0x4ad1f1b2r34>
1<p3, r19><p92, $0x4ad1f1b2r19>
<p3,r39><p92, $0x4ad1f1b2r39>
<p3,r20><p92, $0x4ad1flb2r20>
1<p37,r38><p38,r38>
1<p37,rl6><p38,ri6>
<p3,ri13><p92, $0x4ad1f1b2ri3>
<pl47,rl4><pl4e,rid>

><p92, $0x4ad1flb2r28>

1<p3, r36><p92, $0x4ad1flb2r36>
1<pl47,r27><p140,r27>

t<p3, r14><p92, $0x4ad1flb2rid>
<pl47,r7><pl40,r7>

<p3, r4><p92, $0x4ad1flb2r4>
1<pl47,r34><pl40,r34>
1<p3,r27><p92,$0x4ad1f1b2r27>
<pl47,r8><p140,r8>
<p3,r7><p92,$0x4adlflb2r7>
1<pl47,r23><p140,r23>

<p3, r34><p92, $0x4ad1f1b2r34>

Figure 5.7: A Segment of SM-PDS Transition Rules

(N J W dist — -bash — 80x24

Xin-MBP:dist yexin$./SMODIC B samples/cmd.exe R2 getmodulea;copyfile;sendfile
SMODIC is working

samples/cmd.exeJakstab STARTS working

Running Jakstab in/Users/yexin/NetBeansProjects/SMODIC/dist

Analysis Manager Istance is generating and Jakstab is working

Analysis Manager is generating and Jakstab is working

ConfigurableProgram is loading and Jakstab is working

/Users/yexin/NetBeansProjects/SMODIC/dist/org/jakstab/analysis

Figure 5.8: An Example to Start SMODIC for Reachability Analysis

to use SMODIC, you need to be familiar with the syntax of the logics LTL and
CTL. The implementation of LTL and CTL operators in SMODIC is as follows:

For LTL:

- Propositional Symbols: true, false and any lowercase string.

- Boolean operators: !(negation), -> (implication), <->(equivalence), &&
(and), || (or).

- Temporal operators: [|p(p always holds), <> p (eventually p holds), pUq (
p holds until q holds), and Xp (p holds next time).

117

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING
CODE

P00 B dist — -bash — 80x24

The possible values on this location is Stack+-44
The possible values on this location is Stack+-44
The possible values on this location is Stack+-44
The possible values on this location is Stack+-44
The possible values on this location is Stack+-40
The possible values on this location is Stack+-40
The possible values on this location is Stack+-4@
The possible values on this location is Stack+-48
The possible values on this location is Stack+-48
The possible values on this location is Stack+-48
The possible values on this location is Stack+-48
The possible values on this location is Stack+-48
The possible values on this location is Stack+-52
The possible values on this location is Stack+-52
The possible values on this location is Stack+-52
The possible values on this location is Stack+-52
The set of Gamma is computed.
org.jakstab.ProgramGraphWriter@71bbf57eThere are 03996rules
SM-PDS is generated from the binary program.

The property doesn't hold since the API functions are not all reached.
Reachability Analysis has been finished...

Figure 5.9: The Result of the Example for Reachability Analysis

For CTL:
- Propositional Symbols: tt(true),ff(false) and any lowercase string.

- Boolean operators: !(negation), -> (implication), <->(equivalence), &&
(and), || (or).

- Path quantifiers: A (for all paths) and E (there exists a path).

- Temporal operators: Xp (p holds next time), pRq (p holds until q does’t
hold), pUq (p holds until q holds).

5.4 Applying SMODIC for Malware Detection

We show how to apply LTL/CTL model checking to malware detection. Let us
take a spy worm as example. Such a worm can record data and send it using the
Socket API functions. For example, Keylogger is a spy worm that can record the
keyboard states by calling the API functions GetAsyKeyState and GetKeyState
and send this to the specific server by calling the socket function sendto. This
behavior can be specified by the following LTL formula:

Gsw = F((call GetAsyncKeyState V call GetRawlInputData) A F(call sendto V
call send)).

To check whether the program cmd.exe satisfies this formula or not, first, we
need to rewrite this formula to the form supported by our tool SMODIC. Because
all the propositions are lowercase strings, we rewrite API function calls (like call

GetAsyncKeyState) by removing the word ”"call” and changing the name of the

118

5.4 Applying SMODIC for Malware Detection

function in lowercase string. The operators are in spin syntax. Thus, formula

s 18 TEewTitten as:

<> ((getasynckeystate||getrawinputdata)&& <> (sendto||send))

M dist — -bash — 80x24

[Xin-MBP:dist yexin$./SMODIC B samples/cmd.exe L <>getasynckeystate||getrawinput
data&&<>sendto| [send

SMODIC is working

samples/cmd.exeJakstab STARTS working

Running Jakstab in/Users/yexin/NetBeansProjects/SMODIC/dist
Analysis Manager Istance is generating and Jakstab is working

Figure 5.10: Command for LTL Model Checking

So, we can check whether the program cmd.exe satisfies this formula or not
by using the following command (shown in Figure :

./SMODIC B malware/cmd.exe L <> ((getasynckeystate||
getrawinputdata)&& <> (sendto||send)).

The possible values on this location is Stack+-52

There are 83996rules

SM-PDS is generated from the binary program.
/Users/yexin/NetBeansProjects/SMODIC/distWriting assembly CFG to cfg.dot
No module for address ©x@0000409. Cannot disassemble instruction!

The propositiongetprocaddressis true at locations:[Ljava.lang.Object;@6b9651f3

There is no accepting run
The property doesn't hold
Xin-MBP:dist yexin$ []

Figure 5.11: Result of LTL Model Checking
The result is shown in Figure |5.11] The result of the computation is that

there is no accepting run. The output of the tool is No, i.e. cmd.exe is not a

spyware.

119

5. SMODIC: A MODEL CHECKER FOR SELF MODIFYING
CODE

120

6

Conclusion

6.1 Summary

In this thesis, we propose a new formal model for self-modifying code called Self
Modifying Pushdown System(SM-PDS). It is an extension of standard Pushdown
Systems (PDS) with self-modifying transition rules that modify the set of the rules
of the PDS during the execution. This allows to represent the self-modifying
instructions of the program. We also proposed several corresponding model-
checking algorithms for this SM-PDS model and implemented them in a tool:
SMODIC to perform the analysis of self-modifying code and malware detection.

Modeling Self-modifying Code: In Chapter 2, we introduce our new model:
SM-PDS. This new model allows us to present the self-modifying code by self-
modifying transition rules. A SM-PDS is a Pushdown System that can dynam-
ically modify its set of rules during the execution time: rules that are not self-
modifying rules are standard PDS transition rules, while self-modifying rules
modify the current set of transition rules. We show how SM-PDSs can be used
to naturally represent self-modifying programs. It turns out that SM-PDSs are
equivalent to standard PDSs. We show how to translate a SM-PDS to a standard
PDS. This translation is exponential. Thus, performing the model-checking anal-
ysis on the equivalent PDS is not efficient. We propose then in this thesis direct
algorithms to perform reachability and LTL/CTL model checking on SM-PDSs.

Rechability Analysis of Self-Modifying Code: In Chapter 2, we propose

direct algorithms to compute the forward (post*) and backward (pre*) reachabil-

121

6. CONCLUSION

ity sets for SM-PDSs. Our algorithms are based on representing regular sets of
configurations of SM-PDSs using finite state automata, and applying saturation

procedures on these automata.

LTL Model Checking of Self-modifying Code: In Chapter 3, we propose
a direct LTL model checking algorithm for SM-PDSs. Our algorithm is based
on reducing the LTL model checking problem to the emptiness problem of Self
Modifying Biichi Pushdown Systems (SM-BPDSs). Intuitively, we obtain this
SM-BPDS by taking the product of the SM-PDS with a Biichi automaton accept-
ing an LTL formula ¢. Then, we solve the emptiness problem of an SM-BPDS
by computing its repeating heads. This computation is based on computing la-
belled pre* configurations by applying a saturation procedure on labelled finite

automadta.

CTL Model Checking of Self-modifying Code: In Chapter 4, we consider
the CTL model-checking problem for SM-PDSs. This allows to detect CTL-
like malicious behaviors on self-modifying code. We reduce this problem to the
emptiness checking of Self-modifying Alternating Biichi Pushdown Systems (SM-
ABPDS), and we propose an algorithm that computes a finite automaton that
characterizes the set of configurations accepted by the SM-ABPDS.

SMODIC: A Model Checker for Self-modifying Code: we implemented
our techniques in a tool for self-modifying code analysis called SMODIC. We
successfully used SMODIC to model-check more than 900 self-modifying binary
codes. In particular, we applied SMODIC for malware detection, since malwares
usually use self-modifying instructions, and since malicious behaviors can be de-
scribed by LTL or CTL formulas. In our experiments, SMODIC was able to de-
tect 895 malwares and to prove that 19 benign programs were benign. SMODIC
was also able to detect several malwares that well-known antiviruses such as
Bit-Defender, Kinsoft, Avira, eScan, Kaspersky, Avast, and Symantec failed to
detect. SMODIC can be found in
https://lipn.univ-paris13.fr/~xin/smodic/index.html.

6.2 Future Work

The results presented in this thesis can be extended in several ways :

122

https://lipn.univ-paris13.fr/~xin/smodic/index.html

6.2 Future Work

Precise Model for Self-modifying Code: As described in Section [2.3] during
the construction of the SM-PDS, we need to assume that instructions 7; and s
have the same number of operands where #; is replaced by i because of some self-
modifying instructions. If instructions ¢; and 75 do not have the same number
of operands, then the corresponding self-modifying instruction, in addition to
replacing i, by is, changes several other instructions that follow 7;. As mentioned
in Section [2.3], our translation from a self-modifying binary program to a SM-PDS
can only handle the case where 7; and i, have the same number of operands. In
the future, we plan to improve our SM-PDS model so that it can handle the case

where 7; and i5 do not have the same number of operands.

Precise Control Flow Reconstruction: In our implementation, the control
flow reconstruction is not very precise. This step is based on the tool Jakstab
[22] as disassembler. But Jakstab will sometimes ran into some situations where
the value set analysis cannot be processed and the reconstruction of the control
flow will stop. This holds, in many cases such as: (1) some values of the registers
and possible values of memory addresses are unknown and are represented by any
possible values (the T value); or (2) the destination of some indirect jumps cannot
be computed. In the future, we plan to come up with new approaches to construct
more precise control flow graphs from binary code to make the procedure of

disassembling more precise.

Precise Malicious Behavior Description: In our experiments, we use stan-
dard LTL/CTL formulas to describe malicious behaviors. It was shown in [13] [14]
that SCTPL and SLTPL are more precise and concise to represent malicious be-
haviors. SCTPL and SLTPL are logics that extend LTL and CTL with variables,
quantifiers and predicates over the stack. In the future, we plan to propose
SCTPL/SLTPL model checking algorithms for SM-PDS. This would allow to
have more precise and concise algorithms for self-modifying code analysis and

malware detection.

123

6. CONCLUSION

124

References

1]

2]

A Bertrand, M.Matias, and D.Koen. A model for self-modifying code. In
International Workshop on Information Hiding, 2006.

Gogul Balakrishnan, Radu Gruian, Thomas Reps, and Tim Teitelbaum.
Codesurfer /x86-a platform for analyzing x86 executables®*. In Compiler
Construction: 14th International Conference, CC 2005, Held as Part of the

Joint European Conferences on Theory and Practice of Software, ETAPS

2005, Edinburgh, UK, April 4-8, 2005. Proceedings, volume 3443, page 250.

Springer, 2005.

Sébastien Bardin, Philippe Herrmann, Jérome Leroux, Olivier Ly, Renaud
Tabary, and Aymeric Vincent. The bincoa framework for binary code anal-
ysis. In International Conference on Computer Aided Verification, pages
165-170. Springer, 2011.

Jean Bergeron, Mourad Debbabi, Jules Desharnais, Mourad M Erhioui, Yvan
Lavoie, Nadia Tawbi, et al. Static detection of malicious code in executable
programs. Int. J. of Req. Eng, 2001(184-189):79, 2001.

Guillaume Bonfante, Jose Fernandez, Jean-Yves Marion, Benjamin Rouxel,
Fabrice Sabatier, and Aurélien Thierry. Codisasm: medium scale con-
catic disassembly of self-modifying binaries with overlapping instructions.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 745-756. ACM, 2015.

A. Bouajjani, J. Esparza, and O. Maler. Reachability Analysis of Pushdown

Automata: Application to Model Checking. In International Conference on

Concurrency Theory, 1997.

125

REFERENCES

[7]

8]

[10]

[11]

[12]

[15]

Laura Bozzelli. Complexity results on branching-time pushdown model
checking. Theoretical computer science, 379(1-2):286-297, 2007.

David Brumley, Cody Hartwig, Min Gyung Kang, Zhenkai Liang, James
Newsome, Pongsin Poosankam, Dawn Song, and Heng Yin. Bitscope: Auto-
matically dissecting malicious binaries. Technical report, Technical Report
CS-07-133, School of Computer Science, Carnegie Mellon, 2007.

David Brumley, Ivan Jager, Thanassis Avgerinos, and Edward J Schwartz.
Bap: A binary analysis platform. In International Conference on Computer
Aided Verification, pages 463-469. Springer, 2011.

Danilo Bruschi, Lorenzo Martignoni, and Mattia Monga. Detecting self-
mutating malware using control-flow graph matching. In International

Conference on Detection of Intrusions and Malware, and Vulnerability

Assessment, pages 129-143. Springer, 2006.

Robin David, Sébastien Bardin, Thanh Dinh Ta, Laurent Mounier, Jos-
selin Feist, Marie-Laure Potet, and Jean-Yves Marion. Binsec/se: A

dynamic symbolic execution toolkit for binary-level analysis. In IEEE

23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER), volume 1, pages 653-656. IEEE, 2016.

Javier Esparza, Antonin Kucera, and Stefan Schwoon. Model-checking 1t1

with regular valuations for pushdown systems. In International Symposium

on Theoretical Aspects of Computer Software, pages 316-339. Springer,

2001.

F.Song and T.Touili. Efficient malware detection using model-checking. In

International Symposium on Formal Methods, 2012.

F.Song and T.Touili. Ltl model-checking for malware detection. In

International Conference on Tools and Algorithms for the Construction and

Analysis of Systems, 2013.

G.Balakrishnan, T.W. Reps, N.Kidd, A.Lal, J.Lim, et al. Model checking x86
executables with codesurfer/x86 and WPDS++. In International Conference
on Computer Aided Verification, 2005.

126

REFERENCES

[16]

[17]

[19]

[20]

[21]

[22]

23]

[26]

G.Bonfante, J.Marion, and D.Reynaud-Plantey. A computability perspective
on self-modifying programs. In 2009 Seventh IEEE International Conference

on Software Engineering and Formal Methods, 2009.

Nguyen Minh Hai, O Mizuhito, and Quan Thanh Tho. Pushdown model
generation of malware. Technical report, Technical report, Japan Advanced

Institute of Science and Technology, Japan, 2014.

H.Cai, Z.Shao, and A.Vaynberg. Certified self-modifying code. ACM
SIGPLAN Notices, 42(6), 2007.

J.Bergeron|, M.Debbabi, et al. Static detection of malicious code in exe-
cutable programs. Int. J. of Req. Eng, 2001(184-189), 2001.

J.Esparza, D.Hansel, P.Rossmanith, and S.Schwoon. Efficient algorithms for
model checking pushdown systems. In International Conference on Computer
Aided Verification, 2000.

J.Kinder, S.Katzenbeisser, C.Schallhart, and H.Veith. Detecting malicious

code by model checking. In International Conference on Detection of

Intrusions and Malware, and Vulnerability Assessment, 2005.

H.Veith J.Kinder. Jakstab: A static analysis platform for binaries. In

International Conference on Computer Aided Verification, 2008.

K.Coogan, S.Debray, T.Kaochar, and G.Townsend. Automatic static un-

packing of malware binaries. In 16th Working Conference on Reverse

Engineering, 2009.

K.Dam and T.Touili. Malware detection based on graph classification. In

International Conference on Information Systems Security and Privacy, 2017.

K.Dam and T.Touili. Learning malware using generalized graph kernels. In

Proceedings of the 13th International Conference on Availability, Reliability

and Security, 2018.

K.Dam and T.Touili. Precise extraction of malicious behaviors. In IEEE

42nd Annual Computer Software and Applications Conference, 2018.

127

REFERENCES

[27]

[33]

[34]

[35]

[36]

[38]

K.Gyung et al. Renovo: A hidden code extractor for packed executables. In
Proceedings of the 2007 ACM workshop on Recurring malcode, 2007.

K.Roundy and B.Miller. Hybrid analysis and control of malware. In

International Workshop on Recent Advances in Intrusion Detectio, 2010.

M.Christodorescu, S.Jha, S.Seshia, D.Song, and R.Bryant. Semantics-aware
malware detection. In Security and Privacy, 2005 IEEE Symposium on.

M.Vardi and P.Wolper. Reasoning about infinite computations. Inf.
Comput., 115(1), 1994.

P.Gastin and D.Oddoux. Fast 1tl to blchi automata translation. In

International Conference on Computer Aided Verification, 2001.

P.Royal, M.Halpin, et al. Polyunpack: Automating the hidden-code ex-
traction of unpack-executing malware. In 22nd Annual Computer Security
Applications Conference (ACSAC’06), 2006.

P.Singh and A.Lakhotia. Static verification of worm and virus behavior

in binary executables using model checking. In IEEE Systems, Man and

Cybernetics SocietyInformation Assurance Workshop, 2003.

S.Blazy, V.Laporte, and D.Pichardie. Verified abstract interpretation tech-
niques for disassembling low-level self-modifying code. Journal of Automated
Reasoning, 56(3), 2016.

S.Cutler. malshare. https://malshare.com.

S.Debray, K.Coogan, and G.Townsend. On the semantics of self-unpacking

malware code. Tech. rep. University of Arizona, Computer Science, 2008.

Axel Simon and Julian Kranz. The gdsl toolkit: Generating frontends for
the analysis of machine code. In Proceedings of ACM SIGPLAN on Program
Protection and Reverse Engineering Workshop 2014, page 7. ACM, 2014.

Dawn Song, David Brumley, Heng Yin, Juan Caballero, Ivan Jager,

Min Gyung Kang, Zhenkai Liang, James Newsome, Pongsin Poosankam,

128

https://malshare.com

REFERENCES

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

and Prateek Saxena. Bitblaze: A new approach to computer security via bi-

nary analysis. In International Conference on Information Systems Security,

pages 1-25. Springer, 2008.

Fu Song and Tayssir Touili. Efficient CTL model-checking for pushdown
systems. In CONCUR 2011 - Concurrency Theory - 22nd International
Conference, CONCUR 2011, Aachen, Germany, September 6-9, 2011.
Proceedings, pages 434-449, 2011.

Fu Song and Tayssir Touili. Pumoc: a ctl model-checker for sequential pro-
grams. In 2012 Proceedings of the 27th IEEE/ACM International Conference
on Automated Software Engineering, pages 346-349, 2012.

Fu Song and Tayssir Touili. Efficient ctl model-checking for pushdown sys-
tems. Theoretical Computer Science, 549:127-145, 2014.

S.Schwoon. Model-checking pushdown systems. PhD thesis, Technische Uni-
versitat Miinchen, Universitatsbibliothek, 2002.

EnSilo Research Team. Self-modifying code unpacking tool using dynamorio.
https://github.com/BreakingMalware/Selfiel

Aditya Thakur, Junghee Lim, Akash Lal, Amanda Burton, Evan Driscoll,
Matt Elder, Tycho Andersen, and Thomas Reps. Directed proof genera-
tion for machine code. In International Conference on Computer Aided
Verification, pages 288-305. Springer, 2010.

Unpacker Tool. Automated unpacking: A behaviour based approach. https:

//github.com/malwaremusings/unpacker.

T.Touili and X.Ye. Reachability analysis of self modifying code. In 22nd

International Conference on Engineering of Complex Computer Systems

(ICECCS), 2017.

T.Touili and X.Ye. Ltl model checking for self modifying code. In 24th

International Conference on Engineering of Complex Computer Systems

(ICECCS), 2019.

V.Heaven. V.heavens. http://vxer.org/lib/.

129

https://github.com/BreakingMalware/Selfie
https://github.com/malwaremusings/unpacker
https://github.com/malwaremusings/unpacker
http://vxer.org/lib/

REFERENCES

[49] VirusShare. vxshare. https://virusshare.com.

130

https://virusshare.com

	1 Introduction
	1.1 Reachability Analysis of Self Modifying Code
	1.2 LTL Model Checking of Self Modifying Code
	1.3 CTL Model Checking of Self Modifying Code
	1.4 SMODIC: A Model Checker for Self Modifying Code
	1.5 Related Works
	1.6 Thesis Organization

	2 Reachability Analysis of Self Modifying Code
	2.1 An Example of A Self-modifying Code
	2.2 Self Modifying Pushdown Systems
	2.2.1 Definition
	2.2.2 From SM-PDSs to PDSs
	2.2.3 From SM-PDSs to Symbolic PDSs

	2.3 Modeling Self-modifying Code with SM-PDSs
	2.3.1 Self-modifying Instructions
	2.3.2 From Self-modifying Code to SM-PDS

	2.4 Representing Infinite Sets of Configurations of a SM-PDS
	2.5 Efficient Computation of pre* images
	2.5.1 Proof of Theorem 2.5.1

	2.6 Efficient Computation of post* Images
	2.6.1 Proof of Theorem 2.6.1

	2.7 Experiments
	2.7.1 Our Algorithms vs. Standard pre* and post* Algorithms of PDSs
	2.7.2 Malware Detection

	3 LTL Model-Checking of Self-modifying Code
	3.1 LTL Model-Checking of SM-PDSs
	3.1.1 The linear-time temporal logic LTL
	3.1.2 Self Modifying Büchi Pushdown Systems
	3.1.3 From LTL Model-Checking of SM-PDSs to the emptiness problem of SM-BPDSs

	3.2 The Emptiness Problem of SM-BPDSs
	3.2.1 The Head Reachability Graph G
	3.2.2 Labelled configurations and labelled BP-automata
	3.2.3 Computing pre*=(to.("426830A p',"526930B ,')=)to.
	3.2.4 Computing the Head Reachability Graph G

	3.3 Experiments
	3.3.1 Our approach vs. standard LTL for PDSs
	3.3.2 Malicious Behavior Detection on Self-Modifying Code
	3.3.2.1 Specifying Malicious Behaviors using LTL.
	3.3.2.2 Applying our tool for malware detection.

	4 CTL Model-Checking of Self-modifying Code
	4.1 CTL Model-Checking of SM-PDSs
	4.1.1 The Computation Tree Logic CTL
	4.1.2 Self-modifying Alternating Büchi Pushdown Systems
	4.1.3 From CTL Model-Checking of SM-PDSs to the emptiness problem of SM-ABPDSs

	4.2 Computing the language of a SM-ABPDS
	4.2.1 Characterizing L(BP)
	4.2.2 Computing YBP

	4.3 Experiments
	4.3.1 Our algorithm vs. standard CTL on PDSs
	4.3.2 Malicious Behavior Detection on Self-Modifying Code
	4.3.2.1 Specifying malicious behaviors using CTL.
	4.3.2.2 Applying our tool for malware detection.

	5 SMODIC: A Model Checker for Self Modifying Code
	5.1 Architecture
	5.2 Experiments
	5.2.1 Analysing Self-modifying Binary Code
	5.2.2 Comparison with Well-known Anti-viruses

	5.3 Description of SMODIC
	5.3.1 Reachability Analysis in SMODIC
	5.3.2 LTL and CTL in SMODIC

	5.4 Applying SMODIC for Malware Detection

	6 Conclusion
	6.1 Summary
	6.2 Future Work

	References

