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Titre : Tenseurs aléatoires et modele de Sachdev-Ye-Kitaev

Résumé : Dans cette these nous traitons de différents apects des tenseurs aléatoires.
Dans la premiere partie de la these, nous étudions la formulation des tenseurs aléatoires
en termes de théorie quantique des champs nommée théorie de champs tensoriels (TFT).
En particulier nous déterminons les équations de Schwinger-Dyson pour une TFT de
tenseurs de rang arbitraire, munie d'un terme d’intéraction quartique melonique U(N)-
invariant. Les fonctions de corrélations sont classifiées par des graphes de bords et nous
utilisons l'identité de Ward-Takashi pour déterminer le systeme complet d’équations de
Schwinger-Dyson, exactes et analytiques, vérifiées par les fonctions de corrélations avec
un graphe de bord connexe.

Nous analysons ensuite la limite de grand N des équations de Schwinger-Dyson a rang
3 et trouvons les facteurs appropriés en puissance de N des différents termes de ’action.
Cela nous permet de résoudre les équations de Schwinger-Dyson pour la fonction a 2-
points d'une TFT avec seulement une intéraction quartique melonique, dont la solution
est basée sur la fonction W de Lambert, en utilisant une expansion perturbative et la
resommation de Lagrange-Biirmann. Les fonctions de corrélation a plus haut nombre de
points s’obtiennent récursivement.

Dans la deuxieme partie de la these, nous nous intéressons au modele de Sachdev-Ye-
Kitaev (SYK) qui est tres similaire aux modeles de tenseurs. Il s’agit d’un modele composé
de N fermions qui intéragissent ¢ a la fois et dont le couplage est un tenseur moyenné
selon une distribution Gaussienne. Nous étudions les effets du moyennage des couplages
aléatoires selon une distribution non-Gaussienne dans une version complexe du modele
SYK. En utilisant une équation de type Polchinski et I'universalité de tenseurs aléatoires
Gaussiens, nous montrons que le moyennage selon une distribution non-Gaussienne cor-
respond a l'ordre dominant en N a un moyennage Gaussien avec une variance modifiée.
Nous déterminons ensuite la forme de I'action effective a tout ordre et réalisons un calcul
explicite de la modification de la variance dans le cas d'une perturbation quartique.

Dans la troisieme partie de la these, nous étudions une application des tenseurs
aléatoires a 1’étude des systemes non-linéaires résonants. Nous nous focalisons sur un
modele typique, similaire au modele SYK bosonique, dont le couplage tensoriel entre les
modes est moyenné selon une distribution Gaussienne, ainsi que les conditions initiales.
Dans la limite ou la configuration initiale possede un grand nombre de modes excités,
nous calculons la variance de normes de Sobolev qui caractérisent la représentativité du
modele moyenné pour cette classe de systemes résonants.

Mots-clés : Tenseurs aléatoires, non-perturbatif, modele SYK, systemes résonants.

Title : Random tensors and the Sachdev-Ye-Kitaev model

Abstrac : This thesis treats different aspects of random tensors. In the first part of the
thesis, we study the formulation of random tensors as a quantum field theory called tensor
field theory (TFT). In particular we derive the Schwinger-Dyson equations for a tensor
field theory with an U(NV)-invariant melonic quartic interactions, at any tensor rank. The
correlation functions are classified by boundary graphs and we use the Ward-Takahashi
identity to derive the complete tower of exact, analytic Schwinger-Dyson equations for
correlation functions with connected boundary graph.

We then analyse the large N limit of the Schwinger-Dyson equations for rank 3 tensors.



We find the appropriate scalings in powers of N for the various terms present in the action.
This enable us to solve the closed Schwinger-Dyson equation for the 2-point function of a
TFEFT with only one quartic melonic interaction, in terms of Lambert’s W-function, using
a perturbative expansion and Lagrange-Biirmann resummation. Higher-point functions
are then obtained recursively.

In the second part of the thesis, we study the Sachdev-Ye-Kitaev (SYK) model which
is closely related to tensor models. The SYK model is a quantum mechanical model of
N fermions who interact ¢ at a time and whose coupling constant is a tensor average
over a Gaussian distribution. We study the effect of non-Gaussian average over the
random couplings in a complex version of the SYK model. Using a Polchinski-like equation
and random tensor Gaussian universality, we show that the effect of this non-Gaussian
averaging leads to a modification of the variance of the Gaussian distribution of couplings
at leading order in N. We then derive the form of the effective action to all orders and
perform an explicit computation of the modification of the variance in the case of a quartic
perturbation.

In the third part of the thesis, we analyse an application of random tensors to non-
linear resonant system. Focusing on a typical model similar to the SYK model but with
bosons instead of fermions, we perform a Gaussian averaging both for the tensor coupling
between modes and for the initial conditions. In the limit when the initial configuration
has many modes excited, we compute the variance of the Sobolev norms to characterise
how representative the averaged model is of this class of resonant systems.

Keywords : Random tensors, non-perturbative, SYK model, resonant systems.

Zusammenfassung : Die Doktorarbeit behandelt verschiedene Aspekte von Zufall-
stensoren. Wir studieren zunachst ihre quantenfeldtheoretische Formulierung, die Ten-
sorfeldtheorie (TFT) genannt wird. Wir leiten Schwinger-Dyson-Gleichungen fiir eine
Tensorfeldtheorie mit U (N )-invarianter melonischer quartischer Wechselwirkung her, fir
beliebigen Rang der Tensoren. Die Korrelationsfunktionen werden durch Randgraphen
klassifiziert. Wir setzen die Ward-Takahashi-Identitat ein, um den vollstandigen Turm ex-
akter analytischer Schwinger-Dyson-Gleichungen fiir Korrelationsfunktionen mit zusam-
menhangendem Randgraphen zu gewinnen.

Anschlieend analysieren wir fiir Rang-3-Tensoren das Grenzverhalten der Schwinger-
Dyson-Gleichungen fiir groles N. Wir bestimmen geeignete Exponenten von N in den
Vorfaktoren der Wechselwirkungsterme. Dadurch konnen wir die geschlossene Schwinger-
Dyson-Gleichung fiir die 2-Punktfunktion einer Tensorfeldtheorie mit nur einer der mel-
onischen quartischen Wechselwirkung, im Limes grofler N, exakt losen. Wir verwen-
den Storungstheorie und Lagrange-Biirmann-Resummierung, um das Ergebnis durch die
Lambertsche W-Funktion auszudriicken. Hohere Korrelationsfunktionen werden rekursiv
erhalten.

Das Sachdev-Ye-Kitaev-Modell (SYK-Modell) steht in enger Beziehung zu Tensormod-
ellen. Es ist ein Modell fiir N Fermionen, von denen jeweils ¢ miteinander wechselwirken.
Die entsprechenden tensoriellen Kopplungen werden gemaf3 einer Gauf3-Verteilung gemit-
telt. Wir studieren in einer komplexifizierten Variante des SYK-Modells den Einfluss
einer nicht-Gaussschen Mittelung tiber die zufélligen Kopplungen. Unter Verwendung
einer auf Polchinski zuriickgehenden Methode und der Universalitat des Gauf-Prozesses
zeigen wir, dass, in fiilhrender N-Ordnung, die nicht-Gaufische Mittelung die Varianz der



Verteilung der Kopplungen modifiziert. Wir leiten die Form der effektiven Wirkung zu
allen Ordnungen her. Fiir eine quartische Storung berechnen wir explizit die Modifikation
der Varianz.

Schliefllich studieren wir eine Anwendung von Modellen von Zufallstensoren auf nicht-
lineare Resonanzsysteme. Wir betrachten ein Modell ahnlich zum SYK-Modell, jedoch
mit Bosonen. Fiir dieses fiihren wir die Gauf3ische Mittelung sowohl iiber die Tensorkop-
plung zwischen den Moden als auch tiber die Anfangswerte durch. Im Grenzfall, in dem die
Anfangskonfiguration viele angeregte Moden hat, berechnen wir die Varianz der Sobolev-
Normen. Dadurch charakterisieren wir, wie reprasentativ das gemittelte Modell innerhalb
der Klasse der Resonanzsysteme ist.
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Introduction (French version)

Cette these traite de différents aspects de la théorie des tenseurs aléatoires. Nous étudions
leur formulation en tant que théorie quantique des champs appelée théorie de champs ten-
soriels (TFT). Nous examinons certains aspects de leurs liens avec le modele de Sachdev-
Ye-Kitaev (SYK), et avec les systémes résonants pour étudier les propriétés typiques
d’équations d’évolutions non-linéaires aléatoires.

Des matrices aux tenseurs

L’étude des matrices aléatoires est un champ de recherche majeur en probabilité et en
physique mathématique. Les matrices aléatoires ont été introduites pour la premiere
fois en physique mathématique par Wigner [I] pour étudier le noyaux d’atomes lourds
et ont depuis été appliquée dans de nombreux domaines de la physique théorique. En
particulier, les matrices aléatoires ont été étudiées de facon approfondie pour leur lien
avec la gravitation quantique en 2D, voir 'article de revue [2].

Un des principaux résultat des modeles de matrices fit la découverte de leurs dévelop-
pement en 1/N par 't Hooft [3]. Le développement en graphes de Feynman des modeles de
matrices est constitué de graphes a rubans qui peuvent étre vues comme la discretisation
d’une surface de Riemann. A grand N, les modeles de matrices sont dominés par les
graphes planaires qui correspondent a la sphere et le développement en 1/N est indexé
par le genre des surfaces de Riemann duales aux graphes. Par la suite, les modeles de
matrices ont été completement résolus grace a 1'utilisation de la récursion topologique qui
fut introduite pour la premiere fois dans [4] (voir aussi le livre [5]).

En outre, les modeles de matrices apparaissent dans 1’étude des théories de champs
sur un espace-temps non-commutatif. Ces modeles comportent généralement un mélange
UV/IR des divergences qui peut étre résolu par I'addition d’un terme d’oscillateur har-
monique, comme dans le modele de Grosse-Wulkenhaar [6] qui peut étre exprimé comme
un modele quartique de matrices avec une matrice externe dans le terme cinétique. Une
autre maniere de résoudre le probleme du mélange UV/IR est d’ajouter a l'action dans
'espace des moments, un terme en 1/p? invariant par translation [7].

Dans le but d’étudier la gravitation quantique en dimension supérieure, les modeles de
tenseurs sont une généralisation naturelle de modeles de matrices. Ils ont été introduits
pour la premiere fois dans les années 90 dans [8], [9], [10], avec I'idée que de maniere
similaire aux graphes a rubans, les graphes de tenseurs sont duaux aux discrétisation
d’espaces de dimensions supérieures. Cependant le développement des modeles de tenseurs
fat entravé par le manque de limite grand N.

Apres presque vingt ans, le développement a grand N des tenseurs aléatoires a été



établi pour la premiere fois dans [11] puis étendue dans [12], pour un type de modele
spécifique appelé modele de tenseurs colorés. De nombreux développements ont suivi
notamment un théoreme d’universalité pour les tenseurs aléatoires [I3], une version in-
variante sous U(N)” des modeles de tenseurs aléatoires (olt D est le rang des tenseurs),
appelée incolore, a été introduite [14], les modeles de tenseurs multi-orientables invariants
sous U(N)P~! x O(N) firent introduits dans [I5], une théorie des champs de tenseur
renormalisable a été étudiée dans [16] et un modele de tenseur aléatoire invariant sous
O(N)P a été proposé dans [17]. Voir aussi Particle de revue [18].

Dans cette these nous considérons un modele de tenseur invariant sous U(N)P dont
le terme cinétique est modifié par l'introduction d’un opérateur de type Laplacien (cet
opérateur est un Laplacien discret dans 'espace de Fourier des indices de tenseur). Ce
type de modele de tenseur a été utilisé a 1'origine pour implémenter des techniques de
renormalisation dans les modeles de tenseurs dans [16] (voir aussi 'article de revue [19]
ou la these [20] ainsi que les références incluses) et a été aussi étudié comme une TFT
de type SYK [2I]. Récemment, le groupe de renormalisation fonctionnelle a été utilisé
dans [22] pour rechercher I'existence éventuelle d’une limite continue universelle dans les
modeles de tenseurs, voir aussi Uarticle de revue [23]. Cette approche est étroitement
liée a I’équation de Polchinski pour les TFT [24]. Notre approche fournit un outil non-
perturbatif complémentaire a ces deux approches. De plus, notre étude généralise les
techniques utilisées dans le contexte des modeles de matrices [6].

Le modeéle de Sachdev-Ye-Kitaev

Le modele de Sachdev-Ye-Kitaev (SYK) est une version simplifiée du modele de Schadev-
Ye [25], et a été introduit par Kitaev lors de deux conférences au KITP [26] en tant
que modele jouet pour I'holographie, exactement résoluble. L’holographie réfere a la
correspondance précise entre une théorie de gravitation quantique dans un espace-temps
asymptotiquement Anti-de-Siter (AdS) en dimensions d+1 (appelé le bulk) et une théorie
conforme des champs (CFT) sur le bord de dimension d. Le modele SYK est un modele de
mécanique quantique constitué de NV fermions de Majorana avec des intéractions aléatoires
impliquant ¢ de ces fermions a la fois. Le couplage est un tenseur de rang ¢ tiré d’une
distribution aléatoire Gaussienne.

Le modele SYK a gagné beaucoup d’intérét grace a trois propriétés remarquables

27, 28]:

e (Calculabe a grand N : dans cette limite les graphes de Feynman peuvent étre
sommés et les fonctions de corrélations calculées a fort couplage..

e Maximisant le chaos : le chaos quantique est quantifié par un exposant de Lyapunov
défini par la fonction a quatres points ”out-of-time order”. L’exposant de Lyapunov
d’un trou noir dans la théorie de la gravité d’Einstein est maximal, tout comme
celui du modele SYK.

e Symmétrie conforme émergente : la fonction a deux points a une symmétrie con-
forme émergente dans la limite IR. Cette symmétrie est spontanément et explicite-
ment brisée par le mode qui maximise le chaos.

Le modele SYK a été étudié intensivement et de nombreux progres ont été établis dans la
persepctive de résoudre completement le modele. Entre autres, les fonctions de corrélations
a plus grand nombre de point ont été déterminées dans le secteur conforme du modele
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[29, 30], les fonctions & 2-points et 4-points ont été calculées dans la limite de grand g,
non seulement dans la limite IR mais & toutes énergies [31), 32]. De plus, dans une version
a double échelle du modele SYK, la fonction a 4-point a été obtenue a toutes énergies en
utilisant uniquement des méthodes combinatoires.

De nombreuses généralisations du modeles SYK ont été introduites. Notamment une
version ajoutant des saveurs aux fermions [33], une version complétement de symétrie con-
forme [34], un modele constitué de fermions complexes [35], une version supersymmétrique
[36] et de dimension supérieure [37]. Pour une introduction au modele SYK, voir les ar-
ticles de revue [38] [39].

En particulier, Witten reformula le modele SYK en tant que modele de tenseurs, notant
que dans les deux cas, la limite large N est dominée par les mémes graphes meloniques
[40]. Cela a renouvelé l'intérét pour les modeles de tenseurs et leurs analogues de type
SYK, parfois appelés CFT meloniques, voir le cours [41] et I'article de revue [42].

Des version réelles et complexes de modele de tenseurs décolorés de type SYK ainsi
qu'un modele bosonique ont été introduits pour la premiere fois dans [43]. Un modele
SYK tensoriel supersymétrique a été proposé dans [44]. Une variante matrice-tenseur
a été étudiée impliquant un nouveau type de limite grand N [45] 46]. Les graphes de
Feynman au premier ordre sous-dominant dans la limite grand N ont été déterminés
par des méthodes combinatoires, pour le modele SYK originel et la version tensorielle
[47]. Un analogue de 'action effective a été obtenu pour les modeles de tenseurs en tant
qu’action effective 2P [48]. Des modeles composés de tenseurs de symétries variées ont
été considérés [49, B0]. La renormalisation des CFT meloniques a été étudiée pour des
intéractions quartique [51] ainsi que sextique [52], 53].

Systémes résonants

La théorie des matrices aléatoires a été appliquée pour la premiere fois a 1’étude des
équations d’évolutions linéaires aléatoires par May dans [54], avec pour but de déterminer
si de grands systemes écologiques aléatoires peuvent étre stables et d’étudier leur transition
vers l'instabilité. Un exemple simple d’équation d’évolution linéaire aléatoire est une
équation différentielle dont les coefficients sont des matrices aléatoires. Une telle évolution
est stable si et seulement si toutes les valeurs propres des matrices aléatoires ont une partie
réelle négative. Cependant, la probabilité de cet événement tend vers zéro avec la taille
du systeme, ainsi ce type d’évolution linéaire aléatoire n’est presque jamais stable. La
compréhension des comportements génériques des évolutions aléatoires a grand nombre
de variables requiert d’aller au-dela du régime linéaire.

Les évolutions non-linéaires sont bien plus difficiles a analyser, puisque leurs coeffi-
cients sont des tenseurs au lieu de matrices. Ces équations d’évolutions émergent dans
différents contextes de la physique théorique ot une intéraction non-linéaire est faible
et pour des systémes possédant un spectre d’énergies hautement résonant (la différence
entre deux niveaux d’énergie doit étre un entier, ce qui se traduit par une condition de
résonance). Par exemple, de telles équations d’évolutions apparaissent dans ’étude de
la stabilité gravitationnelle de dynamique faiblement non-linéaire dans un espace-temps
AdS, voir larticle de revue [55]. Ces équations émergent aussi dans 1'étude des dy-
namiques des condensats de Bose-Einstein avec une faible intéraction de contact dans un
piege harmonique isotrope [50], et voir [57] pour des études numériques comparant les
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deux modeles mentionnés.

Une version quantqiue de ce type de modele [58], sans la condition de résonance est
tres similaire aux ensembles de matrices Gaussiennes intégrés (voir le livre [59]). De plus,
en remplacant les opérateurs bosoniques par leurs analogues fermioniques, les coefficients
des tenseurs aléatoires de I’équation d’évolution correspondent a l'intéraction aléatoire du
modele SYK.

Une version classique de ce type de systemes résonants a été étudiée dans [60]. En
utilisant des techniques des tenseurs aléatoires, les auteurs ont montré que les graphes
meloniques dominents la théorie de perturbation dans la limite ot de nombreux modes sont
initialement excités. De plus en restreignant la série de perturbation a ’approximation
melonique correspondantes, les excitations initiales se propagent vers d’autres modes au
moins pendant un intervalle de temps fini comme lors d’une cascade turbulente.

Plan de la these

Le Chapitre [I] traite de dérivation des équations de Schwinger-Dyson d’une théorie de
champs tensoriels avec une intéraction melonique quartique invariante sous U(N), a tout
rang des tenseurs. Les fonctions de corrélations sont classifiées par des graphes de bords et
nous utilisons 'identité de Ward-Takahashi pour calculer le systeme complet d’équations
de Schwinger-Dyson analytiques pour les fonctions de corrélations a graphe de bords
connexe. Nous les écrivons explicitement a rang 3, ainsi qu’a rang 4 et 5 dans I’Annexe
Bl

Dans le Chapitre [2| nous analysons la limite de grand N des équations de Schwinger-
Dyson pour un modele de tenseurs de rang 3. Pour obtenir une limite de grand N bien
définie, des facteurs appropriés en puissance de N sont explicitement déterminés pour les
différents termes présent dans ’action. Une vérification perturbative de notre résultat,
jusqu’au second ordre dans la constante de couplage, est présenté dans 1’Annexe [C] Nous
résolvons ensuite I’équation de Schwinger-Dyson fermée pour la fonction a 2-point d’une
théorie de champ de tenseurs avec une seule intéraction quartique melonique, en termes
de la fonction W de Lambert, en utilisant un développement perturbatif et un théoreme
de Lagrange-Biirmann. Les fonctions de corrélations a plus grand nombre de points sont
ensuite obtenues récursivement.

Dans le Chapitre[3Jnous étudions les effets d’'un moyennage non-Gaussien des couplages
aléatoires dans une version complexe du modele SYK. En utilisant une équation de type
Polchinski et 'universalité Gaussienne des tenseurs aléatoires, nous montrons qu’a l'ordre
dominant en N le moyennage non-Gaussien agit comme une distribution Gaussienne avec
une variance modifiée. Nous déterminons ensuite la forme de l'action effective a tout
ordre. Un calcul explicite de la modification de la variance dans le cas d’une perturbation
quartique est effectué pour le modele SYK complexe ansi que pour la généralisation du
modele SYK proposé par Gross et Rosenhaus dans [33]

Le Chapitre 4] est un travail en cours dans le prolongement de [60]. Nous étudions une
application des modeles de tenseurs aléatoires aux équations d’évolutions non-linéaires
a nombreuses variables. Nous nous concentrons sur un hamiltonien typique dont les
équations de mouvement ont la forme d’une approximation de faible non-linéarité a un
systeme non-linéaire résonant possedant des perturbations linéarisées avec un spectre
de fréquences hautement résonant. Nous effectuons un moyennage Gaussien du couplage
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tensoriel entre les modes ainsi que des conditions initiales. Dans la limites ou de nombreux
modes sont initialement excités, nous calculons la variance des normes de Sobolev qui
caractérisent en moyenne, a quel point les résultats de [60] sont représentatifs pour cette
classe de systemes résonants.
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Introduction

This thesis treats different aspects of the theory of random tensors. We study their
formulation as a quantum field theory called tensor field theory (TFT). We investigate
some aspect of their link with the Sachdev-Ye-Kitaev (SYK) model and with resonant
systems, to study typical properties of non-linear random flows.

From matrices to tensors

The study of random matrices is a prominent field of probabilities and mathematical
physics. It was first introduced in mathematical physics by Wigner [I] to study the nuclie
of heavy atoms and has since then been applied to many areas of theoretical physics.
In particular, random matrices were intensively studied for their link with 2D quantum
gravity, see the review [2].

One of the most crucial development of matrix models was the discovery of their 1/N
expansion by 't Hooft [3]. The Feynman graph expansion of matrix models is made of
ribbon graphs which can be viewed as a discretisation of a Riemann surface. At large
N, matrix models are dominated by planar diagrams which correspond to the sphere and
the 1/N expansion is indexed by the genus of the dual Riemann surfaces. Later matrix
models have been fully solved with the use of topological recursion first introduced in [4]
(see also the book [9]).

Furthermore matrix models arise from the study of quantum field theory on non-
commutative space-time. These models are usually plagued by an UV/IR mixing of the
divergences which can be solved by the addition of an harmonic oscillator term, leading to
the Grosse-Wulkenhaar model [6] which can be expressed as a quartic matrix model with
an external matrix in the kinetic term. Another known solution for curing the UV/IR
mixing is the addition of a translation-invariant 1/p? term in the momentum space action
[7.

With the aim of studying higher dimensional quantum gravity, tensor models are a
natural generalisation of matrix models. They were first introduced in the 90’s in [8], [9,
[10], with the idea that similarly to ribbon graphs, tensor graphs are dual to discretisation
of higher-dimensional spaces. However the developments of tensor model was impaired
by the lack of a large N limit.

Almost twenty years later, the large N expansion of random tensor was first exhibited
in [11I] and then extended in [I2], for a specific type of model called coloured tensor
models. Many developments followed among which an universality theorem for random
tensors [13], an U(N)P-invariant version of random tensor models (where D is the tensor
rank), called uncolored, was introduced [14], an U(N)P~! x O(N)-invariant tensor model,

14



called multi-orientable, was introduced in [I5], a renormalisable tensor field theory was
studied in [I6] and an O(N)P-invariant random tensor model was proposed in [I7]. See
also the review [18].

In this thesis we consider a U(N)P-invariant tensor model whose kinetic part is mod-
ified to include a Laplacian-like operator (this operator is a discrete Laplacian in the
Fourier transformed space of the tensor index space). This type of tensor model has orig-
inally been used to implement renormalisation techniques for tensor models in [16] (see
also the review [19] or the thesis [20] and references within) and has also been studied
as an SYK-like TFT [2I]. Recently, the functional renormalisation group as been used
in [22] to investigate the existence of a universal continuum limit in tensor models, see
also the review [23]. This is also closely related to the Polchinski’s equation for TFT [24].
Our approach provides a complementary non-perturbative tool to these two approaches.
Moreover, our study generalises the techniques used in the context of matrix model [6].

The Sachdev-Ye-Kitaev model

The Sachdev-Ye-Kitaev (SYK) model is a simplified verison of the Schadev-Ye model [25],
and was introduced by Kitaev during two talks at KITP [26] as an exactly solvable toy
model of holography. This refers to the precise correspondence between quantum gravity
in asymptotically Anti-de-Siter (AdS) space-time in d 4+ 1 dimensions (called the bulk)
with a Conformal Field Theory (CFT) on the d-dimensional boundary. The SYK model
is a quantum-mechanical model with N Majorana fermions with random interactions
involving ¢ of these fermions at a time. The coupling is a rank ¢ tensor drawn from a
random Gaussian distribution. The SYK model has gained a lot of interest because it has
three remarkable properties [27, 28§]:

e Solvable at large N: in this limit one can sum all Feynman graphs and compute the
correlation functions at strong coupling.

o Maximally chaotic: Quantum chaos is quantified by the Lyapunov exponent defined
by the out-of-time order four-point function. The Lyapunov exponent of a black
hole in Einstein gravity and of the SYK model both saturates the maximal allowed
bound.

e Emergent conformal symmetry: the two point function has an emergent conformal
symmetry in the IR limit. This symmetry is spontaneously and explicitly broken
by the mode saturating the chaos bound.

The SYK model was extensively studied and numerous progress have been made toward
fully solving the model. Among which, the higher point functions were determined in the
conformal sector of the model [29, 30], the 2-point and 4-point functions were found in
the large ¢ limit not only in the IR but at all energies [31, B2] and in a double scaled
version of the SYK model the 4-point function was computed at all energy using only
combinatorial methods.

Many generalisation of the SYK model were introduced and studied. Adding flavors
to the fermions [33], considering a fully conformal version of the model [34], a model with
complex fermions [35], supersymmetric [36] or higher dimensional version of the model
[37]. For an introduction to the SYK model, see the reviews [38] [39].

In particular, Witten reformulated the SYK model into a tensor model, pointing out
that both large N limits are dominated by the same melonic graphs [40]. This lead to
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a renewed interest in tensor models and their SYK-like variant, sometime called melonic
CFTs, see the lecture [41] and the review [42].

Real and complex uncoloured SYK-like tensor model as well as a bosonic version
were first introduced in [43]. A suypersymmetric tensorial SYK model was proposed in
[44]. Matrix-tensor variant was studied involving a new type of large N limit [45] [46].
Combinatorial methods were used to determine the Feynman graphs at next to leading
order in N for both a standard and tensorial version of the SYK model [47]. An analogue
of the effective action was obtained for tensor models as a 2P effective action [48]. Models
composed of tensors with various symmetries were studied [49, 50]. The renormalisation
of melonic CFT was studied for quartic interactions [51] as well as sextic interactions
[52, £3].

Resonant systems

Random matrix theory was first applied to study random linear flows by May in [54]
to answer the question if large random ecological system could be expected to be stable
and how they transition to instability. A simple example of a random linear flow is a
differential equation whose coefficients are random matrices. Such a flow is stable if and
only if all the eigenvalues of the random matrix have negative real part. However, the
probability that this happens tends toward zero with the size of the system, hence this
type of random linear flow is almost never stable. Understanding the generic behaviour
of random flows in many variables requires to go beyond the linear regime.

Non-linear flows are much more difficult to analyse, as their coefficients are tensors
instead of matrices. They arise in many different contexts of theoretical physics where a
non-linear interaction is taken to be weak and with a highly resonant energy spectrum
(differences between any two energies are integers which translates into a resonance condi-
tion). For example it emerges in the study of gravitational stability of weakly non-linear
dynamics in AdS space-time, see the review [55], and in the study of the dynamics of
Bose-Einstein condensate with weak contact interaction in an isotropic harmonic trap
[56], and see [57] for numerical studies comparing the two models.

The quantum version of this type of model [58], without the resonance condition is
very similar to bosonic Gaussian embedded ensembles (see the book [59]). Moreover, by
replacing the bosonic operators by their fermionic analogue, the random tensors coefficient
of the flow equation correspond to the random interaction of the SYK model.

A classical version of resonant systems has been studied in [60]. By applying the
techniques from random tensors the authors showed that melonic graphs dominates per-
turbation theory in the limit where the initial configuration has many modes excited.
Moreover restricting the perturbation series to the corresponding melonic approximation,
the initial excitation spreads over more modes at least during a finite time interval as in
a turbulence cascade.

Outline of the thesis

Chapter [l treats the derivation of Schwinger-Dyson equations for a tensor field theory
with an U(N)-invariant melonic quartic interactions, at any rank of the tensors. The
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correlation function are classified by boundary graphs and we use the Ward-Takahashi
identity to derive the complete tower of exact, analytic Schwinger-Dyson equations for
correlation functions with connected boundary graphs. We write them explicitly for ranks
3 and for rank 4 and 5 in Appendix [B]

In Chapter |2 we analyse the large N limit of the Schwinger-Dyson equations for rank 3
tensor models. In order to have a well-defined large N limit, appropriate scalings in powers
of N for the various terms present in the action are explicitly found. A perturbative check
of our results is done, up to second order in the coupling constant, in Appendix [C] We
then solve the closed Schwinger-Dyson equation for the 2-point function of a tensor field
theory with only one quartic melonic interaction, in terms of Lambert’s W -function, using
a perturbative expansion and Lagrange-Biirmann resummation. Higher-point functions
are then obtained recursively.

In Chapter |3| we study the effect of non-Gaussian average over the random couplings
in a complex version of the SYK model. Using a Polchinski-like equation and random
tensor Gaussian universality, we show that the effect of this non-Gaussian averaging leads
to a modification of the variance of the Gaussian distribution of couplings at leading
order in N. We then derive the form of the effective action to all orders. An explicit
computation of the modification of the variance in the case of a quartic perturbation is
performed for both the complex SYK model mentioned above and the Gross-Rosenhaus
SYK generalisation proposed in [33].

Chapter 4| is a work in progress and a follow up to [60]. We study an application
of random tensor models to non-linear random flows in many variables. Focusing on a
typical Hamiltonian whose equations of motion have the form of the weakly non-linear
approximation to a non-linear resonant system whose linearised perturbations possess
highly resonant spectra of frequencies. We perform Gaussian averaging both for the
tensor coupling between modes and for the initial conditions. In the limit where the
initial configuration has many modes excited, we compute the variance of the Sobolev
norms to characterise how much, on average, the results of [60] are representative of this
class of resonant systems.
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Chapter 1

Schwinger-Dyson equations in
melonic tensor field theories

This chapter is an edited version of [61] written in collaboration with C.I. Pérez-Sénchez
and R. Wulkenhaar, where the major contribution was made by C.I. Pérez-Sanchez.

1.1 Introduction

All the new results we mentioned in the introduction enliven the physics of random tensors.
Yet, the quantum theory of these objects itself deserves a more thorough mathematical
scrutiny, and, in this vein, the present chapter is a study of the correlation functions of
complex tensor field theories (TFT)[L already begun in [62], and of the equations they
obey (see [63] as well). Unlike usual tensor models, tensor field theories studied here have
a non-trivial kinetic term. The models we are studying are related to uncoloured tensor
models [14], terminology which we do not use here. Rather, since the tensor fields retain
some colouring in their indices, which is a byproduct of an independent U(NV)-symmetry
for each tensor index, we call our models U(N)-invariant tensor field theories. For each
symmetry, the partition function Z[J,.J] of a complex TFT satisfies a full version [62]
of the Ward-Takahashi identity [64], which is not trivial because the kinetic term in the
action breaks the U(NN)-symmetry. It has been anticipated [62] that this constraint would
allow to derive an equation for each correlation function of complex TFT, and the aim of
this chapter is to obtain those for arbitrary rank.

These are the analytic Schwinger-Dyson equations (SDE). Their derivation is indepen-
dent from existent SDE for tensor models (e.g. those obtained by Gurau [65] or Krajewski
and Toriumi [66]), which, crucially, differ from our SDE in that those SDE reported before
are algebraic. That is to say, one can see the partition function of a complex tensor model,
Z({Aa}a), as a function of all (possible) coupling constants {\, },. Whilst [65, [66] derive
recursions for (numerical) expectation values log Z({\a}a)/0A,, the framework we offer
here, on the other hand, allows to derive equations for functional derivatives of log Z|[.J, J|
with respect to the sources J and .J, thus leading to integro-differential SDE in a quantum
field theory context.

The connected correlation 2k-point function of rank-D tensor field theories are usually

!Not to be confused with melonic CFT where tensor fields live on a space-time such as in [48].
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defined by

Hajxla(]y og(Z[J, J)|  (xnyieZP). (LL1)

J=J=0

G(Qk)(xlu o Xei Y, - 7Yk

For complex TFT, this definition is redundant, when not equivocal (e.g. G® (x;y) identi-
cally vanishes outside the diagonal x = y). In [62], it was proposed to split each function
G) in sectors ng) that encompass all Feynman graphs indexed by so-called boundary
graphs B (see Sec. . Here 2k denotes the number of vertices of B and this integer
coincides with the number of external legs of the graphs summed in ng)

There are two reasons to classify correlation functions by boundary graphs. First, by
using these correlation functions one gains a clear geometric interpretation in terms of
bordisms. Feynman diagrams in complex TFTs are coloured graphs, and these represent
graph-encoded triangulations of PL-manifolds. The momentum flux between external
legs of an open graph G determines its so-called boundary, B = 0G. Boundary graphs
are important because they also triangulate a manifold, and this manifold coincides with
the boundary, in the usual sense, of the manifold that the original graph triangulates
[18]. Furthermore, by fixing a boundary graph B, one can sum all connected Feynman
graphs that contribute to ng), and these are interpreted as bordisms whose boundary

is triangulated by B; for instance, the connected components, & and ¢ of (the graph
(8)
[STheg

graphs contributing to this correlation function are triangulations of bordisms S? — T2
that are compatible with their boundary being ‘triangulated by’ & LI 45.

Secondly, one must do the splitting of the correlations in boundary graphs, otherwise
the momenta of the sources interfere with one another. The correlation functions that
we propose here need only half the arguments of the functions from definition (|1.1.1)).
For k = 1,2, 3,4, the connected 2k-correlation functions indexed by connected boundary
graphs are:

indexing) G triangulate a sphere and a torus, respectively, and (connected Feynman)

(2)

G5, (1.1.2a)

ep=ci el (1.1.2b)
(6) ©) (06) (6)

G G@, GO G@, G, G@g@, G@, (1.1.2¢)

G®) G®) G®) ,G(S) a®  a® G

(8) _orhi
o Com o l@,, G@;’ @, o , and Gz-orbits thereof.

o~
C
&

<
8O

! al9

b

(1.1.2d)

Moreover, functions such as G‘ &Il and G( indexed by disconnected graphs, need

Sk

to be considered. None of these graphs is a Feynman graph: in fact we will not deal with
them herﬂ since we proceed non-perturbatively.

To these two reasons, we add as motivation the success that this treatment gave
for matrix models [6]. There, by splitting in boundary components, the matricial Ward
identity was exploited and combined with the Schwinger Dyson equations. This allowed to

2Except Feynman diagram examples appearing in Sec. m
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derive an integral equation for the quartic matrix models and, in the planar sector, solve
for all correlation functions in terms of the two point function [6] via algebraic recursions.
Here, we import these techniques to the complex TFT setting.

In this chapter we derive the full tower of equations that correspond to connected
boundary graphs. We also obtain the 2-point and some higher-point Schwinger-Dyson
equations (SDE) in an explicit form rank-3 and rank-4 theories. Section recalls the
setting of complex tensor models in a condensed fashion, and the expansion of the free
energy in boundary graphs. The Ward-Takahashi Identity (WTI) [62] for complex TFT,
which we recall in Section is a fundamental auxiliary and bases on this boundary
graph expansion. There, we also introduce language to deal with the proper derivation of
the full SDE-tower in Section We continue with the derivation of the SDE-equations
for quartic rank-3 theories (Sec. and rank-4 theories in the appendix [B| (moreover,
rank-5 are shortly addressed in .

In order to derive the SDE for a certain 2k-point function it is necessary to know,
also to order 2k in the sources, the form of certain generating functional (for rank 3,
Lemma with proof located in Appendix which appears in the Ward-Identity.
This requires knowledge of the free energy to order 2(k + 1) (in the sources), which
in turn needs information about all the graphs with this number of vertices and their
coloured automorphism groups. In Appendix [B| we find the SDE for rank-4 theories with
melonic quartic vertices. Explicitly, only the two-point functions and 4-point functions
are obtained, since the graph theory in four colours is much more complicated. Section
before some concluding remarks, presents a model that has simpler SDEs and looks
solvable, since, as shown there, it posses a very similar expansion in boundary graphs. It
is a tensor field theory that can be used to study the random geometry of 3-spheres.

1.2 Boundary graph expansions

This section rapidly introduces the notation in graph theory and recapitulates previous
results that are relevant in our present study. There are few examples in Fig. that
are intended as support to rapidly grasp the next definitions. Also the rather panoramic
Table organizes the concepts introduced below.

1.2.1 Complex tensors and coloured graphs

Let N be a (large) integer, thought of as an energy scale, and consider D distinguished
representations, (Hi,p1),...,(Hp,pp) of U(N). A complex tensor field theory is con-
cerned with the quantum theory of tensor fields ¢, p : H1 @ Ho ® ... ® Hp — C whose
components transform under said D representations as

Pay..xp = ‘P;:l...mD = Z[/)a(Wa)]xaya‘:@m...ya...xp )
Ya

@Ilu.ID = @/le...a}D = Z[pa(Wa)]xaya@xl...ya...ID 9

Ya

for all W, € U(N) and being each z, and y, in suitable index-sets I, C Z, for each
integer (or colour) a =1,...,D. Usually one sets H, = C or H, = (*|—n, n] for suitable
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n = n(N), and p, = idy, for each colour a. However, at the same time, one insists
that the representations are distinguished, so that indices are anchored to a spot assigned
by its colour. Thus, the indices of the tensors have no symmetries (e.g. @ijx = @i; 18
forbidden) and only indices of the same colour can be contracted.

A particular tensor model is specified by two additional data: a finite subset of in-
teraction vertices given by real monomials in ¢ and ¢ that are U(N)-invariant under the
chosen D representations; the second data is a quadratic form

So(p, @) = Tra(@, Ep) = Z PxEypx, for certain function E: I} x ... x Ip — RT,

determining the kinetic term Sy in the classical action. Sums are (implicitly) over the
finite lattice I; x ... x Ip C ZP. These I, sets depend usually on a cutoff scale related
to N and we will assume, also implicitly, that throughout they are all Z, keeping in mind
that one needs to regularize.

In order to characterize the interaction vertices, one uses vertex-bipartite regularly
edge-D-coloured graphs, or, in the sequel, just ‘D-coloured graphs’. A graph G being
vertez-bipartite means that its vertex-set G(© splits into two disjoint sets G0 = QV(VO ) ugﬁo).
The set Q‘EVD) (resp. Qéo)) consists of white (resp. black) vertices. The set of edges, denoted
by GO is split as GV = 1,6 into D disjoint sets Gi" of a-coloured edges, a = 1, ..., D.
Given any edge e, the white and black vertices e is attached at, are denoted by s(e) € QV(VO )
and t(e) € ggo), respectively. This defines the maps s,t : G — GO, Regularity of
the colouring means that, for each v € QV(VO ) and each w € QS)), both preimages s~!(v)
and t~!(w) consist precisely of D edges of different colours. By regularity, the number of
white and black vertices is the same and is equal to k(G) := # G(©) /2. The set of (closed)
D-coloured graphs is denoted by Grph%.

The only way to obtain monomials in the fields ¢ and ¢ that are also invariants, is
contracting each coordinate index ¢_, . by a delta ¢, with the coordinate ¢ , . of
the respective colour of the field ¢. The imposed U(N)-invariance requires then D - k(G)
such coloured deltas. Omne thus associates to each occurrence of ¢ a white vertex v
and to each occurrence of ¢ a black vertex w. For each colour ¢, to each d,,, con-
tracting ¢ ., and @_,. . one draws a c-coloured edge which starts at v, v = s(e),
and ends at w, w = t(e). Thus, any invariant monomial Trp is fully determined by a
coloured graph B, and vice versa. For instance, the trace ),y . o o - (Prirars Pargags Poipaps )
(5011)1 5a2T2503Q3551Q1 5b2p2563r35c1n 502%503173) ) (90a1a2a39051b2b3§0018203) is depicted in '

Any model is then given by an interaction potential V(p, @) = > 5.0 AsTra(p, @),
for A a finite subset of Grph%). For a fixed model S = Sy + V, one can write down the
corresponding partition function:

Z1J,J) = Zy / Dlip, ¢ ™o (o) -V 5led) | Dl o] . [ NP1 4020
iz 2mi
(1.2.1)
Here Sy = Tra(p, ) is the only quadratic invariant, namely <. Later on, at the level
of propagator, we will allow this invariance to be broken (see Sec. .
Using Wick’s theorem one evaluates the contributions to the generating functional.
Wick’s contractions (propagators) are assigned a new colour, 0, which one commonly
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(a) Example of the rela-
tion between traces and
monomials. This graph
is denoted by K.(3,3)

(d) Open graph with
boundary K.(3,3) (in
fact it is the cone of
K.(3,3)) but is not in
Feyns(¢*)

(b) This graph is in
Feynj(p%), i.e. it is a
vacuum Feynman graph of
the j-model, V(p, @) =
A1 + 252 + 353)

@@
OO
@@

(e) This graph R is an
open graph in Feyns(p?) C
Grph:(fg1 C Grphg,; with
OR = K.(3,3) (see explana-

tion in

Tt Tyt
A —
\ /
JXQA . \ ’ /"JyQ
~ s
s g S ~
h Az
ok Ty

(¢) Anatomy of a Feyn-
man graph and how it de-
termines boundary graph B,
which induces the map B,

LoaxB) e yhyh)

0%
g 40
T

The amputation of R.
If one erases the 0-coloured
(or dashed) edges, one gets
connected components in

{1501, 22, 303}

Figure 1.1: Graph terminology of Sec. and concerning examples
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MAP OF THE GRAPH THEORY OF AN ARBITRARY RANK-D MODEL V (¢, )

Number of Closed Open
of colours Connected Disconnected Connected Disconnected
D o Observables

o Traces B, Trp in e generic boundary
V =3 AsTrs(p, @) graph in 9(Feynp(V)) 0 0
e boundaries 9G

Notation — Grph$, =4 = Grph)y® \ Grph®) Grphp =p
vacuum  Feynman  di- () (no contribution), for taking the  generic Feynman

D+1 agrams, whose set we the logarithm of Z[J,J] gets graphs of the model, 0

denote by Feyn}, (V) rid of them Feynp (V)

Notation — Grph%._; B = Grph%’f1 \ Grph$ Grphp,y Ep+1

Table 1.1: Terminology of Sec. , and why both graphs in D and D+1 number of colours
appear in a rank-I) models, and which their respective roles are. Here ‘disconnected’
strictly means ‘not connected’. The notation () stands for ‘no contributions to/no role in
the rank-D theory’.

draws as dashed line. For (complex) matrix models (D = 2), this 0 colour would be the
ribbon line propagator, thus, for tensors, this colour 0 substitutes a cumbersome notation
of D parallel lines. It is easy to see that Feynman vacuum graphs of rank-D complex
tensors are vertex-bipartite regularly edge-(D + 1)-coloured graphs, now the colours being
the integers from 0 to D. Vacuum graphs can be connected or disconnected. The set of
strictly disconnected graphs is denoted by = 41 and Grph%’f‘rl1 denotes the set of possibly
disconnected graphs. We assume that any Feynman graph is connected and get rid of
Feynman graphs in =% _, by working with the free energy, W[.J, J] = log(Z[J, J]), rather
than with the partition function.

Since we are mainly interested in the connected correlation functions we have to con-
sider open Feynman graphs, i.e. graphs with n external legs, each of which is attached
to a tensorial source, J or J, that obeys the same transformation rules of the field ¢ or
@, respectively. The external legs are exceptional edges of valence-1 white (for the source
J) or black (for J) vertices. All external legs’ edges have colour 0. Clearly, because of
bipartiteness, this number has to be even, n = 2k. We denote by Grphgi)1 the set of
Feynman diagrams with 2k external legs and further set

o 2k
Grphp,; = Uk:lGrpthJr)1 U Grph$, ,

generically for open or closed (D + 1)-coloured graphs.

Importantly, not every graph in Grphp,, is a Feynman graph. The set of Feyn-
man graphs of a model V (¢, 9) = > .\ AsTra(p, @) is denoted by Feyny(V (o, ¢)) or
Feynp, (V). This set consists of the graphs in Grph, ; that satisfy the following condition:
after amputating all external legs and removing all the 0-coloured edges, the remaining
graph has connected components in the set of interaction-vertices A C Grph$, (see Figs.

7'
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1.2.2 Boundary graphs
There is a boundary map 0 : Grphp, | — Grph%’d, which for all G € Grphp, is given by

(0G)\9) := {external legs of G},
(0G)) := {(0a)-bicoloured paths between external legs in G} .

The vertex set inherits the bipartiteness from G, to wit a vertex in (9G)® is black if it
corresponds from an external line attached to a white vertex, and white if it is attached
to a black vertex in G. The edge set is regularly D-coloured (9G)") = ua(ag)g”

For a fixed model V(p, @), the image of the restriction Oy := O|reyn,(v) of O to
Feyn, (V) is deemed boundary sector, and this set is, of course, model dependent. A
graph in the boundary sector is a boundary graph. For melonic quartic theories, as a mat-
ter of fact [62], this boundary map is surjective, so all (possibly disconnected) D-coloured
graphs are boundaries. Thus, all the correlation functions we propose have non-trivial
contributions. Incidentally, this means that quartic coloured random tensor models are
able to ponder probabilities of triangulation of all bordisms, provided they exist, as in
dimension d (d = D — 1 = 2,3) as classical objects (oriented manifolds); in presence of
obstructions, there are pseudo-manifolds yielding those bordisms.

Given a closed coloured graph B, Aut.(B) denotes the set of its coloured automor-
phisms. These are graph maps B — B that preserve adjacency, the bipartiteness of B
and also its edge colouring. Each automorphism of B arises from a lifting of an element
7 of Sym(B ) Grs) to a unique map 7 : B — B, determined by the preservation of
said structure. Figures - 1.2] and [1.3] show all the automorphism groups for graphs having
up to 8 vertices in D = 3 and up to 6 vertices for D = 4 respectively.

We shall assume that both the white vertex-set B = (v!,..., v"®) as well as the

1
N V)]

black vertex-set Bb = (w', w*®B)) of a boundary graph B are given an ordering. Then

e?”, the edge of colour a attached to a white vertex v € Bg)), i.e. s(e?”) = vH, is denoted
by e.

Let B be a boundary graph and k = k(). Then B induces a mapf]| B, : Mpxi(Z) —
Mpyr(Z) by X = (x, ..., x") = B.(X) = (y!,...,¥"), where y¢ = 2% (for a =1,... k)
if and only if there exists an a-coloured edge starting at v and ending at w”. Regularity
of the colouring and bipartiteness of the vertex set ensure that there is exactly one such
edge, thus rendering B, well-defined. This map B, is deduced by momentum transmission
inside any graph G for with 0G = B by following the a0-coloured paths in G between its
external vertices. One further associates to B and X a cycle of sources

IB)(X) = Jya -+ Sy dyr - Jyr where B,(X) = (y',...,y"), (1.2.2)

which is evidently independent of the ordering given to Bg) ) and Béo). According to [62],
the free energy W|[J, J| = log(Z[J, J]) can be expanded in these cycles indexed by all the
boundary graphs of a given model:

Z > |Aut guJ(B) (1.2.3)

=1 B€im oy
k(B)=l

3The use of matrices Mpxx(Z), instead of plainly Z*P

matrix multiplication is so far needed.

, merely eases the definition of Fp ; below. No
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T k=4 A, k=4
b
y al 4bla y )
) ¥ o\
Autc(I) = ZQ X ZQ 1 Autc(Ai) = Z4 3

Figure 1.2: Enumeration of 3-coloured graphs with 2,4, 6 and 8 vertices and their Gurau-
degree w and coloured automorphism group.
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M k=1 Vi k=2 Nij k=2

Aut (M) = {x} 1 Aut.(V;) = Zs 4 Aut.(N;;) = Zs 3
No counting For any colour Since N;; = N
needed ) i€{1,2,3,4} one imposes i < j

IR

Aute (&) = {*} 6 ‘ Aute(Qis) = {*} 15 | Aute(C) =Zs

Qij # Qji

arbirary colours i, j

gij:gji Z<j

arbirary colour ¢ ‘
i,7 €4{1,2,3,4}

]‘—. k=3 Dfi/ k=3

. 00

Auto(F) =gt 5| Aut(Dy) = ()

Lij = Lji, Lij = Ly ? Dy = W, 0 < 3,
{i,5,k,1} € {1,2,3,4}] | Gk ={1,..., 4

Aut(. (L‘,”) = Zg ‘

‘/—_',1\7 k=3

+ | '
Auto(F;j) = Zs 6 Aute(F'x) = {+} 4

Fij = Fji, 801 < j k arbitrary, but
i, €{1,2,3,4} pairwise i, # i,

Figure 1.3: This table shows the rank-4 graphs until 6 vertices. As before, # is the number of
graphs that are obtained by the action of G4 in the edge-colouring and w is Gurau’s degree of
the graph in question. For graphs with k& = 4 see [49, Fig. 8] (there, only those marked with
a B are bipartite). The graphs displayed there are neither given a colouration nor classified by
GS4-orbits, though (Klebanov and Tarnopolsky treat them as vacuum Feynman graphs; here our
graphs are boundaries and we need to count them and their Aut.-groups).
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where * is a pairing between a function f : Mpyrs) — C and a boundary graph B €
im &y C Grph's” given by fx J(B) = ZXeMka<B)(Z) f(X)-3JI(B)(X). To read off the the

correlation functions Ggl) from eq. ([1.2.3]), one takes graph derivatives, introduced in [62]
and recapitulated in the next section.

1.2.3 Graph-generated functionals

We also recall some results from [62]. Let
For =Ly ..,¥y") € Mpur(Z) |y> £y’ forallc=1,...,Dand a,v = 1,..., k,a # v}.

Thus Fp  is the set of matrices Mpyy(Z) having all Eiifferent entries on any fixed row.
We define the graph derivative of any functional X[J, J| with respect to B at X € Fp
as

oxX[J,J  *BX[J, J] _
9B(X) ~ 3((B)X _H&UM 7,1 J=0=7J

Let (y',...,y") € Mp.(Z). For closed, coloured graphs Q,C € Grph% one has [62]:

o(1) yo'(k)

a 1 . e ! Z 6lk 5y1 .......... xk lf C = Q o(1 o'
869(}’1, Jk) — J schme(0) 6y1<> ,,,,,,,, v ® 5 5(9,0)
(!, xb) 0 otherwise oEG,

(1.2.4)

where §(Q,C) = 1 if the graphs Q and C are isomorphic, and 0 otherwise. We consider
functionals generated by a given family of closed D-coloured (non-isomorphic) graphs,
T C Grphg’d. That means that if

= lexJ(0), for lc : (ZP)*M©O ¢, ce T, (1.2.5)
CeY

is known, we want to know the graph derivatives of X[J, J] with respect to connected
graphs. Here k(C) denotes the number #(CV(VO )) of white (or black) vertices of C.

Proposition 1.2.1. Let X be as in eq. (1.2.5). Then, for allC € YNGrph$,, the functions
le satisfy

0X[J,J] _

* * 1 k‘(C) 1(1) O'fl(k(C))
0C(X) Z (0"le)(X), where (o"le)(x,. .. ) = le(x7 X ),

6€Aut:(C)
for all X = (Xl, .. ,Xk(c)) S ID,k(C)
Proof. From formula 1} one has
0X1[J,J] Q(Y)
[oxJ(Q
a(C(X)) 8C Z Q¥ Z Z c(X)

QeYT Ye(zZP)k

=2, D LY ZanH< x')

QET Ye(zD)xk(Q) €8y ()
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=2 2 Y Z5QCH< )

QeT YG(ZD xk(C O’GGk(Q)

=y Y [Cx*,..., 5(9,0).

QeY O’EGk<Q)

Since T consists only of graphs that are not isomorphic, the sum over Q yields, because
of the delta §(Q,C), only one term. Hence, the last expression is precisely the sum over
automorphisms of C. O

As a consequence of this, one can recover the correlation functions via
oW 1J, J]
0B(X)

Notice that X = (x!,...,x*) € Fpy if and only if B.(X) € Fpy. Since W[J,J] is
real-valued, one has the relation

2k(B) (x) 0 Wi Tl _ a0 (g x X 1o,
68 = I 5757 VI y = G B0 (X Fosm), (120

G (X) =

where B is essentially the graph B after inverting vertex-colouration, E’SVO ) = Bl()o) and
Béo) = Bg] ), but otherwise with the same adjacency and edge-colouration.

We now explain how this graph derivatives are relevant in the WTI. The WTTI is
rather a set of equations, one for each colour @ = 1,2,..., D, in which a new generating
functional of the form

0 =3 5 % 3(C) (s €I, C 2) (1.2.7)

CeQy

appears. Here, dy : Feyn, (V) — Grph%’Cl denotes the boundary map in terms of which
we describe the graph family Qy as follows: If e} is the a-coloured edge at the white
vertex v € Bg) ), then the graph B © el denotes the graph that is obtained by the next
steps: first, remove the two end-vertices, v = s(e?) and t(e?), of €¥; then, remove all their
common edges I(e?) := s7(s(e?)) Nt~1(t(ev)); finally, glue colour-wise the broken edges,
i.e. the each broken edge of the set s™(v) \ I(e?) with the respective broken edge in
t=1(t(e2)) \ I(e¥). Then  is defined by

Q= {Be|Beimdy,veBY}.

Definition 1.2.2. Let a be a colour, F : (ZP)* — C a function and B € Grphs“". For
any integer r, 1 < r < k(B), we define the function A F: (ZP)*! — C by

(ASBGJ’F)(Y) = Z F(y17 AR 7yT_17 ZT(SGJ q7 Y)? yT7 A Jyk_l) Y

for each Y = (y!,...,y*"!) € (ZP)*!, where the sum is over a dummy variable ¢, for
each element of the set h € I(el) \ {a}. Before specifying z"(s,,q,Y), we stress that this
sum can be empty, in which case

(Afa’rF)(Y) =Py ...,y L2 (5,Y),y",... ,yk) .
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E(r,i,a) x"
e
X'E(T'ai#I) / e’ ‘e\r. Kk(r,i,a) o/_\.
a i yrrs

(a) Locally, edge and vertex labelling in B (b) Locally Be e,
before forming B © €],

Figure 1.4: Some notation concerning the definition of ASBM.

The momentum z" € ZP has entries defined by:

Sa if i=a,
SonaY) = it i€ 1)\ {a)
yrrie) if 7 € colours of Ayery = {1,...,D}\ I(e}),

where y*("#9) (1 < k(r,i,a) < k) is the white vertex B © ¢ defined by

- J&(r,i,a) it &(ryi,a) <r,
wlr,i,a) = {f(r,i,a) -1 if&(r,i,a) >r. (128)

(see also Fig. [1.4). This definition depends on the labeling of the vertices. However, the
pairing ((ng), B)), defined as follows does not, for it is a sum over graphs after removal
of all a-coloured edges:

k
(G BY,, =Y <Afayrng)> «JBoe). (1.2.9)

r=1

Remark 1.2.3. Unless otherwise stated, we set the convention of ordering the white-vertex-
set B$ ) in appearance from left to right.

Ezxample 1.2.4. Let {a,b,c,d} = {1,2,3,4} and

(see also Fig. . For a fixed colour a and s, € I, C Z, we obtain ((Gg_%,k),fé»sa.
According to remark [I.2.3] the first white vertex is the left upper left white Vértex, the
second is the lowermost, the third is the upper right. This orders the a-coloured edges
{el, 2 e3}. Explicitly,

a’ ~a’

re (0T o red-red- T, med- (o

S

hence
(G, = DanGR * I([]) ) + De2GR % I(([L1D) + A, aG) + (L)
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which, in turn, equals

> {8, 1GR3, 2)I () (v.2) + Ay, 2GR (v.2) I((.0) (v, 2)

+Asa3G§9(y7 )J ()( z)}
o Z {G}-/ Sa, 2y Zes Yd, Y Z )jyazbygzdjzaybzcdesz + (Z G_(;jé) (y7 Sas Ybs dey 2ds Z)

Y.z qc

_ _ 6 _
X Jyazbzczd Jzaybycyd Jsz) + G_(F/) (Ya Z, Sq, Zb; Ye, yd)Jyazbyczd Jzaybzcyd Jsz} .

We assume all the entries of momenta in Z* are ordered by colour, e.g. (21y423y2) really
means (21Y223Y4)-

We now recall the full Ward-Takahashi Identity, proven in [62].

Theorem 1.2.5. Consider a rank-D tensor model, S = Sy + V', with a kinetic form
Try(p, Eg) such that the difference of propagators Ey, . p. imapers.on —Epi..pe_inapess..on =

E(ma,na) is independent of the momenta pa = (p1,---,Da;---,Pp). Then that model has
a partition function Z|J,J] that satisfies

52 Z[J, J]

- — Oy, Y\, 0)) - 21T, J) (1.2.10)
Pa 5Jp1---pa—1mapa+l---pD(SJpl---pa—lnapa-ﬁ—l---PD ( ¢ )
1 - ) ) -
== J, 1...Ma-.PD « 5 —J 1..Maq.PD & 1 Z Ja J
g Epl...ma...pp - Epl...na...pD < b o 5Jp1---na-~~pD g o 6Jp1~-~ma-~~pD> [ ]
where

Y @[T, ] Z (e . (1.2.11)

=1 B€im oy
k(B)=l

There is a subtlety regarding the orderlng of the vertices. We associate an ordering of
the white vertices of a graph B in G . The k arguments (in ZP) of this function match
this vertex-ordering. But the edge- removal sometimes will yield a graph which should be
reoriented. To illustrate this, for D = 3, consider for instance the next graph S. The
edge contraction yields, for any ¢ = 1,2, 3, the following:

(1.2.12)

b
As a graph, S©e} is just Dﬁ@, but when one considers f x J(S©e}), for some function
f:(Z%)*3 — C, the order of the vertices does matter:

f*J(a) = (2 )<L D)
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In going from the graph|1.2.12/to Q%f@, one permuted the first and second white vertices.
Accordingly, one ‘corrects’ f and replaces it by (12)*(f). Notice that the cycle (12) € &3
does not lift to a coloured automorphism. If this was the case, we could just as well ignore
the correction.

The next definition is needed in order to describe some terms appearing in the SDEs.

Definition 1.2.6. Let B € Grph% and let v,w be vertices of the same colour (either
both black v,w € Béo) or both white v,w € B‘(NO)). We define the graph ¢,(B;v,w)
as the coloured graph obtained from B by swapping the a-coloured edges at v and w.
Usually, vertices in boundary graphs are indexed by numbered momenta v = x* w =
x7 € ZP in which case we write ¢,(B;x% x7) or just ¢,(B;«,~). These graphs are,
generally, disconnected.

b c
Ezample 1.2.7. For any colour a = 1,2,3, one has ¢,(&;u,v) = () o () =: &, for two
black (or white) vertices u, v of £&. If  and y are the leftmost black vertices of &,, then

gb<8a;33',y) = 6 U @

1.3 The Schwinger-Dyson equation tower in arbitrary
rank

We pick the following quartic model S = Sy + Sine, with interaction vertices Sin[e, @] =
A ZaD=1 Try, (, @), being each vertex V, the melonic vertex of colour a,

Y, = 11 (1.3.1)

Moreover, assume that the propagator obeys that, for each colour a, the following differ-
ence

E(tq,sq) == E, —FE

1---ta---PD P1..-Sa---PD

does not depend on p;, for each i # a. Such is the case for Tensor Group Field theories, say
with group U(1), being the origin of F is the Laplacian operator on U(1)” after taking
Fourier transform, and the tensors the Fourier modes. We call this model the @%m—
theoryﬁ. Here, the subindex ‘m’ denotes melonicity. For specific choices of propagators
and renormalizability, see [67] and references therein (additionally [68] 69, [70]).

One observes that, if §(V,)(b, c,x,y) is the invariant of the trace, that is

Trva (80, @) = >\ Z @b@cd(va)(b7 C, X7 y>§0y§0x )

b,c,x,y
one gets for s = (s1,...,5p) € ZP, the following expression:
(35int(%90)> :2)‘{Z< J Z J 0 )}
a@s gob*)(;/(g‘]ﬁ o by 5J31~~-3a71ba5a+1--~8D b& 5(]b1...bD 5Jb1...ba,18aba+1...bD ’

(1.3.2)

4For D = 3 all quartic invariants are melonic, so we refer to it only as ¢3-theory.
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where by = (by, .. ./b\a, coybp) = (by ... ba—1,ba41 - - ,bD) e zZP-1 and f can either act
trivially on a variable or be complex conjugation, and ¢” = @ or ¢’” = ¢ according to
whether J* = J or J* = J, respectively. The term (0Su(¢, gp)/agos‘ b_>5/5Jﬁ)Z[J, J] can
be computed with aid of the WTI. We depart from the formally integrated form of the
partition function

Z[J7 j] X €xXp (_Sint(907 (’5))|<pb—>6/6ﬂ eXp ( Z qu;1Jq> )
qezP

where we will ignore a (possibly infinite) constant and write equality and derive its loga-
rithm:

SWI,J] 1 ) e
T - T in ) 5J,(5 o0J JSES qezD Jafa “Ja 1.3.3
0Js Z[J, J| exp (—Simt 0/ /6J)) e ( )
1 7 7 o1
- qu D JaBq Jq
Z[J _] {E J eXp( lnt((s/(s(], 5/5<]))e e

aSint(SO,@) . -
+ (T i exp (—Sint (¢, @))lwbﬁé/(mezqezp JaEq ' Jq
s N

— i J o 1 _ aSint(gO, @)
Es |7 Z[J,J] OPs
For sake of notation, we introduce the shorthands bgs, = (b1 ...,bs-1, 54,0441 ---,0p)

and, similarly, s3b, = (S1...,84-1, b4, Sas1---,5p), for any a = 1,..., D. By applying the
colour-a-WTT to the rightmost double derivative term appearing in (1.3.2)), the following:

(8811555?@) 217, _%Z{Zwsa (G YLOLT, T (1.3.4)

1 ;9 5 ,
" bZ E(ba7 Sa) <Jb5jb&sa B Jb;zsam)>Z[J7 J]}

a

Z1J, j]} .

pr—5/5.J¢

Pr—35/574

OV, T @, 0Z[0. T
Z%Z{%-ZU,JHY;QU,JL gjs]

J 5 _
' Z ba’ Sa 5‘]Sab <Jb 5jbd5a B Jbasa m>Z[‘]v J]}

a

= ZAZ{MG—MZ[J’ j] +}/;((za)[J7 j] . 5Z[{7 j]

5. 0Js
1 5Z J, J| Jb §2Z[J, J)
* Z baa Sa s i g E(ba: Sa) 5js&ba5jb&sa
B 1 62Z[J, J]
— E(ba,sa) P 5 Teaba0 b
_2)\2 s) + Co(s) + Du(s) + Fu(s)),
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with

§70J,] 1 214, J]
_ vyl il Gl = —
Aa(s) }/;a [J’ J] 5Js , Ba(S) b E(ba7 Sa) bds“ 5J5aba5Jb ’
B 1 §207,J] B Ty 82]J,J]
Ca(s) - Z E(baa Sa) 6js ’ DG(S) B Z E(bm Sa) 5jsdba5jb@5a ’
SY DT, J .
Fu(s) = % - Z[J,J].

One shall be interested in derivatives of W/[J, J] of the following form:

k
5 0 -
—YWI[J, J] ;o X =4 xR) € Fpg, BoX) = (v ..., ¥5),

(1.3.5)
for B € GrphCDl, and then use formula with, say, the vertex s = y!. As said in the
introduction, deltas of the interaction vertices and the propagators (proportional to deltas)
inside each Feynman diagrams render the definition of the 2k-multi-point function based
on redundant, if one treats the x-variables and the y-variables as independent.
In fact, all the y’s can be expressed in terms of coordinates of X = (x!,...,x*) of the
same colour, the combinatorics of which uniquely determines a so-called boundary graph
B with 2k vertices; moreover, non-vanishing terms in the formula above are precisely a
graph derivative of W1J, J] with respect to B at X.

For the time being, we pick only a connected boundary graph B and we want to know
what the rest of the derlvatlves 5/5Jxa §/8Jya(ix1,), (@ =2,...,D) do to the expression
(1.3.3). By using with s = y! we analyze the five summands in the (lowermost)
RHS:

1 56
X;s: B 0% M,
ma(XisiB) =70 11 Srosin M)

for
(m, M) € {(a,A), (b, B),(c,C), (2, D), (f, F)}.

Actually s is a function of X —and so is any other y*— but the dependence of m, on
it only shows that s is the variable respect to which we firstly derived W[J,J]. Each
m, depends on the boundary graph B through {y“}%_, given by (1.2.2). Ignoring the
common (—2\/Eg) prefactor:

o a,(X;s;B) directly yields Y0, 0] - ng)(X)

e also, derivatives on C,(s), ¢o(X;s; B), readily give >, E(ba, Sa)*ngk) (X)

e the term f,(X;s; B) is, according to Proposition [1.2.1} ZﬁeAutC(g) W*fg)(X)
The remaining two terms, b, and 9,, need a more detailed inspection, though:

) 5 - 62Z[J, J]
o(J =
(J) + 01_11 5T yo 5J H 5J o 0Jw [Z E(ba, 8q) (5Js 25a0bysa
v=1,....,k
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_i 5 6 > dope  82Z[J,J]
- 5jya 5Jxl/ b E(baasa) 5J_S@ba6jb&5a

v=1,...,
_2’“: H 5 [ 1 822[J,J)] }
p; # 5J OJxr (ya75a>5<]s@y£5<]ygsa )
1/: ..... k
(1.3.6)
As for the derivatives on B,(s),
§y 9 62 Z[J, J)
O(J ————B,(s) = it it
(/) + E 5T 37 Do) H 5T e 6un{zb:Eba,sa base 5 T baajb]
v=1,....,k

1 b, 02Z[J, J]
= e L
Z 11 5J §J [Z E(ba, 8a) % %2 655,00

6 1 a>1u#B
Z 11 [Z g 217 ] }
>1 #ﬁ (sJ 5J E ba7 Sa 5JSabG5JX§ba
1 82207, J] }
= ]I Z . (13.7)
a>1v#y 6J 5J |: (bavma> 5Js ba5J Tba

For the last equality, one uses the fact that B is regular. Thus, there exists precisely one
white vertex x7, v = v(a), such that 27 = s,. In turn, this means that 6;% = 5;‘;35?3.
e as evident in eq. (1.3.6), the derivatives on the D,-term give, after se%cting the
sources to zero, all the (coloured) graphs obtained from B by a swapping of the
following form (only a-colour and only the four implied vertices visible):

S = SaSa y? = (yiys)
= xgsa _ ( “(P)ys)
a a —
x7 = (.’L';/Xg) X”(P) x7 Xm(p)

(1.3.8)

for p running over the black vertices which are not Js = Jy1. Hence the contribution
of this term is

1 YARN
Z-1 fi =2,...,k.
;E(yg,sa) 0 a§a<B7]—7p)(X> o=

Since y' = s, we also write ¢,(B;y',y”) = <.(B;1,p) for this new indexing graph
(p>1).

e concerning the derivatives of B, above in eq. (1.3.7), the only surviving term is
6221 J, J)/0 56,0 Jxrn,, and is selected by 52%, which is just, after taking into account
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the rest of the derivatives, the graph derivative 02/0B(X)|,1_,, with the single
coordinate x) being substituted by (the running) b,. If B is connected (as we
assumed), after setting the sources to zero, this accounts for the firstline in the next

term:
X S; B Z E b x )(Xl,...,X’y_l,(iL"ly,..-,xZ—bbaaxZ-&-l?'"x’YD)?X’Y—H""
1 oz[J,J] ,
+ (x (@), ) et ),
; ,Tq) 8%(3 ,P) ' ' o i

(1.3.9)

The second line is found by noticing that one also gets a contribution from the graph
derivative 0Z[J, J ] / 9sa(B; 1, p) if this is evaluated at X| ,  «(, where x(p) is determined

by (1.3.8] - ie. 2ol = = y”). From eqs. ([1.3.4)) one has

H 5J 5T ( ?;EJ] Z(Aa(S)+Ca(s)+Da(s)+Fa(s)_Ba(s)))

.....

= D (0a(Xi8B) + 6o(Xi8i B) + 0u(Xs 81 B) + fu(Xi5:B) — ba(X;5: )

=0
0

R

where each summand is now known. Because Yo" [0,0] = As, 1 Gg we have proven:

Theorem 1.3.1 (Schwinger-Dyson equations). Let D > 3 and let B be a connected
boundary graph of the quartic melonic model, B € FeynD(gom D) Grph%’d. Let 2k denote
the number of vertices ofB Pick a J-external line, that is, Jya, for 1 < a < k, where

B.(X) = (y',...,y%...y¥") for X € Fyp),p, and set s = y* for sake of notation. The
(2k)-point Schwinger-Dyson equation correspondmg to B is

(1 +Z ZZG@) (Sa, Qa ) 29 (X) (1.3.10)

®a=1 qq

2(11?’:—1—(_5:\)2{ Z sta( )

a=1 \ 6€Aut.(B)

AN 077, J]
> E(ya, sa) [3@(5 a, p) (%)~ 9s.(B; o, p) (X\sﬁyg)}

B Z E(si, ba) [ng) (X) - Gg" (X susp)] }

for all X € Fpp). Notice that s, = x) for certain v, X = (x',...,x7,...,x¥), and
in this sense X|s, b, means the replacement in X of z) by the summed index b, (see
eq. (L.3.9), with a similar situation for X|s, e ). Here (sq4,da) is abuse of notation for

(1,925 - -+ Qa—15Sa, Qat1, - - - ,qD)- Also recall that E(ug,ve) = Euyq, — Popas, -
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Proof. The 2-point equation has the same structure, but the propagator is added (account-
ing for the delta 4y, term. This equation has been proven in [62]. For the higher-point
functions, the proof of this theorem (with o = 1) precedes the statement. We remark
that, since X € Fyp),p, the denominators of the form E(y?, s,) are well defined. In the
limit b, — s,, F(s4,bs) becomes singular, but also the numerator, and a derivative term
arises. O

A graphical interpretation of this theorem shall be given in a future work; therein, in
particular, the perturbative expansion of this equation will be addressed in simple cases.
We will ease the notation fg)sa = fgl), when no risk of confusion arises, keeping in mind
the dependence of this function on s,. Notice that if the graph ¢,(B;1, p) is connected,

then the respective derivative on Z[J, J] is just
1 0zZJ, J] (2k)

70391(8; 1, p)(X) o §a(8;1,p)<X);

otherwise, the RHS of this expression contains, on top of GC (Bi1.p)> also a product of

correlation functions indexed by the connected components of ¢,(B;1, p) with a number
of points which add up to 2k (see Sec. |1.4.1)). Observe that the equation still depends at

this stage on the choice of the vertex Jg, with respect to which we first derived. Thus,
one has k independent SDE for ng), when B has no symmetries.

1.4 Schwinger-Dyson equations for rank-3 theories

According to [62], the boundary sector im @ of the ¢j-theory is all of 9(Feyns(p?)) =
Grphy™?. Therefore W[.J, J| = log Z[.J, J] can be expanded in boundary graphs as:

Wo=slJ, ) = G )*‘](@H 5iCloiol* J(@MHEZG%*J(@)+EZG(§)*
) +yeg (%)@G () EICHNNIRESg N Dotc KNS
JSul)+ Gl cgp *J(@U@H?EG@@ *J @u@
%G%@@@*J(@ )+ 5 zlzG\©|@|@|*J(@u@“@ + G\@I@-I*

(@u@)+ ZG@@\*‘] (@u@)JFZCﬂamw*‘] (@u m) b *

c ]l<
A l i i
60 TO+E 0, - -j) #3265 O
] j ; ) z 1 1 !

I glo 1

1)+ 3 GO «J +G® %3 eg +
.) 2 @f*() @*( 2

| Piard a~v>"c
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The WTI will be used for each colour a = 1,2, 3, and it will be convenient to single
out a in this last expression. From here orf|b = b(a) = min({1,2,3}\ {a}) and ¢ = c(a) =

max({1,2,3} \ {a}):
WD 3[J j] =
GY X AE) + 5GL L IS V) + 562, +I(([70) + 5 368 «3(([ 7))

a

L o) 1 ©) i
+§G@*J(@)+§;G@*J(@)+ SNPGRS IEFS Y
1 bc a _c ab
+§G§§;*J(<X>)+GE§§*J<>+G%*J<>+GE§;*J<>
1
2

G xS U () + ZG%M «I(Su( )

iF#a

1 1
+ 55 Clemin * Q0L 70) + 2..22§G%|m|*3(020u@)
+22 > G *IQ QU (")) + G%\m*‘](u@)

i#a

CHUNES (@ - %) 32 G%@l *J<6 H @)
3 I©\|*J< @) ;GFZM@@ *J<6 - m)

+G(8) *J<@u> 2. QIZG|@\@|QZQ| J(@u@u)

+ﬁG|@\@|ozo| J(6u@u)+ G%@@@ Jouvououo)

a

o’ b Q
OE:I i *3002 ) 01)

c b
a _c a _J _a
(#]#Z)
J J
ATt (O ETTD) A5 <a7>
! ZG@ (>+10%*J<> m‘:

Jsﬁa

5Beware this is only a notation for rank-3 theories; for rank 4 another notation shall be used
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i#a
+Z¢ZaG~ ( z‘)+G%*J<

ZG(S) *J

1753 &

In [62], the term Yi¥[.J, J] for the @4-theory to O(4) has been found. This expansion is
enough for deriving any of the 4 point SDEs. However, since we want the explicit 6-point

SDEs, we need to compute Yo* [J J] to O(6) in the sources, i.e. consider the free energy
to order O(J*, J%), to be precise.

Lemma 1.4.1. To order-6, Yi"[J, J] is given by:
YO[T,J]

2
_ (2) 1 (4) (4)
= G (50, a0 c) +5 §:l NoprGIL L+ A Gl A G\ o TALGL) (D)

b,9c

+(§§3:<AWG€,§;+A G+ DG+ 80, G+ 5 80a Gl ) # (1))
+( Z As.aGiy ;ASa G(“)JflASalG%oz@l) A
4;; GO+ A5G +;A5a (G 5801 GlE ) < (D)
+(%é ,g@@ﬁAsagG +TZQS;ASE G%m,)*J(@U@)

+ {i (Deas G o) + DG o)

p=3,4

| —
S~

T D_(BenGiE Sioie) + Bu a2, m} *J(OULD U

u=1
+{

(Y (8) . 1 ®)
A, rG||| + Z (123) (Asaﬂ"G\@||)) + 4 Z( Z AS“’TGWZQ\@l)
1

OOI>—‘

r=1,2 r=3,4 i#a r=1,2

®)
> ASG‘JQ@%W Z ASQQG\@@\+ASQ4G|@\M|+ASG4G|@|M\

9=2,3,4 q=

1 (8) 8) * (®)
7 D Barr G B 2GE) L+ (123)" (8,56 RN CSITNR)

r=1,2

OJ

ab ac
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1 1
®) . @®)
5 (22 BeurGimnim + 2 (128 Beus Gl + 7 D_ (128) Ay G gy

r=1,2 r=3,4 p=3,4

©) 1 (8)
(123)" Ao p G 3 e T Z Asq hG|@\m| + B 4G|@|m\ T 2 AurCigiaim

p=3,4 r=1,2

1
4
1 *
§< ﬂﬂ! +(123) (A8a73Gca )) + A%QGS@} *J(S U OZQ)
1 ®) , ® 1 ©
i {g Aoy r Gy e + D (123) Ay Gy oy + 1 > (123)° A, Gy o)
r=1,2 r=3,4 p=3,4

4L

T

1

2

(®)
( _12AS”G\@|OEQ| hZQS As,, hG\@IMI + 4, 2G|©IMI T 22 DG o e
(®) . ©
+ (Asa,2Gbu + (123) (ASa 3G )) + Asa 2Gﬁ}§®} * J(@ U Ojo)
|@|%| + 850G 98:@ + ASa’lGa@@a

+ 3 BasGey + 5 ; AG%} « I(L)

1
(8) (8)
+ {SAS“ 1G|@|@\ T Baa1Cpyy + At Gyt

+ - ZASGGS)JrZAs”G }*J(@)

r=1,2

W~

1 8
{_ san & |@|Q\ Z ()-
_Z } *J @)

1
+7 ZASa TG +A3a 1G®@

1 ()
+{3AS‘“1 |@|@\+ ZAS“ :

@’58
&

+ ZAsa G©+ASG1G+ > A G@@}*J(@)

r=1,2

(8) * (8) * (8)
+ {ASMG'@%@' +}§3A5a,th + (13 (80,0GE)_ ) + (1) (A, 4G )+

(®), * ®), * ®) . ®)

+p;4 (ASQ,pG +(13) ASQ,pG) +(13) (80,0GE)_ )+ (13)" (8,26 )
2 \ 7 BouaGgyy 0.4 wtG i,
1
+Y (13 (A, (;(f(, - (23>*A8a71G§%5 + A, GO
b ¢

(1) 80,56 + (123)° 80,46 ) | 2300 D)

oLl H]L“’j Y y

b b
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(8) (8)
+ {Asalel@‘m FALGY L+ AL > o)
(8 * 8
+ > DGl HALGT L+ (13)°8,.G Z A, ,,G
p=3,4
+ 3 (13) DGy + (1380 G+ 0,46 f)(,.
q=2,3,4 ”Q;@” @
1 a C
+ 4(A5a71Ga + (123)*A5a72G%; + (23)*A8a,3G%a + (13) 84, 4G & )} *3(0 ) 0)
+ { Sa, 1G|@‘ m| (13> (Asa 4G ) (]‘3) (Asa 1G )
1
+5( 21:2(13> (8, G Z;lAsqub Do, AL GU .
r b=
+ (13)"A,,, 4G Z ASGPG + ;4 (13)" Asag 'l"
q=
+ 3 (13)A,, qG + Z (13)* AsapG( .
q=2,3,4 p=3,4 @
1 b
~(A ®) 123)*A (8) 23)*A, 3G® 13)*A, 4G® J .
F(BnnGRy + (128 DepGEy +(28)"DusGlEy -+ (13)"Auy iRy )} I (EN)
Proof. See Appendix [A] O

Since the 2-point equation was already derived in [62], we immediately proceed with
the higher-point functions. Nevertheless, a detail derivation of the 2-point is done in
Chapter [2 in order to study its large N limit.

1.4.1 Four-point function SDEs for the pi-theory
and G§4)

s
from that for G(@? , which we now compute. We will obtain, as stated by the theorem of

We can use the colour symmetry in order to write down the equations for G%Z
previous section, the SDE for G%r

We need first, to compute the functions f%l for each colour a. To this end, Lemma

[[.4.1]is used:

3 3
w _ 1 @)y , 1 (©)
ho =3 ;(Amﬁ@) +3 Zg(AwG@)  (BanaGiy + BanaGily) + Aaa G )
£ —li(A GO+ A G +iA G (A G\ )
1o 3 —~ Yy2,r @ y2,3 Y2,r y2,1 |31 g
3 2 1
fl@l = Zl(Ay37TG%> -+ AyQ G + Z Ay3 rG(6) ) 5 (Ayg 1G|©|1@1‘)

Also notice that
a(ifgL2)=cUe, «Of;1,2) =133, (15151,2) =22
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The derivatives with respect to these, evaluated in X = (x,y) are then

GA(x)-GAY) + G2 o xy), G (xy), and G (x.y).

respectively. Letting s = (x1,90,y3) and t = (y1, 22, x3) and using Theorem [1.3.1] one
obtains

(1+—ZZG2) sa,qa) Gfg?l(x y) (1.4.2)
—2))
-5 > s

S

FeAute (1))
zZy! 0zZ[J, J] Z;! 0717, J]

+ X[, .,

;E ya;Sa an(l@l,l,p Zl ya,sa 8%(1@1’1’/))( ‘ a—>ya)

% e @AX)—GEgloqwaﬂ}

3 3

(2 [y o (1 : 6
T (B0 + U8 (3 > (s + 5 2 (BnGE)
©)
(B aGiy 3 B sGry) + B, G2
3
! 1
" g Z(Ay27rGg) + Ay2’3G§X)@ - Z(Ay%TG((Z%) + §(Ay2 IGI(‘Géh@lI)
r=1
1g X
"3 Z(AyS”’G%) + Ay, 3G(6) T Z Ay, rG ) 5 (B, 1G|@I i |> (u,v)
r=1 r=1
1
* By (60~ GS W) 2

T G\@|@|(X y) = Gf@@\(yl,@,m,y)}

N G:Egg (X7 Y) - G§%3 (Xa Y1, T2, 93) + 2@2 (X, y) — G§§2 (X, Y1, Y2, 1‘3)
E(x273/2) E($3,y3)

(4) (4)
— Z xl, G1@1< ) - Gl@l (b17$27x3ay))

- Z E(ya b2 Gfél( y) = G%?l (%, 91, b2, y3))
_ Z y3’b3 Gf§1( ) - Gl(gl (X; ylay27b3))}

1.4.2 The Schwinger-Dyson equation for Gé%

We now derive the whole set of six-point function equations for the ¢3-theory. They hold
for any model whose boundary sector is the whole of Grphg’d. From Prop. [1.4.1} one can
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read off the fga) functions.

For the boundary graph 4%, one has, for each colour a = 1, 2, 3,

_ 1 (8) (8) (8) 1 (8)
= 200G o+ ASGJG”%@ +A,, 1G +p234As“ ,,G + Z;ASG,UG@&.

Departing from Theorem 1} this last very expression allows now for an explicit deriva-
tion of the equation for G joe Namely, for X = (x!,x* x*) = (x,y,z), and choosing

(a)
T

S = (wlay% ZS)?

(1452 ;;G@) o) ) G2 X)

(—2)) < Z;! { aZ[J, J] aZ[J, J]
= —"_ X A . 4N Laq—>Sa
Er1y223 GZ:: aeAgz(@v ; yaasa aga(@;l,p)( ) a%(@;lap)( ‘ )
1
- Z B0 b)) [Gg (X) — Gg(xka—wa)} } (1.4.3)
ba arva
One finds:
ZZ 0Z|J,J]
a=1 p>1 E yaasa aga @,1,p)<X)
1 1 1
= =——(23)'G® + ———(13)"GY, + ———(123)* G
(E(y1,$1)< ) e E(thl)( ) e E(Z2,y2)( ) w
1 1 1
+———(132)'GY), + ————(13)*GY, + ———(123 *G<6>) X),
E(Iz,?h)( ) R E($3,23)( ) s E(y3,23)( ) e (X)

where we recall that for a function of three arguments and o € &3, o* f is given by Prop.

21

The meaning of the fgé.; summed over colours a and over the automorphism group is

S5 n { GO ASQJGf;{@ FAG
a TEZ3 :
+ 30 A6 ZASa G® }

p=3,4
_ * (8) 8 8 8 8
N ; " {5 2 AnnGig e + (AWGS@;@I T Ba G, + Bia Gl + 8paGip
rE€Z3 a ; :
+ AZ3’1G(8) + A, 1G(8 T Z Az, pG + Ay, pG (X@ + A, pG(QSi?@ )

s g 2 p=3,4
1 4
- (8) (8) (8)
+ 4 Z (AIhUGQ + AymuG@s + AZs,UG@l )}

u=1
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where Z3 is generated rotation of ¢ by 27/3, that is 7 is the liftings of the identity, of
(123) and (132) in &3. Finally, the difference-term is

22 B Gl (X) = GEl(X

)] = X o [ ) = G0, i)

by Zy, bl
1 (6) (6)
+ 2 55y (8 00 - G Gn bz

3 1 (6) ©) (v <.
+ E(Z ) [G@,<X) - G%(Xay7z17227b3):|
Explicitly,

Exl 223
_ <_2§ + 3 162 @, mon) + GO m, ya,n) + G2 mom, zg)}) RRLS

1
= (ﬁ [GQ(:%(X7Z7Y) - G((Z%(yl,:vg,x&z,y)]

23 23
N ﬁ G, 0.,%) — GOy, 23,2
+ m [G%(Z,X, y) — GQ(%Q(Z X, ylyzz,yg)]
+ m [G%(Y,Z,X) - Gé%(yl,mg,yg,z X)]
+ m [G(%(z,y,x) - G%(Zl, 29, T3,Y,X)]
+ m [G%(y,x,z) - Gg;j@(y,x,zl, zQ,yg)D (1.4.4)
ORI i

8

+ (A, G A, Gl A, 1 G® A, 1G® A, G8 + A, 1G®
( 1,1 + 1,1 @@"’_ y2,1 3@1@3"’_ y2,1 2@:@"’_ 3,1 1 3,1 Q;@

4
1
+ Z A, pG - Ayg,pG%@ + AZS,,G )+ 3 (A, UG ®
2 u=1

p=3,4
1
(®) (3) _ (6) _ %) N
+ Ay2,UG@3 + AZS,UG@I )] (X) bz E(l’l, bl) [G% (X) G@, (bla Jfg, x37 }’7 Z)j|
- Z E b2 (X) - Gg(X; Y1, b, y3; 2)]

— L el o A6)
bz E(Zg,bg) [G%(X) G@(vav 21’252,63)} .
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1.4.3 The Schwinger-Dyson equation for G(S)

First, we compute b,-terms for Q,, one by one are:

1 0z[J,J]

_ @ (2) (6) 1
L 0210, J] _ @
Toa@y o Celx x) +Cig (%), (L45)
Z (9@2(@; 1, 2) 13 Zo s (@, 1, 2) -
(L.4.6¢,d)
1 Z 1 Z
_M — (23)*G<(Z%(X)’ _M = (13)* G(6) ( ).
20 065(A1331,3) E 20 0;(13;1,3)
(LAGe.H)
We stepwise collect the fég—terms from the expansion in Prop. [1.4.1
f%g is the coeflicient of J(é}) in \'[J,J] witha =1,b=2,c =2, (1.4.7)
f% is the coefficient of J(é}) in v, [J,J] witha =2,b=1,c=3, and (1.4.8)
fg is the coefficient of J(é}) in ng [J,J] witha=3,b=1,c=2, (1.4.9)
namely

“)——A A GO+ A A, G Ay, ,G®)
Tep xllG\@v@\“L ”’Cl’lG@;z@+ xllG@@+ Z WG©+Z W‘Ga@@

r=1,2

1
(2 _ = (8) - (8) (8)
foo = Ayz 1G|@@| T3 Z R F Z; AWG@ T BunGigy

+> AWG,

r=1,2
z (8) (8
= 52miG e 5 ZAW e g ZA?’”G@+A% Gy

+Z%ﬂ

r=1,2

Explicitly,

< T1Y2Y3 + Z xh m n + G (mu 927 n) + Gg(m; nu y3)j|> . G%(X)

_ 1 " 0 .
a m [G@l (x,2) — G@l (Y1, 22, IL‘3,Z)] . G@(y)
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+ m [Gg(x) — Gg(zl, X2, 933)} : Gfgl (y.z)

i m[(}%m(y’x 2) = GI2 gy (3 1, 22, 25, 2)]

i m (G121 (%3, 2) = G2y (21,22, 2,7 2)]

+ m [Gé%(x,z,y) - G%(X Z,1, %, Ys) |

B (G230 = G0y 2,11 (1410
+ m [G%(x,z,y) - G(%(X, Z, Y1, Y2, 23)

" 7;3 [ 211G + Ao 10@@ B, lG

. a®
e ZAM D $81G0 2 Z Buen Gy g,

r=1,2

1
(8) (8)
+ = ZAW TG@ + A, 1G 5+ d oA, rG@ + 38016 o

r=1,2

4= ZAysh 3 v T ZAySTG%+Ay31G+ZAySTG]()

h23 r=1,2

1.4.4 The Schwinger-Dyson equation for G(gﬁ

Concerning the correlation function G | the terms with swapping black vertices are
23

(6) (2) (4) *(6) (6) * ((6)
G962, 02 1 8- G, (132) GO Gy (126G, (1.4.11)

which need to be divided by differences of propagators. We now find the rest of the terms.
Since Aut( 1) is trivial, the contribution of the f-derivative on 3, Yi¥[J, J] is given
by the sum Y, f(f? where, for each colour a:

M _ (®) (®) : (®) . ®)
i AmlG lffol+hzz Ar h G+ (13) (A5G ) + (13)" (A uG )
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+ D (BasGy + (13) 80y G2y ) + (1) (MG ) + (13)*(%2@)

p=3,4

A, 1G +(13) (A0 1 G )+ (13)(Ay, 4G

DEE sQri] 301 B
+ 2 (13 (A, TG(?Z) —(( 3) N1 G + Ay 2GE) + (13)° Axl,gc:g(%)
7";2 ] 4 ﬂ @ 1@1
+(123)*A,, .G )

k] 1@1

2

)

N | —

@ _ ®) L o
Fan = BunaC 7 oy DGl + 8GR 45 ( 2 2<13> (PG )

* (8)
+ Z AyQ pG(s + Ayg ]_G 1 + (13) Ay274021 )

p=3,4

+>0A, pGE@ + Z 13)* A, qGE@ + (13)* A, qGQs@

p=3,4 q=2,3,4

ﬁ

1
~(A,1G®), 4+ (123)*A,, ,G®)

1S @ "

23)*Ay2,3a%1 + (13)*Ay2,40%1)

8
+ Ay%?)(;(@lo +

13

¢ (®) ®) 1 . ®
foo = (13)° AmG & + 80 G+ DGR+ o 21:2(13) (DG )
+ Z Axd pG(S) + A:ca 1G - + (13)*A1’5 4G Z Aocg pG
p=3A p=3,4
T2 (13) B Gy + (13) eGP+ A%SG(?Z
q=2,3,4 ‘ &
1
+ Z(Axs’lG%:z + (123)*A1372G%3 + (23)*Ax373G%3 + (13)*Ax374G%J)

Here s = (1, Yy, x3). Therefore, the explicit equation is

E
— ( LYETS —|—Z G(2 (x1,m,n) —|—G( (m,y2,n) —|—G( (m,n :m)}) 'G((Z%(X)

2\ )
(1.4.12)
1
- m [G(X7y7 Z) - G%(yl’ Z9,23,Y, Z)}
1 (©) ©)
+ M[G@(x,y,z) G@(zl,a:%x&y,z)}
E(anyQ) |6|@| Y,z |©|@\ y Y1, T2, Y3,
1
+ —[GY ,Z, X — G 29, U3, 7, X
E’(zm?ﬁ)[ Q%Q(y ) g%g(yl 2, Y3 )]
1
+ E(Z3,x3)|: Q%%Q(X7Y7Z> Q}jg@(wl’x%zi’ny;z)}
1
N G(6 ) 9 - G(6) , , ’ ,
+ Fige ey (G %,2) = Gy, 21,22,9,2)]
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1
o (G -GY o)
+ E(l’z, y2) (Gggg (y> Z) Gg@@, (y17 T2,Y3, Z)) G@ (X)

{8006 b T MG+ 03 (BnaGlY )+ (137 (A6 )

501 5

+ 2 (Bay Gy + <13>*Am,pG§§@) +(13) (A n G ) + (13) (A0 2GR )

p=3,4

1 (8) * (8) %
+§(Ama b (18 (A1 G )+ (13) (A aG

+Y (13)"(A, TG(S) +A, ,G® ‘+A G®)
21:2 15 @> y2,1 I@IQ%%QI y2,1 OB

(23)* A 1G®) + A, ,GE + (13)°A,, 3GE) + (123)*A,, 4GB
( 1 I}j@; 2 E%[ 3 @ 4 1‘)

( Z( ) (Ayz TG Z Ayz pG3 + Ayz 1G DR

r=1,2 p=3,4

+(13)" 2, G ) Z Ay, pG 3+ Z (13)*A,, qG_‘ +(13)*A,, .G g@

p=3,4 q=2,3,4

1
+Ay23e<?1 (A1 G, +(123)"A,,2G0), + (23)°A,, 3GE), + (13)°A,, .G, )

i1y ®) 0 ® 41
+(13)"](13) BraaiGY o H BaaGEL L+ A G+ 2(;2( 3 (Dagr Gy 1))

+ A, 4G

) )

+ Ay, 4G g@

+

| = »bl»—*

0 DG, + DGl (137 A0aG )
p=3,4

+ ZAm,pG@ £ 8 A0y + (18 A0y G0+ Ay G
p=3,4 @@ q2234 * @@ @

+ 1(Ax 1G®), 4 (123)* A0, 2G®), + (23)" A4, 5GP, + (13)* Ay, 4G®). )] (X)
4 35 @ 3, @LS 3, @ z3, @3

- —Gﬁ) X) — GO (by, x5, 23, y;
; E(xbbl)[ Q%Q( ) @;}?( 102, 73y 2)|

1
—Zm[G&%(X) GQ(:%(X Y1, b2, y3; )]
b

( 27b2 23 23

; E(ZL‘37b3) [Gm(X) GQ;%Q(lL'l,ZEQ,b?”y’z)} .

23

1.5 A simple quartic model

In order to obtain a simpler set of SDE, we consider a model which has less correlation
functions. Its probability theory is expected to ponder only geometries with spherical
boundaries. Nevertheless, it is interesting because its equations are particularly simple.
We consider the rank-3 tensor field theory with action S{p, ¢] = Sole, @]+ S|, ] where
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Sole, @) = Tra(p, Ep) = Y ox(m® + [xP)px  and Sl @] = A- 101, (15.1)

x€Z3

Here |x|*> = 22 + 22 + 22, x = (x1,22,23) € Z%. In particular all the bordisms that
this theory triangulates are null-bordisms and bordisms between spheres. Notice that the
boundary graphs are all graphs having the following property: two edges are connected
by a 2-coloured edge, if and only if they are connected by a 3-coloured edge. We denote
by © (© C Grphy) the set of connected graphs with this property. Thus

Feyn,(11571) = {B € Grphj : B has connected components in 6},

e={e, 1@1,@, @@ @}

Let Xy, be the graph in © with 2k vertices. That is to say, the set of (connected)

correlation functions with connected boundary is precisely indexed by © and we set

2%) .
G = Gg(%), ie.

being

GO — Gg7 GO — W a6 g6 B _ c®) . GO = o)

12 an’ @ @

Any (2k)-point function with disconnected components can be labeled by integer parti-
tions (ny,...,ne) such that

B=X"Uux"u. . UAy, (1.5.2)

being ¢ the maximum number of vertices that a connected component of B has. These
numbers n; satisfy

¢ ¢
k= Zz -n; and B = Zni, (1.5.3)
i=1 i=1

where B is the number of connected components of B. Then, the free energy boils down
to the expression

wiLn=% 3 @B, (1.5.4)
=1 Bed(Feyns(1[I1))
k(B)=l

where the prime in the sum means that it is performed with the restrictions . More
concretely, writing any graph B as in eq. (1.5.2)), one can rephrase the sum rather over
¢, the largest number of black (or white) vertices found in a connected component of B.
This modification readily yields

00 V4
7 1 (2k) | pm n
WI[J, J| = Z (H W)Glx;nllmlxunimX;Znél *J(AT LA UL UAS).

=1 \j=1 #
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To obtain the last line one observes that Aut.(Xs;) = (rotation by 27/k) = Zj, and
|Aut.(B)| = nq!...ng - |[Auto(X)|™ - - - JAute(Xop)|™. It should be noticed that this form
has already been found in the free energy expansion of (real) matrix models, here with
twice the number of sources of each monomial With respect to that [6, Sec. 2.3]. It is also
noteworthy that the Grosse-Wulkenhar model (¢3* self-dual theory) [6] was shown to be
solvable by using matrix techniques. Here we have shown that the 1Ji1-model obeys the
very same expansion of the free energy and that the number of (2k)-point functions of
both theories is the same for any k.

The growth, as function of the number of vertices, of the number of correlation func-
tions of this model is milder than that of the models with full boundary sector. We
further simplify the notation and set for s, = f%)k,sl- With this notation, the Schwinger-
Dyson equations in Section can be derived for the connected boundary graphs of the
1[ZJ1-model.

Proposition 1.5.1 (Schwinger-Dyson equations for the 115]1-model). Let B be a connected
boundary graph of the quartic model with 2k vertices (k > 1), B € Feyns(1151). Let
s = y!, where (Xor)«(X) = (y',...,¥") for any X € Fs. The (2k)-point Schwinger-
Dyson equation corresponding to B is

(1 + ———- 2A Z G¥(sy,q, p)) -G (X) (1.5.5)

2 2
m? + [s[2 =
2\ 01 .
- m{a - Z 7 ok (X)
&sz
(9Z[J, J] 8Z[J, J]

— X) = ————— (X, pr
; —51 L%l(/\f%;l,p) a§1(X2k;1aP)( llﬁyl)

n Z > 1 . [G(%)(X) _ G(2k)(X|Sl_>q)} } )

Proof. For k > 1, it is immediate by setting D = 3 and by cutting the sums over the
number of colours to only a = 1, since one does no longer have the vertices 272 and 3773
in the action. After using Aut.(Xs,) = Zj, and after inserting the form of the difference
of propagators, as given by , the result follows. If k£ = 1, one additionally obtains
the pure propagator term (the d; p-term) that would be otherwise annihilated by fourth
or higher derivatives. For k = 1, the sum over p is empty (thus equal to zero). O

One can still work out the functlons for and give the correlation functions implied in
the ¢ (Xoy; 1, p)-derivatives in eq. . Notice that the expansion of the term Ysll) [J,J]
is

YO[J, ] = Zf%sl*J Xp)+ Y el *3(C) (1.5.6)

C disconnected

In order to determine fof 5, We ﬁnd the graphs B such that B & e] = Xy, for certain (say,
the r-th) vertex of B. The restrictions (1.5.3) with B > 2 and the connectedness of B
after edge-removal imply that either

n=ny=1 and n;=0, ifi#£1lk,

49



y? y*

Figure 1.5: Shows the splitting of Xy into the two components of ¢;(Xa; 1, p), p >0

or
nger=1 and n;=0 ifi#k+1.

That is to say, any such B has 2(k + 1) vertices and, concretely, they might only be either
S U Xy or Aopyo, when k > 2. Adding the obvious case when k£ = 1, one has:

2

1
P =52 (812G o + a1 GY) (1.5.7a)
r=1
1
ka,éH = k}ASl 1G|<26k+‘;2k| /{Z +1 ZAéH TG (2k+2) fOI’ k > 2. (157]1))

Notice that ¢ (Xax; 1, p) = Aop_o U Xop_9,19, whence (see Fig. (1.5

i 0Z[J, J]
Zy a§1<X2k§ 17P)(X)

= G(2”’2)(x1, L xPTh) G(%*Q””)(X”, o, xF)

(2k)
+ G'XQ(p_1)|X2k_2(p_l)|(X) : (158)

Using the last four equations one can prove

Corollary 1.5.2. The exact 2-point equation for the 17]1-model is given, for any x =
(1’1,[172,173) € Z37 by

(1+L Z G (z, q,p)) G (x) (1.5.9)

2 2
m? + || 4,pEZ
1 (—2))
- @
 om?2 + |x|? * m2 + |x|2{ Z G\@|@|(x1;q p,x) + GV (x,x)
p,q€”Z
N Z 1,29, 23) — GP(q, o, 23)) } _
qe”Z

For k > 2, the multi-point equation for G®¥) | the single correlation function of connected
boundary graph, is given by
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k k
(1 m2—|—] E Z G a:l,qp>-G(2)(x1,...,x)

7p€Z
_ ﬂ zk: l Z G(2k+2) ( k+z) -
_m2—|—‘s‘2 k || X |l'1aqp, ;~--,X &
=1 pg€Z
k‘+1 ZG%+2 R I LI B AL 1,xr+l,...,xk‘+l)}

+Z GPI(x!, L xpTh) = G (2l xy ak, L xP ) CGERAY (xp L xF)
(0 = D) o

(2k) (2k) P11 2 k
+ |X2<p71)|X2k72(p71)|(X) G| 2(p l)‘X2k72(p71)|<x17 Loy L3, X750y X >1
[(27)* — (21)?]
GO (zh ol ok %2 xF) — G0 (g, 2l 2k, %2, .. xF)
= (z1)? — ¢ '

Jor X = (x},...,x*) € Fap, s:= (af,2h,2%), and x* = (2%, 2%, 2%) for alli € {1,... k}.
Moreover x! = x' mod k, for and j € N with i € {1,...,k}.

It is pertinent to stress that s = y! is a ‘chosen’ black vertex, and this equation holds
for any other choice s = y?, i # 1, (Xo).(X) = (y!,...,y"%), after the pertinent changes
(e.g. the sum over p excludes not 1 but 7).

Proof. One uses the equations and (1.5.8)), the triviality of the automorphisms

group Aut.(©), and the invariance of GW _ and GW:

ISits]

(z,y) = G\

(4)
G lelal

\@|@| (y? Z) and G(4) (Z7 Y) = G(4) <Y7 Z) .

This is enough to obtain the 2-point equation. For k£ > 2, on top of using (1.5.7) and
(1.5.8)) one explicitly writes the action of o € Z. This is rotation by 27l/k, 1 <[ < k, so

o f(X) = f(x7 W, x7 W) = px L X

where x/ = x" mod k, for i € {1,...,k} and 5 € N and f any (appropriate) function. [

Remark 1.5.3. An analysis on the divergence degree as function of Gurau’s degree, and
the boundary components was done in [68], [16] for group field theories. It turns out that
graphs with a disconnected boundary are suppressed and therefore any graph contributing
to G| ©| - is expected to be suppressed at least by N ™!, with respect to those summed

in GW. Nevertheless these correlation functions with disconnected boundary can back
react as do their analogous in matrix models in the topological recursion [5]. Also, by
results of matrix theory [6], we could expect that the term G*)(x, x) would be analogously
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suppressed. Hence, conjecturally, for the 177]1-model, the leading order Gfﬁgl of the two-
point function (|1.5.9) would satisfy the closed equation

(m2 + x>+ 2) Z Gﬁjgl(xl,q,p)) -GY (%) (1.5.11)
qpeZ
=1-+2\ Z mel(:vl, T, T3) — Ggil(q, Ta, .’ﬂg)} )

qeZ 1

and by the same token, one could truncate the equation for the 2k-point function (|1.5.10)
to the following one, where the equally suppressed terms fa 5, also are neglected:

1+ —2> G (z},q, p> LGP (xR (1.5.12)
( m2+ m? + [s]? quez ' 1
N (_2)\) |:Z Gggl ? ( ) "7Xp_1) Gr(igl Y (Ihx%vIé?XQ’ s 7Xp_1> G(Zkl 29+2)(
m? +[s? [ <= [(27)? — (21)?] me
_Z nifl) (z1, 2 2l %% .. xP) —Ggfl)(q,xQ,xé,XQ,...,xk)
Eyr

These relations corresponds to the planar limit in matrix models [6]. As we will see
in Chapter [2] the term last term on the RHS of the two previous equation will also be
suppressed. Nevertheless already at this point, it is very encouraging to see that after
determining G? | the ‘melonic 2k- point SDE’ m for any k£ > 1 could be entirely

el Gfﬁgl, . ,ngﬂ) and constitutes an

mel?

expressed in terms of already known functions G2
equation only for G® which would decouple the tower. We will further explore this

point in Chapter [2|

mel ’

1.6 Conclusions and perspectives

We studied the correlation functions of complex tensor field theories and, mainly, pre-
sented a collection of generating functionals that allowed us to derive the exact Schwinger-
Dyson equations for complex TFTs of rank 3 (and in Appendix , rank 4 and 5 theories).
The next step is to define a large N limit in the hope that the tower of equation decou-
ples and we obtain a closed equation for the 2-point function similarly to what has been
done in [6] for matrix models. That result would provide insight on the solvability of the
1ZJ1-model. Both problems are addressed in the Chapter

Another natural extension of this work is to study if TFTs satisfy topological recursion.
It is unclear that such a recursion can be understood directly from the study of the SDE.
However for regular tensor models with quartic melonic interactions, topological recursion
was studied in [71]. Using a Hubbart-Stratonovich transformation to rewrite the tensor
model as a multi-matrix model with multi-trace interactions, the authors were able to
write the loop equations for the matrix model. In the particular case of tensor model with
a rank of the form d = 44 + 2, they showed that the model satisfies blobbed topological
recursion [72} [73]. Moreover, they proposed a method to recover tensor model observables
from the matrix model ones, computed in the recursion.
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Hence in order to study the topological recursion for TFT, following the lines of
[71] seems to be a better approach. Nevertheless one needs to be careful while taking
into account the effect of the discrete Laplacian particular to TFT after the Hubbard-
Stratonovich transformation. Furthermore, the study at rank 3 is already not complete
for regular tensor models, then a realistic first step should be to determine the spectral
curve of the multi-matrix model associated to the TFT, as well as the loop equations. At
this stage, it would be insightful to compare the form of the loop equations in the matrix
model to the SDE of the TFT, using the map between the two set of observables.

It would also be interesting to extend the graph calculus developed in [62] (further
elaborated in this chapter and [74]) to the recently introduced 2PI formalism of tensor
models [4§]. In particular, the tensor-models-compatible connected sum defined in [75]
imply that the 2PI functional of rank-3 models is the generating functional of prime
3-manifolds.
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Chapter 2

Large N limit and solution of a
melonic quartic model

This chapter is an edited version of [76] written in collaboration with C.I. Pérez-Sénchez,
A. Tanasa and R. Wulkenhaar, and of [77].

2.1 Introduction

In this chapter, we study in detail the large N limit of the SDE obtained in the previous
chapter. We thus find appropriate scalings in powers of N for the various terms present in
the action of a rank-3 model. Moreover, we analyse in detail a case where the boundary
graph is disconnected.

Let us mention here that in [24], scaling dimensions for interactions in Abelian ten-
sorial group field theories with a closure constraint have been obtained. However, the
mathematical physics techniques used in [24] (namely general formulations of exact renor-
malisation group equations and loop equations for tensor models and tensorial group field
theories) are different from the techniques used here.

We would like to note that the WTI has been already successfully used to study the
SDE in the context of matrix models of non-commutative quantum field theory - see [7§]
and [0]. In particular, the closed SDE 2-point function for the non-commutative and 2
dimensional Ap* has been solved in [79] using and resumming a perturbative expansion.
The building block of this solution is the Lambert-W function.

The chapter is organised as follows. In the following section we give the action of the
tensor model we work with, and we recall tensor model tools used in the sequel, such as
the boundary graph expansion of the free energy and the WTIL. In particular we simplify
some notations introduced in Chapter |1 and recall explicit results that we will use in
this chapter. Section is dedicated to the analysis of the scalings in powers of N of
the various terms present in the action. Having a well-defined large N limit of the SDE
imposes a series of constraints on these scalings. Section [2.4]treats in detail the case of the
4-point function with disconnected boundary graph. In section we find appropriate
scalings in order to have a coherent large NV limit of the SDE. Section consists of the
analysis of the perturbative expansion of the 2-point function which leads us to consider
the model with one quartic melonic interaction. We perform the resummation of the
perturbative expansion, in order to obtain the non-perturbative solution of the SDE in
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2 o x
1 —O0s @ @
o ST y y
Figure 2.1: Two connected Feynman graphs and the associated boundary graphs in the

tensor field theory (2.2.1) for D = 3. In figure a) the boundary graph is connected and
in fig. b) the boundary graph is disconnected.

section[2.7] Then we discuss shortly the higher-point functions in section before giving
some concluding remarks in section In Appendix [C] a perturbative expansion check
of the SDE and the large N limit is performed up to second order. In Appendix [D] we
obtain recurrence relations on the number appearing in the perturbative expansion of the
2-point function which translate into formulas involving Stirling numbers.

2.2 The model and the tools

In this chapter we focus on the following complex rank-3 bosonic tensor field theory with
an action of the form

Slee, @l = Sol, @] + Snelep, 7 (2:2.1)
_Z()O 1_|_‘X| (p +>\Zztpb —bsac acbc ,
c=1 ab
3
with x = (21,...,23) € {+,%,..., 1} and |x|* = 3" 27. The interaction terms in the

i=
action are the three U(N)3-invariant pillow interaction as in Chapter [l|and we fix a specific
kinetic term as in section [

In order to define the large N limit, we consider the following generating functional
of the model

7], J] = /Dnggp exp (—NVS[QD, @] + NP Z(J_Xgox + ngox)). (2.2.2)

Note that we have introduced here the scaling 5 and +, for the action and the source
terms. Let us also introduce the scaling & for the coupling constant A = N°\. These
scalings will be determined in the sequel, using the SDE.

We would like to remind the reader that even thought the Feynman graph of the
theory are connected, the associated boundary graphs can be disconnected (see figure
2.1)). The connected 2k-point functions are split into sectors indexed by a boundary
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Correlation functions and graph names

Order (i.e. # vertices) Explicit notation Simplified notation Graph Graph name
2-pt function Gg G® S m
4-pt functions G(%a G aJa Va

4 4
GO\, G eie mim
6-pt functions G(% G @ Qa
Gg Go &% K
6 b c
GO, al%. 0 Fupe
be
6 6
S T
6 6
Gg|@|@ GYo aUelUe  mmm

Table 2.1: The adopted notation for the correlation functions in the tensor field theory
(2.2.1)) for D = 3. In this table a is any colour and b and ¢ are chosen such that {a,b,c} =
{1,2,3}.

graph B (see Table where the notations used in this chapter have been simplified

compare to Chapter , and taken to be

N-o®) g . NoOwr( 0 3Ny s
Zy 03(B)(X) i 7o (Upi 5in) |

G (X) =

where X = (x!,...,xF) € {%, %,...,1}”C so that for all ¢ € {1,...,D} and (i,5) €
{1,... k}? 2t # 2, and Zy = Z]0,0].

We introduced the scalings a(B) for each boundary graph B, note that they do not
depend on the choice of colouring of the respective graph B. For example, «(V;) =
a(Vs) = a(V3). These scalings also appear in the boundary graphs expansion of the free

energy:
SIS Yy Aut GE(X) - I(B)(X). (2.2.4)

k=1 Beasmt
V(B)=2k

Moreover the scalings 8 and v appear in the WTT:

) a 7 7 38—2v 7
Z 6‘]'31(173[1{5131(1"(1 N 5manaY7(nl)l [J’ J] ' Z[J’ J] - ]T\r/ng—n% (Jq&ma 5quna - anna 5Jq ma) [J J]
da
(2.2.5)

and the Y-term is given by

S S2W[J, J|
3 Tquma 0 T

a

YW, J] =

o6



= Y Y. (X) - IB)(X), (2.2.6)

Beds. X

int

where fg,l,ina (X) is the function-coefficient of J(B)(X) in the graph expansion of the Y-

term. The fg’)ma—functions can be computed using a graph algorithm detailed in Chapter
[} Moreover, for a graph B with 2k vertices, we recal that

(52k _
o(Xymg; B) = ————YW[J J
J=J=0
= > @)X, (2.2.7)
reAut(B)
where (7 f)(x',...,x*) = f(x™ @, ..., x™ ") 7 is the restriction of the automorphism

7 to the white vertices of B, and the equality between the first and second line was obtained
in the proposition [1.2.1} In particular, for the pillow graphs V,, equation ([2.2.7]) states
that

fa(XaY;ma; Va) Z( fVa ma)( )

TEZy
=2 (5 Y) + 1 (7. %). (2.2.8)

Here we are only interested in the explicit coefficients of the graph expansion of the Y-term
up to order four in the sources, in the rank 3 tensor field theory . In the following
equations, {a,b,c} = {1,2,3}, an automatic reordering of the entries by ascending sub-
index is implied, and we omit the powers in N associated to each Green’s function. One
thus has:

fl(l‘f)Sa (x) = G((l4) (X, Sa, Tp, J}C) + Z Z G((:4) (x, Sas b, xc) + Z Gl(é) (x, Sas Qb qc), (2.2.9a)

c#a qp db,qc
A () = %(Géﬁ) (50, @1, e, %,¥) + cyelic perm. ) + % D Gt (502 0. 4 % Y)
db,9c

1 .
+ 5 <Gg§) (Sau Tps Ye, X, Y) + CYChC perm') + Z GI();GCBC(X7 Y, Sa) G, ?Jc)
b

ZGEC)LI; X 'Y 3a7Qc>yb)7 (229b)
e ( (Z G (Sas @by Yer X, ¥) + cyclic perm-) + GO (say Yy e, X, Y)

+ G((:tib(x Says Thy LTey, Y +ZG X y7$a7QbayC + = ZGm“; Sas by qey X, Y) (229C)

b Qb qc

i (Z G'9 (84, Y, ger X, y) + cyclic perm-) + GO (say Yy 20X, Y)

+ Gcab(x7 S(uxbaxcay) _’_ZGESI);C(X? SaJIIHQ(ny ZGm|c Sas qby 4ey X, Y) (229d)

qc (Ib qc
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fl(q?\)m,sa <X7 y) — (Z GO (54, @b, qe, X, y) + cyclic perm.) + fo?,c (X, Sa, T6, Yo, )
4db,9c

+ G$|)a (X, Sas Yby Ye, Y) + Z Gfgfb (X, Say Ybs Ge, Y) + Z GEI?‘)C (X, Say by Ye, Y)

qc 3

6 6 6
+ E G§n|)b (X7 Y, Sa; Yv, QC) + E Gr(n\)c (Xa Y, Sa, 4, yc) + G5n|)a (Xa Y, Sas Yb, yc) . (2296)
qc

b

One should keep in mind that s, is an external data. Also notice that the super-index
a breaks the symmetry between the colours. These equations follow from the expansion
of the Y-term in the lemma [1.4.1, Here ‘cyclic perm.” means the cyclic permutation
in the 3-tuples, e.g. ‘F(sa,xb,xc,x, y) + cyclic perm.” abbreviates F(sa,xb,mc,x, y) +
F(y, Sas ZBb,[L’C,X> + F(x,y, Sas Thy asc).

2.3 Constraints on the scalings in N

2.3.1 2-point function SDE

In this subsection, we start with the explicit definition of the 2-point function, and using
the WTTI to obtain SDE, we finally get a set of inequalities between the scaling coefficients
a, B, v and 9.

The 2-point function explicitly writes

N~ §27[J, J]
G@ (x) = k] 2.3.1
(X) ZO (5foij J=J=0 ( )
N—«  §?

X

1 6 1 6 I
_ _ ~ NS, _ — N2 E X
o 6J0T, P < Sint {N”—” 5]’ N2 5JD P ( 1+ |X‘2> |J—J—0

N28=7=a § J, Jo s
S —— _N7S9 x N2B— xJx
Zo 0d T ( ) TP ( zx: L))

N2#—y—a N2y« J ) Jo .
= ~N7S? L N2 T S
<P 7 ex ( )T Ix[2 3. eXp( 213 )|

N2=ma NWve NYT O/ 9S 1 5 1 4 7
- 2 2 \ ¥ Hox 57 N | 2]
1+ |x| Zo 1+ x| Jp N28=v§J" N28=76J

)

J=J=0

where we note F? = F [NQ}%W %, N2llffv 5%

in the large N limit, we must fix:

} . In order for the free propagator to be dominant

a=28—"1. (2.3.2)

To simplify the equations, we consider first the contribution of the pillow interaction V;
and we then add the analogous contributions coming from the contributions of the pillow
interactions V5 and V5. One has:

08 \? N5+ 5 B ) )
N7 x_—— =2\ = = . 2.3.3
((10 8@" ) NSB g 6Jx1x2$3 5Ja1962£v3 6Ja1a2a3 5J:E1a2a3 ( )
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Using the WTT for the two rightmost derivatives in the expression ([2.3.3)) enables us to
write:

aS; ¢ 0 2>\N5'y+6 S 5 ) )
N'Y =x 7=t ZJ J - @ @ _ (San(l)J J .ZJ J
( a@x> [ ) ] J—Fe0 N86 5Jx - 6Ja1z2m3 ( 101 ~ ay [ ) ]) [ y ]
N3672'Y ( _ 5 5 ) B
+ YD) Ja aza T - J:v aza - Z[J, J]} . (234)
(% a% - l‘% et (Se]xlagag 1 5‘]a1aga3 J—J=0

Acting with the two remaining derivatives in ([2.3.3)) on the second term on the RHS of
(2.3.4), and using (2.3.2)), we get:
2 N2'y+5+1—3,3

N a? — 2
o 1 1

(GP(x) — G (ar, 22, 73)) - (2.3.5)

For this term to give a well defined large N limit we need the following relation:
38>2y+6+ 1. (2.3.6)

Note that if the inequality (2.3.6]) is taken to be an equality, then the term (2.3.5)) is a
leading order term in the large N limit. B
Acting with the remaining derivative on the factor Z[.J, J] of the first term of the RHS

of (2.3.4]) gives:

2\

B INN3T+H2+6-48
N6B8—4v—6 -

G0 VU0, 01GP) () =

Z G (x1,a9,a3)G?(x).  (2.3.7)

az,as

This term implies a new inequality on the exponents:
48 > 3y + 0 + 2. (2.3.8)

Acting now with these remaining derivatives on the factor Y((lll)[J ,J] of the first term of

the RHS of ([2.3.4)) gives:

SYW[T,J]

Na(m|m)+2
Yy, = NG (%) + =5 Y Gl (x w1.00,03). (23.9)
X a1xr2x3 -

J=J=0 az,as3

Putting these terms together, we obtain the SDE for the 2-point function:

1 2\ N3vF2+6—48 Na(Vi)

2) - _ (2) 2) T AW
GH6) = T 1+|x|2< D GO, 02,05)GO (%) + G (%)
a2,a3

Na(m|m)+2 1 1 N2y+0+1-33
S (4) — - (a® —_q®
T NS5 N2 ZGm ($1:a2»“3’x)+NZ 2 —a (GP(a1, x5, 23) — G (%)) |.
a2,a3 ax
(2.3.10)

For the 4-point function to be sub-leading in the large N limit taken in ([2.3.10)) above,
we need to impose the following two inequalities on the exponents:

a(Vh) <868 — 5y —4, (2.3.11)
a(mm) < 85 — 5y —0 — 2. (2.3.12)
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As announced above, we now add the contributions coming from the 2"¢ and 3™ pillow
interaction terms, V5 and V3, of the action. We then get:

1 N o N3V+2+5 46 No(v)

@) (5) — _ N A
GTx) = 1+ [x[? 1+!x|22( ZG (9072) G (%) + T O’ (0,

Na(m|m)+2 N2’y+6+1 3,8

N @ (xq ) OO

NOA(Vl )+1

(4
Py wZZG < ) 2313
cta qp

where in the last term b # ¢ and b # a. This last term leads to a stronger condition

than (2Z3.11):
a(Vy) <88 —5y—d—1. (2.3.14)

Moreover for a; # x1 and using ([2.3.2)), the WTT implies

G(Q) (CLl, 9, LU3) — G(Z) (X)

N5,373'y
2 2
Iy —ay

48—27 ~(2) ) N+ (4)
=N TG (al, .CIZ'Q,(Eg)G (X) + T Z Gl (a7 X)

a2,a3

N+
+ — <Z G( ) (X, a1, T, as -I—ZG (x CL17CL2,I'3)> . (2.3.15)

az

This identity rewrites as

G (ay, 1y, 13) — GO (x) 1 Na()+2 7
= G (a1, x5, 23)G? (x) + N5 N2 > Gax)

2 — a3 NB— ~
Na(V1)+1 1 A 1 .
+ N5B—37 (N Z Gg )(X, ay, Ta, az) + N Z Gg )(X, ap,as, v3) |, (2.3.16)
as as

which implies the following two inequalities:

B =, (2.3.17)
a(Vy) <58 —3y —2. (2.3.18)

2.3.2 2k-point function SDE for connected boundary graphs

In this subsection we start with the definition of the 2k-point function, and as above, we
use WTI to obtain the SDE. This finally leads to a new inequality between the scaling
coefficients.

From now on we consider altogether the contributions coming from the three pillow
interactions V7, V5 and V3. Let us start from the definition of a 2k-point function with a
connected boundary graph given in (2.2.3)). As in Chapter , in order to obtain the SDE,
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we first consider the term:

N2ﬁ’y S _aa
5W[{7‘]] exp( N'ysa) J 2€Xp<N2B—’YZ JaJ )

int

575 Z1J, 7] 1+ ] 1+ |af?
J 1 N2 /68 \° _
= N#-v_5 _ )z ). 2.3.19
T sP T4 P2 <6<ps) 7. 7] (23.19)

Note that here s is an unspecified vector of indices. The WTI enables us to write:

5Sims \? 2)\N4W+5 ’ ,
N2 Z220) 700, J] = J,J
(F2) 200 = P oY 7 T

a=1 Sa“b

AN 5(Y£Z>[J,J1-Z[J,J1) N3 5717, J]
= N 2 5T DSy ey

a=1 ba

J; 8?77, J 8?77, J]
—N?’ﬁ—27 basa + N3-2v 2.3.20
b2 — 82 (5Js baét]b Z b2 — 82 (SJS ba 5Jb Sa ( )

For s = p!, recalling that

V0,01 = N30 G (aap)), (2.3.21)

da

we apply the remaining 2k — 1 derivatives of (2.2.3) to (2.3.20). This leads to the SDE
for a 2k-point function with a connected boundary graph:

2\ N3v+2+6-45
e [P 5

1|2 2
1+ |p! N ~
}, (2.3.22)

1 N27+0+1-38

N s e (ng)(X) — ng)(ng_wa))
where x7 corresponds to the only white vertex such that 2] = s, and (,(B; 1, p) is the
graph obtained by swapping the a-coloured lines between p! and p” in a graph B (see
figure . Similarly to x7, we note x*(”) the only white vertex such that 2P = po. An
explicit example of this operation is given in figure Starting from the pillow graph
Vi, swapping edges of colour 2 and resp. 3 gives the graphs V3 and resp. V5; however
swapping edges of colour 1 gives the disconnected graph m|m.

The first term of the RHS of gives a well defined large N limit if is
satisfied. The terms of the second line of require . The terms contributing
to f, (X;pl; B) for V(B) = 2k are 2(k + 1)-point functions with at most two sums on
dummy variables. Hence to get a well defined large N limit we need:

+

9z[J, 7]

" 9Ca(B; 1, p)

(X) = (X]

ey

N £ (pf)? — (pl)* Zo | 0Ca(B; 1, p)

p=

N2+i-38 F 1 1 [ 9Z[J, J|

a(B) > a(B') +2+4y+ 4§ — 68, (2.3.23)
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x*(p) sazt P xnle)

e ., O
— >
R
x7  pf =plai® x¥  phzg

Figure 2.2: Swapping of two a-coloured edges.

with V(B') = 2k + 2. If the inequality is strict, the 2(k + 1)-point function terms in the
SDE for the 2k-point function are sub-leading and the tower of SDE decouples at leading
order.

For the 4-point function and for s = (z1,y2,y3) , the general equation (2.3.22) gives

2\ [ Nttoos &
1+|S|2{ A D fa(x,y: 503 Va)

a=1

Wix,y)=—

N3w+2+5 43
Z Z G(Q) qasa ( X, y)
a=1 qz
1 N2'y+5+1—3,8
+ N b2 _ (Gg4) (X7 y) - G§4) (bla Z2,T3, y))
by
N27+6 38
- ys — 3 (G( (%, y1,w2.8) — GV (x, y))
2 2
1 N27+6+1—3ﬂ A 4
v 2 T (G y) - G b))
N zb; b3 — 3 1
N2'y+5 38
T (G576 g1, w) = G,
3 3
1 N2y+o+1-383
+ N T _2 (GYQ (x,y) — G§4) (X, Y1, Yo, bs))
bs 3

N2’y+6—3,8 N2

= af N

N2y+6-33 p\yo(m|m)
+

= N

Using (2.3.2), the eighth term in (2.3.24]) leads to

GO (y) (GP(x) — GO (y1, 22, 73))

a(Vi) > B +4, (2.3.25)
The last term of ([2.3.24]) leads to
a(V1) > a(m|m) + 2y + 4§ — 36. (2.3.26)

Moreover the fourth and sixth terms imply

33 > 2v+4, (2.3.27)
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2 2 3

1

DO
[\

Figure 2.3: Swapping of the three different colours edges, starting from the pillow graph
V1.

which must be a strict inequality to be consistent with (2.3.6)). Hence these two terms
are sub-leading in the large N limit.

Remark. The colour-a edge swapping (, appeared naturally in Chapter 1| while describing
the SDE. Leaving the restriction to boundary graphs, in general, when (, is applied to a
connected coloured graph (i.e. when it is a unary operation), (, is known as flip and this
terminology traces back to the theory of graph encoded manifolds (GEM) Flips and blobs
(in the tensor model context known as melonic insertion) are two fundamental operations
in the sense that coloured graphs representing the same piece-wise manifold might differ
only by a finite sequence of flips and blobs. The binary version of (,(5; Ll By; w,v) (when
the argument is a two-component graph and the two vertices v and w are in different
components) has been explored in [75] and in the tensor model context represents the
graph theoretical connected suml'}

2.4 The 4-point function SDE with disconnected bound-
ary graph

In this section, we apply the same approach for the 4-point function SDE with discon-
nected boundary graph. This case was not considered in Chapter [I]
The 4-point function with a disconnected boundary graph writes

1 §*WIJ, J]
GO (x.y) — 0 Wi, 2.4.1
w (V) = o 57,00y0 0078 |,y (24.1)

Let us start from (2.3.19)) with s = x and where we applied the three remaining derivatives

IThe virtue of this connected sum is being a binary operation on the set of Feynman diagrams of a
tensor model St , Ca—o : Feyn(Sint ) X Feyn(Sing) — Feyn(Sing) (by preserving the interaction vertices that
would be destroyed by the old connected sum of the “crystallisation theory” that consist of the removal of
two graph-vertices). This is seen from the fact that propagators are represented by the 0 colour; therefore
Ca=0 only swaps two ends of two propagators inside a Feynman graph, leaving untouched the interaction
vertices of the model Sj,; in question.
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4 ] N2ﬁ 2 1 ins ? 7
RO/ — 0 0 5‘9, “)oz[g, g . (2.4.2)
0Ty 0.Jy0.J0 s L+ [x26J,00, \ Z[J, ]| 0Jx \ 6@%

For a connected boundary graph, all the derivatives give a vanishing contribution when
applied to 70T J Nk For the disconnected boundary graph case we treat here, one has:

FW[J,J] N1 bR (5sim)f’z[ 7]
5 6 0000 1+ |X2Z[J, J] 0Jx0Jy 60y \ 6% ’
N 1 822, J) 6 (08w
1+ [x[222[J,J] 0.Jy8J, 6y (w«

Ie]
+ ) Z[J, J). (2.4.3)

The first line is the same as in the case of a connected boundary graph, the second line is
a new type of term. As above, the WTI leads to the first term below:

L o <Yi‘?[J, 771, J])
Zo  0J,0,00

= N Y 6O(gar,) (NGO (x, y) + NGO (x) G (y))

J=J=0 da
R EHEE) RN 51,
NGH (x) —=—— NeGO (y) — 222 0 Ya, S, J|
- (x) Shody | + &) =577 n o) |
(2.4.4)
where
YL, ) “
W J—io o fm|m Ta ( ’y) + fm|m7za (y7 X) ’ (245)
Y[, ] o
odd = fina (X) 2.4.6
ke | I (x) (2.4.6)
Y[, ] o
“ST0T. = . (¥) (2.4.7)
6Ty |

This term corresponds to the first term in (2.3.20)). We also need to compute the con-
tribution from the swapping (the term corresponding to the last term of (2.3.20))). This
writes

1 oZ[J, J]
Zo 0C(m|m, 1,2)(x,y)

= N*MGW(x y), (2.4.8)
J=J=0

Finally, the contribution from the two remaining terms of (2.3.20]) writes

_ 2 6 Tosaa 02Z[J, J)
— §740y0 0 \b2 — 22 8 T3, 0.

1 N3,3—2'y+1
- 30 T (NG (ki) + N G kit ) G y) + NG ).

ba

J=J=0

(2.4.9)
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NS/B—QW i 54Z[J, j]
bg — 12 Zg 5. 5Jy§jx&ba5t]x J=J=0

N38—2y+1
= —Z s (VG y) + NGOG (). (2.4.10)
— .Z‘

Let us note here that in (2.4.9), we obtain not only a contribution coming from the
disconnected 4-point function, but also a supplementary contribution as a product of
2-point functions. These products of 2-point functions and the term

0*YE [T, ]

(2.4.11)
give rise to disconnected Feynman graphs because the dependence in momenta factorises.
They should not appear in a connected Green’s function, hence they need to be compen-
sated.

They will be cancelled by the term coming from the second line of . This will
give us new relations on the exponents of N. Noting that

0 5Sint ’ T — 7anint ? =
S <5¢x) 717, J) = (90 —830X) Z17,J), (2.4.12)

we already have computed these terms in the SDE for the 2-point function. Indeed, all
the terms proportional to A in the SDE for the 2-point function are multiplied by
N7 §27[J, J]
Netmim) 55,

(2.4.13)

to obtain the contribution from the second line of (2.4.3) in the SDE for the 4-point
function with a disconnected boundary graph. This writes:

22 G©® (y) 3 N3+2+6-48 f(a) (%)
———— ) G(qaz,)G? Jmyza )
1 + [x[2 Nedmlm) 2; N2 G (daa) G (%) + N5F57=3 (2.4.14)
a= da
N2'y+6+1 36

NZ

Collecting all the terms above and again making use of (2.3.2)), we get

(G¥(xag.) — GP(x)) > .

o & CD(xy) N
& - 2)( @) (1)
G (%) = 1+ |x/[? Zl {N2 ZG (a) (N4B 552 Na(m|m)G (x)G(y)
1 1 2y-+6-36+1 1(4) NP+ o @
N Z 2 — 12 (N Gy (Xala,y) + WG (Xaqa) G (%)

qa
1 2943-36+1 4(4) NI o) )
2 (N ! Gy (x,y) + WG (x)G(y)
NQ(V1)+27+5—35 1
N o(m[m) yg _ CCZ

2)) . N3+5-48
N o(m|m)

GO, ()

m,Tq

+ (Ggl) (X’ Y> - Ggl) (Xdya: X
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NAv+5-68 @ 3y+0—48
+ (f ¢

m|m,z} (X y) + j:rr1|rr1 zl (y,X)) + WG@) (y>f£g)xa (X)

N o(m[m)
N5’7+5*8,3 N3 +2+0-48 G(Z)
_ —NOé(m|m) ( )fm xa( ) - Noc(m|m) ZG q T )G(2)< )
N27+5+1—36 G(2) (y> 1
B e D 2 (6% (xag) = GP(x) . (2.4.15)
¢ ¢ a

Let us determine the conditions on the exponents for the disconnected term to be can-
celled. We have the following three identities:

N3~/+5—46 ( N5W+5—85
a

Na(m|m) G 2)(y)f1(n,xa (X) = N—a(m\m) G(Q)(Y) I(g)xa (X), (2416)
NY+H+2 N3 +2+0-483
T GG (y) =~ P ()G (), (2.4.17)
NB++1 oy G?(x4q.) — G (x) _ N2rH5+1-36 o (y)G(Q) (Xaga) — GO (x)
N o(m|m) ];Z _ qg Na(m|m) :L,Z — qg .
(2.4.18)

Each of these identities leads to the condition:

28 = 7. (2.4.19)

The SDE for the 4-point function with a disconnected boundary graph then writes:

G (x,y)
G$)<X7 Y> - 1 I |X|2 Z{Ng ZG qaxa) <N4B 3y—35—2

+ Na(m\m) m|m,xq (X y) +fm|m:r: (Y7X)>
1 N2’y+5735+1
+ — Gfﬁ) XaGa,yY) — GEI%) X,y
W g (O baey) = Axy)
Noa(Vi)+2y+5-38 1 N3v+0—48
(4) —GW(x. 2) (a)
L S R (G (% ¥) = G (aa, ) + Sy G T, () ¢

The first term of the RHS requires again ([2.3.8)); the third term gives again (2.3.6)). Then,
the fourth term gives the relation:

a(mm) > a(Vy) +2y+ 4 — 30. (2.4.21)
To obtain relations on the exponents from the last term we need the following expression

(Vi) (4(4) N+ T
a( Vi . .
fm za( ) N Ga (yvxaaybayC) + N Gc (yvxmqmyc)

cta @

Na(m|m
+ ZG Yaxaa%nqc) (2422)

b,9c
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From the first term of this equation we recover the same relation between a(m|m) and
a(V}) as above, but we also have a stronger condition from the second term. This condition
writes:

a(mm) > a(Vi)+2y+6 — 36+ 1, (2.4.23)

which becomes an equality if one wants the second order graphs in the perturbation
expansion (Which are the lowest order graphs) to be leading order. The last term requires

again . Finally, the terms in fm‘m », give the same type of relations as ([2.3.23).

As a by product of this computation we obtained the following result:

Proposition 2.4.1. The Schwinger-Dyson equation for the 4-point function with discon-
nected boundary graph G is:

GY(x,y) = 1 ‘X|2 Z { ZG (2a2.) G (%, ) +fm|m (x,¥) +fm|m (y,x%)

1 1
+ Z IL‘Q——QQ (Gg) (X&Qaa Y> - Gl(é) (X7 Y)) + yg 22 (Ga4) (Xv Y) - GSL) (szyaa Y>)

qa a a a

+GP(x) <G§4) (V3 Zar Yor Vo) + D> GOV 20y o ye) + > GO (Y5 Tas qc)-> }

cEa @ qb+9c
(2.4.24)

2.5 The SDE in the large N limit

In this section we find appropriate scalings which allow us to obtain a well defined SDE
in the large N limit.

2.5.1 2- and 4-point functions

Using (2.3.2)) and (2.4.19) one has:

a=0. (2.5.1)

In the large N limit, we need the 2-point function SDE to have the following form:

GO (x) = 1 +1|X|2 _ 1+ \XP ZZG daze) G (x). (2.5.2)

=1 a
We need 45 = 3y + 0 + 2. Using , we get:
0=—-2-—20,
b > —1.
The relations and between 3 and ~ lead to:
0>p>~, or f=~=0. (2.5.5)
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From the inequalities (2.3.18]) and (2.3.25) on «(V}), we get:

a(Vi) = -2-5.

(2.5.6)
From now on we chose § = v = 0. Note that we could chose 0 > § > —1. However, this
would change the value of the exponents «(B) but would give the same SDE. Equations
(2.5.3) and (2.5.6) thus become:

aVi)=-2=9¢
Assuming that a(V;) > a(m|m) leads to:

(2.5.7)
When choosing

—2 > a(m|m) > —3, (2.5.8)
a(mlm) = -3
we have a well defined large N limit. Moreover, we can see that in general we need that

(2.5.9)
a(B) decreases strictly with the number of points of the Green function and the number
of connected components of 5. Hence at this point we can conjecture that

a(B) =3 — B — 2k,

(2.5.10)
With the scalings above, the SDE for the 2-point function is
1
G® (x) =

where 2k is the number of vertices of B, B is its number of connected components.
2 o

1 1
= — — G (qur,)GP —G®W
1+ |x]|? 1+|x\2;<]\/2; (daa) (X)+N4 o (x, %)
1 () 1 GP(xaga)
+ m Z Gm|m(qd‘ra7 X) + m
qa

da

— GO(x)

2 _ 42
g 4

+ % Z Z Ggl) (Xv XIS%>> )

cta @
where in the last term b # ¢ and b # a. For N

(2.5.11)
5
A

and using

N A
Tim. %;f(%) _ 0/ duf(z),

(2.5.12)
and taking the limit A = oo we get the following proposition:
N limit is

G2 (x) =

Proposition 2.5.1. The Schwinger-Dyson equation for the 2-point function in the large

-1

3 o0

L+ [x[* + 2 Z/dan(Z’(qaxc) ,
c=1 0

where dq; = Hd# dgq.

(2.5.13)
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From this we get the SDE for the 4-point functions.

Corollary 2.5.2. The Schwinger-Dyson equations for the 4-point functions in the large
N limit are:

G (x) — G (xaya)

4 2 2
GO (x,y) = —20G? (ya2.) G (y) e , (2.5.14)
G (xy) = —2MGP(x)* ) { > / d@G (Ta, @, Yer ¥) + / danﬁﬁ)(qaxa,y)},
a=1 c#a
(2.5.15)

where we used the SDE for the 2-point function to rewrite the SDFE for the 4-point functions
and where dqa = dqpydgq. for a # b, c.

2.5.2 Higher-point functions

Let us now look at the SDE for the higher-point functions with a connected boundary
graph in the large N limit, and in particular to the 6-point functions.

From ([2.3.22)), we get

3

G(X) = 2 > { / dqaG® (qas.) G2 (X)

o 2
1+ [s|* <

)

) 1 1| oz[g, T ozZ[J, J
e Z<p5>2—szz_o[a<a<£s;1,]p>(x)‘W“’ } (25.16)

Let us analyse the large N limit of this equation. The first term in the RHS is always
present in the large N limit, but the terms coming from the swappings can be of leading
order or be neglected. Indeed, a swapping can add at most one more connected component
(see ﬁgure, then the second term of the RHS can give differences of three type of terms:
Na(mw/)Gg:%, NQ(B/)G(Q)GE;UC_D) and N"‘(BH)GSE). The first type of term is neglected,
since in the large N limit, we took a(m|B’) = a(B') — 1 and a(B’') = «(B) + 2, hence
a(m|B’) — a(B) — 2 = —1. However, the second type of term is of leading order since
a(B') — a(B) —2 = 0. Let us now analyse the last term, which is more involved. From
the study of the 4-point functions one could think that a(B) = a(B”) for all connected
boundary graphs B and B” with 2k vertices. Nevertheless, this does not hold. This
follows from the analysis of the 6-point functions and in particular of Ggg). In fact,
applying the swapping procedure to K can only give F,;. for {a,b,c} = {1,2,3}, which
has six vertices. Hence if we take a(K) = a(F,4.) and from the previous discussion, we
get, for s = (x1, Y9, 23), the SDE

p=2

3
(©) _ 2 A (o O
Gy (x,y,2z) = — S ;/dan (dasa) G (X,Y,2). (2.5.17)

However, this equation does not give any information on the 6-point function Gg). This

implies that we need to define a(K') such that the terms in GESZC are also of leading order.
We thus need to have the following scaling:

A(K) = a Fuge) — 2. (2.5.18)
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This gives the following SDE, for s = (21, 2, z3) and where we used equation (2.5.13)):

6 6
{ Gg;gg(x, z, y> - Gg;gg(yly X2, X3, 4Z, Y)

2 2
Yy — &9

G(Ig) <X7 Yy, Z) = _2)‘G(2) ("L‘h Y2, Z3)

6 6 6
G\)s(2,%,5) — G (2,y, 21, T2, 73) Gé 13(2,%,y) — Gy (2%, 91, 22, 3)
212 - 9’7% Zz - yQ

GS(ES (y7 Z, X) o Gg?%B(ylv L2,Y3,2, X) Gi(%?%Z(Zv Yy, X) - Gg;?S(Zl’ %2, 3%, X)

+

+ +
Rl 73 — 23
GgﬁzQ (Y7 X, Z) - G§6%3(y7 X, 21, %2, y3)
+ = —= . (2.5.19)
Y3 — 23

Note that this could be expected because K is the first non-planar graph which appears
in our analysis. Moreover, in the large N limit and using ([2.5.13)), the SDE for the other
6-point functions with connected boundary graphs (see table @ are

(4) (4
Gx,y,7) = ~2AG a1, )] GO ) DB )
Yyi — 71
G (x) - G®
L6y, 2) ) = (fl’“’x?’) , (2.5.20)
k1 — 27
fOI' 5= (‘r17y27y3)a and
0 Gy (v.2) — G5 (y1, 2,93, 2)
G1;23(X7 Yy, Z) = _2)\G(2) (':El: Y2, IE3)G(2)(X) ’ 2 d ’ ’ 5 (2521)

—ys
for s = (21, Y9, x3).

We can see that all these equations are algebraic. For a connected boundary graph of
degree zero, the SDE depends only on lower-point functions with a connected boundary
graph. However, the K SDE depends only on the other 6-point functions and the 2-point
function.

Finally, from the previous discussions, we can conjecture a general formula for the
scaling:

Conjecture 2.5.3. The tensor field theory defined by the action

ng (1+ %% NzZZgob pPade gache (2.5.22)

c=1 ab

and the free enerqy

Z > Z |Aut Gg™(X) - I(B)(X), (2.5.23)

k=1 BGasmt
V(B)=2k

has a well defined large N limit with the scalings
a(B) =3 — B —2g — 2k, (2.5.24)

where 2k is the number of vertices of B, B its number of connected components and g its
genus.
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Note that, since we deal in this chapter with rank three tensors, for boundary graphs
(where one colour is lost) the degree is the genus (see [80] and [81]).

2.6 Perturbative expansion and a simpler model

In this section we will compute the first orders of the perturbative expansion of the 2-point
function. We use a Taylor subtraction scheme to renormalise the UV divergences. For
simplicity, let us plug in equation (2.5.13)), the following expansion of the 2-point function

Ix) =D "GP (x), (2.6.1)

n>0
in order to obtain a recursive equation for n > 1, which writes:

4]
(2)(x) = E : § : _ T \q®
G, (x) —1 | e /dqc qcxc T+ 6|2>Gn_k_1(x), (2.6.2)

where |qa]* =Y, e q3, the integration on ¢. is over [0, 00|, and when k = 0 we subtract

the first Taylor term to regularise the divergent integration on the free propagator Gé2)

2.6.1 Model with the 3 quartic melonic interactions
Using the recursive equation (2.6.2)), we get

1
G(()Q)(X) = T+ <P (2.6.3)

G(Q)(X)Z—#i/dq< 1 B 1 )
' (1+ [x[?)? N+ ez 1+ |qef?

Zlog z? + 1 (2.6.4)

1+|x|

3

2 1 1 ™
0023 [aaf (b o L) o a3+ 1
2 (%) 1+|x\2; UV T g~ T ) 20 e 28 @+ Y

3
1 ™

tog (Qee)a +11) 2.6.5
T P20+ gz P Z 0g ((dee)a + )} (2.6.5)

m2log (22 + 1) log (12 4+1) = wlog (22 + 1)
1+|x|)2<ZZ A1+ |x[2) 2 2(22 + 1)

c=1 d=1 c=1

o 23: zclog (§ (z241)) + Qtan—l(:vc)) ‘ (2.6.6)

3
c=1 2 (xc + 'TC)

We can remark that the last term in GéQ) (x) is the only term not containing powers of
logarithms. It comes from the last term of for d # ¢, which graphically corresponds
to figure 2.4l This suggests that if we look at a model with only 1 pillow interaction, such
graphs cannot exist, and the perturbative expansion should only be made of powers of
logarithms.
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Figure 2.4: The only graphs at 2-loop order, giving contribution other than powers of
logarithms for d # c.

2.6.2 Model with 1 quartic melonic interaction

Indeed, for only the pillow for the colour 1 as an interaction, we get:

GP(x) = : +1’X|2 T o :/|\X|2)2 log (22 + 1)
(A% /log? (22 +1) log(z?+1) \
TR T e ) TON @67)

In this case, we can notice that only two types of integrals appear:
1 1 T
qu( _ ) — Tlog (22 + 1), 2.6.8
J 99 (g ~ ) ~ e 265

1 (1 + 23t
dq; = for n > 1. 2.6.9
J i = (26.9)

Hence, we can compute easily higher orders in the loop e:x;pansionﬂ7 which suggest the
following form for all order n in the coupling

“llog"(1+ad) | (D" - (1+a3)™
GO (x) = (z) 4 —1)Flogk (1422 o ————a— | ,
P09 =3) (T e e 20 108 (1) 2 s
(2.6.10)
where we conjecture that the numbers a,,  ,,, are
n—1 m!| |
An kom = =7 |Sn—mn—

s m—1) Kkl ek

= (—1)Fm(p — 1)l nomnk (2.6.11)

(n—m)lkl’

where s, ;, are the Stirling numbers of the 1st kind. Using the change of variable j = n—m,

we have
S.?an_k

FR (2.6.12)

b = (1) 7" (n = Di(n — j)

2We computed the expansion up to order 9 in the coupling using Mathematica.
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Noting that s, ,—r = 0if j <n—k and if £ = 0 or kK = n, we can write the sum on j from
1 to n — 1 and the sum on k from 0 to n. This leads to the following expression:

n n 2 n n—1 k o
260 - (5) (i 4 g1+ 43 apLE I
Gh (%) (2) ((1+|X|2)n+1 (1 + 22) nz:; og”( +$1);an7k,m(1+|x|2)m+l
T\ (log"(L+ad) L Sk (21— ) )
“\2) \ax Pt log" (1 ,
(2) (( L+ [x]? )nH kz;; D (1 + |x|2)n (1 + 22)d og’(1 +a7)

(2.6.13)

The structure of the perturbative expansion is similar to the one studied in [79]. In the
next section, we will sum the expansion following the same method.

2.7 Resummation and solution

In this section we perform the resummation of the perturbative expansion to obtain an
explicit expression for the 2-point function. Let us use the formulas

: 1 d"* TG —u)
— 1Y sjp = : 2.7.1
U Sink = Gl dw T(w) . 27.1)
k 2 i 2
u=0

to rewrite the second term of the RHS of (2.6.13)) as

(3) S Z (3 (dd;:kk Fé{_;?) (fj 1+ @"9”)

u=0

[T\ 1 TG-w),. o
- (5) ; jin (L [x P (1 + af)) dun< NERS ) - (27.3)
Then using
d* (T(j —u) o) A" ; 0 K -
du"( F(—u) (1+l’1) ) ~ dun ((—1) (1+IL’1) d(x%)j (1+:L‘1) ) »
= (=1)7(1 4 22y’ d(i;) log™(1 4 %), (2.7.4)

and realising that the first term of the rhs of (2.6.13)) corresponds to 7 = 0, we have
" [ log™(1 + 2?) “n —J (—1)7 d/
G2 _(r =R St v 1 1 2
09 =3) \@rpmt * 2 T e ey ey )

™ nn—1 n— i (_1)j d7 )
- (5) ; j!n] (1 + |x[2)n+1-d d(2?) log™ (1+x1)). (2.7.5)
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We then write

1 (_1)n—j dn—J 1
.= - 2.7.6
AT R ~ (n— N (1 F =) (27.6)
to get
1 o) - n(_1>n)\n n—1 n—1 dn—j 1 dj
G(Z) = —= — - i oo™ (1 2
> L+ [x[? +; <2> n! ;( j )d(x%)”ﬂ 1+ x2)d(z2)i ° (1+21)

1 _i(g"w dn—t (—log(l—l—x%))"' (2.7.7)

T 1+ x]? 2) nld@) 1+ [xP)?
To sum this series, we use the Lagrange-Biirmann inversion formula [82], [83].

Theorem 2.7.1 (Lagrange-Biirmann inversion). Let p(w) be a function analytic atw = 0,

such that p(0) # 0 and f(w) = oty The inverse function 9(2) of f(w), defined such that

z = f(g(z)), is analytic at z =0 and given by

0 on dn—l
9(2) = S gew)" (2.7.8)
— n! dwn—1 -
Moreover, for any analytic function H(z) such that H(0) = 0,
A = 3 2 (o) 279
z)) = — w)p(w 7.
g — n! dwn—1 7 »
Hence, for z = ZA, p(w) = —log(l + w + 1) and H(w) = 1+wi|x|2 — 1+‘1x|2, equation
(12.7.8) gives
(21, 2) —iz—ndn—_l(—lo (1+22))" (2.7.10)
g\T1, - o n' d(l'%)nil g 1 ) .
such that ( )
g\, =
— , 2.7.11
log(1+ g(1, 2) + %) 2
which is solved by
1 14ef
g(x1,2) =2W <—e z ) —1— a2 (2.7.12)
2z

where W (z) is the Lambert function defined by z = W (ze*). Then, using equation (2.7.9)),
we can write

1 =2 A (= log(1 4 ad)” 1
CPix) = L NE V) . (2713
Al < D 1 T s ey 1 P e ey e MG

This result can be integrated:

1 T
/in (Glaezr) — Tw) =71 log (14 z7 + g(x1, 2)). (2.7.14)
i

Using ([2.5.13|) for ¢ = 1, we recover ([2.7.11)).

We have thus proved the following theorem:
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Theorem 2.7.2. The renormalised Schwinger-Dyson equation for the 2-point function

1 -1
@(x) = (1+ x> +2 (Glaery) — ——— 2.7.1
G (x) = (14 [x? + )\/dql(G(qcxl) quﬂ?)) , (2.7.15)
15 solved by
G (x) = ! , (2.7.16)
L+ x>+ g(1, 5A)
1 14e? 9
g(x1,2) =2W (-5 | —1—ai. (2.7.17)
z

In the limit A — 0, using W (z) = logz — loglog x 4 o(1) we get

. 7'(')\ 2 2(1+73%) 2
lim 7W<ae & ) — 1+ 42 (2.7.18)
so that )
: 2 - =
}\ILI(l)G (x) T+ (2.7.19)

and we recover the free propagator, as expected.

We established our solution for A > 0 with x1,x9, 23 > 0 but it can be analytically
extended. The Lambert function has many branches behaving differently on the complex
plane [84], the branch assignment of our solution depends on A\. We give a short comment
on the holomorphic extension of our solution in z = ZA for a fixed x, which is heavily
based on [79] where all the details are discussed.

z2
One first needs to study the map z — zW(%er) to get proposition 15 of [79].

Taking into account a rescaling of % to translate their results in term of our A, this map
is holomorphic on C\{—2(1 + 2f)se|sinaacota > 2(%‘;%), —m<a<m} Varyigg x1, the
common holomorphic domain € is at the right of the curve C = {—el7@cotatia] _ 7 <
a < 7} and is not affected by the rescaling. In particular, it contains the disk |A\| < 1 and

the map has a convergent radius > 1 in A for all z; > 0. In our case, we can have poles
1+z2
if zW(%e z 1> = —x2 — 22 F ie = —y F ie with y > 0. This equation can be solved with

e — 0 by A (y), a critical line in the z-plane, parametrised by y (A3 () in the notation
of [79], Lemma 18) and with a specific branch of the Lambert function. For this branch
we would get a pole, however the actual branch assignment in our solution for A = )\;tl (y)
is a different branch and the critical line does not cause any singularity. The two-point
function is then holomorphic in the domain 2 of the complex plane depicted in figure 1
of [79)].

2.8 Higher-point functions

The boundary graphs of the model with 1 quartic melonic interaction have connected
components of the form of figure[2.5 The 2k-point function SDE with connected boundary
graph was derived in the section taking the large N limit established in section [2.5]
we get
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Figure 2.5: General form of the connected components of boundary graphs in the model
with 1 quartic melonic interaction.

Corollary 2.8.1. The Schwinger-Dyson equation for any 2k-point function with a con-
nected boundary graph is given by

GPI(X) = 22G®) (a1, 23, 23)

Ger=2(x! .. xP~h) — G2 (2 2l 2k xPTY)

(21)? — (a1)?

k
X Z GER=2042) (xp  xF)
p=2
(2.8.1)

From the solution ([2.7.13)) of the 2-point function SDE, we can recursively obtain any
higher-point function with a connected boundary graph.

The case of disconnected boundary graph is more involved [74] and no general expres-
sion of the SDE in the large N limit have yet been obtained. The simplest equation is the
SDE for the 4-point function with disconnected boundary graph, which for only 1 quartic
interaction and in the large N limit reduces to

G (x,y) = —2\(G (x))? / dadgs G (21, 43, 5, ). (28.2)

Analysing the perturbative expansion of Gr(ff), we see that there is no contribution at order
AV since the Feynman graph which can contribute (made with two free propagator) is
disconnected. Moreover in the appendix [C] we determined that the first contribution to
the perturbative expansion is at order A\? and corresponds to graphs built with 2 different
pillow interactions, of the form of the Feynman graph of figure b). In the present
case of the model with only 1 quartic melonic interaction, no such graph exists. Then, by
plugging an expansion of the form of for the 2- and 4-point functions in ([2.8.2)),
we can recursively establish that all order of the perturbative expansion of G are null.
Hence, at leading order in the large N limit, Gg) is completely suppressed.

2.9 Conclusions and perspectives

In this chapter we have used the WTTI to study the large N limit of SDE of tensor field
theory. This allowed us to obtain explicit values for the scalings of the various terms ap-
pearing in the action our model. Then we have solved the 2-point function of a tensor field
theory with 1 quartic melonic interaction, with building block the Lambert-W function,
using a perturbative expansion and a Lagrange-Biirmann resummation. From this result,
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all higher-point functions with connected boundary graph can be obtained recursively.
Moreover, we have shown by a perturbative argument that the 4-point function with a
disconnected boundary graph is null at leading order in the large N limit.

The first perspectives of this work is the proof of the conjecture and the study
of higher-point functions with disconnected boundary graph. Now one has to prove this
conjecture using the SDE for disconnected boundary graph that have been determined in
[74]. As in the connected boundary case, the large N limit of these SDE are expected to
involve only lower correlation functions and in particular the 2-point function. The fact
that the 4-point function with a disconnected boundary graph is null may indicate that
at least some of the higher-point functions will also be suppressed at leading order in .

A second perspective is the study the model with 3 quartic melonic interactions. The
perturbative expansion is more involved and other techniques may need to be used.
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Chapter 3

Non-Gaussian disorder average in
the Sachdev-Ye-Kitaev model

This chapter is based of [85] written in collaboration with T. Krajewski, M. Laudonio and
A. Tanasa.

3.1 Introduction

In this chapter, we investigate the behavior of the SYK model with couplings drawn from
a non-Gaussian random distribution.

We first work with a version of the SYK model containing ¢ flavors of complex fermions,
each of them appearing once in the interaction. This model is very close in the spirit to the
coloured tensor model (see the book [86]) and it is a particular case of a complex version
of the Gross-Rosenhaus SYK generalisation proposed in [33]. This particular version of
the SYK model has already been studied in [87], [88], [89], [47] and [90].

Following the approach proposed in [91] for tensor models and group field theory (see
also [92], [66] and [93]), we first use a Polchinski-like flow equation to obtain Gaussian
universality. This Gaussian universality result for the coloured tensor model was initially
proved in [I3]. Let us also mention here that this universality result for coloured tensor
models was also exploited in [94], in a condensed matter physics setting, to identify an
infinite universality class of infinite-range p—spin glasses with non-Gaussian correlated
quenched distributions.

In this chapter we further obtain the effective action for the non-Gaussian averaged
complex SYK model studied here. We show that the effect of this non-Gaussian averaging
is a modification of the variance of the Gaussian distribution of couplings at leading order
in V.

We then choose a specific quartic perturbation (known in the tensor model literature
as a pillow or a melonic quartic perturbation, see for example, [61], [76], [L7] or [95] or the
TASI lectures on large N tensor models [41]) and, using the Hubbard-Stratanovitch (or
the intermediate filed representation) for the disorder J, we explicitly compute the first
order correction of the effective action and the modification of the Gaussian distribution
of the couplings J at leading order in N. We then generalize these explicit calculations
for the Gross-Rosenhaus SYK model proposed in [33] (the fermionic fields being this time
real) and, as above, we obtain the first order correction of the Gross-Rosenhaus SYK
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effective action and the modification of the Gaussian distribution of the couplings J at
leading order in N.

For the sake of completeness, let us mention that in [96], the 4-point function of SYK
model in a double-scaling limit was computed and the random couplings did not neces-
sarily had to be independent and Gaussian - it was enough for these random couplings to
be taken independent random variables, with zero mean and uniformly bounded moments
independent of N.

The chapter is organised as follows. In the following section we introduce the complex
SYK model we initially work with and we express the non-Gaussian potential as a sum
over particular graphs. In section [3.3] the Gaussian universality result is exhibited, using
a Polchinski-like equation. Section is dedicated to the study of the the effective
action for this model. In sections [3.5 and resp. we perform our explicit calculations
for quartic perturbations for the complex SYK and resp. the (real) Gross-Rosenhaus
SYK generalisation. The section lists some concluding remarks. For the sake of
completeness, we derive the Dyson-Schwinger equations for the intermediate field used in
this chapter in Appendix [E] This construction follows the lines of [97], and it is done for
both the complex SYK and resp. the (real) Gross-Rosenhaus SYK generalisation studied
here.

3.2 A complex SYK model with non-Gaussian disor-
der

We study here a complex SYK model with ¢ complex fermions ¢ (), where the label
a =1,..,q is the flavor and each fermion carries an index ¢, = 1, ..., N. The action writes:

Ss(,9) = / dt(Z&faatwa F12 Tyl 12> T ) )

a,ia i1,erig T

(3.2.1)

Here J;, . ;, is a rank ¢ tensor that plays the role of a coupling constant. This model is close
in spirit to tensor models and is a particular case of the Gross-Rosenhaus generalisation
of the SYK model.

For the sake of completeness, let us mention that a bipartite complex SYK-like tensor
model (without any fermion flavors and) with O(N)3 symmetry was studied in the TASI
lectures [41]. It was then found that one of the operators has a complex scaling dimension,
which suggests that the nearly-conformal large N phase of the bipartite model is unstable.

The model is subject to quenched disorder - we average the free energy (or con-
nected correlation functions) over the couplings J. The most convenient way to perform
this is through the use of replicas. We thus add an extra replica index r = 1,...,n to the
fermions. One has:

(log Z(J)); = lim M, (3.2.2)

n—0 n
with

2() = [ T1 vlidii] exo 3 Ss(wn ) (3.2.3)

1<r<n T
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(a) Melonic graphs (b) Non-melonic graphs

Figure 3.1: Examples of melonic and non-melonic graphs for ¢ = 4.

The averaging over J is performed with a possibly non-Gaussian weight:

[dJd] ZM(JT)exp [ — [Yt T T + V(J, J)]]

s = T exp [ = (X0 + V(. )]

(3.2.4)

We further impose that the potential Vy is invariant under independent unitary transfor-
mations:

217 vig T § : 11]1 ququlv"'7qu 217 vig T E : Z1j1 ’Lq]qulr“vjq. (325)

1, ’]q J1,-- :]q

Assuming that the potential Viy is a polynomial (or an analytic function) in the couplings J
and J, this invariance imposes that the potential can be expanded over particular graphs,
as follows. Let us consider (non necessarily connected) graphsﬂ I' with black and white
vertices of valence ¢q. The edges of such a graph connect only black to white vertices (we
thus have bipartite graphs) and are labelled by a colour a = 1, ..., ¢ in such a way that,
at each vertex, the ¢ incident edges carry distinct colours (we thus have edge-coloured
graphs). Let us mention that each edge colour of these graphs I' corresponds to a fermion
flavor of the model. See Fig. for some examples of such graphs: melonic graphs on
figure (a) and non-melonic graphs on figure (b). A graph is called melonic if for any vertex
v, there is another vertex v such that the removal of v and v yields exactly ¢ connected
components (including isolated lines).
The most general form of the potential is expanded over these graphs as:

—(J,]r, (3.2.6)

where we have used the shorthand for the contraction of tensors along the graph I'

(J, j>F: Z H (RPN H ‘]_7@,1,--.55,(1 H 67;11,(:(6)77;17,6(6)' (3.2.7)

1<iy a,..,15,a <N  white black edges
vertices v vertices v e:(v,f))

In this expression, Ar is a real number, k(I') is the number of connected components of
I' and Sym(I") its symmetry factor. The contraction of indices means that each white
vertex carries a tensor J, each black vertex a tensor J and that the indices have to be

!These graphs are called bubbles in the tensor model literature (see again the book [S6]).

80



contracted by identifying two indices on both sides of an edge, the place of the index in
the tensor being defined by the colour of the edge denoted by c(e).

The Gaussian term corresponds to a dipole graph (a white vertex and a black vertex,
related by ¢ lines) and reads

N o Nal _
Sl = D iy (3.2.8)
1<i1,..,ig<N

Introducing the pair of complex conjugate tensors K and K defined by

Kil ~~~~~ iq — 1% Z/dtd}zll,r e gq;r Kil ~~~~~ iq — 1% Z/dtlﬁzll,r U _Zl;r? (329)

the averaged partition function reads

[lavliddlexp [~ fdt ¥ de owe | [didTexp [~ [ X2 1T+Viy (4, 0)+IR+TK] |

(Z™(J)) s = ’aﬁfdjdjexp ([t rva (0] ]

(3.2.10)
After a shift of variables in the integral over J and J, the integral on .J and J in the
numerator reads

o? _ - Na—1 o? - o?

exp [— NHKK} /deJeXp —{ T+ Vi () = o BT Nq_lKﬂ.
(3.2.11)
In order to study the large N limit of the average (3.2.10)), we introduce the background

field effective potential, with L = —N‘Z—:K and L = —57= K. One has:
_ _ Na—b - TS
Vn(s,L, L) = —log [ dJdJexp — JJ + Vy <J YL J+ L) + Nlog ~—.

(3.2.12)

In this framework, s is a parameter that interpolates between the integral we have to
compute, at s = 0% (up to a trivial multiplicative constant) and the potential we started
with at s = 0 (no integration and J = J = 0). The inclusion of the constant ensures that
the effective potential remains zero when we start with a vanishing potential. This comes
to:

_ N1 o2 - 0% _
/deJeXp [—{ T+ V() = o KT - Nq_1K>H
N\ 9 o? - o? _
= (71_0_2) eXp[—VN(S:U,L:—WK,L:—Nq1K>:|. (3213)

In the next section, we will derive the large N behaviour of the effective potential using
a Polchinski-like flow equation.
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Figure 3.2: Graphical representation of equation (3.3.1)) for ¢ = 4.

3.3 Gaussian universality

This section follows the approach proposed in [91] (see also [92], [66] or [93]). Using
standard QFT manipulations (see for example, the book [98]), one can show that the
effective potential Viy(s, L, L) (see eq. (3.2.12)) obeys the following differential equation:

ov 1 0?V ov ov
_ _ _ _ , 3.1
ds  Na-1 Z (aL. L. - OL. . OL. . ) (3.3.1)

1<’[1,...,iq<N 11,..452q 11,5-44y2q 115-4452q 11,-452q

One can represent this equation in a graphical way as shown in Fig. 3.2 The first term
on the RHS corresponds to an edge closing a loop in the graph and the second term in the
RHS corresponds to a bridge (or an 1PR) edge. This equation is formally a Polchinski-
like equation [99], albeit there are no short distance degrees of freedom over which we
integrate. In our context it simply describes a partial integration with a weight s and will
be used to control the large N limit of the effective potential.

Since the effective potential is also invariant under the unitary transformations defined

in eq. (3.2.5)), it may also be expanded over graphs as in ([3.2.7)),

Viv(s,L,L) = > Ar(s) NorHD (L, Lr, (3.3.2)

with s dependent couplings Ar(s).
Inserting this graphical expansion in the differential equation (3.3.1), we obtain a
system of differential equations for the couplings,

d)\ '
aAr Z NHFO) =R e(om) a1 ) Z A A (3.3.3)
vu)=T" ('UD") / (B0)=T

A derivation of the potential V' with respect to L; . ;, (resp. Eh,.“,iq) removes a white
vertex (resp. a black vertex). Then, the summation over the indices in 1, ..., i, in
reconnects the edges, respecting the colours.

In the first term on the RHS of , given a graph I' in the expansion of the LHS,
we have to sum over all graphs I and pairs of a white vertex v and a black vertex v
in IV such that the graph I"/(vv) obtained after reconnecting the edges (discarding the
connected components made of single lines) is equal to I' - see Fig. and Fig. |3.4,

The number e(v,¥) is the number of edges directly connecting v and @ in T'. After
summation over the indices, each of these lines yields a power of N, which gives the factor
of New),

The operation of removing two vertices and reconnecting the edges can at most increase
the number of connected components (including the graphs made of single closed lines)
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Figure 3.4: Removal of a white and a black vertex and reconnection of the edges creating
a loop.

by ¢ — 1, so that we always have k(I') — k(I'") + e(v,0) —q¢+1 < 0. We obtain the equality
if and only if I'" is a melonic graph. Therefore, in the large N limit, only melonic graphs
survive in the first term on the RHS of (3.3.3).

In the second term, we sum over graphs IV and white vertices v € IV and graphs I'”
and black vertices v € I, with the condition that the graph obtained after removing the
vertices and reconnecting the lines (IV UT")/(vv) is equal to I'. In that case, the number
of connected components necessarily diminishes by 1, so that all powers of N cancel.

The crucial point in the system (3.3.3)) is that only negative (or null) powers of N
appear. It can be written as

d\r
ds
As a consequence, if Ar(s = 0) is bounded, then Ar(s) is also bounded for all s (i.e. it

does not contain positive powers of N).
. 2 = 2 = . . .
Let us now substitute L = —-Z—= K and L = —-2— K in the expansion of the effective

~NaT ~NaT
potential ((3.2.7)),

2 2
VN(S:U2,L:_ o K,E:— g K): Z )\1’*(0’2>(

Bo({Ar}) + %61( {Ar}) +... (3.3.4)

—0?)v(M) Na—k@)=(g=1)u(T)
Sym(I')

Nq—l Nq_l <K,K>p

graph I’

(3.3.5)

Here v(I") the number of vertices of I'. The exponent of N can be rewritten as (¢ —1)(1—
v(I')) +1 — k(). It has it maximal value for v(I') = 2 and k(') = 1, which corresponds
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[T Gr(t1,t2) [T Gy(ts,ta)
f#c f#c

t Ge(t1,t4) ty

Figure 3.5: Graphical representation of the term (G)r for the quartic melonic graph for
q=4.

to the dipole graph. This is a re-expression the Gaussian universality property of random
tensors.

3.4 Effective action

Taking into account the non-Gaussian quenched disorder, we derive the effective action
for the bilocal invariants,

Ge, Z U () (1), (3.4.1)

Note that these invariants carry one flavour label a and two replica indices r, r’.

To this end, let us come back to the partition function (3.2.10). We then express the
result of the average over J and J as a sum over graphs ' using the expansion of the
effective potential and replacing the tensors K and K in terms of the fermions v

and v (see eq. (3.2.9)).

Each graph I' then involves the combination

<K7K>F = Z H Z/dtv¢zvlrv te zvq,rv(tv)

1<iy,ayi5,a <N  white 7y

vertices v
E q
H / dtvwl 1, Tq_; ,l/},LU @ 1)( ’D) H 6iv,c(e)’i5,c(e) . (342>
black 5 edges
vertices U e=(v,0)

After introducing the Lagrange multiplier ¥ to enforce the constraint (3.4.1]) and assuming
a replica symmetric saddle-point, the effective action of our model writes:

SerfG, ] Z 24
ff log det 1 - tg)@t - Ef(tl, t2)) + /dt Ef(t)Gf(t)
f=1

—ZN Y022 DK (02 (A })(G)r (3.4.3)

The term (G)r associated to a graph I is constructed as follows:
e to each vertex associate a real variable t,;
e to an edge of colour ¢ joining v to v associate G, (t,,t,);

84



e multiply all edge contributions and integrate over vertex variables.
We then add up these contributions, with a weight Ar and a power of N given by
(with e(y) the number of edges of I', obeying 2e(I") = qu(7) )

NaFI) (N—(q—l))v(F) w N — N x N~ @@)=2)(¢/2-1)+1-k(I) (3.4.4)

At leading order in N, only the Gaussian terms survives (i. e. the graph I'" with
(v(I") = 2 and k(') = 1)), except for the matrix model case (¢ = 2). In this case, all
terms corresponding to connected graphs survive. Let us emphasise that the variance
of the Gaussian distribution of coupling is thus modified, as a consequence of the non-
Gaussian averaging of our model. Remarkably, for ¢ > 2, this is the only modification at
leading order in N.

Moreover, the actual value of the covariance (which we denote by ¢’) induced by non
Gaussian disorder is most easily computed using a Schwinger-Dyson equation, see [100].
In our context, the latter arises from

_ 0 Na—1 _
> /deJ 5T {J exp [— [ I+ V(. J)}] } —0. (3.4.5)

11...0q

At large NV, it leads to the algebraic equation

g

A > Syilr(f‘) (o)™, (3.4.6)

o2

melonic graph I’

Let us end this section by emphasising that the new terms induced by non-Gaussian
randomness do not lead to any terms that could break reparametrisation invariance in
situations where the kinetic term can be omitted.

This effective action, despite being non local, is invariant under reparametrisation (in
the IR) at all orders in 1/N:

A A
cie.t)~ (0) (G0)) Glet. o) (3.47)

Indeed, changing the vertex variables as t, — ¢(t,), the jacobians exactly cancel with the
rescaling of G since A = 1/q and all vertices are are g-valent.

3.5 A quartic perturbation computation

In this section we consider the case ¢ = 4 with a quartic perturbation of the disorder. We
explicitly compute the modification of the variance with respect to the Gaussian averaged
model and we write down the effective action.

3.5.1 The quartic perturbed model

The action writes:
4

_ _.d _ R
S, ¥ = / dt(Zwa ST DR (D Jijklwzwiwzw?). (3.5.1)

f:1 =1 i7j7k7l iajak7l
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2

3

4

Figure 3.6: The pillow interaction for a particular choice of colours of its edges.

The coupling constant is a random tensor of rank 4 with the non-Gaussian potential given
by:

4
Vy(J,J) = NAD N T Jic T (3.5.2)

c=1 ILK

where I = (iy,1,13,14), Isk. means that i, is replaced by k.. It is the rank 4 pillow
interaction as we have seen for arbitrary rank in Chapter [I], see Fig. for its graphical
representation.

We need to integrate over the disorder the replicated generating functional

n 4
a I f,a T 7 ad a N3 T
<Zn>J — /D@/szv ’D¢Zf DJDJ exp (— /dt(ZZZ@/Jva &@le, ) -— Z JiikiJijrl

a=1 f=1 i,4,k,l

/ dt(z S T gt 13 S g ) Vil J>>.
a=1 1,5,k a=1 144kl

(3.5.3)

3.5.2 Hubbard-Stratonovich transformation for the disorder

We start by rewriting the quartic term in J and J using a Hubbard-Stratonovich trans-
formation (or intermediate field representation, see for example [101] or [97])

(S

ZJICJM( ) 1y

s _ _ (c) iN3 A
. NAI%JIJIékcJKJKélc /Ns/dM Tr(M V)=iN (2) , (354)

where M(©) is an N x N Hermitian matrix, for ¢ € {1,2,3,4}. In (3.5.3), keeping only
the terms in J and J, we get

/DJDJeXp ( - — Z ngliz]kl 2N3 ZZJI C)JIJ

1,7,k c=1 Ij

+ /dtz Z (me}’“w?’“wi’“w?’“ + Jijkl@il’alz?’adji’aiﬁf’a>>. (3.5.5)

a=11,j,kl
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Following [97], we introduce the notation M, = 12D @ M) ©124=°) for ¢ € {1, 2, 3,4}.
We can thus rewrite eq. (3.5.5)) as

W=

iMC)Hfdti D

c=1 a=115,k,l

f DJDjeXp ( — NBJ(% 194 4 Z(%) (ijlwil"aw]z’awz’aﬁ)?’a + Jijklwz-l’aw]zﬂawz’aw?’a)> .

(3.5.6)
Then, after rescaling (J,J) — N %(J ,J), we can perform the integral over the disorder.

Eq. (3.5.6) thus rewrites:

n 4 14 4
Coo—exp [ N7 [dtdt, 3 TT ¢/(t)(H1%4 +i(3)7 X M)~ ] 97 (6) .
det (L1244 (2)* ¥ M.) ab=1f=1 =1 f=1

- (3.5.7)
Hence, the replicated generating functional (3.5.3)) writes

<Zn ;= /'Dz/}fa'l)wfaDM exp ( /dtZZwaadtwfa

a=1 f=1 i
—Tﬂog(1 1®4—|—2 ZM)——ZTr

A
;3 /dtldtg Z wl anawSawlla( 1®4+Z(§)

D=

4
ZMC>11/_}1,b1/_}2,b1;3,b154,b)' (358)
c=1

a,b=1
One has:
Ly AL 1 2 04 P (—i(5)20?)" - k
(517 +i(5) ZMC) = 1% 42 ) (D M)
g c=1 k>1 ’ c=1
\ i % )i k 4 )
_ ® c
=o21% 4 g Z > (kbk%kg’k) HMc : (3.5.9)
E>1 k1+ko+ks+ka=Fk
1 Ao AL
log 1®4—1—z( )2 M, ) = —2log (01%*) + log 1®4+w — 2 M
(Lot z; ) o (19 s (4107 )

N)»—A

A*2k
2

k k
c. 0.1
Z (k17k27k3ak4) EMC (35 0)

k1+ka+ks+ks=k

= —2log (01®4> Z —
k>1

Inserting these series in (3.5.8]) and keeping only the terms in M, we have:

[un

1 4 _ /5\ 5 2 k 4 i
- 2 Z]. + ; k Z _ (k17k27k37k4) <HMCC>
c 1+ko+k3+ka=k c=1
(—i A)%02)k 4 4
SIEI EDE S o NI E28 |
—1 =1 k>1 : k1-+kotks+ka= L R2, 3y v/ =1

(3.5.11)

87



with dt = dt;dt,. Eq. (3.5.11)) can be rewritten in the form

1
c=1
(_Z()\)20_2)k’ o2 no 4 )
Tr<z 2 k1!k§!k3!k4! (<k_ DR+ W/dt Z(¢§~¢3)) HMIE ’
k>1 k1+ko+ks+ka=k a,b=1 c=1
(3.5.12)

where (U - ¥2) = @ (/- 5e) with (574 ), = Gyl

=1
We can note that the term proportional to the identity in (3.5.9)) contributes to the
effective action as the Gaussian part of the disorder.

3.5.3 First order correction of the effective action

The integration on the intermediate fields A/(® cannot be explicitly performed. We can
however truncate the series in A and compute perturbatively the first order of the effective
action. Keeping only the linear and quadratic terms in the intermediate fields in equation

(13.5.12)), we get

1 1 1
1 2 . 92 A % 4 )\ % 2
_E;Tr(./\/lc)—w (5) ;Tr(/\/l /dtldtza;lw (—z 5)°0 ZM )%,
C (35.13)
where we have introduced the notations 2 = b@p2ay3ahde and it = hlbeh2bepdbyt?,

By performing partial traces on the identity part of M., equation (3.5.13) can be further
simplified:

J T dar® exp{ = 2T - S| (i)} (Wor 4 gh Sat 35 04wl )m }

c=1 a,b=1
_ _ _ (3.5.14)
where (¢ -¢5)e = [T Tr(®- %) (1% -1p>*). Let us now perform the Gaussian integrals
d#c
on the intermediate fields. We get:

a,b=1

:exp(—N4)\a4 2A0° /dtZTrv,Db

a,b=1

eXp( N3)\2Trgl+—/dtz Cr ))

2> [asa Y Trwz*-w;t>c<zz;-wg>c>]>. 5515

c=1 a,b,p,q=1
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This leads to the the following expression for the effective action
n 4

; ad e 2)\
Sersl¥, ] Z/dt;;;wzf’ - i /dtabler 0y )
Z / dedt’ Y Tr[(dy - )Py - d)e)] (3.5.16)

a,b,p,q=1

with dt’ = dt3dt,. We can directly see the effect of the non-Gaussian perturbation, on
the effective action. Taking A = 0, we recover the action of the model without quartic
perturbation in the disorder. We then deﬁne the bi-local fields

G (ty, 1) = Zz/sz )l (), (3.5.17)

and introduce the Lagrange multipliers % b(ty,t9) :

/Dz;bexp< N/dt Z Zzab (G”b wab Yol t2)>>. (3.5.18)

a,b=1 f=1

The effective action ((3.5.16|) rewrites as:

Sersl¥, 9, G, 7l (35,19
= [at 30 S0 U s — )3 SO0 N - 220 ) [ at ST
ab=1 f=1 1 a,b=1 f=1
+ N Z /dtZEab Gab dtdt’ Z ZG ap t t4 ts,tz)HG;b(t)chp(t/)_
a,b=1 a,b,p,q=1 c=1 fe
(3.5.20)

We now perform the Gaussian integral on the fermionic fields

(Z), = /sz{:“mg‘vapegszng exp (— Sep[¥0,9, G, X)) (3.5.21)

N n 4
— / DGPDEY exp (5 D ) logdet (Sud(ty — t2)0h — S§(t1, 1))

a,b=1 f=1
(0% — 2X0%) /dtZHGab NZ/dtZZ“b t)GY(t
a,b=1 f=1 a,b=1

)\J . a a !/
-y | dedt’ > ZGCP(tl,u)ng(tg,tz)HGfb(t)ij(t)).

a,b,p,q=1 c=1 f#c

We then assume a symmetric saddle point for the replicas and get the effective action:

Sett[G, 3] .
eff § :10g det (8(t — t2)0; — Xf(t1, 1)) — (02 — 2X0°) /dt [1Gs)
f=1

Ao ,
+/dt;2f<t>ef() 4N2/dtdt Ze (11, 12)Gelts, 1) [ G(6)G(t). (35.22)

f#c
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Let us emphasise that the effective action formula above implies that the variance of the
Gaussian disorder is modified by the non-Gaussian perturbation:

o? — 0% — 2\o". (3.5.23)

Moreover, let us notice that every term in (3.5.22)) is of order 1, except for the last
term which is of order N2, as expected from the universality result. This term can be
represented graphically as in Fig

3.6 Gross-Rosenhaus SYK model with non-Gaussian
disorder

In this section we follow the steps of the calculation of the previous section and we
compute the modification of the covariance and of the effective action for a quartic melonic
perturbation of the disorder of the Gross-Rosenhaus SYK model.

The Gross-Rosenhaus model [33] is a generalisation of the SYK model containing f
flavors of fermions, with N, fermions of flavor a, appearing ¢, times in the interaction,

f

so that ¢ = > ¢,. The complex model treated in the previous section can thus be seen
a=1

as a particular case of a complex version of the Gross-Rosenhaus model treated in this

section.
The action of the model writes

J  Na g
s- /dt( Z%t“ "’ZJ,HH ) 6.1

a=1 =1 a=1p=1
a:l
where I = 1},... ,i;l, . ,z'{, e ,i{;f. The coupling tensor J is now antisymmetric under
permutations of indices in the same family of flavors, with the probability distribution
1 Nqa
P(J)=Ce — Jre Jx Ik, |,
(3.6.2)

where N = Y. N, and 0? = [[ ¢,!6?%, with 62 the variance of the Gaussian distribution.

a a
We use again the intermediate field

n Nie [Inge [Ing* 2

5 Jr1gke i e b ity (3) S M
LK x /dM(C)e

_Aa
1
e

. (3.6.3)

where M () is a symmetric real N, x N, matrix. Using the replica trick and keeping the
terms in J we have

Nqa .l;[Nqa
/DJeXp (— 5 Z 202N ZZJICJM i

c=1 I,

q

- /dtzzmn

f (3.6.4)
H r=1 a=1p=1

v
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As above, let M, = 191 @ M(© © 19069 where 1 is implicitly the identity N, x N,
matrix, for a = 1,..., f. One then has

L1 1 ! 1 1<
/DJexp(— 5N J<§1_[lml®q+i(2A)2ZMc>J

c=1
_ (Z>% dtizj ﬁﬁ(war)
/ ! L
H Qa! r=1 T a=1p=1
a=1
det (iH;@H ‘(2>\)§qu/\4 ) -
B ’ o’ a=1 <qa N 1)‘ : c=1 ’
AN nf L -
exp | — /dtldtg ST wen ;H 1®q +i(2X) ZM (W) .
2 [T N&(ga))? rs=1a=1p=1 a:l =1
a=1
(3.6.5)
The replicated generating functional thus writes:
n f Na
ny o _ fa (c) _ a,r ar
(z"y, /mz DM exp [ /dt;;;;@b T
1 1 f 1 1 q 1 H Nga q ( )
. - - 1®q . b __—.a c)\2
STrlog (0_25(%_1)!1 +i(2)) ;M) o ;Tr((M )
1N n L 1 { L -
+— / dtydt; Y TTTTwen <; H 1®q +i(2))? ZMC) (45
2 H Nga<qa!)2 r,s=1a=1p=1 a= 1 c=1
a=1
(3.6.6)
As above, we now write the following series:
14 1 d -
— a4 ; )
(UQCH(Q _1)!1 +i(2)) Z;M>
! L F I g
_ 2 2 ke
o2 T (- '1®q+aH —1!2(—20 (20)2 [ ] (4 —1)) > (kl, 7kq>H/\/tc,
a=1 k>1 a=1 q c=1
S ki=k
(3.6.7)
1 1 G
log <; }_[1 1®q + 2(2)\) 2 ; /\/lc>
L / q
= —2log(c1%9) — Zlog — 1)11%) + log (1®q +i(20)%0” [ [ (g0 — 1)! ZMC>
a=1 c=1
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-2 | P -3 <k1kk‘q)ﬁMk 309

This leads to:

HNq“ q
e S TH(M))

a=1 k - ke
T3 = k Z (klu 7kq) B (U MC )
1 q c=1
2 > ki—k
19N o?
2 1:[1 N&*qa(qa!)
= ) k q
X (e -] 5 (") fe (e T ).
k>1 a=1 o e=1

q
S ki=k

1

(3.6.9)

where we used the notation (7 -¢?) = Z ® ®(w” Yp®) and (Yo7 - ha®); = zpfg%;;.

r,s=1a=1p=1
For the sake of simplicity, we can rewrite this term in the more compact form

-

77777

[INd* 4 1 f k .4
_%“N ZTr((M(c))2)—|—%Tr > (—i(z/\)2g2 H(qa_l)!) qz (klkk)AkHMlgc :

c=1 k>1 a=1 Zk‘z=k‘ c=1
(3.6.10)
where we denoted
R 1®9 4 N o2
A==+ T [ (). (3.6.11)
I1 Ni*ga(4a!)
a=1
Keeping only the terms in Vv in (13.6.10]), we get:
1HN§” q
__a (©)2y _ _
— ;Tr((M )2) — io? 1) \fZTr AM ) (3.6.12)

92



This allows to perform the Gaussian integral over the intermediate fields:

q HN% q
/HdM(C)exp (M9)? 202H —1) \/72Tr )
c=1

IANN256
X exp ( - ‘ g dtTr(pd - 7)
2 H Na®g3(ga!) ™

1)IAN308
; ZZ/dtdt Te[ (¥ D)er (¥ - wq)ck]> (3.6.13)
4 H NJtegd =1 k=1

n

where (2 - 8)cr = > [T TT Tr[(w@" - %) (1" - 4"). This leads to the following
r,s=1 a##c p#k
expression for the effective action:

Sesslto /dtZZZTﬂardt ar_#( — ANo H 2Nqa>/dtTr<¢g'¢g)

a=1 r=1 i=1 2 HlNgaqaqa! a=1 9a

1)IAN3G® &
( ) Z / dtdt' Tr [(Y - 7)o (V0 - )] - (3.6.14)
4HN3qa 4 c=1 k=1

a=1

In order to evaluate the fermionic integral in the expression of the replicated generating
function, we introduce the bi-local fields

G"3(ty, ty) = NZwa’"tl S (L), (3.6.15)

and the Lagrange multipliers ¥7°(t1, t5):

/DZTSeXp< /dt Z Z—z’“s t1,ts) (G’“S ty,ts) — —Zzp“w“)) (3.6.16)

r,s=1 a=1

The effective action (3.6.14]) then writes:

Sopslit, G, 3) = /dtz S S U (Bl — 10— ()

a=1 r,s=1 i=1

/dtZZ—E“ £)G (¢ >—L( e ] QNqa)/dtZH (Gt

r,s=1 a=1 Qanqa ala r,s=1a=1
a=1
( )q)\N3 i / rs wv (4 de—1 rs wv (1) 9e
# UV ey 5 G )G 0t (@ G )* [T (G OEE )
4HNgaqa r,s,u,0=1 c=1 aF#c
a=1

(3.6.17)

93



This allows to perform the Gaussian integral on the fermionic fields:

<Zn>J = /'DID'DGDEe_SeffW),G,E]

f n
- /DQ,DDGDZ exp ( — /dt Z Z % log det (8,50(t1 — t2)0; — X0°(t))

a=1 r,s=1

/dtzz Nasrs gy )

r,s=1 a=1

+qu—N< )\NGH ) qa>/dtZH (Gre(t
2anqa! a=1 aN r,s=1a=1

a=1

(—1)IAN3®

f
4 TT Ndqq
a=1

< faar Y S 0.G Gmm,t4><st<t>sz<t'>>%‘lH(st<t>sz<t'>>%>-

r,5,u,0=1 c=1 a#c

(3.6.18)

Assuming a symmetric saddle point for the replicas, we get the following expression for
the effective action:

f f
N, N,
seff[a,z]:/th 2 log det (5(t1—t2)8t—2a(t))+/dt§ (6t
a=1 a=1

7;(1 2 ~6 a! 4 qa
N fN <5 _ANG H%) /dtH(Ga(t))
211 ¢a =

a=1

f
N3 SH N!Ja 4 /dtdt/;qCGC(t27t3)GC(tl,t4) (Gc(t)Gc(t/))qwl QH# (Ga(t)Ga(t/))qa-

(3.6.19)

Let us emphasise that the Gaussian variance is now modified by the non-Gaussian per-
turbation:

)\NNGHq Nqa (3.6.20)
a=1 1@

This expression is a generalisation of the modification (3.5.23)) of the Gaussian variance
of the complex model treated in the previous sections.

3.7 Conclusions and perspectives

In this chapter we have investigated the effects of a non-Gaussian average over the random
couplings J in a complex SYK model, as well as in a (real) SYK generalisation proposed
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by Gross and Rosenhaus. To our knowledge, this is the first study of the effects of the
relaxation of the Gaussianity condition in SYK models when no double scaling limit is
taken.

An interesting perspective appears to us to be the investigation of the effects of such a
perturbation from Gaussianity in the case of ¢ = 2 (fermions with a random mass matrix)
and in the case of the real SYK model - a first step towards this latter case having been
already made in this chapter (since the real SYK model is a particular case of the Gross-
Rosenhaus model). The main technical complication in this latter case comes from the
fact that one has to deal with graphs which are not necessary bipartite - the removal
and reconnection of edges of these graphs (which is the main technical ingredient of our
approach) being much more involved.

It would thus be interesting to check weather or not in this case also, non-Gaussian
perturbation leads to a modification of the variance of the Gaussian distributions of the
couplings J at leading order in /N, as we proved to be the case for the complex version of
the SYK model studied here.

Another perspective farther from the content on this chapter is to compute the analytic
contributions of the NLO graphs determined in [47] for a coloured (or flavoured) SYK
model. So far, only the dominant term in the large N expansion is fully understood in the
original SYK framework. The building block for this computation is the leading 4-point
function, which is composed of a conformal part and a singular part which breaks the
emergent conformal invariance in the IR.

In [29] and [30], Gross and Rosenhaus obtained the conformal part of the 6-point and
8-point functions of the SYK at leading order in the large N limit, and derived a way to
compute the conformal part of any correlation function also at leading order.

One could adapt and generalise these techniques for the computation of the next-to-
leading (in the large N expansion) conformal part of the 2-point, 4-point functions and
Bethe-Salpeter equation. This involves challenging integration of hypergeometric func-
tions. These computations would give insights on corrections to the anomalous dimension
and OPE coefficients of the fermions, and the dimensions of the bilinear operators in the
conformal sector of the SYK model.
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Chapter 4

On the variance of Sobolev norms in
resonant systems

This chapter is based on a work in progress in collaboration with S. Dartois and A.
Tanasa. It is a follow up to [60] by S. Dartois et al. which we edited into section
with some added content. Section [4.2]then presents our new developments and section
presents the next steps of our work. We use throughout this chapter a more probabilistic
language than in the rest of the thesis, where the QFT correlation functions correspond to
the moments of the probability distribution, or cumulants if we consider only connected
graphs.

4.1 Resonant systems

4.1.1 The model

In this chapter we study typical phenomenon of non-linear random flows in many variables.
We consider the following Hamiltonian

ZZ o0 () as—; () (t)as—i (1), (4.1.1)

SO]kO

where the tensor coupling C' is an infinite family of real symmetric (S + 1) x (S + 1)
matrices C’j*-g,~C (where S runs over non-negative integers, that is, S € N) and has the
following symmetries

S S S

]

The equations of motion is
da
i ZZC s (Don(as_i(t), (413)
S=j k=0

where «,, with n > 0 are an infinite sequence of complex-valued functions of time (whose
physical origin is in complex amplitudes of linear normal modes of a weakly non-linear
system). Such equations naturally emerge in weakly non-linear analysis of PDEs whose
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frequency spectra of linearized perturbations are highly resonant (more specifically, dif-
ferences of any two frequencies of the linearized normal modes are integer in appropriate
units). Moreover the tensor coupling C' depends on the model from which this equation
emerges.

In [60], the authors focus on the question of energy cascades characteristic of turbulent
flows, and in order to study the spread of energy over modes, introduced the Sobolev norms

Syt =) ra(ta,(t) = syat". (4.1.4)

r>0 n>0

The evolve over time of Sobolev norms was then studied. Two specific cases, Sy(t) and
Si(t), are in fact independent of ¢, and correspond to known conserved quantities of
(4.1.3). For resonant systems emerging from weakly nonlinear analysis of PDEs, Sy can
be thought of as a “particle number” quantifying excitations of the linearized modes, while
S is the total energy of the normal modes in the linearized theory. On the other hand,
S, (t) for v > 1 are generically not conserved, and can be used to quantify the transfer of
energy from the long wavelength modes to those with shorter wavelengths. The growth
of these quantities indicates that the excitation of higher modes is getting stronger.

Since we are interested in typical features of this type of models, we do not pick a
particular choice of coupling but rather consider the family of symmetric matrices C’fk as
Gaussian i.i.d. variables. This corresponds to imposing the covariance

/ 5 /
<Oﬁ€0j€k/>c = % <5jj’5kk’ + 6j,S—j’5kk’ + 6jj’5k,5—k’ + 5j,5—j’5k,5—k’
b GO+ O 5Oy OBy + 5j75_,§,5,§75_j,>. (4.1.5)

on the infinite family of real (S + 1) x (S + 1) matrices {CjSk}SeN with no symmetries.
Indeed, the necessary symmetries are automatically implemented by the eight terms in
(4.1.5)).

We choose initial conditions for the modes «; in which the higher modes are suppressed.
More precisely, we draw the initial conditions from a random Gaussian ensemble, in which
they are independently but not identically distributed with respect to 7, and they spread
over a large number N > 1 of low-lying modes. This is expressed by the following
covariance

5t

(@ (0)ay(0))a = <X (i) (;(0)ay(0))a = (@;(0)a; (0))a =0, (4.1.6)

where the function xy(j) is such that >, xn(j) = N. This implies that we have the

normalisation condition:
o0

> (o (0)P)a=1. (4.1.7)

=0

In practice, the distribution that we use decays exponentially over j, so that

xv(j)=p and Nzl%p, (4.1.8)

where 0 < p < 1 is fixed. The limit N — oo corresponds to the limit p — 1.
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The main quantities studied in [60] are the averaged Sobolev norms

S(t) = (S ()ca= Y Syat" (4.1.9)

neven

Note that only even integers contribute in the sum, since the Gaussian distribution for C'
is even. Defining S, (t) may be subtle, even though the individual coefficients of its time-
series expansion are perfectly well-defined and algorithmically computable. For instance,
the ensemble-averaged S, could blow up for all finite times and its time series would have
a zero radius of convergence. Such behaviour has been seen to happen with couplings C'
outside our ensemble of resonant systems. Whether such complications actually occur in
our context, is an open, interesting and complicated mathematical question. Nevertheless,
the dominant melonic part extracted from the expansion is always convergent, and should
convey some information on the dynamics of initial configurations with a large spread over
energies (a large number of initially excited low-lying modes).

When N — oo in ({.1.6)), hence p — 1, more and more low-lying modes are excited
by the initial conditions. We will identify in s, ,, the amplitudes that scale in the leading
way as N — oo at each fixed order n of the perturbation series, and to restrict the
perturbation theory for 57 (t) to these contributions. As for tensor models, the dominant
term will correspond to melonic graphs. At any fixed order in ¢, it was establish in [60]
that

Syn =584 40, ,(1/N). (4.1.10)

PY’/”L

Accordingly, the melonic approximation

S;vzelo(t) — Z S:”’Lzlotn (4111)

ne2N

to the averaged Sobolev norm S, includes only graphs of the melonic type and we have
Sy (t) = S7(t) + 0,4(1/N). (4.1.12)

In [60] it was proved that the time series for SJ'“°(t) has a finite, non-zero radius of
convergence, hence it is well-defined and in fact analytic at least for a finite time interval
(in essence, this is because the melonic family has far fewer graphs than the general
family). The 1/N analysis can be summarised as

Theorem 4.1.1. The dominant graphs as N — oo for the averaged Sobolev norm S.(t)
are exactly the melonic graphs and the corresponding approzimation S;”el"(t) s an analytic
function of time in a disk |t| < p of finite radius p > 0.

melo

75 one can check that

Through an explicit computation of s

Theorem 4.1.2. For any v > 1 there exists a constant & such that S;"e“’(t) grows mono-
tonically in time for t € [0, 4].

These are the main results of [60] and they mean that, in the melonic approzimation,
energy spreads at least for a while from the low modes to the higher modes, as expected
in a turbulent cascade. In this chapter we will go beyond these results.
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At this point we do not know if the average Sobolev norm is representative of our
ensemble of resonant systems. For that we need to characterise on average the fluctuation
around the mean value, namely the variance of Sobolev norms. Indeed, if the distribution
of Sobolev norms happens to be similar to a uniform law, then the mean value would
not be representative of the ensemble. However, if this distribution is a Gaussian law,
the mean value is a good characterisation of the distribution. Moreover, it would be
completely characterised by its mean value and variance.

We can already make some statement in this direction for the cases v = 0, 1 using the
fact that S,—o1(t) are independent of ¢, as we will show in Proposition m There is
two regimes to consider: the first one is the p = 1 where the central limit theorem tells us
that the fluctuation around the mean value of NS - ; are distributed along a Gaussian
law. This leads us to hope that at early times and in the limit p — 1 the same results
holds for v > 1. The second regime is for 0 < p < 1 where the central limit theorem
cannot be used since the sum of variance squared on the different modes o;a; is always
finite. Nevertheless, one has:

Proposition 4.1.3. For v = 0,1 the Sobolev norms S,—o1(t) are independent of t and
converge almost surelﬂ for0<p<1.

Proof. The time invariance is straightforward when we recast the equations of motion in
the following form

d
% Z ijlkk/OéJ )Oék(t)Oék/(t), (4.1.13)
i kK =
J+J —k+k’
Z Cligriowr vjr () (8) e (1), (4.1.14)
7' k,k'=0
j+j Zktk!

where S = j + j' = k + k£ is the resonance condition and Cjj/ is symmetric under the
exchange of j and j', k and £’ and of the pairs (j,;') and (k,%’). Making use of the
equations of motion and the symmetry of the tensor couplings C' under the exchange of
the pairs of its indices, the derivative of the Sobolev norm with respect to time can be
written as:

o0

Sit)=i > (j = k)Comray(t)ay (t)an(t)a (t). (4.1.15)
7.3 k,k'=0
i’ =k+K

The same manipulation for v = 0 gives Sg(t) = (. Using the resonance condition, j — k =
k' — 7" and the other symmetries of C' under the exchange of j and j', k and k' we also

get Sy (t) =
Let us note X; = Na;(0)a;(0) which is distributed along a x» law of density e=%/2/2,
and X; = No;(0)a;(0) ~ p? X; (equal in law). For a constant ¢, we consider

rj =P(X; > jd) = P(Xy > jd [p'?), (4.1.16)

'We would like to thank Jean-Francois Marckert for discussions on this point.
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Taking ¢ = ,/p, we get

Since z%rj = % is finite, by Borel-Cantelli theorem, only a finite number of the events
J:
X; > jp’/? occur. Hence Y X, converge almost surely. O
7=0

Once again, this results inclines us to think that similar statement can be made on
the existence of the Sobolev norm for v > 1.

These previous discussions present our motivation to study the variance of Sobolev
norms which will at worst tell us if the mean value is a good characterisation of the
distribution and at best enable us to completely characterise this same distribution.

In the following subsections, we will recall the tree expansion and explicit computations
of the average Sobolev norms at order ¢* which prove Theorem and from which we
will build upon in section 4.2

4.1.2 Tree expansion

We return to our pair of evolution equations (4.1.3)), which we write as

oo S
Do) =~ 3 s, Wanltas-il0), (41.18)
S=j k=0
co S
%aj(t) = i Y Chas_j(t)ar(t)as_k(t). (4.1.19)
S=j k=0

There is an iterative solution to these equations in terms of suitably oriented and indexed
trees T (for (4.1.18)) and anti-trees T' (for (£.1.19)) in 75 (they are heap-ordered 3-ary
l-rooted trees) as defined in the following. The idea is to compute the h™ derivative
ag.h) (t) recursively using and (4.1.19). We start with a particular vertex (the
root) and connect it with an edge to a first vertex of valency 4. In this way we get a tree
with one root, one vertex of valency 4, and 3 leaves. To the vertex is associated a tensor
couplings C' and to each leaf a factor a(t) or a(t), so that this first tree corresponds to
& as given in . In the same way, we can connect any of those leafs to a second

vertex of valency 4, and we can then compute recursively ozg-h) (t) and d§h) (t). The order
in which the vertices of valency have been added in the recursion matters as well.

Ordered trees. The trees arising in the iteration of this process are heap-ordered, 3-ary,
1-rooted trees, which we now introduce. In this chapter, a 1-rooted tree is a tree drawn
on the plane, i.e. a tree together with an ordering of the edges around each vertex, which
in addition has a distinguished vertex of valency one, called the root. The leaves are
the vertices of valency 1 distinct from the root. It will be convenient in what follows to
consider amputated leaves, hence to represent leaves simply as dashed half-edges hooked
at another vertex but with no vertex at the end (see Figure , and to represent the
root as a black square of valency one.
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A rooted tree is said to be g-ary if its vertices are all of valency ¢+ 1 (we also call these
the “true” vertices), except the root and the leaves. Around each vertex v of a rooted tree
distinct from the root, there is a unique edge which belongs to the only path connecting
this vertex to the root. We call this edge the parent-edge of v. The other edges incident
to v are the children-edges. This provides a kinship among vertices as well.

We define a heap-ordered tree as a rooted tree together with a labelling o of its h
true vertices from 1 to h, which respects the kinship of the vertices, that is o(v) < o(v')
whenever v is the parent of v'. We denote 7'1}}(1 the set of g-ary 1-rooted heap-ordered trees
with A true vertices.

When iterating the computation of derivatives «
resentation the following expansions

(h

) ~(h) .
;(t) and @;"(t) one obtains a rep-

an(l) = Z% S A, (4.1.20)

heN T€7—1}’L3

) th .
a(t) = Z % Z A(T). (4.1.21)
heEN Te?’l’j3
where the amplitudes A,.(T") and f_lT(T ) take into account the orientation and indexation
of the trees and anti-trees 7" and 7" in a way that we now explain.

Orientation of the trees. The h 4-valent vertices of a tree in 7’1"3 represent the way
in which the a factors have been recursively differentiated. The heap-ordering precisely
keeps track of the differentiation history: the vertex labeled o corresponds to the oth
differentiation step. The root of a tree (resp. an anti-tree) initially representes an «
(resp. an &) factor, which we picture as out-going (resp. in-going). The first true vertex
resulted from the differentiation of this initial factor. Our graphical rule at a true vertex
v is to orient the children-edges which carried « factors at the o(v)th differentiation step
as out-going and those which carried & factors as in-going. The orientation of the full
tree then results from recursively applying this “parent” rule to the true vertices while
following the heap-ordering of the vertices as follows. Around a vertex v we denote
the parent-edge el(v).ﬂ The children-edges, which are ordered from 2 to 4, are denoted
respectively by es(v), e3(v), and e4(v). Among children-edges at a vertex v, the edge es(v)
is endowed with the same orientation (in-going or out-going) as the parent-edge e;(v),
and the remaining two edges incident to v are endowed with the opposite orientation.
We remind the reader that, importantly, in a tree, only the leaves carry « or & factors,
the root and the solid edges do not. The leaves are half-edges and carry arrows: an
arrow pointing out of the tree corresponds to a leaf and to an « factor whereas an arrow
pointing into the tree corresponds to what we call an anti-leaf and to an & factor.ﬂ Note
that a tree in 7’1}13 with h vertices has exactly h+ 1 leaves and h anti-leaves; conversely an
anti-tree with h vertices has exactly h leaves and h + 1 anti-leaves. See some examples in

Figure [4.1]

2Note that for the leaves it is the only incident (dashed) edge.
3We stress however that in this amputated representation, the root (which also has valency one), is
still represented as a vertex and does not bring any « or & factor.
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Figure 4.1: A heap-ordered tree oriented as a tree (left) or an anti-tree (right).

Momenta. In analogy with the Feynman graph terminology, let us call now the
indices j,S —j,k,S — k in (4.1.1874.1.19) momentaﬁ For a given 1-rooted tree with root
index r entering the root, we now define its momentum attribution Zr. 1t is a set of
integers, defined first by a choice, for each 4-valent vertex v of the tree, of three non-
negative integers S, € N, j, < S,, and k, < S,. The two momenta j, and S, — j, are
respectively attributed to the parent-edge e;(v) and the edge es(v) and the two momenta,
k, and S, — k,, are respectively attributed to the edges e3(v) and e4s(v). These choices
furthermore satisfy the constraints that if a vertex v is incident to the root, the momentum
of its parent-edge is the root momentum j, = r, and the momenta of the two half-edges
forming any edge must be the same. To each leaf ¢ is thus associated a momentum
§(Zr, ) and to each anti-leaf / is associated a momentum j(Zr, £), namely those of their
parent-vertex.

Amplitude of a tree. We then have the following “Feynman rules”:
e to each (4-valent) vertex v of the tree or anti-tree, one associates a factor Cﬁ”kv;
e to each leaf ¢ is associated a factor a;(z,¢(0) and to each anti-leaf ¢, one associates
a factor &z, 7(0), where we stress again that the root vertex is not counted among
leaves;
e cach 4-valent vertex v of the tree or anti-tree whose unique parent-edge e;(v) is
in-going (resp. out-going) is weighted by (—i) (resp. (+1i)).
The amplitude A,(7T') is defined by multiplying all these factors and summing over all
indices Zr:

AT =) TTEDCH, [T i@ ] ] @@ (0)- (4.1.22)
Ir v 14 2

The summation over Zp more precisely stands for the following summations and con-

straints
Su,

(Z Z)<H > i )(HZ) IT o&. (4.1.23)

Sy 27 kyy =0 v t{ue Sv>0 ju,ky=0 [ leaf j;>07 e edge
vertex

4The symmetries of C is indeed reminiscent of energy-momentum conservation at each vertex.
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where for every edge e, a. and b, are the momenta of its two half-edges (including the
leaves), and the vertex v; is the true vertex incident to the root (o(v;) = 1). The amplitude
A,(T) is a function of the entering momentum r, of the couplings C' and of the initial
data {a;(0), @;(0)}jen.

Let us return to the Sobolev norms S, (t) = > -, 7@, (t)a.(t). Using (4.1.20)-(4.1.21)),
one has the following time evolutions -

70’7
S.(t) = ZNGQ(T,t), (4.1.24)
r>0
th+ﬁ B
Go(r,t) = Na,(t)an(t) =N Z P > A(T)AL(T),  (4.1.25)
heN,heN TGT{}S’TET{,L?;

where we included a factor N in Gy(r,t) for optimised scaling properties.

2-rooted tree. It is possible to simplify the factorial factors in the expansion (4.1.25])
by using a slightly different notion of trees. By merging the roots of a tree T" with h
vertices and an anti-tree T' with h vertices, we obtain a tree U with n = h + h, 4-valent
(true) vertices, 2n + 2 leaves, and a single distinguished root-vertex of valency two. We
call such trees 2-rooted trees. Note that in the case where the tree is trivial (h = 0), the
bivalent root is directly linked to a leaf (a dashed half-edge) and not to a true vertex,
and similarly for the anti-tree. Most of what has been said for 1-rooted trees (ordering,
parent-edge, heap-ordering) still holds for 2-rooted trees, and we denote 7, the set of
heap-ordered 3-ary 2-rooted trees with n true vertices. The 2-rooted tree U inherits the
orientations of 7" and T': its bivalent root has one in-going edge and one out-going edge,
and its 2n + 2 leaves divide into n + 1 leaves and n + 1 anti-leaves. The momentum
attribution Zy of U follows the exact same rules as the momentum attributions for 7" and
T, the only difference being that there are now two vertices incident to the root.

Note however that when merging the roots of two heap-ordered 1-rooted trees, the
resulting 2-rooted tree is not heap-ordered, and in order to heap-order it, we need to
relabel its vertices. There are several ways to define a heap-ordering on U given the
heap-orderings of 7" and T. Indeed, there is one such heap-ordering on U for every set
injection ¢ : {1,...,h} — {1,...,n = h+h} that preserves the natural order of integers.
In fact, such an injection induces a relabeling of the vertices of T" seen as a subgraph of
U. Meanwhile, the complement in {1,...,n} of the image Im ¢y induces a relabeling of
the vertices of T seen as a subgraph of U. The above constructed relabelings thus indeed
defines a heap-ordering of U. Therefore, for each pair of heap-ordered T',T there are as
many heap-ordered 2-rooted trees as there are order-preserving injections ¢, namely h’f—}l,

It follows that if we define the amplitude of U as A,.(U) := A,.(T)A,(T), we have:

n!

S AU = Y AMATD) =5 S AMDAD), (4.1.26)

UeTS UeTS e TeTh,

From this we conclude, using (4.1.25)), that Go(r, t) is rewritten as a sum over heap-ordered
2-rooted trees as

G2(r,t):Nzg R (4.1.27)

neN UeTys
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4.1.3 Averaged Sobolev norms

Averaging over C' and a commutes. It is more convenient to first average over «, then
over (.

Averaging over a. We recall that the initial conditions are Gaussian distributed random
variables of zero mean and covariance (4.1.6])

0jj'

(aj(0)ay (0))a = N

(). (4.1.28)

A tree U € Ty has a binary root plus n, 4-valent true vertices forming a set V(U), and
n+ 1 leaves and n + 1 anti-leaves. The averaging over « pairs together in all the (n + 1)!
possible ways the n + 1 leaves with the n + 1 anti-leaves of U into n 4+ 1 new a-edges. We
call W, (U) the set of the (n + 1)! different pairings of leaves with anti-leaves and &, (w)
the set of a-edges obtained for a given w € W, (U). Any pair (U € T, w € Wa(U))
defines a new oriented diagrams with a bivalent root-vertex. Its a-edges are naturally
represented as dashed, and oriented from the leaf to the anti-leaf. An example is shown
in Figure (note that the 2-rooted tree in this example is composed of the tree on the
left of Fig. and of the only anti-tree with one true vertex). The remaining n edges
in the diagram are not dashed (they link rooted or true vertices of U), and are depicted
as solid, to distinguish them from the dashed edges, because only the latter carry a X*
factor. As a consequence of , any dashed edge e constrains the two indices j., j.
of the leaf and anti-leaf that it joins to be equal.

Note that any w € W, (U) must connect the T and T pieces of U because the number
of leaves and anti-leaves differ by one in 7" and also in T.
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Figure 4.2: Oriented diagram defined by a tree in U € T, and a pairing w € W, (U).

The a-averaged G5 function is therefore a sum over trees U € 7, and pairings w €
Wa(U) of an associated amplitude in which the leaf factor [, aj(z,.¢(0) [ 17 @z, (0) in

XN(je)

the tree amplitudes has been replaced by a dashed edge factor Hees w) N

since |E,(w)| =n + 1 and xn(j.) = p’¢, we have

(Ga(r,t))a = Nnn, Z > H ) S ] 6ap (4.1.29)

neN UeTdy Tu veV(U WEWL(U) e€€q (w)

. Hence,

where Z;; is the momentum attribution of U.
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Averaging over C'. Recall that the tensor coefficients of C' are Gaussian distributed
variables of zero mean and covariance (4.1.5])

4 55’S’
<CJS;€CJ5;,€/>C = T <6jj’5kk’ + 5j,S—j’5kk’ + 5jj/5k,5_k/ + 5j,S—j’6k,S—k’

+ 5‘]](3,5’9_], _|'_ 6‘]’5‘_k/5k‘]/ + 6]k/5k7s_]/ + 5],5—](:'6]43,5—]/) . (4.1.30)

A first consequence is that when averaged over C', the terms in the expansion (4.1.29))
of (Ga(r, 1)) that correspond to diagrams (U, w) with an odd number n of true vertices
vanish.

Let us focus on the contribution to the expansion (G(r, t)), of a diagram with an even
number of true vertices. The averaging over C' of the corresponding term is expressed as
a sum over all the possible ways of pairing the true vertices of the diagram two-by-two.
For each such partition in pairs of vertices, the coefficients C' associated with the vertices
of a given pair are replaced with the covariance (4.1.30) (the indices S, j,k and S’, 5/, K
correspond to the indices S, j,, k, and Sy, j., ks associated with the two true vertices
v and v'). This is known as the Wick theorem, and it is common to call such a pairing
of two C’s a Wick contraction. For a diagram (U,w) with n true vertices, there are
nll:=n-(n—1)-(n—3)-...-3-1 possible ways of performing the n/2 Wick contractions.

b S—a S'—d b

S—b a a’ S —v

Figure 4.3: A wavy edge represents the averaging of two tensors C.

We represent a Wick contraction between two tensors C' as a wavy line between the two
corresponding true vertices, as depicted in Fig. 4.3| (the half-edges are solid in the figure,
but up to three of them at each true vertex might be dashed). In Fig. , depending on
whether the parent-edge is in-going or out-going, the indices a and b take the value j, or
k,, and similarly for a’,b" and j,, k. The graphs obtained after averaging over C' thus
have a new set of n/2 wavy edges. For each such edge, there is a sum implementing the
eight different terms in (4.1.30)).

We denote by We the set of Wick contractions of all the C' factors together with one
of the eight different possibilities for each wavy line. In the following, we call the eight
terms in propagators. An element of W is then a choice of a partition of all of
the true vertices in pairs of vertices (represented by wavy lines), together with a choice of
propagator, i.e. of one of the eight terms in , for each wavy line. Each v’ € W¢
gives a set of new momentum identifications, which we denote for the moment as d,(Zy).
Moreover we call a diagram G = (U, w) with the added w" € W¢ a graph.

Note that [W¢| = 8™2n!!. Indeed, the number of pairings of all the true vertices is n!!,
and it should be multiplied by 8™/2, because there are eight choices of possible propagators
for each wavy line. Then to each diagram there is 8"/2n!! associated graphs.

In this way, the expansion for the function G5, when averaged over a and C| is
expressed as a sum over graphs G = (U, w,w’) which have a set V of n true vertices
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(which are now five-valent if we count the wavy edges) and one bivalent root, a set & of
n solid edges, a set &, of n + 1 dashed edges, and a set £ of n/2 wavy edges. The root
constrains the momenta of the two edges attached to be r. We write this expansion as
follows

(ol e = 3 gs—"/2 S an) Y AG), (4.1.31)

neven UeTyy weEWu (U)
w/EWC(U)
1 .
A(Q) = mZ(Sw,(IU) IT s (4.1.32)
IU eEEa(w)

where €(U) is the sign obtained by collecting all the n factors +i in the previous formula
(since n = h+ h is even, these factors must multiply to a real sign 1), and A,.(G) is the
amplitude associated to the graph G' = (U, w, w’), which is now obviously strictly positive.
Indeed, at fixed root-momentum r, it evaluates the sum over all the {S,, j,, k, } integers
using the delta constraints in 6,/ (Zy) Heesa(w) d;.7., the exponential decays Heega(w) ple
for the momenta of the dashed edges and the root constraint that the two incident edges

have fixed momentum 7.

4.1.4 Explicit computations at order ¢

We now recall the computation of the first non-trivial order of perturbation theory, namely
n = 2. In that case, there is a single possible Wick contraction w’, hence, in the figures,
the corresponding wavy edge will be omitted, but of course the indices identification that
it implies will be included in the computations.

Amplitudes at order 2

We now list the leading contributions at order two in ¢, and compute the corresponding
graph amplitudes. We do not represent the heap-orderings on the diagrams in the figures,
as they simply provide a counting factor which we will indicate explicitly in each case.
We arrange the contributions into three different groups and will only treat in detail the
first case (more details for the other groups can be found in [60]).

S—k
p
ooy
VS -k
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,,,,},,,,
I
. /
pb—r ,

Figure 4.4: Type-I diagram.
Each one of the diagrams in Fig. has two heap-orderings (the root is labeled 1 and

there are two ways of labelling the two other true vertices). These four diagrams give
the same total contribution to (Ga(r,t))s.c at order 2, which can be understood from
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the symmetries of C'. However, for a given choice of propagator for the wavy edge, the
amplitudes of the corresponding graphs for the diagrams on the left and on the right of
Fig. 4.4 actually differ. In total, there are 2 x 2 x 8 graphs corresponding to the diagrams
shown in Fig. [£.4l We call them graphs of type I. In the following, we provide step-by-
step details for the computation of the amplitude associated with any one of the 2 x 8
graphs G = (U, w, w’) corresponding to the diagram on the left of Fig. [4.4]

Using , the amplitude of a graph corresponding to the left diagram of Fig.
reads

S S’
1 i / / - 1 __ s r il
A(G) = WE D NN bw (@) pror pS 6 6rel (4.1.33)

S>r j.k=0S">r j/ k=0

where 0,,(Zy) is one of the eight propagators in (4.1.30). As a first step, we use the
identification between S and S’ in d,(Zy) to sum over S’, and sum over j and j', which
are fixed to r, so that we obtain

S
1 - :
A(G) = 3 > > buw(Tu)p* TSy (4.1.34)

S>r k,k'=0

where 0, (Zy) is now one of the eight propagators 1, (5,?’]“/, 63T, (i,f’kléf_’”, of (5,?”’67’?/,
6165+ or 677", The contribution from the first trivial propagator &,/ (Zy) = 1 (originally
S (Zyr) = 05'670F) is

2
D 1r+1
A(GL) = T(— + ——). 4.1.35
(Cn) =P (T T N1y (4.1.35)
The sum of the contributions from the other seven propagators is
1 p" 2p" 1
- 50 + p28] —] T+ 2 4.1.36
N[(1+p)(1+p2)(’"[2]+p )t ) T e (0 2) (4.1.36)

where (52[2} vanishes if r is even, and conversely for 5T1[2]. In particular, the contributions
of these seven propagators for the wavy line are subdominant when p — 1.

Using the same reasoning, the amplitude of a graph corresponding to the diagram on
the right of Fig. is

S
) 1 < o
A (G = WE : § o (T)p™ e (4.1.37)

S>r k,k'=0

where 0, (Zy) is one of the eight propagators 5’,;’, 5’,557?*”, 1, 057", or 55_’”57’?/, (52(5?*’,
or 657", In this case, the dominant contribution only comes from the third propagator
ow (Zy) = 6565/6,5 ~¥" and gives the same result as (4.1.35). The same holds for the seven
other propagators and for the sum (4.1.36)).

Therefore, we observe that the total sum of the contributions of the graphs from the
left and from the right of Fig. is the same. This result can actually be traced back to

the symmetries of C. Indeed, using these symmetries, one can untwist the dashed edges
of the graphs from the right of Fig. Then, by a local relabelling k¥’ — S’ — k', we
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directly obtain the graphs from the left of the figure. Moreover, this also explains why it
is the first propagator 83 (5?5,@’ that gives the dominant contribution for the graphs from
the left of the figure whereas it is the third propagator 65 6?5,‘3 ~¥ for the graphs from the
right. In both cases, it is obtained for the trivial propagator Ou (Zy) = 1.

We will call leading propagator dieaq the particular choice of propagator for the wavy
edge of a graph, which leads to a dominant contribution. For each one of the diagrams
presented in Fig. .4 [£.5a] and and similar diagrams, there is a unique leading
propagator. This unique leading propagator always corresponds to the trivial propagator
Ouw (Zy) = 1, i.e. to the propagator which does not add additional constraints to the
constraints imposed by the edges. This is quite intuitive, since constraints lower the
number of free sums thus also lowering the number of potential N factors. In the following
we will only be interested in the dominant contribution of each graph amplitudes.

In total, the sum of the dominant amplitudes among the 32 graphs of type I, denoted
AL, is four times (4.1.35). The total contribution of these graphs to (Ga(r,t))a.c is %Ai.

(a) Type-II diagram. (b) Type-III diagram.

Figure 4.5: Remaining leading diagram types.

The second kind of diagrams is shown in Fig.[4.5a We only draw one example, however
there are four diagrams which all give the same contribution due to the symmetries of C":
they are obtained by exchanging the role of the tree and the anti-tree, and by crossing
the k and S — k edges as in Fig. [4.4l Each one of these four diagrams gives 8 graphs, thus
a total of 32 graphs (here, the trees have a unique heap-ordering).

The dominant term in the amplitude of any one of the 4 diagrams G = (U, w,w’) as

in the example of Fig. is:

r—|—1>

II\ _ _2r

(4.1.38)

In total, the sum of the dominant term in the amplitudes of the 4 diagrams of type II,
denoted A, is four times ([£.1.38), and the contribution of these diagrams to (Ga(r,t))a,c
is AL,

The third type of diagrams is shown in Fig. [£.5b] Again, we only draw one of them,
however there are now eight diagrams which all give the same contribution due to the
symmetries of C'; and which we obtain by exchanging the role of the tree and the anti-tree,
by crossing the two upper edges as on the right of Fig. [4.4] or by choosing which one of
the two upper edges is solid and which one is dashed. Each one of these 8 diagrams gives
8 graphs, thus a total of 64 graphs (again, the tree has a unique heap-ordering).
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Importantly, here the total contribution from these 64 graphs to (Ga(r,t))a,c comes
with a minus sign (i.e. e(U) = —1), because the two true vertices have parent-edges
with the same orientation: both in-going or both out-going. The dominant terms in the
amplitude of the diagram of Fig. is

2r+1

AGI =1 - ]

] 4.1.39
1+p ( )

In total, the sum of the dominant terms in the amplitudes of the 8 diagrams of type III,
denoted A, is eight times (4.1.38)), and the contribution of these diagrams to (Ga(7,t))a.c
is — L AT,

Sobolev norms at order 2

The leading contribution to (Ga(r,t))s.c at order 2 is given by

2
(Gl D)% = 1 (AL + AT — ATF) 4 o(N ) (4.1.40)

t2 T 3 2 1t2 T
_ B[ papt3 L Dep
4 p+1  (p+1)? AN

[y ] e,
(4.1.41)

Indeed only the terms from Af, AM*, and A give dominant contributions (because when
summed over 7, a typical term of the form > 77p" behaves as (1 —p)~ '™ asp — 1). We
make more precise statements in the following paragraph.

We are interested in the averaged Sobolev norms at order 2,

SO(1) 1= (S, (002 = 3 5 (ol 1) (1142

r>0

In general, for v > 0, we express the various terms involved in S*@(t) using the series
L,(2) = >_,5, 772" (they are polylogarithm functionsﬂ). We have for v > 0

SP(t) = Z—N {p%Lw(zﬂ) + (—<pi1)2 - 2>L7(p)} (4.1.43)
4;5\[2 [Lwl(f)—:;Lw(p) L) + L’y(pQ)] Fo(N),

To obtain the asymptotic behavior of the order 2 Sobolev norms, let us take a closer
look at the behavior of L, near 1, when « is a positive integer. In that case,

1

L,(z) = m

v—1
> A(y, k)2, (4.1.44)
k=0

°In the standard notation, this series corresponds to the polylogarithm L_.(z), however all the poly-
logarithm functions appearing in this chapter have similar negative coefficient, hence the introduction of
our notation.

109



where the A(v, k) are the Eulerian numbers, which satisfy the identity

v—1
Ay, k) =4, (4.1.45)
k=0
so that when approaching 1,
B ! 1
We find that when N goes to infinity (p goes to 1),
- NIV 5+~
@ (t) = 2y — NY 4.1.4
2(t) T [27 + 2 5}%—0( ) (4.1.47)

In particular, we see that since 52# + 27y —5 does not vanish for v > 1, the only dominant

contributions are obtained for the leading propagators. Furthermore, very importantly,
the order 2 averaged Sobolev norms are positive when p is close to 1, which proves theorem

4. 1.2

4.2 Variance of the Sobolev norm at order t*

We can adapt the tree and diagram expansions discussed in section [4.1.2 and [4.1.3|to the
computation of the variance of Sobolev norms. We need to compute

(50 e = D0 Do) an (Dn Dear,Dan,(Deae, (121

r12>2072>0

at order t* which is the first non-trivial order in ¢, where
(e, (), (), ()0, (£) 0,0 = {0ty (£) 0y (8) Oty (8) sy (8)) ¢ = (g (8) 0 (£)) 0 (s (£) 0y (£))
Similarly to the G5 computation, we need to consider

Ga(ri,ra,t) = N2, (8) @, (£) iy (£) iy (). (4.2.3)
This expression can be written as a tree expansion

Galri,ra,t) = N> Y Y fromiele S S A (T1) A (T A (To) Ay (Th),

h1,h1€N ha,ha€N T, T EeT To, ToeTy
(4.2.4)
and then rewritten as a sum over a pair of heap-ordered 2-rooted trees
5 tn1+n2
Galrira,t) = N* Y o > AL (U)A,(Uy), (4.2.5)
ni,m2€N U1,U2€T2*’L3

where n, and n, are the numbers of true vertices of U; and U, respectively. Noting by
U the pair of heap-ordered 2-rooted trees (U, Us), and averaging on both a and C, we
obtain

(Galri ) a = D m!nzls"li’” S ) Y A6, (4.26)

n1+ns even UET] s x T weEWL (U)
, ; f
w' eEWe(U)

tm +mn2
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where W, (U) is the set of different pairings of leaves with anti-leaves in U (which means
that some pairings can happen between U; and U, or inside each 2-rooted tree), We(U)
is the set of different Wick contractions of all the tensor couplings C, €(U) is the global
+1 factor depending on the orientation of the solid edges in U. We note A,, ,,(G) as the
amplitude associated to the graph G' = (U, w,w’) which reads

Ary 1 (G) Nn1+n2 26 (Zv) H 5]ejep] (4.2.7)

e€€q(w)

where Zy; is the moment attribution of U, §,/(Zy) are the momentum constraints imposed
by the Wick contraction of C' and &,(w) the set of dashed edges of G.
In the following, we are only interested in connected graphsﬂ7 we will compute

(Ga(ri,r2,t)) 0 o — (Galr1,1)) 0 o (Galr2, 1)) o - (4.2.8)

We want to emphasise again that a diagram is consisted only of solid and dashed edges.
For each diagram, many graphs are obtained by choosing how to add wavy-lines and for
each wavy-lines we have to pick one of the eight possible propagators. Only one choice of
wavy-lines and propagators gives a leading order graph amplitude. In the following, we will
mention which wavy-lines choice is the dominant one but not represent them. Moreover,
diagrams are grouped in types which are the different ways one can draw a diagram
and obtain the same leading order graph amplitude. When summing all dominant graph
amplitudes, this leads to a combinatorial factor which counts the number of diagrams
grouped within the same type.

We now determine which diagrams give leading order graphs with the right choice of
Wick contractions and propagators for C', and we only compute these dominant contri-
butions. We use the notation A,, ,,(G) as the sum of the dominant graph amplitudes
belonging to the same diagram type (. This means that we include the combinatorial

L1+"2
factor coming from the perturbative expansion, namely —2,8 , the factor counting
the number of diagram of type GG, and the global £1 factor ¢(U).

There are three classes of diagrams contributing to the variance of Sobolev norms at
leading order. We thus split up the variance at order ¢* in three parts:

290 = 33 T (G ra ), — (Galri )2, Gl )2 (129

T1>OT‘2>O
— 29 1+ 52 (1) + 52 4.2.10
= 5%, u(t) + 5% 1 (1) + ~/L2() (4.2.10)

The first class are melonic diagrams which are very similar to the diagrams obtained in
the computation of the average Sobolev norms. These diagrams come in 4 different types

and we compute their contribution S 2,(;2\4(15) in subsection (4.2.1| Then there are two class
of ladder diagrams that are computed in subsection 4.2.2| For the first class, we compute

their contributions to the variance of Sobolev norms S_ngn(t). The second class is more
involved and at the time of the writing of this chapter we only computed the dominant
graphs amplitudes. Their contribution to the Sobolev variance 5722%2(75) is a work in
progress.

SNote that a graph disconnected with respect to dashed edges but connected by wavy-edges (or the
opposite) doesn’t contribute at leading order.
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4.2.1 Melonic diagrams

The four diagram types treated in this section are drawn in Figure [4.6| and their graph
amplitudes are square or product of the graphs amplitudes found in subsection [4.1.4]
We give some details for the diagram type M; shown in Figure and directly give
the results for the other types. The Wick contractions for C' are pairing the true vertices
already linked by three dashed edges so that to obtain melonic sub-graphs with four edges
(three dashed edges and one wavy-line). The wavy-lines are taken in an analogous way
for the other diagram types except on of the dashed edge in replace by a solid edge. The
dominant graph amplitudes for M; is then

2

16 / 1 2§ o 1r+1\2
(M) =6, . —(— S+1 25—7") — Orurs 27“( — ) 42.11

S>r

where the root indices r; and ry are identified and by a slight abuse of notation are both
called r. The combinatorial factor 16 comes first from the 4 possible heap-orderings of
the 2-rooted trees and then from a factor 4 which is obtained by interchanging the dashed
lines of similar orientations.

(¢) Melonic diagram III/IIT (d) Melonic diagram II/IIT

Figure 4.6: Melonic diagram types contributing at leading order to the variance of Sobolev
norms at order #*.

The leading amplitudes for the other types are computed to be:

57"1,7"2 2r 4102

Ar(Mir) = =35° (p (r+— )) (4.2.12)
57”177"2 7 p2r+1 2

Ar(Mrr) = —¢ (p - 1+p) (4.2.13)
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r+ 1 p2r+1

67‘ T IS r
Ar(Myrjir) = —%PQ (p+ N )" — T+p

). (4.2.14)

Knowing these amplitudes we can proceed to compute their contribution to the variance.
As above, we treat in detail M;, the computational details for the other types can be
found in Appendix . The contribution to the Sobolev 2-point of A, (M) is

r2v p? 1 r+4+1\2
216N2p2r(1 2 TN T )
= (1+p) +p
r2y 4 2% r+1 1 r+1

_216N2p2r<(1—]; )4+%(1+ )3+ﬁ(1+ )2)
g p P p

1 ( P! 2p*

(

T 16N2\(1 —{—p)4L27(p2) * N(1+p)3 (Lay(p%) + Loy 11 (p?))
1

+ m(bv(p?) + 2Loy 1 (p°) + L27+2(P2))- (4.2.15)

From equation (4.1.46), we know that L.(p) is of order N7*! in the limit p — 1. At
leading order the only contributing terms are

4 2p? 1

1 D ) ; i
16N2 ((1 +p>4L2’Y(p ) + WL2W+1<Z7 ) + ngerQ(p )> (4216)

In the limit p — 1, this expression simplifies to

N2t ( P! (29)! 2w (2y+ 1) 1 (2y+2) >
16 \(1+p)*(L+p>*t  (L+p)*(L+p)»*  (L+p)* (14p)2+
2v—1
= @ —_— ' 2 2’}/—1
po1 227+9 (27)1(4y" + 10y +5) + o(NT77). (4.2.17)

Thus, in the limit p — 1, the total contribution of melonic diagrams to the variance of
Sobolev norms at order t* is:

59 (4) ttN# | 1 2 1 2
St = — (27).(22#6 (42 +107+5) + gz (92 + 117 +13)  (4.2.18)
1 1 1 3 2 -
+ (2'}/ + 1>(24’y+5 - 32w+2) 22%&-1 + 247—}—4 - 32'y+1> + O(N K ) (4219)

4.2.2 Ladder diagrams

In this subsection we compute the amplitude of ladder diagrams (here a rail with 2 rungs).
There is a total of 18 different types of such diagrams shown in figure 4.7 We further
split these diagram types into two classes. The first class is constituted of 11 diagrams
whose dominant graph amplitudes are straightforward to compute. The remaining 7 types
belonging to the second class are more involved. For each of these two classes of ladder
diagrams, we will detail the computation of the dominant graph amplitudes of one type.
The details for other types can be found in Appendix [F]

We name the different types of diagrams in the following way, each 2-rooted trees in
the pair used to construct the diagram can be of type I, II or I11 depending of its solid
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edges. For a given type of trees, when contracting the leaves, several pattern of dashed
edges can occur. We refer to these patterns by adding A, B or C' to the original type.
When the two sides of a diagram are the same, we simplify the notation such that, for
instance the type ITA/ITA is noted L;;a. Moreover, for each diagrams, the wavy-lines
are drawn between the two true vertices of a same vertical rung and we pick the leading
propagators to get the dominant graph contribution.

We consider for example the diagram type L;a,rp showed on Figure . It is made
of two part, the left part is of type I A, and the right part of type I B. Its dominant graph
amplitude writes

Sy S
A r(Liajre) = oo 4N4 oD pes Z Z B (4.2.20)
S12r1 S22>12 =0 ko=
T1+T2 Sa+r2
=t Z (S + 71 + 1)p* (4.2.21)
S22>0 S1=
_ (1 +ri(l - p2) o preth
ANt A (1=p?)? (1 —p)(1 = p?)?
p2(rz+2) \
T 1—p)(1—ph)? ((r+r2)(1=p") + 1)) (4.2.22)
pr1+7“2 1 r pQ(Tngl)
= + -
T (EemH Cream Rl e i
Pt (r + r2)P2(”+2)> (4.2.23)
(14 p)(1+p?)? N(1+p?) £

The combinatorial factor 64 is obtain in the following way. We get a factor 4 from the
different heap-orderings and a factor 2 from the fact that the pair of 2-rooted trees (Uy, Us)
gives a diagram of type [A/IB or IB/IA. Then by interchanging the two dashed half-
edges of same orientation at each true vertex of the I A side, we get a factor 4. Finally, we
have to take as well into consideration a factor 2 by interchanging the two dashed edges
in the rung of the I B side.

The dominant amplitudes for the other type of diagrams are computed to be:

Ao (Lrg) = pritre ( 1+p 1+ 7o r1r2>
B TGN (14 p) (L) \(L+p)2(L+p2)? N1 +p)(L+p?) N2
(4.2.24)
pr1+2rz T1(1 —i—p) p2(7’2+1)
Ary (L (1 -
( IB/IIB) 8N(1 +p> N 1_|_p+p2
(1 + p)p2r2tt) (1+p+p°)
_ Ut Grprpr) ) 4.2.95
(1+p+p2)2( + (r1+72) N ) ) ( )
prtr rn(l+p+p?) (P +2(1+p+pH))pHty
Ariro(Ligjrire) = ——2< - 2 2\2
16N (1 + p) N (1+p)?(1+p?)
1 2\, .3(ra+1)
_ A4 p+p)p?t 0 + 7“2)>7 (4.2.26)
N(1+p)(1+p?)
2(r14r2) 1 2
p +p (r1 +72) riTy
Ao (Lira) = ( ) 4.2.27
s (Lara) 64N \(1+p)®  N(1+p)? N2(1+p) ( )
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(n) Ladder diagram IIB/IIIB (o) Ladder diagram IIIB/IIIB

(p) Ladder diagram IIB/ITIIC  (q) Ladder diagram IIIB/IIIC  (r) Ladder diagram IIIC/IIIC

Figure 4.7: Ladder diagram types contributing at leading order to the variance at order
.
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2(r1+12) 1
P ro(re + 1) 1+ 7o riTs
0 _ ( ) 4.2.98
Ay o ( HA/HIA) 22N +p) \(1 1 p) + SN2 + N +p) N2 ( )
pr1+r2 1 p(prl + Tr‘z) pr1+r2+2
A (Do) ( _ ) 4.2.29
valbinie) = e (T " Tt T A ) 4229
r1+ro 1 r2+1 2r1+2
.Arl,rg(LIHB/IHC’) = L ( -7 2 ! 2
16N \1+p 1+p+p> (A+p)(1+p+p?)
p3r1+r2+4
_ 4.2.30
(1+p)Q +p2)(1+p+P2)> ( )
p27.1+7«2 p p27'1+7‘2+3
A (L —_ (1—— ) 4 ) 4231
L HB/IHC) SN 1+p( p"”) (L+p)(1+p+p?) ( )
prﬁ-rz pr2+1 prﬁ-l p2r1+r2+3
Ava(L — (1 . - n ) 4.2.32
, ( IA/IIIC) AN (1 +p)2 1+p+p2 (1 +p)2(1 +p2) ( )
prﬁ-rz 1 T
A’f‘l T2 L = - ( +
s ( IB/IIIC) SN (1 +p+p2)2 N(l +p+p2)
pr2+1 1 ™ )
B + 2 4.2.33
T A i N (4239

The details of their contributions to the variance can be found in Appendix [F], summing
all of them gives

52.(;121( ) t4N2'y—1<,_Y!)2 (i (1 NI 1— 1 B 1 B 2(7 + 1))

22v+4 37+l 32742

1 v+1 5 1/ 1 v+1 3 5(v+1)
JF@(&%Jr 2 +(7+1)>+3_2(27+1+ 27 _22w+1_ 22v+33>

1 15y + 22 1
64 (1 +3(v+1) - 927+6 > + 927+10 < )

2

9 v+ 3y ) 1( )
4 5)+ —(1—

(7 At S B 27— 13 22v+

1 1 1 1 1 1 /1 1 1
tpll-m-5ewn) %l 3v+1 + i)

1 7 1 1/1 ~41 ) 9y_1
B Z(l T sy 27+437+1> a §(§ T3 27+5)> ToNTT). (42.34)

For the second class of ladder diagrams, let us now compute in detail the dominant
amplitudes for the diagram of type L;a/rrp shown in Figure It comes with a
combinatorial factor 32 when taking into account the 2 heap-orderings, the exchange of
the two types I A and I11B, and the way one can rearrange the dashed half-edge of same
orientation at a true vertex gives a factor 4 for the I A side and 2 for the I11B side. The
amplitudes also comes with a minus sign because of the relative orientation of solid edges
in the I11B side. We then get

S1 S
Avy o (Liajiris) = 824N4p_” Z Z porte Z Zp'”cS,’jf (4.2.35)
S1>7r1 S2>r0 k1=0 ko=0
S1 S2
S1+S. k2
DI PIPBL: (4.2.36)
S1>7r1 So>ro =0 ko=
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— pmin (51,52)+1

= _ZLTL Z Z p251+521
8N

S1>11 S2>ra

4.2.
= (4237)

pritr2 min (S1+71,52472)+1

=~ 2L 2 P 1-p e (4.2.38)

51>0 52>0
_ pT1+T2 ( Z Z p2,5'1+5'2+m1n (Sl+T1,SQ+T2)+1>
41 _ _
8N (1 p) (1 1 —I—p $1>0 S2>0
(4.2.39)
If 4 > ro then one has
Z Z p251+52+min (S1471,S24r2)+1
5120 52>0
ri—ro—1
— Z < Z p251+252+rz+1 4 Z p251+52+rnin(Sl+r1,52+7"2)+1> (4240)
S51>0 So=0 So>r1—ro
1 — p2(r17r2) .
_ pr2+1 - +pT1—r2+1 Z Z p251+52+mm (S1+7r2,S2+7r2) (4241)
(1—p%) $120 5,20
e (L0 ey 1204397+ 29° 4!
P +p (4.2.42)
(1—p?)? (1=p?)*A+p)(1+p+p?)
and if r < 7y,
Z Z p251+32+min (51+T1,5'2+T'2)+1
5120 5220
ro—ri—1
_ Z < Z p351+52+7’1+1 + Z p251+52+min (S1+7’1752+T2)+1> (4243)
S2>0 S1=0 S1>ro—r1
_ pr1+1< L=p"7 sy 1204307 + 297+ ) (4.2.44)
(1-p)(1-p?) (1 =p?)2A+p*)(1+p+p?)
Hence the amplitude can be written as
pritr , . 1 — p2ri=r2)
Ay (L = — 1 — pin(rur2)+ (0 ry—ry)——mo—-——
1 2( IA/IIIB) 8N4(1 —p)3(1 -l—p) ( p ( 1 2) (1 +p)
(4.2.45)

+0(ro — 1)

To—T 2
(1 + p)(l — p3( § 1)) —|—p(29(7"1—r2)+39(r2—r1))\7"1—r2| l+p+p )
(I+p+p?) (1+p*)(1+p)
(4.2.46)

In an analogous way, we obtain the amplitudes for the other types listed above:

ph +7r2

1 2 : 1_ 4\ 2|7’177‘2|+2
INI(1 = 2y (1+p2)( + p® +min (r,79)(1 — p*) — p ),

(4.2.47)

AT1,7"2<LIA>
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p2(r1 +7r3)

rira (L 1 1 1 — p2) — Ir1—ral+1
(4.2.48)
p2(T1+T2) 2 2 |r1—ro|—r1—r 2
Ary o (Lirra) = AN (1 — 2y ((1+P + |r1 = 12| (1 —p7))pm T 2—p>>
(4.2.49)
pr1+r2
% (1 . p2+2min(rl’r2) (1 +p2 +p3|r1—7’2|+1))) (4 9 50)
(I+p+p?)(1+p?) ’ o
A L p2(r1+r2) p2|7”177‘2|+2 4 2 51
rro(L11B/IIIB) = _16N4(1—p)3(1+p)< —m>, (4.2.51)
pT1+2’r'2 ' p3
(L (1 ,
Avi o (Liajirs) = IN L= )P £ ) + min (r; T2)+(1—p)(1—|—p—|—p2)
_prl_TQ
+ 8 —rajp(i +2) (1=p)A+p+p?)
0 2 L—prremy) 4.2.52
0= T T ) (4252

The first step of the computation for each amplitude can be found in Appendix [F]

4.3 Perspectives

A first immediate perspective is the computations of the contribution of the second class
of ladder diagrams to the variance. This is more involved than the contribution of the pre-
vious amplitudes and is currently in progress. As an example, let us show the contribution
of the ladder diagram of type Ly,

Z Z T1T2 7“1 T LIA)

r1>0712>0

) iO:oio 4N3((f EZ@(I + gy (1P min (o) (L= pf) =) (43.0)

a ﬁ ( (?J(rp;; +2 i; (1(27;))7(]31?1:; ) (ro(1 —p*) - pQ(”‘””?)) (4.3.2)

:%( +(p)? +2rlz>07nlpnmzlo 7”21+p _ o2 %Tlpgrlz 1+p 1+p)>
(4.3.3)
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where we introduced the multiple polylogarithm functionsﬂ [102]

51,.52 ,T1 T2
Loy 4o (21, 22) E ritry? 2yt 2 (4.3.5)

r1>1r9>0

Using the facts that Lo(z) = 1 +(2) = Ly41(2) and following the lines of [103]
for standard polylogarithm, we can express the multiple polylogratihm functions as sums
of polylogratihm,

21

L = 4.3.
Lym(21, 22) = Z (Z) Li(21)Lpym—r(z122)  with n,m > 0. (4.3.7)

k=0

With these formulas, we can express the contribution of ladder diagrams of type L4 as

2.2 (Tx?vv‘lm,m@m)

r1207r2>0

_ 4]1\73 ((I;”ip;; + N(12+p)2 ( ]:0 @) Ly (p)Loys1-£(p?) + Loy41(p?))

- (o + L%(p?))) (439
o s (e g (a0
e (1) Lk<p3>LM<p2>>) (439

_ N SRRy 1R s () K2y — k) oA
=l 4 23 k 92v+2—k k) 3k+192v+4—k 0 .
0 0

k= k=
(4.3.10)

A second perspective is to prove that the dominant graph in the limit p — 1 are
indeed the one we computed, namely melonic and ladder diagrams. The combinatorics
are very similar to the SYK model, hence a first step for this proof would be to prove the
dominance of ladder diagrams in the large NV expansion of the 4-point function of the SYK
model. One possible way to do so is by adapting to the 4-point function, the method used
in [104] for the proof of the melonic dominance in the large N expansion of the 2-point
function. We then need to take into account the specific momentum attribution of the
diagrams in our model in order to prove the analogue of Theorem for the variance
(see [60] for the proof of Theorem [4.1.1]).

A third perspective that appears to us is the study of other cumulants of the dis-
tribution of Sobolev norms in the limit p — 1. We can expect that the leading order

7As for the standard polylogarithm functions, we use a different notation for the coefficient, in the
usual convention the series corresponds to L_,, _, (21, 22).
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diagrams are similar to the ones in the 6-point and higher-point function of the SYK
model described in [29] and [30]. We hope to prove that it is indeed the case and from
this knowledge that at leading order in the limit p — 1 and at early time the fluctuation
around the mean value of Solobev norms is distributed along a Gaussian law, as is the
case for v = 0, 1. Naturally, the next step would be to extend these results at all times
but this task goes beyond the perturbative techniques used in this chapter.
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Appendices

A Proof of Lemma [1.4.7]

Proof. The proof is lengthy but straightforward. Let us explicitly compute here some of
the necessary terms:

1
o5 Gl L0 U D)) (A1a)
(ZASMG@@'JF 254 (123)*(A,, TG@@))*J(@u 0°0)
s 4G - DL (D (A1)
i#a
1 s 5)
= 5; ( E;QAsa,rGf'@ + 23:4(123 ) D r G i) * IS U (D)

%;«G%m VRIS (A.lc)
- _Z ( > DGy * A LD

i#a r=1,2
+ (D (128) Ay Gl gy ) * A(E U ))
(G L 0L Q0D (A1)

= (X 20 )+ IS LD
(3 (123) 80, Gl )+ A U (D))

) . =3,4
§<<G\(e)~\@>| S U @» (A.1e)
_AS“G\@\%\ IGP) + Z DG o+ IS L)
1 . i
3 ; (G © VL., (A.1f)
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1 8) d 8)
:§;{A Gy I+ X DGl > J(@u@>}

(00 SV D). A1g
- ;{AS“ 1G\@|@\ J(@) i q;ﬁl AS“’qG%@\} O U @)
SE, g S >>sa (A0
= s 1G% m\ h;g Bsa th@ (B ] =S U
+8,,GY o * J( hZ;gJ,AS“ WG o « IS U
(B, G% ol AuaCig pro) ¥ IS )
<<Gf?@|m, SU[G D (A.10)
= 8uta G2, g # LD + 2Ol g+ IS VLD
+A,, 3G|(2| ol * IJIBULSUD)+ ASGAG@‘ o IS U(r))
s S 6B ©US U (A1)
“HE L 30 i IS
" p;4 BrasCi oy ¥ IE )}
. S o ©USU [T (A1)
= 12 2000 o g+ IS U
+Z N [(S TR JIRS )
%«G%@I%, SUSUSUS). (A1)

»J>|,_n

Z AR P (SIS INES )
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1
2

zbc

(aztji)

1
5 2 (G

i=b,c

(atii)

(G (e o0 (Adm)

a C b c
_ (8) \ (8)
- Asale *J( ’.’ + A5a72G * J( m)
b ¢ b a
(®) (8) 3
F DG I D)+ AaGE + (1T D)
a C b c
_ (8) )
- AS(ulG *J( ’.’ ASa 2G ‘]( m)
b ¢ a b

+ A 3G+ I 1)+ (13)7(A,, 4G_ )* (0 0)

(O [EO (A1)

= (13)*(A,, 1G ) xJ( 99 + Asa,zG * IS U()"))

b ¢

F1013)" (80,06 ) + (13 (A0, G )]+ (L4 D)

BM .:DZQ

= (03 (A0n GO )+ (18 (8,,2G0_ %314 ])

+ (123>*(A5a73Gé§;Zj£Q ) *J(6 I—l @) + ASGAG(G;;ZE *J( ’E.’

j -E (A.1o)

J

:% > [ZAWG@) ’*J(Qii(})JrZAsmpthm*J(QiD)

i=be  r=1,2 p=3,4
(ajti)
a _j
=5 Y (., G )+ D MG )AL D)]
i=b,c r=1,2 p=3,4
(azts)
1 c
- 5 |:( Z( ) AS“ mal Z As‘l mm (m)
r=1,2 p=3,4
b
+ 21:2@3)*@5&,?0;0 )+ 2;4 Doy GE )3 o.lg
r= p=3,

e IZQ (A-1p)
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DI

i=b,c

J

1 i
9 Z [(ASalefu *JI(( ] )+ A, 2Gz(a[ (ad g o Jou OZQ

i=b,c
(ai i)
J i

80, 0G s F TN D) +A0,uG s+ I D)

]. 8 b Q ¢ 8
= 5 [(Asa,le(a *J< .m.. + ASaQG,,(u * J(@ U Ojo)
c b
+ 8,360 %3 Qj@u@ )+ DG * I 0)]
1 ) c b
+§|:(Asa71Gca *J( )+A5a7 Jad) a ha *J 61"@

+ 800Gl + IV D) + A%AGia SN
. * (8)
— 5 |:{ (Asa,lea + (13) (As‘l?cha )

+ (13)"(As,aGl )+ Aua G, 330 >
(8 (8)
+ (A2, + (123) (A5a73qa ) *I(Su()D)

- (ASQ,ZGEH, + (123)*(A5a,3sza g )) xS U )

) E- (A1q)

(aj#i)

a C

{{A%lcﬂ[ (13)*A,,. 4G b M)
b
{8016, +(13)*ASQ4G(S)_ FxI(00)
b
+ Z Sas hG(S) S *J(@) + A, hG e Jade *‘KQ))}

h=2,3

1468 €, € (A1)

i#a
i 1 a
= 7 As G n As TG(8 *J
PRHICRETSIRS PILWCLRE s

z;éar 1

> (6% T ). Aty

i#a
Do n Gy IE_P) + 84,268+ IS L)

b b

b
+ Asmng@ « I + ASQQG% st )

Q
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b c
+ 2 (DGl + (13 80,5 GE) # (D)

p=3,4
Z<<G’ E Des (A.1t)
i#a
_ Z:} Asa,rG xJ @ pZB4A3a ,,G 53 00
b
+ Asaer + Asa G 8) ....
TZI:,Q @ p2334 P

> (o, >>3a A

ijAazi#]
= (801G + DGl «IE D)

a c a b
+ (13)*A,, G wJ(0 1) () + (13)* A, (GB * I([ 4 D)
2 {09, | }

G®, J/ Al
;« s @ s, (A.1v)

= (ASa,lG(%@ + A, 1 G @@) *M@)
a b a_c
T2 (188 G+ ILLD) + (13 As g Gy, * I 0)

q=2,3,4
b a

(@ @ >>sa (symmetric in b, ¢)

a

Z AS”G « I+ AWG[ «IE D (Adw)

r=1,2 p=3,4
(e, 00 >>sa (A1)

ZAWGSP ()
r=1,2 >

+ Asa,gG(f)U *J( ... + A&;AG(%)c *xJ .eé
% 5]

a~©

— S (13) (A, G@>*J<>+ASG,BG%*J<>

b

+ > (18)" (A, ,G ) % I 790
p=3,4 @
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b
1 N
—(G® , . “;£“7- s (A.ly)
4 A a
E
1

= —{(23)"A,,1G®) + A, 2G® + (13)*A,, sGO
4{ boats boats B

b _c
+ (123)*Asm4G Fx3(0 ] 0)

i g% i

|
1 a® @ . Al
L RN (A12)
(i#j#a) N
- 1[{AS GO (123)° A, 5GD, + (23)° A, 5GO
AL R c T
ab
+(13)° A4, 4G, 1+ I(( ] D)

+ {26 1GY, + (123)° A, .G, + (23)* A, 3G

#09) 8,,4GL8, } (0 D)
a b a

1 8 ) 1 - 8 A
162, bi@c)}b e = 3 2685 # G- (A-Tha)

a [ a

One adds all the previous equations and associates by J(B), for B one of the 11 graphs
with 6 vertices. O

B Rank-four and five melonic quartic theories

In this appendix we treat in detail the SDE for connected boundary graphs up to the 6-
point function for the rank-4 quartic theory with pillow interactions and give some early
steps on the rank-5 theory.

B.1 Four-coloured graphs and melonic quartic rank-4 theories

We count the graphs with 2k vertices for £ < 4 in order to obtain free energy expansion
until O(J4, J4).

Figure [1.3| summarizes some properties of these graphs that the free energy expansion
depends on. Although they had been enumerated, neither had they been identified nor
their symmetry factors (the order of the coloured automorphism groups) found. We can
now expand the free energy until sixth oder, which would in theory allow the computation
of 4-point function’s equations starting from . For the ¢t -theory, the sum is over
all dFeynp(¢L) = Grph)®, as shown in [62]. For that model (and also for any other
model containing those interaction vertices and thus the same boundary sector), the free
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energy Wp_4[J, J] to O(6) is then given by the following expansion, where b = b, . =
min({1,2,3,4} \ {a,c}) and d = d, . = max({1,2,3,4} \ {a,c}) and (i1(a),iz(a),i3(a)) is
the ordered set of {1,2,3,4} \ {a}:

Wini1.7] = G2 3(©) + 562, (SIS + 3360, +(11)

2 2@% I .l. + 3|Glgl@\@\ S SSASIS)

1<j

20 (S0 50 3@ ()

+
J=1 ! -
B0t (L) + £oty <G ILD)

3 ZG ,*J<]>+§§;G*J<@>
D3I () iy, *J<)

k#j

e < (FE)

It is convenient to single a particular colour a we want to use the WTI for. Care has
been taken in order to colour the graph’s edges in non-redundant, but univocal way. In
particular, edges are labeled strictly by the closest letter next to them.

+O(J*, JY
{i1,i2,i3}={k}c

Wp—4[J, J]

2 L
:Gg*J(@)+Q.G|@|@| NESIES)) +;2Gm (@HéG(@i@ L I(00)
+C¢Za 261 <@a) Jr?,lGI@\@\@I MESHESES))

+ 501 1 (‘@'.)JFQZG%\@;@\*J(@'@)

+§ZG%,|*J(@IG@> > S *J(@@)
>, *J(>+ZGG) w3

+sz )X T o “*J<“)
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SMEN u(“)+§au<>+%;e;%~@>

Ha
Ty et () jxan a(E8) iz (G0
c#a f=bd @ ‘ a a

{0, <f>}+G ‘ o)

For the sequel, we adopt the notation of writing entries of Z” as unordered sets, even
though we mean them having a colour-ordering (by the subindices). Hence, the D-tuple
(Gpys Qpos - - - Qopp_y» Qpp ) Actually means (g, gs, - - -, Ge, @u) Where r < s < ... <t < u, being
{r;s,....,t,u} = {p;}2, as sets.

The simplified Yngi)—term given by and by the Ward Takahashi identity after
taking the (m,n,)-entry of a generator of the a-th summand of Lie(U(N)?”), reads then:

Z Gg(ma; iy, Qigs Qig)

qiq1,9i9:9i3
+ %{ S A G +Z > A, G WY ALLGY }*J(@) (B.1)
s=1,2 i=1 s=1,2 c#a s=1,2
{3! ZAW GI@\@\@I T35 Z Z A, G|@|@z@| T3 Z [ Z Ainss G\@\ o) |

i=1 s=2,3 c;ﬁa 5=2,3

(B.2)
6) %
1 6 6) & 6
+{2A G|(©)\©z®\+ ZAW”G Z{ a1 G( T Z (.%)

a

+ AmmgG(Gl( + Ama SG :| } * J()

+

3
1 (6) (6) p
S {58maGY |+ ) b+ 3(070)

Q
[N
)
5

3
A, G A, 1G9 1 A, .G
+§{[z Oy Ay +5 3 A

it +Ama1G }*J(@)
[ A sG s +ZAma G-} I(Q=0)
ael

(3P + 3 dnn0y |30

+ Ay, ,GY)
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(6) ©
-+ Z { [ Ma, 1G|©‘ | + _Z Ama,ch + Ama,SGa’

c#a
g ( (6) —
+ 2 Am”G i i G6 + A, G0 I (o) )
32 Z Z f oi% ST

+ [Ama,geia + Ama,zegﬁa A G @} *J(ba,cm,(.)
+ Ama,gG%ﬁa + Ammng@” } * J(da,cda.u )} + O(J?’, j3) ‘

+ [Amu GO
2D

B.2 Two-point equation for rank-4 theories

Also rank-4 theories are also an active topic [105]. We think it is instructive to derive
directly, without using the theorem the SDE for the 2-point function:

1 0 - 1 = 1
G?(a)=—{— — St (6/8J,8/8.J)) — Jae>alaFa Ja
@(a) Zy {(5Ja {exp( (8/87,9/ )) Eq ¢ J=J=0
1 - 7 -1
— _8. Zq JaEq Jq
TE. [exp( Sue(6/07,5/5.J)) e L:J_:O (B.3)
1 - 1) 7ol
—Sint(6/6J,5/8.)) Jo—e2aala Ja
" %P, (eXp( 0101 8/81) g e yreo
1 11 < 0 -
it (P CSuled)) oz
Ea ZO Ea 0 a b 8/8J8 J=J=0
_ 3(—Sint(80; 95))
a(‘ﬁx Pr—5/5T4
) ) ) )
— —92)\ _ = (X € Z4)
{5J$11'21'3T4 ; 5(]?/1-732373334 y2g237y4 6Jyly2y3y4 5‘]1'1y2y3y4
) ) ) )
5‘]11962363904 Yo 5J1E1y2£v3904 Y1,Y3,74 5=]y1y2y3y4 6Jy1$2y3y4
+ ) ) 0 )
5‘]961562903964 Y3 5‘]1?19023/3904 Y1,Y2,94 5Jy1y2y3y4 5‘]1/13/21‘3114
0 ) ) 1) -
+ = — ZJ, J]
6Jl'lz2353334 m 5‘]3711'2-'53114 Y1,Y2,Y3 5Jy1y2y3y4 6Jy1y2y3964} J:j:o

One uses the WTT for the double derivatives of the form
62 Z1J, j] 62 Z1J, J_]

= g ey =
6‘]31111293:945‘]1'12/29394 Y1,y 5Jy1y2y3y45Jy1y2y3x4
»Y2,Y3

Y2,Y3,Y4
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Then

_ O(—=Sint (¢, 95))

* a@x P §/5J4
4 —
82V 917, J] .
a=1 x0Udx _

1 (2 (2)
- Z m(G@(X) - G@<ya7$i1(a)7xi2(a)axi3(a))> :
Ya

Recall that (¢;,q;, gk, ;) implies an ordering of the entries, that is, reordering so that g,
appears to the left of ¢. if and only if s < r, s,r € {i,j,k, I} = {1,2,3,4}. Twice the
double derivative appearing there, 252Y," )[J , J]/8Jx 0.y, is given by

4 4
Z (G‘(@)‘@‘ (xav Qi1 (a)s Diz(a)s Qiz(a)s X) + Gf@)|@‘ (Xa Tas iy (a)s Qiz(a)s Qig(a))>

iy (a)9ig(a):9ig(a)

4
+ Z Z (G%@ (xa7$07Qb7Qd;X) + G(®£® (X; xaaxcaqqu))
c#a db(a,c) 9d(a,c)

G X X + ZZ <G(® Lay Lpy 4e, Tg; X )+ G(:g@ (X;l’a,mb,qud)) ’
;ﬁa qc

Thus, since Y,\") 0,0] = Zqil’qu,qiS a%? (Mas Gy s Gins Qs ), ONE has

« =
1 11 0 7
620 = 3+ 7 (Pepes (Sl @)) 210,
S Ee ' ZyEx \"*0¢y O 5/5.T J—Je0
1 (=N <
— E_ + z Z Z Z Z G xaa Qi1 (a) s Giz(a)> %3((1)))
bd X a=1 4iq (a) 9ig(a) diz(a)

TYY <G:@n@| ot s )

9iq (a) 9ig(a) Yig(a)

+ G\@|@|(X; La; Gir(a)s Qiz(a)> %(a)))

+ Z Z Z < (Tas Te, @b, qa; X) + G%‘%@ (x; xa,xc,qb,qd))

c#a 9b(a,c) 4d(a,c)

(x;%)

+ZZ < :L‘(JL)'TbaQCamd;X) _’_G(:Ez@ (Xa {Ea7l'b,qc,l'd)> +2G?6%®
c#a qc

2 (2) (2)
- m(q@(x) - G@(ya,xil(a),xi2(a)7xi3(a))) ,
Ya
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B.3 Four-point equation for G%l in rank-4 theories

Since V1 has Z, as automorphism group, according to Theorem [1.3.1] the equation satisfied
by aW & is the following:

(1+ 52— 36 v )GLY (X) (B.5)

T1,Y2,Y3:Y4 ;1 da

(20 ¢ @ Z;! 0717, J] 0717, J]
‘Ts;{z 0 X i e 1 B e

S
65€Zo o> Ya; a)

— IR P C) A4
; E(Sa, ba) [Glgl (X) Gl@ (X|saaba)] },

a

for x,y € Z', X = (x,y), and s = (z1, Y2, ¥3,¥4). We write down first the term in square
brackets in the RHS, which one finds trivially:

4 Zy! 0Z[J, J] _ 1 A ) ,
Z E ya? Sa aga(lgl )(X) B E(ylyl'l) (G|(<©)|©|( ) T GE@)(X) ) Gc(@)(y))

3% )

a=1
X).
E(ze,ye) @( )

Less so is to find >, f%l . The contributions to f(a) , for fixed colour a, are all functions

15
occurring in front of a J(()1() )-source term. These functions come from coefficients of the
following source terms in (B.1)) J(@) and J(@) for the Value whena=1orc=1
(in the sum over ¢), but also form the following values:
I(Q=0), forae{2,3,4}; I([™0), for (a,c) € {(2,3),(2:4),(3,2),(3,4), (4,2), (4.3)};
none from J(()*()).

Hence

o _J1 (6) (6)
flgl - {QA 1G|©|m| + 3 ZALM T’G z;é: |: 1, lG + 3 ZAII ’!’G

(B.6)

+ A, G9 A, 3G 6) ”

3
1
(6) (6) (6)
@1 Z Ay,, SG ‘l' Ay, 1G @BD + 3 z; Ayz,rG@ + Ayz,le +Ay,0G
' (B.7)

8Recall that ¢ (¢ # a) in that expansion (B.1)) is seen as running variable, while b < d are defined in
terms of a and ¢ by {a,b,c,d} = {1,2,3,4}. Also i1(a) < i2(a) < is(a), and {i1,i2,43,a} = {1,2,3,4}.
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1
+ §Ay271G(6) +A G(G) + [Ayz SG%@ + Z Ayz SG © }

y2,aT o o ,
|| (10| =, 1 =, T

A SSG A, GO ISTAL GO AL GO A, GO
1@1 Z Y ys,1 3@1@ 3 rzl Y3, @ ys,1 ,\\ ys,1 3
(B.8)
1 (©) (6) (©)
N i T s *;2:4[ nsGpey + 2 SneCipry )
1 ©) (©6) ©)
oy Z AsGipg + AnaGly e E ;AW“G@ + AWG4 + Ay,0G it
(B.9)

(6) o
+ Ay41G |®1®|+Ay4a +623[ y43G l.ﬂ T Z Y48 '4}
One inserts the sum of these four terms in equation (B.5)).

B.4 Four-point equation for G(1 in rank-4 theories

In order to get the equation for G(l , we calculate first ), f(a .

1
f()

_ L (6) (6) (6)
1 - |:§Ax1,1G|©|] | + _Z Axl,st + Az1,3G

1
e
(6) (6)
+3 Z Al“l TG @ + 3 Z Axl TC{@2 + Z Azl EG 'E%. ]

/=1,3

(B.10a)

(6)
+3 [Azl 3G© T Am,gG@l +Am,3G@l] ,

c=3,4
@ _[1 (6) (6) ()

zAm LS WIS pens

&, =13

(B.10b)

+3 [Am 3G ot AM’QGQ@Z + Am,gG@z] ,

c=3,4
® _[L (6) ©6)
m = [2Ay3 1G\@ls\ + Z Ay3,5G4 +Ay3,303@;® (B.10c)
+3 Aer; + 3 Ay, G + AgéG(6)
Zy Zy;g”a}

+ Z [Ay3 3G(6 + Ay, 3G 6) <o T Ay, 2G(6) ]
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|
e —[ Ay41G(6)‘.‘+Z y43G(6> +Ay43G

- (B.10d)

(a0

A TG Ay G Ay GO
+3 Z wrGOh + 3 Z wrGL + 3 B o
+> A y43G(6) + Ay, 3G

=13
=23 4 4

The remaining terms from swapping edges are:

+ A, ,GY

o]

4 1 . )
; B j 5) agaalzé Jl] )= mGg (x,y) + WG’% (x,y)
" E(;,yg) gl (o y) + E(mi, y4)G§§3( )
whence the SDE for G(] is
(1 L2 24: 3 Gg (Sas qa)) G<1 (X)
®a=1 qa
4
- (_153) ; { UEZZ: Ty (X) + m (G2, (0, y) = GIE (w2, w3, 10, y) |+
T m [Ggl (x,y) - Gl(gl (@1, Y2, T3, 74,5 )]
+ m [G%l (x,y) — G%l (X, Y1, Y2, T3, y4)]
- m [Gg (x,y) — Gg(gg (X, Y1, Y2, Y3, T4) ]

- _ 4
Z E(sa,b 1 ) (X) @ (X sustn)] }
with X = (x,y) and s = (21, 2, Y3, y4) with the functions f(l given by eqs. (B.10).

B.5 Rank-five melonic quartic theory

The generating function that enumerates the rank-5 connected boundary graphs (and
interaction vertices) is the OEIS A057007:

Zeonn.5(x) = x4+ 152% + 2352% + 141202" + 17128452° + 3715154542° + . . .

We will not classify the 235 connected graphs with six vertices, but, aiming only at
obtaining the 2-point function’s equation, we will compute the free energy up to O(J3, J3):

WDzs[J,J]:Gg*J(@H 5600 (SIS)
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=G () + 56,0 ISIS) + 36, +I0LD)

ey a0 iy (B
2 0D iy
+ > 2G@ *J<d) +O(J3, J?).

c,d#a
c<d

For an arbitrary model in rank 5 one has, up to O(J?, J?)-terms,

Yﬂ(li)[J7 j] ~ Z G(Q) mehaQizaQigaQu { Z Ama G|@\@\ —+ Z Z Amu G (4)
c#a

Giq s iy s=1,2 s=1,2
S A G 4TS A Y A6 }J<@>.
cd;ilas 1,2 @ c#a s=1,2 @ s=1,2
c<

One straightforwardly gets

2o G G L L S

a=1 iy (a) Yig(a) Yig(a) Dig(a)

+ Z Z Z Z ( |(j;|@| Lay iy (a)y Qiz(a)s Qiz(a)) Qis(a); X )

9i1 (a) 9iz(a) Tig(a) 9ig(a)

4
+ G‘(‘@)"@| <X7 Las iy (a)) Qiz(a)s Diz(a); Qi4(a))>

DIV ( %»xcaqb»qdyqe;X)JrG((gﬁ@ (X;xa,xc,qb,qd,qe)>

c#a b(a,c) 4d(a,c) e(a,c)

+ZZZ(G(4 (Ta» T, Te, Ga: 4o %) + G2 (X;xa,mb,xc,qd,qe))
o o)

de#ta g @
d<e

+ Z Z ( @ xav TbyGey Td, LTey X ) + G({zi@n (X Loy Lyyqcy Tdy T )) + 2G§.ZQ> (X; X)

c#a qc

2 (2) (2)
+ Z [ENCEE (G@(X) - G@(ya, Tiy(a)> Lin(a)s Tis(a)s Tia(a)) | -

C Perturbative expansion

In this appendix, we perform a perturbative check of the SDE up to second order of the
coupling constant, before and after taking the large N limit. For simplicity, we do not
write the powers in N in the equations.
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2-point function
The SDE for the 2-point function is

GP60) = +1|x\2 - 1+ |x|2 Z (ZG ()G () + G (x, %) (C.1)

+ Z G (geze, x) + Z x2 — (G®(x4q.) — GP(x)) + Z Z Ggl) (x, xéqc)) ,

d#c qc

Let us look at the perturbative equatlon up to 27¢ order in the coupling constant. We
can first remark that the term with AG will only start contributing at order A\3. The
other terms give

ZZG (qeze)G ( ) = 22 - @ (C.2)

1+ ]x\z

It is more involved to obtain the perturbative expansion from the difference of 2-point
functions. At first order, we have

17 |X|2 ZZ — D(xeq) - GP(x)) =2 O:@ 4O\, (C5)
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We are going to take the example of ¢ = 1 and compute explicitly the diagrams at 24
order in the coupling constant.

2\ 1
T e 2 e (CPlanana) —GU) | = (C.6)
al 1 1

>\2

S At S T
2 2 2 2 2 2
b17b21+bl+b2+x3 b17b31+b1+x2+b3

4)\2 Z 1 1
14 [x[2 &= 2% —af | (1 +af + 23 + 23)?
ail

1 1 1
+
+b22;31+a%+b§+b§+%:1+b%+x§+x§ %:1+a%+b§+x§

1 1 1
a (1+]x\2)2[zl+b§+b§+x§+Zl+b§+x§+b§

1
+ Z 2 2 2
bs 1+ ai + T3+ b3 b1,b2 b1,b3

1 1 1
+ + +
%1+x?+b§+b§ §1+b§+x§+x§ %:1+x§+bg+x§

}.

Half of the terms are straightforward to combine, let us look first at

1
+bzl+x%+m%+b§
3

4A\? 1 1 1 1
— C.7
1+|x|2§1+b%+x%+x§;a%—x%<<1+|x|2>2 <1+a%+x%+x§>2> .

a1,by

_4)\22 1 L, 1
(P A+t a1+ ad a3+ ad) \ xP T 1+ ad+ad+ a3

Now let us look at the two terms

1+ |x|? a? — 22 \ (1 + |x[?)? 1+ a2 + b2 + b2
ai

ba,b3
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1 1
_ E , C.10
(1+a%+x%+x§)2b27b31+a%+b§+b§> ( )
and compute

(1+a?+ 22 +22)* (1 + a2+ b3 +03) — (1+ [x[*)?(1 + 22+ b3 +12) =
al — 28+ (af — 21) (1 + 03 + b3 + 2(1 + 23 + 22))

+ (a2 — 23 (1 + 23 + x%)(l + 23+ x% +2(1 + b3+ bg)) (C.11)

By writing
af —z} = (af — 23)(a) + 21) + 23a] — 27a; = (o — 27)(a] + 27 +aja}),  (C.12)
(af — 1) = (af — 27)(af + 27), (C.13)

402 9 aj+aitaieit(14b3+03+2(1+ad+ad))(ai+at)+(14ad+ad)(I+ai+ai+2(14b5+b5))

1+|x|? . (14]x]2)2 (1422 4+b2+b3) (1+a?+a3+232)2 (1+a?+b3+b3)
a1,02,03

(C.14)
Now we can factorise

at +xt 4+ a2 + (14 b5+ b3 +2(1 + 23 + 23))(a? + 27)

+ (1 + 23 +23)(1 + 25 + 23 + 2(1 + b3 + b3))

=1+ [x]))(1+a]+a5+23) + (1 +a] + 25 +23)(1+a + b5 +b3)

+ (1 + %) (1 + 2% + b3 + b3), (C.15)

which gives

4\ 1
14 |x[? ahzb;bg ((1 + |x[2) (1 + 2 + 03 4+ b3) (1 + a? + 23 + 23)(1 + af + b3 + b3)
N 1

(14 |x|?)2(1 + 23 + b3 + b3)(1 + af + 23 + 23)

1
+
(1+ %)L +af + 23 +23)2(1 +af + 05 + b§)>

G:Q ©:© rrrrrr @@Q """ e ERCHE . (C.16)

Then by combining the terms with a sum on by or on b3, we get an analogous result which
correspond to replace bs by x3 or by by x5 in the previous equation. And we obtain the
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following diagrams

= 2.0 0
475 g T 44 T O @ggz0 | ez T O ) (C.17)

}+OQ%

}+mﬁ)

3 -1
= (1 + [x[* + 2 Z / dq.G® (q@xc)> : (C.19)
c=1



4-point function with connected boundary

The full SDE for the 4-point function is

22 ’ 3
G XY)=- fe(X,¥; 8e; Ve) + c®@ geSc Gl X,y
e S DS RCED ) MR

+ Z L <G§4) (x,y) — G (by, 9, 2, Y)>

S
1 4 4
+ Z b2 — 2 (Gg )(x, y) — Gg )(Xa Z/l,b27y3)>
b2

£ () — G b))
b

b3 —y3

1
o (6~ )
Ya 2
1 @) o GAY) @y @
+y§—x§ (Gg (X, Y1, Y2, 73) — Gy (X7Y)> +y%—x% (G (x) — G®(y1, 29, 23))
1
——— (G (x.y) — G (y1, 22,23, y)) } (C.20)
Y — 21

where s = (1, y2,y3). We can remark that the terms in Af. involve only 6-point functions
and start to contribute to the perturbative expansion only at order A3, and so does the
terms in AG{. Hence up to the 2" order in the coupling constant the other terms give
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+ ) + OO, (C.22)

~ 2) ZG“‘)(x y) = G (b1, 2, 23, y)
1+af+y5+3

b1

;;;;;; SO ¢
4 Eiiuigj rrrrrrr +4<§f3 """ y + O, (C.23)

_ 2 3 G (xy) — G (X Y1, b2, y3) " Z GV (x,y) = GIV (%, 31, 92, bs)
L+ af + 5 + v3 b5 — 5 b3 — y3

bs

T 1~ _ 1
0T, 0oLk
=4 +4 O A e YOO, (C.24)

2\ G§4)(X7 y17y2,953) - G(24)(Xa }’) G( )<X y175172aya> G§4)(X’ }’)
1+$rﬂb+% Y3 — 3 Y5 — 3

Q:@ ___________________ S
Lo oS S B e e
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) + O(N?).
(C.26)

After taking the large N limit, we get the following SDE and perturbative expansion

2 &
G§4) (x,y) = — 2 2 2 (Z/dqrEG(Q)(Qésc)G§4) (%)
c=1

L+ai+y; +u3
G® (x) — G(2)<y17 T, $3))

+GP(y)
yi — i

ol e l ¢ Ol @ oxe 1
L0000 ¢ 0.0
DY~ A Ty RO See +4z< ,,,,,, SR 5
d=1

4-point function with disconnected boundary

The SDE for the 4-point function with a disconnected boundary graph is

1
+ Z b2 (x,¥) — Grﬁ (xbe,y)) + e (GI(x,y) = GV (xeve. y))

+GO(x) (G D(yerey) + 3. Y G (we, qbyay) + ZG (Qete, ¥ )} (C.28)

d qb
7 2o
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where (z., gy, yq) with {b,c,d} = {1,2,3} is implicitly reordered. Let us again check the
perturbative expansion up to 2°d order in the coupling constant. We can note that the
first graphs appearing in G are of order A2, hence all terms in the SDE involving AGY
will start to contribute only at order A3, and the same goes for the terms Afy,. The
other terms give

3 wa)zeg@(yéxc,ymz@?@@ ------- o, om

1+ [x]? £ -
1+|X|2 ZZZG xcvqbaydvy _422 m @;@ """ y-}-O(A?’)
e=1 d#c 75 c=1 d#c
(C.30)
22 =GP (xy) - G (xepe, y)
1+ |x|? 2 2 — 22 (C.31)

6y =13 mm """" SO (€32

3

2)
- E .2 (g- (4)

+G(2 (Z/deG( Zey by Yd, Y ) /quG (qcxc’y))}

d#c

D Recurrence relations

In this appendix, we will use the recursive equation (2.6.2)) to determine recurrence rela-
tions on the numbers a,, i ,. We first perform the integration

7r .
/din;(?)(qixl) = _Z 10g(1 + :L'%) 1fp — ()’ (Dl)
p+1 2 p—1 r
T\ (log(L+a3) (-1 o)
il ~1)"log" (1 o f
(2) <2p<1+x%>p oy 2Tl (kD) 2 S )it >0
(D.2)
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where for p =1 the sum on r does not appear. Plugging back the ansatz (2.6.10)) in the
recurrence relation with ¢ =1 gives

) 2 . P ogP (1 + 22
G;><x>——m{ " log(1 447G Z() e,
S () Gy

+,§(§) (2(1”%),7;(— s 1+9c1m2 ) 1(X)}' o

The first term of (D.3)) gives

log (1+ 951 (E) log" (1 + 2?)
2(xP+1) \2 (1+ |X| )"

—1)n— 1 n—2 k 1 2\m
U S g1 a) 3 s ) )

M

(1 _|_$% n—1 P — (1 + ‘X|2)m+1
n—2 k
n log" (1 + 951) ! k+1 2 (L+af)™
— | = 10 ]. +x Ap—1,km
(2) ((1 + |X|2)n+1 1 +x1 )1 21 8 1)7'1221 Lk, 1+ [xp) 2
n n—1 k
7 log" (1 + x?) (1+ 2™
— — 10 1 + -]7 Ap— ,m— ’
(2) ((1+|X‘2>n+1 +xln; g ( 1 ng Lk—1 1(1—|—]x| y

(D.4)

where we sent k — k+1 and m — m+1 to get to the last line. The second term of (D.3)
gives

IXI2+1 —\2 2p(1+951) 2 (14 |x[?)r=?

n—p—2 k m
- ky K 2 (14 27) )

(—1)"log"(1 + «?) Zan—p—l,k,mm

k=1 =1
B ( > log" M1+ 22) < 11 (1+ z2)n?
2 (1+ 22)" ] (14 |x[?)n—pt!

k

n n n—3 n—p—2 k ; a Lk +w%)m+1
n—p—1,km
+ ( ) n g g plng 1 + fL‘l E 1 n |X| )m+2 (D5)

p=1 k=1 m=1

Setting r = p + k in the line of the previous equation, let us rewrite the double sum as

w
[\

2r—1

3

n—

3

L. s —1
i —>k: log" (14 27)an—rsk1em = . —)k:

1 r 1

—~

logr(l + $%)an,r+k,1’k’m. (DG)

e
Il

1 r=k

T
||
N
Eond
Il
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Then we send m — m + 1 and rewrite double sum to get

r—1 k+1 - .
nTr — m- 1 n—r m— 1

I  EDY Z norbonoy (LH 0" )

k=1 m=2 r—k (1+ [x[*)m* o r— (1 + |x[2)m+?

Hence, sending p — n — p and collecting the results we get

"log" ! ( 1+x1 "zi (1+a3)P
2 (14 23%) n—p(1+ [x?)p+!

p=1
n n—2 r r—1
™ (_1)71 2 Ap—14-k—r,km—1 (]- + x%)m
() A NT (L) log (1 + 2 ks . (D.8
<2> Aoy 20U ) 3, = e (P9

The third term of (D.3|) gives

2 = Q p —1)P — r 2 - Aprm
‘m{z@ (Wz“”%g ()2 ;n’>

r=1 m=1
n—p—1 n—mp—1 +1 p—1 r
s log" P71 (1 + 2?) (—1)P 5 Ap.rm
_ N 7 _1 7‘1 T 1 U]
(2) 1+ |x[2)r +Z 2(1+x§>p;( ) log'( ”1);:1 m
n—p—1 nep—1 n—p—2 k 2\1
Q (=1 k1. k 2 (1+27)
— —_ —1)°1 1 ] o] ) D.
(2) (1 4 .’,U%)n_p_l ; ( ) 0g ( + :1:1) ZZI a p—1,k,l (1 + |X|2)l+1 ( 9)

The first term of equation gives

n n—1p—1 n r— r n—
( ) p+r o 1(1+x1> Qp,rym (L+a})?

p=2 r=1 1 + 331) — m (1 + |x|2)nfp+1
( )n nZQnir (1 -+ ,Tl) i Qrikrm (1 + x%)n—r—k (D 10)
r=1 k=1 (1+ 22)" —~ m (1 + [x[2)n—r—ht1’

by setting £k = p — r. Then by setting [ =n — 1 — k£ and rewriting the sums we get

n n—2 n—2 r
e 1+ )i+t
D oo (1 2 An—t14r—trm (
(3) HWZZ( log (1) 3 st (R

r=1 l=r
n—2 2\l—r+1
Ap—14r— l,rm (1 +Z’1)
= = 1 (1 . D.11
<2> 1 n 1‘1 n lZ:; Og + 1’1 rz;qnz:l 1 I |X|2)I7T+2 ( )
Then we set k =1 —r + 1 and obtain

n n n—2 l l—k+1 2Nk

™ (=1) Iy 2 Un—ti—k+1m (14 27)
- —— —1)"1 1 . D.12

The second term of gives, by rewriting the sums,

n n—3 n—p—2p—1
(5) o S o

p=2 k=1 r=1 l:l m=1

(1 +:L. )l+1
Qn— p_lvkvl(l_’_ |X| )l+2

M;r
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n n—4 n—3—r r n—2—k
Qprm (1 + T )l+1
- E (=1)* " log" ™ (1 + 22) E E P —1,k,l—-

(D.13)

First by setting ¢ = k + r and by several rewriting of the sums we get

n n— k
T (—1)" Ap.g—km (14 22)i+!
) = =7 E —1)100%(1 2 § e
(2) (1+.T2)” ( ) og ( +.CL'1) m An—p 17k7l(1+| | )l+2

k=1 q=k+1 =1 m=1 p=q—k+1
n n -3 q—l k q—k n—2—k l+l
s (-1 < Ap.g—k (1+ 2?)
— o _1 ql q 1 2 p,q ;1M e
(2) e DRl S DI D) B D (e
n n N3 q—1 q—1 g—k n—2—k I+1
77) (—1) Z 2 Gp,q—k,m (14 a3)
=|\=| — 5% —1)?1log?(1 + x7) Z o UG S A
2\n ( 1 n—p—1,k,l 1+2
(2 (1 +x1) q=2 I=1 k=l m=1p=q—k+1 m (1 - |X| )
n n n-3 q g1 g—k n—2-k N
T (—=1) Ap.g—k.m (1+x7)
=(= —1)7log?(1 + 22 —pakm g S v
(D.14)

where we send [ — [ + 1 in the last line.
Now collecting all the results we obtain recurrence relations on ay j m:

(p11 = Gp-1,1,1, (D.15)
1
n,n— = D.16
a ’ 171 n _ 1 ( )
1
Qpn—1,m — + Ap—1,n—2,m—1, for m € [[2, n— ]_]], (D].?)
n—m
n—1l—m
ar+1 rm—1 Ap—mn—1—m,l
n,n—2,m — Yn—-1n—-3,m— a8 . : 5 D.18
s et 1+r;1n—2—r+ =1 ! ( )

for m € [2,n — 2],

k
(p—1k,
gy = D —EEL for k€ [1n - 3], (D.19)
=1
k—1 a k—m+1 a
n—1+r—k,rm—1 n—m,k—m+1,l
An k;m = Gpn—1,k—1,m—1 + 5 )+ § - 7
k—r l
r=m—1 =1

n Z ap,kfr,lanlfpfl,r,mfl, fOI‘ k c [[2’ n — 3]] and m & [[2, k’]] (DQO)

Rewriting these equations gives explicit relations on Stirling numbers of the first kind,
harmonic numbers and binomial coefficients. Indeed, from equation (D.19)) we recover

(n%{n_l} zk‘:n—z [n—11 zlg] for k € [1,n =3, (D.21)

=1
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which correspond to the equation (6.21) in [106]. Settingl =n—-2—r, k=n—m —1
and sending n — 3 — n, equation (D.18)) gives

k
E+1 Z n+1—-Fk+1

T m+3—ke U(k+1-1)

k for k € [1,n]. (D.22)

Sending r — k — [ and in the last term | — r of equation (D.20)), we get

(= 1m k) 222 [ =]

Eln—m)! [n—k
i 1 n—m-—Il{(n=—1-m) m-—1(n-1-2)
B lz_; (n—m—Z)![n—k—J((k—m+1)!+ L (k=1
P& m— 1 n_z_k+l(p—1)!(n—2—p)! n—m-—p l 1 [p—r
* ; Nk —1)! p;l (n—m—p)! {n—k—l—p—i—l];(p—r)![p—l}’
(D.23)

for k € [2,n — 3] and m € [2,k].

E Schwinger-Dyson equations for the intermediate
field

In this appendix we construct the Schwinger-Dyson equations for the matrix intermediate
field used in Chapter . As already announced, our calculations follow the lines of [97].
The following subsection deals with the complex SYK model and the last subsection deals
with the real Gross-Rosenhaus SYK generalization.

E.1 Complex SYK

We first perform the following change of variables:
(0) Ly
MY — ol + NM : (E.1)

The effective action for the intermediate field in equation (3.5.12)) leads to the following

expression

4 4
— g > (M%) —aN?> Tr(M©)
c=1

c=1
1
A2 42

—i—Tr(Z 3 %((k—l)!lmnt%/dtZ(%‘Wﬁ))
k

k>1 ky+ko+ks+ka= a,b=1
. ®4 1 ke

[T (a1 + M)

c=1
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4 4
— —g > Tr(M?) — aN? Z Tr(M©
c=1
(—Z A 20.2a)k
Tr(z > G e £ oSS )

k>1 k1+k2+k3+k4*k a,b=1

HZ (k) M ) (E.2)

c=1p.=0

where we recall the notation M, = 1201 @ M(©) © 19(4=) Using the expression above of
the action, we can now derive the Schwinger-Dyson equations (recall that these equations
can be derived by exploiting the fact that the integration of a total derivative is vanishing):

4 4 A
0_8 ) N 2 2
O_Z/HdM()a]\/[(d) [(M( ))'jexp (— EZTr(Mc) —aN ZTr(M
gl e=1 g c=1 c=1

1,

n(r x> G e f fa )

k>1 k1+ko+ks+ka=k a,b=1

15 ()|

c=1 p.=0

This leads to:

0= <§ Tr (MD%) Tr (M<d>q“)> — N (Tr (MDY — aN? (Tr (MD9))

1=0

— A 20'204 k

nfs 3 GO e )

k>1 kythothstha=k 12 ! ab=1
ko Mee ka ka\ pa Mngpd—l

H Z < ) aN DPe Z <pd>ﬁ(aN)pd_1 ’ <E4)

c—lp =0

Let us now compute in detail the Leading Order (LO) and the Next to Leading Order
(NLO) of the above Schwinger-Dyson Equation. Notice that the LO is of order N3 and
1t writes:

1 k
1 1 A 2 kE
=— (d) - - —ilZ 2 . vhd (d)
O=—a(mM@)+ 2> 3 2 ( Z<2) Ua) Falhatkytid )
k>1  ki+ko+ks+ka=k
This LO equation rewrites as:
1 N L) Kl
2 _ : 7 9 kg
@ = ZE (_Z (5) g C“) Z Fey Vo kg e (ES)
k>1 k1+ka+ks+ka=k
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Let us now recall the following identity:

Z 'H:L’Z— x4+ ---+xp)t (E.7)

ki+---+kp=Fk Fal
We now derive the above identity with respect to x4; this leads to:

D

klk
> H Sy = k(- +ap)tT (E.8)

ki4-+kp= k; L. T id

Setting all the x;’s equal to 1, we have:

k!k

Dk—l _ 2 : d

g kil... kp! (E9)
ki+-+kp=k

Using the above result for D = 4, the LO equation reduces to:

1 k
=3 i (5) o it ATV (E.10)
2 1 + diao? )\/2

k>1

Finally, we can solve the LO of the Schwinger-Dyson equation and find the values of a:

—1+ 1+ 8%\
a4 = . (El].)
8io2\/\/2
Notice that these are the same values of oy found in [97] through a careful use of the
saddle point method.

Let us now evaluate the NLO of the Schwinger-Dyson equation. Collecting the terms
of order N? in the Schwinger-Dyson equation (E.4)), we get:

q—1
0= <Z Tr (M(d)i) Ty (M(d)q—i—1)> _ N<Tr (M(d)q+1)>
1 1 INE 5\ R
+@<ZE > (HG) )

k21 k1+ko+ks+ka=k

Z ka(ke — 6ea) Tr (M1 %) Ty (M<d>q+5cd)> : (E.12)

In order to solve the NLO equation, we first have to evaluate the third term in RHS of
the equation above. in order to do this, we derive eq. (E.8)) with respect to z., and we
sum over all flavours ¢. This leads to:

D
o k(xy + - +ap) ' =Dk(k —1)(zy 4+ - +2p) 2 =
klka(ke — dea) 5Cd 1
$ oy it f g ©13
c=1 k1+-+kp=Fk i#c,d
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As above, let us set all the z;’s equal to 1, and insert the resulting identity for D = 4 in
the NLO Schwinger-Dyson equation (E.12). We get:

0= <qi Tr (M) T ( M(d)qi1)> — N (Tr (M@t +
+%z<_i<%)202a> 1)45- 1<2Tr )1- 5cd Tr (M(d)Q+5cd)>. (E.14)

Using eq. (E.11)) the NLO term of the Schwinger-Dyson equation reduces to

0= <q§ Tr (M@ Tr (M<d>q“)> + (0 — )N (Tr (M D7H1))
o’ <i Tr (M) Tr (M<d>q)> : (E.15)
e

Notice that, also in the NLO term of the Schwinger-Dyson equation, we recovered exactly
the same result of [97]. Even if we considered a non-Gaussian distribution (a Gaussian
term plus a quartic pillow term potential), the first orders of the Schwinger-Dyson equation
are the same as in the Gaussian case.

E.2 Gross-Rosenhaus SYK generalization

Let us first consider the formula (3.6.10) for the field M(® and perform the following
change of variables:

M9 - al + ——— M. (E.16)
[Ty Ne?
The action (3.6.10]) thus rewrites:
f v
S[M©] = —NZTr N Y Tr (M©))
a=1 c=1
! g i
1 | , )
- 5T > (—za\/Q)\o 11— 1)!) > (/ﬁ, ) J{q) Ay
k>1 a=1 S =k
Pc
N
H Z ( ) (ﬁ) Mg‘] . (El?)
c=1pc= Ha:l Na2

The Schwinger-Dyson equation for the intermediate field writes:

0=3" / ﬁdM(C) az\i(d) (@)} emst), (E.18)
i c=1 ij

This leads to:

0= <§ Tr (M(d)i) Tr (M(d)h—i—1)> _N <Tr (M(d)h+1 — H N, L <Tr d)h)>

1=0
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f F k A
—|—<Tr Z(—m\/_zxﬁﬂ(qa—l)!) 3 (k k)Ak
a ok,

k>1 a=1 fki:k
Pc kq Pd
N k N
HZ( )(—f ) MISCZ(d)pd( ; qa) Mh'HDd 1 >
e [1, N s )\ a T, N
(E.19)

Let us define k, = %, so that the LO of the Schwinger-Dyson equation in the large N

limit is of the order of

= —aN%H Hm (Tr (MDm)) (E.20)

cL

k>1 Zq kei=k

which becomes

2 f g 2 f
_ L 2, B k-1 _ 1 —iao N2 To—1(qa — 1)!
" Z ( (3) eIl Dl) T T Rt giao? AT (6 — DY

a=1
(E.21)
with
e 1+ 200 2 (T (g — D)2 _—
. 2igo2 /N 2[1_ (g — 1) '
We can note that the saddle point is parametrized by rg.
The NLO part of the Schwinger-Dyson equations writes:
h—1
0= <Z Tr (M) Tr (M<d>h“)> — N (Tr (M@h1))
i=0
AN L, P N
3 3 () (HiG) Ll -1
k=137 k;=k a=1
zq: ka(ke — <T (M1=0ea) Ty (M (Do) (E.23)
lmd/icaZ ' '
c=1
This can be rewritten as:
h—1
0= <Z Tr (MD%) Ty (M<d>h-i-1)> — N (Tr (MDY
_ ! F i 1 (©)1-5 (d)ht5
_ _ | _ - c)1—0cq +0cd
- k; ( z( ) L[l(qa 1).) (k—1)q ; o (Tr (M ) Tr (M ),
(E.24)
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Finally, we get the following equation:

0= <hi Tr (M%) Tr (M<d>h—i-1)> — N (Tr (MD1))

+ qa? Rd <Tr (M(C)1_5cd> Tr (M(d)h+5cd)> ) (E.25)

R
=1 ¢

F Explicit computation of the variance at order t*

In this appendix we detail some of the computations of the dominant graph amplitudes and
their contribution to the variance of Sobolev norms at order t*. We start by the contribu-

tion of melonic diagrams to the variance S° 2(;2\4 (t), then we show the explicit computation

of the first class of ladder graph amplitudes and their contribution to 572;%)“(15).

F.1 Melonic diagrams

The contribution of A, (M) is

Z r2y 4T(2 2p(r—|—1)+r2+2r+1>
son2P P N N?

r>0

17 (L () + 20 () + Lia(0) + 3Ly () + 2Ly 1 5) + Liyi26)))

~ 32N? N2
_ 1 2 4 2p 4 1 4 2v—1
= 3Nz \P Loy (p") + WL%H(Z? ) + WL%H(P )) +o(NT7)
2v—1
= Srrm(@0N(207 + 11y +13) + o(NP ), (F.1)
p

Similarly for A, (M;z),

3r+1 4r4-2 2
p

T2'y 2 2]7 1 2p p
A = 3 (L (0 = 5Ly () + 5Ly ("))
;8]\[2 (p 1+p + (1—}-]9)2) 8N2( 2(p°) 1+p 2y (p”) + TESSE 27(P")

N27—1

1 1 1 -
pil 8 (27)!(22*%1 o 327+1 + 247+4> + O(N ! )7 (F2)
and for A.(Mpr/11r),
= r e ralo Py 1p27"+1>
>0 8N? N L+p N 1+p
__ 1 ( Lo ( 3)+i(L (p*) 4 Loyq1( 3))_ﬁL (p*)
= e bl (P N 2v\P 27+1\P 1+p 29 \P
1 »p A 4
- = (L L )
N1+p< 27(p") + Lay41(p"))
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1 1 2 1
=10 — gz (Pl () + Lovna ") = To= Loy (1) = s Lavn(0Y)  (F3)

8N* L+ p N(1+p)
N# 1 1 1 1 -
pil 8 (27)!((27 + 1)(24'y+5 a 32’y+2) + 24y+3 o 32'y+1> + O(N ! ) (F4)

F.2 Ladder diagrams

We recall the dominant amplitude of L;4,;5,

-/47"1,7"2 (LIA/IB> ==

pT1+7‘2 1 r p2(r2+1)
+ -
4N(1+p)2((1+p) N (1+p)(l+p?)
p2(7"2+2) (Tl + T2)p2(r2+2))

L+ p)(L+p2)? N(1+p?) (-5)

Its contribution to the variance of the Sobolev norm is

1 (L'Y(p)Q i L,11(p)L,(p) _ P’L,(p)L, (p°) _ p'L, (p)L, (p°)
AN3(1+p)? \(1+p) N (I+p)(A+p*) (A+p)(1+p°)?

N L O ) + L)L () (16)

N(1+p
N2-1 1 2(y+1)

_ 2( = _ _ _
o1 Y <2+7+1 927+4  3y+lg | g2yt2

) +o(NPY, (F.7)

Then we compute one by one the dominant amplitudes of each type of diagrams. The
dominant amplitudes for L;p is

S1 Sa
Arra(LiB) = g5 4N4 oD s NN e (F.8)

S12>11 S2>12 k1=0 ko=0
pT1+7’2 1S
= TonT D (S+r+1)(S+r+1)p (F.9)
5>0
_pni ( Lt+pt | mtre | mn ) (F.10)
CIGNT\(L—ph)P o (1-pt)? 1t '
_ prtT ( 1+p* n r1 4T 7”17”2>
O IN(L+p)(1+p) \(1+p2(1+p?)?  N(A+p)(1+p?) N?
(F.11)
Its contribution to the variance of the Sobolev norm is
1 ( (1 +p")L,(p)? 2L, (p) Loy (p) Lw+1(p)2) (F12)
L6N3(1+p)(1+p?) \(1+p)*(1+p?)? N1 +p)(1+p?) N2 '
N2l 1 v+l
_ ! yrs 1 ) N2, F.13
= S (5 D7) ey (F.13)
The dominant amplitudes for L;p/rp gives
51 S,
Ay (L) = 824N4 Z Z portetren Z 2551 T (F.14)
S1>7r1 So>ro k1=0 ko=0
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71427y Sa+ra

S S (S .15

S2>0 S1=0
priter (1 +r(1— p2) p2(r2+1)

~SNI(1—p2)? 1—p 1—p?
(1 —p?)p*tat
- (=) + D) (F.16)
- pr1+27‘2 < 7"1(]_ +p) p2(r2+1)
~ 8N(1+p)? N L+p+p?
(14 p)p*t=th (14p+p?)
(14 p+p?)? (1+ (1 + T2)—N )) (F.17)
Its contribution to the variance of the Sobolev norm is
;<L ()L, (p?) + (1+p)L,(p*)Lyra(p) _ (2(1 + p)p* + p*)L,(p)L,(p*)
8N3(1 + p)? TP N (1+p+p?)?
4
p*(1+p)
TN +p+p) (L1 (P) Ly (p") + Loy (p) Ly (p4))) (F.18)
N2 a1 y+1 3 5(y+1) 1
pil 32 () (2‘Y+1 - 27y 929+l 92y+33 >+0(N 7). (F.19)

The dominant amplitudes for L;p/r1p gives

St S2

16 . :
Arivo(Li/i1ie) = T RANG Z Z pPorTts Z Zp]”csgl_rl (F.20)
S1>r1 So>ro k1=0 ko=0
pT1+7"2 s Satr2 25
= _W Z P 2 Z (Sl +7”1 + 1)]? 2 (F21)
So>ro S1=0
I (1 +m(l—p*) Pt
16N4(1 — p?)? 1—p 1—pt
1— pS p3(r2+1)
| a _)p4)2 ((ri+r)(1—p") + 1)> (F.22)
_ pT1+T2 < 7“1(1 +p+ p2> B p3(7"2+1)
16N (1 + p)? N (L+p)(1+p?)

2\, 3(ra+1) 2
N (1(1++pp4>r22<91)i p2)? ((ra+72) s +p)]5[1 ey 1))

_ P <1 + rn(l+p+p?) (P +2(1+p+p?))p3rztD

(F.23)

 IN(L+pp N (L4 P+ 97
_ A +p )Pt + ’"2)> (F.24)
N1 +p)(1+p?) '
Its contribution to the variance of the Sobolev norm 1is
N 1 s, U+p+p)Ly(pLynalp) @ +2(1+p+p*)p° L (ot
16N3(1 +p)2 7(p) + N (1+p)2(1 —l—p2)2 ’Y(p) ’Y(p)
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(1+p+p°)p’ " A
= N )y L L )+ Ly @)l (0) (F.25)
o _N6Zl (7!)2<1 T30+ - 22v7+6 B 1551:6”) +o(N). (F.26)

The dominant amplitudes for L;;4 writes

St S2

4 1T 2—T2
AT‘1,T‘2<L[IA) - 824N4p 1t Z Z p31+S2 Z Z 6?1—7‘1 (F27)
S121r1 S22>712 k1=0 ko=0
p2(7'1+7'2) 0
= e P S A DS+t 1) (F.28)
5$>0
_ pQ(r1+r2) ( 1+ p? (r1 +79) 172 ) (F.29)
64N \(1+p)®  N(1+p? N2(1+p)/ '
Its contribution to the variance of the Sobolev norm is
1 1+p? 212 2 2 L7+1(p2)2
— L)L —) F.30
s (A P + o )L 07) + =25 (F.30)
N2-1 V2l
= —_— ' 2 2"/_1
Bael ooy (7)) (3 27+ ) + o(NH7H). (F.31)

For the dominant amplitudes of L;j4/7774 we obtain

S2
8 —
Ay (Lrrajirra) = N Z Z PP (S 1) Z pF2e (F.32)

5120 Sa>r2 ko=0
1 . B
=~ 2 2L PP RS+ + R Re (S, - 5)  (F.33)
5120 S22>72
pQ(’rl—‘rTg) So+r2 05
© 39N4 Z Z p2(S1+r+1) (F.34)
S22>0 5120
2(r1+7r2)
p 25, o+ So
T 39Nt D RS+ D+ 1+ 5 ) (F.35)
S50
2(7‘1+T2) 1 1
p < ro(ro+1) 11419 )
T F.36
BN P\A - T 2 1o ) (B30
_ p2(r1+1"2) ( 1 n T2(7’2 + 1) T+ To 7“17‘2) (F37)
32N(1+p) \(1 +p)? 2N?2 N(l1+p) N2
Its contribution to the variance of the Sobolev norm is
! ! Ly () + Loa(p?)
— L 2\ 2 L 2 ’Y+1 'y+
32N3(1 —I—p)((l T p)2 7(]9 )"+ v(p ) oN?
2L, (p*) L1 () Lv+1(p2)2> (F.38)
N(1+p) N?
1 1 Loio(p?) 2L (p*)Loi1(p®)  Loii(p?)?
— — L 2\ 2 L 2 v+2 v ~+ v+ >
LO 32N3(1+p)<(1+p)2 +(P7)”" + L, (p7) ON? + N+ p) + N7
(F.39)
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NQ'yfl 2 3
= o O (P + 1+ T 4 5) oY), (F.40)

p—1 22v+4

For the dominant amplitudes of L;;;c we get

S1 Se
Am,m(LIIIC 824N4 Z Z pSH_Sz Z Zpk1+k25sf :f (F41)
S1>11 S2>1re k1=0 ko=0
7’1+T2 1 _ S+r1+1)(1 _pS+r2+1)
25
16N4 1= (F.42)
pT1+7’2 1 p(pﬁ + TT2) pT1+T2+2
= - ) F.43
16N <l—l—p 1+p+p? (1+P)(1+p2)> (F.43)
Its contribution to the variance of the Sobolev norm is
1 (Lw(p)2 _ 2pL,(p)L, (»%) p’L,(p?)? ) (F44)
16N3\ 1 +p 14+p+p? (1+p)(1+p?) '
_ N?’y—l 12 1 1 1 N2’yfl
p—1 32 % ( T3t 22v+3) +ol ) (F.45)
For the dominant amplitudes of L;;rp/rr7¢ we compute
Arl TQ(LIIIB/IIIC 824N4 Z Z pSH—S’z Z Z pk1+k2582 T2 (F46)
S1>r1 So2>re =0 ko=
T‘1+7‘2 S2+7"2
= TonT SN IR 08 + 11 — S) (F.47)
51>0 S2>0 ko=0
T1+7“2 s Sitr S2+T2+1
16N4 Zp 1 Z p (F'48)
S1>0
prﬁ-rz 1 pr2+1
~ 16N (1+p C14p4p?
p27‘1+2 p37"1+7’2+4 ) ( )
o _ F.49
(1+p)A+p+p?) (A+p)(L+p*)(1+p+p?
Its contribution to the variance of the Sobolev norm is
1 (L'y(p)2 _ L, (p)L, (p?) _ p’Ly (p)L, (p°) _ P'L, (p*)L, (p") )
16N3\ 1+ p I+p+p2  A+p(A+p+p2) (A+pA+p)A+p+p?)
(F.50)
N2~ 1 1 1
= nN2f(1 - - - 2v—1
B TR (1 23 3742 23v+4> Fo(NTT). (F:51)
The dominant amplitudes of L;;p/ ¢ is
S1 S,
Avy o (Lirp/iic) = 824]\74 Z Z pSTHTTS: Z meglfffrz (F.52)
S12>r1 S2>10 k1=0 ko=0
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27“1 +72 Sitm S2+T2+1

1 _
I
g% E:
2r1+r2

p p

1 —
8N ( 1+p

(" +p")+

p27’1+1"2+3
(1+p( +p+p2)>
Its contribution to the variance of the Sobolev norm is

1 9 yZ 3 22
= g (L)) = T (L () + L)) + ¢
N2fyfl

1 1 1 1
- _ ! — _ _ 2y—
o 16 Y (27 3z gl 2v+13v+2> +o(NTT).

Png (p2>Lw (p3) )
1+p)(1+p+p?)

The dominant amplitudes of L;4,;77c gives

1 2
Ari o (Liajiie) = 824N4 Z Z PSS Z Zpk2532 ro

S1>r1 S3>7a k1=0 k2 =0
B _pr1+7"2 Z 2 SIZHI 5 1 — pSatratl
AN* 5120 S5=0 I=p
e (1 Y s N pAritrats )
AN (1+p)? 14+p+p*  (1+p21+pH)/

Its contribution to the variance of the Sobolev norm is

1 s 3p2+2p(1+p?) 2y P°Ly(P*)L, (p?)
- W( 2 - (1+p)2(1 +p+p2)L”( o) + (1+p)2(1 +p2))

NTL 1 1 1 ,
_ _ _ v—1
o1 4 (") (1 o+13  97+3 + 2~/+437+1) +o(N7).

Finally, the dominant amplitudes of L;p,r1;c writes

1 2
Ari o (Lip/inic) = 824]\[4 Z Z p2S1 e Z Zpkz(;gf :f

S12>71 S2>ro k1=0 ko=0
T1+7”2 1— S+ra+1
— 35S S p
8]\74 Zp it 1—p
5>0
71+72 147 (1 — 3 ro+1
_ D ( 1(1=p) p (1+r1(1_p4>>)
8N4 (1—p)\ (1 —p?)? (1—p*)?
_ prtre ( 1 n 1
8N \(I1+p+p?)? N(+p+p?)

pT‘2+1

- (i + )
I+p)(+p?) A+p)(1+p?) N/

Its contribution to the variance of the Sobolev norm is

1 <( L’Y<p)2 L’Y(p)L’H-l(p) . p 2L,y<p>L7(p2)

C8N3\(1+p+p2)?  NA+p+p?) (1+p2(1+p?)
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(F.53)

(F.54)

(F.55)

(F.56)

(F.57)

(F.58)

(F.59)

(F.60)

(F.61)

(F.62)

(F.63)

(F.64)

(F.65)



p 2
'_Nu+pxr+ﬁf”@)h”ﬂm> (F.66)

2y—1
N#7 (!)2<1+'y+1_ L1
9 3 IV+5 Iv+3

p—1 8

) +o( NP, (F.67)

Summing all the contributions we obtain SQW Ll(t) in equation (4.2.34]).
Then we need to compute the contribution of the second class of ladder diagrams
whose dominant amplitudes are

S1 S2
Anr(L1a) = g 4N4 SN pEE e RN e (F.68)
S12r1 S22>r2 k1=0 k2=0
S1 So
Ary 2o (Lirg) = 824]\74 Z Z porsatrit Z Z 52, (F.69)
S12r1 Sa2>r2 k1 0 k2=0
Ao (Lirra) = 824N4 Z Z PSSR Z Zp_kl kQ(S,’jf, (F.70)
S1>r1 So>ra k1=0 ko=0
St S2
Ay vy (Lirrg) = 824]\74 Z Z porte Z Z pk1+k25;§f, (F.71)
S1>1r1 S2>ra =0 k=0
S1 So
Avi o (Lirp/iirs) = 824]\74 Z Z pSrtotn Z Zpk25,l§f, (F.72)
S1>r1 S22>12 k1=0k2=0
S1 52
Avi o (Liasiis) = 824N4pr2 " Z Z pPote Z Z 5’,3, (F.73)
S1>7r1 S2>re k1=0 ko=0
S1 S2
Aviro(Lrajirig) = 824]\[4]9_7"1 Z Z PPt Z Zpk25£f. (F.74)
S1>r1 S2>ra k1=0 ko=0
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