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Abstract

In modern society, systems composed of many equipments which may interact with
each other play a vital role and become more and more important. For instance,
one can enumerate the transport systems, communication systems, utilities, man-
ufacturing plants, universities, hospitals and so forth. It is not a simple task to
ensure the normal operation of systems since they are often subject to deteriora-
tion and wear and operate in a changing environment. Maintenance actions can be
carried out in order to avoid the failure of the system which may result in economic
losses, environmental contaminations, loss of personnel, etc.

This thesis considers maintenance problems and reliability evaluations of multi-
component systems. At first, we study a two-component system with various types
of stochastic dependencies. Three models have been considered. In the first model,
two components share a given load during a mission and the load is carried by only
one component during the failure of its counterpart, which results in the increasing
of its failure rate. In the second model, the failure of component 1 may impact
the degradation of the other component. The system is down if component 2 fails.
In the third model, the failure of component 1 may lead to failure of the other
component and therefore the system.

For each of the three models above, several maintenance policies are proposed.
Under each policy, the explicit expression of the long-term average cost as well
as the cost optimality are studied. In addition, for the last two models, several
warranty policies are proposed and the allocation of the warranty cost between the
manufacturer and the consumer are studied.

Finally, a M -out-of-N system which operates in a dynamic environment is studied.
Performance measures such as the reliability of the system, the remaining useful
life (RUL), the asymptotic availability are calculated.

In conclusion, it is shown that in multi-component systems, stochastic dependence
between components may affect both system performance measures and the opti-
mization of maintenance policies.

Key words: Stochastic processes, Reliability (Engineering), Dependence (statis-
tic), Maintenance, Warranty
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Résumé

Dans la société moderne, les systèmes composés de plusieurs composants qui peu-
vent interagir entre eux, par exemple, les systèmes de transport, les systèmes de
communication, les services publics, les usines de fabrication, les universités, les
hôpitaux, jouent un rôle essentiel et ont une grande importance. Les systèmes
sont souvent sujet à détérioration et usure et opèrent dans un environnement
changeant, c’est pourquoi assurer leur fonctionnement n’est pas une tâche simple.
Des actions de maintenance sont mises en place afin d’éviter les défaillances du
système qui peuvent être catastrophiques et entrâıner des pertes économiques, des
contaminations environnementales, des pertes de personnels.

Cette thèse considère le problème de la maintenance des systèmes multi-composants.
Dans un premier temps, on considère un système à deux composants avec dépendance
stochastique. Trois modèles de dépendance ont été considérés. Dans le premier
modèle les composants partagent une charge donnée durant une mission et à la
défaillance d’un des composants la charge est portée par le composant opérationnel,
ce qui le fragilise et augmente son taux de défaillance. Dans le deuxième modèle, la
défaillance du composant 1 peut impacter la dégradation de l’autre composant. Le
système est en panne si le composant deux est en panne. Dans le troisième modèle,
la défaillance du composant 1 peut induire la défaillance de l’autre composant et
donc du système.

Pour chacun des trois modèles, plusieurs politiques de maintenance sont proposées
et leur optimalité est étudié. Pour chaque politique, l’expression explicite du
coût moyen à long terme est présentée. De plus, pour les deux derniers modèles,
plusieurs politiques de garantie sont proposées et l’expression explicite de leur coût
est dérivée.

Pour finir, un système M parmi N est considéré et les mesures de performance
telles que la fiabilité du système, la durée de vie utile restante (RUL), la disponi-
bilité asymptotique sont calculées. Il est montré que dans les systèmes multi-
composants, la dépendance stochastique entre les composants affecte à la fois les
mesures de performance et l’optimisation des politiques de maintenance.

Mots-clés :

Processus stochastiques, Fiabilité, Dépendance (statistique), Entretien, Garantie
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General introduction

In modern society, systems composed of many equipments which may interact
with each other play a vital role and become more and more important. For ex-
ample, the transport systems (trains, buses, underground, ships and aeroplanes),
communication systems (television, telephone and internet), utilities, manufactur-
ing plants, universities, hospitals and so forth. Every system is not reliable in
the sense that it deteriorates with time/usage, experiences shocks, operates in the
dynamic environment not the ideal laboratory conditions. When system failures
occur, some of them are catastrophic and may inflict economic losses, environmen-
tal contaminations, personnel casualties, etc. Thankfully, the system failure can be
avoided and be treated by maintenance actions. Therefore, the evaluation of the
system reliability and the scheme of system maintenance strategies are significant
which motivates us to maintain the smooth operation of the system and reduce
the financial loss.

In Reliability Engineering and Operation Research, the system reliability assess-
ment and maintenance cost optimization are extensively studied in the last 50
years. Generally speaking, the ’black box’ method considering the complex sys-
tem as a single-unit system is a widely used method as it is tractable technically.
However, it may ignore the individual dependencies as well as the structures of
complex systems. To address this limitation, this thesis takes a small step in
modeling multi-component systems by taking into consideration the stochastic
interaction between components. It is organized as follows.

In Chapter 1, a brief review of the literature on the multi-component mainte-
nance optimization is presented. The existing stochastic models, maintenance poli-
cies, mathematical methodologies, the dependency classification of multi-component
systems and our motivation are introduced.

In Chapter 2, a two-component load-sharing system inspired by the steel wire
rope in mining system is proposed. It is assumed that the failure rates of the two
components are time dependent and load dependent. Whenever one fails, it is
imperfectly repaired with a time delay during which the failure rate of the sur-
vival component increases because of the resulting overload. Three maintenance
policies are proposed considering imperfect preventive maintenance and system re-
placement. The optimal average costs in the long run under different maintenance
policies are derived from the theoretical propositions.

In Chapter 3, we study a two-component system with failure dependence where
the deterioration sub-system is involved. Component 1 failure causes random
damages to component 2. While the failure of component 2 is catastrophic and
it induces the failure of component 1. Component 2 fails when its damages reach
or firstly exceed a predetermined level. The virtual age method is applied in
the corrective maintenance of component 1 and the system is renewed whenever
component 2 fails. The explicit expressions of the long run average cost under
different preventive maintenance policies are developed. Sufficient conditions of the
existence of the long-run expected costs are derived theoretically. Furthermore,
from the points of view of the manufacturer and the owner of the system, the
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warranty profits to the manufacturer and the costs to the owner under different
warranty policies (the renewing free repair policy and the non-renewing free repair
policy) are derived respectively. It is shown that the failure dependence between
components has effect to both the manufacture profit and the consumer cost.

In Chapter 4, a similar model as presented in Chapter 3 is developed. Here the
failure interaction between components are: the component 1 failure induces the
component 2 failure with probability r̄(= 1 − r), 0 < r < 1 while the component
2 failure causes the failure of component 1. Also, three different preventive main-
tenance policies are proposed. The system long-run average maintenance costs,
the optimization of the maintenance cost are derived as well as the manufacture
profits and the owner costs in the context of warranty.

It is seen that in the first three types of interactions, we mainly focus on the op-
timizations of the long-run average maintenance costs and the expected short-run
maintenance costs of two-component systems under different maintenance policies.
In Chapter 5, the reliability of a M -out-of-N system under dynamic environment
conditions is considered. It is assumed that the failure rates of the components
are time-dependent and environment-state-dependent. The dependence between
components is generated by the common operating environment conditions that
they share which is described by a continuous-time Markov chain. The system
reliability-based measures like the system reliability, the remaining useful lifetime
(RUL), the limiting average availability under different system inspection policies
are calculated.

The above models on multi-component systems permit us to glimpse the effect
of stochastic dependence between components on the system reliability and the
maintenance costs. However, they are still a long way from the management the
treatment of complex systems. In Chapter 6, the conclusion is made and future
perspectives are discussed.
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Chapter 1

Introduction

1.1 Problem statement

1.1.1 Introduction

In modern society, systems composed of many equipments which may interact with
each other play a critical role and become more and more important [1]. For ex-
ample, the transport systems (trains, buses, underground, ships and aeroplanes),
communication systems (television, telephone and internet), utilities, manufac-
turing plants, universities, hospitals and so forth. Every system is not reliable
in the sense that it deteriorates with time/usage, experiences shocks, operates in
a dynamic environment. When system failures occur, some of them are catas-
trophic and may inflict economic losses, environmental contaminations, personnel
casualties, etc. Thankfully, the system failure can be avoided and be treated by
maintenance actions.

The area of maintenance has been extensively studied in the last 50 years. Be-
fore the second world war, the maintenance action was mainly regarded as the
corrective maintenance behavior which brought the system back to its operational
state by trained technician. It was in the military field during the second world
war when for the first time that maintenance received increasing attention. On
the one hand, military equipments were designed with features like operational
mobility, accuracy, aggressiveness, destructiveness, manoeuvrability which result
in more complex, and in consequence, less reliable products. On the other hand,
the development of military equipments are time-limited-scheduled in the battle-
field which is not amenable to repeating experiments. Therefore it is necessary
to incorporate the system reliability and maintenance behaviors into the design,
the development, the manufacture, the production etc. of the equipments. Espe-
cially after the Korean War, the Army’s prevailing attitude had been shifted from
the ”use it up and replace it” to the ”highlight of the preventive maintenance”.
Since then the system reliability analysis and the scheme of maintenance policies
have been extended from the military field to the computer science, the economic
domain, the industrial and agricultural production, etc.

1
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In Reliability Engineering and Operation Research, the ’black box’ method treating
the multi-component system as a ’single-component’ system is generally selected
in the mathematical models [2]. The reason is partly due to that the method is
technically tractable. However, the assumption that the composition and internal
structures of the system can be ignored is seldom valid. On the one hand, poten-
tial interactions between components (homogeneous or heterogeneous) complicate
the evaluation of the system reliability/availability as well as the modeling and
the optimization of maintenance actions. On the other hand, the corrective re-
condition/replacement of separate components provides the opportunity of group
maintenance which may be more economic. Therefore, the evaluation of the system
reliability and the scheme of system maintenance strategies of multi-component
systems by considering the dependence between components are significant which
permit us to maintain the smooth operation of the system and reduce the financial
loss.

The primary objectives of this thesis are to provide:

• Modeling of the stochastic dependence in the multi-component system;

• Explicit expressions of the long-run average maintenance costs of systems
under various preventive maintenance policies;

• Theoretically, sufficient conditions of the existence of the long-run expected
maintenance costs;

• Explicit expressions of the cost allocations between the manufacture and the
equipment owner under various types of warranty policies;

• Explicit expressions of the reliability-based measures of the M -out-of-N sys-
tem with heterogeneous components when it operates in a dynamic environ-
ment.

1.1.2 modeling of the multi-component system

Generally speaking, in the context of the optimization of maintenance policies
and the evaluation of the reliability measures of a multi-component system, the
following system characteristics should be taken into consideration [3]:

• Evaluation of the behavior of each component: we model the failure process
of each component either by its lifetime distribution function or its degrada-
tion distribution function.

• Identification of the Structure and the way that components are assembled
to fulfill a function. It is necessary to present the structure of the system,
for example, components are in series, in parallel, etc. and the relation
between the state of the system (functioning or failed) and the state of each
component (functioning or failed).
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• Recognition of the stochastic dependence as well as the structure dependence
existing between components. It is known that the assumption of stochastic
independence in the multi-component system is seldom valid for example,
in a load-sharing system. The incorporation of the stochastic dependence
in the modeling contributes to the accurate estimation of the system failure
time and hence results in the effectiveness of the optimization of maintenance
policies.

1.1.3 Our objective

To highlight the impact of the dependence between components on the system re-
liability as well as on the maintenance cost, our first objective is to optimize main-
tenance costs of systems with various failure interactions between components in
this thesis. Both corrective maintenance policy and preventive maintenance policy
are carried out in the component-level as well as in the system-level respectively.
According to the component/system recovery state after the maintenance, the
minimal repair, imperfect repair and the replacement of the component/system
are executed. Explicit expressions of the long-run average maintenance costs of
systems under various preventive maintenance policies; Theoretically, sufficient
conditions of the existence of the long-run expected maintenance costs. Explicit
expressions of the cost allocations between the manufacture and the equipment
owner under various types of warranty policies.

Subsequently, reliability, remaining time to failure (RUL) and availability of multi-
component systems are important system measures which provide the evaluation
of the system ability to function at an interval of time or a specified moment.
In consequence, our second objective is to carry out this measures of a M -out-
of-N system with non-identical components operating in dynamic environment
conditions. The explicit expressions of the system reliability, the remaining use-
ful lifetime and the asymptotic average availability of the system under different
inspection policies are derived.

1.2 State of the art

1.2.1 Introduction

The objective of this section is to provide a state of the art with respect to the
system reliability and maintenance problems which are relevant to this thesis.
Section 1.2.2 contributes to the introduction of reliability measures of the single-
component system like the system reliability, availability, mean time to failure,
remaining useful lifetime. In Section 1.2.3, the characteristics in the modeling of
multi-component systems are presented in detail. Section 1.2.4 and Section 1.2.5
are devoted to the study of the maintenance and the warranty respectively.
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1.2.2 Reliability measures

In the areas of the system reliability and maintenance policies, basically, the ob-
vious questions are: how long a system can operate without failure? what is the
possibility that a system remains fully functioning in a given time interval or a
particular moment? what are the responses to these questions if the system is not
new at its initial operation time epoch? In the next, we attempt to answer these
questions.

1.2.2.1 Reliability and Mean time to failure

Denote by X(X ≥ 0) a random variable which represents the failure time of a
component with cumulative distribution function F (t) = P(X ≤ t). The survival
distribution of X is

R(t) = P(X > t) = 1− F (t)

which is also referred to as the reliability function of the component.

Further more, if the density function f(t) of X exists, the mean of X is

E(X) =

∫ ∞
0

tf(t)dt =

∫ ∞
0

R(t)dt

which is known as mean time to failure in reliability theory.

It is seen that reliability function describes the component’s ability to operation
for a given time period from its initial new moment (time 0). Mean time to failure
describes the expected operating time of a component before its first failure.

1.2.2.2 Availability

Availability is generally regarded as the effectiveness/readiness indicator for re-
pairable systems because it takes both reliability and maintainability into account.
There exist various definitions of availability in the literature. For example, it was
defined as the probability that the system is operating satisfactorily at any point in
time under stated conditions in [4] , it is referred to as the ratio of the component’s
expected uptime to the aggregate of the expected values of up and down time. We
present here the definitions of system availability introduced by Nakagawa [5]. Let
be

Z(t) =

{
1 if the system is operating at time t,

0 if the system fails at time t.

Then
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• Pointwise availability is the probability that the system operates at a
given instant of time which is defined as

A(t) = P(Z(t) = 1) = E(Z(t)).

• Interval availability is the expected fraction of a given interval that the
system can operate

1

t

∫ t

0

A(θ)dθ.

• Limiting interval availability which is also referred to as the limiting
average availability describes the up-rate of the system in the long-run which
is noted as

A ≡ lim
t→∞

1

t

∫ t

0

A(θ)dθ.

1.2.2.3 Remaining time to failure and Mean residual life

Remaining time to failure is an important characteristic both practically and the-
oretically which is defined as the time interval from the current time to the end of
the useful life. Let X be the life time of the system and suppose that the system
has survived by time t. Let Xt = X − t be the remaining time to failure of
the system at time t. The Mean residual life (also referred to as the mean
remaining life) is defined as

µ(t) = E
(
X − t | X > t

)
=

(∫ ∞
t

F̄ (x)dx

)
/F̄ (t)

where F (·) is the lifetime distribution with respect to X, F̄ (·) = 1− F (·).

1.2.3 The modeling of the multi-component system

As shown in Section 1.1.2, in the context of the modeling of the multi-component
system as we are concerned, generally the reliability of each component in the
system, the structure of the system and the way that components are assembled
to fulfill a function, the stochastic dependence between components should be
identified. These qualities are presented in detail in the next part. In Section
1.2.3.1, two common types of modeling of the component reliability: failure-rate
modeling and the degradation modeling are presented. We will introduce the
coherent systems [6, 7] in Section 1.2.3.2. The stochastic dependence between
components of the multi-component system in the bibliography are summarized
in Section 1.2.3.3.
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1.2.3.1 The reliability modeling of components

1.2.3.1.a Failure-rate modeling

Besides the reliability measures which are mentioned in section 1.2.2, failure rate
is also an important quantity for the system behavior in reliability theory. In
this framework, it is considered that the system has only two states: functioning
or failed and no information concerning the ’physical condition’ of the system is
available during its operating period. In consequence, it is necessary to estimate
the possibility that the system fails in the near future provided that it is functioning
right now. Denote by X the lifetime of a component with lifetime distribution F (·)
and density function f(·) (if it exists). Let r(t) be the failure rate of a system at
time t, then the probability that the system fails in (t, t + δt] given that it has
been survived by time t is r(t)δt, which means that

P
(
X ≤ t+ δt | X > t

)
=
F (t+ δt)− F (t)

1− F (t)
≈ f(t)δt

1− F (t)
= r(t)δt.

Therefore the failure rate function is as follows

r(t) =
f(t)

1− F (t)
.

It is clear that the failure rate function describes the frequency with which a system
fails but it is not a probability. Some common continuous lifetime distributions
F (·), their density functions f(·) and failure rates r(·) are listed in the following.

• The Exponential distribution is extensively studied in the reliability the-
ory because of its technical simplicity. The density function of the exponen-
tial distribution can be used to describe the time interval between two con-
secutive events in a Poisson process. It has the property of being memoryless
which means the failure rate is time-independent. Its lifetime distribution,
density function and the failure rate are respectively:

F (t;λ) = 1− eλt for t ≥ 0 and 0 otherwise,

f(t;λ) = λe−λt for t ≥ 0 and 0 otherwise,

r(t;λ) = λ for t ≥ 0 and 0 otherwise.

• The Weibull distribution As pointed out in the above that the Exponen-
tial distribution has constant failure rate which indicates that a component
with exponentially distributed lifetime does not age with time. For sys-
tems without this characteristic, extensions of exponential distribution are
required, for instance, the Weibull distribution. It is named after Swedish
mathematician Waloddi Weibull who proposed it to describe the breaking
strength of materials in 1939 [8]. Since then it is frequently applied in the
reliability theory and various of its properties and applications have been
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developed.

F (t;α, β) = 1− e−(αt)β for t ≥ 0 and 0 otherwise,

f(t;α, β) = αβ(αt)β−1e−(αt)β for t ≥ 0 and 0 otherwise,

r(t;α, β) = f(t)/(1− F (t)) = αβ(αt)β−1 for t ≥ 0 and 0 otherwise.

It is easily seen that Weibull distribution reduces to exponential distribution
when β = 1; the failure rate is increasing with respect to t when β > 1 and
decreasing when β < 1. Besides, if a random variable X has a geometric dis-
tribution, i.e., P(X ≥ k) = qk, the survival function distribution of a random
variable X1/α for α > 0 can be seen as the discrete Weibull distribution.

• The Gamma distribution is also an extension of Exponential distribution
which has been extensively applied in reliability theory, insurance theory,
wireless communication, neuroscience, bacterial gene expression etc. Assume
that a system experiences a series of shocks which arrive according to the
homogeneous Poisson process with parameter λ. Let T be the first failure
time of the system as well as the exactly arrival time of the kth shock. Then T
is gamma distributed with parameters (k, λ) denoted as T ∼ Gamma(k, λ).
Its density function is:

f(t; k, λ) =
λ

Γ(k)
(λt)k−1e−λt

where Γ(·) is the gamma function, k > 0, t > 0, λ > 0.

1.2.3.1.b Degradation modeling

In Section 1.2.3.1.a, we introduced failure rate modeling, which is usually applied
to describe systems with only two states: functioning or failed. For systems that
the information of intermediate states between the perfectly functioning and the
failed state are available, degradation modeling is commonly considered. Let X(t)
be the degradation level of a system by time t. In this situation, the system is
considered as entering into the failure state when its degradation level reaches
or exceeds a specified threshold. In the reliability assessment as well as the life-
time prognostic [9, 10, 11], it seems that the degradation data generally provide
more information than just the failure time data. Because in modern society, the
rapid development of the monitoring techniques permits to provide the information
continuously concerning the system health and state, the operating environment
conditions, etc. It is possible to estimate the future behavior and take measures to
prevent the system failure by taking advantage of the monitoring information. In
consequence, the random degradation modeling has been paid increasing attention
in the reliability theory (especially in the context of conditional based maintenance
policy). Here we briefly introduce some common degradation model in reliability
analysis.

Markov process is a stochastic process extensively applied in the degradation mod-
eling because of its non-hereditary property [12] which means that given the value
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of X(t), the present value of X(τ), where τ > t, are independent of the past
X(u), u < t. In reliability analysis, the discrete-time Markov processes with
finite/countable state spaces (referred to as Markov chains) and continuous-time
Markov processes with independent increments such as the Brownian motion with
drift), the compound Poisson process, and the gamma process are frequently used.
[13].

• Brownian motion with drift with parameter (µ, σ) is a stochastic process
{X(t), t ≥ 0} with the following properties [14]:

– X(t) is normally distributed with mean µt and variance σ2t for all t ≥ 0;

– X(t) has independent and stationary increments;

– X(t) is continuous at t = 0.

It is widely used in the modeling of systems with non-monotone degradations
for instance the exchange value of shares and the movement of small particles
in fluids and air. In the stress-strength model, the explicit expression of the
density function is available when the stress and the strength are supposed
to be independent Brownian motions with drift [15]. The parameter esti-
mations using the Maximum likelihood and Bayesian estimation method are
obtainable.

• Gamma process As mentioned before, the Brownian motion with drift pro-
cess is not proper in modeling monotonically increasing degradation. Gamma
process can be applied to address this limitation in the modeling of contin-
uous monotone degradation. Gamma process is a stochastic process with
independent, non-negative increments following a gamma distribution with
an identical scale parameter. It was firstly proposed by Abdel-Hameed [16] to
describe the system deterioration in random times. It has been widely used
and successfully data-fitted in describing system degradation on the account
of wear, fatigue, corrosion, crack growth, erosion, consumption, creep, swell,
degrading health index, etc. [13, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
Other applications are in the the theory of water storage by dams and the
theory of risk of ruin due to aggregate insurance claims, etc. X(t) is a
Gamma process if it has the following properties.

– X(0) = 0,

– X(t) has independent increments,

– For t > 0 and h > 0, X(t+ h)−X(h) follows a Gamma distribution
with shape parameter α(t + h) − α(h) and scale parameter β. The
random variable following Gamma distribution with shape parameter
α(t) and scale parameter β has density function

fα(t),β(x) =
β

Γ(α(t))
(βx)α(t)−1 exp(−βx) for x ≥ 0.

The expectation and the variance of X(t) are α(t)/β and α(t)/β2 re-
spectively. The process develops into a stationary Gamma process when
α(t) = αt.
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• Compound Poisson process is also widely applied in the modeling of
the system failure for instance the fatigue failures in aircraft fuselage. It is
assumed that the system degradation is a discrete monotone process which is
caused by discrete randomly-distributed shocks. Compared to the Gamma
process which describes infinite number of jumps in finite time intervals,
the Compound Poisson process mainly depicts finite numbers of jumps in
finite time intervals. It is usually supposed that the shocks occur according
to a Poisson process with intensity λ. The amount of damage induced by
the ith shock are identically and independently distributed with distribution
function G(·). The system fails when the amount of damages reach or firstly
exceed a pre-determined threshold L. Therefore the reliability function of
the system at time t can be represented by [28]:

R(t) =
∞∑
k=1

e−λt
(λt)k

k!
G(k)(L).

1.2.3.2 System structure

In terms of practical application, various system configurations are considered for
example: the series system which is functioning if and only if all components are
operating; the parallel system which is functioning if and only if at least one com-
ponent is operating; the k-out-of-n system which is functioning if and only if the
number of operating components is no less than k; the series-parallel system which
is composed by series subsystems in parallel; etc. It is noticed that all the systems
mentioned above share a point in common: the states of the system/components
can be classified into functioning or failed; the state of the system can be totally
determined by the state of each component as well as the system configuration.
Besides, it seems that each component may contribute to the system reliability
and no one is redundant in this context. The properties draw forth the coherent
system.

Firstly we introduce the concept of structure function [29]. For a n-component
system, let be x = {x1, x2, · · · , xn} ∈ {0, 1}n where for each i, xi = 1 if component
i is functioning and 0 if it is failed. Consider the space {0, 1}n of all possible state
vectors for the system, the structure function φ : {0, 1}n → {0, 1} is a mapping
that associates those state vectors x for which the system works with the value 1
and those state vectors x for which the system fails with the value 0. For example,
the structure function of the series system is φ(x) =

∏n
i=1 xi = min(x1, x2, · · · , xn),

while for the parallel system, φ(x) = 1−
∏n

i=1(1− xi) = max(x1, x2, · · · , xn).

Besides, component i is said to be irrelevant if the structure function of the system
satisfies

φ{x1, · · · , xi−1, 0, xi + 1, · · · , xn} = φ{x1, · · · , xi−1, 1, xi + 1, · · · , xn}

for all possible values of {x1, · · · , xi−1, xi+1, · · · , xn} ∈ {0, 1}n−1. Further more,
let be

x ≥ y when xi ≥ yi for i = 1, 2, · · · , n;
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x > y when x ≥ y and xj > yj for some j = 1, 2, · · · , n.
We call a system monotone if its structure function satisfies

φ(x) ≤ φ(y)

whenever x ≤ y.

A system is said to be coherent if each of its components is relevant and if its
structure function is monotone.

1.2.3.3 Stochastic dependence

To model a multi-component system in the context of the optimization of main-
tenance policies and the calculation of system reliability measures, besides the
modeling of the reliability of each component presented in section 1.2.3.1, the sys-
tem configuration introduced in section 1.2.3.2, the modeling of the dependence
between components is also required which is demonstrated in this section.

Firstly, the stochastic dependence induced by the changing environment under
which a system operates is presented.

1.2.3.3.a Stochastic dependence due to the operating environment

Over the last few years, the modeling of the reliability of systems with consid-
eration of the dynamic operating environment [30] plays a role in the reliability
analysis and maintenance study. This is due to that the system lifetime distribu-
tion is generally obtained by the statistical life testing procedures executed under
given fixed, ideal laboratory conditions. However, the internal stresses in a system
induced by its operating environment may have influence on the system lifetime.
For instance, the environment can impact the change of the failure/degradation
rate or the failure mode. Consider a jet engine [31], the changes of atmosphere con-
ditions like pressure, temperature, humidity during its take-off, landing may have
effect on its deterioration. Or the blade of offshore wind turbine, its deterioration
depends on the salt concentration in the air [32, 33, 34].

In literature, most researchers take the model of Esary et al. [28] as the first
environment-related work where the successive damages caused by random shocks
were neither independent nor identically distributed but were time-dependent re-
lating to environment conditions. Several properties about the system survival
time were obtained. Various failure models regarding systems in dynamic environ-
ment were established since then [30].

Çinlar and Özekici [35] presented the intrinsic age process where the concept
of intrinsic age was proposed to represent the cumulative hazard accumulated in
time with varying environment during its operation period. A number of intrinsic
ageing models can be found in [36, 37, 38, 39] for instance. ‘While these models
encompass quite general laws for deterioration and are theoretically appealing, they
do not readily lend themselves to computational analysis’, as Kiessler et al. [40]
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pointed out. In reality, the most common method to handle the component/system
dependence due to the dynamic environment is the proportional hazard model.

The proportional hazard model was introduced by Cox [41] in order to es-
timate the effects of different covariates influencing the times to the failures in
biomedicine. In reliability analysis, it is applied to incorporate the effect of covari-
ates such as the operational environment of the system (e.g. compressure, pressure,
humidity, etc.), the operating history of the system (e.g. overhauls, lubrications,
etc.) and other factors in the failure rate. It is assumed that the system failure
rate can be represented as follows.

λ(t; z) = g(z)λ0(t)

where z is a vector consisting of covariates associated with the system, λ0(t) is
the baseline hazard function which represents the system failure rate when the
covariates have no influence on the system failure pattern. Banjevic and Jardine
[42] calculated the reliability function and the remaining useful lifetime of the
system when its failure rate was governed by the external environment. Zhao et
al. [43] discussed the optimal maintenance strategies of the degradation system
where the impact of the environment to the degradation process was modeled by
covariates via the Cox proportional hazards model. Lawless et al. [44] considered
a gamma-process model to describe the crack growth by incorporating random
effects. Other related works can be found in [45, 46, 47, 48]. Kiessler et al.
[40] investigated the single-component system whose deterioration was driven by
its operating environment which was described by a Markov chain. The system
limiting average availability was derived. Kharoufeh et al. [49] extended the work
of [40] by considering external random shocks to the system, the Laplace-Stieltjes
transforms of the unconditional and conditional system lifetime distributions as
well as the limiting average availability were carried out.

In addition to the modeling of the environment as well as its influence on the
reliability of the system, the failure/degradation interaction is also extensively
applied to describe the stochastic dependence between components in the multi-
component system.

1.2.3.3.b Stochastic dependence due to failure interactions between
components

In reliability engineering, failure interaction means that the state (failure rate/
degradation level) of a component has influence on the lifetime of others. For
example, a propeller may come off of an airplane and pierce the fuselage, inducing
additional damage and safety risks; the deterioration of hydrodynamic bearings
may loosen the primary transmission shafts, which may raise the vibration levels
in the gearbox. The failure interaction was first introduced by Murthy et al.
([50],[51]) where they introduced two types of dependencies. When the evolution
of each component is modelled by its lifetime distribution, for the two-component
system, the two types of failure interactions are presented in the following.
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• Type I failure interaction means that the failure of component i may induce
the instantaneous failure of component 3− i with probability pi, i = 1, 2.

• Type II failure interaction manifested the failure of a component can affect
the failure rate of the other one.

An extensive literature has been developed until now to formalize these dependen-
cies, to propose relevant models to assess their impact on the system reliability
and maintenance costs. Jhang and Sheu [52] considered the problem of analyzing
age replacement policies in a multi-component system with type I failure inter-
action. Each component had two types of failures: the minor failure which was
corrected with the minimal repair and the major failure which may induce the sys-
tem failure and was removed with system replacement. The optimal maintenance
policies were discussed. Scarf and Deara [53] studied a two-component systems
with both failure interaction and economic dependence. Long-run average costs
were calculated and the management implications for the implementation of the
various policies were discussed. Zequeira and Bérenguer [54] studied the reliabil-
ity of the two-component in parallel system with type II failure interaction under
staggered periodic inspection. Barros et al. [55] introduced imperfect monitoring
in a two-component parallel system. It was assumed that the failure of component
i was detected with probability 1 − pi and was not detected with probability pi.
The optimization of the total expected discounted maintenance cost was taken
into consideration.

It is worth mentioning that the type II failure interaction between components is
common in the load-sharing systems [56, 57, 58]. In material testing, software
reliability, population sampling, mechanical engineering the load can strongly im-
pact the component state (failure rate, reliability, availability, damage level etc.).
Because in a load-sharing system, when a component fails, the static or time-
varying workload is undertaken by the non-failed components. Therefore the state
of the survival components are affected by the increased load they bear. For ex-
ample, in a distributed computer system, servers work together to complete the
workload enforced on the system; in a gear system, according to certain load shar-
ing rule, the workload is shared by each mesh gear pair; in a high voltage system,
a transmitter has to undertake more range if some of its counterparts fail, etc.
Load-sharing systems have been extensively studied in the framework of statistic
inference and reliability characteristics. Kim et al. [59] proposed the classical
maximum-likelihood estimation of the system parameters where all components
had identical exponential distribution. Park et al. [60] extended the model of Kim
et al. [59] by considering the parallel system with Weibull distributed lifetime dis-
tribution. The closed-form Maximum Likelihood Estimator and conditional Best
Unbiased Estimator of the Weibull rate parameters were derived. Singh et al. [61]
developed the reliability of a parallel system with Lindy lifetime distribution com-
ponents and the system parameters estimation were presented. Jain and Gupta
[62] obtained the reliability and mean time to failure of a load sharing M -out-of-N
system with non-identical and non-repairable components. Amari et al. [63] gave
an overview of the load-sharing systems. More recent papers have considered load
sharing systems for instance [64, 65, 66, 67, 68].
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When the evolution of each component is modelled by its degradation, the stochas-
tic dependence between components has also been studied in the literature. the
common-mode deterioration was [69] utilized to describe the situation that several
components could deteriorate at the same time epoch due to, for example, similar
working conditions. Wang et al. [70] studied a system with multiple degradation
measures in which the joint probability density function in terms of the degrada-
tion measures was estimated for the prediction of the system reliability. Bian et
al. [71] presented a stochastic methodology for modeling degradation interactions
of a n-component system as well as the prediction of their respective residual life-
times. Rasmekomen and Parlikad [72] optimized the condition-based maintenance
policy for an industrial cold box in a petrochemical plant where the state of certain
components could affect the rate of degradation of other components.

In reality, it is common that the deterioration of one component can increase
the load on the other. Rasmekomen et al.[73] considered a N -component system
where the state of certain components could affect the rate of degradation of
other components, i.e., state-rate degradation interactions; Do [74] studied a two-
component system where the deterioration speed of each component depended not
only on its own state (deterioration level) but also on the state of the other. Both
of the two articles applied the threshold maintenance actions and it was shown
that the stochastic dependence between components had significant influence to
the maintenance cost which should be taken into consideration in the evaluation
of the system reliability.

Besides, Nakagawa et al. [75] proposed another type of failure interaction which
was also called the shock damage interaction in the literature. It implied that
in a two-component system, a random accumulated damage may be induced to
component 2 due to the failure of the other one. Satow and Osaki [76] considered
the maintenance optimization problem of the system consisting of two components
with shock-damage interaction. It was assumed that component 1 was repairable
and it was minimally repaired at failure. The failure of component 1 occurred
according to a Non-Homogeneous Poisson Process. Whenever the component 1
failed, it induced a random amount of damage to component 2. The damage was
additive and component 2 failed whenever the total damage exceeded a certain
failure level. More detailed studies can be found in [77, 78, 79, 80, 81].

It is pointed out that in the maintenance models regarding the system with failure
interaction, economic dependence and structural dependence are always incorpo-
rated in the scheme of maintenance policies [82]. Economic dependence indicates
that the cost of joint maintenance of a number of components does not equal to the
sum of their individual maintenance cost. For instance, the group maintenance of
traffic control lights may result in a reduction in the maintenance costs due to the
economizing on set-up costs (transportation of manpower and equipment.) Struc-
tural dependence implies that some components are structurally or functionally
bonded such that one has to dismantle some operating components for the purpose
of replace or repair failed ones. More details will be presented in section 1.2.4.

We have introduced various types of stochastic dependence in the multi-component
system in the above. However, in some situations, it is difficult to construct
these dependencies because of the lack of knowledge with respect to the internal
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impacts between components and the extern impacts to the system. The common
approach to address these limitations is to consider the stochastic dependence in
the framework of multivariate distributions/copulas functions.

1.2.3.3.c Stochastic dependence and Multivariate distributions/ Cop-
ulas functions

Multivariate distributions seem to be a natural method to describe the stochas-
tic dependence between components in the multi-component system. Besides,
it can be applied to depict the dependence between various indicators of single-
component systems. This is partly due to that one single indicator may be inade-
quate to measure the system deterioration. As presented in [83], the railway track
geometry was measured by the longitudinal (NL) and transversal (NT) levelling
indicators. These two dependent measurements were modelled through a bivariate
Gamma process. Mercier et al. [84] proposed the bivariate non-decreasing Lévy
process to describe the system deterioration. The system failure occurred when
its bivariate deterioration level reached a so called failure zone. The maintenance
cost with respect to various parameter settings were discussed. Singpurwalla et
al. [85] proposed the two-dimensional renewal processes to describe the bivariate
failure indexed by age and usage in the context of warranty analysis. Since then
a bulk of papers have been carried out with consideration of the cost analysis of
two-dimensional warranty [86, 87, 88, 89, 90, 91]. In [92], Singpurwalla and Youn-
gren developed families of multivariate life distributions for systems operating in
dynamic environment conditions. Both gamma process and the shot-noise process
were respectively applied to depict the impact of the environment to the system
lifetime.

Copulas have been extensively studied in finance to address multivariate models
[93, 94, 95, 96] as it lifts the restriction of bivariate wear subordinator and allows
various types of marginal process (for instance in a two-component system, the
deterioration of the two components may be described by Gamma process and
inverse Gaussian process respectively). Besides, it allows to separate the effect of
dependence from the effects of the marginal distributions.

In the framework of maintenance analysis, Hong et al. [97] considered three Cop-
ulas functions to model the degradation dependency between components. The
optimization of condition-based maintenance decisions were discussed as well as
the necessity of considering dependency in stochastic degradations for accurate
estimating of the system cost rate and the failure probability. Li et al. [98] consid-
ered the condition based maintenance policies for multi-component systems where
the stochastic dependence between components was described by Lévy copulas.
Wang et al. [99] considered a s-dependent competing risk model for systems sub-
ject to multiple degradation processes and random shocks where the dependence
between the degradation processes was described by a time-varying copulas. In
[100], the copula function was applied to depict the dependence between different
degradation measurements of the system reliability of LED lamp. More references
can be seen in [101, 99, 102, 103]
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1.2.4 Maintenance

Maintenance is usually categorized into the following two types according to the
state of the system (functioning or failed) at the maintenance [104]:

• Corrective maintenance means all actions performed as a result of failure,
to restore an item to a specified condition (MIL-STD-721B).

• Preventive maintenance implies that all actions performed in an attempt
to retain an item in specified condition by providing systematic inspection,
detection, and prevention of incipient failures (MIL-STD-721B). It benefits
the system by avoiding or mitigating the sudden failure through premedi-
tated operations. For the failure-rate modeling that no system information
before the system failure is available, the preventive maintenance is usually
taken at predetermined age. For instance, the preventive maintenance is
carried out when the system age arrives at T , T > 0 is a predetermined
constant. For the degradation modeling, the system degradation is usually
taken into consideration in the preventive maintenance. For instance, the
system is preventively repaired when its degradation level reaches or firstly
exceed M , 0 < M < L where L is the system failure threshold. More de-
tailed information regarding maintenance policies of deteriorating systems
can be found in [105].

Maintenance can also be classified into the following three types according to the
degree to which the functioning conditions of an item is restored by maintenance:

• Perfect repair A maintenance action restores the system to an as-good-
as-new state in the sense that the system has the same lifetime distribution
comparing to its initial operating state [21, 106].

• Minimal repair A maintenance action brings the failed system back to its
operating state without altering its failure rate. It is also referred to as the
as-bad-as-old maintenance behavior. Changing a safety belt/lubricating a
car is regarded as the minimal repair behavior [107, 108, 109].

• Imperfect repair A maintenance action restores the system to an oper-
ating state between as-good-as-new and as-old-as-bad. Generally speaking,
imperfect repair improves the operating state of the system but not brings
it to the initially new state [110, 111, 112, 113, 114, 115, 116, 117].

Many methods have been proposed to describe the imperfect maintenance degree.

• (p, q) rule Nakagawa [118] introduced the (p, q) rule under which the sys-
tem was perfectly repaired with probability p and minimally repaired with
q = 1 − p. Wang et al. [119] derived the optimal imperfect maintenance
policies of the single-component system. Liao et al. [120] considered an
economic production quantity (EPQ) model that concerned a deteriorating
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system by integrating maintenance and production programs. The proba-
bility that the system was perfectly/minimally repaired was not constant
but depended on the number of imperfect repair. The optimal time interval
between preventive maintenance was examined.

• (p(t), q(t)) rule Block et al. [121] stretched the (p, q) rule to (p(t), q(t))
rule: a component was renewed with probability p(t) and minimal repaired
with not a q(t) = 1 − p(t) where t was the age of the component since the
last replacement. Iyer [122] calculated the steady-state availability when the
system repair time was non-negligible.

• Geometric process Lin [123] presented the geometric process to describe
the imperfect maintenance under which the system life time X was renewed
and reduced to αX where 0 < α < 1. It is also referred to as the quasi
renewal process by Wang and Pham [124] in which they introduced the
properties of the process and studied the optimization maintenance poli-
cies of three imperfect maintenance models with respect to various system
parameter settings. Biswas and Sarkar [125] examined the system limiting
availability when it is imperfectly repaired with the geometric process and
non-negligible repair time. Bai and Pham [126] proposed the repair-limit
risk-free warranty policies under which the system failures less or equal to m
within the warranty period were imperfectly repaired which was modeled by
the geometric process. The expected warranty-cost and the variance of the
warranty-cost per unit sold were obtained. More related works can be seen
in [127, 128, 129, 130, 131].

• The virtual age method proposed by Kijima et al. [132, 133, 134] which
have been widely studied in the literature. Instead of considering the system
age as the time elapsed since it was new, they assumed the virtual age (or
effective age) as the real condition of the system which was reduced after the
repair. They developed two imperfect maintenance models. Let Bn, An, Xn

be the component virtual age after the nth repair, the repair degree of the
nth repair and the time between the (n − 1)th and nth repair. In Kijima
model 1, it was assumed that the repair could reduce the damage or the
age emerged only during the last survival period which yielded Bn = Bn−1 +
AnXn, B0 = 0. While in Kijima model 2, the maintenance effect decreased all
damages before the nth repair which yielded: Bn = An(Bn−1 +Xn), B0 = 0.
Jack [135] analysed the effect of imperfect maintenance using the concept of
virtual age. Bartholomew-Biggs et al. [136] derived a performance criteria
to explore the effect of imperfect preventive maintenance with the virtual
age method. Instead of the general cost-centered models over the finite
time horizon, Marais [137] built a discrete semi Markov structure dealing
with the maximum revenue of the system in finite horizon with virtual age
method. Scarsini and Shaked [138] developed a benefit rate model in which
each component generated benefits depending on its virtual age. They gave
stochastic comparisons and monotonicity properties proofs in their model.

• ARI and ARA models Doyen and Gaudoin [111] proposed two classes of
imperfect repair models: the so-called ARI and ARA models. The impact
of the maintenance was characterized by the reduction of the system failure
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intensity. In ARI models, the maintenance reduced the system failure rate.
In ARA models, the maintenance reduced the system virtual age.

For the component which deteriorates with time, Van et al. [139, 140] considered
the imperfect repair which reduced the system degradation to a non-zero level.
The reduction degree was described by a truncated normal distribution. In the
work of Wu et al. [141], they assumed that the imperfect repair restored the
system degradation level to a constant level between the initial condition and the
potential failure threshold.

1.2.5 Warranty

In Section 1.2.4, we mainly focus on the introduction of maintenance policies under
which generally the objective is either the calculation of maintenance cost in the
long/short time horizons or the evaluation of system reliability measures. In the
framework of the former, basically it is supposed that the product owner takes full
charge of the maintenance cost within its usage. However, in the second half of
twentieth century, due to the awakening of consumer awareness of self-protection
[142]; the perfection of the laws and regulations of protection of the rights and
interests of consumers, more and more manufactures take these situations into
consideration by utilizing warranty as a powerful marketing means. Warranty is a
contract between the manufacturer and the consumer which requests the manufac-
turer to repair, replace the product or to compensate the consumer if the product
fails before a pre-determined time period, which is referred to as warranty period.
Since then, warranty plays an increasingly important role to both the consumer
and the manufacturer. From the buyer’s point of view, warranty is protectional
which supports them to mitigate or even avoid losses if the item is out of function
when properly used. Also, warranty is informational as the buyers generally de-
duce an item with longer warranty is more reliable and has better quality. From
the manufacturer’s point of view, warranty is also protectional and promotional
because the conditional warranty prevents the misuse of products (for example,
a broken-down HTC mobile phone within warranty period is not supposed to be
repaired if the failure is caused by rough handling, exposure to moisture, dampness
or extreme thermal etc.) and can be seen as an advertisement since the buyers
believe a longer warranty is more reliable when other circumstances are settled.
Besides, warranty is an instrument which can be used in competitions with other
manufacturers.

In the next, various types of warranty policies and correspondingly the warranty
cost analysis are presented.

1.2.5.1 Warranty policies

Basically, there are three common types of warranties in the literature: the free
replacement warranty (FRW), the pro rata warranty (PRW) and the rebate policy.
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Under the FRW, the manufacturer covers the total cost of repair/replace of the
product before the expiration of the warranty. It is usually applied to the con-
sumer products from inexpensive items to expensive repairable (automobiles, re-
frigerators, large screen color TVs) to non-repairable items (microchips and other
electronic components).

Under the PRW, a replacement product at prorated cost (1 − X
W

)C within a pro
rata warranty is offered where X is the component age at replacement, W and C
are the warranty period and selling cost respectively.

Under the rebate policy, the manufacture provides a refund with amount αC if
the item fails prior to time W (applied field is similar as FRW).

There are many extensions and variations of warranty policy according to the
combination of the above, the renewing/non-renewing and the dimension that are
considered. We give a brief introduction in the following.

1.2.5.1.a One dimensional warranty policies

For the one dimensional warranty policies, it is assumed that the failure models
are indexed by a single variable, such as the product age or its usage. The age
is measured by calendar time such as one month, one year, and the usage is
quantified by real operating time in terms of mileage, number of copies, etc. In this
framework, the following warranty policies are generally considered in literature.

• Non-renewing FRW means that the warranty period is fixed.

• Renewing FRW implies that the failed product is replaced by an identical
one with a new warranty W .(It is extensively applied to inexpensive electri-
cal, electronic and mechanical products such as coffee grinder, alarm clocks,
photocopier, automobile battery etc.)

• Renewing PRW manifests that the manufacturer offers replacement at a
prorated cost and renew the warranty at the replace time (It is usually put
into use in non-repairable item field like auto tires, batteries).

• Non-renew/partial renewing/renewing combination FRW/PRW means that
the sellers provide a maintenance/replace free of charge until W1 and a pro-
rated refund in (W1,W ).(It is widely used in consumer products)

• Pro-rata rebate policy where the rebate depends on the age.(It is imple-
mented to the inexpensive non-repairable components such as batteries, tires,
ceramics, and so on.)

1.2.5.1.b Two dimensional warranty policies

In reality, for some products, it is not sufficient to take only one characteristic as
criteria for judging the warranty eligibility of failed products. For example, for
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automobiles, sometimes warranty coverage has both restrictions on the product
age and mileage. In this circumstance, the warranty is not characterised by an
interval but by a spatial space where one axis represents the age of the product and
the other represents its usage in general. The policies can be extended naturally.

• Two-dimensional non-renewing FRW means that the product repair/replacement
is free of charge up to time W or usage U whichever occurs first.(Nearly all
auto manufacturers offer this type of policy)

• Two-dimensional combination FRW/PRW means two-dimensional FRW in
(W1, U1) and PRW otherwise in the warranty region.

1.2.5.1.c Cumulative Warranties

It is usually applied when items are sold as a lot with n items ensemble.

• Cumulative FRW: A lot of n items is warranted for a total period nW . The
n items in the lot are used one at a time. If Sn < nW , where Sn is the sum
of the service times of the n items, free replacement items are supplied, also
one at a time, until the first instant when the total lifetimes of all failed items
plus the service time of the item then in use is at least nW . (applied for
industrial or commercial equipment bought a lot as spares and just use one
each time such as bearings and drill bits, mechanical or electronic modules
in airborne units.)

1.2.5.1.d Reliability Improvement Warranties (RIW)

It has been widely used by US military [143] which is beneficial for both the
seller and the consumer. Through the warranty, the sellers are offered with a
monetary incentive for improving the production design therefore enhancing the
system reliability during the warranty. At the same time, they should promise to
repair/replace the system if failure occurs during the warranty.

Noting that no matter what types a warranty is, there is no doubt that the warranty
arouses extra expense except those related to the design, the manufacture and the
sale, etc. As mentioned in [144], generally the warranty cost varies from 1% to
10% of total sales depending on the product reliability and the warranty types.
Therefore, it is important to have an efficient evaluation of the warranty cost which
permits the decision-maker to allocate the warranty budget as well as to maximize
the profit.

1.2.5.2 Warranty cost analysis

As mentioned in [145], the following costs are of importance for both sellers and
consumers.
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• warranty cost per item sale

• Warranty cost over the lifetime of an item

• Warranty costs over the product life cycle

• Cost per unit time

Basically, the one-dimensional warranty case analysis is similar to that of the
general maintenance oriented analysis. The related issues and models are:

• Extended warranties (because of the diversity attitude to risk of hetero-
geneous customers): Padmanabhan and Rao [146] examined the extended
warranty with different risk attitude described by a utility function. Ash-
garizadeh and Murthy [147] used a game theory (the Stackelberg model) to
deal with the optimal choice of both the agent and the consumer because of
the asymmetric competition between them.

• Cost per unit time: the product usage rate is various because of the diversity
of consumer. Kim et al. [148] explored the expected warranty cost per unit
of both repairable and non-repairable products where the product lifetime
distribution was affected by the usage intensity. In the model, the usage wa a
random variable which was described by continuous and discrete distribution
respectively under FRW.

• Phase type distributions: it is generally used because of its advantage of
easy calculation comparing to the renewal process when dealing with non-
repairable product under FRW. See [149, 150].

• One item with multi working state or some dependency: Zuo et al. [151]
examined the cost per item with multi-state deteriorating product where the
sojourn time in each state was exponential distributed.

• Multi-component systems: Ritchken et al. [152] analysed the average cost
rate of a parallel non-repairable hot system with exponential lifetime distri-
bution under rebate warranty and age replacement policy. Bai et al. [153]
explored a new warranty policy RFSW for multi-component system. Under
this policy, the failed components were replaced while the rest were main-
tained to reduce the failure probability. The system warranty costs and
variances in one cycle were given for series/parallel/series-parallel/parallel-
series systems. Liu et al.[154] developed the warranty cost per cycle for both
series system and parallel system under renew FRW where there was type 1
failure interaction between components. The model was similar to [153].

For the case of two-dimensional warranty cost analysis, there exist three main
approaches which are listed in the following.

• Approach 1: the time to first failure is described by a bivariate distribution
F (x, u) (see [155, 88])
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• Approach 2: under this circumstance, the age and usage are combined by a
variable (like z = ax+ bu) which is analysed in the modeling. (see [91, 156])

• Approach 3: the usage is a random variable Y because of consumer diversity.
However, it is fixed for a given consumer and there is a relation function
between the age and the usage of the system. So it is can be transferred to
one-dimensional problem. (see [157])

1.3 Conclusion

In this chapter, first, the objectives of this thesis are introduced in section 1.1.1.
After which, important reliability measures which will be used in the following in
section 1.2.2 are presented. To model a multi-component system with stochas-
tic dependence, the failure rate/degradation modeling, the system structure and
various types of stochastic dependencies in the literature are summarized. In
the domains of the maintenance optimization and warranty cost analysis, several
maintenance policies and warranty policies are illustrated respectively. In the next
section, inspired by the hoisting ropes in the mining system, a two-component load
sharing system will be studied. Three types of maintenance policies are proposed.
The system maintenance cost per unit of time in the long time horizon as well as
its optimization problem will be discussed.
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Maintenance of a load sharing
system

2.1 Problem statement and notations

There are many load sharing parallel systems in industry and engineering field.
For instance, one can enumerate the sensors which take the workload together in a
distributed computer system; the pumps sharing the workload in a hydraulic sys-
tem; the welded joints in a bridge support [158]; the cables in a suspension bridge
system [159] and the hoisting ropes in the mining system. Hoisting rope plays a
significant role in mining system as its tensile strength and lifetime affect directly
the system reliability and the system operation state. According to the literature
[160, 161], the break of ropes is relevant to the fretting wear, mechanical damage,
operating environment like temperature, corrosive gas, distortion, etc. Therefore,
regular inspections, lubrication and overhaul are necessary for the enterprises to
increase the effective operation of systems and decrease the probability of failure.
Our model can be applied to a mining hoist system with two hoisting rope. The
two ropes share the system load uniformly. Whenever one fails,

• the survival component bears the whole system load.

• the sudden component failure can be regarded as a shock which increases
the failure rate of the survival one.

Different maintenance policies are provided to slow down the rope deterioration
and to maintain the rope in a good condition. Furthermore, for the safety, the
two components can be replaced together when the age of the system arrives at a
predetermined time limit.

The main goal of this chapter is to focus on a specific case of stochastic dependency
(load sharing) and to propose optimal maintenance decision rules in this context.
The system under study is supposed to be a parallel system described by two main
equivalent and interacting sub-systems. The failure rates of the two components

22
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are time dependent and load dependent. Whenever one fails, it is imperfectly
repaired with a time delay during which the failure rate of the survival compo-
nent increases because of the resulting overload. Three maintenance policies are
proposed considering imperfect preventive maintenance and system replacement.
We aim at investigating how maintenance actions can compensate for the negative
effects of the load sharing. A first strategy (Policy 1) is proposed which is very
conservative and very simple to implement: inspections and preventive actions
are performed for each component, and the whole system is either preventively
renewed if one component fails or preventively renewed at a pre-determined age
T . Hence, the effect of the load sharing is assumed to be so risky that the whole
system is replaced as soon as possible after the first failure. The second proposed
strategy (Policy 2) tends to be less conservative: the whole system is renewed only
after a given age T or after a short delay of the system failure. At last, a third
strategy (Policy 3) will add the possibility to increase the inspections and preven-
tive actions after the first failure of a component. In each situation, the preventive
maintenance age T is optimized to balance between the risk of total failure and
the cost of over-renewal. Hence, the effects of the load sharing are carefully taken
into account from two main perspectives:

• how long the load sharing system is supposed to be in usage?

• what is the optimal inspection periodicity before and after the first failure
of one of the redundant sub-systems?

To make it clear, the notations involved in this section are listed.

Xi lifetime of component i, i = 1, 2.
hi(t) failure rate of component i at time t, i = 1, 2.
li(t) load undertaken by component i at time t, i = 1, 2.
βi(t) nominal failure rate of component i at time t in absence of the

load
τ0 duration of one mission
τ duration between two consecutive imperfect repair in policy 1,

τ = k2τ0, k2 ∈ N∗
τ
′

duration between two consecutive imperfect repair of the long-
lived component after the failure of its counterpart in policy 3,
τ
′
= k

′
2τ0 < τ

λ failure rate reduction factor, 0 < λ < 1
bxc maximum integer not greater than x
dxe minimum integer not smaller than x
r1(t) failure rate of the short-lived component under policy 1
ri(t) failure rate of the long-lived component under policy i, i = 2, 3
T system preventive replacement time under each policy, T = k3τ ,

k3 ∈ N∗
pk probability that the system is replaced at kτ0 in policy 1
qk probability that both components fail in the period ((k−1)τ0, kτ0]

in policy 1
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F (x) lifetime distribution of component i when both of them are func-
tional, i = 1, 2.

nx bx
τ
c

mx b x
τ0
c

Mx d x
τ0
e

n̂j: b j
k2
c, j ∈ N∗

ñj b j
k
′
2

c, j ∈ N∗

pi,k probability that the two components fail in ((i− 1)τ0, iτ0], ((k −
1)τ0, kτ0] respectively before the system preventive replacement
under policy 2

Pik3 probability that one component survives at k3τ0 while one fails in
((i− 1)τ0, iτ0], 1 ≤ i ≤ k3 under policy 2.

p
(3)
i,k probability that the two components fail in ((i− 1)τ0, iτ0], ((k −

1)τ0, kτ0] respectively before the system preventive replacement
under policy 3

P
(3)
ik3

probability that one component survives at k3τ0 while one fails in
((i− 1)τ0, iτ0], 1 ≤ i ≤ k3 under policy 3.

2.2 Model descriptions

In the work of Birnbaum et al. [162], they assumed that the system failure is caused
by two different causes: the system load and deterioration factors independent of
the load. Under these hypotheses, the example of lifetime estimation of the 6061-
T6 aluminum sheeting is addressed. Moreover, in [163], the author considered a
system where the failure rate depends on the load and a constant deterioration.

Similarly to Birnbaum et al. [162], in our study, we consider that the failure
rate depends on the load and a deterioration factor. And contrary to [163], we
consider that the deterioration is time dependent. More precisely, the failure rate
of component i at time t is defined as follows:

hi(t) = βi(t)li(t)

where li(t) is the load it undertakes at time t, βi(t) is the nominal failure rate
in absence of load representing the deterioration or corrosion related factor of
component i at time t, i = 1, 2..

Furthermore, it is assumed that in absence of load, according to the number of
survival components, the lifetime of component i follows a Weibull distribution
with a scale parameter equal to one. In other words,

βi(t) =

{
ata−1 if both components are operational at time t
a1t

a1−1 if component 3− i fails before time t

where, i = 1, 2 and a1 ≥ a ≥ 1. So the component deterioration has a positive
dependence on the load it bears. The system load 2l is shared uniformly by both
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components when they operate. If one component fails at time t, the system is still
functional with the survival one who takes the whole load. The duration of one
mission of the system is noted as τ0. During a mission, that is to say within a time
horizon ((kτ0, (k+1)τ0] for any k ∈ N∗ , the system cannot be maintained if failure
occurs. Therefore, the maintenance operations can be carried out only at the end
of missions at time τ0, 2τ0, . . .. To avoid failure and therefore a period of unavail-
ability and loss of production, different maintenance operations are carried out.
We propose and analyze three policies in our study. The maintenance operations,
their impacts and scheduling are described as follows. Before the presentation of
each policy, we define the age of the parallel system by the time passes by from its
brand new state without taking account of the number of operational components.

Policy 1: component based policy

Under policy 1, when both component 1 and 2 are functioning, before age T , they
undergo

• preventive imperfect repairs after every k2 missions where k2 is a constant.
In other words, preventive imperfect repairs are carried out at age τ, 2τ, · · ·
where τ = k2τ0, k2 ∈ N∗. The approach of Arithmetic Reduction of Intensity
with memory one (ARI1) [111] is carried out to describe the imperfect repair
action which yields

βi((jτ)+) = βi(jτ)− λ[βi(jτ)− βi((j − 1)τ)+]

where (jτ)+ is the right limit of jτ , j ∈ N∗, 0 < λ < 1, i = 1, 2. It is also
assumed that the imperfect repair has no effect on the wear-out speed of the
system.

In case that the age of each component is not less than T or that one may fail
before age T , then

• preventive replacement actions are implemented at system age T or at the
end of mission after the first component failure which occurs first. In other
words, The system is preventively replaced at T = k3τ0 or at iτ0, where
the first component failure occurs in ((i− 1)τ0, iτ0], i = 1, 2, · · · , (k3 − 1),
which comes first. The constant k3 is a decision parameter, k3 ≥ k2.

Besides,

• The replacement after failure is not instantaneous. More precisely, there is a
delay iτ0−tf when a component fails at tf ∈ ((i−1)τ0, iτ0], i = 1, 2, · · · , (k3−
1).

• The cost of system imperfect repair is c2 ( c2
2

for each component), and the
cost for renewing system is cr each time. Besides, there is a penalty cp when
both components fail in the same time period ((i−1)τ0, iτ0], i = 1, 2, · · · , k3.
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Figure 2.1: A possible operational process of the system under policy 1

An example of such policy is depicted in Figure 2.1.

Policy 2: system based policy

• The system is imperfectly repaired as in policy 1.

• The system is replaced at age T (T = k3τ0) or at kτ0 when the whole sys-
tem fails in ((k−1)τ0, kτ0] which occurs first with cost cr , k = 1, 2, · · · , (k3−
1).

• There is a penalty cp if both the two components fail by time T .

Comparing to policy 1, under which the system is replaced with a time delay when
the short-lived component fails, in policy 2, the system keeps operating with the
long-lived component until it fails. Since the replacement is not instantaneous,
there is a period of unavailability. An example of policy 2 is depicted in Figure
2.2.

Figure 2.2: A possible operational process of the system under policy 2

Policy 3: component based variant policy

• When both components are operational as in policy 1, preventive imperfect
repairs are carried out at age τ, 2τ, · · · . After the first component failure, the
survival component is imperfectly repaired as in policy 1 but more frequently
at intervals of τ

′
= k

′
2τ0, k

′
2 < k2. An imperfect repair for each component

incurs a cost c2
2

. The aim is to prevent the effect of the load-sharing on the
surviving component.

• The replacement policies (both the corrective and the preventive replace-
ment) are similar to policy 1.
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Figure 2.3: A possible operational process of the system under policy 3
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Figure 2.4: failure rates

Possible operational processes of the system policy 3 is depicted in Figure 2.3. Let
be r1(t) the failure rate of the short-lived component, r2(t) (resp. r3(t)) be the
failure rate of the long-lived component in policy 2 (resp. policy 3). Figure 2.4
gives an example of their variation tendencies where the red point represents the
failure of the short-lived component.

2.3 Maintenance policy evaluation

In this section, the long run average maintenance costs under different maintenance
policies are calculated.

2.3.1 Average cost evaluation under policy 1

Failure rate and lifetime distribution

It is easily seen that the failure rate of the short-lived component under policy 1
can be given as

r1(t) = ata−1l − λa(iτ)a−1l, iτ < t ≤ (i+ 1)τ.

Let F̄ (x) be the survival function of the short-lived component. Denote nx := bx
τ
c
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for any 0 ≤ x < T , then we have:

F̄ (x) = exp(−xal + λlaτa−1

nx∑
i=1

zii
a−1) (2.1)

where zi = x− nxτ if i = nx and τ otherwise.

System replacement and failure probability

Denote pk be the probability that the system is replaced at time kτ0, qk be the
probability that both components fail in the same period ((k − 1)τ0, kτ0], k =
1, 2, · · · , k3. As

pk = P(X1 > (k− 1)τ0, X2 > (k− 1)τ0)−P(X1 > kτ0, X2 > kτ0), k = 1, 2, · · · , (k3− 1).

One can deduce

pk = F̄ 2((k − 1)τ0)− F̄ 2(kτ0), k = 1, 2, · · · , (k3 − 1). (2.2)

pk3 = 1−
k3−1∑
k=1

pk. (2.3)

Similarly, we have qk as follows:

qk = 2P
(

(k − 1)τ0 < X1 ≤ X2 < kτ0

)
(2.4)

= pk − 2P
(

(k − 1)τ0 < X1 < kτ0, X2 > kτ0

)
= pk − 2

∫ kτ0

(k−1)τ0

f(x)F̄ (x) exp

(
− 2l[(kτ0)a1 − xa1 ] + λla(nxτ)a−1(kτ0 − x)

)
dx

where n(x) = bx
τ
c, F (x) = 1 − F̄ (x), F̄ (x) is given in equation (2.1),and f(x) =

dF (x)
dx

= (laxa−1 − λla(nxτ)a−1)F̄ (x) for k = 1, 2, · · · , k3.

Average long-run cost per unit time

The mean cost of one renewal cycle is:

cr + c2

k=k3∑
k=1

pkn̂k−1 + cp

k=k3∑
k=1

qk

where n̂k−1 = bk−1
k2
c. The average length of a lifetime cycle is defined:

k3∑
k=1

pkkτ0

According to the renewal reward process, the long-run cost per unit time C(k3)
under policy 1 can be given by
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C(k3) =
cr + c2

∑k=k3
k=1 pkn̂k−1 + cp

∑k=k3
k=1 qk∑k3

k=1 pkkτ0

(2.5)

The average cost can be obtained by substituting equations (2.2), (2.3) and (2.4)
into equation (2.5). By utilizing the similar method, the cost rate in the long run
under policy 2 and 3 are derived in the following respectively.

2.3.2 Average cost evaluation under policy 2

Failure rate

Given that min(X1, X2) = x, the failure rate of the long-lived component r2(t)
under policy 2 can be represented as

r2(t) =


r1(t) t ≤ x
2la1t

a1−1 − λla(nxτ)a−1 x < t ≤ (nx + 1)τ
2la1t

a1−1 − 2λla1((nx + i)τ)a1−1 (nx + i)τ < t ≤ (nx + i+ 1)τ,

for i = 1, 2, · · ·

System replacement and failure probability

Denote by pi,k the probability that the two components fail in ((i − 1)τ0, iτ0],
((k − 1)τ0, kτ0] respectively, where 1 ≤ i < k ≤ k3, one can deduce:

pi,k = 2P
(

(i− 1)τ0 < X1 ≤ iτ0, (k − 1)τ0 < X2 ≤ kτ0

)
(2.6)

= 2

∫ iτ0

(i−1)τ0

f(x)F̄ (x)

(
exp

(
−
∫ (k−1)τ0

x
r2(t)dt

)
− exp

(
−
∫ kτ0

x
r2(t)dt

)
dx

= 2

∫ iτ0

(i−1)τ0

f(x)F̄ (x)
(
K(k−1)τ0(x)−Kkτ0(x)

)
dx

where

Kt(x) =


exp

[
− 2l

(
ta1 − xa1

)
+ λla(nxτ)a−1(t− x)

]
, nx = nt

exp
[
− 2l

(
ta1 − xa1

)
+ λla(nxτ)a−1((nx + 1)τ − x)

+2lλ
∑nt−nx

j=1 zja1((nx + j)τ)a1−1
]
, otherwise

(2.7)
where nx = bx

τ
c, F (·) is the system lifetime distribution defined in equation (2.1)

and f(·) is its intensity function. zj = t− ntτ when j = nt − nx and τ otherwise.

Similarly, denote Pik3 be the probability that one component survives at k3τ0 while
one fails in ((i− 1)τ0, iτ0], 1 ≤ i ≤ k3. Then

Pik3 = 2

∫ iτ0

(i−1)τ0

f(x)F̄ (x)Kk3τ0(x)dx (2.8)

where Kk3τ0 is given as in equation (2.7).
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Let pk,k = qk, denote p
(2)
k be the probability that the system is renewed at kτ0

which yields

p
(2)
k =

k∑
i=1

pi,k, k = 1, 2, · · · , k3 − 1;

p
(2)
k3

= 1−
k3−1∑
i=1

p
(2)
k .

Average long-run cost per unit time

The cost rate in the long run C(2)(k3) under maintenance policy 2 is therefore:

C(2)(k3) =
1∑k3

k=1 p
(2)
k kτ0

(cr +
c2

2

k3∑
k=1

k∑
i=1

pi,k(n̂k−1 + n̂i−1)) (2.9)

+
1∑k3

k=1 p
(2)
k kτ0

c2

2

k3∑
i=1

Pi,k3(n̂i−1 + n̂k3−1)

+
1∑k3

k=1 p
(2)
k kτ0

(c2F̄
2(k3τ0)n̂k3−1 + cp

k3∑
k=1

k∑
i=1

pi,k)

2.3.3 Average cost evaluation under policy 3

Failure rate

Under this policy, the imperfect repair is carried out at time nτ , n = 1, 2, · · ·
if both components are functional. Moreover, we assume that if one component
fails in ](i − 1)τ0, iτ0], then the survival component will be repaired imperfectly
at iτ0, iτ0 + jτ

′
, j = 1, 2, · · · , τ ′ = k

′
2τ0 < τ . Other conditions are similar as in

policy 2. The failure rate of the long-lived component under policy 3 given that
min(X1, X2) = x can be represented as

r3(t) =


r1(t) t ≤ x
2la1t

a1−1 − λla(nxτ)a−1 x < t ≤Mxτ0

2la1(ta1−1 − λ(Mxτ0 + iτ
′
)a1−1) Mxτ0 + iτ

′
< t ≤Mxτ0 + (i+ 1)τ

′

for i = 0, 1, · · · , where Mx = d x
τ0
e

System replacement and failure probability

Define p
(3)
i,k be the probability that the component failures occur in ((i− 1)τ0, iτ0],

((k − 1)τ0, kτ0] respectively under policy 3, P
(3)
i,k3

be the probability that one com-
ponent survives at k3τ0 while one fails in ((i − 1)τ0, iτ0], 1 ≤ i ≤ k3 under policy
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3. One can deduce

p
(3)
i,k = 2P((i− 1)τ0 < X1 ≤ iτ0, (k − 1)τ0 < X2 ≤ kτ0) (2.10)

= 2

∫ iτ0

(i−1)τ0

f(x)F̄ (x))(K
(3)
(k−1)τ0

(x)−K(3)
kτ0

(x))dx

where

K
(3)
t (x)

 e

[
−2l
(
ta1−xa1

)
+λla(nxτ)a−1(t−x)

]
, n(t) < 0

e

[
−2l
(
ta1−xa1

)
+λla(nxτ)a−1(iτ0−x)+2lλ

∑n(t)
j=0 δja1(iτ0+jτ

′
)a1−1

]
, otherwise

(2.11)

where nx = bx
τ
c, n(t) = b t−iτ0

τ ′
c, δj = (t − iτ0 − n(t)τ

′
) when j = n(t) and τ

′

otherwise. Utilizing the same method we have

P
(3)
i,k3

= 2

∫ iτ0

(i−1)τ0

f(x)F̄ (x)K
(3)
k3τ0

(x)dx (2.12)

where K
(3)
k3τ0

is defined in equation (2.11), F (·) is the system lifetime distribution
defined in equation (2.1) and f(·) is its intensity function.

Similarly, let p
(3)
k,k = qk, denote by p

(3)
k the probability that the system is renewed

at kτ0, then

p
(3)
k =

k∑
i=1

p
(3)
i,k , k = 1, 2, · · · , k3 − 1;

p
(3)
k3

= 1−
k3−1∑
i=1

p
(3)
k .

Average long-run cost per unit time

The cost rate in the long run C(3)(k3) under maintenance policy 3 is:

C(3)(k3) =
1∑k3

k=1 p
(3)
k kτ0

(cr +
c2

2

k3∑
k=1

( k−1∑
i=1

p
(3)
i,k (ñk−1−i + 1 + 2n̂i−1) + 2qkn̂k−1

)

+
c2

2

( k3−1∑
i=1

Pi,k3(2n̂i−1 + ñk3−1−i + 1) + 2Pk3,k3n̂k3−1

)

+ c2F̄
2(k3τ0)n̂k3−1 + cp

k3∑
k=1

k∑
i=1

p
(3)
i,k ) (2.13)

2.4 The properties of minimal average costs

In order to minimize the average cost rate under each maintenance policy, the
following theorems are presented.
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Theorem 2.1 The optimal cost rate C(k3) satisfies the following equation.

limk3→∞(C(k3 + 1)− C(k3)) = 0

See Appendix 7.1.1 for the proof.

Theorem 2.2 The optimal cost rate C(2)(k3) satisfies the following equation.

limk3→∞(C2(k3 + 1)− C2(k3)) = 0.

See Appendix 7.1.2 for the proof.

Theorem 2.3 The optimal cost rate C(3)(k3) satisfies the following equation.

limk3→∞(C3(k3 + 1)− C3(k3)) = 0.

See Appendix 7.1.3 for the proof.

2.5 Parameter estimation

To develop maintenance policies to equilibrate the owner costs and the system
safety, the primary issue is to obtain efficient evaluation of the system failure-
related properties which implies the estimation of a, l and a1 respectively in this
study.

We propose a two-step method to estimate the system parameters a and a1. Sup-
pose that the test number is n and the failure times of the short-lived component
(resp. the long-lived component) are ti (resp. t̂i), i = 1, 2, · · · , n where ti < t̂i and
{ti, i = 1, 2, · · · , n} (resp. {t̂i, i = 1, 2, · · · , n}) are independent. The system load
is known and equal to 2l. Therefore, according to the failure rates, the likelihood
function of {ti, i = 1, 2, · · · , n} is given as follows:

f(t1, t2, · · · , tn; a, l) = (al)nΠn
i=1ti

a−1 exp(−l
n∑
i=1

ti
a)

By calculating respectively the first derivative of the log-likelihood function with
respect to a and l the maximum-likelihood estimate â and l̂ can be obtained from

n

â
+

n∑
i=1

log ti − l̂â
n∑
i=1

tâ−1
i = 0 (2.14)

l̂ =
n∑n
i=1 t

â
i

(2.15)
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Besides, it is reasonable to assume that t̂i is independent of t̂j (i 6= j) given
the value of ti for any i, j ∈ {1, 2, · · · , n}. Therefore, the conditional likelihood
function of {t̂i, i = 1, 2, · · · , n} is as follows:

f(t̂1, t̂2, · · · t̂n | t1, t2, · · · , tn; a1, l̂) = (2l̂a1)nΠn
i=1ti

a1−1 exp(−2l̂
n∑
i=1

ti
a1 + 2l̂

n∑
i=1

ti
a1)

Similarly, the estimate â1 can be obtained from

n

â1

+ log
n∑
i=1

t̂i − 2l̂â1

n∑
i=1

(ti
â1−1 − tiâ1−1) = 0 (2.16)

2.6 Numerical analysis

2.6.1 Failure probability calculation by two methods

For illustration, considering k1 = 1, k2 = 4, a = 1.2, a1 = 1.6, l = 0.006, λ = 0.9,
k3 = 200, the failure probabilities pk, qk are calculated by both exact calculation
and Monte Carlo methods. For each probability, 100000 Monte Carlo simulations
are carried out. For 1 < k < k3 = 200, the probabilities pk, qk are depicted
respectively in Figure 2.5 and Figure 2.6. The results show the consistency of
calculations with the two methods. Based on the above and the fact that the time
used for numerical results (about 0.3s) is tiny compared to which of the simulation
(about 2 days), in the following the analyses of different maintenance policies are
carried out only by numerical calculations.
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Figure 2.5: pk in function of k when k3 = 200, Monte Carlo (green), exact method
(blue)

In the following, we present a numerical example to illustrate the system behavior.
Afterward, for different maintenance policies, we analyse the impact of different
parameters on the long run average total cost.
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Figure 2.6: qk in function of k when k3 = 200, Monte Carlo (green), exact method
(blue)

2.6.2 Optimization Algorithm

Since the existence of the minimal cost is proved the maintenance optimization
can be carried out with different methods.

For the numerical minimization the following algorithm is implemented.

1. Set parameters τ, τ0, τ
′, a, a1, l, λ, c2, cr, cp, and the accuracy ε

2. Set k3 = 1.

3. for an arbitrary k3 presented in Section 2.3 calculate C(k3) and C(k3 + 1)

• if |C(k3 + 1)− C(k3)| < ε and |C(k3 + 2)− C(k3 + 1)| < ε go to 4

• else k3 = k3 + 1 repeat 3

4. Compare the value from C(1) to C(k3 + 1) and let the optimal value be
C∗ = min{C(i)}, i = 1, 2, · · · , k3 + 1.

In the following, let C(i)∗ and N (i)∗τ0 be the optimal maintenance cost and the
corresponding maintenance time under policy i, i = 1, 2, 3.

2.6.3 Policy 1: component based policy

Let τ = 4, τ0 = 1, c2 = 25, cr = 100, cp = 220, l = 0.04, λ = 0.5, a = 1.3, a1 = 2,
ε = 0.0001. Tables 2.1-2.4 show the variation of the optimal long run cost rate
under policy 1 with one parameter while other system parameters are unchanged.

The numerical results in Tables 2.1, 2.2, 2.3 and 2.4 can be interpreted as follows.
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optimal l = 0.03 0.04 0.06 λ =0.4 0.5 0.6

N (1)∗ 20 16 12 16 16 24
C(1)∗ 19.8975 24.0127 32.1823 25.1940 24.0127 22.6421

Table 2.1: The optimal cost rate with different load l and maintenance effect λ
under policy 1.

optimal a =1.3 1.4 1.5 a1 =1.8 2 2.1

N (1)∗ 16 12 12 20 16 16
C(1)∗ 24.0127 26.6954 29.3361 21.6656 24.0127 25.1899

Table 2.2: The optimal cost rate with different deterioration parameters a and a1

under policy 1.

optimal c2 = 20 25 30 cr =90 100 120

N (1)∗ 16 16 12 16 16 20
C(1)∗ 23.1970 24.0127 24.8285 22.7558 24.0127 26.4438

Table 2.3: The optimal cost rate with different maintenance cost units c2 and cr
under policy 1.

optimal cp =150 220 250

N (1)∗ 24 16 16
C(1)∗ 21.5265 24.0127 25.0171

Table 2.4: The optimal cost rate with different penalty cost unit cp under policy
1.

• Table 2.1 shows that the total maintenance cost and maintenance frequency
increase with the load. Moreover, the closer is the imperfect maintenance
to the perfect maintenance the cheaper is the total maintenance cost. As λ
increases, the system replacement become less frequent.

• It can be noticed in Table 2.2 that, long run average total maintenance
cost increases as the components deteriorate faster. More replacements are
required for fast deteriorations.

• When a, a1, λ, l are high, the system deteriorates faster, it is then sensible to
carry out the preventive maintenance more often. The increasing parameter
a of Weibull distribution, which is positively correlated with the failure rate
of the system, impacts lightly the optimal average costs, while it is more
sensitive to the variation of l.

• The optimal average costs are quite robust in the sense that they don’t vary
significantly with the degradation parameters.

• Unsurprisingly, the optimal cost rate C∗ is increasing with imperfect main-
tenance cost c2, system renewal cost cr and failure penalty cost cp.
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2.6.4 Policy 2: system based policy

Under policy 2, we take the same parameters as in policy 1. The optimal average
long-run cost C(2)∗ under different parameter settings are illustrated in Tables 2.5,
2.6, 2.7, 2.8. The following features can be pointed out:

• Similarly to policy 1, it can be noticed that the C(2)∗ decreases with the
system load l and shows decreasing tendency with λ . Because the larger λ
is, the better is the repair. Therefore, the system is more robust and is liable
to survive. The higher is the system load, the larger is the system failure
rate. Thus the system fails more frequently which causes an increase of the
maintenance cost.

• Table 2.6 considers the variation of C(2)∗ under different deterioration pa-
rameters a and a1. In our example, the long-run average total cost is not
very sensitive to the variations of a1. It is more sensitive to small values of
a.

• In Tables 2.7-2.8 the impact of maintenance costs units variations on C(2)∗

are presented. Obviously C(2)∗ increases with respect to maintenance costs
units. It is shown in Table 2.8 that the system is replaced earlier when the
penalty is high. Therefore, the system owner are recommended to consider
the potential risk he or she should undertake when the consequence of system
failure is serious.

optimal l = 0.03 0.04 0.06 λ =0.4 0.5 0.6

N (2)∗ 24 20 16 12 20 28
C(2)∗ 28.6937 34.6901 45.9031 36.6135 34.6901 32.2203

Table 2.5: The optimal cost rate with different load l and maintenance effect λ
under policy 2.

optimal a =1.3 1.4 1.5 a1 =1.8 2 2.1

N (2)∗ 20 8 4 8 20 20
C(2)∗ 34.6901 38.6017 39.9732 32.3945 34.6901 35.3785

Table 2.6: The optimal cost rate with different deterioration parameters a and a1

under policy 2.

optimal c2 = 20 25 30 cr =90 100 120

N (2)∗ 20 20 16 16 20 24
C(2)∗ 33.8679 34.6901 35.5110 33.6349 34.6901 36.7052

Table 2.7: The optimal cost rate with different maintenance costs units c2 and cr
under policy 2.
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optimal cp =150 220 250

N (2)∗ 28 20 16
C(2)∗ 28.1650 34.6901 37.4398

Table 2.8: The optimal cost rate with different cp under policy 2.

2.6.5 Policy 3: component based policy, variant

Under policy 3, by adopting the parameters setting as in the cost analysis under
policy 1 and assuming that k

′
2 = 3, Tables 2.9, 2.10, 2.11 and 2.12 elucidate the

similar average cost variation as in policy 2.

optimal l =0.03 0.04 0.06 λ =0.4 0.5 0.6

N (3)∗ 20 16 16 8 16 28
C(3)∗ 28.6769 34.6156 45.2158 36.3411 34.6156 32.0843

Table 2.9: The optimal cost rate with different load l and maintenance efficiency
λ under policy 3.

optimal a =1.3 1.4 1.5 a1 =1.8 2 2.1

N (3)∗ 16 4 4 8 16 20
C(3)∗ 34.6156 37.2893 38.4369 31.5371 34.6156 35.4033

Table 2.10: The optimal cost rate with different deterioration parameters a and
a1 under policy 3.

optimal c2 = 20 25 30 cr =90 100 120

N (3)∗ 20 16 16 8 16 24
C(3)∗ 33.7100 34.6156 35.4971 33.4508 34.6156 36.6353

Table 2.11: The optimal cost rate with different maintenance unit costs c2 and cr
under policy 3.

optimal cp =150 220 250

N (3)∗ 28 16 8
C(3)∗ 28.2491 34.6156 37.2236

Table 2.12: The optimal cost rate with different penalty cp under policy 3.

It is pointed out that in our example policy 1 is the most economical one compared
to policy 2 and 3. In most cases, policy 3 is a second-best choice which indicates
that it is necessary to consider the period to carry out the imperfect maintenance
when only one component is functional in the system. In all policies, the mainte-
nance costs are very sensitive to the system load. In sum, under high loads, low
quality system and non efficient maintenance operations, the maintenance policies
are very costly. The penalty cost may have influence on the policy preference. For
example when cp = 150 or 220, the cost difference between policy 2 and policy 3
is tiny while policy 3 is more favored when the failure consequence is serious.
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2.7 Conclusion

In this chapter, different maintenance policies for a two-component load-sharing
system are proposed. To avoid system failure, imperfect preventive maintenance
and preventive system replacement are applied. The long-run average cost of the
system under different maintenance policies are obtained. Numerical examples
are illustrated and it is shown that policy 1 is the most cost saving policy. It
is recommended to the decision maker to consider an equilibrium between the
average maintenance cost and the system reliability.



Chapter 3

Maintenance and warranty of a
system with type 3 stochastic
dependence

In this chapter, we consider the maintenance optimization problem and the war-
ranty cost of a two-component system: the evolutions of the two components are
modelled by its lifetime distribution (component 1) and its degradation respec-
tively. Component 2 degenerates with time which fails when its degradation level
reaches or first exceeds a predetermined level. The dependencies between the two
components are: whenever component 1 fails, it causes a random amount of dam-
age to component 2 which may accelerate its failure; whenever component 2 fails,
it is catastrophic and induces the failure of component 1. This system can be
used to model the interaction between the brake pad and the disc rotor in a brake
system where the automobile and motorcycle decelerate through friction [76]. If
brake pad fails, it causes damages to the disc rotor because of the excessive wear
comparing to the normal wear. The brake system fails when disc rotor wears out.
In the following, we will study such a system in the contexts of the maintenance
costs in section 3.1 as well as the warranty costs respectively in section 3.2.

3.1 Maintenance cost analysis

To guarantee the normal operation of the system, both corrective maintenance and
preventive maintenance policies are carried out. It is assumed that component 1
undergoes imperfect repair with virtual age method when it fails and the system is
renewed when component 2 failure occurs. Three preventive maintenance policies
are considered respectively: (1) the system is replaced at a planned time T ; (2) the
system is replaced at the Nth failure of component 1; (3) the system is replaced
at the planned time T or at the Nth failure of component 1 which occurs first.

Our primary objective is to provide explicit expressions of the system long-run
expected costs per unit of time under different maintenance policies. Sufficient
conditions of the existence of the long-run expected costs are derived theoretically.

39
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Numerical results and Monte Carlo simulations are presented to illustrate the
policies. Sensitivity analysis are discussed to elucidate the trend variation of the
average cost under different system parameter settings.

3.1.1 Model description and system analysis

In the following, first, the model description is given.

General assumptions

• For a brand-new component 1, in absence of the maintenance action, it has a
lifetime distribution F (·), F (0) = 0 and density function f(·). Assume that
component 1 is repairable.

• Whenever component 1 fails, a random amount of damage is induced to com-
ponent 2. We assume the damages Zj (j = 1, 2, ...) are additive and identical,
independent random variables with distribution H(·), H(·)is differentiable.
Let H∗(k)(·) be the k fold convolution of H(·) with itself.

• Component 2 is non-repairable and it fails when its degradation level exceeds
a predetermined threshold L. Assume that the degradation level is nonde-
creasing. The failure of component 2 induces component 1 into simultaneous
failure.

• In absence of the damage caused by component 1, let be {Y (t), t ≥ 0} the
natural degradation level of component 2 at time t and σL be the time at
which the degradation level reaches or first exceeds L, L > 0. Then its
distribution function is

GσL(t) = P(σL ≤ t) = P(Y (t) ≥ L), t ≥ 0.

GσL(t) is integrable.

• The repair time and system renewal time are negligible.

Now, some assumptions on component 1 and its maintenance are listed

• Let us denote Xi and a, respectively the inter-maintenance time between the
(i− 1)th and the ith repair and the age-reducing factor of component 1.

• The effective age of component 1 after the ith repair is Bi = Bi−1 + aXi,
i = 1, 2, · · · , where the initial age B0 = 0 and the reduction degree 0 ≤ a ≤ 1.

• Let Vn(·) be the distribution function of virtual age Bn. Vn(·) is differentiable.



3.1. Maintenance cost analysis 41

• Let N(t) be the number of component 1 failures by time t and pn(t) =
P{N(t) = n}. It is easy to verify that according to [132], the latter proba-
bility mass function is given as follows:

pn(t) =

∫ at

0

F̄ (y + at−y
a

)

F̄ (y)
vn(y)dy (3.1)

where F̄ (·) = 1 − F (·), vn(x) = d
dx
Vn(x), v1(x) = 1

a
f(x

a
) and vn+1(x) =

1
a

∫ x
0

f(y+x−y
a

)

F (y)
vn(y)dy for n ≥ 1[132]. EN(t) =

∑∞
n=0 npn(t) is differentiable.

Similarly, let be Ns(t) the number of system failure by time t and psn{t} =
P{Ns(t) = n}. We have the following proposition.

Proposition 1 Let Fs(t) be the lifetime distribution function of the system, then

Fs(t) =
∞∑
k=0

pk(t)

∫ ∞
0

GσL−z(t)dH
∗(k)(z). (3.2)

See Appendix 7.2.1 for detailed proof.

In the next, by assuming the repair cost of component 1 is c1, the replacement cost
of the system is c2, we provide results on the system long run average maintenance
cost under different preventive policies.

3.1.2 Maintenance cost derivation

In this part, the average long run maintenance costs are derived considering the
renewal reward theorem. Indeed, since the system is replaced as good as new after
the failure of component 2, the system replacement intervals are independent and
identically distributed. Therefore, the interval ∆ between two replacements can be
considered as a renewal cycle and the long run average maintenance cost EC∞ can
be obtained considering the average maintenance cost on a renewal cycle E(C(∆))

as follows: EC∞ = E(C(∆))
E(∆)

.

3.1.2.1 Age-T -based policy

Let’s consider an age based policy, where the system is replaced either at its failure
or when it reaches the age T , whichever comes first. Let C∞(T ) be the long run
average maintenance cost associated to the age-based policy.

Theorem 3.1 The long run average maintenance cost of the age-T -based policy
is

C∞(T ) =
c2 + c1EN(T )F̄s(T ) + c1

∫ T
0
EN(t)dFs(t)

T F̄s(T ) +
∫ T

0
tdFs(t)

(3.3)
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where EN(t) =
∑∞

n=0 npn(t) is the expected failure number of component 1 by time
t, pn(t) is given in equation (3.1),Fs(t) is the system lifetime distribution function
given in equation (3.2).

See the Appendix 7.2.2 for detailed proof.

3.1.2.2 Failure-number-N-based maintenance policy

Under this policy, we replace the whole system at the Nth failure of component 1
or at the failure of component 2 whichever occurs first. Let C∞(N) be the average
long run maintenance cost.

Theorem 3.2 The average long run maintenance cost under the failure-number-
N-based policy C∞(N) is calculated as follows

C∞(N) =
c2 + c1

∑N−1
k=1

∫∞
0
Rk−1(t)dVk(at)∫∞

0

∑N−1
k=0 pk(t)Rk(t)dt

(3.4)

where Ri(t) =
∫ L

0
(1 − GσL−z(t))dH

∗(i)(z), i = 1, 2, · · · , N , R0(t) = 1 − GσL(t),
GσL(t) is the probability distribution function of the first hitting time of level L
by the component 2 degradation, H(·) is the cumulative distribution function of
the total damage caused by component 1 to component 2, H∗(n)(·) is the n-fold
convolution of H(t) with itself, pk(t) is the probability that k component 1 failures
occur in [0, t], Vk(t) is the distribution function of the virtual age after the kth
repair.

See the Appendix 7.2.3 for the proof.

3.1.2.3 (N, T )-based maintenance policy

In the (N, T ) policy, the system is replaced at age T , or at the Nth failure of
component 1, or at the time of component 2 failure whichever occurs first. Assume
that the long run average maintenance cost under this circumstance is C∞(N, T ).

Theorem 3.3 The average long run maintenance cost under (N, T ) policy C∞(N, T )
is as follows:

C∞(N,T ) =
c2 + c1

∑N−1
k=1

∫ T
0 Rk−1(t)dVk(at)∫ T

0

∑N−1
k=0 pk(t)Rk(t)dt

where Ri(t) =
∫ L

0
(1 − GσL−z(t))dH

∗(i)(z), i = 1, 2, · · · , N , R0(t) = 1 − GσL(t),
GσL(t) is the probability distribution function of the first hitting time of level L by
the component 2 total degradation at time t, H(t) is the lifetime distribution of
damage caused by component 1 to component 2 until time t, H∗(n)(t) is the n-fold
convolution of H(t) with itself, pk(t) is the probability of k failures of component
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1 occur in [0, t], Vk(t) is the distribution function of the component 1 virtual age
after the kth repair.

The proof is given in the Appendix 7.2.4.

In the following section, the existences of optimal T ∗ and N∗ minimizing C∞(T )
and C∞(N) respectively are discussed.

3.1.3 Maintenance policy optimization

In this paragraph, some conditions on the existence of the optimal maintenance
age-T -based and failure-number-N -based policies are derived.

Theorem 3.4 Under the age-T -based policy, the optimal and unique age T ∗ which
minimizes the long run average maintenance cost exists if the following assump-
tions are satisfied:

lim
T→∞

dEN(T )

dT

∫ T

0

F̄s(t)dt− EN(T )F̄s(T )−
∫ T

0

EN(t)dFs(t) >
c2

c1

, (3.5)

and
d2EN(t)

d2t
> 0, t > 0. (3.6)

When component 1 has a Weibull lifetime distribution F (t) = 1− exp(−λtb) with
minimal repair (a = 1), the optimal T ∗ =∞ when b ≤ 1 which means there is no
preventive maintenance in the optimal policy.

See the Appendix 7.2.5 for the proof .

Theorem 3.5 Under the failure-number-N-based maintenance policy, the optimal
N∗ exists if the following assumptions are satisfied:

lim
N→∞

d1(N)
∑N−1

k=1 d2(k)

d2(N)
−

N−1∑
k=1

d1(k) >
c2

c1

, (3.7)

and
d1(N)

d2(N)
is a convex function with respect to N. (3.8)

Where d1(k) =
∫∞

0
R̄k−1(y)avk(ay)dy and d2(k) =

∫∞
0
pk(t)Rk(t)dt.

See the Appendix 7.2.6. for the proof .
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3.1.4 Numerical examples

Here we assume component 1 has a Weibull cumulative distribution function
F (t) = 1− e−λtb , t > 0. The damage is exponentially distributed with expectation
µ. The deterioration of component 2 follows a homogeneous Gamma process which
has been widely used and successfully data-fitted in describing system degradation
on the account of erosion, corrosion, crack growth, etc. [13]. Its density function
is as follows:

gαt,β(u) =
βαtuαt−1e−βu

Γ(αt)
, α > 0, β > 0 (3.9)

where

Γ(α) =

∫ ∞
0

uα−1e−udu. (3.10)

Therefore the first hitting time has the following distribution function:

GσL(t) =
Γ(αt, Lβ)

Γ(αt)
, t ≥ 0 (3.11)

where the lower incomplete Gamma function is defined as follows:

Γ(α, x) =

∫ ∞
x

zα−1e−zdz. (3.12)

To begin with, let be λ = 0.01, b = 2, a = 0.6, T = 10, N = 2, L = 20, λ = 0.01, b =
2, α = 4, β = 2, c1 = 50, c2 = 250, c3 = 300. Table 3.1 shows some quantities
obtained by their formulas and Monte Carlo simulations with 105 histories and 95%
confidence intervals (CI). All results are coherent. For the sensitivity analysis, the

Formula Simulation 95% confidence interval
p0(T ) 0.3679 0.3670 [0.3576,0.3764]
p1(T ) 0.4211 0.4234 [0.4137,0.4331]
p2(T ) 0.1648 0.1626 [0.1554, 0.1689]
Fs(T ) 0.5820 0.5800 [0.5770, 0.5831]

C∞(T,N) 34.2762 34.2715 [34.1976, 34.3454]

Table 3.1: Calculations of various quantities by their formulas and the Monte Carlo
simulations (N = 105) respectively

baseline parameters are chosen according to the results obtained in the previous
paragraph and figures. Considering the Gamma process parameters setting α =
4, β = 2, the average time to cross the safety level L = 20 is 10 time units. The
system reliability function at time t = 10 is 0.4 which means for these parameters
setting the threshold L = 20 can be considered as a security level not to cross
otherwise the system is not functioning correctly. For the optimization of the long
run average maintenance cost, as it is mentioned in the obtained theorems, the
existence of the optimal value depends on the system parameters and the cost
ratio: c2

c1
. The smaller is c2

c1
the higher is the possibility of the existence of a
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optimum. Therefore, under the constraint c2 > c1, we chose close cost values for
c1 and c2 in order to assure the existence of the optimum. It should be mentioned
that this is an example presenting the system properties and optimal maintenance
cost rates under different maintenance policies. In reality, parameters selections
are based on the real data and the parameter estimation etc. We set α = 4, β =
2, λ = 0.1, b = 2, a = 0.6, L = 20, c1 = 500, c2 = 600, µ = 1. In the following,
one parameter is changed to evaluate the variation of the average cost while other
parameters remain unchanged.
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Figure 3.1: C∞(T ) with different a
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Figure 3.2: C∞(T ) with different µ
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Figure 3.3: C∞(T ) with different λ
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Figure 3.4: C∞(T ) with different b

α β C∞(T ∗) T ∗

4 2 322 4
4 1 323 4
6 1 335 ∞

c1 c2 C∞(T ∗) T ∗

500 600 322 4
300 600 240 6
500 900 383 5

Table 3.2: The optimal average cost rate under age-T -based policy with different
gamma process parameters (left) and different repair cost (right)

Figures 3.1-3.4 and Table 3.2 show the long run average maintenance cost C∞(T )
with different parameters setting. The following behaviors are pointed out.

• The optimal expected cost rate increases with a and µ. The larger a is, the
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worse is the repair. Therefore, there are more damages are caused to com-
ponent 2 which induces the system failure. As µ represents the expectation
of damage, for large values of a and µ the system fails more often. Under
these settings, the optimal cost is less sensitive to the variations of µ. This
is due to the fact that the failure is mostly due to the deterioration of the
system which is faster and more significant in comparison to damages.

• Preventive maintenance is not necessary for small values of λ and b. Indeed,
in this case, component 1 is rarely failed and its failure barely damages com-
ponent 2. The failure is more due to the natural deterioration of component
2. On the contrary, when λ and b are very large, the system is preventively
repaired after a short operational period which increases the average long
run cost. Of course it is then more worthwhile to replace the whole system
when component 1 often fails and its maintenance cost is expensive.

• It can be noticed in Table 3.2, the optimal average cost increases as α, c1, c2

grows. In this case, the deterioration of the component 2 is faster and the
maintenance are more costly.
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Figure 3.5: C∞(N) with different parameters

Figures 3.5 and Table 3.3 show the long run average maintenance cost under
failure-number-N based policy with different parameters setting. The repair cost
of unit is set to c1 = 100 and other conditions are as in age-T -based policy. As
expected it can be noticed that under failure-number-N-based policy the average
cost rate increases with b, µ and λ. A similar behavior as in the age-T -based policy
can be pointed out. Figure 3.6 shows the cost rate under (N, T ) policy with the

α β C∞(N∗) N∗

4 2 131 5
4 1 167 4
6 1 213 3

c1 c2 C∞(N∗) N∗

100 600 131 5
100 500 117 4
500 600 213 1

Table 3.3: The optimal average cost rate under failure-number-N -based policy
with different gamma process parameters (left) and component repair cost (right)

parameters given as in the T policy.
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Figure 3.6: C∞(T,N) with different parameters policy

3.2 Warranty cost analysis

In this section, we examine the expected warranty costs from the perspectives
of the manufacturer and the consumer respectively. By considering the product
service time, the warranty costs allocations between the manufacturer and the
consumer are presented. Numerical examples are given to demonstrate the ap-
plicability of the methodology. It is shown that, independent of the type of the
warranty policy, the failure interaction between components has a non-negligible
impact on the manufacturer profits and the consumer costs. The initial warranty
length has impact on the product quality preferences to both the consumer and
the manufacturer.

Two warranty policies: the renewing free-repair warranty (RFRW) and the non-
renewing free-repair warranty (non-renewing FRW) are studied respectively. More
precisely, it means, during the initial warranty period W ,

• under the non-renewing FRW

– component 1 is imperfectly repaired at its failure at time Tf1 and the
warranty of the system remains valid during the remaining W − Tf1

period.

– the system is replaced at the failure of component 2 at time Tf2 and
the warranty of the system remains valid only during the remaining
W − Tf2 period.

• under the RFRW,

– component 1 is imperfectly repaired at its failure at time Tf1 and the
warranty of the system remains valid during the remaining W − Tf1

period.

– the system is replaced at the failure of component 2 at time Tf2 and a
full system warranty period of length W is provided.
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Suppose that to the manufacturer, the component 1 repair cost and the system
replace cost are c1 and c2 respectively. First, under the two warranty policies, from
the perspective of the manufacturer, the expected warranty costs are formulated.

3.2.1 Manufacturer’s expected warranty costs

For simplicity, we call the system failure as minor failure if it contains only com-
ponent 1 failure and major failure if both the two components in the system fail.

3.2.1.1 Expected manufacturer’s cost under the non-renewing FRW

Under the non-renewing FRW, the manufacturer covers the repair or replacement
cost up to a duration W from the initial product purchase time. Denote E(C(W ))
be the manufacturer’s expected warranty cost under non-renewing FRW within
warranty period W . The following theorem gives the expected manufacturer cost
under non-renewing FRW.

Theorem 3.6 Under the non-renewing FRW, the expected manufacturer cost E(C(W ))
within the warranty period W is given by:

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt

where M(t) is the renewal function related with Fs(t) which can be given by M(t) =∑∞
n=1 F

(n)
s (t), k(t) = c1F̄s(t)

∑∞
n=0 n[avn(at)−

∫ at
0

f(y+at−y
a

)

F̄ (y)
vn(y)dy]+c2fs(t), Fs(t)(fs(t))

(given in equation (3.2)), F (t)(f(t)) are the lifetime distribution (density) func-
tions of component 2 and component 1 respectively, F̄s(t) = 1 − Fs(t), a is the
imperfect maintenance degree of component 1, vn(t) is given in equation (3.1).

See Appendix 7.2.7 for the detailed proof.

3.2.1.2 Expected manufacturer’s cost under RFRW policy

Under the RFRW, the major failure within the warranty period is replaced by a
new one (repaired as good as new) with a full system warranty period W . Let us
denote Tr the warranty cycle which is a time interval from the system purchase
time until the expiration of the warranty. It is obvious that in this situation the
warranty cycle depends on the initial warranty period W , the system renewal
times and the time interval between two consecutive system renewal time. Denote
Nr(W ) be the system renewal times when the initial warranty period is W , and
Ji, i = 1, 2, · · · , Nr(W ) the corresponding time interval between the (i− 1)th and
the ith system renewal time which are identically and independently distributed
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Figure 3.7: A possible system warranty period under RFRW policy

random variables. Figure 3.7 gives an example of total system warranty length
under RFRW. It can be noticed that:

Tr = J1 + J2 + · · ·+ JNr(W ) +W

Let E(CR(W )) be the expected manufacturer warranty cost under RFRW. We
have the following theorem.

Theorem 3.7 Under the RFRW, the expected system cost is

E(CR(W )) =
∞∑
n=0

F̄s(W )F n
s (W )

(
nc2 + c1E(N(W )) + nc1

∫W
0

E(N(t))dFs(t)

Fs(W )

)

where Fs(t) is the component 2 lifetime distribution function, F̄s(t) = 1 − Fs(t),
E(N(t)) =

∑∞
n=1 npn(t) which is the expected failure times of component 1 by time

t before system failure.

See Appendix 7.2.8 for detailed proof.

By now, we have formulated the expected warranty costs of the manufacturer under
the non-renewing FRW and the RFRW. One step further, if we take the consumer’s
behaviour into consideration, assume that he/she intends to put the product in
service until T , W < T < ∞. After which, the system is not repaired when
failure occurs. Besides, after the product warranty, the consumer chose coming
back to the original manufacturer (or the supplier, retailer, seller etc. here we do
not distinguish them) for the maintenance. Denoted c11, c22 be the component 1
repair cost and the system renewal cost respectively to the consumer. It is rational
to set cii > ci, i = 1, 2 as the manufacturer earns from the difference between the
prices c11, c22 and its costs c1, c2. In the next, the warranty cost and profit to the
consumer and the manufacturer respectively are examined.

3.2.2 Expected warranty profit and cost in (0, T ]

In the following, by assuming that the product service time is T , W < T < ∞.
The warranty cost analysis of different warranty policies in (0, T ] are explored.
Hereafter we assume that component 1 is minimally repaired when failure occurs.
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3.2.2.1 Expected warranty profit and cost in (0, T ] under the RFRW

Let Cs(T ) and TP s(T ) be the total warranty cost of the consumer (owner) and
the profit of the manufacturer respectively, let E(Cs(T )) and E(TP s(T )) be their
expectations. They are formulated in the following theorem.

Theorem 3.8 Under the RFRW, the expected maintenance cost of the consumer
and the expected total profit of the manufacturer in [0, T ] are as follows:

E(Cs(T )) =

∫ T

W

(1 +M(T − u))dh(u)

E(TP s(T )) = E(Cs(T ))− E(C1(T ))− c2M(T )

where

h(T ) = c22(Fs(T )− Fs(W )) + c11

∫ T

W

F̄s(t)dEN(t) for T ≥ W

E(C1(T )) = h1(T ) +

∫ T

0

h1(T − t)dM(t)

h1(T ) = c1E(N(T ))− c1

∫ T

0

Fs(t)dE(N(t))

M(t) =
∑∞

n=1 F
(n)
s (t) is the system renewal function related with Fn(t) and EN(t) =∑∞

n=1 npn(t) is the expected failure number of component 1 in [0, t] before system
replacement. Fs(t)(fs(t)), F (t)(f(t)) are the lifetime distribution (density) func-
tions of component 2 and component 1 respectively, F̄s(t) = 1− Fs(t).

See Appendix 7.2.9 for the proof.

3.2.2.2 Expected warranty profit and cost under the non-renewing
FRW

Under the non-renewing FRW, the manufacturer pays the full warranty cost if the
system fails within the warranty period and the warranty is not renewed. It is
reasonable to assume that the consumer is provided with a new system with a full
warranty if the major failure occurs in (W,T ] and he/she covers himself/herself
the full purchase cost.

Let Csn(T ) and TP sn(T ) be the total warranty cost of the consumer and the profit
of the manufacturer respectively. Let E(Csn(T )), E(TP sn(T )) be their expecta-
tions.

Theorem 3.9 Under the non-renewing FRW, when component 1 failures occur
according to a Poisson process, the expected warranty cost of the consumer and the
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expected total profit of the manufacturer in [0, T ] are derived as follows:

E(Csn(T )) = hn(T ) +

∫ T

0

hn(T − u)dMU(u)

E(TP sn(T )) = E(Csn(T ))− c1EN(T )− c2M(T )

where

FU(t) = Fs(t)−
∫ W

0

F̄ (t− x)dM(x) for t ≥ W and 0 otherwise

hn(t) = c22FU(t) + c11

∫ t

W

F̄U(θ)dEN(θ) for t ≥ W and 0 otherwise

MU(t)(M(t)) is the system renewal function related with FU(t)(Fn(t)) and EN(t) =∑∞
n=1 npn(t) is the expected failure number of component 1 in [0, t] before system

replacement. Fs(t)(fs(t)), F (t)(f(t)) are the lifetime distribution (density) func-
tions of component 2 and component 1 respectively, F̄s(t) = 1− Fs(t).

See Appendix 7.2.10 for the detailed proof.

3.2.3 Numerical examples

In this section, the warranty cost under respectively RFRW and non renewing FRW
are presented. The impact of system parameter setting associated to the warranty
costs are explored. The consumer cost and the manufacturer profit under the two
warranty policies are compared.

As shown in section 3.1.4, We keep suppose that component 1 is Weibull distributed
with lifetime distribution function F (t) = 1−e(−λtb), t > 0. The damage induced to
component 2 by component 1 failure has exponential distribution with expectation
µ. The natural deterioration of component 2 follows a homogeneous Gamma
process. We keeps the notations in section 3.1.4. Firstly, let S = {λ = 1/64, b =
2, a = 1, µ = 4, α = 4, β = 2, L = 20, c1 = 5, c2 = 25, c11 = 1, c22 = 4, T =
20}. In the following, the impacts of some parameters involved in the model are
investigated by changing one parameter each time and comparing with the results
derived by using the original data set S.

The impacts of the initial warranty length and the failure interaction

Figure 3.8 shows the consumer’s warranty costs and the manufacturer’s profits
under the RFRW with various values of W and µ. As expected, the difference
between the total expected manufacturer profit E(TP s) and the expected cost of
the consumer E(Cs) is constant.

In both cases of short-run and long-run horizon, the expected warranty cost of the
consumer (or the expected profit of the manufacturer) is a decreasing function of
the warranty period. It is easy to understand that as the the warranty increases,
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the manufacturer has to cover more warranty costs. Consequently the expected
manufacturer profit E(TP s) or the expected cost of the consumer E(Cs) decrease
as the warranty period grows.

In presence of interaction between components, for short warranty period, the
manufacturer profit increases. As the warranty period gets longer, the average
total manufacturer benefit (or the consumer total average cost) decreases. Which
means in presence of interaction between components, a long warranty period is
more cost efficient for the consumer. Indeed, the component dependency has a
stronger impact on the long term where due to the aging of component 1 more
and more maintenance are required. The component or system failure usually
occurs after the warranty period resulting in a maintenance cost to the consumer
and so a profit to the manufacturer. When W gets larger, the failure interaction
between components accelerates the failure within warranty leading to a gratis
system maintenance for the consumer which decreases the income of the manufac-
turer. Therefore, in presence of dependence, the manufacturer profit (consumer
cost) decreases for long warranty periods.

The impact of the repair degree of component 1
Figure 3.9 shows the expected manufacturer cost within the warranty period under
RFRW with different repair degree of component 1 (a = 0.2, a = 0.6 and a = 1).
It shows that the manufacturer warranty cost increases with a. The larger a is,
the worse is the repair of component 1. More damages are induced to component
2 which accelerates its degradation and so its failure. Therefore more system
maintenance and replacement costs are induced to the manufacturer expenses. It
is noted that the manufacturer cost is less sensitive when W is small. This is due
to the fact that in our example, the occurrence of component 1 failure and the
system failure are rare within small W even component 1 is minimally repaired at
failure.
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Figure 3.8: The expected consumer cost and manufacturer profit under RFRW
with various values of W and µ

In the following, We reset S = {W = 5, λ = 1/8, b = 1, a = 1, µ = 5, α = 4, β =
2, L = 20, c1 = 5, c2 = 25, c11 = 1, c22 = 4, T = 20}.

The impact of component 1 quality
Figure 3.10 shows that when the warranty period is small, both consumer cost and
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Figure 3.9: The expected manufacturer cost E(CR(W )) under RFRW with differ-
ent repair degree of component 1 (a = 0.2, a = 0.6 and a = 1).

manufacturer profit increase with λ. The larger is λ, the shorter is the lifetime of
component 1. Therefore more component/system failure are occurred within the
service time T . Hence for short warranty period, the consumer pays more and the
manufacturer loses less. On the contrary, when the warranty period W is large,
during the period T , more failure costs are covered by the manufacturer which
decreases its profit and the consumer cost.
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Figure 3.10: The expected consumer costs and manufacturer profits with different
λ (λ = 1/8, λ = 1/12).

The impact of component 2 natural deterioration
Similarly, it can be noticed in Figure 3.11 that the manufacturer profit and the
consumer cost increase with α when W is small and decrease with α when W is
large. With large α, component 2 deteriorates faster and its lifetime is shorter.
It is then more beneficial to the consumer to have long warranty period. For a
short warranty period with these parameters setting, α ∈ {4, 6}, the failure is not
mainly due to the natural deterioration, henceforth the total maintenance cost is
not very sensitive to the changes of α.

From the sensitivity analysis of the impacts of component 1 and component 2, it
is noticed that the initial warranty period W has impact on the manufacturer’s
and the consumer’s product quality preferences.

The impact of cost units
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Figure 3.11: The expected consumer cost and manufacturer profits with different
α (α = 4, α = 6).

parameters c11 = 5, c22 = 25 c11 = 5, c22 = 15 c11 = 10, c22 = 25
cost/profit W = 4 W = 6 W = 9 W = 4 W = 6 W = 9 W = 4 W = 6 W = 9
E(Cs(T )) 50.0 40.9 17.3 31.5 25.0 10.5 53.6 42.5 17.5
E(TP s(T )) 40.0 30.8 7.3 21.5 15.0 0.45 43.6 32.4 7.5
E(Csn(T )) 50.5 42.9 28.1 29.6 25.6 17.0 51.3 43.3 29.0
E(TP sn(T )) 40.4 32.8 18.0 20.6 16.7 8.2 41.3 34.3 20.1

Table 3.4: The warranty costs and profits under the RFRW and the non-renewing
FRW with different values of c11 and c22

The manufacture profits and consumer costs under both RFRW and non renew-
ing FRW with different maintenance costs are presented in Tables 3.4 and 3.5.
As expected, both the manufacturer profit and the consumer cost decrease with
the value of W . As W gets larger, more maintenance costs are covered by the
manufacturer which induces the manufacture profit and the consumer cost. Both
the consumer cost and the manufacturer profit increase with the consumers main-
tenance cost units c11 and c22. Since c1 and c2 are maintenance costs units of
the manufacturer, the consumer maintenance cost is unchanged with c1and c2.
However, the manufacturer profits under both the RFRW and non renewing FRW
decrease as c1 and c2 increase. It is obvious that the RFRW is more economic for
the consumer and the non-renewing FRW is more favorable to the manufacturer.
In addition, the most profitable policy for the manufacturer is no warranty policy
under which the consumer covers the whole cost during its usage.

It is worth mentioning that the estimation of the warranty costs/profits to the con-
sumer/manufacturer under different warranty policies could be references paving
the way for lucrative market strategies. What important is the overall interests to

parameters c1 = 1, c2 = 4 c1 = 1, c2 = 8 c1 = 3, c2 = 8
cost/profit W = 4 W = 6 W = 9 W = 4 W = 6 W = 9 W = 4 W = 6 W = 9
E(Cs(T )) 50.0 40.9 17.3 50.0 40.9 17.3 50.0 40.9 17.3
E(TP s(T )) 40.0 30.8 7.3 31.7 22.7 -1.0 27.9 18.6 -4.7
E(Csn(T )) 50.5 42.9 28.1 50.5 42.9 28.1 50.5 42.9 28.1
E(TP sn(T )) 40.4 32.8 18.0 32.2 24.8 10.0 28.3 20.6 7.6

Table 3.5: The warranty costs and profits under the RFRW and the non-renewing
FRW with different values of c1 and c2
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the manufacturer rather then the profits/costs induced by the warranty individual.

3.3 Conclusion

In this chapter, we have considered a two-component system with type 3 stochastic
dependence. In the first scenario, different preventive maintenance policies have
been proposed and correspondingly, expected maintenance costs in the long time
horizon have been calculated. The impact of the stochastic dependence on the
system maintenance cost have been analyzed numerically. In the second scenario,
the warranty costs of the manufacturer and the consumer have been studied. Two
warranty policies: the non-renewing free replacement policy and the renewing
free replacement policy have been considered. Under each policy, in the short-
time horizon as well as in the long-time horizon, the expected warranty costs of
the manufacturer and the consumer have been calculated respectively. Numerical
examples show that it would be beneficial to the manufacturer to mitigate the
stochastic dependence between components in product design phase. Therefore it
is recommended to the decision-maker to consider the warranty cost budget in the
development of the warranty strategy, to take the warranty cost as a reference in
the evaluation of the product profit, etc.



Chapter 4

Maintenance and warranty of a
system with type 1 stochastic
dependence

In this chapter, we consider a two-component system which is similar to the one in
Chapter 3 in terms of the evolutions of components. The difference is the stochastic
dependence between components. Here we suppose that whenever component 1
failure occurs, it causes the failure of component 2 with probability r̄(= 1 − r),
0 < r < 1 and has no impact on component 2 with probability r; whenever
component 2 fails, it causes the failure of component 1. The same maintenance
policies and warranty policies as in chapter 3 are carried out in the following.
Besides, we reuse the notations in Chapter 3.

4.1 Evaluation of long run average maintenance

costs

Assume TsI and FsI(t) be the system lifetime and its cumulative probability dis-
tribution respectively. Denote F̄sI(t) = 1 − FsI(t), ḠσL(t) = 1 − GσL(t). Note
that

F̄sI(t) = p0(t)P(Y (t) < L) +
∞∑
k=1

P

Y (t) +

N(t)∑
i=1

Zi < L | N(t) = k

P(N(t) = k)

= p0(t)ḠσL(t) +
∞∑
k=1

P

(
Y (t) +

k∑
i=1

Zi < L|
k∑
i=1

Zi = 0

)
P(

k∑
i=1

Zi = 0)pk(t)

= p0(t)ḠσL(t) +
∞∑
k=1

P(Y (t) < L)rkpk(t)

=
∞∑
k=0

rkpk(t)ḠσL(t)

56
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where pn(t) is the probability that the failure number of component 1 is n by time
t which is given in equation (3.1). Therefore

FsI(t) = 1−
∞∑
k=0

rkpk(t)ḠσL(t) (4.1)

4.1.1 Maintenance cost derivation

4.1.1.1 Age-T -based policy

Denote by C∞I(T ) the average long run cost when it undergoes age-T -based policy.
The following theorem gives its expression.

Theorem 4.1 The average long run cost C∞I(T ) under age-T -based policy is

C∞I(T ) =
c2 +

∑∞
n=1(n− 1)c1r

n−1r̄
∫ T

0
ḠσL(t)dVn(at)∫ T

0
F̄sI(t)dt

+

∑∞
n=0 nr

nc1(
∫ T

0
pn(t)dGσL(t) + pn(T )ḠσL(T ))∫ T

0
F̄sI(t)dt

where FsI(t) is the distribution of the system failure time with type 1 failure in-
teraction between components given in equation (4.1), pn(t) is given in equation
(3.1), EN(t) =

∑∞
n=0 npn(t), Vk(t) is the distribution function of the component

1 virtual age after the kth repair given in equation (3.1),GσL(t) is the probability
distribution function of the first hitting time of level L by the component 2 total
degradation at time t,.

See the Appendix 7.3.1 for the proof.

4.1.1.2 Failure-number-N based policy

Theorem 4.2 Suppose that C∞I(N) is the system average long run cost under
failure-number-N policy, then

C∞I(N) =
c2 +

∑N−1
n=1 (n− 1)c1r

n−1r̄
∫∞

0
ḠσL(t)dVn(at) +

∑N−1
n=0 nr

nc1

∫∞
0
pn(t)dGσL(t)∫∞

0

∑N−1
k=0 r

kpk(t)ḠσL(t)dt

+

∫∞
0
rN−1(N − 1)c1ḠσL(t)dVN(at)∫∞

0

∑N−1
k=0 r

kpk(t)ḠσL(t)dt

where pn(t) is given in equation (3.1), Vk(t) is the distribution function of the
component 1 virtual age after the kth repair given in equation (3.1), GσL(t) is
the probability distribution function of the first hitting time of level L by the
component 2 total degradation at time t.

See the Appendix 7.3.2 for the proof.
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4.1.1.3 (N, T )-based maintenance policy

Theorem 4.3 Suppose that C∞I(N, T ) is the average long run system cost under
(N, T ) policy, then

C∞I(N, T ) =
c2 +

∑N−1
n=1 (n− 1)c1r

n−1r̄
∫ T

0
ḠσL(t)dVn(at) +

∑N−1
n=0 nr

nc1

∫ T
0
pn(t)dGσL(t)∫ T

0

∑N−1
k=0 r

kpk(t)ḠσL(t)dt

+

∫ T
0
rN−1(N − 1)c1ḠσL(t)dVN(at) +

∑N−1
n=1 nc1ḠσL(T )pn(T )∫ T

0

∑N−1
k=0 r

kpk(t)ḠσL(t)dt

where pn(t) is given in equation (3.1), Vk(t) is the distribution function of the
component 1 virtual age after the kth repair given in equation (3.1), r is the
probability that component 1 failure has no impact on component 2, GσL(t) is
the probability distribution function of the first hitting time of level L by the
component 2 total degradation at time t.

Since the result is a combination of results obtained in Theorem 4.1 and 4.2, the
proof is omitted

4.1.2 Maintenance policy optimization

When component 1 failure occurs according to a nonhomogeneous Poisson process,
we have the following Theorem.

Theorem 4.4 Suppose that the failure rate of component 1 at t is h1(t). When
component 1 undergoes minimal repair (a = 1), the optimal and unique age T ∗

which minimizes C∞I(T ) exists if

lim
T→∞

h1(T )

∫ T

0

F̄sI(t)dt−
∫ T

0

F̄sI(t)h1(t)dt >
c2

rc1

(4.2)

And
dh1(t)

dt
> 0, t > 0 (4.3)

When component 1 has Weibull lifetime F (t) = 1 − exp(−λtb), the optimal T ∗ =
∞ when b ≤ 1 which means no preventive maintenance is the optimal policy.
Otherwise inequation (4.3) always holds and hence the optimal and unique age T ∗

exists if only condition (4.2) holds.

See the Appendix 7.3.3 for the proof.

4.1.3 Numerical examples

Similar to the numerical analysis in section 3.1.4, we also assume component 1
has a Weibull cumulative distribution function F (t) = 1 − e−λt

b
, t > 0. The



4.1. Evaluation of long run average maintenance costs 59

deterioration of component 2 follows a homogeneous Gamma process. Here we
set α = 4, β = 2, λ = 0.1, b = 2, a = 0.6, L = 20, c1 = 500, c2 = 600 and r = 0.8.
Figures 4.1 and 4.2 show the cost rate C∞I(T ) when we change only one parameter.
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Figure 4.1: C∞I(T ) with different r and
c1
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Similarly, the variation of the expected cost rate under the failure-number-N -based
policy and (N, T ) policy are illustrated in Figures 4.3 and 4.4. The following results
can be pointed out.

• When the imperfect repair cost is high, the optimal expected cost increases
with r. Because the greater r is, the more imperfect repairs are carried
out. However, the imperfect repair is not effective as it improves slightly the
component 1 (a = 0.6) with a high cost (c1 = 500) comparing to the system
replacement with a similar cost (c2 = 600).

• The optimal average cost increases when λ and b increase. The larger these
parameters get, the more often the component 1 is failed and repaired.

• The optimal C∞I(N) increases with N when the imperfect repair cost c1 is
small.
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4.2 Evaluation of the warranty costs

Two warranty policies, the renewing free-repair warranty (RFRW) and the non-
renewing free-repair warranty (non-renewing FRW) are examined in this section.
In the following, to simplify the calculation, we assume that component 1 is min-
imally repaired when it fails. Let N(t) be the number of component 1 failures
by time t and pn(t) = P{N(t) = n}. Then it follows a non-homogeneous Poisson
process with

pn(t) =
H(t)n

n!
e−H(t) (4.4)

where H(t) =
∫ t

0
h(θ)dθ.

First, the expected warranty costs of the manufacturer within the warranty period
are derived.

4.2.1 Warranty costs of the manufacturer

Two theorems regarding the warranty cost of the manufacturer under the non-
renewing FRW and the RFRW respectively are presented.

Theorem 4.5 Under the non-renewing FRW, the expected manufacturer cost E(C(W ))
within the warranty period W is given by

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt

where M(t) is the renewal function related with FsI(t) denoted by M(t) =
∑∞

n=1 F
(n)
sI (t),

FsI(t) is the distribution of the system failure time with type 1 failure interaction
between components given in equation (4.1), k(t) = c1rh(t)F̄sI(t) + c2fsI(t), fsI(t)
is the intensity function of FsI(t), h(t) is the failure rate of component 1 by time
t.

See Appendix 7.3.4 for the proof.

Theorem 4.6 Under the RFRW, from the viewpoint of the manufacturer, the
expected warranty cost within the warranty cycle is

E(CR(W )) =
∞∑
n=0

F sI(W )F n
sI(W )

(
nc2 + c1rH(W ) + nrc1

∫W
0
H(t)dFsI(t)

FsI(W )

)

FsI(t) is the distribution of the system failure time with type 1 failure interaction
between components given in equation (4.1), h(t) and H(t) are the component 1
failure rate and cumulative hazard function respectively.

See Appendix 7.3.5 for the proof.
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In the next paragraph, the warranty cost allocation to the consumer and the
manufacturer are examined.

Theorem 4.7 Under the RFRW, the expected maintenance cost of the ownership
and the expected total profit of the manufacturer in [0, T ] are as follows:

E(C(T )) =

∫ T

W

(1 +M(T − u))k(u)du

E(P (T )) = E(C(T ))−
∫ T

0

(1 +M(T − t))k1(t)dt− c2M(T )

where FsI(t) is the system renewal time distribution given in equation (4.1), k(t) =
c22fsI(t) + c11F̄sI(t)rh(t) for t ≥ W and 0 otherwise; k1(t) = c1rF̄sI(t)h(t), t > 0

and M(t) is the renewal function related with FsI(t) given as M(t) =
∑∞

n=1 F
(n)
sI (t),

fsI(t) is the derivative function of FsI(t).

See Appendix 7.3.6 for the proof.

4.2.1.0.a Expected maintenance cost analysis under the non-renewing
FRW

Theorem 4.8 Under the non-renewing FRW, the expected warranty cost of the
consumer in [0, T ] is derived as

E(Cno(T )) = K0(T ) +

∫ T

0

K0(T − u)dMU(u)

where K0(t) = c22FU(t)+c11r
∫ t
W
F̄U(θ)h(θ)dθ for t ≥ W and 0 otherwise; FU(t) =

FsI(t)−
∫W

0
F̄ (t− x)dM(x) for t ≥ W and 0 otherwise; and MU(t) is the renewal

function related with FU(t).

If F ∈ IFR, the manufacturer profit Eno(P (T )) satisfies

E(Pno(T )) ≥ Elow(P (T ))

where Elow(P (T )) = E(Cno(T ))−c1rH(T )−c2M(T ) and the ’≥’ becomes ’=’ when
h(t) is a constant.

See Appendix 7.3.7 for the proof.

4.2.2 Numerical examples

Here we also consider that component 1 has Weibull-distributed lifetime F (t) = 1−
exp(−λtb), t > 0. The deterioration of component 2 is described by a homogeneous
Gamma process. We keep the notations in section 3.1.4 in Chapter 3. Let α =
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2, β = 2, λ = 1
64
, b = 2, L = 8, c1 = 1, c2 = 5. Table 4.1 and 4.2 show the

manufacturer’s expected warranty costs within the warranty cycle under different
warranty policies with respect to the failure interaction factor r̄ and the initial
warranty length W respectively.

r̄ 0 0.1 0.2 0.3 0.4 0.5
E(C(W )) 0.60 0.75 0.88 1.02 1.15 1.28
E(CR(W )) 0.62 0.78 0.95 1.13 1.33 1.53

Table 4.1: The warranty costs of the manufacture under the non-renewing FRW
and RFRW with respect to different values of r̄ when W = 5

We can observe that the expected warranty costs increase continuously with the
failure interaction factor and the initial warranty length respectively. It is more
sensitive in regards of the RFRW policy, for example, when r̄ = 0.5, the warranty
cost under the RFRW is (1.53 − 0.62)/0.62 = 1.48-fold larger than the cost of
the system without failure interaction (r̄ = 0). For the non-renewing FRW case,
this figure stands at (1.28 − 0.60)/0.60 = 1.13. It is easy to understand that as
r̄ (or W ) increases, more system major failure occurs within the warranty cycle
which results in a rise of the warranty cost. Besides, the non-renewing FRW is
always more economic than the RFRW. The reason is due to that under the non-
renewing FRW, the manufacturer pays in full of the warranty costs during a fixed
time period W , whereas under the RFRW, a longer warranty cost coverage period
is required.

It should deserve mentioning that the warranty cost during the warranty cycle
could be served as a reference for the warranty budget. It is also important to
consider the consumer’ behaviour (for example his or her expected usage time
period of the product) and the manufacturer’s market share (for example the
number of the consumers who prefers to come back for the product maintenance
after the warranty expiration) for a general estimation of the warranty cost.

Suppose that the product is put into use for a time period T . The consumer comes
back to the manufacturer (or the retailer, the seller, here we held the same regard
between them) for the product maintenance after the expiration of the warranty
cycle. He or she is charged c11, c22 respectively for the component 1 maintenance
and the system replacement. Let W = 5, T = 10, r̄ = 0.3, α = 2, β = 2, λ =
1
64
, b = 1, L = 8, c1 = 1, c2 = 5, c11 = 4, c22 = 12 be the basic parameter settings.

The following figures and tables demonstrate the sensibilities of the manufacturer
profits and the consumer costs by varying different system indicators and remaining
others unchanged.

It can be seen that

W 4 5 6 7 8
E(C(W )) 0.58 1.02 1.70 2.65 3.72
E(CR(W )) 0.61 1.13 2.14 4.13 8.09

Table 4.2: The warranty costs of the manufacture under the non-renewing FRW
and RFRW with respect to different values of W when r̄ = 0.3
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• Figures 4.5 and 4.6 illustrate the warranty profits and costs for the man-
ufacturer and the consumer with different values of W and r̄ respectively.
Both the manufacturer profits and the consumer costs decrease with the ini-
tial warranty length W and the failure interaction between components r̄
respectively. It is easy to understand that as the the warranty period in-
creases, the manufacturer has to cover more warranty costs. Consequently
the expected manufacturer profit or the expected cost of the consumer de-
crease as the warranty period grows. The larger is r̄, the shorter is the
expected system lifetime. Therefore more system maintenances are required
during the warranty period W and the product service time T reducing the
manufacturer warranty profit and the consumer’s cost. Under each war-
ranty policy, the difference between the consumer cost and the manufacturer
profit is independent of W . The reason is that the difference between the
consumer’s cost and the manufacturer’s profit is actually the manufacturer’s
maintenance cost during the product service time T which is independent of
W . The failure interaction between components has negative effect to the
manufacturer profit. It is recommended to the engineers to eliminate the
failure interaction between components.

• Table 4.3 describes the variations of the manufacturer profits and the con-
sumer costs with respect to λ, b the parameters in the Weibull distribution
and the product service time T . For fixed T , under both the non-renewing
FRW and RFRW, the warranty costs of the consumer are decreasing func-
tions of λ and b. It shows that given the product service time T , the con-
sumer prefers better quality and reliability of component 1. Besides, from
the perspective of the manufacturer, under the non-renewing FRW, for short
product service time (T = 10), the manufacturer benefits less from compo-
nent 1 with good quality (the manufacturer’s profit is 4.41 when the expected
life time of component 1 is 12 (λ = 1

12
, b = 1)) comparing to a bad quality

one (the manufacturer’s profit is more than 4.69 when the expected lifetime
of component 1 is 6.93 (λ = 1

12
, b = 2)). On the contrary, the corresponding

manufacturer profits are −69.12 and 21.56 when the product service time
is T = 50. Therefore the service time of the product has impact on the
warranty profits which need to be well estimated in the devising of warranty
strategies. It might be improper or even counterproductive to assume that
the consumer uses the product for a long-run time horizon (T =∞).

• Table 4.4 represents the sensibility of the manufacturer profits and the con-
sumer costs with different component 2 deterioration rates. The average de-
terioration rate is α/β in this case. It indicates that under the non-renewing
FRW, both the manufacturer and the consumer prefer component 2 with
slow deterioration speed. However, it is more economic for the consumer
owning a fast deteriorate speed when the RFRW is offered. Because in the
situation that α = 2, β = 1, Fs(W ) = 0.72 which means with an opportunity
of more than 70% the system is replaced by the manufacture with no charge
and then the process repeats. However, this figure descends strikingly to 0.12
when α = 1, β = 1. Besides, Fs(T ) = 0.73 which implies that the system
major failure occurs frequently during the period [W,T ] during which the
consumer has in charge the system replacement costs.
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Figure 4.5: The manufacturer’s warranty profits E(P (T )) and Elow(P (T )) and the
consumer’s warranty costs E(C(T )) and Eno(C(T )) with different values of W
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Figure 4.6: the manufacturer’s warranty profits E(P (T )) and Elow(P (T )) and the
consumer’s warranty costs E(C(T )) and Eno(C(T )) with different values of r̄
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Parameters E(C(T )) E(P (T )) Eno(C(T )) Eno(P (T ))
λ = 1

64
, b = 2, T = 10 10.68 5.12 11.26 5.34

λ = 1
12
, b = 2, T = 10 11.29 0.45 18.36 4.69

λ = 1
12
, b = 1, T = 10 9.55 4.16 9.84 4.41

λ = 1
64
, b = 2, T = 50 74.02 38.26 62.39 3.24

λ = 1
12
, b = 2, T = 50 82.67 20.56 123.79 -69.12

λ = 1
12
, b = 1, T = 50 66.81 33.18 56.01 21.56

Table 4.3: The warranty cost and profit under RFRW and the non-renewing FRW
policies respectively with different values of λ, b and T

Parameters E(C(T )) E(P (T )) Eno(C(T )) Eno(P (T ))
α = 2, β = 1 4.98 -4.81 11.20 1.40
α = 1, β = 1 7.65 3.65 7.82 3.81

Table 4.4: The warranty cost and profit under RFRW and the non-renewing FRW
policies respectively with different values of α and β.

4.3 Conclusion

We have studied a two-component system with type 1 stochastic dependence in
this chapter. Similar to problems considered in chapter 4, the long run average
maintenance costs under three preventive policies have been calculated. After
which, the warranty costs of the manufacturer and the consumer in the short time
horizon have been derived. The effect of the dependence to the system has been
discussed numerically.



Chapter 5

Reliability-based measures in
dynamic environment

In this chapter, we focus on the reliability-based measures of multi-component
systems operating in a dynamic environment. The system reliability and the re-
maining useful lifetime for the M -out-of-N system configuration are analysed. By
assuming that the system failures are non-self-announcing and the repair times
are non-negligible, under the periodic inspection policy, the system limiting av-
erage availability is calculated. We aim at providing explicit expressions for this
system performance measures. Numerical examples indicate that the environment
condition has significant effects on the system reliability and the remaining useful
lifetime.

Notation

Φ {1, 2, · · · , N}
S {1, 2, · · · ,m}
∅ empty set
I the m×m identity matrix
E1\E2 the set-theoretic difference of set E1 and set E2

{c1, c2, · · · , ck} subset of Φ with elements c1, c2, · · · , ck, k = 1, 2, · · · , N
{c1, c2, · · · , ck} Φ\{c1, c2, · · · , ck}, k = 1, 2, · · · , N
Ti the lifetime of component i, i ∈ Φ
T the lifetime of the system
W (t) the environment state at time t
hi(t, j) the failure rate of component i at time t when the environment

state is j, i ∈ Φ, j ∈ S
Hi(t) the matrix with elements Hi(k, k) = hi(t, k), i ∈ Φ, k ∈ S on the

primary diagonal and 0 otherwise
Hi the matrix Hi(t) when it is time-independent, i ∈ Φ
H0(t) the matrix Hi(t) when it is independent of i, i ∈ Φ
H0 the matrix H0(t) when it is time-dependent
H(t) the sum of Hi(t), i ∈ S, i.e. H(t) =

∑
i∈SHi(t)

66



67

Q the transition rate matrix of the continuous-time Markov chain
qij the element of Q, i, j ∈ S
diag([a1, a2, · · · , an)] The diagonal matrix with elements a1, a2, · · · , an in the main

diagonal.
B∅
ij(t) the probability that each component survives by time t when the

environment condition is j given its initial value i at time 0, i, j ∈
S

B∅(t) the matrix with elements B∅
ij(t), i.e. B∅(t) = [B∅

ij(t)], i, j ∈ S
B
{c1,c2,··· ,ck}
ij (t) the probability that components c1, c2, · · · , ck fail at time t while

the rest are survival at time t when the environment state is j
given its initial value i at time 0, ci ∈ Φ, i = 1, 2, · · · , k.

B{c1,c2,··· ,ck}(t) the matrix with elements B
{c1,c2,··· ,ck}
ij (t), i, j ∈ S

B
(l)
ij (t) the probability that there are l components fail by time t with

the environment statej where the initial environment state is i,
l = 0, 1, · · · , N − 1 when all components have identical failure
rates under each environment state

B(l)(t) the matrix with elements B
(l)
ij (t), i, j ∈ S

Bij(t) the reliability of the M -out-of-N system at time t when the envi-
ronment state is j given the initial environment state i, i, j ∈ S

B(t) the matrix with elements Bij(t), i, j ∈ S
e the m× 1 matrix of 1s
ei the 1×m matrix whose ith element is 1 and others are 0 respec-

tively
R(t) the reliability function of the system
Ri(t) the conditional reliability function of the system given that the

initial environment state is i, i ∈ S
F (t) the lifetime distribution of the system
Fi(t) the conditional lifetime distribution of the system given that the

initial environment state is i, i ∈ S
T
{c1,c2,··· ,ck}
t,i the remaining useful lifetime of the system given that components

i, i ∈ {c1, c2, · · · , ck} fail by time t the environment state i
CRi(u; t, {c1, c2, · · · , ck})the conditional reliability of the system given that compo-

nent l fails by time t, l ∈ {c1, c2, · · · , ck} ⊂ Φ and the environment
state at time t is i

ri(t; {c1, c2, · · · , ck})the expected remaining useful lifetime (RUL) of the system at
time t given the environment state W (t) is i and components l
fail by time t, l ∈ {c1, c2, · · · , ck}

L
{d1,d2,··· ,dr}
ij (x, t; {c1, c2, · · · , ck})the probability that component l, l ∈ {d1, d2, · · · , dr}

fail by time t where the environment state is j given that com-
ponent m, m ∈ {c1, c2, · · · , ck} fail at time x with environment
state i

L{d1,d2,··· ,dr}(x, t; {c1, c2, · · · , ck})the matrix with elements L
{d1,d2,··· ,dr}
ij (x, t; {c1, c2, · · · , ck})

Ll0,lij (θ, t) the probability that the number of failed components is l at time
t with environment state j given that at time θ the number of
failed components is l0 with environment state i for the system
with identical components possessing constant hazard rates

Ll0,l(θ, t) the matrix with elements Ll0,lij (θ, t), i, j ∈ S
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X(t) the state of the system, X(t) = 1 means it is functional and 0
means it fails at time t

Y the system repair time with distribution function G(·) and density
function g(y)

τ the system inspection period
As the asymptotic average availability of the system when it is in-

spected under the equidistant inspection policy

5.1 Model description

The mathematical model is described in the following.

• Consider a M -out-of-N system operating if at least M out of the N com-
ponents are functional. It is put into service at time 0 with prefect working
state. Suppose that the components are labelled as component 1, component
2, · · · , component N . The system lifetime is T . The lifetime of component
i is denoted by Ti, i ∈ Φ, Φ = {1, 2, · · · , N}. Components are independent
under the fixed environment.

• The operations of components are driven by an external environment which
is described by a continuous-time Markov chain W = {W (t), t ≥ 0} with a
finite state space S = {1, 2, · · · ,m}, infinitesimal generatorQ and transition
probability πij(t), i, j ∈ S. In effect, the environment can be regarded as
the working condition which affects the system state (its failure rate). For
example, the environment is mild, normal, dangerous and so forth to the
system.

• Component i, i ∈ Φ has failure rate λi(t) = hi(t,W (t)) where hi(t, j) is the
hazard rate of component i at age t when the environment state is j and∫∞

0
hi(t, j)dt = ∞, i ∈ Φ, j ∈ S. Without loss of generality, we further

assume that hi(t, 1) < hi(t, 2) < · · ·hi(t,m) for any t ≥ 0 and i ∈ Φ, j ∈ S.

5.2 Reliability function and lifetime distribution

We consider here that there is no maintenance actions. In order to obtain the
system reliability as well as the system lifetime distribution, firstly denote by

B∅
ij(t) = P(Tk > t,W (t) = j,∀k ∈ Φ, | W (0) = i) (5.1)

the probability that no component failures occur by time t when the environment
state is j given the initial environment state i, i, j ∈ S. Then we have the following
proposition.
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Proposition 2 Denoted be the m×m matrices B∅(t) = [B∅
ij(t)]m×m and H(t) =

diag[
∑

l∈Φ hl(t, j)]m×m which represents the diagonal matrix with elementsHjj(t) =∑
l∈Φ hl(t, j) in the main diagonal, the following equation is valid.

dB∅(t)

dt
= B∅(t)(Q−H(t)) (5.2)

In particular, when the hazard rate is time-independent, i.e. H(t) = H, then it is
easily seen that

B∅(t) = exp((Q−H)t)

See Appendix 7.4.1 for the proof.

It is clear that until now, we can obtain the reliability of the N -component series
system by B∅(t) and the probability vector of the initial environment state. How-
ever, for the general M -out-of-N system, it is also necessary to evaluate the state of
each component (failed or working) at given time epoches. Let be {c1, c2, · · · , ck}
a subset of Φ which is implemented to record the label of the k failed components.
Correspondingly denote {c1, c2, · · · , ck} the absolute complement of {c1, c2, · · · , ck}
in Φ which records the labels of the survival components. For instance, suppose
that Φ = {1, 2, 3, 4, 5}, then {c1, c2} = {2, 5} ({c1, c2} = {1, 3, 4} ) if the failed com-
ponents are component 2 and 5; {c1, c2, c3, c4} = {1, 2, 4, 5} ({c1, c2, c3, c4} = {3}
) if the failed components are component 1, 2, 4 and 5, etc.

Further more, let be

B
{c1,c2,··· ,ck}
ij (t) = P

(
Tl > t, Tp < t,W (t) = j,∀p ∈ {c1, c2, · · · , ck}, (5.3)

∀l ∈ {c1, c2, · · · , ck} |W (0) = i

)
the probability that component labelled p, p ∈ {c1, c2, · · · , ck} fail while the rest

work by time t with environment state j when the initial environment state is i,
{c1, c2, · · · , ck} = Φ\{c1, c2, · · · , ck}. Denoted byB{c1,c2,··· ,ck}(t) = [B

{c1,c2,··· ,ck}
ij (t)]m×m.

We have the following theorem.

Theorem 5.1 For any k < N , the probability matrix B{c1,c2,··· ,ck}(t) satisfies

dB{c1,c2,··· ,ck}(t)

dt
= B{c1,c2,··· ,ck}(t)(Q−

∑
j∈{c1,c2,··· ,ck}

Hj(t)) (5.4)

+
k∑
l=1

B{c1,c2,··· ,ck}\{cl}(t)Hcl(t)

where B{im}\{im}(t) = B∅(t), and Hi(t) = diag[hi(t, j)]m×m is m × m matrix,
i ∈ Φ, j ∈ S.

See Appendix 7.4.2 for the proof.
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It is seen that the probability matrix B{c1,c2,··· ,ck}(t) can be derived by Theorem
5.1 for the general case that components are heterogeneous in the regard of their
failure rates under different environment states. In particular, for the M -out-of-
N system consisting only time-independent components or identical distributed
components under each environment state, the following two corollaries are valid.

Corollary 1 When the hazard rates of components are time-independent, i.e.
Hi(t) = Hi, i ∈ Φ, the matrix B{c1,c2,··· ,ck}(t) in Theorem 5.1 can be represented
as

B{c1,c2,··· ,ck}(t) =
k∑

m=0

(−1)m
∑

lu∈{c1,c2,··· ,ck},
u=1,2,··· ,m
li 6=lj if i 6=j

exp

(
(Q−

∑
j∈{c1,c2,··· ,ck}

Hj −
m∑
i=1

Hli)t

)
(5.5)

where
∑0

i=1 = 0.

See Appendix 7.4.3 for the proof.

When the N components have identical lifetime distributions under given envi-
ronments, i.e. Hi(t) = H0(t) for any i ∈ Φ. Let B

(l)
ij (t) be the probability

that there are l components fail by time t with the environment state j where
the initial environment state is i, l = 1, 2, · · · , N − 1. The matrix expression is
B(l)(t) = [B

(l)
ij (t)]m×m. The following corollary can be derived.

Corollary 2 For any l = 1, 2, · · · , N − 1, B(l)(t) satisfies

dB(l)(t)

dt
= B(l)(t)(Q− (N − l)H0(t)) +B(l−1)(t)(N − l + 1)H0(t) (5.6)

where B(l)(t) = B∅(t) when l = 0.

In particular, when the hazard rates are time-independent, i.e. H0(t) = H0 we
have

B(l)(t) =

(
N

l

) l∑
i=0

(−1)l−i
(
l

i

)
exp((Q− (N − i)H0)t) (5.7)

where H0 = diag[h(j)]m×m.

Corollary 2 can be easily verified by Theorem 5.1 and Corollary 1.

In the following, the reliability function R(t) and the lifetime distribution function
F (t) of the M -out-of-N system are derived respectively. Let be

Bij(t) = B∅
ij(t) +

N−M∑
k=1

∑
1≤c1<c2<···<ck≤N

B
{c1,c2,··· ,ck}
ij (t) (5.8)
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and the matrix form

B(t) = B∅(t) +
N−M∑
k=1

∑
1≤c1<c2<···<ck≤N

B{c1,c2,··· ,ck}(t) (5.9)

where
∑0

l=1 = 0. Equation (5.9) can also be rewritten as follows.

B(t) = B∅(t) +
N−M∑
l=1

B(l)(t)

when the N components have identical lifetime distributions under given environ-
ment conditions.

Assume that the initial probability row vector of the environment process is given
by α = [αi], where αi = P(W (0) = i), i ∈ S. Let e be a column vector of 1s,
ei be a 1 ×m matrix whose ith element is 1 and others are 0 respectively. The
reliability function R(t), the lifetime distribution function F (t) of the M -out-of-N
system are given as

R(t) = αB(t)e (5.10)

F (t) = 1−αB(t)e (5.11)

The conditional reliability Ri(t) and the conditional distribution of the system
Fi(t) given the initial environment state i are

Ri(t) = eiB(t)e (5.12)

Fi(t) = 1− eiB(t)e (5.13)

5.3 Remaining useful lifetime

Besides the reliability, the remaining useful lifetime (RUL) is also an important
criterion considered extensively in the reliability analysis. Accurate estimation of
RUL permits us to predict the system failure process by taking advantage of the
system monitoring information. It is beneficial to the formulation of maintenance
policies. There are many definitions of the RUL, and here we apply the definition
of RUL as in [42] which means that the surviving function of the RUL is

P(T
{c1,c2,··· ,cp}
t,i > h) (5.14)

= P
(
T − t > h | Tu < t, Tv > t,∀u ∈ {c1, c2, · · · , cp}, ∀v ∈ {c1, c2, · · · , cp},W (t) = i

)
where T is the system lifetime, {c1, c2, · · · , cp} = Φ\{c1, c2, · · · , cp}.

To calculate the expected remaining useful lifetime of the system, it is necessary
to record the current condition of each component (failed or work). To do this,
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denote

L
{d1,d2,··· ,dr}
ij (x, t; {c1, c2, · · · , ck}) = P

(
Ts > t, Tp < t,∀s ∈ {c1, c2, · · · , ck}\{d1, d2, · · · , dr},

∀p ∈ {d1, d2, · · · , dr},W (t) = j | Tu > x, Tv < x,∀v ∈ {c1, c2, · · · , ck}, ∀u ∈ {c1, c2, · · · , ck},

W (x) = i

)
be the probability that component s, s ∈ {d1, d2, · · · , dr} fails in the time in-

terval (x, t] and the environment state is j at time t given that component v, v ∈
{c1, c2, · · · , ck} fails by time x when the environment state is i where {d1, d2, · · · , dr} ⊆
{c1, c2, · · · , ck}. The following lemma is given before the calculation of the system
remaining useful lifetime.

Proposition 3 Let be L{d1,d2,··· ,dr}(x, t; {c1, c2, · · · , ck}) the m×m matrix form:

L{d1,d2,··· ,dr}(x, t; {c1, c2, · · · , ck}) = [L
{d1,d2,··· ,dr}
ij (x, t; {c1, c2, · · · , ck})]m×m

It can be derived that

∂L{d1,d2,··· ,dr}(x, t; {c1, c2, · · · , cp})
∂t

= L{d1,d2,··· ,dr}(x, t; {c1, c2, · · · , cp})(Q−
∑

u∈σ(p,r)

Hu(t))

+

r∑
l=1

L{d1,d2,··· ,dr}\{dl}(x, t; {c1, c2, · · · , cp})Hdl(t)(5.15)

where σ(p, r) = Φ\{c1, · · · , cp, d1, · · · , dr}.

The proof is omitted as the same method is similar as in the proof of Theorem 5.1.

It is pointed out that both {c1, c2, · · · , cp} and {d1, d2, · · · , dr} can be ∅. In
particular,

• {c1, c2, · · · , cp} = ∅ means that there is no components failures by time x
and L∅(x, x;∅) = I;

• {d1, d2, · · · , dr} = ∅ means there is no components failures in the interval
(x, t], in this case equation (5.15) can be represented as

∂L∅(x, t; {c1, c2, · · · , cp})
∂t

= L∅(x, t; {c1, c2, · · · , cp})(Q−
∑
u∈σ(p)

Hu(t))

where σ(p) = Φ\{c1, c2, · · · , cp}

• {c1, c2, · · · , cp} = {d1, d2, · · · , dr} = ∅ means no components failures occur
by time t and L∅(x, x;∅) = I.

Given the environment state at time x and the initial values that where I is the
m×m identity matrix, L{d1,d2,··· ,dr}(t, x; {c1, c2, · · · , cp}) can be calculated by the
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product integration method [164] which is showed in section 5.5. Let be

L(x, t; {c1, c2, · · · , cp}) =
N−M−k∑
r=0

∑
d1<d2<···<dr
di∈{c1,c2,··· ,cp}

i=1,2,··· ,r

L{d1,d2,··· ,dr}(x, t; {c1, c2, · · · , cp})

the matrix to record the probability that the system is survival at time t given
that the components c1, c2, · · · , ck fail at time x. where {c1, c2, · · · , cp} = Φ when

{c1, c2, · · · , cp} = ∅ and {d1, d2, · · · , dr} = ∅ when r = 0.

Denoted by CRi(u; t,W (t), {c1, c2, · · · , cp}) the conditional reliability of the sys-
tem given that component l fails by time t, l ∈ {c1, c2, · · · , ck} ⊂ Φ and the
environment state at time t is i; ri(t; {c1, c2, · · · , ck}) the expected remaining use-
ful lifetime (RUL) of the system at time t given the environment state W (t) is i
and components l fail by time t, l ∈ {c1, c2, · · · , ck}. The conditional reliability
and the expected RUL of the system can be expressed as

CRi(u; t,W (t), {c1, c2, · · · , cp}) = eiL(t, u; {c1, c2, · · · , cp})e (5.16)

ri(t,W (t); {c1, c2, · · · , cp}) =

∫ ∞
t

eiL(t, u; {c1, c2, · · · , cp})edu (5.17)

where e is a column vector of 1s, ei is a 1×m matrix whose ith element is 1 and
others are 0 respectively.

For the special case when all the components of the M -out-of-N system have
identical, constant failure rates under each environment state, let rl0i (θ) be the
expected remaining useful lifetime of the M -out-of-N system given that the system
environment is i at time θ and the number of component failures is l0. The following
corollary is validated.

Corollary 3 For the M-out-of-N system with identical components possessing
constant hazard rates under given environment conditions, rl0i (θ) satisfies

rl0i (θ) =
N−M∑
l=l0

∫ ∞
θ

ei(L
l0,l(θ, t))edt

where

Ll0,l(θ, t) =

(
N − l0
l − l0

) l−l0∑
i=0

(−1)l−l0−i
(
l − l0
i

)
exp

(
(Q− (N − l0 − i)H0)(t− θ)

)
0 < θ < t, l0 ≤ l < N , Ll0,l0(θ, θ) = I, Ll0,l(θ, θ) = 0, l0 < l.

See 7.4.4 for the proof.
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5.4 Asymptotic average availability

In the following, we intend to derive the limiting average availability of the system
undergoing periodic inspections. Let X := X(t) be the state of the system where
X(t) = 1 if the system is in the up-state and X(t) = 0 if it is in the down-state.
Other assumptions and notations are presented as follows.

• The system is new at time t = 0 and the duration between two consecutive
inspections length is τ ;

• The system failure is not self-announcing and can be revealed only by system
inspections;

• Upon inspection, it is perfectly repaired with a random time of length Y
with distribution function G(y) (density function g(y)) if the system failure
is diagnosed; However, nothing is done if the system is in the up-state.

Thus the system limiting average availability can be defined as [165] as follows.

As = lim
t→∞

∫ t
0
E[X(s)]ds

t

Denoted by Ui and Ri the ith system failure epoch and the ith system renewal
epoch respectively. According to [40], {(WRn , Rn), n = 1, 2, · · · } is a Markov
renewal process. We further define Wn = WRn the environment state at the nth
system replacement epoch. It is seen that {Wn, n = 1, 2, · · · } is an irreducible,
discrete-time Markov chain with one-step transition probability matrix P and
stationary distribution p = [pi], i ∈ S which satisfy

pj =
∑
i∈S

piPij, j ∈ S (5.18)∑
i∈S

pi = 1

Therefore according to [166], the system limiting average availability As can be
obtained:

As =

∑
k∈S pkEk(U1)∑
k∈S pkEk(R1)

(5.19)

The following theorems show the limiting average availability of the M -out-of-N
system.

Theorem 5.2 Under the equidistant inspection policy, the limiting average avail-
ability of the M-out-of-N system can be given as

As =

∑
k∈S pk

∫∞
0

(1− Fk(t))dt∑
k∈S pk(

∑∞
i=0 τ(1− Fk(iτ)) +

∫∞
0

(1−G(y))dy)
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where Fk(t) is the system lifetime distribution when the initial environment state
is k given in equation (5.13), G(y) is the distribution function of the length of the
repair time, pk is the stationary probability derived from the transition probability
with element

Pij =
∑
m∈S

∑
l∈S

∞∑
k=1

∫ ∞
0

πlj(y)dG(y)
N−M∑
p=0

( ∑
1≤c1<c2<···cp≤N

B
{c1,c2,··· ,cp}
im ((k − 1)τ)

×
(
πml(τ)−

N−M−p∑
r=0

∑
d1<d2<···<dr
di∈{c1,c2,··· ,cp}

i=1,2,··· ,r

L
{d1,d2,··· ,dr}
ml ((k − 1)τ, kτ ; {c1, c2, · · · , cp})

))

where B
{c1,c2,··· ,cp}
im (t), L

{d1,d2,··· ,dr}
ml ((k − 1)τ, kτ ; {c1, c2, · · · , cp})

)
, i,m, l ∈ S are

defined in equations (5.3) and (5.15) respectively, B
{c1,c2,··· ,cp}
im (t) = B∅

im(t) when
p = 0, πij(t) is the transition probability of the continuous time Markov environ-
ment, G(y) is the distribution function of the length of the repair time.

See Appendix 7.4.5 for the proof.

5.5 Numerical examples

5.5.1 Reliability illustration by two methods

To show the advantage of our method, the system reliability is illustrated in the
following example. Consider a system consisting of 5 identical components where
the operational environment is described by the continuous time Markov process
with infinitesimal generator

Q =


−4 2 1 1
1 −3 1 1
1 1 −2.5 0.5
2 1 1 −4


The failure rate Matrix of component i is given as

Hi(t) = diag([0.002, 0.01, 0.005, 0.007])

for i ∈ {1, 2, 3, 4, 5}. Let be the initial environment probability vector α = [0, 1, 0, 0].
Table 5.1 presents the run-times of MATLAB2010b in calculating the system re-
liability of M -out-of-5 system by time t = 40 through our proposed method and
the Monte-Carlo simulation (the number of simulation times is 10000) respectively
under different values of M . It is seen that our calculation is more efficient and
practical especially in dealing with large complex systems consisting of numerous
components.
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M=4 M=3
R(t) run-time R(t) run-time

our method 0.6963 0.000479s 0.9255 0.00089s
simulation method 0.6909 54.923931s 0.9230 57.749855s

Table 5.1: The system reliability and the calculation run-time ofM -out-of-5 system
by time t = 40 through our method and the Monte Carlo simulations

5.5.2 System reliability

It is seen that we always confront the following equation in the calculation of the
system reliability and the remaining useful lifetime.

dρ(t)

dt
= ρ(t)M (t) +N (t) (5.20)

ρ(a) = ρ0, a < t

where ρ(t), M (t) and N (t) are n × n matrices. The equation solution is easily
obtained when N (t) = 0 and M(t) is independent of t (M (t) = M ). In this
circumstance, we have

ρ(t) = ρ0 exp(M × (t− a))

Otherwise, the closed-form solution is nearly impossible to get. Here the product-
integration method proposed by Vito Volterra is implemented for the approxi-
mately numerical solution. Details about the method is presented by Gill et al
[167]. According to which, for the homogeneous case when N (t) = 0, the solution
of equation (5.20) is

ρ(t) = ρ0

t
δ

Π
i=a

δ

(
I +M(iδ)δ

)
where δ is the step size in the calculation. More details can be found in [164].

For the non-homogeneous case, the solution is

ρ(t) = ρ0Z(t) +

∫ t

a

N (x)
t
δ

Π
i=x

δ

(I +M (iδ)δ)dx

where Z(t) = Π
t
δ

i=a
δ
(I +M (iδ)δ).

Consider a three-component system operates under an external environment de-
scribed by a continuous time Markov process with infinitesimal generator

Q = 10−3 ×


−3 1 1 1
2 −4 1 1
1 1

2
−2 1

2

2 1 2 −5
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The component failure rates under different environment states are given as

H1 = diag([0.002, 0.005, 0.009, 0.012]);

H2 = diag([0.003, 0.007, 0.012, 0.017]);

H3 = diag([0.006, 0.009, 0.014, 0.020]);

The initial probability vector of the environment process is α = [0.45, 0.25, 0.15, 0.15].
Table 5.2 shows the reliability of the k-out-of-3 system with different values of k.
Table 5.3 presents the conditional reliability of the 2-out-of-3 system under differ-
ent initial environment state respectively.

t t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 16 t = 20
k = 3 0.9558 0.9141 0.8748 0.8377 0.8027 0.7696 0.7382 0.7086 0.6537
k = 2 0.9991 0.9966 0.9927 0.9875 0.9813 0.9741 0.9660 0.9573 0.9380
k = 1 1.0000 0.9999 0.9998 0.9996 0.9992 0.9987 0.9981 0.9973 0.9951

Table 5.2: The reliability of the k-out-of-3 system with different values of k

t t = 2 t = 4 t = 6 t = 8 t = 10 t = 12 t = 14 t = 16 t = 20
R1(t) 0.9999 0.9994 0.9987 0.9976 0.9962 0.9945 0.9925 0.9902 0.9846
R2(t) 0.9994 0.9978 0.9951 0.9915 0.9871 0.9817 0.9756 0.9688 0.9533
R3(t) 0.9985 0.9941 0.9871 0.9780 0.9670 0.9542 0.9400 0.9246 0.8907
R4(t) 0.9970 0.9888 0.9763 0.9601 0.9411 0.9197 0.8966 0.8720 0.8203

Table 5.3: The reliability of the 2-out-of-3 system with different initial environment
state k ∈ {1, 2, 3, 4} respectively

5.5.3 System conditional reliability and expected remain-
ing useful lifetime

Let

Q = 10−4 ×

 −2 2 0
3 −7 4
0 4 −4


Assume that the system consists three components with failure rates

hi(t, j) =
βi
λi

(
t

λi
)βi−1env(i, j), i = 1, 2, 3; j = 1, 2, 3.

where env(i, j) is the environment related factor with respect to component i under
environment j and

[β1, β2, β3] = [1.5, 2, 2.5]

[λ1, λ2, λ3] = [104, 0.5× 104, 0.3× 104]

[env(i, 1), env(i, 2), env(i, 3)] = [1, 5, 10], i = 1, 2, 3.

Table 5.4 gives CRi(t;x,W (x),∅) the conditional reliability of the three-component
in series system given the initial survival time x = 1000 with different environment
state at t respectively.
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Tables 5.5-5.8 show the conditional reliabilities CRi(t;x,W (x), {c2}), CRi(t;x,W (x), {c1})
and CRi(t;x,W (x),∅) (x = 1000) of the parallel system with different initial en-
vironment conditions respectively. It can be seen that under each situation, the
initial environment state has significant impact on the system reliability. It seems
that environment state 1 is the most friendly environment to the system. Environ-
ment 3 is very dangerous under which the reliability of the system is the smallest
compared to which under environment 1 and 2.

W (x)/t t = 1100 t = 1200 t = 1300 t = 1400 t = 1500 t = 1600 t = 1700
W (x) = 1 0.9778 0.9527 0.9248 0.8945 0.8621 0.8279 0.7924
W (x) = 2 0.8968 0.7961 0.7002 0.6108 0.5292 0.4560 0.3913
W (x) = 3 0.8069 0.6425 0.5056 0.3938 0.3039 0.2330 0.1777

Table 5.4: The conditional reliability of the series system given the initial survival
time x = 1000 and different initial environment state W (x)

W (x)/t t = 1100 t = 1200 t = 1300 t = 1400 t = 1500 t = 1600 t = 1700
W (x) = 1 0.9778 0.9527 0.9248 0.8945 0.8621 0.8279 0.7924
W (x) = 2 0.8968 0.7961 0.7002 0.6108 0.5292 0.4560 0.3913
W (x) = 3 0.8069 0.6425 0.5056 0.3938 0.3039 0.2330 0.1777

Table 5.5: The conditional reliability of the 2-out-of-3 system given that compo-
nent 1 fails by time x = 1000 and different initial environment state

W (x)/t t = 1100 t = 1200 t = 1300 t = 1400 t = 1500 t = 1600 t = 1700
W (x) = 1 0.9783 0.9533 0.9254 0.8951 0.8627 0.8285 0.7931
W (x) = 2 0.8990 0.7982 0.7021 0.6126 0.5307 0.4573 0.3924
W (x) = 3 0.8108 0.6458 0.5082 0.3958 0.3055 0.2342 0.1786

Table 5.6: The conditional reliability of the 2-out-of-3 system system given that
component 2 fails by time x = 1000 and different initial environment state

W (x)/t t = 1100 t = 1200 t = 1300 t = 1400 t = 1500 t = 1600 t = 1700
W (x) = 1 0.9792 0.9543 0.9266 0.8964 0.8640 0.8300 0.7945
W (x) = 2 0.9030 0.8020 0.7058 0.6160 0.5339 0.4601 0.3949
W (x) = 3 0.8178 0.6517 0.5132 0.3998 0.3087 0.2367 0.1806

Table 5.7: The conditional reliability of the 2-out-of-3 system system given that
component 3 fails by time x = 1000 and different initial environment state

W (x)/t t = 1100 t = 1200 t = 1300 t = 1400 t = 1500 t = 1600 t = 1700
W (x) = 1 0.9996 0.9990 0.9982 0.9967 0.9941 0.9903 0.9848
W (x) = 2 0.9936 0.9788 0.9545 0.9209 0.8787 0.8293 0.7746
W (x) = 3 0.9791 0.9306 0.8614 0.7784 0.6887 0.5978 0.5104

Table 5.8: The conditional reliability of the 2-out-of-3 system given that all com-
ponents survive by time x = 1000 and different initial environment state

Similarly, Figures 5.1-5.5 illustrate the expected RUL of the series system and the
2-out-of-3 system with different components states (fail or work) and environment
conditions (W (x) = 1, 2, 3) respectively. It is seen that under each situation, the
expected RUL of the system decreases with time. When the initial environment is
mild W (x) = 1, the expected RUL is large. When the environment is dangerous
W (x) = 3, the expected RUL is less.
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Figure 5.1: The expected remaining useful lifetimes ri(t,W (t);∅) of the series
system with different initial survival time t and environment state W (t) = 1, 2, 3.
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Figure 5.2: The expected remaining useful lifetimes ri(t,W (t); {c2}) of the 2-out-
of-3 system with different initial survival time t and environment state W (t) =
1, 2, 3.
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Figure 5.3: The expected remaining useful lifetimes ri(t,W (t); {c1}) of the 2-out-
of-3 system with different initial survival time t and environment state W (t) =
1, 2, 3.
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Figure 5.4: The expected remaining useful lifetimes ri(t,W (t); {c1}) of the 2-out-
of-3 system with different initial survival time t and environment state W (t) =
1, 2, 3.
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Figure 5.5: The expected remaining useful lifetimes ri(t,W (t);∅) of the parallel
system with different initial survival time t and environment state W (t) = 1, 2, 3.

5.5.4 Asymptotic average availability

Firstly, denote here

Q =

(
−0.1 0.1
0.2 −0.2

)
Let

hi(j, t) = 0.05× j × i2, i = 1, 2, 3; j = 1, 2.

Assume that the repair time is exponentially distributed with mean λ = 1
2

Table
5.9 illustrates the asymptotic average availabilities of the k-out-of-3 system under
the periodic inspection policy with respect to different values of τ . It is seen
that the smaller the inspection period is, the larger is the asymptotic average
availability. Also, value of the initial environment has significant impact on the
system’s expected RUL.



5.6. Conclusion 81

τ 0.2 0.4 0.8 1 1.2 1.5 1.8 2 2.5
As(k = 1) 0.9636 0.9579 0.9465 0.9410 0.9355 0.9274 0.9194 0.9142 0.9015
As(k = 2) 0.8560 0.8363 0.7994 0.7822 0.7656 0.7418 0.7192 0.7047 0.6701
As(k = 3) 0.6448 0.6062 0.5366 0.5054 0.4765 0.4371 0.4021 0.3810 0.3348

Table 5.9: The asymptotic average availabilities of the k-out-of-3 system under
the equidistant inspection policy with different values of the inspection period τ

5.6 Conclusion

In this chapter, we have presented a framework of the M -out-of-N system op-
erating in dynamic environment, where the objective is to evaluate the system
reliability-based measures such as the system reliability, the remaining useful life-
time, the limiting average availability and so on. It is shown that the environment
state has significant influence to the system reliability (Tables 5.4-5.8) and the
expected remaining useful lifetime (Figures 5.1-5.5). The results obtained here
are very useful which permit the heterogeneity of components possessing different
failure rates as well as the flexibility of the system configuration such as the series
system or the parallel system. Even still, it may be interesting to take into con-
sideration of the observation of the environment states at inspection epochs and
investigate preventive maintenance policies in the model in our future work.



Chapter 6

Conclusion

In this thesis, we have studied the maintenance policies, warranty policies and
reliability measures of multi-component systems with various types of stochastic
dependencies.

In Chapter 2, a two-component load-sharing system inspired by the steel wire rope
in mining system is proposed. It is assumed that the the failure rates of the two
components are time dependent and load dependent. Whenever one fails, it is
imperfectly repaired with a time delay during which the failure rate of the sur-
vival component increases because of the resulting overload. Three maintenance
policies are proposed considering imperfect preventive maintenance and system re-
placement. The optimal average costs in the long run under different maintenance
policies are derived from the theoretical propositions.

In Chapter 3, we study a two-component system with failure dependence where
the deterioration sub-system is involved in. Component 1 failure causes random
damages to component 2. While the failure of component 2 is catastrophic and
it induces the failure of component 1. Component 2 fails when its damages reach
or firstly exceed a predetermined level. The virtual age method is applied in the
correctively repair of component 1 and the system is renewed when component
2 fails. The explicit expressions of the long run average cost under different pre-
ventive maintenance policies are developed. Sufficient conditions of the existence
of the long-run expected costs are derived theoretically. Further more, from both
the points of view of the manufacturer and the owner of the system, the warranty
profits to the manufacturer and the costs to the owner under different warranty
policies (the renewing free repair policy and the non-renewing free repair policy)
are derived respectively. It is shown that the failure dependence between compo-
nents has effect to both the manufacture profit and the consumer cost.

In Chapter 4, a similar model as presented in Chapter 3 is developed. Here the
failure interaction between components are: the component 1 failure induces the
component 2 failure with probability r̄ = 1 − r, 0 < r < 1 while the component
2 failure causes the failure of component 1. Also, three different preventive main-
tenance policies are proposed. The system long-run average maintenance costs,
the optimization of the maintenance cost are derived as well as the manufacture
profits and the owner costs in the context of warranty.

82
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In Chapter 5, the reliability measures of a M − out − of − N system under dy-
namic environment conditions is considered. It is assumed that the failure rates
of the components are time-dependent and environment-state-dependent. The
dependence between components is generated by the common operating environ-
ment conditions that they share which is described by a continous-time Markov
chain. The system reliability-based measures like the system reliability, the mean
time to failure (MTTF), the remaining useful lifetime (RUL), the limiting average
availability under different system inspection policies are calculated.

The above models on multi-component systems permit us to glimpse the effect
of stochastic dependence between components on the system reliability and the
maintenance costs. However, there are still a lot of significant issues and problems
to be developed in the future works.

First, we have developed models with two-component systems in Chapter 2-4. It
is more challenging and interesting to consider multicomponent systems which
may have various types of dependencies among them. For instance, the economic
dependence, the structure dependence.

Secondly, in our models, the stochastic dependencies among components are con-
structed by assuming, either that whenever one component fails, its impact on
the lifetime of the long-lived component is known (in Chapter 2-4), or that the
impact of the environment on each component is known (in Chapter 5). However,
it is sensible to study a multi-component system by utilizing multivariate distri-
butions or Copulas functions in the reliability analysis as well as the optimization
of maintenance policies.

Thirdly, we can further develop condition based maintenance policies in the models
in Chapter 3-4 in which the evolution of one component is modeled by its degra-
dation. The effect of the condition based maintenance to the system reliability
and the maintenance cost are worth studying. Besides, in Chapter 5, it may be
interesting to propose some preventive maintenance policies to the system when
its expected RUL falls below a threshold .

Finally, we would like to apply real deterioration/failure time data and implement
statistical inference to estimate different model parameters.
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Appendix

7.1 Proofs of theorems and propositions in Chap-

ter 2

7.1.1 The proof of Theorem 2.1

proof 1 As mentioned in [111], the failure rate of the short-lived component sat-
isfies

r1(t) ≤ (1− λ)ata−1l

which yields
lim
k→∞

pk ≤ lim
k→∞

exp(−(1− λ)((k − 1)τ0)al) = 0

Since 0 ≤ qk ≤ pk, so pk and qk go to 0 when k goes to infinity.

Let be C(N) and C(N + 1) the long-run cost rate when the preventive replacement
is carried out at Nτ0 and (N + 1)τ0 respectively. Denoted by pi, p

′
j, qi, q

′
j the

probabilities that the system is renewed at iτ0 and jτ0, that both components fail in
](i− 1)τ0, iτ0], [(j− 1)τ0, jτ0] respectively, i = 1, 2, · · · , N and j = 1, 2, · · · , N + 1.
Let Ak = b k

k2
c c2 + cr, x = cr

∑N
i=1 qi +

∑N
i=1 piAi, y =

∑N
i=1 piiτ0. Then

C(N + 1)− C(N) =
x+ cpq

′
N+1 + p′N+1(AN+1 − AN)

y + p′N+1τ0

− x

y

As p′N+1 and q′N+1 go to 0 when N goes to infinity and (AN+1 − AN) ≤ c2 is
bounded, therefore

limk3→∞(C(N + 1)− C(N)) = 0

�

84
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7.1.2 The proof of Theorem 2.2

proof 2 Similarly, denoted C(2)(N) and C(2)(N + 1) the long-run cost rate when
the preventive replacement is carried out at Nτ0 and (N + 1)τ0 respectively under
policy 2. Let x(2) and y(2) be the numerator and denominator of C(2)(k3) respec-
tively in equation (2.9). When the system preventive replacements are carried out
at (N + 1)τ0, let p

′
N+1 be the probability that the system is replaced at (N + 1)τ0

under policy 1, p
(2)′

N+1 be the probability that the system is replaced at (N + 1)τ0 un-

der policy 2, p
′
i,N+1 be the probability that the two components fail in ((i−1)τ0, iτ0]

and ((Nτ0, (N + 1)τ0 under policy 2 respectively, BN = c2(n̂N − n̂N−1). Then we
have

C(2)(N + 1)− C(2)(N) =

x(2) +BN
∑N

i=1 PiN + 2c2p
′
N+1n̂N−1 + cp

∑N+1
i=1 p

′
i,N+1

y(2) + p
(2)′

N+1τ0

− x(2)

y(2)

where n̂N = bN
k2
c. It can be seen that

lim
N→∞

p
(2)′

N+1 ≤ lim
N→∞

F̄ (Nτ0) ≤ lim
N→∞

exp(−(1− λ)l(Nτ0)a) = 0

lim
N→∞

p
′

N+1n̂N−1 ≤ lim
N→∞

N

F̄ 2(Nτ0)
≤ lim

N→∞

N

exp(2(1− λ)l(Nτ0)a)
= 0

lim
N→∞

N∑
i=1

PiN ≤ lim
N→∞

F̄ ((N − 1)τ0) = 0

Therefore C(2)(N) satisfies the following equation.

limk3→∞(C2(N + 1)− C2(N)) = 0.

�

7.1.3 The proof of Theorem 2.3

proof 3 Under policy 3, denoted C(3)(N) and C(3)(N + 1) the long-run cost rate
when the preventive replacementsare carried out at Nτ0 and (N + 1)τ0 respectively
. Let x(3) and y(3) be the numerator and denominator of C(3)(k3) respectively in
equation (2.13). Then

C(3)(N + 1)− C(3)(N) =

x(3) +
∑N−1

i=1 PiN B̃(N, i) + 2c2F̄
2(Nτ0)BN + cp

∑N+1
i=1 p

′(3)
i,N+1

y(3) + p
′(3)
N+1τ0

− x(3)

y(3)

where B̃(N, i) = c2(ñN−i − ñN−1−i), BN = c2(n̂N − n̂N−1) p
′(3)
N+1 is the probability

that the system is replaced at (N + 1)τ0 under policy 3, p
′(3)
i,N+1 is the probability

that the two components fail in ((i− 1)τ0, iτ0] and ((Nτ0, (N + 1)τ0 under policy 3
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respectively. By the similar method as in policy 2, it can be proved that

lim
N→∞

N∑
i=1

p
′(3)
iN = 0

lim
N→∞

p
′(3)
N = 0

lim
N→∞

F̄ 2(Nτ0)BN = 0

Therefore C(3)(N) satisfies the following equation.

limk3→∞(C3(N + 1)− C3(N)) = 0

7.2 Proofs of theorems and propositions in Chap-

ter 3

7.2.1 The proof of Proposition 1

proof 4 To prove Proposition 1, let Ti, i = 1, 2, · · · , be the ith system renewal
time. It is obvious that they are identically and independently distributed. Then

P{T1 ≤ t} = p0(t)P(Y (t) > L) +
∞∑
k=1

P(Y (t) +

N(t)∑
i=1

Zi > L | N(t) = k)P(N(t) = k)

= p0(t)P(Y (t) > L) +
∞∑
k=1

pk(t)

∫ ∞
0

P(Y (t) > (L− z))dH∗(k)(z)

= p0(t)GσL(t) +
∞∑
k=1

pk(t)

∫ ∞
0

GσL−z(t)dH
∗(k)(z)

where Gσx(t) = 1 when x < 0. H∗(n)(t) is the n-fold convolution of H(t) with
itself. Therefore

Fs(t) = p0(t)GσL(t) +
∞∑
k=1

pk(t)

∫ ∞
0

GσL−z(t)dH
∗(k)(z)

�

7.2.2 The proof of Theorem 3.1

proof 5 Let ∆T
i , U

T
i be respectively the length of the ith replacement cycle and the

cost incurred during this period, i = 1, 2, · · · . Then {∆T
i , U

T
i } constitutes a renewal

reward process which yields

C∞(T ) =
E(UT

1 )

E(∆T
1 )
.
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As

E(UT
1 ) = P(T1 > T )(c2 + c1EN(T )) +

∫ T

0

(c2 + c1EN(t))dP(T1 ≤ t)

E(∆T
1 ) = TP(T1 > T ) +

∫ T

0

tdP(T1 ≤ t)

where P(T1 ≤ T ) = Fs(T ). Therefore equation (3.3) is straightforward. �

7.2.3 The proof of Theorem 3.2

proof 6 Let S1
n be the nth failure time of component 1 which is S1

n =
∑n

i=0Xi.
One shall denote ϕ(t) the degradation level of unit 2 at time t, ∆N

1 the time elapsed
in one replacement cycle, UN

1 the total cost in one replacement cycle and E(∆N
1 ),

E(UN
1 ) be the expectations of ∆N

1 and UN
1 respectively. The following equality is

verified

P(UN
1 > t) = P(S1

N > t, ϕ(t) < L)

= P(N(t) < N)P(ϕ(t) < L|N(t) < N)

=
N−1∑
k=0

pk(t)P(Y (t) +
k∑
i=0

Zi < L)

=
N−1∑
k=0

pk(t)

∫ L

0

(1−GσL−z(t))dH
∗(k)(z)

Thus:

E(UN
1 ) =

∫ ∞
0

N−1∑
k=0

pk(t)

∫ L

0

(1−GσL−z(t))dH
∗(k)(z)dt (7.1)

Note that the expected number of component 1 imperfect repairs is

N−1∑
k=1

∫ ∞
0

F̄s(t)dVk(at)

Therefore,

E(∆N
1 ) = c2 + c1

N−1∑
k=1

∫ ∞
0

F̄s(t)dVk(at) (7.2)

By the renewal theory C∞(N) =
E(UN1 )

E(∆N
1 )

, and considering equations (7.1) and (7.2)

the Theorem is proved. �
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7.2.4 The proof of Theorem 3.3

proof 7 Denote ∆NT
1 , UNT

1 be the length and the cost of one replacement cycle
respectively, then

∆NT
1 =

{
T, ∆N

1 > T
∆N

1 , ∆N
1 ≤ T

where ∆N
1 is the renewal cycle under failure-number-N-based policy defined by equa-

tion (7.1) in the proof of Theorem 3.2. Therefore,

E(∆NT
1 ) =

∫ T

0

tdP(∆N
1 ≤ t) + TP(∆N

1 > T ) =

∫ T

0

P(∆N
1 > t)dt

=

∫ T

0

N−1∑
k=0

pk(t)

∫ L

0

(1−GσL−z(t))dH
∗(k)(z)dt

As

E(UNT
1 ) = c2 + c1

N−1∑
n=1

∫ T

0

F̄s(t)dVn(at)

The expected long run maintenance cost is derived from the expressions of E(∆NT
1 )

and E(UNT
1 ) and the renewal reward theorem.�

7.2.5 The proof of Theorem 3.4

proof 8 By differentiating C∞(T ) with respect to T , it can be seen that

dC∞(T )

dT
≥ (≤)0⇐⇒ dEN(T )

dT

∫ T

0

F̄s(t)dt−
∫ T

0

F̄ (t)dEN(t) ≥ (≤)
c2

c1

.

Let be

Gau1(T ) =
dEN(T )

dT

∫ T

0

F̄s(t)dt−
∫ T

0

F̄ (t)dEN(t).

Since

dGau1(T )

dT
=

d2EN(T )

d2T

∫ T

0

F̄s(t)dt,

Gau1(T ) is an increasing function of T if d2EN(T )
d2T

> 0 for all T . Besides, if
lim
T→∞

Gau1(T ) > c2
c1

, note that Gau1(0) = 0, then there exists T0 such that

Gau1(t) < 0 if t ≤ T0 and Gau1(t) > 0 if t > T0.

So the derivative of C∞(T ) must less than 0 until T0 than greater than 0. Therefore
there is a finite and unique T ∗ which minimizes the average long run cost C∞(T ).

Additionally, when unit 1 has a Weibull lifetime distribution F (t) = 1−exp(−λtb)
and its failure occurs according to a non-homogeneous Poisson process, then EN(t) =
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λtb which yields d2EN(t)
d2t

= λb(b − 1)tb−2. Therefore d2EN(t)
d2t

≤ 0 for b ≤ 1 which
implies Gau1 is a decreasing function of T . Hence T ∗ = ∞. On the other hand,

for b > 1, d2EN(t)
d2t

> 0 and the condition in equation (3.6) always holds. �

7.2.6 The proof of Theorem 3.5

proof 9 By calculating the difference between C∞(N + 1) and C∞(N), we have

C∞(N + 1)−C∞(N) > (≤)0⇐⇒ d1(N)
∑N−1

k=1 d2(k)

d2(N)
−

N−1∑
k=1

d1(k) > (≤)
c2

c1

. (7.3)

Let be

Gau2(N) =
d1(N)

∑N−1
k=1 d2(k)

d2(N)
−

N−1∑
k=1

d1(k).

Then

Gau2(N + 1)−Gau2(N) =
N∑
k=1

d2(k)

(
d1(N + 1)

d2(N + 1)
− d1(N)

d2(N)

)
.

Therefore Gau2(N) is a convex function of N if d1(N)
d2(N)

is a convex function of N .
Besides, if the following condition

lim
N→∞

d1(N)
∑N−1

k=1 d2(k)

d2(N)
−

N−1∑
k=1

d1(k) >
c2

c1

(7.4)

holds, from condition (7.3), there exists N0 such that ∀n > N0, C∞(n+1) > C∞(n).
Therefore if C(1) < c2

c1
, C∞(N) is convex with respect to N which implies the

existence of the minimum of the series C∞(N) . Otherwise, ∃N0 < N1 such
that C∞(1) < C∞(2) · · · < C∞(N0) , C∞(N0) > C∞(N0 + 1) > · · ·C∞(N1) and
· · ·C∞(N1) < · · ·C∞(N1 + 1) < · · ·C∞(N1 + 2) < · · · . So the minimum cost can
be decided by min(C∞(1), C∞(N1)). Therefore the minimum exists whichever the
case is. �

7.2.7 The proof of Theorem 3.6

proof 10 By conditioning on the first renewal time of the system YT1, we have:

E(C(W )|YT1 = t) =

{
c1E(N(W )) t > W

c2 + c1E(N(t)) + E(C(W − t)) t ≤ W
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where E(N(t)) =
∑∞

n=0 npn(t) is the expected maintenance times of component 1
in [0, t] before system replacement. Based on the law of total probability:

E(C(W )) = c1F̄s(W )E(N(W )) +

∫ W

0

{c2 + c1E(N(t)) + E(C(W − t))}dFs(t)

= K(W ) +

∫ W

0

E(C(W − t))dFs(t)
(7.5)

where K(W ) = c1F̄s(W )E(N(W ))+
∫W

0
{c2 + c1E(N(t))}dFs(t). From the renewal

property, equation (7.5) is equal to

E(C(W )) = K(W ) +

∫ W

0

K(W − x)dM(x)

where M(t) is the renewal function related with Fs(t). The above equation is equal
to

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt

where k(t) = dK(t)
dt

= c1F̄s(t)
∑∞

n=0 n[avn(at)−
∫ at

0

f(y+at−y
a

)

F̄ (y)
vn(y)dy] + c2fs(t). �

7.2.8 The proof of Theorem 3.7

proof 11 It can be noticed that P(Nr(W ) = n) = F n
s (W )F̄s(W ). Denote FJi(t)

the distribution function of Ji where Nr(W ) is the system renewal times when the
initial warranty period is W which has been defined in section 3.2.1.2.

FJi(t) = P(Ji ≤ t) = P(Ti ≤ t | Ti ≤ W )

=

{
Fs(t)
Fs(W )

if t < W

1 if t ≥ W

Let CnW (T ) be the total system warranty cost by time T under RFRW with war-
ranty period W given that the number of major system failure n. Then

E(CR(W )) = E
[
E(CR(W |Nr(W ) = n))

]
=

∞∑
n=0

Fns (W )F̄s(W )E[CnW (J1 + J2 + · · ·+ Jn +W )]

=

∞∑
n=0

Fns (W )F̄s(W )

×
∫ W

0

· · ·
∫ W

0

(nc2 + c1

n∑
i=1

E(N(ji)) + c1E(N(W ))dFJ1(j1) · · · dFJn(jn)

=

∞∑
n=0

F̄s(W )

(
nc2F

n
s (W ) + c1E(N(W ))Fns (W ) + nc1F

n−1
s (W )

∫ W

0

E(N(t))dFs(t)

)

=

∞∑
n=0

F̄s(W )Fns (W )

(
nc2 + c1E(N(W )) + nc1

∫W
0

E(N(t))dFs(t)

Fs(W )

)

Therefore we obtain the warranty cost under RFRW for the manufacturer.�
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7.2.9 The proof of Theorem 3.8

proof 12 Similar to the proof of Theorem 3.6, by conditioning on the first system
failure time YT1, we have

E(Cs(T ) | YT1 = t) =


c11(EN(T )− EN(W )) t > T

c22 + c11(EN(t)− EN(W )) + E(Cs(T − t)) W < t ≤ T

E(Cs(T − t)) 0 < t ≤ W

By the law of total probability:

E(Cs(T )) = h(T ) +

∫ T

0

h(T − u)dM(u) =

∫ T

W

(1 +M(T − u))dh(u)

where h(T ) = c22(Fs(T )−Fs(W ))+c11

∫ T
W
F̄s(t)dEN(t) for T ≥ W and 0 otherwise.

Also, let be E(C1(T )) the expected total maintenance cost of component 1 by time
t from the perspective of the manufacturer. Then

E(C1(T ) | YT1 = t) =

{
c1EN(T ) t > T

c1EN(t) + E(C1(T − t)) 0 < t ≤ T

Therefore

E(C1(T )) = h1(T ) +

∫ T

0

h1(T − t)dM(t)

where h1(T ) = c1EN(T ) − c1

∫ T
0
Fs(t)dEN(t). Noting that the warranty profit of

the manufacturer is derived from the consumer’s cost minus the manufacturer’s
cost in [0, T ], therefore the manufacturer profit given is deduced. �

7.2.10 The proof of Theorem 3.9

proof 13 Let U(U > W ) be the time interval between two consecutive system pur-
chase time by the consumer. That is to say that the system renewal cost are covered
by the consumer rather than the manufacturer. Denote γ(W ) be the residual life
to the system at time W , then U = W +γ(W ). Let Fγ(t), FU(t) be the distribution
function of γ(W ) and U then from the renewal theory we know:

Fγ(t) = Fs(W + t)−
∫ W

0

F̄s(W + t− x)dM(x) (7.6)

E(U) = (M(W ) + 1)

∫ ∞
0

F̄s(t)dt (7.7)

where M(W ) =
∑∞

n=1 F
(n)
s (W ) and

FU(t) =

{
0 0 ≤ t ≤ W

Fγ(t−W ) W < t
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Thus by conditioning on the first purchase time of the consumer, his/her expected
total cost can be derived. we have:

E(Csn(T ) | U = u) =

{
c11(EN(T )− EN(W )) u > T

c22 + c11(EN(u)− EN(W )) + E(Csn(T − u)) W < u ≤ T

Therefore the expected total cost of the consumer is derived by the law of total
probability. The expected profit of the manufacturer is then obtained as the revenue
minus the maintenance cost by time T . �

7.3 The proofs of Theorems and propositions in

Chapter 4

7.3.1 The proof of Theorem 4.1

proof 14 Let P cm
1 (T ) and P cm

2 (T ) be the probabilities that the system is replaced
before T due to the shock caused by component 1 and due to the natural degradation
of component 2 respectively. Let P pm(T ) be the probability that the system is
replaced at time T . These probabilities are given as follows:

P cm
1 (T ) =

∫ T

0

∞∑
n=1

rn−1r̄ḠσL(t)dVn(at)

P cm
2 (T ) =

∫ T

0

∞∑
n=0

rnpn(t)dGσL(t)

P pm(T ) =
∞∑
n=0

rnpn(T )ḠσL(T )

As a result, the expected cycle cost is calculated as follows:

c2 +
∞∑
n=1

(n− 1)c1r
n−1r̄

∫ T

0

ḠσL(t)dVn(at) +
∞∑
n=0

nrnc1(

∫ T

0

pn(t)dGσL(t) + pn(T )ḠσL(T ))

As the expected length of one replacement cycle is

T F̄sI(T ) +

∫ T

0

tdFsI(t) =

∫ T

0

F̄sI(t)dt

So the average long run cost under age-T -based policy is obtained by the renewal
reward theorem. �

7.3.2 The proof of Theorem 4.2

proof 15 Let P cm
1 (N) and P cm

2 (N) be the probabilities that the system is correc-
tively replaced due to the system failure induced by component 1 or due to the
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natural system failure respectively. Let P pm(N) be the probability that the system
is replaced at the N th unit 1 failure. They are given by

P cm
1 (N) =

∫ ∞
0

N−1∑
n=1

rn−1r̄ḠσL(t)dVn(at)

P cm
2 (N) =

∫ ∞
0

N−1∑
n=0

rnpn(t)dGσL(t)

P pm(N) =

∫ ∞
0

rN−1ḠσL(t)dVN(at)

So the expected cost over a replacement cycle is given by

E(C(∆I)) = c2 +
N−1∑
n=1

(n− 1)c1r
n−1r̄

∫ ∞
0

ḠσL(t)dVn(at) +
N−1∑
n=0

nrnc1

∫ T

0

pn(t)dGσL(t)

+

∫ ∞
0

rN−1(N − 1)c1ḠσL(t))(t)dVN(at)

As the total time elapsed in one cycle ∆I satisfies

P(∆I > t) =
N−1∑
k=0

rkpk(t)ḠσL(t)

which implies

E(∆I) =

∫ ∞
0

N−1∑
k=0

rkpk(t)ḠσL(t)dt

From the renewal reward theory, the calculation of C∞I(N) is straightforward. �

7.3.3 The proof of Theorem 4.4

proof 16 In the following, we call component 1 failure as minor failure when
the damage caused to component 2 is 0 and major failure when the damage is L
respectively. Component 1 failure occurs according to a non-homogeneous Poisson
process when it undergoes minimal repair while the system is supposed to be replaced
when component 2 fails. Assume h1(t) to be the component 1 failure rate at time
t, from the decomposition property of the Poisson process, the minor failure of
component 1 occurs according to a non-homogeneous Poisson process with intensity
rate rh1(t). Denote SMn be the nth minor failure time of component 1, therefore

P(SMn ≤ t) =
∞∑
i=n

(rH1(t))i exp(−rH1(t))

i!
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where H1(t) =
∫ t

0
h1(θ)dθ. By the similar method as we mentioned in Theorem

3.1, C∞I(T ) can be rewritten as

C∞I(T ) =
c2 + c1

∑∞
n=1

∫ T
0
F̄sI(t)rh1(t)dt∫ T

0
F̄sI(t)dt

Therefore the optimal condition of T ∗ is derived by adopting the method in Theorem
3.1. �

7.3.4 The proof of Theorem 4.5

proof 17 As component 1 failure occurs according to the non-homogeneous Pois-
son process with intensity rate h(t), from the decomposition property of the non-
homogeneous Poisson process, the number of component 1 failure inducing the
minor system failure follows a non-homogeneous Poisson process with intensity
rate rh(t). Therefore before the major system failure, the expected failure number
of component 1 by time t can be given as E1(t) = rH(t). By conditioning on the
first renewal time of the system T1, we have

E(C(W )|T1 = t) =

{
c1rH(W ) t > W
c2 + c1rH(t) + E(C(W − t)) t ≤ W

where E(N(t)) =
∑∞

n=0 npn(t) is the expected maintenance cost of component 1 in
[0, t]. Based on the law of total probability

E(C(W )) = c1F̄s(W )rH(W ) +

∫ W

0

{c2 + c1rH(t) + E(C(W − t))}dFs(t)

= K(W ) +

∫ W

0

E(C(W − t))dFs(t)
(7.8)

where K(W ) = c1F̄s(W )rH(W ) +
∫W

0
(c2 + c1rH(t))dFs(t). From the renewal

property, equation (7.8) is equal to

E(C(W )) = K(W ) +

∫ W

0

K(W − x)dM(x)

where M(t) is the renewal function related to Fs(t). The above equation is equal
to

E(C(W )) =

∫ W

0

[1 +M(W − t)]k(t)dt

where k(t) = c1rh(t)F̄s(t) + c2fs(t). Therefore we obtained the expected warranty
cost of the manufacturer under the non-renewing FRW.�
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7.3.5 The proof of Theorem 4.6

proof 18 It can be noticed that P(Nw = n) = F n
s (W )F̄s(W ). Let E(C(t)) be the

expected warranty cost of the manufacturer during time period t from the initial
product sold moment. Then we have

E(CR(W )) = E
[
E(CR(W |Nw = n))

]
=

∞∑
n=0

Fns (W )F̄s(W )E[C(θ1 + θ2 + · · ·+ θn +W )]

=
∞∑
n=0

Fns (W )F̄s(W )

∫ W

0
· · ·
∫ W

0
(nc2 + c1r

n∑
i=1

H(ti) + c1rH(W )dFθ(t1) · · · dFθ(tn)

=
∞∑
n=0

F̄s(W )

(
nc2F

n
s (W ) + c1rH(W )Fns (W ) + nrc1F

n−1
s (W )

∫ W

0
H(t)dFs(t)

)

=

∞∑
n=0

F̄s(W )Fns (W )

(
nc2 + c1rH(W ) + nrc1

∫W
0 H(t)dFs(t)

Fs(W )

)

Therefore we obtain the expected warranty cost of the manufacturer under the
RFRW. �

7.3.6 The proof of Theorem 4.7

proof 19 By conditioning on the first system renewal time T1, we have

E(C(T ) | T1 = t) =


c11r(H(T )−H(W )) t > T
c22 + c11r(H(t)−H(W )) + E(C(T − t)) W < t ≤ T
E(C(T − t)) 0 < t ≤ W

By the law of total probability:

E(C(T )) = K(T ) +

∫ T

0

K(T − u)dM(u) =

∫ T

W

(1 +M(T − u))k(u)du

where K(t) = c22(Fs(t)−Fs(W ))+c11

∫ t
W
F̄s(θ)rh(θ)dθ for t ≥ W and 0 otherwise.

k(u) is the derivative of K(u) given as k(u) = dK(u)
du

= c22fs(u) + c11F̄s(u)rh(u).

In addition, let be E(C0(T )) the expected warranty cost caused by minor system
failure by time t for the manufacturer. By the similar method as in the calculation
of E(C(T )), we have

E(C0(T )) =

∫ T

0

(1 +M(T − t))k1(t)dt

where k1(t) = F̄s(t)h(t), t > 0 and M(t) is the renewal function related with Fs(t).
As the warranty profit of the manufacture is equivalent to the income gaining from
the consumer’s warranty payment minus the total warranty cost in [0, T ]. So the
manufacturer profit is deduced by substituting E(C(T )), E(C0(T )) and c2M(T ) in
the equation
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E(P (T )) = E(C(T ))− E(C0(T ))− c2M(T ) �

7.3.7 The proof of Theorem 4.8

proof 20 Let U , (U > W ) be the time epoch when the system is firstly renewed
after W and FU(t) be its lifetime distribution function. Denote γ(W ) be the resid-
ual life to the system at time W , then U = W +γ(W ) and Fγ(t) be its distribution
function. Then

Fγ(t) = Fs(W + t)−
∫ W

0

F̄s(W + t− x)dM(x)

and so

FU(t) =

{
0 0 ≤ t ≤ W

Fs(t)−
∫W

0
F̄s(t− x)dM(x) W < t

where M(W ) =
∑∞

n=1 F
(n)
s (W ). By conditioning on the first consumer purchase

time U we have:

Eno(C(T )) = K0(T ) +

∫ T

W

K0(T − x)dMU(x)

where K0(t) = c22FU(t) + c11

∫ t
W
F̄U(θ)rh(θ)dθ for t > W and 0 otherwise, MU(t)

is the renewal function related with FU(t).

Therefore the expected total cost of the ownership is derived by the law of total
probability. The expected profit of the manufacturer is then obtained by as the
revenue minus the maintenance cost by time T . It is easily seen that the system
renewal cost during T is M(T ). The minimal repair cost of component 1 is less
or equal to rH(T ) when the component 1 lifetime distribution F ∈ IFR. For
example, assume that the system is renewed once at T1 during T . Let T2 = T −T1,
then the minimal repair cost is

r(H(T1) + rH(T2)) = r(

∫ T1

0

h(t)dt+

∫ T

T1

h(t− T1)dt) ≤ r

∫ T

0

h(t)t = H(T )

and ’≥’ becomes ’=’ only when h(t) is a constant. �
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7.4 Proofs of theorems and propositions in Chap-

ter 5

7.4.1 The proof of Proposition 2

From the definition of B∅
ij(t) it is easily seen that

B∅
ij(t+4t) = P(Tl > t+4t,W (t+4t) = j,∀l ∈ Φ | W (0) = i)

=
∑
k∈S

P(Tl > t+4t, ∀l ∈ Φ,W (t+4t) = j, | Tl > t,W (t) = k,∀l ∈ Φ)

×P(Tl > t,W (t) = k,∀l ∈ Φ | W (0) = i)

=
∑
k∈S

exp

(
−
∫ t+4t

t

∑
l∈Φ

hl(θ, k)dθ

)
πkj(4t)B∅

ik(t)

As we know that when 4t is very small,

πkj(4t) =

{
1 + qjj4t+ o(∆t) k = j
qkj4t+ o(∆t) k 6= j

where qkj are the entries of Q. Therefore

dB∅
ij(t)

dt
= −B∅

ij(t)

(∑
l∈Φ

hl(t, j)

)
+
∑
k∈S

B∅
ik(t)qkj (7.9)

which can also be represented in the matrix form as

dB∅(t)

dt
= B∅(t)(Q−H(t)) (7.10)

where B∅(t) = [B∅
ij(t)]m×m and H(t) = diag[

∑
l∈Φ hl(t, j)] which represents the

diagonal matrix with elements Hjj(t) =
∑

l∈Φ hl(t, j) in the main diagonal. In
particular, when the hazard rate is time-independent, i.e. H(t) = H , then it is
easily seen that

B∅(t) = exp((Q−H)t)

�
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7.4.2 The proof of Theorem 5.1

proof 21 The similar method as utilized in the calculation of B∅(t) in Proposition

2 is implemented here. From the definition of B
{c1,c2,··· ,ck}
ij (t), we have

B
{c1,c2,··· ,ck}
ij (t+4t)

= P
(
Tl > t+4t, Tp < t+4t,W (t+4t) = j,∀p ∈ {c1, c2, · · · , ck}, ∀l ∈ {c1, c2, · · · , ck}

| W (0) = i

)
=

∑
m∈S

P
(
Tl > t+4t, Tp < t+4t, ∀p ∈ {c1, c2, · · · , ck},∀l ∈ {c1, c2, · · · , ck},

W (t+4t) = j, | Tl > t, Tp < t,∀p ∈ {c1, c2, · · · , ck},∀l ∈ {c1, c2, · · · , ck},

W (t) = m

)
B
{c1,c2,··· ,ck}
im (t)

+
∑
m∈S

k∑
v=1

P
(
Tl > t+4t,∀l ∈ {c1, c2, · · · , ck}, Tp < t+4t,∀p ∈ {c1, c2, · · · , ck},

W (t+4t) = j, | Tl > t,∀l ∈ {c1, c2, · · · , ck}
⋃
{cv}, Tp < t,∀p ∈ {c1, c2, · · · , ck}\cv,

W (t) = m

)
B
{c1,c2,··· ,ck}\{cv}
im (t) + o((4t))

=
∑
m∈S

πmj(4t) exp

(
−

∑
u∈{c1,c2,··· ,ck}

∫ t+4t

t

hu(θ,m)dθ

)
B
{c1,c2,··· ,ck}
im (t)

+
∑
m∈S

k∑
v=1

πmj(4t) exp

(
−

∑
u∈{c1,c2,··· ,ck}

∫ t+4t

t

hu(θ,m)dθ

)

×
(

1− exp(−
∫ t+4t

t

hcv(θ,m)dθ)

)
B
{c1,c2,··· ,ck}\{cv}
im (t) + o((4t))

where limt−→∞
o(4t)
4t = 0 . It is known that when 4t is very small,

πkj(4t) =

{
1 + qjj4t+ o((4t)) k = j
qkj4t+ o((4t)) k 6= j

where qkj are the entries of Q. By implementing the similar method as in the
calculation of B∅

ij(t) in equation (7.9), we have

dB
{c1,c2,··· ,ck}
ij (t)

dt
=

∑
m∈S

B
{c1,c2,··· ,ck}
im (t)qmj +

k∑
l=1

B
{c1,c2,··· ,ck}\{cl}
ij (t)hcl(t, j)

−B{c1,c2,··· ,ck}ij (t)
∑

l∈{c1,c2,··· ,ck}

hl(t, j)
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which can also be represented by the matrix form

dB{c1,c2,··· ,ck}(t)

dt
= B{c1,c2,··· ,ck}(t)(Q−

∑
j∈{c1,c2,··· ,ck}

Hj(t)) +
k∑
l=1

B{c1,c2,··· ,ck}\{cl}(t)Hcl(t)

where B{c1,c2,··· ,ck}(t) = [B
{c1,c2,··· ,ck}
ij (t)]m×m and Hi(t) = diag[hi(t, j)]m×m, i ∈

Φ, j ∈ S �

7.4.3 The proof of Corollary 1

proof 22 The mathematical induction method is carried out in the following proof.

When k = 1, from Theorem 5.1, we have

dB{c1}(t)

dt
= B{c1}(t)(Q−

∑
j∈Φ\{c1}

Hj) +B∅(t)Hc1(t)

where B∅(t) = exp((Q−H)t). As B{c1}(0) = 0, On can deduce that

B{c1}(t) = exp

(
(Q−

∑
j∈Φ\{c1}

Hj)t

)
− exp((Q−H)t)

Assume that when k = p, equation (5.5) works which means

B{c1,c2,··· ,cp}(t) =

p∑
m=0

(−1)m
∑

lu∈{c1,c2,··· ,cp}
u=1,2,··· ,m
li 6=lj if i 6=j

exp((Q−
∑

j∈{c1,c2,··· ,cp}

Hj −
m∑
i=1

Hli)t)

(7.11)

When k = p+ 1, as

dB{c1,c2,··· ,cp+1}(t)

dt
= B{c1,c2,··· ,cp+1}(t)(Q−

∑
j∈{c1,c2,··· ,cp+1}

Hj) (7.12)

+

p+1∑
l=1

B{c1,c2,··· ,cp+1}\{cl}(t)Hcl

where {c1, c2, · · · , cp+1} = Φ\{c1, c2, · · · , cp+1}. It can be seen that the expression

of B{c1,c2,··· ,cp+1}\cl(t), l ∈ {c1, c2, · · · , cp+1} can be derived in equation (7.11) as one
can notice that it is the case when the number of failed components is p. Therefore
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by substituting the expression of B{c1,c2,··· ,cp+1}\cl(t) into equation (7.12) we have

dB{c1,c2,··· ,cp+1}(t)

dt
(7.13)

= B{c1,c2,··· ,cp+1}(t)(Q−
∑

j∈{c1,c2,··· ,cp+1}

Hj)

+

p+1∑
l=1

p∑
m=0

(−1)m
∑

lu∈{c1,c2,··· ,cp+1}\{cl}
u=1,2,··· ,m
li 6=lj if i 6=j

exp

(
(Q−

∑
j∈{c1,c2,··· ,cp+1}

Hj −Hcl −
m∑
i=1

Hli)t

)
Hcl

= B{c1,c2,··· ,cp+1}(t)(Q−
∑

j∈{c1,c2,··· ,cp+1}

Hj)

+

p∑
m=0

(−1)m
∑

lu∈{c1,c2,··· ,cp+1}
u=1,2,··· ,m+1
li 6=lj if i6=j

exp

(
(Q−

∑
j∈{c1,c2,··· ,cp+1}

Hj −
m+1∑
i=1

Hli)t

)m+1∑
i=1

Hli

Let be a = Q−
∑

j∈{c1,c2,··· ,cp+1}Hj, am(l1, l2, · · · , lm+1) = Q−
∑

j∈{c1,c2,··· ,cp+1}Hj−∑m+1
i=1 Hli, km = (−1)m

∑m+1
i=1 Hli, by solving equation (7.13) we have

B{c1,c2,··· ,cp+1}(t)

=

p∑
m=0

∑
li∈{c1,c2,··· ,cp+1}
i=1,2,··· ,m+1
li 6=lj if i 6=j

(
exp(at)− exp(am(l1, l2, · · · , lm+1)t)

)
km(a− am(l1, l2, · · · , lm+1)−1

=

p∑
m=0

∑
li∈{c1,c2,··· ,cp+1}
i=1,2,··· ,m+1
li 6=lj if i 6=j

(−1)m
(

exp(at)− exp(am(l1, l2, · · · , lm+1)t)

)

=

p∑
m=0

(−1)m
(
p+ 1

m+ 1

)
exp(at) +

p∑
m=0

∑
li∈{c1,c2,··· ,cp+1}
i=1,2,··· ,m+1
li 6=lj if i 6=j

(−1)m+1 exp(am(l1, l2, · · · , lm+1)t)

)

= exp(at) +

p+1∑
m=1

∑
li∈{c1,c2,··· ,cp+1}
i=1,2,··· ,m+1
li 6=lj if i 6=j

(−1)m exp(am−1(l1, l2, · · · , lm)t)

)

=

p+1∑
m=0

(−1)m
∑

li∈{c1,c2,··· ,cp+1}
i=1,2,··· ,m+1
li 6=lj if i 6=j

exp

(
(Q−

∑
j∈{c1,c2,··· ,cp+1}

Hj −
m∑
i=1

Hli)(t)

)

where
(
p+1
m+1

)
is the (m+1)-combination of the set with p+1 distinguished elements.

It is seen that equation (5.5) holds for the B{c1,c2,··· ,cp+1}(t) and therefore the proof
is complete. �
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7.4.4 The proof of Corollary 3

proof 23 Denoted

Ll0,lij (θ, t) = P(l components fail at t,W (t) = j | l0 components fail at θ,W (θ) = i)

with its matrix form Ll0,l(θ, t) = [Ll0,lij (θ, t)]m×m where θ > 0, l0 ≤ l < N . It is

obviously that Ll0,l0(θ, θ) = I, Ll0,l(θ, θ) = 0 for l0 < l. By applying the similar
method, we have

dLl0,l(θ, t)

dt
= Ll0,l−1(θ, t)(N − l + 1)H0 +Ll0,l(θ, t)(Q− (N − l)H0)

where Ll0,l0−1(θ, t) = 0 which yields

Ll0,l(θ, t) =

(
N − l0
l − l0

) l−l0∑
i=0

(−1)l−l0−i
(
l − l0
i

)
exp

(
(Q− (N − l0 − i)H0)(t− θ)

)

Therefore rl0i (θ) can be obtained.

rl0i (θ) =
N−M∑
l=l0

∫ ∞
θ

ei(L
l0,l(θ, t))edt

where e is a column vector of 1s, ei is a 1×m matrix whose ith element is 1 and
others are 0 respectively.

�

7.4.5 The proof of Theorem 5.2

proof 24 It is easily seen that the expectation of the system lifetime distribution
when the initial environment is k, k ∈ S can be derived as

Ek(U1) =

∫ ∞
0

(1− Fk(t))dt

where Fk(t) is the conditional system lifetime distribution given is equation (5.13).

Furthermore, the length of a renewal cycle when the initial environment is k can
be obtained:

Ek(R1) =
∞∑
i=1

iτP((i− 1)τ < U1 ≤ iτ | W0 = k) + EY

= τ

∞∑
i=0

(1− Fk(iτ)) +

∫ ∞
0

(1−G(y))dy
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Denoted by h(t) the system failure rate at time t. Define

Hmin(t) =

∫ t

0

∑
i∈Φ

hi(t, 1)dt

where hi(t, 1) is the failure rate of component i under environment 1. Then

1− Fk(t) ≤ exp(−Hmin(t))

As
∫∞

0
hi(t, j)dt = ∞ for i ∈ Φ, j ∈ S and Ek(U1) =

∫∞
0

(1 − Fk(t))dt therefore
Ek(U1) is convergent. Also from the expression of Ek(R1), it is easily seen the

convergence of Ek(R1). So Ek(U1)
Ek(R1)

exists for any k ∈ S.

In the next, we focus on the calculation of the transition kernel Qij(t). Let us
define

L {Qij}(s) = E[e−sR11WR1=j
| W0 = i

]
where 1A(x) is the indicator function which equals 1 when x ∈ A and 0 otherwise.
By conditioning on the repair time Y and the first failure diagnosed time U1 we
may write

L {Qij}(s)

=

∫ ∞
0

E[e−s(U1+y)1WU1+y
=j | W0 = i]dGy

=
∑
l∈S

∞∑
k=1

P(U1 = kτ,Wkτ = l | W0 = i)

∫ ∞
0

πlj(y)e−s(kτ+y)dGy

=
∑
l∈S

∑
m∈S

∞∑
k=1

N−M∑
p=0

P(U1 = kτ,Wkτ = l | Tu > (k − 1)τ, Tv < (k − 1)τ,

∀u ∈ {c1, c2, · · · , cp}, ∀v ∈ {c1, c2, · · · , cp}, ,W(k−1)τ = m)

× P(Tu > (k − 1)τ, Tv < (k − 1)τ, ∀u ∈ {c1, c2, · · · , cp},∀v ∈ {c1, c2, · · · , cp},

W(k−1)τ = m, | W0 = i)

∫ ∞
0

πlj(y)e−s(kτ+y)dGy

=
∑
l∈S

∑
m∈S

∞∑
k=1

N−M∑
p=0

∫ ∞
0

πlj(y)e−s(kτ+y)dGyB
{c1,c2,··· ,cp}
im ((k − 1)τ)

×P(U1 = kτ,Wkτ = l | Tu > (k − 1)τ, Tv < (k − 1)τ, ∀u ∈ {c1, c2, · · · , cp},
∀v ∈ {c1, c2, · · · , cp},W(k−1)τ = m)

=
∑
m∈S

∑
l∈S

∞∑
k=1

∫ ∞
0

πlj(u)e−s(kτ+y)dG(y)
N−M∑
p=0

( ∑
1≤c1<c2<···cp≤N

B
{c1,c2,··· ,cp}
im ((k − 1)τ)

×
(
πml(τ)−

N−M−p∑
r=0

∑
d1<d2<···<dr
di∈{c1,c2,··· ,cp}

i=1,2,··· ,r

L
{d1,d2,··· ,dr}
ml ((k − 1)τ, kτ ; {c1, c2, · · · , cp})

))

Therefore, the (i, j)th element of the transition probability matrix P can be given
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as:

Pij = lim
s→0

L {Qij}(s)

=
∑
m∈S

∑
l∈S

∞∑
k=1

∫ ∞
0

πlj(u)dG(u)
N−M∑
p=0

( ∑
1≤c1<c2<···cp≤N

B
{c1,c2,··· ,cp}
im ((k − 1)τ)

×
(
πml(τ)−

N−M−p∑
r=0

∑
d1<d2<···<dr
di∈{c1,c2,··· ,cp}

i=1,2,··· ,r

L
{d1,d2,··· ,dr}
ml ((k − 1)τ, kτ ; {c1, c2, · · · , cp})

))

where B
{c1,c2,··· ,cp}
im (t) = B∅

im(t) when p = 0 which is given in Equation (7.9). �
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[3] A. Barros. Maintenance des systèmes multicomposants sous surveillance
imparfaite: modélisation stochastique et optimisation. PhD thesis, Troyes,
2003.

[4] LR. Cui and Xie M. Availability of a periodically inspected system with
random repair or replacement times. Journal of statistical Planning and
inference, 131(1):89–100, 2005.

[5] T. Nakagawa. Maintenance theory of reliability. Springer Science & Business
Media, 2006.

[6] M. Rausand, H. Arnljot, et al. System reliability theory: models, statistical
methods, and applications, volume 396. John Wiley & Sons, 2004.

[7] J. Cao and Cheng K. An introduction to the reliability mathematics. Higher
Education Press, 2006.

[8] CD. Lai and M. Xie. Stochastic ageing and dependence for reliability.
Springer Science & Business Media, 2006.

[9] WQ. Meeker and LA. Escobar. Statistical methods for reliability data. John
Wiley & Sons, 2014.

[10] WQ. Meeker and LA. Escobar. A review of recent research and current issues
in accelerated testing. International Statistical Review/Revue Internationale
de Statistique, pages 147–168, 1993.

[11] N. Gorjian, L. Ma, M. Mittinty, P. Yarlagadda, and Y. Sun. A review on
degradation models in reliability analysis. In Engineering Asset Lifecycle
Management, pages 369–384. Springer, 2010.

[12] RE. Barlow and F. Proschan. Mathematical theory of reliability. SIAM, 1996.

[13] JM. Van Noortwijk. A survey of the application of gamma processes in
maintenance. Reliability Engineering & System Safety, 94(1):2–21, 2009.

[14] HC. Tijms. A first course in stochastic models. John Wiley and sons, 2003.

104



BIBLIOGRAPHY 105

[15] AP. Basu and N. Ebrahimi. On the reliability of stochastic systems. Statistics
& Probability Letters, 1(5):265–267, 1983.

[16] M. Abdel-Hameed. A gamma wear process. IEEE transactions on Reliability,
24(2):152–153, 1975.
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ume 28. Springer Science & Business Media, 1997.

[167] RD. Gill and S. Johansen. A survey of product-integration with a view
toward application in survival analysis. The annals of statistics, pages 1501–
1555, 1990.



 

 

    
 


