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COMPILATION POUR LA PROTECTION DE

LA MÉMOIRE

Nos vies sont de plus en plus dépendantes des systèmes informatiques et cette
tendance devrait s’accentuer dans les années à venir. Que ce soit dans la santé, les
transports ou l’économie, ces différents domaines ne sont plus capables de fonctionner
correctement sans l’utilisation de ces systèmes. De ce fait, l’intérêt porté sur la sécu-
rité informatique a également pris de l’importance, en conséquence des retombées
désastreuses que peuvent provoquer les cyber attaques.

Cette thèse a pour but d’améliorer la sécurité des systèmes informatiques en s’intéressant
à la compilation sécurisée des programmes. La compilation est le processus de tra-
duction d’un programme source écrit par des humains vers du code machine lisible
par nos processeurs. Il existe deux manière de faire de la compilation sécurisée: par
application ou par préservation d’une politique de sécurité. Appliquer une politique
de sécurité à un programme durant la compilation consiste à prendre n’importe quel
programme en entrée et de toujours produire un programme sécurisé en sortie. Un
tel exemple est le compilateur gcc patché avec StackGuard [29] qui produit des exé-
cutables résistants aux attaques de type buffer overflow [70]. Dans ce cas précis, la
politique de sécurité appliquée est choisie par le compilateur ce qui peut poser prob-
lème lorsqu’elle diffère du choix de l’utilisateur. Un compilateur préservant la sécurité
des programmes suit un objectif différent, celui-ci s’assure que le programme compilé
soit au moins aussi sécurisé que le programme source. Par exemple, Jasmin [3] est un
compilateur dédié aux implémentations cryptographiques et garantit qu’un programme
compilé respecte les mêmes propriétés de sécurité que sa version source. Le choix
de compilateur sécurisé dépend du degré de confiance accordé au programme source
qui va être compilé. Dans le cas où le programme source est d’origine inconnue ou
malveillante, on utilisera l’application de sécurité pour être sûr d’obtenir un programme
sécurisé en sortie. Au contraire, lorsque la politique de sécurité est mise en place par
les développeurs dans le code source d’un programme, on utilisera plutôt à un com-
pilateur qui s’assurera que la sécurité du programme source soit préservée jusqu’au
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programme exécutable.
Les deux types de compilation sécurisée présentés seront abordés dans cette

thèse. Tout d’abord nous avons développé le compilateur COMPCERTSFI qui applique
les techniques de Software Fault Isolation (SFI) sur les programmes transformés. La
deuxième partie de la thèse se concentre sur la préservation de propriétés de sécurité
durant la compilation. Nous avons défini une propriété appelée Information Flow Pre-
serving qui garantit qu’une transformation produise des programmes aussi sécurisés
que que leurs version source.

COMPCERTSFI

Software Fault Isolation (SFI) est une technique d’isolation qui essaye de maximiser
les temps d’exécution. Les principes fondamentaux de SFI ont été établis par Wahbe et
al. [114] et les travaux qui suivent tels que NaCl [117] ou Pittsfield [73] sont tous basés
sur ces principes. Nous commençons par présenter les fondamentaux de SFI pour
ensuite nous pencher sur notre compilateur COMPCERTSFI.

Software Fault Isolation (SFI) Différentes méthode d’isolation existent comme les
machines virtuelles ou la mémoire virtuelle entre processus. SFI est la technique qui
réduit au maximum les interactions entre un programme hôte et différents modules
qui peuvent être malveillants. Pour cela, dans SFI, le programme hôte accueille dans
sa propre mémoire, les différents modules avec lesquels il veut interagir. Pour éviter
que ces modules corrompent la mémoire du programme hôte, ils sont placés dans des
zones mémoires attitrées, appelées sandbox. La politique de sécurité de SFI décrite
par Wahbe et al. est la suivante:

— Sûreté de la mémoire: un module ne peut ni lire, ni écrire ni sauter hors de sa
sandbox.

— Communication sécurisée: toute communication entre l’hôte et ses modules
passent à travers une interface qui vérifie leur légitimité.

— Vérification du code: tout code exécuté par un module a été au préalable con-
trôlé de manière à ce qu’il satisfasse les deux règles précédentes

SFI est composée de deux éléments majeurs: un générateur et un vérifieur. Le généra-
teur est intégré durant la compilation et transforme le code d’un module de manière à
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ce qu’il satisfasse les règles de sûreté de la mémoire et de communication sécurisée.
Ensuite, avant de charger le code d’un module en mémoire, il sera contrôlé par le
vérifieur qui s’assure que le code respecte la politique de sécurité de SFI.

De nombreux travaux ont été effectué sur SFI tels que MiSFIt [107], Pittsfield [73]
ou NaCl [117, 98, 6] qui a été utilisé dans le navigateur Google Chrome. Le principal
but de ces travaux a été de diminuer au maximum, les ralentissements introduits par
les transformations de programme de SFI.

COMPCERTSFI COMPCERTSFI est un compilateur basé sur COMPCERT [66] qui pro-
duit des programmes respectant la politique de sécurité de SFI. COMPCERT est un
compilateur certifié, pour le langage C, prouvé avec l’assistant de preuve Coq [112],
de respecter un théorème de préservation des programmes compilés. Grâce à ce
théorème de préservation, COMPCERTSFI peut retirer le vérifieur SFI des outils de
SFI. En effet, COMPCERTSFI possède seulement un générateur de code pour SFI mais
pas de vérifieur. Cette approche a d’abord été théorisé par PSFI [60] et COMPCERTSFI

en est une implémentation compétitive et complète. L’idée est d’utiliser un générateur
SFI assez tôt dans la chaîne de compilation, puis de profiter du théorème de préser-
vation de COMPCERT pour préserver la sécurité de SFI dans le binaire produit. Les
théorèmes prouvés sur le générateur SFI de COMPCERTSFI sont les suivants:

— Sécurité: le code produit par le générateur ne peut accéder à de la mémoire
situées en dehors de sa sandbox et toute interaction hôte-module est identifiée
et contrôlée par une bibliothèque de confiance.

— Sûreté: le code produit ne contient pas de comportements indéfinis

Le théorème de sécurité correspond aux règles de sûreté de la mémoire et de com-
munication sécurisée des principes de SFI et garantissent l’isolation des modules. Le
théorème de sûreté est nécessaire pour pouvoir appliquer le théorème de préservation
de COMPCERT qui cite: si un programme p ne contient pas de comportements indéfinis
alors le programme compilé p′ a le même comportement que p. Grâce à ce théorème
de préservation, nous avons la garantie que les transformations faites auparavant par
le générateur SFI sont conservées durant la compilation et que le programme compilé
est bien isolé dans sa sandbox.

Ne pas posséder de vérifieur donne plusieurs avantages. Tout d’abord, puisque
les transformations SFI se font à haut niveau, COMPCERTSFI supporte naturellement
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toutes les architectures supportés par COMPCERT. Avec l’approche traditionnelle de
SFI, nous sommes obligés de développer un générateur et un vérifieur pour chaque
architecture. Un autre avantage est que les transformations SFI se font à haut niveau
ce qui permet aux constructions SFI d’être optimisés par le compilateur. En effet, dans
l’approche classique le vérifieur doit être capable de contrôler que du code respecte les
principes de SFI et doit être donc facilement vérifiable. De ce fait, les transformations
SFI ne sont pas optimisés afin d’être visible par le vérifieur SFI.

Nous avons effectué des mesures des performances de COMPCERTSFI et les avons
comparés avec NaCl. En moyenne, notre compilateur a des performances similaires
à NaCl et nous avons observé que les différences résident principalement dans les
performances du compilateur COMPCERT pour les temps d’exécution. En effet, COMP-
CERT est plus lent que gcc ou Clang, utilisés par NaCl, et nos expériences montrent
que l’impact de nos transformations SFI est modeste. Plusieurs pistes sont possi-
bles pour améliorer COMPCERTSFI. La première est de tout simplement améliorer les
performance de COMPCERT en utilisant des variantes plus rapides telle que COM-
PCERTSSA [10] qui possède des optimisations supplémentaires. Une autre idée est
de créer des optimisations spécifiques à SFI pour diminuer encore plus le ralentisse-
ment provoqué par les constructions SFI rajoutées dans le code.

Préservation du flot d’information

Dans la seconde partie de la thèse nous nous intéressons à la préservation de la
sécurité par les compilateurs. Nous expliquons tout d’abord pourquoi ce n’est pas le
cas avec les compilateurs actuels, et nous présentons ensuite nos travaux qui perme-
ttent de pallier à ce problème.

Pourquoi les compilateurs ne préservent ils pas la sécurité? Une personne non
initiée à la sécurité informatique pourrait être surprise qu’un compilateur ne préserve
pas la sécurité des programmes. En pratique, c’est un problème récurent qui ne pos-
sède pas de solutions adéquates aujourd’hui. Par exemple, certaines instructions qui
servent à effacer des secrets de la mémoire ne sont pas comprises par le compi-
lateur et peuvent être retiré par ce dernier pour améliorer les performances du pro-
gramme [116, 104]. Cela introduit alors une faille de sécurité dans le programme com-
pilé malgré le sécurité du programme source.
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Les compilateurs sont conçus pour préserver le comportement des programmes
durant les différentes transformations. Ces comportement sont définis par les stan-
dards des langages sources utilisés. Cependant, qu’en est-il des comportements qui
ne peuvent être exprimés par ces standards? Par exemple, l’instruction x = 0 peut
être utilisé pour effacer un secret qui était stocké dans x . Pour le standard d’un lan-
gage, cette instruction signifie juste que la variable x doit contenir la valeur 0 mais
rien n’est précisé sur l’effacement de l’ancienne valeur. De ce fait, le compilateur peut
mal interprété l’intention du développeur et introduire des failles de sécurité dans les
programmes.

Ce phénomène est encore plus accentué aujourd’hui avec l’apparition de nouvelles
attaques de type canaux cachés. Ces attaques utilisent le temps d’exécution [55], la
consommation d’énergie [56] ou d’autres médiums physiques pour attaquer les sys-
tèmes informatiques. Ces comportements physiques ne sont pas définis dans les stan-
dards de langage et ne sont donc pas modélisés dans les programmes sources. De
ce fait, même si un code est écrit de manière à s’exécuter en temps constant, rien ne
garanti que ça soit le cas avec le code compilé.

Dans cette thèse, nous nous focalisons sur cette problématique et nous proposons
une propriété sur les transformations de programme qui s’assurent qu’un programme
transformé soit au moins aussi sécurisé que sa version source.

Information Flow Preserving (IFP) transformation Nous avons défini une propriété
de sécurité appelée IFP, qui s’assure qu’un programme transformé soit au moins aussi
sécurisé que sa version source, contre un attaquant capable d’observer la mémoire
de manière arbitraire, durant une exécution. Ce modèle d’attaquant est générique et
peut facilement être utilisé pour modéliser des attaques de type canaux cachés. En
plus de cette définition, nous proposons une technique de preuve pour prouver qu’une
transformation est IFP. Des algorithmes sécurisé pour les passes de compilation Dead
Store Elimination (DSE) et Register Allocation (RA) sont également présentés, dans
lesquels, nous utilisons notre technique de preuve pour montrer qu’elles sont IFP. Un
allocateur de registre utilisant notre algorithme a aussi été implémenté, et testé pour
évaluer le coût de notre sécurité sur les performances des programmes.

Nous modélisons un attaquant capable de sonder l’intégralité de la mémoire du-
rant l’exécution d’un programme. Le but de notre propriété est de s’assurer qu’un tel
attaquant n’est pas capable d’apprendre plus d’information en observant une exécu-
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tion du programme transformé que du programme source. Pour pouvoir catégoriser
les fuites d’information en plusieurs niveaux, nous rajoutons des attaquants partiels
qui sont seulement capable d’observer un nombre limité de bits dans la mémoire.
Notre propriété de sécurité cite qu’une transformation est IFP si: pour n’importe quel
attaquant partiel, pour chaque observation possible d’une exécution du programme
transformé, il existe une observation sur l’exécution du programme source qui donne
au moins autant d’informations sur les données utilisé par les programmes. Cette pro-
priété nous assure que pour toute information qu’on peut trouver dans le programme
transformé alors cette information est aussi disponible dans le programme source.

De ce fait, nous avons trouver une condition suffisante pour prouver notre pro-
priété de transformation IFP basée sur le même principe. En effet, l’idée est que,
si nous sommes capables de corréler chaque emplacement mémoire du programme
transformé à un emplacement mémoire du programme source de manière à que ces
emplacements contiennent les mêmes valeurs; alors la transformation est IFP. Cette
condition est basée sur le fait que toute information disponible dans le programme
transformé doit aussi être disponible dans le source.

Finalement, nous proposons des versions sécurisées de DSE et RA et prouvons
qu’elles sont IFP en montrant qu’il est toujours possible de créer cette corrélation entre
emplacements mémoire depuis le programme transformé vers le source. Les expéri-
ences nous montrent que notre allocateur de registre sécurisé apporte un ralentisse-
ment modeste sur les temps d’exécution (15% dans le pire des cas) ce qui conforte la
viabilité de notre approche. Le but final de notre travail est d’avoir un compilateur IFP
complet et les futurs efforts doivent se concentrer à prouver notre propriété sur toutes
les passes de compilation.
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INTRODUCTION

The first full-fledged compiler was written in 1957 for the FORTRAN language. Com-
pilers transform programs written in high-level languages into machine code. These
high-level languages such as Python, C or Java use abstractions that mimic the be-
haviour of actual machines. This has the first advantage to abstract away low-level
details which improves clarity and readability of the code and let developers focus on
programs logic. Another good point of high-level languages is that programs generally
get to be portable across multiple architectures. FORTRAN compiler written in 1957
also included the first compiler optimisations to produce more efficient machine code.
Since then, compilers optimisations have improved by leaps and bounds such that they
have become compulsory in our systems. However, issues arose with the populariza-
tion of the C language which contains numerous undefined behaviours [115] [62]. In-
deed, instructions like division by zero are categorised as undefined behaviours by the
C standard and choice of implementation is left to the compilers. While this gives com-
piled C programs better speed, it can also lead to unexpected program behaviours [96].
A field of research called Certified Compilation tackles such issue and focuses on the
semantics preservation of programs during compilation. Successful projects such as
COMPCERT [66], Vellvm [119] or CakeML [61] were born but semantics preservation
was soon found to be lacking when it comes to security [31]. It may come as a sur-
prise for non-cybersecurity specialist, but compilers are known to be unreliable on this
aspect [32]. Surely, with the growing importance of security in our computer systems,
secure compilers have become an active field of research during the recent years. This
thesis focuses on this topic and shows two aspects of secure compilation. The first one
is enforcement of security properties by the compilers which produces secure executa-
bles regardless of the source program. The second is preservation of security proper-
ties of programs during compilation which makes sure that transformed programs are
at least as secure as their source programs.
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Introduction

Current State of Compilation

Compilers are tools that transform programs written in high-level languages down
to binaries readable by a computer. Compiled languages (C, Rust) are often opposed
to interpreted languages (JavaScript, Python). Multiple differences between these two
categories of languages exist even though the distinction is not so clear nowadays with
the usage of Just In Time (JIT) compilers which compiles code at runtime.

— Self-contained, compilers produce executable files which can be read directly by
the machine, whereas interpreted programs need the corresponding interpreter
to run.

— Efficiency, compiled programs run generally faster than interpreted programs.
Compilers have the advantages to have more time to analyse the source pro-
gram, which enables optimisations while interpreters only run program’s code
line by line. This difference is blurred by the use of JIT compilers which can do
optimisations at runtime.

— Portability, compilers were used for portability in the past where most program-
ming languages were architecture-dependent. Nowadays while compilers need
to support multiple architecture this is also true for interpreters.

Nowadays numerous compilers exist and each puts the emphasis on different as-
pects of the code. Production of efficient compiled code had been an active field of de-
velopment for compilers since its creation. With the rise of portable devices and Internet
of Things, minimization of memory and power consumption have also become highly
desirable criteria. Actually, the optimizing compilers GCC and Clang, mostly known for
compiling C, possess numerous options to customize the compilation of programs. For
instance, one can choose to prioritize speed, size of the code or debugging experience
depending on the context.

Another type of compilers called Just In Time (JIT) compilers brings the benefits of
compilation to interpreted language. A main advantage is that JIT compilers can detect
parts of a program which are executed intensively and optimize this hot code. Most
famous JIT compilers are used in browsers to speed up the execution of JavaScript
like Chrome V8 for Google Chrome or SpiderMonkey for Firefox.

12



Introduction

Certified compilers

Another branch of compilation uses formal methods to prove the semantics preser-
vation of compilers. These formal methods are used to prove a semantics preservation
theorem for the different compiler transformations. The theorem states that the be-
haviour of the transformed program should be included in the source program possible
behaviours.

Formal methods The most common way to see if a program is working as it is sup-
posed to be is through program testing. The program will be executed with different
inputs and the tests check if the outputs have the expected value. An issue of testing
is that it is not possible to test all the possible inputs. Formal methods are another
technique that can be used in addition to testing, to increase the trust we place in a
program’s correctness.

Formal methods use mathematical techniques to improve the conception and veri-
fication of programs in accordance to their specifications. Specifications in the industry
are usually expressed in natural languages, like English, where words or expressions
may have multiple meanings. Therefore, specifications describing the functionality of a
program may be interpreted differently depending on the person or context. To certify
the correctness of a program, formal methods require a description of its behaviour
using precise mathematical terms. With a mathematical language, the specified be-
haviours are described such that there is a unique possible interpretation of the dif-
ferent rules. Using formal methods, one can have stronger guarantees that a system
design matches the requirements imposed. For example, when creating security pro-
tocols, certain properties like confidentiality of the data or authentication of the parties
involved must be enforced. Thus, using a formal description of a protocol, one can
make a proof that the design logic will ensure the desired security properties. Such
techniques are used extensively to secure the future protocols like 5G [13], electronic
voting systems [28]. . . Other than improving the designs of systems, formal methods
can also be used to prove that the implementation of a system respects its formal
specification. For the line 14 of Paris subway, B-method was used to minimize the
gap between the specification and the concrete system. Proofs of formal methods can
be written by hand and checked by humans but there also exist proof assistants, like
Coq [15] or Isabelle [83], to write machine-checked proofs that offer higher trust.

13



Introduction

Semantic Preservation Certified compilers are proven to respect a semantic cor-
rectness property which says that compiled programs behave as intended by the source
program according to the language specifications. A core goal of compilers is to en-
sure that source languages abstractions are preserved down to the binary code. Nev-
ertheless, some compiler transformations alter the behaviour of the source program
accidentally or for various reasons like speed. This may introduce bugs in compiled
programs leading to unexpected results and even security vulnerabilities when exe-
cuting the binaries [115] [62]. To get stronger guarantees about semantic correctness,
formal methods have been used for compilers by the research community.
In the case of certified compilers, formal methods define with mathematical terms the
semantic correctness property described previously: the compiled program behaves
as the source program according to the languages specifications. Secondly, the devel-
oped compiler will be proven to satisfy the semantic correctness property. Examples
of certified compilers include COMPCERT [66], Vellvm [119] or CakeML [61] which are
successful projects created over the past years. COMPCERT is used repeatedly in this
thesis and is thoroughly presented in Section 1.2. Certified compilers preserve the be-
haviour of programs described by the source language standards. However, programs
run on concrete machine which are abstracted in language standards. This gap be-
tween high-level abstractions and concrete machine make certified compilers unable
to preserve certain security properties [31] which are related to low-level details of the
machine.

Why do compilers not preserve security?

Certified compilers ensure that the compiled programs behave as intended by the
source programs according to the high-level language specifications. Then what about
concrete behaviours which cannot be expressed in the high-level language? Power
consumption, execution time or cache behaviour are not defined in the abstractions of
language standards. A new category of attacks called side-channel attacks [55] use
physical behaviours of computer systems to perform their deeds. Protections against
these attacks minimize the leakage from these physical channels. Thus, these security
mechanisms cannot be understood by standard compilers, and may be removed or
compromised during the program transformations. We illustrate this shortcoming with
the example of Figure 1.
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The case of DSE On the left side a toy cypher function called crypt computes a
cypher c from a key key and some text t. Attacks like data remanence are able to
probe into systems memory and steal sensitive data. To mitigate this kind of attack it is
good practice to reduce as much as possible the lifespan of sensitive variables like key
in our program. Line 3, key is set to 0 in order to erase its value from the memory. Thus,
an attacker which would be able to probe the memory at the end of crypt would have
no way to get the key of the program. Unfortunately a compilation pass called Dead
Store Elimination (DSE) is known to break this kind of security mechanism [116][30][2].
For the compiler, the erasure instruction key = 0 has no utility in the computation of
the cypher c. Therefore, to improve the performance of the compiled code, DSE will
optimize away the erasure instruction and produce the program on the right-side. In
this situation, the compiler introduced a vulnerability in the compiled code due to not
understanding the purpose of the erasure instruction.

Occurrences of such cases can be easily found by browsing through compiler
projects [85] or crypto libraries [91]. Multiple workarounds exist to avoid having era-
sure instruction removed, however those are either constrained to some special cases
or specific to a compiler thus not widely adopted.

1 def crypt(key, t):
2 c = key ^ t
3 key = 0
4 return c

1 def crypt(key, t):
2 c = key ^ t
3 skip
4 return c

DSE

Figure 1 – Dead Store Elimination introduces vulnerabilities

Examples of vulnerabilities introduced by the compiler is not limited to DSE [108] [113].
Common programming languages do not have notions of time or power consump-
tion in their specifications. This implies that any countermeasures against these side-
channels are difficultly understood by compilers and might be compromised by the
different compilation passes. This is not acceptable when one is running code manipu-
lating sensitive data. Compilers, when used for critical code, should be able to preserve
the security properties that were enforced at the source level. The principle behind pre-
serving security properties is to make sure that the compiled program is no less secure
than the source one.
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Compilation for Security

Programs lifecycle can be divided into multiple layers from software to execution. In
our situation where we focus on compilation we will consider: development of the soft-
ware, compilation and execution on the hardware. Numerous layers can be included
like operating systems or virtual machine, but for the simplicity of our argument we re-
strain ourselves to these three steps. A general question when doing security is to ask
ourselves at which layer should one enforce security of programs. The semantic of a
program depends on the layer of abstraction we are working on. At source level, the se-
mantic of a program is defined by the standards of the source language used. The com-
piler translates this program until obtaining a binary program which semantic is defined
by the processor targeted. The earlier in the program lifecycle the more abstract is the
view of a program. Checking and maintaining security on abstract representations of
programs has several advantages. First, abstractions of programs are in general more
understandable which allow us to define clearer and more readable security policies.
Second, it will also be more practical to enforce these security policies using program
analysis on the abstractions. Lastly, the abstractions are in general portable to multiple
architectures, meaning that the analysis are reusable for multiple implementations. On
the other hand, one must make sure that security properties which hold at the abstract
level still hold at the concrete level. Furthermore, certain security properties cannot be
expressed with abstractions and can only be implemented at lower levels. For exam-
ple, it is not natural to write programs with low power consumption at source level since
there is no notion of power consumption in high-level programming languages.

Hardware Security The end goal of security is to ensure that the security properties
we want to enforce are effective when the programs are executed by the software. To
be sure that we have secure executions of programs, a simple solution is to solely use
security-dedicated hardware for critical code like secure enclave [100] or hardware hy-
pervisors [39]. Another advantage is that it does not require developers to be able to
produce secure source code. While this approach gives strong guarantees about secu-
rity, the main downside of this idea is flexibility and practicality. Indeed, it takes a fairly
long time to develop new hardware whereas new attacks are discovered every day.
Therefore, in case of a zero-day attack, it is unsuitable to solely use hardware protec-
tions to defend our systems. Furthermore, with the popularization of smartphones and
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Internet of Things, personal data are stored and used by numerous devices. Protecting
all these devices using dedicated hardware does not sound reasonable or would be
too costly.

Enforcement of Security during Compilation The idea here is to use compilation
to make sure that transformed programs are secure. Regardless of the input programs
the compiler will produce a program which satisfies a defined security policy. This is
is more flexible than hardware security since we only need to update the compiler
and recompile the programs to prevail against new attacks. Furthermore, we do not
need to trust the source program to have security at a lower level. This is ideal in the
situation where the source provider is untrusted but too strict in the case where we
let the developers define their own security policy. For example, a source program may
already be secure against buffer overflows but a secure compiler will still enforce its own
countermeasures which add redundant protections. Examples of compilers enforcing
security properties can easily be found. gcc can enforce security protections against
buffer overflows by inserting canaries in the stack of the compiled program [29]. To
mitigate the problem of erasure caused by DSE, Simon et al. [104] propose a variant of
the Clang compiler that erases the registers and the stack frame after returning from a
sensitive function. Enforcement of security properties is used in this thesis in Chapter 2
to ensure that compiled programs satisfy the Software Fault Isolation policy.

Preservation of Security during Compilation Preservation of security is most suited
to the situation where the security of programs is devised by the developers This is the
most flexible solution, since the developer can define precisely the security policy that
it wants. Indeed, using a secure hardware (resp. compiler) only guarantees that the
hardware (resp. compiler) security policy holds but it may not be the one desired by
the developer. For example, let assume a password checker written such that the last
character typed is visible to the user. A secure compiler may deem that this is a breach
of security and change the password checker such that no characters are visible. While
this is more secure, this is also not the intent of the developer which may be consid-
ered as a compiler bug. Several works focus on the preservation of security during
compilation. Jasmin [3] is a low-level compiler which focuses on preserving the secu-
rity of cryptographic implementations. Barthe et al. [11] present a compiler prototype
to preserve constant-time properties across transformations. The issue we tackle in
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Chapter 3 also corresponds to the preservation of security properties during program
transformation.

Content of the thesis

This thesis is divided into three chapters. Additional background information is given
in Chapter 1 where we first present multiple memory attacks that we want to address
in Section 1.1. Then, since the certified compiler COMPCERT is used multiple times in
the thesis, Section 1.2 gives an overview of COMPCERT.

Chapter 2 deals with Software Fault Isolation (SFI). SFI is an isolation technique
which allows a program to safely host untrusted modules into its own memory by plac-
ing them into sandboxes. The principles and current techniques of SFI will first be
detailed in Section 2.1. Then we will present our compiler COMPCERTSFI, which takes
a C program as input and produces a binary which execution is confined into a sand-
box. COMPCERTSFI has been derived from COMPCERT presented previously and has
been proven to produce SFI secure programs.

Staying on the theme of compilation and security, Chapter 3 deals with the issue
of preserving security of programs during compilation. In our work, we focus on at-
tackers which are able to probe the memory during an execution (like power analysis
attacks). We define a notion called Information-Flow Preserving (IFP) transformation
which makes sure that a probing attacker cannot learn more information from the trans-
formed program than from the source program. An implementation of an IFP Register
Allocation is also presented to show the viability of our approach.
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CHAPTER 1

BACKGROUND

1.1 Memory threats

In this thesis, we want to use compilation to prevail against attacks targeting the
memory of programs. Such attacks can lead to privileged access on a server or leakage
of sensitive information manipulated by the program. We divide these attacks into two
categories: algorithmic and side-channel attacks. Algorithmic attacks such as buffer
overflow target program vulnerabilities which allow an attacker to meddle with memory
areas that should not be accessible. On the other hand, side-channel attacks target
computer systems directly and use physical information such as time or power con-
sumption to carry out the attack.

1.1.1 Common attacks against memory

In Chapter 2 we work with an isolation technique called Software Fault Isolation
which protects a host program from being corrupted by external untrusted modules.
The two vulnerabilities we present: Buffer Overflow and Format String attacks can
be mitigated using such isolation techniques. These two attacks have been discovered
more than twenty years ago but are still ongoing threats. They both appear in programs
written with low-level programming languages like C/C++ or Assembly. In these low-
level languages, multiple tasks are left to the developer like memory management or
bound checking which may lead to serious vulnerabilities if done incorrectly.

1.1.1.1 Buffer overflow

Buffer overflows are one of the most common vulnerability used by malicious par-
ties [70]. The vulnerability was first studied and published in 1972 by Computer Se-
curity Technology Planning Study. Despite knowing and dealing with this vulnerability

19



Partie , Chapter 1 – Background

for more than forty years, attacks using buffer overflows are still used nowadays. For
example, in 2014, OpenSSL was diagnosed with its most impactful security flaw called
Heartbleed [36]. A buffer overflow vulnerability was detected in their implementation of
the TLS protocol which could lead to leakage of private keys used during a communi-
cation. This would allow the attackers to decrypt the targeted exchange but also past
messages of the involved parties. The typical case of buffer overflow is to access mem-
ory locations which are out of an array bounds. Attackers are then able to read or write
on memory locations which should be not accessible. For example, Return-Oriented
Programming (ROP) seeks to overwrite the return address stored in the stack of a
function and is illustrated in Figure 1.1. An array is stored in the stack frame of a func-
tion. Using a buffer overflow, an attacker is able to overwrite memory which does not
belong to the array. The attacker manages to reach a stack location containing a return
address and overwrite it with an address of its choice. This is usually the address of
some malicious code injected beforehand by the attacker called payload. The attacker
successfully manages to execute its own code and gets control of the process. One

Array
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overflow

Array

Buffer
overflow

Overwritten
memory

Payload
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Stack
 after buffer
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code
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Figure 1.1 – ROP exploit

solution to mitigate ROP attacks is to make the stack or the heap non-executable. In
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this situation the attacker is unable to leave a payload in the process memory and
ROP attacks do not have a target to redirect the control-flow. A more advanced version
bypasses this protection and is called Return-To-Libc [93]. Instead of jumping to a
malicious payload, the overwritten return address points to instructions of the C stan-
dard library which is loaded in the executable memory. The usual target is the system
libc function which can be used to execute shell commands. Multiple countermeasures
exist such as protecting the stack by detecting any illicit overwriting of the stack us-
ing so-called stack canaries [29]. Another solution is to use Address Space Layout
Randomization, which randomizes the memory layout at the creation of the process,
making it more difficult, but not impossible, for an attacker to redirect the control-flow to
its advantage.

1.1.1.2 Format string attack

Format string vulnerability was first discovered in 1989 [74] while fuzz testing UNIX
operating systems but actual exploits did not occur before the early 2000s [23]. New
vulnerabilities are still publicized by the MITRE in their CVE lists. While most of them
are limited to leaking content of the memory, some exploits have been shown to give
root access to the attacker [111]. The attack targets the C printf-family functions which
have the peculiarity to be variadic functions, meaning that the number of parameters
they expect is variable. An example is illustrated in Figure 1.2. printf role is to output

"Hello,buf

44

Stack

printf(buf);

"Hello,	44"

leakage

%d"

Figure 1.2 – Format String exploit

the string parameter given in the first position (buf in the example). If the string contains
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a format (pattern starting with a %, %d in Figure 1.2), then printf expect additional
parameters to replace the formats. Hence printf number of parameters depends on
the number of formats found in the first string parameter. In our example, printf was
called with a single argument, therefore the developer expected the users to give a
string without any format. In the situation where a malicious user still gives a string
containing a format such as “Hello, %d”, the program will look at the neighbouring
memory for the non-existing additional parameters. Here the memory adjacent to buf
contains the integer 44 which is a random value of the stack but will get printed on
the screen. This way, a user can inspect the content of the memory using this format
string vulnerability. Similar to buffer overflows, format string attacks can also alter the
control-flow of the program by writing values on the return address using the %n format.
Fortunately, most format string vulnerabilities can be detected using static analysis.
However hard cases where the first string parameter of the printf-family function is
generated at runtime are still difficult to prevent.

1.1.2 Side-channels attacks

Side-channel attacks have the particularity to target a characteristic of an imple-
mentation using physical mediums such as time, sound, power consumption. . . Paul
Kocher first published an attack on cryptographic algorithms using Timing Attacks in
1996 [55] and then presented the concept of Differential Power Analysis in 1999 [56].
New channels are still discovered, recently, an attack using smartphones accelerom-
eter to uncover the content of a discussion through the vibrations was published [90].
While many of these attacks may be unpractical to carry out, some of them are effec-
tively used in the real world such as the infamous Meltdown [71] and Spectre [57] which
use timing attacks to recover data leaked by the target. In this section, we present three
side-channel attacks: cold boot, timing and power analysis attacks. Numerous other
side-channels exist but these three have been chosen due to their closeness to the
attacker model we use in Chapter 3.

1.1.2.1 Cold boot attacks

Contrary to common beliefs, after being shut down, RAM preserves the content
of its memory for a period of time, which lasts from few seconds up to few minutes
at low temperature. The goal of cold boot attacks is to reset a system and execute a
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script that starts on boot which dumps the content of the RAM. This allows attackers to
bypass any disk encryption systems by getting the cryptographic keys directly from the
unprotected RAM. Even though warnings against this attack can be traced back from
the 1990s, Halderman et al. [45] were the first to propose a practical way to mount cold
boot attacks. Simmons [103] proposes a software system to store encryption keys in
CPU registers instead of the RAM at the cost of significant overhead. Other solutions
advise to have the BIOS directly clear the RAM on boot, to wipe RAM on sudden
temperature drop or to lock the boot process. However, Gruhn and Müller [43] show
that these solutions can be circumvented by transferring the RAM modules to another
computer. Lastly, they also claim that, empirically, DDR3 RAM seems to be immune to
this kind of attack.

1.1.2.2 Power Analysis

Power analysis uses the power consumption to track the behaviour of a program.
This can be done easily by connecting an oscilloscope to the power cable of the tar-
geted device. Similar to power analysis, electromagnetic analysis detects the magnetic
waves produced by a device to perform an attack. These two side-channels follow the
same principles and both the attacks and the mitigations are similar. Therefore, most of
what we present on power analysis in this thesis is also applicable to electromagnetic
analysis.

Simple Power Analysis (SPA) SPA monitors the variation in power consumption of
a system caused by the different instructions that are executed. Since instructions have
different power consumptions, attackers can infer the inner computations of a proces-
sor and guess the secret values used during the execution. Kocher et al. [56] advice to
avoid using certain instructions which have distinct power consumptions like branching.
Another solution is to use hard-wired implementations which have low power consump-
tion variations. In general, the goal of these countermeasures is to either reduce the
emission of useful signal or to increase the noise around to disturb the measurements.

Differential Power Analysis (DPA) DPA exploits the variations in power consump-
tion of an execution caused by the value of certain bits during the executions. The
influence of a bit on power consumption is small but using a statistical attack on nu-
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merous executions, DPA is able to extract a fingerprint of whether a bit is set to 0 or
1. DPA is troublesome for security since popular countermeasures that seek to reduce
the signal to noise ratio are not effective. Indeed, given a sufficient number of observa-
tions, an attacker is still able to differentiate the signal from the noise and get sensitive
data. One of the most effective solution is to use masking [42] which split secrets into
multiple random shares. Computations are then done independently on these shares.
Since the shares are changed for every execution, random noise is added to the signal
and prevent DPA. Masking is further detailed in the thesis in Section 3.1.4.2. A more
advanced version of DPA exists called Higher-Order Differential Power Analysis which
samples the power consumption multiple times within the same execution. The attack
is difficult to perform but in theory an attacker can retrieve bits of information with a
single execution.

1.1.2.3 Timing attacks

Timing is one of the first side-channel researched [55] and one the most infamous
one. This is first caused by the existence of large scale attacks using such channel
(Spectre [57] and Meltdown [71]) and also due to the practicality of the attack. The goal
of the attackers is to correlate the timing behaviours of a program with the different
inputs they have submitted. Using this correlation, an attacker retrieves information on
the internal state of the program which can lead to data theft. A simple example is the
password checker. A timing vulnerable password checker would give the result of the
checking as soon as it finds a wrong digit or if all the digits are correct. Therefore, an
attacker can use the variations in response time to have additional information on the
correct password. A quick failure from the checker may corresponds to the first digit
being false and a longer failure would correspond to a false latter digit. Therefore, the
attacker is successful since it is able to reduce the cost of mounting an attack using
the checker response time. A first solution to timing attacks was inputs blinding [55].
The idea is to transform the inputs with a random value, do the computations and un-
transform the result before returning. The attacker is then unable to correlate the time
measured with the inputs it gave. Unfortunately, Backes and Köpf [9] show that while
blinding reduces the leakage, an attacker with enough observations is able to over-
come this countermeasure. Another proposition is to improve blinding by combining
it with bucketing [58]. Bucketing consists in imposing several fixed execution times to
programs. Time is split into intervals separated by these fixed times and when an exe-
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cution terminates in an interval, it is delayed until the time reaches the upper bound of
the interval. The previous countermeasure yields meaningful security but an attacker is
still able to get information from the timing channels. In theory, Constant-time program-
ming is a complete solution against timing attacks. The principle of constant-time pro-
gramming is that duration of executions should not depend on secrets. More precisely,
instructions with specific timing footprint like branching or memory accesses should not
depend on secrets. Constant-time gives theoretical complete protection against timing
attacks since attackers should not be able to guess any information on secrets using
timing information. The downsides of this approach resides in the fact it may be difficult
to implement in practice or comes at a large performance penalty [14].

1.2 COMPCERT

This thesis uses the COMPCERT compiler in both projects on Software Fault Isola-
tion and Information Flow Preservation. Therefore, in this section we give an overview
of COMPCERT.
COMPCERT [66] is a C compiler written by Xavier Leroy which have been machine-
checked by the Coq proof assistant [112]. It compiles C programs down to assembly
code through a succession of compiler passes which are shown to be semantics pre-
serving. One of the most important point concerning COMPCERT is that it is a complete,
realistic and certified compiler. Complete and realistic refer to its capability to transform
high level C language all the way down to assembly for four common architectures: x86,
ARM, PowerPC and RiscV. Previously certified transformations were mostly developed
for specific optimisations using static analysis [64] or for custom languages [75]. Cou-
pled with satisfying performance for compiled code (similar to gcc -O1), COMPCERT is
an attractive tool to tackle real world problems using formal methods and compilation.

COMPCERT is divided into multiple passes shown in Figure 1.3. Compiler frontend
of COMPCERT starts from the COMPCERT C to Cminor which is basically untyped C
without side-effects. Afterwards a Control-Flow Graph (CFG) is built in RTL from the
program and will be optimised by different compilation passes. Up to here the program
is still architecture independent and will now go through multiple transformations which
takes into account the target architecture (number of registers, calling conventions, . . . )
until reaching assembly code. The compilation chain from assembly to binary uses gcc
assembler and linker by default and is not certified.
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Figure 1.3 – COMPCERT compilation chain
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COMPCERT Soundness Theorem.

Each compiler pass is proved to be semantics preserving using a simulation argu-
ment. Theorem 1 states semantics preservation.

Theorem 1 (Semantics Preservation). If the compilation of program p succeeds and
generates a target program p′, then for any observable behaviour beh′ of program p′

there exists an observable behaviour of p, beh, such that beh′ improves beh.

In this statement, an observable behaviour is a trace of observable events which
can be:

— whether a program terminates normally, diverges or goes wrong. A program di-
verges if it runs forever. A goes wrong behaviour corresponds to a situation where
the program semantics gets stuck (i.e., has an undefined behaviour). In this sit-
uation, the compiler has the liberty to generate a program with an improved be-
haviour i.e., the semantics of the transformed program may be more defined (i.e.,
it may not get stuck at all or may get stuck later on).

— calls to external functions

— reads or writes to volatile variables. These volatiles can correspond to mapped
memory and are hence treated as input/output operations

Two points can be noted from Theorem 1. First, COMPCERT is allowed to fail during
compilation in case of errors. Secondly, since C is a non-deterministic language, the
compiler is free to pick one behaviour of its liking.

If a source program p respects a specification Spec which corresponds to a set of
acceptable traces if for any of its observable behaviour beh we have beh ∈ Spec. We also
say that Spec is a safety property, which defines a set of acceptable behaviours. A goal
of COMPCERT is to make sure if source program respects safety property Spec then for
any observable behaviour beh′ of compiled program p′ then we also have beh′ ∈ Spec.
However, Theorem 1 is not sufficient to preserve a trace property because the target
program p′ may have behaviours that are not accounted for in the program p and could
therefore violate the property. Corollary 1 states that in the absence of going-wrong
behaviour, the behaviours of the target program are a subset of the behaviours of the
source program.

Corollary 1 (Safety preservation). Let p be a program and p′ be a target program.
Consider that none of the behaviours of p is a going-wrong behaviour. If the compilation
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of p succeeds and generates a target program p′, then any behaviour of program p′ is
a behaviour of p.

As a consequence, any (safety) property of the behaviours of p is preserved by
the target program p′. While vanilla COMPCERT is suited to preserve safety proper-
ties it might be lacking for some security properties. One issue is that COMPCERT is
only able to preserve behaviours that are defined as “observable”. Security properties
which depends on events that are not observable by COMPCERT may not be preserved
during compilation. A second point, is that COMPCERT preserves safety properties but
no guarantees have been made concerning information-flow properties. Contrary to
safety properties, information-Flow properties are defined over a set of executions and
includes multiple useful security properties such as non-interference [41] or constant-
time [14].
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CHAPTER 2

SOFTWARE FAULT ISOLATION

Because big software systems are complex to maintain and customize, many popu-
lar projects can be extended by third-party modules. They can be operating system ker-
nel’s modules such as Linux’s .ko modules, web-browser extensions, native libraries,
or any kind of plugin. They extend the possibility of their host software. For the Linux
kernel, the .ko modules that can be loaded using the modprobe command. For a web
browser, these are native plugins such as Adobe’s Flash player. For interpreters, these
are the native libraries of the system that can be loaded and used from the interpreted
language. In Java, this is a native method.

We fix some terms that we will use continuously in this chapter: “host” refers to a
trusted program that uses external untrusted “modules” for computations.

Cooperation between a host program and third-party modules has lots of advan-
tages such as separation of tasks, reuse of efficient code, customization for the users. . .
However, while the host software is usually of good quality, carefully developed and
extensively tested, its modules can lack such quality. Such modules may provide back-
doors to attackers who wish to corrupt our host program. For instance, Adobe’s Flash
player is a complex software with a long history of security issues. Because it is run
as a standard process without any restriction by the web browser, attackers can use a
vulnerability in this extension to remotely control the computer running it. Similarly, a
bug in a kernel extension can lead to privilege escalation by corrupting another, unre-
lated part of the kernel, or by using the extension privileges to corrupt other parts of the
system. Furthermore, in some cases the module may be malicious itself and can target
the host program directly. Numerous techniques already exist to prevent a corrupted
module from spreading to other entities and are called isolation techniques.

With the progress of computers, requirements on speed have been constantly in-
creasing. The main challenge that isolation techniques face nowadays is to ensure
security of the host program while limiting the impact on speed of the computations.
Techniques including the use of a virtual machine or a monitor [40] provide strong
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security guarantees. These techniques give more control to the host, because it can
specify a fine-grained security policy and enforce it. Unfortunately, such techniques
imply a lot of overhead because of frequent and complex dynamic verifications. Oper-
ating system processes is another a solution. They provide weaker isolation than the
previous techniques but have faster communication channels between processes. The
weaker isolation guarantees come from the fact that, although processes have sepa-
rate virtual memories, they still share multiple components like actual memory, cache,
CPU. . . However, the cost of context switching between processes is still high and is
not acceptable if communication between host program and modules. The isolation
technique we present in this chapter is called Software Fault Isolation (SFI). SFI is an
isolation technique which allows a main program to work with untrusted module safely
and with maximum speed for host-module communications. The main program will host
the untrusted modules in delimited “sandboxes” directly in its own memory space to al-
low faster exchanges. Modules are not able to write or jump outside of their sandboxes
and communication is constrained to a thoroughly checked interface. Such limitations
are enforced by code rewriting of the modules. These modifications take effect at run-
time and cause slight overhead for the modules in exchange of maximum speed for
host-module communications. Situations where modules only contain a small amount
of code but are called frequently are perfect for SFI.

In this chapter on SFI we first present some common isolation techniques and com-
pare their advantages and disadvantages with SFI. Then we will explain SFI in detail
and show the current state of SFI, the state-of-the-art techniques and how it is used
nowadays. Finally we will introduce COMPCERTSFI, our implementation of SFI that use
the certified compiler COMPCERT to ensure the security of our approach.

2.1 Software Fault Isolation (SFI)

In this section, we present the state of the art related to SFI. First of all, we introduce
in details the principles of SFI, which have been greatly explained in the work of Wahbe
et al. [114]. We will see that in general SFI can be divided into two parts: the generation
of secure code and the verification of the executables before loading. Hence, we will
begin by presenting the different implementations for the generation of SFI compliant
code. They usually aim to obtain both security and speed which are the strong points
of SFI. Therefore, optimisations to obtain faster SFI have also been a main point of
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research and are detailed Section 2.1.4. Finally, we will also talk about the verification
step which may look simple but covers the difficult issue of reliable disassembly of
binaries.

2.1.1 Principles of SFI

The goal of isolation is to make sure any bug or vulnerability in a module cannot
affect the integrity of the host. In this section, we introduce the main ideas of Software
Fault Isolation. All recent implementations are derived from these principles. Those
concepts are presented in a simple setting here, some issues and implementations
specific details are presented later in following sections. The goal of SFI is to allow
a host program to execute safely potentially dangerous modules in its own address
space. To accomplish that, these modules are isolated in delimited areas of the host
memory called sandboxes. In most implementations of SFI each module possesses
two sandboxes. One of the sandboxes is located in the code segment (where the code
is stored) and the second in the data segment. Jump from a module needs to target
an address of the sandbox of the code segment. The same applies for any writes with
the sandbox of the data segment. We will use this model (1 module, 2 sandboxes) to
explain the principles of SFI.

The SFI approach can be divided into two core steps. The first one is the rewriting
of the untrusted module to prevent it from accessing any memory out of its sandbox.
The second one is the verification of the rewritten code before loading it into memory.
This step checks if the rewriting done in the previous part is still present and valid in
the code.

2.1.1.1 Foundations of SFI

The main principle behind SFI was first presented in the work of Wahbe et al. [114].
The implementation described in the paper was destined for a RISC architecture like
MIPS or Alpha.

SFI declares that a module is effectively contained in the sandboxes if the following
three security properties are true:

— Verified code: only instructions that have been checked by the verifier will be
executed
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— Memory safety: the module will not write or jump out of its sandboxes

— Secured communication: every control flow transfer from the module to the host
program pass through a secure interface. All the calls to the interface are identi-
fied and checked against security rules defined by the host.

The first property makes sure that all the code executed by a module will be checked.
This also means that if the module contains self-modifying code the code produced
at runtime also needs to be verified to be able to run. In [114] self-modifying code is
forbidden but this feature is required in NaCl [117] (an implementation of SFI). Memory
safety prevents any illegal access to the memory of the host program. In this case we
forbid any write and jumps but stricter policies also forbid modules to read data located
outside of the code sandbox. The last property allows only licit interactions between
the host and the module. Hence, the control flow cannot be compromised avoiding
unexpected behaviour from the host program.

2.1.1.2 Toolchain

The SFI toolchain of [114] is presented in Figure 2.1. The SFI generator transforms
the assembly code of the untrusted modules so that they respect the security properties
presented before. The generator is integrated into the compiler which will create a
sandboxed executable. Afterwards this executable is checked by the verifier before
being loaded in memory. The verifier checks that the transformations introduced by the
generator are present and valid. If the verification fails the module is rejected and is not
executed. When evaluating security implementations one important criteria is the size
of the Trusted Computing Base (TCB). This corresponds to the core code that needs
to be correct so that the security properties of the implementations still hold. With SFI,
as long as the verifier is correct, it is not possible to execute modules that do not satisfy
the SFI policy. This is one advantage of SFI: only the verifier needs to be in the TCB.

2.1.1.3 Code transformation

To protect a program from its modules, the generator will modify every write and
jump instruction of the modules so that they can only target addresses of their sand-
boxes. The generator has to face three issues to do so. The first one is to introduce pro-
tection mechanisms before every dangerous instruction in order to confine the modules
within the sandbox. Secondly, we have to make sure that these protection mechanisms
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Figure 2.1 – SFI toolchain

cannot be circumvented by the modules. Finally, we only allow the modules to interact
with the host program through a secured interface specified by the latter. For example,
a browser only allows its modules to use web APIs to interact with its resources. This
way, untrusted modules can only act within the boundaries of the web APIs which is
secure if correctly designed and implemented.

Confining memory accesses. For jumps or writes using direct addressing mode
(the address is hard-coded in the code) simple static analysis can check if the target
address is authorized. The issue lies in indirect addressing mode where the target ad-
dress is computed at runtime. For these cases, using security enforcements that take
effect at runtime is more suited to ensure that the module stay within the sandboxes.
One choice would be to add dynamic checks in the module code to verify whether the
computed address is licit or not. This gives more control when the SFI policy is vio-
lated allowing to pinpoint and handle faults easily. The choice taken in SFI is to use
a transformation called sandboxing. The idea is that regardless of the target address
it will be rewritten to be within the boundaries of the concerned sandbox. Obviously if
the address was already within the correct sandbox, the sandboxing operation should
be idempotent and should only modify illegal addresses. This principle is called trans-
parency, SFI transformations do not change the execution of safe programs. Sand-
boxing has the advantage of having lower overhead than checking addresses, given
certain requirements that we detail next.

The sandbox needs to be a contiguous memory area whose size is a power of
two. These requirements allow easier and faster sandboxing by allowing the use of bit
arithmetic. In these conditions, we only need to verify that the most significant bits of the
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targeted address match those of the concerned sandbox. For example, if we allocate
the memory area [0xda000000 - 0xdaffffff] to a sandbox, then all the addresses
whose most significant bits match 0xda are located in this sandbox. Thus, all the SFI
transformations will restrain the memory writes and jumps to the addresses of the
sandbox area. In the future examples, we will keep using this sandbox which most
significant bits are 0xda, this sequence of bits is also called a tag. Each tag is specific
to a unique sandbox and this term will be used repeatedly in our report.

The sandboxing operation is simple: the targeted address has its most significant
bits replaced by the tag of concerned sandbox.

Figure 2.2 – Possible code for the sandboxing operation

Figure 2.2 represents an example of the sandboxing operation. The sandboxing
starts with a masking operation which sets the most significant bits of the address
stored in the register ebx to zero. Afterwards the second instruction writes the tag of
the sandbox on the bits it just reinitialised before. Hence, we are sure that the jmp
instruction will target a location in

the sandbox of the untrusted module. Note that as mentioned previously, the sand-
boxing does not change the behaviour of the module if the targeted address is already
in the sandbox. For the write instructions, the principle is the same. We inject the sand-
boxing instructions before every write that can endanger our host program.

Protection of the sandboxing mechanism. We made sure in the previous section
that a module cannot jump or write to a location out of its sandbox. Now we also want
to protect the sandboxing operations to prevent any malicious code to bypass the run-
time checks inserted by SFI. Using the example in Figure 2.2, we could imagine code
which directly jumps to the jmp eax instruction. To protect the sandboxing, the solu-
tion is to reserve dedicated registers exclusively used for sandboxing. Masks and tags
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are always the same and by storing them in dedicated registers we make sure that
they cannot be used with wrong values. Furthermore, the dedicated registers used for
jumps and writes will always contain addresses within the sandboxes which prevent
any illegal memory accesses. These registers will not be available anymore for the rest
of the code. Sandboxing requires three dedicated registers for each sandbox. These
dedicated registers were not represented in Figure 2.2 for simplicity but are necessary
for the sandboxing operation described. A first register is used to keep the mask value
(0x00ffffff in Figure 2.2). A second register is reserved to store the tag of the con-
cerned sandbox (0xda000000 in Figure 2.2). Those two registers are necessary in the
original implementation of SFI [114] because the size and value of a sandbox tag is
unknown at compile time. However, these two registers can be replaced by constants
(like in Figure 2.2) reducing the number of dedicated registers by using code rewriting
at load time. The third dedicated register is used to manage the operations contained
in the sandboxing, in our example in Figure 2.2 it would be the register eax. This way
during the whole execution of the module eax only stores addresses of its sandbox.
Then even if malicious code can jump directly to the instruction jmp eax we are sure
that it stays in the sandbox. Worst case scenario would be that the value stored in eax
was wrong and the dangerous module crash or has unexpected behaviour within the
sandboxes. As long as the host program is not compromised by the behaviour of its
modules the it is considered successful.

These dedicated registers are never used by the rest of the code and their values
cannot change except during sandboxing operations. Since we have two sandboxes,
one for the data and one for the code we then have a total of six dedicated registers.
However, SFI manages to reduce the number of dedicated registers to five by sharing
the same mask for both sandboxes. We can question ourselves on the efficiency of
SFI when we remove five registers for the execution of the module code. [114] targets
modern RISC architecture like MIPS or Alpha where there are generally 32 general-
purpose registers. Moreover, the experiments show that removing five registers for the
gcc compiler impacts insignificantly the efficiency of the programs tested. For architec-
tures like x86 or ARM where the number of registers is smaller, specific techniques are
used to lower the number of dedicated registers and will be discussed in Section 2.1.5.

Controlled interactions with the protected program. It is necessary for SFI to also
control the different interactions between the module and the host program. Without
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restrictions, malicious modules could, for example, make function calls with wrong pa-
rameters which could compromise the state of the host program. To avoid such a sit-
uation, SFI needs the host to define an interface which describes all the authorized
entry points with the allowed values for parameters. SFI then transforms the module so
that every call to the host program passes through connectors called stubs at runtime.
These stubs make sure that calls from the module to the host program are identified
and authorized. Furthermore, the stubs make sure that the parameters supplied are
within the range of authorized values defined by the interface. If a call to the host does
not respect the interface, the call will be rejected in a way defined by the implementa-
tion (for example the module will crash). These stubs are part of the trusted library of
SFI which also setup the sandbox at runtime. The trusted library is part of the Trusted
Computing Base (TCB) of SFI with the verifier. System calls are controlled the same
way. The stub first checks the call, and if it is authorized, it transmits the system call to
the host. Then the host executes the system call to the kernel and returns the results
to the module.

call 0x... sandbox

verify stub

actual function host program

1

2

3

4

Figure 2.3 – Overview of the work of a stub.

Figure 2.3 summarizes the role of the stub:

— 1: Direct call to the stub;

— 2: After verifying the arguments, the stub calls the function;

— 3, 4: Return to the sandbox.

All implementations of SFI share this concept albeit with different names.
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2.1.1.4 Verification

The verifier is the last element of the SFI chain. Consequently, it is necessary for
it to be part of the TCB contrary to the code generator. As long as the verifier is not
flawed only modules that respect the security policies of SFI will run in the host memory.
Therefore, if the code generator is flawed then the verifier will reject all these potentially
dangerous modules. Even if this is not useful for computations this protect our host pro-
gram against untrusted modules. Nevertheless, the verifier relies on the generator work
to do the checking. It is important for the verifier to be sound (all modules accepted by
the verifier are secure) but it is difficult for it to be complete (all secure modules are ac-
cepted by the verifier). Usually, verifiers are tailored to check modules that have been
rewritten by a specific code generator. Indeed, most verifiers know the SFI constructs
employed by specific generators and are only able to check the SFI properties for these
constructs. While this does not allow flexibility when choosing a verifier and a gener-
ator it has the advantages to keep verifiers simple and fast. Since verifiers are part of
the TCB, having simple code and logic in verifiers gives us stronger trust in the SFI
implementations. Therefore, for modules that have not been transformed by its code
generator, a verifier will most of the time reject them even if they are secure.

The verification process can be divided into 5 steps:

1. disassemble the binary of the module

2. writes and jumps use hard-coded addresses of the sandboxes or dedicated reg-
isters

3. dedicated registers holding the mask and tags are never modified

4. dedicated registers holding addresses for sandboxed jumps and writes cannot be
used without going through sandboxing

5. calls to the host program pass through stubs

Verification is applied to binary modules so the first step is to disassemble them. The
implementation of Wahbe et al. [114] was made for the architectures MIPS and Alpha.
In these architectures, all the instructions are 32 bits long. This particularity makes the
disassembly easier since we just need to treat sequences of 32 bits. Steps 2 to 4 en-
sure that no writes or jumps can access memory outside of the sandboxes. For step
4, every time the dedicated registers used for sandboxed write or jump are modified,
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the verifier labels the following lines of code as an unsafe region. For better compre-
hension, we call these registers operation registers. It is important for these operation
registers to always contain an address of a sandbox when jumping or writing in the
memory. Indeed, if an instruction of the module manages to bypass the sandboxing
we know that at least it won’t affect memory outside of the sandbox. Therefore, these
unsafe regions represent lines of the module’s code where operation dedicated reg-
isters may contain addresses outside of the sandboxes. Unsafe regions start from an
instruction which modifies the value of an operation register and stop when encounter-
ing a sandboxing operation or the end of the code segment. To validate a sandboxing
block, the verifier makes sure that no writes or jumps can be executed in these unsafe
regions.

Most techniques presented in this section were directly related to the work of Wahbe
et et al. [114] who laid the foundations of SFI. Improvements, new issues and imple-
mentations for other architectures are presented in the following section.

2.1.2 Adapting and extending SFI to other architectures

The work of [114] presents a version of SFI for MIPS and ALPHA with certain imple-
mentation choices like forbidding the use of function pointer. However, when extending
SFI to other architectures new issues appear and have to be dealt with. For example,
CISC architecture do not have fixed-length instructions allowing jump in the middle of
an instruction. In some architectures, like x86, return instructions use a return address
stored in the stack to execute. This address also needs a form of sandboxing to prevent
any jump outside of the sandboxes. Furthermore, we will show how the principles of
SFI can be extended to enable certain features like function pointers or self-modifying
code in untrusted modules.

2.1.2.1 Splitting the code into constant bundles

In CISC architectures, instructions vary in size, and the huge number of different
possible instructions makes it possible that reading an instruction starting at the mid-
dle of another will execute something meaningful for the processor. In RISC since all
instructions have the same size you can only specify an instruction number as jump
target rather than an address. Therefore, it is not possible to jump in the middle of an
instruction as in CISC where hiding and executing an arbitrary jump inside a seemingly
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jmp

0x1111

jmp	0x1234 jmp	0x1234

0x1234

jmp	0x1234

1. Authorized jump
within the sandbox
to address 0x1234

2. Address 0x1234	is in the
middle of an instruction

3. The next instruction read
is a jump to address 0x1111

0x1111

4. 0x1111 is not in the
sandbox. An instruction
outside of the sandbox is
executed

Sandbox Sandbox Sandbox

Figure 2.4 – SFI vulnerability in CISC architecture

harmless instruction is possible. Figure 2.4 illustrates how a module can jump outside
of its sandbox. First it will execute a jump at address 0x1234 which is in the sandbox
and is authorized. However, 0x1234 is an address targeting the middle of an instruction.
The CPU when decoding from this address will read the instruction jmp 0x1111. This
instruction has never been decoded by the verifier and would have been rejected if it
had (0x1111 is not within the sandbox). Hence the CPU will jump outside the sandbox
and violate the security policies of SFI.

To avoid this, Pittsfield [73] suggests dividing the code into chunks whose size and
location are a power of two. These chunks behave like atomic operations. Hence it is
not possible to execute the second instruction of a chunk without executing the first one.
Thanks to these properties the sandboxing mechanism can be protected so an attacker
cannot avoid the masking present before every dangerous instruction. Therefore, to
obtain such properties on these chunks, the following requirements need to be fulfilled:

1. Chunks have a fixed size equal to a power of two;

2. Chunks locations are aligned on their size;

3. Instructions that are targets of jumps are put at the beginning of a chunk;

4. Jump and call instructions are checked so they have their target address always
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are multiples of the chunks size;

5. Call instructions are placed at the end of a chunk to have the return at the begin-
ning of the next chunk;

6. A protected instruction and its sandboxing are gathered in the same chunk;

7. It is forbidden to have an instruction overlap on two different chunks;

8. Chunks are padded with no-op instructions.

write

masking

code

1. 32 bytes
2. aligned on 32 bytes

nop

call

5

7 8

6

jmp

Figure 2.5 – Implementing constant bundles

Implementation of these requirements are illustrated in Figure 2.5 with 32-bytes
chunks where the numbers match the requirements listed above. Drawbacks of this
approach are the increased size of the code but also the overhead due to added nop
instructions. Indeed, Pittsfield benchmarks show slowdowns reaching up to 50% in the
worst case. Their analysis points that most of the slowdowns encountered was due to
the nop instructions.

2.1.2.2 Protecting the return address

The return address is an issue appearing on architectures where the ret instruction
does not need to explicitly specify which address it needs to return to. In x86 ret uses
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an address stored in the stack for its target address. Since the target address is not
stored in a register, it is possible to have race conditions with the classic masking
mechanism. For example, if a malicious thread modify the return address in the stack
after the masking operation then the CPU might return to an address outside of the
allowed sandbox.

2.1.2.3 pop+jmp

A common technique to tackle this issue is to replace the ret instruction with a
pop+jmp combination presented in Figure 2.6. The pseudo-code on the left masks
the return address directly on the stack. Since stack memory is reachable from other
threads it is possible that the value pointed by esp has been modified by another thread
between the sandboxing operation and the ret instruction. Therefore, instead of mask-
ing the value stored at the location pointed to by esp we use traditional masking on
register eax and we replace ret by pop+jmp. However, in modern processor, a shadow
stack is often used to obtain better branch predictions of the return addresses which
improves the program speed. Without these ret instructions, our programs do not ben-
efit from the shadow stack and an average overhead of 25% was measured by [73].

Figure 2.6 – Transforming ret into pop+jmp

2.1.2.4 Protected scoped stack

[38] separates the stack into two: the scoped and the allocated stack. The scoped
stack can only be accessed by a module in a restricted manner. More explicitly all the
memory accesses to the scoped stack will be an offset relative to the stack pointer.
Stack frames depth and layout are known statistically so the verifier can easily check
if the offset to the static pointer is within the frame and if a return address is being
accessed. This precise knowledge of the scoped stack allows a memory control similar
to virtual registers. Indeed, since all accesses to the stack can be identified statically
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it is no different to using register names for reads and writes. Furthermore, special
memory regions called guards are added on the extremities of the scoped stack to
prevent any overflow. Guards are thoroughly explained later in Section 2.1.5.4. The
second stack, allocated stack, includes all the variables that may be accessed through
a computed address (usually pointers). These measures ensure that the verifier can
detect if any return addresses can be compromised and reject the module if this is
the case. A downside of this approach is that using two stacks also require two stack
pointers. In particular [38] requests another dedicated register in its implementation.

2.1.2.5 Control stack

A control stack (or shadow stack) is a special stack that solely records return ad-
dresses of functions. A routine copies and restores return addresses from and to the
normal stack upon function calls and returns. The shadow stack is protected against
accesses from the modules, and thus guaranteed to only contain legal addresses.
Even if the return address is changed on the stack by the module on the normal stack,
its normal value is restored upon return, and thus the return instruction is safe. AR-
Mor [120] and MiSFIT [107] use such technique to protect the return addresses but
shadow stacks is a known technique to mitigate buffer overflows. As for the scoped
stack, the technique requires an additional dedicated register to follow the evolution of
the shadow stack.

2.1.3 Extending SFI

SFI ensures that writes and jumps stay within the sandbox and that calls to the
host are constrained by stubs. For indirect control-flow, sandboxing mechanisms are
inserted in the code to force jumps and calls to stay within the sandbox. This is enough
for SFI to hold but certain implementations [107][118] chose to use stronger infor-
mation flow restrictions for better security and efficiency. Furthermore, the issue of
self-modifying code which was generally avoided is enabled in [6] and presented Sec-
tion 2.1.3.2.
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2.1.3.1 Function pointers

The main issue with function pointers is that the rewriter is unable to know if a call
to a function pointer is destined to a function within the module or to a function of
the trusted library. Most implementations make a conservative choice and sandbox the
destination of the call which prevent any calls to the trusted library through function
pointers. Here we present two solutions that can allow secure function pointers in SFI.

Virtual table Misfit [107] suggests a way to deal with function pointers to the trusted
library. Since Misfit is targeted at C++ which strongly uses virtual tables to deal with
polymorphism they needed a proper solution. They use a hash table containing all the
functions to the module. This table is created at link time from the symbols found in the
object code. To search if an address is a valid target, the address will be hashed and
should correspond to an index of the table. If the index contains no value then the target
is invalid, if the index contains a value which is not the target address then it checks the
next index until it finds the right value or no value. This implementation ensures near-
linear search time depending on the density of the table. Therefore, this mechanism
allows stronger control-flow for function calls and authorize the use of function pointers
to the trusted library.

Control Flow Integrity (CFI) CFI [1] derives a control-flow graph from a program us-
ing static analysis. Using software mechanisms CFI makes sure that this control-flow
graph is respected during the execution of a program. This ensures that any calls or
jumps of a program can be identified either statically for direct addressing or checked
at runtime for indirect addressing. This property is stronger than SFI which only require
control-flow to stay within the sandbox or to pass through stubs. [38] and [118] apply
CFI techniques to improve SFI. To enforce strict control-flow, the authors place a label
at every instruction that may be the target of a jump or a call. Furthermore, for every
instruction that use indirect addressing to jump, a routine will be called to retrieve the
label located at the target instruction. This label is checked against a list of allowed
locations and the code continue to execute if the check is successful. With this tech-
nique, the issue of function pointer mentioned in the previous paragraph is also solved.
In addition, the strong control-flow guarantees of CFI enable few optimisations of SFI
transformations and are explained in Section 2.1.5.3.
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2.1.3.2 Self-modifying code

Since the beginning, SFI has forbidden self-modifying code. That is because verify-
ing statically the correctness of self-modifying code is very hard. This is due to the fact
that rewriting code at runtime is not atomic and modules can jump on this code during
the operation. When the code is being rewritten SFI protections such as sandboxing
may not be enforced yet which create vulnerabilities in the module’s code. Therefore,
we have to make sure that even if the modified code is not complete it should not be
able to compromise the host program. Most implementations avoid this issue by sim-
ply forbidding self-modifying code. However, some applications such as JIT compilers,
need to modify the code at runtime for better efficiency. In NaCl [6], the authors suggest
an extension of NaCl that allows code to modify itself. It introduces new library func-
tions available to the code to load, modify and unload dynamically generated code.
Unallocated space is filled with hlt instructions. This feature makes use of the fixed
size bundles memory layout described in Section 2.1.2.1.

— To load a code, the implementation verifies that it respects the sandbox policy. If it
does, it loads it at an unallocated space in the sandbox space. The loading phase
is presented in Figure 2.7 with four bundles of memory. It needs to load the first
byte of each bundle last, so that a thread that would execute during the loading of
the bundle will immediately execute a hlt. Otherwise, the thread would be able
to execute statically unknown instruction because when the writing process is in
the middle of an instruction, the semantics of that instruction is unknown.

— To unload a code, the implementation writes back the hlt instructions, starting
with the first byte of each affected bundle. In this way, any execution in this inval-
idated region will crash the module. Then, marking the region free can happen
only when the implementation knows no thread is currently executing in the af-
fected bundle. For that purpose, it waits for each thread to enter the trusted library,
because at that time they are not inside a freed bundle, and they would execute
a hlt instruction, at the beginning of a freed bundle afterwards. That is especially
important for threads sleeping in the middle of a bundle: they should not wake up
in the middle of an instruction later affected to the same location.

— To modify a code, the implementation needs to ensure the modified code is laid
out exactly as the old one. First, the first byte of each bundle is rewritten to hlt.
Each instruction is then rewritten in order to use an eight-byte atomic write (be-
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cause of a hardware limitation). If an instruction is longer than that, it is first re-
placed by a hlt instruction, rewritten entirely except for the first byte, and then
only the first byte is rewritten to the correct value.

Figure 2.7 – Loading code during runtime with SFI

2.1.4 Optimisations

SFI main goal is to prevent module from compromising the host program with maxi-
mum speed. Different techniques have been developed to reduce the overhead caused
by the SFI protections. These optimisations may use hardware facilities, better register
management, and static analysis to produce faster secure code.

2.1.4.1 Using hardware security for isolation

Some architectures may provide specific hardware protection mechanisms. Some
implementations use these protections to implement the security and speed of the
transformed binary.

x86-32 has a segment mechanism that can prevent jumping, reading or writing out-
side designated area. Code, data and stack are all assigned to a memory segment
respectively called CS, DS and SS. Therefore, these segments can serve as natural
sandbox for SFI removing the need of sandboxing. For instance, NaCl [117] and Pitts-
field [73] use those to constrain the module to its sandbox. Since a hardware check is
used instead of a software check, this technique implies no overhead. To use it safely,
implementations must forbid any modification of the segment registers from untrusted
code.
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2.1.4.2 The art of choosing the mask

The sandboxing operation usually uses two instructions as shown on the left side
of Figure 2.8. A first AND instruction to turn off the bits matching the tag of the SFI
memory region, then an OR instruction to set these bits to the sandbox tag. Pitts-
field [73] suggests reserving from use, the memory starting from address 0 to the size
of a sandbox. This memory region is called zero-tag region and triggers a fault when
writing or jumping to it. The idea is that instead of clearing and setting the tag we only
require clearing a part of the tag so that if the address was incorrect it will point to the
zero-tag region. For example, if [0x00000000 - 0x0fffffff] is the zero-tag region
reserved from use then we take [0x10000000 - 0x1fffffff] as the sandboxed data
and [0x20000000 - 0x2fffffff] as the sandboxed code. Pointers are rewritten either
to the sandbox tag, or to the zero tag which was reserved for this situation. Figure 2.8
illustrates this optimisation. Previously, on the left side, sandboxing required an AND
and OR operations to work. On the right side, the new version reduced to a single AND
operation. Sandboxing is required for the indirect jump and the target address must
stay within the sandboxed code [0x20000000 - 0x2fffffff]. If the initial target was
already in the sandbox then its tag and all the lower bits will be preserved by the AND
operation, its value is unchanged. In the other case where the target address was not in
the sandbox, its tag will keep the bits corresponding to the sandboxed code. So, either
these bits are set to 1 and it will jump to the sandbox else it will jump to the zero-tag
region and the module will trigger a fault, preventing any harm to the host.

Figure 2.8 – Reducing the sandboxing to a single instruction

This optimisation has also been reused in NaCl [117] and BakerSFIeld [53].
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2.1.5 Register management

2.1.5.1 Naive implementation

During the code transformation by the SFI techniques the program is already in
the form of assembly code. Eventually, for the sandboxing instructions, SFI techniques
need to use some registers, which have already been assigned values by the program.
Therefore, before executing the sandboxing mechanisms, the program should save
the register values and restore them after the sandboxing. An implementation of this
sequence can be seen in Figure 2.9(a). Before starting the sandboxing instructions,
the value of the register eax is stored on the stack with the instruction push eax. At the
end of the sandboxing operation the register eax is restored with pop eax.

eax	=	ebx	AND	0x00ffffff

eax	=	eax	OR		0xda000000

jmp	eax

eax	=	ebx	AND	0x00ffffff

eax	=	eax	OR		0xda000000

jmp	eax

push	eax

pop	eax

(a) Naive sandboxing (b) SFI with dedicated registers

Figure 2.9 – Register management for sandboxing

2.1.5.2 Dedicated registers

The classic implementation main issue is easily seen: the sandboxing operation
needs at least five instructions including the protected instruction. Hence the cost of
sandboxing becomes quite high which could penalize the usage of SFI.
An idea already used in the work of Wahbe et al. [114] is to use dedicated registers for
the sandboxing operations. In the previous example in Figure 2.9(a), the register eax
would be specifically used for the masking operations. Hence the instructions used to
save and restore register values would not be necessary anymore and our sandboxing
would become as in Figure 2.9(b), reduced to three instructions. However, keeping
some registers solely for the sandboxing operations also means that the program can-
not access these registers for its execution. With a reduced number of available regis-
ters, overheads are also more likely to happen due to register pressure. This downside
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is especially true on certain architectures with few general-purpose registers like x86-
32 which only has eight.

2.1.5.3 Register management with CFI

As explained previously in Section 2.1.3.1, CFI guarantees that the control-flow of
the module follow a control-flow graph processed beforehand. Control-flow properties
of CFI are stricter than those of SFI which only require that calls and jumps cannot
leave the sandbox and that interactions between host and modules need to go through
stubs. SFI requires additional protection like dedicated registers and fixed-size bundles
to prevent jump outside of the sandbox. Dedicated registers make sure that even if a
sandboxing operation is done partially it won’t target an address outside the sandbox.
Fixed-sized chunks prevent the module from jumping in the middle of an instruction
which could lead to a malicious execution. Both of these protections can have a non-
negligible impact on performance and can be avoided using CFI. Using CFI, we know
that these situations cannot happen anymore and we can avoid the use of dedicated
registers and fixed-size bundle. The SFI transformations then use an algorithm similar
to Register Allocation to implement sandboxing. When some registers are unused or
dead for the rest of the function, those are used for the sandboxing. Otherwise the code
generator will simply spill registers before sandboxing. In other words, the sandboxing
works as in Figure 2.9 but without the need of dedicated registers. (a) represents times
where there are no dead registers and (b) when there are dead registers.

2.1.5.4 Guard zones

Some registers like ebp or esp are often used with offsets to deal with local variables
or return addresses. Another example is the use of arrays. When accessing a value,
an array dereferences its base pointer with some offset. Guard zones can be used
to reduce the use of sandboxing in a situation where the target address is of value
(sandboxed address + offset). These guard zones are areas of the memory which are
unmapped and therefore invalid memory. When jumping or writing to these areas the
module will crash hence preventing corruption of the host. Guard zones have fixed-
size and are added around the sandbox. If for instance esp is checked to be inside the
sandbox, it may be the case that esp + offset is not. As long as offset is inferior to
the size of the guard zones the verifier can affirm that in the worst case the module will

48



2.1. Software Fault Isolation (SFI)

trigger a fault and terminate. Since guard zones shall not be triggered during a secure
execution they have no impact on the execution time and reduce SFI overhead.

Figure 2.10 – Guard zones

2.1.6 Range analysis

Range analysis is a static analysis which evaluates the range of the possible values
of the registers. For example, a freshly modified register will have its range equal to the
whole virtual memory, whereas a register which have just been sandboxed will have
its range equal to the sandbox memory area. Zeng et al. [118] use this information to
produce two new optimisations presented in the next section.

2.1.6.1 Redundant checks

The optimisation of [118] takes place after the transformation of the code by SFI
techniques. It aims to remove sandboxing operations which are redundant and slow
the isolated module down. To detect such occurrences, a range analysis is performed
for every register. An example can be seen in Figure 2.11, where the register eax starts
with an unknown range value. Afterwards eax is sandboxed with a value matching an
address in the sandbox. Later we see that eax without its value having been modified is
subject to another sandboxing operation. Hence this second sandboxing is redundant
and can be removed from the isolated module for better speed.

49



Partie , Chapter 2 – Protecting Memory from External Modules

Figure 2.11 – Redundant check

2.1.6.2 Loop check hoisting

Another optimisation of [118] allows the isolated module to reduce the number of
sandboxing during loops by hoisting the sandboxing before the loop. This speedup can
only be applied in certain loops where the range analysis deems that in the loop, no
write or jump instruction can exit the sandbox.

A simple example is presented Figure 2.12 where the fields of an array are being
incremented. array is a pointer to an array of integers. On every occurrence of the
loop, a field of the array is incremented. Therefore, the SFI techniques make sure that
the pointers used to access these fields (array+i) cannot point to a location outside of
the sandbox and do the pseudo-operation sandbox(array+i).

However, thanks to range analysis on this case, one can know that if the pointer
array is within the sandbox then the pointers array+i always point to the area covered
by the sandbox plus its guard zones described in Section 2.1.5.4. Thus, the sandboxing
in the loop is unnecessary and can be hoisted at the beginning of the loop as shown
on the right side of Figure 2.12.

50



2.1. Software Fault Isolation (SFI)

Figure 2.12 – Loop check hoisting

2.1.7 Verification techniques

Verification is usually the last step of SFI. This code is the major part of the Trusted
Computing Base in SFI techniques (the interface between the host and untrusted mod-
ules are in the TCB too). This means that the amount of trust one can put in the SFI
implementation is more or less equal to the trust put in their verification. Since the
verification step needs to be sound, all the verifiers seen in the literature have a con-
servative policy. Indeed, the verifier only accepts some code if it is able to confirm that
the code respects SFI properties. Hence every executable accepted by the verifier is
safe. However, that also means that a safe program, which does not fulfil the criteria of
the verifier will not be accepted either.

For traditional SFI the verification consists in three steps:

1. direct jumps and writes have their target address statically checked

2. indirect jumps and writes need to be sandboxed

3. calls to the host need to pass through stubs

To execute these steps, multiple solutions are available, RockSalt [77], for example,
uses regular expressions directly on binary files. But most implementations of verifier
start by disassembling the executables then check that the program follows the pro-
cedures of SFI. Verification of assembly code is much simpler than the disassembly
phase so we could reduce the TCB to the disassembler. Unfortunately, disassembling
is non computable problem for generic programs and is still an active area of research.

Therefore, this section will address the different ways found in the literature of SFI
to have reliable verification like having compilation constraints for better disassembly
or using formal methods for the verification.
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2.1.7.1 Linear disassembly

To our knowledge every work on SFI using a disassembler used a simple linear
disassembly. Linear disassembly just reads the bytes one by one until it matches an
assembly instruction. Then it repeats this sequence until the end of the binary file.
However, the problem of disassembling is known to be undecidable for arbitrary input
program (similar to the halting problem). Instead of using arbitrary programs multiple
constraints on the code generation are often added to get reliable disassembly. The
constraints used are the following:

— the code section is not writable, self-modifying code is not allowed

— the code section is statically linked

— all valid instructions are reachable by linear disassembly

— aligned bundles of code presented Section 2.1.2.1 help disassembly, because no
instruction crosses a chunk boundary and control flow only targets the beginning
of a chunk

These constraints are used to make the disassembly completely reliable. After-
wards the verifier only needs to perform the three verification steps mentioned earlier
directly on the assembly code.

2.1.7.2 Improving verification with static analysis

While having a simple verifier is good for the TCB it also limits the possible SFI
transformations that can be checked. Usually a verifier is specific to a code generator
and is only able to check a module if the SFI protections are untouched. The first issue
is portability, a verifier cannot validate safe modules that have been transformed by an
unknown code generator. Secondly it severely limits the optimisations that can be ap-
plied to the SFI protections since they cannot be checked afterwards. [118] uses range
analysis to provide two optimisations to their implementation of SFI (Section 2.1.6). To
be able to verify such optimisations the same range analysis is also used by the ver-
ifier. Work by Besson et al. [21] aims to create a generic verifier which can verify if a
module respects the security principles of SFI. Their work defines a defensive seman-
tic for SFI and use this semantic to check if a module is secure or not using abstract
interpretation.
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2.1.7.3 Certified verification

Usually the TCB of SFI implementations is mostly equal to the code of the verifier.
However, in ARMor [120] and RockSalt [77] both use formal methods in order to reduce
the amount of code which needs to be trusted.
In ARMor the verifier automatically extracts proofs and facts from transformed pro-
grams and uses them to verify a top-level safety proof. This means that the user can
be mathematically certain the program they run is correctly sandboxed.
RockSalt uses the Coq proof assistant to build a provably correct alternative verifier
for NaCl sandboxes [117]. Their method is to generate regular expressions that match
any program that respects the sandbox policy in such a way that it is easy to show it is
correct. Finally, they implement the verifier in C for speed. The two verifiers are proven
to be correct which means that if they validate a module then it cannot break the policy
of SFI when loaded and executed. Therefore, the TCB of these implementations can
be summarized to the amount of trust one put in their respective proof assistant: HOL
and Coq.

2.1.7.4 Removing the verifier

Portable Software Fault Isolation (PSFI) [60] is a particular version of SFI which
does all the code transformation in a high-level language. Since the transformations
are done on a language which is architecture independent, a single code generator
can produce secure code for all the architectures supported by the compiler. Another
advantage is that better speed can also be achieved since SFI protections benefit from
compiler optimisations. However, in return it becomes more complicated to have the
SFI security proofs on the binary code that is executed, due to various reasons coming
from the compilation phases. First of all, compilers usually do not give guarantees on
the code produced and one cannot be certain that the output binary will keep all the
sandboxing mechanism inserted at high-level. Secondly, it might be more difficult for
a verifier to check if the security property of SFI still holds for the binary. Indeed, the
compiler may have modified instructions during code optimisation, so, even if the binary
is secure, it is harder to be sure of it.

To solve these constraints, PSFI chooses to use a certified compiler called COMP-
CERT [67]. COMPCERT was written using the Coq proof assistant and was proven to
keep the semantic of the compiled C programs. In this work COMPCERT was modified
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to inject the sandboxing instructions during the compilation. Furthermore, with the Coq
proof assistant, the security properties of SFI usually given by the verifier, are now
guaranteed by the compiler. PSFI compiler has been proven to meet these two criteria:

1. Any input program is compiled into a program which executes safely (in the sense
of SFI)

2. If the input program is SFI-safe then the compiler does not alter its behavior

This choice enables one to get rid of the verifier in the compilation chain. Indeed,
since all the security guarantees are given by the compiler, a verifier is not needed
anymore and follows the procedure of Figure 2.13. Starting with a source program, one
only needs to compile it to obtain a SFI-safe executable. We can notice in Figure 2.13
that the TCB is now reduced to the proofs behind COMPCERT. This means that the
trust we can put in this implementation of SFI is equivalent to the trust we have in the
Coq proof assistant.

Figure 2.13 – PSFI chain

A drawback of this approach is that to be sure that the binary we execute is SFI-
safe, we need a certainty that our binary has been compiled with this compiler. This
condition implies that it is necessary to have either the source code of the external
modules we want to run or a proof that this compiler was used to produce the binary.
PSFI is explained in further details in Section 2.2.1.2.

2.1.8 Conclusion

The main purpose of SFI is to protect a host program to collaborate with untrusted
modules loaded in its own memory space. This enables maximum speed for host-
modules interactions with slower modules code due to SFI restrictions. Multiple tech-
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niques have been developed to reduce the modules overhead caused by SFI. Hard-
ware segmentations, guard zones, static analysis, register management have been
applied to fasten modules code.

Comparing work on SFI is not evident since contexts from an implementation to
another may vary greatly. Table 2.1 categorize the different works that we analysed
under specific categories.
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References
[117]
[98]
[6]

[107] [73] [120] [38] [60] [24] [53] [118]

architecture
ARM X X X

x86-32 X X X X X X X X
x86-64 X X

transformation
IR X

assembly X X X X X X X
binary X

application
kernel X X

web browser X

language
extension

X
[102]
[109]

general
purpose X X X X X X

Formal methods X
[77] X X

Table 2.1 – Summary of techniques
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2.2 COMPCERTSFI

In this section, we present our work which draws upon PSFI [60] presented previ-
ously. Similarly, our toolchain does not include a verifier but use the correctness prop-
erty of COMPCERT to preserve SFI guarantees down to the binary code. Our work pro-
vides a fully functional and verified SFI toolchain called COMPCERTSFI. The SFI trans-
formation is implemented in a high-level language called Cminor. The transformation
has been proven in Coq to ensure a security property that satisfies SFI requirements.
Additionally, the transformation is also proven to satisfy a safety property which when
combined with COMPCERT correctness property provides strong security guarantees
at the binary level. Furthermore, a trusted library and runtime for SFI have been devel-
oped to obtain a complete toolchain for SFI. Our work shows that an implementation
of SFI without verifier can both provides security and performance. In Section 3.3.5,
we provide experimental evidence that COMPCERTSFI is competitive and sometimes
outperforms SFI in terms of efficiency of the binary code.

2.2.0.1 Software Fault Isolation through Compilation

A downside of the traditional SFI approach is that it hinders most compiler opti-
misations because the optimised code no longer respects the simple properties that
the SFI verifier is capable of checking. For example, the SFI verifier expects that ev-
ery memory access is immediately preceded by a specific syntactic code pattern that
implements the sandboxing operation. A semantically equivalent but syntactically dif-
ferent code sequence would be rejected. Section 2.1.7.4 presents succinctly PSFI,
another methodology where there is no verifier to trust. Instead isolation is obtained
by compilation with a machine-checked compiler, such as COMPCERT [67]. Portability
comes from the fact that PSFI can reuse existing compiler back-ends and therefore
target all the architectures supported by the compiler without additional effort.

PSFI is applicable in scenarios where the source code is available or the binary
code is provided by a trusted third-party that controls the build process. For example,
the original motivation for Proof Carrying Code [79] was to provide safe kernel exten-
sions [80] as binary code to replace scripts written in an interpreted language. This
falls within the scope of PSFI. Another PSFI scenario is when the binary code is pro-
duced in a controlled environment and/or by a trusted party. In this case, the primary
goal is not to protect against an attacker trying to insert malicious code but to prevent
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honest parties from exposing a host platform to exploitable bugs. This is the case e.g.
in the avionics industry, where software from different third-parties is integrated on the
same host that needs to ensure strong isolation properties between tasks whose levels
of criticality differ. In those cases, PSFI can deliver both security and a performance
advantage.

2.2.0.2 Challenges in Formally Verified SFI

PSFI inserts the masking operations during compilation and does away with the a
posteriori SFI verifier. The challenge is then to ensure that the security, enforced at
an intermediate representation of the code, still holds for the running code. Indeed,
compiler optimisations often break such security [104]. The insight of Kroll et al. is
that if the intermediate code is safe (i.e., that its behaviour is well-defined) then the
safety theorem of COMPCERT (Corollary 1) can be exploited to preserve PSFI security
down to the compiled code: guaranteeing that it makes no memory accesses outside
its sandbox. We explain this in more detail later in Section 2.2.1.2.

One challenge we face with this approach is that it is far from evident that the sand-
boxing operations and hence the transformed program have well-defined behaviour. An
unsafe language such as C admits undefined behaviours (e.g. bitwise operations on
pointers), which means that it is possible for the observational behaviour of a program
to differ depending on the level of optimisation. This is not a compiler bug: compilers
only guarantee semantics preservation if the code to compile has a well-defined se-
mantics [115]. Therefore, our SFI transformation must turn any program into a program
with a well-defined semantics.

The seminal paper of Kroll et al. emphasises that the absence of undefined be-
haviour is a prerequisite but they do not provide a transformation that enforces this
property. More precisely, their transformation may produce a program with undefined
behaviours (e.g. because the input program had undefined behaviours). This fact was
one of the motivation for the present work, and explains the need for a new PSFI tech-
nique. One difficulty is to remove undefined behaviours due to restrictions on pointer
arithmetic. For example, bitwise operators on pointers have undefined C semantics, but
traditional masking operations of SFI rely heavily on these operators. Another difficulty
is to deal with indirect function calls and ensure that, as prescribed by the C standard,
they are resolved to valid function pointers. To tackle these problems, we propose an
original sandboxing transformation which unlike previous proposals is compliant with
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the C standard [50] and therefore has well-defined behaviour.

2.2.0.3 Contributions

We have developed and proved correct COMPCERTSFI, the first full-fledged, fully
verified implementation of SFI inside a C compiler. The SFI transformation is performed
early in the compilation chain, thereby permitting the generated code to benefit from
existing optimisations that are performed by the back-end. The technical contributions
behind COMPCERTSFI can be summarised as follows.

— An original design and implementation of the SFI transformation based on well-
defined pointer arithmetic and which supports function pointers. This novel design
of the SFI transformation is necessary for the safety proof.

— A machine-checked proof of the security and safety of the SFI transformation.
Our formal development is available online [110].

— A small, lightweight runtime system for managing the sandbox, built using a stan-
dard program loader and configured by compiler-generated information.

— Experimental evidence demonstrating that the portable SFI approach is competi-
tive and sometimes even outperforms traditional SFI, in particular state-of-the-art
implementations of (P)Native Client.

The rest of the chapter is organised as follows. In Section 2.2.1, we present in-
formation about the COMPCERT compiler (Section 2.2.1.1) and the PSFI approach
(Section 2.2.1.2). Section 2.2.2 provides an overview of the layout of the sandbox and
the masking operations implementing our SFI. In Section 2.2.3 we explain how to over-
come the problem with undefined pointer arithmetic and define masking operations
with a well-defined C semantics. Section 2.2.4 describes how control-flow integrity in
the presence of function pointers can be achieved by a slightly more flexible SFI policy
which allows reads in well-defined areas outside the sandbox. Section 2.2.5 speci-
fies the SFI policy in more detail, and describes the formal Coq proofs of safety and
security. Section 2.2.6 presents the design of our runtime library and how it exploits
compiler support. Experimental results are detailed in Section 3.3.5 and Section 2.2.9
concludes.
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constant ∋ c ∶∶= i32 ∣ i64 ∣ f32 ∣ f64 ∣ &gl ∣ &stk
chunk ∋ κ ∶∶= is8 ∣ iu8 ∣ is16 ∣ iu16 ∣ i32 ∣ i64 ∣ f32 ∣ f64

expr ∋ e ∶∶= x ∣ c ∣⊳ e ∣ e1 ◻ e2 ∣ [e]κ
stmt ∋ s ∶∶= skip ∣ x ∶= e ∣ [e1]κ ∶= e2 ∣ return e ∣ x ∶= e(e1 . . . , en)σ

∣ if e then s1 else s2 ∣ s1; s2 ∣ loop s ∣ {s} ∣ exit n ∣ goto lb

Figure 2.14 – CMINOR syntax

2.2.1 Background

This section presents additional information about the COMPCERT compiler [67] for
COMPCERTSFI and the Portable Software Fault Isolation proposed by Kroll et al. [60].

2.2.1.1 COMPCERT

COMPCERT was discussed previously in Section 1.2 but relevant information for
COMPCERTSFI are added here. In our work, SFI transformations are performed on the
intermediate representation expressed in the CMINOR language.

The CMINOR language is a minimal imperative language with explicit stack alloca-
tion of certain local variables [65]. Its syntax is given in Figure 2.14. Constants range
over 32-bit and 64-bit integers but also IEEE floating-point numbers. It is possible to
get the address of a global variable gl or the address of the stack allocated local vari-
ables (i.e., stk denotes the address of the current stack frame). In COMPCERT par-
lance, a memory chunk κ specifies how many bytes need to be read (resp. written)
from (resp. to) memory and whether the result should be interpreted as a signed or
unsigned quantity. For instance, the memory chunk is16 denotes a 16-bit signed in-
teger and f64 denotes a 64-bit floating-point number. In CMINOR, memory accesses,
written [e]κ, are annotated with the relevant memory chunk κ. Expressions are built
from pseudo-registers, constants, unary (⊳) and binary (◻) operators. COMPCERT fea-
tures the relevant unary and binary operators needed to encode the semantics of C.
Expressions are side-effect free but may contain memory reads.

Instructions are fairly standard. Similarly to a memory read, a memory store [e1]κ =
e2 is annotated by a memory chunk κ. In CMINOR, a function call such as e(e1 . . . , en)σ
represents an indirect function call through a function pointer denoted by the expres-
sion e, σ is the signature of the function and e1. . . , en are the arguments. A direct call
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is a special case where the expression e is a constant (function) pointer. CMINOR is
a structured language and features a conditional, a block construct {s} and an infi-
nite loop loop s. Exiting the nth enclosing loop or block can be done using an exit n
instruction. CMINOR is structured but gotos towards a symbolic label lb are also possi-
ble. Returning from a function is done by a return instruction. CMINOR is equipped with
a small-step operational semantics. The intra-procedural and inter-procedural control
flows are modelled using an explicit continuation which therefore contains a call stack.

2.2.1.1.a Going-wrong behaviours in COMPCERT.

As safety is an essential property of our PSFI transformation, we give below a de-
tailed account of the going-wrong behaviours of the COMPCERT languages with a focus
on CMINOR.

2.2.1.1.1 Undefined evaluation of expressions. COMPCERT’s runtime values are
dynamically typed and defined below:

values ∋ v ∶∶= undef ∣ int(i32) ∣ long(i64) ∣ single(f32) ∣ float(f64) ∣ ptr(b, o)

Values are built from numeric values (32-bit and 64-bit integers and floating point num-
bers), the undef value representing an indeterminate value, and pointer values made
of a pair (b, o) where b is a memory block identifier and o is an offset which, depending
on the architecture, is either a 32-bit or a 64-bit integer.

For CMINOR, like all languages of COMPCERT, the unary (⊳) and binary (◻) oper-
ators are not total. They may directly produce going-wrong behaviours e.g. in case of
division by int(0). They may also return undef if i) the arguments are not in the right
range e.g. the left-shift int(i) << int(32); or ii) the arguments are not well-typed e.g.
int(i) +int float(f). Pointer arithmetic is strictly conforming to the C standard [50] and
any pointer operation that is implementation-defined according to the standard returns
undef .

The precise semantics of pointer operations is given in Figure 2.15. For simplicity,
we provide the semantics for a 64-bit architecture. Pointer operations are often only
defined provided that the pointers are valid, written V , or weakly valid, written W . This
validity condition requires that the offset o of a pointer ptr(b, o) is strictly within the
bounds of the block b. The weakly valid condition refers to a pointer whose offset is
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ptr(b, o) ± long(l) = ptr(b, o ± l)
ptr(b, o) − ptr(b, o′) = long(o − o′)
ptr(b, o)!=long(0) = tt if W (b, o)
ptr(b, o) == long(0) = ff if W (b, o)
ptr(b, o) ⋆ ptr(b, o′) = o ⋆ o′ if W (b, o) ∧W (b, o′)
ptr(b, o) == ptr(b′, o′) = ff if b ≠ b′ ∧ V (b, o) ∧ V (b′, o′)
ptr(b, o)!=ptr(b′, o′) = tt if b ≠ b′ ∧ V (b, o) ∧ V (b′, o′)

where ⋆ ∈ {<,≤,==,≥,>,!=}

Figure 2.15 – Pointer arithmetic in COMPCERT

either valid or one-past-the-end of the block b. Any pointer arithmetic operation that
is not listed in Figure 2.15 returns undef . This is in particular the case for bitwise
operations which are typically used for the masking operation needed to implement
SFI.

The indeterminate value undef is not per se a going-wrong behaviour. Yet, branch-
ing over a test evaluating to undef , performing a memory access over an undef ad-
dress and returning undef from the main function are going-wrong behaviours.

2.2.1.1.2 Memory accesses are ruled by a unified memory model [69] that is used
throughout the whole compiler. The memory is made of a collection of separated
blocks. For a given block, each offset o below the block size is given a permission
p ∈ {r,w, . . .} and contains a memory value

mval ∋mv ∶∶= undef ∣ byte(b) ∣ [ptr(b, o)]n

where b is a concrete byte value and [ptr(b, o)]n represents the nth byte of the pointer
ptr(b, o) for n ∈ {1 . . .8}. A memory write storev(κ,m,a, v) is only defined if the ad-
dress a is a pointer ptr(b, o) to an existing block b such that the memory locations
(b, o), . . . , (b, o+ ∣ κ ∣ −1) have the permission w and the offset o satisfies the alignment
constraint of κ. A memory read loadv(κ,m,a) is only defined under similar conditions
with the additional restriction that not reading all the consecutive fragments of a pointer
returns undef .
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2.2.1.1.3 Control-flow transfers may go-wrong if the target of the control-flow trans-
fer is not well-defined. Hence, a goto lb instruction goes wrong if, in the current function,
there is no statement labelled by lb; and an exit n instruction goes wrong if there are
less than n enclosing blocks around the statement containing the exit instruction. A
conditional if e then s1 else s2 goes wrong if the expression e does not evaluate to
int(i) for some i. Also, the execution goes wrong if the last statement of a function is
not a return instruction. Last but not least, a function call x ∶= e(e1 . . . , en)σ goes wrong
if the expression e does not evaluate to a pointer ptr(b,0) where b is a function pointer
with signature σ.

We show in Section 2.2.3 how our transformation ensures that pointer arithmetic
and memory accesses are always well-defined. Section 2.2.4 shows how we make
sure indirect calls are always correctly resolved. Section 2.2.5 shows that, together with
other statically checkable verifications, our PSFI transformation rules out all possible
going-wrong behaviours.

2.2.1.2 Portable Software Fault Isolation

Kroll, Stewart and Appel have pioneered the concept of Portable Software Fault
Isolation (PSFI) [60] whereby SFI is enforced by a pass of the compiler front-end that
is architecture independent. The main expected advantage is that isolation is imple-
mented, once and for all, for any target architecture. Moreover, the generated code is
optimised by the back-end passes of the compiler. Compared to traditional SFI, there is
no architecture-specific binary verifier but instead the compiler enters the TCB. The key
insight of Kroll et al. is to leverage a formally verified compiler, namely COMPCERT, to
transfer a security proof of isolation obtained at the CMINOR level through the compiler
back-end, with minimal proof effort. In the following, we recall the only basic properties
that a CMINOR SFI transformation needs to satisfy so that isolation holds at assembly
level.

In COMPCERT’s terms, the sandbox is identified by a dedicated memory block sb.
A CMINOR program is secure (Property 1) under the condition that all its memory ac-
cesses are performed within the sandbox.

Property 1 (Program security). A CMINOR program p is secure if all its memory ac-
cesses are within the sandbox block sb.

After compilation, the assembly code is secure if its observable behaviours are
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the same as the observable behaviours of the CMINOR program. In order to apply
COMPCERT’s semantics preservation theorem (more precisely Corollary 1), it remains
to ensure that the CMINOR program has a well-defined semantics (Property 2).

Property 2 (Program safety). A CMINOR program p is safe if all its behaviours are
well-defined, i.e., not wrong.

Kroll et al. state Property 1 by means of an instrumented CMINOR semantics which
gets stuck in case of memory accesses outside the sandbox. They prove formally that
the additional semantic safeguards are never triggered for a transformed program.

They also sketch some necessary steps to prove the Property 2 of safety but do
not propose a formal proof. This leaves open a number of challenging issues such as
whether it is feasible to define a masking operation that has a defined CMINOR se-
mantics and how to deal with indirect function calls through function pointers. More
generally, the work leaves open whether a formal proof of Property 2 on safety is pos-
sible given the restrictions of COMPCERT’s semantics (notably pointer arithmetic) and
without relying on axioms asserting properties of an external masking primitive. One of
the central contributions of this work is to provide a positive answer to this question and
propose solutions to these issues where neither the sandboxing of memory accesses
nor the sandboxing of function pointers is part of a TCB. The transformation that cir-
cumvents the limitations imposed by pointer arithmetic is original and, we surmise, is a
necessary component to transfer security down to assembly. For a precise comparison
with Kroll et al. see Section 2.2.8.

2.2.2 A Thread-aware Sandbox

heap

shadow stack

shadow stack

global variables

(a) Layout of memory

1 g = {long(5)};
2

3 long foo(){
4 stk[8];
5 bar(g, &stk);
6 return([&stk]);
7 }

(b) Original CMINOR

1 sb[2^k]= {long(5);...};
2

3 long foo(sp){
4 sp1=sp + 8 ;
5 bar(sp1,[&sb],sp);
6 return([sp]);
7 }

(c) Sandboxed CMINOR

Figure 2.16 – Sandbox transformation

64



2.2. COMPCERTSFI

The memory address space of a C program is partitioned into a runtime stack of
frames, a heap and a dedicated space for global variables. The address space of a
sandboxed program is re-organised to fit into a single global variable, sb, where the
global variables, the heap and the stack frames are relocated. Figure 2.16a depicts the
memory layout of the program after our SFI transformation. Each global variable is re-
located and allocated in the sandbox at a given offset, and each global memory access
of the program is translated into a memory access in the sandbox. For managing the
heap, it suffices to use a sandbox-aware malloc implementation that allocates memory
inside the sandbox.

To prevent buffer overflows, a standard approach consists in introducing a so-called
shadow stack that is used to store the function stack frames. Our implementation sup-
ports multi-threaded applications and therefore there are as many shadow stacks as
there are threads. Upon thread creation, we allocate a novel shadow stack in the sand-
box. The shadow-stack pointer is passed as an additional argument to each function
call. This is efficient when arguments are passed by register, with the only drawback
of reserving an additional register. Frames are allocated by incrementing the shadow-
stack pointer at function entry. All accesses to the original stack are then translated into
accesses to the sandbox shadow stack. The following Example 1 and the code snippet
in Figure 2.16 illustrate the essence of the transformation.

Example 1. The CMINOR program of Figure 2.16b declares a global variable g ini-
tialised to the 64-bit integer 5. The function foo allocates a stack frame of 8 bytes that
will be used to store a 64-bit local variable. By convention, the current stack frame is
called stk. The function foo calls the function bar with as arguments the value of g

and the address of the local variable stk; and returns the value, presumably updated
by bar, of the local variable.

Syntactically, the program of Figure 2.16c only performs memory accesses on the
global sandbox sb variable. The size of sb variable is 2k for some predefined k. At
thread creation, a shadow stack is allocated by our sandbox-aware malloc in the sand-
box after the statically allocated global variables. For our program, the unique global
variable g is stored at offset 0 and spans over 8 bytes. Therefore, the initial value of the
shadow-stack pointer sp is 8. After the transformation, the function foo reserves the
space for the local variable stk by incrementing the pseudo-register sp. The function
bar is called with the incremented shadow-stack pointer sp1, the value stored at offset
0 in the sandbox (i.e., the value of the global variable g) and the address of the local
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variable stk which is given by the value of the stack pointer sp. At function exit, the
value of the local variable stk is returned by dereferencing the shadow-stack pointer
sp.

Our SFI transformation enforces the isolation security policy stipulating that all
memory accesses are performed within the sandbox sb—at the CMINOR level. How-
ever, this holds because the semantics gets stuck (i.e., the semantics goes wrong)
whenever the program performs an access outside the bounds of the sandbox. As ex-
plained earlier, the compiler is free to translate this into an insecure program that would
escape the sandbox at runtime. To get a formal security guarantee, it is necessary to
transform further the CMINOR program to rule out any behaviour that goes wrong i.e.,
ensure Property 2. Given the numerous undefined behaviours of the C language, rul-
ing out any going-wrong behaviour may seem a daunting task. In general, this requires
ensuring both memory safety and control-flow integrity. The following two sections de-
scribe how we can exploit the SFI transformation and the knowledge that all memory
accesses are inside the sandbox to ensure both memory safety and control-flow in-
tegrity.

2.2.3 Memory-safe Masking

For SFI, memory safety is obtained by making sure that every memory access is
performed inside the sandbox. Starting from an analysis of the standard SFI solution,
we present our own design which satisfies the additional requirements of being com-
pliant with the semantic restrictions of COMPCERT and with a strict interpretation of the
C standard.

2.2.3.1 Standard SFI Masking of Addresses

Standard SFI transformations ensure memory safety by masking memory accesses
and was presented Section 2.1.1.3. The gist of it is to allocate a sandbox sb of size 2k

at a 2k aligned memory address, say &sb = tag × 2 k . Under those constraints, enforcing
that an address A is within the bounds of the sandbox can essentially be done by
replacing the high-address bits by those of tag. Using bitwise operations, this can be
done by the expression (A&(2 k−1 ))∣tag × 2 k , where & is the bitwise and and ∣ is the
bitwise or. More visually, this can be written (A& 1⋯1±

k

)∣tag 0⋯0±
k

.
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At binary level, this masking transformation is defined and the cost is modest: two
bitwise operations. However, this masking operation has no well-defined C semantics.
This is also the case for the semantics of COMPCERT and in particular for the CMINOR

language. The reason is twofold: bitwise operations over pointer values return undef
and concrete addresses (e.g. tag × 2 k) are not pointers for COMPCERT where they are
represented by a block and an offset (see Figure 2.15).

2.2.3.2 Specialised Masking for 32-bit Sandboxes

For 32-bit sandboxes, there exists a variant of the sandboxing primitive which has
the advantages 1) that the sandbox address does not need to be aligned; 2) that the
cost of masking may be reduced to a single instruction. In its simplest form, the masking
primitive is defined by

&sb + (A −&sb)64→32→64

where &sb is the symbolic address of the sandbox. The subtraction of &sb extracts the
offset of the pointer and the double (unsigned) cast 64 → 32 → 64 has the effect of
truncating the offset to a 32-bit quantity that is therefore within the bounds of a 32-bit
sandbox. At first sight, this masking is less efficient than the standard masking but it is
efficient for typical address computations which require both displacement and scaling
(e.g. A = t + k + k′ ∗ i32→64 where t is a 64-bit address, k and k′ are constants and
i is a 32-bit integer). Assuming that each cast or arithmetic operation is mapped to
a single instruction 1, the masked address A can be computed using 8 instructions:
4 instructions for computing the address A and 4 more for the sandboxing primitive.
Using simple properties of modular arithmetic, it is possible to distribute the 64 → 32
cast over addition and multiplication to obtain the following equivalent formulation of
the sandboxed address:

&sb +A′

32→64 with A′ = t64→32 + c1 + c2 ∗ i

where c1 and c2 are compile-time constants: c1 = (k − &sb)64→32 and c2 = k′64→32. Using
this formulation, the address A′ still requires 4 instructions but the cost of the sandbox-
ing is reduced to 2 instructions making it on par with the standard sandboxing. On x86,
32-bit registers are just zero-extended 64-bit registers. Therefore, the cast A′

32→64 is

1. Some architecture have rich addressing modes allowing for more compact encodings.
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actually redundant and the overhead induced by the sandboxing is reduced to a single
instruction. Our experiments (see Section 2.2.7.2) validate the practical advantage of
this encoding.

Still, as for the standard sandboxing, this sanboxing primitive has no semantics in
COMPCERT due to the limitations of pointer arithmetic. As a consequence, the solu-
tion of Kroll et al. [60] does not give actual code for the masking primitive, but rather
axiomatise its behaviour as an external function. This prevents optimisations such as
common subexpression elimination or function inlining from happening and induces
the cost of a function call for each memory access.

2.2.3.3 Towards Well-defined Pointer Arithmetic

To illustrate the limitations of pointer arithmetic, we examine the semantic behaviour
of the standard sandboxing primitive (the specialised sandboxing primitive has similar
issues). The standard sandboxing primitive can be written (A&(2k−1)) ∣&sb where &sb
is the address of the sandbox variable. If sb is allocated at runtime at address tag × 2 k

for some tag, this formulation is equivalent at binary level. Again, this heavily relies
on pointer arithmetic that is undefined and on information about where the sandbox is
linked at runtime.

Consider the alternative formulation (A&(2 k−1 )) + &sb where the bitwise ∣ is re-
placed by a +. This formulation has the advantage that incrementing a pointer, here
sb, is well-defined (see Figure 2.15). As on modern hardware, both addition and bit-
wise operations take a single cycle, the difference in efficiency should be negligible.
Moreover, at least for x86, the addition can be compiled into the addressing mode.

Still, this does not solve our issue. To understand this, suppose that A is a pointer. In
this case, the bitwise &, whose purpose is to extract the pointer offset, is still undefined.
Therefore, the whole expression (A&(2k−1))+&sb is undefined. Because dereferencing
an undefined expression is a going-wrong behaviour, the compiled program may have
an arbitrary runtime behaviour and escape the sandbox. A prerequisite for our masking
primitive is therefore to ensure that the evaluation is defined i.e., different from undef .
As all the semantic operators of COMPCERT are strict in undef (if any argument is
undef , so is the result), a necessary condition is that A is not undef . As A can be
obtained from any expression, a challenge is to ensure that every expression evaluates
to a defined value. A particular difficulty is that the many undefined pointer operations
(see Figure 2.15) cannot be detected by runtime checks.
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2.2.3.4 Arithmetisation of the Heap

To tackle this challenge and ensure that every computation is defined, we propose
an original and radical approach which ensures syntactically that pointers are neither
stored in memory nor in local variables. As a result, the program is only manipulating
integer values and memory addresses are only constructed by the sandboxing prim-
itives. This approach implies, as a side-effect, that our previously undefined masking
primitives are defined. Let asb be the runtime address of the symbolic address &sb of
the sandbox. The masking of an address A can be written

A′ +&sb

where A′ is either defined by A′ = A&(2k−1) or A′ = (A − asb)64→32→64 . As A is neces-
sarily an integer, A′ is necessarily a defined integer and therefore A′ + &sb returns a
defined pointer ptr(sb, o) that is necessarily inside the sandbox.

An additional subtlety is that memory accesses are indexed by a memory chunk κ
which mandates an alignment constraint (e.g. the chunk i64 mandates an 8-byte aligned
address). As a result, the masking primitive is parameterised by the chunk κ and the
masking primitive for i64 is A′&mski64 +&sb where mski64 = (2 k−3−1 ) × 2 3 .

Only computing over numeric values is facilitated by the fact that the sandboxed
program is only manipulating pointers relative to a single object, the sandbox. There-
fore, a solution could be to only compute with pointer offsets. This is not totally sat-
isfactory because the null pointer (i.e., 0) would be undistinguishable from the base
pointer ptr(sb,0 ). Instead, we use the integer asb that is the integer runtime address
of the sandbox (i.e., we have asb = &sb) and perform the following transformation t over
program expressions.

t(&sb) = asb
t(c) = c for c ∈ {i32 , i64 , f32 , f64}
t(⊳ e) = ▸t(e)
t(e1 ◻ e2) = t(e1) ∎ t(e2)
t([e]κ) = [mskκ(t(e))]

The operators ▸ and ∎ ensure that, if the expressions are well-typed, they never return
the undef value. Typical examples include division, modulus, and bitwise shifts. We
transform expressions so that they evaluate to an arbitrary value when their original
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semantics is undefined. For example, we transform the left-shift operations on 32-bit
integers so that the resulting expression always has a shift amount less than 32:

a<<b ↝ a << (b & 31).

Similarly, we transform divisions and modulus in the following way, to rule out the un-
defined cases of division by zero and signed division of MIN_SIGNED by -1:

a/b↝ (a+(a==MIN_SIGNED & b==-1))/(b+(b==0)).

We can prove that the resulting division expression is always defined. Most of the other
expressions are always defined and do not need further transformations.

2.2.4 Enforcement of Control-Flow Integrity

Correct sandboxing of code requires some degree of control-flow integrity. Existing
SFI implementations enforce a weak form of control-flow integrity which only ensures
that jumps are aligned and within a sandbox of code. This is achieved by inserting a
masking operation before indirect jumps, that will mask the target address to ensure
that the jump is within the sandbox. Additional padding with no-ops is inserted to ensure
that all the instructions are indeed aligned [117, 99]. We enforce a stronger, more tra-
ditional, form of control-flow integrity where any control-flow transfer has a well-defined
CMINOR semantics.

2.2.4.1 Relaxation of the CMINOR SFI Property

Intraprocedural control-flow integrity is ensured by simple syntactic checks. For in-
stance, they ensure that a goto lb has a corresponding label lb and that an exit n has
at least n enclosing blocks. The semantics of CMINOR prescribes that function calls
and returns necessarily match. For this to still hold at the assembly level where the
return address is explicitly stored in the stack frame, it is sufficient to prove that the
CMINOR program has no going-wrong behaviour. To ensure control-flow integrity, the
only remaining issue is due to indirect calls through function pointers. Our control-flow
integrity counter-measure implements software trampolines and ensures that an indi-
rect call with signature σ can only be resolved by a function pointer towards a function
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with signature σ.

For this purpose, the existing CMINOR SFI security policy i.e., Property 1, which
rules out any memory access outside the sandbox is too restrictive. As we shall see,
the implementation of trampolines necessitates controlled memory reads, outside the
sandbox, within compiler-generated variables. To accommodate for this extension, we
propose a slightly relaxed SFI security property which, in addition to memory accesses
inside the sandbox, authorises other memory reads in read-only regions.

Property 3. A CMINOR program is secure if all its memory accesses are within either
the sandbox block sb or some read-only memory.

This relaxed property still ensures the integrity of the runtime because all memory
writes are confined to the sandbox. Note that Property 3 and Property 1 are equivalent
if the trusted runtime library has no read-only memory. This can be achieved at modest
cost by modifying slightly the source code and remove the C type qualifier const which
instructs the compiler that the memory is read-only.

2.2.4.2 Control-Flow Integrity of Indirect Calls

In Section 2.2.3, we have eluded the presence of function pointers. They actually
perfectly fit our strategy of encoding pointers by integers. In this case, each function
pointer is encoded as an index and the trampoline code translates the index into a valid
function pointer.

Consider a function f of signature σ and suppose that the function pointer &f is
compiled into the index i. The reverse mapping from indexes to function pointers is
obtained from a compiler-generated array variable Aσ such that Aσ[i] = &f . The array
variable Aσ is made of all the function pointers with signature σ. The array variable is
also padded with a default function pointer such that its length is a power of two. At the
call site, the instruction e(e1 . . . , en)σ is transformed into [te&mskσ +&Aσ](te1 , . . . , ten)σ
where te, te1. . . , ten are transformed expressions such that all memory accesses are
masked and mskσ is the binary mask ensuring that the index te is within the bounds of
the variable Aσ. In our actual implementation, we optimise direct calls and in this case,
bypass the trampoline. Therefore, when the expression e is a constant pointer &f to an
existing function with signature σ, we generate directly (&f)(te1 . . . , ten). As a result,
only C code using indirect calls goes through the trampoline code.
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Though our implementation only exploits the relaxation of Property 3 for the sake
of trampolines, a more aggressive implementation could sometimes avoid relocating
read-only memory inside the sandbox. This could have a positive impact on optimisa-
tions which exploit the immutability of read-only memory.

2.2.5 Safety and Security Proofs

We next give an overview of our fully verified Coq proof of security and safety.

2.2.5.1 Security Proof

Property 3 is an informal formulation of our security property that is formally stated
as a CMINOR instrumented semantics. This semantics mimics the CMINOR seman-
tics with the exception that memory accesses are restricted: a memory read is either
performed within the sandbox or in a read-only memory region; a memory write is
necessarily performed within the sandbox.

The goal of the security proof is to show that all the memory accesses abide by
the restrictions of the instrumented semantics. This is stated by Theorem 2 which es-
tablishes that for a transformed program tp, no behaviour of the standard CMINOR

semantics gets stuck for the instrumented CMINOR semantics.

Theorem 2 (Security). For any transformed program tp, every behaviour of tp in the
standard semantics of CMINOR is also a behaviour of tp in the instrumented semantics.

The proof is based on the standard technique of forward simulation that is used in
COMPCERT to ensure the preservation of semantics by compiler passes. Here, the for-
ward simulation has the distinctive feature of relating the same (transformed) program
equipped with a standard and an instrumented semantics. Since the only difference
between the two semantics is that memory accesses must be secure, the crux of the
proof lies in the correctness of the masking primitive, as stated in the following lemma.

Lemma 1. For any masked expression e, if e evaluates to some pointer ptr(b, o), then
b is the block of the sandbox i.e., sb.

The proof relies on the definition of the masking primitive: a masked expression e

is of the form e′ +&sb. Since &sb evaluates to the pointer ptr(sb,0 ), then if the whole
expression evaluates to a pointer ptr(b, o), necessarily b = sb.
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2.2.5.2 Safety Proof

In order to benefit from COMPCERT’s semantic preservation theorem and transport
our security proof to the compiled assembly program, we must also prove that the
sandboxed program is safe, i.e., it never gets stuck. We address all the going-wrong
behaviours that we enumerated in Section 2.2.1.1.a. The well-formedness properties
of a program (calling only defined functions, accessing only defined variables, jump-
ing only to defined labels, exiting from no more blocks than currently enclosed in) are
checked statically and make the transformation fail if they are violated. Next, the mem-
ory accesses require the addresses to be valid and adequately aligned: our masking
operation ensures that this is always the case. Then, the evaluation of expressions
must always be defined: this has mostly been dealt with the arithmetisation of the
memory (Section 2.2.3.4). Finally, function calls should always be performed with the
appropriate number of well-typed arguments. This is easy to check statically for direct
function calls, but requires trampolines (as described in Section 2.2.4.2) for indirect
function calls. The following sandbox invariant encapsulates all these conditions.

Definition 1 (Sandbox Invariant). A state S of program P satisfies the sandbox invari-
ant if the following conditions are satisfied:

1. indirect control-flow transfers are well-defined in P (e.g. goto instructions in the
functions of P only jump to defined labels);

2. every function of P ends with an explicit return;

3. every function of P is well-typed;

4. every function of P starts by explicitly initialising its local variables;

5. the global array Aσ for signature σ contains function pointers to functions of sig-
nature σ;

6. the environment for local variables and the memory in S only contain properly
initialised, numerical values.

Properties 1, 2, 3 are ensured by a set of syntactic checks over the bodies of all the
functions of the program. Property 4 is enforced by our function transformation which
inserts assignments that explicitly initialise all declared local variables. Property 5 is
ensured by construction of the arrays for function pointers. All these properties can
be established solely on the program body and do not change during the execution of
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the program. By contrast, Property 6 cannot be checked statically and depends on the
state of the program at each point.

2.2.5.2.a Safe Evaluation of Expressions.

A necessary condition for the safe evaluation of expressions is that the program is
well typed. COMPCERT does not generate these type guarantees so we have integrated
a verified (simple) type-inference algorithm for CMINOR programs. Type-checking alone
is not sufficient to rule out undefined behaviours of C operators, but together with the
transformations explained in Section 2.2.3.4, we prove the following lemma about the
evaluation of transformed expressions.

Lemma 2 (Safe evaluation of expressions). In a memory state and a well-typed envi-
ronment for local variables containing only defined numerical values, the transformation
of any well-typed expression e evaluates to a defined numerical value.

Lemma 2 follows directly from the properties of our expression transformation.

2.2.5.2.b Safety of Calls through Trampolines.

As mentioned in Section 2.2.4, we implement software trampolines to secure func-
tion calls through function pointers. To ensure the safety of indirect function calls, we
maintain a map smap from function signatures to the corresponding array identifier and
the length of this array. The proof of safety relies on the fact that for every function f

of signature σ present in a program, we have smap(σ) = (Aσ, lσ) such that all offsets
lower than lσ in Aσ contain a pointer to a function of signature σ. The safety proof of
indirect calls itself is not hard, but we need to set up this signature map and establish
invariants relating it to the global environment of the program.

2.2.5.2.c Safety Theorem.

Considering the invariants defined in Definition 1, we prove Lemma 3 which is our
main technical result.

Lemma 3 (Safety). For any CMINOR program state S that satisfies the invariants, either
S is a final state or there exists a sequence of steps from S to some S′ such that S′

also satisfies the invariants.
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A subtlety of the proof is that at function entry, the local variables carry the value
undef and therefore the sandbox invariant only holds after they have been initialised
by a sequence of assignments (see Property 4 of Definition 1).

Using Lemma 3, we can show Property 2, in the form of Theorem 3.

Theorem 3 (Safety of the transformation). All behaviours of the transformed program
are well-defined, i.e., not wrong.

Proof. A going-wrong behaviour occurs precisely when a state is reached, from which
no further step can be taken, though it is not a final state. Lemma 3, together with a
proof that the initial state of the transformed prorgam satisfies the invariants, tells us
that no such reachable state exists, concluding the proof.

As a result, we benefit from COMPCERT’s semantic preservation theorem and can
transport the security proof down to the assembly program.

Theorem 4 (Security of the compiled program). Let p be a transformed CMINOR pro-
gram. If p compiles into the assembly program tp, then tp is secure.

The proof uses Corollary 1 and Theorem 2 to conclude that the behaviours of tp are
the same as those of p, and hence secure.

2.2.6 SFI Runtime and Library

Our modified COMPCERT compiler, COMPCERTSFI, takes as input a C program unit
in the form of a list of C files. Each C file is first compiled down to the CMINOR language
using the existing passes of the COMPCERT compiler. Then, all the CMINOR programs
are syntactically linked [54] together to form the program unit to be isolated inside the
sandbox. COMPCERTSFI comes with a lightweight runtime and a generic support for
interfacing with a trusted library (e.g. a libC). An originality of our approach is that the
runtime is using a standard program loader. Moreover, the runtime gets some of its
configuration through compiler-generated variables.

2.2.6.1 Loading the SFI Application

The sandboxed code is linked with our runtime library by a linker script which speci-
fies where to load at runtime the sb variable, viewed as the data segment. The compiler
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also emits a sandbox configuration map which contains the symbolic address of the
sandbox, its numeric value at runtime, the total size of the sandbox and the range of
addresses reserved for global variables.

Our runtime code is executed before starting the sandboxed main function. It first
checks that the sandbox is properly linked according to the sandbox configuration map,
sets the shadow-stack pointer and initialises the sandbox heap using our sandbox-
aware implementation of malloc based on ptmalloc3 2.

By construction, our runtime stack is free of buffer overruns. Yet, if the recursion is
too deep, the stack may overflow. Therefore, the runtime inserts an unmapped page
guard at the bottom of the stack and intercepts the segmentation fault. This protection
suffices provided that the size of each function stack frame does not exceed a page;
which can be checked at compile-time. Eventually, after copying its arguments inside
the sandbox, the runtime calls the main function of the sandboxed application.

2.2.6.2 Monitoring Calls to the Runtime Library

The runtime library is trusted and therefore part of the TCB. To ensure isolation,
each call towards the runtime library is monitored to check the validity of the arguments.
For this purpose, a call to a library function, say foo, is renamed in the object file into a
call to a function sb_foo which sanitises its arguments before really calling the function
foo. The verifications are library specific but usually straightforward to implement. For
stdio, the FILE structures are allocated by the runtime outside of the sandbox. Hence,
the returned FILE* cannot be dereferenced to corrupt the FILE structure. To prevent
the sandboxed program to forge FILE* pointers, the runtime maintains at all time the
set of valid FILE*. For variadic functions e.g., printf, we statically compile the format
into a sequence of safe primitive calls. (We reject programs using formats computed
at runtime). For functions in string, we check beforehand that the range of memory
accesses is within the range of the sandbox. We also allow callbacks and therefore a
runtime function may take a function pointer as argument. To ensure that the function
is valid, the runtime is using the trampoline programming pattern presented in Sec-
tion 2.2.4.2.

2. http://www.malloc.de/malloc/ptmalloc3-current.tar.gz
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2.2.6.3 Communication via Global Variables

Programs may not only communicate via function calls but also directly via global
variables. For the libC, this includes e.g. stdout or errno. To ensure isolation, COMP-
CERTSFI relocates those variables inside the sandbox but also generates a global
variable map which is an array variable of the form

{&n1, o1, . . . ,&ni, oi, . . . ,&nm, om}

where &ni is the symbolic address of a global variable and oi is its offset in the sandbox.
Using this information, the runtime has the ability to synchronise the values of the
variables inside and outside the sandbox. For example, at program startup, the value
of stdout (a stream pointer) is copied inside the sandbox at the relevant offset. This
allows the sandboxed program to call stdio functions but protects the integrity of the
stream. For errno, it is the responsibility of each runtime library call to synchronise the
value of errno in the sandbox.

2.2.7 Experiments

We have evaluated our PSFI approach over the COMPCERT benchmark suite and
a port of QUAKE. All the experiments have been carried over a quad-core Intel 6600U
laptop at 2.6GHz with 16GB of RAM running Linux Fedora 27. For QUAKE, we explain
how to adapt the code to our runtime library and verify the absence of noticeable slow-
down. For the other benchmarks, we make a more detailed performance evaluation
and compare COMPCERTSFI with COMPCERT, GCC, CLANG but also the state-of-the-
art (P)NaCl implementation of SFI. In our experiments, all the benchmarks are ordered
by increasing running time. Moreover, for computing a runtime overhead, the running
time is obtained by taking the harmonic mean of 3 consecutive runs.

2.2.7.1 Porting Quake

QUAKE engines come in various flavours and we use the tyr-quake 3 implementation
linking with XLIB. The port requires the addition of several functions to our runtime
library from XLIB and the LIBC. Most of them are not problematic and require no or little

3. https://disenchant.net/git/tyrquake.git
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modification. For instance, the getopt function which is used to parse command-line
options is using the global variables optarg, optind, opterr, and optopt. As explained
in Section 2.2.6.3, the runtime library copies the values of these variables at reserved
places inside the sandbox.

Other functions, e.g. gethostbyname, allocate memory on their own and return a
pointer to this piece of data which is therefore not accessible to the sandboxed code.
For the specific case of gethostbyname, the library provides the function gethostbyname_r
which, instead of allocating memory, takes as argument a data-structure that is filled by
the function. In our case, we pass as argument a sandbox allocated piece of memory.
This does not solve our problem entirely as inner pointers may still point outside the
sandbox. To cope with this issue, we perform a deep copy of the relevant piece of data
inside the sandbox.

A last issue is that the video memory is shared between the application and the
X server using the system call shmat. Fortunately, the libC provides the relevant flags
to bind shared memory at a specific address. Hence, we were able to allocate it in-
side the sandbox thus allowing a seamless communication with the X server. After
these modifications, the sandboxed QUAKE runs without noticeable slowdown which
is encouraging and an indication of the good overall performance of our sandboxing
technique. In the following, we complement this with a more precise runtime evaluation
for the COMPCERT benchmarks.

2.2.7.2 PSFI Overhead: Impact of Sandboxing Primitives

Next, we compare the efficiency of a standard masking primitive (Section 2.2.3.1)
with a specialised version for 32-bit sandboxes (Section 2.2.3.2).

Figure 2.17 shows the overhead of the standard sandboxing primitive with respect
to the specialised sandboxing primitive. There are 6 benchmarks for which the over-
head incurred by the standard sandboxing is above 10% reaching 40% for 2 bench-
marks. These cases illustrate the significant performance advantage that is sometime
obtained by the specialised sandboxing. For some benchmarks, the standard sand-
boxing outperforms our optimised sandboxing. Yet when it does it is by a very small
margin (below 3%). Overall, for the vast majority of our benchmarks, the specialised
sandboxing primitive is very competitive.

In Section 2.2.3.1, we gave theoretical arguments for the advantage of the spe-
cialised sandboxing. Another argument comes from the fact that the specialised sand-
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Figure 2.17 – Overhead of standard w.r.t specialised sandboxing

boxing is easier to optimise. First, note that the standard and the specialised sand-
boxing primitives are both using a bitwise mask but for different purposes. For the
standard primitive, it is used to enforce that the pointer is within the sandbox bounds
but also to enforce alignment constraints. For the specialised primitive, it is only used
to enforce alignment constraints. Using the existing COMPCERT dataflow framework,
we have implemented an alignment analysis that is quite effective at removing redun-
dant alignment masks. To enable more optimisations, we explicit alignment constraints
in the CMINOR code program (e.g. by specifying that function arguments of a pointer
type are necessarily aligned). Thus, our experimental results are explained by both the
theoretical advantages given in Section 2.2.3.2 and the effectiveness of our alignment
analysis.

2.2.7.3 PSFI Overhead: Impact of Compiler Back-end

As a second experiment, we evaluate the overhead of our PSFI transformation for
various compilers: COMPCERT, GCC and CLANG. COMPCERT is a moderately optimis-
ing compiler and the benchmarks run significantly faster using GCC and CLANG. In
Figure 2.18, the baseline is given by the minimum of the execution times of the three
compilers without PSFI instrumentation. The black bar is the overhead of a compiler
(e.g. COMPCERT), with respect to the baseline and the grey bar is the overhead of
the same compiler but with the PSFI transformation (e.g. COMPCERTSFI). In order to
use GCC and CLANG, we implement a trusted decompiler from our secured CMINOR

programs to CLIGHT, a subset of C in COMPCERT. These CLIGHT programs are then
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compiled with GCC or CLANG.

For a fair comparison, we should compare programs for which we actually have a
reasonable security guarantee. We have a formal proof of security and safety (see
Section 2.2.5) for the sandboxed CMINOR program, and we are confident that our
syntax-directed decompiler preserves this property. For COMPCERT, this would suf-
fice to preserve the security of the compiled CLIGHT code, but this is not the case for
GCC and CLANG because of semantic discrepancies between the compilers. To limit
this risk, we have set the compiler flags to instruct GCC and CLANG to adhere to the
specificity of COMPCERT semantics: signed integer arithmetic is defined and so are
wraps around (flag -fwrapv), strict aliasing is irrelevant (flag -fno-strict-aliasing),
and floating-point arithmetic is strictly IEEE 754 compliant (flags -frounding-math and
-fsignaling-nans). We also instruct the compilers to ignore any knowledge about the
C library (-fno-builtin).

Our experimental results are shown in Figure 2.18. In Figure 2.18a, we have the
overhead of COMPCERT and COMPCERTSFI. The overhead of COMPCERT over GCC

and CLANG is expected and corroborates existing results 4. For 10% of the benchmarks,
the overhead COMPCERTSFI over COMPCERT is negligible and sometimes the PSFI
transformation even improves performance. Those are programs for which the PSFI
transformation introduces few masking operations, if any. For 41% of the benchmarks,
the overhead is below 10% and can be considered, for most applications, a reason-
able efficiency/security trade-off. For all the other benchmarks except binarytrees
and vmach, the overhead is below 25%. The two remaining benchmarks have a sig-
nificant overhead reaching 82% for binarytrees. This corresponds to programs which
are memory intensive and where sandboxing cannot be optimised.

In Figure 2.18b and Figure 2.18c, we perform the same experiments but with GCC

and CLANG. The results have some similarities but also have visible differences. For
about 60% of the benchmarks the overhead is below 20%. Moreover, for both compil-
ers, the average overhead is similar: 22% for GCCSFI and 24% for CLANGSFI. Yet, on
average GCCSFI makes a better job at optimising our benchmarks and best CLANGSFI

for about 75% of the benchmarks. For the rest of the benchmarks, we observe a
significant overhead, up to 20%, indicating that the PSFI transformation hinders cer-
tain aggressive optimisations. The results also seem to indicate that optimisations are
fragile as the overhead is not always consistent across compilers. The case of the

4. http://compcert.inria.fr/compcert-C.html#perfs
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Figure 2.18 – Overhead of PSFI:COMPCERT, CLANG, GCC, (P)NaCl

integr benchmark is particularly striking because it runs with negligible overhead for
CLANGSFI but exhibits the worst case overhead for GCCSFI. The integr program is us-
ing a function pointer inside a loop and we suspect that GCCSFI, unlike CLANGSFI, fails
to optimise the program due to the inserted trampoline code. Though less striking, the
benchmarks fftw and raytracer follow the opposite trend; these are programs where
the overhead of CLANGSFI is much higher than GCCSFI.

2.2.7.4 PSFI versus (P)NaCl

We also compare our compiler-based SFI approach with (P)NaCl [99], which to our
knowledge is one of the most mature implementations of SFI. Figure 2.18d shows the
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overhead of COMPCERTSFI, GCCSFI, CLANGSFI with respect to (P)NaCl. The baseline
is given by the best among NaCl and PNaCl. The best of CLANGSFI and GCCSFI is
given in dark gray and COMPCERTSFI is given in light grey.

We first analyse the results of COMPCERTSFI. Our benchmarks are ordered by in-
creasing runtime. The first 5 benchmarks have a runtime below one second. They are
not representative of the performance of both approaches but only illustrate the fact
that (P)NaCl has a startup penalty due to the verification of the binary and the setup of
the sandbox. The overhead peaks above 75% for two programs (i.e., fib and integr).
As the PSFI transformation keeps fib unmodified and only inserts a trampoline call in
integr, these programs only highlight the limited optimisations performed by COMP-
CERT. Of the remaining benchmarks, 40% of them run faster or have similar speed
with COMPCERTSFI. For those benchmarks, the average overhead of COMPCERTSFI

w.r.t (P)NaCl is around 9%. Except for a few programs whose overhead skyrockets due
to COMPCERT not being specialised for speed, we can say that COMPCERTSFI perfor-
mance is comparable to (P)NaCl, having programs with better speed in both sides and
a large number having similar results.

We also matched GCCSFI/CLANGSFI against (P)NaCl to compare the impact on
performance of more aggressive optimisations. Here 60% of the programs are faster
with GCCSFI/CLANGSFI. Among the remaining programs, lzw and chomp are programs
for which the (P)NaCl code runs faster than the optimised GCC CLANG code without
the PSFI transformation. As (P)NaCl is based on CLANG, more investigation is needed
to understand this paradox that may be explained by code running outside the sand-
box i.e. the trusted runtime library. Among the remaining benchmarks, binarytrees
and lists still show a noticeable overhead. Those are recursive micro-benchmarks for
which our PSFI is costly (see Figure 2.18). For lists, 99% of the time is spent in a
tight loop where only a single address is masked. For binarytrees, 70% of the time
is spent in the runtime code of malloc and free and therefore this highlights the fact
that our implementation is less efficient than the (P)NaCl counterpart. Overall these re-
sults indicate that our implementation of SFI is competitive with (P)NaCl, given similar
compilers. Furthermore, speed can be improved with more sandbox-dedicated optimi-
sations; these would be harder for (P)NaCl to check.
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2.2.8 Related Work

Since Wahbe et al. [114] proposed their initial technique for SFI, there has been
a number of proposals for efficiently confining untrusted software to a memory sand-
box (see [73, 98, 117, 76, 120, 106, 101]). One of the most prominent is Google’s
Native Client (NaCl) [117], which provides an infrastructure for executing untrusted na-
tive code in a web browser. NaCl was specifically targeted at executing computation-
intensive applications without incurring a performance penalty. Certain features (in par-
ticular self-modifying code) were ruled out. These restrictions were addressed in a
subsequent work [6].

RockSalt [77] is an SFI verifier for x86 code which has been developed and formally
verified with the proof assistant Coq. The major contribution of RockSalt is to provide a
formal model of the x86 architecture, from which it is possible to extract a decoder for a
subset of the very rich set of x86 instructions, and build a verifier for the NaCl sandbox
policy. Their experiments show that the formally verified checker performs marginally
better than the NaCl verifier. In comparison, our approach avoids the complexities of
the x86 instruction set by relying on the COMPCERT compiler back-end to produce
binaries whose adherence to the sandbox policy is guaranteed by a combination of
a sandbox verification at a higher level (CMINOR) and the COMPCERT’s correctness
theorem.

ARMor [120] is using the binary rewriter Diablo [89] to implement SFI for ARM
processors. Using an untrusted program analysis, a proof of SFI safety is automatically
constructed using the HOL theorem prover. ARMor was tested with some programs of
the MiBench benchmark [44], namely BitCount and StringSearch. These programs
required 2.5 and 8 hours respectively to prove the memory safety and control-flow
integrity of the executables, which means that the approach is not practically viable as
it is.

Kroll et al. [60] proposed PSFI as an alternative methodology to the standard,
verification-based SFI. In PSFI, the sandbox is built by inserting the necessary masking
instructions during compilation. This means that the correctness of the transformation
can be argued at an intermediate stage in the compilation where the program repre-
sentation retains a high-level structure. Our work extends the seminal proposal in a
number of ways that we detail below. Unlike Kroll et al., we exclude from the TCB the
masking primitive and the trampoline mechanism for calling external functions. In our
implementation, these crucial components are written entirely in CMINOR and proved
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correct without introducing trusted, unproved, code. Kroll et al. sketch a proof of safety
but do not identify the issue of pointer arithmetic. To sidestep the semantics limita-
tion of pointer arithmetic, we introduce a compile-time encoding of pointer as integers.
This transformation is instrumental for our Coq verified proof of safety, which itself is
mandatory to transfer security down to assembly.

Since the seminal work of Norrish [84], several works propose formal semantics of
the C language [59, 37, 46]. All these share the limitations of COMPCERT with respect
to pointer arithmetic. Recent works specifically aim at providing a more defined seman-
tics for pointers. The proposal of Besson et al. [16] is able to cope with most existing
low-level pointer manipulations and has been ported to COMPCERT [17, 18]. Yet, it has
nonetheless limitations and the design of our PSFI transformation would not benefit
from the increased expressiveness. The semantics of Kang et al. [54] is more permis-
sive because, after a cast, a pointer is indistinguishable from an integer value. To our
knowledge, their semantics has not been ported to the COMPCERT compiler. Our SFI
transformation has the advantage of being compatible with the existing semantics of
COMPCERT with the caveat that pointers need to be explicitly compiled into integers.

2.2.9 Conclusion

We have presented COMPCERTSFI, a formally verified implementation of Software
Fault Isolation based on the COMPCERT compiler. Our approach provides security
guarantees at runtime when the source code may be malicious or has security vul-
nerabilities but the build process is trusted. This is typically the case when a final prod-
uct is built using code originating from multiple third parties. Our work shows that it is
possible to perform security-enhancing compilation that is both formally verified and
competitive with existing approaches in terms of efficiency. COMPCERTSFI does not
rely on a posteriori binary verification for guaranteeing security, and hence has a re-
duced TCB compared to traditional SFI solutions. The reduction in TCB is obtained
through a formal, machine-checked proof of the fact that the security guaranteed by
our SFI transformation in the compiler front-end, still holds at the assembly level. Key
to achieving this property has been to fine-tune the transformation (and in particular its
pointer manipulations) to ensure that the secured program has a well-defined seman-
tics.

The impact of SFI has been evaluated on a series of benchmarks, showing that the
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transformed code can in a few cases be more efficient, and that the average runtime
overhead incurred is about 9%. We have evaluated the impact of back-end optimisation
on the transformed code on three different compilers. The gains vary, with CLANG being
more efficient than COMPCERT and GCC, and COMPCERT being slightly more efficient
than GCC. The experiments show that COMPCERTSFI combined with an aggressive
back-end optimiser can sometimes achieve performances superior to Native Client im-
plementations. In addition, there is still room for further optimisation of the generated
code. We have observed that existing optimisations are sometimes hindered by our
SFI transformation, so we gain by having more optimisation before the SFI transforma-
tion. We also intend to investigate optimisations for removing redundant sandboxing
operations and in particular hoisting sandboxing outside loops.
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CHAPTER 3

INFORMATION-FLOW PRESERVING

TRANSFORMATION

This chapter will present another way of addressing security during compilation.
Previously with COMPCERTSFI, regardless of the source program, the compiled pro-
gram will always conform to SFI policy. Here we will talk about preservation of security
during compilation. The goal is that the compiled program needs to be at least as se-
cure as the source program. In other words, security guarantees of the compiled pro-
gram should be equivalent to the security guarantees of the source. In this setting, the
view of security is vastly different from SFI where the source code was untrusted. With
preservation, we believe that the developers are responsible for enforcing the security
of their programs. The compiler’s job is solely to translate the intent of the developers
down to the executables.
Unfortunately, it is well known that compilers struggle to fulfill this task correctly [115],
and the situation worsen when accounting for side-channels. Side-channels target be-
haviours of the systems that are not usually described in programming language stan-
dards. Therefore, compilers may misunderstand side-channel countermeasures and
compromise them which results into serious security vulnerabilities in the compiled
programs.

In this chapter, we present a solution to tackle this issue. Our work mainly focuses
on side channel attacks which can probe the memory of the system during an execution
such as power analysis or cold boot attacks. First, we will present the context and the
motivations behind our work. Then we will explore different researches which inspire us
for our work and point out how they fare for our problematic. Afterwards we will present
our solution to preserve security against a memory attacker during compilation using
our notion of Information-Flow Preservation (IFP). We also show our IFP property is
used to secure two compiler passes: dead store elimination and register allocation.
Finally, we will discuss how to extend our property to other compilation passes and
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how can improve the property for future work.

3.1 Motivations

In this section, we present the different motivations behind our work. We first present
the attacker model we want to prevail against, and then show few examples where com-
pilation fails to preserve security of programs. Lastly, we discuss few security properties
that mitigate information leakage in programs and that we would like to preserve during
compilation.

3.1.1 Memory probing attacker

Our overall goal is to prevent information leaks from being introduced by the compi-
lation process. Compiled code should be no more vulnerable to passive side-channel
attacks than the source code. Such side channels correspond to an attacker who is
granted physical memory access at specific observation points, and who is parametrised
by the amount of information he is allowed to read. At the semantic level, side-channels
can be modelled using a leakage function exposing a partial view of the program state
to the attacker [11].

A typical example of a timing channel is the leaking of information through obser-
vations of the memory cache behaviour. Formally, this channel can be modelled by
leaking the program counter and the memory accesses [5]. Another example is the
power channel that can be modelled by the so-called Hamming Weight model [56]
where what is leaked is the Hamming Weight of the program state i.e., the number of
information bits that are set to 1.

In our work, we want to protect against a category of attackers which are able
to probe the memory state of a program during its execution. This attacker model is
suitable to use for concrete attacks such as power analysis attack, electromagnetic
waves analysis attacks or cold boot attacks. The three attacks cited are able to probe
the content of the memory whenever during a program execution. Furthermore, for the
first two attacks, the cost of mounting the attack is directly related to the amount of
information one wants to get from the memories. Therefore, we want our property to
also preserve the amount of information leaked in a program.
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3.1.2 Information Flow Preservation by Examples

We present a list of simple program transformations which break security of pro-
grams using the syntax of an imperative language where a ● indicates program points
where the program’s memory is leaked to the attacker.

1 def p1(x):
2 x = 0
3 return

1 def p2(x):
2 skip
3 return● ●

Dead Store
Elimination

Figure 3.1 – Direct leakage

Data remanence Figure 3.1 is an example where an optimisation like Dead Store
Elimination (DSE) creates a direct leakage in the program p1. DSE is the typical ex-
ample when talking about compiler inability to preserve security of source programs. A
description of DSE can be found in the thesis introduction. In program p1, the value of
the variable x is erased by the instruction x = 0 before returning. Thus, its initial value
will not remain in the memory at the end of the program. DSE can optimise away the
erasure instruction hence breaking safe erasure of p1 since the attacker can read the
initial value of x when p2 returns.

Lifetime extension Variables lifetime may be extended due to optimisations like code
motion which moves certain line or block of code to improve the speed of the code. An
example is to extract an instruction out of a loop to avoid redundancy or to improve
locality of variables that are often used together.

1 def p1(x):
2 x = 0
3 evil()
4 return a

1 def p2(x):
2 evil()
3 x = 0
4 return a

●
●

● ●

Code Motion

Figure 3.2 – Lifetime extension

In Figure 3.2 we assume that an attacker is able to read the memory state just
before calling the function evil. Hence in p1 an erasure instruction is placed right
before (line 3) to prevent the value of x from being leaked. Unfortunately, code motion
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may change the execution order of the instructions and place the erasure instruction
after the vulnerable function evil which defeats its purpose and breaks safe erasure.
Extending the lifetime of sensitive values increases the potential vulnerabilities of a
program which is something we want to capture with our preservation property.

Worsening of leakage We also want to prevent a leak from increasing during a trans-
formation. For example, in Figure 3.3 the program p1 wants to protect a secret value
which is x + y. It is unable to protect it from leaking but mitigates the leak by splitting
the full value into two shares x and y and avoid keeping x + y in memory. In this situ-
ation, a leak is present since an attacker is able to get the secret value x + y but he
is still required to uncover the value of both x and y to compute it which increases the
difficulty of the attack. This is similar to masking, presented in Section 3.1.4.2, where
secrets are split into shares and operated on independently before reconstructing the
final value.

1 def p1(x,y):
2 a = x + y + ...
3 b = x + y + ...
4 return

1 def p2(x,y):
2 tmp = x + y
3 a = tmp + ...
4 b = tmp + ...
5 return

● ●

Common
Subexpression

Elimination

Figure 3.3 – Worsening of leakage

However, a compilation optimisation like Common Subexpression Elimination can
decide to store temporarily the value x + y to avoid redundancy during computations.
Therefore, an attacker is able to get the secret solely by looking at the value of the vari-
able tmp in p2 while he needed to both look at x and y in p1. This worsening of leakage
should be captured by our preservation property since we do not want a program to
get less secure than it was before during compilation.

Duplication Lastly, we believe that having multiple instances of a secret value also
multiplies the possible attacks that can be carried out on a program. A transformation
should not make this possible but unfortunately this may happen during transformations
like Register Allocation (RA).
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1 def p1(x):
2 ...
3 return

1 def p2(r1):
2 stack1 = r1
3 ...
4 r1 = stack1
5 return

●
●

Register
Allocation

Figure 3.4 – Duplication

1 f: ●1 a = x ^ y; x = 0; ●2 return a;
2

3 g: ●1 a = x ^ y; ●2 return a;

Figure 3.5 – Safe Erasure of One-Time Pad

RA is a pass that takes into account the limited number of registers of a processor
and uses the stack to alleviate the data contained in the registers. RA is tackled in
our work and is presented thoroughly in Section 3.3.4. In program p1 of Figure 3.4 the
value we want to protect is x and is leaked at the end of the program. This leak is
aggravated in p2 during RA. In p2 the secret value is stored in the register r1 at the
beginning of the program. This value is then stored in the stack line 2 to free r1 for
other computations. At the end of line 4 the secret value is restored in r1, however it is
still present in the stack which makes two instances of the secrets in the memory and
worsen the initial leakage.

3.1.3 The “Full Information Flow” Paradox

We work with a parametrised attacker model where the attacker makes partial ob-
servations. Partial observations are essential, because they capture partial informa-
tion flows that would go unnoticed if we only had an omniscient attacker observing
the whole memory. In the context of dynamic information flow policies, Askarov and
Chong [7] have already observed that a program could be secure against a powerful
attacker but insecure for a weaker attacker. To see this, consider the program f and
the transformed program g in Figure 3.5. Using a cryptographic analogy, Program f is
encoding the plain-text y using the one-time pad key x and erases the key x. Program g

performs the same encryption without erasing the key. If the attacker observes x●2 in
Program g, he obviously learns the key x. Perhaps surprisingly, the key x can also be
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learnt for Program f by an attacker observing both the plain-text y●2 and the cipher-text
a●2. The attacker obtains x by solving the equation a●2 = x∧y●2 whose unique solution
is x = a●2∧y●2. Thus, no additional information flow is introduced and the transformation
is (erroneously) deemed secure. To rule out this insecure transformation, we stipulate
that both attackers need to observe the same amount of information i.e., the same
number n of bits. If both attackers observe a single bit, the observation a●2 in g cannot
be simulated in f and therefore we conclude that the transformation is, as expected,
not information-flow preserving.

3.1.4 Some security properties against information leakage

We just went through some examples in the previous section to get a feel of our
property. Here we discuss three software properties which are Safe Erasure [27], Mask-
ing [42] and Non-Interference [41]. These three properties allow a program to limit the
amount of information leaked during an execution and are generic to most kind of at-
tacks. Safe erasure guarantees that secret values should not be observable anymore
by an attacker past a point of execution. This reduces the lifespan of sensitive values in
the memory which decreases the attack surface on the temporal dimension. Masking
split a sensitive value into multiple independent shares. Computations are then done
on these shares separately which means that an attacker need to retrieve all the differ-
ent shares to be able to get the secret value. The cost of an attack becomes steeper
depending on the number of shares used. Non-Interference is a really strong property
that when enforced prevents an attacker from discerning between multiple executions
of a program using different secret values. Contrary to safe erasure and masking, non-
interference is not a mitigation property. Indeed, safe erasure and masking makes at-
tacks on a program more difficult to achieve but secret values will be leaked anyway
if we assume an attacker with unrestrained observations. Non-interference states that
two executions of a non-interfering program should be indistinguishable to an attacker
and therefore contains no leaks.

3.1.4.1 Safe Erasure

Safe erasure is a simple security measure that consists in wiping from the memory
the secrets that are not used anymore and is illustrated in Figure 3.1. The idea is that

92



3.1. Motivations

since attacks are able to retrieve values from the memory, the time where secrets are
stored in the memory should be as short as possible.

The problem of secure erasure of secrets has been studied from an information-flow
perspective. Chong and Myers [27] propose semantics foundations for defining erasure
policies. A main insight behind that work is that erasure can be seen as the dual of de-
classification [94]. Later on, Chong and Myers [26], but also Hunt and Sands [48],
propose type-systems for verifying erasure policies of the source code on WHILE
languages. Askarov et al. enforce the erasure policies in the presence of so-called
write-once locations which cannot be overwritten. The key insight is to store encrypted
data in write-once locations and simulate erasure by the erasure of the cryptographic
key. However, those different works focus on logical erasure and not physical erasure:
make sure that the data is effectively erased from the media. Safe erasure principles
are evident but in practice, compiler optimisations are known to remove such erasure
instructions and is even listed as a CWE [30] and recognised by the CERT at CMU 1.

Dead Store Elimination (DSE) is the main culprit for removing erasure instructions
and break security [116] during compilation. Reports about DSE breaking erasure can
easily be found in multiple projects involving compilation or security. GCC relayed this
vulnerability in 2002 [85] and the problem was still ongoing in 2015 with OpenSSL [91].
Numerous solutions have been proposed but to our knowledge there is no consensus
of a preferred solution in the community.

[104] and [116] acknowledge this issue and survey the different techniques used to
effectively erase data from the memory in C programs. Windows systems possessed
a SecureZeroMemory() function that is never optimized away by compilers but is spe-
cific to this operating system. Standard C11 recommends using memset_s which is
not widely adopted (gcc does not want to support it). Another countermeasure is to
use the volatile qualifier which indicates that a variable may be modified by another
source than the program. This method is a trick for to preserve erasure since volatile
semantic has no relation to erasure and therefore does not completely address the
issue [47]. All of these solutions possess their flaws and no ideal candidate has been
found so far. To mitigate the problem, Simon et al. [104] also proposes a variant of the
Clang compiler where the stack and the registers are wiped after each sensitive func-
tion execution. While this approach gives extra security, it is not flexible and comes with
non-negligible overhead. Similarly, Yang et al. [116] also leverage the Clang compiler

1. CERT MSC06-C
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and modifies the dead store elimination pass by combining the most reliable techniques
surveyed to preserve the erasure instructions. Experiments seem promising; however
no formal guarantees have been expressed and wide adoption of the compiler has yet
to happen.

3.1.4.2 Masking

The idea of masking is to split secret data into multiple independent and random
shares. Cryptographic implementations will apply their computations on these different
shares independently and we can recover the final value by recombining the shares.
Masking has two main advantages, first, an attacker needs to get all the shares to
reconstruct the secret, which makes the attacks more costly. Second, all these shares
which are chosen randomly, add additional noise to the computation which cannot
be predicted since they are changed for every execution. This idea has been actively
improved during the past years and have been implemented to both software [95] and
hardware [49] and been proven secure [88].

Masking is especially used against power analysis attacks (Section 1.1.2.2) consid-
ered as a powerful side-channel attack. However, masking can also be used against
other attack like cold boot attack.

We give the basic properties of a Threshold Implementation which is a popular
model for masking [35][82].

Threshold Implementation We take the initial program p that takes as input the
secret x and output the value y, (p, x) ⇓ y. We note p̄ the threshold implementation
of p with masking that takes as input the share vector x̄ and output the vector ȳ. x̄ =
(x1, . . . , xn) and ȳ = (y1, . . . , yn) are composed of n elements. p̄ respects the following
properties:

— Uniform Masking, all the possible input share vector x̄ have an equal chance to
occur

— Correctness, the reconstruction of ȳ should return the value y of the original
program p

— Non-completeness, all component functions of p̄ use at most n − 1 input shares
of x̄
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— Uniformity, given a uniform input vector x̄ then the output vector ȳ returned by p̄
should be uniform too

The key property for security in a threshold implementation is the non-completeness
and is the property we aim to preserve. Uniform masking is about the inputs of the
program and correctness is not the goal of our work but is preserved under a seman-
tic preserving transformation similar to the COMPCERT theorem. Non-completeness
guarantees the security of masking and declares that no intermediate values should
be related to all the n input shares. Therefore, an attacker should not be able to deduce
the whole input vector x̄ from observing a limited number of intermediate values. We
will not deal with uniformity in our work since we do not have a probabilistic model for
our program executions.

3.1.4.3 Non-Interference

Non-interference [41] is mostly known as a multi-level security policy. The goal is to
ensure that information-flow from different level of security do not interfere with each
other. The flow policy which is usually used forbids any information flow from a high
security level to a lower one. However, in our model we do not have any notion of se-
curity level. Indeed, for our probing attacker model all the values stored in the memory
are equally accessible to the attackers: one does not need higher authorization to ac-
cess certain parts of the memory. Therefore, the classical notion of non-interference
cannot be preserved during compilation, since, in our setting we do not differentiate
between high and low security memory locations. Hence, we use another notion of
non-interference called Observational Non-Interference from Barthe et al. [11] that we
adapt to our model.

Definition 2 (Observational Non-Interference). Program p is non-interfering with regard
to the policy (φ,ψ) if:

∀(c, c′).
⎛
⎜⎜⎜
⎝

(p, c) ⇓ t
∧

(p, c′) ⇓ t′

⎞
⎟⎟⎟
⎠
∧ φ(c, c′) ⇒ ψ(t, t′)

(p, c) ⇓ t signifies that program p executed with initial memory c yields the trace t. Exact
definition of a trace will be provided later in Section 3.3.1.1.
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Choice of the policy (φ,ψ) depends on the security we want to enforce. A usual
choice for φ is that memories should agree on addresses with low security levels. Def-
inition of ψ depends on the leakage model but you often want that the traces observed
by the attackers to be indistinguishable, so a good choice for ψ is equality.

3.2 Related works

Overall our goal is to preserve security countermeasures against a memory prob-
ing attackers during compiler transformations. Secure refinement shares similar issues
with our topic, therefore we give an overview of the different works we found. Since
our attacker model is close to side-channel attackers (cold boot, power analysis) we
first explore several works concerning side-channels and look at existing countermea-
sures and see how they are dealt with during compilation. Secondly, we elaborate on
preservation of security properties during transformations. Part of it was presented in
the previous section on safe erasure, masking and non-interference.

3.2.1 Secure refinement

Safety and liveness properties that can be defined on a single trace are preserved
under refinement [52]. However, this is not the case for information-flow properties (de-
fined on a set of traces) and this issue has been pointed out since 1989 by Jacob [52].
Information-Flow properties is a class of properties that include many security prop-
erties like constant-time or non-interference in general. While our work focuses on
program transformations, refinement of systems specifications shares this similar is-
sue on preservation of security properties. System specifications are defined by a set
of traces which are usually composed of events between entities of the system. The
refinement from an abstract specification Ta to a concrete specification Tc reduces the
underspecification of Ta which entails the following relation: Tc ⊆ Ta. A transformation,
on the other hand, is defined as a computable function mapping a specification to an-
other specification [97]. Information-Flow properties are defined by two components:
a flow-policy and a definition of information-flow. In its simplest form, a flow policy is
composed of two domains H and L and the relation H   L which forbids flows from H

to L. For deterministic systems, non-interference is accepted as the standard definition
of information-flow. Mantel [72], defines a framework to check and construct refinement
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operators that preserve information-flow properties and such, for different definitions of
information-flow. These operators specify under which conditions low and high events
can be disabled or should stay enabled during refinement. Moreover, he also proves
that these refinement operators are optimal in the sense that any further disabling of
events breaks the information-flow property chosen. Seehusen et al. [97] take the op-
posite approach and propose a schema in which secure specifications can be defined
and are, by construction, preserved by a category of refinement called property refine-
ment. The main idea behind their schema is to make a clear differentiation between un-
derspecification and unpredictability. Underspecification corresponds to the traces that
should be removed during refinement whereas unpredictability corresponds to the sets
of traces which are necessary to have security. Indeed information-flow properties are
defined on sets of traces and if elements of these sets are removed during refinement,
the properties may not hold anymore. Hence, they propose to define specifications with
a set of obligations which contain the minimal traces which are necessary to enforce
an information-flow property. In this setting, refinement removes underspecification but
does not lessen unpredictability. Another result of their work is an additional sufficient
condition to adapt their schema to transformations instead of refinements. While the
field of secure refinement of systems differs from our topic, problematics and security
definitions are similar to ours and can inspire our work on secure transformations.

3.2.2 Power Analysis

Power analysis attacks belongs to a category of attackers which resembles the
most to our attacker model. While simple power analysis only leaks values which are
used by instructions with specific power usage such as branching, this is not the case
for differential power analysis (explained in Section 1.1.2.2) (DPA). DPA is a statistical
attack using multiple executions of a program to correlate the value of certain bits
to its power consumption. Therefore, attackers using DPA are able to get almost any
intermediate value from an execution given enough observations. This is similar to our
memory probing attacker which has limited observational power.

Numerous proposals to defend against power analysis have been submitted with
each their advantages and flaws. Elimination techniques pursue the goals of reducing
the leakage observable by the attacker by minimizing the signal to noise ratio. Kocher et
al. [56] in their paper already suggest several proposals such as balancing the ham-

97



Partie , Chapter 3 – Protecting Memory against Probing Attacks

ming distance [87][51], which ensures that an equal number of 0 → 1 and 1 → 0 bit
transitions occur at each clock cycle. Other ideas involve choosing instructions with
low impact on power consumption or directly shielding the device.

The main issue of these elimination techniques is that they do not fare well against
an attacker with unlimited observations using DPA.
Another popular possibility is to use masking [25] presented previously Section 3.1.4.2.
Masking can be both be implemented in software and hardware. Surprisingly, we did
not find any work concerning the preservation of software masking during compilation.
Moreover, we know from experimentations that generic compilers like GCC or Clang
can compromise this countermeasure. Therefore, a motivation of our work is to tackle
this issue.

3.2.3 Preservation of Constant-Time implementations

Timing attack is one of the most infamous side-channel attacks with a large body
of work [55, 9, 14]. Even though constant-time has a different attacker model (the at-
tacker cannot probe the whole memory), works about preservation of constant-time
countermeasures can be found in the literature. Since differential power analysis and
timing attacks share similarities (passive attacker and requires multiple executions to
succeed), we inspire from their proof techniques to preserve security during transfor-
mations.

Jasmin [3, 4] Jasmin is a compilation framework which goal is to easily develop
high-speed and high-security cryptographic code. Jasmin compilation chain uses the
Jasmin language, which is enough low level to generate predictable assembly code
but still be architecture independent. To attain high security, Jasmin programs can be
translated into Dafny [63] programs where memory safety and constant time security
can be verified automatically using the Z3 SMT solver [78]. Furthermore, the compila-
tion framework is designed to preserve such security properties down to the assembly
code. First of all, the Jasmin compiler has been proven with Coq to be correct, more
explicitly to preserve the semantics of the Jasmin programs. Moreover, Jasmin is also
proven to preserve constant-time security: jumps and writes in the memory do not de-
pend on secrets. They prove for each pass of compilation that the transformation does
not introduce any additional leak using a standard notion of simulation. More precisely,
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they show that for each execution of the source program the corresponding execution
of the transformed program will have equal or less leakage. Note that due to the Jasmin
language being low-level, some aggressive optimisations that cannot be proven using
a simulation are not implemented in Jasmin.

Jasmin has recently been improved [4] to support vectorized instructions used by
realistic cryptographic implementations. Furthermore, embeddings of the Jasmin lan-
guage have been added to the EasyCrypt [12] proof assistant for provable security.
Hence, EasyCrypt can be used to automatically verify properties, such as functional
correctness or constant-time, of Jasmin programs. Coupled with Jasmin preservation
properties, Almeida et al. [4] proposes a complete toolchain to design and implement
verified high-speed cryptographic implementations.

Preserving side-channel countermeasures [11] Barthe et. al. present a framework
to prove that a transformation preserves some security property using the example of
constant-time. However, their work is generic and can be applied to prove the preser-
vation of other side-channel countermeasures. They use an operational semantic to
model the behaviour of programs where each step between states is labelled by a leak-
age function. The leakage function is then defined depending on the attacker model we
want to prevail against. In the case of the following constant-time policy “no secrets are
used for jumps and write” we have the following leakage function:

— boolean is leaked during control flow instructions

— memory address is leaked during memory writes and reads

In their work, they define their security preserving compiler around a notion named Ob-
servationally Non-Interfering Program that we use for our work. The novelty of their ap-
proach is the proof technique they propose to prove the preservation of observationally
non-interference. Instead of using the standard simulation where one proves that the
transformed program leak equally or less than the source one; they use a 2-simulations
to prove that for two source executions that are non-interfering, their transformed exe-
cutions will be non-interfering as well. The main advantage is that they do not require
any constraints between the leakage of the source and the transformed. A transformed
execution is allowed to leak more than its source as long it is still non-interfering with
the other transformed executions.

This proof technique is applicable to all information-flow properties which are de-
cidable by comparing at least two executions of a program.
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3.2.4 Information-Flow preservation

Deng and Namjoshi [33, 34] introduce an information flow concept of leaky triple
and ensure that compiler transformations preserve the information flow of programs.
Leaky triples (a, b, c) are a triple of inputs where a and b are high security and c is low.
(a, b, c) is a leaky triple for a program p if the executions with inputs (a, c) and (b, c)
give different outputs. They define a transformation from program p to program p′ to be
secure if any leaky triple of p′ is also a leaky triple for p. Their definition supplies the
notion of relative security that we seek: the transformed program should be at least as
secure as the source. The main limitation of their definition is that they do not include
any notion of amount of information leaked. For example, the transformation from p to
p′ is secure in their terms even if p leaks one bit of a password on input c whereas p′

leaks the whole password with c.

Their first work [33] present a secure algorithm for DSE. Given a list of dead as-
signments they remove the ones which may introduce a new information leak using a
taint analysis. They also show that their DSE should not encounter the limitation we
pinpointed earlier. An additional result of this work is a proof technique to prove a cat-
egory of transformations secure. If a transformed program p′ is a strict refinement R
of the source p then the transformation is secure. More precisely, if two states (t, t′) of
p′ have equal low variables t =L t′ then their refined states (s, s′) of p, also agree on
their low variables s =L s′. This result can certainly be adapted in our work to prove that
certain non-leaky transformations (like Constant Propagation) are secure.

Their following work [34] focuses on Single Static Assignment (SSA) transforma-
tions. The SSA intermediate form assign every new value to a fresh variable, therefore
all the variables of a SSA program are always assigned a single value during an execu-
tion. The main issue is that when transforming a program into SSA form, any instruction
meant to limit a leakage (like an erasure) will be assigned to a fresh variable. Therefore,
Deng and Namjoshi keep track of related SSA variables during the SSA transformation
and regroup them back during the unSSA transform.

3.3 Information-Flow Preserving Transformations

In this work, we propose a formal definition of preservation of information leakage
which, if verified by program transformations, ensures that the target code is not less
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secure than the source code, with respect to a passive but strong attacker able to read
an arbitrary amount of memory. We stress that our purpose is not to enforce a security
property; neither at the source level, nor at the target level. What we seek to identify
is a general property that provides a formal account of how optimisations increase the
information leakage and therefore render the compiled program insecure.

Our attacker model (ability to read arbitrary memory) is quite strong and one may
wonder whether compiler optimisations preserve the information leakage. In our work,
we review some optimisations and show that some of them need to be adapted. Our
contributions can be summarised as:

— We propose a notion of preservation of information leaks and assess its relevance
against a list of simple transformations.

— We show how to strengthen our initial proposal to capture information leaks due
to partial observations.

— We present sufficient conditions for the absence of information leaks which pro-
vide convenient reasoning principles.

— We review two optimisations, dead store elimination and register allocation; and
show how they can be adapted and proven to preserve information leakage.

— An implementation and experiments with an information-flow preserving register
allocation pass within the COMPCERT compiler.

The rest of the chapter is organised as follows. In Section 3.3.1, we give a formal
definition of IFP relying on the notion of Attacker Knowledge [7]. Section 3.3.2 presents
sufficient conditions for an IFP transformation which are easier to reason about in prac-
tice. Sections 3.3.3 and 3.3.4 show how the previous reasoning principles apply to two
standard program optimisations: dead store elimination and register allocation. We dis-
cuss some extensions of our formal model in Section 3.4.

3.3.1 Information-Flow Preservation

In this section, we first define formally what is an IFP transformation and then we
will go through some examples to show that this definition answers the motivations
stated in Section 3.1.
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3.3.1.1 Execution model

Without loss of generality, we assume that the program state is only made of a
bit-addressable memory:

Mem = Addr → Bit

Bit = {0,1}

A structured program state, s, can always be mapped to a memory m ∈ Mem at the cost
of some encoding. For instance, a language using program variables would represent
them by reserving certain memory addresses.

The semantics of a program p is given by a one-step deterministic transition relation
⋅ →e ⋅ ⊆ Mem × Mem where, e ∈ E = {ε, o} is either, ε, denoting a silent transition, or o
indicating that the end state of the transition is leaked to the attacker. From an initial
memory m0, a run of a program p is given by a sequence of memories m0 ⋅m1

e1⋯mn
en

such that for every i < n we have mi →ei
mi+1. Given such a run, the view of the

attacker is given by the sub-trace of leaked memories i.e. those memories resulting
from a transition tagged o. Formally, we define the transition relation of the attacker

⋅ ↝ ⋅ ⊆ Mem ×Mem

as a sequence of silent transitions followed by a transition leaking its final memory:

m→∗

ε m
′ m′ →o m′′

m↝m′′

As a result, from an initial memory m0, the trace of memories t =m1⋯mn that is leaked
to the attacker is such that for every i < n we have mi ↝mi+1. In the following, we write
(p, c) ⇓ t for a trace of the attacker obtained by running the program p from an initial
memory c.

3.3.1.2 Partial Attacker Knowledge

In our model, in order to protect against an arbitrary side-channel, we quantify over
a hierarchy of attackers An who have access to the programs code and where n is the
number of bits of information that the attacker is allowed to extract from the program
memory during the program execution. Thus, we do not fix one leakage function a priori
but rather consider protecting against a hierarchy of leakage functions.
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This attacker model is sufficient to formally capture the leakage of information. How-
ever, it does not take into account the practical difficulty of a physical attack i.e. how
hard it is to extract bits of information when the memory is indirectly observed through
a noisy side-channel.

We next define precisely the information leaked through a (partial) trace of at-
tacker observations, using the notion of Attacker Knowledge. Following [8], the Attacker
Knowledge from a trace t of program p is defined by

Kt(p) = {c ∈ Mem ∣ (p, c) ⇓ t},

i.e., the attacker knowledge corresponds to the initial memories that may lead to (and
hence are indistinguishable by) the observation of the trace t. We generalise the notion
of Attacker Knowledge to partial observations of n bits of the trace t. A partial obser-
vation o is a trace of partial memories, i.e., a sequence of partial maps from addresses
to bits:

(Addr ↪ Bit)∗

Partial memories m,m′ ∈ Addr ↪ Bit are ordered so that m ⊑ m′ if m and m′ agree
on all the addresses where m is defined. Formally, this is the standard (point-wise)
ordering of partial functions:

m ⊑m′ △= ∀x ∈ dom(m). m(x) =m′(x).

Two partial traces are ordered if they have the same length and the memories (at the
same position) are ordered using ⊑. Formally:

ε ⊑ ε
m ⊑m′ o ⊑ o′
m ⋅ o ⊑m′ ⋅ o′ .

The number of bits n of a partial trace o is written ∣o∣ and is obtained by summing the
number of bits defined by the partial memories m in o.

∣ε∣ = 0
∣m ⋅ o∣ = ∣dom(m)∣ + ∣o∣.

We can then define the notion of partial observation formally as follows.

Definition 3 (Partial Observation). The set of partial observations of n bits of a trace t
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is defined by
Obs(t,n) = {o ∶ (Addr ↪ Bit)∗ ∣ o ⊑ t ∧ ∣o∣ = n}

Definition 4 generalises the standard notion of Attacker Knowledge to partial obser-
vations.

Definition 4. For a program p and a trace t, the Partial Attacker Knowledge for a partial
observation o ∈ Obs(t,n) is given by

Ktn(p, o) = ⋃
o⊑u
Ku(p).

In Definition 4, we quantify over all the complete traces u ∈ Mem∗ that are compat-
ible with the partial observation o i.e., {o ∣ o ⊑ u} . The Partial Attacker Knowledge is
therefore defined as the union of the Attacker Knowledge for all the complete traces
that are indistinguishable from the point of view of o.

3.3.1.3 Information-Flow Preserving Transformation

We shall use Partial Attacker Knowledge to define precisely what we mean by a
secure transformation of a source program into a target program. Intuitively, a source
program p is at least as vulnerable as a target program p′ if any partial observation o′

of a (target) trace of p′ can always be matched by a partial observation o of a (source)
trace of p such that the source observation o leaks more information than the target
observation o′.

The notion of matching observation is formalised by a function mapping partial ob-
servations from Obs(t ′,n) to Obs(t,n). To forbid transformations that increase the life-
time of an information leak, we also enforce that the observations at the target and
source level are performed in lock-step i.e., at each instant, both attackers observe the
same amount of information.

Definition 5. The set of lock-step observation mappings Ω is defined by

Ω(t ′, t,n) = {ω ∶ Obs(t ′,n) → Obs(t,n) ∣ ∀o′, sup(o′) = sup(ω(o′))}

where the support of an observation is defined by

sup(ε) = ε sup(m ⋅ o) = ∣dom(m)∣ ⋅ sup(o)
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Using lock-step mappings, we are ready to define the security refinement of a
source program p by a target program p′.

Definition 6. A target program p′ is at least as secure as p for an attacker observing n
bits (written p ≼n p′) iff

∀c, t, t′.(p, c) ⇓ t ∧ (p′, c) ⇓ t′ ⇒ ∃ω ∈ Ω(t, t′, n).∀o′.Ktn(p,ω(o′)) ⊆ Kt
′

n(p′, o′)

p′ is as secure as p for attacker of level n if for any executions from the same input
c which gives traces t′ and t we have:

— every partial observation o′ on t′ of n bits is matched by a corresponding obser-
vation ω(o′) on t of the same level

— the knowledge obtained from o′, Kt′n(p′, o′) should be a superset of the knowledge
obtained from ω(o), Ktn(p,ω(o)).

We remind that if an attacker knowledge is small it means that the set of possible
initial memories is small and therefore information gained by the attacker is precise.
Therefore, the relation Ktn(p,ω(o′)) ⊆ Kt

′

n(p′, o′) means the knowledge obtained from o′

(transformed) is less precise than the knowledge obtained from ω(o′) (source). This is
according to our initial intuition that an attacker should not learn more information from
the transformed program than from the source program.

In order to rule out the duplication of information, we can further restrict the function
ω to be injective, by adding the constraint

Ω1 (t ′, t,n) = Obs(t ′,n) ↣ Obs(t,n)

where ↣ denotes the set of bijective functions.

In case of duplication of information, several target observations with the same
Partial Attacker Knowledge would need to be mapped to the same source level ob-
servation. The fact that ω is injective rules out this possibility. In the following, we take
the constraint on matching functions to be either Ω or Ω ∪ Ω1 and discuss when the
constraint Ω1 is a too strong requirement.

A transformation T is IFP if T (p) is at least as secure as p for attackers with any
level of observational power.
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Definition 7. A transformation T ∶ Prog → Prog is IFP iff

∀p, ⋀
n∈N

(p ≼n T (p)).

3.3.1.4 Does it answer our expectations?

We show in this section that our definition of IFP solve the examples we’ve shown
previously in Section 3.1.2. We wanted our property to be able to reject transformations
where lifetime of variables is expanded, leakages are aggravated or duplication of val-
ues appear. To reject a transformation, we just need to find an attacker able to observe
n bits which can retrieve more precise knowledge from the transformed program than
from the source.

Lifetime extension We study our example of Figure 3.2. We take an attacker capable
of observing the whole memory before the call of the function evil. In p1 this attacker is
unable to get the initial value of the variable x since it was erased, therefore his attacker
knowledge K1 is equal to Mem. However, in p2 the erasure instruction was moved right
after the call to evil(). Hence the same attacker here is able to get exact value of x
and its attacker knowledge K2 is the set of memories where the address of x contains
the value it has observed. We have the relation K1 ⊈ K2 which means that our property
effectively rejects this transformation.

Worsening of leakages Here we show how partial attackers can be used to capture
a leakage introduced by a transformation. Instead of taking an attacker which can ob-
serve the whole memory, we take one which can observe n bits which is the size of a
variable. In Figure 3.3, the attacker wants to get the value of the variable x + y. In p1,
he is able to see bits of x, y, a and b. However, with its n bits of observation he is un-
able to recover the whole value of x + y and can get at most n/2 bits of the secret (by
observing n/2 bits of x and y). Whereas in p2 this attacker is able to do so by observing
the variable tmp which contains the value x + y. Therefore, the knowledge of x + y is
more precise in p2 than in p1 and the transformation is rejected by our property. Note
that with an attacker with at least 2 ∗ n bits of observation the transformation is secure
since he is able to get the value of x + y by observing both x and y separately. Since
our property requires the condition to hold for all the attackers, this transformation is
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indeed rejected.

Duplication Finally we also show that our property enhanced with duplication also
rejects the transformation of Figure 3.4. We also take the case of an attacker able
to observe n bits (size of a variable). We remind that the for the duplication property,
we require from the lockstep mapping from transformed to source observations to be
injective. In p2 there exists two observations that can reveal the whole secret (in r1)
to our attacker. Indeed, both an observation on r1 and an observation on stack1 can
give the attacker the value of the secret. Therefore, it is necessary to find at least two
observations in p1 that reveal the secret (in x). This is not possible to do in p1 since
only the observation on x enables our attacker to get the whole secret. Therefore, this
transformation is also not IFP since it does not satisfy our duplication condition for an
attacker with n bits of observation.

3.3.2 Sufficient Condition for IFP and its Proof Principle

The definition of an IFP transformation does not suggest an immediate composition
proof principle, and proving directly that a program transformation abides to Definition 7
would be a daunting task. To prove that a transformation is IFP, we present a simulation-
based proof technique, ensuring that a source memory can be simulated by a target
memory.

3.3.2.1 Partition and Simulation Relation

In order to facilitate concrete proofs, we partition the memories leaked to the at-
tacker. In program terms, a typical partitioning would assign to the same partition index
i all the memory leaked by a given syntactic observation point ●i. To each partition in-
dex i, we attach a simulation function αi ∶ Addr → Addr+Bit. Given a source memory m
and a target memory m′ mapped to the same partition index i, the mapping αi explains
how m can be effectively simulated by m′. This is done by showing how any bit in m′ is
either a constant (thus without any information) or a bit that is stored in m possibly at
another address as indicated by αi.

Example 2. Consider the Programs f and g of Figure 3.6. For this simple case, each
observation point ●i (both in the source and target program) would be mapped to the

107



Partie , Chapter 3 – Protecting Memory against Probing Attacks

partition index i ∈ {1,2}. For the initial observation point ●1, both memories are the
same and therefore α1 is the identity function λa.a. For ●2, the memories are the same
except for the address x which carry the constant 1 in Program g. Therefore, we would
have α2 = λa.if a = x then 1 else a.

1 f: ●1 x = 0; ●2 return;
2

3 g: ●1 x = 1; ●2 return;

Figure 3.6 – Safe Erasure of One-Time Pad

As we show in Theorem 5, these are sufficient conditions to ensure that m′ contains
at most the same amount of information as m.

Traces are characterised by a function id ∶ Memory → [1 , . . . ,n] which links a mem-
ory of a trace to its partition index. Therefore, in the following, we write m.id for the
index of a memory m.

Definition 8. Let αi ∶ Addr → Addr+Bit be a simulation function indexed by i ∈ [1, . . . , n].
A source memory m is simulated by a target memory m′ (written m ∼α m′) iff we have
m.id = m′.id = i and

∀a′.m′(a′) =
⎧⎪⎪⎨⎪⎪⎩

αi(a′) if αi(a′) ∈ Bit
m(αi(a′)) if αi(a′) ∈ Addr

Lifted to traces we get,

ε ∼α ε
m ∼α m′ t ∼α t′
m ⋅ t ∼α m′ ⋅ t′

In order to avoid duplication of information and enforce the constraint Ω1, the func-
tion αi needs to be further constrained to forbid mapping distinct target addresses to
the same source address i.e., ∃a ∈ Addr .a = αi(a1 ) = αi(a2 ) ⇒ a1 = a2 .

Using the previous definitions, our necessary conditions for IFP can be stated using
Theorem 5.

Theorem 5. Consider two programs p and p′, and an indexed simulation function αi ∶
Addr → Addr +Bit. If

∀c, t, t′.
⎛
⎜⎜⎜
⎝

(p, c) ⇓ t
∧

(p′, c) ⇓ t′

⎞
⎟⎟⎟
⎠
⇒ t ∼α t′
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then ∀n, p ≼n p′, i.e., the transformation is IFP.

Proof. Suppose t ∼α t′. We need to prove, for any n,

∃ω.∀o′. Ktn(p,ω(o′)) ⊆ Kt
′

n(p′, o′).

Let t′ =m′

0 ⋅ ⋅ ⋅ ⋅ ⋅m′

n and t =m0 ⋅ ⋅ ⋅ ⋅ ⋅mn. Remember that ω has type Obs(t ′,n) → Obs(t,n)
and that observations are made in lock-step fashion. As a result, it is sufficient to pro-
vide a mapping ωi ∶ Obst(m′

i , k) → Obs(mi , k) which given a partial observation o′ of
the target memory m′

i reconstructs an observation ωi(o′) of the source memory mi.
As mi ∼αi

m′

i, this can be done as follows. Suppose that o′(a′) ≠ � for some ad-
dress a′. If αi(a′) ∈ Addr , we can obtain the same observation from memory mi and
ωi(o′)(a′) = mi(α(a′)). Otherwise, If αi(a′) ∈ Bit, the observation does not provide
any information and therefore it suffices to pick an arbitrary fresh address a, and have
ωi(o′)(a) =mi(a).

From this construction, for any partial observation o′ ∈ Obs(t ′,n) we can derive
a partial observation of the source execution ω(o′) which contains at least as much
information as in o′. It follows that the target attacker knowledge obtained from an
observation o′ is always bigger than the source attacker knowledge of the observation
ω(o′) and therefore the property holds.

Theorem 5 does not provide a complete characterisation of IFP transformations. It
captures transformations where information is perhaps moved around but is otherwise
unmodified. To illustrate the limitation, consider the following contrived example

x∶=y → x′∶= ∼ y

where the bit values of y are flipped bitwise. The variables x and x′ contain the exact
same information i.e., the value of y. Yet, the transformation of values cannot be mod-
elled by a simulation function α. We show that standard optimisations including register
allocation and dead store elimination are in the scope of Theorem 5.

3.3.2.2 Simulation-Based Principle

The pre-condition of Theorem 5 can be proved using a lock-step backward simula-
tion principle over the attacker semantics.
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Definition 9 (Backward Simulation). A simulation function αi ∶ Addr → Addr + Bit is a
backward simulation if:

1. From the initial memory c, the first source memory m and target memory m′

leaked to the attacker are in relation (m ∼α m′).

2. Given memories m1 ∼α m′

1, for every attacker step of the target program m′

1 ↝m′

2

there exists a memorym2 in the source program such thatm1 ↝m2 andm2 ∼α m′

2.

Theorem 6. Suppose two programs p and p′ and a simulation function α. If there is a
backward simulation (according to Definition 9) for α, then the pre-condition of Theo-
rem 5 holds i.e.,

∀c, t, t′.
⎛
⎜⎜⎜
⎝

(p, c) ⇓ t
∧

(p′, c) ⇓ t′

⎞
⎟⎟⎟
⎠
⇒ t ∼α t′.

Proof. The proof is by induction over the length of the trace t′ and follows using Condi-
tion 1 of Definition 9 for the base case and Condition 2 of Definition 9 for the inductive
case.

Our proof technique is used in the next two sections to secure two compilations
steps: Dead Store Elimination (DSE) and Register Allocation (RA). First, we present a
modified DSE algorithm and prove that the transformation is IFP. Then, using a trans-
lation validation approach we built a RA validator for COMPCERT that checks if the
program transformation is IFP. In case of failure the validator is also able to patch the
transformed program to render the transformation IFP. Benchmarks and analysis for
RA are also available in Section 3.3.5.

3.3.3 Securing Dead Store Elimination

DSE is the archetypical program transformation that is not IFP. Informally, a dead
store is a memory write which is provably unnecessary to compute the program result.
Hence, from an optimisation point of view, it is a perfectly legal transformation to remove
a dead store instruction. Security-wise, as shown by one of our motivating example
(see Figure 3.1), the transformation does not preserve information-flows. Indeed, an
attacker may gain more knowledge by observing the value that is not overwritten due
to the removal of a dead store.
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A drastic solution would be to disable this optimisation. We propose a modified
Dead Store Elimination optimisation based on a revised and strengthened notion of
dead store.

3.3.3.1 Liveness based DSE

Dead stores are typically identified using a liveness analysis [81, p. 2.1.4]. A live-
ness analysis is a classic backward program analysis. For each program point, it com-
putes an over-approximation of the live variables i.e. variables that are necessary to
compute the program result. Dually, dead variables are those variables that are not live
and a dead store is a memory write (x = e) where the variable x is dead. Therefore, a
classic DSE performs a liveness analysis and removes dead stores.

Using our abstract model of programs based on observation points we define a
trace property of a liveness analysis:

Definition 10 (Sound Liveness). Given a program p, a liveness analysis is a list of pair
of set of addresses ((V0,W0), . . . , (Vj,Wj)) ⊆ (Set(Addr) × Set(Addr))∗. With each pair
associated to an observation point of p such that:

∀i, c, c′, t, t′.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜
⎝

(p, c) ⇓ t
∧

(p, c′) ⇓ t′
∧

t(i).id = j

⎞
⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⇒ c ≃Vj
c′⇒ t(i) ≃Wj

t′(i)

where
e ≃V e′⇔∀x ∈ V.e(x) = e′(x)

for (e, e′) ∈ Memory ×Memory.

Definition 10 says that if two input memories c and c′ agree on the values of the
input live addresses Vj then the memory states at partition index j agree on their live
addresses Wj. For the purpose of optimisation, the sets Wj contain a minimum set
of addresses i.e., only those needed by the return statements of the different func-
tions; the sets Vj being computed by a backward fixpoint iteration (see [81, p. 2.1.4] for
details).
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As DSE removes the dead statements, it keeps unchanged the values of live ad-
dresses. As a result, in our formal model, a DSE transformation can be characterised
by Definition 11.

Definition 11 (Dead Store Elimination). Given a program p and a liveness analysis
((V0,W0), . . . , (Vj,Wj)) of p. The DSE transformation from p to p′ is correct if p′ is indis-
tinguishable from p for all the live variables W . Formally, we have:

∀c.
⎛
⎜⎜⎜
⎝

(p, c) ⇓ t
∧

(p, c′) ⇓ t′

⎞
⎟⎟⎟
⎠

⇒ ∀i.
⎛
⎜⎜⎜
⎝

t(i).id = j
⇔

t′(i).id = j

⎞
⎟⎟⎟
⎠
∧ t(i) ≃Wj

t′(i)

This specification is partial. In particular, it says nothing about the dead variables
but this is enough to conclude that these dead variables may leak information and
violate our IFP property.

3.3.3.2 Shadow Store Elimination

In order to get an IFP DSE, we propose to extend the sets of addresses Wj to the
whole set of addresses Addr. This transforms the current definition of DSE to:

∀c.
⎛
⎜⎜⎜
⎝

(p, c) ⇓ t
∧

(p, c′) ⇓ t′

⎞
⎟⎟⎟
⎠
⇒ t = t′

We can easily convince ourselves that such program transformation is IFP since for
any attackers the programs p and p′ are indistinguishable.

Interestingly, this result can be obtained in a non-intrusive way by only slightly mod-
ifying the initial condition of the liveness analysis. Indeed, it is sufficient to impose that,
for each observation point of the program, every address is live. As liveness analysis
is backward, this can always be done.

Theorem 7. Given a program p and a liveness analysis ((V0,Addr), . . . , (Vj,Addr)) of
p, DSE becomes IFP and produces the program p′.

Proof. Suppose that (p, c) ⇓ t and (p′, c) ⇓ t′. By Theorem 5, it suffices to prove
that there exists a simulation function α such that t ∼α t′. By Definition 11 of a DSE
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transformation, we have t ≃Addr t′ i.e., t = t′. Taking α as the identity function we get
t ∼α t′ ⇐⇒ t = t′. As a result, Theorem 7 holds.

The effect of this modification is illustrated in Figure 3.7, only dead stores that are
shadowed by a following store at the same address can be safely removed.

1 def hash1(text):
2 h = text * ...
3 text = 5
4 text = 0
5 return h ●

1 def hash2(text):
2 h = text * ...
3 Skip
4 Skip
5 return h ●

1 def hash3(text):
2 h = text * ...
3 Skip
4 text = 0
5 return h ●

Figure 3.7 – Original program (left) - Classic DSE (middle) - IFP DSE (right)

hash1 is the original program after DSE. It computes a hash from the variable text
and before returning there are two erasures on the variable text to wipe its value
before returning. In a classic DSE only the value of the variable h matters. Therefore,
the liveness analysis would start from W = {h} and would deem that writes on text
are unnecessary after the computation of h line 2. The result is shown in hash2 where
both erasures lines 3 and 4 are replaced by Skip instructions. For our IFP DSE, we
impose the condition W = Addr. In this case, the liveness analysis will also take into
account the final value of text before the observation point. The transformed program
hash3 has only its penultimate erasure removed which prevents any leakage of text
initial value.

3.3.4 Translation Validation for Register Allocation

Translation validation [86] is a verification technique which consists in validating a
posteriori (and automatically) that a program p′ is obtained by a valid transformation of
a program p. We adapt this principle and design a specialised algorithm to validate a
posteriori whether programs obtained through the Register Allocation (RA) pass of the
verified COMPCERT C compiler [66] satisfy our IFP property. This is done by explicitly
constructing a backward simulation using the sufficient condition of Section 3.3.2. An
interesting feature of our algorithm is that certain failures can be interpreted as potential
information leak and that these leaks can be closed automatically by inserting erasing
instructions.
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3.3.4.1 Register Allocation in a Nutshell

Before RA, programs make use of an unbounded number of pseudo-registers. The
role of RA is to explicit the constraint that the physical machine has only finitely many
registers and therefore allocate each pseudo-register to a machine register. RA is also
responsible for implementing calling-conventions i.e. passing arguments in the right
register and restoring callee-saved registers. What makes RA a complex optimisation
task is that this resource allocation task may be impossible due to a shortage of regis-
ters. In that case, a register may be spilled in the function stack frame i.e. its content
copied, for later reuse. After the last use of a spilled register, a conventional RA algo-
rithm has no reason to explicitly erase the stack location. This breaks our IFP property
because i) the value is duplicated (it is stored in both a register and a stack location);
ii) this introduces an information leak if the stack location is not erased after the last
use of the register. This is illustrated by Example 3.

Example 3. Consider the simple function cipher of Figure 3.8 and the function
cipher2 obtained by a typical RA pass for an hypothetical target architecture with
only two registers r1 and r2 . The code has been arranged to highlight the relation

1 def cipher(text):
2 key = get_key()
3 salt = get_salt()
4

5

6 tmp = text^salt
7

8 key = key^tmp
9 ● return key

1 def cipher2(stack_text):
2 r2 = get_key()
3 r1 = get_salt()
4 stack_key = r2 # spill
5 r2 = stack_text # load
6 r2 = r2^r1
7 r1 = stack_key # load
8 r1 = r1^r2
9 ● return

Figure 3.8 – Original program (left) After register allocation (right)

between a source instruction and the corresponding sequence of target instructions.
For instance, the source instruction of Line 6 is compiled into the sequence of target
instructions of Lines 4-6. The Function cipher2 contains additional spilling/loading in-
structions inserted by RA Lines 4,5 and 7. In Function cipher the secret value in key is
overwritten Line 8, hence an attacker at ● cannot observe its value. However, in Func-
tion cipher2, the value of key in stored in register r2 and copied in variable stack_key

(see Line 4). As the variable stack_key is never erased, an attacker at ● can observe
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its value. Hence this transformation is not IFP and will be rejected by our validation
algorithm.

3.3.4.2 Register Allocation Languages of COMPCERT

In COMPCERT, the RA pass compiles a source in the Register Transfer Language
(RTL) into a target in the Location Transfer Language (LTL). RTL and LTL are both
fairly classic control-flow graph program representations where nodes are labelled with
three-address code instructions.

Instructions representative of RTL are given below.
RTL instructions:

I ∋ i ∶∶= nop(s)
∣ op(op, args, dest, s)
∣ load(addr, args, dest, s)
∣ store(addr, args, src, s)
∣ cond(cond, args, strue, sfalse)
∣ call(sig, fid, args, dest, s)
∣ return(arg)

Each instruction i ∈ I, attached to a node n ∈ N, specifies its immediate successor s
which is the node of the instruction to execute next. The nop instruction does nothing.
The op instruction computes the value of the variable dest using the values stored in the
vector of pseudo-registers args. The load instruction moves the value at the address
computed by args with the addressing mode addr to the destination dest. Similarly,
store move the value from src to the address computed by args and addr. The call
instruction calls the function fid with signature sig with parameters args; the result of the
call is stored in dest. The instruction cond models a conditional and has two successors.
Depending on the value of arg, the instruction to execute next is either strue of sfalse.
Finally, return exits the current function and return the value of arg.

The LTL language is similar to RTL with the differences that i) so-called locations
corresponding to stack slots or machine registers are used in place of the unlimited
pseudo-registers called temporaries and; ii) call and return instructions are bounded
by the calling conventions of the target architecture. As a result, in the program syntax,
args and dest are locations made of either machine registers or stack slots used for
spilling registers. Compared to temporaries, stack slots are pointers into the current
stack frame and special care must be taken to make sure that spilled registers do not
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overlap. The calling conventions stipulate where function arguments and return must be
stored and are represented by a list of locations. For instance, for x86_32, arguments
are passed on the stack and the result is stored in eax while for x86_64, arguments are
passed in different registers depending of the type of the argument. LTL instructions
are listed here:

LTL instructions:
I ∋ i ∶∶= nop(s)

∣ op(op, args, dest, s)
∣ load(addr, args, dest, s)
∣ store(addr, args, src, s)
∣ cond(cond, args, strue, sfalse)
∣ call(sig, fid, s)
∣ return

The only differences lie in the call and return instructions where the parameters
and return value are not specified in the instructions but implicitly dictated by the calling
conventions.

3.3.4.3 COMPCERT Translation Validation of RA

COMPCERT is using an untrusted RA algorithm whose output is verified using a
specialised translation validation approach [92], ensuring that each target LTL function
is a sound compilation of the source RTL function. Observational correctness of the
whole program is then achieved by composing the validation of each pair of functions.
As our own IFP validator is reusing some key components, we give a brief overview of
their algorithm.

The translation validator of COMPCERT exploits that the RTL and LTL functions
have a very similar structure and only differ in that the LTL function introduces move in-
structions to materialise spills and reloads of stack slots; and data movements between
registers.

The untrusted RA algorithm takes as argument an RTL function and returns an LTL
function. The LTL function is structured in such a way that it is straightforward to rebuild
a mapping from a single RTL instruction to the list of LTL instructions it is compiled
into. Because RA is only using a few local transformations, the list of LTL instructions
is always made of move instructions i.e. assignments between locations, followed by
the actual instruction which is obtained from the original RTL instruction by replacing
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registers by locations. The only possibilities are presented in the first column of Fig-
ure 3.9. Each possible association of instructions are categorized into block-shape and
form whole block-shape functions. Similar to RTL and LTL, block-shape functions are
structured as a CFG and each block-shape is parametrised with the nodes of its suc-
cessors. Moreover, each possible block-shape contains a list of move instructions from
the LTL code, labelled mv in Figure 3.9, which are executed before the core instruction.

COMPCERT translation validation algorithm is composed of two parts. The first one
is a structural check which verifies that the LTL function respects a certain structure
with respect to the RTL function. This check is carried out while constructing the block-
shape function. For example, to construct BSop the validator needs to find op instruc-
tions in both RTL and LTL and check that the operations match. Another example is
BScond where the condition and successors must be the same in both cond instruc-
tions. If an unexpected pattern is found between the source and transformed functions
then the structural check fails and so does the validation. To complete the translation
validation algorithm, COMPCERT performs an additional backward data flow analysis to
verify that the two functions effectively compute and use the same values. Similar to a
liveness analysis, the backward analysis first assume that the return values are equal
between RTL and LTL functions. From there the analysis go backward each instruc-
tions of the functions and compute the necessary conditions on values to verify the
assumptions of the next instructions. For example, if a RTL program returns the vari-
able x, then we have the singleton assumption {x = eax} on the return instructions (eax
comes from the calling conventions). Therefore, the predecessor instructions of these
return must compute the necessary conditions to fulfill the assumption {x = eax}. This
process continues to backtrack until reaching the entry point of the functions. Then a
fixpoint computation is made to propagate the conditions to the whole functions. If no
incoherence has been found while computing the conditions then the data flow anal-
ysis is successful. If the structural checks also succeeds, then the transformation is
validated.

3.3.4.4 Modular IFP Validation Algorithm

Our security policy is determined by the location of observation points ● in both the
RTL and LTL programs. In order to get a translation validation algorithm integrated in
the RA compiler pass, it is necessary to be able to process one function at a time. Our
solution is to set observation points at function boundaries, more precisely at function
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calls and returns. From a security point of view, this ensures that the LTL locations
do not leak information at function return i.e. the stack frame of LTL only contains
information that is also present in the pseudo-registers of RTL.

In the following, we detail our IFP validation algorithm. In Section 3.3.2, we have
shown that proving IFP preservation can be done by exhibiting some mapping αi ∶
Addr → Addr + Bit used to establish a simulation between the source and the target
memories at every observation point ●i. To get to this point, our IFP validator needs
to construct richer objects in order to cater for the RTL and LTL COMPCERT memory
model [68] and the fact that, for intermediate program points, the existence of such an
αi mapping is too strong a requirement. Hence, the IFP validator constructs a set of
associations between locations and temporaries βi ∈ P(Loc ×Temp); computes the set
of modified location γi ∈ P(Loc) and performs a constant analysis csti ∶ Loc → Value+{⊺}
such that, given a program point i,

— (l, t) ∈ βi iff the value of the LTL location l is the same value as the RTL temporary
t,

— l ∈ γi iff the location l may be modified by the current function,

— csti(l) = v iff for any execution the location l always contains the value v.

The constant analysis csti and the set of modified locations γi are computed by
iteratively solving standard forward data-flow equations using the existing data-flow
framework of COMPCERT.

3.3.4.4.a Inference of Location Mapping βi

Compared to the existing RA validator of COMPCERT, a difference is that we con-
struct βi using a forward data-flow analysis over the block-shapes of Figure 3.9. The
reason is that, for compiler correctness, it is just necessary to ensure that the return
LTL register, say eax, is mapped to the return RTL temporary, say t. For IFP, we need
a complete mapping for all the RTL temporaries and LTL locations.

The transfer functions for the possible block shapes generated by RA can be found
in Figure 3.9. The transfer functions are using the following notations. We write (l → t)
for a pair (l, t) ∈ βi with the interpretation that the LTL location l is mapped to the
RTL temporary t. We extend this notation to vectors of locations and temporaries and
write (l1, . . . , ln) → (t1, . . . , tn) for the set {(l1 → t1), . . . , (ln → tn)}. Because of copy
instructions, in both LTL and RTL, the mapping is not unique and there may be several
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pairs with l as first component and t as the second component. Given a temporary t,
we write (_→ t) for the set of all pairs such that the second element is t. Symmetrically,
for a given location, we write (l → _) for the set of all pairs such that the first element is
l.

All block shapes have a sequence of move mv instructions on the LTL side. A move
l1 = l2 assigns l2 to l1. Given an initial mapping B, the effect of move l1 = l2 is to remove
the existing mappings for l1 ((l1 ↦ _)) and map l1 to existing mappings of l2 in B. As a
result, we get

transferl1=l2 = B ∖ (l1 → _) ∪ ({l1 → x} ∣ {l2 → x} ∈ B).

For valid code, there should always be an existing mapping for l2. If not, the analysis
continues but l2 and l1 would be flagged as potential information leaks at the next
observation point.

A BSnop only consists in a list of LTL move instruction and its effect is modelled by
iterating the transfer function for a single move instruction. For BSop, we check after
computing the consequence of the moves that the LTL arguments args′ are mapped to
the RTL arguments args. If this is the case, we have the guarantee that the arguments
args and args′ have the same values and therefore the destinations tmp and loc also
have the same value. After evaluating the effect of the moves, the transfer function
invalidates the existing mappings for tmp and loc and adds the mapping (loc → tmp).
For BSLoad, the transfer function is similar but exploits the additional invariant that the
memory of RTL and LTL agree for every address a that is neither an LTL location a ∉ Loc
nor a temporary a ∉ Temp. For BSstore, we check that the computed addresses args
and args′ compute the same value in both RTL and LTL. We also check that the stored
values are the same i.e., the current mapping includes (loc → tmp). Except for the
potential move instructions, a memory store has no effect on the current mapping. Yet,
our verifications ensure that the LTL and RTL memory still agree for addresses that
are neither temporaries nor locations. For BScall, we check that the arguments of the
call are the same. In RTL, the arguments and return value are explicitly passed; in LTL,
the functions Params(sig) and Ret(sig) implement the architecture dependent calling
conventions of functions arguments and return. In RTL, all the temporaries are restored
after a function call. In LTL, the calling conventions state that both stack locations and
a subset of the registers i.e., so called callee-saved registers, are restored after a call.
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Block Shape Conditions Transfer Function
BSnop(s) ∶

nop; mv;
nop; transfermv(mv,B)

BSop(s) ∶
tmp ∶= op(args);
mv;
loc ∶= op(args′);

(args′ → args) ⊆ transfermv(B)
transfermv(mv,B)

∖ (_→ tmp) ∖ (loc → _)
∪ {loc → tmp}

BSload(s) ∶
tmp ∶= [addr(args)];
mv;
loc ∶= [addr(args′)];

(args′ → args) ⊆ transfermv(B)
transfermv(mv,B)

∖ (_→ tmp) ∖ (loc → _)
∪ {loc → tmp}

BSstore(s) ∶
[addr(args)] ∶= tmp;
mv;
[addr(args′)] ∶= loc;

(loc → tmp) ∈ transfermv(B) ∧
(args′ → args) ⊆ transfermv(B) transfermv(mv,B)

BScall(s) ∶
tmp ∶= f(sig, args)
mv1;
Ret(sig) ∶= f();
mv2;

(Params(sig) → args)
⊆ transfermv1 (B)

transfermv(mv2 ,
{Ret(sig) → tmp} ∪

callee-save(transfermv(mv1 ,B)))

BScond(s1, s2) ∶
cond(cond, args) ;
mv;
cond(cond, args′);

(args′ → args) ⊆ transfermv(B) transfermv(mv,B)

BSreturn() ∶

ret(arg); mv;
ret; (arg′ → arg) ∈ transfermv(B) transfermv(mv,B)

Figure 3.9 – Transfer functions for βi
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This is modelled in the transfer function by the function callee-save which invalidates
mappings to registers which are not callee-saved. For BScond, we simply check that
the conditions evaluate to the same value thus ensuring that both program have the
same control-flow. For BSreturn, we also check that the return values are the same
and only update the mapping to model move instructions.

In order to get βi, we iterate the data-flow equations until a fixpoint using data-flow
framework of COMPCERT.

Example 4. We apply our mapping algorithm to our example Figure 3.8. To simplify
our example, we make the hypothesis that function calls do not have side-effects. Map-
ping of line n corresponds to its state when instructions of line n have been executed.
Orange highlighting specifies the updates of the mapping.

1 { text ← stack_text }
2 {text ← stack_text, key ← r2 }
3 {text ← stack_text, salt ← r1 , key ← r2}
4 {text ← stack_text, salt ← r1, key ← r2, key ← stack_key }
5 {text ← stack_text, salt ← r1, text ← r2 , key ← stack_key}
6 {text ← stack_text, salt ← r1, tmp ← r2 , key ← stack_key}
7 {text ← stack_text, key ← r1 , tmp ← r2, key ← stack_key}
8 {text ← stack_text, key ← r1 , tmp ← r2, ??? ← stack_key }

We explain how we build our mapping for each line with our forward analysis:

1. we assume that parameters from both functions have equal values

2. r2 and key both store the result value of get_key()

3. r1 and salt both store the result value of get_salt()

4. stack_key copies the value of r2 which was mapped to key

5. r2 copies the value of stack_text which was mapped to text

6. r2 and tmp are the results of the same operation with equal operands

7. r1 copies the value of stack_key which was mapped to key

8. r1 and key are the results of the same operation with equal operands.
stack_key was mapped to the initial value of key which has been erased during
the last instruction. We are unable to find a mapping for stack_key
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We hit an observation point before executing the return at line 9. We were unable
to do a complete mapping for all variables of the LTL program at this observation point
so the transformation is rejected. This is the result we expected since we previously
pointed out that there was a leak through the variable stack_key which is detected by
our analysis.

3.3.4.4.b Verification of Sufficient Conditions

If the computation of βi succeeds, the next step consists in verifying, for every ob-
servation point, the IFP verification conditions. For a given observation point ●i, we
verify that for every LTL location l ∈ γi that may be modified by the current function,
there exists either a mapping to an RTL register t i.e., (l → t) ∈ βi or the location l is
constant csti(l) = v for some v ≠ ⊺.

Theorem 8. Let p be an RTL program and p′ be an LTL program. Suppose that we
have successfully constructed βi, γi and csti for every program point of p. If for every
observation point ●i, the following condition hold:

∀l ∈ γi.(∃t.(l → t) ∈ βi) ∨ (∃v.csti(l) = v ∧ v ≠ ⊺)

then the RA transformation of p to p′ is IFP.

Moreover, if every pair (l1, l2) of distinct locations is mapped to distinct temporaries,
the transformation prevents data duplication.

In the following section, we give some key insights on how the previous verifica-
tion conditions are sufficient to ensure the existence of a simulation function αi and a
backward simulation between p and p′.

3.3.4.4.c Correctness of the Validation Algorithm

In this section, we prove the soundness of our validation algorithm for IFP. We sup-
pose an execution of p and p′ where memories m1 and m′

1 are respectively leaked from
observation point ●1 and there exists α1 such that m1 ∼α1 m

′

1. Similarly, we note ●2 the
observation point leaking m2. It remains to prove that we can construct a backward
simulation according to Definition 9. Hence we need to prove two goals: the existence
of m2 and α2 such that m1 ↝m2 and m2 ∼α2 m

′

2. By definition of ↝, there is a derivation
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of length n′ such that m′

1 →n′ m′

2. We have to show that there is a derivation of length
n such that m1 →n m2. Such a proof is already needed by the original COMPCERT se-
mantics preservation proof of the RA pass [92] and we therefore inherit it for free. The
construction of α2 partitions addresses in the following three categories:

i) addresses which are not LTL locations;

ii) LTL locations that may be modified by the current function;

iii) and LTL locations that have not been modified.

First, consider addresses that are not locations in the LTL memory model. The memory
content at these addresses can only be modified via load and store instructions. While
building β2 we check that these memory accesses always agree on their computes
arguments. Therefore, in p and p′, the memory content remains the same and α2 is
the identity function for these addresses. Second, consider LTL locations that may
have been modified since the start of the current function i.e. l ∈ γ2. We know from
our precondition of Theorem 8 that we are able to map l to either a temporary or a
constant. Thus, α2 is equal to β2 or cst2 for every location of l ∈ γ2.

Third, consider for LTL locations that are necessarily unmodified i.e. l ∉ γ2. We
know that when reaching ●1 the memories m1 and m′

1 were leaked and that m1 ∼α1 m
′

1.
Moreover, locations and temporaries are local to their functions and observation points
are placed before function calls and returns. From these facts we deduce that α1(l) still
holds at ●2 and gives us ∀(l ∉ γ2 ), α2 (l) = α1 (l).

Lastly, to ensure the absence of duplication of information, we need to prove that
α2 is injective. For addresses which are not locations, α2 is the identity function which
is injective. For addresses not in γ2 this is given by the fact that by induction α1 is also
injective. For the other addresses, we have the hypothesis that every location maps to
distinct temporaries which proves that α2 is injective.

3.3.4.5 Patching algorithm

An interesting property of our IFP validator is that we can recover from certain
validation failures; track down the origin of the information leak and apply a patch to
a function f ′ to automatically close the information leak. When this is the case, it is
possible to run existing optimisations unmodified, and during a post-treatment, detect
and remove potential information leaks. Suppose that, for a given observation point
●i, the verification conditions needed by Theorem 8 do not hold. Typically, there is a
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location l that is neither a constant (csti = ⊺) nor has a mapping to some RTL temporary
(βi(l) = ∅). In this situation either the validator is not precise enough or l is responsible
for an information leak. To close the potential leak detected by the IFP validator, our
patching algorithm inserts an erasure instruction and sets the location to the constant
0 just before the observation point ●i. After the addition of those erasure instructions,
we have the guarantee that the transformed program is IFP. Moreover, those erasure
instructions cannot compromise the correctness of the transformation. The rationale
is that an erasure instruction for location l is necessarily a dead store. To see this,
consider by contradiction that l is live. In that case, to establish semantics preservation,
the original COMPCERT validator needs to establish a mapping for location l and an
RTL temporary t. As our forward validator always computes more mappings than the
original backward validator of COMPCERT, it would establish the same mapping. This
contradicts our assumption.

As a result, we have the guarantee that inserting erasure instructions, according to
the rules above, is a sound algorithm to make COMPCERT RA a semantic preserving
IFP transformation.

Example 5. We show the result of the patching on the example of Figure 3.8.

1 def cipher2(stack_text):
2 r2 = get_key()
3 r1 = get_salt()
4 stack_key = r2
5 r2 = stack_text
6 r2 = r2^r1
7 r1 = stack_key
8 r1 = r1^r2
9 ● return

1 def cipher3(stack_text):
2 r2 = get_key()
3 r1 = get_salt()
4 stack_key = r2
5 r2 = stack_text
6 r2 = r2^r1
7 r1 = stack_key
8 r1 = r1^r2
9 stack_key = 0 #patching

10 ● return

Figure 3.10 – Before patching (left) - After patching (right)

Our validation algorithm detected the potential leak from stack_key therefore, here
we erase this location right before the observation point. Redoing the validation with
cipher1 and cipher3 will map the constant 0 to the location stack_key at the
observation point. This will give us a complete mapping of the locations of cipher3
and the validation will succeed.
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3.3. Information-Flow Preserving Transformations

3.3.5 Experiments

The translation validation algorithm of Section 3.3.4 has been integrated as part of
the register allocation pass of COMPCERT [66]. We run our IFP validator; close any
potential information leak using the patching algorithm of Section 3.3.4.5. Afterwards,
we run the existing validator of COMPCERT, thus, ensuring the semantics correctness
of our security transformation.

In our model, the attacker can only observe the memory at so-called observation
points. As explained in Section 3.3.4, observation points are set at function bound-
aries: the attacker may observe memory just before call and return instructions. With
this policy, our IFP validator enforces that register allocation does not introduce infor-
mation leaks due, for instance, to stack allocated variables (or spilled registers) not
being properly erased at function return; an acknowledged security issue [31, 116,
105].

3.3.6 Results and analysis

The experiments have been conducted on a quad-core Intel i7-6600U at 2.60GHz
with 16GB of RAM running Fedora 27. We have tested our IFP validator on 24 pro-
grams which are all part of the COMPCERT test suite. For every program, our validator
detected potential information leaks introduced by COMPCERT RA. All the information
leaks have been successfully closed by our patching algorithm and all the resulting
programs have passed the COMPCERT validator.

The impact of the security transformation on their efficiency is summarised in Fig-
ure 3.11. The first bar represents the runtime overhead of our secured RA compared
to the original RA of COMPCERT. The benchmarks are sorted by increasing overhead,
have a running time ranging from 1 to 10 seconds and the results are obtained by
averaging 50 runs. The second (grey) bar represents the overhead in the number of
executed instructions.

The overhead of our functions ranges from -5% to 15%. First for the speedups, we
believe that they are due to lucky side-effect, probably due to an improved behaviour
of the cache of instructions. Overall, we can see the expected trend that overheads are
related to the number of additional instructions executed, except for cases like nbody
or nsieve. Similarly, we suspect side-effects of the architecture, which this time may
create additional overhead with very few patching instruction executed for nsieve. Fur-
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Figure 3.11 – Patched programs compared to original compared programs
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ther investigations would be required to exactly pinpoint the origins of these anomalies
and is left as future work. Anyway, these results are encouraging and show that an
improved security can often be obtained without sacrificing too much efficiency. Finally,
we see that for perlin, the number of additional instructions executed reach 85% which
almost doubles the execution number of the original program. Fortunately, the impact
on the overhead is not as high (15%), but the large number of patching instructions ex-
ecuted can be explained by the conservative analysis of our validation. Indeed, our IFP
validator needs to be quite conservative about the behaviour of function calls relying
exclusively on guarantees given by calling conventions. This is illustrated by Exam-
ple 6 where a potentially spurious instruction needs to be inserted to protect against a
potential information leak.

Example 6. Consider the code snippet of Figure 3.12.

r := g(x);
x := 2;
return x;

eax := g(edi);
eax := 2;
return;

Figure 3.12 – RTL program (left), LTL program (right)

According to standard x86 calling conventions, it is typically compiled as the LTL
program of Figure 3.12. After the call of g , we only have the guarantee that registers
are either overwritten or carry the same value as before. Therefore, our validator makes
the conservative assumption that edi (that is not callee-saved) was not modified by g
, may leak the initial value of the variable x and therefore needs to be explicitly erased,
thus adding a potential spurious erasure instruction edi := 0 .

3.4 Discussion and Perspectives

In this section, we first show how useful is our IFP property to preserve safe erasure,
masking and non-interference mentioned in Section 3.1.4. Then we will discuss how
to extend our current work to other compilation pass and finally we show the different
directions that can improve our current work.
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3.4.1 Which properties can I preserve?

We discuss informally if IFP preserve the different properties cited in our motiva-
tions. We also present some conditions which are necessary to preserve such proper-
ties and the different limitations.

3.4.1.1 Safe Erasure

Safe erasure is used to reduce the lifetime of secrets in the memory by using era-
sure instructions. Our IFP property ensures that information that were removed from
the memory in the source program should not be present in the memory of the trans-
formed program. Therefore, we can easily ensure that IFP preserves safe erasure. The
only limitation resides in the fact that IFP only guarantees that the secrets will be erased
when reaching an observation point. If the policy used is too lax and possessed few
observation points, the lifetime of secrets can be extended if the erasure instruction is
moved within observation points like in Figure 3.13.

x := f();
x := 0;
y := g();
return; ●

x := f();
y := g();
x := 0;
return; ●

Figure 3.13 – Safe erasure broken by code motion

The program on the left can be transformed to the one on the right by the optimisa-
tion named Code Motion. Initially the value x is supposed to be erased before calling
the function g() to avoid possible leaks. However, due to code motion the erasure
instruction has been delayed and is now called after g() which defeats its purpose.
Unfortunately, this transformation is IFP since that x is effectively erased when reach-
ing the observation point. The main issue here is the misplacement of the observation
points and could be solved if an observation point was located right after the erasure
instruction. The relation between IFP and code motion is discussed further in Sec-
tion 3.4.2.2.

3.4.1.2 Masking

Masking split a secret into multiple shares random shares and computations are
done on each share independently before reconstructing the final value. This increases
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the difficult of guessing a secret through the observation of different values and add
noise to the computations since the shares are changed for every execution. Among
the properties of the threshold implementation we presented in Section 3.1.4.2, non-
completeness is the properties that guarantee security against power analysis attacks.
Non-completeness states that none of the intermediate values used during the com-
putation is dependent of all the initial shares. Therefore, if n shares was used at the
beginning, intermediate values are related to at most n − 1 of these shares. Hence
an attacker is not able reconstruct the secret from intermediate values if he does not
get at least n intermediate values. This is similar to attacker knowledge where the at-
tacker tries to deduce the inputs from a partial observation. Since our IFP property
makes sure that any observation on the transformed program can be simulated by an
observation of the source program, then the transformed program cannot have an inter-
mediate value related to all the n shares. We are confident that the security of masking
is preserved by our IFP property but additional work would be required to bridge the
gap to the probabilistic model used by most work on masking.

3.4.1.3 Non-Interference

We are convinced that IFP transformations preserve the following definition of non-
interference inspired from Barthe et al. [11]:

Definition 12 (IFP Non-Interference).

∀(c, c′).
⎛
⎜⎜⎜
⎝

(p, c) ⇓ t
∧

(p, c′) ⇓ t′

⎞
⎟⎟⎟
⎠
∧ c =L c′ ⇒ Kt(p) = Kt′(p)

with c =L c′ meaning that c and c′ are equal on the addresses of the set L

This is ongoing work and we explain our intuition on this matter but proofs would
be required to confirm our statement. For simplicity, we assume that the addresses are
split into two independent sets L and H corresponding to low security and high security
addresses respectively.

First, we remark that we only use the notion of full attacker knowledge in this defini-
tion rather than quantifying over all attackers. This is due to the fact that we are working
on non-interference which implies that the information learned from executions of c and

129



Partie , Chapter 3 – Protecting Memory against Probing Attacks

c′ should be the same, and this for any attacker. Therefore, instead of quantifying on
partial attackers we can limit our definition to the full attacker which is able to gather all
the information contained in a trace.

Proof outline We know that p is non-interfering for inputs c and c′ which agree on
low security addresses. Hence, the attacker knowledge derived from observing their
executions are equal and we name it K. Since the executions are indistinguishable for
the attacker and that c and c′ only differ on high security addresses, then we know that
K does not contain any information on the initial values used at high security addresses
of the input memories.

We call Kt and K ′

t, the knowledge obtained from observing the executions of the
transformed program pt with inputs c and c′ respectively. Since the transformation from
p to pt is IFP, we know that Kt and K ′

t can only contain less or equal information than
K on the input memory used for an execution. If the information is equal, then we
have Kt = K ′

t = K which means that pt is also non-interfering for c and c′. We show
that even if Kt and K ′

t are different from K we still have Kt = K ′

t. Since K has no
information on high-security addresses and that Kt contains less information than K,
then only information from low-security addresses has been removed in Kt. Let’s call
a a low-security address which initial value was removed during the execution of pt but
preserved with p which gave the knowledge Kt from K. Therefore, the initial value at
address a was replaced in pt by a new value which is either:

— a program constant, then that means K ′

t also lost the information from a by the
same constant meaning that Kt =K ′

t

— other input values:

— the new value of a only involves low-security inputs. Then K ′

t is affected in
the same manner as Kt since the inputs c and c′ agree on the low-security
addresses. Hence we still have Kt =K ′

t

— the new value of a involves high-security addresses. This is not possible
because K contains no information about high-security inputs. Since the
transformation is IFP, this should not be the case with Kt and K ′

t either

Therefore, from their source knowledge K, the information removed to obtain Kt and
K ′

t can only be identical which gives Kt =K ′

t meaning that pt is also non-interfering for
inputs c and c′.
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3.4.2 Securing others compiler passes

In this section, we do a quick overview of how our IFP property can be applied
to other compilation passes. In their paper, D’Silva et al. [31] mention that compiler
passes such as Code Motion an Inlining, because they modify the lifetime of variables,
may introduce information leaks. In the following, we explain how these transformations
fit with our IFP property.

3.4.2.1 Inlining

In our experiments, observation points are attached to function calls. As inlining
consists in replacing a function call by a function body, if has the effect of removing
an observation point. As observations need to be synchronised, inlining breaks this
property and therefore is simply not an IFP transformation. As this may seem overly
restrictive, a first solution to accommodate some inlining would be to weaken the secu-
rity policy and attach observation points only to security critical functions. As a result,
those critical functions would not be inlined but other functions could be freely inlined
without modifying observation points. In this restricted scenario, inlining would be an
IFP transformation. Another tempting approach would be to detach the observation
point from the function call. Yet, this raises the issue of code motion that we discuss
below.

3.4.2.2 Code motion

The risk of code motion is that code, and therefore information, could move around
observation points and thus modify the security policy. Consider for instance, the code
of Figures 3.14 and 3.13 where the code is subject to code motion. In Figure 3.14

●1 x := f();
●2 y := g();

●2 y := g();
●1 x := f();

Figure 3.14 – Code motion

the function calls order has been reversed. Since our IFP property works use a lock-
step relation between traces, this transformation is inherently not IFP. It follows that a
IFP-aware compiler needs to limit code motion within the bounds of observation points.
However, code motion can still mess up the security policy such as in Figure 3.13. Here
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the erasure instruction has been delayed and which leaves the secret value x vulnera-
ble to attacks during the execution of the function g. The result is that the transformation
is formally IFP but defeats the intention of the security policy.

3.4.3 Observation points

Limitations of our observation points are brought to light by these two compiler
passes: inlining and code motion. Observations points are not robust to this kind of
transformations where instructions can be moved around. Therefore, we identify the
pros and cons of using observation points to be able to improve our future work.

Capturing lifetime Capturing lifetime is a core point for preservation properties since
having extended lifetime for sensitive variables increase the opportunities to carry out
an attack. Observation points can conveniently capture lifetime of variables in pres-
ence of erasure instructions. Indeed, if a variable is alive until an erasure instruction,
our IFP property can guarantee that this remains true after transformation by placing
an observation point after the erasure. Granularity of lifetimes depends on how often
observation points are hit during the execution. In the case where a single observation
point is hit during an execution, we can only say if a variable is alive at this point. A
solution would be to place observation points at every instruction, which in turn would
severely limit the number of allowed transformations. For example, DSE which removes
some instructions would automatically be not IFP since it would remove some observa-
tion points in the program. Ideally, we would like a measure of variable lifetime which is
more fine-grained than observation points and flexible enough to allow common com-
piler transformations.

Order of instructions Another usage of observation points is that, when combined
with our lockstep relation between traces, they preserve the instructions order during a
transformation. A use-case is when an erasure instruction is placed right before a vul-
nerable instruction, then the order must be preserved during transformations. On the
other hand, if the ordering is too strict we can fall back to the example of Figure 3.14,
where code motion is restricted since it cannot change the order of observation points.
It is important to keep instructions order in situations where some specific part of the
code is vulnerable and likely to be targeted by attackers. In these cases, the secu-
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rity protections definitely needs to be placed before the vulnerable code. However, in
our context, attackers can freely probe the memory of a program during its execution.
Therefore, all the code executed is equally vulnerable which means that preserving in-
structions order is not be a necessity in our case. We believe that as long as the lifetime
length of the secrets is properly preserved during transformation it should not matter
when the critical computations are made during the execution.

Relevant attacker model Lastly, as we said in the motivations, we focus on attack-
ers that can probe the memories of a program execution. Observation points are too
strict since they are statically placed in program points. Additional improvements can
be made by giving attackers more freedom in their observations.

Using these analysis, we can definitely improve our current work. One possibility is
to use attackers which can observe the memory at any time but during k instructions.
Similarly, we should be able to simulate any such attacker of the transformed program
in the source program. Having this parametrized k for the length of an observation
allow us a flexible measure for lifetime of variables. Furthermore, the attacker would
be able to probe the memory at any time which is more realistic when working with
side-channel attacks. This idea requires to be further developed and is left as future
work.
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CONCLUSION

Our society has been growingly dependent on computer systems and this tendency
will not slow down in the incoming years. Nowadays, critical services such as health or
economy are based on computer systems and cannot function properly without them.
Similarly, interests over cybersecurity have been increasing alongside the possible con-
sequences brought by successful attacks on these systems.

This thesis tackles the issue of security of systems and especially focuses on compi-
lation to achieve its goal. We explore the two possible behaviours of a secure compiler
which are enforcement and preservation. Compilers which enforce security proper-
ties make sure that regardless of the source program, transformed programs will be
in compliance with the compiler security policy. In the other hand, security preserving
compilers goal is to guarantee that the transformed program is at least as secure as the
provided source program. Choosing between enforcement and preservation depends
on the amount of trust given to the source program provider. In a situation where the
source program is untrusted (may contain malicious code or vulnerabilities), enforce-
ment guarantees that the compiled program will conform to the security policy of the
compiler. However, in the situation where the source program provider is trusted, en-
forcement of security by the compilers may be too rigid. Indeed, a compiler may fail
to meet the developer expectations if the security policy enforced during compilation
differs from the developer needs. For example, take a developer which only wants to
prevent secrets from leaking out of its program and a compiler forbidding any flow out-
side of the program. Here the restrictions imposed by the compiler may be too strong
for the developer and might transform the program in a non-desirable way. A program
such as a password checker would not be able to function properly with such restric-
tions imposed by the compiler. Another possible consequence can be unnecessary
overhead introduced by the secure compiler.

Preservation of security properties is more suited to these situations where the
source program is trusted. The core principle of preservation is to make sure that the
compiled program should be as secure as the source program. The notion of security
can change depending on the case but the motivation stays the same. Most of the
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time rather than strict preservation, which requires equal security for source and trans-
formed programs, secure compilers settle for a looser notion of preservation which re-
quires transformed program to be at least as secure as the source. Strict preservation
has the disadvantage to leave very few leeway for compilers to do their transformations.
Therefore, looser preservation is sometimes a better compromise between speed and
security. One may argue that a compiler enforcing a really strong security policy may be
considered as a compiler preserving security since the compiled program will almost
always be more secure than the source. While this is true, the main goal of the two
compilers are different since a preserving compiler aim to translate as best as possible
the developer security intentions. Whereas an enforcing compiler will implement a fixed
security policy on transformed program regardless of the source.

This thesis explored both kind of secure compilers. First, COMPCERTSFI was imple-
mented which is a compiler enforcing the security policy of software fault isolation on
compiled programs. Then we focused on preserving memory probing countermeasures
during compilation by defining a notion of information flow preserving transformation.

Software Fault Isolation

In Chapter 2 we presented SFI, an isolation technique which focuses on the speed
of the interactions between the different entities. In SFI, a host program will setup the
different modules in its own virtual memory. To prevent those modules from access-
ing the host data, they will be confined in specific memory areas called sandboxes.
The usual implementations of SFI are composed of a SFI generator (included in the
compiler) and a verifier. The generator enforces SFI transformations on the programs
and the verifier makes sure that the executables are compliant with the SFI policy be-
fore loading them. SFI is an example of a compiler enforcing security on programs.
Even if the source program is already secure, SFI transformations will still be done
on programs to comply with SFI security expectations. We developed COMPCERTSFI

an implementation of SFI from the certified C compiler COMPCERT. The originality of
our approach is that we take advantage of COMPCERT semantics preservation theo-
rem to get rid of the verifier. Inspired by the work Kroll et al. [60], SFI transformations
are done on a high-level language called Cminor. Our SFI transformations have been
proven to be SFI-secure and also to produce programs devoid of undefined behaviours.
The latter point is crucial since COMPCERT safety preservation corollary only applies
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on programs with no going-wrong behaviour. Security of programs is then preserved
during compilation using this preservation property. The first advantage of such ap-
proach is portability, since the transformations are done at high-level, COMPCERTSFI

automatically supports the COMPCERT architectures. A second advantage is that SFI
transformations can benefit from compiler optimisations with this approach. Analysis of
programs are more complex to perform at assembly level. Therefore, to reduce the im-
pact on speed, traditional SFI verifiers only check syntactic properties of the programs.
This limits the possible optimisations that can be carried out on traditional SFI trans-
formations since the verifiers have limited capability. However, in our approach, the
verifiers is removed from the SFI toolchain which allows us to do more optimisations
as long as they are proven correct. In our benchmarks, we show that COMPCERTSFI

have comparable execution speed to Native Client [117, 98, 6].

Information-Flow Preserving Transformation

Chapter 3 is centered around preservation of security countermeasures against a
memory probing attacker. Our attacker model is a passive attacker which is able to
peek into a process memory during its execution. We define the security of a program
using the notion of Attacker Knowledge from Askarov et al. [7]. Attacker knowledge
corresponds to the set of possible initial memories that match the observations made
by the attacker during an execution. We also use a notion of partial attackers which
are able to observe a parametrized number of bits of an execution trace. These partial
attackers allow us to have a measurement of the security of a program. For example, a
secret value may leak with a partial attacker observing the whole trace but not with an
attacker with only n bits of observation. We formalize the notion of IFP transformation
using the preservation principle of secure compilers where the security of a program is
defined by attacker knowledge and partial attackers. More precisely:

For any partial attacker, an attacker knowledge derived from a transformed execution
can always be matched by a more precise attacker knowledge derived from a source

execution

We also provide a proof technique to prove that a transformation is IFP. The proof tech-
nique consists in mapping every memory location of a transformed program to either
a memory location of the source program or a constant. If one is able to construct
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such mapping then the transformation is IFP. We use our IFP property to propose two
secure compiler passes: dead store elimination (DSE) and register allocation (RA). An
IFP algorithm of DSE can be proven IFP by slightly modifying the liveness analysis. For
register allocation, we modify COMPCERT RA validator to also check that the transfor-
mation is IFP. The validator succeeds when it manages to construct the mapping used
by our proof technique. In case of failure, a patching algorithm can be used to fur-
ther modify the program to get an IFP transformation. We benchmarked our patching
algorithm to measure the cost of our security. The overhead peaks at 15% but most
programs are under 5% which is rather encouraging. These results can be improved in
the future using additional global analysis to avoid doing conservative choices. Finally,
we show that our IFP property is suitable to preserve security properties such as safe
erasure, masking and non-interference. Future work should be aimed at improving our
property in order to have more flexible attacker observations.

Discussion and perspectives

COMPCERTSFI

We fulfilled our first objective with COMPCERTSFI to show that it is possible to do SFI
without a verifier in the toolchain, as envisioned by Kroll et al. [60]. In this section, we
discuss our advancement in regard to our second goal, which is, to have a competitive
SFI implementation for real-world applications. To define the roadmap to reach our
objective, we evaluate our current work with other SFI implementations under different
criteria: security conditions, security policy, trusted computing base (TCB), portability
and speed. Native Client [117, 98, 6] is our main competitor since this is the only work
which have been deployed to the industry.

Security conditions Having a verifier is a headache for optimisations but can also be
a blessing. Indeed, with a verifier we can just check untrusted binaries before loading
them. With COMPCERTSFI we require to have the source code of the untrusted pro-
gram to ensure a secure execution. Therefore, our work have stronger requirements
when it comes to security conditions. This is inherent to our design which cannot be
changed and we need to make up for this weakness with other factors.
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Security policy Since we are comparing different SFI implementations, the different
policies are roughly the same. The biggest difference may lie in how function pointers
are handled. It is difficult to check the control flow of assembly programs due to the
usage of indirect addressing. Native Client chose to split their code into chunks of fixed
size and use masking alignment on indirect addressing. This ensures that any jump is
directed to the beginning of a chunk. Our implementation has better control since we
dynamically check that function pointers calls always lead to an existing function and
that their signatures match.

Portability This is the selling point of the PSFI approach since we can support all
COMPCERT architectures with a single implementation of the SFI transformations. On
the other hand, traditional SFI needs to implement a generator and a verifier for each
architecture they want to target.

TCB and speed We regroup these two categories since SFI overhead is related to
the complexity of the verifier. In SFI, the TCB is composed of the trusted library and
the verifier. COMPCERTSFI also possesses a trusted library, and the rest of the TCB
is equivalent to the trust we have in COMPCERT which is proven in Coq. Therefore,
comparison of TCB is decided between COMPCERT TCB and the trust we put into the
verifier. Verifiers can use syntactic checks which are simple and can be easily checked
or more advanced static analysis. Indeed, optimisations of SFI transformations are lim-
ited by the capacity of their verifier to check that a binary is SFI-secure. A simple verifier
is not able to check optimisations of SFI constructs but is more easily trusted and can
also be certified [77]. In our benchmarks, we show that COMPCERTSFI performance
are comparable to Native Client.

Among all the criteria compared, speed has significant importance and is also the
one which can be improved the most. There are two solutions to speed up COMP-
CERTSFI. First, we argue that by using PSFI approach, our SFI constructs benefit from
compiler optimisations which should improve the performance. Therefore, a direction of
improvement is to design optimisations specifically crafted to speed up SFI constructs
and limit the overhead brought by SFI transformations.
Secondly, we showed that another bottleneck resided in the usage of the compiler
COMPCERT which is slower than Clang or Gcc. Hence, we can also focus on improv-
ing the overall performance of COMPCERT to reach our objective. An idea would be to
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integrate COMPCERTSSA [10] which uses Single Static Assignment optimisations to
speed up programs.

Information-Flow Preserving transformation

Preservation of security properties during a compilation is a relatively recent field
of research which stems from semantics preservation of compilers. To our knowledge,
we are the first to preserve security of programs against a memory probing attacker.
This attacker model is suited for side-channel attacks such as power or electromag-
netic analysis, where an attacker can get any intermediate value using a statistical
attack with enough observations. Our definitions can be used on the issue of preserv-
ing countermeasures against differential power analysis, such as software masking,
which has not been solved yet.

This part of the thesis already has practical implementations but still has room for
growth. Multiple prospects can be explored in the future.

Preservation of Masking As mentioned previously, we are convinced that our IFP
property is suited to preserve masking implementations. Threshold implementations
(Section 3.1.4.2) are defined over probabilistic programs so our first would be to modify
our work to fit in this execution model. Afterwards, it would be interesting to implement
our preservation property in a compiler such as Jasmin [3] to produce DPA-resistant
cryptographic implementations.

Framework for Passive Attackers The most powerful passive attacker that we can
think of is able to see the whole memory of a program during the entire execution. An
attractive prospect would be to have a framework to generate any kind of passive at-
tacker by parametrizing the different aspects of this most powerful attacker. In our work,
we have already parametrized when and how much an attacker is able to observe. Cur-
rently, an attacker is only able to observe when the execution reaches an observation
point and is also limited by how many bits it is able to observe. A suggestion would be to
also limit our attackers on where in the memory they are be able to observe. We would
obtain a generic framework to easily formalize any passive attacker we want to prevail
against. For example, to preserve constant-time programs we would have an attacker
which is able to see an unlimited number of bits but only at the addresses used when
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branching or accessing the memory. We could also preserve certain security proper-
ties that label memory areas with different security levels where the attackers can only
access areas with low credentials.
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[37] Chucky Ellison and Grigore Roşu, « An executable formal semantics of C with
applications », in: POPL, ACM, 2012.

[38] Úlfar Erlingsson et al., « XFI: Software Guards for System Address Spaces », in:
Proceedings of the 7th Symposium on Operating Systems Design and Imple-
mentation, OSDI ’06, Seattle, Washington: USENIX Association, 2006, pp. 75–
88, ISBN: 1-931971-47-1, URL: http : / / dl . acm . org / citation . cfm ? id =
1298455.1298463.

[39] John Fisher-ogden, Hardware support for efficient virtualization, 2006.

[40] Bryan Ford and Russ Cox, « Vx32: Lightweight User-level Sandboxing on the
x86 », in: USENIX 2008 Annual Technical Conference, ATC’08, Boston, Mas-
sachusetts: USENIX Association, 2008, pp. 293–306, URL: http://dl.acm.
org/citation.cfm?id=1404014.1404039.

[41] J. A. Goguen and J. Meseguer, « Security Policies and Security Models », in:
1982 IEEE Symposium on Security and Privacy, Apr. 1982, pp. 11–11, DOI:
10.1109/SP.1982.10014.

[42] Louis Goubin and Jacques Patarin, « DES and Differential Power Analysis (The
"Duplication" Method) », in: Proceedings of the First International Workshop on
Cryptographic Hardware and Embedded Systems, CHES ’99, London, UK, UK:
Springer-Verlag, 1999, pp. 158–172, ISBN: 3-540-66646-X, URL: http://dl.
acm.org/citation.cfm?id=648252.752372.

144

https://wiki.sei.cmu.edu/confluence/display/c/MSC06-C.+Beware+of+compiler+optimizations
https://wiki.sei.cmu.edu/confluence/display/c/MSC06-C.+Beware+of+compiler+optimizations
https://wiki.sei.cmu.edu/confluence/display/c/MSC06-C.+Beware+of+compiler+optimizations
https://eprint.iacr.org/2019/1005
https://doi.org/10.1145/2663716.2663755
http://dl.acm.org/citation.cfm?id=1298455.1298463
http://dl.acm.org/citation.cfm?id=1298455.1298463
http://dl.acm.org/citation.cfm?id=1404014.1404039
http://dl.acm.org/citation.cfm?id=1404014.1404039
https://doi.org/10.1109/SP.1982.10014
http://dl.acm.org/citation.cfm?id=648252.752372
http://dl.acm.org/citation.cfm?id=648252.752372


[43] M. Gruhn and T. Müller, « On the Practicability of Cold Boot Attacks », in: 2013
International Conference on Availability, Reliability and Security, Sept. 2013,
pp. 390–397, DOI: 10.1109/ARES.2013.52.

[44] M. R. Guthaus et al., « MiBench: A free, commercially representative embedded
benchmark suite », in: 2001 IEEE International Workshop on Workload Char-
acterization, WWC 2001, United States: Institute of Electrical and Electronics
Engineers Inc., 2001, pp. 3–14.

[45] J. Alex Halderman et al., « Lest We Remember: Cold Boot Attacks on Encryp-
tion Keys », in: 17th USENIX Security Symposium (USENIX Security 08), San
Jose, CA: USENIX Association, July 2008, URL: https://www.usenix.org/
conference/17th-usenix-security-symposium/lest-we-remember-cold-
boot-attacks-encryption-keys.

[46] Chris Hathhorn, Chucky Ellison, and Grigore Roşu, « Defining the Undefined-
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Titre : Compilation pour la protection de la mémoire
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Résumé : Notre société est de plus en plus
dépendante de services informatiques et cette
tendance est à la hausse. De ce fait, la sé-
curité de nos systèmes est également de-
venu incontournable afin d’éviter les consé-
quences désastreuses que peuvent provoquer
d’éventuelles attaques. Cette thèse porte sur
la sécurité des programmes et particulière-
ment en utilisant la compilation pour parvenir
à ses fins. La compilation est correspond à
la traduction des programmes sources écrits
par des humains vers du code machine li-
sible par nos systèmes. Nous explorons les
deux manières possible de faire de la compi-
lation sécurisée : la sécurisation et la préser-
vation. Premièrement, nous avons dévelopé
COMPCERTSFI, un compilateur qui sécurise
des modules en les isolant dans des zones

mémoires restreintes appelées bac à sable.
Ces modules sont ensuite incapables d’accé-
der à des zones mémoires hors de leur bac à
sable, ce qui empêche un module malveillant
de corrompre d’autres entités du système. Sur
le sujet de la préservation, nous avons défini
une notion de Préservation de Flot d’Informa-
tion qui s’applique aux transformations de pro-
gramme. Cette propriété, lorsqu’elle est appli-
quée, permet de s’assurer qu’un programme
ne devienne moins sécurité durant sa compi-
lation. Notre propriété de préservation est spé-
cifiquement conçus pour préserver les protec-
tions contre les attaques de type canaux ca-
chés. Cette nouvelle catégorie d’attaque utilise
des médiums physique comme le temps ou la
consommation d’énergie qui ne sont pas pris
en compte par les compilateurs actuels.

Title: Compilation for memory protection

Keywords: Secure Compilation, Isolation, Side-Channels

Abstract: Our society has been growingly de-
pendent on computer systems and this ten-
dency will not slow down in the incoming
years. Similarly, interests over cybersecurity
have been increasing alongside the possible
consequences brought by successful attacks
on these systems. This thesis tackles the issue
of security of systems and especially focuses
on compilation to achieve its goal. Compilation
is the process of translating source programs
written by humans to machine code readable
by our systems. We explore the two possi-
ble behaviours of a secure compiler which are
enforcement and preservation. First, we have
developed COMPCERTSFI, a compiler which

enforces the isolation of modules into closed
memory areas called sandboxes. These mod-
ules are then unable to access memory re-
gions outside of their sandbox which prevents
any malicious module from corrupting other
entities of the system. On the topic of secu-
rity preservation, we defined a notion of In-
formation Flow Preserving transformation to
make sure that a program does get less secure
during compilation. Our property is designed
to preserve security against side-channel at-
tacks. This new category of attacks uses phys-
ical mediums such as time or power consump-
tion which are taken into account by current
compilers.
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