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Sorbonne Université Laboratoire Jacques-Louis Lions
Paris 6 UMR 7598
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de Paris Centre ED 386 UFR 929



Shijie DONG :

Laboratoire Jacques-Louis Lions, UMR 7598, UPMC, Sorbonne Université, 4 Place
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Introduction

1 Classical topics on the wave-Klein-Gordon equa-

tions

1.1 Introduction of the wave equation

We are mainly interested in the second order partial differential equations of the
form

´lu`m2u “ f, (1.1)

with its prescribed initial data on some hypersurface t “ t0

upt0, ¨q “ u0, Btupt0, ¨q “ u1. (1.2)

We have used the notation
l :“ ηαβBαBβ, (1.3)

which is called the wave operator, and

η :“ diagp´1, 1, ¨ ¨ ¨ , 1, 1q (1.4)

is the metric in the Minkowski spacetime R1`d, with d the space dimension. We de-

note the Cartesian coordinates of a point pt, xq “ pxαq, and its radius r :“
`

xax
a
˘1{2

.
Throughout, we use Roman letters to represent spacetime indices and Latin letters for
space indices, and Einstein summation convention is adopted unless specified. In the
above f is called the source term: if f is a function independent of u and its partial
derivatives, we call (1.1) a linear wave equaton; if f is a function of u or its partial
derivatives, we call (1.1) a nonlinear wave equation. In the above, m ě 0 is some con-
stant, and (1.1) is called a wave equation if m “ 0, while it is called a Klein-Gordon
equation with mass m when m ‰ 0. But we might refer to the equation (1.1) with
m ě 0 as a wave equation if no confusion arises.

Wave equation is first discovered by d’Alembert in one space dimension in 1746,
and later by Euler in three space dimension. We emphasize that we consider wave

9



10 1. Classical topics on the wave-Klein-Gordon equations

equations in the whole space instead of restricting them to some bounded domain with
prescribed boundary condition. We proceed by introducing several well-known notions
and results.

Definition 1.1. Consider two regular functions u and v, and we call TαβBαuBβv as a
quadratic null form if

Tαβξαξβ “ 0 (1.5)

for all null vectors, i.e. vectors satisfying ξαξα “ 0.

We list some specific examples of null forms.

•
Q0pu, vq :“ BαuBαv.

•
Qabpu, vq :“ BauBbv ´ BbuBav.

•
Q0apu, vq :“ BtuBav ´ BauBtv.

The last two types of null forms are called strong null forms by Georgiev [20], because
they have a certain compatibility with the Klein-Gordon components.

There are several groups of vector fields which play very important role in the
following analysis.

• Translations:
Bα :“ Bxα .

• Rotations:
Ωab :“ xaBb ´ xbBa.

• Lorentz boosts:
La :“ tBa ` xaBt.

• Scaling:
L0 :“ tBt ` rBr.

We have the following commutation property between the vector fields above and
the wave (or Klein-Gordon) operator.

Proposition 1.2. It holds

rBα,´l`m2
s “ 0, rLa,´l`m2

s “ 0,

rΩab,´l`m2
s “ 0, rL0,´ls “ 2 l.

(1.6)
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1.2 What are we interested in wave equations

There are several natural questions coming to mind when f “ fpt, xq is a prescribed
function independent of u and its derivatives.

• Whether the wave (or Klein-Gordon) equation (1.1) admits a solution?

• What is a solution?

• If the solution exists, does the solution exist for all time or only for finite time?

• If the solution exists, how fast does it decay, concerning wave equation is one kind
of dispersive equation?

When f is a function of u or its derivatives, the situation is more complicated.

• In different dimensions, what kind of forms of f “ fpu, Bu, BBuq lead to (small
data) a global-in-time solution?

• If the solution exists to the nonlinear wave equation, how fast does the solution
decay?

• What can we say about the systems of wave (or Klein-Gordon or coupled wave-
Klein-Gordon) equations?

For some classical results about linear wave equations, one refers to the beginning
part of the monograph [69] or the lecture note [56] for more details.

We give some well-known related problems on the nonlinear wave equations.

Example 1.3 (Strauss conjecture). Consider the semilinear wave equation

´lu “ |u|pc`α,
`

u, Btu
˘

pt0, ¨q “ pu0, u1q, (1.7)

in which pc is the positive root of the equation

pd´ 1qp2
´ pd` 1qp´ 2 “ 0.

Global existence and well-posedness of solutions with small initial data is expected by
Strauss [71], which was proved by Georgiev, Lindblad, and Sogge [22] and other works
(we are not going to be exhausitive), for α ą 0, while counterexamples of finite time
blow-up solutions exist when α ă 0. Some recent well-known works on this topic include
[70], [51], [62], and many others.
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Example 1.4 (Weak null conjecture). In the papers [52] and [53], Lindblad and Rodni-
anski first came up with the notion of weak null condition, which generalised the notion
of the classical null condition. Utilising this idea, they first proved the global stability
of Minkowski spacetime in the wave gauge.

Whether weak null condition is a sufficient condition or a necessary condition to the
existence of global solutions to wave equations is still open. For the advances on this
subject, one refers to [3], [11], [37], and many others.

1.3 What tools do people have to study wave equations

The study of nonlinear wave equations is an active research field since 40 years ago.
Numerous of great results come out.

A broad class of wave equations with quadratic nonlinearities satisfying the so-called
null condition, as shown independently by Klainerman [39, 40] and Christodoulou [8],
do admit global-in-time solutions. The vector field method, due to Klainerman, and the
conformal method, due to Christodoulou, have been two major approaches to studying
wave equations. Later on, Rodnianski and Lindblad [53, 54] come up with the notion of
weak null condition, and are able to treat a larger class of nonlinearities. But whether
the weak null condition is sufficient or necessary conditions to the existence of global
solutions to wave equations is still an open problem. Other generalisations of the null
form have also been used to great effect, see for example Pusateri and Shatah [65].
Recently, the rp weighted method by Dafermos and Rodnianski [9] is able to treat wave
equations in the flat metric or metrics with black holes; the hyperboloidal foliation
method by LeFloch and Ma [44, 46], and extended in [45], to treat coupled wave-Klein-
Gordon systems turns out to be a big success.

By contrast, the Klein-Gordon equation requires a different analysis from the wave
equation. One key obstruction is that the scaling vector field S “ tBt ` xaBa does
not commute with the Klein-Gordon operator ´l ` 1, which thus does not allow us
to apply the Klainerman-Sobolev inequality directly. Pioneering works by Klainerman
using the vector field method in [41], and by Shatah employing a normal form method
in [66], led the way in treating a wide class of Klein-Gordon-type equations.

In [20], Georgiev studies a coupled wave-Klein-Gordon system where he came up
with the notion of strong null forms, which are consistent with the Klein-Gordon equa-
tions, and he obtained global stability results for this system.

Besides, the method of spacetime resonance, introduced by Shatah, Germain, and
Masmoudi in the series of papers [25], [23], [27], [26], [24], etc., appears to be a pow-
erful tool in studying nonlinear dispersive equations, including wave equations, Klein-
Gordon equations, Schordinger equations (see for instance [28]), and many others. As
commented, spacetime resonance method bridges the vector field method and normal



Introduction 13

form method in a certain way. It was used in [65] to prove the global solutions of wave
equations, which also generalised the classical null forms.

The method we employ in this thesis is the so-called hyperboloidal foliation method
which is first introduced by LeFloch and Ma [44] in 2014. Later on they apply this
method to a more generalised coupled wave-Klein-Gordon system in [45] and succeed
in tackling the Einstein-Klein-Gordon system in [48]. Besides, Ma proves a class of
quasilinear wave-Klein-Gordon equations in dimension two [59] and [58], and in dimen-
sion one [60], and Ma and Huang provided a conformal type energy adapted to the
hyperboloidal foliation which is useful to obtain L2-type estimates for wave compo-
nents. Worth to mention, Fajman, Joudioux, and Smulevici apply this method to the
Einstein-Vlasov system in [17].

1.4 What do we already know about wave equations

After decades of investigations, lots of important results come out. In the linear
case, the solution can be written out explicitly in an integral form (for example in
dimension 3). Since wave equation is one kind of dispersive equation, people are very
interested in exploring its decay property. Various of methods (like Fourier analysis,
utilisation of the integral formulation of the solution, and energy method) can be used
to prove the following result for free wave (or Klein-Gordon) equations.

Theorem 1.5. Let u be the solution to the wave equation

lu`m2u “ 0, upt0, ¨q “ u0, Btupt0, ¨q “ u1,

in which u0, u1 are compactly supported smooth functions, then it holds 1

|u| À t´pd´1q{2 if m “ 0,

|u| À m´1t´d{2 if m ‰ 0,
(1.8)

in which d is the space dimension.

For general nonlinear wave equations, the local existence results are classical. We
cite this result from [69].

Theorem 1.6. Consider the quasilinear wave equation of the form

gαβpu, BuqBαBβu “ F pu, Buq,

upt0, ¨q “ u0, Btupt0, ¨q “ u1,
(1.9)

1Throughout, A À B means A ď CB with some generic constant C, and similar convention is true
for the notation ».
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and we assume gαβ and F are smooth functions with all derivatives Op1q. We also
assume that

F p0, 0q “ 0,
ÿ

αβ

ˇ

ˇgαβ ´ ηαβ
ˇ

ˇ ă 1{2. (1.10)

Let N ě d ` 2 and pu0, u1q P H
N`1 ˆ HN . Then there is a T ą t0, depending on

the norm of the data, so that the initial value problem above admits a unique solution,
satisfying

ÿ

|α|ďN`1

}B
αupt, ¨q}L2 ă `8, t0 ď t ď T. (1.11)

Also, if
T˚ :“ suptt :

ÿ

|α|ďN`1

}B
αupt, ¨q}L2 ă `8u,

then

• either T˚ “ `8,

• or
ÿ

|α|ďpN`3q{2

|B
αupt, xq| R L8

`

rt0, T˚s ˆ Rn
˘

.

For nonlinear wave equations with null forms, Klainerman and Christodoulou proved
independently the following result.

Theorem 1.7 (Klainerman and Christodoulou, 1986). Consider the wave equation
(1.1) in dimension R1`3 with

f “ TαβBαuBβu

a null form, and let N be a sufficiently large integer. There exists ε0 ą 0 such that for
all ε P p0, ε0q, and all initial data pu0, u1q satisfying the smallness condition

}u0}HN`1 ` }u1}HN ď ε, (1.12)

the initial value problem (1.1)–(1.2) admits a global-in-time solution u.

2 Physical models related to wave-Klein-Gordon equa-

tions

2.1 Examples of wave equations

We first provide some examples of wave equations in Luk [56].



Introduction 15

Example 2.1 (Maxwell’s equation, Maxwell, 1860s). Let E : I ˆ R3 Ñ R3 and B :
I ˆ R3 Ñ R3 be (time-dependent) vector fields representing the electric and magnetic
field. The Maxwell’s equations are given by

BtE “ ∇ˆB,
BtB “ ´∇ˆ E,
∇ ¨ E “ 0,

∇ ¨B “ 0.

(2.1)

A priori, they may not look like wave equations (they are not even second order!).
However, if we differentiate the first equation by Bt, use the second and third equations,
we get

´lEi “ 0, i “ 1, 2, 3. (2.2)

Similarly, it is also true that

´lBi “ 0, i “ 1, 2, 3. (2.3)

Thus given initial data
`

E,B
˘

pt0, ¨q “ pE
0, B0

q, (2.4)

which are divergence free, then the Maxwell’s equations in (2.1) are equivalent to the
following wave equations

´lEi “ 0, ´lBi “ 0,
`

Ei, BtEi
˘

pt0, ¨q
`

E0
i , p∇ˆB0

qi
˘

,
`

Bi, BtBi

˘

pt0, ¨q
`

B0
i ,´p∇ˆ E0

qi
˘

.
(2.5)

Example 2.2 (Irrotational compressible fluids, Euler, 1752). A fluid in I ˆ R3 is
described by a vector field v : I ˆ R3 Ñ R3 describing the velocity of the fluid and a
non-negative function h : I ˆR3 Ñ R describing the enthalpy.

Define the pressure p to be a function of the enthalpy p “ pphq such that

• p ą 0,

• ρ :“ dp
dh
ą 0,

• η2 :“ ρp d
2p
dh2 q

´1 ą 0.

We call ρ the density of the fluid and η the speed of sound. The Euler equations are
given by

Btvi ` pv ¨∇qvi “ ´Bih,
Btρ`∇ ¨ pρvq “ 0,

(2.6)

for i “ 1, 2, 3. We say that a flow is irrotational if ∇ ˆ v “ 0. In that case, we can
write v “ ´∇φ, where φ is defined up to adding a function of time.
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The first equation above gives

∇
`

Btφ´ p1{2q|∇φ|2 ´ h
˘

“ 0.

Since we have the freedom to add a function of time to φ (which does not change
v), we can choose

Btφ´ p1{2q|∇φ|2 ´ h “ 0.

We can get from the second equation in (2.6) that

BtBtφ´ 2BiφBtBiφ` B
iφBjφBiBjφ´ η

2
B
i
Biφ “ 0. (2.7)

Example 2.3 (Einstein vacuum equations, Einstein, 1915). The Einstein vacuum equa-
tions describe the propagate of gravitational waves in the absence of matter and take
the form

Ricpgq “ 0, (2.8)

where the Lorentzian metric g is the unknown and Ric is the Ricci curvature. In a
coordinate system, these equations take the form

Ricpgqµν “ ´
1

2
gαβBαBβgµν ´

1

2
gαβBµBνgαβ `

1

2
gαβBαBνgβµ `

1

2
gαβBβBµgαν ` Fµνpg, Bgq,

(2.9)
where Fµνpg, Bgq is a function of g and its derivatives.

This does not look like a wave equation (because of the second to fourth terms)!
However, a more careful choice of coordinates allows one to rewrite this system as a
system of nonlinear wave equations.

Example 2.4 (Wave map equations). Let φ : I ˆ Rn Ñ Sm “ tx P Rm`1 : |x| “ 1u.
The wave map equation is given by the following system of pm` 1q equations:

´lφ “ φ
`

Btφ
T
Btφ´ B

iφTBiφ
˘

,
`

φ, Btφ
˘

pt0, ¨q “ pφ0, φ1q,
(2.10)

where φT denotes the transpose of the vector φ.

One can show that suppose |φ0|
2 “ 1 and φT0 φ1 “ 0, then, if a solution φ exists in

I ˆRn, then |φ|2 “ 1, i.e., φ is indeed a map to the sphere.

Note again that the above examples are extracted from the lecture note by Luk [56].

2.2 Examples of Klein-Gordon equations

We demonstrate a few examples of Klein-Gordon equations.
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Example 2.5 (Higgs equation). Let Φ : R1`3 Ñ C2, and V ppq :“ pp´ v2q2 with v ą 0
some fixed constant, we call the following equation the (massive) homogeneous Higgs
equation

´lΦ` V 1pΦ˚ΦqΦ “ 0. (2.11)

This equation is derived from the standard model of electroweak interactions, see for
instance [15] or Chapter 2.

Example 2.6 (Massive Dirac-Proca equations). The field equations for the massive
Dirac-Proca model with unknowns Aµ and ψ read

lAν ´m2Aν “ ´ψ˚γ0γνpPLψq,

´iγµBµψ `Mψ “ ´γµAµpPLψq.
(2.12)

in which PL “ 1
2
pI4 ´ γ5q, γα the Gamma matrices, and m ą 0, M ą 0. Here

ψ : R3`1 Ñ C4 represents a massive Dirac fermion with spin 1{2 and Aµ : R3`1 Ñ R
represents a massive boson (the Proca field) of mass m2 with spin 1.

The equation for the spinor ψ does not seem to be a wave equation unless we act
the Dirac operator ´iγµBµ one more time on it and apply the fact

´l “
`

´ iγµBµ
˘2
. (2.13)

2.3 Examples of coupled wave-Klein-Gordon equations

Several coupled wave-Klein-Gordon equations are listed here.

Example 2.7 (Dirac-Proca equations). The field equations for the Dirac-Proca model
with unknowns Aµ and ψ read

lAν ´m2Aν ` BνpBµA
µ
q “ ´ψ˚γ0γνpPLψq,

´iγµBµψ “ ´γ
µAµpPLψq.

(2.14)

with again PL “
1
2
pI4 ´ γ5q and m ą 0. Here ψ : R3`1 Ñ C4 represents a massless

Dirac fermion with spin 1{2 and Aµ : R3`1 Ñ R represents a massive boson (the Proca
field) of mass m2 with spin 1.

It does not look like a Klein-Gordon system for the gauge fields Aν, but one observes
that the initial constraints

`

BµA
µ
˘

pt0, ¨q “ 0, Bt
`

BµA
µ
˘

pt0, ¨q “ 0, (2.15)

are propagated by the equations in (2.14), and thus the Dirac-Proca equations now
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become
lAν ´m2Aν “ ´ψ˚γ0γνpPLψq,

´iγµBµψ “ ´γ
µAµpPLψq.

Example 2.8 (Klein-Gordon-Zakharov equations). Recall the Klein-Gordon-Zakharov
equations

´lu “
ÿ

a

∆|va|
2,

´lva ` va “ uva,

(2.16)

where the unknowns u is real valued and va are complex valued for a “ 1, 2, 3. The
initial data are denoted by

`

u, Btu
˘

pt “ 2, ¨q “
`

up0q, up1q
˘

,
`

va, Btva
˘

pt “ 2, ¨q “
`

vp0qa , vp1qa
˘

, (2.17)

We rewrite the equations (3.1.7) in the following form where we can only consider
real valued functions

´lu “
ÿ

a

Bi

´

B
i
`

x2
a ` y

2
a

˘

¯

,

´lxa ` xa “ uxa,

´lya ` ya “ uya,

(2.18)

in which we use the notations xa :“ Repvaq and ya :“ Impvaq to denote the real part
and the imaginary part of a complex number z, respectively.

We note that the regularity of u is one order less than that of va. This can be seen
from the initial data, where we consider the norms

}up0q}HN0 , }up1q}HN0´1 , }vp0qa }HN0`1 , }vp1qa }HN0 ,

with N0 some large integer. Thus equations (3.1.7) are semilinear equations.

Example 2.9 (Einstein-Klein-Gordon equations). This example is extracted from [45].

We consider the Einstein equations for an unknown spacetime pM, gq:

Ricαβ ´
R

2
gαβ “ 8φTαβ, (2.19)

where Ricαβ denotes the Ricci curvature tensor and R “ gαβRicαβ denotes the scalar
curvature. The matter is taken to be a massive scalar field with potential V “ V pφq
and stress-energy tensor

Tαβ :“ ∇αφ∇βφ´
´1

2
∇γφ∇γφ` V pφq

¯

gαβ, (2.20)
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and specifically,

V pφq :“
c2

2
φ2, (2.21)

where c2 ą 0 represents the mass of the scalar field. By applying ∇α to (2.19) and using
the Bianchi identity

∇α
´

Ricαβ ´
R

2
gαβ

¯

“ 0,

one checks that the Einstein-scalar field system implies

Ricαβ “ 8π
`

∇αφ∇βφ` V pφqgαβ,

lgφ “ V 1pφq,
(2.22)

in which lg :“ gαβBαBβ. A suitable choice of coordinates make the first equation also a
system of quasilinear wave equations.

Example 2.10 (Standard model of electroweak interactions). This example is extracted
from Chapter 2, see also [15].

We need some notations for the fields of the theory. Let σa P C2ˆ2 be the standard
Pauli matrices where a “ 1, 2, 3, which form a basis for the Lie algebra sup2q which we
normalize by defining τa :“ 1

2
σa P C2ˆ2. The five fields in the theory are the following:

Φ P C2 SUp2q-doublet Higgs field,

Y “ pY µ
q Up1q-gauge field,

W “ pW µ
a q SUp2q-gauge field,

peL, eRq P C2
ˆ C2 (left- and right-handed) electron spinor,

νL P C2 left-handed neutrino spinor.

(2.23)

Derived from the Lagrangian density of electroweak standard model, the evolution
equations are

DµD
µΦ “ V 1pΦ˚ΦqΦ` gee

˚
RL,

DνF
µν
“ ´

gY
2
jµ,

DνH
µν
a “ ´gW Jµa ,

iσµRDµeR “ geΦ
˚L,

iσµLDµL “ geΦeR,

(2.24)

in which
jν :“ L˚σνLL` 2e˚Rσ

νeR ` ipD
νΦq˚Φ´ iΦ˚pDνΦq,

Jνa :“ RerL˚σνLτaLs ´ ipD
νΦq˚τaΦ` iΦ

˚τapD
νΦq.

(2.25)
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We introduce various notations we use in the system of equations

Hµνa :“ BµWνa ´ BνWµa ` gW cabcWµbWνc,

Fµν :“ BµYν ´ BνYµ.
(2.26)

Here the structure constants cabc for SUp2q are the usual 3-dimensional totally anti-
symmetric Levi-Civita symbols normalised so that c123 ” 1. We have used the following
covariant derivatives

DµΦ :“
`

Bµ ´ igWWµaτa ` i
gY
2
Yµ
˘

Φ,

DµeR :“
`

Bµ ´ igY Yµ
˘

eR,

DµL :“
`

Bµ ´ igWWµaτa ´ i
gY
2
Yµ
˘

L.

(2.27)

For completeness the covariant derivatives on the field tensors F µν and Hµν
a are the

following
DµF

νρ :“ BµF
νρ,

DµH
νρ
a :“ BµH

νρ
a ` gW cabcWµbH

νρ
c .

(2.28)

3 Revisit of the hyperboloidal foliation method

3.1 Hyperboloidal foliation of Minkowski spacetime

Instead of considering the flat foliation, we use the hyperboloidal foliation of the
Minkowski spacetime, which for instance was introduced and used by Klainerman [41]
and LeFloch-Ma [44]. We need to introduce and study the energy functional for wave
or Klein-Gordon components on hyperboloids, and it is necessary to first recall some
notations from [44] concerning the hyperboloidal foliation method. We consider here the
p3` 1q-dimensional Minkowski spacetime with signature p´,`,`,`q, and in Cartesian
coordinates we adopt the notation of one point pt, xq “ px0, x1, x2, x3q, with its spatial
radius r :“ |x| “

a

px1q2 ` px2q2 ` px3q2. Partial derivatives are denoted by Bα (for
α “ 0, 1, 2, 3), and

La :“ xaBt ` tBa, a “ 1, 2, 3 (3.1)

represent the Lorentz boosts. Throughout, the functions considered are defined in the
interior of the future light cone

K :“ tpt, xq : r ă t´ 1u,

whose vertex is p1, 0, 0, 0q. We denote the hyperboloidal hypersurfaces by

Hs :“ tpt, xq : t2 ´ r2
“ s2

u, s ą 1.
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Besides the subsets of K limited by two hyperboloids Hs0 and Hs1 with s0 ď s1 are
denoted by

Krs0,s1s :“ tpt, xq : s2
0 ď t2 ´ r2

ď s2
1; r ă t´ 1u.

We now introduce the semi-hyperboloidal frame

B0 :“ Bt, Ba :“
La
t
“
xa

t
Bt ` Ba. (3.2)

We notice that the vectors Ba generate the tangent space of the hyperboloids. Besides,
the vector field

BK :“ Bt ` px
a
{tqBa

is orthogonal to the hyperboloids and is proportional to the scaling vector field S :“
tBt ` x

aBa.

The dual of the semi-hyperboloidal frame is given by

θ0 :“ dt´ pxa{tqdxa, θa :“ dxa.

The (dual) semi-hyperboloidal frame and the (dual) natural Cartesian frame are con-
nected by the following relations

Bα “ Φα1

α Bα1 , Bα “ Ψα1

α Bα1 ,

θα “ Ψα
α1dx

α1 , dxα “ Φα
α1θ

α1 ,
(3.3)

where the transition matrix (Φβ
α) and its inverse (Ψβ

α) are given by

pΦβ
αq “

¨

˚

˚

˝

1 0 0 0
x1{t 1 0 0
x2{t 0 1 0
x3{t 0 0 1

˛

‹

‹

‚

(3.4)

and

pΨβ
αq “

¨

˚

˚

˝

1 0 0 0
´x1{t 1 0 0
´x2{t 0 1 0
´x3{t 0 0 1

˛

‹

‹

‚

. (3.5)
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3.2 Energy estimates on hyperboloids

Following [45] and considering in the Minkowski background, we introduce the en-
ergy functional Em for a nice function φ “ φpt, xq defined on the hyperboloid Hs

Emps, φq :“

ż

Hs

´

`

Btφ
˘2
`
ÿ

a

`

Baφ
˘2
` 2pxa{tqBtφBaφ`m

2φ2
¯

dx, (3.6)

which has two other equivalent (and more useful) expressions

Emps, φq “

ż

Hs

´

`

ps{tqBtφ
˘2
`
ÿ

a

`

Baφ
˘2
`m2φ2

¯

dx

“

ż

Hs

´

`

BKφ
˘2
`
ÿ

a

`

ps{tqBaφ
˘2
`
ÿ

aăb

`

t´1Ωabφ
˘2
`m2φ2

¯

dx,

(3.7)

in which
Ωab :“ xaBb ´ x

b
Ba

are the rotational vector fields, and BK “ Bt ` px
a{tqBa is the orthogonal vector field.

It is helpful to point it out that each term in the expressions (3.7) are non-negative,
which is vital in estimating the energies of wave or Klein-Gordon equations. We use
the notation

Eps, φq :“ E0ps, φq

for simplicity. In the above, the integral in L1pHsq is defined from the standard (flat)
metric in R3, i.e.

}φ}L1
f pHsq

:“

ż

Hs

|φ| dx “

ż

R3

ˇ

ˇφp
?
s2 ` r2, xq

ˇ

ˇ dx. (3.8)

Next, we recall the energy estimates for the wave-Klein-Gordon equations.

Proposition 3.1 (Energy estimates for wave-Klein-Gordon equations). For all m ě 0
and s ě 2, it holds that

Emps, uq
1{2
ď Emp2, uq

1{2
`

ż s

2

} ´lu`m2u}L2
f pHs1 q

ds1 (3.9)

for all sufficiently regular function u, which is defined and supported in the region Kr2,ss.

For the proof, one refers to [45].
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3.3 Estimates for commutators and null forms

We briefly review how the commutators and null forms are estimated, but the precise
statements are not given here.

Heuristically speaking, the following relations are valid:

ˇ

ˇBB
ILJφ

ˇ

ˇ »
ˇ

ˇB
ILJBφ

ˇ

ˇ,
ˇ

ˇB
ILJpTαβBαφBβψq

ˇ

ˇ À ps{tq
ˇ

ˇB
ILJpBφBψq

ˇ

ˇ,
(3.10)

in which φ, ψ are two good functions, and Tαβ is a null form.

4 Motivation and organisation of the thesis

4.1 Overview and the co-authorships

As we described above, the greatest interest of studying nonlinear wave equations lies
in proving the existence of global-in-time solutions and in applying this result to some
models in physics if possible. Hence we will mainly deal with the coupled wave-Klein-
Gordon-type equations from the Up1q electroweak standard model, the Dirac-Proca
system, the Klein-Gordon-Zakharov model and beyond. On the other hand, we also
focus on equations of possibly only mathematical interest or on some other aspects in
the field of analysis.

In Chapters 1–2, the work is joint with Philippe G. LeFloch and Zoe Wyatt; in
Chapter 3, the work is joint with Zoe Wyatt; in Chapters 4, 5 and 6, the work is joint
with Philippe G. LeFloch.

4.2 Main work in Part I

In this first part, we study the evolution equations for electromagnetic and weak
interactions between elementary particles coming from the Standard Model in physics.
In particular we first treat in Chapter 1 the Higgs mechanism applied to an abelian Up1q
model, where we study the Euler-Lagrangian equations and prove the global stability
results for this model. Next in Chapter 2 we will look at the Higgs mechanism applied
to the more complicated non-abelian SUp2q ˆ Up1q gauge group of the full Glashow-
Weinberg-Salam (GSW) model, where we will only treat some preliminary aspects of
the system of equations of this full model, but the proof of the global stability results
is still ongoing. Nevertheless, we prove the global stability results for some subcases,
which are obtained by setting certain parameters to be zero.

In Chapter 1 we study the equations coming from the Up1q electroweak standard
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model, which comprise Klein-Gordon equations as well as massive and massless Dirac
equations. A simplified illustration of the model is

´lv ` v “ ψ˚ψ,

´iγµBµψ `mgψ “ vψ,
(4.1)

in which mg ě 0, and ψ is the Dirac field. In particular, we investigate there the Dirac
equation and its hyperboloidal energy functional. We also provide a decay result for
the Dirac equation which is uniform in the mass coefficient mg P r0, 1s

|ψ| À mintt´1,m´1
g t´3{2

u, (4.2)

and thus allow for the mass coefficient to be arbitrarily small. Our energy bounds are
uniform (modulo a logarithm growth) with respect to the hyperboloidal time variable.

In Chapter 2 we first derive the system of equations from the Lagrangian density
of the GSW theory. Next we do several linear combinations on the fields to disclose
their nature, for example we transform the four mixed vague gauge vector fields to
three massive vector bosons and one massless vector photon. Later on we make some
gauge choice and prove it is propagated by the system of equations. Besides, we extract
some simplified models by letting certain parameters vanish, and prove these models
are globally stable.

4.3 Main work in Part II

In Part II (Chapters 3–4) , we prove the stability results for a series of wave-Klein-
Gordon equations in dimension 3.

In Chapter 3, motivated by the Klein-Gordon-Zakharov model, we study a more
general coupled wave-Klein-Gordon system of the form

´lv ` v “ uv,

´lu “ uv ` uBv.
(4.3)

Compared with the Klein-Gordon-Zakharov model as demonstrated in Example 2.8, we
do not need to require the nonlinearities in the wave equation are of divergence form.
Note that the Klein-Gordon-Zakharov equations are essentially of the form

´lv1 ` v1 “ Bu1v1,

´lu1 “ v12,
(4.4)

which is easier to handle since Bu1 behaves better than u1 when u1 is a wave component.
However the system (4.3) we consider is more subtle to deal with, which is due to the
absence of derivatives on the wave components. Relying on a careful analysis and an
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induction argument, we will prove the existence of global-in-time solution to (4.3) which
enjoys sharp pointwise decay property

|u| À t´1, |v| À t´3{2. (4.5)

In Chapter 4, we prove a unified pointwise decay result, for a Klein-Gordon system,
with respect to its mass. This is motivated by the study of the electroweak Up1q model
in Chapter 1, where we obtain a unified pointwise decay result on the Dirac component,
also regarding its possibly vanishing mass. We consider the system

´lu`m2u “ Pα
Bα
`

uv ` v2
´ u3

˘

,

´lv ` v “ u2
` uv,

(4.6)

in which the mass m P r0, 1s. We note the nonlinearities in the u equation are of
divergence form, hence the study of (4.6) can be regarded as a generalisation of the
Dirac equations in this direction. The difficulties here include that: 1) we cannot use
the L2-type estimates and sup-norm estimates obtained from the energy estimates on
the mass term m2u, which is due to the bad factor m´1; 2) unless m “ 0, the scaling
and the conformal vector fields do not commute with the operator ´l ` m2; 3) the
sup-norm estimate for the wave equation introduced in [2] and [45] cannot be applied
any longer here. By a simple employment of the Fourier analysis method, we are able
to get the unified estimates on some part of u component. Since the rest part is easier
to handle, we finally obtain

|u| À mintt´1,m´1t´3{2
u. (4.7)

4.4 Main work in Part III

This part is devoted to obtain a new L2-type of estimates for the wave components
on the hyperboloids, where we rely on the Fourier transform method in the hyperbolic
space.

As we mentioned that in recent years, LeFloch and Ma [44, 45] demonstrated the
relevance of hyperbolic foliations for the study of nonlinear wave problems and, for
several classes of other systems. In order to have a complementary understanding of
that method, a natural idea is to investigate the wave equation by using the Fourier
transform method on the hyperboloids, which we call the hyperbolic Fourier transform,
and to see whether we can obtain new properties of wave equations on the hyperboloids.
Following [6, 29], the hyperbolic Fourier transform of a nice function φ “ φpt, xq on the
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hyperboloid Hs is defined by

pφps, λ, ωq :“ s´iλs`m
ż

Hs

x´pt, xq, p1, ωqyiλs´mφpt, xq dHs,

pλ, ωq P R` ˆ Sn´1
Ă Rn`1,

(4.8)

in which
xX, Y y :“ ´X0Y 0

`
ÿ

a

XaY a, X, Y P Rn`1,

and
ż

Hs

φpt, xq dHs “

ż

R3

φp
a

s2 ` |x|2, xq
s

a

s2 ` |x|2
dx. (4.9)

Interesting enough, we indeed discover a new L2-type estimate for wave components.
To the best of our acknowledge, the existing methods on obtaining L2-type estimates
for waves on the hyperboloids include: 1) to apply Hardy inequality on the wave com-
ponents, see for instance [45]; 2) to rely on the conformal vector field and the conformal
energy estimates, which was first introduced by Morawetz [63] in the flat setting, see
[61] for the efforts in the hyperboloidal setting.

As a simple application, we prove the existence of global-in-time solutions to the
semilinear wave equation

´lu “ u3

in R1`3.

In Chapter 6, mimicing the proof in [57] for the 1-dimensional wave equation with
null nonlinearities

´BtBtu` BxBxu “ pBtuq
2
´ pBxuq

2, (4.10)

we simplify a little bit of their proof, i.e. we do not need to estimate the energy
on the null segments. We conduct the analysis in the hyperbolic space, and prove
the existence of the global-in-time solution u. In the end, based on the new L2-type
estimates in Chapter 5 we also provide a sup-norm estimate on the solution u

|u| À C1εt
δ. (4.11)
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1.1 Introduction

Main objective. Our primary objective is to study the equations of motion arising
from the Higgs mechanism applied to an abelian Up1q gauge theory on a Minkowski
background after spontaneous symmetry breaking. We view this model as a stepping-
stone towards the full non-abelian Glashow-Weinberg-Salam theory (GSW), also known
as the electroweak Standard Model. For background physics information on the models
treated in this chapter, see for example [1].

In short, we study here a class of nonlinear wave equations which involve the first-
order Dirac equation coupled to second-order wave or Klein-Gordon equations. We
are interested in the initial value problem for such systems, when the initial data have
sufficiently small Sobolev-type norm. We provide here a new application of the hy-
perboloidal foliation method introduced for such coupled systems by LeFloch and Ma
[44], which has been successfully used to establish global-in-time existence results for
nonlinear systems of coupled wave and Klein-Gordon equations. This method takes its
root in pioneering work by Friedrich [19, 18] on the vacuum Einstein equations and by
Klainerman [38, 41] and Hörmander [30] on the (uncoupled) Klein-Gordon equation, as
well as Katayama [35, 34]. Taking into account nonlinear interaction terms that couple
wave and Klein-Gordon equations together, was a challenge tackled in [44] and in the
subsequent developments on the Einstein equations [45, 49, 48] and [17, 68].

The model of interest. In the abelian Up1q gauge model, the set of unknowns
consists of a spinor field ψ : R3`1 Ñ C4 representing a fermion of mass mg with spin
1{2, a vector field A “ pAµq representing a massive boson of mass mq with spin 1, and
a complex scalar field χ representing the perturbation from the constant minimum φ0

of the complex Higgs field φ “ φ0 ` χ. Given the ground state φ0 with norm denoted
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by v2 :“ φ˚0φ0 and the three physical parameters mq,mλ,mg, the equations of motion
in a modified Lorenz gauge consist of three evolution equations

`

l´m2
q

˘

Aν “ QAν ,

lχ´m2
q

φ0

2v2

`

φ˚0χ´ χ
˚φ0

˘

´m2
λ

φ0

2v2

`

φ˚0χ´ χ
˚φ0

˘

“ Qχ,

iγµBµψ ´mgψ “ Qψ,

(1.1.1a)

and a constraint equation

divA` i
mq

v
?

2

`

φ˚0χ´ χ
˚φ0

˘

“ 0. (1.1.1b)

Here, the quadratic nonlinearities QAν , Qχ, and Qψ are to be defined later, and φ0 is a
constant complex number with magnitude |φ0| “ v. Throughout, we use the signature
p´,`,`,`q for the wave operator l :“ ηµνBµBν “ ´B

2
t `∆, while the matrices γµ and

γ5 are the standard Dirac matrices (cf. Section 1.2.1).

Some important physical parameters are provided together with the mass coefficients
above, namely

m2
q :“ 2q2v2

ą 0, m2
λ :“ 4λv2

ą 0, mg :“ gv2
ě 0, (1.1.2)

themselves depend on given coupling constants, denoted by λ, g, q, as well as the
so-called “vacuum expectation value” of the Higgs field denoted by v.

The nonlinear stability of the Higgs field. Our main result concerning the sys-
tem (1.1.1) is a proof of the global-in-time existence of solutions for sufficiently small
perturbations away from the constant vacuum state, defined by the conditions

Aµ ” 0, φ ” φ0, ψ ” 0. (1.1.3)

It is convenient to work with the perturbed Higgs field χ “ φ´φ0 as our main unknown.
The initial data set are denoted by

`

Aν , χ, ψ
˘

pt0, ¨q “
`

Aν0, χ0, ψ0

˘

,
`

BtA
ν , Btχ

˘

pt0, ¨q “
`

Aν1, χ1

˘

, (1.1.4)

and these data are said to be Lorenz compatible if

BaA
a
0 “ ´A

0
1 ´ iq

`

φ˚0χ0 ´ χ
˚
0φ0

˘

,

∆A0
0 ´m

2
qA

0
0 “ ´BiA

i
1 ´ iq

`

φ˚0χ1 ´ χ
˚
1φ0

˘

` iq
`

χ˚0χ1 ´ χ
˚
1χ0

˘

` 2q2A0
0

`

φ˚0χ0 ` χ
˚
0φ0 ` χ

˚
0χ0

˘

` qψ˚0ψ0.

(1.1.5)
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This elliptic-type system consists of two equations for 11 functions. In particular, it is
easily checked that it admits non-trivial solutions, for instance with compact support.
Observe also that throughout we use the convention that Greek indices take values in
t0, 1, 2, 3u and Latin indices in t1, 2, 3u. In the following statement, we have mg ě 0,
and the coefficient m´1

g is interpreted as `8 when mg “ 0.

Theorem 1.1.1 (Nonlinear stability of the ground state for the Higgs boson). Consider
the system (1.1.1) with parameters mq,mλ ą 0 and mg P r0,minpmq,mλqs, and let N
be a sufficiently large integer. There exists ε0 ą 0, which is independent of mg, such
that for all ε P p0, ε0q and all compactly supported, Lorenz compatible initial data (in
the sense of (1.1.5)) satisfying the smallness condition

}A0, χ0, ψ0}HN`1pR3q ` }A1, χ1}HN pR3q ď ε, (1.1.6)

the initial value problem of (1.1.1) admits a global-in-time solution pA,χ, ψq with, more-
over,

|A| À εt´3{2, |χ| À εt´3{2, |ψ| À εmin
`

t´1,m´1
g t´3{2

˘

. (1.1.7)

A simpler model: the Dirac-Proca equations. Keeping (1.1.1) in mind, it is
interesting to first understand a simplified subset of (1.1.1), called the Dirac-Proca
equations. In the Lorenz gauge the equations of motion for this model read

lAν ´m2Aν “ ´ψ˚γ0γνpPLψq,

´iγµBµψ `Mψ “ ´γµAµpPLψq,
(1.1.8)

where PL “
1
2
pI4´γ

5q. This system describes a spinor field ψ : R3`1 Ñ C4 representing
a fermion of mass M with spin 1{2 and a vector field A “ pAµq representing a massive
boson of mass m with spin 1. We allow the mass parameters M,m to be positive or
zero and, in particular, we will be interested in the case M “ 0 (i.e. the standard
Dirac-Proca equations) as well as in the case M ą 0 (massive field). Observe that
the Dirac-Proca system (1.1.8) contains no Higgs field and so the masses M,m are
introduced ‘artificially” in the model, instead of arising from the Higgs mechanism.

A set of initial data set for (1.1.8), say,

`

Aν , BtA
ν , ψ

˘

pt0, ¨q “
`

aν , bν , ψ0

˘

, (1.1.9)

is called Lorenz compatible if one has

b0
` Bja

j
“ 0,

∆a0
´m2a0

“ ´ψ˚0PLψ0 ´ Bjb
j.

(1.1.10)

We postpone the statement of our second main result, for this system, to Theorem 1.4.1
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below.

Strategy of proof. The small data global existence problem for (1.1.8) with mg ” 0
and for (1.1.1) was solved in Tsutsumi in [76, 77]. Yet, it is very interesting to revisit this
system via the hyperboloidal foliation method developed in [44] as it provides a different
perspective on the problem and somewhat sharper estimates. We thus introduce a
hyperboloidal foliation which covers the interior of a light cone in Minkowski spacetime,
and we then construct the solutions of interest in the future of an initial hyperboloid. For
compactly-supported initial data this is equivalent to solving the initial value problem
for a standard t=constant initial hypersurface.

In the case of the Dirac-Proca model, our theorem refines the results in [76] in several
directions. First, the global-in-time existence is established under a lower regularity
assumption on the initial data. Namely, the boundedness of the initial data in the norm
} ¨ }HN (N ě 20) is needed in [76], while we only require N ě 6. Most importantly, in
the main statement in [76], a slow growth of the energy of high-order derivatives may
take place. With our method of proof, with the exception of the highest order term,
we do not have any growth factor in the L2 or L8 norms. We refer to Section 1.7 for
a further discussion of these improved estimates. In contrast to [76], for simplicity we
assume that the initial data are compactly supported. Uniform energy bounds were
also established in [50].

Moreover, in the case 0 ď M ! m we analyze the Dirac equation (expressed in a
first-order form) and derive the following energy functional on hyperboloids

EH
ps, ψq :“

ż

Hs

´

ψ˚ψ ´
xi
t
ψ˚γ0γiψ

¯

dx. (1.1.11)

We can show that this energy is positive definite and controls the norm }ps{tqψ}L2 ,
which provides us with a notion of energy on hyperboloids and should be compared
with the more standard approach based on the standard t “ constant hypersurfaces;
cf. for example [5].

Challenges for the global analysis. There are several difficulties in dealing with the
system of coupled wave–Klein–Gordon equations (1.1.1). The first and most well-known
one is that the standard Klein-Gordon equation does not commute with the scaling
Killing field of Minkowski spacetime, which prevents us from applying the standard
vector field method in a direct manner.

Second, the nonlinearities in the Klein–Gordon equation (or the Proca equation)
include a bad term describing ψ–ψ interactions, which can be regarded as a wave–wave
interaction term and does not have good decay. Tsutsumi [76] was able to overcome
this difficulty by defining a new variable whose quadratic nonlinearity only involves the
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so-called ‘strong null forms’ Qµj (first introduced in [20]) compatible with the scaling
vector field. A similar, but complicated new variable, was also defined in [77]. Due
to our use of the hyperboloidal foliation method we do not need to find new variables
leading solely to strong null forms.

Furthermore, it is challenging to establish a global stability result uniformly for all
mg ě 0, while it is relative easy to complete the proof for either mg “ 0 or mg a
large constant. In the case where the mass is small, say mg “ ε2, if we treat ψ as a
Klein-Gordon field then the field decays like

|ψ| À C1ε
´1t´3{2.

However with this decay we cannot arrive at the improved estimate p1{2qC1ε if we
start from the a priori estimate C1ε, where C1 is some large constant introduced in
the bootstrap method. This is because the “improved” estimates we find are ε ` C2

1

instead of ε ` pC1εq
2. Hence ψ behaves more like a wave component when mg ! 1,

but since the mass mg may be very small but non-zero, we cannot apply techniques
for wave equations. We find it possible to overcome these difficulties by analysing the
first–order Dirac equation, which admits a positive energy functional, and this energy
plays a key role in the whole analysis.

The coupling constants. For the mass parameters (1.1.2) appearing in the Up1q–
model we assume that

mq » mλ ą 0, mg ě 0, (1.1.12)

which depend on the coupling constants q, g and the Higgs constants λ, v. On the other
hand, for the mass parameters appearing in the Dirac–Proca model we assume2

m ą 0, M ě 0.

Outline of this chapter. In Section 1.2, we will introduce the hyperboloidal folia-
tion method, the Dirac equation, and the energy for the Dirac component. In Sections
1.2.1 and 1.2.2 we give basic definitions for the Dirac equation and hyperboloidal fo-
liation, the latter taken from [44]. In Section 1.2.3 we define the energy for the Dirac
field on hyperboloids and give an energy estimate in Proposition 1.2.4. Note this will
be complemented by other formulations of the energy functional in Section 1.3. Finally
in Section 1.2.4 we convert the Dirac equation into a second order wave/Klein-Gordon
equation and define the appropriate energy functional. Further properties about the
hyperboloidal energy functionals are established in Section 1.3. Therein we provide
complementing views on the Dirac energy EH. The first comes from using a Cholesky

2There is no Higgs field to generate the masses, and we do not need to use subscripts for the mass
coefficients.
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decomposition for the energy integrand in Section 1.3.1 and next using a Weyl decom-
position for the Dirac spinor in Section 1.3.2. Then we study the Dirac–Proca model
and the abelian model in Section 1.4 and Section 1.5, respectively. Next, in Section 1.6
we discuss the system of equations (1.1.1) and its nonlinearities are studied. Finally, in
Section 1.7 we rely on a bootstrap argument and prove the desired the stability result.

1.2 Hyperboloidal energy functionals for the Dirac

operator

1.2.1 Dirac spinors and matrices

This section is devoted to analyzing energy functionals for the Dirac equation with
respect to a hyperboloid foliation of Minkowski spacetime. Recall the Dirac equation
for the unknown ψ : R3`1 Ñ C4

´iγµBµψ `Mψ “ F, (1.2.1)

with prescribed C4-valued right-hand side F and mass M P R. To make sense of this
equation we need to define various complex vectors and matrices.

For a complex vector z “ pz0, z1, z2, z3q
T P C4 let z̄ denote the conjugate, and

z˚ :“ pz̄0, z̄1, z̄2, z̄3q denotes the conjugate transpose. If also w P C4 then the conjugate
inner product is defined by

xz, wy :“ z˚w “
4
ÿ

α“1

z̄αwα.

The Hermitian conjugate3 of a matrix A is denoted by A˚, meaning

pA˚qαβ :“ pĀqβα.

The Dirac matrices γµ for µ “ 0, 1, 2, 3 are 4ˆ 4 matrices satisfying the identities

tγµ, γνu :“ γµγν ` γµγν “ ´2ηµνI,

pγµq˚ “ ´ηµνγ
ν ,

(1.2.2)

where η “ diagp´1, 1, 1, 1q. The Dirac matrices give a matrix representation of the
Clifford algebra. We will use the Dirac representation, so that the Dirac matrices take

3In the physics literature, A˚ is often denoted by A:.
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the following form

γ0
“

ˆ

I2 0
0 ´I2

˙

, γi “

ˆ

0 σi

´σi 0

˙

, (1.2.3)

where σi’s are the standard Pauli matrices:

σ1 :“

ˆ

0 1
1 0

˙

, σ2 :“

ˆ

0 ´i
i 0

˙

, σ3 :“

ˆ

1 0
0 ´1

˙

. (1.2.4)

One often uses the following product of the Gamma matrices

γ5 :“ iγ0γ1γ2γ3
“

ˆ

0 I2

I2 0

˙

. (1.2.5)

The γ5 matrix squares to I4 and so we also define the following projection operators

PL :“
1

2
pI4 ´ γ5q , PR :“

1

2
pI4 ` γ5q (1.2.6)

to extract the ‘left-handed’ and ‘right-handed’ parts of a spinor, that is, to extract its
chiral parts. We also note the following useful identities4

pγµq˚ “ γ0γµγ0, pγ0γµq˚ “ γ0γµ, tγ5, γ
µ
u “ 0. (1.2.7)

For further details on Dirac matrices and the representation considered, see [1].

1.2.2 Hyperboloidal foliation of Minkowski spacetime

In order to introduce the energy formula of the Dirac component ψ on hyperboloids,
we first need to recall some notation from [44] concerning the hyperboloidal foliation
method. We denote the point pt, xq “ px0, x1, x2, x3q in Cartesion coordinates, with its
spatial radius r :“ |x| “

a

px1q2 ` px2q2 ` px3q2. We write Bα :“ Bxα (for α “ 0, 1, 2, 3)
for partial derivatives and

La :“ xaBt ` tBa, a “ 1, 2, 3 (1.2.8)

for the Lorentz boosts. Throughout this chapter, we consider functions defined in the
interior of the future light cone K :“ tpt, xq : r ă t ´ 1u, with vertex p1, 0, 0, 0q. We
consider hyperboloidal hypersurfaces Hs :“ tpt, xq : t2 ´ r2 “ s2u with s ą 1. Also
Krs0,s1s :“ tpt, xq : s2

0 ď t2 ´ r2 ď s2
1; r ă t ´ 1u is used to denote subsets of K limited

by two hyperboloids.

4In physics, the notation ψ̄ :“ ψ:γ0 is often used, but we will avoid this here.
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The semi-hyperboloidal frame is defined by

B0 :“ Bt, Ba :“
La
t
“
xa

t
Bt ` Ba. (1.2.9)

Observe that the vectors Ba generate the tangent space to the hyperboloids. We also
introduce the vector field BK :“ Bt `

xa

t
Ba which is orthogonal to the hyperboloids.

For this semi-hyperboloidal frame above, the dual frame is given by θ0 :“ dt´ xa

t
dxa,

θa :“ dxa. The (dual) semi-hyperboloidal frame and the (dual) natural Cartesian frame
are connected by the relation

Bα “ Φα1

α Bα1 , Bα “ Ψα1

α Bα1 , θα “ Ψα
α1dx

α1 , dxα “ Φα
α1θ

α1 , (1.2.10)

where the transition matrix (Φβ
α) and its inverse (Ψβ

α) are given by

pΦβ
αq “

¨

˚

˚

˝

1 0 0 0
x1{t 1 0 0
x2{t 0 1 0
x3{t 0 0 1

˛

‹

‹

‚

, pΨβ
αq “

¨

˚

˚

˝

1 0 0 0
´x1{t 1 0 0
´x2{t 0 1 0
´x3{t 0 0 1

˛

‹

‹

‚

. (1.2.11)

Throughout, we use roman font E to denote energies coming from a first-order PDE
(see below) and, calligraphic font E to denote energies coming from a second-order
PDE. In the Minkowski background, we first introduce the energy E for scalar-valued
or vector-valued maps φ defined on a hyperboloid Hs:

Emps, φq :“

ż

Hs

´

|Btφ|
2
`
ÿ

a

|Baφ|
2
` pxa{tqpBtφ

˚
Baφ` BtφBaφ

˚
q `m2

|φ|2
¯

dx

“

ż

Hs

´

|ps{tqBtφ|
2
`
ÿ

a

|Baφ|
2
`m2

|φ|2
¯

dx

“

ż

Hs

´

|BKφ|
2
`
ÿ

a

|ps{tqBaφ|
2
`
ÿ

aăb

|t´1Ωabφ|
2
`m2

|φ|2
¯

dx,

(1.2.12)

where
Ωab :“ xaBb ´ x

b
Ba (1.2.13)

denotes the rotational vector field. We also write Eps, φq :“ E0ps, φq for simplicity. All
of our integrals in L1, L2, etc. are defined from the standard (flat) metric in R3, so

}φ}L1
f pHsq

“

ż

Hs

|φ| dS :“

ż

R3

ˇ

ˇφp
?
s2 ` r2, xq

ˇ

ˇ dx. (1.2.14)
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1.2.3 Hyperboloidal energy of the Dirac equation

We now derive a hyperboloidal energy for the Dirac equation (1.2.1). Premultiplying
the PDE (1.2.1) by ψ˚γ0 gives

ψ˚B0ψ ` ψ
˚γ0γjBjψ ` iMψ˚γ0ψ “ iψ˚γ0F . (1.2.15)

The conjugate of (1.2.1) is

pBµψ
˚
qpγµq˚ ´ iψ˚M “ ´iF ˚.

Multiplying this equation by ψ gives

pB0ψ
˚
qψ ` pBjψ

˚
qγ0γjψ ´ iMψ˚γ0ψ “ ´iF ˚γ0ψ. (1.2.16)

Adding (1.2.15) and (1.2.16) together yields

B0pψ
˚ψq ` Bjpψ

˚γ0γjψq “ iψ˚γ0F ´ iF ˚γ0ψ. (1.2.17)

Note the mass term does not appear in (1.2.17). Moreover recalling 2Rerzs “ z ` z̄
for some z P C then we see that (1.2.17) is the real part of (1.2.15). It would appear
however if we subtracted (1.2.15) from (1.2.16), that is the imaginary part of (1.2.15),
then we find

ψ˚B0ψ ´ B0ψ
˚
¨ ψ ` ψ˚γ0γjBjψ ´ Bjψ

˚
¨ γ0γjψ ` 2iMψ˚γ0ψ “ iψ˚γ0F ` iF ˚γ0ψ.

However such an expression does not appear to be useful. We return to (1.2.17) and in-
tegrate over regions in spacetime to obtain energy inequalities. These give the following
two definitions of first-order energy functionals.

Integrating (1.2.17) over rt0, ts ˆ R3, and assuming spatially compactly supported
initial data, gives the following result, see for instance [78].

Lemma 1.2.1. On t “ const slices, define the energy

Eflat
pt, ψq :“

ż

R3

pψ˚ψqpt, xqdx. (1.2.18)

Then it holds

Eflat
pt, ψq “ Eflat

pt0, ψq `

ż t

t0

ż

R3

`

iψ˚γ0F ´ iF ˚γ0ψ
˘

dxdt. (1.2.19)

Such functionals on a constant-time foliation have been considered frequently in the
literature, see for instant [10]. The following Lemma gives a new perspective using a
hyperboloidal foliation.
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Lemma 1.2.2. On hyperboloidal slices Hs define the energy

EH
ps, ψq :“

ż

Hs

´

ψ˚ψ ´
xi
t
ψ˚γ0γiψ

¯

dx. (1.2.20)

For solutions to (1.2.17) this satisfies

EH
ps, ψq “ EH

ps0, ψq `

ż s

s0

ż

Hs̄

ps̄{tqpiψ˚γ0F ´ iF ˚γ0ψq dxds̄. (1.2.21)

Proof. Integrating (1.2.17) over Krs0,ss gives

ż

Hs

`

ψ˚ψ, ψ˚γ0γjψ
˘

¨ n dσ ´

ż

Hs0

`

ψ˚ψ, ψ˚γ0γjψ
˘

¨ n dσ

“

ż

Krs0,ss
piψ˚γ0F ´ iF ˚γ0ψqdtdx.

(1.2.22)

Here n and dσ are the unit normal and induced Lebesgue measure on the hyperboloids
respectively

n “ pt2 ` r2
q
´1{2

pt,´xiq, dσ “ t´1
pt2 ` r2

q
1{2dx. (1.2.23)

Using this explicit form of n and dσ gives the result.

To our knowledge the hyperboloidal Dirac energy (1.2.20) is new. We now show
that this energy EHps, ψq is indeed positive definite.

Proposition 1.2.3 (Hyperboloidal energy of the Dirac equation. I). By defining

E`ps, ψq :“

ż

Hs

´

ψ ´
xi
t
γ0γiψ

¯˚´

ψ ´
xj
t
γ0γjψ

¯

dx, (1.2.24a)

one has

EH
ps, ψq “

1

2
E`ps, ψq `

1

2

ż

Hs

s2

t2
ψ˚ψ dx, (1.2.24b)

which in particular implies the positivity of the energy

EH
ps, ψq ě

1

2

ż

Hs

s2

t2
ψ˚ψ dx ě 0. (1.2.24c)

Proof. Expanding out the bracket in E`ps, ψq gives

E`ps, ψq :“

ż

Hs

´

ψ˚ψ ´ 2
xi
t
ψ˚γ0γiψ ` ψ˚

xixk

t2
γ0γjγ0γlψδijδkl

¯

dx

“

ż

Hs

´

ψ˚ψ ´ 2
xi
t
ψ˚γ0γiψ ´ ψ˚

xixj
t2

γpiγjqψ
¯

dx
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“

ż

Hs

´

ψ˚ψ ´ 2
xi
t
ψ˚γ0γiψ ` ψ˚ψ

xixj

t2
δij

¯

dx

“

ż

Hs

´

ψ˚ψ ´ 2
xi
t
ψ˚γ0γiψ ` ψ˚ψ

t2 ´ s2

t2

¯

dx “ 2EH
ps, ψq ´

ż

Hs

s2

t2
ψ˚ψ dx,

and re-arranging gives (1.2.24b).

Using the above positivity property we can now establish the following energy in-
equality.

Proposition 1.2.4 (Hyperboloidal energy estimate for Dirac spinor). For the massive
Dirac spinor described by (1.2.1) the following estimate holds

EH
ps, ψq1{2 ď EH

ps0, ψq
1{2
`

ż s

s0

}F }L2
f pHs̄q

ds̄. (1.2.25)

Proof. Differentiating (1.2.21) with respect to s yields

EH
ps̄, ψq1{2

d

ds̄
EH
ps̄, ψq1{2 ď

1

2

ż

Hs̄

ps̄{tq
`

|F ˚γ0ψ| ` |ψ˚γ0F |
˘

dx

ď }ps̄{tqψ}L2
f pHs̄q

}F }L2
f pHs̄q

.

Recalling in Proposition 1.2.3, we have }ps̄{tqψ}L2
f pHs̄q

ď EHps̄, ψq1{2. Thus we have

d

ds̄
EH
ps̄, ψq1{2 ď }F }L2

f pHs̄q
,

and the conclusion follows by integrating over rs0, ss.

1.2.4 Hyperboloidal energy based on the second-order formu-
lation

Finally in this section we will convert the Dirac equation into a second-order PDE
and define associated energy functionals. Apply the first-order Dirac operator ´iγνBν
to the Dirac equation (1.2.1) and use the identity (1.2.2) to obtain

ηµνBµBνψ `Mp´iγ
ν
Bνψq “ ´iγ

ν
BνF. (1.2.26)

Substituting the PDE into the bracketed term gives the following second-order PDE

lψ ´M2ψ “ ´MF ´ iγνBνF. (1.2.27)
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This provides us with another approach for deriving an energy estimate for the Dirac
equation. We now check the hyperboloidal energy coming from (1.2.27).

Lemma 1.2.5 (Second-order hyperboloidal energy estimate for the Dirac equation).
For all solution ψ : R3`1 Ñ C4 of

lψ ´M2ψ “ G, (1.2.28a)

one has

EMps, ψq1{2 ď EMps0, ψq
1{2
`

ż s

s0

}G}L2pHτ qdτ, (1.2.28b)

where

EMps, ψq :“

ż

Hs

´

|Btψ|
2
`
ÿ

i

|Biψ|
2
`M2

|ψ|2 ` 2
ÿ

i

xi

t
Re

“

BtψBiψ
˚
‰

¯

dx. (1.2.28c)

Proof. The conjugate of (1.2.28a) reads lψ˚ ´M2ψ˚ “ G˚. Using ´Btψ
˚ and ´Btψ as

multipliers on (1.2.28a) and its conjugate respectively we obtain

Btψ
˚
B

2
tψ ´ Btψ

˚
ÿ

i

B
2
i ψ `M

2
Btψ

˚
¨ ψ “ ´Btψ

˚G,

B
2
tψ

˚
Btψ ´

ÿ

i

B
2
i ψ

˚
Btψ `M

2
Btψ ¨ ψ

˚
“ ´G˚Btψ.

Adding these two equations together gives

Bt
`

Btψ
˚
Btψ ` B

iψ˚Biψ `M
2ψ˚ψ

˘

´
ÿ

i

Bi
`

Btψ
˚
Biψ ` BtψBiψ

˚
˘

“ ´
`

Btψ
˚G`G˚Btψq “ ´2Re

“

G˚Btψ
‰

.

Integrating this equation in the region Krs0,ss, we have

ż

Hs

´

|Btψ|
2
`
ÿ

i

|Biψ|
2
`M2

|ψ|2,´pBtψ
˚
Biψ ` Biψ

˚
Btψq

¯

¨ n dσ

´

ż

Hs0

´

|Btψ|
2
`
ÿ

i

|Biψ|
2
`M2

|ψ|2,´pBtψ
˚
Biψ ` Biψ

˚
Btψq

¯

¨ n dσ

“ ´2

ż

Krs0,ss
Re

“

G˚Btψ
‰

dtdx.

Using the explicit form of n and dσ given in (1.2.23) and noting that 2RerBiψ
˚Btψs “

Btψ
˚Biψ ` Biψ

˚Btψ we find

EMps, ψq ´ EMps0, ψq “ ´2

ż s

s0

ż

Ht

Re
“

G˚Btψ
‰

dtdx. (1.2.29)
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We next use the change of variable formula Bi “ Bi ´ px
i{tqBt to rewrite the energy

term:
ż

Hs

´

|Btψ|
2
`
ÿ

i

|Biψ|
2
`M2

|ψ|2 `
xi

t

`

Btψ
˚
Biψ ` Biψ

˚
Btψ

˘

¯

dx

“

ż

Hs

´

|ps{tqBtψ|
2
`
ÿ

i

|Biψ|
2
`M2

|ψ|2
¯

dx.

We can now estimate the nonlinearity on the RHS using the change of variables τ “
pt2 ´ r2q1{2 and dtdx “ pτ{tqdτdx. In particular we have

´2

ż

Hτ

Re
“

G˚Btψ
‰

pτ{tq dx ď 2}pτ{tqBtψ}L2pHτ q}G}L2pHτ q

ď 2EMpτ, ψq1{2}G}L2pHτ q.

Thus by differentiating (1.2.29) and using the above we have

d

dτ
EMpτ, ψq1{2 ď }G}L2pHτ q.

Integrating this expression over rs0, ss gives the desired result.

We end with a short remark here on positive and negative mass spinors. In the
original first-order Dirac equation (1.2.1) the mass M was defined as a real parameter
with no sign restriction. Furthermore the mass did not appear in the hyperboloidal
energy EH defined in (1.2.20). This implies that spinors with equal masses but opposite
signs (˘M) would still obey the same energy estimates of Proposition 1.2.4.

This is consistent with the second-order equation (1.2.27) for the Dirac field. In
this equation the mass appears squared, so spinors with equal masses, but of opposite
signs, obey the same second order equation. Moreover the mass M2 appears in the
second-order hyperboloidal energy expression EM in (1.2.28c).

Thus either the mass M should not appear in EH, as we have found, or if the mass
M were to appear in EH, it would necessarily need to be invariant under a sign change,
so as to agree with the second-order energy estimates involving EM .
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1.3 Additional properties of Dirac spinors on hy-

perboloids

1.3.1 Hyperboloidal energy based on a Cholesky decomposi-
tion

Our first task is to obtain a hyperboloidal energy for the Dirac field ψ expressed in
terms of a product of complex vectors zpψq˚zpψq. Such an expression is then easily seen
to be positive semi-definite which, clearly, is in contrast to the form given in (1.2.20)
and Proposition 1.2.3.

Recall the standard Cholesky decomposition: any Hermitian, positive-definite ma-
trix A can be decomposed in a unique way as

A “ P ˚P, (1.3.1)

where P is a lower triangular matrix with real and positive diagonal entries. In par-
ticular if A is positive semi-definite then the decomposition exists however one loses
uniqueness and the diagonal entries of P may be zero.

We now prove the following result.

Proposition 1.3.1 (Hyperboloidal energy for the Dirac equation. II). There exists a
lower triangular matrix P with real and positive diagonal entries such that

EH
ps, ψq “

ż

Hs

pPψq˚pPψqdx, (1.3.2)

and specifically

P “

¨

˚

˚

˝

s{t 0 0 0
0 s{t 0 0
x3{t x1{t´ ix2{t 1 0

x1{t` ix2{t ´x3{t 0 1

˛

‹

‹

‚

, (1.3.3)

which can also be expressed as

P “
ps{tq ` 1

2
I4 `

ps{tq ´ 1

2
γ0
` δij

xi

t
γ0γj. (1.3.4)

The above expression is quite natural and resembles what is known for the wave
equation: the factor xi{t comes from Stokes’ theorem applied to hyperboloids and we
cannot expect to fully control the standard L2 norm, namely

ş

Hs
ψ˚ψ dx.

Proof. Step 1. Existence of the decomposition. Before we proceed with the
derivation of the identity, we present an argument showing that such a decomposition
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exists by proving positive semi-definiteness. For simplicity of notation, let Ni :“ xi{t.
The integrand of EHps, ψq can be written as ψ˚Aψ where A :“ I4 `Njγ

0γj. Here the
spatial indices are contracted with δij, so that Njγ

j “ δijN
iγj. Note A is hermitian

since A˚ “ I4 `Njpγ
0γjq˚ “ A. Also

pNjγ
0γjqpNkγ

0γkq “ ´NjNkγ
0γ0γjγk “ ´NjNkγ

pjγkq “ NjN
jI4.

Then for all z P C4 we have

0 ď
`

Az
˘˚`

Az
˘

“ p1`NjN
j
qz˚I4z ` 2z˚Njγ

0γjz

ď 2
`

z˚I4z ` z
˚Njγ

0γjz
˘

“ 2z˚Az.

We used that NjN
j “ pr{tq2 ď 1 which holds in the light-cone K. Thus A is positive

semi-definite.

Step 2. Computing the matrix P . With respect to the Dirac representation
(1.2.3) we have

A “ I4 `Nj

ˆ

I2 02

02 ´I2

˙ˆ

02 σj

´σj 02

˙

“

ˆ

I2 02

02 I2

˙

`Nj

ˆ

02 σj

σj 02

˙

.

Here I2 and 02 represent the 2 ˆ 2 identity and zero matrices respectively. Calculate
the second term above using the Pauli matrices:

Nj

ˆ

0 σj

σj 0

˙

“ N1

ˆ

0 1
1 0

˙

`N2

ˆ

0 ´i
i 0

˙

`N3

ˆ

1 0
0 ´1

˙

“

ˆ

N3 N1 ´ iN2

N1 ` iN2 ´N3

˙

.

Define ω :“ N1 ` iN2 and recall Ni P R. Thus we have

A “

¨

˚

˚

˝

I2
N3 ω̄
ω ´N3

N3 ω̄
ω ´N3

I2

˛

‹

‹

‚

.

Consider now 2ˆ 2 complex matrices B,C,D such that

ˆ

B 0
C D

˙˚ˆ

B 0
C D

˙

“

¨

˚

˚

˝

I2
N3 ω̄
ω ´N3

N3 ω̄
ω ´N3

I2

˛

‹

‹

‚

.
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This implies the following identities

D˚D “ I2,

C˚D “ D˚C “

ˆ

N3 ω̄
ω ´N3

˙

,

B˚B ` C˚C “ I2.

If we let D “ I2 and C “

ˆ

N3 ω̄
ω ´N3

˙

then we must solve

B˚B “ I2 ´

ˆ

N3 ω̄
ω ´N3

˙˚ˆ

N3 ω̄
ω ´N3

˙

“ λ

ˆ

1 0
0 1

˙

,

where λ :“ 1 ´ pN2
3 ` ω̄ωq “ 1 ´ pN2

1 `N2
2 `N2

3 q. Indeed λ “ 1 ´ pr{tq2 “ ps{tq2 ě 0
so we can take B “

?
λI2 “ ps{tqI2.

1.3.2 Hyperboloidal energy based on the Weyl spinor repre-
sentation

Yet one more approach in deriving energy estimates is obtained by expressing the
Dirac spinors in terms of Weyl spinors and then studying the energy of Weyl spinors
(1.3.7) instead. This provides another convenient way to study Dirac equations. De-
compose the spinor ψ and source term F as

ψ “

ˆ

u` v
u´ v

˙

, F “

ˆ

F` ` F´
F` ´ F´

˙

, (1.3.5)

where u, v : R1`3 Ñ C2 are Weyl spinors and F˘ are C2-valued right hand sides.
Defining B˘ :“ B0 ˘ σ

iBi the PDE (1.2.1) can be shown to be equivalent to

B´v ` iMu “ iF`,

B`u` iMv “ iF´.
(1.3.6)

A Dirac-Klein-Gordon system with respect to such a Weyl spinor decomposition has
been studied, albeit in the low-regularity setting, by Bournaveas [5]. Following a similar
approach to Section 1.2.3 we find an analogous hyperboloidal Weyl spinor energy:

Eσ
˘ps, uq :“

ż

Hs

`

u˚u˘
xj
t
u˚σju

˘

dx. (1.3.7)

Similar to Propositions 1.2.3 and 1.2.4 we can prove positivity and an energy estimate
for Eσ

˘.
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Proposition 1.3.2. For a C2-valued function w the following holds:

Eσ
˘ps, wq ě

1

2

ż

Hs

s2

t2
w˚w dx ě 0. (1.3.8)

Furthermore for solutions u, v to (1.3.6) we have

`

Eσ
`ps, uq ` E

σ
´ps, vq

˘1{2
ď
`

Eσ
`ps0, uq ` E

σ
´ps0, vq

˘1{2
`

ż s

s0

}F`}L2pHs̄q ` }F´}L2pHs̄qds̄.

(1.3.9)

Proof. Step 1. Using the Dirac representation (1.2.3) and the decomposition (1.3.5),
the PDE (1.2.1) becomes

ˆ

I2 0
0 ´I2

˙

B0

ˆ

u` v
u´ v

˙

`

ˆ

0 σj

´σj 0

˙

Bj

ˆ

u` v
u´ v

˙

` iM

ˆ

u` v
u´ v

˙

“ i

ˆ

F` ` F´
F` ´ F´

˙

.

(1.3.10)
Defining B˘ :“ B0 ˘ σ

iBi this becomes

ˆ

B`u` B´v
B´v ´ B`u

˙

` iM

ˆ

u` v
u´ v

˙

“ i

ˆ

F` ` F´
F` ´ F´

˙

. (1.3.11)

Adding and subtracting the two rows above gives the following

B´v ` iMu “ iF`,

B`u` iMv “ iF´.

Following a similar approach to deriving (1.2.17), we multiply the first and second
equation by v˚ and u˚ respectively.

u˚B0u` u
˚σjBju` iMu˚v “ iu˚F´,

v˚B0v ´ v
˚σjBjv ` iMu˚v “ ´iv˚F`.

One then adds these equations to their conjugate to obtain the following:

B0pu
˚uq ` Bjpu

˚σjuq ` iMpu˚v ´ v˚uq “ iu˚F´ ´ iF
˚
´u,

B0pv
˚vq ´ Bjpv

˚σjvq ` iMpv˚u´ u˚vq “ iv˚F` ´ iF
˚
`v.

Note the mass terms appear above. However if add these equations together we obtain

B0pu
˚u` v˚vq ` Bj

`

u˚σju´ v˚σjv
˘

“ iu˚F´ ´ iF
˚
´u` iv

˚F` ´ iF
˚
`v, (1.3.12)

which does not contain a term involving M . This equation is the analogous Weyl spinor
version of (1.2.17). Clearly integrating (1.3.12) over Krs0,ss gives the energy functional
Eσ
˘ps, uq defined in (1.3.7).
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Step 2. Next we establish that for a C2-valued function w the following holds:

Eσ
˘ps, wq ě

1

2

ż

Hs

s2

t2
w˚w dx ě 0.

The idea is in the spirit of Proposition 1.2.3. Observe that the sigma matrices are
Hermitian and satisfy the following anti-commutator relation: tσi, σju “ 2δijI2. Then
we have
ż

Hs

´

w ˘
xj
t
σjw

¯˚´

w ˘
xj
t
σjw

¯

dx “

ż

Hs

´

w˚w ˘ 2
xj
t
w˚σjw `

xjxk
t2

w˚σpjσkqw
¯

dx

“

ż

Hs

´

w˚wp1` pr{tq2q ˘ 2
xj
t
w˚σjw

¯

dx

“ 2Eσ
˘ps, wq ´

ż

Hs

s2

t2
w˚w dx.

Thus we have

Eσ
˘ps, wq “

1

2

ż

Hs

´

w ˘
xj
t
σjw

¯˚´

w ˘
xj
t
σjw

¯

dx`
1

2

ż

Hs

s2

t2
w˚w dx ě 0.

Step 3. Next, let us show that the following hyperboloidal energy inequality holds for
the Weyl spinor equation (1.3.6)

`

Eσ
`ps, uq ` E

σ
´ps, vq

˘1{2
ď
`

Eσ
`ps0, uq ` E

σ
´ps0, vq

˘1{2
`

ż s

s0

}F`}L2pHs̄q ` }F´}L2pHs̄qds̄.

Namely, integrating (1.3.12) over Krs0,ss we obtain

Eσ
`ps, uq ` E

σ
´ps, vq

“ Eσ
`ps0, uq ` E

σ
´ps0, vq `

ż s

s0

ds̄

ż

Hs̄

ps̄{tqpiu˚F´ ´ iF
˚
´u` iv

˚F` ´ iF
˚
`vq dx.

Differentiating in s and noting that }ps{tqu, ps{tqv}L2pHsq ď }u, v}L2pHsq ď pE
σ
`ps, uq `

Eσ
´ps, vqq

1{2 gives

d

ds

´

Eσ
`ps, uq ` E

σ
´ps, vq

¯1{2

ď }F`}L2pHτ q ` }F´}L2pHτ q.
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1.4 Nonlinear stability of the ground state for the

Dirac-Proca model

1.4.1 The Dirac-Proca model as a PDE system

Using the tools of Section 1.2, we will now discuss the Dirac-Proca model, the gauge
condition and choice of initial data. This leads us to the second main stability Theorem
1.4.1 below, which can be proved using the methods of Sections 1.6 and 1.7. Without
fixing a gauge, the field equations for the Dirac-Proca model with unknowns Aµ and ψ
read

lAν ´m2Aν ` BνpBµA
µ
q “ ´ψ˚γ0γνpPLψq,

´iγµBµψ “ ´γ
µAµpPLψq.

(1.4.1)

Recall PL “
1
2
pI4´γ

5q was defined in (1.2.6). Here ψ : R3`1 Ñ C4 represents a massless
Dirac fermion with spin 1{2 and Aµ : R3`1 Ñ R represents a massive boson (the Proca
field) of mass m2 with spin 1. As discussed in [76], (1.4.1) is equivalent to the following
system

lAν ´m2Aν “ ´ψ˚γ0γνpPLψq,

´iγµBµψ “ ´γ
µAµpPLψq,

BµA
µ
“ 0.

(1.4.2)

It can easily be shown that BµA
µ satisfies a homogeneous Klein-Gordon equation.

Thus we may treat BµA
µ “ 0 as a constraint provided we specify the initial data set

`

Aν0, A
ν
1, ψ0

˘

at some time t0 ą 0:

Aνpt0, ¨q “ aν , BtA
ν
pt0, ¨q “ bν , ψpt0, ¨q “ ψ0. (1.4.3)

to satisfy the following two ‘Lorenz compatibility’ conditions

b0
` Bja

j
“ 0,

∆a0
´m2a0

“ ´ψ˚0PLψ0 ´ Bjb
j.

(1.4.4)

For more generality, see also [4], we consider (1.4.1) with an artificial mass M added to
the spinor:

lAν ´m2Aν “ ´ψ˚γ0γνpPLψq,

´iγµBµψ `Mψ “ ´γµAµpPLψq.
(1.4.5)

The mass parameters M ě 0 and m ą 0 are constants, and we will study both cases
M “ 0 and M ą 0. Again the initial data will be taken to satisfy (1.4.4). This elliptic-
type system of two equations for nine scalar functions admits non-trivial compactly
supported solutions. For example one may choose: Aj0 P CcpR3`1q for j “ 1, 2, 3,
ψ0 P CcpR3`1q such that each component of ψ0 is the same, and all remaining initial
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data is trivial.

1.4.2 Main result for the Dirac-Proca model

We now state our result for the Dirac-Proca model. The proof of the theorem below
will clearly follow from the the proof we will develop for our main result (Theorem 1.7.1),
and so we omit it.

For the model under consideration in this section, the ground state of the theory is
simply given by

A ” 0, ψ ” 0. (1.4.6)

Theorem 1.4.1. Consider the Dirac-Proca system (1.1.8) with M ě 0, m ą 0, and let
N be a sufficiently large integer. There exists ε0 ą 0, which is independent of M , such
that for all ε P p0, ε0q and all compactly supported, Lorenz compatible initial data in the
sense of (1.1.10), satisfying the smallness condition

}aν , ψ0}HN`1 ` }bν}HN À ε, (1.4.7)

the initial value problem of (1.1.8) admits a unique global-in-time solution pψ,Aνq.
Furthermore, the following decay result holds

|A| À εt´3{2, |ψ| À εmin
`

t´1,M´1t´3{2
˘

. (1.4.8)

1.5 Nonlinear stability of the ground state for the

Up1q model

1.5.1 The U(1) model as a PDE system

We now treat the Higgs mechanism applied to a Up1q abelian gauge field. This gives
some exposure to the problems coming from the Higgs field that we will meet when
dealing with the full GSW model in future work. From the Lagrangian of this theory;
see (1.5.6) below, and in a suitably modified Lorenz gauge; see (1.5.5) below, the field
equations for this model read

pl´m2
qqA

ν
“ QAν ,

lχ´m2
q

φ0

2v2

`

φ˚0χ´ χ
˚φ0

˘

´m2
λ

φ0

2v2

`

φ˚0χ` χ
˚φ0

˘

“ Qχ,

iγµBµψ ´mgψ “ Qψ,

(1.5.1)
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with quadratic or higher order terms given by

QAν :“ iq
`

χ˚pBνχq ´ pBνχ˚qχ
˘

` 2q2Aν
`

χ˚φ0 ` φ
˚
0χ` χ

˚χ
˘

` qψ˚γ0γνψ,

Qχ :“ 2iqAµB
µχ` q2χ

`

φ˚0χ´ χ
˚φ0

˘

` q2AµAµ
`

φ0 ` χ
˘

` 2λχ˚χφ0 ` 2λχ
`

φ˚0χ` χ
˚φ0 ` χ

˚χ
˘

´ g
`

φ0 ` χ
˘

ψ˚γ0ψ,

Qψ :“ g
`

φ˚0χ` χ
˚φ0 ` χ

˚χ
˘

ψ ´ qγµAµψ.

(1.5.2)

Here χ :“ φ ´ φ0 : R1`3 Ñ C is the perturbation from a constant vacuum state φ0

satisfying φ˚0φ0 “ v2 and Bµφ0 “ 0. The field ψ : R3`1 Ñ C4 represents a fermion of
mass mg with spin 1{2 and Aµ : R1`3 Ñ R represents a massive boson of mass m2

q with
spin 1. Furthermore the mass coefficients

m2
q “ 2q2v2, m2

λ “ 4λv2, mg “ gv2 (1.5.3)

depend themselves on given coupling constants denoted by q, g, λ, as well as the so-
called “vacuum expectation value” of the Higgs field, denoted by v.

The initial data set are denoted by

`

Aν , χ, ψ
˘

pt0, ¨q “
`

Aν0, χ0, ψ0

˘

,
`

BtA
ν , Btχ

˘

pt0, ¨q “
`

Aν1, χ1

˘

, (1.5.4)

which are said to be ‘Lorenz compatible’ if they satisfy

BaA
a
0 “ ´A

0
1 ´ iq

`

φ˚0χ0 ´ χ
˚
0φ0

˘

,

∆A0
0 ´m

2
qA

0
0 “ ´BiA

i
1 ´ iq

`

φ˚0χ1 ´ χ
˚
1φ0

˘

` iq
`

χ˚0χ1 ´ χ
˚
1χ0

˘

` 2q2A0
0

`

φ˚0χ0 ` χ
˚
0φ0 ` χ

˚
0χ0

˘

` qψ˚0ψ0.

(1.5.5)

The derivation of (1.5.5) will follow from results of the following Section 1.5.2, in par-
ticular Lemma 1.5.3. Similar to the constraint equations (1.4.4) for the Dirac-Proca
model, we also obtain in (1.5.5) an elliptic-type system of only two equations for eleven
functions. Clearly non-trivial solutions with compact support can be constructed.

Our main result was stated in the introduction (Theorem 1.1.1) and the proof will
be provided in Section 1.7.

1.5.2 The abelian action and Up1q invariance

The Lagrangian we consider is

L “ ´1

4
FµνF

µν
´ pDµφq

˚Dµφ´ V pφ˚φq ´ iψ˚γ0γµDµψ ` gφ
˚φψ˚γ0ψ, (1.5.6)
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where we use the following definitions for the Higgs potential, gauge curvature and
gauge covariant derivatives:

V pφ˚φq :“ λpφ˚φ´ v2
q
2,

Fµν :“ BµAν ´ BνAµ,

Dµφ :“ pBµ ´ iqAµqφ,

Dµψ :“ pBµ ´ iqAµqψ.

(1.5.7)

Furthermore λ, v, g, q are constants. A calculation shows that the Euler-Lagrange equa-
tions for (1.5.6) are the following

BµF
µν
“ iqφ˚pDνφq ´ iqpDνφq˚φ` qψ˚γ0γνψ,

DµDµφ “ V 1pφ˚φqφ´ gφψ˚γ0ψ,

iγµDµψ “ gφ˚φψ,

(1.5.8)

together with (1.5.7). These PDEs can also be expressed as

lAν ´ BνpdivAq ´ 2q2Aνφ˚φ “ iq
`

φ˚pBνφq ´ pBνφ˚qφ
˘

` qψ˚γ0γνψ,

lφ´ V 1pφ˚φqφ´ iqφBµA
µ
“ 2iqAµB

µφ` q2AµAµφ´ gφψ
˚γ0ψ,

iγµBµψ ´ gφ
˚φψ “ ´qγµAµψ.

(1.5.9)

Lemma 1.5.1. L has a Up1q-gauge symmetry.

Proof. The Up1q gauge symmetry induces the following transformations

Aµ ÞÑ A1µ :“ Aµ ` Bµα, φ ÞÑ φ1 :“ eiqαφ, ψ ÞÑ ψ1 :“ eiqαψ, (1.5.10)

where α “ αpt,xq is some arbitrary function of space and time. This implies

Dµφ ÞÑ D1µφ
1
“ eiqαDµφ,

Dµψ ÞÑ D1µψ
1
“ Bµpe

iqαψq ´ iqpAµ ` Bµαqe
iqαψ “ eiqαDµψ.

(1.5.11)

By the commutation of partial derivatives we immediately see that Fµν is invariant
under Up1q gauge transformations. Inserting these transformations into the Lagrangian



52 1.5. Nonlinear stability of the ground state for the Up1q model

one obtains

L1 “ ´iψ1˚γ0γµD1µψ
1
´

1

4
F 1µνF

1µν
´ pD1µφ

1
q
˚D1µφ1 ´ V ppφ1q˚φ1q ` φ1˚φ1gψ1˚γ0ψ1

“ ´ie´iqαψ˚γ0γµBµpe
iqαψq ´ i

`

eiqαψ,´iqγµpAµ ` Bµαqe
iqαψq

˘

´
1

4
FµνF

µν

´ pDµφq
˚e´iqαeiqαDµφ´ V pφ

˚e´iqαeiqαφq ` gφ˚φe´iqαψ˚γ0eiqαψ

“ ´iψ˚γ0γµDµψ ´
1

4
FµνF

µν
´ pDµφq

˚Dµφ´ V pφ˚φq ` gφ˚φψ˚γ0ψ “ L.
(1.5.12)

Thus L is invariant under the transformation (1.5.10).

1.5.3 Propagation of an inhomogeneous Lorenz gauge

Next, with a similar aim to that of Section 1.4.1, we will turn the PDE (1.5.9) into
one of definite type by specifying a particular gauge for the vector field Aµ.

Lemma 1.5.2 (The inhomogeneous Lorenz gauge). Let X be a suitably regular scalar
field. Consider the modified system

lAν ´ 2q2Aνφ˚φ “ BνX ` iq
`

φ˚pBνφq ´ pBνφ˚qφ
˘

` qψ˚γ0γνψ,

lφ´ V 1pφ˚φqφ´ iqφX “ 2iqAµB
µφ` q2AµAµφ´ gφψ

˚γ0ψ,

iγµBµψ ´ gφ
˚φψ “ ´qγµAµψ.

(1.5.13)

Suppose the initial data for (1.5.13) satisfy

`

divA´X
˘

pt0, ¨q “ 0,

Bt
`

divA´X
˘

pt0, ¨q “ 0.
(1.5.14)

Then as long as the solution to (1.5.13) exists, it will satisfy ˜A “ X.

Proof. To propagate the gauge choice ˜A “ X imposed on the initial data we will take
the divergence of the first equation in (1.5.13) and use the second evolution equation
(1.5.13):

lpdivA´Xq “ iqpφ˚lφ´lφ˚φq ` 2q2
BνpA

νφ˚φq ` qBνpψ
˚γ0γνψq

“ iqφ˚
´

2iqAµB
µφ` iqφBµA

µ
` q2AµA

µφ` V 1φ´ gφψ˚γ0ψ
¯

´ iq
´

´ 2iqAµB
µφ˚ ´ iqφ˚BµA

µ
` q2AµA

µφ˚ ` pV 1φq˚ ´ gφ˚ψ˚γ0ψ
¯

φ

` 2q2
BνpA

νφ˚φq ` qψ˚γ0γµBµψ ` qBµψ
˚γ0γµψ

“ iq
`

φ˚V 1φ´ pV 1φq˚φ
˘

“ 0,
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where in the last line we used the specific Higgs potential (1.5.7).

1.5.4 Gauge choice for the abelian model

The Higgs potential has a non-zero minimum at φ0 :“ veiθ{v where

V pφ˚0φ0q “ 0, (1.5.15)

and θ : R1`3 Ñ R is arbitrary. There is ambiguity in this minimum state due to the Up1q
symmetry represented by θ. A particular choice of θ will break this Up1q symmetry, and
such a scenario is termed ‘spontaneous symmetry breaking’. We consider perturbations
of the form

χ :“ φ´ φ0,

where φ0 is constant in space and time and has magnitude |φ0| “ v. The following
result is a consequence of Lemma 1.5.2 by choosing X “ ´iqpφ˚0χ´ χ

˚φ0q.

Lemma 1.5.3. Suppose the initial data satisfy the following gauge condition

`

divA` iqpφ˚0χ´ χ
˚φ0q

˘

pt0, ¨q “ 0,

Bt
`

divA` iqpφ˚0χ´ χ
˚φ0q

˘

pt0, ¨q “ 0.
(1.5.16)

Then the Euler-Lagrange equations for (1.5.6) are equivalent to those written in (1.5.1).

1.6 Structure and nonlinearity of the models

1.6.1 Aim of this section

In this section we will use various techniques to treat the variables in (1.5.1) and
their nonlinearities. The nonlinearities, defined in (1.5.2), which require additional work
to control are of the following two types

ψ˚γ0γνψ, ψ˚γ0ψ, (1.6.1)

appearing in QAν and Qχ respectively. If the mass of the Dirac spinor is zero, mg “ 0,
then the nonlinearities in (1.6.1) will have insufficiently fast decay. In this case it is
sufficient to employ a transformation introduced by [76], see (1.6.3) and (1.6.9) below,
to overcome such problems. Finally although the equation satisfied by χ is of ambiguous
type, we find that χ can be decomposed into two components, with each component
satisfying a Klein-Gordon equation.
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1.6.2 Hidden null structure from Tsutsumi

Following Tsutsumi [76] we can now uncover a null structure using a particular
transformation. However we will not need to reduce to the ‘strong null forms’ via any
complicated transformations [77, eq (2.6)].

For complex-valued functions Φpt, xq,Ψpt, xq : R3`1 Ñ Cn, recall the null form

Q0pΦ,Ψq :“ pB0Φq˚B0Ψ´ p∇Φq˚∇Ψ. (1.6.2)

Define a new variable
rAν :“ Aν `

q

m2
q

ψ˚γ0γνψ. (1.6.3)

This satisfies the non-linear Klein-Gordon equation

`

l´m2
q

˘

rAν “ Q
rAν , (1.6.4)

in which the nonlinearities are

Q
rAν :“

2q

m2
q

Q0pψ, γ
0γνψq `

q

m2
q

G˚ψγ
0γνψ `

q

m2
q

ψ˚γ0γνGψ `
2q

m2
q

m2
gψ
˚γ0γνψ,

Gψ :“ ´mgQψ ´ iγ
ν
BνQψ

“ ´mg

`

gpφ˚0χ` χ
˚φ0 ` χ

˚χqψ ´ qγµAµψ
˘

´ igγνBνpφ
˚
0χ` χ

˚φ0 ` χ
˚χqψ ` iqγνγµBνAµψ

´ gpφ˚0χ` χ
˚φ0 ` χ

˚χqpmgψ `Qψq ´ 2igAµBµψ ´ gAµγ
µ
pmgψ `Qψq,

where (1.2.27) and (1.5.2) were used to compute Gψ. Note the nonlinearity ψ˚γ0γνψ
in (1.6.4) now appears with a good factor m2

g to compensate for the lack of derivatives
hitting ψ.

In the case 0 ď mg ! minpmq,mλq, the second order formulation (1.2.27) of the
Dirac equation is more like a nonlinear wave equation. In this case we do not have
good bounds for either the L2

f or L8 norm of ψ and this is why the null structure of
(1.6.4) and the factor m2

g in front of the ψ–ψ interaction are needed. However, in the
case mg Á minpmq,mλq, better bounds are available and we do not require such a null
structure any more.

1.6.3 Decomposition of χ

In order to study the behaviour of χ, we find it more convenient to consider equations
for the following two variables

χ˘ :“ φ˚0χ˘ χ
˚φ0. (1.6.5)
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Since the following identity holds

|χ`|
2
` |χ´|

2
“ 2v2

|χ|2, (1.6.6)

it is equivalent to estimate either χ or χ˘. These new variables satisfy the Klein-Gordon
equations

lχ` ´m
2
λχ` “ Qχ` , (1.6.7)

lχ´ ´m
2
qχ´ “ Qχ´ , (1.6.8)

with

Qχ` :“ 2iqAµB
µχ´ ` q

2χ2
´ ` q

2AµAµ
`

2v2
` χ`

˘

` 4λv2χ˚χ` 2λχ2
` ` 2λχ`χ

˚χ´ g
`

2v2
` χ`

˘

ψ˚γ0ψ,

Qχ´ :“ 2iqAµB
µχ` ` q

2χ´χ` ` q
2AµA

µχ´ ` 2λχ´χ` ` 2λχ´χ
˚χ´ gχ´ψ

˚γ0ψ.

Similar to the previous section, we introduce the new variable

rχ` :“ χ` ´
2mg

m2
λ

ψ˚γ0ψ, (1.6.9)

which satisfies the following Klein-Gordon equation

lrχ` ´m
2
λrχ` “ Q

rχ` (1.6.10)

with the nonlinearity

Q
rχ` :“ ´4

mg

m2
λ

Q0pψ, γ
0ψq`2

mg

m2
λ

G˚ψγ
0ψ`2

mg

m2
λ

ψ˚γ0Gψ´4
m3
g

m2
λ

ψ˚γ0ψ`Qχ``2mgψ
˚γ0ψ.

The final term 2mgψ
˚γ0ψ here cancels the problematic term in Qχ` and any other

nonlinearities of the form ψ˚γ0ψ now appear with a good factor of m3
g in front.

1.7 Bootstrap argument

1.7.1 Overview

This section is devoted to using a bootstrap argument to prove Theorem 1.1.1.
After the treatment of the equations in Section 1.6, we remind one that in the following
analysis we will deal with the unknowns

rAν “ Aν `
q

m2
q

ψ˚γ0γνψ, rχ` “ χ` ´
2mg

m2
λ

ψ˚γ0ψ, χ´, ψ, (1.7.1)



56 1.7. Bootstrap argument

which satisfy equations

l rAν ´m2
q
rAν “ Q

rAν ,

lrχ` ´m
2
λrχ` “ Q

rχ`

lχ´ ´m
2
qχ´ “ Qχ´ ,

iγµBµψ ´mgψ “ Qψ.

We also provide here the following theorem, which details the L2 and L8 estimates
of the unknowns.

Theorem 1.7.1. Under the smallness assumptions in Theorem 1.1.1 the solution sat-
isfies the following energy estimates

›

›ps{tqBILJBµpAν , χq
›

›

L2
f pHsq

`
›

›ps{tqBµB
ILJpAν , χq

›

›

L2
f pHsq

À C1ε, |I| ` |J | ď N,
›

›B
ILJpAν , χq

›

›

L2
f pHsq

À C1ε, |I| ` |J | ď N,
›

›ps{tqBILJψ
›

›

L2
f pHsq

À C1ε, |I| ` |J | ď N,
›

›ps{tqBαB
ILJψ

›

›

L2
f pHsq

À C1ε log s, |I| ` |J | “ N,

(1.7.2)
and the following L8 estimates

sup
pt,xqPHs

´

t1{2s
ˇ

ˇBαB
ILJpAν , χq

ˇ

ˇ` t1{2s
ˇ

ˇB
ILJBαpAν , χq

ˇ

ˇ

¯

À C1ε, |I| ` |J | ď N ´ 2,

sup
pt,xqPHs

´

t3{2
ˇ

ˇB
ILJAν , B

ILJχ
ˇ

ˇ

¯

À C1ε, |I| ` |J | ď N ´ 2,

sup
pt,xqPHs

´

t1{2s
ˇ

ˇB
ILJψ

ˇ

ˇ

¯

À C1ε, |I| ` |J | ď N ´ 2,

sup
pt,xqPHs

´

t1{2s
ˇ

ˇBαB
ILJψ

ˇ

ˇ

¯

À C1ε log s, |I| ` |J | “ N ´ 2,

(1.7.3)
where C1 is some constant to be determined later.

Strategy of the proofs of Theorems 1.1.1 and 1.7.1. The proofs are based on a
bootstrap argument. In Section 1.7.2 we recall the estimates for null terms and various
commutators. The bootstrap assumptions will be made in (1.7.10). These bootstraps,
combined with some standard commutator estimates and Sobolev-type inequalities,
will lead to certain weak estimates in (1.7.12) and (1.7.14). In Section 1.7.4 we will use
our first-order hyperboloidal energy to upgrade our estimates for the Dirac component,
namely in Theorem 1.7.7 and Corollary 1.7.8. In Section 1.7.5 we obtain estimates for
the transformed variables Ãν and χ̃` defined above. Putting all of this together we
finally are able to close our bootstrap assumptions.
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1.7.2 Estimates for null forms and commutators

We first illustrate estimates for the quadratic null terms, which, roughly speaking,
reveal the following bounds

ˇ

ˇB
αuBαv

ˇ

ˇ À
`

s2
{t2

˘ˇ

ˇBu
ˇ

ˇ

ˇ

ˇBv
ˇ

ˇ.

Lemma 1.7.2. We have the following estimate for the quadratic null term TαβBαuBβv
with constants Tαβ and u, v sufficiently regular.

ˇ

ˇB
ILJpT µνBµuBνvq

ˇ

ˇ

À
ÿ

|I1|`|I2|ď|I|,
|J1|`|J2|ď|J |,

a,β

´

ˇ

ˇB
I1LJ1Bau

ˇ

ˇ

ˇ

ˇB
I2LJ2Bβv

ˇ

ˇ`
ˇ

ˇB
I1LJ1Bβu||B

I2LJ2Bav
ˇ

ˇ

¯

` ps{tq2
ÿ

|I1|`|I2|ď|I|,
|J1|`|J2|ď|J |

ˇ

ˇB
I1LJ1Btu

ˇ

ˇ

ˇ

ˇB
I2  LJ2Btv

ˇ

ˇ.

(1.7.4)

One refers to [44] for the proof. We next recall the estimates for commutators, also
proved in [44]. Heuristically speaking, the following lemma provides the relation

ˇ

ˇΓBILJu
ˇ

ˇ »
ˇ

ˇB
ILJΓu

ˇ

ˇ,

in which Γ takes values from the set

tBα, Bα, BαBβ, ps{tqBαu.

Lemma 1.7.3. Assume a function u defined in the region K is regular enough, then
we have

ˇ

ˇrB
ILJ , Bαsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

|J 1|ă|J |,β

ˇ

ˇBβB
ILJ

1

u
ˇ

ˇ, (1.7.5)

ˇ

ˇrB
ILJ , Basu

ˇ

ˇ ď Cp|I|, |J |q
´

ÿ

|I 1|ă|I|,|J 1|ă|J |,b

|BbB
I 1LJ

1

u| ` t´1
ÿ

|I 1|ď|I|,|J 1|ď|J |

|B
I 1LJ

1

u|
¯

,

(1.7.6)
ˇ

ˇrB
ILJ , Bαsu

ˇ

ˇ ď Cp|I|, |J |q
´

ÿ

|I 1|ă|I|,|J 1|ă|J |,β

ˇ

ˇBβB
I 1LJ

1

u
ˇ

ˇ` t´1
ÿ

|I 1|ď|I|,|J 1|ď|J |,β

ˇ

ˇBβB
I 1LJ

1

u
ˇ

ˇ

¯

,

(1.7.7)
ˇ

ˇrB
ILJ , BαBβsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

|I 1|ď|I|,|J 1|ă|J |,γ,γ1

ˇ

ˇBγBγ1B
I 1LJ

1

u
ˇ

ˇ, (1.7.8)
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ˇ

ˇB
ILJpps{tqBαuq

ˇ

ˇ ď
ˇ

ˇps{tqBαB
ILJu

ˇ

ˇ` Cp|I|, |J |q
ÿ

|I 1|ď|I|,|J 1|ď|J |,β

ˇ

ˇps{tqBβB
I 1LJ

1

u
ˇ

ˇ. (1.7.9)

1.7.3 Bootstrap assumptions and basic estimates

By the local well-posedness of semilinear PDEs, there exists an s1 ą s0 in which the
following bootstrap assumptions hold for all s P rs0, s1s

Emq
`

s, BILJAν
˘1{2

` Emλ
`

s, BILJχ
˘1{2

ď C1ε, |I| ` |J | ď N,

Emgps, BILJψq1{2 ď C1ε, |I| ` |J | ď N ´ 1,

Emgps, BILJψq1{2 ď C1ε log s, |I| ` |J | “ N.

(1.7.10)

If we can prove the refined estimates

Emq
`

s, BILJAν
˘1{2

` Emλ
`

s, BILJχ
˘1{2

ď
1

2
C1ε, |I| ` |J | ď N,

Emgps, BILJψq1{2 ď
1

2
C1ε, |I| ` |J | ď N ´ 1,

Emgps, BILJψq1{2 ď
1

2
C1ε log s, |I| ` |J | “ N,

(1.7.11)

then we are able to assert that s1 cannot be finite, which in turn implies a global
existence result for (1.1.1).

Combining bootstrap assumptions (1.7.10) and the estimates for commutators in
Lemma 3.3.1, the following sets of estimates are immediately obtained:

›

›ps{tqBILJBµpAν , χq
›

›

L2
f pHsq

`
›

›ps{tqBµB
ILJpAν , χq

›

›

L2
f pHsq

ď C1ε, |I| ` |J | ď N.
›

›B
ILJpAν , χq

›

›

L2
f pHsq

ď C1ε, |I| ` |J | ď N,

mg

›

›B
ILJψ

›

›

L2
f pHsq

`
›

›ps{tqBµB
ILJψ

›

›

L2
f pHsq

ď C1ε, |I| ` |J | ď N ´ 1,

mg

›

›B
ILJψ

›

›

L2
f pHsq

`
›

›ps{tqBµB
ILJψ

›

›

L2
f pHsq

ď C1ε log s, |I| ` |J | “ N.

(1.7.12)

Furthermore we can obtain L8 estimates by recalling the following Sobolev-type
inequality on hyperboloids [44].

Proposition 1.7.4 (Sobolev-type inequality on hyperboloids). For all sufficiently smooth
functions u “ upt, xq supported in the region tpt, xq : |x| ă t ´ 1u, then for s ě 2 one
has

sup
Hs

ˇ

ˇt3{2upt, xq
ˇ

ˇ À
ÿ

|J |ď2

›

›LJu
›

›

L2
f pHsq

, (1.7.13)

where the summation is over Lorentz boosts L.
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Combined with the estimates (1.7.12) the following also hold:

sup
pt,xqPHs

´

t1{2s
ˇ

ˇBαB
ILJpAν , χq

ˇ

ˇ` t1{2s
ˇ

ˇB
ILJBαpAν , χq

ˇ

ˇ

¯

À C1ε, |I| ` |J | ď N ´ 2,

sup
pt,xqPHs

´

t3{2
ˇ

ˇB
ILJAν , B

ILJχ
ˇ

ˇ

¯

À C1ε, |I| ` |J | ď N ´ 2,

sup
pt,xqPHs

´

mgt
3{2
ˇ

ˇB
ILJψ

ˇ

ˇ` t1{2s
ˇ

ˇBαB
ILJψ, BILJBαψ

ˇ

ˇ

¯

À C1ε, |I| ` |J | “ N ´ 3,

sup
pt,xqPHs

´

mgt
3{2
ˇ

ˇB
ILJψ

ˇ

ˇ` t1{2s
ˇ

ˇB
ILJψ, BILJBαψ

ˇ

ˇ

¯

À C1ε log s, |I| ` |J | ď N ´ 2.

(1.7.14)

1.7.4 First-order energy estimate for the Dirac field

To obtain decay estimates for the Dirac component ψ, a standard method is to
analyse the second-order form of the Dirac equation (1.2.27). This is then a semilinear
Klein-Gordon equation with mass m2

g and so there are now standard techniques to
estimate the nonlinearity; see for example [2] and [45]. However, the right-hand side
term appearing in our wave equation (1.2.27) does not decay sufficiently fast for this
argument to close, which is due to the possibly vanishing mass m2

g ě 0. Thus at this
point we recall Proposition 1.2.3 and the lower bound (1.2.24c) for the energy EH. This
motivates us to analyse the first-order form of the Dirac equation.

We first adapt our Sobolev-type inequality on hyperboloids to include boosts which
commute with the Dirac operator iγνBν . Following Bachelot [4] we introduce modified

boosts pLa that differ from La by a constant matrix

pLa :“ La `
1

2
γ0γa. (1.7.15)

It then holds that rpLa, iγ
νBνs “ 0. The following result is a simple extension of Propo-

sition 1.7.4.

Corollary 1.7.5. Suppose ψ “ ψpt, xq is a sufficiently smooth spinor field supported in
the region tpt, xq : |x| ă t´ 1u, then it holds for s ě 2

sup
Hs

ˇ

ˇt3{2ψpt, xq
ˇ

ˇ À
ÿ

|J |ď2

›

›pLJψ
›

›

L2
f pHsq

, (1.7.16)

where pL denotes a modified Lorentz boost.

We will also make use of the following Gronwall inequality, and one can find it in
[14].
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Lemma 1.7.6 (Gronwall-type inequality). Let uptq be a non-negative function that
satisfies the integral inequality

uptq ď C `

ż t

t0

bpsqupsq1{2 ds, C ě 0, (1.7.17)

where bptq is non-negative function for t ě t0. Then it holds

uptq ď C `

ˆ
ż t

t0

bpsq ds

˙2

. (1.7.18)

We are now in a position to obtain certain improved energy and sup norm estimates
for ψ.

Theorem 1.7.7. Under the same assumptions as Theorem 1.7.1, the Dirac field ψ
satisfies

›

›ps{tqpLJψ
›

›

L2
f pHsq

À ε` pC1εq
2, |J | ď N, (1.7.19)

sup
Hs

ˇ

ˇt1{2spLJψ
ˇ

ˇ À ε` pC1εq
2, |J | ď N ´ 2. (1.7.20)

As a consequence, one has the following sup-norm estimates for ψ:

sup
Hs

ˇ

ˇtBI pLJψ
ˇ

ˇ À ε` pC1εq
2, |I| ` |J | ď N ´ 2. (1.7.21)

Proof. Step 1. Recall the equation in (1.5.1) for the Dirac field

iγµBµψ ´mgψ “ Hψ,

H :“ gpφ˚0χ` χ
˚φ0 ` χ

˚χq ´ gγµAµ.

Since iψ˚γ0H ´ iH˚γ0ψ “ 0 we have the following conserved energy

EH
ps, ψq “ EH

ps0, ψq, (1.7.22)

then according to the inequality (1.2.24c) in Proposition 1.2.3, we are able to initialise
the induction argument by

}ps{tqψ}L2
f pHsq

À ε.

Step 2. For induction purposes, assume

›

›ps{tqpLJψ
›

›

L2
f pHsq

À ε` pCεq2

holds for 0 ď |J | ď k´ 1 ď N ´ 3, and now consider the case 1 ď |J | “ k ď N ´ 2. Act
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pLJ on the Dirac equation above to obtain

γµBµppL
Jψq ` img

pLJψ “ ´iHppLJψq ´ iR,

with
R :“ pLJpHψq ´HppLJψq, H “ gpφ˚0χ` χ

˚φ0 ` χ
˚χq ´ gγµAµ.

Observe that R contains only terms, up to some constant matrices, of type

pLJ1H ¨ pLJ2ψ, |J1| ` |J2| ď |J |, |J2| ď k ´ 1. (1.7.23)

Using (1.2.25) and consequently by Lemma 1.7.4 and the induction assumption

EH
ps, pLJψq1{2 ď EH

ps0, pL
Jψq1{2 `

ż s

s0

}R}L2
f pHs̄q

ds̄

À ε`

ż s

s0

ÿ

|J1|`|J2|ď|J |
|J2|ď|J |´1

›

›pt{sqpLJ1H
›

›

L8pHs̄q

›

›ps{tqpLJ2ψ
›

›

L2
f pHs̄q

¯

ds̄

À ε` pC1εq
2

ż s

s0

s̄´3{2 ds̄,

(1.7.24)

which gives
›

›ps{tqpLJψ
›

›

L2
f pHsq

À ε, |J | ď k.

Step 3. The above analysis shows for |J | ď N ´ 4

ÿ

|J 1|ď2

›

›ps{tqpLJ
1
pLJψ

›

›

L2
f pHsq

À ε` pC1εq
2.

Thus by the Sobolev inequality (3.2.19), we deduce

sup
Hs

ˇ

ˇt1{2spLJψ
ˇ

ˇ À ε` pC1εq
2, |J | ď N ´ 4.

Step 4. We now consider the case |J | “ N ´ 1. An energy estimate yields

EH
ps, pLJψq1{2 ď ε`

ż s

s0

´

ÿ

|J1|`|J2|ďN´1,
|J1|ą|J2|,|J2|ďN´4

›

›pLJ1H
›

›

L2
f pHs̄q

›

›pLJ2ψ
›

›

L8pHs̄q

`
ÿ

|J1|`|J2|ďN´1,
|J1|ď|J2|,|J2|ďN´2

›

›pt{sqpLJ1H
›

›

L8pHs̄q

›

›ps{tqpLJ2ψ
›

›

L2
f pHs̄q

¯

ds̄

ď ε` pC1εq
2

ż s

s0

s̄´3{2 ds̄,

(1.7.25)
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which implies
›

›ps̄{tqpLJψ
›

›

L2
f pHs̄q

À ε` pC1εq
2. (1.7.26)

The same analysis also applies to the case |J | “ N . And repeating Step 3 gives (1.7.20)
for |J | ď N ´ 2.

As a consequence, we have the following sup-norm estimates for ψ.

Corollary 1.7.8. It holds that

sup
Hs

ˇ

ˇt1{2sBILJψ
ˇ

ˇ À ε` pC1εq
2, |I| ` |J | ď N ´ 2. (1.7.27)

1.7.5 Refined estimates

In this final subsection we close our bootstrap argument. For this to work we move
to the transformed vector field rAν defined in (1.6.3) and the transformed scalar field
rχ` defined in (1.6.9), which are heuristically of the form

Aν “ rAν `Op|ψ|2q, χ` “ rχ` `Op|ψ|2q.

Thus using the estimates for Aν and χ` coming from (1.7.12) and (1.7.14), together

with the previous energy and sup-norm estimates for ψ, the following estimates for rAν

and rχ` hold

›

›ps{tqBILJBµp rAν , rχ`q
›

›

L2
f pHsq

`
›

›ps{tqBµB
ILJp rAν , rχ`q

›

›

L2
f pHsq

À C1ε, |I| ` |J | ď N,
›

›B
ILJp rAν , rχ`q

›

›

L2
f pHsq

À C1ε, |I| ` |J | ď N,

sup
Hs

´

t1{2s
ˇ

ˇBαB
ILJp rAν , rχ`q

ˇ

ˇ` t1{2s
ˇ

ˇB
ILJBαp rAν , rχ`q

ˇ

ˇ

¯

À C1ε, |I| ` |J | ď N ´ 2,

sup
Hs

´

t3{2
ˇ

ˇB
ILJp rAν , rχ`q

ˇ

ˇ

¯

À C1ε, |I| ` |J | ď N ´ 2.

(1.7.28)
We first look at the energy for ψ in the case |I| ` |J | “ N

Emgps, BILJψq1{2 ď ε` C
ÿ

ν,µ

ż s

s0

`
›

›B
ILJppBµHqψq

›

›

L2
f pHs̄q

`
›

›B
ILJpHBµψq

›

›

L2
f pHs̄q

˘

ds̄.
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By noting

ÿ

µ

}B
ILJpBµHψq}L2

f pHs̄q

ď
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ďN´2, µ

›

›pt{sqBI1LJ1BµH
›

›

L8pHs̄q

›

›ps{tqBI2LJ2ψ
›

›

L2
f pHs̄q

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ěN´1, µ

›

›ps{tqBI1LJ1BµH
›

›

L2
f pHs̄q

›

›pt{sqBI2LJ2ψ
›

›

L8pHs̄q

À pC1εq
2s̄´3{2 log s̄` pC1εq

2s̄´1
À pC1εq

2s̄´1,

(1.7.29)

we obtain
Emgps, BILJψq1{2 ď ε` CpC1εq

2 log s. (1.7.30)

Similarly for |I| ` |J | ď N ´ 1 we obtain

Emgps, BILJψq1{2 ď ε` CpC1εq
2. (1.7.31)

In order to obtain estimates for Aν , we first bound the energy for rAν

Emps, BILJÃνq1{2 ď ε`

ż s

s0

›

›B
ILJpxγ0γνBµψ, B

µψyq
›

›

L2
f pHs̄q

`m2
g

›

›B
ILJpψ˚γ0γνψq

›

›

L2
f pHs̄q

`
›

›B
ILJpψ2

BA` ψABψ ` ψ3
Bψq

›

›

L2
f pHs̄q

ds̄

ď ε` CpC1εq
2.

(1.7.32)
Next, recalling definition (1.6.3) we use Young’s inequality to obtain for all |I|`|J | ď N

Emqps, BILJAνq1{2 ď p3{2qEmqps, BILJ rAνq1{2 ` p3{2qEmqps, BILJpψq2q1{2

ď p3{2qε` C
ÿ

I1`I2“I,J1`J2“J
I1`J1ďN´2

›

›B
I1LJ1ψ

›

›

L8pHsq
Eps, BI2LJ2ψq1{2

À ε` pC1εq
2.

(1.7.33)
A similar procedure gives the refined estimates for χ`

Emλps, BILJχ`q1{2 ď p3{2qε` CpC1εq
2, (1.7.34)

while the refined estimates for χ´

Emqps, BILJχ´q1{2 ď ε` CpC1εq
2 (1.7.35)

can be obtained directly. A combination of (1.7.34) and (1.7.35) gives the refined
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estimates for χ
Emλps, BILJχq1{2 À ε` pC1εq

2. (1.7.36)

By choosing C1 sufficiently large and ε sufficiently small, we arrive at the refined bounds
(1.7.11). This shows global existence and thus completes the proof of Theorem 1.7.1.
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2.1 Introduction

2.1.1 The fields and Lagrangian of the Standard Model

Matter and gauge fields of the theory. We study the evolution equations for
electromagnetic and weak interactions between elementary particles coming from the
Standard Model. In particular we will look at the Higgs mechanism applied to the
non-abelian SUp2qˆUp1q gauge group of the Glashow-Weinberg-Salam (GSW) model.

Let us begin by presenting the Lagrangian for the GSW model. We start with
four massless gauge bosons2 coupled to a complex Higgs field and twelve fundamental
fermions. The quartic potential for the Higgs field has a ‘Mexican hat’ shape, meaning
that the non-zero minimum of this potential gives a non-zero vacuum expectation value
for the Higgs. After spontaneous symmetry breaking, and on a fixed Minkowski back-
ground, the vacuum solution will now involve one massless and three massive gauge
bosons. The key issue is whether the Higgs field, and indeed all the variables, are
nonlinearly stable under perturbations of the vacuum solution.

We need some notation for the (five) fields of the theory which are

Φ P C2 SUp2q-doublet Higgs field,

Y “ pY µ
q Up1q-gauge field,

W “ pW µ
a q SUp2q-gauge field,

peL, eRq P C2
ˆ C2 (left- and right-handed) electron spinor,

νL P C2 left-handed neutrino spinor.

(2.1.1)

Here, µ “ 0, 1, 2, 3 is a spacetime index and a “ 1, 2, 3 and the fields Y,Wa are vector
fields in Minkowski space while eL, eR, νL are complex-valued vector fields. For simplic-
ity in our presentation, we consider only two fermions, but it would be straightforward
to include the full set of fundamental fermions. It is convenient also to collect the
left-handed spinors into an SUp2q-doublet

L “

ˆ

νL
eL

˙

P C4 left-handed SUp2q-doublet. (2.1.2)

In addition to the fields, the GSW model also involves five coupling constants denoted
by gY , gW , ge, and λ, v. The first three parameters describe the relative strength of
the interactions while the last two are parameters coming from the Higgs mechanism.
Certain combinations of these constants can be measured in experiments, as we discuss
below.

2From a physical standpoint, the classical physics description of the bosonic fields is quite mean-
ingful, however for fermionic fields it would be desirable to take quantum effects into account.
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Matter and gauge interaction Lagrangian. Recall the Standard Model describes
three kinds of fundamental forces: the electromagnetic, weak, and strong interactions.
We are only interested in the electroweak sector of the Standard Model, which for
conciseness we also refer to as the Standard Model. Following [15], we are going to
derive the evolution equations for GSW theory on a flat Minkowski background with,
however, the signature p´,`,`,`q.

The GSW theory is based on two important notions:

• Covariant derivative operators describing nonlinear interactions between the fields
defined by

DµΦ :“
`

Bµ ´ igWWµaτa ` i
gY
2
Yµ
˘

Φ,

DµeR :“
`

Bµ ´ igY Yµ
˘

eR,

DµL :“
`

Bµ ´ igWWµaτa ´ i
gY
2
Yµ
˘

L,

(2.1.3)

in which gY , gW are physical constants. Let σa P C2ˆ2 be the standard Pauli
matrices where a “ 1, 2, 3, which form a basis for the Lie algebra sup2q which we
normalize by defining τa :“ 1

2
σa P C2ˆ2.

• A nonlinear potential is assumed for the complex scalar field Φ which is denoted
by V and satisfies

V pΦ˚Φq ě 0, V pv2
q “ V 1pv2

q “ 0, V 2pv2
q ą 0. (2.1.4)

in which v ą 0 is physical constant.

First, the Lagrangian density for the GSW theory contains four interaction terms

LGSW “ LΦ ` LY ` LW ` Lψ, (2.1.5)

in which

LΦ :“ ´pDµΦq˚pDµΦq ´ V pΦ˚Φq,

LY :“ ´
1

4
FµνF

µν ,

LW :“ ´
1

4
HµνaH

µν
a ,

Lψ :“ ´Re
´

iL˚σµLDµL
¯

´Re
´

ie˚Rσ
µ
RDµeR

¯

´ gepL
˚ΦeR ` e

˚
RΦ˚Lq,

(2.1.6)

where ge is a physical constant. The terms LW and LY involve the field strength Hµνa
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for the SUp2q-gauge fields W µ
a and the field strength Fµν for the Up1q-gauge field Yµ:

Hµνa :“ BµWνa ´ BνWµa ` gW cabcWµbWνc,

Fµν :“ BµYν ´ BνYµ.
(2.1.7)

The last term in the expression of Hµνa involves the structure constants cabc for the
SUp2q-symmetry, which are nothing but the 3-dimensional totally antisymmetric Levi-
Civita symbols, normalized so that c123 “ 1. The notation Re stands for the real part
of a complex number.

For completeness the covariant derivatives on the field tensors F µν and Hµν
a are the

following
DµF

νρ :“ BµF
νρ,

DµH
νρ
a :“ BµH

νρ
a ` gW cabcWµbH

νρ
c .

(2.1.8)

2.1.2 Main nonlinear stability statement

A preliminary version of our main result is now stated. A more precise statement
will be provided with the regularity and decay of solutions specified. A trivial solution
to the system is given by taking

Φ is a constant with Φ˚Φ “ v2,

Y “ 0, W “ 0,

L “ 0, eR “ 0.

(2.1.9)

Theorem 2.1.1 (Nonlinear stability of the vacuum state in the Glashow-Salam-Wein-
berg theory). The Higgs Boson is nonlinearly stable under small perturbations, in the
sense that any initial perturbations to the fields (2.1.9) leads to a solution to the stan-
dard model which is globally defined in time with Φ approaching a constant value Φ8
with

lim
tÑ`8

`

Φ´ Φ8, Y,W,L, eR
˘

“ 0 (2.1.10)

and
lim
tÑ`8

Φ˚Φ “ Φ˚8Φ8 “ v2. (2.1.11)

Our analysis will be presented on simplified models derived by taking some formal
choices of the physical parameters. To be more precise, we only provide the proof of
Theorem 2.1.1 under the restriction

mY “ gY “ 0. (2.1.12)
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A generalization of the Standard Model. In the GSW model, it is well known
that the right-handed neutrino is taken to be νR “ 0 and the left-handed neutrino νL
is massless and satisfies the equation

iσµLBµνL “ FL.

However, in the physical experiments the left-handed neutrino has a tiny but strictly
positive mass. Hence it is artificial but of mathematically and physically interest to
study a more general model, where there involves right-handed neutrino and a mass
parameter mn ě 0

iσµLBµνL `mnνR “ FL, iσµRBµνR `mnνL “ FR,

which can be written equivalently as

iγµBµψn `mnψn “ Fψn , (2.1.13)

with

ψn “

ˆ

νR
νL

˙

, Fψn :“

ˆ

FL
FR

˙

.

Observe that we can recover the GSW model by letting mn “ 0 and νR “ 0. Moreover,
we are able to prove an existence result which is uniform in the mass parameter 0 ď
mn ! mintmH ,mW ,mZ ,meu.

2.1.3 Role of the physical constants

Further notations. Throughout this chapter we will be interested in various bilinear
forms involving complex vectors and matrices. Let z̄j denote the conjugate of a complex
vector z “ pz1, z2, z3, z4q

T P C4 , and z˚ :“ pz̄1, z̄2, z̄3, z̄4q denote its conjugate transpose.
If also w P C4 then the inner product is defined by

xz, wy :“ z˚w “
4
ÿ

j“1

z̄jwj. (2.1.14)

The Hermitian conjugate3 of a matrix A is denoted by A˚, that is

pA˚qij :“ pĀqji. (2.1.15)

The chiral nature of GSW implies particular relationships between certain components
of the spinor for the electron ψe and neutrino ψn. This is made clearer by using the
Chiral representation of the Dirac matrices. First recall that the Dirac matrices γµ for

3In the physics literature, A˚ is often denoted by A:.
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µ “ 0, 1, 2, 3 are 4ˆ 4 matrices satisfying the identities

tγµ, γνu :“ γµγν ` γµγν “ ´2ηµν ,

pγµq˚ “ ´ηµνγ
ν ,

(2.1.16)

where η “ diagp´1, 1, 1, 1q. The Dirac matrices give a matrix representation of the
Clifford algebra. We obtain the chiral representation of the Dirac matrices by first
recalling the standard Pauli matrices

σ1 :“

ˆ

0 1
1 0

˙

, σ2 :“

ˆ

0 ´i
i 0

˙

, σ3 :“

ˆ

1 0
0 ´1

˙

. (2.1.17)

These matrices can be placed into a 4-vector as

σµR :“ pI2, σ
i
q, σµL :“ pI2,´σ

i
q, (2.1.18)

where i “ 1, 2, 3.

From this the chiral representation of the gamma matrices is

γµ “

ˆ

0 σµR
σµL 0

˙

. (2.1.19)

Using the first gamma matrix we define the following bilinear form

pz, wq :“ z˚γ0w, (2.1.20)

where z, w P C4. In particular, this is defined in the physics literature as ψ̄ψ “ ψ˚γ0ψ “
pψ, ψq. Furthermore in the chiral basis the 5th gamma matrix is diagonal

γ5 :“ iγ0γ1γ2γ3
“

ˆ

´I2 0
0 I2

˙

. (2.1.21)

The γ5 matrix squares to I4 and so one often uses the following projection operators,
which in this basis take the simple form,

PR :“
1

2
pI4 ` γ5q “

ˆ

I2 0
0 0

˙

, PL :“
1

2
pI4 ´ γ5q “

ˆ

0 0
0 I2

˙

. (2.1.22)

For a spinor ψ the projections

ψL “ PLψ, ψR “ PRψ (2.1.23)

are respectively called the left-handed and right-handed spinors. In the GSW model
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we will be interested in the following 2-component spinors

eR :“ PRψe P C2 : right-handed electron,

eL :“ PLψe P C2 : left-handed electron,

νL :“ PLψn P C2 : left-handed neutrino.

(2.1.24)

Note the non-existent right-handed neutrino is not included, i.e.

νR :“ PRψn “ 0. (2.1.25)

In the following we use ψ and νL to denote the collection of fields eR, eL, νL or equiva-
lently eR, L.

The gauge coupling constants. Recall there are five independent coupling con-
stants gY , gW , ge, and λ, v in the Lagrangian density of the Standard Model. From the
parameters gY and gW we can compute the Weinberg angle θW defined by

g2
Y

g2
W

“: tan2 θW » 0.2858. (2.1.26)

This implies that gY » p0.5346qgW have the same order of magnitude.

The evolution of the Higgs field is described by a potential function which is often
taken to be

V pΦ˚Φq :“ λ
`

Φ˚Φ´ v2
˘2
, (2.1.27)

where λ, v ą 0 are constants and the following conditions clearly hold:

V ě 0, V pv2
q “ 0, V 1pv2

q “ 0, V 2 “ 2λ ą 0. (2.1.28)

The two constants λ, v cannot be directly measured experimentally, but the expression

mH :“ 2v
?
λ (2.1.29)

can be measured and represents the mass of the Higgs field. In the physics literature,
the so-called vacuum expectation value for the Higgs field is the positive constant v, and
the Higgs field is expected to generate the masses for the W and Z bosons, according
to the definition:

mW :“
1

2
vgW , mZ :“

1

2
v
b

g2
W ` g

2
Y . (2.1.30)

We also define for convenience the non-physical mass parameter

mY :“
1

2
vgY . (2.1.31)
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On the other hand, the mass of the electron is given in the form

me :“
1
?

2
vge, (2.1.32)

in which the electron coupling constant ge is found to be very small in comparison to
gY , gW . Since the W boson has a large mass mW » 80 GeV{c2 compared to the small
mass of the electron me » 0.51 MeV{c2 “ 51ˆ 10´5 GeV{c2, we thus have

ge ! gW , gY . (2.1.33)

In conclusion, the relation between the sizes of these mass parameters is

mn ! me ! mY » mW » mZ » mH , (2.1.34)

in which mn denotes the mass of neutrinos, which does not appear in the Lagrangian
density of the Standard Model though.

The latest data [16] for the masses of the different particles measured at CERN are
provided in the following two tables. Note also that the vacuum expectation value of
the Higgs is v » 246GeV .

Higgs boson Z boson W boson
PDG measurements GeV {c2 125.18˘ 0.16 91.1876˘ 0.0021 80.379˘ 0.012

GSW value mH “ 2v
?
λ mZ “

1
2
v
a

g2
W ` g

2
Y mW “ 1

2
vgW

Table 2.1: Masses of the gauge and Higgs bosons

Electron Left-handed neutrino
PDG measurements MeV {c2 0.5109989461˘ 0.0000000031 0 ă mν ă 2ˆ 10´6

GSW value me “
1?
2
vge 0

Table 2.2: Masses of the electron and neutrino fermions

2.1.4 Strategy and outline of this chapter

Coupling constants and simplified models. We first recall that the relation be-
tween the sizes of the mass parameters appearing in the Lagrangian density (2.1.5)
is

me ! mY » mW » mZ » mH ,
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while a similar relation holds if we consider the coupling constants

ge ! gY » gW »
?
λ. (2.1.35)

Next we deduce simplified models by setting certain parameters to be zero, and
then analyse them. It might not be physical to do so, but this manipulation helps us
to understand the structure of the full system.

CASE I. We set
mY “ 0, (2.1.36)

which is equivalent to set gY “ 0. We recall again the complicated expression of the
Lagrangian density

LGSW “ LΦ ` LY ` LW ` Lψ,
LΦ “ ´pD

µΦq˚pDµΦq ´ V pΦ˚Φq,

LY “ ´
1

4
FµνF

µν ,

LW “ ´
1

4
HµνaH

µν
a ,

Lψ “ ´Re
´

iL˚σµLDµL
¯

´Re
´

ie˚Rσ
µ
RDµeR

¯

´ gepL
˚ΦeR ` e

˚
RΦ˚Lq,

with
Hµνa “ BµWνa ´ BνWµa ` gW cabcWµbWνc,

Fµν “ BµYν ´ BνYµ,

as well as the definition of the covariant derivatives

DµΦ “
`

Bµ ´ igWWµaτa ` i
gY
2
Yµ
˘

Φ,

DµeR “
`

Bµ ´ igY Yµ
˘

eR,

DµL “
`

Bµ ´ igWWµaτa ´ i
gY
2
Yµ
˘

L,

DµF
νρ
“ BµF

νρ,

DµH
νρ
a “ BµH

νρ
a ` gW cabcWµbH

νρ
c .

Due to the choice of gY “ 0, the gauge field Y µ interacts with no other fields but itself.
According to (2.2.2) below the Euler-Lagrange equations are

DµD
µΦ “ V 1pΦ˚ΦqΦ` gee

˚
RL,

DνF
µν
“ ´

gY
2
jµ “ 0,

DνH
µν
a “ ´gW Jµa , (2.1.37)

iσµRDµeR “ geΦ
˚L,
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iσµLDµL “ geΦeR,

with
Jνa :“ RerL˚σνLτaLs ´ ipD

νΦq˚τaΦ` iΦ
˚τapD

νΦq,

and in the above the gauge field Y µ only appears in the second equation (the F µν

equation).

CASE II. We consider another simple case and set

mY “ mW “ 0, (2.1.38)

which is equivalent to set gY “ gW “ 0. All of the covariant derivatives in the La-
grangian density now become partial derivatives, the gauge field Y µ only interact with
itself, and so do the gauge fields Wa.

Similarly according to (2.2.2) the Euler-Lagrange equations are

BµB
µΦ “ V 1pΦ˚ΦqΦ` gee

˚
RL,

BνF
µν
“ ´

gY
2
jµ “ 0,

BνH
µν
a “ ´gW Jµa “ 0,

iσµRBµeR “ geΦ
˚L,

iσµLBµL “ geΦeR.

(2.1.39)

CASE III. We consider an even simpler case which is obtained by setting

me “ mY “ mW “ 0, (2.1.40)

which is equivalent to ge “ gY “ gW “ 0.

Similarly according to (2.2.2) the Euler-Lagrange equations are

BµB
µΦ “ V 1pΦ˚ΦqΦ` gee

˚
RL “ V 1pΦ˚ΦqΦ,

BνF
µν
“ ´

gY
2
jµ “ 0,

BνH
µν
a “ ´gW Jµa “ 0,

iσµRBµeR “ geΦ
˚L “ 0,

iσµLBµL “ geΦeR “ 0.

(2.1.41)

We note that all of the equations are linear.
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The Dirac field on hyperboloidal slices. In Section 1.2 of Chapter 1 we obtain a
new energy functional for the Dirac field defined on hyperboloids

EH
ps, ψq “

ż

Hs

´

ψ˚ψ ´
xi
t
ψ˚γ0γiψ

¯

dx. (2.1.42)

Significantly, we are able to show that this energy is positive definite with a useful
coercive property on the standard L2 norm. It is useful for a massless spinor or a
spinor with tiny mass, but for the case of a spinor with large mass we anticipate that
the more useful estimates come from looking at the Dirac equation as a second-order
Klein-Gordon type PDE.

Structure of this Chapter. In Section 2.2 we study the system of equations and
choose the gauge. Next in Section 2.3 a detailed statement of the main result is given.
Then we analyse the system of the simplified model in Section 2.4. In the end we prove
the global stability result of the simplified model.

2.2 Formulation and gauge choice for the GSW model

2.2.1 Derivation of the field equations

It is a standard matter to derive evolution equations by expressing the conditions
for a critical point of the Lagrangian. It will be convenient to introduce the currents

jν :“ L˚σνLL` 2e˚Rσ
νeR ` ipD

νΦq˚Φ´ iΦ˚pDνΦq,

Jνa :“ RerL˚σνLτaLs ´ ipD
νΦq˚τaΦ` iΦ

˚τapD
νΦq.

(2.2.1)

Lemma 2.2.1. The Euler-Lagrange equations associated with the Lagrangian LGSW
defined in (2.1.5) read as follows:

DµD
µΦ “ V 1pΦ˚ΦqΦ` gee

˚
RL,

DνF
µν
“ ´

gY
2
jµ,

DνH
µν
a “ ´gW Jµa ,

iσµRDµeR “ geΦ
˚L,

iσµLDµL “ geΦeR,

(2.2.2)

in which the field strengths and covariant derivatives are defined in (2.1.7) and (2.1.3),
respectively.

We are interested in obtaining tractable PDEs for the unknowns peR, L,Φ, Y
ν ,W ν

a q.
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Thus using the expressions for Fµν and Hµνa in terms of Yµ and Wµa from (2.1.7), we
obtain the following explicit form of the system:

lΦ “ ´igW

´

2WµaτaB
µΦ` divWaτaΦ

¯

` igY

´

YµB
µΦ`

1

2
divY Φ

¯

´
g2
W

4
WµaW

µ
a Φ` gY gWYµW

µ
a τaΦ´

g2
Y

4
YµY

µΦ

` V 1pΦ˚ΦqΦ` gee
˚
RL, (2.2.3a)

lY ν
´ B

ν
pdivY q “ ´

gY
2

´

`

L˚σνLL` 2e˚Rσ
ν
LeR

˘

` i
`

pB
νΦ˚qΦ´ Φ˚BνΦ

˘

¯

` gY gWW
ν
a Φ˚τaΦ´

g2
Y

2
Y νΦ˚Φ, (2.2.3b)

lW ν
a ´ B

ν
pdivWaq “ ´gW

´

´ cabcB
µ
pWµbW

ν
c q `Re

“

L˚σνLτaL
‰

´ cabcW
µ
b

`

BµW
ν
c ´ B

νWµc

˘

´ i
`

B
νΦ˚τaΦ´ Φ˚τaB

νΦ
˘

¯

` g2
W cabcccdeW

µ
b WµeW

ν
e ´

g2
W

2
W ν
a Φ˚Φ` gWgY Y

νΦ˚τaΦ,

(2.2.3c)

iσµRBµeR “ geΦ
˚L´ gY eRσ

µ
RYµ, (2.2.3d)

iσµLBµL “ geΦeR ´
gY
2
σµLYµL` gWWµaσ

µ
LτaL. (2.2.3e)

Observe that these equations are underdetermined without a specific gauge choice.
In the following we will discuss which gauge choice we would like to impose.

One should keep in mind that, by definition,

Φ˚L “ Φ˚1νL ` Φ˚2eL, ΦeR “

ˆ

Φ1eR
Φ2eR

˙

, (2.2.4)

as well as

σµLL “

ˆ

σµLνL
σµLeL

˙

, τaL “

ˆ

τa11νL ` τa12eL
τa21νL ` τa22eL

˙

, (2.2.5)

where τaAB denotes the A-th row and B-th column component of the matrix τa.
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2.2.2 Energy identities leading to gauge choice

By looking at the energy functionals associated to the following equations we will
see that a fairly specific gauge choice is suggested to be chosen.

lΦ “ ´2ipgWWµaτa ´
gY
2
YµqB

µΦ´ ipgWdivWaτa ´
gY
2

divY qΦ

´
g2
W

4
WµaW

µ
a Φ` gY gWYµW

µ
a τaΦ´

g2
Y

4
YµY

µΦ

` V 1pΦ˚ΦqΦ` gee
˚
RL,

lY ν
“ B

ν
pdivY q ´

gY
2

`

L˚σνLL` 2e˚Rσ
ν
LeR

˘

´
igY
2

`

pB
νΦ˚qΦ´ Φ˚BνΦ

˘

` gY gWW
ν
a Φ˚τaΦ´

g2
Y

2
Y νΦ˚Φ,

lW ν
a “ B

ν
pdivWaq ` gW cabcB

µ
pWµbW

ν
c q ´ gWRe

“

L˚σνLτaL
‰

` gW cabcW
µ
b

`

BµW
ν
c ´ B

νWµc ` gW ccdeWµeW
ν
e

˘

` igW
`

B
νΦ˚τaΦ´ Φ˚τaB

νΦ
˘

´
g2
W

2
W ν
a Φ˚Φ` gWgY Y

νΦ˚τaΦ,

iσµRBµeR “ geΦ
˚L´ gY eRσ

µ
RYµ,

iσµLBµL “ geΦeR ´
gY
2
σµLYµL` gWWµaσ

µ
LτaL,

divY “ f,

divWa “ ga.
(2.2.6)

We first define the following energy for the W and Y fields by

EYW ptq :“

ż

R3

´

ÿ

α,ν

|BαY
ν
|
2
`

ÿ

α,ν,a

|BαW
ν
a |

2
`HpY,W,Φq

¯

dx,

where

HpY,W,Φq :“
1

4
Φ˚

´

g2
Y

ÿ

ν

Y νY ν
´ 2gWgY

ÿ

a,ν

σaY νW ν
a ` g

2
W

ÿ

a,ν

W ν
aW

ν
a

¯

Φ. (2.2.7)

Lemma 2.2.2. With the notation Ca “ Φ˚σaΦ the following identity holds

HpY,W,Φq “
1

4

1

Φ˚Φ

ˇ

ˇgY Φ˚ΦY ´ 2gW
ÿ

a

CaWa

ˇ

ˇ

2
`

g2
W

Φ˚Φ

ÿ

aăb

ˇ

ˇCaWb ´ CbWa

ˇ

ˇ

2
. (2.2.8)
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Proof.

HpY,W,Φq ´
1

4Φ˚Φ

ˇ

ˇgY Φ˚ΦY ´ 2gW
ÿ

a

CaWa

ˇ

ˇ

2

“
1

4
g2
WΦ˚Φ

”

ÿ

a

|Wa|
2
´

4

pΦ˚Φq2
ˇ

ˇ

ÿ

a

CaWa

ˇ

ˇ

2
ı

“
1

4
g2
WΦ˚Φ

”

ÿ

a

|Wa|
2
´

4

pΦ˚Φq2

ÿ

a,b

C2
b |Wa|

2
`

4

pΦ˚Φq2

ÿ

aăb

ˇ

ˇCaWb ´ CbWa

ˇ

ˇ

2
ı

“
g2
W

Φ˚Φ

ÿ

aăb

ˇ

ˇCaWb ´ CbWa

ˇ

ˇ

2
` g2

WΦ˚Φ
ÿ

a

|Wa|
2
´

1´
4

pΦ˚Φq2

ÿ

b

C2
b

¯

.

Hence in order to verify (2.2.8) it suffices to prove

ÿ

b

C2
b “

1

4
pΦ˚Φq2. (2.2.9)

First recall the completeness relation for the Pauli matrices

3
ÿ

a“1

pσaqαβpσ
a
q
γ
τ “ 2δατ δ

γ
β ´ δ

α
β δ

γ
τ .

This identity implies the following

4
ÿ

a

C2
a “

ÿ

a

pΦ˚σaΦq2 “
ÿ

a

Φβ
pσaqαβpΦqαpΦq

τ
pσaqγτ pΦqγ

“ Φβ
pΦqαpΦq

τ
pΦqγ

`

2δατ δ
γ
β ´ δ

α
β δ

γ
τ

˘

“ pΦ˚Φq2.

Lemma 2.2.3. Assume Y and Wa are solutions to (2.2.6). Then

d

dt
EYW ptq “

ÿ

ν

ż

R3

´

´ B
νf `

igY
2

`

pB
νΦ˚qΦ´ Φ˚BνΦ

˘

¯

BtY
ν dx

`
ÿ

ν,a

ż

R3

´

´ B
νga ´ igW

`

B
νΦ˚τaΦ´ Φ˚τaB

νΦ
˘

¯

BtW
ν
a dx`QYW ,

(2.2.10)
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in which the high order terms are given by

QYW “
ÿ

ν

ż

R3

´gY
2

`

L˚σνLL` 2e˚Rσ
ν
LeR

˘

¯

BtY
ν dx

`
ÿ

ν,a

ż

R3

´

´ gW cabcB
µ
pWµbW

ν
c q ` gWRe

“

L˚σνLτaL
‰

¯

BtW
ν
a dx

`
ÿ

ν,a

ż

R3

´g2
Y

2
Y νY ν

BtpΦ
˚Φq ´ gWgY Y

νW ν
a BtpΦ

˚τaΦq `
g2
W

2
W ν
aW

ν
a BtpΦ

˚Φq
¯

dx.

Since we do not want low order terms to appear in the right hand side of the energy
identity (2.2.10), the gauge choice should let

´B
νf `

igY
2

`

pB
νΦ˚qΦ´ Φ˚BνΦ

˘

and ´ B
νga ´ igW

`

B
νΦ˚τaΦ´ Φ˚τaB

νΦ
˘

(2.2.11)

be at least quadratic.

Lemma 2.2.4. Assume Φ is a solution to (2.2.6) then it holds

d

dt

ż

R3

´

|BΦ|2 ` V pΦ˚Φq
¯

dx

“

ż

R3

´

i
gY
2
f
`

BtΦ
˚Φ´ Φ˚BtΦ

˘

´ igWga
`

BtΦ
˚τaΦ´ Φ˚τaBtΦ

˘

¯

dx

`

ż

R3

´

´
g2
W

4
WµaW

µ
a Bt

`

Φ˚Φ
˘

` gY gWYµW
µ
a Bt

`

Φ˚τaΦ
˘

´
g2
Y

4
YµY

µ
Bt
`

Φ˚Φ
˘

¯

dx.

(2.2.12)

We note the first term in the right hand side (2.2.12) seems problematic. But this
motivates us to choose the gauge so that

i
gY
2
f
`

BtΦ
˚Φ´ Φ˚BtΦ

˘

´ igWga
`

BtΦ
˚τaΦ´ Φ˚τaBtΦ

˘

“ ´
d

dt

`

positive term
˘

` cubic term.
(2.2.13)

2.2.3 The gauge choice for the GSW model

We will primarily be interested in the following vacuum solutions to (2.2.2)

pY µ
“ 0,W µ

a “ 0,Φ “ Φ0, eR “ 0, L “ 0q, (2.2.14)
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such that Φ˚0Φ0 “ v2 and BµΦ0 “ 0. If we denote the perturbation of the Higgs field by

χ :“ Φ´ Φ0,

and adopt the notations C̊a :“ φ˚0τaφ0, then the evolution equations take the following
form.

• Equations of the Higgs field:

´lχ´ V 1pΦ˚ΦqΦ0 ` g
2
Y pχ

˚Φ0 ´ Φ˚0χqΦ0 ` g
2
W pχ

˚τaΦ0 ´ Φ˚0τaχqτaΦ0

“ igW

´

2WµaτaB
µχ` divWaτaχ

¯

` igY

´

YµB
µχ`

1

2
divY χ

¯

´
g2
W

4
WµaW

µ
a Φ` gY gWYµW

µ
a τaΦ´

g2
Y

4
YµY

µΦ` gee
˚
RL` V

1
pΦ˚Φqχ.

(2.2.15a)

• Equations of the gauge fields:

´lY ν
`
g2
Y v

2

2
Y ν
´ gWgY C̊aW

ν
a

“
gY
2

´

`

L˚σνLL` 2e˚Rσ
ν
LeR

˘

` i
`

pB
νχ˚qχ´ χ˚Bνχ

˘

¯

´ gY gWW
ν
a

`

Φ˚0τaχ` χ
˚τaΦ0 ` χ

˚τaχ
˘

`
g2
Y

2
Y ν

`

Φ˚Φ´ v2
˘

,

´lW ν
a `

g2
Wv

2

2
W ν
a ´ gWgY C̊aY

ν

“ gW

´

´ cabcB
µ
pWµbW

ν
c q `Re

“

L˚σνLτaL
‰

´ cabcW
µ
b

`

BµW
ν
c ´ B

νWµc

˘

´ i
`

B
νχ˚τaχ´ χ

˚τaB
νχ
˘

¯

´ g2
W cabcccdeW

µ
b WµeW

ν
e `

g2
W

2
W ν
a

`

Φ˚Φ´ v2
˘

´ gWgY Y
ν
`

χ˚τaΦ0 ` Φ˚0τaχ` χ
˚τaχ

˘

.
(2.2.15b)

• Equations of the spinors:

iσµRBµeR “ geΦ
˚
0L´ gY σ

µ
RYµeR ` geχ

˚L,

iσµLBµL “ geΦ0eR ´
gY
2
σµLYµL`

gW
2
Wµa

`

σµLτa ´ τaσ
µ
L

˘

L` geχeR.
(2.2.15c)

• The gauge conditions:

divY “
igY
2

`

B
νχ˚Φ0 ´ Φ˚0B

νχ
˘

, divWa “ ´igW
`

B
νχ˚τaΦ0 ´ Φ˚0τaB

νχ
˘

.

(2.2.15d)
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In the above the terms of quadratic order or higher in the evolution equations are
grouped together and put in the right hand sides of the equations. We also note the
gauge choice in (2.2.15d) meet the requirements in (2.2.11) and (2.2.13).

2.2.4 Propagation of the gauge

Analogous to the Lemma 1.5.2 of Up1q model in Chapter 1 we impose the following
gauge conditions on the initial data

divY “ f, divWa “ ga, (2.2.16)

and show that such a gauge choice propagates under the evolution equations (2.2.18)
below. When f, g ” 0 the gauge choice (2.2.16) is often called the Lorenz gauge. Such a
gauge was chosen for the Yang-Mills field considered in [7]. The interest of the following
result is that it produces immediately a coupled system of wave and Dirac equaitons
for which the initial value problem is well-known to be well-posed for sufficiently small
times.

Proposition 2.2.5 (Hyperbolic formulation of the GSW model in the inhomogeneous
Lorenz gauge). Consider the following initial data

pdivY ´ fq|t“0 “ 0, BtpdivY ´ fq|t“0 “ 0,

pdivWa ´ gaq|t“0 “ 0, BtpdivWa ´ gaq|t“0 “ 0,
(2.2.17)

together with the system

´lΦ “ ´2ipgWWµaτa ´
gY
2
YµqB

µΦ´ ipgWgaτa ´
gY
2
fqΦ

´ pgWWµaτa ´
gY
2
YµqpgWW

µ
b τb ´

gY
2
Y µ
qΦ` V 1pΦ˚Φq ` gee

˚
RL,

´lY ν
“ ´B

νf ´
gY
2
jν ,

´lW ν
a “ ´B

νga `Q
ν
a,

iσµRBµeR “ geΦ
˚L´ gY eRσ

µYµ,

iσµLBµL “ geΦeR ´
gY
2
σµLYµL`

gW
2
Wµa

`

σµLτa ´ τaσ
µ
L

˘

L,

(2.2.18)

in which, with the definition (2.2.1),

Qν
a :“ gW cabc

`

W µ
c BµW

ν
b `W

ν
b gc

˘

´ gWJ
ν
a . (2.2.19)

Then as long as the solution to (2.2.18) exists, it satisfies

divY “ f, divWa “ ga. (2.2.20)
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Proof. Step 1. To show the propagation of the gauge choice for Y ν we first take the
divergence of the evolution equation for Y ν . This yields

´lpdivY ´ fq “ Bνj
ν . (2.2.21)

Thus it suffices to show

Bνj
ν
“ Bν

`

L˚σνLL` 2e˚Rσ
νeR ` ipD

νΦq˚Φ´ iΦ˚pDνΦq
˘

“ 0, (2.2.22)

using the evolution equations (2.2.18). We now introduce the short-hand notations

DµΦ “ BµΦ` iΛµΦ, Λµ :“ ´gWWµaτa `
gY
2
Yµ (2.2.23)

with the property Λµ “ Λ˚µ. We first compute

Bν

´

ipDνΦq˚Φ´ iΦ˚pDνΦq
¯

“ iBνpD
νΦq˚Φ` ipDνΦq˚BνΦ´ iΦ

˚
BνpD

νΦq ´ iBνΦ
˚
pDνΦq

“ ippDν
´ iΛνqD

νΦq˚Φ` ipDνΦq˚pDν
´ iΛνqΦ

´ iΦ˚pppDν
´ iΛνqqD

νΦq ´ ippDν
´ iΛνqΦq

˚
pDνΦq

“ ipDνD
νΦq˚Φ´ pDνΦq˚ΛνΦ` ipD

νΦq˚DνΦ` pDνΦq˚ΛνΦ

´ iΦ˚pDνD
νΦq ´ Φ˚ΛνD

νΦ´ ipDνΦq˚DνΦ` Φ˚ΛνD
νΦ,

“ ´i
`

V 1pΦ˚ΦqΦ` gee
˚
RL

˘˚
Φ` iΦ˚

`

V 1pΦ˚ΦqΦ` gee
˚
RL

˘

“ ´igeL
˚eRΦ` igeΦ

˚e˚RL,

in which we used the evolution equations (2.2.2). The remaining terms of (2.2.22) give

Bν

´

L˚σνLL` 2e˚Rσ
νeR

¯

“ pBνLq
˚σνLL` L

˚σνLBnuL` 2pBνeRq
˚σνeR ` 2e˚Rσ

ν
pBνeRq

“ ´igWWνaL
˚τaσ

ν
LL´ i

gY
2
YνL

˚σνLL` igee
˚
RΦ˚L´ i

gW
2
WνaL

˚
`

σνLτa ´ τaσ
ν
L

˘

L

` igWWνaL
˚σνLτaL` i

gY
2
YνL

˚σνLL´ igeL
˚ΦeR ´ i

gW
2
WνaL

˚
`

σνLτa ´ τaσ
ν
L

˘

L

´ 2igY Yνe
˚
RσReR ` 2igeL

˚ΦeR ` 2igY Yνe
˚
Rσ

ν
ReR ´ 2igee

˚
RΦ˚L

“ igeL
˚ΦeR ´ igee

˚
RΦ˚L.

Putting these results together gives Bνj
ν “ 0 and this proves (2.2.22). Before moving

to the second part of the proof, note that the result we have shown is equivalent to
proving

DνDµF
µν
“ Dνj

ν
“ Bνj

ν
“ 0. (2.2.24)

Step 2. We now turn to prove the propagation of the gauge choice for W ν
a . Using
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the last expression (2.2.24) as inspiration, we first prove

DµDνH
µν
a “ 0. (2.2.25)

For simplicity, we will sum over the a index, so τacabcXbYc “ rX, Y saτa “ rX, Y s. Using
the Jacobi identity for commutators one has

DνDµH
µν
“ Bν

`

BµH
µν
` rWµ, H

µν
s
˘

` rWν , BµH
µν
s ` rWν , rWµ, H

µν
ss

“ BνBµH
µν
` rWµ, BνH

µν
s ` rWν , BµH

µν
s ` rBνWµ, H

µν
s ` rWν , rWµ, H

µν
ss

“ rBνWµ, H
µν
s ` rWν , rWµ, H

µν
ss

“ rBνWµ, H
µν
s `

1

2
rrWν ,Wµs, H

µν
s

“ rHµν , H
µν
s “ 0

(2.2.26)
where the Jacobi identity reads

rWν , rWµ, H
µν
ss “ ´rWµ, rH

µν ,Wνss ´ rH
µν , rWν ,Wµss.

The identity (2.2.25) implies DµJ
µ
a “ 0, which will be useful when propagating the

gauge.
Step 3. First we take the divergence of the evolution equation for W ν

a . This yields

´lpdivWa ´ gaq “ BνQ
ν
a. (2.2.27)

Thus it suffices to prove BνQ
ν
a “ 0.

Bν

´

gW cabc
`

W µ
c BµW

ν
b `W

ν
b gc

˘

´ Jνa

¯

“ gW cabc
`

W µ
c BµpdivWbq ` BµW

ν
b BνW

µ
c ` divWb divWc `W

ν
b BνpdivWcq

˘

´DνJ
ν
a ` gW cabcWνbj

ν
c

“ gW cabc

´

W µ
c BµpdivWbq ` BµW

ν
b BνW

µ
c ` divWb divWc `W

ν
b BνpdivWcq

`Wνb

`

BµH
νµ
c ` gW ccijWµiH

νµ
j

˘

¯

“ gW cabc
`

W µ
c BµdivWb `W

ν
b BνpdivWcq ` divWb divWc

˘

` g2
W cabcccij

`

BνWµbW
ν
i W

µ
j ` BνWjµW

ν
bW

µ
i ´ BµWνjW

ν
bW

µ
i

˘

` g3
W cabcccijcjklWνbWµiW

ν
kW

µ
l

“ 0

(2.2.28)

where we have used the antisymmetry in certain Roman indices and also the following
identities: cabcccij “ pδaiδbj ´ δajδbiq and cabcccijcjkl “ δaicbkl ´ δbicakl. For example
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explicitly in the first term we relabel indices to obtain

cabc
`

W µ
c BµpdivWbq `W

ν
b BνpdivWcq

˘

“ cabcW
µ
c BµpdivWbq ´ cacbW

µ
b BµdivWc

“ cabcW
µ
c BµpdivWbq ´ cabcW

µ
c BµdivWb “ 0

(2.2.29)

and also

cabcdivWb divWc “ ´cacbdivWb divWc “ ´cabcdivWb divWc. (2.2.30)

Since this proposition is true for any choice of f, ga, specifically its result applies
to our gauge choice (2.2.15d). Hence we only need to impose the gauge conditions
(2.2.15d) on the initial data, and then they propagate in the evolution equations.

2.3 Nonlinear stability statement for the GSW model

2.3.1 Parametrization of the ground state

We find it convenient, and with no loss of any generality, to choose

´

Y µ
“ 0,W µ

a “ 0,Φ0 “
`

0 v
˘T
, eR “ 0, L “ 0

¯

(2.3.1)

to be the ground state solution. Then correspondingly the gauge choice is given by

divY “
igY
2

`

B
νχ˚Φ0 ´ Φ˚0B

νχ
˘

, divWa “ ´igW
`

B
νχ˚τaΦ0 ´ Φ˚0τaB

νχ
˘

. (2.3.2)

In order to get this gauge choice propagated, according to Proposition 2.2.5, it suffices
to propose

divY “
igY
2

`

B
νχ˚Φ0 ´ Φ˚0B

νχ
˘

, divWa “ ´igW
`

B
νχ˚τaΦ0 ´ Φ˚0τaB

νχ
˘

,

BtdivY “
igY
2
Bt
`

B
νχ˚Φ0 ´ Φ˚0B

νχ
˘

, BtdivWa “ ´igWBt
`

B
νχ˚τaΦ0 ´ Φ˚0τaB

νχ
˘

,

initially, and we denote the initial data set by

´

χ, Y µ,W µ
a , eR, L

¯

pt0, ¨q “
´

χ0, Y
µ

0 ,W
µ
a0, eR0, L0

¯

,

Bt

´

χ, Y µ,W µ
a , eR, L

¯

pt0, ¨q “
´

χ1, Y
µ

1 ,W
µ
a1, eR1, L1

¯

,
(2.3.3)



Chapter 2: Study of the GSW model 85

which are called compatible if they satisfy (2.2.15d).

And finally we get the system of equations written as

´lχ “ V 1pΦ˚ΦqΦ0 ´ g
2
Y pχ

˚Φ0 ´ Φ˚0χqΦ0 ´ g
2
W pχ

˚τaΦ0 ´ Φ˚0τaχqτaΦ0

igW

´

2WµaτaB
µχ` divWaτaχ

¯

` igY

´

YµB
µχ`

1

2
divY χ

¯

´
g2
W

4
WµaW

µ
a Φ` gY gWYµW

µ
a τaΦ´

g2
Y

4
YµY

µΦ` gee
˚
RL` V

1
pΦ˚Φqχ,

´lY ν
“ ´

g2
Y v

2

2
Y ν
` gWgY C̊aW

ν
a

gY
2

´

`

L˚σνLL` 2e˚Rσ
ν
LeR

˘

` i
`

pB
νχ˚qχ´ χ˚Bνχ

˘

¯

´ gY gWW
ν
a

`

Φ˚0τaχ` χ
˚τaΦ0 ` χ

˚τaχ
˘

`
g2
Y

2
Y ν

`

Φ˚Φ´ v2
˘

,

´lW ν
a “ ´

g2
Wv

2

2
W ν
a ` gWgY C̊aY

ν

gW

´

´ cabcB
µ
pWµbW

ν
c q `Re

“

L˚σνLτaL
‰

´ cabcW
µ
b

`

BµW
ν
c ´ B

νWµc

˘

´ i
`

B
νχ˚τaχ´ χ

˚τaB
νχ
˘

¯

´ g2
W cabcccdeW

µ
b WµeW

ν
e `

g2
W

2
W ν
a

`

Φ˚Φ´ v2
˘

´ gWgY Y
ν
`

χ˚τaΦ0 ` Φ˚0τaχ` χ
˚τaχ

˘

,

iσµRBµeR “ geΦ
˚
0L´ gY σ

µ
RYµeR ` geχ

˚L,

iσµLBµL “ geΦ0eR ´
gY
2
σµLYµL`

gW
2
Wµa

`

σµLτa ´ τaσ
µ
L

˘

L` geχeR.

(2.3.4)

2.3.2 Statement of the nonlinear stability result

We are ready here to provide the statement of the nonlinear stability result of the
full GSW model (2.3.4)–(2.3.3).

Theorem 2.3.1. Consider the GSW system (2.3.4) with gauge condition (2.3.2) and
vacuum equilibrium (2.3.1), which has compatible initial data set (2.3.3),and let N be
a sufficiently large integer. There exists ε0 ą 0 such that for all ε P p0, ε0q and all
compactly supported compatible initial data satisfying the smallness condition

}χ0, Y
µ

0 ,W
µ
a0, eR0, L0}HN`1 ` }χ1, Y

µ
1 ,W

µ
a1, eR1, L1}HN ď ε, (2.3.5)

the initial value problem (2.3.4)–(2.3.3) admits a unique global-in-time solution
`

χ, Y µ,W µ
a , eR, L

˘

.

Note again we will only provide the proof of this theorem under the assumption

mY “ gY “ 0.
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2.3.3 Mixed and pure systems

At the beginning of this section we made the special choice Φ0 “ p0, vq˚, but we
provide a study on the system (2.3.4), which is true for all constants Φ0 satisfying
Φ˚0Φ0 “ v2.

Mixed and pure Klein-Gordon systems Suggested by Lemma 2.2.2 above, we
introduce the following five new unknowns:

N ν
ab :“ C̊aW

ν
b ´ C̊bW

ν
a , a ă b,

N ν
` :“ gY Φ˚0Φ0Y

ν
` 2gW

ÿ

a

C̊aW
ν
a ,

N ν
´ :“ gWv

2Y ν
´ 2gY

ÿ

a

C̊aW
ν
a ,

(2.3.6)

in which C̊a “
1
2
Φ˚0σaΦ0.

These new variables satisfy the following equations

´lN ν
ab `

g2
Wv

2

2
N ν
ab “ C̊aQ

ν
Wb ´ C̊aQ

ν
Wb, a ă b,

´lN ν
` “ gWv

2Qν
Y ` 2gY

ÿ

a

C̊aQ
ν
Wa,

´lN ν
´ `

1

2
v2
pg2
W ` g

2
Y qN

ν
´ “ gWv

2Qν
Y ´ 2gY

ÿ

a

C̊aQ
ν
Wa.

(2.3.7)

More details are given in the following lemma.

Lemma 2.3.2. There exists some a0 P t1, 2, 3u such that |Ca0 | ą v{6 and thus the
variables tN ν

a0b
, Nν

a0c
, N`, N´u fully determine the original unknowns tY ν ,W ν

a u. That
is,

spantY ν ,W ν
a u “ spantN ν

a0b
, Nν

a0c
, N`, N´u.

Proof. The identity (2.2.8) suggests we consider the following linear combinations:

¨

˚

˚

˝

Nν
12

Nν
13

Nν
23

N ν
´

˛

‹

‹

‚

:“

¨

˚

˚

˚

˝

´C̊2 C̊1 0 0

´C̊3 0 C̊1 0

0 ´C̊3 C̊2 0

´2gW C̊1 ´2gW C̊2 ´2gW C̊3 gY v
2

˛

‹

‹

‹

‚

¨

˚

˚

˝

W ν
1

W ν
2

W ν
3

Y ν

˛

‹

‹

‚

(2.3.8)

The determinant of this linear transformation is zero and so it is non-invertible. More-
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over the kernel is

gWv
2
´ 2gY
gWv2

C̊1,
2gY
gWv2

C̊2,
2gY
gWv2

C̊3, 1
¯

, (2.3.9)

This suggests we consider the following combination of vector fields

N ν
` :“ gWv

2Y ν
` 2gY C̊aW

ν
a .

By the construction N ν
` is independent of pN ν

ab, N
ν
´q and from (2.3.4) satisfies the fol-

lowing inhomogeneous wave equation

´lN ν
` “ g2

Wv
2Qν

Y ` 2gY C̊aQ
ν
Wa. (2.3.10)

Note we used the fact that
ř

a C̊aC̊a “
v4

4
.

Finally we can also derive the new variables (2.3.6) using the structure of the original
system of equations (2.2.3). This leads us to the following definition of mixed and pure
Klein-Gordon systems.

Definition 2.3.3. Given a vector-valued unknown U “ pU1, U2, ¨ ¨ ¨ , Unq
T P Cn and a

semi-positive definite Hermitian matrix A P Cnˆn, then the system

´lU ´ AU “ 0, (2.3.11)

is called a mixed Klein-Gordon and wave system if detA “ 0. The system is called a
pure Klein-Gordon system if detA ą 0.

Lemma 2.3.4. Given a system of the form (2.3.11), there exists a linear combination
of the variables U such that dimpkerAq of these variables satisfy wave equations, and
the remaining n´ dimpkerAq variables satisfy Klein-Gordon equations.

Proof. Observe that since A is Hermitian we can decompose it as A “ P ˚ΛP where
Λ is a diagonal matrix, P is a unitary matrix and P ˚ its conjugate transpose. This
implies

´lU “ P ˚ΛPU ñ ´lpPUq “ ΛpPUq (2.3.12)

Finally recall that the number of diagonal entries in Λ is precisely given by dimpkerAq.

Lemma 2.3.5. By neglecting the higher order source terms in (2.3.4), the following
linear equations

´lY ν
“
g2
Y v

2

2
Y ν
´ gWgY C̊aW

ν
a , ´lW ν

a “
g2
Wv

2

2
W ν
a ´ gWgY C̊aY

ν , (2.3.13)

can be shown to form a mixed Klein-Gordon and wave system. Furthermore the lin-
ear combination of variables from (2.3.4) which satisfy strict wave and Klein-Gordon
equations are tN ν

13, N
ν
12, N

ν
˘u as defined in (2.3.6).
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Proof. The equations (2.3.13) can be expressed in the form (2.3.11) with UT “ pW ν
1 ,W

ν
2 ,W

ν
3 , Y

νq

and Hermitian matrix

A :“

¨

˚

˚

˚

˚

˝

g2
W v2

2
0 0 ´gWgY C̊1

0
g2
W v2

2
0 ´gWgY C̊2

0 0
g2
W v2

2
´gWgY C̊3

´gWgY C̊1 ´gWgY C̊2 ´gWgY C̊3
g2
Y v

2

2

˛

‹

‹

‹

‹

‚

, (2.3.14)

with

detA “
´g2

Wv
2

2

¯4´
`g2

Wv
2

2

˘

tan2 θW ´ g
2
Wg

2
Y

ÿ

a

C̊2
a

¯

“ 0.

In order to determine which linear combinations of U give Klein-Gordon or wave
equations, diagonalise the matrix A “ P ˚ΛP , where P is the matrix of eigenvalues of
A. This leads to the following new variables

¨

˚

˚

˝

N13

N12

N`
N´

˛

‹

‹

‚

“: PU “

¨

˚

˚

˚

˝

´C̊3 0 C̊1 0

´C̊2 C̊1 0 0

2gY C̊1 2gY C̊2 2gY C̊3 gWv
2

´2gY C̊1 ´2gY C̊2 ´2gY C̊3 gWv
2

˛

‹

‹

‹

‚

¨

˚

˚

˝

W ν
1

W ν
2

W ν
3

Y ν

˛

‹

‹

‚

, (2.3.15)

and associated eigenvalues containing the masses

ΛpΦq :“

¨

˚

˚

˚

˝

g2
W v2

2
0 0 0

0
g2
W v2

2
0 0

0 0 0 0
0 0 0 1

2
v2pg2

W ` g
2
Y q

˛

‹

‹

‹

‚

. (2.3.16)

Mixed and pure Dirac systems There is an analogous study of the mixed and
pure Dirac systems, but we omit it since the procedure is very similar.

2.4 Revisit of the model with gY “ 0

Full system of equations From this section on, we always adopt the assumption
(2.1.12), i.e.

mY “ gY “ 0.

Before we go to the system of equations, let us adopt some notations which will
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make the expressions shorter and clearer. First denote the sets of Klein-Gordon and
wave fields by

K :“ tχ, U˘, V ´a ,W
ν
1 ,W

ν
2 ,W

ν
3 , eR, eLu, W :“ tνLu. (2.4.1)

Then we adopt that the following notation

QpK,W, BK, BW;K, BKq :“
ÿ

sPK
Ť

W
Ť

BK
Ť

BW, kPK
Ť

BK

csksk

represents a general quadratic nonlinearity of the type sk with some constant coefficient
csk, and we have denoted BK :“ tBk : k P Ku . And similarly the the following notation

CpK;K;Wq :“
ÿ

k,k1PK, sPW

ckk1skk
1s

represents a general cubic nonlinearity.

In this case, the system of equations becomes (with A “ 1, 2)

´lχ “ ´V 1pΦ˚ΦqΦ0 ´ g
2
W pχ

˚τaΦ0 ´ Φ˚0τaχqτaΦ0 `QpK, BK;Kq `QpK;Wq,
´lY ν

“ 0,

´lW ν
A “ ´

g2
Wv

2

2
W ν
A ` CpK;K;Kq `QpK, BK;Kq `QpK;Wq,

´lW ν
3 “ ´

g2
Wv

2

2
W ν

3 ` CpK;K;Kq `QpK, BK;Kq ` ν˚LσνLνL,

iσµRBµeR “ geΦ
˚
0L` geχ

˚L,

iσµLBµL “ geΦ0eR `
gW
2
Wµa

`

σµLτa ´ τaσ
µ
L

˘

L` geχeR,

(2.4.2)
in which we recall Φ0 “ p0, vq

T .

We note that the variables Y ν satisfy homogeneous wave equations, and they do
not interact with other fields. Due to this reason, we will drop Y ν equations in the
following analysis.

Decomposition of the Higgs equation It is preferred to use variables

U˘ :“ χ˚Φ0 ˘ Φ˚0χ, V ´a :“ χ˚τaΦ0 ´ Φ˚0τaχ



90 2.4. Revisit of the model with gY “ 0

in the analysis since they satisfy Klein-Gordon equations. Thus the equation for the
Higgs field is decomposed into four equations

´lU` ` 4λv2U` “ QpK, BK;Kq `QpK;Wq,

´lU´ `
g2
Wv

2

2
U´ “ 2g2

W C̊aV
´
a `QpK, BK;Kq `QpK;Wq,

´lV ´a `
g2
Wv

2

2
V ´a “

g2
y

2
C̊aU

´
`QpK, BK;Kq `QpK;Wq.

(2.4.3)

We also note that the first order terms in the right hand sides of the last two equations
do not cause trouble, which is thanks to the relations

U´ “ ´2V ´3 , C̊1 “ C̊2 “ 0, C̊3 “ ´v
2
{4. (2.4.4)

A new variable for the field W ν
3 We note that in the nonlinearities of the W ν

3

equations there is a term of type ν-ν interaction, which does not decay fast enough.
Following the work of Tsutsumi [76] we introduce the new variables

ĂW ν
3 :“ W ν

3 `
2

g2
wv

2
ν˚Lσ

ν
LνL, (2.4.5)

which are close to W ν
3 in terms of the energy norms, and which satisfy Klein-Gordon

equations with good nonlinearities

´lĂW ν
3 `

g2
Wv

2

2
ĂW ν

3 “ CpK,W;K;Kq `QpK, BK;Kq ` Bµν˚LσνLBµνL. (2.4.6)

Klein-Gordon equations for the electron field ψe. On the other hand, we find
it easier for the analysis if we transform the Dirac equation of ψe “ peL, eRq to a
Klein-Gordon equation

´lψe `m
2
eψe “ QpK, BK;Kq `QpBK;Wq `QpK; BWq, (2.4.7)

for the reason that Klein-Gordon components give faster decay by utilising the role of
the mass.

Dirac equation for the neutrino field νL. We now demonstrate two forms of the
Dirac equation for the neutrino νL.

• First order Dirac equation

iσµLBµνL “ QpK;Kq `
gW
2
Wµ3σ

µ
LνL. (2.4.8)
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• Second order wave equation

´lνL “ QpK, BK;Kq `QpBK;Wq `QpK; BWq. (2.4.9)

2.5 Proof of the main theorem for the case gY “ 0

2.5.1 Bootstrap assumptions and basic estimates

This last section is devoted to relying on the bootstrap method to prove Theorem
2.3.1 with the choice of parameter gY “ 0.

With the small data assumption (2.3.5) we may assume EHps0, νLq À ε. By the
local well-posedness of semilinear wave equations, it holds for some small δ ą 0 and for
all s P rs0, s1s such that 4

Eps, BILJνLq1{2 ď C1εs
δ, |I| ` |J | ď N,

Eps, BILJνLq1{2 ď C1ε, |I| ` |J | ď N ´ 1,
ÿ

kPK

Emps, BILJkq1{2 ď C1εs
δ, |I| ` |J | ď N,

ÿ

kPK

Emps, BILJkq1{2 ď C1ε, |I| ` |J | ď N ´ 1,

(2.5.1)

in which C1 is some large positive constant to be determined,

s1 :“ supts : (2.5.1) holdsu, (2.5.2)

and
m :“ mintme,mW ,mHu. (2.5.3)

If we can prove the refined estimates

Eps, BILJνLq1{2 ď
1

2
C1εs

δ, |I| ` |J | ď N,

Eps, BILJνLq1{2 ď
1

2
C1ε, |I| ` |J | ď N ´ 1,

ÿ

kPK

Emps, BILJkq1{2 ď
1

2
C1εs

δ, |I| ` |J | ď N,

ÿ

kPK

Emps, BILJkq1{2 ď
1

2
C1ε, |I| ` |J | ď N ´ 1,

(2.5.4)

4We adopt notations in Chapter 1
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then we are able to assert that s1 cannot be finite, which implies a global existence
result for the system (2.4.2).

Combining bootstrap assumptions (2.5.1) and the estimates for commutators in
Lemma 3.3.1 in Chapter 1, the following set of estimates are immediately obtained:

}ps{tqBµB
ILJνL, ps{tqB

ILJBµνL}L2
f pHsq

À C1εs
δ, |I| ` |J | “ N,

}ps{tqBµB
ILJνL, ps{tqB

ILJBµνL}L2
f pHsq

À C1ε, |I| ` |J | ď N ´ 1,
ÿ

kPK

}ps{tqBILJBµk, ps{tqBµB
ILJk, BILJk}L2

f pHsq
À C1εs

δ, |I| ` |J | ď N,

ÿ

kPK

}BµB
ILJk, BILJBµk}L2

f pHsq
À C1εs

δ, |I| ` |J | ď N ´ 1.

(2.5.5)

Furthermore we can obtain L8 estimates by recalling the Sobolev-type inequality on
hyperboloids [44] stated in Proposition 1.7.4.

Combined with the estimates (2.5.5) the following also holds:

sup
Hs

t1{2s|BαB
ILJνL, B

ILJBανL| À C1εs
δ, |I| ` |J | “ N ´ 2,

sup
Hs

t1{2s|BαB
ILJνL, B

ILJBανL| À C1ε, |I| ` |J | ď N ´ 3,

sup
kPK, Hs

´

t1{2s|BαB
ILJk, BILJBαk| ` t

3{2
|B
ILJk|

¯

À C1εs
δ, |I| ` |J | ď N ´ 2,

sup
kPK, Hs

t3{2
ˇ

ˇBµB
ILJk, BILJBµk, B

ILJk
ˇ

ˇ À C1εs
δ, |I| ` |J | ď N ´ 3.

(2.5.6)

2.5.2 First-order energy estimate for the neutrino field νL

To obtain decay estimates for the neutrino component νL, a standard method is to
analyse the second-order wave equation (2.4.9). This is then a semilinear wave equation
and so there are known techniques to estimate the nonlinearity, see for example [2] and
[45]. However, the right-hand side term appearing in our wave equation (2.4.9) does
not decay sufficiently fast for this argument to close. At this point however, we recall
Proposition 1.2.3 and the lower bound }ps{tqψ}L2

f
for the energy EH. This motivates

us to analyse the first-order form of the Dirac equation (2.4.8).

On the other hand, instead of considering the Weyl equation for the left-handed
neutrino

iσµLBµνL “ QpK;Kq `
gW
2
Wµ3σ

µ
LνL “: FνL ,

we find it more convenient to deal with the Dirac equation for the neutrino ψn

iγµBµψn “ Fψn , (2.5.7)



Chapter 2: Study of the GSW model 93

with

ψn “

ˆ

νR
νL

˙

, Fψn :“

ˆ

FνL
0

˙

.

It is obvious that all estimates true for ψn are automatically true for νL due to

|νL| ď |ψn|.

Next we need to adapt the Sobolev-type inequality on hyperboloids (see Proposition
1.7.4 in Chapter 1) to include boosts which commute with the Dirac operator iγνBν .

In [4] Bachelot introduced the modified Lorentz boosts pLa that differ from La by a
constant matrix

pLa :“ La `
1

2
γ0γa, (2.5.8)

which enjoy the property rpLa, iγ
νBνs “ 0. And the following modified Sobolev-type

inequality holds.

Proposition 2.5.1. Suppose ψ “ ψpt, xq is a sufficiently smooth spinor field supported
in the region tpt, xq : |x| ă t´ 1u, then it holds for s ě 2

sup
Hs

ˇ

ˇt3{2ψpt, xq
ˇ

ˇ À
ÿ

|J |ď2

›

›pLJψ
›

›

L2
f pHsq

, (2.5.9)

where pL denotes a modified Lorentz boost.

Theorem 2.5.2. Under the bootstrap assumptions (2.5.1), the neutrino field ψn in
(2.5.7), which satisfies

iγµBµψn “

ˆ

QpK;Kq ` gW
2
Wµ3σ

µ
LνL

0

˙

,

ψnpt0, ¨q “

ˆ

0
νL0

˙

,

admits the following estimates

}ps{tqpLJψn}L2
f pHsq

À ε` pCεq2, |J | ď N, (2.5.10)

sup
Hs

t1{2s|pLJψn| À ε` pCεq2, |J | ď N ´ 2. (2.5.11)

We revisit the proof of Theorem 1.7.7 in Chapter 1.

Proof. Step 1 : By multiplying ψ˚nγ
0 and γ0ψn to the Dirac equation of ψn and its

complex conjugate respectively, we obtain that

Btpψ
˚
nψq ` Bapψ

˚
nγ

0γaBµψnqψ
˚
nγ

0γµBµψn “ 0,
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which indicates
}ps{tqψn}L2

f pHsq
À ε. (2.5.12)

Step 3 : By an induction argument, we consider the case 1 ď |J | ď N ´ 2. Act pLJ

on (2.5.7) to get

γµBµppL
Jψnq “ ´Zµγ

µ
pLJψn ` rR, (2.5.13)

with
rR :“

ÿ

|J1|`|J2|ď|J |,|J1|ď|J |´1

QppLJ1K, pLJ1tψnu;L
J2Kq.

Using the energy estimates and the induction assumption

EH
ps, pLJψnq

ď EH
ps0, pL

Jψnq `

ż s

s0

ż

Hs̄

ps{tq
`

|ppLJψnq
˚γ0R̃| ` |R̃˚γ0

ppLJψnq|
˘

dxds̄

À ε2 `

ż s

s0

}ps̄{tqpLJψn}L2
f pHs̄q

ÿ

k,k1PK,|J1|`|J2|ď|J |
|J2|ď|J |´1

´

}pt{sqpLJ1k}L8pHs̄q

`

}ps{tqpLJ2ψn}L2
f pHs̄q

` }ps{tqpLJ2k1}L2
f pHs̄q

˘

¯

ds̄

À ε2 ` ε2
ż s

s0

s̄´3{2s̄δ}ps̄{tqpLJψn}L2
f pHs̄q

ds̄.

Recall that lower bound of EH implies

}ps{tqpLJψn}
2
L2
f pHsq

À ε2 ` pC1εq
2

ż s

s0

s̄´3{2s̄δ}ps̄{tqpLJψn}L2
f pHs̄q

ds̄. (2.5.14)

Thus it follows that (with C1ε ! 1{2)

}ps{tqpLJψn}L2
f pHsq

À ε, |J | ď N ´ 2. (2.5.15)

Step 4 : The above analysis shows for |J | ď N ´ 4

ÿ

|I|ď2

}ps{tqpLI pLJψn}L2
f pHsq

À ε. (2.5.16)

Thus by the Sobolev inequality in Proposition (2.5.1), we deduce

sup
Hs

t1{2s|pLJψn| À Cε, |J | ď N ´ 4. (2.5.17)
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Step 5 : We now consider the case |J | “ N ´ 1. An energy estimate yields

EH
ps, pLJψnq

ď ε2 `

ż s

s0

}ps̄{tqpLJψn}L2
f pHs̄q

´

ÿ

kPK,|J1|`|J2|ďN´1,
|J1|ą|J2|,|J2|ďN´4

}pLJ1k}L2
f pHs̄q

}pLJ2ψn}L8pHs̄q

`
ÿ

kPK,|J1|`|J2|ďN´1,
|J1|ď|J2|,|J2|ďN´2

}pt{sqpLJ1k}L8pHs̄q}ps{tqpL
J2ψn}L2

f pHs̄q

¯

ds̄

ď ε2 ` pC1εq
2

ż s

s0

s̄´3{2s̄δ}ps̄{tqpLJψn}L2
f pHs̄q

ds̄.

By Gronwall inequality this implies

}ps̄{tqpLJψn}L2
f pHs̄q

À ε` pC1εq
2. (2.5.18)

The same analysis also applies to the case |J | “ N . And repeating Step 4 gives
(2.5.11) in the case |J | ď N ´ 2.

As a consequence, we have the following estimates for νL.

Corollary 2.5.3. The neutrino νL satisfies

}ps{tqLJνL}L2
f pHsq

À ε` pC1εq
2, |J | ď N,

sup
Hs

t1{2s|LJνL| À ε` pC1εq
2, |J | ď N ´ 2.

(2.5.19)

2.5.3 Refined estimates

In this subsection we derive the refined estimates (2.5.4) and close our bootstrap

argument. For this to work we move to the transformed field ĂW ν
3 defined in (2.4.5),

which heuristically is of the form

ĂW ν
3 “ W ν

3 `Op|νL|2q, (2.5.20)
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and thus using the estimates for W ν
3 coming from (2.5.5) and (2.5.6), together with the

previous energy and sup-norm estimates for νL, the following estimates for ĂW ν
3 hold

}ps{tqBILJBµĂW
ν
3 , ps{tqBµB

ILJĂW ν
3 , B

ILJĂW ν
3 }L2

f pHsq
À C1εs

δ, |I| ` |J | ď N,

}B
ILJBµĂW

ν
3 , BµB

ILJĂW ν
3 }L2

f pHsq
À C1εs

δ, |I| ` |J | ď N ´ 1,

sup
Hs

´

t1{2s
ˇ

ˇBαB
ILJĂW ν

3 , B
ILJBαĂW

ν
3

ˇ

ˇ` t3{2
ˇ

ˇB
ILJĂW ν

3

ˇ

ˇ

¯

À C1εs
δ, |I| ` |J | ď N ´ 2,

sup
Hs

´

t3{2
ˇ

ˇBαB
ILJĂW ν

3 , B
ILJBαĂW

ν
3

ˇ

ˇ

¯

À C1εs
δ, |I| ` |J | ď N ´ 3.

(2.5.21)
Moreover, (2.4.5) indicates that any energy bounds (either of L2-type or of L8-type)

for W ν
3 are automatically true for ĂW ν

3 and vice verse.

Proof of refined estimates (2.5.4). We first look at the energy for νL in the case |I| `
|J | “ N

Eps, BILJνLq1{2

ď Eps0, B
ILJνLq

1{2
` C

ÿ

kPK

ż s

s0

`

}B
ILJpBkνLq}L2

f pHs̄q
` }B

ILJpkBνLq}L2
f pHs̄q

˘

ds̄.

By noting

ÿ

kPK

}B
ILJpBkνLq}L2

f pHs̄q

ď
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ďN´2, kPK

}pt{sqBI1LJ1Bk}L8pHs̄q
}ps{tqBI2LJ2νL}L2

f pHs̄q

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ěN´1, kPK

}ps{tqBI1LJ1Bk}L2
f pHs̄q

}pt{sqBI2LJ2νL}L8pHs̄q

À pC1εq
2s̄´3{2s̄δ ` pC1εq

2s̄´1`δ

À pC1εq
2s̄´1`δ,
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and the estimates
ÿ

kPK

}B
ILJpkBνLq}L2

f pHs̄q

ď
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ďN´2, kPK

}pt{sqBI1LJ1k}L8pHs̄q
}ps{tqBI2LJ2BνL}L2

f pHs̄q

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ěN´1, kPK

}B
I1LJ1k}L2

f pHs̄q
}pt{sqBI2LJ2BνL}L8pHs̄q

À pC1εq
2s̄´5{4,

we obtain
Eps, BILJνLq1{2 À ε` pC1εq

2sδ, |I| ` |J | “ N. (2.5.22)

Similarly for |I| ` |J | ď N ´ 1 we obtain

Eps, BILJνLq1{2 À ε` pC1εq
2. (2.5.23)

Next, in order to obtain estimates for W ν
3 , we first bound the energy for ĂW ν

3

Emps, BILJĂW ν
3 q

1{2
ď Emps0, B

ILJĂW ν
3 q

1{2
`

ż s

s0

}B
ILJpBµνLB

µνLq}L2
f pHs̄q

` }B
ILJQpK, BK;Kq}L2

f pHs̄q

À ε` pC1εq
2.

Next, recalling the definition (2.4.5) or the relation (2.5.20) we use Young’s inequal-
ity to obtain for all |I| ` |J | ď N

Emps, BILJW ν
3 q

1{2

ď 2Emps, BILJĂW ν
3 q

1{2
` 2Emps, BILJpν˚LνLqq1{2

À ε` pC1εq
2.

(2.5.24)

Till now the remaining terms need to handle are

k P K1 :“ K{tW ν
3 u.

But we find that the same way we estimate νL in the beginning of the proof applies to
all k P K1. Hence we get

Eps, BILJνLq1{2 À ε` pC1εq
2sδ |I| ` |J | “ N,

Eps, BILJνLq1{2 À ε` pC1εq
2, |I| ` |J | ď N ´ 1.

(2.5.25)
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By choosing C1 sufficiently large and ε sufficiently small such that C1ε ! 1{2, we
arrive at the refined bounds (2.5.4). This shows global existence and completes the
proof of Theorem 2.1.1 in the case gY “ 0.
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3.1 Introduction

Model problem. Systems of wave equations and Klein-Gordon equations are of great
importance in mathematics and physics. Examples in the field include the semilin-
ear Dirac-Proca equations and Klein-Gordon-Zakharov equations, and the quasilinear
Einstein-Klein-Gordon equations. In this chapter we will study the following semi-
linear coupled wave-Klein-Gordon system using the hyperboloidal foliation method of
LeFloch-Ma [44]. Consider2

´lu “ Fu :“ uv ` uBtv,

´lv ` v “ Fv :“ uv,
(3.1.1)

with initial data prescribed on the time slice t “ 2

`

u, Btu
˘

pt “ 2, ¨q “
`

u0, u1

˘

,
`

v, Btv
˘

pt “ 2, ¨q “
`

v0, v1

˘

.
(3.1.2)

Our aim is to prove that initial data, sufficiently small in some norm, yield global-
in-time solutions that decay back to the trivial solution. The main difficulty is that
there are no derivatives on the wave component u on the right-hand-side terms Fu and
Fv of equation (3.1.1), and thus the nonlinearities appear to decay insufficiently fast.
To be more precise, the best we can expect is that

}Fu}L2 “ }uv ` uBtv}L2 „ t´1, }Fv}L2 “ }uv}L2 „ t´1, (3.1.3)

both of which are not integrable.

Previous work and motivation. Before we demonstrate our techniques for treat-
ing (3.1.1), let us briefly discuss some previous work in the literature. Recall, in the

2l :“ ηαβBαBβ , with η “ diagp´1, 1, 1, 1q. Unless specified, Roman letters and Latin letters take
values in t0, 1, 2, 3u and t1, 2, 3u respectively, and Einstein summation convention is adopted.
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celebrated counterexample by John [33], that there exist wave equations with certain
nonlinearities that are quadratic in derivatives but which do not admit global-in-time
solutions. Nonetheless, a broad class of wave equations with nonlinearities, quadratic
in derivatives, satisfying the so-called null condition, as shown independently by Klain-
erman [40] and Christodoulou [8], do admit global-in-time solutions. The vector field
method, due to Klainerman, and the conformal method, due to Christodoulou, have
been two major approaches to studying wave equations. Other related versions of the
null condition have also been used to great effect, see for example [53, 54] and [? ].

By contrast, the Klein-Gordon equation requires a different analysis from the wave
equation. One key obstruction is that the scaling vector field S “ tBt ` xaBa does not
commute with the Klein-Gordon operator ´l`1, which thus prevents us from applying
the Klainerman-Sobolev inequality directly. Pioneering works by Klainerman using the
vector field method in [41], and by Shatah employing a normal form method in [66],
led the way in treating a wide class of Klein-Gordon-type equations.

Furthermore our study of the PDE (3.1.1) was motivated by other coupled wave-
Klein-Gordon systems in the literature and future work on Dirac-Klein-Gordon systems
[12]. For example, Tsutsumi and his collaborators studied the Dirac-Proca system
in [76] and the Klein-Gordon-Zakharov system in [64]. Katayama also investigated a
coupled wave-Klein-Gordon system with a large class of quadratic nonlinearities in [35].
With these in mind, our aim is to utilise the hyperboloidal foliation method developed
by LeFloch and Ma in [45], where the authors studied a quasilinear coupled wave-Klein-
Gordon system. See also the work of Ionescu and Pausader [31] for other efforts in this
direction.

Main result. Returning to our system (3.1.1), we find that we can treat the uv
nonlinearity appearing in Fu by transforming the variable u in a similar way to the
work of Tsutsumi in [76]. Note this is only at the expense of bringing a null form into
the new wave equation. As for the nonlinear term uBtv in Fu, we rewrite it as two
terms uBtv “ Btpuvq ´ vBtu, in which the former is a total derivative and the latter is
easier to deal with due to the derivative on the wave component. Then, following [35],
we split the wave equation into two new wave equations, and the strategy for handling
the uv-type nonlinearity applies once more. On the other hand, to treat the uv term
appearing in Fv of the Klein-Gordon equation, the novel idea is that we move the term
to the left hand side and treat v as a Klein-Gordon field with varying mass m “

?
1´ u.

This enables us to apply the techniques in [45].

We are now ready to state the main theorem.

Theorem 3.1.1 (Nonlinear stability of a wave-Klein-Gordon model). Consider the
system (3.1.1) and let N ě 8 be an integer. Then there exists ε0 ą 0 such that for all
ε P p0, ε0q and all compactly supported initial data pu0, u1, v0, v1q satisfying the smallness



104 3.1. Introduction

condition
}u0, v0}HN`1pR3q ` }u1, v1}HN pR3q ď ε, (3.1.4)

the initial value problem (3.1.1)–(3.1.2) admits a global-in-time solution pu, vq with

|upt, xq| À t´1, |vpt, xq| À t´3{2. (3.1.5)

For the proof of the main theorem, we employ the strategy introduced by LeFloch
and Ma in [45], which allows us to obtain robust pointwise decay for both wave and
Klein-Gordon components. We also apply a hyperboloidal conformal-type energy es-
timate for the wave component, which was first introduced by Ma and Huang in [61].
This enables us to obtain good L2-type bounds for the wave component u. All together,
our proof is shorter and yields better energy bounds for both wave and Klein-Gordon
components compared to those in [45]. The restriction to compact initial data can also
be removed, see for example [48, 47] or [42].

Generalisations of the main result. One can also easily show, though we will not
explicitly do so here, that Theorem 3.1.1 is also true for the following more general
system

´lu “ Qpu, v, Bv; v, Bvq,

´lv ` v “ Qpu;u, vq `QpBu, v, Bv; v, Bvq,
(3.1.6)

where we use the short-hand notation Qp¨ ¨ ¨ ; ¨ ¨ ¨ q to denote quadratic nonlinearities
involving interactions between one term from each side of the semicolon. Note further
that compared to the work of [64] and [35] a wider class of nonlinearities can be treated.
In [35, (2.14)] any nonlinearity for the wave equation involving at most one derivative,
needed to be of divergence form. This is not needed in our setting. We also remind one
that the u–u interaction term above was treated by Tsutsumi in [76]. Finally, it was
speculated in [44] that nonlinear interaction terms of the form

Qpu; v, Bvq

may lead to finite time blow-up. Thus this chapter partially answers their question by
showing that certain terms of this form do not lead to finite time blow-up.

The Klein-Gordon-Zakharov equations. Our result allows us to also deal with
the Klein-Gordon-Zakharov equations, which have been studied before using constant
time slices or phase-space methods in [64, 35, 75]. Moreover we could also treat some
Dirac-Klein-Gordon and Dirac-Proca type equations but we will discuss this in future
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work [12]. Recall the Klein-Gordon-Zakharov equations

´lu “
ÿ

a

∆|va|
2,

´lva ` va “ uva,

(3.1.7)

where the unknown u is real valued and va are complex valued for a “ 1, 2, 3. The
initial data are denoted by

`

u, Btu
˘

pt “ 2, ¨q “
`

up0q, up1q
˘

,
`

va, Btva
˘

pt “ 2, ¨q “
`

vp0qa , vp1qa
˘

, (3.1.8)

In order to apply the strategy of Theorem 3.1.1, we rewrite the equations (3.1.7) in the
following form

´lu “
ÿ

a

Bi

´

B
i
`

x2
a ` y

2
a

˘

¯

,

´lxa ` xa “ uxa,

´lya ` ya “ uya,

(3.1.9)

in which we use the notations xa :“ Repvaq and ya :“ Impvaq to denote the real part
and imaginary part of a complex number z, respectively.

We note that the regularity of u is one order less than that of va. This can be seen
from the initial data, which we consider the norm

}up0q}HN0 , }up1q}HN0´1 , }vp0qa }HN0`1 , }vp1qa }HN0 ,

with N0 some large integer. Thus equations (3.1.7) are semilinear equations. Note also
that the wave nonlinearity in (3.1.9) is of divergence form, and thus easier to handle
than that those in Theorem 3.1.1. Thus our method of proof applies to this system in
a very similar way and for which reason we omit the details.

Outline The rest of this chapter is organised as follows. In Section 3.2, we revisit
the basics of the hyperboloidal foliation method; next, the estimates for commutators
and null forms are given in Section 3.3; later on, we illustrate the techniques obtain-
ing pointwise decay estimates for wave and Klein-Gordon components in Section 3.4;
in Section 3.5, by initialising the bootstrap method, we provide some basic estimates
needed afterwards; we then derive refined estimates for Klein-Gordon and wave com-
ponents in Section 3.6 and Section 3.7 respectively; in the last section, we demonstrate
the proof of the main theorem, and give some remarks.
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3.2 Basics of the hyperboloidal foliation method

3.2.1 Hyperboloidal foliation of Minkowski spacetime

In order to introduce an energy functional for wave or Klein-Gordon components
on hyperboloids, we first need to recall some notation from [44] concerning the hy-
perboloidal foliation method. We adopt the signature p´,`,`,`q in the p3 ` 1q–
dimensional Minkowski spacetime, and we denote the point pt, xq “ px0, x1, x2, x3q in
Cartesion coordinates, with its spatial radius r :“ |x| “

a

px1q2 ` px2q2 ` px3q2. We
write Bα (for α “ 0, 1, 2, 3) for partial derivatives and

La :“ xaBt ` tBa, a “ 1, 2, 3 (3.2.1)

represent the Lorentz boosts. Throughout this chapter, we consider functions defined
in the interior of the future light cone K :“ tpt, xq : r ă t ´ 1u, with vertex p1, 0, 0, 0q.
We consider hyperboloidal hypersurfaces Hs :“ tpt, xq : t2 ´ r2 “ s2u with s ą 1. Also
Krs0,s1s :“ tpt, xq : s2

0 ď t2 ´ r2 ď s2
1; r ă t ´ 1u is used to denote subsets of K limited

by two hyperboloids Hs0 and Hs! with s0 ď s1.

The semi-hyperboloidal frame is defined by

B0 :“ Bt, Ba :“
La
t
“
xa

t
Bt ` Ba. (3.2.2)

Note that the vectors Ba generate the tangent space to the hyperboloids. We also
introduce the vector field BK :“ Bt ` px

a{tqBa, which is orthogonal to the hyperboloids.

For the semi-hyperboloidal frame above, the dual frame is given by θ0 :“ dt ´
pxa{tqdxa and θa :“ dxa. The (dual) semi-hyperboloidal frame and the (dual) natural
Cartesian frame are connected by the relation

Bα “ Φα1

α Bα1 , Bα “ Ψα1

α Bα1 , θα “ Ψα
α1dx

α1 , dxα “ Φα
α1θ

α1 , (3.2.3)

where the transition matrix (Φβ
α) and its inverse (Ψβ

α) are given by

pΦβ
αq “

¨

˚

˚

˝

1 0 0 0
x1{t 1 0 0
x2{t 0 1 0
x3{t 0 0 1

˛

‹

‹

‚

(3.2.4)

and

pΨβ
αq “

¨

˚

˚

˝

1 0 0 0
´x1{t 1 0 0
´x2{t 0 1 0
´x3{t 0 0 1

˛

‹

‹

‚

. (3.2.5)
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3.2.2 Energy estimates on hyperboloids

Following [45], we first introduce the energy Em, in the Minkowski background, for
a function φ defined on a hyperboloid Hs:

Emps, φq :“

ż

Hs

´

`

Btφ
˘2
`
ÿ

a

`

Baφ
˘2
` 2pxa{tqBtφBaφ`m

2φ2
¯

dx

“

ż

Hs

´

`

ps{tqBtφ
˘2
`
ÿ

a

`

Baφ
˘2
`m2φ2

¯

dx

“

ż

Hs

´

`

BKφ
˘2
`
ÿ

a

`

ps{tqBaφ
˘2
`
ÿ

aăb

`

t´1Ωabφ
˘2
`m2φ2

¯

dx,

(3.2.6)

in which Ωab :“ xaBb´x
bBa the rotational vector field, BK :“ Bt`px

a{tqBa the orthogonal
vector field, and we denote Eps, φq :“ E0ps, φq for simplicity. In the above, the integral
in L1pHsq is defined from the standard (flat) metric in R3, i.e.

}φ}L1
f pHsq

:“

ż

Hs

|φ| dx “

ż

R3

ˇ

ˇφp
?
s2 ` r2, xq

ˇ

ˇ dx. (3.2.7)

Next, we adapt the energy estimates to our situation.

Proposition 3.2.1 (Energy estimate for wave equation). For all s ě 2, it holds that

Eps, uq1{2 ď Ep2, uq1{2 `

ż s

2

}lu}L2
f pHs1 q

ds1 (3.2.8)

for every sufficiently regular function u, which is defined and supported in the region
Kr2,ss.

For the proof, one refers to [45].

Proposition 3.2.2 (Energy estimate for Klein-Gordon equation with varying mass).
Let v be a solution to the Klein-Gordon equation with mass 1

´lv ` v “ uv ` f, (3.2.9)

which can also be regarded as a Klein-Gordon equation with varying mass 1´ u

´lv ` p1´ uqv “ f, (3.2.10)

defined and supported in the region Kr2,ss, and u is a sufficiently regular function defined
and supported in the same region Kr2,ss, which is assumed to be small

|u| ď
1

10
. (3.2.11)
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Then the energy on the hyperboloid Hs can be controlled by either

E1ps, vq
1{2
ď E1p2, vq

1{2
`

ż s

2

´

}uv}L2
f pHs1 q

` }f}L2
f pHs1 q

¯

ds1, (3.2.12)

or

E1ps, vq
1{2
ď 2E1p2, vq

1{2
` 2

ż s

2

´

}ps1{tqBtuv}L2
f pHs1 q

` }f}L2
f pHs1 q

¯

ds1. (3.2.13)

The energy estimate (3.2.13) is better than (3.2.12) in the cases where Btu decays
faster than u, which is the case when u is a solution to some wave equation.

Proof. The proof of the energy estimate (3.2.12) is standard and we omit it. In order to
prove the energy estimate (3.2.13), we first test the equation (3.2.10) by the multiplier
Btv and write the resulting equation in the following favorable form

1

2
Bt
`

pBtvq
2
`
ÿ

a

pBavq
2
` p1´ uqv2

˘

`
ÿ

a

Ba
`

´ BtvBav
˘

“ ´
1

2
v2
Btu` Btvf. (3.2.14)

We then integrate the identity (3.2.14) over the region Kr2,ss and do integration by parts
to arrive at

E?1´ups, vq
1{2 d

ds
E?1´ups, vq

1{2

“

ż

Hs

ps{tq
`

´
1

2
v2
Btu` Btvf

˘

dx

ď }ps{tqBtuv}L2
f pHsq

}v}L2
f pHsq

` }f}L2
f pHsq

}ps{tqBtv}L2
f pHsq

.

(3.2.15)

Next by recalling the assumption that |u| ď 1{10, we have

9

10
E1ps, vq

1{2
ď E?1´ups, vq

1{2
ď

11

10
E1ps, vq

1{2,

which leads to

E?1´ups, vq
1{2
ď E?1´up2, vq

1{2
`

11

10

ż s

2

´

}vBtu}L2pHs1 q
` }f}L2pHs1 q

¯

ds1,

and finally (3.2.13).

3.2.3 Conformal-type energy estimates on hyperboloids

We now introduce a conformal-type energy which is adapted to the hyperboloidal
foliation setting, which is due to Ma and Huang in [61]. This lemma will be key to a
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robust estimate of the L2-type norm for the wave component u.

Lemma 3.2.3. Define the conformal-type energy of a sufficiently regular function u,
which is supported in the region K “ tpt, xq : |x| ă t´ 1u, by

Econpu, sq :“

ż

Hs

´

ÿ

a

`

sBau
˘2
`
`

Ku` 2u
˘2
¯

dx, (3.2.16)

in which we used the notation of the weighted inverted time translation

Ku :“
`

sBs ` 2xaBa
˘

u.

Then it holds

Econpu, sq
1{2
ď Econpu, s0q

1{2
` 2

ż s

s0

s1}lu}L2
f pHs1 q

ds1, (3.2.17)

with moreover
›

›ps{rqu
›

›

L2
f pHsq

ď Econpu, sq
1{2. (3.2.18)

3.2.4 Sobolev-type and Hardy-type inequality

We first state a Sobolev-type inequality adapted to the hyperboloids, which is of
vital importance for proving sup-norm estimates for both wave and Klein-Gordon com-
ponents. For the proof, one refers to either [44] or [45] for details.

Proposition 3.2.4. For all sufficient smooth functions u “ upt, xq supported in tpt, xq :
|x| ă t´ 1u and for all s ě 2, one has

sup
Hs

ˇ

ˇt3{2upt, xq
ˇ

ˇ À
ÿ

|J |ď2

}LJu}L2
f pHsq

, (3.2.19)

in which the symbol L denotes the Lorentz boosts and J is a multi-index. We will also
frequently make use of the following identity which follows from (3.2.19) and standard
commutator estimates:

sup
Hs

ˇ

ˇst1{2upt, xq
ˇ

ˇ À
ÿ

|J |ď2

}ps{tqLJu}L2
f pHsq

, (3.2.20)

In order to control the L2–type of norm for the wave component u, we need the
following Hardy-type inequality on the hyperboloidal foliation, see [44] for instance.

Lemma 3.2.5. Assume the function u is defined and supported in the region tpt, xq :
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|x| ă t´ 1u and is sufficiently regular, then for all s ě 2, one has

}r´1u}L2
f pHsq

À
ÿ

a

}Bau}L2
f pHsq

. (3.2.21)

3.3 Estimates for commutators and null forms

3.3.1 Commutator estimates

We restate the estimates for the commutators, which are proven in [44] and [45].

Lemma 3.3.1. Assume a function u defined in the region K is regular enough, then
with the generic constant Cp|I|, |J |q, we have

ˇ

ˇrB
ILJ , Bαsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

|J 1|ă|J |,β

ˇ

ˇBβB
ILJ

1

u
ˇ

ˇ, (3.3.1)

ˇ

ˇrB
ILJ , Basu

ˇ

ˇ ď Cp|I|, |J |q
´

ÿ

|I 1|ă|I|,|J 1|ă|J |,b

ˇ

ˇBbB
I 1LJ

1

u
ˇ

ˇ` t´1
ÿ

|I 1|ď|I|,|J 1|ď|J |

ˇ

ˇB
I 1LJ

1

u
ˇ

ˇ

¯

,

(3.3.2)
ˇ

ˇrB
ILJ , Bαsu

ˇ

ˇ ď Cp|I|, |J |q
´

ÿ

|I 1|ă|I|,|J 1|ă|J |,β

ˇ

ˇBβB
I 1LJ

1

u
ˇ

ˇ` t´1
ÿ

|I 1|ď|I|,|J 1|ď|J |,β

ˇ

ˇBβB
I 1LJ

1

u
ˇ

ˇ

¯

,

(3.3.3)
ˇ

ˇrB
ILJ , BαBβsu

ˇ

ˇ ď Cp|I|, |J |q
ÿ

|I 1|ď|I|,|J 1|ă|J |,γ,γ1

ˇ

ˇBγBγ1B
I 1LJ

1

u
ˇ

ˇ, (3.3.4)

ˇ

ˇB
ILJpps{tqBαuq

ˇ

ˇ ď |ps{tqBαB
ILJu| ` Cp|I|, |J |q

ÿ

|I 1|ď|I|,|J 1|ď|J |,β

ˇ

ˇps{tqBβB
I 1LJ

1

u
ˇ

ˇ. (3.3.5)

Recall here that Greek indices α, β P t0, 1, 2, 3u and Latin indices a, b P t1, 2, 3u.

3.3.2 Null form estimates

The estimates for null forms are also restated for convenience.

Lemma 3.3.2. For the quadratic null term BαuBαv with sufficiently regular functions
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u and v, one has

ˇ

ˇB
ILJpBαuBαvq

ˇ

ˇ À
ÿ

|I1|`|I2|ď|I|,
|J1|`|J2|ď|J |,

a,β

´

ˇ

ˇB
I1LJ1BauB

I2LJ2Bβv
ˇ

ˇ`
ˇ

ˇB
I1LJ1BβuB

I2LJ2Bav
ˇ

ˇ

¯

` ps{tq2
ÿ

|I1|`|I2|ď|I|,
|J1|`|J2|ď|J |

ˇ

ˇB
I1LJ1BtuB

I2  LJ2Btv
ˇ

ˇ.

(3.3.6)

One refers to [44] for the proof.

3.4 Tools for pointwise estimates for wave and Klein-

Gordon components

3.4.1 Sup-norm estimates for wave components

We recall the following lemma from [45], which is essential in proving the sup-norm
bound for wave components. An alternative proof of Lemma 3.4.1 is also found in [2].

Lemma 3.4.1 (Pointwise estimates for wave components). Suppose u is a spatially
compactly supported solution to the wave equation

´lu “ f,

upt0, xq “ Btupt0, xq “ 0,
(3.4.1)

with f spatially compactly supported and satisfying

|f | ď Cf t
´2´ν

pt´ rq´1`µ, (3.4.2)

for 0 ă µ ď 1{2 and 0 ă ν ď 1{2. Then we have

|upt, xq| À
Cf
νµ
pt´ rqµ´νt´1, (3.4.3)

where Cf is some constant.

3.4.2 Sup-norm estimates for Klein-Gordon components

Following the pointwise estimates for Klein-Gordon components in the hyperboloidal
foliation setting, which were first introduced in [45], we adapt it to our case where the
mass of the Klein-Gordon field varies.
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Proposition 3.4.2 (Pointwise estimates for Klein-Gordon components with varying
mass). Assume v is a sufficiently regular and spatially compactly supported solution to
the Klein-Gordon equation

´lv ` p1´ uqv “ f,

v|H2 “ v0, Btv|H2 “ v1,
(3.4.4)

with the assumption |u| ď 1{10, then one has

s3{2
ˇ

ˇvpt, xq| ` ps{tq´1s3{2
|BKvpt, xq

ˇ

ˇ À V pt, xq, (3.4.5)

with

V pt, xq :“

#

e
şs
s0
| d
dλ
upλt{s,λx{sq| dλ

´

}v0}L8pH2q ` }v1}L8pH2q ` F psq
¯

, r{t ď 3{5,

e
şs
s0
| d
dλ
upλt{s,λx{sq| dλ

F psq, 3{5 ď r{t ď 1,
(3.4.6)

and

s0 :“

#

2, r{t ď 3{5,
b

t`r
t´r
, 3{5 ď r{t ď 1,

(3.4.7)

and

F psq :“

ż s

s0

ˇ

ˇ

ˇ
Rrvspλt{s, λx{sq ` λ3{2fpλt{s, λx{sq

ˇ

ˇ

ˇ
dλ, (3.4.8)

where

Rrvs :“ s3{2
ÿ

BaBav `
xaxb

s1{2
BaBbv `

3

4s1{2
v `

3xa

s1{2
Bav. (3.4.9)

The proof of Proposition 3.4.2 is based on the decomposition result in Lemma 3.4.3
and an estimate of ODE in Lemma 3.4.4, both stated below. We refer to [45] for the
detailed proofs, but give a simpler proof of Lemma 3.4.4 below, which provides a neater
expression of the estimate for the ODE.

Lemma 3.4.3. Assume v is a sufficiently regular solution to the Klein-Gordon equation
(3.4.4), and let

wt,xpλq :“ λ3{2vpλt{s, λx{sq, pt, xq P K,

then the following second-order ODE with respect to λ holds

d2

dλ2
wt,xpλq `

`

1´ upλt{s, λx{sq
˘

wt,xpλq “
`

Rrvs ` s3{2f
˘

pλt{s, λx{sq. (3.4.10)

Lemma 3.4.4. Consider the second-order ODE

z2pλq `
`

1´Gpλq
˘

zpλq “ kpλq,

zps0q “ z0, z1ps0q “ z1, |Gpλq| ď 1{10,
(3.4.11)
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in which k is assumed to be integrable, then we have the following pointwise estimate

`

pz1q2psq`p1´Gpsqqz2
psq

˘1{2
À e

şs
s0
|G1pλq| dλ

´

`

pz1q2p0q`z2
p0q

˘1{2
`

ż s

s0

kpλq dλ
¯

. (3.4.12)

Proof. We set Y pλq “
`

pz1q2pλq` p1´Gpλqqz2pλq
˘1{2

, and then by multiplying z1pλq in
(3.4.11), we get

d

dλ
Y 2
pλq “ z1pλqkpλq ´G1pλqz2

pλq

ď Y pλq
`

kpλq ` |G1|Y pλq
˘

.
(3.4.13)

In order to proceed, we divide Y pλq in the above inequality and, integrate to get

Y psq ď Y ps0q `

ż s

s0

`

kpλq ` |G1|Y pλq
˘

dλ. (3.4.14)

Finally, we apply Gronwall-type inequality from Lemma 3.4.5 to end the proof.

We have used the following standard Gronwall inequality.

Lemma 3.4.5. Let u(t) be continuous and nonnegative in r0, T s, and satisfy

uptq ď A`

ż t

0

´

apsqupsq ` bpsq
¯

ds, (3.4.15)

where aptq and bptq are nonnegative integrable functions in r0, T s and A is nonnegative
constant. Then it holds

uptq ď
´

A`

ż t

0

bpsq ds
¯

e
şt
0 apsq ds, t P r0, T s. (3.4.16)

3.5 Bootstrap method

Before beginning the bootstrap argument, we recall the theorem we will be proving.

Theorem 3.5.1. Consider the system

´lu “ uv ` uBtv,

´lv ` v “ uv,
(3.5.1)

whose initial data are prescribed on the time slice t “ 2

`

u, Btu
˘

p2, ¨q “
`

u0, u1

˘

,
`

v, Btv
˘

p2, ¨q “
`

v0, v1

˘

.
(3.5.2)
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Let N be a sufficiently large integer, for example N ě 8 suffices. Then there exists
ε0 ą 0 such that for all ε P p0, ε0q and all compactly supported initial data pu0, u1, v0, v1q

satisfying the smallness condition

}u0, v0}HN`1pR3q ` }u1, v1}HN pR3q ď ε, (3.5.3)

the initial value problem (3.1.1)–(3.1.2) admits a global-in-time solution pu, vq with

|upt, xq| À t´1, |vpt, xq| À t´3{2. (3.5.4)

3.5.1 Bootstrap assumption

We assume that the following bootstrap assumptions hold in the interval r2, s1s

Eps, BILJuq1{2 ď C1ε, |I| ` |J | ď N ´ 1, (3.5.5a)

Eps, BIuq1{2 ď C1εs
δ, |I| “ N, (3.5.5b)

Eps, BILJuq1{2 ď C1εs
|J |δ, |I| ` |J | ď N, |J | ě 1 (3.5.5c)

E1ps, B
ILJvq1{2 ď C1εs

|J |δ, |I| ` |J | ď N, (3.5.5d)

}ps{tqBILJu}L2
f pHsq

ď C1εs
1{2`|J |δ, |I| ` |J | ď N, (3.5.5e)

|B
ILJu| ď C1εt

´1s|J |δ, |I| ` |J | ď N ´ 4, (3.5.5f)

|B
ILJv| ď pC1εq

1{2t´3{2s|J |δ, |I| ` |J | ď N ´ 4, (3.5.5g)

in which C1 is some big constant which is fixed once and for all, δ is some fixed small
constant, i.e. 0 ă δ ! 1, and s1 is defined by

s1 :“ supts : (3.5.5) holdu.

We recall that the fact s1 ą 2 follows from the local existence result, which is clas-
sical, see for example [44, Section 11]. And importantly, we note that C1 and δ are
independent of s1.

In order to prove the stability result stated in Theorem 3.1.1, it suffices to demon-
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strate the refined energy bounds below

Eps, BILJuq1{2 ď
1

2
C1ε, |I| ` |J | ď N ´ 1,

Eps, BIuq1{2 ď
1

2
C1εs

δ, |I| “ N,

Eps, BILJuq1{2 ď
1

2
C1εs

|J |δ, |I| ` |J | ď N, |J | ě 1,

E1ps, B
ILJvq1{2 ď

1

2
C1εs

|J |δ, |I| ` |J | ď N,

}ps{tqBILJu}L2
f pHsq

ď
1

2
C1εs

1{2`|J |δ, |I| ` |J | ď N,

|B
ILJu| ď

1

2
C1εt

´1s|J |δ, |I| ` |J | ď N ´ 4,

|B
ILJv| ď

1

2
pC1εq

1{2t´3{2s|J |δ, |I| ` |J | ď N ´ 4.

(3.5.6)

Note that the bounds in (3.5.6) indicate that s1 cannot be of finite value, which thus
completes the proof of a global-in-time solution stated in the main Theorem 3.1.1.

3.5.2 Direct estimates

Direct consequences of (3.5.5a) and (3.5.5d) are the following:

|B
ILJBu| ` |BBILJu| À C1εt

´1{2s´1, |I| ` |J | ď N ´ 3,

|B
ILJv| À C1εt

´3{2sp|J |`2qδ, |I| ` |J | ď N ´ 2.
(3.5.7)

These follow from the Sobolev–type inequality of Proposition 3.2.4 and estimates for
commutators in Lemma 3.3.1.

Assumptions (3.5.5a)–(3.5.5c) also imply the following L2–type estimates

}ps{tqBILJBu}L2
f pHsq

` }ps{tqBBILJu}L2
f pHsq

À C1ε, |I| ` |J | ď N ´ 1,

}ps{tqBILJBu}L2
f pHsq

` }ps{tqBBILJu}L2
f pHsq

À C1εs
δ, |I| “ N,

}ps{tqBILJBu}L2
f pHsq

` }ps{tqBBILJu}L2
f pHsq

À C1εs
|J |δ, |I| ` |J | “ N, |J | ě 1.

(3.5.8)
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3.6 Refined estimates for the Klein-Gordon compo-

nent

3.6.1 Refined energy estimates for v

We show here the refined estimates for the Klein-Gordon component, and we will
see that the most difficult part is to get the refined ones for BIv. The difficulty comes
from the integral of

ż s

2

s1´1 ds1

diverges, but we can circumvent it by moving the nonlinear term uv in the Klein-Gordon
equation in (3.1.1) to the left hand side and then regarding the mass of v as the varying
one 1´ u.

Lemma 3.6.1. By utilising the notation of commutators rA,Bsu :“ ApBuq ´ BpAuq,
we have

›

›r1´ u, BILJ sv
›

›

L2
f pHsq

À pC1εq
3{2s´1`|J |δ, |I| ` |J | ď N, (3.6.1)

and furthermore, we have

›

›r1´ u, BIsv
›

›

L2
f pHsq

À pC1εq
3{2s´3{2, |I| ď N. (3.6.2)

Proof. First note the expansion of the commutator

r1´ u, BILJ sv “
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě1

B
I1LJ1uBI2LJ2v.

For the case of |J | ě 1, we conduct the following

›

›r1´ u, BILJ sv
›

›

L2
f pHsq

À
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě|I2|`|J2|

}ps{tqBI1LJ1u}L2
f pHsq

}pt{sqBI2LJ2v}L8pHsq

`
ÿ

I1`I2“I,J1`J2“J
1ď|I1|`|J1|ď|I2|`|J2|

}B
I1LJ1u}L8pHsq}B

I2LJ2v}L2
f pHsq

,

and the L2–type estimates for u in (3.5.5) verifies

›

›r1´ u, BILJ sv
›

›

L2
f pHsq

À
ÿ

J1`J2“J

C1εs
1{2`|J1|δpC1εq

1{2t´1{2s´1`|J2|δ `C1εt
´1s|J1|δC1εs

|J2|δ,

which leads to (3.6.1).
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For the proof of (3.6.2), we proceed in the same way but pay attention to the fact
that

›

›ps{tqBI1u
›

›

L2
f pHsq

À C1ε, 1 ď |I1| ď N,
›

›ps{tqBI1u
›

›

L8pHsq
À C1εt

´3{2, 1 ď |I1| ď N ´ 4.

Proposition 3.6.2 (Refined energy estimates for v). Consider the Klein-Gordon equa-
tion in (3.1.1) and assume the bounds in (3.5.5) hold, then we have the following refined
ones

E1ps, B
ILJvq1{2 À ε` pC1εq

3{2s|J |δ, |I| ` |J | ď N. (3.6.3)

Proof. We first act BILJ on the Klein-Gordon equation in (3.1.1) to get

´lBILJv ` p1´ uqBILJv “
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě1

B
I1LJ1uBI2LJ2v.

We then apply the energy estimate (3.2.13) for Klein-Gordon equations with varying
masses and use Lemma 3.6.1 to show

E1ps, B
ILJvq1{2

ď 2Ep2, BILJvq1{2 ` 2

ż s

2

´

}ps1{tqBtuB
ILJv}L2

f pHs1 q
`
›

›r1´ u, BILJ sv
›

›

L2
f pHsq

ds1

À ε`

ż s

2

´

}Btu}L8pHs1 q
}B
ILJv}L2

f pHs1 q
`

ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě1

}B
I1LJ1uBI2LJ2v}L2

f pHs1 q

¯

ds1.

(3.6.4)
Successively, in the case of |J | ě 1, it is true that

E1ps, B
ILJvq1{2 À ε` pC1εq

3{2

ż s

2

s1´1`|J |δ ds1 À ε` pC1εq
3{2s|J |δ, (3.6.5)

while in the case of |J | “ 0, better estimates on BI1u with |I1| ě 1 enable us to obtain

E1ps, B
ILJvq1{2 À ε` pC1εq

3{2

ż s

2

s1´3{2`δ ds1 À ε` pC1εq
3{2, (3.6.6)

which finishes the proof.

3.6.2 Refined pointwise estimates for v

We now prove the refined sup-norm bounds for the Klein-Gordon component v,and
we first prepare some lemmas which will be of help.
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Lemma 3.6.3. The solution u to our wave equation satisfies

e
şs
s0
| d
dλ
upλt{s,λx{sq| dλ

À 1. (3.6.7)

Proof. We observe that

d

dλ
upλt{s, λx{sq “ pt{sqBKupλt{s, λx{sq,

and, on the other hand, we have

BKupt, xq “
s2

t2
Btupt, xq `

xa

t2
Laupt, xq.

Hence by recalling the pointwise bootstrap (3.5.5f) of u that

|Laupt, xq| ď C1εt
´1sδ,

we find
ˇ

ˇpt{sqBKupt, xq
ˇ

ˇ À C1εs
´3{2.

This implies that
ˇ

ˇ

ˇ

d

dλ
upλt{s, λx{sq

ˇ

ˇ

ˇ
À C1ελ

´3{2,

and hence the completeness of the proof.

Lemma 3.6.4. We have the estimate for RrBILJvs in the region Kr2,s1s that

ˇ

ˇRrBILJvspλt{s, λx{sq
ˇ

ˇ À C1εps{tq
3{2λ´3{2`Nδ, |I| ` |J | ď N ´ 4. (3.6.8)

The proof can be found in [45].

One last ingredient is the commutator estimate stated below.

Lemma 3.6.5. The following estimates for the the commutator are valid

ˇ

ˇ

`

r1´ u, BILJ sv
˘

pλt{s, λx{sq
ˇ

ˇ À pC1εq
3{2
ps{tq5{2λ´5{2`|J |δ, |I| ` |J | ď N ´ 4, (3.6.9)

moreover, in the case of |J | “ 0, one has

ˇ

ˇ

`

r1´ u, BIsv
˘

pλt{s, λx{sq
ˇ

ˇ À pC1εq
3{2
ps{tq2λ´3, |I| ď N ´ 4. (3.6.10)

Proof. First recall the expansion of the commutator

r1´ u, BILJ sv “ ´
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě1

B
I1LJ1uBI2LJ2v.
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Next recall the pointwise estimates in (3.5.5) and they give

`

r1´ u, BILJ sv
˘

pt, xq À
ÿ

J1`J2“J

C1εt
´1s|J1|δpC1εq

1{2t´3{2s|J2|δ

À pC1εq
3{2t´5{2s|J |δ “ pC1εq

3{2
ps{tq5{2s´5{2`|J |δ,

which finishes the proof of (3.6.9).

For the proof of (3.6.10), we proceed in the same way but recall the estimate below
from (3.5.7)

|B
I1u| À C1εt

´1{2s´1, 1 ď |I1| ď N ´ 4.

We are in a position to give the proof of the refined sup-norm bounds for the Klein-
Gordon component.

Proposition 3.6.6 (Refined pointwise estimates for v). The following estimates are
valid

ˇ

ˇB
ILJv

ˇ

ˇ`
ˇ

ˇpt{sqBKB
ILJv

ˇ

ˇ À C1εt
´3{2s|J |δ, |I| ` |J | ď N ´ 4. (3.6.11)

Proof. We act BILJ on the Klein-Gordon equation in (3.1.1) to get

´lBILJv ` p1´ uqBILJv “ r1´ u, BILJ sv.

We have

F psq ď

ż s

s0

´

ˇ

ˇRrBILJvspλt{s, λx{sq
ˇ

ˇ` λ3{2
ˇ

ˇr1´ u, BILJ sv
ˇ

ˇpλt{s, λx{sq
¯

dλ,

in which F psq was defined in (3.4.8) in Proposition 3.4.2. Then by recalling the estimate
(3.6.8) and the commutator estimates (3.6.10) from the previous two Lemmas, we have

F psq À C1εps{tq
3{2s|J |δ,

which leads to the bound

|B
ILJvpt, xq| À s´3{2

|F | À C1εt
´3{2s|J |δ.

As a consequence, we have

|BB
ILJv| À C1εt

´1{2s´1`|J |δ, |I| ` |J | ď N ´ 4, (3.6.12)
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which is due to the following two identities (see also [45]):

Bt “
t2

s2

`

BK ´ px
a
{tqBa

˘

, Ba “ ´
txa

s2
BK `

xaxb

t2
Bb ` Ba.

We note that (3.6.12) is used when we estimate the pointwise decay of the null form
BαuB

αv in (3.7.10) below.

3.7 Refined estimates for the wave component

3.7.1 Overview of the strategy on treating u

If we deal directly with the nonlinearity uv for the wave equation in (3.1.1), it is
very difficult to get either desired energy estimates or pointwise estimates. Due to this
difficulty, we are motivated to do a transformation and seek for a new unknown which
satisfies a wave equation with good nonlinearity, and which meanwhile is close to the
original wave component u up a higher order correction term. The idea to treat the
Klein-Gordon field is similar as the use of a normal form transformation by Shatah
[66] combined with the technique used to deal with wave–wave interaction used by
Tsutsumi [76]. But before we do the transformation, we find it necessary to first split
the wave equation into two, which agrees with the special structure of the equation for
u.

Proposition 3.7.1. Let pu, vq be a solution to the model problem (3.1.1)

´lu “ uv ` uBtv,

´lv ` v “ uv,
`

u, Btu
˘

p2, ¨q “
`

u0, u1

˘

,
`

v, Btv
˘

p2, ¨q “
`

v0, v1

˘

,

then we can split u into the following form

u “ U1 ` BtU2, (3.7.1)

in which U1 and U2 are solutions to the two wave equations below:

´lU1 “ uv ´ vBtu,
`

U1, BtU1

˘

p2, ¨q “
`

u0, u1 ` u0v0

˘

,
(3.7.2)

and
´lU2 “ uv,

`

U2, BtU2

˘

p2, ¨q “
`

0, 0
˘

.
(3.7.3)

We recall that this key observation of splitting as in (3.7.1) is due to Katayama [35].
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Next, we do a transformation to make the nonlinearities in the U1 and U2 equations
easier to deal with.

Proposition 3.7.2. Consider the wave equations of U1 and U2 in Proposition 3.7.1,
and set

rU1 :“ U1 ` uv, rU2 :“ U2 ` uv,

then the new unknowns rU1 and rU2 satisfy wave equations with new nonlinearities, which
are easy to handle, i.e.

´lrU1 “ ´B
αuBαv ´ vBtu` u

2v ` uv2, (3.7.4)

and
´lrU2 “ ´B

αuBαv ` u
2v ` uv2. (3.7.5)

Proof. The proof follows by simple calculations. We only do it for rU2

´lrU2 “ ´lpU2 ` uvq “ ´lU2 ´ B
αuBαv ` p´luqv ` up´lv ` vq ´ uv,

then by utilising the equations in (3.7.3), we finally arrive at (3.7.5).

The following consequences follow immediately, which say about that U ’s are very
close to rU ’s.

Lemma 3.7.3. Assume U1 and U2 are solutions to (3.7.2) and (3.7.3) respectively, and
let the bootstrap assumptions in (3.5.5) hold, then it verifies for all s P r2, s1s that

1

2
Eps, BILJUpq

1{2
ďEps, BILJ rUpq

1{2
ď 2Eps, BILJUpq

1{2, |I| ` |J | ď N,

1

2
Econps, B

ILJUpq
1{2
ďEconps, B

ILJ rUpq
1{2
ď 2Econps, B

ILJUpq
1{2, |I| ` |J | ď N,

|B
ILJpUp ´ rUpq| ď C1εt

´3{2, |I| ` |J | ď N ´ 4,
(3.7.6)

for p “ 1, 2.

Proof. The proof follows by the fact that the difference between Up and rUp is a quadratic
term uv, which has very good decay property.

3.7.2 Estimates of the U1 part

We are now about to derive various estimates for U1, which will be based on the
analysis of the new unknown rU1. We start by a simple lemma, estimating vBtu.
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Lemma 3.7.4. Let the bootstrap assumptions in (3.5.5) be true, then it holds

›

›B
ILJpvBtuq

›

›

L2
f pHsq

À pC1εq
3{2s´3{2`|J |δ, |I| ` |J | ď N, (3.7.7)

and
ˇ

ˇB
ILJpvBtuq

ˇ

ˇ À pC1εq
3{2t´2s´1`|J |δ, |I| ` |J | ď N ´ 4. (3.7.8)

Proof. We directly do the estimates

›

›B
ILJpvBtuq

›

›

L2
f pHsq

ď
ÿ

I1`I2“I
J1`J2“J

›

›B
I1LJ1BtuB

I2LJ2v
›

›

L2
f pHsq

ď
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ď|I2|`|J2|

›

›B
I1LJ1Btu}L8pHsq

›

›B
I2LJ2v

›

›

L2
f pHsq

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě|I2|`|J2|

›

›ps{tqBI1LJ1Btu}L2
f pHsq

›

›pt{sqBI2LJ2v
›

›

L8pHsq
,

and finally the basic estimates in Subsection 3.5.2 completes the proof of (3.7.7).

For the sup-norm bound, note that

ˇ

ˇB
ILJpvBtuq

ˇ

ˇ ď
ÿ

I1`I2“I
J1`J2“J

ˇ

ˇB
I1LJ1BtuB

I2LJ2v
ˇ

ˇ,

and then it follows from the bootstrap assumptions (3.5.5) as well as the pointwise
estimates (3.5.7) for BI1LJ1Btu.

Lemma 3.7.5. We have
›

›

›
B
ILJ

`

´ B
αuBαv ´ vBtu` u

2v ` uv2
˘

›

›

›

L2
f pHsq

À pC1εq
3{2s´3{2`|J |δ, |I| ` |J | ď N,

(3.7.9)
as well as

ˇ

ˇ

ˇ
B
ILJ

`

´ B
αuBαv ´ vBtu` u

2v ` uv2
˘

ˇ

ˇ

ˇ
À pC1εq

3{2t´2s´1`|J |δ, |I| ` |J | ď N ´ 4.

(3.7.10)

Proof. The terms are either null, Btuv or cubic. Since Btuv is already treated in
Lemma 3.7.4, one refers to Lemma 3.3.2 for more details on treating null forms.

Proposition 3.7.6 (Energy estimates for U1). Consider the wave equation in (3.7.2)
and assume the bounds in (3.5.5) hold, then we have the following energy estimates for
U1

Eps, BILJU1q
1{2
À ε` pC1εq

3{2, |I| ` |J | ď N. (3.7.11)
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Proof. Firstly, by (3.7.6), we know

Ep2, BILJ rU1q
1{2
ď 2ε.

Then recall the energy estimates (3.2.8) for wave equations and we easily obtain

Eps, BILJ rU1q
1{2

ď Ep2, BILJ rU1q
1{2
`

ż s

2

›

›

›
B
ILJ

`

´ B
αuBαv ´ Btuv ` u

2v ` uv2
˘

›

›

›

L2
f pHs1 q

ds1

À ε` pC1εq
3{2,

in which the last inequality is due the estimate (3.7.9). By recalling the equivalence

relation (3.7.6) between U1 and rU1 we complete the proof.

The ideas of the proofs for the two propositions below are very similar to the one
above, i.e. we can get good estimates for the auxiliary unknown rU1 easily, and then
an application of the equivalence relation (3.7.6) in turn gives us good estimates of the
unknown U1. And we omit the proofs for the following two propositions.

Proposition 3.7.7 (Conformal-type energy estimates for U1). The conformal-type en-
ergy introduced in Subsection 3.2.3 satisfies

Econps, B
ILJU1q

1{2
À ε` pC1εq

3{2s1{2`|J |δ, |I| ` |J | ď N. (3.7.12)

Consequently, we have

›

›ps{rqBILJU1

›

›

L2
f pHsq

À ε` pC1εq
3{2s1{2`|J |δ, |I| ` |J | ď N, (3.7.13)

which is due to the conformal–type bounds for U1 above and the Hardy–type inequality
(3.2.21).

Proposition 3.7.8 (Pointwise estimates for U1). We have

|B
ILJU1| À

`

ε` pC1εq
3{2
˘

t´1s|J |δ, |I| ` |J | ď N ´ 4. (3.7.14)

The proof of this Proposition clearly follows from Lemma 3.4.1 and the sup-estimate
obtained in (3.7.10).

3.7.3 Estimates of the U2 part

We state the following propositions about estimates of U2, but we do not provide
proofs as they are either the same as or easier than those of U1.
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Proposition 3.7.9 (Energy estimates for U2). Consider the wave equation in (3.7.3)
and assume the bounds in (3.5.5) hold, then we have the following energy estimates for
U2

Eps, BILJU2q
1{2
À ε` pC1εq

3{2, |I| ` |J | ď N. (3.7.15)

As a consequence, it gives us

›

›ps{tqBtB
ILJU2

›

›

L2
f pHsq

`
›

›ps{tqBILJBtU2

›

›

L2
f pHsq

À ε` pC1εq
3{2, |I| ` |J | ď N. (3.7.16)

Proposition 3.7.10 (Pointwise estimates for U2). We have

|BtB
ILJU2| ` |B

ILJBtU2| À
`

ε` pC1εq
3{2
˘

t´1{2s´1, |I| ` |J | ď N ´ 4. (3.7.17)

The proof of this Proposition clearly follows from Lemma 3.4.1 and the Sobolev
embedding of Proposition 3.2.4.

3.7.4 Refined estimates for u

We are now about to derive the refined estimates for u, which will be based on the
analysis of the new unknown U .

Proposition 3.7.11 (Refined energy estimates for u). Consider the wave equation in
(3.1.1) and assume the bounds in (3.5.5) hold, then we have the following refined ones

Eps, BILJuq1{2 À ε` pC1εq
3{2, |I| ` |J | ď N ´ 1,

Eps, BIuq1{2 À ε` pC1εq
3{2sδ, |I| “ N,

Eps, BILJuq1{2 À ε` pC1εq
3{2s|J |δ, |I| ` |J | ď N, |J | ě 1.

(3.7.18)

Proof. For |I| ` |J | ď N ´ 1, we have

Eps, BILJuq1{2 À Eps, BILJU1q
1{2
` Eps, BILJBtU2q

1{2,

then the energy estimates of U1 and U2 and the commutators give the desired result.

Next, for the case of |I| ` |J | “ N with |J | ě 1, we recall the original equation in
(3.1.1) and have

´lBILJu “
ÿ

I1`I2“I
J1`J2“J

´

B
I1LJ1uBI2LJ2v ` BI1LJ1uBI2LJ2Btv

¯

. (3.7.19)
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Then by the energy estimates for wave components (3.2.8), it is true that

Eps, BILJuq1{2

ď Ep2, BILJuq1{2 `

ż

ÿ

I1`I2“I
J1`J2“J

›

›

›
B
I1LJ1uBI2LJ2v ` BI1LJ1uBI2LJ2Btv

›

›

›

L2
f pHs1 q

ds1.

Successively, we arrive at

Eps, BILJuq1{2 À ε` pC1εq
3{2s|J |δ,

which is based on the estimates we already have obtained. The case of |I| “ N can be
treated in a similar way, and hence the proof is done.

Proposition 3.7.12 (Refined L2-type energy estimates for u). It validates that

›

›ps{tqBILJu
›

›

L2
f pHsq

À ε` pC1εq
3{2s1{2`|J |δ, |I| ` |J | ď N. (3.7.20)

Proof. We simply have

›

›ps{tqBILJu}L2
f pHsq

À
›

›ps{rqBILJU1

›

›

L2
f pHsq

`
›

›ps{tqBILJBtU2

›

›

L2
f pHsq

,

and finish the proof by recalling the estimates (3.7.13) and (3.7.16).

Proposition 3.7.13 (Refined pointwise estimates for u). We have

|B
ILJu| À

`

ε` pC1εq
3{2
˘

t´1s|J |δ, |I| ` |J | ď N ´ 4. (3.7.21)

Proof. It is true that
|B
ILJu| ď |BILJU1| ` |B

ILJBtU2|,

and the proof is done by the use of (3.7.14) and (3.7.17).

3.8 Proof of the stability result and further remarks

Proof of the stability result We first close the bootstrap method, which immedi-
ately gives the proof of the main theorem.

Proof of Theorem 3.1.1. By collecting all of the refined estimates for wave and Klein-
Gordon components, which are stated in the propositions in Section 3.6 and Subsec-
tion 3.7.4, we choose large C1 " 1 and small ε ! 1 such that C1ε ! 1, then we arrive
at the desired estimates in (3.5.6). Furthermore, as explained at the end of Subsec-
tion 3.5.1, we also have provided the proof of Theorem 3.1.1.
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Concluding remarks. Motivated by the Klein-Gordon-Zakharov system studied in
[64, 35, 75], other classes of coupled wave-Klein-Gordon systems from [35] and also [44],
we have studied the system

´lu “ uv ` uBtv,

´lv ` v “ uv.

By relying on the strategy introduced in [45], we obtained global stability results and
sharp decay estimates

|u| À t´1, |v| À t´3{2.

This system is part of a broarder class of systems where one studies nonlinearities with
critical exponents and whether this leads to global stability or finite time blow-up. See
for example [32], [22] for the Strauss conjecture of wave equations, [55, 36] for Klein-
Gordon equations, [76] for Dirac-Proca systems. We end this chapter by asking the
following questions for possible future work:

• What are the critical cases of nonlinearities for a wave-Klein-Gordon system in
general dimensions?

• Depending on the critical cases, does the solution to the system exist globally or
blow up in finite time?
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4.1 Introduction and main Result

The coupled wave-Klein-Gordon systems have attracted a lot of attention since
decades ago, which are motivated by some important models from physics. They in-
clude the Dirac-Klein-Gordon equations, the Dirac-Proca equations, the Einstein-Klein-
Gordon equations, the Klein-Gordon-Zakharov equations, the massive Maxwell-Klein-
Gordon equations and many others.

1This chapter is a joint work with Philippe G. LeFloch.
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Recall that Klainerman [41] and Shatah [66] were first able to treat Klein-Gordon
equations with quadratic nonlinearities in R1`3. In [41] Klainerman applied the powerful
vector field method in the light cone to show the existence of global-in-time solutions
to Klein-Gordon equations with compactly supported initial data. On the other hand,
Shatah proved in [66] the same result by using a normal form method, where the
compactness assumption on the initial data is not needed. By relying on these two
main methods, various results came out.

Later on, LeFloch-Ma in [44] in 2014 introduced the hyperboloidal foliation method
on treating wave and Klein-Gordon equation in one framework, where the compactness
of the initial data is needed. Recently, in [48] LeFloch-Ma were able to get rid the
compactness assumption by introducing the Euclidian-hyperboidal foliation method.
Utilising this method, Ma in [60] proved the small data global existence result on the
1 dimensional wave-Klein-Gordon equations.

Motivated by the hyperboloidal foliation method, we are interested in studying
here the behavior of the Klein-Gordon component when its mass m tends to 0. It is
conjectured that the solution to the Klein-Gordon equation, within a short range of
time, behaves more like waves when the mass is very small. We provide a rigorous
proof for the Klein-Gordon equations with a certain class of nonlinearities which are of
divergence form. Consider

´lu`m2u “ Pα
Bα
`

uv ` v2
´ u3

˘

,

´lv ` v “ u2
` uv,

(4.1.1)

in which Pα are fixed constants and m P r0, 1s is the mass parameter, and with pre-
scribed initial data at t “ 2

`

u, Btu
˘

p2, ¨q “
`

u0, u1

˘

,
`

v, Btv
˘

p2, ¨q “
`

v0, v1

˘

. (4.1.2)

Our goal is to prove small data global existence result with pointwise decay results,
which are uniform in term of the mass parameter m. The main theorem is stated now.

Theorem 4.1.1. Consider the system (4.1.1) with Pα fixed constants and the mass
parameter m P r0, 1s, and let N ě 8 be an integer. Then there exists ε0 ą 0, which is
notably independent of m, such that for all ε P p0, ε0q and all compactly supported initial
data pu0, u1, v0, v1q satisfying the smallness condition

}u0, v0}HN`5pR3q ` }u1, v1}HN`4pR3q ď ε, (4.1.3)

the initial value problem (4.1.1)–(4.1.2) admits a global-in-time solution pu, vq with

|upt, xq| À mintt´1,m´1t´3{2
u, |vpt, xq| À t´3{2. (4.1.4)
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There is a loss of regularity here, which will be seen in the proof of this theorem.
We also note that Theorem 4.1.1 is much easier to prove at the end points m “ 0
and m “ 1, in which cases the equation of u is a wave equation and a Klein-Gordon
equation respectively. But there are several difficulties appearing if we want to treat
the system (4.1.1) uniformly in terms of m P r0, 1s: 1) the L2-type estimates and sup-
norm estimates obtained by the estimates on the mass term m2u cannot be used due
to the bad factor m´1; 2) the scaling vector field and the conformal vector field do not
commute with the Klein-Gordon operator ´l`m2; 3) the tricks in Chapter 3 Section
3.4 in obtaining pointwise estimates for wave or Klein-Gordon components cannot be
applied here due to the possibly vanishing mass m; 4) it is hard to get either a uniform
L2-type estimate or a uniform sup-norm estimate on u.

There are few works on this subject which study the Klein-Gordon equations with
possibly vanishing mass. To the best of our acknowledge the only existing such results
are due to [12], where the authors studied the problem of the Dirac equation with
vanishing mass. We recall that in [12] the proof highly relied on the special structure of
the Dirac equations. The result in Theorem 4.1.1 can be regarded as a generalisation
of the results in [12].

Remark 4.1.2. Note that the system of equations

´lu`m2u “ Pα
Bα
`

uv
˘

,

´lv ` v “ u2,
(4.1.5)

is corresponding the Dirac-Proca model (when m “ 0), while the system of equations

´lu`m2u “ Pα
Bα
`

v2
˘

,

´lv ` v “ uv,
(4.1.6)

is corresponding to the Klein-Gordon-Zakharov model (when m “ 0). Our main result
in Theorem 4.1.1 (possibly a weaker result) is true for both of the models and the proof
of Theorem 4.1.1 also applies to them.

The reason why we add the term PαBαp´u
3q3 in the nonlinearities of u equation is

that it gives us some cancellations to the bad terms, the details are given in the proof.

The rest of this chapter is planned as follows. In Section 4.2 we revisit the hyper-
boloidal foliation method and some useful estimates. Next in Section 4.3 we prove the
unified pointwise decay estimates for homogeneous Klein-Gordon equations. Then we
analyse the system of equations and treat the nonlinearities in Section 4.4. Finally we
prove the main result relying on the bootstrap method in the last section.



130 4.2. Revisit of the hyperboloidal foliation method

4.2 Revisit of the hyperboloidal foliation method

The basics of the hyperboloidal foliation method, which were introduced by LeFloch-
Ma in [44], are introduced several times in this thesis, so one refers to Section 1.2 in
Chapter 1 or Section 3.2 in Chapter 3 for more details. For convenience, we give only the
following heuristic ideas on how to estimate the null forms and commutators. Roughly
speaking, we have

ˇ

ˇB
αφBαψ

ˇ

ˇ À
s

t
|Bφ||Bψ|,

ˇ

ˇBB
ILJφ

ˇ

ˇ »
ˇ

ˇB
ILJBφ

ˇ

ˇ,
(4.2.1)

for two nice functions φ, ψ. For the rigorous statements, one refers to Section 1.7 in
Chapter 1 or Section 3.3 in Chapter 3.

4.3 Unified decay results for homogeneous Klein-

Gordon equations

We first consider a simple homogeneous Klein-Gordon equation

´lw `m2w “ 0,
`

w, Btw
˘

p0, ¨q “
`

w0, w1

˘

,
(4.3.1)

and prove the following theorem.

Theorem 4.3.1 (Unified decay results for homogeneous Klein-Gordon equations).
Consider the initial value problem (4.3.1), and assume the initial data are compactly
supported and satisfy

}w0}H5pR3q ` }w1}H4pR3q ď ε, (4.3.2)

then the following unified decay result is valid

|w| À εmintpt` 2q´1,m´1
pt` 2q´3{2

u. (4.3.3)

The proof relies on a simple utilization of the Fourier method, which is from the
lecture note by Luk [56] in treating homogeneous wave equations. We first revisit some
basics in Fourier analysis before the proof.

Recall the Fourier transform of a nice function φ “ φpxq is defined by

pφpξq :“

ż

R3

φpxqe´2πix¨ξ dx,
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and the inverse Fourier transform of a nice function ψ “ ψpξq is defined by

qψpxq :“

ż

R3

ψpξqe2πix¨ξ dξ.

Next we recall some basic but important facts in Fourier analysis.

Proposition 4.3.2. The following properties hold for a nice function φ “ φpxq:

• Inverse formula.

φ “
q

pφ. (4.3.4)

• Relation between partial derivatives and multipliers.

yBaφpξq “ 2πiξapφpξq. (4.3.5)

• Plancheral identity.
}φ}L2pR3q “

›

›pφ
›

›

L2pR3q
. (4.3.6)

Proof of Theorem 4.3.1. In the Fourier space, the equation (4.3.1) can be written as

BtBt pwpt, ξq ` ξ
2
m pwpt, ξq “ 0,

with initial data
`

pw, Bt pw
˘

p0, ¨q “
`

pw0, pw1

˘

,

in which we used the notation

ξm :“
`

4π2
|ξ|2 `m2

˘1{2
.

Next by solving the ordinary differential equation above, we get the explicit solution in
the Fourier space

pwpt, ξq “ cosp2πtξmq pw0pξq `
sinp2πtξmq

2πξm
pw1pξq, (4.3.7)

which can also be expressed by the following four terms.

pwpt, ξq “ e2πitξm
´

pw0pξq

2
`

pw1pξq

2πiξm

¯

` e2πitξm
´

pw0pξq

2
`

pw1pξq

2πiξm

¯

. (4.3.8)

Then we estimate the inverse Fourier transform of those four terms above, but we
notice that it suffices to estimate the first two terms. We denote by the inverse Fourier
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transform of the second term

I1 :“

ż

R3

e2πiptξm`x¨ξq
pw1pξq

2πiξm
dξ.

Without loss of any generality, we assume

x “ p0, 0, |x|q,

and we use the polar coordinates for the first two components of ξ, i.e.

ξ “
`

ρ cos ξθ, ρ sin ξθ, ξ3

˘

, pρ, ξθq P r0,`8q ˆ r0, 2πq,

and thus
dξ “ ρdρdξθdξ3.

It also helps to note that
B|ξ|

Bρ
“

ρ

|ξ|
,

Bξm
Bρ

“
ρ

ξm
,

as well as
Bρe

2πitξm “ 2πit
ρ

ξm
e2πitξm .

Now relying on these results we further arrive at

I1 “ ´
1

4π2t

ż

R

ż 2π

0

ż `8

0

Bρe
2πitξme2πix¨ξ

pw1 dρdξθdξ3

“
1

4π2t

ż

R

ż 2π

0

ż `8

0

e2πiptξm`x¨ξqBρ pw1 dρdξθdξ3 ´
1

2πt

ż

R
e2πiptξm`|x|ξ3q

pw1pρ “ 0, ξ3q dξ3

“: I11 ` I12,

where we did integration by parts in the second step. Observe that

ż

R

ż 2π

0

ż `8

0

1

p1` |ξ|2q2
dρdξθdξ3 À 1,

as well as
ÿ

a

p1` |ξ|2q2|Ba pw1| À
ÿ

a

}p1´∆q2pxaw1q}L1pR3q

ď }w1}H4pR3q,

where we used the fact in the last step that

LppΩq Ă L1
pΩq, p ě 1,
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when Ω Ă Rd is a compact set. Thus we arrive at

|I11| À t´1
}w1}H4pR3q,

and similarly we can show
|I12| À t´1

}w1}H4pR3q.

To conclude, we have
|I1| À t´1

}w1}H4pR3q. (4.3.9)

Next we do the same analysis on the inverse Fourier transform of the first term,
which we denote by

I0 :“

ż

R3

e2πiptξm`x¨ξq
pw0pξq

2
dξ.

By adopting the same setting, we proceed and get

I0 “
1

4πit

ż

R

ż 2π

0

ż `8

0

Bρe
2πitξmξme

2πix¨ξ
pw0 dρdξθdξ3

“ ´
1

4πit

ż

R

ż 2π

0

ż `8

0

e2πitξm
ρ

ξm
e2πix¨ξ

pw0 dρdξθdξ3

´
1

4πit

ż

R

ż 2π

0

ż `8

0

e2πitξmξme
2πix¨ξ

Bρ pw0 dρdξθdξ3

´
1

2it

ż

R

`

ξ2
3 `m

2
˘1{2

e2πiptξm`|x|ξ3q
pw0pρ “ 0, ξ3q dξ3.

Similarly, we conclude that
|I0| À t´1

}w0}H4pR3q. (4.3.10)

A combination of (4.3.9) and (4.3.10) gives

|wpt, xq| À pt` 2q´1
`

}w0}H4pR3q ` }w1}H4pR3q

˘

, t ě 2. (4.3.11)

On the other hand, we observe that it is easy to show

|wpt, xq| À }w0}H4pR3q ` }w1}H4pR3q, 0 ď t ď 2. (4.3.12)

Hence we arrive at (4.3.3) since the bound m´1pt` 2q´3{2 is trivial to prove.

We note again that the proof above is from Luk [56].
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4.4 Analysis on the equations and nonlinearities

Recall the system of equations in (4.1.1)

´lu`m2u “ Pα
Bα
`

uv ` v2
´ u3

˘

“: Qu,

´lv ` v “ u2
` uv “: Qv,

`

u, Btu
˘

p2, ¨q “
`

u0, u1

˘

,
`

v, Btv
˘

p2, ¨q “
`

v0, v1

˘

.

Our goal in this section is to introduce some new variables, which will transform some
terms we cannot handle to terms we can.

We introduce the following six new variables

Uα, U5, V u :“ v ` u2, (4.4.1)

which are solutions to the wave-Klein-Gordon equations below:

´lUα
`m2Uα

“ Pα
`

uv ` v2
´ u3

˘

,
`

Uα, BtU
α
˘

p2, ¨q “ p0, 0q,
(4.4.2)

´lU5
`m2U5

“ 0,
`

U5, BtU
5
˘

p2, ¨q “
`

u0, P
0
pu0v0 ` v

2
0 ´ u

3
0q
˘

,
(4.4.3)

and

´lV u
` V u

“ uv ` 2m2u2
` 2BαuB

αu´ 2uQu,
`

V u, BtV
u
˘

p2, ¨q “
`

v0 ´ u
2
0, v1 ´ 2u0u1

˘

.
(4.4.4)

We then further introduce four other variables

rUα :“ Uα
` Pαuv,

which are solutions to the following equations

´lrUα
`m2

rUα
“ Pα

`

´m2uv ´ BµuBµv ` v
2
´ u3

` vQu ` uQv

˘

,
`

rUα, Bt rU
α
˘

p2, ¨q “
`

Pαu0v0, P
αu0v1 ` P

αu1v0

˘

.
(4.4.5)

Recall in Remark 4.1.2 we have mentioned that the term PαBαp´u
3q3 would cancel

some bad terms, and now it is clearer to see that the term PαBαp´u
3q3 cancels the bad

term hidden in uQv. On the other hand, we also emphasize that the term m2uv can be
regarded as Klein-Gordon and Klein-Gordon interaction term thanks to the factor m2,
while the term uv in the Uα equations is regarded as wave and Klein-Gordon interaction
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term. Hence the term m2uv is a good one now.

In conclusion, by introducing several intermediate variables, we can first estimate
rUα, V u and then get estimates on u, v by the relations

u “ U5
` BαU

α, rUα
“ Uα

` Pαuv, V u
“ v ` u2.

The important thing is that the nonlinearities appearing in the equations of rUα and
V u are easy to handle.

4.5 Bootstrap method

4.5.1 Basic setting

Recall the local well-posed results on nonlinear wave-Klein-Gordon equations, and
we assume that the following bounds validate on the interval r2, s1s

sup
Hs

ˇ

ˇtBILJu
ˇ

ˇ ď C1ε, |I| ` |J | ď N ´ 2,

Emps, B
ILJuq1{2 ď C1ε, |I| ` |J | ď N ´ 1,

Emps, B
ILJuq1{2 ď C1εs

δ, |I| ` |J | “ N,

E1ps, B
ILJvq1{2 ď C1εs

δ, |I| ` |J | ď N,

(4.5.1)

in which 0 ă δ ! 1{10 is an arbitrary fixed constant, C1 is some (large) constant to be
determined. We take

s1 :“ supts : (4.5.1) holdsu.

In order to prove the small data global existence result, it suffices to show the
following refined estimates

sup
Hs

ˇ

ˇtBILJu
ˇ

ˇ ď
1

2
C1ε, |I| ` |J | ď N ´ 2,

Emps, B
ILJuq1{2 ď

1

2
C1ε, |I| ` |J | ď N ´ 1,

Emps, B
ILJuq1{2 ď

1

2
C1εs

δ, |I| ` |J | “ N,

E1ps, B
ILJvq1{2 ď

1

2
C1εs

δ, |I| ` |J | ď N.

(4.5.2)

Since the refined estimates allow one to extend the hyperbolic time interval r2, s1s to a
strictly larger one, which contradicts the definition of s1 unless s1 “ `8.
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As a direct consequence, we have the following estimates for all s P r2, s1s

›

›r´1
B
ILJu

›

›

L2
f pHsq

À C1εs
δ, |I| ` |J | ď N,

›

›ps{tqBBILJu, ps{tqBILJBu
›

›

L2
f pHsq

`m
›

›B
ILJu

›

›

L2
f pHsq

ď C1εs
δ, |I| ` |J | ď N,

›

›ps{tqBBILJv, ps{tqBILJBv
›

›

L2
f pHsq

`
›

›B
ILJv

›

›

L2
f pHsq

ď C1εs
δ, |I| ` |J | ď N,

sup
Hs

ˇ

ˇst1{2BBILJu, st1{2BILJBu
ˇ

ˇ`m sup
Hs

ˇ

ˇt3{2BILJu
ˇ

ˇ ď C1εs
δ, |I| ` |J | ď N ´ 2,

sup
Hs

ˇ

ˇst1{2BBILJv, st1{2BILJBv
ˇ

ˇ` sup
Hs

ˇ

ˇt3{2BILJv
ˇ

ˇ ď C1εs
δ, |I| ` |J | ď N ´ 2.

(4.5.3)

4.5.2 Refined estimates on the wave-Klein-Gordon component
u

In order to obtain the refined estimates on u, we first derive the estimates on the
intermediate variables rUα, then by the relation rUα “ Uα ` Pαuv we get estimates on
the intermediate variables Uα, and finally we improve the estimates on u by the relation
u “ U5 ` BαU

α.

We begin with the estimates on U5, which satisfies the homogeneous wave-Klein-
Gordon equation.

Lemma 4.5.1. Under the assumptions in (4.5.1), it holds for all s P r2, s1s that

›

›r´1
B
ILJU5

›

›

L2
f pHsq

À ε, |I| ` |J | ď N,
ˇ

ˇB
ILJU5

ˇ

ˇ À εt´1, |I| ` |J | ď N.
(4.5.4)

Proof. The pointwise estimates on U5 are thanks to Theorem 4.3.1.

Next we obtain easily from the energy estimates that

Emps, B
ILJU5

q
1{2
ď Emp2, B

ILJU5
q
1{2
À ε.

Hence the first inequality in (4.5.4) follows from the Hardy inequality.

We proceed by estimating the intermediate variables rUα.

Lemma 4.5.2. Assume the estimates in (4.5.1) hold, then we have

›

›ps{tqBBILJ rUα, ps{tqBILJB rUα
›

›

L2
f pHsq

À pC1εq
2, |I| ` |J | ď N,

ˇ

ˇBαB
ILJ rUα, BILJBα rU

α
ˇ

ˇ À C1εt
´1{2s´1, |I| ` |J | ď N ´ 2.

(4.5.5)
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Proof. By recalling the equations (4.4.5) for rUα and the energy estimates

Emps, B
ILJ rUα

q
1{2

ď Emp2, B
ILJ rUα

q
1{2
`

ż s

2

›

›B
ILJPα

`

´m2uv ´ BµuBµv ` v
2
´ u3

` vQu ` uQv

˘
›

›

L2
f pHs1 q

ds1,

it suffices to prove

›

›B
ILJPα

`

´m2uv ´ BµuBµv ` v
2
´ u3

` vQu ` uQv

˘
›

›

L2
f pHsq

À pC1εq
2s´5{4,

for all |I| ` |J | ď N .

Since the components v and Bu has very good L2-type and L8-type bounds according
to (4.5.3), and cubic terms involved are harmless, so it is easy to get the above estimate
and we omit the details.

Next we move to the estimates on the intermediate variables Uα.

Lemma 4.5.3. It holds the following estimates

›

›ps{tqBBILJUα, ps{tqBILJBUα
›

›

L2
f pHsq

À pC1εq
2, |I| ` |J | ď N,

ˇ

ˇBαB
ILJUα, BILJBαU

α
ˇ

ˇ À C1εt
´1{2s´1, |I| ` |J | ď N ´ 2.

(4.5.6)

Proof. Recall the relation rUα “ Uα`Pαuv, and the proof follows from the observations
below

›

›B
ILJPα

puvq
›

›

L2
f pHsq

À pC1εq
2, |I| ` |J | ď N,

sup
Hs

ˇ

ˇt3{2BILJPα
puvq

ˇ

ˇ À pC1εq
2, |I| ` |J | ď N ´ 2.

In conclusion, we obtain the refined estimates on the component u.

Proposition 4.5.4 (Refined estimates on u). It is valid that

sup
Hs

ˇ

ˇtBILJu
ˇ

ˇ À ε` pC1εq
2, |I| ` |J | ď N ´ 2,

Emps, B
ILJuq1{2 ď ε` pC1εq

2, |I| ` |J | ď N ´ 1,

Emps, B
ILJuq1{2 ď ε` pC1εq

2sδ, |I| ` |J | “ N.

(4.5.7)

Proof. For |I| ` |J | ď N ´ 1 it is true that

Emps, B
ILJuq1{2 À Emps, B

ILJU5
q ` Emps, B

ILJBαU
α
q,
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and by gathering the estimates established for U5 and Uα we have

Emps, B
ILJuq1{2 À ε` pC1εq

2.

One remaining thing is to estimate for the case |I| ` |J | “ N . Hence by energy
estimates

Emps, B
ILJuq1{2 ď Emp2, B

ILJuq1{2 `

ż s

2

›

›B
ILJPα

Bα
`

uv ` v2
´ u3

˘
›

›

L2
f pHs1 q

ds1,

we only need to show

›

›B
ILJPα

Bα
`

uv ` v2
´ u3

˘
›

›

L2
f pHsq

À pC1εq
2s´1`δ.

We notice that the only troublesome term is

B
ILJPα

`

uBαv
˘

,

which is the bad part of the term BILJPαBα
`

uv
˘

. Recall the chain rule, and we get

›

›B
ILJPα

`

uBαv
˘
›

›

L2
f pHsq

ď
ÿ

I1`I2“I,J1`J2“J

›

›Pα
B
I1LJ1uBI2LJ2Bαv

›

›

L2
f pHsq

ď
ÿ

I1`I2“I,J1`J2“J

›

›pt{sqBI1LJ1U5
›

›

L8pHsq

›

›ps{tqPα
B
I2LJ2Bαv

›

›

L2
f pHsq

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ď|I2|`|J2|

›

›pt{sqBI1LJ1BβU
β
›

›

L8pHsq

›

›ps{tqPα
B
I2LJ2Bαv

›

›

L2
f pHsq

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě|I2|`|J2|

›

›ps{tqBI1LJ1BβU
β
›

›

L2
f pHsq

›

›pt{sqPα
B
I2LJ2Bαv

›

›

L8pHsq
,

and by inserting the bounds for each term we arrive at

›

›B
ILJPα

`

uBαv
˘
›

›

L2
f pHsq

À ε` pC1εq
2s´1`δ.

The refined pointwise estimates are thanks to the decomposition u “ U5 ` BαU
α

and the application of Sobolev-type inequalities on the hyperboloids.

4.5.3 Refined estimates on the Klein-Gordon component v

In order to improve the energy estimates on the Klein-Gordon component v, we first
deduce the refined estimates on the intermediate variable V u.
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Lemma 4.5.5. It holds that

E1ps, B
ILJV u

q
1{2
À ε` pC1εq

2sδ, |I| ` |J | ď N. (4.5.8)

Proof. We begin by applying the energy estimates

E1ps, B
ILJV u

q
1{2
ď E1p2, B

ILJV u
q
1{2
`

ż s

2

›

›B
ILJ

`

uv`2m2u2
`2BαuB

αu´2uQu

˘
›

›

L2
f pHs1 q

ds1,

and we find it is easy to get

›

›B
ILJ

`

2m2u2
` 2BαuB

αu´ 2uQu

˘
›

›

L2
f pHs1 q

À pC1εq
2s1´5{4, |I| ` |J | ď N,

and the only problematic term is BILJ
`

uv
˘

. We now estimate this part

›

›B
ILJ

`

uv
˘›

›

L2
f pHs1 q

ď
ÿ

I1`I2“I,J1`J2“J

›

›B
I1LJ1

`

U5
` BαU

α
˘

B
I2LJ2v

›

›

L2
f pHs1 q

ď
ÿ

I1`I2“I,J1`J2“J

›

›B
I1LJ1U5

›

›

L8pHs1 q

›

›B
I2LJ2v

›

›

L2
f pHs1 q

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ď|I2|`|J2|

›

›B
I1LJ1

`

BαU
α
˘›

›

L8pHs1 q

›

›B
I2LJ2v

›

›

L2
f pHs1 q

`
ÿ

I1`I2“I,J1`J2“J
|I1|`|J1|ě|I2|`|J2|

›

›ps{tqBI1LJ1
`

BαU
α
˘›

›

L2pHs1 q

›

›pt{sqBI2LJ2v
›

›

L8pHs1 q
,

which gives us

›

›B
ILJ

`

uv
˘
›

›

L2
f pHs1 q

À pC1εq
2s1´1`δ

|I| ` |J | ď N.

Hence we arrive at (4.5.8).

As a consequence, we obtain the refined estimates for v.

Proposition 4.5.6 (Refined estimates on v). It holds that

E1ps, B
ILJvq1{2 À ε` pC1εq

2sδ, |I| ` |J | ď N. (4.5.9)

Proof. Recall the relation V u “ v ` u2, hence it suffices to show

›

›B
ILJpu2

q
›

›

L2
f pHsq

À pC1εq
2sδ.
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Next recall u “ U5 ` BαU
α, and expand u2 in terms of U5, Uα, which gives us

u2
“ pU5

q
2
` 2U5

BαU
α
` BαU

α
BβU

β.

We estimate them term by term. First it holds for |I| ` |J | ď N

›

›B
ILJpU5

q
2
›

›

L2
f pHsq

ď
ÿ

I1`I2“I,J1`J2“J

›

›rBI1LJ1U5
›

›

L8pHsq

›

›r´1
B
I1LJ1U5

›

›

L2
f pHsq

À ε2.

We find that
›

›B
ILJpU5

BαU
α
q
›

›

L2
f pHsq

ď
ÿ

I1`I2“I,J1`J2“J

›

›pt{sqBI1LJ1U5
›

›

L8pHsq

›

›ps{tqBI1LJ1BαU
α
›

›

L2
f pHsq

À pC1εq
2s´1`δ, |I| ` |J | ď N.

Similarly, we can easily get

›

›B
ILJpBαU

α
BβU

β
q
›

›

L2
f pHsq

À pC1εq
2s´1`δ, |I| ` |J | ď N.

Finally, we combine the above estimates and arrive at (4.5.9).

4.5.4 Closure of the bootstrap method

Proof of Theorem 4.1.1. Recall the refined estimates for u and v components which are
stated in Propositions 4.5.4 and 4.5.6 respectively. We arrive at (4.5.2) by choosing C1

sufficiently large, and ε sufficiently small (such that C1ε ! 1{2). As a consequence, we
also provide the proof for Theorem 4.1.1.
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Chapter 5

A new L2–type estimate for waves
and its application
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5.1 Introduction

Background and motivation A few years ago, LeFloch and Ma [44, 45] illustrated
the method of hyperboloidal foliations (review of that method can be found in [44] or
in the introduction and etc.) for the study of nonlinear wave problems and, for several
other systems of equations. In order to have a complementary understanding of that

1This chapter is a joint work with Philippe G. LeFloch.
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144 5.1. Introduction

method, a natural idea is to investigate the wave equation by using the Fourier transform
method on the hyperboloids, and to see whether we can obtain more properties of wave
equations on the hyperboloids. More details about this method, which we call here the
hyperbolic Fourier transform method, can be found in [21, 6, 73, 74].

Interesting enough, we indeed discover a new L2-type estimate for wave components.
To the best of our acknowledge, the existing methods on obtaining L2-type estimates
for waves on the hyperboloids include: 1) applying Hardy inequality on the wave com-
ponents, see for instance [45]; 2) relying on the conformal vector field and the conformal
energy estimates, which was first introduced by Morawetz [63] in the flat setting, see
[61] for the study in the hyperboloidal setting.

According to the global stability problems of some physical models, it happens a
lot that terms in the nonlinearities of the equations are made of wave components
while there are no derivatives hitting on the wave components. Such systems include
the Einstein-Klein-Gordon [45] model, the Klein-Gordon-Zakharov model [64], and so
fourth. Hence it is important and necessary in such cases to estimate the L2-type norms
of wave components.

Main result We are interested in the wave equation

´lu “ f, (5.1.1)

with initial data u0, u1 prescribed at the time slice t “ 1:

`

u, Btu
˘

p1, ¨q “
`

u0, u1

˘

. (5.1.2)

We establish here a new L2-type estimates for the solution u in terms of its initial data
and the source function.

Theorem 5.1.1 (L2-type energy bound). Consider the spacetime Rd`1 with d ě 1,
and let u be the solution to the initial value problem (5.1.1)–(5.1.2). Assume the source
f “ fpt, xq satisfies

›

›f
›

›

L2pHsq
ď Cfs

´p, (5.1.3)

then it holds
›

›

›

u

t1{2

›

›

›

L2
f pHsq

À sδ ` Cfs
3{2´p`δ, (5.1.4)

in which Cf is a constant depending on f , and δ ą 0 can be any fixed small constant.

In the above, we have used the notation (for any function φ : r1,`8q ˆ Rd Ñ R)

}φ}L2
f pHsq

:“
´

ż

Hs

ˇ

ˇup
a

s2 ` |x|2, xq
ˇ

ˇ

2
dx

¯1{2

. (5.1.5)
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It will be convenient to also use the geometric definition:

}φ}L2pHsq :“
´

ż

Hs

ˇ

ˇup
a

s2 ` |x|2, xq
ˇ

ˇ

2 s
a

s2 ` |x|2
dx

¯1{2

. (5.1.6)

To the best of our knowledge, the L2-type estimate in Theorem 5.1.1 is new. One can
also obtain L2-type estimates by employing the conformal-type energy estimates, but
that result can not deduce ours. By applying the Sobolev inequality on hyperboloids
(see for instance Proposition 1.7.4 in Chapter 1 or Proposition 3.2.4 in Chapter 3), we
arrive at the following pointwise estimate for waves.

Corollary 5.1.2. Adopting the same assumptions in Theorem 5.1.1, with moreover

›

›LJf
›

›

L2pHsq
ď Cfs

´p, |J | ď 2 (5.1.7)

we have
sup
Hs

t|u| À sδ ` Cfs
3{2´p`δ. (5.1.8)

Organization of this chapter In Section 5.2, we revisit the definition and some
properties of the hyperbolic Fourier transform. Then we provide the proof the main
theorem in Section 5.3. Finally in Section 5.4 we prove the small data global existence
result of a wave equation with cubic nonlinearities as an application of Theorem 5.1.1.

5.2 The hyperbolic Fourier transform: definition

and basic properties

5.2.1 The hyperboloidal foliation of Minkowski spacetime

The spacetime foliation of interest

We consider Minkowski spacetime M “ Rd`1 in dimension d` 1 ě 2, whose metric
in Cartesian coordinates reads

g :“ ´dt2 `
d
ÿ

a“1

pdxaq2, pt, xq “ pt, xaq. (5.2.1)

By convention, Latin indices a, b, . . . describe 1, . . . , d and are raised or lowered with
the Minkowski metric, so that for instance xa “ xa. It is convenient to introduce the
radial variable r by r2 :“

řd
a“1px

aq2. These coordinates determine a foliation of M by
spacelike hypersurfaces of constant time t, which of course have vanishing curvature.
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On the other hand, the interior of the light cone defined (from the origin) by

K “
 

r “ |x| ă t
(

(5.2.2)

can also be foliated by the following family of spacelike hyperboloids:

Hs :“
 

t ą 0, t2 ´ r2
“ s2

(

, s ą 0, (5.2.3)

which are curved hypersurfaces with constant (negative) curvature.

The initial value problem (for a suitable class of second- or first-order equations)
can be posed by prescribing an initial data on the hyperboloid Hs0 (for some s0 ą 0)
and solving within the future of this hyperboloid, that is, within the domain covered
by the foliation

Js0 :“
`

Hs

˘

sěs0
. (5.2.4)

Within Js0 (and more generally within the light cone K), it is convenient to introduce
the hyperboloidal variables

s :“
?
t2 ´ r2, xa :“ xa, (5.2.5)

so that pt, xq ” ps, xq determines a point on the hyperboloid Hs. It is also convenient
to introduce similarly the normalized variables

`

rt, rx
˘

:“
´ t

s
,
x

s

¯

, prs, rxq :“ ps, x{sq, (5.2.6)

so that the point prt, rxq ” ps, xq is still regarded as a geometric point of the hyperboloid
Hs but parametrized by variables belonging to the unit hyperboloid H1. We will ex-
plain our notation explicitly below whenever this terminology could lead to confusion.
Abusing notation, we express a function φ “ φpt, xq in either forms

φpt, xq “ φps, xq “ rφprs, rxq (5.2.7)

and, for the sake of simplicity,

φpt, xq “ φps, xq “ φprs, rxq. (5.2.8)

We also write the partial derivatives as

Bαφ “ Bαφpt, xq, Bαφ “ Bαφps, xq. (5.2.9)
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The hyperboloidal frame (in dimension 3), by definition, is

B0 :“ Bs “
s

t
Bt “

1

t

?
t2 ´ r2 Bt,

Ba :“ Ba “
xa

t
Bt ` Ba

(5.2.10)

and, the dual version of this frame is ds :“ pt{sqdt´pxa{sqdxa and dxa :“ dxa. We will
need the expression of the transition matrices between the hyperboloidal and Cartesian
frames, that is,

Bα “ Φ
β

αBβ, Bα “ Ψ
β

αBβ (5.2.11)

and

pΦ
β

αq “

¨

˚

˚

˝

s{t 0 0 0
x1{t 1 0 0
x2{t 0 1 0
x3{t 0 0 1

˛

‹

‹

‚

, pΨ
β

αq “

¨

˚

˚

˝

t{s 0 0 0
´x1{s 1 0 0
´x2{s 0 1 0
´x3{s 0 0 1

˛

‹

‹

‚

. (5.2.12)

On the other hand, our normalized frame reads

rBs :“ B
rs “

t
?
t2 ´ r2

Bt `
xa

?
t2 ´ r2

Ba,

rBa :“ B
rxa “

?
t2 ´ r2xa

t
Bt `

?
t2 ´ r2Ba

(5.2.13)

and, we have

rBs “ Bs `
xa

s
Ba, rBa “ sBa. (5.2.14)

The transition matrices connecting normalized and Cartesian frame are found to be

rBα “ rΦβ
αBβ, Bα “ rΨβ

α
rBβ (5.2.15)

and

prΦβ
αq “

¨

˚

˚

˝

t{rs x1{rs x2{rs x3{rs
rsx1{t rs 0 0
rsx2{t 0 rs 0
rsx3{t 0 0 rs

˛

‹

‹

‚

,

prΨβ
αq “

¨

˚

˚

˝

rt ´rtrx1{rs ´rtrx2{rs ´rtrx3{rs
´rx1 p1` prx1q2q{rs rx1

rx2{rs rx1
rx3{rs

´rx2
rx2
rx1{rs p1` prx2q2q{rs rx2

rx3{rs
´rx3

rx3
rx1{rs rx3

rx2{rs p1` prx3q2q{rs

˛

‹

‹

‚

.

(5.2.16)
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Integration on hyperboloids

The (flat) Minkowski metric induces, on each hypersurfaceHs, a (curved) d-dimensional
Riemannian metric, denoted by gab and given by

gab “ δab ´
xaxb
s2 ` r2

, (5.2.17)

whose inverse is

gab “ δab `
xaxb

s2
. (5.2.18)

Recall our convention xa “ xa. The determinant of this metric is

detpgabq “
s2

s2 ` r2
“
s2

t2
. (5.2.19)

These expressions allow us to express the integral of a function f “ fpt, xq restricted
on any hyperboloid Hs, as follows:

ż

Hs

f dHs “

ż

Rd
fps, xq

s dx
a

s2 ` |x|2

“ rsd
ż

Rd
rfprs, rxq

drx
a

1` |rx|2
, s ě s0.

(5.2.20)

5.2.2 The hyperbolic Fourier transform

We introduce a generalization of the Fourier transform [6, 29], as follows. From now
on, we set m :“ pd ´ 1q{2 and Sd´1 Ă Rd denotes the unit pd ´ 1q-dimensional sphere
embedded in Rd. We will also use the bracket notation

xX, Y y “ ´X0Y 0
`
ÿ

a

XaY a, X, Y P Rd`1, (5.2.21)

which is nothing but the scalar product of two vectors X, Y in Minkowski spacetime.
Given any function φ “ φpt, xq “ φps, xq and restricting it to a hyperboloid Hs for some

s ą 0, we define the hyperbolic Fourier transform pφ “ pφps, λ, ωq by

pφps, λ, ωq :“ s´iλs`m
ż

Hs

x´pt, xq, p1, ωqyiλs´mφpt, xq dHs,

pλ, ωq P R` ˆ Sd´1
Ă Rd`1.

(5.2.22)

Since t “ tps, xq “
a

s2 ` |x|2 is a function of x on the hyperboloid Hs, we can
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express the hyperbolic Fourier transform in either forms:

pφps, λ, ωq “

ż

Rd
s´iλs`m

´

t´ xaωa

¯iλs´m

φpt, xq
s

t
dx

“

ż

Rd
s´iλs`m

´

tps, xq ´ xaωa

¯iλs´m

φps, xq
s

tps, xq
dx

“

ż

Rd
s´iλs`m

´

a

s2 ` |x|2 ´ xaωa

¯iλs´m

φps, xq
s

a

s2 ` |x|2
dx.

(5.2.23)

Note in passing the following identity which relates the hyperbolic Fourier transform
expressed in our two possible choices of coordinates:

FHs

`

φ
˘

ps, λ, ωq “ sdFH1

`

rφ
˘

p1, λs, ωq, (5.2.24)

with φ “ φps, xq “ rφprs, rxq.

Next, we define the inverse hyperbolic Fourier transform of a function ψ “ ψps, λ, ωq
as

qψps, xq “

ż `8

0

ż

Sd´1

siλs´m
´

tps, xq ´ xaωa

¯´iλs´m

ψps, λ, ωq
dλdω

|Apλsq|2
, (5.2.25)

in which the so-called Harish-Chandra c-function is (up to an irrelevant multiplicative
constant)

Apλq :“
?

2p2πqd{2
Γpiλq

Γpiλ`mq
, (5.2.26)

Γ being the usual Gamma function. As might be expected, we have the following
elementary properties.

Proposition 5.2.1. For every function φ “ φps, xq and ψ “ ψps, λ, ωq, one has (for
all relevant s, x, λ, ω)

q

pφps, xq “ φps, xq,
p

qψps, λ, ωq “ ψps, λ, ωq. (5.2.27)

2. The hyperbolic Fourier transform is related to the standard Fourier transform
FRd as follows:

pφps, λ, ωq »
`

FRdφ
˘

p`8, λωq when sÑ `8, (5.2.28)

where φp`8, ¨q denoted the limit of φps, ¨q when sÑ `8 (whenever this limit exists).

Proof. The property (5.2.27) is a standard matter; see for instance [21]. To establish
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(5.2.28) we formally expand the expression under consideration as sÑ `8:

pφps, λ, ωq “

ż

Rd

´

a

s2 ` |x|2

s
´
xa

s
ωa

¯iλs´m

φps, xq
s

a

s2 ` |x|2
dx

»

ż

Rd

´

a

s2 ` |x|2

s
´
xa

s
ωa

¯iλs

φps, xq dx,

and therefore

pφps, λ, ωq »

ż

Rd
eiλs log

`
?
s2`|x|2

s
´xa

s
ωa

˘

φp`8, xq dx

»

ż

Rd
e´iλx

aωaφp`8, xq dx “
`

FRdφ
˘

p`8, λωq.

5.2.3 Further properties of the hyperbolic Fourier transform

Basic algebraic properties

The following statements are easily checked by elementary calculations and we thus
omit the proof.

Proposition 5.2.2. The following algebraic identities are satisfied by the hyperbolic
Fourier transform:

• Reflection property: with τφpt, xq :“ φpt,´xq one has

FH1

`

φ
˘

pλ,´ωq “ FH1

`

τφ
˘

pλ, ωq. (5.2.29)

Approximation for Harish-Chandre c-function

In the expresion of the inverse transform above, we might need the explicit expression

2p2πqd|Apsq|´2
“

$

&

%

śpd´3q{2
k“0

`

k2 ` s2
˘

, d odd,

s tanhpπsq
śd{2

k“0

ˆ

pk ´ 3{2q2 ` s2

˙

, d even.
(5.2.30)

For the proof, one refers to [21].

In dimension three, we have the much simpler expression

2p2πq3|Apsq|´2
“ s2, d “ 3, (5.2.31)
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while for general dimensions we have the asymptotic formula

2p2πqd|Apsq|´2
» sd´1, sÑ `8. (5.2.32)

Plancherel identity

Proposition 5.2.3. For some universal constant C ą 0, the following Plancherel iden-
tity

ż

H1

|fpt, xq|2 dH1 “ C

ż `8

0

ż

S2

| pQpλ, ωq|2λ2 dωdλ, (5.2.33)

in which pQ “ pQpλ, ωq is the hyperbolic Fourier transform of a function f “ fpt, xq
defined on H1.

Proof. From the definition, we find

ż

H1

|fpt, xq|2 dH1 “

ż

R3

fp1, xqfp1, xq
dx

t

“

ż

R3

fp1, xq

ż `8

0

ż

S2

pQpλ, ωqpt´ xaωaq
´iλ´1

|Apλq|´2 dωdλ
dx

t
.

Exchanging the order of the integrals, we obtain

ż

H1

|fpt, xq|2 dH1 “

ż `8

0

ż

S2

pQpλ, ωq|Apλq|´2

ż

R3

fp1, xqpt´ xaωaq
´iλ´1 dx

t
dωdλ

“

ż `8

0

ż

S2

pQpλ, ωq pQpλ, ωq|Apλq|´2 dωdλ,

which, thanks to (5.2.31), completes the proof.

Remark 5.2.4. While λ is positive in our definition so far, the definition of the Fourier
transform can be extended so that λ takes complex values. For instance, this is relevant
in view of the Paley–Wiener theorem which provides decay properties for the hyperbolic
Fourier transform of a function.
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5.2.4 The hyperbolic Laplace-Beltrami operator

The Laplace-Beltrami operator is defined, for any function f : Hs Ñ R, by

∆Hsf :“ g´1{2
Ba
`

g1{2gabBbfq

“
t

s
Ba

´s

t

´

B
a
f `

xaxb

s2
Bbf

¯¯

“ tBa

´1

t

´

B
a
f `

xaxb

s2
Bbf

¯¯

“ B
a
Baf `

xaxb

s2
BaBbf ` d

xa

s2
Baf.

(5.2.34)

Given any pλ, ωq P R` ˆ Sd´1 Ă Rd`1, the following complex-valued function (arising
in the definition (5.2.22))

pt, xq P Hs ÞÑ Eps, x;λ, ωq :“
´ t

s
´
xa

s
ωa

¯iλs´m

(5.2.35)

enjoys the following properties.

Proposition 5.2.5. 1. The functions E : ps, xq ÞÑ Eps, x;λ, ωq are the eigenfunctions
of the Laplace-Beltrami operator ∆Hs. In other words, one has

´∆HsEps, x;λ, ωq “
´

λ2
`
m2

s2

¯

Eps, x;λ, ωq (5.2.36)

and, therefore, the eigenvalues of the operator ∆Hs are

λ2
`
m2

s2
“ λ2

`
pd´ 1q2

4s2
. (5.2.37)

2. The eigenfunctions satisfy the orthogonality-like property

ż

Rd
Eps, x;´λ1, ω1qEps, x;λ, ωq

s dx

t
“ δpλ1 ´ λ, ω1 ´ ωq, (5.2.38)

where δ denotes the Dirac measure.

The above results will play an essential in our analysis since it provides a way to
diagonalizing ∆Hs and, in turn, to diagonalize the wave operator on Hs. Comparing the
expressions in the unit hyperboloid H1 and in an arbitrary hyperboloid Hs, we easily
find the relation

∆Hs “ s´2
r∆H1 , (5.2.39)

in the sense that ∆Hsψpt, xq “
1
s2
r∆H1

rψprt, rxq for any function ψ “ ψpt, xq “ rψprt, rxq.
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Proof. 1. For the proof we use the short-hand notation Eps, x;λ, ωq “ Biλs´m, with

B :“ ´
1

s
xpt, xq, p1, ωqy “

t

s
´
xa

s
ωa.

In view of (5.2.34), we have

∆HsEps, x;λ, ωq “ tBa

´1

t

´

B
a
Eps, x;λ, ωq `

xaxb

s2
BbEps, x;λ, ωq

¯¯

.

We first calculate

B
a
Eps, x;λ, ωq “ piλs´mqBiλs´m´1

´xa

st
´
ωa

s

¯

and

xaxb

s2
BbEps, x;λ, ωq “piλs´mq

xa

s2
Biλs´m´1

´xbxb
st

´
xb

s
ωb

¯

“ piλs´mq
xa

s2
Biλs´m´1

´t2 ´ s2

st
´
xb

s
ωb

¯

“ piλs´mq
xa

s2
Eps, x;λ, ωq ´ piλs´mq

xa

st
Biλs´m´1.

Consequently, we obtain

B
a
Eps, x;λ, ωq `

xaxb

s2
BbEps, x;λ, ωq

“ piλs´mq
xa

s2
Eps, x;λ, ωq ´ piλs´mqBiλs´m´1ω

a

s

and, successively, we compute

∆HsEps, x;λ, ωq

“ Ba

´

B
a
Eps, x;λ, ωq `

xaxb

s2
BbEps, x;λ, ωq

¯

´
Bat

t

´

B
a
Eps, x;λ, ωq `

xaxb

s2
BbEps, x;λ, ωq

¯

“ dpiλs´mq
1

s2
Eps, x;λ, ωq ` piλs´mq2

xa

s2
Biλs´m´1

´xa
st
´
ωa
s

¯

´ piλs´mqpiλs´m´ 1qBiλs´m´2
´xa
st
´
ωa
s

¯ωa

s

´ piλs´mq
xaxa
s2t2

Eps, x;λ, ωq ` piλs´mqBiλs´m´1xaω
a

st2
,
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so

∆HsEps, x;λ, ωq

“ dpiλs´mq
1

s2
Eps, x;λ, ωq ` piλs´mq2

1

s2
Biλ´m

´ piλs´mq2
1

st
Biλs´m´1

` piλs´mqpiλs´m´ 1q
1

st
Biλs´m´1

´ piλs´mq
1

s2
Eps, x;λ, ωq ` piλs´mq

1

t2
Eps, x;λ, ωq

´ piλs´mq
1

t2
Biλs´m

` piλs´mq
1

st
Biλs´m´1

“ piλs´mqpiλs` d´m´ 1q
1

s2
Eps, x;λ, ωq.

This motivates our choice of m “ pd´ 1q{2 so that d´m´ 1 “ m and we arrive at the
first conclusion of the proposition.

2. We need to prove, say for s “ 1,

δpλ1 ´ λ, ω1 ´ ωq “

ż

Rd

`

t´ xaω1a
˘´iλ1´1`

t´ xaωa
˘iλ´1dx

t
. (5.2.40)

From the inverse Fourier transform goven in Proposition 5.2.1, we can write (with s “ 1)

pφpλ, ωq “

ż

Rd
φpxq

`

t´ xaωa
˘iλ´1dx

t

“

ż

Rd

ż `8

0

ż

Sd´1

pφpλ1, ω1q
`

t´ xaω1a
˘´iλ1´1

|Apλ1q|´2 dω1dλ1
`

t´ xaωa
˘iλ´1dx

t
.

By re-arranging the terms, we obtain

pφpλ, ωq “

ż `8

0

ż

Sd´1

pφpλ1, ω1q|Apλ1q|´2Cpλ, ω, λ1, ω1q dω1dλ1,

with

Cpλ, ω, λ1, ω1q :“

ż

Rd

`

t´ xaω1a
˘´iλ1´1`

t´ xaωa
˘iλ´1dx

t
.

Obviously, only the Dirac mass Cpλ, ω, λ1, ω1q “ δpλ1´ λ, ω1´ ωq satisfies this equation

on pφ and we obtain (5.2.40) and thus (5.2.38).
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Space coord. operator eigenfunctions eigenvalues profile symmetries

Rd x ∆Rd eixξ ´|ξ|2 e˘it|ξ|
translations Ba

rotations xaBb ´ xbBa

Hs

`

t, x
˘

“
`

a

s2 ` |x|2, x
˘ ∆Hs

`

t
s
´ xa

s
ωa
˘iλs´m

´λ2 ´ m2

s2
s˘iλ´m

boosts tBa ` xaBt

rotations xaBb ´ xbBa

H1

`

rt, rx
˘

“
`

a

1` |rx|2, rx
˘

r∆H1

`

rt´ rxaωa
˘iλ´m

´λ2 ´m2 s˘iλ´m
boosts rtrBa ` rxarBt

rotations rxarBb ´ rxbrBa

Table 5.1: Euclidian versus hyperbolic transforms

5.2.5 Equivalent parametrizations for hyperboloids

We now look at different parametrizations for hyperboloids Hs, which follow from
[21].

Parametrization I. We already introduced one parametrization of the hyperboloids
Hs, that is,

pt, xq P Hs, t “
a

s2 ` |x|2, (5.2.41)

whose metric gHs “ gabdx
adxb is given by with

gHs,ab “ δab ´
xaxb
s2 ` r2

. (5.2.42)

Parametrization II. Another natural choice of coordinates on the hyperboloid Hs

is provided by the polar coordinates in the hyperbolic space, that is,

Ω “ ps cosh r, s ω sinh rq P Hs, (5.2.43)

in which
pr, ωq P R` ˆ Sd´1.

A further calculation gives us the expression of the metric

gHs “ s2
`

dr2
` sinh2 rdω2

˘

. (5.2.44)

Parametrization III One more model for the hyperboloids will be useful. Let us fix
some n-dimensional disk BR :“

 

y P Rd : |y| ă R
(

with given radius R ą 0, and for
each b ą 0 we endow it with the metric

gb :“
4b2

pR2 ´ |y|2q2
dy2. (5.2.45)
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By chossing b “ sR, we can check that the mapping

R` ˆ Sd´1
Q pr, ωq ÞÑ y “ Rω

sinhpr{2q

coshpr{2q
(5.2.46)

provides us with an isometry between the disk BR endowed with metric (5.2.45) and
the hyperboloid Hs (with its metric (5.2.44)).

5.3 Proof of the main theorem

Revisit of the main result We now recall what we are going to prove. Consider
the wave equation

´lu “ f,
`

u, Btu
˘

p1, ¨q “
`

u0, u1

˘

,

and we want to estimate the L2-type norm of u by the information from the source
function f (and its initial data). Here we are interested in the weighted L2 norm of u
with no partial derivatives on u. To be more precise, we want to show

›

›

›

u

t1{2

›

›

›

L2
f pHsq

À sδ ` Cfs
3{2´p`δ,

for arbitrary small δ ą 0, under the L2-type assumption on the source f

›

›f
›

›

L2pHsq
ď Cfs

´p.

Proof of Theorem 5.1.1 In order to derive Theorem 5.1.1, we first recall the fol-
lowing ingredients about the hyperbolic Fourier transform, see for instance [72, 67].

Lemma 5.3.1. Relying on the coordinates
`

τ, rx
˘

“
`

log s, x{s
˘

in the hyperbolic space

Hs, with s “
a

t2 ´ |x|2, the wave operator on the unit hyperboloid H1

lH1 :“ ´BτBτ `∆H1 `
d´ 1

2
(5.3.1)

takes the form, for any sufficiently regular function φ,

lH1

`

eτφ
˘

pτ, rxq “
`

t2 ´ |x|2
˘1`pd´1q{4

lφpt, xq. (5.3.2)

The following scaling property for the norm } ¨ }L2pHsq will also be used.

Lemma 5.3.2. Given a sufficiently regular function φ “ φpt, xq “ φps, xq “ φpτ, rxq, it
holds

}φps, ¨q}L2pHsq “ sd{2}φpτ, ¨q}L2pH1q. (5.3.3)
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Second, we recall some properties of the hyperbolic Fourier transform. Given a
sufficiently regular function φ “ φpt, xq “ φps, xq “ φpτ, rxq, then the following holds.

• Define the hyperbolic Fourier transform by

pφpτ, λ, ωq “

ż

Rd

´

a

1` |rx|2 ´ rxaωa

¯iλ´pd´1q{2

φpτ, rxq
1

a

1` |rx|2
drx, (5.3.4)

then its inverse formula is given by

φpτ, rxq “

ż `8

0

ż

Sd´1

´

a

1` |rx|2 ´ rxaωa

¯´iλ´pd´1q{2
pφpτ, λ, ωq

dλdω

|Apλq|2
, (5.3.5)

in which the so-called Harish-Chandra c-function is (up to an irrelevant multi-
plicative constant)

Apλq :“
?

2p2πqd{2
Γpiλq

Γpiλ`mq
, (5.3.6)

Γ being the usual Gamma function.

• The Plancherel identity holds

}φpτ, rxq}L2pH1q “ C

ż `8

0

ż

Sd´1

|pφpτ, λ, ωq|2|Apλq|´2 dωdλ, (5.3.7)

with some constant C.

• The wave operator in the hyperbolic space lH1 takes the following formula after
performing the hyperbolic Fourier transform

´{lH1φpτ, λ, ωq “
`

B
2
τ
pφ` λ2

pφ
˘

pτ, λ, ωq. (5.3.8)

Proof of Theorem 5.1.1. We only give the proof for the case of p3 ` 1q dimension, but
the same proof applies to general dimensions.

We first rewrite equation for u in (5.1.1) in the hyperbolic space with coordinates
`

τ, rx
˘

´lH1Upτ, rxq “ e3τfpτ, rxq, (5.3.9)

in which U :“ eτupτq. Taking the hyperbolic Fourier transform, we get

BτBτ pUpτ, λ, ωq ` λ
2
pUpτ, λ, ωq “ e3τ

pfpτ, λ, ωq. (5.3.10)
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Solving the ordinary differential equation (5.3.10), we obtain explicitly

pUpτ, λ, ωq “ pUpτ0, λ, ωq cospλτq ` yBτUpτ0, λ, ωq
sinpλτq

λ

`
1

λ

ż τ

τ0

e3τ 1
pfpτ 1, λ, ωq sin

`

λpτ ´ τ 1q
˘

dτ 1,
(5.3.11)

for all λ ě 0. We take L2-norm in the space R` ˆ S2 for pUpτ, λ, ωq to get

ż `8

0

ż

S2

|pUpτ, λ, ωq|2λ2 dωdλ

ď

ż `8

0

ż

S2

|pUpτ0, λ, ωq|
2λ2 dωdλ` τ

ż `8

0

ż

S2

|yBτUpτ0, λ, ωq|
2λ2 dωdλ

`

ż τ

τ0

τe3τ 1
ż `8

0

ż

S2

| pfpτ 1, λ, ωq|2λ2 dωdλdτ 1,

where we have used the fact sin |p| ď |p|. Then Plancherel identity gives us

}Upτq}L2pH1q ď }Upτ0q}L2pH1q ` τ}BτUpτ0q}L2pH1q ` τ

ż τ

τ0

e3τ 1
}fpτ 1q}L2pH1q dτ

1. (5.3.12)

In view of the scaling property (5.3.3), we easily get

}Upτq}L2pH1q “

›

›

›

upsq

t1{2

›

›

›

L2
f pHsq

and
}fpτq}L2pH1q “ e´3{2τ

}fpsq}L2pHsq À Cfe
´3{2τ´pτ .

We complete the proof of Theorem 5.1.1 by observing that τ À eδ{2τ , as well as

ż τ

τ0

e3{2τ 1´pτ 1 dτ 1 À e3{2τ´pτ`δ{2τ .

5.4 Application to a semilinear wave equation

As a simple application, we prove small initial data global existence result for the
following semilinear wave equation in R1`3

´lu “ u3,
`

u, Btu
˘

pt0, ¨q “ pu0, u1q. (5.4.1)
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Theorem 5.4.1. Consider the wave equation in (5.4.1), and let N be a sufficiently large
integer. Then there exists ε0, such that for all ε P p0, ε0q and all compactly supported
initial data pu0, u1q, satisfying the smallness condition

}u0}HN`1 ` }u1}HN ď ε,

the initial value problem (5.4.1) admits a global-in-time solution u.

For the proof we rely on the bootstrap method. We assume for s P rs0, s1s it holds

›

›t´1{2
B
ILJu

›

›

L2
f pHsq

ď C1εs
δ, |I| ` |J | ď N,

ˇ

ˇB
ILJu

ˇ

ˇ ď C1εt
´2{3`δs´1{3´2δ, |I| ` |J | ď N ´ 2,

(5.4.2)

for some small δ ą 0 and some C1 to be fixed, and

s1 :“ supts : (5.4.2) holdsu.

If we can prove the refined estimate

›

›t´1{2
B
ILJu

›

›

L2
f pHsq

ď
1

2
C1εs

δ, |I| ` |J | ď N,

ˇ

ˇB
ILJu

ˇ

ˇ ď
1

2
C1εt

´2{3`δs´1{3´2δ, |I| ` |J | ď N ´ 2,

(5.4.3)

then we can infer that s1 cannot be of finite value, which implies existence of global-in-
time solutions.

We need the following lemma from [45] to improve the pointwise estimates of u. An
alternative proof of Lemma 5.4.2 is given in [2].

Lemma 5.4.2 (Pointwise estimates for wave components). Suppose u is a spatially
compactly supported solution to the wave equation

´lu “ f,

upt0, xq “ Btupt0, xq “ 0,
(5.4.4)

with f spatially compactly supported and satisfying

|f | ď Cf t
´2´ν

pt´ rq´1`µ, (5.4.5)

for 0 ă µ ď 1{2 and 0 ă ν ď 1{2. Then we have

|upt, xq| À
Cf
νµ
pt´ rqµ´νt´1, (5.4.6)

where Cf is some constant.
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Direct consequences from the bootstrap assumption (5.4.2) and the supnorm esti-
mates for waves give the refined pointwise estimates of u.

ˇ

ˇB
ILJu

ˇ

ˇ À εt´1{2s´1
` pC1εq

3t´1`δs´2δ, |I| ` |J | ď N ´ 2. (5.4.7)

The following proposition gives the refined L2-type estimates.

Proposition 5.4.3 (Refined L2-type estimates). Assume the bounds in (5.4.2), then
it holds

›

›t´1{2
B
ILJu

›

›

L2
f pHsq

À ε` pC1εq
3sδ. (5.4.8)

Proof. According to Theorem 5.1.1, it suffices to show

›

›ps{tq1{2BILJpu3
q
›

›

L2
f pHsq

À pC1εq
3s´3{2, |I| ` |J | ď N.

By the product rule, we have for |I| ` |J | ě 1 that

›

›ps{tq1{2BILJpu3
q
›

›

L2
f pHsq

ď
ÿ

I1`I2`I3“I,J1`J2`J3“J.

›

›B
I1LJ1uBI2LJ2uBI3LJ3u

›

›

L2
f pHsq

À pC1εq
3s´3{2.

For the case |I| ` |J | “ 0, we can obtain the desired estimates in the same way.

Remark 5.4.4. We compare here those two kinds of derivatives

Ba, Ba.

What we already know for the wave component u is that

›

›ps{tqBau
›

›

L2
f pHsq

À C1ε, |Bau| À C1εt
´1{2s´1.

From [61], one possibly obtains that

›

›Bau
›

›

L2
f pHsq

À C1εs
´1{2, |Bau| À C1εt

´3{2s´1{2.

On the other hand, by using the analysis here, on can arrive at the bound

›

›t1{2Bau
›

›

L2
f pHsq

À C1εs
δ, |Bau| À C1εt

´2`δ,

with δ ą 0.

In the hyperboloidal setting, the conclusion for the wave component u is that Bau
behaves better than ps{tqBau. And our L2-type estimate can control Bau better near the
light cone, where t „ s2.
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Global stability in 1 dimensional
space
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6.1 Overview

The global stability results for wave equations with null form nonlinearities in 1
dimension were first proved by Lucilt, Yang, and Yu [57]. Later on a coupled wave-
Klein-Gordon system in 1 dimension was studied by Ma [60], where Ma also removed
the compactness assumption on the initial data of the hyperboloidal foliation method.
The wave equation of interest here with initial data is the following

´BtBtu` BxBxu “ pBtuq
2
´ pBxuq

2,
`

u, Btu
˘

pt0, ¨q “
`

u0, u1

˘

.
(6.1.1)

1This chapter is a joint work with Philippe G. LeFloch.
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We are interested here in simplifying the proof in [57]. To be more precise, we
provide a proof mimicing the one in [57], where we do not need to estimate the energies
on the null curve segments. Besides, we also provide here a pointwise estimates on the
wave component u without any derivatives on it, which is based on the new L2-type
estimates established in Chapter 5 and the Sobolev-type estimates in [44]. We prefer
to conduct the proof in the hyperbolic space, while the proof also works in the whole
flat space. We might not recall the notations and inequalities introduced before.

The main theorem is stated now.

Theorem 6.1.1. Consider the wave equation with null nonlinearity (6.1.1) in 1 dimen-
sion, and let N ě 1 be an integer. Then there exists ε0 ą 0, such that for all compactly
supported initial data satisfying

}u1}HN ` }u0}HN`1 ă ε ď ε0, (6.1.2)

the Cauchy problem (6.1.1) admits a global-in-time solution u. Furthermore, if N ě 2
we have

|u| À C1εs
δ, (6.1.3)

with δ ą 0 some arbitrarily small number and s the hyperbolic time.

The rest of this chapter is organised as follows. In Section 6.2, we introduce some
Sobolev-type inequalities. Next, we rewrite wave equations in the hyperbolic space in
Section 6.3. Later on in Section 6.4 we initialise the bootstrap method. Then in Section
6.5, we prove the refined estimates which prove the existence of global-in-time solution.
Finally we prove the pointwise estimates in the last section.

6.2 Sobolev-type inequality

We first provide a complete proof of the global stability result for R1`1 wave equation
with null non-linearity. We assume the initial data have compact support and thus we
can rewrite it in the hyperbolic space with the new variables

pτ, rxq :“
´1

2
logpt2 ´ x2

q,
x

pt2 ´ x2q1{2

¯

and, then conduct a bootstrap argument. Again, an alternative approach to this prob-
lem can be found in [57].

We work with the one-dimensional unit hyperboloid

H1 :“
 

pt, xq : t2 “ x2
` 1, pt, xq P R2

(

. (6.2.1)
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Definition 6.2.1. The hyperbolic Fourier transform of a function f “ fpt, xq defined
on H1 is defined as

pfpλq :“

ż `8

´8

f
`
?

1` x2, x
˘`
?

1` x2 ´ x
˘iλ dx
?

1` x2
, λ P R. (6.2.2)

The above formula and the ones we now derive hold for all (suitably) integrable
functions. The L2 and H1 norms of a function f : H1 Ñ R are defined as

}f}L2pH1q :“
´

ż `8

´8

|fpxq|2dx
?

1` x2

¯1{2

(6.2.3)

and

}f}H1pH1q :“
´

ż `8

´8

`

|fpxq|2 ` |
?

1` x2Bxfpxq|
2
˘

dx
?

1` x2

¯1{2

(6.2.4)

respectively.

Proposition 6.2.2. • Inverse formula: From the hyperbolic Fourier transform
of a function f “ fpt, xq “ fpxq defined on H1, we can recover the function by
the formula) (up to a constant)

fpxq “

ż `8

´8

pfpλq
`
?

1` x2 ´ x
˘´iλ

dλ. (6.2.5)

• Plancherel identity: For a sufficiently regular function f “ fpt, xq on H1 with

its hyperbolic Fourier transform pf “ pfpλq, it holds

}f}L2pH1q “ }
pf}L2pRq.

Like the standard Fourier transforms, derivatives can be transformed to multipliers.

Lemma 6.2.3. For any function f defined on H1 one has

FH1

´

`
?

1` x2Bx
˘n
fpxq

¯

pλq “ piλqn pfpλq, n “ 0, 1, 2, . . . , (6.2.6)

with, moreover,
›

›

`
?

1` x2Bx
˘n
fpxq

›

›

L2pH1q
“ }λn pfpλq}L2pRq.

Now we are ready to give the statement and proof of the following Sobolev-type
inequality needed afterwards.

Lemma 6.2.4. We define the function space

HN
pH1q :“

!

f :

ż `8

´8

|f̂pλq|2p1` λ2N
q dλ ă `8

)

.
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Given a function fpxq P H1pH1q, then it is bounded, i.e.

sup
xPH1

|fpxq| ď }f}H1pH1q. (6.2.7)

Proof. Recall the inverse hyperbolic Fourier transform formula

fpxq “

ż `8

´8

pfpλq
`
?

1` x2 ´ x
˘´iλ

dλ.

It is obvious that

|fpxq| ď

ż `8

´8

| pfpλq| dλ

À } pf}
1{2

L2pRq}λ
pf}

1{2

L2pRq “ }f}
1{2

L2pH1q
}
?

1` x2Bxf}
1{2

L2pH1q
,

where we used the inequality }fpxq}L1pRq À }fpxq}
1{2

L2pRq}xfpxq}
1{2

L2pRq which can be found

in [43].

6.3 Wave equations in hyperbolic spaces

Lemma 6.3.1. Consider the wave equation with null quadratic non-linearity

B
2
t u´∆u “ BtuBtu´ BxuBxu,

up1, xq “ u0pxq, Btup1, xq “ u1pxq.
(6.3.1)

Then in the new coordinates pτ, rxq :“
`

log
?
t2 ´ x2, x{

?
t2 ´ x2

˘

it will be expressed as

B
2
τu´

r∆H1u “ pBτuq
2
´
`
?

1` rx2
rBxu

˘2
, (6.3.2)

in which
r∆H1 “

?
1` rx2

rBx

is the Laplace-Beltrami operator on the unit hyperboloid H1 and

rBx :“ B
rx.

Proof. It is helpful to first look at the vector fields pBt, Bxq expressed in the new frame:

Bt “ e´τ
?

1` rx2Bτ ´ e
´τ
rx
?

1` rx2
rBx,

Bx “ ´e
´τ
rxBτ ` e

´τ
p1` rx2

qrBx.
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Successively, we can express the null term pBtuq
2 ´ pBxuq

2 in the new coordinates:

pBtuq
2
´ pBxuq

2
“
`

e´τ
?

1` rx2Bτu´ e
´τ
rx
?

1` rx2
rBxu

˘2
´
`

´ e´τrxBτu` e
´τ
p1` rx2

qrBxu
˘2

“ e´2τ
pBτuq

2
´ e´2τ

`
?

1` rx2
rBxu

˘2
.

Next recall the relation

l

´

e´mτpt,xqφpt, xq
¯

“ e´p2`mqτlH1φpτ, rxq,

where the wave operator in hyperbolic space is given by

lH1 :“ ´BτBτ ` r∆H1 `m
2, (6.3.3)

hence (6.3.2) can be obtained by noticing that m “ pn´ 1q{2 “ 0 in R1`1.

Theorem 6.3.2. Consider the wave equation (6.3.1), and assume the initial data are
compactly supported in B1{2p0q, then there exists ε0 ą 0, such that for any initial data
satisfying

}u1}H1 ` }u0}H2 ă ε ď ε0,

equation (6.3.1) admits a global-in-time solution u “ upt, xq.

Remark 6.3.3. In order to prove (6.3.1) has a global-in-time solution, it suffices to
show (6.3.2) admits a global-in-time solution in terms of the time variable τ .

6.4 Bootstrap assumption

We first introduce two differential operators which will be used frequently in the
following contents:

D´ :“ Bτ ´
?

1` rx2
rBx, D` :“ Bτ `

?
1` rx2

rBx.

We notice that the wave operator can be rewritten as

´lH1 “ D´D` “ D`D´,

while the null non-linearity is expressed to be

pBτuq
2
´
`
?

1` rx2
rBxu

˘2
“ D´uD`u.
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Now we pose the bootstrap assumptions in the interval r0, τ1s:

ÿ

k“0,1

}ωδ2´D´p
?

1` rx2
rBxq

ku}L2pH1q `
ÿ

k“0,1

}ωδ2`D`p
?

1` rx2
rBxq

ku}L2pH1q ď C1εe
δ1τ ,

ÿ

k“0,1

}D´p
?

1` rx2
rBxq

ku}L2pH1q `
ÿ

k“0,1

}D`p
?

1` rx2
rBxq

ku}L2pH1q ď C1ε,

(6.4.1)
in which the weights are

ω´ :“ eτ p
?

1` rx2 ´ rxq ` 1, ω` :“ eτ p
?

1` rx2 ` rxq ` 1,

and the parameters C1 is some big constant to be determined, δ1 ą 0 and δ2 ą 0 are
fixed constants with the restriction

δ2 ą 2δ1.

The upper bound τ1 is taken to be the largest number such that the bootstrap assump-
tions in (6.4.1) are satisfied, and we know τ1 is strictly positive due to the smallness of
initial data.

We are going to prove that the upper bounds in (6.4.1) can be refined to be

ÿ

k“0,1

}ωδ2´D´p
?

1` rx2
rBxq

ku}L2pH1q `
ÿ

k“0,1

}ωδ2`D`p
?

1` rx2
rBxq

ku}L2pH1q ď
1

2
C1εe

δ1τ ,

ÿ

k“0,1

}D´p
?

1` rx2
rBxq

ku}L2pH1q `
ÿ

k“0,1

}D`p
?

1` rx2
rBxq

ku}L2pH1q ď
1

2
C1ε,

(6.4.2)
which ensures the existence of the global-in-time solution to (6.3.2).

A direct consequence from the bootstrap assumptions (6.4.1) are the following sup-
norm bounds.

Lemma 6.4.1. Assume (6.4.1) holds, then

sup
ˇ

ˇωδ2´D´u
ˇ

ˇ` sup
ˇ

ˇωδ2`D`u
ˇ

ˇ À C1εe
δ1τ ,

sup
ˇ

ˇD´u
ˇ

ˇ` sup
ˇ

ˇD`u
ˇ

ˇ À C1ε.
(6.4.3)

Proof. Observe that
ˇ

ˇ

?
1` rx2

rBxω
δ2
˘

ˇ

ˇ ď δ2ω
δ2
˘ ,

then an application of the Sobolev-type inequality (6.2.7) implies (6.4.3).
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6.5 Refined energy estimates

Lemma 6.5.1. Consider the wave equation (6.3.2)

B
2
τu´

r∆H1u “ pBτuq
2
´
`
?

1` rx2
rBxu

˘2
,

then it holds for any smooth enough multiplier Z that

ż

R
ZD´u

drx
?

1` rx2

`

τ
˘

ď

ż

R
ZD´u

drx
?

1` rx2

`

0
˘

`

ż τ

0

ˆ

}D`ZD´u}L1pH1q ` }ZD´uD`u}L1pH1q

˙

dτ,

ż

R
ZD`u

drx
?

1` rx2

`

τ
˘

ď

ż

R
ZD`u

drx
?

1` rx2

`

0
˘

`

ż τ

0

ˆ

}D´ZD`u}L1pH1q ` }ZD´uD`u}L1pH1q

˙

dτ.

(6.5.1)

Proof. Consider (6.3.2) in the form

D`D´u “ D´uD`u,

then we obtain after testing the multiplier Z

ż τ

0

ż

R
ZD`D´u

drx
?

1` rx2
dτ “

ż τ

0

ż

R
ZD´uD`u

drx
?

1` rx2
dτ.

Successively, we rewrite

ZD`D´u “ Bτ
`

ZD´u
˘

`
?

1` rx2
rBx
`

ZD´u
˘

´D´ZD`u,

thus we have the first energy estimate in (6.5.1), due to the term
?

1` rx2
rBx
`

ZD´u
˘

does not contribute with respect to the integral
ş

R ¨ drx{
?

1` rx2.

We also state the following consequence, with specific choices of the multiplier Z,
which are more useful.

Lemma 6.5.2. Consider the wave equation (6.3.2), then it holds

}D´u}
2
L2pH1q

pτq À }D´u}
2
L2pH1q

p0q `

ż τ

0

ż

R
pD´uq

2D`u
drx

?
1` rx2

dτ,

}ωδ2´D´u}
2
L2pH1q

pτq À }ωδ2´D´u}
2
L2pH1q

p0q `

ż τ

0

ż

R
ω2δ2
´ pD´uq

2D`u
drx

?
1` rx2

dτ,

}D´p
?

1` rx2
rBxuq}

2
L2pH1q

pτq À }D´p
?

1` rx2
rBxuq}

2
L2pH1q

p0q `

ż τ

0

ż

R

´

`

D´p
?

1` rx2
rBxuq

˘2
D`u
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`D´p
?

1` rx2
rBxuqD´uD`p

?
1` rx2

rBxuq
¯ drx
?

1` rx2
dτ,

}ωδ2´D´p
?

1` rx2
rBxuq}

2
L2pH1q

pτq À }ωδ2´D´p
?

1` rx2
rBxuq}

2
L2pH1q

p0q

`

ż τ

0

ż

R
ω2δ2
´

`

D´p
?

1` rx2
rBxuq

˘2
D`u

drx
?

1` rx2
dτ

`

ż τ

0

ż

R
ω2δ2
´ D´p

?
1` rx2

rBxuqD´uD`p
?

1` rx2
rBxuq

drx
?

1` rx2
dτ.

(6.5.2)

Proof. For the first energy estimate, it is easy to have by taking

Z “ D´u.

We then choose
Z “ ω2δ2

´ D´u

and, the second one can also be achieved with no difficulty by noting

D`
`

ω2δ2
´ D´u

˘

“ ω2δ2
´ D`D´u.

In order to prove the last two estimates, we first act
?

1` rx2
rBx on both sides of

(6.3.2)

D`D´
`
?

1` rx2
rBxu

˘

“ D`
`
?

1` rx2
rBxu

˘

D´u`D`uD´
`
?

1` rx2
rBxu

˘

.

Finally, a similar argument by taking

Z “ D´
`
?

1` rx2
rBxu

˘

and
Z “ ω2δ2

´ D´
`
?

1` rx2
rBxu

˘

respectively completes the proof.

Now we are in a position to prove the refined estimates (6.4.2) and thus close the
bootstrap argument.

Proof of the refined estimates (6.4.2). We will only provide the proof for energies with
D´u term, since the rest ones with D`u term can be bounded in a similar way.

Firstly, by the energy estimates in Lemma (6.5.2), we have

}D´u}
2
L2pH1q

pτq À }D´u}
2
L2pH1q

p0q `

ż τ

0

ż

R
pD´uq

2D`u
drx

?
1` rx2

dτ
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ď ε2 `

ż τ

0

ż

R
ω2δ2
´ pD´uq

2ω´2δ2
´ C1ε ω

´δ2
` eδ1τ

1 drx
?

1` rx2
dτ 1

ď ε2 ` C1ε

ż τ

0

}ωδ2´D´u}
2
L2pH1q

}ω´δ2´ ω´δ2` }L8 dτ
1

À ε2 ` pC1εq
3

ż τ

0

ep2δ1´δ2qτ
1

dτ 1,

in which we used the sup-norm estimate for ωδ2`D`u in the second line and the estimate
for weighted Sobolev norm of D´u in the last line. Due to that fact δ2 ą 2δ1, we obtain

}D´u}
2
L2pH1q

ˇ

ˇ

τ
À ε2 ` pC1εq

3.

Next we bound the weighted L2pH1q norm for D´u. Note Lemma (6.5.2) implies

}ωδ2´D´u}
2
L2pH1q

pτq À }ωδ2´D´u}
2
L2pH1q

p0q `

ż τ

0

ż

R
ω2δ2
´ pD´uq

2D`u
drx

?
1` rx2

dτ 1

À ε2 ` C1ε

ż τ

0

}ωδ2´D´u}
2
L2pH1q

dτ 1

À ε2 ` pC1εq
3

ż τ

0

e2δ1τ 1 dτ 1

À ε2 ` pC1εq
3e2δ1τ

where we applied sup-norm estimate for D`u in the second line and weighted L2pH1q

norm estimate for D´u in the third line.

Successively, we estimate the term }D´p
?

1` rx2
rBxuq}L2pH1qpτq. From Lemma (6.5.2),

it holds

}D´p
?

1` rx2
rBxuq}

2
L2pH1q

pτq

À }D´p
?

1` rx2
rBxuq}

2
L2pH1q

p0q `

ż τ

0

ż

R

´

`

D´p
?

1` rx2
rBxuq

˘2
D`u

`D´p
?

1` rx2
rBxuqD´uD`p

?
1` rx2

rBxuq
¯ drx
?

1` rx2
dτ

À ε2 `

ż τ

0

´

}ωδ1τ
1

´ D´p
?

1` rx2
rBxuq}

2
L2pH1q

}ωδ1τ
1

´ D`u}L8

` }ωδ1τ
1

´ D´p
?

1` rx2
rBxuq}L2pH1q}ω

δ1τ 1

` D`p
?

1` rx2
rBxuq}L2pH1q}ω

δ1τ 1

´ ωδ1τ
1

` D`u}L8
¯

dτ 1

À ε2 ` pC1εq
3

ż τ

0

ep2δ1´δ2qτ
1

dτ 1,

where we used estimates in the bootstrap assumptions and sup-norm bounds. Then we
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find
}D´p

?
1` rx2

rBxuq}
2
L2pH1q

pτq À ε2 ` pC1εq
3.

Finally, we come to bound the term }ωδ2´D´p
?

1` rx2
rBxuq}L2pH1qpτq. By applying

the estimates in Lemma (6.5.2) we have

}ωδ2´D´p
?

1` rx2
rBxuq}

2
L2pH1q

pτq À }ωδ2´D´p
?

1` rx2
rBxuq}

2
L2pH1q

p0q

`

ż τ

0

ż

R
ω2δ2
´

`

D´p
?

1` rx2
rBxuq

˘2
D`u

drx
?

1` rx2
dτ

`

ż τ

0

ż

R
ω2δ2
´ D´p

?
1` rx2

rBxuqD´uD`p
?

1` rx2
rBxuq

drx
?

1` rx2
dτ

À ε2 `

ż τ

0

›

›ωδ2´D´p
?

1` rx2
rBxuq

›

›

2

L2pH1q
}D`u}L8 dτ

1

`

ż τ

0

›

›ωδ2´D´p
?

1` rx2
rBxuq

›

›

L2pH1q
}ωδ2´D´u}L8}D`u}L2pH1q dτ

1

À ε2 ` pC1εq
3

ż τ

0

e2δ1τ 1 dτ 1,

in which we applied energy estimates from the bootstrap assumptions and their conse-
quences in the last line. Thus we obtain

}ωδ2´D´p
?

1` rx2
rBxuq}

2
L2pH1q

pτq À ε2 ` pC1εq
3e2δ1τ .

We are now able to get the refined estimates by choosing C1 very big and ε sufficiently
small, and thus we claim the wave equations (6.3.2) and hence (6.3.1) obtain global-in-
time solutions.

6.6 Pointwise estimates of the wave component

In this section we study the pointwise estimates of the wave component u, with no
derivatives on it, which is the second part of the Theorem 6.1.1. In order to prove it
we rely on the new L2-type estimates established in Chapter 5 and the Sobolev-type
estimates in [44].

We start by recalling the following L2-type estimate of u.

Lemma 6.6.1. It holds

}t´1{2u}L2
f pHsq

À εsδ ` pC1εq
2sδ. (6.6.1)

Proof. Recall the sup-norm estimates in (6.4.3) and the L2-type estimates in (6.4.1),
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we have
}D`uD´u}L2pH1qpτq À pC1εq

2e´δ1τ ,

which is integrable.

Hence from the L2-type estimates established in Theorem 5.1.1 (and its proof), we
arrive at the desired result.

We also recall some facts about null forms.

Lemma 6.6.2. It holds that

L
`

BtuBtv ´ BxuBxv
˘

“ BtuBtpLvq ´ BxuBxpLvq ` BtpLuqBtv ´ BxpLuqBxv, (6.6.2)

in which L “ xBt ` tBx is the Lorentz boost in 1 dimension.

Relying on (6.6.2) we further have the following estimate.

Lemma 6.6.3. Assume N ě 3 in Theorem 6.1.1, then it holds

}t´1{2LJu}L2
f pHsq

À εsδ ` pC1εq
2sδ, |J | ď 1. (6.6.3)

Next we recall the following Sobolev-type estimates which was first introduced in
[44].

Lemma 6.6.4. For all sufficiently smooth functions u “ upt, xq supported in the region
tpt, xq : |x| ă t´ 1u, then for s ě 2 one has

sup
Hs

ˇ

ˇt1{2upt, xq
ˇ

ˇ À
ÿ

|J |ď1

›

›LJu
›

›

L2
f pHsq

, (6.6.4)

where the summation is over Lorentz boosts L “ xBt ` tBx.

Proof of the pointwise estimate (6.1.3). A combination of the L2-type estimates in (6.6.3)
and the Sobolev-type inequality (6.6.4), we obtain the pointwise estimate (6.1.3)

|u| À C1εs
δ.
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Existence results for nonlinear wave equations

Abstract :
This thesis is devoted to showing the existence of global-in-time solutions to some nonlinear equations, including
the wave-Klein-Gordon equations and the Dirac equations. For the wave-Klein-Gordon-Dirac equations, based
on the hyperboloidal foliation method we establish several global stability results, explore the asymptotic
behaviors of these solutions, and study how the solutions are affected when some mass parameters go to certain
limits. As an application, we can prove that several physical models are globally stable: the Dirac-Klein-Gordon
model, the Dirac-Proca model, the Klein-Gordon-Zakharov model, the Up1q model of electroweak interactions
and so on. In Part I, we study the electroweak standard model. We first prove the global nonlinear stability
results for the Up1q model, where we obtain uniform energy bounds (modulo a slow logarithm growth). Next
we move to the full standard model, and get global stability results in some special cases. In Part II, we
analyse a class of coupled wave-Klein-Gordon equations with critical nonlinearities, and prove the existence of
global-in-time solutions which enjoy sharp pointwise decay property. Besides we study a class of Klein-Gordon
equations with possibly vanishing mass, and prove sharp pointwise decay results which are uniform in its mass.
In Part III, we mainly investigate the hyperbolic Fourier transform, and derive a new L2-type estimate for
waves.
Keywords : Hyperboloidal foliation method, wave-Klein-Gordon equations, standard model, mass parameter
limit, critical nonlinearities, hyperbolic Fourier transform

Résultats d’existence pour des équations d’ondes non-linéaires

Résumé :
Cette thèse est consacrée à démontrer l’existence des solutions globales en temps pour certaines équations
non-linéaires, y compris les équations d’ondes et de Klein-Gordon et les équations de Dirac. Pour les équations
d’ondes qui sont basées sur la méthode de la feuilletage hyperbolöıde, nous établissons plusieurs résultats de
stabilité globale, explorons les comportements asymptotiques de ces solutions, et étudions comment les solutions
sont affectées quand des paramètres de masse atteignent certaines limites. Comme application, nous prouvons
que plusieurs modèles physiques sont globalement stables : le modèle de Dirac-Klein-Gordon, le modèle de
Dirac-Proca, le modèle de Klein-Gordon-Zakharov, le modèle Up1q des interactions électro-faibles etc.. Dans
la partie I, nous étudions le modèle standard électro-faible. Nous prouvons la stabilité globale non-linéaire du
modèle Up1q, dans laquelle nous obtenons des bornes uniformes (modulo une croissance lente de logarithme).
Puis, pour le modèle standard complet, nous obtenons la stabilité globale dans certains cas spéciaux. Dans
la partie II, nous analysons une sorte d’équations d’ondes et de Klein-Gordon avec non-linéalités critiques,
et prouvons l’existence des solutions globales qui possède une propriété de décroissance pointue. D’ailleurs,
nous étudions une sorte d’equation de Klein-Gordon avec une masse qui pourrait s’annuler, et prouvons la
décroissance qui est uniforme en terme de sa masse. Dans la partie III, nous examinons principalement la
transformation (hyperbolöıde) de Fourier, et dérivons une nouvelle estimation de type-L2 pour les ondes.
Mots clés : La méthode du feuilletage hyperbolöıdal, des équations d’ondes et des équations de Klein–
Gordon, modèle standard de la physique des particules, limite de paramètre de masse, non-linéarités critiques,
la transformation (hyperbolöıde) de Fourier
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