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Introduction

1 Classical topics on the wave-Klein-Gordon equa-
tions

1.1 Introduction of the wave equation

We are mainly interested in the second order partial differential equations of the
form
~[u + m?u = f, (1.1)

with its prescribed initial data on some hypersurface t = ¢,
u(to, -) = uo, dru(to, -) = ui. (1.2)

We have used the notation
= naﬁaaaﬁ, (1.3)

which is called the wave operator, and
n = diag(—1,1,---,1,1) (1.4)

is the metric in the Minkowski spacetime R'*¢, with d the space dimension. We de-
note the Cartesian coordinates of a point (t,z) = (z), and its radius r := (:vax“)l/z.
Throughout, we use Roman letters to represent spacetime indices and Latin letters for
space indices, and Einstein summation convention is adopted unless specified. In the
above f is called the source term: if f is a function independent of u and its partial
derivatives, we call (L.1)) a linear wave equaton; if f is a function of u or its partial
derivatives, we call a nonlinear wave equation. In the above, m > 0 is some con-
stant, and is called a wave equation if m = 0, while it is called a Klein-Gordon
equation with mass m when m # 0. But we might refer to the equation (1.1)) with
m > 0 as a wave equation if no confusion arises.

Wave equation is first discovered by d’Alembert in one space dimension in 1746,
and later by Euler in three space dimension. We emphasize that we consider wave
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equations in the whole space instead of restricting them to some bounded domain with
prescribed boundary condition. We proceed by introducing several well-known notions
and results.

Definition 1.1. Consider two regular functions u and v, and we call T*?0,udsv as a

quadratic null form if
TP¢és =0 (1.5)

for all null vectors, i.e. vectors satisfying £, = 0.

We list some specific examples of null forms.

[ J
Qo(u,v) 1= udyv.
[ J
Qap(u,v) := 0qulpv — Cpudyv.
[ J

Qoa(u,v) 1= Qud,v — Cuudyv.
The last two types of null forms are called strong null forms by Georgiev [20], because
they have a certain compatibility with the Klein-Gordon components.

There are several groups of vector fields which play very important role in the
following analysis.

e Translations:
(7a = ama

e Rotations:
Qab = a:a&b — xbﬁa.

e Lorentz boosts:
La = t&a + xaat.

e Scaling:
LO = t@t + r@r.

We have the following commutation property between the vector fields above and
the wave (or Klein-Gordon) operator.
Proposition 1.2. [t holds

[aom -+ mZ] = 07 [Lm -+ mZ] = 07

1.6
[Qaba _l:‘ + m2] = 07 [LOa _D] = 2|:| ( )
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1.2 What are we interested in wave equations

There are several natural questions coming to mind when f = f(¢, z) is a prescribed
function independent of u and its derivatives.

Whether the wave (or Klein-Gordon) equation (L.1)) admits a solution?

e What is a solution?

If the solution exists, does the solution exist for all time or only for finite time?

If the solution exists, how fast does it decay, concerning wave equation is one kind
of dispersive equation?

When f is a function of u or its derivatives, the situation is more complicated.

e In different dimensions, what kind of forms of f = f(u,du,ddu) lead to (small
data) a global-in-time solution?

e If the solution exists to the nonlinear wave equation, how fast does the solution
decay?

e What can we say about the systems of wave (or Klein-Gordon or coupled wave-
Klein-Gordon) equations?

For some classical results about linear wave equations, one refers to the beginning
part of the monograph [69] or the lecture note [56] for more details.

We give some well-known related problems on the nonlinear wave equations.

Example 1.3 (Strauss conjecture). Consider the semilinear wave equation
—[Ju = |ufP<*e, (u, (9tu) (to, ") = (ug,u1), (1.7)
in which p. 1s the positive root of the equation

(d—1)p* = (d+1)p—2=0.

Global existence and well-posedness of solutions with small initial data is expected by
Strauss [71|], which was proved by Georgiev, Lindblad, and Sogge [22] and other works
(we are not going to be exhausitive), for a > 0, while counterexamples of finite time
blow-up solutions exist when o < 0. Some recent well-known works on this topic include

[70], [21], [62], and many others.
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Example 1.4 (Weak null conjecture). In the papers [52] and [53], Lindblad and Rodni-
anski first came up with the notion of weak null condition, which generalised the notion
of the classical null condition. Utilising this idea, they first proved the global stability
of Minkowski spacetime in the wave gauge.

Whether weak null condition is a sufficient condition or a necessary condition to the
existence of global solutions to wave equations is still open. For the advances on this
subject, one refers to [3], [11), [37], and many others.

1.3 What tools do people have to study wave equations

The study of nonlinear wave equations is an active research field since 40 years ago.
Numerous of great results come out.

A broad class of wave equations with quadratic nonlinearities satisfying the so-called
null condition, as shown independently by Klainerman [39] 40] and Christodoulou [§],
do admit global-in-time solutions. The vector field method, due to Klainerman, and the
conformal method, due to Christodoulou, have been two major approaches to studying
wave equations. Later on, Rodnianski and Lindblad [53] [54] come up with the notion of
weak null condition, and are able to treat a larger class of nonlinearities. But whether
the weak null condition is sufficient or necessary conditions to the existence of global
solutions to wave equations is still an open problem. Other generalisations of the null
form have also been used to great effect, see for example Pusateri and Shatah [65].
Recently, the r? weighted method by Dafermos and Rodnianski [9] is able to treat wave
equations in the flat metric or metrics with black holes; the hyperboloidal foliation
method by LeFloch and Ma [44] [46], and extended in [45], to treat coupled wave-Klein-
Gordon systems turns out to be a big success.

By contrast, the Klein-Gordon equation requires a different analysis from the wave
equation. One key obstruction is that the scaling vector field S = tJ; + x*0, does
not commute with the Klein-Gordon operator —[] + 1, which thus does not allow us
to apply the Klainerman-Sobolev inequality directly. Pioneering works by Klainerman
using the vector field method in [41], and by Shatah employing a normal form method
in [66], led the way in treating a wide class of Klein-Gordon-type equations.

In [20], Georgiev studies a coupled wave-Klein-Gordon system where he came up
with the notion of strong null forms, which are consistent with the Klein-Gordon equa-
tions, and he obtained global stability results for this system.

Besides, the method of spacetime resonance, introduced by Shatah, Germain, and
Masmoudi in the series of papers [25], [23], [27], [26], [24], etc., appears to be a pow-
erful tool in studying nonlinear dispersive equations, including wave equations, Klein-
Gordon equations, Schordinger equations (see for instance [28]), and many others. As
commented, spacetime resonance method bridges the vector field method and normal
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form method in a certain way. It was used in [65] to prove the global solutions of wave
equations, which also generalised the classical null forms.

The method we employ in this thesis is the so-called hyperboloidal foliation method
which is first introduced by LeFloch and Ma [44] in 2014. Later on they apply this
method to a more generalised coupled wave-Klein-Gordon system in [45] and succeed
in tackling the Einstein-Klein-Gordon system in [48]. Besides, Ma proves a class of
quasilinear wave-Klein-Gordon equations in dimension two [59] and [58], and in dimen-
sion one [60], and Ma and Huang provided a conformal type energy adapted to the
hyperboloidal foliation which is useful to obtain L?-type estimates for wave compo-
nents. Worth to mention, Fajman, Joudioux, and Smulevici apply this method to the
Einstein-Vlasov system in [17].

1.4 What do we already know about wave equations

After decades of investigations, lots of important results come out. In the linear
case, the solution can be written out explicitly in an integral form (for example in
dimension 3). Since wave equation is one kind of dispersive equation, people are very
interested in exploring its decay property. Various of methods (like Fourier analysis,
utilisation of the integral formulation of the solution, and energy method) can be used
to prove the following result for free wave (or Klein-Gordon) equations.

Theorem 1.5. Let u be the solution to the wave equation
Cu+mPu =0, u(ty,") =ug, dulty,-)=ui,
in which ug, uy are compactly supported smooth functions, then it holdsﬂ

lu| < ¢t~(@=D/2 ifm=0,

1.8
lu| < m~4? ifm+#0, (18)

in which d is the space dimension.

For general nonlinear wave equations, the local existence results are classical. We
cite this result from [69].

Theorem 1.6. Consider the quasilinear wave equation of the form

9°%(u, 0u)0,05u = F(u, du),

1.9
u(to, -) = uo, dpu(to, ) = u, (1.9)

!Throughout, A < B means A < CB with some generic constant C, and similar convention is true
for the notation ~.
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and we assume g*° and F are smooth functions with all derivatives O(1). We also
assume that

F(0,0)=0, Y |g*" —n"| <1/2. (1.10)
ap

Let N = d + 2 and (ug,u;) € HN*L x HN. Then there is a T > to, depending on
the norm of the data, so that the initial value problem above admits a unique solution,
satisfying

Dolevu(t, )2 < 40, tg<t<T. (1.11)
la|<N+1
Also, if
T, := sup{t : 2 [0%u(t, )|z < +o0},
la|<N+1
then

o cither T, = 40,

® Or

Do le%u(t,x)| ¢ L ([to, Tu] x R").

la|<(N+3)/2

For nonlinear wave equations with null forms, Klainerman and Christodoulou proved
independently the following result.

Theorem 1.7 (Klainerman and Christodoulou, 1986). Consider the wave equation
(T.1) in dimension RY*3 with
f =1 OaU0pU

a null form, and let N be a sufficiently large integer. There exists g > 0 such that for
all € € (0,¢€0), and all initial data (ug,uy) satisfying the smallness condition

[wol gyt + ua] v < e, (1.12)

the initial value problem (L.1)—~(1.2) admits a global-in-time solution w.

2 Physical models related to wave-Klein-Gordon equa-
tions

2.1 Examples of wave equations

We first provide some examples of wave equations in Luk [56].
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Example 2.1 (Maxwell’s equation, Maxwell, 1860s). Let E : I x R* — R® and B :
I x R® — R3 be (time-dependent) vector fields representing the electric and magnetic
field. The Maxwell’s equations are given by

OtE=V><B,

OB =—-V x E,

! - (2.1)
V-E=0,
V-B=0.

A priori, they may not look like wave equations (they are not even second order!).
Howewver, if we differentiate the first equation by 0;, use the second and third equations,
we get

—E; =0, i=123. (2.2)
Simalarly, it is also true that

—[B; = 0, 1 =1,2,3. (2.3)
Thus given initial data

(E, B)(to,) = (E°, BY), (2.4)

which are divergence free, then the Mazwell’s equations in (2.1) are equivalent to the
following wave equations

—[E; =0, —0B; =0,

(Ei, 0:E;) (to, ) (EY, (V x BY),), (Bi, 0:B;) (to, ) (BY, —(V x E%),). (2:5)

Example 2.2 (Irrotational compressible fluids, Euler, 1752). A fluid in I x R? is
described by a vector field v : I x R> — R3 describing the velocity of the fluid and a
non-negative function h : I x R®> — R describing the enthalpy.

Define the pressure p to be a function of the enthalpy p = p(h) such that

e p>0,

o pi=2>0,

o 1) = p(%)*l > 0.

We call p the density of the fluid and n the speed of sound. The Euler equations are

given by
(7,5%- + (U : V)’U,L = —(7Zh,

op+ V- (pv) =0,

fori =1,2,3. We say that a flow is irrotational if V x v = 0. In that case, we can
write v = —V ¢, where ¢ is defined up to adding a function of time.

(2.6)
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The first equation above gives

V(09— (1/2)|Vo[* —h) = 0.

Since we have the freedom to add a function of time to ¢ (which does not change
v), we can choose

&g — (1/2)|[Vo* —h =0.
We can get from the second equation in that
040sd — 20" 9010, + 0" 9 $0;0; — 0" 09 = 0. (2.7)

Example 2.3 (Einstein vacuum equations, Einstein, 1915). The Finstein vacuum equa-
tions describe the propagate of gravitational waves in the absence of matter and take
the form

Ric(g) =0, (2.8)

where the Lorentzian metric g is the unknown and Ric is the Ricci curvature. In a
coordinate system, these equations take the form

_ 1 1 1 1
ch(g)pw = _§g Baaaﬁgmx - 59 Ba,uaugaﬁ + §g Baaaugﬁu + ég ﬁaﬂaugau + F;w(ga 69)7
(2.9)
where F,,(g,09) is a function of g and its derivatives.

This does not look like a wave equation (because of the second to fourth terms)!
However, a more careful choice of coordinates allows one to rewrite this system as a
system of nonlinear wave equations.

Example 2.4 (Wave map equations). Let ¢ : [ x R* — S™ = {z € R™"! : |z| = 1}.
The wave map equation is given by the following system of (m + 1) equations:

—0¢ = (09" 0 — 00" 0ih),
(¢7 atﬁb) (t()a ) = (QSO? ¢1)7

where ¢T denotes the transpose of the vector ¢.

(2.10)

One can show that suppose |¢o|? = 1 and ¢L ¢y = 0, then, if a solution ¢ exists in
I x R", then |¢|*> =1, i.e., ¢ is indeed a map to the sphere.

Note again that the above examples are extracted from the lecture note by Luk [56].

2.2 Examples of Klein-Gordon equations

We demonstrate a few examples of Klein-Gordon equations.
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Example 2.5 (Higgs equation). Let ® : R'™ — C?, and V(p) := (p — v*)* with v > 0
some fized constant, we call the following equation the (massive) homogeneous Higgs
equation

—0P + V' (9*®)P = 0. (2.11)

This equation is derived from the standard model of electroweak interactions, see for
instance [15] or Chapter[d

Example 2.6 (Massive Dirac-Proca equations). The field equations for the massive
Dirac-Proca model with unknowns A" and v read

DAV . mQAu _ _¢*707V(PL¢)7

—iy O + My = =" A, (Prip). (212)

in which P; = %(14 — %), ¥* the Gamma matrices, and m > 0, M > 0. Here
Y R3TL — C* represents a massive Dirac fermion with spin 1/2 and A* : Rt — R
represents a massive boson (the Proca field) of mass m? with spin 1.

The equation for the spinor v does not seem to be a wave equation unless we act
the Dirac operator —iy*0, one more time on it and apply the fact

0= (- ifyu(’)u)? (2.13)

2.3 Examples of coupled wave-Klein-(GGordon equations

Several coupled wave-Klein-Gordon equations are listed here.

Example 2.7 (Dirac-Proca equations). The field equations for the Dirac-Proca model
with unknowns A* and 1) read
OA” = m*A” + 0"(0,A") = —¢*y"7" (Pry),

2.14
—iy'up = =" AL(Prap). ( )

with again Py = %(14 —~%) and m > 0. Here ¢ : R3*1 — C* represents a massless
Dirac fermion with spin 1/2 and A* : R3*? — R represents a massive boson (the Proca
field) of mass m?* with spin 1.

It does not look like a Klein-Gordon system for the gauge fields A”, but one observes
that the initial constraints

(0. 4%) (to,) =0, 0:(0,A")(to,-) = 0, (2.15)

are propagated by the equations in (2.14), and thus the Dirac-Proca equations now
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become

DA - m 2/)* (PLw)a
—w“&m = —y AM(PLw)'

Example 2.8 (Klein-Gordon-Zakharov equations). Recall the Klein-Gordon-Zakharov
equations
—[u = Z Alvg|?,
a (2.16)
— v, + vy = uvg,

where the unknowns w is real valued and v, are complex valued for a = 1,2,3. The
wnitial data are denoted by

(u, Opu)(t =2,-) = (u(o), u(l)), (Vas Orva) (t =2,) = (v 0 Uc(bl)), (2.17)
We rewrite the equations (3.1.7)) in the following form where we can only consider

real valued functions
—0u = Y8 (3 (2 + 1)),

2.1
— Uz, + x4 = ux,, (2.18)
- Dya + Ya = UYq,
in which we use the notations x, := Re(v,) and y, := Im(v,) to denote the real part

and the imaginary part of a complexr number z, respectively.

We note that the reqularity of u is one order less than that of v,. This can be seen
from the initial data, where we consider the norms

[l gvo,  [uPanor, [0 |gvorr, [0 o,
with Ny some large integer. Thus equations (3.1.7) are semilinear equations.

Example 2.9 (Einstein-Klein-Gordon equations). This example is extracted from [{J].
We consider the Einstein equations for an unknown spacetime (M, g):

R
—Jap = 80143, (2.19)

Rz'cag — 9

where Ric™ denotes the Ricci curvature tensor and R = ¢*° Ric,g denotes the scalar

curvature. The matter is taken to be a massive scalar field with potential V. = V(¢)
and stress-enerqy tensor

Top o= VadV30 — (5926976 + V(6) ) gas (2:20)
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and specifically,
2
c
V(9) = 50, (2.21)

where ¢ > 0 represents the mass of the scalar field. By applying V* to (2.19)) and using
the Bianchi identity

R
ve (Ricag — ng) = O,
one checks that the Einstein-scalar field system implies

Ricos = 87 (Vad Vo + V(0)gas,

Oy = V'(9), 222)

in which [, := g*?0,05. A suitable choice of coordinates make the first equation also a
system of quasilinear wave equations.

Example 2.10 (Standard model of electroweak interactions). This example is extracted
from Chapter|d, see also [15].

We need some notations for the fields of the theory. Let o, € C**2 be the standard
Pauli matrices where a = 1,2,3, which form a basis for the Lie algebra su(2) which we
normalize by defining 7, := %aa € C?*2. The five fields in the theory are the following:

P e C? SU(2)-doublet Higgs field,
Y = (Y*) U(1)-gauge field,
W = (WH) SU(2)-gauge field, (2.23)
(er,er) € C? x C? (left- and right-handed) electron spinor,
vy, € C? left-handed neutrino spinor.

Deriwed from the Lagrangian density of electroweak standard model, the evolution

equations are
D,D'® = V'(*®)® + g.ef L,

v gy .
D" = =5,
DAY = g I, 220

iohDyer = geP*L,
io} D, L = g.Peg,

i which
j" = L0 L + 2ej0"er + i(D"P)* P — id* (D" P),

2.25
J! := Re[L*cY1,L] —i(D"®)*1,® + i®*7,(D"P). (2.25)
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We introduce various notations we use in the system of equations

H;uza = a},LWI/a - al/VVua + gWCachubWum (2 26)

F =20, —0Y,. '
Here the structure constants cqpe for SU(2) are the usual 3-dimensional totally anti-
symmetric Levi-Civita symbols normalised so that c1o3 = 1. We have used the following
covariant derivatives

D@ = (8 — igwWyaTa + z’%YY#)CZD,

Dyeg = (0, —igyY,)er, (2.27)
DL = (8, — igwWyaTa — z'%’y )L.

For completeness the covariant derivatives on the field tensors F* and H* are the
following
D,F"" = 0,F"",

2.28
D,H}? := 0,H}" + gwcaW,nH.". ( )

3 Revisit of the hyperboloidal foliation method

3.1 Hyperboloidal foliation of Minkowski spacetime

Instead of considering the flat foliation, we use the hyperboloidal foliation of the
Minkowski spacetime, which for instance was introduced and used by Klainerman [41]
and LeFloch-Ma [44]. We need to introduce and study the energy functional for wave
or Klein-Gordon components on hyperboloids, and it is necessary to first recall some
notations from [44] concerning the hyperboloidal foliation method. We consider here the
(3 + 1)-dimensional Minkowski spacetime with signature (—, +, +, +), and in Cartesian
coordinates we adopt the notation of one point (¢,z) = (2°, 2!, 2%, 23), with its spatial
radius r := |z| = 4/(21)? + (22)2 + (23)2. Partial derivatives are denoted by d, (for
a=0,1,2,3), and

Ly = 2%0; + t0,, a=1,2,3 (3.1)

represent the Lorentz boosts. Throughout, the functions considered are defined in the
interior of the future light cone

K:={(tz):r<t—1},
whose vertex is (1,0,0,0). We denote the hyperboloidal hypersurfaces by

He = {(t,x) : t? —1* = 57}, s> 1.



Introduction 21

Besides the subsets of K limited by two hyperboloids H,, and H,, with sy < s; are
denoted by

Kisos) i= {(t, ) 1 55 < =1 < shyr <t =1}
We now introduce the semi-hyperboloidal frame

L a
By =y == %at + 0. (3.2)

We notice that the vectors ¢, generate the tangent space of the hyperboloids. Besides,
the vector field

0, =0+ (x/t)0,

is orthogonal to the hyperboloids and is proportional to the scaling vector field S :=
tat + x“@a.

The dual of the semi-hyperboloidal frame is given by
6° = dt — (z*/t)dz®, 0* = dz".

The (dual) semi-hyperboloidal frame and the (dual) natural Cartesian frame are con-
nected by the following relations

O = 0w, 00 =V0,,

/ / (33)
6% = Uodz®,  dz® = D0,

where the transition matrix (®9) and its inverse (¥9) are given by

1
ol /t
z?/t
3/t

(@) = (3.4)

OO = O
O = OO
_ o O O

and

|
&
—
~
~
—_
o~ O O
_— o O O
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3.2 Energy estimates on hyperboloids

Following [45] and considering in the Minkowski background, we introduce the en-
ergy functional E,, for a nice function ¢ = ¢(t, z) defined on the hyperboloid #

En(s:0) = | ((00)" + X (0u0) + 20" 00000 + ) dz, (3
which has two other equivalent (and more useful) expressions

Eun(s.0)= [ ((6/00)" + 3 0)" + mte?) o

s

- | (@ £ 2 (6/000)" + 3 (71 0u0)" + o) d
Hs

a<b

in which
Qup = 220, — 2°0,

are the rotational vector fields, and 0, = d; + (x%/t)0, is the orthogonal vector field.
It is helpful to point it out that each term in the expressions are non-negative,
which is vital in estimating the energies of wave or Klein-Gordon equations. We use
the notation

E(s,¢) := Eo(s, ¢)

for simplicity. In the above, the integral in L'(#;) is defined from the standard (flat)
metric in R?, i.e.

liyou = [ toldo = [ ot/ 0] (58)

Next, we recall the energy estimates for the wave-Klein-Gordon equations.

Proposition 3.1 (Energy estimates for wave-Klein-Gordon equations). For all m = 0
and s = 2, it holds that

E,(s,u)"? < B, (2,u)Y? + f | —Cu + mguHL?(HS,) ds’ (3.9)
2
for all sufficiently reqular function w, which is defined and supported in the region Kz ).

For the proof, one refers to [45].



Introduction 23

3.3 Estimates for commutators and null forms

We briefly review how the commutators and null forms are estimated, but the precise
statements are not given here.

Heuristically speaking, the following relations are valid:
|00"L7 ¢| ~ |0"L7 09,

6L (T 8,0050)| < (/0)|0"L (B00v) (310)

Y

in which ¢, are two good functions, and 7% is a null form.

4 Motivation and organisation of the thesis

4.1 Overview and the co-authorships

As we described above, the greatest interest of studying nonlinear wave equations lies
in proving the existence of global-in-time solutions and in applying this result to some
models in physics if possible. Hence we will mainly deal with the coupled wave-Klein-
Gordon-type equations from the U(1) electroweak standard model, the Dirac-Proca
system, the Klein-Gordon-Zakharov model and beyond. On the other hand, we also
focus on equations of possibly only mathematical interest or on some other aspects in
the field of analysis.

In Chapters [IH2], the work is joint with Philippe G. LeFloch and Zoe Wyatt; in
Chapter [3| the work is joint with Zoe Wyatt; in Chapters and [0 the work is joint
with Philippe G. LeFloch.

4.2 Main work in Part 1

In this first part, we study the evolution equations for electromagnetic and weak
interactions between elementary particles coming from the Standard Model in physics.
In particular we first treat in Chapterthe Higgs mechanism applied to an abelian U(1)
model, where we study the Euler-Lagrangian equations and prove the global stability
results for this model. Next in Chapter [2| we will look at the Higgs mechanism applied
to the more complicated non-abelian SU(2) x U(1) gauge group of the full Glashow-
Weinberg-Salam (GSW) model, where we will only treat some preliminary aspects of
the system of equations of this full model, but the proof of the global stability results
is still ongoing. Nevertheless, we prove the global stability results for some subcases,
which are obtained by setting certain parameters to be zero.

In Chapter [1| we study the equations coming from the U(1) electroweak standard
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model, which comprise Klein-Gordon equations as well as massive and massless Dirac
equations. A simplified illustration of the model is

—lv+wv= w*"p?
—Z'ﬁ/“a,ﬂ?/) + mg¢ = 2)1/}’
in which m, > 0, and ® is the Dirac field. In particular, we investigate there the Dirac

equation and its hyperboloidal energy functional. We also provide a decay result for
the Dirac equation which is uniform in the mass coefficient m, € [0, 1]

(4.1)

] < mingt~!, my 12, (4.2)

and thus allow for the mass coefficient to be arbitrarily small. Our energy bounds are
uniform (modulo a logarithm growth) with respect to the hyperboloidal time variable.

In Chapter [2| we first derive the system of equations from the Lagrangian density
of the GSW theory. Next we do several linear combinations on the fields to disclose
their nature, for example we transform the four mixed vague gauge vector fields to
three massive vector bosons and one massless vector photon. Later on we make some
gauge choice and prove it is propagated by the system of equations. Besides, we extract
some simplified models by letting certain parameters vanish, and prove these models
are globally stable.

4.3 Main work in Part 11

In Part [ll] (Chapters |3H4)) , we prove the stability results for a series of wave-Klein-
Gordon equations in dimension 3.

In Chapter |3, motivated by the Klein-Gordon-Zakharov model, we study a more
general coupled wave-Klein-Gordon system of the form

—[ v +v=uv,

4.3
—Ju = uv + uov. (4.3)

Compared with the Klein-Gordon-Zakharov model as demonstrated in Example [2.8], we
do not need to require the nonlinearities in the wave equation are of divergence form.
Note that the Klein-Gordon-Zakharov equations are essentially of the form

—[W' + 0" = du'v,

1 2 (44)
—[Ju’ = v~

which is easier to handle since du’ behaves better than v’ when v’ is a wave component.

However the system (|4.3) we consider is more subtle to deal with, which is due to the

absence of derivatives on the wave components. Relying on a careful analysis and an
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induction argument, we will prove the existence of global-in-time solution to (4.3)) which
enjoys sharp pointwise decay property

lu| <t | < 732 (4.5)

In Chapter {4}, we prove a unified pointwise decay result, for a Klein-Gordon system,
with respect to its mass. This is motivated by the study of the electroweak U(1) model
in Chapter [I, where we obtain a unified pointwise decay result on the Dirac component,
also regarding its possibly vanishing mass. We consider the system

—[Ju + m*u = P%0, (uv + 0% — ug),

4.6
v+ v = u?® + uv, (46)

in which the mass m € [0,1]. We note the nonlinearities in the u equation are of
divergence form, hence the study of can be regarded as a generalisation of the
Dirac equations in this direction. The difficulties here include that: 1) we cannot use
the L?-type estimates and sup-norm estimates obtained from the energy estimates on
the mass term m?u, which is due to the bad factor m™!; 2) unless m = 0, the scaling
and the conformal vector fields do not commute with the operator —[] + m?; 3) the
sup-norm estimate for the wave equation introduced in [2] and [45] cannot be applied
any longer here. By a simple employment of the Fourier analysis method, we are able
to get the unified estimates on some part of © component. Since the rest part is easier
to handle, we finally obtain

lu| < min{t~!, m~ %2} (4.7)

4.4 Main work in Part III

This part is devoted to obtain a new L2-type of estimates for the wave components
on the hyperboloids, where we rely on the Fourier transform method in the hyperbolic
space.

As we mentioned that in recent years, LeFloch and Ma [44] 45] demonstrated the
relevance of hyperbolic foliations for the study of nonlinear wave problems and, for
several classes of other systems. In order to have a complementary understanding of
that method, a natural idea is to investigate the wave equation by using the Fourier
transform method on the hyperboloids, which we call the hyperbolic Fourier transform,
and to see whether we can obtain new properties of wave equations on the hyperboloids.
Following [6], 29], the hyperbolic Fourier transform of a nice function ¢ = ¢(t, z) on the
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hyperboloid H; is defined by

As,)\,w = g iAstm —(t, x), (1, w))?* ™¢(t, x) dH,s,
35,0, (). (1)) s

(A w)eR, x "1 < R

in which

(X, Y):==XY"4+ Y XV X, YeR"™,

and

S
” Qb(t, l‘) dHS = J;@ QZS(’\/ 52 + ’l’|2, CC)\/TW dzx. (49)

Interesting enough, we indeed discover a new L?-type estimate for wave components.
To the best of our acknowledge, the existing methods on obtaining L?-type estimates
for waves on the hyperboloids include: 1) to apply Hardy inequality on the wave com-
ponents, see for instance [45]; 2) to rely on the conformal vector field and the conformal
energy estimates, which was first introduced by Morawetz [63] in the flat setting, see
[61] for the efforts in the hyperboloidal setting.

As a simple application, we prove the existence of global-in-time solutions to the
semilinear wave equation
—[Ju = u’

in R1+3,

In Chapter @ mimicing the proof in [57] for the 1-dimensional wave equation with
null nonlinearities

— 040U + 0, 0,u = (Opu)? — (Opu)?, (4.10)

we simplify a little bit of their proof, i.e. we do not need to estimate the energy
on the null segments. We conduct the analysis in the hyperbolic space, and prove
the existence of the global-in-time solution u. In the end, based on the new L2-type
estimates in Chapter [5| we also provide a sup-norm estimate on the solution

lu| < Cqet’. (4.11)
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1.1 Introduction

Main objective. Our primary objective is to study the equations of motion arising
from the Higgs mechanism applied to an abelian U(1) gauge theory on a Minkowski
background after spontaneous symmetry breaking. We view this model as a stepping-
stone towards the full non-abelian Glashow-Weinberg-Salam theory (GSW), also known
as the electroweak Standard Model. For background physics information on the models
treated in this chapter, see for example [1].

In short, we study here a class of nonlinear wave equations which involve the first-
order Dirac equation coupled to second-order wave or Klein-Gordon equations. We
are interested in the initial value problem for such systems, when the initial data have
sufficiently small Sobolev-type norm. We provide here a new application of the hy-
perboloidal foliation method introduced for such coupled systems by LeFloch and Ma
[44], which has been successfully used to establish global-in-time existence results for
nonlinear systems of coupled wave and Klein-Gordon equations. This method takes its
root in pioneering work by Friedrich [19] 18] on the vacuum Einstein equations and by
Klainerman [38, 41] and Hérmander [30] on the (uncoupled) Klein-Gordon equation, as
well as Katayama [35, [34]. Taking into account nonlinear interaction terms that couple
wave and Klein-Gordon equations together, was a challenge tackled in [44] and in the
subsequent developments on the Einstein equations [45], 49, 48] and [17, [68].

The model of interest. In the abelian U(1) gauge model, the set of unknowns
consists of a spinor field ¢ : R¥"! — C* representing a fermion of mass m, with spin
1/2, a vector field A = (A*) representing a massive boson of mass m, with spin 1, and
a complex scalar field x representing the perturbation from the constant minimum ¢,
of the complex Higgs field ¢ = ¢g + x. Given the ground state ¢y with norm denoted
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by v? := ¢fpo and the three physical parameters m,, my, m,, the equations of motion
in a modified Lorenz gauge consist of three evolution equations

(D - mz)AV = QA”?
(65— x"n) — 3 2 (i~ X"60) = Q. (1.1.1a)
Wua;ﬂ/) - mgquj = QlLH

5 Po
Mg
and a constraint equation

Mg

divA + z’vﬁ(qagx — x*¢o) = 0. (1.1.1b)

Here, the quadratic nonlinearities Q 4v, @)y, and Q) are to be defined later, and ¢, is a
constant complex number with magnitude |¢g| = v. Throughout, we use the signature
(—, 4, +, +) for the wave operator []:= n*d,0, = —7? + A, while the matrices v* and
75 are the standard Dirac matrices (cf. Section [1.2.1]).

Some important physical parameters are provided together with the mass coefficients
above, namely

mg = 2¢%0% > 0, m3 = 4\? > 0, my = gv? =0, (1.1.2)

themselves depend on given coupling constants, denoted by A, g,q, as well as the
so-called “vacuum expectation value” of the Higgs field denoted by v.

The nonlinear stability of the Higgs field. Our main result concerning the sys-
tem (|1.1.1) is a proof of the global-in-time existence of solutions for sufficiently small
perturbations away from the constant vacuum state, defined by the conditions

A =0, ¢o=¢y, ©=0. (1.1.3)

It is convenient to work with the perturbed Higgs field x = ¢ — ¢ as our main unknown.
The initial data set are denoted by

(AV7X7¢) (t()?') = (AS7X07¢0)7 (atAV7atX) (t():') = (ALII7X1)7 (114)
and these data are said to be Lorenz compatible if
0 AG = —AY —iq(dfx0 — Xg0),

AAY — miAY = —0; AL — iq(dhxa — xToo) + ig(xix1 — X xo) (1.1.5)
+2¢° A (D5 X0 + X5 0 + XbX0) + qvibo.
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This elliptic-type system consists of two equations for 11 functions. In particular, it is
easily checked that it admits non-trivial solutions, for instance with compact support.
Observe also that throughout we use the convention that Greek indices take values in
{0,1,2,3} and Latin indices in {1,2,3}. In the following statement, we have m, > 0,
and the coefficient m;l is interpreted as +00 when m, = 0.

Theorem 1.1.1 (Nonlinear stability of the ground state for the Higgs boson). Consider
the system (L.1.1) with parameters mgy, my > 0 and m, € [0, min(m,, my)], and let N
be a sufficiently large integer. There exists €g > 0, which is independent of mgy, such
that for all € € (0,€¢9) and all compactly supported, Lorenz compatible initial data (in
the sense of ) satisfying the smallness condition

| Ao, X0, Yol v+ sy + | AL, xa | v @sy < e, (1.1.6)

the initial value problem of (L.1.1)) admits a global-in-time solution (A, x,¥) with, more-

over,

|A| < et™32, x| < et™2, Y] < emin (t_l,mg_lt_g/2). (1.1.7)

A simpler model: the Dirac-Proca equations. Keeping (1.1.1) in mind, it is
interesting to first understand a simplified subset of (1.1.1]), called the Dirac-Proca
equations. In the Lorenz gauge the equations of motion for this model read

DAV o mZAV — _w*,yo,yu(PLw),

_Z.’YM ;ﬂvZJ + M@ZJ = _’YMAM(PL@D)? (1‘1‘8)

where P, = 1(I;—~%). This system describes a spinor field ¢ : R**! — C* representing
a fermion of mass M with spin 1/2 and a vector field A = (A*) representing a massive
boson of mass m with spin 1. We allow the mass parameters M, m to be positive or
zero and, in particular, we will be interested in the case M = 0 (i.e. the standard
Dirac-Proca equations) as well as in the case M > 0 (massive field). Observe that
the Dirac-Proca system (|1.1.8]) contains no Higgs field and so the masses M, m are
introduced ‘artificially” in the model, instead of arising from the Higgs mechanism.

A set of initial data set for (1.1.8]), say,
(Au’atAV’,l?b) (t07') = (ay7byv¢0)7 (119)

is called Lorenz compatible if one has

bo + @aj 0,

. 1.1.10
Ad® —m?a® = — 5 Prapg — 0. ( )

We postpone the statement of our second main result, for this system, to Theorem [1.4.1
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below.

Strategy of proof. The small data global existence problem for ((1.1.8) with m, =0
and for was solved in Tsutsumi in [76, [77]. Yet, it is very interesting to revisit this
system via the hyperboloidal foliation method developed in [44] as it provides a different
perspective on the problem and somewhat sharper estimates. We thus introduce a
hyperboloidal foliation which covers the interior of a light cone in Minkowski spacetime,
and we then construct the solutions of interest in the future of an initial hyperboloid. For
compactly-supported initial data this is equivalent to solving the initial value problem
for a standard t=constant initial hypersurface.

In the case of the Dirac-Proca model, our theorem refines the results in [70] in several
directions. First, the global-in-time existence is established under a lower regularity
assumption on the initial data. Namely, the boundedness of the initial data in the norm
|- |z~ (N = 20) is needed in [76], while we only require N > 6. Most importantly, in
the main statement in [76], a slow growth of the energy of high-order derivatives may
take place. With our method of proof, with the exception of the highest order term,
we do not have any growth factor in the L? or L® norms. We refer to Section for
a further discussion of these improved estimates. In contrast to [76], for simplicity we
assume that the initial data are compactly supported. Uniform energy bounds were
also established in [50].

Moreover, in the case 0 < M « m we analyze the Dirac equation (expressed in a
first-order form) and derive the following energy functional on hyperboloids

EM(s,4)) = JHS (@D*@/} - %@b*yovi@b) dzx. (1.1.11)

We can show that this energy is positive definite and controls the norm |(s/t)y| ez,
which provides us with a notion of energy on hyperboloids and should be compared
with the more standard approach based on the standard ¢ = constant hypersurfaces;
cf. for example [5].

Challenges for the global analysis. There are several difficulties in dealing with the
system of coupled wave-Klein-Gordon equations (I.1.1]). The first and most well-known
one is that the standard Klein-Gordon equation does not commute with the scaling
Killing field of Minkowski spacetime, which prevents us from applying the standard
vector field method in a direct manner.

Second, the nonlinearities in the Klein—-Gordon equation (or the Proca equation)
include a bad term describing 1)— interactions, which can be regarded as a wave-wave
interaction term and does not have good decay. Tsutsumi [76] was able to overcome
this difficulty by defining a new variable whose quadratic nonlinearity only involves the
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so-called ‘strong null forms’ @,,; (first introduced in [20]) compatible with the scaling
vector field. A similar, but complicated new variable, was also defined in [77]. Due
to our use of the hyperboloidal foliation method we do not need to find new variables
leading solely to strong null forms.

Furthermore, it is challenging to establish a global stability result uniformly for all
mg = 0, while it is relative easy to complete the proof for either m, = 0 or m, a

large constant. In the case where the mass is small, say m, = €, if we treat ¢ as a
Klein-Gordon field then the field decays like

| < Cre 32,

However with this decay we cannot arrive at the improved estimate (1/2)Cie if we
start from the a priori estimate Che, where C is some large constant introduced in
the bootstrap method. This is because the “improved” estimates we find are € + C?
instead of € + (Cie)®. Hence ¢ behaves more like a wave component when m, <« 1,
but since the mass m, may be very small but non-zero, we cannot apply techniques
for wave equations. We find it possible to overcome these difficulties by analysing the
first-order Dirac equation, which admits a positive energy functional, and this energy
plays a key role in the whole analysis.

The coupling constants. For the mass parameters ((1.1.2) appearing in the U(1)—
model we assume that
mg ~ my >0, mg =0, (1.1.12)

which depend on the coupling constants ¢, g and the Higgs constants A\, v. On the other
hand, for the mass parameters appearing in the Dirac—Proca model we assum(ﬂ

m > 0, M = 0.

Outline of this chapter. In Section [1.2, we will introduce the hyperboloidal folia-
tion method, the Dirac equation, and the energy for the Dirac component. In Sections
[1.2.1] and [1.2.2] we give basic definitions for the Dirac equation and hyperboloidal fo-
liation, the latter taken from [44]. In Section we define the energy for the Dirac
field on hyperboloids and give an energy estimate in Proposition Note this will
be complemented by other formulations of the energy functional in Section (1.3, Finally
in Section we convert the Dirac equation into a second order wave/Klein-Gordon
equation and define the appropriate energy functional. Further properties about the
hyperboloidal energy functionals are established in Section [1.3] Therein we provide
complementing views on the Dirac energy E7. The first comes from using a Cholesky

2There is no Higgs field to generate the masses, and we do not need to use subscripts for the mass
coefficients.
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decomposition for the energy integrand in Section and next using a Weyl decom-
position for the Dirac spinor in Section [1.3.2] Then we study the Dirac-Proca model
and the abelian model in Section [I.4] and Section [L.5] respectively. Next, in Section
we discuss the system of equations and its nonlinearities are studied. Finally, in
Section we rely on a bootstrap argument and prove the desired the stability result.

1.2 Hyperboloidal energy functionals for the Dirac
operator

1.2.1 Dirac spinors and matrices

This section is devoted to analyzing energy functionals for the Dirac equation with
respect to a hyperboloid foliation of Minkowski spacetime. Recall the Dirac equation
for the unknown v : R3*t — C*

— 1Yo + My = F, (1.2.1)
with prescribed C*-valued right-hand side F' and mass M € R. To make sense of this

equation we need to define various complex vectors and matrices.

For a complex vector z = (29,21, 22,23)7 € C* let z denote the conjugate, and
z* := (%, 21, Z2, 73) denotes the conjugate transpose. If also w € C* then the conjugate
inner product is defined by

4

(zyw) = 2"w = Z ZoWe -

a=1

The Hermitian conjugatd of a matrix A4 is denoted by A* meaning
(A%)ap = (4)ga.
The Dirac matrices v* for u = 0,1,2,3 are 4 x 4 matrices satisfying the identities

(V' "} =AY+ Aty = =20

R ——— (1.2.2)

where n = diag(—1,1,1,1). The Dirac matrices give a matrix representation of the
Clifford algebra. We will use the Dirac representation, so that the Dirac matrices take

3In the physics literature, A* is often denoted by AY.
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1. 0 ; 0 o
0 __ 2 T
Y= <0 _[2) ) Y= <_O.i O) ’ (123)

where ¢%’s are the standard Pauli matrices:

ol = <(1) é) 0% = (S _0’) o= <(1) _01). (1.2.4)

One often uses the following product of the Gamma matrices

the following form

. 0 I
Vs = 0y = (12 02> . (1.2.5)

The 5 matrix squares to I, and so we also define the following projection operators

(Iy + 75) (1.2.6)

N —

1
PL3:§(I4—75)7 Pr =

to extract the ‘left-handed’ and ‘right-handed’ parts of a spinor, that is, to extract its
chiral parts. We also note the following useful identitief]

() =", (%) =", {9} = 0. (1.2.7)

For further details on Dirac matrices and the representation considered, see [1].

1.2.2 Hyperboloidal foliation of Minkowski spacetime

In order to introduce the energy formula of the Dirac component 1 on hyperboloids,
we first need to recall some notation from [44] concerning the hyperboloidal foliation
method. We denote the point (¢,z) = (2%, 2!, 2%, 2®) in Cartesion coordinates, with its
spatial radius 7 := |z| = 4/(21)2 + (22)2 + (23)2. We write 0, := 0sa (for a = 0,1,2,3)

for partial derivatives and

Lo =10 + t0,, a=1,2,3 (1.2.8)

for the Lorentz boosts. Throughout this chapter, we consider functions defined in the
interior of the future light cone K := {(¢,z) : r < t — 1}, with vertex (1,0,0,0). We
consider hyperboloidal hypersurfaces H, := {(t,z) : t* — r? = s*} with s > 1. Also
Kisos := {(t,x) : 8§ < t? —r? < sf;r <t — 1} is used to denote subsets of K limited
by two hyperboloids.

4In physics, the notation v := ¥T4? is often used, but we will avoid this here.
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The semi-hyperboloidal frame is defined by

L, @
=y == %at + 6. (1.2.9)
Observe that the vectors d, generate the tangent space to the hyperboloids. We also

introduce the vector field 0, := 0, + %(% which is orthogonal to the hyperboloids.

For this semi-hyperboloidal frame above, the dual frame is given by 6° := dt — %dx“,
0" := daz®. The (dual) semi-hyperboloidal frame and the (dual) natural Cartesian frame
are connected by the relation

0, =00, 00=0%0, B6°=0%z®, dz* =26, (1.2.10)

a Za’s

where the transition matrix (®7) and its inverse (U#) are given by

1000 1000
1 1
ﬁ:x/tloo 5:—:c/t100
@) =1w2p 010 W= | 221 01 0 (12.11)
B0 01 —23t 0 0 1

Throughout, we use roman font E to denote energies coming from a first-order PDE
(see below) and, calligraphic font £ to denote energies coming from a second-order
PDE. In the Minkowski background, we first introduce the energy & for scalar-valued
or vector-valued maps ¢ defined on a hyperboloid H,:

En(s,0) = L (1012 + Y106 + (0" [1)(01670us + 0u0us") + mPlo]?) da
— | (/0208 + 120 + mIoF) o (1212)

— | (12208 + Dl(s/0207 + 3 170l + o) da

a<b

where
Qup := %0 — 2°0, (1.2.13)

denotes the rotational vector field. We also write £(s, ¢) := &y (s, ¢) for simplicity. All
of our integrals in L', L? etc. are defined from the standard (flat) metric in R3, so

|6l 2y 3,) = L ¢ dS = JRg |6(Vs2 + 12, 2)| da. (1.2.14)
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1.2.3 Hyperboloidal energy of the Dirac equation

We now derive a hyperboloidal energy for the Dirac equation (|1 . Premultiplying
the PDE (L.2.1)) by ¢*7° gives

00t + ¥*y°y 050 + iMyp*y ) = ip*y F . (1.2.15)
The conjugate of is
(0% (V)" — i* M = —iF*,

Multiplying this equation by v gives

Qo™ )¢ + (O™ )7y 9 — iM% = —iF*y%y. (1.2.16)
Adding ((1.2.15)) and ((1.2.16)) together yields
Oo(* 1) + 0;(¥*y ) = ip*yOF — i F*4 . (1.2.17)

Note the mass term does not appear in Moreover recalling 2Re[z] = z + 2
for some 2z € C then we see that (1.2.17] ) is the real part of m It would appear

however if we subtracted (1.2.15) from 1.2.16)), that is the imaginary part of m
then we find

V¥t — Oo* - b + p* Y0y 050p — 0,90% - AOydeh 4+ 2 Map*AO0p = ih* O F + i F*y 0.

However such an expression does not appear to be useful. We return to ((1.2.17)) and in-
tegrate over regions in spacetime to obtain energy inequalities. These give the following
two definitions of first-order energy functionals.

Integrating (1.2.17)) over [to,t] x R3, and assuming spatially compactly supported
initial data, gives the following result, see for instance [78].

Lemma 1.2.1. On t = const slices, define the energy
Bt ) = J (V) (¢, 2)da. (1.2.18)
R3
Then it holds

BTt 4p) = Bl (¢, JJ (ip*7°F — iF*y%y) dxdt. (1.2.19)
tg JR3

Such functionals on a constant-time foliation have been considered frequently in the
literature, see for instant [10]. The following Lemma gives a new perspective using a
hyperboloidal foliation.
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Lemma 1.2.2. On hyperboloidal slices Hy define the energy
EM(s,0) := L (ww - %1/1*707%) dz. (1.2.20)
For solutions to this satisfies
E(s,9) = E™(s0,v J J (5/t)(i*y°F — iF*y%)) dxds. (1.2.21)
s0 JHs
Proof. Integrating over Ky, s gives

f (0", 0*1°) - dor — f (0", 1) - ndo
Hs Hs
0 (1.2.22)
- J (ip*y°F — iF*y%y)dtda.
K

50,5]

Here n and do are the unit normal and induced Lebesgue measure on the hyperboloids

respectively A
n= (2 +r)7V2(t, 2%, do =t +r?)da. (1.2.23)

Using this explicit form of n and do gives the result. n

To our knowledge the hyperboloidal Dirac energy (|1.2.20) is new. We now show
that this energy E7(s,4) is indeed positive definite.

Proposition 1.2.3 (Hyperboloidal energy of the Dirac equation. I). By defining

Ti o .
E* (s, ) := J (@/f — =A% @D) (@D - TJVOVJQ/f) da, (1.2.24a)
one has .
EM(s,1)) = —E+(s V) + J — ™) de, (1.2.24b)
2 2, 12
which in particular implies the positivity of the energy
E(s,1) = lf —p*pdr = (1.2.24c)
2 Jy, 12

Proof. Expanding out the bracket in E*(s,1)) gives
+ * Li w04 *Iixk()joz
B (s,0) = | (70 =250 ' + 0 00y 60 ) da
s

= |, (o= 25wty - ) de
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* Li % i * '
— [ (v -2ttty s wt T do
Hs
t2 2

— 2
t2 - ) dr = 2E’H(Sv¢> - J;_L %¢*w dl’,

* Li i *
= [ (wro- 25wty vty
He
and re-arranging gives (1.2.24b)). O]

Using the above positivity property we can now establish the following energy in-
equality.

Proposition 1.2.4 (Hyperboloidal energy estimate for Dirac spinor). For the massive
Dirac spinor described by (1.2.1)) the following estimate holds

EM(s, )" < E*(50.6) + [ [Fliziu 05 (1.2.25)
80

Proof. Differentiating (|1.2.21]) with respect to s yields

B ) P B < g | G(F ]+ 0 P de

ds
< 16/l

Flr2 345)-

w

Recalling in Proposition |1.2.

we have [[($/6)¢)]r2 () < E™(5,4)"2. Thus we have

d H /- 1/2
B, 0)' < | Flign

and the conclusion follows by integrating over [so, s]. O

1.2.4 Hyperboloidal energy based on the second-order formu-
lation

Finally in this section we will convert the Dirac equation into a second-order PDE
and define associated energy functionals. Apply the first-order Dirac operator —iv"d,

to the Dirac equation ([1.2.1)) and use the identity (1.2.2)) to obtain
" 0,0, + M(—iv"0,7) = —iv" 0, F. (1.2.26)
Substituting the PDE into the bracketed term gives the following second-order PDE

(W) — M*)p = —MF —iv"0,F. (1.2.27)
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This provides us with another approach for deriving an energy estimate for the Dirac
equation. We now check the hyperboloidal energy coming from ([1.2.27)).

Lemma 1.2.5 (Second-order hyperboloidal energy estimate for the Dirac equation).
For all solution v : R3*!1 — C* of

W — M*y = G, (1.2.28a)

one has i
Enr(5, ) < Ensls0, )72 + f Gl dr. (1.2.28b)
s0

where

Ent(5,0) ;ZJ <|0tw|2+Z]8ﬂp]2+M2|z/1|2+22§Re[&twﬁiw*])d:€. (1.2.28¢)
Hs i 7

Proof. The conjugate of (1.2.28al) reads [Ji* — M?*y* = G*. Using —0,)* and —0dp) as
multipliers on (1.2.28al) and its conjugate respectively we obtain

O Y — O Y0 + MPO™ ) =~ G,

O ouh — Y Fon + M0 - )t = —Gr o).
Adding these two equations together gives
(0 o) + O o + MPY*p) — ) 0;(0)* O + Oppa )

Integrating this equation in the region K, 4, we have

| (0w + S 10w + o, ~(@s o + 05°0)) -n e

L{so

= —QJ Re[G*@t@b]dtdm
i

50,5]

(100012 + Y102 + M2|P2, ~(@* 0t + 0™ 0ue)) - mdo

Using the explicit form of n and do given in ((1.2.23]) and noting that 2Re[d;v* 1] =
Op* 0 + O;0* opp we find

Enr(s,0) — Enr(s0,1) = —2 J L Re[G* o | dtd. (1.2.29)
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We next use the change of variable formula 0; = 9, — (x'/t)d; to rewrite the energy
term:

LS (\atw + Z 0i]? + M2y + %Z(atw*aiw + aiw*atw))da:

= LS <|(S/?f)5tl/1|2 + ; 0.2 + M2|¢|2>d:c.

We can now estimate the nonlinearity on the RHS using the change of variables 7 =
(t? — r®)Y2 and dtdx = (7/t)drdz. In particular we have

< 2Em (7, V)2 |G L2 o)
Thus by differentiating (|1.2.29)) and using the above we have

d
%SM(T, )2 < |G 2,

Integrating this expression over [sg, s] gives the desired result. O

We end with a short remark here on positive and negative mass spinors. In the
original first-order Dirac equation the mass M was defined as a real parameter
with no sign restriction. Furthermore the mass did not appear in the hyperboloidal
energy E™ defined in (1.2.20]). This implies that spinors with equal masses but opposite
signs (+M) would still obey the same energy estimates of Proposition .

This is consistent with the second-order equation for the Dirac field. In
this equation the mass appears squared, so spinors with equal masses, but of opposite
signs, obey the same second order equation. Moreover the mass M? appears in the
second-order hyperboloidal energy expression £y in ((1.2.28¢]).

Thus either the mass M should not appear in E™, as we have found, or if the mass
M were to appear in E™, it would necessarily need to be invariant under a sign change,
so as to agree with the second-order energy estimates involving &£,;.
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1.3 Additional properties of Dirac spinors on hy-
perboloids

1.3.1 Hyperboloidal energy based on a Cholesky decomposi-
tion

Our first task is to obtain a hyperboloidal energy for the Dirac field ¢ expressed in
terms of a product of complex vectors z(¢)*z(¢). Such an expression is then easily seen
to be positive semi-definite which, clearly, is in contrast to the form given in
and Proposition [1.2.3

Recall the standard Cholesky decomposition: any Hermitian, positive-definite ma-
trix A can be decomposed in a unique way as

A=P*P, (1.3.1)

where P is a lower triangular matrix with real and positive diagonal entries. In par-
ticular if A is positive semi-definite then the decomposition exists however one loses
uniqueness and the diagonal entries of P may be zero.

We now prove the following result.

Proposition 1.3.1 (Hyperboloidal energy for the Dirac equation. II). There exists a
lower triangular matriz P with real and positive diagonal entries such that

E(s.0) = | (Pu) (PO (132)
and specifically
s/t 0 00
0 s/t 00
P= 3/t ol t—ax?/t 1 0 (1.33)
atft+ it —23/t 01

which can also be expressed as

RCUES PN USR] (13.4)

The above expression is quite natural and resembles what is known for the wave
equation: the factor x?/t comes from Stokes’ theorem applied to hyperboloids and we
cannot expect to fully control the standard L* norm, namely {, ¢*¢ dx.

Proof. Step 1. Existence of the decomposition. Before we proceed with the
derivation of the identity, we present an argument showing that such a decomposition
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exists by proving positive semi-definiteness. For simplicity of notation, let N; := z'/t.
The integrand of E%(s, 1) can be written as ¢* Ay where A := I, + N;4%97. Here the
spatial indices are contracted with d;;, so that Nj4¢ = §;;N'7?. Note A is hermitian
since A* = Iy + N;(7%97)* = A. Also

(N (Niy®7*) = =N Ny *y0979% = =NjNiyiaP = NN I
Then for all z € C* we have
0 < (A2)"(A2) = (1 + N;N)2* Lz + 22* Ny 'y 2

<2 (2*laz + 2Ny 2)
=2z%Az.

We used that N;N7 = (r/t)? < 1 which holds in the light-cone . Thus A is positive
semi-definite.

Step 2. Computing the matrix P. With respect to the Dirac representation

(1.2.3) we have
_ . [2 02 02 O'j
acnen (B %) (%)

N [2 02 . 02 O'j
(B em(E 0.

Here I, and 05 represent the 2 x 2 identity and zero matrices respectively. Calculate
the second term above using the Pauli matrices:

0 o\ . (01 0 —i 1o\ [ Ny Ny -,
Nﬂ(o—j 0)_N1(1 O)+N2(z' 0)+N3(0 —1)_(N1+z'N2 — N, )

Define w := N; + ¢N5 and recall N; € R. Thus we have

w —N3

Consider now 2 x 2 complex matrices B, C, D such that

B 0\ (B 0\ _ = w —Ns
C D C D) |Ny @

w —N3
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This implies the following identities
D*D = I,

* _ * _ N3 w
cp-po- (B ),

B*B + C*C = Is.

Ns @
w —N3

op _ Ny o\ (Ng @\ (10
BB_IQ_(w —Ng) (w —Ng)_)\(o 1)’

where A :=1— (N + ww) =1— (N7 + N3 + N3). Indeed A =1 — (r/t)? = (s/t)* = 0
so we can take B = v/ Xy = (s/t)15. O

If welet D =15 and C = ( > then we must solve

1.3.2 Hyperboloidal energy based on the Weyl spinor repre-
sentation

Yet one more approach in deriving energy estimates is obtained by expressing the
Dirac spinors in terms of Weyl spinors and then studying the energy of Weyl spinors
instead. This provides another convenient way to study Dirac equations. De-
compose the spinor ¢ and source term F' as

u+v Fy +F_
Y= (U_U), F = <F+_F), (1.3.5)

where u,v : R — C? are Weyl spinors and F; are C?-valued right hand sides.
Defining 04 := 0y £ 0%0; the PDE ([1.2.1)) can be shown to be equivalent to

ﬁ_v + ZMU/ - /l.F_i_,

1.3.6
o u+iMv =iF_. ( )

A Dirac-Klein-Gordon system with respect to such a Weyl spinor decomposition has
been studied, albeit in the low-regularity setting, by Bournaveas [5]. Following a similar
approach to Section we find an analogous hyperboloidal Weyl spinor energy:

E(s,u) := f (u*u + %u*aju) dx. (1.3.7)

s

Similar to Propositions [1.2.3| and [1.2.4] we can prove positivity and an energy estimate
for £/7.
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Proposition 1.3.2. For a C?-valued function w the following holds:

1 2
E{(s,w) = —J ® wrwdz > 0. (1.3.8)
x 2 2. t2

Furthermore for solutions u,v to (1.3.6) we have

o o 1/2 o o 1/2 ° _
(B (s,u) + B2 (5,0)) " < (ES(s0,u) + B (s0,0)) " +f | el 245 + [ F- ] £2(305)d5.
’ (1.3.9)

Proof. Step 1. Using the Dirac representation (|1.2.3)) and the decomposition (|1.3.5)),
the PDE ((1.2.1)) becomes

I, 0 U+ v 0 o u+v . u+v\ . [(Fi+F_
(6 )G (5 §)a ) () - (m1k).
(1.3.10)
Defining 04 := dy + 0'd; this becomes

0ru+ 0_v 4 u+wv\ L (Fy+ P
(a_v_m) M (u_) _Z(F+_F_). (13.11)

Adding and subtracting the two rows above gives the following

a_U + ZMU - Z.F_;,_,
(9+U + My =1 F_.

Following a similar approach to deriving ([1.2.17)), we multiply the first and second
equation by v* and u* respectively.

u*dou + u*o? 0ju + iMu*v = iu*F_,
v*0gv — v* 0’ 0jv + iMu*v = —iv*F,.
One then adds these equations to their conjugate to obtain the following:
do(u*u) + 0;(u*clu) + iM (u*v — v*u) = iw*F_ — iF*u,
Oo(v*v) — 0;(v* a’v) + iM (viu — u*v) = iw*F, — iF*v.
Note the mass terms appear above. However if add these equations together we obtain
Oo(u*u + v*v) + 0j(u*olu — v*olv) = W F_ — iF*u + iv* Fy — iFfv, (1.3.12)

which does not contain a term involving M. This equation is the analogous Weyl spinor

version of ((1.2.17). Clearly integrating (1.3.12) over K, 4 gives the energy functional
E7(s,u) defined in (1.3.7)).
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Step 2. Next we establish that for a C%valued function w the following holds:

EZ(s0)> 5 | > wds > 0
Hs,w) =5 HSthw x = 0.

The idea is in the spirit of Proposition Observe that the sigma matrices are

Hermitian and satisfy the following anti-commutator relation: {¢*,07} = 2§%I,. Then
we have

J <w + ?Ja]w) (w + fa%u) dr = f (w*w + wa*ajw + ;2kw*a(30k)w) dx
HS S

= f (w*w(l + (r/t)?) £ 2%w*0jw> dx

52

Thus we have

Step 3. Next, let us show that the following hyperboloidal energy inequality holds for
the Weyl spinor equation (|1.3.6))

o o 1/2 o o 1/2 ° _
(ES(s,u) + E’(s,v)) ? < (B9 (s0,u) + E7(s0,v)) / +J |Fel r2ay) + | F=|22(245)d5.
50

Namely, integrating ((1.3.12) over K, we obtain

E(s,u) + E7(s,0)
= E (so,u) + E?(s0,v) + f dsf (5/t)(iu*F_ — iF*u + iv*Fy — iF}v)dx.
S0 5

Differentiating in s and noting that |(s/t)u, (s/t)v] 2 < |, v]r2m) < (E7(s,u) +
E7(s,v))"/? gives

o o 1/2
(B + EZ(5,0)) T < I F s + 1P 120,
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1.4 Nonlinear stability of the ground state for the
Dirac-Proca model

1.4.1 The Dirac-Proca model as a PDE system

Using the tools of Section (1.2, we will now discuss the Dirac-Proca model, the gauge
condition and choice of initial data. This leads us to the second main stability Theorem
below, which can be proved using the methods of Sections [I.6] and [1.7] Without
fixing a gauge, the field equations for the Dirac-Proca model with unknowns A* and v
read

A" —m?A” +0"(0,A") = =™y (Pry),
—iy" O = =" Au(Pr).

Recall P, = (I, —~°) was defined in (1.2.6). Here ¢ : R3™" — C* represents a massless
Dirac fermion with spin 1/2 and A* : R*™! — R represents a massive boson (the Proca
field) of mass m? with spin 1. As discussed in [76], (1.4.1) is equivalent to the following
system

(1.4.1)

DAu_mQAV: 1/}* 0 V(PLw)
_i'yﬂauw = _’YMAM(PMD), (1‘4-2)
O A" = 0.

It can easily be shown that d,A* satisfies a homogeneous Klein-Gordon equation.
Thus we may treat d,A" = 0 as a constraint provided we specify the initial data set
(A(’j, AY, %) at some time tq > 0:

Ay(to, ) = CZV, atAV(t(], ) = by, w(to, ) = wo. (143)
to satisfy the following two ‘Lorenz compatibility’ conditions

v+ d;a’ =0,

0 (1.4.4)

Ad® —m?a® = — i Prapg — 0.
For more generality, see also [4], we consider with an artificial mass M added to
the spinor:

CJAY = m2A” =~y (Pr),

—i’Y“am + Mq/} = _VuAu(PLw)'
The mass parameters M > 0 and m > 0 are constants, and we will study both cases
M = 0and M > 0. Again the initial data will be taken to satisfy (1.4.4)). This elliptic-
type system of two equations for nine scalar functions admits non-trivial compactly

supported solutions. For example one may choose: Ag e C.(R3™Y) for j = 1,2,3,
g € C.(R3*1) such that each component of v is the same, and all remaining initial

(1.4.5)



Chapter 1: Study of the U(1) model 49

data is trivial.

1.4.2 Main result for the Dirac-Proca model

We now state our result for the Dirac-Proca model. The proof of the theorem below
will clearly follow from the the proof we will develop for our main result (Theorem :
and so we omit it.

For the model under consideration in this section, the ground state of the theory is
simply given by
A=0, Y =0. (1.4.6)

Theorem 1.4.1. Consider the Dirac-Proca system (1.1.8)) with M =0, m > 0, and let
N be a sufficiently large integer. There exists g > 0, which is independent of M, such
that for all € € (0, €q) and all compactly supported, Lorenz compatible initial data in the

sense of (1.1.10]), satisfying the smallness condition
la”, ol v + 07y < € (1.4.7)

the initial value problem of (1.1.8)) admits a unique global-in-time solution (¢, A”).
Furthermore, the following decay result holds

Al < et™32, Y] < emin (¢, M%), (1.4.8)

1.5 Nonlinear stability of the ground state for the
U(1) model

1.5.1 The U(1) model as a PDE system

We now treat the Higgs mechanism applied to a U(1) abelian gauge field. This gives
some exposure to the problems coming from the Higgs field that we will meet when
dealing with the full GSW model in future work. From the Lagrangian of this theory;

see (1.5.6) below, and in a suitably modified Lorenz gauge; see ([1.5.5) below, the field
equations for this model read

(O—m2)A” = Qur,

(B33 —X"00) % o (Gix + X" 00) = Q. (L5)
i’Y“(};ﬂb - mgw = Qwa

2 %o

DX =mg 58
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with quadratic or higher order terms given by

Qav = ig(X*(0"x) — (8"X*)x) + 2¢° A" (X*do + DX + X*X) + ™ ¥° 7",
Qy = 2iqA0"x + X (B5x — X*do) + A A, (o + X)

* * * P x 0 (1-5.2)
+ 22 *XPo + 22X (dgx + X o + X*X) — 9(do + X))V,
Qu = g(Pox + X do + X*X) ¥ — V" Ay
Here y 1= ¢ — ¢o : R1*3 — C is the perturbation from a constant vacuum state ¢y

satisfying @&y = v? and d,¢p = 0. The field ¢ : R*** — C* represents a fermion of
mass 1m, with spin 1/2 and A, : R'™** — R represents a massive boson of mass m? with
spin 1. Furthermore the mass coefficients

mg =2¢°v%, m} =4\?, m, = gv? (1.5.3)

depend themselves on given coupling constants denoted by ¢, g, A, as well as the so-
called “vacuum expectation value” of the Higgs field, denoted by v.

The initial data set are denoted by

(A%, x,¥) (to, ) = (A8, x0,%0), (A", X)) (o, ) = (A%, x1), (1.5.4)

which are said to be ‘Lorenz compatible’ if they satisfy

5aA8 = _A? - ZQ((bSXO - XS(bO)a
AAG —miAy = =0 AT —ig(d5xa — XT¢o) +ig(xox1 — Xixo) (1.5.5)
+2¢° A (65 x0 + X500 + X5 X0) + q¥iibo.
The derivation of (1.5.5)) will follow from results of the following Section [1.5.2] in par-
ticular Lemma [1.5.3] Similar to the constraint equations (1.4.4) for the Dirac-Proca

model, we also obtain in ((1.5.5)) an elliptic-type system of only two equations for eleven
functions. Clearly non-trivial solutions with compact support can be constructed.

Our main result was stated in the introduction (Theorem [1.1.1]) and the proof will
be provided in Section

1.5.2 The abelian action and U(1) invariance

The Lagrangian we consider is

L= —%FWF“” — (Dud)* D¢ = V(¢*¢) — i)™y Db + g¢* o™y, (1.5.6)
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where we use the following definitions for the Higgs potential, gauge curvature and
gauge covariant derivatives:

V(¢*¢> = )\(¢*¢ - U2)27
F,, = 0,A, — 0, A,,
D¢ = (a“ — Z'un)qﬁ,
Duw = (au - Z'un)Q/J-

Furthermore A, v, g, ¢ are constants. A calculation shows that the Euler-Lagrange equa-
tions for ([1.5.6|) are the following

(1.5.7)

0u I = iqe*(D"¢) —iq(D"$)*d + qi*y°1"4b,
D'D,¢ = V' (6% )¢ — gpu*y*y, (1.5.8)
iV Db = g6* o,
together with (1.5.7)). These PDEs can also be expressed as
A" — 0"(divA) — 2¢*A"¢*¢ = iq(¢*(0"¢) — (0"9*)¢) + qv*7°+"¢,
Cop — V'(¢*0)p — iqpd, A" = 2igA0'd + ¢* A* A, — g™y 1), (1.5.9)
o — g9t P = —qy" At
Lemma 1.5.1. £ has a U(1)-gauge symmetry.

Proof. The U(1) gauge symmetry induces the following transformations
Ay A=A+ 0, ¢ ¢ = 1%, ah > ) 1= P, (1.5.10)
where a = «(t,x) is some arbitrary function of space and time. This implies

Dy D¢ = 9D,

o iqor . ioo ido (1.5.11)
Dyp— Dy = Ou(eY) —iq(Ay + dua)e’ ™ = D).

By the commutation of partial derivatives we immediately see that [}, is invariant
under U(1) gauge transformations. Inserting these transformations into the Lagrangian
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one obtains
- * 1 v * % % %
L = =iy Dy = L Fl, F = (D) D) = V((0)'9') + 6 g0y
. . . . 1
= —ie 1Y Y00, (e Y) — (MY, —igy* (A, + Oua)e’ i Y)) — ZFWFW
. (Du¢)*6_iqa€ianu¢ . V(¢*6—iqaeiqa¢) + gqﬁ*gbe_iqa@b*voeiqo‘ip
. * ]' 4 * * * *
= —it)* " D,y — ZFWF“ — (Du@)* Dl — V(¢*¢) + go*pp*y"h = L.
(1.5.12)
Thus £ is invariant under the transformation (|1.5.10)). n

1.5.3 Propagation of an inhomogeneous Lorenz gauge

Next, with a similar aim to that of Section [1.4.1] we will turn the PDE (1.5.9)) into
one of definite type by specifying a particular gauge for the vector field A*.

Lemma 1.5.2 (The inhomogeneous Lorenz gauge). Let X be a suitably reqular scalar
field. Consider the modified system

OAY = 2¢° A" ¢*¢ = "X + iq(¢*(0"¢) — (0"¢")p) + q™y°+"y,
6 — V'(¢*0)¢ — iqpX = 2iqA. "¢ + P A* Ay — g™y, (1.5.13)
i o) — 9ot = —qy" A

Suppose the initial data for (1.5.13) satisfy

(divA — X)(to,) = 0,
0, (divA — X)(to,-) = 0. (1.5.14)

Then as long as the solution to (1.5.13|) exists, it will satisfy ~A = X.

Proof. To propagate the gauge choice ~A = X imposed on the initial data we will take
the divergence of the first equation in ([1.5.13]) and use the second evolution equation

(1.5.13):
O(divA — X) = ig(¢*0¢ — o™ ¢) + 2¢°0, (A ¢* @) + q0, (v*7v"1))
— iqo* (272un(9“¢ +iqdd, A + A ARG + Vg — ng*fy%)
—iq( — 2iqA4,0"0" — igd" A + PANG + (VI6)" = 99" )6
+2¢°0, (A" ¢*¢) + q* Y0, + ¢, Y
= ig(0*V'6 — (V'9)"6) = 0,
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where in the last line we used the specific Higgs potential ((1.5.7)). ]

1.5.4 Gauge choice for the abelian model

The Higgs potential has a non-zero minimum at ¢, := ve’/* where

V(¢5¢0) = 0, (1.5.15)

and 0 : R'™3 — R is arbitrary. There is ambiguity in this minimum state due to the U(1)
symmetry represented by 6. A particular choice of § will break this U(1) symmetry, and
such a scenario is termed ‘spontaneous symmetry breaking’. We consider perturbations
of the form

X::¢_¢07

where ¢q is constant in space and time and has magnitude |¢y| = v. The following
result is a consequence of Lemma by choosing X = —iq(¢x — x*bo).

Lemma 1.5.3. Suppose the initial data satisfy the following gauge condition

(divA + iq(¢5x — X*¢0)) (to, ") = 0,
0r (divA + iq(dfx — x*d0)) (to, ) = 0.

Then the Euler-Lagrange equations for (1.5.6) are equivalent to those written in ((1.5.1]).

(1.5.16)

1.6 Structure and nonlinearity of the models

1.6.1 Aim of this section

In this section we will use various techniques to treat the variables in (1.5.1)) and
their nonlinearities. The nonlinearities, defined in ([1.5.2]), which require additional work
to control are of the following two types

PO, Py, (1.6.1)

appearing in 4~ and @), respectively. If the mass of the Dirac spinor is zero, my, = 0,
then the nonlinearities in ([1.6.1) will have insufficiently fast decay. In this case it is
sufficient to employ a transformation introduced by [76], see and below,
to overcome such problems. Finally although the equation satisfied by x is of ambiguous
type, we find that y can be decomposed into two components, with each component
satisfying a Klein-Gordon equation.
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1.6.2 Hidden null structure from Tsutsumi

Following Tsutsumi [76] we can now uncover a null structure using a particular
transformation. However we will not need to reduce to the ‘strong null forms’ via any
complicated transformations [77, eq (2.6)].

For complex-valued functions ®(¢,z), ¥(t,z) : R3*! — C", recall the null form
Qo(®, W) := (0,D)* AV — (VB)* V. (1.6.2)

Define a new variable N q
AY = AV + —2¢*707”w. (1.6.3)
my

This satisfies the non-linear Klein-Gordon equation
@O-m2)A = Q. (1.6.4)

in which the nonlinearities are

Q1= QA TH) + G+ gy G Y,
Gy = —myQy — 1770, Qy
= —mg(g(d5x + X" o + X X)U — ¢y A1)
— 197”0, (PoX + X Po + X*X)U + gy "0, At
— g(@ox + X do + X" X) (Mmgth + Qy) — 2igA* 0,0 — gAN" (Mg + Qy),

where (1.2.27) and (1.5.2) were used to compute G,. Note the nonlinearity 1*y%y"1
in (|1.6.4) now appears with a good factor mf] to compensate for the lack of derivatives
hitting 1.

In the case 0 < my « min(m,, my,), the second order formulation of the
Dirac equation is more like a nonlinear wave equation. In this case we do not have
good bounds for either the Lfc or L® norm of ¢ and this is why the null structure of
and the factor mg in front of the ©— interaction are needed. However, in the
case m, 2 min(mg, my), better bounds are available and we do not require such a null
structure any more.

1.6.3 Decomposition of y

In order to study the behaviour of y, we find it more convenient to consider equations
for the following two variables

X+ = ¢oX £ X" ¢o. (1.6.5)



Chapter 1: Study of the U(1) model 55

Since the following identity holds
e P 1?2 = 20 x P, (1.6.6)

it is equivalent to estimate either y or y+. These new variables satisfy the Klein-Gordon
equations

DX+ - m?\XJr = QX+7
Ox— —max— = Qy_, (1.6.8)

with

Qy, = 2iqA 0" _ + ¢*X° + A" A, (20° + x4)
+ AP XX + 2003 + 200X — 9207 + x4 ),
Qr_ = 2iqA 0" X+ + XX+ + CAA X+ 20X+ + 20X FX — gx- v .

Similar to the previous section, we introduce the new variable
- 2m
X+ = X+ — —50*%, (1.6.9)
ey
which satisfies the following Klein-Gordon equation

OX+ — mi%Jr = Qs (1.6.10)

with the nonlinearity

3

m m m m

Qx. = —4m—§Qo(w,vow)+2m—5027°¢+2m—§¢*700¢—4m—§¢*’yow+Qx+ +2mg1h* ).
A A A A

The final term 2m,1*+%y here cancels the problematic term in @,, and any other

nonlinearities of the form v*~v%) now appear with a good factor of mg in front.

1.7 Bootstrap argument

1.7.1 Overview
This section is devoted to using a bootstrap argument to prove Theorem |[1.1.1

After the treatment of the equations in Section [1.6] we remind one that in the following
analysis we will deal with the unknowns

v v q v ~ 2m
A = A+ =P, Xy =X+ — =0, xo, ¥, (L.7.1)
m? ms
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which satisfy equations R R
OAY —miA” = Q 4,
X+ — mi?ﬁ = Qx,
Cx— —mix— = Qy_,
Y0 — mg) = Q.
We also provide here the following theorem, which details the L? and L® estimates
of the unknowns.

Theorem 1.7.1. Under the smallness assumptions in Theorem the solution sat-
1sfies the following energy estimates

H(s/t)@]LJﬁﬂ(Ay,X)HL?C(HS) T H(S/t)aﬂaILJ(AwX)H]@(Hs) < Cie, |[I[+|J| <N,
[6"L7 (A,, x) HLQ(H)sCIe, [I| + |J| < N,
| (s/t) yLW’HIﬂ(% )~

|(s/t)0q afLszHLZ(H ) < Cielogs, |I|+|J| =N

0167 ‘]‘+|J|<N,

(1.7.2)
and the following L™ estimates
sup  (1/25]000 L (A, )| + 35[0 L u(Au )] ) € Cre, |11+ 1J] < N =2,
(t,x)eHs
sup (t3/2|8ILJAV,6I L’ |> e, |I|+|J]<N-2
(t,x)eHs
sup <tl/25‘61L‘]1/)|> e, ||+|J]<N-2,
(t,x)eHs
sup (tl/Qs}é‘ 6ILJ1/J|> < Cielogs, I+ |J] =N -2,

(t,z)eHs
(1.7.3)
where C is some constant to be determined later.

Strategy of the proofs of Theorems [1.1.1]and [1.7.1] The proofs are based on a
bootstrap argument. In Section we recall the estimates for null terms and various
commutators. The bootstrap assumptions will be made in . These bootstraps,
combined with some standard commutator estimates and Sobolev-type inequalities,

will lead to certain weak estimates in ((1.7.12)) and ((1.7.14]). In Section we will use

our first-order hyperboloidal energy to upgrade our estimates for the Dirac component,
namely in Theorem and Corollary [1.7.8 In Section we obtain estimates for
the transformed variables A and y. defined above. Putting all of this together we
finally are able to close our bootstrap assumptions.
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1.7.2 Estimates for null forms and commutators

We first illustrate estimates for the quadratic null terms, which, roughly speaking,
reveal the following bounds

|0%udav| < (5°/¢%)|0ul|ov].

Lemma 1.7.2. We have the following estimate for the quadratic null term T*?0,udgv
with constants T*? and u,v sufficiently reqular.
0" L7 (T" 0,ud,v)
< Y (oot L o] + [0 L dsullo L 0,0])

|11+ |12 |<| 1,
bl (1.7.4)
+(s/t)> D oL o]0 L0].

[L1]+|L2]< |1,
[J1|+]J2]<] |

One refers to [44] for the proof. We next recall the estimates for commutators, also
proved in [44]. Heuristically speaking, the following lemma provides the relation

‘F&ILJu| ~ ‘alLJFu

Y

in which I" takes values from the set

{aaaéou aaaﬁ? <S/t)aa}'

Lemma 1.7.3. Assume a function u defined in the region IC is reqular enough, then

we have
[0"L7 0uJu| < C(I|, 1) D) [0s0" L ul, (1.7.5)
|J'[<]J],8
(2 eIV R P (D SR iy AT S i AR
[T <[]’ |<|J],b <1, 77]<] ]
(1.7.6)
|[afLJ,Qa]u\<0(|f|,|J\)( N e Y] \aﬂaf’LJ’u),
[1'[<|I],|0"|<| 1,8 <[] 07]<] 1,8
(1.7.7)
[07L7, 0.05]u| < C(/1],]J]) > |0,0,0" L7 ul, (1.7.8)

<L <] T |y
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|07 L7 ((s/t)0au)| < |(s/1)0a0"L7u| + C(|1],]J]) > |(s/t)ds0" L u

\|<HL <18

. (1.7.9)

1.7.3 Bootstrap assumptions and basic estimates

By the local well-posedness of semilinear PDEs, there exists an s; > sy in which the
following bootstrap assumptions hold for all s € [s, $1]

1/2

Enny (5,0 L7 A) 2 4 €0, (5,0'L7X)* < Cre, 11| +]J] <N,
Emy (5,0" L)' ? < Che, I+ )| <N-1,  (L7.10)
Em, (5,0"L7Y)? < Chelog s, [I| +|J| = N.
If we can prove the refined estimates
1
Emy (5,0 L7 AN + €y (5,0 L7X) " < SCie 1|+ |J| < N,
1
Em, (5, 0T LTp)V? < 5O 1| +]J]<N-1, (L.7.11)
1
5mg<87 &ILJ¢)1/2 < 501610g8, |I| + |J| = N7

then we are able to assert that s; cannot be finite, which in turn implies a global
existence result for (|1.1.1).

Combining bootstrap assumptions ((1.7.10)) and the estimates for commutators in
Lemma [3.3.1], the following sets of estimates are immediately obtained:

[(s/)0" L7 0u(Aus ) 3 50y + (/)00 L7 (Av, X) | 12 g,y < Cr 1I| +[J| < N.
HéIL"(Au,x)HL?(HS) < Che, [I] +|J| < N,

mgHélL‘]wﬂL?(Hs) + H(s/t)éuﬁlL‘]@Z)HL?(Hs) < Che, I+ [J| <N -1,
mgHﬁlL‘]w‘L?(Hs) + H(s/t)&uélLJ@Z)HL?(HS) < Cielogs, 11|+ |J] = N.

(1.7.12)

Furthermore we can obtain L® estimates by recalling the following Sobolev-type
inequality on hyperboloids [44].

Proposition 1.7.4 (Sobolev-type inequality on hyperboloids). For all sufficiently smooth
functions u = u(t,x) supported in the region {(t,x) : |x| < t — 1}, then for s = 2 one
has
sup ‘t3/2u(t,x)‘ < Z HLJUHL2(H.)’ (1.7.13)
Hs = e

where the summation is over Lorentz boosts L.
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Combined with the estimates ((1.7.12) the following also hold:

sup <t1/23|6’a§ILJ(AV,X)| 1 tl/Qs‘é’IL‘]ﬁa(Ay,X)D < Cre, I+ |J| <N -2,
(t,)eHs

sup <t3/2‘6ILJAV,é’ILJ)(‘> < Cie, I+ |J| <N -2,
(t,2)eHs
sup <mgt3/2\afLJw} + tY25]0,0" L7, afLJaaw\) 1| +]J] = N — 3,
(t,2)eHs
sup (mgt3/2}aILJw’ + t1/28‘51LJ¢,§ILJ&a¢D Cielogs, |I|+]J| <N —2.

(t,x)eH s
(1.7.14)

1.7.4 First-order energy estimate for the Dirac field

To obtain decay estimates for the Dirac component v, a standard method is to
analyse the second-order form of the Dirac equation (1.2.27)). This is then a semilinear
Klein-Gordon equation with mass mg and so there are now standard techniques to
estimate the nonlinearity; see for example [2] and [45]. However, the right-hand side
term appearing in our wave equation does not decay sufficiently fast for this
argument to close, which is due to the possibly vanishing mass mg > (0. Thus at this
point we recall Proposition [1.2.3]and the lower bound for the energy E*. This
motivates us to analyse the first-order form of the Dirac equation.

We first adapt our Sobolev-type inequality on hyperboloids to include boosts which
commute with the Dirac operator i7”d,. Following Bachelot [4] we introduce modified
boosts L, that differ from L, by a constant matrix

~

1
L,:=L,+ 570 (1.7.15)

It then holds that [Za, iv0,] = 0. The following result is a simple extension of Propo-
sition [.7.41

Corollary 1.7.5. Suppose 1 = (t, ) is a sufficiently smooth spinor field supported in
the region {(t, ) : |z| <t — 1}, then it holds for s = 2

324(t, L7y, 1.7.16
sup [0 (k@) < 05 1170 1500 (1.7.16)

|J|<2
where L denotes a modified Lorentz boost.

We will also make use of the following Gronwall inequality, and one can find it in
[14].
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Lemma 1.7.6 (Gronwall-type inequality). Let u(t) be a non-negative function that
satisfies the integral inequality

u(t) < C+ f b(s)u(s)?ds, C =0, (1.7.17)

to

where b(t) is non-negative function fort > ty. Then it holds
t 2
u(t) < C + (J b(s) ds> : (1.7.18)
to
We are now in a position to obtain certain improved energy and sup norm estimates

for 1.

Theorem 1.7.7. Under the same assumptions as Theorem the Dirac field
satisfies

H(s/t)f/zﬁHL? ) S €+ (Cief’, I <N, (1.7.19)
sup ‘tl/stf}zﬂ Se+ (Cre)?, |J<N-2. (1.7.20)
Hs

As a consequence, one has the following sup-norm estimates for :

sup [tO'L7y] < e+ (Che)?,  |I|+|J| < N —2. (1.7.21)
Hs

Proof. Step 1. Recall the equation in (1.5.1f) for the Dirac field

Z‘,y,uauw - mgw = HT%
H = g(o5x + X" b0 + X*X) — 97" A,

Since i*y'H — iH*y%) = 0 we have the following conserved energy
E*(s,4) = E™(s0,¢), (1.7.22)

then according to the inequality (1.2.24¢)) in Proposition [1.2.3] we are able to initialise
the induction argument by

(/0081 300, < e

Step 2. For induction purposes, assume
TJ 2
|(s/t)L ¢HL?(HS) < e+ (Ce)

holds for 0 < |J| < k—1 < N — 3, and now consider the case 1 < |J| =k < N —2. Act
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L7 on the Dirac equation above to obtain
V0, (L)) + imgL71p = —iH(L7) — iR,

with
R:=L/(HY)— H(L'Y),  H=g(¢5x + x b0+ X*X) — 97" A,

Observe that R contains only terms, up to some constant matrices, of type
L7H L2, |3+ L <|J|, |Jl<k-1. (1.7.23)
Using ([1.2.25)) and consequently by Lemma and the induction assumption

EH(S,EJ¢)1/2 < EH(SO,EJZD)W +J HRHL?(%)dE

<e +J |(t/s) LJlHHLOO
SO | Jy |+ J2|< ||
|J2|<|J]—1

+ (Cle)QJ 5732 d3,
S0

) 451 7.00)

which gives ~
[/ 0]y S € 1<

Step 3. The above analysis shows for |J| < N —4

> |(s/oL” L%HLQ < e+ (Che).

<2
Thus by the Sobolev inequality (3.2.19)), we deduce

sup ‘tmsff]w‘ Se+ (Cre)?, |J <N —4.
Hs

Step 4. We now consider the case |J| = N — 1. An energy estimate yields

S

Hio TJ,,\1/2 ~;
E™(s, L") <6+J ( Z HL1HHL;(H)
50 |Jy|+|Ja|<N -1,
‘J1|>|J2‘ |J2‘<N—4

+ Z H t/s

[J1|+]J2|<N-1,
[J1|<] 2], J2| <N -2

<e+ (Cle)2f 5732 ds,

S0

2 (315 ) ds  (1.7.25)
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which implies R
H(E/t)LszHL?(Hg) < e+ (Cre). (1.7.26)

The same analysis also applies to the case |J| = N. And repeating Step 3 gives (1.7.20)
for |[J| < N —2. O

As a consequence, we have the following sup-norm estimates for 1.
Corollary 1.7.8. It holds that

sup [t'2s0'L7y| < e+ (Cre)?, ||+ |J] < N —2. (1.7.27)
Hs

1.7.5 Refined estimates

In this final subsection we close our bootstrap argument. For this to work we move
to the transformed vector field A” defined in ([1.6.3) and the transformed scalar field
X+ defined in ([1.6.9)), which are heuristically of the form

A" = /TV + O(|¢|2)a X+ =X+ T O(WP)

Thus using the estimates for A¥ and x, coming from ([1.7.12)) and (1.7.14]), together
with the previous energy and sup-norm estimates for 1, the following estimates for A

and X, hold

(/00" L0, X3 gy + 106/000 (G Xy < i I+ < N,
H&ILJ(IZV,DNG)”L;(HS) s Gie, [+ T < N,

sup (#/251000' L (A, X4)| + 125[0" L7 00(A,,%1)]) S Cre, |1+ 1] < N =2,
Hs

sup (ts/z‘aILJ(ﬁy,>z+)\) < Cie, |I|+|J] <N -2
Hs

(1.7.28)
We first look at the energy for ¢ in the case |I| +|J| = N

E (5, L70)V2 < € CZJ (HﬁIL"((ﬁuHW)HL;(Hg) + "91LJ(H5M¢)\|L;(H§>) ds.
v,u V50
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By noting
S 1LY (@, H) 1300,
o
< @) LR OuH] gy |5/ LY
L+1=1,J1+J2=J
1|+ 1 [SN=2, 1 (1.7.29)
D SR (€700 Ty Ao PP (s A P

Li+Ix=1,J1+J2=J
1]+|J1[ZN-1, p

< (Cre)%5 % 1og 5 + (Cre)?5 ! < (Che)?57Y,

we obtain
Emy (5, 0" L7Y)V2 < e + C(Cre)? log s. (1.7.30)

Similarly for |I| + |J| < N — 1 we obtain

Emy (5, 0T LTP)V? < e + C(Che)™. (1.7.31)
In order to obtain estimates for A”, we first bound the energy for Av

Em(s, aILJAV)l/Q Sée+ J ”aILJ<<707Vau¢a auw>)”L2 (Hs) + m?]HaILJ(w*VO’YVw)”L?(H )
H@ILJ V20A + YA + PPoY) HL2 d§

<€+ C(OlE) .
(1.7. 32)
Next, recalling definition we use Young’s inequality to obtain for all |I|+]J| <

Emy (5,01 LT ANV < (3/2)E,,. (5, 8/ L7 AV)Y2 + (3/2)E,, (5, 0T L7 (1))
< (3/2)e+C > H JE(s, 0B L)

hi+Ix=1,J1+J2=J

Li+Ji<N-=-2
+ (016)2.
(1.7.33)
A similar procedure gives the refined estimates for x
Emy (5,07 L x )? < (3/2)e + C(Che)?, (1.7.34)
while the refined estimates for y_
Emny (5,07 LX) < € + O(Che)? (1.7.35)

can be obtained directly. A combination of ((1.7.34]) and ([1.7.35)) gives the refined
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estimates for y
Emr (5,01 LTY)V? < e + (Cre)*. (1.7.36)

By choosing C sufficiently large and e sufficiently small, we arrive at the refined bounds
(1.7.11)). This shows global existence and thus completes the proof of Theorem m
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2.1 Introduction

2.1.1 The fields and Lagrangian of the Standard Model

Matter and gauge fields of the theory. We study the evolution equations for
electromagnetic and weak interactions between elementary particles coming from the
Standard Model. In particular we will look at the Higgs mechanism applied to the
non-abelian SU(2) x U(1) gauge group of the Glashow-Weinberg-Salam (GSW) model.

Let us begin by presenting the Lagrangian for the GSW model. We start with
four massless gauge bosonsE] coupled to a complex Higgs field and twelve fundamental
fermions. The quartic potential for the Higgs field has a ‘Mexican hat’ shape, meaning
that the non-zero minimum of this potential gives a non-zero vacuum expectation value
for the Higgs. After spontaneous symmetry breaking, and on a fixed Minkowski back-
ground, the vacuum solution will now involve one massless and three massive gauge
bosons. The key issue is whether the Higgs field, and indeed all the variables, are
nonlinearly stable under perturbations of the vacuum solution.

We need some notation for the (five) fields of the theory which are

P e C? SU(2)-doublet Higgs field,
Y =(Y*) U(1)-gauge field,
W = (WH SU (2)-gauge field, (2.1.1)
(er,er) € C* x C? (left- and right-handed) electron spinor,
vy, € C? left-handed neutrino spinor.

Here, u = 0,1,2,3 is a spacetime index and a = 1,2, 3 and the fields Y, W, are vector
fields in Minkowski space while ey, eg, 1, are complex-valued vector fields. For simplic-
ity in our presentation, we consider only two fermions, but it would be straightforward
to include the full set of fundamental fermions. It is convenient also to collect the
left-handed spinors into an SU(2)-doublet

L= (”L) e C* left-handed SU(2)-doublet. (2.1.2)

€L

In addition to the fields, the GSW model also involves five coupling constants denoted
by gy, 9w, ge, and A, v. The first three parameters describe the relative strength of
the interactions while the last two are parameters coming from the Higgs mechanism.
Certain combinations of these constants can be measured in experiments, as we discuss
below.

2From a physical standpoint, the classical physics description of the bosonic fields is quite mean-
ingful, however for fermionic fields it would be desirable to take quantum effects into account.
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Matter and gauge interaction Lagrangian. Recall the Standard Model describes
three kinds of fundamental forces: the electromagnetic, weak, and strong interactions.
We are only interested in the electroweak sector of the Standard Model, which for
conciseness we also refer to as the Standard Model. Following [I5], we are going to
derive the evolution equations for GSW theory on a flat Minkowski background with,
however, the signature (—, +,+, +).

The GSW theory is based on two important notions:

e Covariant derivative operators describing nonlinear interactions between the fields

defined by
D@ = (0, — igw WyaTa + z%yu)cb,
Dyer = (0, —igvY,)er, (2.1.3)
DL = (8, — igwWaTa — @"%YYM)L,

in which gy, gw are physical constants. Let o, € C**2 be the standard Pauli
matrices where a = 1,2, 3, which form a basis for the Lie algebra su(2) which we
normalize by defining 7, := %aa e C?*2,

e A nonlinear potential is assumed for the complex scalar field ® which is denoted
by V and satisfies

V(®*®) > 0, V() =V'(@*) =0, V"(®*) >0. (2.1.4)

in which v > 0 is physical constant.

First, the Lagrangian density for the GSW theory contains four interaction terms

Lasw = Lo + Ly + Ly + LQ/” (2.1.5)
in which
Lo = —(D"D)*(D,®) — V(P D),
1 14
EY = _Z_l ;U/FM y
1 , (2.1.6)
EW = _ZHHVGHZZL s

£y = —Re(iL*ot D, L) = Re(ieholDyer) — ge(L*@en + c0*L),

where g, is a physical constant. The terms Ly and Ly involve the field strength H,,,,



68 2.1. Introduction

for the SU(2)-gauge fields W/ and the field strength F),, for the U(1)-gauge field Y,

H;wa = a,uWua - aI/WMa + gWCachubWVca (2 1 7)

F,:=0Y,—0Y,. o
The last term in the expression of H,,, involves the structure constants cy. for the
SU(2)-symmetry, which are nothing but the 3-dimensional totally antisymmetric Levi-
Civita symbols, normalized so that cjo3 = 1. The notation Re stands for the real part
of a complex number.

For completeness the covariant derivatives on the field tensors F'** and H*" are the
following
D,F"? = 0,F"",

2.1.8
D#H:l/p = 6NH;”’ + chach“bHé/p. ( )

2.1.2 Main nonlinear stability statement

A preliminary version of our main result is now stated. A more precise statement
will be provided with the regularity and decay of solutions specified. A trivial solution
to the system is given by taking

® is a constant with ®*® = v?,
Y=0 W=o, (2.1.9)
L= O, ER = 0.

Theorem 2.1.1 (Nonlinear stability of the vacuum state in the Glashow-Salam-Wein-
berg theory). The Higgs Boson is nonlinearly stable under small perturbations, in the
sense that any initial perturbations to the fields leads to a solution to the stan-
dard model which is globally defined in time with ® approaching a constant value P,
with

lim (® — @, Y, W, L, eg) =0 (2.1.10)
t——+00
and
: * . * 2
Jim 0 = &30, = v?. (2.1.11)

Our analysis will be presented on simplified models derived by taking some formal
choices of the physical parameters. To be more precise, we only provide the proof of
Theorem under the restriction

my = gy = 0. (2112)
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A generalization of the Standard Model. In the GSW model, it is well known
that the right-handed neutrino is taken to be vg = 0 and the left-handed neutrino vy,
is massless and satisfies the equation

- _
w0y Ouvr, = Fp.

However, in the physical experiments the left-handed neutrino has a tiny but strictly
positive mass. Hence it is artificial but of mathematically and physically interest to
study a more general model, where there involves right-handed neutrino and a mass
parameter m,, = 0

ioh 0, v + muvg = Fp, i00uvR + muvy, = Fp,
which can be written equivalently as

iy 0, + mpthy, = Fy,, (2.1.13)

v F
o) (i)

Observe that we can recover the GSW model by letting m,, = 0 and vg = 0. Moreover,
we are able to prove an existence result which is uniform in the mass parameter 0 <
My, < min{mg, my, Mz, Me}.

with

2.1.3 Role of the physical constants

Further notations. Throughout this chapter we will be interested in various bilinear
forms involving complex vectors and matrices. Let Z; denote the conjugate of a complex
vector z = (21, 29, 23, 24)7 € C* | and 2* := (Z), 2y, Z3, Z4) denote its conjugate transpose.
If also w € C* then the inner product is defined by

4

(zyw)y = 2"w = Z Zjw;. (2.1.14)

j=1
The Hermitian conjugatd’ of a matrix A is denoted by A*, that is
(A7) = (A (2.1.15)

The chiral nature of GSW implies particular relationships between certain components
of the spinor for the electron v, and neutrino 1,,. This is made clearer by using the
Chiral representation of the Dirac matrices. First recall that the Dirac matrices v* for

3In the physics literature, A* is often denoted by Af.



70 2.1. Introduction

w=0,1,2,3 are 4 x 4 matrices satisfying the identities

A7 =M A = =2,

Y = (2.1.16)

where n = diag(—1,1,1,1). The Dirac matrices give a matrix representation of the
Clifford algebra. We obtain the chiral representation of the Dirac matrices by first
recalling the standard Pauli matrices

1. (01 2. (0 —1 3. (1 0
o .—(1 0), 0.—(2. O)’ =1y 1) (2.1.17)

These matrices can be placed into a 4-vector as
o = (Iy,0"), o = (I, —0"), (2.1.18)

where 1 = 1,2, 3.

From this the chiral representation of the gamma matrices is

0 o¥
w_ R
y (ag ’ ) . (2.1.19)

Using the first gamma matrix we define the following bilinear form
(z,w) = 2"y w, (2.1.20)

where z,w € C*. In particular, this is defined in the physics literature as ¢) = 1)*7%) =
(1,1). Furthermore in the chiral basis the 5th gamma matrix is diagonal

: —I, 0
v := iy Ry = ( 02 [2> : (2.1.21)

The 75 matrix squares to I, and so one often uses the following projection operators,
which in this basis take the simple form,

o 1 B ]2 0 L 1 . 0 O
PR = 5 ([4 +’}/5) = (0 O> s PL = 5 ([4 - 75) - (0 [2) : (2122)

For a spinor 1 the projections

Y =P, r= Pry (2.1.23)

are respectively called the left-handed and right-handed spinors. In the GSW model
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we will be interested in the following 2-component spinors

er = Pri, € C?: right-handed electron,
er, := Prip, € C*: left-handed electron, (2.1.24)
vy := Ppi, € C%: left-handed neutrino.

Note the non-existent right-handed neutrino is not included, i.e.
VR = PR¢n = 0. (2125)

In the following we use ¥ and v, to denote the collection of fields eg, ey, v1, or equiva-
lently eg, L.

The gauge coupling constants. Recall there are five independent coupling con-
stants gy, gw, ge, and A, v in the Lagrangian density of the Standard Model. From the
parameters gy and gy we can compute the Weinberg angle 6y, defined by

9%

= =:tan® Oy ~ 0.2858. (2.1.26)

9w
This implies that gy ~ (0.5346)gw have the same order of magnitude.

The evolution of the Higgs field is described by a potential function which is often
taken to be
V(9*®) := A(D*® — v?)”, (2.1.27)

where A\, v > 0 are constants and the following conditions clearly hold:
V=0 V) =0, V'(v?) =0, V" =2\ > 0. (2.1.28)
The two constants A, v cannot be directly measured experimentally, but the expression

my = 20V (2.1.29)

can be measured and represents the mass of the Higgs field. In the physics literature,
the so-called vacuum expectation value for the Higgs field is the positive constant v, and
the Higgs field is expected to generate the masses for the W and Z bosons, according

to the definition: ] )
mwy = §UgW7 myg .= EUW’Q%V + 912/ (2130)

We also define for convenience the non-physical mass parameter

1
my 1= SUgy. (2.1.31)
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On the other hand, the mass of the electron is given in the form

1
—= 2]
NoR

in which the electron coupling constant g. is found to be very small in comparison to
gy, gw. Since the W boson has a large mass myy ~ 80 GeV/c? compared to the small
mass of the electron m, ~ 0.51 MeV/c?> = 51 x 107° GeV/c?, we thus have

(2.1.32)

Me 1=

Ge € 9w, Gy - (2.1.33)

In conclusion, the relation between the sizes of these mass parameters is
My K Me K My ~ My ~ My ~ My, (2.1.34)
in which m,, denotes the mass of neutrinos, which does not appear in the Lagrangian

density of the Standard Model though.

The latest data [16] for the masses of the different particles measured at CERN are
provided in the following two tables. Note also that the vacuum expectation value of
the Higgs is v ~ 246GeV .

Higgs boson Z boson W boson
PDG measurements GeV /c? | 125.18 +0.16 91.1876 + 0.0021 80.379 £ 0.012
GSW value my =20V | my = on/gk + 2 | mw = Jugw

Table 2.1: Masses of the gauge and Higgs bosons

Electron Left-handed neutrino
PDG measurements .MeV/c2 0.5109989461 + 0.0000000031 0<m, <2x107°
GSW value Me = \%vge 0

Table 2.2: Masses of the electron and neutrino fermions

2.1.4 Strategy and outline of this chapter

Coupling constants and simplified models. We first recall that the relation be-
tween the sizes of the mass parameters appearing in the Lagrangian density ({2.1.5))
is

Me KMy XMy >~ My >~ My,
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while a similar relation holds if we consider the coupling constants

Ge < gy ~ gw ~ V. (2.1.35)

Next we deduce simplified models by setting certain parameters to be zero, and
then analyse them. It might not be physical to do so, but this manipulation helps us
to understand the structure of the full system.

CASE 1. We set
my = 0, (2.1.36)

which is equivalent to set gy = 0. We recall again the complicated expression of the
Lagrangian density

£GSW = £¢, + ﬁy + /:'W + Ew,
Lo =—(D'®)*(D,®) — V(2" P),
1

EY = —ZF#VF#V,
1 v
LW = _ZH/U/aHg )

Ly, = —Re (z’L*agDuL> ~ Re (iezaﬁDueR) — g(L*®eg + L L),
with
H,uz/a = a,quxa - al/W/J,(L + chach,ule/m
F,, =0, —0d)Y,,

as well as the definition of the covariant derivatives

Du® = (8, — igwWaTa + z’%YM)@,

D#GR = ((’J’M — ?:ngM)GR,

D,L = (é’u — 19w WyaTa — z'—YM)L,
D, F"" = 0,F"",
D,H" = 0,H)” + gwcapWuwH.".

Due to the choice of gy = 0, the gauge field Y* interacts with no other fields but itself.
According to (2.2.2)) below the Euler-Lagrange equations are

D,D'® = V'(P*®)P + geef, L,
v gy .
DZ/FH = _7.]# = U,
D,H"™ = —gy J*, (2.1.37)
iopDyer = g 9L,
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io} D, L = g.Peg,
with
JY := Re[L*o}1,L] — i(D"®)*1,® + i®*71,(D" D),

and in the above the gauge field Y* only appears in the second equation (the F*¥
equation).

CASE II. We consider another simple case and set
my = mwy = 0, (2138)

which is equivalent to set gy = gy = 0. All of the covariant derivatives in the La-
grangian density now become partial derivatives, the gauge field Y* only interact with
itself, and so do the gauge fields W,,.

Similarly according to (2.2.2)) the Euler-Lagrange equations are

00" = V'(D*P)D + geefL,
oo — Y o
14 2 )
B H = g T = 0, (2.1.39)
ioh0uer = geP*L,
io} 0, L = g.Pep.

CASE III. We consider an even simpler case which is obtained by setting
me = my = my =0, (2.1.40)

which is equivalent to g. = gy = gw = 0.
Similarly according to (2.2.2)) the Euler-Lagrange equations are

0,0M® = V(D )P + geelL = V' (D) D,

gy .
O, FW = —=— 4t =0,
2]

BLHI = g T = 0. (2.1.41)
ioh0er = go@*L = 0,
io} 0L = g.Per = 0.

We note that all of the equations are linear.
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The Dirac field on hyperboloidal slices. In Section [1.2] of Chapter [I] we obtain a
new energy functional for the Dirac field defined on hyperboloids

EWaW=J;(W¢—%wW%w)M. (2.1.42)

Significantly, we are able to show that this energy is positive definite with a useful
coercive property on the standard L? norm. It is useful for a massless spinor or a
spinor with tiny mass, but for the case of a spinor with large mass we anticipate that
the more useful estimates come from looking at the Dirac equation as a second-order
Klein-Gordon type PDE.

Structure of this Chapter. In Section we study the system of equations and
choose the gauge. Next in Section a detailed statement of the main result is given.
Then we analyse the system of the simplified model in Section 2.4 In the end we prove
the global stability result of the simplified model.

2.2 Formulation and gauge choice for the GSW model

2.2.1 Derivation of the field equations

It is a standard matter to derive evolution equations by expressing the conditions
for a critical point of the Lagrangian. It will be convenient to introduce the currents

j" = L0 L + 2ej0"er + i(D"P)* P — id* (D" P),

2.2.1
J! := Re[L*cY1,L] —i(D"®)*1,® + i®* 7, (D" P). ( )

Lemma 2.2.1. The FEuler-Lagrange equations associated with the Lagrangian Lasw

defined in (2.1.5) read as follows:
D,D'® = V/(B*®)® + gee L,

v gy .
D = o,
DVH(I;V = —gw Jtl:v <222)

iolhDyer = geP*L,
io} D, L = g.Peg,

in which the field strengths and covariant derivatives are defined in (2.1.7)) and (2.1.3)),

respectively.

We are interested in obtaining tractable PDEs for the unknowns (eg, L, ®, YY", WY).
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Thus using the expressions for F), and H,,, in terms of Y,, and W,, from (2.1.7), we
obtain the following explicit form of the system:

1

00 = —igu (2Wama@® + divIWer, @) + igy (¥, 0" + §divY¢>>
g2 92

— WW,WED + gy gw Y WHT,® — IYYHYWI)

+ ‘/4’(<ID*<I>)(I> + geen L, (2.2.3a)
VY — *(divY) = —%Y ((L*azL +2eh0ver) +i((0V0*)D — @*@”@))
+ gy gw W  r,d — %Y”@*@, (2.2.3b)
OW? — o¥(diviV,) = —gw( — e (WwWY) + Re[L*oy/7, L]
— W (WY = 8 Wye) = (007, @ — 77,0 9) )

2
+ gIQ/VCabcccdeWbMWueWg - QTWW:(I)*(I) + gWgYYV(I)*Ta(I)a

(2.2.3¢)
ioh0uer = @ L — gyerolY,, (2.2.3d)
it 0L = g.Dep — ‘%YJZYHL + g Wt oL, (2.2.3¢)

Observe that these equations are underdetermined without a specific gauge choice.
In the following we will discuss which gauge choice we would like to impose.

One should keep in mind that, by definition,

O*L = @TVL + (I);GL, CI)€R = (@163) R (224)
(I)QGR
as well as p
oL = (UﬁVL> ’ 7L — (TanVL + Ta12€L> 7 (2.2.5)
orer Ta21VI + Ta22€L

where 7,45 denotes the A-th row and B-th column component of the matrix 7,.
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2.2.2 Energy identities leading to gauge choice

By looking at the energy functionals associated to the following equations we will
see that a fairly specific gauge choice is suggested to be chosen.

O = _Qi(gWWuaTa - gY

2
- gTWWWW(f(I) + gy gw Y Wi, d — %YMY“CD

+ V' (®*P)D + g.eh L,

Y,)0'® —i(gwdiviW,T, — 7d1vY)<I>

ZQY

OY? = &¥(divY) — 92’” (L*oyL + 2ch0ten) — =

X (07 9*)D — 0*V D)

+ gy gw WS, ® — %YYV@*@,
DW: = (9"(divWa) + gwcabcﬁ“(WMch”) — gwRe[L*O'ZTaL]
+ gwcachéL (a#WCV — 6”W#C + gWCcdeWueW:) + igw (8”<I>*Ta<1> — (I)*Taayq))

2
- By D + guwgr Y 07,0,

iop0uer = ge® L — gyeroRY,,

io}0uL = gePer — %aﬁYML + 9wWiaop 7L,
divy = f,
diviW, = g,.

(2.2.6)
We first define the following energy for the W and Y fields by

Eyw(t) = J (Zya V4 S 1P HY W) ) d,

o,V,a

where

1
H(Y, W, ®) := ;0" (g%ZY"Y” —2gwgy Yo VW + g% ) W;’W:)@. (2.2.7)

Lemma 2.2.2. With the notation C, = ®*0,P the following identity holds

H(Y,W,®) = = =|or@* cby—ngZC W,[* + <1>*<1> W, — CW,[°. (2.2.8)

a<b

4(I>*
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Proof.

H(Y,W,®) — \gycb PY — 2gWZC’ A

4<I>*
gW(I)* [Z|W|2 (®*P Q‘ZCW|]

S |- T @y o Ol + =

- Cw,[*]

a<b

— W[ + g2 B <I>2|W| ( @)2205).
b

a<b
Hence in order to verify (2 it suffices to prove
1
Y .CF =~ (2*0)”. (2.2.9)
4
b
First recall the completeness relation for the Pauli matrices

3
Z )T, = 2620} — 0567

This identity implies the following
4y Ci = Z (P*o"®)? Z % (0")5(2)a(®)7(0") (@),

= (@) ()7 (), (2025] — 3307) = (27 )”

Lemma 2.2.3. Assume Y and W, are solutions to (2.2.6)). Then
—EYW Zf =0 f + (@) e - 0*27D) )oYV da
R3 2

+ Z J;RS — a”ga — 19w (81’(1)*7'(1@ — @*TaﬁVQ)))atW: dx + Qyw,
(2.2.10)
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i which the high order terms are given by
Qvw = ZJ L*O'ZL + 26R0L6R)>8tY” dx

( — gw a0 (WW)) + gwRe[L*UZTaL]>§tWaV dx
2

2
(%Y”Y”&t(d)*@) — gway YW E,(84 1, B) + QTWW;’W;&(@*CD» d.

Since we do not want low order terms to appear in the right hand side of the energy
identity ([2.2.10]), the gauge choice should let

v 5 ((aV )P — d*0"®) and  — g, — igw (¥ P* T, P — BT, 0" D) (2.2.11)
be at least quadratic.

Lemma 2.2.4. Assume ® is a solution to (2.2.6)) then it holds

d
dt

:f (¢7f(atc1>*q> — P 0P) — igw ga (O T, P — (ID*Taat(I))) dx
R3

(|aq>\2 + V(cb*cb)) dz

) 2
+ J ( B gTWWuaW5at(®*®) + gy gw Y, Wio (277, @) — %YHY”@(@*@)) e
R3
(2.2.12)

We note the first term in the right hand side (2.2.12)) seems problematic. But this
motivates us to choose the gauge so that

z%’” F(0%® — *0,8) — igw ga (0,7 7,® — D*7,0,P)
(2.2.13)

7 (positive term) + cubic term.

2.2.3 The gauge choice for the GSW model

We will primarily be interested in the following vacuum solutions to ([2.2.2))

(YF=0,WF=0,8 = By eg = 0,L = 0), (2.2.14)
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such that ®¥®y = v? and 9,9y = 0. If we denote the perturbation of the Higgs field by
X = (D - (1)07
and adopt the notations Co’a = ¢} Tao, then the evolution equations take the following

form.

e Equations of the Higgs field:
—Ox — V' (®*®) Dy + g3 (x* Py — Pix)Po + g5 (X Ta®o — PiTaX)TaPo

1
= ZgW (2Wua7—a(’/wx + diVWaTaX> + ZgY (YH(?‘“X + 5d1VYX>

2 2
— Wy WED + gy g Y, WhT,® — %Yuyw + geehL + V'(9*D)y.

4
(2.2.15a)

e Equations of the gauge fields:

2o’ )
— Y + YTY” — gwgyC WY
= %/ ((L*O'ZL + 26}}0263) + i((@”x*)x — X*&”x))

2
— gy gw W2 (Dhmax + X Ta®o + X TaX) + ‘%YY” (@*® —v?),
giv? .
-0y + WTW: — gwgy CY”

= gur( = Cancd (WusW?) + Re[L* 07, L] = cane W' (W7 = 0 W)
2
_ i(@VX*TaX — X*Ta8VX)> — g%,cabcccdeW#WueWé’ + %/VW: (CI)*CI) . 02)

— gwogyY" (X*Ta<I>o + PyTX + X*Tax).
(2.2.15)

e Equations of the spinors:
iop0uer = g P4 L — gyohY,er + gex L,

2.2.15¢
iohd,L = g.Poer — %/aquL + %}VWW (0!} 7a — a0l ) L + gexen. ( )

e The gauge conditions:

divY = %Y(ayx*cpo —®rvy),  divIV, = —igw (0" X TPy — DETa0YX).
(2.2.15d)
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In the above the terms of quadratic order or higher in the evolution equations are
grouped together and put in the right hand sides of the equations. We also note the

gauge choice in (2.2.15d]) meet the requirements in (2.2.11)) and (2.2.13)).

2.2.4 Propagation of the gauge

Analogous to the Lemma of U(1) model in Chapter |1| we impose the following

gauge conditions on the initial data
divY = f, divW, = ga, (2.2.16)

and show that such a gauge choice propagates under the evolution equations
below. When f, g = 0 the gauge choice is often called the Lorenz gauge. Such a
gauge was chosen for the Yang-Mills field considered in [7]. The interest of the following
result is that it produces immediately a coupled system of wave and Dirac equaitons
for which the initial value problem is well-known to be well-posed for sufficiently small
times.

Proposition 2.2.5 (Hyperbolic formulation of the GSW model in the inhomogeneous
Lorenz gauge). Consider the following initial data

(divY — f)li=o =0, G(divY — f)|=0 = 0,

) ‘ 2.2.17
(dZUWa - ga>|t=0 = 07 at(d“)vva - ga>|t=0 = 07 ( )
together with the system
_D@ = _Zi(gWWuaTa - %Yu)a“@ - Z-<gVVga7—a - g%f)q)
~ (gwWaa = SV (gwWin = ZY)® + V/(@°0) + guchL,
vo__ v g_Y U
-0V = —0"f =07 (2.2.18)
—OWy = =0"ga + Qg
iohuer = go®*L — gyerotY,,
- _ gy gw 7 n
0y 0L = g.Per — TULY;LL + TWNG(ULTG — 1,01 L,
i which, with the definition (2.2.1)),
Q= gwCapre(WEOLWY + W ge) — gw JL. (2.2.19)

Then as long as the solution to (2.2.18|) exists, it satisfies

divY = f, divW, = g,. (2.2.20)
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Proof. Step 1. To show the propagation of the gauge choice for Y we first take the
divergence of the evolution equation for Y. This yields

—O(divY — f) = d,5". (2.2.21)
Thus it suffices to show
0vj" = 0,(L* oL + 2e0"eg + i(D'®)*® — i®*(D"®)) = 0, (2.2.22)
using the evolution equations . We now introduce the short-hand notations

QYY

5V (2.2.23)

D,® =0, + 1A, P, A,:=—gwWuT, +
with the property A, = A%. We first compute

0 (i(D”(I))*(I) - z’(I)*(D”(I)))
— i0,(D"®)*® + i(D'®)*0,® — id*0, (D" P) — id,d* (D' D)
— i(D¥ —iA,) D' ®)*® + i(D®)*(D” — i)
—i®*(((D” —iA,)) D" ®) — i((D” — M, ) )" (D" ®)
— i(D,D'®)*® — (D'®)*A,® + i(D'®)*D'® + (D' ®)*A,®
— i®*(D,D"®) — *A,D"® — i(D'®)* D' + &*A, D" P,
= —i(V/(®*®)® + geef L) @ + id* (V/(*®)P + geefL)
= —ig.L*er® +ig. ¥ e} L,

<

in which we used the evolution equations (2.2.2). The remaining terms of ([2.2.22)) give

0, (L*UZL + 26}0”63>
= (0,L)* 0] L + L*0}0,uLl + 2(0,er)*0"er + 2e30" (0,eR)
— —igwW,eL*,0%L — i%‘/y L*0Y L + ig.ehd* L — z'%WWWL* (0%70 — Ta0¥) L
+ igwWyo L o1, L + %Y 5 Y'Y, L*o YL —ig. L*Per — I WmL* (O’LTa TQUZ)L
— 2igyY,enoger + 2ig. L* Per + 2igy Y, epoher — QdeeRCID L
= 19.L*Pep —ig.er®* L.

Putting these results together gives 0,7¥ = 0 and this proves ([2.2.22)). Before moving
to the second part of the proof, note that the result we have shown is equivalent to

proving
D,D,F" = D,j" = 0,5" = 0. (2.2.24)

Step 2. We now turn to prove the propagation of the gauge choice for W?. Using
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the last expression ([2.2.24]) as inspiration, we first prove
D,D,H!" = 0. (2.2.25)

For simplicity, we will sum over the a index, so T,¢apeXpYe = [ X, Y]a7s = [X,Y]. Using
the Jacobi identity for commutators one has
D,D,H" = 0,(0,H" + [W,, H"]) + [W,, 0, H"] + [W,,[W,, H"]]
= 0,0, H" + W, 0, H" | + [W,, 0, H" ] + [0,W,,, H*| + [W,, [W,, H"]]
= [0, W, H*] + [W,,, [W,,, H*]]
1
oW, H"| + 5[[W,,, W], H*]
H,,H"] =0

ns

-
-
(2.2.26)
where the Jacobi identity reads
[(Wo, Wy, H*]] = =Wy, [H* W, ]| = [H™, [W,,, W, ]].

The identity (2.2.25)) implies D,J# = 0, which will be useful when propagating the
gauge.
Step 3. First we take the divergence of the evolution equation for WY?. This yields

_D<diVWa - ga) = ang- (2227)

Thus it suffices to prove 0,0 = 0.

0 (weae (WERWY + W) = J7)
— w Cabe (WHO(diVIVG) + 0, W70, WE + divily, divIV, + W, (divIV,))
— D,JY + gweaneWinje
- gwcabC<Wc“8H(diva) + O WO, WH + divWW, divIV, + W, (divIv,)

£ W (GuH2 + gurceig Wi ) ) (2.2.28)

= 9w Cabe (Wé‘&udleb + W,;’&l,(dec) + divl¥, leWC)
+ Gy CabeCeij (O Wi WY W + 6, W Wy W — 0, W, ; Wy W)
+ ggvcabcccijcjleVbWMW]:VVlN

=0

where we have used the antisymmetry in certain Roman indices and also the following
identities: CapcCeij = (0aiOh; — 0aj0bi) and CapeCeijCiki = OaiCoki — OpiCaki- For example
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explicitly in the first term we relabel indices to obtain

Cabe (WHE,(divIV,) + W0, (divIV,))
= CapcWH 0, (divWWy) — oW} 0, divIV, (2.2.29)
= cachf(?“(diVWb) — CachéL(’}“diVWb =0

and also
Cabe VW, divIV, = —cuapdiviVy, divIV, = —capediviVy, divIV.. (2.2.30)
O
Since this proposition is true for any choice of f,g,, specifically its result applies

to our gauge choice (2.2.15d). Hence we only need to impose the gauge conditions
(2.2.15d)) on the initial data, and then they propagate in the evolution equations.

2.3 Nonlinear stability statement for the GSW model

2.3.1 Parametrization of the ground state
We find it convenient, and with no loss of any generality, to choose
(wzo,wgzo,%: (0 U)T,eRZO,L:O> (2.3.1)
to be the ground state solution. Then correspondingly the gauge choice is given by
divy = %Y(owx*cbo — B5dx), divWV, = —igw (0" x*7.P0 — ®§7.0"x). (2.3.2)

In order to get this gauge choice propagated, according to Proposition [2.2.5] it suffices
to propose

divy = (0" — D7), divIV, = —igw (8" X*7a®y — BETa0”y),
OlivY = L0 (X o — BiN),  AudivIV = —igw s (33 a0 — D).

initially, and we denote the initial data set by

<X7 Yﬂa Wéf’ €Rr, L) (t()) ) = <X07 }/Z]Mv W(f()a €Ro, L0>7

(2.3.3)
at <X7 Y'ua Wtfa €R, L) (t07 ) = <Xl> leua W(fla €R1, L1>7
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which are called compatible if they satisfy (2.2.15dJ).

And finally we get the system of equations written as
—Ox = V(@)D — g5 (X Py — 5 x) Do — g (X" 7aPo — P 7aX) 7aPo

1
igw (2WMTaa~X n divWaTax> +igy (Yua“x n §divYX>

9iv gy
= WL WD + gy gV Wira® = TV Y0 4 guchL + V(D)

vy = By oAl
- =9 + gwgyCaWV,

973/ <(L*UZL + 26}20263) + i((@”x*)x — X*&”x))

2
— gy gw W, (P57ax + X*Ta®o + X" Tax) + %YY”(@*@ — %),
2 ,02 .
0wy = =S WY+ gwgr CoY”

gw< — Caped (Wi W) + Re[L*0% L] — care W/ (8, W7 — 8" W)
2
— (0 XX — X*TaaVX)) — G2 CavecCede WEW, WY + QTWW;((I)*CD ~ )
— gwgyY” (X*Taq)o + PiTax + X*Tax),
iopuer = g PG L — gyohY,er + gex* L,
QYU

i0p 0L = g.Poer —

gw
9 ﬁYHL + TWua (UfTa - TaO'Z)L + geXER.

(2.3.4)

2.3.2 Statement of the nonlinear stability result

We are ready here to provide the statement of the nonlinear stability result of the

full GSW model ([£.3.4)(2.3.3).

Theorem 2.3.1. Consider the GSW system with gauge condition and
vacuum equilibrium , which has compatible initial data set ,and let N be
a sufficiently large integer. There exists ¢ > 0 such that for all € € (0,€y) and all
compactly supported compatible initial data satisfying the smallness condition

HX07 }/Oua Wi()? €Ro, IJOHHNJrl + HXla Yiuv Wclljih €R1, LIHHN < €, (235)
the initial value problem (2.3.4)—(2.3.3)) admits a unique global-in-time solution (X, YH WE eg, L) .
Note again we will only provide the proof of this theorem under the assumption

myzgyzo.
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2.3.3 Mixed and pure systems

At the beginning of this section we made the special choice &, = (0,v)*, but we
provide a study on the system (2.3.4)), which is true for all constants ®, satisfying
CI)S(I)O = U2.

Mixed and pure Klein-Gordon systems Suggested by Lemma above, we
introduce the following five new unknowns:

NY, = CWY —CWY,  a<b,
NY = gy ®5DeY" + 29w > CuWY,

(2.3.6)
NY = gWUQY” — 2gy2 CO'QW
in which Co’a = %CI)SUGCDO.
These new variables satisfy the following equations
v I A e Ao

—NZ, + TNab = CoQvp — CaQiyp, a <b,
—ONY = gwo*Qy + 29y Z Ca@¥va (2.3.7)

—ONZ + ;U (97 + 97 )NZ = gwo* QY — ZQYZ CaQlye-

More details are given in the following lemma.

Lemma 2. 3 2. There exists some ag € {1,2,3} such that |Cy,| > v/6 and thus the
variables {N? ,, NY . N, , N_} fully determine the original unknowns {YV,W'}. That

ao b’ apce?
ZS,

span{Y? , Wr} = span{NY Ny, N_}.

apb’ a0c7

Proof. The identity (2.2.8) suggests we consider the following linear combinations:

N, ~C, e 0 0\ /Wy
Ny, —C4 0 o 0 Wy

= . 5 2.3.8
N, 0 ~Cy C 0 || wy (2:38)
NY —2g9wC1 —29wCy —2gwCs 9YU2 Y

The determinant of this linear transformation is zero and so it is non-invertible. More-
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over the kernel is

2 0 2 o 2 o
ngz< gYQ 017 gYQ 027 gY2 037 1> ) (239)
gwv gwv gwv

This suggests we consider the following combination of vector fields
NY := gwv’Y" + 29yCD'aWa”.

By the construction NY is independent of (N2, N”) and from ([2.3.4]) satisfies the fol-
lowing inhomogeneous wave equation

—ONY = g20%Q% + 29y CaQlp- (2.3.10)
Note we used the fact that ), C.C, = %. O

Finally we can also derive the new variables (12.3.6|) using the structure of the original
system of equations ([2.2.3]). This leads us to the following definition of mixed and pure
Klein-Gordon systems.

Definition 2.3.3. Given a vector-valued unknown U = (Uy,Us,,--- ,U,)T € C" and a
semi-positive definite Hermitian matriz A € C™*™, then the system

U — AU =0, (2.3.11)

1s called a mized Klein-Gordon and wave system if det A = 0. The system is called a
pure Klein-Gordon system if det A > 0.

Lemma 2.3.4. Given a system of the form (2.3.11)), there exists a linear combination
of the variables U such that dim(ker A) of these variables satisfy wave equations, and
the remaining n — dim(ker A) variables satisfy Klein-Gordon equations.

Proof. Observe that since A is Hermitian we can decompose it as A = P*AP where

A is a diagonal matrix, P is a unitary matrix and P* its conjugate transpose. This
implies

—[U = P*APU = —[J(PU) = A(PU) (2.3.12)

Finally recall that the number of diagonal entries in A is precisely given by dim(ker A).

O

Lemma 2.3.5. By neglecting the higher order source terms in (2.3.4), the following
linear equations

2.9
gy

2

2 .2
gwv

2

OV = Y — gwgy Gy, —OWY = ZE=WY = gwgyCaY”,  (2.3.13)

can be shown to form a mized Klein-Gordon and wave system. Furthermore the lin-
ear combination of variables from (2.3.4) which satisfy strict wave and Klein-Gordon

equations are {N{5, N{5, N} as defined in (2.3.6).
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Proof. The equations ([2.3.13)) can be expressed in the form (2.3.11)) with UT = (W¢, WY WY V")

and Hermitian matrix

gy v® _ e,
2 202 0 gwgy L1
gw v o S
A= ! . 2, gwovCh | (2.3.14)
0 0 gvg —gv[gg;/C;),
—gwgyCr —gwgyCs —gwoyCs  B5-

with

2,204, 42 02
iV iV 0
det A = <WT> <<WT) tan® Oy — ggvgf/za:Cf) = 0.

In order to determine which linear combinations of U give Klein-Gordon or wave
equations, diagonalise the matrix A = P*AP, where P is the matrix of eigenvalues of
A. This leads to the following new variables

N13 _6:13 9 Co’1 0 le
Ny —Cy Cy 0 0 Wy
= PU = o o o v 3 2315
Ny QQYC’} QQch 2gyC§ gwv® W ( )
N- —2g9yC1 —2gyCy —2gyCs gwv? Y
and associated eigenvalues containing the masses
Wt 0
2 Py
A@)y=| 0 750 0 . (2.3.16)
0 0 0 0
0 0 0 gy +9g¥)
O

Mixed and pure Dirac systems There is an analogous study of the mixed and
pure Dirac systems, but we omit it since the procedure is very similar.

2.4 Revisit of the model with ¢y = 0

Full system of equations From this section on, we always adopt the assumption

R.1.12), i.c.

myzgyzo.

Before we go to the system of equations, let us adopt some notations which will
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make the expressions shorter and clearer. First denote the sets of Klein-Gordon and
wave fields by

K:= {X7 Ui,‘/;i,Wf,W;,W;,eR,eL}j W = {VL}- (241)
Then we adopt that the following notation

QK, W, K, 0W; K, JK) := > Cconsk
seK|JW|JoK|J oW, keK|J oK

represents a general quadratic nonlinearity of the type sk with some constant coefficient
sk, and we have denoted 0K := {0k : k € K} . And similarly the the following notation

CKK; W) .= Z crwskk's

k.k'eK, seW

represents a general cubic nonlinearity.

In this case, the system of equations becomes (with A = 1,2)

—Ox = —V'(@*®) Py — gy (X TaP0 — P57 x)TaPo + Q(K, IK; K) + Q(K; W),
—OY* =0,

2 ,.2
WY = —g”;“ WY+ CK K K) + Q(K, 0K; K) + Q(K; W),

2 .2
o = _9W2“ Wy + C(K; K; K) + Q(K, IK; K) + viabvy,

iohuer = ge @5 L + gex*L,
io} 0L = g.Poer + %}VWW (057}1 — Ta0g>L + geXER,
(2.4.2)
in which we recall &y = (0,v)7.

We note that the variables Y satisfy homogeneous wave equations, and they do
not interact with other fields. Due to this reason, we will drop Y equations in the
following analysis.

Decomposition of the Higgs equation It is preferred to use variables

Ut = \*®y + Dl V-

a

= X1, Py — PyTaX
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in the analysis since they satisfy Klein-Gordon equations. Thus the equation for the
Higgs field is decomposed into four equations

—OUT + 40U = Q(K, 0K; K) + Q(K; W),

2 .2
g, SR W
U~ + W2 U™ =2g7,CV, + Q(K, K K) + Q(K; W), (2.4.3)
gy v

2
v+ Wy %yéaw + Q(K, IK; K) + Q(K; W).

2

We also note that the first order terms in the right hand sides of the last two equations
do not cause trouble, which is thanks to the relations

U ==2Vy,  Ci=Cy=0, C3=—v*/4 (2.4.4)

A new variable for the field W3 We note that in the nonlinearities of the Wy
equations there is a term of type v-v interaction, which does not decay fast enough.
Following the work of Tsutsumi [76] we introduce the new variables

NV v 2 * U

which are close to W4 in terms of the energy norms, and which satisfy Klein-Gordon
equations with good nonlinearities

Wy + By = C(K, WK K) + Q(K, 0K K) + 4,0} 0% vy (2.4.6)

Klein-Gordon equations for the electron field .. On the other hand, we find
it easier for the analysis if we transform the Dirac equation of ¥, = (er,er) to a
Klein-Gordon equation

~Ode + mP, = QK, K K) + Q(AK: W) + Q(K; W), (2.4.7)
for the reason that Klein-Gordon components give faster decay by utilising the role of

the mass.

Dirac equation for the neutrino field v;,. We now demonstrate two forms of the
Dirac equation for the neutrino vy,.

e First order Dirac equation

it oy = QK K) + QTWW#;;JZVL. (2.4.8)
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e Second order wave equation

—v, = Q(K, IK; K) + Q(JK; W) + Q(K; OW). (2.4.9)

2.5 Proof of the main theorem for the case gy =0

2.5.1 Bootstrap assumptions and basic estimates

This last section is devoted to relying on the bootstrap method to prove Theorem
2.3.1| with the choice of parameter gy = 0.

With the small data assumption (2.3.5) we may assume E™(sg,v;) < e. By the
local well-posedness of semilinear wave equations, it holds for some small 6 > 0 and for
all s € [sg, s1] such that []

E(s, ' L7vp)? < Cres’, [I|+]J| < N,
E(s, 0" Lv)"? < 0157 ]+ || < N -1,
D Em(s, d'L7E)? < Ches 11| +]J] < N, (2.5.1)
keK
D Em(s, ' L7E)? < Che, 11|+ |J| <N -1,
keK

in which C is some large positive constant to be determined,

sy :=sup{s : (2.5.1)) holds}, (2.5.2)
and
m := min{me, my, mg}. (2.5.3)

If we can prove the refined estimates

E(s, 0 L7v1)2 < %Clesé, I+ |7 <N
E(s, ' L7vp)V? < %Cle, 1| +]J| < N -1,
S (s, 0 LK) V2 < %olesé, I+ <N (2:54)
keK
D Em(s, d'L7E) < %C’le, I+ |J| < N -1,
keK

4We adopt notations in Chapter
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then we are able to assert that s; cannot be finite, which implies a global existence
result for the system ([2.4.2)).

Combining bootstrap assumptions (2.5.1) and the estimates for commutators in
Lemma in Chapter [T the following set of estimates are immediately obtained:

[(s/t)0,0" L v, (s/t)0" L7 duvi| 2 a0, < Ches’, 1] +[J] = N,
I(s/1)0,0" L7 vy, (S/t)aILJauVLHL?(HS) <Cie, ||+ ]J] <N -1,
> l(s/t)e" L d,k, (5/1)0,0" L7k, 0" L7 k| 1230, < Ches”, I+ |J| <N, (25.5)

keK
D 10,0" L7k, 0" LY 0,k 20,y < Cres®, 1] +1J| < N = 1.

keK

Furthermore we can obtain L™ estimates by recalling the Sobolev-type inequality on
hyperboloids [44] stated in Proposition [I.7.4]

Combined with the estimates ([2.5.5]) the following also holds:
sup t'/25|0,0' L' vy, 0' L7 v | < Cres®, |I| +]J] = N -2,
Hs

suptl/zslﬁa&IL‘]uL, 'L 0,v1| < Cte, Il +|J] < N -3,

s

sup (t1/23|8a§1L"k:, OTL Ok| + t3/2|6ILJk|> < Ches’, |I|+|J] < N —2,
keK, Hs

(2.5.6)

sup t%2|0,0"L7k,0"L7 0k, 0"Lk| < Ches’, |I|+|J] < N —3.
keK, Hs

2.5.2 First-order energy estimate for the neutrino field vy,

To obtain decay estimates for the neutrino component vy, a standard method is to
analyse the second-order wave equation (2.4.9)). This is then a semilinear wave equation
and so there are known techniques to estimate the nonlinearity, see for example [2] and
[45]. However, the right-hand side term appearing in our wave equation does
not decay sufficiently fast for this argument to close. At this point however, we recall
Proposition |1.2.3| and the lower bound H(s/t)zﬂHL? for the energy E™. This motivates

us to analyse the first-order form of the Dirac equation (2.4.8]).

On the other hand, instead of considering the Weyl equation for the left-handed
neutrino

ioh v = Q(K; K) + QTWWM?,O'ZVL = F,,

we find it more convenient to deal with the Dirac equation for the neutrino v,

VO = Fy,, (2.5.7)
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v F,,
- (3) ()

It is obvious that all estimates true for ¢, are automatically true for v, due to

with

‘VL| < |wn|

Next we need to adapt the Sobolev-type inequality on hyperboloids (see Proposition
in Chapter 1) to include boosts which commute with the Dirac operator ivy”0,,.
In [4] Bachelot introduced the modified Lorentz boosts L, that differ from L, by a
constant matrix

~

1
La = Lzz + 570/%“ (258)

~

which enjoy the property [L,,i7"0,] = 0. And the following modified Sobolev-type
inequality holds.

Proposition 2.5.1. Suppose 1 = 1(t, x) is a sufficiently smooth spinor field supported
in the region {(t,z) : |x| <t — 1}, then it holds for s = 2

S;tlp }t3/2w(t,x)‘ < Z Hf;’w”L?(HSy (2.5.9)

7]<2

where L denotes a modified Lorentz boost.

Theorem 2.5.2. Under the bootstrap assumptions (2.5.1), the neutrino field 1, in
(2.5.7)), which satisfies

. gw. K
i - (P00 W)

Un(to,-) = (D(L)()) ,

admits the following estimates

[(s/) L ] 23,) < €+ (Ce)?, ||
suptl/zs]fj]qﬂn\ Se+ (Ce)?, T <
Hs

N

, (2.5.10)

N
N -2 (2.5.11)
We revisit the proof of Theorem in Chapter [I}

Proof. Step 1 : By multiplying ¢*+° and +%), to the Dirac equation of v, and its
complex conjugate respectively, we obtain that

Oe(i)) + 0 (Wi Y 0uthn )i A 0ytbn = 0,
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which indicates
[CGs/t)¢nlzge) < € (2.5.12)

Step 3 : By an induction argument, we consider the case 1 < |J| < N — 2. Act L’

on (25.7) to get
POu(L n) = =2y L7 + R, (2.5.13)

with

R:= > Q(L"K, L {4, }; LK).
[J1]+]J2 <[] J1l<] |1
Using the energy estimates and the induction assumption

EM(s, L7,

< E™(sq, L7ty +f f 7@/@(1(3’%)*701%\ + |R*(L74,)]) dads

RN N CO N PRI SRR ((CO L PR
S0 kK€K, | J1|+|J2|<|J]
[J2]<[J]—1

(IOE 0l + 15/ H |13 1,) ) 5

<+ GQJ 5_3/2§5H(E/t)LJ%IIL;(HE) ds.

0

Recall that lower bound of E* implies

/08 0l = &+ (CoeP [ 52N bl 5. (2519)

S0

Thus it follows that (with Cie « 1/2)

I(s/OL7 ¢l 20y S € [T <N —2. (2.5.15)

Step 4 : The above analysis shows for [J| < N — 4

2 I/DL L ] 20,y S € (2.5.16)

=
Thus by the Sobolev inequality in Proposition (2.5.1)), we deduce

supt'2s|L7,| < Ce, |J| < N — 4. (2.5.17)
Hs
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Step 5 : We now consider the case |J| = N — 1. An energy estimate yields
E™ (s, L74,)

S
<+ f ||(§/t)LJ¢n”L?(,H§) ( 2 HLJI]{:”L?(Hg) HLJ2¢nHLOC(H§)
%0 keK,|J1|+|J2| <N -1,
[J1|>|J2],| J2| < N—4

+ > [(t/3) L7 K|l e e

keK,|J1|+|J2|<N—1,
[J1]<]J2],| J2| <N -2

<é+ (C’le)QJ 5‘3/25‘5“(§/t)LJ¢n\|L§(H§) ds.

S0

(/02" 300 ) dS

By Gronwall inequality this implies
I(5/0L7 Ynl 200,y S € + (Cae). (2.5.18)

The same analysis also applies to the case |J| = N. And repeating Step 4 gives

(2.5.11)) in the case |J| < N — 2. O

As a consequence, we have the following estimates for vy.
Corollary 2.5.3. The neutrino vy satisfies

(/)L a2y S €+ (G0l 1J] <N,
supt2s|L7v| S e+ (Cre)?, |J| < N —2.

s

(2.5.19)

2.5.3 Refined estimates

In this subsection we derive the refined estimates (2.5.4) and close our bootstrap

argument. For this to work we move to the transformed field Wé’ defined in ([2.4.5)),
which heuristically is of the form

WY = WY + O(|v]?), (2.5.20)
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and thus using the estimates for WY coming from (2.5.5) and ({2.5.6)), together with the
previous energy and sup-norm estimates for v, the following estimates for Wy hold

I(s/00 L7 3,5, (/0,0 L'WY . ' LW |1y < Cres, |1+ I <N

|0 L7 0,y 0,0 L'WY | a0,y S Caes®s |1 +[J| < N =1,

sup <t1/25|0a01L‘]f/I7§’, oL 0, WY | + t3/2\afLJW;|> < Ces®, I +]J] < N —2,
Hs

sup (t?’/?\aaafLJWg, afLJaaW;D < Cres’, |I]+]J] < N —3.
Hs

(2.5.21)
Moreover, (2.4.5)) indicates that any energy bounds (either of L2-type or of L®-type)
for W3 are automatically true for W3 and vice verse.

Proof of refined estimates (2.5.4). We first look at the energy for vy in the case |I| +
[/l =N

5(5 aILJ )1/2

< E(so, ' Lv)V2 4+ C ZJ (10"L7 (kL) | 12205 + 10" L7 (Rove) | 2 a4y ) 5.

keK

By noting

oot (@kve) | 12 )

keK

< >, (/)0 L™ 0k on o, | (/)% L v | 2 34

Li+Ix=1,J1+J2=J
|11‘+|J1|<N—2, keK

+ > [(/£)0" L7 Okl 2 34, 1 (t/5)0™ L™ v | Lo 34

L+1s=1,J1+J2=J
‘Il|+|J1‘2N71,]€€K

(016)2573/256 + (Clﬁ)QgilJré

<
< (016)2571%5,
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and the estimates

2 107 (kove) | 2 aus)

keK
< > [(¢/5)0" L7 | oo o, | (5/) 0™ L7200 | 2 a4,

L+1a=1,J1+J2=J
[T1|+]J1|<N-2, keK

D R k20 P [ ot A e
Ii+Io=1,J1+J2=J
[I1]+|J1|>N—1, keK
< (Che)?54,

we obtain
E(s,0"Lvp)V? < e + (Cre)?s®,  |I| +|J| = N. (2.5.22)

Similarly for |I| +|J| < N — 1 we obtain

E(s, 'L vp)? < e+ (Cre)?. (2.5.23)
Next, in order to obtain estimates for W4, we first bound the energy for Wé’

Em(s, " LW < En(s0, 0" LI WY)? + f 0" L7 (0uved*ve) |2 ey
S0
< e+ (Cre)®.

Next, recalling the definition (2.4.5)) or the relation ([2.5.20)) we use Young’s inequal-
ity to obtain for all [I| +|J| < N

Em(s, 0T LTWY)?
< 26, (s, TLTWI)Y? 4 28,,(s, 0TL7 (vivy,)) 2 (2.5.24)
S €+ (016)2.

Till now the remaining terms need to handle are
keKy :=K/{Wy}.

But we find that the same way we estimate v, in the beginning of the proof applies to
all £ € Ky. Hence we get

E(s,0'LTvp)'? < e+ (Cre)?s® |I| +1]J| = N,

2.5.25
E(s,0'LTvp)'? < e+ (Che)?, Il +|J|<N—1. ( )



98 2.5. Proof of the main theorem for the case gy = 0

By choosing C; sufficiently large and e sufficiently small such that Cie « 1/2, we
arrive at the refined bounds (2.5.4). This shows global existence and completes the
proof of Theorem [2.1.1]in the case gy = 0. O
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3.1 Introduction

Model problem. Systems of wave equations and Klein-Gordon equations are of great
importance in mathematics and physics. Examples in the field include the semilin-
ear Dirac-Proca equations and Klein-Gordon-Zakharov equations, and the quasilinear
Einstein-Klein-Gordon equations. In this chapter we will study the following semi-
linear coupled wave-Klein-Gordon system using the hyperboloidal foliation method of
LeFloch-Ma [44]. Considef]

—[Ju = F, := uv + udv,

(3.1.1)

—[Jv+v=F,:=uv,

with initial data prescribed on the time slice t = 2
(u, 8tu) (t=2,-)= (uo,ul), (3.1.2)

(U,&tv) (t=2,-)= (vo,vl).

Our aim is to prove that initial data, sufficiently small in some norm, yield global-
in-time solutions that decay back to the trivial solution. The main difficulty is that
there are no derivatives on the wave component u on the right-hand-side terms F), and
F, of equation , and thus the nonlinearities appear to decay insufficiently fast.
To be more precise, the best we can expect is that

[Fulr2 = |uv + uopl|pz ~ t |Ey|| 2 = |luv] 2 ~ = (3.1.3)

both of which are not integrable.

Previous work and motivation. Before we demonstrate our techniques for treat-
ing (3.1.1)), let us briefly discuss some previous work in the literature. Recall, in the

20 := n*P0,05, with n = diag(—1,1,1,1). Unless specified, Roman letters and Latin letters take
values in {0, 1,2,3} and {1, 2, 3} respectively, and Einstein summation convention is adopted.
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celebrated counterexample by John [33], that there exist wave equations with certain
nonlinearities that are quadratic in derivatives but which do not admit global-in-time
solutions. Nonetheless, a broad class of wave equations with nonlinearities, quadratic
in derivatives, satisfying the so-called null condition, as shown independently by Klain-
erman [40] and Christodoulou [§], do admit global-in-time solutions. The vector field
method, due to Klainerman, and the conformal method, due to Christodoulou, have
been two major approaches to studying wave equations. Other related versions of the
null condition have also been used to great effect, see for example [53, [64] and [? ].

By contrast, the Klein-Gordon equation requires a different analysis from the wave
equation. One key obstruction is that the scaling vector field S = to; + %0, does not
commute with the Klein-Gordon operator —[]+ 1, which thus prevents us from applying
the Klainerman-Sobolev inequality directly. Pioneering works by Klainerman using the
vector field method in [41], and by Shatah employing a normal form method in [66],
led the way in treating a wide class of Klein-Gordon-type equations.

Furthermore our study of the PDE was motivated by other coupled wave-
Klein-Gordon systems in the literature and future work on Dirac-Klein-Gordon systems
[12]. For example, Tsutsumi and his collaborators studied the Dirac-Proca system
in [76] and the Klein-Gordon-Zakharov system in [64]. Katayama also investigated a
coupled wave-Klein-Gordon system with a large class of quadratic nonlinearities in [35].
With these in mind, our aim is to utilise the hyperboloidal foliation method developed
by LeFloch and Ma in [45], where the authors studied a quasilinear coupled wave-Klein-
Gordon system. See also the work of Ionescu and Pausader [31] for other efforts in this
direction.

Main result. Returning to our system (3.1.1), we find that we can treat the uv
nonlinearity appearing in F, by transforming the variable u in a similar way to the
work of Tsutsumi in [76]. Note this is only at the expense of bringing a null form into
the new wave equation. As for the nonlinear term ud;v in F,, we rewrite it as two
terms udyv = 0y(uv) — voyu, in which the former is a total derivative and the latter is
easier to deal with due to the derivative on the wave component. Then, following [35],
we split the wave equation into two new wave equations, and the strategy for handling
the uv-type nonlinearity applies once more. On the other hand, to treat the uv term
appearing in F), of the Klein-Gordon equation, the novel idea is that we move the term
to the left hand side and treat v as a Klein-Gordon field with varying mass m = /1 — w.
This enables us to apply the techniques in [45].

We are now ready to state the main theorem.

Theorem 3.1.1 (Nonlinear stability of a wave-Klein-Gordon model). Consider the
system (3.1.1) and let N = 8 be an integer. Then there exists €g > 0 such that for all
e € (0,€e9) and all compactly supported initial data (ug, u1, vy, v1) satisfying the smallness
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condition
HUO, UOHHN‘H(]R3) + Hul, UlHHN(R?’) < €, (314)

the initial value problem (3.1.1))~(3.1.2) admits a global-in-time solution (u,v) with

lu(t,z)| St |u(t,x)] St (3.1.5)

For the proof of the main theorem, we employ the strategy introduced by LeFloch
and Ma in [45], which allows us to obtain robust pointwise decay for both wave and
Klein-Gordon components. We also apply a hyperboloidal conformal-type energy es-
timate for the wave component, which was first introduced by Ma and Huang in [61].
This enables us to obtain good L2-type bounds for the wave component u. All together,
our proof is shorter and yields better energy bounds for both wave and Klein-Gordon
components compared to those in [45]. The restriction to compact initial data can also
be removed, see for example [48], 47] or [42].

Generalisations of the main result. One can also easily show, though we will not
explicitly do so here, that Theorem is also true for the following more general
system

—[u = Q(u, v, dv; v, dv),

3.1.6
—v+v = Q(u;u,v) + Q(du, v, dv;v, ov), ( )

where we use the short-hand notation Q(---;---) to denote quadratic nonlinearities
involving interactions between one term from each side of the semicolon. Note further
that compared to the work of [64] and [35] a wider class of nonlinearities can be treated.
In [35], (2.14)] any nonlinearity for the wave equation involving at most one derivative,
needed to be of divergence form. This is not needed in our setting. We also remind one
that the u—u interaction term above was treated by Tsutsumi in [76]. Finally, it was
speculated in [44] that nonlinear interaction terms of the form

Q(u; v, 0v)

may lead to finite time blow-up. Thus this chapter partially answers their question by
showing that certain terms of this form do not lead to finite time blow-up.

The Klein-Gordon-Zakharov equations. Our result allows us to also deal with
the Klein-Gordon-Zakharov equations, which have been studied before using constant
time slices or phase-space methods in [64, 35| [75]. Moreover we could also treat some
Dirac-Klein-Gordon and Dirac-Proca type equations but we will discuss this in future
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work [12]. Recall the Klein-Gordon-Zakharov equations

~O = Ak (3.1.7)

— [vg + Vg = Uy,

where the unknown wu is real valued and v, are complex valued for a = 1,2,3. The
initial data are denoted by

(u, 5tu)(t =2 = (u(o), u(l)), (va, &tva) (t=2,-)= (v 0), UC(LI)), (3.1.8)

a

In order to apply the strategy of Theorem we rewrite the equations (3.1.7)) in the
following form
— O = 20 (0 (a2 + 42)).

— Uz, + x4 = ux,,

- Dya + Yo = UYq,

(3.1.9)

in which we use the notations z, := Re(v,) and y, := Im(v,) to denote the real part
and imaginary part of a complex number z, respectively.

We note that the regularity of u is one order less than that of v,. This can be seen
from the initial data, which we consider the norm

HU(O)HHNDa HU(I)HHNO*M HU¢(10)HHN0+1a ||U((11)HHN0a

with Ny some large integer. Thus equations are semilinear equations. Note also
that the wave nonlinearity in is of divergence form, and thus easier to handle
than that those in Theorem [3.1.1, Thus our method of proof applies to this system in
a very similar way and for which reason we omit the details.

Outline The rest of this chapter is organised as follows. In Section [3.2] we revisit
the basics of the hyperboloidal foliation method; next, the estimates for commutators
and null forms are given in Section [3.3} later on, we illustrate the techniques obtain-
ing pointwise decay estimates for wave and Klein-Gordon components in Section (3.4
in Section by initialising the bootstrap method, we provide some basic estimates
needed afterwards; we then derive refined estimates for Klein-Gordon and wave com-
ponents in Section [3.6 and Section respectively; in the last section, we demonstrate
the proof of the main theorem, and give some remarks.
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3.2 Basics of the hyperboloidal foliation method

3.2.1 Hyperboloidal foliation of Minkowski spacetime

In order to introduce an energy functional for wave or Klein-Gordon components
on hyperboloids, we first need to recall some notation from [44] concerning the hy-
perboloidal foliation method. We adopt the signature (—,+,+,+) in the (3 + 1)-
dimensional Minkowski spacetime, and we denote the point (¢,z) = (2%, 2!, 2% 23) in
Cartesion coordinates, with its spatial radius r := |z| = 4/(2!)2 + (22)% + (23)2. We
write J, (for a = 0,1,2,3) for partial derivatives and

Ly = 20, + t0,, a=1,2,3 (3.2.1)

represent the Lorentz boosts. Throughout this chapter, we consider functions defined
in the interior of the future light cone K := {(¢,z) : r <t — 1}, with vertex (1,0,0,0).
We consider hyperboloidal hypersurfaces H, := {(t,z) : t* — r? = s*} with s > 1. Also
Kisosa) = {(t,x) : s§ < t* —r? < si;r <t —1} is used to denote subsets of K limited
by two hyperboloids Hg, and H,, with sy < s;.

The semi-hyperboloidal frame is defined by

L, @
By =y = = %at + Oa. (3.2.2)
Note that the vectors 0, generate the tangent space to the hyperboloids. We also
introduce the vector field 0, := d; + (z%/t)d,, which is orthogonal to the hyperboloids.

For the semi-hyperboloidal frame above, the dual frame is given by 6° := dt —
(x*/t)dz® and 0" := dz®. The (dual) semi-hyperboloidal frame and the (dual) natural
Cartesian frame are connected by the relation

Qa = (I)g/ao/a aa = \IIO/Q

a Zal

0% = Wda®,  dz® = %6, (3.2.3)

where the transition matrix (®2) and its inverse (V) are given by

1 000
1
((I)a) ZEQ/t 01 0 (324)
2/t 0 0 1
and
1 0 00
2/t 1 0 0
(‘Ijg) = _:L.Q?t 01 0 (325)
—23/t 0 0 1
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3.2.2 Energy estimates on hyperboloids

Following [45], we first introduce the energy F,, in the Minkowski background, for
a function ¢ defined on a hyperboloid H:

Eon(s,8) i f ((60)” + X (0u6)” + 2210006 + m?6?)

_ J (((s/1200)’ +Z (2,0)° +m*¢?) da (3.2.6)

s

—J (aﬁb +Z (5/)0a8)” + Y. (7 Q) +m2¢2>dx

s a<b

in which Qg := 20, — %0, the rotational vector field, 0, := 0;+ (2%/t)0, the orthogonal
vector field, and we denote E(s, @) := Ey(s, ¢) for simplicity. In the above, the integral
in L'(H,) is defined from the standard (flat) metric in R3, i.e.

layou = [ teldo = [ (/5o 0] (32.7)

Next, we adapt the energy estimates to our situation.

Proposition 3.2.1 (Energy estimate for wave equation). For all s = 2, it holds that
E(s,u)'* < B(2,u)'* + J |0l 2 4, ds’ (3.2.8)
2 S

for every sufficiently reqular function w, which is defined and supported in the region

K2,

For the proof, one refers to [45].

Proposition 3.2.2 (Energy estimate for Klein-Gordon equation with varying mass).
Let v be a solution to the Klein-Gordon equation with mass 1

—(v+v=uv+ f (3.2.9)
which can also be regarded as a Klein-Gordon equation with varying mass 1 — u
—(w+(1—-uj=Ff, (3.2.10)

defined and supported in the region K2 s, and u is a sufficiently reqular function defined
and supported in the same region Kz s, which is assumed to be small

u| < —. (3.2.11)
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Then the energy on the hyperboloid Hs can be controlled by either

S
Ei(s,0)Y? < Ey(2,0)? + f <HUUHL?(H5,) + HfHLi(HS/)>d3/a (3.2.12)
2

or

Euawm<2a@wﬂﬂ+g[Qw%wmm@w@+vm%wowﬁ (3.2.13)
2
The energy estimate (3.2.13)) is better than (3.2.12) in the cases where d;u decays

faster than u, which is the case when u is a solution to some wave equation.

Proof. The proof of the energy estimate ([3.2.12) is standard and we omit it. In order to

prove the energy estimate (3.2.13)), we first test the equation (3.2.10)) by the multiplier
0;v and write the resulting equation in the following favorable form

1 1
5@((@@)2 + ;(@lv (1 —u)v?) + Za — 0wé,v) = —§v2atu +owf. (3.2.14)

We then integrate the identity (3.2.14)) over the region K2, and do integration by parts
to arrive at

d
E\/ﬂ(sav)l/ d —E g=(s, v)Y/?
= f (s/t)( §v26tu + owf) da (3.2.15)
M

< s/l e oz 00 + 1712200 I(5/)0e0] 23 00

Next by recalling the assumption that |u| < 1/10, we have

9
10

11
B (s,0) < Byimi(s,0) < S Fi(s,0)',

which leads to
1/2 1/2 11 (7 /
Byials,0)" < Byrea(2, 072 4 15 | (lodalizgn + 1 flizn, ) s’
2

and finally (3.2.13). O]

3.2.3 Conformal-type energy estimates on hyperboloids

We now introduce a conformal-type energy which is adapted to the hyperboloidal
foliation setting, which is due to Ma and Huang in [61]. This lemma will be key to a
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robust estimate of the L?-type norm for the wave component u.
Lemma 3.2.3. Define the conformal-type energy of a sufficiently regular function wu,

which is supported in the region KK = {(t,x) : |x| <t — 1}, by

Eeon(u, s) := f (Z (Séau)2 + (Ku + 2u)2) dzx, (3.2.16)

He N
in which we used the notation of the weighted inverted time translation
Ku := (s0s + 22°0,)u.

Then it holds
o (11, )2 < Bogn(u, 50)/2 + 2 J |00l 300, S (3.2.17)
s0

with moreover
[(s/ryul s,y < Beonu, 5)'72 (3.2.18)

3.2.4 Sobolev-type and Hardy-type inequality

We first state a Sobolev-type inequality adapted to the hyperboloids, which is of
vital importance for proving sup-norm estimates for both wave and Klein-Gordon com-
ponents. For the proof, one refers to either [44] or [45] for details.

Proposition 3.2.4. For all sufficient smooth functions u = u(t, z) supported in {(t,z) :
|z| <t —1} and for all s = 2, one has

sup [("2u(t, x)| < ), 1L ulizon, (3.2.19)

|7]<2

in which the symbol L denotes the Lorentz boosts and J is a multi-index. We will also
frequently make use of the following identity which follows from (3.2.19) and standard
commutator estimates:

suplst!2utt ) £ 3, W5/ w30 (3.2.20)

|J|<2

In order to control the L?>-type of norm for the wave component u, we need the
following Hardy-type inequality on the hyperboloidal foliation, see [44] for instance.

Lemma 3.2.5. Assume the function u is defined and supported in the region {(t,x) :
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|z| <t — 1} and is sufficiently reqular, then for all s = 2, one has

[ PYRED W LAY s (3:2.21)

3.3 Estimates for commutators and null forms

3.3.1 Commutator estimates

We restate the estimates for the commutators, which are proven in [44] and [45].

Lemma 3.3.1. Assume a function u defined in the region K is reqular enough, then
with the generic constant C(|1|,]J]), we have

[0"L7 duJu| < C(II|, 1)) D) [0s0"L7 ], (3.3.1)
|J'[<|J|.8
(2 P el R /)T (R SN ey AT S i AR
[ <|1],|J"[<|J],b ['1<|1],| <] |
(3.3.2)
\[afLJ,Qa]u\<o<|f|,|J|)< N e Y] ‘858[/leu>,
[ <1, | " <|J].8 PR VINPASPINC
(3.3.3)
[0'L7, duds]u| < C(|11, 1)) > |0,0,0" L7 u), (3.3.4)

<UL <[ Ty

0" L7 ((s/t)0au)| < [(5/t)0a0"L7u| + C(/1],]J)) > |(s/t)ds0" L u|.  (3.3.5)

<11 <] I8

Recall here that Greek indices o, 5 € {0,1,2,3} and Latin indices a,b € {1,2,3}.

3.3.2 Null form estimates

The estimates for null forms are also restated for convenience.

Lemma 3.3.2. For the quadratic null term 0“ud,v with sufficiently reqular functions
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u and v, one has

|01 L7 (0°uda)| < Z (‘ahLJIQauazzLJQQﬂU\ + \ahLJIQﬁualthQav\)

[11[+|I2|<|1],
[J1]|+]J2]<| ],
a,8 (3.3.6)

+(s/t)> D> | Loue™ B o).

[I1|+|I2]<] 1],
[J1]+[J2]<|J]

One refers to [44] for the proof.

3.4 Tools for pointwise estimates for wave and Klein
Gordon components

3.4.1 Sup-norm estimates for wave components

We recall the following lemma from [45], which is essential in proving the sup-norm
bound for wave components. An alternative proof of Lemma is also found in [2].

Lemma 3.4.1 (Pointwise estimates for wave components). Suppose u is a spatially
compactly supported solution to the wave equation

L=/, (3.4.1)
u(to, ) = dyu(to, ) = 0,
with f spatially compactly supported and satisfying
If] < Cpt 277t —r) 1 (3.4.2)
for0<pu<1/2 and 0 <v < 1/2. Then we have
C
lu(t,z)| < =Lt —r)ve (3.4.3)
Vi

where C is some constant.

3.4.2 Sup-norm estimates for Klein-Gordon components

Following the pointwise estimates for Klein-Gordon components in the hyperboloidal
foliation setting, which were first introduced in [45], we adapt it to our case where the
mass of the Klein-Gordon field varies.
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Proposition 3.4.2 (Pointwise estimates for Klein-Gordon components with varying
mass). Assume v is a sufficiently reqular and spatially compactly supported solution to
the Klein-Gordon equation

—w+ (1 —u) =f,

(3.4.4)
U|H2 = Yo, aIf,U|'Hz = Uy,
with the assumption |u| < 1/10, then one has
53/2‘v(t,:1:)| + (s/t)"'s*2|0, v(t, z)| < V(t,2), (3.4.5)
with
(S I (o) 4 [on s + F(s)), 1/t <35
V(t,x) := B | u(rt/oxz/s)] dA (3.4.6)
elso 'dx ’ F(s), 3/5<r/t<1
and
2, r/t < 3/5,
Sp = { /t+:’ 3/5 T‘/t <1, (3‘4'7)
and i
F(s) := J R[v](At/s, \x/s) + N2 f(At/s, Ax/s)| d), (3.4.8)
50
where o
3 3
32
R[v] := s¥ Z& 0 vt S <17z L 8bv+4 72V 1/2Qav (3.4.9)

The proof of Proposition is based on the decomposition result in Lemma |3.4.3]
and an estimate of ODE in Lemma [3.4.4] both stated below. We refer to [45] for the
detailed proofs, but give a simpler proof of Lemma below, which provides a neater
expression of the estimate for the ODE.

Lemma 3.4.3. Assume v is a sufficiently regqular solution to the Klein-Gordon equation

(13.4.4), and let
wy . (N) := X 2u(\t/s, Mx/s), (t,x)e K,

then the following second-order ODE with respect to A holds
2
axz
Lemma 3.4.4. Consider the second-order ODE
2"(N\) + (1 — G’()\))z()\) = k(N),
2(s0) = 20, 2'(s0) =21, |G(N)] <1/10,

Wz (A) + (1= u(Xt/s, Az /s))we o (N) = (R[v] + 33/2f)()\t/3, Az/s). (3.4.10)

(3.4.11)
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i which k is assumed to be integrable, then we have the following pointwise estimate

((2)2(s)+(1=G(5))2%(5)) /* < €% G'WdA(((z')2(0)+22(0))”2+f k(\) d)\). (3.4.12)

S0

1/2

Proof. We set Y (X) = ((2/)2(A) + (1 = G(N))22()))
(13.4.11)), we get

, and then by multiplying 2’()) in

L y200) = 2RO — G2

X
<Y (EO) + |GY (V).

In order to proceed, we divide Y () in the above inequality and, integrate to get

(3.4.13)

Y(s) < Y(so) + J (k(X) + [G'Y (X)) dA. (3.4.14)

S0

Finally, we apply Gronwall-type inequality from Lemma to end the proof. O]

We have used the following standard Gronwall inequality.
Lemma 3.4.5. Let u(t) be continuous and nonnegative in [0,T], and satisfy
t

u(t)éA—i—f

0

(a(s)u(s) + b(s)> ds, (3.4.15)
where a(t) and b(t) are nonnegative integrable functions in [0,T] and A is nonnegative

constant. Then it holds

t

ult) < (A+f b(s) ds>653a(5>d8, te0,7). (3.4.16)

3.5 Bootstrap method

Before beginning the bootstrap argument, we recall the theorem we will be proving.

Theorem 3.5.1. Consider the system

—[Ju = uv + udv,

(3.5.1)
—[Iv 4+ v = uv,
whose initial data are prescribed on the time slice t = 2
u, ) (2, ) = (ug, ur),
(1 ) (2.) = (o, 1) 550

(v,é’tv)(Z, ) = (vo,vl).
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Let N be a sufficiently large integer, for example N = 8 suffices. Then there exists
€0 > 0 such that for all e € (0,€q) and all compactly supported initial data (ug, uq, vo, V1)
satisfying the smallness condition

HU(), UOHHN‘H(R3) + Hul, UIHHN(R?’) < €, (353)
the initial value problem (3.1.1)—(3.1.2]) admits a global-in-time solution (u,v) with
lu(t,z)| St7,  |u(t,x)] St (3.5.4)

3.5.1 Bootstrap assumption

We assume that the following bootstrap assumptions hold in the interval |2, s;|

E(s,0'L7u)Y? < Cie, 11|+ |J| < N -1, (3.5.5a)
E(s,0"u)"? < Cyes’, |I| = N, (3.5.5b)
E(s, ' L7u)"? < Cyest?lo Il +[J| < N,|J| =1 (3.5.5¢)
Ei(s,0'L7v)"? < Cyes’, 11|+ ]J] <N, (3.5.5d)
H(s/t)&ILJuHL?(HS) < Cres'/*H1, |I| + |J| < N, (3.5.5¢)
|01 L7u| < Chet™1sl710, 11|+ |J] < N —4, (3.5.5f)

107 L7 v < (Che)V2t=3251710) 11|+ |J| < N — 4, (3.5.5g)

in which C} is some big constant which is fixed once and for all, § is some fixed small
constant, i.e. 0 < § « 1, and s; is defined by

s1 :=sup{s : (3.5.5)) hold}.

We recall that the fact s; > 2 follows from the local existence result, which is clas-
sical, see for example [44, Section 11]. And importantly, we note that C; and ¢ are
independent of s;.

In order to prove the stability result stated in Theorem [3.1.1] it suffices to demon-
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strate the refined energy bounds below

1

E(s, 0 L7u)V? < 5O 1|+ |J| < N -1,

E(s,0™u)"? < %Cles‘;, 11| = N,
E(s,0'L7u)Y? < %Clesu‘s, Il +|J| < N, |J| =1,
Ei(s, o' L70)"? < %Clesl‘”, I+J <N, (3.56)

(/00" Ll 3y < 5Cres> 7%, 1]+ 1 <N,
0" L] < SOt 1)+ |J] < N -4,
101 L7v| < %(Ole)l/zt_3/2$|‘]|5, 11|+ |J] < N — 4.

Note that the bounds in (3.5.6)) indicate that s; cannot be of finite value, which thus

completes the proof of a global-in-time solution stated in the main Theorem [3.1.1]

3.5.2 Direct estimates

Direct consequences of ([3.5.5a)) and (3.5.5d)) are the following:

101 L7 ou| + |00 L7 u| < Cret™2s71, 11|+ |J

3.5.7
101 L7v| < Cret 325171428 |+ |J ( )

These follow from the Sobolev—type inequality of Proposition [3.2.4] and estimates for
commutators in Lemma [3.3.1]

Assumptions (3.5.5a])—(3.5.5d) also imply the following L*-type estimates

(/)0 L7 2ul 3oy + (5/6)00 L7 123y < Chre 1+ 1| <N -1,
(/)0 L7 0ul 3 3y + (5/6)00" L7t 33y < Chres”, 1] = N,

[(s/0)0" L7 0ull 23,y + (s/)00" L7 ul| 23,y < Cres”?, 1|+ |J] = N, || = L.
(3.5.8)
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3.6 Refined estimates for the Klein-Gordon compo-
nent

3.6.1 Refined energy estimates for v

We show here the refined estimates for the Klein-Gordon component, and we will
see that the most difficult part is to get the refined ones for ¢’v. The difficulty comes
from the integral of

J T gy
2

diverges, but we can circumvent it by moving the nonlinear term wv in the Klein-Gordon
equation in (3.1.1)) to the left hand side and then regarding the mass of v as the varying
one 1 — u.

Lemma 3.6.1. By utilising the notation of commutators [A, Blu := A(Bu) — B(Au),
we have

I[1 -, afLJ]UHL?(HS) < (Cre)2s~ 1l 1 4+ [J] < N, (3.6.1)
and furthermore, we have
It —w, 0025, < (Cre)*2s72, I < N. (3.6.2)
f S

Proof. First note the expansion of the commutator

[1—wu,d' L v = Z ol L uo2 L.

Li+I=1,J14+J2=J
[11]+|J1]>1

For the case of |J| = 1, we conduct the following

[0 w0 Lo gy = D0 I/ L iz I(8/5)0% L2 0] 1oy
! L+1a=1,J1+J2=J
[T1|+]J1 =] 12|+ 2|

+ Z HathluHLw(Hs)HahLJQUHLZ;(HS)?
Nt To=I,J1+Jo=J '
1< |+ 1| <] 2|+ | T2

and the L?>~type estimates for u in (3.5.5]) verifies

H[l —u, aILJ : < Z 01681/2+\J1|5(Cle)1/2t—1/28—1+|J2|6 + Cl(ft_lS‘Jll(SClESIJz'(S,

]UHL;(HS
J1+Jo=J

which leads to (3.6.1)).
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For the proof of (3.6.2)), we proceed in the same way but pay attention to the fact

that
H(s/t)aflu}\@%) < Cie, 1< || <N,

(/)0 ] o ry,y < Cret™2, 1< IRl <N —4.
[

Proposition 3.6.2 (Refined energy estimates for v). Consider the Klein-Gordon equa-
tion in (3.1.1) and assume the bounds in (3.5.5) hold, then we have the following refined
ones

Ei(s,0'L70)Y? < e + (Cre)?2s710 |1+ J| < N. (3.6.3)

Proof. We first act 0/L? on the Klein-Gordon equation in (3.1.1)) to get

—0'L7v + (1 —u)d' L7v = Z o L o™ L.

L+Ia=1,J1+J2=J
[I1]+]J1]=1

We then apply the energy estimate (3.2.13)) for Klein-Gordon equations with varying
masses and use Lemma [3.6.1] to show

B\ (s, 0" L7v)Y?

< 2B(2,0'L70)? 2 (H(s’/t)é’tualLJUHLz(H 4 0= L), S
2 P Ly(Hs)
Set J (HatUHL"O(HS/) 0" L0 23,0y + > HallLJIWIZLJQUHL?(HSI)) ds'.
2 Li+Is=1,J1+J2=J
[T1]+]J1[=1
(3.6.4)
Successively, in the case of |J| = 1, it is true that
Ei(s,0'L7v)Y? < e + (016)3/2J s ds < e 4 (Cre)??s1o, (3.6.5)
2

while in the case of |.J| = 0, better estimates on ¢/'u with |I;| > 1 enable us to obtain

S

Ey(s, 0 L70)? < e + (016)3/ZJ s A < e+ (Che)®, (3.6.6)
2

which finishes the proof. m

3.6.2 Refined pointwise estimates for v

We now prove the refined sup-norm bounds for the Klein-Gordon component v,and
we first prepare some lemmas which will be of help.
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Lemma 3.6.3. The solution u to our wave equation satisfies

el lixut/sAz/s)ldx < (3.6.7)
Proof. We observe that

d—Au(At/s,)\x/s) = (t/5)0, u(At/s, Ax/s),

and, on the other hand, we have

s x®
J,u(t,z) = t—2§tu(t, x)+ t—QLau(t, x).

Hence by recalling the pointwise bootstrap (3.5.5f]) of u that
|Lau(t, )] < Cret™'s,

we find
|(t/5)0 u(t, z)| < Cres 32,

This implies that

- < —-3/2
d}\u()\t/s,)\x/s)‘ < Cred™7,

and hence the completeness of the proof. O

Lemma 3.6.4. We have the estimate for R[¢'L7v] in the region K,y that

|R[0"L7v](\t/s, Ax/s)| < Cre(s/t)*PAT32HN0 |+ |J] < N — 4. (3.6.8)

The proof can be found in [45].

One last ingredient is the commutator estimate stated below.

Lemma 3.6.5. The following estimates for the the commutator are valid
|([1 = w, o' L7 o) (At/s, Ax/s)| < (CLe)2(s/t)>PA=/2H10 1)+ |J| < N — 4, (3.6.9)
moreover, in the case of |J| = 0, one has
[([1 = u, 0"Jv) (At/s, Aa/s)| < (C1e)32(s/t)2X73,  |I| < N — 4. (3.6.10)
Proof. First recall the expansion of the commutator

[1—u,d'L7|v=— Z ol L o L.

Li+Ix=1,J1+J2=J
[T1]+|J1|=1
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Next recall the pointwise estimates in (3.5.5)) and they give

([1 —u, ' L70) (¢, 2) < Z Chet s 0Oy e) /23251210
T+T2=J

< (016)3/2t—5/2S|J\5 _ (016)3/2(S/t)5/28_5/2+u|5’

which finishes the proof of (3.6.9)).

For the proof of (3.6.10f), we proceed in the same way but recall the estimate below
from (3.5.7)

|0hu| < Cret™ 257 1< || < N —4.
[

We are in a position to give the proof of the refined sup-norm bounds for the Klein-
Gordon component.

Proposition 3.6.6 (Refined pointwise estimates for v). The following estimates are
valid

07 L7v| +|(t/s)@,0"L7v| < Cret ™20 I + [J| < N — 4. (3.6.11)
Proof. We act 0/ L7 on the Klein-Gordon equation in to get
—0' v+ (1 —w)d'L7v = [1 —u, 0" L7 |v.
We have

F(s) < f

50

S

<‘R[81L‘]v]()\t/s, Az/s)| + X2|[1 — u, 0" L7 Jv|(At/s, /\x/s)) d\,

in which F'(s) was defined in ({3.4.8)) in Proposition Then by recalling the estimate
(3.6.8)) and the commutator estimates (3.6.10|) from the previous two Lemmas, we have

F(s) < C’le(s/t)?’ﬂs“”‘s,
which leads to the bound

01 L7 v(t,z)| < 5732 F| < Chet=/2s1710,

As a consequence, we have

00T L7 v| < Cret™ 2571418 1)+ |J| < N — 4, (3.6.12)
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which is due to the following two identities (see also [45]):

2 “ tt - ata’
=500 = (@"/Dd),  Ga= =zl + 50+,

We note that (3.6.12) is used when we estimate the pointwise decay of the null form

Oqu0®v in (3.7.10)) below.

3.7 Refined estimates for the wave component

3.7.1 Overview of the strategy on treating u

If we deal directly with the nonlinearity uv for the wave equation in , it is
very difficult to get either desired energy estimates or pointwise estimates. Due to this
difficulty, we are motivated to do a transformation and seek for a new unknown which
satisfies a wave equation with good nonlinearity, and which meanwhile is close to the
original wave component u up a higher order correction term. The idea to treat the
Klein-Gordon field is similar as the use of a normal form transformation by Shatah
[66] combined with the technique used to deal with wave—wave interaction used by
Tsutsumi [76]. But before we do the transformation, we find it necessary to first split
the wave equation into two, which agrees with the special structure of the equation for
u.

Proposition 3.7.1. Let (u,v) be a solution to the model problem ([3.1.1)

—[Ju = uv + udsv,
—[Iv 4+ v = uv,
(U, atu) (27 ) = (u07u1>7 (Uu (3,5'1)) (27 ) = (U07U1)7

then we can split u into the following form
u=U; + é}Ug, (371)
i which Uy and Uy are solutions to the two wave equations below:

—JU; = uwv — vz,

(U, 0:U1) (2,-) = (uo, ur + uguy), (3.7.2)

and
—OUs = uw,

(Ua, :U5)(2,-) = (0,0).

We recall that this key observation of splitting as in (3.7.1)) is due to Katayama [35].

(3.7.3)
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Next, we do a transformation to make the nonlinearities in the U; and U, equations
easier to deal with.

Proposition 3.7.2. Consider the wave equations of Uy and Uy in Proposition |3.7.1
and set

~

Uy .= U + uv, (72 = Uy + uw,

then the new unknowns Uy and Us satisfy wave equations with new nonlinearities, which
are easy to handle, i.e.

—[OU; = —0®udav — voyu + uv + uv?, (3.7.4)

and N
—[Uy = —0%udyv + u?v + uv’. (3.7.5)

Proof. The proof follows by simple calculations. We only do it for U,
U, = (U + uv) = [0y — 0“ulav + (—u)v + u(—o + v) — uv,
then by utilising the equations in (3.7.3)), we finally arrive at (3.7.5)). O

The following consequences follow immediately, which say about that U’s are very
close to U’s.

Lemma 3.7.3. Assume Uy and Uy are solutions to (3.7.2) and (3.7.3)) respectively, and
let the bootstrap assumptions in (3.5.5)) hold, then it verifies for all s € (2, s1] that

%E(s, LU <E(s, 0" L7U)Y? < 2E(s, ' L'U,)Y?, [I| +|J] < N,

%Em(s, 'L UN)Y? <Eoon(s, 0" L U)Y? < 2 00 (s, 0T LU, 11| +|J| < N,

0L (U, — U,)| < Chet™?, 1|+ |J| < N — 4,
forp=1,2. 70

Proof. The proof follows by the fact that the difference between U, and (7,, is a quadratic
term wv, which has very good decay property. O]

3.7.2 Estimates of the U; part

We are now about to derive various estimates for Uy, which will be based on the
analysis of the new unknown U;. We start by a simple lemma, estimating vd,u.
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Lemma 3.7.4. Let the bootstrap assumptions in (3.5.5) be true, then it holds

|0 L7 (vo,u < (Cre)®2s=3241 1) 4 |J] < N, (3.7.7)

Moz

and
0" L7 (vou)| < (Cre)®2t 2570 | + | ]| < N — 4. (3.7.8)

Proof. We directly do the estimates

H(?ILJ(UatU) HL?(Hg) < Z H(?Ilel atuaIQLJQ'UHL?(,HS)
I +Ix=1I
Ji+Jo=J
s )y [0 L7 vl e | 0 L0 o

Ii+Ia=1,J1+J2=J
[ 11 +]J1 < | I2]+]| 2|

+ > [(s/6)0" L Ouu] 2 30, || (8 5) 0™ L0

Ii+Ix=1,J1+J2=J
1]+ |J1[=]12]+]J2]

and finally the basic estimates in Subsection completes the proof of (3.7.7)).

For the sup-norm bound, note that

'L (o) < ) |0 LM G L

L+1=1
Ji+Jo=J

Y

and then it follows from the bootstrap assumptions (3.5.5) as well as the pointwise
estimates (3.5.7)) for 01 L1 0u. O

Lemma 3.7.5. We have

H@ILJ( — 0“upv — vou + v’V + wv?) H < (Cre)®2s=32H1 1) 4 |J] < N,

L3 (Hs)
(3.7.9)
as well as

‘6111‘]( — ®ulyv — vou + uPv + uv2)l < (Cre)®Pt7 2571l T+ [T < N — 4.
(3.7.10)

Proof. The terms are either null, d;uv or cubic. Since d;uv is already treated in
Lemma [3.7.4] one refers to Lemma for more details on treating null forms. m

Proposition 3.7.6 (Energy estimates for Uy). Consider the wave equation in (3.7.2))
and assume the bounds in (3.5.5)) hold, then we have the following energy estimates for
Ui

E(s,0'LU)Y? S e+ (Cre)*?,  |I| +]J] < N. (3.7.11)
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Proof. Firstly, by , we know
E(2,0"L7U)Y? < 2.
Then recall the energy estimates for wave equations and we easily obtain
B(s, o' LD 12
< E@2,0'L7U)Y? + Ls H@IL‘]( — U — Opuv + u’v + wv?) HL?(HS,) ds’

<e+ (016)3/2,

in which the last inequality is due the estimate (3.7.9). By recalling the equivalence
relation (3.7.6) between U; and U; we complete the proof. O

The ideas of the proofs for the two propositions below are very similar to the one
above, i.e. we can get good estimates for the auxiliary unknown U; easily, and then
an application of the equivalence relation in turn gives us good estimates of the
unknown U;. And we omit the proofs for the following two propositions.

Proposition 3.7.7 (Conformal-type energy estimates for Uy). The conformal-type en-
erqy introduced in Subsection satisfies

Beon(5, 0" LTUN)Y? < € + (Cre)¥2sV2H1710 1) + |J| < N. (3.7.12)

Consequently, we have

|(s/m)o" LUy S e+ (Cre)®2sM21 1 4 |J] < N, (3.7.13)

HL?(HS)

which is due to the conformal-type bounds for U; above and the Hardy—type inequality

(3-2.21).

Proposition 3.7.8 (Pointwise estimates for Uy). We have

0"LUL| < (e + (Cre)®) s 00 I +|J] < N — 4. (3.7.14)

The proof of this Proposition clearly follows from Lemma and the sup-estimate
obtained in (3.7.10]).

3.7.3 Estimates of the U, part

We state the following propositions about estimates of Uy, but we do not provide
proofs as they are either the same as or easier than those of Uj.
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Proposition 3.7.9 (Energy estimates for Uy). Consider the wave equation in (3.7.3)
and assume the bounds in (3.5.5)) hold, then we have the following energy estimates for
Uz

E(s,0'L7U)Y? < e+ (C1e)*?, || +]J] < N. (3.7.15)

As a consequence, it gives us

|(s/t)0:0" L7 U, S)+H(s/t)6ILJ6tU2 Se+ (Ce)®?, |I|+|J] < N. (3.7.16)

HL?(’H HL?(HS)

Proposition 3.7.10 (Pointwise estimates for Uy). We have

0,07 L7 Us| + |0'L70,U| < (e + (Cre)*?)t 278, I+ |J| < N —4.  (3.7.17)

The proof of this Proposition clearly follows from Lemma and the Sobolev
embedding of Proposition [3.2.4]

3.7.4 Refined estimates for u

We are now about to derive the refined estimates for u, which will be based on the
analysis of the new unknown U.

Proposition 3.7.11 (Refined energy estimates for u). Consider the wave equation in
(3.1.1) and assume the bounds in (3.5.5)) hold, then we have the following refined ones

E(s,0"L7u)"? < e + (Cre)*?, I +|J| <N —1,
E(s, 0'u)"? < e + (Cre)?%s°, |I| = N, (3.7.18)
E(s,0'L7u)"? < e + (C1e)*?s70 I+ |J| < N, |J| = 1.

Proof. For |I| + |J| < N — 1, we have
E(s,0'L7u)"? < E(s,0' L7U)Y? + E(s, 0" L7 0,U,)"/?,

then the energy estimates of U; and U, and the commutators give the desired result.

Next, for the case of |I| + |J| = N with |J| = 1, we recall the original equation in
(3.1.1) and have

00 Lu= Y] (afl Lhup L2y + &IlL‘]lu&I?L‘b&tv). (3.7.19)

I1+1=1
J1+J2=J
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Then by the energy estimates for wave components (3.2.8)), it is true that
E(s, 0" L7u)"?
< B(2,0'L7u)Y? + J Z Hall L7 oL + 811LJ1u812LJ2(3tUH ds'.
L L2 (M)
1+1I2=1
T+ da=J
Successively, we arrive at

E(s,0'L7u)Y? < e + (Cre)*2s10,

which is based on the estimates we already have obtained. The case of |I| = N can be
treated in a similar way, and hence the proof is done. O

Proposition 3.7.12 (Refined L3-type energy estimates for u). It validates that

[(s/8)0"L7u] 1o 5., < €+ (Cre)¥25Y258 |1 4 || < N. (3.7.20)
f S

Proof. We simply have

[(s/08" L ull 231y < [(s/r)O" L7U g 5,y + [(s/0)0" L7V 1 5,

and finish the proof by recalling the estimates (3.7.13|) and (3.7.16)). [

Proposition 3.7.13 (Refined pointwise estimates for u). We have
10" L7u| < (e + (Cre)*)t sl I +]J] < N — 4. (3.7.21)
Proof. 1t is true that
0T L7 u| < |0"L7UL| + |07 L7 0,Us],
and the proof is done by the use of (3.7.14) and (3.7.17)). O

3.8 Proof of the stability result and further remarks

Proof of the stability result We first close the bootstrap method, which immedi-
ately gives the proof of the main theorem.

Proof of Theorem[3.1.1. By collecting all of the refined estimates for wave and Klein-
Gordon components, which are stated in the propositions in Section |3.6| and Subsec-
tion [3.7.4] we choose large C; » 1 and small € « 1 such that Cie « 1, then we arrive
at the desired estimates in (3.5.6). Furthermore, as explained at the end of Subsec-
tion |3.5.1] we also have provided the proof of Theorem [3.1.1} n
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Concluding remarks. Motivated by the Klein-Gordon-Zakharov system studied in
[64], 135, [75], other classes of coupled wave-Klein-Gordon systems from [35] and also [44],
we have studied the system
—[Ju = uv + udv,
—[Jv +v = uv.

By relying on the strategy introduced in [45], we obtained global stability results and
sharp decay estimates
| <t o] St

This system is part of a broarder class of systems where one studies nonlinearities with
critical exponents and whether this leads to global stability or finite time blow-up. See
for example [32], [22] for the Strauss conjecture of wave equations, [55l B6] for Klein-
Gordon equations, [70] for Dirac-Proca systems. We end this chapter by asking the
following questions for possible future work:

e What are the critical cases of nonlinearities for a wave-Klein-Gordon system in
general dimensions?

e Depending on the critical cases, does the solution to the system exist globally or
blow up in finite time?
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4.1 Introduction and main Result

The coupled wave-Klein-Gordon systems have attracted a lot of attention since
decades ago, which are motivated by some important models from physics. They in-
clude the Dirac-Klein-Gordon equations, the Dirac-Proca equations, the Einstein-Klein-
Gordon equations, the Klein-Gordon-Zakharov equations, the massive Maxwell-Klein-
Gordon equations and many others.

!This chapter is a joint work with Philippe G. LeFloch.
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Recall that Klainerman [41] and Shatah [66] were first able to treat Klein-Gordon
equations with quadratic nonlinearities in R'™3. In [41] Klainerman applied the powerful
vector field method in the light cone to show the existence of global-in-time solutions
to Klein-Gordon equations with compactly supported initial data. On the other hand,
Shatah proved in [66] the same result by using a normal form method, where the
compactness assumption on the initial data is not needed. By relying on these two
main methods, various results came out.

Later on, LeFloch-Ma in [44] in 2014 introduced the hyperboloidal foliation method
on treating wave and Klein-Gordon equation in one framework, where the compactness
of the initial data is needed. Recently, in [48] LeFloch-Ma were able to get rid the
compactness assumption by introducing the Euclidian-hyperboidal foliation method.
Utilising this method, Ma in [60] proved the small data global existence result on the
1 dimensional wave-Klein-Gordon equations.

Motivated by the hyperboloidal foliation method, we are interested in studying
here the behavior of the Klein-Gordon component when its mass m tends to 0. It is
conjectured that the solution to the Klein-Gordon equation, within a short range of
time, behaves more like waves when the mass is very small. We provide a rigorous
proof for the Klein-Gordon equations with a certain class of nonlinearities which are of
divergence form. Consider

—[Tu + m?u = P%0, (uv +0% — u3),

4.1.1
—[Jv+v = u?® + uv, ( )

in which P* are fixed constants and m € [0,1] is the mass parameter, and with pre-
scribed initial data at ¢ = 2

(u, 6tu)(2, ) = (uo,ul), (v,é’tv)(Q, ) = (vg,vl). (4.1.2)
Our goal is to prove small data global existence result with pointwise decay results,

which are uniform in term of the mass parameter m. The main theorem is stated now.

Theorem 4.1.1. Consider the system ({.1.1) with P* fized constants and the mass
parameter m € [0,1], and let N = 8 be an integer. Then there exists ¢g > 0, which is
notably independent of m, such that for all € € (0, €q) and all compactly supported initial
data (ug,uy,vo,v1) satisfying the smallness condition

HUO, UoHHNJrs(RB) + Hul, (4 ‘|HN+4(]R3) < €, (413)
the initial value problem (4.1.1)—(4.1.2)) admits a global-in-time solution (u,v) with

lu(t, z)| < min{t™', m~1t32}, |u(t,x)] S 732 (4.1.4)
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There is a loss of regularity here, which will be seen in the proof of this theorem.
We also note that Theorem [4.1.1| is much easier to prove at the end points m = 0
and m = 1, in which cases the equation of u is a wave equation and a Klein-Gordon
equation respectively. But there are several difficulties appearing if we want to treat
the system uniformly in terms of m € [0,1]: 1) the L-type estimates and sup-
norm estimates obtained by the estimates on the mass term m?u cannot be used due
to the bad factor m™!; 2) the scaling vector field and the conformal vector field do not
commute with the Klein-Gordon operator —[]+ m?; 3) the tricks in Chapter |3 Section
in obtaining pointwise estimates for wave or Klein-Gordon components cannot be
applied here due to the possibly vanishing mass m; 4) it is hard to get either a uniform
L2-type estimate or a uniform sup-norm estimate on u.

There are few works on this subject which study the Klein-Gordon equations with
possibly vanishing mass. To the best of our acknowledge the only existing such results
are due to [12], where the authors studied the problem of the Dirac equation with
vanishing mass. We recall that in [I2] the proof highly relied on the special structure of
the Dirac equations. The result in Theorem can be regarded as a generalisation
of the results in [12].

Remark 4.1.2. Note that the system of equations

—[Ju + m*u = P%0, (uv),

4.1.5
—[Jv +v = u?, ( )

is corresponding the Dirac-Proca model (when m = 0), while the system of equations

—Ju + m*u = P“0, (112),

4.1.6
—[ v+ v = uv, ( )

is corresponding to the Klein-Gordon-Zakharov model (when m = 0). Our main result
in Theorem (possibly a weaker result) is true for both of the models and the proof

of Theorem [4.1.1] also applies to them.

The reason why we add the term P®0,(—u®)® in the nonlinearities of u equation is
that it gives us some cancellations to the bad terms, the details are given in the proof.

The rest of this chapter is planned as follows. In Section [4.2| we revisit the hyper-
boloidal foliation method and some useful estimates. Next in Section 4.3| we prove the
unified pointwise decay estimates for homogeneous Klein-Gordon equations. Then we
analyse the system of equations and treat the nonlinearities in Section 4.4} Finally we
prove the main result relying on the bootstrap method in the last section.
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4.2 Revisit of the hyperboloidal foliation method

The basics of the hyperboloidal foliation method, which were introduced by LeFloch-
Ma in [44], are introduced several times in this thesis, so one refers to Section in
Chapter[for Section [3.2]in Chapter [3|for more details. For convenience, we give only the
following heuristic ideas on how to estimate the null forms and commutators. Roughly
speaking, we have

s
0°900] < SIslov),
00" ¢| ~ |0"L7 09
for two nice functions ¢, 1. For the rigorous statements, one refers to Section in

Chapter [I] or Section [3.3]in Chapter [3]

(4.2.1)

Y

4.3 Unified decay results for homogeneous Klein-
Gordon equations

We first consider a simple homogeneous Klein-Gordon equation

—Jw + m?*w = 0,

4.3.1
(w,&tw)((),-) = (w07w1)7 ( )

and prove the following theorem.

Theorem 4.3.1 (Unified decay results for homogeneous Klein-Gordon equations).
Consider the initial value problem (4.3.1), and assume the initial data are compactly
supported and satisfy

Hw0HH5(R3) + Hw1HH4(R3) < €, (4.3.2)

then the following unified decay result is valid

lw| < emin{(t +2)~", m~1(t + 2)"¥?}. (4.3.3)

The proof relies on a simple utilization of the Fourier method, which is from the
lecture note by Luk [56] in treating homogeneous wave equations. We first revisit some
basics in Fourier analysis before the proof.

Recall the Fourier transform of a nice function ¢ = ¢(x) is defined by

~

36) = | ol =S



Chapter 4: Zero mass problem in 3 dimensional space 131

and the inverse Fourier transform of a nice function ¢ = ¢ (&) is defined by

~

Iw) = | w©mde

Next we recall some basic but important facts in Fourier analysis.

Proposition 4.3.2. The following properties hold for a nice function ¢ = ¢(x):

e [nverse formula.

~
~

¢ =9 (4.3.4)
e Relation between partial derivatives and multipliers.
0uB(€) = 2mita(£). (4.3.5)
e Plancheral identity. R
”QbHLQ(W) = H(bHLQ(H@)' (4.3.6)

Proof of Theorem[{.3.1 In the Fourier space, the equation (4.3.1)) can be written as
atat'@(t 5) + gzn@(t7 5) = 07

with initial data
(@7 atﬁ}) (07 ) = (@07 @1)5
in which we used the notation

€ = (4%E +m?) 2.

Next by solving the ordinary differential equation above, we get the explicit solution in
the Fourier space

sin(27t&,)

(0,6 = cos(2rtn) () + T 6, (43.7)
which can also be expressed by the following four terms.
ooy amite, (@o(§) | @i(§) amite,, (Wo(§) | W1 (E) 1
() = ( 2 2m‘§m> e < 2 zm‘gm>‘ (4.3.8)

Then we estimate the inverse Fourier transform of those four terms above, but we
notice that it suffices to estimate the first two terms. We denote by the inverse Fourier



132 4.3. Unified decay results for homogeneous Klein-Gordon equations

transform of the second term

Il = J eQﬂi(tgm"rIf) @1 (5) dg
R3 27Ti€m

Without loss of any generality, we assume
x = (0,0, |x]),
and we use the polar coordinates for the first two components of &, i.e.

£= (pcosfg,psinﬁg,fg), (p,&) € [0,40) x [0,27),

and thus
d§ = pdpd&edEs.

It also helps to note that
ad¢l_ »p 0w P

op ¢l op &

as well as
2, o2mitem _ oy P 2mitém
m

Now relying on these results we further arrive at

+oo
1 f J f e2mitem 2S5 dpdEadés
42t

27 400
47T2t J J J 27rz (tem~+x-€) 0 UJ1 dpd£9d£3 . 2 . €2m(t§m+\x|£3)ﬁ)\1 ()0 _ 0’ 53) dég

=: 111 + Lo,

where we did integration by parts in the second step. Observe that

AR

S+ €2)?0@] £ DI — A (wawr) |11 ey

a a

as well as

< leHH‘l(]R?’)a

where we used the fact in the last step that

LP(Q) < L'(Q), P

\%
\'l—‘
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when Q — R? is a compact set. Thus we arrive at
[L11] < 7w ] ey,

and similarly we can show
‘[12| < til le HH4(R3)~

To conclude, we have
|Il| g t_lelHH‘l(R?’)-

(4.3.9)

Next we do the same analysis on the inverse Fourier transform of the first term,

which we denote by

_[0 = f 627r7‘(t§m+(£ f)@ (6) d§
R3 2

By adopting the same setting, we proceed and get

+00
0 47-nt f J J 0 e27rzt£m£m62m:c EN dpdggdfg

_ 27rzt.£m 2mz§/\ d dé.d
il f J pdéades
+0
27rz m 2mix-
4mtJ J J S EmeT 0y dpdodty

1 2 T x
-5 (53 ) / e2mi(t&m +1|€3) 15 olp = 0, &) dés.

Similarly, we conclude that
|[0| < tilHU}OHHAL(R?)).

A combination of (4.3.9)) and (4.3.10)) gives

lw(t,z)| < (¢ +2)7" (|wol mags) + w1 mages)), t

A\
N

On the other hand, we observe that it is easy to show

N

(w(t, )| < [wolmas) + |wi] g, O<st<2

Hence we arrive at (4.3.3)) since the bound m~'(¢ 4 2)~%2 is trivial to prove.

We note again that the proof above is from Luk [56].

(4.3.10)

(4.3.11)

(4.3.12)

]
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4.4 Analysis on the equations and nonlinearities

Recall the system of equations in (4.1.1])

—[Ju + m*u = P%0, (uv + 02 — u3) =: Qu,
v +v =u® +uv =: Q,,
(u,@tu) (2,) = (uo,ul), (U,@tv) (2,) = (vo,vl).

Our goal in this section is to introduce some new variables, which will transform some
terms we cannot handle to terms we can.

We introduce the following six new variables
Ue, U, V%= v+ u?, (4.4.1)
which are solutions to the wave-Klein-Gordon equations below:

—OU® + m*U® = Pa(uv + 0% — u3),

(4.4.2)
(U*,0,U%)(2,-) = (0,0),
—OU® + m*U® = 0,
s 5 0 ) 5 (4.4.3)
(U , o U )(2, ) = (uo,P (uovo + v — uo)),
and
OV + V¥ = uv 4 2m2u® + 20,udu — 2uQ,,, (4.4.4)
(Vu, (?tV”) (2, ) = (1)0 - U%, (% 2u0u1). o
We then further introduce four other variables
U™ = U” + PYuv,
which are solutions to the following equations
—OU™ + m2U® = Pa( — miuv — otuo,v + v —ud +0Q, + uQv), (4.45)

((7“, (9J7°‘)(2, ) = (Pauovo, P%ugv; + Po‘ulvo).

Recall in Remark we have mentioned that the term P®0,(—u?)® would cancel
some bad terms, and now it is clearer to see that the term P%0,(—u?)? cancels the bad
term hidden in u@,. On the other hand, we also emphasize that the term m?uv can be
regarded as Klein-Gordon and Klein-Gordon interaction term thanks to the factor m?,
while the term uv in the U® equations is regarded as wave and Klein-Gordon interaction



Chapter 4: Zero mass problem in 3 dimensional space 135

term. Hence the term m?uv is a good one now.

_ In conclusion, by introducing several intermediate variables, we can first estimate
U*, V* and then get estimates on u, v by the relations

uw=U"+0,U°, [70‘:Ua+Pauv, V¢ =+ u’

The important thing is that the nonlinearities appearing in the equations of U* and
V" are easy to handle.

4.5 Bootstrap method

4.5.1 Basic setting

Recall the local well-posed results on nonlinear wave-Klein-Gordon equations, and
we assume that the following bounds validate on the interval |2, s;]

sup [t0"' L u| < Cie, I +|J] < N —2,
Hs
En(s, 0" L7u)Y? < Che, I +[J] < N —1,

<
En(s,0'L7u)"? < Cyes’, [I| +|J| = N,
Ei(s,0'L70)Y? < Cres®,  |I| +]J| < N,

(4.5.1)

in which 0 < 0 « 1/10 is an arbitrary fixed constant, Cy is some (large) constant to be

determined. We take
sy :=sup{s : (4.5.1) holds}.

In order to prove the small data global existence result, it suffices to show the
following refined estimates

—_

sup [t0'L7u| < 5016, Il +|J| < N -2,
Hs
1
En(s,0'L7u)* < =Cre,  |I|+|J| < N —1,
% (4.5.2)
B (s, 0 L7u)"? < 501635, [I|+]J| = N,
1
Ey(s, 0 L7v)Y? < 501685, || +|J| < N.

Since the refined estimates allow one to extend the hyperbolic time interval [2, s1] to a
strictly larger one, which contradicts the definition of s; unless s; = +o0.
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As a direct consequence, we have the following estimates for all s € [2, s1]

Hr’lalLJuHL?(Hs) < Cres’, I +]J| <N,
|(s/t)00" L7 u, (s/t)&ILJauHL?(Hs) - mH(?ILJuHLi(HS) < Cyes®, \I| + |J] < N,
|(s/t)00" L7, (s/t)(?ILjavHL?(HS) + H&ILJUHL?(HS) < Cres’, |I| +|J| < N,
su}) |st'/200" L7 u, st'?0" L7 ou| + ms;{lp 320" L7u| < Ces’, I+ |J]| <N -2,
Sup |st'/200" L7 v, st'20" L7 0v| + Sup t320" L7v| < Cyes’, I+ |J] <N -2
(4.5.3)

4.5.2 Refined estimates on the wave-Klein-Gordon component
u

In order to obtain the refined estimates on u, we first derive the estimates on the
intermediate variables U®, then by the relation U* = U* + P®uv we get estimates on
the intermediate variables U, and finally we improve the estimates on u by the relation

u=U>+0,U.

We begin with the estimates on U®, which satisfies the homogeneous wave-Klein-
Gordon equation.

Lemma 4.5.1. Under the assumptions in (4.5.1)), it holds for all s € [2, s1] that

HrflaILJUf)HL?(HS) <e, ||+]|JI<N,

(4.5.4)
0'L7U°| < et [I| +|J| < N.

Proof. The pointwise estimates on U® are thanks to Theorem m
Next we obtain easily from the energy estimates that
En(s,0'L7U)Y? < E,,(2,0' L U)Y? < e
Hence the first inequality in (4.5.4) follows from the Hardy inequality. O

We proceed by estimating the intermediate variables Ue.

Lemma 4.5.2. Assume the estimates in (4.5.1)) hold, then we have

|(s/tyod L7 U, (s/t)ﬁILJ(?INI"‘HL% oy S (C1e, I+ ]I <N,

N 7 (4.5.5)
|0,0"L7 U, 0"L70,U| < Cret™2s7',  |I|+|J| < N —2.
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Proof. By recalling the equations (4.4.5)) for Ue and the energy estimates
Em(S, aILJﬁ'a)l/Q

< En(2, 3IL‘](7°‘)1/2 + J H@IL‘]PO‘( — mPuv — Mud,v + v — v+ vQ, + uQv) HLQ(H ) ds’,
2 FUIts!

it suffices to prove

|0" L7 P (= mPuv — 0"ud,v + v — v’ + vQy + uQy) ) S (Cre)?s™o/4,

liscn,

for all |I| +|J| < N.

Since the components v and du has very good L?-type and L*-type bounds according
to (4.5.3)), and cubic terms involved are harmless, so it is easy to get the above estimate
and we omit the details. O

Next we move to the estimates on the intermediate variables U®.

Lemma 4.5.3. It holds the following estimates
|(s/t)yod' L'U®, (s/t)o" L7 oU™
|0,0"L7 U, 0" L7 0,U”| < Cret s, 11|+ |J] < N —2.

< (Cre?, [+ [ <N,
Iz (4.5.6)

Proof. Recall the relation Ue =Uye + P*uv, and the proof follows from the observations
below

[ LT P ()| 5y < (G107 T+ [T <N,
sup [¢*20" L P*(wv)| < (Che)?, I+ |J] <N -2
Hs
O
In conclusion, we obtain the refined estimates on the component wu.
Proposition 4.5.4 (Refined estimates on w). It is valid that
sup [t0'L7u| < € + (Che)?, Il +|J| < N =2,
He
En(s,0'L70)' 2 < e+ (Cre)?, I+ |J] < N -1, (4.5.7)
(s, 0'LTu)"? < e + (Cre)?s®,  |I| +]J| = N.

Proof. For |I| + |J| < N — 1 it is true that

En(s, ' L7u)? < B, (s, 0" L U%) + Ep (s, 0" L7 0,U°),
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and by gathering the estimates established for U® and U® we have

En(s, 0" L7u)"? < e + (Cre)?.

One remaining thing is to estimate for the case |I| + |J| = N. Hence by energy
estimates

ds’,

Ep(s, 0" L7u)? < B, (2,0"L7u)? + f [0" L P2os (wv +0* = )| 1oy,
2 P

we only need to show

|0"L? PO, (uv + v* — u?) < (Cre)?s™i0,

s <
We notice that the only troublesome term is
olL’ pe (u&av) ,

which is the bad part of the term ¢! L7 P%0, (uv) Recall the chain rule, and we get

[07L7 P (udav) | L < > | Peon L7 ud™ L7260 20
hLi+Ix=1,J1+J2=J

< (t/s) oL U?| . | (s/t)P*0"2 L7200
X - -

+ 2 [(t/5)0" L7 05U Lo | (/) P70 L2000 g
L+Is=I1,J1+J2=J
[I1|+]J1|< | T2]+] 2|

- (s/t)o" L7 05U° (t/s)P*o2L"20.0|, ., . .,
2, N0 ) b
[I1]+]J1]=[12]|+] 2|

and by inserting the bounds for each term we arrive at

|o" L7 P* (ud,v) S e+ (Cre)?s™ .

HL?(HS)

The refined pointwise estimates are thanks to the decomposition © = U® + 0,U®
and the application of Sobolev-type inequalities on the hyperboloids. O

4.5.3 Refined estimates on the Klein-Gordon component v

In order to improve the energy estimates on the Klein-Gordon component v, we first
deduce the refined estimates on the intermediate variable V.
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Lemma 4.5.5. It holds that

Ei(s,0'LTV)Y2 < e + (Che)?s, 11| + |J] < N. (4.5.8)

Proof. We begin by applying the energy estimates
Ey(s,d'L/V")Y2 < By (2, é’ILJV“)l/QJrf |0 L7 (wv+2m*u?+20,udu—2uQ,,)
2

and we find it is easy to get

H(?ILJ <2m2u2 + 20,u0%u — QUQU) HL?(H ) < (C16)2s/75/47 |I| + |J| < N,

and the only problematic term is ¢/ L’ (uv) We now estimate this part

A C| P VR b A AR i At P
L+ 1x=1,J1+J2=J
< Z Ha[1LJ1U5
L+Isc=I1,J1+J2=J

D Y IR

Li+Ix=1,J1+J2=J
1]+ J1[<12]+]J2]

+ 2 6oL (U] gy, I#/s)0R L2
L+1o=I1,J1+Jo=J
[Ty |+|J1|=|T2]+] 2]

HLOC(HS/) &IZLJ%HL?(HS/)

L0

which gives us

|0" L7 (wv) < (Cre)?s 110 |[I| + |J| < N.

HL?(HS/)

Hence we arrive at (4.5.8]).

As a consequence, we obtain the refined estimates for v.

Proposition 4.5.6 (Refined estimates on v). It holds that

Ei(s,0"L70)"? < e + (Che)?s°, Il + |J] < N.
Proof. Recall the relation V* = v + 42, hence it suffices to show

Ha[L‘](“Q)HL;(HS) < (Chre)?s’.

HL?(’HS/)

ds’,

Hor)'

(4.5.9)
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Next recall uw = U® + 0,U®, and expand u? in terms of U?,U®, which gives us
u? = (UP)? + 2U°0,U% + 0,U%05U".

We estimate them term by term. First it holds for |I| + [J| < N

I7J(775)2 LipJiprs —1AL 5
I L TR SR S IO e LYo
h+I=1,J1+J2=J
< 2.
We find that
I7J(175A Tra0 g Jiprs Ly a
[0 LU0V | pay < Y0 W9 LIT i |5/ L 06U 135,
L+1x=1,J1+J2=J
< (Cre)?s™1H0, 11| +|J| < N.
Similarly, we can easily get
HaILJ(aOcUaaﬁUﬁ)HL;(HS) S (016)28—1%’ [+ [J] < N.
Finally, we combine the above estimates and arrive at (4.5.9)). O

4.5.4 Closure of the bootstrap method

Proof of Theorem [{.1.1. Recall the refined estimates for u and v components which are
stated in Propositions [4.5.4] and |4.5.6| respectively. We arrive at by choosing C4
sufficiently large, and e sufficiently small (such that Cie « 1/2). As a consequence, we
also provide the proof for Theorem [£.1.1] O
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Chapter 5

A new L’-type estimate for waves
and its application
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5.1 Introduction

Background and motivation A few years ago, LeFloch and Ma [44] [45] illustrated
the method of hyperboloidal foliations (review of that method can be found in [44] or
in the introduction and etc.) for the study of nonlinear wave problems and, for several
other systems of equations. In order to have a complementary understanding of that

IThis chapter is a joint work with Philippe G. LeFloch.
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method, a natural idea is to investigate the wave equation by using the Fourier transform
method on the hyperboloids, and to see whether we can obtain more properties of wave
equations on the hyperboloids. More details about this method, which we call here the
hyperbolic Fourier transform method, can be found in [211 6} [73], [74].

Interesting enough, we indeed discover a new L2-type estimate for wave components.
To the best of our acknowledge, the existing methods on obtaining L-type estimates
for waves on the hyperboloids include: 1) applying Hardy inequality on the wave com-
ponents, see for instance [45]; 2) relying on the conformal vector field and the conformal
energy estimates, which was first introduced by Morawetz [63] in the flat setting, see
[61] for the study in the hyperboloidal setting.

According to the global stability problems of some physical models, it happens a
lot that terms in the nonlinearities of the equations are made of wave components
while there are no derivatives hitting on the wave components. Such systems include
the Einstein-Klein-Gordon [45] model, the Klein-Gordon-Zakharov model [64], and so
fourth. Hence it is important and necessary in such cases to estimate the L?-type norms
of wave components.

Main result We are interested in the wave equation
—u = f, (5.1.1)

with initial data ug, u; prescribed at the time slice t = 1:

(u, Gpu)(1,-) = (ug, uq). (5.1.2)

We establish here a new L?-type estimates for the solution u in terms of its initial data
and the source function.

Theorem 5.1.1 (L2-type energy bound). Consider the spacetime R with d > 1,
and let u be the solution to the initial value problem (5.1.1)—(5.1.2)). Assume the source
f = f(t,x) satisfies

HfHLQ(HS) < Ofs7P, (5.1.3)

then it holds
< 80+ CpsdPPHo, (5.1.4)

|
1212 ()

in which C 1s a constant depending on f, and d > 0 can be any fixzed small constant.

In the above, we have used the notation (for any function ¢ : [1, +o) x R? — R)

I8l2 00 = (L (/S + o) do) (5.1.5)

s
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It will be convenient to also use the geometric definition:

|0 203, = (JHS }u(«/,g? + |x|2’x)|2; dx) 1/2‘ (5.1.6)

s2 + |z|?

To the best of our knowledge, the L?-type estimate in Theorem is new. One can
also obtain L2-type estimates by employing the conformal-type energy estimates, but
that result can not deduce ours. By applying the Sobolev inequality on hyperboloids

(see for instance Proposition in Chapter [1| or Proposition in Chapter [3)), we

arrive at the following pointwise estimate for waves.

Corollary 5.1.2. Adopting the same assumptions in Theorem [5.1.1|, with moreover
J _
HL f”m(HS) < Cps?, ] <2 (5.1.7)

we have
suptlu| < s° + Cps®/?7PFe, (5.1.8)

E]

Organization of this chapter In Section we revisit the definition and some
properties of the hyperbolic Fourier transform. Then we provide the proof the main
theorem in Section [5.3] Finally in Section we prove the small data global existence
result of a wave equation with cubic nonlinearities as an application of Theorem [5.1.1]

5.2 The hyperbolic Fourier transform: definition
and basic properties

5.2.1 The hyperboloidal foliation of Minkowski spacetime
The spacetime foliation of interest

We consider Minkowski spacetime M = R%*! in dimension d + 1 > 2, whose metric
in Cartesian coordinates reads

d
gi=—dt’ + ) (dz®)?,  (t,x) = (t,2%). (5.2.1)

a=1

By convention, Latin indices a,b, ... describe 1,...,d and are raised or lowered with
the Minkowski metric, so that for instance xz* = x,. It is convenient to introduce the
radial variable 7 by 72 := 3¢_ (2*)2. These coordinates determine a foliation of M by
spacelike hypersurfaces of constant time ¢, which of course have vanishing curvature.
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On the other hand, the interior of the light cone defined (from the origin) by
K={r=|z| <t} (5.2.2)
can also be foliated by the following family of spacelike hyperboloids:
Hs = {t >0,t*—rt= 32}, s >0, (5.2.3)

which are curved hypersurfaces with constant (negative) curvature.

The initial value problem (for a suitable class of second- or first-order equations)
can be posed by prescribing an initial data on the hyperboloid Hy, (for some sy > 0)
and solving within the future of this hyperboloid, that is, within the domain covered
by the foliation

Tso = (7—[5)

Within J;, (and more generally within the light cone K), it is convenient to introduce
the hyperboloidal variables

(5.2.4)

s=s0’

s = Vt2 —r2, T4 =", (5.2.5)

so that (t,z) = (s,7) determines a point on the hyperboloid H,. It is also convenient
to introduce similarly the normalized variables

(£.7) := (E, E), (5,7) := (s,z/s), (5.2.6)

s S

so that the point (£, %) = (s, %) is still regarded as a geometric point of the hyperboloid
Hs but parametrized by variables belonging to the unit hyperboloid H;. We will ex-
plain our notation explicitly below whenever this terminology could lead to confusion.
Abusing notation, we express a function ¢ = ¢(t, x) in either forms

3(t, ) = ¢(s,7) = 6(3,7) (5.2.7)
and, for the sake of simplicity,
o(t,z) = ¢(s,T) = ¢(5, 7). (5.2.8)

We also write the partial derivatives as

Ou = 0,0(t, ), Oa = 0ud(s, ). (5.2.9)
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The hyperboloidal frame (in dimension 3), by definition, is

- 1
B =0, =20, = =2,

t
Jai=0, = %é}%—@a

(5.2.10)

and, the dual version of this frame is ds := (t/s)dt — (z*/s)dz* and dz* := dz*. We will
need the expression of the transition matrices between the hyperboloidal and Cartesian
frames, that is,

00 =005, 00 =T.0; (5.2.11)
and
s/t 0 0 0 t/s 0 0 0
1 1
=5, |zt 1.0 0 -8, | —=2'/s 1 0 0
(®a) = 2/t 01 0) (¥a) —z?/s 01 0 (5-2.12)
3/t 0 0 1 —z3/s 0 0 1
On the other hand, our normalized frame reads
~ t xa
05 := 05 = 0 + Oas
B tovE-r (5.2.13)
~ 12 — 2 a o
Qo= 05, = S0+ VP =170,
and, we have
O =0+ 23, 3, =sd.. (5.2.14)
s
The transition matrices connecting normalized and Cartesian frame are found to be
On = B205, 0, =020, (5.2.15)
and
t/s  2Y/5 2?/5 23/s
~ 1 ~
L A 0 0
(®) =1zt o0 5 o0 |
st 0 0 5
N N N N (5.2.16)
t —tx'/3 —t2?/3 —t23 )3
(\T]ﬁ) - a+@Y?)/E Aray] /s
R I PrE (1+(2%)?)/3 P35

—3® P P25 (1+ (38?3
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Integration on hyperboloids

The (flat) Minkowski metric induces, on each hypersurface H;, a (curved) d-dimensional
Riemannian metric, denoted by g, and given by

Taly
b = Ogp — ————, 5.2.17
Gab bT 2 2 ( )
whose inverse is
ab ab xal,b
Recall our convention z% = z,. The determinant of this metric is
2 2
det(gap) = —— = >, (5.2.19)

s2+r2 {2

These expressions allow us to express the integral of a function f = f(¢, ) restricted
on any hyperboloid H,, as follows:

sdx
dHs = L) ————
J Fare= ] g =
N £ (5.2.20)

= 3 f(gﬂ‘%)

5.2.2 The hyperbolic Fourier transform

We introduce a generalization of the Fourier transform [6], 29], as follows. From now
on, we set m := (d — 1)/2 and S¢! = R? denotes the unit (d — 1)-dimensional sphere
embedded in R%. We will also use the bracket notation

X, Y)=-XY"+ Y XV X YeR™, (5.2.21)
which is nothing but the scalar product of two vectors X,Y in Minkowski spacetime.

Given any function ¢ = ¢(t,x) = ¢(s, x) and restricting it to a hyperboloid H for some
s > 0, we define the hyperbolic Fourier transform ¢ = ¢(s, \,w) by

~ i o—idstm . iAs—m
d(s,\,w) :=s H< (t,z), (L,w)) o(t, ) dH,, (5.2.22)

(A w) e Ry x §971 < R

Since t = t(s,x) = /s> + |z|? is a function of = on the hyperboloid Hg, we can
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express the hyperbolic Fourier transform in either forms:

~

[ . IAS—m S
(s, \,w) = | s Astm (t - x“wa) o(t, x); dx

JR4
[ —iAs+m a As=m S
= ).. s (t(s,a:) —x wa> P(s, x)t(s, 7) dr (5.2.23)

_ s‘iks+m<\/s2+]x|2—xawa>' ) P a—

JR4

Note in passing the following identity which relates the hyperbolic Fourier transform
expressed in our two possible choices of coordinates:

Fr. (6) (s, N w) = s'F, (0) (L As,w), (5.2.24)
with ¢ = ¢(s,z) = (5, ).
Next, we define the inverse hyperbolic Fourier transform of a function ¢ = (s, A\, w)
as

~ + . —iAs—m dd
(s, x) = L Ld_l giAs—m (t(s, x) — x“wa> (s, A, w) m, (5.2.25)

in which the so-called Harish-Chandra c-function is (up to an irrelevant multiplicative
constant)

[(iN)
LA +m)’
I' being the usual Gamma function. As might be expected, we have the following
elementary properties.

A(N) == V2(2m) %2 (5.2.26)

Proposition 5.2.1. For every function ¢ = ¢(s,x) and 1 = (s, \,w), one has (for
all relevant s, x, A\, w)

0(5,7) = 6(5,7), (s A w) = (s, A w). (5.2.27)

2. The hyperbolic Fourier transform is related to the standard Fourier transform
Fra as follows:

b(s, A, w) ~ (Frao) (+0, Aw)  when s — +o0, (5.2.28)
where ¢(+00,-) denoted the limit of ¢(s, ) when s — +00 (whenever this limit exists).

Proof. The property (5.2.27) is a standard matter; see for instance [2I]. To establish
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(15.2.28)) we formally expand the expression under consideration as s — +0o0:

~ A/ g2 2 a iAs—m
¢(8,)\,W> = f (M - x_wa> ’ (ﬁ(S,iL’);dQ?
Rd s s N 82+ |z)?
2 2 a iAS
N J d <_vs+ll’| - 2) * (s, 2) d,
R

S S

and therefore
~ . Vs2+|z|2 g
925(8, )\’w) ~ J pihslog (4;4 \ ,Twa) ¢(+OO,ZE) dr
Rd

~ J e~ Mg (to0, x) dr = (Fra) (+90, \w). O
Rd

5.2.3 Further properties of the hyperbolic Fourier transform
Basic algebraic properties

The following statements are easily checked by elementary calculations and we thus
omit the proof.

Proposition 5.2.2. The following algebraic identities are satisfied by the hyperbolic
Fourier transform:

e Reflection property: with T7¢(t,z) := ¢(t, —x) one has

Frr (0) (N, —w) = Fy, (10) (A, w). (5.2.29)

Approximation for Harish-Chandre c-function

In the expresion of the inverse transform above, we might need the explicit expression

IR (k2 52, d odd,

ORI stanbte 1122 (- 32 +.7). deven

(5.2.30)

For the proof, one refers to [21].

In dimension three, we have the much simpler expression

2(2m)3|A(s)| 72 = §%, d=3, (5.2.31)



Chapter 5: A new L?>-type estimate for waves and its application 151

while for general dimensions we have the asymptotic formula

22m)A(s)| 2 ~ 5T, s — 4o (5.2.32)

Plancherel identity

Proposition 5.2.3. For some universal constant C > 0, the following Plancherel iden-
tity

+00 -
J |f(t,z)|* dH, ch J 1Q(\, w)[*A? dwd, (5.2.33)
Ha 0 S2

in which Q = @()\,u)) is the hyperbolic Fourier transform of a function f = f(t,z)
defined on H;.

Proof. From the definition, we find

[ weapam = [ Fonmn®
Hi R3

= 7(1,x)f+oo @(A,w)(t—x“wa)‘“‘1|A(/\)|‘2dwd>\d—x.
R3 0 52 t

Exchanging the order of the integrals, we obtain

f |f(t,2)]?dH, = Jﬂc @(A,w)\A(A)rz F1,2)(t — 2%,) " @dwd)\
M 0o Js2 R3 t

- B0, ) AN dwdr,
0 S2

which, thanks to (5.2.31]), completes the proof. n

Remark 5.2.4. While A is positive in our definition so far, the definition of the Fourier
transform can be extended so that X takes complex values. For instance, this is relevant
in view of the Paley—Wiener theorem which provides decay properties for the hyperbolic
Fourier transform of a function.
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5.2.4 The hyperbolic Laplace-Beltrami operator

The Laplace-Beltrami operator is defined, for any function f : H, — R, by
Do, f = g7%0u(9"29™ 00 f)
t= (S (=a P = /1 /= o2
=<0 (3(7 1+ ag)) = tau(5 (7 F + T5-0ur)) (5.2.34)

52 S
b—

_ % _
3u0uf + A= D, f.
S

a

T T

= 0"0.f +

52

Given any (\,w) € R, x S971 < R4 the following complex-valued function (arising
in the definition (5.2.22]))

t a iAs—m
(t,x) € Hs — E(s,x;\,w) := (— - x—u@)

S S

(5.2.35)

enjoys the following properties.

Proposition 5.2.5. 1. The functions E : (s,z) — E(s,z;\,w) are the eigenfunctions
of the Laplace-Beltrami operator Ay, . In other words, one has

2

—Ay E(s,x; N\ w) = <)\2 + %)E(s, T\, W) (5.2.36)

and, therefore, the eigenvalues of the operator Ay, are

m? (d—1)?
N4 — =\ : 5.2.37
* 52 * 452 ( )
2. The eigenfunctions satisfy the orthogonality-like property
/ / S d'r / /
J E(s,z; =N, W) E(s, x; )\,w)T =0(N =\ W —w), (5.2.38)
Rd

where § denotes the Dirac measure.

The above results will play an essential in our analysis since it provides a way to
diagonalizing Ay, and, in turn, to diagonalize the wave operator on ‘H,. Comparing the
expressions in the unit hyperboloid H; and in an arbitrary hyperboloid H, we easily
find the relation R

A’Hs - S_QA'HU

in the sense that Ay (t,z) = S%ﬁm{bv(f, %) for any function v = (¢, z) = 9(

5.2.39)

(
7.7).
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Proof. 1. For the proof we use the short-hand notation E(s,x;\,w) = B»™™ with

B —§<(t,x), (1,w)) — é - %w

In view of (5.2.34]), we have

a

IbébE(s,a:; )\,w))).

52

— /1 /a
Ay E(s, ;5\ w) = td, (; <(3 E(s,x;\,w) + i

We first calculate

0"E(s,z;\,w) = (i\s — m)B?*m1 <$— — w_>

st S
and
a,..b a b b

msf OB (s, ;N\, w) =(i\s — m)f;j—QBiAS_m_1 (% — %Ma)

e 22 b

= (A5 — _Bz)\sfmfl< I )
(As = m) 52 st s

52
Consequently, we obtain

—a 1070 _

0 E(s,r;\w) + ——0pE(s, 13\, w)

s
= (is — m)x—zE(s, T\ w) — (iAs — m)BiAs’mflw—
S s
and, successively, we compute
AHSE(S’ x; /\7 w)
—~ [=a b~ éat —a Tt
= (%(5 E(s, 25\, w) + —; abE(s,x;)\,w)) — T(&‘ E(s, 25\ w) + —; abE(s,x;)\,w))
s s

1 a . u u
= d(i\s — m)?E(s, T\ w) + (ids — m)Z%B”\S’m*1 (i_t — %)

st S

— (iAs —m)(iAs —m — 1)B“‘s_m_2< .

a
2%,
522

g wa>w

E(s,z;\,w) + (iXs — m)BiAs—m_lM

— (i\s —
(iXs —m) e
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SO
AHSE(Sa xZ; )\,Ld)

1 1 . 1 .
= d(i\s — m)?E(s, ;A\, w) + (iAs — m)2?B“\_m — (iXs — m)2§B”\5_m_1

1 .
+ (ids —m)(ids —m — 1)— BAs—m~1

st
1 1
— (iAs — m);E(s, ;A\, w) + (1As — m)ﬁE(s, T\, W)
: 1 IAS—m ; 1 iAs—m—1
— (iAs — m>t_QB + (iAs — m)EB

1
= (iAs —m)(iAs +d —m — 1);E(s,x; A w).

This motivates our choice of m = (d—1)/2 so that d —m — 1 = m and we arrive at the
first conclusion of the proposition.

2. We need to prove, say for s = 1,

SN = \w' —w) = f (t— x“w;)_ix_l (t— xawa)i/\_ld%. (5.2.40)
Rd

From the inverse Fourier transform goven in Proposition we can write (with s = 1)

ir—1dx

$(A, w) = J]Rd o(x) (t — xawa) ;

e ~ N1 ir-1dr
— J f (N, W) (t — 2°w)) JAN) |72 dw'dN (t — 2w, -
Rd JO Sd—1

By re-arranging the terms, we obtain
P\, w) = J (N, )|AN)2C(\ w, N, W) dw'dN,
0 Jsat
with

a

C()\, w, )\” w/) — f (t . xaw/)iiX*l (t _ :ana>i>\1d7x.
Rd

Obviously, only the Dirac mass C'(\,w, N, w’) = §(N — A\, w’ — w) satisfies this equation

on ¢ and we obtain ([5.2.40) and thus (5.2.38|). n



Chapter 5: A new L>-type estimate for waves and its application 155

Space coord. operator eigenfunctions eigenvalues profile symmetries
Rd . A pic _|§|2 Qitle] translations 0,

rotations Zg0p — Lp0q

1y t, $) Ay (E oz )i)\s—m N2 m_; giA—m boosts 0, + 404

s s a .

= ( s% + |QJ|2, SL’) 5 5 rotations Zo0p — Xp0,

M, (t, :l:) &H (;_ ~a )Z-)\_m 2 | grinem boosts 0, + T4 0;
~ ~ 1 a ~ X ~ X
= ( 1+ |72, x) rotations Zo0p — Zp0,

Table 5.1: Euclidian versus hyperbolic transforms

5.2.5 Equivalent parametrizations for hyperboloids

We now look at different parametrizations for hyperboloids H, which follow from
[21].

Parametrization I. We already introduced one parametrization of the hyperboloids

Hs, that is,
(t,x) e Hs, t=nr/$>+ |z]? (5.2.41)
whose metric gy, = gapdr®dz® is given by with

LaqTp
2 412’

9H.ab = Oab (5.2.42)

Parametrization II. Another natural choice of coordinates on the hyperboloid H
is provided by the polar coordinates in the hyperbolic space, that is,

Q = (scoshr, swsinhr) € H,, (5.2.43)
in which
(r,w) e Ry x ST,

A further calculation gives us the expression of the metric

g, = $°(dr® + sinh® rdw?). (5.2.44)

Parametrization ITI One more model for the hyperboloids will be useful. Let us fix
some n-dimensional disk B := {y eRe: |y < R} with given radius R > 0, and for
each b > 0 we endow it with the metric

4b*

R 2
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By chossing b = sR, we can check that the mapping

sinh(r/2)

R, x 54! sy = Rw2DNT7E)
H > (rw) =y u}cosh(7"/2)

(5.2.46)

provides us with an isometry between the disk Br endowed with metric ((5.2.45)) and

the hyperboloid H, (with its metric (5.2.44))).

5.3 Proof of the main theorem

Revisit of the main result We now recall what we are going to prove. Consider
the wave equation

—(u = f7
(U, atu)<1a ) = (u07 ul)>
and we want to estimate the L2-type norm of u by the information from the source

function f (and its initial data). Here we are interested in the weighted L? norm of u
with no partial derivatives on u. To be more precise, we want to show

, $ 86 + Cf83/2_p+6,

u
|7
for arbitrary small § > 0, under the L3-type assumption on the source f

[y < Crs™

Proof of Theorem In order to derive Theorem [5.1.1] we first recall the fol-
lowing ingredients about the hyperbolic Fourier transform, see for instance [72], 67].

Lemma 5.3.1. Relying on the coordinates (7‘, 37) = (log s,:v/s) in the hyperbolic space
Hs, with s = A/t? — |x|?, the wave operator on the unit hyperboloid H,

d—1
D?—h = _aﬂ'af + A?—h + 9 (531)

takes the form, for any sufficiently reqular function ¢,
O (€76) (1,3) = ( — [2*) ™ Dot ). (5.3.2)

The following scaling property for the norm || - ||z2(,) will also be used.
Lemma 5.3.2. Given a sufficiently reqular function ¢ = ¢(t,z) = ¢(s,x) = ¢(7,7), it
holds
[6(s, M2y = s7216(7, ) 1230,)- (5.3.3)
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Second, we recall some properties of the hyperbolic Fourier transform. Given a
sufficiently regular function ¢ = ¢(t,z) = ¢(s,x) = ¢(7, ), then the following holds.

e Define the hyperbolic Fourier transform by

~ ix—(d—1)/2 1
W) = 1+ 72 — %, ) ——d¥, (534
Srnw) = | (VIFE 7)) e 530

then its inverse formula is given by

N o — N —iA—(d—1)/2 ~ d)\d
o(r, ) = f Ldl (VIF T - 2%, ) drh) i (59

in which the so-called Harish-Chandra c-function is (up to an irrelevant multi-
plicative constant)

L'(iN)

AN = 2(2m) 7 —2 3.

(V) = V20m)" g (5:3.6)

I' being the usual Gamma function.

e The Plancherel identity holds

+o0 ~
(7, %) | L2ar) = CJ Jd (7, A, w) 2| AN |2 dwd, (5.3.7)

0 Jgi-1

with some constant C.

e The wave operator in the hyperbolic space [y, takes the following formula after
performing the hyperbolic Fourier transform

T o(r, A w) = (026 + X20) (. A\, w). (5.3.8)

Proof of Theorem [5.1.1. We only give the proof for the case of (3 + 1) dimension, but
the same proof applies to general dimensions.

We first rewrite equation for u in (5.1.1]) in the hyperbolic space with coordinates

(7. %)

—[ W, U(7, %) = e f(1,7), (5.3.9)

in which U := e7u(7). Taking the hyperbolic Fourier transform, we get

0:0,U(1, A, w) + XU (1, A\, w) = € f(, A, w). (5.3.10)
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Solving the ordinary differential equation (5.3.10]), we obtain explicitly

ﬁ(ﬂ A w) = (7(70, A, w) cos(AT) + @(7’0, /\7w)81n()\>‘7)
1 (7 e (5.3.11)
+ X f e f(7', N, w) sin ()\(r - 7—’)) dr',

70

for all A > 0. We take L2-norm in the space R, x S2 for U(r, \,w) to get
+00 =R
J J (70, ) 2A deod\
0o Js2
+00 N +00 o
< J J \U (70, A\, w) |*A? dwd ) + TJ J 10,U (70, A, w)[*A? dwd\
0 Js2 0o Js2
T +00 ~
+ f Te3f’f f 1F(7) N, w)[PA? dwddT’,
T0 0 S2
where we have used the fact sin [p| < |p|. Then Plancherel identity gives us

U 240 < U (T0)l226300) + 702U (70) [ 220901) + TJ TN 2y dr' (5.3.12)

70

In view of the scaling property (5.3.3), we easily get

10 () sy = [

L3 (Hs)

and
£ ez = €2 F @200y < Cpe 277,
We complete the proof of Theorem by observing that 7 < e¥?", as well as

-
R —
J 63/27 P’ < 63/ZT pT+5/27"

70

5.4 Application to a semilinear wave equation

As a simple application, we prove small initial data global existence result for the
following semilinear wave equation in R!*3

—u = u?, (u, Oru) (to, -) = (uo, ur). (5.4.1)
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Theorem 5.4.1. Consider the wave equation in (5.4.1), and let N be a sufficiently large
integer. Then there exists €y, such that for all € € (0,¢y) and all compactly supported
initial data (ug,u1), satisfying the smallness condition

ol g+t + [ur| gy <,

the initial value problem (5.4.1) admits a global-in-time solution w.

For the proof we rely on the bootstrap method. We assume for s € [sg, s1] it holds

t=V20 L |, . < Ches®, |I|+|J| <N,

20, o
0" L7u| < Cret™23H05=13=2 T 4 |J| < N -2,

for some small 6 > 0 and some C; to be fixed, and

s1 :=sup{s : (5.4.2)) holds}.

If we can prove the refined estimate

Ht—l/QaILJUHL%(HS) < 5Ces’, ||+ ]J| <N,

(5.4.3)

el R

0" L7u| < —CLet 307320 I +|J| < N -2,

2
then we can infer that s; cannot be of finite value, which implies existence of global-in-

time solutions.

We need the following lemma from [45] to improve the pointwise estimates of u. An
alternative proof of Lemma is given in [2].

Lemma 5.4.2 (Pointwise estimates for wave components). Suppose u is a spatially
compactly supported solution to the wave equation

o) — Dt ) =0, o4
with f spatially compactly supported and satisfying
|fI< OtV (t —r) 1 (5.4.5)
for0 < pu<1/2 and 0 <v < 1/2. Then we have
lu(t,z)| < ﬁ(t — ) (5.4.6)

Vi

where Cy is some constant.
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Direct consequences from the bootstrap assumption ((5.4.2)) and the supnorm esti-
mates for waves give the refined pointwise estimates of w.

07 L7u| < et 257+ (Cre)’t™ 0™ [T+ |J| < N —2. (5.4.7)

The following proposition gives the refined L3-type estimates.

Proposition 5.4.3 (Refined L?-type estimates). Assume the bounds in (5.4.2)), then
it holds
—1/2AI 7 J 3.0
|12 L uHL?(Hs) < e+ (Cre)’s’. (5.4.8)

Proof. According to Theorem [5.1.1], it suffices to show

[(s/6) 20 L7 ()] o g,y < (Cre)*s™2, ]+ [J] < N.

By the product rule, we have for |I| + |J| = 1 that

H(S/t)l/QaILJ(u?))HL2(H,) < Z HahLJ1U§I2LJ2U613LJ3UHL2(H )
Fre L+ I+ I3=1,J1+Jo+J3=J. o

< (016)3573/2.

For the case || + |J| = 0, we can obtain the desired estimates in the same way. O

Remark 5.4.4. We compare here those two kinds of derivatives

Oa, 0

~a"*

What we already know for the wave component u is that

H(s/t)&auHL?(%) < Che, |Oqu| < Cret™12s7L.

From [61)], one possibly obtains that

HQauHL?(HS) < Cres /2, 10| < Cret™32s71/2,

On the other hand, by using the analysis here, on can arrive at the bound
”tl/zéauHL?(Hs) S 016567 |Qau” < Clet_2+67

with & > 0.

In the hyperboloidal setting, the conclusion for the wave component u is that J,u
behaves better than (s/t)0,u. And our L*-type estimate can control d,u better near the
light cone, where t ~ s2.
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Global stability in 1 dimensional
space

[

Contents
6.1 Overviewl . . . . . . . . ittt 161
[6.2 Sobolev-type inequality|. . . . . . .. ... ... .00 162
[6.3 Wave equations in hyperbolic spaces|. . . . ... ... ... 164
[6.4 Bootstrap assumption/. . . . . ... ... ... 00000, 165
[6.5 Refined energy estimates|. . . . . . ... ... ... ... 167
6.6 Pointwise estimates of the wave component| . ... .. .. 170

6.1 Overview

The global stability results for wave equations with null form nonlinearities in 1
dimension were first proved by Lucilt, Yang, and Yu [57]. Later on a coupled wave-
Klein-Gordon system in 1 dimension was studied by Ma [60], where Ma also removed
the compactness assumption on the initial data of the hyperboloidal foliation method.
The wave equation of interest here with initial data is the following

—8t(9tu + &xaxu = (8tu)2 — (&wu)2,
(u, (?tu)(to, ) = (uo,ul).

!This chapter is a joint work with Philippe G. LeFloch.

(6.1.1)

161
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We are interested here in simplifying the proof in [57]. To be more precise, we
provide a proof mimicing the one in [57], where we do not need to estimate the energies
on the null curve segments. Besides, we also provide here a pointwise estimates on the
wave component u without any derivatives on it, which is based on the new L2-type
estimates established in Chapter [5[ and the Sobolev-type estimates in [44]. We prefer
to conduct the proof in the hyperbolic space, while the proof also works in the whole
flat space. We might not recall the notations and inequalities introduced before.

The main theorem is stated now.

Theorem 6.1.1. Consider the wave equation with null nonlinearity (6.1.1)) in 1 dimen-
sion, and let N =1 be an integer. Then there exists €g > 0, such that for all compactly
supported initial data satisfying

lwall v + Juo | mrver < € < o, (6.1.2)

the Cauchy problem (6.1.1) admits a global-in-time solution u. Furthermore, if N = 2
we have
lu| < Ches’, (6.1.3)

with § > 0 some arbitrarily small number and s the hyperbolic time.

The rest of this chapter is organised as follows. In Section [6.2] we introduce some
Sobolev-type inequalities. Next, we rewrite wave equations in the hyperbolic space in
Section[6.3] Later on in Section[6.4] we initialise the bootstrap method. Then in Section
6.5, we prove the refined estimates which prove the existence of global-in-time solution.
Finally we prove the pointwise estimates in the last section.

6.2 Sobolev-type inequality

We first provide a complete proof of the global stability result for R'*! wave equation
with null non-linearity. We assume the initial data have compact support and thus we
can rewrite it in the hyperbolic space with the new variables

(1,7) := (% log(t* — 2?), W)

and, then conduct a bootstrap argument. Again, an alternative approach to this prob-
lem can be found in [57].

We work with the one-dimensional unit hyperboloid

Hi={(t,x) : * =2+ 1, (t,z) e R*}. (6.2.1)
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Definition 6.2.1. The hyperbolic Fourier transform of a function f = f(t,x) defined
on Hy is defined as

dx
V1+ 22

f A) = Jjw f(V1+222)(V1+ 22— x)i/\ AeR. (6.2.2)

The above formula and the ones we now derive hold for all (suitably) integrable
functions. The L? and H' norms of a function f : H; — R are defined as

| flz2e) = (Jj: |J\;(11r|72xdjc>l/2 (6.2.3)

and
ey o= ([ LIV 0@ ey (6.2
w V1+a?
respectively.
Proposition 6.2.2. e Inverse formula: From the hyperbolic Fourier transform

of a function f = f(t,x) = f(x) defined on Hy, we can recover the function by
the formula) (up to a constant)

f FOY(VI+a2 —z) " dn. (6.2.5)

e Plancherel identity: For a sufficiently regular function f = f(t,x) on Hy, with
its hyperbolic Fourier transform f = f(\), it holds

[ Flz20) = [ fll 22y

Like the standard Fourier transforms, derivatives can be transformed to multipliers.

Lemma 6.2.3. For any function f defined on Hy one has
Foo (VI+220)" F(@)) () = (A" F), n=0,1,2,..., (6.2.6)

with, moreover,

[(VI+220:)" £ @) pagagyy = IV F O 2y

Now we are ready to give the statement and proof of the following Sobolev-type
inequality needed afterwards.

Lemma 6.2.4. We define the function space

HY(Hy) = {f : foo FOVP( + AV)dr < +oo}.

—00
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Given a function f(x) € H'(H,), then it is bounded, i.e.

sup [ f ()] < |/l g0 (6.2.7)

:)361

Proof. Recall the inverse hyperbolic Fourier transform formula

J f 1+x2—a:) A
It is obvious that

|f ()]

VAN

[ i7ovran

0

1 2 1 2 1/2 1/2
S A oy NI oty = 11 ot IVT + 2200 £ o0,

where we used the inequality | f(z)||p@) < [|f(2 )Hl/2 H:Uf( )Hm which can be found
in [43]. O

6.3 Wave equations in hyperbolic spaces

Lemma 6.3.1. Consider the wave equation with null quadratic non-linearity

6t2u — Au = diudiu — dyudu,

u(l,m) = uo(;p)7 atu(l, l’) — Ul(l‘) (631)

Then in the new coordinates (7, %) := (log V/t? — 22, z/v/t? — 2?) it will be expressed as

Pu— Ay u = (0,u)? — (V1+ %28xu)2, (6.3.2)

i which

Ay, = V1 + 320,

1s the Laplace-Beltrami operator on the unit hyperboloid H, and

Proof. 1t is helpful to first look at the vector fields (0, 0,) expressed in the new frame:

0 = e V1 + 220, — e TV + 220,

Op = —€ RO + (1 + 320,
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Successively, we can express the null term (dyu)? — (d,u)? in the new coordinates:

(Ou)* — (Opu)? = (6_7\/ 1+2%20,u —e "2V1 + %2(91u)2 — ( —e "X0;u+e (1 + %2)59511)2
e (0ru)? — e 7T (V1 + %25xu)2.

Next recall the relation

(e o(t,2)) = Dy o(7, ),

where the wave operator in hyperbolic space is given by

(e, i= —0r07 + Dy, +m?, (6.3.3)
hence ({6.3.2)) can be obtained by noticing that m = (n —1)/2 = 0 in R*1, O

Theorem 6.3.2. Consider the wave equation (6.3.1)), and assume the initial data are
compactly supported in By/3(0), then there exists €g > 0, such that for any initial data
satisfying

Jusllmr + Juollu < € < e,

equation (6.3.1) admits a global-in-time solution u = u(t,x).

Remark 6.3.3. In order to prove (6.3.1) has a global-in-time solution, it suffices to
show (6.3.2) admits a global-in-time solution in terms of the time variable T.

6.4 Bootstrap assumption

We first introduce two differential operators which will be used frequently in the
following contents:

D_:=0,— \/1-1——97:2535, D, :=0.+ \/H—%?5$
We notice that the wave operator can be rewritten as
—h, =D-D, =D,D_,
while the null non-linearity is expressed to be

(0,u)? — (V1 + 220,u)* = D_uD,u.
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Now we pose the bootstrap assumptions in the interval [0, 7 ]:

D0 w2 Do (VT + 30 ul o) + D) 0D (VI + 220 Ful 2 < Cree®”

k=0,1 k=0,1

D ID_(VI+ 30 ulzp) + Y. [D+(V1 +220,) u] 120,y < Cre,
k=0,1 k=0,1

(6.4.1)
in which the weights are

wo =€ (V1+22-7)+1, wpi=e" (V1+22+7)+1

and the parameters C] is some big constant to be determined, 9; > 0 and d; > 0 are
fixed constants with the restriction

62 > 2(51

The upper bound 77 is taken to be the largest number such that the bootstrap assump-
tions in (6.4.1)) are satisfied, and we know 7 is strictly positive due to the smallness of
initial data.

We are going to prove that the upper bounds in (6.4.1]) can be refined to be

1
D W=D (V14 2200 |20y + Y @Dy (VI + 320,) | 2, < 56’166
k=0,1 k=0,1
1
D ID_(V1+ 30 20y + . 1D+ (V1 +3200) u] 200, < < 5Cie,
k=0,1 k=0,1

(6.4.2)
which ensures the existence of the global-in-time solution to 6.3.2.

A direct consequence from the bootstrap assumptions (6 are the following sup-
norm bounds.

Lemma 6.4.1. Assume (6.4.1) holds, then

sup ‘wi?D_u‘ + sup \wfstJru‘ < Cree?” (6.4.3)
sup ‘D_u‘ + sup |D+u‘ < Che. o

Proof. Observe that N
|\/ 1+ :%wxwfsf < 52wf5f,

then an application of the Sobolev-type inequality (6.2.7)) implies (6.4.3)). O
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6.5 Refined energy estimates

Lemma 6.5.1. Consider the wave equation ([6.3.2))
P — Ay u = (0,u)? — (V1+ %28xu)2,

then it holds for any smooth enough multiplier Z that

dz
ZD_ 14—
JR u\/1+%2 (T)

dz T
<J ZD_u——(0) +J (D+ZD_uL1(H1) - ||ZD_uD+u|L1(H1)>dT,
R 1+2x 0
dz

L Z.D_,_Um (T)

~

dx T
< JR ZDWW(O) +L (D_ZD+uL1(H1) - ||ZD_uD+u|L1(H1)>dT.

Proof. Consider ((6.3.2)) in the form

(6.5.1)

D,D_u=D_uD,u,

then we obtain after testing the multiplier Z

i dT JTJ dT
ZD.D_ty————dt = ZD_uD u————dt
Jo JR * 1+ 722 0o Jr i V1472

Successively, we rewrite
ZDyD_u = 0-(ZD_u) + V1 + 320,(ZD_u) — D_ZD.u,

thus we have the first energy estimate in (6.5.1), due to the term /1 + 720, (ZD_u)
does not contribute with respect to the integral { - dZ/v/1 + Z2. O

We also state the following consequence, with specific choices of the multiplier Z,
which are more useful.

Lemma 6.5.2. Consider the wave equation (6.3.2)), then it holds

4 dz
D_ul? 7) < |D_ul? 0 +J J D_u)*D u————dr,
H HL2(’H1)< ) H HL2(7-L1)( ) 0 R( ) + m

T dx
d2 2 d2 2 202 2
w2 D_u|% T) < |lw D_u|%. 0) + w D_u)*Diu d?,
H HL (Hl)( ) H HL (H1)< ) J f ( ) + fl ~3

[D_(V1+ %28xu)\\%2(7{1)(7) < |D-(V1 + 220,u HLQ J J V14720 u))2D+u



168 6.5. Refined energy estimates

~

v1+ 722

dr,

+ D_(V1 + 220,u)D_uD, (V1 + 2dyu) )
|w? D_ (V1 + 220,u) | 7234, (T) < [w? D_(V1 + 220,u) |72 (34, (0)

JJ 202 1+x8u)) D+u\/7
f J w?? D_(v/1 + 220,u)D_uD, (V1 + P20,u

~

m Vit
(6.5.2)

Proof. For the first energy estimate, it is easy to have by taking

7 = D_u.

We then choose
7 = wE(SQD_u

and, the second one can also be achieved with no difficulty by noting
D, (wz‘SQD_u) = w?D,D_u.

In order to prove the last two estimates, we first act 4/1 + 220, on both sides of
(6.3.2)

DyD_(V1+720,u) = Ds (V1 + #23,u) D_u+ DouD_ (V1 + 720,u).
Finally, a similar argument by taking
= D_ (V1 + 720,u)

and

Z =w?D_(V1+220,u)

respectively completes the proof. O

Now we are in a position to prove the refined estimates (6.4.2) and thus close the
bootstrap argument.

Proof of the refined estimates (6.4.2)). We will only provide the proof for energies with
D_u term, since the rest ones with D, u term can be bounded in a similar way.

Firstly, by the energy estimates in Lemma ((6.5.2)), we have

dzx
1D (7) < 1Dty ) + [ [ (DowpDou—sdr
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T ,dT
< € +J J W2 (D _u) w20 wT®2eNT ——dr!
- (D= W e s
.
< 62 + Clﬁf Hwé_QD_U”%p(Hl)HW:éQUJI_&QHLw dT/
0
e + (Cye)? JT e(201=02)7" gt

0

in which we used the sup-norm estimate for w’ ¢ D u in the second line and the estimate
for weighted Sobolev norm of D_wu in the last line. Due to that fact do > 26;, we obtain

| D-ulFage|, < €+ (Cre)’.
Next we bound the weighted L?(H;) norm for D_u. Note Lemma ([6.5.2]) implies
dx
6 D0 (7) < 162 Dol 0) + [ f (DD
<e+0 EJ w2 D_ul)?, ()

2 (C’le)gf 20T dr!

0
<+ (016)36261T

where we applied sup-norm estimate for D, u in the second line and weighted L?(H,;)
norm estimate for D_w in the third line.

Successively, we estimate the term || D_(v/1 + 220,u) | L2(3,) (7). From Lemma ([6.5.2)),
it holds

|D-(V1 +320,u)| 7 H1)< 7)
< ID_(vV1 + 220,u)| () J J V147320 u))2D+u

+ D_(\/mwu)D_uDJr(ml,u)) i
X

<é J <Hw‘5” D_(V1 4+ 320,u)|3. (#1) |wS™ D | oo
0
+ ™ D_(V1 + 328,) | 2 |02 Doy (V1 + 2205u) | 230y |0 517’D+UHLOC) dr’

+ (Cre)? JT (201=82)7" dr’,

0

where we used estimates in the bootstrap assumptions and sup-norm bounds. Then we
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find
|D-(VT +2205u) 3230 (7) < € + (Che)®.

Finally, we come to bound the term |w®D_(v/1 + T20,u)|| 23,y (7). By applying
the estimates in Lemma (6.5.2) we have

| D_ (VI + #20) [0 (7) < | D- <m—m w2231, (0)

J J 202 ( V1 + 220, u)) D+u\/7

f f w?D_(V1 + 720,u) D_uD, (V1 4 320,u) \/TdT

<ée+ J |w2D_(v1 + %Zaxu)um(%)nz)wnm dr’
0
+ f |w? D_ (V1 + 220,0) | a5y |02 Dt o | Dt 1230, d
0

+ (Cre)? J > dr!

0

in which we applied energy estimates from the bootstrap assumptions and their conse-
quences in the last line. Thus we obtain

|w? D_ (V1 + 220,u) 7230,y (T) < € + (Cre)*e®".

We are now able to get the refined estimates by choosing C very big and e sufficiently
small, and thus we claim the wave equations (6.3.2)) and hence (/6.3.1]) obtain global-in-

time solutions. OJ

6.6 Pointwise estimates of the wave component

In this section we study the pointwise estimates of the wave component u, with no
derivatives on it, which is the second part of the Theorem [6.1.1] In order to prove it
we rely on the new L?-type estimates established in Chapter [5| and the Sobolev-type
estimates in [44].

We start by recalling the following L2-type estimate of w.

Lemma 6.6.1. It holds

Ht_1/2uHL?(H5) < 685 + (016)285. (661)

Proof. Recall the sup-norm estimates in ((6.4.3) and the L?-type estimates in (6.4.1)),
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we have
|DyuD_ulr23,)(7) < (016)26*5”,

which is integrable.

Hence from the L2-type estimates established in Theorem (and its proof), we
arrive at the desired result. ]

We also recall some facts about null forms.
Lemma 6.6.2. [t holds that
L(&tuﬁtv — (%u&xv) = Oyudy(Lv) — 0udy(Lv) + 0y(Lu)ow — 0,(Lu)d,v, (6.6.2)

in which L = x0; + t0, is the Lorentz boost in 1 dimension.

Relying on ([6.6.2) we further have the following estimate.
Lemma 6.6.3. Assume N > 3 in Theorem then it holds
Ht*I/QLJuHL?(HS) < es® + (Che)’s, |J] < 1. (6.6.3)
Next we recall the following Sobolev-type estimates which was first introduced in
[44].

Lemma 6.6.4. For all sufficiently smooth functions u = u(t, x) supported in the region
{(t,x) : |x| <t —1}, then for s = 2 one has

/
S;E)‘tl u(t, z)| < Z HLJUHL?(HS), (6.6.4)

<1

where the summation is over Lorentz boosts L = x0; + t0,.

Proof of the pointwise estimate ((6.1.3). A combination of the L?-type estimates in (6.6.3))
and the Sobolev-type inequality (6.6.4)), we obtain the pointwise estimate (6.1.3))

lu| < Ches’.
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Existence results for nonlinear wave equations

Abstract :

This thesis is devoted to showing the existence of global-in-time solutions to some nonlinear equations, including
the wave-Klein-Gordon equations and the Dirac equations. For the wave-Klein-Gordon-Dirac equations, based
on the hyperboloidal foliation method we establish several global stability results, explore the asymptotic
behaviors of these solutions, and study how the solutions are affected when some mass parameters go to certain
limits. As an application, we can prove that several physical models are globally stable: the Dirac-Klein-Gordon
model, the Dirac-Proca model, the Klein-Gordon-Zakharov model, the U(1) model of electroweak interactions
and so on. In Part [[j we study the electroweak standard model. We first prove the global nonlinear stability
results for the U(1) model, where we obtain uniform energy bounds (modulo a slow logarithm growth). Next
we move to the full standard model, and get global stability results in some special cases. In Part [[I, we
analyse a class of coupled wave-Klein-Gordon equations with critical nonlinearities, and prove the existence of
global-in-time solutions which enjoy sharp pointwise decay property. Besides we study a class of Klein-Gordon
equations with possibly vanishing mass, and prove sharp pointwise decay results which are uniform in its mass.
In Part we mainly investigate the hyperbolic Fourier transform, and derive a new L%-type estimate for
waves.

Keywords : Hyperboloidal foliation method, wave-Klein-Gordon equations, standard model, mass parameter
limit, critical nonlinearities, hyperbolic Fourier transform

Résultats d’existence pour des équations d’ondes non-linéaires

Résumé :

Cette these est consacrée a démontrer l'existence des solutions globales en temps pour certaines équations
non-linéaires, y compris les équations d’ondes et de Klein-Gordon et les équations de Dirac. Pour les équations
d’ondes qui sont basées sur la méthode de la feuilletage hyperboloide, nous établissons plusieurs résultats de
stabilité globale, explorons les comportements asymptotiques de ces solutions, et étudions comment les solutions
sont affectées quand des parametres de masse atteignent certaines limites. Comme application, nous prouvons
que plusieurs modeles physiques sont globalement stables : le modele de Dirac-Klein-Gordon, le modele de
Dirac-Proca, le modele de Klein-Gordon-Zakharov, le modele U(1) des interactions électro-faibles etc.. Dans
la partie [l nous étudions le modele standard électro-faible. Nous prouvons la stabilité globale non-linéaire du
modele U(1), dans laquelle nous obtenons des bornes uniformes (modulo une croissance lente de logarithme).
Puis, pour le modele standard complet, nous obtenons la stabilité globale dans certains cas spéciaux. Dans
la partie [T nous analysons une sorte d’équations d’ondes et de Klein-Gordon avec non-linéalités critiques,
et prouvons l'existence des solutions globales qui possede une propriété de décroissance pointue. D’ailleurs,
nous étudions une sorte d’equation de Klein-Gordon avec une masse qui pourrait s’annuler, et prouvons la
décroissance qui est uniforme en terme de sa masse. Dans la partie [[II, nous examinons principalement la
transformation (hyperboloide) de Fourier, et dérivons une nouvelle estimation de type-L? pour les ondes.
Mots clés : La méthode du feuilletage hyperboloidal, des équations d’ondes et des équations de Klein—
Gordon, modele standard de la physique des particules, limite de parametre de masse, non-linéarités critiques,
la transformation (hyperboloide) de Fourier
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