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Résumé

L'inspection visuelle des produits industriels a toujours été l'une des applications
les plus reconnues du contrôle de qualité. Cette inspection reste en grande par-
tie un processus manuel mené par des opérateurs et ceci rend l'opération peu �-
able. Par conséquent, il est nécessaire d'automatiser cette inspection pour une
meilleure e�cacité. L'objectif principal de cette thèse est de concevoir un système
d'inspection visuelle automatique pour l'inspection et la surveillance de la surface
du produit. L'application spéci�que de l'inspection de roues est considérée pour
étudier la conception et l'installation du système d'imagerie. Ensuite, deux méth-
odes d'inspection sont développées: une méthode de détection des défauts à la
surface du produit et une méthode de détection d'un changement brusque dans les
paramètres du processus d'inspection non stationnaire. Parce que dans un contexte
industriel, il est nécessaire de contrôler le taux de fausses alarmes, les deux méthodes
proposées s'inscrivent dans le cadre de la théorie de la décision statistique. Un mod-
èle paramétrique des observations est développé. Les paramètres du modèle sont
estimés a�n de concevoir un test statistique dont les performances sont analytique-
ment connues. En�n, l'impact de la dégradation de l'éclairage sur la performance
de détection des défauts est étudié a�n de prédire les besoins de maintenance du
système d'imagerie. Des résultats numériques sur un grand nombre d'images réelles
mettent en évidence la pertinence de l'approche proposée.

Abstract

Visual inspection of �nished products has always been one of the basic and most
recognized applications of quality control in any industry. This inspection remains
largely a manual process conducted by operators, and thus faces considerable limita-
tions that make it unreliable. Therefore, it is necessary to automatize this inspection
for better e�ciency. The main goal of this thesis is to design an automatic visual
inspection system for surface inspection and monitoring. The speci�c application
of wheel inspection is considered to study the design and installation setup of the
imaging system. Then, two inspection methods are developed: a defect detection
method on product surface and a change-point detection method in the parameters
of the non-stationary inspection process. Because in an industrial context it is nec-
essary to control the false alarm rate, the two proposed methods are cast into the
framework of hypothesis testing theory. A parametric approach is proposed to model
the non-anomalous part of the observations. The model parameters are estimated
to design a statistical test whose performances are analytically known. Finally, the
impact of illumination degradation on the defect detection performance is studied
in order to predict the maintenance needs of the imaging system. Numerical results
on a large set of real images highlight the relevance of the proposed approach.
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Chapter 1

Introduction

1.1 General context

In the present highly competitive world class manufacturing scenario, where manu-
facturers in almost every industry sector �nd themselves competing with companies
from every part of the world, customer satisfaction is a key element for survival and
success. One critical determinant of customer satisfaction is the quality of the prod-
uct. Guaranteeing the quality of produced products has always been a necessity to
please the customers. Hence, many manufacturers tend to review the quality of their
products not from their standpoint, but rather from the perspective of the customer.

Nowadays, customers are better informed and more attentive to what they per-
ceive to be the quality of a product. While the ability of the product to perform
its expected functions remains the main concern for the customer, its visual per-
ception is also very important [1]. Manufacturers that reached high capabilities on
the technical and functional aspects of production are now di�erentiated by their
control of the perception of their product, speci�cally the visual perception of its
surface. This lead to the necessity to carry out a visual inspection to ensure that
each manufactured product meets the expected visual characteristics.

Visual inspection of �nished products has always been one of the basic and most
recognized applications of quality control in any industry. It is performed at the
end of the production line, when all the manufacturing steps are completed. Its
importance comes from the fact that it is the last step of inspection, and the last
resort to stop a defective product before it reaches the customer. This inspection
remains largely a (fully or partially) manual process conducted by operators, whose
main role is to inspect each and every manufactured product. Unfortunately, this
manual process faces considerable limitations which weaken it e�ciency and make
it unreliable for inspection.

While human inspection bene�ts from some advantages, mainly its great �exi-
bility with regard to the various types and shapes of inspected products, it faces, on
the other hand, many major disadvantages. First, the variability of decision for an
inspector over time (factors related to fatigue and motivation) and the variability of
decision between di�erent operators for the evaluation of the same product. A sec-
ond disadvantage for human inspection is the repeatability of decision of the same
inspector when evaluating the same product various times. These disadvantages
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result in an uncertainty and a lack of precision during the inspection.

To overcome these di�culties, automated inspection has proven to be the best
alternative for industries to rely on. The share of variability and subjectivity in
decision-making is eliminated with an automated surface inspection. When testing
the same product multiple times with an automated inspection system, the result
will be the same every time.

1.2 Main objectives

An automatic visual inspection (AVI) system is composed of two main subsystems.
First, the image acquisition subsystem which is hardware based. It has the role of
transforming the optical scene into an array of numerical data received by the pro-
cessing platform. Second, the image processing subsystem which is software based.
It mainly consists of image processing methods that are developed to analyze the
acquired data and give the �nal inspection result.

The �rst objective of this work consists in designing the image acquisition sub-
system. Indeed, the general requirements are that any AVI system must be fast,
cost e�ective and reliable. However, to be able to put together an e�cient AVI
system, a more in depth description of the inspection requirements is necessary. It
is absolutely essential for the designed system to be tailored to the speci�c demands
of the application. In this respect, the complete design process must be driven by
the application requirements and conditions. Therefore, it is important to specify
the problem in a totally clear and precise way.

A second objective consists in developing a defect detection method for surface
inspection. The method has to be general enough for the inspection of a wide range
of complex surfaces, allowing it to be used in various quality inspection domains. In
addition, in an industrial context, it is necessary to control the false alarm rate to
prevent unnecessary stoppage in production, while ensuring the highest detection
of defects. With these constraints in mind, it is best to resort to hypothesis test-
ing theory to design a test whose statistical performances are analytically known.
Furthermore, the method could make use of prior statistical information about the
inspected surface to make the inspection more insensitive to variations in acquisition
conditions.

A third objective consists in monitoring online a non-stationary process to detect
abrupt changes in the process mean value. In our case, this non-stationary process
results from the variation of the paint quantity on the inspected wheels surface,
where the abrupt change corresponds to a sudden lack of paint. Since the mon-
itored process is non-stationary, in other words, naturally changes over time, the
proposed method must be able to distinguish those �regular� process changes from
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abrupt changes resulting from potential failures. In addition, since this method aims
at being applied for industrial processes, it is required to detect the change within
a given maximal detection delay and to control the false alarm probability over a
�xed run length. Hence, the proposed method falls within the category of online
sequential detection method, operating, however, under a non-classical optimization
criteria that is suitable for industrial applications.

A �nal objective consists in predicting the maintenance needs of the AVI system,
required due to the degradation of illumination over time. On one hand this will
enable to maintain the system in a well-functioning state, and, on the other hand, to
prevent excessive stoppage in production for unnecessary maintenance operations.
The state of the system is best judged according to the performance of the inspection
tasks. Studying the impact of the degradation of illumination on the performance
of the detection method will enable to estimate the illumination level below which
the inspection is no longer e�cient.

1.3 Organization of this manuscript

To address the objectives de�ned above, the overall structure of this thesis consists
of the �ve following chapters:

• chapter 2 highlights the importance of quality control for automotive indus-
tries, and describes the techniques that are applied to inspect the manufac-
tured wheels, speci�cally the inspection of their surface. This inspection is
still largely a manual process that faces considerable limitations. With the
goal to automatize this inspection process, this chapter then reviews the most
widely used NDT techniques dedicated for surface inspection, investigating
their suitability for the speci�c task of wheel surface inspection.

• chapter 3 presents in detail the complete procedure to design an AVI system for
the real-time surface inspection of �nished wheels. More precisely, this chapter
focuses on the design of the imaging system, and its installation setup. First,
the requirements and conditions under which the inspection must be performed
are de�ned. Some of these requirements are related to the inspected wheel,
while others are imposed by industrial constraints. Next, this chapter provides
a general overview on all the characteristics of each key element of the AVI
system. This overview serves as a brief reference to design a complete imaging
system from scratch. Then, based on the prede�ned inspection requirements, a
detailed discussion on the appropriate choice of each key element is presented.
Finally, the installation setup of the AVI system is described.

• chapter 4 studies the defect detection problem on surfaces inspected using an
imaging system. To control the false alarm rate, the proposed method relies on
hypothesis testing theory to design a test whose statistical performances are
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analytically known. The anomalous-free content of the image that represents
the inspected surface acts here as a nuisance parameter as it has no interest
for defect detection, while it must be carefully taken into account as it may
hide potential defects. Hence, it is proposed to design an adaptive model of
the imaged surface. This model allows to address the inspection of a wide
range of objects, and it can be further used for any application that requires
a model of the nuisance parameters.
Then, since no prior information about the occurrence of the defects is avail-
able, the problem is that of a statistical test between composite hypotheses.
In such a case, a Uniformly Best Constant Power (UBCP) test is proposed,
which is based on the rejection of the nuisance parameters. Finally, to take in
consideration the noise corrupting the image, an accurate and realistic noise
model is adopted. This will allow to establish with highest precision the the-
oretical statistical properties of the proposed test.
The proposed detection method is then applied for wheels surface inspection.
Due to the nature of the wheels, the di�erent elements are analyzed separately.
Numerical results on a large set of real images show both the accuracy of the
proposed adaptive model and the sharpness of the ensuing statistical test.

• chapter 5 addresses the problem of monitoring online a non-stationary process
to detect abrupt changes in the process mean value. It starts by brie�y re-
calling the well-known cumulative sum (CUSUM) procedure, and then states
the problem of change-point detection for a non-stationary process emphasiz-
ing on the main di�culties and limitations of the CUSUM in this context.
The main particularity of the problem addressed in this chapter is that the
distribution parameters of a non-stationary process may �naturally� change
over time, which follows that the detection hypotheses are composite. A usual
solution is to use a generalized likelihood ratio that consists in substituting
these unknown parameters by their estimations using the maximum likeli-
hood estimation. Hence, at �rst, the model used to deal with observations'
non-stationarity is presented. Second, the ensuing statistical test is detailed.
Then, to comply with requirements on low false alarm probability and high-
est change-point detection performance under a maximal delay constraint, the
performance of the proposed method is studied.
The proposed sequential method is then applied for the problem of paint coat-
ing intensity variation on produced wheels. Numerical results obtained on a
wide range of real data are presented, and the sharpness of the theoretical
performance for the proposed method is studied.

• chapter 6 investigates the problem of predicting the maintenance needs of the
AVI system. Since the imaging system consists of hardware components, the
aging of such components could reduce the inspection performance, and even-
tually cause a failure. This chapter focuses on the degradation of illumination
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caused by the deterioration of LED modules over time. This degradation will
have a negative impact on the detection method proposed in chapter 4. Hence,
the approach proposed in this chapter is to study the impact of the degrada-
tion of illumination on the performance of the detection method. Modeling
this impact will allow to estimate the illumination level below which the sys-
tem is no longer reliable. Finally, a hardware solution is proposed to detect
the moment when this illumination level is reached.

• chapter 7 concludes this thesis and presents some perspectives of future works.





Chapter 2

Quality control

2.1 Automotive industry

2.1.1 Evolution and challenges

The automotive industry has been undergoing a period of growth due to the ever-
increasing global demand for automobiles. On average, the production of automo-
biles has been growing by 2.2% every year since 1975 [2], thus making the automotive
industry one of the world's most important economic sectors by revenue.

On the other hand, the automotive industry has entered the phase of �globaliza-
tion�. The globalization of the market, the development of transport and commu-
nication means that today, a company has less and less geographical privileges in
the market [2]. It must therefore be highly competitive in order to conquer distant
markets and face greater competition.

With the ongoing competitive pressures, and in order to survive and stand
out from the competition, the only alternative for automotive industries, includ-
ing wheels manufacturing industries, is to grant lot of importance to the continuous
improvement of their product, along with an increasing response to customer needs.
What does the customer need ? �Consumers tend to go for best quality products

at nominal rates [3]�. During the economic crisis of 2008, the automotive industry
was among the sectors that were hit the most [4]. However, this crisis only lasted
two years, after which the automotive industry recovered. This was due to many
factors including the investment in improving the quality of the products. Indeed,
developing high quality products will have a positive e�ect on di�erent aspects of
a company, and is essential for pro�ts as well as for the survival in a competitive
environment. The bene�ts of high-quality products extends even to other aspects
of the industry:

• Business aspect:
In order to bene�t from a good competitiveness, the company can improve
its quality / price ratio: at equal selling price it must increase the quality
level, or at the same quality, the company must reduce the selling price, which
reduces the costs of poor quality, improves its working methods and simpli�es
the design of its products.

On the other hand, consumers are now more demanding in terms of quality.
The certi�cation of the quality assurance system applied by the company has



8 Chapter 2. Quality control

become today a signi�cant commercial argument that reassures the potential
customer on the level of quality of the company. It is more and more demanded
by customers.

• Financial aspect:

Quality costs are expensive. The term �Quality costs� has been extensively
used to describe the costs of poor quality. A non-conformity is a waste not
only of raw materials but also of labor working time and energy. Investing in
quality control management has become a necessity for all industries. In his
book [5], which is considered by many to be the main reference for quality
control, Juran explained how and why investing in quality will eventually lead
to both reductions in costs and increases in sales revenue.

• Technical aspect:

Controlling the quality in an industry will not only prevent defective products
to reach the customer, but will also help to characterize the defect types and
their causes. This will lead to a better understanding of production techniques,
and thus improvement in the manufacturing processes: lowering the costs of
poor quality necessarily requires a review and improvement of manufacturing
and production techniques.

2.1.2 Wheel manufacturing process

The wheel is an essential part of any vehicle. It is considered to be a security com-
ponent that has no lifespan, which requires the manufacturers to pay particular
attention to certain aspects of the product. In order to ensure its safety, the wheel
must have a correct geometry allowing the vehicle to be stable, and must be robust
enough to withstand the weight of the vehicle under all circumstances and to par-
ticipate in the reduction of fuel consumption. On the other hand, the wheel is also
considered to be an aesthetic component. Its overall appearance, such as its color,
gloss, and texture, greatly a�ects the perception of the product to the customer.
Thus, the image of the wheel has a direct impact on the image of its manufacturer.

Manufactured wheels for passenger cars and commercial vehicles usually consist
of two parts: rim and disc [6]. The rim is the part of the wheel on which the tire
is mounted and supported: international norms regulate most of its geometrical
characteristics to guarantee functionality of pieces developed by di�erent wheel and
tire manufacturers. The disc is the part of the wheel which is the supporting member
between the vehicle axle and the rim. Except for its central part, which is imposed
by the customer, the disc pro�le is less standardized than the rim since it needs to
be designed by taking into account several variable interfaces (brake calipers, trims,
. . . ) and performance requirements (fatigue resistance, bolt hole resistance, . . . )
which are speci�c for each wheel design. Figure 2.1 shows a CAD illustration of the
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Figure 2.1: Image of the wheel and its two main components

wheel and its two main components.

The manufacturing process of the wheel can be divided into three steps:

• Disc stamping process:

The disc begins as a �at blank sheet of prede�ned size. It then follows a series
of several stamping operations in order to reach its the �nal shape. Each disc
is designed to satisfy speci�c customer's requirements, strongly in�uencing its
geometry. Taking into account the main characteristics of wheel discs, you can
consider the stamping process as a sequence of progressive deforming phases
covering drawing, forming, �anging, cutting and coining operations. Figure 2.2
illustrates the disc stamping process.

Figure 2.2: Illustration of the disc stamping process

• Rim forming process:

A rectangular blank sheet of steel coil is cut with a prede�ned length to obtain
the desired rim size. The starting blank sheet is curved to create a cylindrical
shape where the edges are welded and the �nal welded surface is re�ned and
recalibrated to ensure the �roundness� of the piece. In order to obtain the
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desired rim pro�le, the previous cylindrical piece is deformed through multiple
progressive rolling operations and then calibrated. A speci�c zone of the rim
is locally deformed to create an opportune �at area; the valve hole is cut
(centered on the �at surface) and coined to avoid burrs all around. Figure 2.3
shows the di�erent steps of the rim-forming process.

Figure 2.3: Illustration of the rim-forming process

• Wheel mounting and painting:

When the disc and the rim are available, the wheel manufacturing process ends
with the mounting phase, when the disc is pushed into the rim creating a forced
�tting joint. Then the two components are additionally linked using di�erent
welding techniques. At the end, the wheel is painted through electro-coating
(black cataphoresis); other colored paintings can be added, if requested, to
improve the usual aspect of the �nal product.

2.2 Quality control

The aspect of quality control has been evolving since the beginning of time. Even the
de�nition of the term �quality� has been extensively debated and modi�ed to better
follow this evolution. Its most recent de�nition by the International Organization
for Standardization (ISO) is the �degree to which a set of inherent characteristics of

an object ful�lls requirements [7]�.

Guaranteeing the quality of manufactured products has always been a necessity
to please the customers. In the early days, and before the Industrial Revolution,
the quality control was restricted to the people who made the product. They dealt
directly with their customers and were responsible for the quality of their products.
However, as global demand kept increasing, manufacturing practices and techniques
evolved accordingly. This Industrial Revolution motivated a more general view of
quality, where the concept of interested parties extends beyond a focus solely on
the customer. In fact, many other parties of interest had to be considered, within
and outside the company, as they are also a�ected by, or a�ect, the quality of the
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product [8]. These parties include the employees, the suppliers, the investors, etc.
and many others.

As a result, the concept of quality control evolved from being exclusively the
responsibility of the inspectors, to a company-wide agenda where all the company
shared responsibility on quality-related issues. This concept has been de�ned as
the Total Quality Control (TQC) and was introduced by A. V. Feigenbaum in his
book [9] �Total Quality Control �.

In view of this evolving concept of quality, and with the considerable develop-
ment in technologies, the quality control process has become a continuous process,
starting from the conception / creation of the product, and engaging along the whole
manufacturing process. Therefore, it is necessary to distinguish between two main
categories of quality control: process control that aims to ensure the proper func-
tioning and stability of all the processes and systems involved in the manufacturing
task, and product control that is related to the quality of the product itself. This
work only focuses on the product quality control task.

There are two main types of product control covering the majority of quality
problems industries may encounter:

• Technical control:

This type of control involves all the technical aspects of the product, i.e. all
the details that ensure the good functioning of the product. It is related to
technical defects that usually occur during the manufacturing process. Most
of these defects are associated with the dimensions of the product, and can be
sometimes located on its surface.

• Appearance control:

This kind of control is related to appearance defects, such as scratches, marks,
cracks, etc., that do not have a direct impact on the proper functioning of the
product, but rather are associated with its aesthetics. These defects are usually
referred to as accidental defects. They may occur during manufacturing or
during the product handling. Customers are strict about this type of defect,
as it directly a�ects the brand. These defects are located on the surface of the
product, the one visible for the customer.

2.2.1 Quality control for wheels

With the continuous demand to produce high quality products, wheel industries
have been making advancement in their quality control techniques. Finding the
defects and their potential causes was the �rst step, which was followed by updating
and improving the manufacturing processes to avoid such defects. As a consequence,
the customer returns for technical defects on the wheels, which are process related,
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declined signi�cantly to a new lowest level. However, on the other hand, the cus-
tomer returns for appearance defects were not signi�cantly reduced. In fact, the
major factor that created this di�erence in customer returns between the two types
of defects is their inspection process.

Technical defects in manufactured wheels are measurable defects, which means
that the e�ect of the defect can be measured and compared to a reference value for
decision. They can be either dimensional defects that portray a geometrical design
error, or mechanical defects related to the mechanical features of the wheel. In both
cases, theses defects are mostly caused by a machine malfunctioning or a faulty pro-
cess. Hence, defects of this type are repetitive and consistent, as they a�ect almost
all of the production.

To control dimensional defects, many methods have been employed to monitor
the dimensions of the di�erent parts of the wheel, such as the height and thickness
of the rim or the radius of the valve hole, for example. Some of these methods
are conducted o�ine on a sample of the production using suitable calipers or mi-
crometers. Many other industries use online automated dimension measurement
techniques to test the totality of the production. These techniques are sometimes
based on image and signal processing methods, or mechanical methods, and they
include many technologies as electronic and pneumatic gauges, optical and imaging
sensory, etc. [10].

On the other hand, the quality control process to check for mechanical defects
in wheels is a well-de�ned process that has been regulated and standardized. All
wheel manufacturers follow the same standard methods to test their products for
such defects. The ISO standard [11] entitled �Road vehicles � Passenger car wheels

for road use � Test methods� describes two test methods to evaluate fatigue strength
characteristics of wheels used on passenger cars. These inspection techniques fall
into the category of destructive testing (DT), even called mechanical testing, in
which case a product is forced to reach its failing point by application of various
load factors [12,13]. These techniques are essentially applied o�ine on a small sam-
ple of the production, and when a defect is detected, the production stops in order
to diagnose and �nd the faulty process or machine.

As for the appearance defects, the automatic inspection is more complicated.
Appearance defects mostly occur because of a random error during product handling
or due to a process related fault. These defects usually a�ect some products in a
random manner, without consistency, which means that it is mandatory to inspect
every single product for defects. Therefore, the testing process has to be online and
fast thus limiting the potential testing techniques that can be used to detect such
defects. In fact, in such case, only non-destructive testing can be used, where the
future usefulness of the inspected wheel is not a�ected and its component materials
remain intact. Another downside to the detection of such defects is that no prior
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information, such as the size or shape, of the potential defect is available for the
inspection process, as there is no agreed standard for appearance defect types in the
wheel industry. Till today, this inspection relies largely on manual human control.

2.2.2 Wheel surface inspection

One of the basic and most recognized applications of quality control in any industry
is the inspection of the �nished product. It is performed at the end of the production
line, when all the manufacturing steps are completed. Its importance comes from
the fact that it is the last step of inspection, and the last resort to stop a defective
product before it reaches the customer. For wheel manufacturing, the last step of
production is the painting, or more precisely the coating process. Several coats of
paints are spread over the surface of the wheel to give it its �nal aesthetic appearance.
This appearance (color, gloss, texture, etc.) of the coated surface of a wheel greatly
a�ects the perception on its quality for customers. Hence, an inspection procedure
for this surface is required to ensure the quality of the wheel before delivery.

2.2.2.1 Surface defects

Given a set of product speci�cations, any deviation from what is standard, or nor-
mal, to the product is considered an anomaly. Furthermore, if the anomaly surpasses
certain acceptance limits, which are usually de�ned by the customer, it is then re-
ferred to as a defect. One of the most important factors to judge the quality of
products produced by an industry is the degree of variability between the manufac-
tured products of the same type. During the day, a wheel industry may produce
over 20 000 wheels of di�erent types and designs. The heterogeneity between di�er-
ent products of the same type can be considered as nonconformity if it surpasses a
certain level.
To more precisely feature the types of defects that may occur, it is necessary to
categorize appearance defects into two di�erent types:

• Local appearance defects:
Local defects are de�ned as a local heterogeneity or distortion from the refer-
ence texture of a surface. They represent a sudden variation on a limited area
of the inspected surface. Such defects stand out on the surface of the wheel
and are the most frequent type of defects detected during the �nal inspection.

These defects can take di�erent shapes and sizes whether they are scratches,
marks, geometrical deformation, etc. But they can all be classi�ed under
two general types of defects. Figure 2.4 represents a depiction of these two
classes on a cross-section illustration of a wheel surface. The �rst class of
defects, shown in �gure 2.4(a), include all the defects that create a spot or a
bump over the surface of the wheel, while the second class of defects, shown in
�gure 2.4(b), include the ones that break the surface of the wheel and penetrate
it with a small depth. This classi�cation is very important for choosing the
most relevant non-destructive inspection method to be used.
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(a) (b)

Figure 2.4: Illustration of the two general cases of local appearance defects

Table 2.1 highlights the most frequent types of local appearance defects that
can be found on the surface of the wheel. For each type of defects, table 2.1
provides common information de�ned according to the customer criteria or
acquired during the inspection process. These information include the usual
cause of the defect, its acceptance limits in terms of average size in millimeters,
its severity using as reference the Failure Mode and E�ects Analysis manual
(FMEA) [14], its frequency of appearance in terms of products per million
(ppm), and some real case examples of such defect.

• Global appearance defects:

Global defects a�ect the entire surface of the wheel in a uniform manner. In
this case, it is di�cult to judge the wheel by itself as the defect is only visible
if compared to previous manufactured wheels. Detecting this heterogeneity
between di�erent products of the same type is a challenging task. In fact, no
product is perfect, and two products of the same type are never exactly the
same, hence judging the nonconformity of a product due to a global defect is
not always straightforward.

Almost all of these defects are caused by the �nal manufacturing process, the
painting process, and more precisely the topcoat layer. This is the last layer
of coating applied over the surface of the wheel and it maintains the aesthetic
appearance characteristics of the wheel surface. Any increase or decrease in
the amount of paint used for this layer will lead to an excess or shortage of
color on the wheel surface, thus generating a global defect. Therefore, it is
necessary for the inspection method to be able to examine the color of the
wheel and its intensity.

Additionally, the surface of the wheel is not only linked to an aesthetic aspect.
Of course, during the inspection of �nished products that will be delivered to the
customers, the main focus is set on its aesthetics. The surface of the wheel is the
one visible to the customer, thus on which his judgment of conformity will be based.
However, the surface of the wheel also contains multiple key elements that are
essential for the proper functioning of the wheel. Those key elements are designed
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Table 2.1: List of the main potential defects with their characteristics
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Figure 2.5: An example of a dimensional defect on the surface of the wheel

with respect to precise geometrical forms and measurements that have to be checked
during the inspection process. Any error in these measurements is to be considered
as a critical defect that leads to the immediate rejection of the wheel. Figure 2.5
shows an example of a dimensional defect visible on the surface of the wheel, where
the valve hole is not in its correct position, since it must be aligned with one of the
countersinks. This is due to an error during the mounting phase, when the rim and
the disc are joined together.

This type of defect is classi�ed under technical defects, or, more precisely, as
measurement defects, and ideally must be inspected and rejected during the manu-
facturing process. Despite that, a non-negligible number of defective products can
reach the �nal stage of inspection. Therefore, the �nal quality control has to be
capable of detecting such defects.

As a result, we will de�ne the term surface defects that serves as a more general
class of defects that includes all the appearance defects present on the surface of the
wheel, either local or global defects, and some technical defects that are related to
the measurements of the key elements mentioned above.

2.2.2.2 Current setup: Manual visual inspection

At the end of the wheel's manufacturing cycle, the quality of the wheel surface is
very often inspected and evaluated by human inspectors. Their main role is to in-
spect each and every product manufactured and to decide whether the �nal product
is acceptable or not for delivery to the customer. A single operator might have
to inspect thousands of manufactured products during the day. During the prod-
uct inspection process, inspectors are should have a list of potential defects, which
includes speci�ed details about geometrical features, severity measure, and the ac-
ceptance limits of a number of types of defects. It usually also contains illustrations
and photos to provide assistance to the understanding of each defect. However,
these acceptance limits are not usually the same for all produced wheels. A wheel
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industry will have many di�erent types and designs of wheels to adapt to the de-
mand of di�erent customers. And every customer may have his own speci�cations
and acceptance limits that have to be respected. This makes the inspection phase
a complicated process for inspectors.

The main advantage of human evaluation is its great �exibility with regard to
the various types and shapes of appearance defects that can be present on the sur-
face of the wheel. However, human inspection faces major disadvantages. First the
variability of decision for an inspector over time (factors related to fatigue and moti-
vation) and the variability of decision between di�erent operators for the evaluation
of the same wheel. Another factor that is used to study the e�ciency of human
inspection is the repeatability of decision of the same inspector when evaluating the
same product various times [15, 16]. These disadvantages result in an uncertainty
and a lack of precision for the detection of certain appearance defects. Indeed, eval-
uating the aesthetics of a product is very subjective, and can di�erentiate from an
operator to another. As for the inspection of dimensional defects, this task cannot
be done by human inspection. Dimensional defects are usually very small (few mil-
limeters), thus unnoticeable and undetectable by the human eye within few seconds.

To overcome these di�culties, automated inspection has proven to be the best
alternative for industries to rely on [17]. The share of variability and subjectivity in
decision-making is eliminated with an automated surface inspection. When testing
the same product multiple times with an automated inspection system, the result
will be the same every time. Furthermore, the higher precision and resolution that
an automated system can reach will enable it to perform better for detecting dimen-
sional defects.

2.3 Non-Destructive Testing for surface inspection

Non-destructive testing (NDT), also referred to as non-destructive evaluation (NDE),
is de�ned as the class of methods used to inspect, examine, and evaluate the con-
dition of a part, a material, or a system for non-conformity, or di�erences in char-
acteristics without destroying its usability and future usefulness. The goal of NDT
techniques in therefore to detect any defects that may a�ect the availability, safety of
use, or more generally, the conformity of a product to ful�ll its intended use [18,19].
In addition, NDT techniques can be used for dimensional inspection, as to measure
the thickness of a part or a coating, or even to determine the physical properties of
a material such as, for example, its electrical conductivity. These techniques play
an important role in the quality control process, not only the quality of the �nal
product, but also the quality of the assembly parts as well as the initial raw materials.

Since the beginning of the 20th century, the development and application of NDT
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Figure 2.6: General concept of NDT techniques

techniques in di�erent industrial sectors have been growing rapidly. It has now be-
come an essential part of every industry at all stages of the production process. New
techniques are being regularly introduced to respond to various industrial problems
in various sectors, including nuclear, aerospace, civil engineering and automotive
industries. The speed and reliability of the employed techniques have been essential
for reducing maintenance costs and optimizing the lifetime of installations. The
innovation in NDT was made possible by the development of electronics, sensors
and especially information technology and computer science tools. These tools have
improved the application of NDT by introducing the possibility to model the physi-
cal phenomena on which the di�erent inspection methods are based. This modeling
allowed the design of sensors optimized to answer speci�c industrial problems. In
addition, signal and image processing techniques, and data mining, played a very
important role in the development of the NDT.

Various NDT techniques have been developed, each one having its own advan-
tages and limitations making it more or less appropriate for a given application.
In general, they all consist in exciting the inspected product by a suitable physical
signal and collecting the response data either physically or through a sensor. Then,
processing the received data will help characterize the condition of the product and
more particularly the presence of defects. Figure 2.6 illustrates this general concept.

In the literature, NDT methods are usually classi�ed into two families according
to whether they favor the detection of surface defects or internal defects [20, 21].
This is the most important factor to respect when choosing the appropriate method
to perform the intended inspection task. However, this choice heavily depends on
other important criteria as well. Some of them are physical constraints such as the
nature of the inspected parts (material, shape, etc.) and the environment in which
the inspection is to take place (thermal, chemical, pressure, radioactivity, etc.). And
other related to the cost of the proposed method (material, labor, time consuming,
etc.).

For the speci�c application of wheel surface inspection studied in this work, the
current setup employed by wheel industries is the visual inspection, or as referred to
in the NDT community, the visual testing (VT). This choice is rational as the VT
is simple and practical for surface inspection applications. However, it is important
to review other NDT techniques to investigate their ability to perform better in the
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case study presented in this work. It is normal to focus only on NDT methods that
can be automated, and that are used for surface defect detection. We will present
the most widely used methods in this category. But �rst, in order to choose the
most suitable among these methods to perform the task, we will start by listing the
relevant choice criteria for our case, according to which each method will be judged.
Some of these criteria are imposed by the speci�c characteristics of wheel surface
inspection, while others are de�ned by the industry.

• Inspection tasks: What is the inspection process searching for ? In our
case, the detection of surface defects is the main task. A detailed description
of the variety of surface defects has been presented in section 2.2.2.1, where
it has been shown that the inspection system must be able not only to detect
various local appearance defects, but also deal with global defects, and perform
measurements of certain geometrical forms.

• Ease of automation: As discussed earlier, the automation of the inspection
procedure is essential to improve the reliability of the inspection. Therefore,
an important requirement for the inspection system is the ability to autom-
atize the entire procedure (all the steps of the inspection). For some NDT
techniques, the automation can be very costly and may require large machin-
ery and installations, which is not preferable for the industries, as they usually
tend to reduce the costs and may have limited space for installation.

• Product handling: Products that reach this step of inspection are �nished
products that will be delivered to customers, hence must be handled accord-
ingly during the inspection. Preferably, a contactless NDT technique is to be
used to guarantee that the product will not be altered in any way. Addition-
ally, some NDT techniques involve a pretreatment step before the inspection.
Most of these treatments of the surface of the wheel may weaken its integrity
and diminish its aesthetic appearance.

• Record keeping: The main purpose of the inspection procedure is to min-
imize the customer returns for defective products. When a customer returns
with a complaint about a defective product that he received, the industry has
to be able to properly respond to his complaint and to verify the cause of
this mistake. As a result, it is necessary to keep a record for all the prod-
ucts that have been inspected and delivered to customers. This computerized
record must contain a maximum quantity of information to describe the prod-
uct (wheel type, wheel color, conformity, etc.) and ideally enable a second
evaluation.

• Industrial requirements: From an industrial point of view, many other
aspects of the inspection system have to be taken in consideration, mainly
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the cost of inspection and the environmental impact. First, the cost of in-
spection does not only refer to the �rst installation of the machinery, but also
include the continuous costs of maintaining the inspection process. Some NDT
techniques require a continuous supply of resources (chemical materials, water
supply, etc.) in order to perform the inspection. On the other hand, indus-
tries are required to follow certain environmental regulations throughout the
production. Many NDT techniques come with warnings regarding to their en-
vironmental impact and workplace hygiene (precautions concerning the risks
of �re, explosion, pollution of water. etc.). These precautions have to be fully
respected at all time.

2.3.1 Penetrant Testing

Penetrant testing (PT) is one of the oldest and most widely used NDT methods for
the detection of surface defects in solid materials. Its popularity can be attributed to
the fact that it can be applied to virtually any material, magnetic or non-magnetic,
provided that its surface is not extremely rough or porous. The variety of materials
that are commonly inspected using this method extends to steel [22], ceramic [23],
aluminum [24], carbon �ber/epoxy composite [25], polymer [26], and even rocks [27].
It is becoming more and more important in many industrial sections, including the
automotive industry [28], and more recently the aerospace industry [29�31].

There exist several PT techniques applied for di�erent applications. However,
the common fundamental steps of all these procedures are illustrated in �gure 2.7.

Choosing the suitable technique for PT is a crucial step. In fact, the PT proce-
dure can vary from an application to another depending on various factors including
the size and the material of the inspected product, its surface roughness and condi-
tion, the type and size of discontinuities that are expected, and the environmental
conditions under which the inspection is performed. In a general manner, the PT
procedure consists of successive steps summarized as follows [32]:

• Pre-cleaning: It is vital that the product to be inspected is perfectly clean.
Its surface must be dry and free from any dust, rust, grease, oil, painting,
water or any other pollution. Otherwise, their presence may restrict the entry
of penetrant and can very easily lead to serious discontinuities being falsely

Penetrant application Excess penetrant removal Developer application 

Figure 2.7: Principle of the penetrant testing technique
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detected. Pre-cleaning methods that can be used to clean the surface vary
depending on the material and what is required to remove. Some of these
methods are mechanical, such as brushing or abrasive blasting, but they are
not considered as an adequate solution, as they might cause small surface
cracks to be closed. An alternative more suitable solution is to apply chemical
methods that are often done using cleaning solvents that allow a quick drying.

• Penetrant application: The penetrant can be applied to the surface of the
inspected product in virtually any e�ective manner. That includes spraying,
brushing, electrostatic application, dipping the part into the penetrant, im-
mersion, or just pouring it on the surface. It is important to ensure that
the area of interest is completely covered with the penetrant solution. The
main concern is to ensure that the penetrant solution does not dry during the
penetration time, referred to as dwell time, which is the period of time from
when the penetrant is applied to the surface until it is cleaned out. Typical
dwell times are between �ve and sixty minutes, and are usually de�ned by the
penetrant supplier, and may vary according to the speci�cation and type of
discontinuity being sought.

• Excess penetrant removal: This is considered to be the most delicate step
of the PT procedure, because the excess penetrant must be carefully removed
from the inspected surface while removing as little penetrant as possible from
discontinuities. If this step goes wrong, discontinuities will not be properly
detectable afterwards, and the process must start over. In general, there are
three di�erent techniques for excess surface penetrant removal: direct rinsing
with water, cleaning with a solvent, or post-treatment with an emulsi�er and
then rinsed with water. The choice of the appropriate removal method depends
on the type of penetrant that has been used.

• Developer application: A uniform and thin layer of the developer is then
applied to the entire inspected surface. It acts as a blotting agent, drawing
penetrant out of the discontinuities to the surface where it will be spread over
a larger area, thus more visible. The developer must be given su�cient time
to draw the entrapped penetrant from the discontinuity out to the inspected
surface. In some case, this time may reach as long as sixty minutes. Depending
on the developer type, it may be applied either by dusting, dipping or spraying.
There are four main types of developer: dry developer, water-based developer,
solvent-based developer, and the rarely used �lm type developer.

• Inspection: After the development time, the surface is ready to be inspected.
In an automatic setup, this is done using a camera, with an appropriate light-
ing that depends on the penetrant dye type that has been used. Penetrants
based on a �uorescent dye are mostly used as they are considered to be more
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sensitive than other types of dye. In that case, the inspection has to be carried
out in a dark booth, with ultraviolet lighting, where the penetrant will have
a bright glowing yellow/green color.

• Post-cleaning: After the inspection, the �nal step in this process is to thor-
oughly remove all traces of any remaining penetrant and developer from the
surface of the inspected product prior to it being delivered to the customer.

It is clear that PT is substantially more sensitive than a purely visual inspection,
mainly because of the spreading and glowing characteristics of the dye. However,
it su�ers some major drawbacks in general, and is especially not applicable in the
application studied in this work.
First, the limitations of PT are mainly related to the inspected product itself. The
shape of the inspected surface has to be simple to be able to perform a PT [33,34].
This is not the case for wheel inspection as the surface of the wheel has a complex
geometrical design, with multiple gaps and holes in which the penetrant can get
trapped. In addition, PT is not preferable for the inspection of coated surfaces for
fear of damaging the paint by the use of chemical products.
Secondly, several limitations of PT are related to its process. It is relatively slow,
with many environmental risks, and can hardly be crried out in a fully automatic
manner. In the last decade, constant e�orts have been dedicated to automate the
whole procedure [31,35]. An important advantage of this automation is the decline
in environmental issues that comes with the PT. However, it is not possible to
eliminate all the potential hazards due to the chemicals involved in the process [36].
As a consequence, many regulations and standards are imposed on industries that
use PT. In addition, the PT procedure requires a continuous supply of materials
and chemicals, such as the dye or the developer, which implies continuous costs for
the industry to maintain the inspection process.
Finally, a crucial downside of PT that makes it inapplicable for wheel inspection is
the fact that it can only locate discontinuities that are open to the surface (cracks).
All the defects that do not break the surface of the wheel cannot be detected, such
as bumps, stamps, or imprints.

2.3.2 Magnetic Particle Testing

Magnetic particle testing (MT) is a relatively simple NDT technique that is pri-
marily used for detecting discontinuities located at or near the surface of magnetic
materials. MT is governed by the laws of magnetism, thus restricted to the in-
spection of materials that can support magnetic �ow, or ferromagnetic materials,
such as iron, nickel, cobalt, etc. It is widely used in many industries including the
automotive industry [37,38].

The basic principle of MT is the disturbance of magnetic �elds by surface de-
fects in magnetized ferromagnetic materials, and is illustrated in �gure 2.8. When a
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Figure 2.8: Principle of the magnetic particle testing technique

material is magnetized, the lines of force in its internal �eld will tend to distribute
themselves evenly through the material, provided that the material is homogeneous.
The presence of a discontinuity presents an interruption to the �eld, thus an increase
in reluctance. The electric �ow prefers the path of least reluctance and will there-
fore redistribute themselves in the material by bending around the discontinuity.
The defect will cause some of the lines of magnetic force to depart from the surface
and thus to create a magnetic leakage �eld. In order to produce a leakage �eld,
a discontinuity must interrupt the �eld usually considered to be within 45◦ to the
perpendicular. If, for example, a crack is oriented perpendicular to the �ux lines
the e�ect of disturbance of the magnetic �eld is at a maximum compared with other
orientations. It follows that in order to detect a discontinuity with any orientation,
the part must be magnetized in at least two orthogonal directions [39].

The MT procedure consists of three main steps. The �rst step is to magnetize the
product under inspection. Many magnetization techniques can be used, including
magnetic �ow, current �ow, coil, and central conductor technique. Several factors
will dictate which magnetization technique is the most relevant for a particular test.
The primary factor is the most likely direction of possible discontinuities. It is im-
portant to understand that the orientation of defects relative to the magnetic line of
�eld determines if the defect can or cannot be detected. The second step is to apply
iron particles, either in a dry or wet suspended form, on the magnetized surface.
These particles are attracted to the area of �ux leakage, creating a visible indication
of the �aw. The magnetic leakage �eld will hold the particles in a ridge on top of
the crack. By taking advantage of this e�ect, an accumulation of magnetic particle
forms, which is much wider than the crack itself, thus turning an otherwise invisible
crack into a visible one. In either case, dry or wet particles, the choice has to be
made between color contrast or �uorescent particles techniques. Most of the MT
techniques prefer the use of �uorescent particles, due to the increased sensitivity
provided by the higher contrast ratio. Finally, the inspection task is carried out,
usually with a camera, to decide on the conformity of the product, after which a



24 Chapter 2. Quality control

demagnetization is usually needed [19].

The MT technique has been proved to be one of the simplest and most sensitive
methods in NDT. Furthermore, and unlike some other NDT techniques, MT has
shown a very high potential to be automated and integrated in the production
line [37, 38, 40]. With the aid of digital image processing, the procedure becomes
fully automatic [41]. However, it has some major limitations that restrict its use in
many industries. Probably the single largest limitation to MT is the fact that it is
applicable only to ferromagnetic materials, and cannot be used to inspect nonferrous
materials, such as aluminum. As a result, in the wheel industry for example, only
steel wheels manufacturers are able to use the MT technique. In addition, some MT
techniques, more precisely the direct magnetization techniques, could face some
di�culties with painted products, as the paint coating would reduce the electrical
contact.
Another limitation for the MT technique is its weak �exibility to the inspected
product geometry. When inspecting products with complex shapes, the �ux �ow
through the product is not uniform, and di�cult to predict. This becomes even
harder in case where the product design contains abrupt changes such as holes
or keyways. This will probably cause �ux leakage and thus produce non-relevant
indications that make the interpretation di�cult.
A �nal downside that should be noted is the health, safety and environmental impact
of the MT method. More details can be found in [42,43].

2.3.3 X-Ray Radiographic Testing

It is believed that the radiographic testing (RT) was the basis and the start point
of the NDT terminology, and it all started with the discovery of X-ray in 1895 [44].
It involves exposing the product to be inspected to penetrating radiation (X-ray
or gamma radiation) so that the radiation passes through the product into a de-
tector medium placed on the opposite side of that product [45]. The choice of the
proper radiation for the intended application is mainly related to the ability of the
radiation to pass through the material. Hence the choice depends heavily on the
material characteristics and thickness. For wheel inspection, the usual choice in the
industry is the X-ray radiation. In this case, the classical detector is an X-ray �lm.
However in recent years the transition has been made to electronic sensors. The
radiation passing through the inspected object and into the detector de�nes the test
results. Darker areas in the received image means that more radiations have passed
through the product, and lighter areas means that less radiations have penetrated.
If there is a void or defect in the part, more radiation passes through, causing a
darker image on the detector. Another aspect of the RT is that it can be used for
volumetric inspection of industrial products. In fact, an object which has a high
density, i.e. a thicker object, will absorb more radiation, thus produces lighter areas
on the received image, and, on the other hand, if an object has a low density, it will
absorb less radiation producing darker areas on the received image.
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NDT with X-rays, known as X-ray testing, can be considered as a visual test-
ing technique. The distinction, however, is made in the NDT community due to
the fact that X-ray testing uses radiation as a transmitter. It is widely used in
many applications such as inspection of automotive parts, including wheels [46�48],
inspection of blades in aircraft and turbines [49] quality control of welds [50, 51],
cargo and containers inspection [52,53], baggage screening [54], and quality control
of electronic circuits [55] among others [56].

In order to achieve e�cient and e�ective X-ray testing, automated and semi-
automated systems are being developed to execute this task. Compared to manual
X-ray testing, automated systems o�er the advantages of objectivity and repro-
ducibility for every test. In recent years, the most widely used X-ray imaging systems
employed for NDT in industries are digital radiography (DR) and 3-dimensional
computed tomography (CT). Instead of the traditional radiographic �lm, these tech-
niques use electronic sensors that allow the production of digital X-ray images by
converting the X-ray energy into an electrical signal [57]. The most common sen-
sors are amorphous silicon or selenium �at-panel detectors which are based on a
charged-coupled device (CCD) camera. These panels are simple to use, and rela-
tively fast to support a real-time inspection. The X-ray images are captured by the
�at panels and then recorded digitally, which will allow for them to be processed at
any time [58]. In fact, the 3D CT technique is simply an extension of the DR. It
provides a cross-section image of the inspected product so that each object is clearly
separated from any others. This section-by-section reconstruction makes it possible
to achieve a complete exploration of the inspected product, but is, however, very
time consuming, and thus cannot be applied in some industries.

X-ray testing can be di�cult to use on components with irregular surface areas
since those irregularities can in�uence the thickness of the materials that are being
evaluated. Despite that, many solutions using X-ray testing for the inspection of
wheels can be found in the market. Although they can detect surface defects and
cracks in certain orientations, they are mainly used to �nd subsurface volumetric
defects. Continuous development is done to o�er fully automatic X-ray inspection
systems for wheel inspection based on image processing methods. Most of these sys-
tems use multiple view inspection techniques to overcome the wheel irregularities,
and to detect defects with di�erent orientations [47, 48]. In such systems, several
images of the wheel with di�erent views are acquired in prede�ned precise positions.
The number of views required for the inspection depends of the design and size of
the wheel, and the test speci�cations. Detailed description of such systems can be
found in [59�61].

Nevertheless, X-ray testing is not convenient for the inspection of the wheel aes-
thetics. This is mainly due to the speci�c characteristics of the aesthetic defects that
are present on the wheel surface. Such defects, like painting drops and smear marks,
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have a negligible or nonexistent impact on the X-ray radiation passing through, com-
pared to the impact of the wheel material. As detailed earlier, an important factor
for the X-ray detection is the density of the inspected object. For aesthetic defects,
their density compared to the density of the wheel metal is insigni�cant. Thus the
X-ray radiation will be greatly a�ected by a slight metal irregularity on the wheel
surface, but not su�ciently a�ected by the presence of an aesthetic defect, such as
a complete lack of coating. As a result, the contrast introduced by the presence of
such defects in the X-ray image of the wheel will not be relevant.

2.4 Visual Testing

Visual testing (VT) was the �rst NDT technique used in industry, and is by far the
most commonly used test method. In fact, because most NDT techniques require a
�nal visual inspection phase, VT is inherent in most of theses techniques, as the ones
described in the previous section, but was the last method to be formally acknowl-
edged as an independent NDT method [19]. As its name indicates, VT involves the
visual observation to examine and evaluate the surface condition of a product, from
discontinuities, such as corrosion or cracks, to the coating condition of painted sur-
faces. It can be applied successfully to virtually anything from man-made products
and structures to organic matter. This last feature enable the VT to be used in
almost any industry where a �nal inspection is required.

In its basic de�nition, VT is simply the inspection of a surface with eyesight.
However, in the case of NDT, it has a much broader meaning. It became a reg-
ulated inspection technique, which involves a training program for the operators,
and requires several additional components to properly perform the inspection task.
Probably the most important one is the lighting system, as in all cases of surface in-
spection, the lighting conditions are essential for the reliability of the visual control.
In general, one can di�erentiate between two main types of VT inspections [62].
The basic type is the direct visual testing, where the optical path between the in-
spected surface and the operator's eye is not broken, hence it is only available when
the inspected product is directly accessible by the operator. For such inspection
scheme, it is essential to guarantee optimal inspection conditions, such as environ-
mental and lighting conditions, for the inspector to be able to detect the smallest
anomalies comfortably. In addition, when inspecting a variety of surfaces, operators
can bene�t from some simple visual aids, such as magni�ers or portable measuring
devices, to enhance their views and enable a better inspection.
On the other hand, the second type of VT is the remote visual testing. It is charac-
terized by an interrupted optical path between the operator's eye and the inspected
product. This type of inspection is usually used to access ares on the product surface
that the operator cannot reach, or when the inspected product is located in haz-
ardous locations for the human inspectors, such as high pressured or high radiation
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rooms. Hence, it is applied whenever the eye cannot obtain a direct, unobstructed
view of the inspected surface without the use of another optical instrument or de-
vice. Such devices vary from telescopes, borescopes, microscopes, and most recently
digital cameras. In general, a monitor is used to display the acquired image for the
operator to perform the inspection task. It is also possible to digitally record the
image for future inspection.

Eventually, it can be seen that the VT is rather a simple technique that enjoys
many advantages. It usually does not require expensive equipment, and can be used
to examine virtually any component anywhere on the surface. However, it faces some
major drawbacks, mostly related to the human factor as discussed in section 2.2.2.2.
In many cases, especially in harsh environments, the inspection tends to be tedious or
di�cult, even for the best trained operators. In addition, human operators are slow
compared to modern high-speed production rates. To overcome these drawbacks,
automated visual inspection has proven to be the best alternative for industries to
rely on [17,63], in which case the inspection system can acquire image data, process
and analyze this data and make an evaluation automatically.

2.4.1 Automated visual inspection

It has always been a dream for manufacturing industries to build a machine that is
able to �see� and describe what it saw. Such a machine does not necessarily attempt
to emulate the human vision system, but rather comply with various industrial re-
quirements, such as the high speed, low cost and high reliability. This concept has
been known in the industrial world as machine vision [64].

Machine vision traditionally refers to the use of computer vision in an industrial
or practical application or process where it is necessary to execute a certain function
or outcome based on the image analysis done by the vision system. More simply,
the automatic extraction of information from digital images for process control or
inspection of manufactured products. Over the last years, machine vision has played
an essential role in controlled industrial applications. It provides innovative solu-
tions in the direction of industrial automation. A variety of industrial applications
have bene�ted from machine vision systems to improve their manufacturing pro-
cesses, including among others, electronics component manufacturing [65,66], fabric
inspection [67], food sorting [68�70], assembly systems [71], integrated circuits in-
spection [72], etc. . . .

In general, machine vision applications can be classi�ed into four main cate-
gories [73]: process control, parts identi�cation, robotic guidance, and automated
visual inspection (AVI). Visual inspection is the oldest category of machine vision
applications, and it presently represents the widest variety of installed industrial sys-
tems. AVI systems are typically more repeatable than human inspectors, and they
can often inspect products at a far higher rate. They are typically used to evaluate
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the aspect of �nished products, while providing numerical data about the detected
defects features. In addition, they are used to perform dimensional measurements
to verify the integrity of the inspected product. In the literature, AVI systems can
be further classi�ed according to the type of inspection performed, such as inspec-
tion of dimensional quality, surface quality, structural quality, or operational quality.
Most of the time, AVI systems are designed to perform two or more types of quality
inspection at the same time. The survey in [74] provides several examples of indus-
trial vision systems under the previous classi�cation. Other reviews can be found in
the literature that specialize in a single application �eld, such as [75] for automatic
PCB inspection, or [76] for automatic fruit harvesting.

2.5 Conclusion

The quality of manufactured products has always been a major concern for many
industries. With recent technological advancements, new quality control techniques
are being developed to tackle this concern. Accordingly, wheel manufacturing indus-
tries have managed to reduce the customer returns for technical defects, but were
not able to achieve the same for appearance defects. This is due to the fact that
the quality inspection of appearance defects on the wheel surface is still a manual
process conducted by operators. This manual process faces considerable limitations
which weakens it e�ciency and make it unreliable for inspection. Hence the ne-
cessity to �nd new inspection methods to meet the inspection requirements of the
industry.

This chapter reviews the most widely used NDT techniques for surface inspec-
tion. The advantages and disadvantages of each technique are then evaluated based
on the pre-de�ned requirements of the inspection system. It is concluded that the
automated visual inspection technique is the most appropriate for our case, as it
meets all the requirements. In the following chapters, it is proposed to design a
complete AVI system, based on the practical requirements of the present industrial
context, to perform the wheel surface inspection task.



Chapter 3

Automated visual inspection

system

Whether it was the inspection of fruits and vegetables [77], or the inspection of
steel surfaces [78], the overall con�guration of an AVI system is always the same.
A lighting system generates light in a speci�c manner to illuminate the inspected
object with the aim to improve the quality of the acquired images. The illuminated
scene is projected onto the sensor of a digital camera, which transforms the light
into electrical signals, to create a digital image. A lens is typically added to the
camera to de�ne the �eld of view and the area of the scene to capture. The re-
sulting digital image is then sent to a processing platform that controls the whole
AVI system. With the help of image processing techniques, the processing platform
analyzes and processes the acquired images to give the �nal inspection information
about the conformity of the inspected object.

So as it can be seen, an AVI system is composed of two main subsystems.
First, the image acquisition subsystem which is hardware based. It has the role
of transforming the optical scene into an array of numerical data received by the
processing platform. In total, the four key elements that can always be found in
this subsystem are the camera, the lens, the lighting system, and the processing
platform. In many cases, several of each component may be needed depending on
the speci�c application.
Second, the image processing subsystem which is software based. It mainly consists
of image processing methods that are developed to analyze the acquired data and
give the �nal inspection result.

It is worth noting that a complete AVI system also incorporates multiple soft-
ware solutions which have the role to control the di�erent elements of the system,
including the cameras and the lighting system.

In this chapter, we will only focus on the image acquisition subsystem. More
precisely, this chapter will discuss in detail the challenging task of designing an AVI
system for the real-time surface inspection of �nished wheels.

To this purpose, we will adopt a work plan that is typical for the design of such
systems. The �rst step is to de�ne and well-understand the system and inspection
requirements, in agreement with the constraints imposed by the industry. Then
start with a conceptual design that suggests some �rst ideas on how to meet the pre-
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de�ned requirements, to �nally outline the basis of the whole system. Afterwards, it
is possible to choose the suitable hardware for the AVI system, i.e. the cameras, the
lenses, the lighting system, and the processing platform. Finally, the prototype of
the complete system is built based on the conceptual design, during which possible
adjustments are probably required to obtain satisfactory results. When the �nal
installation setup is decided and installed, the software based inspection process
can start.

3.1 Inspection requirements and conditions

When designing an AVI system, the �rst thing to do is to ask the question: What
exactly does the system need to achieve, and under which conditions ?

Indeed, the general requirements are that any AVI system must be fast, cost
e�ective and reliable. However, to be able to put together an e�cient AVI system,
a more in depth description of the inspection requirements is necessary. It is ab-
solutely essential for the designed system to be tailored to the speci�c demands of
the application. In this respect, the complete design process must be driven by the
application requirements and conditions. Therefore, it is important to specify the
problem as clearly and precisely as possible.

Real-time surface inspection of �nished wheels faces a number of challenges.
Some are imposed by the speci�c characteristics of wheel surface inspection, while
others are imposed by the industry. In what follows, we will present the major
inspection requirements and conditions that will have the utmost e�ect on the design
of our inspection system. In addition, we will suggest some �rst possible solutions
to some of these problems, which will help put forward the conceptual design of the
system. Of course, the �nal system could be very di�erent from that �rst envisaged.

1. Wheel surface complexity: The surface of the wheel is not a �at surface. It
rather has a complex geometrical design, with irregularities in di�erent directions.
Those irregularities may sometimes hide defects when inspecting the wheel from
a single direction. In addition, multiple elements are present on the wheel surface
that have to be identi�ed and inspected. A good example of such elements is the
stamping on the wheel surface, which usually contains various information on the
manufactured wheel. Hence, the imaging system should ensure the visibility of
these elements regardless their location on the wheel surface.
Therefore, a probable solution is to use multiple cameras to take images of the
wheel from di�erent viewpoints simultaneously. These viewpoints have to be cho-
sen in a way to allow a total inspection of the complete wheel surface, despite its
complexity. Furthermore, a bright lighting source could be required to properly
illuminate the wheel, ensuring the good visibility of all the elements present on
its surface.

2. Wheel surface texture: At the �nal stage of the manufacturing process, all
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the wheels are painted through electro-coating that gives the wheel a black color.
Afterwards, an important amount of the �nished wheels are �nally coated with a
glossy paint layer, with di�erent colors, to improve the style rendition of the wheel
surface. This paint topcoat usually renders the wheel surface more re�ective than
regular metal surfaces. As a result, any direct lighting on the wheel surface will
generate some light re�ection artifacts in the wheel image that could result in
false alarms during the detection procedure.
Therefore, it is important to design a lighting system that is suitable for glossy
products, to avoid generating light re�ections on the wheel surface. Ideally, for
any type of application, a uniform illumination of the inspected product is always
favored. In addition, due to the variability in topcoat colors, the lighting system
should enable a correct recreation of real colors in the resulting wheel image.

3. Variability in wheel designs: During the day, a wheel industry may produce
over 20 000 wheels with a large variety in types and designs. This variety could
reach up to 100 di�erent designs of manufactured wheels. Not only the design of
the wheel surface that varies, but more importantly the size (height and width) of
the wheels may largely di�er. This parameter plays a major role in de�ning the
�eld of view of the imaging system. In our case, the width of the wheels ranges
from 13 inches diameter, to 17 inches diameter for the biggest wheel design.
Accordingly, the AVI system should be designed in a way that enables the in-
spection of the whole surface regardless of the wheel design. The installation of
the system should especially be able to adapt to the wheel width and height.
A possible solution could be to design an adjustable installation setup of the
imaging system over the conveyor belt. This will enable to modify the distance
and angle between the cameras and the inspected wheel according to the wheel
design.

4. Variability in defect types: There is a large variety of defect types that are
located on the wheel surface. This variety of defects is usually studied by the
size of the defect, its shape, and its probable cause. Some of these defects can be
identi�ed as scratches, marks, geometrical deformation, etc. . . . However, several
new defect types can appear on the wheel surface upon any modi�cation in the
production process. Hence, the AVI system should ensure the detection of surface
defects regardless of their type. The only requirement that is de�ned is that in
this work, the smallest defects that are wished to be detected have a size of about
2 mm in a single direction.
This last requirement is very important for the design of the imaging system.
In fact, for a speci�c detail to be available for inspection, the resolution of the
camera must be better than the size of the detail itself. Thus, the resolution will
be de�ned partially in correspondence with the order of magnitude of the smallest
defects that are intended to be detected on the wheel surface. On the other hand,
from a software point of view, the defect detection method to develop should be
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general enough to be able to adapt to the variability, not only in defects, but also
in wheel surface textures.

5. Productivity conditions: In order to increase the productivity and maintain
it above a certain limit imposed by the industry, the wheels do not stop under
the AVI system, but are rather moving at a constant speed of about 1m/s. This
is a major challenge to address when designing the imaging system. Indeed,
a high quality inspection is not possible without a high quality image. Any
type of blurring or distortion in the acquired image will de�nitely decrease its
quality, thus the overall inspection e�ciency. Additionally, when capturing the
images of the di�erent wheels, they should ideally be at the same position every
time. Otherwise, the di�erent images will not have similar pro�les during their
inspection, which makes the detection method much more complex.
Consequently, the AVI system must be able to capture the image of the moving
wheel at the precise moment when it passes through. Furthermore, it is essential
to use cameras that are adapted to capture images of moving objects without
any distortion in the resulting image.

6. Installation conditions: As the imaging system has to be installed over the
conveyor belt, the space is restricted. Accordingly, in our case, the allowed dis-
tance between the camera and the inspected wheel ranges between 550 mm and
600 mm.
Therefore it is important to keep in mind these conditions while designing the
installation setup of the imaging system. On the other hand, the choice of some
hardware will also be a�ected by these conditions. For example, the lenses for
the cameras have to be suitable with the dimensions of the wheel, the inspection
distance, and the camera characteristics.

3.2 Camera selection

The �rst practical decision to make on the way to design an AVI system is the
choice of the suitable camera. And the best way to start is to ask the question:
What should the system be able to �see�. This question does not only concern the
shape and size of the inspected object, but also the level of detail required to perform
a proper inspection. Following the inspection requirements presented in section 3.1,
it is clear that many parameters will have an impact on the �nal decision. Correctly
identifying these parameters will help de�ne the necessary speci�cations that the
camera should have in order to deliver precisely what is required.

In general, cameras that are designed to perform quality inspection have high
speci�cations compared to regular cameras. Still, with this high performance, such
cameras are usually small in size to be able to �t in any type of installation. In most
cases, they are additionally customized to endure harsh conditions that potentially
exist in industrial environments. The term �industrial camera� is formally used to
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refer to such type of cameras. In fact, the main bene�t of industrial cameras is that
they enable the user to receive the acquired images as uncompressed �raw� data that
are not processed in any way. This type of image is generally preferred during the
image processing stage, as it guarantees that no information is lost during the im-
age acquisition. This will result in a more accurate inspection of the captured scene.

In recent years, a new type of cameras, referred to as smart cameras, has been
growing in popularity. The smart camera is de�ned as a complete or nearly com-
plete vision system, contained in the camera body itself. Not only does it capture
images, but also uses computer vision technologies to process the image. Although
this might seem like a huge advantage over standard industrial cameras, smart cam-
eras are not designed for general purpose but rather for particular applications [79].
Therefore, they are usually not used in AVI systems, as they are limited in capabil-
ities and do not o�er the �exibility that a complete vision system could o�er.

In what follows, we will discuss the camera selection process, exploring in detail
various factors that play essential roles in the �nal decision.

3.2.1 Area scan or line scan

When designing a machine vision system, more precisely an AVI system, we are
confronted with seemingly endless options. Perhaps the most critical decision is the
choice of the scan technique. There are two subdivisions of scan techniques within
the world of industrial cameras: line scan cameras and area scan cameras. While
both perform a similar role, these technologies are miles apart in how an image is
captured. The question of whether an area or line scan camera should be used is a
question of the speci�c application in which they will be used.

An image is composed of a speci�c number of lines. Line scan cameras use one
sensor comprised of just 1, 2 or 3 lines of pixels. As the object moves past the
camera, or the camera moves over the inspected object, the image data is captured
line by line, with the individual lines then reconstructed into an entire image during
the processing stage.
Since line scan systems require parts in motion to build the image, they are often
well-suited for products in continuous motion, or high-speed applications. They
are thus best employed to inspect rolled or sheet objects, mainly fabric inspection.
In [80], a review of automated fabric defect detection systems showed that most of
the current setups for such systems are based on a line scan camera, in order to
ensure a high-speed inspection. Many examples of such systems have been reported
in the literature [81�84] Additionally, in [81], the authors described the advantages
of using the line scan camera over an area scan camera for fabric inspection. They
concluded that line scan cameras should be used in the analysis of moving fabric,
while area scan cameras should only be used in the analysis of static fabric, to avoid
the blurring e�ect in the acquired images. Indeed, line scan cameras can obtain im-
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ages from the fabric surface area at high speeds in the form of lines. However, they
must be synchronized to the moving fabric by means of an encoder to obtain the
true movement direction of the manufactured fabric. This is sometimes a complex
task to assure an accurate image-line triggering for line scan cameras.
Other applications that use line scan cameras to inspect sheet objects include con-
veyor belt inspection [85�87] and steel surface inspection [88]. In all these previous
applications, the camera is usually �xed, and the object is moving across it to cap-
ture the whole image. In other applications that adopt the line scan technique, the
inspected object is the one stationary, and the camera is moving across it. Such
applications include street inspection tasks, and the evaluation of the concrete in
tunnels and bridges, where the camera is attached to a vehicle that moves over the
inspected area. For example, in [89] and [90], a line scan camera was used to design
a vehicular inspection system for detecting respectively road pavement defects, and
concrete cracks in a tunnel. The common features that all these cases share is that
the inspected surface cannot �t in a single image.

In contrast, area scan cameras, also known as matrix cameras, are equipped with
a rectangular sensor featuring numerous lines of pixels that are exposed at the same
time. The image data is thus recorded in one single step, and is also processed in the
same way. They serve indeed a more general purpose, hence are used in the majority
of machine vision systems. However, they are best suited towards applications where
the object is stationary, even if only momentarily, or moving at a slow pace. They
are usually the most suitable techniques when inspecting individual objects, where
a single image is su�cient to capture the whole area of interest. Uninterrupted
capture of continuous materials by an area scan camera can be complicated and
time consuming, as it is achieved only by capturing overlapping images, and thus
requires software to crop each individual image, eliminate distortion and assemble
the images in the correct sequence.

In certain applications, line scan systems have speci�c advantages over area scan
systems. For example, inspecting round or cylindrical parts may require multiple
area scan cameras to cover the entire part surface. This can be done with only one
line scan camera. Rotating the part in front of a single line scan camera captures
the entire surface by unwrapping the image. Another advantage of line scan cam-
eras is that they can �t more easily into tight spaces for instances when the camera
must peek through rollers on a conveyor to view the bottom of a part. In addi-
tion, line scan cameras can build continuous images not limited to a speci�c vertical
resolution. This allows for much higher resolutions than with area scan cameras,
where the achievable resolution is limited and prede�ned. Indeed, line scan cameras
resolution is only speci�ed in the horizontal axis since the achievable resolution in
the vertical direction will depend on the intended object inspection.

However, line scan cameras have many disadvantages compared to area scan
cameras, and which favored the decision to use this later one in many applications,
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and in this particular work. First and foremost, the inspected wheels arrive indi-
vidually one by one, where the inspection of each wheel has to be done fast before
the arrival of the next one. Hence the bene�t of using a line scan camera for the
inspection of continuous objects is not applicable. In such a case, it is preferable
to use an area scan camera, where a single image is su�cient to capture the whole
area of interest. This will help to save up the time required to build up the wheel
image from multiple line scans, and the use of an external hardware to perform it.
Secondly, area scan cameras can be more easily focused and adjusted to the speci�c
scene compared to line scan cameras. They o�er an easier setup and alignment, and
are usually much cheaper for similar speci�cations. Finally, an inspection system
based on a line scan camera is sometimes di�cult to install depending on the in-
spection settings. The line rate of the camera must be synchronized to the speed of
the moving object. If this is not the case, and the line rate is �xed while the object
speed varies (due to varying conveyor speeds), the object image on the monitor or in
image memory is elongated or compressed. Hence an additional hardware, usually
an incremental encoder, is required to provide the adjustment of the line rate to
match the current speed of the material under inspection.

3.2.2 Monochrome or color camera

On a digital camera sensor, there are millions of pixels. Each pixel has a tiny light
cavity or �photosite� to record an image. When the camera's shutter button is
pressed and the exposure begins, each of these photosites is uncovered to collect
photons and store those as an electrical signal. Once the exposure �nishes, the
camera closes each of these photosites, and then tries to assess how many photons
fell into each cavity by measuring the strength of the electrical signal. The signals
are then converted into digital values, with a precision that is determined by the bit
depth. However, each small cavity cannot distinguish how much of each color has
fallen in, so the sensor can only record gray scale images. This procedure brie�y
describes the functioning of a monochrome camera. Indeed, a monochrome camera
cannot reproduce a color image by itself, but it is possible by the use of an additional
hardware. Characteristics regrading the color will appear on the black and white
images of a monochrome camera through the use of colored illumination. However,
this solution is only limited to a single color. This is also the case when using a
particular color �lter installed on the camera lens. Only the color of this particular
color �lter could be distinguished in the resulting black and white image.

To capture proper color images, a �lter has to be placed over each cavity that
permits only particular colors of light. Most of the current digital cameras can only
capture one of three primary colors in each cavity, and so they discard roughly two
third of the incoming light. As a result, the camera has to approximate the other
two primary colors in order to have full color at every pixel. The most common
type of color �lter array is called a �Bayer �lter�. It consists of three colors of small
�lter: red, green and blue. There are twice as many green �lters in a Bayer array
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to accurately re�ect the way the human eye sees color; it is more sensitive to green
light. The array only passes the intensity of one of the three colors in each cavity
to the sensor. Hence, each pixel represents the information of a single color. This
is referred to as the RAW information. In order to create the �nal color image,
the two remaining colors at each pixel are estimated (interpolated) using the eight
surrounding pixels. This technique is called Bayer demosaicing or Bayer to RGB
Conversion, and it is usually executed in the camera itself. It is the process of trans-
lating this Bayer array of primary colors into a �nal image which contains full-color
information at each pixel.

Unlike with color, monochrome sensors also do not require demosaicing to create
the �nal image; the values recorded at each photosite e�ectively just become the
values at each pixel. As a result, monochrome sensors are able to achieve a slightly
higher resolution. One should also consider whether the quality of a monochrome
sensor outweighs the �exibility of a color sensor. One can always convert color into
monochrome afterwards, for example. Furthermore, with color capture, any arbi-
trary color �lter can be applied in post-production to customize the monochrome
conversion, whereas with monochrome capture, the e�ects of a lens-mounted color
�lter are irreversible. Therefore, a monochrome camera should only be selected if
color is not relevant, since the color �lter on color cameras inherently makes them
less sensitive.
For the speci�c application presented in this work, color images are essential. Man-
ufactured wheels are always painted with a homogeneous color, but it is not limited
to a single color. Indeed, most of the wheels will have either a black color topcoat, a
white color topcoat, or a gray color topcoat. A monochrome image can be suitable
for use with all these colors as they present a variation in the gray level. However,
the wheel could be coated with other colors as well. For example, spare wheels are
sometimes painted with a red color topcoat to separate them. Distinguishing be-
tween a spare wheel and a regular wheel having the same shape and design cannot
be possible unless the color characteristic of the wheel is provided.
An additional reason to use a color camera is simply because operators do often
�nd it easier to look at images in color. Although it is proposed to design a fully
automatic inspection system that does not require human intervention, but it is
wished to create a computerized record of each inspected wheel. When a customer
returns with a complaint about a defective product that he received, the industry
has to be able to properly respond to his complaint and to verify the cause of this
mistake. As a result, it is necessary to keep a record for all the products that have
been inspected and delivered to customers. This computerized record must con-
tain a maximum quantity of information to describe the product (wheel type, wheel
color, conformity, etc.) and ideally enables a second evaluation. To this purpose, it
is important to provide a color image that describes the real aspect of the wheel.
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3.2.3 Sensor type

The next important step involves picking a suitable sensor, built either around
charge-coupled device (CCD) or complementary metal oxide semiconductor (CMOS)
image sensor technology. Both have the same task of transforming light (photons)
into electrical signals (electrons). This information is, however, transmitted by both
sensor types using di�erent ways and means and the design of each is also funda-
mentally di�erent.

In CCD sensors the charges of the light-sensitive pixels are shifted and converted
into signals. The charges of the pixels, which are created by exposure to a semicon-
ductor, are transported to a central A/D converter with the support of many very
small shifting operations (vertical and horizontal shift registers), similar to that of
a �bucket chain�. The transfer of the charges is forced with the support of electrical
�elds, which are created by electrodes in the sensors.

In contrast, in the CMOS sensors, a capacitor as a charge storage is put in par-
allel to each individual pixel. This capacitor is charged with the exposure of each
pixel by its photoelectric current. The voltage created in the capacitor is propor-
tional to the brightness and the exposure time. Di�erently than CCDs, the electrons
captured in the capacitors by the exposure of the sensor to light are not shifted to
a single output ampli�er but are transformed into a measurable voltage directly at
the source by means of each pixel's own associated electronic circuit. This voltage
can then be made available to the analog signal processor.

Unlike the CMOS sensor, the pixels on a CCD sensor use the entire sensor surface
to capture the light, with no conversion electronics placed on the sensor's surface.
This leaves more space for pixels on the surface, which in turn means more light is
captured. This leads to the CCD sensor being more light-sensitive than CMOS sen-
sor technology. On the other side, for CMOS sensors, by using additional electronic
circuits per pixel, each pixel can be addressed, without the charge having to be
shifted as with CCDs. This results in the image information being able to be read
much more quickly than with CCD sensors and that artifacts due to overexposure
such as, for example, blooming and smearing, occur far less frequently or not at all.

In light of the many technological improvements in recent years, the trend on
the sensor market is increasingly pointed toward CMOS technology. Indeed, in the
last few years, modern CMOS image sensors have emerged as a strong alternative
to CCDs. In [91], the authors reviewed the advantages and disadvantages of the
classical CMOS sensor compared to the CCD sensor. The main advantages were
centered on their low power consumption [92], lower cost, high-speed imaging, and
the ability to avoid blooming and smearing e�ects, which are typical problems of
CDD technology [93]. While the main disadvantages of CMOS sensor compared
to the CCD sensor are the sensitivity, the generated noises, especially under low
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illumination, and the lower image quality. Then they presented the most impor-
tant advances in the �eld of CMOS image sensors to overcome these disadvantages,
focusing on �elds such as sensitivity, low noise, low power consumption, low volt-
age operation, high-speed imaging and good dynamic range. They concluded that
CMOS imagers are competitive with CCDs in many application areas, especially in-
dustrial applications, due to their low cost, low power consumption, integration ca-
pability, etc. . . Nevertheless, they demonstrated that CCD technology will continue
as predominant in high performance systems, such as medical imaging, astronomy,
etc. . . because of its better image quality.

Another important factor to consider when choosing the suitable sensor tech-
nology for the intended application is the shutter type. The shutter protects the
sensor within the camera against incoming light, opening only at the moment of
exposure. The selected shutter or exposure time provides the right �dose� of light
and determines how long the shutter remains open. If the exposure period is too
short, then the images end up underexposed; if it is too long, then the photos are
overexposed. There are two shutter type options, either global shutter or rolling
shutter. The di�erence between the two shutter variants is in the way they handle
exposure to light.
The global shutter approach opens to allow the light to strike the entire sensor sur-
face all at once. Depending on the frame rate, a moving object is thus exposed in
a rapid succession. Hence they are suitable for applications that include moving
objects.
On the other hand, rolling shutter exposes the image line-by-line, where the expo-
sure time does not begin and end simultaneously, but rather for each individual row
respectively. Depending on which exposure time is selected and the speed of the
imaged object, distortions can occur when photographing objects moving during the
exposure process, making this shutter type unsuitable for some applications. These
distortions occur if the object or camera continues moving during the row-by-row
exposure. As the image data is gathered, the exposed rows are reconstituted in the
same sequence into a complete image. The sequential exposure of the individual
rows is also visible in the way the distortions are formed in the reconstituted image.
This is known as the rolling shutter e�ect.

For the wheel inspection task presented in this work, and in order to increase the
productivity, it is proposed to take a photo of each wheel while it is passing under
the imaging system. Stopping the wheel under the camera to take its photo, even
brie�y, decreases the number of inspected wheels per day below the limit imposed
by the industry. Although there is no need to abandon the possibility of a rolling
shutter just because the objects are moving, it is preferable to use the global shutter
technique to make sure to avoid this rolling shutter e�ect. This is generally the case
for the inspection of moving objects, and is especially true in an industrial scheme
where the inspection speci�cations, more precisely the conveyor speed, may increase
over time for productivity reasons. As a result, the performances of a rolling shutter
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camera may no longer be su�cient to avoid the distortions.

Traditionally, CCD sensors have been the only ones to function with global
shutters, while CMOS sensors only o�ered the ability to use the rolling shutter.
However, as CMOS technology begins to surpass CCD, there are now high quality
global shutter CMOS sensors available, where both shutter types are supported.
At the end of this discussion, it is decided to consider CMOS sensors for our appli-
cation, since the trend on the sensor market is increasingly pointed toward CMOS
technology.

3.2.4 Resolution

Even after the previous steps, the choice of the most suitable camera is far from be-
ing over. Taking a look at the vision systems market, it can be seen that providers
o�er a very wide variety of cameras to choose from. Each provider then tries to
keep ahead of the competition by providing a set of useful features that help to
improve image quality, assess image data more e�ectively or control processes with
greater precision. Such features are mainly software based, and include adjustable
parameters to control the gain, the ISO, the exposure time, the Gamma correction,
among many others. However, improving the image by software remains restricted
to the camera's hardware capabilities. Hence the choice of the camera has �rst to
be based on its physical features, or speci�cations, more precisely its resolution, its
pixel size and its sensor size. These three factors exhibit a relationship that must
be exploited depending on the needs of the application.

In practice, resolution describes a measurement of the smallest possible distance
between two lines or points such that they can still be perceived as separate from
one another within the image. In a camera spec sheet, the resolution refers solely to
the total number of pixels on the sensor. This information by itself is not su�cient
to determine the correct choice of resolution for the application. Hence, another def-
inition can be found in industrial image processing, where the resolution is stated
in terms of how much of an area or which dimensions of the object being inspected
are depicted on a single pixel. For a speci�c detail to be available for inspection, the
resolution must be better than the size of the detail itself. Thus, the resolution will
be de�ned partially in correspondence with the order of magnitude of the smallest
defects that are intended to be detected on the wheel surface. As mentioned in
the system requirements (in section 3.1), the smallest defects that are wished to be
detected have a size of about 2 mm in a single direction.

At this point, there is no general rule that de�nes the number of pixels nec-
essary to represent the smallest defect, to be able to distinguish it in the image.
This number heavily depends on the wheel texture, or the background of the area
surrounding the defect. If the background is very smooth, one can consider that
a small number of pixels is su�cient to perceive the defect as an anomaly. As the
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texture is getting rougher, the needed number of pixels to represent the smallest
possible defect increases. In this work, the vision system is intended to inspect sev-
eral di�erent designs of wheels, with di�erent textures. In this case, it is mandatory
to consider the roughest wheel texture to de�ne the necessary number of pixels for
the smallest defect.
An additional consideration to take into account when making the choice is the
quantity of information needed to be gathered about the defect. In case where the
defect is only depicted with a limited number of pixels, it is usually di�cult to ex-
tract its geometrical characteristics as its length and width, or even its shape. These
information are important to be able to classify the defect and judge its severity. In
this work, the goal of the inspection system is not only limited to the detection of
the defect, but also to characterize this defect according to various variables, such
as its size and shape, in order to create a record of all the possible defects with their
category.
With these considerations in mind, the number of pixels per defect is set to a large
value of 8 pixels in a single direction.

Another factor that plays a role in calculating the proper resolution is the �eld
of view, in other words, the dimensions of the area to be inspected and its potential
displacement amplitude. It is calculated by summing the maximum dimensions of
the area to be inspected (length or width, depending on the case), the range of
motion, and a safety factor of a few millimeters.
In our case, for the wheel inspection application, the dimensions of the wheels defer
from one design to another. Hence it is necessary to consider the biggest wheel to
de�ne our �eld of view. The dimensions of the biggest manufactured wheel in our
case is of 17 inches diameter, which converts to 431.8 millimeters, or to round it up
to 432 mm.
The second parameter is the range of motion of the wheel under the imaging sys-
tem. Because the wheel is set on a conveyor belt that passes under the camera, the
displacement of the wheel in the image could occur in two directions. The �rst is
when the camera takes the picture a little bit late or early, hence the wheel will be
shifted in the image in the direction of movement of the wheel. The second possible
displacement will occur in the opposite direction, in case where the wheel is not
perfectly centered on the conveyor belt. Therefore, the range of motion parameter
will be considered as the maximum displacement in the two directions. In the di-
rection of movement of the conveyor belt, it is proposed to install a retrore�ective
sensor to signal the presence of the wheel exactly under the camera. Hence, the
position of the wheel in this direction will be precise, and the range of motion will
be limited to about 2 mm. In the opposite direction, it is proposed to center the
wheel by installing adjustable guide rollers on each side of the conveyor belt. The
gap between the guide rollers on both sides can be adjusted according to the wheel
size being manufactured. However, the range of possible gaps cannot precisely cover
all the possible dimensions of wheels. Hence, for some wheels, the gap is set to the
nearest possible value to ensure a good wheel positioning. Even so, a non-negligible
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displacement could occur and could span up to 15 mm. As a result, the range of
motion parameter is set to its maximum value of 15 mm, which adds up with the
wheel dimensions to a total of 447 mm. We �nally add a safety factor of a few
millimeters to guarantee that the whole wheel is present in the image.
However, when designing the inspection system, it is important to anticipate some
possible modi�cations in the products. For example, if the industry introduces an
18 inches wheel in the future, the inspection system should be able to adapt to
this new feature without much adjustment. Hence, it is proposed to add an o�set
of 50 mm around the largest current wheel to ensure the possibility of inspecting
wheels with a diameter up to 2 inches more, without any adjustment to the system.
Consequently, the �eld of view for our application can be set to 500 mm.

Finally, with all the information above, it is possible to determine the minimal
camera resolution required to respect the application requirements. This is done
using the following equation:

res =
(field of view × number of pixels for smallest defect)

smallest defect size
(3.1)

where res is the minimal resolution in each direction. Then, applying the calcu-

lations will lead to res =
500× 8

2
= 2000 pixels. Among the available industrial

cameras in the market, the most suitable camera resolution that we can �nd is a 4
MP camera with 2046× 2046 pixels in the horizontal and vertical directions respec-
tively. This is more than su�cient for the intended application, and it ensures that
the system will be able to perform even if the system speci�cations evolve slightly.

Then, knowing the resolution of the camera, it is necessary to calculate the ex-
posure time. As previously mentioned in section 3.1, the wheels do not stop under
the imaging system, but they are in continuous movement with a constant speed of
about 1m/s. In order to eliminate the blurring in the acquired image, the wheel
must not move more than one pixel during the exposure time. To ensure that with
a camera of 2046 pixels in one direction, and a �eld of view of 500 mm, the expo-

sure time must be set to a value not more than
1

4000
= 245 µs. Recent industrial

cameras can reach values of exposure time as low as 10 µs for some models. Keep
in mind that with such a small value of exposure time, the lesser quantity of light
accessing the camera sensor has to be compensated with a bright light source.

3.2.5 Pixel size and sensor size

Indeed, a higher number of pixels corresponds to an increase in the camera's reso-
lution, i.e. the camera's ability to resolve �ne details of an object and produce clear
and sharp images. Larger pixels will allow the camera to have a higher sensitivity
to light and a higher dynamic range, which represents the camera's ability to repro-
duce the brightest and darkest portions of the image and how many variations in
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between. Light is the signal used by the sensor to generate and process the image
data. Since the area of each pixel is increased, more photons can be collected over
the surface of each pixel, rendering the camera more sensitive to light. Addition-
ally, the greater the available surface, the better the Signal-to-Noise Ratio (SNR),
especially for large pixels measuring 3.5 µm or greater. A higher SNR translates
into better image quality. However, having larger pixels also means that a higher
percentage of the sensor's light-sensitive area is used in each pixel, allowing for the
conversion of more photons to electrons for each picture element. A trade-o� there-
fore exists between resolution and sensitivity. Larger pixels will allow the camera
to be more light-sensitive whereas smaller pixels over the same area will allow the
camera to see �ner details and smaller objects.
Therefore the necessity of a larger sensor, onto which more pixels can �t, which
produces a higher resolution. The real bene�t here is that the individual pixels can
still be large enough to ensure a good SNR, unlike on smaller sensors where there
is less space available and thus smaller pixels must be used. Hence, larger sensors
allow for higher pixel density and larger pixel size. So the question becomes, why
not just use the largest sensor possible ? The main disadvantage of having a larger
sensor is that they are much more expensive, so they are not always bene�cial. An-
other disadvantage is that larger sensors induce bigger cameras, which is not always
convenient in an industrial installation, where the space may be limited.

Classic machine vision cameras have varyingly large sensors, with standard sizes.
Industrial cameras usually use 1/3 inches sensors in case of resolutions of 640× 480

pixels, cameras with 1280×1024 pixels mainly 1/2 inches. The quite popular camera
resolution of 1600×1200 pixels often uses a somewhat larger sensor with 1/1.8 inches
with the same pixel size. For our application, it is proposed to use a non-standard
camera resolution of 4 MP with 2046×2046 pixels. With this resolution in mind, the
choice of the sensor and pixel sizes will be limited to the availability in the market.
The most suitable camera that can be found has a sensor size of 11.3 mm×11.3 mm

and a pixel size of 5.5 µm × 5.5 µm. The performance of the camera with these
dimensions is considered to be typical in machine vision applications, with a dynamic
range of 58.7 dB and an SNR of 40.8 dB, according to the camera's technical sheet.

3.2.6 Interface

The �nal step on the path to �nd the proper camera for the wheels inspection
application is selecting the suitable interface. The interface serves as the liaison
between the camera and the computing platform, forwarding image data from the
camera sensor to the components that process the images. As with many of the
criteria for camera selection, there is no single best option interface, but rather the
selection has to be done in accordance with the most appropriate interface to the
application. Many factors are to be considered. However, the two most important
considerations in choosing the most suitable interface are the maximum bandwidth,
or data rate, that can be achieved and the maximum theoretical cable length that
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can be achieved. A third factor can also be considered, as it is of importance in the
inspection application presented in this work, which is the possibility of installing a
multi-camera system.

Several interfaces are available to design a vision system. The Global Associa-
tion for Vision Information (AIA) documents all the camera-to-computer interface
standards available in the industry, along with detailed speci�cations on the hard-
ware. It covers a variety of old-to-new interfaces, including IEEE 1394, Camera
Link, CoaXPress, GigE Vision and USB Vision [64]. The latter two interfaces are
the most recent, and have been adopted by the machine vision industry as the pri-
mary interfaces for imaging. This is due to their superiority in addressing modern
requirements for data transmission, along with their lower cost as they do not re-
quire a frame grabber to function. The frame grabber is a piece of hardware that is
added to the computing platform and which is responsible for capturing the stream-
ing control and image data to and from the camera. In many cases this component
is more expensive than the camera itself. Hence, we will only discuss the choice
between these two technologies.

The GigE Vision standard is a widely adopted camera interface developed using
the Ethernet communication standard (IEEE 802.3). It is the fastest growing inter-
face on digital cameras used for industrial image processing. This popularity is the
result of its data rate being able to attain more than 100 MB/s without the use of
a frame grabber, and with a cable distance which can span up to 100 meters with a
single cable. The interface's Ethernet framework enables the creation of camera net-
works, which makes GigE Vision the ideal interface for multi-camera applications.
Multi-port GigE cards allow operating up to four GigE Vision cameras with full
bandwidth using a single PC add-in slot. This allows users to simultaneously trig-
ger cameras in multi-camera applications over the existing Ethernet cable, without
need for additional I/O trigger cables, and in a very precise manner with a latency
as low as a few microseconds.

When it comes to USB, one of the most popular computer interfaces in the
world, a signi�cant evolution introduced a substantial increase in speed in 2008.
Going from USB 2.0 at 60 MB/s to 10 times the speed with USB 3.0 at 625 MB/s,
USB 3.0 became an attractive interface for vision systems for its speed and plug-
and-play nature. The o�cial USB3 Vision standard de�nes the necessary elements
that make USB 3.0 industry-compliant for vision applications. It takes in connectors
and cable characteristics. It also de�nes the communication between a USB3 Vision
device and USB3 Vision-compliant software. As with GigE Vision, this standard is
an important step in allowing customers to rely on one interface choice over a long
period of time. Just as the GigE technology, USB3 Vision cameras can be connected
to a processing unit without additional hardware. However, USB3 cable lengths are
not as long as is possible with GigE, and can usually span up to only 5 meters in
length.
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In a wheel industry, there are usually multiple production lines that separate
di�erent types of wheels and ensure a higher productivity. At the end of each line,
the inspection task is performed. In this work, it is wished to design a vision system
that enables the inspection of all the wheels ate the end of 2 production lines.
Hence, it is necessary to install an imaging system, which includes among others the
camera and lighting, at the end of each line, along with a single shared operation
room, where the computing platforms are located. This will allow a single operator
to monitor the automatic inspection process, and to intervene in case of a system
malfunctioning. In this case, a greater cable length is mandatory, which will favor
the use of the GigE cameras. In addition, as previously mentioned, GigE Vision is
the ideal interface for multi-camera applications, such as the one intended to design
in this work.
Therefore, it is decided to consider the GigE Vision interface in this work.

3.3 Lens selection

The lens is at the front of the optical system. It captures the image and delivers
it to the image sensor in the camera. Indeed, choosing the appropriate lens for the
vision system is a vital part. In order to get a good and sharp image, you do not
only need a good camera, but also the right lens for this speci�c camera, and for
the application as a whole.

Many factors play a role when selecting the lens for the application. Some of
these factors are directly related to the camera speci�cations, such as the camera
resolution and its sensor size, while other factors depend on the imaging system,
ranging from the installation constraints to the lighting conditions. In what follows,
we will discuss some of the main factors that helped de�ning the proper lens for our
application.

3.3.1 Lens mount

The search for a lens begins by looking at the type of lens mount that the camera
has. This is the interface between the camera body and the lens. Lens mounts
come in standard sizes and are labeled according to the screw-threaded type of the
camera body.
Dozens of di�erent mounts are available in the market. However, for machine vision
cameras, or industrial cameras, C-mount is the most widely available type of lens
mount. In fact, the type of lens mount to be used depends on the camera's sensor
size. A C-mount is appropriate for a maximum sensor diagonal of 20 mm, which
corresponds to 1.5 inches. For larger sensors, an F-mount is generally used, though
this type is seldom used in industrial applications. On the other hand, for smaller
sensors, CS-mount and S-mount lenses are more suitable.
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The camera that we chose to use in this work has a sensor size of 11.3 mm ×
11.3 mm, which corresponds to a 15.98mm diagonal. Hence, a C-mount lens is
convenient as it conforms with the camera housing type, and is suitable to the
sensor size.

3.3.2 Image circle and sensor size

After determining the right mount, it is needed to determine the right image cir-
cle size, because C-Mount lenses have di�erent image circle sizes depending on the
model. Similar to the camera's sensor size, the image circle diameter of a lens is
given in inches in its data sheet. Ideally, we are supposed to choose the same value
for these two parameters. However, this is not always possible, especially for non-
standard sensor sizes, as the one considered in this work, where it is di�cult to �nd
a lens that has the same image circle diameter. Hence, the rule to follow is that
the image projected by the lens must cover an area equal or slightly larger than the
camera sensor in order to fully utilize the sensor, while minimizing the costs.
In fact, using a lens with a small image circle diameter on a camera with a larger
sensor size will cause some pixels to be wasted on the sensor, as the image circle will
be too small and not cover the whole sensor surface. On the opposite, if the lens has
a larger image circle diameter than the camera's sensor size, we will get an image
without any problems. However, in this case, a large portion of the image circle is
not used, which is a waste of money. Indeed, it does not matter how large the lens
is, the size of the image is always determined by the sensor size. But the larger the
lens, the more expensive it is. Thus, for a smaller sensor, it is always better to use
an appropriately smaller lens.

With these considerations in mind, it is proposed to use a lens with an image
circle diameter of 1 inch to be suitable for our camera's image sensor size.

3.3.3 Resolution and pixel size

A camera with a high pixel number in its data sheet implies high resolution; but
this is only partially true when considered in combination with the lens. A lens
needs to be optimally matched to the pixel number irrespective of how many pixels
the camera and sensor can o�er. A high resolution image can only be created if a
high resolution lens is used.
The resolution of a lens is given in line pairs per millimeter (lp/mm) and speci�es
how many lines on a millimeter appear as separate from one another. Using a pat-
tern of black and white lines, a measurement is made of how close the lines can be to
each other while still being able to detect the boundaries between them. The more
line pairs that appear as di�erentiated, the better the resolution of the lens. This
resolution has also a direct impact on the contrast level of the image. In fact, the
boundaries between black and white lines are not perfectly sharp. The transition
from black to white, or inversely, will always produce a blur into gray tones. The
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lower the lens resolution, the less sharp the transition, hence the lower the e�ective
contrast. This could be prevented by always choosing a lens with a resolution higher
than the camera's resolution. This will ensure a noticeably higher contrast even if
the �ne structuring detected by the lens is lost to a certain degree on the camera
sensor. Once again, this comes on the expense of a higher lens cost.

For the considered camera in this work, its resolution and the physical measure-
ments of its sensor result in a value of about 182 pixels/mm, which translates to a
total of 91 lp/mm. Checking the available lens resolutions in the market, the choice
has been set on a standard lens resolution of 120 lp/mm, which is more than enough
for our camera.

3.3.4 Focal length

The next important consideration when selecting a lens is its focal length. A lens
with a focal length approximately equal to the diagonal size of the sensor format
reproduces a perspective that generally appears normal to the human eye, i.e. with
the same �eld of view on objects with similar sizes. Lenses with shorter than nor-
mal focal lengths, also called �wide angle� lenses, can capture a larger �eld of view.
Lenses with longer than normal focal lengths, or �telephoto� lenses, capture a smaller
�eld of view. Therefore, when considering focal length, it is necessary to consider
the sensor size, the �eld of view wished to capture, and approximately how far from
the inspected object the lens is located, also known as the �working distance�.

Many lens vendors provide lens selection calculators on their websites that pro-
duce a recommended focal length based on the approximate form of the focal length
equation. Using this equation is straightforward when the image sensor size is
known. Indeed, the focal length f is given by:

f =
(sensor size× working distance)

field of view
(3.2)

It would be impossible to provide a lens for each focal length there is, so there
exist some standard values that all manufacturers provide. These are called ��xed
focal length� lenses. The most commonly found lenses fall between 8 mm and 25
mm. When the calculated focal length has a non-standard value, two options exist:
either choose the �rst lower standard focal length, where the camera views a larger
area, or choose the �rst higher standard focal length, where cropping of the sides
may occur. The general tendency in such a case would be to select the lower value
option, as the �eld of view is generally important to maintain for an application.
Another solution exists that consists in using a �zoom� lens, as they conveniently
provide a wide range of focal lengths, and thus �eld of view, in a single lens. How-
ever, for machine vision applications, this type of lens is usually avoided because it
comes with some costs. One of them being the fact the optics are not as optimized
as you would �nd in a �xed focal length lens, and so image quality is generally not
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as good. For instance, optical aberrations may occur, in which case either the light
from any point of the image does not focus to a single point at the focal plane, or
in other cases the focus will be di�erent for di�erent wavelengths of light.

In our application, all the required parameters to calculate the focal length have
been previously de�ned, except the working distance. In machine vision applica-
tions, this parameter is usually controlled by the available space for the instal-
lation. This is also the case for our application. As the imaging system has to
be installed over the conveyor belt, the space is restricted. Accordingly, the al-
lowed distance between the camera and the inspected wheel ranges between 550
mm and 600 mm. It has been de�ned in the system requirements. Hence, to �nd
the lens with the proper focal length, we must calculate the focal length required
by the system on the two edges of the working distance. This will lead to the

�rst focal length of f1 =
11, 3× 550

500
= 12.43mm and the second focal length of

f2 =
11, 3× 600

500
= 13.56mm. Following the discussion above, it is better to choose

a focal length that is near the value of f1 to avoid losing the de�ned �eld of view. In
the market, C-mount lenses with a focal length of 12.5 mm and a resolution of 120
lp/mm exist, hence the choice has been set on this value of focal length. Although
this focal length is a little bit higher than the value of f1, but the resulting cropped
surface of the image is much lower than the o�set that we included in the �eld of
view. Thus the wheel is guaranteed to be visible in its totality in the acquired image.

3.3.5 Aperture and depth of �eld

The aperture is the opening at the rear of the lens that determines how much light
travels through the lens and falls on the image sensor. The size of the aperture's
opening is measured in f-stops. They give the ratio of the focal length over the
aperture diameter. The f-stops work as inverse values, such that a small f-number
corresponds to a larger or wider aperture size, which results in more light coming
through the lens. Conversely a large f-number results in a smaller or narrower aper-
ture size and therefore less amount of light reaches the camera sensor.

The value of the aperture of the lens is also the main parameter determining the
depth of �eld. Other parameters also a�ect the depth of �eld, such as the object
distance and the focal length. However, these parameters are usually �xed in the
application. Hence, modifying the aperture is the easiest and most often utilized
means to adjust it. The depth of �eld can be de�ned as the front-to-back zone of
a picture in which the image is razor sharp. As soon as an object falls out of this
range, it begins to lose focus at an accelerating degree the farther out of the zone it
falls; e.g. closer to the lens or deeper into the background. With any depth of �eld
zone, or focus zone, there is a plane of optimum focus in which the object is most
sharp. A shallow depth of �eld means that the area in focus is small, and a deep
depth of �eld means that the area in focus is large.
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(a) Example of a wheel (b) Side view cross section of the wheel

Figure 3.1: An example of a wheel to be inspected with an illustration of its design

The relationship between the aperture and the depth of �eld is easy: Large aperture
means a small f-number which results in a shallow (small) depth of �eld. Vice versa,
small aperture means a larger f-number which results in a deeper (larger) depth of
�eld.

Choosing the proper aperture for an inspection application depends heavily on
the inspected object shape. In the case where the inspection surface of the object is
in a single plane, i.e. at the same distance from the camera, the plane of optimum
focus could be set on this plane. As for the depth of �eld, there are no constraints
on its size because the region of interest will always be in focus whether a large or
small depth of �eld has been considered. Therefore, it is preferable to use a large
aperture, i.e. a small depth of �eld, which enables a greater amount of light to reach
the camera sensor, thus less additional lighting equipment to be used. This will help
reduce the costs of the overall imaging system.

However, for the wheel inspection application studied in this work, this is not
the case. The surface of the wheel to be inspected has a complex geometrical design,
with elements on di�erent distance levels from the camera. Figure 3.1(a) represents
an image of the surface of a wheel intended to be inspected. The largest part of
the wheel surface is the disc, while only the upper part of the rim surface is visible
for inspection, which is the part surrounding the disc. Figure 3.1(b) shows a CAD
illustration of the side view cross section of the same wheel. The red rectangle in
the image locates the whole surface that is visible to the camera. It can be seen that
this visible surface consists of several layers, starting from the rim sides, which are
the highest points of the wheel, and going through the di�erent layers of the disc
until reaching its center, which is the lowest visible point that the camera can see.

To properly perform the inspection of the wheel surface, it is necessary that the
whole zone located in the red rectangle to be in focus. The aperture should then
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be set to a value small enough to enable the depth of �eld to be larger than the
width of the red rectangle. In addition, due to the complex shape of the wheel sur-
face, multiple viewpoints are necessary to enable the inspection of its whole surface.
Therefore, it is proposed in this work to use multiple cameras located around the
wheel. These cameras will always be directed towards the wheel center, creating a
hemisphere above the wheel surface, with the ability to modify the angle between
each camera and the horizontal. The smaller the angle, the longer the wheel surface
will appear to the camera, thus the width of the red rectangle will get larger. Then,
as the angle is approaching zero, the depth of �eld will become the whole width of
the wheel surface. Generally speaking, for the proposed wheel inspection scheme,
the larger the depth of �eld, the better for the inspection, considering that the focus
will be higher in the depth of �eld zone, at its maximum at the plane of optimal
focus, and will decrease going further from it. But this will come at a cost, because
as the aperture is getting smaller, the light reaching the camera sensor is reduced,
hence the need to compensate for the lack of light with a su�cient light source.

For machine vision applications, lenses with a manual iris are generally used to
control the aperture level. These lenses are usually designed with two manual rings
that can be adjusted: one is used to set the aperture level, and the other is used to
select the plane of optimal focus. The maximum apertures are often between f1.2
and f1.8 for the considered focal length, and they can decrease to reach the level C
�close�, which refers to the iris being completely closed. For our application, it is
su�cient to choose a lens with an aperture ranging between f1.4 and f22.

3.4 Lighting system

Without a doubt, an AVI system relies on quality images to ensure quality inspec-
tion results. High quality images enable the system to accurately interpret the
information extracted from the object under inspection, resulting in reliable, and
reproducible system performance. One of the most important factors that in�uence
the quality of the acquired image in any AVI system is the lighting con�guration.
Indeed, images are created by analyzing the re�ected light from the inspected ob-
ject, not by analyzing the object itself. Therefore, the AVI system lighting is the
most important aspect to consider after a camera-lens selection.

Designing a lighting system is not an easy task. Unlike the camera-lens selection
that can be accomplished by following standard mathematical rules, when it comes
to the lighting system, there are very few standard rules to follow. Only one rule is
for sure: a well-designed lighting system must enhance the features being inspected,
while minimizing contrast of the surroundings. Many lighting system manufactur-
ers provide their own guide to help design the suitable lighting con�guration for
the intended application. These guides usually consist of general practical steps for
the designer to follow, along with a catalog containing a detailed description of the
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most popular lighting techniques. They mostly represent a series of experiments
designed to understand the interactions between the di�erent light sources and the
inspected object, by taking into account numerous factors, including but not limited
to, the size of the inspected object, its geometrical shape, its surface features, and
other important inspection requirements. Then, bearing in mind the results of these
experiments, the designer will be able to choose one or a few possible lighting tech-
niques from the provided catalog. As a result, a prototype can be designed based
on the speci�cations detailed in the catalog, in order to acquire some samples of
real images. These images will �nally help adjust the prototype until satisfactory
results are obtained.

In this work, it is proposed to follow the guide proposed in [94] as the main
reference, and to use the catalog in [95] to choose the suitable lighting technique.
This catalog includes a list of 129 di�erent lighting techniques, with their full de-
scription and speci�cations, which are necessary information to properly design the
prototype. Then, after discussing the choice of the lighting technique, it is possible
to decide on the type of light source that is most appropriate.

3.4.1 Lighting technique

The goal of lighting, as outlined in two of the most prominent machine vision light-
ing references [96] and [97], is to provide a consistent lighting environment that is
immune to external and ambient lighting changes, reduce the amount of glare in
the image, and most importantly, increase the contrast in the image such that the
features being inspected are enhanced, while obscuring those that are not. Indeed,
high contrast features simplify the integration of the inspection methods and im-
prove the overall reliability of the system.
In addition, another important factor other than the contrast, is the uniformity of
light on the inspected surface. In any AVI application, uniform lighting on the in-
spected object is crucial. Non-uniform illumination by an external light source can
be signi�cantly ine�cient, forcing the use of additional image processing algorithms
that are slower, more expensive and less reliable for inspection. This is especially
true for real-time applications as the one presented in this work. In such cases, time
is a major constraint. For that reason, it is best to have a well-designed lighting
system that ensures a uniform illumination rather than to invest important proces-
sor cycles into making the inspection algorithm robust to light irregularities on the
inspected surface.

Therefore, images with poor contrast and uneven illumination require more ef-
fort from the system and increase processing time. Hence the importance of properly
choosing the lighting technique that is best for the intended application.

In general, there exist a very large variety of lighting techniques in machine
vision applications. The catalog in [95] for example, contains a list of 129 di�erent
lighting techniques, each with a di�erent design. A practical way to classify these
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di�erent lighting techniques, is according to the location of the light source relative
to the inspected object and camera [94]. In total, they can be classi�ed into four
main categories:

• Back lighting:

Back lighting locates the source of light behind the
inspected object toward the camera. This type of
lighting is mainly used to inspect the outline shape
of the object for dimensional measurements. It
captures the inspected object as a dark silhouette
against a bright background, creating a clear im-
age of the outline of the inspected object, without
any reproduction of the surface features.

Figure 3.2: Back lighting

• Bright �eld lighting:

Bright �eld lighting, also called directional light-
ing, locates the source of light on the axis of the
camera to about ±45◦ o� the axis. This type of
lighting is the most commonly used as it creates
the best reproduction of what a person would see.
However, it faces major drawbacks for inspection
tasks, as it is limited to �at surfaces, and could
generate �hotspot� re�ections on re�ective objects.

Figure 3.3: Bright �eld lighting

• Dark �eld lighting:

Dark �eld lighting is also considered as a direc-
tional lighting, but with the light source positioned
at angles of 45◦ or less from the horizontal. Con-
trary to bright �eld lighting, this type of light-
ing highlights the edges of the inspected object,
while �at surfaces remain dark. Hence, it can-
not be used for inspection applications where the
inspected surface presents several irregularities in
di�erent directions. Figure 3.4: Dark �eld lighting

• Di�use lighting:



52 Chapter 3. Automated visual inspection system

Di�use lighting is most commonly used on shiny
and re�ective objects where even, but multi-
directional light is needed. It produces the most
uniform illumination with the most realistic repro-
duction of the inspected object. There are multiple
types of di�used lighting, some combining bright
�eld and dark �eld lighting techniques to create
a very even illumination of the inspected surface
while eliminating re�ections. Figure 3.5: Di�use lighting

To choose the most suitable lighting technique for our application, let us go back
to the requirements de�ned in section 3.1. Here the focus is only on the characteris-
tics of the inspected object itself, the surface of the wheel. Two main characteristics
of the wheel will have major impact on the choice of the lighting technique. The
�rst one is the shape of the inspected wheel surface. As mentioned previously, the
surface of the wheel is not �at. It rather has a complex geometrical design, with
irregularities in di�erent directions. This can be clearly seen in Figure 3.1(b), which
shows a CAD illustration of the side view cross section of a standard wheel. The
second characteristic is the texture of the inspected wheel surface. Indeed, most
of the �nished wheels are coated with a glossy paint layer that renders the wheel
surface more re�ective.

With these characteristics in mind, and following the previous discussion on the
di�erent lighting techniques, it is obvious that the di�use lighting technique is the
most appropriate one for our application. It ensures a uniform illumination on the
complex surface of the inspected wheel, with minimal light re�ection artifacts in the
acquired image which could result in false alarms during the detection procedure.

3.4.2 Lighting source

Several types of light sources are commonly used in machine vision. Quartz-halogen
lamps, Fluorescent lamps, and Light-Emitting Diodes (LEDs) are by far the most
widely used lighting sources in visual inspection systems [94]. In what follows, it is
proposed to compare these three main types of light source in order to choose the
most appropriate one for our application.

When an electric current passes through a thin tungsten wire, its temperature
rises releasing thermally generated photons. This is the basic concept behind clas-
sical incandescent lamps. Then, an enclosing glass bulb is necessary to prevent air
from reaching the hot �lament, which would otherwise be quickly destroyed by oxi-
dation. However, the evaporated tungsten gradually condenses on the inner surface
of the glass envelope, reducing light transmission. Therefore, a major advancement
was the development of quartz-halogen lamps, for which the tungsten �lament is
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sealed into a small quartz envelope �lled with a halogen gas. When tungsten evap-
orates from the �lament, it combines with the gas to form a tungsten halide which
does not react with the quartz envelope, ensuring that it never reaches the outside
glass envelope. Although this resulted in an improved life span and greater e�ciency
over classical incandescent lamps, this was not enough to maintain their popularity
for AVI lighting systems [98].

The main drawback for quartz-halogen lamps is their limited life span. They
can normally be expected to operate for about 2 000 hours [98], which is far shorter
than the life expectancy of �uorescent and LED lamps. This means that a higher
maintenance rate for the AVI system is required, which is not cost-e�ective.
Another important factor that a�ects the performance of quartz-halogen lamps is
the reality that they change color when intensity changes. This is a major issue
when the AVI system requires di�erent light intensity levels for the inspection of
di�erent product types. For our particular case, manufactured wheels come in dif-
ferent colors that each requires a di�erent brightness level. Indeed, to ensure the
same inspection e�ciency between various products, black coated wheels have to
be much more illuminated than white coated wheels. But if by adjusting the light
intensity from a wheel type to another, the color of the emitted light varies, then the
inspection method must be able to adapt to those changes. This might be a com-
plex, and more importantly a time consuming task. Hence, it is better to avoid such
a problem in the �rst place by using a light source that does not have the same issue.

Moving on to �uorescent lamps. Each �uorescent lamp has two electrodes placed
at the opposite ends of a glass tube �lled with low-pressure mixture of ionized
gaseous mercury and an inert gas. When current �ows through the gas between
the electrodes, the gas is ionized and emits ultraviolet radiation. The inside of
the tube is coated with varying blends of metallic and rare-earth phosphor salts;
substances that absorb ultraviolet radiation and �uoresce (re-radiate the energy as
visible light) [99].

Despite the higher initial cost of a �uorescent lamp, compared to a quartz-
halogen lamp, its lower energy consumption over its working life makes it cheaper.
This life span, while higher than the one of quartz-halogen lamps, it is still far
shorter than the life expectancy of LED lamps. They generally need to be replaced
every six months to ensure a regular and steady brightness.
In addition, the brightness of �uorescent lamps, or more precisely their light output,
has very low intensity, and is quite inconsistent compared to quartz-halogen lamps
and LED lamps. This is mainly due to the unstable nature of the gas used in such
lamps. As a result, �uorescent lamps cannot ensure a uniform lighting over the
whole illuminated surface, which renders the inspection a di�cult task.

Finally, let us review the features of LED which make it the ideal light source
for the majority of AVI applications. LED is a semiconductor light source that is
based on diodes which emit light when they are activated. When an LED module is
switched on, electrons are able to recombine with electron holes within the device,
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releasing energy in the form of photons [99]. LEDs are highly e�cient and are
electrically safe, since they only require low operating voltages, generating little
unwanted heat.

The main features that contributed most in the increasing signi�cance of LEDs
for AVI systems are related to their light output performance. LEDs o�er high in-
tensity with very even, stable output with no �icker, producing a very bright light.
This results in a clean, noise-free inspection of images with the highest possible ac-
curacy.
In addition to providing better inspection performance and being incredibly reliable,
LEDs require very little maintenance, as their life span could reach up to 100 000

hours. More importantly, LED modules do not die instantly; instead their light out-
put slowly degrades over time [100]. This ensures the well-functioning of the AVI
system for a long period of time, and helps avoid a sudden failure in illumination
that could cause the system to break.
A �nal important feature of LEDs is that they are physically small as individual
chips. These individual LED chips can then be packaged and mounted directly onto
a rigid board, or �exible circuit, or even assembled into a 3D structure. Hence, it is
possible to build light sources with a very wide range of shapes, to go along with the
many possible complex designs of the lighting system. A popular packaging of LED
chips is in square modules, so that they could generate a narrow beam of light that
can be directed as needed, rather than spreading unwanted light in all directions.

For all these reasons, in this work, it is proposed to design a di�used lighting
system that is based on multiple white LED modules. These modules are square
shaped, and are linked together to generate the necessary amount of light required
to ensure a quality inspection of all types of wheels. The whole lighting system
is then connected to the power supply through a driver circuit, which enables to
control the light output.

3.5 Processing platform

The last step on the road to design an AVI system is the choice of the processing
platform. Recent years have been witnessing a �erce market competition to develop
high-performance computing platforms. In general, these platforms can be classi�ed
into three categories [101]: Multi-core CPU, GPU, and FPGA.

The �rst, multi-core general-purpose microprocessors, or multi-core CPUs, inte-
grate a few cores (from two to ten) on the same integrated circuit chip in an e�ort to
speed up execution of computationally intensive tasks. The second, general-purpose
graphics processing units, or GPUs, consist of a large number of cores (as many as
several hundred), and are speci�cally oriented to maximizing execution throughput
for parallel applications. The third, �eld-programmable gate arrays (FPGAs), are
becoming important, especially when higher performance/power computation ratios
are desired.
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Many researches have been dedicated to compare these three platforms by eval-
uating their performances in di�erent sectors [102�106]. The obvious conclusion
one gets after surveying the existing literature is that there is no clear winner for all
problems [106]. Every platform has its own speci�c advantages that make it optimal
for speci�c applications.

Modern GPUs are designed as programmable processors employing a large num-
ber of processor cores. At �rst glance, it seems that they are superior in performance
than multi-core CPUs, which contain less number of cores. However, this is not al-
ways the case. GPUs are usually used not as standalone systems, but rather as
computing co-processors along with a main CPU. This is because they are not op-
timized to deal with sequential processing. GPUs are also weak for non-parallel
tasks since they do not have basic features like branch prediction. In fact, GPUs
are especially well-suited to address problems that can be expressed as data-parallel
computations in which the same program is executed on many data elements in
parallel, by mapping data elements to parallel processing threads [105]. However,
they face some major limitations when it comes to processing large amounts of data.
Indeed, the GPU has its own high-speed memory to perform the processing tasks,
but it is usually limited in space. Hence the need to transfer data between the
CPU's memory and GPU's memory, in some cases multiple times. This is a major
disadvantage of the GPU as these transfers are slow, and introduce undesirable de-
lays in the program. Therefore, to ideally exploit the full performance of a GPU,
a trade-o� has to be respected between data transfers and processing parallelism.
This cannot be generalized and has to be studied case by case.

On the other hand, FPGAs present a di�erent case. An FPGA chip contains
arrays of con�gurable logic blocks, programmable input/output blocks and a hi-
erarchy of re-con�gurable routing resources that allow the blocks to be connected
together. Logic blocks can be con�gured to perform di�erent combinations of com-
binational and sequential logic functions. This is the major advantage of FPGAs
over CPUs and GPUs, their re-con�gurability [105]. The function of an FPGA chip
can be rede�ned, at the hardware level, to perform any type of processing to ful�ll
the requirements of the developers. This means that the system can be optimized
to perform certain tasks with the highest possible performance. In contrast, if the
FPGA has not been con�gured to perform the speci�c task, the performance will
drastically drop. Hence, with each new method to be added to the system, the
FPGA has to be recon�gured to meet the new requirements. However, recon�g-
uring an FPGA is a di�cult and time-consuming process. FPGAs can only be
recon�gured through a totally new design cycle where the chip's gates will be real-
located to a new architecture. In certain cases, new external block elements have to
be added to the FPGA chip to perform the required task. This whole process could
take weeks to several months with each new added method [107]. Therefore, it is
obvious that using FPGAs is not ideal at the early stages of designing a new sys-
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tem. During this stage of prototyping, the inspection tasks and the methods behind
them will pass through various modi�cations and changes before �guring out the
�nal inspection strategy. Hence, at �rst, the processing platform has to be highly
�exible. Then later on, after deciding on the methods to perform the inspection,
FPGAs will potentially be the ideal platform to use.

In conclusion, at this stage, it is best to adopt multi-core CPUs as the main
processing platform, as they are the most �exible solution and the easiest to pro-
gram, while providing high performances [107]. A GPU can then be added as a
co-processor to perform the highly parallel tasks if necessary.

In this work, it is proposed to use a high-speed workstation with a Dual Intel
Xeon Processor, each with 10 cores, 25 MB cache and a clock rate of 3.1 GHz.
The system has a total of 32 GB of RAM. In addition, we added a 4 GB NVIDIA
Quadro GPU. The image processing tasks are performed using the OpenCV library
implemented using the C++ programming language, while the user interface is
developed in Delphi.

3.6 System design and installation

In this section, it is proposed to describe the design of the AVI system, and its
installation setup. While this section is located after the hardware selection, it is
important to note that in reality, the conceptual design of the whole system must be
done earlier, just after de�ning the system requirements. During this �rst process
of design, the goal is to study the requirements imposed by the speci�c application,
and then describe a model of a system that can meet them. Indeed, the concept
design is the starting point in which the outlines of the di�erent functions of the
system are set. Then, based on this �rst design, the selection of the corresponding
hardware can be done.

Before proceeding with the installation setup description, let us �rst review the
di�erent elements that have been selected to build the imaging system. Table 3.1
summarizes the results of the selection process detailed along this chapter. This
table lists the main speci�cations of the four main elements of the AVI system: the
camera, the lens, the lighting system, and the processing platform.

In this work, it is proposed to install a total of four cameras to properly conduct
the inspection of the wheel surface. The �rst camera, referred to as camera n◦1,
is installed directly above the conveyor belt, over which the inspected wheels will
be located. On the other hand, the three additional side cameras, referred to as
camera n◦2, camera n◦3, and camera n◦4, are installed around the inspected wheel
at an angle of 120◦ apart. Each of these side cameras is installed on a curved track
with a slider that enables to modify the angle between the camera and the wheel,
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Table 3.1: Hardware speci�cations

Camera

Area scan

Color camera

CMOS sensor

Global shutter

Resolution: 2046× 2046 (4 MP)

Sensor size: 11.3mm× 11.3mm

Pixel size: 5.5µm× 5.5µm

GigE interface

Lens

C-mount lens

Image circle diameter: 1 inch

Resolution: 120 lp/mm

Fixed focal length: 12.5 mm

Aperture: f1.4 - f22

Lighting system
Di�used lighting technique

White LED modules

Controlled voltage output

Processing platform

Dual Intel Xeon processor

20 cores in total

Cache: 25 MB

Clock rate: 3.1 GHz

Ram: 32 GB

4 GB NVIDIA Quadro GPU

Image processing: C++ / OpenCV

User interface: Delphi

which goes from 30◦ to 75◦, while always maintaining the same distance between
them. In addition, it is possible to modify this distance between each of the cameras
and the inspected wheel. Hence, all the cameras can be positioned to adapt to the
inspected wheel type. To acquire the images, a single trigger is used to control the
four cameras in order to record the four images at exactly the same moment.
The main concept behind this design is to distribute the cameras in a hemispherical
way around the inspected wheel, enabling a full inspection of its surface from all
sides. Then, the di�used lighting system will be installed at the center of this hemi-
sphere, directly above the conveyor belt. An illustration of the described installation
setup is depicted in Figure 3.6. It only shows camera n◦1 and camera n◦2, as the
installation of cameras n◦3 and n◦4 will be similar to that of camera n◦2, but at
di�erent angles.
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Figure 3.6: Illustration of the AVI prototype installation

As for the processing platform, it is not depicted in Figure 3.6 as it is not
installed near the imaging system. In fact, as mentioned in section 3.2.6, the pro-
cessing platform is installed in an operation room far from the imaging system itself,
encouraging the use of the GigE interface for the cameras. Indeed, this type of in-
stallation has many advantages. First, it enables the operators to have a single
shared operation room to monitor di�erent processes around the factory from one
location, hence allowing for a faster intervention in case of a system malfunctioning.
Second, the processing platform is usually designed to perform in certain conditions,
at certain temperatures, in order to maintain the highest performances. Some of
these conditions may not always be guaranteed in an industrial installation. In such
a case, a possible solution is to use computer chassis that are customized to adapt
to harsh industrial conditions. This solution, however, is not always e�cient.

Afterwards, the �rst step after installing the AVI system is to calibrate the cam-
eras to capture real colors. The calibration was performed using a ColorChecker [108].
It consists of a cardboard-framed arrangement of 24 squares of painted samples for-
mulated to emulate common natural colors. It is used to assess the color rendering
accuracy of a camera in order to calibrate it. Calibration is performed by captur-
ing the image of the ColorChecker, then adjusting the appropriate RGB settings
in the cameras' software so that the color reading matched with the corresponding
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(a) Image acquired using camera n◦1. (b) Image acquired using a side camera.

Figure 3.7: Two images of the same wheel, one acquired with camera n◦1 (a) while
the other with one of the side cameras (b).

provided reference. The resulting RGB settings have been used in capturing all the
images presented in this work.

Figure 3.7 shows two images of the same wheel. The image on the left is ac-
quired using camera n◦1, while the image on the right was shot with one of the side
cameras. As it can be seen, the side camera enables to better view some regions of
the wheel surface that are not visible for camera n◦1, allowing for their inspection.
Indeed, the defect detection procedure for the two images is the same, but on dif-
ferent regions of the wheel.

Finally, the proposed wheel inspection procedure is divided into two main steps:
pre-processing and defect detection. In summary, the pre-processing step involves
the identi�cation of the inspected wheel, the detection and inspection of its key
elements, along with several small inspection tasks, to make sure that the inspected
wheel correctly match with its CAD model and that it complies with geometrical
requirements. A �nal procedure is to prepare the wheel for the defect detection step
by splitting it into di�erent circular zones and then unfolding these zones to create
rectangular matrices on which the detection is performed. Meanwhile, the defect
detection step consists of two main methods: a defect detection method for the
detection of local defects present on the wheel surface, and a sequential detection
method to monitor the wheels' topcoat intensity. Both the detection method and the
sequential method are not limited to wheel surface inspection. Indeed, the detection
method is general enough to be applied for the detection of defects in any case where
no prior information about the defects is available. As for the sequential method,
it can also be applied for the monitoring of various industrial and non-industrial
processes. These two methods, along with the pre-processing procedure, will be
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detailed in the following chapters.

3.7 Conclusion

This chapter discusses in detail the complete procedure to design an AVI system
for the real-time surface inspection of �nished wheels. The �rst step is to de�ne the
requirements and conditions under which the inspection must be performed. Some
of these requirements are related to the inspected wheel, while others are imposed
by the industry. Next, some possible solutions are proposed to meet each of the re-
quirements, with the goal to outline the initial design of the whole system. Then, a
detailed discussion on the appropriate choice of each key element of the AVI system
is presented. These key elements are the cameras, the lenses, the lighting system,
and the processing platform. Finally, this chapter provides a full description of the
AVI system design and its installation setup.

The focus in this chapter was on the hardware part of the AVI system. More
precisely the design of the imaging system, and its installation setup. In the following
chapters, we will present the methods that have been developed to perform the
inspection tasks.



Chapter 4

Defect detection method

This chapter is inspired by our paper: �Karim Tout, Rémi Cogranne, Florent Re-

traint, Statistical decision methods in the presence of linear nuisance parameters and

despite imaging system heteroscedastic noise: Application to wheel surface inspec-

tion, In Signal Processing, Volume 144, Pages 430�443, 2018�

Following the design and installation of the imaging subsystem, which was dis-
cussed in detail in chapter 3, it is time to address the inspection tasks carried out by
the AVI system. As seen in chapter 2, two categories of defects have to be detected
on the wheel surface: local defects and global defects. Hence, the inspection tasks
consists of two main methods: a defect detection method for the detection of local
defects present on the wheel surface, and a sequential detection method to monitor
the wheels' topcoat intensity, hence addressing the detection of global defects. While
the imaging subsystem has been designed for the speci�c application of real-time
surface inspection of �nished wheels, both the defect detection method and the se-
quential method are not limited to wheel surface inspection, but are rather suitable
for various other applications. This chapter will solely focus on the development of
the defect detection method for the inspection of local defects, while the detection
of global defects will be addressed in the next chapter (chapter 5).

Local defects are de�ned as a local heterogeneity or distortion from the refer-
ence texture of a surface. They represent a sudden variation on a limited area of
the inspected surface. They stand out on the surface of the wheel and are the
most frequent type of defects detected during the �nal inspection. These defects
can take di�erent shapes and sizes whether they are scratches, marks, geometrical
deformation, etc. Therefore, it is intended to design detection method that is gen-
eral enough to be applied for the detection of defects in any case where no prior
information about the defects is available.

Prior methods for surface anomaly detection based upon images captured with
an AVI system can be divided into three categories [109�111]: 1) Generic methods
that are highly �exible as they are not based on any prior knowledge on inspected
objects [112], 2) Speci�c methods that are based on ground truth or examples of
a reference [111], and 3) Methods based on computer vision and image processing,
see [113, Chap. 15] , that usually require prior information on the non-anomalous
object.
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The �rst category includes anomaly detection methods that do not require any
prior model of object's structure. Di�erent types of �lters [114,115], such as median
�lter or Gaussian �lter, morphological operations [116], and histogram equaliza-
tion [117], have been all applied for noise reduction, image enhancement, with the
aim to improve the contrast between the anomaly and the non-anomalous back-
ground. These tools, followed by pattern recognition methods [118, 119] or thresh-
olding operations [120,121], illustrate the core architecture of this type of methods.
First-order gradient �lter followed by thresholding is one of the most commonly
used approaches in this category [115, 121, 122]. More recently, state-of-the-art im-
age processing methods, such as multi-resolution representation [123], sparse dic-
tionary learning [124] and variational methods [125], have all been applied for au-
tomatic anomaly detection. Similarly, classi�cation methods have been used for
automatic recognition of anomalies, mainly with the help of supervised machine
learning [120, 121, 126�128]. These methods consist of separating the inspected
image into regions of distinct statistical behavior, based on the assumption that
common properties can de�ne all kinds of anomalies and distinguish them from any
non-anomalous background. The existence of such properties is doubtful in practice
and these methods are thus often sensitive to the object and anomaly geometry and
to the presence of noise.

In the second category, the detection methods are based on a ground truth: a
reference image of the non-anomalous background used as a model [111, 129]. The
detection is thus straightforward as it is usually based on mere di�erences between
the reference and the inspected image. If a signi�cant di�erence is identi�ed, the
inspected image is classi�ed as defective [117, 130]. Usually, the reference image is
created by averaging multiple anomaly-free images [131]. In an alternative approach,
the reference image is estimated from the inspected image using a �lter consisting of
several masks [132]. This approach is e�cient but is very sensitive to experimental
conditions, such as object position, illumination and projection angles. Moreover
an accurate ground truth may be di�cult to obtain in practice.

Finally, methods from the third category make use of prior statistical informa-
tion on the non-anomalous object. Two main approaches have been proposed to
introduce statistical prior knowledge: Bayesian and non-Bayesian approaches. The
Bayesian statistical approach allows the design of e�cient and rather simple meth-
ods for anomaly detection. However those methods require 1) that the anomaly
occurs with known prior probability and, 2) that the non-anomalous object is also
random with known a priori distribution. Those requirements limit the application
of Bayesian methods.
For a more detailed review on methods for automatic defects detection, the reader
is referred to [111,112,133,134].

In the anomaly detection problem considered in the present work, the non-
anomalous background of the inspected surface has no interest in the detection
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process while it may hide the anomalies and, hence, may prevent their detection.
In addition, we do not always have prior distributions to model both the inspected
surface and the occurrence of anomalies. In such situations, it is more convenient to
represent the expected non-anomalous background as a linear combination of basis
functions, and to consider non-Bayesian hypothesis testing methods for anomaly
detection.

As a result, it proposed to design a detection method that belongs to the third
category, and, speci�cally, to non-Bayesian approaches. It is based on an adaptive
model of the non-anomalous part of the inspected surface, also referred to as the
�background�. This original adaptive model is interesting as it allows the inspection
of a large range of surfaces, with di�erent geometries, without prior information or
Computer-Aided Design (CAD) models of the inspected object; this extends the
application of the proposed methodology to various quality inspection domains. In
addition, the use of this model with an heteroscedastic statistical noise model of
digital images prevents the need to calibrate the imaging system. Eventually, the
proposed model is accurate enough to allow the detection of small defects that are
hardly visible by naked eyes. The proposed method is then applied for wheels sur-
face inspection to detect �appearance defects� that are located on the surface of the
wheel. Indeed the surface of the wheel is rather complex to inspect and requires
an accurate model, while as in most of industrial applications, the large number of
wheels produced every day requires mastering precisely the properties of the statis-
tical test. Hence, this speci�c application studied in this work allows challenging
the e�ciency of the proposed methodology.

Prior works [135,136] also rely on a similar approach for hidden data detection;
fundamental di�erences, however, are that in the case studied in this work, no in-
formation of the potential anomaly (shape, size, position, etc.) is available and that
the adaptive model is much more accurate which allows its use in a much wider
range of applications.

The main contributions of the proposed method are the following:

1. An adaptive statistical model is proposed to represent the imaged surface.
This model only requires knowledge of inspected objects geometry making,
thus, the anomaly detection system is fully automatic and applicable to a
wide range of surfaces.

2. The proposed model is accurate, to ensure high detection performance, and
computationally simple, for real-time applications.

3. The heteroscedastic noise model is used to accurately describe the noise prop-
erties in raw images. Accordingly, for other types of images, the heteroscedas-
tic model can be replaced with the appropriate model without having any
e�ect on the detection accuracy.
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4. The statistical properties of the method are explicitly provided. The detec-
tion threshold only depends on the false-alarm probability. Consequently, an
operator can, for instance, prescribe a false-alarm probability easily and can
know which type of anomalies can be detected with which probability.

4.1 Problem formulation

Let Z = {zm,n} denote the noisy image, of the inspected surface, of size M × N ,
where (m,n) ∈ Z = ({1, . . . ,M} × {1, . . . , N}). During acquisition, each pixel is
corrupted with various noises that change its value from the one expected upon
counted photons on the camera sensor. Therefore, each pixel value zm,n at location
(m,n) can be represented as:

zm,n = µm,n + ξm,n (4.1)

where µm,n is the expectation of pixel zm,n, or the noise-free value, and ξm,n rep-
resents the noises corrupting the pixel at this location. It is usually assumed that
all the noises corrupting the pixel value can be modeled as a Gaussian random vari-
able [137]. As a consequence, the statistical distribution of value for the pixel at
location (m,n) is given by:

zm,n ∼ N
(
µm,n, σ

2
m,n

)
(4.2)

where σ2
m,n is the noise variance. This representation of a pixel is considered

when no anomaly is present in the inspected surface. On the contrary, when an
anomaly is present in the inspected surface, the expected value of the pixel is af-
fected. Hence, zm,n can be written as:

zm,n = µm,n + θm,n + ξm,n (4.3)

where θm,n is the impact of the anomaly on pixel's expectation. In fact, the anomaly
a�ects a limited area of the image, therefore θm,n is equal to zero except for a few
pixels in which the anomaly is located. Then, when an anomaly is present, the
model of the pixel at location (m,n) becomes:

zm,n ∼ N
(
µm,n + θm,n, σ

2
m,n

)
(4.4)

When inspecting an image of a surface with the goal of detecting an anomaly, two
situations may occur H0 = {there is no anomaly} and H1 = {there is an anomaly}.
From equations (4.2) and (4.4), anomaly detection problem can be represented as a
decision between the two following hypotheses:{

H0 :
{
zm,n ∼ N (µm,n, σ

2
m,n) , ∀(m,n) ∈ Z

}
H1 :

{
zm,n ∼ N (µm,n + θm,n, σ

2
m,n) , ∀(m,n) ∈ Z

}
,

(4.5)

with θm,n 6= 0 for some (m,n).
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Formally, a statistical test δ is a mapping δ : RM.N 7→ {H0;H1}. When testing
two hypotheses, the ultimate goal is to design a Uniformly Most Powerful (UMP)
test, which maximizes the power function and satis�es a prescribed constraint on
false-alarm probability regardless the anomaly. Let us denote PHi the probability
under hypothesis Hi with i = {1, 2}. The false alarm probability of a test is de�ned
as:

α0(δ) = PH0(δ(Z) = H1)

Conversely, the power of a test δ is de�ned as:

β(δ) = PH1(δ(Z) = H1),

which also corresponds to 1−α1(δ) where α1(δ) is the missed-detection probability.

However, resolving such a problem is not straightforward due to various di�cul-
ties. In practice, the main di�culty is the presence of unknown nuisance parame-
ters, in the de�nition of hypotheses, that have no interest for the anomaly detection
problem. These nuisance parameters are the pixels' expectation µm,n that describe
the background, or the non-anomalous part of the inspected surface. Though this
nuisance parameter is not related to the detection problem, it must be carefully
taken into account, through the design of a model that accurately describes this
background, such that the nuisance parameter does not prevent the detection of
anomalies. The model has to be designed with the highest accuracy for distinguish-
ing anomalies from background and, hence, to enhance the detection of the former.
However, due to the diversity of inspected surfaces in various applications, this be-
comes a complex task.

In addition, imaging devices are characterized by an heteroscedastic noise model
that makes pixels' variance σ2

m,n a function of expectations µm,n [137]. This prop-
erty greatly complexi�es the removal of the nuisance parameter as well as the design
of the ensuing optimal statistical test.

Another di�culty resides in the fact that in this work, it is considered that
no information of the potential anomaly (shape, size, position, etc.) is available.
In general, this is the case for many applications. Consequently, as the anomaly
cannot be modeled, it is necessary for the background model to be accurate enough
to describe the non-anomalous part of the inspected surface, while at the same time
avoid the subtraction of the anomaly.

4.2 Adaptive parametric linear model

4.2.1 Background model

For each inspected surface, an original adaptive model is applied to subtract the
anomaly-free background. In fact the background, the anomalous-free content of
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the image that represents the inspected surface, acts here as a nuisance as it has
no interest for anomaly detection while it must be carefully taken into account. It
is proposed to use a parametric linear model to represent the background. Such a
model has, indeed, indisputable advantages: it is simple and, hence, usually compu-
tationally e�cient and can be used within hypothesis testing theory to design the
anomaly detection method.

Again, let Z = {zm,n} denote the noisy image of size M × N . The inspected
area corresponding to image Z is split into non-overlapping small blocks of size w
and h (for width and height respectively). Let us also denote zk the k-th block of
the inspected image Z; though this block can be seen as a matrix of pixels, it is
represented as a vector for the application of the proposed method, typically the
pixels are read lexicographically.

The linear parametric model that has been adopted is based on the following
model for the block zk, when no anomaly is present:

zk ∼ N (Hdk,Σk). (4.6)

Here N represents the Gaussian distribution thus the model (4.6) belongs to the
very usual one that represents a block zk as a sum of non-anomalous content cor-
rupted with additive Gaussian noise. However, it is proposed in this work to use
an original model for the content, non-anomalous part, and a more realistic model
for the noise than the Additive White Gaussian Noise (AWGN) that models all the
pixels as realization of independent and identically distributed (i.i.d) random vari-
ables. The model of the noise is presented in detail in the next subsection.

The linear parametric model is an obvious model (4.6) to represent the content.
It essentially consists in representing all the pixels of the block zk as a weighted sum
of basis vectors that represent the columns of the matrix H. The weight of this sum
represents the vector of parameters dk. The model of H is based on the following
two dimensional algebraic polynomial:

f(x, y) =

dx∑
i=0

dy∑
j=0

ci,jx
iyj (4.7)

with dx and dy the degrees of the polynomial on x and y respectively.
Over the block zk the (discrete) coordinates can also be put into vector form,

denoted as x and y. The coe�cients ci,j of the polynomial (4.7) can also be put
into a vector ck of size (dx + 1)× (dy + 1). Denoting as a matrix F the polynomial
model:

F = (1,x,y,xy, . . .xdxydy),

the model of the background (4.7) can be written as:

E [zk] = Fck, (4.8)
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where E represents the expectation.
The model (4.6) - (4.8) is simple and e�cient enough for several applications,

see [138�140] for examples in modeling of Internet tra�c and image processing.
However, for other applications, as the one of wheel inspection presented in this
work, the non-anomalous background is much too complex to be represented with a
simple model that remains the same for all the blocks. In fact, a trade-o� must be
found to keep the degrees of the polynomial (4.7) as small as possible, for improving
ensuing detection performance, while representing with the highest accuracy the
content, to enhance the detection of anomalies within the residual noise.

This trade-o� leads us to the design of an adaptive model, for which the matrix
F does not remain the same but, instead, changes to take into account the speci�city
of each block. To this purpose, the proposed method actually exploits the shape of
the inspected surface to represent the pixels that share similar pro�les. The design
of an adaptive linear model based on this idea is done using the Principal Com-
ponent Analysis (PCA). PCA is a powerful tool to identify patterns in data, and
highlight their similarities. In fact, the �rst principal components retain most of the
variation present in the data, which can be added to the model (4.8) to approximate
better the background.

Indeed, multiple methods for dimensionality reduction, other than the PCA,
can be found in the literature. Probably the most robust ones are sparse dictionary
learning methods that proved their e�ciency, especially in image modeling [141].
However, considering the PCA for our proposed model can be justi�ed by many
reasons. First, our proposed model is mainly based on a polynomial model which
can be designed to ensure the orthogonality between the model and the defect.
Adding the principal components to the model will not a�ect this orthogonality,
which is crucial for the defect detectability as will be discussed later in section 4.3.2.
On the other hand, sparse dictionary learning methods are much more robust than
the PCA, and thus may incorporate a large portion of the defect in the background
model. Second, it is proposed in this work to design a background model accurate
enough to represent a wide range of surfaces without prior training step. The model
is then computed for each inspected surface on the image of the very same surface
itself. To this purpose, the PCA can be applied as it can represent the observa-
tions without requiring a prior learning dictionary. A �nal reason can be mentioned
is that the PCA provides good results for a rather low computational complexity,
compared to other methods in the same category.

Similarly to the model (4.8) one can approximate the pixels' value from the block
zk as:

E [zk] ≈ Pk αk. (4.9)

where αk ∈ R` is the vector of weights for the di�erent Principal Components and
the size ` the number of selected principal components. The Principal components
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that are added within matrix Pk are extracted from the inspected image itself. The
index k, here, emphasizes that for di�erent blocks the part of the principal compo-
nents di�ers.

With the addition of the adaptive part due to the �rst few components, the
proposed model for representing the background, that is the expectation of the
block zk (4.6), can be written as :

E [zk] = Hk dk. (4.10)

where the matrix Hk is made of the polynomial basis vector(4.8), from the matrix
F and the �rst principal components (4.9), from the matrix Pk. The matrix Hk is
thus given by the concatenation of those matrices:

Hk = (F|Pk) .

Similarly the weighting dk vector represents the contribution of those di�erent basis
vectors.

4.2.2 Parameter tuning of background model

The range of applications for the proposed parametric model is not only limited
to surface inspection, but can rather be used for any application that requires a
model of the nuisance parameters for their rejection [142]. In particular, parametric
models that are based on a polynomial model have been extensively used in image
processing applications, such as image compression [143], or image coding [144].
Furthermore, the concept of adding an adaptive part to the model, in order to aid
the polynomial part, has also proven its e�ciency. It was mainly used in image
processing applications to help model the discontinuities and edges in the image,
whether for radiographic image inspection [110], or even to detect hidden data in
images [136,138].

As for the particular domain of surface inspection, the proposed adaptive model
can be e�ciently applied on partially smooth surfaces, with low textures. In prac-
tice, the polynomial part is primarily e�cient to accurately represent homogeneous
surfaces, or smooth surfaces, with little to no texture. Then, adding the principal
components will o�er a higher �exibility, and will enhance the performances of the
model to handle minor surface complexities. Hence, the proposed model can be
used for the inspection of a variety of surfaces, including steel surface [112], ceramic
tiles' surface [145], glass surface [132], among others that have mostly a low textured
surface.

Consequently, the texture of the inspected surface will have a major role in de�n-
ing Hk. In total, 5 parameters have to be properly tuned to accurately model the
background, while ensuring an e�cient detection of defects. The choice of these
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parameters essentially depends, on the one hand, on the level of complexity of the
background and its overall shape, and, on the other hand, on both type and size of
potential defects.

First, the degrees of the polynomial dx and dy have to be large enough to ac-
curately model the background. Depending on the level of complexity of the back-
ground in each direction, dx and dy might be de�ned di�erently. The more the
complexity in one direction, the larger the value of polynomial degree in that same
direction. Furthermore, it is proposed to add an adaptive part to the model, i.e. the
principal components, to better approximate the background. This adaptive part
has a role to identify common features in the background, or patterns, and model
them using the PCA. In the present study, it is proposed to apply the PCA in a sin-
gle direction, which represents the direction of the main pattern in the background,
but indeed it can be applied on various directions simultaneously. Only the �rst `
principal components are added to the model. This number will increase with the
complexity of the pattern, which will be de�ned mainly by the inspected surface
shape. As a result, to more accurately model the background, it is preferable to
have large values for the three parameters dx, dy and `.

However, having larger values for these parameters may result in a large part
of defects being modeled within the background. Therefore, when subtracting the
background from the original image, a large part of potential defects will also be
subtracted. This would reduce the level of detectability of those defects.

Second, the width w and height h of each block mainly depend on the potential
defects size in the inspected area. If the defect a�ects the majority of pixels inside the
block, the estimate of the linear model parameters dk will be signi�cantly impacted
by the presence of the defect. Consequently, a large portion of the defect will be
removed with the background subtraction, thus reducing the level of detectability.
Therefore, it is important to de�ne the size of the block according to the potential
defects size, in a way to ensure that the majority of pixels in the block belong to the
background. It is important to note that in most cases, the defect surface is more
textured than the background itself. Hence, even if the defect occupies the majority
of the block, it may always be detectable to a certain degree. This is due to the
fact that the parametric model is designed to represent the background, therefore
the more textured surface of the defect will not be well modeled and accordingly a
portion of it will remain after the background rejection.

On the other hand, the size of the block has to remain reasonably small such
that the parametric model may be able to accurately model the background. Larger
blocks include more background data, and thus may require higher polynomial de-
grees and more principal components to enable the good modeling of the background.

Section 4.5.6 further discusses the choice of all those parameters, in the case
of wheel surface inspection, and presents the methodology used to select the most
suitable values upon experimental data.
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4.2.3 Noise model

The proposed method relies on the image of the inspected surface. However, any
image is corrupted during its acquisition by various sources of noise. A usual model
of noise corrupting raw images (that are not processed for quality enhancement,
compression, etc.) can be obtained by considering the shot noise separately, due to
Poissonian process of photo-counting, and the various read-out noises. In fact the
former noise has the speci�city that its variance depends on the expected number of
counted photons. While on the opposite the latter noise has a variance that depends
on experimental setup (such as temperature, exposure time, etc.) that is constant
for all the pixels.

It is usually assumed that the number of photons counted over each pixel is high,
so that the Poissonian process can be approximated as a Gaussian distribution, and
that the read-out noise can also be modeled as a Gaussian random-variable [137,146].
Hence, this gives a model for all the noises corrupting the pixel at location (m,n)

that can be written as follows:

zm,n ∼ N
(
µm,n, σ

2
m,n

)
(4.11)

where µm,n is the expectation of pixel zm,n, which represents its noise-free value,
and the variance of all the noises is given by:

σ2
m,n = aµm,n + b. (4.12)

These parameters (a, b) of the heteroscedastic noise model remain the same for all
the pixels. Beside they depend on several acquisition parameters, hence parameters
(a, b) are also constant for all the images taken with the same acquisition settings.

The model of the noise (4.11) - (4.12) is well known for being more accurate than
the usual AWGN model for raw images and allows us to take into account the vari-
ance of each pixel in the ensuing statistical test, to improve its accuracy [146�148].
Additionally, it is important to note that it is possible to use any other type of
images rather than the raw type, provided that the appropriate noise model for
that type of images is used [149, 150]. In fact, for many applications, the model of
noise corrupting the acquired image may be more complex, in which cases the noise
characterization becomes a major problem. Many researches dealt with such cases,
for instance by providing �exible approaches to modeling complex noise based on
a robust version of the PCA [151, 152]. In all cases, replacing the noise model will
only a�ect the normalization factor in the ensuing statistical test. However, in the
present application, obtaining raw images is simple and ensures to keep as much
information on the inspected surface as possible; there is, hence, no need to use a
more sophisticated model for the noise corrupting such type of images.

An example of the relationship between pixels' expectation and variance is il-
lustrated in Figure 4.1. This �gure shows the variance of pixels as a function of
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Figure 4.1: Illustration of the noise model showing, for several images, pixels' vari-
ance σ2 as a function of their expectation µ

estimated expectation from the same pixels along with the estimated noise variance
estimated from the model (4.12). Those estimates have been obtained from a few
RAW images.

In any industrial installation, it is supposed that the camera does not change
so it can be calibrated easily. It is thus assumed that the noise model parameters
(a, b) are known. The only parameter that has to be estimated, given an image
of a surface under inspection, is the expectation of each pixel. However one can
note that the noise corrupting the raw images cannot be modeled with i.i.d random
variables, the celebrated Maximum Likelihood Estimation (ML) does not coincide
with the Least-Square (LS). To tackle this estimation problem without applying a
time-consuming optimization algorithm a two-step approach is proposed.
A �rst estimation is obtained applying the mere LS:

µ̃ls
k = Hk

(
HT
kHk

)−1
HT
k zk.

Then, a rough estimation of the noise variance is obtained from µ̃ls
k by:

Σ̃
ls

k = Iw×h × (a µ̃ls
k + b),

where Iw×h denotes identity matrix of size w × h. This rough estimation of the
covariance is thus reused to update the estimation of the expectation using the
well-known Weighted Least-Square (WLS) given by:µ̃k = Hk

(
HT
k Σ̃

ls−1

k Hk

)−1

HT
k Σ̃

ls−1

k zk,

Σ̃k = Iw×h × (a µ̃k + b).

(4.13)

It is, of course, possible to continue this procedure. It has been observed that
this two-step method is a good trade-o� between accuracy and computational time.
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4.3 Statistical detection of anomalies

When inspecting an image of a surface with the goal of detecting an anomaly, two
situations may occur H0 = {there is no anomaly} and H1 = {there is an anomaly}.
As described above, see Eq. (4.6), when there is no anomaly, any block of the im-
age can be modeled as zk ∼ N (Hkdk,Σk). On the opposite, when an anomaly is
present on the surface, any block can be modeled as zk ∼ N (Hkdk + θk,Σk). Here
θk represents the impact of the anomaly on pixels expectation. As described above,
the anomaly a�ects a limited area of the image, therefore θk is equal to zero except
in a few blocks on which the anomaly is located.
Note that in this study, we consider that the presence of the anomaly has no e�ect
on the variance.

Hence the goal of the studied anomaly detection problem is to decide between
these two following composite hypotheses:{

H0 : {zk ∼ N (Hkdk,Σk) , ∀k ∈ {1, . . . ,K}}
H1 : {zk ∼ N (Hkdk + θk,Σk) , ∀k ∈ {1, . . . ,K}} ,

(4.14)

with of course, θk 6= 0 for some k.

4.3.1 Statistical test

Formally, a statistical test δ is a mapping δ : Rw.h 7→ {H0;H1}. The false alarm
probability of a test is de�ned as:

α0(δ) = PH0(δ(Z) = H1)

where PH0 denotes the probability under hypothesis H0. Conversely, the power of
a test δ is de�ned as:

β(δ;θk) = PH1(δ(Z) = H1),

which also corresponds to 1 − α1(δ;θk) where α1 is the missed-detection probabil-
ity. We note that the power function β(δ;θk) depends, of course, on the anomaly θk.

When testing composite hypotheses, the ultimate goal is to design a Uniformly
Most Powerful (UMP) test, which maximizes the power function and satis�es a
prescribed constraint on false-alarm probability regardless the anomaly. However,
such a test seldom exists. Hence, it is proposed to remove the nuisance parameters
Hkdk and to design a Uniformly Best Constant Power (UBCP) test. Indeed, the
expectation under H0 given by Hkdk has no interest for the testing problem (4.14)
but must be taken into account.

To remove the nuisance parameters [153], the idea is to project the observations
zk onto the orthogonal complement of the subspace spanned by the columns of Hk.
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This is achieved by using the projector:

P⊥Hk
= Iw×h −

(
Hk

(
HT
k Σ̃
−1

k Hk

)−1
HT
k

)
Σ̃
−1

k , (4.15)

where the estimated covariance Σ̃k is given using the estimated expectation µ̃k (4.13).
One can note that the projection of observations zk onto P⊥Hk

corresponds to sub-
tracting from the observation the estimated expectation µ̃k. However, because the
variance is not constant over all the pixels, it is necessary to normalize the �residu-
als� by dividing each residual by its standard deviation. Those normalized residuals
can be written as follows:

rk = Σ̃
−1/2

k

(
P⊥Hk

zk

)
. (4.16)

where A−1/2 represents the �square root� of the matrix A de�ned such that(
A−1/2 ×A−1/2

)−1
= A.

It is then easy to establish [110,153,154] that the norm of the normalized �resid-
uals� rk follows the distribution

‖rk‖22 ∼

{
χ2

Υ(0) , ∀k ∈ {1, . . . ,K} under H0

χ2
Υ (%k) , ∀k ∈ {1, . . . ,K} under H1,

(4.17)

where χ2
Υ (%k) denotes the non-central χ-squared distribution with Υ = w × h − p

degrees of freedom, here p denotes the number of columns of Hk, and the non-central
parameter %k under hypothesis H1 is given by :

%k =
∥∥∥Σ̃−1/2

k P⊥Hk
θk

∥∥∥2

2
. (4.18)

Here %k denotes the �anomaly-to-noise� ratio [110] and is essential to de�ne how
detectable the anomaly is.

Based on the residuals rk and their distribution, see Eq. (4.17), the UBCP test
can be written as follows

δ =

{
H0 if ‖rk‖22 ≤ τ
H1 if ‖rk‖22 > τ,

(4.19)

where, in order to guarantee the false-alarm probability α0, the decision threshold
τ is set as follows:

τ = F−1
χ2

Υ
(1− α0; 0) (4.20)

where Fχ2
Υ

(x, %k) and F−1
χ2

Υ
(x, %k) resp. represent the non-central χ2 cumulative

distribution function and its inverse with non-centrality parameter %k.
Similarly the power function of the test is given by:

β(δ,θk) = Fχ2
Υ

(τ, %k). (4.21)

One can note from the previous results, Eq. (4.20)-(4.21) two important things.
First of all, the threshold τ only depends on the false-alarm probability α0 and is thus
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constant for all the blocks. Second, the detectability of the anomaly only depends
on the non-centrality parameter %k (4.18). More precisely, Eq. (4.18) shows that
%k is de�ned as the part of the anomaly θk that lies in the orthogonal complement
of the subspace spanned by Hk. Hence, an anomaly θk is detectable if and only if
P⊥Hk

θk 6= 0.

4.3.2 Anomaly Detectability

To better understand the e�ects of the rejection of nuisance parameters on the de-
fect detectability, let us consider the simple case where the observations zk ∈ R3

and dk ∈ R, shown in �gure 4.2. In this case, the nuisance parameter is scalar
(rank(Hk) = 1), and the column space of Hk is a vector R(Hk). Its orthogonal
complement R(Hk)

⊥, also referred to as the parity space, is then a plane orthog-
onal to the vector spanned by Hk, and is depicted in blue in �gure 4.2. When
projecting the anomalous observations zk onto the parity space, the nuisance pa-
rameters will be rejected, and only the projection of the anomaly P⊥Hk

θk will remain
in the residuals. Consequently, the detectability of the anomaly θk will mainly de-
pend on how much of the anomaly is present in the parity space, depicted by the
value P⊥Hk

θk.

Then, in this work, it is proposed to normalize the remaining residuals by tak-
ing into consideration the noise corrupting the image. To this purpose, the more
realistic heteroscedastic model of the noise has been used, allowing to establish with
highest precision the theoretical statistical properties of the ensuing test. This noise
model represents the variance of the noise corrupting the image as a linear combi-
nation of the pixel's expectation µk. Hence, because the variance is not constant
over all the pixels, it is necessary to normalize the residuals by dividing each resid-
ual by its standard deviation. This procedure is illustrated in �gure 4.2. Let us
consider two di�erent anomalies θk and θ

′
k that have di�erent projections onto the

parity space P⊥Hk
θk 6= P⊥Hk

θ′k. If these two anomalies belong to the same surface{
Sc :

∥∥∥Σ̃−1/2

k P⊥Hk
θk

∥∥∥2

2
= c2

}
with c a positive constant, this means that they have

the same value of non-centrality parameter %k after normalization, thus have the
same level of detectability. Indeed, the surface Sc is de�ned by the heteroscedastic
noise model, and thus it is shaped like a cone with the radius increasing with µk.

We have observed that the proposed adaptive model is very e�cient in the sense
that it represents the background accurately (non-anomalous part of the inspected
wheel) while preserving the vast majority of the anomaly within the orthogonal
complement.
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Figure 4.2: Illustration, in R3 of observations along with their projections on the
parity space R(Hk)

⊥ and a surface of constant power for which �anomaly-to-noise
ratio� %k, see (4.18) is equal.

4.4 Wheel Inspection Characteristics

The use of AVI systems has been extending to reach various applications. For
wheel surface inspection, the detection of �appearance defects� is one of the most
challenging tasks that has not been studied yet. �Appearance defects�, such as
scratches or painting drops, do not have a direct impact on the proper functioning
of the wheel, but rather are associated with the aesthetics of the product. These
defects are located on the upper surface of the wheel, the one visible to the client.
There is a large variety of �appearance defects� that can be classi�ed according to
their shape, size, and location on the wheels' surface.
As for the wheels, there are plenty of wheel designs with di�erent shapes and sizes,
but they all have some common features and essential elements that characterize a
wheel. Based on those elements, it is possible and necessary to de�ne the regions of
interest (ROI) on the surface of the wheel, in order to carry out properly the wheel
inspection.
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Figure 4.3: Description of the di�erent elements of a wheel

4.4.1 Region of Interest Extraction

The face of the wheel is a complicated surface to inspect. Each wheel is designed
with speci�c parameters that de�ne its form and geometry. These parameters can
be used to split the wheel into di�erent parts (zones), on which the detection method
will be applied, see Figure 4.3(a). Multiple elements can be found in these zones
that have to be identi�ed in order not to consider their presence as a defect and, on
the opposite, to detect anomalies on those elements. The key elements are the pilot
hole, the countersinks, the valve hole and the ventilation holes, see Figure 4.3(b).

In brief, countersinks are used to mount the wheel on a vehicle, the valve hole is
needed to mount the tire valve and the ventilation holes are important to cool the
brakes (discs and pads). Those elements must be detected and localized prior to the
detection of anomalies. Hence, let us �rst brie�y describe how those key elements
are detected. Indeed, the position of those elements will be used to perform a
geometrical readjustment, which can be considered as a self-calibration.

It is important to note that the parameters describing the geometry of the wheel,
and especially the key elements mentioned above, are known because the design of
the wheels currently manufactured is also known. The knowledge of those param-
eters, such as the wheel radius and pilot hole radius, for instance, is useful as it
allows to reduce the search area.

First of all, it is needed to detect the center of the wheel that coincides with
the center of the pilot hole. The detection of the pilot hole and the localization of
its center is carried out using the Circular Hough Transform (CHT). This is one of
the most robust and commonly used methods for circular shape detection [155]. In
addition, the prior knowledge of the radius makes the CHT computationally very
e�cient as the only two unknown parameters are the coordinates (x0, y0) of the



4.4. Wheel Inspection Characteristics 77
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Figure 4.4: Illustration of steps for pilot hole detection

center of the pilot hole. An example of the application of CHT for the pilot hole
detection and localization of its center is presented in Figure 4.4.

Once the Pilot hole is located, the countersinks and the valve hole can be de-
tected. Once again, knowing the distance from the wheel center to the countersinks
and the valve hole helps reduce the search area along with the computational com-
plexity. The countersinks and the valve hole are also detected using the CHT. The
detection of countersinks only adds a simple additional check on the angle between
the detected circles to make sure that all the countersinks are detected at the right
position. Then, because on any wheel the valve hole is either in front of a counter-
sink, Figure 4.3(a), or between two countersinks, Figure 4.3(b), the detection of the
valve hole is done on a small number of areas that correspond to the known distance
from the pilot hole center.

The last and most complicated step is the detection of the ventilation holes.
Those elements may exhibit a wide range of di�erent designs for aesthetic reasons
but also in order to reduce the weight of the wheel with minimal structural impact.
This high variety in shape of the ventilation holes explains the choice of the active
contour models, or Snakes, for their detection [156, 157]. Such models have been
extensively used in image segmentation in order to detect complex geometrical forms.

The �nal result of the detection procedure to locate all those elements for two
di�erent types of wheels is shown in Figure 4.5.

Once the pilot hole, countersinks, valve hole and ventilation holes are detected
and located, one can split the wheel within several areas, see Figure 4.3(a), which
are all inspected separately. Note that, though not very original, the detection of
those elements has to be extremely robust as any error will lead to a false alarm
of the anomaly detection method. To give an idea, the number of wheels produced
over one year is about 4 million wheels, and yet, not a single error has been observed
in those key elements location.
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Figure 4.5: Key element localization for two di�erent types of wheels

4.4.2 Data Preparation

AVI systems for anomaly detection have been widely used for their e�ciency and
unbiased results compared to human inspection. But, on the other hand, one great
drawback in certain cases is that such systems might be time-consuming. Thus the
urge to �nd new solutions that are fast and reliable.

In fact, in the industrial world, we call the production line, the set of sequential
operations put together to produce an end product that is suitable for consump-
tion. In order to maintain the synchronization of the production process, certain
constraints have to be respected along the production line. One of the most impor-
tant constraints to be respected is the pre-de�ned delay for each operation. The
anomaly detection process is one of the main operations on the production line,
essential to ensure the safety and well-being of the end product. Thus the urge to
�nd new solutions that are fast and not time-consuming.

A �rst solution might be the use of simple and basic processing methods for
anomaly detection, such as the gradient �ltering for instance. However, such meth-
ods usually go short in terms of detection accuracy and precision, thus making them
insu�cient for the client requirements. Another solution is to use multitasking, or
parallel processing. In fact, this approach highly depends on the inspected product,
together with other important factors.

For wheel inspection, the fact that all the di�erent zones are totally independent
from one another, allows us to split the wheel, and apply the detection process in
parallel on each zone. Another important advantage in splitting the wheel is that
each individual zone has speci�c characteristics and features, thus speci�c model
parameters. As we can see, all the di�erent zones of the wheel described in �g-
ure 4.3(a) have a circular form. To apply appropriately the detection process, a
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Figure 4.6: Circular galbe

rectangular image is required. Thus, we proceed by transforming the circular form
into a rectangular one.

To explain the data preparation procedure, the galbe zone is considered as an
example (see Figure 4.3(a)).

First, we start by isolating the galbe zone from the rest of the wheel, as illustrated
in �gure 4.6.

The second step is to unfold the circular area to create a rectangular one. Let
us denote (r1, r2) the lowest and highest radius of the galbe area respectively. Nor-
mally, a circle of radius r has a perimeter of 2πr. As r2 > r1, hence 2πr2 > 2πr1,
the circular area will turn into an isosceles trapezoid with a length ratio of r2/r1.
In fact, to get a rectangle, either you de�ne the length as 2πr1, thus you lose some
pixels, or you de�ne it as 2πr2 and you add the missing pixels to complete the
form. For the purpose of not losing any information, it is clearly best to de�ne the
length of the resulting matrix as 2πr2 and add the missing pixels by duplicating its
neighbors. It is worth noting that the number of missing pixels is proportional to
the ratio r2/r1, which is in our case less than 1.5 for all the di�erent types of wheels.

As a result, to unfold the circular galbe properly, the resulting rectangular matrix
must be of height r2 − r1 + 1 and of length 2πr2. In fact, the unfolding procedure
can be represented as a transition from the Polar coordinate system to the Cartesian
coordinate system. Let us denote (xc,yc) the coordinates of the center of the wheel.
Each pixel of the galbe in the Polar coordinate system is represented by its radius
r and its angle θ. The transition system can be represented as :{

x = xc + r ∗ cos(θ)

y = yc + r ∗ sin(θ)
(4.22)

where (x,y) are the Cartesian coordinates of the correspondent Polar coordinates
(r,θ).
Figure 4.7 represents the resulting unfolded galbe to be inspected.



80 Chapter 4. Defect detection method

Figure 4.7: Typical example of the unfolded galbe of a wheel.

4.5 Experiments and results

4.5.1 Common core of all experiments

All the images used in this work are raw images that are made of 2046×2046 pixels
of 12 bits depth; In what follows, most of the experiments presented only use the
red channel for simplicity and clarity.

Regarding to the adaptive part of the background model, as mentioned in sec-
tion 4.2.1, it is bene�cial to use the shape of the inspected surface to better design
this part of the model. Due to the circular shape of the wheel, we applied the PCA
by considering the columns of the unfolded image as di�erent observations. Hence,
the columns of Pk in equation (4.9) represent the part of the �rst principal com-
ponents, computed for each inspected wheel on the image on the very same wheel
itself, that corresponds to the location along the rows of the extracted block zk and
reshaped such that it is constant along the rows.

Then, in order to estimate accurately the heteroscedastic noise model param-
eters (a, b), a batch of raw images of test pattern has been used. As mentioned
previously, these parameters (a, b) only depend on acquisition parameters. All the
images of the di�erent types of wheels are acquired using the same camera settings;
the parameters (a, b) are, thus, constant for all the images. Using the method pro-
posed in [147] for the estimation of parameters (a, b) from the noise model resulted
in a = 2.23 and b = −420.

The rest of this section is divided into four parts. In the �rst part, the advantages
of adding the adaptive part, based on the PCA, in the proposed model of the
background are proven. The second part investigates the advantages of using the
heteroscedastic noise model rather than the usual AWGN model. The third part is
aimed at studying the performance and accuracy of the proposed adaptive model
of the background. And �nally, the fourth and last part compares the performance
obtained using the proposed detection method with performance from other recently
proposed surface defect detection methods. Note that the �rst two parts of this
section can also be considered as a comparison between the proposed method and
other parametric methods that neither contain adaptive parts within linear model,
nor take into account accurate imaging system heteroscedastic noise model.
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Figure 4.8: Example of a typical defect that it is wished to detect

4.5.2 Improvement of Detection Accuracy Due to the Model Adap-

tivity

Figure 4.8 presents an example of the galbe zone, with a typical defect that rep-
resents the lower limit of the detection criteria, above which the defect is intended
to be detected. It has a circular form which can be considered to simulate various
types of real defects. Note that the defect is highlighted with a red circle as it is
rather di�cult to see from naked eyes. This defect is used in the �rst and third
parts of the experiments.

In the �rst part of the experiments, the goal is to investigate the advantages of
adding the adaptive part, in other words, the Principal Components, to the pro-
posed background model. To this purpose, it is needed to compare the performance
of the proposed model in two di�erent scenarios, where in the �rst scenario the
background model consists of the polynomial part and the adaptive part, and in the
second scenario the background model only consists of the polynomial part.

The defect in Figure 4.8, has been used to perform a Monte-Carlo simulation on
3 000 images. Because it is hardly possible to obtain many images with similar de-
fects, we picked randomly a set of 3 000 non-anomalous images on which the defect
has been superimposed. In fact, it is rather di�cult to obtain images with defects,
while images of wheels without any defect are easy to obtain. The proposed model
parameters have to be adjusted in a way to highlight the e�ect of the adaptive part.
As the Principal Components are used to assist the polynomial function to better
model the complexity of the wheel along the rows, it is then possible to increase
the block height and study the performance. Therefore the block is set to a size of
h = 40 (height) and w = 40 (width).

Figure 4.9 and Figure 4.10 compare the mean power value of the statistical
test performed on the 3 000 images, in the two-case scenarios mentioned above, for
di�erent values of the defect intensity and defect radius respectively. In Figure 4.9
the defect radius is set to 5, and in Figure 4.10 the defect intensity is set to 150. In
both cases, the false-alarm probability is set to 0.01.

In the two �gures, the blue plots have been obtained using the proposed adap-
tive model with the degrees of the polynomial set to dy = 5 (along the height) and
dx = 2 (along the width) and the number of Principal Components added to this
model is ` = 3 giving us a total of p = 21 parameters, which is very small compared
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Figure 4.9: Real power curves with ` = 3 PCs and ` = 0 PCs function of the defect
intensity with a �xed defect radius = 5

to the number of pixels (1600). As for the red plots, they have been obtained using
the same polynomial degrees, but without any Principal Components added.

As it can be clearly seen in the two Figures, the model with Principal Compo-
nents added outperforms the model without any Principal Components added in
terms of detection power. For a defect radius of 5 and a defect intensity of 150, the
detection power values can be read from both �gures. If no Principal Components
are added, the detection power only reaches a value of 0.12. By adding 3 Principal
Components to the model, the detection power increases to a value of 0.42, which is
almost 4 times higher than the previous case. One can also notice from Figures 4.9
and 4.10 that the two plots converge to a nearby value of 1 with the increase of the
defect intensity or radius.

4.5.3 Improvement of Detection Accuracy Due to Heteroscedastic

Noise Model

In this section it is aimed to highlight the advantages of using the heteroscedastic
noise model rather than the usual AWGN model. As mentioned in subsection 4.2.3,
the heteroscedastic noise model expresses the relationship between pixels variance
σ2 and their expectation µ as a linear polynomial. As for the AWGN model, the
variance σ2 is considered constant all over the image, independent from pixels ex-
pectation.

To investigate the choice of the noise model, it is necessary to study the e�ect
of pixels' expectation on the normalization process. In fact, the noise model that
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Figure 4.10: Real power curves with ` = 3 PCs and ` = 0 PCs function of the defect
radius with a �xed defect intensity = 150

one uses de�nes the covariance matrix which has a primary role to normalize the
residuals norm. From (4.17), the empirical distribution of the normalized residuals
norm must follow a central χ-squared distribution with Υ = w × h − p degree of
freedom. Any inaccurate normalization will have a direct e�ect on the centrality of
the non-anomalous normalized residuals norm.

Figure 4.11 represents two blocks within two di�erent regions of the galbe zone.
As one can notice, the block 1 is located on a bright region of the galbe zone, with
high pixels' expectation values. As for the block 2, it is located on a darker region
of the galbe zone, which means lower values of pixels' expectation. It is important
to note that Block 1 and Block 2 do not contain any type of defect.
Those two blocks are used to perform a Monte-Carlo simulation on 3 000 non-
anomalous images using the proposed adaptive model, the �rst time with the het-
eroscedastic noise model, and the second time with the usual AWGN model.

Figure 4.12 represents the empirical distributions of normalized residuals norm
‖rk‖22 for Block 1 and Block 2 using the heteroscedastic noise model. The two

Block1

Block2

Figure 4.11: Block 1 and Block 2
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Figure 4.12: Empirical distributions of normalized residuals norm over block 1 and
block 2 using the heteroscedastic noise model

distributions are centered around the same value of w×h− p = 20× 20− 21, which
indicates that the normalization is adapted to the pixels expectation variation.

On the other hand, Figure 4.13 represents the empirical distributions of the nor-
malized residuals norm ‖rk‖22 for Block 1 and Block 2 using the AWGN model. We
observe that the empirical distribution for Block 1, which has high values of pixels
expectation, is shifted to the right, while the empirical distribution for Block 2,
which has low values of pixels expectation, is shifted to the left.

This result can be explained by the model from Equation (4.12). By using the
AWGN model, the normalization of the residuals norm is independent from pixels'
expectation values. As a consequence, the variance is considered constant all over
the image. In reality, the relationship between pixels' expectation and variance is a
linear polynomial (4.12) with a positive slope value (see Figure 4.1), which means
that the pixel variance increases with its expectation. For Block 1, having higher pix-
els' expectation values in reference to the average expectation value, implies higher
variance values, which also indicates the need for a higher normalization factor. As
for Block 2, it is the other way around; Lower pixels expected values in reference
to the average expectation value, implies lower variance values, which also indicates
the need for a lower normalization factor.

These results show the e�ciency of the heteroscedastic noise model to achieve
the appropriate normalization of the residuals norm. In conclusion, one can clearly
state that, in case of dealing with raw images, the AWGN model is not e�cient,
and that the use of the heteroscedastic noise model is crucial to achieve the perfect
normalization results.
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Figure 4.13: Empirical distributions of normalized residuals norm over block 1 and
block 2 using the AWGN model

4.5.4 Comparison Between Empirical and Theoretically Established

Results

In the third part of the experiments, it is wished to show the relevance of the
proposed statistical test and the accuracy of the theoretical results. Once more a
Monte-Carlo simulation has been performed on 3 000 images with and without the
presence of the defect shown in Figure 4.8. This defect has an intensity of 200 and
a radius of 5.

Figure 4.14 presents the empirical distribution of normalized residuals norm
‖rk‖22 on which the proposed test is based, see Eq. (4.19). It has been obtained
using the proposed adaptive model over blocks with size h = 20 (height) and w = 20

(width). Note that for this experiment, the size of the block has been reduced to
more precisely model the background. The degrees of the polynomial used are
dy = 5 (along the height) and dx = 2 (along the width) and the number of Principal
Components added to this model is ` = 3.

The gap between the empirical distribution under H0 and the empirical distri-
bution under H1 is due to the non-central parameter %k under hypothesis H1 (4.18).
As mentioned above, the defect used in this simulation represents the lower limit of
the detection criteria, above which the defect is intended to be detected. With this
information in mind, Figure 4.14 shows that the detection of the defect is possible
with certain classi�cation error.

Besides, Figure 4.14 also compares the empirical distribution under H0 with the
theoretical one (4.17). A small discrepancy can be observed between the empirical
and the theoretical distributions.

The e�ect of the discrepancy can be illustrated in Figure 4.15 which represents
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Figure 4.14: Empirical and theoretical distributions of normalized residuals norm
for images with and without defect

the real and theoretical ROC curves. As one can notice, the performance of the
proposed model is slightly lower than it is expected theoretically.

This can be explained by the two following facts. First, the estimation of pixels
expectation is not perfect and has itself a non-negligible variance, which is not yet
taken into account in the proposed test. Second, the proposed adaptive model,
though e�cient, is not perfect and, hence, maybe sometimes unable to describe the
background with highest accuracy, putting part of the non-anomalous background
among the residuals.

4.5.5 Comparison With the State-of-the-art

Finally, in this last section of numerical results, it is wished to compare the per-
formance of the proposed method with methods recently proposed in the literature
for surface defect detection. To this intent, Monte-Carlo simulations have been per-
formed on 3 000 images with and without the presence of a defect that has the same
form as the one shown in Figure 4.8, but with an intensity of 300 and a radius of 5.

The �rst simulation has been performed using the proposed adaptive model over
blocks with size h = 20 (height) and w = 20 (width), with the degrees of the poly-
nomial set to dy = 5 and dx = 2 and the number of Principal Components added to
this model set to ` = 3.

The second simulation has been performed using the detection method detailed
in [158]. It consists of two phases: 1) a global estimation based on the Phase Only
Transform (PHOT) method, which considers the defect as an abrupt change in the
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Figure 4.15: Real and Theoretical ROC Curves

image regularity, thus removes the regularity by normalizing the image's Fourier
Transform by its magnitude. 2) Then a local re�nement procedure which locally
re�nes the estimated region based on the distributions of pixel intensities derived
from defect and defect-free regions. Two parameters have to be tuned correctly
depending on the input image texture and defect size: the Mahalanobis distance
which is the threshold value for detection, and the size of the squared patch used in
the local re�nement step. They are set to 4.0 and 5 × 5 respectively, as suggested
in the paper [158].

The third simulation uses the detection method introduced in [159]. They pro-
pose a regularity measure for defect detection in non-textured and homogeneously
textured surfaces based on PCA. The method consists of a small neighborhood win-
dow that slides over the inspected image and for each window the regularity measure
is then derived from the PCA. Again, two parameters have to be properly selected,
as they have major e�ects on the detection performance. First, a control constant
K which de�nes the threshold value for detection. A small value of K will generate
false alarms, whereas a large value of K will result in high miss-detection rate. In
order to choose the proper value of K, the paper proposes to select the minimum K

value that generates no false alarms when applied to a defect-free training sample.
For the proposed performance test, the proper value of K is 3. The second parame-
ter to be tuned is the sliding window size. It should be large enough to contain the
entire defect area, however, if it is excessively large it may smooth out the defective
area and result in miss-detection. The defect implemented in the performance test
has a radius of 5, thus the selected window size is 15× 15.

Finally, the proposed adaptive method is compared to the detection method
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Figure 4.16: ROC curves of the four detection methods

presented in [160] which consists of four subsystems: sensing, detection, classi�cation
and post-processing. Only the detection step is for interest in this study. It is based
on a foreground extraction step using a median �lter, and then a multi-zone detection
technique, where each image is divided into multiple overlapped squared areas that
undergo a thresholding procedure. The most crucial parameter that achieves an
e�cient defect detection performance is the median �lter size. After many tests on
defective and defect-free images, it is set to 13× 13.

Figure 4.16 presents the corresponding ROC curves of the four mentioned de-
tection methods.

The proposed adaptive method outperforms the detection method based on the
regularity measure [159] and the one based on the median �ltering [160]. However,
compared to the method based on PHOT [158], the ROC curves seem to be indis-
tinguishable. For a better look, a zoomed-in portion of the plot is illustrated on
the same �gure, with a false-alarm probability ranging between 0 and 0.03, and
a detection probability between 0.8 and 1. This subplot shows that the proposed
adaptive method performs slightly better than the one based on PHOT. Still, this
comparison cannot be considered as conclusive.

Therefore, to present a more consistent comparison, it is wished to analyze the
e�ect of the defect radius on the performances of the proposed adaptive method
and the one based on PHOT. To this purpose, a similar Monte-Carlo simulation
as the one seen in the �rst part of the experiments is performed, to represent the
detection probability value, function of the defect radius, with a defect intensity of
150, and a false-alarm probability of 0.01. The degree of the polynomial used for
the proposed adaptive model is dy = 5 and dx = 2 and the number of Principal
Components added is ` = 3. Additionally, another goal of this simulation is to show
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Figure 4.17: Detection probability function of the defect radius with a �xed defect
intensity = 150

the e�ect of the block size used in the proposed adaptive model on the detection per-
formance. Hence, three di�erent block sizes have been considered in this simulation.

Figure 4.17 illustrates the simulation results.

The green plot, which corresponds to the method based on PHOT, starts o�
with the highest detection probability for very small defects with a radius less than
3. It reaches its peak for defects with a radius ranging between 5 and 7. Then the
performance starts to decline with the size of the defect. That can be explained in
the fact that its detection phase is based on a global method, the PHOT, which
must be applied on the whole image at once in order to properly remove the image
regularity. Hence, a small defect is seen as an abrupt irregularity while a larger de-
fect becomes slowly considered as a part of the image regularity, and thus partially
removed.

As for the proposed adaptive method, it can be noticed that the performance
highly depends on the considered block size. For small defects, using a smaller block
size leads to a higher detection probability. For a defect radius ranging between 2

and 4, the proposed adaptive model with a block size of 20× 20 is the best choice.
For a defect radius ranging between 4 and 7, a block size of 30× 30 is more appro-
priate. And for larger defects, a larger block size of 40 × 40 becomes the superior
choice. That is due to the fact that our method considers that the block is a back-
ground image containing a defect, thus the defect occupies a smaller space in the
block than the background itself. For a speci�c block size, the performance of the
proposed method continues to rise, with the slope becoming smaller as the defect is
becoming larger, till it reaches a certain point when the defect occupies the totality
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of the block at which the performance drastically declines. This sudden decline in
the performance can be observed in Figure 4.17 for a block size of 20×20 at a defect
radius of 9, and for a block size of 30 × 30 at a defect radius of 14. Therefore, de-
pending on the inspected surface, and on the range on the size of potential defects,
one can choose the appropriate block size that gives the best performance.

Note that in chapter 3, the number of pixels for the smallest defect intended to
be detected on the wheel surface was set to a value of 8 pixels in a single direction,
i.e. a defect radius of 4 pixels. Therefore, since all the potential defects will have a
radius above 4 pixels, it can be concluded from the comparison in Figure 4.17 that
the proposed adaptive method outperforms the method based on PHOT.

4.5.6 Real defects

In this section, it is wished to present some results by applying the proposed adap-
tive model on wheel images containing real defects located on the surface of the
wheel.

For each example image with defects, the data preparation procedure presented
in Section 4.4.2 has been applied to obtain the unfolded image of the speci�c zone
of the wheel that contains the defect. Then, the proposed adaptive model has been
used to model the unfolded image background and create a model image that ideally
does not contain any trace of the defect. Finally, the results are illustrated by a
residual image, resulting from the subtraction of the model image from the unfolded
image.

Choosing the appropriate parameters for the proposed adaptive model is vital
to achieve the best detection results. Each zone of the wheel has its unique features
and characteristics, according to which the choice of the proposed adaptive model
parameters highly depends. These features and characteristics are not only related
to the background homogeneity or pattern, but also to the defect size and shape
which dependent much on the speci�c zone on which the defect is located.

The example images used in this experiment represent numerous types of wheels,
with various designs and dimensions, containing defects that are located on various
zones of the wheel, as the galbe zone, the rim zone and the ventilation zone. Ta-
ble 4.1 lists the proposed adaptive model parameters for each zone of the wheel.
The parameters described are the block width w and the block height h, the degrees
of the polynomial dx and dy, and the number of added Principal Components `.
A detailed, but rather general, discussion on the choice of these parameters has
been done in Section 4.2.2. In the following, a more in depth explanation of the
parameters choice for each zone will be provided, based on the zone texture and
potential defect size.
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Table 4.1: Proposed Adaptive Model Parameters

Zone w h dx dy `

Galbe Zone 50 25 2 5 3

Rim Zone 40 15 2 5 5

Ventilation Zone 30 20 2 5 3

First, it is obvious that, due to the circularity of wheels, in all the di�erent
zones pixels share similar values along the horizontal direction, after unfolding pro-
cess. This characteristic justi�es the choice of dx to a relatively low value of 2 for
all the di�erent zones. Along the vertical direction, the texture is much more com-
plex with multiple light re�ection artifacts, thus the necessity of higher polynomial
degree dy = 5 and the assistance of the Principal Components ` = 3. The Rim zone
presents a special case as it contains sharper edges along the rows which explains
the use of a higher number of Principal Components (` = 5) to better model the
background.

Regarding the block size, the choice of its width w and height h is mainly related
to the defect size, although its height must be always maintained to a low value to
help model the complex background along the rows. Brie�y speaking, the galbe
zone is the largest zone of the wheel, and defects located in this area are usually
bigger in size, thus the choice of w = 50 and h = 25. Defects located on the rim
zone, which is the boundary zone of the wheel, are usually medium sized scratches
caused by the mishandling of the product, hence the choice of w = 40 and a lower
value of h = 15 due to the special case mentioned above. Finally, defects located
on the ventilation zone are usually of small size as they are trapped between the
ventilation holes, which explains the choice of w = 30 and h = 20.

Following this discussion, it is possible to understand the variability of these
parameters for the di�erent zones of the wheel. However, to properly determine
the exact values of the model parameters for each zone, it has to be performed by
simulations. To this purpose, multiple simulations, with di�erent values of model
parameters, have been performed to ensure the best detection e�ciency. For each
simulation, a di�erent combination of model parameters has been used, with the
goal to maximize the detection power β for a �xed value of false alarm α. These
simulations were performed in two steps; The �rst step was de�ning the size of the
block w and h according to the potential defects sizes that could be present on each
zone of the wheel. Then, in the next step, multiple combinations of the model pa-
rameters dx, dy and ` were tested to determine the ones that maximize the detection
power β for a �xed value of false alarm α with the pre-de�ned block size.

Figure 4.18 presents, for a small set of example images, its corresponding un-
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folded image, model image and residual image, resulting from the use of the proposed
adaptive model with the proper parameters corresponding to the zone on which the
defect is located.
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Figure 4.18: Images of wheels with various defects along with their corresponding
model image and residual image
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4.6 Conclusion

This chapter proposes a novel method for fully automatic anomaly detection on ob-
jects inspected using an imaging system. In order to address the inspection of a wide
range of objects and to allow the detection of any anomaly, an original adaptive lin-
ear parametric model is proposed; The great �exibility of this adaptive model o�ers
highest accuracy for a wide range of complex surfaces while preserving detection
of small defects. In addition, because the proposed original model remains linear
it allows the application of the hypothesis testing theory to design a test whose
statistical performances are analytically known. Another important novelty of this
method is that it takes into account the speci�c heteroscedastic noise of imaging
systems. Indeed, in such systems, the noise level depends on the pixels' intensity
which should be carefully taken into account for providing the proposed test with
statistical properties.

The proposed detection method is then applied for the wheel surface inspection
problem studied in this work. Due to the nature of the wheels, the di�erent elements
are analyzed separately. Numerical results on a large set of real images show both
the accuracy of the proposed adaptive model and the sharpness of the ensuing
statistical test. Furthermore, experimental results on wheel images containing real
defects located on the surface of the wheel show the relevance in practice of the
proposed adaptive model. The in�uence of the model parameters will be studied
on a wide range of wheels to �nd the most accurate ones and the variance of the
estimations will be taken into account to be able to establish with accuracy the
performance of the proposed test.
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This chapter is inspired by our paper: �Karim Tout, Florent Retraint, Rémi Cogranne,

Non-stationary process monitoring for change-point detection with known accuracy:

Application to wheels coating inspection, in IEEE Access, 2018�

After addressing the problem of local defect detection in chapter 4, the remain-
ing inspection task revolves around the detection of global defects. Such defects
a�ect the entire surface of the wheel in a uniform manner. In this case, it is di�cult
to judge the wheel by itself as the defect is only visible if compared to previous
manufactured wheels. Global defects are mainly related to the topcoat layer. This
is the last layer of coating applied over the surface of the wheel and it maintains the
aesthetic appearance characteristics of the wheel surface. Any increase or decrease
in the amount of paint used for this layer will lead to an excess or shortage of color
on the wheel surface, thus generating a global defect. Therefore, it is wished to
develop a method to monitor the wheels' topcoat intensity over time, in order to
detect an abrupt change that corresponds to a sudden lack of paint.

In recent years, the change-point detection topic has been receiving increasing
attention in various domains. It addresses the problem of detecting the point or
multiple points at which a �signi�cant change� occurs in a time series. These points
are referred to as change points. The change-point detection process must be able
to distinguish between a �signi�cant change� indicating an abnormal event, and an
�insigni�cant change� due to noise and that indicates a predicted or a normal be-
havior of data. Distinguishing change-points from spurious noise is very important
in order to keep a false alarm rate. However surprisingly, sequential methods are
hardly provided with established, or bounded, false-alarm probability and power
functions.

In general, change-point detection methods can be classi�ed into �posteriori�
and �sequential� methods. The choice of the appropriate class of methods depends
heavily on the application.

�Posteriori� methods, also referred to as o�ine or retrospective methods, are
considered in many applications, such as climate change study [161], biological ap-
plications [162, 163], econometric applications [164], and utility change in social
media [165], to cite few topics. Such methods can only be applied after all the data,
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or observations, are received. Then, the objective is to detect all the change-points
available in the data, along with estimating their locations. In applications for which
these types of methods are used, the goal is usually to analyze time series and not
to take immediate action after detecting the change points.

On the opposite, many other applications analyze data in real time with the goal
to take an immediate response as soon as a change in the data is detected, as it
can reveal a system failure which must be handled. In such cases, a real-time data
acquisition and analysis processes are required in order to raise an alarm as soon
as a change-point is detected. Such problems fall within the scope of �Sequential�
methods, also referred to as online or real-time methods, in which it is assumed
that the data are received sequentially, and that until a change-point is detected
the process is allowed to continue. Contrariwise, when the data change, typically
revealing a failure or a change in the underlying process, the aim is to detect the
change-point with a minimal delay, in order to take the relevant actions, while also
preserving a low false-alarm.
Obviously, minimizing the detection delay and the false-alarm rate are contradic-
tory goals. Sequential methods have been especially attracting attention from the
industrial world, in which the term control chart is widely used, for quality control
applications [166�168]. Industries have been pushing to produce higher quality and
innovative products, which requires more and more manufacturing processes, while
on the opposite, they are also required to reduce costs and production time. Hence,
early fault detection for these industries is crucial to minimize downtime, reduce the
product losses, and thus reduce manufacturing costs.

�Sequential� change-point detection methods can be further categorized into
�parametric� and �non-parametric� methods.

On the one hand, �non-parametric� or data-driven methods have the advantage
not to require any assumptions or any model on the data. They are based on statis-
tical methods, especially supervised or non-supervised learning, to build detection
rules based on large set of observations. Such decision rules are then applied to new
data. While not requiring a model to describe the observations, those methods may,
however, be limited, typically when the manufacturing process can largely change,
and they are hardly provided with known statistical performances.

On the other hand, �parametric� methods are used when a su�cient informa-
tion on the monitoring process is available such that a statistical model of the
observations can be designed. In other words, this approach requires that some
distributional knowledge of the data is available and employed into the detection
scheme. A common limitation of such methods is that they rely on pre-speci�ed
parametric models that are based on a priori information about the form of the data
distribution, which is not always available.

The studied process in this work is the variation of the paint quantity on the
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inspected wheels surface. This process is shown to be non-stationary in the mean
with a constant variance. Therefore, it is proposed to design a parametric sequen-
tial method with the goal to monitor a non-stationary process in real time in order
to detect an abrupt change in its mean. This abrupt change results from a spray
gun nozzle getting partially blocked, which will be translated into a sudden change
in the paint intensity caused by the lack of paint on the wheel. In an industrial
situation, it is required to detect the change within a given maximal detection delay
(number of observations after the change) and it is wished to control the false-alarm
probability over a �xed run length. In this operational context, a two �xed-length
windows sequential method (2FLW-SEQ) based on the well-known CUSUM proce-
dure is proposed for which the statistical performances are bounded.

The main contributions of the proposed method are the following:

1. A two �xed-length windows sequential method (2FLW-SEQ) is proposed for
monitoring a non-stationary process in real time. The �rst window is consid-
ered to deal with the non-stationarity of the process, while the second window
is the one used for the sequential detection procedure.

2. The proposed sequential procedure operates under the non-classical criteria of
minimizing the worst-case probability of missed detection under the constraint
of a maximal detection delay, while controlling the false alarm probability for
a given number of observations.

3. A statistical study of the proposed method is established that allows to lower
bound the detection power as a function of the maximal allowed detection
delay, and enables to upper bound the false alarm probability for a given
number of observations.

4. The proposed context enables the user to prescribe a maximal detection delay
and a false alarm probability for a given number of observations, and can know
which change amplitudes can be detected with guaranteed minimal probability.

5.1 Change-point detection problem statement

This section formally states the usual problem of abrupt change-point detection and
recalls the well-known CUSUM method before highlighting the main particularity
of the problem addressed in this work.

5.1.1 CUSUM procedure

The sequential change-point detection problem can be formulated as follows. Let us
consider {xn}n≥1 a sequence of independent and identically distributed (i.i.d) obser-
vations that are acquired sequentially. At the beginning, the sequence is considered
in a normal state, and the observations follow a probability distribution Pθ0 . Then,
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at an unknown point v ≥ 0 (the change-point), the sequence reaches an abnormal
state, in which the observations follow a di�erent probability distribution Pθ1 . The
problem formulation can be rewritten as follows:

xn ∼

{
Pθ0 if 1 ≤ n ≤ v,
Pθ1 if n ≥ v + 1,

(5.1)

The sequential change-point detection consists in detecting the change-point v as
soon as it occurs, while at the same time preserving a low false alarm rate.

For the online continuous inspection, for each new observation received, a deci-
sion rule is computed to test between the two following hypotheses:{

H0 : {θ = θ0},
H1 : {θ = θ1},

(5.2)

As long as the test (also called the stopping rule) fails to reject H0, the data acqui-
sition continues.

When the observations xi are statistically independent, a usual approach to
decide between the hypotheses H0 and H1 is to use the cumulative sum (CUSUM)
procedure which can be de�ned, for observations up to N as follows [169]:

δN =

{
0 if SN1 = max(SN−1

1 + sN − λ; 0) < τ,

1 if SN1 = max(SN−1
1 + sN − λ; 0) ≥ τ,

(5.3)

where λ is a constant that avoids spurious false-alarms, τ is a conveniently pre-
de�ned threshold and, for initialization, S0

1 = 0. Though the decision statistics
sN and the constant λ were not de�ned in [169], the logarithm of the well-known
likelihood ratio is commonly used:

sn = log

(
pθ1(xn)

pθ0(xn)

)
, (5.4)

where pθ0 and pθ1 are the probability density functions (PDF) under hypothe-
ses associated with distributions Pθ0 and Pθ1 respectively, which are assumed to
be known, and the constant λ is usually the average of the expected values λ =

1/2 (EH0 [s] + EH1 [s]).

5.1.2 Di�culties of non-stationarity and criterion of optimality

The studied process in this work, which is the wheels coating variation, is non-
stationary in the mean. As a consequence, the problem of detecting abrupt change
in an i.i.d random sequence is not relevant anymore because (1) the hypotheses are
composite, that is they are characterized by a set of possible parameters Θ0 and Θ1

and (2) for observation xn the PDFs pθ0 and pθ1 are unknown.
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In fact, when monitoring a non-stationarity process whose distribution parame-
ters may �naturally� change over time, the change-point detection problem as stated
in (5.1)�(5.2) is no longer relevant.

Indeed, since under the hypothesis H0 the distribution parameter θ0 may change
within the set Θ0, the hypotheses are de�ned by:{

H0 : {θ ∈ Θ0},
H1 : {θ ∈ Θ1},

(5.5)

and one should instead consider the following sequential test problem:

xn ∼

{
Fθ0,n , θ0,n ∈ Θ0 if 1 ≤ n ≤ v,
Fθ1,n , θ1,n ∈ Θ1 if n ≥ v + 1,

(5.6)

The main issue to tackle those scienti�c di�culties is to have an accurate model
of Θ0 and Θ1; in other words, to be able to model with enough accuracy the set
of �regular� changes in the process from the abrupt changes that reveals a malfunc-
tioning.

Regarding the scienti�c di�culties, when the distribution parameters θ0,n and
θ1,n are unknown, in such a context the likelihood ratio (5.4) cannot be calculated
for a given observation xn. A usual solution that is adopted in this work is to use
a generalized likelihood ratio that consists in substituting unknown parameters θ0,n

and θ1,n by their estimations using the maximum likelihood estimation.

The second main challenge, in our industrial context, is the introduction of an
unusual criterion of optimality. Indeed the CUSUM has been shown to be asymptot-
ically optimal with respect to the criterion that consists in minimizing the average
worst case detection, see [170�172] for details on the so-called Lorden's criterion and
CUSUM optimality.

However, a minimal average delay is not equivalent to a maximal detection
accuracy for a given detection delay. Focusing on a practical industrial context, the
proposed method aims at maximizing the probability of change-point detection for
a �xed maximal delay; this is justi�ed for cost-reduction purposes as the change
point corresponds in practice to a malfunction in a production process.

5.2 Proposed change-point detection method

As discussed in section 5.1.2, it is wished to design a change point detection method
in the case of a non-stationary process with a constraint on the maximal detection
delay. This section �rst presents how to deal with the process non-stationarity that
represents a nuisance parameter; then the novel two �xed-length window sequential
method (2FLW-SEQ) is presented that �ts with the constraint on the detection
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delay, and rejects online the nuisance parameter generated by the process non-
stationarity.

5.2.1 Process modeling

Let us consider a sliding window of size L. After the �rst L observations, for each
new received data xN , the window slides by one point to contain the observations
from xN−L+1 to xN . Let YN = (xN−L+1, . . . , xN−1, xN )T denotes this window after
the reception of observation xN . The vector YN is modeled with the following normal
distribution:

YN ∼ N (µN , σ
2IL), (5.7)

where µN is the expectation in this window, IL is the identity matrix of size L, and
σ2 is the variance which is assumed constant for all windows YN ,∀N ≥ L.

A linear parametric model is proposed to represent the expectation µN . It essen-
tially consists in representing all the observations in the window YN as a weighted
sum of q basis vectors that represent the columns of a matrix H of size L× q. The
weight of this sum represents the vector of q parameters dN .
Hence, the expectation µN can be written as:

µN = HdN . (5.8)

The model of H is based on the following algebraic polynomial:

h(x) =

q−1∑
j=0

djx
j , (5.9)

with q − 1 the degree of the algebraic polynomial.

The use of a linear parametric model in statistical testing theory has been widely
exploited [142, 173], especially the case of a polynomial model [110, 135, 174]. One
can also note that we have used such approach of polynomial image modeling for
the defect detection method on the wheel surface detailed in the previous chapter.
However, here it is used in a simplistic manner within a sequential detection method
to remove the possible slight �natural� intensity changes that are not abnormal and
should thus be removed.

It follows from Eqs. (5.7) and (5.8) that in the absence of any anomaly, the
vector of observations YN is modeled by:

YN ∼ N (HdN ,σ
2IL). (5.10)

On the opposite, when a defect happens in the process, a change occurs in the
mean value which will a�ect all the observations after the change-point. Conse-
quently, when the change occurs, the observations YN can be modeled as:

YN ∼ N (HdN + ∆KM ,σ
2IL), (5.11)
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where the sudden shift in the mean value is described by the vector KM , of size L,
containing L −M zeros before the change occurs and minus ones M times after,
and the constant ∆ > 0 represents the amplitude of the change. Here, M is the
number of maximal acceptable observations with defects. For example, the change
vector K1 = (0, 0, ..., 0,−1) describes a change that only a�ects the last observation
in the window of size L.

It is important to note that the �acceptable� variation of mean value, modeled
by HdN , is a nuisance parameter as it is of no use for the considered detection
problem. To deal with this nuisance parameter, it is proposed to use the maximum
likelihood (ML) estimation method to perform a rejection of this nuisance parameter
as follows:

rN =
1

σ
WYN . (5.12)

Here W is the orthogonal projection of size L − q × L, onto the null space of H ,
whose columns correspond to the eigenvectors of the matrix IL−H

(
HTH

)−1
HT

associated with eigenvalues equal to 1. The vector rN represents the projection of
the observations onto the null space of H.

5.2.2 2FLW-SEQ procedure

Among others, the matrix W has the following useful properties: WWT = IL−q
and WH = 0 ; it thus follows from Eqs. (5.10)-(5.12), that the residuals rN can be
modeled under hypotheses H0 and H1 by the following statistical distribution:H0 : {rN ∼ N (0, IL−q)}

H1 :

{
rN ∼ N

(
∆

σ
θM , IL−q

)}
,

(5.13)

where θM represents the shift of expectation, due to the process failure, projected
onto the null space of H: θM = WKM .

From the de�nition of the hypotheses in Eq. (5.13), after the rejection of the
nuisance parameter HdN , it is obvious that the considered detection problem es-
sentially consists in the detection of a speci�c signal in noise.

Due to the industrial aspect of our operational context, it is proposed to use a
sequential method with a �xed window of length M which also corresponds to a
pre-de�ned �xed maximal detection delay.

Similar approaches have been studied in the context of sequential detection
in [175, 176]. They proposed to use the well-known match space detection which
is given in our case by:

δN =

{
0 if S̃NN−L+1 = θTMrN < τ

1 if S̃NN−L+1 = θTMrN ≥ τ.
(5.14)
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From Eq. (5.13) it is straightforward to establish the statistical distribution of results
S̃NN−L+1 of the proposed 2FLW-SEQ:

H0 :
{
S̃NN−L+1 ∼ N (0, ‖θM‖22)

}
H1 :

{
S̃NN−L+1 ∼ N

(
∆

σ
‖θM‖22, ‖θM‖22

)}
.

(5.15)

which can be normalized, for the sake of clarity, as follows
H0 :

{
S̃NN−L+1

‖θM‖2
∼ N (0, 1)

}

H1 :

{
S̃NN−L+1

‖θM‖2
∼ N (

∆

σ
‖θM‖2, 1)

}
.

(5.16)

It is important to note that the choice of the �rst window size L and the poly-
nomial degrees q − 1 is crucial and essentially depends on the observations.

First, L must be much greater than M in order to avoid any signi�cant impact
of the abrupt change on the estimate of the linear model parameters dN . On the
opposite, L must remain reasonably small such that the linear model will well model
the observations' expectation and to ensure that the residuals rN follow a standard
normal distribution under H0.

As for q, it is the opposite scenario. Indeed, high polynomial degrees may lead
to the shift being eliminated with the projection (5.12), and thus removed from the
residuals. On the other hand, very small polynomial degrees may not be su�cient
to properly model the process, and thus putting parts of the healthy observations
among the residuals, and probably losing the standard normal distribution under
H0.

5.3 2FLW-SEQ performances

In this section, the statistical properties of the proposed sequential method are
studied in terms of probability of false alarm for a given run-length (number of ob-
servations under H0) and probability of change-point detection under the maximal
delay constraint.

A sequential change-point detection procedure stops as soon as its decision rule
δn becomes 1. Then, the stopping time T is de�ned as the smallest observation index
n for which δn = 1. A correct change detection consists in stopping the sequential
procedure after the change has occurred, which means T ≥ v where v is the change
point index. A false alarm is raised in case where T < v, i.e. the process has been
stopped before the change occurred.
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A usual criteria for a sequential procedure is to detect the change as soon as it
occurs, thus minimizing the detection delay T − v. Many criteria have been used
to investigate the optimality of change point detection algorithms concerning the
detection delay, as the �mean delay�, the �conditional mean delay�, the �worst mean
delay�, etc. . . . [169,170,177,178]. In that context, the CUSUM algorithm has been
proven to be optimal in [170�172].

However, in the proposed detection scheme, the goal is to �x a detection de-
lay after which the change detection is considered too late. In fact, minimizing
the detection delay does not necessarily lead to a higher detection power, or to a
small probability of missed detection. Therefore, the aim of the proposed sequen-
tial method is to minimize the worst-case probability of missed detection under
constraint on the worst-case probability of false alarm for a given run length.

5.3.1 Minimizing the probability of missed detection

The stopping time of the classical CUSUM procedure is given by:

Tc = inf
n≥1
{n : max

1≤k≤n
S̃nk ≥ τ} (5.17)

In this context, the CUSUM procedure takes into account all previous observations.
However, for the proposed sequential method, after collecting the �rst L observa-
tions, the stopping time can be de�ned as:

T2FLW = inf
n≥L
{n : S̃nn−L+1 ≥ τ} (5.18)

The probability of missed detection can be considered as the probability that
the detection delay is higher than the acceptable one de�ned as M , knowing that
the detection is made after the change has occurred with T ≥ v.
Then, to the purpose of minimizing the probability of missed detection, the following
criteria can be applied:

Pmd(M) = sup
v≥L

P(T − v + 1 > M | T ≥ v) (5.19)

where Pmd(M) is the worst-case probability of missed detection. Minimizing this
probability will lead to maximizing the detection probability denoted as β(M) =

1− Pmd(M).
Eq. (5.19) can be developed to:

Pmd(M) = sup
v≥L

P
(
M+v−1⋂
n=L

{
S̃nn−L+1 < τ

})
P
(
v−1⋂
n=L

{
S̃nn−L+1 < τ

}) (5.20)
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It is complicated to calculate the exact value of Pmd(M), instead it is proposed to
calculate an upper bound. It can be seen that:

P

(
M+v−1⋂
n=L

{
S̃nn−L+1 < τ

})
≤

P

({
v−1⋂
n=L

{
S̃nn−L+1 < τ

}}⋂{
S̃M+v−1
M+v−L < τ

}) (5.21)

Note that in Eq. (5.21), the two events have common observations of indexes
(M + v − L, ..., v − 1). In order to calculate the result S̃M+v−1

M+v−L, observations of
indexes (M + v − L, ...,M + v − 1) have been projected onto the null space of the
model matrix H, and then the resulting residuals have been multiplied by θM which
represents the shift of expectation, due to the process failure, projected onto the null
space of H. Because all the common observations are healthy observations, as they
are acquired before the change v, their e�ect is neglected when multiplied by θM .
Following that, the two events can be considered as independent, and Eq. (5.21) can
be written as:

P

(
M+v−1⋂
n=L

{
S̃nn−L+1 < τ

})
≤

P

({
v−1⋂
n=L

{
S̃nn−L+1 < τ

}})
· P
({
S̃M+v−1
M+v−L < τ

}) (5.22)

Then, from Eq. (5.20), we get:

Pmd(M) ≤ P
({
S̃M+v−1
M+v−L < τ

})
= PH1

({
S̃L1 < τ

})
(5.23)

where PH1 is the probability under H1. Based on (5.15), under H1, the result S̃L1 is
a Gaussian random variable with mean ∆

σ ‖θM‖
2
2 and variance ‖θM‖22.

As a result, the worst-case probability of missed detection can be upper bounded
as:

Pmd(M) ≤ Φ

(
τ

‖θM‖2
− ∆

σ
‖θM‖2

)
(5.24)

with Φ the standard normal cumulative distribution function.

Finally, the power function β(M) of the proposed test (5.15), that is the proba-
bility of detecting a failure after at most M observations, is bounded by:

β(M) ≥ 1− Φ

(
τ

‖θM‖2
− ∆

σ
‖θM‖2

)
. (5.25)

In what follows, this lower bound will be referred to as β̃(M).
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5.3.2 The worst-case probability of false alarm

For a given run length R and at a given time `, the false alarm probability is given
by:

P0(` ≤ T ≤ `+R) (5.26)

Hence, the worst-case probability of false alarm for all ` ≥ L can be de�ned as:

Pfa(R) = sup
`≥L

P0(` ≤ T ≤ `+R) (5.27)

The calculation of the exact value of Pfa(R) is absurd, instead it is proposed to
calculate an upper bound only. In this way, it is possible to guarantee a false alarm
rate lower than that bound for all ` ≥ L.

The calculation will be done in two steps. First, the proof that the worst-case
probability of false alarm is indeed the probability of false alarm at the starting
point L. And then, the second step is to determine the upper bound.

First, let us start the proof of the following equality:

Pfa(R) = sup
`≥L

P0(` ≤ T ≤ `+R) = P0(L ≤ T ≤ L+R) (5.28)

Let us denote U` = P0(T = `) for all ` ≥ L. For the �rst point L, it can be clearly
seen that:

UL = P0(S̃L1 ≥ τ) (5.29)

and that:
UL+1 = P0

({
S̃L1 < τ

}⋂
{S̃L+1

2 ≥ τ}
)

≤ P0

({
S̃L+1

2 ≥ τ
}) (5.30)

As all the observations of indexes (1, ..., L+ 1) follow the same distribution under
H0, then the inequality in Eq. (5.30) can be rewritten as:

UL+1 ≤ P0

({
S̃L1 ≥ τ

})
= UL (5.31)

In a similar manner, for ` > L, we can verify that:

U` = P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃``−L+1 ≥ τ

})
(5.32)

and that:

U`+1 = P0

( ⋂̀
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃`+1
`−L+2 ≥ τ

})

≤ P0

( ⋂̀
n=L+1

{
S̃nn−L+1 < τ

}⋂{
S̃`+1
`−L+2 ≥ τ

})

≤ P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃``−L+1 ≥ τ

})
= U`

(5.33)
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Therefore, it is concluded that (U`)`≥L is a decreasing sequence.
Now let us de�ne V` = P0(` ≤ T ≤ `+R) for all ` ≥ L. It can be seen that:

V` =

`+R−1∑
n=`

P0(T = n) =

`+R−1∑
n=`

Un (5.34)

Then:

V` − V`+1 =

`+R−1∑
n=`

Un −
`+R∑
n=`+1

Un = U` − U`+R ≥ 0 (5.35)

Consequently, (V`)`≥L is also a decreasing sequence. As a result, the equality in
Eq. (5.28) is proven to be correct:

sup
`≥L

V` = VL = P0(L ≤ T ≤ L+R) = Pfa(R) (5.36)

The second step consists in calculating the upper bound of VL. From Eq. (5.29),
UL can be rewritten as:

UL = 1− P0(S̃L1 < τ) (5.37)

Similarly for all ` > L, Eq. (5.32) can be rewritten as:

U` = P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

})

− P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

}⋂{
S̃``−L+1 < τ

})

= P0

(
`−1⋂
n=L

{
S̃nn−L+1 < τ

})

− P0

( ⋂̀
n=L

{
S̃nn−L+1 < τ

})
(5.38)

It follows from Eqs. (5.37), (5.38), and (5.34), that the worst-case probability of
false detection VL is:

VL = 1− P0

(
L+R−1⋂
n=L

{
S̃nn−L+1 < τ

})
(5.39)

For any two positive integers n 6= n′, it is proven that the covariance of the two

Gaussian variables S̃nn−L+1 and S̃
n′
n′−L+1 is non-negative cov

(
S̃nn−L+1, S̃

n′
n′−L+1

)
≥ 0.

As a consequence, one can immediately get:

P0

(
L+R−1⋂
n=L

{
S̃nn−L+1 < τ

})
≥

L+R−1∏
n=L

P0

({
S̃nn−L+1 < τ

})
(5.40)
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Thus, VL is upper bounded by:

VL ≤ 1−
L+R−1∏
n=L

P0

({
S̃nn−L+1 < τ

})
(5.41)

Finally, based on (5.15), under H0, the results S̃nn−L+1 ∀n ≥ L are Gaussian random
variables with zero mean and variance ‖θM‖22. As a result, the probability of having
a false alarm α(R) after R observations is bounded by:

α(R) ≤ 1− Φ

(
τ

‖θM‖2

)R
, (5.42)

In what follows, this upper bound will be referred to as α̃(R).

Equations (5.25) and (5.42) emphasize the main advantages of the proposed
approach.

First, the statistical performance of the proposed test is bounded. The false
alarm probability α(R) is upper bounded which will enable to calculate a detection
threshold τ using a pre-de�ned false alarm rate knowing that the application is
guaranteed not to exceed. On the other hand, the detection power β(M) of the test
is lower bounded which will allow to guarantee, for a pre-de�ned false alarm rate, a
minimal detection power that the application will not decrease bellow.

Second, the false alarm probability α(R) only depends on the prescribed run-
length R and the maximal acceptable detection delay M .

Last, the power function (5.25) shows that the accuracy of the proposed method
essentially depends on the �change-to-noise ratio� ∆/σ, along with the maximal
acceptable detection delay M .

5.4 Paint coating intensity variation

5.4.1 Painting process

Wheel paint has two purposes; to protect the underlying metal from the harsh en-
vironment to which it is exposed, and most importantly to improve the look of
the wheel. Modern wheel coating methods consist of �ve main steps, starting with
the pre-treatment which removes and cleans excess metal to form a smooth surface
structure, and ending with the topcoats which provide the surface characteristics
including color, appearance, gloss, smoothness, and weather resistance [179]. The
focus in this chapter is on the topcoats as they are the only visible layer.

Wheel topcoats are usually composed of several layers of paint coatings, with a
precise thickness, spread on the whole surface of the wheel one after another [180].
They are generally applied in the form of liquid or powder using spray atomizers,
also called spray gun nozzles [180]. The appearance (color, gloss, texture, etc. . . )
of a coated surface greatly a�ects the perception on the product quality.
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In fact, every wheel manufacturer has a list of client requirements that de�nes
every detail concerning the �nal product, including a �top-coat requirements� list
that contains speci�cations about the color, the gloss level, and many other aspects
of the topcoats. Given this set of speci�cations, any signi�cant deviation from what
is standard or normal to the product is considered an anomaly that has to be cor-
rectly detected.

However, it is important to note that in this context a defective process will
not only a�ect one wheel, but all of the following products. Therefore, a fast and
accurate detection of any anomaly, as soon as it appears, is necessary in order to
reduce the number of defective products, thus reducing the loss. Moreover, the de-
viation that is considered as anomalous is hardly distinguishable from other normal
deviations, and hence may remain unnoticed by visual inspection.

All those points lead us to the necessity of an automatic inspection system that
monitors the variations of the topcoat intensity, and signals the change-point with
minimal delay time. The detection process has to be fast and su�ciently e�cient
in order to distinguish between a normal state and the anomalous state.

Technically speaking, many factors in�uence the quality of the coating, thus its
appearance, such as temperature, paint viscosity, solvents, etc. [179,180] . . . . Specif-
ically for liquid painting, as time goes by, the viscosity of the paint in the paint bath
decreases (the paint becomes more pasty) since the solvents are evaporating over
time. This process may be faster or slower depending on the neighboring tempera-
ture [179, 180]. To rectify the e�ects of this process, usually the operators tend to
increase the paint/air�ow on the spray gun nozzle. These variations in the topcoats
remain in the acceptable zone in accordance with the technical requirements.

This paper focuses on a usual problem, that is when the spray gun nozzle par-
tially clogs, or gets blocked, which will be translated in a sudden change in the
intensity of the topcoats.

5.4.2 Topcoat monitoring

To the purpose of monitoring the variation of paint coating intensity on produced
wheels, it is wished to consider a block containing s pixels in the image of the wheel,
over which the mean value of all pixels is computed. The considered window main-
tains the same size and position on the surface of the wheel for all images. Then,
for one image of a wheel, let Z = {zw}sw=1 denote the window containing s pixels
and m = s−1

∑s
w=1 zw the mean value of pixels' intensity. Note that the behavior

of the observations is independent from the window position on the surface of the
wheel.

The variation of the mean value m from a wheel image to another describes the
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Figure 5.1: A typical example of variation of wheel images mean value

variation of the topcoat intensity. Indeed, the mean value is a su�cient parameter
to detect coating failure as the change in pixel values that it causes a�ects the whole
surface of the wheel. Figure 5.1 shows an example of series of mean pixels' value
mi for 1 000 images of consecutive wheels without change points, with i the image
index. The observed variation in the mean values is considered to be normal, and
it is due to the reasons detailed previously. It is shown that the mean value of
observations mi evolves smoothly.

Note that, the window Z has always the same position from the center of the
wheel, but not exactly the same position on the wheel image. In fact, the wheels
are not perfectly centered under the imaging system, which means that from an
image to another, the position of the wheel may di�er by few pixels. In addition,
the illumination system is not ideal, meaning that the distribution of light over the
whole wheel surface is not perfectly uniform, hence some locations on the wheel are
slightly more or less illuminated than others.

Therefore, it is concluded that the variance of the variable mi is only related to
the imaging system which is not modi�ed during the acquisition, thus it remains
constant for all observations, whether before or after the change. Based on these
factors, and based on the behavior of the variable mi observed in Figure 5.1, the
process can be considered as a non-stationary process in the mean, with a constant
variance over all the observations.

5.5 Experiments and results

In this section, �ve types of results are presented. First, the proper choice of the
�rst window length L and the degree of the polynomial q−1 is discussed with simu-
lation results. The second experiment aims to study the e�ect of the second window
length M on the performances of the proposed test. In the third part, it is wished
to examine the e�ciency of the bounds calculated in subsection 5.3 and to study the
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Table 5.1: The empirical detection power β(M) and the Hellinger distance HD for
di�erent values of L and q.

First window size L

50 100 150 200 250 1 000

β(M) HD β(M) HD β(M) HD β(M) HD β(M) HD β(M) HD

D
eg
re
es

of
th
e

p
ol
yn
om

ia
l
q
−

1 2 0.4005 0.0405 0.8079 0.0426 0.8481 0.0433 0.9351 0.0443 0.8741 0.0451 0.5387 0.0564

3 0.0559 0.0387 0.5135 0.0417 0.7549 0.0423 0.8020 0.0438 0.8775 0.0444 0.7049 0.0563

4 0.0455 0.0373 0.2813 0.0409 0.4185 0.0415 0.6594 0.0429 0.8052 0.0438 0.8416 0.0463

5 0.0441 0.0354 0.0601 0.0407 0.2378 0.0410 0.3493 0.0422 0.5582 0.0434 0.8706 0.0381

10 0.0040 0.0264 0.0217 0.0364 0.0523 0.0395 0.0425 0.0414 0.0524 0.0420 0.6525 0.0350

detectability of the proposed test function of the abrupt change amplitude, given a
set of requirements. Next, the fourth experiment is a study of a real case scenario
with a real change point in the observations. Finally, a performance comparison is
conducted to highlight the advantages of modeling the observations and examine the
di�erence in the detection criteria between our approach and the CUSUM method.

To conduct these experiments, a data base of 500 000 successive healthy images
has been acquired. The acquired images are made of 2046 × 2046 pixels of 12

bits depth. The procedure described in section 5.4 has been applied to obtain
the observations mi with i = {1, 2, ..., 500 000}. The observed standard deviation,
related to the imaging system, is σ = 22. As supposed in section 5.4, this parameter
is assumed to be constant during the monitoring process. However, the variance
can be changed with the acquisition conditions, for instance, with the illumination
intensity.

To deal with the problem of imaging acquisition system drift, the variance is
periodically computed (typically at the beginning of each week).

5.5.1 Parameters tuning

First, let us start by discussing the choice of the �rst window length L, and the
degree of the polynomial q− 1. In fact, as mentioned in subsection 5.2.2, the choice
of parameters L and q has an important role, on the one hand, to increase the
detection performances of the test, and, on the other hand, to correctly model the
paint coat intensity process as a Gaussian process. Hence, multiple Monte-Carlo
simulations, with di�erent values of L and q, have been performed to correctly tune
these parameters to ensure the best performances.

Two important factors are directly a�ected by the change in these parameters,
those are the detection power β(M) and the accuracy of the standard Gaussian
distribution model for residuals' rN distribution under H0. This accuracy can be
expressed using the Hellinger distance HD between the empirical residuals rN and
the theoretical standard Gaussian distribution.
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Table 5.1 contains the calculated values of β(M) and HD for values of L ranging
from 50 to 1 000, and values of q − 1 ranging from 2 to 10. These results have been
obtained for a maximal detection delay M = 5, over a run length of R = 5 000

which represents about half of a day production, and for a pre-de�ned value of false
alarm rate α(R) = 10−2.

It can be observed from Table 5.1 that for a certain polynomial degree, increas-
ing L will lead to a better detection performance as β(M) increases, however, the
Hellinger distance HD increases alongside which indicates a decrease in accuracy.
For large values of L, as L = 1 000, small values of polynomial degree are not even
su�cient to correctly represent the observations under H0, which can be seen by
the increase in HD and the decrease in β(M). Thus it is necessary to increase the
polynomial degree just to correctly model the observations.

On the other side, for a certain value of L, increasing q will lead to an increase in
the accuracy, in favor of a decreasing performance. For large values of q, as q = 10,
the accuracy increases signi�cantly, however, the test performance is low. To choose
the optimal values of L and q, it is important to have the maximal detection power
β(M) alongside a su�cient accuracy so that the empirical performance matches at
best the theoretical performance study. For the values L = 200 and q − 1 = 2, we
have the best detection power β(M) = 0.9351.

Then, to better understand the relation between the Hellinger distance and the
accuracy, �gure 5.2 represents a comparison between the theoretical standard Gaus-
sian cumulative distribution function (cdf) and the empirical cumulative distribution
functions of the residuals rN for L = 200 and L = 1 000, and with q − 1 = 2.

It can be seen that for L = 200, the empirical distribution is accurate enough
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Figure 5.2: Empirical and theoretical cumulative distributions of the normalized
residuals rn with two di�erent values of the �rst window size L with polynomial
degrees q − 1 = 2.
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compared to the theoretical distribution, and that moving from HD = 0.0443 for
L = 200 to the highest distance values HD = 0.0564 for L = 1 000 will only have
a small e�ect on the accuracy of the distribution under H0. Therefore, the choice
of the parameters can be made on the basis of the highest detection power β(M)

for a Hellinger distance HD lower than a certain value after which the accuracy is
considered no longer acceptable.

As a result, the correct choice of the parameters in our application is L = 200

and q − 1 = 2, which will be considered in all following experiments.

5.5.2 Maximal detection delay and detection performances

Secondly, it is proposed to study the e�ect of the second window lengthM on the de-
tection performances. The same data base has been used to perform a Monte-Carlo
simulation, for which a simulated shift of amplitude ∆ = 60 has been superimposed
on some of the observations.

Figure 5.3 represents the empirical false alarm probability α(R) and detection
power β(M) over a run length R = 5 000 for 3 di�erent values of the maximal
allowed detection delay M = {1, 3, 5}, as a function of the decision threshold τ . It
can be observed that when M increases, ‖θM‖2 increases, which a�ects both the
false alarm rate α(R) and the detection power β(M), as seen in (5.15). However,
the increase rate of β(M) is larger than the one of α(R). Hence, the shift between
the detection power and the false alarm probability becomes larger which implies a
better detection performance, but at a larger delay M .

As a result, it can be seen that the choice of M essentially depends on the
application requirements. Depending on the application, this test allows to either
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Figure 5.3: Empirical false alarm probability α(R) and detection power β(M) over
a run length R = 5000 for 3 di�erent values of M , plotted as a function of the
decision threshold τ .



5.5. Experiments and results 113

increase the detection performance at a cost of a larger detection delay, or decrease
the detection delay at a cost of a lower detection performance.

5.5.3 E�ciency of the bounds and detectability performance

In the third part of the experiments, and because one of the main assets of the pro-
posed change-point detection method is that its performance properties are bounded,
it is wished �rst to examine the e�ciency of the bounds calculated for α(R) and
β(M).

Figure 5.4 shows the empirical false alarm probability α(R) and its theoretical
upper bound α̃(R) for three di�erent values of the run length R = {50, 500, 5 000}
as a function of the detection threshold τ . The maximal delay for detection is set
to M = 5.
It can be observed that the upper bound is accurate and relatively tight. However,
as the run-length increases, one can notice that the upper bound is gradually losing
its accuracy for smaller values of false alarm. At α(R) = 10−2, the distance between
the empirical threshold and the theoretical one obtained by the upper bound is 0.7

for R = 50, but it increases to 1.2 for R = 5 000. This is due mainly to the fact that
the observations are not totally independent.

In fact, the calculation of the upper bound of the false alarm probability is based
on the inequality in equation (5.40) which is greatly a�ected by the independence
of the observations. When R increases, the number of events in equation (5.40)
increases, resulting in an increase in the di�erence between the probability of their
intersection (the �rst term (5.40)) and the product of their individual probabilities
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Figure 5.4: Empirical and theoretical false alarm probability α(R) over three di�er-
ent values of run length R, plotted as a function of the decision threshold τ .
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Figure 5.5: Empirical and theoretical detection power β(M) for 2 di�erent values
of M and 2 di�erent values of false alarm rate α(R), plotted as a function of the
change amplitude ∆.

(the second term in (5.40)). As a result, the sharpness of the upper bound for the
false alarm probability decreases.
In addition, a second factor can be the fact that the data base used to perform these
experiments is rather small to be generally accurate in the empirical results for large
values of run length as R = 5 000.

Then, in order to test the detectability of the proposed test and the sharp-
ness of the detection power lower bound, �gure 5.5 presents the empirical detection
probability β(M) and its theoretical lower bound β̃(M) for two di�erent values of
M = {3, 5} and two di�erent false alarm rates α(R) = {10−2, 10−3} over a run
length R = 5 000, as a function of the change amplitude ∆.
First, it can be seen that the theoretical lower bound is precise and really tight for
the di�erent parameter values. Second, for a �xed value of the false alarm rate,
when M increases, the detection power β(M) increases accordingly.
This result con�rms the one obtained in the second experiment in Figure 5.3.

5.5.4 Real case scenario of change-point

Next, it is wished to exemplify the e�ciency of the proposed 2FLW-SEQ sequential
detection method on a real case scenario with a real change-point in the observations.

Figure 5.6 portrays a real case of observations when the spray gun nozzle got
partially clogged. As a consequence, a sudden shift in the observations of amplitude
∆ = 55 can be seen at exactly the image index 2434. The blue plot represents
the real observations, while the red plot represents the expectation values (5.8)
estimated using the polynomial model over a window of size L = 200 and a degree
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Figure 5.6: Real example of mean value variation with a change-point at index 2434.
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Figure 5.7: Result of the proposed 2FLW-SEQ detection method with M = 5.

of q − 1 = 2. Because it is aimed to be as close as possible from the real practical
requirement that corresponds to the speci�c application of paint coat monitoring,
the false alarm rate is set to α(R) = 10−3 over a run length R = 5 000. This will
result in a detection threshold of τ = 10.12 for M = 5 and a threshold of τ = 8.2

for M = 3.

Figure 5.7 illustrates the result of the proposed 2FLW-SEQ method withM = 5.
It can be seen that the change point is detected at the index 2438 which means a
delay of exactly 5 defective wheels.

Then, the same experiment has been performed for a maximal allowed delay of
M = 3 where the detection power is much lower than the previous case of M = 5,
as seen in Figure 5.5. Figure 5.8 illustrates the corresponding result where it can be
seen that the change-point has been missed.

Note that, usually when the change is detected, the sequential process stops.
However to better illustrate the results of the test, the sequential procedure was
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Figure 5.8: Result of the proposed 2FLW-SEQ detection method with M = 3.

allowed to continue. It is shown in Figure 5.6 that after the change occurs, the
observations return to a state similar to the one just before the change occurred.
Then, just after the change, the sequential procedure will re-operate under the
hypothesis H0, and the results S̃ii−L+1 will return to have a Gaussian distribution
with zero mean and a variance ‖θM‖22, as it can be seen in Figures 5.7 and 5.8.

5.5.5 Process modeling and detection criteria

Last, but not least, the �rst goal is to investigate the advantages of modeling the
paint coat intensity process to deal with its non-stationarity. To this purpose, it is
proposed to compare the performance of the original 2FLW-SEQ method presented
in this chapter with a classical sequential detection method, more precisely the
well-known CUSUM, in two di�erent scenarios.

In the �rst scenario, the polynomial model is used to represent the expectation of
the last L observations, while in the second scenario only the mean value of the last
L observations is considered. In addition, the proposed 2FLW-SEQ is included in
the comparison in order to show its e�ciency. Note that when the polynomial model
is used, the optimal parameters obtained from the �rst part of the experiments are
considered, i.e. L = 200 and q− 1 = 2. However, for the CUSUM without a model,
multiple simulations with di�erent values of L have been conducted and lead to the
choice of L = 20 which is the best in terms of detection power.

Figure 5.9 presents the empirical ROC curves for the proposed 2FLW-SEQ
method and the CUSUM method with and without the polynomial model, com-
puted over a run length R = 5000, with a maximal detection delay M = 5 and
change amplitude ∆ = 60. It can be seen that using the polynomial model actually
improves the performance of the CUSUM method. Figure 5.9 also shows that the
proposed 2FLW-SEQ method outperforms the CUSUM method even when using
the polynomial model.
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Figure 5.9: Empirical ROC curves for the proposed 2FLW-SEQ method and the
CUSUM method with and without the polynomial model, computed over a run
length R = 5000, with a maximal detection delay M = 5 and change amplitude
∆ = 60.

Indeed, the CUSUM method has proven many times to be optimal as mentioned
in section 5.3, however, this optimality is related to the average detection delay.
To better understand the di�erence in the detection criteria under which each of
the proposed 2FLW-SEQ method and the CUSUM method operates, two sets of
simulations are conducted.
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Figure 5.10: Average detection delay as a function of the average run length to
false alarm for the proposed 2FLW-SEQ method and the CUSUM method with
polynomial model with a maximal detection delay M = 5 and change amplitude
∆ = 60.
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Figure 5.11: Empirical detection power β(M) as a function of the average run length
to false alarm for the proposed 2FLW-SEQ method and the CUSUM method with
polynomial model with a maximal detection delay M = 5 and change amplitude
∆ = 40.

Figure 5.10 represents the average detection delay (ADD) as a function of the
average run length to false alarm (ARLFA) for the proposed 2FLW-SEQ method,
with a maximal detection delay set to M = 5, and for the CUSUM method with
polynomial model with q−1 = 2 and change amplitude ∆ = 60. It can be seen that
in this context, the CUSUM has proven to be optimal and, hence, outperforms the
proposed 2FLW-SEQ method.

On the other hand, as noted in the section 5.3, the aim of the proposed 2FLW-
SEQ method is to minimize the worst-case probability of missed detection under
constraint on the worst-case probability of false alarm for a given run length. To
highlight this criteria, �gure 5.11 represents the empirical detection power β(M) as
a function of the ARLFA for the same sequential methods and with a change ampli-
tude ∆ = 40. The smaller value of the change amplitude is considered to emphasize
better the di�erence.

Obviously, �gure 5.11 shows that, in this context, with the increasing values of
the ARLFA, the proposed 2FLW-SEQ method outperforms the CUSUM method
in terms of detection power. Indeed, it is well known that minimizing the average
detection delay does not necessarily lead to a higher detection power under a given
maximal delay, or to a small probability of missed detection.
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5.6 Conclusion

This chapter addresses the problem of monitoring online a non-stationary process
to detect abrupt changes in the process mean value. Two main challenges are ad-
dressed: First, the monitored process is non-stationary ; i.e. naturally changes over
time and it is necessary to distinguish those�regular� process changes from abrupt
changes resulting from potential failures. Second, this method aims at being applied
for industrial processes where the performance of the detection method must be ac-
curately controlled. A novel sequential method, based on two �xed-length windows,
is proposed to detect abrupt changes with guaranteed accuracy while dealing with
non-stationary process. The �rst window is used for estimating the non-stationary
process parameters while the second window is used to execute the detection. A
study on the performances of the proposed method provides analytical expressions
of the test statistical properties. This allows to bound the false alarm probability for
a given number of observations while maximizing the detection power as a function
of a given detection delay.

For the studied process of wheels coating monitoring, the mean value of pixels
from all wheel images are used to measure the coating intensity. Numerical results
on a large set of images show the accuracy of the proposed model, the e�ciency of
the proposed detection method, and the sharpness of the statistical performances
theoretically established.





Chapter 6

AVI system maintenance

Likewise all measurement systems, an AVI system essentially consists of hardware
solutions that require maintenance. The aging of such components could reduce
the performance of the system, and eventually cause a failure. For AVI systems,
the illumination degradation over time is a major concern [181]. The light emission
of light sources is based on chemical compounds that have characteristic aging be-
havior in their substantial structure [182]. Indeed, since light is the signal that is
used by the camera sensor to generate the processing data, the illumination of the
imaged scene has a major impact on the performance of the inspection system.

Usually, detection methods that are based on a reference model of the inspected
surface are very sensitive to changes in illumination. In such methods, the reference
model is derived from calibration data collected under certain imaging conditions,
and thus can be regarded as �valid� only if the conditions, under which the calibra-
tion data were collected, do not change during normal use of the model.
Alternatively, a major advantage of our detection method proposed in chapter 4 is
that it does not use a general reference model that should adapt to changes in the
imaging system, but rather creates a unique background model for each inspected
surface derived from its image. Despite that, the detectability of anomalies still
depends on the �anomaly-to-noise� ratio, which will also be impacted by the change
in illumination.

It is then important to study the aging behavior of the light source to determine
the moment at which the illumination level is no more su�cient for the system to
execute its intended functions. However, depending on the kind of light source and
on its working conditions, this aging is not always easy to model. An alternative
approach proposed in this chapter is to study the impact of the degradation of
illumination on the performance of the detection method. This will allow to esti-
mate the illumination level under which the system is no longer reliable. Finally, a
hardware solution is proposed to detect the moment when this illumination level is
reached.

6.1 Illumination degradation

LEDs bene�t from two major attributes that have contributed in the growing in-
terest in their use; the potential for long life and the reduced energy consumption.
Unlike conventional light sources, LED modules do not die instantly, instead their



122 Chapter 6. AVI system maintenance

light output slowly degrades over time [100]. This feature ensures a proper func-
tioning of the AVI system for a long period of time, and helps avoid a sudden failure
in illumination. However, even if the LED is technically operating and producing
light, after a certain amount of time, the light produced by the LED might become
insu�cient for the intended application. This amount of time is usually referred to
as the lifetime of the LED, rather than the time needed for its complete failure.

Many LED manufacturers provide an estimated degradation rate of their prod-
ucts. However, this is rather a vague information of how long the illumination
device will work, as it is usually measured under optimal conditions. In reality, the
degradation rate of a LED module, which in a way de�nes its lifetime, is heavily
a�ected by various factors, most importantly its functioning temperature. In fact,
the degradation rate of many light sources, including LEDs, is sped up by temper-
ature [100], especially under long-term operation. Many e�orts have been made to
study the degradation rate of LEDs [183�187], taking into account some of the fac-
tors that contribute to this degradation. The term that has been adopted for such
studies is �lumen maintenance�, which is how the intensity of emitted light tends to
diminish over time. The results are generally presented as predictions of the grad-
ual output degradation as a function of time, for di�erent case studies each with
di�erent set of conditions. The precision of these predictions is however doubtful
as many factors are usually not taken into account during the study, either because
of unknown failure modes and mechanisms, or lack of �eld data [183, 185]. Hence,
basing the maintenance of the AVI system on such predictions in not e�cient. More
importantly, in almost all of these studies, the conditions under which the LED is
operating are known and fully measured. This is usually not the case for industrial
applications, where the contributing factors for LED degradation are unknown and
even unpredictable. As an example, the lack of continuous cleaning of the LED
modules may be an additional cause of light degradation, as the light emitted from
the LEDs is also attenuated by the industrial dust that covers the LED modules.

Therefore, an alternative approach, proposed in this chapter, is to monitor the
illumination from the AVI system itself and to signal the point at which the level of
illumination is no further su�cient.

6.2 E�ects on the defect detection method

Light is the signal that is used by the camera sensor to generate the data of the
imaged scene. The sensor of the camera, whether it was a CCD sensor or a CMOS
sensor, records the image by using photosensitive elements that convert light energy
to electrical energy [188]. Each pixel has a tiny light cavity or �photosite� that col-
lects photons and store those as an electrical signal. This signal is then quanti�ed as
a digital value, which represents the pixel intensity. The number of photons collected
by each photosite will then mainly de�ne, among other factors, the corresponding
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pixel intensity. However, not all camera sensors respond in a similar manner to
the incoming light. Each camera model has a speci�c response relating the scene
radiance to the image intensity. This response is mapped into a function, known as
the camera response function (CRF) [189].

Regardless of the camera model, the CRF is always a monotonically increasing
function [189�191]. This characteristic indicates that when the scene radiance in-
creases, the acquired image intensity will increase. Consequently, when the scene
radiance decreases, the acquired image intensity will decrease. Hence, due to the
light source output degradation, the intensity of the acquired images from the AVI
system will monotonically decrease over time. This in turn will a�ect the perfor-
mance of the defect detection method proposed in chapter 4.

Based on Eq. (4.16), after the rejection of the nuisance parameters, the norm of
the normalized residuals r in one block of the image follows the distribution:

‖r‖22 ∼

{
χ2

Υ(0) under H0

χ2
Υ (%) under H1,

(6.1)

with the non-central parameter % under hypothesis H1 is given by :

% =
∥∥∥Σ̃−1/2

P⊥Hθ
∥∥∥2

2
. (6.2)

Then, based on the residuals r and their distribution (Eq. (6.1)), a UBCP test
is designed as follows

δ =

{
H0 if ‖r‖22 ≤ τ
H1 if ‖r‖22 > τ ,

(6.3)

where, in order to guarantee the false-alarm probability α0, the decision threshold
τ is set as follows:

τ = F−1
χ2

Υ
(1− α0; 0) (6.4)

Similarly the power function of the test is given by:

β(δ,θ) = Fχ2
Υ

(τ ,%). (6.5)

First, from Eq. (6.4), it can be seen that the threshold τ is independent from
the pixel intensities µ. In fact, it only depends on the false-alarm probability α0,
and thus remains constant even if µ decreased over time.

Then, from Eq. (6.5), and with a constant threshold τ , it can be seen that the
detectability of the anomaly only depends on the non-centrality parameter % (6.2).
This non-centrality parameter is essentially the �anomaly-to-noise� ratio that will
de�ne how detectable the anomaly is, thus the performance of the detection method.

When the illumination decreases, the anomaly θ also decreases as the whole
image intensity will decrease. However, this is also true for the noise. Indeed, one



124 Chapter 6. AVI system maintenance

main contribution of the proposed detection method is to consider the more realistic
heteroscedastic model of the noise. This will allow to establish with highest precision
the theoretical statistical properties of the ensuing test. This noise model represents
the variance of the noise corrupting the image as a linear combination of the pixel's
expectation µ given by

σ2 = aµ+ b. (6.6)

The heteroscedastic noise model parameters (a, b) only depend on acquisition param-
eters. Therefore, as the camera settings are not modi�ed over time, these parameters
remain constant even with the degradation of illumination.

Then, since both the anomaly and the noise decrease with the decrease in illu-
mination, it is not obvious if the non-centrality parameter % will eventually decrease
or not.

To demonstrate that the non-centrality parameter % will decrease with the degra-
dation of illumination, let us denote (µ1,θ1,%1) the background intensity, the
anomaly intensity, and the non-centrality parameter, respectively, for a block of
the image acquired from an imaged scene, and (µ2,θ2,%2) the ones for the same
block of the image acquired from the same scene but with a decrease in illumination
(i.e. smaller light luminance). The block is of size w and h for width and height
respectively. Due to the monotonic characteristic of the CRF, it is possible to de-
duce that µ2 < µ1 and that θ2 < θ1. Then, since the acquired images are in raw
format, the CRF is assumed to be linear [192, 193]. This is indeed true regardless
of the camera model, considering that all camera sensors are designed to produce
electrical signals that are linearly related to the scene radiance. For most cameras,
though, non-linearities are later purposely introduced in the camera's electronics
to mimic the response of the human visual system, to account for non-linearities
in display systems, or to create a variety of aesthetic e�ects. The most recognized
non-linearity is the gamma correction [194, 195]. As a result, this linearity for raw
images induces that both the background and the anomaly will respond in a similar
manner to the decrease in illumination.
Hence, let us consider that µ2 = Kµ1 and that θ2 = Kθ1 whereK < 1 is a constant
that corresponds to the decrease ratio of pixel intensity (or light illumination under
linear CRF). This equality, in turn, highlights the fact that for a same anomaly in
the scene, the �anomaly-to-background� ratio will remain constant with the decrease
in illumination.

Then, let us start the proof of the following inequality:

%2 < %1 (6.7)

This inequality can be written as:∥∥∥Σ̃−1/2

2 P⊥H2
θ2

∥∥∥2

2
<
∥∥∥Σ̃−1/2

1 P⊥H1
θ1

∥∥∥2

2
(6.8)
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Considering that this inequality is true, and by replacing θ2 by Kθ1 and µ2 by
Kµ1, it follows that:

w×h∑
i=1

K2
(
P⊥H2

θ1
)2
i

aKµ1i + b
<

w×h∑
i=1

(
P⊥H1

θ1
)2
i

aµ1i + b
(6.9)

with Vi is the i-th element of the vector V . From Eq. (4.15), and after a brief
calculation, it is possible to assume that the projection matrix in both cases will be
the same P⊥H2

= P⊥H1
. Then, the inequality in Eq. (6.9) can be rewritten as:

w×h∑
i=1

(
P⊥H1

θ1

)2

i

(
K2

aKµ1i + b
− 1

aµ1i + b

)
< 0 (6.10)

Indeed, the inequality in Eq. (6.10) is true only if:

K2(aµ1i + b)−K(aµ1i)− b < 0 (6.11)

Solving this quadratic inequality, we get that the inequality in Eq. (6.7) is true if:0 < K < 1 for b ≥ 0
−b

aµ1i + b
< K < 1 for b < 0 and µ1i >

−2b

a

(6.12)

In general, the parameter b of the heteroscedastic noise model is a positive value.
However, in some digital imaging sensors, the collected charge is added to a base
value, referred to as the pedestal value, to constitute an o�set-from-zero of the
output pixels [137]. This o�set could then generate a negative value of the parameter
b. Indeed, with b < 0, the smallest value that the pixel intensity µ can have is −b/a,
as it cannot have a negative value.

As we can see from Eq. (6.12), for b < 0, an additional condition is set on the
pixel intensity values of the background µ1i. In this work, and for any inspec-
tion system in general, this condition on µ1i is always ensured, since the usual
pixel intensities of the inspected surface are much higher than the value −2b / a.
This continues to be true even with the decrease in illumination as the detection
performances will largely drop before reaching such small values of pixel intensity.
Consequently, the variable K is also lower bounded, as the same condition applies
for µ2. This explains the lower term of the inequality in Eq. (6.12) for b < 0.

In conclusion, and with the above conditions on µ1 and µ2, Eq. (6.12) indi-
cates that if K < 1, the inequality in Eq. (6.7) is true. In other words, when
the background intensity decreases, the non-centrality parameter will also decrease.
Consequently, the statistical performance of the detection method will therefore
decrease.
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6.3 Detection of light threshold

The inspection performance is the most signi�cant and most consistent factor to
evaluate the working state of an AVI system. For many applications, this per-
formance should not decrease under a certain limit, which is usually prede�ned
according to the nature of the inspected products. Hence, the necessity to monitor
the variation of the inspection performance over time, and signal the moment at
which it is no longer su�cient. At this point, a maintenance operation is required
to make the necessary adjustments to the system for it to regain its performance in
the accepted zone.

As seen in section 6.2, the degradation of illumination will have a negative impact
on the performance of the detection method proposed in chapter 4. Hence, in this
section, it is proposed to model this impact in a way that will enable to determine the
illumination level below which the detection performance is no further satisfactory.
Then, to detect the moment when the AVI system reaches this illumination level, a
simple hardware solution is proposed.

6.3.1 Non-centrality parameter and pixel intensity

Let us suppose the presence of an anomaly on the inspected surface. This anomaly
has a known non-centrality parameter %1 for a certain background intensity µ1.
Then, after an unknown change in the illumination that could be either an increase
or a decrease, this same anomaly has a new non-centrality parameter %2 that is
known. Hence the goal is to determine the change ratio in illumination that has
occurred. In other words, it is proposed to determine µ2, knowing the values of µ1,
%1, and %2.

Therefore, let us consider that %2 = R%1 where R is a constant that represents
the change ratio in the non-centrality parameter. And let us suppose that µ2 = Kµ1

where K is unknown. Due to the linearity of the CRF, and for a same anomaly in
the scene, the �anomaly-to-background� ratio will remain constant with the change
in illumination. Hence, θ2 = Kθ1. Then, we get:∥∥∥Σ̃−1/2

2 P⊥H2
θ2

∥∥∥2

2
= R

∥∥∥Σ̃−1/2

1 P⊥H1
θ1

∥∥∥2

2
(6.13)

By replacing θ2 by Kθ1 and µ2 by Kµ1, it follows that:

w×h∑
i=1

K2
(
P⊥H2

θ1
)2
i

aKµ1i + b
= R

w×h∑
i=1

(
P⊥H1

θ1
)2
i

aµ1i + b
(6.14)

with Vi is the i-th element of the vector V . Again, the projection matrix in both
cases will be the same. Then, the equality in Eq. (6.14) can be rewritten as:

w×h∑
i=1

(
P⊥H1

θ1

)2

i

(
K2

aKµ1i + b
− R

aµ1i + b

)
= 0 (6.15)
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Indeed, the equality in Eq. (6.15) is true only if:

K2(aµ1i + b)−K(Raµ1i)−Rb = 0 (6.16)

The only solution for the above quadratic equation in Eq. (6.16), which respects the
conditions on the various parameters, is:

K =
Raµ1i +

√
(Raµ1i)

2 + 4Rb (aµ1i + b)

2 (aµ1i + b)
(6.17)

As a result, given the same anomaly on the inspected surface, Eq. (6.17) will
allow to determine the change ratio in pixel intensity, function of the change ratio
in the non-centrality parameter R along with the initial background intensity µ1.
Eq. (6.17) also verify that if R = 1, then K = 1.

6.3.2 Procedure to detect the lowest acceptable illumination level

Due to the degradation of illumination over time, the performance of the detection
method proposed in chapter 4 will decrease, because it has been designed to match
a prescribed false alarm probability, so called CFAR (constant false alarm rate) de-
tector. This performance corresponds to the detection power β of the statistical test
in Eq. (6.3), for a constant false alarm probability α0. Let us denote βt the value
of the lowest acceptable detection power that the system is allowed to reach. This
detection power represents the level of detectability of a particular anomaly present
on the inspected surface. From Eq. (6.5), it can be seen that the detectability of
the anomaly depends on its non-centrality parameter % (6.2). The higher % is, the
better the performance of the test to detect the corresponding anomaly.
As the goal of the detection method is to detect all anomalies present on the in-
spected surface, it is then necessary to consider the smallest anomaly intended to
be detected to de�ne the value of βt. Note that the term �smallest� does not refer
to the size nor to the shape of the anomaly, but rather means the anomaly that has
the smallest non-centrality parameter % for the same background intensity.
Then, the goal is to detect the luminance or pixel intensity value at which the
proposed defect detection method will have a statistical performance that reaches
this value of βt, in order to start a maintenance operation to regain the performance.

To this purpose, the proposed procedure can be divided into two main parts.
The �rst part consists in determining the pixel intensity of the background below
which the detection performance is no further satisfactory. Then, the second part
consists in monitoring the AVI system to detect the moment at which this pixel
intensity is reached. The complete procedure is illustrated in Figure 6.1.

The �rst step is for the user to de�ne βt for a constant false alarm probability
α0. Using Eq. (6.4), the detection threshold τ of the test can be determined as it
only depends on the prede�ned false alarm probability α0.
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Figure 6.1: Flowchart of the proposed procedure to detect the lowest acceptable
illumination level

The next step is to calculate the non-centrality parameter %t that results in the
value of βt, with the detection threshold τ . To calculate %t, it is proposed to use
Eq. (6.5), and to apply Newton's method [196] to solve the following equation:

βt = Fχ2
Υ

(τ ,%t) (6.18)

The resulting value of %t represents the value of the non-centrality parameter caused
by the presence of the smallest anomaly intended to be detected on the inspected
surface, at the lowest allowed illumination level.

Indeed, during this procedure, it is supposed that the current illumination level
of the system has not yet reached its lowest allowed value, but is rather higher.
Thus, if we consider a block on a an image acquired at the current illumination
level, its pixel intensity will be higher than the one of this same block if the image
was acquired at the lowest allowed illumination level. In other words, if we denote
µi the pixel intensity of the background at the current illumination level, and µt

the pixel intensity of the background at the lowest allowed illumination level, we
have µi > µt. Since µi is known, the goal here is to calculate the decrease ratio in
pixel intensity that will allow to determine µt.
To this purpose, it is proposed to use Eq. (6.2) to determine the value of the non-
centrality parameter %i at the current image of index i, that corresponds to the
same smallest anomaly for which the non-centrality parameter at the lowest allowed
illumination level is %t. Then, having µi and %i for image index i, and %t at the
lowest allowed illumination level, it is possible to determine the value of µt using
Eq. (6.17). Note that, the heteroscedastic noise model parameters (a, b) are known,
and they only depend on acquisition parameters. Therefore, as the camera settings
are not modi�ed over time, these parameters remain constant even with the degra-
dation of illumination.

Finally, the second part of the procedure consists in monitoring the AVI sys-
tem to detect the moment at which this pixel intensity µt is reached. This pixel
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intensity is related to the scene radiance through the CRF. Hence, monitoring the
status of the AVI system can either be done by monitoring the pixel intensity of
the acquired images (software-based solution), or by monitoring the light intensity
of the lighting system (hardware-based solution). In this work, it is proposed to
adopt the hardware-based solution by installing a light sensor under the lighting
system. This sensor will help monitor the change in illumination levels over time
in order to signal the moment when it reaches its lowest allowed value, denoted Lt.
The value of Lt, which will be expressed in lumen (lm), can be determined from µt

using the CRF. However, even if the CRF of the camera is unknown or inaccessible,
the illumination level Lt can still be calculated. Indeed, since the CRF is linear
for raw images that are used in this work, the decrease ratio in the illumination
is similar to the decrease ratio in pixel intensity. Therefore, since the decrease ra-
tio in pixel intensity has been calculated, the value of Lt can be simply determined
by capturing the illumination level Li under which the image of index i was acquired.

As a result, the light sensor will signal the moment when the illumination level
reaches Lt, indicating the need for a maintenance operation. This operation aims
to regain a higher level of illumination, either by cleaning the light source modules
or by increasing the power supply of the illumination system.

6.4 Experiments and results

6.4.1 Common core of all experiments

Once again, all the images that are used in this chapter are raw images that are
made of 2046× 2046 pixels of 12 bits depth; Note that for clarity and simplicity, in
the following experiments, only the red channel has been used.

To conduct the experiments, it was proposed to simulate the e�ects of the illu-
mination degradation over time by controlling the power supply for the LEDs. Note
that this procedure does not aim to simulate the model of degradation of LEDs, but
rather to acquire images at di�erent levels of illumination. Hence, the power supply
for the LEDs has been decreased step by step to create 60 di�erent levels of illumi-
nation. For each level, a total of 500 images of the same wheel have been acquired.
As a result, this data base consists of 60 sets of images, each containing 500 images
acquired at a di�erent illumination level, to make a total of 30 000 images.

Then, an anomaly has been superimposed on each image, which represents the
smallest anomaly intended to be detected. As discussed in section 6.2, the linearity
of the CRF for raw images induces that both the background and the anomaly will
respond in a similar manner to the decrease in illumination. Hence, in order to
guarantee a constant �anomaly-to-background� ratio, the amplitude of the anomaly
has been adjusted for each level of illumination. More precisely, for each illumina-
tion level, the amplitude of the superimposed anomaly is multiplied by the ratio of
illumination decrease. This anomaly will be used in all the experiments.
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Figure 6.2: Images of the same galbe zone acquired at three di�erent illumination
levels

Figure 6.2 represents three images of the same galbe zone acquired at three dif-
ferent levels of illumination, with the inserted anomaly highlighted with a red circle.
The �rst image has the index i = 1 and thus belongs to the set number 1 which
has the brightest illumination. The second image has the index i = 15 000 and thus
belongs to the set number 30 with mid-range illumination. And �nally, the third
image has the index i = 30 000 and thus belongs to the set number 60 which has
the darkest illumination.

Finally, since all the images for these experiments were acquired using the same
camera settings, the heteroscedastic noise model parameters (a, b) remain constant.
It is therefore proposed to reuse the prior-work in [147] to estimate once the param-
eters (a, b). Such an estimation resulted in the values a = 1.08 and b = −550.3.

The rest of this section is divided into two parts. In the �rst part, the accuracy
of the model proposed in section 6.3.1 is studied. Then, the second part investigates
the ability of the procedure detailed in section 6.3.2 to correctly estimate the pixel
intensity of the background that corresponds to a prede�ned lowest detection power.

6.4.2 Accuracy of pixel intensity estimation

Let us consider a block on the image of the galbe zone that contains the anomaly.
This block is set to a size of h = 20 (height) and w = 20 (width). And let us denote
µi the background of this block for the image of index i. This background resulted
from the application of the adaptive model proposed in section 4.2.1, where the
degrees of the polynomial used are dy = 5 (along the height) and dx = 2 (along the
width), and the number of Principal Components added to this model is ` = 3. For
simplicity, it is proposed to use the mean value of each background µi to represent
its pixel intensity, which will be denoted µi.
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Figure 6.3: Estimation of the mean pixel expectation µi with the model (6.17),
using the non-centrality parameter of image i, and the non-centrality parameter
and mean pixel expectation of only the �rst image.

The red plot in Figure 6.3 represents the values of µi for i = {1, . . . , 30 000}.
Each set of successive 500 images have approximately the same value of µi, as
they are acquired under the same conditions of illumination. With each decrease in
illumination, the value of µi drops to a new level that is lower than the previous one.

Let us now suppose that only µ1 is known, while µi>1 are all unknown. Hence,
it is wished to use Eq. (6.17) to estimate the values of µi>1 using only the back-
ground of the �rst image µ1 as the reference. To do so, it is necessary to determine
the change ratio in the non-centrality parameter between the �rst image of index
i = 1, and all the other images for i > 1. Therefore, it is proposed to use Eq. (6.2)
to calculate the values of %i for i = {1, . . . , 30 000}, where %i represents the non-
centrality parameter corresponding to the anomaly in the image of index i.

Figure 6.3 illustrates the simulation results. The red plot represents the real
values of µi calculated using the adaptive model of the background, while the blue
plot represents the estimated values of µi with the model in Eq. (6.17) using the
non-centrality parameter of image i, and the non-centrality parameter and mean
pixel expectation of only the �rst image of index i = 1.

It can be seen that the estimated values of µi correctly follow their real values,
with a total root mean square error of RMSE = 29.99 on 12 bits images. In per-
spective, for a normalized image, this RMSE is equal to 7.3× 10−3 which indicates
the accuracy of the estimation.
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While it seems that the calculations to determine the model in Eq. (6.17) are
straightforward and thus the estimation must be exact, this is not the case. In-
deed, many factors will have an impact on the accuracy of the estimation. Mainly,
Eq. (6.17) is based on the assumption that the projection matrices for two di�erent
levels of illumination will be the same, which is not precise. While the di�erence
will be very slight between the two matrices, they are not exactly equal. However,
even with this assumption, Eq. (6.17) provides an accurate estimation of the change
ratio in background intensity.

In conclusion, the main result that can be derived from this simulation is that
Eq. (6.17) will allow to estimate the background intensity for any level of illumina-
tion, given only the background intensity of one single image, along with the change
ratio in non-centrality parameter. The accuracy of this estimation will be further
highlighted in the following experiments.

6.4.3 Precision of the lowest acceptable pixel intensity

The goal of this chapter is to detect the illumination level that corresponds to a pre-
de�ned lowest acceptable detection power. Because this procedure heavily depends
on an accurate estimation of the pixel intensity that corresponds to this detection
power, it is proposed in this second part of the simulations to study the accuracy
to assign for each pixel intensity, a corresponding detection power. In other words,
for the same smallest anomaly intended to be detected, each illumination level will
be assigned a corresponding detection power.

Figure 6.4 illustrates the results of the simulation. First, the blue and red plots
represent respectively the empirical and theoretical detection power for the defect
shown in Figure 6.2, function of the mean background pixel intensity µ. It can be
seen that the detection power was at its highest for the images with the brightest
illumination, and then starts to decrease with the degradation of illumination. A
non-negligible �uctuation in the blue plot can also be seen. This can be explained by
the fact that the empirical detection power for each illumination level is estimated
on 500 images only, which is rather small to be accurate in the empirical results.
Another contributing factor to this �uctuation is that, the proposed adaptive model
that is used to represent the background, though e�cient, is not perfect and, hence,
maybe sometimes unable to describe the background with highest accuracy.

Then, the black and green plots both represent the estimated values of µ for
di�erent values of β, using the procedure described in section 6.3.2. For each value
of β, the corresponding non-centrality parameter % is calculated by applying New-
ton's method on Eq. (6.18). Next, for the black plot, the corresponding background
intensity µ is calculated using Eq. (6.17) given only the background intensity of
the �rst image, along with the change ratio in non-centrality parameter. As for the
green plot, a more realistic scenario is considered, where the image that is used to
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Figure 6.4: Empirical and theoretical detection power, along with the estimation of
pixel expectation with the model (6.17), once using only the �rst image and then
using images acquired periodically.

estimate the value of µ is updated periodically during time. It can be seen that in
both cases, for high levels of illumination, the estimation of µ is very accurate when
compared to the theoretical power curve (red plot). However, with the illumination
degradation, the estimates obtained from a single image begins to go further away
from the theoretical values of µ, while the ones obtained from images acquired pe-
riodically maintain their accuracy. It can then be concluded that the estimation
of pixels intensity will be more accurate if it is closer to the pixels intensity of the
reference image.

To better understand the previous results, and to validate the previous conclu-
sion, let us �x the value of the lowest acceptable detection power to βt = 0.85. The-
oretically, this value of βt corresponds to a mean background intensity of µt = 2050.
Then, let us denote µ̃t the estimated value of the mean background intensity for
the same βt = 0.85 using the procedure described in section 6.3.2. This estimation
is performed multiple times, by changing the reference mean background intensity,
denoted µi, to the one that corresponds to each illumination level. Figure 6.5 shows
the variation of the estimation error at each illumination level, where the reference
image is changed. It can be seen that the estimation error is at its lowest value
when the reference image has a background intensity of µi = µt. However, when
the reference background intensity µi is getting farther from µt, the estimation error
starts to increase. Indeed, as seen in the �rst part of the simulations in section 6.4.2,
the estimation of the change ratio in background intensity, though e�cient, is not
perfect. Hence, even a slight error in the estimation will be further aggravated when
the ratio of change between the two illumination levels is more important.
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Figure 6.5: Estimation error for di�erent reference images.

In conclusion, these simulations show that periodically updating the estimation
of the lowest allowed illumination level over time will improve its accuracy.
Note that in this simulation, between the �rst illumination level, which represents
the current status of the system, and the lowest allowed illumination level for βt =

0.85, the pixel intensity decreases to about 60% of its initial value. Due to the
linearity of the CRF for raw images, this means that the illumination level of the
LEDs has also decreased to about 60% of its initial intensity. Depending on the
LED quality and its working conditions, the time period necessary for the LED light
output to decline to 60% of its initial �ux usually reaches thousands of hours [100].
However, this time period is further decreased in an industrial environment, since
the AVI system will get very dusty way before thousands of hours of use.

6.5 Conclusion

This chapter addressed the problem of predicting the maintenance needs of the AVI
system due to illumination degradation over time. Given the same defect on the
inspected surface, a model is created that allows to determine the change ratio in
pixel intensity, function of the change ratio in the non-centrality parameter along
with the initial background intensity. Then, starting from a prede�ned lowest ac-
ceptable detection power, the complete procedure to determine the corresponding
lowest acceptable illumination level is described. The �nal step consists in moni-
toring the change in illumination levels over time using a light sensor, in order to
signal the moment when it reaches its lowest allowed value. Numerical results on
a large set of real images show the accuracy of the calculated model to determine
the change ratio in pixel intensity. It is seen that this accuracy is improved if the
change ratio is small. It is then concluded that periodically updating the estimation
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of the lowest allowed illumination level over time will improve its accuracy.





Chapter 7

General conclusion and

perspectives

7.1 Summary of the presented work

The main objective of this thesis is to design a fully automatic system for the in-
spection of wheels' surface. Following the review on the most widely used NDT
techniques for surface inspection, it is concluded that the automated visual inspec-
tion technique is the most appropriate for this speci�c inspection operation. Hence,
at �rst, this thesis addressed the problem of designing and installing an imaging
system, given a set of requirements and constraints. A practical work plan has been
adopted. The �rst consists in de�ning the requirements and conditions under which
the inspection must be performed. Some of these requirements are related to the
inspected wheel, while others are imposed by the industry. Alongside, some possible
solutions are proposed to meet each of the requirements, with the goal to outline
the initial design of the whole system. Next, a general overview on all the charac-
teristics of each key element of the AVI system is provided. This overview serves
as a brief reference to design a complete imaging system from scratch. Then, based
on the prede�ned inspection requirements, a detailed discussion on the appropriate
choice of each key element of the AVI system is presented. These key elements are
the cameras, the lenses, the lighting system, and the processing platform. Finally,
a full description of the AVI system design and its installation setup is presented.
This system consists of a total of four cameras installed over the production line of
a wheel industry. These cameras are distributed in a hemispherical way around the
inspected wheel, enabling a full inspection of its surface from all sides.

Afterwards, the �rst inspection task addressed in this thesis is the defect de-
tection procedure. The proposed approach consists in modeling the non-anomalous
background of the inspected surface using a parametric model. An original adap-
tive linear model is designed that consists of two parts: A �xed part based on a
two-dimensional algebraic polynomial, which is primarily e�cient to accurately rep-
resent homogeneous surfaces, or smooth surfaces, with little to no texture. Then,
an adaptive part based on the PCA, which will o�er a higher �exibility, and will en-
hance the performances of the model to handle minor surface complexities. Hence,
this model can be used for the inspection of a variety of surfaces that have mostly
a low textured surface. Since this model makes uses of prior physical information
about the inspected surface, a detailed discussion on tuning its parameters is also
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provided.
From a statistical point of view, this background is considered as a nuisance

parameter that has to be removed. Indeed, this background has no interest in the
detection process while it may hide the defects and, hence, may prevent their detec-
tion. Therefore, a statistical test based on the rejection of this nuisance parameter
is proposed. This test exploits the linearity of the background model to perform the
rejection through a linear projection. The remaining residuals are then normalized
using the speci�c heteroscedastic noise of the imaging system. This noise model is
well known for being more accurate than the usual AWGN model for raw images and
allows to take into account the variance of each pixel in the ensuing statistical test,
to improve its accuracy. The statistical performance of the test is then established.
More precisely, the test is UBCP, with a maximal and constant detection power
on a local surface de�ned by the anomaly-to-noise ratio. Through a discussion on
the defect detectability, it is seen that this ratio mainly depends on how much of
the anomaly still remains after the background rejection. Furthermore, since the
noise corrupting the image depends on the pixels' expectation, the anomaly-to-noise
ratio is also a�ected by the background intensity. This last feature will be further
exploited in chapter 6.

The proposed detection method is then applied for the wheel surface inspection
problem studied in this work. Due to the nature of the wheels, the di�erent ele-
ments are analyzed separately. Several simulations on a large data set of real images
have been performed. First, the advantages of adding the adaptive part, based on
the PCA, in the proposed model of the background are shown. Second, the advan-
tages of using the heteroscedastic noise model rather than the usual AWGN model
are highlighted. The third part of the simulations shows both the accuracy of the
proposed adaptive model and the sharpness of the ensuing statistical test. Then,
the fourth part compares the performance obtained using the proposed detection
method with performance from other recently proposed surface defect detection
methods. Finally, some results are presented by applying the proposed adaptive
model on wheel images containing real defects located on the surface of the wheel.

The second inspection task addressed in this thesis aims at monitoring online a
non-stationary process to detect abrupt changes in the process mean value. In our
case, this non-stationary process results from the variation of the paint quantity on
the inspected wheels surface, where the abrupt change corresponds to a sudden lack
of paint. The proposed approach consists in modeling the acceptable changes in
the non-stationary process to be able to distinguish them from the abrupt changes
that reveal a malfunctioning. A polynomial model is considered and is applied on
a �xed length window containing the last set of acquired observations. Indeed, this
acceptable variation of mean value, modeled using the polynomial model, is a nui-
sance parameter as it is of no use for the considered detection problem. Hence, the
maximum likelihood (ML) estimation method was considered to perform a rejection
of this nuisance parameter through a linear projection. Then, a sequential method
with a �xed length window is proposed. This second window also corresponds
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to a prede�ned �xed maximal detection delay under which the detection is per-
formed. In summary, the proposed sequential method is based on two �xed-length
windows, where the �rst window is used for estimating the non-stationary process
parameters while the second window is used to execute the detection. Finally, to
comply with requirements on low false alarm probability and highest change-point
detection performance under a maximal delay constraint, the performance of the
proposed method is studied. This study shows that the statistical performance of
the proposed test is bounded. The false alarm probability is upper bounded which
will enable to calculate a detection threshold using a prede�ned false alarm rate
knowing that the application is guaranteed not to exceed. On the other hand, the
detection power of the test is lower bounded which will allow to guarantee, for a
prede�ned false alarm rate, a minimal detection power that the application will not
decrease bellow.

The proposed sequential method is then applied for the wheel coating monitor-
ing problem studied in this work. The mean value of pixels from all wheel images
are used to measure the coating intensity. To properly study the performance of the
proposed method, the proper choice of the �rst window length and the degree of
the polynomial is �rst discussed. Several numerical results on a large set of images
are presented using the proper parameters. These results show the accuracy of the
proposed model, the e�ciency of the proposed detection method, and the sharpness
of the statistical performances theoretically established. In addition, the e�ect of
the second window length on the performances of the proposed test is studied. It
was shown that, depending on the application, the proposed test allows to either in-
crease the detection performance at a cost of a larger detection delay, or decrease the
detection delay at a cost of a lower detection performance. Finally, a performance
comparison is conducted to highlight the advantages of modeling the observations
and examine the di�erence in the detection criteria between our approach and the
CUSUM method. It was concluded that the CUSUM outperforms the proposed
sequential method in terms of average detection delay (ADD) as a function of the
average run length to false alarm (ARLFA). On the other hand, the proposed se-
quential method outperforms the CUSUM in terms of detection power as a function
of the average run length to false alarm (ARLFA).

The �nal problem addressed in this thesis is the prediction of maintenance needs
of the AVI system due to LED degradation over time. The proposed approach is
to study the impact of the degradation of illumination on the performance of the
detection method. Two characteristics of the camera response function CRF are
exploited. First, since the CRF is a monotonically increasing function, the degrada-
tion in illumination induces a decrease in the background intensity of the inspected
image. Secondly, since the CRF is linear for raw images, a same defect on the in-
spected surface will maintain a constant anomaly-to-background ratio during the
illumination degradation. Hence, given the same defect on the inspected surface,
these two features are used to create a model, which allows to determine the change
ratio in pixel intensity, function of the change ratio in the non-centrality parameter
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along with the initial background intensity. Then, starting from a prede�ned lowest
acceptable detection power, the complete procedure to determine the corresponding
lowest acceptable illumination level is described. The �nal step consists in moni-
toring the change in illumination levels over time using a light sensor, in order to
signal the moment when it reaches its lowest allowed value.

Numerical results on a large set of real images show the accuracy of the calculated
model to determine the change ratio in pixel intensity. It is seen that this accuracy is
improved if the change ratio is small. It is then concluded that periodically updating
the estimation of the lowest allowed illumination level over time will improve its
accuracy.

7.2 Perspectives

Following this brief summary of the presented work in this thesis, it is proposed to
present some perspectives that could extend the discussion on some subjects and
o�er new potential research ideas.

• In chapter 3, during the selection of the main processing platform, it was noted
that the choice between the multi-core CPU, the GPU, and the FPGA is not
obvious since each has its own speci�c advantages that make it optimal for
speci�c applications. Hence, for the prototype, it was decided to adopt multi-
core CPUs as they are the most �exible solution and the easiest to program,
while providing high performances. However, now that the inspection methods
are decided, it is interesting to test each individual platform, and compare their
performance in terms of processing time, in order to decide on the fastest
solution.

• Even so four cameras have been installed, all the simulations used only im-
ages acquired from the camera directly above the inspected wheel. It is then
expected to use the side cameras to improve the inspection of the whole wheel
surface. Indeed, some parts of the wheel surface, such as the ventilation zone,
are better illuminated with the side cameras, which would improve the de-
tectability of defects located on those parts as discussed in chapter 6. There-
fore, a complete calibration of the multi-camera system would be of importance
to properly distribute the inspection tasks on the di�erent cameras.

• A polynomial model, aided with PCA, has been considered to represent the
background of the inspected image. This model proved its e�ciency for wheel
surface inspection, as it maintained most of the defect within the residuals.
It would be interesting to try other types of parametric models that are more
robust, and study the detectability of defects in such cases.

• The statistical test designed in chapter 4 for defect detection could be fur-
ther extended to take into account the variance of the estimation of pixels
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expectation. This could potentially improve the precision of the detection,
and provide a better control of the false alarm rate.

• The research on surface defect detection methods is expanding. Deep learning
is a new emerging research domain that showed some potentials for defect
detection on surfaces with di�erent types of textures [197]. It is then important
to study its detection capabilities, and investigate its e�ciency for industrial
applications, especially its sensibility to variations in the inspection system.

• In chapter 5, modeling the non-stationary process over the �rst window was
conducted using a polynomial model. Replacing this model with any other
type of parametric models is feasible, and will not alter the detection proce-
dure performed on the second window. Hence, another interesting perspec-
tive is to test the accuracy of other types of parametric models to model the
non-stationary process, such as the autoregressive integrated moving average
(ARIMA) for example, and to compare its accuracy with the one of the pro-
posed polynomial model.

• A �nal perspective is related to the problem of monitoring the mean value of
the background presented in chapter 6. It consists in monitoring online the
mean value of a Gaussian random sequence to detect the moment it exceeds
a prescribed value. The main challenge to design a statistical test is that the
variance is an a�ne function of the mean value.





Chapter 8

French Summary

8.1 Introduction

Dans l'hypothèse où les fabricants de presque tous les secteurs d'activité se retrou-
vent en concurrence avec des entreprises de toutes les régions du monde, la satisfac-
tion du client est un élément clé de survie et de succès. Un déterminant essentiel de
la satisfaction du client est la qualité du produit. Garantir la qualité des produits
fabriqués a toujours été une nécessité pour satisfaire les clients. Par conséquent, de
nombreux fabricants ont tendance à examiner la qualité de leurs produits non pas
de leur point de vue, mais plutôt du point de vue du client.

De nos jours, les clients sont mieux informés et plus attentifs à ce qu'ils perçoivent
comme étant la qualité d'un produit. Alors que la capacité du produit à remplir ses
fonctions attendues reste la principale préoccupation du client, sa perception visuelle
est également très importante. Les fabricants qui ont atteint des capacités élevées
sur les aspects techniques et fonctionnels de la production se di�érencient par le
contrôle de la perception de leur produit, en particulier la perception visuelle de sa
surface. Cela a conduit la nécessité d'e�ectuer une inspection visuelle pour s'assurer
que chaque produit fabriqué répond aux caractéristiques visuelles attendues.

L'inspection visuelle des produits �nis a toujours été l'une des applications les
plus reconnues du contrôle de qualité de n'importe quelle industrie. Il est e�ectué
à la �n de la chaîne de production, lorsque toutes les étapes de fabrication sont
terminées. Son importance vient du fait que c'est la dernière étape de l'inspection,
et le dernier recours pour arrêter un produit défectueux avant qu'il n'atteigne le
client. Cette inspection reste en grande partie un processus manuel (entièrement
ou partiellement) conduit par les opérateurs, dont le rôle principal est d'inspecter
chaque produit manufacturé. Malheureusement, ce processus manuel est confronté
à des limites considérables qui le rendent peu �able pour l'inspection.

Alors que l'inspection humaine béné�cie de certains avantages, principalement
sa grande �exibilité en ce qui concerne les di�érents types et formes de produits
inspectés, elle présente en revanche de nombreux inconvénients majeurs. D'abord,
la variabilité de la décision pour un inspecteur dans le temps (facteurs liés à la
fatigue et à la motivation) et la variabilité de la décision entre di�érents opérateurs
pour l'évaluation du même produit. Un deuxième inconvénient pour l'inspection
humaine est la répétabilité de la décision du même inspecteur lorsqu'il évalue le
même produit plusieurs fois. Ces inconvénients entraînent une incertitude et un
manque de précision lors de l'inspection.

Pour surmonter ces di�cultés, l'inspection automatisée s'est avérée être la meilleure
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alternative sur laquelle les industries peuvent compter. La part de la variabilité et
de la subjectivité dans la prise de décision est éliminée grâce à une inspection de
surface automatisée. Lorsqu'un même produit est inspecté plusieurs fois avec un
système d'inspection automatisé, le résultat est, a priori, le même à chaque fois.

Un système d'inspection visuelle automatique (AVI) est composé de deux prin-
cipaux sous-systèmes. Tout d'abord, le sous-système d'acquisition d'image qui est
basé sur le matériel. Il a pour rôle de transformer la scène optique en un ensem-
ble de données numériques reçues par la plateforme de traitement. Deuxièmement,
le sous-système de traitement de l'information qui est basé principalement sur des
méthodes de traitement d'images développées pour analyser les données acquises et
donner le résultat �nal de l'inspection.

Le premier objectif de ce travail consiste à concevoir le sous-système d'acquisition
d'images. En e�et, les exigences générales sont que tout système AVI doit être
rapide, rentable et �able. Cependant, pour être en mesure de mettre en place un
système AVI e�cace, une description plus détaillée des exigences d'inspection est
nécessaire. Il est absolument essentiel que le système conçu soit adapté aux exigences
spéci�ques de l'application.

Un deuxième objectif consiste à développer une méthode de détection de défauts
pour l'inspection de surface. La méthode doit être su�samment générale pour
l'inspection d'une large gamme de surfaces, ce qui permet de l'utiliser dans divers
domaines d'inspection de la qualité. De plus, dans un contexte industriel, il est
nécessaire de contrôler le taux de fausses alarmes pour éviter un arrêt inutile de la
production, tout en assurant la meilleure détection des défauts. Compte tenu de
ces contraintes, il est préférable de recourir à la théorie des tests d'hypothèses pour
concevoir un test dont les performances statistiques sont analytiquement connues.
En outre, la méthode peut utiliser des informations statistiques préalables sur la
surface inspectée pour rendre l'inspection insensible aux variations des conditions
d'acquisition.

Un troisième objectif consiste à surveiller en ligne un processus non stationnaire
pour détecter des changements brusques dans sa valeur moyenne. Dans notre cas,
ce processus non stationnaire résulte de la variation de la quantité de peinture sur
la surface des roues inspectées, où le changement brusque correspond à un manque
soudain de peinture. Puisque le processus surveillé est non stationnaire, c'est-à-dire
qu'il change naturellement avec le temps, la méthode proposée doit être capable
de distinguer les changements de processus "réguliers" des changements brusques
résultant de défaillances potentielles. De plus, étant donné que cette méthode vise à
être appliquée à des processus industriels, il est nécessaire de détecter le changement
dans un délai maximal de détection donné et de contrôler la probabilité de fausse
alarme sur un nombre d'échantillons donné. Ainsi, la méthode proposée s'inscrit
dans la catégorie de méthodes de détection séquentielle, fonctionnant selon un critère
d'optimisation non classique adapté aux applications industrielles.

Un dernier objectif consiste à prévoir les besoins de maintenance du système
AVI, requis en raison de la dégradation de l'éclairage dans le temps. D'une part,
cela permettra de maintenir le système dans un état de fonctionnement satisfaisant
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et, d'autre part, d'éviter un arrêt excessif de la production pour des opérations de
maintenance inutiles. L'étude de l'impact de la dégradation de l'éclairage sur la
performance de la méthode de détection permettra d'estimer le niveau d'éclairage
au-dessous duquel l'inspection n'est plus e�cace.

Pour répondre aux objectifs dé�nis ci-dessus, la structure globale de ce chapitre
se compose des cinq sections suivantes :

• Section 8.2 présente la procédure de conception du système AVI pour l'inspection
de surface des roues en temps réel. Plus précisément, ce chapitre se concentre
sur la conception du système d'imagerie et son installation. Premièrement, les
exigences et les conditions dans lesquelles l'inspection doit être e�ectuée sont
dé�nies. Certaines de ces exigences sont liées à la roue inspectée, tandis que
d'autres sont imposées par des contraintes industrielles. Ensuite, en fonction
des exigences d'inspection prédé�nies, le choix approprié de chaque élément
clé du système vision est présenté. En�n, la con�guration de l'installation du
système AVI est décrite.

• Section 8.3 étudie le problème de détection de défauts sur des surfaces in-
spectées à l'aide d'un système de vision. Pour contrôler le taux de fausses
alarmes, la méthode proposée s'appuie sur la théorie des tests d'hypothèses
pour concevoir un test dont les performances statistiques sont analytiquement
connues. Le contenu conforme de l'image (sans défauts) qui représente la sur-
face inspectée agit ici comme un paramètre de nuisance. Comme il n'a aucun
intérêt pour la détection des défauts, alors il doit être soigneusement pris en
compte, car il pourra potentiellement masquer les défauts. Par conséquent,
il est proposé de développer un modèle adaptatif de la surface imagée. Ce
modèle permet d'aborder l'inspection d'une large gamme d'objets, et il peut
être utilisé pour toute application nécessitant un modèle des paramètres de
nuisance.

Puis, comme aucune information préalable sur l'occurrence des défauts n'est
disponible, le problème est celui d'un test statistique entre hypothèses com-
posites. Dans un tel cas, un test uniformément le plus puissant avec puissance
constante (UPPC) est proposé, basé sur la réjection des paramètres de nui-
sance. En�n, pour prendre en compte le bruit présent dans l'image, un modèle
de bruit précis et réaliste est adopté. Cela permet d'établir avec une grande
précision les propriétés statistiques théoriques du test proposé.

La méthode de détection proposée est ensuite appliquée pour l'inspection de
la surface des roues. Les résultats numériques sur un grand nombre d'images
réelles montrent à la fois la précision du modèle adaptatif proposé et l'e�cacité
du test statistique qui en découle.

• Section 8.4 traite le problème de la surveillance en ligne d'un processus non
stationnaire pour détecter des changements brusques dans sa valeur moyenne.
La principale particularité du problème abordé dans ce chapitre est que les
paramètres de la distribution d'un processus non stationnaire peuvent changer



146 Chapter 8. French Summary

naturellement dans le temps, ce qui fait que les hypothèses de détection sont
composites. Une solution habituelle consiste à utiliser un rapport de vraisem-
blance généralisé qui consiste à substituer ces paramètres inconnus par leurs
estimations en utilisant l'estimation du maximum de vraisemblance. Ainsi,
dans un premier temps, le modèle utilisé pour traiter la non-stationnarité des
observations est présenté. Deuxièmement, le test statistique qui suit est dé-
taillé. Ensuite, pour respecter les exigences relatives à une faible probabilité
de fausse alarme et, aux performances de détection du point de changement
les plus élevées et une contrainte sur le délai maximal de détection, les perfor-
mances de la méthode proposée sont étudiées.

La méthode séquentielle proposée est ensuite appliquée au problème de la vari-
ation de l'intensité du revêtement de peinture des roues produites. Les résul-
tats numériques obtenus sur un grand nombre d'images réelles sont présentés
et la précision de la performance théorique de la méthode proposée est étudiée.

• Section 8.5 étudie le problème de la prévision des besoins de maintenance du
système AVI. Étant donné que le système d'imagerie est composé de com-
posants électroniques, le vieillissement de ces composants peut réduire les
performances d'inspection et éventuellement provoquer une défaillance. Ce
chapitre se concentre sur la dégradation de l'éclairage causée par la détériora-
tion des modules LED dans le temps. Cette dégradation a un impact négatif
sur la méthode de détection proposée dans la section 8.3. Ainsi, l'approche pro-
posée dans ce chapitre est l'étude de l'impact de la dégradation de l'éclairage
sur la performance de la méthode de détection. La modélisation de cet im-
pact permettra d'estimer le niveau d'éclairage au-dessous duquel le système
n'est plus �able. En�n, une solution industrielle est proposée pour détecter le
moment où ce niveau d'éclairage est atteint.

• Section 8.6 conclut le chapitre par une brève synthèse des travaux et présente
quelques perspectives.

8.2 Système d'inspection visuelle automatisé

La con�guration globale d'un système AVI est toujours la même. Un système
d'éclairage génère de la lumière d'une manière spéci�que pour éclairer l'objet in-
specté dans le but d'améliorer la qualité des images acquises. La scène éclairée
est projetée sur le capteur d'une caméra numérique, qui transforme la lumière en
signaux électriques, pour �nalement créer une image numérique. Une lentille est
généralement ajoutée à la caméra pour dé�nir le champ de vision et la zone de la
scène à capturer. L'image numérique résultante est ensuite envoyée à une plateforme
de traitement qui contrôle l'ensemble du système AVI. Avec la prise en charge des
techniques de traitement d'image, la plateforme de traitement analyse et traite les
images acquises pour donner les informations d'inspection �nales sur la conformité
de l'objet inspecté.
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Dans cette section, nous nous concentrerons uniquement sur la conception du
sous-système d'acquisition d'images. L'inspection de la surface des roues en temps
réel fait face à un certain nombre de dé�s. Certains sont imposés par les caractéris-
tiques spéci�ques de l'inspection de la surface des roues tandis que d'autres sont
imposées par le cadre industriel :

• La surface de la roue a une forme géométrique complexe, avec des irrégularités
dans des directions di�érentes. Ces irrégularités peuvent parfois masquer des
défauts lors de l'inspection de la roue à partir d'une seule direction.

• La variabilité dans la conception des roues et les di�érents types de défauts
sont des dé�s majeurs à relever. Le système d'acquisition d'images AVI doit
être conçu de manière à permettre l'inspection de toute la surface, quelle que
soit la forme de la roue. Par ailleurs, la méthode de détection utilisée au sein
de l'AVI doit également pouvoir s'adapter à cette variabilité.

• La plupart des roues sont recouvertes par une couche de peinture brillante qui
rend la surface de la roue plus ré�échissante. Cela rend di�cile la concep-
tion d'un système d'éclairage approprié qui minimise les éventuelles ré�exions
de la lumière. Ce phénomène peut entraîner des fausses alarmes pendant la
procédure de détection.

• A�n d'augmenter la productivité et la maintenir au-dessus d'une certaine lim-
ite imposée par l'industrie, les roues ne s'arrêtent pas sous le système AVI,
mais plutôt se déplacent à une vitesse constante d'environ un mètre par sec-
onde. Par conséquent, le système AVI doit être capable de capturer l'image
de la roue en mouvement sans aucune distorsion ou �ou pouvant diminuer la
qualité de l'image et donc l'e�cacité de l'inspection.

En fonction de ces exigences d'inspection prédé�nies, le choix approprié de
chaque élément clé du système de vision peut être e�ectué. Ces éléments clés sont la
caméra, l'objectif, le système d'éclairage et la plateforme de traitement de données.
Le tableau 8.1 liste les caractéristiques de chacun de ces éléments clés.

Le système d'imagerie est installé sur la ligne de production d'une industrie de
fabrication de roues. La �gure 8.1 montre une illustration de la con�guration de
l'installation. La caméra n◦1 est installée directement au-dessus de la roue contrôlée,
tandis que les caméras n◦2− 3− 4 sont installées sur le côté selon un angle de 120◦.
Seule la caméra n◦2 est représentée dans la �gure 8.1. Elle est installée sur une piste
circulaire avec un curseur qui permet de modi�er l'angle entre la caméra et la roue,
qui va de 30◦ à 75◦, ainsi que la distance à la roue. Par conséquent, la caméra peut
être positionnée pour s'adapter au type de roue inspectée. Un seul déclencheur est
utilisé pour contrôler les 4 caméras pour enregistrer les 4 images au même moment.

En�n, la �gure 8.2 montre deux images de la même roue. L'image de gauche est
acquise en utilisant la caméra n◦1, tandis que l'image de droite a été prise avec la
caméra n◦2. Comme on peut le voir, la caméra n◦2 permet de mieux voir certaines
régions de la surface de la roue qui ne sont pas visibles par la caméra n◦1, permettant
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Table 8.1: Spéci�cation du système vision

Caméra

Caméra matricielle couleur

Capteur CMOS

Résolution : 2046× 2046 (4 MP)

Taille du capteur : 11.3mm× 11.3mm

Taille du pixel : 5.5µm× 5.5µm

Objectif
Résolution : 120 lp/mm

Longueur focale �xe : 12.5 mm

Ouverture : f1.4 - f22

Système d'éclairage
Technique d'éclairage di�usée

Modules LED blancs

Plateforme de traitement

Dual Intel Xeon processeur 3.1 GHz

20 cores en total

Ram : 32 GB

4 GB NVIDIA Quadro GPU

Traitement d'image : C++ / OpenCV

ainsi leur inspection. En e�et, la procédure de détection des défauts pour les deux
images est la même, mais est e�ectuée sur di�érentes régions de la roue.

8.3 Méthode de détection de défauts

Les méthodes de détection de défauts à partir d'images peuvent être divisées en trois
catégories [109�111] :

• Les méthodes génériques très �exibles ne reposant sur aucune connaissance
préalable de l'objet inspecté. Ces méthodes sont généralement basées sur
des outils de traitement d'images et l'amélioration des défauts (amélioration
du contraste, détection des contours, etc. . . ) et la reconnaissance de formes.
Ils consistent à séparer l'image inspectée en régions de comportement statis-
tique distinct, en partant de l'hypothèse que des propriétés communes peuvent
dé�nir toutes sortes d'anomalies et les distinguer de l'arrière-plan conforme.
L'existence de telles propriétés n'est pas évidente en pratique et ces méth-
odes sont souvent sensibles à la géométrie de l'objet et de l'anomalie et, à la
présence de bruit.

• Les méthodes spéci�ques basées sur une référence [111]. La détection est alors
simplement basée sur les di�érences observées entre la référence et l'image
inspectée. Cette approche est e�cace, mais aussi très sensible aux conditions
expérimentales, telles que la position de l'objet, l'illumination, etc. . . . De plus,
une référence peut être di�cile à obtenir dans la pratique.

• Les méthodes basées sur la vision par ordinateur et le traitement d'images [110,
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Figure 8.1: Installation du système vision

111], qui nécessitent habituellement des informations préalables sur l'objet in-
specté. Deux approches principales ont été proposées pour introduire des
connaissances statistiques a priori: les approches bayésiennes et non bayési-
ennes. L'approche statistique bayésienne permet la conception de méthodes
simples et e�caces de détection d'anomalies. Cependant, ces méthodes re-
quièrent une connaissance a priori sur les défauts recherchés. Cette exigence
limite l'application des méthodes bayésiennes.

Dans le problème de détection d'anomalie considéré, l'arrière-plan conforme de
la surface inspectée n'a aucun intérêt dans le processus de détection. De ce fait, il
est plus pratique de représenter l'arrière-plan conforme par un modèle paramétrique
et d'utiliser une méthode non bayésienne pour la détection d'anomalies.

Les principales contributions de la méthode proposée sont les suivantes :

• Un modèle statistique adaptatif est proposé pour représenter la surface imagée.
Ce modèle nécessite seulement la connaissance de la géométrie des objets in-
spectés. Ainsi, le système de détection des anomalies est entièrement automa-
tique et applicable à une large gamme de surfaces.

• Le modèle proposé assure des performances de détection élevées et est simple
en termes de calcul pour les applications en temps réel.

• Le modèle de bruit hétéroscédastique est utilisé pour décrire avec précision
les propriétés de bruit dans les images raw. En conséquence, pour d'autres
types d'images, le modèle hétéroscédastique peut être remplacé par le modèle
approprié sans e�et majeur sur la précision de la détection.
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(a) Image acquise avec la caméra n◦1 (b) Image acquise avec la caméra n◦1

Figure 8.2: Deux images de la même roue, une acquise avec la caméra n◦1, et l'autre
avec la caméra n◦2

• Les propriétés statistiques de la méthode sont explicitement fournies. Le seuil
de détection ne dépend que de la probabilité de fausse alarme. Par conséquent,
un opérateur peut, par exemple, prescrire facilement une probabilité de fausse
alarme et savoir quel type d'anomalies peut être détecté avec quelle probabilité.

8.3.1 Méthodologie

Soit Z = {zm,n} l'image bruitée, de la surface inspectée, de taille M × N , où
(m,n) ∈ Z = ({1, . . . ,M}×{1, . . . , N}). Au cours de l'acquisition, chaque pixel est
corrompu par divers bruits qui changent sa valeur. Par conséquent, chaque valeur
de pixel zm,n à l'emplacement (m,n) peut être représentée comme suit :

zm,n = µm,n + ξm,n (8.1)

où µm,n est l'espérance du pixel zm,n, et ξm,n représente les bruits qui corrompent
le pixel à cet endroit. On suppose généralement que tous les bruits qui modi�ent la
valeur du pixel peuvent être modélisés comme une variable aléatoire gaussienne [137].
En conséquence, la distribution statistique de la valeur du pixel à l'emplacement
(m,n) est donnée par :

zm,n ∼ N
(
µm,n, σ

2
m,n

)
(8.2)

où σ2
m,n est la variance du bruit. Cette représentation d'un pixel est considérée

lorsqu'aucune anomalie n'est présente sur la surface inspectée. Au contraire, lorsqu'une
anomalie est présente sur la surface inspectée, la valeur attendue du pixel est a�ec-
tée. Par conséquent, zm,n peut s'écrire :

zm,n = µm,n + θm,n + ξm,n (8.3)

où θm,n est l'impact de l'anomalie sur l'espérance des pixels. En fait, l'anomalie
a�ecte une zone limitée de l'image, donc θm,n est égale à zéro à l'exception de
quelques pixels dans lesquels se trouve l'anomalie. Par suite, lorsqu'une anomalie
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est présente, le modèle du pixel à l'emplacement (mn) devient :

zm,n ∼ N
(
µm,n + θm,n, σ

2
m,n

)
(8.4)

Lors de l'inspection d'une image, deux situations peuvent survenir: H0 = {il n'y a
pas d'anomalie } et mathcalH1 = {il y a une anomalie }.
A partir des équations (8.2) et (8.4), le problème de détection d'anomalie peut être
représenté comme une décision entre les deux hypothèses suivantes :{

H0 :
{
zm,n ∼ N (µm,n, σ

2
m,n) , ∀(m,n) ∈ Z

}
H1 :

{
zm,n ∼ N (µm,n + θm,n, σ

2
m,n) , ∀(m,n) ∈ Z

}
,

(8.5)

avec θm,n 6= 0 pour quelques (m,n).

En pratique, la di�culté principale est la présence de paramètres de nuisance
inconnus, dans la dé�nition des hypothèses, qui n'ont aucun intérêt pour le problème
de détection d'anomalies. Ces paramètres de nuisance sont l'espérance des pixels
µm,n qui décrivent la surface inspectée. Bien que ce paramètre de nuisance ne
soit pas lié au problème de détection, il doit être soigneusement pris en compte, à
travers la conception d'un modèle qui décrit précisément cet élément, de sorte que
le paramètre de nuisance n'empêche pas la détection d'anomalies.

Dans ce but, pour chaque surface inspectée, un modèle adaptatif original est
proposé pour soustraire l'arrière-plan conforme. La zone inspectée correspondant à
l'image Z est divisée en petits blocs de taille w et h (respectivement pour la largeur
et la hauteur). Notons aussi zk le bloc numéro k de l'image inspectée Z.
Le modèle paramétrique adaptatif proposé consiste essentiellement à représenter
tous les pixels du bloc zk comme une somme pondérée de vecteurs de base représen-
tant les colonnes de la matrice Hk. Le poids de cette somme représente le vecteur
des paramètres dk. Le modèle proposé se compose de deux parties distinctes. Une
première partie �xe basée sur un polynôme algébrique bidimensionnel de degrés dx
et dy sur x et y respectivement. Une deuxième partie adaptative basée sur une
analyse en composantes principales, qui change d'un bloc à un autre pour prendre
en compte la spéci�cité de chaque bloc.

Par conséquent, le modèle proposé pour représenter l'arrière-plan, c'est-à-dire
l'espérance du bloc zk, peut être écrit comme :

E [zk] = Hk dk. (8.6)

Ensuite, pour la modélisation du bruit, il est proposé d'utiliser le modèle hétéroscé-
dastique. En fait, un modèle habituel du bruit corrompant les images raw peut être
obtenu en considérant séparément le bruit de grenaille, dû au processus de photo-
comptage Poissonien, et les divers bruits électroniques. Alors que la variance du pro-
cessus Poissonien est proportionnelle à son espérance, les bruits électroniques sont
modélisés comme une variable aléatoire gaussienne à variance constante [137, 146].
En raison du très grand nombre de photons comptés, le processus Poissonien peut
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être approché par une distribution gaussienne [137, 146]. Par conséquent, la valeur
du pixel à l'emplacement (m,n) peut être modélisée comme une variable aléatoire
gaussienne dont la variance est donnée par :

σ2
m,n = aµm,n + b. (8.7)

Ces paramètres (a, b) du modèle de bruit hétéroscédastique restent les mêmes pour
tous les pixels. En outre, ils dépendent de plusieurs paramètres d'acquisition, donc
les paramètres (a, b) sont également constants pour toutes les images prises avec les
mêmes paramètres d'acquisition.

Dans toute installation industrielle, il est supposé que la caméra ne change pas
donc le système peut être calibré facilement. On suppose donc que les paramètres
du modèle de bruit (a, b) sont connus. Le seul paramètre qui doit être estimé,
étant donné l'image d'une surface à inspecter, est l'espérance de chaque pixel. Une
première estimation est obtenue en utilisant la méthode des moindres carrés :

µ̃ls
k = Hk

(
HT
kHk

)−1
HT
k zk.

Ensuite, une estimation de la variance du bruit est obtenue à partir de µ̃ls
k par :

Σ̃
ls

k = Iw×h × (a µ̃ls
k + b),

où Iw×h dénote une matrice d'identité de taille w×h. Cette estimation approxima-
tive de la covariance est donc réutilisée pour mettre à jour l'estimation de l'espérance
en utilisant la méthode des moindres carrés pondérés :µ̃k = Hk

(
HT
k Σ̃

ls−1

k Hk

)−1

HT
k Σ̃

ls−1

k zk,

Σ̃k = Iw×h × (a µ̃k + b).

(8.8)

Par conséquent, l'objectif du problème de détection d'anomalies étudié est de
décider entre les deux hypothèses composites suivantes :{

H0 : {zk ∼ N (Hkdk,Σk) , ∀k ∈ {1, . . . ,K}}
H1 : {zk ∼ N (Hkdk + θk,Σk) , ∀k ∈ {1, . . . ,K}} ,

(8.9)

avec θk 6= 0 pour quelques k.
Lors du test d'hypothèses composites, le but ultime est de concevoir un test UPP
(Uniformément le Plus Puissant,) qui maximise la fonction de puissance et sat-
isfait une contrainte prescrite sur la probabilité de fausse alarme, quelle que soit
l'anomalie. Cependant, un tel test existe rarement. Par conséquent, il est pro-
posé d'appliquer le principe d'invariance pour supprimer les paramètres de nuisance
Hkdk et de concevoir un test Uniformément le Plus Puissant avec puissance Con-
stante (UPPC). En e�et, l'espérance sous H0 donnée par Hkdk n'a aucun intérêt
pour le problème de test (8.9), mais doit être prise en compte. Pour supprimer les
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paramètres de nuisance, l'idée est de projeter les observations zk sur le complément
orthogonal du sous-espace engendré par les colonnes de Hk. Ceci est réalisé en
utilisant le projecteur :

P⊥Hk
= Iw×h −

(
Hk

(
HT
k Σ̃
−1

k Hk

)−1
HT
k

)
Σ̃
−1

k , (8.10)

où la covariance estimée Σ̃k est donnée en utilisant l'espérance estimée µ̃k (8.8).
Cependant, comme la variance n'est pas constante sur tous les pixels, il est nécessaire
de normaliser les résidus en divisant chaque résidu par son écart-type. Ces résidus
normalisés peuvent s'écrire comme suit :

rk = Σ̃
−1/2

k

(
P⊥Hk

zk

)
. (8.11)

où A−1/2 représente la "racine carrée" de la matrice A dé�nie telle que
(
A−1/2 ×A−1/2

)−1
=

A.
Il est alors facile d'établir [110,153,154] que la norme des résidus normalisés rk suit
la distribution :

‖rk‖22 ∼

{
χ2

Υ(0) , ∀k ∈ {1, . . . ,K} under H0

χ2
Υ (%k) , ∀k ∈ {1, . . . ,K} under H1,

(8.12)

où χ2
Υ (%k) représente la distribution χ-carré non-centrale avec Υ = w×h−p degrés

de liberté. Ici, p représente le nombre de colonnes de Hk et le paramètre de non-
centralité %k sous l'hypothèse H1 est donné par :

%k =
∥∥∥Σ̃−1/2

k P⊥Hk
θk

∥∥∥2

2
. (8.13)

Ici, %k dénote le rapport "défaut-sur-bruit" [110] et est essentiel pour dé�nir la
détectabilité de l'anomalie.
Suivant les résidus rk et de leur distribution, voir Eq. (8.12), le test UPPC peut être
écrit comme suit :

δ =

{
H0 if ‖rk‖22 ≤ τ
H1 if ‖rk‖22 > τ,

(8.14)

où a�n de garantir la probabilité de fausse alarme α0, le seuil de décision τ est dé�ni
par :

τ = F−1
χ2

Υ
(1− α0; 0) (8.15)

où Fχ2
Υ

(x, %k) et F−1
χ2

Υ
(x, %k) représente respectivement la fonction de distribution

cumulative χ2 et son inverse avec le paramètre de non-centralité %k.
De même, la fonction de puissance du test est donnée par :

β(δ,θk) = Fχ2
Υ

(τ, %k). (8.16)

On peut noter à partir des résultats précédents, Eq. (8.15)-(8.16), deux choses im-
portantes. Tout d'abord, le seuil τ ne dépend que de la probabilité de fausse alarme
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α0 et est donc constant pour tous les blocs. Deuxièmement, la détectabilité de
l'anomalie dépend uniquement du paramètre de non-centralité %k (8.13). Plus pré-
cisément, Eq. (8.13) montre que %k est dé�ni comme la partie de l'anomalie θk qui
se trouve dans le complément orthogonal du sous-espace engendré par Hk. Par
conséquent, une anomalie θk est détectable si et seulement si P⊥Hk

θk 6= 0.

8.3.2 Simulations

Il est souhaité de montrer la pertinence du test statistique proposé et l'exactitude
des résultats théoriques. Une simulation Monte-Carlo a été réalisée sur 3 000 images
de roues. Comme il est très di�cile d'obtenir beaucoup d'images avec des défauts
similaires, nous avons pris au hasard un ensemble de 3 000 images conformes sur
lesquelles un défaut a été superposé. Ce défaut représente la limite inférieure des
critères de détection, au-dessus de laquelle le défaut est destiné à être détecté.
la �gure 8.3 représente la distribution empirique de la norme des résidus normalisés
‖rk‖22 sur laquelle repose le test proposé, voir Eq. (8.14). Elle a été obtenue en
utilisant le modèle adaptatif proposé sur des blocs de taille h = 20 (hauteur) et
w = 20 (largeur). Les degrés du polynôme utilisé sont dy = 5 (le long de la hauteur)
et dx = 2 (le long de la largeur) et le nombre de composantes principales ajoutées
à ce modèle est de 3. L'écart entre la distribution empirique sous H0 et la distribu-
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Figure 8.3: Distributions empirique et théorique de la norme des résidus normalisés
pour des images avec et sans défauts

tion empirique sous H1 est dû au paramètre de non-centralité %k sous l'hypothèse
H1 (8.13). Cet écart montre que la détection du défaut est possible avec certaines
erreurs de classi�cation.
En outre, la �gure 8.3 compare aussi la distribution empirique sous H0 avec la
distribution théorique (8.12). Une petite di�érence peut être observée entre les dis-
tributions empiriques et théoriques. L'e�et de cette di�érence peut être illustré dans
la �gure 8.4 qui représente les courbes COR réelles et théoriques. Comme on peut le
constater, la performance du modèle proposé est légèrement inférieure à ce que l'on
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peut attendre théoriquement. Cela peut être expliqué par les deux faits suivants.
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Figure 8.4: Courbes COR réelle et théorique

Premièrement, l'estimation de l'espérance des pixels n'est pas parfaite et possède
elle-même une variance non négligeable, qui n'a pas été prise en compte dans le test
proposé. Deuxièmement, le modèle adaptatif proposé, malgré son e�cacité, n'est
pas parfait et par conséquent, peut parfois ne pas décrire l'arrière-plan de l'image
avec une grande précision en plaçant une partie de l'arrière-plan conforme parmi les
résidus.

Finalement, la �gure 8.5 présente, pour un petit ensemble d'images, l'image
réelle, l'image du modèle de l'arrière-plan et l'image des résidus correspondante. On
peut voir que le modèle proposé est relativement précis et conserve la plus grande
partie du défaut dans l'image des résidus.

Image réelle Image du modèle Image des résidus

Figure 8.5: Images de roues contenant di�érents défauts, avec l'image du modèle de
l'arrière-plan, et l'image résiduelle
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8.4 Méthode de surveillance du revêtement des roues

Les méthodes séquentielles de détection des points de changement peuvent être
classées en deux classes : les méthodes paramétriques et les méthodes non paramétriques.
D'une part, les méthodes non paramétriques ont l'avantage de ne nécessiter ni hy-
pothèse ni aucun modèle sur les observations. Ils sont basés sur des méthodes
statistiques pour construire des règles de détection basées sur un grand nombre
d'observations. Des règles de décision sont ensuite appliquées aux nouvelles obser-
vations. Bien que ces méthodes ne nécessitent pas de modèle pour décrire les ob-
servations, elles peuvent cependant être limitées, typiquement lorsque le processus
de fabrication change légèrement et qu'elles sont rarement munies de performances
statistiques connues.
D'un autre côté, les méthodes paramétriques sont utilisées lorsqu'une information
su�sante sur le processus de surveillance est disponible, de sorte qu'un modèle
statistique des observations peut être conçu. En d'autres termes, cette approche né-
cessite que certaines connaissances distributionnelles des données soient disponibles
et utilisées dans le schéma de détection. Une limitation commune de ces méthodes
est qu'elles s'appuient sur des modèles paramétriques prédé�nis basés sur des infor-
mations à priori sur la distribution des données.

Dans ce travail, il est proposé de concevoir une méthode séquentielle paramétrique
dans le but de surveiller un processus non stationnaire en temps réel a�n de dé-
tecter un changement brusque dans sa moyenne. Dans une situation industrielle, il
est nécessaire de détecter le changement dans un délai maximal de détection donné
(nombre d'observations après le changement) et il est souhaitable de contrôler la
probabilité de fausse alarme sur une longueur de parcours �xe. Dans ce contexte
opérationnel, une méthode séquentielle avec deux fenêtres de longueurs �xes (2FLW-
SEQ) basée sur la méthode du CUSUM est proposée. Cette méthode séquentielle est
ensuite appliquée pour la surveillance du revêtement des roues. En e�et, quand un
pistolet de pulvérisation se bloque partiellement, cela se traduit par un changement
soudain de l'intensité de l'image causée par un manque de peinture sur la roue.
Les principales contributions de la méthode proposée sont les suivantes :

• Une méthode séquentielle avec deux fenêtres de longueurs �xes (2FLW-SEQ)
est proposée pour surveiller un processus non stationnaire en temps réel. La
première fenêtre est considérée pour modéliser la non-stationnarité du proces-
sus tandis que la seconde fenêtre est utilisée pour la procédure de détection
séquentielle.

• La procédure séquentielle proposée fonctionne selon les critères non classiques
de la minimisation de la probabilité de fausse détection sous la contrainte d'un
délai de détection maximal tout en contrôlant la probabilité de fausse alarme
pour un nombre donné d'observations.

• Une étude statistique de la méthode proposée permet de trouver une borne
inférieure de la puissance de détection en fonction du délai maximal de détec-
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tion autorisé et une borne supérieure de la probabilité de fausse alarme pour
un nombre donné d'observations.

• Le contexte proposé permet à l'utilisateur de prescrire un délai de détec-
tion maximal et une probabilité de fausse alarme pour un nombre donné
d'observations et peut savoir quelles amplitudes de changement peuvent être
détectées avec une probabilité minimale garantie.

8.4.1 Méthodologie

Considérons une fenêtre glissante de taille L. Après les L premières observations,
pour chaque nouvelle observation reçue xN la fenêtre contient les observations de
xN−L+1 à xN . YN = (xN−L+1, . . . , xN−1, xN )T représente la fenêtre après l'ajout de
l'observation xN . Le vecteur YN est modélisé par la distribution normale suivante :

YN ∼ N (µN , σ
2IL), (8.17)

où µN est l'espérance dans cette fenêtre, IL est la matrice d'identité de taille L, et
σ2 est la variance supposée constante pour tous YN ,∀N ≥ L.
Un modèle paramétrique linéaire est proposé pour représenter l'espérance µN . Cela
consiste essentiellement à représenter toutes les observations de la fenêtre YN comme
une somme pondérée de q vecteurs de base qui représentent les colonnes d'une
matrice H de taille L × q. Le poids de cette somme représente le vecteur de q
paramètres dN . Par conséquent, l'espérance µN peut s'écrire comme :

µN = HdN . (8.18)

Le modèle H est basé sur un polynôme de degré q − 1.
Il résulte des équations (8.17) et (8.18) qu'en absence de défaut, le vecteur d'observations
YN est modélisé par :

YN ∼ N (HdN ,σ
2IL). (8.19)

Au contraire, lorsqu'un défaut survient dans le processus, il se produit un change-
ment dans la valeur moyenne qui a�ectera toutes les observations après le point de
changement. Par conséquent, lorsque le changement se produit, les observations YN
peuvent être modélisées comme suit :

YN ∼ N (HdN + aKM ,σ
2IL), (8.20)

où le changement brusque de la valeur moyenne est décrit par le vecteurKM , de taille
L, contenant (L−M) zéros avant le changement et (M) fois −1 après, et la constante
a > 0 représente l'amplitude du changement. Ici, M est le nombre d'observations
maximales acceptables après le changement. Par exemple, le vecteur de changement
K1 = (0, 0, ..., 0,−1) décrit un changement qui n'a�ecte que la dernière observation
dans la fenêtre de taille L.
Il est important de noter que la variation acceptable de la valeur moyenne, mod-
élisée par HdN , est un paramètre de nuisance. En e�et, il n'a pas d'intérêt pour le
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problème de détection considéré. Pour traiter ce paramètre de nuisance, il est pro-
posé d'utiliser la méthode d'estimation du maximum de vraisemblance (ML) pour
e�ectuer un rejet de ce paramètre de nuisance :

rN =
1

σ
WYN . (8.21)

Ici W est la projection orthogonale de taille L− q × L, sur l'espace nul de H, dont
les colonnes correspondent aux vecteurs propres de la matrice IL−H

(
HTH

)−1
HT

associés à des valeurs propres égales à 1. Le vecteur rN représente la projection des
observations sur l'espace nul de H.
Parmi d'autres, la matrice W a les propriétés utiles suivantes: WWT = IL−q; il
résulte donc des équations (8.19)-(8.21) que les résidus rN peuvent être modélisés
sous les hypothèses H0 et H1 par la distribution statistique suivante :H0 : {rN ∼ N (0, IL−q)}

H1 :
{

rN ∼ N
(a
σ
θM , IL−q

)}
,

(8.22)

où θM représente le décalage d'espérance, dû au changement brusque, projeté sur
l'espace nul de H: θM = WKM .
Il est proposé d'utiliser une méthode séquentielle avec une fenêtre �xe de longueur
M qui correspond également à un délai de détection �xe prédé�ni. Des approches
similaires ont été étudiées dans le contexte de la détection séquentielle dans [175,176].
Ils ont proposé d'utiliser le "match space detection" qui est donné dans notre cas
par :

δN =

{
0 if S̃NN−L+1 = θTMrN < τ

1 if S̃NN−L+1 = θTMrN ≥ τ.
(8.23)

De l'équation (8.22) il est facile d'établir la distribution statistique des résultats
S̃NN−L+1 du 2FLW-SEQ proposé :H0 :

{
S̃NN−L+1 ∼ N (0, ‖θM‖22)

}
H1 :

{
S̃NN−L+1 ∼ N

(a
σ
‖θM‖22, ‖θM‖22

)}
.

(8.24)

En�n, la puissance de détection β(M) du test proposé (8.24), c'est-à-dire la proba-
bilité de détecter un changement après au plus M observations, est bornée par :

β(M) ≥ 1− Φ

(
τ

‖θM‖2
− a

σ
‖θM‖2

)
. (8.25)

avec Φ la fonction de répartition de la loi normale centrée réduite. Et la probabilité
d'avoir une fausse alarme α(R) après R observations est bornée par :

α(R) ≤ 1− Φ

(
τ

‖θM‖2

)R
, (8.26)

Les équations (8.25) et (8.26) soulignent les principaux avantages de l'approche
proposée. Premièrement, la performance statistique du test proposé est bornée. La
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probabilité de fausse alarme α(R) est majorée ce qui permet de calculer un seuil de
détection τ en utilisant un taux de fausse alarme prédé�ni sachant que l'application
est garantie de ne pas le dépasser. D'autre part, la puissance de détection β(M)

du test est minorée, ce qui permet de garantir, pour un taux de fausse alarme
prédé�ni, une puissance de détection minimale. Deuxièmement, la probabilité de
fausse alarme α(R) ne dépend que de la longueur de parcours prescrite R et du
délai maximal de détection acceptable M . En�n, la fonction de puissance (8.25)
montre que la précision de la méthode proposée dépend essentiellement du rapport
"changement sur bruit" a/σ, ainsi que du délai maximal de détection acceptableM .

8.4.2 Simulations

Dans le but de surveiller la variation de l'intensité du revêtement de peinture sur
les roues produites, on considère un bloc contenant s pixels dans l'image de la roue
sur lequel la valeur moyenne de tous les pixels est calculée. La fenêtre considérée
conserve la même taille et la même position sur la surface de la roue pour toutes les
images. Ensuite, pour une image d'une roue, soit Z = {zw}sw=1 dénotent la fenêtre
contenant s pixels et m = s−1

∑s
w=1 zw la valeur moyenne de l'intensité des pixels.

Pour e�ectuer les simulations, une base de données de 500 000 images conformes
et successives a été acquise. La procédure décrite ci-dessus a été appliquée pour
obtenir les observations mi avec i = {1, 2, ..., 500 000}. L'écart-type observé, lié au
système d'imagerie, est σ = 22. Ce paramètre est supposé être constant pendant le
processus de surveillance.

Tout d'abord, il est proposé d'étudier l'e�et de la seconde fenêtre M sur les
performances de la détection. La base de données a été utilisée pour e�ectuer une
simulation Monte-Carlo, pour laquelle un décalage simulé d'amplitude a = 60 a
été superposé à certaines observations. La �gure 8.6 représente la probabilité de
fausse alarme empirique α(R) et la puissance de détection β(M) avec R = 5 000

pour 3 valeurs di�érentes du délai maximal de détection autorisé M = {1, 3, 5},
en fonction du seuil de décision τ . On peut observer que lorsque M augmente,
‖θM‖2 augmente, ce qui a�ecte à la fois le taux de fausses alarmes α(R) et la
puissance de détection β(M), comme vu dans l'équation (8.24). Cependant, le
taux d'augmentation de β(M) est plus grand que celui de α(R). Par conséquent, le
décalage entre la puissance de détection et la probabilité de fausse alarme augmente,
ce qui implique une meilleure performance de détection, mais avec un délai M
plus important. On peut alors conclure que le choix de M dépend essentiellement
des exigences de l'application. En fonction de l'application, ce test permet soit
d'augmenter les performances de détection au prix d'un délai de détection plus
important, soit de diminuer le délai de détection au prix d'une performance de
détection plus faible.

Ensuite, il est souhaité d'illustrer l'e�cacité de la méthode de détection séquen-
tielle 2FLW-SEQ proposée sur un scénario réel avec un changement réel dans les
observations. La �gure 8.7 représente un cas réel d'observations lorsque le pistolet
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Figure 8.6: Probabilité de fausse alarme α(R) et puissance de détection β(M) avec
R = 5000 pour 3 valeurs di�érentes de M en fonction du seuil de décision τ .

de pulvérisation est partiellement bouché. En conséquence, un changement brusque
dans les observations d'une amplitude a = 55 peut être vu exactement à l'indice
de l'image 2434. La courbe bleue représente les observations réelles, tandis que la
courbe rouge représente les valeurs d'espérance (8.18) estimées en utilisant le modèle
polynomial sur une fenêtre de taille L = 200 et un degré de q − 1 = 2. Le taux de
fausse alarme est �xé à α(R = 10−3 avec R = 5 000. Cela entraînera un seuil de
détection de τ = 10.12 pour M = 5. Figure 8.8 illustre le résultat de la méthode
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Figure 8.7: Exemple réel de la variation de la valeur moyenne avec un changement
brusque à l'indice 2434.

proposée 2FLW-SEQ avec M = 5. On peut voir que le point de changement est
détecté à l'index 2438 ce qui signi�e un délai exact de 5 roues défectueuses.

Il faut noter que, généralement lorsque le changement est détecté, le processus
séquentiel s'arrête. Cependant, pour mieux illustrer les résultats du test, la procé-
dure séquentielle a été autorisée à continuer. Il est montré sur la �gure 8.7 qu'après
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Figure 8.8: Résultat de la méthode proposée 2FLW-SEQ avec M = 5

le changement, les observations retournent à un état similaire à celui juste avant le
changement. Alors, juste après le changement, la procédure séquentielle va réopérer
sous l'hypothèse H0, et les résultats S̃ii−L+1 reviendront à une distribution gaussi-
enne avec une moyenne nulle et une variance ‖θM‖22, comme on peut le voir dans la
�gure 8.8.

8.5 Maintenance du système vision

Le vieillissement des composants électroniques du système vision pourrait réduire
les performances du système et éventuellement provoquer une défaillance. Pour de
tels systèmes, la dégradation de l'éclairage dans le temps est une préoccupation ma-
jeure [181]. En fait, les sources lumineuses sont basées sur des composés chimiques
qui ont un comportement de vieillissement caractéristique [182]. Par conséquent,
comme la lumière est le signal utilisé par le capteur de la caméra pour générer les
données, l'éclairage de la scène imagée a un impact majeur sur la performance du
système d'inspection. Il est alors important d'étudier le comportement du vieillisse-
ment de la source lumineuse pour déterminer le moment où le niveau d'éclairage n'est
plus su�sant pour que le système puisse exécuter ses fonctions prévues. Cependant,
en fonction du type de source lumineuse et de ses conditions de travail, ce vieillisse-
ment n'est pas toujours facile à modéliser. Une approche alternative proposée dans
ce travail est d'étudier l'impact de la dégradation de l'éclairage sur la performance de
la méthode de détection. Cela permettra d'estimer le niveau d'éclairage au-dessous
duquel le système n'est plus �able. En�n, une solution industrielle est proposée
pour détecter le moment où ce niveau d'éclairage est atteint.

8.5.1 Méthodologie

La procédure proposée peut être divisée en deux parties principales. La première
partie consiste à déterminer l'intensité de pixel de l'arrière-plan en dessous de laque-
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lle la performance de détection n'est plus satisfaisante. Ensuite, la seconde partie
consiste à surveiller le système AVI pour détecter le moment où cette intensité de
pixel est atteinte. La procédure complète est illustrée dans la �gure 8.9.
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Figure 8.9: Procédure proposée pour détecter valeur minimale acceptable d'éclairage

La première étape consiste à dé�nir la puissance minimale acceptable βt pour
une probabilité de fausse alarme constante α0. En utilisant l'équation (8.15), le seuil
de détection τ du test peut être déterminé, car il ne dépend que de la probabilité
de fausse alarme prédé�nie α0.
L'étape suivante consiste à calculer le paramètre de non-centralité %t qui corre-
spond à la valeur βt, avec le seuil de détection τ . Pour calculer %t, il est proposé
d'utiliser l'équation (8.16), et d'appliquer la méthode de Newton [196] pour résoudre
l'équation suivante :

βt = Fχ2
Υ

(τ ,%t) (8.27)

La valeur résultante de %t représente la valeur du paramètre de non-centralité causée
par la présence de la plus petite anomalie destinée à être détectée avec un niveau
d'éclairage minimal acceptable.
En e�et, lors de cette procédure, il est supposé que le niveau d'éclairage du système
n'a pas encore atteint sa valeur minimale acceptable, mais est supérieur. Ainsi, si
nous notons µi l'intensité du pixel de l'arrière-plan au niveau d'éclairage actuel, et
µt l'intensité du pixel au niveau d'éclairage minimal acceptable, nous avons µi > µt.
Puisque µi est connu, le but ici est de calculer le taux de diminution en intensité de
pixel qui permettra de déterminer µt.
Pour cela, il est proposé d'utiliser l'équation (8.13) pour déterminer la valeur du
paramètre de non-centralité %i, qui correspond à la même anomalie pour laquelle
le paramètre de non-centralité %t est déterminé. Alors, ayant µi et boldsymbol%i
pour l'image actuelle, et %t au niveau d'éclairage minimal acceptable, il est possible
de déterminer la valeur de µt comme suit.
Considérons que %t = R%i et que µt = Kµi, où R est une constante connue et K
une constante inconnue. En raison de la linéarité de la CRF, et pour une même
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anomalie dans la scène, on a θt = Kθi. Ensuite, nous obtenons :∥∥∥Σ̃−1/2

2 P⊥H2
θ2

∥∥∥2

2
= R

∥∥∥Σ̃−1/2

1 P⊥H1
θ1

∥∥∥2

2
(8.28)

En remplaçant θt par Kθi et µt par Kµi, et avec un petit calcul, on obtient :

K =
Raµi +

√
(Raµi)

2 + 4Rb (aµi + b)

2 (aµi + b)
(8.29)

où (a, b) sont les paramètres du modèle hétéroscédastique du bruit.

En�n, la seconde partie de la procédure consiste à surveiller le système AVI
pour détecter le moment où cette intensité de pixel µt est atteinte. Cette intensité
de pixel est liée à la luminosité de la scène à travers la fonction de réponse de la
caméra (CRF). Ainsi, dans ce travail, il est proposé d'installer un capteur de lumière
sous le système d'éclairage. Ce capteur aidera à surveiller le changement du niveau
d'éclairage dans le temps a�n de signaler le moment où il atteint sa valeur minimale
acceptable, notée Lt.

8.5.2 Simulations

Pour e�ectuer les simulations, il a été proposé de simuler les e�ets de la dégradation
de l'éclairage dans le temps en contrôlant l'alimentation des LED. Notez que cette
procédure ne vise pas à simuler le modèle de dégradation des LED, mais plutôt à ac-
quérir des images à di�érents niveaux d'illumination. Par conséquent, l'alimentation
des LED a été réduite progressivement pour créer 60 niveaux d'éclairage di�érents.
Pour chaque niveau, 500 images de la même roue ont été acquises. En conséquence,
la nouvelle base de données se compose de 60 séries d'images, contenant chacune
500 images acquises à un niveau d'éclairage unique, pour avoir un total de 30 000

images. Ensuite, un défaut a été superposé sur chaque image qui représente le plus
petit défaut destiné à être détecté. L'amplitude de ce défaut a été ajustée pour
chaque niveau d'éclairage pour respecter la linéarité du CRF.
La �gure 8.10 illustre les résultats de la simulation. Premièrement, les courbes
bleue et rouge représentent respectivement la puissance de détection empirique et
théorique en fonction de l'intensité moyenne des pixels de l'arrière-plan µ. On peut
voir que la puissance de détection est la plus élevée pour les images avec l'éclairage
le plus élevé, puis commence à diminuer avec la dégradation de l'éclairage.

Ensuite, les courbes noire et verte représentent les valeurs estimées de µ pour dif-
férentes valeurs de β en utilisant la procédure décrite dans la section 8.5.1. Pour la
courbe noire, l'intensité de l'arrière-plan µ est calculée en utilisant l'équation (8.29)
étant donné seulement l'intensité de l'arrière-plan de la première image avec le rap-
port de changement dans le paramètre de non-centralité. Alors que pour la courbe
verte, un scénario plus réaliste est considéré où l'image qui est utilisée pour estimer
la valeur de µ est mise à jour périodiquement au cours du temps. On peut voir que
dans les deux cas, pour des niveaux d'éclairage élevés, l'estimation de µ est très
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Figure 8.10: Puissance de détection empirique et théorique, avec les estimations de
l'intensité des pixels à l'aide du modèle (8.29) en utilisant la première image ou des
images reçues périodiquement.

précise par rapport à la courbe de puissance théorique (courbe rouge). Cependant,
avec la dégradation de l'éclairage, les estimations obtenues à partir d'une seule im-
age commencent à s'éloigner des valeurs théoriques de µ tandis que celles obtenues
à partir d'images acquises périodiquement maintiennent leur précision.
En conclusion, ces simulations montrent que la mise à jour périodique de l'estimation
du niveau d'éclairage minimal acceptable dans le temps améliore sa précision.

8.6 Conclusion

L'objectif principal de cette thèse est de concevoir un système entièrement automa-
tique pour l'inspection de la surface des roues. Dans un premier temps, cette thèse
a abordé le problème de la conception et de l'installation d'un système de vision
compte tenu d'un ensemble d'exigences et de contraintes. La première étape consiste
à dé�nir les exigences et les conditions dans lesquelles l'inspection doit être e�ectuée.
Certaines de ces exigences sont liées à la roue inspectée, tandis que d'autres sont
imposées par le cadre industriel. Ensuite, en fonction des exigences d'inspection
prédé�nies, le choix approprié de chaque élément clé du système AVI est e�ectué.
Ces éléments clés sont les caméras, les objectifs, le système d'éclairage et la plate-
forme de traitement. En�n, une description complète de la conception du système
AVI et de son installation est présentée. Ce système contient quatre caméras in-
stallées sur la ligne de production de roues. Ces caméras sont réparties de manière
hémisphérique autour de la roue inspectée permettant une inspection complète de
sa surface.

Ensuite, la première tâche d'inspection abordée dans cette thèse est la procédure
de détection des défauts. L'approche proposée consiste à modéliser l'arrière-plan de
la surface inspectée à l'aide d'un modèle paramétrique. Un modèle linéaire adap-
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tatif original est proposé composé de deux parties : une partie �xe basée sur un
polynôme algébrique bidimensionnel qui est principalement e�cace pour représen-
ter avec précision des surfaces homogènes ou des surfaces lisses avec peu ou sans
texture. Ensuite, une partie adaptative basée sur les composantes principales qui
o�re une plus grande �exibilité et améliore les performances du modèle pour gérer
des complexités potentielles de surface. Par conséquent, ce modèle peut être utilisé
pour l'inspection d'une variété de surfaces qui ont principalement une faible texture.
D'un point de vue statistique, cet arrière-plan est considéré comme un paramètre de
nuisance qui doit être supprimé. En e�et, il n'a aucun intérêt dans la détection et
par conséquent, empêcher leur détection. Par conséquent, un test statistique basé
sur le rejet de ce paramètre de nuisance est proposé. Ce test exploite la linéarité
du modèle adaptatif pour e�ectuer le rejet à travers une projection linéaire. Les
résidus restants sont ensuite normalisés en utilisant le bruit hétéroscédastique spé-
ci�que du système d'imagerie. Ce modèle de bruit est bien connu pour être plus
précis que le modèle de bruit blanc gaussien habituel considéré pour les images raw
et permet de prendre en compte la variance de chaque pixel dans le test statistique.
Les performances statistiques du test sont ensuite établies. Plus précisément, le test
est UPPC avec une puissance de détection maximale et constante sur une surface
locale dé�nie par le rapport "défaut sur bruit".
La méthode de détection proposée est ensuite appliquée au problème d'inspection
de la surface de la roue étudié dans ce travail. En raison de la nature des roues, les
di�érents éléments sont analysés séparément. Plusieurs simulations sur un grand
ensemble de données d'images réelles ont été e�ectuées. Ces simulations montrent à
la fois la précision du modèle adaptatif proposé et la netteté du test statistique qui
s'ensuit. En�n, certains résultats sont présentés en appliquant le modèle adaptatif
proposé sur des images de roues contenant des défauts réels situés sur la surface de
la roue.

La deuxième tâche d'inspection abordée dans cette thèse vise à surveiller en
ligne un processus non stationnaire pour détecter des changements brusques dans
sa valeur moyenne. Dans notre cas, ce processus non stationnaire résulte de la vari-
ation de la quantité de peinture à la surface des roues inspectées où le changement
brusque correspond à un manque brusque de peinture. L'approche proposée con-
siste à modéliser les changements acceptables dans le processus non stationnaire
pour pouvoir les distinguer des changements brusques qui révèlent un dysfonction-
nement. Un modèle polynomial est considéré et appliqué sur une fenêtre de longueur
�xe contenant l'ensemble des dernières observations acquises. En e�et, cette varia-
tion acceptable de la valeur moyenne, modélisée à l'aide du modèle polynomial est un
paramètre de nuisance, car elle est inutile pour le problème de détection considéré.
Par conséquent, la méthode d'estimation du maximum de vraisemblance (ML) a été
considérée pour e�ectuer un rejet de ce paramètre de nuisance à travers une projec-
tion linéaire. Ensuite, une méthode séquentielle avec une fenêtre de longueur �xe
est proposée. Cette seconde fenêtre correspond également à un délai de détection
�xe prédé�ni sous lequel la détection est e�ectuée. En résumé, la méthode séquen-
tielle proposée est basée sur deux fenêtres de longueur �xe, où la première fenêtre



166 Chapter 8. French Summary

est utilisée pour estimer les paramètres du processus non stationnaires tandis que
la seconde fenêtre est utilisée pour exécuter la détection. En�n, les performances de
la méthode proposée sont étudiées. Cette étude montre que la performance statis-
tique du test proposé est bornée. La probabilité de fausse alarme possède une borne
supérieure, ce qui permet de calculer un seuil de détection en utilisant un taux de
fausse alarme prédé�ni sachant que l'application est garantie pour ne pas le dé-
passer. D'autre part, la puissance de détection du test possède une borne inférieure,
ce qui permet de garantir, pour un taux de fausse alarme prédé�ni, une puissance
de détection minimale que l'application ne va pas diminuer au-dessous.
La méthode séquentielle proposée est ensuite appliquée au problème de surveil-
lance du revêtement des roues étudié dans ce travail. La valeur moyenne des pixels
de toutes les images de roues est utilisée pour mesurer l'intensité du revêtement.
Plusieurs résultats numériques sur un grand nombre d'images sont présentés. Ces
résultats montrent la précision du modèle proposé et l'e�cacité de la méthode de
détection proposée. De plus, l'e�et de la seconde fenêtre sur les performances du
test proposé est étudié. Il a été montré que, selon l'application, le test proposé per-
met soit d'augmenter les performances de détection au prix d'un délai de détection
plus important, soit de diminuer le délai de détection au prix d'une performance de
détection plus faible.

Le dernier problème abordé dans cette thèse est la prédiction des besoins de
maintenance du système AVI en raison de la dégradation des LED dans le temps.
L'approche proposée consiste à étudier l'impact de la dégradation de l'éclairage
sur la performance de la méthode de détection. À partir d'une puissance de dé-
tection minimale acceptable prédé�nie, la procédure complète pour déterminer le
niveau d'éclairage minimal acceptable est décrite. Étant donné le même défaut sur
la surface inspectée, cette procédure utilise un modèle qui permet de déterminer
le taux de changement en intensité de pixel fonction du taux de changement dans
le paramètre de non-centralité. L'étape �nale consiste à surveiller la variation du
niveau d'éclairage dans le temps à l'aide d'un capteur de lumière a�n de signaler le
moment où il atteint sa valeur minimale acceptable.
Des résultats numériques sur un grand nombre d'images réelles montrent la précision
du modèle calculé pour déterminer le taux de changement en intensité de pixel. On
voit que cette précision est améliorée si le taux de changement est faible. Il est alors
conclu que la mise à jour périodique de l'estimation du niveau d'éclairage minimal
acceptable dans le temps améliore sa précision.

Suite à cette brève synthèse des travaux présentés dans cette thèse, il est proposé
de présenter quelques perspectives qui pourraient enrichir la discussion sur certains
sujets et o�rir de nouvelles pistes de recherche potentielles :

• Toutes les simulations présentées dans ce travail ont utilisé uniquement des im-
ages acquises à partir de la caméra directement au-dessus de la roue inspectée.
Il est alors prévu d'utiliser les caméras latérales pour améliorer l'inspection de
toute la surface de la roue. En e�et, certaines zones de la surface de la roue,
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telles que la zone contenant les trous de ventilation, sont mieux éclairées avec
les caméras latérales, ce qui améliorerait la détectabilité des défauts situés sur
ces zones comme discuté dans la section 8.5.

• Un modèle polynomial, accompagné des composantes principales, a été con-
sidéré pour modéliser l'arrière-plan de l'image inspectée. Ce modèle a prouvé
son e�cacité pour l'inspection de la surface des roues. Il serait intéressant
de tester d'autres types de modèles paramétriques et d'étudier la détectabilité
des défauts dans de tels cas.

• Le test statistique conçu dans la section 8.3 pour la détection des défauts
pourrait être étendu pour prendre en compte plusieurs paramètres. Tout
d'abord, la variance de l'estimation de l'espérance de pixels, et en second
lieu, l'impact de la présence du défaut sur la variance. Cela pourrait poten-
tiellement améliorer la précision de la détection, et fournir un meilleur contrôle
du taux de fausses alarmes.

• Dans la section 8.4, la modélisation du processus non stationnaire sur la pre-
mière fenêtre a été réalisée à l'aide d'un modèle polynomial. Remplacer ce
modèle par un autre type de modèle paramétrique est réalisable et ne modi-
�era pas la procédure de détection e�ectuée sur la seconde fenêtre. Par con-
séquent, une autre perspective intéressante est de tester la précision d'autres
types de modèles paramétriques pour modéliser le processus non stationnaire
et de comparer sa précision avec celle du modèle polynomial proposé.

• Une dernière perspective est liée au problème de la surveillance de la valeur
moyenne de l'arrière-plan présenté dans la section 8.5. Ce problème consiste à
surveiller en ligne la valeur moyenne d'une séquence aléatoire gaussienne pour
détecter le moment où elle dépasse une valeur prescrite. Le principal dé� pour
concevoir un test statistique dans notre cas est que la variance est une fonction
a�ne de la valeur moyenne.
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