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As you see, the war treated me kindly enough,
in spite of the heavy gunfire,

to allow me to get away from it all
and take this walk in the land of your ideas.

— Schwarzschild to Einstein, 22 December 1915
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0INTRODUCTION GÉNÉRALE

Cette thèse est dédiée à l’étude des phénomènes nonlinéaires dans deux
fluides quantiques qui partagent de nombreuses similitudes : les con-
densats de Bose-Einstein [153] et les faisceaux optiques Gaussiens non-
linéaires (qui sont aussi considérés comme des “fluides de lumière” [35]).
Dans les condensats de Bose-Einstein, les effets nonlinéaires se mani-

festent par les interactions de contact entre bosons et affectent de façon
importante les propriétés du gaz. En 1947, Bogoliubov a été le pre-
mier à proposer une nouvelle théorie des perturbations pour prendre en
compte les interactions dans un condensat de Bose-Einstein faiblement
interagissant [28] ; cette théorie a été d’une grande importance dans
les développements qui ont suivi pour comprendre notamment les liens
qui existent entre superfluidité et condensation [78, 144, 145, 152]. La
théorie de champ moyen developpée par Bogoliubov prédit également
que des excitations élémentaires sont induites par les fluctuations quan-
tiques dans le condensat. Cette propriéte est très importante dans le
domaine de la gravité analogue parce qu’elle permet de créer un fluide
transsonique à l’aide d’un condensat de Bose-Einstein. Dans ce cas, un
tel fluide pourra être considéré comme l’analogue acoustique d’une trou
noir [71].
Le domaine de la gravité analogue est né environ sept ans après que

Hawking a prédit que les trous noirs émettent un faible rayonnement
[87]. Unruh suggère alors d’utiliser des analogues hydrodynamiques des
trous noirs gravitationnels pour étudier leurs propriétés dans le labora-
toire[182]. Un fluide transsonique, c’est-à-dire un fluide qui passe d’une
région subsonique, où les ondes sonores peuvent se propager dans toutes
les directions, à une région supersonique, où les ondes sont piégées et
entraînées par le fluide en mouvement, joue le même rôle qu’un trou
noir. En effet, de même que la lumière reste piégée à l’intérieur d’un
trou noir gravitationnel, les ondes sonores, elles, ne peuvent s’échapper
de la région supersonique.
Pour expliquer simplement ce phénomène, considérons une rivière

au bout de laquelle se trouve une cascade, voir Figure 1. La vitesse du
cours d’eau augmente à l’approche de la cascade. Imaginons maintenant
que des poissons remontent le courant, tous à la même vitesse. Il est
assez intuitif de penser qu’il existe un point de non-retour (“Point of
no return” sur la Figure 1) au-delà duquel les poissons ne sont plus
capables de remonter le courant tant la vitesse de la rivière devient
grande. Dans ce cas, les poissons sont piégés et irrémédiablement en-
trainés jusqu’en bas de la cascade qui joue alors le rôle de la singularité
d’un trou noir, comme indiqué sur la Figure 1 ; le point de non-retour
est alors l’équivalent d’un horizon des événements pour les poissons.
Dans son article de 1981, Unruh n’a pas considéré des poissons dans

une rivière, mais des ondes sonores se propageant dans un fluide en mou-

1



2 introduction générale

Figure 1: Des poissons remontent le cours d’eau d’une rivière. Dessin réal-
isé par Nascimbene pour montrer l’analogie entre les trous noirs
hydrodynamiques et leur équivalent gravitationnel. La rivière se
déplace de la droite vers la gauche et accélère à l’approche d’une
cascade. Tous les poissons ont la même vitesse et tente de remon-
ter le cours d’eau. Au-delà du panneau marron, dans la partie
gauche de la rivière, la vitesse du cours d’eau est si importante que
les poissons sont tous entraînés par la rivière vers la cascade. De
façon équivalente à la lumière qui est piégée à l’intérieur d’un trou
noir et se propage jusqu’à sa singularité, les poissons au-delà du
point de non-retour (indiqué par le panneau marron) sont piégés
et tombent jusqu’en bas de la cascade. Cette région joue donc le
rôle de l’intérieur du trou noir analogue.

vement. L’idée reste toutefois identique : Si le courant, bien que station-
naire, devient supersonique dans une région de l’espace, une onde sonore
qui se déplace dans cette région serait alors entrainée par le courant et
ne pourrait plus atteindre la région subsonique située en amont. L’onde
sonore serait dans ce cas piégée dans la partie supersonique, comme le
poisson l’était au-delà du point de non-retour et comme la lumière l’est
à l’intérieur d’un trou noir gravitationnel. La frontière entre les régions
subsonique et supersonique est alors appelée un horizon acoustique. De
tels systèmes transsoniques ont été appelés “trous muets” par Unruh.
Toutefois, le lien qui existe entre les trous noirs gravitationnels et les

“trous muets” s’étend au-delà de cette simple analogie cinématique. En
effet, en linéarisant les équations hydrodynamiques, Unruh a montré
que la dynamique des ondes sonores dans le fluide en mouvement est
la même que celle d’un champ scalaire dans un espace-temps courbe.
Nous reproduirons les calculs qui l’ont mené à cette conclusion dans le
premier chapitre de thèse.

De plus, dans le cas où le champ sonore serait quantifié, il devrait
hériter des propriétés des champs quantiques qui se propagent dans
un espace-temps courbe. En particulier, comme Unruh l’a montré dans
son article et comme nous l’expliquerons dans le chapitre 2, l’horizon
acoustique “déconnecte” complétement la partie subsonique de la partie
supersonique, et cela doit nécessairement s’accompagner de l’émission
spontanée de particules depuis cet horizon ; ce rayonnement doit no-
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tamment jouir des mêmes propriétés thermiques que le rayonnement de
Hawking émis par les trous noirs gravitationnels.
L’idée proposée par Unruh a suscité l’intérêt d’une large commu-

nauté ; la gravité analogue connaît en particulier un intérêt important
depuis les deux dernières décennies, avec de nombreuses expériences
d’analogues acoustiques réalisées dans des écoulements à la surface d’un
bassin [59, 159, 192], dans les fibres optiques nonlinéaires [23, 50, 149,
184], dans les condensats d’excitons-polaritons [132] et dans les con-
densats de Bose-Einstein [102, 105, 131, 163, 170, 175, 177]. Parmi ces
différentes plateformes, nous nous sommes concentrés au cours de la
thèse sur les trous noirs acoustiques réalisés dans les condensats de
Bose-Einstein transsonique et (quasi) unidimensionnel. Un tel conden-
sat en mouvement a été réalisé expérimentalement par J. Steinhauer il
y a dix ans [105] ; récemment, l’analogue du rayonnement de Hawking
y a été observé [131, 177].

Dans le chapitre 2, nous revenons tout d’abord sur la découverte
de Hawking. Nous soulignons l’universalité du rayonnement de Hawk-
ing en considérant tout d’abord le cas d’un miroir en accélération non
uniforme [48, 69]. Ensuite, nous traitons le cas de l’effondrement gravi-
tationnel d’une étoile menant à la formation d’un trou noir. La courbure
de l’espace-temps est si affectée pendant cet effondrement que deux ré-
gions déconnectées apparaissent : l’intérieur et l’extérieur du trou noir.
Nous montrons que ce processus est très similaire au problème du miroir
en mouvement et donne également lieu à l’émission d’un rayonnement
thermique [25, 87, 88].
Le chapitre 3 est dédié à l’étude du rayonnement de Hawking analogue

dans les condensats de Bose-Einstein. Dans ces systèmes quantiques, les
excitations sonores entrantes émergent des fluctuations quantiques du
vide et donnent naissance aux excitations sortantes après un proces-
sus de diffusion à l’horizon acoustique. Ces ondes sonores sortantes se
propagent le long du fluide dans les régions subsonique et superson-
ique, situées de part et d’autre de l’horizon acoustique, et induisent
des corrélations de densité. Ainsi, comme suggéré pour la première fois
en 2008 par des collaborateurs travaillant à Trente et Bologne [15], la
détection expérimentale de ces corrélations constituerait une signature
indirecte de la présence du rayonnement de Hawking analogue dans les
condensats de Bose-Einstein.
Le chapitre 3 présente le travail réalisé pendant la thèse, à savoir

l’étude détaillée des fluctuations quantiques près de l’horizon acoustique
d’une condensat de Bose-Einstein transsonique.
Nous démontrons que la prise en compte des modes zéros, relatifs à

la phase du condensat et aux fluctuations du nombre de particules dans
ce dernier, est nécessaire dans un premier temps pour obtenir une de-
scription correcte des corrélations au voisinage de l’horizon acoustique.
Cela mène dans un second temps à un excellent accord entre nos résul-
tats théoriques et les données expérimentales obtenues par le groupe de
J. Steinhauer en 2019 [131]. Cependant, en raison des effets dispersifs
dans notre système, nous prouvons également que le rayonnement de
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Hawking analogue émis depuis l’horizon acoustique dévie d’un spectre
totalement Planckien, comme attendu gravitationnel [87, 88]. Ce car-
actère “non-thermique” est inhérent à tout système dispersif. Toutefois,
nous montrons dans cette thèse qu’une procédure d’analyse des corréla-
tions de densité peut “supprimer” les effets dispersifs et conduire à la
conclusion erronée que le spectre de Hawking analogue est compléte-
ment thermique. Nous discutons en particulier l’analyse de données
publiée par le groupe de J. Steinhauer [131] dans la dernière section du
chapitre 3. Ce travail a donné lieu à une publication dans Physical Re-
view Letters, cf. fin du chapitre 3. Certains des résultats discutés dans
ce chapitre mèneront également à la publication d’un plus long article
dans le futur.

Dans le chapitre 4, nous étudions l’intrication entre les excitations
qui émergent des fluctuations quantiques de part et d’autre de l’horizon
acoustique. En particulier, nous soulignons le lien fondamental qui ex-
iste avec le chapitre 2, c’est-à-dire l’existence de deux vides différents,
menant alors à l’émission spontanée de particules. Nous montrons que
ces deux vides sont liés par une transformation de Bogoliubov. De cette
manière, ce que nous définissons comme le vide entrant peut être vu
dans notre système analogue comme un état Gaussien à trois modes,
de sorte que l’intrication est répartie entre ces trois modes.
Pour étudier cette intrication tripartite, nous introduisons tout d’abord

la notion de matrice covariante et nous détaillons les différents outils
qui permettent d’étudier la séparabilité d’un état quantique, tels que
la violation de l’inégalité de Cauchy-Schwarz ou le critère PPT (Posi-
tive Partial Transpose). Ensuite, nous les appliquons au cas particulier
de notre système, en suivant la procédure présentée dans la référence
[4] pour les états Gaussiens et basée sur l’étude de l’inégalité CKW
(Coffman, Kundu, Wootters) [40]. Cela nous permet de calculer le de-
gré d’intrication tripartite qui ne dépend que de quantités accessibles
expérimentalement [131, 176, 177] ; nous pensons donc qu’il serait pos-
sible dans le futur d’observer et de mesurer cette intrication tripartite
dans les condensats de Bose-Einstein.

En sus de l’étude du rayonnement de Hawking analogue, nous nous
sommes également intéressés aux liens qui existent entre la condensa-
tion de Bose-Einstein et l’optique nonlinéaire. En effet, la lumière qui se
propage dans un milieu nonlinéaire se comporte comme un fluide dont la
dynamique est gouvernée par une équation de Gross-Pitaevskii effective
[108]. En particulier, les effets nonlinéaires, induits par la lumière dans
le milieu dans lequel elle se propage, conduisent à une interaction effec-
tive entre photons. Cette analogie avec les condensats de Bose-Einstein
a suscité beaucoup d’intérêt dans la communauté scientifique pour ob-
server et sonder des phénomènes hydrodynamiques dans le contexte
de l’optique nonlinéaire, telles que la superfluidité ou les excitations
sonores de la lumière [34, 39, 66, 111, 128, 162, 187, 188].
Dans la seconde partie de la thèse, nous nous intéressons à un phénomène

qui peut s’observer dans les systèmes non-dissipatifs, nonlinéaires et
dispersifs : la formation d’ondes de choc dispersives [100]. La figure 2
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souligne de nouveau le lien fort qui existe entre les systèmes optiques
et les condensats de Bose-Einstein ; l’image de gauche, extraite de la
référence [22], montre la propagation d’une onde de choc dispersive ra-
diale dans un milieu optique nonlinéaire, tandis que l’image de droite,
extraite de la référence [91], correspond à la propagation d’une telle
onde dans un condensat de Bose-Einstein.

Figure 2: Propagation d’une onde de choc radiale
(Gauche) à travers un crystal photoréfractif [22], ©2007, Nature.
(Droite) à travers un condensat de Bose-Einstein [91], ©2006,
APS.

Les ondes de choc dispersives proviennent des effets nonlinéaires qui
rendent de plus en plus abrupt le profil d’une perturbation qui se
propage plus vite que son propre front ; elle le rattrape donc inévitable-
ment au bout d’un certain temps, appelé temps de déferlement ; Il en
résulte alors un choc qui se traduit par la formation d’un train d’ondes,
appelé onde de choc dispersive. L’émergence de telles ondes n’est pas
restreinte aux condensats de Bose-Einstein ou à l’optique nonlinéaire,
mais se produit aussi dans de nombreux autres systèmes : la figure 3a
montre un mascaret ondulant observé en eaux peu profondes et la figure
3b montre une série de nuages enroulés sur eux-mêmes. Dans ce dernier
exemple, une telle onde de choc se forme dans l’atmosphère quand deux
masses d’air de températures différentes se rencontrent ; ce phénomène
est connu sous le nom de Morning Glory. Ces différents exemples révè-
lent l’universalité de ce phénomène piloté par la compétition entre effets
nonlinéaires et dispersifs.
Dans le chapitre 5, nous montrons tout d’abord que la propagation

d’un faisceau optique (dans l’approximation paraxiale) dans un milieu
nonlinéaire est gouvernée par une équation de Schrödinger nonlinéaire.
Une approche hydrodynamique du problème, proposée en premier par
le groupe de Khlokhlov en 1967 [8–11], revient à considérer que le fais-
ceau optique se comporte comme un fluide de lumière, caractérisé par
une densité et une vitesse. De plus, grâce à cette approche hydrody-
namique, la propagation d’un tel fluide peut être étudiée à travers les
invariants de Riemann et la méthode des caractéristiques. Ces notions
sont introduites dans ce chapitre.
Dans le chapitre 6, nous étudions avec l’aide de la méthode de Rie-

mann la première étape de l’évolution d’un fluide de lumière en présence
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(a) Mascaret ondulant observé à Turnagain
Arm, Alaska (copyright Scott Dickerson, 2013)

(b) Onde de choc dispersive observée dans
l’atmosphère – appelée Morning Glory (copyright
Mick Petroff, Creative Commons 3.0, 2009)

Figure 3: Exemples d’ondes de choc dispersives observées dans la nature.

d’un fond uniforme, c’est-à-dire avant l’apparition de l’onde de choc
dispersive. Cette étape peut être décrite à travers une approche non
dispersive qui conduit alors à un excellent accord avec les simulations
numériques du problème. Nous appliquons en particulier la méthode de
Riemann pour des distributions initiales non monotones. Dans ce cas,
comme suggéré par Ludford [120], nous avons besoin de déplier le plan
hodographique. Nous expliquons en détail cette procédure et comparons
nos résultats théoriques avec des simulations numériques. Ce travail a
conduit à deux publications : un article de conférence dans lequel nous
considérons un faisceau optique Gaussien, cf. fin du chapitre 6 ; et la
première partie d’un article publié dans Physical Review A, cf. fin du
chapitre 7.
En outre, nous avons remarqué qu’il était possible d’obtenir une so-

lution approximative et simple du problème de Riemann qui est en très
bon accord avec les simulations. Nous avons généralisé cette approxi-
mation au cas des fluides non visqueux, et, en particulier, aux systèmes
non-intégrables. Ce travail a été publié dans EPL (Europhysics Letters),
cf. fin du chapitre 6
Dans le chapitre 7, nous étudions la seconde étape de l’évolution des

fluides nonlinéaires lorsque les effets dispersifs entrent en jeu. Comme
mentioné plus haut, les effets nonlinéaires couplés aux effets dispersifs
conduisent à la formation et la propagation d’une onde de choc dis-
persive. Dans ce chapitre, nous décrivons la structure et la dynamique
d’une telle onde dans le cas où le profil de densité initial a la forme d’une
parabole inversée ; une description théorique peut en effet être obtenue
pour un tel choix de distribution initiale. Nous montrons que deux in-
variants de Riemann varient de façon concomitante dans la région du
choc et que le problème se réduit à la résolution d’une équation d’Euler-
Poisson. Nous utilisons les résultats obtenus par Eisenhart [53] et la
méthode proposée dans les références [56, 82] pour résoudre analytique-
ment cette équation ; nous montrons alors que les résultats théoriques
sont en très bon accord avec les simulations numériques.
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Cette approche est intéressante parce qu’elle permet aussi d’obtenir
une description asymptotique de l’onde de choc dispersive. Nous sommes
en particulier capables d’extraire des paramètres d’intérêt expérimental,
comme le contraste des franges de l’onde de choc.
Au cours de la thèse, nous avons tout d’abord commencé par l’étude

de la propagation d’une onde de choc dans le cas de l’équation de
Korteweg-De Vries. Ce fut une première étape dans la compréhension
de la méthode décrite dans les références [56, 82]. De plus, l’étape non
dispersive de l’étalement peut être facilement étudiée grâce à la méth-
ode des caractéristiques. Ce travail a été publié dans Physical Review
E, cf. fin du chapitre 7.

Ensuite, nous nous sommes intéressés à l’équation de Schrödinger
nonlinéaire. Dans ce cas, l’étude de l’étalement sans dispersion du flu-
ide nonlinéaire est plus complexe et requiert l’utilisation de la méthode
de Riemann (voir chapitre 6). Néanmoins, l’analyse de l’onde de choc
dispersive est assez similaire à celle utilisée dans le cas de l’équation
de Korteweg-De Vries (mais nécessite tout de même un traitement
théorique un peu plus technique) ; ceci montre l’efficacité de la méth-
ode suggérée dans les références [56, 82]. Ce travail a été publié dans
Physical Review A et se trouve à la fin du chapitre 7.

Nous reviendrons enfin dans la conclusion sur les similarités entre les
condensats de Bose-Einstein et les fluides de lumière ; nous discuterons
en particulier les perspectives que nous envisageons pour étendre les
travaux présentés dans cette thèse.





1GENERAL INTRODUCTION

This thesis is dedicated to the study of nonlinear-driven phenomena
in two quantum gases which bear important similarities: Bose-Einstein
condensates of ultracold atomic vapors [153] and paraxial nonlinear
laser beams (which are sometimes considered as pertaining to the wider
class of “quantum fluid of light” [35])
In Bose-Einstein condensates nonlinearity arises from contact inter-

actions between bosons and dramatically affect the properties of the
gas. In 1947, Bogoliubov was the first to suggest a new perturbation
theory to take account of interactions in a weakly-interacting Bose gas
[28]. Bogoliubov theory is a first-principle mean-field theory of super-
fluidity which has been of tremendous importance in the development
of the field of Bose-Einstein condensates of atomic vapors [78, 144, 145,
152]. It predicts the emergence of sound-like excitations from quantum
fluctuations in the condensate. This aspect is of particular relevance in
the domain of analogue gravity where a transonic flow is analyzed as
an acoustic analogue of a black hole [71].
The domain of analogue gravity started around seven years after

Hawking’s prediction in 1974 that black holes emit a faint radiation
[87], when Unruh suggested the use of hydrodynamic analogues of grav-
itational black holes to study their properties in the laboratory [182]. A
transonic flow, from a subsonic region, where sound waves can propa-
gate in all directions, to a supersonic region, where waves are trapped
and dragged by the flow, could play the same role as a black hole, not
by trapping light but sound excitations.
As a simple illustration of the phenomenon, let us consider a river

flowing towards a waterfall. The flow velocity increases when the river
approaches the waterfall. One also consider fish swinging against the
current, with all the same velocity (see Figure 4). One understands that
there must exist a point of no return beyond which the flow velocity
becomes too important, so that fish are dragged by the flow and bound
to fall down to the bottom of the waterfall, playing the role of a black
hole singularity. Then, the point of no return, indicated by the brown
panel in Figure 4, would be the equivalent of the event fish-horizon.
In his seminal paper, Unruh did not consider fish in a river, but sound

waves propagating in a fluid flow. The idea is still the same though; if
the flow, albeit stationary, happens to be supersonic in some region of
space, a sound wave propagating in this region would be dragged by
the flow and would not be able to reach the subsonic region upstream
the supersonic one; the boundary between the subsonic and supersonic
regions is then the acoustic horizon. One has constructed what Unruh
called a “dumb hole”.
However, this parallel to gravitational black holes extends further

than this simple kinematic analogy; by deriving and linearizing the hy-

9
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Figure 4: Drawing of a river with fish to understand the analogy between
analogue black holes and their gravitational counterparts. The
river flows from the right to the left and accelerates when ap-
proaching to the waterfall. All fish have the same velocity and
try to move to the right. Beyond the brown panel, in the left part
of the flow, the river velocity is so high that fish are not able to go
upstream. Similarly to light which is trapped inside a black hole
and propagates down to the black hole singularity, fish are trapped
in this part of the flow and are bound to fall down to the waterfall.
This region thus plays the role of the interior of the analogue black
hole.

drodynamics equations, Unruh showed that the motion of sound waves
in the fluid flow is equivalent to the one of a scalar field in a curved
spacetime. We will reproduce his calculations in the first chapter of this
thesis.
Then, if one quantizes the sound field, one should inherit the prop-

erties of quantum fields propagating in curved spacetime. In particular,
as we shall explain in more detail in Chapter 2, the acoustic horizon
completely disconnects the subsonic part from the supersonic one. Un-
ruh showed in his paper that this must lead to spontaneous creation of
particles from the acoustic horizon, thus to the emission of a radiation,
having in principle the same thermal property as the one emitted by
black holes.
Unruh’s idea has triggered the interest of a large community; the

analogue gravity field has particularly known a burst of interest in the
last decade, with numerous experimental realizations of acoustic ana-
logues in open-channel flows [59, 159, 192], in nonlinear optical fibers
[23, 50, 149, 184], in exciton-polariton condensates [132] and in Bose-
Einstein condensates [102, 105, 131, 163, 170, 175, 177]. Among them,
we will focus on sonic black holes realized in (quasi) one-dimensional
transonic Bose-Einstein condensates. Such a flow has been experimen-
tally achieved by J. Steinhauer ten years ago [105] and, recently, he
observed the analogous Hawking radiation [131, 177].

In Chapter 2 we will come back to Hawking’s breakthrough. We will
stress the universality of Hawking radiation by first considering the case
of a non-uniform accelerating mirror; this acceleration will indeed cause
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particle creation from vacuum [48, 69]. Then, we will treat the case of
a gravitational collapse leading to the formation of a black hole. The
spacetime curvature is so much affected during the collapse that two
disconnected regions appear: the interior and the exterior of the black
hole. We will show that this time-dependent process is very similar to
the moving mirror problem and gives rise to the emission of a thermal
radiation [25, 87, 88].
Chapter 3 is devoted to the study of analogue Hawking radiation in

Bose-Einstein condensates. In these quantum systems, ingoing sound-
like excitations will emerge from quantum vacuum fluctuations and
scatter into outgoing excitations at the acoustic horizon. These out-
going sound waves will then propagate along the flow in both subsonic
and supersonic regions and will induce density correlations. Therefore,
as first suggested by a collaboration between teams from Trento and
Bologna [15], the experimental detection of these correlations provides
an indirect signature of the analogous Hawking radiation.
Chapter 3 presents the part of the original work of this thesis ded-

icated to the detailed analysis of quantum fluctuations close to the
acoustic horizon realized in the transonic flow of a BEC.
We will first demonstrate that the taking into account of zero modes,

pertaining to the phase of the condensate and the number of particles in
the latter, is necessary to obtain a correct description of the correlations
at the vicinity of the acoustic horizon; this will provide a safely grounded
theory.
Then, we will show that, by means of the addition of the zero modes,

our theoretical results compare well with the experimental data ob-
tained by the Steinhauer’s group in 2019 [131]. However, we will also
prove that dispersive effects in our system does not lead to a fully ther-
mal analogue Hawking radiation, as predicted by Hawking in the grav-
itational case [87, 88], but, on the contrary, presents some departure
from thermality. This non-thermal feature is inherent to any dispersive
system. Nevertheless, we show that a self-consistent procedure of data
analysis “kill” dispersive effects and might lead to the erroneous conclu-
sion that the analogue Hawking spectrum is completely thermal, where
in reality it is not. This is the reason why we question the experimental
data analysis published by J. Steinhauer’s group [131] in the last section
of Chapter 3. This work resulted in a publication in Physical Review
Letters, see the article attached at the end of Chapter 3. Some of the
results discussed in this chapter will also lead to a longer article in the
future.
In Chapter 4 we study the entanglement between density waves emerg-

ing from quantum fluctuations on both sides of the acoustic horizon. In
particular, we stress the fundamental connection with Chapter 2, i.e.,
the existence of two different vacua, leading to spontaneous emission
of particles. We show that both vacua are linked through a Bogoli-
ubov transformation and that the ingoing vacuum can be seen as a
three mode Gaussian state, so that entanglement is shared among three
modes.
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To study this tripartite entanglement, we first introduce the notion
of covariance matrix and we detail the different tools to analyze the
separability of a quantum state, such as the violation of Cauchy-Schwarz
inequality or the PPT criterion (Positive Partial Transpose). Then, we
apply them to the particular case of our system, following the procedure
presented in Ref. [4] for Gaussian states and based on the study of the
CKW (Coffman, Kundu, Wootters) inequality [40]. By means of this
procedure, we are able to compute the degree of tripartite entanglement,
which only depends on quantities experimentally accessible [131, 176,
177]; thus, we think that it might be possible in the future to observe
and measure the tripartite entanglement in Bose-Einstein condensates.

Besides the study of analogue Hawking radiation, we have been also
interested in the connections that exist between Bose-Einstein conden-
sation and nonlinear optics. The propagation of light in a nonlinear
medium behaves as a fluid whose dynamics is governed by an effective
Gross-Pitaevskii equation [108]. In particular, nonlinear effects induced
by light in the medium lead to an effective photon-photon interaction.
This analogy with Bose-Einstein condensates has triggered much in-
terest in the scientific community to probe hydrodynamics phenomena
in the context of nonlinear optics, such as superfluidity or sound-like
excitations of light [34, 39, 66, 111, 128, 162, 187, 188].
In the second part of the thesis, we will be particularly interested in a

specific phenomenon observed in nonlinear, dispersive, non-dissipative
systems: the formation of dispersive shock waves [100]. In this respect,
Figure 5 is a clear example of the strong analogy between Bose gas and
optics. The left image extracted from Ref. [22] shows the propagation
of a radial dispersive shock wave in a nonlinear optical medium, while
the right image extracted from Ref. [91] corresponds to the propagation
of such a wave in a Bose-Einstein condensate.

Figure 5: Propagation of a radial dispersive shock wave
(Left) through a photo-refractive crystal [22], ©2007, Nature.
(Right) through a condensate [91], ©2006, APS.

Dispersive shock waves arise from nonlinear effects which induce a
wave steepening during the propagation of a nonlinear pulse on top of
a background. This is rather intuitive: in the presence of a background,
a part of the pulse propagates faster than the front edge and catches
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it up at a certain time, called the wave breaking time; this results in a
shock and the formation of a pattern of oscillations, called a dispersive
shock wave. The emergence of such waves is not restricted to the fields
of Bose-Einstein condensation and nonlinear optics, but also observed
in many different systems: Figure 6a shows an example of undular bores
in shallow waters and Figure 6b shows morning glory roll clouds in the
atmosphere when two air masses of different temperatures collide. This
undoubtedly reveals the universality of such a phenomenon driven by
the competition between nonlinear and dispersive effects.

(a) Undular bore in Turnagain Arm, Alaska
(copyright Scott Dickerson, 2013)

(b) Atmospheric dispersive shock waves – Morning
glory roll cloud (copyright Mick Petroff, Creative
Commons 3.0, 2009)

Figure 6: Examples of dispersive shock waves in nature.

In Chapter 5 we will first show that the paraxial propagation of an
optical beam in a nonlinear medium is governed by the nonlinear linear
Schrödinger equation. An hydrodynamic approach of the problem, first
proposed by Khlokhlov’s group in 1967 [8–11], amounts to consider the
propagating optical beam as a fluids of light, characterized by a density
and a velocity. Then, by means of this hydrodynamics approach, the
motion of the beam can be studied by means of the Riemann invariants
and through the method of characteristics. These notions are introduced
in this chapter.
In Chapter 6, we study the short-time evolution of a fluid of light in

the presence of a uniform background with the use of Riemann’s method.
This first stage of spreading can be described through a dispersionless
approach and gives an excellent agreement with numerical simulations.
We apply Riemann’s method to the case of non-monotonic initial distri-
butions. In this case, as proposed by Ludford [120], one needs to unfold
the hodograph plane. We explain carefully this procedure and we com-
pare our theoretical results to numerical simulations. This work led to
two publications: a conference article where we considered a Gaussian
optical beam, see article at the end of Chapter 6; and the first part
of an article published in Physical Review A, see article at the end of
Chapter 7.
In addition, we have noticed that it was possible to obtain a simple

approximate solution of Riemann’s problem which reproduced well the



14 general introduction

simulations. We have generalized this approximation to the case of in-
viscid nonlinear pulses, and, in particular, to non-integrable systems.
This work has been published in EPL (Europhysics Letters), see article
at the end of Chapter 6.
In Chapter 7, we study the long-time evolution of nonlinear pulses

when dispersive effects come into play. As mentioned earlier, nonlinear
effects eventually lead to a gradient catastrophe when density gradients
become infinite. In this case, a dispersive shock wave appears and starts
propagating. In this chapter, we describe such a wave in the case of an
initial density which has the form of an inverted parabola. A theoreti-
cal description of the dispersive shock waves can be obtained with such
an initial condition. We show that two Riemann invariants vary con-
comitantly in the shock region and that the problem reduces to solve
a Euler-Poisson equation. We resort to Eisenhart’s work [53] and the
method proposed in Refs. [56, 82] to solve the problem; we show that
the theoretical results compare very well with numerical simulations.

An interesting outcome of this approach lies on the possibility to
provide a weak shock theory, i.e., an asymptotic description of the dis-
persive shock wave, akin to the one describing the viscous shocks [197].
In particular, we are able to extract experimentally relevant parameters
such as the contrast of the fringes of the dispersive shock waves.
We first described the propagation of dispersive shock waves in the

case of the Korteweg-De Vries equation. This was a first step to use
the method developed in Refs. [56, 82] and the dispersionless stage of
spreading is easily treated using the method of characteristics. This
resulted in a first publication in Physical Review E, attached at the end
of Chapter 7.
Then, we turned our attention to the nonlinear Schrödinger equation.

In this case, the description of the dispersionless spreading is more
involved and requires the use of Riemann’s approach (see Chapter 6).
Nevertheless, the analysis of the dispersive shock wave is very similar
to the one used in the case of the Korteweg-De Vries equation (but
requires a more involved treatment) and show the effectiveness of the
method suggested in Refs. [56, 82]. This work has been published in
Physical Review A and is also attached at the end of Chapter 7.

We will come back to the similarities between Bose-Einstein conden-
sates and fluids of light in the conclusion and we will discuss the future
perspectives to extend the work presented in this thesis.
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2FROM HAWKING RADIAT ION TO ANALOGUE
GRAVITY

An accelerating observer will perceive a black-body radiation where
an inertial observer would observe none. This is the so-called Davies-
Fulling-Unruh effect, discovered by Davies, Fullies and Unruh in the
70’s [47, 70, 181]. This means that a vacuum state for a inertial ob-
server will be regarded as a thermal state for an uniformly accelerating
observer. But the contrary is also true: an inertial observer will detect a
thermal flux from a accelerating mirror that recedes from him [48, 69].
From a geometrical point of view these two situations are conformally
equivalent [48], so it comes as no surprise to observe a thermal radiation
in both cases.
However the latter case has a profound physical meaning: acceler-

ation creates particles from vacuum. Let us examine this statement
more precisely and resort to Einstein’s equivalence principle; during its
acceleration period, the moving mirror plays the same role as a time-
dependent background geometry. And here is the fundamental issue:
a time-dependent geometry, i.e., a time-dependent metric, breaks the
time translation symmetry. Said differently, one cannot define a proper
conserved energy and the construction of a vacuum state for a given
field becomes ambiguous.
One can decide to expand a quantum field over a certain orthonormal

set a modes and define the corresponding vacuum state with respect to
this decomposition. Yet, in general relativity where spacetime is curved,
one could expand this field over another set of modes and find a vacuum
state different from the first one.
For instance, let us consider that |0, in〉 was the vacuum in the remote

past, denoted as the in region. We assume that a quantum field was
initially in this vacuum state. Then, for some reasons, the metric has
evolved in time (for example during a gravitational collapse of a star,
an expansion or a contraction of the universe,...), so that the vacuum
is now |0, out〉 in the out region (the future of the in region). However,
in the Heisenberg picture, the quantum field is still in the state |0, in〉,
not considered as the vacuum for an observer living in the out region
(for this observer the “true” vacuum would be |0, out〉). In that case,
the observer will detect particles. The existence of both vacua will be
discussed in Chapter 4.
In other words, this means that any time variation of the spacetime

curvature induces spontaneous emission [142]; and there is one process
in the universe which is able to dramatically affect the curvature of
spacetime: the creation of a black hole from a gravitational collapse.
When the nuclear energy of the star is not enough to repel the gravi-

tational attraction, the star shrinks and might form a black hole if the
remnant mass of the star is sufficiently heavy (it should exceed three or

19
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four solar masses [137]). All the mass of the star should collapse in one
point of infinite density, the so-called black hole singularity. This singu-
larity is hidden by an event horizon which marks the frontier between
our universe and a region where nothing can escape, not even light. Any
matter crossing the horizon is trapped and bound to propagate down
to the singularity.
Intuitively, one can argue that nothing can escape the gravitational

field of such a massive object. However, in 1974, by taking into account
quantum effects at the vicinity of the event horizon, Hawking predicted
that black holes are not black and should emit a faint black-body ra-
diation, a flux which is able to elude the strong gravitational field [87,
88]; this is the so-called Hawking radiation.
Hawking’s prediction in the 70’s has resulted in a burst of studies

around particle creation by black holes [48, 49, 69, 139, 141, 190]. How-
ever, as Hawking demonstrated in his paper [87], black holes radiate and
loose mass (in other word they evaporate) until they disappear. This is
an issue for quantum mechanics. Indeed, black holes are black bodies;
thus, they all emit a thermal radiation that carries no information [25].
In terms of quantum mechanics, this means that any quantum field in a
pure quantum state entering the black hole is transformed into a mixed
state, when coming out from the black hole as a thermal radiation. As
long as the black hole exists there is no issue since the full state is still
pure (inside and outside the black hole), albeit the quantum field out-
side the black hole is mixed; this transition from pure to mixed states
will be discussed in Chapter 4. The situation becomes problematic when
the black hole has disappeared. Only the mixed state at the exterior of
the black hole remains; thus, the information about the original quan-
tum state has been destroyed and this leads to the so-called information
loss paradox [89, 155]. Is this information really lost? If not, where it
is stored? How is information retrieved in our universe? We will briefly
discuss these issues which are still a matter of debate today1 in the
introduction of Chapter 4.
Actually, as indicated by the title of Unruh’s paper in 1981, “Exper-

imental Black-Hole Evaporation?” [182], it is precisely this process of
evaporation that motivates Unruh to suggest the use of hydrodynamic
analogues of black holes to explore this fundamental question.
In this chapter, we will first consider an analogy to the Hawking pro-

cess by considering an accelerating mirror. This acceleration will cause
creation of particles. We will then turn our attention to the gravita-
tional collapse of a star leading to the formation of a black hole and the
emission of Hawking radiation.
In the second part of this chapter, following Unruh’s findings [182], we

will demonstrate that the motion of sound waves propagating in a fluid
flow is equivalent to the one of a massless scalar field in a curved space-
time. In particular, we will derive the metric that describes the space-

1 Note for instance that Hawking’s latest paper is precisely about this question of
information loss paradox [85], forty years after its discovery.
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time curvature and comment on the emission of an analogue Hawking
radiation, as soon as a sonic horizon exists.

2.1 hawking radiation

Hawking predicts in 1974 that a black hole should emit a thermal ra-
diation. We will not enter into all the details of calculations and we
will first consider a simple example to give an overall picture of the
main results. In particular, we will focus on the universal process that
gives rise to particle creation from vacuum fluctuations. This will give
a first hint to understand how quantum sonic black holes can produce
a spontaneous radiation from the acoustic horizon.

2.1.1 Accelerating mirror

In this section, following Refs. [25, 48, 69], we will show how a moving
mirror can produce particles from vacuum. This example offers the fol-
lowing advantage: it gives the same result as for a gravitational collapse,
but, here, the problem can be treated within a simpler framework.
Therefore, let us consider a mirror moving along the trajectory

x = z(t) < 0, with z(t) = 0, t < 0. (1)

Figure 7 shows this trajectory in the (t, x) plane (pink curve). In this
plane, null rays2 are such that x − t = Constant or x + t = Constant.
Note that we choose units where the speed of light is unity: c = 1.

The mirror starts accelerating at t = 0 and reaches asymptotically
the speed of light, so that its trajectory becomes tangent to the line
−t+ v0, where v0 is an arbitrary constant.
We now consider a field φ(t, x) satisfying the massless scalar wave

equation

∂2φ

∂t2
− ∂2φ

∂x2
= 0. (2)

This field propagates to the right of the mirror x > z(t) and will even-
tually reflect off the surface of the mirror, such that it also satisfies the
boundary condition

φ(z(t), t) = 0. (3)

Such reflections are illustrated in Figure 7 by blue to red straight lines
(the choice of colors will become clearer below). The dashed red line
indicates the boundary between regions that we denote by I and II –
this is the last reflected ray before the acceleration of the mirror at
t = 0.

2 A null ray corresponds to a wave propagating at the speed of light.
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Figure 7: Accelerating mirror in two-dimensional Minkowski spacetime. The
trajectory of the mirror z(t) corresponds to the pink curve and is
asymptotic to the left-moving null ray v = t + x = v0 at late
times – a null ray is a vector field that propagates at the speed of
light, i.e., whose trajectory is a straight line oriented at 45o to the
vertical. Left-moving null rays such that v = t + x < v0 are indi-
cated by blue lines and come from the past null infinity denoted
as J− (all left-moving null rays come from this hypersurface in
the asymptotic past, see text). These rays reflect off the surface
of the mirror, thus become right-moving rays and propagate until
they reach the future null infinity denoted as J +

R (all right-moving
null rays converge to this hypersurface in the asymptotic future).
Right-moving rays are colored in red because they undergo a (pos-
sibly infinite) redshift when they are reflected. One sees that, when
traced back in time, right-moving rays come from left-moving rays
which tend to crowd up along the line v = v0. The red dashed line
(u = t − x = 0) is the last reflected ray before the acceleration
of the mirror. It also corresponds to the boundary between region
I and region II defined in the text. All the left-moving null rays
with v = t+x > v0 (represented by the dark purple straight lines)
do not reflect off the surface of the mirror and continue to propa-
gate without any disturbance until they reach J +

L (the future null
infinity for the left-moving null rays). Note that in the absence of
the mirror all the left-moving rays would have converged to this
hypersurface in the asymptotic future. We have also drawn the tra-
jectory of an observer (black dashed curve) in region II detecting
reflected particles emitted from the surface of the mirror.
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In region I, where the mirror is at rest, nothing surprising happens.
The set of positive energy modes3, solutions of equation (2), satisfying
boundary condition (3), are given by

φIω(x, t) =
1√
π ω

sin(ωx) e−iωt =
i√

4π ω

(
e−iωv − e−iωu

)
, (4)

with

v = t+ x, and u = t− x. (5)

We introduce the past null infinity hypersurface4 J −, which corresponds
to u = −∞. All the left-moving modes v = Constant come from J −
in the asymptotic past t → −∞. Similarly, we also define the future
null infinity hypersurfaces J +

L , corresponding to u = +∞, and J +
R ,

corresponding to v = +∞. These three hypersurfaces are indicated in
Figure 7. Any null ray will converge to one of these surfaces (also called
lightlike infinity).

The factor 1√
π ω

in expression (4) is a normalization factor. Indeed,
the Lagrangian density, from which equation (2) is derived5, is invariant
under phase rotation. For any two solutions φ1 and φ2 of equation (2),
this U(1) symmetry implies the conservation of a scalar quantity [133]
– the scalar product – of the form

(φ1, φ2) = −i
∫

Σ
dΣ [φ1 ∂nφ

?
2 − ∂nφ1 φ

?
2], (6)

where Σ is a spacelike hypersurface and n a future-directed unit vector6

orthogonal to Σ. Actually Σ can be any spacelike hypersurface, since
the value of (φ1, φ2) is independent of the chosen surface Σ [25, 90]. One
checks easily that φIω [see equation (4)] is normalized such that7

(φIω, φ
I
ω′) = δ(ω − ω′). (7)

In region II, where the mirror accelerates, reflected modes undergo a
Doppler shift. Let us consider a solution of equation (2) of the form

φIIω (t, x) = fω(t− x) + gω(t+ x) = fω(u) + gω(v). (8)

3 In the sense that they are eigenfunctions of the operator ∂/∂t: ∂
∂t
φω = −i ω φω, with

ω > 0.
4 A null hypersurface is such that its normal vector field (ct, r) is a null vector, i.e.,
its norm equals zero: c2t2 − r2 = 0.

5 This Lagrangian density reads L = 1
2
ηµν∂µφ

? ∂νφ, where η is the usual Minkowskian
metric tensor (+,-,-,-).

6 Let (M, g) be the four-dimensional spacetime, g being the metric. A spacelike hy-
persurface Σ ⊂ M is a submanifold of dimension 3 with a timelike normal vector
field n = (ct, r), i.e., satisfying c2t2 > r2. In our 2-dimensional plane (t, x), a natural
spacelike hypersurface is any curve t = Constant, with normal vector n = (1, 0).

7 The scalar product can be evaluated choosing the spacelike curve t = 0 with
n = (1, 0) in expression (6), and remembering that a mode of frequency ω is given
by equation (4) for x > z(t = 0) = 0, 0 otherwise. The scalar product is also
simply obtained for Σ = J− or J+, whose normal vectors are (1,−1) and (1, 1),
respectively.
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The left-moving modes gω(v) are the same in regions I and II. Therefore,
one finds immediately

gω(v) =
i√

4π ω
e−iωv. (9)

The right-moving modes are reflected modes. The function fω(u) can
be found with the use of boundary condition (3):

0 = fω(t−z(t))+gω(t+z(t))⇒ fω(t−z(t)) =
−i√
4π ω

e−iω[t+z(t)], (10)

so that

fω(u) =
−i√
4π ω

e−iω[2τ−u] (11)

where τ is found implicitly through the relation:

τ − z(τ) = u. (12)

The general set of solutions in region I and II is thus

φω(u, v) =
i√

4π ω

(
e−iωv − e−iωs(u)

)
, (13)

with

s(u) = 2τ − u, τ − z(τ) = u. (14)

Therefore, if one considers mode decomposition (13), the left-moving
modes assume a simple form, whereas the right-moving modes do not,
precisely because of the Doppler distortion when reflecting off the mir-
ror.

One could actually find another decomposition, where the right-moving
modes assume the simple form exp(−iωu). Then, these modes, when
traced back in time and reflected off the mirror, will be left-moving
modes with complicated complex exponential exp(iωs−1(v)), where s−1

is the inverse function of s defined in expression (14).
In addition, when the trajectory of the mirror approaches the asymp-

tote v = v0 as t→∞ (see the brown straight line in Figure 7), one has
to be careful because left-moving modes are not reflected off the mirror
for v > v0, see the dark purple lines in Figure 7. In that case, the mode
decomposition reads

φ̄ω(u, v) =





i√
4π ω

(
e−iωs

−1(v) − e−iωu
)
, v < v0,

i√
4π ω

(
e−iωv − e−iωu

)
, v > v0.

(15)

Despite their similarity, mode decomposition (13) and (15) are funda-
mentally different as we will see below.
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Following quantum field theory in curved spacetime [25], one can ex-
pand the quantum field φ̂ over a complete set of modes, either choosing
(13) or (15):

φ̂ =

∫

ω>0
dω [φωaω + φ?ωa

†
ω], (16a)

φ̂ =

∫

ω>0
dω [φ̄ωāω + φ̄?ωā

†
ω], (16b)

where aω and a†ω are annihilation and creation operators pertaining
to the mode φω of frequency ω. Then, no mode φω is present in the
quantum vacuum state; we can thus define the vacuum |0〉 with respect
to the set of modes (13):

aω|0〉 = 0, ∀ω. (17)

Similarly, āω and ā†ω are annihilation and creation operators pertaining
to the mode φ̄ω of frequency ω. The vacuum state |0̄〉 associated to the
set of modes (15) thus reads

āω|0̄〉 = 0, ∀ω. (18)

We can prove that modes φ̄ω and φω are connected through the following
relations [25]:

φ̄ω =

∫

ω>0
dω′ [α?ω′ω φω′ − βω′ωφ?ω′ ], (19)

or conversely

φω =

∫

ω>0
dω′ [αωω′ φ̄ω′ + βωω′ φ̄

?
ω′ ] (20)

with

αωω′ = (φω, φ̄ω′), βωω′ = −(φω, φ̄
?
ω′), (21)

where (·, ·) corresponds to the scalar product defined by expression (6)
and provided (φω, φω′) = δ(ω − ω′), (φ̄ω, φ̄ω′) = δ(ω − ω′).

In addition, matrices coefficients (21) have the following properties:
∫

k>0
αωkα

?
ω′k − βωkβ?ω′k = δ(ω − ω′), (22a)

∫

k>0
αωkβω′k − βωkαω′k = 0. (22b)

Equating equations (16a) and (16b) and using expressions (19) and (20),
we can find the relations between the operators aω and āω:

āω =

∫

ω′>0
[αω′ωaω′ + β?ω′ωa

†
ω′ ] (23a)

aω =

∫

ω′>0
[α?ωω′ āω′ − β?ωω′ ā†ω′ ] (23b)
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Transformations (23a) and (23b) between both sets of modes are
called Bogoliubov transformations. We will introduce them in more de-
tail in Section 4.1.
Let us now calculate α and β from equations (21) with the use of

expressions (13) and (15). We choose to evaluate the scalar product on
the spacelike hypersurface t = 0. The only non-trivial part for ω, ω′ > 0,
i.e., without taking into account the δ(ω − ω′)-terms8, reads

αωω′ ∼
i√

4πω′
(φIω, e

−iω′s−1(v)), βωω′ ∼
−i√
4πω′

(φIω, e
iω′s−1(v)), (24)

where the integration in expression (6) starts from x = v = 0 to x =
v = v0 (x = v since t = 0). One easily obtains [25, 48]
{
αωω′

βωω′
∼ ∓ i

2π
√
ωω′

∫ v0

0
{ω±ω′[s−1(x)]′} e±iω′ s−1(x) sin(ωx) dx, (25)

where [s−1(x)]′ is the derivative of s−1(x). An integration by parts in
the previous integral yields

{
αωω′

βωω′
∼ ± 1

2π

√
ω

ω′

∫ v0

0
e±iω

′ s−1(x)−iωxdx. (26)

Therefore, when the function s(x) is such that βωω′ 6= 0, positive modes
φ̄ω are decomposed into a mixing a positive and negative frequency
modes φω′ and φ?ω′ . In addition annihilation operators āω are a sum of
annihilation and creation operators aω′ and a

†
ω′ ; this means necessarily

that |0〉 6= |0̄〉. In particular, we obtain from expressions (23a)

〈0|N̄ω|0〉 =

∫

ω′>0
|βω′ω|2 dω′ 6= 0, N̄ω ≡ ā†ω āω, (27)

thus leading to spontaneous creation of particles from vacuum.

Let us now consider the following asymptotic mirror trajectory

z(t)→ −t−Ae−2κt + v0, as t→∞. (28)

The trajectory at earlier time is irrelevant because we will only concen-
trate our attention to the particle flux emitted by the mirror at late
time. However, for the sake of completeness, we mention that one could
take a trajectory of the form

z(t) =

{
− κ−1 ln(coshκt), if t > 0,

0, if t ≤ 0,
(29)

8 Indeed, here we are only interested in the non-trivial terms because they lead to
particle creation. For instance, if s = 1 in equations (24), this implies αωω′ =
δ(ω − ω′), βωω′ = 0, and thus the set of annihilation operators āω can be expressed
in terms of annihilation operators aω only [see, e.g., equation (23a)]. In that case
both vacua |0〉 and |0̄〉 are the same and, thus, there is no particle creation. Likewise,
positive frequency modes φ̄ω are only expanded over positive frequency modes φω,
see expression (19). As it will be shown in the following the situation becomes more
interesting if βωω′ 6= 0, see equation (27).
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whose asymptotic behavior corresponds to expression (28), with A =
κ−1 and v0 = κ−1 ln 2. From equations (14) and (28), one obtains the
asymptotic form of s(u):

s(u)→ v0 −Ae−κ(v0+u), as u→ +∞. (30)

As one can see from Figure 7, when u→ +∞, all the backward reflected
rays pile up near the asymptotic line v = v0. All the left-moving rays
beyond that line (i.e.,∀ v > v0) are not reflected off the mirror and will
not be detected by an observer whose world line corresponds for instance
to the dashed black line in Figure 7. Thus, the line v = v0 behaves as
a kind of horizon and this is precisely what makes this moving mirror
problem so interesting.
As a result, when u → +∞, i.e., v → v0, we expect s−1(v) to be a

rapidly varying function of v. Asymptotically, this yields

s−1(v)→ −κ−1 ln

(
v0 − v
A

)
− v0, v → v0, v < v0. (31)

In particular, one sees from the previous expression that asymptotic
right-moving rays u→∞ undergo an infinite blueshift when traced back
to J − (this is the reason why we have colored in blue the left-moving
rays close to v = v0). In other words, at late time, any mode exp(−iωu)
of finite frequency ω and detected by the observer (black dashed curve in
Figure 7) originates from a left-moving mode exp[−iωs−1(v)], infinitely
close to v = v0, with arbitrarily short wavelengths [as s−1(v → v0) →
+∞]; it corresponds to the so-called trans-Planckian problem [97, 158].
No definite answer to this problem has been yet given in the context
of quantum gravity and, actually, this is an issue we do not encounter
in analogue gravity by means of the addition of dispersive effects. For
example, in Bose-Einstein condensates, there exists a natural cut-off Ω
due to dispersive effects and beyond which analogue Hawking radiation
ceases to be emitted, see Chapter 3.
Let us come back to our moving mirror problem and calculate matri-

ces coefficients αωω′ and βωω′ by inserting expression (31) in equations
(26). To make the computation, we first assume that the asymptotic
expression (31) is valid for all x. This is a reasonable assumption since
most of the contribution to the integral comes from the region v → v0.
Then, we let the lower bound of the integral going to −∞; this amounts
to consider large frequencies ω, which is valid here because the rapidly
varying function s−1(v) near v = v0 represents very high frequencies ω
[25, 88].
By means of the above approximations, expressions (26) are easily

computed and we obtain
{
αωω′

βωω′
∼ ± i e

±πω′/2κ

2π
√
ωω′

e±iω
′D−iωv0 ω±iω

′/κ Γ(1∓ iω′/κ), (32)

with D = κ−1 lnA− v0. Then, using the identity

|Γ(1 + ix)|2 =
πx

sinhπx
, x ∈ R, (33)
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we obtain the final result

|βωω′ |2 =
1

2πκω

(
1

eω′/kBT − 1

)
, with kBT =

κ

2π
. (34)

Using expression (27), this leads to

〈0|N̄ω|0〉 =
1

eω/kBT − 1

∫ +∞

0

dω′

2πκω′
. (35)

Therefore, an observer, whose world line corresponds to the dashed
black line in Figure 7, will detect spontaneous emission from vacuum,
and more precisely, will detect a thermal flux of temperature T ∼ κ.
The logarithmic divergence of expression (35) lies in the fact that the
mirror continues to accelerate during an infinite amount of time, and
thus accumulates an infinite number of quanta per mode. Note that the
divergence can be removed by looking instead at the number of quanta
emitted per unit time in the frequency range ω to ω + dω [25, 139]:

dN̄ω

dt
=

1

eω/kBT − 1

dω
2π
. (36)

2.1.2 Penrose diagrams

Before deriving Hawking’s famous result in the case of the gravitational
collapse of a star into a black hole, let us introduce important diagrams
in General Relativity, the so-called Penrose diagrams.
Such diagrams are very similar to what is drawn in Figure 7. However,

in a Penrose diagram, one is interested in looking at the whole spacetime,
i.e., from the asymptotic past to the asymptotic future.
There is a simple way to glance at the past and the future at once by

making the following change of variables

ū = 2 arctanu, v̄ = 2 arctan v, (37)

where we recall that u = t−x and v = t+x. Note that we still consider
here a two-dimensional Minkowski spacetime ds2 = dt2 − dx2 = du dv.
One sees that the coordinate transformations (37) amount to shrink

the asymptotic past and future to finite values. Indeed, the axis x = 0
which goes to t = −∞ to t = +∞ now starts from ū = v̄ = −π to
ū = v̄ = π. Similarly the axis t = 0 now goes from v̄(x = −∞, t = 0) =
−ū(−∞, 0) = −π to v̄(∞, 0) = −ū(∞, 0) = π, see Figure 8.
We denote by i− and i+ the past and future timelike infinities, since

they correspond to t = −∞, ∀x (ū = v̄ = −π) and t = +∞, ∀x (ū =
v̄ = π), respectively. In other words, any timelike vector field9 comes
from the past timelike infinity and converges to the future timelike
infinity. The red dashed line drawn in the middle of Figure 8 from i−

to i+ would be the world line of an object at rest in the universe from
its asymptotic past t = −∞ to its asymptotic future t = +∞.

9 A timelike vector field u = (ct, r) has a positive norm uµ uµ if the chosen
Minkowskian signature is (+,−,−,−).
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Figure 8: Penrose diagram. The distant past and future t = −∞ and t = +∞
become finite by means of the coordinate transformations (37).
The past and future null infinities denoted as J−, J +

L and J +
R

have been already introduced in Figure 7. All null rays, i.e., with
u = t− x = Constant or v = t + x = Constant converge to these
hypersurfaces. As discussed in the text, these null rays are rep-
resented as straight lines oriented at 45o from the vertical in a
Penrose diagram. The conformal transformation leading to a Pen-
rose diagram actually preserves the orientation of the light cone,
and thus the notion of causality. Both points i− and i+ are the past
and future timelike infinity, respectively. All timelike vector fields
come from i− [where u = v = −∞ or ū = v̄ = −π, see expressions
(37)] and converge to i+ (where u = v = +∞ or ū = v̄ = π). We
have drawn two examples of timelike geodesics, corresponding to
x = 0 – red dashed line — and x > 0 – brown curve. The presence
of the green area will become clearer below.

Transformations (37) actually correspond to a conformal transforma-
tion to the metric, i.e.,

gµν → ḡµν = Ω2(x) gµν , (38)

with Ω2(x) =
(

1
4 cos−2 ū

2 cos−2 v̄
2

)−1 [25]. The main interest of a confor-
mal transformation lies in the fact that it changes lengths but not angles.
Therefore, it leaves the light cone invariant: null rays, oriented at 45o to
the vertical in the usual Minkowski spacetime ds2 = dt2 − dx2, remain
at 45o after the conformal transformation. Therefore, the causality is
the same as in the usual Minkowski spacetime [25, 117]. In particular,
the null hypersurfaces J −, corresponding to u, v = −∞ (ū, v̄ = −π),
and J +, corresponding to u, v = +∞ (ū, v̄ = π), are still at 45o to the
vertical, see Figure 8.

moving mirrors Let us now apply what we have learned from
the previous paragraph to draw the Penrose diagram in the case of an
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accelerating mirror, as considered in Section 2.1.1. The left graph of
Figure 9 shows such a diagram. The mirror trajectory starts from i−

(t = −∞, x = 0 for the mirror at rest) and becomes asymptotic to the
null ray10 v = v0, reaching eventually the future null infinity denoted
as J +

L , see Figure 7. Actually, all the left-moving rays v > v0 will reach
this surface in the asymptotic future. A reflected ray off the mirror
surface is also depicted in Figure 9; it will reach the asymptotic surface
denoted as J +

R at t = +∞.

Figure 9: Penrose diagram in the case of the accelerating mirror problem.
(Left) This diagram should be compared with Figure 7. Different
reflected rays are depicted, as well as regions I and II. The region
to the left of the mirror is not reachable, and thus not indicated
on the diagram. The trajectory of the mirror becomes tangent to
the line v = v0 asymptotically.
(Right) The same situation after a conformal transformation which
amounts to go to the rest frame of the mirror. In this case, the tra-
jectory of the mirror is a straight line converging smoothly to J +

L

as it becomes tangent to the left-moving null ray v = v0. Null rays
are still straight lines oriented at 45o to the vertical since any con-
formal transformation preserves their orientation. The shaded area
is not reachable (because it corresponds to a region outside space-
time), but is indicated for comparison with Figure 12 obtained in
the case of a gravitational collapse. This shaded area would corre-
spond to the interior of the black hole. Any left-moving rays with
v > v0 would not be reflected off the surface of the mirror and
would fall inside the gray region. In this case, the hypersurface
J +

L would play the role of an event horizon.

However, one can also choose a new system of coordinates associated
to the rest frame of the mirror. This is again a conformal transformation
[48] and the resulting Penrose diagram corresponds to the right panel

10 We recall that a null ray corresponds to a wave propagating at the speed of light.
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of Figure 9. One sees that the last reflected rays ending up on J +
R

is infinitely close to J +
L . The dashed lines delimiting the unreachable

shaded area will become meaningful in the next subsection.
At the moment, the connection between a gravitational collapse and

an accelerating mirror in the universe might be still unclear; a first
glance at Figure 12, and a comparison of this figure with the right
graph of Figure 9, may give a hint!

2.1.3 Gravitational collapse

In this subsection, we will derive the famous result obtained by Hawking
in 1974 [87]. Note that, for simplicity, we will only consider the case of a
two-dimensional spacetime (t, r), whereas Hawking considered the four-
dimensional case. Despite this simplification, the final result will be
similar to Hawking’s findings. For a complete derivation we refer the
reader to Refs. [25, 88].
In the case of a gravitational collapse, spacetime is not Minkowskian

outside the collapsing body, but is rather described by the Schwarzschild
metric introduced in the subsequent paragraph.
In addition, we only consider the case of a massless scalar field φ that

propagates in a two-dimensional curved (Schwarzschild) spacetime, i.e.,

∇µ∇µφ =
1√−g ∂µ(

√−g gµν ∂νφ) = 0, (39)

where g = (det gµν)−1 and gµν is the curved spacetime metric.

schwarzschild metric This metric describes the spacetime cur-
vature in the presence of a spherical object of mass m; it corresponds
to an exact solution of Einstein’s equations derived by Schwarzschild11

[165] in 1915. It reads

ds2 =

(
1− 2m

r

)
dt2 −

(
1− 2m

r

)−1

dr2 − r2(dθ2 + sin2 θ dϕ2)

= gµνdxµ dxν ,
(40)

gµν being the matrix coefficients of the four-dimensional Schwarzschild
metric. One sees that r = 0 and r = 2m (called Schwarzschild radius)
are singular.
First, let us notice that if r > 2m, g00 = 1 − 2m/r > 0 (where

the subscript “0” stands for the time coordinate) and g11 = −(1 −
2m/r)−1 < 0 (where “1” is for the radial coordinate). However, when
r < 2m, g00 and g11 switch signs; it means that the radial coordinate
r becomes timelike and the time coordinate t becomes spacelike for

11 “As you see, the war treated me kindly enough, in spite of the heavy gunfire, to allow
me to get away from it all and take this walk in the land of your ideas” – Letter
excerpt from Schwarzschild to Einstein, 22 December 1915.
Schwarzschild derived the first exact solution of Einstein equations on the Russian
front, the so-called Schwarzschild metric.
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r < 2m. As shown in Figure 10, it implies that light cones – represented
by the yellow areas – in the region r < 2m are oriented towards the
hypersurface r = 0 and are tilted by 90 degrees to those in the region
r > 2m. Therefore, r = 2m acts as a boundary between two causally
disconnected regions; no signal in the region r < 2m can be sent towards
the region r > 2m and any matter is bound to propagate towards the
singularity r = 0. The hypersurface r = 2m, indicated by the red line
in Figure 10, is nothing but an event horizon.

r

t

0 2m

Figure 10: The black curves represent the null geodesics in the (r, t)-plane
propagating in a Schwarzschild curved spacetime. Null rays in
this spacetime correspond to ũ and ṽ = constant, where ũ and ṽ
are defined in equation (41). The yellow areas correspond to light
cones. The blue line located at r = 0 is the singularity of the black
hole, while the red line, located at r = 2m, is the event horizon.
Note that the time coordinate t in this graph would correspond to
the time measured by an observer outside the black hole (in the
region r > 2m). For such an observer, it would take an infinite
amount of time for a light ray to cross the event horizon. This
is completely different from the experience of someone who is
actually falling into the black hole; their measure of time is called
proper time. In this case, according to their watch, this person
will cross the horizon in a finite amount of time.

Second, the singularity r = 2m in the metric (40) is only apparent
and can be removed by means of the following change of coordinates:

ũ = t− r?, ṽ = t+ r?, (41)

with

r? = r + 2m ln
∣∣∣ r
2m
− 1
∣∣∣ . (42)
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Inserting the change of coordinates (41), (42) in expression (40) leads
to the so-called Eddington–Finkelstein form:

ds2 =

(
1− 2m

r

)
dṽ2 − 2 dṽ dr − r2(dθ2 + sin2 θ dϕ2), (43)

where the singularity r = 0 remains, but not r = 2m.
In the case of a two-dimensional spacetime (dropping the angular

part), the previous metric reduces to

ds2 = C(r) dũ dṽ, C(r) =

(
1− 2m

r

)
, (44)

and this corresponds to a conformal transformation:

• For r > 2m, C(r) > 0. By taking Ω(r) = C−1/2(r) in equa-
tion (38), one sees immediately that (44) is conformal to a two-
dimensional Minkowski spacetime with signature (+,−).

• For r < 2m, C(r) < 0. Thus, (44) is conformal to a two-dimensional
Minkowski spacetime with signature (−,+).

Therefore, the presence of an horizon (at r = 2m) splits the whole
spacetime in two regions (r > 2m and r < 2m), each of them being
conformally flat, i.e., conformal to a Minkowski spacetime [117].

Let us make a last comment which will be of importance in the
next section: if the radius R(t) of a collapsing star shrinks below the
Schwarzschild radius at a certain time denoted as t0, an event horizon
is formed at r = 2m and the region R(t > t0) < r < 2m becomes the
interior of the black hole, see for instance Figure 11. The singularity
eventually appears when R(tsing) = 0 (purple dot in Figure 11).

penrose diagram First, let us look at Figure 11, which corre-
sponds to a schematic drawing of a gravitational collapse (we assume
that the problem is spherically symmetric).
The black curves converging to the singularity r = 0 represent the

surface of the collapsing body (the surface of a star for instance). We
denote by R(t) the radius of the collapsing body. The wavy line remain-
ing at r = 0 at all times after the final collapse occurring at t = tsing

is the singularity of the black hole. We have also drawn null rays pass-
ing through the collapsing body and which are deviated by the strong
gravitational field in this region. As in Figure 9, they are colored blue
and then red since they undergo an infinite redshift12 when crossing the
collapsing body, see below.
The last ray which escapes the singularity and which is directed to-

wards the future timelike infinity i+ forms the event horizon of the
black hole. As we mentioned in the last paragraph, when considering a
Schwarzschild metric, the horizon is formed at a certain time t0 when
the radius of the collapsing body equals the Schwarzschild radius, i.e.,
R(t0) = 2m.

12 Contrary to the accelerating mirror, the redshift is not instantaneous here.
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Figure 11: Schematic drawing of a gravitational collapse leading to the for-
mation of a black hole. The surface of the collapsing body (assum-
ing spherical and of mass m) is indicated by the black curves. We
denote by R(t) the object radius at time t, eventually shrinking
to zero at a time denoted as tsing and pinpointed by the purple
dot. An infinite density point is then formed and called black hole
singularity. Null rays, depicted as blue to red curves (since they
undergo a – possibly infinite – redshift), come from J−, then
pass though the collapsing body. They are distorted due to the
strong gravitational field in the vicinity of the black hole region.
The null ray going out from the collapsing body when its surface
radius is R(t0) = 2m (i.e., the Schwarzschild radius in the case
of a Schwarzschild spacetime, see text) is so distorted that it be-
comes a vertical straight line; it corresponds to the last ray that
escapes the singularity and converges to the intersection between
the future timelike infinity i+ and the future null infinity J +,
see Figure 12. The surface delimited by these two null rays (by
symmetry, the second null ray goes out from the collapsing body
when R(t0) = −2m) forms the so-called event horizon. We have
also indicated that these null rays correspond to ũ = ∞, with
ũ defined in expression (41). Any ray crossing the surface of the
collapsing body at a later time t > t0, such as the dark purple
curve in the graph, is bound to propagate down to the singular-
ity. We have also drawn the world line of an observer outside the
black hole and able to detect null rays after they passed through
the collapsing body.

Beyond that point, we enter the interior of the black hole; anything
that propagates here is bound to fall down to the singularity13 (see the
dark purple null ray in Figure 11).

13 Note that the singularity is hidden by the event horizon delimiting the mysterious
interior of the black hole – In the absence of an event horizon, the singularity is said
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Now, we will draw the Penrose diagram of such a collapse. To model
the spherical symmetry of the four-dimensional situation, we can re-
strict the problem to r ≥ 0 and reflect the null rays at r = 0; this
will reproduce the trajectory of incoming null rays inside the collapsing
body through the center at r = 0, and then out of the body [25], see
Figure 13 for instance. Such reflections will be achieved by imposing
the boundary condition φ(r = 0, t) = 0 for the field φ, exactly as we
did in Section 2.1.1, see equation (3).
Figure 12 shows the two-dimensional Penrose diagram associated to

the gravitational collapse of a spherical body. The center of the body
r = 0 is a vertical line until it reaches the purple dot; this dot indicates
the moment when the surface has shrunk to the the singularity. The
surface of the body corresponds to the black curve; initially this curve
comes from the past timelike infinity i− and converges to the purple dot.
The line appears distorted as a result of the coordinates transformation
(37), where u and v should be replaced by the Kruskal coordinates14.

The last left-moving null ray ṽ = ṽ0 that escapes the singularity
is reflected from the center r = 0, and then moves to the right until
it reaches the intersection between the future timelike infinity i+ and
the null hypersurface J +

R . This ray goes out from the collapsing body
just before the formation of the event horizon when R(t ' t0) ' 2m,
where we recall that R(t) is the decreasing radius of the spherical body.
Looking at equations (41) and (42), we find that this outgoing and right-
moving ray thus corresponds to the null ray ũ = +∞ and is tangent to
the hypersurface J +

L , see Figure 12.
Then, all the left-moving rays such that ṽ > ṽ0 reflect off the center at

a point located beyond the purple dot and thus propagate down to the
singularity (see for instance the dark purple null ray in Figure 12). The
fact that the singularity (corresponding to r = 0) is perpendicular to
the black dashed vertical line r = 0 is a bit subtle: in fact, the Penrose
diagram shown in Figure 12 hides two Penrose diagrams glued together
along the curve R(t)! The green area corresponds to the interior of the
collapsing body, whose spacetime is described by the conformally flat
metric (46). Thus, the associated Penrose diagram simply looks like the
green area in Figure 8. The other part of the diagram represents the
exterior of the collapsing body, whose spacetime is described by the
Schwarzschild metric (40). In this case, the associated Penrose diagram
is a bit more complicated to draw and is a portion of the so-called
maximally extended Kruskal manifold [25, 129].

Besides this subtle point, the gray area in Figure 12 is located beyond
the event horizon and corresponds to the interior of the black hole. This
region is equivalent to the shaded region in the right plot of Figure 9.

to be naked. R. Penrose postulated in 1969 that no naked singularity exists in our
universe; this is known as the cosmic censorship hypothesis [146].

14 The Kruskal coordinates are defined by [25, 129]

u = ∓4me−ũ/4m, v = 4meṽ/4m, (45)

with the minus (plus) sign for u if r > 2m (r < 2m).
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Figure 12: Penrose diagram of the gravitational collapse. To model the
spherical symmetry of the four-dimensional situation, we have
restricted the problem to r ≥ 0 and reflected the null rays at
r = 0. This procedure of reflection is better illustrated in Fig-
ure 13. Then, the problem becomes very similar to the case of
the accelerating mirror, see the right diagram of Figure 9. The
main difference lies in the fact that the redshift accumulated by
null rays when crossing the collapsing body is not instantaneous,
contrary to the case of the moving mirror. The surface of the
collapsing body is represented by the black curve R(t) and the
interior corresponds to the green area. When the surface radius
reaches r = 0 at t = tsing, a singularity is formed. This event
is indicated by the purple dot. The last reflected ray escaping
from the singularity corresponds to ũ = ∞ and comes from a
left-moving null ray with ṽ = ṽ0. Thus, the event horizon is noth-
ing but the null hypersurface J +

L . All the left-moving rays with
ṽ > ṽ0 enter the interior of the black hole and propagate down
to the singularity, as illustrated for instance with the dark purple
null ray.

As in Figure 7, the dashed black curve in Figure 12 would correspond
to the world line of an observer in our universe, outside the black hole,
converging to the asymptotic future i+ and observing the right-moving
null rays passing through. In full analogy with the accelerating mirror,
all the right-moving rays converge to J +

R . When traced back in the
asymptotic past, they all converge to J − and crowd up around ṽ = ṽ0.

hawking radiation Let us now compute the expected sponta-
neous emission due to the gravitational collapse. This amounts to calcu-
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late the relationship between the left-moving waves propagating from
J − to the center of the collapsing body, then come out and propagate
to J +

R , see the left graph of Figure 13. Equivalently, one can model the
spherical symmetry of the four-dimensional situation by reflecting null
rays from r = 0, see the right graph of Figure 13.

Figure 13: Portions of the graphs depicted in Figure 11 and Figure 12.
(Left) A null ray with ṽ = Constant enters the collapsing body.
In the interior of the body, we define new coordinates U and V ,
see expressions (46).
(Right) Portion of the Penrose diagram illustrated in Figure 12.
The null ray is reflected at the center r = 0 of the collapsing
body.

Inside the collapsing body, we introduce a new time coordinate τ and
we assume that the spacetime is conformal to Minkowski spacetime [25,
87] with line element

ds2 = A(U, V ) dU dV, where

{
U = τ − r,
V = τ + r.

(46)

We have introduced in the previous equation a new time coordinate τ
inside the collapsing body. The coordinates U and V are indicated in
Figure 13.
Outside the spherical body, we use the two-dimensional Schwarzschild

metric given by expression (44), where ũ and ṽ are defined in equations
(41) and (42).

Then, the transformations between the interior and the exterior coor-
dinates are given in terms of two functions denoted as α and β – These
functions will be determined later:

U = α(ũ), ṽ = β(V ). (47)

Now, let us consider an outgoing null ray going out from the collapsing
body and propagating towards J +

R with ũ = Constant. When traced
back in time, such a ray had coordinate U = α(ũ) = Constant in the
interior of the body, after passing through r = 0, see Figure 13. At the
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center of the body r = 0, expressions (46) show that V (τ, 0) = U(τ, 0)
= Constant. Then, we can use the function β that connects V and ṽ to
obtain the full connection between ṽ and ũ:

ṽ = β(V ) = β(U) = β ◦ α(ũ) = Constant. (48)

Similarly to the case of the accelerating mirror, an ingoing wave exp(−iωṽ)
will be converted into an outgoing wave exp[−iωβ◦α(ũ)] when going out
from the collapsing body; comparing with expression (13), this would
correspond to s = β ◦ α.
We shall now find explicitly the functions α and β. To that end, we

have to match the exterior and interior metrics (44) and (46) across the
collapsing surface r = R(t) = R(τ), i.e.,

C[R(τ)] dũ dṽ = A(U, V )dU dV, (49)

with




ũ = τ −R(τ)− 2m ln

∣∣∣∣
R(τ)

2m
− 1

∣∣∣∣ ,

ṽ = τ +R(τ) + 2m ln

∣∣∣∣
R(τ)

2m
− 1

∣∣∣∣ ,
and

{
U = τ −R(τ),

V = τ +R(τ).
(50)

One finds easily from expression (49) both differential equations15

α′ =
dU
dũ

= C (1− Ṙ)
{

[Ṙ2 +AC (1− Ṙ2)]1/2 − Ṙ
}−1

,

β′ =
dV
dṽ

= C−1 (1 + Ṙ)−1
{
Ṙ2 − [AC (1− Ṙ2)]1/2 + Ṙ

}
,

(51)

where Ṙ = dR/dτ and (Ṙ2)1/2 = −Ṙ because Ṙ < 0.
To solve these differential equations let us make a comment related to

what we have learned from the accelerating mirror problem: we noticed
that the most redshifted right-moving rays were those coming from the
region at the vicinity of v = v0. In addition, due to this significant
redshift, the major contribution to the integral (26) [which gives even-
tually the total number of emitted quanta from vacuum, see equation
(27)] corresponds to v ' v0.

In the gravitational case and by similarity with the mirror problem,
we expect this strong redshift to occur close to ṽ = ṽ0, i.e., for null rays
coming out from the collapsing body at R(t0) ' 2m when the surface
of the spherical body approaches the event horizon, see Figure 11.
Therefore, let us assume that C(R) = (1 − 2m/R) ' 0, so that

equations (51) simplify to

dU
dũ

=
Ṙ− 1

2 Ṙ
C(R), (52a)

dV
dṽ

=
A (Ṙ− 1)

2 Ṙ
. (52b)

15 Note that r? =
∫
C−1 dr, where r? and C(r) are defined in equations (42) and (44),

respectively.
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Then, we expand R(t) around t = t0, where we recall that t0 is the
moment corresponding to the formation of the event horizon:

R(t) ' R(t0) + Ṙ(t0)(t− t0). (53)

This leads to16

C

2 Ṙ(t0)
' κ (t− t0), 1− Ṙ(t0) ' U +R(t0)− t0

t− t0
, (54)

where we have introduced

κ =
1

2

dC
dR

∣∣∣∣
R(t0)

=
our case

1

4m
. (55)

Actually, κ, called the surface gravity, measures how curved is the met-
ric at the vicinity of the horizon. One sees that in the case of the
Schwarzschild metric, the surface gravity is inversely proportional to
the mass of the black hole.
Finally, by integrating equation (52a) with the use of (54), we obtain

κ ũ = − ln |U +R(t0)− t0|+ Const., as ũ→ +∞. (56)

Therefore, inverting the previous expression gives

U = e−κ ũ + t0 −R(t0), as ũ→ +∞. (57)

At late times, i.e., for large values of ũ, one sees from (56) and (57)
that U does not really depend on ũ and equals t0 − R(t0). Likewise,
outgoing waves with such large values of ũ all pile up at the vicinity of
ṽ = ṽ0 when traced back in time. This implies that a narrow range of
values for V and ṽ covers a large area of J +

R . Therefore, if U and V
do not vary too much when ũ → +∞, we can assume that A(U, V ) is
approximately constant in equation (52b) and integrate it:

V =
A[Ṙ(t0)− 1]

2 Ṙ(t0)
(ṽ0 − ṽ) + t0 −R(t0). (58)

The integration constant in the previous expression has been found by
taking the limit ṽ → ṽ0, which should correspond to ũ→ +∞. Inserting
expression (58) in equation (56), then using the continuity condition
U = V at r = 0, we obtain

ũ = −κ−1 ln

(
ṽ0 − ṽ
Ã

)
, as ṽ → ṽ0, ṽ < ṽ0, (59)

with Ã = A[Ṙ(t0)− 1]/(2 Ṙ(t0)).
A glance at equation (31) confirms the high similarity between the

gravitational collapse and the moving mirror problem. This lies on the

16 Using U = t − R(t) at the surface of the collapsing body and making a Taylor
expansion of C around t0.
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fact that the above analysis is based on geometric optics. Therefore, the
Doppler shift acquired after the reflection on the surface of the mirror
is equivalent to the effects of distortion in the background geometry
during the gravitational collapse.
In addition, we have treated the case of a massless scalar field prop-

agating in the Schwarzschild spacetime, but the above results can be
derived in a more general framework for any quantum field in a black
hole spacetime [25].
Then, from expression (59), we find that natural outgoing positive

modes of energy ~ω > 0 for an observer whose world line would be the
black dashed curve in Figure 12 are

φ̄ω =
i√

4πω

(
eiω κ

−1 ln[(ṽ0−ṽ)/Ã] − e−iωũ
)
, ṽ < ṽ0. (60)

This positive mode is actually a superposition of ingoing positive and
negative energy modes φω and φ?ω [see expression (19)] given by

φω =
i√

4πω

(
e−iωṽ − e−iω (ṽ0−Ã e−κ ũ)

)
. (61)

Again, this is precisely this mixing of positive and negative energies
which will lead to spontaneous emission. Indeed, using directly the re-
sults found in Section 2.1.1, we can compute the matrices coefficients
(21) and arrive to the expected number of particles spontaneously emit-
ted from vacuum [see equation (35), and also (34)]:

〈0|N̄ω|0〉 ∝
1

e~ω/kBTH − 1
, (62)

where TH is the so-called Hawking temperature,

TH =
~κ

kB 2π c
, κ =

c4

4Gm
. (with the right units) (63)

Expression (62) is nothing but the the so-called Hawking radiation emit-
ted by black holes.

Let us conclude this section with some remarks. In the above calcula-
tions we assume that ũ→ +∞. This means that we have computed the
expected flux of particles at late time. For an observer outside the black
hole, this steady flux would be seen as emerging from the event horizon
and would correspond to a thermal radiation of temperature TH. We
note that the Hawking temperature is proportional to the surface grav-
ity κ, and thus depends on the spacetime curvature at the vicinity of
the horizon [see expression (55)]. As we will show below, the analogue
Hawking temperature in the context of analogue gravity will be also
proportional to a quantity that measures the “curvature” of the fluid
flow near the acoustic horizon.
Moreover, it was proved that this positive energy flux converging to
J +
R should be balanced by a negative energy flux entering the black

hole [88, 190]. Wald actually showed that particles are created by pair,
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one of positive energy should travel towards J +
R (and corresponds to

a null ray ṽpos < ṽ0), and the other one, of negative energy, should be
absorbed by the black hole (and actually correspond to the symmetric
of ṽpos with respect to ṽ0, i.e., ṽneg = 2 ṽ0 − ṽpos > ṽ0) [190]; Both
particles of opposite energy form what we call a Hawking pair.
As a last comment, we can estimate the expected Hawking tempera-

ture for typical black holes of mass M ' 10M◦, where M◦ is the mass
of the sun. Expression (63) can be indeed approximated to

TH ' 10−6 M◦
M

K, (64)

meaning that the Hawking temperature is about a µK, thus completely
lost in the Cosmological Microwave Background.

2.2 analogue gravity

The event horizon of a black hole can be seen as a point of no return:
anything that crosses the horizon is trapped inside the black hole, can-
not come back to our universe and is bound to propagate until it reaches
the singularity.
In the general introduction we have compared a black hole to a river

flowing towards a waterfall. Imagine that some fish are traveling in the
river trying to go upstream the flow. Fish close to the waterfall are not
able to swim up the river and are bound to fall down to the bottom of
the waterfall, playing here the role of the black hole singularity. There-
fore, the point where the flow velocity equals the velocity of the fish
could be seen as the equivalent of the event horizon: beyond that point
fish are trapped, see Figure 4 of the general introduction.
This idea of comparing black holes to hydrodynamic systems might

seem rather naive at this stage; however, as we will see in this section,
the similarity between analogue systems and black holes goes beyond
the kinematic analogy discussed in the previous paragraph.
In the following, we will not consider fish in a river but rather sound

waves propagating in a transonic flow, see Figure 14. We will first prove
that the hydrodynamic equations for sound waves correspond to the
wave equation of a massless scalar field in a curved spacetime. Then,
using the seminal result obtained by Unruh in 1981 [182], we will show
that an analogous Hawking radiation can be defined in analogue sys-
tems.

2.2.1 Sound waves in curved spacetime

Let us start with the usual inviscid hydrodynamic equations

∂tρ+∇(ρv) = 0, (65a)

∂tv + (v · ∇)v = −1

ρ
∇p, (65b)

p = p(ρ), (65c)
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Figure 14: Different configurations of transonic flows.
(Left) One-dimensional flow such as considered in Chapter 3. The
fluid moves from the left to the right. The subsonic region cor-
responds to the left part where v < c; then, the flow becomes
supersonic (v > c) in the right region. The boundary between
these two regions corresponds the blue dashed line (at x = xH)
and plays the role of an acoustic horizon for sound waves. Indeed,
a sound wave propagating in the supersonic region is dragged by
the flow and forms a Cerenkov cone as shown in the figure. The
supersonic region is the analogue of the interior of a black hole.
On the contrary, a sound wave in the subsonic region can propa-
gate in all directions.
(Right) Two-dimensional case with a spherical symmetry and
where the flow velocity is only radial – this is the situation con-
sidered in Unruh’s paper [182] and in this subsection. The blue
dashed line located at a radius rH corresponds to the acoustic
horizon, beyond which sound waves are trapped.

where ρ(r, t) is the fluid density, v(r, t) the flow velocity and p(r, t)
the pressure. We also assume that the flow is irrotational; we can thus
define a scalar field ψ(r, t) such that

v = ∇ψ. (66)

We are interested in the small fluctuations around the background flow.
We thus expand the physical quantities up to first order:



ψ(r, t)

ρ(r, t)

p(r, t)


 =



ψ0(r, t)

ρ0(r, t)

p0(r, t)


+ ε



ψ1(r, t)

ρ1(r, t)

p1(r, t)


 , (67)

where (ψ0, ρ0, p0) is an exact solution of the set of equations (65) and
ε is a small parameter. Then, we linearize the hydrodynamic equations
at first order17. We find for equation (65a):

∂tρ1 +∇ · (ρ0∇ψ1 + ρ1∇ρ0) = 0 (68)

17 Note that this is exactly what we will do in Chapter 3 in the context of Bose-Einstein
condensates, see in particular the hydrodynamic equations (121) and the linearized
version (123).
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A linearization of equation (65c) leads to

p1 = c2(ρ0) ρ1, with c2(ρ0) =
dp
dρ

(ρ0), (69)

with c(ρ0) the background sound velocity. Moreover, equation (65b)
becomes at first order [109]

ρ0(∂tψ1 +∇ψ0 · ∇ψ1) = −p1. (70)

Then, using together expressions (68), (69) and (70), we obtain

∂t

[ρ0

c2
(∂tψ1 + v0 · ∇ψ1)

]
= ∇·

[
ρ0∇ψ1 −

ρ0

c2
(∂tψ1 + v0 · ∇ψ1)v0

]
,

(71)

where we have introduced v0 = ∇ψ0. Note that if v0 = 0, provided
that the background density ρ0 is constant (which leads to a constant
sound velocity c(ρ0) along the fluid flow), expression (71) reduces to
the wave equation (2), i.e., the wave equation for a massless scalar field
in Minkowski spacetime.

curved spacetime metric The situation is more interesting
when v0 6= 0. Let us write expression (71) with Einstein notations,
such that for example

∂t

(ρ0

c2
v0 · ∇ψ1

)
= ∂0

(ρ0

c2
vj0 ∂jψ1

)
, (72)

where the subscript 0 corresponds to the time coordinate t and j ∈
{1, 2, 3} stands for space coordinates x, y, z. Equation (71) then reads

∂0

(ρ0

c2
∂0ψ1

)
+ ∂0

(ρ0

c2
vj0 ∂jψ1

)

+ ∂j

(ρ0

c2
vj0∂0ψ1

)
+ ∂i

(
ρ0v

i
0 v

j
0 − ρ0 c

2δij
c2

∂jψ1

)
= 0.

(73)

We would like now to identify the previous expression with the wave
equation in curved spacetime (39). By defining

gµν =
1

c ρ0

(
1 vj0
vi0 vi0 v

j
0 − c2δij

)
,
√−g = (−det gµν)−1 =

ρ2
0

c
, (74)

Expression (73) becomes

∂µ(
√−g gµν∂νψ1) = 0. (75)

Then, by multiplying the last equation by 1/
√−g, we obtain the ex-

pected wave equation of a massless scalar field in a curved spacetime

∇µ∇µψ1 =
1√−g ∂µ(

√−g gµν ∂νψ1) = 0, (76)
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whose metric tensor is

gµν =
ρ

c

(
c2 − v2

0 (v0)j

(v0)i −δij

)
. (77)

The inverse metric tensor is given by expression (74). From equation
(77), it is easy to prove that the line element in this spacetime is given
by

ds2 = gµν dxµ dxν

=
ρ0

c
[c2 dt2 − (vi0dt− dxi)δij(v

j
0dt− dxj)].

(78)

We can already guess from the form of the metric tensor (77) the intrin-
sic connection between black holes and transonic flows. First, if v0 = 0,
we find the metric associated to a Minkowski spacetime (+,−,−,−);
this is what we already noticed in the last paragraph.
Now, if v0 6= 0 and the flow becomes supersonic (|v0| > c) in a certain

region, g00 becomes negative, exactly as it occurs for a Schwarzschild
metric when r becomes lower than the Schwarzschild radius 2m, see
equation (40).
Thus, let us take the math a step further and show the full analogy

between the metric (77) and the Schwarzschild metric (40). In polar
coordinates (r, θ, ϕ) the metric (77) becomes

gµν =
ρ

c




c2 − v2
0 v0,r v0,θ v0,ϕ

v0,r −1 0 0

v0,θ 0 −r2 0

v0,ϕ 0 0 −r2 sin θ



. (79)

Then, if v0 is only radial (see e.g., the right drawing of Figure 14), i.e.,
v0,θ = v0,ϕ = 0, the line element (78) becomes

ds2 =
ρ0

c
[c2dt2 − (v0,rdt− dr)2 − r2(dθ2 + sin2 θdϕ2)]. (80)

In this coordinates system, this line element exactly corresponds to the
so-called Painlevé -Gullstrand line element [80, 140]. By making the
following change of variable18

τ = t+

∫ r v0,r

c2 − v2
0,r

dr′, (81)

we obtain

ds2 =
ρ0

c



(

1−
v2

0,r

c2

)
c2dτ2 −

(
1−

v2
0,r

c2

)−1

dr2 − r2 dΩ2


 , (82)

with dΩ2 = dθ2 + sin2 θdϕ2. We can already see the similarity with the
Schwarzschild line element here. Let us now consider a transonic flow
with radial velocity

v0,r = −c
√
rH

r
, (83)

18 Note that τ can be understood as a time coordinate only if |v0,r| � c.
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where we assume that c is constant. Since c > 0, the minus sign in
the previous expression ensures that the velocity is directed towards
the center r = 0. Such a velocity splits the flow in two regions: for
r > rH the flow is subsonic (|v0,r| < c); for r < rH the flow is supersonic
(|v0,r| > c). The line element (82) becomes

ds2 =
ρ0

c

[(
1− r2

H

r2

)
c2dτ2 −

(
1− r2

H

r2

)−1

dr2 − r2 dΩ2

]
, (84)

and is conformally equivalent to the Schwarzschild metric (40), where
rH plays the role of the Schwarzschild radius. In our case, rH is called
acoustic horizon. In addition, if we define

C(r) =
c2 − v2

0,r

c2
, r? =

∫ r

[C(r′)]−1 dr′, (85)

and

ũ = τ − r?/c, ṽ = τ + r?/c, (86)

equation (82) becomes

ds2 = ρ0(r) (c2 − v2
0,r) dũ dṽ, (87)

where we dropped the angular part. Note the similarity between ex-
pressions (87) and (44). The structure of spacetime is exactly the same:
the acoustic horizon splits the spacetime in two regions (subsonic and
supersonic), each of them being conformally flat, but disconnected at
the horizon [117, 158].
Note that using expression (81) in equations (86), we obtain

ũ = t−
∫ r dr′

c+ v0,r(r′)
, ṽ = t+

∫ r dr′

c− v0,r(r′)
, (88)

in agreement with Ref. [158]. Note also that here we assume that the
sound velocity c is constant and absolute19 – the latter assumption will
not be true in the presence of dispersion, see e.g., Chapter 3.
Then, one can prove that the field ψ1, solution of the wave equation

(76), is also solution of [25]

∂2ψ1

∂ũ ∂ṽ
= 0. (89)

In addition, if we define

kũ =
ω

c+ v0,r
, kṽ = − ω

c− v0,r
, (90)

one finds
{
ψ1 ∝ e±iωũ = e±i(ωt−

∫ r kũ(r′)dr′),

ψ1 ∝ e±iωṽ = e±i(ωt−
∫ r kṽ(r′)dr′),

(91)

19 In the sense that any sound wave propagates at the sound velocity, independently
of its frequency or wavenumber; in other words we consider here a dispersionless
theory.
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with

ω − v0,r kũ = c kũ, ω − v0,r kṽ = −c kṽ. (92)

Therefore, a fixed frequency ω in the laboratory frame is related to the
co-moving frequency ωcm = ω − v0,r k via a Doppler shift. Then, the
ũ-modes correspond to ωcm = ck and the ṽ-modes to ωcm = −ck. We
also introduce the scalar product [158] [similar to expression (6)]:

(ψ1, ψ2) = −i
∫

R
[ψ1 ∂ηψ

?
2 − ∂ηψ1 ψ

?
2] dr, (93)

where ∂η = ∂t + v0,r∂r is the partial derivative with respect to time in
the co-moving frame.

2.2.2 Analogue Hawking radiation

Let us now turn our attention to the existence of an analogous Hawking
radiation using what we have learned from the previous subsection.
Suppose first that the flow is subsonic or supersonic everywhere –

in this case, the radial velocity is not given by expression (83). For
simplicity, we assume that the radial velocity is constant v0,r = Vr,
with |Vr| < c in a subsonic flow and |Vr| > c in a supersonic flow.
Solutions of the wave equation (89) are

ψω1 ∝ e±iω(t− r−rH
c+Vr

), or ψω1 ∝ e±iω(t+
r−rH
c−Vr ), (94)

where rH is just for the moment an integration constant used to compute
integrals (88). Let us introduce the coordinates pertaining to the co-
moving frame

η = t, ξ = r − rH − Vr t. (95)

Solutions (94) can be then recast in the form

ψω1,→ ∝ e±iωcm(η−ξ/c), or ψω1,← ∝ e±iωcm(η+ξ/c), (96)

and correspond to the right- (with the subscript →) and left-moving
modes (with the subscript←) with respect to the co-moving frame. We
recall that ωcm is the co-moving frequency. Using the scalar product
(93), it is easy to prove that the positive frequency modes in the subsonic
region correspond to exp[−iωcm(η±ξ/c)], while in the supersonic region
they are exp[iωcm(η ± ξ/c)].

On the contrary, if the flow now becomes transonic20 at a certain
position rH, the subsonic and the supersonic regions are disconnected.
Indeed, one sees from equations (88) that the variable ũ is ill-defined at

20 Note that the radial velocity is not necessarily given by (83) – the only requirement
lies in the existence of a position rH dividing the flow in a subsonic and a supersonic
region.
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the acoustic horizon. Approximating the flow velocity near the acoustic
horizon by v0,r ' −c+ α(r − rH), we obtain

ũ ' t− 1

α
ln
(α
c
|r − rH|

)
, α =

dv0,r

dr

∣∣∣∣
rH

> 0, (97)

which diverges when r → rH. As shown in Figure 15, we need to de-
fine two variables ũsub and ũsuper, each of them going from −∞ to +∞
and spanning the subsonic and the supersonic region, respectively. How-
ever these two parameters are totally disconnected between each other.
Indeed, let us imagine the point of view of an observer living in the
subsonic region and detecting a sound wave exp(−iωũsub) with ũsub =
Constant at a certain time t. When traced back in time, this wave
packet would seem to originate infinitely close to the acoustic horizon,
but would be still located in the subsonic region, so that no event oc-
curring in the supersonic region could be witnessed by the observer in
the subsonic part, see Figure 15. This figure can also be compared with
Figure 10.

Figure 15: Trajectories of sound waves near the acoustic horizon located at
r = rH, see equation (97). The subsonic and the supersonic re-
gions are completely disconnected by the presence of the horizon.
Any left-moving (right-moving) wave in the supersonic (subsonic)
region has emerged infinitely close to the acoustic horizon in the
asymptotic past. This figure can be compared with Figure 10.

The form of equation (97) is very similar to expressions (31) and (56)
in the case of the moving mirror problem and the gravitational collapse
– where α plays the role of the surface gravity κ. If we assume that in
the asymptotic past the flow were subsonic everywhere, a right moving
mode would be given by the simple expression (96) – this is what we call
an ingoing mode. Then, if at a certain time the flow becomes transonic,
the right moving modes in the subsonic part would be given in terms of
the complicated function (97) near the acoustic horizon – we call them
outgoing modes.

Exactly like the gravitational collapse and the moving mirror prob-
lems, the ingoing modes can be written as a sum of positive and nega-
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tive frequency outgoing modes through a Bogoliubov transformation21

of the form (19). Therefore, this mixing of positive and negative energy
modes will lead to spontaneous creation of particles from vacuum if one
quantizes the sound field as done by Unruh in 1981 [182]. He found that
a thermal spectrum should be emitted from the acoustic horizon with
temperature

T analogue
H =

~α
2πkB

, α =
dv0,r

dr

∣∣∣∣
rH

, (98)

i.e., the analogous version of expression (63). In the case of analogue
gravity, the analogous Hawking temperature depends on how fast is
the transition from the subsonic to the supersonic region through the
parameter α. In analogy to the surface gravity, this measures the “cur-
vature” of the flow near the sonic horizon.

To conclude, we hope that we convinced the reader of the strong
analogy between transonic flows and black holes. Unruh proved that
analogue systems indeed give rise to spontaneous emission of particles.
However, quantum fluctuations leading to analogue Hawking radiation
are too small to be detected in classical platforms22. This is the reason
why we will now turn our attention to quantum fluids – one-dimensional
flow of Bose-Einstein condensates, where the (analogue) spontaneous
Hawking radiation can be explored. This is what we discuss in the next
chapter.

21 We do not detail this transformation here because we will discuss them later in the
context of analogue gravity, see Chapter 4. Let us just mention that this mixing of
positive and negative frequencies results from a problem of analyticity of expression
(97) when crossing the acoustic horizon rH from the subsonic to the supersonic region.
This is similar to the problem encountered in Rindler space [25] where two regions
of spacetime are also disconnected. Likewise, this is nicely discussed and detailed in
the context of analogue gravity in Ref. [158].

22 Despite this fact, classical systems such as surface water experiments [59, 61, 159,
192] are still very exciting; for instance, one can use an external perturbation to
create stimulated Hawking radiation.



3HAWKING RADIAT ION IN BOSE -E INSTE IN
CONDENSATES

Garay et al [71] were the first to propose the use of Bose-Einstein con-
densates (BECs) as acoustic analogues, followed by many others [18–
21, 63, 76, 104, 164, 199, 202] in the last two decades. BECs are indeed
excellent candidates to explore Hawking radiation in analogue systems
for the following reasons:

First, the theory of Bose-Einstein condensation is well-established
[148, 153]. This is an uncontested advantage for studying quantum fluc-
tuations emerging in the condensate. Based on a Bogoliubov approach,
a theoretical treatment of these fluctuations for one-dimensional flows
of BECs was first suggested by Leonhardt et al in Refs. [115, 116].
In addition, BECs provide an excellent platform to explore the effect

of these fluctuations on the condensate itself, the so-called backreaction.
This might bring new perspectives in General Relativity, a theory which
is not unequivocal when quantum effects are taken into account. This
program exceeds the scope of this thesis, but we hope that a theoretical
analysis of the backreaction problem for sonic black holes in BECs will
be proposed in the future.

Second, BECs are quantum systems. Contrary to classical analogues,
for which Hawking radiation can only result from a disturbance external
to the system [59, 60, 159, 160], here, the analogous Hawking radiation
may originate from quantum fluctuations in the system. Quasiparticles
are spontaneously emitted from the acoustic horizon and propagate
in opposite direction, exactly as it would occur at the vicinity of a
gravitational black hole event horizon (see Section 3.2.1 and Figure 21).
This gives rise to correlated and entangled currents emitted outside and
inside the acoustic black hole.
This correlated signals can be identified and measured by means of

the density-density correlation function. This was first proposed in 2008
by a collaboration between teams from Bologna and Trento [15]. Con-
trary to gravitational black holes, information can be extracted from
the interior of a sonic black hole; it is then possible to measure exper-
imentally the density correlations in the supersonic region. Likewise,
density correlations are much less affected by thermal noise than a di-
rect measurement of the Hawking effect (see, for instance, Section 3.2.5
and [156]).

Motivated by this promising idea, theoretical predictions for specific
configurations of one-dimensional acoustic black holes in BECs have
been obtained in Refs. [110, 124, 156]. One of these configurations
was realistic enough to be implemented experimentally in 2010 by the

49
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Technion Group [105]. A first measurement of density correlations was
achieved in 2016 [177]. After several technical improvements of the ex-
perimental setup, a much less noisy measurement was performed in
2019 [131]. The theoretical results obtained during this PhD compare
very well with experimental data of Ref. [131]. Therefore, we are able to
conclude from this analysis that the Technion Group obtained a clear
signature of Hawking radiation in a Bose-Einstein condensate, almost
forty years after Unruh’s suggestion to use hydrodynamic analogues of
black holes [182].

In this chapter, we will first explain how a sonic horizon can be re-
alized in a Bose-Einstein condensate. We will also discuss two specific
configurations and the experimental realization of one of them. This
will conclude Section 3.1.

Then, in Section 3.2, we will provide a detailed theoretical analysis
of quantum fluctuations, within a Bogoliubov approach. The specificity
of this thesis is to improve the theoretical treatment previously used in
the field by taking into account the zero modes.
By means of this well-founded theory, we are able to reproduce with a

nice accuracy the experimental results recently published by the Tech-
nion Group in Ref. [131]. Finally, although we confirm that the ex-
perimental determination of the Hawking temperature is reliable, we
challenge some claims of Refs. [131, 177] in Section 3.3.

3.1 realization of an acoustic horizon in a bose-einstein
condensate

3.1.1 The Gross-Pitaevskii equation

The many body Hamiltonian describing N interacting bosons in the
presence of an external potential Vext is given, in second quantization,
by [45, 106, 153]

Ĥ =

∫
dr Φ̂†

[
− ~2

2m
∇2 + Vext +

g3D n̂

2

]
Φ̂, (99)

where Φ̂(r, t) = exp(i Ĥ t/~)Φ̂(r) exp(−i Ĥ t/~) is the field operator in
the Heisenberg representation, m the mass of the bosons, n̂ = Φ̂†Φ̂ the
density operator and g3D is the coupling constant.
The time evolution of the field operator Φ̂(r, t) is

i ~∂tΦ̂(r, t) = [Φ̂, Ĥ]

= − ~2

2m
∇2Φ̂(r, t) + [Vext(r) + g3D n̂] Φ̂(r, t).

(100)

We recall that the form of the Hamiltonian (99) corresponds to an
effective interaction between the particles Veff(r − r′) = g3D δ(r − r′)
characterized by a single parameter g3D. The coupling constant g3D and
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the s-wave scattering length a are related through the relation [148, 153]

g3D =
4π ~2 a

m
. (101)

This means that the details of the interaction potential, i.e., at the mi-
croscopic level, are ignored; only the scattering length a characterizes
the effects of the interaction on the gas on a macroscopic scale1. There-
fore, if we denote n3D the density of the gas and d the interparticle
distance, the use of this effective potential will be legitimate only if the
condition For 87Rb, a =

5.77 nm [27]. With
n3D ∼ 1014 cm−3,
a3 n3D < 10−3.

a� d = n
−1/3
3D (102)

is fulfilled [153]. In this case, the system is said to be dilute or weakly
interacting. We will always consider this mean-field regime in the fol-
lowing.

Bose-Einstein condensation occurs when the temperature is low enough
and when there is a macroscopic occupation of the lowest energy state,
i.e., when the number of atoms in this state becomes very large. In this
case, the Bogoliubov approach [28] consists in writing

Φ̂(r, t) = Φ(r, t) + δφ̂(r, t), (103)

where Φ(r, t) is a classical field, called the order parameter of the con-
densate and δφ̂(r, t) is a quantum correction which describes the quan-
tum fluctuations of the interacting Bose gas. The condensate density
is given by n(r, t) = |Φ(r, t)|2, while the density operator still reads
n̂ = |Φ̂|2.
Within this Bogoliubov approach, one needs to work in the grand

canonical ensemble since the number of particles in the condensate fluc-
tuates [37]. We will explain this point in more detail in Section 3.2 with
the addition of zero modes in the theory. Therefore, in the following, in-
stead of the Hamiltonian (99), we shall consider ĤGC = Ĥ−µ N̂ , where
µ is the chemical potential and N̂ =

∫
dr n̂ is the number of particles.

Inserting decomposition (103) in equation (100) leads, at zero order, to
the well-known time-dependent Gross-Pitaevskii equation [78, 152]:

i ~∂tΨ(r, t) = − ~2

2m
∇2Ψ(r, t) + [Vext(r) + g3D n̂− µ] Ψ(r, t), (104)

with Ψ(r, t) = Φ(r, t) exp(i µ t/~).

3.1.2 One-dimensional flow of Bose-Einstein condensates

We consider a quasi one-dimensional Bose-Einstein condensate: the gas
is elongated in the longitudinal direction x and radially confined by

1 In this thesis, we will only consider repulsive interactions, i.e., when a > 0 and
g3D > 0.
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a strong harmonic potential V⊥(r⊥) = mω2
⊥ r

2
⊥/2 of frequency ω⊥. A

schematic view and an experimental realization of a quasi-1D Bose-
Einstein condensate are shown in Figure 16.
We consider the possibility of adding a longitudinal external poten-

tial U(x). Its importance and its precise form will be discussed in Sec-
tion 3.1.3.

x
r⊥

Radial confinement with frequency ω⊥

Figure 16: (Left) Experimental realization of an elongated Bose-Einstein
condensate [79]. (Right) Schematic view of a quasi one-
dimensional Bose-Einstein condensate, whith x the longitudinal
coordinate and r⊥ the radial coordinate.

One uses the following Ansatz to describe the condensate wave func-
tion: Ψ(r, t) = ψ(x, t)ϕ⊥(r⊥; n), where n(x, t) =

∫
dr⊥|Ψ|2 = |ψ(x, t)|2

[95, 113]. The Gross-Pitaevskii equation (104) becomes [153]

i ~∂tψ(x, t) = − ~2

2m
∂xxψ(x, t)+

[
U(x) + g |ψ(x, t)|2 − µ

]
ψ(x, t), (105)

where g = 2 ~ω⊥ a [135] is an effective one-dimensional nonlinear cou-
pling constant.

1d mean-field regime The validity of equation (105) relies on
several conditions. As mentioned in the previous section, the total num-
ber of atoms should be large and the temperature low enough to reach
the condensed phase. Moreover, even at zero temperature, one needs to
respect the following inequalities

(
a

a⊥

)2

� na� 1, (106)

where a is the scattering length and a⊥ =
√

~/ω⊥m is the harmonic
oscillator length.
The left inequality ensures that the transverse dimension of the cloud

should be sufficiently large with respect to the scattering length a to
avoid the Tonks-Girardeau regime. This condition is equivalent to requir-
ing ξ � d [153], where d = n−1 is the one-dimensional inter-particle
distance and ξ = ~/√mg n is the healing length [45], i.e., the typical
length scale on which the interaction energy balances quantum pressure
[the kinetic term in equation (105)]. Say differently, if this condition is
not satisfied, the mean-field regime is no longer valid.

The right inequality ensures that the 1D dynamics does not triggers
excitations of the transverse degrees of freedom to avoid the 3D-like
transverse Thomas-Fermi regime.
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A last important remark at this point: note that a one-dimensional
Bose-Einstein condensate cannot exist due to the absence of long-range
order2 [130, 154]. However, a quasi-condensed phase can be reached
with a large occupation number of the ground state.

stationary and transonic flow Let us now consider a quasi
one-dimensional condensate moving from the left to right (in the pos-
itive x direction) at some velocity V . Moreover, the flow is taken sta-
tionary, meaning that the condensate wave function ψ does not depend
on time. Thus, in the following, we will only consider the stationary
Gross-Pitaevskii equation

µψ(x) = − ~2

2m
∂xxψ(x) + [U(x) + g n(x)]ψ(x), (108)

The previous equation describes the background density. Then, den-
sity fluctuations around this background may appear in the condensate.
These elementary excitations emerge from quantum fluctuations [see the
second term of the right-hand side of the Bogoliubov expansion (103)]
and behave as sound waves at low energy (i.e., in the long-wavelength
limit, see Figure 20).
In Bose-Einstein condensate, the sound velocity at which these exci-

tations propagate is given by

c =

√
g n

m
. (109)

Note that the sound velocity is well-defined when the density n(x) in
the previous expression is constant. The local sound velocity is indeed
an approximate concept, only rigorously valid where the condensate
density varies over typical length scales much larger than the healing
length.
To realize a sonic black hole configuration, one should modulate the

sound velocity and the flow velocity along the condensate to create a
subsonic region, where V < c, and a supersonic region, where V > c.
One may achieve such a dissymmetry along the flow by a proper chosen
external potential U(x) in equation (108). Indeed, in the presence of
such a potential, the density profile changes along the condensate, and
so does the sound velocity through the relation (109). Then, using the

2 If Ψ̂ is the field operator which describes the one-dimensional system, the one-body
density matrix is n(1)(x, x′) =

〈
Ψ̂(x) Ψ̂(x′)

〉
. In this case, a long-range order exists

if

n(1)(x, x′) −−−−−−−−→
|x−x′|/ξ→∞

n0, (107)

where ξ is the healing length and n0 the condensate density.
One shows that this limit diverges when using the Bogoliubov approach. However,
an exact derivation [130, 154] demonstrates that off-diagonal terms of the the one-
body density matrix tends to zero. This proves that no long-range order exists, and
hence, neither does a one-dimensional condensed phase [92, 127]. A nice discussion
about this problem can be found in Ref. [109].
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stationarity of the flow, one has (when the density does not vary too
much to ensure the validity of the sound velocity)

nV = Cst⇒ c2 V = Cst. (110)

This means that the flow velocity is also modulated. Therefore, one can
tune the parameters to obtain a region of higher density (and thus of
slower flow velocity) and an other region of lower density (and thus
of faster flow velocity), such that the first region is subsonic and the
second one is supersonic. In this case, the flow becomes transonic.

notations and conservation laws The external potential
U(x) in equation (108) plays the role of an obstacle. Furthermore, we
will consider cases where U(x) is discontinuous at x = 0, and define
the subscripts u for upstream (x < 0) and d for downstream (x > 0)
this obstacle. We also introduce the Mach numbers mu,d = Vu,d/cu,d,
where Vu (Vd) is the upstream (downstream) flow velocity and cu (cd)
the upstream (downstream) local sound velocity. The analogous black
hole is realized in a situation where the far upstream (x→ −∞) flow is
subsonic (mu < 1), and the far downstream one (x→ +∞) is supersonic
(md > 1). Here, the condensate wave function, solution of equation
(108), is

ψ(x) =

{ √
nu exp(ikux)φu(x) for x < 0 ,
√
nd exp(ikdx)φd(x) for x > 0 .

(111)

In expression (111) we have separated the upstream and downstream ex-
pressions of ψ(x) because U(x) is discontinuous at x = 0. The quantities
φu(x) and φd(x) will be determined later; we demand that limx→−∞ φu(x)
and limx→+∞ φd(x) are constant complex numbers of modulus unity, so
that nu and ~ku/m = Vu > 0 (nd and ~kd/m = Vd > 0) are the up-
stream (downstream) asymptotic density and velocity. The asymptotic
healing lengths and sound velocities are ξu,d and cu,d, with ~2/(mξ2

α) =
mc2

α = gαnα (α = u or d) where gu,d = limx→∓∞ g(x). We allow for
a position-dependent effective atomic interaction g(x) for being able
to consider the model configuration introduced in Refs. [15, 36] and in
Section 3.1.3, which we denote as “flat profile” below.
Inserting the asymptotic limits of (111) (when x → ∓∞) in the

stationary Gross-Pitaevskii equation (108) gives the conservation laws

nuVu = ndVd ,
~k2

u

2m
+ Uu + gunu =

~k2
d

2m
+ Ud + gdnd , (112)

where Uu,d = limx→∓∞ U(x). The first of these equations is the current
conservation relation and the second one can be considered as a con-
servation of the local chemical potential (one can indeed define such a
local quantity in regions where the density varies weakly over a distance
of the order of the healing length).
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3.1.3 Theoretical configurations

flat profile configuration This configuration has been in-
troduced in Refs. [15, 36], as an idealized structure in which the back-
ground density profile is a plane wave of constant amplitude and veloc-
ity: nu = nd ≡ n0, ku = kd ≡ k0 and φu(x) = φd(x) ≡ 1. A transonic
configuration is achievable in such a set-up when

U(x) =




Uu for x < 0 ,

Ud for x > 0 ,
g(x) =




gu for x < 0 ,

gd for x > 0 ,

and gun0 + Uu = gdn0 + Ud .

(113)

In this case one has a constant flow velocity V0 = ~k0/m and

cd
cu

=
mu

md
=
ξu
ξd
< 1 . (114)

An experimental realization of this idealized configuration seems dif-
ficult. First, the coupling constant g(x) varies along the condensate;
obtaining such a local monitoring of g(x) is certainly a great challenge.
Second, one needs to control very precisely the external potential U(x)
to compensate the variations of the coupling constant and to keep con-
stant the chemical potential µ = ~2 k2

0/(2m) + U(x) + g(x)n0.
This is why another configuration, called “waterfall profile” or “step-

like profile”, has been suggested in Ref. [110] and has been realized
experimentally [102, 105, 131, 175, 177] (see next paragraph and Sec-
tion 3.1.4).

waterfall configuration The condensate is accelerated in
the downstream region x > 0 by an attractive step-like potential U(x) =
−U0Θ(x), where Θ is the Heaviside function and U0 > 0 (see Fig-
ure 17). The nonlinear parameter g is constant throughout the system.
In this transonic configuration the order parameter [equation (111)]
corresponds upstream to half a grey soliton and downstream to a plane
wave [114]:

φu(x) = cos θ tanh (x cos θ/ξu)− i sin θ , and φd(x) = −i , (115)

where sin θ = mu.
Contrary to the flat profile configuration in which the upstream and

downstream Mach numbers can be chosen independently, here, oncemu

is fixed all the other dimensionless parameters of the flow are determined
by equations (112) and by imposing continuity of ψ at x = 0. This yields





Vd
Vu

=
nu
nd

=
1

m2
u

= md =

(
ξd
ξu

)2

=

(
cu
cd

)2

,

U0

gnu
=
m2
u

2
+

1

2m2
u

− 1.

(116)
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0

x

ξu

U(x)

U0
= −Θ(x)

−1

1

Vu < cu

Vu Vd

Vd > cd

n(x)

Figure 17: Waterfall configuration. The red curve is a step-like potential
whose discontinuity is located at x = 0. The blue curve is the
condensate density profile, corresponding to half a grey soliton
in the upstream region (see equation (115)) and constant in the
downstream region. The sound velocity can be found from the
background density profile through equation (109) and is shown
in Figure 18. Asymptotic upstream and downstream sound ve-
locities are denoted cu and cd, respectively. The flow moves from
the left to to right in the lab frame as indicated on the graph
by brown arrows. Upstream and downstream flow velocities are
denoted Vu and Vd, respectively. The interior of the sonic black
hole, i.e., the supersonic region corresponds to the gray shaded
region.
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Figure 18: Flow velocity v(x) and sound velocity c(x) along the condensate.
Asymptotic upstream and downstream values are mentioned on
the graph. The dashed red line indicates the boundary between
the subsonic and supersonic regions where v = c. The light gray
shaded region (upstream the obstacle located at x = 0) corre-
sponds to a region where the condensate density varies over typ-
ical length scales much larger than the healing length. Thus, the
local sound velocity c cannot be properly defined in this shaded
area and the concept of sonic horizon becomes ill defined. The
dark gray shaded region is the interior of the sonic black hole.

location of the acoustic horizon As noticed in Refs. [109,
110], the acoustic horizon, which is at the boundary between the sub-
sonic and the supersonic regions (i.e., where v = c), is not exactly
located at x = 0 but slightly upstream the obstacle (see Figure 18).
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In addition, as already discussed in the last paragraph, the sound ve-
locity is only well-defined when the density varies over typical length
scales much larger than the healing length. Therefore, the concept of
sonic horizon is ill defined, and this is the reason why the region at the
vicinity of x = 0 is shaded in Figure 18.

However, it will not be a problem in the following: we just need
to remember that the position x = 0 is the location of the potential
discontinuity, where one has to be careful with matching conditions
between the upstream and the downstream regions (see Section 3.2).

3.1.4 Experimental realization of an acoustic horizon

In this subsection, we discuss the experimental realization by the Tech-
nion group of an acoustic black hole in a Bose-Einstein condensate us-
ing a step-like external potential [131, 177]. The one-dimensional Bose-
Einstein condensate consists of 8.000 87Rb atoms. The region x < 0
is illuminated with an additional laser beam that creates a positive
potential as shown in Figure 19. Thus, a step-like potential whose dis-
continuity is located at x = 0 is formed: this is a waterfall configuration.
Then, the potential is put in motion at a constant speed to the left, cre-
ating a subsonic and a supersonic region as explained in the previous
subsection. Figure 19 shows the experimental density profiles of the
condensate obtained in 2016 [177] and 2019 [131]. The resulting density
profiles fit quite well with the theoretical and expected profile (115), as
shown in Figure 19 where the green curves correspond to half a grey
soliton3.
We now optimize our theoretical parameters such that they are the

closest from the experimental configuration. This will be useful in the
following to compare our theoretical results with experimental ones (see
Section 3.2.5 and Section 3.3). First, we know from continuity equations
(116) that, in a waterfall configuration, once one of the parameters is
fixed (for instance the upstream Mach numbermu) all the others are set
as well. Second, the experiment is not a ‘true’ waterfall configuration,
in the sense that experimental parameters do not exactly respect the
equalities imposed by conditions (116).
Thus, we should fix the right parameter to obtain the best configura-

tion with respect to the experimental setup. A table with experimental
and theoretical parameters can be found in Appendix A. In this table,
we compare different configurations, whose parameters are fixed by one
of the equalities of (116). For instance, the experimental downstream
Mach number is mexp

d = 2.9 [131]. If we choose the same value for the
theoretical downstream Mach number, then, all the other theoretical pa-
rameters can be calculated with conditions (116). Actually, this choice
(fixing md = 2.9) leads to the best agreement between experimental
and theoretical parameters.

3 The agreement is slightly less good in 2019 (graph (c) in Figure 19) than in 2016
(inset of graph (b) in Figure 19). Notwithstanding this point, we will nicely reproduce
the experimental density correlations signal showing the robustness of the theoretical
description, see below.
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Figure 19: (a) Image of the experimental one-dimensional Bose-Einstein con-
densate obtained in the presence of a step-like external potential
[177]. The step-like function is shown on top of the figure and
moves to the left. The image is obtained by absorption of light:
the brightest region is the outside of the sonic black hole (high-
density area), while the darkest region is the inside (low-density
area).
(b) Density profile obtained from (a). The green curve in the inset
is half a grey soliton.
(c) Density profile obtained in Ref. [131]. The green curve cor-
responds to the expected theoretical background density for a
waterfall configuration with mu = 0.59 (see the text). The inset
shows the step-like potential which moves to the left in the free-
falling frame, implying that the flow moves to the right in the lab
frame.

3.2 density correlations in bose-einstein condensates

We have seen hitherto how to construct an acoustic black hole in a
Bose-Einstein condensate. The questions we would like to address in
this section are:

• How could we define an analogue of Hawking radiation in Bose-
Einstein condensate?

• How to detect such a signal?

3.2.1 Bogoliubov approach

First, the analogue of Hawking radiation originates from quantum fluc-
tuations emerging from the condensate.
To describe these fluctuations, let us start by decomposing the total

field operator Ψ̂(x) using a Bogoliubov approach, as done in (103):

Ψ̂(x) = ψ(x) + δψ̂(x, t), (117)

where δ ˆψ(x, t) is as small quantum perturbation. For the moment, we
consider δψ̂(x, t) as a small classical field, denoted as δψ, with ψ + δψ
solution of the time-dependent Gross-Pitaevskii equation (105).
Linearizing this equation (see, e.g., Ref. [65]) leads to the well-known

Bogoliubov-De Gennes equations

i ~∂t

(
δψ

δψ?

)
=

(
H g ψ2

−g (ψ?)2 −H

) (
δψ

δψ?

)
, (118)
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where H = − ~2

2m∂
2
x + 2 g |ψ|2 + U(x)− µ.

dispersive hydrodynamics equations It is interesting at
this point to establish the connection with Chapter 2. To this end, we
describe the condensate wave function in terms of number density and
phase by means of the Madelung representation: For the moment

we do not assume
stationarity of the
flow.

ψ(x, t) =
√
n0(x, t) ei θ0(x,t), (119)

where n0 is the condensate density and θ0 its phase; the phase being
connected to the flow velocity V by the formula

V (x, t) ≡ ~
m
∂x θ0. (120)

From the Gross-Pitaevskii equation (105) one finds two equations for
n0 and θ0:

∂t n0 + ∂x (n0 V ) = 0 ,

∂t V + V ∂x V +
g

mρ0
∂x P +

~2

2m2
∂x Π +

1

m
∂xU(x) = 0,

P =
n2

0

2
, and Π = − 1√

n0
∂xx
√
n0,

(121)

where P is an effective pressure induced by nonlinearities and Π is the
quantum pressure [153].
The set of equations (121) are the hydrodynamics equations: the first

one is the continuity equation, the second one is the Euler equation.
However, one sees a main (and dramatic) difference with the hydrody-
namics equations introduced in Chapter 2: the addition of dispersive
effects in the system through the quantum pressure term in the second
equation of (121) will prevent us to define a proper metric4 (see below).

lagrangian density and metric Let us now imagine that
the density and the phase slightly fluctuate, such that the total classical
field which describes the system becomes This is nothing

but the Bogoliubov
decomposition
(117)

Ψ =
√
n0 + n1 e

i (θ0+θ1) =
√
n0e

i θ0 + δψ,

with δψ =
√
n0e

i θ0

(
n1

2n0
+ i θ1

) (122)

Using the linearized version of the time-dependent Gross-Pitaevskii
equation, namely the Bogoliubov-De Gennes equations [see equation
(118)], one finds [119]

(∂t + v0 ∂x) θ1 = −mc2(−i ∂x)

~n0
n1, (123a)

(∂t + ∂x v0) (∂t + v0 ∂x)θ1 − c2(−i ∂x) ∂2
x θ1 = 0, (123b)

4 As we already mentioned in Chapter 2, dispersive effects are totally absent in general
relativity. For massless fields, the speed of light c is the speed of waves, regardless
of their frequency or wavevector. The wave speed is absolutely fixed.
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where c2(−i ∂x) is an operator which takes into account the dispersion
in the system:

c2(−i ∂x) = c2 − ~2

4m2
∂2
x, (124)

with c =
√
n0 g/m, the usual sound velocity.

Note that the set of equations (123) are obtained assuming that n0

is constant. Albeit this is true for the flat profile configuration, this
assumption is incorrect for the waterfall configuration in the subsonic
region at the vicinity of the horizon (see Figure 17). However the density
tends reasonably fast to its constant value nu (for a specific case of
experimental interest where n(x) ' nu for x < −3 ξu). In any case,
as we already mentioned in Section 3.1.3, one is not able to define a
proper sound velocity when the density varies on scales of the order of
the healing length5.
Despite this assumption, equations (123) are very instructive and

meaningful. The field θ1(x, t) is solution of a (massless) wave equation in
curved spacetime. Indeed, when c2(−i∂x) = c2, i.e., in the dispersionless
regime, equation (123b) can be written in terms of a metric gµν :

1√
−G ∂µ(

√
−G gµ ν∂νθ1) = 0, (125)

with G = det gµν . One finds in this case

gµν =
n0

mc

(
c2 − v2

0 v0

v0 −1

)
, (126)

which is equivalent to the metric derived in Chapter 2 [see equation (77)].
Equivalently, the field θ1(x, t) can be seen as a massless field propagating
in a 1+1D curved spacetime whose metric is given by equation (126).

In presence of dispersion, we are forced to abandon the concept of
metric, which is strictly valid in a dispersionless regime. However one
can still write a Lagrangian density from which equation (123b) is de-
rived [158]. We introduce a complex field θ(x, t) solution of the massless
wave equation (125), such that θ1 = θ+θ?. This ensures that θ1 defined
in expression (122) is real and solution of equation (123b). Then, the
Lagrangian density reads

L =
1

2
|(∂t + v ∂x) θ|2 − 1

2
|c(−i ∂x) ∂x θ|2. (127)

Similarly, we also introduce n(x, t), a solution of equation (123a) such
that n1 = n + n?.This field is related to the canonical momentum π
associated to θ through the relation

π =
∂L

∂(∂t θ?)
= (∂t + v ∂x) θ =

(123a)
−mc2(−i ∂x)

~n0
n. (128)

5 Equations (123) are derived in Ref [119] with a varying density, but neglecting
dispersive effects. The derivation also leads to a generalized Klein-Gordon equation.
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scalar product From the Lagrangian density (127) we can also
derived a conserved current [133]

Ji = i

[
∂L

∂(∂i θ?)
θ? − ∂L

∂(∂i θ)
θ

]
, where i ∈ {t, x}. (129)

The current Jt can be understood as a density of charge and is asso-
ciated to a conserved quantity – the scalar product – defined as [158]

〈θk|θl〉 = i

∫

R
Jt dx = i

∫

R
dx (θ?k πl − θl π?k) , (130)

where θk,l are two solutions of equation (123) and πk,l are derived from
equation (128). Introducing Λk = (−πk + i θk, −πk − i θk)T, the scalar
product (130) becomes

〈Λk|Λl〉 =

∫

R
dxΛ†k σz Λl, (131)

with σz = diag(1, −1). This scalar product will be of importance in the
following to normalize correctly the excitation modes emerging from
quantum fluctuations. Indeed, from this scalar product, one can define
the norm N of an excitation mode: N = 〈θ|θ〉 = −〈θ?|θ?〉, or equiva-
lently N = 〈Λ|Λ〉 = −〈σx Λ?|σx Λ?〉, where σx is the Pauli matrix.

dispersion relation Let us now consider a plane wave θ(x, t) =
A exp[−i (ω t − q x)], solution of equation (123b). We obtain immedi-
ately the corresponding dispersion relation

(ω − V q)2 = ω2
B(q), with ωB(q) =

√
c2 q2 +

(
~ q2

2m

)2

, (132)

ωB(q) being the so-called Bogoliubov dispersion relation6.
If the condensate were at rest, i.e., V = 0, the elementary excitations

would have frequency ω = ωB, as expected in Bose-Einstein condensa-
tion theory using a Bogoliubov approach. Yet, when the condensate is
moving, dispersion relation (132) implies that the frequency undergoes
a Doppler shift, which is in some sense a very intuitive result. Therefore,
in the free-falling frame (where the condensate is at rest) the emitted ex-
citation has frequency ωB, while in the lab frame (where the condensate
is moving), it has frequency ω, related to ωB via equation (132).

6 Let us add a brief comment on the Bogoliubov dispersion relation. This expression
can be rewritten in terms of dimensionless parameters and reads in this case [148,
153]

~ωB(Q)/(mc2) = Q

√
1 +

Q2

4
, (133)

with Q = ξ q. Low energy excitations (when Q � 1) travel at the sound velocity
with energy ~ωB = c p (p = ~ q). These quasiparticles are sound waves and are
called phonons. When Q� 1, excitations become free particles with energy ~ωB =
p2/(2m) +mc2.
Denoting λ the wavelength of the excitation, one sees that the turning point between
the phonon (where interactions dominate) and the free particles regimes (where
quantum pressure dominates) takes place around λ ∼ ξ, which corresponds to the
proper definition of the healing length [45, 148, 153] introduced in Section 3.1.2.
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(a)

(b)

Ω

Ω

Figure 20: (a) Free-falling frame – Blue curve: Bogoliubov dispersion rela-
tion ωB(q) in units of energy mc2. Dashed blue curves indicate
branches of negative norm. Red lines: (ω − v q)2 with v < c in
the subsonic region (left) and v > c in the supersonic region
(right). The lab frequency ω is fixed. The dashed black line cor-
responds to −c q and is tangent to ωB(q) for q � 1. The intersec-
tions between straight lines and ωB(q) are solutions of equation
(132) with real wavenumbers and are indicated by brown dots.
Two other solutions of equation (132) also exist, but with imag-
inary wavenumbers: the evanescent channels. The dotted green
line in the supersonic region (right) shows the frequency thresh-
old Ω above which two intersection points disappear and become
evanescent waves. For ω > Ω, the dashed green line intersects two
times the Bogoliubov dispersion relation (green dot, the other one
is out of bounds of the figure), similarly to the subsonic region
(left).
(b) Lab frame – The blue curve is the dispersion relation (132) in
the lab frame, where dashed branches are of negative norm. The
lab frequency ω is fixed and one recovers the same intersection
points as in the above figure (a). The same dotted and dashed
green lines are indicated in the supersonic region (right). The dif-
ferent propagation channels are labeled α|in or α|out, depending
if they travel in the subsonic (α = u) or the supersonic (α = d)
region, towards (in) or away from (out) the horizon. We indicate
with an arrow their direction of propagation.

In our case, V = Vα, with α = u in the subsonic (upstream) region,
and α = d in the supersonic (downstream) region. Figure 20 shows the
dispersion relation in the free-falling frame [i.e., when ω = ωB(q)] and in
the lab frame7. Note that the solid lines are branches of positive norm,

7 Note that in Figure 20 we use dimensionless units: the frequency is in units of mc2

and the wavenumber in units of ξ−1, with ξ the healing length.
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i.e., when 〈θ|θ〉 > 0, while dashed curves are branches of negative norm
[〈θ|θ〉 < 0].

By means of equation (132), one sees that the possible modes of emis-
sion in each region (subsonic or supersonic), can be found graphically as
the intersections between straight lines ω(q)−Vα q and the Bogoliubov
dispersion relation ωB(p). This is what is outlined Figure 20. For a fixed
frequency ω, since the tangent of ωB(q) equals cq in the long-wavelength
limit (ξ q � 1, with ξ the healing length), one finds two possible modes
of excitation in the subsonic region (because, here, Vu < c). In the
supersonic region (Vd > c) the situation is more complex: below a cer-
tain threshold Ω there are four modes of excitations; when ω > Ω, two
modes become evanescent and the line ω(q)−Vd q intersects ωB(q) only
two times.

scattering channels As one can see from Figure 20, these
excitation modes are labeled ` = α|in or ` = α|out, with α = u, d,
depending if the excitation travels in the upstream or the downstream
region, towards (ingoing-modes) or away (outgoing-modes) from the
obstacle located at x = 0. Each of them takes part of three different
scattering processes induced by a ingoing-mode. For example, a ingo-
ing-mode emitted in the upstream region and propagating to the right
(` = u|in) will scatter at the horizon and be converted in outgoing-
modes, either propagating in the upstream region against the flow or
in the downstream region in the direction of the flow. This process of
mode conversion is schematically represented in Figure 21. Two other
scattering processes can be induced by ` = d1|in or ` = d2|in. Note that
the evanescent modes, characterized by a complex wavenumber q, are
also mentioned in Figure 21.

Figure 21: Sketch of the different channels contributing to the incoming
quantum modes U , D1 and D2. In each plot the background
condensate propagates from left to right, the white region corre-
sponds to the upstream subsonic flow, the gray one to the interior
of the analogous black hole (downstream supersonic flow) and the
region of the horizon is represented by the dark gray shaded inter-
face (see also Figure 18). The labels indicate the different modes
of emission shown in Figure 20. Each mode (U , D1 and D2) is
seeded by a ingoing channel (u|in, d1|in and d2|in) propagating
towards the horizon.

basis set for expanding the elementary excitations
We learned from the aforementioned paragraphs that quantum fluctu-
ations in a moving condensate result in the emission of quasiparticles.
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These excitations are plane waves characterized by their frequency ω
(ωB in the free-falling frame), their wavenumber q, and also their norm.
They can be emitted in different modes, whose notations are detailed in
the previous paragraph. Positive (negative) norm modes carry a positive
(negative) charge, i.e., a positive (negative) scalar product.

We shall now expand the small classical field δψ (see Equation 117)
over a complete set of eigenvectors. We look for stationary modes8 of
the form

(
δ ψω

δ ψ?ω

)
= Ξ e−i ω t =

(
u(x)

v(x)

)
e−i ω t, (134)

where u(x) and v(x) are the Bogoliubov amplitudes. Inserting (134) in
the Bogoliubov-De Gennes equations (118) leads to well-known diago-
nalization problem of the Bogoliubov-De Gennes Hamiltonian

~ω Ξ = LBG Ξ , with LBG =

(
H g ψ2

−g (ψ?)2 −H

)
, (135)

where we recall that H = − ~2

2m∂
2
x + 2 g |ψ|2 + U(x) − µ. Thus, Ξ is an

eigenvector with eigenvalue ~ω. Note that the symmetry property of
the Bogoliubov-De Gennes equations [65] implies that for each solution
Ξ = (u, v)T of energy ε = ~ω of equation (135), the quantity Υ =
(v?, u?)T = σx Ξ∗ is also a solution of energy −ε = −~ω.

From equation (131), one checks that the norm

〈Ξ|Ξ〉 =

∫

R
dxΞ† σz Ξ (136)

is conserved. Moreover, if 〈Ξ|Ξ〉 > 0, then 〈Υ|Υ〉 < 0. For a certain mode
Ξ emitted with frequency ω and wavenumber q, it is worth noticing
that the sign of its norm only depends on the sign of ωB(|q|), i.e., the
frequency of this mode in the free-falling frame9. Therefore, looking at
Figure 20, we notice that the D2-mode has a negative norm, or say
differently, carries a negative charge, while the U and D1-modes are
positive norm modes.
This last remark is very important. Indeed, we can already guess

where the analogous Hawking radiation in BECs comes from: each scat-
tering processes shown in Figure 21 gives birth to a positive norm mode
u|out propagating away from the horizon outside the acoustic black
hole, and a negative norm mode d2|out also propagating away from the
horizon inside the black hole. These two modes are nothing but the
analogous Hawking pair in our system. The specificity of acoustic black
holes in BECs lies in the fact that an other outgoing positive norm

8 The existence of stationary modes is ensured by the time invariance of the La-
grangian density (127) [133].

9 Indeed, this directly comes from equation (131). Going to the free-falling frame,
one sees that π = ∂t′θ, with t′ = t, x′ = x − v0 t, and ∂t′ = ∂t + v0 ∂x. Then,
by considering a stationary mode θ(x′, t′) = θ̃(x′) exp[−i ωB(|q|) t′], the norm is
〈θ|θ〉 = 2ωB(|q|)

∫
R dx |θ̃|

2.
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mode d1|out is also emitted during the scattering process, leading to
tripartite entanglement (see Chapter 4).
Then, combining the different channels with appropriate matching

conditions at x = 0 one can build modes defined on all the real axis
which form a basis set for expanding the elementary excitations. We
choose to build solutions on well defined ingoing channels u|in, d1|in,
and d2|in, as shown in Figure 21. The corresponding wave-functions are
denoted as ΞU , ΞD1 and ΞD2, with ΞL(x) = (uL(x), vL(x))T . They have
the form,

for x < 0 : ΞU(x) = Su,u Ξu|out(x) + Seva
u,u Ξu|eva(x) + Ξu|in(x) ,

ΞD1(x) = Su,d1 Ξu|out(x) + Seva
u,d1 Ξu|eva(x) ,

ΞD2(x) = Su,d2 Ξu|out(x) + Seva
u,d2 Ξu|eva(x) ;

for x > 0 : ΞU(x) = Sd1,u Ξd1|out(x) + Sd2,u Ξd2|out(x) ,

ΞD1(x) = Sd1,d1 Ξd1|out(x) + Sd2,d1 Ξd2|out(x) + Ξd1|in(x) ,

ΞD2(x) = Sd1,d2 Ξd1|out(x) + Sd2,d2 Ξd2|out(x) + Ξd2|in(x) ,

(137)

with

Ξ`(x) ≡
(
u`(x)

v`(x)

)
= ei q` x

(
eimVα x/~ U`(x)

e−imVα x/~ V`(x)

)
, (138)

where the labels ` refer to the possible modes of emission (` = α|in
or ` = α|out), and Vα is the flow velocity in the subsonic (α = u) or
the supersonic (α = d) region. In the flat profile configuration, and
also in the downstream region of the waterfall configuration (where φα,
defined in equation (111), is constant) the solution of equation (135) are
plane waves. In the upstream region of the waterfall configuration the
solutions are also known, see, e.g., Ref. [24] and the explicit expressions
of U`(x) and V`(x) are given in Ref. [110]. In equation (138) q`’s are
the wave vector of the Bogoliubov modes, solutions of the dispersion
relation (132). The S’s in equation (137) are reflection and transmission
coefficients: for instance Su,d1(ω) describes how the amplitude of a wave
of angular frequency ω initiated in the d1|in channel is scattered onto
the u|out one. Note that in the above expressions all quantities depend
on ω.
The classical field δψ can be now expanded over the basis formed by

eigenvectors ΞL and ΥL:

δψ(x, t) =

(
δψ(x, t)

δψ?(x, t)

)

=

∫ +∞

0
dω

∑

L∈{U,D1}
ΞL(ω, x) e−i ω t bL(ω) + ΥL(ω, x) ei ω t b?L(ω)

+

∫ Ω

0
dωΥD2(ω, x) ei ω t bD2(ω) + ΞD2(ω, x) e−i ω t b?D2(ω) ,

(139)
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with
{
bL(ω) = 〈ΞL|δψ〉 , and b?L(ω) = −〈ΥL|δψ〉 , if L ∈ {U, D1},
bD2(ω) = 〈ΥD2|δψ〉 , and b?D2(ω) = −〈ΞD2|δψ〉 .

(140)

In equation (139), Ω is the threshold above which the mode D2 disap-
pears. Note that in the case of the D2-mode the positive norm mode is
ΥD2(ω, x) ei ω t for ω > 010. The validity of equation (139) is based on a
correct normalization of ΞL, i.e.,

〈
ΞL′(ω)|ΞL(ω′)

〉
= νLδL,L′δ(ω − ω′) , (141)

with νU = νD1 = 1 and νD2 = −1. Using expansion (137), one sees
that this normalization imposes the following relation between the S-
coefficients:

S†ηS = η , where S =



Su,u Su,d1 Su,d2

Sd1,u Sd1,d1 Sd1,d2

Sd2,u Sd2,d1 Sd2,d2


 , (142)

and with η = diag(1, 1,−1). Note that the evanescent are not involved
in equation (142) because they do not carry any current [110].

3.2.2 Zero modes

The decomposition (139) does not form a complete basis. Indeed, the
linear operator LBG [see equation (135)] is not self-adjoint and one can-
not build a priori a complete basis set from the eigenfunctions ΞL. A
general technique has been exposed in Ref. [26] for building a Jordan
representation of LBG which, besides its normalized eigenvalues, admits
also solutions of zero energy and zero norm.

Indeed, within the Bogoliubov approach, the phase of the condensate
wave function is fixed, implying that the global U(1) symmetry is bro-
ken. This symmetry breaking is actually associated to a zero energy solu-
tion of equation (135): for any fixed θ, the quantity ψθ(x) = ψ(x) exp(iθ)
is also solution of the stationary Gross-Pitaevskii (108). Since one can
write ψθ ' ψ + iθ ψ it follows that i θ ψ is a solution of the linearized
Gross-Pitaevskii equation with ω = 0.
The corresponding solution of equation (135) reads (the term i θ has

been factorized out)

P =

(
ψ

−ψ?

)
, with LBG P = 0 . (143)

10 For completeness we mention that another possible expansion for the D2-mode
would have been

... +

∫ 0

−Ω

dω ΞD2(ω, x) e−i ω t 〈ΞD2|∆〉 −ΥD2(ω, x) ei ω t 〈ΥD2|∆〉 .
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We recall that ψ(x) is the condensate wave function and takes a different
form in the upstream and the downstream regions, see expressions (111).
This is the reason why we introduce

Pα(x) =

( √
nα e

i kα x φα(x)

−√nα e−i kα x φ?α(x)

)
, with LBG Pα = 0 , (144)

where kα = mVα/~ and, as usual, P = Pu for negative x and P = Pd
for positive x. These modes have zero norm: 〈Pα|Pα〉 = 0.

As we noticed earlier, for each solution of the Bogoliubov-De Gennes
equations (118) with ε = ~ω > 0, one solution of negative energy
−ε also exists. Thus, we expect that an another mode of zero energy
should be associated to the mode Pα. This mode of excitation actually
corresponds to addition of particles to the system [148]. Indeed, if the
number of particles varies, so does the chemical potential µ. Thus, let
us consider a family of solutions of the Gross-Pitaevskii equation (105)
parameterised by µ:

ψµ,α(x, t) = ψst
µ,α(x) e−i(µ−µ0) t , (145)

with α ∈ {u, d} and where ψst
µ=µ0,α(x) =

√
nα exp(i kα x)φα(x) is a

stationary solution of equation (108) with µ = µ0. If the chemical po-
tential varies around µ0, δψ = ψµ0+δµ−ψµ0 is a solution of the linearised
Gross-Pitaevskii equation (118) when δµ→ 0:

i ~ ∂t

(
∂µψµ,α|µ=µ0

∂µψ
?
µ,α|µ=µ0

)
= LBG

(
∂µψµ,α|µ=µ0

∂µψ
?
µ,α|µ=µ0

)
, (146)

with ∂µψµ,α|µ=µ0 = ∂µψ
st
µ,α|µ=µ0 − i t~ ψst

µ0,α. One finds

LBG Qα =
i

Meff

Pα, with Qα =

(
qα(x)

−q?α(x)

)
, (147)

where qα(x) = i ∂Nψ
st
µ,α|µ=µ0 and where 1/Meff = dµ/dN [26, 148, 157]

plays the role of an effective mass (N being the number of particles in
the system). One has also 〈Qα|Qα〉 = 0.
In our case, the system is infinite and, thus, Meff → ∞. Indeed, if

we slightly anticipate on Section 3.2.3, the phase of the condensate
deviates from its initial value and this is known as the phenomenon of
phase diffusion [118]. However, the inertia associated to the change of
the global phase of a system of infinite number of particles is infinite and
this imposes Meff →∞ [see equation (161) of Section 3.2.3]. Therefore,
the mode Qα is also solution of Qα LBG = 0.
In the following, we only explicit the expressions of Qα for the flat

profile and the waterfall configurations. The details of calculations can
be found in Appendix B.
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flat profile

Q̄u = DeΛuXu

(
−i Λu

2 −mu

−i Λu
2 +mu

)
,

Q̄d = A

(
1

−1

)

+DE eiK0 Xd

(
K0
2 −md

K0
2 +md

)
+DE? e−iK0 Xd

(
−K0

2 −md

−K0
2 +md

)
,

(148)

with

Qα =

(
ei kα x 0

0 e−i kα x

)
Q̄α

Xα = x/ξα, K0 = 2
√
m2
d − 1, and Λu = 2

√
1−m2

u ,

A = D [md (E + E?)−mu] ,

E = − Λu
2mdK

2
0

ξd
ξu

(Λumd + imuK0) .

(149)

The parameterD in equations (148) and (149) can be found numerically
for different configurations mu = Vu/c and md = Vd/c, see Appendix B.
This gives an approximate expression for D:

D =
m2
uK

2
0

8 (1 +mu) (m2
d −m2

u)
⇒ A = − mu

2 (1 +mu)
. (150)

waterfall configuration

Q̄u = D

[
χ(Xu)− Λ

2

]2

eΛuXu

(
1

1

)
,

Q̄d = A

(
φd

−φ?d

)

+ E eiK0Xd

(
[K0

2 −md]φd

[K0
2 +md]φ

?
d

)
+ E e−iK0Xd

(
[−K0

2 −md]φd

[−K0
2 +md]φ

?
d

)
,

(151)

with

Qα =

(
ei kα x 0

0 e−i kα x

)
Q̄α

χ(X) =
√

1−m2
u tanh

(√
1−m2

uX
)

A = iD
(1−m2

u) (1 + 2m2
u)

2 (1 +m2
u)

, and E = iD
m2
u (m2

u − 1)

4 (1 +m2
u)

.

(152)

The parameter D in equations (151) and (152) can be also found nu-
merically. In this case,

D = i
amu + b

1−mu
, (153)
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with a = 0.175 and b = −4.56 10−3. Note that for the waterfall config-
uration, md = 1/m2

u.

Once the zero modes have been derived with the correct matching
conditions at x = 0, the basis is complete and the small classical field
δψ(x, t) is decomposed as follows

δψ(x, t) =

(
δψ(x, t)

δψ?(x, t)

)
= −i P 〈Q|∆〉+ iQ 〈P |∆〉

+

∫ +∞

0
dω

∑

L∈{U,D1}
ΞL(ω, x) e−i ω t bL(ω) + ΥL(ω, x) ei ω t b?L(ω)

+

∫ Ω

0
dωΥD2(ω, x) ei ω t bD2(ω) + ΞD2(ω, x) e−i ω t b?L(ω) ,

(154)

with the correct normalization between P and Q, i.e., 〈Q|P 〉 = i.

3.2.3 Quantization

The quantization is directly obtained from expression (154): the field
operator δψ̂ associated to the elementary excitations is expanded over
the scattering modes and reads

δψ̂(x, t) =

(
δψ̂

δψ̂†

)
= −i P Q̂+ iQ P̂

+

∫ +∞

0
dω

∑

L∈{U,D1}
ΞL(ω, x) e−i ω t b̂L(ω) + ΥL(ω, x) ei ω t b̂†L(ω)

+

∫ Ω

0
dωΥD2(ω, x) ei ω t b̂D2(ω) + ΞD2(ω, x) e−i ω t b̂†D2(ω) ,

(155)

where b̂L(ω) and b̂†L(ω) are respectively the annihilation and creation
operators pertaining to a scattering process induced by an ingoing mode
L|in, L ∈ {u, d1, d2}. They are the quantized version of bL(ω) and b?L(ω)
defined in equation (140):




b̂L(ω) =
〈

ΞL|δψ̂
〉

=

∫

R
dxu?L δψ̂(x, t)− v?L δψ̂†(x, t), if L ∈ {U, D1},

b̂D2(ω) =
〈

ΥD2|δψ̂
〉

=

∫

R
dx vD2 δψ̂(x, t)− uD2 δψ̂

†(x, t),

(156)

Zero modes operators P̂ and Q̂ are given by

Q̂ =
〈
Q|δψ̂

〉
=

∫

R
dx
[
q?(x) ψ̂(x, t) + q(x) ψ̂†(x, t)

]
,

P̂ =
〈
P |δψ̂

〉
=

∫

R
dx
[
ψ?(x) ψ̂(x, t) + ψ(x) ψ̂†(x, t)

]
,

(157)
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where ψ(x) =
√
nα e

i kα x φα(x) [see equation (111)]. The operator Q̂

is the phase operator of the condensate, while P̂ corresponds to the
fluctuations of the number of particles.

This quantization yields the correct commutation relations
[
b̂L(ω), b̂†

L′(ω
′)
]

= δL,L′δ(ω−ω′), and [Q̂, P̂] = 〈Q|P 〉 = i. (158)

The taking into account of the zero modes, with the proper normaliza-
tion of mode Q ensures that the field operator δψ̂ verifies the correct
commutation relation

[
δψ̂(x, t), δψ̂†(x′, t)

]
= δ(x− x′) . (159)

The importance of the zero modes to obtain a correct normalization is
stressed in Figure 22. One sees that the zero modes cannot be neglected
to have a well-founded theory based on a proper normalization.

Once the zero modes have been included, the quadratic Hamiltonian
which describes the quantum fluctuations is [26]

Ĥquad =
1

2

∫

R
dx ∆̂† σz LBG ∆̂

=
P̂2

2Meff

+
∑

L∈{U,D1,D2}
νL

∫ ΩL

0
dω ~ω b̂†L(ω) b̂L(ω),

(160)

with ΩU = ΩD1 = ∞ and ΩD2 = Ω, νU = νD1 = 1, and νD2 = −1.
The first term of equation (160) has the form of a free kinetic energy,
with no restoring force and is associated with the zero eigenvalue of the
Bogoliubov-De Gennes Hamiltonian LBG [26]. Thus, the operator P̂ can
be identified with a momentum operator and the parameter Meff may
be indeed interpreted as an effective mass. The second contribution to
equation (160) is a system of independent oscillators of energies ~ω.
Then, the ground state |0〉 of the Hamiltonian (160) consists of an
oscillator ground state such that b̂L |0〉 = 0, L ∈ {U,D1, D2}, and
of a zero-momentum plane wave state such that P̂ |0〉 = 0 [26].
In addition one has also
[
Q̂, Ĥquad

]
= i

P̂

Meff

. (161)

Equation (161) implies that the phase operator Q̂(t) is not stationary
and deviates from its initial value Q̂(t = 0). This is the phenomenon
of phase diffusion (see, e.g, Ref. [118]). In our case, Meff → ∞ and no
phase diffusion occurs. The physical interpretation of this phenomenon
was already mentioned in Section 3.2.2 and corresponds to the inertia
associated to the change of the global phase of a system with infinite
number of particles.
Let us conclude this subsection with a last remark: the decomposition

(154) is not unique. Indeed, one would be tempted to define outgoing
operators ĉL and ĉ†L, the annihilation and creation operators for out-
going modes L|out, with L ∈ {u, d1, d2}, i.e., which destroy or create
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Figure 22: Commutation relation
[
ψ̂(x, t), ψ̂†(x′, t)

]
calculated with or with-

out the zero modes and integrated over x′/ξu, for x = 30 ξu. The
solid red curve corresponds to the real part of the resulting in-
tegration, while the dashed red curve refers to as the imaginary
part. When the zero modes are taken into account, one obtains
the blue curves: a Heaviside function for the real part (solid blue)
and zero for the imaginary part (dashed blue), thus yielding the
correct normalization (159).

a quasiparticle in one of the outgoing channels u, d1 or d2. Inserting
expressions (137) in equation (154), one would find another decompo-
sition in terms of this new operators ĉ’s. This would also provide the
relation between ingoing operators11 b̂L and outgoing operators ĉL,



ĉU

ĉD1

ĉ†D2


 =



Su,u Su,d1 Su,d2

Sd1,u Sd1,d1 Sd1,d2

Sd2,u Sd2,d1 Sd2,d2






b̂U

b̂D1

b̂†D2


 , (162)

known as a Bogoliubov transformation. We will discuss this important
point in Chapter 4.

3.2.4 Density correlations

The study of density correlations to explore the analogous Hawking radi-
ation has been first proposed in 2008 by a collaboration between teams
from Trento and Bologna [15]. We already discussed in the introduction
of this chapter the numerous interests of studying the density-density
correlation function G(2); among them the possible experimental detec-
tion of the analogous Hawking signal, weakly affected by experimental
noises.

11 Note here the subtle sense of ingoing : this does not correspond to an ingoing wave
l|in, but instead refers to as the whole scattering process induced by one of the
ingoing channel l|in, l ∈ {u, d1, d2}.
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The density correlation function is defined by

G(2)(x, x′) =〈: n̂(x, t)n̂(x′, t) :〉 − 〈n̂(x, t)〉 〈n̂(x′, t)〉
'ψ(x)ψ?(x′)〈δψ̂†(x, t) δψ̂(x′, t)〉

+ ψ(x)ψ(x′)〈δψ̂†(x, t) δψ̂†(x′, t)〉+ c.c.

(163)

In this equation, the symbol “:” denotes normal ordering and the final
expression is obtained within the Bogoliubov approach, encompassing
the effects of quantum fluctuations at leading order. The function ψ(x)
corresponds to the condensate wave function defined in equation (111).
At zero temperature, the average 〈· · · 〉 in equation (163) is taken over
the state |0〉, the vacuum state12 for the ingoing operators b̂L. Although
this state is thermodynamically unstable and cannot support a thermal
distribution, finite temperature effects can still be included as explained
for instance in Refs. [62, 124, 156].
Using the results derived in Ref. [156] and adding the contribution

from the zero modes, equation (163) can be rewritten

G(2)(x1, x2) = G
(2)
ZM(x1, x2) +

√
n1 n2

∫ +∞

0

dω

2π
γ(x1, x2, ω), (164)

where G(2)
ZM(x1, x2) accounts for the zero modes contribution, ni = nu

(nd) if xi < 0 (xi > 0), i ∈ {1, 2} and γ(x1, x2, ω) is split in a zero-
temperature contribution γ0 and a thermal term γT:

γ(x1, x2, ω) = γ0(x1, x2, ω) + γT(x1, x2, ω). (165)

The zero-temperature term is [110]

γ0(x1, x2, ω) =
∑

L∈{U,D1}
ṽ?L(x1) r̃L(x2)

+ Θ(Ω− ω) ũ?D2(x1) r̃D2(x2) + c.c.,

(166)

with ũL(xi) = e−i ki xi φ?i (xi)uL(xi), ṽL(xi) = ei kα xi φi(xi) vL(xi), and
r̃L(xi) = ũL(xi) + ṽL(xi). In these expressions, φi = φu (= φd) and
ki = ku (= kd) if xi < 0 (xi > 0)13.
The other contribution to equation (165) reads [110]

γT(x1, x2, ω) =
∑

L∈{U,D1,D2}
r̃?L(x1) r̃L(x2)nL(ω) + c.c., (167)

where nL(ω) is the occupation number for each of the scattering mode L.
For instance nU(ω) = nth[ωB(qu|in)], with ωB the Bogoliubov dispersion
relation and nth(ω) = (exp(ω/T ) − 1)−1 the thermal Bose occupation
factor (the condensate is initially at thermal equilibrium at temperature
T ).

12 Here, vacuum means no elementary excitations, i.e., b̂L |0〉 = 0, L ∈ {U,D1, D2}
[see also the discussion below the quadratic Hamiltonian (160) of Section 3.2.3].

13 we recall that φi = 1 for the flat profile configuration, while for the waterfall config-
uration the expression is given in equation (115). We also recall that kα = mVα/~.
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We now turn our attention to the first contribution to equation (164):
the two-body density matrix of the zero modes G(2)

ZM. Inserting the zero
modes contribution to the quantum operator (154) in equation (163)
gives

G
(2)
ZM(x1, x2) = 2 i ψ(x1)Q?(x1) Im[ψ?(x2)Q(x2)]

〈
P̂2
〉

− 2 i ψ(x1)P ?(x1) Im[ψ?(x2)Q(x2)]
〈
Q̂ P̂

〉

− 2 i ψ(x1)Q?(x1) Im[ψ?(x2)P (x2)]
〈
P̂ Q̂

〉

+ 2 i ψ(x1)P ?(x1) Im[ψ?(x2)P (x2)]
〈
Q̂2
〉

+ c.c,

(168)

with ψ(xi) the condensate wave function defined in equation (111). Us-
ing the fact that P̂ |0〉 = 0 (see Section 3.2.3) and ψ?(xi)P (xi) =
|ψ(xi)|2, equation (168) reduces to the simple expression:

G
(2)
ZM(x1, x2) = 2 |ψ(x1)|2 Im[ψ?(x2)Q(x2)]. (169)

Finally, in order to compare our results with the experimental data
obtained by the Technion group [131, 177], we shall normalize the cor-
relation function (163) in the same way:

g(2)(x, x′) =

√
ξu ξd
nu nd

G(2)(x, x′). (170)

This normalization will become meaningful later when we compute the
Fourier transform of the density-density correlation function (see Sec-
tion 3.3.2).
Figure 23 shows the normalized density-density correlation function

(170) computed at zero temperature for a waterfall configuration. We
mention that we also take into account the position dependence of the
background density ψ(x) in the upstream region [see equation (115)],
as well as the evanescent channels close to the horizon.
Three dashed straight lines have been added in this figure: each of

them corresponds to the correlation lines where a large correlated signal
is expected. Indeed, to understand this point let us consider the follow-
ing simple picture: correlated outgoing waves (induced by the same
scattering process) are emitted from the horizon at a certain time t0.
These waves propagate either in the upstream subsonic region (this
would correspond to a u|out mode) or in the downstream supersonic
region (this would correspond to a d1|out or a d2|out mode) at their
group velocity, denoted here Vg(q) = ∂ω/∂q, with ω their frequency and
q their wavenumber. For simplicity, we assume that these quasiparticles
are phonons (i.e., low energy excitations). Therefore, using the disper-
sion relation (132) and neglecting the dispersive contribution, we find
their respective positions at equal propagation time t:

xu|out = (Vu − cu) t < 0, xd1|out = (Vd + cd) t > 0,

and xd2|out = (Vd − cd) t > 0.
(171)
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Figure 23: Intensity plot of the density-density correlation function
g(2)(x, x′) at zero temperature for a waterfall configuration with
mu = 0.42 and taking into account all contributions to equation
(164). The parameter ξu is the healing length in the upstream re-
gion. The dashed straight lines correspond to the correlation lines
where a large correlated signal is expected: Hawking-Partner cor-
relations (blue dashed), u|out-d1|out correlations (green dashed),
and d1|out-d2|out correlations (pink dashed).

Thus, we expect a high correlation signal along their trajectories, i.e.,
lines of slopes

xu|out

xd2|out
=
Vu − cu
Vd − cd

< 0,
xu|out

xd1|out
=
Vu − cu
Vd + cd

< 0,

and
xd2|out

xd1|out
=
Vd − cd
Vd + cd

> 0.

(172)

The three dashed lines in Figure 23 correspond to lines whose slopes
are given by expressions (172). We are particularly interested in the
blue dashed line of slope (Vu − cu)/(Vd − cd). This line indicates a
large correlation signal induced by a u|out − d2|out pair. This exactly
corresponds to the emission of a correlated Hawking-Partner pair, as it
would occur at the vicinity of a gravitational black hole: an excitation
emitted in the u|out mode propagates in the subsonic region, outside
the acoustic black hole and has a positive charge (in the sense of positive
norm), while an excitation emitted in the d2|out mode propagates inside
the black hole, in the supersonic region, and carries a negative charge.
Therefore, this correlation line is the signature of the analogous Hawk-

ing effect in Bose-Einstein condensates induced by quantum fluctua-
tions.
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It is also worth noticing that the correlation lines u|out− d1|out and
u|out−d2|out, which separate at large distance from the horizon, merge
close to the horizon (this is clear from Figure 24).

To conclude this subsection, we would like to emphasize the impor-
tance of the zero modes in the calculation. The correlation signal com-
puted along a longitudinal cut (this cut is drawn in the left plot of
Figure 24) clearly shows that the zero modes cannot be neglected to
give a correct description of the correlations. Indeed, as we can notice
from the right plot of the same figure, zero modes ‘kill’ the spurious
oscillations of the blue curve (obtained when the zero modes are ne-
glected).
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Figure 24: (Left) Intensity plot of density correlations for x/ξu and x′/ξu
close to the horizon for a waterfall configuration with mu = 0.59
(this value is of experimental interest – see Section 3.1.4). As
in Figure 23, all contributions to equation (164) are included in
the calculation. The blue dashed line indicates a longitudinal cut
along x/ξu for x′ = 10 ξu.
(Right) Correlation signal along this cut computed either by tak-
ing into account the zero modes (red curve) or neglecting them
(blue curve).

3.2.5 Comparison to experiment

We shall now compare our theoretical results with experimental data ob-
tained recently by the Technion group [131], whose experimental setup
has been already presented in Section 3.1.4. So far, such a comparison
between the experiment and the theory was not possible: the experi-
mental correlations have been acquired close to the horizon, a region
where the correlations are difficult to be obtained theoretically because
one cannot neglect the position dependence of the condensate density
and the evanescent channels. However, by means of the addition of the
zero modes, we are now able to obtain a correct theoretical description
of the correlations at the vicinity of the horizon. This enables us to
safely compare experimental and theoretical results.
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Figure 25 shows a 2D plot of the density correlation pattern. The
function g(2)(x, x′) has been computed at zero temperature for a wa-
terfall configuration with Mach numbers mu = Vu/cu = 0.59 and
md = Vd/cd = 2.9. The downstream Mach number md is chosen to
reproduce the experimental configuration studied in Ref. [131], as dis-
cussed in Section 3.1.4. In this figure, the correlation line of the Hawking-
Partner pair is visible in both theoretical and experimental plots and
is indicated by a green dashed line. We can first compare the slope of
these lines, denoted pth (theoretical) and pexp (experimental). We find

|pth| = 0.45− 0.55, and |pexp| = 0.57− 0.62. (173)

The theoretical slope pth ranges from −0.55 to −0.45 because this slope
tends to increase at the vicinity of the horizon (see Figure 26).The slight
discrepancy between experimental and theoretical slopes might come
from several causes: albeit our theoretical value for the downstream
Mach number md coincides with the experimental one, it is not the
case for the upstream Mach number mu (the experimental value is 0.44,
while the continuity relations (116) impose mu = 0.59 for md = 2.9).
This could indicate that the experimental setup is not a perfect waterfall
configuration. Therefore, the slope could be slightly shifted with respect
to an ideal situation where the external potential is a perfect step-like
function. It is also possible that the experiment is not completely sta-
tionary which makes the slope shift. Indeed, in a recent publication of
the Technion group [102] the time evolution of an analogue black hole
is studied in a configuration close to that of Ref. [131] (mexp

u = 0.37 and
mexp

d = 3.3). Several 2D plots of the density-density correlation function
are shown at different times after the formation of the horizon. In these
plots, the slope of the Hawking-Partner correlation line varies between
-0.79 and -0.58 with an average of -0.62 in agreement with Ref. [131].

Besides this point, a similar feature is observed in experimental and
theoretical results: the slopes of the Hawking-Partner correlation lines
extracted from Figure 25 deviate by an angle of '-9◦ from the pre-
dicted slopes given by (172) and obtained in a dispersionless regime for
phonon-like excitations. This deviation is a first indication that elemen-
tary excitations are not emitted with the same group velocity due to
the presence of dispersive effects in Bose-Einstein condensates.

hawking-partner correlations A more precise comparison
between experimental and theoretical results can be achieved by follow-
ing the procedure used in Ref. [131], which consists in averaging g(2)

over the region inside the green rectangle represented in Figure 25. As
shown in the left plot of Figure 26, one defines a local coordinate x′′

which is orthogonal to the locus of the minima of g(2) (indicated by
black dots), and one plots the averaged g(2) (denoted as g(2)

av ) as a func-
tion of the variable x′′. This is done in the right plot of Figure 26. Our
theoretical approach (red and green curves) is in good agreement with
experimental data (blue dots with error bars extracted from Ref. [131]).
We recall that theoretical results are obtained for a configuration whose
downstream Mach number md = 2.9 leads to theoretical parameters
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Figure 25: (Left) Theoretical density correlation pattern obtained close to
the horizon at zero temperature for a waterfall configuration with
Mach numbers mu ≡ Vu/cu = 0.59 and md = Vd/cd = 2.9.
The parameter ξ =

√
ξu ξd is the geometrical mean of the heal-

ing lengths ξu and ξd, where ξ(u/d) = ~(mgn(u,d))
−1/2. The line

of anti-correlation in the upper left and lower right quadrants
corresponds to the merging close to the horizon of the Hawking-
partner (u|out−d2|out) and Hawking-companion (u|out−d1|out)
correlations. The green rectangle delimits the region where we av-
erage g(2) for comparison with experimental data (see Figure 26).
(Right) Experimental density correlation pattern taken from Ref.
[131]. A line of anti-correlation is visible in the upper left and
lower right quadrants. Here also, the Hawking-partner correla-
tions merge with those of the Hawking-companion close to the
horizon. The green rectangle also delimits the region where ex-
perimental correlations have been averaged (see Figure 26).

closest from experimental ones (see Section 3.1.4). If one fixes an other
parameter (for instance mu = 0.44) to determine the others through
relations (116), the theoretical configuration is further away from the
experimental one, and that yields a less good agreement between the
experimental and theoretical Hawking-Partner correlated signals14. We
insist that the good agreement between our approach and experimental
results can only be achieved through a correct description of the quan-
tum fluctuations – equation (155) – including the contribution of zero
modes and of evanescent channels.

Let us notice that the analogue Hawking temperature TH appears in
the legend of the right plot of Figure 26. However, we did not explain
so far how we could define such an analogue Hawking temperature in
a Bose-Einstein condensate. We call the reader to be patient until the
first subsection of Section 3.3, where the definition of this mysterious
temperature is unveiled.

14 Hence, we computed the density-density correlation function for mu = 0.44 and
mu = 0.51 and we observed a less good agreement with experimental data than for
mu = 0.59. These results are not shown in Figure 26 for a better readability.
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To conclude this section, our theoretical results (which could not have
been obtained without the strong theoretical background provided by
previous studies [15, 36, 62, 110, 113, 156, 158]) confirms the exper-
imental observation of the spontaneous analogue Hawking effect in a
Bose-Einstein condensate. We hope that we convinced the reader of the
importance (the necessity) of the zero modes to obtain a well-founded
theory that correctly describes the quantum fluctuations in an acoustic
black hole formed in a Bose-Einstein condensate. As we mentioned in
the introduction of this chapter, the description of density correlations
at the vicinity of the acoustic horizon is a further step towards possi-
ble studies on the backreaction problem, i.e., the influence of quantum
fluctuations on the background density profile.
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Figure 26: (Left) 2D plot of the density-density correlation signal overex-
posed to enhance the Hawking-Partner correlation line. Black
dots indicate the locus of the minima of g(2). The pink line is
tangent to the black dots in the near-horizon region, while the
light blue line is tangent to the black dots a little further from
the horizon. The slopes of these lines are denoted pth and their
corresponding values are written on the graph and in equation
(173). Two perpendicular cuts to the Hawking-Partner correla-
tion line at x = 5 ξu and x = 12 ξu are also shown. We define a
local coordinate denoted x′′ which varies along these cuts.
(Right) Intensity of the averaged g(2) (denoted as g(2)av ) as a func-
tion of the variable x′′/ξ computed over the region inside the
green rectangle shown in Figure 25 (or say differently, the cor-
relation signal g(2) is averaged over perpendicular cuts to the
Hawking-Partner correlation line). We recall that ξ =

√
ξu ξd is

the geometrical mean of the healing lengths ξu and ξd. The red
curve exemplifies the theoretical results obtained at zero tem-
perature, while the green one shows the result for a non-zero
temperature T = 1.9TH, with TH the analogue Hawking tempera-
ture. The computation of this Hawking temperature is explained
in Section 3.3.1. The blue dots are experimental data extracted
from Ref. [131].
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3.3 departing from thermality of analogue hawk-
ing radiation

We learned from the last section that the study of density correlations
was an efficient way to detect the signature of the Hawking effect in
Bose-Einstein condensates. Thus, such quantum systems are promising
candidates to explore the spontaneous Hawking radiation in more detail.
However, are there some limitations to the analogy between the spon-
taneous emission of quasiparticles in BECs and the predicted Hawking
radiation emitted by gravitational black holes? How far can we push
the analogy further?
In this section we discuss these questions. We show in particular that

dispersive effects affect significantly the Hawking spectrum and lead
to a departure from the thermal radiation predicted by Hawking for
gravitational black holes (see the discussion in Chapter 2 and Refs. [87,
88]).
Actually we have already mentioned some effects of dispersion in

BECs. First, we are not able to properly define a metric such as (126) in
the presence of dispersion. This is the most dramatic issue of the analogy
between dispersive acoustic black holes and general relativity. Second,
density correlations are affected by dispersive effects, in particular the
slope of the Hawking-Partner correlation line which deviates from the
dispersionless prediction. In addition, the asymmetry of the Hawking-
Partner correlation signal shown in the right plot of Figure 26 is another
hint of the presence of dispersion [156].
Therefore, in line with the aforementioned comments, it is not sur-

prising that dispersion dramatically affects the Hawking signal.
In the following, we first define the analogous Hawking temperature

in our system and explain how this value can be obtained. Then, we
show that the Hawking spectrum can be found from the Fourier trans-
form of the density-density correlation function. We also show that the
windowing to compute the Fourier transform should be chosen very
carefully and might lead to the erroneous conclusion that the Hawking
spectrum in BECs is thermal. We finally draw conclusions about the
thermality of acoustic black holes in BECs.

3.3.1 Hawking temperature

For gravitational black holes, the Hawking radiation is the signal emit-
ted outside the black hole propagating away from the horizon. In our
case, as mentioned in the previous section, the analogue of a Hawking
particle is a quasiparticle emitted in the u|out mode (see for instance
Figure 21). Thus, the Hawking radiation spectrum, i.e., the number of
emitted quanta in the u|out mode at frequency ω, is

NH(ω) =
〈
ĉ†U(ω) ĉU(ω)

〉
, (174)

where ĉ†U (ĉU) is the creation (annihilation) operator for the outgoing
mode u|out [this operator has been already defined at the end of Sec-
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tion 3.2.3 and is related to the ingoing operators b̂L and b̂†L through
relation (162)]. As in equation (163), the average 〈· · · 〉 in equation (174)
is taken over the state |0〉, the vacuum state for the ingoing operators
b̂L. Using equation (162), one finds

NH(ω) = |Su,u(ω)|2
〈
b̂†U b̂U

〉
+ |Su,d1(ω)|2

〈
b̂†D1 b̂D1

〉

+ |Su,d2(ω)|2
〈
b̂D2 b̂

†
D2

〉

=
T= 0
|Su,d2(ω)|2,

(175)

for T = 0. Equation (175) should be compared with equation (62) of
Chapter 2. In both equations, NH is given in terms of the transmission
coefficient associated to the scattering process induced by the ingoing
negative norm mode [in Chapter 2 this coefficient would correspond
to βωω′ , see expressions (19) and (21)]. The left plot of Figure 27 ex-
emplifies the Hawking radiation spectrum for a waterfall configuration
with upstream Mach number mu = 0.59. In the long-wavelength limit
(dispersionless regime) NH can be approximated by a thermal radiation
nTH

of temperature TH:

NH(ω) = |Su,d2|2 '
1

e~ω/kBTH − 1
≡ nTH

(ω), (176)

where TH plays the role of the analogue Hawking temperature. The red
curve in the left plot of Figure 27 shows the approximated thermal
radiation nTH

leading to TH = 0.102 gnu in this particular case (with
µ the chemical potential). In fact, the analogue Hawking temperature
can be calculated analytically from the low-ω behavior of the scattering
matrix coefficient Su,d2 (see, e.g, Ref. [110] where the analytic formula
for TH is given).

Another measure of the analogue Hawking temperature can be ob-
tained through the correlation spectrum of the Hawking radiation, i.e.,
the Hawking-Partner correlations measured in k-space: 〈ĉU(ω) ĉD2(ω)〉,
with ĉD2 the outgoing annihilation operator pertaining to the d2|out
mode. Let us assume that, in the scattering process schematically il-
lustrated in Figure 21 for the D2-mode, the companion d1|out channel
plays a negligible role, so that the |Sd1,d2|2 term can be omitted in the
normalization condition |Sd2,d2|2 = 1+|Su,d2|2+|Sd1,d2|2 of the S-matrix
(see, e.g., Ref. [156]). Then one obtains in the long-wavelength limit

| 〈ĉU(ω) ĉD2(ω)〉 |2 = |Su,d2|2 |Sd2,d2|2 ' nTH
(ω) [1 + nTH

(ω)] . (177)

The right plot of Figure 27 shows the correlation spectrum for a wa-
terfall configuration with mu = 0.59. Similarly to the left graph of the
same figure, the red curve is obtained from equation (177) by approxi-
mating the Hawking radiation by a thermal radiation nTH

. In this case,
the best fit between the blue and the red curves leads to TH = 0.106 gnu,
slightly different from the result obtained from the Hawking radiation
spectrum

〈
ĉ†U ĉU

〉
. This discrepancy results from the fact that we ne-

glect the d1|out channel in the calculation of (177).
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In the following we choose to use equation (177) to determine the
Hawking temperature to be in agreement with the choice made by the
experimental group [131, 177].
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Figure 27: Here, we consider a waterfall configuration whose upstream Mach
number is mu = 0.59.
(Left) The blue curve is the Hawking radiation spectrum NH as
a function of the energy ~ω in units of mc2u. The red curve corre-
sponds to a thermal radiation nTH

of temperature TH = 0.102 gnu
[see equation (176)]. The inset shows a zoom on the low energy
sector. We recall that Ω is the threshold frequency above which
the d2 modes disappear.
(Right) The blue curve corresponds to the correlation spectrum
(177) as a function of the energy ~ω in units of mc2u, while
the red curve is obtained from equation (177) by approximat-
ing the Hawking radiation by a thermal radiation nTH

, with
TH = 0.106 gnu. The inset shows a zoom on the low energy sector.
The dashed red curve drawn in this inset is obtained from a ther-
mal radiation with TH = 0.102 gnu, i.e., the Hawking temperature
determined from the Hawking radiation spectrum NH.

3.3.2 Fourier transform of g(2)

It is actually possible to obtain the correlation spectrum (177) from
the Fourier transform of density correlations. Indeed, Figure 28 shows
the result of the Fourier transform of g(2) computed over the upper
left region of Figure 23. One can observe a more pronounced signal for
certain pairs (k, k′). For instance, the brightest signal corresponds to
Hawking-Partner pairs (u|out-d2|out). Indeed, for each frequency ω one
can calculate wavevectors k = kH(ω) and k′ = kP(ω), the momenta rel-
ative to the condensate of a Hawking quantum (H) and its Partner (P)
obtained from the dispersion relation (132). This calculation leads to
the green curve in Figure 28 that fits perfectly with the bright signal
obtained from the computation of the Fourier transform. Another sig-
nal is much less bright and corresponds to Hawking-Companion pairs
(u|out-d1|out). The red curve corresponds to k′ = kd1|out(ω) as a func-
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tion of k = kH(ω), and indeed follows the signal computed from the
Fourier transform (this signal is more visible in the inset of Figure 28).
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Figure 28: Fourier transform of g(2) computed over the upper left region of
Figure 23. The green curve corresponds to k = kH and k′ = kP,
the momenta relative to the condensate of a Hawking quantum
and its partner obtained from the dispersion relation (132). The
red curve corresponds to k = kH and k′ = kd1|out. The inset
shows the same plot, but overexposed to enhance the Hawking-
Companion (u|out-d1|out) correlation signal.

Figure 29 illustrates the computation of the Fourier transform of g(2)

computed over the green rectangle of Figure 25 for both theoretical and
experimental results. One sees a clear damping of the signal compared
to Figure 28 when the region of integration of the Fourier transform
becomes relatively narrow: this is a first hint of the importance of the
windowing of the Fourier transform. The signal pertaining to Hawking-
Companion pairs (u|out-d1|out) has completely disappear. This might
lead us to believe that no quasiparticles are emitted in the mode d1|out,
while this is not the case since a signal is clearly visible in k-space (see
Figure 28) and in real space (see Figure 23).
Let us go further in the analysis: if we perform the Fourier transform

of g(2) at fixed ω, for wavevectors kH(ω) and kP(ω) (u|out-d2|out chan-
nels) having an energy ~ω in the laboratory frame, one obtains (see
Appendix C)

S−1
0√

nundLuLd

∫ 0

−Lu
dx

∫ Ld

0
dx′ e−i(kHx+kPx

′) g(2)(x, x′)

= d(ω) 〈ĉU(ω)ĉD2(ω)〉 = d(ω)Su,d2 S
?
d2,d2.

(178)

In equation (178) d(ω) is a damping factor which depends on the win-
dowing of the Fourier transform [see below, equation (179)]. S0(ω) =
(ukH

+ vkH
)(ukP

+ vkP
) is the static structure factor, where the uk’s

and the vk’s are the standard Bogoliubov amplitudes of excitations
of momentum k (see, e.g., Refs. [148, 153]). The integration region
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Figure 29: Fourier transform of g(2) computed over the green rectangle of
Figure 25 – (Left) Theoretical result (Right) Experimental result
extracted from Ref. [131]. The green curve corresponds to k =
kH and k′ = kP, the momenta relative to the condensate of a
Hawking quantum and its partner obtained from the dispersion
relation (132). The red curve corresponds to k = kH and k′ =
kd1|out.

[−Lu, 0] × [0, Ld] lies in the upper left quadrant of Figure 23. Equa-
tion (178) remains valid as long as kH Lu � 1 and kP Ld � 1 (see
Appendix C).

The damping factor d(ω) in equation (178) can be calculated (see
Appendix C) and is

d(ω) =
1√
a(ω)

, if a(ω) ≥ 1, and d(ω) =
√
a(ω), if a(ω) ≤ 1,

with a(ω) =
Ld |Vg(kH)|
Lu Vg(kP)

.

(179)

In equation (179) Vg,H(ω) = ∂ω/∂q|q=kH
[Vg,P(ω)] is the group velocity

of a Hawking quantum [of a partner] of energy ~ω. One sees that there
is no damping (d(ω) = 1) if and only if

Lu
|Vg,H(ω)| =

Ld
Vg,P(ω)

, (180)

We recover exactly the same condition as the one mentioned in Refs.
[62, 134]. Therefore, it is clear from equation (180) that the integration
region [−Lu, 0] × [0, Ld] should be adapted for each value of ω. This
result will be of paramount importance in the following: if one does
not adapt the integration region, the Fourier transform (178) is auto-
matically damped and, thus, one does not obtain the true correlation
spectrum (177). This could lead to the erroneous conclusion that the
analogous Hawking radiation is thermal (see Section 3.3.3).
The red curve of Figure 30 shows the correlation spectrum (177)

normalized by the static structure factor S0(ω). The green dots are
obtained from the numerical computation of the Fourier transform of
g(2) [equation (178)] and, in this case, the windowing [−Lu, 0]× [0, Ld]
is adapted for each frequency ω using relation (180). One observes a
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nice agreement between the theoretical prediction and numerical results,
except for low energies where conditions kH Lu � 1 and kP Ld � 1 are
violated. The blue curve is obtained for an other choice of windowing
that does not respect condition (180): here, we choose Lu Vg,P(0) =
Ld |Vg,H(0)|, i.e., the long-wavelength limit of equation (180). Thus, Lu
and Ld are the same for all frequencies. The brown stars are obtained
from the numerical computation of the Fourier transform of g(2) and
agree well with the damped correlation spectrum predicted by equation
(178).
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Figure 30: Hawking-Partner correlation signal. The red curve is the cor-
relation spectrum obtained from the right hand side of equa-
tion (178) with d(ω) = 1,∀ω. The green dots corresponds to
the numerical computation of the Fourier transform of g(2) [see
the left hand side of equation (178)], where the integration re-
gion [−Lu, 0] × [0, Ld] is adapted for each frequency ω to re-
spect condition (180). The blue curve also corresponds to the
right hand side of equation (178), but with d(ω) 6= 1. In this
particular case, we choose Lu Vg,P(0) = Ld |Vg,H(0)| leading to
[d(ω)]2 = |Vg,H(0)|Vg,P(ω)/[Vg,P(0) |Vg,H(ω)|] < 1. The brown
stars are obtained from the numerical computation of the Fourier
transform of g(2) with Lu Vg,P(0) = Ld |Vg,H(0)|.

3.3.3 Thermality?

Hawking predicted that black holes should emit a thermal radiation,
characterized by an effective temperature, the Hawking temperature [87,
88]. This important property comes from the fact that dispersive effects
are totally absent in General Relativity: a massless field propagates at
the speed of light regardless of its frequency or wavevector. The wave
speed is absolutely fixed.
The thermality of Hawking radiation is crucial because it ensures the

correctness of the analogy between analogue gravity and General Rel-
ativity. However, we argued several times in the previous subsections
that dispersion does play an important role in Bose-Einstein conden-
sates. However, it is commonly accepted that the spectrum of analo-
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gous Hawking radiation only weakly departs from thermality [41, 42,
183]. This general consensus has been recently reinforced by the ex-
perimental results obtained by the Technion group, claiming that the
experimental analogous Hawking radiation is thermal [102, 131].
In this subsection we demonstrate that dispersive effects lead to a

significant departure from thermality, at least from a theoretical point
of view. We also use the findings of Section 3.3.2 to show that a self-
consistent procedure might lead to the unfounded conclusion that the
analogous Hawking radiation is fully thermal.

dispersionless and thermal model To explain this claim,
let us first consider a simple dispersionless and thermal model: we only
take into account correlations between Hawking-Partner pairs and we
approximate all the coefficients of the scattering matrix by their long-
wavelength limit; one has in particular |Su,d2|2 = nTH

(ω), ∀ω, with nTH

a Bose thermal distribution of temperature TH [see Section 3.3.1 and
equation (177)]. In this case we obtain the following result for g(2) in a
waterfall configuration [156]:

g(2)(x, x′) =
c2
u

|Vu|out|Vd2|outmu

∫ Σ

0

dε

2π
f(ε, x, x′) ,

f(ε, x, x′) =
ε eε/(2TH)

eε/TH − 1
cos

[
cu ε

ξu

(
x

Vd2|out
− x′

Vu|out

)]
.

(181)

In equation (181), Vu|out = cu (mu−1) and Vd2|out = cd (md−1) are the
group velocity of the Hawking and partner quanta in the dispersionless
regime. The parameter Σ = ~Ω/(mc2

u) is the usual cut-off above which
d2-modes cease to exist. Expression (181) can be re-written in terms of
the local coordinate x′′, orthogonal to the locus of the minima of g(2),
defined in Section 3.2.5 and indicated in Figure 25 and Figure 26. One
finds




x′′ =
x− x′/γ√

1 + γ2
,

g(2)(x′′) =
c2
u

|Vu|out|Vd2|outmu

∫ Σ

0

dε

2π

ε eε/(2TH)

eε/TH − 1
cos
(ε
l
x′′
)
,

(182)

with γ = Vu|out/Vd2|out and l =
√
mu (1 −mu)/

√
γ2 − 1. The density-

density correlation function (182) is shown in the left plot of Figure 31
(brown curve, with mu = 0.59 and TH = 0.106 gnu). We also display
for comparison the theoretical correlation signal in the presence of dis-
persion (red curve) and experimental data (blue dots) already shown
in Figure 26. We recall that g(2)

av means that the experimental blue dots
and the theoretical red curve have been obtained after averaging the
correlation signal over cuts perpendicular to the Hawking-Partner cor-
relation line.
The symmetry of the dispersionless profile in Figure 31 is a feature

of the absence of dispersion [156]. However, one sees that neither the
symmetry nor the width and the depth of the dispersionless profile
match well with the red curve or the experimental blue dots.
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Figure 31: Here we consider a waterfall configuration with mu = 0.59.
(Left) Experimental blue dots and the theoretical red curve have
been obtained after averaging the correlation signal over cuts
perpendicular to the Hawking-Partner correlation line (see for
instance Figure 26). The brown curve corresponds to the dis-
persionless model, whose density-density correlation function is
made explicit in equation (182).
(Right) The red curve corresponds to the Fourier transform of g(2)
in the presence of dispersion, while the brown dots are obtained
from the Fourier transform of the dispersionless profile (181). The
dashed green curve is a thermal spectrum with effective tempera-
ture TH = 0.106 gnu. The blue dots with error bars are from Ref.
[131]. They are obtained after processing the experimental result
for g(2).

Therefore, we would not expect a priori that the Hawking correlation
spectrum | 〈ĉU(ω) ĉD2(ω)〉 |2 of the dispersionless model coincides with
those obtained from the dispersive model and experimental results; and
this is indeed the case for the theoretical result: the red curve in the
right plot of Figure 31 corresponds to the Fourier transform of g(2) in
the presence of dispersion, while the brown dots are obtained from the
Fourier transform of the dispersionless profile (181). By virtue of equa-
tions (178) and (177), the brown dots should match with a thermal cor-
relation spectrum of temperature TH

15. This is indeed the case as shown
in the right plot of Figure 31 where the dashed green curve corresponds
to a thermal spectrum with an effective temperature TH = 0.106 gnu.
Moreover, as expected, the red curve and the brown dots coincide in the
dispersionless regime, i.e., in the long-wavelength limit (~ω → 0). Then,
the red curve deviates from the thermal spectrum due to dispersive ef-
fects. Thus, we can conclude that the analogous Hawking radiation
significantly departs from thermality in a Bose-Einstein condensate.
It is clear from the left plot of Figure 31 that the experimental blue

dots are closer from the dispersive red curve than the dispersionless
brown curve. Therefore, the natural question that arises from this com-
ment is: why the experimental correlation spectrum shown in the right

15 Note that here the windowing of the Fourier transform does not need to be adapted,
since condition (180) does not depend on the frequency in the dispersionless regime.
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plot of Figure 31 does not follow the theoretical (dispersive) expectation,
but, on the contrary, seems to coincide with a thermal spectrum?
To answer this question or, at least, suggest a procedure which might

lead to this outcome, we need to keep in mind the results obtained in
the previous subsection. Indeed, we noticed in Section 3.3.2 that the
windowing of the Fourier transform of g(2) plays a significant role in
the result: if the region of integration is not adapted for each frequency
ω, the correlation spectrum is automatically damped by a factor d(ω)
made explicit in equation (179). Figure 32 illustrates the consequence
of this remark: the left plot of this figure shows the expected (‘true’)
correlation spectrum (177) for a waterfall configuration with mu = 0.59
(red curve), as well as the damped correlation spectrum obtained with
a region of integration fixed by the long-wavelength limit of equation
(180) with mu = 0.59 (blue curve)16. The dashed gray curve represents
a thermal spectrum with an effective temperature TH = 0.106 gnu. One
sees that the blue curve is very close to the thermal spectrum and this
would make us think that analogous Hawking radiation is thermal. We
hope to convince the reader of the importance of the windowing of the
Fourier transform (178) here.
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Figure 32: (Left) Red curve: true correlation spectrum with no damp-
ing. Blue curve: damped correlation spectrum, computed from
(178) with a region of integration that corresponds to the long-
wavelength limit of condition (180). The dashed gray curve is
a thermal spectrum with effective temperature TH = 0.106 gnu.
The inset is a zoom on the dashed green rectangle region. Here,
we consider a waterfall configuration with mu = 0.59.
(Right) The light red (light blue) region is the expected (damped)
correlation spectrum obtained in a waterfall configuration for dif-
ferent upstream Mach numbers, ranging from mu = 0.51 (dashed
dotted red and blue curves) to mu = 0.59 (solid red and blue
curves). The blue dots are extracted from Ref. [131]. The dashed
gray and the dashed borwn curves correspond to thermal spec-
tra whose temperatures are TH = 0.106 gnu and TH = 0.124 gnu,
respectively.

16 This figure actually corresponds to Figure 30 without the normalization factor S0.
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The right plot of Figure 32 corresponds to the inset of the left graph.
Blue dots are obtained after processing the experimental data for g(2)

and are extracted from Ref. [131]. The light red (light blue) region is
the true (damped) correlation spectrum obtained for different upstream
Mach numbers, ranging from mu = 0.51 (dashed dotted red and blue
curves) tomu = 0.59 (solid red and blue curves). In the long-wavelength
limit, experimental points belong to the light red and the light blue
regions. Then, they slightly deviate to the lower bound of the blue
region and they stay there up to the cut-off frequency Ω. The brown
curve is a thermal spectrum of effective temperature TH = 0.124 gnu,
corresponding to the experimental value found in Ref. [131].
Therefore, several conclusions can be drawn from the above com-

ments. It is quite possible that dispersive effects only play a negligible
role in the experiment and, in this case, it is not surprising to find a
nice agreement with a thermal spectrum17. However, it is clear from
the procedure described and used in Ref. [131] to analyze experimental
data that the windowing has not been adapted for each frequency. Thus,
the analysis of experimental data could have been dramatically affected
by the windowing of the Fourier transform, leading to a damping of the
correlation spectrum. Results shown in Figure 32 are totally consistent
with this explanation.

In conclusion, from a theoretical point of view, the analogous Hawk-
ing radiation is not fully thermal, except in the long-wavelength limit.
We also explained that a data analysis procedure might lead to the
erroneous conclusion that the Hawking radiation spectrum is thermal:
the only manner to obtain the true correlation spectrum is to adapt
the window of the Fourier transform such as prescribed by condition
(180). Despite this fact, the agreement between the thermal spectrum
and the true spectrum in the dispersionless regime leads to the correct
determination of the Hawking temperature.

17 The angle of the Hawking-Partner correlation line shown in Figure 25 (which devi-
ates from the dispersionless result) and the asymmetry of the experimental profile
shown in Figure 26 would let us think that dispersion does have an effect in the
experiment.
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3.4 article: departing from thermality of analogue
hawking radiation in a bose-einstein condensate

↪→ Departing from thermality of analogue Hawking radiation in a Bose-
Einstein condensate

M. Isoard, N. Pavloff, Physical Review Letters 124, 060401 (2020)

doi: https://doi.org/10.1103/PhysRevLett.124.060401

We study the quantum fluctuations in a one dimensional Bose-Einstein
condensate realizing an analogous acoustic black hole. The taking into
account of evanescent channels and of zero modes makes it possible to
accurately reproduce recent experimental measurements of the density
correlation function. We discuss the determination of Hawking tempera-
ture and show that in our model the analogous radiation presents some
significant departure from thermality.
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We study the quantum fluctuations in a one-dimensional Bose-Einstein condensate realizing an
analogous acoustic black hole. The taking into account of evanescent channels and of zero modes makes it
possible to accurately reproduce recent experimental measurements of the density correlation function. We
discuss the determination of Hawking temperature and show that in our model the analogous radiation
presents some significant departure from thermality.
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The Hawking effect [1] being of kinematic origin [2] can
be transposed to analogue systems, as first proposed by
Unruh [3]. Among the various platforms that have been
proposed for observing induced or spontaneous analogous
Hawking radiation and related phenomena, the ones for
which the experimental activity is currently the most
intense are surface water waves [4–10], nonlinear light
[11–17], excitonic polaritons [18], and Bose-Einstein con-
densed atomic vapors [19–22].
Because of their low temperature, their intrinsic quantum

nature, and the high experimental control achieved in
these systems, Bose-Einstein condensates (BECs) seem
particularly suitable for studying analogue Hawking effect.
Steinhauer and colleagues have undertaken several studies
of quasiunidimensional configurations, making it possible
to realize analogue black hole horizons in BEC systems, and
made claims of observation of Hawking radiation [20–22].
Their results have triggered the interest of the community
[23–33] and generated a vivid debate [34,35]. One of the
goals of the present Letter is to contribute to this debate, and
to partially close it, at least in what concerns density
correlations around an analogue black hole horizon. A
definite theoretical answer can be obtained thanks to a
remark that had been overlooked in previous works: one
needs to develop the quasiparticle operator on a complete
basis set for properly describing the density fluctuations.
This is achieved in the first part of this Letter, and we apply
this theoretical approach to the analysis of the experimental
results of Ref. [22].
While in general relativity the thermality of the Hawking

radiation is constrained by the laws of black hole thermo-
dynamics, no such general principle is expected to hold for
analogue systems [2]. It is nonetheless commonly accepted
that the spectrum of analogous Hawking radiation only
weakly departs from thermality [36–38], and that all
relevant features of an analogue system can be understood
on the basis of a hydrodynamical, long wavelength
description. However, the phenomenology of analogous

systems provides mechanisms supporting the impossibility
of a perfectly thermal analogue Hawking radiation [39]. In
the second part of this Letter we argue that in the BEC case
we are considering, it is legitimate to determine a Hawking
temperature from the information encoded in the density
correlation function, but we show that some features of the
radiative process at hand significantly depart from thermal-
ity and propose a procedure for confirming our view.
We consider a one-dimensional configuration in which

the quantum field Ψ̂ðx; tÞ is a solution of the Gross-
Pitaevskii equation

iℏ∂tΨ̂ ¼ −
ℏ2

2m
∂2
xΨ̂þ ½gn̂þUðxÞ�Ψ̂: ð1Þ

In this equation m is the mass of the atoms, n̂ ¼ Ψ̂†Ψ̂, and
the term gn̂ describes the effective repulsive atomic
interaction (g > 0). We have studied several external
potentials UðxÞ making it possible to engineer a sonic
horizon, but we only present here the results for a step
function: UðxÞ ¼ −U0ΘðxÞ with U0 > 0. The reason for
this choice is twofold: (i) This potential has been realized
experimentally in Refs. [21,22]; (ii) from the three con-
figurations analyzed in Ref. [31], this is the one that leads to
the signal of quantum nonseparability which is the largest
and the most resilient to temperature effects.
In the spirit of Bogoliubov’s approach, we write the

quantum field as

Ψ̂ðx; tÞ ¼ expð−iμt=ℏÞ½ΦðxÞ þ ψ̂ðx; tÞ�; ð2Þ

where μ is the chemical potential. ΦðxÞ is a classical field
describing the stationary condensate and ψ̂ðx; tÞ accounts
for small quantum fluctuations. Although such a separation
is not strictly valid in one dimension, it has been argued in
Ref. [31] that it constitutes a valid approximation over a
large range of one-dimensional densities. In the case we
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consider, Φ is a solution of the classical Gross-Pitaevskii
equation describing a sonic horizon: the x < 0 profile is
half a dark soliton [40], withΦðx→−∞Þ¼ ffiffiffiffiffi

nu
p

expðikuxÞ,
where nu and Vu ¼ mku=ℏ (> 0) are the upstream asymp-
totic density and velocity, respectively. The downstream
(x > 0Þ flow of the condensate corresponds to a plane
wave: Φðx > 0Þ ¼ ffiffiffiffiffi

nd
p

expðikdx − iπ=2Þ. The asymptotic
upstream and downstream sound velocities are cðu;dÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gnðu;dÞ=m

p
. The analogous black hole configuration

corresponds to a flow that is asymptotically upstream
subsonic (Vu<cu) and downstream supersonic (ℏkd=m ¼
Vd > cd).
We describe the quantum fluctuations on top of this

classical field within a linearized approach. The relevant
modes are identified by using the asymptotic ingoing (i.e.,
directed towards the acoustic horizon) and outgoing chan-
nels, far from the horizon. As discussed in previous
references [41–45] and recalled in [46], the Bogoliubov
dispersion relation supports a decomposition of ψ̂ onto
three incoming modes that we denote as U, D1, and D2.
For instance, the U mode is seeded by an upstream
incoming wave that we denote as ujin, which propagates
towards the horizon with a long wavelength group velocity
Vu þ cu. It is scattered onto two outgoing transmitted
channels (propagating in the analogue black hole away
from the horizon), which we denote as d1jout and d2jout
with respective long wavelength group velocities Vd þ cd
and Vd − cd (both positive) and one outgoing reflected
channel (propagating away from the horizon, outside of the
analogue black hole, with long wavelength group velocity
Vu − cu < 0). The corresponding three scattering coeffi-
cients are denoted as Sd1;u, Sd2;u, and Su;u. There is also an
upstream evanescent wave (ujeva) that carries no current,
does not contribute to the S matrix, but is important for
fulfilling the continuity relations at x ¼ 0. The situation is
schematically depicted in Fig. 1.
The frequency-dependent boson operators associated to

the three incoming modes U, D1, and D2 are denoted as

b̂U, b̂D1, and b̂D2; they obey the commutation relations
½b̂LðωÞ;b̂†L0 ðω0Þ�¼δL;L0δðω−ω0Þ. In addition, Bose-Einstein
condensation is associated with a spontaneously broken
Uð1Þ symmetry that implies the existence of supplementary
zero modes of the linearized version of (1). As discussed in
Ref. [50], one is lead to introduce two new operators P̂ and
Q̂ accounting for the global phase degree of freedom, and
the correct expansion of the quantum fluctuation field reads

ψ̂ðx; tÞ ¼ −iΦðxÞQ̂þ iqðxÞP̂ þ
Z

∞

0

dωffiffiffiffiffiffi
2π

p
X

L∈fU;D1g

× ½uLðx;ωÞe−iωtb̂LðωÞ þ v�Lðx;ωÞeiωtb̂†LðωÞ�

þ
Z

Ω

0

dωffiffiffiffiffiffi
2π

p ½uD2ðx;ωÞe−iωtb̂†D2ðωÞ

þ v�D2ðx;ωÞeiωtb̂D2ðωÞ�: ð3Þ

In this expression the uL’s and vL’s are the usual
Bogoliubov coefficients (their explicit form is given for
instance in Ref. [44]), and the quantization of the D2 mode
is atypical, as discussed in several previous referen-
ces [41,42,51]. The function qðxÞ is one of the components
of the zero eigenmodes; see [46]. Omitting the contribution
of the zero mode operators P̂ and Q̂ would correspond to
using an incomplete basis set for the expansion of the
quantum fluctuations; in other words, their contribution is
essential for verifying the correct commutation relation
½ψ̂ðx; tÞ; ψ̂†ðy; tÞ� ¼ δðx − yÞ. The operator Q̂ is associated
with the global phase of the condensate. P̂ is the canonical
conjugate operator (½Q̂; P̂� ¼ i) that typically appears in the
quadratic Hamiltonian Ĥquad describing the dynamics of the

quantum fluctuations with a P̂2 contribution, while Q̂ does
not [50,52,53]. This means that the degree of liberty
associated with the broken symmetry has no restoring
force—as expected on physical grounds—and that the zero
excitationquantumstate jBHidescribing the analogous black
hole configuration verifies P̂jBHi¼0 and b̂LðωÞjBHi¼
0 for L ∈ fU;D1; D2g.
Once the appropriate expansion (3) has been performed,

and the correct quantum state jBHi has been identified, one
can compute the density correlation function,

G2ðx; yÞ ¼ h∶n̂ðx; tÞn̂ðy; tÞ∶i − hn̂ðx; tÞihn̂ðy; tÞi
≃ΦðxÞΦ�ðyÞhψ̂†ðx; tÞψ̂ðy; tÞi

þΦðxÞΦðyÞhψ̂†ðx; tÞψ̂†ðy; tÞi þ c:c: ð4Þ

In this equation, the symbol ∶ denotes normal ordering and
the final expression is the Bogoliubov evaluation of G2,
encompassing the effects of quantum fluctuations at lead-
ing order. At zero temperature, the average h� � �i in Eq. (4)
is taken over the state jBHi. Although this state is
thermodynamically unstable and cannot support a thermal

FIG. 1. Sketch of the different channels contributing to the
incoming quantum modes U, D1, and D2. In each plot the
background BEC propagates from left to right, the white region
corresponds to the upstream subsonic flow, the gray one to the
interior of the analogous black hole (downstream supersonic
flow), and the region of the horizon is represented by the dark
gray shaded interface. The Hawking channel and its partner are
labeled ujout and d2jout. The d1jout channel is a companion
propagating away from the horizon, inside the analogous black
hole region. Each mode (U, D1, and D2) is seeded by an ingoing
channel (ujin, d1jin, and d2jin) whose group velocity is directed
towards the horizon.
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distribution, finite temperature effects can still be included
as explained for instance in Refs. [31,41,42].
In 2008 a collaboration between teams from Bologna

and Trento [54,55] pointed out that, in the presence of a
horizon, G2 should exhibit nonlocal features resulting
from correlations between the different outgoing chan-
nels, in particular, between the Hawking quantum and its
partner (ujout − d2jout correlation in our terminology).
The importance of this remark lies in the fact that, due to
the weak Hawking temperature TH (at best one fourth
of the chemical potential [44]), the direct Hawking
radiation is expected to be hidden by thermal fluctua-
tions, whereas density correlations should survive temper-
ature effects in typical settings [42]. This idea has been
used to analyze the Hawking signal in Ref. [22], where a
stationary correlation pattern was measured in the vicinity
of the horizon. In this region, it is important for a
theoretical treatment to account for the position depend-
ence of the background density and to include the
contribution of the evanescent channels in the expansion
(3). We also checked that it is essential to take into
account the contribution of the zero modes to obtain a
sensible global description of the quantum fluctuations.
The corresponding two-dimensional plot of the density
correlation pattern is represented in Fig. 2. G2 has been
computed at zero temperature, for Vd=cd ¼ 2.90, which
imposes Vu=cu ¼ 0.59 [44,46]. This value is chosen to
reproduce the experimental configuration studied in

Ref. [22]. The dotted line in the upper left quadrant
of Fig. 2 marks the anticorrelation curve that results
from the Hawking-partner (ujout−d2jout) and Hawking-
companion (ujout − d1jout) correlations. We find that
these two correlation lines, which separate at large
distance from the horizon [42,44,55], merge close to
the horizon, as also observed experimentally.
A precise comparison of our results with experiment

can be achieved by following the procedure used in
Ref. [22], which consists in averaging G2 over the region
inside the green rectangle represented in Fig. 2. One defines
a local coordinate x00 that is orthogonal to the locus of the
minima of G2, and one plots the averaged G2 (denoted as
Gav

2 ) as a function of the variable x
00. This is done in Fig. 3.

We insist that the good agreement between our approach
and the experimental results can only be achieved through a
correct description of the quantum fluctuations—Eq. (3)—
including the contribution of zero modes and evanescent
channels.
It has been noticed by Steinhauer [56] that the determi-

nation of G2ðx; x0Þ in the upper left (or lower right)
quadrant of the ðx; x0Þ plane makes it possible to evaluate
the Hawking temperature thanks to the relation

Su;d2ðωÞS�d2;d2ðωÞ ¼ hĉUðωÞĉD2ðωÞi

¼ S−1
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nundLuLd
p

Z
0

−Lu

dx
Z

Ld

0

dx0e−iðkHxþkPx0ÞG2ðx; x0Þ:

ð5Þ

In this expression S is the matrix that describes the
scattering of the different channels onto each other, and
S0ðωÞ ¼ ðukH þ vkHÞðukP þ vkPÞ is the static structure
factor, where the uk’s and the vk’s are the standard
Bogoliubov amplitudes of excitations of momentum k
(see, e.g., Refs. [57,58]). The ĉL’s are outgoing modes
related to the incoming ones by the S matrix [42]

FIG. 2. Intensity plot of the dimensionless correlation function
ξðnundÞ−1=2G2ðx; x0Þ for x and x0 close to the horizon. The
parameter ξ ¼ ffiffiffiffiffiffiffiffiffi

ξuξd
p

is the geometrical mean of the healing
lengths ξu and ξd, where ξðu=dÞ ¼ ℏðmgnðu;dÞÞ−1=2. The line of
anticorrelation in the upper left and lower right quadrants
corresponds to the merging close to the horizon of the
Hawking-partner (ujout − d2jout) and Hawking-companion
(ujout − d1jout) correlations. The green rectangle delimits the
region where we average G2 for comparison with experimental
data (see Fig. 3).

FIG. 3. Red solid line: zero temperature density correlation
function Gav

2 ðx; x0Þ plotted as a function of x00. The blue dots with
error bars are the results of Ref. [22]. The orange solid line is the
finite temperature result for kBT ¼ 0.2gnu, i.e., T ≃ 1.9TH .
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0
B@

ĉU
ĉD1

ĉ†D2

1
CA ¼

0
B@

Su;u Su;d1 Su;d2
Sd1;u Sd1;d1 Sd1;d2
Sd2;u Sd2;d1 Sd2;d2

1
CA

0
B@

b̂U

b̂D1

b̂†D2

1
CA: ð6Þ

The Fourier transform of G2 in Eq. (5) is performed at
fixed ω, for wave vectors kHðωÞ and kPðωÞ, which are the
momenta relative to the condensate of a Hawking quantum
and its partner (ujout and d2jout channels in our terminol-
ogy) having an energy ℏω in the laboratory frame. The
integration region ½−Lu; 0� × ½0; Ld� lies in the upper left
quadrant of Fig. 2, and should be adapted for each value of
ω in such a way that [31,59]

Lu

jVg;HðωÞj
¼ Ld

Vg;PðωÞ
; ð7Þ

where Vg;HðωÞ [Vg;PðωÞ] is the group velocity of a
Hawking quantum (of a partner) of energy ℏω. We have
checked that once the prescription (7) is fulfilled, for-
mula (5) is very well verified [46]. It is then intriguing to
observe that, while theory and experiment both agree on
the value of G2 in real space (Fig. 3), they do not for the
correlation hĉUðωÞĉD2ðωÞi: as can bee seen in Fig. 4, the
agreement is restricted to the low energy regime. This is
the bluish region in the figure, which corresponds to a
domain where the ratio kHðωÞ=kPðωÞ is equal to its long
wavelength value ðcu − VuÞ=ðcd − VdÞ with an error less
that 10%.
Let us discuss this discrepancy in some detail. The

interest of Eq. (5) lies in the fact that the scattering matrix

coefficient Su;d2 is the equivalent of the Hawking β
parameter: its squared modulus is expected to behave as
a Bose thermal distribution nTHðωÞ with an effective
temperature TH, the Hawking temperature [1]. In an
analogous system such as ours, because of dispersive
effects, this equivalence is only valid in the long wave-
length limit, typically in the blue region of Fig. 4. This
suggests a possible manner to reconcile theory and experi-
ment: we assume that the ratio kHðωÞ=kPðωÞ is ω inde-
pendent and equal to its low energy value, ðcu − VuÞ=
ðcd − VdÞ (this value is denoted as tan θ in Refs. [21,22]).
We also assume that, in the scattering process schematically
illustrated in Fig. 1 for theD2mode, the companion d1jout
channel plays a negligible role, so that the jSd1;d2j2 term can
be omitted in the normalization condition jSd2;d2j2 ¼ 1þ
jSu;d2j2 þ jSd1;d2j2 of the S matrix (see, e.g., Ref. [42]).
Then one obtains

jSu;d2j2jSd2;d2j2 ≃ nTHðωÞ½1þ nTHðωÞ�: ð8Þ

Using the experimental values from Ref. [22] for Vα and cα
(α ∈ fu; dg) and for the Hawking temperature TH leads,
within approximation (8), to the blue curve of Fig. 4 that
agrees with the results published in Ref. [22] (blue dots
with error bars). It is important to note that this procedure is
self-consistent in the following sense: If one performs
numerically the Fourier transform (5) over a domain that,
instead of fulfilling the relation (7), verifies the ω-inde-
pendent condition Lu=jVu − cuj ¼ Ld=ðVd − cdÞ, appro-
priate in a nondispersive, long wavelength approximation,
one obtains a result (not shown for legibility, but see [46])
close to a thermal spectrum, i.e., to the blue curve in Fig. 4.
Although this procedure is self-consistent, it is not fully
correct, as can be checked by the fact that the resulting
value of hĉUðωÞĉD2ðωÞi only agrees with the exact one (red
curve in Fig. 4) in the long wavelength limit. Stated
differently: this procedure leads to the erroneous conclu-
sion that the radiation is fully thermal. However, since all
approaches coincide in the long wavelength regime (blue
colored region of Fig. 4), they all lead to the correct
determination of the Hawking temperature. For a flow with
Vd=cd¼2.9, our theoretical treatment yields kBTH=ðgnuÞ¼
0.106, whereas the experimental value reported for this
quantity in Ref. [22] is 0.124 (corresponding to a Hawking
temperature TH ¼ 0.35 nK).
In conclusion, our work sheds a new light on the study of

quantum correlations around an analogous black hole
horizon, and on the corresponding Hawking temperature.
From a theoretical point of view, we argue that the
contribution of zero modes is essential for constructing a
complete basis set necessary to obtain an accurate descrip-
tion of the quantum fluctuations. This claim is supported by
the excellent agreement we obtain when comparing our
results with recent experimental ones. On the experimental
side, we substantiate the determination of the Hawking

FIG. 4. Hawking-partner correlation signal represented as a
function of the dimensionless energy. The red solid curve is the
theoretical result from Eq. (5). The dots with error bars are from
Ref. [22]. They are obtained after processing the experimental
result for G2 by means of the Fourier transform (5). The blue
region corresponds to a domain where the ratio of Hawking and
partner wave vectors is equal to its long wavelength value within
a 10% accuracy. The blue solid curve is the theoretical result
obtained by neglecting dispersive effects in Eq. (5) and discarding
the contribution of the companion d1jout channel (see the text).
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temperature presented in Ref. [22], although we find that
the Hawking spectrum is not thermal for all wavelengths.
We identify a natural but unfounded procedure for analyz-
ing the information encoded in G2ðx; x0Þ that leads to the
opposite conclusion; we show that, within our approach, an
alternative analysis of the correlation pattern accurately
accounts for nonhydrodynamical effects. It would thus be
interesting to reanalyze the data published in Ref. [22] to
investigate if the windowing (7) we propose for Eq. (5)
modifies the experimental conclusion for the Hawking-
partner correlation signal and confirms the departure from
thermality we predict.

We acknowledge fruitful discussions with I. Carusotto,
M. Lewenstein, and J. Steinhauer, whom we also thank for
providing us with experimental data.

[1] S. W. Hawking, Nature (London) 248, 30 (1974); Commun.
Math. Phys. 43, 199 (1975).

[2] M. Visser, Phys. Rev. Lett. 80, 3436 (1998).
[3] W. G. Unruh, Phys. Rev. Lett. 46, 1351 (1981).
[4] G. Rousseaux, C. Mathis, P. Maïssa, T. G. Philbin, and U.

Leonhardt, New J. Phys. 10, 053015 (2008).
[5] S. Weinfurtner, E. W. Tedford, M. C. J. Penrice, W. G.

Unruh, and G. A. Lawrence, Phys. Rev. Lett. 106,
021302 (2011).
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[44] P.-É. Larré, A. Recati, I. Carusotto, and N. Pavloff, Phys.

Rev. A 85, 013621 (2012).
[45] D.Boiron,A. Fabbri, P.-É. Larré, N. Pavloff, C. I.Westbrook,
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THE BACKGROUND FLOW AND DENSITY
PROFILES

We recall here the properties of the background tran-
sonic flow Φ(x) realizing an analogue black hole horizon
[1]. Φ(x) is solution of the classical stationary Gross-
Pitaevskii equation

µΦ = − ~2

2m
∂2
xΦ + [g n(x) + U(x)] Φ , (S1)

with n(x) = |Φ(x)|2 and U(x) = −U0Θ(x), where Θ is
the Heaviside step function and U0 > 0. There exists a
stationary solution of this equation which is half a dark
soliton glued at x = 0 to a plane wave [2]:

Φ(x) =

{√
nu exp(ikux)χu(x) ≡ Φu(x) for x ≤ 0,
√
nd exp(ikdx− iπ/2) ≡ Φd(x) for x ≥ 0.

(S2)
where

χu(x) = cos θ tanh(x cos θ/ξu)− i sin θ. (S3)

In these equations nu and nd are the asymptotic up-
stream and downstream densities, ξu = ~(mgnu)−1/2 is
the upstream healing length and sin θ = Vu/cu where Vu
and cu = ~/(mξu) are the asymptotic flow and sound
velocities. The downstream flow and sound velocity are
Vd = ~kd/m and cd =

√
gnd/m. The chemical potential

µ in Eq. (S1) verifies

µ = 1
2mV

2
u + gnu = 1

2mV
2
d + gnd − U0. (S4)

The matching conditions at x = 0 impose

Vd
Vu

=
nu
nd

=

(
cu
Vu

)2

=
Vd
cd
. (S5)

Hence, in this configuration, which we denote as “wa-
terfall”, the upstream and downstream Mach numbers
(Vu/cu and Vd/cd) are not independent. We chose to
take the same downstream Mach number than in the
experiment [3]: Vd/cd = 2.9. From (S5) this imposes
Vu/cu = 0.59, different from the experimental value
(Vu/cu|exp = 0.44). This difference indicates that the
experiment is not exactly in a waterfall configuration.
This is probably due to the fact that the experimental
external potential is not exactly a Heaviside function.
It could also be that the experimental flow has not yet

reached a fully stationary state. This difference does not
preclude a very good agreement with the experimental
density correlation pattern (as observed in Fig. 3 of the
main text); however, it explains why we cannot repro-
duce with the same accuracy the behavior of the density
correlation function G2(x, x′) in all the quadrants of Fig.
2 of the main text: the d1|out − d2|out correlation line
(upper right quadrant of Fig. 2 of the main text) does
not exactly superimposes with the experimental one. We
take the same value of Vd/cd as in the experiment, be-
cause this is the choice which gives the better account of
experiment in the upper left quadrant of Fig. 2 of the
main text, which is the core of the discussion of Ref. [3].

THE BOGOLIUBOV-DE GENNES EQUATIONS

In this section we present the construction of expan-
sion (3) of the main text. The first part of the section is
devoted to the definition of the usual Bogoliubov modes,
and is an abridged version of a discussion which can be
found in Ref. [1]; the second part concerns the construc-
tion of the zero modes and comprises a general discus-
sion (from Refs. [4–6]) followed by the explicit form of
these modes in the situation we consider [Eqs. (S14) and
(S15)].

The simplest way to set up an eigen-basis set for ex-
panding the quantum fluctuation operator is to treat
ψ̂ as a small classical field, denoted as ψ, with
exp(−iµt/~)(Φ + ψ) solution of the classical version of
Eq. (1) of the main text. One then looks for a normal
mode of the form

ψ(x, t) = u(x, ω)e−iωt + v∗(x, ω)eiωt (S6)

For such a normal mode, the linearization of the Gross-
Pitaevskii equation leads to the so-called Bogoliubov-
de Gennes equation which reads LΞ = ~ω Ξ, where
Ξ(x, ω) = (u(x, ω) , v(x, ω))T and

L =

(
H Φ2(x)

−(Φ∗(x))2 −H

)
, (S7)

with H = ~2

2m∂
2
x + U(x) − 2gn(x) − µ. Far upstream,

the background density being constant, the eigen-modes
behave as plane waves of the form

Ξ(x, ω) =

(
u(x, ω)
v(x, ω)

)
−→

x→−∞
eiqx

(
exp(ikux)Uω

exp(−ikux)Vω

)

(S8)
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where Uω and Vω are complex constants, their explicit
expression can be found in Ref. [1], together with the
general expression of u(x, ω) and v(x, ω). The same type
of behavior is observed downstream. The corresponding
dispersion relations are of the form

(ω − Vαq)2
= ω2

B(q), (S9)

where α = u far upstream and α = d downstream and

ωB(q) = cαq
√

1 + q2ξ2
α/4 (S10)

is the Bogoliubov dispersion relation. The asymptotic
upstream and downstream dispersion relations are rep-
resented in Fig. SF1. One sees in this figure that, for
each value of ω, there exists three incoming channels,
i.e., three plane waves which group velocity is directed
towards the horizon. One of these plane waves lies in the
upstream region, we denote it as u|in, the two others lie
in the downstream region: d1|in and d2|in.

Once the eigen-modes Ξ has been found for all non-
zero frequencies, the eigen-basis needs to be completed
with the addition of zero modes for which ω = 0. First,
it is clear that L admits a simple zero mode:

LP = 0 , where P =

(
Φ(x)
−Φ∗(x)

)
. (S11)

The physical interpretation of the existence of this zero
mode is the following: it results from the U(1) symmetry
breaking of the condensate wave function and it is a col-
lective mode with no restoring force, which is sometimes
denoted as a spurious mode [4, 5]. Indeed, if Φ is a sta-
tionary solution of the Gross-Pitaevskii equation, for any
arbitrary constant θ, Φθ(x) = Φ(x) eiθ is also a station-
ary solution. Φθ tends continuously to Φ when θ → 0,
hence δΦ = Φθ −Φ ' i θΦ is a solution of the linearized
Gross-Pitaevskii equation. This immediately translates
into the fact that (δΦ, δΦ∗)T = i θP is a zero mode of L.

Another mode of excitation corresponds to addition of
particles to the system [6]. By differentiating the Gross-
Pitaevskii equation with respect to the number of parti-
cles N , we find the mode Q associated to P:

Q =

(
q(x)
−q∗(x)

)
, with LQ = −i d µ

dN
P, (S12)

where µ is the chemical potential of the condensate. The
two modes Q and P complete the eigen-basis of L, or,
more precisely, make it possible to write L in a Jordan
normal form. The field operator ψ̂ which describes the
quantum fluctuations can be now expanded over the scat-

FIG. SF1: Graphical representation of the dispersion rela-
tion, i.e., of the solutions of Eq. (S9) in the far upstream
(upper plot) and far downstream (lower plot) regions. In the
upstream region, for a given ω (represented by a horizontal
dashed line) one finds two real solutions of Eq. (S9) which
we denote as qu|in and qu|out. The intercept of the horizon-
tal dashed line with the corresponding dispersion relation is
marked with a colored dot labeled u|in or u|out, as appro-
priate. The situation is different downstream: there exists a
threshold energy below which Eq. (S9) admits 4 real solutions
which we denote as qd1|in, qd1|out, qd2|in and qd2|out. Both d2
solutions disappear above the threshold. All these solutions
correspond to the channels identified in the main text. They
are denoted as “in” (“out”) is their group velocity – schemat-
ically represented by an arrow – is directed towards (away
from) the horizon.

tering modes and the zero modes:

ψ̂(x, t) =− iΦ(x)Q̂+ iq(x)P̂ +

∫ ∞

0

dω√
2π

∑

L∈{U,D1}

[uL(x, ω)e−iωt b̂L(ω) + v∗L(x, ω)eiωt b̂†L(ω)]

+

∫ Ω

0

dω√
2π

[uD2(x, ω)e−iωt b̂†D2(ω)

+ v∗D2(x, ω)eiωt b̂D2(ω)].

(S13)
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In this expression the uL’s and the vL’s are linear combi-
nations of terms of the form (S8) involving the S-matrix
(see Refs. [1, 7]), and Q̂ is the phase operator of the con-
densate, while P̂ corresponds to the fluctuations of the
number of particles. The quadratic Hamiltonian Ĥquad

describing the linear dynamics of the elementary exci-
tations of the system contains a term P̂2/2Meff , where
1/Meff = dµ/dN [4–6]. Thus, the operator P̂ can be
identified with a momentum operator and Meff with an
effective mass. In addition, the commutation relation
[Q̂, Ĥquad] = i P̂/Meff indicates that the phase operator

Q̂(t) is not stationary and deviates from its initial value
Q̂(t = 0). This is the phenomenon of phase diffusion,
see, e.g, Ref. [8].

In our case, the system is infinite: no phase diffusion
can occur and Meff → ∞. The physical interpretation
of this phenomenon is that the inertia associated to the
change of the global phase of a system of infinite num-

ber of particles is infinite. Therefore, the mode Q is also
solution of LQ = 0 [see Eq. (S12) with dµ/dN → 0].
Moreover, the operator L has a different expression for
x < 0 and x > 0, just because Φ does [see Eq. (S2)]. As
a result, L admits zero energy eigen-states (ω = 0) which
have different forms in the upstream and the downstream
region. The modes P and Q should be written as linear
combinations of these zero modes. In particular, in the
upstream region the density profile is a portion of dark
soliton [see Eq. (S2)], and the expression of the corre-
sponding zero modes can be found, e.g., in Ref. [9]. One
obtains

P(x < 0) =

(
Φu(x)
−Φ∗u(x)

)
and P(x > 0) =

(
Φd(x)
−Φ∗d(x)

)
,

(S14)
while

Q(x < 0) = i
√
nuA

[
cos θ tanh(x cos θ/ξu)− Λu

2

]2

eΛu x/ξu

(
ei ku x

e−i ku x

)
and

Q(x > 0) = B

(
Φd(x)
−Φ∗d(x)

)
+ C eiK0 x/ξd

(
[K0/2−Md] Φd(x)
[K0/2 +Md] Φ∗d(x)

)
+ C e−iK0 x/ξd

(
[−K0/2−Md] Φd(x)
[−K0/2 +Md] Φ∗d(x)

)
,

(S15)

with Λu = 2
√

1−M2
u = 2 cos θ and K0 = 2

√
M2
d − 1,

where Mu and Md are the upstream and downstream
Mach numbers (Mα = Vα/cα). In expression (S15), the
normalization factors A, B and C are dimensionless real
numbers which are determined by imposing the matching
conditions at x = 0 and the commutation relation be-
tween Q̂ and P̂: [Q̂, P̂] = i, or equivalently, Q† σz P = i,
where σz is the third Pauli matrix.

FOURIER TRANSFORM OF THE DENSITY
CORRELATION FUNCTION

The computation of the Fourier transform of the G2

function gives access to the correlation signal between
the Hawking pair [kH(ω), kP(ω)] in momentum space for
a fixed energy ~ω in the lab frame, see Eq. (5) of
the main text. The wave vectors kH = qu|out(ω) and
kP = −qd2|out(ω) are the momenta relative to the con-
densate of the Hawking quantum and of its partner (see
the discussion in Ref. [7]). We define

I(ω) =
1√

nu nd Lu Ld
×

∫ 0

−Lu

dx

∫ Ld

0

dx′ e−i(kH(ω) x+kP(ω) x′)G2(x, x′),

(S16)

where G2 is the density correlation function [Eq. (4)
of the main text]. The quantities nu and nd are the
asymptotic densities in both regions (when x→ −∞ and
x′ → +∞).

As proved in Refs. [7, 10], the integration in Eq. (S16)
should be performed over a domain [−Lu, 0] × [0, Ld]
which is adapted to each Hawking pair [kH(ω), kP(ω)]:
one should verify

Lu Vg,P(ω) = Ld |Vg,H(ω)| , (S17)

where

Vg,I(ω) ≡ ∂ω

∂k

∣∣∣∣
kI

, I ∈ {H, P}. (S18)

This condition has a physical interpretation: the time
taken by an elementary excitation pertaining to the
Hawking channel to go from the horizon to the center
of the upstream window [−Lu, 0] has to be the same
as the time taken by its partner to go from the hori-
zon to the center of the downstream window [0, Ld].
The Fourier transform can be calculated theoretically for
Lu, Ld → +∞ [still verifying (S17)] and this leads to Eq.
(5) of the main text, i.e.:

I(ω) = S0 Sud2(ω)S∗d2d2(ω). (S19)

Fig. SF2 compares the numerical computation of the
Fourier transform (S16) (black dots), when the choice of
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the window [−Lu, 0] × [0, Ld] respects condition (S17),
with the theoretical expectation [left hand side of Eq.
(S19), red curve in the figure]. We observe a nice agree-
ment, except, of course, for long wavelengths where the
validity condition of Eq. (S19): kHLu and kPLd � 1 is
violated.

The choice of the window is crucial; for example, the
orange triangles in Fig. SF2 are obtained for another
prescription which corresponds to the long wavelength
limit of Eq. (S17):

Lu Vg,H(0) = Ld |Vg,P(0)| , (S20)

where Vg,H(0) = Vu − cu and Vg,P(0) = Vd − cd are the
group velocities of the Hawking quantum kH and its part-
ner kP in the long wavelength limit. As expected, the re-
sult deviates from the evaluation which uses the correct
condition (S17).

To recover the numerical result obtained by using the
prescription (S20), we use the following approximations:
(i) we assume that kH(ω) = ω/(Vu − cu) and kP(ω) =
ω/(Vd− cd), as if we were in the dispersionless regime for
all frequencies ω, and (ii) we also assume that Sud2(ω) '
nTH(ω), with nTH(ω) (the Bose thermal distribution at
the Hawking temperature) and that |Sud2|2 |S∗d2d2|2 '
nTH

(ω)(1 + nTH
(ω)) [Eq. (8) of the main text]. Then,

we compute expression (S19) using both approximations
(i) and (ii): we obtain the dark blue curve in Fig. SF2
which agrees well with the orange triangles.

In conclusion, one may numerically analyse the infor-
mation contained in the density distribution G2 by using
Eq. (S16) within the oversimplified long wavelength pre-
scription (S20) and still get an equality between the two
terms of Eq. (S19). However, this approach could lead
to the erroneous conclusion that the analogous Hawking
radiation is thermal for all frequencies ω. In our sys-
tem, where dispersion plays an important role, only the
result represented by the red curve in Fig. SF2 should
be considered as correct, and it clearly deviates from the
thermal result (dark blue curve in Fig. SF2).

EFFECT OF TEMPERATURE ON THE
DENSITY CORRELATION FUNCTION

In this section, we discuss how to account for temper-
ature effects in our system. We first note that the sta-
tionary configuration we consider is thermodynamically
unstable, and cannot support a thermal state. However,
a thermal-like occupation of the states can be defined
as detailed for instance in Ref. [7]. Previous studies
[11] have already highlighted the robustness of the cor-
relation signal, even if the temperature of the system is
greater than the Hawking temperature. Our results con-
firm this point, as shown in Fig. 3 of the main text
(the orange solid line is the finite temperature result for
kB T = 0.2 gnu ' 1.9TH). At finite temperature, the

0.0 0.5 1.0
h̄ ω/g nu

0.00

0.01

|I
(ω

)|2

FIG. SF2: Fourier transform of the G2 function, denoted as
I(ω) and given by expression (S16), plotted as a function of
ω. The red curve indicates the theoretical expectation: right
hand side of Eq. (S19). The black dots are obtained by the
numerical computation of the Fourier transform (S16) with
condition (S17). The orange triangles are also obtained nu-
merically, but for a different choice of window corresponding
to prescription (S20). The dark blue curve is obtained from
(S19) but in the long wavelength approximation, where the
analogous Hawking signal is thermal.

density correlation function G2(x, x′) splits in two parts
[1, 11]:

G2(x, x′) = G0
2(x, x′) +GT2 (x, x′), (S21)

where G0
2 is the zero temperature contribution and GT2

accounts for the additional temperature effects. As al-
ready mentioned in Refs. [11, 12], GT2 contains a term
which corresponds to a thermal enhancement of zero tem-
perature correlations, together with additional contribu-
tions involving scattering processes specific to the T 6= 0
case. This results in a practical disappearance of the
u|out − d1|out correlation for kB T ' 0.2 gnu, while the
u|out−d2|out Hawking signal is robust up to kB T ' gnu,
see the discussion in Ref. [11]. This confirms the interest
of using analog system to investigate analog Hawking ra-
diation: the non-local correlation pattern in G2 is weakly
affected by temperature and a noticeable signal can be
recorded even if T is larger than TH.

The finite T result presented in the main text is ob-
tained by computing the two contributions in (S21) sepa-
rately, in a regime which has been denoted as the “weakly
interacting quasicondensate regime” in Ref. [13], and
which holds when the following conditions are met:

4 τ2
α

(ξα nα)4
� 1

(ξα nα)2
� 1, (S22)

where α ∈ {u, d} and τα = kB T/(g nα) is the reduced
temperature. We use typical experimental parameters
of Ref. [3] to evaluate the order of magnitude of the
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different terms in the inequalities (S22): ξu = 1.4µm,
ξd = 2.38µm, nu ' 70−90µm−1 and nd ' 20µm−1. We
obtain (ξu nu)−2 ' 6.3 × 10−5 − 10−4 � 1, (ξd nd)

−2 '
4.4 × 10−4 � 1. By computing the left hand part of
(S22) in the upstream and downstream regions, we find
that the more stringent condition reads kB T � 8.3 gnu,
i.e., our approach is valid up to kB T ' 0.8−1 gnu � TH.
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4TRIPARTITE ENTANGLEMENT IN ANALOGUE
GRAVITY

Hawking pairs emitted at the vicinity of a gravitational black hole are
entangled. This peculiar property of quantum systems has triggered
much interest in general relativity [48, 49, 69, 139, 141, 190] in connec-
tion to the so-called information loss paradox [12, 85, 89, 96, 122, 125,
126, 155, 181, 185, 203] and the vivid debate around it [178] . Indeed,
if black holes radiate a thermal radiation, as predicted by Hawking in
1974 [87], they slowly evaporate and should disappear in a finite amount
of time. As long as the black hole exists, the Hawking particle and its
“Partner” emitted from each side of the event horizon are entangled.
From an observer outside the black hole (and thus only able to detect
the presence of Hawking particles) the quantum state is perceived as
a mixed state, but the full state (Hawking + partner) remains a pure
entangled state. However, after the evaporation process, the quantum
field will remain entangled with the quantum field observables inside
the past black hole – even though the black hole has evaporated com-
pletely. This means that any quantum field in a pure state evolves to
a mixed state and the knowledge of the final state is not sufficient to
determine the initial state; in other words, there is a violation of unitar-
ity [185] and information has been lost during this evaporation process;
in particular, one can wonder what happens for the entangled Hawking
pair when the black hole has disappeared?
These questions are still debated today and several suggestions have

been proposed to overcome this paradox [185]: no complete evaporation
of the black hole, information coming out in a final burst, a firewall
formed on the horizon – a barrier significantly diminishing entanglement
across the horizon, but requiring the quantum field to be singular on
the horizon.
However, no theory is known today to solve unambiguously the prob-

lem. A natural question we might ask ourselves in this thesis: is analogue
gravity able to give some insights on this fundamental issue of informa-
tion loss paradox? A recent publication indeed suggested to use a plasma
laser to mimic an accelerating relativistic mirror1, giving rise to emis-
sion of Hawking pairs from vacuum fluctuations [38]. Partner particles
are trapped beyond an horizon, while Hawking particles, reflected from
the mirror, can be detected. Then, in the proposed experiment, the
plasma mirror is suddenly stopped to imitate the final evaporation of a
black hole and to observe how trapped partner particles are released.
In our case, acoustic analogues in Bose-Einstein condensates (BECs)

do not evaporate. However, quanta emitted spontaneously from vacuum
fluctuations, i.e., elementary excitations on top of the condensate, share

1 see Section 2.1.1 for more details about particle creation by accelerating mirrors.
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entanglement with each other. The study of entanglement in BECs is
a first step to explore the peculiar quantum properties emerging from
the presence of an horizon. It might be interesting in the future to
suggest new experimental setups in BECs to delve into the information
loss paradox; and our theoretical studies addressing several possible
tools for evaluating the amount of bipartite (or tripartite) entanglement
constitute a preliminary step in this direction.
This chapter is entirely dedicated to the study of entanglement emerg-

ing in sonic analogues in BECs. We show in particular that our system
gives rise to tripartite entanglement and we are able to determine the
degree of entanglement between the three outgoing modes emitted spon-
taneously from the acoustic horizon.
First, we need to introduce Bogoliubov transformations and precise

their specific properties in the case we consider. Then, we present some
tools to quantify and measure entanglement. In a third part, we study
tripartite entanglement.

4.1 bogoliubov transformations

In this section, we consider linear transformations that preserve canon-
ical commutation rules for boson operators. We will restrict ourselves
to the case of unitary transformations.

4.1.1 General case

Let us consider N creation and annihilation boson operators
b = (b̂1, . . . , b̂N , b̂

†
1, . . . , b̂

†
N)T, with the usual commutation relation

[bi, bj ] = Ω̃ij , (183)

where

Ω̃ =

(
0 1N

−1N 0

)
. (184)

Consider now the following transformation acting on the b̂’s operators:

ci =
2N∑

j=1

Tij bj , or equivalently c = T b, (185)

with c = (ĉ1, . . . , ĉN , ĉ
†
1, . . . , ĉ

†
N)T the transformed operators, and

T =

(
α∗ −β∗
−β α

)
. (186)

In expression (186), α and β are N × N matrices. Written in a more
explicit form, the transformation reads



ĉ1
...
ĉN


 = α∗



b̂1
...
b̂N


− β

∗



b̂†1
...
b̂†N


 , (187)
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and


ĉ†1
...
ĉ†N


 = −β



b̂1
...
b̂N


+ α



b̂†1
...
b̂†N


 . (188)

One sees that, if β 6= 0, the transformation mixes creation and annihi-
lation operators.
In addition, as mentioned in the introduction of this section, we con-

sider here linear transformations that preserve the bosonic commutation
rule, i.e., the set of transformed operators c must respect the commu-
tation relation (183). This leads to the condition

T Ω̃ T T = Ω̃, (189)

meaning that T belongs to the symplectic group2 Sp(2N,K), where
K = R or C . Condition (189) imposes the following relations between
the matrices α and β:

αα† − β β† = 1N , α βT − β αT = 0

α† α− βT β∗ = 1N , αT β∗ − β† α = 0.
(190)

Moreover, since T is a symplectic matrix, one finds immediately

T −1 = −Ω̃ T T Ω̃ =

(
αT β†

βT α†

)
. (191)

To the canonical transformation (185) there corresponds in general a
unitary scalar operator T acting in Fock space such that:

c = T † bT. (192)

Equation (192) should be understood as




ĉ1 =T † b1 T,
...

ĉN =T † bN T,





ĉ†1 =T † b†1 T,
...

ĉ†N =T † b†N T,

(193)

and similarly for the inverse transformation (using the fact that T is a
unitary operator, i.e., T−1 = T †):

b = T cT †. (194)

Then, one shows that in our case this operator should be of the form
[26]

T = e
1
2
bT Qb, (195)

2 We recall that the symplectic group is the set of linear transformations of a 2N -
dimensional vector space over K (= R or C) which preserve a non-singular skew-
symmetric bilinear form, here represented by the skew-symmetric matrix Ω̃.
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with Q a 2N×2N matrix, assumed symmetric without loss of generality.
Such a quadratic operator gives rise to linear transformations3. Indeed,
it is not difficult to show that the unitary operator defined in (195)
leads to4

ci = T−1 bi T =
2N∑

j=1

T ′ij bj , or equivalently c = T ′ b, (197)

with

T ′ =

(
T ′11 T ′12

T ′21 T ′22

)
= eΩ̃Q (198)

a symplectic matrix, thus respecting condition (189), but a priori not
equal to T defined in equation (186). In expression (198), T ′ij are N×N
matrices. In addition to the symplectic property of T ′, the unitarity of
T adds another constraint. Indeed, let us define the matrix γ = Σz Ω̃,
with Σz = diag(1N ,−1N). By noticing that c† = cT γ, one finds

c† = b† γ (T ′)T γ,

c† = b† (T ′)†.
(199)

Thus, we obtain another condition on T ′:

(T ′)∗ = γT ′ γ, (200)

leading to (T ′11)∗ = T ′22 ≡ α and (T ′12)∗ = T ′21 ≡ −β. Therefore we
find T ′ = T , where T is defined in (186).

We also define vacua with respect to each set of annihilation operators:

b̂i |0〉b = 0, and ĉi |0〉c = 0, i ∈ {1, . . . , N}. (201)

Note that both vacua are identical if β = 0, i.e., when ĉi does not
contain any creation operators b̂†i [see equation (187)]. Actually, Both
vacua are linked through the relation

|0〉b = T |0〉c, and |0〉c = T † |0〉b. (202)

Indeed, b̂i |0〉b = T ĉi T
† T |0〉c = T ĉi |0〉c = 0, where we used the inverse

transformation (194) and ĉi |0〉c = 0.

3 We precise that the transformation is linear at the level of the operators: ĉ’s opera-
tors are linear combinations of b̂’s and b̂†’s operators.

4 One can use the well know operator identity

eÂ B̂ e−Â = B̂ + [Â, B̂] +
1

2!
[Â, [Â, B̂]] + · · · . (196)
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canonical decomposition Let us consider three special types
of transformation.
• The first type is

T (1) = e
1
2
bTQ(1) b, with Q(1) =

(
0 0

0 X

)
, (203)

the N × N matrix X being symmetric. Expressions (197) and (198),
applied to a unitary operator of the form (203), lead to

T (1) = eΩ̃Q(1)
=

(
1N X

0 1N

)
, (204)

and thus,

ci = bi +

N∑

j=1

Xij b
†
j , and ĉ†i = b†i , ∀i ∈ {1, . . . , N}. (205)

The creation operators are left invariant under this transformation.

• The second type does not mix the creation and the annihilation
operators. The matrix Q ≡ Q(2) defined in (195) has the form

Q(2) =

(
0 Y T

Y 0

)
. (206)

Expressions (197) and (198), with Q given by the matrix (206), gives

T (2) =

(
eY 0

0 e−Y
T

)
. (207)

• The third type is similar to the first one, but leaves invariant the
annihilation operators:

Q(3) =

(
Z 0

0 0

)
, with ZT = Z ⇒ T (3) =

(
1N 0

−Z 1N

)
, (208)

that is to say, under the effect of T (3) one has:

ci = bi, and ĉ†i = b†i −
N∑

j=1

Zij bj , ∀i ∈ {1, . . . , N}. (209)

These three transformations actually generate the most general unitary
Bogoliubov transformation since any matrix T can be decomposed as
follows:

T = T (1) T (2) T (3) =

(
1N X

0 1N

) (
eY 0

0 e−Y
T

) (
1N 0

−Z 1N

)

=

(
eY −X e−Y

T
Z X e−Y

T

−e−Y T
Z e−Y

T

)
.

(210)
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Indeed, provided det(α) 6= 0, and by means of the symmetry of X and
Z, as well as the group law property (189), matrices X, Y , and Z can
be found in terms of the T -coefficients. One obtains [16, 123]

X = −β∗ α−1, Z = α−1 β, e−Y
T

= α. (211)

Then, we can use the following property for product of bosons transfor-
mations:This property

follows from
equations (197)

and (186).
e

1
2
bTQ(1) b . . . e

1
2
bTQ(n) b = e

1
2
bTQb, (212)

where Q(1), . . . , Q(n) and Q are all symmetric, and satisfy

eΩ̃Q(1)
. . . eΩ̃Q(n)

= eΩ̃Q, i.e., T (1) . . .T (n) = T . (213)

This shows that the operator T can be uniquely decomposed into the
product [16, 123]

T = T (1) T (2) T (3), where T (i) = e
1
2
bTQ(i) b, i ∈ {1, 2, 3}, (214)

with Q(1),(2),(3) given in equations (203), (206), and (208). Expression
(214) can be written explicitly as

T = (detα)−1/2 exp


1

2

N∑

i,j=1

Xi,j ĉ
†
i ĉ
†
j




× exp




N∑

i,j=1

Yi,j ĉ
†
i ĉj


 exp


1

2

N∑

i,j=1

Zi,j ĉi ĉj


 ,

(215)

where we used the fact that5 bT Qb = cT Q c, for any symmetric matrix
Q.
The interest of the previous expression lies in the fact that all anni-

hilation operators have been put to the right. Therefore, when acting
on the vacuum |0〉c, we obtain

|0〉b = (detα)−1/2 exp


1

2

∑

i,j

Xi,j ĉ
†
i ĉ
†
j


 |0〉c, (216)

with X = −β∗ α−1.

4.1.2 Two-mode squeezed state

Let us apply the results derived in the last section to a simple example.
We consider here a two-mode squeezed operator, that is to say

Tsq2(φω) = exp
[
φω

(
b†1 b
†
2 − b1 b2

)]
, (217)

5 Indeed, using equation (197), one has bTQb = cT (T −1)TQT −1 c. Equation (186)
and symplectic properties of the matrix T (189) and (191) lead to bTQb = cTQ c.
Note that we used Ω̃2 = −12N .
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with tanh rω = exp(−c πω/κ). The meaning of c, κ and ω will become
clearer below. Equation (217) can be written in the form used in the
previous section:

Tsq2(rω) = e
1
2
bTQsq2 b = e

1
2
cTQsq2 c, (218)

where here

b =




b̂1

b̂2

b̂†1
b̂†2



, c =




ĉ1

ĉ2

ĉ†1
ĉ†2



, (219)

are the creation and annihilation operators linked by the Bogoliubov
transformation

c = T †sq2(rω)bTsq2(rω). (220)

In equation (218), Qsq2 is given by

and Qsq2 =




0 −rω 0 0

−rω 0 0 0

0 0 0 rω

0 0 rω 0



. (221)

One finds from equation (186)

Tsq2 =

(
αsq2 −βsq2

−βsq2 αsq2

)
, (222)

with

αsq2 =

(
cosh rω 0

0 cosh rω

)
, βsq2 = −

(
0 sinh rω

sinh rω 0

)
. (223)

The Bogoliubov transformation associated to the unitary operator (217)
between two vectors b and c is

ĉ1 (2) = cosh rω b̂1 (2) + sinh rω b̂
†
2 (1), (224)

i.e.,
(
ĉ1

ĉ2

)
= αsq2

(
b̂1

b̂2

)
− βsq2

(
b̂†1
b̂†2

)
. (225)

Equation (216) becomes in this case

|0〉b = (cosh rω)−1etanh rω ĉ
†
1 ĉ
†
2 |0〉c. (226)
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physical interpretation Let us expand equation (226) over
a Fock space associated to the c’s operators6,

|0〉b = (cosh rω)−1
∞∑

n=0

e−n c π ω/κ|n〉1 |n〉2, (227)

where |n〉i is a state with n particles in mode i (i ∈ {1, 2}), and where
we used tanh rω = exp(−cπω/κ). One sees that |0〉b is a pure state. On
the contrary the reduced density matrix with respect to mode 1 [in the
sense that we trace out over mode 2] is

ρ̂(1) =

∞∑

n′=0

2〈n′|0〉b b〈0|n′〉2

= (cosh rω)−2
∞∑

n=0

(tanh rω)2n |n〉1 1〈n|.

= (1− e−2 c π ω/κ)
∞∑

n=0

e−2n c π ω/κ |n〉1 1〈n|.

(228)

The density matrix (228) describes a mixed state.
Let us go further in the interpretation: imagine an observer restricted

to a region where he can only have access to mode 1. If this observer
measures an observable O, with associated operator Ô, in the quantum
state |0〉b, then the measure is given by

b〈0|Ô|0〉b = Tr(Ô ρ̂(1)). (229)

Therefore, if one takes the particle number operator for mode 1, N̂1 =
ĉ†1 ĉ1, the observer will measure

b〈0|N̂1|0〉b =
1

(coth rω)2 − 1
=

1

e~ω/kBTeff − 1
, (230)

with

Teff ≡
~ω

2 kB ln(coth rω)
. (231)

Note that, in equation (230), the parameter ω plays the role of a fre-
quency. Using coth rω = exp(c πω/κ), one finds

Teff =
~κ
2πc
≡ TH (232)

Thus, this observer perceives a thermal radiation emitted from a certain
source with an effective temperature TH, independent of the frequency
ω. From equation (232), one sees that this temperature is nothing but
the Hawking temperature derived in Chapter 2.
What can we learn from this paragraph? A pure state appears as

a mixed state for an observer confined in a certain region, where he

6 One has in particular (c†i )
n |0〉c =

√
n! |n〉i, i ∈ {1, 2}.
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has only access to modes emitted in this subsystem. This is exactly
the situation that occurs after a gravitational collapse leading to the
formation of a black hole. The event horizon hides the information inside
the black hole and this entails a loss of information [25] (this is clear
since we obtain a mixed state and not a pure state).
Thus, a quantum field in a pure state will be seen in a mixed state

for an observer located outside the black hole. Said differently, the vac- A mixed state is
associated to a
non-zero entropy,
i.e., a loss of
information (see
Section 4.2.4).

uum |0〉b is no longer the physical vacuum for an outside observer to
the black hole, since the ‘true’ vacuum would be now |0〉c; any detector
positioned outside the black hole will register the presence of a thermal
radiation given by the Planck spectrum (230), i.e., the so-called Hawk-
ing radiation. A similar result can be found for an expanding universe
where the acceleration is responsible from the emission of quanta [25].

generalization The results derived in this section can be gener-
alized to a n mode squeezed operator given by

Tsqn(z) = e
1
2
bTQsqn b, (233)

with

b =




b̂1
...
b̂N

b̂†1
...
b̂†N




, and Qsqn =

(
−z† 0

0 z

)
, (234)

where z is a N × N symmetric matrix. This matrix can be decom-
posed into a product of an Hermitian matrix and a unitary matrix
z = r exp(i φ), with r (positive semi-definite) and φ two Hermitian ma-
trices. This is called a polar decomposition. In this case, the Bogoliubov
transformation associated to the operator Tsqn(z) between two sets of
creation and annihilation operators b and c reads [123]

c = T †sqn(z)bTsqn(z) = Tsqn b, (235)

with

Tsqn =

(
cosh(r) sinh(r) ei φ

sinh(rT) ei φ
T

cosh(rT)

)
. (236)

The matrix (236) is the generalized version of expression (222).

4.1.3 Bogoliubov transformations in BECs

Let us now apply the previous results to the case of Bogoliubov trans-
formations in our BEC system. Actually, we have already mentioned
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the presence of a Bogoliubov transformation in Chapter 3 [given by
equation (162)]:



ĉU

ĉD1

ĉ†D2


 =



Su,u Su,d1 Su,d2

Sd1,u Sd1,d1 Sd1,d2

Sd2,u Sd2,d1 Sd2,d2






b̂U

b̂D1

b̂†D2


 , (237)

where ĉI (b̂I), I ∈ {U,D1, D2} are the annihilation operators associated
to outgoing (ingoing) modes. In equation (237), Si,j , i, j ∈ {u, d1, d2}
are the coefficients of the scattering matrix introduced in Chapter 3.
Note that in expression (237) all coefficients depend on the energy ~ω.
Let us now define the sets of ingoing and outgoing operators b =

(b̂U , b̂D1, b̂D2, b̂
†
U , b̂
†
D1, b̂

†
D2)

T and c = (ĉU , ĉD1, ĉD2, ĉ
†
U , ĉ
†
D1, ĉ

†
D2)

T. Equation
(237) can be re-written in the form used in this chapter

c = T b =

(
α∗ −β∗
−β α

)
b, (238)

with

α =



S∗u,u S∗u,d1 0

S∗d1,u S∗d1,d1 0

0 0 Sd2,d2


 , β = −




0 0 S∗u,d2

0 0 S∗d1,d2

Sd2,u Sd2,d1 0


 . (239)

Applying expression (216) to our case gives immediately

|0〉b = |Sd2,d2|−1 exp

[
1

2

∑

I,J

XI,J ĉ
†
I ĉ
†
J

]
|0〉c, (240)

with |0〉b and |0〉c both vacua associated to the b’s ans c’s operators,
respectively, and

X =




0 0
Su,d2
Sd2,d2

0 0
Sd1,d2
Sd2,d2

Su,d2
Sd2,d2

Sd1,d2
Sd2,d2

0


 , with X = −β∗ α−1. (241)

Expression (240) takes the simple form

|0〉b = |Sd2,d2|−1e

(
XU,D2 ĉ

†
U+XD1,D2 ĉ

†
D1

)
ĉ†D2 |0〉c. (242)

Expanding expression (242) over a Fock space gives7

|0〉b =
1

|Sd2,d2|
+∞∑

n=0

+∞∑

n′=0

√√√√
(
n+ n′

n′

)
Xn′
U,D2 X

n
D1,D2

× |n′〉(U) |n〉(D1) |n+ n′〉(D2).

(243)

7 Where |n〉(I) = 1√
n!

(ĉ†I)n |0〉c
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Expression (243) shows that the state we consider is a three-mode pure
state8 (since ρ̂b = |0〉b b〈0| is a pure state). Then, the reduced density
matrix with respect to mode I, I ∈ {U,D1, D2} is

ρ̂(I) = (cosh rI)
−2
∞∑

n=0

(tanh rI)
2n |n〉(I) (I)〈n|, (244)

where we introduced a parameter rI for each mode U , D1, and D2:

tanh[rU(ω)] =
|Su,d2(ω)|√

1 + |Su,d2(ω)|2
,

tanh[rD1(ω)] =
|Sd1,d2(ω)|√

1 + |Sd1,d2(ω)|2
,

tanh[rD2(ω)] =

√
|Sd2,d2(ω)|2 − 1

|Sd2,d2(ω)| .

(245)

In particular, one has sinh rU = |Su,d2|, sinh rD1 = |Sd1,d2|, and sinh rD2 =√
|Sd2,d2|2 − 1. By virtue of the scattering matrix normalization (142),

the three parameters rU , rD1, and rD2 are linked through the relation

(sinh rU)2 + (sinh rD1)
2 = (sinh rD2)

2. (246)

thermality Expression (244) is exactly the same as equation (228).
The reduced density matrix ρ̂(I) is associated to a thermal state [see be-
low, equation (284)] and describes a two mode squeezed vacuum state
Tsq2(rI) |0〉c [see equations (217) and (226)]. Therefore, using equation
(230), one immediately obtains the number of emitted quanta in the
u|out mode at frequency ω, i.e., the Hawking radiation spectrum al-
ready defined in Section 3.3.1,

NH(ω) =
〈
ĉ†U(ω) ĉU(ω)

〉
=

1

e~ω/kBTeff − 1
, (247)

with

Teff(ω) =
~ω

2 kB ln[coth rU(ω)]
. (248)

Thus, we obtain a thermal radiation of effective temperature Teff(ω),
compare with expression (62) obtained in Chapter 2. In this sense, the
analogue Hawking radiation in BECs is indistinguishable from a radi-
ation emitted by a thermal source at the same temperature [74]. How-
ever, this thermality is different from the one discussed in Section 3.3.3.
Indeed, Hawking radiation emitted by black holes is a black-body radia-
tion with an effective temperature which does not depend on the energy

8 This state can be also seen as a two-mode squeezed vacuum state, formed by the
mode D2 and a superposition of the modes U and D1 [see below, starting from
equation (250), and, in particular, equations (256) and (258)].
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~ω [see expression (63) of Chapter 2], at variance with the temperature
determined in expression (248). In this sense, the analogue Hawking
spectrum is clearly not thermal, albeit one naturally recovers the def-
inition of analogue Hawking temperature in the long-wavelength limit
[110]

Teff(ω) −−−→
ω→0

TH. (249)

The effective temperature Teff , as well as the analogue Hawking tem-
perature TH, are shown in Figure 33 for a waterfall configuration9 with
upstream Mach number mu = Vu/cu = 0.59.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
h̄ ω [in units of mc2

u]

0.00

0.05

0.10

0.15

T
eff

TH

Figure 33: Effective temperature Teff computed from equation (248) for a wa-
terfall configuration with upstream Mach number mu = Vu/cu =
0.59 (see Section 3.1.3). The red dashed line indicates the long-
wavelength limit, for which the effective temperature matches
with the definition of the analogue Hawking radiation TH defined
in equation (176) in Section 3.3.1. Note also that the tempera-
ture decreases to zero at ω = Ω, where Ω is the cut-off frequency
defined in Figure 20 of Chapter 3.

two mode squeezed vacuum state We conclude this section
with a last remark: it is in fact possible to show that expression (242)
corresponds to a two mode squeezed vacuum state. This comes from
the fact that one can factor out the creation operator c†D2 in equation
(242).

To demonstrate this point, let us first introduce some notations: the
coefficients of the scattering matrix are complex, and thus we define
the phase ϕi,j , such that Si,j = |Si,j | exp(i ϕi,j), ∀i, j ∈ {u, d1, d2}.
Then we introduce new annihilation and creation operators êI , I ∈
{U, D1, D2}:

êU = e−i ϕu,d2 ĉU , êD1 = e−i ϕd1,d2 ĉD1, êD2 = ei ϕd2,d2 ĉD2. (250)

9 The definition of a waterfall configuration is given in Section 3.1.3.
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The transformation between operators êI and ĉI is unitary and corre-
sponds to a rotation operator

R(ϕ) = exp

(
i
∑

IJ

ĉ†I ϕi,j ĉJ

)
, (251)

with ϕ = diag(−ϕu,d2,−ϕd1,d2, ϕd2,d2). One has indeed

e = R†(ϕ) cR(ϕ) = Φ c, (252)

with e = (êU , êD1, êD2, ê
†
U , ê
†
D1, ê

†
D2)

T, and

Φ =

(
Φd 0

0 Φ†d

)
. (253)

In expression (253), Φd = diag(e−i ϕu,d2 , e−i ϕd1,d2 , ei ϕd2,d2). Note that
expression (253) is a peculiar form of the matrix T defined in equation
(186), which does not mix annihilation and creation operators.

Then, one can write the full transformation from the set of operators
b to the set e:

e = R†(ϕ)T †bT R(ϕ) = Φ T b, (254)

where T corresponds to the unitary Bogoliubov transformation between
b and c, and T is given by equations (238) and (239).
Then, we also define an angle θ(ω) such that:

cos(θ) ≡ |XU,D2|
tanh rD2

and sin(θ) ≡ |XD1,D2|
tanh rD2

, (255)

where we recall thatXI,J are the coefficients of the matrixX [see expres-
sion (241)]. This enables us to introduce a new annihilation operator

êθ = cos(θ) êU + sin(θ) êD1. (256)

Note that sinh rU = cos(θ) sinh rD2 and sinh rD1 = sin(θ) sinh rD2.
By means of these new notations, expression (242) becomes

|0〉b = (cosh rD2)
−1etanh rD2 ê

†
θ ê
†
D2 |0〉c

= Tsq2(rD2) |0〉c,
(257)

with

Tsq2(rD2) = exp
[
rD2

(
ê†θ ê
†
D2 − êθ êD2

)]
. (258)

Therefore, |0〉b is indeed a two mode squeezed vacuum state. This will
make it possible to write the covariance matrix (280) in a standard form
(see Section 4.2.1). Moreover, note that the change of basis (256) could
be seen as the equivalent of the action of beamsplitter in a quantum
optics setup; we will come back to this analogy in Section 4.3.1.
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4.2 measuring entanglement

In this section we discuss the different possibilities for measuring entan-
glement. The first subsection is devoted to the definition of the so-called
covariance matrices. These matrices provide a powerful tool for charac-
terizing entanglement through symplectic eigenvalues, and we will use
them throughout the following sections.
Then, we define Cauchy-Schwarz inequality or, equivalently in our

case, the DGCZ criterion [52] (where DGCZ are the co-authors of Ref.
[52]). A violation of this inequality ensures the non-separability of a
bipartite state. Several studies in the field of acoustic black holes [32,
33, 62] used this criterion to study entanglement properties of pairs of
quanta emitted in BECs from vacuum fluctuations.
In this thesis, as mentioned in the introduction of this chapter, we

wish to study tripartite entanglement. Previous works pertaining to
quantum information theory [3–6, 166, 167, 169] developed numerous
tools to explore entanglement of multipartite states. In particular, Peres-
Horodecki (PPT) criterion is used in this community to study non-PPT means

‘Positive Partial
Transpose’.

separability, and this is the reason why one subsection is dedicated to
its analysis. However, this criterion does not measure the degree of en-
tanglement. Since our aim is to characterize the degree of entanglement
of a tripartite state, we need to use a computable measure that is able
to quantify entanglement sharing, such as the Von-Neuman entropy or
the logarithmic negativity. Therefore, we end this section by their defi-
nition.

4.2.1 Gaussian states and covariance matrices

gaussian states By definition, a quantum state10

ρ̂ =
∑

i

pi |ψi〉 〈ψi| (259)

is Gaussian if and only if its associated characteristic Wigner function

χW(λ) = Tr
[
ρ̂ D̂(λ)

]
(260)

is a Gaussian function [72].
In equation (260), λ = (λ1, . . . , λN ,−λ∗1, . . . ,−λ∗N)T, with λi ∈ C,

and D̂(λ) is a displacement operator defined as

D̂(λ) = eλ
T b, with b = (b̂1, . . . , b̂N , b̂

†
1, . . . , b̂

†
N)T. (261)

Consider a pure Gaussian state ρ̂G = |ψG〉 〈ψG| and a unitary Bogoli-
ubov transformation

|ψ〉 = T |ψG〉. (262)

10 The density matrix ρ̂ is also referred to as the quantum state in the quantum infor-
mation community.
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We define for convenience

χG
W(λ) ≡ Tr

[
ρ̂G D̂(λ)

]
. (263)

Then, ρ̂ = |ψ〉 〈ψ| is also a Gaussian state. Indeed, first we notice that

ρ̂ = T ρ̂G T
†. (264)

Therefore, by using the cyclicity of the trace and equation (197),

χW(λ) = Tr
[
ρ̂ D̂(λ)

]

Tr
[
T ρ̂G T

† D̂(λ)
]

= Tr
[
ρ̂G T

† D̂(λ)T
]

= Tr
[
ρ̂G e

λT T † bT
]
Tr
[
ρ̂G e

λT T b
]

= Tr
[
ρ̂G D̂(T T λ)

]
,

(265)

and thus

χW(λ) = χG
W(T T λ). (266)

Equation (266) proves that the Wigner characteristic function χW(λ),
associated to the quantum state ρ̂, is a Gaussian function, meaning that
ρ̂ is indeed a Gaussian state.

In our case, since we consider a Bogoliubov transformation |0〉c =
T † |0〉b, the Gaussian character of the vacuum |0〉b is preserved through
this transformation, and thus |0〉c is also a Gaussian state; and this
result is expected: |0〉c is an oscillator ground state such that ĉI |0〉c =
0, I ∈ {U,D1, D2}, thus necessarily Gaussian. Recalling expression
(243), the Bogoliubov transformation associated to the scattering pro-
cess (237) leads to a three-mode Gaussian pure state.

covariance matrices Let us now introduce the vector of quadra-
ture operators

ξ =
√

2 (q̂1, p̂1, . . . , q̂N , p̂N)T, (267)

with q̂i and p̂i the position and momentum operators related to mode
i, and defined in terms of the creation and annihilation operators as11

q̂i =
b̂i + b̂†i√

2
, and p̂i =

b̂i − b̂†i√
2 i

, ∀ i ∈ {1, . . . , N}. (268)

Therefore we can define a (unitary) matrix U such that

ξ = U b, b = U † ξ. (269)

Using equation (269), one sees that the vector ξ must respect the com-
mutation relation

[ξi, ξj ] = 2 iΩij , ∀ i, j ∈ {1, . . . 2N}, (270)

11 The factor
√

2 in the definition of ξ in equation (267) seems useless, since it cancels
with the factor 1/

√
2 in the definition of the position and momentum operators

[expressions (268)]. However, we decided to keep this factor in expression (267) to
follow the conventions used in Ref. [4], in particular for the normalization of the
covariance matrix and the symplectic eigenvalues (see below).
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with

Ω = − i
2
U Ω̃UT =

N

⊕
1
ω, ω =

(
0 1

−1 0

)
. (271)

We define the covariance matrix σ, a real symmetric positive-definite
matrix, such that:

σi,j ≡
1

2
〈ξ̂i ξ̂j + ξ̂j ξ̂i〉 − 〈ξ̂i〉 〈ξ̂j〉. (272)

Let us consider now a unitary transformation, decomposed into a
Bogoliubov transformation (we denote the corresponding operator T
to respect the notations used in the previous sections) and a rotation
transformation [the corresponding operator is denoted R(ϕ)].

In the Heisenberg picture, the quadrature operators ξ are transformed
by this unitary transformation. Indeed, it is easy to prove that in this
case

R†(ϕ)T † ξ T R(ϕ) = UΦ T U †ξ ≡J (U) ξ, (273)

where J (U) = U Φ T U † ∈ Sp(2N,R) [172]. Denoting Φ(U) = U ΦU †

and T (U) = U T U †, one might prefer to write J (U) = Φ(U) T (U).
The covariance matrix (272) associated to this transformation is

σ′i,j =
1

2
〈ξ̂′i ξ̂′j + ξ̂′j ξ̂

′
i〉 − 〈ξ̂′i〉 〈ξ̂′j〉, (274)

where we have introduced the transformed vector

ξ′ = (ξ̂′1, . . . , ξ̂
′
N) = J (U) ξ. (275)

Thus expression (274) becomes

σ′i,j =
1

2

∑

kl

[J (U)]ik 〈ξ̂k ξ̂l + ξ̂l ξ̂k〉 − 〈ξ̂k〉 〈ξ̂l〉 [J (U)T]lj , (276)

showing that

σ′ = J (U)σJ (U)T. (277)

We could also write it in the form

σ′ = Φ(U) T (U)σT (U)T Φ(U)T, (278)

where the decomposition into a Bogoliubov transformation and a rota-
tion becomes clearer.

Note that, if Φ = diag(Φd,Φ
†
d), with Φd = diag[exp(i ϕ1), . . . , exp(i ϕN)],

Φ(U) =



Rϕ1

. . .

RϕN


 , Rϕi =

(
cos(ϕi) sin(ϕi)

− sin(ϕi) cos(ϕi)

)
. (279)
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In this case, the matrix Φ(U) is diagonal and corresponds for each mode
i ∈ {1, . . . , N} to a rotation of angle ϕi. One sees from equation (253)
that we are exactly in this case.

Let us summarize the action of a Bogoliubov transformation followed
by a rotation on an initial covariance matrix σG. Using expression (272),
the covariance matrix can be written explicitly in terms of the position
and the momentum operators

σG =




σ1 ε12 · · · ε1N

εT
12

. . . . . .
...

...
. . . . . . εN−1N

εT
1N · · · εT

N−1N σN



, (280)

with

σi = 2

( 〈
q̂2
i

〉
〈{q̂i, p̂i}〉

〈{q̂i, p̂i}〉
〈
p̂2
i

〉
)
, εij = 2

(
〈q̂i q̂j〉 〈q̂i p̂j〉
〈p̂i q̂j〉 〈p̂i p̂j〉

)
, (281)

where 〈{q̂i, p̂i}〉 = 1
2 (〈q̂i p̂i〉+ 〈p̂i q̂i〉) , i ∈ {1, . . . , N}.

In equations (280) and (281) the position and momentum operators
q̂i and p̂i, i ∈ {1, . . . , N} are linked to the initial set of annihilation
and creation operators b through relation (269), or explicitly through
relation (268). After the unitary transformation, using equations (272)
and (277) one finds that the covariance matrix σ has the same form as
equation (280), but now

q̂i → q̂′i =
êi + ê†i√

2
, and p̂i → p̂′i =

êi − ê†i√
2 i

, (282)

where êi (ê
†
i ) are the transformed annihilation (creation) operators [see,

e.g., expression (254)].

simple cases In this paragraph we just mention some simple co-
variance matrices, which will be useful in the following:

• Vacuum state – The covariance matrix associated to a vacuum state
|0〉 is

σ0 = 1. (283)

This result is immediate from equation (281).

• Thermal state – A thermal state is described by a density matrix
of the form

ρth(n̄) =
1

n̄+ 1

∞∑

n=0

(
n̄

n̄+ 1

)n
|n〉 〈n|. (284)

Note that, as mentioned earlier, the reduced density matrices ρ(I) de-
rived in equation (244) are thermal states with n̄ = sinh2(rI), ∀ I ∈
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{U,D1, D2}. One checks that n̄ is indeed the mean occupation number
for each mode I, since sinh2(rI) = 〈ĉ†I ĉI〉.

Here also, one finds from equation (281) that the covariance matrix
σth associated to the density matrix (284) is

σth = (2 n̄+ 1)12. (285)

wick theorem Gaussian states are fully characterized by the first
and second moments of the vector ξ. One can always impose 〈ξ〉 = 0
by using some local displacement operations. Therefore, the covariance
matrix reduces to σi,j = 1

2 〈ξ̂i ξ̂j + ξ̂j ξ̂i〉 and entirely describes the cor-
responding Gaussian state of density operator ρ̂. This is an important
remark: the covariance matrix σ characterizes the entanglement of the
corresponding Gaussian state.
We mention for completeness that higher order moments can be eval-

uated by using the Wick theorem

〈Ô1 . . . ÔN〉 =
∑
〈Ôi1Ôi2〉 . . . 〈ÔiN−1

ÔiN 〉, (286)

where the sum is taken over all different manners to associate the initial
operators Ôi, and with ij < ij+1, j ∈ {1, . . . , N − 1}.

williamson’s theorem For any real symmetric positive-definite
2N × 2N matrix σ there exists S ∈ Sp(2N,R) such that the so-called
symplectic transform of σ by S has the canonical diagonal form, unique
up to the ordering of the νj ,

ν = S σ ST = diag(ν1, ν1, ..., νN , νN), with νj ∈ R+. (287)

The quantities {νj} are called the symplectic eigenvalues of σ and they
can be computed as the eigenvalues of the matrix |iΩσ|, where Ω has
been defined in equation (271) 12.
In addition, one sees from equation (285) that the diagonal form ν of

any covariance matrix σ is associated to a density matrix

ρν =
N

⊗
j=1

ρth(νj), (289)

where ρth(νj) is defined in equation (284). Therefore Williamson’s the-
orem proves that any Gaussian states can be decomposed into thermal
states, whose mean occupation number n̄ are the symplectic eigenvalues
νj .

uncertainty relation A bona fide covariance matrix σ has to
satisfy the uncertainty relation [172]

σ + iΩ ≥ 0. (290)

12 This statement can be proven on the canonical diagonal form [166]. Indeed, one has
Ω−1 = ΩT = −Ω, Ω2 = −11 and S−1 = Ω−1 ST Ω leading to

Ω ν = ΩS σ ST = (ST)−1 Ωσ ST. (288)
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Let us prove this property. Using the Williamson’s theorem, we know
that there exists a symplectic matrix S such that ν = S σ ST. Thus,

ν + iΩ = S (σ + iΩ)ST, (291)

where we used S ΩST = Ω. The explicit expression of ν + iΩ is easily
obtained and reads

ν + iΩ =
N

⊕
i=1
$i, where $i =

(
νi 1

−1 νi

)
. (292)

Thus, since the eigenvalues of $i are νi ± 1, ν + iΩ ≥ 0 if and only
if νi ≥ 1, i ∈ {1, . . . , N}. By noticing that νi = 2 〈q̂2

i 〉 = 2 〈p̂2
i 〉 =

Tr(ρ̂ν p̂2
i ), where ρ̂ν is given by expression (284), one obtains

νi ≥ 1⇒ (∆q̂i)
2 (∆p̂i)

2 ≥ 1

4
, (293)

which corresponds exactly to the Heisenberg uncertainty relation, and
which is always verified for a pair of canonical operators {q̂i, p̂i}. This
ensures that ν+iΩ ≥ 0. Then, since the transformation (291) preserves
the positive-semi-definiteness, σ + iΩ ≥ 0.

4.2.2 Cauchy-Schwarz inequality

duan et al. criterion (also called the DGCZ criterion) As dis-
cussed in Ref. [52], there exists a general inequality for Gaussian states,
which is a sufficient and necessary condition for two modes to be entan-
gled. The covariance matrix associated to two modes, say 1 and 2, is
explicitly

σ12 =

(
σ1 ε12

εT
12 σ2

)
, (294)

where σ1, σ2 and ε12 are 2× 2 matrices given by (281). This covariance
matrix is said to be in its standard form when it is of the form

σ12 =




n1 0 `1 0

0 n2 0 `2

`1 0 m1 0

0 `2 0 m2



, (295)

where n1, n2, m1, m2 ≥ 1, and `1, `2 ∈ R. In this case, Duan et al. [52]
proved that a sufficient and necessary condition for these two modes to
be entangled is

{
|`1| >

√
(n1 − 1) (m1 − 1)

|`2| >
√

(n2 − 1) (m2 − 1)
(296)

In our case, we consider two modes I and J among U , D1, and
D2. As explained in the previous subsection, the corresponding two



120 tripartite entanglement in analogue gravity

mode covariance matrix can be calculated in terms of the transformed
annihilation and creation operators êI and ê

†
I defined in expression (254):

σI = (1 + 2 〈ê†I êI〉)12 = (1 + 2 〈ĉ†I ĉI〉)12, ∀I ∈ {U,D1, D2}, (297)

and

εIJ =

{
2|〈ĉI ĉJ〉|σz, if I ∈ {U,D1}, J = D2,

2|〈ĉI ĉ†J〉|12, if I, J ∈ {U,D1},
(298)

where we recall that c’s operators annihilate or create an excitation in
one of the outgoing modes u|out, d1|out, or d2|out [see equation (237)].
Note that in equation (298), the result is written in terms of ĉI (ĉ

†
I) and

not êI (ê
†
I). This will be indeed more convenient for future discussions,

since c’s operators have a real physical meaning and are linked to e’s
operators just by a phase factor [see equation (250)].
We immediately see that the covariance matrix described by matrices

(297) and (298) is in its standard form, with

n1 = n2 = (1 + 2 〈ĉ†I ĉI〉),
m1 = m2 = (1 + 2 〈ĉ†J ĉJ〉),

`1 =

{
−`2 = 2|〈ĉI ĉJ〉|, if I ∈ {U,D1}, J = D2,

`2 = 2|〈ĉI ĉ†J〉|, if I, J ∈ {U,D1}.

(299)

Thus, using the DGCZ criterion (296), we state that two modes I and
J are entangled if and only if

{
|〈ĉI ĉJ〉|2 > 〈ĉ†I ĉI〉 〈ĉ†J ĉJ〉, if I ∈ {U,D1}, J = D2,

|〈ĉI ĉ†J〉|2 > 〈ĉ†I ĉI〉 〈ĉ†J ĉJ〉, if I, J ∈ {U,D1}.
(300)

The set of inequalities (300) exactly corresponds to a violation of the
Cauchy-Schwarz inequality [75, 174].

entanglement Let us now use inequalities (300) to determine
if there is entanglement in our system. First, we write the covariance
matrix in terms of the parameters rI introduced in equation (245):

σI = cosh(2 rI)12, ∀I ∈ {U,D1, D2}, (301)

and

εIJ =

{
2 sinh(rI) cosh(rJ)σz, if I ∈ {U,D1}, J = D2,

2 sinh(rI) sinh(rJ)12, if I, J ∈ {U,D1}. (302)

Therefore, we obtain




〈ĉ†I ĉI〉 〈ĉ†J ĉJ〉
|〈ĉI ĉJ〉|2

= [tanh(rD2)]
2, if I ∈ {U,D1}, J = D2,

〈ĉ†I ĉI〉 〈ĉ†J ĉJ〉
|〈ĉI ĉ†J〉|2

= 1, if I, J ∈ {U,D1}.
(303)
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One sees that the first inequality of (300) is always verified [tanh(rD2) <
1], meaning that the Cauchy-Schwarz inequality is violated. This means
that pairs of quanta U −D2 and D1−D2 are entangled.
However, the second inequality of (300) is not true: indeed, according

to equation (303), 〈ĉ†U ĉU〉 〈ĉ†D1 ĉD1〉 = |〈ĉU ĉ†D1〉|2. This means that a pair
of quanta U −D1 is not entangled, but instead separable.

Therefore, one guesses how tripartite entanglement emerges. Three
outgoing quanta, emitted from the acoustic horizon in the mode U , D1,
andD2, respectively, share entanglement with each other in a particular
manner: positive energy modes U and D1 are not entangled, but each of
them is entangled with the negative mode D2. This renders the whole
system entangled.

4.2.3 PTT criterion

Another important criterion is the PPT (‘Positive Partial Transpose’)
criterion which will reveal more useful than the DGCZ criterion for
studying tripartite entanglement. Consider a density matrix ρ̂ which
acts on a Hilbert space of the form HA ⊗ HB. The partial transpose
with respect to subsystem A is defined as13

ρ̂TA = (T⊗ 1)(ρ̂), (304)

where T is the transposition map applied to A and 1 is the identity map
applied to B.

The Peres-Horodecki (or PPT) criterion states that a necessary and
sufficient condition [171, 193] for a state ρ̂ to be separable is that ρ̂TA (or
ρ̂TB) must be positive semidefinite, i.e., all its eigenvalues are positive.
Therefore, if one of the eigenvalues is negative after the partial transpose
operation14, the state is entangled. Therefore, PTT criterion helps to
decide if two subsystems are entangled or not.
The covariance matrix appears to be a very powerful tool to use PPT

criterion. Indeed, it has been proven that the covariance matrix σ̂TA of
the partially transposed state ρ̂TA with respect to subsystem A is [171]

σ̂TA = Tσ T, with T =
m

⊕
1
σz ⊕ 12n, (305)

where m is the dimension of subsystem A, n is the dimension of subsys-
tem B, σz is the usual 2×2 Pauli matrix, and 12n is the 2n-dimensional
identity matrix.
If we consider now a [1 + (n − 1)]-mode Gaussian state (in the

sense that subsystem A is one-dimensional and subsystem B is (n− 1)-
dimensional), in analogy with condition (293), the PPT criterion can

13 Such a density matrix can be written as ρ̂ =
∑
ρijkl |iA jB〉〈kA lB|. Then the trans-

position map applied to subsystem A leads to ρ̂TA =
∑
ρkjil |iA jB〉〈kA lB|.

14 One does not need to partial transpose with respect to A, and then to B to conclude
on the separability or not of the state. Indeed, it suffices to partial transpose with
respect to one of both subsystems, say A for example. Then, because ρ̂TB = (ρ̂TA)T,
the spectrum of ρ̂TB is the same as the spectrum of ρ̂TA .
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be expressed as a condition of the symplectic eigenvalues15 {νTA
j } of

σ̂TA . The [1 + (n− 1)]-mode Gaussian state is separable

if and only if ν
TA
j ≥ 1, ∀ j ∈ {1, . . . , n}. (306)

A violation of the previous inequality by one of the symplectic eigenval-
ues {νTA

j } ensures the non-separability of the state. This condition can
be also written

σTA + iΩ ≥ 0, (307)

in full analogy with inequality (290).

determination of the symplectic eigenvalues We give
here the explicit expression of the symplectic eigenvalues in the case of
a two-mode Gaussian state.
We denote ν± the symplectic eigenvalues associated to the density

matrix ρ̂, which describes the two-mode Gaussian state. The symplectic
eigenvalues of the partially transposed density matrix ρ̂T1 with respect
to the first mode16 is denoted νT1

± .
Then, as in expression (294), we define the two-mode covariance ma-

trix as

σ12 =

(
σ1 ε12

εT
12 σ2

)
, (308)

where the 2× 2 matrices σ1,2 and ε12 are defined in (281).
One can find easily the symplectic eigenvalues associated to σ12 [169,

186]. First, using the Williamson’s theorem, which states that any co-
variance matrix σ can be put into a diagonal form ν through a sym-
plectic transform, we can find a symplectic matrix S such that ν12 =
S σ12 ST, with ν12 = diag(ν−, ν−, ν+, ν+).
Then, to find the explicit expressions of ν− and ν+, we use the fact

that detσ12 and the quantity defined by ∆12 = detσ1+detσ2+2 det ε12

are symplectic invariant, i.e., invariant under a symplectic transform
[169]. This means that det ν12 = ν− ν+ = detσ12 and ∆12(ν12) = ν2

− +
ν2

+ = ∆12(σ12), thus leading to

2 ν2
± = ∆12 ±

√
∆2

12 − 4 det σ12. (309)

In addition, one can prove easily that partial transpose operation changes
the sign in front of det ε12 in the expression of ∆12 [171]. Therefore, the
symplectic eigenvalues associated to σ̂T1

12 are given by

2 (ν
T1
± )2 = ∆

T1
12 ±

√
(∆

T1
12 )2 − 4 detσ12, (310)

15 We recall that the symplectic eigenvalues {ν} are the eigenvalues of |iΩσ|, with
Ω defined in equation (271) and σ is the covariance matrix associated to a density
matrix ρ̂. The existence of the symplectic eigenvalues is ensured by the Williamson’s
theorem (see Section 4.2.1).

16 We changed the notation ρ̂TA to ρ̂T1 for simplicity.
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with ∆
T1
12 = detσ1 + detσ2 − 2 det ε12.

For a two-mode state, PPT criterion reduces to whether or not νT1
−

is greater than one. Indeed, if the bipartite state is separable, it fol-
lows immediately that νT1

+ ≥ 1; if the bipartite state is entangled, one
can prove that necessarily det ε12 < 0 [171], meaning that ∆

T1
12 > ∆12,

and thus, νT1
+ > ν−. Using the uncertainty principle (293), one obtains

ν
T1
+ ≥ ν− ≥ 1. In all cases (separable or entangled), νT1

+ ≥ 1. Therefore,
condition (306) can only be violated by νT1

− and the necessary and suffi-
cient condition PPT condition for the separability of the state reduces
to

ν
T1
− ≥ 1. (311)

In our case, it is simple to show that the symplectic eigenvalue νTU
−

(where the notation TU means that we partial transpose with respect
to mode U) of the reduced covariance matrix σUD1 is greater than one,
meaning that a pair of quanta U−D1 is separable. On the contrary, the
eigenvalues νTD2

− of the reduced covariance matrix σUD2 and σD1D2 are
lower than one. This implies that pairs of quanta U −D2 or D1−D2
are entangled, thus leading to the same results as those obtained with
the Cauchy-Schwarz inequality in Section 4.2.2.

The use of PPT criterion, and in particular of the symplectic eigen-
values {νTA

j } (or equivalently {ν
T1
j }) will become clear in the next sub-

section, where we introduce the logarithmic negativity as a measure of
the degree of entanglement.

4.2.4 Degree of entanglement

We introduced two criteria heretofore to determine the separability of
a bipartite state. We would like now to measure the degree of entangle-
ment, provided by the negativity N .

logarithmic negativity The negativity of a quantum state ρ̂
is defined as [204]

N (ρ̂) ≡ ‖ρ̂
TA‖1 − 1

2
, (312)

where ‖Ô‖1 = Tr
√
Ô† Ô is the trace norm, and ρ̂TA is the partially

transposed density matrix with respect to subsystem A; for instance,
with respect to mode 1 for a [1+(n−1)]-mode Gaussian state. One can
have an intuition of this measure: equation (312) quantifies the extent
to which ρ̂TA fails to be positive. Indeed, since ‖ρ̂‖1 = 1 by definition
of a density matrix, if one eigenvalue of ρ̂TA is negative, ‖ρ̂TA‖1 < 1
and N (ρ̂) < 0; the more ρ̂TA has negative eigenvalues the more N (ρ̂)
becomes negative.
Let us now introduce the logarithmic negativity

EN (ρ̂) ≡ ln ‖ρ̂TA‖1 . (313)
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Identically to condition (312),the logarithmic negativity also measures
the extent to which ρ̂TA fails to be positive, and equals zero if the
bipartite state is separable.
Here again, the covariance matrix represents a powerful tool. For a

two-mode Gaussian state, one can prove that [5, 186]

E
1|2
N (ρ̂) = max[0,−ln νT1

− ], (314)

where νT1
− is the lowest symplectic eigenvalues of the partially trans-

posed density matrix ρ̂T1 with respect to mode 1 defined in equation
(310). Note that, in (314), the notation 1|2 means that we consider the
state of the bipartition composed of mode 1 and mode 2.

Since the explicit expression of νT1
− is given in (310), we can calculate

expression (314) for a two-mode Gaussian pure state. Here, we present
the approach for a pure state because (i) the calculation of expression
(314) for a mixed state is more tedious, (ii) our system is a pure state,
(iii) the generalization from a two-mode Gaussian pure state to a [1 +
(N−1)]-mode Gaussian pure state (in our case N = 3) has been studied
in Ref. [6] and is given below [see equation (318), which will be useful
later for the computation of the degree of tripartite entanglement, see
equation (338)]. First, we use the fact that any covariance matrix can be
put into its standard form (295) through local linear unitary Bogoliubov
transformations17 (LLUBO) [52].

For a pure state the standard form of the covariance matrix reduces
to [3]

σp12 =




a 0
√
a2 − 1 0

0 a 0 −
√
a2 − 1√

a2 − 1 0 a 0

0 −
√
a2 − 1 0 a



, (316)

17 Consider a covariance matrix σ12 of the form (308); A local linear Bogoliubov trans-
formation is such that the transformed covariance matrix reads

σ′12 = S σ12 S
T, (315)

with S = diag (S1, S2) ∈ Sp(2,R) ⊗ Sp(2,R), S1 and S2 being 2 × 2 symplectic
matrices [52, 171]. Equation (315), together with the form of the symplectic matrix
S, imply that locally σ′1 = S1 σ1 S

T
1 , σ′2 = S2 σ2 S

T
2 , ε′12 = S1 ε12 S

T
2 . Since detS1 =

detS2 = ±1 (recall that S1 and S2 are symplectic), detσ′1 = detσ1, detσ′2 = detσ2,
and det ε′12 = det ε12. Thus, ∆12, ∆

T1
12 , and det σ12 are also symplectic invariants.

This property can be extended straightforwardly to any 2N × 2N covariance matrix
σ1...N by defining S = diag (S1, . . . , SN) ∈ Sp(2,R) ⊗ . . . ⊗ Sp(2,R). In this case,
detσi and det εij , ∀ i, j ∈ {1, . . . , N} are symplectic invariants – for instance, note
that Φ(U) defined in equation (279) is such a LLUBO transformation applied to a
N -mode Gaussian state.
In our case, the covariance matrix is already in its standard form [see the set of
equations (297), (298), and (299)]. Indeed, we considered the covariance matrix
associated to the full transformation (254), i.e., the transformation from the set of
operators b to the set e. If we have considered instead the transformation between b
and c only, the covariance matrix would not have been in its standard form. One sees
from equations (278) and (279) that we used a LLUBO transformation [expression
(279)] between the set of operators c and e.



4.3 tripartite entanglement in becs 125

where a =
√

detσ1 is called the local mixedness; the notation σp means
that we consider here a pure state. Using expression (316), one computes
easily ∆

T1
12 defined below (310). We obtain ∆

T1
12 = 4 a2 − 1, and thus,

ν
T1
± = a±

√
a2 − 1. This leads to

E
1|2
N (ρ̂) = −arcsinh (

√
a2 − 1). (317)

Actually, inasmuch as νT1
+ ≥ ν− ≥ 1, this implies a ≥ 1.

• if a = 1, νT1
+ = ν

T1
− = 1, thus the state is separable by virtue of the

PPT criterion (311).

• If a > 1, νT1
+ > 1, leading to νT1

− < 1. Therefore, the PPT criterion
(311) affirms that the state is entangled, and, indeed, E1|2

N (ρ̂) 6= 0 in
this case.
Expressions (314) and (317) can be generalized to [1 + (N − 1)]-

mode Gaussian pure states, i.e., to each bipartite state i|i1 . . . iN , where
i ∈ {1, . . . N} and ij 6= i, ∀ j ∈ {1, . . . , N − 1}. Indeed, in this case, it
was proven in Ref. [6] that

E
i|i1...iN
N (ρ̂) = −arcsinh

(√
a2
i − 1

)
, (318)

with ai =
√

detσi the local mixedness pertaining to mode i, σi being
defined in expression (280).

In the following, we will use the squared logarithmic negativity, i.e.,

Eτ (ρ̂) ≡ ln2 ‖ρ̂T1‖1 , (319)

where ρ̂T1 means that the density matrix ρ̂ has been partial transposed
with respect to mode 1. One finds from equation (318) that

Ei|i1...iNτ (ρ̂) = arcsinh2

(√
a2
i − 1

)
. (320)

4.3 tripartite entanglement in becs

In this section, we use the results derived previously to study tripartite
entanglement emerging in an acoustic black hole. It is worth recalling
that these results apply to Gaussian states only. We can safely use
them here, since we proved in Section 4.1.3, together with the results
derived in Section 4.2.1, that the Bogoliubov transformation associated
to the scattering process (237) led to expression (243), i.e., a three-mode
Gaussian pure state. ρ̂b = |0〉b b〈0| is a

pure state.

4.3.1 Tripartite system and parametric down-conversion

Before computing the degree of tripartite entanglement in our system,
let us write the 6×6 covariance matrix σ associated to the three-mode
Gaussian pure state (243). We already computed the submatrices σI ,
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I ∈ {U,D1, D2} and εIJ , I, J ∈ {U,D1, D2}, I 6= J of σ in equations
(301) and (302), see Section 4.2.2.

It will be convenient to express all the quantities appearing in the
covariance matrix σ in terms of the local mixedness

aI =
√

detσI (321)

related to each mode I, I ∈ {U,D1, D2}. Using (301), one finds easily

aI = cosh(2rI), I ∈ {U,D1, D2}, (322)

where the parameters rI have been defined in equation (245). One can
also write the scattering matrix normalization (246) in terms of the
local mixedness:

aU + aD1 − aD2 = 1 (323)

Then, the covariance matrix reads

σ =



σD2 εUD2 εD1D2

εT
UD2 σU εUD1

εT
D1D2 εT

UD1 σD1


 , (324)

with

σI =

(
aI 0

0 aI

)
, I ∈ {U,D1, D2}, (325)

and

εUD2 =

(√
aU − 1

√
aD2 + 1 0

0 −√aU − 1
√
aD2 + 1

)
, (326a)

εD1D2 =

(√
aD1 − 1

√
aD2 + 1 0

0 −√aD1 − 1
√
aD2 + 1

)
, (326b)

εUD1 =

(√
aU − 1

√
aD1 − 1 0

0
√
aU − 1

√
aD1 − 1

)
. (326c)

Recall that this covariance matrix is expressed in the basis êU , êD1 and
êD2 and is of standard form.

As noticed in Refs. [44, 168], it is possible to concentrate the tripar-
tite entanglement of our system on a two mode state by applying a
unitary transformation; this procedure is called entanglement localiza-
tion. Actually, this is exactly what we already did in Section 4.1.3 by
defining a new annihilation operator êθ in equation (256):

êθ = cos θ êU + sin θ êD1, (327)

with

cos θ =
sinh rU
sinh rD2

=

√
aU − 1

aD2 − 1
, sin θ =

sinh rD1

sinh rD2

=

√
aD1 − 1

aD2 − 1
. (328)
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Therefore, the unitary transformation associated to this change of basis,
from {êD2, êU , êD1} to {êD2, êθ, êθ+π

2
}, is

Uθ =




1 0 0 0 0 0

0 1 0 0 0 0

0 0 cos θ 0 sin θ 0

0 0 0 cos θ 0 sin θ

0 0 − sin θ 0 cos θ 0

0 0 0 − sin θ 0 cos θ




. (329)

Then, using the fact that under any local linear Bogoliubov transforma-
tion U the covariance matrix transforms as σ′ = UσUT [52, 171], we
find here

σθ = Uθ σ U
T
θ =

(
σsq 0

0 12

)
, (330)

with

σsq ≡




cosh(2rD2) 0 sinh(2rD2) 0

0 cosh(2rD2) 0 − sinh(2rD2)

sinh(2rD2) 0 cosh(2rD2) 0

0 − sinh(2rD2) 0 cosh(2rD2)



, (331)

i.e., σsq is the covariance matrix associated to a two mode squeezed
state with squeezing parameter rD2. This was expected: the covariance
matrix σθ corresponds to the two mode squeezed vacuum state (258).
The tripartite entanglement between the three modes U , D1 and D2
is equivalent to the one of a two mode squeezed state between D2 and
U −D1, where the mode U −D1 [the mode “θ”, see equation (327)] is
in fact a linear combination of U and D1.
Likewise, one can draw a nice analogy with a quantum optics system:

parametric down-conversion generates a two modes squeezed state (here
êθ). This mode directed to a beamsplitter generates a linear combination
between the two outgoing channels (here, êU and êD1), see Figure 34.
Note that the pair U −D1 is indeed separable and each of these modes
share entanglement with the remaining mode D2. Such a setup with
parametric down-conversion was suggested for instance in Ref. [44].
The interest of the system we consider is to generate such a com-

bination of states through the Bogoliubov transform (237): tripartite
entanglement naturally emerges from quantum fluctuations around a
sonic horizon.

Besides this analogy, one can compute very easily the symplectic
eigenvalues associated to the covariance matrix σ

TD2
θ of the partially

transposed state ρ̂TD2 from (330). Indeed, two of them are trivially 1,
and the remaining ones are those of a two mode squeezed state with



128 tripartite entanglement in analogue gravity

Figure 34: Example of a tripartite entangled system generated by paramet-
ric down-conversion and the use of a beamsplitter to create a
linear combination between two separable modes. The modes D2
(the partner), and ‘θ’ form a squeezed state, see expression (258).
Then the mode ‘θ’ splits in two modes by means of a beamsplit-
ter, see equation (327); They correspond to the Hawking (mode
U) and the companion (mode D1) quanta.

covariance matrix (331); they can be easily computed from (310). There-
fore, we obtain18

{νTD2
j } = {e2 rD2 , e2 rD2 , e−2 rD2 , e−2 rD2 , 1, 1}. (332)

One sees in particular that the PPT criterion (306) is always violated for
all rD2 > 0. We can also use expression (314) to compute the logarithmic
negativity between the bipartite system formed by the modeD2 and the
mode U−D1 (corresponding to a two mode squeezed state of parameter
rD2). This gives the squared logarithmic negativity:

ED2|UD1
τ = 4 r2

D2 = arcsinh2
(√

a2
D2 − 1

)
, (333)

in agreement with expression (320).
A local unitary transformation also exists for the modes U and D1.

In that case, the transformed covariance matrix will be of the form
(330), with σsq a covariance matrix associated to a two mode squeezed
state with squeezing parameter rU or rD1. Indeed, by computing the
eigenvalues of the matrix |iΩσTI |, with I ∈ {U,D1}, one finds easily
that

{
{νTU
j } = {e2 rU , e2 rU , e−2 rU , e−2 rU , 1, 1},

{νTD1
j } = {e2 rD1 , e2 rD1 , e−2 rD1 , e−2 rD1 , 1, 1}.

(334)

Then, the uniqueness of these eigenvalues, which correspond to those of
a covariance matrix of the form σ = diag(σsq,12), indicates that such a
local unitary transformation also exists for U and D1.

18 Note that these symplectic eigenvalues are also those associated to the covariance
matrix σTD2 of the partially transposed state ρ̂TD2 , where σ is given by (324), with
submatrices (325) and (326). This property lies in the uniqueness of the symplectic
eigenvalues, see Williamson’s theorem, Section 4.2.1.
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Therefore, similarly to (333), expression (314) leads to

ED1|UD2
τ = 4 r2

D1 = arcsinh2
(√

a2
D1 − 1

)
,

EU|D1D2
τ = 4 r2

U = arcsinh2
(√

a2
U − 1

)
,

(335)

in agreement with (320). The above results will be useful in the following
section to compute the degree of entanglement of the tripartite system.
More generally, note that any bisymmetric (m + n)-mode Gaussian

state with a covariance matrix σ can be brought, by means of a local
unitary operation, with respect to the m × n-mode bipartition, to a
tensor product of single mode uncorrelated states and of a two mode
Gaussian state [168].

4.3.2 CKW inequality

Entanglement is usually shared between a pair of objects, forming a
bipartite state; in this sense, entanglement is monogamous: it cannot
be freely shared among many objects. Indeed, if a pair of particles is
maximally entangled19, then, these two particles cannot share entangle-
ment with a third one. Consequently, several inequalities to study how
entanglement is shared among multipartite states have been derived in
the past and are known as CKW inequalities (Coffman, Kundu and
Wootters) [40]. In Ref. [40], Coffman, Kundu and Wootters considered
the case of pure states of three qubits. Later, these results have been
extended for three-mode Gaussian states and all symmetric Gaussian
states20 with an arbitrary number of modes [4]. We are particularly in-
terested in the latter achievement since we consider here a three-mode
Gaussian state. The CKW inequality for a tripartite system reads

τres ≥ 0, with τres = τ (1|23) − τ (1|2) − τ (1|3), (336)

where τ , called the tangle, is a proper measure of bipartite entanglement
for continuous variables, e.g., the squared logarithmic negativity defined
in Section 4.2.4; for instance, τ (1|23) measures the bipartite entangle-
ment between 1 and the composite subsystem {2 − 3}. In expression
(336), τres is called the residual tangle and quantifies the tripartite en-
tanglement between 1, 2 and 3.
The inequality (336) means that the entanglement shared between 1

and 2, tracing out 3, in addition to the entanglement shared between 1
and 3, tracing out 2, cannot exceed the total entanglement shared be-
tween 1 and the pair {2, 3}. Figure 35 shows a qualitative sketch of the
CKW monogamy inequality with Borromean rings. On the left-hand
side of the picture rings are all entangled with each other: this exempli-
fies the tripartite entanglement (≡ τres). Then, one might consider the
blue and green rings as one subsystem. In this case, one study how the

19 A state is maximally entangled when the degree of entanglement is maximized – this
can be measured through the logarithmic negativity for example.

20 A symmetric N -mode Gaussian state is such that all local mixedness ai, i ∈
{1, . . . , N}, defined below equation (318), are all equal to each other.



130 tripartite entanglement in analogue gravity

red ring is entangled with the ‘blue-green’ ring (≡ τ (1|23)). The other
configurations in Figure 35 consist of tracing out one of the ring to
study the entanglement between each bipartite systems (red and blue
rings – τ (1|2) – or red and green rings – τ (1|3)).

Figure 35: Borromean rings extracted from Ref. [58] to illustrate the tripar-
tite entanglement. The CKW inequality states that the entangle-
ment shared between 1 and 2 (red and blue rings), tracing out
3, in addition to the entanglement shared between 1 and 3 (red
and green rings), tracing out 2, cannot exceed the total entan-
glement shared between 1 (red ring) and the pair {2, 3} (green
and blue rings). The positive difference between these quantities
corresponds to the left-hand side of the equality and is called the
residual tangle; it measures the tripartite entanglement shared
among all the three modes and is represented by the three entan-
gled rings.

However, expression (336) depends on which mode (among the three)
is mode 1, then mode 2 and mode 3. To encompass all possible cases,
we consider instead

τres ≡ min
i,j,k

[τ (i|jk) − τ (i|j) − τ (i|k)], (337)

where i, j, k ∈ {1, 2, 3}. Equation (337) ensures that, if τres > 0, the
system does exhibit tripartite entanglement.

4.3.3 Computation of the residual tangle

To calculate the residual tangle τres defined in expression (336), we use
as it was shown in Ref. [4] the squared logarithmic negativity Eτ as a
measure of entanglement.
We already know from Section 4.2.4 that

τ (1|23) = E1|23
τ (ρ̂) = arcsinh2

(√
a2

1 − 1

)
, (338)

where ρ̂ is the density matrix associated to the three-mode Gaussian
state and a1 ≡

√
detσ1 is the local mixedness related to mode 1 [see

equation (320)]. We also recall that σ1 is one of the submatrices of the
matrix (280).
The computation of E1|2

τ (ρ̂) and E
1|3
τ (ρ̂) is more difficult since the

density matrices of composite subsystems {1−2} and {1−3} correspond
to mixed states21.

21 Indeed, while the whole system is a three-mode pure state, the restrictions to two
modes (tracing out the remaining mode) are described by mixed states.
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For such mixed states, it was proven in Ref. [3] that

Q(1) def
= E1|2

τ (ρ̂) + E1|3
τ (ρ̂)

= arcsinh2 [
√
m2(a1, s, d)− 1]

+ arcsinh2 [
√
m2(a1, s,−d)− 1],

(339)

with

s =
a2 + a3

2
, and d =

a2 − a3

2
, (340)

m = m− (m = m+) if D ≤ 0 (D > 0) [4]:

k± = a2
1 ± (s+ d)2,

D = 2 (s− d)−
√

2 [k2
− + 2 k+ + |k−| (k2

− + 8 k+)1/2)]/k+,

m− =
|k−|

(s− d)2 − 1
,

m+√
2

=

√
2 a2

1 (1 + 2 s2 + 2 d2)− (4 s2 − 1) (4 d2 − 1)− a4
1 −
√
δ

4 (s− d)
,

δ = (a1 − 2 d− 1) (a1 − 2 d+ 1) (a1 + 2 d− 1) (a1 + 2 d+ 1)

× (a1 − 2 s− 1) (a1 − 2 s+ 1) (a1 + 2 s− 1) (a1 + 2 s+ 1).

(341)

In our case, there are some simplifications in equations (341). Indeed,
using equation (323), we have immediately δ = 0.

We now specify two different cases:

1. a1 = aU (or a1 = aD1), a2 = aD1 (or a2 = aU), and a3 = aD2.

We obtain

m−(a1, s, d) =
|a1 − a2|
a3 − 1

, and m−(a1, s,−d) =
a1 + a3

1 + a2

m+(a1, s, d) =

√
a1 a2

a3
, and m+(a1, s,−d) =

√
a1 a3

a2
,

(342)

and D ≥ 0, ∀ {a1, a2}, with of course a1,2 ≥ 1 [with D defined in
(341)]. Therefore, we shall choose m = m+ in equation (339).

Besides, we also know that state 1|2 = U |D1 is separable (or we
can just check easily that d < −(a2

1− 1)/(4s) [4]). Thus, E1|2
τ = 0

and we have at the end

Q(1) = E1|3
τ = arcsinh2

(√
a1 a3 − a2

a2

)
(343)

2. a1 = aD2, a2 = aU (or a2 = aD1), and a3 = aD1 (or a3 = aU).

In this case,

s =
aU + aD1

2
=
aD2 + 1

2
= smin, (344)
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which is the minimum value of s and this is expected: s reaches
its minimal value when the reduced bipartition 2|3 = U |D1 is
separable [4]; and we know from the Cauchy-Schwartz inequality
that U and D1 are not entangled.

The parameter D is always negative and we obtain [4]

m−(a1, s
min,±d) =

1 + 3 a1 ± 2 d

3 + a1 ∓ 2 d
, (345)

which leads to the corresponding Q(1) computed from (339):

Q(1) = E1|2
τ + E1|3

τ

= arcsinh2

(
2

1 + a2

√
(a2 + a3) (a3 − 1)

)

+ arcsinh2

(
2

1 + a3

√
(a2 + a3) (a2 − 1)

)
.

(346)

At the end we obtain for the tripartite entanglement:

τres = min
(1)=U,D1,D2

[arcsinh2
(√

a2
(1) − 1

)
−Q(1)], (347)

where Q(1) is computed from equation (343) or equation (346) depend-
ing on the chosen case. Actually, it was proven by Adesso et al. that the
minimum in equation (347) is reached for the lowest local mixedness [4].
Figure 36 shows the curves associated to the three local mixedness aU ,
aD1 and aD2 as functions of the frequency22 ω. The results are obtained
for a waterfall configuration with upstream Mach number mu = 0.59
(see Section 3.1.3 for the definition of this specific configuration). We
can identify two regimes: below a frequency denoted as ωthr (=0.56
for mu = 0.59) the lowest local mixedness is aD1; above this frequency
threshold23, the minimum value becomes aU . We also note that all local
mixedness tend to 1 when ω → Ω, where Ω corresponds to the vanish-
ing of the D2 mode, see Figure 20 for the definition of Ω; this means in
particular that the population in the different modes vanish:

〈ĉ†U(Ω) ĉU(Ω)〉 = 〈ĉ†D1(Ω) ĉD1(Ω)〉 = 〈ĉ†D2(Ω) ĉD2(Ω)〉 = 0, (348)

since aI = 1 + sinh2(rI) = 1 + 〈ĉ†I ĉI〉, I ∈ {U,D1, D2}.
We decided to compute the residual tangle (347) in the three cases

(1) = U,D1, D2 to check a posteriori that the minimum tangle was
indeed reached for the lowest local mixedness. We denote by τ (I)

res the
residual tangle such that (1) = I in equation (347), I ∈ {U,D1, D2}.
The result is shown in Figure 37 for the same configuration (mu = 0.59).
One sees that the system exhibits tripartite entanglement, which di-
verges when the energy tends to zero. Then, the residual tangle de-
creases rapidly to zero and completely vanishes at the upper bound
frequency Ω.

As shown in Figure 38, one has indeed τ (U)
res < τ (D1)

res for ω > ωthr, i.e.,
when aU < aD1; the difference between both tangles is very tiny though.
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Figure 36: Local mixedness defined in equation (322) for each mode U , D1
and D2 as functions of the parameters rI . These parameters de-
pend on the frequency ω and their explicit expressions are given
in terms of the scattering matrix coefficients in equations (245).
The scattering matrix coefficients are computed for a waterfall
configuration with upstream Mach number mu = 0.59, see Sec-
tion 3.1.3 for the definition of this specific configuration. The fre-
quency ωthr indicates the turning point above which aU becomes
lower than aD1. The upper bound frequency Ω corresponds to the
vanishing of the D2 mode, see Figure 20.

Figure 37: Residual tangle calculated from equations (338), (343) and (346),
where the subscript “1” is replaced by either U , D1 – case 1,
equation (343) – or D2 – case 2, equation (346). We denote by
τ (I)
res, I ∈ {U,D1, D2} the corresponding tangle. The inset of the
figure corresponds to a zoom over the low energy sector. The
upper bound frequency Ω corresponds to the vanishing of the D2
mode, see Figure 20. We recall that this result is obtained for a
waterfall configuration with upstream Mach number mu = 0.59,
see Section 3.1.3 for the definition of this specific configuration.
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Figure 38: Difference between the residual tangles τ (U)
res and τ (D1)

res , computed
from equations (338) and (343). The frequency ωthr indicates the
turning point above which aU becomes lower than aD1, see Fig-
ure 36.

In conclusion, the presence of negative energy modes renders the
acoustic black hole energetically unstable [71]; this leads to creation
of entangled quanta of positive and negative energies emerging at the
acoustic horizon from quantum vacuum fluctuation and propagating in
the subsonic and the supersonic regions.
Said differently, the total absence of ingoing modes in the system

does not mean that no outgoing modes are emitted from the scattering
process occurring at the acoustic horizon. In that sense, one can per-
ceive the analogue Hawking radiation (and also the Hawking radiation
in the gravitational case) as an amplification process [158]: the mode
conversion of ingoing modes into negative energy outgoing modes must
result in an increase of positive energy outgoing modes.
This also means that the in-vacuum associated to the ingoing modes

is different from the out-vacuum associated to the outgoing modes. In
the gravitational case, the in-vacuum is seen as a thermal state for an
observer outside a black hole [25, 87, 88]. Therefore, this observer will
perceive a thermal radiation emitted from the event horizon of the black
hole, the so-called Hawking radiation, see Chapter 2.
In this chapter, we proved that the same process occurs in sonic black

hole, the mode conversion at the acoustic horizon and the ‘mixing’ of
positive and negative energy modes corresponds to a Bogoliubov trans-
formation. In particular, the in-vacuum in our analogue system can be
seen as an effective two mode squeezed vacuum state between a nega-
tive energy mode – D2 – and a linear combination of positive energy
modes – U and D1. We showed that an observer in the subsonic region
will then perceive a ‘thermal’ radiation, whose effective temperature
depends on the energy of the mode. From this point of view, the ana-
logue Hawking spectrum is thermal, but it is not Planckian since the
temperature depends on the energy.

22 Recall that the local mixedness defined in equations (322) depend on the parameters
rI , I ∈ {U,D1, D2}, which depend themselves on the energy ~ω, see equations (245).

23 We have noticed that this threshold decreases when mu decreases.
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Besides this question of thermality, we also proved that the tripartite
system formed by the outgoing quanta gives rise to tripartite entan-
glement. We were able to quantify the degree of entanglement in our
system in the last section of this chapter. Interestingly, the result only
depends on the local mixedness aI defined in equation (322), which are
linked to the occupation number 〈ĉ†I ĉI〉 in each mode. Since these quan-
tities can be accessible through the density-density correlation function
and the static structure factor [176, 177], it might be possible in the fu-
ture to observe and measure experimentally the tripartite entanglement
in BECs analogue systems.





Part II

PROPAGATION OF DISPERS IVE SHOCK
WAVES IN NONL INEAR MEDIA





5FLU IDS OF L IGHT

The propagation of light in a nonlinear material is amenable to a hydro-
dynamic treatment [8–11, 179]. This approach amounts to consider the
propagating optical beam as a fluid of light. In fact, nonlinear effects
induced by light in the medium lead to an effective photon-photon in-
teraction, similarly to atomic Bose gases where nonlinearity arises from
contact interactions between bosons. This rich analogy suggests that
many hydrodynamic phenomena studied in the context of Bose-Einstein
condensation can be also explored in nonlinear optics. In particular, the
study of fluids of light resulted in a burst of interest for probing many-
body physics quantum phenomena, such as superfluidity or sound-like
excitations of light [34, 39, 66, 111, 128, 162, 187, 188].
In addition, we mention that this analogy to hydrodynamics can be

also used to explore analogue gravity, such as optical event horizons
[57], ergo regions [189], stimulated Hawking radiation [50]; as already
discussed in the first part of this thesis, this confirms the universality
of Hawking radiation as soon as an horizon is present.
Another phenomenon of interest for us (which will be studied in de-

tail in the next chapters) is the formation of dispersive shock waves in
nonlinear media. Many studies have been carried out in nonlinear optics
to observe and describe the propagation of such waves [22, 43, 64, 191,
200, 201]. In this thesis, we will analyze more specifically the nonlinear
spreading of a region of increased light intensity in the presence of a
uniform constant background, leading eventually to the formation of a
dispersive shock wave.

In the absence of background and for a smooth initial intensity pat-
tern, the spreading is mainly driven by the nonlinear defocusing and
can be treated analytically in some simple cases [179].
The situation is more interesting in the presence of a constant back-

ground: The pulse splits in two parts, each eventually experiencing non-
linear wave breaking, leading to the formation of a dispersive shock wave
which cannot be described within the framework of perturbation theory,
even if the region of increased intensity corresponds to a perturbation
of the flat pedestal. This scenario indeed fits with the hydrodynamic
approach of nonlinear light propagation and is nicely confirmed by the
experimental observations of Refs. [191, 200].

In this chapter, we show that a propagating optical beam can be seen
as a fluid of light. We also introduce the notion of characteristics and
Riemann invariants, before applying them in simple cases. Then, in the
next chapter, we use and generalize these important mathematical tools
to describe the dispersionless evolution of nonlinear pulses, such as the
short-time evolution of the fluid of light in the presence of a uniform
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background light intensity. Indeed, during this first stage of spreading,
the pulse can be described within a nondispersive approximation by
means of Riemann’s approach.
Eventually, at later times, nonlinear effects induce wave steepening,

which results in a gradient catastrophe and wave breaking. After the
wave breaking time, dispersive effects can no longer be omitted and a
shock is formed; in this case we resort to Whitham modulation theory
[197] to describe the time evolution of the pulse. The theoretical study
of the propagation of the dispersive shock wave is addressed in the
last chapter. The difficulty, here, lies in the fact that two Riemann
invariants vary concomitantly. In addition, an interesting outcome of our
theoretical treatment is an asymptotic determination of experimentally
relevant parameters of the dispersive shock, such as a simple estimate
of the contrast of the fringes of the dispersive shock waves.

5.1 nonlinear schrödinger equation and hydrodynamic
approach

Let us consider the propagation of a monochromatic optical beam in
a nonlinear dielectric medium, such as a hot Rubidium atomic vapor
[66]. The propagation of the beam induces local electric dipole moments,
leading to a polarization of the dielectric material. The electric displace-
ment field is defined as

D(r, t) = ε0 E(r, t) + P(r, t), (349)

where ε0 is the vacuum permittivity, andP(r, t) is the density of induced
electric dipole moments in the material, called the polarization density.
Here, we consider a nonlinear medium in which P depends nonlinearly
on E:

P(r, t) = PL(r, t) + PNL(r, t), (350)

where PL is the linear polarization and PNL is the nonlinear polarization.
Their components are1

PL
µ(r, t) = ε0 [χ˜ (1)]µν Eν

PNL
µ (r, t) = ε0 [χ˜ (3)]µναβ Eν EαEβ

, with µ ∈ {x, y, z}, (351)

where χ˜ (1) is the linear susceptibility and the fourth rank tensor χ˜ (3) is

the third-order susceptibility. We discarded the second-order χ˜ (2) con-

tribution to the nonlinear polarization because we consider an inversion
invariant medium in which the response is not affected when E→ −E.

In a non magnetic dielectric material Maxwell equations read [108]

∇×E = −∂tB, ∇×B =
1

ε0 c2
∂tD, ∇ ·D = 0, ∇ ·B = 0, (352)

1 Note that we use Einstein notations in equation (351), i.e., [χ˜
(1)]µν Eν = [χ˜

(1)]µxEx+

[χ˜
(1)]µyEy + [χ˜

(1)]µzEz.
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leading to

∆E−∇ (∇ ·E) =
1

c2
∂2
tE +

1

ε0 c2
∂2
tP. (353)

Assuming that ∇·E = 0 (this will be justified a posteriori), one obtains

∆E =
1

c2
∂2
tE +

1

ε0 c2
∂2
tP. (354)

We consider now a linearly polarized beam, of the form

E(r, t) =
1

2
(E(r) e−iω0t + c.c.) ~x, (355)

where E(r) is a complex function, which does not depend on time. This
will be denoted as a stationary beam. In this case, one has in particular

P(r, t) = ε0

[
χ(1) +

3

4
χ(3) |E(r)|2

]
E(r, t), (356)

where it is customary to simply write χ(1) ≡ [χ˜ (1)]xx, χ(3) ≡ [χ˜ (3)]xxxx

in an isotropic medium, and where terms ∝ exp(−3iω0t), corresponding
to third harmonic generation, have been discarded.
Therefore, using equation (354), we obtain

∆E− 1

c2

[
1 + χ(1) +

3

4
χ(3) |E(r)|2

]
∂2
tE = 0 (357)

In the following, one considers a slowly modulated plane wave in the
paraxial approximation

E(r) = A(~r⊥, z) e
iβ0z, where |∂zA| ≤ β0 |A|. (358)

Inserting the previous expression in equation (357) yields2

i∂zA = − 1

2β0
∇2
⊥A− k0 n2 |A|2A, (360)

where ∇⊥ is the transverse Laplacian, and

k0 =
ω0

c
, β0 = n0 k0, n2 =

3

8n0
χ(3), n0 = (1 +χ(1))1/2. (361)

We also define the optical beam intensity I ≡ |A|2 and the nonlinear
refractive index ∆n ≡ n2 I = n2 |A|2.

2 First, note that in the paraxial approximation one neglects ∂zzA, leading to a first-
order differential equation with respect to z:

2 i β0 ∂zA+ ∇2
⊥A = −ω

2
0

c2

(
1 + χ(1) − c2

ω2
0

β2
0 +

3

4
χ(3) |A|2

)
A. (359)

Second, by discarding nonlinear effects for a perfect plane wave, i.e., constant A, one
finds β0 = n0 k0, where n0 = (1 + χ(1))1/2 is the linear index refraction.
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We can already notice the similarity between equation (360) and the
nonlinear Schrödinger equation. The nonlinear term, which contained
the nonlinear refractive index, is interpreted as an effective photon-
photon interaction induced by the Kerr nonlinearity, i.e., the nonlinear
polarization of the dielectric material where the optical beam propa-
gates.
If χ(3) > 0, the process is said self-focusing3 and corresponds to

an effective attractive interaction between photons. On the contrary, if
χ(3) < 0, the process is said self-defocusing and leads to an effective
repulsive interaction between photons [31, 66, 162].
Let us now justify that ∇ · E can be indeed neglected in equation

(353). One finds easily that

∇ ·E = − 2n0 n2

1 + χ(1) + 2n0n2|E(r)|2 E(r) ∂x|E(r)|2. (362)

The previous expression is non zero only through the transverse deriva-
tive of the slowly varying envelope A. It is additionally small because
the nonlinear contribution is small4 (n2|E|2 ≤ 1): thus, it can be safely
neglected.

In the following, we consider the case of a defocusing nonlinearity (
n2 < 0, χ(3) < 0); that is, as shown in the paragraph below, one finds an
equation analogous to the Gross-Pitaevskii equation, where the nonlin-
earity is mediated by repulsive interactions between bosons. Therefore,
as mentioned in the introduction of this chapter, one understands the
strong analogy with weakly interacting Bose gases; within an hydrody-
namic approach [9, 10, 179], the propagation of the optical beam in the
nonlinear material can be seen as a fluid of light where fundamental
phenomena, such as superfluidity [128], can be explored.

nonlinear schrödinger equation We define dimensionless
units by choosing a reference intensity Iref and introducing the non-
linear length5 zNL = (k0|n2|Iref)

−1 and the transverse healing length
ξ⊥ = (zNL/n0k0)1/2. We consider a geometry where the transverse pro-
file is translationally invariant and depends on a single Cartesian co-
ordinate (see Figure 39). One thus writes ~∇2

⊥ = ξ−2
⊥ ∂2

x where x is the
dimensionless transverse coordinate and we define an effective “time”
t = z/zNL. The quantity ψ(x, t) = A/

√
Iref is then a solution of the

dimensionless nonlinear Schrödinger equation equation

i ∂tψ = −1
2∂xxψ + |ψ|2ψ , (363)

which can be compared with equation (105) of Chapter 3 (removing
the external potential U(x) and the chemical potential µ). Therefore,

3 The Kerr nonlinearity induces a change in refractive index n of the material: n =
n0 + ∆n, with ∆n = n2 I. When n2 > 0, i.e., χ(3) > 0, the refractive index becomes
larger in the areas where the intensity is higher, usually at the center of a beam,
creating a focusing density profile.

4 In typical experiments, one has indeed |A|2 ' 105 W.m−2 and n2 ' 10−10 W.m−2.
5 The nonlinear length is the typical length above which nonlinear effects become

predominant.
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the propagation of an optical beam in a nonlinear dielectric material is
entirely described by equation (363), where the longitudinal direction
z plays the role of an effective time t.

Figure 39: Evolution of an optical beam propagating in a nonlinear dielec-
tric material. It propagates along the z axis, as indicated by the
blue arrow. The propagation direction plays the role of an effec-
tive “time” t = z/zNL, where we introduced the nonlinear length
zNL = (k0|n2|Iref)−1. In the last expression, n2 is proportional to
the third-order Kerr nonlinearity χ(3) [see equations (361)], and
Iref is a reference intensity [see the text above equation (363)].
The vertical axis corresponds to the quantity |ψ|2 = I/Iref , where
I is the intensity of the beam. The parameter |ψ0|2 corresponds
to the background intensity. As mentioned in the introduction of
this chapter, this leads eventually to the formation of a dispersive
shock wave, which will be studied in Chapter 7. The transverse
profile is translationally invariant and depends on a single Carte-
sian coordinate x.

hydrodynamic approach Our objectives in this thesis lies in
the theoretical description of the propagation of such a fluid of light.
The derivation of hydrodynamic equations which govern its evolution
will enable us to efficiently use powerful tools, such as the Riemann in-
variants, the Riemann method, or the Whitham modulational theory, to
completely characterize its short and long-time propagation. As we have
already proceeded in Chapter 3, let us use a Madelung transformation
such that6

ψ(x, t) =
√
ρ(x, t) ei S(x,t), (364)

where the phase S(x, t) is connected to the fluid velocity u(x, t) through
the relation

u(x, t) ≡ ∂xS. (365)

6 We consider here the case of a one-dimensional fluid flow, but the results of this
paragraph can be generalized straightforwardly to two dimensions.
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In full analogy with the set of equations (121) obtained in Chapter 3,
one obtains from the nonlinear Schrödinger equation (363) the system





∂tρ+ ∂x(ρ u) = 0,

∂tu+ u ∂xu+
1

ρ
∂xP +

1

2
∂xΠ = 0,

(366)

with

P =
ρ2

2
, and Π = − 1√

ρ
∂xx
√
ρ. (367)

In expression (367), P is an effective pressure due to nonlinear effects,
and Π is associated to a quantum pressure term (also called quantum
potential) due to dispersive effects in the system. The first equation of
the system (366) is the continuity equation, while the second one is the
Euler equation. In the dispersionless approach, when density gradients
of the initial density ρ(x, t = 0) are weak, one can neglect the quantum
pressure. In this case, the set of hydrodynamic equations becomes

{
∂tρ+ ∂x(ρ u) = 0,

∂tu+ u ∂xu+ ∂xρ = 0.
(368)

5.2 characteristics and riemann invariants

In this section we introduce the concept of characteristics and Riemann
invariants. There are indeed powerful tools to solve partial differential
equations (PDE) and we will use them throughout this and the subse-
quent chapters.

Characteristics are curves on which certain quantities, the Riemann
invariants are conserved. We first introduce them with a simple example,
the Hopf equation, before considering the case of a polytropic gas flow,
characterized by a density ρ, a pressure P (ρ) = ργ/γ and a sound
velocity c(ρ) = ρ(γ−1)/2, up to normalization constants; for adiabatic
flow of an ideal gas, the adiabatic index γ is equal to the ratio γ =
CP/CV of the specific heat capacities at constant pressure (CP) and at
constant volume (CV).
A fluid of light, as considered in the previous section, whose evolution

is governed by the nonlinear Schrödinger equation (363) (or equivalently
a Bose gas described by the Gross-Pitaevskii equation) corresponds to
γ = 2 [P (ρ) = ρ2/2, see equation (367)].

5.2.1 Hopf equation

Consider a function u(x, t) solution of the Hopf equation

∂tu+ u ∂xu = 0. (369)

In the plane (t, x) there exists a vector field

a ≡ (1, u), (370)
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such that equation (369) can be rewritten

(a∇)u = 0, (371)

where ∇ = (∂t, ∂x). The previous expression implies that u is constant
along integral curves Γ generated by the vector field a. If the point
(t = 0, x = x0) in the plane (t, x) corresponds to an initial value u = u0,
then equation (371) implies that u(x, t) is constant along the curve Γ0

generated by a0 ≡ (1, u0).
Let us introduce a parameter s along Γ0, such that

` = (t(s), x(s)), and a0 =
d`

ds
. (372)

The notations are summarized in Figure 40.

Figure 40: Sketch of the curve Γ0 in the plane (t, x). This curve is defined
parametrically by (t = t(s), x = x(s)), with s a parameter moving
along Γ0. The brown arrow corresponds to the tangent vector to
the point of coordinates (t(s), x(s)); this vector is denoted a0.

This yields the following equations
dt
ds

= 1, and
dx
ds

= u0, (373)

leading to

t = s, and x = u0 s+ x0. (374)

Therefore, given an initial point (t = 0, x = x0, u = u0) in the three
dimensional Cartesian coordinate system (t, x, u), the value u0 corre-
sponding to the initial coordinate x0 is carried after time t to the
point x given by equation (374). In this case, the curves Γ are straight
lines, called characteristics, and generate a surface from the initial curve
(0, x, u(x, t = 0)).

In addition, in the exceptional case where the initial conditions would
be defined on a characteristic curve Γ, one would not be able to use a
Taylor series expansion to calculate u(x, t) in the vicinity of Γ, i.e., the
Cauchy Problem for equation (369) cannot be solved. Indeed, we can-
not calculate from equation (369) the derivatives of u(x, t) along any
direction intersecting the characteristic curve Γ, precisely because ex-
pression (371) shows that information only propagates along this curve.
We will use this important remark in the following to derive the Rie-
mann invariants.
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5.2.2 Polytropic gas flow

We have introduced the main idea of the method of characteristics in
the previous subsection: given the initial data, one finds a set of curves,
the characteristics, along which a quantity is conserved. In the case of
Hopf equation, the conserved quantity is directly given by u(x, t) and
the characteristics are straight lines [see equation (374)].
Let us now generalize this method to the case of polytropic gas flow

described by a density ρ(x, t) and a velocity u(x, t), solutions of the set
of equations7





∂tρ+ ρ ∂xu+ u ∂xρ = 0,

∂tu+ u ∂xu+
c2

ρ
∂xρ = 0,

(375)

with c2 = ργ−1.
As mentioned in Section 5.2.1, if the initial data are given on a char-

acteristic curve, one is not able to solve the Cauchy problem associated
to the system (375). We will use this remark to find the characteristics.
Indeed, let us consider in the plane (t, x) such a characteristic curve,

denoted Γ and defined parametrically by (t = f(s), x = g(s)), with s
a parameter along the curve. We introduce an angle φ such that the
components of the vector tangent to Γ read

dx
ds

= cosφ, and
dt
ds

= sinφ, (376)

Assuming that the initial data for ρ(x, t) and u(x, t) are given on the
curve Γ, one can calculate their derivatives along Γ:





dρ
ds

= ∂xρ cosφ+ ∂tρ sinφ,

du
ds

= ∂xu cosφ+ ∂tu sinφ.

(377)

The set of equations (375), together with equations (377), is a system
of four equations of four unknown functions ∂tρ, ∂xρ, ∂tu, ∂xu. Since
Γ is a characteristic curve, this system does not have a solution8 and,
thus, its determinant ∆Γ equals 0:

∆Γ =

∣∣∣∣∣∣∣∣∣∣

1 u 0 ρ

0 c2

ρ 1 u

sinφ cosφ 0 0

0 0 sinφ cosφ

∣∣∣∣∣∣∣∣∣∣

= 0

⇔ ∆Γ = (cosφ− u sinφ)2 − c2 sin2 φ = 0.

(378)

7 We will follow the method presented by A. Kamchatnov in his book [100].
8 Otherwise the derivatives of ρ and u would be known along directions intersecting
the characteristic curve Γ and the Cauchy problem would be solved.
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The previous equation has two solutions

cotφ± = u± c. (379)

Therefore, there exists two characteristic curves Γ± defined paramet-
rically by (t = f(s±), x = g(s±)), whose tangent vectors are aΓ± =
(sinφ±, cosφ±).

In addition, it is worth noticing that solutions of equation (378) are
real here: the system is called hyperbolic. When the solutions are com-
plex, the system is called elliptic; for instance, such a configuration can
be encountered in mean-field game theory [29, 30].
Now, we will find the conserved quantities along Γ±, namely the Rie-

mann invariants, denoted λ±. Multiplying the first equation of the sys-
tem (375) by (cosφ±−u sinφ±) and the second equation by−c2/ρ sinφ±,
then using equations (377) and (378), yields

du
ds±

± c

ρ

dρ
ds±

= 0. (380)

We define two functions λ±(ρ, u) such that

∂λ±

∂u
=

1

2
, and

∂λ±

∂ρ
= ± c

2 ρ
. (381)

In this case, equations (380) and (381) lead to

dλ±

ds±
= 0, (382)

meaning that λ+ (λ−) is a conserved quantity along Γ+ (Γ−). Solving
equations (381) gives

λ±(ρ, u) =
u

2
± 1

2

∫ ρ c(ρ′)
ρ′

dρ′. (383)

For a polytropic gas flow, where c2(ρ) = ργ−1, we obtain the explicit
expressions

λ±(ρ, u) =
u

2
± c(ρ)

γ − 1
. (384)

In particular, when γ = 2 [which corresponds to the hydrodynamic
equations (368)], λ± = u

2 ±
√
ρ.

We end this section with a last comment: the determination of the
Riemann invariant makes it possible to put the system in an effectively
diagonal form. Indeed, one may also consider λ± as functions of t and
x. Equation (382) would give in this case

∂tλ
± + v± ∂xλ± = 0, where v± ≡ cotφ±. (385)

Therefore, one sees that solving the initial system of equations (375)
reduces to find both Riemann invariants λ±(x, t), solutions of equations
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(385). Writing v± = u ± c [see equation (379)] in terms of λ±, in the
case of a polytropic flow, differential equations (385) become





∂tλ
+ +

1

2

[
(1 + γ)λ+ + (3− γ)λ−

]
∂xλ

+ = 0,

∂tλ
− +

1

2

[
(3− γ)λ+ + (1 + γ)λ−

]
∂xλ

− = 0.

(386)

If one of the Riemann invariants is always constant in some region
of space x ∈ I ⊂ R, say for instance λ+(x, t) = λ+

0 , ∀x ∈ I, this
region is called a simple-wave region. The problem is then automatically
solved: the first equation of (386) is trivially satisfied, and the second
one reduces to a Hopf equation

∂tv− + v−∂xv− = 0. (387)

Solutions of the previous equation have been already discussed in Sec-
tion 5.2.1. Therefore, the characteristic curves in a simple-wave region
are straight lines in the plane (t, x), along which v− and λ− are constant.
Therefore, in turn, one is able to find λ−(x, t) for each position x and
time t.
The second set of characteristic curves Γ+, with tangent vector aΓ =

(sinφ+, cosφ+) and v+ = cotφ+, can be found with equation

dx

dt
= v+(x, t) =

1

2

[
(1 + γ)λ+(x, t) + (3− γ)λ−(x, t)

]
, (388)

where λ+(x, t) and λ−(x, t) are known in the simple-wave region. Thus,
Integrating the differential equation (388) yields the trajectories of the
characteristic curves Γ+. This problem is discussed in more detail in
Ref. [100], where the simple wave approach is applied to a polytropic
gas in expansion into an empty half-space.

Solving the system of partial differential equations (385), when both
Riemann invariants vary concomitantly in some regions, is a more dif-
ficult problem and requires more involved mathematical tools, such as
Riemann’s method, a generalization of the method of characteristics.
The different situations of interest for us necessitate the use of such
a method; this is the reason why the next chapter is dedicated to its
study.



6DISPERS IONLESS EVOLUTION OF NONL INEAR
PULSES

As we showed in Chapter 3 and Chapter 5, Bose-Einstein condensates
and their photonic counterparts, the fluids of light, are described by the
same type of nonlinear equations. In both cases, the problem can be
mapped onto dispersive hydrodynamic equations, through a Madelung
transformation [see, e.g., equations (121) and (366)]. This hydrody-
namic approach has triggered much interest experimentally, as we al-
ready mentioned in the previous chapter. However, this analogy is also
a powerful tool to address numerous theoretical problems. Indeed, in
Chapter 3, we used the mapping to hydrodynamic equations to show
that the motion of excitations emerging in a flowing Bose-Einstein con-
densate was the one of a massless scalar field in a curved spacetime. In
Chapter 5, we noticed that the dynamics of Bose gases and fluids of
light, in the absence of dispersion, was described by the same hydrody-
namic equations as those governing the inviscid gas dynamics:





∂tρ+ ρ ∂xu+ u ∂xρ = 0,

∂tu+ u ∂xu+
c2(ρ)

ρ
∂xρ = 0,

(389)

where c(ρ) =
√
ρ is the sound velocity. In fact, this is a particular case

of polytropic gases, for which

c(ρ) = ρ
γ−1

2 (390)

where γ is the adiabatic index (γ > 1). However, even in this apparently
simple case for which a number of exact solutions have been obtained for
various problems [107], solving the system of equations (389) becomes
quite complicated if the parameter

β =
3− γ

2 (γ − 1)
(391)

is not an integer number (which is the case for Bose gases and fluids of
light where γ = 2 and β = 1

2).

The aim of this chapter is to present a theoretical method to de-
scribe the dispersionless evolution of nonlinear pulses, whose dynamics
is governed by hydrodynamic equations (389).
Many physical models lead to this one-dimensional hydrodynamic

description and can be addressed by this method. We first consider the
general case of polytropic gases. Then, we particularize the solutions to
the case of nonlinear optical pulses in the presence of a uniform constant
background, when density gradients of the density ρ are sufficiently
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weak to neglect dispersive effects1. A last example illustrates the case of
a non-integrable system: a zero temperature Bose-Einstein condensate
transversely confined in an atomic wave guide.

6.1 hodograph transformation and riemann’s method

We introduced the Riemann invariants λ+(x, t) and λ−(x, t) in Chap-
ter 5. These invariants are conserved along characteristic curves and
they “diagonalize” the system of hydrodynamic equations (389). We
proved that they were given by

λ±(x, t) =
u(x, t)

2
± 1

2

∫ ρ(x,t) c(ρ′)
ρ′

dρ′, (392)

and solutions of the partial differential equations

∂tλ
± + v±(λ+, λ−) ∂xλ

± = 0, v±(λ+, λ−) = u± c(ρ). (393)

If one solves the nonlinear equations given by (393) and finds the cor-
responding Riemann invariants λ+(x, t) and λ−(x, t), one immediately
knows the density and velocity distributions for each position x and at
any time t:

λ+(x, t) + λ−(x, t) = u(x, t),

λ+(x, t)− λ−(x, t) =

∫ ρ(x,t) c(ρ′)
ρ′

dρ′.
(394)

Therefore, the problem consists of solving equations (393). In addition,
we can notice from equations (394) that c(ρ) is a function of λ+ − λ−.
Thus, we obtain

v±(λ+, λ−) = λ+ + λ− ± c(λ+ − λ−). (395)

In the first subsection, we show that these equations can be linearized
by considering x and t as functions of the Riemann invariants:

x = x(λ+, λ−), t = t(λ+, λ−). (396)

This is known as a hodograph transformation [100, 107]. This procedure
leads to a Euler-Poisson equation2, whose solutions can be found by
means of the Riemann’s method [173]. This method is discussed in the
second subsection.

1 The formation of a dispersive shock wave resulting from a gradient catastrophe will
be studied in Chapter 7.

2 In the case of complex Riemann invariants, one finds a Laplace equation and a nice
mapping to an electrostatic problem [29].
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6.1.1 Hodograph transformation

This transformation consists in considering x and t as functions of the
independent variables λ± [see equation (396)] and leads to the following
system of linear equations (see Appendix D):

∂x

∂λ+
− v−(λ+, λ−)

∂t

∂λ+
= 0,

∂x

∂λ−
− v+(λ+, λ−)

∂t

∂λ−
= 0.

(397)

We look for the solutions of these equations in the form

x− v+(λ+, λ−)t = w+(λ+, λ−),

x− v−(λ+, λ−)t = w−(λ+, λ−).
(398)

A simple test of consistency shows that the unknown functions w±(λ+, λ−)
should verify the Tsarev equations [180]

1

w+ − w−
∂w+

∂λ−
=

1

v+ − v−
∂v+

∂λ−
,

1

w+ − w−
∂w−
∂λ+

=
1

v+ − v−
∂v−
∂λ+

.

(399)

Now we notice that since the velocities v± are given by expressions
(395), the right-hand sides of both equations (399) are equal to each
other:

1

v+ − v−
∂v+

∂λ−
=

1

v+ − v−
∂v−
∂λ+

=
1− c′(λ+ − λ−)

2 c(λ+ − λ−)
, (400)

where c′(λ) ≡ dc(λ)/dλ, λ = λ+ − λ−. Consequently ∂w+/∂λ
− =

∂w−/∂λ+ and w± can be sought in the form

w± =
∂W

∂λ±
. (401)

Substitution of equations (400) and (401) into equations (399) shows
that the function W obeys the Euler-Poisson equation

∂2W

∂λ+∂λ−
− 1− c′(λ+ − λ−)

2c(λ+ − λ−)

(
∂W

∂λ+
− ∂W

∂λ−

)
= 0. (402)

A formal solution of equation (402) in the (λ+, λ−) plane (the so-called
hodograph plane) can be obtained with the use of the Riemann method
(see subsection below and Ref. [173]).

In conclusion, the system of hydrodynamic equations (389) can be
mapped onto an Euler-Poisson equation (402), where W plays the role
of a potential. The knowledge of this potential determines the functions
w± through expression (401). Then, the Riemann invariants λ+(x, t)
and λ−(x, t) can be obtained as functions of x and t by inverting the
system of equations (398). Ultimately, the density ρ(x, t) and the veloc-
ity u(x, t) can be determined with equations (394).
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The above procedure might give the impression to be cumbersome
and unnecessary. However, it constitutes a powerful tool to address
hydrodynamic problems: indeed, we started from nonlinear equations
(389) and we arrived to a linear equation (402), whose solutions are
well know in numerous cases. Besides, in certain problems, one can
even obtain a physical interpretation of the potentialW , which appears
naturally from the hodograph transformation [29, 30].

6.1.2 Riemann’s method

Let us consider a linear differential equation of second order of the form3

L (W ) ≡ ∂2W

∂λ+ ∂λ−
+ a(λ+, λ−)

∂W

∂λ+
+ b(λ+, λ−)

∂W

∂λ−
= 0, (403)

where L is a differential operator. We define the so-called adjoint dif-
ferential operator

M (R) ≡ ∂2R

∂λ+ ∂λ−
− ∂ (aR)

∂λ+
− ∂ (bR)

∂λ−
, (404)

where R, called the Riemann function, needs to be determined [see
below, equations (412)]. One shows easily that

RL (W )−WM (R) =
∂U

∂λ+
− ∂V

∂λ−
, (405)

with




U =
1

2

(
R
∂W

∂λ−
−W ∂R

∂λ−

)
+ aRW,

V =
1

2

(
W

∂R

∂λ+
−R ∂W

∂λ+

)
− bRW.

(406)

We now assume that the initial data λ+(x, t = 0) and λ−(x, t = 0)
are known. This corresponds to the schematic curve C0 represented in
the hodograph plane (λ+, λ−) and shown in Figure 41 for two cases:
λ−(x, 0) is a decreasing (or increasing) function of λ+(x, 0). Therefore,
using equations (398) and (401), one can determine W along the curve
C0:

∂W

∂λ+

∣∣∣∣
C0

=
∂W

∂λ−

∣∣∣∣
C0

= x(λ+, λ−). (407)

Then, we show below that, from the knowledge of the values of λ+ and
λ− on the initial curve C0, one is able to calculate the potential W at
any point P (λ+ = ξ, λ− = η) in the hodograph plane. As illustrated in
Figure 41, we denotes A (B) the intersection point between the straight
line λ− = η (λ+ = ξ) and C0. The dark green region in Figure 41

3 In this subsection, we mainly follow the procedure presented in Sommerfeld’s book
[173]
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corresponds to the interior of PAB; this surface is denoted S. using the
Stokes theorem and equation (405) one finds4

∫

S
[RL (W )−WM (R)] dλ+ dλ−

=

∫

S

(
∂U

∂λ+
− ∂V

∂λ−

)
dλ+ dλ−

=

∮

∂S
V dλ+ + U dλ−,

(408)

where the path of integration along ∂S is anticlockwise, as indicated by
the blue arrows in Figure 41.

Figure 41: Initial curve C0 drawn in the hodograph plane (λ+, λ−) for two
different configurations. We define three points: P of coordinates
(ξ, η) ; A, the intersection point between the characteristic curve
λ− = η and C0; B, the intersection point between the character-
istic curve λ+ = ξ and C0. The dark green region corresponds
to the interior of the surface S delimited by PAB. The blue ar-
rows indicate the path of integration (anticlockwise) along ∂S in
equation (408).

Using explicit expressions of U and V [see equations (406)] and an
integration by parts, we obtain easily in the case where λ−(x, 0) is a
decreasing function of λ+(x, 0) (this situation corresponds to the left
plot of Figure 41)

∫ A

P
V dλ+ =

1

2
(RW )P −

1

2
(RW )A

+

∫ A

P
W

(
∂R

∂λ+
− bR

)
dλ+,

(409)

and
∫ P

B
U dλ− =

1

2
(RW )P −

1

2
(RW )B

−
∫ P

B
W

(
∂R

∂λ−
− aR

)
dλ−.

(410)

4 This is also known as Green’s theorem
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Therefore, one finds
∫

S
[RL (W )−WM (R)] dλ+ dλ−

= (RW )P −
1

2
(RW )A −

1

2
(RW )B +

∫

C0
V dλ+ + U dλ−

+

∫ A

P
W

(
∂R

∂λ+
− bR

)
dλ+ −

∫ P

B
W

(
∂R

∂λ−
− aR

)
dλ−.

(411)

We know from equation (403) that L (W ) = 0 anywhere in the interior
of S. Moreover, we can choose the Riemann function R(λ+, λ−; ξ, η)
in a convenient way for us; we demand that this function respects the
following conditions:

M (R) = 0 in S, (412a)
R(P ) = R(ξ, η; ξ, η) = 1, (412b)
∂R

∂λ+
− bR = 0, on the characteristic λ− = η,

∂R

∂λ−
− aR = 0, on the characteristic λ+ = ξ.

(412c)

In this case, conditions (412) and expression (411) lead to

W (P ) =
1

2
(RW )A +

1

2
(RW )B ∓

∫ B

A
V dλ+ + U dλ−, (413)

with the ‘minus’ sign if one considers the case depicted in the left plot
of Figure 41, and the ‘plus’ sign in the case exemplified in the right plot
of the same figure.
Consequently, the knowledge of initial data suffices to determine the

function W for any point P in the hodograph plane, provided the Rie-
mann function R is known [computed from equations (412)].

riemann function In the case of the Euler-Poisson equation
(402) [and comparing with the differential equation (403)], one obtains

a(λ+, λ−) =
c′(λ+ − λ−)− 1

2c(λ+ − λ−)
= −b(λ+, λ−). (414)

Then, conditions (412c) and (412b) yield

R(λ+, η; ξ, η) =

√
c(ξ − η)

c(λ+ − η)
exp

(∫ λ+−η

ξ−η

dλ
2 c(λ)

)
,

R(ξ, λ−; ξ, η) =

√
c(ξ − η)

c(ξ − λ−)
exp

(∫ ξ−λ−

ξ−η

dλ
2 c(λ)

)
,

(415)

where R(λ+, η; ξ, η) is the Riemann function along the characteristic
λ− = η (i.e., along PA, see Figure 41), and R(ξ, λ−; ξ, η) is the Riemann
function along the characteristic λ+ = ξ (i.e., along PB). Expressions
(415) suggest that R can be sought in the form

R(λ+, λ−; ξ, η) = R(λ+ − λ−, ξ − η)F (λ+, λ−; ξ, η), (416)
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where F (λ+, η; ξ, η) = 1 = F (ξ, λ−; ξ, η) and

R(λ1, λ2) =

√
c(λ2)

c(λ1)
exp

(∫ λ1

λ2

dλ
2 c(λ)

)

=

√
c(λ2)ρ(λ1)

c(λ1)ρ(λ2)
.

(417)

The final expression in the above formula has been obtained by means
of a change of variable ρ = ρ(λ) in the integral, where the function ρ(λ)
is the reciprocal function of λ(ρ) given in (394)

λ(ρ) =

∫ ρ c(ρ′)dρ′

ρ′
, (418)

and c(λ) = c(ρ(λ)), so that dλ/c(λ) = dρ/ρ.

initial conditions We now consider the case where initial den-
sity and velocity distributions are given by

ρ(x, 0) = ρ̄(x), and u(x, 0) = 0. (419)

The density ρ̄(x) can be non-monotonic, as illustrated in the right mar-
gin. For simplicity, we assumed the existence of one global maximum
reached at x = 0; we also assume that the density distribution is sym-
metric. The generalization to non-symmetric distributions is straight-
forward. We denote the regions x < 0 and x > 0 as regions 1 and 3,
respectively. Since u(x, 0) = 0, one deducts from equations (394) that

λ+(x, 0) = −λ−(x, 0), λ+(x, 0) =

∫ ρ̄(x)

0

c(ρ)

ρ
dρ. (420)

Thus, in this case, the initial curve C0 is a straight line in the hodo-
graph plane (λ+, λ−). We introduce the monotonous functions λ̄(1)(x) ≡
λ+(x < 0, 0) and λ̄(3)(x) ≡ λ+(x ≥ 0, 0). Their reciprocal functions are
denoted x̄(1)(λ) and x̄(3)(λ), respectively. Here, since the initial density
distribution is symmetric, we define

λ̄(x) ≡ λ̄(3)(x) = λ̄(1)(−x), x̄(λ) ≡ x̄(3)(λ) = −x̄(1)(λ). (421)

We obtain for the value of x on the curve C0:

x =





x̄(λ) if x ≥ 0,

−x̄(λ) if x < 0.
(422)

The functions λ̄(x) and x̄(λ) are illustrated in the schematic graphs of
Figure 42.
Besides that, since at t = 0 the values λ+ = λ̄ and λ− = −λ̄ cor-

respond to the same value of x, we find that x̄(λ) is an even function,
x̄(−λ) = x̄(λ). All these notations are summarized in Figure 42, where,
in particular, the minimum and the maximum of λ+(x, t = 0) are de-
noted λ0 and λm, respectively.
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Figure 42: (Left) Sketch of λ+(x, t = 0) and, in particular, λ̄(x) ≡ λ+(x ≥
0, 0). This curve can be obtained from the initial density distribu-
tion ρ̄(x) through expression (420). Since we consider a symmet-
ric density distribution here, the dashed part of the red curve is
the symmetric of the solid curve and thus corresponds to λ̄(−x).
The minimum and the maximum of λ̄(x) are denoted λ0 and λm,
respectively.
(Right) Reciprocal function of λ̄(x), denoted x̄(λ) [see equation
(422)].

For the specific initial conditions (419), since λ+(x, 0) = −λ−(x, 0),
equation (407) shows thatW is constant along the initial curve C0. The
value of this constant is immaterial, we take W |C0 = 0 for simplicity.

However, the non-monotonicity of ρ̄ adds a slight difficulty here. In-
deed, depending on which region we are, x = x̄(λ) – region 3 – or
x = −x̄(λ) – region 1 – [see equation (422)]; this leads for instance to
an ambiguity about the choice of x in (407), and so does for expressions
of U and V [see equations (406)].
An elegant way to solve this problem has been proposed by Ludford

and consists in unfolding the hodograph plane [120], as shown in Fig-
ure 44. The red curve in both graphs corresponds to C0 and a sketch
of the initial Riemann invariants λ+(x, 0) = −λ−(x, 0), for a specific
non-monotonic density distribution ρ̄(x), is depicted in the left plot of
Figure 43. Region 1 then corresponds to the upper left domain of the
right plot of Figure 44, while region 3 corresponds to the bottom right
domain: this amounts to define a distinct hodograph plane for each
monotonous part of the initial distribution.
For t > 0, the initial hump of density ρ̄(x) splits in two parts and

both Riemann invariants λ+ and λ− propagate in opposite direction,
as illustrated by the green arrows in the right plot of Figure 43. A new
region appears: it corresponds to the domain where λ+ and λ− have the
same monotonicity. We denote this region as region 2. Then, one is able
to extract from this graph λ+(x, t > 0) as a function of λ−(x, t > 0)
in order to draw the corresponding curve in the hodograph plane; we
obtain the blue curve shown in Figure 44, either when the hodograph
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plane is not unfolded (left plot) or when it is (right plot). One sees from
the right plot of this figure that region 2 corresponds to the bottom left
domain of the graph5.

Figure 43: Sketch of the distributions λ±(x, t) at time t = 0 (Left) and at
finite time t > 0 (Right). In each panel the upper solid curve rep-
resents λ+ (always larger than λ0), and the lower one λ− (always
lower than −λ0). For t > 0, as indicated by the green arrows, λ+
(λ−) moves to the right (to the left) and regions 1 and 3 start
to overlap. This leads to the configuration represented in panel
(Right) where a new region (labeled region 2) has appeared. The
value of λ+ at the interface between regions 1 and 2 is denoted
as λ+1|2. These graphs actually correspond to a situation where
the initial density distribution is given by (432) (see below, Sec-
tion 6.2.1).

In conclusion, we obtain three different regions that we need to treat
separately. Expression (413) takes a different form in each of these do-
mains.
Let us first consider region 1 and 3 and a point P of coordinates (ξ, η)

in the hodograph plane where we would like to evaluate the potential
W (see Figure 44). Recalling that W |C0 = 0 and using equations (406)
and (407), expressions of U and V along C0 read

U(λ) = −V (λ) = − x̄(λ)

2
R(λ,−λ; ξ, η) in region 1,

U(λ) = −V (λ) =
x̄(λ)

2
R(λ,−λ; ξ, η) in region 3,

(423)

where (ξ, η) are the corresponding coordinates of P in each region of
the hodograph plane (see Figure 44). Then, the expression of W (P ) is
immediate from equation (413):

W (1,3)(ξ, η) = ∓
∫ ξ

−η
x̄(λ)R(λ,−λ; ξ, η)dλ, (424)

where the sign − (+) applies in region 1 (3).

The computation of W in region 2 cannot be directly obtained from
(413). In this region, one can also use the Stokes theorem (408) in the
interior of the surface delimited by PA2CB2 (see Figure 44 for the

5 The gray region is unreachable in our problem.
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notations). Similarly to equation (413), we can split the integral over
the different segments and we easily obtain

W (2)(ξ, η) = [RW (1)]B2 + [RW (3)]A2

+

∫ C

A2

(
∂R

∂λ−
− aR

)

λ+=λm

W (3)(λm, λ
−) dλ−

−
∫ B2

C

(
∂R

∂λ+
− bR

)

λ−=−λm
W (1)(λ+,−λm) dλ+.

(425)

Therefore, equations (424) and (425) solve the problem. Using equation
(401) one finds the expressions of w± in each region. Inverting the system
of equations (398) gives λ± as functions of x and t.

Figure 44: (Left) Behavior of the Riemann invariants in the hodograph
plane at a given time t. The red straight line is the curve
C0. The blue solid line is the curve with parametric equation
(λ+(x, t > 0), λ−(x, t > 0)). The corresponding Riemann invari-
ants λ±(x, t > 0) (as functions of x) are shown in the right plot
of Figure 43.
(Right) The same curves on the four-sheeted unfolded surface.
The regions 1, 2 and 3 correspond to the different regimes of
monotonicity identified in Figure 43. In our problem, the whole
gray shaded domain above C0 is unreachable. A generic point P
has coordinates (ξ, η), as indicated for instance in region 3, and
points A1, B1, A3, B3 and C lie on the initial curve C0. Points
A2 and B2 lie on a boundary between two regions. The arrows
indicate the direction of integration in equations (413) and (425).

approximate solutions We would like to simplify expressions
(424) and (425). First, in region 2, we notice that, at short time, the
coordinates ξ and η of point P are close to λm and −λm, respectively
(see Figure 44). This leads to the approximation

(
∂R

∂λ−
− aR

)

λ+=λm

'
(
∂R

∂λ+
− bR

)

λ−=−λm
' 0, (426)
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by virtue of equations (412c). This assumption amounts to discard both
integrals in expression (425). Actually, using equations (416) and (417),
approximation (426) is equivalent to

F (λ+, λ−; ξ, η) ' 1. (427)

Similarly, in expression (424) for W (1) and W (3), since at short time
−η and ξ are close, the integration variable λ is close to ξ and one can
again assume that F ' 1. That is to say, we are led to make in the
whole hodograph plane the approximation

R(λ+, λ−; ξ, η) ' R(λ+ − λ−, ξ − η). (428)

We can now write the final approximate results, making the replace-
ments ξ → λ+, η → λ− in the above expressions, so that they can be
used in equation (401), and then in expressions (398):

W (1,3)(λ+, λ−) ' ∓
∫ λ+

−λ−
x̄(λ) R(2λ, λ+ − λ−)dλ,

W (2)(λ+, λ−) ' R(λ+ + λm, λ
+ − λ−)W (1)(λ+,−λm)

+ R(λm − λ−, λ+ − λ−)W (3)(λm, λ
−),

(429)

where R is given by equation (417). It is important to stress that equa-
tion (417) has a universal form and can be applied to any physical
system with known dependence c(λ+ − λ−), see equations (394) and
(395).

6.2 application of riemann’s approach

Le us now apply the Riemann’s method described above to some pecu-
liar cases of interest. We start with polytropic gases, which encompasses
the specific case of adiabatic index γ = 2, corresponding to the nonlinear
Schrödinger equation (363). This is relevant to the study of the propa-
gation of an optical beam in a nonlinear medium in the presence of a
constant background (see, e.g., Figure 39 in Chapter 5), before the for-
mation of a dispersive shock wave, whose description will be addressed
in Chapter 7.

6.2.1 Polytopic gases and nonlinear optics

In the case of the dynamics of a polytropic gas with c(ρ) = ρ(γ−1)/2, an
easy calculation gives

R(λ1, λ2) =

(
λ1

λ2

)β
, where β =

3− γ
2(γ − 1)

. (430)

It is worth noticing that the approximation (428) yields the exact ex-
pression of the Riemann function for a classical monoatomic gas with
γ = 5/3 (β = 1). For other values of β the function F in (416) can be
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shown to obey the hypergeometric equation (see, e.g., Ref. [173]) and
our approximation corresponds to the first term in its series expansion.
Thus, we obtain

W (1,3)(λ+, λ−) ' ∓
(

2

λ+ − λ−
)β ∫ λ+

−λ−
λβ x̄(λ)dλ,

W (2)(λ+, λ−) '
(

2

λ+ − λ−
)β

×
{∫ λm

−λ−
λβ x̄(λ)dλ+

∫ λm

λ+

λβ x̄(λ)dλ
}
.

(431)

The case β = 1/2 corresponds to the propagation of an optical beam
in a nonlinear dielectric material and the dynamics of a Bose-Einstein
condensed system [94].

initial conditions One sees that expressions (431) are given in
terms of x̄(λ), the reciprocal function of λ̄(x) ≡ λ+(x ≥ 0, 0), where
λ+(x ≥ 0, 0) can be calculated from (420). Here, we take an initial
profile of the form6

ρ(x) = ρ0 + ρ1 exp(−x2/x2
0) , (432)

with ρ0 and ρ1 > 0. One obtains from (420),

x̄(λ) = x0

√
ln ρ1 − ln

[
|(γ − 1)λ|

2
γ−1 − ρ0

]
. (433)

For such a “single-bump” type of initial conditions, there exist two values
λm = λ̄(0) and λ0 = λ̄(x → ∞) (λm > λ0 > 0) such that λ+(x, t) ∈
[λ0, λm] and λ−(x, t) ∈ [−λm,−λ0]. This situation corresponds exactly
to the graphs shown in Figure 42.

procedure OnceW (λ+, λ−) is known in all three regions 1, 2 and
3 by means of equations (431), it is possible to compute λ+(x, t) and
λ−(x, t), and then ρ(x, t) and u(x, t), following the procedure below:

• One first determines the value λ+
1|2(t) reached by λ+ at the bound-

ary between regions 1 and 2, see the right panel of Figure 43. This
boundary corresponds to the point where λ− = −λm at time t.
From equations (398), λ+

1|2(t) is thus determined by solving

w
(1)
+ (λ+

1|2,−λm)− w(1)
− (λ+

1|2,−λm)

v+(λ+
1|2,−λm)− v−(λ+

1|2,−λm)
+ t = 0 , (434)

where w(1)
+ = ∂W (1)/∂λ+. We then know that, in region 1 at time

t, λ+ takes all possible values between λ0 and λ+
1|2(t) (cf. Figure 43

and Figure 44).

6 In the case of nonlinear optics this initial profile corresponds to a Gaussian beam,
which can be easily set up experimentally.
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• One then lets λ+ vary in [λ0, λm]. From equations (398), at time
t, the other Riemann invariant λ− is solution of

w
(1,2)
+ (λ+, λ−)− w(1,2)

− (λ+, λ−)

v+(λ+, λ−)− v−(λ+, λ−)
+ t = 0 , (435)

where the superscript should be 1 if λ+ ∈ [λ0, λ
+
1|2(t)] and 2 if

λ+ ∈ [λ+
1|2(t), λm], see Figure 43.

• At this point, for each value of t and λ+ we have determined
the value of λ−. The position x is then obtained by either one of
equations (398). Thus, for given t and λ+ in regions 1 and 2, one
has determined the values of λ− and x. In region 3 we use the
symmetry of the problem and write λ±(x, t) = −λ∓(−x, t).

The above procedure defines a mapping of the whole physical (x, t)
space onto the hodograph (λ+, λ−) space. The density and velocity
profiles are then obtained by means of equations (392).

results The results are compared with numerical simulations in
Figure 45 for γ = 2 and for an initial profile (432) with x0 = 20,
ρ0 = 0.5 and ρ1 = 1.5. The simulations have been performed by solving
numerically the nonlinear Schrödinger equation of the form

iψt = −1
2ψxx + ρψ, (436)

[see also equation (363) in Chapter 5] where ρ(x, t) = |ψ|2, u(x, t) =
(ψ∗ψx −ψ ψ∗x)/(2iρ) and ψ(x, 0) =

√
ρ(x, 0). Equation (436) reduces to

the system (389) with the speed of sound c2(ρ) =
√
ρ in the dispersion-

less limit.
One can notice in Figure 45 that our solution of the hydrodynamic

equations (389) agrees very well with the numerical simulations of the
dispersive equation (436) at short time. For larger times the profile
steepens, eventually reaching a point of gradient catastrophe. One sees
in particular the formation of oscillations at both edges of the numerical
density profiles for t > 16. These oscillations correspond to the onset
of a dispersive shock wave, which occurs at a time denoted as the wave
breaking time: tWB. It is thus expected that for t ' tWB the solution
of the dispersionless system (389) departs from the numerical simula-
tions, as seen in the figure. However, this difference is not a sign of a
failure of our approximation, but it rather points to the breakdown of
the hydrodynamic model (389). After tWB the system (389) leads to a
multi-valued solution if not corrected to account for dispersive effects,
as can be seen in Figure 45. The occurrence of the gradient catastrophe,
when the dispersionless profile becomes multi-valued at both edges, is
an efficient way to estimate the wave breaking time, as shown in the
next paragraph.

wave breaking time We now turn to the determination of the
wave breaking time tWB, the moment at which a shock is formed and the
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Figure 45: Density profile ρ(x, t) for different times of propagation t. The
initial density distribution ρ̄(x) is Gaussian, with x0 = 20, ρ0 =
0.5 and ρ1 = 1.5 [see equations (419) and (432)]. The blue curves
correspond to the theoretical results obtained from expressions
(431), with β = 1

2 (γ = 2). For this specific value of the adiabatic
index γ, the nonlinear Schrödinger equation (436) can be indeed
mapped onto hydrodynamic equations (389) in the dispersionless
limit [or equation (366) when dispersion is taken into account].
The red curves are obtained with numerical simulations of the
dispersive equation (436). The formation of oscillations around
t ' 20 correspond to the birth of a dispersive shock wave.

dispersionless approach fails. As mentioned in the above paragraph, this
corresponds to a gradient catastrophe, i.e., a point of infinite gradient
∂λ±/∂x =∞. If one considers for instance the right part of the profile
(region 3), from equations (398), this occurs at a time t such that

t = − ∂w
(3)
+ /∂λ+

1 + c′(λ+ − λ−)
= − ∂w

(3)
+ /∂λ+

1 + d ln c
d ln ρ

∣∣∣
λ+−λ−

, (437)

and tWB is the smallest of the times7 (437).
One can easily compute tWB approximately when the point of largest

gradient in ρ(x) lies in a region where ρ ' ρ0. This occurs for some
specific initial distributions (such as the inverted parabola considered
in Section 6.2.3) or when the initial bump is only a small perturbation

7 It is worth noticing that this formula yields an expression for the breaking time
obtained from our approximate solution of the initial value problem and in this
sense it provides less general but more definite result than the upper estimate of the
breaking time obtained by Lax in Ref. [112].
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of the background. In this case, it is legitimate to assume that wave
breaking is reached for λ− ' −λ0 and this yields

λ+ − λ− ' 1
2

∫ ρ

0

c(ρ′)
ρ′

dρ′ + 1
2

∫ ρ0

0

c(ρ′)
ρ′

dρ′. (438)

Equations (401) and (429) then lead to w(3)
+ ' x̄(λ+) and (437) becomes

t ' − 2

1 + d ln c
d ln ρ

∣∣∣
ρ

× ρ

c(ρ)
dρ
dx

, (439)

where ρ stands for ρ(x̄(λ+)). Within our hypothesis, it is legitimate to
assume that the shortest of times t is reached close to the point x̄(λ+)
for which |dρ/dx| is maximal8. We note x∗ the coordinate of this point
and ρ∗ = ρ(x∗). One thus obtains

tWB '
2

1 + d ln c
d ln ρ

∣∣∣
ρ∗

× ρ∗

c(ρ∗) · max
∣∣∣dρdx

∣∣∣
. (440)

For an initial density distribution of the form (432) with c(ρ) =
√
ρ

(γ = 2), one obtains

tWB '
4

3

√
e

2
x0

√
ρ0 + e−1/2ρ1

ρ1
. (441)

For the specific initial conditions of Figure 45: x0 = 20, ρ0 = 0.5, and
ρ1 = 1.5, expression (441) yields tWB ' 17.4, in good agreement with
numerical simulations.

6.2.2 Example on a non-integrable system

We now study in some details a case where the dependence of c on
ρ is less simple than the one of equation (390): this is the case of a
zero temperature Bose-Einstein condensate transversely confined in an
atomic wave guide. For a harmonic trapping, the transverse averaged
chemical potential can be represented by the interpolating formula [73]

µ⊥(ρ) = ~ω⊥
√

1 + 4aρ, (442)

where ω⊥ is the angular frequency of the transverse harmonic potential,
a > 0 is the s-wave scattering length, ρ(x, t) = |ψ(x, t)|2 is the linear
density of the condensate, and ψ(x, t) is the one-dimensional condensate
wave function9. In this case, the dynamics of the condensate is governed
by an effective one-dimensional Gross-Pitaevskii equation

i~∂t ψ = − ~2

2m
∂xxψ + µ⊥(|ψ|2)ψ, (443)

8 Indeed, the gradient catastrophe is likely to occur at the point where the initial
density gradient is maximal.

9 We note that other expressions for µ⊥ have also been proposed in the literature [101,
161].
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with m the mass of the atoms in the Bose gas. When aρ� 1, one recov-
ers the transverse Gaussian regime with µ⊥(ρ) ' ~ω⊥ + g|ψ|2, where
g = 2~ω⊥a [135] is an effective one-dimensional nonlinear coupling con-
stant (see Section 3.1.2 where the 1D mean-field regime is discussed in
more detail).
Expression (442) yields the correct sound velocity mc2 = ρ dµ⊥/dρ

both in the low (aρ � 1) and in the high (aρ � 1) density regimes.
In these two limiting cases the dispersionless dynamics of the system is
thus correctly described by the hydrodynamic equations (389) with, in
appropriate dimensionless units10

c2(ρ) =
ρ√

1 + ρ
, (444)

where one has made the changes of variables 4aρ → ρ, u/u0 → u,
x/x0 → x and t/t0 → t, where 2mu2

0 = ~ω⊥ and t0 = x0/u0. The
length x0 used to non-dimensionalize the dispersionless equations is a
free parameter: we will chose it equal to the parameter x0 appearing in
the initial condition11 (432). Note that in dimensionless units equation
(443) becomes

iψt = −1
2ψxx + 2ψ

√
1 + |ψ|2, (445)

which is a non-integrable equation.

Let us now apply the Riemann’s method. In the case characterized
by equations (442) and (444), expressions (417) and (418) yield

R(λ1, λ2) =

(
ρ2(λ1) + ρ3(λ1)

ρ2(λ2) + ρ3(λ2)

)1/8

, (446)

where ρ(λ) is the reciprocal function of

λ(ρ) = 2

∫ √ρ

0

du
(1 + u2)1/4

. (447)

We can now insert the above expressions in equations (429) and use
the procedure described in Section 6.2.1 to obtained theoretically the
density and velocity distributions ρ(x, t) and u(x, t). The results are
shown and compared with numerical simulations in Figure 46 for an
initial profile (432) with ρ0 = 1 and ρ1 = 1. The simulations have been
performed by solving numerically a generalized nonlinear Schrödinger
equation (445).
Once again, as already observed in Figure 45, the approximate expres-

sions (429) give an excellent agreement with the numerical simulations

10 This can be easily proven using a Madelung transformation ψ =
√
ρ exp(i S), with

∂xS(x, t) = u(x, t), ρ(x, t) and u(x, t) being the density and the velocity distributions
of the gas.

11 We note here that the initial condition (432) can be realized by several means in
the context of BEC physics. One can for instance suddenly switch on at t = 0 a
blue detuned focused laser beam [13]. An alternative method has been demonstrated
in Ref. [86]: by monitoring the relative phase of a two species condensate, one can
implement a bump (or a through) in one of the components.
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and confirm the efficiency of Riemann’s method to describe the propa-
gation of nonlinear pulses.

We can also estimate the wave breaking time using expression (440);
for a sound velocity of the form (444), we find

tWB '
√
e

2

8(1 + ρ∗)
6 + 5ρ∗

x0

c(ρ∗)
ρ∗

ρ1
. (448)

The location xWB of the wave breaking event can be obtained from (398).
Within our approximation scheme, this yields, for the right part of the
profile:

xWB ' x∗ + c(ρ∗)tWB. (449)

These results are compared in Figure 47 with the values determined
from the Riemann approach. The overall agreement is excellent. We
also note that replacing ρ∗ by ρ0 in equations (448) and (449) gives a
result which is less accurate, but still quite reasonable, see Figure 47.

Figure 46: Density and velocity plotted as a function of x/x0 for dimension-
less times t/t0 = 0.5, 1, 1.5, 2, 3 and 4 respectively. The initial
conditions are given by equations (419) and (432) with ρ0 = 1
and ρ1 = 1, they are represented by the gray solid lines. The
blue solid lines are the results of the hydrodynamic system (389)
obtained from the approximate Riemann’s approach described
in Section 6.1.2. The red curves are the results of the numerical
simulations of equations (445).
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Figure 47: Wave breaking time tWB and position of the wave breaking event
xWB for different values of ρ1/ρ0. The system considered is a
quasi-1D Bose-Einstein condensate for which the speed of sound
is given by (444). The initial distributions given by equation (432)
and u(x, t = 0) = 0. The blue solid lines are the approximate re-
sults (448) and (449). The red dots are the results obtained from
Riemann’s approach. The brown solid lines are obtained by re-
placing ρ∗ by ρ0 in equations (448) and (449), see the paragraph
‘Wave breaking time’ of Section 6.2.1, and, in particular, expres-
sions (439) and (440).

6.2.3 Nonlinear optics with specific initial conditions

We conclude this chapter with a last example, when the initial density
distribution is not Gaussian, as in equation (432), but has the form of
an inverted parabola:

ρ̄(x) ≡ ρ(x, 0) =

{
ρ0 + ρ1(1− x2/x2

0) if |x| < x0,

ρ0 if |x| ≥ x0,
(450)

and

u(x, 0) = 0. (451)

We still consider the propagation of an optical beam in a nonlinear
material. Therefore, the dynamics of the fluid of light is governed by the
nonlinear Schrödinger equation (436), i.e., a specific case of polytropic
gases with adiabatic index γ = 2. The sound velocity is thus c(ρ) =

√
ρ

and the Riemann invariants are given by λ± = 1
2u+

√
ρ.

Equations (421) and (422) are in the considered case:

x =




x̄(3)(λ) if x > 0,

x̄(1)(λ) if x < 0,
(452)

with

x̄(3)(λ) = −x̄(1)(λ) = x0

√
1− λ2 − ρ0

ρ1
. (453)
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The emergence of simple wave regions renders the situation slightly
more tricky than the procedure we described in the previous sections.
Indeed, Figure 48 shows the evolution of the Riemann invariants with
respect to time. The green arrows indicate the direction of propagation
of each Riemann invariant.

Figure 48: Sketch of the distributions λ±(x, t) at several times. In each panel
the upper solid curve represents λ+ (always larger than c0), and
the lower one λ− (always lower than −c0), both plotted as func-
tions of x. Panel (a) corresponds to the initial distribution. Two
subsequent relevant stages of evolution are represented in panels
(b) and (c). For t > 0, λ+ (λ−) moves to the right (to the left)
as indicated by the green arrows. This behavior initially leads
to the configuration represented in panel (b) where a new region
(labeled region 2) has appeared. We spot in this panel the value
λ+1|2(t1) of the Riemann invariant λ+ at the boundary between
regions 1 and 2, as we already did in Figure 43. For longer time
[panel (c)], at t = td, defined in equation (454), region 2 remains
while regions 1 and 3 vanish. Then, for t > td, new simple wave
regions IIl and IIr appear [panel (d)]. At even larger times, for
t ≥ tsplit, where tsplit is given by equation (455), region 2 also
vanishes and only simple-wave regions remain: the initial pulse
has split into two simple-wave pulses propagating in opposite di-
rections [panels (e) and (f)].

We introduce c0 =
√
ρ0 = λ+(x0, 0) and cm =

√
ρ0 + ρ1 = λ+(0, 0).

This means that λ+ ∈ [c0, cm] and λ− ∈ [−cm,−c0]. The simple-wave
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regions, where one of the Riemann invariants is constant, are denoted
I, IIl, IIr and III (see Figure 48).
Before entering into the details, we introduce two important times td

and tsplit which define three stages during the propagation of the pulse:

• Time td corresponds to the vanishing of regions 1 and 3 [see graph
(c) of Figure 48]. At this precise moment, λ+ = cm and λ− = −c0.
Thus, using equation (435), we obtain

td = −w
(2)
+ (cm,−c0)− w(2)

− (cm,−c0)

v+(cm,−c0)− v−(cm,−c0)
, (454)

with w(2)
± = ∂W (2)/∂λ± and v±(λ+, λ−) given by expression (395).

In the case a polytropic gas with adiabatic index γ = 2, v+−v− =
λ+ − λ−.

• Time tsplit defines the moment for which the pulse splits into two
simple-wave pulses propagating in opposite directions. This situ-
ation corresponds to the graph (e) of Figure 48. Likewise, this is
also the exact point in time for which region 2 disappears and
λ± = ±c0 at the position where the pulse splits (in our case, this
occurs exactly at x = 0, see graph (e) of Figure 48). Therefore,

tsplit = −w
(2)
+ (c0,−c0)− w(2)

− (c0,−c0)

v+(c0,−c0)− v−(c0,−c0)
. (455)

This gives

tsplit =
x0

c0
+

1

4 c
5/2
0

∫ cm

c0

√
λ [x̄(3)(λ)− x̄(1)(λ)]dλ . (456)

For an initial profile of the form (450), x̄(1,3)(λ) are given by ex-
pressions (453), and this leads to

tsplit =
x0

c0

(
1 +G(ρ1/ρ0)

)
, (457)

where

G(X) =
X

4

∫ 1

0

√
1− u

(1 +Xu)1/4
du . (458)

The three stages thus corresponds to:

• 0 ≤ t ≤ td
This stage of the propagation is illustrated in the graphs (a), (b)
and (c) of Figure 48. The simple-wave regions, where one of the
Riemann invariants is constant, are denoted I and III. As shown
in graph (b) of Figure 48, region I corresponds to λ+(x ∈ I, t) =
c0, and region III to λ−(x ∈ III, t) = −c0. Region 2 appears,
exactly as it occurred in the previous section for a Gaussian pulse.
Therefore, in regions 1, 2 and 3, one can safely apply the procedure
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described in Section 6.2.1 where the potential W (n), n ∈ {1, 2, 3}
is given by expressions (431), with β = 1

2 .

For any time t, such that 0 ≤ t ≤ td, the boundary between
region I and 1 located at a position denoted xI−1 can be found
as follows: one fixes λ+ = c0. Then, one finds the corresponding
value of λ− = λ−c0 , solving equation (435) with the superscript 1.
Ultimately, using equations (398), we obtain

xI−1 = v−(c0, λ
−
c0) t+ w

(1)
− (c0, λ

−
c0), (459)

where w(1)
− = ∂W (1)/∂λ−.

Once xI−1 is determined, region I corresponds to x ≤ xI−1, with

x = v−(c0, λ
−) t+ w

(1)
− (c0, λ

−), x ∈ I, (460)

for λ− ∈ [λ−c0 ,−c0]. The Riemann invariants in the area located
at the left of region I are simply λ± = ±c0, see graph (b) of
Figure 48.

The boundary between regions 3 and III is simply determined by
symmetry of the problem12: x3−III = −xI−1, λ+(3−III, t) = −λ−c0 ,
and λ− = −c0 (see graph (b) of Figure 48). Then, region III
corresponds to x ≥ x3−III, with

x = v+(λ+,−c0) t+ w
(3)
+ (λ+,−c0), x ∈ III, (461)

for λ+ ∈ [c0,−λ−c0 ].

At the precise time td, when regions 1 and 3 vanish (see graph (c)
of Figure 48), the boundary between I and 2, denoted xI−2, and
between 2 and III, denoted x2−III, are given by

xI−2 = v−(c0,−cm) t+ w
(2)
− (c0,−cm),

x2−III = v+(cm,−c0) t+ w
(2)
+ (cm,−c0),

(462)

that is to say λ−c0 = −cm in equation (459), see graph (c) of
Figure 48.

• td < t < tsplit

This stage corresponds to the graph (d) of Figure 48. Regions I
and 2 become disconnected, as well as regions 2 and III. Two new
simple-wave regions denoted IIl and IIr emerge and fill the gap
between the disconnected regions (see graph (d) of Figure 48).

First, in region I and III, the determination of xI−2 and x2−III

still holds [see equations (462)]. We denote these positions xI−IIl

12 In the case of a non-symmetric problem – corresponding to u(x, 0) 6= 0, i.e.,
λ+(x, 0) 6= −λ−(x, 0)–, one can still use equation (435) with λ− = −c0 and find
the corresponding value of λ+.
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and xIIr−III, since they locate now the boundaries between I and
IIl and between IIr and III, respectively:

xI−IIl = v−(c0,−cm) t+ w
(2)
− (c0,−cm),

xIIr−III = v+(cm,−c0) t+ w
(2)
+ (cm,−c0),

(463)

Then, one can use equations (460) and (461), to determine the
positions associated to λ+ = c0, λ− ∈ [−cm,−c0] (region I) or
λ+ ∈ [c0, cm], λ− = −c0 (region III).

Second, the boundaries between regions IIl and 2 and between 2
and IIr are determined exactly as explained above equation (459):
one fixes λ+ = c0. Then, one finds the corresponding value of
λ− = λ−c0 , solving equation (435), now with the superscript 2.
Using equations (398), we obtain

xIIl−2 = v−(c0, λ
−
c0) t+ w

(2)
− (c0, λ

−
c0),

x2−IIr = −xIIl−2.
(464)

Then, for xI−IIl ≤ x ≤ xIIl−2 (region IIl),

x = v−(c0, λ
−) t+ w

(2)
− (c0, λ

−), λ− ∈ [−cm, λ−c0 ], (465)

and, for x2−IIr ≤ x ≤ xIIr−III (region IIr),

x = v+(λ+,−c0) t+w
(2)
+ (λ+,−c0), λ+ ∈ [−λ−c0 , cm]. (466)

• t ≥ tsplit

This stage corresponds to graphs (e) and (f) of Figure 48. When
t = tsplit, region 2 vanishes, see graph (e). The boundary be-
tween regions IIl and IIr amounts to take t = tsplit and the limit
λ−c0 → −c0 in equation (464). The other boundaries (between I
and IIl and between IIr and III) are determined as explained in
the previous point [see equations (463)]. Note that now all regions
are simple-wave regions.

For t > tsplit [see graph (f)], one determines easily the bound-
aries between the different regions; the only change with respect
to graph (e) is the separation between regions IIl and IIr and
the emergence of the grey area where λ± = ±c0. The bound-
ary between this grey region and IIl still corresponds to the limit
λ−c0 → −c0 in equation (464).

Note the multi-valued regions at the left edge of λ− and the right
edge of λ+ in graph (f) of Figure 48. This indicates that this graph
is obtained after the wave breaking time. Here, the wake breaking
thus occurs after the splitting of the initial pulse into two pulses,
i.e., tWB > tsplit; this is not always the case, see below and, in
particular, Figure 50.



6.2 application of riemann’s approach 171

One obtains an excellent description of the initial dispersionless stage
of evolution of the pulse, as demonstrated by the very good agreement
between theory and numerical simulations illustrated in Figure 49. The
graphs in this figure compare at different times the theoretical density
profile ρ(x, t) with the one obtained by numerical integration of equation
(436), taking the initial condition u(x, 0) = 0 and ρ(x, 0) given by (450)
with x0 = 20, ρ0 = 0.5 and ρ1 = 1.5. One sees that the profile is multi-
valued at both edges for t = 10 and t = 15; this means that the gradient
catastrophe already occurred, and thus tWB < 10. An exact calculation
will yield tWB ' 6.3 (see next paragraph), confirming this observation.

wave breaking time The wave breaking exactly occurs at the
position xWB = x0, since this position corresponds to the highest density
gradient [see equation (450)]. Using (437) and the expression of w(3)

+ ,
obtained from W (3) [see equations (431)], an easy computation leads to
the exact result Remember that

γ = 2 and β = 1
2
.

tWB =
2

3

∣∣∣∣∣
dx̄(3)

dλ

∣∣∣∣∣
λ=c0

=
2 c0 x0

3 ρ1
, (467)

where we used the expression of x̄(3)(λ) given by (453).
Taking x0 = 20, ρ0 = 0.5 and ρ1 = 1.5, one obtains tWB ' 6.3 in

excellent agreement with the emergence of a multi-valued profile when
using the Riemann’s method.

Figure 49: Comparison between theoretical results obtained from Riemann’s
method (blue curves) and numerical simulations of equation (436)
(red curves) for different times of propagation t = 0, 5, 10 and 15.
The initial density distribution ρ̄(x) is given by expression (450).

Figure 50 displays several typical density profiles in a “phase space”
with coordinates ρ1/ρ0 and t. The curves tsplit(ρ1/ρ0) [as given by equa-
tions (457) and (458)] and tWB(ρ1/ρ0) [equation (467)] separate this
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plane in four regions, labeled as (a), (b), (c) and (d) in the figure.
These two curves cross at a point represented by a white dot whose
coordinates we determined numerically as being ρ1/ρ0 = 0.60814 and
c0 t/x0 = 1.09623. These coordinates are universal in the sense that
they have the same value for any initial profile of inverted parabola
type, such as given by equation (450), with u(x, 0) = 0. Other types of
initial profile would yield different precise arrangements of these curves
in phase space, but the qualitative behavior illustrated by Figure 50 is
generic. For instance, when tWB < t < tsplit, the wave breaking has al-
ready occurred while the profile is not yet split in two separated humps.
This situation is represented by the inset (b). This is the situation which
has been considered in Refs. [191] and [200].

The physical situation depicted in Figure 50 corresponds to physi-
cal intuition: a larger initial hump (larger ρ1/ρ0) experiences earlier
wave breaking, and needs a longer time to be separated in two contra-
propagating pulses. On the contrary, a small perturbation, with ρ1 � ρ0,
will split much before experiencing a wave breaking. Moreover, we can
learn from Figure 50 that perturbation theory always fails in describing
correctly the propagation of a nonlinear pulse at large times. Indeed,
any hump on top of a background (ρ1 > 0), no matter how small it is,
will lead to the formation of a dispersive shock wave at some finite time;
this time can be very large (tWB → +∞, when ρ1 → 0, see Figure 50),
but is never infinite.

Figure 50: Behavior of the light intensity profile ρ = |ψ|2 [see equation (436)]
in the plane (ρ1/ρ0, t). The plane is separated in four regions
by the curves t = tWB [see equation (467)] and t = tsplit [see
equations (457) and (458)]. These curves cross at the point rep-
resented by a white dot (of coordinates ρ1/ρ0 = 0.60814 and
c0 t/x0 = 1.09623). Typical profiles obtained numerically are dis-
played in the insets (a), (b), (c) and (d) which represent ρ(x, t)
plotted as a function of x for fixed t.
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We conclude this chapter by stressing that Riemann’s method is a
powerful tool to describe the propagation of a pulse within a disper-
sionless approximation. In the case of an optical beam propagating in a
medium, we have used Riemann’s approach for two different initial con-
ditions: an inverted parabola and a Gaussian beam. The latter is more
realistic experimentally, but the description of the dispersive shock wave
is a bit more difficult than for the inverted parabola. Indeed, as we will
see in the next chapter, if one takes a Gaussian beam initially, four
Riemann invariants vary concomitantly in the region of the dispersive
shock wave, which renders the study quite involved. Moreover, in this
case, the determination of the breaking time and of the boundary of the
DSW can only be determined approximately. On the contrary, in the
case of an inverted parabola, the description of the short-time propaga-
tion using Riemann’s method is more tedious, since one has to worry
about the emergence of simple wave regions (which do not exist for a
Gaussian beam). However, the wave breaking time and the position of
the dispersive shock wave can be determined exactly. In addition, only
two Riemann invariants vary in the region of the dispersive shock wave.
In this case, as we will see in Chapter 7, we know how to describe the
dispersive shock wave using both Whitham modulational theory and
the method presented in Refs. [56, 82].
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6.3 article: short-distance propagation of nonlin-
ear optical pulses

↪→ Short-distance propagation of nonlinear optical pulses

M. Isoard, A.M. Kamchatnov, N. Pavloff, 22e Rencontre du Non-
Linéaire, Non-Linéaire Pub (2019)

We theoretically describe the quasi one-dimensional transverse spread-
ing of a light pulse propagating in a defocusing nonlinear optical mate-
rial in the presence of a uniform background light intensity. For short
propagation distances the pulse can be described within a nondisper-
sive approximation by means of Riemann’s approach. The theoretical
results are in excellent agreement with numerical simulations.
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Résumé. Nous étudions la propagation transverse d’un pulse lumineux quasi-unidimensionnel dans un milieu
optique non-linéaire, en présence d’un fond d’intensité lumineuse constante. Dans un premier temps, le signal
initial se divise en deux parties qui se propagent dans des directions opposées. Ce phénomène peut être décrit
théoriquement à l’aide d’une approche non dispersive en utilisant une modification de la méthode de Riemann
proposée par Ludford. Les résultats sont en excellent accord avec les simulations numériques.

Abstract. We theoretically describe the quasi one-dimensional transverse spreading of a light pulse propagating
in a defocusing nonlinear optical material in the presence of a uniform background light intensity. For short
propagation distances the pulse can be described within a nondispersive approximation by means of Riemann’s
approach. The theoretical results are in excellent agreement with numerical simulations.

1 Introduction

It has long been realized that light propagating in a nonlinear medium was amenable to a hydrodynamic
treatment [1,2]. In the present work we use such an approach to study a model configuration which
has been realized experimentally in a one-dimensional situation in the defocusing regime in Ref. [3]:
the nonlinear spreading of a region of increased light intensity in the presence of a uniform constant
background. In the absence of background, and for a smooth initial intensity pattern, the spreading is
mainly driven by the nonlinear defocusing and can be treated analytically in some simple cases [1]. The
situation is more interesting in the presence of a constant background: the pulse splits in two parts,
each eventually experiencing nonlinear wave breaking, leading to the formation of dispersive shock waves
at both extremities of the split pulse. In the present work we concentrate on the pre-shock period and
demonstrate that it can be very accurately described within a non-dispersive nonlinear approximation.

The paper is organized as follows: In Sec. 2 we present the model and the set-up we aim at studying.
The spreading and the splitting stage of evolution is accounted for in Sec. 3 within a dispersionless
approximation which holds when the pulse region initially presents no large intensity gradient. The
problem is first mapped onto an Euler-Poisson equation in Sec. 3.1. This equation is solved in Sec. 3.2
by using Riemann-Ludford method. In Sec. 3.3 the theoretical results are compared with numerical
simulations. Our conclusions are presented in Sec. 4.

2 The model

In the paraxial approximation, the stationary propagation of the complex amplitude A(r) of the electric
field of a monochromatic beam is described by the equation (see, e.g., Ref. [4])

i∂zA = − 1

2n0k0
∇2
⊥A− k0δnA .

In this equation, n0 is the linear refractive index, k0 = 2π/λ0 is the carrier wave vector, z is the longitu-
dinal coordinate along the beam, ∇2

⊥ the transverse Laplacian and δn is a nonlinear contribution to the
index. In a non absorbing defocusing Kerr nonlinear medium one can write δn = −n2|A|2, with n2 > 0.

c© Non Linéaire Publications, Avenue de l’Université, BP 12, 76801 Saint-Étienne du Rouvray cedex
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We consider a system with a uniform background light intensity, denoted as I0, on top of which an
initial pulse is added at the entrance of the nonlinear cell. To study the propagation of this pulse along
the beam (direction z), we introduce the following characteristic quantities: the nonlinear length zNL =
(k0n2I0)−1 and the transverse healing length β⊥ = (zNL/n0k0)1/2. Since the transverse profile depends on
a single Cartesian coordinate, we write ∇2

⊥ = β−2
⊥ ∂2

x where x is the dimensionless transverse coordinate,
and also define an effective “time” t = z/zNL. In this framework, the quantity ψ(x, t) = A(x, t)/

√
I0 is

solution of the dimensionless nonlinear Schrödinger (NLS) equation

iψt = − 1
2ψxx + |ψ|2ψ . (1)

The initial ψ(x, t = 0) is real (i.e., no transverse velocity or, in optical context, no focusing of the light
beam at the input plane), with a dimensionless intensity ρ(x, t) = |ψ|2 which departs from the constant
background value (which we denote as ρ0) only in the region near the origin where it forms a bump. To
be specific, we consider the typical case where

ρ(x, 0) = ρ0 + ρ1 exp (−2x2/x2
0) , and u(x, 0) = 0 . (2)

The maximal density of the initial profile is ρ(0, 0) = ρ0 + ρ1 ≡ ρm.

3 The dispersionless stage of evolution

The initial pulse splits into two signals propagating in opposite directions of x axis. The aim of this
section is to theoretically describe this splitting within a dispersionless approximation.

3.1 Riemann variables and Euler-Poisson equation

By means of the Madelung substitution ψ(x, t) =
√
ρ(x, t) exp

(
i
∫ x

u(x′, t) dx′
)
, the NLS equation (1)

can be cast into a hydrodynamic-like form for the density ρ(x, t) and the flow velocity u(x, t):

ρt + (ρu)x = 0 , ut + uux + ρx +

(
ρ2
x

8ρ2
− ρxx

4ρ

)

x

= 0 . (3)

These equations are to be solved with the initial conditions (2). The last term of the left hand-side of the
second of Eqs. (3) accounts for the dispersive character of the fluid of light. In the first stage of spreading

of the bump, if the density gradients of the initial density are weak (i.e., if x0 � min{ρ−1/2
0 , ρ

−1/2
1 }), the

effects of dispersion can be neglected, and the system (3) simplifies to

ρt + (ρu)x = 0 , ut + uux + ρx = 0 . (4)

The above equations can be written in a more symmetric form by introducing the Riemann invariants

λ±(x, t) = 1
2u(x, t)±

√
ρ(x, t) , (5)

which evolve according to the system [equivalent to (4)]:

∂tλ
± + v±(λ−, λ+) ∂xλ

± = 0 , with v±(λ−, λ+) = 1
2 (3λ± + λ∓) = u±√ρ . (6)

The Riemann velocities v± in (6) have a simple physical interpretation for a smooth velocity and density
distribution: v+ (v−) corresponds to a signal which propagates downstream (upstream) at the local
velocity of sound c =

√
ρ and which is dragged by the background flow u.

The system (6) can be linearized by means of the hodograph transform (see, e.g., Ref. [5]) which
consists in considering x and t as functions of λ+ and λ−. One readily obtains

∂±x− v∓∂±t = 0, (7)
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where ∂± ≡ ∂/∂λ±. One introduces two auxiliary (yet unknown) functions W±(λ−, λ+) such that

x− v±(λ−, λ+) t = W±(λ−, λ+). (8)

Inserting the above expressions in (7) shows that the W±’s are solution of Tsarev equations [6]

∂−W+

W+ −W−
=

∂−v+

v+ − v−
, and

∂+W−
W+ −W−

=
∂+v−
v+ − v−

. (9)

From Eqs. (6) and (9) one can verify that ∂−W+ = ∂+W−, which shows that W+ and W− can be sought
in the form

W± = ∂±χ, (10)

where χ(λ−, λ+) plays the role of a potential. Substituting expressions (10) in one of the Tsarev equations
shows that χ is a solution of the following Euler-Poisson equation

∂2χ

∂λ+∂λ−
− 1

2 (λ+ − λ−)

(
∂χ

∂λ+
− ∂χ

∂λ−

)
= 0 . (11)

3.2 Solution of the Euler-Poisson equation

We use Riemann’s method (see, e.g., Ref. [7]) to solve the Euler-Poisson equation (11) in the (λ+, λ−)–
plane which we denote below as the “characteristic plane”. We follow here the procedure exposed in
Ref. [8] which applies to non-monotonous initial distributions, such as the one corresponding to Eq. (2).

We first schematically depict in Fig. 1(a) the initial spatial distributions λ±(x, 0) of the Riemann
invariants (left panel). The initial condition (2) yields λ±(x, 0) = ±

√
ρ(x, 0). A later stage of evolution

is shown in the right panel of Fig. 1. We introduce notations for some remarkable values of the Riemann
invariants: λ±(−∞, t) = λ±(∞, t) = ±√ρ0 ≡ ±c0 and λ±(0, 0) = ±√ρm ≡ ±cm. We also define as part
A (part B) the branch of the distribution of the λ±’s which is at the right (at the left) of the extremum
±cm. These notations are summarized in Fig. 1(a).

λ
±
(x
,t

=
0)

cm

31

B A

(a)

x

−cm

B A λ
±
(x
,t

=
t 1
) cmλ+

1|2

321
(b)

x

−cm

Figure 1. Sketch of the distributions λ±(x, t) at time t = 0 (left panel) and at finite time t > 0 (right panel). In
each panel the upper solid curve represent λ+ (always larger than c0), and the lower one λ− (always lower than
−c0). Panel (a) corresponds to the initial distribution, in which part B corresponds to region 1 and part A to
region 3 (see the text). For t > 0, λ+ (λ−) moves to the right (to the left) and part B of λ+ starts to overlap with
part A of λ−. This leads to the configuration represented in panel (b) where a new region (labeled region 2) has
appeared. For later convenience, the value λ+

1|2(t1) is added in this panel. It corresponds to the value of λ+ at the

boundary between regions 1 and 2 (see the discussion in Sec. 3.3).

At a given finite time, the x axis can be considered as divided in three domains, each requiring a
specific treatment. Each domain is characterized by the behavior of the Riemann invariants. In domain
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3 (domain 1 respectively), λ+ is decreasing (increasing) while λ− is increasing (decreasing); in domain
2 both are increasing, see Fig. 1(b). The theoretical description of this nonlinear wave is challenging
because in each regions both Riemann invariants (λ+ and λ−) depend on position (i.e., there is no simple
wave region).

The values of the Riemann invariants corresponding to Fig. 1(b) are represented in the characteristic
plane in Fig. 2(a). The red curve C 0 in Figs. 2(a) and (b) corresponds to the initial conditions depicted
in Fig. 1(a). Since λ+(x, 0) = −λ−(x, 0), the curve C 0 lies along the anti-diagonal in the characteristic
plane. The (blue) curvy lines correspond to regions where both Riemann invariants depend on position:
the domains 1, 2 and 3. In each of these three domains the solution χ of the Euler-Poisson equation
has a different expression. In order to describe these three branches, following Ludford [8], we introduce
several sheets in the characteristic plane by unfolding the domain [c0, cm]× [−cm,−c0] into a four times
larger region as illustrated in Fig. 2(b). We remark here that the whole region above C 0 — shaded in
Fig. 2(b) — is unreachable for the initial distribution we consider: for instance, the upper shaded triangle
in region 1 would correspond to a configuration in which λ+

region1(x, t) > |λ−region1(x, t)|, which does not

occur in our case, see Fig. 1(b). The potential χ(λ−, λ+) can now take a different form in each of the
regions labeled as 1, 2 and 3 in Fig. 2(b) and still be considered as single-valued. In each of the three
domains, we use Riemann-Ludford method to solve Eq. (11). This yields, to a very good approximation
(a thorough analysis can be found in Ref. [9])

χ(n)(λ−, λ+) =

√
2√

λ+ − λ−
∫ λ+

−λ−

√
r wA/B(r) dr , (12)

for regions n = 1 and 3. In the above formula, the superscript A should be used when n = 3, and the
superscript B when n = 1, and wA ( wB) is the inverse function of the initial λ profiles in part A (part
B). For the initial condition (2) one has

x = wA/B(λ) = ±x0

√
−1

2
ln
λ2 − ρ0

ρ1
if x ≷ 0 .

In region 2, the formulae (12) are replaced by

χ(2)(λ−, λ+) =

√
2√

λ+ − λ−

(∫ λ+

cm

√
r wB(r) dr +

∫ cm

−λ−

√
r wA(r) dr

)
. (13)

3.3 Results and comparison with numerical simulations

Once χ(n)(λ−, λ+) has been determined in each of the three regions (n = 1, 2 or 3), the problem is solved.

One first computes W
(n)
± (λ−, λ+) in each region from Eqs. (10), (12) and (13). Then, the procedure to

obtain the values of λ+ and λ− as functions of x and t is the following:

• One starts by determining the value of λ+ for which λ− = −cm at time t. This value of λ+ defines
the boundary between regions 1 and 2. We denoted it as λ+

1|2(t); it is represented in Fig. 1(b). From

Eqs. (8), λ+
1|2(t) is a solution of

W
(1)
+ (−cm, λ+

1|2)−W (1)
− (−cm, λ+

1|2)

v+(−cm, λ+
1|2)− v−(−cm, λ+

1|2)
+ t = 0 . (14)

We then know that, in region 1 at time t, λ+ takes all possible values between c0 and λ+
1|2(t).

• One picks a value of λ+ in [c0, cm]. From Eqs. (8), λ− is then solution of

W
(n)
+ (λ−, λ+)−W (n)

− (λ−, λ+)

v+(λ−, λ+)− v−(λ−, λ+)
+ t = 0 , (15)
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−c0

−cm

c0 cm λ+λ−

C0

1

2

3

(a)

C0

−c0

−cm

−c0

c0 cm c0 λ+λ−

1

2

3

λ+ increases λ+ decreases

λ
−

de
cr

ea
se

s
λ
−

in
cr

ea
se

s

(b)

Figure 2. (a) Behavior of the Riemann invariants in the characteristic plane at a given time t (blue curve). The
red curve C 0 corresponds to the initial condition [λ−(x, 0) = −λ+(x, 0)]. (b) The same curves in the four-sheeted
unfolded surface. In our problem, the whole gray shaded domain above C0 is unreachable.

with n = 1 if λ+ ∈ [c0, λ
+
1|2(t)] and n = 2 if λ+ ∈ [λ+

1|2(t), cm]. This determines the value of the

Riemann invariants in regions 1 and 2. In region 3 one uses the symmetry of the problem and writes
λ±(x, t) = −λ∓(−x, t), see Fig. 1(b).
• At this point, for each value of t and λ+ we know the value of the other Riemann invariant λ−. The

position x is then simply obtained by either one of Eqs. (8). So, for given t and λ+ in region n, one has
determined the values of λ− and x. In practice, this makes it possible to associate a couple (λ−, λ+) to
each (x, t). The density and velocity profiles are then obtained through Eqs. (5).

The results of the above approach are compared in Fig. 3 with the numerical solution of Eq. (1), taking
the initial condition given by Eq. (2) with ρ0 = 0.5, ρ1 = 1.5 and x0 = 20. One reaches an excellent
agreement for the density profile and also for the velocity profile (not shown in the figure) up to t ' 20.
As time increases, the profile steepens and oscillations become visible at both ends of the pulse at t & 16.
There exists a certain time, the wave breaking time tWB, at which nonlinear nondispersive spreading leads
to a gradient catastrophe; our approximation subsequently predicts a nonphysical multivalued profile, as
can be seen in Fig. 3 (for t > 20). The time tWB can be computed by noticing that the wave breaking
occurs for the value λ+

WB = (ρ0 + ρ1/
√
e )1/2 which is associated in the initial profile with the largest

gradient in ∂xρ. At the wave-breaking time the profile of λ+ in region 3 has a vertical tangent line:
∂x/∂λ+ = 0. For simplicity we also assume that the wave breaking occurs in a region where one can
safely approximate λ− = −c0. Differentiation of (7) then yields

tWB =
2

3

∣∣∣∣∣
dW

(3)
+ (−c0, λ+)

dλ+

∣∣∣∣∣
λ+
WB

=

∣∣∣∣∣∣

∫ λ+

c0

√
rwA(r)dr

√
2(λ+ + c0)5/2

+

√
2(c0 − λ+)wA(λ+)

3
√
λ+(λ+ + c0)3/2

+
2

3

√
2λ+

λ+ + c0

dwA

dλ+

∣∣∣∣∣∣
λ+
WB

. (16)

The numerical value of tWB is found to be ' 19.15 for our choice of initial condition, in good agreement
with numerical simulations. Note also that for a small bump (ρ1 � ρ0) the wave breaking time becomes
very large. From (16), and for an initial profile of type (2), one gets at leading order in ρ1/ρ0:

tWB '
2
√
e

3

x0

c0

(
ρ0

ρ1

)
. (17)

This means that the breaking time is much greater than the time ∼ x0/c0 of propagation of sound along
the pulse profile. In our optical system the wave breaking is regularized by the formation of a dispersive
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Figure 3. Density pro-
file ρ(x, t) correspond-
ing to the initial con-
ditions (2) with ρ0 =
0.5, ρ1 = 1.5 and x0 =
20. The red dashed line
corresponds to the ex-
act solution of the dis-
persionless system (6)
(see the text), while the
black curve displays the
density obtained from
the numerical solution
of Eq. (1).

shock wave which is a region with large oscillations of intensity and phase, whose extend increases with
time, as can be seen in Fig. 3. Its description requires a nonlinear treatment able to account for dispersive
effects and this goes beyond te scope of the present letter (see, e.g., Ref. [9]).

4 Conclusion

In this work we demonstrate that a nondispersive hydrodynamic approach to the spreading and splitting
of an optical pulse compares extremely well with the results of numerical simulations up to the wave
breaking time. At larger time, one observes the formation of an optical dispersive shock wave, which can
be studied within Whitham modulation theory. In the case of the initial distribution given by Eq. (2), the
shock should be described by four varying Riemann invariants and this requires a thorough investigation.
Work in this direction is in progress.
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Introduction. – In the long wavelength limit, many
physical models lead, in the one-dimensional regime, to
equations of wave propagation equivalent to the equations
of inviscid gas dynamics

ρt + (ρu)x = 0, ut + uux +
c2

ρ
ρx = 0, (1)

where u is interpreted as a local “flow velocity”, and
c = c(ρ) has a meaning of a local “sound velocity” which
depends on a local “density” ρ. These nonlinear equations
were studied very intensively in the framework of gas dy-
namics (see, e.g., ref. [1]) and a number of exact solutions
have been obtained for various problems in the particular
case of polytropic gases for which, up to a normalization
constant which can be rescaled to unity,

c(ρ) = ρ(γ−1)/2, (2)

where γ is the adiabatic index (γ > 1). However, even
in this apparently simple case, the solutions become quite
complicated if the parameter

β =
3 − γ

2(γ − 1)
(3)

is not an integer number. This difficulty is encountered
for instance in the study of the evolution of a nonlinear
pulse with initial density and velocity distributions

ρ(x, 0) = ρ(x), u(x, 0) = 0, (4)

where ρ is a specified function of x; see, e.g., the solution of
the problems pulse evolution in optical systems with Kerr
nonlinearity [2] or of collision of two rarefaction waves in
the dynamics of a Bose-Einstein condensed system [3], for
which γ = 2 (and β = 1/2).

In refs. [4,5] it was noticed that for the case γ = 2 one
can obtain a very accurate and simple approximate solu-
tion of the problem of evolution of the pulse (4). The
aim of the present paper is to generalize this approach to
arbitrary dependence c = c(ρ). We first present the hodo-
graph transform which maps the nonlinear system onto
a linear Euler-Poisson equation which can be solved by
Riemann’s method. We then propose an approximate ex-
pression for the Riemann function which leads to a simple
solution of the problem. The approach is discussed and
compared with numerical simulations. We also discuss an
approximate determination of the time of shock formation
in the system.

Hodograph transform and Riemann method. –
The term in ρx in (1) being positive, the system is hyper-
bolic. It can be cast to a diagonal form by introducing the
Riemann invariants

r±(x, t) =
1

2
u(x, t) ± 1

2

∫ ρ(x,t)

0

c(ρ′)dρ′

ρ′
. (5)

64003-p1
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r+ and r− obey dynamical equations equivalent to (1)
which take the form

∂r±
∂t

+ v±
∂r±
∂x

= 0, (6)

where

v± = u ± c (7)

can be expressed in terms of the Riemann invariants. In-
deed, it follows from eq. (5) that the physical variables u
and c can be written as

u = r+ + r−, c = c(r+ − r−), (8)

where the expression of c as a function of r+ − r− is ob-
tained by inverting the relation1

r+ − r− =

∫ ρ

0

c(ρ′)dρ′

ρ′
(9)

and substituting ρ(r+ − r−) into c = c(ρ). Then, the ve-
locities v± in eq. (7) can be considered as known functions
of r+ and r−:

v±(r+, r−) = r+ + r− ± c(r+ − r−). (10)

Equations (6) can be linearized by the hodograph trans-
form (see, e.g., refs. [1,6]). This consists in considering
x and t as functions of the independent variables r± and
leads to the following system of linear equations:

∂x

∂r+
− v−(r+, r−)

∂t

∂r+
= 0,

∂x

∂r−
− v+(r+, r−)

∂t

∂r−
= 0.

(11)

We look for the solutions of these equations in the form

x − v+(r+, r−)t = w+(r+, r−),

x − v−(r+, r−)t = w−(r+, r−).
(12)

A simple test of consistency shows that the unknown func-
tions w±(r+, r−) should verify the Tsarev equations [7]

1

w+ − w−

∂w+

∂r−
=

1

v+ − v−

∂v+
∂r−

,

1

w+ − w−

∂w−
∂r+

=
1

v+ − v−

∂v−
∂r+

.

(13)

Now we notice that since the velocities v± are given by
expressions (10), the right-hand sides of both eqs. (13) are
equal to each other:

1

v+ − v−

∂v+
∂r−

=
1

v+ − v−

∂v−
∂r+

=
1 − c′(r+ − r−)

2 c(r+ − r−)
, (14)

1The dependence of c on r+ −r− is different from its dependence
on ρ. In the following, we always specify the argument of c to avoid
confusion.

where c′(r) ≡ dc(r)/dr. Consequently ∂w+/∂r− =
∂w−/∂r+ and w± can be sought in the form

w± =
∂W

∂r±
. (15)

Substitution of eqs. (14) and (15) into eqs. (13) shows that
the function W obeys the Euler-Poisson equation

∂2W

∂r+∂r−
− 1 − c′(r+ − r−)

2c(r+ − r−)

(
∂W

∂r+
− ∂W

∂r−

)
= 0. (16)

A formal solution of eq. (16) in the (r+, r−) plane (the
so-called hodograph plane) can be obtained with the use
of the Riemann method (see, e.g., ref. [8]). We introduce
the notation

a(r+, r−) =
c′(r+ − r−) − 1

2c(r+ − r−)
= −b(r+, r−), (17)

and the so-called Riemann function R(r+, r−; ξ, η) which
satisfies an equation conjugate to (16)

∂2R

∂r+∂r−
− ∂(aR)

∂r+
− ∂(bR)

∂r−
= 0, (18)

with the boundary conditions:

∂R

∂r+
−bR=0 along the characteristic r− = η,

∂R

∂r−
−aR=0 along the characteristic r+ = ξ,

(19)

and
R(ξ, η; ξ, η) = 1. (20)

Then, at a point P with coordinates (ξ, η) of the hodo-
graph plane, W can be expressed as

W (P )=
1

2
(RW )A+

1

2
(RW )B−

∫ B

A

(V dr+ + Udr−), (21)

where

U =
1

2

(
R

∂W

∂r−
− W

∂R

∂r−

)
+ aRW,

V =
1

2

(
W

∂R

∂r+
− R

∂W

∂r+

)
− bRW.

(22)

We use here doubled notation for the coordinates in the
hodograph plane: (ξ, η) and (r+, r−). P = (ξ, η) is the
“observation” point and the integral in (21) is taken over
the curve C of the initial data in this plane which has
parametric equation (r+(x, 0), r−(x, 0)). The points A and
B are projections of P onto C along the r+- and r−-axis,
respectively. The advantage of the expression (21) is that
it gives the value of W at P in terms of its values (and
of the one of its derivatives) along the curve C of initial
conditions.

Once the Riemann function R has been determined,
eq. (21) gives the solution of the problem under
consideration.

64003-p2
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Approximate solution. – We now proceed and con-
sider the specific problem formulated in the introduction.
To simplify the discussion we assume that the initial dis-
tribution ρ(x) reaches an extremum at x = 0 and is an
even function of x: ρ(−x) = ρ(x). The generalization to
non-symmetric distributions is straightforward.

First of all, we have to understand how the initial profile
(4) fixes the boundary conditions for W on curve C in the
hodograph plane. To this end, we compute the initial
distribution of the Riemann invariant r+ for positive x at
t = 0:

r(x) ≡ r+(x > 0, t = 0) =
1

2

∫ ρ(x)

0

c(ρ)dρ

ρ
. (23)

Denoting as x(r) the reciprocal function, we obtain for the
value of x on the curve C:

x =

{
x(r), if x > 0,

−x(r), if x < 0.
(24)

Besides that, since at t = 0 the values r+ = r and r− = −r
correspond to the same value of x, we find that x(r) is an
even function, x(−r) = x(r). As an illustration, for an
initial profile of the form

ρ(x) = ρ0 + ρ1 exp(−x2/x2
0) (25)

(with ρ0 and ρ1 > 0), one obtains in the case of a poly-
tropic gas (2):

x(r) = x0

√
ln ρ1 − ln

[
|(γ − 1) r| 2

γ−1 − ρ0

]
. (26)

For such a “single-bump” type of initial conditions
which we consider, there exist two values rm = r(0) and
r0 = r(x → ∞) (rm > r0 > 0) such that r+(x, t) ∈ [r0, rm]
and r−(x, t) ∈ [−rm, −r0]. At a given time t, the space can
be separated in three different regions 1, 2 and 3, depend-
ing on the values of ∂r±/∂x, as illustrated in fig. 1. In each
region both r+ and r− vary concomitantly, and this is the
reason why we have to resort to Riemann’s method2. For
determining the value of W in each of the three regions 1,
2 and 3, we follow Ludford [9] and unfold the hodograph
plane into three sheets as illustrated in fig. 2(b).

For the specific initial condition (4), the curve C is repre-
sented by the anti-diagonal (r− = −r+) and the points A
and B of eq. (21) have coordinates A(−η, η) and B(ξ,−ξ).
Equations (12) with t = 0 give

∂W

∂r+

∣∣∣∣
C

=
∂W

∂r−

∣∣∣∣
C

= x.

This implies that W keeps a constant value along C. The
value of this constant is immaterial, we take W |C = 0 for

2We note that for some initial conditions there might also ex-
ist simple-wave regions which cannot be tackled by the Riemann
method. The density and velocity profiles in such regions are easily
described (see the case studied in ref. [4]) and we do not consider
here their possible occurrence so as not to burden the discussion.

r±
(x

,t
=

0) rm

31

−rm

0 x −→
(a)

r±
(x

,t
>

0) rm
r+1|2

321

−rm

x −→
(b)

Fig. 1: Sketch of the distributions r±(x, t) at time t = 0 (a) and
at finite time t > 0 (b). In each panel the upper solid curve
represents r+ (always larger than r0), and the lower one r−

(always lower than −r0). For t > 0, r+ (r−) moves to the
right (to the left) and regions 1 and 3 start to overlap. This
leads to the configuration represented in panel (b) where a new
region (labeled region 2) has appeared. The value of r+ at the
interface between regions 1 and 2 is denoted as r+1|2.

simplicity, and eqs. (22) then reduce to

U =
x

2
R(r, −r; ξ, η), V = −x

2
R(r, −r; ξ, η). (27)

We thus obtain from (21) W =
∫ ξ

−η xRdr which gives in
regions 1 and 3 the explicit expressions

W (1,3)(ξ, η) = ∓
∫ ξ

−η

x(r)R(r, −r; ξ, η)dr, (28)

where the sign − (+) applies in region 1 (3). The difference
in signs comes from the fact that x = ∓ x(r) depending
on if one is in region 1 or 3 (see eq. (24)).

When P is in region 2 one applies formula (21) with
an integration path different from the one used in re-
gions 1 and 3, see fig. 2. Upon integrating by parts one
obtains

W (2)(P ) =
(
RW (1)

)
B2

+
(
RW (3)

)
A2

+

∫ C

A2

(
∂R

∂r−
− aR

)

r+=rm

W (3)dr−

−
∫ B2

C

(
∂R

∂r+
− bR

)

r−=−rm

W (1)dr+, (29)

where the coordinates of the relevant points are:
A2(rm, η), B2(ξ,−rm) and C(rm, −rm) (see fig. 2).
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Fig. 2: (a) Behavior of the Riemann invariants in the character-
istic plane at a given time t. The red straight line is the curve
C. The black solid line is the curve with parametric equation
(r+(x, t), r−(x, t)). (b) The same curves on the four-sheeted
unfolded surface. The colored regions 1, 2 and 3 are the same
as the ones identified in fig. 1. In our problem, the whole gray
shaded domain above C is unreachable. A generic point P of
has coordinates (ξ, η) and points A1, B1, A3, B3 and C lie on
the initial curve C. Points A2 and B2 lie on a boundary between
two regions. The arrows indicate the direction of integration
in eqs. (21) and (29).

For small enough time of evolution, ξ is close to rm and
η is close to −rm, the integrand functions in eq. (29) are
then small by virtue of eqs. (19). A simple approximation
thus consists in keeping only the two first terms in the
right-hand side of (29).

It now remains to determine the Riemann function R
for computing expression (28) of W in regions 1 and 3
and completely solving the problem. One first remarks

that the conditions (19) and (20) yield

R(r+, η; ξ, η) =

√
c(ξ − η)

c(r+ − η)
exp

(∫ r+−η

ξ−η

dr

2 c(r)

)
,

R(ξ, r−; ξ, η) =

√
c(ξ − η)

c(ξ − r−)
exp

(∫ ξ−r−

ξ−η

dr

2 c(r)

)
.

(30)

These expressions suggest that R can be sought in the
form

R(r+, r−; ξ, η) = R(r+ − r−, ξ − η)F (r+, r−; ξ, η), (31)

where F (r+, η; ξ, η) = 1 = F (ξ, r−; ξ, η) and

R(r1, r2) =

√
c(r2)

c(r1)
exp

(∫ r1
r2

dr

2 c(r)

)

=

√
c(r2)ρ(r1)

c(r1)ρ(r2)
.

(32)

The final expression in the above formula has been ob-
tained by means of a change of variable ρ = ρ(r) in the
integral, where the function ρ(r) is the reciprocal function
of r(ρ) given in (9)

r(ρ) =

∫ ρ

0

c(ρ′)dρ′

ρ′
, (33)

and c(r) = c(ρ(r)), so that dr/c(r) = dρ/ρ.

We note here that the approximation previously used
for discarding the integrated terms in the right-hand side
of eq. (29) amounts to assume that F ≃ 1. Similarly, in
expression (28) for W (1) and W (3), since at short time
−η and ξ are close, the integration variable r is close
to ξ and one can again assume that F ≃ 1. That is to
say, we are led to make in the whole hodograph plane the
approximation

R(r+, r−; ξ, η) ≃ R(r+ − r−, ξ − η). (34)

We can now write the final approximate results, making
the replacements ξ → r+, η → r− in the above expres-
sions, so that they can be used in eqs. (12) and (15):

W (1,3)(r+, r−) ≃ ∓
∫ r+

−r−

x(r)R(2r, r+ − r−)dr,

W (2)(r+, r−) ≃ R(r+ + rm, r+ − r−)W (1)(r+, −rm)

+R(rm − r−, r+ − r−)W (3)(rm, r−),

(35)

where R is given by eq. (32). Formulae (34) and (35) are
the main results of the present work. It is important to
stress that eq. (32) has a universal form and can be applied
to any physical system with known dependence c(r+−r−),
see eqs. (8) and (9).

64003-p4



Dispersionless evolution of inviscid nonlinear pulses

Examples. – In the case of the dynamics of a poly-
tropic gas with c(ρ) = ρ(γ−1)/2, an easy calculation gives

R(r1, r2) =

(
r1
r2

)β

, where β =
3 − γ

2(γ − 1)
. (36)

It is worth noticing that the approximation (34) yields
the exact expression of the Riemann function for a clas-
sical monoatomic gas with γ = 5/3 (β = 1). For other
values of β the function F in (31) can be shown to obey
the hypergeometric equation (see, e.g., ref. [8]) and our
approximation corresponds to the first term in its series
expansion. Thus, we obtain

W (1,3)(r+, r−) ≃ ∓
(

2

r+ − r−

)β ∫ r+

−r−

rβ x(r)dr,

W (2)(r+, r−) ≃
(

2

r+ − r−

)β

×
{∫ rm

−r−

rβ x(r)dr +

∫ rm

r+

rβ x(r)dr

}
.

(37)

For the case of “shallow water” equations with γ = 2 (β =
1/2) these formulae reproduce the results of refs. [4,5].
The approximation (37) cannot be distinguished from the
exact result of Riemann’s approach for the type of initial
condition considered in ref. [4].

We now study in some details a case where the depen-
dence of c on ρ is less simple than the one of eq. (2): this
is the case of a zero temperature Bose-Einstein conden-
sate transversely confined in an atomic wave guide. For a
harmonic trapping, the transverse averaged chemical po-
tential can be represented by the interpolating formula [10]

µ⊥(ρ) = �ω⊥
√

1 + 4aρ, (38)

where ω⊥ is the angular frequency of the transverse har-
monic potential, a > 0 is the s-wave scattering length, and
ρ(x, t) is the linear density of the condensate. We note that
other expressions for µ⊥ have also been proposed in the
literature [11,12]. Expression (38) yields the correct sound
velocity mc2 = ρ dµ⊥/dρ both in the low (aρ ≪ 1) and
in the high (aρ ≫ 1) density regimes. In these two limit-
ing cases the long wave length dynamics of the system is
thus correctly described by the hydrodynamic equations
(2) with, in appropriate dimensionless units:

c2(ρ) =
ρ√

1 + ρ
, (39)

where one has made the changes of variables 4aρ → ρ,
u/u0 → u, x/x0 → x and t/t0 → t, where 2mu2

0 = �ω⊥
and t0 = x0/u0. The length x0 used to non-dimensionalize
the dispersionless equations is a free parameter: we will
chose it equal to the parameter x0 appearing in the initial
condition (25). We note here that the initial condition
(25) can be realized by several means in the context of
BEC physics. One can for instance suddenly switch on

at t = 0 a blue detuned focused laser beam [13]. An
alternative method has been demonstrated in ref. [14]: by
monitoring the relative phase of a two species condensate,
one can implement a bump (or a through) in one of the
components.

In the case characterized by eqs. (38) and (39), expres-
sions (32) and (33) yield

R(r1, r2) =

(
ρ2(r1) + ρ3(r1)

ρ2(r2) + ρ3(r2)

)1/8

, (40)

where ρ(r) is the reciprocal function of

r(ρ) = 2

∫ √
ρ

0

du

(1 + u2)1/4
. (41)

In order to evaluate W it then suffices to determine x(r)
by inverting the relation (23) and to compute the appro-
priate integrals (35). Once W (r+, r−) is known in all
three regions 1, 2 and 3, it is possible to compute r+(x, t)
and r−(x, t), and then ρ(x, t) and u(x, t) as explained in
refs. [4,5]:

– One first determines the value r+1|2(t) reached by

r+ at the boundary between regions 1 and 2, see
fig. 1(b). This boundary corresponds to the point
where r− = −rm at time t. From eqs. (12), r+1|2(t) is

thus determined by solving

w
(1)
+ (r+1|2, −rm) − w

(1)
− (r+1|2, −rm)

v+(r+1|2, −rm) − v−(r+1|2, −rm)
+ t = 0, (42)

where w
(1)
+ = ∂W (1)/∂r+. We then know that, in

region 1 at time t, r+ takes all possible values between
r0 and r+1|2(t) (cf. figs. 1 and 2).

– One then let r+ vary in [r0, rm]. From eqs. (12), at
time t, the other Riemann invariant r− is solution of

w
(1,2)
+ (r+, r−) − w

(1,2)
− (r+, r−)

v+(r+, r−) − v−(r+, r−)
+ t = 0 , (43)

where the superscript should be (1) if r+ ∈ [r0, r
+
1|2(t)]

and (2) if r+ ∈ [r+1|2(t), rm].

– At this point, for each value of t and r+ we have
determined the value of r−. The position x is then
obtained by either one of eqs. (12). So, for given t
and r+ in regions 1 and 2, one has determined the
values of r− and x. In region 3 we use the symmetry
of the problem and write r±(x, t) = −r∓(−x, t).

The above procedure defines a mapping of the whole
physical (x, t) space onto the hodograph (r+, r−) space.
The density and velocity profiles are then obtained by
means of eqs. (5). The results are compared with nu-
merical simulations in fig. 3 for an initial profile (25) with
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Fig. 3: Density and velocity plotted as a function of x/x0 for
dimensionless times t/t0 = 0.5, 1, 1.5, 2, 3 and 4, respectively.
The initial conditions are given by eqs. (4) and (25) with ρ0 = 1
and ρ1 = 1, they are represented by the gray solid lines. The
blue solid lines are the results of the hydrodynamic system (1)
obtained from the approximate Riemann’s approach described
in the text. The dashed lines are the results of the numerical
simulations of eq. (44).

ρ0 = 1 and ρ1 = 1. The simulations have been performed
by solving numerically a generalized nonlinear Schrödinger
equation of the form

iψt = −1

2
ψxx + 2 ψ

√
1 + ρ, (44)

where ρ(x, t) = |ψ|2, u(x, t) = (ψ∗ψx − ψ ψ∗
x)/(2iρ) and

ψ(x, 0) =
√

ρ(x, 0). This effective Gross-Pitaevskii equa-
tion reduces to the system (1) with the speed of sound (39)
in the dispersionless limit3. It yields an excitation spec-
trum always of Bogoliubov type, which is incorrect in the
large density limit (ρ ≫ 1). However, one can show that
eq. (44) is acceptable even in this limit provided one re-
mains in the long wavelength, hydrodynamic regime. It
is not appropriate when rapid oscillations appear in the
density and velocity (if ρ ≫ 1) such as observed in fig. 3
for t/t0 = 3. These oscillations correspond to the onset of
a dispersive shock wave, which occurs at a time denoted
as the wave breaking time: tWB. For t > tWB the numeri-
cal simulations can be considered as accurately describing
the physical system only when ρ ≪ 1. But for t > tWB

our dispersionless approach also fails (see below): we are
thus safe when comparing our results with numerical sim-
ulations at earlier times.

One sees in fig. 3 that our solution of the hydrodynamic
equations (1) agrees very well with the numerical simula-
tions of the dispersive equation (44) at short time. For
larger times the profile steepens, eventually reaching a

3It would be easier and more natural to compare our approximate
Riemann approach with the numerical solution of eqs. (1). However,
the difference between the two results is so small that the discussion
of this comparison has little interest.

point of gradient catastrophe at time tWB. It is thus ex-
pected that for t ≃ tWB the solution of the dispersionless
system (1) departs from the numerical simulations, as seen
in the figure. However, this difference is not a sign of a
failure of our approximation, but it rather points to the
breakdown of the hydrodynamic model (1). After tWB the
system (1) leads to a multi-valued solution if not corrected
to account for dispersive effects, as can be seen in fig. 3.

Wave breaking time. – We now turn to the determi-
nation of the wave breaking time tWB at which a shock
is formed. After tWB the system (1) has to be modified
in order to account for viscous and/or dispersive effects,
depending on the physical situation under consideration.

We treat the case of an initial profile roughly of the
type (25): a bump over a uniform background. Wave
breaking corresponds to the occurrence of a gradient catas-
trophe for which ∂r±/∂x = ∞. If one considers for in-
stance the right part of the profile (region 3), from eq. (12),
this occurs at a time t such that

t = − ∂w
(3)
+ /∂r+

1 + c′(r+ − r−)
= − ∂w

(3)
+ /∂r+

1 + d ln c
d ln ρ

∣∣∣
r+−r−

, (45)

and tWB is the smallest of the times (45). It is worth notic-
ing that this formula yields an expression for the breaking
time obtained from our approximate solution of the initial
value problem and in this sense it provides less general
but more definite result than the upper estimate of the
breaking time obtained by Lax in ref. [15].

One can easily compute tWB approximately when the
point of largest gradient in ρ(x) lies in a region where
ρ ≃ ρ0. This occurs for some specific initial distributions
(such as the inverted parabola considered in ref. [4]) or
when the initial bump is only a small perturbation of the
background. In this case, it is legitimate to assume that
wave breaking is reached for r− ≃ −r0 and that

r+ − r− ≃ 1

2

∫ ρ

0

c(ρ′)

ρ′
dρ′ +

1

2

∫ ρ0

0

c(ρ′)

ρ′
dρ′. (46)

Equations (15) and (35) then lead to w
(3)
+ ≃ x(r+)

and (45) becomes

t ≃ − 2

1 + d ln c
d ln ρ

∣∣∣
ρ

× ρ

c(ρ)
dρ
dx

, (47)

where ρ stands for ρ(x(r+)). Within our hypothesis, it is
legitimate to assume that the shortest of times t is reached
close to the point x(r+) for which |dρ/dx| is maximal. We
note x∗ the coordinate of this point and ρ∗ = ρ(x∗). One
thus obtains

tWB ≃ 2

1 + d ln c
d ln ρ

∣∣∣
ρ∗

× ρ∗

c(ρ∗) · max
∣∣∣dρ
dx

∣∣∣
. (48)

In a “shallow water” case with γ = 1/2 and for an initial
profile where the bump is an inverted parabola, such as
considered in ref. [4], the above formula is exact.
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Fig. 4: Wave breaking time tWB and position of the wave break-
ing event xWB for different values of ρ1/ρ0. The system consid-
ered is a quasi-1D BEC for which the speed of sound in given
by (39). The initial profile is given by eqs. (4) and (25). The
blue solid lines are the approximate results (49) and (50). The
red dots are the results obtained from Riemann’s approach.
The black solid lines are obtained by replacing ρ∗ by ρ0 in
eqs. (49) and (50), see the text.

For the initial profile (25), in the case where the speed
of sound is given by (39), formula (48) yields

tWB ≃
√

e

2

8(1 + ρ∗)
6 + 5ρ∗

x0

c(ρ∗)
ρ∗

ρ1
. (49)

The location xWB of the wave breaking event can be ob-
tained from (12). Within our approximation scheme, this
yields, for the right part of the profile:

xWB ≃ x∗ + c(ρ∗)tWB. (50)

These results are compared in fig. 4 with the values de-
termined from the Riemann approach. The overall agree-
ment is excellent. We also note that replacing ρ∗ by ρ0 in
eqs. (49) and (50) gives a result which is less accurate, but
still quite reasonable, see fig. 4.

Conclusion. – We have presented an approximate
method for describing the hydrodynamic evolution of a
nonlinear pulse. The method is quite general and applies
for any type of nonlinearity. It has been tested for cases of
experimental interest in the context of nonlinear optics in
ref. [4] and here for studying the spreading of a nonlinear
pulse in a guided atomic Bose-Einstein condensate. This
last example is of particular interest for bench-marking
the approach because the nonlinearity at hand has a non-
trivial density dependence.

One could imagine to extend the present study in
several directions. A possible track would be to solve the
dispersionless shallow water equations (eqs. (1) and (2)
with γ = 2) for more general initial conditions than dis-
cussed in the present work, as considered for instance in

refs. [16,17] in the context of the initial stage of formation
of a tsunami. Future studies could also test the present
approach in the optical context for pulses propagating in a
nonlinear photo-refractive material, where, up to now, no
theoretical method was known for dealing with the disper-
sionless stage of evolution. In this context we note that the
simple and accurate approximate analytic results obtained
for tWB and xWB (eqs. (49) and (50)) should be helpful
for determining the best parameters for an experimental
observation of the wave breaking phenomenon.

We finally stress that the approximate scheme presented
in this work, providing an accurate account of the stage
of non-dispersive propagation of a pulse, is an important
and necessary step for studying the post wave breaking dy-
namics, and particularly the formation of dispersive shock
waves in non-integrable systems.
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7FORMATION AND PROPAGATION OF DISPERS IVE
SHOCK WAVES

This chapter is devoted to the study of dispersive shock waves. An
optical beam propagating in a nonlinear dielectric material might expe-
rience a gradient catastrophe leading to the formation of a dispersive
shock wave (DSW).
It has been shown by Talanov [179] that a smooth localized light

pulse sent in a nonlinear medium, spreads smoothly and can be de-
scribed through the dispersionless hydrodynamic equations. However,
the situation becomes quite different for a hump on top of a uniform
background light intensity: the hump splits in two parts which propa-
gate in opposite directions. The front and the rear edge of the hump
have the same intensity as the background and accordingly propagate
at the background sound velocity c0, while the points of larger intensity
propagate at larger velocity. When these points catch up the front edge
(see Figure 51), this leads to the formation of a shock. In other words,
when this situation occurs, density gradients at the front edge of the left
an right-moving humps become infinite: this is a gradient catastrophe.

Figure 51: Evolution of a hump on top of a background. The initial bump
splits in two parts, each of them propagating in opposite direction,
as indicated by the arrows. The front and the rear edge of the
hump have the same intensity as the background and accordingly
propagate at the background sound velocity. On the contrary,
all the points of larger intensity move at a higher velocity; this
is illustrated by the arrows attached to each pulse and longer
than those located at each edge. Therefore, at a certain time,
called wave breaking time, the points of larger intensity catch up
the front edge (for the left and right-moving bumps), leading to
infinite density gradients: this is a gradient catastrophe. The wave
breaking is indicated by the vertical dashed lines at both edges
of each pulse.
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As we discussed in the previous chapter, no matter how small is
the hump on top of the background, a DSW is formed at each edge of
each pulse moving away from each other. Therefore, perturbation theory
always fails at describing such a situation, whereas the dispersionless
approach leads to a non-physical multi-valued density distribution. This
is the reason why we shall turn our attention to a theory which is able
to encompass dispersive effects after the shock has formed. This theory
does exist and has been developed by Whitham [194–197], then used by
Gurevich and Pitaevskii [84] to describe a DSW as a slowly modulated
nonlinear wave. The existence of two scales between fast oscillations
in the shock and slow evolution of certain parameters along the shock,
such as its wavelength or its amplitude, led them to the idea of using
Whitham modulational theory for DSW; this is what we discuss in the
first section of this chapter.
Then, we apply the Gurevich-Pitaevskii approach to the nonlinear

Schrodinger equation (NLS). We show in particular that the theoreti-
cal treatment compares very well with numerical simulations. This ap-
proach also provides an asymptotic description of the DSW, namely a
weak shock theory, from which we can extract experimentally relevant
parameters such as the contrast of the fringes of the DSW.

7.1 whitham modulational theory

7.1.1 General idea

The main idea of Whitham modulational theory consists of describing
modulations of nonlinear periodic waves which cannot be approximated
by linear waves. The approach is based on the existence of two scales.
We consider fast oscillations with wavelength L(x, t), which slowly de-
pends on space and time, and thus change little in one wavelength. We
also assume that the amplitude of the wave does not vary too much
in one wavelength. An example of such a slowly modulated wave is il-
lustrated in Figure 52. The red dashed inset represents a portion of
the fast oscillating wave. One sees that the wavelength, denoted L, and
the amplitude of the wave, denoted A, do not vary much over several
wavelengths.

Consequently, we can average the equations of motion which govern
the variations of these parameters (wavelength, amplitude,...) along the
nonlinear wave over fast oscillations; these averaged modulation equa-
tions are called the Whitham equations.

Let us consider a differential equation in the form

φ(u, ∂tu, ∂xu, ∂ttu, ∂txu, ∂xxu, . . .) = 0, (468)

where ∂i1...in = ∂n/∂i1 . . . ∂in, with i1, . . . , in ∈ {t, x}. Now we suppose
that the wave variable u(x, t) depends on x and t only through ξ =
x−V t. Thus, multiplying equation (468) by ∂ξu and integrating it, one
obtains

u2
ξ = F (u, V,Ai), (469)
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where Ai are a set of parameters, such as the amplitude or the wave-
length of the wave packet, which arise from the integration of (468).
Periodic solutions correspond to oscillations of u between two zeros1 of
F , denoted as u1(V,Ai) and u2(V,Ai), with u1 < u2. Let us introduce
ξ1 and ξ2 such that

u(ξ1, V, Ai) = u1(V,Ai), u(ξ2, V, Ai) = u2(V,Ai). (470)

Then, the wavelength corresponding to this periodic solution reads

L = L(V,Ai) = 2

∫ ξ2

ξ1

dξ = 2

∫ u2

u1

du√
F (u, V,Ai)

, (471)

where we used a change of variable and expression (469). The wavector
k and the frequency ω are equal to

k = k(V,Ai) =
2π

L(V,Ai)
, ω = ω(V,Ai) = V k(V,Ai). (472)

Since we consider here a slowly modulated wave u(ξ, V,Ai), the param-
eters V and Ai are slow functions of x and t, and thus change little in
one wavelength L. We would like to average these parameters over fast
oscillations of the wave according to the rule

F̃(ξ, V,Ai) =
1

2∆

∫ ξ+∆

ξ−∆
F(ξ′, V, Ai) dξ′, (473)

where the interval ∆ should be much longer than the wavelength L and
much shorter that any characteristic size ` in the problem, see Figure 52.
Thus, one considers here

L� ∆� `. (474)

Following Whitham approach, it is more convenient to average con-
servation laws, such as for example

∂tP + ∂xQ = 0, (475)

where P(ξ, V,Ai) andQ(ξ, V,Ai) are two functions which can be derived
from (468). By averaging over fast oscillations according to (473), we
find that the averaged conservation law can be written as

∂tP̃(ξ, V,Ai) + ∂xQ̃(ξ, V,Ai) = 0. (476)

As one can see from the inset of Figure 52 and from the difference of
scales (474), the wavelength remains constant up to small corrections
in the interval 2∆. Therefore, we can replace the average over 2∆ in
expression (473) by the average over the wavelength, i.e.,

F(V,Ai) =
1

L

∫ ξ+L

ξ
F(ξ, V,Ai) dξ, (477)

1 Think about F as the opposite of the potential energy and u2
ξ as proportional to an

effective kinetic energy.
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Figure 52: Different scales along the dispersive shock wave. The amplitude A
and the wavelength L vary over a length `, but can be considered
almost constant along the interval ∆, as illustrated in the inset of
the figure. In addition, ∆ is much longer than the wavelength L.
The existence of these two scales, between fast oscillations and
slowly modulated parameters (wavelength, amplitude,...) along
the DSW, is at the heart of Whitham modulational theory.

where the explicit dependence of F on x and t disappears by means of
the periodicity of F . As a result, equation (476) becomes

∂tP(V,Ai) + ∂xQ(V,Ai) = 0, (478)

where the dependence of x and t only appear through the slowly varying
parameters V and Ai. The averaged conservation laws of the form (478)
are the Whitham equations. One should find as many Whitham equa-
tions as there are parameters (V,Ai) to describe the evolution of each
of them. Then, we know the evolution of the nonlinear wave variable
u(x− V t, V,Ai), since it only depends on the set of parameters (V,Ai).

illustrative example Even though we will consider nonlinear
waves in the following, let us first examine an instructive example of
modulation of a linear wave governed by equation

∂ttu− ∂xxu+
1

4
∂xxxxu = 0, (479)

This differential equation actually corresponds to a linearized version
of the Gross-Pitaevskii equation [see equation (123b) with v0 = 0]. We
seek periodic solutions of equation (479) in the form u(ξ) = u(x− V t).
They are given by

u(x− V t, V, a) = a sin[2
√
V 2 − 1(ξ − ξ0)], (480)

where a plays the role of the wave amplitude. In the following we take
ξ0 = 0; this initial phase will indeed disappear after the averaging pro-
cess (477).

Then, the wavenumber and the frequency are given by

k = 2
√
V 2 − 1, ω = 2V

√
V 2 − 1. (481)
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They are linked through the so-called Bogoliubov dispersion relation

ω = k

√
k2

4
+ 1. (482)

To completely describe the slowly linear modulated wave (480), we
should find the evolution equations of V and a, meaning that we need
two conservation laws in the form of (475) to solve the problem. These
two laws can be derived from (479) and read

(−ut ux)t +

[
1

8
u2
xx +

1

2
u2
t +

1

2
u2
x −

1

4
uxxx ux

]

x

= 0,

[
1

8
u2
xx +

1

2
u2
t +

1

2
u2
x

]

t

+

[
−ut ux −

1

4
utx uxx +

1

4
ut uxxx

]

x

= 0,

(483)

where we used the shortcut notation ui1...in ≡ ∂i1...inu, with i1 . . . in ∈
{t, x}. Averaging these conservation laws according to the rule (478)
leads to the set of equations

[
a2V (V 2 − 1)

]
t
+
[
a2(V 2 − 1)(2V 2 − 1)

]
x

= 0, (484a)
[
a2V 2(V 2 − 1)

]
t
+
[
a2V (V 2 − 1)(2V 2 − 1)

]
x

= 0, (484b)

i.e., the Whitham equations. Multiplying equation (484a) by V and
subtracting (484b) gives

∂V

∂t
+

2V 2 − 1

V

∂V

∂x
= 0. (485)

By using expressions (481) and (482), one finds

∂tk + ω′(k)∂xk = 0, where ω′(k) =
k2/2 + 1√
k2/4 + 1

. (486)

Equivalently, noticing that ∂xω = ω′(k)∂xk, we also obtain

∂tk + ∂xω = 0. (487)

Despite its apparent simplicity, expression (487), called equation of the
conservation of waves, has a profound meaning. For linear waves this
result is expected: indeed, the phase of a linear periodic train wave is
given by θ = kx − ωt. Thus, k = ∂xθ and ω = −∂tθ, and equation
(487) comes from the fact that ∂x∂tθ = ∂t∂xθ. However, relation (487)
is a direct consequence of Whitham equations (478) and is based on
the existence of a slowly varying phase. Therefore, equation (487) will
remain true within relatively small intervals in the case of nonlinear
waves.

Moreover, let us develop further: equation (486) is nothing but a Hopf
equation (see Section 5.2.1). Therefore, the wave vector k is constant
along characteristic curves determined by

dx
dt

= Vg(k), where Vg(k) ≡ ω′(k), (488)

and thus propagates at the group velocity along characteristics. We will
use this important property later in the next section.
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7.1.2 Whitham equations for NLS equation

In the case of the defocusing nonlinear Schrödinger equation

i ∂tψ = −1

2
∂xxψ + |ψ|2 ψ, (489)

which can be mapped onto hydrodynamic equations [see equation (366)]
through a Madelung transformation ψ =

√
ρ exp(i

∫
u dx), nonlinear

periodic solutions can be written in terms of four parameters λ1 ≤
λ2 ≤ λ3 ≤ λ4 in the form [100]

ρ(x, t) = 1
4(λ4 − λ3 − λ2 + λ1)2 + (λ4 − λ3)(λ2 − λ1)

× sn2
(√

(λ4 − λ2)(λ3 − λ1) (x− V t),m
)
,

u(x, t) = V − C

ρ(x, t)
,

(490)

where sn is the Jacobi elliptic sine function (see. e.g., Ref. [2]),

V = 1
2

4∑

i=1

λi , m =
(λ2 − λ1)(λ4 − λ3)

(λ4 − λ2)(λ3 − λ1)
, (491)

and

C = 1
8(−λ1 − λ2 + λ3 + λ4)× (−λ1 + λ2 − λ3 + λ4)

× (λ1 − λ2 − λ3 + λ4) .
(492)

For constant λi’s, expressions (490), (491) and (492) correspond to an
exact (single phase) solution of the NLS equation, periodic in time and
space, where oscillations have the amplitude

a = (λ2 − λ1)(λ4 − λ3) , (493)

and the spatial wavelength

L =
2 K(m)√

(λ4 − λ2)(λ3 − λ1)
. (494)

As explained in the previous section, the great insight of Gurevich and
Pitaevskii [84] has been to describe a dispersive shock wave as a slowly
modulated nonlinear wave of type (490). Solution (490) being entirely
characterized by the knowledge of the four slowly varying parameters
λi(x, t), one needs four Witham equations (478) to solve the problem.
They read [100, 197]

∂tλi + vi(λ1, λ2, λ3, λ4) ∂xλi = 0, i = 1, 2, 3, 4. (495)

One sees immediately that the λi’s are the Riemann invariants of the
Whitham equations [compare for instance with equations (385)]. Equa-
tions (495) were first found in Refs. [67, 143]. The vi’s are the associated
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characteristic velocities; their explicit expressions can be obtained from
the relation2 [82, 100]

vi = V − 1

2

L

∂iL
, i = 1, 2, 3, 4 , (496)

where ∂i = ∂/∂λi. This yields

v1 = V − (λ4 − λ1)(λ2 − λ1)K(m)

(λ4 − λ1)K(m)− (λ4 − λ2)E(m)
,

v2 = V +
(λ3 − λ2)(λ2 − λ1)K(m)

(λ3 − λ2)K(m)− (λ3 − λ1)E(m)
,

v3 = V − (λ4 − λ3)(λ3 − λ2)K(m)

(λ3 − λ2)K(m)− (λ4 − λ2)E(m)
,

v4 = V +
(λ4 − λ3)(λ4 − λ1)K(m)

(λ4 − λ1)K(m)− (λ3 − λ1)E(m)
,

(497)

where m is given by equation (491) and E(m) is the complete elliptic
integrals of the second kind.
In our case, as shown in Figure 53, for x > 0, the left edge of the DSW,

connected to the dispersionless part of the profile, is called solitonic edge
and corresponds to the limitm→ 1; the first oscillation is indeed a dark
soliton, see equation (498). The right edge, glued to the background,
is called small amplitude edge or harmonic edge and corresponds to
m → 0, see equation (500). We detail these two limiting cases in the
subsequent paragraphs.

solitonic edge In this case, m → 1 (λ2 = λ3), sn(x,m) →
tanh(x) and expression (490) describes a dark soliton (for which L →
∞):

ρ(x, t) =
1

4
(λ4 − λ1)2 − (λ2 − λ1)(λ4 − λ2)

cosh2[
√

(λ2 − λ1)(λ4 − λ2)ξ]
(498)

with ξ = x− 1
2(λ1 + 2λ2 + λ3)t.

The Whitham velocities reduce to

v1 = 1
2(3λ1 + λ4), v2 = v3 = 1

2(λ1 + 2λ2 + λ4),

v4 = 1
2(λ1 + 3λ4).

(499)

harmonic edge In the limit m → 0 (λ1 = λ2 or λ3 = λ4),
sn(x,m)→ sin(x), and equation (490) describes a small amplitude sinu-
soidal wave oscillating around a constant density background ρ0. The
specific example shown in Figure 53 corresponds to λ3 → λH, where

2 The fact that one can write the Whitham velocities in the form of (496) is a gen-
eral property of Whitham equations; this was indeed indicated independently by
Gurevich et al. [81] and Kudashev [103] for the Korteweg-De Vries equation and by
Kamchatnov [99] for the derivative nonlinear Schrödinger equation.
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Figure 53: The inset shows the full density distribution after the formation
of dispersive shock waves at the left (right) edge of the pulse
propagating to the left (right). The green arrows indicate the
propagation direction of each pulse.
The red rectangle represents a zoom over the dispersive shock
wave (DSW) formed by the pulse propagating in the region x > 0.
The DSW is connected to the dispersionless (smooth) profile at
the left edge, corresponding to the limit m→ 1 in equation (490);
this edge is called solitonic edge because the first oscillation is
described by a dark soliton, see equation (498). The right edge
of the DSW is often called small amplitude edge or harmonic
edge and corresponds to m→ 0; this edge is indeed described by
small linear oscillations over a constant background, see equation
(500).

we have introduced λH ≡ λ4(m → 0), see Figure 54. In this case, the
solution (490) reduces to

ρ(x, t) ' ρ0 + a2(x, t) sin2

(
πξ

L

)
, (500)

where ρ0 = 1
4(λ1 − λ2)2, and where a2(x, t) = 2 c0(λH − λ3) is a small

amplitude (λH − λ3 → 0 because at this edge λ3 → λH ≡ λ4). In
addition, one has

L =
2π

k
=

π√
(λH − λ1)(λH − λ2)

, (501)

and ξ = x− V t, with V = 1
2(λ1 + λ2) + λH [computed from (491)].
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The Whitham velocities reduce to3 (withm→ 0 when λ3 → λH ≡ λ4)

v1 = 1
2(3λ1 + λ2), v2 = 1

2(λ1 + 3λ2),

v3 = v4 ≡ vH = 2λH +
(λ2 − λ1)2

2(λ1 + λ2 − 2λH)
.

(503)

In this limit, one of the Whitham equations (495) reads

∂λH

∂t
+ vH

∂λH

∂x
= 0, (504)

with λH = λ4 and vH = v4.
In the particular case where λ2 = −λ1 = c0 , which will actually with c0 the

background sound
velocity.

correspond to the situation considered in the following sections, V (m→
0) = λH. In addition, using dimensionless units (i.e., putting c0 = 1),
one finds from equations (503)

vH(λH) = 2λH −
1

λH

=
2V 2 − 1

V
, (505)

and from expression (501)

kH ≡ k(λH) = 2
√
λ2

H − 1 = 2
√
V 2 − 1. (506)

Expression (506) exactly corresponds to equation (481). Inserting equa-
tion (505) in equation (504) and using V = λH, valid in the harmonic
limit when λ2 = −λ1, the Whitham equation (504) becomes

∂V

∂t
+

2V 2 − 1

V

∂V

∂x
= 0, (507)

which is exactly equal to equation (485), i.e., the Whitham equation ob-
tained for the linear differential equation (479). This is not surprising,
since in the harmonic limit, the solution is described by a linear wave os-
cillating around a constant background [see equation (500)]. Therefore,
using the results derived in Section 7.1.1, one sees that the harmonic
edge of the DSW, denoted xH (see Figure 54), moves at a velocity vH(λH):

dxH

dt
= vH(λH). (508)

In addition, this velocity indeed corresponds to the expected group ve-
locity of the Bogoliubov waves, since, as already shown in Section 7.1.1,

vH(λH) =
k2

H/2 + 1√
k2

H/4 + 1
= ω′(kH), (509)

3 For the sake of completeness, we also mention that in the other small amplitude
limit (λ1 → λ2), the Whitham velocities read

v1 = v2 = 2λ1 +
(λ4 − λ3)2

2(λ3 + λ4 − 2λ1)
,

v3 = 1
2
(3λ3 + λ4), v4 = 1

2
(λ3 + 3λ4).

(502)
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with ω(k) = k
√

k2

4 + 1, and where we used equations (505) and (506).
This property of the small-amplitude edge is especially important in

the theory of DSWs for non-integrable equations (see, e.g., Refs. [54,
55]).

To conclude this section, if one is able to find the solutions of Whitham
equations (495), by inserting the corresponding Riemann invariants
λi(x, t), i = 1, 2, 3, 4 in expressions (490), one knows the evolution of
the density and velocity profiles along the DSW; this is exactly what
we intend to do in the following section.

Figure 54: Sketch of the Riemann invariants λ1, λ2, λ3, λ4 along the DSW
region, represented in blue. The dispersionless part of the pro-
file, described by the Riemann invariants λ+ and λ−, is depicted
in pink. As explained in Section 7.2, in our specific case, two
Riemann invariants (λ1 and λ2) remain constant in the shock
region. They are connected to the dispersionless Riemann invari-
ants λ+ = c0 and λ− = −c0 at the right edge (harmonic edge,
m = 0). Furthermore, λ3 → λH ≡ λ4 at this edge. At the left and
solitonic edge (m = 1), λ1 is still connected to λ−, while λ+ is
now glued to λ4. In the other hand, λ2 = λ3 = c0 at this edge.
The position of the left edge (right edge) is denoted as xS (xH).

7.2 solutions of whitham equations

In this section, we present the solutions of Whitham equations (495),
in the case where two Riemann invariants remain constant along the
DSW. This situation arises when considering an initial density profile
of the form of an inverted parabola, see expression (450).
First, as explained in the introduction of this chapter, the initial

hump on top of a background splits in two parts; later, each of them
experiences a wave breaking and this leads to the formation of a DSW
at both edges. This exactly corresponds to the situation depicted in the
inset (d) of Figure 50.
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The Riemann invariants λ±, which describe the dispersionless evolu-
tion of the nonlinear pulse, propagate in opposite direction, as shown
in Figure 48.
Then, if we concentrate our attention to the region x > 0 (the region

x < 0 can be obtained by symmetry of the problem), the right edge of
λ+, glued to the background, becomes multi-valued at a certain time,
as illustrated in the graph (f) of Figure 48; this indicates a sign of
the failure of the dispersionless approach after the wave breaking. The
form of λ+ in this multi-valued region, and the fact that λ− = −c0

there, suggests to take λ1 = λ− = −c0 and λ2 = λ+ = c0. Then, only
λ3(x, t) and λ4(x, t) vary along the DSW and must match with the
dispersionless profile at both edges of the DSW, see Figure 54.
Therefore, in the following, we consider in the shock region

λ1(x, t) = −c0, λ2(x, t) = c0, (510)

which trivially satisfy the Whitham equations (495), and the remaining
Whitham equations for λ3(x, t) and λ4(x, t):

∂λ3,4

∂t
+ v3,4(−c0, c0, λ3, λ4)

∂λ3,4

∂x
= 0. (511)

7.2.1 Generalized hodograph transform

The nonlinear Whitham equations (511) are very similar to equations
(393). This suggests to use the same trick to ‘linearize’ the Whitham
equations by means of a hodograph transform (see Section 6.1.1). This
procedure consists of writing x and t as functions of the Riemann in-
variants:

x = x(λ3, λ4), t = t(λ3, λ4). (512)

By introducing two functions w3(λ3, λ4) and w4(λ3, λ4) such that

x− v3,4(−c0, c0, λ3, λ4)t = w3,4(λ3, λ4), (513)

and by using the results of Section 6.1.1, this leads to the Tsarev equa-
tions (399), where the superscripts + and − should be replaced by 3
and 4, respectively.
By means of expressions (496), one can prove easily that w3 and w4

verify the Tsarev equations if and only if

∂4[(∂3k)w3] = ∂3[(∂4k)w4], (514)

with ∂i = ∂/∂λi and k = 2π/L. The previous equation suggests that
(∂3k)w3 and (∂4k)w4 may be expressed in terms of a potentialW , such
that [82]

(∂ik)wi = ∂i(kW ), with i ∈ {3, 4}. (515)

This yields

wi(λ3, λ4) =

(
1− L

∂iL
∂i

)
W

= W + 2(vi − V )∂iW, i ∈ {3, 4},
(516)
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where we used k/∂ik = −L/∂iL = 2(vi − V ) [see equation (496)]. In-
serting (516) in the Tsarev equations, together with expressions of the
Whitham velocities given by (496), shows that the potential W is solu-
tion of the following Euler-Poisson equation:

∂2W

∂λ3∂λ4
− 1

2(λ3 − λ4)

(
∂W

∂λ3
− ∂W

∂λ4

)
= 0. (517)

Exactly as it already occurs in Chapter 6, we have transformed the set
of nonlinear equations (511) into a linear differential equation (517).
We could certainly solve the problem using Riemann’s method, as we
proceeded in Chapter 6. However, we found it more convenient to follow
the method described in Refs. [56, 82]. In these works, the authors used
a general solution of (517) derived by Eisenhart in 1918 [53].

7.2.2 Solutions in the shock region

A general solution of (517) is given by [53]

W (λ3, λ4) =

∫ λ3

c0

ψ(µ) dµ√
λ3 − µ

√
λ4 − µ

+

∫ λ4

c0

ϕ(µ) dµ√
|λ3 − µ|

√
λ4 − µ

, (518)

where ψ(µ) and ϕ(µ) are two functions determined by boundary condi-
tions.

In our case, as it was first understood in Ref. [83], the propagation
of the DSW occurs in two steps after the wave breaking. Indeed, if the
initial density distribution is non monotonous, as illustrated for instance
in Figure 48, the first parts which become multi-valued are the left edge
of λ−(x, t) and the right edge of λ+(x, t) (see for instance graph (f) of
Figure 48).

To clarify the discussion, let us assume that we aim at describing the
DSW long time after the wave breaking when the initial pulse has split
in two parts4, i.e., t > tsplit, see for instance the inset of Figure 53. In
this case, as shown in graph (f) of Figure 48, λ+ is made of two simple
wave regions: IIr and III; the latter being glued to the background.

Since for λ+ the wave breaking occurs at the boundary between re-
gion III and the background, region III is the first which is gradually
absorbed in the DSW. The part of region III absorbed in the DSW at
a given time t is denoted as region A, see Figure 55. In that case, the
left edge of region A, corresponding to the solitonic edge, is connected
to the remaining dispersionless part of the simple wave region III5.
Then, at a time that denoted as tA|B, region III is completely absorbed;

it is now the turn of region IIr to be swallowed by the DSW, see graph (f)
of Figure 48. The shock region is now divided in two domains A and B,
whose boundary corresponds to λ4 = cm, with cm = max [λ+(x, t = 0)],
and is indicated by the green solid curve in Figure 55.

4 This is actually a reasonable assumption since Whitham modulational theory is
correct at large enough values of time, when the DSW is well formed with a large
number of oscillations [84].

5 Indeed, one may glance at graph (f) of Figure 48 to be convinced that region A is
indeed connected to region III in the first few moments after the shock has formed.
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Therefore, we need to treat separately both regions. The solution of
the Euler-Poisson equation (517) in region A (B) is denoted as WA

(WB). The matching condition between these two solutions reads

WA(λ3, cm) = WB(λ3, cm), (519)

and is realized at a position that we denote by xm. We also denote by xS

and xH the positions of the solitonic edge [m→ 1 in expressions (490)]
and of the harmonic edge [m → 0 in expressions (490)], see Figure 55
where all these notations are summarized.

Figure 55: Schematic plots of the position dependence of the Riemann in-
variants inside (blue solid curves) and outside (pink solid curves)
the DSW (colored region).
(a) For t < tA/B, the DSW is connected to the simple wave region
III of the smooth dispersionless profile, see graph (f) of Figure 48.
At t = tA/B, region III is completely absorbed by the DSW. Thus,
for this time, the shock wave connects to the smooth profile ex-
actly at λ+(xS(t), t) = cm.
(b) For t > tA/B, the DSW is connected at its left edge at a point
belonging to region IIr of the smooth dispersionless profile, see
graph (f) of Figure 48. In this case the shock wave is divided in
two regions A and B, separated by the green vertical line in the
plot. The continuity along the separation line between the two
regions (i.e., at x = xm(t)) is ensured by equation (519).
In both plots we introduce λS = λ4(xS(t), t), the value of λ4 at
the solitonic edge of the DSW. The position x? locates the left
boundary of the simple wave region IIr, where λ+ equals c0. As in
Figure 54, positions xS and xH locate the solitonic and harmonic
edges of the DSW, respectively.

boundary conditions The general solution of the Euler-Poisson
equation is made explicit in equation (518). We define two functions ψA

and ϕA, such that

WA(λ3, λ4) =

∫ λ3

c0

ψA(µ) dµ√
λ3 − µ

√
λ4 − µ

+

∫ λ4

c0

ϕA(µ) dµ√
|λ3 − µ|

√
λ4 − µ

(520)

is the solution of equation (517) in region A. Then, we can use the
boundary conditions of the problem to find the expressions of both
functions ψA and ϕA.
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• The solitonic edge, located at position xS, connects region A (if
t < tA|B) or region B (if t ≥ tA|B) and the dispersionless profile
(region III or IIr). Thus, one has at this edge

λ1 = −c0, λ2 = λ3 = c0, λ4 = λ+(xS, t) ≡ λS(t), (521)

see Figure 55. The precise determination of λS(t) is given in Sec-
tion 7.2.3.

Then, using equations (513), (499), (461) and (466), one obtains6

xS −
1

2
(3λS − c0)t = w4(c0, λS),

xS −
1

2
(3λS − c0)t = w

(i)
+ (λS,−c0),

(522)

with the superscript (i) = (3) if t < tA|B or (i) = (2) if t ≥ tA|B.
In the second equation of (522), the function w

(i)
+ (λS,−c0) has

been defined in Chapter 6 [see equation (398)], and corresponds
to ∂W (i)/∂λ+(λS,−c0), where W (i) is given by (431).

The set of equations (522) shows that w4(c0, λS) = w
(i)
+ (λS,−c0).

Using expression (516), this leads to

WA,B(c0, λS)+(2λS−c0)
∂WA,B

∂λ4
(c0, λS) = w

(i)
+ (λS,−c0), (523)

where the superscript A corresponds to the superscript (i) = (1),
and B to (i) = (2). Differential equation (523) can be easily solved
and we arrive to the first boundary condition:

WA(c0, λS) =
1

2
√
λS − c0

∫ λS

c0

w
(3)
+ (r,−c0)√
r − c0

dr, (524a)

WB(c0, λS) =− 1

2
√
λS − c0

∫ cm

λS

w
(2)
+ (r,−c0)√
r − c0

dr

+
1

2
√
λS − c0

∫ cm

c0

w
(3)
+ (r,−c0)√
r − c0

dr ,

(524b)

where the second term of equation (524b) ensures that condition
(519) is fulfilled.

• For the harmonic edge, at the right boundary of the DSW, one
sees from Figure 54 and Figure 55 that λ3 → λH ≡ λ4. The second
boundary equation consists of requiring that

WA(λ3 = λH, λ4 = λH) does not diverge. (525)

• Lastly, For t ≥ tA|B, one needs to respect the boundary condition
(519) connecting WA and WB.

• The expression of tA|B is determined in Section 7.2.3, see equation
(534).

6 we also used v+(λ+, λ−) = 1
2
(3λ+ + λ−), see equation (395) with c(λ+ − λ−) =

1
2
(λ+ − λ−) for an adiabatic index γ = 2.



7.2 solutions of whitham equations 203

solution in region A Expression (520) with λ3 = c0 and the
first boundary condition (524a) yield7

ϕA(µ) =
1

2π
√
µ − c0

∫ µ

c0

w
(3)
+ (r, −c0 ) dr√

µ − r
. (526)

Then, the second boundary condition (525) imposes More details can
be found in
Appendix E.ψA(µ) = −ϕA(µ), (527)

leading to the solution

WA(λ3, λ4) =

∫ λ4

λ3

ϕA(µ) dµ√
µ− λ3

√
λ4 − µ

, (528)

where ϕA is given by formula (526).

solution in region B We look for a solution in this region in
the form

W B(λ3 , λ4) = W A(λ3 , λ4) +

∫ cm

λ4

ϕB(µ) dµ√
µ − λ3

√
µ − λ4

, (529)

The above expression ensures that W B, (i) being the sum of two solu-
tions of the Euler-Poisson equation, is also a solution of this equation
and (ii) verifies the boundary condition (519) since the second term of
the right-hand side of (529) vanishes when λ4 = cm.

Using the boundary condition (524b) for region B leads to the deter-
mination of ϕB(µ): See also

Appendix E

ϕB(µ) =
1

2π
√
µ − c0

∫ cm

µ

w
(3)
+ (r, −c0) − w

(2)
+ (r, −c0 )√

r − µ
dr . (530)

Inserting expression (530) in equation (529) gives the solution of the
Euler-Poisson equation in region B .

Consequently, equation (528) together with equation (529) solve the
problem in the shock region8. Before detailing the procedure to obtain
the Riemann invariants λ3 and λ4 as functions of x and t (see Sec-
tion 7.2.4), let us analyze more carefully the edges of the shock. This
will determine the position of each edge xS(t) and xH(t) for any given
time t, the value λ4(xS, t) = λS(t), and also the time tA|B when region
B start arising.

7 To demonstrate this expression, we used the inverse Abel transformation [1], see
Appendix E.

8 Expressions of WA and WB in term of a single integral can be found in Appendix E,
see equations (625) and (627).
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7.2.3 Edges of the shock

solitonic edge We recall that the solitonic edge is located in our
case at the left edge of the DSW (for the part of the pulse propagating to
the right), see Figure 53. At this edge, the Riemann invariants are made
explicit (521). The corresponding Whitham velocities are v3 = (λS +
c0)/2 and v4 = (3λS − c0)/2 [see equations (499)], and both equations
(513) read9

xS −
1

2
(3λS − c0)t = wα4 (c0, λS) = w

(i)
+ (λS,−c0),

xS −
1

2
(λS + c0)t = wα3 (c0, λS) = Wα(c0, λS),

(531)

where we have introduced wα4 and wα3 :

wαi (λ3, λ4) = Wα + 2(vi − V )∂iW
α, i ∈ {3, 4}, (532)

with α = A (α = B) in region A (in region B). In the set of equations
(531) the superscripts are α = A and (i) = (3) if t < tA|B or α = B and
(i) = (2) if t ≥ tA|B. This gives at once

t(λS) =
1

λS − c0

[
Wα(c0, λS)− w(i)

+ (λS,−c0)
]
, (533a)

xS(λS) = c0 t+
1

2

[
3Wα(c0, λS)− w(i)

+ (λS,−c0)
]
, (533b)

where Wα(c0, λS), α = A,B are given by expressions (524). In particu-
lar, one can determine from equation (533a) the explicit expression of
tA|B = t(λS = cm):

tA|B =
−1

(cm − c0)3/2

∫ cm

c0

√
r − c0

dw
(3)
+ (r,−c0)

dr
dr, (534)

where we used an integration by parts in equation (524a).
In addition, for a given time t, the expression of λS(t) is given implic-

itly by expression (533a). Once λS(t) is determined, the position of the
left edge xS(t) can be computed from equation (533b).

harmonic edge This edge corresponds to the right edge of the
DSW in our case. For any given time t, this boundary is located at
x = xH(t), where λ2 = −λ1 = c0 and λ3 → λH(t) ≡ λ4(t), see Figure 54
and Figure 55. Note that this edge is always at the border with region
A. Therefore, we obtain from (516):

xH − vHt = wA
4 (λH, λH), (535)

where wA
4 is given by expression (532) and vH = 2λH− c20

λH
[see equation

(503)]. Using the fact that vH = dxH/dt [see equation (508)], differenti-
ation of (535) with respect to time gives

t = − 1

dvH/dλH

dwA
4 (λH, λH)

dλH

. (536)

9 Note that wα3 (c0, λS) = Wα(c0, λS) since [v3 − V ](−c0, c0, c0, λS) = 0 and
∂3W

α(c0, λS) remains finite, see equation (532).
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Then, using together equations (532) and (528) leads to

wA
4 (λH, λH) = π ϕA(λH) + π

(
λH −

c2
0

λH

)
dϕA

dµ
(λH) , (537)

and

dwA
4 (λH, λH)

dλH

= π

(
2 +

c2
0

λ2
H

)
dϕA

dµ
(λH)

+ π

(
λH −

c2
0

λH

)
d2ϕA

dµ2
(λH) ,

(538)

where ϕA is given by expression (526). Inserting equation (538) in equa-
tion (536) yields

t = −π dϕA

dµ
(λH)− π λ2

H − c2
0

2λ2
H + c2

0

d2ϕA

dµ2
(λH). (539)

Thus, for a fixed time t, the value of λH(t) is determined implicitly by
means of the previous equation. Then, the position of the harmonic edge
xH(t) can be obtained from equation (535) with the use of expression
(537).

weak shock theory Let us examine the asymptotic behaviour
of the shock at large time t → ∞. In this case, t > tA|B and λS → c0;
using expression (533a) with α = B and performing an integration by
parts for each integral of equation (524b), leads to

t(λS → c0) ' A
(λS − c0)3/2

, (540)

with

A =−
(∫ c0

cm

√
r − c0

dw(2)
+ (r,−c0)

dr
dr

+

∫ cm

c0

√
r − c0

dw(3)
+ (r,−c0)

dr
dr

)
.

(541)

We thus obtain the asymptotic expressions

λS(t→∞) ' c0 +

(A
t

)2/3

, xS(t→∞) ' c0 t+
3A2/3

2
t1/3 . (542)

At large enough time, the dispersionless profile between x? and xS

(corresponding to the simple-wave region IIr, see Figure 55) depends
only on the self-similar variable10 (x − x?)/t, and so does λ+. In addi-
tion, one sees from graph (e) of Figure 48 that x?(tsplit) = 0, and thus
x?(t) = c0(t − tsplit); at large time, one can consider that x?(t) ' c0 t.

10 Indeed, asymptotically, as one can guess from expressions (542), the details of the
initial distribution are lost; it is thus reasonable to consider that the dispersionless
profile only depends on a self-similar variable of type x/t.
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This approximation and the self-similarity of the profile in region IIr,
together with the use of equation (393), lead to

λ+ = c0 +
2

3

x− x?
t

, λ+ ∈ IIr, t� tWB. (543)

Then, one can extract from the second equation of (394) the correspond-
ing density profile in this simple-wave region:

ρ(x, t) =

(
c0 +

1

3

x− x?
t

)2

, x ∈ [x?, xS], t� tWB. (544)

Using the second equation of (542), we obtain
∫ xS

x?

(√
ρ(x, t)− c0

)1/2
=
A√

2
, (545)

where A is given by expression (541) and is thus associated to a con-
served quantity during the propagation of the dispersive nonlinear pulse.
First, it is worth noticing that we found the same type of conserved
quantity in the case of the Korteweg-de Vries equation [93]. Second,
our results obtained for dispersive shock waves provide the counterpart
of the weak viscous shock theory [197] : (i) a nonlinear pattern of tri-
angular shape (see the dispersionless profile depicted in Figure 53) may
also appear at the rear edge of a (viscous) shock, (ii) the details of the
initial distribution are lost at large time (as in the present case) and
(iii) a conserved quantity of the type (545) also exists.

7.2.4 Procedure of resolution and results

procedure of resolution It is now possible to completely
describe the evolution of the DSW during its propagation using the
results obtained in Section 7.2.2 and in Section 7.2.3.
First, one needs to compute the time tA|B from expression (534).

Then,

• for t ≤ tA|B (see graph (a) of Figure 55),

One starts to calculate λS(t) by inverting expression (533a) and
λH(t) by solving equation (539). Then, one picks λ4 ∈ [λH, λS] and
finds the corresponding value for λ3 by solving

t = −w
A
4 (λ3, λ4)− wA

3 (λ3, λ4)

v4(λ3, λ4)− v3(λ3, λ4)
, (546)

where we used the shortcut notation vi(λ3, λ4) = vi(−c0, c0, λ3, λ4),
i ∈ {3, 4}, and where wA

i , i ∈ {3, 4} are determined11 from equa-
tions (532). Once λ3 is determined, all the Riemann invariants
are known and can be inserted in equations (490) to find the cor-
responding density and velocity distributions ρ(x, t) and u(x, t).
The position x associated to a set of Riemann invariants {λ3, λ4}
can be computed from one of the equations (513).

11 The potential WA(λ3, λ4) (and its first derivative with respect to λ3 or to λ4) can
be easily computed numerically from expression (625).
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• for t ≥ tA|B, (see graph (b) of Figure 55)

The situation is not much more difficult than the previous point.
One also determines λS(t) and λH(t) from equations (533a) and
(539). Then, the procedure is divided in two steps:

– For λ4 ∈ [λS, cm], one finds the corresponding value for λ3

by solving12

t = −w
B
4 (λ3, λ4)− wB

3 (λ3, λ4)

v4(λ3, λ4)− v3(λ3, λ4)
. (547)

– For λ4 ∈ [λH, cm], one finds the corresponding value for λ3

by solving equation (546).

Then, the problem is solved: one computes the density and veloc-
ity distributions by means of equations (490), and the position x
associated to a set of Riemann invariants {λ3, λ4} from one of the
equations (513).
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Figure 56: (Left) Black solid curves: time evolution of xS(t) and xH(t) calcu-
lated from equations (533b) and (535). Green solid curve: time
evolution of xm(t) computed from equation (548), for which
λ4(xm(t), t) = cm. This position delimits region A from region
B. Red dashed line: asymptotic behavior of xS(t), from the sec-
ond equation of (542). The green points indicate the position
xS(t) extracted from simulations, for an initial condition (450)
with ρ0 = 0.5, ρ1 = 1.5 and x0 = 20 [we also take initially
u(x, t = 0) = 0]. The red dot marks the birth of the DSW [at
time tWB ' 6.3, see equation (467)], while the blue one initiates
region B [at time tA|B ' 25.9, computed from equation (534)].
(Right) Blue solid curve: time evolution of λS(t) from equation
(533a). Red dashed line: asymptotic behavior, from the first equa-
tion of (542). The green points are extracted from simulations for
different times, for the initial profile (450) with ρ0 = 0.5, ρ1 = 1.5
and x0 = 20 [and u(x, t = 0) = 0].

12 The potential WB(λ3, λ4) (and its first derivative with respect to λ3 or to λ4) can
be easily computed numerically from expression (627).
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results The position xm(t) at the boundary between region A and
B is computed as follows: one determines the value of λm3 associated to
λ4(xm(t), t) = cm by solving equation (546). Once λm3 is found, one can
use equation (513) to compute xm(t):

xm(t) = v4(λm3 , cm) t+ wA
4 (λm3 , cm). (548)

The left plot of Figure 56 shows xS(t), xm(t) and xH(t) computed
from equations (533b), (548) and (535), respectively. The blue and green
dots are extracted from simulations and match well with the theoretical
results. The red dashed line corresponds to the asymptotic behaviour
of xS(t), see equation (542).
The blue curve in the right plot of Figure 56 corresponds to λ4(xS(t), t) =

λS(t) [computed from (533a)], while the red dashed curve represents its
asymptotic behaviour, extracted from (542). The green dots are ob-
tained from simulations and nicely agree with the theoretical expecta-
tion.

Figure 57: Comparison between theory and numerical simulations for the
density profile ρ(x, t) at t = 50 (upper plot) and t = 200
(lower plot). The initial profile is given by expression (450), with
ρ0 = 0.5, ρ1 = 1.5 and x0 = 20 [and u(x, t = 0) = 0]. The blue
curves are the numerical results. The red solid lines are the en-
velopes of the density (490) where the λi’s are calculated by the
procedure described at the beginning of this section. The dashed
brown lines correspond to the the dispersionless part of the pro-
file, determined using Riemann’s method exposed in Chapter 6.
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The results for the density profile using Whitham modulational the-
ory are shown in Figure 57 at different values of time for the initial
distributions (450) (with ρ0 = 0.5, ρ1 = 1.5, x0 = 20) and (451). The
agreement with numerical simulations is excellent. Note that Whitham’s
theory leads to a correct determination of the envelopes but not of the
phase along the DSW. This parameter indeed vary too fast in the shock
region to be properly described by the Whitham equations13.
In Figure 58 we also compare the wavelength of the nonlinear oscilla-

tions within the DSW as determined by Whitham approach [see equa-
tion (494)] with the results of numerical simulations, and the agreement
is again very good.

Figure 58: Wavelength of the nonlinear oscillations within the DSW for t =
200. The theoretical red curve is calculated from equation (494).
The blue points are extracted from simulations.

7.3 experimental considerations

In Section 7.2.4, and more generally in this chapter and the previous
one, we proved that Riemann’s method and Whitham modulational
theory are powerful tools to describe the propagation of nonlinear pulses
governed by the nonlinear Schrödinger equation. However, the results
derived above require a good grasp of these methods.
This is the reason why we would like to show in this section that

some parameters can be extracted from our theoretical results, and, in
particular, from the weak shock theory described in Section 7.2.3. This
will give accurate, albeit approximate, analytic expressions.

The contrast of the fringes in the DSW is an example of an experimen-
tally relevant parameter. Indeed, if one wish to observe experimentally
the formation of a dispersive shock wave, it might be interesting to tune
carefully the initial parameters of the pulse to maximize the visibility

13 Some studies have been conducted by T. Grava to describe the phase along the DSW
in the case of the Korteweg-de Vries equation, see, e.g., [136].
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of the oscillations in the shock region. This question has been actually
studied in Ref. [200] by Xu et al. in a nonlinear optical fiber, by vary-
ing the intensity of the background. In this case, the dynamics in the
optical fiber is governed by the following equation [7]:

−i∂zA = −β2

2
∂2
tA+ γ|A|2A+ i

α

2
A, (549)

where A is the envelope amplitude [as in equation (358)], β2 encom-
passes dispersive effects, γ the nonlinear coefficient and α accounts for
the linear loss. Therefore, one sees immediately that equation (549) is a
one-dimensional nonlinear Schrödinger equation, where time is played
by the variable x in equation (489).

In Ref. [200], the fiber has a fixed length L = 3 km and the initial
profile is a Gaussian bump — i.e., different from (450) — on top of a
background:14

|A(t, z = 0)|2 = P0 + P1 e
−2 t2/t20 , (550)

with t0 = 18.3 ps, P1 = 5.9 W and P0 is the background power,
which varies in the experiment. In addition, in this experiment [200],
γ = 3 (W.km)−1 > 0 and β2 = 2.5 10−26 s2/m > 0, leading to a self-
defocusing behavior of equation (549).

As we proceeded in Section 5.1, we can work with dimensionless quan-
tities. We choose a reference power Pref = 1 W and define an effec-
tive time τ = γ Prefz, an effective transverse length x = t

√
γPref
β2

and
the quantity ψ = A/

√
Pref , solution of the one-dimensional nonlinear

Schrödinger equation

−i ∂τψ = −1

2
∂2
xψ + |ψ|2ψ + i αeffψ, (551)

where αeff = α
2γP eff

is the dimensionless absorption coefficient.

The initial ‘density’ profile then reads

ρ(x, τ = 0) = |ψ(x, 0)|2 = ρ0 + ρ1 e
−2x2/x2

0 , (552)

with ρ0 = P0/Pref , ρ1 = P1/Pref = 5.9 and x0 = t0

√
γPref
β2

= 6.3.
The final ‘density’ profile is imaged at the output of the fiber of length

L = 3 km; this corresponds to an effective time τ out = γPrefL = 9.

A quantitative evaluation of the visibility of the oscillations near the
solitonic edge of the DSW has been obtained in Ref. [200] by measuring
the contrast defined as follows

Cont =
ρmax − ρmin

ρmax + ρmin
, (553)

14 We recall that t plays the role of the transverse length x and z corresponds to an
effective time.
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where ρmax and ρmin are defined in graph (b) of Figure 59 (this figure
has been extracted from Ref. [200]). The contrast was measured exper-
imentally for different initial configurations (552) by keeping ρ1 and x0

fixed and varying ρ0. The experimental result agreed very well with
numerical simulations taking into account absorption in the fiber, as
illustrated in Figure 59.

Figure 59: (a) Contrast of the fringes of a dispersive shock wave formed by
a nonlinear pulse propagating in an optical fiber. The contrast is
defined by expression (553), where ρmax and ρmin are shown in
graph (b). The blue curve corresponds to the numerical results,
while the red bars (with error bars) are obtained experimentally.
Different experimental profiles are shown in figures (e), (f) and
(g) for different relative background level P0/P1; these quantities
correspond to the initial powers of the background and the bump,
see equation (550). Graphs (b), (c) and (d) are the correspond-
ing profiles obtained from simulations for the same set of initial
parameters. Note that here, P1 is left fixed, while P0 varies.

In our case, we do not consider exactly the same initial profile and do
not take damping into account, but we show that our approach gives a
very reasonable analytic account of the behavior of Cont considered as
a function of ρ0/ρ1.
In addition, we do not choose exactly the same definition of ρmax

[appearing in equation (553)] as in Ref. [200]: we decided to take ρmax

as being located at the solitonic edge (see the inset of Figure 62) because
it has a simple analytic expression there. Indeed, from equation (498)
(i.e., when m→ 1, which is the relevant regime near the solitonic edge
of the DSW), we obtain

ρmax = 1
4(λS + c0)2 , and ρmin = 1

4(λS − 3c0)2 , (554)
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yielding

Cont =
4c0(λS − c0)

(λS − c0)2 + 4c2
0

. (555)

At this stage, an exact computation of the previous expression can be
performed by inverting equation (533a) to find λS. As expected, the
exact result, corresponding to the blue curve in Figure 62, agrees very
well with the contrast determined by numerical simulations (green dots
in the same figure).

However, let us now make some approximations to obtain a simple
analytic expression.
First, we use the large-time expression of λS corresponding to the first

equation of (542). This asymptotic expression is valid when t � tWB,
t = τ out = 9 being fixed here. The experimental ratio ρ0/ρ1 ranges from
0.1 to 10 % (see Figure 59). As we can see from Figure 60, where we
have computed15 τ out/tWB as a function of ρ0/ρ1, the effective time at
the output of the optical fiber is at least ten times larger than the wave
breaking time in the range of experimental values. This justifies the use
of the asymptotic expression of λS for computing the contrast (555) and
we introduce the quantity ξ defined as follows:

ξ =

(
λS

c0
− 1

)3/2

' A
c

3/2
0 τ out

, (556)

where A is given by expression (541).
Second, we also use the approximation16

A '−
(∫ c0

cm

√
r − c0

dx̄(1)(r)

dr
dr +

∫ cm

c0

√
r − c0

dx̄(3)(r)

dr
dr

)

= 2

∫ x0

0

√
λ+(x, 0)− c0 dx,

(557)

where we have replaced w
(2)
+ (r,−c0) and w

(3)
+ (r,−c0) by x̄(1)(r) and

x̄(3)(r), defined by expressions (453). A new change of variable yields

A ' 2x0
√
c0 F (ρ0/ρ1) , (558)

where

F (α) =

∫ π/2

0
cos θ

(√
1 +

cos2 θ

α
− 1

)1/2

dθ. (559)

15 Note the factor 2 of difference in the exponential between the initial density profile
(552) and the one defined in equation (432) of Chapter 6. This amounts to take
tWB/

√
2, with tWB given by expression (441).

16 One can prove this result by using the symmetry property of the system x̄(1)(r) =
−x̄(3)(r) and making the change of variable x = x̄(3)(r) ⇔ r = λ+(x > 0, 0), in
which λ+(x, 0) =

√
ρ(x > 0, 0) where ρ(x > 0, 0) is half of the initial density profile

— whose explicit expression is given in (450).
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Figure 60: (Left) Blue curve : ratio of the effective time at the output of
the fiber τ out = 9 by the wave breaking time tWB, computed
from expression (441) and for an initial Gaussian beam (552),
as a function of the initial ratio ρ0/ρ1. The red dashed curve
corresponds to tWB = τ out, i.e., in the considered case, tWB = 9.
The inset shows the same curves for higher density background
(we recall that in the experiment ρ1 = 5.9 is fixed and only ρ0
varies).

A simple analytic expression of F (α) cannot be obtained, but we checked
that one can devise an accurate approximation by expanding the term
in the above integrand around θ = 0 up to second order in θ. This yields

F (α) ' (
√
α+ 1−√α)1/2

α1/4
−

1
4(π2/4− 2)

α1/4
√

1 + α(
√
α+ 1−√α)1/2

. (560)

A comparison between the exact result (559) and the approximate ex-
pression (560) is shown in Figure 61. The maximal relative error in the
range of experimental values α ∈ [0, 0.1], i.e., ρ0/ρ1 between 0 and 10
%, is less than 2 %. Thus, we can safely use the approximate result
(560), which is also valid for much larger values of α, see the inset of
Figure 61.
Therefore, we arrive to a simple analytic equation for the contrast

(555) in terms of the parameter ξ defined in (556):

Cont =
4 ξ2/3

4 + ξ4/3
, with ξ ' 2x0√

ρ1 τ out

√
ρ1

ρ0
F

(
ρ0

ρ1

)
, (561)

where we used the approximate expression (558) to evaluate ξ. The
result is represented as a red curve in Figure 62. As one can see, it com-
pares quite well with the value of Cont extracted from the numerical
simulations. The better agreement with the numerical result is reached
for small ρ0/ρ1; this was expected: in this regime the wave breaking
occurs rapidly (τ out/tWB →∞, see Figure 60), and one easily fulfills the
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Figure 61: Blue curve: F (α) computed from the exact result (559). Dashed
red curve: approximate result evaluated from expression (560).
The inset shows F (α) for a wider range of possible values α.

condition τ out � tWB where the approximation (542) holds. Moreover,
one sees that experimental data extracted from Ref. [200] and repre-
sented as brown bars in Figure 62 match well with the analytic result
given by (561), despite the approximations we made and the fact that
the form of the initial profile considered in this reference is not exactly
the same as ours.

Figure 62: Contrast Cont represented as a function of ρ0/ρ1. In order to fol-
low the procedure used in Ref. [200], we fixed here the values of
ρ1, x0 and τ out [ρ1 = 2, x0 = 20 and τ out = 49 – which give the
same contrast as ρ1 = 5.9, x0 = 6.3 and τ out = 9, see the text
below equation (562)] and varied the value of ρ0. The green dots
correspond to the numerically determined value of the contrast,
obtained from equation (553) where ρmin and ρmax are defined
as illustrated in the inset. The yellow triangle pinpoints the den-
sity ratio ρ0/ρ1 for which the contrast is unity, see in particular
equation (562). The red curve corresponds to the contrast com-
puted from the approximate expression (561). The brown bars
are experimental data extracted from Ref. [200].
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In addition, there is a special value of ρ0/ρ1 for which the contrast
is unity, meaning that the quantity ρmin cancels. One sees from (554)
that this is obtained for ξ = 3, i.e., 2c0 ' (A/τ out)2/3. Using expression
(558), the contrast is thus unity when

c0 τ
out

x0
=

1√
2
F (ρ0/ρ1) . (562)

A numerical solution of this equation gives, for the parameters of Fig-
ure 62, a contrast unity when ρ0/ρ1 = 7.7%, while the exact equation
(555) predicts a maximum contrast when ρ0/ρ1 = 8.3% instead (indi-
cated by a yellow triangle in Figure 62).
Besides, one sees from equation (561) that different sets of parameters

x0, ρ1 and τ out (the effective time being fixed by the length of the fiber
in this specific case) such that

√
ρ1 τ

out

x0
= Constant (563)

all lead to the same contrast Cont. For instance, taking ρ1 = 5.9, x0 =
6.3 and τ out = 9 ( √ρ1 τ

out/x0 = 3.47) yields the same result for the
contrast as taking ρ1 = 2, x0 = 20 and τ out = 49 (which corresponds
to the red dashed curve in Figure 62). We did not plot both curves for
these two different configurations for legibility of the figure.

To conclude, we have demonstrated that our approach successfully
describes the propagation of a dispersive shock wave in a system whose
dynamics is governed by the nonlinear Schrödinger equation. Similar
results have been also obtained for the Korteweg-de Vries equation [93],
but are not reproduced in this thesis. In both cases, we were able to
find the evolution of the Riemann invariants in the shock region, when
two of them were varying.
However, the solutions of the problem are often implicit and require

the use of numerical computations to extract, for instance, the envelopes
of the DSW at a certain time t.

Nevertheless, we also proved that it was possible to extract from our
approach a weak shock theory for these dispersive systems, exactly as
it was done for viscous shocks [197]. This asymptotic description of the
DSW can be used in some physical systems as soon as t � tWB; when
this condition is fulfilled, one can compute certain experimental quanti-
ties, such as the contrast of the fringes in the DSW, from simple analytic
expressions derived from the weak shock theory. Therefore, beyond the
mathematical description and the richness of Whitham modulational
theory to describe nonlinear systems, one can also predict the behav-
ior of parameters of experimental relevance: determining for instance
the best configuration for visualizing the fringes of the DSW should be
useful for future studies.



216 formation and propagation of dispersive shock waves

7.4 article: long-time evolution of pulses in the
korteweg–de vries equation in the absence of
solitons reexamined: whitham method

This work, albeit not discussed in this thesis, was an important step in
our understanding of the problem, before considering the more compli-
cated case of the nonlinear Schrödinger equation.

↪→ Long-time evolution of pulses in the Korteweg–de Vries equation
in the absence of solitons reexamined: Whitham method

M. Isoard, A.M. Kamchatnov, N. Pavloff, Physical Review E 99,
012210 (2019)

doi: https://doi.org/10.1103/PhysRevE.99.012210

We consider the long-time evolution of pulses in the Korteweg–de
Vries equation theory for initial distributions which produce no soliton
but instead lead to the formation of a dispersive shock wave and of a
rarefaction wave. An approach based on Whitham modulation theory
makes it possible to obtain an analytic description of the structure and
to describe its self-similar behavior near the soliton edge of the shock.
The results are compared with numerical simulations.

https://doi.org/10.1103/PhysRevE.99.012210
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I. INTRODUCTION

It is well known that pulses propagating through a nonlin-
ear medium typically experience wave breaking. Their long-
time evolution depends on which effect—in addition to the
nonlinearity—dominates after the wave breaking moment:
viscosity or dispersion. If viscosity dominates, then the shock
corresponds to a region of localized extend in which the slow
variables display a sharp transition. A typical small-amplitude
viscous shock can be modeled by the Burgers’ equation

ut + uux = νuxx, (1)

for which a full analytic theory has been developed (see, e.g.,
Ref. [1]). For a positive initial profile u(x, t = 0) ≡ u0(x) >

0 which is well-enough localized [i.e., u0(x) → 0 fast enough
for |x| → ∞] the time-evolved pulse acquires a triangle-like
shape at its front edge [or at its rear edge if u0(x) < 01],
gradually spreading out with decreasing amplitude.

The situation changes drastically if dispersive effects dom-
inate rather than viscosity. In this case the typical evolution
can be described by the celebrated Korteweg–de Vries (KdV)
equation

ut + 6uux + uxxx = 0, (2)

which admits oscillating solutions ranging from linear waves
to bright solitons. A positive localized initial pulse u0(x) > 0,
after an intermediate stage of wave breaking and complicated
deformation, eventually evolves into a sequence of solitons
with some amount of linear dispersive waves. The character-
istics of the solitons are determined by the initial distribution
u0(x). If this initial pulse is intense enough—so that the
number of solitons is large—one may determine the param-
eters of these solitons by means of the asymptotic formula
of Karpman [2] which is obtained in the framework of the
inverse scattering transform method discovered by Gardner,

1A so-called N -wave appears if u0(x ) has both polarities; see, e.g.,
Ref. [1].

Green, Kruskal, and Miura [3]. However, if u0(x) < 0, since
Eq. (2) does not admit dark (i.e., “negative”) solitons, then
wave breaking does not result in the production of solitons,
but it rather leads to the formation of a dispersive shock wave
(DSW) connected to a triangle-like rarefaction wave which
is the remnant of the initial trough. The shape and the time
evolution of this oscillatory structure are highly nontrivial and
considerable efforts have been invested in their study.

In an early investigation of Berezin and Karpman [4] it was
shown that the KdV equation admits solutions of the form

u(x, t ) = 1

t2/3
f

( x

t1/3

)
, (3)

and numerical simulations of these authors demonstrated that
some region of the evolving wave structure is indeed de-
scribed by solutions of type (3). The existence of such a region
was confirmed by the inverse scattering transform method in
Refs. [5,6] and its “quasi-linear” part was studied in Ref. [7].
An extensive study of the asymptotic evolution of the pulse
in the absence of solitons was performed in Ref. [8] where
different characteristic parts of the wave structure were distin-
guished and their main parameters were calculated. However,
in this reference, Ablowitz and Segur—who first explicitly
point to the formation of a dispersive shock wave—confined
themselves to the analytic study of typical limiting cases and
explicit formulas for the whole dispersive shock wave region
were found much later [9] with the use of a quite involved
analysis of the associated Riemann-Hilbert problem. This
approach was developed further in Refs. [10–12] and other
papers.

Although the above-mentioned approaches are mathemati-
cally strict, the methods used are difficult and the theory devel-
oped has not found applications to concrete problems related
with other integrable evolution equations. Since the question
of evolution of pulses in the absence of solitons is related with
experiments in physics of water waves [13,14], Bose-Einstein
condensates [15,16], and nonlinear optics [17,18], the devel-
opment of a simpler and more transparent physically approach
is desirable. Such an approach, based on the Whitham theory

2470-0045/2019/99(1)/012210(12) 012210-1 ©2019 American Physical Society
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of modulations of nonlinear waves [19], was suggested long
ago by Gurevich and Pitaevskii [20] and since that time it has
developed into a powerful method with numerous applications
(see, e.g., the review article [21]). Despite the facts that some
elements of the Whitham theory were used in Refs. [6,8] and
that the general solution of the solitonless initial value prob-
lem has been obtained in Ref. [22], no asymptotic analysis
has been performed within Whitham’s formalism, so that its
relationship with the previous results remained unclear.

The main goal of the present paper is to fill this gap and to
apply the Whitham theory to the description of the asymptotic
evolution of initial pulses in the small dispersion limit (or for
wide pulses) under the condition of absence of solitons. We
show that the combination of two ideas—self-similarity of
the solution and quasisimple character [23] of the dispersive
shock wave—permits an asymptotic analysis of the solution.
The relatively simple theory developed in the present work
should be useful in the analysis of experiments devoted to the
evolution of pulses of this type.

The paper is organized as follows. In Sec. II we present
the main aspects of Whitham theory and of the generalized
hodograph method applying to quasisimple waves (following
Refs. [22–28]). In Sec. III, the application of the ideas of
Ref. [23] to the soliton edge of the DSW makes it possible
to find the law of motion of this edge and suggests a self-
similar asymptotic behavior consistent with Eq. (3). In Sec. IV
we perform the large-time asymptotic analysis of the rear
(soliton) part of the dispersive shock wave by the Whitham
method within this self-similarity assumption. This yields a
surprisingly simple derivation of the solution first explicitly
obtained in Ref. [9]. The description of the DSW in its full
range by the method of El and Khodorovskii [22] is presented
in a self-contained manner in Sec. V. In this section we
consider the time evolution of several initial profiles illustrat-
ing the possible different behaviors in the shock region and
compare the theoretical results with numerical simulations.
We present our conclusions in Sec. VI.

II. WHITHAM THEORY AND THE GENERALIZED
HODOGRAPH METHOD

A. The smooth part of the profile

We consider an initial pulse with nonpositive profile
u(x, t = 0) = u0(x) defined on finite interval of x and having
a single minimum minx∈R{u0(x)} = −1 (this value can be
changed by an appropriate rescaling on u, x, and t). We
consider a initial profile of finite extend x0, and assume that
x0 � 1, so that in a first stage of evolution one can neglect
dispersive effects. This amounts to replace the KdV dynamics
by the Hopf equation,

rt + 6 r rx = 0. (4)

We changed notation here to mark the difference between
r (x, t ), solution of the approximate equation (4), and u(x, t ),
which is the exact solution of the KdV equation (2). The solu-
tion of the Hopf equation is well known (see, e.g., Ref. [29])
and it is given in implicit form in terms of functions inverse to
u0(x), as explained now.

In the case we consider, u0(x) has a single minimum and
its inverse function is two valued. We denote its two branches

FIG. 1. The solid black, solid pink, and dashed red lines repre-
sent r (x, t ) solution of (4) for times t = 0, t = tWB, and t = 2.5 tWB

for an initial condition r (x, 0) given by the parabolic profile u0(x )
defined in Eq. (6) with x0 = 40. The dots represent the position of
the minimum min x∈R{r (x, t )} which separates parts A (at the left)
and B (at the right) of the profile.

as wA(r ) and wB(r ), where the first function refers to the part
of the pulse to the left of its minimum and the second one to
its right. Then the solution of the Hopf equation is given by
the formulas

x − 6 r t = wA(r ), (5a)

x − 6 r t = wB(r ). (5b)

For example, in case of a parabolic initial pulse

u0(x) =
{

4 x(x + x0)/x2
0 for − x0 � x � 0,

0 elsewhere,
(6)

the inverse functions are equal to

wA(r ) = x0
2 (−1 − √

1 + r ),

wB(r ) = x0
2 (−1 + √

1 + r ),
where r ∈ [−1, 0]. (7)

Figure 1 represents the initial profile (6) and its time evolution
as computed from Eqs. (5), i.e., without taking dispersive
effects into account. Figure 2 represents the corresponding
functions wA(r ) and wB(r ). In the following we shall perform
the explicit computations using this initial profile. Other types

FIG. 2. The two branches wA(r ) and wB(r ) of the reciprocal
function of u0(x ). The figure is drawn for the initial parabolic
profile (6) [the corresponding expressions of wA(r ) and wB(r ) are
given in Eq. (7)] but the behavior is the generic one.
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of profiles, with less generic behaviors, will be presented and
discussed in Sec. V.

The wave-breaking time is the time tWB =
1/max(−6 du0/dx) at which the solution of (4) becomes
infinitely steep (see, e.g., Ref. [1]). In the present work
we consider initial profiles for which the largest slope
max(−du0/dx) is reached at x = −x0 for r = 0 and thus

tWB = −1

6

(
dwA

dr

)
r=0

. (8)

For the initial profile (6) we get tWB = x0/24. For t � tWB the
dispersionless approximation fails (the corresponding formal
solution of the Hopf equation is multivalued), and a DSW is
formed, initially around x = −x0, which then expands toward
the negative x direction. We now explain how it can be
described within Whitham modulational theory.

B. Periodic solutions and their modulations

The KdV equation (2) admits nonlinear periodic solutions
which can be written in terms of three parameters r1 � r2 �
r3 as (see, e.g., Ref. [29])

u(x, t ) = r3 + r2 − r1 − 2(r2 − r1)

× sn2(
√

r3 − r1(x − V t ),m), (9)

where

V = 2(r1 + r2 + r3) (10)

and

m = r2 − r1

r3 − r1
. (11)

The notation “sn” in formula (9) refers to the Jacobi sine
function (see, e.g., Ref. [30]). For constant parameters ri

expression (9) is an exact (single phase) solution of the KdV
equation, periodic in time and space with wavelength

L = 2K (m)√
r3 − r1

, (12)

where K (m) is the complete elliptic integral of the first kind.
According to the Gurevich-Pitaevskii scheme, a DSW may

be described as a modulated nonlinear periodic wave of
type (9) for which the ri’s slowly depend on time and position
and evolve according to the Whitham equations (see, e.g,
Refs. [21,29])

∂t ri + vi (r1, r2, r3)∂xri = 0, i = 1, 2, 3. (13)

The quantities vi in these equations are the Whitham veloc-
ities. Their explicit expressions have first been derived by
Whitham [19] and can also be obtained from the relation

vi =
(

1 − L

∂iL
∂i

)
V = V − 2

L

∂iL
, (14)

where L is the wavelength (12), V the phase velocity (10)
of the nonlinear periodic solution (9), and ∂i stands for ∂ri

.

One gets

v1 = 2(r1 + r2 + r3) + 4(r2 − r1)K (m)

E(m) − K (m)
,

v2 = 2(r1 + r2 + r3) − 4(r2 − r1)(1 − m)K (m)

E(m) − (1 − m)K (m)
,

v3 = 2(r1 + r2 + r3) + 4(r3 − r1)(1 − m)K (m)

E(m)
,

(15)

where E(m) is the complete elliptic integral of the second
kind.

Since Eqs. (13) have a diagonal form (that is, they include
derivatives of a single parameter ri in each equation), the
variables ri are called Riemann invariants of the Whitham
equations—Riemann was the first who introduced such vari-
ables in the theory of nonlinear waves.

The two edges of the DSW are denoted as xL(t ) and xR(t ).
The first one is the small-amplitude edge; it is at the left
of the DSW in the case we consider. Within the Whitham
approximation, it makes contact between the DSW and the
undisturbed profile: u(x, t ) = 0 for x � xL(t ). The small-
amplitude version of (9) corresponds to the limit m � 1 and
takes the form

u(x, t ) = r3 + (r2 − r1) cos[2
√

r3 − r1(x − V t )]. (16)

In this harmonic linear limit, r2 → r1 (m → 0) and the
Whitham velocities (15) reduce to

v1|r2=r1 = v2|r2=r1 = 12 r1 − 6 r3,

v3|r2=r1 = 6 r3. (17)

Around the left boundary of the DSW, the amplitude 2(r2 −
r1) of the oscillations is small and since this edge propagates
along a zero background, we arrive at the conclusion that r3 =
0 and r1 = r2 for x = xL(t ).

The other edge, at the right side of the DSW, is the
large-amplitude soliton edge, with m = 1. Therefore we must
have here r2 = r3 and in this limit the nonlinear pattern (9)
degenerates into a soliton solution of the form

u(x, t ) = r1 + 2(r2 − r1)

cosh2[
√

r2 − r1(x − V t )]
. (18)

This implies that the right of the DSW is bounded by a soliton
for which the Whitham velocities are given by

v1|r2=r3 = 6 r1,

v2|r2=r3 = v3|r2=r3 = 2 r1 + 4 r3. (19)

C. Generalized hodograph method

The dispersionless approach of Sec. II A leads, after the
wave-breaking time, to an nonphysical, multivalued solution.
The form, displayed in Fig. 1, of r (x, t � tWB) in the region
of multivaluedness suggests that the DSW accounting for
the post wave-breaking dynamics should be described by
Whitham-Riemann invariants arranged in a configuration such
that r3 = 0 (thus ensuring matching with the unperturbed
profile at the left), whereas r2 and r1 both depend on x and
t , with always r3 � r2 � r1.

The contact of the DSW with the smooth pro-
file which prevails for x � xR(t ) imposes the condition
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r1(xR(t ), t ) = r (xR(t ), t ), where r (x, t ) is a solution of the
Hopf equation (4) with initially r (x, 0) = u0(x). Therefore
the description of the DSW for x ∈ [xL(t ), xR(t )] imposes the
boundary conditions

r1(xR(t ), t ) = r (xR(t ), t ) ≡ rR(t ), r2(xR(t ), t ) = 0,

(20a)

r1(xL(t ), t ) = r2(xL(t ), t ) ≡ rL(t ). (20b)

Note that all the above functions are only defined after the
wave breaking time, i.e., for t � tWB.

This type of structure, in which two Riemann invariants (r1

and r2) change along the DSW, is not a simple wave solution;
it belongs to the class of “quasisimple waves” introduced in
Ref. [23]. In this case, Eq. (13) with i = 3 is trivially satisfied
and for solving the remaining two Whitham equations we use
the so-called generalized hodograph method of Tsarev [31].
To this end, one introduces two functions Wi (r1, r2) (i = 1
or 2), making it possible to write a vector generalization of
Eq. (5) for the Whitham system:

x − vi (r1, r2)t = Wi (r1, r2), i = 1, 2. (21)

For the sake of brevity we have noted in the above equation
vi (r1, r2) = vi (r1, r2, r3 = 0) for i ∈ {1, 2}; we will keep this
notation henceforth. The Wi’s must satisfy the compatibility
equation found by substituting (21) into (13). This leads to
the Tsarev equations:

∂jWi

Wi − Wj

= ∂jvi

vi − vj

, for i 	= j. (22)

One can show (see, e.g., Refs. [25,27,28]) that (22) is solved
for Wi’s of the form

Wi =
(

1 − L

∂iL
∂i

)
W = W +

(
1

2
vi − r1 − r2

)
∂iW , (23)

where W (r1, r2) is solution of the Euler-Poisson equation

∂12W = ∂1W − ∂2W

2(r1 − r2)
. (24)

There is, however, a subtle point here, which was first under-
stood in Ref. [23] (see also Ref. [22]). After the wave breaking
time, the development of the dispersive shock wave occurs in
two steps:

(A) Initially (when t is close to tWB), the DSW is con-
nected at its right edge to the smooth profile coming from the
time evolution of part A of the initial profile. In this case, for
a given time t , the lower value of u(x, t ) is reached within the
smooth part of the profile and keeps its initial values (−1).

(B) Then, after a while, the left part of the initial profile
(part A) has been “swallowed” by the DSW which is then
connected at its right to the smooth profile coming from the
time evolution of part B of u0(x). In this case, the minimum
minx∈R{u(x, t )} is reached inside the DSW (or at its bound-
ary), is negative and larger than −1 (i.e., less pronounced than
in the previous case A), and asymptotically tends to 0 for large
time.

We denote the region of the DSW [and of the (x, t ) plane]
in which r1 is a decreasing function of x as region A, the part
where it increases as region B. In region A of the (x, t ) plane,

we denote by W A(r1, r2) the solution of the Euler-Poisson
equation; in region B we denote it instead as W B(r1, r2). These
two forms are joined by the line r1 = −1 (cf. the upper plots
of Fig. 5) along which

W A(−1, r2) = W B(−1, r2). (25)

Since the general solution of the Euler-Poisson equation with
the appropriate boundary conditions, and the construction of
the resulting nonlinear pattern are quite involved, we shall first
consider some particular—but useful—results which follow
from general principles of the Whitham theory.

III. MOTION OF THE SOLITON EDGE OF THE SHOCK

During the first stage of evolution of the DSW, its right
(solitonic) edge is connected to the smooth dispersionless
solution described by formula (5a), that is we have here

xR − 6rRt = wA(rR ). (26)

On the side of the DSW, in vicinity of this boundary, the
Whitham equations (13) with the limiting expressions (19)
(where r3 = 0) for the velocities vi are given by

∂t r1 + 6r1∂xr1 = 0, ∂t r2 + 2r1∂xr2 = 0. (27)

For solving these equations one can perform a classical hodo-
graph transformation (see, e.g., Ref. [29]), that is, one assume
that x and t are functions of the independent variables r1 and
r2: t = t (r1, r2), x = x(r1, r2). We find from Eqs. (27) that
these functions must satisfy the linear system

∂x

∂r1
− 2r1

∂t

∂r1
= 0,

∂x

∂r2
− 6r1

∂t

∂r2
= 0.

At the boundary with the dispersionless solution [where r1 =
rR, see (20a)] the first equation reads

∂xR

∂rR

− 2 rR

∂t

∂rR

= 0, (28)

and this must be compatible with Eq. (26). Differentiation of
Eq. (26) with respect to rR and elimination of ∂xR/∂rR with the
use of Eq. (28) yield the differential equation for the function
t (rR ) ≡ t (rR, 0):

4 rR

dt

drR

+ 6 t = −dwA(rR )

drR

. (29)

At the wave-breaking time, rR = 0, and (29) gives the correct
definition (8) of the wave-breaking time: tWB = t (0). Elemen-
tary integration then yields

t (rR ) = 1

4(−rR )3/2

∫ rR

0

√−r
dwA(r )

dr
dr

= 1

8(−rR )3/2

∫ rR

0

wA(r )√−r
dr − wA(rR )

4 rR

. (30)

Substituting this into (26) we get the following expression for
the function xR(rR ) ≡ x(rR, 0):

xR(rR ) = − 3

2
√−rR

∫ rR

0

√−r
dwA(r )

dr
dr + wA(rR )

= − 3

4
√−rR

∫ rR

0

wA(r )√−r
dr − 1

2
wA(rR ). (31)
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The two formulas (30) and (31) define in an implicit way the
law of motion x = xR(t ) of the soliton edge of the DSW.

The above expressions are correct as long as the soliton
edge is located inside region A, that is up to the moment

tA/B = t (−1) = 1

4

∫ −1

0

√−r
dwA(r )

dr
dr, (32)

after which the soliton edge connects with part B of the
smooth profile. Concretely, for a time t > tA/B, we have to
solve the differential equation

4 rR

dt

drR

+ 6 t = −dwB(rR )

drR

with the initial condition t (−1) = tA/B. This yields

t (rR ) = 1

4(−rR )3/2

[ ∫ −1

0

√−r
dwA(r )

dr
dr

+
∫ rR

−1

√−r
dwB(r )

dr
dr

]
(33)

and

xR(rR ) = − 3

2(−rR )1/2

[ ∫ −1

0

√−r
dwA(r )

dr
dr

+
∫ rR

−1

√−r
dwB(r )

dr
dr

]
+ wB(rR ). (34)

At asymptotically large time t → ∞ one is at stage B of
evolution, with furthermore rR → 0. Hence the upper limit of
integration in the second integrals of formulas (33) and (34)
can be put equal to zero. Integration over r in the resulting
expressions can be replaced by integration over x with account
of the fact that wA,B(r ) represent two branches of the inverse
function of r = u0(x), so we get

t (rR ) 
 A
4(−rR )3/2

, where A =
∫
R

√
−u0(x) dx

is a measure of the amplitude of the initial trough. Conse-
quently, we obtain

rR(t ) = −
(A

4t

)2/3

, xR(t ) = −3A2/3

21/3
t1/3, (35)

where we have neglected a term of order x0 which is small
compared to the infinitely increasing time-dependent ones.

At large time, the dispersionless part of the profile be-
tween x = 0 and xR(t ) is stretched to a quasilinear behavior
u(x, t ) = x rR(t )/xR(t ), and one thus has∫ 0

xR (t )
dx

√
−u(x, t ) = −2

3
xR(t )

√
−rR(t ) = A, (36)

which means that the quantity A is conserved, at least at
the level of the present asymptotic analysis. This situation
is reminiscent of—but different from—the dissipative case
where nonlinear patterns of triangular shape may also appear
at the rear edge of a (viscous) shock. In the dissipative case
there also exists a conserved quantity. For Burgers’ equation,
for instance, with an initial condition of type (6), a single
viscous shock appears which is followed by an asymptotically
triangular wave. This means that the details of the initial

distribution are lost (as in the present case), but for Burgers’
equation the conserved quantity is not the quantity A defined
in Eq. (36), but the integral

∫
I (t )dx u(x, t ), where I (t ) is the

support of the triangular wave (equivalent to our segment
[xR(t ), 0]).

Formulas (35) suggest that in the vicinity of the soliton
edge, the behavior of the DSW must be self-similar, and
we now turn to the investigation of this possibility in the
framework of Whitham theory.

IV. SIMILARITY SOLUTION AT THE SOLITON EDGE OF
THE SHOCK

In this section we use the Whitham approach to obtain the
long-time asymptotic behavior of the shock close to xR(t ),
valid up to x ∼ −t1/3(ln t )3/2 (see Refs. [8,9]).

Equations (35) suggest that, close to the soliton edge of
the DSW, the Riemann invariants r1 and r2 have the following
scaling form:

ri = 1

t2/3
Ri

( x

t1/3

)
. (37)

Here x < 0 and since r1 < r2 < 0, we have R1 < R2 < 0.
The scaling (37) agrees with the scaling (3) of the full KdV
equation first noticed in Refs. [4–6]. Written in terms of the
rescaled Riemann parameters R1 and R2 and of the self-
similar variable z = x/t1/3, the Whitham equations (13) read

dRi

dz
= − 2Ri

z − 3R1Vi (m)
, i = 1, 2, (38)

where

m = 1 − R2/R1, (39)

and the velocities V1(m) and V2(m) are given by

V1(m) = 2(2 − m) − 4mK (m)

E(m) − K (m)
,

V2(m) = 2(2 − m) + 4m(1 − m)K (m)

E(m) − (1 − m)K (m)
.

(40)

The two equations (38) can be reduced to a single one if we
introduce the variable

ζ = z/R1 (41)

and look for the dependence of ζ on m. A simple calculation
yields the differential equation

dζ

dm
= [ζ − V1(m)][ζ − 3V2(m)]

2(1 − m)[V2(m) − V1(m)]
, (42)

whose basic properties can be studied in the phase plane
(m, ζ ). The phase portrait in this plane is displayed in Fig. 3.
It admits the singular points

(0, 12), (0, 36) for m = 0;
(1, 6), (1, 6) for m = 1.

(43)

As is clear from Fig. 3, the point (0,12) is a node and the point
(0,36) is a saddle. At m = 1 the two singular points merge into
one (1,6) of a mixed saddle-node type. Numerical solution of
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FIG. 3. Integral curves of Eq. (42). The separatices are depicted
as solid thick lines. The dots are the singular points (43).

Eq. (42) suggests that the separatrix joining the singular points
(0,12) and (1,6) is a straight line

ζ = 6(2 − m), (44)

which, after returning to the variables R1, R2, and z, leads
to the assumption that the system (38) admits the following
integral:

R1 + R2 = 1
6z. (45)

A direct check shows that indeed d(R1 + R2)/dz = 1/6 un-
der the condition (45), so that this assumption is proved. The
integral curves beginning in vicinity of this separatrix are
attracted to it when m decreases, so one can expect that just
this separatrix realizes the self-similar regime of the DSW
near its soliton edge.

To determine the dependence of m on z, we find, with the
use of Eqs. (38),

dm

dz
= 6ζ (m)(1 − m)(V2(m) − V1(m))

z[ζ (m) − 3V1(m)][ζ (m) − 3V2(m)]
. (46)

Substituting Eq. (44) and the expressions (40) in the above,
we get the following equation:

dm

dz
= − 2 − m

zmK (m)
F (m), (47)

where

F (m) = (2 − m)E(m) − 2(1 − m)K (m). (48)

The solution of this equation determines m = m(z) along the
separatrix.

The form of expression (48) suggests that it can be obtained
as a result of the calculation of some elliptic integral in which
the integration limits may play the role of more convenient
variables. Inspection of tables of such integrals shows that the
formula 3.155.9 in Ref. [30] (which we write down here with
notations slightly different from the original reference),

I = 3
∫ q1

q2

√(
q2

1 − y2
)(

y2 − q2
2

)
dy

= q1
[(

q2
1 + q2

2

)
E(m) − 2q2

2K (m)
]
, (49)

has the necessary structure. In Eq. (49) one has q1 > q2 > 0
and m = 1 − (q2/q1)2.

To establish the link between the two expressions (48)
and (49), it is enough to take

q2
1 + q2

2 = 1, (50)

so that 1 − m = q2
2/q2

1 , 2 − m = 1/q2
1 . Assuming that the

variables q1, q2 satisfy (50), we obtain

q2
1 = 1

2 − m
, q2

2 = 1 − m
2 − m

, (51)

and then, imposing m = m, we get F (m) = (2 − m)3/2I .
Since dq1/dm = q3

1/2, Eq. (47) can be cast under the form

dq1

d ln(−z)
= − q1

2mK (m)
F (m), (52)

which is more convenient for further calculations. On the
other hand, the integral (49) with account of Eqs. (51) sim-
plifies to

I = q1
[
E(m) − 2

(
1 − q2

1

)
K (m)

]
,

and its differentiation with respect to q1 gives

dI

dq1
= 3q2

1mK (m). (53)

With the help of the formulas obtained we transform
Eq. (52) to

dI

I
= −3

2
d ln(−z).

Then, integration of this equation with the boundary condition
z = z1 at m = 1 yields z as a function of m:

z = z1 I−2/3(m) = z1
2 − m

F 2/3(m)
, (54)

where

z1 = xR(t )

t1/3
= −6(A/4)2/3 (55)

is the value of z for m = 1 (at the soliton edge of the DSW,
see Sec. III).

From the formulas (39) and (51) we find the relationship
between the Ri’s and the qi’s:

R1 = q2
1

6
z, R2 = q2

2

6
z, (56)

so that for the dependence of the Riemann invariants on m we
obtain:

R1(m) = z1

6(2 − m)I 3/2
,

R2(m) = (1 − m)z1

6(2 − m)I 3/2
.

(57)

Formulas (54), (55), and (57), together with Eq. (37), com-
pletely determine the self-similar solution of the Whitham
equations: For fixed t we have x(m) = t1/3z(m), so that all
functions are defined parametrically, with m playing the role
of the parameter. Up to notations, this solution coincides with
the one obtained in Ref. [9] by means of an asymptotic study
of a Riemann-Hilbert problem in the framework of the inverse
scattering transform method.
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In the harmonic limit m � 1, the relation (54) reads

m = m1z
−3/4, where m1 = 211/4

√
3π

(−z1)3/4, (58)

which leads to the expressions

r1 = x

12t
− m1

24

(−x)1/4

t3/4
, r2 = x

12t
+ m1

24

(−x)1/4

t3/4
. (59)

It is important to notice that the difference r2 − r1, that is,
the amplitude of the oscillations in the “quasilinear” region of
Zakharov and Manakov [7], increases with growing distance
from the soliton edge [as (−x)1/4] but r2/r1 → 1 and m →
0 here. Hence, this limit is not a small-amplitude one and
therefore the self-similar regime cannot be realized along the
whole DSW; it takes place close enough to the soliton edge
only; see Figs. 6(e), 6(f), and 8. Consequently, we have to turn
to the general solution of the Whitham equations to obtain a
full description of the DSW.

V. GENERAL SOLUTION

In this section, following Ref. [22], we turn to the general
solution of the Whitham equations given by the formulas of
Sec. II C. Our task now is to express the functions Wi (r1, r2),
i = 1, 2, in terms of the initial form u0(x) of the pulse. As
was indicated above, at the first stage of evolution the DSW
is located inside the region A and after the moment tA/B [see
Eq. (32)] a second stage begins where it also reaches region
B. Correspondingly, the expressions for Wi and W are given
by different formulas and should be considered separately.

A. Solution in region A

In region A one can follow the procedure explained in
Ref. [25]. One imposes the matching of the right edge of the
DSW with the dispersionless solution (5): Just at x = xR(t ),
we have r1 = r (x, t ), where r (x, t ) is the solution of (4), and
v1(r1, 0) = 6 r1 [this follows from Eq. (19)]. Comparing in
this case Eqs. (5) and (21) one obtains

W A
1 (r1, 0) = wA(r1), (60)

which embodies the same information as Eq. (20a). In terms
of W this corresponds to the equation

W A(r1, 0) + 2 r1 ∂1W
A(r1, 0) = wA(r1), (61)

whose solution is

W A(r1, 0) = 1

2
√−r1

∫ 0

r1

wA(ρ) dρ√−ρ
. (62)

This will serve as a boundary condition for the Euler-Poisson
equation (24) whose general solution has been given by
Eisenhart [32] in the form

W A(r1, r2) =
∫ 0

r1

ϕA(μ) dμ√
(μ − r1)|r2 − μ|

+
∫ 0

r2

ψA(μ) dμ√
(μ − r1)(μ − r2)

, (63)

where the functions ϕA and ψA are arbitrary functions to
be determined from the appropriate boundary conditions. By

taking r2 = 0 in this expression one sees that ϕA(μ)/
√−μ

is the Abel transform of W A(r1, 0). The inverse transform
reads [33]

ϕA(μ)√−μ
= − 1

π

d

dμ

∫ 0

μ

W A(r, 0) dr√
r − μ

. (64)

Plugging expression (62) for W A(r, 0) in this formula and
changing the order of integration, one obtains

ϕA(μ) = 1

2 π
√−μ

∫ 0

μ

wA(ρ) dρ√
ρ − μ

. (65)

For the initial profile (6), wA is given in Eq. (7) and one gets
explicitly

ϕA(μ) = − x0

4π

(
3 + 1 + μ√−μ

tanh−1 √−μ

)
.

In order to determine the function ψA, one considers the left
boundary of the DSW where, according to (20b), r1 and r2

are asymptotically close to each other. Let us write r1 = r

and r2 = r + ε with r ∈ [−1, 0] and ε small and positive. One
gets from (63)

W A(r, r + ε) =
∫ 0

r+ε

dμ
ϕA(μ) + ψA(μ)√

(μ − r )(μ − r − ε)

+
∫ r+ε

r

ϕA(μ) dμ√
(μ − r )(r + ε − μ)

. (66)

In the right-hand side of the above equality, the second term
converges when ε tends to 0 [toward πϕA(r )], whereas the first
one diverges unless ϕA(r ) + ψA(r ) = 0, this being true for all
r ∈ [−1, 0]. This imposes that the functions ϕA and ψA should
be opposite one the other and the final form of the Eisenhart
solution in case A thus reads

W A(r1, r2) =
∫ r2

r1

ϕA(μ) dμ√
(μ − r1)(r2 − μ)

, (67)

where ϕA is given by formula (65).

B. Solution in region B

One looks for a solution of the Euler-Poisson equation in
region B of the form

W B(r1, r2) = W A(r1, r2) +
∫ r1

−1

ϕB(μ) dμ√
(r1 − μ)(r2 − μ)

. (68)

Indeed, this ensures that W B, (i) being the sum of two solu-
tions of the Euler-Poisson equation is also a solution of this
equation and (ii) verifies the boundary condition (25) since
the second term of the right-hand side of (68) vanishes when
r1 = −1.

At the right boundary of the DSW, W B(r1, 0) verifies
the same equation (61) as W A(r1, 0) does, where all the
superscripts A should be replaced by B. The solution with the
appropriate integration constant reads

W B(r1, 0) = 1

2
√−r1

∫ −1

r1

wB(ρ) dρ√−ρ

+ 1

2
√−r1

∫ 0

−1

wA(ρ) dρ√−ρ
. (69)
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The same procedure than the one previously used in part A of
the DSW leads here to

ϕB(μ) = 1

2 π
√−μ

∫ μ

−1
dρ

wA(ρ) − wB(ρ)√
μ − ρ

. (70)

For the initial profile (6) one gets explicitly

ϕB(μ) = −x0

4

1 + μ√−μ
.

In the generic case, Eqs. (68) and (70) give the solution of the
Euler-Poisson equation in region B.

C. Characteristics of the DSW at its edges

It is important to determine the boundaries xR(t ) and xL(t )
of the DSW, as well as the values of the Riemann invariants r1

and r2 at these points. The law of motion of the soliton edge
was already found in Sec. III and it is instructive to show how
this result can be obtained from the general solution.

At the soliton edge we have r2 = r3 = 0 and r1 = rR(t ).
The corresponding Whitham velocities are v1 = 6 rR and v2 =
2 rR [see Eqs. (19)], and the two equations (21) read

xR − 6rRt = W1(rR, 0) = w(rR ),

xR − 2rRt = W2(rR, 0) = W (rR, 0). (71)

These formulas apply to both stages of evolution and therefore
the superscripts A and B are dropped out. They give at once

t (rR ) = 1

4rR

[W (rR, 0) − w(rR )],

xR(rR ) = 1

2
[3W (rR, 0) − w(rR )]. (72)

Let us consider the stage A, for instance. Equation (62) yields

W A(rR, 0) = − 1

2
√

rR

∫ rR

0

wA(ρ)dρ√−ρ
,

which, inserted into Eqs. (72), gives immediately the re-
sults (30) and (31). For instance, for the initial profile (6),
when the right boundary is still in region A, one obtains
explicitly

t (rR ) = x0

16 rR

(√
1 + rR − arcsin

√−rR√−rR

)
. (73)

At the wave-breaking time, rR = 0 and this yields tWB =
t (rR = 0) = x0/24 as already obtained [cf. Eq. (8)]. Stage A
ends at time tA/B at which the minimum (−1) of the smooth
part of the profile enters the DSW. This corresponds to tA/B =
t (rR = −1) and yields, for the initial parabolic profile (6),
tA/B = π x0/32.

Let us now turn to the determination of the location xL(t )
of the left boundary of the DSW and of the common value
rL(t ) of r1 and r2 at this point. In the typical situation the left
boundary is located in region A. In this case the equations (21)
for i = 1 and 2 are equivalent and read

xL − 12 rLt = W A
1 (rL, rL ). (74)

An equation for rL alone is obtained by demanding that the
velocity dxL/dt of the left boundary is equal to the common

FIG. 4. Dispersionless evolution of the initial triangular pro-
file (77) with x0 = 40. The solid black, solid pink, and dashed red
lines represent r (x, t ) solution of (4) for times t = 0, t = tWB and
t = 2 tWB.

value 12 rL of v1 and v2 at this point [cf. Eqs. (17)]. The time
derivative of Eq. (74) then yields

t = − 1

12

dW A
1 (rL, rL )

drL

. (75)

Once rL(t ) has been determined by solving this equation, xL(t )
is given by Eq. (74).

Note that the relation dxL/dt = 12 rL is a consequence of
the general statement that the small-amplitude edge of the
DSW propagates with the group velocity corresponding to
the wave number determined by the solution of the Whitham
equations. Indeed, the KdV group velocity of a linear wave
with wave-vector k moving over a zero background is vg =
−3k2, and here k = 2π/L = 2

√−rL [cf. Eq. (12)], hence
vg = 12 rL = dxL/dt , as it should. This property of the small-
amplitude edge is especially important in the theory of DSWs
for nonintegrable equations (see Refs. [34,35]).

We also study below a case different from (6) for which
the left boundary of the DSW belongs to region B and
corresponds to r1 = r2 = −1 [in the so-called triangular case
corresponding to u0(x) given by Eq. (77)]. Then, at the small-
amplitude edge v1 = v2 = −12 and Eqs. (21) yield xL + 12 ·
t = Cst, the constant being the common value of W B

1 (−1,−1)
and W B

2 (−1,−1). It can be determined at t = tWB, leading in
this case to

xL = −x0 − 12(t − tWB). (76)

It is worth noticing that the velocity dxL/dt = −12 agrees
with the leading term in Eq. (59) for r1 = −1 in spite of
a nonvanishing amplitude of the self-similar solution in this
limit. For a more detailed study of the small-amplitude region
beyond the Whitham approximation, see, e.g., Ref. [12].

D. The global picture

We now compare the results of the Whitham approach with
the numerical solution of the KdV equation for the initial
profile (6) and also for a profile

u0(x) =
{

−1 +
∣∣∣2x
x0

+ 1
∣∣∣ for − x0 � x � 0,

0 elsewhere.
(77)
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FIG. 5. The upper plots (a) and (b) refer to the parabolic initial profile, and the lower ones (c) and (d) to the triangular initial profile. Left
column: Different regions in the (x, t ) plane. The DSW occurs in the colored regions. The characteristics of the dispersionless evolution are
represented as gray lines. In plot (a) the time tA/B is the time where part A of the initial profile has been completely absorbed by the DSW.
For the triangular profile in plot (c) one has tA/B = tWB. Right column: Plot of the two varying Riemann invariants r1(x, t ) and r2(x, t ) at fixed
t = 10 for xL(t ) � x � xR(t ). In plots (a) and (b) the green dashed line marks the separation between regions A and B.

This profile is represented in Fig. 4 at t = 0, at wave-breaking
time, which in the present case is equal to tWB = x0/12 and
also at t = 2 tWB (using the dispersionless approximation pre-
sented in Sec. II A).

We henceforth denote the initial profile (6) as “parabolic”
and the initial profile (77) as “triangular.” As was indicated
above, the triangular profile has the particularity of having a
DSW within the region B only. This is clear from Fig. 4: Part
A of the initial profile does not penetrate into the DSW region
before part B does. Or, phrasing this differently, according
to the dispersionless evolution, at t = tWB both parts A and
B penetrate into the region of multivaluedness at x � −x0.

The DSW is described by Whitham method as explained
in Secs. II B and II C. For this purpose one needs to determine
r1 and r2 as functions of x and t (r3 ≡ 0). This is performed
as follows:

(i) First, we pick up a given r1 ∈ [−1, rR], where rR is the
value of r1 at the soliton edge, the point where the DSW is
connected to the rarefaction wave (how to compute it has been
explained in Sec. V C).

(ii) Second, at fixed t and r1, we find the corresponding
value r2 as a solution of the difference equation obtained from
Eqs. (21),

(v1 − v2) · t = W2(r1, r2) − W1(r1, r2) , (78)

where W1 and W2 are computed from Eq. (23).
(iii) Last, the corresponding value of x is determined by

x = W1 + v1t (or, equivalently, x = W2 + v2t).
This procedure gives, for each r1 ∈ [−1, rR] and t , the

value of r2 and x. In practice, it makes it possible to associate

to each (x, t ) a couple (r1, r2). The result is shown in Figs. 5
for the two initial profiles (6) and (77).

Note that the characteristics of the DSW are different for
the initial profiles (6) and (77): For the parabolic profile, in
Fig. 5(a), the edge point of the DSW—at (x0, tWB)—pertains to
region A and corresponds to r1 = 0, while for the triangular
profile, in Fig. 5(b), the edge point of the DSW belongs to
region B, with r1 = −1. For the parabolic profile, the value
r1 = −1 defines a line which separates the regions A and B of
the plane (x, t ), see Fig. 5(a). This line reaches a boundary of
the DSW only at xR(tA/B), where tA/B is the time where part A of
the initial profile has just been completely absorbed within the
DSW. On the other hand, for the triangular profile, the whole
left boundary of the DSW corresponds to the line r1 = −1,
see Fig. 5(c).

The knowledge of r1(x, t ) and r2(x, t ) makes it possible
to determine, for each time t > tWB, u(x, t ) as given by the
Whitham approach, for all x ∈ R:

(i) In the regions x � 0 and x � xL(t ), we have
u(x, t ) = 0.

(ii) In the region [xR(t ), 0], one has u(x, t ) = r (x, t )
which is solution of the Hopf equation (obtained by the
method of characteristics, as explained in Sec. II A).

(iii) Inside the DSW, for x ∈ [xL(t ), xR(t )], the function
u(x, t ) is given by expression (9), with r3 = 0 and r1 and
r2 determined as functions of x and t by the procedure just
explained.

The corresponding profiles are shown in Fig. 6 for the
parabolic and triangular initial distributions. The agreement
with the numerical solution of Eq. (2) is excellent in both
cases. The numerical simulations are performed using a
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FIG. 6. u(x, t ) as a function of x for fixed t . The left column refers to the parabolic initial profile and the right one to the triangular initial
profile. The upper row [(a) and (b)] corresponds to the wave-breaking time tWB, the central row [(c) and (d)] to t = 10, and the lower one
[(e) and (f)] to t = 100. The blue solid line corresponds to the numerical solution of Eq. (2). The thick envelopes correspond to the results of
Whitham modulation theory. The dashed red lines represent the dispersionless profile r (x, t ) and also, in (c)–(f), the Whitham result for the
soliton at the large-amplitude boundary of the DSW. The green dashed envelopes in (e) and (f) are the asymptotic self-similar results obtained
in Sec. IV.

spatial mesh h = 0.1, evaluating the spatial derivatives ux and
uxxx by means of, respectively, two- and four-point formulas
(i.e., with an accuracy h2), and time propagated using a fourth-
order Runge-Kutta method with a time step �t = 10−3.

In Fig. 7 we also compare the wavelength of the nonlin-
ear oscillations within the DSW as determined by Whitham
approach [Eq. (12)] with the results of numerical simulations,
and the agreement is again very good.

E. The initial square profile

In this section we discuss another type of initial condition,
which we denote as a “square profile”:

u0(x) =
{−1 for − x0 � x � 0,

0 elsewhere. (79)

El and Grimshaw already theoretically studied the same ini-
tial condition by using the method just explained [36]. We
will here compare the theory with numerical simulations to
indicate some limitations of the one-phase Whitham method
which we use in the present work.

For this initial profile, wave breaking occurs instanta-
neously (i.e., tWB = 0), and until t = x0/4 a plateau (i.e., a
segment with constant u(x, t ) = −1) separates the DSW (at
the right) from a rarefaction wave (at the left). In this con-
figuration, the DSW corresponds to the standard Gurevich-
Pitaevskii scheme for a steplike initial profile with a single
varying Riemann invariant (r2 in this case). This DSW can be
described using the self-similar variable ζ = (x + x0)/t ; in
this case Eq. (13) for i = 2 reads ζ = v2(−1, r2). One also
obtains xL(t ) = −x0 − 2 t , xR(t ) = −6 t and the rarefaction
wave corresponds to r (x, t ) = x/6t for x ∈ [xR(t ), 0].

It is interesting to remark that the Gurevich-Pitaevskii
DSW can also be described within the approach exposed in
Secs. II C and V D by solving Eq. (21) for i = 2. Here W A

2
should be computed from

W A(r1, r2) = −x0 (80)

by means of Eq. (23). The form (80) of W A comes from (67)
with wA(r ) = −x0.

At t = x0/4 the plateau disappears, and one enters into
region B with now, as usual, two varying Riemann invariants.
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FIG. 7. Evolution of the wavelength of the nonlinear oscillations
within the DSW as a function of position x. The figure corresponds
to the time evolution of the parabolic initial profile represented in the
lower left plot of Fig. 6 (t = 100). The continuous line represents
the results of Whitham theory and the points are the value of the
wavelength extracted from the numerical simulations.

Formulas (68) and (70) lead here to

W B(r1, r2) = −x0 − x0

π

∫ r1

−1

√
μ + 1 dμ√−μ(r1 − μ)(r2 − μ)

,

= −x0 + 2 x0/π√−r1(1 + r2)

×
{
�

(
1 + r1

r1
,m

)
− K (m)

}
, (81)

where m = (1 + 1/r1)/(1 + 1/r2) and � is the complete
elliptic integral of the third kind.

The predictions of Whitham theory are compared in Fig. 8
with numerical simulations. Surprisingly enough, the agree-
ment between simulation and theory decreases at large time:
At t = 100 one can notice oscillations in the envelope of the
front part of the DSW (Gurevich-Pitaevskii part). Inspection
of the dynamics of formation of the nonlinear structure reveals
that, during the formation of the rear rarefaction wave, oscil-
lations appear due to dispersive effects associated with the
discontinuity of the initial condition (79): Their interference
with the oscillations of the DSW leads to the modulated
structure which can be observed in the lower plot of Fig. 8.
Such a behavior requires a two-phase approach for a correct
description. Note also that for numerical purposes the initial
condition is smoothed2 and that the beating phenomenon
increases for sharper initial condition (or for lower values
of x0).

The predictions of the self-similar solution of Sec. IV are
also displayed in Fig. 8. In this figure, the envelopes of the
DSW expected from Eqs. (37) and (57) are represented by
red dashed lines. In the vicinity of its soliton edge, the DSW
is accurately described by the similarity solution. However
this approach is not able to tackle the other, small-amplitude,

2In the numerical simulations presented in Fig. 8 we take u0(x ) =
1
4 [tanh(x/�) − 1] × {1 + tanh[(x + x0 )/�]} with � = 2. This pro-
file tends to (79) when � → 0.
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FIG. 8. Evolution of an initial square profile of type (79) with
x0 = 80 after a time t = 50 (a) and t = 100 (b). The blue solid lines
are the results of numerical simulations. The orange envelopes are
determined by Whitham method. The green dashed envelopes are
the asymptotic self-similar results obtained in Sec. IV. The dashed
red lines represent the Whitham result for the soliton at the large-
amplitude boundary of the DSW. Note the change of scale in the axis
of the two plots.

boundary of the shock. This is expected since—as discussed
above—in the small-amplitude region a scaling different from
the one of Eq. (3) holds, with the relevant self-similar param-
eter ζ = (x + x0)/t ; see Refs. [9,37] for a general discussion.

VI. CONCLUSION

In the present work we have studied asymptotic solutions
of the KdV equation for which no soliton is formed. We
used the Whitham modulation theory combined with the
generalized hodograph method for describing the DSW which
is formed after wave breaking. The results typically compare
very well with numerical simulations (see Sec. V D), except
in the case of a initial square distribution (Sec. V E) where we
argue that a two-phase approach would be needed for a correct
description of the shock region.

A simple similarity description has been also obtained near
the large-amplitude region of the shock, still within the frame-
work of Whitham’s approach. Our results confirm, simplify,
and extend in some respects the previous works on this subject
(see Sec. IV). We also showed in Sec. III that this theory
provides a practical tool for the description of the nonlinear
evolution of pulses and can be used for comparison with
experimental data, since it yields simple analytic formulas
for some characteristic features of DSWs. In particular our
work reveals the existence of a conserved quantity which has
remained unnoticed until now, see Eq. (36).

Extensions of the present approach to noncompletely inte-
grable equations [35] and to other systems of physical interest
are under study.
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presence of a uniform background light intensity. For short propagation
distances the pulse can be described within a nondispersive (geomet-
ric optics) approximation by means of Riemann’s approach. For larger
distances, wave breaking occurs, leading to the formation of dispersive
shocks at both edges of the beam. We describe this phenomenon within
Whitham modulation theory, which yields excellent agreement with nu-
merical simulations. Our analytic approach makes it possible to extract
the leading asymptotic behavior of the parameters of the shock, setting
up the basis for a theory of nondissipative weak shocks.
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We describe theoretically the quasi-one-dimensional transverse spreading of a light beam propagating in a
nonlinear optical material in the presence of a uniform background light intensity. For short propagation distances
the pulse can be described within a nondispersive (geometric optics) approximation by means of Riemann’s
approach. For larger distances, wave breaking occurs, leading to the formation of dispersive shocks at both edges
of the beam. We describe this phenomenon within Whitham modulation theory, which yields excellent agreement
with numerical simulations. Our analytic approach makes it possible to extract the leading asymptotic behavior
of the parameters of the shock, setting up the basis for a theory of nondissipative weak shocks.
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I. INTRODUCTION

It has long been known that light propagating in a nonlinear
medium is amenable to a hydrodynamic treatment (see, e.g.,
Refs. [1–3]). In the case of a defocusing nonlinearity, this
rich analogy has not only triggered experimental research,
but also made it possible to get an intuitive understanding
of observations of, e.g., the formation of rings in the far
field beyond a nonlinear slab [4,5], dark solitons [6–8], vor-
tices [9–11], wave breaking [12,13], dispersive shock waves
[14–19], spontaneously self-accelerated Airy beams [20], an
optical event horizon [21], ergo regions [22], stimulated
Hawking radiation [23], soniclike dispersion relations [24,25],
and superfluid motion [26]. Very similar phenomena have also
been observed in the neighboring fields of cavity polaritons
and Bose-Einstein condensation of atomic vapors. They all
result from the interplay between nonlinearity and dispersion,
whose effects become prominent near a gradient catastrophe
region.

In this work we present a theoretical treatment of a model
configuration which has been realized experimentally in a
one-dimensional situation in Refs. [15,18]: the nonlinear
spreading of a region of increased light intensity in the
presence of a uniform constant background. In the absence
of background and for a smooth initial intensity pattern, the
spreading is mainly driven by the nonlinear defocusing and
can be treated analytically in some simple cases [1]. The
situation is more interesting in the presence of a constant
background: The pulse splits in two parts, each eventually
experiencing nonlinear wave breaking, leading to the for-
mation of a dispersive shock wave (DSW) which cannot be
described within the framework of perturbation theory, even
if the region of increased intensity corresponds to a weak
perturbation of the flat pedestal. This scenario indeed fits with
the hydrodynamic approach of nonlinear light propagation
and is nicely confirmed by the experimental observations
of Refs. [15,18]. Although the numerical treatment of the
problem is relatively simple [27–29], a theoretical approach to
both the initial splitting of the pulse and the subsequent shock

formation requires a careful analysis. The goal of this article is
to present such an analysis. A most significant outcome of our
detailed treatment is a simple asymptotic description of some
important shock parameters. This provides a nondissipative
counterpart of the usual weak viscous shock theory (see, e.g.,
Ref. [30]) and paves the way for a quantitative experimental
test of our predictions.

The paper is organized as follows. In Sec. II we present the
model and the setup we study. After a brief discussion of the
shortcomings of the linearized approach, the spreading and
splitting stage of evolution is accounted for in Sec. III within
a dispersionless approximation which holds when the pulse
region initially presents no large intensity gradient. It is well
known that in such a situation the light flow can be described
by hydrodynamiclike equations which can be cast into a diag-
onal form for two new position and time-dependent variables:
the so-called Riemann invariants. The difficulty here lies in
the fact that the splitting involves simultaneous variations of
both of them: One does not have an initial simple wave within
which one of the Riemann invariants remains constant, as
occurs, for instance, in a similar unidirectional propagation
case modeled by the Korteweg–de Vries equation (see, e.g.,
Ref. [31]). We treat the problem in Secs. III A and III B using
an extension of the Riemann method due to Ludford [32] (also
used in Ref. [33]) and compare the results with numerical
simulations in Sec. III C. During the spreading of the pulse,
nonlinear effects induce wave steepening, which results in
a gradient catastrophe and wave breaking. After the wave
breaking time, dispersive effects can no longer be omitted
and a shock is formed; in this case we resort to Whitham
modulation theory [30] to describe the time evolution of the
pulse. Such a treatment was initiated long ago by Gurevich
and Pitaevskii [34], and since that time it has developed into
a powerful method with numerous applications (see, e.g., the
review article in [35]). Here there is an additional complexity
which lies, as for the initial nondispersive stage of evolution,
in the fact that two of the (now four) Riemann invariants
which describe the modulated nonlinear oscillations vary in
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the shock region. Such a wave has been termed quasisim-
ple in Ref. [36], and a thorough treatment within Whitham
theory has been achieved in the Korteweg–de Vries case in
Refs. [37–40]. In Sec. IV we generalize this approach to the
nonlinear Schrödinger equation (NLS), which describes light
propagation in the nonlinear Kerr medium (see also Ref. [41]).
An interesting outcome of our theoretical treatment is the
asymptotic determination of experimentally relevant param-
eters of the dispersive shock (Sec. V). In Sec. VI we present
the full Whitham treatment of the after-shock evolution and
compare the theoretical results with numerical simulations.
We present in Sec. VII a panorama of the different regimes we
have identified and discuss how our approach can be used to
get a simple estimate of the contrast of the fringes of the DSW.
This should be helpful in determining the best experimental
configuration for studying the wave breaking phenomenon
and the subsequent dispersive shock. Our conclusions and a
summary of our results are presented in Sec. VIII.

II. MODEL AND LINEAR APPROXIMATION

In the paraxial approximation, the stationary propagation
of the complex amplitude A(�r ) of the electric field of a
monochromatic beam is described by the equation (see, e.g.,
Ref. [42])

i∂zA = − 1

2n0k0
∇2

⊥A − k0δnA. (1)

In this equation, n0 is the linear refractive index, k0 = 2π/λ0

is the carrier wave vector, z is the coordinate along the
beam, ∇2

⊥ is the transverse Laplacian, and δn is a nonlinear
contribution to the index. In a nonabsorbing defocusing Kerr
nonlinear medium we can write δn = −n2|A|2, with n2 > 0.

We define dimensionless units by choosing a refer-
ence intensity Iref and introducing the nonlinear length
zNL = (k0n2Iref )−1 and the transverse healing length ξ⊥ =
(zNL/n0k0)1/2. We consider a geometry where the transverse
profile is translationally invariant and depends on a single
Cartesian coordinate. We thus write ∇2

⊥ = ξ−2
⊥ ∂2

x , where x
is the dimensionless transverse coordinate and we define an
effective time t = z/zNL. The quantity ψ (x, t ) = A/

√
Iref is

then a solution of the dimensionless NLS equation

iψt = − 1
2ψxx + |ψ |2ψ. (2)

In the following we consider a system with a uniform back-
ground light intensity, on top of which an initial pulse is added
at the entrance of the nonlinear cell. The initial ψ (x, t = 0)
is real (i.e., no transverse velocity or, in an optical context,
no focusing of the light beam at the input plane), with a
dimensionless intensity ρ(x, t ) = |ψ |2 which departs from the
constant background value (which we denote by ρ0) only
in the region near the origin where it forms a bump. To be
specific, we consider the typical case where

ρ(x, 0) =
{
ρ0 + ρ1

(
1 − x2/x2

0

)
if |x| < x0

ρ0 if |x| � x0.
(3)

The maximal density of the initial profile is defined as ρm =
ρ0 + ρ1. It would be natural to choose the reference light
intensity Iref to be equal to the background one; in this case

(a)

(b)

FIG. 1. Density profiles ρ(x, t ) for an initial condition u(x, 0) =
0 and ρ(x, 0) given by (3) with ρ0 = 1, ρ1 = 0.15, and x0 = 20.
Results are shown for (a) the numerical solution of Eq. (2) and (b) the
linearized version (4). The profiles are plotted from time t = 0 to
t = 360 with a time step equal to 40.

we would have ρ0 = 1. However, we prefer to be more general
and to allow for values of ρ0 different from unity.

We stress here the paramount importance of nonlinear
effects for large time, i.e., for large propagation distance in
the nonlinear medium. Even for a bump which weakly departs
from the background density, a perturbative approach fails
after the wave breaking time. This is illustrated in Fig. 1,
which compares numerical simulations of the full Eq. (2) with
its linearized version. The linearized treatment is obtained by
writing ψ (x, t ) = exp(−iρ0t )[

√
ρ0 + δψ (x, t )] and assuming

that |δψ |2 � ρ0, which yields the evolution equation

i∂tδψ = − 1
2∂2

x δψ + ρ0(δψ + δψ∗) (4)

and then ρ(x, t ) � ρ0 + √
ρ0(δψ + δψ∗). In the case illus-

trated in Fig. 1, the initial profile has, at its maximum, a
weak 15% density increase with respect to the background.
The initial splitting of the bump is correctly described by
the linearized approach, but after the wave breaking time
the linearized evolution goes on predicting a roughly global
displacement of the two humps at constant velocity (with
additional small dispersive corrections) and clearly fails to
reproduce both the formation of DSWs and the stretching
of the dispersionless part of the profile (which reaches a
quasitriangular shape).
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III. DISPERSIONLESS STAGE OF EVOLUTION

In view of the shortcomings of the linearized approxima-
tion illustrated in Fig. 1, we include nonlinear effects at all
stages of the dynamical study of the model. By means of the
Madelung substitution

ψ (x, t ) =
√

ρ(x, t ) exp

(
i
∫ x

u(x′, t )dx′
)

, (5)

the NLS equation (2) can be cast into a hydrodynamiclike
form for the density ρ(x, t ) and the flow velocity u(x, t ):

ρt + (ρu)x = 0,

ut + uux + ρx +
(

ρ2
x

8ρ2
− ρxx

4ρ

)
x

= 0.
(6)

These equations are to be solved with the initial conditions (3)
and u(x, 0) = 0.

The last term on the left-hand side of the second of Eqs. (6)
accounts for the dispersive character of the fluid of light. In the
first stage of spreading of the bump, if the density gradients of
the initial density are weak, i.e., if x0 
 max{ρ−1/2

0 , ρ
−1/2
1 },

the effects of dispersion can be neglected and the system (6)
then simplifies to

ρt + (ρu)x = 0, ut + uux + ρx = 0. (7)

These equations can be written in a more symmetric form by
introducing the Riemann invariants

λ±(x, t ) = u(x, t )

2
±

√
ρ(x, t ), (8)

which evolve according to the system [equivalent to (7)]

∂tλ
± + v±(λ−, λ+)∂xλ

± = 0, (9)

with

v±(λ−, λ+) = 1
2 (3λ± + λ∓) = u ± √

ρ. (10)

The Riemann velocities (10) have a simple physical inter-
pretation for a smooth velocity and density distribution: v+
(v−) corresponds to a signal which propagates downstream
(upstream) at the local velocity of sound c = √

ρ and which
is dragged by the background flow u.

The system (9) can be linearized by means of the hodo-
graph transform (see, e.g., Ref. [43]), which consists in con-
sidering x and t as functions of λ+ and λ−. We readily obtain

∂±x − v∓∂±t = 0, (11)

where ∂± ≡ ∂/∂λ±. We introduce two auxiliary (yet un-
known) functions W±(λ+, λ−) such that

x − v±(λ−, λ+)t = W±(λ−, λ+). (12)

Inserting the above expressions in (11) shows that the W ± are
solutions of Tsarev equations [44]

∂−W+
W+ − W−

= ∂−v+
v+ − v−

,
∂+W−

W+ − W−
= ∂+v−

v+ − v−
. (13)

From Eqs. (10) and (13) we can verify that ∂−W+ = ∂+W−,
which shows that W+ and W− can be sought in the form

W± = ∂±χ, (14)

where χ (λ−, λ+) plays the role of a potential. Substituting
expressions (14) in one of the Tsarev equations shows that χ

is a solution of the Euler-Poisson equation

∂2χ

∂λ+∂λ− − 1

2(λ+ − λ−)

(
∂χ

∂λ+ − ∂χ

∂λ−

)
= 0, (15)

which can be written under the standard form

∂2χ

∂λ+∂λ− + a(λ−, λ+)
∂χ

∂λ+ + b(λ−, λ+)
∂χ

∂λ− = 0, (16)

with

a(λ−, λ+) = −b(λ−, λ+) = − 1

2(λ+ − λ−)
. (17)

A. Solution of the Euler-Poisson equation

We can use Riemann’s method to solve Eq. (16) in the
(λ+, λ−) plane, which we refer to below as the characteristic
plane. We follow here the procedure given in Refs. [32,33],
which applies to nonmonotonic initial distributions, such as
the one corresponding to Eq. (3).

We first schematically depict in Fig. 2 the initial spatial
distributions λ±(x, 0) of the Riemann invariants [Fig. 2(a)]
and their later typical time evolution [Figs. 2(b) and 2(c)].
We introduce notation for several special initial values of the
Riemann invariants: λ±(−x0, 0) = λ±(x0, 0) = ±√

ρ0 = ±c0

and λ±(0, 0) = ±√
ρm = ±cm. We also define as part A (B)

the branch of the distribution of the λ± which is at the right
(left) of the extremum. All the notation is summarized in
Fig. 2(a).

At a given time, the x axis can be considered as divided into
five domains, each requiring a specific treatment. Each region
is characterized by the behavior of the Riemann invariant and
is identified in Figs. 2(b) and 2(c). The domains in which
both Riemann invariants depend on position are labeled by
arabic numbers and the ones in which only one Riemann
invariant depends on x are labeled by roman numbers. For
instance, in region III, λ+ is a decreasing function of x while
λ− = −c0 is a constant; in region 3, λ+ is decreasing while
λ− is increasing; in region 2 both are increasing; etc.

The values of the Riemann invariants at time corresponding
to Fig. 2(b) are represented in the characteristic plane in
Fig. 3(a). In this plot the straight solid lines correspond to
the simple-wave regions (I and III) while the curvy lines
corresponds to regions where both Riemann invariants de-
pend on position: domains 1, 2, and 3. In each of these
three domains the solution χ of the Euler-Poisson equation
has a different expression. In order to describe these three
branches, following Ludford [32], we introduce several sheets
in the characteristic plane by unfolding the domain [c0, cm] ×
[−cm,−c0] into a four times larger region as illustrated in
Fig. 3(b). The potential χ (λ−, λ+) can now take a different
form in each of the regions labeled 1, 2, and 3 in Fig. 3(b) and
still be considered as single valued.

We consider a flow where initially u(x, 0) = 0, which
implies that λ+(x, 0) = −λ−(x, 0). This condition defines the
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FIG. 2. Sketch of the distributions λ±(x, t ) at several times. In
each panel the top solid curve represent λ+ (always larger than c0)
and the bottom one λ− (always lower than −c0), both plotted as
functions of x. (a) Initial distribution, in which part B corresponds
to region 1 and part A to region 3 (see the text). Two subsequent
relevant stages of evolution are represented in (b) and (c). They
correspond to times t1 < tSW(cm ) < t2, where tSW(cm ) is defined in
Sec. III B (see also Fig. 4). For t > 0, λ+ (λ−) moves to the right (to
the left) and part B of λ+ starts to overlap with part A of λ−. This
behavior initially leads to the configuration represented in (b), where
a new region (labeled region 2) has appeared. For later convenience,
we spot in this panel the value λ+

1|2(t1) of the Riemann invariant
λ+ at the boundary between regions 1 and 2 (see the discussion in
Sec. III C). For longer time [in (c)], region 2 remains while regions
1 and 3 vanish and new simple-wave regions IIl and IIr appear.
At even larger times (not represented), region 2 also vanishes and
only simple-wave regions remain: The initial pulse has split into two
simple-wave pulses propagating in opposite directions.

curve of initial conditions of our problem in the characteristic
plane. It is represented by a red solid curve labeled C0 in
Fig. 3. We remark here that the whole region above C0 [shaded
in Fig. 3(b)] is unreachable for the initial distribution we
consider: For instance, the upper shaded triangle in region 1
would correspond to a configuration in which λ+

region1(x, t ) >

|λ−
region1(x, t )|, which does not occur in our case [see

Fig. 2(b)].
Before establishing that the expression for χ is the three

relevant regions of Fig. 3, it is convenient to define the inverse

FIG. 3. (a) Behavior of the Riemann invariants in the character-
istic plane at a given time t . (b) Same curve on the four-sheeted un-
folded surface. The red curve C0 corresponds to the initial condition
[λ−(x, 0) = −λ+(x, 0)]. At later time, the relation between λ+(x, t )
and λ−(x, t ) is given by the black solid curve, which is denoted by
Ct in the text. A generic point P of Ct has coordinates (λ+, λ−) and
points C1, A1, B2, C3, and A3 lie on the initial curve C0. Points A2

and C2 lie on a boundary between two regions. The arrows indicate
the direction of integration in Eqs. (21) and (28). In our problem, the
whole gray shaded domain above C0 is unreachable.

functions of the initial λ profiles in both parts A and B of
Fig. 2(a). The symmetry of the initial conditions makes it
possible to use the same functions for λ+ ∈ [c0, cm] and λ− ∈
[−cm,−c0]:

x =

⎧⎪⎨
⎪⎩

wA(λ±) = x0

√
1 − (λ± )2−ρ0

ρm−ρ0
if x > 0

wB(λ±) = −x0

√
1 − (λ± )2−ρ0

ρm−ρ0
if x < 0.

(18)
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For t = 0, using Eqs. (12) and (14), the boundary conditions
read

∂χ

∂λ±

∣∣∣∣
λ±(x,t=0)

= x = wA(B)(λ±), (19)

where the superscript B holds in region 1 (when x < 0) and
A holds in region 3 (x > 0). Formula (19) requires some
explanation: Its left-hand side is a function of two variables
λ+ and λ− which is evaluated for λ− = −λ+; its right-hand
side is expressed by the same function in terms of λ+ or λ−
since the functions wA and wB depend only on the square of
their argument. The boundary conditions (19) correspond to a
potential χ which takes the form along C0,

χ (n)(λ− = −λ+, λ+)

=
∫ λ+

c0

wA(B)(r)dr +
∫ λ−

−c0

wA(B)(r)dr, (20)

where n = 1 or 3 and, on the right-hand side, the superscript
A (B) holds when n = 3 (n = 1). For the specific initial con-
dition we consider [u(x, 0) ≡ 0 and ρ(x, 0) an even function
of x], wA and wB are even functions and thus our choice of
integration constants yields χ = 0 along C0.

Let us now consider a point P, lying in either region 1 or
3 (the case of region 2 is considered later), with coordinates
(λ+, λ−) in the characteristic plane. We introduce points A1,
A3, C1, and C3 which are located on the curve C0, with geo-
metrical definitions obvious from Fig. 3(b). Note the different
subscripts for C and A: Subscript 1 (3) is to be used if P is in
region 1 (3). We can obtain the value of χ at the point P from
Riemann’s method (see, e.g., Ref. [45]); the general solution
reads

χ (n)(P) = 1

2
χ (Cn)R(Cn) + 1

2
χ (An)R(An)

−
∫ Cn

An

V dr + U ds, (21)

with

U (s, r) = 1

2

(
R

∂χ

∂s
− χ

∂R

∂s

)
+ aRχ,

V (s, r) = 1

2

(
χ

∂R

∂r
− R

∂χ

∂r

)
− bRχ,

(22)

where

R(s, r) = 2

π

√
r − s

λ+ − λ− K[m(s, r)], (23)

with K the complete elliptic integral of the first kind and

m(s, r) = (λ+ − r)(λ− − s)

(r − s)(λ+ − λ−)
(24)

the associated parameter (we follow here the convention of
Ref. [46]). In our case, the symmetries of the initial profile
lead to many simplifications in formulas (21) and (22). Along
the curve C0 we have χ = 0. This implies that χ (n)(An) =
χ (n)(Cn) = 0, and along the integration path going from An

to Cn we have

U = 1
2wA(B)(r)R(s = −r, r) = −V, (25)

where the superscript A (B) holds when P is in region 3
(region 1). Explicit evaluation of expression (21) then yields

χ (n)(P) = 2
√

2

π
√

λ+ − λ−

∫ λ+

−λ−

√
rK[m(r)]wA(B)(r)dr, (26)

where

m(r) ≡ m(−r, r) = (λ+ − r)(λ− + r)

2r(λ+ − λ−)
. (27)

To calculate χ (P) in region 2 we define three points: A2,
B2, and C2 [see Fig. 3(b)]. Point B2 is on the curve C0, at
the junction between regions 1, 2, and 3. Point A2 lies on
the characteristic curve λ+ = cm, on the boundary between
regions 2 and 3, whereas point C2 lies on the characteristic
λ− = −cm, on the boundary between regions 1 and 2. Then,
from Eqs. (21)–(24), we can easily find that in region 2,

χ (2)(P) = χ (B2)R(B2) +
∫ C2

B2

(
∂χ

∂r
+ bχ

)
R1(r)dr

−
∫ B2

A2

(
∂χ

∂s
+ aχ

)
R2(s)ds, (28)

where

R1(r) ≡ 2

π

√
r + cm

λ+ − λ− K[m1(r)],

m1(r) = (r − λ+)(cm + λ−)

(r − λ−)(λ+ + cm)
(29)

and

R2(s) = 2

π

√
cm − s

λ+ − λ− K[m2(s)],

m2(s) = (cm − λ+)(λ− − s)

(cm − λ−)(λ+ − s)
. (30)

Note that in formula (28) we have χ (B2) = 0 and the value of
χ along the integration lines B2C2 and A2B2 is known from the
previous result (26). After some computation we eventually
get the expression for χ (P) in region 2,

χ (2)(P) = 2
√

2

π
√

λ+ − λ−

[ ∫ λ+

cm

√
rK[m0(r; λ+)]wB(r)dr

+
∫ cm

−λ−

√
rK[m0(r; −λ−)]wA(r)dr

]

+ 4
√

2

π2
√

λ+ − λ−

[ ∫ λ+

cm

√
rwB(r) f1(r)dr

+
∫ cm

−λ−

√
rwA(r) f2(r)dr

]
, (31)

where we have introduced the notation

f1(r) =
∫ r

λ+
K[m0(r; u)]

∂K[m1(u)]

∂u
du,

f2(r) =
∫ r

−λ−
K[m0(r; u)]

∂K[m2(−u)]

∂u
du,

(32)

with

m0(r; u) = (r − u)(cm − r)

2r(u + cm)
. (33)
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In many instances we can actually simplify the expressions
(26) and (31): for reasonable values of cm (chosen to be of
same order as c0 in our simulations) the elliptic integral K(m)
turns out to be approximately equal to π/2 for all points P
in the three regions. In this case, the exact expressions (26)
and (31) can be replaced by a simple approximation χ (P) �
χapp(P) which reads, when P is in region n = 1 or 3,

χ (n)
app(λ−, λ+) =

√
2√

λ+ − λ−

∫ λ+

−λ−

√
rwA(B)(r)dr, (34)

where the superscript A (B) holds when n = 3 (n = 1). When
P is in region 2 we get

χ (2)
app(λ−, λ+) =

√
2√

λ+ − λ−

∫ λ+

cm

√
rwB(r)dr

+
√

2√
λ+ − λ−

∫ cm

−λ−

√
rwA(r)dr. (35)

This approximation greatly simplifies the numerical determi-
nation of the integrals involved in the solution of the problem.
We have checked that it is very accurate in all the configura-
tions we study in the present work. The reason for its validity
is easy to understand in regions 1 and 3: The argument of the
elliptic integral K in Eq. (26) is zero at the two boundaries of
the integration domain (r = −λ− and r = λ+) and reaches a
maximum when r = √−λ−λ+, taking the value

0 � mmax = 1

2

(
1 − 2

√−λ−λ+

λ+ − λ−

)
� 1

2
. (36)

As time varies, the largest value of mmax is reached at the point
where region 3 disappears, when λ+ = cm and λ− = −c0.
For cm/c0 ∼ 1 this value is typically much lower than the
upper bound 1

2 of Eq. (36). For instance, in the numerical
simulations below, we take ρ0 = 0.5 and ρm = 2 and we get
accordingly c0 = √

0.5 and cm = √
2 and the corresponding

largest value of mmax is �2.9 × 10−2.

B. Simple-wave regions

Once χ has been computed in the domains 1, 2, and 3
where two Riemann invariants depend on position, it remains
to determine the values of λ+ and λ− in the simple-wave
regions. Let us focus on, for instance, region III, in which
λ− = −c0 and λ+ depends on x and t . The behavior of the
characteristics in the (x, t ) plane is sketched in Fig. 4. We
see in this figure that the characteristic of a given value of
λ+ enters the simple-wave region III at a given time, which
we denote by tSW(λ+), and a given position xSW(λ+). Beyond
this point the characteristic becomes a straight line and the
general solution of Eq. (9) for λ+ is known to be of the form

x − v+(−c0, λ
+)t = h(λ+), (37)

where the unknown function h is determined by boundary
conditions. From Eq. (12) we see that just at the boundary
between regions 3 and III we have

xSW(λ+) − v+(−c0, λ
+)tSW(λ+) = W (3)

+ (−c0, λ
+), (38)

where W (3)
+ = ∂+χ (3). This shows that in Eq. (37) the

unknown function h(λ+) is equal to W (3)
+ (−c0, λ

+). The

const

FIG. 4. Sketch of the characteristics in the (x, t ) plane. The black
(red) solid lines are specific characteristics for λ+ (λ−) stemming
from the edges of the hump and from its maximum. The thick dashed
line is a generic characteristic of λ+. In the hatched regions both
Riemann invariants are constant [λ±(x, t ) = ±c0] and the profile
is flat. In the colored regions both Riemann invariants depend on
position (the color code is the same as in Fig. 3: region 1 is pink,
region 2 is yellow, and region 3 is cyan). In the white regions only
one Riemann invariant depends on position: We have a simple wave.
The notation is explained in the text.

equation of the characteristic in region III thus reads

x − v+(−c0, λ
+)t = W (3)

+ (−c0, λ
+). (39)

Similar reasoning shows that in region I we have

x − v−(λ−, c0)t = W (1)
− (λ−, c0). (40)

For time larger than tSW(cm), regions 1 and 3 disappear and
two new simple-wave regions appear, which we denote by IIl

and IIr [see Fig. 4 and also Fig. 2(c)]. The same reasoning
as above shows that in these regions the characteristics are
determined by

x − v+(−c0, λ
+)t = W (2)

+ (−c0, λ
+) in IIr (41)

and

x − v−(λ−, c0)t = W (2)
− (λ−, c0) in IIl . (42)

C. Solution of the dispersionless problem and comparison
with numerical simulations

The problem is now solved: Having determined χ in
regions 1, 2, and 3 (see Sec. III A), we obtain W± in these
regions from Eqs. (14).

(i) It is then particularly easy to find the values of λ+ and
λ− in the simple-wave regions. For instance, in region III, we
have λ− = −c0, and for given x and t , λ+ is obtained from
Eq. (39). The same procedure is to be employed in the simple-
wave regions I, IIr , and IIl , where the relevant equations are
then Eqs. (40), (41), and (42), respectively.

(ii) To determine the values of λ+ and λ− as functions of
x and t in regions 1, 2, and 3 we follow a different procedure
which is detailed below, but which essentially consists in the
following: For a given time t and a given region n (n = 1, 2,
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FIG. 5. Theoretical curves Ct representing λ− as a function of
λ+ at a given time in the characteristic plane. The curves are plotted
for t = 0 (C0, in red), t = 2 (blue), t = 5 (orange), and t = 20 >

tSW(cm ) (green). The corresponding initial distribution λ±(x, 0) is
schematically represented in Fig. 2(a). We take here c0 = 1/

√
2 and

cm = √
2.

or 3) we pick one of the possible values of λ+. From Eqs. (12)
λ− is then solution of

W (n)
+ (λ−, λ+) − W (n)

− (λ−, λ+)

v+(λ−, λ+) − v−(λ−, λ+)
+ t = 0 (43)

and x is determined by either one of Eqs. (12). So, for given
t and λ+ in region n, we have determined the values of λ−
and x. In practice, this makes it possible to associate a couple
(λ−, λ+) in region n to each (x, t ).

The procedure for determining the profile in regions 1, 2,
and 3 which has just been explained has to be implemented
with care, because the relevant regions to be considered and
their boundaries change with time; for instance, regions 1 and
3 disappear when t > tSW(cm). It would be tedious to list here
all the possible cases so instead we explain the specifics of the
procedure by means of an example: the determination of λ+
and λ− in region 1 when t < tSW(cm).

We start by determining the value of λ+ along the char-
acteristic λ− = −cm at time t (see Fig. 4). This value of
λ+ defines the boundary between regions 1 and 2 and we
accordingly denote it by λ+

1|2(t ); it is represented in Fig. 2(b).
From Eqs. (12) it is a solution of

W (1)
+ (−cm, λ+

1|2) − W (1)
− (−cm, λ+

1|2)

v+(−cm, λ+
1|2) − v−(−cm, λ+

1|2)
+ t = 0. (44)

We then know that, in region 1, at time t , λ+ takes all possible
values between c0 and λ+

1|2(t ). Having determined the precise
range of variation of λ+ we can now, for each possible λ+,
determine λ− from Eq. (43) (with n = 1) and follow the
above-explained procedure.

(iii) The approach described in the present section makes it
possible to determine the curve Ct representing, at time t , the
profile in the unfolded characteristic plane. A sketch of Ct was
given in Fig. 3(b); it is now precisely represented in Fig. 5 for
several values of t , along with the initial curve C0.

Once λ+ and λ− have been determined as functions of x
and t , the density and velocity profiles are obtained through
Eqs. (8). We obtain an excellent description of the initial
dispersionless stage of evolution of the pulse, as demonstrated

−60 −40 −20 0 20 40 60
0.0

0.5

1.0

1.5

2.0

ρ
(x

,t
=

5)

FIG. 6. Comparison between theory and simulations for t = 5.
The red dashed curve is extracted from the exact solution of the
dispersionless system (9) (see the text), while the blue curve displays
the numerical solution of Eq. (2) with the initial conditions u(x, 0) =
0 and ρ(x, 0) given by Eq. (3) taking ρ0 = 0.5, ρ1 = 1.5 (i.e., ρm =
2), and x0 = 20. The corresponding initial distributions λ±(x, 0) are
drawn schematically in Fig. 2(a), here with c0 = √

ρ0 = √
0.5 and

cm = √
ρm = √

2.

by the very good agreement between theory and numerical
simulations illustrated in Figs. 6 and 7. These figures, together
with Fig. 8, compare at different times the theoretical density
profile ρ(x, t ) with the one obtained by numerical integration
of Eq. (2), taking the initial condition u(x, 0) = 0 and ρ(x, 0)
given by (3) with ρ0 = 0.5, ρm = 2, and x0 = 20. Similar
agreement is obtained for the velocity profile u(x, t ). Note
that for time t = 5, some small diffractive contributions at
the left and right boundaries of the pulse are not accounted
for by our dispersionless treatment (see Fig. 6). At larger
time, the density profile at both ends of the pulse steepens
and the amplitude of these oscillations accordingly increases.
There exists a certain time, the wave breaking time tWB, at
which nonlinear spreading leads to a gradient catastrophe;
the dispersionless approximation subsequently predicts a non-
physical multivalued profile, as can be seen in Fig. 7 and more
clearly in Fig. 8. The time tWB can be easily computed if the
wave breaking occurs at the simple-wave edges of the pulse
(see, e.g., [47]) as it happens in our case, when the simple

−60 −40 −20 0 20 40 60
0.0

0.5

1.0

1.5

2.0

ρ
(x

,t
=

10
)

FIG. 7. Same as Fig. 6 but with t = 10. Notice that the disper-
sionless treatment leads to small regions of multivalued profile at
both edges of the pulse.
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−60 −40 −20 0 20 40 60
0.0

0.5

1.0

1.5

2.0

ρ
(x

,t
=

15
)

FIG. 8. Same as Figs. 6 and 7 but with t = 15. The multivalued-
ness of the theoretical profile is obvious here. It is associated with
the formation of dispersive shocks at both edges of the pulse.

waves I and III break. These edges propagate with the sound
velocity c0 over a flat background and, at the wave breaking
moment, the profile of λ+ in region III (or λ− in region I)
has a vertical tangent line in the limit λ+ → c0 (λ− → −c0),
that is, ∂x/∂λ± → 0 as λ± → ±c0. Then differentiation of the
simple-wave solution (39) or (40) gives at once

tWB = 2

3

∣∣∣∣∣dW (3)
+ (−c0, λ

+)

dλ+

∣∣∣∣∣
λ+=c0

(45)

(for definiteness we consider the simple wave in the region
III). Substitution of the expression for W (3)

+ (−c0, λ
+) in the

relation (45) yields, after simple calculations [48],

tWB = 2

3

∣∣∣∣dwA

dλ+

∣∣∣∣
λ+=c0

. (46)

The numerical value of tWB is �6.3 for our choice of initial
condition, in excellent agreement with the onset of double
valuedness of the solution of the Euler-Poisson equation. In
dispersive nonlinear systems the wave breaking is regularized
by formation of regions with large oscillations of density and
flow velocity, whose extent increases with time. This situation
is typical for the formation of dispersive shock waves and
requires a nonlinear treatment able to account for dispersive
effects. Such an approach is introduced in the next section, but
before turning to this aspect, we now compute an important
characteristics time: the time tsplit at which the initial bump has
exactly split into two separated parts. For t > tsplit a plateau
of constant density ρ0 develops between the two separated
humps, as illustrated, for instance, in Fig. 1. We can see from
Fig. 4 that tsplit = tSW(c0) and can thus be computed from
Eqs. (12) as

tsplit = W (2)
− (−c0, c0) − W (2)

+ (−c0, c0)

v+(−c0, c0) − v−(−c0, c0)
. (47)

On the right-hand side of this equation we have W (2)
± =

∂±χ (2), where it is legitimate to use the expression (35) since
we are in the limiting case where λ+ = −λ−. This yields at
once

tsplit = x0

c0
+ 1

4c5/2
0

∫ cm

c0

√
r[wA(r) − wB(r)]dr. (48)

In the limit of a very small initial bump, cm is very close to
c0 and the second term on the right-hand side of Eq. (48) is
negligible. In this case a linear approach is valid: The two
subparts of the bump move, one to the right, the other to the
left, at velocities ±c0 and a time tsplit � x0/c0 is needed for
their complete separation. The second term on the right-hand
side of Eq. (48) describes the nonlinear correction to this
result. For the initial profile (3) the expressions of wA and wB

are given in Eq. (18) and we directly obtain, from Eq. (48),

tsplit = x0

c0
[1 + G(ρ1/ρ0)], (49)

where

G(X ) = X

4

∫ 1

0

√
1 − u

(1 + Xu)1/4
du. (50)

In the simulations, we took x0 = 20, c0 = √
0.5, and ρ1/ρ0 =

3 and formula (49) then yields tsplit � 40.1. Note that in this
case the simple linear estimate would be x0/c0 � 28.3. The
accuracy of the result (49) can be checked against numerical
simulations by plotting the numerically determined central
density of the hump ρ(x = 0, t ) as a function of time and
checking that it just reaches the background value at t = tsplit .
This is indeed the case: For the case we consider here ρ(x =
0, t = 40.1) departs from ρ0 by only 3%.

For a small bump with ρ1 � ρ0, the weak nonlinear correc-
tion to the linear result is obtained by evaluating the small-X
behavior of the function G in (50). This yields

tsplit � x0

c0

[
1 + 1

6

ρ1

ρ0
− 1

60

(
ρ1

ρ0

)2

+ · · ·
]
. (51)

For the numerical values for which we performed the simula-
tions, stopping expansion (51) at first order in ρ1/ρ0 yields
tsplit � 42.4. At the next order we get tsplit � 38.2. These
values are reasonable upper and lower bounds for the exact
result. Of course, the expansion is more efficient for lower
values of ρ1/ρ0: Even for the relatively large value ρ1/ρ0 = 1,
expansion (51) gives an estimate which is off the exact result
(49) by only 0.3%.

IV. WHITHAM THEORY AND GENERALIZED
HODOGRAPH METHOD

In this section we first give a general presentation of
Whitham modulational theory (Sec. IV A) and then discuss
specific features of its implementation for the case in which
we are interested (Sec. IV B).

A. Periodic solutions and their modulations

The NLS equation (2) is equivalent to the system (6) which
admits nonlinear periodic solutions that can be written in
terms of four parameters λ1 � λ2 � λ3 � λ4 in the form (see,
e.g., Ref. [43])

ρ(x, t ) = 1

4
(λ4 − λ3 − λ2 + λ1)2 + (λ4 − λ3)(λ2 − λ1)

× sn2(
√

(λ4 − λ2)(λ3 − λ1)(x − V t ), m),

u(x, t ) = V − C

ρ(x, t )
, (52)
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where sn is the Jacobi elliptic sine function (see, e.g.,
Ref. [46]),

V = 1
2

4∑
i=1

λi, m = (λ2 − λ1)(λ4 − λ3)

(λ4 − λ2)(λ3 − λ1)
, (53)

and

C = 1
8 (−λ1 − λ2 + λ3 + λ4)(−λ1 + λ2 − λ3 + λ4)

× (λ1 − λ2 − λ3 + λ4). (54)

For constant λi, expressions (52)–(54) correspond to an exact
(single-phase) solution of the NLS equation, periodic in time
and space, where oscillations have the amplitude

a = (λ2 − λ1)(λ4 − λ3) (55)

and the spatial wavelength

L = 2K(m)√
(λ4 − λ2)(λ3 − λ1)

. (56)

In the limit m → 0 (λ1 = λ2 or λ3 = λ4), sn(x, m) → sin(x)
and Eq. (52) describes a small-amplitude sinusoidal wave
oscillating around a constant background. In the other lim-
iting case m → 1 (λ2 = λ3), sn(x, m) → tanh(x) and Eq. (52)
describes a dark soliton (for which L → ∞).

The great insight of Gurevich and Pitaevskii [34] was
to describe a dispersive shock wave as a slowly modulated
nonlinear wave, of type (52), for which the λi are functions
of x and t which vary weakly over one wavelength and one
period. Their slow evolution is governed by the Whitham
equations [30,43]

∂tλi + vi(λ1, λ2, λ3, λ4)∂xλi = 0, i = 1, 2, 3, 4. (57)

Comparing with Eqs. (9), we see that the λi are the Rie-
mann invariants of the Whitham equations first found in
Refs. [49,50]. The vi are the associated characteristic ve-
locities; their explicit expressions can be obtained from the
relation [38,43]

vi = V − 1

2

L

∂iL
, i = 1, 2, 3, 4, (58)

where ∂i = ∂/∂λi. This yields

v1 = V − (λ4 − λ1)(λ2 − λ1)K(m)

(λ4 − λ1)K(m) − (λ4 − λ2)E(m)
,

v2 = V + (λ3 − λ2)(λ2 − λ1)K(m)

(λ3 − λ2)K(m) − (λ3 − λ1)E(m)
,

v3 = V − (λ4 − λ3)(λ3 − λ2)K(m)

(λ3 − λ2)K(m) − (λ4 − λ2)E(m)
,

v4 = V + (λ4 − λ3)(λ4 − λ1)K(m)

(λ4 − λ1)K(m) − (λ3 − λ1)E(m)
,

(59)

where m is given by Eq. (53) and E(m) is the complete elliptic
integrals of the second kind.

In the soliton limit m → 1, i.e., λ3 → λ2, the Whitham
velocities reduce to

v1 = 1
2 (3λ1 + λ4), v2 = v3 = 1

2 (λ1 + 2λ2 + λ4),

v4 = 1
2 (λ1 + 3λ4).

(60)

In a similar way, in the small-amplitude limit m → 0, i.e.,
λ2 → λ1, we obtain

v1 = v2 = 2λ1 + (λ4 − λ3)2

2(λ3 + λ4 − 2λ1)
,

v3 = 1

2
(3λ3 + λ4), v4 = 1

2
(λ3 + 3λ4),

(61)

and in another small-amplitude limit (m → 0 when λ3 → λ4),
we have

v1 = 1

2
(3λ1 + λ2), v2 = 1

2
(λ1 + 3λ2),

v3 = v4 = 2λ4 + (λ2 − λ1)2

2(λ1 + λ2 − 2λ4)
. (62)

B. Generalized hodograph method

In Sec. III we have provided a nondispersive description of
the spreading and splitting of the initial pulse in two parts (one
propagating to the left and the other to the right). During this
nonlinear process the leading wavefront steepens and leads to
wave breaking. This occurs at a certain time tWB after which
the approach of Sec. III predicts a nonphysical multivalued
profile (see, e.g., Fig. 8), since it does not take into account
dispersive effects. The process of dispersive regularization of
the gradient catastrophe leads to the formation of a dispersive
shock wave, as first predicted by Sagdeev in the context of
collisionless plasma physics (see, e.g., Ref. [51]).

For the specific case we are interested in, the Gurevich-
Pitaevskii approach, which consists in using Whitham theory
for describing the DSW as a slowly modulated nonlinear
wave, holds, but it is complicated by the fact that two of the
four Riemann invariants vary in the shock region. As already
explained in the Introduction, we adapt here the method
developed in Refs. [37–40] for treating a similar situation for
the Korteweg–de Vries equation. The general case of NLS
dispersive shock with all four Riemann invariants varying was
considered in Ref. [52].

In all the following we concentrate our attention on the
shock formed at the right edge of the pulse propagating to
the right. Due to the symmetry of the problem, the same
treatment can be employed for the left pulse. The prediction of
multivalued λ+ resulting from the dispersionless approach of
Sec. III suggests that after wave breaking of the simple-wave
solution, the correct Whitham-Riemann invariant should be
sought in a configuration such that λ1 = λ− = −c0, λ2 =
λ+(x → ∞) = c0, and λ3 and λ4 both depend on x and t . In
this case the Whitham equations (57) with i = 1, 2 are trivially
satisfied, and to solve them for i = 3 and 4, we introduce two
functions Wi(λ3, λ4) (i = 3 or 4), exactly as we did in Sec. III
with W±(λ−, λ+):

x − vi(λ3, λ4)t = Wi(λ3, λ4), i = 3, 4. (63)

For the sake of brevity we have defined in this equation
vi(λ3, λ4) = vi(λ1 = −c0, λ2 = c0, λ3, λ4) for i ∈ {3, 4}; we
will keep this notation henceforth.

Then we can derive Tsarev equations for Wi(λ3, λ4) [re-
placing the subscripts + and − by 4 and 3 in (13)] and we can
show (see, e.g., Refs. [38,52–54]) that these are solved for Wi
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of the form

Wi =
(

1 − L

∂iL
∂i

)
W = W + 2(vi − V )∂iW , (64)

where W (λ3, λ4) is solution of the Euler-Poisson equation

∂34W = ∂3W − ∂4W

2(λ3 − λ4)
. (65)

As was first understood in Ref. [36], after the wave breaking
time, the development of the dispersive shock wave occurs
in two steps. Initially (when t is close to tWB), the DSW is
connected at its left edge to the smooth profile coming from
the time evolution of the right part of the initial profile of
λ+ (part A), which is gradually absorbed in the DSW. This
process of absorption is complete at a time we denote by
tA|B. Then, for t > tA|B, the DSW is connected to the smooth
profile coming from the time evolution of part B of λ+ [this is
case B, region B of the (x, t ) plane]. During the initial step
(for t < tA|B), for a given time t , the highest value of the
largest Riemann invariant is reached within the smooth part
of the profile and keeps the constant value cm. Then, in the
subsequent time evolution, this highest value is reached within
the DSW (or at its right boundary) where there exists a point
where λ4 takes its maximal value (cm). We illustrate these two
steps of development of the DSW in Fig. 9. We refer to the
region of the DSW where λ4 is a decreasing function of x as
region A and the part where it increases as region B.

In region A of the (x, t ) plane, we denote by W A(λ3, λ4)
the solution of the Euler-Poisson equation and in region B we
denote it instead by W B(λ3, λ4). These two forms are joined
by the line λ4 = cm, where

W A(λ3, cm) = W B(λ3, cm). (66)

We denote the position where this matching condition is
realized by xm(t ) [see Fig. 9(b)]. The corresponding boundary
in the (x, t ) plane is represented as a green solid curve in
Fig. 10.

Since the general solution of the Euler-Poisson equation
with the appropriate boundary conditions and the construction
of the resulting nonlinear pattern are quite involved, we will
first consider some particular but useful results which follow
from general principles of the Whitham theory.

V. MOTION OF THE SOLITON EDGE OF THE SHOCK

During the first stage of evolution of the DSW, its left
(solitonic) edge is connected to the smooth dispersionless
solution whose dynamics is described by formula (39), that
is, we have here

xS − v+(−c0, λS)t = W (3)
+ (−c0, λS), (67)

where xS(t ) is the position of the left edge of the DSW and
λS(t ) ≡ λ+(xS(t ), t ). We recall that in all the following we
focus on the DSW formed in the right part of the pulse. Hence
Eq. (67) concerns the right part of the nondispersive part of
the profile. According to the terminology of Sec. III, this
corresponds to region III.

On the other hand, in vicinity of this boundary, the
Whitham equations (57) with the limiting expressions (60)

FIG. 9. Schematic plots of the position dependence of the Rie-
mann invariants inside (blue solid curves) and outside (yellow solid
curves) the DSW (colored region). (a) For t < tA|B, the DSW is
connected to the smooth profile coming from the time evolution of
part A of the initial pulse. At t = tA|B, part A is completely absorbed
by the DSW. Thus, for this time, the shock wave connects to the
smooth profile exactly at λ+(xS(t ), t ) = cm. (b) For t > tA|B, the
DSW is connected at its left edge at a point belonging to part B of the
dispersionless profile. In this case the shock wave is divided into two
regions A and B, separated by the green vertical line in the plot. The
continuity along the separation line between the two regions, i.e., at
x = xm(t ), is ensured by Eq. (66).

(where λ2 = λ3 = c0) for the velocities vi are given by

∂tλ3 + 1
2 (λ4 + c0)∂xλ3 = 0,

∂tλ4 + 1
2 (3λ4 − c0)∂xλ4 = 0. (68)

To solve these equations we can perform a classical hodo-
graph transform, that is, we assume that x and t are functions
of the independent variables λ3 and λ4: t = t (λ3, λ4) and
x = x(λ3, λ4). We find from Eqs. (68) that these functions
must satisfy the linear system

∂x

∂λ3
− 1

2
(3λ4 − c0)

∂t

∂λ3
= 0,

∂x

∂λ4
− 1

2
(λ4 + c0)

∂t

∂λ4
= 0.

At the left edge of the DSW, the second equation reads

∂xS

∂λS
− 1

2
(λS + c0)

∂t

∂λS
= 0, (69)
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FIG. 10. Black solid curves show the time evolution of xS(t )
and xH(t ) calculated from Eqs. (96) and (99), respectively. The
green solid curve shows the time evolution of xm(t ), for which
λ4(xm(t ), t ) = cm, which marks the separation between regions A
and B. The red dashed curve shows the asymptotic behavior of
xS(t ), from Eq. (81). The green points indicate the positions xS(t )
extracted from simulations, for an initial condition (3) with ρ0 = 0.5,
ρm = 2, and x0 = 20. The red point marks the birth of the DSW
(at time tWB � 6.3), while the blue one initiates region B (at time
tA|B � 25.9).

which must be compatible with Eq. (67). Differentiation of
Eq. (67) with respect to λS and elimination of ∂xS/∂λS with
the use of Eq. (69) yields a differential equation for the
function t (λS) ≡ t (c0, λS):

(λS − c0)
dt

dλS
+ 3

2
t = −dW (3)

+ (−c0, λS)

dλS
. (70)

At the wave breaking time, λS = c0, which corresponds to the
definition tWB = t (c0), and Eq. (70) then yields

tWB = −2

3

dW (3)
+ (−c0, λS)

dλS

∣∣∣∣∣
λS=c0

, (71)

in agreement with Eq. (46), which should be expected since at
the wave breaking moment the DSW reduces to a point in the
Whitham approximation. For the concrete case of our initial
distribution we can get a simple explicit expression for tWB

which reads [see Eq. (46) and note [48]]

tWB = −2

3

dwA(λS)

dλS

∣∣∣∣
λS=c0

= 2c0x0

3ρ1
, (72)

where the right-hand side is the form of the central formula
corresponding to the initial profile (3). Taking ρ0 = 0.5, ρm =
2, and x0 = 20, we find tWB � 6.3, in excellent agreement
with the numerical simulations.

The solution of Eq. (70) reads

t (λS) = −1

(λS − c0)3/2

∫ λS

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr

= 1

2(λS − c0)3/2

∫ λS

c0

W (3)
+ (−c0, r)√

r − c0
dr

− W (3)
+ (−c0, λS)

λS − c0
. (73)

Substituting this expression into (67), we obtain the function
xS(λS) ≡ x(c0, λS):

xS(λS) = 1
2 (3λS − c0)t (λS) + W (3)

+ (−c0, λS). (74)

The two formulas (73) and (74) define, in an implicit way, the
law of motion x = xS(t ) of the soliton edge of the DSW.

The above expressions are correct as long as the soliton
edge is located inside region A of the DSW, that is, up to
the moment tA|B = t (cm). From (73) we obtain the explicit
expression

tA|B = −1

(cm − c0)3/2

∫ cm

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr. (75)

In the case we consider, this yields tA|B = 25.9. For time
larger than tA|B the soliton edge connects with region B of
the dispersionless profile, which corresponds to region IIr (see
Fig. 4). Concretely, for a time t > tA|B, instead of Eq. (70) we
have to solve the differential equation

(λS − c0)
dt

dλS
+ 3

2
t = −dW (2)

+ (−c0, λS)

dλS
, (76)

with the initial condition t (cm) = tA|B. The solution of
Eq. (76) reads

t (λS) = −1

(λS − c0)3/2

( ∫ λS

cm

√
r − c0

dW (2)
+ (−c0, r)

dr
dr

+
∫ cm

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr

)
(77)

and xS(λS) is determined by Eq. (41):

xS(λS) = 1
2 (3λS − c0)t (λS) + W (2)

+ (−c0, λS). (78)

At asymptotically large time t → ∞ we are in stage B of
evolution of the DSW with furthermore λS → c0. In this case
the upper limit of integration in the first integral of formula
(77) can be set equal to c0. Thus, we get in this limit

t (λS) � A
(λS − c0)3/2

, (79)

where the expression for the constant A is

A = −
( ∫ c0

cm

√
r − c0

dW (2)
+ (−c0, r)

dr
dr

+
∫ cm

c0

√
r − c0

dW (3)
+ (−c0, r)

dr
dr

)
. (80)

Consequently, we obtain the asymptotic expressions

λS(t ) = c0 +
(A

t

)2/3

, xS(t ) = c0t + 3A2/3

2
t1/3. (81)

We denote the position of the rear point of the simple wave by
x∗(t ) (see Fig. 9). It is clear from Fig. 4 that x∗ = 0 at time
t = tSW(c0), i.e., just when region 2 disappears, whereafter
the dispersionless approach of Sec. III predicts a profile with
only simple waves and plateau regions. The rear edge of
the simple wave then propagates over a flat background at
constant velocity c0; we thus have

x∗(t ) = c0[t − tSW(c0)]. (82)
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Asymptotically, i.e., at time much larger than tSW(c0), we have
x∗(t ) � c0t and, in the simple-wave profile between x∗(t ) and
xS(t ), λ+ depends on the self-similar variable [x − x∗(t )]/t
while λ− is constant. Then Eqs. (9) readily yield

λ+ = c0 + 2

3

x − x∗(t )

t
, λ− = −c0 for x ∈ [x∗(t ), xS(t )].

(83)

Equation (8) then yields the explicit expression of ρ in this
region (which was roughly described at the end of Sec. II as
having a quasitriangular shape), and using (81) we obtain∫ xS(t )

x∗(t )
[
√

ρ(x, t ) − c0]1/2dx = 1√
2

A. (84)

The asymptotic situation at the rear of the DSW is reminiscent
of what occurs in the theory of weak dissipative shocks where
(i) a nonlinear pattern of triangular shape may also appear
at the rear edge of a (viscous) shock, (ii) the details of the
initial distribution are lost at large time (as in the present
case), and (iii) a conserved quantity of the type (84) also
exists. Hence the above results provide, for a conservative
system, the counterpart of the weak viscous shock theory
(presented, for instance, in Ref. [30]). Note, however, that the
boundary conditions at the large-amplitude edge of the shock
are different depending on whether we consider a dissipative
or a conservative system and that the corresponding velocity
and conserved quantity are accordingly also different. Note
also that equivalent relations for the behavior of a rarefaction
wave in the rear of a dispersive shock in the similar situation
for the Korteweg–de Vries equation have been obtained in
Ref. [31].

Formulas (81) and (84) are important because they provide
indirect evidence making it possible to assert if a given
experiment has indeed reached the point where a bona fide
dispersive shock wave should be expected.

In the next section we give an explicit theoretical descrip-
tion of the whole region of the dispersive shock.

VI. SOLUTION IN THE SHOCK REGION

In this section we turn to the general solution of the
Whitham equations given by the formulas of Sec. IV B. Our
task is to express the functions W3 and W4 in terms of the
initial distribution of the light pulse. As was indicated above,
we need to distinguish two regions, A and B, in which W
takes different values.

A. Solution in region A

In region A we can straightforwardly adapt the proce-
dure explained in Ref. [38]. We impose the matching of the
left edge of the DSW with the dispersionless solution (see
Sec. III B): Just at x = xS(t ), we have λ4 = λ+, λ3 = λ2 = c0,
and λ1 = −c0 (see Fig. 9) and Eq. (60) yields v4(λ3, λ4) =
(3λ4 − c0)/2 = v+(−c0, λ

+). Then, at this point, the condi-
tions (39) and (63) with i = 4 are simultaneously satisfied,
which implies

W A
4 (λ3 = c0, λ4 = λ+) = W (3)

+ (−c0, λ
+), (85)

where W (3)
+ is the form of W+ corresponding to region 3.

Note that here the first argument of the function W (3)
+ is

λ− = −c0 for all times. Indeed, the boundary condition (85)
corresponds to the matching in physical space at xS(t ). When
the DSW starts to form at time tWB, the edge xS(tWB) lies on
the characteristic issued from x0 [x0 defines the initial extent of
the pulse; see Eq. (3)]. The Riemann invariant λ− is constant
and equal to −c0 along this characteristic (cf. Fig. 4). Then,
because the characteristics of λ− in the dispersionless region
close to xS are oriented to the left whereas xS moves to the
right, it is clear that λ−(xS(t ), t ) = −c0 for t � tWB.

In terms of W the relation (85) corresponds to the equation

W A(c0, λ4) + 2(λ4 − c0)∂4W
A(c0, λ4) = W (3)

+ (−c0, λ4),
(86)

whose solution is

W A(c0, λ4) = 1

2
√

λ4 − c0

∫ λ4

c0

W (3)
+ (−c0, r)dr√

r − c0
. (87)

This will serve as a boundary condition for the Euler-Poisson
equation (65) whose general solution has been given by
Eisenhart [55] in the form

W A(λ3, λ4) =
∫ λ3

c0

ψA(μ)dμ√
λ3 − μ

√
λ4 − μ

+
∫ λ4

c0

ϕA(μ)dμ√|λ3 − μ|√λ4 − μ
, (88)

where ϕA(μ) and ψA(μ) are arbitrary functions to be deter-
mined from the appropriate boundary conditions. By taking
λ3 = c0 in this expression we see that ϕA(μ)/

√
μ − c0 is the

Abel transform of W A(c0, λ4). Using the inverse transforma-
tion [56] and expression (87) we can show that

ϕA(μ) = 1

2π
√

μ − c0

∫ μ

c0

W (3)
+ (−c0, r)dr√

μ − r
, (89)

where we recall that W (3)
+ = ∂+χ (3). In order to determine the

other unknown function ψA, we consider the right boundary
of the DSW where λ3 and λ4 are asymptotically close to
each other. We can show (see, e.g., equivalent reasoning in
Ref. [31]) that in order to avoid divergence of W A(λ3, λ4 =
λ3), we need to impose ψA(λ) = −ϕA(λ). The final form of
the Eisenhart solution in region A thus reads

W A(λ3, λ4) =
∫ λ4

λ3

ϕA(μ)dμ√
μ − λ3

√
λ4 − μ

, (90)

where ϕA is given by formula (89).

B. Solution in region B

We look for a solution of the Euler-Poisson equation in
region B in the form

W B(λ3, λ4) = W A(λ3, λ4) +
∫ cm

λ4

ϕB(μ)dμ√
μ − λ3

√
μ − λ4

,

(91)

where cm is the maximum value for λ4. This expression
ensures that W B, (i) being the sum of two solutions of the
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Euler-Poisson equation, is also a solution of this equation and
(ii) verifies the boundary condition (66) since the second term
on the right-hand side of (91) vanishes when λ4 = cm.

At the left boundary of the DSW, W B(c0, λ4) verifies an
equation similar to (86):

W B(c0, λ4) + 2(λ4 − c0)∂4W
B(c0, λ4) = W (2)

+ (−c0, λ4).
(92)

The solution with the appropriate integration constant reads

W B(r1, 0) = 1

2
√

λ4 − c0

∫ cm

λ4

W (2)
+ (−c0, r)√

r − c0
dr

+ 1

2
√

λ4 − c0

∫ cm

c0

W (3)
+ (−c0, r)√

r − c0
dr, (93)

where W (2)
+ is the form of W+ corresponding to region 2. The

same procedure as the one previously used for region A of the
DSW leads here to

ϕB(μ) = 1

2π
√

μ − c0

∫ cm

μ

W (3)
+ (−c0, r) − W (2)

+ (−c0, r)√
μ − r

dr.

(94)

Equations (91) and (94) give the solution of the Euler-Poisson
equation in region B.

C. Characteristics of the DSW at its edges

It is important to determine the boundaries xS(t ) and xH(t )
of the DSW, as well as the values of the Riemann invariants λ3

and λ4 at these points. The law of motion of the soliton edge
was already found in Sec. V and it is instructive to show how
this result can be obtained from the general solution.

At the soliton edge we have λ2 = λ3 = c0 and λ4 = λS(t ).
The corresponding Whitham velocities are v3 = (λS + c0)/2
and v4 = (3λS − c0)/2 [see Eqs. (60)], and Eqs. (63) read

xS − 1
2 (3λS − c0)t = W α

4 (c0, λS) = W (n)
+ (−c0, λS),

xS − 1
2 (λS + c0)t = W α

3 (c0, λS) = W α (c0, λS),
(95)

where, in order to have formulas applying to both stages of
evolution of the DSW, we have introduced dummy indices α

and n with α = A or B and n = 3 or 2, respectively. This gives
at once

t (λS) = 1

λS − c0
[W α (c0, λS) − W (n)

+ (−c0, λS)],

xS(λS) = c0t + 1

2
[3W α (c0, λS) − W (n)

+ (−c0, λS)]. (96)

Let us consider stage A, for instance. Equation (87) yields

W A(c0, λS) = 1

2
√

λS − c0

∫ λS

c0

W (3)
+ (−c0, r)dr√

r − c0
,

which inserted into Eqs. (96) gives immediately the results
(73) and (74).

Figure 10 shows the time evolution of xS(t ). The black
curve is calculated from Eqs. (96), while the red dashed
curve corresponds to the asymptotic behavior of xS, given
by Eq. (81). The green points are extracted from simulations
and exhibit very good agreement with the theory. The same
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FIG. 11. The black solid curve shows the time evolution of λS(t )
from Eq. (96), or equivalently from Eq. (73) and then (77). The
red dashed curve shows the asymptotic behavior from Eq. (81). The
green points are extracted from simulations for different times, for
the initial profile (3) with ρ0 = 0.5, ρm = 2, and x0 = 20. The blue
solid curve is an approximation obtained by schematically describing
the initial splitting by assuming λ− � const for all t during the
evolution of the right pulse (see the text).

excellent agreement is obtained for the time evolution of λS,
as shown in Fig. 11.

We demonstrated in Sec. III the accuracy of the Riemann
method for describing the spreading and splitting of the initial
pulse into two parts. The matching between the left edge of the
DSW and the dispersionless profile at the point of coordinates
(xS, λS) is given in Eq. (67). Since the splitting occurs rapidly,
a simpler approach would be to make the approximation
λ−(x, t ) = −c0 = const for the dispersionless right part of the
profile. In this case, the Riemann equation (9) for λ+ reduces
to

∂λ+

∂t
+

(
3

2
λ+ − 1

2
c0

)
∂λ+

∂x
= 0. (97)

This equation can be solved by the method of characteristics,
which yields the implicit solution for λ+(x, t ),

x − (
3
2λ+ − 1

2 c0
)
t = wA(B)(λ+), (98)

where wA(B) is the inverse function of the initial λ+(x) profile
in part A (B) [in our case the explicit expressions are given in
Eqs. (18)].

Within this approximation the DSW is described through
W by the same equations (89)–(91) and (94) as before,
replacing W (3/2)

+ (−c0, r) by wA(B)(r) everywhere. Further, λS

computed using this approximation is represented in Fig. 11
as a function of t (blue solid curve), where it is also compared
with the results obtained using the full Riemann method
(black solid curve) and the results extracted from numerical
simulations (green points). As we can see, an accurate descrip-
tion of the spreading and splitting stage is important since the
blue curve does not precisely agree with the results of the sim-
ulations, mainly at large times. However, this approximation
gives a correct description of the initial formation of the DSW:
This is discussed in Ref. [48], where it is argued that, close
to the wave breaking time, the approximation W (3)

+ (−c0, r) �
wA(r) is very accurate.

Let us now turn to the determination of the location xH(t )
of the small-amplitude harmonic boundary of the DSW and of
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the common value λH(t ) of λ3 and λ4 at this point (see Fig. 9).
In the typical situation the left boundary is located in region A.
In this case the equations (63) for i = 3 and 4 are equivalent
and read

xH − vHt = W A
i (λH, λH), i = 3 or 4, (99)

where vH = vi(λH, λH) = 2λH − c2
0/λH [cf. Eqs. (62)]. An

equation for λH alone is obtained by demanding that the
velocity dxH/dt of the left boundary is equal to the common
value vH of v3 and v4. The differentiation of Eq. (99) with
respect to time then yields

t = − 1

dvH/dλH

dW A
4 (λH, λH)

dλH
. (100)

Note that the relation dxH/dt = vH is a consequence of
the general statement that the small-amplitude edge of the
DSW propagates with the group velocity corresponding to
the wave number determined by the solution of the Whitham
equations. Indeed, the NLS group velocity of a linear wave
with wave vector k moving over a background ρ0 = c2

0 is the
group velocity of the so-called Bogoliubov waves

vg(k) = k2/2 + c2
0√

k2/4 + c2
0

, (101)

where k = 2π/L = 2
√

λ2
H − c2

0 [L is computed from

Eq. (56)]. This yields vg = 2λH − c2
0/λH = vH, as it should.

This property of the small-amplitude edge is especially
important in the theory of DSWs for nonintegrable equations
(see, e.g., Refs. [57,58]).

The value of W A
4 (λH, λH) in Eq. (99) is computed through

(63) and (90). We get

W A
4 (λH, λH) = πϕA(λH) + π

(
λH − c2

0

λH

)
dϕA

dμ
(λH) (102)

and

dW A
4 (λH, λH)

dλH
= π

(
2 + c2

0

λ2
H

)
dϕA

dμ
(λH)

+ π

(
λH − c2

0

λH

)
d2ϕA

dμ2
(λH), (103)

where ϕA is given by Eq. (89). Once expression (103) has been
used to obtain λH(t ) by solving Eq. (100), the position xH(t )
of the harmonic edge of the DSW is determined by (99). The
time evolution of xH(t ) is displayed in Fig. 10.

The position of the point xm(t ) where λ4 = cm (cf. Fig. 9)
can be obtained from Eqs. (63). First, for a given time t , we
need to find the corresponding value λ3, the solution of the
equation

t = W3(λ3, cm) − W4(λ3, cm)

v4(λ3, cm) − v3(λ3, cm)
. (104)

Note that in this equation we did not write the superscript A
or B, because this formula equally holds in both cases since it
is to be determined at the boundary between the two regions
A and B of the DSW [cf. Eq. (66) and Fig. 9]. Then xm(t ) is
determined using either of Eqs. (63). The result is shown in

Fig. 10, where the curve xm(t ) represents the position of the
boundary between the two regions A and B at time t .

D. Global picture

We now compare the results of the Whitham approach with
the numerical solution of the NLS equation (2) for the initial
profile (3). The DSW is described by Whitham method as
explained in Secs. IV A and IV B. For this purpose we need
to determine λ3 and λ4 as functions of x and t (whereas
λ1 = −c0 and λ2 = c0). This is performed as follows. First,
we pick up a given λ4 ∈ [c0, λS], where λS is the value of λ4

at the soliton edge, the point where the DSW is connected
to the rarefaction wave (it has been explained in Secs. V
and VI C how to compute it). Second, at fixed t and λ4, we
find the corresponding value λ3 as a solution of the difference
of Eqs. (63),

(v4 − v3)t = W3(λ3, λ4) − W4(λ3, λ4), (105)

where W3 and W4 are computed from Eq. (64), with a su-
perscript A or B, as appropriate. Finally, the corresponding
value of x is determined by x = W3 + v3t (or equivalently
x = W4 + v4t). This procedure gives, for each λ4 ∈ [c0, λS]
and t , the values of λ3 and x. In practice, it makes it possible
to associate with each (x, t ) a couple (λ3, λ4). The results
confirm the schematic behavior depicted in Fig. 9.

The knowledge of λ3(x, t ) and λ4(x, t ) completes our study
and enable us to determine, for each time t > tWB, ρ(x, t ) and
u(x, t ) as given by the Whitham approach, for all x ∈ R+.
Denoting by x∗(t ) the left boundary of the hump [recall that
we concentrate on the right part of the light intensity profile
(see Fig. 9)], we have the following.

(i) In the two regions x � xH(t ) and 0 � x � x∗(t ), we
have u(x, t ) = 0 and ρ(x, t ) = ρ0.

(ii) In the dispersionless region [x∗(t ), xS(t )], u(x, t ) and
ρ(x, t ) are computed from (7) in terms of λ+ and λ−, which
are computed as explained in Sec. III. The profile in this
region rapidly evolves to a rarefaction wave [with λ− = −c0

(see Fig. 9)] of triangular shape.
(iii) Inside the DSW, for x ∈ [xS(t ), xH(t )], the functions

ρ(x, t ) and u(x, t ) are given by the expression (52), with λ1 =
−c0 = −λ2 and λ3 and λ4 determined as functions of x and t
by the procedure just explained.

The corresponding density profiles are shown in Fig. 12 at
different values of time for the initial distribution (3) (with
ρ0 = 0.5, ρ1 = 1.5, and x0 = 20). The agreement with the
numerical simulation is excellent. The same level of accuracy
is reached for the velocity profile u(x, t ).

In Fig. 13 we also compare the wavelength of the nonlin-
ear oscillations within the DSW as determined by Whitham
approach [Eq. (56)] with the results of numerical simulations.
The agreement is again very good.

VII. DISCUSSION AND EXPERIMENTAL
CONSIDERATIONS

The different situations we have identified are summarized
in Fig. 14, which displays several typical density profiles
in a phase space with coordinates ρ1/ρ0 and t . The curves
tsplit (ρ1/ρ0) [as given by Eq. (49)] and tWB(ρ1/ρ0) [Eq. (72)]
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(a)

(b)

FIG. 12. Comparison between theory and numerical simulations
for the density profile ρ(x, t ) at (a) t = 50 and (b) t = 200. The
initial profile is the same as that used in all the previous figures.
The blue curves are the numerical results. The red solid curves are
the envelopes of the density (52) where the λi are calculated by
the procedure described in Sec. VI D. The dashed orange curves
correspond to the dispersionless part of the profile, determined using
the method given in Sec. III.

separate this plane into four regions, labeled as (a), (b), (c),
and (d) in the figure. These two curves cross at a point repre-
sented by an open circle whose coordinates we determined nu-
merically as being ρ1/ρ0 = 0.608 14 and c0t/x0 = 1.096 23.
These coordinates are universal in the sense that they have the
same value for any initial profile of inverted parabola type,
such as given by Eq. (3), with u(x, 0) = 0. Other types of
initial profile would yield different precise arrangements of
these curves in phase space, but we expect the qualitative
behavior illustrated by Fig. 14 to be generic, because the
different regimes depicted in this figure correspond to physical
intuition: A larger initial hump (larger ρ1/ρ0) experiences

200 225 250 275 300 325 350 375 400
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,t
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20
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FIG. 13. Wavelength of the nonlinear oscillations within the
DSW for t = 200. The theoretical red curve is calculated from
Eq. (56). The blue points are extracted from simulations.

FIG. 14. Behavior of the light intensity profile in the plane
(ρ1/ρ0, t ). The plane is separated into four regions by the curves
t = tWB and t = tsplit . These curves cross at the point represented
by an open circle (of coordinates ρ1/ρ0 = 0.608 14 and c0 t/x0 =
1.096 23). Typical profiles are displayed in the insets (a)–(d), which
represent ρ(x, t ) plotted as a function of x for fixed t .

earlier wave breaking and needs a longer time to be separated
into two counterpropagating pulses. Also, the evolution of a
small initial pulse can initially be described by perturbation
theory and first splits into two humps which experience wave
breaking in a later stage (as illustrated in Fig. 1): This is
the reason why tsplit < tWB for small ρ1/ρ0. In the opposite
situation where tWB < t < tsplit , the wave breaking has already
occurred while the profile has not yet split into two separate
humps. This is the situation represented by inset (b) and which
has been considered in Refs. [15,18].

In Ref. [18], Xu et al. studied the formation of a DSW in a
nonlinear optic fiber1 varying the intensity of the background.
In particular, they quantitatively evaluated the visibility of the
oscillations near the solitonic edge of the DSW by measuring
the contrast

Cont = ρmax − ρmin

ρmax + ρmin
, (106)

where ρmax and ρmin are defined in the inset of Fig. 15. In
Ref. [18], the contrast was studied for a fiber of fixed length,
for an initial Gaussian bump, i.e., different from (3), keeping
the quantities analogous to ρ1 and x0 fixed and varying ρ0.
The experimental results agreed very well with numerical
simulations taking into account absorption in the fiber. Here
we do not consider exactly the same initial profile and do not
take damping into account, but we show that our approach
gives a very reasonable analytic account of the behavior of
Cont considered as a function of ρ0/ρ1.

From Eq. (52) in the limit m → 1 (which is the relevant
regime near the solitonic edge of the DSW) we get

ρmax = 1
4 (λS + c0)2, ρmin = 1

4 (λS − 3c0)2, (107)

1In this case the role of variable x in Eq. (2) is played by time,
but the phenomenology is very similar to the one we describe in the
present work (see, e.g., [59]).
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FIG. 15. Contrast Cont represented as a function of ρ0/ρ1. We
follow here the procedure of Ref. [18] and use the same dimension-
less parameters: The value of ρ0 varies while ρ1 = 5.9, x0 = 6.3,
and t = 9 are fixed. The green circles correspond to the numerically
determined value of the contrast, obtained from Eq. (106), where ρmin

and ρmax are defined as illustrated in the inset. The black solid curve
corresponds to expression (108), where λS is obtained from (77). The
red dashed curve is the approximate result obtained from the same
align (108), but evaluating λS from Eqs. (81), (110), and (112). The
triangle marks the point of contrast unity.

yielding

Cont = 4c0(λS − c0)

(λS − c0)2 + 4c2
0

. (108)

The results presented in Fig. 15 demonstrate that, as expected,
this expression (black solid curve in the figure) agrees very
well with the contrast determined from the numerical solution
of Eq. (2) (green points).

At this point, the computation of Cont through (108) relies
on the determination of λS by means of (77), a task which
requires a good grasp of the Riemann approach. However,
we can get an accurate, though approximate, analytic deter-
mination of Cont in a simpler way: by using the large-time
expression (81) for λS, together with the approximation

A � −
(∫ c0

cm

√
r − c0

dwB(r)

dr
dr +

∫ cm

c0

√
r − c0

dwA(r)

dr
dr

)

= 2
∫ x0

0

√
λ+(x, 0) − c0dx. (109)

In the above, we approximated in expression (80)
W (3/2)

+ (−c0, r) by wA(B)(r), used the symmetry of
these functions, and made the change of variable
x = wA(r) ⇔ r = λ+(x, 0), in which λ+(x, 0) = √

ρ(x, 0),
where ρ(x, 0) is the initial density profile (3). A new change
of variable yields

A � 2x0
√

c0F (ρ0/ρ1), (110)

where

F (α) =
∫ π/2

0
cos θ

(√
1 + cos2 θ

α
− 1

)1/2

dθ. (111)

A simple analytic expression of F (α) cannot be obtained, but
we checked that one can devise an accurate approximation
by expanding the term in parentheses in the above integrand

around θ = 0 up to second order in θ . This yields

F (α) � (
√

α + 1 − √
α)1/2

α1/4

−
1
4 (π2/4 − 2)

α1/4
√

1 + α(
√

α + 1 − √
α)1/2

. (112)

In the domain 10−3 � α � 50, F (α) varies over two orders of
magnitude (from 4.8 to 7.8 × 10−2) and the approximation
(112) gives an absolute error ranging from 5.8 × 10−2 to
1.8 × 10−3 and a relative one ranging from 1.1% to 2.4%.

Combining Eqs. (108), (81), (110), and (112) yields an
analytic expression for the contrast Cont. This expression is
represented as a dashed red curve in Fig. 15. As we can see,
it compares quite well with the value of Cont extracted from
the numerical simulations.2 The better agreement with the
numerical result is reached for small ρ0/ρ1; this was expected:
In this regime the wave breaking occurs rapidly and we easily
fulfill the condition t 
 tWB where the approximation (81)
holds. We note here that the behavior of the contrast illustrated
in Fig. 15 is very similar to the one obtained in Ref. [18].
In both cases there is a special value of ρ0/ρ1 for which the
contrast is unity, meaning that the quantity ρmin cancels. From
(107) and (81) this is obtained for 2c0 � (A/t )2/3, i.e., using
(110), for

c0t

x0
= 1√

2
F (ρ0/ρ1). (113)

A numerical solution of this equation gives, for the parameters
of Fig. 15, a contrast unity when ρ0/ρ1 = 7.9%, while the
exact Eq. (108) predicts a maximum contrast when ρ0/ρ1 =
8.3% instead (the exact result at ρ0/ρ1 = 7.9% is Cont =
0.999). These two values are marked with a single triangle
in Fig. 15 because they cannot be distinguished on the scale
of the figure. This shows that the solution of Eq. (113) gives a
simple way to determine the best configuration for visualizing
the fringes of the DSW; this should be useful for future
experimental studies.

Note that formula (108) demonstrates that the contrast de-
pends only on λS/c0 and using the approximate relations (81)
and (113) leads to the conclusion that Cont can be considered
as a function of the single variable

X = x0

t
√

ρ1

√
ρ1

ρ0
F (ρ0/ρ1). (114)

Hence, for a configuration different from the one considered in
Fig. 15 but for which the combination of parameters t

√
ρ1/x0

takes the same value (namely, 3.47), the curve Cont (ρ0/ρ1)
should superimpose on the one displayed in Fig. 15. We
checked that this is indeed the case by taking ρ1 = 2, x0 = 20,
and t = 49, but did not plot the corresponding contrast in
Fig. 15 for legibility.

Figure 15 and the discussion of this section illustrate the
versatility of our approach which not only gives an excellent

2Computing the contrast using expression (111) instead of the
approximation (112) yields a result which is barely distinguishable
from the dashed curve in Fig. 15.
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account of the numerical simulations at the prize of an elabo-
rate mathematical treatment, but also provides simple limiting
expressions, such as Eq. (81), which make it possible to obtain
an analytic and quantitative description of experimentally
relevant parameters such as the contrast of the fringes of the
DSW.

VIII. CONCLUSION

In this work we presented a detailed theoretical treatment
of the spreading of a light pulse propagating in a nonlinear
medium. A hydrodynamic approach to both the initial nondis-
persive spreading and the subsequent formation of an optical
dispersive shock compares extremely well with the results
of numerical simulations. Although in reality the transition
between these two regimes is gradual, it is sharp within the
Whitham approximation. An exact expression has been ob-
tained for the theoretical wave breaking time which separates
these two regimes [Eq. (72)], which may be used to evaluate
the experimental parameters necessary to observe a DSW in
a realistic setting (see Fig. 14). In addition, our theoretical
treatment provides valuable insight into simple features of the
shocks which are relevant to future experimental studies, such
as the coordinates of its trailing edge xS, the large-time nondis-
persive intensity profile which follows it (Sec. V), and the
best regime for visualizing the fringes of the DSW (Sec. VII).
We note also that our treatment reveals the existence of an
asymptotically conserved quantity, see Eq. (84).

A possible extension of the present work would be to
consider an initial configuration for which, at variance with
the situation we study here, the largest intensity gradient is not
reached exactly at the extremity of the initial hump. In this
case, wave breaking occurs within a simple wave (not at its
boundary) and the DSW has to be described by four position-
and time-dependent Riemann invariants [52]. In the vicinity
of the wave breaking moment, one of the Riemann invariants
can be considered as constant and a generic dispersionless
solution can be represented by a cubic parabola; a detailed
theory was developed in Ref. [60] for this simpler case. In
Refs. [61,62] the general situation was considered for the
Korteweg–de Vries equation.

We conclude by stressing that the present treatment fo-
cused on quasi-one-dimensional spreading; future develop-
ments should consider non-exactly-integrable systems, for
instance, light propagation in a photorefractive medium, in a
bidimensional situation with cylindrical symmetry.
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8CONCLUS ION

Analogue gravity has been initially proposed by Unruh as a tool mak-
ing it possible to observe “experimental black hole evaporation” [182].
Today, analogue gravity has become an active field of research that
represents a new source of inspiration to deepen our understanding of
fundamental processes at the interface of general relativity, condensed
matter, hydrodynamics and optics.
In this thesis, we have shown that analogue systems in Bose-Einstein

condensates were excellent candidates to explore the analogous Hawking
radiation. By taking into account zero modes whose contribution had
been overlooked in previous studies, we have obtained a self-grounded
theory and we have been able to compare successfully our theoretical
results with experimental data obtained by J. Steinhauer’s group in
2019 [131]. The observation of such a signal in an analogue quantum
system is undoubtedly the result of strong experimental improvements
and theoretical developments in the last years.
We have also revealed that the expected Hawking signal in Bose-

Einstein condensates was not thermal due to dispersive effects. In partic-
ular, we have questioned the data analysis performed by J. Steinhauer’s
group [131] and we have conjectured that a self-consistent procedure
might have led them to the erroneous conclusion that the analogue
Hawking radiation is fully thermal. This departure from the predicted
thermal radiation emitted by black holes [87] shows the significant role
played by dispersion in analogue systems. Interestingly, this important
effect does not kill the spontaneous emission from the sonic horizon, but,
instead, enhances it, see e.g., the right graph of Figure 31. We think that
the role of dispersion that leads to a departure from thermality should
be explored in more detail in the future; in addition, the fact that com-
plete dispersive systems in optics, i.e., without sonic branches in the
dispersion relation, also reveal the existence of an analogue Hawking
radiation is an intriguing path to scrutinize [97, 98].
The correct theoretical description of density correlations at the vicin-

ity of the acoustic black hole is also an important step towards the explo-
ration of backreaction: the objective in the future will be to understand
what is the effect of the analogous Hawking radiation on the density
background1. Our recent results should make it possible to quantify
this backreaction effect and this is one of the directions we would like
to follow in the near future.
In Chapter 4, we have proved that sonic black holes in Bose-Einstein

condensates reveal tripartite entanglement shared among quanta emit-
ted from the sonic horizon. We showed in particular that the process

1 Backreaction in general relativity is the effect of Hawking radiation to the space-
time geometry near the event horizon; this is one possible path to delve into the
information loss paradox.
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behind these entanglement properties was a Bogoliubov transformation,
i.e., a mixing of positive and negative energy modes, leading to the ex-
istence of two different vacua. This has confirmed the fundamental role
played by Bogoliubov transformations in effective curved spacetimes
generated by analogue systems, in close connection with the results
discussed in Chapter 2.
The existence of tripartite entanglement is a novel aspect, not yet

explored, in the context of Bose-Einstein analogue systems. A lot of
work remains to be done: we would like to analyze the effect of temper-
ature on the entanglement and propose a measurement procedure able
to experimentally reveal tripartite entanglement in these systems.

In the second part of this thesis, we have been interested in nonlinear
effects leading to a gradient catastrophe and to the formation of disper-
sive shock waves. We stressed in particular the universality of hydrody-
namics equations to describe many physical models in various physics
fields; for instance, the non-dispersive approximation of the nonlinear
Schrödinger equation, which describes the dynamics of Bose-Einstein
condensates or optical beams in nonlinear media, is a particular case of
the equations governing the dynamics of polytropic gases, themselves
being a particular case of inviscid nonlinear hydrodynamics equations.
Therefore, a better grasp of this type of equations will be certainly a fur-
ther step in the theoretical description and comprehension of numerous
physical phenomena.
In Chapter 6, we considered the general case of inviscid nonlinear

pulses. We described the first stage of spreading of a bump on top of
a uniform background by means of Riemann’s method. Then, we ap-
plied our results in the case of the nonlinear Schrödinger equation. Fur-
thermore, we showed that approximate solutions of Riemann’s method
were accurate to describe correctly the dynamics of nonlinear pulses.
Likewise, this approach was also effective in the case of non-integrable
equations; we took the specific example of a Bose-Einstein condensate
transversely confined in an atomic wave guide.
In Chapter 7, we studied in more detail the propagation of dispersive

shock waves in the case of the nonlinear Schrödinger equation. Our theo-
retical approach, based on a hodograph transform and the resolution of
an Euler-Poisson equation with the use of the method proposed in Refs.
[56, 82], compared very well with numerical simulations. We have been
able in particular to extract a weak shock theory and have obtained
simple analytic expressions to describe some experimental parameters,
such as the contrast of the fringes of a dispersive shock wave.

In the near future, we hope to compare the theoretical results ob-
tained during this PhD with experimental data. Indeed, dispersive shock
waves have been recently observed experimentally by a group at LKB.
They sent an optical pulse in the presence of a background light inten-
sity through a vapour of rubidium atoms and noticed the formation of
oscillations at both edges of the bump, see Figure 63. The dynamics
of such a fluid of light is governed by a non-integrable equation, which
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Figure 63: (Left) Initial optical beam. (Right) After propagation through
the vapour of Rubidium atoms. The franges at both edges of
the pulse correspond to the formation of dispersive shock waves,
courtesy of Tom Bienaimé, LKB, for providing these experimen-
tal images.

reduces to the nonlinear Schrödinger equation when there is no satu-
ration of the nonlinearity nor absorption [162]. However, it seems that
the effects of saturation and absorption might play an important role
in these systems. In this case, it would be very interesting to extend
the theoretical description of dispersive shock waves to non-integrable
equations in order to take into account these effects and to consider 2D
dynamics.

The work presented in this manuscript illustrates how the fields of
quantum and nonlinear fluctuations in quantum fluids can dialog one
with the other. This corresponds to a vivid domain of research in which
the fields of nonlinear optics and of quantum matter waves benefit from
the cross fertilization of many body physics and quantum optics [51]
to explore emerging areas, such as quantum information science [17, 46,
68, 121, 138, 147, 150, 198], and even probe the foundations of quantum
physics [151].
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ACOMPARISON BETWEEN DIFFERENT
THEORETICAL PARAMETERS FOR A WATERFALL
CONF IGURATION

Theoretically, we need to impose the following conditions:

Vd
Vu

=
nu
nd

=
1

m2
u

= md =

(
ξd
ξu

)2

=

(
cu
cd

)2

, (564)

see (116), Section 3.1.3.
The experiment performed by J. Steinhauer’s group is not in a true

waterfall configuration. We should fix the right parameter(s) to obtain
the best configuration with respect to the experimental setup [131]. Ta-
ble 1 shows the different experimental and theoretical parameters; we
compare different configurations, whose parameters are fixed by one
of the equalities of (564). For instance, the experimental downstream
Mach number is mexp

d = 2.9 [131]. If we choose the same value for
the theoretical downstream Mach number (column 5 of Table 1), then,
all the other theoretical parameters can be calculated with conditions
(564). Actually, this choice (fixingmd = 2.9) leads to the best agreement
between experimental and theoretical parameters, see Table 1.

Parameters Exp. val. (cu/cd)
2 (ξd/ξu)2 md 1/m2

u Vd/Vu

cu 0.52 0.52 0.52 0.52 0.52 0.52
cd 0.31 0.31 0.31 0.31 0.23 0.26
ξu 1.4 1.4 1.4 1.39 1.4 1.4
ξd 2.36 2.34 2.36 2.36 3.16 2.77

ξ =
√
ξuξd 1.82 1.81 1.82 1.81 2.1 1.97

md 2.9 2.81 2.84 2.9 5.11 3.91
mu 0.44 0.6 0.59 0.59 0.44 0.51
Vu 0.23 0.23 0.23 0.31 0.23 0.23
Vd 0.9 0.65 0.65 0.9 1.18 0.9

Table 1: The experimental values are extracted from Ref. [131] and written in
the second column. Then, the theoretical parameters in each column
(from column 3 to column 7) are obtained by fixing one of conditions
(564). The condition that we decide to fix is indicated on top of each
column and the corresponding parameter(s) is(are) colored in red.
The bold numbers can be chosen freely (indeed, in most cases, only
the ratio is fixed – for example, conditions (564) only fixes the ratio
cu/cd; thus, one can choose either cu or cd equal to the experimental
value, and then fix the other parameter by means of cu/cd).

255





BZERO MODES IN BOSE -E INSTE IN CONDENSATES

In this appendix, we detail the determination of the zero modes intro-
duced in Section 3.2.2.

The zero modes are given by

P =

(
ψ(x)

−ψ?(x)

)
, and Q =

(
q(x)

−q?(x)

)
, (565)

and satisfy

LBG P = 0, LBG Q = 0, (566)

where ψ(x) is the condensate wave function and LBG is the Bogoliubov-
De Gennes Hamiltonian defined in equation (135). The fact that Q
is also an eigenvector of LBG, with eigenvalue zero, comes from the
absence of phase diffusion in our system, i.e., Meff in equation (147),
see the discussion in Section 3.2.3 for more details.

b.1 flat profile

For the flat profile configuration

ψ(x) =
√
n0 exp(ik0x), (567)

see Section 3.1.3. We look for the most general solutions of equations
(566):

Pα = APα

(
eik0x

−e−ik0x

)
, (568)

and

Qd = A

(
eik0x

−e−ik0x

)
+B eiK0 Xd

( (
K0
2 −md

)
eik0x

(
K0
2 +md

)
e−ik0x

)

+B ei αe−iK0 Xd

( (
−K0

2 −md

)
eik0x

(
−K0

2 +md

)
e−ik0x

) (569a)

Qu = C

(
eik0x

−e−ik0x

)
+DeΛuXu

( (
−i Λu

2 −mu

)
eik0x

(
−i Λu

2 +mu

)
e−ik0x

)
, (569b)

with K0 = 2
√
m2
d − 1 and Λu = 2

√
1−m2

u, and where the subscripts
hold for the upstream (u) or the downstream (d) region.
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The matching conditions at the horizon read

Pu(x = 0) = Pd(x = 0),

∂x Pu(x = 0) = ∂x Pd(x = 0),
(570)

and

Qu(x = 0) = Qd(x = 0, )

∂xQu(x = 0) = ∂xQd(x = 0).
(571)

We see immediately that APu = APd and can be fixed arbitrarily to 1.

For Qα the conditions are




A+B

(
K0

2
−md

)
+B ei α

(
−K0

2
−md

)
= C +D

(
−i Λu

2
−mu

)

−A+B

(
K0

2
+md

)
+B ei α

(
−K0

2
+md

)
= −C +D

(
−i Λu

2
+mu

)

iBK0 ξ
−1
d

[(
K0

2
−md

)
− ei α

(
−K0

2
−md

)]
= DΛu ξ

−1
u

(
−i Λu

2
−mu

)

iBK0 ξ
−1
d

[(
K0

2
+md

)
− ei α

(
−K0

2
+md

)]
= DΛu ξ

−1
u

(
−i Λu

2
+mu

)

(572)

After solving this system of equations we find that

B = DE and B ei α = DE∗,

A = C +D [md (E + E∗)−mu]

with E = − Λu
2mdK

2
0

ξd
ξu

(Λumd + imuK0)

(573)

Then, the zero modes have zero norm, that is to say

Q†α σz Qα = 0 and P †α σz Pα = 0, (574)

where σz is the Pauli matrix. The norm of Pα is immediately zero from
expression (568). For Qu, equation (574) leads to

iΛuC
∗DeΛuXu + c.c = 0. (575)

We can take C = 0 without loss of generality.
Then, the value of D is determined numerically. The procedure is

the following: we know that the field operator δψ̂ should be correctly
normalized, see equation (159):

[
δψ̂(x, t), δψ̂†(x′, t)

]
= δ(x− x′) . (576)

Then, we can extract the zero modes contribution to the expansion of
the quantum field operator (155), denoted as

ψ̂ZM = iQP̂ − i P Q̂. (577)



B.1 flat profile 259

If δψ̂ is correctly normalized, one should have

[ψ̂1(x, t), ψ̂†1(x′, t)]− δ(x− x′) = −[ψ̂ZM (x, t), ψ̂†ZM (x′, t)], (578)

where we have introduced ψ̂1 = δψ̂−ψ̂ZM , i.e., the operator δψ̂ without
taking into account the zero modes contribution. The solid blue and
green curves (real and imaginary parts, respectively) in the left graph
of Figure 64 show the numerical computation of [ψ̂1(x, t), ψ̂†1(x′, t)] −
δ(x−x′) in the downstream region for a specific configuration (mu = 0.5,
md = 4, with x = 75 ξu and x′ ranging from x′ = 60 ξu to x′ = 90 ξu).
One sees that, indeed, the absence of zero modes in expansion (155)
leads to an incorrect normalization; one observes spurious oscillations.
The dashed red and pink curves (real and imaginary parts, respectively)
are obtained from the calculation of −[ψ̂ZM (x, t), ψ̂†ZM (x′, t)] with the
use of expressions (568) and (569a) and by fixing D such that both
curves agree. Therefore, by choosing a correct value of D (here D =
0.079), one can remove the spurious oscillations and obtain a correct
normalization of the total field operator δψ, see, e.g., Figure 22. In fact,
these oscillations are nothing but the contribution of the zero modes in
expression (155).

Figure 64: Numerical determination of D for the flat profile configuration.
(Left) Downstream region: x > 0, x′ > 0, with x =
75 ξu. Solid blue and green curve: real and imaginary
parts of [ψ̂1(x, t), ψ̂†1(x′, t)] − δ(x − x′), respectively; dashed
red and pink curve: real part and imaginary parts of
−[ψ̂ZM (xa, t), ψ̂

†
ZM (xb, t)].

(Right) Upstream region: x < 0, x′ < 0, with x = −20. Same
color code as the left plot.

A final check consists of performing the same calculation in the up-
stream region. The value of D found in the downstream region should
be the same as the one in the upstream region. The solid blue and green
curves (real and imaginary parts, respectively) in the right graph of Fig-
ure 64 show the numerical computation of [ψ̂1(x, t), ψ̂†1(x′, t)]−δ(x−x′)
in the upstream region for the same configuration (mu = 0.5, md = 4,
with x = −20 ξu and x′ ranging from x′ = −25 ξu to x′ = 0). The
dashed red and pink curves (real and imaginary parts, respectively) are
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obtained from the calculation of −[ψ̂ZM (x, t), ψ̂†ZM (x′, t)] with the use
of expressions (568) and (569b), and with D determined from the above
procedure in the downstream region. Both curves nicely agree.

One can then repeat this procedure for different flat profile configu-
rations, i.e., varying the upstream and downstream Mach number mu

and md. This is how we found the approximate expressions given by
(150).

In conclusion, onceD is determined, one obtains the expressions given
in Chapter 3, see equations (148) and (149).

b.2 waterfall configuration

For the waterfall configurations, the determination of the zero modes is
similar to the previous section; the main difference here lies in the fact
that the condensate wave function is now given by

ψ(x) =

{ √
nu exp(ikux)φu(x) for x < 0 ,
√
nd exp(ikdx)φd(x) for x > 0 ,

(579)

with φu and φd given by expressions (115).
One finds the general solutions of equations (566) given by1

Qα =

(
ei kα x 0

0 e−i kα x

)
Q̄α, (580)

with

Q̄u = D

[
χ(Xu)− Λ

2

]2

eΛuXu

(
1

1

)
,

Q̄d = A

(
φd

−φ?d

)

+ E eiK0Xd

(
[K0

2 −md]φd

[K0
2 +md]φ

?
d

)
+ E e−iK0Xd

(
[−K0

2 −md]φd

[−K0
2 +md]φ

?
d

)
.

(581)

Then, one uses the continuity equations (570) and (571) to determine
the relations between A, D and E. We find in particular a system
very similar to (572) leading to expressions (152) of Chapter 3. We use
exactly the same procedure as the one detailed in the previous section
to determine the value of D for different waterfall configurations; we
obtain expression (153).

1 We only detail the expressions for Qα, since Pα is given in (565), with ψ made
explicit in expression (579).



CFOURIER TRANSFORM OF THE DENS ITY
CORRELATION FUNCTION

In this appendix we detail the calculation leading to expression (178)
of Chapter 3.

Let us introduce

I(ω) =
1√

nundLuLd

∫ 0

−Lu
dx

∫ Ld

0
dx′ e−i(kHx+kPx

′) g(2)(x, x′)

=
1√

nu nd Lu Ld

∫ +∞

−∞
dx

∫ +∞

−∞
dx′e−i(kHx+kPx

′) g(2)(x, x′) Πu(x) Πd(x),

(582)

where kH(ω) and kP(ω) are the momenta relative to the condensate of
the Hawking quantum and of its partner at a frequency ω, and where

Πu(x) = Θ(x+Lu)−Θ(x), and Πd(x) = Θ(x)−Θ(x−Ld). (583)

In the previous expression Θ is the Heaviside function. By expanding
the g(2) function with the use of expressions (170), (163), (164) and
(166), it is not difficult to show that

I(kH, kP) =

∫
dω′

2π
A(ω′)Πu[kH(ω)−qu|out(ω

′)] Πd[kP(ω)+qd2|out(ω
′)],

(584)

with

A(ω) =
1√
Lu Ld

(UkH
+ VkH

) (UkP
+ VkP

) Sud2(ω)S∗d2d2(ω). (585)

In expression (584), qα|out(ω
′), α ∈ {u, d}, are the wave vectors as-

sociated to the u|out and d2|out modes, calculated from the disper-
sion relation, see in particular Figure 20. Note that, with this notation,
kH = qu|out(ω) < 0 and kP = −qd2|out(ω) < 0.

In equation (585), UkH
≡ Uu|out (VkH

≡ Vu|out) and UkP
≡ Ud2|out

(VkP
≡ Vd2|out), where Uα|out and Vα|out are defined in equation (138).

The Fourier transforms of Πα are

Πα(q) = Lα e
i q Lα/2 sinc(q Lα/2). (586)

In the following, we consider the case where Lu, Ld → +∞; in this limit
the windows Πα are well peaked around zero. This means that the only
significant contribution in the integral arises when ω′ ' ω. In this case,
one has

{
qu|out(ω

′) ' qu|out(ω) + q′u|out(ω) (ω′ − ω),

qd2|out(ω
′) = qd2|out(ω) + q′d2|out(ω) (ω′ − ω),

(587)
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where q′α|out =
dqα|out

dω . Expressions (587) can be rewritten in the form




qu|out(ω
′)− qu|out(ω) ' ω′ − ω

Vg(kH)
,

qd2|out(ω
′)− qd2|out(ω) ' ω′ − ω

Vg(kP)
,

(588)

where we noticed that q′u|out(ω) = 1/Vg(kH) and q′d2|out(ω) = 1/Vg(kP).
Then, we make the following change of variable in (584):

s = |Vg(kH)| [kH − qu|out(ω
′)]. (589)

Using relations (588), we see immediately that

s = Vg(kP)[kP + qd2|out(ω
′)]. (590)

Integral (584) becomes

I(ω) = A(ω)

∫
ds

2π
Πu

(
s

|Vg(kH)|

)
Πd

(
s

Vg(kP)

)
. (591)

With a new change of variable

I(ω) = A(ω)
|Vg(kH)|Ld

π

∫
dt sinc(t) sinc

(
t
Ld |Vg(kH)|
Lu Vg(kP)

)

× exp

[
i

(
Ld |Vg(kH)|
Lu Vg(kP)

− 1

)
t

]
.

(592)

The previous integral can be rewritten

I(ω) = A(ω)
√
Lu Ld

√
|Vg(kH)|Vg(kP) d(ω), (593)

with

d(ω) =

√
a(ω)

π

∫
dt sinc(t) sinc [a(ω) t] ei [a(ω)−1] t, (594)

and

a(ω) =
Ld |Vg(kH)|
Lu Vg(kP)

. (595)

The explicit computation of integral (594) gives

d(ω) =





√
a(ω), if a(ω) ≤ 1

1√
a(ω)

, if a(ω) ≥ 1.
(596)

One can recast expression (593) in the form

I(ω) = S0 d(ω)Sud2(ω)S∗d2d2(ω) = S0 d(ω) 〈ĉU(ω) ĉD2(ω)〉, (597)

where S0 =
√∣∣Vu|out

∣∣ Vd2|out (UkH
+ VkH

) (UkP
+ VkP

).

Note that ukH,kP
=
√∣∣Vα|out

∣∣UkH,kP
and vkH,kP

=
√∣∣Vα|out

∣∣VkH,kP

(α = u if k = kH, α = d2 if k = kP), where the uk’s and the vk’s are
the standard Bogoliubov amplitudes of excitations of momentum k (see,
e.g., Refs. [148, 153]).
The final expression (597) is exactly the same as equation (178) of

Chapter 3.
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The goal of this appendix is to prove expressions (397) of Chapter 6.
We start from the partial differential equations

∂tλ
± + v±(λ+, λ−) ∂xλ

± = 0, (598)

and we consider x and t as functions of the Riemann invariants λ+ and
λ−:

x = x(λ+, λ−), t = t(λ+, λ−). (599)

Let us now introduce an unknown function Φ(x, t) = Φ[x(λ+, λ−), t(λ+, λ−)].
By differentiating with respect to λ+ and λ−, we obtain the system:

{
Φx xλ+ + Φt tλ+ = Φλ+ ,

Φx xλ− + Φt tλ− = Φλ− ,
(600)

where we used the shortcut notations Φx = ∂Φ/∂x, xλ+ = ∂x/∂λ+, ...
The solutions of the set of equations (600) are given by
{

Φx = D−1 (Φλ+ tλ− − Φλ− tλ+),

Φt = D−1 (Φλ− xλ+ − Φλ+ xλ−),
(601)

with D = xλ+ tλ− − xλ− tλ+ . Then, taking Φ = λ+ or Φ = λ− leads to

λ+
x = D−1 tλ− , λ+

t = −D−1 xλ− ,

λ−x = −D−1 tλ+ , λ−t = D−1 xλ+ ,
(602)

Inserting the previous expressions in equations (598) yields immediately
the set of linear equations (397).
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We consider the Euler-Poisson equation

∂2W

∂λ3∂λ4
− 1

2(λ3 − λ4)

(
∂W

∂λ3
− ∂W

∂λ4

)
= 0. (603)

A general solution of equation (603) has been found by Eisenhart in
1918 [53] in the form

W (λ3, λ4) =

∫ λ3

c0

ψ(µ) dµ√
λ3 − µ

√
λ4 − µ

+

∫ λ4

c0

ϕ(µ) dµ√
|λ3 − µ|

√
λ4 − µ

, (604)

where c0 is a constant and plays the role of the sound velocity in our
case.

In this appendix, we detail the calculations to obtain the explicit
expressions of ψ and ϕ in both regions A and B [see Section 7.2.2, from
equation (526) to equation (530)].

region a We seek for a solution of (603) in the form

WA(λ3, λ4) =

∫ λ3

c0

ψA(µ) dµ√
λ3 − µ

√
λ4 − µ

+

∫ λ4

c0

ϕA(µ) dµ√
|λ3 − µ|

√
λ4 − µ

. (605)

we know two boundary conditions for WA, given by (524a) and (525):

WA(c0, λS) =
1

2
√
λS − c0

∫ λS

c0

w
(3)
+ (r,−c0)√
r − c0

dr, (606a)

WA(λ3 = λH, λ4 = λH) does not diverge. (606b)

Taking the limit λ3 → c0 in equation (605) and using expression (606a),
yields

∫ λ4

c0

ϕA(µ) dµ√
µ− c0

√
λ4 − µ

=
1

2
√
λS − c0

∫ λS

c0

w
(3)
+ (r,−c0)√
r − c0

dr. (607)

The inverse Abel transformation amounts to perform the following trans-
formation: given two functions φ and w such that

∫ λ φ(µ)√
λ− µ dµ = w(r), (608)

one obtains after transformation [1, 14]

φ(µ) =
1

π

d
dµ

∫ µ w(r)√
µ− r dr. (609)
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Therefore, using this transformation in the case of expression (607) leads
to

ϕA(µ)√
µ− c0

=
1

2π

d
dµ

∫ µ

c0

dr√
µ− r√r − c0

∫ r

c0

w
(3)
+ (x,−c0)√
x− c0

dx. (610)

Inverting both integrals gives

ϕA(µ)√
µ− c0

=
1

2π

d
dµ

∫ µ

c0

dx
w

(3)
+ (x,−c0)√
x− c0

∫ µ

x

dr√
µ− r√r − c0

. (611)

Then, we compute the second integral over r:
∫ µ

x

dr√
µ− r√r − c0

= 2 arctan

(√
x− µ
c0 − x

)
, (612)

and thus,

ϕA(µ) dµ√
µ− c0

=
1

π

d
dµ

∫ µ

c0

dx
w

(3)
+ (x,−c0)√
x− c0

arctan

(√
µ− x
x− c0

)
. (613)

The last step consists of taking the derivative with respect to µ to obtain
exactly equation (526):

ϕA(µ) =
1

2π
√
µ− c0

∫ µ

c0

w
(3)
+ (r,−c0) dr√

µ− r . (614)

Then, we use the second boundary condition (606b) when λ3 → λ4 ≡ λH.
We introduce a small parameter ε such that

λ3 = λH − ε, λ4 = λH. (615)

In this case, equation (605) can be written as

WA(λH − ε, λH) =

∫ λH−ε

c0

dµ
ψA(µ) + ϕA(µ)√
λH − ε− µ

√
λH − µ

+

∫ ε

0

ϕA(λH + µ− ε) dµ√
µ(ε− µ)

.

(616)

When ε→ 0, the second integral of equation (616) converges to πϕA(λH).
However, if ψA+ϕA 6= 0, the first integral clearly diverges. Consequently,
WA converges when λ3 → λ4 = λH if and only if

ψA(µ) = −ϕA(µ), (617)

and, in this case,

WA(λH, λH) = πϕA(λH). (618)

This value exactly coincides with the first term of expression (537). The
explicit expression of ϕA given by (614), as well as condition (617), lead
to the solution of the Euler-Poisson equation (603) in region A [see
equation (528)]
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region b In this region, we seek for a solution of (603) in the form

WB(λ3, λ4) = WA(λ3, λ4) +

∫ cm

λ4

ϕB(µ) dµ√
µ− λ3

√
µ− λ4

. (619)

This expression ensures the continuity betweenWA andWB, when λ4 →
cm [see condition (519)]. The boundary condition in region B reads

WB(c0, λS) =− 1

2
√
λS − c0

∫ cm

λS

w
(2)
+ (r,−c0)√
r − c0

dr

+
1

2
√
λS − c0

∫ cm

c0

w
(3)
+ (r,−c0)√
r − c0

dr .

(620)

Inserting expressions (606a) and (620) in equation (627) yields
∫ cm

λS

ϕB(µ) dµ√
µ− c0

√
µ− λS

=

∫ cm

λS

wdiff
+ (r) dr√
r − c0

, (621)

with wdiff
+ (r) = w

(3)
+ (r,−c0)−w(2)

+ (r,−c0). Similarly to region A, we can
perform an inverse Abel transform to obtain in this case

ϕB(µ)√
µ− c0

= − 1

π

d
dµ

∫ cm

µ
dx

wdiff
+ (x)√
x− c0

arcsinh
(√

x− µ
µ− c0

)
. (622)

Taking the derivative with respect to µ leads immediately to the result
(530):

ϕB(µ) =
1

2π
√
µ− c0

∫ cm

µ

w
(3)
+ (r,−c0)− w(2)

+ (r,−c0)√
r − µ dr . (623)

complete elliptic integrals The solutions of the Euler-
Poisson equation WA and WB can be expressed in terms of a single
integral by means of the complete elliptic integrals of the first kind1.
Indeed,

WA(λ3, λ4) =
1

2π

∫ λ4

λ3

dµ
∫ µ

c0

w
(3)
+ (r,−c0) dr√

µ− λ3
√
λ4 − µ

√
µ− c0

√
µ− r

=
1

2π

∫ λ3

c0

dr
∫ λ4

λ3

w
(3)
+ (r,−c0) dµ√

µ− λ3
√
λ4 − µ

√
µ− c0

√
µ− r

+
1

2π

∫ λ4

λ3

dr
∫ λ4

r

w
(3)
+ (r,−c0) dµ√

µ− λ3
√
λ4 − µ

√
µ− c0

√
µ− r ,

(624)

where we have inserted expression (614) in equation (528) and have
inverted both integrals. Both integrals over µ on the right-hand side
of equation (624) are complete elliptic integrals of the first kind [77].
Therefore,

WA(λ3, λ4) =
1

π

∫ λ3

c0

w
(3)
+ (r,−c0) fA(λ3, r) dr

+
1

π

∫ λ4

λ3

w
(3)
+ (r,−c0) fA(r, λ3) dr,

(625)

1 The formulae below are easier to compute numerically.
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with




fA(x1, x2) =
K [mA(x1, x2)]√
x1 − c0

√
λ4 − x2

,

mA(x1, x2) =
(λ4 − x1) (x2 − c0)

(λ4 − x2) (x1 − c0)
,

(626)

K(mA) being a complete elliptic integral of the first kind. The same
procedure gives in region B:

WB(λ3, λ4) = WA(λ3, λ4) +
1

π

∫ cm

λ4

wdiff
+ (r) fB(r) dr, (627)

with

fB(r) =
1√

r − λ3

√
λ4 − c0

K
[

(λ3 − c0) (r − λ4)

(λ4 − c0) (r − λ3)

]
. (628)
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Titre: Étude Théorique des Corrélations Quantiques et des Fluctuations Non-linéaires
dans les Gaz Quantiques
Mots clés: Gravité analogue, Rayonnement de Hawking, Condensats de Bose-Einstein, Fluides non-
linéaires, Ondes de chocs dispersives

Résumé: Cette thèse est dédiée à l’étude des
phénomènes nonlinéaires dans deux fluides quan-
tiques qui partagent de nombreuses similitudes : les
condensats de Bose-Einstein et les “fluides de lu-
mière”.

Dans une première partie, nous étudions les ana-
logues soniques des trous noirs. Il est possible de
créer une configuration stationnaire d’un condensat
de Bose-Einstein en écoulement d’une région sub-
sonique vers une région supersonique. Ce fluide
transsonique joue alors le rôle d’un trou noir puisque
les ondes sonores ne peuvent s’échapper de la région
supersonique. En outre, en quantifiant le champ
sonore, il est possible de montrer qu’un rayonnement
de Hawking analogue émerge des fluctuations quan-
tiques du vide. Dans cette thèse, nous montrons
que la prise en compte des “modes zéros” – omis
jusqu’alors dans le contexte de la gravité analogue

– est essentielle pour obtenir une description précise
du processus de Hawking, menant alors à un excel-
lent accord avec les résultats expérimentaux. Enfin,
nous étudions l’intrication entre les différentes exci-
tations quantiques et montrons que notre système
crée de l’intrication tripartite.

Dans une second temps, nous étudions la propa-
gation des fluides nonlinéaires grâce à une approche
hydrodynamique et à des méthodes mathématiques
développées par Riemann et Whitham. Nous étu-
dions la structure oscillante et la dynamique des on-
des de chocs dispersives qui se forment à la suite
d’un déferlement. Notre approche permet de trouver
des expressions analytiques simples qui décrivent les
propriétés asymptotiques du choc. Cela donne accès
à des paramètres d’intérêt expérimental, comme le
temps de déferlement, la vitesse de l’onde de choc
ou encore le contraste de ses franges.

Title: Theoretical Study of Quantum Correlations and Nonlinear Fluctuations in Quan-
tum Gases
Keywords: Analogue Gravity, Hawking radiation, Bose-Einstein condensates, Nonlinear fluids ,Dis-
persive shock waves

Abstract: This thesis is dedicated to the study
of nonlinear-driven phenomena in two quantum
gases which bear important similarities: Bose-
Einstein condensates of ultracold atomic vapors and
“fluids of light”.

In a first part, we study sonic analogues of black
holes. In a Bose-Einstein condensate, it is possible
to implement a stationary configuration with a cur-
rent flowing from a subsonic region to a supersonic
one. This mimics a black hole, since sonic excita-
tions cannot escape the supersonic region. Besides,
quantizing the phonon field leads to a sonic analogue
of Hawking radiation. In this thesis, we show that a
correct account of “zero modes” – overlooked so far
in the context of analogue gravity – is essential for
an accurate description of the Hawking process, and

results in a excellent comparison with recent exper-
imental data. In addition, we characterize the en-
tanglement shared among quantum excitations and
show that they exhibit tripartite entanglement.

In a second part, we investigate the short
and long time propagation of nonlinear fluids
within a hydrodynamic framework and by means
of mathematical methods developed by Riemann
and Whitham. In particular, we study the oscillat-
ing structure and the dynamics of dispersive shock
waves which arise after a wave breaking event. We
obtain a weak shock theory, from which we can ex-
tract a quantitative description of experimentally
relevant parameters, such as the wave breaking time,
the velocity of the solitonic edge of the shock or the
contrast of its fringes.
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