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Preface

The journey towards this thesis began four years ago when I started to work as a full-time
research associate and consultant at the Fraunhofer Institute for Manufacturing Engineering
and Automation in Stuttgart, Germany in the Factory and Manufacturing Management
department. With experience in many industrial projects of different natures and purposes,
including factory assembly planning and simulation of production operations combined with
various national and international research projects, I have come to realise how great the
gap between academia and industry was and remains. This divergence motivated the work

proposed in this thesis.

Doing PhD research outside of conventional academic settings and entirely during my free
time has been a real challenge with an unclear end. However, it has also provided oppor-
tunities, such as an improvement of my time management skills that would not have been

expected otherwise.

This work is to the best of my knowledge original, except where acknowledgements and

references are made to previous work.



Abstract

The collaborative design of products and assembly lines is a requirement that has been rooted
in academia for many years. My original contribution to knowledge is the formulation of
the problem associated with selecting the best product and assembly line configuration from
a set of products, processes, and resource alternatives. An extended version which takes
buffer sizing into consideration is also proposed. In both problems, the obtained solutions
are optimal considering capacity and cost-oriented objectives. Concerning both problem for-
mulations, a cost model was developed to translate the complex interdependencies between
the selection of specific product designs, processes, and resources characteristics. For the
first problem, the development of an empirical study aiming at comparing, based on several
quality indicators, various multi-objective algorithms of several natures represent a novelty.
Among these algorithms, various including evolutionary algorithms, ant colony optimisation,
particle swarm optimisation, bat algorithm, cuckoo search algorithm, and flower pollination
algorithm are proposed. In addition, several dominance rules have been tested and com-
pared. Among them, the classical Pareto, Lorenz, and S-CDAS dominance rules and the
best-performing algorithms were extended with a local search. For the second problem,
which also considers the buffer sizing, the developed algorithms were enhanced with a gen-
eric discrete-event simulation model, which has a primary function of collecting the required
information to evaluate the value of the objective functions. The diverse algorithms, includ-
ing the presence of a local search, were compared based on fifty problem instances. For the
first problem, the evolutionary algorithm obtained positive results for all quality indicators
when considering all problem instances. However, when considering complex and small prob-
lems, different variants of multi-objective ant colony optimisation algorithms provided better
results. For the second problem, the hybridisation of the NSGA-II and SPEA2 improved the
results obtained for most of the quality indicators. These results were validated through the

application of nonparametric statistical tests.

The demonstration of the developed resolution frameworks for both problems was validated

through two industrial cases.

i



The principal contributions of this thesis are as follows:

— Formulation of two problems associated with the selection of the most suitable assembly
line design while considering the product design, processes, and resource alternatives

— Development of a cost model with an objective of translating the complex interde-
pendencies between the selection of specific product designs, processes, and resource
characteristics

— Empirical study comparing several quality indicators and various multi-objective al-
gorithms, including evolutionary algorithms, ant colony optimisation, particle swarm
optimisation, bat algorithms, cuckoo search algorithms, and flower pollination al-
gorithms.

— Analysis of the influence of local search and dominance rules on the performance of
several algorithms

— Combination of optimisation methods with a generic discrete-simulation model for the

second problem
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Chapter 1

Introduction

Abstract

The present chapter discusses the subject of investigation in this thesis. First, a general
introduction is provided. Challenges of mass customisation and personalisation are reported,
based on which, the problem addressed in this thesis is described. This is followed by the

objective definition and the work structure.
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1.1 Introduction

Since mass customisation became a viable strategy in the mid-1990s, there has been tre-
mendous market pressure on companies to deliver personalised products [228] and services
to customers with mass production efficiency, cost, quality, and flexibility. As shown in
Figure 1.1, product variety and engendered process variety, which is observed as an ex-
ponentially increasing number of process variations through machines, tools, fixtures, and
labour [410, 193], challenges the conventional product and process development approaches
and supply chain management to move from mass production to high-variety-low-volume
production [392]. To accomplish economics of scope and scale, mass customisation can
be achieved by (i) developing product platforms that are characterised by modularity and
standardisation across different products and (ii) reusing already existing production sys-
tems [98, 323]. The use of product platforms has been widely considered in the literature and
opting for this strategy can reduce development costs and product reliability [44]. However,
the enormous competitive pressure, which is even more shaped by the transformation of the
mass customisation into a mass personalisation strategy, compels companies to regularly
renew their product and process platforms with new production technologies and factory in-
frastructure. This results in shorter products, factory, and process life cycles, and increases

the complexity of planning efficient and cost-effective production systems.

»

Product volumes

Product varic?y

Figure 1.1: Evolution of manufacturing based on [220]

1.2 Problem definition

Assembly lines which meet these cost, quality, and efficiency requirements and are the most

commonly used assembly systems, enable the assembly of products by workers with limited
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training and by dedicated machines or robots. Because of the high investment and run-
ning costs involved, the correct design and redesign of such lines are fundamental. Some
crucial decisions must be made in the design of assembly lines, including product design,
process selection, line layout configuration, and line balancing [30]. Due to their complexity,
these problems are usually not considered at once [394]. However, these design decisions
are drastically influenced by the characteristic features of the markets, which are seen as in-
creasingly difficult and doubtful. The associated uncertainty is mostly related to the choice
of the right product design and the right level of automation (e.g. fully and semi-automatic
or manual) concerning technical data and engendered product costs. This can be illustrated
through a real industrial case, in which a company produces a given product in various
plants around the world. It owns in its production network several components, suppliers,
and dedicated plants for final assembly. Based on the geographical location of each plant,
some specific characteristics may change (e.g. wage rate, raw material costs, the number
of factor days, and the overhead ratio between direct and indirect workers). Figure 1.2
presents the evolution of the product unit costs of manual and automated assembly lines
regarding the annual demand for several plant locations?. As demonstrated in the figures
below, the product unit costs of both manual and automated assembly lines have a wide
range. Indeed, associated costs are based on plants’ location characteristics. While for some
scenarios manual assembly is always cheaper than automated (e.g. Scenarios 1 and 3), for

other scenarios, automated assembly lines provide the cheapest unit costs.

While the majority of product cost is determined in the early product design stage, many
decisions about product designs are made during this stage with little or no knowledge [68|
of the effect on downstream cost centres (e.g. assembly). They usually rely on qualitative
descriptions and subjective judgements in which experts and their knowledge are utilised
[436]. The implication is that design decisions are more significant than subsequent man-
ufacturing decisions [27]. Some authors (e.g. [395]) state that design decisions determine
70-75% or more of product costs and manufacturing decisions can only affect 10-25 % of
product costs. However, compared to the cost responsibility, as shown in Figure 1.3, manu-
facturing costs represent about 70% of product costs [17| and design costs represent between
6 and 12% [366]. Thus, if any wrong decision is made in the early stages of the product

design, engineering changes will be required.

1. The product unit costs are function of investment and running costs. The various cost elements can
be represented, among others, by e.g. the material costs, personal costs, investment costs

2. The reader will note that the required investments for automated assembly lines are constant over the
plant locations. Also, while automation can have following reasons: (i) increase productivity, (ii) reduce
labour costs, (iii) improve worker safety and (iv) improve product quality, the automated assembly lines
under consideration are identical in the different plants and are mostly related to increasing productivity
and reduce labour costs.
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Late product changes, especially with complex designs, can lead to alterations in other parts
of the product and can consequently be costly [209] in terms of scraps, wasted inventory, and
disruption. Furthermore, the cost of change increases drastically as the product progresses
toward production. Thus, the earlier that changes and improvements are made, the lower
the product costs. There is a consensus in the literature that the successful implementation
of mass customisation requires a holistic approach taking both product and process design
on board [192]. This induces the need to consider product design, process selection, and
assembly line balancing together. In order to provide an effective and objective approach to
systematically evaluate design concepts and their influence on upstream processes in the early
stage of the design process, many methodologies such as Design for Manufacturing, Design
for Assembly, Design for Environment, Design for Safety, Design for reliability, Design for
Maintenance, Design for aesthetic features, Design for Economy and Design for Ergonomics,

have been proposed by academia and industry. All of these methodologies were extensively
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Figure 1.2: Illustration of the evolution of the product costs associated with manual and

automatic assembly lines based on the annual demand for five scenarios
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Figure 1.3: Causation and responsibility of final product costs [386]
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described by Paramasivam and Senthil [314]. In these methodologies, evaluation metrics such
as boolean, cost, time, quantitative, and abstract measure are used. In practice, there is
often great flexibility in performing the manufacturing work for a given product alternative.
This might concern a single operation (e.g. a part might be connected to the workpiece by
gluing, screwing, riveting, or welding causing different execution times) and a complete set
of operations [360]. The effects of product alternatives and greater flexibility in performing
tasks associated with these designs in an assembly line are currently not being taken into
consideration by any of these methodologies. Indeed, the iterative evaluation of product
and process designs is time consuming and laborious since many factors must be examined.
Furthermore, the evolution of product and process designs also requires decision-making
tools that can consider large numbers of evaluation criteria that are too complex for a

human decision maker [314].

1.3 Objective definition

In this global and competitive marketplace, companies must excel at various subjects, in-
cluding product costs, design functionality, and product quality [345]. Developing a new
product is an insecure and uncertain process [314]. In order to reduce the risks and uncer-
tainties associated with the product and process design and to ensure the competitiveness of
manufacturing firms, new planning methods that support decisionmakers during the design
phases of an assembly line under consideration of product design, processes, and resource
alternatives, aiming at both optimising capacity and cost-oriented objectives are required.
Consequently, the lack of analytically based methods for addressing these drawbacks motiv-
ated this work.

The research objective of the present thesis is to address this point by developing a decision
support method that can select the best product and assembly line configuration with the
least resulting costs. As shown in Figure 1.4, another objective is to decrease the planning
changes of the product and the process and thus the engendered planning and operation

costs.

To deal with this, the following sub-objectives need to be addressed:

— Analysis of the interdependencies between the product designs, processes, and product
design alternatives, and development of a cost model that can translate all these inter-
dependencies between the various products, processes, and resource alternatives into

one single metric
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— Development and comparison of various optimisation methods and fine-tuning of the

most promising one
— Incorporation of evaluation methods to analyse the influence of buffers in the efficiency

of the assembly line

The following research questions can be derived from the objectives of this thesis:

— Which cost elements have a significant influence on the selection of the best product

and assembly design?
— Which optimisation method(s) is/are the most suitable for selecting the best product

and assembly line configuration?

— Does the proposed method decrease the number of design changes, planning costs, and
product costs?
These research questions represent the guidelines for the present work and form the basis

for the structure of this thesis.

»

!

»
»
'

—— Classical engineering
- - Proposed method

Planning costs
Product costs

Number of design changes

\J

Planning horizon Planning horizon . Operation horizon

Figure 1.4: Objective definition of the proposed work

1.4 Research methodology and work structure

There are two approaches in research that may result in the acquisition of new knowledge:
inductive and deductive approaches [185, 372, 223|. These approaches may differ in the way
existing knowledge is used to draw a conclusion, make predictions, or construct explanations.
In the deductive approach, the argumentation line follows the path of a general law or theory
to a specific case, and the inductive approach can be described as the mirror image of the
deductive process [194, 372]. The argumentation line moves from a specific empirical case

or a collection of observation to a general law or theory.

The structure of this thesis, which is represented in Figure 1.5 mainly reflects the inductive-
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deductive reasoning approach, which was used in the development and refinement of the

decision support method.

Chapter 1: Introduction

~

Chapter 2: Situation’s analysis

Product Design
Assembly Planning

v

Chapter 3: State-of-the-art

Assembly Line Balancing Problem
Buffer Allocation Problem

Chapter 4: Assembly Line Balancing under
consideration of Equipment and Design
alternatives
A comparative study of optimization methods
Problem formulation
Comparison of approximate methods

|
| |
[ \
| |
| |
| |
| |
| |
| |
| |
: Chapter 5: Assembly Line Balancing under :
i | consideration of Equipment and Design |
: alternatives :
1| Hybrid optimization methods |
| |
| |
| |
[ \
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |
| |

Pareto vs Lorenz dominance
Hybrid approximate methods

Chapter 6: Assembly Line Balancing and Buffer
Allocation under consideration of Equipment
and Design alternatives

Hybrid optimization methods

Generic simulation model
Hybrid approximate methods

Chapter 7: Validation of the developed method

Automated assembly line
Manual assembly line

v

Chapter 8: Conclusion and future work

Figure 1.5: Structure of the work

Chapter 2 explains important fundamentals and provides a generalised description of the
design phases of products and assembly lines, which are central subjects in this thesis.
Current limitations are identified, leading to the definition of the scope of this thesis, and

the requirements that must be considered in the development of the decision support method.

In Chapter 3, the state-of-the-art will be tackled by presenting optimisation methods, which
are a core element of this thesis. In addition, the focus of this chapter relies on the re-

flection of existing models and problems related to the selection of the best product design
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and assembly design. The identified drawbacks related to the assembly line balancing prob-
lem and buffer allocation problem will allow the definition of the research need. Based on
this research need, two models and several different optimisation methods to tackle these
models are presented in Chapters 4 to 6. Among these algorithms, several variants of evolu-
tionary algorithms, artificial bee colony algorithms, cuckoo search optimisation algorithms,
flower pollination algorithms, bat algorithms, particle swarm optimisation algorithms, and
ant colony optimisation algorithms are proposed in Chapter 4 to tackle the first problem.
Following the inductive-deductive approach, an empirical study was performed to accept or
reject hypotheses that were defined based on several patterns discovered through the data
analysis or defined based on the state-of-the-art. The combination of these hypotheses allow
for the identification of the most suitable optimisation methods. In Chapter 5, the influ-
ence of dominance rules and local search on the most promising algorithms is analysed. In
Chapter 6, the second problem is presented, and various resolution methods are introduced
and compared. The decision support method is validated in Chapter 7 with two industrial

use-cases. Finally, the work addressed is reflected and possible future work is identified.



Chapter 2

Situation’s Analysis

Abstract

This chapter introduces the situation‘s analysis. First, basic concepts and common criteria
used in the literature to classify assembly lines are presented. This is followed by the de-
scription of conventional methods for designing products and assembly lines. The concurrent
product design approach, the method on which this thesis relies, is then introduced. Finally,
general drawbacks that have been identified during four years of industrial consulting pro-
jects related to the design of products and assembly lines are listed, based on which the

requirements for the approach that has to be developed in this thesis are defined.
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2.1 Introduction

Assembly, which is one of the most cost-effective approaches to high product variety [182],
is considered as an important and crucial stage in the product lifecycle. Therefore, the
task of planning an efficient assembly system is of high importance for every producing
company. The design of assembly lines requires a number of crucial decisions related to
product design, process selection, line layout configuration, line balancing, and buffer sizing.
However, due to their complexity, these problems are usually considered separately [337, 30].
Product design and process selection are steps that provide information about the work
that must be performed in the assembly line and the set of constraints between these tasks.
These constraints can be technological, economical, environmental, or ergonomic. In the
step related to the line configuration, the choice of the line layout (e.g. straight, U-shaped,
circular) that defines the flow directions of the material, must be made. Finally, the last two
and probably the most crucial steps are line balancing and buffer sizing. In these steps, the
tasks and their respective equipment are first assigned to workstations and then, the buffer

sizes between these workstations are defined.

2.2 Basic concepts

The assembly planning has the task of developing an assembly system, in which it is possible,
under given restrictions to bring together individual parts or assemblies. This can be done
through the assembly processes described by the DIN 8580 [112] and shown in Figure 2.1.
Bringing together individual parts is accomplished through one or several joining elements
(e.g. screws) or joining techniques (e.g. welding or gluing). Figure 2.2 represents the various
connection possibilities of two sheet-metal parts, which can be respectively realised by a
bolt and nut, a screw, a rivet, press fitting, and welding. The primary difference between
these techniques are the required tasks and their processing time. While the first technique
necessitates four operations, the second only calls for two operations. In addition, these
various designs may need different tools and resources. While the first design can hardly be
automated due to the required exact position of the nut when inserting the bolt, the second

design can be more easily be automated.
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Figure 2.1: Traditional manufacturing and assembly processes
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Figure 2.2: Assembly of two sheet-metal parts using different assembly processes

Assembly systems can be modeled as a sequence of M workstations and M — 1 intermediate
buffers. The size of the buffer between station m and m + 1 is provided by B,,. In an
assembly line, the M workstations are usually connected by a transportation mechanism

such as a conveyor belt. Among these M workstations, N tasks are performed. Each task 7,
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j =1, ..., N, requires a task processing time ¢;, which can either be performed by a machine,
a robot, a human worker or a combination of them. The total work required to manufacture
a product is given by Zjvzl tj. Each station m, m = 1,..., M, has a specific set of tasks
called the station load S,,. The station time of a given station m is given by ¢(S,,) and is

calculated as follows:

HSm) = D 1 (2.1)

JESm
Definition 2.1 Product

A product is a composition of interconnected parts forming a stable unit realised through one

or several joining elements (e.g. screws) or techniques (e.g. welding, glueing).

Definition 2.2 Part(Component)
A part (or a component) is a solid objective whose shape remains unchanged throughout the

assembly process.

Definition 2.3 Task
A given product is subdivided into N indivisible working units, later on task. FEach task

J,J = 1,..., N requires a processing time t;.

Definition 2.4 Cycle Time
The cycle time 1s the time available in each workstation to complete all assigned tasks and
it represents the average time between the start of assembly of one unit and the start of the

next one.

There is a great variety of assembly line configurations. This diversity is engendered by the
layout and shape of the line, the number of products and models being assembled on the

line, and the types of workstations that can be automated, hybrid, or manual.

Definition 2.5 Manual Assembly Line [408]
Assembly systems in which all operations are carried out manually, or that consist entirely

of manual workstations.

Definition 2.6 Automated Assembly Line [408]
Assembly systems in which all operations are carried out automatically, or that consist en-

tirely of automated workstations.

Definition 2.7 Hybrid Assembly Line [408]

Assembly systems composed of a combination of manual and automated workstations.
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2.2.1 Classification of assembly lines

Assembly lines can be classified according to the following characteristics [30, 350]: (i) the
number of products or models produced, (ii) the task duration, (iii) the layout or shape of

the line, and (iv) the level of automation of the line.

According to the number of products or models, assembly lines can be classified into:

(i) single model, (ii) multi-model, and (iii) mixed-model assembly lines.

— In a single model assembly line, only a unique product type is produced on the same
line.

— In a mixed model assembly line, several variants of a basic product, referred to as
models, are produced simultaneously on the line. The production process does not
involve significant setup times since these models require similar manufacturing tasks
and materials. These models are produced in a mixed-model sequence.

— In a multi-model assembly line, different models with significant differences are pro-
duced on the same line. These differences can be identified as different sequences in
assembly tasks or different materials. Units of different models are processed in a

sequence of batches, containing either the same model or a group of similar models.

According to the task duration, which can be referred to the level of automation, as-
sembly lines can also be classified regarding the nature of the task duration and if they are:
(i) deterministic or (ii) stochastic. In deterministic lines, all processing times are fixed and
known with certainty, whereas in stochastic lines, task processing times may be significantly

affected by the learning effect of workers and the availability of resources.

According to the line shape and layout, assembly lines can also be classified according

to the shape of the line, which can be straight, U-shaped, or circle/closed.

— In a straight line, products are processed throughout a group of workstations arranged
in a straight line.

— In a U-shaped line, which is commonly manual and allows workers to work on two or
more workpieces at different stations across both legs of the line during the same cycle,
the workstations are arranged in a U-shape. The U-shaped line allows the forward
and backward assignment of tasks to stations [329] in contrast to a typical forward
movement in a straight line [347].

— In a circle/closed line, the workstations are arranged around a circular conveyor.

While U-shaped assembly lines help to reduce the number of stations, they can also improve
the efficiency of the assembly line by allowing workers to work on two or more workstations.

Indeed, compared to straight lines, tasks can be grouped into a station by moving forward
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and backwards or simultaneously in both directions through the precedence network [256].
Furthermore, Miltenburg [265] shows through an empirical study that the effectiveness of
U-shaped lines are at least as good as that of straight lines when buffers are located between
each workstation. Finally, the U-shaped line can also decrease work in progress, increase pro-
ductivity, reduce material handling [330], and improve visibility and communication between
workers |444]. However, to use all benefits of a U-shape line, multi-skilled workers must be

hired [266]. These differences in the line and work assignment are shown in Figure 2.3.

a) Straight Line (b) U-shaped Line

Figure 2.3: Comparison of the layout of a straight and U-shaped line

Assembly lines can also be classified according to the layout of the line. Several layouts can
be identified as: (i) parallel lines, (ii) parallel workstations, (iii) two-sided lines, and (iv)
fishbone flow.

— Parallel lines are often used when several product types are assembled. Each of these
lines is designed for a specific product type or family.

— Assembly lines with parallel stations are often used when either the net processing
time or the gross processing time of equipment performing specific tasks exceeds the
cycle time.

— In two-sided assembly lines, tasks can be performed on both sides of the line. This
configuration is commonly used in the industry (e.g. automotive).

— Fishbone assembly lines consist of a main line, the spine, where the final assembly is
performed and several smaller lines, and the bones, which produce subassemblies and
deliver them to the final assembly line. The fishbone assembly lines are mostly suitable
for modular products with sub-assemblies. In such a configuration, since each of the

modules are fed by a rather long assembly line, the main assembly line is shorter.

According to the flow of workpieces, assembly lines can either be synchronous lines,

asynchronous lines, or continuous lines.

— 1In synchronous lines, all workstations have a common cycle time CT" and therefore all
workstations start processing at the same time, and the workpieces move simultan-

eously at the end of each cycle time. Some workstations may finish their station loads
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before the end of the cycle time CT' but the workpieces need to wait until C'T" has
passed. For this type of assembly line, the difference between the station time is used
to compensate stochastic variations in the task time (e.g. equipment breakdown).

— In asynchronous lines, the workstations have different cycle times, and workpieces are
transferred whenever the required tasks are completed. The workstations are linked
by buffers to minimise the difference of cycle times. Asynchronous lines are often
implemented due to temporary stochastic variations due to the model mix or if non-
deterministic events such as machine breakdowns affect the station time. Taking the
station time of stations m and m + 1, respectively ¢(S,,) and t(S,,+1), the difference
between them may determine whether there will be blockage or starvation. If £(S,,) <
t(Sms1), the workpieces will move from station m to the buffer B,,. However, if the
number of workpieces in the buffer between m and m+1 is equal to its storage capacity,
the station m will be blocked since the workpiece cannot leave the workstation. If
t(Sm) > t(Sm41) and the buffer between m and m + 1 is empty, the station m + 1 will
be in starvation. Starvation or blockage can also be ensured by machine breakdowns
on either upstream or downstream workstations.

— In continuous lines, the workpieces continuously cross the various workstations at a
constant speed. This type of line is often used for manual operations with high cycle

times.

Synchronous assembly lines can also be paced or unpaced. The difference between a paced
and unpaced synchronous assembly line is that an unpaced line moves only when all stations
have completed their tasks[397].

Figure 2.4 shows a combination of possible line configurations based on a real industrial case
study. In this example, several areas can be identified. Two parallel lines are used to produce
two product families. The assembly of gas and electric ovens is respectively done on the first
and second lines. In Area 1, the chassis are assembled on a circular line. After completion,
the chassis are moved with a lift to the main straight line, where the following operations are
done: (i) isolation of the chassis, (ii) assembly of sides and bottom panels, (iii) assembly of
cooktops, (iv) assembly of drawers, (v) assembly of doors, and (vi) testing operations. After
completion, both lines are merged before the packaging area. While most of these operations
are realised on the main line, the pre-assembly of cooktops and doors is respectively done
on separate lines, represented by Areas 2 and 3. Due to the high-processing times of the
testing equipment, several ovens are simultaneously tested in a u-shape in the first line or in

a circular line in the second line.
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Figure 2.4: Industrial example of a complex assembly system

2.2.2 Conventional methods for product design

Several methodologies and models for the product design process have been developed and
are found in the literature (e.g. [342, 143]). Designing a product requires finding and defining
the geometry and materials in such a manner that the prescribed requirements are met in
the most effective and efficient way. These methods may differ in their granularity, but
they have the same sequence of tasks. Pahl and Beitz’s method [178] is one of the most
famous methods. They divided the design process into four distinct phases. In the first
phase - clarification of the task - based on the information handed over by a client or the
department responsible for the product planning, a program of requirements is drawn. These
specifications define the functions, the properties, and the constraints that are required for
the new product. In the second phase - conceptual design - broad solutions are generated
and evaluated regarding the specifications defined in the first phase. In the third phase -
embodiment design - the chosen concept is elaborated into a definitive layout. In the last
phase - detail design - the geometrical shapes, dimensions, tolerance, surface properties, and
materials are fully specified and the part lists, the production, and assembly instructions are

generated and documented.

2.2.3 Conventional methods for assembly planning

In the literature, there are several conventional methods for planning assembly systems
(e.g. [135, 59, 162]). They may differ in their granularity, but they all have similar steps.

Bullinger’s method [59], which is divided into six planning phases is shown in Figure 2.5.
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Figure 2.5: Main steps in the assembly line planning based on [59]

The first phase aims at analysing the products and their variants, the production strategy
(e.g. number of products to be produced within a given time period, decision about make or
buy strategy), and the specific personal data. Based on this analysis, planning objectives are
defined, analysed, and weighted. These steps allow the definition of a takt time, C'T', metric
which gives the average unit production time needed to meet the customers’ demands. CT
defines the boundary for each station time ¢(S,,), m = 1,..., M. The cycle time for a given
period ¢, denoted as CT'(t) can be calculated as follows:
WT(t)
31 (1)

where WT'(t) represents the available working time during period ¢ and d,(t) represents the

OT(t) = (2.2)

demand for a given product p during this period. P represents the total number of products

or variants that need to be produced on the assembly line.

The second phase has the purpose of defining and determining all necessary tasks N for
the assembly of the products and the various technological constraints, their sequential
relationship, and all the tasks processing times. Classically, the resulting information of this

phase is represented in a precedence diagram.

The third phase aims at determining the assignment of tasks to the workstations with respect
to the objective(s) defined in the first phase. In this phase, several solutions are generated

regarding various criteria (e.g. idle time on the assembly line and capital expenditures) and
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different organisational systems (e.g. parallel stations and buffers). These solutions are then
compared and put into different layouts (rough and detailed layouts) and their concepts are
verified through simulation. This can be addressed by solving various problems, such as the
Assembly Line Balancing Problem (ALBP), the equipment selection problem and the buffer
sizing problem. The ALBP arises whenever an assembly line is configured, redesigned, or
adjusted and distributes the total workload for manufacturing any unit of the products that
will be assembled among the workstations [359]. The Buffer Sizing Problem is also known
as the Buffer Allocation Problem (BAP). This problem aims at finding the optimal buffer

sizes between workstations [107].

In the fourth phase, the resources for the execution of each task are selected and a final
review of the different task processing times and investment costs is done. In addition, the
material handling system is selected and the layout of the assembly system is designed in
detail.

In the last two steps, the resources are designed and procured. After staff planning and staff
training, the production system is set up and evaluated to check if the objective(s) defined

in the first phase is/are reached.

The following sections present the various steps involved in the assembly planning in detail.

2.2.3.1 Assembly process planning

Assembly Process Planning (APP), which is an important stage in product design and
manufacturing, considers two tasks, the Assembly Sequence Analysis (ASA) and Assembly
Sequence Planning (ASP). The results of APP are the definition of all assembly process con-
straints, including the precedence relationships of parts or subassemblies and other assembly
process constraints, such as assembly directions and tools [435]. To generate all possible
assembly sequences, the ASA problem must be addressed. The ASA aims at defining the
feasible assembly sequences for a product with a defined architecture by analysing possible
assembly combinations. The objective is to find one possible and feasible sequence or all
sequences. ASP considers the results of ASA and aims at finding the possible sequence of
tasks, the assembly tools, and fixture planning [407]. Taking into consideration that defin-
ing the assembly sequence can be addressed through a combinatorial approach based on the
total number of parts n, the maximum number of feasible solutions C' can be expressed as
follows:

C =nl (2.3)

In their literature review, Klindworth et al. [217| classified the concepts associated with
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finding assembly sequences or precedence restrictions into two main classes: (i) manual and
automated approaches that are intended to detect all feasible sequences and (ii) genetic

algorithms and case-based reasoning procedures applied to search for good sequences.

Once the various possible assembly sequences have been identified, they need to be rep-
resented in a precedence graph. Several methods have been proposed in the literat-

ure for the transformation of a set of assembly sequences into precedence graphs (e.g.
[207, 267, 177, 217, 301]).

2.2.3.1.1 Method for representing precedence information for a single product

The precedence graph has been widely adopted in assembly planning to describe the sequen-
tial relationship and all the task processing times involved during the product analysis and

process planning.

Definition 2.8 Precedence Graph

A precedence graph G = (V,E,t) is a network plan, which represents the order in which
tasks must be performed (e.g. due to zoning, technical or resource restrictions). The set
of nodes V.= {1,..., N} represents the different tasks and the set of arcs E represents the
precedence relations (i,j) between tasks i,j € V.. The vector t contains the operalion times
ti,7=1,..,N.

The precedence graph enables the identification of which tasks take precedence over other
tasks and which tasks can be executed in parallel. Indeed, if there is an arc (i,j) € V,
i is an immediate predecessor of j. A given task may have more than one immedi-
ate predecessor and can only be started as soon as all its predecessors have been com-
pleted. In the example provided in Figure 2.6, V = {1,2,3,4,5,6,7,8,9,10,11}, F =
{{1,2},{2,3},{3,4},{4,5},{4,6},{6,7},{6,8},{7,9}, {8,9}, {9, 10}, {10, 11}} and
t=2,5,4,6,3,2,10,1,11,12,11.

Figure 2.6: Fxample of a precedence graph

Braun [53| defines a precedence graph by the following properties:

— A precedence graph must be acyclic
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— A precedence graph must not have any circuit

— A precedence graph must not have any transitive relations

An important measure characterising a precedence graph G is its order strength OS(G)
[301], which is defined as:

2. |ET|
N-(N-1)
The order strength Order Strength (OS) represents the ratio of the number of all (indirect

0S(G) = (2.4)

and direct) precedence relations in G and the maximal number of precedence relations in
G. In other words, it refers to the degrees of freedom for the assembly planning task. If
OS(G) = 1, a graph is highly restricted and only one assembly sequence can be generated.
The calculation of the order strength requires the transitive closure of the precedence graph

G.

Definition 2.9 Transitive closure
A precedence graph G = (V,E,t), GT = (V,ET t) is called the transitive closure of its
original graph G iff there is a directed path from i to j (i.e. there is a sequence of vertices

ay,...,ap witht>0,4i=ay(a,,a,41) € E, ¥r <t, and a; = j)

One precedence graph typically corresponds to multiple possible assembly sequences [450].
To create the precedence graph of a given product, the possible assembly sequences must be
analysed first. While the precedence graph represents a partial order of the assembly tasks,

the assembly sequence represents a total order.

To define the task processing times, various methods covered by the term 'work measurement’
can be used. Different research activities have been done in recent years to integrate methods
and techniques from engineering and ergonomics with the intention of estimating the time
needed to perform a specific task [114]. Several factors are involved in the decision process
of selecting a specific evaluation method. Engineering methods known in the literature as
predetermined motion time systems (PMTS) are usually used for short-cycle work (minute
range). The methods-time measurement (MTM) [260], with the aim of analysing a task
into its fundamental human activities to assess the complete time required for all these
activities, is the first and one of the most widespread PMTS methods. One major drawback
of MTM is the amount of time needed to analyse all tasks. For this reason, several variants
have been developed during the last decades. Among them, the following methods can be
identified: (i) Sequence-based Activity and Method analysis (SAM) [85], (ii) the Maynard
Operation Sequence Technique (MOST) [60], and the Universal Analysing System. For
long-cycle work, estimation methods relying on the experience of the estimator and require
in-depth knowledge. Similar to MTM, the Robot Time and Motion (RTM) method [286] for
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predetermining the robot cycle time based on standard elements of fundamental robot work

motions was also developed.

2.2.3.1.2 Methods for representing precedence information for multiple products

When different variants and products are produced on one assembly line, the precedence
graph has to include the relations between all tasks of all products or variants P. Usually,
the generation of a joint precedence graph requires the information about the individual
precedence graph G, = (V}, E,,t,) for each model p, p =1,..., P. The node set V,, contains
the model specific tasks, the arc set E, reflects the precedence relations (7, j) between tasks
i,7 € Vp, and the vector of node weights ¢, contains the processing times ¢;, of tasks i € V.
Using the demand d, of model p and the various nodes and arc sets V}, and E,, it is possible

to create a joint precedence graph G = (V, E,t) from the following definitions [254, 401]:

v={J V (2.5)

p=1,...,.P
= g—p by (2.6)
E = U E, \ redudant arcs (2.7)
p=1,....P

In equation (2.5), each task that is common to different models receives a model wide con-
sistent number. This allows common tasks to be assigned over different models to the same
workstation !. If a specific task ¢ € V' is not required by a model p, its operation time t;, = 0.
In equation (2.6) the weighted operation time ¢; is calculated. Equation (2.7) determines
the joint precedence constraints by joining the model-specific arc sets. This can lead to
redundant arcs (7, j) which represent transitive precedence relations. A redundant arc from
1 to j can be removed without any loss of information if there is another path from node i to
j with more than one arc. An example of a joint precedence procedure, based on model-mix

prognosis is shown in Figure 2.7.

Due to the increasing number of models and to reduce the processing time for generating a
precedence graph, Boysen et al. [52] propose the option-based precedence graph. The main
difference between the approach described before relies on the determination of the joint task

times based on the estimated fraction of product units containing certain options instead of

1. Assigning model wide consistent numbers to common tasks is a requirement for a mixed-model line,
but not necessarily for a multi-model line. This is induced since in a mixed-model line no setup times are
taken into consideration and assigning similar model wide tasks to different stations would engender setup
times.
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respective forecasts for the large number of individual models. In their approach, the risk of

systematically overvaluing task times and resource utilisation is reduced.

6 2 8
On 0, (2)

4 2 5
O—® O—E—®
2
(D—©) O
(a) Model 1 with d; = (b) Model 2  with (¢c) Joint  preced-
0.5 ds = 0.5 ence graph

Figure 2.7: Creation process of a combined precedence graph

2.2.3.2 Line configuration

The line configuration determines the assignment of tasks to workstations and dimensioning
buffers between workstations with respect to the objective(s) defined in the first phase of
the conventional assembly planning process. Two main problems can be identified here: (i)
the ALBP and (ii) the BAP. This is done considering what has been achieved in the process
planning. The solution methods applied during this step can be summarised into two categor-
ies: (i) traditional methods or (ii) methods combined with optimisation algorithms. Process
planners usually use the traditional manual trial-and-error techniques to solve these two
problems. Even if they can reach a good solution, this process is relatively time-consuming
and not adequate for complex products since it is impossible to explore all the solution space.
It has been reported in the literature that this technique generally results in an estimated
four to ten percent of operator’s time losses through unequal work assignments [240]. Meth-
ods of Operations Research, which can be defined as follows, are often used to assist the

decision maker to reach a better solution faster.

Definition 2.10 Operations Research 2
Application of scientific principles to business management providing a quantitative basis for

complex decisions

A detailed overview of these two problems with their respective solution methods is provided

in the next chapter.

2. http://www.oxforddictionaries.com
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2.2.3.3 Layout design

Based on the results of the line configuration, with an objective is to provide an assignment
of tasks to workstations and a dimensioning of buffers between them, the detailed design of
the manual and automatic stations occurs in Phase 4. In this phase, several alternatives are
usually developed regarding various criteria, such as material handling systems, ergonomics
concerns, and space utilisation [420]. The design of workstations under consideration of
ergonomics is described by standards (e.g. [113]). The objective when designing a workplace
is to accommodate a wide range of heights, from 1.54 to 1.87m, so that the largest percentage
of the population is covered. In addition to the height of the workplace, the gripping area
is also an important design criterion. The geometry of the work area should not cross a
maximum depth of 40-60 cm and a width of 120 cm. When planning the material disposition
on the line, the following criteria should also be taken into account: (i) accessibility, (ii)

inclination, and (iii) consideration of the symmetrical movement sequence.

2.2.4 Concurrent engineering

The current high-variety-low-volume ratio and engendered short product life cycle require-
ments have forced product designers and manufacturing engineers to change the way products
are designed [414]. In conventional product development, the following steps are considered
in a sequential process: (i) conceptual design, (ii) preliminary design, (iii) detailed design,
and (iv) prototyping verification. These steps occur before the process development. Since
many departments are involved in the product and process development, and there is no
interface between them, several iterations and changes are required both on the product and
process side to achieve an ideal solution. In concurrent engineering, which is a systematic
approach to integrating the concurrent design of products and processes, product designers
are stimulated to consider all elements of the product lifecycle in the first stages of product
development. To improve the quality and cost of planned products and fulfil customer re-
quirements in the early stage of the design process, many methodologies such as design for
manufacturing, design for assembly, design for environment, design for safety, and design
for economy and design for ergonomics have been proposed by academia and industry. The

" are often simplified using the acronym DFX,

previous terms starting with ’Design for ...
Design for X [131]. Common to all DFX methods are their two approaches for the evaluation
process of a specific product design: (i) qualitative and (ii) quantitative. Examples of suit-
able qualitative evaluation criteria are the weight, number of parts, size, required assembly

directions, and joining method. Examples of quantitative methods are costs and assembly
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time.

2.3

Industrial context

Over the experience gathered through multiple industrial projects and seminars in different

companies, from SMEs to multinational companies, working as a research engineer and

consultant, the following gaps between academia and industry have been identified:

Even if concurrent engineering is not a new concept in the industry and academia,
current practice in the industry is still to develop products with a traditional engineer-
ing approach. Considering this, there are some information exchange barriers between
stakeholders of the first activities of the product life cycle. This prevents to decrease
time-to-market since many design changes, both on product and process sides, are
needed. Furthermore, prototyping verification often fails due to the absence of a re-
quired manufacturing process.

Product designs are usually based on the experience of designers and old designs may be
reused without being changed and improved through time. Thus, most of the designs,
which are obsolete and not updated, are not adequate for an efficient manufacture and
assembly.

As stated earlier, to achieve economics of scope and scale, mass customisation and
personalisation can be achieved by developing product and process platforms that
are characterised by modularity and standardisation across different platforms. A
common phenomenon in the industry is to see different product variants, sharing the
same skeleton, being differently designed.

Process planners habitually do not use their full potential when it comes to designing
a new assembly line and do not explore the entire solution space. Instead of employing
any decision support tool, planners usually perform the design of assembly systems in
workshops, without using a precedence graph of the product under study.

Usually the determination of operation time in process planning is based on experience
and is not close to the real processing times.

Most of the companies do not have a clear overview of unit product costs when design-
ing products and processes.

Assembly lines are characterised by a medium capacity utilisation of workers and by
the unnecessary material or material in a disproportional amount. Due to historically
grown structures, the floor space available for new assembly lines and the expansion

of existing assembly lines is often limited.
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2.4 Conclusion

To address the problem identified in this thesis and the industrial drawbacks, a qualitative
and quantitative method in the form of a support decision tool that evaluates products,
processes, and resource alternatives is required. This method, which should support planners
during the early stages of the product life cycles, has the following properties to cope with

industrial needs:

— Generic - to enable its instantiation in several industrial sectors.

— Modular - to allow an easy adaptation of its components for any further industrial
need.

— Realistic - to achieve a detailed approximation of the future product unit costs.

— Performant - to explore a highly constrained solution space, comprised of several re-
strictions and assignments (e.g. precedence constraints, resource allocation, and design
alternatives).

— Environment specific - to represent various products alternatives, associated processes,
and resource alternatives for each task. With the intention of decreasing the material
space area on the assembly line and the used floor space, the required material space for
each task and the total necessary floor space should also be considered. The developed
method should provide a decision-support system regarding the decision of whether to

automate specific tasks.

The scope of the thesis and subject refinement is represented in Figures 2.8 and 2.9. While
the process planning and layout design are partially examined, the main core of the thesis
relies, as stated earlier, on the line configuration and more precisely on the assembly system
planning step. While the variety of decisions made during the product’s and production
system’s life cycles can be classified into strategic, tactical, or operational groups, this thesis
only focuses on tactical decisions®. Figure 2.9 shows a schematic representation of the
objective of this thesis. Given several products and resource alternatives, which may en-
gender different line configurations, the objective is to select the most suitable combination

of product, process, and resource alternatives.

3. Strategic decisions related to what types of products will be manufactured/assembled will not be
considered, but rather how the products can be assembled.
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Chapter 3

State-of-the-art

Abstract

The problem investigated in this thesis can be related to an optimisation problem. This
chapter provides an introduction to multi-objective optimisation problems. This introduc-
tion offers insight into the two main classes of resolution methods and the various quality
indicators used to compare them. Second, a detailed overview of models and methods for
solving the assembly line balancing problem and buffer allocation problem is provided with
the objective of identifying drawbacks of both models and methods that are addressed in

the next chapters.
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3.1 Introduction

Optimisation problems arise in almost all branches of industry, including product and process
design, production, logistics, traffic control, and strategic planning [198]. These optimisa-
tion problems can be either mono-objective or multi-objective, depending on the number of
objective functions taken into consideration. However, most real-life decision and planning
situations involve multiple conflicting criteria that should be considered simultaneously. For
these problems, no unique solution exists, but there is a set of mathematical equally good
solutions [382, 459| that are optimal regarding some dominance rules. There has been a
growing interest over the last years in multi-objective optimisation methods. By mid-2016,
more than 21800' publications had been published on multi-objective optimisation. The
evolution of the number of papers related to Multi-Objective Problem (MOP) between 2000
and 2016 is shown in Figure 3.1.

2,500 | §

2,000 — e

1,500 | §

1,000 |- e

500 - 3

0, -

T T T T
2000 2005 2010 2015

Figure 3.1: FEvolution of the number of publications related to multi-objective optimisa-
tion between 2000 and 2016

The present chapter is organised as follows. First, an insight into optimisation problems and
resolution methods is given. This is followed by an analysis of the literature on the assembly
line balancing problem and the buffer allocation problem. Indeed, these two problems can
be related to optimisation problems, making an introduction into optimisation problems and

methods necessary.

1. The statistical data is based on the paper repository of Microsoft Academic, available at following

address http://academic.research.microsoft.com/ and by using following keywords: multi-objective,
MOEA, MOACO, DMOPSO


http://academic.research.microsoft.com/
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3.2 Optimisation problem

In optimisation problems, the objective is to find the best solutions to mathematically defined
problems, which are usually models of manufacturing and management systems [16]. This
section first introduces the notations usually used to describe optimisation problems and

present the best-known dominance relations used in multi-objective optimisation.

3.2.1 Introduction and notations

Without loss of generality, an optimisation problem involves a number of objective func-
tion(s) M, (M > 1) which is/are to be minimised or maximised and may contain a number
of constraints (.J inequality constraints and K equality constraints) that any feasible solution

must satisfy. Mathematically speaking, an optimisation problem has the following form:

Min/Max  f,,(x) m=1,...M
s.t. gi(xz) >0 jg=1..,J
(@) (3.1)
hi =0 k=1,. K
xg-L) §x,~§m(U) 1=1,... N

A solution z € RY, called a decision vector, is a vector of n decision variables: x =
(71, ...,ox)T. The sets of J and K constraints are called the inequality and equality con-
straints respectively. The last set of constraints is called variable bounds. These bounds
restrict each decision variable x; to take values within a lower and upper bound, respectively
xE-L) and (U, Vi = 1, ..., n. The solution satisfying the J+ K constraints and variable bounds
constitutes a feasible solution. The set of all feasible solutions S' is called the feasible region.

S can be defined as follows:
S={zxeRY:hx)=0,g(x)> O,a;g.L) <z <z} (3.2)

For each solution z € S in the solution space, there is a point z € RM, denoted objective vec-
tor, in the objective space Z C RM, denoted by z = (21, ..., 2;)T = F(x) = (f1, ..., fur(2))7T,
that evaluates the quality of z. Z can be defined as:

Z={2€RN:z=F(z),x €S} (3.3)

The mapping occurs between an M-dimensional solution vector and an N-dimensional ob-
jective vector. While in the case of a single-objective optimisation problem, M = 1, in the

case of a multi-objective optimisation problem, M > 2.
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3.2.2 Dominance relation

The objective functions of a MOP are generally in conflict, implying that by improving one
objective, another objective will become worse. MOPs with such conflicting objectives will
provide many optimal solutions instead of only one. The reason for the optimality of more
than one solution is that no one can be considered better than any other with respect to
all objectives [326]. An important concept of Multi-Objective Optimisation (MOO) is that
of domination, a concept based on dominance rules, which provide conditions under which

certain potential solutions can be ignored [21].

The most commonly accepted dominance rule is the Pareto dominance rule [234]. The
Pareto concept has widely been used to establish superiority between solutions in MOP. Two
types of solutions can be distinguished: weak Pareto optimum solutions and strict Pareto
optimum solutions, also respectively defined as loose Pareto optimum solutions and strong
Pareto optimum solutions. An example of this classification for a bi-objective minimisation
problem is provided in Figure 3.2. In this figure, strict Pareto solutions are marked in white,

while dominated and weak Pareto solutions are marked in grey and black, respectively.
fi A

Legend:

0 Dominated Solutions
O  Strict Pareto Solutions

® Weakly Pareto Solutions

~ Pareto-Front

g
Figure 3.2: FExample of the classification of Pareto solutions based on a bi-objective

minimisation problem

Definition 3.1 Pareto Optimality [88]
A decision vector x € S is said to be Pareto optimal (also known as non-dominated) with

respect to the feasible region S if and only if there is no decision vector ' € S for which

v=F) = (filx),.., fu(@)) dominates u = F(z) = (fi(x), ..., fu(x)).

Definition 3.2 Pareto Dominance [88]
A wvector u = (uy,...,upr) is said to dominate another vector v = (vy,...,vn), denoted as

u <p v, if and only if u is partial to v, in other words if u; <v; NJi € {1,...., M} :u; <.

Definition 3.3 Weak Pareto Optimality [88]
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A decision vector x* € S is said to be weak Pareto optimal (denoted x* <p x) if there is no

decision vector x € S, such that fi(z) < fi(z*), Vi=1,.., M.

Definition 3.4 Strict Pareto Optimality [88]
A decision vector * € S is said to be strict Pareto optimal (denoted * <p x) if there is no
decision vector x € S, such that f;(x) < fi(x*), Vi=1,..,M.

The purpose of a MOP is to obtain solutions on or near the Pareto optimal front. The
Pareto optimal front represents the image in the objective space of the set of strict Pareto

optimal solutions.

Definition 3.5 Pareto Optimal Set [88]

The Pareto optimal set, P*, is the set of all Pareto optimal solutions and is defined as:
P i={zec S|Pz €S:F(z')<p F(z)} (3.4)

Definition 3.6 Pareto Optimal Front [88]
The Pareto optimal front, PF*, is the set of all objective vectors corresponding to all decision

. /
vectors in P

PF* :={u= F(x)|x € P*} (3.5)

Several additional points, especially the ideal and nadir points, provide useful information
when solving a MOP. Indeed, for a decision maker facing a multi-optimisation problem, both
values show the possible range of the objective values over the Pareto set. Furthermore, they
are often used by different algorithms as exact upper and lower bounds for the set of efficient

solutions.

Definition 3.7 Ideal Point
The ideal point (denoted p') is the vector composed of the best objective values over the search

space. Analytically, p]I- = mingeg f;(z), j=1,..., M.

Definition 3.8 Max point
The maz point (denoted p') is the vector composed with the worst objective values over the

search space. Analytically, p}' = maxees fi(x), j=1,..., M.

Definition 3.9 Nadir point
The nadir point (denoted p™ ) is the vector composed with the worst objective values over the

Pareto set. Analytically, pj-v = max,ep~ fi(x), 7=1,..., M.

These three points are graphically represented for a minimisation problem with two objective

functions in Figure 3.3
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Figure 3.3: Ideal, maz, and nadir points in a multi-objective space

3.2.2.1 Other types of dominance rules

Several other forms of dominance have been proposed recently. Relaxing the conventional
Pareto dominance can improve the performance of MOO algorithms and reduce the set of
optimal solutions. Indeed, for some problems, the set of optimal solutions can be large, such
that the decision maker cannot evaluate all the optimal solutions. This is often the case for
many NP-hard multi-objective combinatorial optimisation problems. Some of these relaxed
forms of Pareto dominance are more effective at finding solutions in the extremes of the
feasible region S and in tackling optimisation problems with irregular Pareto optimal fronts
or problems for which it is difficult to generate feasible solutions [234]|. Indeed, a Pareto
front may, as shown in Figure 3.4, be divided into three regions. Regions 2 and 3 represent
extremes of the Pareto front. These regions can be reached by minimising or maximising
each objective function separately. Region 1, which represents the middle part of the Pareto
front is more likely to be of interest to the decision maker. In general, relaxed forms of
Pareto dominance allow a solution x € S to dominate another solution z* € S for which
x does not Pareto-dominate x*. Relaxed forms of Pareto dominance include: s-dominance
[230], extended Pareto dominance [184], Lorenz-dominance which is also called equitable

dominance relationship [222|, and volume dominance |234, 233|.
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Figure 3.4: Classification of the Pareto front into three regions

The Lorenz dominance concept and rules are defined as follows:

Definition 3.10 Lorenz Optimality [122, 245, 269]

A decision vector x € S is said to be Lorenz optimal with respect to the feasible region S
if and only if there is no decision vector ' € S for which v = F(a2') = (fi(2'), ..., fu(2"))
dominates u = F(z) = (fi(z), ..., fu(x)).

Definition 3.11 Lorenz Dominance [122, 245, 269]
A vector u = (uq, ..., upr) 1s said to dominate another vector v = (vy, ...,vy), denoted as u <,
v, if and only if the generalised Lorenz-vector of u, L(u), Pareto dominates the generalised
Lorenz vector of v, L(v), in other words if L(u) <p L(v).

The generalised Lorenz-vector of solution z, for a bi-objective function, L(z) is given by:
L(z) = (maz(fi(z), f2(2), fi(z) + f2(2)). (3.6)

Definition 3.12 Lorenz Optimal Set [88]

The Lorenz optimal set, Py, is the set of all Lorenz optimal solutions and is defined as:
Pi={xe S|Pz €S:F(z') =, F(x)}. (3.7)

Definition 3.13 Lorenz Optimal Front [88]
The Lorenz optimal front, PF}, is the set of all objective vectors corresponding to all decision

. /
vectors in P

PF; :={u= F(x)|z € P;}. (3.8)

The Controlling Dominance Area of Solutions (CDAS) [355] also relaxes the concept of
Pareto dominance by controlling dominance areas of solutions using a user-defined para-
meter S to induce appropriate selection pressure in MOEA. However, to obtain a desirable

search performance, S must be experimentally identified. Sato et al. [356] propose the
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Self-Controlling Dominance Area of Solutions (S-CDAS), which reclassifies solutions in each
front F} to realise a fine-grained ranking that is different from CDAS. The S-CADS works

as follows:

Step 1: Considering a set of solutions X = {Xj, ..., X;} of Fj, an origin point O is defined
as follows:
O={01,....0yu}={f""+90,.... [i[“+ 0} (3.9)

where f/"% is the maximum value of the i-th objective function in the set X and ¢
is a tiny constant. Also P; Points, representing respectively the optimum solution

of objective function i, Vi =1, ..., M, are defined as follows:
Py={O01, ..., f"™ 46,0441, ..., Ons} (3.10)
Step 2: For each point X;,Vj = 1,..., k, the following steps are repeated:

(a) Based on sine theorem, the angles ¢;(X;), Vi = 1,...,m, and are calculated as
follows: (X)) sin(w(X)

r j) - Sthiw; j
3.11
%) } (3.11)

where 7(X;) is the Euclidean distance between X; and O, and [;(X;) is the

pi(X;))sin™

Euclidean distance between X; and P,
(b) The fitness values of all other solutions Y € X are modified by following

equation:
r(Y) - sin(wi(Y) + ¢i(X;))

sin(p(X;))

(¢) The Pareto-dominance is used to re-rank the solutions Y if they are dominated

i) =A

} (3.12)

by any solution X; € X

3.2.2.2 Synthesis

The following properties are common to all dominance relations:

— Symmetric: the dominance relationship is not symmetric, because u < u’' does not
imply v < u.

— Antisymmetric: since the dominance relationship is not symmetric, it cannot be asym-
metric.

— Transitive: the dominance relationship is transitive, because if v < u”,v” < u”, it
implies that «' < u".

— Reflexive: the dominance relationship is not reflexive, since v’ £ v'.

For some problems the Pareto dominance rules seeks to its limits and other dominance rules,
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e.g. Lorenz, S-CDAS, are more powerful [270]. As shown in Figure 3.5, the main difference
between all of them is the guidance of the search agents toward different regions of the Pareto

front.

h

e
(a) Pareto Dominance (b) Lorenz Dominance (¢) S-CDAS Dominance

f2

Figure 3.5: Comparison of the Pareto, Lorenz, and S-CDAS dominance rules

3.3 Resolution methods

The optimisation methods for MOP can be classified into two main categories: exact methods
and approximate methods. Since the Pareto curves cannot be computed efficiently in most
cases - even if it is theoretically possible to find all these points exactly - and because most
of the optimisation problems belong to the NP problem class, approximation methods are

often used.

Definition 3.14 P Problem [377]
An optimisation problem belongs to P problems if there exists an algorithm that can solve

the problem in polynomial time.

Definition 3.15 NP Problem [377]
An optimisation problem belongs to NP problems only if there is an algorithm that can solve

the problem in non-deterministic polynomial-time.

The next sections provide an overview of both classes of optimisation methods.

3.3.1 Exact methods

A large number of exact methods for solving MOP essentially attempts to scalarise mul-
tiple objectives and perform repeated applications to find a set of Pareto-optimal solutions.
Here, methods such as the weighted-sum method or scalarisation method [433], e-constraints
method [167], and goal programming [70] can be found. Ehrgott et al. [125] and Eichfelder
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[126, 127] provide a review of some of these methods. Some of these techniques may be sens-
itive to the shape of the Pareto-optimal front. As the solution mainly depends on parameters
such as weights and upper/lower bounds, these methods also require certain knowledge to
find Pareto-optimal solutions. These methods are attractive popular because a wide range of
well-studied algorithms for single optimisation problems can be used. The main criticism of
most of these methods is that, although they may converge to one Pareto-optimal solution,
they must be applied many times to obtain more than one optimal solution. This implies a
systematic variation of weight vectors or € parameters that does not guarantee diversity in
the set of solutions and is thus an inefficient search. In this iterative process, the systematic
variation of parameters may also lead to an important CPU time. Moreover, some of these
techniques may be sensitive to the shape of the Pareto-optimal front. Indeed, non-convex
parts of the Pareto set cannot be reached by optimising convex combinations of the object-
ive functions [67]. Thus, most of these methods are not capable of finding non-supported
solutions. Furthermore, as the solutions mainly depend on parameters such as weights and
upper or lower bounds, these methods also required certain knowledge to find Pareto-optimal

solutions.

3.3.1.1 Two-Phase Method

The Two-Phase Method (TPM), which was proposed by Ulungu and Teghem [396], proceeds
in two phases and proposes a general scheme that can be adapted to any specific problem.
The first phase consists of finding all supported solutions using a scalarisation method, which
enables the transformation of a bhi-objective problem into a single objective problem. The
TPM starts by determining the extreme points of the Pareto front. Then, supported solutions
are found by recursively searching between two already identified supported solutions 2" and
z® according to a direction A perpendicular to the line (27, 2°%), with z{ < z] and 2§ > 2]
(see Figure 3.6 a)). A = (A1, \y) defines the normal to the line segment connecting z” and

ZS

A1 and Ay are defined as follows: A\ = 25 — 25, and Ay = 2] — z{. Each supported
solution generates two searches, as shown in Figure 3.6 b. Once all supported solutions have
been found, the second phase, which aims at finding any other efficient solutions, begins.
It has been shown that this search can be reduced to the exploration of all the triangles
underlying each pair of adjacent supported solutions. Each triangle is defined by 2", 2°, and

2N = [2], 25]. Figure 3.6 ¢) and d) show all supported and non-supported solutions.
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Legend:

o Supported
solutions

o Non-supported

solutions

Figure 3.6: Illustration of the various steps involved in the Two-Phase Method

The advantage of the TPM is that all non-dominated solutions are found without exploring
the entire search space. However, the efficiency of the TPM is based on the size of the
generated triangles, which depends on the number of supported solutions in the Pareto
set and on their distribution along the front. The TPM has been applied efficiently to
bi-objective assignment problems (e.g. Moghaddam et al. [269] solved the single machine

scheduling problem with rejection).

3.3.1.2 Parallel Partitioning Method

Other methods, such as the Parallel Partitioning Method (PPM) [237], can find the true
Pareto front. The PPM can determine the efficient set of solutions in three stages. In the
first stage, the ideal and nadir points are computed to limit the search space. In the second
stage, the extremes found in the first search are used to equally split, according to one specific
objective, the search space. During this stage, supported and non-supported solutions can
be found. The third stage, which is similar to the second phase of TPM, consists of finding

all remaining Pareto solutions.

3.3.2 Approximate methods

A plethora of methods exists for solving MOP. Several surveys of multi-objective approx-
imate methods have been proposed in the literature (e.g. [87, 89, 375, 91, 235, 380, 447]).
These methods can be categorised as follows: (i) classical methods which use direct or
gradient-based methods following some mathematical principles and (ii) non-traditional and
population-based methods following some natural or physical principles. Figure 3.7 shows a

classification of multi-objective approaches.

Classical methods, also known as aggregating approaches, mostly attempt to scalarise mul-

tiple objectives and perform repeated applications to find a set of Pareto-optimal solutions.
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Figure 3.7: Classification of multi-objectives approaches

Several methods are identified, including the weighted sum approach, goal programming-
based approach, goal attainment-based approach, and e-constraint approach. In the weighted
sum approach, the different objectives are combined using weights and merged to obtain one
single function. In goal programming-based approaches, a target vector is defined for each
objective and the deviation from the targets to the objectives is minimised. In the goal
attainment-based approach, apart from the target vector, a weight vector representing the
relative under- or over-attainment of the desired goals, is used. In the e-constraint, one of
the objectives is transformed into a constraint and the Pareto front is determined by system-
atically decreasing the parameter e. First, one extreme with the best value for the objective
f1 is computed. This solution determines a bound on the other objective f, and the best
solution regarding f; must be searched for below this bound. These methods are attractive
and popular because a wide range of well-studied algorithms for single optimisation problems
can be used. The main criticism of most of these methods is that, although they may con-
verge to one Pareto-optimal solution, these methods must be applied many times to obtain
more than one optimal solution. This implies a systematic variation of weight vectors or €
parameters that does not guarantee diversity in the set of solutions. Thus, it is an inefficient
search. In this iterative process, the systematic variation of parameters may also lead to an
important CPU time. Moreover, some of these techniques may be sensitive to the shape of
the Pareto-optimal front. Indeed, non-convex parts of the Pareto set cannot be reached by
optimising convex combinations of the objective functions [67]. Thus, most of these methods
are not capable of finding non-supported solutions. Furthermore, as the solutions mainly
depend on parameters, such as weights and upper /lower bounds, these methods also required

certain knowledge to find Pareto-optimal solutions.

To solve MOP, numerous nature-inspired algorithms have been proposed to locate their

Pareto fronts. These algorithms can be classified into two main categories: evolutionary
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algorithms and swarm intelligence based algorithms. The vast majority of algorithms have
been suggested depending on different intelligent behaviours of a swarm or by mimicking the
behaviours of biological systems in nature [351]. The first category can be subdivided into:
(i) genetic algorithm, (ii) evolutionary strategy, (iii) evolutionary programming, (iv) genetic
programming, and (v) differential evolution. The second category can be divided into: (i)
ant colony optimisation, (ii) particle swarm optimisation, (iii) bee colony optimisation-based
algorithms, (iv) bat algorithms, and (v) cuckoo search algorithms (refer to Appendix B.1 for

more information about resolution methods in multi-objective optimisation problems).

3.4 Comparison of resolution methods

During optimisation, algorithms must overcome many difficulties, such as infeasible regions,
local optimal solutions, flat regions of objective functions, and isolation of optimums to
converge to the global optimal solution(s). Moreover, since most of the real-life optimisation
problems are NP-hard and due to practical limitations, an optimisation task must also be
completed in a reasonable computation time [104]. Therefore, the quality of an algorithm
not only depends on its effectiveness, defined as its spread, distribution, and convergence
of obtained solutions [252], but also by its computation effort to obtain these solutions (i.e.
CPU time, the number of evaluations/iterations, and use of spatial and temporal resources).
The concepts of spread, distribution, and convergence are shown in Figure 3.8. While the
upper left figure represents an ideal distribution of the Pareto solution with a poor spread,
the upper right figure accounts for an ideal spread with a poor distribution. The figure in
the bottom left corner represents poor convergence. Ideally, the Pareto solution should have

a good spread, distribution, and convergence, as shown in the bottom right.

Figure 3.8: Concepts of spread, distribution, and convergence

To assess the performance of an algorithm and the quality of its approximation of the Pareto
front, many quality indicators or metrics have been developed over the past two decades [45].

These metrics permit the comparison of algorithms and improve their performance [104].
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A major focus has been on developing different metrics that can be classified as follows
[191, 297

— Metrics evaluating capacity and cardinality of the approximate Pareto fronts

— Metrics evaluating the convergence of the approximate Pareto front to the true one
— Metrics evaluating the spread of solutions of the approximate Pareto front

— Metrics evaluating the convergence and diversity of solutions of the approximate Pareto

front

3.4.1 Comparison indicators and metrics

To prevent possible inconsistencies and confusion when identifying or using dominance con-
cepts, Van Veldhuizen [398] developed the following terminology. Peyyrent(t) represents the
set of non-dominated solutions found by an optimisation algorithm at a given generation
t. Since many population-based algorithms use a secondary population, referred to as an
archive of non-dominated solutions, Py,own(t) is used to represent the set of optimal solutions
currently known at generation t. In comparison, Py, represents the set of non-dominated
solutions delivered by the optimisation algorithm. The true Pareto solution set, P* is defined
as Pj.e. Thus, when using an approximate method, the implicit assumption is that one of
the following holds: PFynown = PFirue 08 PFrpown C PFiye. However, the true Pareto front
is not always known. In this case, PF,.; is used to represent a known set of dominated

solutions to which any approximate method should converge.

3.4.1.1 Capacity and cardinality metrics

The capacity and cardinality metrics quantify the number or ratio of dominated solutions
PFpoun obtained during the evolution process or after optimisation against either the true
Pareto front PFj,,. or a reference set PF,.; 2 represented here by the set R. Among these
metrics are the Overall Non-dominated Vector Generation (OVNG) [402], the Overall Gen-
erational Non-dominated Vector Generation Ratio (ONVGR) [402], the Error Ratio (ER)
[398], the Non-dominated Points by Reference Set [457|, and the C-metric [456, 457]. The
ONVG metric provides the number of non-dominated solutions in PFl,0un. The ER metric
gives the ratio of the number of solutions in PF},,. or PF,.s that were not found by an op-
timiser. In comparison, ONVGR supplies the ratio of the number of optimal solutions that
are present in PFy,,. or PF,.s. In order to compare the number of solutions of PFjy,0., that

are dominated by R, the Non-dominated Points by Reference Set, C2g, which is formulated

2. It should be noted that the metrics may be sensitive to the choice of the reference set [271]



3.4 Comparison of resolution methods 41

as follows, can be used:

€ PFrnown; cR:y<
C2R(PFknown7 R) = ’x b R?‘y Y x’

In reference to C'2g, the coverage metric, C', concentrates on the overlaps between two sets

(3.13)

of optimal solutions. If C(P Fynown1, PFknown2) = 1, then PFy, 0,1 dominates all solutions

of Sy and if C'(P Fenownts PFrnown2) = 0, none of the solutions from Sy are dominated by Sj.

‘I € PFknown2;3y S PFknownl Sy = ‘Tl
’PFICTLO’LUHQ‘

C<PFknown1> PFknoumZ) = (314)

As depicted by Okabe et al. [297|, the metrics of this category provide no information about

the accuracy and distribution of the solutions.

3.4.1.2 Convergence metrics

The metrics of this category measure the degree of proximity based on the distance between
the solutions in PF,0u, and R. Among these metrics, the Generational Distance (GD)
[400, 399], measures the Euclidean distance of points in S and to those in R.
erkanown d(x7 R)

|PFknown|

where d(z, R) is the closest Euclidean distance from point = to a point in R. Zitzler et

GD(S,R) = (3.15)

al. [458] proposed the commonly used e-indicator, which measures the smallest distance
necessary to translate every solution of the S, such that it dominates that of R. I is
calculated as follows:

. Yi
I, = ma:czeppknownmmyepptmma:clgignZ— (3.16)
i

3.4.1.3 Diversity metrics

Metrics belonging to this category indicate the distribution and spread of solutions in
PFinown- Different distributions are identified: (i) distribution metrics, (i) spread met-
rics, and (iii) distribution and spread metrics. In the distribution metrics category, Deb et
al. [105] proposed a metric A’ that compares all the solutions’ consecutive distances with
the average distance between the point in PFj,ou,. Similar metrics have been proposed by
Zitzler et al. [453]. The Mj uses the maximum distance instead of the average distance.
The spread metrics quantify how much of the extreme regions are covered by P Fj,oun- The
Overall Pareto Spread (OS) quantifies how widely P Fy,0un Spreads over the objective space

when the design objective functions are considered together. The distribution and spread
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metrics consider the distribution and spread of optimal solutions set simultaneously.

3.4.1.4 Convergence and diversity metrics

In this category, the metrics measure the quality of a set of optimal solutions P Fj,own in
terms of convergence and diversity on a single scale. Zitzler and Thiele [456, 457] proposed
the Hypervolume (HV) metric, also known as the S metric [452], or the Lebesque measure
[231, 139]. The HV metric is one of the most frequently applied measures for comparing
the results of multi-objective approximate methods [54]. This metric is generally favoured
since it captures in a single scalar both the closeness of the solutions of PFj,oun to R, and
to some extent, the spread of the solutions across the objective space. HV considers the
volume of the objective space covered or dominated by PFl,ow,. Mathematically, for each
solution © € PFipown @ hypercube v, is constructed with a reference point W. Figure 3.9
shows an example of the hypervolume measure.
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Figure 3.9: Example of the calculation of the Hypervolume measure

The Inverted Generational Distance (IGD, [458]) is an improved version of the GD metric
and takes both diversity and convergence information into consideration. In opposition to
GD, IGD calculates the closest average distance of solutions to R.

erR d(!lj', PFknoum)

IGD(PFinown, R) = 7|

(3.17)

3.4.1.5 Conclusion

Jiang et al. [191] highlighted and analysed the inadequacies of MOO metrics. While capacity
metrics focus on the number of solutions in the set P Flpoun, they are not designed to provide
convergence and diversity information. Taking the convergence metrics into consideration,
two critical issues were identified by Okabe et al. [297]. First, most of them require PFy.,.
to be known. In practice, it is almost impossible to know the true PF', since most of the

problems are NP-hard. Second, convergence metrics often omit the diversity of PFi,own.
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Jiang et al. show that on convex PFs, two metrics, I, and IGD, show high consistency to the
HV metric, meaning that these metrics can jointly be used to assess solution sets optimality

on the convex PFs. On concave PFs, only I, is consistent with HV.

3.4.2 Attainment-function

While in the literature, many attempts have been made to describe the quality of a set of non-
dominated solutions P F},,,., through the use of summary measures or quality indicators, the
stochastic nature of such outcomes is usually averaged over several optimisation runs. The
attainment approach is formulated on a functional basis and it recognises the set distribution
of optimiser outcomes as a whole [141|. For visualisation purposes, the boundaries of regions
of the objective space attained by a given percentage of the optimisation runs can also
provide insight into the optimiser performance [219, 251]. When comparing two algorithms,
it is possible to use the attainment function surfaces. In the next figure, the union of the
output sets obtained by several runs of two algorithms are computed first. Then, for each
point in the objective space where the value changes, the number of runs obtaining this point
is counted. This computes the value of the attainment function of the first algorithm at that
point minus the value of the attainment function of the second algorithm. The positive
and negative difference at the points previously examined, encoding the magnitude of the
differences using shades of grey, are plotted. The darker a point is, the larger the difference
between these two algorithms. Figure 3.10 shows an example of the Empirical Attainment
Function (EAF) obtained for two algorithms. The lower line on both plots connects the
best set of points obtained over all runs of both algorithms. The dashed line corresponds
with the median attainment surface of each algorithm. The bottom side-by-side plots show
the location of the differences between EAFs of the two algorithms. On the left, points
denote positive differences between the EAF of algorithm 1 over that of algorithm 2. In
comparison, the right figure shows the difference in favour of Algorithm 2 over Algorithm 1.
Only differences larger than 20 % are shown. These plots illustrate that algorithm 2 performs
better at extremes of the nondominated sets, whereas there is a small difference in favour
of Algorithm 1 at the centre of the nondominated sets. Such a fine-grained analysis would
be impossible with most scalar quality indicators. The examination of the EAF differences
reveals the magnitude of the differences between algorithms and where these differences are
located in the objective space. Therefore, it is particularly helpful to identify problems with

attaining certain regions of the objective space.
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Algorithm1 Algorithm2

objective 2

objective 2
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Figure 3.10: Comparison of the performances of two algorithms based on the attain-
ment function

3.5 Assembly Line Balancing Problem

This section describes the classical line balancing problems and presents a classification
scheme that has been proposed for problem identification. With the help of this classification,
an overview of the problems and solution procedures is presented. Finally, some optimisation
problems considering alternative configurations of assembly lines through either products or
processes alternatives are presented to outline the problem under study in this thesis and

identify the gaps between what has been proposed by academia and what is required by the
industry.

3.5.1 Introduction and notations

The problem of assigning tasks to stations of an assembly line by optimising one or more spe-
cific objectives (e.g. minimising the number of stations for a given cycle time or minimising

the cycle time for a given number of stations) under consideration of precedence constraints

and possible further restrictions, is known as the ALBP.
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The following sets are useful to describe the precedence relations:

P, :={h|(h,i) € E} Set of direct predecessors of task i € V
F;:={jl|(i,j) € E} Set of direct successors of task i € V'
Pr:={h|(h,i) € E}  Set of all predecessors of task i € V/
Fr={jl(i,j) € E} Set of all successors of task i € V

(3.18)

The general objective associated with any ALBP is to minimise the sum of the idle time
at each station m, I,,, which is represented as the difference between the given cycle time
CT and the station time ¢(S,,) and can be expressed as: [, = CT — t(S,,), where S,
represents the station load of a station m and the cumulated task time ¢(S,,) = > t

is called the station time. Since the tasks are indivisible work elements, the task processing

JESm

times of a given task j, t;, cannot be greater than CT', and CT is always greater than the
greatest station workload time CT > max,,—1__art(Sy). Thus, the cycle time is bounded

by following relation:

max t; < max (S,) < CT < t; (3.19)
j=1,..N m=1,...M =
]7 EARAS

These notations are illustrated in Figure 3.11. In this figure, the gray area represents the
idle time for each station. The darker line represents the cycle time and the white squares

represent the processing time of the various tasks assigned to the different stations.
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Figure 3.11: Visualisation of the notation for the ALBPs

The LE metric shows the percentage utilisation of the line and is expressed as follows:
Zm:l,.A.,M t(Sm) .
M-C

The SI metric describes the relative smoothness for a given assembly line balance and an

LE =

(3.20)

index of 0 indicates a perfect balance. Several SI metrics have been proposed in the literature.
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The most common representation of the SI metric is:

ST = Z(mE%%Mt(Sm) —t(Sp))? (3.21)

The LT metric describes the period of time required to produce a specific product on the

assembly line and is calculated as follows:
LT =CT-(M—1)+1t(Sy) (3.22)

The balance delay, which is represented by the sum of all idle times, can be computed as:

M
BD =M-CT > t(Sn) (3.23)
m=1
In the case of a mixed-model line and to eliminate operating inefficiencies such as work,
overload, or idle time, the station times according to different models must be smoothed
[257]. The horizontal smoothness index, with the objective of balancing workload for different
models in each station, can be calculated as follows:

P M

HST =" &,|t(Spm) — C| (3.24)

p=1 m=1
where t(S,,,) represents the total operation time of model p in station m and ®, is the overall

proportion of units of model p, d, being assembled and is given by:

d
2 (3.25)

2 p=1

The vertical smoothness index, whose objective is to reduce the deviation of workload on a

o, =

station from the average workload of all stations can be calculated using (3.21).

3.5.2 Classification of Assembly Line Balancing Problem

Since the first mathematical formalisation of ALBP by Salveson [353], ALBPs have been
widely extended and studied, and different schemes and states-of-the-art have been proposed
in the literature. The most well-known are those provided by Baybars [38], Gosh and Gagnon
[154|, Erel and Sarin [130], Becker and Scholl [41], Scholl and Becker [358|, Boysen et al. |51],
Saif et al. [350], Battaia and Dolgui [30], and Sivasankaran and Shahabudeen [370]. The
high number of classification schemes and state-of-the-art can be explained by the different
conditions in industrial manufacturing since assembly line systems and corresponding ALBPs

are multifaceted [41]. Figure 3.12% shows the evolution of the number of publications related

3. The statistical data is based on the paper repository of Microsoft Academic, available at following
address http://academic.research.microsoft.com/ and by using following keywords: multiobjective, line


http://academic.research.microsoft.com/
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to ALBPs between 2000 and 2016.
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Figure 3.12: Evolution of the number of publications associated with ALBPs between
2000 and 2016

A well-known classification of ALBPs is proposed by Baybars [38], which distinguishes
between two classic problems: Simple Assembly Line Balancing Problem (SALBP) and
Generalised Assembly Line Balancing Problem (GALBP). In the former case, only a single
product is processed and the problem is restricted by precedence relations and cycle time
constraints. When other considerations are added to those of the SALBP family, the prob-
lems are known as GALBP. Gosh and Gognon [154| extended Baybars classification by
considering the number of products being processed on the line and the variability of the
task processing times. However, these classifications are too general and restricted to reflect
the increasing variety of real-world balancing problems. Thus, more detailed classification
schemes have been intended to ease communication between researchers and practitioners.
Boysen et al. [51] used a triple-notation [a, 8, 7] to classify ALBPs. In their classification, «
represents the precedence graph characteristics, [ represents the station and line character-
istics, and 7 represents the objectives. Battaia and Dolgui [30] provided a taxonomy based
on the following points: (i) number of lines to be balanced, (ii) task attributes, (iii) work-
station attributes, (iv) constraints to be respected by a feasible solution, and (v) criteria
used to distinguish the best solutions. While the first elements have a significant impact
on the number of decision variables, the last two elements principally designate the type of
problem to be solved. Furthermore, the last point determines the nature of the optimisation
problem, in other words, if it is a single-optimisation or multi-optimisation problem. Hazir
et al. extended the classification of Boysen et al. by incorporating cost and profit aspects
[174, 173].

The current section presents the various ALBPs that are found in the literature.

balancing, balancing problem
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3.5.2.1 Simple Assembly Line Balancing Problem

The SALBP family presents four variants: (i) SALBP-1: which aims to minimise the number
of stations M given a fixed value of the cycle time CT, (ii) SALBP-2: which aims to
minimise the cycle time C'T given a fixed number of stations M, (iii) SALBP-E: which aims
to simultaneously minimise C'I" and M considering their relation with the total idle time or
the inefficiency of the line, (iv) SALBP-F: whose aim is to determine the feasibility of the
problem and find a solution given CT" and M. Common to all four types of SALBP are
the set of constraints and assumptions: (i) all tasks are processed in a predetermined mode
(no processing alternatives), (ii) they all aim at balancing a paced line with a fixed common
cycle, (iii) the line is considered serial with no parallel elements, (iv) the task processing
times are deterministic, (v) all stations are equally equipped with respect to machines and
workers [51].

There are several mathematical formulations for the SALBP such as White [409], Scholl
[357], Pastor and Ferrer [316], and Ritt and Costa [340].

3.5.2.2 Generalised Assembly Line Balancing Problem

As stated earlier, the assumptions of SALBP are restrictive considering the nature of real-
world assembly line systems. To better cope with the needs of the industry, researchers have
focused on identifying and modelling more realistic situations in assembly lines, resulting in
problems such as the Generalised Assembly Line Balancing Problem (GALBP). GALBPs
take additional restrictions into consideration, including, parallel workstations, not equally
equipped workstations, U-shaped assembly lines, two-sided assembly lines or problems in-
volving sequence dependent or stochastic processing times and problems considering mixed
models and multi-product lines. To highlight the increasing number of GALBPs and their
variety, the tuple-notation of Boysen et al. [51] was used. Appendix B.2 shows the ALBPs
under study over the last years. In their classification, «, which represents the precedence
graph characteristics, is composed of six attributes, a,...,ag. According to the number
of products or models to be balanced, «; can take the following values: (i) a;=mix, (i)
aj=mult, and (iii) a;=" if a multi, mixed, or a single assembly line needs to be balanced,
respectively. «s represents the structure of the precedence graph. If the precedence graph
contains special structures, such as linear, diverging or converging graphs, as=spec; other-
wise, ap=". The nature of the task processing times is represented by as, which can take
three values, respectively, 5%, t% and ° for stochastic processing times, dynamic variations

of processing times, or static and deterministic processing times. Indeed, production envir-
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onments in the real world are subject to many sources of uncertainty and randomness, which
may have a major impact on the efficiency of the line. When using stochastic processing
times, the probability of time completion of all tasks is usually maximised [14]. This is
especially useful in case of manual lines, in which the effectiveness of workers varies with
work rate, skill level, and motivation, which in turn may affect the processing times [432].
Task processing times may follow a random distribution due to poorly maintained equipment
or defects in raw materials. [368|. Stochastic processing times are usually generated using
known distributions of probabilities with their parameters (e.g. [349, 384]). Other methods
can be found in the taxonomy of Battaia and Dolgui [30]. Dynamic variations are often
used for the formalisation of learning (e.g. |168, 387|) and deterioration effects of workers
(e.g. [387]). au represents the sequence-dependent task time, which can take three values
depending on the influence of specific tasks on the processing time or setup time of any
successor, oy = At¥ oy = At o, = °, respectively representing a direct influence from
any assignment of a task to its successor, and indirect influence, or no influence. Examples
of direct influence can be the processing time of a specific task assigned to a specific station
that depends on the set of tasks already assigned, e.g. [381, 5, 428, 2, 3, 387|. a5 represents

assignment restrictions and can be classified as follows [362, 257]:

— Zoning restrictions - zoning restrictions can be negative or positive. In the former
case, a set of tasks must be assigned to the same workstation (az=link), while in
the latter case a set of tasks must be assigned to a different workstation (as=inc).
These restrictions usually represent technological restrictions, such as a set of tasks
requiring an expensive resource or a set of tasks requiring different equipment (e.g.
|4, 5, 257, 2, 3, 332|).

— Distance restrictions - there are two types of distance restrictions: minimum and max-
imum distance between tasks. This distance can be measured in time, space, sequence,
or workstation positions. An example of minimum distance is the case where colour
has to dry before further tasks can be performed and an example of maximum distance
is the case where melted metal must be prevented from cooling down before a specific
task is performed [362|. Depending on the nature of this constraint, as=max if the
distance has an upper bound and as=min if it has a lower bound [30].

— Resource restriction (az=cum) - the assignment of tasks to the station might be subject
to the value of particular task attributes such as the size of equipment 331, 390], or the
available area for materials and tools at workstations [77, 36, 83]. Otto and Scholl [300]
and Bautista et al. [34, 35, 33| presented an extended version of the SALBP, in which
the ergonomic risk associated with each workstation should not exceed a specific limit.

Mutlu and Ozgdrmiis [277] consider the physical workload of operators. Furthermore,
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Zah and Yu [434] consider walking time for each worker at each station.

— Station restriction - representing the need for assignment into specific workstations,
a specific set of tasks, such as a task that needs to undergo position changes during
the assembly [229], (as=type), or specific tasks must be performed on a specific side
of the product [343]. In addition, some tasks have to be assigned to a specific type of
workstation (as=fix), which can be seen as a fixed point for any further reconfiguration
of the line (e.g. [215]). In other cases, stations might have conditions that prevent a

task from being performed at this station (as=excl).

as = ° if no restrictions are considered. Processing alternatives are represented by ag. If
processing alternatives, either through resources or completely different tasks, are present,
ag = pa. Three cases are distinguished here. The processing alternative affects task specific
attributes, such as processing times and operation costs, as well as precedence relationships
between tasks, ag = pa (e.g. [331, 213, 47, 391, 273|). If processing alternatives alter the
tasks, e.g. gluing instead of welding, g = pa®¥ (e.g. (66, 62, 64, 65, 360]). If neither of these

two cases occur, ag = res. If no processing alternatives are present, ag = °

(B, which represents the stations and line characteristics, is composed of six attributes,
B, ..., Bg. The first attribute, 8, represents the flow of workpieces. To simplify the notations,

1="will be used in case of a paced line, and 3; = unpac in case of a synchronous and asyn-
chronous unpaced line. According to the line shape, So=°" means the stations are ordered in
a straight line and w is ordered in a U-shaped line. While most of the studies aim at config-
uring a straight line, some also address the u-shaped line [206, 256, 330, 444, 415, 329, 347].
According to the layout of the line, 53 = pline, when multiple lines need to be balanced
(e.g. [332, 305]), B3 = pstat when stations are parallelised (e.g. [4, 256, 2, 3, 5]), B3 = ptask
when tasks are parallelised and assigned to more than one station (e.g. [256, 221, 384]), and
B3 = pwork when several workers are working on the same workpiece and do not obstruct
each other (e.g. [344, 134, 306, 343]). According to the resource assignment, (34 can take
three values. Namely, 5, = equip if for each station one equipment must be chosen out of a
set of equipment alternatives, and 8, = res when the tasks assigned to a station determine
the set of resources which need to be allocated. (5 represents the station-dependent time
increments, and can take two values. 5 = At,,, when some part of the station time is
consumed by unproductive activities, such as transportation of workpieces or walking time
of workers in u-shaped lines (e.g. [329, 434]), otherwise 85 = °. [ represents additional
aspects such as g = buf fer or Bg = mat if respective buffer sizing or material dimensioning

and position are also part of the line balancing problem.

~ represents the objective functions, which have been used in ALBPs as shown in Table B.1.
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In this table, the following abbreviations are used:

— Co: Optimisation of any cost elements

— m: Optimisation of the number of stations

— T'P: Optimisation of the throughput of the line

— A: Optimisation of the total space area

— HSI: Optimisation of the horizontal smoothness index

— V.SI: Optimisation of the vertical smoothness index

— BD: Optimisation of the balancing delay

— C'T: Optimisation of the cycle time

— LE: Optimisation of the line efficiency

— FR: Optimisation of the ergonomic risks

— BS: Optimisation of the buffer size

— Pr: Optimisation of the probability that tasks can be accomplished before the cycle
time

— FT: Optimisation of the flow time

— ARP: Optimisation of the accumulated risk of body postures

— WRI: Optimisation of the work related injuries

— W: Optimisation of the number of required workers

— FESI: Optimisation of the energy smoothness index

— MMST: Optimisation of the min-max station time

— MMET: Optimisation of the min-max station energy

— WIT: Optimisation of the weighted idle time

— WR: Optimisation of the work-relatedness

— 5@ Aggregation of the various optimisation functions

Figure 3.13 shows the frequency of the objective functions that were used. The optimisation
of the number of stations remains the most used objective in the ALBPs field, followed by
the cycle time. As demonstrated by the work of Hazir et al. [173, 174|, the attention given

to optimising cost elements in assembly line balancing has grown over the last years.
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Figure 3.13: Frequency of used objective criteria in ALBPs

Table 3.1 shows a classification of the previously cited works regarding several cost com-
ponents used in order to plan the most efficient production system. These cost components
can be divided into short-term and long-term operating costs, considerinng operating costs,
including wage, floor space, and capital investment costs. This table shows that existing
studies treat the various costs elements heterogeneously. While some models only take sta-
tion operating costs into consideration by implicitly considering resource costs, others only

consider fixed costs associated with the various costs elements, denoted by (FC).

From Table B.1, the most frequent problems that have been addressed in the literature are

identified and explained in the next paragraphs.
3.5.2.2.1 Mixed-model Assembly Line Balancing Problem

The Mixed-Model Assembly Line Balancing Problem, introduced by Thomopoulos [383], is
abbreviated by some authors as Mixed-Model Assembly Line Balancing Problem (MALBP)
(e.g. [416, 439], and [206]) is sometimes abbreviated by others as MMALBP (e.g. [4, 206]).
The MALBP mirrors modern assembly line systems, for which the demand is much more
variable among the models but the amount in demand of each model is relatively small. This
condition can be seen in many car companies (e.g. BMW), TV companies (e.g. Samsung),

laptop companies (e.g. Dell), and other industries [332].

Several adaptations of the classical mathematical model and resolution methods have been
proposed in the literature. Among them are the consideration of sequence-dependent setup
times with parallel workstations and zoning constraints [2, 3, 4] for a straight line, the
consideration of task duplication costs in a U-shape line [206], and the consideration of
different worker types with different costs and processing times [439]. Rabbani et al. [331]

proposed a model for solving the robotic mixed-model assembly line balancing problem under
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Table 3.1: Comparison of used cost components for evaluation equipment alternatives

Investment Operating costs
costs
Authors R S R T W
Nicosia et al. [285] (X)
Bukchin and Tzur [57] X
Kazemi et al. [206] X X
Rabbani et al. [331] X X
Kim et al. [213] X (X) (X) (X)

Roshani et al. [343] X X

Yoosefelahi et al. [429] X X

Hager et al. [390] X

Graves and Whitney [159] X X

Pinto et al. [320] X(FC) X
Pinto et al. [321] X(FC) X
Graves and Lamar [160] X(FC) X(FC)
Graves and Redfield [161] X X

Rubinovitz et al. [346] X X
Padron et al. [309] X X

Ogan and Azizoglu [296] X
Zhang et al. [440]

Kara et al. [201]

Bukchin and Rubinovitz [56]
Levitin et al. [239]

Khouja et al. [210]

Cakir et al. |61] X X

e

Hamta et al. [170] X
Hamta et al. [169] X
Pekin and Azizoglu [317] X X
Corominas et al. [93] X X
Oesterle and Amodeo [289] X X

* Following notations are used in this table:
R: Resources, S: Station, T: Task, W: Worker

consideration of non-overlapping constraints due to the allocation of multiple robots at each

station.
3.5.2.2.2 Two-sided Assembly Line Balancing Problem

Two-sided assembly lines, which are considered more practical for the assembly of large
products (e.g. trucks) than small ones (e.g. electrical drills) [227], were studied by Bartholdi,
who introduced the Two-sided Assembly Line Balancing Problem (TALBP) [26]. Since then,
this problem has been addressed by e.g. [411, 330, 226, 86, 427]
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3.5.2.2.3 Assembly Line Worker Assignment and Balancing Problem

Motivated by the desire to incorporate disabled individuals into the active workforce, Mir-
alles et al. [268] introduced the Assembly Line Worker Assignment and Balancing Prob-
lem (ALWABP), which is an extension of the SALBP. In this given problem, task processing
times are worker-dependent. This occurs when balancing assembly lines with disabled work-
ers, because a given worker might be efficient on a certain subset of the task while being
inefficient on another subset [273|. Each worker is associated with an infeasible set of tasks.
Similar to SALBP, ALWABP can also be classified as ALWABP-1 and ALWABP-2. Blum
and Miralles [47] addressed this problem by minimising the cycle time and using a beam
search algorithm to solve it. Other examples include following works: [278, 48, 404, 322].
Ramezanian et al. [336] extended this work for mixed-model lines by proposing a model
aiming at both minimising the cycle time and the total operating costs. A model was pro-
posed by Ritt et al. [341] to take high levels of absenteeism into consideration during the

line balancing problem.
3.5.2.2.4 Multi-Manned Assembly Line Balancing Problem

Multi-manned assembly lines have specific advantages over simple assembly lines such as
reducing the length of the line, the amount of throughput, the cost of tools and fixtures, the
material handling, worker movement, and setup time [134]. This type of assembly line is
often used for the assembly of large products, such as busses and trucks, in which tasks must
be performed on a specific side of the product [343]. The associated problem, Multi-Manned
Assembly Line Balancing Problem (MMALBP), has been addressed in the recent years by
[208, 134, 344, 205].

3.5.2.2.5 Time and Space Assembly Line Balancing Problem

Bautista and Peireira [36] proposes the Time and Space Assembly Line Balancing Problem
(TSALBP), problem in which each task j has a spatial attribute a; and each station m has
an available area A,,. Each space requirement for each station m , a(S,,) cannot exceed
A, Indeed, in classical industrial problems, the length of the workstation is limited due
to required tools and components that must be assembled. They propose an ant algorithm
to solve this problem. This problem has also been considered by several other authors, e.g.
[78, 79, 81]. Ruda-Vilela et al. [333| propose a comparison of multi-objective ant colony
optimisation algorithms for the TSALBP.
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3.5.2.2.6 Alternative Subgraph Assembly Line Balancing Problem

The Alternative Subgraphs Assembly Line Balancing Problem (ASALBP), defined by Ca-
pacho and Pastor [64], considers alternative variants that an assembly process may admit
and thus overcomes a risk of loss in efficiency. Each assembly variant is represented by a
subgraph, which determines the tasks required to assemble a part of a particular product.
This problem has been defined and modelled in a restricted version and an extended version
[64, 63]. The ASALBP definition considers alternative assembly precedence subgraphs that
involve either the same or different sets of tasks. In their representation, task processing
times and/or precedence relations can depend on the selected subgraph. It is here assumed
that assembly alternatives do not overlap with each other. Thus, each alternative of each
subassembly is represented by a unique and independent precedence subgraph [63]. Con-
structed heuristic methods have been developed and tested comprehensively by Capacho et
al. 66, 65|. Scholl et al. [360] proposed a mathematical formulation of the ASALBP to

solve it optimally.

3.5.2.2.7 Other approaches to dealing with processing and resources alternat-

ives

Two different approaches have been proposed to incorporate processing alternatives into
ALBP [50]. The equipment selection problem is based on the assumption that there is a
fixed set of equipment that has to be selected and assigned to a workstation. The latter
consists of assigning processes to tasks. For each task, exactly one processing alternative
must be selected. These alternatives can be engendered through technological reasons (e.g.

gluing or clinching) or resources (e.g. machines or manpower).

Graves and Whitney [159] are two of the first people to address the problem of line balancing
and equipment selection together. The objective is to select equipment and assign tasks to
workstations, such that total costs, composed of capital and operating costs, are minimised.
Each workstation is labelled by an annual capital cost and each task is labelled by an annual
operation cost, which can also be avoided by assigning another specific task to the same

workstation.

Pinto et al. [320] combined the line balancing problem with the decision of parallel worksta-
tions. The proposed model dealt with the trade-off between the cost of additional parallel
workstations and savings in labour costs. Later on, Pinto et al. |[321] presented a model that
considers the choice of manufacturing alternatives and the assignment of tasks to minimise
the total costs, defined as the sum of the labour cost and fixed expenses. A similar model

was proposed by Graves and Lamar [160| for the automated system design problem. The
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objective was to determine the type and number of workstations and to assign the operations

to them.

Graves and Holmes [161] address the assembly line design problem (ALDP) with several
equipment alternatives for the mixed-model assembly line. The proposed method aims at
both assigning tasks to workstations and selecting equipment for each of them by minimising

the total cost of the assembly line.

Buckin and Tzur [57] proposed a model in which the total equipment costs are minimised for
a given cycle time. In their model, each equipment has individual costs and has an influence
on the task processing times. Buckhin and Rubinovitz [56] later extended this model by

considering parallel workstations.

Hamta et al. [170] present an approach to dealing with the Flexible task Time Assembly
Line Balancing Problem (FTALBP). In their problem, the operation time of each task can be
between a lower and upper bound. The equipment, in this case, the machines, can compress
the processing time of tasks, leading to higher costs. In their approach, they proposed a
bi-criterion non-linear integer programming model, which comprises two objective functions:
minimising the cycle time and minimising the machine total costs. Hamta et al. [169] exten-
ded the previous work by adding the smoothness index as a third objective function. They
proposed a method based on the combination of a particle swarm optimisation algorithm

with a variable neighbourhood search.

Pekin and Azizoglu [317] address the ALDP, a problem in which each task can be performed
through several equipment alternatives. In the proposed method, the total equipment cost
and the number of workstations are minimised. For this, they proposed a branch and bound
procedure with powerful reduction and bounding mechanisms. The proposed algorithm is

capable of solving the problem instances with up to 25 tasks and five pieces of equipment.

Agpak and Gokeen [13] present an industrial ALBP, in which equipment and tasks are
simultaneously assigned to workstations. In this problem, which is similar to the ALDP,
a limited number of specific machines and a limited number of workers that can use these
machines must be balanced. Agpak and Gdkcen did not explicitly use any costs. Corominas
et al. [93] extended this problem by formulating the general resource-constrained ALBP,
which aims at minimising the total costs, namely the fixed station costs and the unit cost of
different resource types. Finally, Oesterle and Amodeo |289] address the ALDP for a mixed-
model line under consideration of equipment alternatives for each task. In the proposed

model, each equipment has different processing times and different operation costs.
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3.5.2.2.8 Other problems

Tuncel et al. [393| proposed an assembly line balancing model with positional constraints,
task assignment restrictions, and station parallelling. Indeed, while some tasks must be

mounted on the back, others can be mounted on the front of the workpiece.

Other researchers have also proposed simultaneously solving the sequencing and balancing
of a mixed-model assembly line, e.g. [348, 307, 274, 246, 361, 226].

3.5.2.2.9 Synthesis of the models

In addition to the identified drawbacks associated with the absence of any cost model, the
purpose of each problem type is compared with the requirements fixed earlier. The fulfillment
(O: no fulfillment, @: complete fulfilment) of each problem type is shown in Table 3.2. There
is no existing model that can address the defined requirements, which include evaluating

product and process alternatives, resource alternatives, and space requirements.

Table 3.2: Fulfillment of the requirements for each classical ALBP

< > D

I FET YT
Product/Process Alternatives O O O @ O O O
Manual resources Alternatives O @@ O ® ® O O
Automatic resources Alternatives O O O & @& @& (O
Space Requirement ® O O O O O O

3.5.3 Resolution methods

The solution approaches used in ALBPs can be classified into two main groups [389]: exact
methods and approximate methods. Detailed reviews of resolution methods are provided by
Scholl and Becker [358] and Battaia and Dolgui [30] .

3.5.3.1 Exact methods

ALBPs can be solved by formulating a mathematical model that can be optimally solved
through a general solver (e.g. ILOG Cplex and LINGO) or by developing a dedicated solution
method. Over the last 60 years [353], several mathematical models have been described and

solved with various solvers:

— for the SALBP-E and solved with CPLEX e.g. [132] or with Lingo [443|
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— for the RSALBP-2 and solved with CPLEX, e.g. [175]

— for the MALBP with setup times and solved with CPLEX, e.g. |2]

— for the transfer line balancing problem [165]

— for the TALBP and solved with CPLEX, e.g. [11§]

— for the UALBP and fuzzy UALBP and respectively solved with Lingo by [441] and
[442]

— assembly line balancing with positional constraints, task assignment restrictions and
station parallelling [393] with CPLEX

— multi-objective assembly line balancing problem with bounded processing times, learn-

ing effect, and sequence-dependent setup times [168| with Lingo

However, for some extensions of the SALBP and real-world scale problems, the solvers may
reach their limits and thus may be inefficient [359]. For this reason, dynamic programming
or branch and bound procedures are often used. In the first case, the problem is divided into
subproblems and several stage decision processes are made to identify the optimal solutions
of the sub-problems (e.g. [25, 176, 188]), which are used to construct the optimal solution of
the original problem. Examples of resolution methods using dynamic programming include
Nicosia et al. |285], and Bautista and Pereira [37]. One major drawback of dynamic pro-
gramming is the required computational effort. The "branch and bound’ is an enumeration
method exploring the subset of feasible solutions to find an optimal solution. Branch and
bound has been principally used for solving SALBP (e.g. Fast Algorithm for Balancing Lines
Effectively (FABLE) [196], EUREKA [180], SALOME [363] and ABSALOM [362]). Other
Branch and Bound procedures have been developed for the ALWABP [268, 48, 404], for the
MALBP [58], the SALBP [373, 249, 365]|, the two sided ALBP [411], the PM-ALBP [208],
ALBP with parallelling stations [319, 320], and the UALBP [296].

Battaia and Dolgui [29] presented reduction approaches to reducing the size of the initial
problem associated with an ALBP in order to optimally solve ALBP faster than with exact
methods.

3.5.3.2 Heuristics

For ALBPs, many heuristics have been proposed in the literature. Heuristics vary from
simple list processing procedures to optimal-seeking procedures [22|. Most of the heuristics
are based on priority rules, which are obtained considering e.g. the number of predecessors
and successors or the task processing times. Erel and Sarin [130] classify heuristics according
to three categories: (i) single-pass decision rule, (ii) multiple single-pass solutions, and (iii)

backtracking methods. Single list processing procedures, referred as single-pass decision
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rules by Talbot et al. [379], can be maximum ranking position weight, maximum number
of followers, maximum task time first, minimum lower bound, and minimum upper bound.
Single-pass decision rules are described by Ponnambalam et al. and Talbot et al. [324, 379|
for the SALBP, by Balakrishnan et al. [22] for the UALBP and by Capacho et al. [65]
for the ASALBP. In the second category, multiple single-pass procedures produce several
solutions, and the most attractive solution is selected. The Computed Method of Sequencing
Operations for Assembly Lines (COMSOAL) [15] is a well-known method in this category.
The COMSOAL method is based on the list of each available task, representing tasks with
various assignment constraints at each step during the exploration process. At each step, a
task is randomly chosen from this list, and a new list is generated. A multiple single-pass
procedure was proposed by Gamberini et al. [148] to solve the stochastic assembly line re-
balancing problem, Yegul et al. [427] to solve the u-shaped two-sided assembly line balancing
problem. In backtracking methods, solutions are incrementally built and abandoned as soon
as it cannot be completed to a valid solution. Examples of backtracking methods can be
found in Finel et al [137] and Kilincii [212].

3.5.3.3 Single-Objective Metaheuristics

Various surveys and classifications of metaheuristics have been proposed in the literature.
The most recent ones are by Talbi [376], Bianci et al. [46], Boussaid et al. [49], and Mahdavi
et al. |255]. Metaheuristics can be classified according to various schemas. Using the num-
ber of solutions simultaneously manipulated during the search process, two classes can be
identified: single-solutions and population-based metaheuristics. This classification is often
taken as a fundamental distinction in the literature [49]. Single-solution-based methods usu-
ally manipulate a wide gamut of various neighbourhoods. In addition, they also incorporate
several forms of strategies - from randomised to thoroughly deterministic - to explore the
solution space. In comparison, population-based procedures aim to replace components of

solutions with those of others by variously choosing exchange rules.
3.5.3.3.1 Single-solution based metaheuristics

Several metaheuristics have been applied to solve ALBPS, such as GRASP, Simulated An-
nealing, Tabu Search, Guided Local Search, and Iterative Local Search. GRASP, proposed
by Feo and Resende [92], is a multi-start metaheuristic which involves two steps: construct-
ing a solution and improving it through a local search. The construction process is achieved
through a randomised, greedy heuristic. The obtained solution is then used as an initial

solution of a local search procedure. This method has been applied by Andrés et al. [10],
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Chica et al. [80], and Guschinskaya et al. [166]|. Simulated Annealing, a probabilistic method
proposed by Kirkpatrick et al. |216], simulates the physical cooling process of a solid. The
algorithm starts with an initial solution and generates through neighbourhood procedures
new solutions that may be accepted, even if they are worse than the initial solution. The
probability of acceptance decreases during the search procedure. Simulated annealing has
been proposed to solve ALBPs by Roshani et al. 344, 343|, and Manavizadeh et al. [256].
Tabu search, which was proposed by Glover [155, 156|, starts with an initial solution and
iteratively moves to a new solution through a local or neighbourhood search procedure until
some stopping criteria are met. The exploration procedures use a memory structure, known
as the tabu list containing a set of rules and forbidden solutions used as a filter, to explore
the neighbourhood of a solution. Tabu Search has been proposed by Chiang et al.|76], Ozcan
and Toklu [308, 133]. Moreover, the Guided Local Search, proposed by Voudouris and Tsang
[406], utilises a utility function which penalises unwanted solution features during the local
search iteration. An example of the application of a Guided Local Search can be found in
the work of Daoud et al. [100].

3.5.3.3.2 DPopulation based metaheuristics

Various population- based metaheuristics have been proposed in the literature to either deal
with a single objective optimisation problem or with a scalarized multi objective optimisation
problem. Examples include a genetic algorithm proposed by [206, 215, 329, 384|. Other
authors tackled the ALBP by using Swarm Optimisation, e.g. (36, 99, 39, 273, 305|] or
Ant Colony Optimisation e.g. [445, 347, 134, 39]. Figure 3.14 shows the frequency of the

algorithms used to solve the line balancing problem *.

1%

O Ant Colony Algorithm

0 Bee Colony Algorithm

E Cuckoo Search Algorithm

W Particle Swarm Optimisation
B Genetic Algorithm

Figqure 3.14: Pie diagram representing the frequency of used algorithms in ALBPs
4. The statistical analysis is based on the paper repository of Microsoft Academic, available at following
address http://academic.research.microsoft.com/ and by using following keywords: Ant Colony Al-
gorithm, Bee Colony Algorithm, Cuckoo Search Algorithm, Particle Swarm Optimisation, Genetic Algorithm,
Line Balancing Problem, Line Design Problem
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3.5.3.4 Multi-Objective Metaheuristics

Chica et al. [79] proposed an advanced NSGA-II with some problem-specific encoding
schemes and crossover schemes. In their work, they compared the proposed NSGA-IT with the
basic NSGA-IT and a MOACO algorithm. Chutima and Chimklai [86] proposed a DMOPSO
to solve the two-sided mixed-model assembly line balancing. The proposed algorithm was,
among others, compared to a NSGA-II. Hamta et al. [169] proposed a hybrid DMOPSO to
solve the single-model assembly line balancing problem. Furthermore, Zhang and Chen [440)|
proposed a hybrid MOEA, which has some features of the VEGA algorithms. They compared
their hMOEA to a NSGA-IT and SPEA2. Cakir et al. [61] proposed a simulated annealing-
based algorithm, which is compared to a classical simulated annealing with a weighted-sum
approach in order to solve the single-model stochastic assembly line balancing problem with
parallel stations. Yagmahan [416] addressed the MALBP with a MOACO, which was com-
pared to the ranked positional weight method, an Artificial Immune Algorithm, and a Genetic
Algorithm. Saif et al. [348] propose a MOABC for simultaneously solving the sequencing
and balancing of mixed model assembly lines. The MOABC is compared to a NSGA-II in
their approach. Rabbani et al. [331] developed several multi-objective approximate meth-
ods, including a NSGA-II and DMOPSO, to solve the robotic mixed-model assembly line
balancing problem. A hybrid PSO was proposed [169] to to solve an ALBP with flexible
operation times, sequence-dependent setup times, and learning effects to minimise the cycle
time, the total equipment costs, and the smoothness index. Rada-Vilela et al. [333| proposed

an empirical comparison of various MOACO to solve the TSALBP.

3.5.4 Synthesis

Despite the large amount of research done over the last years to describe and solve GALBP,
there is still a gap between the methods provided by the literature and the current industrial
problems, making the practical use of these methods most difficult. These gaps are found in

the following points:

— Objective function - As shown earlier, the classical objectives are to minimise the cycle
time or the number of stations. While the cycle time is almost always given by the
sales department, depending on the forecast, it is useless to reduce the line’s cycle time
below that value. Furthermore, the current practice in ALBP is to optimise specific
metrics that indirectly or directly optimise other metrics that may be more usable
for practitioners. An example would be to optimise the number of stations instead of

the idle time on the line. In addition, though the proposed models incorporating cost
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elements have increased over the last years, the absence of a unified and detailed cost
model enabling an accurate estimation of the future product costs can be outlined.

— Despite the direct simplicity of the available models, some recent characteristic fea-
tures of the present-day situation engendered shortcomings of the current methods.
The first characteristic feature engendered by the pressure of globalisation and the
increasing concurrence is uncertainty. This uncertainty is related to the following
points: (i) which level of automation is useful? Which resources (fully automatic,
semi-automatic, or manual) should be used? This uncertainty can only be countered
by iteratively analysing the developed assembly system’s solutions. In the traditional
methods, these features are strongly defined in the earliest step of the production
planning project. Thus, a wrong decision at this earliest step could have an important
issue in the planned production system. This requires addressing both the assembly
line balancing problem and the equipment selection problem. The second character-
istic feature is the complexity of the products and their requirements for quality and
prices. These requirements engender the need to select and plan the most reliable
system, with low maintenance effort, low material waste, a low number of defective
products, and the best price. While in the literature, few studies have addressed both
problems simultaneously, common drawbacks are the absence of consideration of rel-
evant resource properties that may affect the efficiency of the final assembly line, such
as the availability of machines and scrap rates.

— The prediction of unit product costs requires a cost model. As stated in the previous
section, no cost model uses all cost elements that may influence the design of an
assembly line.

— The design of assembly lines can impact energy efficiency in two ways [397]. First,
through the size of the assembly line. As noted by Despeisse et al. [111], for some
manufacturing industries (e.g. automotive), building-related energy (e.g. space heating
and lighting) contributes to approximately 40-60 percent of the overall energy consump-
tion. Second, the productive and idle time also influences the energy consumption. As
stated by Smith and Ball [371], the energy consumption cannot be influenced in oper-
ational mode since it is governed by the machine design and machining requirements.
However, the energy consumption due to idle time can be influenced.

— Several optimisation algorithms of different natures have been proposed to solve AL-
BPs. However, the performance of algorithms is drastically influenced by the nature
of the problem under study and to author’s knowledge, no study has compared various

optimisation algorithms of different natures.
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3.6 Buffer Allocation Problem

To limit the effects of the unreliability of machines and robots (e.g. starvation and blockage
on down or upstream stations and disruption of the material flow in the assembly line) buffer
stations are often included in the assembly line. Buffers can help to smooth and balance the
material flow between stations. One major drawback of buffer stations is that they require
additional capital investment, floor space of the line, in-process inventory, and increases in
the lead time [367, 107].

3.6.1 Introduction and notation

The BAP aims at allocating a certain amount of buffer among intermediate buffer locations
of a production line to optimise a specific objective (e.g. throughput of the assembly line,
minimum total buffer size). Given an assembly line with M unreliable stations, the problem
is to optimally allocate a given number of buffer places amongst the M —1 buffer emplacement
in order to, depending on the objective function, maximise the throughput rate for a given
fixed number of buffers (problem BAP-1), achieve the desired throughput rate with the
minimum total buffer size (BAP-2) or minimise the average work-in-process inventory (BAP-
3). Other variants related to the minimisation of costs or maximisation of profit may be
found [244]. A comprehensive survey of the BAP has been provided by Demir et al. [107].

An illustration definition of the utility of buffer is shown in Figure 3.15. FEither through
different station loads or due to machine breakdowns, Station 1 is blocked and the Station 3
is starved. However, due to the existence of buffers, the starvation and blockage are moving

forward in the spatial time and thus, an increase in the throughput can be achieved.

Buffer Buffer Buffer
1 2 M-1
Station 1 Station 2 Station 3 Station M

Figure 3.15: Example of a production line with M stations, in which Station 1 is blocked
and Station 3 is starved

Taking the BAP-1, problem for which the throughput must be maximised given a fixed
number of buffers BS that need to be dispatched between M stations, the possible buffer
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configurations can be calculated as follows:

(3.26)

BS+M—2\ (BS+1)(BS+2)..(BS+ M —2)
M—2 B (M —2)!

For instance, if a given assembly line involves 10 stations and 30 buffers need to be allocated,
the total number of feasible buffer allocations is equal to 2.08381E+18. Figure 3.16 shows the
influence of the capacity of two buffers on the throughput rate of an assembly line with three

stations. Adding some buffers to the initial assembly line may, depending on the capacity of

each buffer, increase the throughput rate of the assembly line by a maximum of 25 %

Throughput

LI B2
B1

Figure 3.16: Example of throughput rate changes obtained with different buffer capacit-
ies in a three machine system

In a mathematical formulation, the three main BAPs can be summarized as follows:

— BAP-1
Max f(B)
s.t.
M-1 (3.27)
B,=Br k=1,...,.K

m=1

B,, € N, m=1,..M—1
— BAP-2

(3.28)
fB) = [

B,eN, m=1,. ., M-1
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— BAP-3
Min Q(B)

S.t.
M-1
> Bn<Br k=1,.K (3.29)

m=1

f(B) > f*
B,, € N*, m=1,..,M—1

where Q(B) represents the average work-in-process inventory as a function of buffer size ,
f(B) represents the throughput rate as a function of the buffer allocation and f* denotes

the desired throughput rate

3.6.2 Resolution methods

The solution approaches used to solve the BAP involve generative and evaluative methods,
as shown in Figure 3.17. While the former aims at searching for an optimal solution, the
latter aims at evaluating various performance measures by means of analytical methods and

simulation [116].

Evaluative Generative
Method Method

Figure 3.17: Solution approaches used in the BAP

3.6.2.1 Evaluative methods

To estimate the performances of an assembly system, two types of models can be used: (i)
analytical models and (ii) simulation models. While analytical models can be described as a
set of equations characterising a system, simulation models mimic the dynamic behaviour of
the system. Analytical models tend to be more accurate whereas simulation models provide
approximate and dynamic information about the system [388]. Compared to analytical mod-
els, simulation models offer more flexibility and can take a wide set of system characteristics

into consideration [92].

The performance analysis of assembly lines has been extensively studied in the literature
and several surveys have been proposed (e.g. [242, 241, 158]). The proposed methods for

analysing the performance of assembly lines can be categorised according to several attributes
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and line configuration, such as: (i) reliable and unreliable machines, (ii) finite and infinite
buffers, and (iii) constant and random processing times. While constant processing times are
applicable for automated production lines, a random distribution is often used for manual
tasks. In addition, the methods can be further divided into homogeneous and inhomogeneous

assembly lines if the machines have similar or different processing times.

Production
Systems
|

|

Reliable Unreliable
Machines Machines

[ 1

Finite Buffers Infinite Buffers

[
I ]
Constant Random
Processing Times Processing Times

[ 1

Homogeneous Inhomogeneous
Lines Lines

Figure 3.18: Categorisation of production systems in performance analysis of assembly

lines [242, 241]

The classification shown in Figure 3.18 can be further developed regarding discrete and con-
tinuous models. The discrete models consist of using either the Bernoulli machine reliability
model or the geometric reliability model, while the continuous models use exponential or

non-exponential models.

The two reliability models for discrete event systems are defined as follows:

— Bernoulli reliability model [438, 74]: Assuming that the status of a machine can be
modelled using a Bernoulli random variable, the probabilities of being up or down are
given by p and 1 — p, respectively, and are independent of the status of that machine
in the previous time slots. The Bernoulli reliability model is often used for very short
downtimes that are comparable with the cycle time of the machine.

— Geometric reliability model [438, 74]: In the geometric reliability model, the probability

that a machine is in a specific state depends on its state in the previous time slots.

As stated above, to analyse the performance of assembly lines with the previously listed
characteristics, either analytical or simulation models can be used. Analytical models can

be further divided into exact and approximation models [190].
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Analytical models

The behaviour of an unreliable station M; in isolation can exist in two distinct states: oper-
ation or working and down or under repair. The status of the machine can be described by
considering a discrete state Markov chain. In Markov chains®, probabilities of moving from
state to state are used in order to assess the probabilities that the process will be in a given
state at a given time. Examples of approaches using the Markov chain as evaluation method
are Zhou and Lian [449|, and Papadopoulos and Vidas [313|. An example of the application
of Markov chains to an unreliable machine in isolation and in a flow line can be found in
Appendix B.3.1. However, Markov chains have limitations. As stated by Gershwin and Aziz
et al. [152, 18], the challenge of treating large state spaces limits their use. For example, a
system in which M stations are separated by a buffer B,,, m =1,..., M — 1 of size N,,, the

number of distinct Markov states M would be:

M-1
M =2" T (Nm +1) (3.30)

m=1
Gershwin [151] presented a decomposition technique for an approximate evaluation of tandem
queues with finite storage. The common idea behind the decomposition methods is to
decompose the original line, which consists of M stations, into a set of M — 1 stations
lines. Each of these lines consists of two fictive machines, which are separated by a buffer.
Furthermore, each decomposition involves characterising the subsystems, deriving a set of
equations that determines the unknown parameters of each subsystem, and developing an
algorithm to solve these equations [412]. Each set of fictive machines is characterised by two
types of failures, namely real and virtual [238]. While real failures represent real machine
failures, virtual failures account for the starvation of machines. An additional example of

the use of decomposition methods can be found in Massim et al. [259].

Another analytical method that can be used to evaluate the performance of an assembly
line is the aggregation method, in which two principal components are used: backwards and
forward aggregation. In the former case, the last two machines and the buffer between them
are aggregated into a single equivalent station. Then, this equivalent station is combined
with a buffer and the station from the original line to form a new aggregated station. This
process is repeated until the first station is reached. In the latter case, the opposite process
is repeated until the last station is reached. Examples of such analytical methods can be
found in Dolgui et al. [115, 117]

5. One important property of the Markov chains is that the conditional probability of any state of the
process at time n + 1 is independent of its states at time n —1,n — 2, — — — [243].
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Simulation models

In addition to analytical models, simulation models have been developed to analyse the
performance of an assembly line. Discrete-Event Simulation (DES) is often used, which is a
computer evaluation of a discrete-event dynamic system model, where the operation of the

system is represented as a chronological sequence of events [84].

Definition 3.16 System
Collection of entities (e.g. machines) that interact together over time to fulfil a specific

objective.

These events may only change the state of the system under study at a discrete point in

time.

Definition 3.17 System state
Collection of attributes or variables that contain all the necessary information to describe

the entities of a system, enabling a description of the system at any time.

Definition 3.18 Entity
Any object or component in the system that requires explicit representation in the model (e.q.

machines or workstations).

Definition 3.19 Event
An instantaneous occurrence in time that may change the state of the system (e.g. machine

breakdowns).

Definition 3.20 Activity
A pair of events, where one initiates and the other completes an operation that alters the

state of an entity.

Three types of DES have been identified: activity-based, event-based, and state-based. In the
activity-based simulation, time advances in small steps and the alteration of the system state
is checked. This type of simulation is inefficient and is only suitable for simple applications
[325]. While in the event-based simulation, the system is modelled by defining the changes
that occur at event times [84], in the state-based simulation, the dynamics of the system are
described using the states of the resources in the system. An example of events modifying
the state of a three-machine system is the arrival of workpieces at and the departure of
workpieces from workstations. The various states of the associated model entities are shown
in Appendix B.3.2.

Examples of the application of simulation models can be found in following papers [32, 9,
261, 42, 218].
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Comparison of analytical and simulation models

While analytical methods have been extensively developed in the last 30-35 years, they are
often meant to approximate the dynamic behaviour of manufacturing systems and they may
pose restrictive assumptions [6]. In comparison, simulation models are often time-consuming
and, due to available time for decision-making, they may not be adequate for industrial use.
However, they offer a considerable advantage when the objective is to create a realistic
model of a complex system [107]. Furthermore, most analytical models only measure a
limited amount of performance criteria from the system, while the number of applicable

criteria in simulation models is unlimited.

The fulfilment (O: no fulfilment, @: complete fulfilment) of the analytical and simulation
methods type is shown in Table 3.3. Comparing the performance by considering the required
CPU time, analytical methods are more suitable than simulation models. However, this
criterion is not important since the decision-making process should provide the optimal
solution when planning activities, rather than provide fast, moderately accurate solutions.
Since it is easier to adapt and extend simulation models to industrial use-cases, this method

offers more advantages than analytical methods.

Table 3.3: Fulfillment of the requirements of each classical BAP resolution method

&
SRS
>
Performance (CPU) @ @
Generic o O
Modular ® o

3.6.2.2 Generative models

Demir et al. [109] proposed a tabu search procedure to solve the BAP-1. Later, Demir et
al. [106] extended the previous optimisation method by proposing an adaptive tabu search.
Demir et al. [108] then extended these versions. Moreover, Massim et al. [259] proposed
an artificial immune system to solve an extension of the BAP-1, which incorporates the
product of the production rate, unit profit, and holding costs per unit for works in process.
Dolgui et al. |117] also consider revenue for sold production units and incorporate buffer
acquisition costs. To solve this problem, they propose a hybrid algorithm that is based on
genetic and branch-and-bound approaches, which is an improvement of their earlier work

[115]. Kose and Kilincci [221] proposed a hybrid simulated annealing and genetic algorithm
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to solve the BAP-1. In addition, Costa et al. [94] proposed a parallel tabu search to solve
the buffer allocation problem in reliable assembly systems with stochastic processing times.
Chehade et al. [72, 73| presented a multi-objective problem in which the throughput of the
line must be minimised in addition to the total number of buffers. They also used the Lorenz
dominance and compared it with the Pareto dominance. The Lorenz dominance provided a
better domination area in the central region of the Pareto front. Nahas et al. [280] proposed
a model in which machines and buffers are selected to maximise the profit of the designed
assembly system. The problem was solved using an Ant Colony Optimisation (ACO). Cruz
et al. [96] proposed a multi-objective genetic algorithm to solve the problem of assigning a
buffer to an assembly line by considering the throughput rate and the total cost of buffer
allocation. Finally, Ouazene et al. [304] proposed a non-linear programming approach
to address the BAP. The non-linear programming method is compared with six heuristic,

neighbourhood searches.

3.6.3 Synthesis

In addition to the drawbacks of the ALBPs, which can be transferred to the BAP, the missing
models that consider product design, processes, resources, and buffer alternatives can be
identified. Indeed, the choice of the correct level of automation may have a strong influence
on the buffer allocation and thus, the throughput rate of the assembly line. Finally, while
a high number of papers have been published for the BAP, the number of multi-objective

problems still remains low.

3.7 Conclusion

As stated above, the problem of this thesis can be related to an optimisation problem;
given a set of product designs, processes, and resource alternatives, the best combination of
product designs, processes, and resources must be selected to optimise specific criteria. In
this chapter, insights into multi-objective optimisation are provided. In addition, an over-
view of models and resolution methods in the field of assembly line balancing and buffer
allocation is provided. This information leads to the identification of drawbacks of models
and methods that must be addressed in the upcoming chapters. The identification of these
drawbacks relies on the definition of the requirements outlined in Chapter 2. One major
drawback is related to the absence of any cost model that can translate all interdependen-

cies between products, processes, and resource alternatives into one single metric. While
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specific models have been developed to address product, process, or resources alternatives,
none address them simultaneously, as demonstrated in Table 3.2. Further drawbacks can be
identified when considering the resolution methods. While several optimisation algorithms
of different natures have been proposed to solve the line balancing problems and buffer alloc-
ation problems, no study has compared them. By combining drawbacks from an industrial
and research point of view, the following elements from this thesis can be characterised as a

contribution to knowledge:

— Introduction of a model that enables a holistic approach to design assembly lines by
considering product, processes, and resource alternatives (Chapter 4)

— Introduction of efficient optimization methods to solve the associated problem (Chapter
9

— Introduction of combined algorithms to improve the obtained results (Chapter 5)

— Empirical study to compare various optimisation algorithms (Chapters 4, 5, and 6)

— Combination of optimization and simulation to evaluate the influence of buffers on the

global performance of assembly lines (Chapter 6)



Chapter 4

Assembly Line Design Problem,
Processing, and Resources Alternatives:

Problem Formulation and Resolution

Abstract

In this chapter, identified drawbacks in the state-of-the-art models and methods are ad-
dressed and one of the problems investigated in this thesis is formulated. This problem
involves simultaneously selecting product designs, processes, and resources alternatives in
order to plan the most suitable assembly line for capacity and cost-oriented objectives. To
address this problem, a detailed cost model was developed with the function of translating
the complex interrelated consequences of choosing specific design alternatives with assembly
technologies for a single cost metric. Thirty-four multi-objective algorithms were developed,
including variants of evolutionary algorithms, an artificial bee colony, cuckoo search optim-
isation, a flower pollination algorithm, a bat algorithm, ant colony optimisation, and particle
swarm optimisation. All the parameter values of these algorithms were analysed by means
of a ANOVA and their performances were compared based on fifty well-known problem in-
stances in accordance with four multi-objective quality indicators. Finally, the algorithms

are ranked using a nonparametric statistical test.
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4.1 Introduction

In the previous chapter, drawbacks of models and methods were identified by considering
the requirements listed earlier in this thesis. Among these drawbacks, there is currently no
available model that aims to support decision makers during the design phases of an as-
sembly line by considering different product designs, processes, and resource alternatives. In
addition, the absence of a unified and detailed cost model that enables accurate estimation
of future product costs during the early planning tasks of an assembly line was identified.
While different algorithms have been proposed to solve ALBPs, there is no study that com-
pares the different optimisation algorithms. This chapter presents a resolution framework
that aims to supporting decision makers during the design phases of an assembly line that

addresses product designs, processes, and resources alternatives.

The formulation and resolution of the problem under investigation in this thesis requires the

formulation of three research questions:

Research Question 1. How can a problem be formulated that considers product designs,

processes, and resource alternatives together?

Research Question 2. Since the performance of algorithms is influenced by the nature of

the problem under study, which algorithm(s) perform the best?

Research Question 3. What is the most appropriate strategy for selecting the best solu-

tion(s) for swarm intelligence algorithms?

This chapter is organised as follows: Section 4.2 presents the formulation of the problem and
the mathematical model, including a detailed presentation of the cost model. To solve this
problem, 34 multi-objective algorithms, including variants of evolutionary algorithms, an
artificial bee colony, cuckoo search optimisation, flower pollination algorithm, bat algorithm
and particle swarm optimisation were developed. The procedures of these algorithms are
explained in Section 4.4; these algorithms are then compared with four quality indicators
and the Friedman test is applied in Section 4.5. The conclusion and perspectives are drawn

in Section 4.6.

4.2 Problem formulation and mathematical model

There is a set of process or design alternatives PDA, where each alternative u € PDA is

represented by a precedence graph G, = (V,, E,). The node set V,, contains the product



4.2 Problem formulation and mathematical model 74

design specific tasks, the arc set FE, reflects the precedence relations (7,j) between tasks
t,7 € V. In order to represent a combined precedence graph of the various alternatives, the
(X)OR-nodes representation proposed by Scholl et al. [360] can be used. In this graph, each
assembly alternative is represented by a unique and independent subgraph g. This subgraph
represents the tasks required to assemble parts of a particular product design alternative. In
this representation, the combined precedence graph, which is represented by a set of nodes
V =1,..., N consists of four disjunctive subsets for different node types: (i) V, the set of
real tasks, (ii) V; the set of entry nodes, (iii) V; the set of terminal nodes and (iv) Vj the set
of dummy tasks with duration 0. Each alternative g is represented between one node i € V;
and one node j € V;. A node h € V, is used as a starting node for all alternative between
two entry and terminal nodes. The various node sets are shown in Figure 4.1.

Legend:

© Nodeie€Vy
O Node i€V,
> Nodei e V;
<] Nodeie€ Vs

Figure 4.1: Example of the used sets of nodes in the ASALBP

In this example where PDA = 2, two designs or process alternatives are represented. The
tasks 1, 2, 3, 11 are common to the two alternatives and the tasks 6, 7, 8, 9 represent the
subgraph g = 1 and the task 5 the subgraph g = 2. V(g) represents the set of nodes in the
subgraph g. The two subgraph present between two entry and terminal nodes are represented
by a subprocess v and SG(v) is the number of subgraph for v. In the formulation, each task
j € V. —V, does not have any processing times or costs. For each task j € V,, there is
a set of available resources £; with different properties, e.g. task processing times, costs
and scrap rates. The problem under study is to simultaneously address three subproblems:
(i) the product design problem, where for each subprocess a subgraph has to be selected,
(i) equipment selection problem, where the resources for each chosen subgraph have to be
selected, and (iii) the assembly line balancing problem, where the tasks with their equipment
of each chosen subgraph have to be assigned to workstations. The set of available resources
E; = {R; UW;}, j € V,, is represented by the set of respectively automatic and manual
resources that can perform the task j. Each resource [ € £ has a task processing time for
task j, tj;, a scrap rate rj; and Cpg, and Ly, respectively the initial purchasing price and

useful life of tools. Each automatic resource [ € R; has a probability of failure p;;, an average
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planned and unplanned downtime Dj;, an average energy consumption e;; per time unit, a
useful life Lg,, and Cgo, the initial capital investment. Additionally, each automatic resource
[ € R; has a maximum length and width L; and W;. Each manual resource | € WW; has a
standard wage w;, and one-time personal costs Cry,. To each task j € V, are associated a
wage rate w;, material costs c¢; and required material floor space a;. CRFr, CRFr and CRFp
represents the standard capital recovery factor for respectively tooling, automatic resources
and building. Each station as a determined length of L and width W. The mathematical

model requires one assignment variable, namely z;; (for j € V, k=1,...,m and | € E;).

1, if the task j is assigned to station k
Tjkl = with equipment [ (4.1)
0, otherwise.

Similarly to the approach of Scholl et al. [360], the number of variables of x;; can be reduced
by defining the earliest and latest station, respectively E]’ and L;», to which a task j can be
assigned. E’ and L} can be calculated as follows:
E = [1;+ Z | (4.2)
heP*(j)
Li=m+1-[r+ Y 7] (4.3)
heF*(5)
where P*(j) and F*(j) respectively represent the list of all predecessors and successors of
a task j in a modified graph, in which all subprocesses v € PDA are replaced by a fictive
task representing a lower bound on the total task time. The lower bound on the total task
time is calculated as follows: t(v) = mingesc@){t(V(g9))|lg € SG(v)}. In order to simplify
the formula, we set t; = mineg;tj. 7; = t;/CT represents, based on the task time ¢; and
the cycle time, the earliest station in which the task j can be performed. This permits
the identification of the subset By = {j € V|k € SI;}, which represents potential tasks
assignable to station k, where SI; = [E}, L],

The mathematical model for the addressed problem is presented below.

Min Zy =) [CT = > " ajut;] (4.4)
k=1 JEBy IEE;
Min Zy = Cpapt (4.5)

s.t.

Y wim=1 (4.6)

keSI leEy
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>y wm <1, VieV\{1} (4.7)

kESIj lEEj

Z ijkltjl S CT, k= 1, e, m (48)
JEBy ZGE]'

Z Tjpa; < A, Ve Ej, k=1,...m (49)
JEBy

DY wmli <L, k=1,..,m (4.10)
jEB IER;

DY wWi <W, k=1,...,m (4.11)
JjEBL IER;

Z kxip, < Z kjp,, VieV\V, (4.12)
keSI; keSI;

Vi, € E; jeF|SLNSI; #0, Vi, € E

Z xikll — Z ZEjle S m(l — Z xjklz)p (413)

keST; keSI; keSI;
VieV,, Vliek;, Vielkj,
Vj e F|SI,NSI; # 10
Z Tikl, = Z Tjkl,, Vi € By, Vi€ P (4.14)

kesSI; keSI;

VieV\V, VheE,

Z Z Tikl, — Z Tjkly= 0, Vi € Vs, (415)

JEF; kGSIj keSI;

Vi, € E;, Vi, € Ej

Z Z Tikl, — Z Tikly = 0, Vi € ‘/t, (416)

iEPj keSI; k;ESIJ
Vi, e B, Vi€ Ej
tue {01}, YjeV, VkeSI, Viek, (4.17)

The two objective functions (4.4) and (4.5) aim at respectively optimising the idle time and
the unit product costs. The module, which extracts the unit product costs denoted Cpg,+
will be explained in the next section. Constraint (4.6) ensures that the first node of the
precedence graph is assigned to any station. Constraint (4.7) verifies that any task is at
most assigned once with one resource. Constraints (4.8)-(4.11) guarantee that the station
load is not exceeding the cycle time C'T. Additionally, they also verify that the material
space or the machine floor space of the assigned tasks and resources at any station is less

than the available floor space. The precedence constraints, except those emerging from any
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node Vj are verified in (4.12). These precedence constraints only need to be activated for the
selected subgraph /process or design alternative. This is done in (4.13). The same process
is applied for any predecessors of the nodes in V; in (4.14). Constraints (4.15)-(4.16) verify

that only one process or design alternative is selected.

4.3 Unit product cost estimation

This section presents the cost model that was developed. First, various product cost estim-
ation techniques are described. Regarding product cost calculation, three different types of
methods can be distinguished [232]:

— Pre-calculation
— Intermediate calculation

— Post-calculation

For pre-calculation, the future costs are estimated before production. Alternatively, post-
calculation determines the actual costs incurred after production begins. The intermediate
calculation refines the cost elements when planning projects. Since the scope of this thesis
is to develop a unit-product, cost-calculation model for the design phase, the pre-calculation

method was used.

4.3.1 Product cost estimation techniques

The primary reason for developing a product cost model was to translate the complex and
interrelated consequences of product design, manufacturing technologies, and process choices
into a single cost metric [136]. This section provides a literature overview of manufacturing
cost models. Product cost estimation covers a wide variety of issues, including manufacturing
cost estimation for mechanical components, cost analysis of highly customised assembled
products, unique approaches to estimation at the conceptual design stage, general costing
rules designed for use at a later stage in the design cycle, and classical costing methods for

highly novel cost estimation techniques [136].

Several different models and classification schemas have been developed for the purpose
of assessing manufacturing costs. According to Tipnis et al. [385], these models can be
divided into microeconomic and macroeconomic models. Asiedu and Gu [17] considered
three quantitative methods: (i) analogy-based techniques, parametric methods and engin-
eering approaches. Shehab and Abdalla [366] classified techniques into four categories: (i)

knowledge-, (ii) feature-, (iii) function- and (iv) operation-based approaches. Ben-Arieh and
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Qian [43] classified these techniques into four categories: (i) knowledge-based approaches,
(ii) feature-based approaches, (iii) function-based approaches and (iv) operation-based ap-
proaches. In addition, Ben-Arieh and Qian [35] classified cost estimation methods into
intuitive, analogical, parametric, and analytical methods. Niazi et al. [200] extended the
previous classification and grouped product cost estimation techniques into qualitative and

quantitative categories, as shown in Figure 4.2.

Product Cost

Estimation
Techniques
|
Y Y
Qualitative Quantitative
Techniques Techniques
[ [
] v ] v
Intuitive Analogical Parametric Analytical
Techniques Techniques Techniques Techniques

Figure 4.2: Cost estimation techniques

Qualitative cost estimation techniques are primarily based on comparison analyses of a new
product with previously manufactured products. This comparison analysis enabled the use
of past data to obtain the product cost of a new product. Compared to qualitative cost
estimation techniques, quantitative techniques are based on detailed analyses of product
design, including its features and corresponding manufacturing processes. Intuitive tech-
niques are based on past experience and a domain expert’s knowledge to systematically
generate product costs for parts and assemblies. This knowledge may be stored in the form
of rules or decision trees. Analogical techniques employ similarity criteria and assess, based
on historical data for products with known costs, the cost of a new product. Parametric tech-
niques are based on the analytical function of a set of parameters and variables, and they
provide high-level characterisation of a product (top-down approach). In analytical tech-
niques, detailed analysis of work is performed to identify elementary units, operations, and
activities that represent different resources that are consumed during the production cycle
and express the cost as a summation of all components. The difference between parametric
and analytical techniques is their scale; while the former is used on high levels, the latter is
used on a deeper level. Of the many methods for cost estimation, the most accurate method
belongs to the analytical techniques [366]. In this category, methods such as: (i) operation-
based cost models, (ii) break-down cost models, (iii) cost tolerance models, feature-based
cost models, (iv) activity-based models, and process-based models can be found. A detailed

review of the state of the art in the product cost estimation covering techniques listed below
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is provided by [283]. Analytical methods evaluate the cost of a product through a decom-
position of the required work into elementary tasks, operations, or activities with known or
easily calculated costs. In these methods, the total cost associated with the manufacturing

and assembly of a product is expressed as the summation of various cost components [199].

4.3.2 Process based cost model

The Process-based cost modelling [136] (PBCM) postulates that costs can be regarded as
a function of technical factors and models for the material flow to and from each process
step and calculates the cost of processing materials at each step. Since this method can
project manufacturing or assembly costs based on part and process characteristics [95] and
has been applied by researchers to compare several materials, processes, and product altern-
atives [138, 146, 195] it is suitable for evaluating different products, processes, and resources
alternatives. The first sub-model of the PBCM relates the specification of the final product
or part characteristics, such as size, shape, and material, to the technical parameters of the
process of producing that product. These technical parameters can be associated with cycle
time, downtime, reject rate, equipment and tooling requirements, and material [339]. The
second sub-model uses the processing requirements and scales them to the total amount
of equipment, labour, floor space, and energy consumption. The last sub-model projects
prices of resource requirements and allocates costs over time and across products in order to

develop a unit product [279].

The proposed product cost estimation module aims to dissect the costs associated with a
solution to the mathematical problem presented earlier. The development of the PBCM
starts with the decomposition of each elementary process into basic cost elements that result
from the required resources. These cost elements can be divided into two major categories,
namely fixed and variable costs. The difference between the former and the latter is based on
whether the expense varies regarding the level of produced output. Fixed costs include the
cost of the factory building, insurance, property taxes, and production equipment. Variable
costs include labour, raw materials, and electrical power to operate the production machines.
Assuming that only the costs differ between different products, processes, and resource
alternatives, an estimation of production costs for the specific planning period must be

determined for each possible combination of products, processes, and resources alternatives.

The basic cost elements that influence the product costs are: (i) Cy: raw material costs,
(ii) CL: labour costs, (iii) Coy: overhead costs, (iv) Cg: energy consumption costs and (v)

Cp,Cgr, Cr : fix costs associated with respectively building, automatic resources and tools.
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In order to assess the unit product costs Cp,.+, the total annual costs C},; associated with
the production of V,,.; non-defect goods will first be assessed. The relation between Cly,

Cpart and V¢ is represented in following equation:

Cio
Chart = # (4.18)
net

The total annual costs Cy,; are calculated as following:

Ciot =Cu +Cr+Con+Cp+Cp+Cr+Cr (4.19)

The reader will note that all these cost elements are considered over a time period of one

year before breaking them down to product unit costs.

Since (', represents the total annual cost of non-defect goods, the gross number of products
Viross that needs to be produced to satisfy the demand V,,.; has to be introduced (Vo5 >
Viet)- Vyross 1s calculated based on the quotient of V,,.; and the rejection rate of the assembly
line, which is expressed as the product of the rejection rate rj of each station k£ =1,...,m.
Vinet
HZL:1(1 —Tg)

The rejection rate r; of a station k is calculated based on the rejection rates of the single

‘/gross = (420)

resources assigned to station k. r; is expressed as follows:
Ty = 1— H Z xjkl(l—rjl) (421)
jEBk lEEj
The total annual material costs, Cy;, are provided by the sum of the material costs of all

parts, Cy,, used at each station k:

CVM = V;]ross Z C]\/[k. (422)
k=1

The annual material costs Cyy, at station & = 1,...,m, depend on which task j, with its
associated material cost c;, is assigned to station k. Cyy, is calculated as follows:
Cu, = Y cjajm, V1€ E (4.23)
JEBy
In opposition to these cost elements, Cr, Cog and Cg not only depend on the number of
pieces produced but also on the required operation time to produce them. By extension, the
total operation time 7 required in a year for producing the V. units, and respectively the

Vgross units when considering scrap rates, is given by:
T =CT - Viyross (4.24)

Taking the average planned and unplanned downtime Dj; and the probability of failure pj

of automatic resources assigned to the assembly line, the real cycle time of the assembly



4.3 Unit product cost estimation 81

line may slightly be different from the one planned and the equation (4.24) thus needs to be
replaced by the following one:

7 = max(CT; CTy) - Vyross (4.25)

where CT, represents the real cycle time of the line when considering machine breakdowns

and is expressed as follows:

CTQZ maX (Z Zl’]kl l+ple]l +ijkl ]l ) (426)

jEBy IER; lEW;
The wage rate of a worker is determined according to the most difficult part that has to
be performed on station k [8]. Since wage rate is also paid for downtime, the total annual

labour costs C}, are calculated as follows:

Cr =7 max <Zwl max w; - $jkl]> (4.27)

k=1,...m

The reader will note that one-time personal costs (e.g. recruitment and training costs) could
also be taken into consideration by distributing them over the contract length and adding

these costs to Cf..

Overhead costs Cog are related to indirect labour required to maintain production, which
is modelled by a ratio of the number of indirect workers r;,4. Each indirect worker is paid at
wage rate w;,q. Since the overhead costs depend on the number of direct workers M ()

assigned to the assembly line, it can be calculated as follows:
OOH = Tind * M(.I'jkl) cWind * T (4.28)

The total annual energy costs C'r depend on the energy consumption of automatic equip-
ment. Here, we simplified the energy consumption model and only used the average energy
consumption per time unit e;; of equipment [ when performing task j. The reader is referred
to Zhou et al. [448] for more details about the decomposition of energy consumption of
automatic equipment. The average annual energy consumption of the whole assembly line

can be calculated as follows:

CE =T Cg- Z Z T jk1€;l (429)

k=11€E;

where cg represents the costs of energy.

A key element of any cost forecast is the method used to allocate cash flows to appropriate
activities. Here, the investment costs for buildings, equipment and tools are assumed to
be distributed evenly in time over the usable lifetime of a resource. The opportunity cost

associated with tying up these funds in a long-term investment is incorporated using the
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standard capital recovery factor C RF}. Since building, tooling, and equipment are considered
to be capital investments, CRFj is used to determine annual payment and is calculated as
follows:

r(1+r)ki
r(l+r)li —1

where r is the periodic discount rate, L; is representing the useful life in number of years

CRF; = (4.30)

over which the investment is distributed. The annual costs of automatic resources and tools
are given by respectively multiplying the initial purchasing price (Cro,,Cro,) by the capital
recovery factor. The annual building cost Cp is computed given one-off costs, the initial
building Cpq of size I and width wp and running costs, e.g. cost of energy for lighting,
heating, air conditioning, which can be calculated by multiplying the space occupied by the

assembly line with a factor F, representing the annual energy cost for each m?.
CB :K<xjk:l) LW[CBOC’RFB/(lbwb)+E] (431)
where K (xjj;) represents the number of workstations assigned to the assembly line.

The objective function (4.5) and constraints associated with cost estimation are non-linear.

For accuracy, no approximation in the form of a linear optimisation model is proposed.

4.4 Resolution methods

In recent years, nature-inspired meta-heuristic algorithms have gained huge popularity, be-
cause they have demonstrated some promising results in solving optimisation problems [424].
As depicted in Figure 3.14, among utilised multi-objective optimisation algorithms, follow-
ing were identified: Ant Colony Algorithms, Genetic Algorithms, Bee Colony Algorithms,

Particle Swarm Optimisation, and Cuckoo Search Algorithm.

While some work has been done to empirically compare Multi-Objective Ant Colony Op-
timisation algorithm by Rada-Vilela [333], to the best known of the author, the previous
approximate methods have never been compared to each other for the ALBPs. In order to
address this gap and solve the problem stated earlier, the algorithms present in Table 4.1

were developed.
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Table 4.1: List of developed algorithms and their abbreviations

Algorithm’s family

Name

Multi-Objective Ant Colony

Discrete Multi-Objective Artificial Bee Colony

Discrete Multi-Objective Cuckoo Search Optimisation

Discrete Multi-Objective Flower Pollination Algorithm

Discrete Multi-Objective Bat Algorithm

Discrete Multi-Objective Particle Swarm Optimisation

Evolutionary Algorithm

BIANT-1
BIANT-2
CHAC-1
CHAC-2
MOACS-1
MOACS-2
DMOABC
DMOCSA-1-1
DMOCSA-1-2
DMOCSA-1-3
DMOCSA-1-4
DMOCSA-1-5
DMOCSA-2-1
DMOCSA-2-2
DMOCSA-2-3
DMOCSA-2-4
DMOCSA-2-5
DMOFPA-1
DMOFPA-2
DMOFPA-3
DMOFPA-4
DMOFPA-5
MOBAT-1
MOBAT-2
MOBAT-3
MOBAT-4
MOBAT-5
MOPSO-1
MOPSO-2
MOPSO-3
MOPSO-4
MOPSO-5
NSGA-II
SPEA2

Since the Bat Algorithm (BA), Artificial Bee Colony (ABC), Particle Swarm Optimisa-
tion (PSO), Flower Pollination Algorithm (FPA) algorithms were developed for continuous

functions, in which bats, bees, particles and pollen move in the search space toward continu-

ous position, it is impossible to directly exploit them and it requires an adaptation of their

continuous encoding scheme. In order to use these algorithms, either their original form

can be used by constructing a direct mapping relationship between the discrete variables

and the vector of individuals or a discrete encoding scheme must be adapted. Krause et al.

[225] proposed a survey of swarm algorithms applied to discrete optimisation problems and
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presented several discretisation methods.

The general discrete encoding scheme that was used for all algorithms is presented in the

next section.

4.4.1 General discrete encoding scheme

The general encoding scheme, which is common to all algorithms, can be summarised by
their solution encoding, the initialisation of the population, the parent selection, the recom-
bination and the mutation procedures. To simplify the notations in the upcoming section,
the vocabulary is generalised; instead of using specific vocabulary for each algorithm, such

as bats, swarms, or bees, the terms solutions, populations, and archives are used.

4.4.1.1 Solution Encoding

The individuals of a population represent a possible solution to optimisation problems. To
evaluate the effectiveness of different solution representations, several critical issues are sum-

marised by Gen et al [247], including: are:

1. Space - The solution encoding should not require extravagant amounts of memory

2. Time - The time required to evaluate, recombine, and mutate should be small

3. Heritability - Offspring of simple crossover should represent solutions that combine
substructures of their parental solutions

4. Locality - A mutated solution should usually represent a solution similar to its parent

5. Uniqueness - The solution encoding scheme represents exactly one solution

In the field of ALBP, several encoding schemes can be found. Three encoding methods are
introduced by Guo et al. [164], namely: (i) the workstation-oriented representation, (ii)
the sequence-oriented representation and (iii) the operation-oriented representation. Other
representations are the random key-based genetic representation used e.g. by Zhang and
Gen [439] or by Nearchou [282]. Hamta et al. [170] propose an encoding scheme where
individuals are represented by a permutation of tasks, and some negative integers, which
show the assignment of tasks to workstations. Chica et al. [78] propose a similar encoding
scheme, in which, real integers are used instead of negative integers. For both methods, the
maximum number of separators is N — 1. Kim et al. [215], Simaria and Vilarinho [369], Yu
and Yin [431] use a workstation-oriented scheme of length N, where each element ¢ represents
the task ¢ and its value j represents the workstation j to which the task will be assigned.

Chen et al. |75] propose a solution encoding scheme composed of three vectors: (i) the first
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part indicates the assignment of task ¢ to workstation j, (ii) the second the assignment of
operators type to the workstation j and the last part (iii) the number of operators assigned

to workstation j.

The proposed solution encoding scheme is workstation-based. Since the solutions to the
addressed problem are a list of tasks, equipment and station assignment, each solution has
three vectors representing respectively: (i) the task number, TN, its equipment assignment,
EA, and (ii) its station assignment, SA. The length of each vector is represented by N,
the number of tasks. Depending on the number of alternative tasks, the used length of each
vector may be less than N. An example of the solution encoding for the precedence graph
shown in Figure 4.4 is represented in Figure 4.5. In this example, the tasks 5 and 6 represent
precedence alternatives, and the tasks 4 and 7 are fictive nodes. In the provided example,
the task 6 is selected and will be performed by the equipment 3 at station 2. The separators

[

- and ¥’

represent dummy elements which do not represent any specific task, equipment

or station assignment.

Figure 4.4: Example of precedence graph

Tasks 1(2|1314|6[7|8]9([10(11] *
Equipment | 1 [ 2|1 (-3 |-|2|1(10]2]*
Station 111(2|-12|-12|13|3]|3]*

Figure 4.5: Example of the used solution encoding schema

4.4.1.2 Initial Solution

The population initialisation is a crucial task in optimisation since it directly affects the
convergence speed and also the quality of the final solution. If no information about the
solution is available, the most commonly used method to generate the initial population is
random initialisation [312, 334]. In the proposed approach, a combination of 19 heuristics
and a pseudo-random initialisation is used. Due to the existence of precedence relations
among the tasks, it is not possible to generate populations in a random manner and elim-
inating infeasible solutions or replacing them with new solutions is time-consuming. Here,
a constructive method satisfying the precedence relations and the choice of equipment is
applied. The initialisation mechanism is as follows. First, a task from the ones without any

predecessors is selected and assigned to the first position of the vector TN. In parallel, a
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resource is selected out of the available resource set of this task and assigned to the first
position of the vector FA. Afterwards, the set of tasks without any predecessors is updated
and the next task and respective equipment are chosen. As soon as the station load exceeds
the cycle time or the station space is reached, the workstation number is increased. This

mechanism continues until no tasks can be assigned anymore.

4.4.1.3 Guide Selection

The selection of suitable solutions for recombination plays an important role in distinguishing
between individuals based on their quality, such that the best individuals share their solu-
tion characteristics. For the EAs, a standard tournament method was used, choosing T5;..
individuals randomly from the population and selecting the best individual from this group
as a parent. For the DMOCSA, DMOFPA, DMOBAT and DMOPS, several strategies that
have been developed in the past are used. Examples of these strategies are: (i) the random
strategy, which chooses an archive member randomly, (ii) the sigma method, introduced
by Mostaghim and Teich [275], (iii) the minimum particle angle proposed by Gong et al.
[157], (iv) the k-means strategy, proposed by Qiu et al. [328], and (v) the strip strategy
[405]. These strategies were described in Chapter 3 and their differences are represented in

Figure B.2. To differentiate the various strategies, following integers are used:

— Name of the algorithm-1: Random strategy

— Name of the algorithm-2: Sigmoid strategy

— Name of the algorithm-3: Minimum particle angle strategy
— Name of the algorithm-4: K-means strategy

— Name of the algorithm-5: Strip strategy

4.4.1.4 Recombination

The role of recombination is to generate new solutions from the selected solutions, in pref-
erence such that the offspring contains the desirable features of both parents. As stated
by Yu and Yin [431], traditional two-point crossover or multi-point crossover are not suit-
able for combinatorial optimisation problems. The recombination step is carried out with
a probability p., otherwise the individual with the best fitness value is copied into the off-
spring population. The recombination process between two solutions X and Y contains one
component, F', and is formulated as follows:
f(X,Y), ifr<p.

F=p®f(X,Y)= (4.32)
X, otherwise.
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where f represents a single-point crossover using a similarity vector V.S(X,Y’) between the
task assignments of two solutions X and Y, where an element 7,2 = 1,..., N, of V.S is given
by:

Vei(x ) =4 e =Y (4.33)

0, otherwise.

The position of the crossover point ¢, is randomly chosen out of V'.S. Figure 4.6 shows an
example of crossover operation, where the similarity vector V.S = 1,2,3,4,5,6,9,10. From
the two parents X and Y, the elements i of the offspring Z are generated as follows:

Xi if ¢ < Cp
Zi = (4.34)

Y; otherwise.

In other words, the offspring takes the element of the Parent X until the cutting point and

in the same sequence order. The remaining elements are taken from the Parent Y.

ICp
I
Tasks 112|3[4(6]|7|8]|9]|10(11| *
Parent X Equipment| 1|2 |1|-|3[-{2|1]10]|2]*
Station 1(1|2-(2]|-12|3|3|3]|*
1
Tasks 1(2(314|16|7(9]|8|10{11] *
Parent Y Equipment|2|2|2|-[1|-[2]3]10]2|*

Station 11212 -12|-|3|3[3|3]*

Tasks 112(3[4(6|7]|9]|8|10[11( *
Offspring Equipment| 1 (2|1 |- [3|-[2[3|10|2|*
Station 1112 -12]-]3]|3R3pd*

Figure 4.6: Example of recombination between two solutions

As represented with dashed lines in Figure 4.6, due to the verification of the preservation of
the various constraints (e.g. cycle time and precedence constraints), some tasks and their
respective resources have no valid workstation after the crossover process. In order to produce
feasible individuals, these tasks must be reassigned. The reassignment procedure allocates
the tasks to workstations, such that all the previously defined constraints are respected. For
each task j to be reassigned, the procedure computes the earliest station Mg and the latest
station M to which it can be assigned. When it is not possible to find a feasible workstation

within [Mg; M|, a new workstation is opened and all successors of j will be reassigned.
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4.4.1.5 Mutation

Once an offspring has been generated, another stochastic change is applied with probability
pm to enhance the diversity in the population and prevent the population to converge pre-
maturely at local minima. The mutation process Z of one solution X, which contains four
neighbourhood searches is formulated as follows:

X), ifr<pn
Z—pox = P (4.35)

X, otherwise.
If a random number is smaller than the mutation rate p,,, one of following mutation operator

is randomly selected:

— Swap tasks: For a specific solution X, an element ¢ is randomly selected, i =

rand(1, N—1). Let F__
P*

Xen. = 10[(h,i) € E*} the set of all predecessors of task Xry,, where E* represents
the transitive closure of the set of arcs E. The set NPT =V — Xpy, — F% — P§

XTN; XTN;

:={Jjl|(i,j) € E*} be the set of all successors of task X7y, and

represents the set of potential tasks that can be swapped with the task Xpy,. A task
J is randomly chosen out of NPT'. If the task j € Xy, the elements of X; and X
are swapped, otherwise, Xpy, = j and an equipment is randomly selected for j. This
allows not only to swap already assigned tasks, but also, in case of tasks alternatives,
to replace a specific task by another alternative.

— Insert task: For a specific solution X, an element ¢ is randomly generated, i =
rand(1, N —1). Let BST = {Xrn,, ..., Xrn,—1} be the set of tasks already assigned
before Xry,. The set NPT =V — Xpn, — F%,. . — P

Xrw, Xrw, T Fx,, represents the set

of potential tasks before which the task Xpn, can be inserted. A task j is randomly
chosen as follows out of NPT N BST. The elements Xry,, Xpa, and Xga, are inserted
before the element h, s.t., Xpn, = J.

— Change equipment: For a specific solution X, and a randomly selected element 4,
i = rand(1,N — 1), the current equipment assignment is replaced by a new one,
randomly selected.

— Change station: For a specific solution X, and a randomly generated element i, i =
rand(1, N), the current workstation assignment is replaced by a new one, such that
Xga, = S1

rand(1Ly )’ where L;(TNi represents the latest workstation to which the

N;
task X7y, can be assigned. Ly, = min(LXTNi;mianF;TNi XSAj>

In the case one of the selected mutation operators cannot change a given solution X, another

mutation operator is randomly selected. The advantage of the proposed mutation operators

is that they do not generate infeasible solutions regarding precedence constraints and only
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the cycle time constraint or the station space need to be verified.

4.4.2 Evolutionary Algorithms

Among the EAs, the NSGA-II and SPEA2 are the two most widely used Multi-Objective
algorithms in the literature [187]. This can be explained by their good results in various
applications. Both algorithms use the framework previously described. The main differences
between these algorithms are the diversity assignment and the replacement and archiving
strategy. In the NSGA-II algorithm, the crowding-distance is used to maintain well spread
non-dominated solutions, while in the SPEA2, the k-nearest neighbour approach is used. In
addition, the NSGA-IT uses elitist replacement, while the SPEA2 applies a general replace-
ment strategy. Finally, the SPEA2 uses an archive set whereas the NSGA-IT does not.

4.4.3 Multi-Objective Ant Colony Optimisation

An important number of proposals of ACO algorithms have shown their applicability to
Multi-Objective optimization problems, especially for the line balancing problem, and they
have generally provided good results. Examples of the application of ACO to solve ALBPs
can be found in following works: [416, 434, 333, 83|. Rada-Vilela et al. [333] propose a
comparative study of MOACO algorithm for the Time and Space Assembly Line Balancing
Problem, in which they compare the influence of different components, such as the number
of pheromone matrices and the number of heuristic functions. Garcia-Martinez et al. [149]
propose a taxonomy for MOPs based on two criteria: (i) number of structures to store
the pheromone trail and (ii) the number of heuristic functions. Angus and Woodward [11]
presented an alternative and extended study, which included five components used to classify
MOACO.

Among the existing algorithms, this study focuses on those which utilise one or more pher-
omone matrix and multiple heuristic functions. Since the two objective functions being
minimised are different, algorithms using single heuristic information were not considered
in the present study. The following MOACOs were adapted (their differences are shown in
Table 4.2).

— Bi-Criterion Ant - 1 (BIANT - 1)
— Bi-Criterion Ant - 1 (BIANT - 2)
— Multi-Objective Ant Colony System - 1 (MOACS -1)
— Multi-Objective Ant Colony System - 1 (MOACS -2)
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— CHAC -1
— CHAC -2

Table 4.2: Taxonomy of MOACO and classification of proposed algorithms

Heuristic Information

Pheromone matrices Single Multiple
Single X MOACS
Multiple X BIANT, CHAC

As demonstrated in Table 4.2, all the proposed algorithms use multiple heuristic information,
which provides guidance about the preference of assigning a task with a specific equipment
to an open workstation. Here, following heuristic information for respectively each objective

function 7y, ; and 7y, ;' were used. The heuristics are computed as follows:

= b Imn
i.j ts maxueNZk\FﬂJrl (4 36)
_ < |Fy]+1 )
2, ; o maxueNf|F1L\+l

where ¢5~ and ¢s- represents the sum of the average task processing time and costs for each
task, respectively. | F}; | is the number of available tasks from j, and max,cyr | F, | is the

maximum number of tasks available from any task following j.

One major risk with ACO is the possibility of premature convergence during the search
procedure leading to suboptimal solutions. To avoid this, the transition rule of all proposed
algorithms will be extended with random selection, which is incorporated in all second vari-

ants of the proposed algorithms.

4.4.3.1 BIANT

The Bicriterion Ant (BIANT), which was proposed by Iredi et al. [186], uses two pheromone
matrices and two heuristic functions, respectively one for each objective function. Through

this, the search was conducted in different regions of the Pareto front.

BIANT-1

The pheromone update and evaporation were implemented for each matrix and only the A

ants finding non-dominated solutions could update the pheromone matrices. The adapted

1. In the case of a MOACO algorithm uses a single heuristic 7; ;, the two previous heuristics are merged

such as n;; = N1, ;12, ;-
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BIANT uses following transition rule:

e
i,j  “i.j i,j %i,j ifj¢ Nk
A 5 Rpa_(I-Ap)a g, (T-X)B 1 J i
p’L] e 'lLENZk Liuw "25u nli,u ]2i,u (437)

0, otherwise.

where o and [ are positive parameters whose values determine the relative importance of
pheromones versus heuristic information. To regulate the weight of the various objectives in
the search, A\ = %, where I' is the number of ants. The BIANT uses a roulette wheel to
choose the next node in the solution path and performs a global pheromone updating strategy
that includes evaporation in all nodes and contribution at the edges of non-dominated solu-

tions in the current iteration. The evaporation is conducted as follows:

Mo Z e (1.39)
To,, = (L—p) 72,
and for the contribution:
Tli,]' = Tli,j + fila V<Z,j) € SA (4 39)
Ty, =Ty, .+, V(i,j) € Sa '
ij ij f2? )

The definition of the contribution of the BIANT in (4.39) and the transition rule in (4.37)
demonstrate that if the ranges of objective functions’ values are different, the solutions
will converge near one of the objective functions. To find better distributed solutions, a
normalised schema is inevitable. The initial amount of deposed pheromone is calculated
according to following expressions:

_ 1

i Cp
B 11 (4.40)

i,j — Co

1
T2
where C and C5 represent the objective function value obtained using a greedy algorithm

for solving the problem.

BIANT-2

In order to avoid early convergence, the transition rule of the BIANT-1 is extended with a

random selection process as follows:

Ifqg>q:
Apa _(I=2p)a B (1=Xg)B
T, T2, My s M2, o k
v 3 3 2,3
A xpo _(A=Ap)a ApB (1—Ak)ﬁ71f] € N,
Di ;= z:ueNf M0 20 My M2,
J , (4.41)
0, otherwise.
Else :

pﬁ ; = random selection of j € Nik
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where ¢; € [0, 1] is a pre-defined constant.

4.4.3.2 MOACS

Baran et al. [24] proposed the MOACS, which uses a single pheromone matrix for both

objectives.

MOACS-1

The transition rule works as follows:

Ifg<gqo:
. 1 if j = maw,e {Tiw - nft . ng,(l_A)}
P 0, otherwise.
Else : (4.42)
Ti,j'UB.A:TIﬂ.(lf)‘) o
pk; = { Tuent nl,:n?}:]-ni‘;‘”’ ifj € NF

0, otherwise.

When an ant k is building a solution path and is placed at one node ¢, a random number
g € [0,1] is generated and if ¢ < ¢o, the best neighbour j is selected as the next node in
the path. Otherwise, the algorithm decides which node is the next by using a roulette wheel
considering pﬁ ; as probability of every feasible neighbour j € NE. Since the MOACS is an
ACS, there are two levels of pheromone update: local and global. The local pheromone

update is given by:

Tig =1 —p) Tij+p- 7o, With 7 = (4.43)

Ch - Cy
The MOACS uses a reinitialisation pheromone mechanism. Every time an ant k& builds a
solution, it is compared to the current Pareto front PF' to determine whether it is a non-
dominated solution. At the end of each iteration, 7, is calculated as follows:
1
YRR

where f; and f, represent the average costs in each objective for the solution paths currently

(4.44)

included in the current archive. If 7'(; > 79, the pheromone trails are reinitialised considering
To < T,. Otherwise, the global pheromone updating is performed for all A solutions in the

Pareto set, as follows:

Tij = (1 —p) Ty + #, V(i,j) € Sa (4.45)
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MOACS-2

Similar to the BIANT, the transition rule of the MOACS is also extended with a random

selection process to avoid early convergence as follows:

Ifg <qg<qo:
i 1 if j = maz,enr{Tiu- Ui)fu : 77261-(,11:/\)}
= 0, otherwise.
Ifqg>qo:
g a0 e N (4.46)
pﬁj _ Zuele T’F“'"iiu'”gi%_k)’ i
0, otherwise.
Ifg<aq:

pﬁj = random selection of j € Nf

4.4.3.3 CHAC

Mora et al. [272]| proposed the so-called CHAC, which is an ACS with some features of both
BIANT (same combined state transition rule) and MOACS (local and global pheromone
update with no reinitialisation of the pheromone matrices) using a combined heuristic and

pheromone information of both objectives.

CHAC-1

The transition rule is as follows:

Ifg<gqo:
i g A 1-A A (1=
[ e A )
7:7‘7. -
0, otherwise.
Ifg>qo: (4.47)
Tfkk.r“(l_kk). B B-(1=Xk)
i, 1,7 1,7 1, f . Nk
D I S oM o) By B3] Irj) €y,
pz"j i 7,U 1,U i, i,u
0, otherwise.
The local pheromone update is calculated as follows:
1
Ty = (L =p) o (4.48)

T2, = (1 _p>'7—2¢,]’ +p- Co
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and the global pheromone is determined by the following equations:

T,; = (1 - p) “ T + f_pl

(4.49)
7-21‘,]' = (1 - P) : 7-21',3‘ + %

where, fi and f5 are the objective function values of all members in the current archive.

CHAC-2

The CHAC-2 uses following transition rule:

fgp<qg<q:
. . a)\k Oé(l—)\k) ﬁ)\k 5'(1_>\k)
k - ]‘ lf .] - maqule{Tllu : 7—21,7” : 7717,,11. ' /’727.,11. }
Pij = .
0, otherwise.
Ifqg>q:
T I (4:50)
o, _a(log) P B lf] € Nz’
pk .= X:UGNIC Tli 1’: 'T2i w '1711' u. 2iu
i, v ' ’ '
0, otherwise.
Ifg<aq:

pﬁ ; = random selection of j € Nik

4.4.4 Discrete Multi-Objective Artificial Bee Colony Optimisation

Similar to all meta-heuristics presented in this section, the basic ABC algorithm was origin-
ally designed for continuous function. In order to apply it here, a novel discrete variant of
the ABC algorithm is proposed in this section. Different discrete ABCs have been proposed
in the literature to solve different problems, particularly for flow shop scheduling problem
[311, 250, 97]. In the basic ABC, a fitness value is assigned to each solution, which is used in a
stochastic selection strategy to select individuals for mutation. Given that a multi-objective
problem must be solved, another fitness assignment strategy is required. The following

fitness assignment technique proposed by Zou et al. [413| and used by Akay [1], is used:
fi=R>i) —TS>i) —d(i) (4.51)

where R(i) is the Pareto rank value of an individual 7, which is represented by the number
of solutions n; that dominate this solution. The second term S(i) = —pr(i)log(pr(i)),
where T > 0 is the temperature. pr(i) = (1/Z)exp FD/T) is the Gibbs distribution,
7 = S PS¢ opp(-RO/T) s called the partition function and d(i) is the crowding distance
calculated by a density estimation technique similar to the one used in the proposed NSGA-

IT [105]. Since the best individuals will have low values of f;, the fitness of an individual 4,
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fi will be calculated as follows:
fitness; = 1/ f; (4.52)

Furthermore, the onlooker bee will choose a food source depending on the probability value
associated with that food source, which is given by:
’ i
Di = fitness . (4.53)
Max,—1 popSize(filness;)
The various steps of the proposed Discrete Multi-Objective Artificial Bee Colony (DMOABC),

which are similar to the classical ABC, are summarised in the Algorithm 1. At each gener-

ation t, for each solution X!, i = 1, ..., PopSize, a new solution X’E is generated using the
equation (4.35). If the new solution X', dominates the old solution, then the new solution is
accepted. Otherwise, the old solution is kept and the number of trials, trial(7), is updated.
This process represents the employed bees. After this process, the onlookers obtain the in-
formation of the food sources from all employed bees and choose a food source depending on
the probability value associated with that food source, which is defined by (4.53). Each time
a new solution X’E is accepted during this process, the archive is updated and the number
of trials is set to 0. After this process, the sources are checked to determine whether they

will be abandoned. When a source is abandoned, a new solution is generated randomly.
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Algorithm 1 Discrete Multi-Objective Artificial Bee Colony

1: Objective function f(X), X = (X1, ..., Xpopsize) '

2: Initialise the X; food sources, Vi =1, ..., PopSize

3: Evaluation the Fitness f; of each solution ¢, Vi = 1, ..., PopSize

4: while t < Iteration., or (Stop Criterion) do

5 for i=1:PopSize do

6: Generate a new solution X/ with equation (4.35)
7 Evaluate the fitness values of X/
8
9

if X’ < X then
: Replace X; by X! and respective fitness values
10: else

11: trial(i) = trial(i) + 1
12: Assign fitness values f; using (4.51) and (4.52)
13: Calculate probabilities for onlookers using (4.53)

14: s=0,t=0
15: while ¢ < PopSize/2 do

16: if rand < p, then

17: t=t+1

18: Generate a new solution X'(s) with equation (4.35)
19: Evaluate the fitness values of X'(s)

20: if X’ < X then

21: Replace X (s) by X’(s) and respective fitness values
22: trial(s) =0

23: Update Archive Ar

24: else

25: trial(s) = trial(s) + 1

26: s = (s + 1)mod(PopSize — 1)

27: for i=1:PopSize do

28: if trial(i) > limit and X; ¢ Ar then

29: Generate a random solution X (s)

30: trial(i) =0

4.4.5 Discrete Multi-Objective Cuckoo Search Algorithm

Different discrete cuckoo search algorithms have recently been proposed for solving the 0-1
knapsack problem [153|, job-shop scheduling problem [303], flow-shop scheduling problem
[163], and the travelling salesman problem [302]. Since the Lévy flights have the character-
istics of an intensive search around the solution, but also of big steps in the long run, its
generated value was associated to the developed Discrete Multi-Objective Cuckoo Search
Algorithm (DMOCSA) in order to select the choice of perturbation operators. Any move in
the search space can be realised through a small change, a number of k successive changes

and a big move. In order to facilitate the control of these moves via Lévy flights, they are
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associated with an interval between 0 and 1. According to the value given by the Lévy flight
in this interval, the appropriate change operator can be chosen (presented in Section 4.4.1.4

and 4.4.1.5). The interval is divided into the following five parts:

— Value of Lévy flight in [0,0.2[— one change through the mutation operator explained
earlier in Section 4.4.1.5

— Value of Lévy flight in [0.2, 0.4[— two changes through the mutation operator explained
earlier in Section 4.4.1.5

— Value of Lévy flight in [0.4,0.6[— three changes through the mutation operator ex-
plained earlier in Section 4.4.1.5

— Value of Lévy flight in [0.6, 0.8]— four changes through the mutation operator explained
earlier in Section 4.4.1.5

— Value of Lévy flight in [0.8, 1[— Big change through the crossover operator between
selected solution and one solution of the current archive explained earlier in Section

4.4.1.4 using the selection strategies explained in Section 4.4.1.3

Two main variants proposed are as follows:

— DMOCSA-1
— DMOCSA-2

While the DMOCSA-1 uses a static parameter control to abandon and create new solutions,
the DMOCSA-2 uses a dominance ratio (DR) to control the creation of new solutions. For
a given solution ¢, the number of solutions it is dominated by is given by s;. The dominance
ratio DR; for this solution ¢ is calculated as follows:

Si

Thus, instead of abandoning a fraction p, at each iteration, the solutions with the highest

DR; = (4.54)

dominance ratio will be stochastically abandoned. The advantage of this threshold is that
until convergence, this threshold will decrease as the population is converging toward the

Pareto front. Thus, at each iteration, a solution 7 is replaced by a new one if rand > DR;.

The main steps of the proposed algorithm are depicted in Algorithm 2.
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Algorithm 2 Discrete Multi-Objective Cuckoo Search Algorithm
1: Objective function f(X), X = (X1, ..., Xpopsize) '
2: Initialise the X; host nest, Vi =1, ..., PopSize
3: Evaluation the fitness f(X;) of each solution X;, Vi =1, ..., PopSize
4: while t < Iteration,, or (Stop Criterion) do

5 Start searching with a fraction (p.) of solution

6: Get a new cuckoo X; using the Lévy flight’s value

7 Evaluate the fitness f(X;)

8: Choose a nest among j randomly

9: if f(X;) X f(X;) then

10: Replace j by the new solution

11: A fraction p, of worse nests are abandoned and new ones are created
12: Sort and find optimal solutions and update archive

4.4.6 Discrete Multi-Objective Flower Pollination Algorithm

As with the previous algorithms, the FPA cannot be used for discrete optimisation. The
principle of the proposed discrete multi-objective flower pollination algorithm is similar to
the discrete CSA. In the Discrete Multi-Objective Flower Pollination Algorithm (DMOFPA),
any move in the search space can be realised through a global or a local pollination. In order
to facilitate the control of the global pollination via Lévy flights, an identical interface to
that of the DMOCSA is used. According to the value obtained by the Lévy flights, the right
operator is chosen (as presented in Section 4.4.1.5 and 4.4.1.4). For the global pollination, a
solution g B! is selected out of the archive and a crossover is applied. For the local pollination,
as illustrated in Figure 4.7, a Euclidean distance between a specific solution ¢ and all others
is used. The two neighbours j and k that are the closest neighbours of the solution 7 will be

used for the local pollination update as follows:
Xt = RAXT, (A(X5, X0} (4.55)

First a crossover f; is applied between both solution X; and X}, then a second crossover fo
is applied between the obtained solution and X;. Both crossovers are explained in Section
4.4.1.4.
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Figure 4.7: Illustration of the selection of the two solutions in the DMOFPA for the
local pollination

Algorithm 3 Discrete Multi-Objective Flower Pollination Algorithm
1: Objective function f(X), X = (X1, ..., Xpopsize) "
2: Initialise the X; flowers/pollen, Vi = 1, ..., PopSize
3: Evaluation the Fitness f(X;) of each solution i, Vi = 1, ..., PopSize
4: while t < Iteration,,, or (Stop Criterion) do

5 for i=1:PopSize do

6 if rand < p then

7: Perform Global Pollination X; using the Lévy flight’s value
8 else

9: Choose j and k among closest solutions to ¢

10: Perform Local Pollination

11: Evaluate the fitness f(X;)

12: Update archive

13: Sort and find optimal solutions and update archive

4.4.7 Discrete Multi-Objective Bat Algorithm

Different discrete bat algorithms have been proposed lately for e.g. solving the travelling
salesman problem|[352, 351] or the flowshop scheduling problem [253|. Similar to Hassan et
al. [172], a difference operator d; between the bat position X; and the best bat position gB;
was used to generate new solutions in the proposed Discrete Multi-Objective Bat Algorithm
(DMOBAT).

1 if X! B!

d; = (X; — gBj) = 79 (4.56)

—1, otherwise.
Using the velocity vector V! of a solution i, and the difference operator, the new position
value will be updated using following equation:

(X gBh), V>

Xi=V/® h(X; ", gB") = (4.57)
X otherwise.
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where fy uses the crossover mechanism explained earlier in section 4.4.1.4. The velocity and

frequency vectors V! and f; are updated as follows:

fi = fmm + (fmaac - fmm) : 6 (458)
Vi=V/ " +di- fi (4.59)
Additionally, the local solution around a best solution gB! is achieved through the mutation

mechanism also explained earlier in section 4.4.1.5. The steps of the algorithm, which are

presented below, are summarised in Algorithm 4.

Algorithm 4 Discrete Multi-Objective Bat Algorithm

1: Objective function f(z),z = (X1, ..., Xpopsize)

2: Initialise the bat population X; and V;, ;Vi =1, ..., PopSize

3: Define pulse frequency f; at X;

4: Initialise pulse rates r; and the loudness A;

5. while t < Iteration.or(Stop Criterion) do

6: Generate new solutions by adjusting frequency, and updating velocities and locations

according to equations (4.58)-(4.59) and (4.56)-(4.57)

T if rand > r; then

8: Select a best solution out of the archive

9: Generate a local solution around the selected best solution
10: Generate a new solution by flying randomly
11: if rand < A; and 3X; € Ar, f(X;) £ fX; then
12: Accept the new solutions and update Archive
13: Increase r; and reduce A;

The loudness A; and pulse rate r; are updated using the original equations, as follows:

At = ap - Al (4.60)
ritl = 7’? 1= e_ﬂ/'t} (4.61)

(2

4.4.8 Discrete Multi-Objective Particle Swarm

The global search of the proposed discrete Multi-Objective Particle Swarm Optimisation
algorithm is conducted by updating the position of particles of the Discrete Multi-Objective
Particle Swarm Optimisation (DMOPSO) as successfully proposed by Pan et al. [310] to
solve a flow shop scheduling problem and by Zhang et al. [437] to solve a job shop scheduling

problem. The position of a particle is updated as follows:
X =0y @ f5{[Ch © f2(Cs © f1(X]),pBj], gB'} (4.62)

Where, X! is the i-th particle at the t-th generation, C3 is the inertia weight, C; and Cy are

acceleration coefficients between [0,1]. pB! and ¢gB! are respectively the best personal and
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global best position of the swarm population at ¢-th generation, f;, fo and f3 are operations.
The updating process contains three components, E!, F! and X! and are formulated as

follows:

fi Xf , ifr<dy
El=Cy® fi (X)) = (X5 (4.63)
Xt otherwise.
where r € [0,1] is a uniform random number, and ® represent the crossover operation.
According to (4.63), if r < Cs, then f1(X}), which represents some neighbourhood search
used to enhance the quality of the solution is carried out.
fo(EL XD, ifr<Cy
E!, otherwise.
f2 is applied between a given solution X! and its current best position, pB!, if » < C;. The
same mechanism is applied in f3 between a given solution X! and one global best position
gB!, when r < Cy. The operator f; uses the mutation mechanism explained earlier in section
4.4.1.5. The operators f; and f;5 uses the crossover mechanism explained earlier in section
4.4.1.4. The selection of the best particle gB! is based on the strategies explained earlier in
Section 4.4.1.3.

4.5 Computational results

In this section, various approximate methods are compared. Approximate algorithms are
often used in optimisation due to a lack of knowledge about the fitness landscapes of the
optimisation problem. However, the parameter setting of these approximate algorithms
can greatly influence their performances [223]. The sensitivity of the parameter values to
a specific problem explains why approximate algorithms can perform well on one type of
problem and poorly on another. Thus, the success of approximate algorithms depends on
adequate parameter settings. The present section is organised as follows: First the problem
instances under consideration are presented. Then, the quality indicators and the various
approximate methods that were used are compared based on the presented problem instances

and the quality indicators.

4.5.1 Problem instances

Several experiments have been conducted to test the proposed model and algorithms. These

experiments use different well-known problem instances that are available at www.assembly-
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line-balancing.de. These instances include Arc111, Buzey, Gunther, Hahn, Jackson, Kilbrid,
Lutz1, Mitchell, Mukherje, Roszieg, and Sawyer. All these instances, which belong to the
ASALBP formulation, were adapted to the problem of this study. The problem instances
and their characteristics are summarised in Table 4.3. Due to their different problem char-
acteristics, these instances provide sufficient diversity to compare the algorithms. These
characteristics are represented by (i) the mean order strength of the precedence graph (OS
represents the mean order strength of the product design alternatives), (ii) the number of
tasks (IV), (iii) the number of subgraph or product design alternatives (PDA) and (iv) the
total number of available resources Ey,; (Table 4.3). Problems marked with an asterix (*)
are solved with the TPM method. Therefore, they are are problems for which the true
Pareto front is also known. For the remaining problems, a pseudo-optimal Pareto front was
constructed, which combines all of the solutions that the algorithms identify and removes
the dominated solutions. The process of constructing the pseudo-optimal Pareto front is
shown in Figure 4.8. In this figure, the Pareto front obtained by the DMOABC, DMOBAT-
1, BIANT, MOACS-1 and NSGA-II are respectively represented in red, blue, green, orange
and yellow. Out of these sets of non-dominated solutions, the pseudo-optimal Pareto front

is extracted and is represented by the black points.

The required processing time to obtain the true Pareto front for the problems marked with
an asterix (*) are shown in Table 4.4. The time to obtain the real Pareto front is growing

exponentially, indicating that the TPM is not suitable for large problem instances.

Figure 4.9 provides an example of the true Pareto front obtained through TPM and the
approximate Pareto front for the Lutz1-4 and Arcl111-1 problems, respectively. Some of the

obtained Pareto fronts are shown in Appendix C.1.
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Table 4.3: Problem characteristics of the various instances
Problem N OS PDA E;,; Problem N OS PDA E

Arclll-1 125 0.181 6 636  Gunther-1 41  0.378 2 220
Arcl11-2 125 0.181 6 578  Gunther-2 41 0378 2 209
Arcll11-3 125 0.181 6 555  Gunther-3 41  0.364 2 209
Arcll11-4 125 0.185 6 555  Gunther-4 41  0.353 2 209
Arcl11-5 125 0.178 6 505  Gunther-5 41  0.353 2 194
Buxey-1 32 0334 2 166 Hahn-1 68 0.348 5 363
Buxey-2 32 0.330 2 1564 Hahn-2 68 0.348 5 339
Buxey-3 32 0322 2 152 Hahn-3 68 0.343 5 339
Buxey-4 32 0.322 2 138  Hahn-4 68 0.345 5 339
Buxey-5 32 0.333 2 138  Hahn-5 68 0.345 5 304
Jackson-1* 15 0442 2 28 Lutz1-1* 37 0970 2 48
Jackson-2* 15 0442 2 30 Lutzl1-2* 37 0953 2 47
Jackson-3* 15 0442 2 37 Lutzl1-3* 37 0.524 2 49
Jackson-4* 15 0442 2 29 Lutz1-4* 37 0.530 2 51
Jackson-5* 15 0.442 2 31 Lutzl-5* 37 0.330 2 50
Kilbrid-1 50  0.641 2 70 Mitchell-1* 27 0979 2 52
Kilbrid-2 o0  0.641 2 76 Mitchell-2* 27 0.579 2 46
Kilbrid-3 50  0.641 2 87 Mitchell-3* 27 0432 3 71
Kilbrid-4 50  0.622 2 87 Mitchell-4* 27 0.579 2 50
Kilbrid-5 50  0.600 2 87 Roszieg-1* 28  0.504 2 46
Mukherje-1 105 0.124 5 547  Roszieg-2* 28  0.547 2 42
Mukherje-2 105 0.124 5 517  Roszieg-3* 28  0.610 2 47
Mukherje-3 105 0.124 5 507  Roszieg-4* 28  0.605 2 39
Sawyer-1* 33 0.539 2 40 Sawyer-3* 33 0.539 2 45
Sawyer-2* 33 0.539 2 39 Sawyer-4* 33 0.539 2 44

S

® DMOABC

- © DMOBAT-1
1 BIANT-1
® MOACS-1
2. NSGA-II
". ] o e PF.g

Figure 4.8: Extraction of the Reference-Pareto front for the Arc111-1 problem
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Table 4.4: Results of the TPM method

Problem PS t (hh:mm:ss) Problem PS t (hh:mm:ss)
Jackson-1 8 00:00:09 Mitchell-2 16 10:45:13
Jackson-2 8 00:00:10 Mitchell-3 5 03:50:11
Jackson-3 5 00:01:51 Mitchell-4 11 06:56:43
Jackson-4 13 00:01:16 Roszieg-1 9 19:04:02
Jackson-5 13 00:01:10 Roszieg-2 10 16:51:20
Kilbrid-1 27 11:46:50 Roszieg-3 15 19:46:50

Lutzl-1 10 01:37:56 Roszieg-4 2 00:08:36
Lutzl-2 19 01:58:33 Sawyer-1 2 00:05:08
Lutz1-3 14 10:11:32 Sawyer-2 5) 01:04:21
Lutzl-4 34 21:42:04 Sawyer-3 11 00:34:23
Lutzl-5 33 19:56:47 Sawyer-4 22 07:16:54

f1 L f1
. \

- o,
Seoo
- ..
fa fa
(a) True Pareto front for the (b) Approximate Pareto front for
Lutz1-4 Problem the Arc111-1 Problem

Figure 4.9: Comparison of the true and approximate Pareto front for two problem in-
stances

4.5.2 Parameter settings

The parameter space can be explored before or during the search |224, 377, 102|. These two
cases are respectively classified as parameter tuning and parameter control [203|. Several
methods, which are shown in Figure 4.10, can be used when tuning parameters, including:
(i) by hand, (ii) Design of Experiments (DOE), and (iii) meta-evolution. In the first case,
parameters are defined based on the decision makers’ experience. In the second case, stat-
istical tools such as the Design of Experiments are used to choose the best parameter values.
Bartz-Beielstein [28| discusses the role of experimental research in evolutionary computation.
DOE is a systematic method for determining the relationship between factors that affect a
process and its output by deliberately changing one or more factors to observe the effects
on the process’s output. In the last case, the evolutionary optimisation process occurs on

two levels. On the first level, an outer optimisation algorithm tunes the parameters of an
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embedded algorithm. On the second level, the parameter values are changed during optim-
isation; deterministic, adaptive, and self-adaptive methods can be found in this category. In
the former case , the parameters are adjusted according to a fixed scheme, depending on
e.g. the number of generations. In the second case, the parameters are changed according to

predefined rules. In the last case , the parameter changes according to pre-defined functions.

Parameter Setting

Tuning Control
By Hand Deterministic Adapative
Meta-Evolution
Design of Experiments Self-Adaptive

Figure 4.10: Parameter setting in EA cf. [224, 377]

To compare all the developed approximate methods efficiently, an the parameter space was
explored before the search procedure. The parameters and their range, and the levels for
each approximate method are respectively shown in Tables 4.5 to 4.172. The assessment of
the parameter values is based on the Arc111-1 problem of Table 4.3. This problem, with its
low order strength, high number of product design alternatives and high number of resources,

is the most complicated problem over all tested problems instances.

Table 4.5: Factors and their levels for the DMOABC

Factor Levels Values
A PopSize (population size) 3 100, 150, 200
B limit (trials limit) 5 95, 50, 75, 100, 125

Table 4.6: Factors and their levels for the DMOBAT

Factor Levels Values

A PopSize (population size) 3 100, 150, 200

B (v) (Adaptation parameter for pulse 9 0.8, 0.85, 0.9, 0.92, 0.94, 0.96, 0.97, 0.98,
rate) 0.99

C (ap) (Adaptation parameter for loud- 9 0.1,0.2,0.3,04, 0.5, 0.6, 0.7, 0.8, 0.9
ness)

2. The reader will note that the size of the archive for all the approximate methods was fixed to 50



4.5 Computational results 106

Table 4.7: Factors and their levels for the BIANT-1

Factor Levels Values

A PopSize (population size) 3 100, 150, 200

B o (pheromone importance) 3 1,2,3

C S (heuristics importance) 3 1,3,5

D p (evaporation rate) 9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9

Table 4.8: Factors and their levels for the BIANT-2

Factor Levels Values

A PopSize (population size) 3 100, 150, 200

B « (pheromone importance) 3 1,2,3

C S (heuristics importance) 3 1,3,5

D p (evaporation rate) 9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
E ¢1 (Transition rule rate) 3 0.1, 0.2, 0.3

Table /.9: Factors and their levels for the CHAC-1

D qo (Transition rule rate)
E p (evaporation rate)

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
0.1,0.2,0.3,0.4, 0.5

Factor Levels Values
A PopSize (population size) 3 100, 150, 200
B « (pheromone importance) 3 1,2,3
C S (heuristics importance) 3 1,3,5
9
5

Table 4.10: Factors and their levels for the CHAC-2

Factor Levels Values

A PopSize (population size) 3 100, 150, 200

B « (pheromone importance) 3 1,2, 3

C S (heuristics importance) 3 1, 3,5

D qo (Transition rule rate) 8 0.1,0.2,0.3,0.4, 0.5, 0.6, 0.7, 0.8
E p (evaporation rate) 4 0.1,0.2,0.3, 04

F ¢1 (Transition rule rate) 3 0.1, 0.2, 0.3

Table 4.11: Factors and their levels for the DMOCSA

Factor Levels Values

A PopSize (population size) 3 100, 150, 200

B p. (Crossover rate) 9 0.5, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85,
0.90

C po (Abandonment rate) 5 0.05, 0.10, 0.15, 0.20, 0.25

Table 4.12: Factors and their levels for the DMOFPA

Factor Levels Values
A PopSize (population size) 3 100, 150, 200
B p (Threshole global /local pollination) 9 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85,

0.90
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Table 4.13: Factors and their levels for the MOACS-1

Factor Levels Values

A (population size) 3 100, 150, 200

B /3 (heuristics importance) 5 1,2,3,4,5

C qo (Transition rule rate) 9 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
D p (evaporation rate) 5 0.1, 0.3, 0.5, 0.7, 0.9

Table 4.14: Factors and their levels for the MOACS-2

Factor Levels Values
A PopSize (population size) 100, 150, 200
B $ (heuristics importance) 1,2,3,4

C qo (Transition rule rate)
D p (evaporation rate)
E ¢1 (Transition rule rate)

0.1, 0.2, 0.3, 0.4, 0.5, 0.6
0.1, 0.3, 0.5, 0.7, 0.9
0.1, 0.2, 0.3

LT Ut w

Table 4.15: Factors and their levels for the DMOPSO

Factor Levels Values

A (population size) 3
B C; (Crossover rate with current best) 5
C Cy (Crossover rate with global best) 5
D C3 (Mutation rate) 5

100, 150, 200
70, 75, 80, 85, 90
70, 75, 80, 85, 90
10, 15, 20, 25, 30

Table 4.16: Factors and their levels for the NSGA-II

Factor Levels Values

A PopSize (population size) 3 100, 150, 200

B HS (initialization with heuristics) 2 0,1

C pc (Crossover percentage) 5 55, 60, 65, 70, 65
D p,, (Mutation percentage) 4 1,2, 3,4

E T'S (Tournament size) 2 2,4

Table 4.17: Factors and their levels for the SPEA2

Factor Levels Values

A PopSize (population size) 3 100, 150, 200

B HS (initialization with heuristics) 2 0,1

C pc (Crossover percentage) 5 55, 60, 65, 70, 65
D p,, (Mutation percentage) 4 1,2,3,4

E T'S (Tournament size) 2 2,4

The objective of a DOE is to understand which set of variables in a process has the strongest
influence on the performance and then determine the best levels for these variables to obtain
the optimal performance [12]. Several authors have also applied DOE to tuning the para-
meters of their optimisation algorithms, (e.g. [428, 20, 262, 310]). The following terminology

is used in this section:
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— Response variable - This variable represents the measured variable of interest. For
the analysis of optimisation algorithms, commonly used measures include the solution
quality, which can be expressed by the objective function value, and the computation
time required for a specific algorithm to converge.

— Factors and levels - A factor is an independent variable that is manipulated in an
experiment. The levels of a factor represent the values considered in the DOE.

— Effects - An effect is a change in the response variable due to a change in one or more
factors. Here we can consider the main effect, which is the effect of one factor alone
averaged across the levels of other factors, and the interaction, which is the variation
among the differences between means for different levels of one factor over different

levels of other factors.

A multi-factor analysis of variance (ANOVA) was used to assess the statistical significance
of the factors and define the most optimal parameter values for each algorithm. First, for
each algorithm class, the main effects and their interactions were analysed. In all analyses
the p-value indicates whether its value is less than a specific parameter ay;,,, that there is
a significant difference between the analysed levels of the factor and the response variable.
A confidence level of %95 (ay, = 0.05) was selected. Since many quality indicators can
be used to assess the optimality of specific parameter values and only one can be used, the
hypervolume indicator was selected. The advantage of this metric is that it encapsulates a
measure of spread of the solutions along the Pareto front in a single value, in addition to the

closeness of obtained solutions to the Pareto-optimal front.

The parameter definition process of the evolutionary algorithms is described. A detailed

analysis of the other algorithms is presented in Appendix C.2.

4.5.2.1 Analysis of variance: NSGA-II and SPEA2

The various factors of interest for the NSGA-II and SPEA2, along with their levels and
values, are shown in Tables 4.16 and 4.17. These factors result in 3 x 2 x 5 x 4 x 2 = 240
possible combinations. FEach combination represents an experiment, which was run three
times to calculate the HV metric. The ANOVA results for the NSGA-II and SPEA2 are
shown in Table 4.18. This table demonstrates that the population size, the initialisation of
the population with heuristics, and the crossover have a significant effect on the response
variable of the NSGA-II. In order to set the value of the parameters, the F-value is used. The
F-value represents the ratio between the explained and unexplained variance. The greater
this value is, the more effect on the response variable has a factor. Considering the F-value,

it can be stated that A, B and C have the most effect on the variable response. Considering
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these F-value in descending order, the values of B, A, and C can be fixed to 1, 200, and 55,
respectively, in accordance with the main effect plots represented in Figure 4.11. Since the

remaining factors do not have a significant influence on the hypervolume or computation
time, as shown in Table 4.19, they can be fined as follows: A=200, B=1, C=55, D=3, E=2.

Table 4.18 also shows that the population size, crossover, and mutation rate have a significant
effect on the response variable of the SPEA2. Figures 4.12 and 4.13 represent the significant
main effects and interaction plots. The values of A, C, and D can respectively be fixed to
200, 65, and 2. The interaction between factors B and C is relevant and since the value of
C is already defined, the value of B, for which the interaction BC maximises the response
variable, is 1. Since factor E does not have a significant influence on the results, the chosen
parameters for the proposed SPEA2 are as follows: A=200, B=1, C=65, D=2, and E=2.

Table 4.18: Analysis of variance for the NSGA-II and SPEA2 with HV as response
value

NSGA-II SPEA2
Factor DF  SS MS  F-value p-value SS MS  F-value p-value
A 2 0.002 0.001  24.820 0.000  0.006 0.003 18.700 0.000

B 1 0.005 0.005 105.700  0.000 0.000 0.000 1.270 0.261
C 4 0.001 0.000  3.700 0.010  0.002 0.001  3.630 0.006
D 3 0.000  0.000  0.880 0.450  0.001 0.000  2.770 0.042

BC 4 0.000 0.000  0.660 0.620 0.002 0.001  3.380 0.010

* Only factors/interactions with a significant influence (ay;, = 0.05) are shown.

Table 4.19: Analysis of variance for the NSGA-II and SPEA2 with the computation
time as response value

NSGA-II SPEA2
Factor DF  SS MS  F-value p-value SS MS  F-value p-value
A 2 >500 >500  >500 0 >500 >500  >500 0.000

* Only factors/interactions with a significant influence (ay;,, = 0.05) are shown.

Factor A Factor B Factor C
0.985 [ ‘ T BN ‘ ™1 0.985

- 0.980 ././' -+ 10.980
=
"~ 0.975 | 4 ——‘v— 0.975

0.970 |, | -+ -+ | 10.970
100 150 200 0 10.55 0.65 0.75
Levels Levels Levels

Figure 4.11: Main effects plot (fitted means) obtained for the NSGA-II with HV as
response value
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Factor A Factor C Factor D

0.970 [ ‘ HE ‘ HE ‘ 1 0.970
~ 0.960 *./o/‘* *.’4/'\./; - -1 0.960

T .—__‘\o/.
'~ 0.950 |- I I -1 0.950
0940 [l | L1 | L1 | ] 0940

100 150 2000.55 0.65 0.750.1 0.25 0.4
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Figure 4.12: Main effects plot (fitted means) obtained for the SPEA2 with HV as re-
sponse value

Factor B
0.970 [ ‘ | _e_B:0
~ 0.960 :7<7\<: —m—B:1
“:‘1 0.950 |- N
0.940 |- | 1

| |
0.55 0.65 0.75
Levels

Figure 4.13: Interaction plot (fitted means) obtained for the SPEA2 with HV as re-

sponse value

4.5.2.2 Summarised results for the parameter definitions

The previously defined parameter values are summarised for each algorithm in the follow-
ing tables. The results of the other algorithms, which were obtained following the same

reasoning, are shown in Table 4.20-4.26.

Table 4.20: Parameter settings for the NSGA-II and SPEA2 algorithms

Parameters NSGA-II SPEA2
Population size 200
Initialisation with Yes
heuristics

Pe 55 65

Pm 3 2

Tsize 2 2
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Table 4.21: Parameter settings for the MOACO algorithms

Parameters BIANT- BIANT- MOACS- MOACS- CHAC- CHAC-
1 2 1 2 1 2

Population size 200 200 100 200 200 200

Initialisation with Yes Yes Yes Yes Yes Yes

heuristics

Q 3 3 - 2 2

I} 1 5 2 2 3 3

0 0,9 0,6 0,5 0,6 0,3 0,3

q0 - 0,1 0,8 0,6 0,6 0,6

ql - 0.1 - 0,1 - 0,3

Table 4.22: Parameter settings for the DMOPSO algorithms

Parameters DMOPSO- DMOPSO- DMOPSO- DMOPSO- DMOPSO-
R S1 S2 KM S3

Population size 200

Initialisation with Yes

heuristics

C1 0,75

C2 0,7

C3 0,15

Table 4.23: Parameter settings for the DMOBAT algorithms

Parameters DMOBAT- DMOBAT- DMOBAT- DMOBAT- DMOBAT-
R S1 S2 KM S3

Population size 200

Initialisation with Yes

heuristics

~y 0,75

« 0,7

Table 4.24: Parameter settings for the DMOCSA algorithms

Parameters DMOCSA-1 DMOCSA-2
Population size 200
Initialisation with Yes

heuristics

Pc 0,8

Da 0.2 -
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Table 4.25: Parameter settings for the DMOFPA algorithms

Parameters DMOFPA- DMOFPA- DMOFPA- DMOFPA- DMOFPA-
R S1 S2 KM S3

Population size 200

Initialisation with Yes

heuristics

p 0,8

Table 4.26: Parameter settings for the DMOABC algorithms
Parameters DMOABC

Population size 200
Initialisation with heuristics Yes
limit 50

4.5.3 Quality indicators

In order to compare the developed approximate algorithms, the following indicators (ex-
plaiend in Section 3.4.1) were used: (i) Igy (previously denoted HV), (ii) I, (iii) I;cp
previously denoted IGD), and (iv) Ia previously denoted Delta). The choice of these indic-
ators was motivated by their different objectives: (i) I measures the convergence ability, (ii)
In measures the distribution of the solutions and (iii) I;p and Iyy combine both of these
components. The higher the values of Iy and the lower the values of I;¢p, Ia and I, the

better a specific algorithm will perform.

4.5.4 Comparison of approximate methods

This section presents a comparison of approximate methods performed through a statistical
analysis. To compare the various approximate algorithms and due to the stochastic nature
of these optimisers [142|, several runs were performed. As a stopping criterion the MGBM
criterion [258], which combines a local improvement metric and a global evidence accumu-
lation criterion that decides when an algorithm should stop, was used. This metric is based
on the set of non-dominated solutions for two consecutive iterations: ND; and ND;_;. The
progress indicator s; € [0, 1] represents how many elements of ND, dominated ND, ;. If
the progress indicator s; = 1, the population of iteration ¢ is completely better than the
precedent one of ¢t — 1. If s, = 0, there has not been any substantial progress. Thus, if no
non-dominated solution has changed after a pre-specified number of generations, Lj.,, the

algorithm is stopped. Here L., is equal to 150.
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4.5.4.1 Statistical analysis

Tables 4.27 to 4.31 show the median and IQR obtained through several experiments for the
problems of the Arcl11 family. The interquartile range measures the statistical dispersion
obtained through several experiments. In addition, a statistical visualisation by means of a
box plot that graphically depicts various statistics such as the median, variance, min, and
max of a given data set, is available for the problems in Appendix C.3. The relationships
between the statistics provided in Tables 4.27 to 4.31 and those provided in Appendix C.3
are presented in Figure 4.14. Promising results are coloured in gray and three different gray
levels were used; the darker level indicates that the algorithm is obtaining the best rank of an
indicator, the lighter levels represent the algorithms with ranks that belong to the 10" — %
or 20" — % best algorithms. In Tables 4.27 to 4.31 only the best algorithms are shown.

i

max(x)
—

Q3

]

Q1

oRI

IQR(x)
Figure 4.14: Relationship between T and IQR(x)

As represented in Tables 4.27 to 4.31 the MOACS-2 obtained the best median values for
the I'gy, I;gp and I indicators. Regarding I, the NSGA-IT and SPEA2 obtained the best
median values. According to the computation time required until convergence, it seems clear
that the SPEA2 converges faster. While the MOACS-2 and the other MOACO algorithms
performed better in the Arcl11 family of problems regarding the obtained medians, which
are higher, the obtained IQR values are not small enough to directly conclude that MOACO

algorithms are better than the other algorithms.



4.5 Computational results 114

Table 4.27: Median and interquartile range of Iy obtained by the optimisers for the
Arcl11 problems

Arclll-1 Arcll11-2 Arcll1-3 Arclll-4 Arclll-5
T+ IQR(x) zxIQR(z) TxIQR(zr) T+IQR(x) Z+IQR(x)

BIANT-1 0.87 0.02 089 004 086 006 [0907 0.03 085 0.04
BIANT-2 [0.90. 0.01 [0:89] 0.04 087 004 086 003 [0:907 0.03
CHAC-2 0.87 001 0.85 001 0384 JUEOE 085 001 086 0.01
DMOCSA-1-1  0.87 [JOEE 085 001 084 003 085 003 085 001
DMOCSA-1-2 0.86 0.0l 085 001 085 0.00 084 001 086 0.02
DMOCSA-1-4 0.86 [JO0LW 0.86 001 084 001 084 001 084 0.01
DMOCSA-1-5 0.86 0.01 085 002 084 002 085 002 085 1000
DMOCSA-2-5 0.87 0.01 085 003 085 0.01 0.85 JEE0H 085 0.01
DMOFPA-2 0.86 0.01 0.86 002 085 0000 0.85 0.01 085 0.01
DMOFPA-3 0.87 001 085 001 084 001 085 001 085 0.02
DMOFPA-4 0.86 0.01 0.85 UGN 085 002 084 0.02 085 0.03
DMOFPA-5 0.86 0.02 0.85 001 085 001 0.85 0000 0.85 0.02
MOACS-1  0.84 0.01 0.87 001 FOB7 001 087 0.01 0.87
MOACS-2 BN 001 JOEEN o001 QOB 0.02 [OEEN 0.00 0.01
MOBAT-5 0.86 0.01 085 001 0.84 001 085 001 085 0.00
SPEA2 0.87 001 0.86 [J00LY 0.85 0.02 086 002 086 0.01

Table 4.28: Median and interquartile range of I;ap obtained by the optimisers for the
Arcl11 problems

Arclll-1 Arcll11-2 Arclll1-3 Arclll-4 Arclll1-5
T+ IQR(x) Z+IQR(x) Z+IQR(x) Z+IQR(x) Z+IQR(x)

BIANT-1 0.68 0.06 0.78 0.08 088 024 0.64 011 084 0.18
BIANT-2 [0:64| 0.06 0667 0.14 083 0.12 083 0.04 085 0.15
CHAC-2 0.78 [JENOM 087 004 078 003 08 007 078 0.03
DMOABC 0.81 0.03 091 011 078 004 088 0.0l 079 0.03
DMOCSA-1-2 0.82 0.02 0.81 003 073 002 089 0.10 080 0.10
DMOCSA-1-4 0.80 0.05 0.84 0.03 077 003 0.3 [JEEEQ 084 0.03
DMOCSA-1-5  0.79  0.04 0.85 [MOOIN 081 0.1 0.85 0.04 084 0.03
DMOCSA-2-4 0.77 0.04 0.84 006 077 002 086 004 075 0.08
DMOFPA-2 0.78 0.04 086 013 0.76 0.02 0.89 [H00TN 0.80 (1001
DMOFPA-4 0.79 0.02 0.87 [ 080 009 089 0.02 082 0.08
DMOFPA-5 0.82 0.03 085 0.01 0.79 JEEO 087 002 082 0.09
MOACS-1 094 0.2 0.74 0.05 [0B7 0.02 10607 0.07 [OB8Y 0.04
MOACS-2 Sl 0.0+ S 0.0 QOSSN 001 JoEEy 0.01
MOBAT-1 0.78 0.01 0.88 0.06 082 007 089 0.05 0.76 0.06
DMOPSO-2 0.78 {001 088 0.05 0.78 0.06 086 0.03 081 0.06
DMOPSO-3 0.81 0.03 086 001 083 002 090 002 079 0.01
DMOPSO-4 0.80 0.03 085 0.02 082 002 089 002 081 0.02
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Table 4.29: Median and interquartile range of I. obtained by the optimisers for the
Arcl11 problems

Arclll-1 Arcll11-2 Arcll1-3 Arclll-4 Arclll-5
T+ IQR(x) zxIQR(z) TxIQR(zr) T+IQR(x) Z+IQR(x)

CHAC-2 0.24 [J000% 0.31 JOEEE 036 0.00 036 0.01 0.37 1000
DMOABC 0.24 0.00 031 0.0l 035 001 036 0.00 038 0.0
DMOCSA-1-1  0.24 0.00 032 0.00 0.36 [J0000 0.36 0.00 0.38 0.00
DMOCSA-1-5 0.24 0.00 0.31 [J000W 0.35 0.00 036 0.00 038 0.01
DMOCSA-2-2 0.24 0.00 031 0.00 0.35 [JOHGE 036 0.00 038 0.00
DMOCSA-2-5 0.24 0.01 032 001 036 000 0.36 00 038 0.00
DMOFPA-1 024 000 031 001 035 000 035 001 038 001
MOBAT-1 0.24 0.00 0.31 000 036 000 0.36 0.00 037 001
MOBAT-2 0.24 [JUH 031 0.00 036 000 036 001 038 0.00
DMOPSO-1 0.24 0.00 031 0.00 035 000 036 000 038 0.00
DMOPSO-3 0.24 0.01 0.32 0.00 035 000 036 001 038 0.0l

NSCGA-I1 [JiiEl 0.00 0.00 0.00 [N 0.01 0.00
SPEA2 [ 0.15| 0.00 0.00 0.00 [0.23 1000

Table 4.30: Median and interquartile range of In obtained by the optimisers for the
Arcl11 problems

Arcll1-1 Arcl11-2 Arcl11-3 Arcll1-4 Arclll1-5
T+ IQR(x) z+IQR(z) T+IQR(zx) T+IQR(x) z+IQR(x)

BIANT-1 [0:53] 0.02 0.61 0010 0.62 0.09 0567 0.01 065 0.06
BIANT-2 0.54 0.02 J0B7 011 065 007 066 007 063 0.03
CHAC-2 0.83 0.06 079 0.03 081 [J00OLN 082 0.05 075 0.07
DMOCSA-2-1 0.91 O 085 007 082 003 084 004 079 007
DMOCSA-2-2 0.84 0.01 0.81 0.01 082 [JONEE 091 007 083 0.07
DMOCSA-2-3 0.86 0.03 0.84 0.06 078 0.06 087 0.02 0.82 001
DMOCSA-2-4 087 0.02 0.85 011 086 001 084 007 078 0.04
DMOFPA-1 0.86 [JOOLY 0.86 0.04 087 0.07 0.88 [00LY 0.87 0.10
DMOFPA-3 0.88 0.09 084 0.04 081 003 0.86 |JONOW 0.77 0.06
DMOFPA-4 082 001 090 010 086 0.12 092 0.03 084 0.06
MOACS-1 0.61  0.06 0.57 0.05 [0B6] 0.02 059 0.06 [061
MOACS-2 [JEEl 0.03 0.09 0.05 |ESE 0.07 0.17
MOBAT-1  0.87 0.05 0.85 0.82 0.10 088 0.07 080 0.03
DMOPSO-1 092 0.07 082 0.02 084 001 08 0.0l 082 0.05
SPEA2 0.90 002 085 005 085 002 091 007 080 0.01
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Table 4.31: Median and interquartile range of the computation time required by the
optimisers for the Arc111 problems

Arclll-1 Arcll11-2 Arcll1-3 Arclll-4 Arclll-5
T+ IQR(x) zxIQR(z) TxIQR(zr) T+IQR(x) Z+IQR(x)

BIANT-2 1.00 NS 064 047 054 018 040 014 068 0.13
DMOCSA-1-1 0.34  0.07 034 006 026 030 037 017 042 0.20
DMOCSA-1-4 026 0.07 026 006 051 007 037 026 [0:26
DMOCSA-1-5 0.32 0.14 0.33 [J0037 0.41 023 035 014 044 021

DMOFPA-1 0.26 0.06 035 0.16 042 013 0.38 006 0.32 005
DMOFPA-4 0.26 0.03 030 004 035 005 026 012 031 0.16
DMOFPA-5 0.23 0.18 047 005 058 034 033 014 034 005
MOACS-1 J0:200 0.08 0.32 0.05 [O25000:047 0.19 0.04 028 0.13
MOACS-2 0.22  0.04 J025] 005 027 0.10 0.20 JONEM 042 0.19
MOBAT-1 024 008 026 0.16 0.44 [JEBEl 030 0.0 040 0.20
MOBAT-2 0.31 0.06 0.35 [JUESH 039 009 030 005 037 0.13
MOBAT-5 0.29 008 0.28 0.7 028 012 032 0049 041 0.17
DMOPSO-2 0.21 023 027 0.05 042 023 [0d8% 0.2 033 026

SPEA? NS00 ENNEE 007 JOEEE 013 JONSN oo0s JUEOE 008

Figure 4.15 shows the evolution of Iy using a box plot for the BIANT-1, BIANT-2, MOACS-
2, NSGA-II, and DMOFPA-1 for the Arc111-1 problem. This figure demonstrates that the
average performance of the MOACS-2 is better than the other algorithms due to its small
variance and high mean value. However, difficulties can arise when trying to compare the
other algorithms, which have similar distributions. For this type of comparison, a statistical
visualisation is not suitable. Therefore, to address this point, a nonparametric statistical

test was used and is discussed in the next section.

1| - ||e BIANT-1
E 5 @ e BIANT-2
g o MOACS-2
NSGA-II

005 | é é ||e DMOFPA-1
o H
I

0.9 é .

0.85 - i

100" 200" 300" 400t 800"

Generation Generation Generation Generation Generation

Figure 4.15: Evolution of the Igy through the iterations for the BIANT-1, BIANT-2,
MOACS-2, NSGA-II and DMOFPA-1 for the Arc111-1 problem



4.5 Computational results 117

MOACO-Family DMOBAT-Family

‘ 2.65 F
2.6 L= 126

2.5 CHAC-L 19D 55

MOACS-1
MOACS-2

Lo 1
N RN RN RN R R R R RN NN RN RN RN RS RNSSY)
NENOARNANINSN AN NN NSRRI OSSN AN NN RN
» »
> 9 Q"xa’xtbxof’%\%ﬂ;\@%(? >0 %\f}\? \/O“O ‘W}%“ ‘W:“\“.)9

DMOPSO-Family

— T
] e ] ] ——L—*J‘»— - 77\777:77
e — G I R o ——
| : | | —— DMOFPA-1 | Y | . [— pmopso.1
2.55 ‘ 77:7777777:7777—DM0FPA—272'55%7; 1| | —pwmopsoz2 ||
[ [ [ DMOFPA-3 N DMOPSO-3
25W0/+-----+-----{ — DMOFPA4 [ 25 A . ... |—_DpmMOPSO-4
Lo 0

3 } 3 3 DMOFPA-5 ‘ DMOPSO-5
| | | | I I I | I I I I
Q O O O O QNS D NN NN RN RN IR RN
Q- Q7 N N QN QS NN RN NN SN AN NN
D9 \f} <? \/09 q}’ q,?’ RS \f} \j? \,C? q}’ q,?’ q:«\
108 DMOCSA-1-Family N DMOCSA-2-Family
T I T
I \/—‘:—I— |
2.6 - 2.6 S
| ‘ : ~~
| = —— DMOCSA-1-1 —— DMOCSA-2-1
2.55 |- 7‘/;/—7 7777777 —— DMOCSA-1-2 | | 2.55 —  DMOCSA-2-2

DMOCSA-1-3

]

I

: DMOCSA-2-3
4 | e— DMOCSA-1-4 |_|

‘ 2.5

I

|

|
|
I
a
I
|
|
— DMOCSA-2-4 ||
DMOCSA-1-5 DMOCSA-2-5 ||
I I I |

we

L O Q
SESENIR
C?q;'\\'%ﬂ Yo

2.6
2.55

i )

—— DMOABC

o5/ ] —— NSGA-II
: SPEA2

Figure 4.16: Best Evolution of the Iy through the iterations obtained by all approz-
imate methods for the Arc111-1 problem

Figure 4.16 shows the evolution of the best runs obtained by all approximate methods in
accordance with Iyy. In this figure, the algorithms are grouped according to their family.
The MOACS-1 and MOACS-2 are the algorithms that stop the earliest to converge toward
the Pareto front. While the other algorithms stop at 2100 or more generations, they stop
between 900 and 1200 iterations. Comparing the convergence speed of the MOACO-family
with other families, it seems that the MOACOs converge slower. However, the BIANT,
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DMOPSO, and EA families have a fast convergence speed in the earliest iterations of the
optimisation process. Compared to the DMOCSA family, which reached a covered hyper-
volume of 2.6E8 after approximately 1,500 iterations, these algorithms reached this value

after approximately 900 iterations.

4.5.4.2 Nonparametric statistical test

In order to identify the algorithm that performs better than others and similarly determine
whether the differences between algorithms regarding the indicators listed above are signi-
ficant or not, hypothesis testing can be used to identify differences or similarities between
algorithms. Two hypotheses are used, including the null hypothesis (Hy) which states that
there is no difference between two algorithms, and (H;), which states that there is a signi-
ficant difference between two algorithms. The p—value, which provides information about
whether a statistical hypothesis test is significant or not, will reject Hy for a small value.
Moreover, nonparametric tests can be divided into pairwise or multiple comparison tests
[263]|. The former type detects significant differences between two samples of data (e.g. al-
gorithms), and the latter type detects significant differences between multiple algorithms.
Multiple comparison tests can be further subdivided into situations where one control al-
gorithm is compared to all others, and situations where all algorithms are compared will all
others and all pairwise differences between all algorithms must be detected. Derrac et al.

[110] proposed a tutorial to use various pairwise and multiple comparison procedures.

In this section, multiple comparisons using the Friedman test 3, which is a commonly used
nonparametric statistical test procedures [446] that allows for multiple comparison proced-
ures with and without a control algorithm, are presented. The Friedman test [144, 145],
which is a nonparametric analogue of the parametric two-way analysis of variance, was ap-
plied several times to determine whether there is a significant difference between algorithms
(e.g. [299, 251, 446]).

The guideline provided by Derrac et al. [110] was followed to perform the nonparametric
statistical analysis. The Friedman test has been applied to all problems according to all
performance indicators used in the previous section. The obtained Friedman statistics for
all problems and algorithms considered together in accordance with Igv, I;ap, I, Ia, and
the computation time and respective computed p-values are shown in Table 4.32. Given that
X2 0001 = 72 with a 99.99% confidence level and 33 degrees of freedom, there are significant

differences among the algorithms for all quality indicators.

3. The choice of nonparametric statistical analysis is explain in Appendix B.4.
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Table 4.32: Friedman’s statistic and computed p-value in accordance with Igy, Ligp,
1., In, and the computation time

Indicators Friedman statistic

Computed p-values

Igv
Irgp
I

Ia
Time

1035.35
803.43
834.81
826.73

2923.22

0

2.87E-10
2.99E-10
2.44FE-10

0

Table 4.33: Average rankings returned by Friedman’s nonparametric test for all prob-
lems according to the various quality indicators

Algorithm  Igy

Iiap

I

TN

Time

DMOABC 15.60
DMOBAT-1 16.48
DMOBAT-2 16.04
DMOBAT-3 15.11
DMOBAT-4 25.52
DMOBAT-5 16.10

BIANT-1 17.55
BIANT-2 17.35
CHAC-1 [ 13.77
CHAC-2 13.82
DMOCSA-1-1 16.62
DMOCSA-1-2 16.41
DMOCSA-2-1 16.46
DMOCSA-2-2 16.11
DMOCSA-2-3  16.76
DMOCSA-2-4 24.80
DMOCSA-2-5 16.41
DMOCSA-1-3  17.57
DMOCSA-1-4 27.17
DMOCSA-1-5 17.29
DMOFPA-1 17.10
DMOFPA-2 17.22
DMOFPA-3 16.90
DMOFPA-4 27.03
DMOFPA-5 17.31

MOACS-1  19.85

MOACS-2 17.86
DMOPSO-1  15.47
DMOPSO-2  16.03
DMOPSO-3 16.19
DMOPSO-4 22.61
DMOPSO-5 14.98

NSGA-II |2zl

SPEA2 [12.29

19.31
18.74
19.83
20.03
10.26
19.73
17.90
17.32

20.57
18.47
18.45
18.77
18.81
18.82
10.92
19.10
18.18

8.84
18.28
17.97
18.44
18.22

9.05
18.28
15.03
15.37
19.83
19.80
19.23
13.21
19.37
19.55
18.64

20.11
19.09
18.78
19.56
14.16
18.60

9.81

9.59
19.41
19.48
18.30
18.28
18.58
18.25
18.87
14.78
18.42
17.84
13.91
18.58
18.36
18.27
17.98
13.32
18.28
11.26
11.77
20.36
18.94
19.54
16.20
20.06

22.92

14.96
16.11
17.03
16.95
17.60
15.75

24.91
19.68
19.05
15.19
15.38
15.65
15.97
15.91
18.15
16.30
15.72
18.19
15.46
16.64
16.64
15.96
16.99
15.24
26.10
25.52
17.53
16.42
16.63
16.90
17.31
13.05

14.00 | SN

6.00
21.94
20.09
17.43
20.84
18.64

6.38

9.97
12.33
13.83
20.59
20.54
13.15
14.88
10.19
14.97
11.60
20.25
23.87
22.74
21.83
18.11
17.94
28.75
18.61
10.50
10.04
23.62
24.71
22.78
15.63
20.31
14.52

The Friedman rank defines a classification between algorithms and can be employed to

measure their performance differences. The ranks obtained for each quality indicators are
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shown in Table 4.33; outperforming results are coloured in gray. Three different gray levels
were used. The darker level indicates the algorithm with the best indicator rank, and the
lighter levels represent the algorithms with ranks that belong to the 10" — % or 20" — %
best algorithms. The NSGA-II, followed by the SPEA2, CHAC-1, CHAC-2, and DMOPSO-5
obtained the best values on average for all problems. The CHAC-1 followed by the CHAC-2,
DMOBAT-3, DMOBAT-2 and DMOPSO-1 obtained the best values of I;¢p. Regarding the
1. values, again the NSGA-IT obtained the best results, followed by the SPEA2, DMOPSO-
1, DMOPSO-5, and DMOABC. For the In, the MOACO family outperformed the other
algorithms. Regarding the computation time, the SPEA2, followed by the DMOPSO-2,
DMOFPA-4, and DMOCSA-1-4 were the algorithms that converged the fastest to a non-

dominated solution set.

To evaluate statistical significance of the better performance of a specific algorithm, the
algoritm must be compared to other algorithms. In other words, all equal hypotheses between
the algorithm that obtained the best rank, can be tested by applying a set of post-hoc
procedures using Holm’s post hoc test. The unadjusted and adjusted p-values obtained
through the applications of Holm’s post hoc procedures are shown in Tables 4.34 to 4.38.
Regarding the adjusted p-value, (with a confidence level of 95%), it can be stated that, on

average and for all the problem test:
— In accordance with Igy:

— The NSGA-II is significantly better than 96 % of the algorithms. It is only better
than the SPEA2 but not significantly. It can also be stated that all approximate
methods using the strategy of selection of g,.s are significantly outperformed.

— In accordance with I;gp:

— the CHAC-1 is only significantly better than 24% of the algorithms. All approx-
imate methods using the following strategies of selection of g,.s are significantly
outperformed: (i) random, (ii) sigmoid, (iii) minimum particle angle and (iv)
strip. For the fourth g,.s selection strategy, K-means, the CHAC-1 is improved,
but the improvement is not significant.

— In accordance with I,:

— Similar to the HV metric, the NSGA-II is significantly better than most of the
algorithms. Compared to the SPEA?2, it is improved, but the improvement is not
significant.

— In accordance with Ix:

— The BIANT-1 is better than 91% of the algorithms. The BIANT-1 is only bet-
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ter than following algorithms, but not significantly: BIANT-2, MOACS-1 and
MOACS-2.

— In accordance with the computation time:

— The SPEA2 is significantly better than all other algorithms.

Table 4.34: Unadjusted and adjusted p-values obtained for all problems through the ap-
plication of Holm’s post hoc procedure, using the NSGA-II as control al-
gorithm in accordance with Iy

Algorithm  Unadjusted p-value Adjusted p-value
Others <5.6E-03 <1.7E-02
SPEA2 2.6E-01 2.6E-01

Table 4.35: Unadjusted and adjusted p-values obtained for the Arci11 family problem
through the application of Holm’s post hoc procedure, using the CHAC-1 as
control algorithm in accordance with Irgp

Algorithm  Unadjusted p-value Adjusted p-value
Others <3.0E-04 <7.9E-03
BIANT-1 2.8E-03 7.1E-02
DMOFPA-1 3.6E-03 8.6E-02
DMOCSA-1-3 7.3E-03 1.7E-01
DMOFPA-3 8.4E-03 1.8E-01
DMOCSA-1-5 9.9E-03 2.1E-01
DMOFPA-5 9.9E-03 2.1E-01
DMOCSA-1-1  1.7E-02 3.1E-01
DMOCSA-1-2 1.7E-02 3.1E-01
DMOFPA-2 1.6E-02 3.1E-01
SPEA2 2.9E-02 4.6E-01
DMOBAT-1 3.7E-02 5.5E-01
DMOCSA-2-1 4.0E-02 5.6E-01
DMOCSA-2-2 4.4E-02 5.7E-01
DMOCSA-2-3 4.5E-02 5.7E-01
DMOCSA-2-5 9.1E-02 1.0E+00
DMOPSO-3 1.2E-01 1.2E+00
DMOABC 1.4E-01 1.3E+00
DMOPSO-5 1.6E-01 1.3E+00
NSGA-II 2.3E-01 1.6E+00
CHAC-2 9.1E-01 1.9E+00
DMOBAT-2 3.6E-01 1.9E+00
DMOBAT-3 4.9E-01 1.9E+00
DMOBAT-5 3.1E-01 1.9E+00
DMOPSO-1 3.6E-01 1.9E+00

DMOPSO-2 3.4E-01 1.9E+00
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Table 4.36: Unadjusted and adjusted p-values obtained for the Arc111 family problem
through the application of Holm’s post hoc procedure, using the NSGA-II
as control algorithm in accordance with I,

Algorithm  Unadjusted p-value Adjusted p-value
Others <1.5E-03 <3.0E-03
SPEA2 6.7E-01 6.7E-01

Table 4.37: Unadjusted and adjusted p-values obtained for the Arc111 family problem
through the application of Holm’s post hoc procedure, using the BIANT-1
as control algorithm in accordance with Ia

Algorithm  Unadjusted p-value Adjusted p-value
Others <5.0E-12 < 2.0E-11
BIANT-2 2.0E-01 6.0E-01
MOACS-1  9.9E-01 1.1E+00
MOACS-2 5.3E-01 1.1E+00

Table 4.38: Unadjusted and adjusted p-values obtained for the Arci11 family problem
through the application of Holm’s post hoc procedure, using the SPEA2 as
control algorithm in accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value
Al <4.3E-03 <4.3E-03

However, since this analysis was done taking into consideration all tested problems at once,

the results may vary depending on the problem characteristics.

Since this analysis considered all tested problems at once, the results may vary depending
on the problem characteristics. The Friedman statistics for all of the problems considered
separately and the indicators are shown in Table 4.39. Given x2 o, = 47.399 with a 95% con-
fidence level and 33 degrees of freedom, there are significant differences among the algorithm
in accordance with all quality indicators despite the Mitchell’s Problem, in which there are
no significant differences for Io. Regarding Friedman’s test, the computed p-values are also
shown in Table 4.39.

Table 4.40 shows the algorithms that performed the best for each problem family in accord-
ance with all quality indicator and their score. The score represents how many algorithms
are significantly outperformed by the best algorithm. The detailed results for each family of
problems can be found in Appendix C.4. Comparing the results obtained with the character-
istics of the tested problems shown in Table 4.3, , the MOACS and the BIANT outperform

90 of the algorithms on average for complex problems that are represented by a low order
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strength * with the following indicators: Igv, Irap, I, and In. In addition, when the or-

der strength is growing, ACO algorithms are outperformed by other algorithms. However,

for small instances, the best algorithm that was obtained is only significantly better than,

depending on the instances, 10-20 % of the algorithms.

Table 4.39: Friedman’s statistic and computed p-value for all problems in accordance
with Iy, Iigp, I, Ian, and the computation time

Iy

Irep

I

Ia

Time

Problem

Arclll
Buxey
Gunther
Hahn
Jackson
Kilbrid
Lutzl
Mitchell
Mukherje
Roszieg
Sawyer

Friedman Computed

statistic ~ p-values
217.50 4.22E-06
427.80 1.65E-10
360.80 1.63E-10
347.40 1.45E-10
414.51 1.59E-10
385.88 1.95E-10
311.52 1.23E-10
203.05 9.36E-11
197.60 1.17E-10
243.48 1.11E-10
160.54 7.37E-11

Friedman Computed

statistic ~ p-values
132.07 9.53E-11
366.93 1.49E-10
303.75 1.30E-10
273.55 1.25E-10
164.59 1.14E-10
387.65 2.02E-10
316.18 1.19E-10
252.45 9.92E-11
176.72 1.25E-10
214.94 1.43E-10
70.56 1.53E-04

Friedman Computed Friedman

statistic  p-values
368.67 1.54E-10
83.66 2.78E-06
216.76 9.35E-11
178.38 7.53E-11
277.29 1.49E-10
381.17 1.35E-10
303.65 1.27E-10
123.26 8.70E-11
241.34 1.52E-10
225.56 1.37E-10
160.25 1.19E-10

Computed

statistic ~ p-values
325.05 1.51E-10
256.65 1.39E-10
261.87 1.63E-10
278.80 1.46E-10
94.50 7.67TE-08
112.50 1.86E-10
105.86 1.51E-09
42.35 1.28E-01
241.22 1.45E-10
48.64 3.88E-02
63.44 1.12E-03

Friedman Computed
statistic ~ p-values
330.65 1.21E-10
315.51 1.53E-10
289.03 1.15E-10
279.71 1.20E-10
696.17 2.68E-10
239.97 9.73E-11
571.23 2.34E-10
274.85 1.15E-10
194.81 1.27E-10
357.87 1.77E-10
467.11 2.21E-10

Table 4.40: Best algorithms regarding their average rankings returned by Friedman’s
nonparametric test according to the various quality indicators

IHV IIGD [e IA Time

Problem Best al- Score Best al- Score Best al- Score Best al- Score Best al- Score

gorithm [%]  gorithm [%]  gorithm [%]  gorithm [%]  gorithm [%]
Arclll  MOACS-2 97  MOACS-2 100 NSGA-II 97  MOACS-2 91 SPEA2 91
Buxey = MOACS-2 85  MOACS-1 91 MOACS-1 94  MOACS-1 91 SPEA2 94
Gunther BIANT-1 91 BIANT-1 97  MOACS-2 91  MOACS-2 91 SPEA2 88
Hahn BIANT-2 91 BIANT-1 97  NSGA-II 91 BIANT-1 91 SPEA2 100
Jackson DMOBAT-2 27  DMOBAT-2 24  DMOCSA-2 18 BIANT-1 85 DMOFPA-4 82
Kilbrid CHAC-1 24  CHAC-1 27  DMOPSO-1 24  DMOBAT-4 12 SPEA2 97
Lutzl DMOPSO-1 24  DMOABC 24  CHAC-1, 24  MOACS-1 36 DMOFPA-4 79

DMOABC
Mitchell DMOCSA-1 24  DMOBAT-3 27  DMOPSO-5 21  DMOCSA-4 18  DMOFPA-4 76
Mukherje BIANT-2 91  BIANT-1 91  NSGA-II 97  MOACS-2 85 SPEA2 76
Roszieg CHAC-2 27  CHAC-2 27  DMOFPA-2 97 DMOCSA-4 3 DMOFPA-4 82
Sawyer DMOPSO-2 12 DMOBAT-3 9 DMOPSO-2 12 BIANT-1 36 DMOCSA-1- 76
4

By grouping the problems with low and high order strength values as shown in Table 4.41

and performing the same analysis again, the Friedmans average ranking can be recalculated.

The results are shown in Table 4.42. These tables show that for the first group that rep-
resents complex problems, the MOACS-1, MOACS-2, BIANT-1, and BIANT-2 performed
better than all other algorithms for I'yy, I;gp, Ia. For I., the MOACS-2 is in the third pos-
ition, crossed by the NSGA-II and SPEA2. Taking the covered hypervolume, the MOACS-2
provides significantly better results than all other algorithms, despite the MOACS-1, BIANT-

4. The lower the order strength OS, the harder is the problem of finding optimal solutions
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1, and BIANT-2, for which the improvement is not necessarily significant. Regarding the
values of I;¢p, the BIANT-2 is significantly better than all algorithms despite the MOACS-2
and BTANT-1. Regarding the values of I, the NSGA-II is, despite the SPEA2, significantly
better than all algorithms. For the values of In, the MOACS-2 is, despite the BIANT-1,
BIANT-2, and MOACS-1, significantly better than all algorithms. For the second group, the
significant difference between algorithms is not as great as that of the first group. For the
values of Iy, the CHAC-2 is better than 28 % of the algorithms, including the MOACS-1,
MOACS-2, BIANT-1, and BIANT-2. Regarding the I;5p, the DMOPSO-1 is significantly
better than 28 % of the algorithms. The similar observation as before can be done for I.. For
the values of Ix, the DMOCSA-1-4 is significantly better than 42 % of the algorithms. How-
ever, it is not significantly better than the BIANT-2, BIANT-1, MOACS-2, and MOACS-1.
The unadjusted and adjusted p-values obtained through the applications of Holm’s post
hoc procedures for the first and second groups are shown in Tables C.138 to C.141 and
Tables C.143 to C.146.

Table 4.41: Grouping of problems according to the order strength

Problem Group 1 Group 2

Arclll
Buxey
Gunther
Hahn
Jackson
Kilbrid
Lutzl
Mitchell
Mukherje X
Roszieg
Sawyer

SR asRals!
SR aRals

ol

When considering the problem characteristics expressed as the number of potential assignable
tasks (IV), the order strength (OS) and the total number of equipment available (E), it seems
that the computation time required by the various optimisers is also function of them. This
is shown through two bubble charts in Figure 4.17. Regarding the required computation
for the problem instances from Group 1 and Group 2, the computation time stays balanced
and small for problem instances of Group 1, and it explodes when considering the problem

instances of Group 2. This phenomenon is shown in Figure 4.18.
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Table 4.42: Average rankings returned by Friedman’s monparametric test for both

groups, Group 1 and Group 2

Group 1 Group 2

Algorithm
DMOABC
DMOBAT-1
DMOBAT-3
DMOBAT-4
DMOBAT-5
BIANT-1
BIANT-2
CHAC-1
CHAC-2
DMOCSA-2-4
DMOCSA-1-4
DMOFPA-4
MOACS-1
MOACS-2
DMOPSO-5
DMOPSO-1
DMOPSO-2
DMOPSO-3
NSGA-II
SPEA2

Igv
18.52
19.29
17.85
26.44
19.05

4.69

3.55
15.05
15.46
25.09
27.58
27.25

7.47
17.41
18.69
18.98
19.15

9.74
11.61

Itgp
17.24

16.29
17.99

8.95
17.26
29.07

18.94
19.03
10.91

7.98

8.39
24.69
26.77
18.39
17.24
17.94
16.91
17.58
15.51

Ie
17.75
16.99
17.00
16.38
16.39
14.43
15.07
17.70
17.00
17.35
17.01
15.86
19.36
20.64
18.05
17.88
16.29
17.05

Ia
11.85
15.05
16.90
14.56
15.06
31.73
31.85
20.99
19.95
16.60
14.08
14.59
32.44
17.70
16.47
16.19
15.81

8.75

Time

7.05
21.87
19.80
21.21
19.74

5.15

5.11
14.75
16.28
16.09
23.46
24.64
13.36
15.58
19.60
19.96
23.82
16.22
19.00

Igv
12.78
13.77
12.46
24.63
13.25
29.96
30.66
12.54

24.53
26.76
26.82
31.80
32.05
12.64
12.36
13.18
13.33
12.64

2450 | 11.34 [BIEEY 12.94

Itgp
21.23

21.00
21.92
11.47
22.01
7.57
6.34

22.00
10.92
9.63
9.67
6.09
4.83
20.27

I
22.29
21.03
21.94
12.11
20.64

5.53
4.52
21.00
21.77
12.40
11.05
10.97
3.78
3.58
21.91

In Time
17.83  5.04
17.09 22.01

17.00
20.41
16.38
20.91
18.50
18.47
18.22
19.58

19.20
20.24
19.11
16.95

15.24
20.50
17.61

7.50

6.75
10.09
11.57
13.94
24.26

7.85
4.92
20.97

22.22 |22N6EY 1351 27.01

21.52
21.37
21.37
21.54

21.39
21.84
21.26
21.46

16.64  25.54
17.39 | 28.85
17.03 10.39
16.46 | 30.90

(a) Computation time depending on (b) Computation time depending on
N and E N and OS

Figure 4.17: Evolution of the computation time required by the various optimisers based
on the problem characteristics
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Figure 4.18: Evolution of the computation time based on the grouping of problem char-
acteristics

For complex problems, it seems that the MOACS-2 offers more advantages regarding Fried-
man’s test. Figures 4.19 to 4.21, which were created using the eaf-package available at
www.lopez-ibanez.eu/eaftools, show the comparison of the attainment surface of the
BIANT-1, BIANT-2, and MOACS-2 respectively for the following problems: Arcl11-3,
Mukherje-3, and Arcl11-5. The examination of the differences between the obtained at-
tainment surfaces reveals that the MOACS-2 is better at the extremes of the Pareto front,
whereas the BIANT-1 and BTANT-2 are better in the middle of the true Pareto front. A
Pareto front can be split into three main regions; two regions represent the extremums that
can be reached by minimising each objective function separately. The region that represents
the middle part of the Pareto front is more likely to be of interest to the decision maker.
Thus, even if the MOACS-2 demonstrates slightly better results in the Friedman’s test, the
BIANT-1 and BIANT-2 are more suitable for industrial applications since they outperform
the MOACS-2 in the central region of the Pareto front.

objective 1
T T Y T T O

[0.90,1]
[0.75, 0.90)
[0.6, 0.75)
[0.45, 0.6)
[0.3, 0.45)
[0.15, 0.3)
[0.0, 0.15)

jOooEEEnm

objective 2
|
objective 2

T T T T T T T T T T T 71
objective 1

BIANT2 MOACS2

Figure 4.19: Differences in the attainment function between the BIANT-2 and
MOACS-2 for Mukherje-3
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Figure 4.20: Differences in the attainment function between the BIANT-1 and
MOACS-2 for Buzey-1
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Figure 4.21: Differences 1in the attainment function between the BIANT-2 and
MOACS-2 for Arc111-5

Regarding the strategies used for finding the best global solution in the discrete swarm
intelligence algorithms, namely the DMOFPA, DMOCSA, DMOPSO, and DMOBAT, het-
erogeneous results were found. For the DMOBAT, it seems that the third strategy is, on
average with all problems together, the most suitable strategy for the following metrics: Igy,
I;6p and I.. Regarding the obtained p-values, the fourth strategy significantly outperformed
the others for these three quality indicators. Moreover, the grouping of problem instances do
not have any influence on the selection strategy, which remains the best for both groups. For
the DMOCSA, the dynamic parameter control for abandoning and creating solutions offers
advantages for the covered hypervolume compared to the static parameter control. Regard-
ing the I;¢p and I, the forth strategy obtained the best results with the static and dynamic
parameter control, respectively and in decreasing order. Concerning the last indicator, Ia,
the best results were obtained with the first strategy and also respectively with the static
and dynamic parameter control. For the DMOFPA, the first, second, and third strategies
obtained the best results for the first three quality indicators. The forth strategy, which
significantly outperformed the others regarding Iy, I;gp and I, is the best strategy in ac-
cordance with the obtained spread. Again for the DMOPSO, the fourth strategy significantly
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outperformed the others regarding all quality indicators. The first and second strategies were
the most effective for the first three quality indicators. The fifth strategy performed optim-
ally for the spread indicator. These results are summarized in Table 4.43. The detailed
results of this analysis, including the Friedman’s average ranking and the unadjusted and

adjusted p-values are presented in Appendix C.4.13.

Table 4.43: Synthesis of the best strategy for each class of algorithm and quality indic-
ator

Best Strategies

Algorithm Igy  Iigp I. Ia

DMOBAT 3 4 3 5
DMOCSA  2-2 2-5 14 1-1
DMOFPA 3 2 1 4
DMOPSO 1 2 1 5

4.6 Conclusion

In this chapter, a resolution framework is presented that aims to supporting decision makers
during the design phases of an assembly line, while considering product designs, processes,
and resource alternatives. In other words, this framework aims to simultaneously select
product designs, processes, and resource alternatives in order to plan the most suitable
assembly line regarding capacity and cost-oriented objectives. This problem was formu-
lated and a mathematical model was proposed with a detailed cost model. The function
of this model is to translate the complex and interrelated consequences of choosing specific
design alternatives with manufacturing technologies into one single cost metric. To solve this
problem, 34 state-of-the-art approximate methods were developed. All these methods were
compared with each other based on fifty problem instances. Four multi-objective quality
indicators were used and a nonparametric statistical test was applied to judge the perform-
ances of the algorithms. While the NSGA-II and SPEA2 demonstrate the best results, on
average and considering all problem instances together, regarding Iy and I, the CHAC-1
and BTANT-1 obtain the best values for I;¢p and I, respectively. However, classifying the
problem instances according to their order strengths shows that the proposed MOACS-1,
MOACS-2, BIANT-1, and BIANT-2 are more suitable for complex problems. Comparing
them graphically using the attainment function showed that the proposed BIANT-1 and
BTANT-2 are better in the central region of the Pareto front, which implies that these two
algorithms are more suitable for an industrial application. In order to answer the defined

Research Question 3, the same procedure was applied to the various swarm intelligence al-
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gorithms, including the DMOBAT, DMOCSA, DMOFPA, and DMOPSO. As stated earlier,
the results are heterogeneous and the selection strategies seem to perform equally when

considering all quality indicators together.

The proposed work in this chapter has partially been the subject to several publications: one
accepted submission to an international journal [293], one accepted submission to a national

journal [295], three communications at conferences [289, 290, 291|.



Chapter 5

Assembly Line Design Problem,
Processing, and Resources Alternatives:
Influence of Dominance Rules and Local

Search

Abstract

In the previous chapter, the various algorithms are compared and it is demonstrated that the
MOACS-1, MOACS-2, BIANT-1, and BIANT-2 provide good solutions for complex prob-
lems regarding the various quality indicators. However, the BIANT-1 and BIANT-2 require
the highest computation time to move forward to a set of non-dominated solutions, which
is a considerable drawback. In addition, it is illustrated through graphical comparison that
the BIANT-1 and BIANT-2 perform better in the central region of the Pareto front. Altern-
atively, the MOACS-1 and MOACS-2 are better in the extreme regions. In this chapter, the
influence of different dominance rules and a local search is analysed in order to improve the
performance of the MOACS-1 and MOACS-2 when applied to complex problems and of the
CHAC-1 and CHAC-2 when applied to small problems.
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5.1 Introduction

The previous chapter shows that the MOACS-1, MOACS-2, BIANT-1, and BIANT-2 are
most suitable for complex problems. A graphical comparison by means of the attainment
function illustrated that the BIANT-1 and BIANT-2 are better in the central region of the
Pareto front. However, the BIANT-1 and BIANT-2 are the two algorithms that perform
worse regarding the convergence speed. Furthermore, the NSGA-IT and SPEA2 have on
average a good performance when taking all the problems into consideration. In addition,
CHAC-1 and CHAC-2 have good results for small problems. The objective of this chapter
is to improve these algorithms by analysing the influence of other dominance rules and

incorporating a local search.

5.2 Comparison of dominance rules

In the present section, the influence of the Lorenz and S-CDAS dominance rules is analysed
and compared to the Pareto dominance rule. Since these three various dominance rules have
different guidance for the search agents toward different regions of the Pareto front, using
Iy as a quality indicator may not completely highlight their strengths and weaknesses. In
addition to the Iy, the C metric, denoted as I, is also used to compare the number of

solutions provided by an algorithm A1l that is dominated by another algorithm A2.

Table 5.1: List of algorithms and their abbreviations

Dominance Rule Dominance Rule

Name DPareto Lorenz S-CDAS Name Pareto Lorenz
CHAC-1 X DMOPSO-1 X

CHAC-1-L X DMOPSO-1-L X
CHAC-2 X DMOPSO-2 X
CHAC-2-L X DMOPSO-3 X
MOACS-1 X DMOPSO-4 X
MOACS-1-L X DMOPSO-5 X
MOACS-1-S-CDAS X NSGA-II X

MOACS-2 X NSGA-II-L X
MOACS-2-L X SPEA2 X

MOACS-2-S-CDAS X SPEA2-L X

The computation experiments were performed in the same configuration as the previous
chapter. In order to ease the readiness of the algorithms’ name, the abbreviations shown in
Table 5.1, will be used in this chapter.

Since the true Pareto front is not known for all the problems, the approximate Pareto
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front (computed as in the previous chapter) is used for these problem instances. Since the
approximate Pareto front may change, as shown in Figure 5.1, it was recomputed for all

problems for which the true Pareto front is not know.

fi
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Figure 5.1: Differences between the two approximate Pareto fronts

5.2.1 Statistical analysis

Out of a statistical analysis, whose results are shown in Appendix D.1, the following research

questions were identified:

Research Question 4. Does the dominance rule significantly affect the various quality

indicators?

Research Question 5. Which dominance rule is more suitable for the research problem of

this thesis?

Research Question 6. Can the combination of a different dominance rule and an algorithm

from chapter Chapter 4 improve the results obtained with the BIANT-1 or BIANT-27

In order to answer these research questions, the strengths and weaknesses of the various
dominance rules must be identified by evaluating their influence on the quality indicators.

As in the previous chapter, a nonparametric statistical test is used.

5.2.2 Nonparametric statistical test

In order to answer the Research Question 4, Research Question 5, and Research Question 6,
the Friedman statistical test was applied. The obtained Friedman statistics for all problems
and algorithms considered together in accordance with Iy, I;gp, I, Ia, and the computa-

tion time and their respective computed p-values are shown in Table 5.2. Given X2, = 32.7
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with a 95% confidence level and 21 degrees of freedom, it can be concluded that there are

significant differences among the algorithms for all quality indicators.

Table 5.2: Friedman’s statistic and computed p-value in accordance with Iy, Iiap, I,
I, and the computation time

Indicators Friedman statistic Computed p-values

Iy 259.770 1.38E-10
Irep 152.060 8.39E—11
I, 679.250 2.04E-10
Ia 1193.530 0
Time 2216.600 0

Table 5.3: Average rankings returned by Friedman’s nonparametric test for all problems
according to the various quality indicators

Ranking
Algorithm Igv  Iigp I, In Time

BIANT-1 1122 1218 7.50 1569 6.18
BIANT-2 1121 12.06 7.38 1487 5.75

CHAC-1  10.68 1252 12.61 10.58 10.57
CHAC-1-L  10.76 [12.77] 12.74 1025 1121
CHAC-2  10.82 1245 12.61 1031 1135
CHAC-2-L  10.36 [l 13.13 1024 10.24
MOACS-1 1347 10.34 846 1552 9.15
MOACS-1-S-CDAS 1461  9.05 831 1573 4.63
MOACS-1-L  13.12 1040 8.86 [JiSS2l 8.50
MOACS-2 1176 10.78  9.33 | 15.74 7.9
MOACS-2-S-CDAS 12,09 1049 943 1539 5.98
MOACS-2-L,  11.82 10.94 927 1572 8.3
DMOPSO-5  11.67 11.84 12.91 944 1347
DMOPSO-1  11.35 1240 13.23 9.61 14.80
DMOPSO-2  11.78 12.25 1244 897 15.44
DMOPSO-3  11.86 11.77 12.63 927 15.07
DMOPSO-4 1469 857 11.06 935 1110
DMOPSO-1-L.  11.77 1156 12.93 891 14.68
NSGA-II RSy 12.34 (14737 739 1121

NSGA-II-L 9.18 11.91 [ESEN 838 17.76
SPEA2 9.76 11.76 14.31  7.97
SPEA2-L 9.83 11.65 14.31 7.87 | 19.84

Table 5.3 shows the average ranking returned by Friedman’s nonparametric test for all prob-
lems considered at once and given all various quality indicators. If the obtained rankings
are compared to those obtained in Table 4.33 of Chapter 4, it can be stated that, according
to the new reference sets of the approximate Pareto front an improvement has been made
regarding In. This indicator was maximised in the precedent chapter by the BIANT-1 and
BIANT-2. Now, it is maximised by MOACS-1-L. In addition, on average, an improvement
was made regarding I;op for the CHAC-1-L and CHAC-2-L. The adjusted and unadjusted
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p-values are shown for each quality indicator respectively in Tables 5.4 to 5.8. Furthermore,

a slight improvement was observed for the I, indicator with a value that is maximised by

the NSGA-II-L.

Table 5.4: Unadjusted and adjusted p-values obtained for all problems through the ap-
plication of Holm’s post hoc procedure, using the NSGA-II as control al-

gorithm according to Iyy

Algorithm  Unadjusted p-value

Adjusted p-value

Others
CHAC-1
CHAC-2-LL
SPEA2-L
SPEA2
NSGA-II-L

0.008
0.011
0.045
0.260
0.311
0.960

<0.046
0.055
0.180
0.779
0.779
0.960

Table 5.5: Unadjusted and adjusted p-values obtained for Sawyer through the applica-
tion of Holm’s post hoc procedure, using the CHAC-2-L as control algorithm

according to Iigp

Algorithm  Unadjusted p-value

Adjusted p-value

Others
BIANT-2
SPEA2
BIANT-1
DMOPSO-L
SPEA2-L
NSGA-II-L
DMOPSO
DMOPSO-3
DMOPSO-2
CHAC-1
NSGA-II
DMOPSO-1
CHAC-2
CHAC-1-L

0.001
0.061
0.198
0.216
0.248
0.288
0.315
0.334
0.540
0.596
0.613
0.662
0.708
0.764
0.918

<0.017
0.847
2.580
2.586
2.728
2.883
2.883
2.883
3.777
3.777
3.777
3.777
3.777
3.777
3.777

Table 5.6: Unadjusted and adjusted p-values obtained for Sawyer through the applica-
tion of Holm’s post hoc procedure, using the NSGA-1I-L as control algorithm

according to I,

Algorithm  Unadjusted p-value

Adjusted p-value

Others
SPEA2
SPEA2-L
NSGA-II

0.009
0.387
0.389
0.862

<0.035
1.160
1.160
1.160
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Table 5.7: Unadjusted and adjusted p-values obtained for Sawyer through the applic-
ation of Holm’s post hoc procedure, using the MOACS-1-L as control al-
gorithm according to Ia

Algorithm  Unadjusted p-value Adjusted p-value

Others 0.000 <5.460E-17
BIANT-2 0.119 0.835
MOACS-2-S-CDAS 0.477 2.865
MOACS-1 0.626 3.132
BIANT-1 0.829 3.315
MOACS-2-L 0.871 3.315
MOACS-1-S-CDAS 0.888 3.315
MOACS-2 0.897 3.315

Table 5.8: Unadjusted and adjusted p-values obtained for Mukherje through the applic-
ation of Holm’s post hoc procedure, using the SPEA2 as control algorithm
m accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value

Others 0.022 <0.044
SPEA2-L 0.886 0.886

As discussed in the previous chapter, there are significant differences between problems with
small and large order strengths. Using the same grouping as in the previous chapter and by
performing the same analysis again, the results in Table 5.9 were obtained. As shown in this
table, the MOACS-2-L obtained the best results for problems from Group 1 for /5y and Ia.
The NSGA-II-L reached the best value of I, and the MOACS-2-L obtained the second best
value. Even if the MOACS-2 family of algorithms demonstrates good results for I;5p, the
BIANT-1 and BIANT-2 still have the best values. For problems from Group 2, the CHAC-
2-L demonstrated the best values of Iy, I;¢p, and I.. In the classification of algorithms
performing well on these quality indicators, the CHAC-2-L is followed by the DMOPSO-1.
While the MOACS-1-S-CDAS cannot perform well regarding these quality indicators, it is
the best algorithm when considering I, followed by the BIANT-1. For both groups, the
SPEA2 and SPEA2-L converged the fastest toward a set of non-dominated solutions.
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Table 5.9: Average rankings returned by Friedman’s nonparametric test for both groups,
Group 1 and Group 2

Group 1 Group 2
Algorithm IHV I[GD IE IA Time IHV IIGD Ie IA Time
BIANT-1  5.29 8.67 17.64 415 1671 6.89 6.43 SIS s.14
BIANT-2 944 1769 4.06 1751 635 550 1229 7.37

CHAC-1 1423  9.79 1046 9.81 1029 7.40 1514 1458 11.28 10.84
CHAC-1-L 1446 10.39 9.93 10.13 949 | 7.33 1504 151820 10.36 12.87
CHAC-2 1469 9.68 9.90 9.36 11.33 | 7.25 1510 15.09 11.18 11.36
CHAC-2-L 1430 10.25 1025 9.65 9.7¢ [EHSSESEE 0.7 10.71
MOACS-1 838 14.85 11.85 [I8B61 9.66 1818 6.02 5.36 12920 8.67
MOACS-1-S-CDAS  11.23 12.09 10.70 17.55 7.71 17.74 6.15 6.12 |JES0E 1.66
MOACS-1-L 805 14.79 1200 18.28 993 1782 620 598 | 13.57 T7.12
MOACS-2 | 445 716207 14.10 O 10.73 1852 560 4.96 1251 533
MOACS-2-S-CDAS | 4.87 1570 1417 1882 1023 1877 551 5.08 1224 187
MOACS-2-1. S0 16.64 JEUSONNIONON 1092 19.06 548 458 12.34 543
DMOPSO-5 1531  9.85 10.47 8.24 13.00 830 13.74 1515 10.54 13.93
DMOPSO-1 1582 950 10.63 7.75 12.93 2SS 1131 16.60
DMOPSO-2 16.18 9.51 9.92 7.50 (15487 7.71 1488 1475 10.32 1545
DMOPSO-3 16.30 871 10.02 740 1140 7.75 14.69 15.02 10.98 [18:60
DMOPSO-4 1881 518 943 732 807 1088 11.81 1255 11.21 14.03
DMOPSO-1-L. 1619 888 1045 7.88 1420 7.69 14.12 JI597 9.86 15.14
NSGA-II 1094  9.37 4227 4.04 1234 7.50 [I58) 15.19 1046 10.11
NSGA-I-L  11.06  9.19 [JEMSEN 595 J1655] 745 1452 1508 10.59 18193

SPEA2 12.06 8.18 13.54 5.43 7.64 [ 15.18 15.00 10.29
SPEA2-L 11.97 853 1391 5.54 7.85 14.64 14.67 10.01

The unadjusted and adjusted p-values obtained through the applications of Holm’s post

hoc procedures for Group 1 and Group 2 are respectively shown in Tables D.85 to D.89
and Tables D.90 to D.94. The unadjusted and adjusted p-values show that, even if the
MOACS-2-L is better than the BIANT-1 and BIANT-2 regarding Iy, I., and Ix for Group
1, it is not significantly better. However, the CHAC-2-L is significantly better that those
algorithms for the problem instances of Group 2 for Iyy, I;qp and I.. If the obtained
results are compared to those of the Chapter 4, the MOACS-2-L optimises the value of I,
for problem instances of Group 1. This quality indicator was previously being optimised by
the NSGA-II. In addition, the gap between the BIANT and MOACS families of algorithms
was increased for Ia. Considering problem instances of Group 2, the results became more
homogeneous and the CHAC-2-L is the algorithm that obtained the best results for following
quality indicators: Igv, I;gp, and I.. In summary, the results got harmonised for each group
of problem instances and two algorithms can be identified that perform better on almost all
quality indicators, namely, the MOACS-2-L. and the CHAC-2-L. For the results obtained by
considering all problem instances, the NSGA-II-LL and the SPEA2 are also candidates for

further improvements.

In order to further investigate the Research Question 4, Research Question 5, and Research
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Question 6, the average value of I obtained when applying the Pareto dominance rule, the
Lorenz and S-CDAS can be examined for each algorithm. The results are shown for each
group of problems in Table 5.10. When applying the Lorenz dominance rule to the problems
from Group 1, the obtained solutions are less dominated by the Pareto dominance rule than
the opposite. For the S-CDAS dominance rule, it seems that regarding I, it is better than
the Pareto dominance rule for the MOACS-1; the Pareto dominance rule is more suitable
for the MOACS-2. More heterogeneous results are obtained when comparing the dominance
rules when applied to problems from Group 2. For the CHAC-2 and MOACS-1, the Lorenz
dominance rule is, regarding I better, than the Pareto dominance rule, but the opposite is
true for the CHAC-1 and MOACS-2. It also seems that the S-CDAS is more suitable when
applied in combination with the MOACS-2 for problems from Group 1.

Table 5.10: Evolution of the value of Io based on the dominance rule and grouping of
problem instances

Algorithm Dominance Rule Group 1  Group 2
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The obtained I values for all of the problems and instances are provided in Appendix D.1.12.
The I values obtained by the MOACS-2, MOACS-2-S-CDAS, MOACS-2-L and BIANT-2
are shown in Table 5.11 in the form of a box plot. According to this figure, the BIANT-2 is
the algorithm that is less dominated by any other algorithm. Comparing the MOACS-2-S-
CDAS and the MOACS-2-1,, it seems that the former algorithm is more dominated by the
second one. The obtained values of the C' metric, I, for the other problems are present in
Appendix D.1. According to them, the MOACS-2-S-CDAS is often more dominated by the
MOACS-2-L than vice versa.



5.2 Comparison of dominance rules 138

Table 5.11: C-metric for the Arc111-1 problem instance
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Figure 5.2 shows the evolution of the number of non-dominated solutions when applying
the various dominance rules to specific algorithms and problems. As illustrated, on average,
the number of non-dominated solutions is lower when applying the Lorenz dominance rule
than when applying the Pareto dominance rule. In addition to the Friedman test, a multiple
pairwise comparison of the dominance rules using Nemenyi’s procedure was applied to the
various quality indicators for each algorithm. The results are represented in Table 5.12-5.14.
In these tables, "Yes"/"No" respectively represents whether there is significant differences
between the dominance rules. As demonstrated by these tables, there is mostly no significant
differences (alpha level set to 0.05) between the various dominance rules when considering
following quality indicators: (i) Iyy, (ii) I;gp, (iii) I, (iv) Ia, (v) the computation time
until convergence, (vi) I¢, and (vii) the number of non-dominated solutions (N DS). While
the performance of the CHAC-1 and CHAC-2 is not significantly sensitive to the chosen
dominance rule, the difference between the dominance rules is significant for MOACS-1 and
MOACS-2 when they are applied to complex problems. The S-CDAS dominance rule per-
forms worse than the Pareto and Lorenz dominance rules on complex problems. Indeed,
compared to the Pareto dominance rule, the S-CDAS engenders a deterioration of the fol-
lowing quality indicators: (i) Iyy, (i) I;gp, (iil) I, (iv) In and (v) the computation time
required until convergence. If this deterioration is quantified, the value of these indicators
will decrease respectively by 1.7%, 6.6 %, 19%, 2.7, and 23% for the MOACS-1. However, the

S-CDAS, which is more aggressive in the middle region of the Pareto front, allows improving
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Ic by 2 %. The same conclusion can be made for MOACS-2, for which all the previous
indicators, except I, are deteriorated as follows: (i) Iyy by 4%, (ii) I;ap by 5%, and (iii)
I. by 3.5%, (iv) the computation time until convergence by 26%. Similar to the previous
case, the MOACS-2 allows an improvement of Ic by 1%. When comparing the significant

differences between the dominance rules, it seems that the effect of dominance rules is bigger

when problem instances remain less complex.

|-~ CHAC-1 —o- CHAC-1-L |

Figure 5.2: Comparison of the set of non-dominated solutions obtained by the various

dominance rules
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Table 5.12: Differences between the dominance rules based on a comparison with all
problem instances

Algorithm Dominance rules Igy Iigp Ie In Time I NDS

CHAC-1 Pareto / Lorenz No No No No No Yes No
CHAC-2 Pareto / Lorenz No No No No No Yes No
Pareto / Lorenz No No No No Yes Yes No
MOACS-1 Pareto / SS-CDAS Yes No No No Yes No No
Lorenz /| S-CDAS No No Yes No Yes Yes No
Pareto / Lorenz No No No No No Yes No
MOACS-2 Pareto / S-CDAS No Yes No Yes Yes No No
Lorenz / S-CDAS No No No No Yes No No
NSGA-II  Pareto / Lorenz No No No No Yes Yes Yes
SPEA2 Pareto / Lorenz No No No No Yes No No

Table 5.13: Differences between the dominance rules based on a comparison with prob-
lem instances of Group 1

Algorithm Dominance rules Igy Iigp Ie In Time I NDS

CHAC-1  Pareto / Lorenz No No No No No Yes No
CHAC-2  Pareto / Lorenz No No No No No No No
Pareto / Lorenz No No No No No Yes No

MOACS-1 Pareto / S-CDAS  Yes Yes Yes Yes Yes No No
Lorenz / S-CDAS Yes Yes Yes No Yes No No

Pareto / Lorenz No No No No No No No

MOACS-2 Pareto / S-CDAS No Yes No Yes Yes No No
Lorenz / S-CDAS No No No No Yes No No

NSGA-II  Pareto / Lorenz No No No No Yes Yes Yes
SPEA2  Pareto / Lorenz No No No No Yes No No

Table 5.14: Differences between the dominance rules based on a comparison with prob-
lem instances of Group 2

Algorithm  Dominance rules Iy Iigp I Ia Time I NDS

CHAC-1  Pareto / Lorenz No No No No Yes Yes No
CHAC-2  Pareto / Lorenz No No No No No Yes No
Pareto / Lorenz No No No No Yes Yes No

MOACS-1 Pareto /S-CDAS No No No No Yes No No
Lorenz / SSCDAS No No No No Yes Yes No

Pareto / Lorenz No No No No No Yes No

MOACS-2 Pareto /S-CDAS No No No No Yes No No
Lorenz / SSCDAS No No No Yes No Yes No

NSGA-II  Pareto / Lorenz No No No No Yes No Yes
SPEA2  Pareto / Lorenz No No No No Yes Yes No
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5.2.3 Attainment-function

In the previous section, the various dominance rules were compared according to the various
quality indicators. In order to highlight the difference between the dominance rules, the
present section is based on the attainment functions obtained by these rules. Figures 5.3
to 5.5 show some examples of the obtained attainment functions by the various algorithms
and dominance rules. The Lorenz dominance seems to be better than the S-CDAS in the
extreme regions of the Pareto front. In comparison, it seems that the S-CDAS dominance
rule is restrictive and it only enables a slight improvement in the central region. Comparing
the Lorenz dominance rule with the Pareto dominance rule, a general observation can be

made for all algorithms that the Lorenz dominance is better in the central region.
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Figure 5.3: Differences in the attainment function between the MOACS-1-S-CDAS and
MOACS-1-L
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Figure 5.4: Differences in the attainment function between the Pareto and Lorenz dom-
inance rules for the CHAC-1 and CHAC-2
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Figure 5.5: Differences in the attainment function between the Pareto and Lorenz dom-
inance rules for EAs

5.2.4 Synthesis

The various dominance rules offer several advantages and disadvantages depending on the
algorithm. The S-CDAS dominance rule did not show any improvements compared to the
two other dominance rules. Although it may be more efficient in the central region of the
Pareto front, its required time to convergence is much longer than that of the Pareto and
Lorenz dominance rules. Therefore, it is not an appropriate choice for further investigation.
Regarding the Lorenz and Pareto dominance rules, it seems that the impact of the Lorenz
dominance rule is clear when it is used in combination with MOACOs. As previously demon-
strated, the comparisons of these two rules are heterogeneous and the Lorenz dominance rule
offers many more advantages than the Pareto dominance rule when it is combined with the
MOACS-1. Alternatively, for the MOACS-2, even if the required time for converging toward
a set of non-dominated solutions is better when applying the Lorenz dominance rule than the
one of the Pareto dominance rule, it does not make hit a suitable candidate since the value of
the other quality indicators are mostly all being worse than those obtained with the Pareto
dominance rule. For the CHAC family of algorithms, the ranking of both dominance rules
differ according to the quality indicator considered. Considering the Friedman’s statistic and
computed p-values, it seems that the Pareto dominance rule is being a better alternative. For
the NSGA-II, the results are similar despite for the required computation time and Ia. This
makes the Lorenz dominance a better candidate for further investigations. For the SPEA2,
only the value of one quality indicator is better when using the Lorenz dominance rule. The
computation time, which plays an important role when applying local search techniques, is
here a crucial criterion. The same reasoning is used for the DMOPSO, for which the Lorenz

dominance rule allows a faster convergence toward a set of non-dominated solutions.
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5.3 Improvement through local search

Based on the analyses presented above, three algorithms were identified as suitable candid-
ates for further improvement: the MOACS-2-L, NSGA-II-L, and SPEA2. The choice of the
MOACS-2-L is based on its performances for complex problems, which are appropriate for
industrial needs. The NSGA-II-L. and SPEA2 were selected due to their general perform-
ances when considering all problems together. Although the DMOPSO-1 and CHAC-2-L
perform well when considering the Iy, I;¢p and I, for small problems, they are not con-
sidered future candidates for improvement since the related problem configurations are not

appropriate for industrial needs.

When incorporating a local search procedure into multi-objective algorithms, the main issue
is related to the fact that more than one objective must be optimised simultaneously. This
section is organised as follows: First the general local search procedure is presented and then

its integration with the four algorithms is outlined.

5.3.1 General local search procedure

Let LS, denote the set of solutions that are candidates for the local search. First, the
neighbourhood of any solution s € LS, needs to be explored through the application of
mutation operators. Any generated solution s that is not dominated by the original solution
s will be accepted. The improvement process of each solution s € LS,,; is repeated a number
of iterations, M AXg. This general procedure is depicted in Algorithm 5. Here, in order to
vary the number of iterations M AX g during the iterations based on the convergence of the
algorithm and in order to save on computation time, the number is increased in accordance
with the stopping criteria MGBM used. Since the algorithm stops if no non-dominated
solution has changed after a pre-specified number of generations L;;.,., M AX g is increased
when the number of iterations before iteration ¢, L(t), for which no improvement has been

observed, is getting closer to Lye.. M AXs(t) at each generation ¢ is calculated as follows:

MAXpg(t) = /30 4 4 (5.1)
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Algorithm 5 General procedure of the local search
1: procedure MYPROCEDURE(LS;)
2 Output: s
3 for s € LS, do
4: n=1

5: while n < MAX;g do

6:

7

8

9

s ¢ Neighbourhood(s)
if s s then

§4 s
n—n-+1

The general neighbourhood search is working as follows. According to pyena € [0, 1], which
aims at choosing which objective function should be optimised. Here, the probability of
optimising each objective is equal to 0.5. If p.ung < 0.5, the unit product cost will be
optimised. A station m is randomly selected and the costs associated with each task j € S,,
will be computed. The task j. .., which is responsible for the highest costs will be selected.

The potential costs associated with each equipment [ € E;

Jemax

will be analysed and the

equipment [ with the least associated costs will be assigned instead of the old one. If

DPrana > 0.5, the idle time will be optimised. A station m is randomly selected and the idle
time I, is calculated. A task j € S, is randomly selected. The potential idle time I,,;
associated with the replacement of the resource to perform j is calculated, VI € S,,. The old

resource is replaced by the new one that minimises the idle time I,,,.

5.3.1.1 NSGA-II-L-LS

In this section, the design of the combination of NSGA-II-L and the local search, denoted
NSGA-II-L-LS will be explained. After a population P, is created, the solutions are subject
to the local search procedure, which is applied once. The solutions selected for the local
search are the least crowded solutions, which means those with the greatest crowding distance
value. If the number of solutions in the first Front is not enough to fill LS., the second
and third are considered. Once the local search has been applied, the population P, is
combined with LS., P,i1 < P.y1ULS,,; and the crowding distance and sorting procedures

are applied.

5.3.1.2 SPEA2-LS

In this section, the design of the combination of the SPEA2 and the local search, denoted as
SPEA2-LS is presented. After the fitness of each individual in the population P, and archive
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Ay during the iteration ¢ have been evaluated, all nondominated individuals in P, and A; are
copied to A;yq1. The best solutions in the archive A, are selected according to their fitness
values, represented by low fitness values. If the number of solutions in the first Front is not
enough to fill LS., solutions from the population P; are taken. Once the local search has
been applied, the archive A, is combined with LS., Asr1 < Apr1 U LSse; and dominated

solutions in A;,; are removed.

5.3.1.3 MOACS-2-L-LS

Similar to the procedure of the SPEA2, after the fitness of each individual in the population
P, and archive A;_; have been evaluated and all non-dominated solutions are copied to A,
the best solutions in the archive, represented by a great crowding distance value are selected
and copied to LS. Once the local search has been applied and the archive A; and the set
LS, are combined and non-dominated solutions are removed, the global pheromone update

is performed.

5.3.2 Evaluation of the influence of the local search

In this section the influence of the local search on the various algorithms will be studied.
An identical statistical analysis as the one proposed in Section 4.5.4.1 was performed. The
obtained results for all problems and the various combinations of algorithms and local search

are shown in Appendix E.1. This analysis allowed to identified following research questions:

Research Question 7. Does the local search significantly affect the various quality indic-

ators?

Research Question 8. Does the local search make it possible to converge faster to non-

dominated solutions?

Research Question 9. Considering the local search and dominance rule, which algorithm

is the best regarding all problems together and the two groups of problem instances?

In order to answer these research questions, the strengths and weaknesses of the local search
must be identified by evaluating its influence on the various quality indicators. As described

in the previous chapter, a nonparametric statistical test was used.
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5.3.3 Nonparametric statistical test

In this section, nonparametric statistical tests are applied to highlight the strengths and
weaknesses of the local search combined with the MOACS-2-1., NSGA-TI-I., and SPEA2.
Since the number of data samples does not meet the requirements to directly employ the
Friedman test, the Wilcoxon signed rank test is used to answer the question of whether
there are differences between the algorithms with and without a local search. This test is
analogous to the paired t-test in nonparametric statistical procedures and aims to detect
significant differences between two data samples. The obtained p-values for all problems
and each family of algorithm under study in this section, which means the previous listed
ones with and without local search, considering together Iy, I;gp, I, Ian, and the com-
putation time and respective computed p— values are shown in Tables 5.15 to 5.17. These
values demonstrate that, for the MOACS-2-L, there is a significant difference in all quality
indicators. Furthermore, there is a significant difference between the NSGA-II-L and NSGA-
IT-L-LS for all quality indicators except Io. For the SPEA2-based algorithms, there is only
one significant difference between the SPEA2 and the SPEA2-LS for computation time and
I..

Table 5.15: Computed p-value with the Wilcoxon signed-rank test in accordance with
Iyv, Ligp, I, In and the computation time for the MOACS-2-L and
MOACS-2-L-LS algorithms

Indicators Computed p-values

Igy <0.001
Iiap <0.001
1. <0.001

Ia <0.001
Time <0.001

Table 5.16: Computed p-value with the Wilcozon signed-rank test in accordance with
Iyv, Irap, 1., In and the computation time for the NSGA-II-L and NSGA-
II-L-LS algorithms

Indicators Computed p-values

Iy <0.000
Iiap <0.000
1. <0.000
Ia 0.118

Time <0.000
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Table 5.17: Computed p-value with the Wilcoxon signed-rank test in accordance with
Iyv, Ligp, I., In and the computation time for the SPEA2 and SPEA2-
LS algorithms

Indicators Computed p-values

Iy 0.169

T 0.347

I 0.021

I 0.236
Time <0.000

Table 5.18: Computed p-value with the Wilcozon signed-rank test in accordance with
Inv, Iigp, L., In and the computation time to test the superiority/inferi-
ority of the the local search

Algorithm 1 Algorithm 2 Iy Irap 1. In Time
MOACS-2-L. MOACS-2-L-LS < 0.0001 < 0.0001 < 0,0001 1.000 0.010
NSGA-II-L NSGA-II-LS 1.000 1.000 1.000 - 0.010
SPEA2 SPEA2-LS - - - 0.010 0.010

Table 5.18 shows the p-values of the Wilcoxon signed-rank test, applied in order to identify
whether the local search improves the quality of specific indicators. If the computed p-value
is less than 0.05, the local search has significantly improved the results of a specific quality
indicator. In the opposite case, it represents a significant deterioration of the value of the
quality indicator. As shown in this table, the MOACS-2-L-LS improves all quality indicators
except Ia. The NSGA-II-L-LS only improved the time required to converge toward a set
of non-dominated solutions. Furthermore, the SPEA2-LS improved all quality indicators,
except the covered hypervolume. However, these improvements are not significant, despite
for In. The values of Io between the NSGA-II-L and NSGA-II-L-LS shown in Table 5.19,
illustrate that the proposed NSGA-II-L-LS also has a large ratio of non-dominated solutions
that are dominated by the NSGA-II-L. Thus, the NSGA-II-L-LS is definitely worse than the
NSGA-II-L. An explanation for the poor results obtained by the NSGA-II-L-LS could be
the nature of the solutions considered in the local search. While solutions from an external
archive were used in the SPEA2-LS, solutions from the first front in the NSGA-IT were used
and may have engendered an early convergence toward local optima. This could explain why
there is only a significant difference between the NSGA-II with and without the local search
when considering the computation time. In order to avoid this problem, a different crowding
distance should be used to sort solutions based on their fitness value and in the solution
space. This phenomenon is shown in Figure 5.6, in which the evolution of the density of the
non-dominated solutions is shown after 50, 100 and 150 iterations for both the NSGA-II-L-



5.3 Improvement through local search 148

LS and MOACS-II-L-LS. This figure shows that there is only an evolution of the solution in
the central region. However, this evolution is much slower than that of the MOACS-II-L-LS.

Table 5.19: Evolution of the value of Io between the NSGA-II-L and NSGA-II-L-LS
for each group of problems

Algorithm Dominance Rule Group 1  Group 2

Io(L, P) 0.54 0.28
Io(P, L) 0.15 0.07

NSGA-II

Objective 2
1
Objective 2

T T
Objective 1 Objective 1

(a) After 50 iterations

Objective 2

Objective 2
1

Objective 1 Objective 1

(b) After 100 iterations

Objective 2
Objective 2

T T T T T
Objective 1 Objective 1

(c) After 150 iterations

Figure 5.6: FEvolution of the density of non-dominated solutions through the iterations
for the NSGA-1I-L-LS on the left side and the MOACS-2-L-LS on the right

side

In order to answer to Research Question 9, the Friedman test was applied to all algorithms
and problem instances together and then grouped by order strength. Table 5.20 shows
the Friedman’s statistic and competed p— value in accordance with the quality indicators,
algorithms, and problems together. This table outlines the significant differences between all
algorithms regarding all quality indicators. Table 5.21 shows the average ranking returned by
Friedman’s nonparametric test for all problems according to the various quality indicators.
If these results are compared with the results obtained earlier in this section (shown in

Table 5.3), while the NSGA-IT and NSGA-II-L. were obtaining the best results for Iy and
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Ia on average, by combining the MOACS-2-L with the local search, these two algorithms
now dominate all other algorithms for Igy. In addition, the MOACS-2-L-LS becomes the
best algorithm for I;5p. While the MOACS were not performing well for I., the MOACS-
2-L-LS has better values than all MOACS algorithms. For this indicator, the NSGA-II-L
and SPEA2-LS have the best rankings. According to Ia, the introduction of the local
search decreased the obtained value. Regarding the computation time, the MOACS-2-L-LS
becomes one of the best algorithm regarding convergence time. The adjusted and unadjusted

p— values are respectively shown in Tables 5.22 to 5.26 for all quality indicators.

Table 5.20: Friedman’s statistic and computed p-value in accordance with Igy, Ligp,
1., In and the computation time

Indicators Friedman statistic Computed p-values

Iy 309.420 1.67TE—10
Iiep 259.080 1.12E—-10
I, 744.420 2.74E-10
Ia 1279.150 0.000
Time 2879.220 0

Table 5.21: Average rankings returned by Friedman’s nonparametric test for all prob-
lems according to the various quality indicators

Ranking
Algorithm Igyv  Iigp I, In Time

BIANT-1 1127 10.12 6.3 1217 425
BIANT-1 1050 10.63 6.80 13.70  6.05
BIANT-2 1039 1049 6.65 1293 556
CHAC-1 1024 1128 11.61 915 9.89
CHAC-1-L 1027 1146 11.87 894 10.27
CHAC-2 1026 11.33 11.69 886 10.68
CHAC-2L  10.01 [I1597 12.03 8.86  9.49
MOACS-1 1269 932 753 13.64 848
MOACS-1-S-CDAS ~ 13.83 828 743 13.74 4.25
MOACS-1-L.  12.36  9.38 7.96 13.86 7.8
MOACS-2 1100  9.70 8.56 [EEE 727
MOACS-2-S-CDAS ~ 11.07 943 863 1358 534
MOACS-2L  11.12  9.76 851 13901 7.39
MOACS-2-1-LS [l 1059 1260 12.14

NSGA-II 8.97 1092 13.28 7.06 10.42
NSGA-II-L 9.48 11.04 |BEEN 747 15.09
NSGA-II-L-LS 11.08 917 1242 7.03 | 17.89
SPEA2 9.27 1071 13.16 712 17.01
SPEA2-LS 9.33 10.89 [ 13.34 7.62
SPEA2-L 9.52 10.88 1298 7.34 16.96

As demonstrated in these tables, the MOACS-2-LS is significantly better than all algorithms
for I'yy and I;gp. For I, the SPEA2-LS is, however, significantly better than the MOACS-
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2-L-LS. The same conclusion can be made for the computation time. For I, the MOACS-
1-S-CDAS is significantly better than the MOACS-2-L-LS and all algorithms, except the
MOACS family of algorithms.

Table 5.22: Unadjusted and adjusted p-values obtained for all problem instances through
the application of Holm’s post hoc procedure, using the MOACS-2-L-LS as
control algorithm according to Iyy

Algorithm  Unadjusted p-value Adjusted p-value
All 0.037 <0.037

Table 5.23: Unadjusted and adjusted p-values obtained for all problem instances through
the application of Holm’s post hoc procedure, using the MOACS-2-L-LS as
control algorithm according to I;gp

Algorithm  Unadjusted p-value Adjusted p-value

Others 0.004 <0.019
CHAC-1 0.012 0.047
CHAC-2 0.015 0.047

CHAC-1-L 0.029 0.057
CHAC-2-L 0.050 0.057

Table 5.24: Unadjusted and adjusted p-values obtained for all problem instances through
the application of Holm’s post hoc procedure, using the NSGA-II-L as con-
trol algorithm according to I,

Algorithm  Unadjusted p-value Adjusted p-value

Others 9.93E-03 <5.96E—02
NSGA-II-L-LS 0.061 0.303
SPEA2-L 0.387 1.549
SPEA2 0.584 1.752
NSGA-II 0.739 1.752

SPEA2-LS 0.821 1.752
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Table 5.25: Unadjusted and adjusted p-values obtained for all problem instances through
the application of Holm’s post hoc procedure, using the MOACS-2 as control
algorithm according to Ia

Algorithm  Unadjusted p-value Adjusted p-value

Others 9.17TE—18 <4.66E-17
MOACS-2-L-LS 1.37E-02 0.109
BIANT-2 6.11E—-02 0.428
MOACS-2-S-CDAS 4.83E-01 2.899
MOACS-1 0.550 2.899
BIANT-1 0.618 2.899
MOACS-1-S-CDAS 0.676 2.899
MOACS-1-L 0.836 2.899
MOACS-2-L 0.892 2.899

Table 5.26: Unadjusted and adjusted p-values obtained for all problem instances through
the application of Holm’s post hoc procedure, using the SPEA2-LS as con-
trol algorithm according to the computation time

Algorithm  Unadjusted p-value Adjusted p-value

Others 0.003 <0.008
NSGA-II-L-LS 0.180 0.180

The average rankings returned by the Friedman test for complex and less complex problems
are shown in Table 5.27. The MOACS-2-L-LS obtained the best results for Iy and I;gp
and belongs to the best algorithms for /o and I, for all problem instances of Group 1. For
problems belonging to Group 2, the CHAC-2-L still performs the best regarding I'yv, [;6p
and I.. The unadjusted and adjusted p-values obtained through the applications of Holm’s
post hoc procedures for the Group 1 and Group 2 are respectively shown in Tables E.56
to E.60 and Tables E.61 to E.65. Examining the unadjusted and adjusted p-values and taking
a confidence value of 88%, the MOACS-2-L-LS is better than the BIANT-1 and BIANT-2
when considering Iy, I;gp, I. and the computation time for Group 1. For Group 2, the
SPEA2-LS and the CHAC-1-L are provide better results than other algorithms. Regarding

the p-values, there is no significant difference between them for the various quality indicators.

If the results of tihs chapter are compared to the results of the Chapter 4, it can be affirmed
that the change of dominance rule and the use of the local search allowed to improve the

performance of the basic MOACS-2. In addition, the MOACS-2-1.-LS provides good results

for problems from Group 2.
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Table 5.27: Average rankings returned by Friedman’s monparametric test for both
groups, Group 1 and Group 2

Group 1 Group 2

Algorithm IHV IIGD IE IA Time IHV IIGD Ie IA Time

BIANT-1 571 15.00 7.40 1495 4.08 1497 6.78 6.26 JI2B7 7.85
BIANT-2 ~ 4.89 [15:33| 7.95 1503 385 1551 6.5 547 11.05 7.12
CHAC-1 1447 843 9.06 7.87 920 630 13.90 13.92 10.26 10.52
CHAC-1-L 1485 9.00 889 833 865 [W6000 13.94 1457 945 11.76
CHAC-2 1480 824 879 744 10.10 6.03 JI4007 14.33 10.10 11.22
CHAC-2L 1477 825 892 769 8.8 SISO 953 10.11
MOACS-1  9.04 1286 10.05 1578 856 16.09 6.19 524 11.76  8.40
MOACS-1-S-CDAS 1142 1041  9.04 1503 7.08 16.08 6.33 5.93 [JENGEN 1.66
MOACS-1-L. 865 1271 10.27 15.68 896 1583 643 587 1228 6.89
MOACS-2 505 14.03 1268 GBI 963 1655 587 482 1134 511
MOACS-2-S-CDAS 535 13.72 12.67 1631 9.15 1642 559 497 1113 184
MOACS-2-L 45607 14.36 16887 9.73 17.20 567 445 1124 525
MOACS-2-L-LS 1079 16.62 9.84 1142 897 1041 898 14.24
NSGA-IT 1144 7.86 1226 3.95 11.15 6.68 1361 1420 985 9.75
NSGA-IL-L 1285 806 12.56 508 14.05 6.34 13.68 14.28 9.58 16.05
NSGA-I-L-LS 1459 508 11.64 3.98 1690 7.81 1282 13.13 9.77 1879
SPEA2 1248 7.09 11.91 472 17.67 628 14.00 1429 925 16.40
SPEA2-LS 1275 7.58 11.77 4.96 |Ji@98N 6.15 13.89 4767 10.03
SPEA2-L. 1288 7.61 11.79 525 (1779 6.39 1375 14.07 9.23 16.20

5.3.4 Synthesis

In this section, the influence of the proposed local search is quantified. While the local
search can improve several quality indicators for the SPEA2 and MOACS-2-L, it can only
significantly improve the results of MOACS-2-I. . The improvement of the MOACS-2-L
through the application of a local search made it the best algorithm when considering all
quality indicators together computed for all problems and for all problems from Group
1. As shown in Chapter 4, the BIANT-1 and BIANT-2 generally performed better in the
central region of the Pareto front. Figure 5.7 shows values of I between the BIANT-2 and
MOACS-2 in the left figure and between the BIANT-2 and MOACS-2-L-LS in the right
figure for some problem instances of Group 1. This figure demonstrates that for most of the
problem, the BIANT-2 dominates more solutions of the MOACS-2-L-LS than the opposite.
Thus, even if the BIANT-2 is outperformed on most of the quality indicators, it still performs
slightly better than the MOACS-2. However, the MOACS-2-1-LS is still a good candidate for
further improvement since some companies prefer solutions present in the extreme regions
of the Pareto front. In order to improve the performance of the MOACS-2-L-LS in the
central region of the Pareto front, either another local search could be used (e.g. simulated

annealing) or the frequency of the local search, which was set low to avoid increasing the
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computation time of the algorithm, could be changed.
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Figure 5.7: C-metric between the BIANT-2 and the MOACS-2 with and without a local
search

The ratio of non-dominated solutions has also been slightly decreased through the application

of the Lorenz dominance rules and the local search to the MOACS-2, as shown in Figure 5.8.

a T
.2 1+ 4
=
=
)
m [N E—
g
= 0.98 1
g
£
3
a
= 0.96 [ .
3
2 1
-
5]
2
£ 0941 —_—
m | | |

S

0%9» 9;\) o
o
Q N %ﬂ’
RSN
N }
$

Figure 5.8: Ratio of Non-Dominated Solutions of the MOACS-2, MOACS-2-L,
MOACS-2-L-LS for complex problems

5.4 Conclusion

In this chapter, various dominance rules were tested for the MOACS-1, MOACS-2, CHAC-
1, CHAC-2, NSGA-II, SPEA2, and DMOPSO. CHAC-2, NSGA-II, SPEA2, and DMOPSO.
The dominance rules were compared to each other based on Friedman’s nonparametric test

and depending on the algorithm, the Lorenz dominance rule improved its performance for
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several quality indicators. While this dominance rule may be better for specific algorithms
and problems, its difference with the Pareto dominance rule was not significant. Moreover,
the MOACS-2-L, SPEA2, and NSGA-II-L. were combined with a local search. For the former
algorithm, its combination with a local search improved its performance on all quality in-
dicators except for . Results of the SPEA2 were slightly improved, mostly for problems
from Group 2. The results are completely different for the NSGA-II-L-LS, which could only
improve its convergence time without improving other quality indicators. An explanation
of these results may be that the local search was applied to the non-dominated solutions of
the current population, which may have engendered an early convergence toward the local
optima. To avoid getting stuck in local optima, a different crowding distance based on the
solution space should also be used or a different local search (e.g. simulated annealing).
Finally, the MOACS-2-L-LS provides good results since it improves almost all quality indic-
ators and reduces the ratio of non-dominated solutions that are dominated by the classical
MOACS-2 and the number of non-dominated solutions for complex problems, which are

similar to real industrial needs.

The proposed work in this chapter has partially been the subject of one publication in an

international journal [288].



Chapter 6

Assembly Line Design Problem,
Processing, and Resources Alternatives,
and Buffer Sizing: Problem Formulation

and Resolution

Abstract

In this chapter, a new problem is introduced, which is an extension of the previous problem,
of selecting the buffer sizes between workstations. The associated mathematical model is
presented. As shown in the previous chapters, evolutionary EAs can obtain good results
when considering problem instances of small and large sizes. Alternatively, the BIANT-1,
BIANT-2, MOACS-1, and MOACS-2 demonstrated better results for complex problems. In
this chapter, the strengths of EA and MOACO are combined into a hybrid form to improve
the results for the various quality indicators. To assess the efficiency of the assembly line
when using buffers, a generic simulation model, which provides necessary information to the
product cost estimation module, was created and is presented. The different algorithms are

compared to each other, as in the previous chapters, through nonparametric statistical tests.
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6.1 Introduction

In the previous chapters, the objective was to present a new problem and new resolution
methods for selecting the best product, processes, and resource alternatives that enable
the most suitable assembly line. In this chapter, the definition of the buffer size between
workstations is also considered. In order to evaluate the influence of the various buffers on
the overall efficiency of the line, a generic simulation module was developed. This module
aims to assess the various KPIs required by the product cost estimation module and evaluate

the idle time in an assembly line.

As explained in the previous chapters, NSGA-II and SPEA2 obtained good results regarding
the various multi-objective quality indicators when considering all problem instances. How-
ever, when considering complex problems, the BIANT and MOACS family of algorithms
outperformed all other algorithms. While the problem under study in these chapters was
a simplified version of the current problem, a similar behaviour of these algorithms is ex-
pected when they are applied to the problem under study in this chapter. In this chapter,
the strengths of Evolutionary Algorithm (EA)s and Multi-Objective Ant Colony Optimisa-
tion (MOACO) will be combined in a hybridised form to improve the overall performance
of the two original algorithms. Much work has been proposed to hybridise EAs and they
are often combined with either a MOACO or a MOSA. For this reason, the EA was also
coupled with a MOSA. The various hybrid forms are compared to each other using the
multi-objective quality indicators that were used previously and nonparametric statistical

tests.

The present chapter is organised as follows. Section 6.2 presents the problem in detail and
Section 6.3 introduces the resolution framework, which includes the various hybrid multi-
objective algorithms, the simulation model, and the process cost estimation module. In
Section 6.4, the different algorithms are compared with the previously used multi-objective

quality indicators and nonparametric Friedman tests.

6.2 Problem formulation and mathematical model

In addition to the problem defined in Chapter 4, this problem involves simultaneously ad-
dressing the product design problem, where a subgraph must be selected for each subprocess;
the equipment selection problem, where the resources for each chosen subgraph must be se-
lected; and the assembly line balancing problem, where the tasks with their equipment must

be assigned to workstations, while solving the buffer allocation problem, where buffers must
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be allocated between the workstations.

The set of available resources £; = {R;UW;}, j € V,, is represented by the set of automatic
and manual resources that can perform the task j. Each resource [ € £} has a task processing
time for task j, t;;, a scrap rate r;; and Cro, and Ly, respectively the initial purchasing price
and useful life of tools. Each automatic resource [ € R; has a critical failure rate \j;;, a critical
repair rate i, an average energy consumption eg, per time unit when performing a task
and an average energy consumption e, per time unit when being idle, starved, blocked or
down, a useful life Lg,, and Cry, the initial capital investment. In addition, each automatic
resource [ € I; has a maximum length and width L; and W,. Each manual resource | € W;
has a standard wage w;, one-time personal costs Cf,, and a standard deviation o;; when
performing task j. To each task j € V, are associated a wage rate w;, material costs c;
and required material floor space a;. CRFp, CRFr and CRFp represent the standard
capital recovery factors for tooling, automatic resources and building, respectively. Each
station has a determined length L and width W. Buffers of length L, must be assigned
after each workstation. Here, these buffers can have a maximum size of B. The standard
capital recovery factor for buffers is given by C RFz, and their initial capital investment is
given by Cpyo. The mathematical model requires two assignment variables: z;y (for j € V,
k=1,..,mand !l € E;),and Y, (for ¢ =1,...,m — 1).

1, if the task j is assigned to station k
Tjg = with equipment [ (6.1)

0, otherwise.

1, if the buffer of size p is assigned to buffer ¢
Y, = ' (6.2)
0, otherwise.
Assuming that each task processing time t;; (j = 1,..., N and [ € ;) when performed by a
manual resource follows a normal distribution ¢; ~ N (¢, 032'1) and that the processing times
are independent, then the probability that a manual or hybrid workstation finishes one time

should be considered.

In order to incorporate this , the approach generally used in the stochastic line balancing
problem is used, in which various distributions represent the stochastic nature of resources

performing specific tasks. As described by Agpak and Gokcen [14], when assuming that all

tasks j = 1,.., N follow a normal distribution t; ~ N (15, a?) and considering the independ-
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ency between the tasks processing times ', if the station load of a given station k is given

by t(Sk) = D e, ti and we set Y = >0 ¢ t;, then Y ~ N(3 g 1, > cg 07). Using the
transformation Z defined as,

Y 2esti (6.3)
2 jes, )
then Z ~ N(0,1). Thus, the probability that a given station exceeds the cycle time CT is

given by P(t(Sk) > C’T). Since this probability should stay under a specific limit a:

P(t(Sk) > CT) <a (6.4)
EP(th>C’T> <a (6.5)
JESk
EP<YgCT) >1-a (6.6)
Using the transformation Z:
EP(Y§0T> >1-a (6.7)
CT -3 . o t;
E<Z§ degk j)Zl—a (6.8)
2 jesi 7
OT - o t;
=214 < Zﬁik I <a (6.9)
2 jes, T
=Y ti+zna) 0] <CT (6.10)
JESK JESK

When considering the assignment variables and the more complex problem addressed here,
in which only the processing time of manual resources may vary, the deterministic constraint
of Chapter 4 represented in (6.11) has to be replaced by Equation (6.12).

SN amta <CT, k=1,..m (6.11)

JEBy lEL;

Z (Z Ll'jkltjl + Z CEjkltjl) + Z1—a Z Z CCjklUJZ-l < CT, k= 1, ceey m (612)

JEBy lERj ZEW]' JEB ZEW]'

The mathematical model for the addressed problem is presented below.

Min Z1 = Cidle(l'jk‘l) (613)
Min ZZ = Opart<xjkl,qu) (614)
S.t.

1. The order/sequence of the tasks on the workstation does not affect the total station time
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S aim =1 (6.15)

keSh ek

>N wm <, VieV\{1} (6.16)
k‘ESIj lEEj

Z (Z xjkltjl + Z xjkltjl) + Z1-q Z Z «Tjklo']zl < CT, k= 1, ey m (617)
JjEBy lER‘j ZEW]' JEB ZGWJ'

Z Tjk1Q; <A, Ve Ej, k=1,...m (618)
JEBk

>N wmli <L, k=1,..m (6.19)
jEBy IER,

>Nz <W, k=1,...m (6.20)
JEBy lERj

Z kxikll < Z kxjk‘lza Vi € V\‘/s, (621)
keSI; k’GSIj

Vi, € E; j€E|SllﬂS]j7é@, VZQEEj

Z xikll — Z l’jle S T_fb(l — Z xjklz)a (622)

keSI; kesSI, keSI;

VieV,, VlieE;, Vi,eclkj,

Vj € Fy|SI;NSI; #0

> ww = > ww,, VhEE, VieP (6.23)

kesI, keSI;

Vi eV\ Vi Vi eE,

Z Z Tikl, — Z Tjkly= O, Vi € V;, (624)
JjeF; kESIj keSI;

Vi, € E;, Vi, e Ej

Z Z Tkl — Z Tjp, =0, VieV, (6.25)
’iGPj keSI; kJESI]'

Vi, e B; Vi€ Ej

B

d V=1, ¢=1..,m—1, (6.26)

p=1
B m—1 m

Ly> Y Vigbye+ LY 2np < Linaa, VI E E; (6.27)
p=1 ¢=1 k=1

v €{0,1}, VjeV, VkeSI;, VieE

Y, €{0,1}, p=1,..B q=1,..,m—1 (6.28)

The two objective functions (6.13) and (6.14) aim at respectively optimising the idle time
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and the unit product costs. The modules, which extract the unit product costs and the
idle time in the assembly line are functions of the simulation model that is explained in the
next chapter. The calculation of the unit product cost is mainly based on the cost model
presented in Chapter 4. The slightly required adaptations of the cost model are presented
in the next section. Constraint (6.15) ensures that the first node of the precedence graph
is assigned to any station. Constraint (6.16)verifies that any task is at most assigned once
with a single resource. Constraints (6.17)-(6.20) guarantee that the station load does not
exceed the cycle time C'T" and that the material space or the machine floor space of the
assigned tasks and resources at any station are not greater than the available floor space.
The precedence constraints, except those emerging from any node Vj are verified in (6.21).
These precedence constraints only need to be activated for the selected subgraph /process or
design alternative, which is done in (6.22). The same process is applied to any predecessors
of the nodes in V; in (6.23). Furthermore, constraints (6.24)-(6.25) verify that only one
process or design alternative is selected. Constraints (6.26)-(6.27) ensure that buffers are
only assigned once after each workstation and that the total length of the assembly line does

not exceed the total length L,,,, at disposition.

6.3 Resolution method

The resolution framework used in this chapter is shown Figure 6.1.

Compared to the resolution framework presented in the previous chapters, here, the proposed
resolution framework is extended with a simulation module that evaluates the unit product
cost and the idle time in the assembly line through a discrete event simulation. The procedure
is as follows: first solutions for the assembly line balancing, resource allocation and buffer
allocation problems must be generated and then these solutions must be evaluated. The
characteristics of each solution are used as input for the generic simulation models, which

mainly assesses different KPIs that are required by the product cost estimation module.
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Figure 6.1: Resolution Framework: Fvaluation of the product cost through simulation

6.3.1 General discrete encoding scheme

Compared to the Discrete Encoding Scheme used in Chapter 4, the encoding scheme used

in this chapter is slightly different. These differences are clarified in the following sections.

6.3.1.1 Solution Encoding

The current solution encoding scheme uses two chromosomes of different sizes. While the
first chromosome, which represents the assignment of tasks, and resources to workstations is
identical to the previous chapters, the second chromosome represents the size of the buffers
between workstations. This second chromosome is represented by two vectors: the B P vector
representing the position of the buffer in the assembly line and the B.S vector representing
the size of the buffers. The length of the second chromosome is defined by the upper bound
of the number of workstations, m — 1, that any solution of the line and equipment selection
problem cannot cross.

An example of the new solution encoding is provided in Figure 6.2. In this example, three

workstations are required to assemble a given product. The size of the buffers between

Stations 1 and 2 and Stations 2 and 3 are respectively 4 and 6.
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Tasks 1(2(314(6|7(8]9(10]11] *
Equipment | 1 |2 [ 1 |- |3 |-|2|1[10]2]*
Station 1]11(2|-12|-12|3|3]|3]*
Buffer T2 = | & | % | x| %] *|*
Size A1 G| x| x| % | x| x| *]|*

Figure 6.2: Example of solution encoding using a double chromosome

6.3.1.2 Initial Solution

Since the two vectors that are related to buffer sizing (second chromosome) depend on the
line balancing and equipment selection result, the tasks are first assigned to workstations
with their respective equipment. As in Chapter 4, a task from the set of tasks without
any predecessors is selected first and assigned to the first position of the vector TN. In
parallel, a resource is selected from the available resource set for this task and assigned to
the first position of the vector £ A. Subsequently, the set of tasks without any predecessors is
updated and the next task and respective equipment are chosen. As soon as the station load
exceeds the cycle time or the station space is reached, the workstation number is increased.
This mechanism continues until no more tasks can be assigned. The production rate p,, of

a station m in isolation is given by:

iy = 35 Zf" i (6.29)
Hm T Tm

where, r,, represents the average repair rate and pu,, represents its average failure. In order

to avoid the effects of starvation and blockage, stations with a poor production rate and a
greater chance of breakdown should have a larger buffer. The relative criticality CR, of a
buffer ¢ can be determined by:

min{pry, pro41}~"
>ty min{pry, proq}!
The initial buffer allocation is provided by multiplying C'R, by the maximum buffer size B

CR, =

(6.30)

at each location ¢ forq=1,...,m — 1.

6.3.1.3 Recombination

Since two chromosomes are present in the solution encoding scheme, the recombination
procedure requires minor adaptations. To ease the readiness, X; denotes the first part of
the chromosome, which is the result of the line balancing and equipment selection; and X,

represents the second part of the chromosome, which is the results of the buffer allocation.
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1Cp, P2
Tasks 102(3|4|6|7]|8]9]|10]11]* 31'2*******
Parent X Equipment |12 1] - [3]-2|1]|10]2]|+| Sufer
Size 416 | % | x| k| x| x|
Station | 1[1]2|-]2]|-|2[3[3|3]* ,
1 1
1
Tasks 123467981011*}3612*******
Parent Y Equipment|2 |22 |-|1]-{2|3|10f2 | * et

Size 34| k| k| k| x| k| k]| ok
Station 1122 -12]|-3[3]|3]|3]*

Tasks 112(3|4(6|7[9|8([10|11[ *
Offspring Equipment |1 |2 |1 (- |3|-|2|3[10f2|*
Station 1112 -12|-[3]3 [ 33y *

Buffer 1 2 * * * * * * *

Size 416 | * * * * * * *

Figure 6.3: Example of recombination between two solutions

The recombination process between two solutions X and Y is defined as follows:

f(X,Y), ifr<p.
X, otherwise.
where f represents a single-point crossover using a similarity vector V.S(X,Y’) between the
task assignments of two solutions X and Y, where an element 7,7 = 1,..., NV, of V.S is given
by:
1 if XTNZ' = YTNi
VSi(X;, V) ={" (6.32)
0, otherwise.
The recombination process uses two crossover-points, for the first and second chromosomes,
respectively. The position of the crossover-point ¢, is randomly chosen from the vector V'S.
The position of the second crossover point, c,, is chosen from Xpp N Ypp. From the two

parents X and Y, the elements ¢ and j of the offspring Z, represented by Z; and Z,, are

generated as follows:

Xli, if 4 < Cp,

Zy, = (6.33)
Y),, otherwise.
Xy, ifj<c

Zy, ={ N = (6.34)
Y5, otherwise.

An example of the crossover operator is shown in Figure 6.3.

As explained in Chapter 4, due to the verification of the preservation of the different con-
straints, some tasks and their respective resources do not have a valid workstation after the
crossover process. In addition, the total number of buffers in the assembly line may exceed

the defined limit. In order to produce feasible individuals, tasks, resources, and buffers may
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have to be reassigned. The reassignment is similar to the process used in Chapter 4. If
buffers have to be reassigned, the initialization process explained earlier in this section is

applied.

6.3.1.4 Mutation

Once an offspring has been generated, another stochastic change is applied with the probabil-
ity p., to enhance the diversity in the population and prevent the population from converging
prematurely at local minima. The mutation process Z of one solution X, which contains

four neighbourhood searches is formulated as follows:

X), ifr<pn,
Z—pnox={lX P (6.35)

X, otherwise.

Tasks 1123|4167 (8]9|10[11]| * | Tasks 1 314(6|7|8]9]|10f11] *

Equipment | 1|2 |1]-|3|-12]|1]|10|2]|*| Equipment| 1 11-13[(-[2|1]|102]*

Station 111]2)-12|-12[3|3]|3]|*| Station 1(12-2|-12[3[3]|3]*
Change

Tasks 1123|4167 [9]|8|10[11]| *| Tasks 1 314(6|7|9]8]|10f11] *

Equipment | 1 2| 1|-|3|-12[3(10/2|*| Equipment| 1|2 |1 |-[3|-|2]|3]|10]2]*

Station 111]2)-12|-13[3[3]|3]*| Station 1(12-2|-13[3[3]|3]*

(a) Mutation operator on the first chromosome

Buffer Tl | | | || %%
Size 416 | x| x| k| x| k]| x| *
Buffer 1 2 T R B T B
Size A6 | x| % | % | % | x| k]| *

(b) Mutation operator on the second
chromosome

Figure 6.4: Illustration of the mutation operators on both chromosomes

If a random number is smaller than the mutation rate p,,, in addition to the previous
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mutation tasks explained in Chapter 4, two mutations are implemented on the second chro-

maosome:

1. Swap buffers - For a specific solution X, a workstation ¢ is randomly selected and its
buffer size is swapped with the previous buffer or the next buffer.
2. Change buffer size - For a specific solution X, a buffer ¢ is randomly selected and its

size is either increased or decreased.

An example of the mutation operators is shown Figure 6.4.

6.3.2 Approximate methods

As shown in the previous chapters, while the evolutionary algorithms represented by the
NSGA-II and SPEA2 obtained good results when considering all problem instances together,
the MOACOs, represented by the BIANT, MOACS, and CHAC, obtained good results for
complex or less complex problems. As stated above, since the problem under investigation
in the previous chapters was a simplification of the current problem, similar behaviour of the
resolution methods is expected. Due to the nature of this problem, directly using MOACOs

to a solution may not be adequate for following reasons:

— The two chromosomes used in the solution encoding do not require the exploration
of the same graph; they require exploration of two slightly different graphs. The
first graph is represented by an exploration of the possible assignment of tasks and
resources to workstations, and the second graph is represented by the exploration of
the the possible assignment of buffers to workstations, which is indirectly related to
the first graph.

— The assignment of the buffers to workstations requires a complete assignment of tasks
and resources to workstations, such that the relative criticality C'R, can be calculated,

qg=1,...m—1

In order to address this problem, the MOACO cannot be used alone for these two chro-
mosomes, and a hybridization approach is required. The main idea behind the proposed
hybridization is to combine several algorithms to exploit their strengths. As demonstrated
in the previous chapter, the search capability of the NSGA-II identifies relative good solu-
tions in a short time, but it often becomes stuck in local optima and is outperformed by
MOACOs algorithms. Conversely, MOACS performance better than the NSGA-II regarding
the quality of the obtained non-dominated set of solutions, have a poor convergence speed,
and are mostly engendered by the initial pheromone matrices. The BIANT and CHAC have

not been considered since the former requires a long time to convergence and the second can
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only perform well for small problems.

Previous taxonomy or work based on the hybridization of Genetic Algorithm (GA) with ACO
and Simulated Annealing (SA) have been proposed in the literature (e.g. [248, 264, 119, 264,
430, 128, 197, 327, 378]). The next sections present the hybridization of the NSGA-II with
a MOACO and the NSGA-II and SPEA2 with a MOSA. This choice is motivated by the
positive results of the NSGA-II obtained in average considering all problems for Iy, I;6p
and I.. The SPEA2 has also been considered due to its average performance and its ability

to converge faster than all algorithms.

6.3.2.1 Hybrid Genetic Ant Colony Algorithm

Two variants of the hybrid algorithm were developed. The utilisation sequence of the NSGA-
IT and MOACO is common to both. This sequence is shown in Figure 6.5. First, the NSGA-II
is performed until there is no improvement after I;.,,. The notion of improvement is related
to the MGBM stopping criterion, used earlier in Chapter 4. If no improvement has been
observed, the MOACQO algorithm is started. Due to the positive results of the MOACS in the
previous chapters, its main characteristics were used. In the first variant of the hybrid form,
denoted as NSGA-II-ACO-1, the MOACO only creates solutions for the second chromosome,

while in the second variant, the MOACO only creates solutions for the first chromosome.

NSGA-II
Procedure

Improvement
after [item

N

MOACO
Procedure

Improvement
after Iiter,

N
End

Figure 6.5: Utilisation sequence of the NSGA-II and MOACQO in the hybrid algorithm
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As a reminder, the transition rule of the MOACS works as follows:

Ifqg<q:
e A 1-A
pk o 1 lf j = maquNik {Ti,u ’ nﬁ,u ’ néi(,u )}
nJj .
0, otherwise.
6.36
Else : ( )
B B(1-N)
Tig T, Mo, o k
=" — if 1 € N!
pk .= ZUGNIc Tivu.ni/\u'ni(t, M7 j !
2,] v ’ o

0, otherwise.

When an ant k is building a solution path and is placed at one node ¢, a random number
g € [0,1] is generated and ¢ < ¢o, the best neighbour j is selected as the next node in
the path. Otherwise, the algorithm decides which node is the next by using a roulette
wheel considering pﬁ ; as probability of every feasible neighbour j € NE. Due to its nature,
the MOACS uses two levels of pheromone update, including, a local and global pheromone

update. The local pheromone is given by:

Tig = (1 —p) Tij+p- 7o, With 7 = (6.37)

Ch-Cy
Every time an ant & builds a solution, it is compared to the set of non-dominated solutions
to determine whether it is a non-dominated solution. At the end of each iteration, 7, is

calculated as follows:
y 1

Ry

where f; and f, respectively represent the average costs of each objective for the solution

(6.38)

paths included in the current archive. If 7'(; > 79, the pheromone trails are reinitialised
considering 75 < 7'(;. Otherwise, the global pheromone updating is performed for all A

solutions in the Pareto set, as follows:
Tig=(1—p) g+ ﬁ W(i, j) € Sa (6.39)

Depending on the variant of the hybridised form, small differences are noticed and explained
in the next paragraphs. These differences are mainly related to the pheromone matrix and
the heuristics information. Another significant difference is that the MOACO procedure
of the NSGA-II-ACO-1 only works on the second chromosome, while the NSGA-II-ACO-2
only works on the first chromosome. The procedure of the MOACO is as follows: For each
solution z;, 1 = 1, ..., popsize, the following procedure is applied: popsize ants are created

using the solution x; and the evolution process starts until no convergence is observed.
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NSGA-II-ACO-1

During the construction of each solution by an ant k£ and the exploration of the graph shown
Figure 6.6, two heuristic information values, 7y, and 7, ;, are used. The explored graph

contains B -m — 1 nodes and two fictive nodes denoted as S and F, and B- B -m — 1 arcs.

@
olslel
L
V[‘“\ V[‘
NS

Figure 6.6: Exploration graph used by the NSGA-II-ACO-1 during the construction of
solutions

Similar to Yalaoui et al. [417], the maximum performance rate of the line was used. The
heuristic information use the maximum performance rate of the line, FE,,,, when to each
buffer is assigned the maximum capacity. In addition, the costs of buffer ¢;,, = CRFpg, - Cpy,

are also considered.

n _ bj-cpy

12' P

B (6.40)
— % _1

2i; = B " Emas

where b; represents the capacity of node j during the exploration of the graph. This capacity
is bounded by 1 and B.

In order to not provide preference to a particular heuristic information, they are normalised.
NSGA-II-ACO-2

In this variant of the hybridised form, the MOACO procedure only works on the first chromo-
some and the problem can be summarised by the problem previously studied in Chapters 4

and 5. Thus, no differences can be outlined with the procedure explained in Chapter 5.

6.3.2.2 Local Search with Simulated Annealing

The basic idea behind SA is to imitate the physical process of annealing. SA is a stochastic

search technique that can escape local optima using a probability function. Starting from an
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initial solution s, a new solution s  is generated in the neighbourhood of the original solution
s. If the amount of change in the objective function value, denoted as A = f(s') — f(s) , is
less than 02, then the new solution s is accepted. If A is greater than 02, then the solution
is accepted with a specified probability, usually denoted as P = exp_%, where T" corresponds
to a control parameter which is decreased during the search procedure. However, in the case
of MOP, choosing a proper transition probability is difficult [281]. Several MOSAs, (general
pseudo-code is shown Algorithm 6), have been proposed in the literature with different
transition probabilities. For example, Huang and Chow [183] use the fitness value of the
generated and current solution, represented by the number of solutions dominating them:.

Sankararao et al. |354] use the following transition probability P:

P=T] exp{_—?m} (6.41)

where M represents the number of objectives. Duh and Brown [123] use a slightly different

probability transition:

M

P =exp ( Z Wm(fm<5/%_ fm(s))> (6.42)

m=1

where w,, represents random weights such that w,, > 0,m =1,..., M and 2%21 W = 1.

Algorithm 6 General procedure of the Multi-Objective Simulated Annealing

1: procedure MYPROCEDURE(LS;)
2 repeat

3 s' + Neighbourhood(s)

4 if s < s then

5: s s

6 else if s £ s then

7 sS4 s

8 else

9: if rand < P then

10: s <s

11: until Termination Criterion met

Other authors have also proposed slightly different probability transition rules. The most
common rules are summarised by Zidi et al., Nam and Park, and Suman and Kumar [451,
281, 375|.

Similar to the local search in Chapter 5, a set of solutions LS. that are candidates for
the local search is extracted. First, the neighbourhood of any solution s € LS. needs to

be explored through the application of mutation operators. If the new generation solution

2. In the minimisation case of a single-objective optimisation problem
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s dominates s or is not dominated by s, it is accepted. However, if s dominates s, it is
accepted with the associated probability 7Tj. The subsequent geometric cooling, which is

widely employed for the annealing scheme, was used:
T, = o Ty (6.43)

where T}, represents the used temperature at a given iteration. For each temperature, the
neighbourhood is explored a specific number of times L;... The procedure stops when a

number of iterations have been reached.
Since various acceptance criteria have been proposed in the literature, two research questions
were formulated:

Research Question 10. Is there any significant difference between the acceptance criteria?

Research Question 11. Independent from the previous research question, which acceptance

criterion is the most appropriate?

In the next sections, these two research questions are answered.
6.3.2.2.1 Choice of the acceptance criterion

Since the probability transition may play a major role in the algorithm and may influence its
ability to move forward to the true Pareto front, various criteria were tested on the Arc111-1
problem instance, which is, as stated earlier, the most complex problem investigated in this
thesis. The various criteria are listed in Table 6.1. The difference between the criteria C1-C4
and C5-C8 is the use of the range R of the solutions found thus far in the current set of

non-dominated solutions.

Table 6.1: List of probability transitions for the MOSA

Criterion
Abbrevation Transition probability A
C1 exp{7*} A =ming_ {fin(s") = frn(s)}
C2 GX%{%} A = maxpyl_{fm(s) = fn(s)}
C3 Hm:l exp{%} Ap = fm(s) = fin(s)
C4 exp{ =} A =0 (fnls) = fnls))
C5 exp{%} A — min%:1{fmés/)—fm(8)}

M /
C6 exp{%} A — maxm:l{me(S )—fm(s)}
C7 H%:l eXp{ _%'m} Am — fm,(S )gfm(g)
=1 @m | fn(s)—fm (s)

. o) NS GO,
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The performance of each criterion combined with its transition probability is shown in
Table 6.2. In addition, a graphical visualisation in the form of a boxplot is available in
Appendix F.2.

Table 6.2: Influence of the various transition criteria on the quality indicators
Used Criterion

C1 C2 C3 C4 C5 C6 C7 C8
s z 097 097 097 0.97 J098Y 097 0.97 097
AV IQR(x) 0.02 0.01 0.02 0.01 0.01 70:01" 0.01
/ z 1052 052 056 059 B 055 0.61 0.56
[P 1QR(x) (005 0.09 0.05 0.08 0.11 0.05 0.06 [JEEEN
/ z 091 091 [0:.90° 0.92 JJOIS8Y 0.90 0.95 0.91
°  IQR(x) 0l 0.07 0.06 0.09 0.08 0.06 0.05 0.04
/ z 0.84 081 0.81 [080 0.84 0.87 0.84
2 IQR(x) 0.09 [0:07 0.10 0.09 0.19 0.08
Time z 046 051 0.43 05347 0.37 0.5

IQR(x) 021 027 0.26 [0.13 0.14 0.32

The obtained Friedman’s statistic and the associated computed p-value is shown in Table 6.3.
Given that x2,5 = 14.1 with a 95% confidence level and seven degrees of freedom, it can be
concluded that there are not significant differences among the transition criteria. However,
taking I;4p into consideration, a significant difference between the transition criteria could be
observed by choosing a confidence level of 91%. The average rankings returned by Friedman’s
nonparametric test are shown in Table 6.4. The adjusted and unadjusted p— values are shown
in Appendix F.2. While the fifth transition criterion performs better for most of the quality
indicators, the difference is not significant. However, since it can perform slightly better, it

is an ideal candidate for further experiments.

Table 6.3: Friedman’s statistic and computed p-value in accordance with Igy, Iigp, I,
In and the computation time

Indicators Friedman statistic Computed p-values

Iy 6.23 0.51
Iigp 12.37 0.09
I, 4.07 0.77
Ia 5.63 0.58

Time 7.41 0.39
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Table 6.4: Average rankings returned by Friedman’s nonparametric test for all probab-

ity transitions

Ranking
Algorithm  Igy  Irgp I, In Time
Cl 4.60 [UB70" 4.40 4.30 3.70
C2 [4.00 JGW0ON 490 4.60 3.60
C3 480 420 445 440 3.80
C4 4.80 3.80 4.80 5307 5.30
Cs B 5.00 4.70
C6 430 4.60 4.05 3.40 5.25
C7 590 3.00 3.35 4.00 [JE5SN
C8 420 3.70 4.80 440 4.10

6.3.3 Simulation model

In the developed simulation model, any given workstation can be in one of the following

possible states:

— busy and assembling a product

— blocked when the buffer/queue after the station is full

— starved if the buffer/queue before the station is empty and the previous station has

not performed its task yet

— down when a breakdown occurs, and the machine is being repaired
Likewise, any of the product units in the system can be in following states:

— blocked at a specific workstation if the next queue/buffer is already full

— served in a specific workstation

— waiting in queue

Thus, if an assembly line with M workstations is considered. Considering that the last

workstation is never blocked, any unit has the possibility of passing 3M — 1 states.

In the developed simulation model, two types of machine failures are considered:

(i)

operation-dependent failures and (ii) time-dependent failures. While in the first case, the

failures can only occur during the processing state of a machine, in the second case, the

machine breakdowns can also occur when a station is not busy.

Furthermore, the following assumptions were made during the creation of the simulation

model:

— Automatic resources on each station are unreliable, and each station is separated by

an intermediate finite buffer
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— When a breakdown occurs and the machine is operating the unit being processed is
considered scrap

— The last workstation is never blocked

— Workpieces move through buffers with zero transit time and follow the First-In-First-
Out strategy

— The time between failures and repair time between failures are exponentially distrib-
uted

— The setup time is included in the task processing time

— No workstation is never lacking raw material

— Manual resources have an availability of 100 %

— All resources assigned to a specific station are statistically independent

The main steps of the simulation module are shown Figure 6.7. First the system is initialised
with the results of the optimisation, in other words, with the five vectors from the solution
encoding, which provide the station time (S,,), m = 1,...,m, the breakdowns and scrape
rates of each station. This is followed by the initialisation of the system state, in which, every
station has one workpiece in its buffer that is ready to be assembled. The Main Program,
which is iteratively repeated until reaching the stopping criterion of the simulation, aims
at managing and generating the events. In the Fvent Manager, every event modifying the
system is managed and actualised. After the simulation is stopped, the results are sent to

the product cost estimation module.
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( START )

Initialization of routine
Set simulation clock to 0
Initialize system state
Initialize counters
Initialize event list

Main Program
Get next event
Manage event

Event Manager
Update system state
Update counters

No
Event Routing
Determine next event n,
Advance simulation clock
Event Generator
Generate next event
and add to event list
Simulation
\%hed ?
Yes

Product Cost
Estimation
Evaluate the unit
product costs

End

Figure 6.7: Main steps of the simulation module
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6.3.4 Initialisation of the simulation model

Given a solution represented by its double chromosome as shown in Figure 6.2, the ob-
jective of the initialization of the simulation model, is to transform this representation and
the implied tasks and resources characteristics into station characteristics. The required

information for simulation model is shown in Table 6.5.

Table 6.5: Required information by the simulation model

Station characteristics

Station # Processing Time MTBF MTTR Scrap rate
1

1 t(S1) %1 m 1
M T I '
( M) A Y4 ™M

For any station k, £ = 1,..., M, its processing time is required. Here, the various resources
assigned to each station operate in series and not in parallel. The station time is calculated

as follows:

t(Sk> = Z (Z l’jkltﬂ -+ Z l’jkltﬂ) + Zi_a Z Z xjkla?l (6.44)

jE€By IER; lew; JEBy lEW;
In order to ease the readiness and simplify the notation, the vector AF,, denotes the crit-
ical failure rate of automated resources assigned to station m, the vector AR,, denotes the
critical repair rate of automated resources assigned to station m and AV,, denotes the avail-
ability of each resources assigned to station m when considering it in insolation. Figure 6.8
shows an example of the first part of the chromosome representing the task, and equipment
assignments. Automatic resources are represented in gray. In this example, three assembly
stations are required in this configuration and AF} = {12}, AFy = {A33, 64, As2} and

AF3; = {A114}. The same principles are followed for AR,,. For each automatic resource ,

[ =1,..,|AF,| assigned to station m the availability of a resource is defined by its critical
. . ARm
failure and repair rates as AV,,, = m.

Tasks 11213146789 (10|11] *

Equipment | 1 [ 2 |3 |- |4 |-[2|1|10[4 ]| *

Station 1{1(2|-12|-12|3|3[3]*

Figure 6.8: FExample of the first part of the chromosome encoding to generating AFy,

Since operating time and repair time between failures are exponentially distributed, the
MTBF(m) and MTTR(m) are calculated as follows. Given the critical failure rate of a

resource \, its probability distribution function F'(\,t), which characterises its probability
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to fail within time ¢, is expressed as:

1—e™ fort>0
F'MNt) =P(T<t)= (6.45)
0, fort <0

Its reliability function R'(\,t), which represents the probability it will not fail during time ¢
is expressed as:
e M fort>0
R'(\t)=P(T >t) = (6.46)
1, fort <0

Since the various resources assigned to a specific station m may have different reliabilities,

the reliability R; (t) of a specific station m is given by:

|AFm| |AFm| ‘AF ‘
Riit) = [T R(AFw, ) = [ e ¥t = emsmm it = et (647)

The associated MT BF(m) of a station m can be calculated as follows:
1 1

A STAR,

In addition, the availability A(m) of station m depends on MTBF(m) and MTTR(m) and

is calculated as follows:

MTBF(m) = / h R( A, t)dt = (6.48)

MTBF(m) Ll

MTBF(m) + MTTR(m H AV, (6.49)

A(m) =

Thus, the MTTR of station m, MTTR(m) is calculated by:

MTBF(m)(1 -T2 AV,
14 AV,

MTTR(m) = (6.50)

For the scrap rate of each station, the same formula as in Chapter 4 is used.

6.3.5 Event management

Once the simulation model has been initialized with the previous values and the states of
the various machines, the Fvent Manager manages all events influencing the global state of
the system. For a better understanding of the Fvent Manager module, the system composed
of m workstations and m — 1 buffers is simplified into m subsystems. The decomposition
is shown in Figure 6.9. In order to respect the assumptions made earlier, the buffer 0

and M both have an unlimited capacity. If the first subsystem is used as an example to
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describe the events that influence its level, the arrival and departure of workpieces and the
start and end of a breakdown can be identified. A rough description of these events is
presented in Appendix F.1. Here, the arrival events of the first subsystem shown Figure 6.10
are explained. In this subsystem, every time a workpiece arrives, only one condition must
be verified, namely, whether the server is busy. This determines whether the workpiece is
directly processed or sent to the queue. If the workpiece is going to be processed, then the
departure event for this given workpiece is scheduled. When a workpiece leaves the sub-
system, it is checked to determine whether it is scrap. If the workpieces are not considered
scrap and the next queue is not full, then the workpiece moves to the next subsystem.
Otherwise, either the server is blocked if the next queue is full or a new workpiece is processed
if any workpiece is waiting in the queue of the given subsystem. When a breakdown occurs,
and the server is busy, then the workpiece being processed is considered scrap. Independent
of the state of the server, the end of the repairing event is scheduled. After a station is
repaired, the next breakdown for the subsystem is scheduled. Depending on whether the

queue is empty or not, the station will either be starved or produce a new workpiece.

rrrrrrrrrrrrrrrrrrrrrrrrrr TR I S I

Subsystem 1 ; Subsystem 2 . Subsystem 3;  Subsystem M :
‘ Buffer 1 Buffer  Buffer i Buffer Buffer
} 0 1 2 M -1 : M
YT :
Heoee O[] 1O 1000

Station 1 Station 21 Station 3| Station M

Figure 6.9: Decomposition of the assembly line into subsystems
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( Arrival Event )

)
Schedule the

next arrival event

Is the
worksta-
tion busy
or down?

Yes

Add 1 to the queue

Make server busy

|

Schedule departure
event for the workpiece

I

End

Figure 6.10: Description of the arrival event of the first subsystem

After the events have been generated and managed and updated as shown Figure 6.11, the
various counters required for providing useful information to the decision maker after the

optimisation or transferring the required information to the product cost estimation module

are updated.
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Figure 6.11: System state update
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6.3.6 Process cost estimation module

The same decomposition of the total costs Cy, as in Chapter 4 is used here and is given by

following equation:

Ciot =Cy +CL+ Con + Cp+ Cp + Cpq + Cr + Chy (6.51)

where Cp, additionnally represent the initial purchasing of buffers. In order to assess Vjoss,

the quotient of V,,.; and the rejection rate of the assembly line RR(z i), which is evaluated

through simulation, needs to be calculated as follows:
Vinet

Viross = =—— 6.52
The total operating time 7 required in a year for producing the V,,.; units is given by:
Simtime
= = Y oss 6.53
’ V@imf,ot g ( )

where V;,,., 1s the total number of pieces that should have left the last station after Stm;me

time units.

The total annual material costs C);, the total annual labour costs C7, the total overhead
costs Cop are calculated as in Chapter 4. The total annual energy costs C'p are provided by
the sum of all energy costs Cg, of each station k. The energy consumption for automatic
equipment can be decomposed into various categories. The reader is referred to Zhou et al.
[448| for more details. Here, the energy consumption model is simplified and only use the
average energy consumption of equipment to get the average energy consumption of station
k per time unit, C'g, . The average annual energy costs can be calculated as follows:

T M
Cp=1cp- Z Zmebusy (CEok. + (&Lmek) — 1>C’Elk> (654)

Szmtzme Tlmebusy (

where cg represents the costs of energy per time unit. CEok and CE1k represents the annual
energy consumption in respectively producing mode and not producing mode. These two
associated values are calculated as follows:

CEok = Z Z:Bjkleoﬂ, CE1k = Z ijkleljl (655)

JEBy lEEj JEBy ZGEj

The even distribution in time over the usable lifetime of tools, automatic resources, building
and buffers are calculated using the method provided in Chapter 4. The annual building cost
is computed using equation (6.56) instead of (6.57), where B(y,,) represents the number of

buffers assigned to the assembly line.

CB = (K(Jﬁjkl) - L + B(ypq) . Lb) : W[CBQ : CRFB/(lb : wb) + E] (656)
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Finally, these annual costs can be used to compute a unit cost per part Cp,,; as follows:

Ctot
Vnet

Cpart = (6.58)

6.4 Computational experiments

The computational experiments in this chapter were performed with the same configuration

as in the previous chapters.

6.4.1 Statistical analysis

Tables 6.6 to 6.10 respectively show the median and Interquartile Range (IQR) obtained
through several experiments for the problems of the Arcl111 family. Again, promising results
are coloured in grey. Three different levels are used: (i) dark grey, (ii) grey and (iii) light
grey for the best, second-best and third-best algorithms, respectively. As demonstrated in
these tables, the results are heterogeneous, and it seems that SPEA2-LS shows good results
on average when considering all the quality indicators. The obtained results for all problems

and the various combinations of algorithms and local search are shown Appendix F.3.

Table 6.6: Median and interquartile range of Iy obtained by the optimisers for the
Arcl11 problems

Arclli-1 Arcl11-2 Arcl11-3 Arclll-4 Arclll-5
T+ IQR(x) z+IQR(z) T+xIQR(z) T+IQR(x) z+IQR(x)

NSGA-II 0.95 001 095 JO0LY 093 001 095 [JENOE 0.94 0.01
NSCGA-IFACO-1 095 0.01 094 001 093 L0010 095 001 094 0.01
NSCGA-II-ACO-2  0.95 [JEEN 0.9 JBEEE 094 0.02 095 JO0LY 0.94

NSGA-TI-LS 0.94 001 094 0.0l 093 002 095 001 0.94  0.00
SPEA2 0:95 001 JOEBN 0.01 (094 001 [095 001 [0.95 0.01

SPEA2-LS JOIBN 001 095 001 [OOSEEONOEN0NEN 00! JONEN 0.01
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Table 6.7: Median and interquartile range of I;qp obtained by the optimisers for the

Arcl11 problems

Arclll-1 Arcll11-2 Arcll11-3 Arclll-4 Arclll-5

T+ IQR(x) z+£IQR(z) TxIQR(zr) T+IQR(x) Z+IQR(x)
NSGA-II 0.74 0.15 0.78 0.13 078 021 086 0.06 0.72 0.12
NSGA-II-ACO-1 077 [ 0.04 | 0.85 [ 0.08 0.86 0.13 091 0.07 0.74 0.19
NSGA-II-ACO-2 0.73 0.07 086 0.13 0.78 0.13 0.8 [ 0.06 0.72 0.14
NSGA-II-LS 0.76 092 0.10 0.90 0.13 0.8 0.10 0.72
SPEA2 0.71 0.11 0.74 0.07 0.08
SPEA2-LS 0.72  0.07 [0.77 0.15 0.68 0.06

Table 6.8: Median and interquartile range of I. obtained by the optimisers for the

Arcl11 problems

Arcl11-1  Arcl11-2  Arcl11-3  Arclll-4  Arclll-5

F+IQR(zx) F+IQR(x) #+IQR(zx) F+IQR(x) &+IQR(x)
NSGA-II 0.97  0.02 0:027 0.93 NN 0.93 NI .92 JON2E
NSGA-TI-ACO-1  0.96 0:01  0.94 0.04 095 0.04 | 094 0.03 096 0.09
NSGA-TI-ACO-2  0.97 [0 0.96 004 091 005 095 003 092 0.04
NSGA-TI-LS 098 0.04 096 005 093 006 094 0.03 092 [ 0.02
SPEA?2 0.03 0.94 0.05 J0927 0.04 [091 0.04
SPEA2-LS - 0.03 0.94 0.04 0.07 [JONOIY 002 JOBE 0.06

Table 6.9: Median and interquartile range of In obtained by the optimisers for the

Arcl11 problems

Arclll-1 Arcll11-2 Arcll1-3 Arclll-4 Arclll-h

T+ IQR(x) z+£IQR(z) TxIQR(zr) T+IQR(x) Z+IQR(x)
NSGA-II 0.83 0.13 0.84 0.07 081 0.10 0.79 0.13 [0.89 0.07
NSGA-II-ACO-1 0.80 0.09 0.8 0.08 0.79 [ 0.05 | 0.82 0.08 0.95 | 0.03
NSGA-II-ACO-2 [0l 0.11 [0:81 0.83 0.85 0.12 0.90
NSGA-II-LS 0.81 | 0.07 0.82 0.06 0.07 0.86 1 0.08 090 0.11
SPEA2 0.80  0.08 0.07 0.78 0.12 0.06
SPEA2-LS 0.78 0.84 0.10 [0.77 0.07 [0.76 0.09 0.89 0.05

Table 6.10: Median and interquartile range of the computation time required by the
optimisers for the Arc111 problems

Arcll1-1 Arcl11-2 Arcl11-3 Arcll1-4 Arclll-h

T+ IQR(x) z+IQR(z) T+IQR(zx) T+IQR(x) Z+IQR(x)
NSGAI G0 002 000 002 000 003 000 0.04 000
NSGA-II-ACO-1 049 0.20 0.30 0.19 0.35 0.16 056 0.17 076 0.15
NSGA-II-ACO-2 044 024 062 0.23 0.77 034 067 034 093 0.15
NSGA-II-LS 0.12 0.01 0.14  0.00 0.14 0.00 0.18  0.00 0.22 @ 0.00
SPEA2 0.12 0.09 0.13 0.11 011 0.11 0.5 0.14 023 0.17
SPEA2-LS 0.03 000 0.04 0.00 [0.03 0.00 005 0.00 0.06 0.01
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6.4.2 Nonparametric statistical test

In this section, nonparametric statistical tests are applied to highlight the strengths and
weaknesses of each algorithm. The obtained Friedman statistics for all problems and each
family of algorithms, considering together the Iyyv, I;gp, I, In and the computation time
and respective computed p-values are shown in Table 6.11. Taking into consideration x3 ;5 =
11.1 with a 95.00% confidence level and five degrees of freedom, it can be concluded that there
is a significant difference between the algorithms for the following indicators: Iy, I;ap, I,
and the computation time. However, for the spread indicator, Ia, there is no significant

difference between the algorithms when considering all problem instances together.

Table 6.11: Friedman’s statistic and computed p-value in accordance with Igyv, Iigp,
1., In and the computation time for the various algorithms

Indicators Friedman statistic Computed p-values

Inv 291.243 0.000
Licp 221.310 0.000
I, 110.326 0.000

I 6.351 0.274
Time 829.249 0.000

The Friedman ranks obtained for each quality indicator by considering all problem instances
together are shown in Table 6.12. This table reveals that the SPEA2-LS is the algorithm
that demonstrates the best Friedman rankings for Iy, Irgp and I.. The algorithm with the
best spread, represented by the obtained Friedman ranks for I, is the SPEA2. Regarding
the computation time, the algorithm that converged the fastest was the NSGA-II, followed
by the SPEA2 and SPEA2-LS. Regarding the NSGA-II family of algorithms, in general,
the covered hypervolume is improved when either applying the simulated annealing or the
ant colony optimisation algorithm as a hybridised form. An improvement of I, was also
observed when using the NSGA-II-ACO-1 and NSGA-II-ACO-2. The deterioration of the
value of Ix is common to all of the hybridised forms. However, as illustrated in Table 6.11,
this deterioration is not significant. The unadjusted and adjusted p-values obtained through
the applications of Holm’s post hoc procedures are shown in Tables 6.13 to 6.17. As these
tables show, while the SPEA2-LS obtains the best results for most of the quality indicators,
it is never significantly better than the SPEA2.
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Table 6.12: Average rankings returned by Friedman’s nonparametric test for all prob-
lems according to the various quality indicators

Algorithm  Igy  Iigp I, In Time

NSGA-II 429 3.04 3.13
NSGA-II-LS  4.17 293 3.03 3.38 3.28
NSGA-IIF-ACO-1 3,99 285 3.18 349 1.89
NSGA-II-ACO-2 398 3.04 3.18 3.36 1.60
SPEA2 237 452 407 3.66 4.53

SPEA2LS |DRONEGIEE 541  3.56

Table 6.13: Unadjusted and adjusted p-values obtained for all problems through the ap-
plication of Holm’s post hoc procedure, using the SPEA2-LS as control
algorithm in accordance with Iy

Algorithm  Unadjusted p-value Adjusted p-value
NSGA-II  0.000 0.000
NSGA-II-LS  0.000 0.000
NSGA-II-ACO-1  0.000 0.000
NSGA-II-ACO-2  0.000 0.000
SPEA2 0.290 0.290

Table 6.1/4: Unadjusted and adjusted p-values obtained for the Arc111 family problem
through the application of Holm’s post hoc procedure, using the SPEA2-LS
as control algorithm in accordance with Iigp

Algorithm  Unadjusted p-value Adjusted p-value
NSGA-II-ACO-1  0.000 0.000
NSGA-II-L.S  0.000 0.000
NSGA-II  0.000 0.000
NSGA-II-ACO-2  0.000 0.000
SPEA2 0.485 0.485

Table 6.15: Unadjusted and adjusted p-values obtained for the Arci1l1 family problem
through the application of Holm’s post hoc procedure, using the SPEA2-LS
as control algorithm in accordance with I,

Algorithm  Unadjusted p-value Adjusted p-value
NSGA-IT  0.000 0.000
NSGA-II-ACO-2  0.000 0.000
NSGA-II-LS  0.000 0.000
NSGA-II-ACO-1  0.000 0.000

SPEA2 0.175 0.175
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Table 6.16: Unadjusted and adjusted p-values obtained for the Arc111 family problem
through the application of Holm’s post hoc procedure, using the NSGA-II
as control algorithm in accordance with Ia

Algorithm  Unadjusted p-value Adjusted p-value
NSGA-II-ACO-2  0.023 0.115
NSGA-II-LS  0.043 0.171
SPEA2-LS 0.074 0.223
NSGA-II-ACO-1  0.080 0.223
SPEA2  0.564 0.564

Table 6.17: Unadjusted and adjusted p-values obtained for the Arc111 family problem
through the application of Holm’s post hoc procedure, using the NSGA-II
as control algorithm in accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value
NSGA-II-ACO-2  0.000 0.000
NSGA-II-ACO-1  0.000 0.000

NSGA-II-LS  0.000 0.000

SPEA2-.S  0.000 0.000

SPEA2 0.201 0.201

As discussed in the previous chapters, the results may vary depending on the problem charac-
teristics. Similar to the previous analysis and chapters, the obtained Friedman statistics for
all the problems are considered separately and the various indicators are shown Table 6.18.
There are significant differences between algorithms for all problem instances when consid-
ering I'gy and I;gp. However, these differences are not necessarily significant for I, and
In. Table 6.19 shows the algorithms that performed the best for each problem family in
accordance with all quality indicators and their scores, which represents the percentage of
algorithms for which the best one is significantly better. In opposition to Chapter 4, no
noticeable difference between the performances of the algorithms were noticed when solving

problem instances belonging to Group 1 or Group 2.



Table 6.18: Friedman’s statistic and computed p-value for all problems in accordance to Iyv, Ligp, 1., In and the computation

time
IHV IIGD Ie IA Time
Problem  Friedman Computed Friedman Computed Friedman Computed Friedman Computed Friedman Computed
statistic  p-values statistic  p-values statistic  p-values statistic  p-values statistic  p-values

Arclll  26.58 0.00 42.81 0.00 15.78 0.01 6.35 0.27 136.80 0.00
Buxey 36.98 0.00 36.19 0.00 7.69 0.17 3.88 0.57 111.76 0.00
Gunther 49.71 0.00 40.75 0.00 7.57 0.18 2.74 0.74 116.59 0.00
Hahn 38.47 0.00 52.88 0.00 11.92 0.04 4.36 0.50 98.10 0.00
Jackson  25.80 0.00 10.54 0.06 6.53 0.26 6.40 0.27 25.79 0.00
Kilbrid  17.17 0.00 36.97 0.00 18.41 0.00 10.91 0.05 91.89 0.00
Lutzl 23.09 0.00 9.57 0.09 15.16 0.01 0.51 0.99 89.49 0.00
Mitchell  36.14 0.00 25.68 0.00 22.36 0.00 4.25 0.51 72.89 0.00
Mukherje 25.90 0.00 10.24 0.07 15.33 0.01 10.35 0.07 64.71 0.00
Roszieg  33.89 0.00 10.75 0.06 16.41 0.01 6.71 0.24 73.32 0.00
Sawyer  14.86 0.01 14.86 0.01 12.59 0.03 2.60 0.76 83.40 0.00

sjuswiadxa [euoneindwo?r) 79
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Table 6.19: Best algorithms regarding their average rankings returned by Friedman’s nonparametric test according to the various
quality indicators

IHV IIGD IE [A Time

Problem Best al- Score Best al- Score Best al- Score Best al- Score Best al- Score

gorithm [%]  gorithm [%]  gorithm [%]  gorithm [%]  gorithm [%]

Arclll SPEA2 80.00 SPEA2 40.00 SPEA2-LS 40.00 SPEA2 - NSGA-II 80.00

Buxey SPEA2-LS 80.00 SPEA2 40.00 SPEA2-LS 20.00 NSGA-II - NSGA-II 60.00

Gunther SPEA2 80.00 SPEA2 40.00 SPEA2 40.00 NSGA-II-LS - NSGA-II 80.00

Hahn SPEA2-LS 80.00 SPEA2 40.00 SPEA2-LS 20.00 NSGA-II - NSGA-II 80.00

Jackson SPEA2-LS 80.00 SPEA2-LS - SPEA2-LS 20.00 NSGA-II- - NSGA-II 40.00
ACO-1

Kilbrid SPEA2-LS 80.00 SPEA2-LS 40.00 SPEA2-LS 20.00 SPEA2 20.00 NSGA-II 60.00

Lutzl SPEA2-LS 80.00 SPEA2-LS - SPEA2-LS 40.00 NSGA-II - NSGA-II 80.00

Mitchell SPEA2 80.00 SPEA2-LS 40.00 SPEA2-LS 60.00 NSGA-II 20.00 NSGA-II 40.00

Mukherje SPEA2-LS 80.00 SPEA2-LS 40.00 SPEA2-LS 40.00 NSGA-II-LS  20.00 NSGA-II 80.00

Roszieg SPEA2-LS 80.00 SPEA2-LS - SPEA2 40.00 NSGA-II- - NSGA-II 40.00
ACO-1

Sawyer SPEA2-LS 60.00 NSGA-II- 20.00 SPEA2-LS 20.00 NSGA-II - NSGA-II 60.00

ACO-1

sjuswiadxa [euoneindwo?r) 79
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Figure 6.12 shows the Friedman’s ranking obtained when isolating the NSGA-II algorithms.
A significant difference only exists when considering the time to convergence. Tables 6.20
to 6.24 show the unadjusted and adjusted p-values obtained for the quality indicators with
the NSGA-II-ACO-2 and NSGA-II as control algorithm. As outlined in these tables, none
of these algorithms are significantly better than the others. Even if the NSGA-II-ACO-2 is
slightly better than all other algorithms for some quality indicator, it is not a good candidate

for further investigation due to its relative high computation time.

w =~
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| |

Friedman’s ranking
[N}
I
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IHV ]IGD Ie IA Time
INSGA-TTINSGA-TT-ACO-1INSGA-TI-ACO-2INSGA-TI-1.S

Figure 6.12: Friedman’s ranking for the NSGA-II family of algorithm and all quality
indicators

Table 6.20: Unadjusted and adjusted p-values obtained for Igy through the applica-
tion of Holm’s post hoc procedure, using the NSGA-II-ACO-2 as control
algorithm according to all problem instances

Algorithm Unadjusted p-value Adjusted p-value
NSGA-TI 0.135 0.405
NSGA-II-LS 0.501 1.002
NSGA-II-ACO-1 0.813 1.002

Table 6.21: Unadjusted and adjusted p-values obtained for I;qp through the applica-
tion of Holm’s post hoc procedure, using the NSGA-II-ACO-2 as control
algorithm according to all problem instances

Algorithm Unadjusted p-value Adjusted p-value

NSGA-II-LS 0.234 0.702
NSGA-II-ACO-1 0.258 0.702
NSGA-II 0.698 0.702
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Table 6.22: Unadjusted and adjusted p-values obtained for I. through the application of
Holm’s post hoc procedure, using the NSGA-II-ACO-2 as control algorithm
according to all problem instances

Algorithm Unadjusted p-value Adjusted p-value

NSGA-II 0.377 1.131
NSGA-II-LS 0.490 1.131
NSGA-II-ACO-1 0.654 1.131

Table 6.23: Unadjusted and adjusted p-values obtained for In through the application
of Holm’s post hoc procedure, using the NSGA-II as control algorithm ac-
cording to all problem instances

Algorithm Unadjusted p-value Adjusted p-value
NSGA-II-ACO-2 0.021 0.063
NSGA-II-LS 0.048 0.097
NSGA-II-ACO-1 0.060 0.097

Table 6.24: Unadjusted and adjusted p-values obtained for the computation time
through the application of Holm’s post hoc procedure, using the NSGA-II
as control algorithm according to all problem instances

Algorithm Unadjusted p-value Adjusted p-value
NSGA-TI-ACO-2 0.000 0.000
NSGA-II-ACO-1 0.000 0.000

NSGA-II-L.S 0.000 0.000

6.5 Conclusion

In this chapter, the problem of selecting the best combination of products, processes, and
resource alternatives in order to balance the most efficient assembly line by considering the
buffer sizes was introduced. The associated mathematical model that aims to optimise capa-
city and cost-oriented criteria was presented. In order to assess the efficiency of the assembly
line when using buffers, a generic simulation model, which provides necessary information to
the product cost estimation module, was created and is presented. The different algorithms
are compared to each other, as in the previous chapters, through nonparametric statistical
tests. A list of optimisation algorithms, including evolutionary algorithms and memetic al-
gorithms was proposed to solve this problem. The different algorithms were compared to
each other based on a nonparametric statistical test. The nonparametric statistical test
showed that a deterioration of Ia for all hybridised forms could be identified. Furthermore,

it seems that the SPEA2 in combination with the proposed local search improves Iy, I1gp
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and I.. When considering the computation time, the algorithm that was able to converge
the fastest to a set of non-dominated solutions, was the NSGA-II. In addition, the NSGA-
ITI-ACO-1 and NSGA-ITI-ACO-2 required the most computational effort to move forward to

a set of non-dominated solutions.

The proposed work in this chapter has partially been the subject of several publications: one
submission to an international journal [292], one submission to a national journal [181], and

one communication at conference [294].



Chapter 7

Industrial application

Abstract

This chapter presents two industrial use-cases, in which the presented framework was used
to assist product designers and process planers with planning the most suitable configuration

of product and assembly design.
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7.1 Introduction

The developed framework was used in two different use-cases to plan an automated assembly

line in the first use-case and a manual assembly line in the second use-case.

7.2 Use-Case 1: Automated Assembly Line

In this use-case, given products were produced on a circle, automated, and synchronous
assembly line (the layout is shown Figure 7.1). Different intermediate buffers were placed
between all workstations to minimise starvation and blockage. In the last station, the work-
pieces are tested, and if they do not respond to quality requirements, they are sent to the
repair station, which is represented by the dashed square. In this system, the products that
will be assembled are positioned on a workpiece carrier and move from one station to an-
other. In total, 100 workpiece carriers are present in the system. The automated circle line
has a predefined cycle time of 4.9 seconds and follows a three-shift model. The operation
of the line, which is characterised by 30 assembly tasks in 13 workstations, requires four
operators which can be categorised into three wage groups according to their functions and
qualifications. Two operators are associated with wage group 1, one operator and one shift
supervisor are associated with wage group 2, and one technical supervisor is associated with

wage group 3.

In this use-case, the challenge was to design a new assembly line for a new variant of the
already existing product to optimise the overall efficiency of the new assembly line on the
basis of the current one. In addition, the developed assembly line concept had to be compared

to three already planned concepts.

v4

[ Workstations
[ Conveyor

Figure 7.1: Circle assembly line in Use-Case 1
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7.2.1 As-Is Situation

During this project, several activities were performed to assess and collect the required data

and information.

7.2.1.1 Analysis of the current assembly line: Data Collection

The objective of this phase was the collection of the required data for machine cycle times and
production disturbances. A sample of data was collected over one month through the machine
data acquisition module of the existing assembly line. In this sample, only relevant and
technical downtimes were considered. Organisational downtimes related to lack of material
and cleaning were not considered in this study. From this data, the failures were classified
according to their Mean Time To Failure (MTTF) and Mean Time To Repair (MTTR).
The bar chart shown in Figure 7.2 represents an example of the classification of the MTTR.

Furthermore, the scrap data was collected through a process control chart over several weeks.
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Figure 7.2: Classification of the various Mean Time to Repair for the different stations

7.2.1.2 Analysis of the current assembly line: Video analysis

Due to the small cycle time of the existing assembly line and to identify optimisation poten-

tial, a video analysis was performed.

7.2.1.3 Analysis of the current assembly line: Simulation model

To obtain highlights inside the current situation, the actual assembly line was simulated.
Figure 7.3 shows the proportion of time workstations were starved or blocked. Due to the

poor balance of the line and inadequate buffer sizes, the first workstations were always
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blocked and the last workstations were always starved. A more detailed analysis is shown

in Figure 7.4, where the average buffer content for the buffers 1 to 5 is represented.
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Figure 7.3: Percentage of blockage and starvation of each assembly station
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Figure 7.4: Average content of the buffers

7.2.1.4 Conclusion

The collection and analysis of the required data and the video analysis enabled the definition
of process and resources alternatives. These alternatives were considered in the precedence

graph.

7.2.2 To-Be Situation

Based on the previous analysis and identified process and resources alternatives, several
solutions were computed. These solutions are shown in Figure 7.5, in which these solutions

are compared to the concepts that were already planned. The optimised concepts found by
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the algorithm dominate all three planned concepts. The chosen concept from these eight
alternatives increases the throughput rate by 4 %. In comparison to the actual assembly

lines, around 17 % of the buffer positions were modified and some were added.

h

e Concepts already planned
e Found optimised concepts

2

Figure 7.5: Comparison of the three already planned concepts and the generated con-
cepts

In addition to the line balancing, the throughput was also increased by 3 % after changing
the rework strategy. If a workpiece was defined as scrap during the assembly process, the
workpiece carrier was still moving through all workstations. This strategy, which leads
to unused capacity, was changed by extracting the workpiece carriers out of the line by a
conveyor belt as soon as the workpiece was defined as scrap. After rework, the workpiece
was, through the same system, entering the workstation it was supposed to visit before

leaving the line.

7.3 Use-Case 2: Manual Assembly Line

In this use-case, several products with different functions were produced or were planned to
be produced in the near future. The first product type that was produced comprised two
main models that are denoted as P1 and P2. The other types are planned to be produced
in the upcoming years in different volumes. These products are denoted as P3, P4, P5, and
P6.

The forecast provided by the sales department for each product is shown in Figure 7.6. The
demand is increasing drastically and sometimes exponentially. To ensure the ability of the
production system to cope with new products and the increasing demand, the objective was

to design an efficient production system that can address both requirements.
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—— Product P1
—— Product P2
Product P3
Product P4
—— Product P5
—— Product P6

Annual Demand [pcs/y]

Years

Figure 7.6: Fvolution of the demand over the next years for each product

According to the similarities of tasks, their processing times, and the required equipment

between these products, the product family clustering of Table 7.1 was obtained.

Table 7.1: Differences and similarities between the various products based on their re-
quired tasks and equipment

Process

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 Product Family
P1 X X X X X X X X X X X 1
P2 X X X X X X X X X X X 1
P3 X X X X X X X X X 2
P4 X X X X X X X X X X X 3
P5 X X X X X X X X X X X X 3
P6 X X X X X X 4

Only products P1 and P2 were produced at the time of the application of the developed
method. To create an efficient assembly system for upcoming products, for which no accurate

data existed, products P1 and P2 were used as a reference in the as-is situation.

7.3.1 As-Is Situation

In the as-is situation, the products P1 and P2 were produced by two operators. In total,
depending on the product configuration of P1 and P2 and the choice of the following modules
and product specifications over 100 variants of P1 and 60 of P2 could be assembled: (i) probe
length, (ii) process connection, (iii) display, (iv) house, and (v) switching output. In the first
station, the electronic board was programmed and tested. The rejection rate at this station
was around 25 %. At the second station, an impermeability test was performed. The

rejection rate at this station was approximately 5 %. After this process, the second operator
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was in charge of a final semi-automatic test. The first phase of the test is manual and requires
the operator to visually check the sensor. During the second phase, which is automated and
lasts four minutes, the operator cut the probe of the next order and packed the sensor of the

previous order. Depending on the type of sensor, three packages were available.

To assess the degree of capacity utilisation of the two operators and identify optimisation
potential, a video analysis was done. One result of this analysis is represented in Figure 7.7.
The poor capacity utilisation of the two operators can be explained with the following reas-

ons:

— unneeded motion due to the high material area on the assembly line

— waiting until various testing phases were finished to manually confirm the success of
the test

— rework of specific components

— overprocessed tasks

28%

A\ O Non-Value Added (but necessary)
@ Non-Value Added

[J Value Added

Figure 7.7: Pie diagram representing the ratio of non-value and value added tasks

To increase the throughput of the line and increase the capacity utilisation of the operators,

the following product design and process alternatives were considered in this study:

— Qutsourcing the board programming, which is responsible for high scrap rates in the
early stages of the assembly

— Outsourcing the probe cutting process, which requires high material space and a
stochastic processing time, making efficient balancing more difficult. Furthermore,
this choice is motivated by the fact that, as shown in Figure 7.8 only eight lengths
represent 80% of the annual demand

— Redesigning the house of the product to increase the process quantity during the final
testing phase

— Redesign the packaging to decrease the current number of available packages
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The required material space for each task was assessed after optimising the required material

space on the line.
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Figure 7.8: ABC-Analysis of the required probe length for products P1 and P2

A partial combined precedence graph comprising most of the design or process alternatives
is presented in Figure 7.9. In this figure, the darker region represents a simplified subgraph
associated with the decision of cutting the probe in-house or outsourcing it. Node 4, which
represents the in-house cutting has only been simplified and replaced by one node to ease the
interpretation of the figure. The less dark region represents the final testing with a maximum
process quantity of either one or two products. The light gray region represents the two
alternatives associated with programming the electronic board in-house or not. Finally,
the dashed arrows represent two distances constrained and associated with the automatic

processing time of programming or testing tasks.

Figure 7.9: Partial representation of the developed precedence graph
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7.3.2 To-Be Situation

Based on the product family shown in Table 7.1, Figure 7.10 shows the evolution of the

required cycle time for each product family over the years.

—— Product Family PF1
Product Family PF2
Product Family PF3

—— Product Family PF4

—— Product Family PF5

—— Product Family PF6

Cycle Time [t]

Years
Figure 7.10: Evolution of required cycle time over the next years for each product family

In the first year, only the product family PF1 must be produced within a cycle time of 15
min. By applying the MOACS-2-L-LS, which provides better results in the extreme regions
of the Pareto regions, the chosen solutions provide the improvement or deterioration shown
in Table 7.2. In this solution, the redesign of the house of the product to increase the process
quantity was not chosen since it would have decreased the savings associated with the unit
product costs. Even if the costs associated with some raw materials increased, on average
the total costs associated with raw material have decreased, and the chosen concept makes

it possible to decrease the total unit cost by 17 %.

Table 7.2: Product costs when considering all products together

Cost elements Improvement/Deterioration [%)]

Chu, +29
Chu, -5
O, 1
CM4 +33
Cu +3
>

Cr, +138
Con 4100
Cg +11
Cg +11
CPart 117

In the second year, the new product family PF2 is introduced and the product P3 must be

assembled within a cycle time of 21 min. In comparison, the required cycle time of the first
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product family PF1 reaches 10 min. The production system developed thus far needs to be
readjusted. In the solution chosen, insourcing the probe cutting was chosen again to increase
the capacity utilisation of all workers. The ALBP was solved for the upcoming years and

the probe cutting will only be outsourced in the fourth year.

To minimise the required effort of changing the production system, transformation scenarios
were developed. Several line layouts were compared based on the characteristics of the line.
To stay flexible, three main assembly lines are planned for the six product families. The
evolution of the production systems over the time and the introduction of new product
families is schematically represented in Figure 7.11. The reader will note that the third PF

is not represented in Figure 7.11.
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| Assembly | Assembly |
(d) 4th Schematical Layout

Figure 7.11: Evolution of the various layouts for the upcoming years

7.4 Conclusion

In this chapter, the previously developed methods are applied, considering products, pro-
cesses, and resource alternatives in two different use-cases. In the first case, the objective

was to design an automated assembly line with buffers and in the second case, a manual

assembly line had to be designed.



Chapter 8
Conclusion

The holistic design of products and assembly lines is a requirement that has been established
in academia for many years. In this thesis, two problems associated with the selection of
the best product and assembly line configuration under consideration of a set of products,
processes, and resource alternatives were formulated. In the first problem, the idea relies on
analysing the interdependencies between the selection of specific products, processes, and
resource characteristics, and their influence on the design of a straight assembly line. In
the second problem, the buffer sizes are also considered. The evaluation of the capacity
and cost-oriented objectives is done mathematically, through a discrete event simulation for

these two problems.

This thesis consists of seven chapters. The first and second chapters discuss the subject
of investigation in this thesis. A general introduction is provided and challenges faced by
producing companies are presented. In the third chapter, a quick overview of optimisation
problems and associated resolution methods is proposed. A detailed overview of models
and methods used for solving similar sub-problems is alo presented based on which, the
drawbacks of both models and methods are identified. Based on the identified drawbacks, a
new problem with the objective of simultaneously selecting product designs, processes, and
resource alternatives to plan the most suitable assembly line is presented in Chapter four.
Several optimisation algorithms are compared, and the most promising ones are extended
with a local search in Chapter five. The influence of the dominance rules is also quantified.
In Chapter six, an extended version of the problem is proposed; its objective is to also select
the buffer sizes between the workstations. Different hybridisation forms are proposed to solve
this problem. In Chapter seven, two industrial use-cases, in which the present approach was

used, are presented.
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8.1 Synthesis of contributions

For the first problem, a list of 34 state-of-the-art approximate methods was developed.
Among these algorithms, variants of swarm intelligence, such as ant colony optimisation,
particle swarm optimisation, cuckoo search algorithms, flower pollination algorithms, bat
algorithms, and evolutionary algorithms, can be found. These algorithms were compared
through nonparametric statistical tests based on four multi-objective quality indicators ac-
cording to fifty problem instances. Each problem instance is characterised by the order
strength of the precedence graph, the number of subgraphs or product design alternatives,
and the total number of available resources. The diversity of these instances enabled their
classification into simple and complex problems. When considering all problem instances
together, the proposed NSGA-II and SPEA2 had the best results on average, when con-
sidering the covered hypervolume and the distance required to translate every solution of
the approximate Pareto front, such that it dominates the true Pareto front. When consid-
ering the spread of the solutions and the inverted general distance metric which measures
how far the elements in the true Pareto front are from the solutions in the approximate
Pareto front, the proposed CHAC-1 and BIANT-1 obtained the best results. However, when
considering the problem instances according to their order strengths (i.e. their resolution
complexity), the MOACS-1, MOACS-2, BIANT-1, and BIANT-2 were more suitable than
the other algorithms. The significant difference between the MOACS and BIANT algorithms
were identified using the attainment function, which showed that the former algorithms per-
formed better in the extreme regions of the Pareto front and the latter algorithms preformed

better in the central one.

By considering the computation required by each algorithm until convergence to an approx-
imate Pareto front, it was identified that the BIANT-1 and BIANT-2 require the highest
computation time. To improve the results of algorithms that were identified as promising
due to their good results, the Lorenz and S-CDAS dominance rules were applied. The
comparison of these dominance rules based on the Friedman’s nonparametric test showed
heterogeneous results and there was no significant difference between them. However, the
application of the Lorenz dominance rule to the MOACS-2 improved the necessary distance
to translate every solution of the approximate Pareto front, such that it dominates the true
Pareto front. In addition, the gap between the MOACS and BIANT was also increased when
considering the spread of the obtained solutions. In a second step, a local search procedure
was combined with the MOACS-2-L, SPEA2, and NSGA-II-L. For the former algorithm, the
application of the local procedure improved the performance of the algorithm on all quality

indicators, except for the spread indicator which decreased. For the second algorithm, slight
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improvements were observed, primarily on simple problems. The results are completely dif-
ferent for the NSGA-II-L, which only improve its convergence time without improving other
quality indicators. An explanation for these results may be that the local search was applied
to the non-dominated solutions of the current population. This may have engendered an
early convergence toward local optima. To avoid getting stuck in local optima, a different
crowding distance based on the solution space should be used or a different local search (e.g.
simulated annealing). By combining the results obtained for the first problem, it can be
affirmed that the MOACS-2-L-LS provides good results since it improved almost all quality
indicators and reduced the ratio of non-dominated solutions that were dominated by the
classical MOACS-2.

For the second problem, due to the nature of the proposed solution encoding, the direct
application of MOACO was not possible. Due to the positive results obtained on average
when considering all problem instances together, two hybridised forms of multi-objective
resolution methods were proposed. In the former type, the NSGA-II and SPEA2 were
extended with a simulated annealing, while in the latter type, the NSGA-II was extended
with components of the MOACS. When considering the NSGA-IT family of algorithms, the
covered hypervolume improved with the hybridised forms. Given the drawbacks identified
between the requirements of the industry and the recommendations that have been proposed
in the literature, it can be affirmed that the problem under study in this thesis has been

addressed since the proposed approach was successfully implemented in the two use-cases.

Thus, the principal contributions of this thesis are as follows:

— Formulation of two problems associated with the selection of the most suitable assembly
line design under consideration of product design, processes, and resource alternatives

— Development of a cost model with the objective of translating the complex interde-
pendencies between the selection of specific product designs, processes, and resource
characteristics

— Empirical study comparing various multi-objective algorithms according to several
quality indicators, including evolutionary algorithms, ant colony optimisation, particle
swarm optimisation, bat algorithm, cuckoo search algorithm, and flower pollination
algorithm.

— Analysis of the influence of local search and dominance rules on the performance of
several algorithms

— Combination of optimisation methods with a generic discrete-event simulation model

for the second problem
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8.2 Perspectives and future work

Regarding the perspectives, it could be interesting to extend the proposed models by incor-

porating strategic decisions, such as:

— The number of products or models produced on the assembly line and the number of
assembly lines - the number of products or models on each line, which is an indirect
case of the number of assembly lines, is a topic that raises attention in the industry.
While the cycle time is usually defined for the assembly process, depending on the type
of products and resources, and other optimisation criteria (e.g. flexibility regarding
variation in the demand), it may be more efficient to increase the number of lines in
the assembly process and thus plan assembly lines with a higher takt time.

— Make-Or-Buy decision - an interesting question is also usually related to the decision of
manufacturing a part in-house or purchasing it from an external supplier. The make-
or-buy decision is usually made by considering the associated costs of production .
However, it might be interesting to also consider the required manufacturing capacity
to produce the parts needed in the assembly process.

— The shape and layout of the assembly line - an interesting approach would also be to
enrich the current work by solving a new problem, in which a decision regarding the
line shape and layout would be taken. Indeed, the selected line design may increase
or decrease the efficiency of a specific line shape (e.g. a straight or U-shaped line) or

layout (e.g. parallel stations or two-sided assembly lines).
To stay as close as possible to reality, the proposed models could also be extended as follows:

— Characteristics of task duration - while both deterministic and stochastic processing
times were taken into account, considering learning effect of workers, which is usually
non-negligible in assembly lines, would enhance the proposed models. Also, given a set
of tasks assigned to a station, the station time may depend on the sequence in which the
tasks are performed. Thus, it would also be interesting to consider sequence-dependent
processing time. This is especially true when the tasks are performed manually.

— Restrictions between specific resources could be modelled to incorporate zoning and
distance constraints.

— Consider the lack and uncertainty of information and data: due to the lack of inform-
ation in the early design process, problems may arise when information is fuzzy or
uncertain which makes the design evaluation difficult. To fill this gap and decrease

the sensitivity of the proposed approach to any uncertain information, approaches of

1. This condition can be modelled in the generic approach proposed in this thesis
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robust optimisation could be used.

It would also be interesting to consider future demand scenarios in which the proposed models
could be extended with rebalancing aspects. This would require to consider the associated

costs of rebalancing the assembly line and would require using a dynamic cost model.

Regarding opportunities for resolution methods, it would also be interesting to analyse:

— the influence of different evolution processes and thus consider different optimisation

metaheuristics, such as:

— Imperialist Competitive Algorithm
— Invasive Weed Optimization

— Intelligent Water Drops Algorithm
— the influence of other local searches.

Finally, it could be useful to also perform a sensitivity analysis of the various parameters
on the performance of the algorithms when solving complex and less complex problems.
Regarding the application, it would also be interesting to focus on the design of the product

and restructure the proposed approach to use less information.



Annexe A

Résumé substantiel

Abstract

This section presents a french summary of the proposed study.
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A.1 Introduction

Depuis que la personnalisation de masse est devenue une stratégie viable dans le milieu des
années 1990, une énorme pression est exercée sur le marché industriel. Cette pression force les
entreprises a fournir des produits ou services uniques [228] tout en respectant les contraintes
d’efficacité, de cotits et de qualité de production en série. Pour répondre & ces exigences, il

est possible d’envisager les solutions suivantes :

(a) de développer des plateformes de produits qui se caractérisent par une modularité et
une standardisation des produits et procédés de fabrication

(b) de réutiliser les systémes de production déja existants.

Cette pression s’accentue avec I'adoption d’une stratégie de personnalisation des produits,
contraignant les entreprises a renouveler réguliérement leurs produits et leurs procédés de
fabrication et d’assemblage. Cela se traduit non seulement par une réduction des cycles de
vie des produits et systémes de production, mais également par une augmentation de la
complexité associée a la planification de ces systémes de production et d’assemblage, qui se

doivent d’étre efficaces et rentables.

Les chaines d’assemblage qui répondent & ces exigences de cotits, de qualité et d’efficacité sont
les systémes d’assemblage les plus couramment utilisés. Fn raison des cotits d’investissement
élevés, la conception et la re-conception de ces lignes sont trés importantes. De nombreuses
décisions doivent étre prises durant les activités associées a la conception d’une chaine d’as-
semblage. La plupart sont reliées & la conception du produit, a la sélection des procédés de
fabrication et d’assemblage et a I’équilibrage de ligne |30, 338]. En général, ces décisions
liées a de nombreux sous-problémes ne sont pas prises en compte simultanément a cause de
leurs complexités. Rekiek et al. [338] catégorisent la conception de chaine d’assemblage en

conception logique et physique. Durant la conception logique :

(a) les différentes taches nécessaires a I’assemblage d’un produit sont attribuées aux sta-
tions de travail (Line Balancing);

(b) les équipements et ressources nécessaires sont distribués entre ces stations (Resource
Planning) ;

(c) les stocks tampon sont distribués entre les stations de travail (Buffer Allocation).

Durant la conception physique, 'architecture de la ligne, le systéme de transfert et choisi et

un schéma d’implantation sont définis.

Bien que la majorité des cotlits du produit final soit déterminée durant le développement

du produit, de nombreuses décisions liées au design d’'un produit sont prises sans prendre



A.2 Synthése de I'état de I'art 207

en compte les taches d’assemblage requises [68]. Certains auteurs, par ex. Ullman [395],
indiquent que les décisions prises lors de la conception d’un produit déterminent environ
70-75 % de son cout final et celles prises lors de la conception de la chaine d’assemblage
environ 10-25 %. Les cotits de production (fabrication et assemblage) représentent quant a
eux environ 70 % du cout final alors que les coiits de développement du produit uniquement
6-12 % [366]. Cela signifie non seulement que si de mauvaises décisions sont prises durant
les premiéres activités du cycle de vie d'un produit, des modifications techniques seront
nécessaires par la suite, mais également que des changements tardifs du design du produit
peuvent étre trés couteux [209]. De plus, les cotts associés au développement d’un produit
augmentent considérablement & mesure que le projet de conception avance. Cela signifie
que, plus les changements et les améliorations sont effectués dans les premiéres étapes d'un
projet de conception, plus le cott final du produit sera réduit. Ce qui induit la nécessité de
paralléliser les activités nécessaires a la conception d’une chaine d’assemblage en considérant
simultanément la conception du produit, la sélection des procédés d’assemblage, 1’équilibrage

de ligne, le choix d’équipements/ressources et I'allocation des stocks tampon.

Le travail présenté dans cette thése concerne la formulation et la résolution de deux problémes
d’optimisation multiobjectifs associés a une approche holistique d’ingénierie concourante.
Ce sujet est basé sur I'expérience acquise a travers de multiples projets industriels dans

différentes entreprises en tant qu’ingénieur de recherche et consultant.

A.2 Synthése de I’état de ’art

Dans cette section, différentes méthodes permettant 1’évaluation de solutions liées aux pro-
blémes de conception de produits, du choix de procédés d’assemblage, d’équilibrage de ligne,
de sélection d’équipement et d’allocation de stocks tampon seront présentées. L’objectif
étant d’identifier les lacunes dans les approches et les méthodes actuelles. De plus amples

informations se trouvent dans le chapitre 3.

A.2.1 Evaluation de différents designs d’un produit

Habituellement, le processus d’évaluation des différents designs d’un produit repose sur
des descriptions qualitatives et des jugements subjectifs dans lesquels des experts et leurs
connaissances personnelles sont sollicités [436]. De nombreuses méthodologies telles que De-
sign for Manufacturing, Design for Assembly, Design for Environment, Design for Safety,

Design for Maintenance, Design for Economy et Design for Ergonomics ont été proposées
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par le monde universitaire et 'industrie afin d’évaluer de facon systématique les différents

designs. Toutes ces méthodologies sont largement décrites par Paramasivam et Senthil [314].

A.2.2 Probléme d’équilibrage de chaine d’assemblage

Un probléme d’équilibrage se pose chaque fois qu'une ligne d’assemblage doit étre concue,
modifiée ou ajustée et consiste a affecter les taches nécessaires a ’assemblage d’un produit
spécifique aux différentes stations de travail d’une ligne d’assemblage. En raison de conditions
différentes dans le domaine industriel, de nombreux problémes d’équilibrage ont été étudiés et
différents schémas de classification ont été proposés dans la littérature. L’'un de ces schémas
distingue : (i) le probléme d’équilibrage de ligne d’assemblage simple (Simple Assembly
Line Balancing Problem, SALBP), et (ii) le probléme d’équilibrage de ligne d’assemblage
généralisé (Generalized Assembly Line Balancing Problem, GALBP). Dans le premier cas,
un seul produit est considéré et le probléme est limité par les relations de précédences et
les contraintes de temps de cycle. Dans le second cas, les problémes sont plus complexes
et prennent en considération des stations d’assemblage paralléles, des temps d’assemblage
stochastiques, ou des problémes avec des lignes mixtes. Afin de mieux cerner la variété
croissante des problémes d’équilibrage du monde réel, Boysen et al. [50] ont fourni un schéma
de classification basé sur les caractéristiques : (i) du graphe de précédence, (ii) des stations
d’assemblage et de la ligne d’assemblage et (iii) des objectifs & optimiser. Battaia et Dolgui
[30] ont fourni une taxonomie permettant de classifier les problémes d’équilibrage de ligne
selon la nature de la fonction objectif. Hazir et al. [174, 173] ont étendu la classification de
Boysen et al. en intégrant les aspects liés aux cofits et aux bénéfices. Plusieurs problémes

bien connus liés a ce sujet de thése ont été abordés et seront détaillés dans cette section.

A.2.3 Probléme d’équilibrage de ligne d’assemblage avec sous-graphes

alternatifs

Le probléeme d’équilibrage de ligne d’assemblage avec sous-graphes alternatifs (Alternative
Subgraph Assembly Line Balancing Problem, ASALBP), défini par Capacho et Pastor [64],
considére différents types d’assemblage permettant une liaison entre deux piéces, comme ’as-
semblage direct (clinchage), ’assemblage permanent (soudage) et assemblage démontable
(rivet, vis). Chacune de ses variantes d’assemblage est représentée par un sous-graphe qui dé-
termine les taches requises pour assembler une partie du produit et le temps de traitement.
Le probléme associé, qui a pour but de sélectionner les sous-graphes optimisant certains

critéres, a été défini et modélisé dans une version restreinte et une version plus étendue
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[64, 63]. Dans leurs représentations, les temps de traitement des taches et/ou les relations
de précédence peuvent dépendre du sous-graphe sélectionné. Dans le modéle proposé, les
différents types d’assemblage ne se chevauchent pas et chaque alternative est représentée par
un sous-graphe unique et indépendant [63]. Des méthodes heuristiques ont été développées
et testées de maniére exhaustive par Capacho et al. [66, 65]. Scholl et al. [360] ont proposé

une résolution exacte du probléme.

A.2.4 Sélection des procédés d’assemblage et évaluation des res-

sources

Deux approches ou problémes différents ont été proposés pour incorporer le choix d’équi-
pements/ressources au probléme d’équilibrage de ligne [50]. Le premier est connu comme
le probléme de sélection d’équipements/ressources et est basé sur I'hypothése qu’il existe
un ensemble fixe d’équipements/ressources qui doit étre sélectionné et affecté a une station
d’assemblage. Le dernier consiste a affecter un(e) équipement /ressource a chaque tache. Le
nombre d’équipements/ressources est défini en fonction de contraintes technologiques (par
exemple collage ou clinchage) ou par rapport au niveau d’automatisation souhaité (manuel,

semi-automatisé ou automatisé).

Graves et Whitney [159] font partie des premiers auteurs a avoir abordé le probléme d’équi-
librage de ligne et de choix d’équipements/ressources. Ils proposent un modéle dans lequel
I'objectif est de sélectionner les équipements et d’assigner des taches aux postes de travail afin

que les cofits totaux, composés des cotits d’investissement et d’opération, soient minimisés.

Pinto et al. [320] ont combiné le probléme d’équilibrage de ligne avec la décision lice a
I'utilisation ou non de stations paralléles. Le modéle proposé permet d’analyser les compromis
entre les cotts additionnels liés a l'utilisation de stations paralléles et ’économie réalisée
sur la main-d’ceuvre. Plus tard, Pinto et al. [321] ont présenté un modéle qui considére le
choix des ressources d’assemblage et I'attribution des taches de maniére & minimiser les
cotits totaux, définis comme la somme des cotits de main-d’oceuvre et des dépenses fixes. Un
modéle similaire a été proposé par Graves et Lamar [160] pour le probléme de conception de
ligne automatisée. L’objectif était de déterminer le type et le nombre de postes de travail et

Iaffectation d’opérations.

Graves et Holmes [161]| abordent le probléme de conception de ligne d’assemblage avec choix
d’équipement pour une ligne de type mixte. La méthode proposée vise a la fois a assigner
des taches aux postes de travail et a sélectionner des équipements, en minimisant le coiit

total de la ligne d’assemblage.
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Buckin et Tzur [57] proposent un modéle dans lequel les cotits totaux associés a la sélection
des équipements sont minimisés pour un temps de cycle donné. Dans leur modeéle, chaque
équipement a un cotit et un temps de traitement différents. Plus tard, Buckhin et Rubinovitz

[56] ont étendu ce modéle en considérant des postes de travail paralléles.

Hamta et al. [170] présentent une approche pour traiter le probléme d’équilibrage de ligne
d’assemblage avec temps de téache flexibles (Flexible Time Assembly Line Balancing Problem,
FTALBP). Dans leur probléme, le temps d’opération des taches peut étre défini entre une
borne inférieure et une borne supérieure. Plus le temps de fonctionnement est faible, plus les
cotits de traitement associés sont élevés. Dans leur approche, deux fonctions objectifs sont
considérées : (i) minimiser le temps de cycle et (ii) minimiser les coiits totaux de la machine.
Hamta et al. [169] ont étendu le travail précédent en ajoutant un indice de lissage de la
charge de travail. Ils ont proposé une méthode basée sur la combinaison d’un algorithme

d’optimisation par essaims particulaires avec une recherche locale.

Pekin et Azizoglu [317] proposent un Branch & Bound et des procédures de réduction pour
un probléme considérant ’équilibrage de ligne et le choix de ressources. L’algorithme proposé

est capable de résoudre des problémes comprenant jusqu’a 25 taches et 5 équipements.

Agpak et Gokeen [13| présentent un cas industriel dans lequel des équipements et des taches
sont assignés simultanément aux postes de travail. Dans ce probléme, un nombre limité de
ressources automatisées et manuelles doit étre associé aux stations de travail. Dans ce modéle,
aucun cott n’est explicitement considéré. Corominas et al. [93] ont étendu ce probléme en

considérant des contraintes entre les différentes ressources.

Polat et al. [322| traitent le probléeme associé a l'allocation simultanée de taches et de tra-
vailleurs aux stations de travail afin de minimiser le temps de cycle (Assembly Line Worker
Assignment Problem, ALWABP). Ce probléme a été largement abordé dans la littérature,
par ex. Borba et Ritt [48] et Ritt et al. [341].

Le Tableau A.1 montre une classification des éléments de couts utilisés lors de I’évaluation
d’un ensemble de ressources qui peuvent étre affectées & une tache. Ces éléments peuvent
étre divisés en (i) cotts des opérations de fabrication et d’assemblage, qui comprennent par
exemple les différents salaires ou le cott d’entretien des ressources automatisées, ou en (ii)
coiit d’investissement. Ce tableau montre que les études traitent de fagon hétérogene les
différents éléments. Bien que certains modéles prennent en compte les cotlits des opérations,

d’autres considérent uniquement les cotts fixes, dénotés (FC).



A.2 Synthése de I'état de I'art 211

Tableau A.1: Comparaison des éléments de codits considérés lors de [’évaluation d’un
ensemble de ressources
Cott Cout d’opération
d’inves-
tisse-
ment

Auteurs R S R T W

Graves and Whitney [159] X

Pinto et al. [320] X

Pinto et al. [321] X (FC) X
Graves and Lamar [160] X

Graves and Redfield [161] X
Rubinovitz et al. [346]

Bukchin and Tzur [57]

Bukchin and Rubinovitz [56]

Levitin et al. [239]

Khouja et al. [210]

Nicosia et al. [285]

Hamta et al. [170]

Hamta et al. [169]

Pekin and Azizoglu [317] X
Corominas et al. [93] X
Oesterle and Amodeo [289] X X

* les notations suivantes sont utilisées : R : Ressource automatisée, S :
Station, T : Tache, W : Ressource manuelle

oA A A
>

M A

A.2.5 Allocation de stocks tampon

Afin de limiter les effets de famine et de blocage & cause de défaillances des ressources au-
tomatisées et afin d’augmenter la productivité d’'une ligne d’assemblage, des stocks tampon
sont souvent alloués entre les stations de travail. Le probléme d’allocation de stocks tampon
(Buffer Allocation Problem, BAP) vise a allouer les stocks tampon d’une ligne de produc-
tion afin d’optimiser un/des objectif(s) spécifique(s). Une étude exhaustive des problémes
d’allocation de stocks tampon a été effectuée par Demir et al. [107]. Les approches utilisées
pour résoudre le probléme associé a 'allocation de stocks tampon impliquent a la fois une
méthode générative et une méthode évaluative. Alors que dans le premier cas, une solu-
tion au probléme est générée, dans le second, cette solution est évaluée en utilisant diverses
mesures de performance au moyen de (i) méthodes analytiques et/ou (ii) simulation [116].
Alors que les modéles analytiques peuvent étre décrits comme un ensemble d’équations ca-
ractérisant un systéme, les modéles de simulation imitent le comportement dynamique du
systéme. Les modéles analytiques ont tendance a étre plus précis alors que les modéles de
simulation fournissent des informations approximatives et dynamiques sur le systéme [388].

Par rapport aux modéles analytiques, les modéles de simulation offrent plus de flexibilité
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et peuvent prendre en considération un large ensemble de caractéristiques du systéme [92].
Des exemples d’application de modeéles analytiques peuvent étre trouvés dans les travaux
suivants [449, 313, 151, 412, 259, 117]. Des exemples d’application de modéles de simulation

peuvent étre trouvés dans les travaux suivants [32, 9, 261, 42, 218|.

A.2.6 Synthése

Les lacunes dans les modéles et méthodes présentés précédemment peuvent étre identifiées

sur les plans :

(a) de I’évaluation d’un ensemble de solutions développées lors de la conception d’un pro-
duit,

(b) de la sélection des procédés d’assemblage et du choix de ressources,

(c) de I'équilibrage de ligne, et

(d) de l'allocation de stocks tampon.

Au niveau des méthodologies existantes permettant ’évaluation des solutions développées
durant la conception de produits, un défaut majeur consiste en ’absence de considération
lorsqu’il s’agit d’analyser l'influence et les effets du choix du design sur les procédés de
fabrication et d’assemblage. Les travaux consacrés a ’évaluation des procédés d’assemblage
et d’'un ensemble de ressources sont principalement axés sur des objectifs de capacité, qui ne
prennent pas en considération des notions de coiits de production ou de cotts du produit final.
De plus, ’ensemble des modeéles d’équilibrage de lignes d’assemblage qui traitent le choix de
ressources manuelles ou automatisées ne considére pas certaines caractéristiques comme la
disponibilité des ressources ou le taux de rebut. Par ailleurs, 'absence d’un modéle de cotits

permettant une estimation précise du cout futur du produit peut étre identifiée.

Bien que les méthodes analytiques aient été largement développées pour le probléme de
I’allocation de stocks tampon au cours des 30 a 35 derniéres années, elles sont souvent
destinées & estimer d’une facon approximative le comportement dynamique des systémes
d’assemblage et utilisent en général des hypothéses restrictives. En comparaison, les modéles
de simulation requiérent souvent un temps de calcul non négligeable. Toutefois, ils offrent un
avantage considérable lorsque I'objectif est de créer un modéle réaliste d’un systéme complexe
[107]. En outre, les modéles analytiques ne mesurent généralement qu'un nombre limité de
critéres de performance du systéme, tandis que le nombre de critéres applicables dans les

modéles de simulation est illimité.

Considérant I’état de I'art, une méthode holistique permettant ’évaluation et la sélection

simultanée des procédés d’assemblage, de ressources, 1’équilibrage de ligne et 1’allocation de
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stocks tampon est proposée dans cette thése.

A.3 Approche holistique pour la conception de lignes
d’assemblage hybrides

Le travail présenté dans les chapitres 4 & 6 concerne la formulation et la résolution de
deux problémes d’optimisation multiobjectifs associés & une approche holistique d’ingénie-

rie concourante. La différence entre les deux problémes formulés est présentée dans le Ta-
bleau A.2.

Tableau A.2: Différences entre les deux problémes traités
Probléme 1  Probléme 2

Choix du design du produit X X
Choix procédés d’assemblage X X
Choix de ressources X X
Allocation de stocks tampon X
Evaluation mathématique X
Evaluation par simulation X

L’objectif principal, comme représenté dans la Figure A.1, est de diminuer les changements
de design lors de la conception du produit et de la ligne d’assemblage en incluant dés les
premiéres phases de conception le choix de procédés d’assemblage et de ressources. Cela

permet 'obtention d’un systéme plus stable et avec des cotits de production diminués.

Pour supporter les travaux de recherche, les sous-objectifs suivants sont abordés dans cette
thése :

— Développement d’'un modéle de cotlit qui peut traduire toutes les interdépendances entre
les différents designs d’un produit, les différents processus d’assemblage et ressources
en une seule métrique ;

— Développement et comparaison de différentes méthodes d’optimisation ;

— Incorporation de méthodes d’évaluation pour analyser 'influence des stocks tampon

sur l'efficacité de la chaine d’assemblage.

Les questions de recherche suivantes peuvent étre tirées des objectifs de cette thése :

— Quels éléments de cotits ont une influence significative sur le choix du meilleur produit
et de la conception de I'assemblage (taches, procédés d’assemblage, ressources) ?
— Quelles méthodes d’optimisation sont les mieux adaptées pour sélectionner la meilleure

configuration de ligne d’assemblage 7
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— Enfin, la méthode proposée permet-elle de diminuer le nombre de modifications de
conception, de planification et de cotits?
Ces questions de recherche représentent la ligne directrice et forment la base de la structure

de cette thése.
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Figure A.1: Définition des objectifs du travail proposé

La méthode de résolution, dont les étapes sont représentées dans la Figure A.2, comprend
une composante générative et évaluative. Dans le module génératif, qui est composé d’al-
gorithmes d’optimisation multiobjectifs, les solutions aux différents problémes représentés
dans le Tableau A.2 sont générées. Dans le composant évaluatif, les solutions générées sont
évaluées. Pour le premier probléme, cette évaluation est purement mathématique alors que
pour le second, un module de simulation & événements discrets est utilisé. Ce module four-
nit les informations nécessaires au module d’estimation du coftt final du produit. L’objectif
de ce dernier est de traduire les conséquences complexes et interreliées entre les procédés

d’assemblage, les choix d’équipement et I'équilibrage de ligne en une seule métrique de coft.

A.3.1 Probléme 1 : Etude numérique

Pour résoudre le premier probléme, différents algorithmes de différentes familles ont été dé-
veloppés. Ces algorithmes et leurs abréviations sont listés dans le Tableau A.3. Plusieurs
expériences ont été menées pour tester ces algorithmes. Ces tests sont basés sur les ins-
tances du Tableau A.4, qui ont été créées a partir d’'une adaptation de probléme disponible
a l'adresse suivante : www.assembly-line-balancing.de. En raison de leurs caractéristiques
différentes, ces instances fournissent une diversité suffisante pour comparer les différents

algorithmes. Ces caractéristiques, représentées par :
(a) Pordre moyen du graphe de précédence (OS, représente la complexité du probléme) ;

(b) le nombre de taches (V) ;
(c) le nombre de sous-graphes (PDA);


www.assembly-line-balancing.de
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(d) le nombre total de ressources disponibles Ejy; ;

sont indiquées dans le Tableau A.4. Les problémes marqués avec * sont des problémes qui ont
également été résolus avec une méthode exacte (TPM) [396]. De par la nature du probléme,
toutes les instances ne peuvent étre résolues de maniére exacte. Pour le reste des problémes,
un front de Pareto pseudo-optimal combinant toutes les solutions trouvées par tous les

algorithmes et supprimant les solutions dominées a été construit.

Afin de comparer efficacement toutes les méthodes d’optimisation, une définition de leurs
paramétres a été effectuée a 'aide d’un plan d’expérience. Les détails de cette analyse se
trouvent en Annexe C.2. Dans le chapitre 4, les différents algorithmes sont comparés grace
a : (i) lindicateur d’hypervolume (Igyv) [457], (ii) Uindicateur e (I.) [458], (iii) I'indicateur
IGD (I;gp) [90] et (iv) lindicateur de dispersion (Ia) [103]. Le choix de ces indicateurs
est motivé par leurs différents objectifs : (i) /. mesure la capacité de convergence, (ii) /a
mesure la distribution des solutions et (iii) I;gp et Igy combinent ces deux composantes.
Plus les valeurs de Iy sont élevées et les valeurs de I;gp, Ia et I, faibles, meilleure sera la

performance d’un algorithme.

Afin d’identifier les algorithmes qui ont une meilleure performance que d’autres et de déter-
miner si les différences entre eux sont significatives ou non, le test de Friedman peut étre
appliqué [144, 145|. Le test de Friedman est une des procédures d’analyse statistique non
paramétrique couramment utilisées [446] pour analyser les différences entre les algorithmes

299, 251, 446].

La directive fournie par Derrac et al. [110] a été suivie pour effectuer ’analyse statistique.

Parametres initiaux

Autres données

Données sur le produit Données sur les ressources

(Alternatives) (Alternatives)
Optimisation
I )
g Product Design Problem .S Discrete Event Simulation
o= -~
§ Assembly Line Balancing E
o2 <
> | Product Cost Estimati
-g Resource Allocation Problem| |K roduct Lost Bstimation
o
© Buffer Allocation Problem
LY
Solution

Solutions de conception de lignes
d’assemblage optimales

Figure A.2: Méthode de résolution
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Tableau A.3: Liste d’algorithmes et leurs abréviations

Famille d’algorithmes Noms

BIANT-1
BIANT-2
CHAC-1
CHAC-2
MOACS-1
MOACS-2
Optimisation par colonie d’abeilles artificielles DMOABC
DMOCSA-1-1
DMOCSA-1-2
DMOCSA-1-3
DMOCSA-1-4
DMOCSA-1-5
DMOCSA-2-1
DMOCSA-2-2
DMOCSA-2-3
DMOCSA-2-4
DMOCSA-2-5
DMOFPA-1
DMOFPA-2
Algorithme de pollinisation des fleurs DMOFPA-3
DMOFPA-4
DMOFPA-5
MOBAT-1
MOBAT-2
Chauve-souris MOBAT-3
MOBAT-4
MOBAT-5
MOPSO-1
MOPSO-2
Optimisation par essaims particulaires MOPSO-3
MOPSO-4
MOPSO-5
NSGA-II
SPEA2

Optimisation par colonie de fourmis

Recherche du coucou

Algorithmes évolutionnaires

Les statistiques de Friedman obtenues pour tous les problémes et les algorithmes considérés
simultanément en fonction de Igv, Irgp, I. et Ian et les p—values respectives sont affichées
dans le Tableau A.5. En considérant x2,,,; = 72 avec un niveau de confiance de 99.99 %
et 33 degrés de liberté, on peut conclure qu’il existe des différences significatives entre les

algorithmes pour tous les indicateurs de qualité.

L’utilisation des rangs de Friedman permet de définir une classification des algorithmes et
peut étre utilisée pour mesurer les différences entre algorithmes. Les rangs obtenus par les
meilleurs algorithmes pour chaque indicateur sont présentés dans le Tableau A.6. Le NSGA-
I1, suivi du SPEA2, CHAC-1, CHAC-2 et DMOPSO-5 sont les algorithmes qui ont obtenu,
en moyenne pour tous les problémes, les meilleures valeurs pour Igy. Le CHAC-1 suivi
du CHAC-2, du DMOBAT-3, du DMOBAT-2 et du DMOPSO-1 ont obtenu les meilleures
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Tableau A.4: Caractéristiques des différents problémes

Problem N oS PDA E,;, Problem N 0S PDA E;,
Arcllil-1 125 0.181 6 636 Gunther-1 41 0.378 2 220
Arcl11-2 125 0.181 6 578  Gunther-2 41  0.378 2 209
Arcl11-3 125 0.181 6 555 Gunther-3 41  0.364 2 209
Arclll-4 125 0.185 6 555 Gunther-4 41  0.353 2 209
Arcll1-5 125 0.178 6 505 Gunther-5 41  0.353 2 194
Buxey-1 32 0.334 2 166  Hahn-1 68 0.348 5 363
Buxey-2 32 0330 2 154  Hahn-2 68 0.348 5 339
Buxey-3 32 0322 2 152  Hahn-3 68 0.343 5 339
Buxey-4 32 0322 2 138  Hahn-4 68 0.345 5 339
Buxey-5 32 0.333 2 138  Hahn-5 68 0.345 5 304
Jackson-1* 15 0.442 2 28 Lutz1-1* 37 0.570 2 48
Jackson-2* 15 0442 2 30 Lutz1-2* 37 0.553 2 47
Jackson-3* 15 0.442 2 37 Lutz1-3* 37 0524 2 49
Jackson-4* 15 0.442 2 29 Lutz1-4* 37 0.530 2 51
Jackson-5* 15 0442 2 31 Lutz1-5* 37 0.530 2 50
Kilbrid-1* 50  0.641 2 70 Mitchell-1 27  0.579 2 52
Kilbrid-2 50  0.641 2 76 Mitchell-2* 27  0.579 2 46
Kilbrid-3 50  0.641 2 87 Mitchell-3* 27 0432 3 71
Kilbrid-4 50 0.622 2 87 Mitchell-4* 27  0.579 2 50
Kilbrid-5 50  0.600 2 87 Roszieg-1* 28  0.504 2 46
Mukherje-1 105 0.124 5 547 Roszieg-2* 28 0.547 2 42
Mukherje-2 105 0.124 5 517  Roszieg-3* 28 0.610 2 47
Mukherje-3 105 0.124 5 507  Roszieg-4* 28  0.605 2 39
Sawyer-1* 33 0.539 2 40 Sawyer-3* 33 0.539 2 45
Sawyer-2* 33 0.539 2 39 Sawyer-4* 33  0.539 2 44

Tableau A.5: Statistique de Friedman et p-value conformément a Iy, Liap, Ic, Ia

Indicateur Statistique de Friedman p—values

Iy 1035.35 0

Irep 803.43 2.87E-10
I, 834.81 2.99E-10
IA 826.73 2.44E-10

valeurs pour I;¢p. En ce qui concerne I, le NSGA-II, suivi par le SPEA2, le DMOPSO-1, le
DMOPSO-5 et le DMOABC ont obtenu les meilleurs résultats. Pour I, la famille MOACO a
surpassé les autres algorithmes. Une analyse identique a été effectuée pour le temps de calcul.
Cette analyse a montré que le SPEA2, suivi par le DMOPSO-2, DMOFPA-4, DMOCSA-1-4
sont les algorithmes qui convergent le plus rapidement vers un ensemble de solutions non
dominées. Afin d’évaluer si ces algorithmes sont significativement meilleurs que les autres,
la procédure de Holm a été appliquée. En utilisant un intervalle de confiance de 95 %, le
NSGA-II est significativement meilleur que 96 % des algorithmes pour Iyy. Cependant,
il n’est pas significativement meilleur que le SPEA2. En considérant I;5p, le CHAC-1 est
uniquement significativement meilleur que 24 % des algorithmes. En ce qui concerne I, la

meéme conclusion que pour Iy peut étre faite. Pour Ia, le BIANT-1 est meilleur que 91 %
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Tableau A.6: Rangs moyens retournés par le test non paramétrique de Friedman pour
tous les problémes selon les différents indicateurs de qualité

Algorithmes Iyy Ijgp I, Ia

DMOABC 156 193 20.1 15.0
DMOBAT-2 16.0 19.8 18.8 17.0
DMOBAT-3 15.1 [120.00 19.6 17.0

BIANT-1 176 179 9.8 |EGHl

BIANT-2 174 173 9.6 249

CHAC-1 [138 20N 194 19.7
CHAC-2 139 206 19.5 19.1
DMOCSA-1-4 272 88 139 182
DMOFPA-4 270 9.1 133 17.0

MOACS-1 199 150 11.3 12611

MOACS-2 179 154 118 [255
DMOPSO-1 155  19.8 [2047 175
DMOPSO-2 160 198 189 164
DMOPSO-5 150 194 200 173

NSGA-IT [l 19.6 28l 13.1

SPEA2 | 123 18.6 | 23.0 14.0

des algorithmes. Pour le temps de calcul, le SPEA2 est significativement meilleur que tous

les autres algorithmes.

Toutefois, étant donné que cette analyse a été effectuée en tenant compte de tous les pro-
blémes, les résultats peuvent varier en fonction des caractéristiques du probléme. Une analyse
similaire a montré que, en considérant les différents problémes séparément, ces résultats dé-
pendent de la complexité du probléme a résoudre. Les résultats du test de Friedman obtenus
en considérant les problémes complexes (groupe 1) et moins complexes (groupe 2) sont re-
présentés dans le Tableau A.7. Ce tableau montre que pour les problémes complexes, le
MOACS-1, MOACS-2, BIANT-1 et BIANT-2 ont obtenu de meilleurs résultats que tous les
autres algorithmes concernant Igy, Irgp , Ia. Pour I, le MOACS-2 est en troisiéme position,
et est dépassé par le NSGA-II et SPEA2. En considérant Iy, le MOACS-2 est meilleur que
tous les algorithmes sauf le MOACS-1, BIANT-1 et BIANT-2, pour lesquels I"amélioration
n’est pas nécessairement significative. En ce qui concerne les valeurs de I;5p, le BIANT-2
est significativement meilleur que tous les algorithmes sauf le MOACS-2 et BIANT-1. Pour
1., le NSGA-IT est significativement meilleur que tous les algorithmes, sauf le SPEA2. En
ce qui concerne les valeurs de Ia, le MOACS-2 est significativement meilleur que tous les
algorithmes, exceptés pour les BIANT-1, BIANT-2 et MOACS-1. Pour les problémes moins
complexes, les différences entre les divers algorithmes ne sont pas forcément significatives.
Pour les valeurs de Iy, le CHAC-2 est significativement meilleur que 28 % des algorithmes
uniquement. En ce qui concerne le I;gp, le DMOPSO-1 est significativement meilleur que 28

% des algorithmes. Pour les valeurs de Ia, le DMOCSA-1-4 est significativement supérieur
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Tableau A.7: Rangs moyens retournés par le test non paramétrique de Friedman pour
les problémes complezxes et moins complexes

Groupe 1 Groupe 2

Algorithmes Igv Iigp I, Ia Igv  Iigp 1. Ia
BIANT-1 [F46972907" 14.43 31.73 2996 7.57 5.53 2091
BIANT-2 | 3.55 J2OMON 15.07 [ 31.85 30.66 6.34 452 185
CHAC-1 15.05 18.94 17.7 20.99 12.54 21 1847
CHAC-2 1546 19.03 17 19.95 22.00 21.77 18.22

DMOABC 1852 17.24 17.75 11.85 12.78 21.23 22297 17.83

DMOBAT-1 1929 1629 16.99 15.05 13.77 21 21.03 17.09

DMOBAT-3 17.85 17.99 17 169 [[1246 21.92 [21.94 17

DMOBAT-4 2644 895 16.38 14.56 24.63 11.47 12.11 2041

DMOBAT-5 19.05 17.26 16.39 15.06 13.25 [22.000 20.64 16.38

DMOCSA-1-4 2758 7.98 17.01 1408 26.76 9.63 11.05
DMOCSA-2-4 2509 1091 17.35 166 2453 1092 124 19.58
DMOFPA-4 27.25 839 1586 1459 26.82 9.67 10.97 19.2
DMOPSO 17.41 18.39 18.05 17.7 12.64 20.27 21.91 16.95

DMOPSO-1 18.69 17.24 17.88 16.47 [12.36 22:22 JRBIGEY 13.51

DMOPSO-2 18.98 17.94 16.29 16.19 13.18 2152 21.39 16.64

DMOPSO-3 19.15 16.91 17.05 1581 13.33 2137 21.84 17.39

MOACS-1 747 2469 19.36 /32447 318 6.09 3.78 20.24
MOACS-2 [JBHBl 26.77 20.64 32.05 4.83 3.58 19.11
NSGA-II = 9.74 17.58 8.75 12.64 21.37 21.26 17.03

SPEA2 11.61 1551 | 2450 11.34 1294 21.54 21.46 16.46

a 42 % des algorithmes.

Afin d’améliorer les performances des algorithmes les plus performants, différentes régles
de dominance ont été comparées les unes aux autres a l'aide du test de Friedman dans le
chapitre 5. Les abréviations des algorithmes avec leurs régles de dominance sont représentées
dans le Tableau A.8.

Tableau A.8: Liste d’algorithmes avec leurs regles de dominances

Régle de dominance Régle de dominance
Nom Pareto Lorenz S-CDAS Name Pareto Lorenz
CHAC-1 X DMOPSO-1 X
CHAC-1-L X DMOPSO-1-L X
CHAC-2 X DMOPSO-2 X
CHAC-2-L X DMOPSO-3 X
MOACS-1 X DMOPSO-4 X
MOACS-1-L X DMOPSO-5 X
MOACS-1-S-CDAS X NSGA-II X
MOACS-2 X NSGA-II-L
MOACS-2-L X SPEA2 X
MOACS-2-S-CDAS X SPEA2-L

Les statistiques de Friedman obtenues pour tous les problémes et les algorithmes avec dif-
férentes régles de dominances et considérant les indicateurs de qualité suivant Iy, I[;6p, e

et Ia ainsi que les p—value respectives sont affichées dans le Tableau A.9. En considérant
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X505 = 32.7 avec un niveau de confiance de 95% et 21 degrés de liberté, on peut conclure
que les différences entre les régles de dominance sont significatives pour tous les indicateurs

de qualité.

Tableau A.9: Statistique de Friedman et p-value conformément o Igy, Iigp, 1., Ia

Indicators Friedman statistic ~Computed p-values

Igv 259.770 1.38E—-10
Iiep 152.060 8.39E—-11
I, 679.250 2.04E-10
Ia 1193.530 0
Time 2216.600 0

Les résultats du test de Friedman obtenus en considérant les problémes complexes et moins
complexes sont représentés dans le Tableau A.10. Comme I'indique ce tableau, le MOACS-
2-L obtient les meilleurs résultats pour les problémes du groupe 1 et pour Iy et In. Alors
que le NSGA-II-L atteint la meilleure valeur pour I., le MOACS-2-L obtient le deuxiéme
meilleur résultat. Méme si la famille d’algorithmes MOACS-2 obtient de bons résultats pour
Iigp, les BIANT-1 et BIANT-2 ont toujours les meilleures valeurs. Pour les problémes du
groupe 2, le CHAC-2-L obtient les meilleures valeurs pour Igy, I;gp et I.. Bien que le
MOACS-1-S-CDAS ne soit pas en mesure d’améliorer les résultats obtenus par le MOACS-1,
il est suivi par le BIANT-1, meilleur algorithme considérant /5. Pour les deux groupes, les
SPEA2 et SPEA2-L sont les algorithmes qui convergent le plus rapidement vers un ensemble

de solutions.

Sachant qu'une dégradation de certains indicateurs peut-étre espérée lors de I'application de
régles de dominance, qui sont par définition plus restrictives que celle de Pareto, I'indicateur
Io a été également utilisé. Cet indicateur permet de calculer le nombre de solutions obtenues
par un algorithme qui sont dominées par celles obtenues par un autre algorithme. Les valeurs
de Ic sont présentées pour chaque groupe de problémes dans le Tableau A.11. Comme on
peut le voir dans ce tableau, généralement, en appliquant la régle de dominance de Lorenz
pour les problémes du groupe 1, les solutions obtenues sont moins dominées par la régle
de dominance de Pareto. Pour la régle de dominance S-CDAS, en ce qui concerne Iq, il
semble qu’elle soit meilleure que la régle de dominance de Pareto pour le MOACS-1. Des
résultats plus hétérogénes sont obtenus en comparant les régles de dominance appliquées aux
problémes du groupe 2. Alors que pour le CHAC-2 et le MOACS-1, la régle de dominance de
Lorenz est, en ce qui concerne I supérieure a la régle de dominance de Pareto, le contraire
peut étre affirmé pour les algorithmes CHAC-1 et MOACS-2. Il semble également que la
régle de dominance S-CDAS soit plus appropriée lorsqu’elle est appliquée en combinaison

avec le MOACS-2 pour les problémes du groupe 1.
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La Figure A.3 montre ’évolution du nombre de solutions non dominées obtenu lors de

Papplication des différentes régles de dominance pour différents algorithmes et problémes.

Tableau A.10: Rangs moyens retournés par le test non paramétrique de Friedman pour
les problémes complezxes et moins complexes

Groupe 1 Groupe 2
AlgOI’ithm IHV IIGD Ie IA Time IHV IIGD Ie IA Time
BIANT-1 5.29 8.67 1764 415 16.71 6.89 6.43 8.14
BIANT-2 9.44 17.69 4.06 17.51 6.35 5.50 12.29 7.37
CHAC-1 14.23 9.79 10.46 9.81 10.29 7.40 15.14 1458 11.28 10.84
CHAC-1-L 14.46 10.39 9.93 10.13 9.49 7.33 15.04 | 1532 10.36 12.87
CHAC-2 14.69 9.68 9.90 9.36 11.33 7.25 15.10 15.09 11.18 11.36
CHAC-2-L 14.30 10.25 10.25 9.65 9.76 10.77  10.71
MOACS-1 838 14.85 11.85 1836 9.66 18.18 6.02 5.36 | 12.92  8.67
MOACS-1-S-CDAS  11.23 12.09 10.70 17.55 7.71 17.74 6.15 6.12 JEROE 1.66
MOACS-1-L 8.05 14.79 12.00 18.28 993 1782 6.20 598 | 13.57 7.12
MOACS-2 445 16.20 14.10 10.73  18.52 5.60 4.96 12.51 9.33
MOACS-2-S-CDAS 4.87 1570 ' 1417 1882 10.23 18.77 5.51 5.08 12.24 1.87
MOACS-2-1. SI098 16.64 10.92 19.06 5.48 458 12.34 5.43
DMOPSO-5 15.31 9.85 10.47 8.24 13.00 8.30 13.74 15.15 10.54 13.93
DMOPSO-1 15.82 9.50 10.63 7.75 12.93 11.31 16.60
DMOPSO-2 16.18 9.51 9.92 7.50 | 15.43 7.71 14.88 14.75 10.32 15.45
DMOPSO-3 16.30 871 10.02 7.40 11.40 775 14.69 15.02 10.98 | 18.60
DMOPSO-4 18.81 0.18 9.43 7.32 8.07 10.88 11.81 12,55 11.21 14.03
DMOPSO-1-L.  16.19 8.88 10.45 7.88 14.20 7.69 14.12 | 15.19 9.86 15.14
NSGA-1I 10.94 9.37 | 14.22 4.04 12.34 7.50 [ 15.18 15.19 10.46 10.11
NSGA-II-L.  11.06  9.19 5.95 | 16.85 745 14.52 15.08 10.59 | 18.93
SPEA2 12.06 8.18 13.54 5.43 7.64 [ 15.18 | 15.00 10.29

SPEA2-L 1197 853 1391 5.54 - 7.85 14.64 14.67 10.01 -
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Comme on peut le voir, en moyenne, le nombre de solutions non dominées est plus faible

lorsque I’on applique la régle de dominance de Lorenz. Fin plus du test de Friedman, une com-

Tableau A.11: Evolution de la valeur moyenne de Io entre Uutilisation des différentes
regles de dominance
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paraison des régles de dominance par paires multiples en utilisant la procédure de Nemenyi
a été appliquée sur les différents indicateurs de qualité pour chaque algorithme. L’analyse
des p-values montre qu’il n’existe pratiquement aucune différence significative (niveau al-
pha a 0.05) entre les différentes régles de dominance quand on considére les indicateurs de
qualité suivants : (i) Igy, (ii) Iigp, (iii) I, (iv) Ia, (v) le temps nécessaire jusqu’a conver-
gence, (vi) I et (vii) le nombre de solutions non-dominées obtenu, dénoté NDS. Bien que
la performance du CHAC-1 et CHAC-2 ne soit pas sensible a la régle de dominance choisie,
la différence entre les régles de dominance est significative pour le MOACS-1 et MOACS-2
lorsqu’elle est appliquée a des problémes complexes. Ce que 'on peut remarquer, c’est que
la régle de dominance du S-CDAS est plus mauvaise que les régles de dominance de Pareto
et Lorenz sur des problémes complexes. En effet, par rapport a la régle de la domination
de Pareto, le S-CDAS engendre une détérioration des indicateurs de qualité suivants : (i)
Inv, (ii) Iigp, (iii) I, (iv) Ia et (v) le temps nécessaire a la convergence de lalgorithme. Si
cette détérioration est quantifiée, la valeur de ces indicateurs diminuera respectivement de
1.7 %, 6.6 %, 19 %, 2.7 %, et 23 % pour le MOACS-1. Cependant, le CDAS, qui est plus
agressif dans la région moyenne du front de Pareto, permet d’améliorer I de 2 %. La méme
conclusion peut étre obtenue pour le MOACS-2, pour lequel tous les indicateurs précédents,
a l'exception de Ia, sont détériorés comme suit : i) Iy de 4 %, (ii) I de 3.5 %, (iii) le temps
de calcul jusqu’a convergence de 26 %. Comme dans le cas précédent, le MOACS-2 permet
une amélioration de I de 1 %. En comparant les différences significatives entre les régles de
dominance, il semble que I'effet des régles de dominance soit plus grand lorsque les instances

de probléme restent moins complexes.

En plus des régles de dominance, une recherche locale a été appliquée au MOACS-2-1,, SPEA2
et NSGA-II-L. Pour le premier algorithme, la combinaison avec une recherche locale a permis
d’améliorer sa performance en considérant tous les indicateurs de qualité, a I’exception de
Ia. Les résultats du SPEA2 ont été légérement améliorés, principalement pour les problémes
du groupe 2. Les résultats sont complétement différents pour le NSGA-II-L-LS, qui n’a pu
qu’améliorer son temps de convergence sans améliorer d’autres indicateurs de qualité. Une
explication de ces résultats peut étre liée au fait que la recherche locale a été appliquée aux
solutions non dominées de la population actuelle pouvant ainsi enregistrer une convergence

précoce.

A.3.2 Probléme 2 : Etude numérique

Comme indiqué précédemment, les différences entre les deux problémes traités dans ce rap-

port de thése se rapportent a I'ajout de 'allocation de stocks tampon entre les stations de
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travail.

Lors de la résolution du premier probléme, les algorithmes évolutionnaires ont obtenu, en
considérant tous les problémes, de bons résultats. Cependant, les MOACO représentés par
le BIANT, MOACS et CHAC, obtiennent de meilleurs résultats pour respectivement les
problémes complexes et moins complexes. En raison de la nature du probléme étudié, 1'utili-
sation directe des MOACO pour résoudre ce probléme ne peut étre envisagée. Cela s’explique

par les raisons suivantes :

— Les deux chromosomes utilisés dans I’'encodage de la solution n’exigent pas exactement
Iexploration du méme graphe, mais plutét de deux graphes légérement différents. En
effet, alors que le premier est représenté par une exploration de ’attribution possible de
taches et de ressources aux postes de travail, le second est représenté par ’exploration
de Daffectation possible de stocks aux postes de travail, indirectement liée au premier
graphe

— L’affectation des stocks aux postes de travail nécessite une affectation compléte des

taches et des ressources aux postes de travail

Pour y remédier, les MOACO ne peuvent pas étre utilisés seuls pour ces deux chromo-
somes, et une approche d’hybridation est nécessaire. L’idée principale derriére I’hybridation
proposée est de combiner plusieurs algorithmes pour exploiter leurs forces. Sachant que les
algorithmes évolutionnaires obtiennent de bons résultats, une hybridation est proposée avec
des procédures du MOACS. Plusieurs types d’hybridation sont proposés pour résoudre le
probléme, entre autres une hybridation des algorithmes évolutionnaires avec un recuit si-
mulé. Les statistiques de Friedman obtenues pour tous les problémes et les algorithmes avec
différentes reégles de dominances et considérant les indicateurs de qualité suivants : Iy,
Iigp, I. et Ix ainsi que les p—values respectives sont affichées dans le Tableau A.12. En
considérant x2 ,; = 11.1 avec un niveau de confiance de 95% et 5 degrés de liberté, on peut
conclure qu’il existe des différences significatives entre les formes d hybridation pour tous les

indicateurs de qualité sauf pour Ia.

Tableau A.12: Statistique de Friedman et p-value conformément o Igv, Ligp, 1., Ia et
au temps de calcul

Indicators Friedman statistic =~ Computed p-values

Iy 291.243 0.000
Irgp 221.310 0.000
I, 110.326 0.000

Ia 6.351 0.274
Time 829.249 0.000

Les rangs de Friedman obtenus pour chaque indicateur de qualité en considérant tous les
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problémes sont représentés dans le Tableau A.13. Ce tableau révéle que le SPEA2-LS est
I’algorithme qui obtient le meilleur rang pour respectivement Iy, [;op et I.. L’algorithme
obtenant la meilleure dispersion est le SPEA2. En ce qui concerne le temps de calcul, ’algo-
rithme qui converge le plus rapidement était le NSGA-II, suivi du SPEA2 et du SPEA2-LS.
En ce qui concerne la famille d’algorithmes NSGA-II, on peut affirmer que, en général, Iy
est amélioré soit en appliquant I’hybridation par recuit simulé ou par ’algorithme d’optimisa-
tion des colonies de fourmis. On remarque également ’amélioration de I, lors de I'utilisation
du NSGA-II-ACO-1 et du NSGA-II-ACO-2. La dégradation de la valeur de I est commune
a toutes les formes hybrides. L’analyse des p-values montre que le SPEA2-LS est significati-

vement meilleur que les autres algorithmes, excepté le SPEA2, pour Igyvy, I, I;16p.

Tableau A.13: Rangs moyens retournés par le test non paramétrique de Friedman pour
tous les problémes

Algorlthm ]HV IIGD Ie IA Time

NSGA-II 429 3.04 3.13
NSGA-II-LS 417 293 3.03 338 3.28
NSGA-II-ACO-1 399 285 3.18 349 1.89
NSGA-II-ACO-2 398 3.04 3.18 336 1.60
SPEA2 237 452 4.07 3.66 4.53

SPEA2-LS |RREECIEEN 3.1 3.86

De plus amples informations se trouvent dans le chapitre 6.

A.4 Application de ’approche holistique

L’outil d’aide a la décision développé a été utilisé dans deux cas industriels avec pour objectif

de concevoir une ligne d’assemblage automatisée et manuelle.

A.4.1 Cas industriel 1

A partir de ’analyse de la chaine d’assemblage automatisée et de l'identification de nouveaux
procédés d’assemblage et ressources, plusieurs solutions ont été trouvées. Ces solutions sont
présentées dans la Figure A.4. Cette figure montre les différences entre les concepts trouvés
et ceux déja planifiés par les ingénieurs de l’entreprise en question (en suivant une approche
classique). Comme on peut le voir, les concepts trouvés par approche holistique dominent
les trois concepts planifiés. Le concept choisi a donné la possibilité d’augmenter 'efficacité
de 4 %. De plus, environ 17 % des positions de stocks tampon ont été modifiées et certaines

ont été ajoutées.
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Figure A.J: Comparaison des résultats obtenus par l'approche holistique et ceux obtenus
par approche classique

En plus de I'équilibrage de ligne, lefficacité a également été augmentée de 3 % en modifiant

la stratégie de retraitement.

A.4.2 Cas industriel 2

A partir de 'analyse de la chaine d’assemblage manuelle et de I'identification de nouveaux

designs produits et ressources, plusieurs solutions ont été trouvées. Les améliorations et

détériorations obtenues lors de 'application de 'approche holistique se trouvent dans le

Tableau A.14. Dans ce tableau, C},; représente les coiits de matériel, C, les cotits de main-

d’ceuvre, Cop les frais généreux, Cg les cotts liés aux équipements et Cp les cotits liés a la

surface de production.

Tableau A.14: Amélioration/Détérioration des codts aprés application de l’approche ho-

histique

Cotits  Ameélioration/Détérioration |%|
Chr, +29
Chw, -5
Chs, -1
Cwm, +33
CME +3
Cr +138
Con 4100
Cg +11
Cg +11
CPart 117
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A.4.3 Synthése

La méthode holistique proposée a été appliquée dans deux cas industriels différents. Dans le
premier cas, 'objectif était de concevoir une ligne d’assemblage automatisée avec des stocks
tampon, dans le deuxiéme une ligne d’assemblage manuelle. Dans les deux cas, I'utilisation

de la méthode a permis d’améliorer significativement les systémes planifiés ou déja en place.

A.5 Conclusion

Dans cette thése, deux problémes d’optimisation suivant une approche holistique ont été

Proposés.

A.5.1 Synthése de la contribution

Cette thése se compose de sept chapitres. Les premiers chapitres soulévent le sujet étudié
dans cette thése. Une introduction générale est fournie, et les problémes rencontrés dans
le secteur industriel sont briévement présentés. Dans le troisiéme chapitre, une vue d’en-
semble sur des problémes d’optimisation et des méthodes de résolution associées est pro-
posée. De plus, un apercu détaillé des modéles et des méthodes utilisés pour résoudre des
sous-problémes similaires est présenté. Cet apercu permet d’identifier les inconvénients sur
les modéles et les méthodes de résolutions actuels. Sur la base des inconvénients identifiés,
deux nouveaux problémes d’optimisation sont proposés. Pour résoudre le premier probléme,
plusieurs algorithmes d’optimisation sont comparés et les plus prometteurs sont combinés
avec une recherche locale. De plus, 'influence des régles de dominance est également quanti-
fiee. Dans le sixiéme chapitre, différentes formes d’hybridation sont proposées pour résoudre
le second probléme. Dans le chapitre sept, I'utilisation de I'approche holistique dans deux

cas industriels est décrite.

Une liste de 34 algorithmes est présentée pour résoudre le premier probléme. Ces algorithmes
ont été comparés par rapport & quatre indicateurs de qualité et 50 problémes. Cette com-
paraison est réalisée a travers une analyse non-paramétrique de Friedman. Lorsque tous les
problémes, indépendamment de leurs complexités, sont considérés, le NSGA-II et SPEA2
obtiennent - en moyenne - les meilleurs résultats quand on considére I’hypervolume couvert
et la distance nécessaire pour translater le front de solutions obtenu de telle sorte qu’il do-
mine le vrai front de Pareto. Si I'on considére la diversité des solutions et la métrique de

distance générale inversée, le CHAC-1 et BIANT-1 ont obtenu les meilleurs résultats. Cepen-
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dant, lorsqu’on considére la complexité des problémes, on peut affirmer que le MOACS-1,
MOACS-2, BIANT-1 et BIANT-2 sont plus performants que le reste des algorithmes pour des
problémes complexes. Dans un second temps, l'influence de différentes régles de dominance
a été analysée. Le test de Friedman a montré que I'influence de ces régles de dominance est
hétérogéne et qu’il n’y a pas de différence significative entre elles. Cependant, ’application
de la régle de dominance de Lorenz a permis d’améliorer significativement les performances
du MOACS-2 pour un indicateur de qualité. Un test de Friedman a également été utilisé
pour analyser 'influence d’une procédure de recherche locale sur le MOACS-2-L, SPEA?2 et
NSGA-II-L. Cette recherche locale a permis d’obtenir une amélioration significative pour le
MOACS-2-L. Pour le second probléme, différentes formes d’hybridation ont été proposées.
Une étude statistique a montré que la combinaison entre un SPEA2 et un recuit simulé

permet de surpasser les autres algorithmes.
Ainsi, les principales contributions de cette thése sont les suivantes :

— Présentation de deux problémes associés & la conception de lignes d’assemblage hy-
brides en considérant divers sous-problémes a travers une approche holistique ;

— Elaboration d’un modéle de cott dont I'objectif est de traduire les interdépendances
complexes entre la sélection des procédés d’assemblage, ressources, et I’équilibrage de
ligne ;

— Etude empirique visant a comparer, selon plusieurs indicateurs de qualité, divers algo-
rithmes multiobjectifs de nature différente ;

— Analyse de I'influence de régles de dominance et recherche locale sur divers algorithmes;

— Combinaison de méthodes d’optimisation avec un modéle générique de simulation a

événement discret pour le second probléme.

A.5.2 Perspectives et travaux futurs

En ce qui concerne les perspectives, il pourrait étre intéressant d’étendre les modéles proposés

en intégrant des décisions stratégiques, telles que :

— Le nombre de produits sur la ligne d’assemblage et le nombre de lignes d’assemblage ;

— Make-or-Buy : une question intéressante est aussi généralement liée & la décision de
Make-or-Buy, en tenant compte par exemple des problématiques capacitaires ou des
cotits de revient ;

— La forme et la disposition des lignes : une approche intéressante serait également d’en-

richir le travail actuel en considérant différentes formes et dispositions de la ligne.

En outre, pour rester aussi prés que possible de la réalité, les modéles proposés pourraient
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également étre étendus comme suit :

— Considération des caractéristiques de la durée d’une tache : alors que les temps de
traitement déterministes et stochastiques ont été pris en compte, l'effet d’apprentissage,
généralement non négligeable dans les chaines d’assemblage, améliorerait les modéles
proposés. De plus, compte tenu d’un ensemble de taches assignées a une station, le
temps de station peut dépendre de la séquence dans laquelle les taches sont exécutées.
Ainsi, il serait également intéressant de considérer le temps de traitement lié a la
séquence d’exécution des taches. Cela est particuliérement vrai lorsque les taches sont
effectuées manuellement.

— Considérer l'incertitude des informations ou des données : en raison du manque d’in-
formations dans les premiéres phases de la conception de lignes d’assemblage, des
problémes peuvent survenir lorsque I'information est floue ou incertaine, rendant ainsi
I’évaluation de solutions aux problémes difficiles. Pour combler cette lacune et dimi-
nuer la sensibilité de I'approche proposée a toute information incertaine, des approches

d’optimisation robustes pourraient étre utilisées

De plus, il serait intéressant d’envisager des scénarios de demande futurs, dans lesquels les
modéles proposés pourraient étre étendus avec des aspects de rééquilibrage. Cela nécessiterait
d’examiner les coiits associés au rééquilibrage de la chaine d’assemblage en tenant compte

des variations de la demande et nécessiterait 'utilisation d’un modéle de coiit dynamique.

En ce qui concerne les opportunités sur les méthodes de résolution, il serait également in-
téressant d’analyser 'influence de différents processus d’évolution en considérant différentes

méthodes de résolutions.

Enfin, il pourrait étre intéressant d’effectuer également une analyse de sensibilité des dif-
férents paramétres sur la performance des algorithmes lors de la résolution de problémes

complexes et moins complexes.

En ce qui concerne la demande, il serait également intéressant de se concentrer davantage
sur la conception du produit et d’essayer de restructurer ’approche proposée pour utiliser

moins d’informations.



Appendix B

Further general information

Abstract

The present chapter presents further information about the state-of-the-art and namely (i)
an explanation of the various resolution methods for a multi-objective optimisation, (ii) the
complete problem characteristic extraction and resolution methods proposed in the last years
in the field of ALBP, (iii) an example of the application of analytical and simulation models
for the analysis of assembly lines, and (iv) further information about statistical comparison

of stochastic optimisation algorithms.
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B.1 Resolution methods for multi-objective problems

This section presents the various optimisation methods aiming at solving multi-objective

problems.

B.1.1 Evolutionary Algorithms

EAs are optimisers based on Darwin’s theory of evolution, where the fittest individuals
survive and produce offspring to populate the next generation. A population P(t) =
{X1, ., Xbopsizey of PopSize individuals is maintained, in which each individual Xj, i =
1,..., PopSize, represents a solution to the problem under study and to which a fitness value
is assigned, measuring how good an individual solution is. The operation of a particular EA
is defined by a number of procedures or operators. Typically, the three major evolutionary
operators can be identified, namely :(i) mutation, (ii) recombination and (iii) selection. The
basic idea behind the evolutionary process is that, if only individuals, which meet certain
selection criteria are allowed to reproduce and generate a new population P(t+ 1), then the

population will converge to those individuals that best meet the selection criteria.

The general process of MOEA is presented in the flowchart Figure B.1 and the specific

features will be described below.

Select parents
Build initial from Pier_1
population Py | —= »14 recombine
! to produce
Evaluation Qiter
solutions in Py i
and assign Mutate
fitness solutions in
’—'—F Qiter and
iter =1 eva}uate
Combine
Pite'rfl and
Qiter

Figure B.1: Main steps of an evolutionary algorithm

During the evolution process, the objective functions are evaluated for every solution in
the population, and to each individual is assigned a fitness value which drives the natural
selection process [150] and represents the survival rate of this specific solution at the next

generation. There are many methods to evaluate fitness and assign a real number to each



B.1 Resolution methods for multi-objective problems 232

solution in the multiobjective case. Commonly used areq the Pareto dominance relation
based fitness strategies. According to Zitzler et al. |454], these methods can be classified
as follows: (i) dominance rank, representing the number of solutions in the population that
dominate the solution under consideration, (ii) dominance count, representing the number of
solutions in the population that are dominated by the solution under consideration, and (iii)
dominance depth [105], representing the rank of the solution in the non-dominated sorted
population, which is utilised by many successful algorithms, e.g. the Non-dominated Sorted
Genetic Algorithm-II (NSGA-IT). The dominance rank was first employed by Fonseca and
Fleming [140]. Dominance depth and rank are successfully combined in the Strength Pareto
Evolutionary Algorithm 2 (SPEA2) [455].

The parent selection or mating selection plays an important role in EAs and aims at distin-
guishing between individuals based on their quality to allow the best individuals to become
the parents for the next generations. However, low-fitness individuals should also be given
a small change to participate in the mating process. A standard tournament method, called
Roulette Wheel Selection [101], achieves this by choosing the best individual from a group of
T.i.. ! individuals. This selection is done according to the probability of each individual to be
selected, which is based on its current fitness value. The role of recombination is to generate
new individuals from the selected parents, in preference such that the offspring contains the
desirable features from both parents. This is achieved through crossover operations. Several
crossover operations have been proposed in the literature, e.g. [189, 298, 204, 179|. The
uniform crossover operator is known as one of the most effective crossovers in conventional

genetic algorithms [364].

Once an offspring has been generated, another stochastic change, the mutation, is applied to
enhance the diversity in the population and prevent the population to converge prematurely

at local minima.

B.1.2 Swarm Intelligence Based Algorithms

As stated before, different optimisation methods are attached to swarm intelligence. The

most famous algorithms will be detailed in the upcoming sections.

1. If the value of Tj;,. is too large, only a small portion of the population will contribute to genetic
diversity. Other selection mechanisms can be found in the literature, e.g. [19, 189].
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B.1.2.1 Ant Colony Optimisation

ACO is a meta-heuristic search algorithm, which was first proposed by Dorigo et al. in the
1990s [121, 120]. Ant algorithms are inspired by the collective behaviour of ants on the
survival of their colonies. While searching for food, they deposit on the ground a substance
called pheromone, which helps other ants to follow the path leading to the food. The
more ants follow the same path, the more it gets attractive for following ants. ACO is
one of the most efficient meta-heuristic algorithms on combinatorial optimisation problem
[305], and this is especially true if the problem has an inherently network structure [40].
Generally speaking, ACO algorithms can be classified into algorithms belonging to: (i)
Ant System (AS) or (ii) Ant Colony System (ACS). All these algorithms follow two main
parts:(i) solution construction and (ii) pheromone update and evaporation. In the former
step, starting from the source node, ants select operations from a candidate list using a
step-by-step decision policy, called transition rule, until reaching a complete solution. At
each node, local information stored on the node itself or on its outgoing arcs is used in a
stochastic way to decide which node to move next. An ant k£ uses both the attractiveness
1:;, computed by some heuristics, which indicates the desirability of moving from node i
to j, and the pheromone trail 7; ;, providing, out of experience, how proficient is has been
to move from node 7 to j. Once reaching the destination node, the ant moves backwards
to the source node. To avoid quick convergence of all ants toward a suboptimal path, the
pheromone intensity is decreased during the evolution of the algorithm. The algorithms
belonging to the class of AS are characterised by a pheromone update once all ants have
completed their solutions and by a constant pheromone trails decrease. The algorithms
belonging to the class of ACS are using a different transition rule, called the pseudo-random
proportional rule. Compared to AS, at each step, an ant can choose randomly between

exploitation and exploration.

B.1.2.2 Particle Swarm Optimisation

The PSO, initially proposed by Eberhart and Kennedy [124], is a population-based search
algorithm based on the simulation of the social behaviour of birds within a flock. Similarly
to EA, PSO exploits a population, called a swarm, of potential solutions, called particles,
which are modified statistically at each iteration of the algorithm. One major difference with
EA is the manipulation of the swarm as a cooperative model rather than a competitive one
[315].

Each particle 7 is characterised by a position X!, a velocity V' and a vector pB! that serves as
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a memory of the best position in terms of fitness that the particle has, so far, encountered,
where t represents the current iteration. Particles interact by communicating their best
discovered positions to other particles within their neighbourhood. Particles move in the
search space by stochastically updating their velocity and position, attached by their own

best position pB! as well as their neighbourhoods best position ¢gB!, as follows:

VIt =w - Vi+cery - (pBf — X)) + cory - (9B — X)) B.1)
Xz'tH _ sz + Vit+1 )
where w represents a positive parameter called inertia weight, ¢; and ¢y are two positive
constraints called cognitive and social parameter that controls the magnitude of stochastic
attraction towards pB! and ¢gB!. r; and ry are realisations of two independent random
variables that assume the uniform distribution in range (0,1). The best position of each

particle is updated at each iteration by setting:
pBi = Xi,if f(X}) 2 f(pB)) (B.2)

The inertia weight w plays a key role in the process of providing a good balance between
exploration and exploitation. Bansal et al. [23] and Nickabadi et al. [284] proposed a review

of inertia weight strategies?.

One major difference between the PSO and Multi-Objective Particle Swarm Optimisation
(MOPSO) is the number of suitable guide particles g B! that can be chosen at an iteration ¢.
Indeed, in MOP, a set of optimal particles are suitable candidates for the selection process of
the guide particle. Several strategies have been developed in the past. The random strategy
chooses an archive member randomly. However, if the chosen best solution is far from the
particle, erratic oscillations could be caused, leading in turn to a chaotic search behaviour.
The Sigma method, introduced by Mostaghim and Teich [275], involves choosing the guide
particle p, based on the similarity of the angular position in the objective space of an archive
member and a particle in the swarm. A o value is assigned to all particles in the archive
and swarm, representing the gradient of the line connecting the location of the particle and
the origin of the objective space. For each particle i = 1, ..., N, the particle from the archive

with the closest o is selected. For a 2-dimensional objective space, o; is defined as:

-5
T (B3)

However, a specific particle ¢ may select the same global best for many iterations, which

2. In their review, the inertia weights are classified into three categories. In the first class, strategies using
a constant and randomly generated inertia weight can be found. In the second class, the inertia weight is
defined as a function of time or iteration number and the situation of the particles in the search space is not
taken into consideration. The third class represents inertia weights using a feedback parameter to monitor
the state of the algorithm and adjust the value of the inertia weight
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would engender a premature convergence to a local optimum. Gong et al. [157] proposed
a similar approach to the Sigma method. The selection of the best particle is based on the
minimum particle angle 7™ of a particle in the swarm and an archive member. For the
location of the minimum particle angle, particle angles ¢; ; between a particle ¢ in the swarm
and all the j archive members are computed. Considering ¢ and j being two particles in the

swarm, 0, ; is calculated as follows:

b1y = cos L TE 12| (B.1)
Alvarez-Benitez et al. [7] present three strategies for selecting the global guide: (i) rounds,
a strategy which promotes diversity and assigns as a guide the particle in the archive that
dominates the fewest x, in the population. The guide is removed from consideration until
all other particles in the swarm have been chosen as a guide. The random strategy chooses
one particle randomly. The last strategy is a combination of the two previous ones, in
which a leader is selected based on the probability that it dominates least particles. Qiu et
al. |328] present a strategy based on a k-means algorithm and a proportional distribution
approach. In their approach, the set of non-dominated solutions are clustered according to
k clusters and the particle with the least distance to the centroid of its cluster is defined as
a representative for this given cluster. The representative particle is chosen according to its
probability represented by the number of solutions. The strip strategy [405] is based on the
use of stripes uniformly distributed, to which belong non-dominated solutions. A stripe is

randomly chosen and its leader represents the best swarm.

Some of these strategies are represented in Figure B.2. The sigma method is represented in
Figure B.2-a, the minimum particle angle in Figure B.2-b, the stripe method in Figure B.2-c

and the random selection in Figure B.2-d.

Legend:

O Archive solutions O Population solutions

Figure B.2: Example of the selection processes for the best particle py in a Multi-
Objective Particle Swarm Optimisation
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B.1.2.3 Bat Algorithm

The BA, initially proposed by Yang [421], is based on bat’s behaviour, which use echolocation
to find their prey and discriminate different types of insects, even in complete darkness, by
varying pulse rates of emission and loudness [351]. By emitting calls out to their environment
and listening to the echoes that bounce back, they can identify the location of other objects
and their position by following the delay of the returning sounds. These echolocation pulses
are characterised by: (i) pulse frequency, which varies depending on the position of the
target, (i) pulse emission rate, which corresponds to the number of emitted emissions per

seconds, (iii) and the loudness or intensity, which characterises the emitted pulse.

In the BA, a bat ¢ and its respective position X?, velocity V,°, and frequency F; are initialised.
The movement of the virtual bats is given by updating their frequency Fj, their velocity V}

using following equations:

-Fi - Fmin + (Fmaa: - szn) ' 6 (B5)
Vi=VT (X7 —gB)) - F (B.6)
X =X"1+V! (B.7)

where [ € [0, 1] represents a random generated vector from a uniform distribution. Secondly,
new bats will be generated using a procedure that employs two probabilistic generation
schemes referred to as random flying and local search [171]. While the former remote position
in the search space, the latter enables a more exploitable search, where bats are perturbed
in the close vicinity of its current solution to browse neighbours. The chance of generating
a new micro-bat using either random flying or local search is respectively provided by R;
and 1 — R;, which represents the pulse rate of the i-th bat. Once generated, the objective
function values are evaluated for each bat candidates. After the evaluation, the echolocation
parameters are updated. A bat is only allowed to update its echolocation parameters if: (i)
it produces a better solution and (ii) if a uniform random number u € [0, 1] is smaller than
its loudness A;. If it is the case, its loudness A; and echolocation R; will be updated using

following equations:
AL — o A (B.8)
R =RY-[1 - (B.9)
where, 0 < agp < 1 and v > 0 are constants and represent the adaptation parameters

for loudness and pulse rate respectively. In order to simplify the implementation of the

algorithm, some authors e.g. [299] fix ap = 7.

Examples of the application of the BA to MOP, defined as Multi-Objective Bat Algorithm
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(MOBA) can be found in following works: [419, 418, 129]

B.1.2.4 Cuckoo Search Algorithm

The Cuckoo Search Algorithm (CSA), proposed by Yang and Deb [426] is one of the latest
nature-inspire metaheuristics. The CSA is inspired by the Cuckoo behaviour, A feature of
cuckoos is that, to increase the probability of having new cuckoo, some species lay their eggs
in the nests of other species to let host birds hatch and brood young cuckoo chicks. The
CSA follows idea rules: (i) each cuckoo lays one egg at a time and selects a nest randomly,
(i) the best nest with the highest quality egg can pass onto the new generations, (iii) the
number of host nests is fixed and the egg laid by a cuckoo can be discovered by the host bird

with a probability of p, € [0, 1].
When generating a new solution Xf“, a Lévy Flight 3 is used, as follows:
X = X!+ a o Lévy(\) (B.10)

where o (a > 0) is the step size and is generally associated with the scales of the problem
to be solved. The Lévy flight essentially provides a random walk and follows the Lévy
distribution:

Lévy(s,\) ~ s 1>A>3 (B.11)

which has an infinite variance with an infinite mean.

Examples of the application of the CSA to MOP, defined as Cuckoo Search Algorithm
(MOCSA) can be found in following works: [423, 69.

B.1.2.5 Flower Pollination Algorithm

The FPA was introduced by Yang [422], and is inspired by the flow of pollination process
of flowering plants. The pollination process can occur through two forms, (i) the pollen is
transmitted by pollinators, or (ii) the pollination is assisted by wind and water [276]. The
FPA uses four rules [422, 425]:

— The former pollination form can be considered as a process of global pollination, and
pollen-carrying pollinators move in a way that obeys Lévy flights

— The second pollination case can be considered as a local pollination

— Pollinators such as insects can develop flower constancy, which is equivalent to a re-

production probability that is proportional to the similarity of two flowers involved

3. A Lévy Flight is a random walk using a step-length with a probability distribution that is heavy-tailed.
More information can be found in following works: [71]
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— The interaction or switching of local pollination and global pollination can be controlled

by a switch probability p € [0, 1], slightly biased towards local pollination

The global pollination step, as mentioned earlier, is represented as follows:

Xt = X!+ L(X! - ¢gBY) (B.12)

t+1

where 2{7" is the pollen i and g B! the best solution found so far. The parameter L represents

the power of pollination, which is the step size.

The local pollination is represented as follows:
XM= X!+ €(X) — XJ) (B.13)

where X; and X} is the pollen from the same type. € enables a random step by providing a
random value following a uniform distribution from 0 to 1. FPA has been extended to MOP

by using a weighted sum to combine all multiple objectives into a composite single objective
[425].

B.1.2.6 Bee Colony Algorithm

In the ABC, initially proposed by Karaboga and Basturk [202], each solution is called a food
source and its fitness the nectar amount. The ABC contains three groups of bees: (i) the
employed bees, which are sent to food sources and try to improve them by using neighbour
information, (ii) onlookers, which choose one of these food sources based on the quality of
food sources shared by employed bees, and try to improve them, (iii) scout bees, that find
food sources that have not been optimised in a limited number of cycles so as to reinitialise
them in order to get rid of poor solutions [446]. The number of employed bees or the onlooker

bees is equal to the number of solutions in the population.

Let X; = {X;1, Xi2,..., Xin} represent the i-th solution in the population. Each solution is
generated as follows:
Xi,j = LB] + T(UBj — LBJ) (B14)

where i = 1,...,SN and j = 1,...,n; r € [0,1] is a uniform random number; LB; and UB;
are the lower and upper bounds for the dimension j. A new solution Y; = {Y;1,Yo, ..., Yi,}

is generated out of the neighbourhood of old solutions as follows:

where £ = 1,...,SN and j = 1,...,n are randomly chosen indexes. k£ is different from ¢
and ¢ is a random number between [—1,1]. After having produced the new solution, it

will be evaluated and compared to the old one. If the objective fitness of the new one is
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better than the old one, the new solution will be accepted, otherwise, the old solution will
be kept. When all employed bees have finished this process, an onlooker bee can obtain the
information of the food sources from all employed bees and choose a food source depending
on the probability value associated with that food source, using the following expression:
fitness;

pi = s
" maxPPY( fitness;)

(B.16)

where the fitness; is the fitness value of the solution i. The onlooker bee produces a new
source in the selected food source site by using ((B.15)). Similar to the employed bees, the
new source will be evaluated and compared to the primary food solution. If the new source
has a better nectar amount that the primary food source, the new source will be accepted.
After all onlookers have finished their process, the sources are checked to see if they will be
abandoned or not. Every time a food source does not improve through determined number
of the trails, then the food source is abandoned by its employed bee and then it becomes a

scout.

B.2 Assembly Line Balancing Problem

This section presents the complete problem characteristic extraction and resolution methods

proposed in the literature in the last years in the field of ALBP.



Table B.1: Extraction of problem characteristics and res-

olution methods proposed in the last years in

the ALBP field

Authors o s asg oy as ag 081 Bo B3 B4 05 B¢ 0% Resolution
method
[285] pa equip Co DP
[320] pstat Co B&B, Heuristic
[321] pa Co B&B
[56] pa pstat equip m B&B
[57] pa equip Co B&B
[55] Mix unpac TP Heuristic
[66] pa®? m Heuristic
[62] pa®? m Solver
[64] pa’d m Solver
[65] pa®? m Heuristic
[360] pa®? m B&B
[36] cum m, C, A ACO
[416] Mix HSI, VSI, BD MOACO
[4] Mix inc; pstat C(m, VSI, HSI) hGA
link
[206] Mix u ptask Co GA
[5] Mix Agir Inc; C(m, VSI, HSI) hACO-GA
link
[439] Mix pa equip CT, HSI, Co MOGA

Continued on next page
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Table B.1 — Continued from previous page

Authors oy asg oy as ag 081 Bo B3 B4 05 B¢ 0% Resolution
method
[257] Mix inc; m, CT, HSI, VSI PESA, NPGA,
link NPGA-II,
MOGA, NSGA,
PAES
[256] Mix w  pstat C(WIT, WLE), SA
Co, Others
[214] cum equip m B&B
[215] fix, pwork m GA
type
[239] pa equip cT GA
[318] pa equip Co B&B
[330] Mix type u pwork CT, m GA
[331] Mix Agir cum  pa res CT; Co DMOPSO,
NSGA-II
[300] cum C(m, ER) Heuristic
(2, 3] Mix Ajpg  1I0C; pstat m Solver,
link
[221] inc; ptask HSI;, CT MCHBA
link
[332] Mix pline C(CT,CTy) hGA, GA, SA
[444] Mix gsto 1 HSI Heuristic

Continued on next page
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Table B.1 — Continued from previous page

Authors oy s asg oy as ag 081 Bo B3 B4 05 B¢ 0% Resolution
method
[393] type, pstat m Solver
link,
fix
[213] pa pwork equip Co Solver
169 £ Ay CT; Co; HSI LMOPSO
[168] tw Agir CT; Co; HSI Solver
[387] t Nind buffer m Heuristic
[394] tsto TP, HSI, BS -
[384] Mix gsto ptask buffer Normalized GA
Design Cost
[348] Mix seq  VSL HSL; FT MOABC, NSGA-
11
[397] tsto unpac m Heuristic
[374] Ajpg  cum, mat Co Heuristic
inc
[335] cum risk  C(HSL IT, ARP) GA
of
pos-
ture
[78] cum A m NSGA-II
[47] pa equip cT Beam Search
[329] Mix u Atynp C(m, HSI) GA
[344] pwork C(LE, W, HSI)  SA

Continued on next page
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Table B.1 — Continued from previous page

Authors oy s asg oy as ag 081 Bo B3 B4 05 B¢ 0% Resolution
method

[277] cum WRI Solver

[211] CT Heuristics, Petri
Nets

[391] inc pa equip CT, Co hMOGA

[134] pwork C(m, W) ACO

[445] CT ACO

[273] pa equip CT Heuristic

[305] pline C(LE, IT) MCACO

[381] Agir  1nc; pwork LE BA

link
[428] Adir CT hGA
[306] inc; pwork C(m, HST) BC
link

[343] type pwork Co SA

[432] £4y E GA

[37] cum m DP

[347] u m ACO

[429] pa equip CT, Co MOES

[390] cum  pa equip CT, Co MOGA

[31] energy C(SI, ESI), -

ex-

C(MMSE,

pendit-MMST)

ure

Continued on next page
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Table B.1 — Continued from previous page

Authors oy s asg oy as ag 081 Bo B3 B4 05 B¢ 0% Resolution
method
[349] goto CT, Pr, HSI MOABC
[441] m Solver
[39] u, m ACO
[317] pa equip C(m, Co) B&B
[227] Mix inc; pline, C(m, LL) ABACO
link; pstat
type
[226] Mix inc; pline, C(IT, m, LL) ABACO
link; pstat
type
[309] pstat Co Heuristic+Exact
method
[82] cum M, A MOACO
[336] Mix pa equip CT, Co ICA
[404] pa equip cT B&B
[365] M B&B
[296] pa equip Co B&B
[322] pa equip cT VNS
[79] cum m, A NSGA-II, MACS
[434] cum u Atynp Co, Others hACO
[76] unpac m TS
[99] pa equip E ACO, PSO, GA
[440] gsto CT, Co LMOEA

Continued on next page
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Table B.1 — Continued from previous page

Authors oy s asg oy as ag 081 5o B3 B4 05 B¢ 0% Resolution
method

[403] m B&B
186] pwork M, W, WRI, HSI DMOPSO
[75] pa res HSI GGA
[200] Mix ptask C(m, CT, Co) GP
[61] gsto pstat VSI, Co MOSA+TS
[308] inc; pwork C(LE, SI) TS

link;

type
[133] Mix pline cT TS
[236] type pwork cT VNS
[80] cum A;m GRASP
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B.3 Buffer Allocation Problem

This section presents examples of the application of Markov chains or discrete event simula-

tion for the evaluative procedure of the resolution methods for the BAP.

B.3.1 Example of the application of Markov chains

Assuming a transition rate of )\; to move from the operating state to the down state, and pu;
from down state to operating state, the Markov chain representation for an isolated unreliable
machine shown in Figure B.3 can be used. Thus, as stated by Gershwin [152], when t — oo,

the probability that a machine is either down or in operating state can be defined as follows:

Pi(Down) = As
ta ¥ Ai (B.17)
P(Up) = —
(Up) Y
The efficiency of M; can be calculated as follows:
F(U i
e = (Up) = _# (B.18)
P,(Up) + P,(Down)  pi+ X\
and the production rate as follows:
G = Ji - € (B.19)
The balance equation is given as follows:
P,(Down)u; = P;(Up)\; (B.20)

e o Do

Figure B.3: Transition diagram of a Markov chain for an unreliable machine in isola-
tion

However, unlike an isolated station, a station operating in an assembly line has a third state

that is due to starvation or blockage phenomena. Indeed, due to the effects of machine

breakdowns on up and downstream and the limited buffer capacity, a given station M; can

be in a forced idle time. Since the station M; can be in three different states (down, operating

and idle), the efficiency of a machine M; when it operates in a flow line is given by:
P,(Operating)

P;(Up) + P;(Idle) + P;(Down)
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The Markov chain representation for an unreliable machine in a flow line is represented
in Figure B.4. Taking into consideration that a machine M; cannot be both in idle and

operating time, the probability of being up is given as follows:
P,(Up) = P,(Operating U Idle) = P;(Operating) + P;(Idle) (B.22)

thus, the efficiency is given by:

P(Up) — P(Idle)
P,(Up) + Pi(Down)
Using P;(Operating)\; = P;(Down)u; and the propriety of the transition probabilities

P,(Operating) = (B.23)

P,(Operating) + P,(Down) + Pi(Idle) = 1

A\,
& P;(Operating) + — P;(Operating) + P;(Idle) = 1

Ai
< P;(Operating)(1 + M_P) =1— P(Idle) (B.24)

i N py 4 p(Tdle)

< P;(Operating)(—

7

< P,(Operating) = e;(1 — P,(Idle))
The previous equation shows the difference between the efficiency of a station M; in isolation

and in an assembly line. The throughput of a specific station M; is given by:

TR = p; - P(Operating) = p; - e;(1 — P;(Idle)) (B.25)

Figure B.4: Transition diagram of a Markov chain for an unreliable machine in a flow
line

B.3.2 Example of the application of discrete event simulation

Taking the example provided in Figure 3.16, in which 3 workstations are separated by two
finite buffers, the events modifying the state of the system are the arrival and departure of
workpieces at/from workstations. The various states of the entities of the associated model

are represented in Figure B.5.
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Figure B.5: Sitmulation model trajectory of an assembly system with 3 workstations and

2 finite buffers

B.4 Statistical comparison of stochastic optimisation al-

gorithms

As seen in Chapter 3, many stochastic optimisation algorithms have been developed re-
cently. When it comes to measuring the performance of an algorithm, it has to be decided if
whether it is better than other ones. Usually, researchers use hypothesis testing, also called

significance testing, which is a method of statistical inference that can be used for testing
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a hypothesis about the relationship between two or more populations. In the first step,
two hypotheses are defined. The null hypothesis, Hy and the one opposite H; respectively
state that there is or no difference/effect between two sample of data. In the second step,
an appropriate test statistic is selected, which reduces the data-set to one value that can
be used to perform the hypothesis test. In a third step, the level of significance « (also
called significance level), which represents the probability threshold below which the null
hypothesis will be rejected is computed. In the last step, a decision about whether the null
hypothesis is rejected or not is taken. This decision can be based on two approaches, (i)
the critical value approach or (ii) the p-value approach. In the former one, critical values
define regions where the test statistic is unlikely to tend to H; if Hy is true. In the second
one, the p-value is calculated, which represents the probability of observing a more extreme
test statistic in the direction of Hy. Hj is rejected if the p.value is less than the selected

significance level.

In order to perform a statistical comparison of stochastic optimisation algorithms, parametric
and nonparametric statistical tests can be applied. In the former case, the application of
parametric tests require some properties, such as: (i) independency, (ii) normality, (iii) and
homoscedasticity of the variances of the data [287]. While the first one is always true, the
second condition needs to be verified through e.g. a Kolmogorov-Smirnov, Shapiro-Wilk,
D’Agostino-Pearson. These tests can verifiy if the data-sample follow a normal or Gaussian
distribution. The validity of this condition can also be verified by graphical representation
through a histogram representation and a Q-Q plot. The Q-Q plot is a probability plot,
whose aim is to compare two probability distributions. If the two distributions are similar,
than the points in the Q-Q plot will be approximately lie on the line. An example of a
histogram and Q-Q plot is shown in Figure B.6. As it can be seen in this figure, it seems
that the data sample, representing the achieved Iy, does not necessarily follow a normal
distribution. The same conclusion can be done when the Shapiro-Wilk test is applied, as
shown in Table B.2.

Table B.2: Test of normality using the Shapiro- Wilk Test
Problem Instance DMOBAT-3 DMOABC DMOCSA-2-2 DMOFPA-1 DMOPSO-1

Arcl11-1 0.023 0.632 0.408 0.933 0.341
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Figure B.6: Graphical representation of the density function of Iy and Q-Q plot ob-
tained by the DMOPSO

Table B.3 shows the p-values from the Levene’s Test in order to verify the homoscedasticity
based on the average means obtained by the various algorithms for different metrics and
problem instances. In order to ease the results, p-values less than the signifiance level are
marked gray. This indicates that at least one variance of a specific algorithm is different

from the other ones.

Table B.3: Test of homoscedasticity using the Levene’s Test for an algorithm of
Chapter 4

Problem Instance Igy  Iigp 1. In Time

Arclll-1  0.037 0.049 0.000 0.078 0.070
Buxey-2 0.234 0.992 0.000 0.242 0.000
Gunther-2 = 0.010 0.009 0.000 0.310 0.906
Jackson-2  0.000 0.000 0.000 0.000 0.000
Kilbrid-3  0.000 0.036 0.000 0.637 0.000
Mukherje-3 0.612 0.135 0.000 0.217 0.000
Roszieg-4 0.000 0.000 0.000 0.000 0.000
Sawyer-4 0.000 0.000 0.000 0.000 0.000

Since not all the previous conditions are met for all quality indicators, algorithms and prob-
lem instances, parametric statistic test cannot be used. When parametric test cannot be
properly applied to the data sample, for which mean and standard deviation are improper
and misleading, nonparametric tests can be applied. The difference between parametric and
nonparametric tests is that, the latter does not use the values of observations, but rather use
rank tests involving ranking parametric data from lowest to highest [147]. Nonparametric
tests, which do not require the probability distribution to be known, allow to determine

if whether there: (i) is a relationship among two data samples, (ii) two data samples are
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independent, (iii) there are significant differences among them. When it comes to comparing

various algorithms, these tests can be classified into [110]:

— Pairwise comparisons (P), which allows to compare two algorithms over multiple cases
of problems

— Multiple comparisons (1xN) with a control algorithm.

— Multiple comparisons (NxN)among all algorithms, which aims at detecting differences

considering the global set of algorithms.

Table B.4 describes the use of some nonparametric tests and the type of comparisons made
with them.

Table B.4: Differences between nonparametric statistical tests [287]

Statistical Test Purpose Type of comparison
Wilkcoxon signed-rank test Tests if two samples are representing P
two different populations
U test Defines whether a rate of success is P
really better than another
Multiple sign test Serves as a filter to remove samples that 1xN

are eagsily distinguishable as worse than
the control method

Contrast Estimation test Calculates the estimation of the differ- 1xN
ence among the performance of two al-
gorithms
Friedman test This test considers that all problems 1xN,NxN
have equal importance
Friedman aligned ranks test Makes comparisons between perform- 1xN

ances of algorithms as a single whole,
without considering the interrelation-
ships that exist between the sets of the
complete test
Quade test Defines whether the differences between 1xN
the observation and recorded data are
significantly larger or not




Appendix C

Detailed Analysis and Results of
Chapter 4

Abstract

The present chapter presents a synthesis of the various analyses of Chapter 4, and (i) the true
or reference Pareto front of the various problems, (ii) the parameter settings of the various
optimisers, (iii) the values of the various quality indicators obtained by each optimisers for

each problem instance, and (iv) the detailed values of the Friedman’s test.
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C.1 True and Reference Pareto front of the various prob-

lems

This section presents the true or reference Pareto front of some problem instance.
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Figure C.1: Reference Pareto front for the Arc111 Problem
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Figure C.2: Reference Pareto front for the Buzey Problem
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Figure C.3: Reference Pareto front for the Gunther Problem
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Figure C.9: Reference Pareto front for the Mukherje problems
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Figure C.11: True Pareto front for the Sawyer problems
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C.2 Parameter settings

This section presents the procedure used for the definition of the parameters of the various

optimization algorithms.

C.2.1 ANOVA results: BIANT

The ANOVA results for the BIANT-1 and BIANT-2 are shown in Tables C.1 to C.3.
Table C.1 shows that the population size, the pheromone importance, and the evapora-
tion rate have a significant effect on the hypervolume when considering the BIANT-1. By
considering successively the factors with a p-value less than «y;, in F-value descendent order
and the main plot effects shown Figure C.12, the parameter values can be fixed as follows:
population size to 200, pheromone rate 3 and evaporation rate to 0.9. For the heuristics
importance [, represented by the factor C, since it does not have a significant influence on
the hypervolume and does have an influence on the computation time as shown in Table C.2,
it is fixed to 1. The value of 1 is the one minimising the computation time, as shown in
Figure C.13.

Regarding the results obtained for the BIANT-2, which are shown in Table C.3, all factors
have a significant influence on the response variable. Additionally, an interaction between
the factors B and E, and C and D can be observed. The factor E, which has the strongest
F-value can be fixed to 0.1. The population size to 200, the evaporation rate to 0.6, the

pheromone rate and the heuristics importance are respectively fixed to 3 and 5.

Table C.1: Analysis of variance for the BIANT-1 with HV as response value
Factor DF SS MS  F-value p-value

A 2 0.753 0.376 >500 0.000
B 2 0.004 0.002  3.640 0.027
D 8 0.013 0.002  3.230 0.001

* Only factors/interactions with a signific-
ant influence («y;, = 0.05) are shown.
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Figure C.12: Main effects plot (fitted means) obtained for the BIANT-1 with HV as
response value

Table C.2: Analysis of variance for the BIANT-1 with the computation time as response
value

Factor DF SS MS  F-value p-value

A 2 >500 >500 >500 0.000
B 2 0.233 0.117 >500 0.000
C 2 0.000 0.000  5.080 0.006
D 8 >500 0.143 >500 0.000

AB 4 0.017 0.004 111.920 0.000
AD 16 0.080 0.005 131.200 0.000
BD 16 0.199 0.012 325.450 0.000
* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

Factor C
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o 0.677 | .
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Figure C.153: Main effects plot (fitted means) obtained for the BIANT-1 with the com-
putation as response variable

Table C.3: Analysis of variance for the BIANT-2 with HV as response value
Factor DF SS MS  F-value p-value

A 2 0.026 0.013  30.990 0.000
B 2 0.004 0.002  4.760 0.009
C 2 0.007 0.003  8.210 0.000
D 4 0.037 0.009  21.520 0.000
E 2 0.040 0.020  46.400 0.000
BE 4 0.005 0.001 2.890 0.022

CD 8 0.008 0.001  2.220 0.026

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.
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Figure C.14: Main effects plot (fitted means) obtained for the BIANT-2 with HV as
response value

C.2.2 ANOVA results: MOACS

Tables C.4 and C.5 show the ANOVA results for the MOACS-1 and MOACS-2. For the
MOACS-1, the factor C and D and the interactions AC, BC and BD are significant, when
using the hypervolume as response variable. By considering successively the factors with a
p-value less than oy, and their F-value in a descendent order, following factors can be set
to following values: ¢y to 0.8 and p to 0.1. The value of f maximising the hypervolume
regarding its interaction with the factor C is 2. Since the population size does not have
either a significant influence on the covered hypervolume or on the computation time (as
shown Table C.6), it is not necessarily beneficial to choose the lowest value for the population
size in order to decrease the running time, thus it was fixed to 200. Taking the results for
the MOACS-2 into consideration, most of the factors and the interaction between factors of
order 2 are significant. Using the F-value in descendent order, ¢y can be fixed to 0.6, the
population size to 200, and ¢; to 0.1 and 3 to 2. Since the interaction BE is significant and
E has already been defined, the value of B maximising the HV metric, under consideration

of its interaction with E, is 2. Following the same reasoning, p is set to 0.6.
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Table C.4: Analysis of variance for the MOACS-1 with HV as response variable

Factor DF SS MS  F-value p-value
C 8 >500 0.542  >500 0

D 4 0.002 0.001  4.130 0.003
AC 16  0.004 0.000 1.690 0.043
BC 32 0.010 0.000  2.420 0
BD 16  0.004 0.000 1.930 0.015

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

Table C.5: Analysis of variance for the MOACS-2 with HV as response variable

Factor DF SS MS  F-value p-value
A 2 0.031 0.016 84.870 0.000
B 4 0.002 0.001  2.760 0.027
C 5 >500 0.500 >500 0.000
E 2 0.006 0.003 17.130 0.000
AC 10  0.004 0.000 2.020 0.030
BC 20  0.007 0.000 1.860 0.014
BE 8 0.007 0.001  4.670 0.000
CD 20 0.008 0.000 2.100 0.004
CE 10 0.009 0.001  5.140 0.000

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

Table C.6: Analysis of variance for the MOACS-1 with the computation time as re-
sponse value

Factor DF SS MS  F-value p-value
B 4 0.245 0.061  >500 0.000
C 8 0.073 0.009 161.800  0.000
BC 32 0.008 0.000  4.690 0.000
CD 32 0.005 0.000 @ 2.720 0.000

* Only factors/interactions with a signific-
ant influence (ay;, = 0.05) are shown.

response value
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Figure C.15: Main effects plot (fitted means) obtained for the MOACS-1 with HV as
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Figure C.16: Interaction plot (fitted means) obtained for the MOACS-1 with HV as
response value
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Figure C.17: Main effects plot (fitted means) obtained for the MOACS-2 with HV as
response value
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Figure C.18: Interaction plot (fitted means) obtained for the MOACS-2 with HV as
response value
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C.2.3 ANOVA results: CHAC-1 and CHAC-2

The results obtained for the ANOVA of the CHAC-1 and CHAC-2 are respectively shown in
Tables C.7 and C.8. By considering successively the factors of CHAC-1 with a p-value less
than ag;,, and their F-value in a descendent order, qq is set to 0.6, the population size to 200,
a to 2, B to 3. The interaction DE allows us to fix E to 0.3. Regarding the results of the
CHAC-2, most of the factors and the interaction between factors of order 2 are significant.
By considering successively the factors and their interactions with a p-value less than o and
their F-value in a descendent order, while the values of all the common factors with the
CHAC-1 stays unchanged, the value of ¢; is can be fixed to 0.3. Regarding the results of the
CHAC-2, most of the factors and the interaction between factors of order 2 are significant.
By considering successively the factors and their interactions with a p-value less than o and
their F-value in a descendent order, while the values of all the common factors with the
CHAC-1 stays unchanged, the value of ¢; is can be fixed to 0.3.

Table C.7: Analysis of variance for the CHAC-1
Factor DF SS MS  F-value p-value

A 2 0.002 0.001  64.070 0.000
B 2 0.001  0.000  16.040 0.000
C 2 0.000 0.000 11.330 0.000
D 6 0.027 0.005 242.890  0.000

AC 4 0.000 0.000  2.680 0.030
BD 12 0.001 0.000  3.190 0.000
CD 12 0.002 0.000  8.310 0.000
DE 18  0.001 0.000 1.760 0.030

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

Factor A Factor B Factor C Factor D
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Figure C.19: Main effects plot (fitted means) obtained for the CHAC-1 with HV as
response value
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Figure C.20: Interaction plot (fitted means) obtained for the CHAC-1 with HV as re-
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Table C.8: Analysis of variance for the CHAC-2

Factor DF SS MS F-value p-value
A 2 0.016 0.008 194.430 0.000
B 2 0.001  0.000 7.260 0.000
C 2 0.007 0.003  81.820 0.000
D 5 0.214 0.043 1048.390  0.000
F 2 0.002 0.001  26.450 0.000
AD 10  0.002 0.000 5.410 0.000
BD 10  0.002 0.000 5.250 0.000
BF 4 0.001  0.000 3.920 0.000
CD 10 0.013 0.001  31.800 0.000
CE 6 0.001  0.000 2.540 0.020
CF 4 0.000 0.000 2.780 0.030
DE 15 0.002 0.000 3.040 0.000
DF 10  0.003 0.000 7.710 0.000

* Only factors/interactions with a signific-

ant influence (qy;, = 0.05) are shown.
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Levels Levels Levels Levels Levels

Figure C.21: Main effects plot (fitted means) obtained for the CHAC-2 with HV as

response value
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Figure C.22: Interaction plot (fitted means) obtained for the CHAC-2 with HV as re-
sponse value

C.2.4 ANOVA results: DMOABC

The ANOVA results for the DMOABC are shown in Table C.9. This table shows that the
factor A, which represents the size of the population, is the only factor having a significant
influence on the hypervolume. The value of this factor which maximizes the response value,
is 200, as shown in Figure C.23. Since neither the factor B nor the interaction between the
factors A and B have a significant influence on the response variable considering separately
the covered hypervolume and the computation time, shown in Table C.10, B is set to 50,

value for which the covered hypervolume is maximized.



C.2 Parameter settings

264

Table C.9: Analysis of variance for the DMOABC with HV as response variable

Factor DF SS MS  F-value p-value

A 2 0.001 0.000 10.200 0.000

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.
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Figure C.25: Main effects plot (fitted means) obtained for the DMOABC with HV as
response value

Table C.10: Analysis of variance for the DMOABC with the computation time as re-
sponse variable

Factor DF SS MS  F-value p-value

A 2 0.943 0471 191.340  0.000

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

C.2.5 ANOVA results: DMOCSA

The ANOVA results for

the DMOCSA are shown in Table C.11. This table shows that,

while the factor A has a significant influence on the response value, the factor B only has

a significant influence when considering a confidence level of 92.3%. Thus, according to the

main effects plot, the population size can be set to 200 and B to 0.9. Since the factor C

does definitely not have any influence on either the covered hypervolume or the computation

time, as shown in Table C.12, the interaction between A and C, which is significant for the

hypervolume as response value, is used to set C to 0.20.

Table C.11: Analysis of variance for the DMOCSA with HV as response variable

Factor DF SS MS  F-value p-value

A 2 0.003 0.002  34.350 0.000
B 8 0.001 0.000  1.800 0.077

* Only factors/interactions with a signific-
ant influence (i, = 0.10)are shown.
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Table C.12: Analysis of variance for the DMOCSA with the computation time as re-
sponse variable

Factor DF SS MS  F-value p-value

A 2 0.632 0.316 11.640 0.000
AC 8 0.453  0.057  2.090 0.038
BC 32 141.414 0.044 1.630 0.022

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

Factor A Factor B
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Figure C.24: Main effects plot (fitted means) obtained for the DMOCSA with HV as
response value

C.2.6 ANOVA results: DMOFPA

The ANOVA results for the DMOFPA are shown in Table C.13. This table shows that the

population size and the threshold between global and local pollination have a significant

effect on the response variable (hypervolume). Taking the F-Value in descendent order and

in accordance with the main effect and interaction plots shown in Figure C.25, the population
size was set to 200 and the threshold rate, B, to 0.90

Table C.13: Analysis of variance for the DMOFPA with HV as response variable

Factor DF SS MS  F-value p-value

A 2 0.002 0.001 21.110 0.000
B 8 0.002 0.000  3.770 0.001

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

Figure C.25: Main effects plot (fitted means) obtained for the DMOFPA with HV as

response value
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C.2.7 ANOVA results: DMOBAT

The ANOVA results obtained are shown in Table C.14. This table shows that the population
size has a significant effect on the response variable (hypervolume). Considering the main

effect plot shown in Figure C.26, the population size was set to 200.

Table C.14: Analysis of variance for the DMOBAT
Factor DF SS MS  F-value p-value

A 2 0.000 0.000  3.180 0.046

* Only factors/interactions with a signific-
ant influence (g, = 0.05) are shown.

Factor A
0.990 [ ‘ R
% 0.980 | e
\J? ’

100 150 200
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Figure C.26: Main effects plot (fitted means) obtained for the DMOBAT with HV as
response value

C.2.8 ANOVA results: DMOPSO

The obtained ANOVA results are shown in Table C.15. This table shows that the population
size, and the two crossover rates have a significant effect on the response variable (hyper-
volume). Taking the F-Value in descendent order, we fix the population size to 200, the
crossover rate C between a solution X[ and its best position pBf to 0.75 and the crossover
rate Cy between a solution X* and the best global position gB¥ to 0.70. We fix arbitrary the
mutation rate to 0.15. This is done taking the main effects plot and interaction plot shown
in Figure C.27.

Table C.15: Analysis of variance for the DMOPSO with HV as response variable
Factor DF SS MS  F-value p-value

A 2 0.007 0.004 107.980  0.000
B 4 0.000 0.000  2.500 0.040
C 4 0.000 0.000  2.610 0.030

* Only factors/interactions with a signific-
ant influence (ay;, = 0.05) are shown.
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Figure C.27: Main effects plot (fitted means) obtained for the DMOPSO with HV as
response value

C.3 Detailed values of the metrics

This section presents the detailed values of the metrics obtained by the different optimization

algorithms for all problem instances.
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C.3.1 Problem Family: Arcl11

Table C.16: Median and interquartile range of Iy obtained by the optimisers for the
Arcl11 problems

Arcl11-1  Arcl11-2  Arclll-3  Arclll4  Arclll5
#+IQR(x) #+IQR(z) #+IQR(z) i+IQR(z) &+ IQR(x)

BIANT-1 [0:870 0.02 [0:897 0.04 0.86 006 [0907 003 0.85 0.04
BIANT-2 | 0.90 0.01 |0.89 004 [087 004 086 003 §090Y 0.03
CHAC-1 0.87 001 085 001 084 001 084 001 085 0.03
CHAC-2 087 001 085 001 0.84 [JOEOE 085 001 086 0.01
DMOABC 0.86 0.01 084 001 085 0.02 085 001 085 001
DMOCSA-1-1  0.87 [J@BHM 085 001 084 003 085 003 085 001
DMOCSA-1-2 086 0.0l 0.85 001 085 0000 0.84 0.0l 086 0.02
DMOCSA-1-3 086 0.01 085 001 085 001 085 001 085 0.02
DMOCSA-1-4 0.86 [NOOIW 0.86 001 084 001 084 001 084 0.01
DMOCSA-1-5 086 0.01 085 002 084 002 085 002 085 [10:00
DMOCSA-2-1 086 0.01 085 002 084 002 085 002 08 001
DMOCSA-2-2 086 0.01 086 001 084 002 085 001 085 0.02
DMOCSA-2-3 0.86 0.01 085 00l 085 001 084 001 085 001
DMOCSA-2-4 087 0.01 085 002 085 001 085 001 085 001
DMOCSA-2-5 087 0.01 085 003 085 001 085 [J00W 085 0.01
DMOFPA-1 0.86 001 085 002 085 002 08 002 085 0.03
DMOFPA-2 0.86 0.01 086 0.02 0.85 00000 085 001 0.85 0.1
DMOFPA-3 0.87 [J00LY 0.85 0.01 084 001 085 001 085 0.02
DMOFPA-4 0.86 0.01 085 @8N 085 002 084 002 085 0.3
DMOFPA-5 0.86 0.02 085 001 | 085 001 085 0000 0.85 0.02
MOACS-1 0.84 0.01 087 001 FOS7I 0.01 FO87 0.01 [087
MOACS-2 SN 001 JOB2N 001 JOB2§ 0.02 [O2N 0:00 0.01
DMOBAT-1 0.86 0.01 0.85 001 084 002 085 001 085 001
DMOBAT-2 0.86 0.01 085 001 084 000 085 001 085 001
DMOBAT-3 0.86 0.0l 0.86 003 084 001 085 002 085 001
DMOBAT-4 086 0.01 085 001 085 001 084 001 085 0.02
DMOBAT-5 0.86 0.01 085 001 084 001 085 001 0.85 [10:00
DMOPSO-1 0.87 0.02 0.85 001 085 001 085 001 086 0.01
DMOPSO-2 0.87 0.0l 085 001 085 001 084 00l 085 0.02
DMOPSO-3 0.86 0.0l 0.85 001 084 002 084 002 085 0.01
DMOPSO-4 0.86 0.0l 085 002 084 000 084 001 085 0.01
DMOPSO-5 0.86 0.01 085 001 085 001 085 001 085 0.02
NSGA-II 087 001 086 003 086 001 086 003 086 0.02
SPEA2 087 001 0.86 [OOLY 0.85 0.02 086 002 086 0.01
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Figure C.28: Boxplot for Igy: Arcl11-1
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Table C.17: Median and interquartile range of I;qp obtained by the optimisers for the

Arcl11 problems

Arclli-1 Arcl11-2 Arcl11-3 Arclll-4 Arclll-5
TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 [0.68 0.06 0.78 0.08 0.88 0.24 [0.64 0.11 0.84 0.18
BIANT-2 | 0.64 0.06 066 0.14 083 0.12 0.83 0.04 0.8 0.15
CHAC-1 0.76 0.03 0.83 0.07 084 0.03 086 0.06 0.78 0.06
CHAC-2 0.78 0.87 0.04 0.78 0.03 0.8 0.07 0.78 0.03
DMOABC 0.81 0.03 091 0.11 0.78 0.04 0.88 [ 0.01 0.79 0.03
DMOCSA-1-1 0.78 0.01 0.88 0.02 0.78 0.09 0.90 0.07 0.84 0.02
DMOCSA-1-2 0.82 0.02 0.8 0.03 [0.73 0.02 0.89 0.10 0.80 0.10
DMOCSA-1-3 0.78 0.01 0.8 0.07 0.80 0.07 0.8% 0.03 0.8 0.06
DMOCSA-1-4 0.80 0.05 0.84 0.03 0.77 0.03 0.88 0.84 0.03
DMOCSA-1-5 0.79 0.04 085 [ 001 081 0.11 08 0.04 0.84 0.03
DMOCSA-2-1 0.82 0.03 0.88 0.03 0.75 0.09 0.88 0.04 0.79 0.04
DMOCSA-2-2 0.78 0.01 0.82 0.01 0.80 0.06 0.88 0.07 0.79 0.02
DMOCSA-2-3 0.79 0.02 0.8 0.02 0.74 0.04 090 0.01 0.79 0.03
DMOCSA-2-4 0.77 0.04 084 006 0.77 0.02 086 0.04 FO75" 0.08
DMOCSA-2-5 0.78 0.06 082 0.11 0.78 0.04 0.8 0.02 0.78 0.04
DMOFPA-1 0.81 0.02 08 0.04 0.77 005 0.89 0.05 084 0.11
DMOFPA-2 0.78 0.04 0.8 0.13 0.76 0.02 0.89 | 0.01 ' 0.80 | 0.01
DMOFPA-3 0.78 0.02 0.83 0.03 0.78 0.03 0.8 0.06 0.79 0.05
DMOFPA-4 0.79 0.02 0.87 [0l 0.80 0.09 0.89 0.02 0.82 0.08
DMOFPA-5 0.82 0.03 0.8 ' 0.01 0.79 0.87 0.02 0.82 0.09
MOACS-1 094 0.12 074" 0.05 057" 0.02 060" 0.07 058" 0.04
MOACS-2 0.04 0.01 0.01 0.01 [OEIEoNN
DMOBAT-1 0.78 | 0.01 0.88 0.06 0.82 0.07 0.89 0.05 0.76 0.06
DMOBAT-2 0.82 0.03 086 0.04 0.79 0.03 0.87 0.02 0.78 0.09
DMOBAT-3 0.81 0.01 0.84 0.17 0.80 0.06 0.88 0.12 0.82 0.04
DMOBAT-4 0.80 0.05 0.8 0.06 0.78 0.05 090 0.08 0.82 0.06
DMOBAT-5 0.79 0.02 083 0.01 0.84 0.03 0.88 0.06 0.77 0.06
DMOPSO-1 0.82 0.0 0.84 003 0.76 0.06 0.89 0.03 0.76 0.06
DMOPSO-2 0.78 | 0.01 | 0.88 0.05 0.78 0.06 0.86 0.03 0.81 0.06
DMOPSO-3 0.81 0.03 086 0.01 0.83 0.02 090 0.02 0.79 [ 0.01
DMOPSO-4 0.80 0.03 085 0.02 0.82 | 0.02 0.8 0.02 0.81 0.02
DMOPSO-5 0.81 0.02 084 004 0.77 0.05 0.87 0.03 0.79 0.07
NSGA-II 0.80 0.04 0.89 008 0.76 0.05 080 0.11 0.78 0.04
SPEA2 0.82 0.02 084 007 0.79 0.04 092 0.02 0.79 0.02
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Figure C.29: Boxplot for I;gp: Arc111-1
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Table C.18: Median and interquartile range of 1. obtained by the optimisers for the

Arcl11 problems

Arcl1i-1 Arcl11-2 Arcl11-3 Arcl11-4 Arcl11-5
TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 0.74 0.03 0.81 0.12 0.76 0.02 0.73 0.02 091 0.16
BIANT-2 0.69 0.03 0.68 005 080 001 075 0.04 083 0.05
CHAC-1 024 0.01 031 001 036 001 036 001 037 0.00
CHAC-2 0.24 000" 0.31 0.36  0.00 0.36 0.01 0.37 000
DMOABC 0.24 0.00 '0.31 001 035 0.01 036 0.00 0.38 | 0.00
DMOCSA-1-1 0.24 0.00 032 000 0.36 [ 000 036 0.00 0.38 0.00
DMOCSA-1-2 0.24 0.00 032 001 035 001 036 001 038 0.00
DMOCSA-1-3 0.24 0.00 0.32 000 035 0.00 036 001 038 0.00
DMOCSA-1-4 0.24 0.01 031 001 035 000 036 001 038 0.01
DMOCSA-1-5 0.24 0.00 0.31 HO00Y 0.35 0.00 0.36 HOW00Y 0.38 0.01
DMOCSA-2-1 0.24 0.00 032 000 035 001 036 0.01 037 0.0
DMOCSA-2-2 0.24 0.00 031 0.00 0.35 0.36  0.00 0.38 0.00
DMOCSA-2-3 0.24 0.01 031 001 035 001 036 001 038 0.00
DMOCSA-2-4 0.24 ~ 0.00 031 000 035 000 036 000 038 0.01
DMOCSA-2-5 0.24 001 032 001 036 0.00 0.36 0.38  0.00
DMOFPA-1 0.24 000 031 0.01 035 0.00 (035 0.0l 038 0.01
DMOFPA-2 0.24 0.00 031 001 035 001 036 0.00 038 0.0
DMOFPA-3 0.24 0.00 031 0.00 036 000 036 0.00 038 0.01
DMOFPA-4 024 0.00 031 000 035 000 036 001 038 0.0
DMOFPA-5 024 0.00 031 0.00 036 0.00 036 000 038 0.01
MOACS-1 094 0.04 093 001 095 0.06 08 003 096 0.04
MOACS-2 050 0.04 049 0.02 045 0.01 048 0.03 056 0.04
DMOBAT-1 0.24 0.00 031 000 036 0.00 036 0.00 (037 0.01
DMOBAT-2 0.24 0.31 | 0.00 0.36 0.00 0.36 0.01 0.38 0.00
DMOBAT-3 0.24 0.00 031 000 035 0.01 036 000 0.38 0.00
DMOBAT-4 024 001 032 001 036 0.00 036 00l 038 0.00
DMOBAT-5 0.24 0.00 031 0.00 036 0.00 036 001 038 0.00
DMOPSO-1 024 0.00 0.31 0.00 FOB5" 0.00 036 0.00 0.38 0.00
DMOPSO-2 0.24 0.01 031 001 036 0.00 036 000 038 0.00
DMOPSO-3 [0.24 0.01 0.32 000 035 0.00 036 0.01 038 0.01
DMOPSO-4 0.24 0.00 031 001 035 001 036 0.01 037 0.01
DMOPSO-5 024 0.00 031 001 035 0.00 036 000 0.38 0.00
NSGA-II [JOE 0.00 - 0.00 - 0:00 o2l 0.01 0.00
SPEA2 [0.15 0.00 0.00 0.00 | 0.23 W0W00 L
1] | % 1
0.8 Tz
¢ 0.6] .
= =
04/ |
02} - T T == L |
NS VO N YN Y D DB NV DN DNV D DD N D D NN D NS
A D e e e ot oo e ot o QTR TR B TR B %Og%@
SR R e e
R R AR

Figure C.30: Boxplot for I.: Arc111-1
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I

Table C.19: Median and interquartile range of In obtained by the optimisers for the
Arcl11 problems

0.8

0.6

0.4

Arclll-1 Arcl11-2 Arcl11-3 Arclll-4 Arclll-5
TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 FOB37 0.02 0.61 [O0OI0627 0.09 0BT 001 065 0.06
BIANT-2 | 054 0.02 [057 011 065 007 066 007 1063 0.03
CHAC-1 0.78 0.03 084 003 083 009 08 003 071 0.05
CHAC-2 0.83 0.06 079 003 0.81 [JO0OI 082 005 075 0.07
DMOABC 0.91 0.03 092 004 084 006 089 006 084 0.04
DMOCSA-1-1 0.84 0.02 089 007 085 002 090 003 089 0.05
DMOCSA-1-2 0.87 0.06 0.89 004 083 005 089 006 079 0.04
DMOCSA-1-3 0.84 0.03 084 008 084 003 087 004 087 0.04
DMOCSA-1-4 087 0.02 093 0.13 084 004 086 001 083 001
DMOCSA-15 0.89 ~0.02 0.82 004 089 010 084 002 085 0.06
DMOCSA-2-1 0.91 @Il 085 007 0.82 003 084 004 079 0.07
DMOCSA-2-2 0.84 ~ 0.01 0.81 001 0.82 R 0.91 007 083 0.07
DMOCSA-2-3 0.86 0.03 0.84 006 078 0.06 087 002 0.82 001
DMOCSA-24 087 0.02 085 0.11 086 BOOTY 0.84 007 0.78 0.04
DMOCSA-25 081 0.05 087 004 082 004 086 005 0.77 0.04
DMOFPA-1 0.86 [OWOIW 0.86 0.04 0.87 0.07 0.88 [O0OIN 0.87 0.10
DMOFPA-2 0.85 0.04 085 005 085 001 087 002 083 0.05
DMOFPA-3 0.88 0.09 084 004 081 003 0.86 0O 0.77 0.06
DMOFPA-4 0.82 [OWOIW 090 0.0 0.86 012 092 003 084 0.06
DMOFPA-5 091 0.03 082 007 083 001 083 009 085 0.04
MOACS-1 0.61 0.06 JOB7I 0.05 FOB6N 0.02 [0:59 0.06 §0®I
MOACS-2 0.03 0.09 0.05 0.07 0.17
MOBAT-1 0.87 0.05 0.85 0.82 0.0 0.88 007 080 0.03
MOBAT-2 0.85 0.02 088 005 084 005 090 004 085 0.04
MOBAT-3 0.85 0.05 092 021 085 003 08 002 079 0.07
MOBAT-4 0.86 0.02 084 011 085 006 0.8 014 0.86 0.01
MOBAT-5 0.85 0.10 088 010 0.86 0.04 086 006 084 0.07
DMOPSO-1 0.92 0.07 0.82 002 084 001 0.88 [O0OIY 0.82 0.05
DMOPSO-2 0.87 0.08 0.86 004 080 005 085 008 080 0.06
DMOPSO-3 0.87 0.05 0.86 008 084 004 088 004 084 0.02
DMOPSO-4 0.87 0.04 081 006 083 006 089 004 082 0.02
DMOPSO-5 0.86 0.01 0.83 001 081 004 089 002 085 0.04
NSGA-II 0.87 006 090 007 089 0.02 094 002 084 0.07
SPEA2 090 002 085 005 085 002 091 007 0.80 001
5 SHESS . ihsz05
, o %%%%%f =E=Ts2=02cHL T 5TE
R
i = |
NoVON LV, H. Mo N B HION DV D MO N D M o N H Mo YV
B A R AR PN 0 A N R A AR S
SR R e e
Y TS SRS TV TTIT

Figure C.31: Boxplot for In: Arc111-1
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Computation time

Table C.20: Median and interquartile range of the computation time required by the
optimisers for the Arc111 problems

0.5

Arclli-1 Arcl11-2 Arcl11-3 Arclll-4 Arclll-5
TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 0.54 0.17 080 0.21 0.83 0.12 0.79 0.25 0.50 0.36
BIANT-2 1.00 OO 064 047 054 018 040 014 068 0.13
CHAC-1 043 0.04 0.40 0.07 044 0.10 030 0.18 0.38 0.25
CHAC-2 0.39 007 035 004 039 018 028 024 0.39 0.10
DMOABC 0.55 0.07 051 035 075 030 054 0.11 093 0.29
DMOCSA-1-1 0.34 0.07 034 0.06 [0.26 0.30 037 0.17 042 0.20
DMOCSA-1-2 036 0.15 033 0.15 047 0.13 023 0.20 046 0.16
DMOCSA-1-3 0.37 0.16 0.31 0.13 0.44 0.16 0.45 0.11 0.30 0.22
DMOCSA-1-4 0.26 0.07 026" 006 0.51 0.07 037 0.26 [0.26
DMOCSA-1-5 0.32 0.14 033 | 0.03 0.41 0.23 035 0.14 044 0.21
DMOCSA-2-1 038 0.15 040 0.12 0.60 0.27 0.66 0.27 0.67 0.18
DMOCSA-2-2 053 0.12 063 013 0.71 0.12 057 0.28 0.52 0.22
DMOCSA-2-3 033 0.21 049 0.05 0.87 0.17 047 0.12 068 0.06
DMOCSA-2-4 052 0.15 046 0.09 058 0.24 057 0.12 0.8 0.30
DMOCSA-2-5 0.53 0.18 048 0.34 0.51 0.30 0.42 0.23 0.61 0.22
DMOFPA-1 026 0.06 035 0.16 042 0.13 0.38 0.06 0.32 [ 0.05
DMOFPA-2 0.31 0.18 046 008 041 0.18 035 0.14 0.39 0.30
DMOFPA-3 0.32 0.08 043 004 0.55 0.18 0.29 0.17 043 0.10
DMOFPA-4 0.26 | 0.03  0.30 | 0.04 @ 0.35 | 0.05 0.26 0.12 0.31 0.16
DMOFPA-5 023 0.18 047 0.05 058 034 033 0.14 0.34 7005
MOACS-1 1020 | 0.08 0.32 0.05 025 004 019 004 028" 0.13
MOACS-2 0.22 0.04 @ 0.25 0.05 0.27 0.10 0.20 0.42 0.19
DMOBAT-1 0.24 0.08 0.26 0.16 0.44 0.30 0.10 0.40 0.20
DMOBAT-2 0.31 0.06 0.35 [jj0l02§ 039 0.09 030 0.05 0.37 0.13
DMOBAT-3 0.26 0.18 041 0.21 042 0.17 036 0.17 047 0.07
DMOBAT-4 0.32 0.14 036 0.12 030 0.07 032 0.14 041 0.06
DMOBAT-5 0.29 0.08 0.28 0.17 028 0.12 0.32 [0:04" 0.41 0.17
DMOPSO-1 0.37 0.14 041 026 043 0.10 041 0.06 0.35 0.07
DMOPSO-2 [ 021 0.23 0.27 0.05 042 0.23 [0.18 0.12 0.33 0.26
DMOPSO-3 0.46 021 0.38 028 044 0.12 029 013 0.31 0.13
DMOPSO-4 0.52 0.26 1.00 0.41 0.77 0.10 0.51 0.14 086 0.27
DMOPSO-5 038 0.05 039 025 039 022 045 004 039 0.17
NSGA-II 0.26 0.13 030 0.10 047 022 042 027 043 0.13
SPEA? [EEEVO0SVIDEEE 007 JONEE 0.13 JEESE 003 JEEEN 0.08

070701070010 70070
LOLLOLLEOE
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Figure C.32: Boxplot for the computation time: Arc111-1
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C.3.2 Problem Family: Buxey

Table C.21: Median and interquartile range of Iy obtained by the optimisers for the
Buzey problems

Buxey-1 Buxey-2 Buxey-3 Buxey-4 Buxey-5
Z+IQR(z) TxIQR(zx) Z+IQR(zx) ZX+IQR(z) Z+IQR(x)

BIANT-1 0.94 0.06 0.93 0.03 [0927 0.03 093 004 092 0.03
BIANT-2 @B 0.02 (093 003 091 005 [094 003 [093 0.03
CHAC-1 092 001 092 001 091 001 090 001 091 0.01
CHAC-2 093 001 092 001 091 @000% 090 002 091 0.01
DMOABC 0.92 0.01 092 001 091 0.00 091 001 090 0.02
DMOCSA-1-1 092 001 092 001 090 000 090 002 090 0.01
DMOCSA-1-2 093 0.01 092 001 091 001 090 001 091 0.01
DMOCSA-1-3  0.92 [000% 0.92 001 091 @@ 09 002 091 0.01
DMOCSA-1-4 090 0.02 089 001 08 0.0l 08 001 087
DMOCSA-1-5 093 002 092 001 090 001 090 002 090 0.01
DMOCSA-2-1 0.92 [JENOE 092 001 091 001 0.90 001 0.91 [10:00
DMOCSA-22 092 0.0l 092 001 091 002 090 002 091 0.01
DMOCSA-2-3 093 001 092 00l 091 001 090 001 090 0.01
DMOCSA-2-4 090 001 090 001 08 002 087 002 088 0.02
DMOCSA-2-5 092 001 092 001 090 002 091 001 090 0.01
DMOFPA-1 092 001 092 001 091 001 091 002 091 001
DMOFPA-2 0.92 0.01 0.92 0000 0.90 0.01 0.90 0.01 0.90 0.00
DMOFPA-3 092 001 092 001 091 001 0.90 BO0IN 0.90 0.02
DMOFPA-4 090 0.02 090 0.01 0.89 0.02 0.8 004 08 0.0l
DMOFPA-5 092 001 092 001 090 001 089 001 091 0.00
MOACS-1 0948 0.01 Q0948 0.01 PO93W 0.01 [FO94W 0.01 [EEEN 0.01
MOACS-2 0.93 001 [0S 001 JONEY 001 JOOEN 001 (095 0.01
DMOBAT-1 091 0.01 092 001 090 001 090 001 091 0.01
DMOBAT-2 0.93 0.01 092 001 091 001 090 001 090 0.00
DMOBAT-3 0.93 0.01 092 001 091 001 090 003 091 001
DMOBAT-4 090 001 090 001 089 001 08 001 088 0.02
DMOBAT-5 0.92 ~ 0.01 092 001 091 000 090 0.02 0.91 0.00
DMOPSO-1 092 0.01 092 [J@HOE 0.9 001 090 001 090 0.01
DMOPSO-2 093 0.01 092 001 090 001 090 001 091 0.01
DMOPSO-3 092 0.01 093 002 091 001 090 |00 0.91 [10:00
DMOPSO-4 091 0.03 091 002 088 005 089 004 089 0.03
DMOPSO-5 092 0.01 091 001 090 001 091 002 090 001
NSGA-Il 0948 0.01 092 001 092 001 091 002 091 0.02
SPEA2 0.93 00T 093 001 091 001 092 001 091 0.02
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Buzey problems

Buxey-1 Buxey-2 Buxey-3 Buxey-4 Buxey-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 1048 0.17 [0.55 0.09 [0.52 0.12 [0.47 0.13 0.57 0.05
BIANT-2 0.16 1 0.50 0.09 0.58 0.09 0.55 0.17 [0.46 0.06
CHAC-1 0.65 0.20 0.58 0.07 0.61 O 0.64 [[70:027 0.62 0.04
CHAC-2 0.60 0.07 063 006 0.64 0.05 064 0.08 064 0.11
DMOABC 0.60 0.04 060 0.04 064 003 056 0.07 058 0.11
DMOCSA-1-1 0.60 0.18 061 0.02 0.67 0.05 059 0.08 0.67 0.06
DMOCSA-1-2 0.61 0.03 060 0.06 0.67 003 066 0.06 065 0.06
DMOCSA-1-3 0.61 0.05 062 0.04 065 004 061 0.06 064 0.06
DMOCSA-1-4 0.80 0.11 086 0.03 091 005 0.8 0.04 088 0.02
DMOCSA-1-5 0.63 0.11 060 0.04 069 0.05 0.64 0.03 067 0.06
DMOCSA-2-1 0.66 0.14 064 0.05 0.66 0.05 0.65 0.06 063 0.03
DMOCSA-2-2 0.61 0.10 061 0.08 065 0.03 065 0.04 0.60 | 0.02
DMOCSA-2-3 0.60 0.06 061 0.06 068 0.09 064 0.04 065 0.06
DMOCSA-2-4 0.78 0.04 080 0.03 088 0.10 0.86 0.03 082 0.08
DMOCSA-2-5 0.61 0.07 0.60 [0.01 | 0.65 [ 0:02 " 0.59 0.03 0.69 0.06
DMOFPA-1 0.55 [ 0.01 066 0.03 068 003 061 0.09 0.58
DMOFPA-2 0.59 0.04 063 0.05 0.67 0.03 0.62 [ 0.02 0.67 0.05
DMOFPA-3 0.63 0.11 063 0.04 060 0.06 0.61 0.03 0.64 0.06
DMOFPA-4 0.77 0.04 079 0.02 080 0.11 075 0.05 084 0.04
DMOFPA-5 0.56 0.02 064 0.06 0.66 006 0.64 011 062 0.06
MOACS-1 [0:53° 0.05 0.04 0.06 [0:48 0.04 0.06
MOACS-2 0.59 0.12 0.56 0.05 | 0.48 0.01 0.03 [ 041 0.05
DMOBAT-1 0.63 0.03 0.63 0.10 0.67 0.05 0.61 0.04 062 0.08
DMOBAT-2 0.63 0.17 066 0.03 061 006 0.66 0.06 0.63 0.05
DMOBAT-3 0.57 0.06 064 0.07 0.65 0.08 0.63 0.62 0.05
DMOBAT-4 0.77 [0l 0.77 0.06 0.79 0.03 0.84 0.03 0.75 0.10
DMOBAT-5 0.61 0.16 062 0.07 064 006 0.64 0.05 0.65 0.03
DMOPSO-1 0.57 0.06 0.64 0.02 0.62 0.08 0.62 0.04 0.65 | 0.01
DMOPSO-2 0.58 0.09 0.60 |00l 066 0.02 0.63 0.04 062 0.04
DMOPSO-3 0.54 0.10 0.60 0.05 0.67 0.09 0.62 0.07 066 0.05
DMOPSO-4 0.71 0.14 078 014 081 025 0.79 0.16 0.79 0.12
DMOPSO-5 0.54 F 0.02 0.63 0.05 0.65 0.05 0.60 0.04 0.65 0.10
NSGA-II 0.66 0.05 0.63 [0:01 § 0.63 0.06 062 0.06 062 0.10
SPEA2 0.60 0.04 063 008 0.66 0.06 061 0.03 0.64 0.07

Table C.22: Median and interquartile range of I;qp obtained by the optimisers for the
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Table C.23: Median and interquartile range of 1. obtained by the optimisers for the

Buzey problems

Buxey-1
T+ IQR(x)

Buxey-2 Buxey-3 Buxey-4 Buxey-5
TEIQR(x) Z+IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.42 0.41
BIANT-2 [ 0.28 0.14
CHAC-1 0.87
CHAC-2 0.87
DMOABC 0.87
DMOCSA-1-1  0.87
DMOCSA-1-2  0.87
DMOCSA-1-3  0.87
DMOCSA-1-4 0.87
DMOCSA-1-5 0.87
DMOCSA-2-1  0.87
DMOCSA-2-2  0.87
DMOCSA-2-3  0.87
DMOCSA-2-4 0.87
DMOCSA-2-5 0.87
DMOFPA-1  0.87
DMOFPA-2 0.87
DMOFPA-3 0.87
DMOFPA-4 0.87
DMOFPA-5 0.87
MOACS-1
MOACS-2
DMOBAT-1
DMOBAT-2
DMOBAT-3
DMOBAT-4
DMOBAT-5
DMOPSO-1
DMOPSO-2
DMOPSO-3
DMOPSO-4
DMOPSO-5
NSGA-II
SPEA2

039 0.20 [ 0.62 048 0.59 034 0.65 0.01
049 023 0.84 0.44 0.06 [ 0.50 0.31
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77

1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77
1.00 0.65 0.77

1.00
1.00
1.00
0.17

0.65
0.65
0.65

0.77
0.77
0.77

0.42
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
0.26
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Table C.24: Median and interquartile range of In obtained by the optimisers for the
Buzey problems

Buxey-1 Buxey-2 Buxey-3 Buxey-4 Buxey-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.67 0.06 [0:%64% 0.09 [0:%68" 0.10 [0:627 0.04 066 0.10
BIANT-2 [0:60° 0.05 0.71 0.11 [0.68 0.07 [JOB8E 002 [064 0.10
CHAC-1 0.82 Il 082 004 087 003 085 MO0 0.78 0.09
CHAC-2 084 0.02 086 004 087 JEEEE 082 004 082 0.05
DMOABC 090 0.05 091 009 090 0.06 093 008 072 0.06
DMOCSA-1-1 084 0.03 087 008 0.82 0.05 0.82 0007 0.85 0.09
DMOCSA-1-2 086 0.04 086 005 082 007 080 00l 084 0.06
DMOCSA-1-3 085 0.06 084 004 091 011 085 005 083 0.05
DMOCSA-1-4 084 004 088 010 089 0.13 084 004 088 0.5
DMOCSA-1-5 083 006 082 [JEEEW 087 005 087 010 077 0.07
DMOCSA-2-1 093 0.03 08 005 0.81 [J0020 085 0.04 0.86 0.08
DMOCSA-2-2 090 0.3 086 005 087 005 087 006 084 0.07
DMOCSA-2-3 081 0.04 08 008 088 0.1 084 009 082 0.08
DMOCSA-2-4 084 007 080 008 081 004 084 009 084 0.07
DMOCSA-2-5 0.84 [OOTN 0.84 WOOTY 089 006 083 005 082 0.05
DMOFPA-1 0.84 0.07 080 0.01 086 0.07 079 004 082 0.08
DMOFPA-2 0.85 0.03 0.86 0.01 0.89 0.03 085 0.05 0.83 0.07
DMOFPA-3 0.88 0.04 0.86 0.09 083 011 085 003 076 0.04
DMOFPA-4 0.90 0.01 0.80 0.07 0.86 0.02 086 005 077 0.13
DMOFPA-5 0.80 0.07 0.90 0.09 0.84 0.09 088 003 085 0.04
MOACS-1 [0:60° 0.01 POB8Y 0.13 IS 0.04 POBOY 0.05 S 0.09
MOACS-2 0B8N 0.15 QOB 002 069 020 069 012 [0.53 0.10
DMOBAT-1 085 0.1 090 003 090 0.04 084 001 084 0.09
DMOBAT-2 086 0.06 084 002 080 009 085 004 076 0.05
DMOBAT-3 085 0.03 085 (001 082 0.08 083 003 081 0.11
DMOBAT-4 090 005 083 004 083 003 084 003 079 0.05
DMOBAT-5 090 0.08 084 0.11 089 0.03 0.86 JE0OW 087 0.09
DMOPSO-1 0.83 0.10 086 004 083 006 083 003 082 0.04
DMOPSO-2 0.86 0.10 0.87 004 084 003 084 002 081 0.05
DMOPSO-3 0.82 0.05 0.88 004 084 006 088 007 0.86 |02
DMOPSO-4 0.80 [NO:0LW 0.87 0.04 0.81 0027 0.85 0.07 0.82 | 0.03
DMOPSO-5 0.87 0.05 084 007 080 008 083 003 081 0.10
NSGA-II 0.87 0.06 090 002 086 005 091 005 091 0.06
SPEA2 0.81 0.15 090 005 088 009 087 002 085 1003
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Table C.25: Median and interquartile range of the computation time required by the
optimisers for the Buxey problems

Buxey-1 Buxey-2 Buxey-3 Buxey-4 Buxey-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 0.79 042 059 034 066 043 094 037 055 0.24
BIANT-2 097 043 068 024 0.78 033 0.75 040 067 044
CHAC-1 044 026 051 024 060 0.04 039 028 041 0.27
CHAC-2 034 043 043 025 054 0.08 043 011 045 0.27
DMOABC 0.48 0.28 0.52 0.03 0.58 0.11 0.65 0.23 0.49 0.08
DMOCSA-1-1 0.32 [ 0.09 039 019 034 0.08 031 0.06 040 0.14
DMOCSA-1-2 038 021 035 0.05 048 026 029 0.15 040 0.16
DMOCSA-1-3 030 0.22 037 021 049 026 0.33 017 047 [0:05
DMOCSA-1-4 0.23 0.17 030 0.09 [0:25° 0.04 034 0.14 [030] 0.10
DMOCSA-1-5 0.37 0.26 0.32 0.18 [ 0.28 0.08 [JOEOY 038 033 0.14
DMOCSA-2-1 0.32 022 038 0.04 038 010 041 0.19 040
DMOCSA-2-2 0.40 0.13 046 0.07 047 0.17 034 0.04 037 040
DMOCSA-2-3 0.32 039 048 017 049 030 043 0.09 042 0.27
DMOCSA-2-4 036 024 039 0.05 033 0.10 030 0.15 040 0.06
DMOCSA-2-5 0.38 039 055 017 043 024 052 012 058 0.35
DMOFPA-1 0.25 028 034 0.04 040 0.09 0.39 027 055 0.06
DMOFPA-2 0.29 0.19 042 0.04 040 002 045 0.13 036 0.18
DMOFPA-3 0.29 028 044 0.15 045 043 0.08 0.35 0.19
DMOFPA-4 [0:18 05 030 0.18 040 0.10 0.27 0.07 042 0.11
DMOFPA-5 0.33 | 0.09 044 025 034 020 0.34 [ 0.03 036 0.26
MOACS-1 0.59 0.16 056 0.22 0.68 025 0.59 046 099 0.30
MOACS-2 045 0.15 049 0.29 0.51 041 045 0.07 0.59 [ 0:04
DMOBAT-1 0.21 0.15 0.35 0.39 0.08 0.39 [ 0.03 0.37 0.33
DMOBAT-2 0.29 0.11 042 0.17 042 0.17 [022 0.08 0.39 0.14
DMOBAT-3 0.39 0.15 [0:25 020 045 030 0.38 0.16 (031 0.35
DMOBAT-4 0.30 0.15 045 012 040 030 032 0.18 043 0.13
DMOBAT-5 0.28 0.12 [0:28 0:03 ' 044 [ 0:04 | 042 0.14 0.56 0.23
DMOPSO-1 [ 019 0.16 0.33 | 0.03 0.42 0.07 0.36 0.33 0.15
DMOPSO-2 039 0.23 045 0.04 045 0.18 026 0.12 0.34 0.17
DMOPSO-3 039 021 045 021 060 0.38 040 0.07 0.57 0.26
DMOPSO-4 037 040 049 033 038 035 044 0.07 044 0.23
DMOPSO-5 0.25 0.27 046 0.26 0.33 0.05 0.35 0.09 0.36 0.37
NSGA-II 041 034 045 010 039 033 031 026 032 045
SPEA2 Ol 0.17 Ol 0.12 @Rl 0.07 0200 0.09 jOESy 0.13
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C.3.3 Problem Family: Gunther

Table C.26: Median and interquartile range of Iy obtained by the optimisers for the
Gunther problems

Gunther-1 Gunther-2 Gunther-3 Gunther-4 Gunther-5
Z+IQR(z) TxIQR(zx) Z+IQR(zx) ZX+IQR(z) Z+IQR(x)

BIANT-1 SN 0.02 JEBSE 002 JOEE 002 (0937 0.02 10937 0.01

BIANT-2 [0.94 0.02 [ 094 007 (093 004 095N 002 JOE6N0:00
CHAC-1 091 002 091 001 091 000 092 001 090 0.01
CHAC-2 091 001 091 001 091 001 092 001 089 0.01
DMOABC 0.91 0.01 091 000770920 0.01 091 001 090 001
DMOCSA-1-1 092 0.01 091 | 000 091 001 092 001 090 0.02
DMOCSA-1-2  0.92 [J0:00%W 0.91 001 091 001 092 001 090 0.01
DMOCSA-1-3 091 001 091 002 091 001 092 001 0.90 [10:00
DMOCSA-1-4 089 0.02 089 001 089 001 089 002 08 001
DMOCSA-1-5 091 ~ 0.01 092 001 091 001 091 002 090 001
DMOCSA-2-1 092 0.01 091 001 091 [000% 0.91 0000 0.90 0.01
DMOCSA-2-2 091 0.01 091 001 091 002 092 002 090 0.0
DMOCSA-2-3 092 001 091 001 091 002 091 002 090 001
DMOCSA-2-4 090 0.01 089 001 089 001 090 001 088 003
DMOCSA-2-5 092 0.02 091 [JSB@W 091 001 091 001 090 0.00
DMOFPA-1  0.91 BB 091 001 092 000 091 JO0OE 089 0.01
DMOFPA-2 091 0.01 091 001 091 001 092 001 089 0.00
DMOFPA-3 092 001 091 000 091 001 091 001 0.90
DMOFPA-4 090 001 089 002 089 002 08 001 087 0.2
DMOFPA-5 091 001 090 001 091 001 092 002 090 0.02
MOACS-1 091 001 091 001 091 001 091 000 092 001
MOACS-2 092 001 091 001 092 001 [0947 002 [093 001
DMOBAT-1 0.92 [J0:000 0.91 001 091 0000 091 001 089 0.01
DMOBAT-2 0.92 0.0l 091 001 091 0.0l 0.91 0009 0.90 0.01
DMOBAT-3 092 001 091 00l 091 00l 091 00l 090 0.02
DMOBAT-4 0.90 0.01 089 002 089 001 089 001 087 0.02
DMOBAT-5 092 001 091 002 091 001 091 001 091 0.01
DMOPSO-1  0.92 0.01 091 001 091 001 092 000 089 0.03
DMOPSO-2 0.91 0.01 091 002 091 000 092 001 090 0.1
DMOPSO-3 0.92 0.01 091 001 090 001 091 002 090 0.02
DMOPSO-4 0.90 0.02 090 002 090 003 090 002 08 0.04
DMOPSO-5 0.91 0.01 092 001 091 001 092 001 089 0.03
NSGA-II  0.92 0.01 [0:92° 001 091 0O 092 001 091 001
SPEA2 092 002 092 001 091 001 092 002 091 001
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Figure C.33: Boxplot for Iy : Gunther-1
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Iigp

Table C.27: Median and interquartile range of I;qp obtained by the optimisers for the
Gunther problems

0.8

0.6

0.4

Gunther-1 Gunther-2 Gunther-3 Gunther-4 Gunther-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 [JBIB8J 0.08 (0407 0.1 [JOB2l 0.06 0.02 BOW@2W 0.07
BIANT-2 | 0.48 0.22 0.05 034 0.05 | 0.15 0.08
CHAC-1 | 0.75 003 081 002 079 004 030 00l 072 0.12
CHAC-2 0.77 0.02 080 002 081 012 031 002 083 0.10
DMOABC 0.82 0.06 080 004 074 0.10 0.33 001 0.77 WOW01
DMOCSA-1-1 0.85 0.07 0.83 O™ 0.80 0.08 031 0.01 076 0.03
DMOCSA-1-2 0.84 0.04 0.82 0.1 0.82 0.05 030 004 074 0.08
DMOCSA-1-3 0.82 0.02 0.80 0.04 074 0.07 032 002 082 0.08
DMOCSA-1-4 089 0.05 0.89 0.04 091 @@y 035 002 082 0.07
DMOCSA-1-5 0.85 WOW02W 083 0.06 0.79 0.03 029 0.02 081 0.08
DMOCSA-2-1 0.82 0.03 0.82 0.03 0.74 0.09 031 0.02 084 0.04
DMOCSA-2-2 0.83 0.05 WOW7ZN 0.02 0.85 0.03 029 0.02 073 0.06
DMOCSA-2-3 0.84 0.03 0.8l 0.06 0.79 0.4 031 003 077 0.03
DMOCSA-2-4 085 0.04 086 [JSEEE 09 003 033 001 082 0.07
DMOCSA-2-5 0.85 0.05 0.83 0.06 0.76 0.05 031 001 083 0.07
DMOFPA-1 0.87 0.02 079 0.05 083 003 030 001 079 0.14
DMOFPA-2 0.86 0.02 0.80 0.02 082 005 031 001 077 0.08
DMOFPA-3 0.81 0.07 0.86 0.03 0.74 0.07 031 001 084 005
DMOFPA-4 096 0.06 0.85 0.05 095 003 032 001 08 005
DMOFPA-5 0.81 00T 0.86 0.05 0.79 MO0 0.30 001 082 0.04
MOACS-1 ' 0.78 0.07 091 005 062 0.03 027 WOOW 056 0.02
MOACS-2 0.79 0.04 087 0.03 [058 0.02 1027 055 1053

DMOBAT-1 0.83 0.04 079 0.03 082 0.06 032 002 0.77 0.10
DMOBAT-2 0.81 0.03 0.86 0.04 075 004 031 002 077 0.03
DMOBAT-3 0.82 0.03 0.85 0.03 0.77 0.08 029 003 0.7 0.04
DMOBAT-4 091 0.06 091 0.02 0.85 BO0OTY 032 004 0.86 002
DMOBAT-5 0.81 0.83 003 081 003 030 001 079 0.06
DMOPSO-1 0.84 0.07 083 003 079 0.12 030 001 0.76 0.10
DMOPSO-2 0.80 0.02 079 0.03 081 004 031 001 075 0.05
DMOPSO-3 0.84 0.05 083 002 082 006 030 001 0.79 0.09
DMOPSO-4 091 0.12 085 006 082 007 032 002 086 0.10
DMOPSO-5 0.84 0.03 083 003 080 007 030 006 072 0.05
NSGA-TT 0.81 0.04 083 001 074 003 029 004 079 0.04
SPEA2 0.84 0.11 0.83 F00OL" 0.85 0.02 0.30 WOWOW 0.79 0.04

E= % - 0 T .
éﬁ%%@%T§ @@Q% %@lﬁ %Qéé H=dl =

A A R A A A A A G S ARy o”o‘bo“‘ 2N
Q%%«az@go‘\g»\%@%{gqg@z%z%%Cgo o‘f’o%o%%%x‘%o‘&ﬁ‘fé R Q%Qg:,@cé)

R R R R R R A A O NN Q\%%%%%% SN

Figure C.34: Bozplot for I;p: Gunther-1
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Table C.28: Median and interquartile range of 1. obtained by the optimisers for the
Gunther problems

Gunther-1 Gunther-2 Gunther-3 Gunther-4 Gunther-5

TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 [0.51  0.16 0.53 0.24 0.28 0.07 0.28 0.07 0.65 0.03

BIANT-2 0.60 0.12 045 0.07 (026 0.19 [ 026 0.19 [049 0.09

CHAC-1 0.96 1.00 0.03 1.00 1.00 1.00 0.14
CHAC-2 0.96 1.00 - 1.00 1.00 1.00
DMOABC 0.96 1.00 0.03 1.00 1.00 1.00
DMOCSA-1-1  0.96 1.00 1.00 1.00 1.00
DMOCSA-1-2  0.96 1.00 1.00 1.00 1.00
DMOCSA-1-3 0.96 1.00 1.00 1.00 1.00
DMOCSA-1-4 0.96 1.00 1.00 1.00 1.00
DMOCSA-1-5 0.96 1.00 1.00 1.00 1.00
DMOCSA-2-1 0.96 1.00 1.00 1.00 1.00
DMOCSA-2-2 0.96 1.00 1.00 1.00 1.00
DMOCSA-2-3 0.96 1.00 1.00 1.00 1.00
DMOCSA-2-4 0.96 1.00 1.00 1.00 1.00
DMOCSA-2-5 0.96 1.00 1.00 1.00 1.00

DMOFPA-1 0.96 1.00 1.00 1.00 1.00 0.02
DMOFPA-2 0.96 1.00 1.00 1.00 1.00

DMOFPA-3 0.96 1.00 1.00 1.00 1.00 0.14
DMOFPA-4 0.96 1.00 1.00 1.00 1.00

DMOFPA-5 0.96 1.00 1.00 1.00 1.00 0.04

MOACS-1 0.20 0.48 0.02

MOACS-2
DMOBAT-1
DMOBAT-2

0.02
0.01
0.01

1.00
1.00

DMOBAT-3 0.73 0.53
DMOBAT-4 1.00
DMOBAT-5 1.00 0.04
DMOPSO-1 1.00 0.13
DMOPSO-2 1.00
DMOPSO-3 1.00 0.07
DMOPSO-4 1.00 |omon
DMOPSO0-5 1.00 0.01
NSGA-IT 1.00
SPEA2 1.00
1) ‘ i;_ R 1
0.8 I .
~ 0.6 @ B
0.4 i
0.2+ %EI .
N e Y N T A VDD P P D N U B > A N A B S oS,
S UG R DS S S S S NN NN NV VYV oo e To Te e 0000y
R A R R R S S
RN A S S AR DX S M NN SN

Figure C.35: Bozxplot for I.: Gunther-1
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Table C.29: Median and interquartile range of In obtained by the optimisers for the
Gunther problems

0.8

0.6

Gunther-1 Gunther-2 Gunther-3 Gunther-4 Gunther-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 [0:627 0.05 [0:54° 0.12 [JOES2§ 0.05 [0:567 0.11 F0:59° 0.07
BIANT-2 063 0.14 066 0.12 0.66 0.04 0.58 0.09 0.07
CHAC-1 0.76 0.05 0.83 0.05 0.78 0.04 0.82 0.11 0.85 0.08
CHAC-2 0.74 0.06 0.83 0.08 0.81 0.07 0.81 0.07 0.90
DMOABC 0.79 0.08 0.84 0.06 0.83 0.14 0.86 0.07 0.89 @ 0.01
DMOCSA-1-1 0.82 0.06 0.81 0.05 0.83 0.03 0.8 0.09 0.8  0.01
DMOCSA-1-2 0.74 0.03 0.83 0.07 0.79 O 089 0.08 0.90 0.03
DMOCSA-1-3 0.80 0.03 078 005 0.84 0.07 083 0.05 0.83 0.08
DMOCSA-1-4 0.79 0.03 084 0.10 0.84 0.04 083 0.08 090 0.02
DMOCSA-1-5 0.81 | 0.02 0.8 0.05 0.78 [ 0.03 | 0.88 0.06 0.85 0.05
DMOCSA-2-1 0.81 0.05 0.79 0.13 0.80 0.04 0.85 0.03 0.88 0.03
DMOCSA-2-2 0.75 0.04 080 0.07 0.83 0.11 0.87 0.03 0.89 0.03
DMOCSA-2-3 0.80 0.06 0.81 0.06 0.78 0.08 0.83 0.05 0.87 0.04
DMOCSA-2-4 0.76 7002 0.78 0.09 0.82 0.12 084 0.04 0.8 0.06
DMOCSA-2-5 0.74 0.06 082 005 0.81 0.04 088 0.06 0.8 0.06
DMOFPA-1 0.77 0.02 080 0.11 0.77 0.09 0.84 0.07 088 0.11
DMOFPA-2 0.75 0.03 0.79 0.02 0.85 0.06 0.86 0.85  0.02
DMOFPA-3 0.77 0.05 0.82 0.03 0.80 0.07 0.86 | 0.02 0.89 0.05
DMOFPA-4 0.74 0.07 0.87 003 0.79 0.10 0.79 0.03 0.86 0.07
DMOFPA-5 0.73 0.07 083 0.05 0.84 0.03 0.81 0.03 0.85 0.08
MOACS-1 0547 0.02 054" 0.15 056" 0.11 0.02 0.60 0.06
MOACS-2 0.19 0.06 1 0.85 0.07 1 0.52 0.10 | 0.86 0.05
DMOBAT-1 0.81 0.11 0.85 [ 0.02 0.82 0.04 0.76 0.06 0.86 0.06
DMOBAT-2 0.71 0.06 0.84 005 0.82 0.09 0.84 0.09 0.8 0.10
DMOBAT-3 0.79 0.04 0.84 0.10 0.76 0.04 0.87 0.08 0.87 0.07
DMOBAT-4 0.72 0.07 0.80 0.08 0.81 [70:02" 0.86 0.07 0.86 0.02
DMOBAT-5 0.82 0.07 0.77 0.07 0.89 0.11 0.82 0.07 0.79 0.05
DMOPSO-1 0.81 0.04 079 004 080 0.04 082 0.10 0.8 0.06
DMOPSO-2 0.77 0.09 085 014 0.84 0.03 0.80 0.04 0.88 0.03
DMOPSO-3 0.81 0.04 0.82 [ 0.02 081 0.04 085 0.11 0.83 0.12
DMOPSO-4 0.79 0.06 080 0.04 0.82 0.08 080 0.03 0.84 0.05
DMOPSO-5 0.79 0.08 0.80 0.06 0.8 0.11 0.83 0.09 0.8 0.07
NSGA-TT  0.86 [JUEEE 0.87 004 090 005 089 WO0O2W 088 0.04
SPEA2 0.85 0.08 0.85 - 0.85 0.04 091 0.03 0.8 0.07

1
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Figure C.36: Bozplot for In: Gunther-1
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Computation time

Table C.30: Median and interquartile range of the computation time required by the

0.5

optimisers for the Gunther problems

Gunther-1 Gunther-2 Gunther-3 Gunther-4 Gunther-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 058 023 070 014 086 037 072 0.10 0.72 0.12

BIANT-2 0.87 040 092 022 093 022 100 0.14 1.00 [JEEOH
CHAC-1 0.24 0.24 047 031 038 0.28 047 0.07 0.42 0.05
CHAC-2 028 [ 0.04 054 040 036 0.056 044 014 0.33 ] 0.03
DMOABC 0.3¢4 0.26 0.50 0.07 0.54 0.16 050 034 056 0.27
DMOCSA-1-1 0.28 0.07 0.46 0.25 043 0.22 034 0.22 0.25 0.05
DMOCSA-1-2 0.25 0.11 0.34 02§ 036 0.22 035 0.14 032 0.12
DMOCSA-1-3  0.30 ~ 0.05 Q0258 0.07 0.36 OB 048 022 029 0.13
DMOCSA-1-4 0.24 0.06 0.28 0.12 [0:23° 0.09 025 0.21 0.28 0.16
DMOCSA-1-5 0.20 0.19 0.34 017 038 0.11 028 0.18 0.36 | 0.04
DMOCSA-2-1 0.34 0.13 043 026 0.28 0.13 048 0.19 046 0.09
DMOCSA-2-2 0.21 040 0.16 043 0.17 048 0.17 0.27 0.09
DMOCSA-2-3 0.34 0.15 0.49 0.15 0.58 0.36 0.49 0.21 0.40 0.12
DMOCSA-2-4 [0:18° 0.31 0.46 [0:05  0.35 0.10 048 0.06 0.32 0.24
DMOCSA-2-5 0.28 0.20 0.56 0.47 0.50 0.07 0.51 0.24 0.40 0.04
DMOFPA-1 0.18 0.18 044 0.15 044 031 040 0.21 025 0.07
DMOFPA-2 0.29 0.12 043 013 035 029 0.39 OB 0.32 0.06
DMOFPA-3 0.22 0.11 031 0.17 [0:25 0.20 041 0.13 0.39 0.18
DMOFPA-4 [ 017 0.13 0.26 0.15 0.28 0.09 [0:25 0.11 0.16
DMOFPA-5 0.29 0.25 038 0.23 0.28 0.29 047 038 0.32 0.09
MOACS-1 047 043 041 021 0.57 021 048 031 032 0.13
MOACS-2 0.34 0.10 043 023 043 020 071 048 0.29 0.07
DMOBAT-1 0.28 0.22 047 0.29 0.29 [ 003  0.38 0.08 0.25 0.10
DMOBAT-2 0.25 [ 0.04 025 020 043 040 042 [ 005 033 0.11
DMOBAT-3 0.33 0.19 040 021 0.32 0.09 031 0.08 031 0.18
DMOBAT-4 0.21 0.11 [0:24° 0.06 0.28 0.10 0.26 0.06 0.26 0.13
DMOBAT-5 0.28 0.21 0.29 | 005 0.33 0.16 0.30 0.15 049 0.08
DMOPSO-1 021 020 0.30 0.28 028 0.13 045 012 022 0.12
DMOPSO-2 0.22 0.23 0.33 028 0.28 0.05 037 0.16 [ 0.18 0.06
DMOPSO-3 041 029 0.27 021 033 0.06 026 0.17 0.33 0.05
DMOPSO-4 0.23 0.08 0.71 049 046 0.09 042 0.09 039 0.17
DMOPSO-5 0.26 0.11 043 025 042 023 040 019 030 0.11
NSGA-II 0.23 0.21 037 011 039 0.18 043 014 031 0.11
SPEA2 [EEE 0.19 JEEON 0.07 JONEEY00Z0EEESE0030210 0.08
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Figure C.37: Boxplot for the computation time: Gunther-1




C.3 Detailed values of the metrics

283

C.3.4 Problem Family: Hahn

Iy

Table C.31: Median and interquartile range of Iy obtained by the optimisers for the
Hahn problems

0.95

0.9

0.85

Hahn-1 Hahn-2 Hahn-3 Hahn-4 Hahn-5
Z+IQR(z) TxIQR(zx) Z+IQR(zx) ZX+IQR(z) Z+IQR(x)
BIANT-1 [ 0.94 0.04 - 0.02 [0.94 0.02 - 0.03 1094 0.02
BIANT-2 - 0.06 094 0.02 - 0.02 | 0.95 &- 0.03
CHAC-1 0.89 0.01 0.88 0.01 0.89 0.01 0.88 0.86 0.01
CHAC-2 0.88 0.01 0.88 ["0:00" 0.88 0.01 0.87 0.00 0.85 0.01
DMOABC 0.88 0.01 0.8 0.02 0.89 0.02 0.87 0.02 0.8 0.02
DMOCSA-1-1 0.87 0.02 0.87 0.01 0.89 0.01 0.87 0.01 0.8 0.01
DMOCSA-1-2 0.87 0.01 0.87 0.02 0.88 0.02 0.88 0.01 0.8 0.02
DMOCSA-1-3 0.88 0.01 0.87 0.01 0.89 0.02 0.87 0.01 0.85 0.02
DMOCSA-1-4 0.87 0.00 0.8 0.02 0.8 0.02 0.8 0.01 0.85 0.01
DMOCSA-1-5 0.87 - 087 001 0.88 0.01 0.8 0.01 0.8 [ 0.01
DMOCSA-2-1 0.88 0.01 0.88 0.00 0.89 0.02 0.87 0.00 0.86 0.01
DMOCSA-2-2 0.88 0.01 0.88 0.01 0.88 0.02 0.88 0.01 0.8 | 0.01
DMOCSA-2-3 0.88 0.01 0.88 0.01 0.88 0.02 0.88%8 0.00 0.86 0.01
DMOCSA-2-4 0.88 0.01 0.87 0.00 0.87 0.01 0.87 0.01 0.85 0.02
DMOCSA-2-5 0.87 0.01 0.87 0.00 0.89 [70.01" 0.87 [70.00 " 0.86 0.03
DMOFPA-1 0.87 0.00 0.88 0.01 0.8 0.01 0.88 0.02 0.8 0.03
DMOFPA-2 0.87 0.01 0.89 0.02 0.88 0.01 0.8 0.01 0.8 0.02
DMOFPA-3 0.87 0.01 0.87 0.01 0.89 ' 0.01 | 0.88 0.01 0.85 0.01
DMOFPA-4 0.86 0.02 0.87 001 0.8 0.01 087 0.01 0.84 0.01
DMOFPA-5 0.88 [0.00" 0.87 0.01 0.88 0.01 0.88 0.01 0.8 0.01
MOACS-1 090 0.01 091 001 091 0.01 091 0.01 091 0.02
MOACS-2 [ 0.90 0.01 |0.91 093 0.01 093 0.01 092 0.01
DMOBAT-1 0.88 0.01 0.88 0.02 0.88 0.02 0.87 0.01 0.86 0.02
DMOBAT-2 0.88 0.01 0.88 0.02 0.88 0.02 0.88 0.01 0.86 0.02
DMOBAT-3 0.88 0.00 0.87 0.01 0.89 0.01 0.89 0.02 0.86 0.01
DMOBAT-4 0.86 0.02 0.87 0.01 0.88 - 0.87 0.02 0.8
DMOBAT-5 0.88 0.01 0.87 0.01 0.88 0.02 0.88 [T0.000" 0.87 0.02
DMOPSO-1 0.87 0.01 0.87 0.02 088 0.01 0.88 001 0.8 0.03
DMOPSO-2 0.88 | 0.00 | 0.88 | 0.00 0.88 0.01 0.88 0.01 0.86 0.01
DMOPSO-3 0.88 0.02 0.87 0.01 0.88 0.02 0.87 0.01 0.8 0.01
DMOPSO-4 0.86 0.03 0.88 0.02 0.87 0.02 087 0.02 084 0.01
DMOPSO-5 0.87 0.00 0.88 0.01 0.89 0.01 0.88 0.01 0.87 0.01
NSGA-II 0.88 0.01 0.89 0.02 0.89 0.02 0.89 0.01 0.86 0.01
SPEA2 0.88 0.03 088 0.01 0.89 0.01 089 0.01 0.87 0.01
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Figure C.538: Boxplot for Iyy: Hahn-1
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Table C.32: Median and interquartile range of I;qp obtained by the optimisers for the
Hahn problems

Hahn-1 Hahn-2 Hahn-3 Hahn-4 Hahn-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 [J@EB8J 0.08 040" 0.11 [j@E2§ 0.06 0.02 1032 0.07
BIANT-2 | 0.48 0.22 0.05 1 0.34 0.05 | 0.15 0.08
CHAC-1 | 0.75 0.03 0.81 0.02 0.79 0.04 030 0.01 0.72 0.12
CHAC-2 0.77 0.02 0.80 0.02 0.81 0.12 0.31 0.02 0.83 0.10
DMOABC 0.82 0.06 0.8 0.04 0.74 0.10 0.33 0.01 0.77 [ 0.01
DMOCSA-1-1 0.85 0.07 0.83 | 0.0 0.80 0.08 0.31 0.01 0.76 0.03
DMOCSA-1-2 0.84 0.04 0.82 0.11 0.82 0.05 030 0.04 0.74 0.08
DMOCSA-1-3 0.82 0.02 0.8 0.04 0.74 0.07 032 0.02 0.8 0.08
DMOCSA-1-4 089 0.05 0.89 0.04 091 jJOEEg 035 002 082 0.07
DMOCSA-1-5 0.85 [ 0.02 0.83 0.06 0.79 0.03 0.29 0.02 0.81 0.08
DMOCSA-2-1 0.82 0.03 0.82 0.03 0.74 0.09 031 0.02 084 0.04
DMOCSA-2-2 0.83 0.05 [0.77 0.02 0.85 0.03 0.29 0.02 0.73 0.06
DMOCSA-2-3 0.84 0.03 0.81 0.06 0.79 0.14 031 0.03 0.77 0.03
DMOCSA-2-4 0.85 0.04 0.86 090 0.03 033 0.01 082 0.07
DMOCSA-2-5 0.85 0.05 0.83 0.06 0.76 0.05 0.31 0.01 0.83 0.07
DMOFPA-1 0.87 0.02 0.79 005 0.83 0.03 030 0.01 079 0.14
DMOFPA-2 0.86 0.02 0.80 0.02 0.82 0.05 031 0.01 0.77 0.08
DMOFPA-3 0.81 0.07 0.86 003 0.74 0.07 031 0.01 0.8 0.05
DMOFPA-4 096 0.06 0.85 005 0.95 0.03 032 0.01 0.8 0.05
DMOFPA-5 0.81 001 0.86 0.05 0.79 [F0:01| 0.30 0.01 0.82 0.04
MOACS-1 0.78 0.07 091 0.05 0.62 0.03 0.27 7001 0.56 0.02
MOACS-2 0.79 0.04 0.87 0.03 [0.58 0.02 027 0.55 | 0.53
DMOBAT-1 0.83 0.04 0.79 0.03 0.82 0.06 032 0.02 0.77 0.10
DMOBAT-2 0.81 0.03 086 0.04 0.75 0.04 031 0.02 0.77 0.03
DMOBAT-3 0.82 0.03 0.85 0.03 0.77 0.08 0.29 0.03 0.76 0.04
DMOBAT-4 0.91 0.06 091 0.02 0.85 [F0:01 | 0.32 0.04 0.86 [0.02
DMOBAT-5 0.81 0.83 003 0.81 0.03 030 0.01 0.79 0.06
DMOPSO-1 0.84 0.07 0.83 0.03 0.79 0.12 030 001 0.76 0.10
DMOPSO-2 0.80 0.02 0.79 0.03 0.81 0.04 031 0.01 0.75 0.05
DMOPSO-3 0.84 0.05 0.83 0.02 0.82 0.06 0.30 0.01 0.79 0.09
DMOPSO-4 091 0.12 085 0.06 0.82 0.07 032 0.02 086 0.10
DMOPSO-5 0.84 0.03 0.83 0.03 0.8 0.07 030 0.06 0.72 0.05
NSGA-II 0.81 0.04 0.83 0.01 0.74 0.03 0.29 004 0.79 0.04
SPEA2 0.84 0.11 083 | 0.01 0.85 0.02 0.30 [ 0.00 0.79 0.04
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Figure C.39: Bozxplot for I;gp: Hahn-1
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Table C.33: Median and interquartile range of 1. obtained by the optimisers for the
Hahn problems

Hahn-1 Hahn-2 Hahn-3 Hahn-4 Hahn-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.53 0.3 0.80 0.04 081 016 018 003 071 0.21
BIANT-2 0.66 043 084 014 0.69 0.05 016 005 056 0.21
CHAC-1 [JO%8) 0.03 0.73 000 0.66 OO 0.16 001 058 0.01
CHAC-2 054 012 072 | 000 | 067 001 017 000 059 0.0
DMOABC 0.61 0.03 072 00l 0.66 0.17 0.0 057 0.01
DMOCSA-1-1 054 012 072 001 0.66 0.16 0.00 0.58 0.02
DMOCSA-1-2  0.61 0.03 0.1 001 067 001 0.16 [0S 059 0.02
DMOCSA-1-3 0.61 0.03 0.2 00l 067 00l 016 000 058 0.02
DMOCSA-1-4 061 0.03 073 002 067 00l 0.16 000 0.58 0.00
DMOCSA-1-5 0.61 0.03 073 001 066 001 0.16 000 0.59
DMOCSA-2-1 0.61 0.03 072 001 066 001 0.16 001 058 0.01
DMOCSA-22 0.61 0.03 071 001 067 00l 016 000 059 0.00
DMOCSA-2-3 0.61 [JEMOM 0.72 000 065 001 0.16 000 058 0.01
DMOCSA-2-4 054 0.2 072 003 066 00l 0.16 000 059 0.01
DMOCSA-2-5 0.61 0.03 073 002 066 00l 016 000 058 0.02
DMOFPA-1 0.61 003 071 001 066 001 016 000 058 0.01
DMOFPA-2 0.61 0.03 0.72 10009 0.66 [JONOM 0.16 001 0.58 0.00
DMOFPA-3 054 012 073 0.02 0.66 001 016 000 058 0.1
DMOFPA-4 0.61 003 072 001 067 001 016 000 058 0.1
DMOFPA-5 0.61 003 073 001 0.66 001 017 000 0.58 0.00
MOACS-1 JOB6N 0.04 068 004 059 007 015 001 053 0.02
MOACS-2 0.04 [0:65 0.13 0.03 (0111 0.54 [OEE o0.01
DMOBAT-1 0.54 0.12 0.72 001 0.67 003 0.6 000 059 0.00
DMOBAT-2  0.61 0.73  0.00 0.67 002 016 000 057 0.02
DMOBAT-3  0.61 0.73 001 0.66 001 016 000 059 0.0
DMOBAT-4  0.61 0.73 002 0.67 001 016 001 0.59
DMOBAT-5 054 0.12 073 002 067 00l 0.6 000 058 0.02
DMOPSO-1 054 012 072 001 065 002 016 000 057 0.02
DMOPSO-2 0.61 0.03 0.72 002 0.66 001 016 001 058
DMOPSO-3 [10:48 0.72 001 0.66 001 0.16 |JENOW 0.59 0.01

DMOPSO-4 0.61 0.03 073 002 0.67 059 0.01
DMOPSO-5 0.54 0.12 0.72  0.02 0.66 0.57  0.01
NSGA-II [0:48 0.44 0407 0.01
SPEA2  0.61 062 0.13 | 0.44 0.40  0.00
10 4
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Figure C.40: Bozplot for I.: Hahn-1



C.3 Detailed values of the metrics

286

Table C.34: Median and interquartile range of In obtained by the optimisers for the
Hahn problems

0.8

0.6

0.4

Hahn-1 Hahn-2 Hahn-3 Hahn-4 Hahn-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 0.43 0.09 B8 001 JOEON 0.05 J@E@ 0.04 037 0.05
BIANT-2 [ 043 0.11 [ 030 | 0.05 044 0.01 031 0.11 [0.33 0.08
CHAC-1 0.81 0.04 0.83 70.01" 0.76 0.08 0.82 "0.01 " 0.85 0.04
CHAC-2 069 0.04 0.83 0.05 0.82 0.03 0.87 0.06 0.8 0.09
DMOABC 0.81 0.07 086 0.06 0.87 0.07 0.89 0.07 0.86 0.06
DMOCSA-1-1 0.81 0.02 0.88 0.08 0.82 0.04 0.87 0.04 084 0.06
DMOCSA-1-2 0.79 0.07 0.87 0.04 0.86 0.03 0.84 0.03 0.85 0.05
DMOCSA-1-3 0.82 0.03 0.82 0.04 0.82 0.07 086 0.05 0.86 0.04
DMOCSA-1-4 083 0.06 0.82 0.02 0.85 0.08 0.8 0.04 0.85 [0.03
DMOCSA-1-5 0.84 0.05 0.86 0.03 0.84 0.04 0.89 0.056 0.87 0.05
DMOCSA-2-1 0.82 0.08 0.82 0.02 0.79 0.01 090 0.06 0.90 0.03
DMOCSA-2-2 0.80 0.05 0.87 0.04 0.83 0.03 0.85 [[0:027 0.85 o0l
DMOCSA-2-3 0.82 0.05 0.82 0.06 0.83 0.13 0.87 0.06 0.87 0.09
DMOCSA-2-4 084 0.05 0.8 0.06 0.87 [[0.01" 090 0.03 0.85 0.04
DMOCSA-2-5 0.84 0.05 0.8 0.10 0.76 0.05 0.88 0.04 0.89 0.04
DMOFPA-1 0.80 0.03 0.84 0.02 0.79 0.03 0.8 0.07 0.87 0.05
DMOFPA-2 0.82 0.06 0.85 007 0.85 0.06 0.8 0.10 0.89 0.05
DMOFPA-3 0.78 0.02 0.8 0.04 0.88 0.03 0.8 0.05 0.89 0.03
DMOFPA-4 0.84 0.07 090 004 0.8 0.02 090 0.03 0.87 0.03
DMOFPA-5 0.83 0.08 0.85 [0:01 | 0.84 0.06 0.90 0.08 0.87 0.07
MOACS-1 0.03 042 0.05 [041 0.04 (039 0.03 1032 0.03
MOACS-2 1 0.36 0.02 037 0.04 | 044 0.09 043 0.51 0.03
DMOBAT-1 0.85 0.06 0.85 005 0.84 0.03 0.89 0.05 0.87 0.06
DMOBAT-2 0.77 0.06 0.8 005 0.80 0.06 0.8 0.04 0.8 0.05
DMOBAT-3 0.83 | 0.02 | 0.82 0.07 0.79 0.05 0.8 0.09 0.83 0.04
DMOBAT-4 0.82 JJONO2l 0.88 0.01 0.84 JJUEN 089 0.02 0.90 0.04
DMOBAT-5 0.84 0.05 0.89 0.03 0.84 0.03 0.8 0.03 0.84 0.03
DMOPSO-1 0.81 0.12 0.88 0.02 080 0.04 085 006 0.87 0.03
DMOPSO-2 0.81 0.05 0.85 0.02 0.82 0.04 0.87 0.08 0.87 0.04
DMOPSO-3 0.77 0.04 084 0.03 0.75 0.10 0.81 JONIg 0.86 [10:03
DMOPSO-4 0.81 0.05 0.84 0.03 0.84 0.06 091 0.03 0.88 0.05
DMOPSO-5 0.82 0.09 0.82 0.79 [ 0.01 0.86 0.10 0.87 0.06
NSGA-II 0.88 0.11 0.88 0.02 0.85 0.02 0.90 0.03 0.89 0.04
SPEA2 0.87 0.07 0.87 0.04 0.87 0.03 0.88 0.03 086 0.03
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Figure C.41: Bozplot for In: Hahn-1
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Computation time

Table C.35: Median and interquartile range of the computation time required by the
optimisers for the Hahn problems

0.5 F

Hahn-1 Hahn-2 Hahn-3 Hahn-4 Hahn-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 1.00 0.04 0.57 047 0.63 043 0.56 0.53 045 0.05
BIANT-2 0.56 0.06 060 0.41 1.00 0.08 1.00 0.15 098 0.14
CHAC-1 053 0.05 0.26 0.10 0.38 0.04 030 0.11 0.42 0.39
CHAC-2 0.56 0.12 032 0.11 027 0.08 0.26 005 031 0.12
DMOABC 0.65 0.25 080 046 048 0.12 0.29 0.20 0.31 0.42
DMOCSA-1-1 [ 0.25 0.08 031 0.18 0.37 0.04 0.17 0.11 029 0.10
DMOCSA-1-2 0.31 0.13 0.32 0.23 0.27 0.06 0.27 0.08 0.34 0.22
DMOCSA-1-3 046 020 026 022 029 0.13 JOA7 0NN 0.27 1005
DMOCSA-1-4 042 0.08 032 0.11 020002 0.22 0.12 0.36 0.15
DMOCSA-1-5 040 [ 0.03  0.23 0.19 023 0.07 019 0.04 031 0.16
DMOCSA-2-1 047 0.11 036 031 043 0.19 020 0.09 0.53 0.24
DMOCSA-2-2 0.42 043 028 035 0.14 037 0.10 042 0.16
DMOCSA-2-3 044 0.18 034 031 045 0.09 035 0.09 0.40 0.31
DMOCSA-2-4 049 0.18 040 0.10 0.26 0.07 0.23 0.09 043 0.40
DMOCSA-2-5 046 046 030 020 034 0.16 029 0.11 045 0.51
DMOFPA-1 0.32 0.11 0.28 0.13 0.27 0.04 0.23 0.07 024 0.07
DMOFPA-2 0.33 0.10 0.26 0.14 0.28 0.09 0.21 019 0.38 0.16
DMOFPA-3 0.45 0.17 0.24 0.17 0.33 0.09 0.22 0.10 0.27 0.06
DMOFPA-4 [0.26 0.08 0.23 0.14 [0.15 0.08 0.26 0.16 [0.21 | 0.09
DMOFPA-5 0.44 0.12 [0.20 0.17 0.26 0.15 0.23 001" 023 0.17
MOACS-1 0.55 [0:03°| 0.30 0.12 0.31 0.06 031 0.08 0.59 0.37
MOACS-2 027 0.16 034 012 059 023 033 023 051 0.37
DMOBAT-1 0.34 0.15 0.33 0.09 0.30 [J0:02770:16° 0.10 0.29 JONsE
DMOBAT-2 0.37 0.04 0.22 | 009 | 0.32 0.16 0.20 0.07 0.25 0.22
DMOBAT-3 0.42 0.12 0.20 0.11 031 0.09 0.29 0.12 0.54 0.29
DMOBAT-4 0.34 0.23 [0.20 008 0.23 0.14 0.28 0.08 037 0.24
DMOBAT-5 0.45 0.13 0.26 0.18 0.23 0.07 0.20 0.12 0.35 0.23
DMOPSO-1 0.36 0.09 044 045 0.41 0.04 0.21 0.10 0.24 0.30
DMOPSO-2 0.39 0.13 027 0.18 0.22 0.04 0.18 0.09 0.27 0.06
DMOPSO-3 047 0.17 038 025 031 0.07 024 0.11 029 0.12
DMOPSO-4 0.30 0.23 043 0.13 031 048 032 0.15 048 0.38
DMOPSO-5 0.35 0.19 0.28 0.09 0.29 0.23 [ 0.02 0.23 0.25
NSGA-II 043 0.14 0.29 0.09 0.22 0.05 0.29 0.07 0.25 0.17
SPEA2 JBEEE 0.07 JONZ200IoNsy 0.07 Ol 003 jopmy 0.0
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Figure C.42: Boxplot for the computation time: Hahn-1
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C.3.5 Problem Family: Jackson

Table C.36: Median and interquartile range of Iy obtained by the optimisers for the
Jackson problems

Jackson-1 Jackson-2 Jackson-3 Jackson-4 Jackson-5
T+IQR(x) Z+£IQR(xr) Z+IQR(xr) z+IQR(x) z+IQR(x)

BIANT-1
BIANT-2
CHAC-1
CHAC-2
DMOABC
DMOCSA-1-1
DMOCSA-1-2
DMOCSA-1-3
DMOCSA-1-4
DMOCSA-1-5
DMOCSA-2-1
DMOCSA-2-2
DMOCSA-2-3
DMOCSA-2-4
DMOCSA-2-5
DMOFPA-1
DMOFPA-2
DMOFPA-3
DMOFPA-4
DMOFPA-5
MOACS-1
MOACS-2
DMOBAT-1
DMOBAT-2
DMOBAT-3
DMOBAT-4
DMOBAT-5
DMOPSO-1
DMOPSO-2
DMOPSO-3
DMOPSO-4
DMOPSO-5
NSGA-II
SPEA2




C.3 Detailed values of the metrics

289

Table C.37: Median and interquartile range of I;qp obtained by the optimisers for the

Jackson problems

Jackson-1 Jackson-2 Jackson-3 Jackson-4 Jackson-5

TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 095 013 0.75 0.14 046 0.25 [0.96 0.00

BIANT-2 0.81 017 0.74 0.00 065 0.20 [0.96 0.00
CHAC-1 0.73 0.00 0.17 0.00 1.00
CHAC-2 0.73 0.00 0.03 1.00
DMOABC 0.73 0.17 0.01 1.00
DMOCSA-1-1 0.73 0.00 0.17 0.15 1.00
DMOCSA-1-2 0.73 0.00 0.02 1.00
DMOCSA-1-3 0.73 1 0.00 0.17 1.00

DMOCSA-1-4 0.73 0.00 0.18 0.06 1.00 0.00
DMOCSA-1-5 0.73 0.00 0.17 0.14 1.00
DMOCSA-2-1 0.73 0.00 0.17 0.14 1.00
DMOCSA-2-2 0.73 0.00 0.04 0.14 1.00
DMOCSA-2-3 0.73 0.00 0.17 0.14 1.00

DMOCSA-2-4 0.73 0.00 0.18 0.07 1.00 0.00
DMOCSA-2-5 0.73 0.00 0.17 1.00
DMOFPA-1 0.73 0.00 0.17 0.00 1.00
DMOFPA-2 0.73 0.00 0.17 0.14 1.00
DMOFPA-3 0.73 0.00 0.17 1.00

DMOFPA-4 0.73 0.00 0.18 0.06 1.00 0.00
DMOFPA-5 0.73 0.00 0.17 1.00

MOACS-1 0.75 0.00 0.30 0.14 0.00

MOACS-2 0.74 0.00 042 0.18 0.96 0.04
DMOBAT-1 0.73 0.00 0.04 0.14 1.00
DMOBAT-2 0.73 0.00 0.04 1.00
DMOBAT-3 0.73 0.00 0.04 0.17 1.00

DMOBAT-4 0.00 0.18 0.01 1.00 0.00
DMOBAT-5 0.00 J@EB2§ 0.01 1.00
DMOPSO-1 0.00 0.17 0.14 1.00
DMOPSO-2 0.00 0.17 0.01 1.00
DMOPSO-3 0.00 0.17 0.01 1.00
DMOPSO-4 0.00 0.18 0.00 1.00
DMOPSO-5 0.00 0.18 0.01 1.00
NSGA-II 0.00 | 0.17 0.00 1.00
SPEA2 0.00 0.17 0.01 1.00
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Table C.38: Median and interquartile range of 1. obtained by the optimisers for the
Jackson problems

Jackson-1 Jackson-2 Jackson-3 Jackson-4 Jackson-5
TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.93 0.05 090 0.76 0.53 0.38 0.37 0.76

BIANT-2 0.97 0.04 022 066 0.53 0.38 0.37 0.76

CHAC-1 0.17 0.00

CHAC-2 0.13

DMOABC 0.17
DMOCSA-1-1 0.17 0.04
DMOCSA-1-2 0.00
DMOCSA-1-3 0.17  0.00
DMOCSA-1-4 . . . 0.17
DMOCSA-1-5 0.17 0.04
DMOCSA-2-1 0.17 0.04
DMOCSA-2-2 0.13 0.04
DMOCSA-2-3 0.17 0.04
DMOCSA-2-4 . . 0.17
DMOCSA-2-5 0.17
DMOFPA-1 0.17
DMOFPA-2 0.17
DMOFPA-3 0.17
DMOFPA-4 0.17 . . . 0.17
DMOFPA-5 0.17

MOACS-1  0.20 0.22 0.17

MOACS-2 0.20 0.02 0.22 . . 0.18
DMOBAT-1 0.13
DMOBAT-2

DMOBAT-3 0.13
DMOBAT-4 0.17
DMOBAT-5

DMOPSO-1

DMOPSO-2

DMOPSO-3

DMOPSO-4

DMOPSO-5

NSGA-II

SPEA2
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Table C.39: Median and interquartile range of In obtained by the optimisers for the
Jackson problems

Jackson-1 Jackson-2 Jackson-3 Jackson-4 Jackson-5
TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 [0.92  0.00 [ 0.89  0.05 [0.78 0.04 [0.76 0.07 0.87

BIANT-2 094 0.03 [087 | 0.03 0.83 0.01 0.82 0.10 0.87 0.04

CHAC-1 1.00 0.99 0.85 0.01 0.84 0.07

CHAC-2 1.00 0.99 0.85 0.01 [ 0.80

DMOABC 1.00 0.99 0.85 [ 0.00 0.84 0.05
DMOCSA-1-1  1.00 0.99 0.86 0.01 0.86 0.01
DMOCSA-1-2 1.00 0.99 0.87 0.01 0.86 0.02
DMOCSA-1-3 1.00 0.99 0.85 0.87 0.01
DMOCSA-1-4 098 0.00 094 0.02 0.85 0.05 0.8 0.04 0.69 0.02
DMOCSA-1-5 1.00 0.99 0.86 0.02 0.87 0.10
DMOCSA-2-1 1.00 0.99 0.86 0.01 0.90 0.03
DMOCSA-2-2 1.00 0.99 0.86 0.02 0.87 0.03
DMOCSA-2-3 1.00 0.99 0.85 0.02 0.84 0.04
DMOCSA-2-4 099 0.01 0.99 0.82 0.00 0.8 0.04 0.70 0.06
DMOCSA-2-5 1.00 0.86 0.01 0.84 0.04
DMOFPA-1 1.00 0.86 0.01 0.86 0.03
DMOFPA-2 1.00 0.85 [ 0.00 0.87 0.07
DMOFPA-3 1.00 0.87 0.02 0.87 0.03
DMOFPA-4 0.99 0.02 0.83 0.08 0.81 0.04 0.70 0.02
DMOFPA-5 1.00 - 0.86 0.01 0.87

MOACS-1 [0:92° 0.02 0.72 0.02 0.15> 0.96 0.00
MOACS-2 0.05 0.07 083 0.18 0.95 0.01
DMOBAT-1 0.00 0.84 0.07
DMOBAT-2 0.01 0.80 0.07
DMOBAT-3 0.01 0.84 0.08
DMOBAT-4 0.01 081 0.04 0.66 0.02
DMOBAT-5 0.01 0.86

DMOPSO-1 0.00 0.87 0.10
DMOPSO-2 0.01 0.87 0.05
DMOPSO-3 0.01 0.87 0.03 0.00
DMOPSO-4 0.0 087 0.04 0.71 0.33
DMOPSO-5 0.01 0.84 0.03

NSGA-II 0.01 090 0.10

SPEA2 0.01 0.84 0.07
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Table C.40: Median and interquartile range of the computation time required by the
optimisers for the Jackson problems

Jackson-1 Jackson-2 Jackson-3 Jackson-4 Jackson-5
TEIQR(zx) Z+£IQR(r) Z+IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.84 0.08 084 006 090 0.08 091 017 1.00 0.05
BIANT-2 0.78 0.3 0.83 005 091 009 095 NS 0.97 0.05
CHAC-1 062 004 069 002 080 008 071 013 080 0.03
CHAC-2 061 003 066 002 080 010 070 012 080 0.04
DMOABC 0.71 0.02 076 003 089 0.1 08 013 091 0.03
DMOCSA-1-1 059 0.03 0.64 002 076 008 068 012 077 0.05
DMOCSA-1-2  0.59 [N00LY 0.64 [OOLY 0.77 008 068 012 075 0.02
DMOCSA-1-3  0.61 0.03 065 002 077 011 068 013 075 0.04
DMOCSA-1-4 059 0.04 062 002 0.76 J000W 0.66 013 073 0.03
DMOCSA-1-5 057 0.02 062 004 071 0.11 064 012 0.73 1001
DMOCSA-2-1 0.61 0.03 066 001 079 008 071 014 079 0.04
DMOCSA-2-2 0.60 0.04 064 (001 0.77 0.08 068 011 074 0.03
DMOCSA-2-3 0.65 0.03 069 00l 083 010 072 013 079 0.05
DMOCSA-2-4 0.60 0.03 065 002 079 004 070 012 079 0.05
DMOCSA-2-5 0.62 0.03 067 003 081 008 072 013 080 0.04
DMOFPA-1  0.59 JJEE 0.63 002 074 008 067 011 075 0.02
DMOFPA-2 0.60 0.03 064 002 079 008 070 010 0.80 0.08
DMOFPA-3 0.61 0.03 0.66 002 080 008 071 012 077 0.03
DMOFPA-4 BB 0.06 OSSN 001 JOBEl 037 OSSN 002 BN 0.02
DMOFPA-5 0.61 0.04 0.65 0.02 0.76 012 0.69 008 0.78 [0.01
MOACS-1 0.82 0.06 087 008 0.91 [ 0O 083 0.14 091 0.04
MOACS-2 1.00 011 1.00 [JOESE 094 010 1.00 015 094 0.04
DMOBAT-1 058 0.04 063 00l 074 008 066 012 0.74 0.02
DMOBAT-2 0.61 0.06 064 003 0.79 [0.02 068 0.12 0.76 0.05
DMOBAT-3 0.62 0.04 067 00l 080 0.08 071 012 077 0.03
DMOBAT-4 061 009 065 002 081 0.19 070 006 078 0.06
DMOBAT-5 0.60 [M002W 0.65 001 0.79 0.09 070 011 078 0.04
DMOPSO-1 057 0.10 062 018 [J0®70 0.21 055 019 067 0.17
DMOPSO-2 0.58 0.03 0.62 001 074 009 067 0.12 075 0.05
DMOPSO-3 0447 0.04 0477 0.04 [0.55 | 0.08 [0467 0.06 F0B07 0.05
DMOPSO-4 | 0.51 0.02 0.56 009 076 0.13 | 0.54 005 0.60
DMOPSO-5 059 0.03 0.64 004 077 008 069 012 077 0.04
NSGA-II 0.83 0.04 091 003 097 013 091 016 091 0.04
SPEA2 053 0.03 [0560 001 069 007 062 010 073 003
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C.3.6 Problem Family: Lutzl

Table C.41: Median and interquartile range of Iy obtained by the optimisers for the

Lutz1 problems

Lutz1-1 Lutz1-2 Lutz1-3 Lutzl-4 Lutz1-5
T+ IQR(x) Z+£IQR(xr) Z+IQR(xr) z+IQR(x) z+IQR(x)
BIANT-1 095 002 090 0.07 091 0.03 086 0.07
BIANT-2 094 015 0.8 0.03 087 0.14 088 0.04
CHAC-1 1.00 0.00
CHAC-2 1.00 0.00
DMOABC 1.00 0.00
DMOCSA-1-1 1.00 0.00 1.00 0.00
DMOCSA-1-2 1.00 0.00 1.00 0.00
DMOCSA-1-3 1.00 | 0.00  1.00 0.00
DMOCSA-1-4 0.99 0.01 1.00 0.00 099 0.01
DMOCSA-1-5 1.00 0.00 1.00 0.00
DMOCSA-2-1 . 1.00 0.00 1.00 0.00
DMOCSA-2-2 1.00 0.00 1.00 0.00 1.00 0.00
DMOCSA-2-3 1.00 0.00 1.00 | 0.00 | 1.00 0.00
DMOCSA-2-4 1.00 0.01 1.00 0.01 1.00 0.00
DMOCSA-2-5 1.00 0.00 1.00 1.00 0.00
DMOFPA-1 1.00 0.00 1.00 0.00 1.00 0.00
DMOFPA-2 1.00 0.00 1.00 0.00 1.00 0.00
DMOFPA-3 1.00 0.00 [ 1.00 0.00 1.00 0.00
DMOFPA-4 0.98 0.02 1.00 0.00 1.00 0.00
DMOFPA-5 1.00 0.00 1.00 0.00 1.00 0.00
MOACS-1 0.87 0.17 0.76 0.22 0.70 0.09
MOACS-2 0.79 0.06 0.81 0.11
DMOBAT-1 1.00 0.00
DMOBAT-2 1.00  0.00
DMOBAT-3 0.00
DMOBAT-4 0.00
DMOBAT-5 0.00
DMOPSO-1 0.00
DMOPSO-2 0.00
DMOPSO-3 0.00
DMOPSO-4 0.01
DMOPSO-5 0.00
NSGA-II 0.00

SPEA2

0.00
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Table C.42: Median and interquartile range of I;qp obtained by the optimisers for the
Lutz1 problems

Lutz1-1 Lutz1-2 Lutz1-3 Lutzl1-4 Lutz1-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 041 0.13 045 005 048 001 052 007
BIANT-2 041 024 065 0.8 047 007 052 0.07
CHAC-1 0.0l  0.00 [0:05
CHAC-2 0.0 0.00 | 0.05
DMOABC 0017 0.00 | 0.05
DMOCSA-1-1 0.08 0.00 0.05 0.0
DMOCSA-1-2 0.08 0.02 005 0.00
DMOCSA-1-3 0.08 [JENEN 0.05 0.00
DMOCSA-1-4 0.05 0.06 0.06 0.0
DMOCSA-1-5 0.08 ~ 0.00 0.05 0.0
DMOCSA-2-1 0.08 0.00 005 0.00
DMOCSA-2-2 0.08 0.00 005 0.00
DMOCSA-2-3 0.08 MO0 0.05  0.00
DMOCSA-2-4 0.02  0.02 [ENSE 0.02
DMOCSA-2-5 0.08 00T 0.05 0.00
DMOFPA-1 0.08 0.02 005 0.01
DMOFPA-2 0.08 0.00 005 0.01
DMOFPA-3 0.08 0.00 0.05 0.00
DMOFPA-4 0.09 0.00 FOW05 0.02
DMOFPA-5 0.08 ~ 0.00 0.05 0.00
MOACS-1 0.82 027 091 0.07
MOACS-2 0.70 0.16 0.60 0.11
DMOBAT-1 0.01  0.01 005 0.00
DMOBAT-2 0.01 0.02 005 0.00
DMOBAT-3 0.00 0.05 0.00
DMOBAT-4 0.09 0.0 005 0.01
DMOBAT-5 0.01  0.01 005 0.00
DMOPSO-1 0.01  0.00 1005
DMOPSO-2 0.01 0.00 005 0.00
DMOPSO-3 0.01 0.00 [0.05 0.0
DMOPSO-4 0.02 001 005 0.00
DMOPSO-5 0.01  0.00 [0:05 NONON
NSGA-TI 001 0.00  0.05 0.0
SPEA2 0.01  0.00 | 0.05 [NONom
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Table C.43: Median and interquartile range of 1. obtained by the optimisers for the
Lutz1 problems

Lutz1-1 Lutz1-2 Lutz1-3 Lutzl1-4 Lutz1-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.87 0.2 088 002 072 000 058 0.19
BIANT-2 0.87 0.05 090 006 072 004 047 0.05
CHAC-1 0.63
CHAC-2 0.63
DMOABC 0.63
DMOCSA-1-1 0.63° 0.00 042 0.01
DMOCSA-1-2 0.63 0.00 042 0.00
DMOCSA-1-3 0.63 0.43  0.01
DMOCSA-1-4 0.64 0.00 044 0.00
DMOCSA-1-5 0.63 0.00 042 0.00
DMOCSA-2-1 0.63 0.00 042 0.00
DMOCSA-2-2 0.63 0.00 042 0.00
DMOCSA-2-3 0.63 OB 042 0.00
DMOCSA-2-4 0.63  0.00 0.44 0.00
DMOCSA-2-5 0.63 042  0.00
DMOFPA-1 0.63  0.00 042 0.00
DMOFPA-2 0.63 0.00 043 0.01
DMOFPA-3 0.63 0.00 042 0.00
DMOFPA-4 0.64 0.0 044 0.00
DMOFPA-5 0.63 0.0 042 0.00
MOACS-1 091 018 094 0.07
MOACS-2 0.85 0.04 071 0.14
DMOBAT-1 05630 0.00 042 0.00
DMOBAT-2 0.63 042 0.00
DMOBAT-3 0.00 042 0.00
DMOBAT-4 0.64 001 043 0.00
DMOBAT-5 05630 0.00 042 0.00
DMOPSO-1 0.63
DMOPSO-2 0.63  0.00 0.00
DMOPSO-3 0.63 0.00 0.00
DMOPSO-4 0.64 001 042 0.01
DMOPSO-5 0.63  0.00
NSGA-TI 0.63  0.00 0.00

SPEA2 0.63 0.00
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Table C.44: Median and interquartile range of In obtained by the optimisers for the
Lutz1 problems

Lutz1-1 Lutz1-2 Lutz1-3 Lutzl1-4 Lutz1-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-2 1.00 0.88 0.87 0.08 081 009 082 0.03
CHAC-1 0.93 0.88 0.93 001 0.95
CHAC-2 0.93 0.88 0.0l 093 002 095
DMOABC 0.93 0.88 [JENEN 092 002 095
DMOCSA-1-1 0.93 0.92 0.06 0.96 [H000% 0.95 0.00
DMOCSA-1-2 0.93 0.95 0.0l 096 00l 096 0.01
DMOCSA-1-3 0.93 0.88 0.02 097 000 095 0.00
DMOCSA-1-4 0.91 085 0.4 091 002 096 0.02
DMOCSA-1-5 0.93 0.95 000 096 000 096 0.01
DMOCSA-2-1 0.93 0.95 0.02 096 000 096 0.00
DMOCSA-2-2 0.93 0.89 0.02 096 001 095 0.00
DMOCSA-2-3 0.93 0.90 0.03 096 001 096 0.01
DMOCSA-2-4 0.93 092 0.03 093 002 092 0.01
DMOCSA-2-5 0.93 0.95 0.02 0.97 JEEEE 0.95 0.0
DMOFPA-1 0.93 0.95 0.02 096 00l 095 0.01
DMOFPA-2 0.93 0.95 002 096 001 096 0.02
DMOFPA-3 0.93 0.95 0.02 096 000 096 0.01
DMOFPA-4 0.93 0.86 0.05 096 003 095 0.03
DMOFPA-5 0.93 0.92 0.07 096 001 095 0.02
MOACS-1 0.91 077y 0.19 0.17 [JONSE o0.14
MOACS-2 0.89 0.80 0.13 "0.74| 0.17 0.8 0.04
DMOBAT-1 0.93 0.88 0.01 092 001 096 0.01
DMOBAT-2 0.93 0.88 0.0l 094 003 096 0.01
DMOBAT-3 0.93 0.90 0.04 092 002 095 0.01
DMOBAT-4 0.90 0.85 0.04 097 004 096 0.02
DMOBAT-5 0.93 092 001 092 001 096 0.01
DMOPSO-1 0.93 0.88 1 0.00 092 001 0.95
DMOPSO-2 0.93 088 0.0l 093 001 095 0.00
DMOPSO-3 0.93 0.86 0.04 092 001 095 0.00
DMOPSO-4 0.96 085 0.02 092 002 094 0.02
DMOPSO-5 0.93 0.88 0.0l 0.93 0007 0.95 [ONOH
NSGA-TI 0.93 088 0.01 093 002 095 0.00
SPEA2 0.93 0.88 [ENEN 094 001 0.95 [JNON
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Table C.45: Median and interquartile range of the computation time required by the
optimisers for the Lutzl problems

Lutz1-1 Lutz1-2 Lutz1-3 Lutzl1-4 Lutz1-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.65 0.01 073 004 079 002 078 017 078 0.05
BIANT-2 0.65 0.02 0.76 0.6 0.79 0.06 0.72 0.09 0.79 001
CHAC-1 0.59 000 0.65 004 069 001 055 009 071 0.03
CHAC-2 058 001 063 005 067 001 053 008 071 0.09
DMOABC 0.70 0.02 076 004 081 001 064 009 083 0.03
DMOCSA-1-1 049 0.00 054 004 059 002 046 007 0.60 0.02
DMOCSA-1-2 049 001 055 004 058 001 047 007 061 0.02
DMOCSA-1-3 049 002 055 003 058 002 049 007 062 0.3
DMOCSA-1-4 048 001 053 004 061 008 050 011 069 0.23
DMOCSA-1-5 048 001 054 005 057 001 045 008 0.61 0.02
DMOCSA-2-1 056 0.0l 062 004 0.66 001 059 009 068 0.03
DMOCSA-2-2 054 0.00 061 005 064 001 051 011 067 0.06
DMOCSA-2-3 057 0.02 064 005 068 002 055 008 072 0.09
DMOCSA-2-4 057 002 061 005 065 002 054 006 082 0.12
DMOCSA-2-5 057 001 063 005 068 001 054 008 071 0.06
DMOFPA-1 048 0.01 054 004 057 001 046 0.07 0.61 0.02
DMOFPA-2 0.51 0.01 0.57 0.06 0.60 0007 0.53 [N0047 0.63 0.03
DMOFPA-3 0.50 0.01 0.57 0.05 0.60 0.01 0.53 0.5 0.63 0.05
DMOFPA-4 S 0.01 OSSN 0:02 J0EEE 00+ JUBEJ 004 (0487 0.21
DMOFPA-5 0.51 [10:000 0.56 0.04 0.60 0.01 047 010 067 0.13
MOACS-1 085 0.01 081 007 087 004 082 009 083 0.08
MOACS-2  1.00 [JEEEE 1.00 [JONEN 1.00 JONEN 091 019 1.00 0.02
DMOBAT-1 050 0.02 054 004 059 [0.00 046 008 0.64 0.11
DMOBAT-2 050 0.0l 056 004 0.60 0.0l 046 0.06 0.61 0.06
DMOBAT-3 052 0.0l 057 004 061 00l 049 007 065 0.05
DMOBAT-4 050 001 055 004 059 003 046 005 066 0.10
DMOBAT-5 050 001 056 004 060 001 047 007 061 0.3
DMOPSO-1 045 0.03 051 006 054 003 [0437 0.05 053 0.09
DMOPSO-2 047 0.02 051 003 055 001 049 010 0.57 [JO00H
DMOPSO-3 [0:42. 0.07 [0:47 0.03 1050 0.10 0.45 JJOEEE 051 0.05
DMOPSO-4 051 0.05 059 1001 0.65 004 055 013 067 0.11
DMOPSO-5 048 0.04 051 006 058 002 044 005 059 0.03
NSGA-II 0.70 0.01 0.71 006 069 001 060 011 070 0.03
SPEA2 [040 001 [042 002 (046 001 (036 002 JOEEE 0.02
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C.3.7 Problem Family: Kilbrid

Table C.46: Median and interquartile range of Iy obtained by the optimisers for the

Kilbrid problems

Kilbrid-1 Kilbrid-2 Kilbrid-3 Kilbrid-4 Kilbrid-5
F+IQR(x) #+IQR(z) #+IQR(z) Z+IQR(z) %=+IQR(x)
BIANT-1 044 0.10 090 0.15 0.84 0.10 0.83 0.10 0.89 0.08
BIANT-2 046 0.16 0.93 0.03 0.80 0.05 0.90 0.09 0.81 0.08
CHAC-1 0.74 0.01 - 0.00 094 0.03 093 0.02 095 0.02
CHAC-2 0.74 0.01 096 0.02 0.03 096 0.02 094 0.02
DMOABC 0.73 [ 0.00 097  0.01 0.92 0.02 095 0.02 0.95  0.00
DMOCSA-1-1 0.74 0.01 095 0.04 094 0.01 0.95 [ 0.00 | 0.94
DMOCSA-1-2 0.01 0.95 0@ 093 001 095 001 094 0.01
DMOCSA-1-3 0.74 0.01 095 0.03 093  0.00 0.95 0.00 094 0.02
DMOCSA-1-4 0.73 0.01 092 0.03 091} 0.00 092 0.01 092 0.02
DMOCSA-1-5 0.74 0.01 096 0.02 094 0.01 095 0.01 094 0.01
DMOCSA-2-1 [ 0.75  0.01 096 0.01 094 0.01 095 0.01 094 0.01
DMOCSA-2-2 [ 0.74 0.01 096 0.03 093 0.01 094 0.02 094 0.01
DMOCSA-2-3 0.74 0.01 095 0.03 094 0.01 094 0.01 094 0.02
DMOCSA-2-4 0.73 0.02 092 0.03 091 0.02 092 0.01 092 0.01
DMOCSA-2-5 0.74 0.01 095 0.02 094 0.01 094 0.01 094 0.01
DMOFPA-1 0.74 0.01 096 0.01 093 0.01 095 0.00 0.94 0.01
DMOFPA-2 0.74 0.02 096 0.02 094 [JONOE 09 001 094 0.01
DMOFPA-3 0.74 [J0l08 0.96 0.02 094 ©0.00 095 0.01 0.94 [70:00
DMOFPA-4 0.73 0.01 091 003 092 0.01 091 002 091 0.01
DMOFPA-5 0.74 0.02 096 0.03 094 0.01 094 001 094 0.01
MOACS-1 0.62 0.09 090 0.03 0.8 0.07 083 0.04 084 0.04
MOACS-2 0.62 0.08 092 0.04 0.8 0.04 083 0.02 085 0.03
DMOBAT-1 0.74 0.01 [0.97 0.02 093 0.03 0.94 0.02
DMOBAT-2 0.73 0.01 096 0.04 093 0.02 094 000 0.95 0.02
DMOBAT-3 0.74 0.01 097 001 093 0.02 095 002 094 0.02
DMOBAT-4 0.72 0.01 0.92 0.02 090 0.04 091 001 093 0.02
DMOBAT-5 0.74 0.01 096 0.01 093 0.02 095 0.01 095" 0.01
DMOPSO-1 0.74 0.02 097 0.02 093 0.01 094 0.01 095 0.02
DMOPSO-2 0.74 0.02 096 0.02 094 0.02 094 0.01 095 0.02
DMOPSO-3 0.73 0.01 096 0.03 093 0.03 [0.96 0.02 095 0.02
DMOPSO-4 0.72 0.01 095 006 092 0.03 095 0.02 094 0.04
DMOPSO-5 0.73 0.01 096 0.03 093 0.02 095 0.03 095 0.01
NSGA-II 0.73 0.01 0.97 001 093 0.02 095 0.02 095 0.01
SPEA2 0.73 0.01 096 [ 0.01 0.94 0.02 - 0.02 1095 0.01
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Table C.47: Median and interquartile range of I;qp obtained by the optimisers for the
Kilbrid problems

Kilbrid-1  Kilbrid-2  Kilbrid-3  Kilbrid-4  Kilbrid-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 0.83 032 055 019 073 008 098 020 046 0.18
BIANT-2 0.66 037 0.56 002 084 010 070 0.15 060 0.25
CHAC-1 0.18  0.00 0.03 BOBEY 0.02 040 007 031 0.02
CHAC-2 018 001 026 0.11 0.06 039 004 030 0.06
DMOABC 0.18 0.00 025 004 057 0.05 0.38 MO0 0.31 0.02
DMOCSA-1-1 ' 0.18 0.00 025 003 057 004 043 004 036 0.04
DMOCSA-1-2 0.8 0.00 026 002 061 003 040 003 0.36 0.02
DMOCSA-1-3 0.8 0.00 028 002 057 009 039 003 0.36 0.02
DMOCSA-14 0.8 0.00 043 008 0.73 0.14 051 008 046 0.05
DMOCSA-15 0.8 0.00 026 007 0.58 004 0.42 0.33  0.02
DMOCSA-2-1 [UESENO00W 023 003 059 005 042 002 036 0.03
DMOCSA-22 0.18 0.00 028 002 064 003 041 004 0.37 000
DMOCSA-2-3 0.18 0.00 0.28 0.08 0.57 WOOIY 042 002 035 0.05
DMOCSA-24 019 0.00 038 010 070 0.08 047 004 049 0.06
DMOCSA-25  0.18 0.31 008 059 0.02 JOB7 004 035 0.06
DMOFPA-1 018 0.0 027 005 0.63 005 041 001 037 0.04
DMOFPA-2 JOM8Y 0.00 026 0.02 0.58 039 002 039 0.04
DMOFPA-3 | 0.18 0.00 029 004 062 0.05 039 002 036 0.03
DMOFPA-4 0.19 0.00 0.48 [JOEB 0.70 0.07 057 003 053 0.10
DMOFPA5 0.18 0.00 J0228 0.05 059 0.05 040 [O00W 0.34 0.04
MOACS-1 0.35 011 058 004 072 009 075 013 063 0.26
MOACS-2 037 020 058 010 069 0.13 078 006 0.61 0.05
DMOBAT-1 0.8 0.00 025 012 059 002 040 002 0.5
DMOBAT-2 0.18 0.00 0.28 [O0OIW 0.61 0.03 FOB7 0.04 0.35 0.02
DMOBAT-3 ~0.18 OW0% 028 004 059 004 040 0.08 0.37 [NOW0L
DMOBAT-4 0.18 0.0l 036 009 0.73 0.08 0.54 001 038 0.04
DMOBAT-5 0.18 0.00 025 002 059 002 038 002 035 0.03
DMOPSO-1 0.18 0.00 026 002 058 J00L" 040 005 031 0.03
DMOPSO-2 0.18 0.01 024 003 JOB6I 0.04 040 002 031 0.01
DMOPSO-3 0.18 0.00 026 004 059 004 041 002 2SR 0.04
DMOPSO-4 0.19 0.0 024 008 070 011 040 008 033 0.07
DMOPSO-5 0.18 0.00 025 002 060 0.03 0.06 0.0 0.01
NSGAII 0.8 000 025 004 060 006 040 007 10300 0.03
SPEA2 0.18 0.00 JO23WN00IY 056 003 038 007 029 0.01
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Figure C.44: Boxplot for I;ap: Kilbrid-1
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Table C.48: Median and interquartile range of 1. obtained by the optimisers for the
Kilbrid problems

Kilbrid-1 Kilbrid-2 Kilbrid-3 Kilbrid-4 Kilbrid-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)

BIANT-1 0.98 0.06 091 003 090 008 091 002 085 0.10
BIANT-2 095 006 091 001 095 007 082 005 094 0.11
CHAC-1 0.00 0.0l 077 000 076 000 080 0.01
CHAC-2 0.00 091 001 077 000 075 000 080 0.01
DMOABC 0900 0.01 078 001 075 001 080 0.0
DMOCSA-1-1 088 0.00 091 001 0.77 000 0.75 001 0.80 0.00
DMOCSA-1-2  0.83 [JENOE 091 000 077 000 [EESE 001 0.80
DMOCSA-1-3 088 0.00 091 000 077 000 0.75 0.00 0.80 0.02
DMOCSA-1-4 0.8 092 001 079 001 076 000 081 0.01
DMOCSA-1-5 0.8 091 000 0.77 0.00 075 0.00 0.80
DMOCSA-2-1 0.8 0.91 |ONSN .77 0NN 0.75 [ 0.000 0.80 0.00
DMOCSA-2-2 0.8 091  0.00 0.77 0.00 075 000 0.79 0.1

DMOCSA-2-3 091 0.00 [ 0.%7 0.00 0.75 0.01 0.80 0.01
DMOCSA-2-4 093 0.01 0.77 0.01 0.76 0.01 0.81 0.01
DMOCSA-2-5 091 0.00 0.77 0.00 0.75 0.01 [0.79 | 0.02

DMOFPA-1 0.91 0.00 0.75 0.00 0.80 0.00

DMOFPA-2 0.88
DMOFPA-3 0.88
DMOFPA-4 0.88

0.91 0.00 [ONSEEONON 080 0.01

0.91 . 0.00 0.75 0.00 0.80 0.00
093 0.01 0.77 0.00 0.77 0.02 0.81 0.01
DMOFPA-5 0.88 091 0.00 0.77 0.00 0.75 0.00 0.80 0.01

MOACS-1  0.89 092 0.02 090 0.05 091 0.03 096 0.06

MOACS-2 089 0.04 091 0.02 093 003 092 0.03 096 0.01
DMOBAT-1 0.90 0.01 0.77 0.00 0.75 [ 0.00 0.80 0.00
DMOBAT-2 0.00 091 0.01 0.77 0.00 0.75 0.00 0.80 | 0.00
DMOBAT-3 091 0.00 0.77 | 0.00 0.75 0.00 0.80 0.00
DMOBAT-4 0.88 0.00 092 0.00 0.77 0.04 0.77 0.01 0.80 0.00

DMOBAT-5 091 0.00 0.77 0.00 0.75 0.00 0.80 0.00
DMOPSO-1 091 0.01 0.00 0.75 0.01 080 0.01
DMOPSO-2 091 | 0.00 0.77 0.00 0.75 0.00 0.80 0.00
DMOPSO-3 091 0.00 0.77 0.02 [0.75 0.01 0.80 0.00
DMOPSO-4 0.90 0.01 0.79 0.01 0.76 0.00 0.80 0.01

DMOPSO-5
NSGA-II
SPEA2

0.90 001 077 0.00 075 001 [ESE 0.01
0.90 0.00 077 001 075 000 080 0.01
0.90 001 077 0.00 0.75 0.00 FO78Y 0.02
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Figure C.45: Boxplot for I.: Kilbrid-1
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Ia

Table C.49: Median and interquartile range of In obtained by the optimisers for the
Kilbrid problems

0.9

0.8

Kilbrid-1 Kilbrid-2 Kilbrid-3 Kilbrid-4 Kilbrid-5
TEIQR(zx) Z+£IQR(r) Z+£IQR(x) z+IQR(x) z+IQR(x)
BIANT-1 |J@B88§ 0.07 084 012 087 0.15 0.84 0.03 090 0.02
BIANT-2 0.85 0.10 096 0.09 086 0.03 0.8 0.09 0.98 | 0.02
CHAC-1 0.85 0.03 062 003 0.77 0.07 082 0.07 0.77 0.08
CHAC-2 0.86 0.05 0.72 0.14 0.78 0.05 0.80 0.12 0.10
DMOABC 0.86 0.04 062 012 0.78 0.02 0.75 0.05 0.75 0.04
DMOCSA-1-1 0.87 0.03 061 0.08 074 004 074 004 081 0.03
DMOCSA-1-2 0.87 0.01 060 0.04 077 012 0.76 010 0.86 0.11
DMOCSA-1-3  0.89 0@ 067 005 0.76 0.03 0.80 0.05 0.88 0.04
DMOCSA-1-4 086 0.02 0.66 0.05 0.75 0.07 OG89 002 082 0.03
DMOCSA-1-5 0.87 0.01 0.71 [ 0.01 | 0.75 0.09 0.78 0.06 084 0.05
DMOCSA-2-1 0.85 0.03 |j0is@ 0.13 0.75 0.11 0.78 0.09 0.84 0.07
DMOCSA-2-2 0.86 [ 0.00 | 0.62 0.08 0.80 0.06 0.72 0.05 0.87 0.04
DMOCSA-2-3 0.86 0.03 0.70 0.05 0.75 [[0.02 079 0.04 0.80 0.04
DMOCSA-2-4 0.89 0.05 0.68 0.11 0.12 081 0.05 0.78 0.08
DMOCSA-2-5 0.88 0.02 0.73 011 0.75 0.06 [0:70° 0.05 0.81 0.14
DMOFPA-1 [ 084 0.04 069 0.06 0.79 0.03 0.80 0.08 0.78 0.10
DMOFPA-2 0.85 0.01 0.62 0.79 0.08 0.72 [ 0.02  0.83 0.03
DMOFPA-3 086 0.05 [0.59 | 0.09 0.78 0.04 0.76 0.04 087 0.07
DMOFPA-4 [0.85 | 0.07 0.77 014 0.78 0.03 [0.71 010 0.83 0.10
DMOFPA-5 0.87 0.04 [0:58° 0.15 0.81 002" 0.76 0.05 0.80 0.11
MOACS-1 091 0.04 0.8 0.08 080 0.11 0.80 0.03 0385 Nl
MOACS-2 0.95 0.07 085 0.06 091 0.08 085 0.03 091 0.03
DMOBAT-1 0.88 0.04 0.67 015 [0.72° 0.09 0.77 0.05 0.84 0.06
DMOBAT-2 088 0.02 065 010 0.76 0.05 081 0.06 0.85 0.08
DMOBAT-3 088 0.01 065 011 0.77 0.03 078 0.03 0.87 0.05
DMOBAT-4 0.86 0.05 0.59 0.17 JO72 JJ0N2Q 0.76 0.03 [JO:757 0.05
DMOBAT-5 0.89 0.03 065 0.04 084 0.07 0.77 0.05 0.83 [0:01
DMOPSO-1 0.86 0.01 0.68 0.06 0.81 0.04 0.75 0.08 0.79 0.03
DMOPSO-2 0.87 0.02 062 [ 0.03 0.74 005 0.82 0.07 078 0.02
DMOPSO-3 0.87 [[0:00°" 0.63 0.05 0.79 0.09 0.77 |JONO 074" 0.05
DMOPSO-4 0.89 0.03 060 0.17 0.74 0.08 0.72 0.09 0.76 0.04
DMOPSO-5 0.88 0.03 0.69 0.12 0.80 0.03 0.74 [ 0.01 0.78 0.02
NSGA-II 0.87 0.01 070 0.18 0.77 0.04 0.77 0.07 0.78 0.11
SPEA2 0.86 0.03 066 005 0.80 0.06 078 0.06 081 0.04
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Figure C.46: Bozxplot for In: Kilbrid-1
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Computation time

Table C.50: Median and interquartile range of the computation time required by the
optimisers for the Kilbrid problems

0.8
0.6
0.4
0.2

Kilbrid-1 Kilbrid-2 Kilbrid-3 Kilbrid-4 Kilbrid-5
I+IQR(x) T+IQR(x) z+IQR(z) Z+IQR(z) &+IQR(z)
BIANT-1 059 0.16 0.83 024 046 [JO08 042 015 040 0.18
BIANT-2 0.60 0.18 083 023 046 0.06 045 018 041 0.15
CHAC-1 0.73 026 0.79 024 054 025 041 010 049 023
CHAC-2 057 013 077 024 065 029 051 016 038 0.19
DMOABC 089 022 099 029 060 022 089 031 064 0.42
DMOCSA-1-1 059 0.15 066 021 049 0.08 039 0.08 035 0.17
DMOCSA-1-2 0487 0.14 065 019 049 033 066 041 0.36 0.17
DMOCSA-1-3 0.54 0.12 0.64 020 045 034 0.56 0.09 [0:32770:03
DMOCSA-1-4  0.57 0.10 0.64 0.21 [0.36° 0.06 0.38 0.17 040 0.31
DMOCSA-1-5 0.53 | 0.06 | 0.65 [0:02°] 0.67 0.16 043 011 041 0.09
DMOCSA-2-1 0.79 026 0.79 024 075 025 047 014 064 0.33
DMOCSA-2-2 0.57 0.16 0.78 0.18 0.52 [[0.05°] 055 0.34 0.59 0.18
DMOCSA-2-3 0.66 0.14 080 0.24 0.57 042 0.55 0.06 0.52 0.12
DMOCSA-2-4 0.69 0.10 0.76 0.25 0.52 0.16 0.55 0.38  0.25
DMOCSA-2-5 057 033 081 025 0.72 036 053 013 0.50 0.27
DMOFPA-1 049 0.15 0.64 021 041 0.07 047 005 034 021
DMOFPA-2 061 020 067 019 050 032 050 028 050 0.24
DMOFPA-3 0.63 0.28 0.67 022 048 043 053 012 041 0.15
DMOFPA-4 [0:37° 0.32 JJOESY 014 044 027 [JUE8Y 005
DMOFPA-5 050 0.19 0.67 019 049 0.10 040 006 043 0.8
MOACS-1 058 020 081 024 048 009 041 013 038 0.15
MOACS-2 0.71 020 087 0.28 046 [J0047 044 017 042 0.15
DMOBAT-1 0.53 0.11 0.67 [J0:027 0.53 0.17 0.38 0.07 049 0.16
DMOBAT-2 0.50 0.09 0.68 024 047 0.09 050 018 045 0.14
DMOBAT-3 0.56 0.08 0.69 021 060 0.14 050 014 036 0.8
DMOBAT-4 0.59 0.13 0.67 [JO0E 048 0.13 043 019 043 0.10
DMOBAT-5 0.59 027 0.69 009 059 012 044 006 0.45 [J006
DMOPSO-1  0.51 [J0077 0.63 0.17 043 023 049 014 042 027
DMOPSO-2 0.50 0.11 0.63 0.19 0.55 0.06 [0:33° 007 043 0.14
DMOPSO-3 049 0.11 [0.57 0.6 047 0.07 045 029 0.57 0.7
DMOPSO-4 0.73 [J08H 0.75 0.14 059 0.09 065 036 045 0.46
DMOPSO-5 0.53 0.16 0.65 0.09 047 0.07 045 025 039 0.10
NSGA-II 049 0.19 070 023 J0407 0.18 049 0.17 [0B3Y 0.10
SPEA2 B8 o0.12 [0497 o0.15 [OEBSY 0.08 [JOBTT0057 034 0.13

o | Do |
SEOORIFFS ?§?§§<§% NGO N NS SES A AV AV S
B R R R R R R R
TV OGEEEHHETGTOIITOTIITO

Figure C.47: Boxplot for the computation time: Kilbrid-1
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C.3.8 Problem Family: Mitchell

Iy

Table C.51: Median and interquartile range of Iy obtained by the optimisers for the
Mitchell problems

Mitchell-1 Mitchell-2 Mitchell-3 Mitchell-4
#+IQR(zx) Z+IQR(z) Z+IQR(zx) Z+IQR(x)
BIANT-1 [J0:987 0.29 0.91 0.07 0.55 0.04 [J9IS8Y 0.03
BIANT-2 0.77 030 091 003 054 004 087 0.01
CHAC-1 097 003 099 001 059 001 087 0.03
CHAC-2 097 001 099 001 059 001 086 0.03
DMOABC 0.97 0.04 098 0.02 0.59 0.01 POR®7Y 0.04
DMOCSA-1-1 0.96 0.03 0.98 0.01 0.02 0.87
DMOCSA-1-2 0.96 0.06 0.98 0.01 0.59 0.00 0.86 0.01
DMOCSA-1-3  0.98 0.04 098 0.02 059 001 086 0.02
DMOCSA-1-4 0.87 0.06 0.95 0.01 0.56 000" 0.80 0.06
DMOCSA-1-5 0.96 0.05 098 0.01 058 0.01 087 0.03
DMOCSA-2-1 0.96 0.02 099 0.01 059 001 087 0.01
DMOCSA-2-2 0.96 0.03 0.98 0.00 0.59 0.01 087 0.01
DMOCSA-2-3 0.96 0.03 0.98 0.01 059 0.01 087 0.03
DMOCSA-24 0.93 0.05 096 001 0.56 JOESE 083 0.01
DMOCSA-2-5 S8 003 098 0.01 058 0.00 087 0.01
DMOFPA-1 0.98 WOW0IW 098 0.02 FOB9Y 0.01 0.86 [0.01
DMOFPA-2 093 0.02 097 001 0.59 002 0.87 0.02
DMOFPA-3 096 0.03 099 0.2 058 0.01 085 0.02
DMOFPA-4 0.89 095 0.01 056 001 081 0.02
DMOFPA-5 097 0.03 099 0.01 F0607 001 0.85 0.01
MOACS-1 097 0.16 087 006 057 0.02 084 0.03
MOACS-2 0.83 023 087 002 055 002 081 0.05
DMOBAT-1 096 0.02 099 002 058 001 086 0.03
DMOBAT-2 098 0.02 099 001 058 001 087 0.03
DMOBAT-3 0.98 0.03 0.02 0.59 0.02 0.87 001
DMOBAT-4 092 0.03 096 [000% 056 0.01 0.81 0.07
DMOBAT-5 097 003 099 001 059 001 085 0.03
DMOPSO-1 097 0.03 099 001 0.58 W0W00W 0.87 0.03
DMOPSO-2 0.97 ~ 0.02 099 0.03 059 0.00 0.87 0.02
DMOPSO-3 0.97 [10.01 0I00W 0.58 0.02 0.86 0.02
DMOPSO-4 0.97 0.06 097 0.04 056 004 0.79 0.09
DMOPSO-5 0.96 0.04 1.00 0.58 0.01 0.86 0.03
NSGA-II [099" 0.02 098 0.03 059 001 086 0.01
SPEA2 0.97 0.06 FI00® 0.01 059 0.01 085 0.03
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Figure C.48: Boxplot for Iyy: Mitchell-1
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Table C.52: Median and interquartile range of I;qp obtained by the optimisers for the
Mitchell problems

Mitchell-1 Mitchell-2 Mitchell-3 Mitchell-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)

BIANT-1 030 023 051 038 092 004 044 0.25
BIANT-2 034 035 049 020 094 002 035 0.08
CHAC-1 0.0 0.03 0.24 OO 0.86 0.01 036 0.17
CHAC-2 010 001 024 0.06 087 JEESE 038 0.10
DMOABC 0.09 004 024 0.06 088 00l 031 0.19
DMOBAT-1 0.11 001 016 0.17 087 00l 029 0.25
DMOBAT-2 0.11 0.02 JOILN 0.09 0.87 [0000 039 0.09
DMOBAT-3 0.1 003 024 005 087 003 038 0.18
DMOBAT-4 020 008 029 014 097 003 080 0.30
DMOBAT-5 0.11 00T 024 004 089 0.03 J025] 0.07
DMOCSA-1-1  0.12 | 0.01 70067 0.06 0.87 0.01 040 0.08
DMOCSA-1-2 0.11 002 025 0.06 087 001 028 0.06
DMOCSA-1-3 0.11 = 0.0l 025 0.06 0.87 0.0l 040 0.10
DMOCSA-1-4 0.16 0.05 0.28 [O0OIN 0.96 001 0.71 0.10
DMOCSA-1-5 0.10 004 0.16 0.16 087 002 026 0.07
DMOCSA-2-1 0.1 OBl 015 0.19 087 002 034 0.10
DMOCSA-2-2 0.13 0.02 025 0.05 087 004 043 0.09
DMOCSA-2-3 0.11 001 0.16 0.8 0.87 0.02 |28l 0.07
DMOCSA-2-4 021 006 054 006 093 005 091 0.04
DMOCSA-2-5 0.11 002 0.16 0.17 086 001 032 0.19
DMOFPA-1 032 004 074 031 094 001 065 0.30
DMOFPA-2 027 006 070 017 091 002 0.84 [10:03
DMOFPA-3 [0:087 0.06 0.15 0.17 0.88 0.05 044 0.12
DMOFPA-4 | 0.08 0.02 @8N 008 086 002 035 0.06
DMOFPA-5 [JUIO8N 002 024 0.05 JOEEN 003 035 023
DMOPSO 0.20 002 029 0.07 094 006 086 0.08
DMOPSO-1 010 0.03 0.7 0.15 0.86 [N0000N0:25010:04
DMOPSO-2 0.11 0.01 024 0.05 087 001 036 0.07
DMOPSO-3 0.11 0.02 018 0.4 088 002 027 0.06
DMOPSO-4 0.10 0.01 015 019 087 003 038 0.09
MOACS-1 012 0.06 029 012 096 003 069 0.10
MOACS-2 011 004 024 005 086 001 035 0.5
NSGA-II 010 0.02 024 0.05 NO85N 0.01 034 0.07

SPEA2 0.12 004 024 [JOOEE 085 0.01 037 NN
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Figure C.49: Bozplot for I;gp: Mitchell-1
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Table C.53: Median and interquartile range of 1. obtained by the optimisers for the
Mitchell problems
Mitchell-1 Mitchell-2 Mitchell-3 Mitchell-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)

BIANT-1 0.72 008 095 0.03 0.84 007 [E8 0.01
BIANT-2 082 020 094 001 085 001 090 0.02

CHAC-1 0.74 0.03 0.90 0.01 0.89 0.01
CHAC-2 0.72 0.01 [ 089 0.01 0.90 0.03
DMOABC 0.72 0.01 0.90 0.01 0.89 0.03
DMOCSA-1-1  0.72 0.02 090 0.01 0.90 0.02
DMOCSA-1-2 0.75 0.03 091 0.01 0.90  0.00
DMOCSA-1-3 0.73 0.04 090 0.01 0.89 0.02
DMOCSA-1-4 0.80 0.05 092 0.01 0.94 0.03
DMOCSA-1-5 0.73 0.02 090 0.01 0.89 0.02
DMOCSA-2-1 0.73 0.01 090 0.01 0.89

DMOCSA-2-2 0.74 0.01 090 0.01 0.90 0.01
DMOCSA-2-3 0.74 0.01 090 0.01 0.90 0.02
DMOCSA-2-4 0.78 0.04 091 0.01 0.93 0.01
DMOCSA-2-5 [0:72° 0.03 0.90 0.01 0.89

DMOFPA-1 | 0.71 [JUIE 0.90 [70:00 0.90  0.00
DMOFPA-2 0.75 0.01 091 0.00 05897 0.01
DMOFPA-3  0.72 0.02 0.89 0.01 0.90  0.02
DMOFPA-4 0.80 0.01 0.93 0.94 0.01
DMOFPA-5 0.72  0.01 090 0.01 0.91

MOACS-1 080 0.14 097 0.02 0.91 ~ 0.01
MOACS-2 0.84 005 097 001 0.96  0.04
DMOBAT-1 0.73 0.2 090 0.01 0.89  0.01
DMOBAT-2 0.72 0.01 089 0.01 0.89 0.0
DMOBAT-3 | 0.72 U0 089 0.01 0.89  0.00
DMOBAT-4 0.76  0.02 092 0.01 0.95  0.02
DMOBAT-5 0.73 0.02 090 0.01 0.90  0.02
DMOPSO-1  0.73 0.03 0.89 0.01 0.89  0.02
DMOPSO-2 0.73 0.02 090 0.01 0.90 0.01
DMOPSO-3  0.72 [NOX0IINO089Y 0.01 0.89  0.01
DMOPSO-4 0.75 0.06 092 0.02 0.95 0.06
DMOPSO-5 0.73  0.02 0.00 0.89  0.02
NSGA-TT [EEl 001 089 0.02 0.90  0.02
SPEA2 0.74 004 089 0.01 0.90  0.02
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Figure C.50: Bozplot for 1.: Mitchell-1
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Table C.54: Median and interquartile range of In obtained by the optimisers for the
Mitchell problems

306

Mitchell-1 Mitchell-2 Mitchell-3 Mitchell-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)
BIANT-1 091 005 085 020 [OS@@ 006 059 0.05
BIANT-2 0.89 SN 080 0.10 [0.79 011 089 0.14
CHAC-1 ' 0.71  0.06 066V NN 089 003 0.56 003
CHAC2 0.5 0.03 070 0.03 091 004 059 0.16
DMOABC 0.79 0.07 0.69 0.04 0.90 [NO02000427 0.17
DMOCSA-1-1 0.76 0.4 072 0.1 0.88 005 055 0.17
DMOCSA-1-2 079 003 079 003 090 005 063 0.17
DMOCSA-1-3 0.74 0.03 067 0.05 0.8 005 054 0.14
DMOCSA-1-4 UG 006 068 007 082 004 JOEE 022
DMOCSA-1-5  0.75 [OO20N067] 0.05 0.94 QO02W 050 0.15
DMOCSA-2-1 0.78 004 078 0.02 092 003 049 0.3
DMOCSA-2-2 0.75 0.08 [JOESBE 0.04 0.91 [JOEEE 0.75 0.42
DMOCSA-2-3 081 002 0.67 004 092 003 053 0.08
DMOCSA-24 0.78 FO0L 0.76 0.05 083 0.09 044 0.1
DMOCSA-25 0.80 0.05 073 0.2 090 008 051 0.18
DMOFPA-1 0.77 0.08 0.73 010 088 0.06 0.54 002
DMOFPA-2 0.74 0.05 0.68 004 088 006 056 0.20
DMOFPA-3 0.76 0.05 0.72 0.9 0.89 005 054 0.23
DMOFPA-4 JOWIN 0.09 084 0.06 082 005 076 0.45
DMOFPA5 0.78 0.03 072 011 090 005 051 0.20
MOACS-1 JO%8% 0.16 0.86 012 0.82 003 056 0.04
MOACS-2 0.76 0.05 0.78 [O020 0.84 0.03 057 0.05
DMOBAT-1 0.78 0.04 073 0.12 092 006 052 0.06
DMOBAT-2 0.81 008 076 0.04 091 003 050 0.18
DMOBAT-3 0.81 0.02 069 003 092 002 053 052l
DMOBAT-4 0.73 0.04 078 0.04 POWZ 0.02 FO37 0.10
DMOBAT-5 0.79 004 072 013 089 007 051 0.12
DMOPSO-1 071 0.04 071 0.04 091 003 057 0.17
DMOPSO-2 0.82 0.03 0.73 0.09 0.89 011 046 0.22
DMOPSO-3 0.78 0.07 0.72 0.9 094 002 057 0.14
DMOPSO-4 0.75 0.07 0.80 0.08 0.81 0.02 092 0.12
DMOPSO-5 0.74 0.05 0.72 0.05 092 004 052 0.06
NSGAII 072 006 071 002 090 003 053 0.14
SPEA2 0.77 004 0.69 10020 092 004 054 005
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Figure C.51: Bozxplot for In: Mitchell-1
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Computation time

Table C.55: Median and interquartile range of the computation time required by the
optimisers for the Mitchell problems

0.8

0.6

0.4

Mitchell-1 Mitchell-2 Mitchell-3 Mitchell-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)
BIANT-1 0.75 0.02 0.95 0.07 0.52 [ 0.02 | 0.78 0.03
BIANT-2 0.80 0.04 0.93 0.10 0.53 JJO028 0.78 0.03
CHAC-1 0.69 0.09 0.75 0.04 0.72 0.09 0.66 0.01
CHAC-2 0.80 0.16 0.74 0.07 0.62 0.14 0.65 | 0.00
DMOABC 0.87 0.20 0.86 0.07 094 0.14 0.75 0.00
DMOCSA-1-1 0.77 0.12 0.67 0.02 050 0.08 0.58 0.01
DMOCSA-1-2 0.60 0.02 0.67 0.06 0.67 0.10 0.57 0.01
DMOCSA-1-3 0.76 0.05 066 0.03 0.75 0.17 057 0.01
DMOCSA-1-4 0.55 0.01 0.62 0.03 OB 009 057 0.02
DMOCSA-1-5 0.58 0.06 064 0.03 057 0.04 056 0.04
DMOCSA-2-1 0.70 0.11 0.72 0.05 066 0.10 0.63 0.01
DMOCSA-2-2 0.62 [ 0.01 0.69 | 0.01 0.62 0.05 0.59 0.06
DMOCSA-2-3 0.76 0.08 0.72 0.04 085 0.15 064 0.05
DMOCSA-2-4 066 0.06 069 0.04 049 0.10 062 0.01
DMOCSA-2-5 0.65 0.03 0.73 [[0.01" 0.75 0.18 0.64 0.01
DMOFPA-1 0.72 0.13 0.66 0.03 0.68 0.27 0.56 0.01
DMOFPA-2 0.70 0.09 0.68 0.04 0.51 0.11 0.60 0.03
DMOFPA-3 0.68 0.12 0.69 0.03 0.62 0.12 0.58 0.00
DMOFPA-4 BB 0.01 JOBSONIN 045 0.34 OBl 0.06
DMOFPA-5 0.63 0.09 0.69 0.04 0.66 020 0.60 0.03
MOACS-1 0.77 0.02 0.84 0.05 0.51 [[0:03°| 0.88 0.03
MOACS-2 0.83 0.04 098 0.06 0.65 0.07 1.00
DMOBAT-1 0.59 0.10 0.66 0.07 0.47 0.07 0.58 0.02
DMOBAT-2 0.60 0.05 0.71 0.04 0.67 0.17 0.58 0.02
DMOBAT-3 0.79 0.12 0.71 0.03 0.62 0.12 0.59 0.01
DMOBAT-4 0.58 [0.01" 0.65 0.03 [044 0.07 0.57 0.01
DMOBAT-5 0.67 0.17 0.67 0.03 0.55 0.11 0.59 0.01
DMOPSO-1 0.56 0.05 0.67 0.07 0.54 0.10 0.54 0.05
DMOPSO-2 0.65 0.13 0.67 0.06 0.67 0.10 0.56 0.02
DMOPSO-3 0.59 0.07 [0.57  0.10 [0.44 0.04 | 041  0.04
DMOPSO-4 [0.52 | 0.07 0.66 0.16 0.54 0.28 0.52 0.02
DMOPSO-5 0.64 0.10 066 0.06 0.62 021 0.58 0.06
NSGA-II 0.62 0.03 0.72 0.03 0.63 0.15 0.65 0.01
SPEA2 [050 00 0567 0.03 053 0.11 [051770:00
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Figure C.52: Boxplot for the computation time: Mitchell-1
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C.3.9 Problem Family: Mukherje

Iy

Table C.56: Median and interquartile range of Iy obtained by the optimisers for the

Mukherje problems

Mukherje-1 ~ Mukherje-2 ~ Mukherje-3
T+ IQR(x) Z+IQR(zx) TxIQR(x)
BIANT-1 [0:937 0.02 [J@EBJ 0.04 7091 0.04
BIANT-2 0.03 10.90 0.04 0.03
CHAC-1 087 0.02 0.86 0.01 0.84 0.02
CHAC-2 087 0.01 0.87 0.02 0.84 0.01
DMOABC 0.86 [ 0.00 0.85 0.01 0.84 0.01
DMOCSA-1-1 0.86 0.01 085 0.01 0.84 0.01
DMOCSA-1-2 0.86 0.02 085 0.01 0.84 0.01
DMOCSA-1-3 0.86 0.01 085 0.01 0.84 0.01
DMOCSA-1-4 0.86 [10:00 " 0.86 0.02 0.84 0.01
DMOCSA-1-5 0.86 0.02 0.86 0.01 0.84 0.01
DMOCSA-2-1 0.85 0.01 086 0.01 0.84 [ 0.00
DMOCSA-2-2 0.86 0.86 0.02 0.85 0.01
DMOCSA-2-3 0.86 0.01 0.85 0.01 0.84 0.01
DMOCSA-2-4 0.85 0.02 085 0.02 0.84

DMOCSA-2-5 0.86 0.01 085 0.01 0.84 0.02
DMOFPA-1 0.86 0.01 0.85 [ 0:01 0.84 0.01
DMOFPA-2 0.85 0.01 086 0.02 0.84 0.01
DMOFPA-3 0.86 0.01 0.86 [ 0:00  0.84 0.01
DMOFPA-4 0.86 0.01 085 0.01 0.84 0.02
DMOFPA-5 0.86 0.01 085 0.01 0.85 0.01
MOACS-1 0.88 0.02 0.88 0.02 0.90 0.01
MOACS-2 [ 0.91 0.01 091 0.01 [ 092 0.02
DMOBAT-1 0.85 0.01 0.85 0.01 0.84 0.01
DMOBAT-2 0.86 0.01 0.8 0.02 0.84 0.01
DMOBAT-3 0.86 0.01 0.86 0.01 0.84 0.02
DMOBAT-4 0.86 0.02 085 0.02 0.85 0.01
DMOBAT-5 0.85 0.01 085 0.02 0.85 0.01
DMOPSO-1 0.8 0.01 0.85 0.02 0.84 0.02
DMOPSO-2 0.85 0.01 0.86 0.02 0.84 [ 0.00
DMOPSO-3 0.8 0.01 0.85 0.02 0.84 0.02
DMOPSO-4 0.86 0.01 0.86 0.84 0.01
DMOPSO-5 0.86 0.01 0.86 0.01 0.84 0.01
NSGA-II 0.86 0.01 086 0.02 0.85 0.01
SPEA2 0.86 0.01 086 0.02 0.85 0.01
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Table C.57: Median and interquartile range of I;qp obtained by the optimisers for the
Mukherje problems

Mukherje-1 ~ Mukherje-2 ~ Mukherje-3
T+ IQR(x) Z+IQR(x) z+xIQR(x)

BIANT-1 [048" 0.08 [JESB 0:01 047 0.08
BIANT-2 OB 0.16 [0.60 0.02 O8N o0.14
CHAC-1 088 002 083 003 083 0.11
CHAC-2 083 006 077 004 087 0.03
DMOABC 0.92 0027 085 0.03 089 0.03
DMOCSA-1-1 087 003 084 0.02 086 0.05
DMOCSA-1-2 088 007 085 0.06 084 0.07
DMOCSA-1-3 089 006 083 0.03 088 0.04
DMOCSA-1-4 089 003 081 0.16 0.86 001
DMOCSA-1-5 085 004 080 0.03 089 0.04
DMOCSA-2-1 091 004 081 003 085 003
DMOCSA-2-2 093 002 080 0.04 082 0.06
DMOCSA-2-3 091 007 083 00l 084 0.05
DMOCSA-2-4 092 008 080 0.16 0.83 0.02
DMOCSA-2-5 091 003 083 004 085 0.06
DMOFPA-1 090 003 084 003 083 0.06
DMOFPA-2 093 0.07 079 011 086 0.05
DMOFPA-3 091 005 0.85 JEBSl 086 0.04
DMOFPA-4 0.87 007 084 0.06 088 0.06
DMOFPA-5 089 003 081 002 083 0.06
MOACS-1 0.75 0.08 071 006 048 0.03
MOACS-2 [0.63 OBl 058 0.03 [044 0.03
DMOBAT-1 092 005 084 003 088 001
DMOBAT-2 089 003 083 0.3 087 0.03
DMOBAT-3 093 009 078 0.0l 085 0.08
DMOBAT-4 085 0.02 0.84 0017 090 0.04
DMOBAT-5 091 006 088 0.09 0.82 [0W01
DMOPSO-1  0.91 10027 0.88 0.06 0.90 |00
DMOPSO-2 091 0.6 081 0.02 089 0.03
DMOPSO-3 0.89 0.02 0.88 0.05 086 0.10
DMOPSO-4 0.90 0.03 0.80 0.03 087 0.03
DMOPSO-5 0.93 0.03 0.85 0.08 086 0.05
NSGA-II  0.90 0.05 085 006 090 0.07
SPEA2 094 005 085 007 086 0.13
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Figure C.54: Bozplot for I;gp: Mukherje-1
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Table C.58: Median and interquartile range of 1. obtained by the optimisers for the
Mukherje problems

0.8
~ 0.6
0.4
0.2

Mukherje-1 ~ Mukherje-2 ~ Mukherje-3
T+ IQR(x) Z+IQR(x) z+xIQR(x)
BIANT-1 0.78 0.12 0.66 0.11 0.79 0.08
BIANT-2 0.75 0.12 0.80 0.09 0.77 0.11
CHAC-1 0.34 0.00 [0:35° 0.00 0.43 0.01
CHAC-2 0.34 0.00 0.35 0.00 042 0.01
DMOABC 0.33 0.00 0.35 0.01 043 0.01
DMOCSA-1-1 0.33 0.01 0.36 0.43 0.01
DMOCSA-1-2 034 0.01 035 0.00 0.43 [ 0.00
DMOCSA-1-3 034 0.00 0.36 0.01 0.43 0.01
DMOCSA-1-4 033 0.01 0.35 0.00 0.43 0.01
DMOCSA-1-5 0.33 0.00 0.35 0.01 043 0.00
DMOCSA-2-1 033 0.00 0.35 0.01 043 [ 0.00
DMOCSA-2-2 033 0.01 035 0.00 043 0.00
DMOCSA-2-3 0.34 | 0.00  0.35 0.00 0.43 0.01
DMOCSA-2-4 034 0.01 035 0.01 042 0.01
DMOCSA-2-5 0.34 0.00 0.35 0.00 043 0.00
DMOFPA-1 033 0.00 035 0.01 043 0.00
DMOFPA-2 0.34 0.00 0.35 [ 0.00 | 043 0.00
DMOFPA-3 034 0.00 0.35 0.00 043 0.01
DMOFPA-4 0.34 [ 0.00 | 0.35 0.00 043 0.00
DMOFPA-5 0.33 0.00 0.35 [0.00 042" 0.01
MOACS-1 092 0.13 093 0.05 0.84 0.15
MOACS-2 046 0.04 051 0.04 0.56 0.04

DMOBAT-1 0.34 0.00 0.35 0.01 043
DMOBAT-2 [0.33 0.01 0.35 0.00 043 0.01
DMOBAT-3 0.34 0.00 035 0.01 043 0.00
DMOBAT-4 033 0.01 035 0.00 042 0.00
DMOBAT-5 0.34 [70:00 | 0.36 0.00 043 0.00
DMOPSO-1 033 0.01 035 0.01 043 0.01
DMOPSO-2 0.34 0.00 0.35 0.01 0.43 0.01
DMOPSO-3 0.34 0.01 0.35 0.01 0.43 0.01
DMOPSO-4 0.33 0.00 0.36 0.00 0.43 0.01
DMOPSO-5 0.33 0.01 0.35 0.00 043 0.01
NSGA-II 0.22 0.01 [ 0.26 0.01
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Figure C.55: Bozplot for I.: Mukherje-1
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Table C.59: Median and interquartile range of In obtained by the optimisers for the
Mukherje problems

Mukherje-1 ~ Mukherje-2 ~ Mukherje-3
T+ IQR(x) Z+IQR(x) z+xIQR(x)

BIANT-1 0447 0.05 (048] 0.08 [0497 0.08
BIANT-2 | 0.44 WO01W 0.58 0.03 | 048 0.11
CHAC-1 074 005 073 006 0.78 0.2
CHAC-2 074 008 075 003 082 0.05
DMOABC 089 002 088 0.05 096 0.09
DMOCSA-1-1 083 003 0.82 0.03 088 0.07
DMOCSA-1-2 0.84 0.04 0.84 [0.02 081 0.06
DMOCSA-1-3 082 003 087 0.07 088 0.05
DMOCSA-1-4 083 004 0.82 [002W 088 0.03
DMOCSA-1-5 084 004 0.77 SO0 085 0.02
DMOCSA-2-1 084 008 083 0.2 086 0.06
DMOCSA-2-2 087 0.11 089 0.09 083 0.06
DMOCSA-2-3 084 009 0.82 0.03 085
DMOCSA-2-4 080 007 079 0.12 083 | 0.01
DMOCSA-2-5 081 006 090 0.12 084 0.02
DMOFPA-1 085 0.07 0.80 0.6 082 0.05
DMOFPA-2 0.90 0.04 0.82 0.03 084 0.05
DMOFPA-3 0.86 003 083 008 085 0.03
DMOFPA-4 0.78 007 083 007 087 0.1
DMOFPA-5 083 0.02 087 007 084 0.01
MOACS-1  0.46 0520 0.03 050 0.05
MOACS-2 0.03 0.05 [JEBEE 001
DMOBAT-1 086 005 0.84 008 086 0.03
DMOBAT-2 082 002 081 0.07 087 0.05
DMOBAT-3 084 002 080 004 083 0.04
DMOBAT-4 084 007 084 0.08 090 0.02
DMOBAT-5 0.82 001W 0.81 0.11 083 0.03
DMOPSO-1  0.84 0.03 081 0.07 088 0.08
DMOPSO-2 0.81 0.04 0.79 0.02 085 0.03
DMOPSO-3 0.80 0.01 0.83 0.03 0.86 0.05
DMOPSO-4 0.83 0.04 0.79 0.05 0.87 0.05
DMOPSO-5 0.79 0.02 0.79 0.05 0.89 0.06
NSGA-II 0.88 0.05 092 005 093 005
SPEA2 0.88 0.04 090 0.11 090 0.04
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Figure C.56: Bozxplot for In: Mukherje-1
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Table C.60: Median and interquartile range of the computation time required by the
optimisers for the Mukherje problems

Mukherje-1 ~ Mukherje-2 ~ Mukherje-3
T+ IQR(x) Z+IQR(x) z+xIQR(x)

BIANT-1 0.87 027 0.62 016 084 0.34
BIANT-2 090 0.22 082 022 040 0.54
CHAC-1 0.47 [JOEEE 061 006 029 0.40
CHAC-2 044 009 039 028 033 028
DMOABC 050 009 088 020 045 023
DMOCSA-1-1 041 023 048 023 039 033
DMOCSA-1-2 033 029 053 0.11 034 0.5
DMOCSA-1-3 032 0.3 0.42 [JOEEQ 021 0.12
DMOCSA-1-4 050 028 048 0.07 030 0.11
DMOCSA-1-5 039 021 059 023 021 1003
DMOCSA-2-1 061 013 058 020 044 0.03
DMOCSA-2-2 053 0.15 0.46 [J004% 0.54 0.15
DMOCSA-2-3 041 038 0.58 0.6 039 017
DMOCSA-2-4 054 021 053 028 045 0.30
DMOCSA-2-5 070 020 0.54 023 047 0.17
DMOFPA-1 034 016 030 031 040 0.22
DMOFPA-2 0.34 020 046 022 024 0.17
DMOFPA-3 0.46 012 043 030 036 0.11
DMOFPA-4 035 013 047 024 028 0.17
DMOFPA-5 0.38 [006770:260 0.29 0.4 0NN
MOACS-1 0.52  0.08 0.66 0.18 042 0.15
MOACS-2 039 0.24 053  0.06 050 0.11
DMOBAT-1  0.31 0077 0.35 0.18 024 0.09
DMOBAT-2 034 0.15 042 023 027 0.1
DMOBAT-3 035 019 043 034 032 0.1
DMOBAT-4 038 031 050 022 033 0.09
DMOBAT-5 0800 0.07 040 0.17 025 0.15
DMOPSO-1 0.2 0.17 [0290 0.07 0.28 0.15
DMOPSO-2 035 0.18 0.44 0.09 [OI8Y 0.17
DMOPSO-3 0.55 018 031 0.63 033 0.11
DMOPSO-4 0.82 0.9 0.67 023 056 0.51
DMOPSO-5 0.47 0.28 0.36 0047 0.32  0.04
NSGA-II [[0:287 0.17 0.50 0.21 JOMZY 0.10

SPEA2 UGN 0.11 JOEEN 0.7 QONEN0.02
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Figure C.57: Boxplot for the computation time: Mukherje-1
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C.3.10 Problem Family: Roszieg

Table C.61: Median and interquartile range of Iy obtained by the optimisers for the
Roszieg problems

Roszieg-1 Roszieg-2 Roszieg-3 Roszieg-4
2+ IQR(z) T+xIQR(z) z+£IQR(z) Z+IQR(x)

BIANT-1 0.97 0.03 036 0.00 092 0.05
BIANT-2 094 0.05 037 004 076 0.13
CHAC-1 099 001 048 0.00 099 001
CHAC-2 00N 0.00 (0481 0.00 0.01
DMOABC 1.00 001 048 0.00 0.99 001
DMOCSA-1-1  1.00 001 048 0.00 0.99 0.01
DMOCSA-1-2 0.99 001 048 0.00 0.99 [10:00
DMOCSA-1-3  1.00 001 047 000 0.98 0.01
DMOCSA-1-4 0.99 002 046 0.01 095 0.02
DMOCSA-1-5 1.00 001 048 0.00 0.98 0.02
DMOCSA-2-1 1.00 000 048 0.00 0.98 001
DMOCSA-2-2 1.00 001 048 0.00 0.98 001
DMOCSA-2-3 1.00 0.0l 048  0.00 0.98 0.02
DMOCSA-2-4 0.98 001 046 0.01 0.96
DMOCSA-2-5 00N 0.00 048 0.01 0.99 0.02
DMOFPA-1  1.00 0007 0.47 0.00 0.99 0.0
DMOFPA-2 1.00 | 0.00  0.48 0.00 [0:997 0.01
DMOFPA-3 1.00 0.01 048 0.00 0.98 0.01
DMOFPA-4 098 001 046 0.01 095 0.01
DMOFPA-5 1.00 0.01 048 0.01 099 0.01
MOACS-1 096 000 039 002 095 0.05
MOACS-2 096 004 038 0.03 088 0.13
DMOBAT-1 0.99 0.00 048 0.0 098 0.02
DMOBAT-2 1.00 0.01 048 0.00 0.99 [10:00
DMOBAT-3 |JEOSIENEN 048 000 098 001
DMOBAT-4 0.99 000 046 000 0.95 0.01
DMOBAT-5 1.00 001 048 0.00 F099% 0.01
DMOPSO-1 |08 0.00 048 0.00 099 0.01
DMOPSO-2 [ 1.00. 0.00 | 0:48 70007 0.99 0.01
DMOPSO-3 1.00 0.00 048 0.00 0.99 0.01
DMOPSO-4 0.99 0.02 047 0.01 095 0.05
DMOPSO-5 00N 0.01 0.48 0.98 0.01
NSGA-IT  1.00  0.01 ﬁ 0.99 0.01

SPEA2 0.99 0.01 0.48 [ 000  0.99 0.01
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Figure C.58: Bozxplot for Iyy: Roszieg-1
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Table C.62: Median and interquartile range of I;qp obtained by the optimisers for the
Roszieg problems

Roszieg-1 Roszieg-2 Roszieg-3 Roszieg-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)

BIANT-1 0.53 033 099 002 058 005 025 0.35
BIANT-2 083 042 096 006 093 0.17
CHAC-1 0.12 0.15 090 0.36 0.0
CHAC-2 [0047 001 (090 0.00
DMOABC 0.04 0.04 [ 0890 0.0
DMOCSA-1-1  0.07 0.04 091 0.00
DMOCSA-1-2  0.11 0.4 091
DMOCSA-1-3  0.11 0.3 091  0.00
DMOCSA-1-4  0.09 004 091 |00
DMOCSA-1-5 0.06 0.05 [0©07 0.00 0.
DMOCSA-2-1 0.04 001 [090| 0.00 0.31 0.2
DMOCSA-2-2 0.06 005 091 0.00 0.31 0.03
DMOCSA-2-3 0.12 0.12 [0®07 0.00 029 0.03
DMOCSA-2-4 0.09 004 091 000 043 0.07
DMOCSA-2-5 0.04 001 091 000 035 004
DMOFPA-1  0.06 0.05 0.91 OB 034 0.03
DMOFPA-2 0.04 0.01 [0900 0.00 [0:297 0.03
DMOFPA-3 0.2 0.2 091 0.0 031 0.03
DMOFPA-4 0.7 0.03 091 0.01 047 0.05
DMOFPA-5 0.06 0.05 J0908 0.00 0.31 0.04
MOACS-1 044 002 095 007 056 009 044 0.15
MOACS-2  0.44 [0000 092 002 070 011 083 0.13
DMOBAT-1 0.13 0.4 090 0.0 030 0.04
DMOBAT-2 0.05 0.02 091 [JEES0297 0.02
DMOBAT-3 0047 0.01 091 0.0 032 0.05
DMOBAT-4 020 0.04 091 000 046 0.7
DMOBAT-5 0.05 0.06 091 0.00 029 0.02
DMOPSO-1 0.00 035 0.03
DMOPSO-2  0.04 _ 0.00  0.90 0.35 0.0
DMOPSO-3 0.05 0.02 0.90 0.00 0.31 0.03
DMOPSO-4 0.13 0.0 091 0.01 047 0.08
DMOPSO-5 0048 0.04 091 0.00 035 0.09
NSGA-II  0.06 0.06 JOM0N 0.00 032 0.07
SPEA2 0.2 0.3 091 000 0.33 [J001
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Figure C.59: Bozplot for I;gp: Roszieg-1
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Table C.63: Median and interquartile range of 1. obtained by the optimisers for the
Roszieg problems

Roszieg-1 Roszieg-2 Roszieg-3 Roszieg-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)
BIANT-1 063 031 093 0.04 051 010 087 0.01
BIANT-2 0.88 0.31 093 0.01 0.73 042 0.87
CHAC-1 0.27 0.02 [045 0.00 0.43 0.01
CHAC-2 0.00 045 0.00 043 0.02
DMOABC 0.18 0.02 0.02 043 0.01
DMOCSA-1-1  0.18 0.02 0.46 0.00 043 0.01
DMOCSA-1-2 0.22 0.08 046 0.00 043 0.01
DMOCSA-1-3 0.22 0.08 046 0.00 0.44 0.01
DMOCSA-1-4 0.27 0.04 047 0.01 047 0.01
DMOCSA-1-5 0.18 0.02 [045| 0.01 0.43 0.01
DMOCSA-2-1 [JOl8j 0:000" 0.46 0.00 0.45 0.02
DMOCSA-2-2 0.18 0.02 045 0.02 044 0.00
DMOCSA-2-3 0.22 0.08 045 0.02 044 0.01
DMOCSA-2-4 0.31 0.08 047 0.02 0.45 0.00
DMOCSA-2-5 [JEESENO00M 046 0.01 043 0.01
DMOFPA-1 0.18 0.02 046 0.00 043 0.01
DMOFPA-2 [JOl8J 0:00"0:45
DMOFPA-3 0.22 0.08 0.45 0.00
DMOFPA-4 0.31 0.10 0.46 . . 0.00
DMOFPA-5 0.18 0.02 [045° 0.01 044 0.01
MOACS-1  0.51 0.88 0.06 057 0.18 0.90 0.04
MOACS-2 0.51 0.06 088 0.00 0.61 0.13 099 0.03
DMOBAT-1 0.27 0.00 [ 0.45 0.43 0.01
DMOBAT-2 0.18 0.02 | 0.45 - 0.43 0.01
DMOBAT-3 0.00 045 0.00 043 o0.01
DMOBAT-4 0.27 0.00 046 0.00 047 0.02
DMOBAT-5 0.18 0.02 [045 0.44 0.01
DMOPSO-1 [JEEBII0:000 045 0.00 044 0.01
DMOPSO-2 0.18 0.00 046 0.00 0.43 [ 0.00
DMOPSO-3 0.18 0.00 [045 | 0.00 0.43 0.01
DMOPSO-4 0.27 0.05 047 0.02 0.46 0.03
DMOPSO-5 0.02 [045 | 0.01 [043 0.00
NSGA-II 0.18 0.02 [ 045 0.00 [0.43 0.00
SPEA2 0.27 0.02 045 0.02 043 0.01
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Figure C.60: Bozplot for I.: Roszieg-1
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Ia

Table C.64: Median and interquartile range of In obtained by the optimisers for the
Roszieg problems

Roszieg-1 Roszieg-2 Roszieg-3 Roszieg-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)

BIANT-1 0.80 0.09 0.87 0.06 [0#627 0.09 [0:387 0.01
BIANT-2 0.86 0.08 0.04 072 0.15
CHAC-1  0.84 -% 0.04 0.80 0.5
CHAC-2 084 | 0.02 085 0.03 069 0.13
DMOABC 0.77 0.10 085 0.08 0.81 0.08
DMOCSA-1-1  0.85 0.1 093 0.06 0.76 0.13
DMOCSA-1-2 087 002 091 006 0.72 0.04
DMOCSA-1-3 0.84 008 094 004 0.73  0.03
DMOCSA-1-4 [l 0.15 086 0.05 0.13
DMOCSA-1-5 0.83 0.07 087 0.04 0.80
DMOCSA-2-1 083 005 092 003 0.75 0.07
DMOCSA-2-2 0.85 0.08 0.87 0027 0.78 0.0
DMOCSA-2-3 0.90 0.16 087 0.05 0.77 0.05
DMOCSA-2-4 069 0.09 090 0.05 [J062] 0.22
DMOCSA-2-5 0.86 0.05 087 0.07 0.77 0.13
DMOFPA-1 0.80 0.19 093 0.04 0.75 [J0:03
DMOFPA-2 0.81 0020 0.93 0.04 0.71 0.03
DMOFPA-3 0.88 0.4 089 0.03 078 0.12
DMOFPA-4 079 0.8 0.85 0.10 0.64 0.09
DMOFPA-5 0.85 0.10 [0:80" 0.05 0.80 0.05
MOACS-1 JO0N 0.04 084 0.08 0.70 0.06
MOACS-2  0.70 0.04 084 0.04 0.70 0037 053 0.09
DMOBAT-1 084 004 093 002 075 0.07
DMOBAT-2 0.73 0.02 089 0.02 072 0.20
DMOBAT-3 0.84 0.03 089 0.07 075 0.15
DMOBAT-4 0.74 008 088 0.05 0.74 0.03
DMOBAT-5 0.74 0.02 0.95 001 0.68 0.15
DMOPSO-1  0.81 0.07 0.8% |JOIN 0.67 0.07
DMOPSO-2 0.88 0.02 0.87 0.05 0.76 0.04
DMOPSO-3 0.83 0.06 0.87 0.02 0.64 0.06
DMOPSO-4 0.75 0.03 0.88 0.02 0.75 0.07
DMOPSO-5 0.86 0.08 0.85 0.06 0.69 0.07
NSGA-II  0.86 0.10 [0:830 0.04 081 0.03
SPEA2 092 0.16 085 007 076 0.11
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Figure C.61: Bozplot for In: Roszieg-1
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Computation time

Table C.65: Median and interquartile range of the computation time required by the
optimisers for the Roszieg problems

0.8

0.6

0.4

Roszieg-1 Roszieg-2 Roszieg-3 Roszieg-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)
BIANT-1 093 0.02 076 0.13 0.73 [ 003  0.74 0.10
BIANT-2 096 0.06 0.78 0.18 0.77 | 0.03 0.95 0.07
CHAC-1 083 0.04 070 023 0.76 0.20 0.57 0.04
CHAC-2 083 0.02 072 010 0.68 0.11 0.55 0.04
DMOABC 094 0.02 077 0.16 0.82 0.15 0.65 0.04
DMOCSA-1-1  0.73 0.02 060 0.15 0.64 0.07 0.50 0.04
DMOCSA-1-2 0.72 [ 0.02 063 021 064 0.09 0.50 0.04
DMOCSA-1-3 0.74 0.02 0.77 0.12 060 0.11 0.50 0.06
DMOCSA-1-4 0.72 0.03 0.63 [0.06 057 0.06 049 0.05
DMOCSA-1-5 0.71 0.06 063 0.10 0.79 0.11 0.48 [ 0.03
DMOCSA-2-1 0.79 0.03 068 0.20 0.66 0.09 0.56 0.09
DMOCSA-2-2 0.76 0.03 066 0.10 066 0.16 0.51 0.04
DMOCSA-2-3 0.80 0.05 082 0.13 075 0.10 0.54 0.04
DMOCSA-2-4 0.80 0.04 063 0.13 0.81 021 054 0.04
DMOCSA-2-5 0.81 0.02 069 0.09 075 0.07 0.55 0.05
DMOFPA-1 0.73 0.03 0.58 0.09 0.64 014 049 0.04
DMOFPA-2 0.75 0.02 067 0.12 0.78 030 0.51 0.04
DMOFPA-3 0.75 [[0.02 | 062 0.14 0.66 0.13 0.50 0.04
DMOFPA-1 0.04 12033 002 027 002
DMOFPA-5 0.73 0.03 0.66 0.17 0.67 0.09 0.51 | 0.03
MOACS-1 090 0.03 079 023 0.82 009 085 0.15
MOACS-2 1.00 0.02 090 020 0.89 0.09 098 0.09
DMOBAT-1 0.73 0.05 067 0.19 0.73 0.18 049 0.04
DMOBAT-2 0.73 0.04 0.65 |0l 059 0.07 0.52 0.05
DMOBAT-3 0.76 [jJ0l02§ 0.65 0.14 063 0.14 0.51 0.04
DMOBAT-4 0.72 0.02 0.59 0.14 0.58 0.04 0.50 0.04
DMOBAT-5 0.75 0.04 0.74 [[0:05 | 0.67 0.10 0.51 0.04
DMOPSO-1 0.67 0.14 055 0.16 0.60 0.08 0.45 0.09
DMOPSO-2 0.72 0.04 062 0.06 0.56 0.09 048 0.03
DMOPSO-3 [ 0.55  0.06 [0.48  0.08 [0.45 0.07 [ 035 0.04
DMOPSO-4 0.73 0.13 059 0.17 0.55 0.04 047 0.06
DMOPSO-5 0.74 0.07 060 0.15 0.73 0.15 0.50 0.04
NSGA-II 0.84 0.03 0.72 0.10 0.74 0.07 0.64 0.04
SPEA2 [ 064 0.03 [0:52 0.13 [0.54 0.08 [ 045 0.03
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Figure C.62: Boxplot for the computation time: Roszieg-1
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C.3.11 Problem Family: Sawyer

Table C.66: Median and interquartile range of Iy obtained by the optimisers for the
Sawyer problems

Sawyer-1 Sawyer-2 Sawyer-3 Sawyer-4
TEIQR(z) Z+IQR(z) Z+IQR(z) Z+IQR(z)

BIANT-1
BIANT-2
CHAC-1
CHAC-2
DMOABC
DMOCSA-1-1
DMOCSA-1-2
DMOCSA-1-3
DMOCSA-1-4
DMOCSA-1-5
DMOCSA-2-1
DMOCSA-2-2
DMOCSA-2-3
DMOCSA-2-4
DMOCSA-2-5
DMOFPA-1
DMOFPA-2
DMOFPA-3
DMOFPA-4
DMOFPA-5
MOACS-1
MOACS-2
DMOBAT-1
DMOBAT-2
DMOBAT-3
DMOBAT-4
DMOBAT-5
DMOPSO-1
DMOPSO-2
DMOPSO-3
DMOPSO-4
DMOPSO-5
NSGA-II
SPEA2
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Table C.67: Median and interquartile range of I;qp obtained by the optimisers for the
Sawyer problems

Sawyer-1 Sawyer-2 Sawyer-3 Sawyer-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)

BIANT-1 _ 055 1.00 038 005 094 0.16
BIANT-2 0.73 072 1.00 048 038 007 093 0.13
CHAC-1  0.73 0.01 002 007 0.00
CHAC-2 0.73 0.09 002 008 0.00
DMOABC  0.73 0.09 0.02 FOWO7 0.00
DMOCSA-1-1  0.73 0.09 0.02 0.07 [10:00
DMOCSA-1-2  0.73 0.05 0.09 008 0.00
DMOCSA-1-3  0.73 0.09 002 008 0.00
DMOCSA-1-4  0.73 0.26 0.04 0.11 0.19
DMOCSA-1-5  0.73 0.09 002 008 0.00
DMOCSA-2-1  0.73 0.01 0.02 FOWO7Y 0.00
DMOCSA-2-2  0.73 0.01 002 008 0.00
DMOCSA-2-3  0.73 0.01 002 007 0.00
DMOCSA-2-4 0.73 0.09 0.00 0.10 0.01
DMOCSA-2-5 0.73 0:0100:000 0.08 0.00
DMOFPA-1  0.73 0.05 0.09 008 0.00
DMOFPA-2  0.73 0.05 0.09 008 0.00
DMOFPA-3  0.73 0.01 002 008 0.00
DMOFPA-4 (.73 0.09 0.06 012 0.01
DMOFPA-5 0.73 0.09 0.00
MOACS-1 [[0:63 0.39  0.06 096 0.14
MOACS-2 | 0.63 0.38 0.06 095 0.00
DMOBAT-1  0.73 0.01 0.00 0.8
DMOBAT-2  0.73 0:010 0.00 0.07 0.00
DMOBAT-3  0.73 0.00 [O07I 0.00
DMOBAT-4 0.73 0.06 0.11 0.1
DMOBAT-5 0.73 0.00 PO0TN 0.00
DMOPSO-1  0.73 0.02 [0.07 0.00
DMOPSO-2  0.73 0.02 [0.07 0.00
DMOPSO-3  0.73 0.00 | 0.07 0.00
DMOPSO-4  0.73 0.04 0.08 0.00
DMOPSO-5  0.73 0.02 093 0.15
NSGA-II  0.73 0.08 050 0.23
SPEA2  0.73 0.00 0.07 0.00
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Table C.68: Median and interquartile range of 1. obtained by the optimisers for the

Sawyer problems

Sawyer-1 Sawyer-2 Sawyer-3 Sawyer-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)
BIANT-1 0.78 091 0.15 076 001 098 0.09
BIANT-2 1.00 0.09 0.76 0.01 095 0.08
CHAC-1 0.:53 | 0.01 0.77 0.00
CHAC-2 0.53 0.01 0.77 [JONON
DMOABC 053 0.00 0.77 0.00
DMOCSA-1-1 0.53 0.00 0.77
DMOCSA-1-2 0.53 0.00 0.77 0.00
DMOCSA-1-3 0.53 0.77 0.00
DMOCSA-1-4 0.64 0.01 0.78 0.01
DMOCSA-1-5 0.53 OB 0.77  0.00
DMOCSA-2-1 0.53 0.00 0.77 0.00
DMOCSA-2-2 0.53 0.00 0.77 0.00
DMOCSA-2-3 0.53  0.00 0.00
DMOCSA-2-4 0.53 0.01 0.78 0.01
DMOCSA-2-5 0.53 | 0.00 0.77 0.00
DMOFPA-1 0.53 0.77  0.00
DMOFPA-2 0.53 0.77
DMOFPA-3 0.53 0.77
DMOFPA-4 0.54 0.12 0.79 0.01
DMOFPA-5 0.53 |JENUEERNSY 000
MOACS-1 1.00 0.76 0.01 0.99 0.09
MOACS-2 0.79 0.22 1.00 0.08 0.76 0.01 098 0.01
DMOBAT-1 0.53 0.00 0.77 0.00
DMOBAT-2 0.53 0.00 0.77 0.00
DMOBAT-3 0.53 0.01 0.77 0.00
DMOBAT-4 0.11  0.79 0.01
DMOBAT-5 0.00 0.77 0.00
DMOPSO-1 0.00 [JONESN 0.00
DMOPSO-2 0.00 0.77 0.00
DMOPSO-3 0.00 0.77
DMOPSO-4 0.11  0.77
DMOPSO-5 0.00 098 0.09
NSGA-II 0.01 0.80 0.02
SPEA2 0.00 0.77 0.00
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Table C.69: Median and interquartile range of In obtained by the optimisers for the
Sawyer problems

Sawyer-1 Sawyer-2 Sawyer-3 Sawyer-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)

BIANT-1 [USE 004 JONEE 028 JOSEE 004 JOEEN 0.04

BIANT-2 057 047 100 0.05 [0.78 0.05 [0.84| 0.05
CHAC-1  0.57 0.94 0.03 097 0.00
CHAC-2  0.57 0.96 0.04 096 003
DMOABC  0.57 0.96 0.02 098 001
DMOCSA-1-1  0.57 0.96 0.01 0.98 0.00
DMOCSA-1-2  0.57 0.95 0.03 098 0.00
DMOCSA-1-3  0.57 0.96 0.01 097 0.02
DMOCSA-1-4  0.57 0.91 0.01 091 0.02
DMOCSA-1-5  0.57 0.96 0.01 098 0.00
DMOCSA-2-1  0.57 0.92 0.03 098 0.02
DMOCSA-2-2  0.57 0.92 0.03 098 001
DMOCSA-2-3  0.57 0.94 0.02 098 0.0
DMOCSA-2-4  0.57 0.93 0.2 091 001
DMOCSA-2-5  0.57 0.93 00T 0.98 0.00
DMOFPA-1  0.57 0.94 0.05 097 0.02
DMOFPA-2  0.57 0.95 0.03 098 001
DMOFPA-3  0.57 091 0.0l 097 0.02
DMOFPA-4  0.57 091 003 092 0.12
DMOFPA-5  0.57 0.96 [JENOE 0.9 0NN
MOACS-1 [10:50 0.87 0.03 091 0.01
MOACS-2 | 0.50 0.80 0.04 088 003
DMOBAT-1  0.57 0.90 0.03 098 001
DMOBAT-2  0.57 0.92 0.02 098 0.00
DMOBAT-3  0.57 0.93 0.04 098 001
DMOBAT-4  0.57 0.85 0.05 [0:88Y 0.02
DMOBAT-5  0.57 0.91 000N 0.98 [10:00
DMOPSO-1  0.57 0.91 0.2 098 0.01
DMOPSO-2 ~ 0.57 0.94 0.02 0.98 [10:00
DMOPSO-3  0.57 0.92 0.02 098 0.0
DMOPSO-4 ~ 0.57 0.89 0.04 098 0.00
DMOPSO-5  0.57 0.95 0.04 091 0.04
NSGA-II  0.57 0.93  0.01 099 0.02
SPEA2  0.57 0.97 0.01 098 0.00
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Table C.70: Median and interquartile range of the computation time required by the
optimisers for the Sawyer problems

Sawyer-1 Sawyer-2 Sawyer-3 Sawyer-4
TEIQR(z) Z+IQR(z) ZL+IQR(z) Z+IQR(z)

BIANT-1 092 003 093 021 092 006 0.97 1002
BIANT-2 095 004 083 0.08 096 009 100 003
CHAC-1 0.75 002 062 0.05 072 005 078 0.07
CHAC-2 0.74 002 062 006 072 003 0.77 002
DMOABC 090 0.04 071 0.07 083 005 089 0.06
DMOCSA-1-1  0.65 0.02 053 0.06 0.66 0.10 067 0.05
DMOCSA-1-2  0.65 0.02 054 0.05 063 003 067 0.04
DMOCSA-1-3  0.65 0.02 0.54 0.06 0.63 OO 0.72 0.06
DMOCSA-1-4  0.65 [OOTW 053 0.06 0.62 003 065 0.05
DMOCSA-1-5  0.64 | 0.01  0.50 0.05 0.60 004 065 0.04
DMOCSA-2-1 0.74 0.02 0.60 0.06 0.69 [O02W 0.74 0.04
DMOCSA-22 0.70 0.02 058 0.06 0.66 005 072 0.05
DMOCSA-2-3 0.74 0.03 061 0.06 072 006 078 0.03
DMOCSA-24 072 0.03 060 0.06 074 011 0.72
DMOCSA-25 0.74 002 061 005 071 004 075 0.05
DMOFPA-1 0.65 003 054 006 061 003 069 0.05
DMOFPA-2 0.69 003 055 0.06 0.64 002 068 0.04
DMOFPA-3 0.66 002 0.54 0.05 0.64 004 0.70 0.04
DMOFPA-4 [JEESE 0.01 [OSIEONSEEOESE 006 JOBE 0.03
DMOFPA-5 0.67 003 054 0.06 0.65 009 069 0.05
MOACS-1 092 002 080 009 087 004 088 0.09
MOACS-2 1.00 [JSEN 093 007 097 007 087 0.09
DMOBAT-1 0.66 0.2 053 006 0.61 006 0.66 0.04
DMOBAT-2 0.66 0.01 054 006 063 009 067 0.05
DMOBAT-3 0.68 0.02 054 006 065 005 070 0.05
DMOBAT-4 0.67 001 054 005 065 011 066 0.07
DMOBAT-5 0.67 0.02 054 005 063 004 069 0.05
DMOPSO-1  0.63 0.13 0437 0.06 059 011 066 0.03
DMOPSO-2 0.64 0.02 0.52 J0050 0.62 0.05 [0647 0.10
DMOPSO-3 [0:52° 0.03 [0:43° 0.08 [O53 0N 064 0.08
DMOPSO-4 0.65 004 052 0.05 0.68 007 052 0.05
DMOPSO-5 0.66 001 053 0.05 0.63 004 097 0.06
NSGA-Il 086 004 075 007 078 009 066 0.03
SPEA2 0570 0.01 0.45 [N004770497 003 081 0.05
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C.4 Friedman’s nonparametric test

This section presents the detailed results of the Friedman’s test.

C.4.1 Arcl11’s family problem

Table C.71: Average rankings returned by Friedman’s nonparametric test for the
Arc111 problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1 788 2132 236 32.04 5.76
BIANT-2 5.04 2260 2.56 31.80 8.28
CHAC-1 15.80 17.20 19.68 22.00 18.00
CHAC-2 15.08 17.88 19.96 24.76 18.62
DMOABC 21.76 14.36 20.32 10.72 7.32
DMOBAT-1  19.12 15.80 1882 1592 19.24
DMOBAT-2  20.00 15.60 16.58 12.80 18.52
DMOBAT-3 19.80 16.56 19.80 16.48 20.04
DMOBAT-4 21.80 13.60 18.72 14.12 22.16
DMOBAT-5 21.68 15.68 17.96 14.96 19.40
DMOCSA-1-1 20.48 14.00 16.92 12.72 11.08
DMOCSA-1-2 18.84 1812 17.28 16.16 8.28
DMOCSA-2-1 19.40 16.24 19.52 16.76 9.80
DMOCSA-2-2 1712 17.64 19.34 1812 9.54
DMOCSA-2-3 18.76 16.80 19.86 18.24 11.78
DMOCSA-2-4 15.56 22.28 20.62 1596 20.88
DMOCSA-2-5 17.64 19.88 19.86 18.84 17.40
DMOCSA-1-3 19.60 16.40 16.10 15.64 17.54
DMOCSA-1-4 22,60 1528 18.60 14.28 22.44
DMOCSA-1-5 20.92 16.92 19.50 14.80 17.96
DMOFPA-1  20.12 1548 2040 13.32 [ 27.66
DMOFPA-2 1920 17.20 18.84 15.32 26.02
DMOFPA-3 1844 1896 17.24 18.60 21.56
DMOFPA-4 21.76 14.88 15.92 13.36 21.04
DMOFPA-5 1996 1564 16.34 13.96 20.66
DMOPSO-1  17.84 17.04 20.60 14.96 18.60
DMOPSO-2  20.84 16.56 14.94 16.48 19.66
DMOPSO-3 2236 1344 17.74 13.68 18.64
DMOPSO-4 21.92 13.60 18.58 14.80 25.16
DMOPSO-5 18.36 17.24 19.80 15.24 18.08
MOACS-1 10.16 | 25.56 | 1.08 | 32.12 5.66

MOACS-2 4.00 17.10
NSGA-II  10.48 17.00 8.44  19.28
SPEA2 13.52 14.24 [31.52 13.88 [EEEN

* Rankings obtained by considering the average performance of
each algorithm for the Arcl111 problem instances
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Table C.72:

Table C.73:

Table C.7:

Table C.75:

Table C.76:

Unadjusted and adjusted p-values obtained for Arc111 through the applica-
tion of Holm’s post hoc procedure, using the MOACS-2 as control algorithm
according to Igy

Algorithm  Unadjusted p-value Adjusted p-value

Others <0.017 <0.034
BIANT-2 0.168 0.168

Unadjusted and adjusted p-values obtained for Arc111 through the applica-
tion of Holm’s post hoc procedure, using the MOACS-2 as control algorithm
according to Irgp

Algorithm  Unadjusted p-value Adjusted p-value

All <0.004 <0.004

Unadjusted and adjusted p-values obtained for Arc111 through the applica-
tion of Holm’s post hoc procedure, using the NSGA-II as control algorithm
according to I,

Algorithm  Unadjusted p-value Adjusted p-value

Others <3.79E—-06 <1.13E-05
SPEA2 0.452 0.452

Unadjusted and adjusted p-values obtained for Arc111 through the applica-
tion of Holm’s post hoc procedure, using the MOACS-2 as control algorithm
according to Ia

Algorithm  Unadjusted p-value  Adjusted p-value

Others <6.41E-04 <0.003
BIANT-2 4.98E-01 1.494
MOACS-1 5.89E—-01 1.494
BIANT-1 0.593 1.494

Unadjusted and adjusted p-values obtained for Arc111 through the applic-
ation of Holm’s post hoc procedure, using the SPEA2 as control algorithm
in accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value

Others <8.46E—04 <0.003
DMOPSO-2 0.018 0.053
MOACS-2 0.039 0.078

MOACS-1 0.138 0.138
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C.4.2 Buxey’s family problem

Table C.77: Average rankings returned by Friedman’s nonparametric test for the Buzey
problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1 836 2744 22.32 29.68 6.08

BIANT-2 4.84 [ 29.88 23.60 31.36 5.58

CHAC-1 15.16 18.60 16.86 18.12 12.38

CHAC-2 13.48 1940 16.26 15.12 14.22

DMOABC 14.92 20.84 16.26 13.64 6.40
DMOBAT-1  18.72 17.36 16.86 14.00 20.26
DMOBAT-2 16.48 18.28 16.26 17.68 21.18
DMOBAT-3 17.12 1932 16.26 16.32 18.84
DMOBAT-4 2948 6.56 16.26 17.08 [[27.48
DMOBAT-5 17.84 17.00 16.84 10.72 22.32
DMOCSA-1-1 20.00 16.80 16.26 1596 19.74
DMOCSA-1-2 1728 1592 16.86 16.08 15.84
DMOCSA-2-1 18.52 16.52 16.86 14.60 13.58
DMOCSA-2-2 16.12 19.68 16.26 14.32 22.78
DMOCSA-2-3 1892 16.60 16.86 15.20 13.56
DMOCSA-2-4 3228 328 15.66 18.40 19.20
DMOCSA-2-5 17.92 19.56 16.26 16.40 19.18
DMOCSA-1-3 18.60 18.00 16.26 14.96 17.08
DMOCSA-1-4 32.64 228 16.26 13.64 26.02
DMOCSA-1-5 19.28 16.40 16.88 17.28 19.50
DMOFPA-1 1740 19.28 16.26 19.72 5.26
DMOFPA-2 1956 17.28 16.26 15.32 10.06
DMOFPA-3 16.84 18.68 16.26 16.44 21.76
DMOFPA-4 3092 3.84 16.26 16.92 20.00
DMOFPA-5 19.72 1744 16.26 15.28 19.78
DMOPSO-1  18.18 18.38 16.86 17.74 19.76
DMOPSO-2  16.96 19.28 16.86 15.32 19.08
DMOPSO-3  16.68 17.92 16.26 14.08 23.00
DMOPSO-4  26.72 836 16.26 17.64 19.88
DMOPSO-5 18.58 20.38 16.26 17.58 12.90

MOACS-1  [13152 14.52

MOACS-2 29.20  27.04 32.00 20.82

NSGA-II 9.28 16.84 16.26 10.52 15.32
SPEA2 992 1712 1626 13.08 [BHEE

* Rankings obtained by considering the average performance of
each algorithm for the Buxey problem instances

Table C.78: Unadjusted and adjusted p-values obtained for Buzey through the applica-
tion of Holm’s post hoc procedure, using the MOACS-2 as control algorithm
according to Igy

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.41E-04 <8.47TE—-04

SPEA2 1.10E—-02 0.055
NSGA-II 2.06E—02 0.082
BIANT-1 4.68E—02 0.140
BIANT-2 4.60E—-01 0.920

MOACS-1 0.787 0.920
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Table C.79: Unadjusted and adjusted p-values obtained for Buzey through the applica-
tion of Holm’s post hoc procedure, using the MOACS-1 as control algorithm

Table C.80:

Table C.81:

Table C.82:

according to Irap

Algorithm  Unadjusted p-value  Adjusted p-value
Others <2.10E—04 <8.40E—04
BIANT-1 1.73E—-01 0.518
MOACS-2 4.60E—01 0.920
BIANT-2 0.619 0.920

Unadjusted and adjusted p-values obtained for Buzey through the applica-
tion of Holm’s post hoc procedure, using the MOACS-1 as control algorithm

according to I,

Algorithm  Unadjusted p-value  Adjusted p-value
Others <1.15E-02 <0.034
BIANT-2 3.81E—02 0.076
MOACS-2 3.94E—-01 0.394

Unadjusted and adjusted p-values obtained for Buzey through the applica-
tion of Holm’s post hoc procedure, using the MOACS-1 as control algorithm

according to Ia

Algorithm  Unadjusted p-value  Adjusted p-value
Others <3.42E—06 <1.37TE—05
BIANT-1 2.68E—-01 0.804
BIANT-2 6.09E—-01 1.218
MOACS-2 7.76E—01 1.218

Unadjusted and adjusted p-values obtained for Buxey through the applica-
tion of Holm’s post hoc procedure, using the SPEA2 as control algorithm
in accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value
Others <0.002 <0.007
DMOFPA-4 0.046 0.092
DMOCSA-1-4 0.140 0.140
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C.4.3 Gunther family problem

Table C.83: Average rankings returned by Friedman’s nonparametric test for the Gun-
ther problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1 |[NEESZEN 31.14 3232  4.02
BIANT-2 [ 3.64 29.18 30.36 31.86 2.64
CHAC-1  14.05 20.23 17.09 18.05 13.70
CHAC-2 1864 19.32 1489 17.14 1455
DMOABC 1691 19.05 1557 13.09 6.50
DMOBAT-1  16.86 17.86 16.18 16.55 18.16
DMOBAT-2  15.68 2259 1555 1641 20.00
DMOBAT-3 1745 1827 1645 14.50 19.77
DMOBAT-4 3200 345 1489 17.14 24.57
DMOBAT-5 17.18 20.05 1559 17.14 21.82
DMOCSA-1-1  16.68 19.95 14.89 13.41 14.20
DMOCSA-1-2 17.32 20.55 14.89 15.00 18.25
DMOCSA-2-1 17.09 2091 14.89 1586 11.18
DMOCSA-2-2 18.86 18.14 14.89 14.86 17.32
DMOCSA-2-3 16.27 20.68 14.89 1591 11.52
DMOCSA-2-4 3045 545 1489 18.36 18.75
DMOCSA-2-5 1527 17.59 16.23 15.14 18.80
DMOCSA-1-3 1827 1882 16.36 16.27 19.89
DMOCSA-1-4 3223 282 14.89 12.77 [126:73
DMOCSA-1-5 17.23 1850 16.27 1345 18.52
DMOFPA-1 1741 17.82 1620 16.55 9.64
DMOFPA-2  20.36 17.73 14.89 17.64 14.09
DMOFPA-3  19.09 19.18 1577 1573 2145
DMOFPA-4 3145 3.73 14.89 16.73 18.14
DMOFPA-5 17.32 1832 1625 16.59 21.61
DMOPSO-1 1618 20.00 15.64 18.14 26.61
DMOPSO-2  19.09 17.86 16.91 15.86 18.20
DMOPSO-3  16.09 21.36 16.32 14.27 19.14
DMOPSO-4 27.68 877 14.89 16.82 26.45
DMOPSO-5 1509 2145 16.16 18.95 18.27
MOACS-1 1500 10.82 3207371325597 11.93
MOACS-2 673 14.36 [SSSNNB2NEN 1345
NSGA-II 877 19.68 14.8) 7.68 18.98
SPEA2 1091 18.09 14.89 950 [EEEE

* Rankings obtained by considering the average performance of
each algorithm for the Gunther problem instances

Table C.84: Unadjusted and adjusted p-values obtained for Gunther through the ap-
plication of Holm’s post hoc procedure, using the BIANT-1 as control al-
gorithm according to Igy

Algorithm  Unadjusted p-value Adjusted p-value

Others <2.23E-03 <0.009
NSGA-II 1.90E—-02 0.057
MOACS-2 9.59E—-02 0.192

BIANT-2 5.25E-01 0.525
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Table C.85: Unadjusted and adjusted p-values obtained for Gunther through the ap-
plication of Holm’s post hoc procedure, using the BIANT-1 as control al-
gorithm according to I;gp

Algorithm  Unadjusted p-value Adjusted p-value

DMOBAT-2 <1.08E—-03 <0.002
BIANT-2 2.82E-01 0.282

Table C.86: Unadjusted and adjusted p-values obtained for Gunther through the ap-
plication of Holm’s post hoc procedure, using the MOACS-2 as control

algorithm according to I,
Algorithm  Unadjusted p-value  Adjusted p-value

Others 2.53E—-08 <1.01E-07
BIANT-2 2.50E—-01 0.750
BIANT-1 3.72E-01 0.750
MOACS-1 0.716 0.750

Table C.87: Unadjusted and adjusted p-values obtained for Gunther through the ap-
plication of Holm’s post hoc procedure, using the MOACS-2 as control
algorithm according to Ia

Algorithm  Unadjusted p-value  Adjusted p-value

Others <4.50E—06 <1.80E—05
BIANT-2 7.74E-01 2.321
BIANT-1 8.92E-01 2.321

MOACS-1 9.64E-01 2.321

Table C.88: Unadjusted and adjusted p-values obtained for Gunther through the applic-
ation of Holm’s post hoc procedure, using the SPEA2 as control algorithm
in accordance with the computation time

Algorithm  Unadjusted p-value  Adjusted p-value

Others <1.91E-03 <0.010
DMOCSA-1-4 2.87TE—-02 0.115
DMOPSO-2 0.119 0.357
DMOBAT-4 0.132 0.357

DMOFPA-4 0.142 0.357
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C.4.4 Hahn family problem

Table C.89: Average rankings returned by Friedman’s nonparametric test for the Hahn
problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1 &- 10.74 2N 415
BIANT-2 3343 13.13 | 32.39 3.48
CHAC-1 1587 21.74 1643 21.57 15.02
CHAC-2  17.22 1870 1578 19.52 16.67
DMOABC 1826 1809 17.11 13.04 822
DMOBAT-1  19.09 16.91 15.67 1422 21.04
DMOBAT-2 18.96 16.30 14.89 1835 17.76
DMOBAT-3  16.83 1835 1520 19.65 21.30
DMOBAT-4 27.78 7.78 12.89 1213 21.78
DMOBAT-5 1813 17.96 15.80 15.61 22.13
DMOCSA-1-1  17.74 16.83 17.20 1526 12.70
DMOCSA-1-2 1857 17.22 17.43 16.00 13.78
DMOCSA-2-1 19.04 1565 16.26 16.87 10.15
DMOCSA-2-2 16.30 19.61 16.70 17.48 16.11
DMOCSA-2-3 17.30 18.87 17.33 1535 13.11
DMOCSA-2-4 2574 874 1559 11.65 20.67
DMOCSA-2-5 19.70 16.87 17.07 15.61 20.93
DMOCSA-1-3 2052 17.70 14.74 1578 20.30
DMOCSA-1-4 2857 513 1535 16.52 [125:80
DMOCSA-1-5 2148 16.70 15.37 14.48 20.93
DMOFPA-1 2091 16.09 17.26 18.00 12.43
DMOFPA-2 1852 1791 16.35 14.17 13.54
DMOFPA-3  19.22 1530 17.50 15.00 20.22
DMOFPA-4 2800 7.04 14.85 10.96 21.17
DMOFPA-5  20.26 16.70 1533 14.17 16.57
DMOPSO-1  19.04 17.43 17.30 15.00 22.41
DMOPSO-2  17.17 19.09 17.24 16.35 19.63
DMOPSO-3  19.87 17.52 1861 20.26 18.48
DMOPSO-4  26.04 9.17 1246 1322 24.85
DMOPSO-5 1574 17.39 19.09 19.39 15.80
MOACS-1 370 2552 27.35 321890 11.04
MOACS-2 557 24.35 1301007 30.39 19.98
NSGA-II 9.13  20.17 [BEESN 1022 19.59
SPEA2 11.35 1526  29.11 11.09 [ESE2N

* Rankings obtained by considering the average performance of
each algorithm for the Hahn problem instances

Table C.90: Unadjusted and adjusted p-values obtained for Hahn through the applica-
tion of Holm’s post hoc procedure, using the BIANT-2 as control algorithm
according to Igy

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.04E—-02 <0.042
MOACS-2 1.78E—-01 0.534
MOACS-1 4.77E-01 0.955

BIANT-1 0.953 0.955
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Table C.91: Unadjusted and adjusted p-values obtained for Hahn through the applica-
tion of Holm’s post hoc procedure, using the BIANT-1 as control algorithm
according to Irap

Algorithm  Unadjusted p-value Adjusted p-value

Others <6.01E—03 <0.012
BIANT-2 0.977 0.977

Table C.92: Unadjusted and adjusted p-values obtained for Hahn through the applica-
tion of Holm’s post hoc procedure, using the NSGA-II as control algorithm
according to I,
Algorithm  Unadjusted p-value  Adjusted p-value

Others <1.30E—-05 <5.19E—-05
MOACS-1 1.22E-01 0.365

SPEA2 3.43E-01 0.687
MOACS-2 0.520 0.687

Table C.93: Unadjusted and adjusted p-values obtained for Hahn through the applica-
tion of Holm’s post hoc procedure, using the BIANT-1 as control algorithm
according to Ia

Algorithm  Unadjusted p-value  Adjusted p-value

Others <1.11E-04 <4.46E—04
MOACS-2 3.90E-01 1.171
BIANT-2 8.59E—-01 1.718
MOACS-1 0.859 1.718

Table C.94: Unadjusted and adjusted p-values obtained for Hahn through the applica-
tion of Holm’s post hoc procedure, using the SPEA2 as control algorithm
in accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value

Others <2.34E-04 <7.02E—-04
DMOPSO-2 0.004 0.009
DMOFPA-4 0.012 0.012
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C.4.5 Jackson family problem

Table C.95: Average rankings returned by Friedman’s nonparametric test for the Jack-
son problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1 3264 990 290 [EilEl 3.52
BIANT-2 3256 1042 3.06 23.08 3.56
CHAC-1 1276 20.22 19.72 17.14  9.80
CHAC-2 1254 2144 2154 1876 13.20
DMOABC  14.14 1832 19.82 1572 5.72
DMOBAT-1  12.72 20.34 2080 15.50 20.82
DMOBAT-2 |DSEESIEE 21827 18.44 23.00
DMOBAT-3  13.82 20.46 21.28 16.86 19.62
DMOBAT-4  23.04 12.68 14.56 17.98 24.92
DMOBAT-5 [II420020747 21.66 15.76 26.50
DMOCSA-1-1  12.90 20.60 20.86 14.90 13.58
DMOCSA-1-2  12.84 20.50 [JBEEEN 1526 22.50
DMOCSA-2-1 1298 1948 20.90 12.92 9.24
DMOCSA-2-2 13.08 19.98 21.24 14.50 15.44
DMOCSA-2-3 1546 21.16 20.94 17.96 10.36
DMOCSA-2-4 2464 974 13.76 20.38 24.04
DMOCSA-2-5 13.78 19.18 20.06 16.76 16.14
DMOCSA-1-3 13.92 19.92 19.52 1584 14.32
DMOCSA-1-4 2850 7.98 12.52 20.66
DMOCSA-1-5 13.50 20.06 20.50 16.46 15.34
DMOFPA-1 1408 20.32 19.72 16.60 4.56
DMOFPA-2 1282 20.52 20.00 17.38 2.16
DMOFPA-3 1400 19.28 19.62 14.58 25.04
DMOFPA-4 2826 10.24 13.04 19.58 18.50
DMOFPA-5 1506 18.86 1894 1510 11.96
DMOPSO-1 1422 20.94 20.50 18.06 16.78
DMOPSO-2 1412 1876 19.74 15.56 16.44
DMOPSO-3  16.16 17.08 19.76 13.50 28.82
DMOPSO-4  20.70 1498 17.64 13.96 27.30
DMOPSO-5  14.06 17.88 20.10 14.86 [132:90
MOACS-1 3220 11.88 4.38 [25061 28.18
MOACS-2 3248 804 3.00 2492 2276
NSGA-II 1570 19.58 19.36 17.32 3.16
SPEA2 13.56 19.44 19.72 16.46 31.02

* Rankings obtained by considering the average performance of
each algorithm for the Jackson problem instances
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Table C.96: Unadjusted and adjusted p-values obtained for Jackson through the ap-
plication of Holm’s post hoc procedure, using the DMOBAT-2 as control
algorithm according to Iy

Algorithm  Unadjusted p-value Adjusted p-value

Others <2.35E—-04 <0.006
DMOPSO-3 3.88E—-02 0.931
NSGA-II 5.70E—02 1.312
DMOCSA-2-3 6.91E—-02 1.520
DMOFPA-5 9.38E—-02 1.969
DMOPSO-1 1.68E—01 3.367
DMOABC 1.77TE—-01 3.369
DMOPSO-2 1.80E—-01 3.369
DMOFPA-1 1.84E-01 3.369
DMOPSO-5 1.87E—-01 3.369
DMOFPA-3 1.94E-01 3.369
DMOCSA-1-3 2.04E—-01 3.369
DMOBAT-3 2.17E—01 3.369
DMOCSA-2-5 2.22E—-01 3.369
SPEA2 2.53E—-01 3.369
DMOCSA-1-5 2.62E—-01 3.369
DMOCSA-2-2 3.31E-01 3.369
DMOCSA-2-1 3.49E—-01 3.369
DMOCSA-1-1 3.63E—-01 3.369
DMOCSA-1-2 3.75E-01 3.369
DMOFPA-2 3.79E—01 3.369
CHAC-1 3.90E-01 3.369
DMOBAT-1 3.98E—-01 3.369
CHAC-2 4.35E—-01 3.369

DMOBAT-5 0.701 3.369
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Table C.97: Unadjusted and adjusted p-values obtained for Jackson through the ap-
plication of Holm’s post hoc procedure, using the DMOBAT-2 as control
algorithm according to I;gp

Algorithm  Unadjusted p-value Adjusted p-value

Others <4.03E—-03 <0.101
DMOPSO-3 3.32E—-02 0.796
DMOPSO-5 6.49E—02 1.492

DMOABC 9.10E—-02 2.003
DMOPSO-2 1.25E-01 2.627
DMOFPA-5 1.34E—-01 2.681

DMOCSA-2-5 1.66E—01 3.157
DMOFPA-3 1.77E-01 3.191
SPEA2 1.96E—-01 3.336
DMOCSA-2-1 2.01E-01 3.336
NSGA-II 2.14E-01 3.336
DMOCSA-1-3 2.62E—-01 3.667
DMOCSA-2-2 2.71E-01 3.667
DMOCSA-1-5 2.84E—-01 3.667
CHAC-1 3.10E-01 3.667
DMOFPA-1 3.27TE-01 3.667
DMOBAT-1 3.31E-01 3.667
DMOBAT-3 3.52E—-01 3.667
DMOCSA-1-2 3.60E—-01 3.667
DMOFPA-2 3.63E—-01 3.667
DMOCSA-1-1 3.79E-01 3.667
DMOPSO-1 4.47E-01 3.667
DMOCSA-2-3 4.95E—-01 3.667
CHAC-2 5.60E—01 3.667

DMOBAT-5 6.34E—-01 3.667
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Table C.98: Unadjusted and adjusted p-values obtained for Jackson through the applic-
ation of Holm’s post hoc procedure, using the DMOCSA-1-2 as control
algorithm according to I,
Algorithm  Unadjusted p-value Adjusted p-value

Others <1.43E-03 <0.040
DMOCSA-2-4 3.36E—03 0.091
DMOBAT-4 8.08E—03 0.210
DMOPSO-4 1.20E-01 2.998
DMOFPA-5 2.74E-01 6.580
NSGA-II 3.45E-01 7.934
DMOCSA-1-3 3.75E-01 8.245
DMOFPA-3 3.94E-01 8.277
DMOFPA-1 4.14E-01 8.283
CHAC-1 4.14E-01 8.283
SPEA2 4.14E-01 8.283
DMOPSO-2 4.18E—-01 8.283
DMOPSO-3 4.22E-01 8.283
DMOABC 4.35E-01 8.283
DMOFPA-2 4.73E-01 8.283
DMOCSA-2-5 4.87TE—-01 8.283
DMOPSO-5 4.95E-01 8.283
DMOPSO-1 5.89E—-01 8.283
DMOCSA-1-5 5.89E—-01 8.283
DMOBAT-1 6.66E—01 8.283
DMOCSA-1-1 6.80E—01 8.283
DMOCSA-2-1 6.91E-01 8.283
DMOCSA-2-3 7.01E-01 8.283
DMOCSA-2-2 7.82E-01 8.283
DMOBAT-3 7.93E-01 8.283
CHAC-2 8.66E—01 8.283
DMOBAT-5 8.98E—01 8.283
DMOBAT-2 0.943 8.283

Table C.99: Unadjusted and adjusted p-values obtained for Jackson through the applica-
tion of Holm’s post hoc procedure, using the BIANT-1 as control algorithm
according to Ia

Algorithm  Unadjusted p-value  Adjusted p-value

Others <7.75E—-03 <0.047
DMOCSA-2-4 1.74E-02 0.087
DMOCSA-1-4 2.26E—-02 0.091

BIANT-2 1.56E—01 0.467
MOACS-2 4.43E-01 0.886

MOACS-1 0.495 0.886
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Table C.100: Unadjusted and adjusted p-values obtained for Jackson through the ap-
plication of Holm’s post hoc procedure, using the DMOFPA-J as control
algorithm wn accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.87TE—-03 <0.013
DMOCSA-1-5 9.55E—03 0.057
DMOPSO-2 2.10E-02 0.105
DMOPSO-4 4.60E—02 0.184
DMOPSO-1 7.70E—02 0.231
SPEA2 0.324 0.647

DMOPSO-3 0.749 0.749
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C.4.6 Kilbrid family problem

Table C.101: Average rankings returned by Friedman’s nonparametric test for the Kil-
brid problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1  30.52 6.4 414 12.08 15.84
BIANT-2 3140 390 394 7.88 14.30
CHAC-1 |EESEEEEE 199 1940 13.54
CHAC-2 1280 21.80 21.04 19.96 14.06
DMOABC 1348 23.76 23.18 20.24 5.06
DMOBAT-1 [JI2067 21.04 22.44 18.80 19.88
DMOBAT-2  17.88 19.60 17.66 17.12 20.56
DMOBAT-3  12.36 19.72 20.24 17.04 20.46
DMOBAT-4 2564 11.24 8.74 [BEEEE 21.40
DMOBAT-5 13.80 21.44 20.38 1540 17.76
DMOCSA-1-1  16.12 21.00 21.04 20.00 10.26
DMOCSA-1-2  13.56 19.48 21.22 19.24 12.40
DMOCSA-2-1 1440 22.08 16.96 20.00 10.02
DMOCSA-2-2 14.04 17.68 20.00 18.24 14.34
DMOCSA-2-3 15.00 19.36 23.12 17.40 10.34
DMOCSA-2-4 2544 7.84 954 1864 21.90
DMOCSA-2-5 14.16 20.72 19.34 1820 17.76
DMOCSA-1-3 15.00 18.92 20.46 1556 18.68
DMOCSA-1-4 27.76 7.72 850 21.20 [129:20
DMOCSA-1-5 12.72 20.84 2080 16.44 20.78
DMOFPA-1  13.76 18.08 20.26 18.28 18.24
DMOFPA-2 1352 2040 21.78 21687 14.30
DMOFPA-3 1416 19.76 1842 18.68 18.40
DMOFPA-4 2804 5.64 854 1880 19.58
DMOFPA-5  14.32 19.60 20.62 17.68 16.36
DMOPSO-1 1266 23.02 [JREE 18.14 18.30
DMOPSO-2  13.92 2212 2242 19.28 16.12
DMOPSO-3  13.16 22.84 2240 19.44 21.24
DMOPSO-4  19.60 16.36 16.84 19.16 23.56
DMOPSO-5  13.18 23.54 24500 17.90 20.18
MOACS-1 3224 332 280 968 9.96
MOACS-2  31.60 292 318 552 18.38
NSGA-Il 1248 2280 21.64 17.48 19.74
SPEA?2 1216 2488 2442 17.64 [E2EON

* Rankings obtained by considering the average performance of
each algorithm for the Kilbrid problem instances
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Table C.102: Unadjusted and adjusted p-values obtained for Kilbrid through the applica-
tion of Holm’s post hoc procedure, using the CHAC-1 as control algorithm
according to Igy

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.70E—06 <4.43E—-05
DMOPSO-4 6.68E—03 0.167
DMOBAT-2 3.56E—-02 0.854

DMOCSA-1-1 1.40E-01 3.213
DMOCSA-2-3 2.80E-01 6.170
DMOCSA-1-3 2.80E-01 6.170
DMOCSA-2-1 3.86E—-01 7.727
DMOFPA-5 4.02E-01 7.727
DMOCSA-2-5 4.35E-01 7.826
DMOFPA-3 4.35E—01 7.826
DMOCSA-2-2 4.60E—01 7.826
DMOPSO-2 4.87TE—-01 7.826
DMOBAT-5 5.14E-01 7.826
DMOFPA-1 5.23E-01 7.826
DMOCSA-1-2 5.70E-01 7.826
DMOFPA-2 5.80E—-01 7.826
DMOABC 5.89E—-01 7.826
DMOPSO-5 6.65E—01 7.826
DMOPSO-3 6.70E—01 7.826
CHAC-2 7.66E—01 7.826
DMOCSA-1-5 7.87TE-01 7.826
DMOPSO-1 8.04E—-01 7.826
NSGA-II 8.54E—-01 7.826
DMOBAT-3 8.87TE—-01 7.826
DMOBAT-1 9.43E-01 7.826

SPEA2 0.943 7.826
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Table C.103: Unadjusted and adjusted p-values obtained for Kilbrid through the applica-
tion of Holm’s post hoc procedure, using the CHAC-1 as control algorithm
according to Irgp

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.27E-03 <0.032
DMOCSA-2-2 5.87TE—-03 0.141
DMOFPA-1 8.97E—03 0.206
DMOCSA-1-3 2.06E—02 0.454
DMOCSA-2-3 3.09E—-02 0.648
DMOCSA-1-2 3.43E—-02 0.687
DMOFPA-5 3.81E—-02 0.725
DMOBAT-2 3.81E—-02 0.725
DMOBAT-3 4.23E—-02 0.725
DMOFPA-3 4.37TE—-02 0.725
DMOFPA-2 7.36E—02 1.103
DMOCSA-2-5 9.38E—-02 1.313
DMOCSA-1-5 1.02E-01 1.332
DMOCSA-1-1 1.15E-01 1.379
DMOBAT-1 1.18E-01 1.379
DMOBAT-5 1.56E—-01 1.556
CHAC-2 1.96E—-01 1.766
DMOCSA-2-1 2.33E—01 1.863
DMOPSO-2 2.39E—01 1.863
NSGA-II 3.49E-01 2.092
DMOPSO-3 3.56E—-01 2.092
DMOPSO-1 3.90E-01 2.092
DMOPSO-5 5.00E-01 2.092
DMOABC 5.51E-01 2.092

SPEA2 0.842 2.092
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Table C.104: Unadjusted and adjusted p-values obtained for Kilbrid through the ap-
plication of Holm’s post hoc procedure, using the DMOPSO-1 as control
algorithm according to I,

Algorithm  Unadjusted p-value Adjusted p-value

DMOCSA-2-4 <1.01E—-07 <2.62E—06
DMOPSO-4 6.26E—03 0.157
DMOCSA-2-1 7.12E—-03 0.171
DMOBAT-2 1.46E—02 0.335
DMOFPA-3 2.98E—-02 0.655
DMOCSA-2-5 6.49E—-02 1.362
CHAC-1 9.95E—-02 1.990
DMOCSA-2-2 1.07E-01 2.033
DMOBAT-3 1.27E-01 2.283
DMOFPA-1 1.29E—-01 2.283
DMOBAT-5 1.40E—-01 2.283
DMOCSA-1-3 1.47E—01 2.283
DMOFPA-5 1.64E-01 2.296
DMOCSA-1-5 1.84E-01 2.395
CHAC-2 2.14E-01 2.568
DMOCSA-1-1 2.14E-01 2.568
DMOCSA-1-2 2.39E-01 2.568
NSGA-II 3.03E-01 2.729
DMOFPA-2 3.27TE-01 2.729
DMOPSO-3 4.47E-01 3.132
DMOPSO-2 4.52E-01 3.132
DMOBAT-1 4.56E-01 3.132
DMOCSA-2-3 6.14E-01 3.132
DMOABC 6.29E—-01 3.132
SPEA2 9.66E—01 3.132

DMOPSO-5 0.989 3.132
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Table C.105: Unadjusted and adjusted p-values obtained for Kilbrid through the ap-
plication of Holm’s post hoc procedure, using the DMOBAT-4 as control
algorithm in accordance with the Spread

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.41E-04 <0.004
DMOBAT-5 0.009 0.250
DMOCSA-1-3 0.010 0.284
DMOCSA-1-5 0.024 0.646
DMOBAT-3 0.041 1.062
DMOBAT-2 0.044 1.093
DMOCSA-2-3 0.055 1.325
NSGA-II 0.059 1.355
SPEA2 0.067 1.473
DMOFPA-5 0.069 1.473
DMOPSO-5 0.082 1.638
DMOPSO-1 0.098 1.863
DMOCSA-2-5 0.102 1.863
DMOCSA-2-2 0.105 1.863
DMOFPA-1 0.109 1.863
DMOCSA-2-4 0.140 2.095
DMOFPA-3 0.144 2.095
DMOBAT-1 0.156 2.095
DMOFPA-4 0.156 2.095
DMOPSO-4 0.196 2.159
DMOCSA-1-2 0.206 2.159
DMOPSO-2 0.211 2.159
CHAC-1 0.227 2.159
DMOPSO-3 0.233 2.159
CHAC-2 0.313 2.159
DMOCSA-2-1 0.320 2.159
DMOCSA-1-1 0.320 2.159
DMOABC 0.363 2.159
DMOCSA-1-4 0.570 2.159
DMOFPA-2 0.691 2.159

Table C.106: Unadjusted and adjusted p-values obtained for Kilbrid through the applic-
ation of Holm’s post hoc procedure, using the SPEA2 as control algorithm
in accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value

Others <0.002 <0.005
DMOFPA-4 0.303 0.303
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C.4.7 Lutzl family problem

Table C.107: Average rankings returned by Friedman’s nonparametric test for the Lutz1
problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1 3170 340 328 2500 4.68
BIANT-2 3210 295 3.03 2420 4.60
CHAC-1  10.43 12543 20N 1920 8.68
CHAC-2 1218 2443 2378 19.30 10.23
DMOABC  [19:95 2SSOSR 1963 4.30
DMOBAT-1  11.67 23.98 22.30 18.83 24.63
DMOBAT-2  13.53 21.48 21.03 16.8%8 22.72
DMOBAT-3  11.60 23.60 23.23 19.25 21.82
DMOBAT-4 22.03 1340 13.83 17.80 21.70
DMOBAT-5  13.53 2245 2098 16.95 27.28
DMOCSA-1-1  15.67 17.48 19.10 13.60 12.03
DMOCSA-1-2 1620 16.60 18.75 12.05 13.50
DMOCSA-2-1 1515 17.13 19.68 11.55 8.42
DMOCSA-22 17.75 17.08 17.20 14.45 10.83
DMOCSA-2-3 16.88 16.55 18.55 11.68 10.20
DMOCSA-2-4 2222 1553 13.78 18.03 25.72
DMOCSA-2-5 17.65 16.20 16.60 12.95 17.88
DMOCSA-1-3 17.28 17.48 17.20 14.95 17.03
DMOCSA-1-4  25.05 10.85 10.18 19.45
DMOCSA-1-5  16.78 16.00 17.98 11.63 18.18
DMOFPA-1 1570 17.70 1870 14.65 2.80
DMOFPA-2  17.88 16.93 17.05 13.23 1.20
DMOFPA-3 1555 16.58 19.33 12.95 22.88
DMOFPA-4  24.80 12.68 10.73 18.33 20.88
DMOFPA-5 1815 17.03 16.93 13.90 16.68
DMOPSO-1 [JSISSl 2530 2478 20.18 20.53
DMOPSO-2  11.73 23.80 22.93 18.65 20.80
DMOPSO-3 1290 23.45 23.00 20.43 30.60
DMOPSO-4  19.10 17.55 16.60 20.10 28.10
DMOPSO-5  12.65 23.40 22.30 17.68 29.90
MOACS-1 3305 1.80 1.90 [JRSHEN 13.48
MOACS-2 3315 1.85 1.80 | 25.05 28.15
NSGA-II 1058 24.33 24.15 17.55 8.18
SPEA?2 10.80 25.05 24.40 18.83 [132192

* Rankings obtained by considering the average performance of
each algorithm for the Lutzl problem instances
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Table C.108: Unadjusted and adjusted p-values obtained for Lutzl through the applic-
ation of Holm’s post hoc procedure, using the DMOPSO-1 as control al-
gorithm according to Iy

Algorithm  Unadjusted p-value Adjusted p-value

Others <8.50E—-05 <0.002
DMOPSO-4 2.69E-03 0.067
DMOFPA-5 6.95E—-03 0.167
DMOFPA-2 9.00E—-03 0.207

DMOCSA-2-2 1.01E-02 0.222
DMOCSA-2-5 1.11E-02 0.233
DMOCSA-1-3 1.55E—-02 0.309
DMOCSA-2-3 2.18E—-02 0.414
DMOCSA-1-5 2.37TE-02 0.426
DMOCSA-1-2 3.75E—-02 0.638
DMOFPA-1 5.47TE—-02 0.875
DMOCSA-1-1 5.5TE—-02 0.875
DMOFPA-3 6.10E—02 0.875
DMOCSA-2-1 8.07TE—02 1.049
DMOBAT-5 2.19E-01 2.622
DMOBAT-2 2.19E-01 2.622
DMOPSO-3 3.02E-01 3.020
DMOPSO-5 3.41E-01 3.067
CHAC-2 4.23E-01 3.381
DMOPSO-2 5.10E-01 3.570
DMOBAT-1 5.20E-01 3.570
DMOBAT-3 5.36E—-01 3.570
SPEA2 7.156E-01 3.570
NSGA-II 7.69E—-01 3.570
CHAC-1 8.06E—01 3.570

DMOABC 0.924 3.570
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Table C.109: Unadjusted and adjusted p-values obtained for Lutzl through the applic-
ation of Holm’s post hoc procedure, using the DMOBAT-3 as control al-
gorithm according to I;gp

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.38E—03 0.000<03581143
DMOCSA-1-5 2.30E-03 0.057
DMOCSA-2-5 2.84E-03 0.068
DMOCSA-2-3 4.056E—-03 0.093

DMOFPA-3 4.16E—03 0.093
DMOCSA-1-2 4.26E—-03 0.093
DMOFPA-2 5.87E—03 0.117
DMOFPA-5 6.47E—03 0.123
DMOCSA-2-2 6.79E—-03 0.123
DMOCSA-2-1 7.12E-03 0.123
DMOCSA-1-3 9.88E—-03 0.158
DMOCSA-1-1 9.88E—-03 0.158
DMOPSO-4 1.06E—02 0.158
DMOFPA-1 1.21E-02 0.158
DMOBAT-2 1.90E-01 2.283
DMOBAT-5 3.17E-01 3.489
DMOPSO-5 4.85E—01 4.848
DMOPSO-3 4.95E—-01 4.848
DMOBAT-3 5.25E—-01 4.848
DMOPSO-2 5.68E—01 4.848
DMOBAT-1 6.06E—01 4.848
NSGA-II 6.86E—01 4.848
CHAC-2 7.09E-01 4.848
SPEA2 8.61E—-01 4.848
DMOPSO-1 9.24E—-01 4.848

CHAC-1 0.956 4.848
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Table C.110: Unadjusted and adjusted p-values obtained for Lutzl through the applic-
ation of Holm’s post hoc procedure, using the DMOPSO-5 as control al-
gorithm according to I,
Algorithm  Unadjusted p-value Adjusted p-value

Others <3.8TE—04 <0.010
DMOPSO-4 7.64E—-03 0.191
DMOCSA-2-5 7.64E—-03 0.191
DMOFPA-5 1.03E-02 0.238
DMOFPA-2 1.16E—02 0.255
DMOCSA-2-2 1.33E-02 0.278
DMOCSA-1-3 1.33E—-02 0.278
DMOCSA-1-5 2.57E-02 0.488
DMOCSA-2-3 4.05E—-02 0.730
DMOFPA-1 4.54E-02 0.772
DMOCSA-1-2 4.72E-02 0.772
DMOCSA-1-1 6.10E—02 0.915
DMOFPA-3 7.15E—-02 1.001
DMOCSA-2-1 9.08E—-02 1.181
DMOBAT-5 2.01E-01 2.414
DMOBAT-2 2.07TE-01 2414
DMOBAT-1 3.91E-01 3.912
DMOPSO-5 3.91E-01 3.912
DMOPSO-2 5.10E-01 4.080
DMOPSO-3 5.25E-01 4.080
DMOBAT-3 5.73E-01 4.080
CHAC-2 6.97TE—01 4.080
NSGA-II 7.87TE—-01 4.080
SPEA2 8.49E—-01 4.080
DMOPSO-1 9.43E-01 4.080

CHAC-1 1 4.080
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Table C.111: Unadjusted and adjusted p-values obtained for Lutzl through the applic-
ation of Holm’s post hoc procedure, using the MOACS-1 as control al-
gorithm according to Ia

Algorithm  Unadjusted p-value Adjusted p-value

Others <3.76E—04 <0.008
DMOBAT-2 3.23E-03 0.068
DMOBAT-5 3.48E-03 0.070

NSGA-II 6.31E-03 0.120
DMOPSO-5 7.12E—-03 0.128
DMOBAT-4 8.01E-03 0.136

DMOCSA-2-4 9.88E—-03 0.158
DMOFPA-4 1.30E—-02 0.194
DMOPSO-2 1.72E-02 0.241
DMOBAT-1 2.00E—-02 0.260

SPEA2 2.00E—-02 0.260

CHAC-1 2.73E—-02 0.300
DMOBAT-3 2.84E-02 0.300

CHAC-2 2.96E—-02 0.300

DMOCSA-1-4 3.34E-02 0.300
DMOABC 3.83E-02 0.300
DMOPSO-4 5.47TE—-02 0.328
DMOPSO-1 5.78E—-02 0.328
DMOPSO-3 6.91E—-02 0.328
BIANT-2 5.36E—01 1.607
BIANT-1 7.156E-01 1.607
MOACS-2 0.727 1.607

Table C.112: Unadjusted and adjusted p-values obtained for Lutzl through the applic-
ation of Holm’s post hoc procedure, using the DMOFPA-J as control al-
gorithm in accordance with the computation time

Algorithm  Unadjusted p-value  Adjusted p-value

Others <4.71E-03 <0.038
DMOFPA-1 1.33E-02 0.093
DMOCSA-1-5 4.72E-02 0.283
DMOPSO-2 8.49E—-02 0.425
DMOPSO-5 8.78E—-02 0.425
DMOPSO-3 2.50E-01 0.749
DMOPSO-1 0.353 0.749

SPEA2 0.849 0.849
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C.4.8 Mitchell family problem

Table C.113: Average rankings returned by Friedman’s nonparametric test for the
Mitchell problems family according to all quality indicators

Ranking
Algorithm Igv  Iigp 1. IA Time

BIANT-1 21.63 3.50 15.38 1250 9.94
BIANT-2 23.25 3.50 10.31 11.69 8.72

CHAC-1 14.88 18.13 21.19 9.56
CHAC-2 12.56 21.81 16.63 11.06
DMOABC 13.25 21.25 18.25 4.22

DMOBAT-1  15.06 24.88 20.81 16.00 19.47
DMOBAT-2  13.13 19.00 21.97 16.50 19.53
DMOBAT-3 1228 20.75 2225 1631 17.38
DMOBAT-4  29.19 13.25 9.59 [22810 28.66
DMOBAT-5 1425 1875 19.06 17.56 23.50
DMOCSA-1-1 B 1525 20.72 1844 1181
DMOCSA-1-2  16.78 14.50 16.16 12.09 16.44
DMOCSA-2-1 13.69 16.38 20.59 16.19 8.59
DMOCSA-2-2 15.00 14.25 1847 17.00 18.00
DMOCSA-2-3 17.03 16.00 17.50 16.09 12.84
DMOCSA-2-4 27.63 20.00 10.69 19.81 19.44
DMOCSA-2-5 13.94 1425 2141 1594 16.53
DMOCSA-1-3 13.88 11.63 2047 20.75 16.94
DMOCSA-1-4 29.38 7.00 9.44
DMOCSA-1-5 15.63 13.75 1944 1825 15.75
DMOFPA-1 1247 19.25 21.03 1741 9.34
DMOFPA-2  17.34 17.00 16.63 1947 5.09
DMOFPA-3  14.63 1425 20.19 16.81 22.25
DMOFPA-4  30.25 19.25 7.53 17.69 17.56
DMOFPA-5 1338 16.63 1859 18.38 13.38
DMOPSO-1  13.63 S8 2125 17.63 26.25
DMOPSO-2  16.00 26.13 18.78 1581 19.34
DMOPSO-3 1272 26.25 22441 15.50 26.47
DMOPSO-4  22.69 1325 13.75 17.00 19.88
DMOPSO-5 [IL72 J2ESSEZSNE 16.78  29.56
MOACS-1 2800 125 9.06 1844 24.13
MOACS-2  30.69 175 747 17.75 1831
NSGA-II  12.66 26.13 21.47 17.53 13.78
SPEA2 15.13 JESEH 1831 17.88 [129169

* Rankings obtained by considering the average performance of
each algorithm for the Mitchell problem instances
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Table C.114: Unadjusted and adjusted p-values obtained for Mitchell through the ap-
plication of Holm’s post hoc procedure, using the DMOCSA-1 as control
algorithm according to Iy

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.23E-03 <0.032
BIANT-1 3.40E—-03 0.085
DMOFPA-2 8.67TE—02 2.081
DMOCSA-2-3 1.04E-01 2.399
DMOCSA-1-2 1.20E—-01 2.648
DMOPSO-2 1.83E—-01 3.844
DMOCSA-1-5 2.21E-01 4.412
SPEA2 2.79E—-01 5.299
DMOBAT-1 2.87E—01 5.299
DMOCSA-2-2 2.95E-01 5.299
CHAC-1 3.12E-01 5.299
DMOFPA-3 3.47TE-01 5.299
DMOBAT-5 4.04E-01 5.657
DMOCSA-2-5 4.56E—-01 5.927
DMOCSA-1-3 4.67E—-01 5.927
DMOCSA-2-1 5.00E-01 5.927
DMOPSO-1 5.11E-01 5.927
DMOFPA-5 5.58E—01 5.927
DMOABC 5.82E—01 5.927
DMOBAT-2 6.07TE—01 5.927
DMOPSO-3 6.90E—01 5.927
NSGA-II 7.03E-01 5.927
CHAC-2 7.23E—-01 5.927
DMOFPA-1 7.43E—-01 5.927
DMOBAT-3 7.83E—01 5.927

DMOPSO-5 0.908 5.927
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Table C.115: Unadjusted and adjusted p-values obtained for Mitchell through the ap-
plication of Holm’s post hoc procedure, using the DMOBAT-3 as control
algorithm according to Irgp

Algorithm  Unadjusted p-value Adjusted p-value

Others <6.20E—04 <0.015
DMOFPA-2 3.72E-02 0.893
CHAC-1 8.49E—-02 1.953
SPEA2 1.06E—-01 2.302
DMOCSA-1-3 1.06E-01 2.302
DMOCSA-2-3 1.08E-01 2.302
DMOPSO-1 1.85E-01 3.516
DMOABC 2.20E-01 3.961
DMOBAT-1 2.42E-01 4.109
DMOCSA-1-5 3.06E-01 4.876
DMOCSA-2-1 3.26E-01 4.885
DMOPSO-2 3.28E—-01 4.885
CHAC-2 3.57E-01 4.885
DMOCSA-1-1 3.58E-01 4.885
DMOBAT-3 3.66E—-01 4.885
DMOCSA-1-2 3.89E—-01 4.885
DMOFPA-1 4.01E-01 4.885
DMOPSO-3 4.42E—-01 4.885
DMOFPA-5 4.92E-01 4.885
DMOPSO-5 5.99E-01 4.885
DMOCSA-2-2 6.09E—-01 4.885
DMOCSA-2-5 6.12E-01 4.885
DMOFPA-3 6.18E—01 4.885
NSGA-II 7.66E—-01 4.885

DMOBAT-2 0.891 4.885
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Table C.116: Unadjusted and adjusted p-values obtained for Mitchell through the ap-
plication of Holm’s post hoc procedure, using the DMOPSO-5 as control
algorithm according to I,
Algorithm  Unadjusted p-value Adjusted p-value

Others <4.40E—04 <0.012
DMOPSO-4 8.17TE—-03 0.212
BIANT-1 2.90E—02 0.725
DMOCSA-1-2 4.98E—-02 1.195
DMOFPA-2 6.75E—02 1.552
DMOCSA-2-3 1.14E—-01 2.511
CHAC-1 1.61E-01 3.377
SPEA2 1.77E-01 3.546
DMOCSA-2-2 1.92E-01 3.648
DMOFPA-5 2.04E-01 3.678
DMOPSO-2 2.24E-01 3.808
DMOBAT-5 2.56E—01 4.095
DMOCSA-1-5 3.03E-01 4.548
DMOFPA-3 4.14E-01 5.798
DMOCSA-1-3 4.61E-01 5.997
DMOCSA-2-1 4.83E—-01 5.997
DMOCSA-1-1 5.06E—-01 5.997
DMOBAT-1 5.23E—01 5.997
DMOFPA-1 5.64E—01 5.997
DMOABC 6.07E—01 5.997
DMOPSO-1 6.07E—01 5.997
DMOCSA-2-5 6.38E—-01 5.997
NSGA-II 6.51E—-01 5.997
CHAC-2 7.23E—-01 5.997
DMOBAT-2 7.56E—01 5.997
DMOBAT-3 8.17E—01 5.997

DMOPSO-3 0.859 5.997
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Table C.117: Unadjusted and adjusted p-values obtained for Mitchell through the ap-
plication of Holm’s post hoc procedure, using the DMOCSA-1-4 as control
algorithm according to Ia

Algorithm  Unadjusted p-value Adjusted p-value

Others <1.78E—-03 <0.050
DMOBAT-1 1.89E—-03 0.051
DMOCSA-2-3 2.07E-03 0.054
DMOCSA-2-1 2.26E—-03 0.057
DMOBAT-3 2.55E—-03 0.061
DMOBAT-2 3.03E-03 0.070
CHAC-2 3.40E-03 0.075
DMOPSO-5 3.92E-03 0.082
DMOFPA-3 4.03E-03 0.082
DMOCSA-2-2 4.76E—-03 0.091
DMOPSO-4 4.76E—03 0.091
DMOFPA-1 6.79E—-03 0.115
NSGA-II 7.55E—03 0.121
DMOBAT-5 7.75E—-03 0.121
DMOPSO-1 8.17E—03 0.121
DMOFPA-4 8.61E—03 0.121
MOACS-2 9.07TE—-03 0.121
SPEA2 1.01E-02 0.121
DMOABC 1.36E—02 0.136
DMOCSA-1-5 1.36E—02 0.136
DMOFPA-5 1.50E—02 0.136
DMOCSA-1-1 1.58E—-02 0.136
MOACS-1 1.58E—-02 0.136
DMOFPA-2 3.39E-02 0.169
DMOCSA-2-4 4.30E—-02 0.172
DMOCSA-1-3 7.88E—02 0.237
CHAC-1 1.02E-01 0.237
DMOBAT-4 0.241 0.241

Table C.118: Unadjusted and adjusted p-values obtained for Mitchell through the ap-
plication of Holm’s post hoc procedure, using the DMOFPA-4 as control
algorithm in accordance with the computation time

Algorithm  Unadjusted p-value  Adjusted p-value

Others <8.73E—-04 <0.008
DMOBAT-1 7.96E—03 0.064
DMOCSA-1-5 2.15E-02 0.151
DMOPSO-4 3.39E-02 0.203
DMOBAT-4 1.29E-01 0.645
DMOPSO-1 1.45E-01 0.645
DMOCSA-1-4 4.04E-01 1.212
DMOPSO-3 0.564 1.212

SPEA2 0.588 1.212
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C.4.9 Mukherje family problem

Table C.119: Average rankings returned by Friedman’s nonparametric test for the

Mukherje problems family according to all quality indicators

Ranking

Algorithm Igv  Iigp 1. IA Time
BIANT-1 2.07 2.53 31.93 5.80
BIANT-2 -% 2.27 31.93 5.20
CHAC-1 13.60 16.20 18.60 27.53 14.40
CHAC-2 11.87 20.40 18.30 24.80 17.70
DMOABC 21.67 12.07 20.10 7.13 6.70
DMOBAT-1  24.20 12.07 17.33 14.47 18.60
DMOBAT-2 20.13 15.67 22.93 16.07 17.80
DMOBAT-3 17.80 17.20 17.10 17.87 23.60
DMOBAT-4 18.73 15.07 20.23 11.07 19.90
DMOBAT-5 20.67 15.20 15.10 18.60 21.30
DMOCSA-1-1 18.20 1860 15.43 14.33 12.80
DMOCSA-1-2 19.60 16.53 16.80 16.33 12.90
DMOCSA-2-1 21.73 16.47 21.77 15.73 10.90
DMOCSA-2-2 18.53 17.27 17.43 13.60 14.00
DMOCSA-2-3 18.00 17.93 19.60 14.53 11.30
DMOCSA-2-4 20.00 16.00 21.07 19.67 22.10
DMOCSA-2-5 19.80 17.73 16.73 15.60 20.50
DMOCSA-1-3 23.07 13.47 19.67 13.93 18.60
DMOCSA-1-4 19.00 17.27 21.27 12.67 21.20
DMOCSA-1-5 18.60 1860 19.03 18.33 21.10
DMOFPA-1  21.20 16.80 16.20 16.07 9.90
DMOFPA-2 20.40 16.67 16.77 14.40 12.70
DMOFPA-3 2247 12.00 15.67 13.53 [ 25.70
DMOFPA-4  22.80 14.07 18.10 15.20 22.00
DMOFPA-5 2047 17.33 24.13 13.87 20.70
DMOPSO-1 23.90 11.30 19.23 16.70 18.20
DMOPSO-2 21.67 16.33 15.23 17.40 23.40
DMOPSO-3  21.13 13.53 15.90 17.67 20.60
DMOPSO-4  20.33 15.40 18.93 17.47 22.70
DMOPSO-5 19.63 14.03 19.33 17.57 16.30
MOACS-1 420 31.33 1.20 [32.20 | 7.90
MOACS-2 2.27 [32.60 | 4.00 22.80
NSGA-II 13.07 12.73 3340 5.60 23.80

SPEA?2 1247 1153 |SS60N 727 |BES0l

* Rankings obtained by considering the average performance of
each algorithm for the Mukherje problem instances

Table C.120: Unadjusted and adjusted p-values obtained for Mukherje through the ap-
plication of Holm’s post hoc procedure, using the BIANT-2 as control
algorithm according to Iy

Algorithm  Unadjusted p-value

Adjusted p-value

Others
MOACS-1
MOACS-2

BIANT-1

<5.32E—-03
4.98E-01
8.83E—-01
0.927

<0.021
1.493
1.767
1.767
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Table C.121: Unadjusted and adjusted p-values obtained for Mukherje through the ap-
plication of Holm’s post hoc procedure, using the BIANT-1 as control
algorithm according to Irgp

Algorithm  Unadjusted p-value  Adjusted p-value

Others <4.95E—-04 <0.002
MOACS-1 6.34E—-01 1.901
BIANT-2 8.83E-01 1.901
MOACS-2 0.898 1.901

Table C.122: Unadjusted and adjusted p-values obtained for Mukherje through the ap-
plication of Holm’s post hoc procedure, using the NSGA-II as control
algorithm according to I,

Algorithm  Unadjusted p-value  Adjusted p-value

Others <9.23E-03 <0.018
NSGA-II 0.956 0.956

Table C.123: Unadjusted and adjusted p-values obtained for Mukherje through the ap-
plication of Holm’s post hoc procedure, using the MOACS-2 as control
algorithm according to Ia

Algorithm  Unadjusted p-value  Adjusted p-value

Others <8.73E—05 <5.24E—-04
CHAC-2 1.20E—02 0.060
CHAC-1 7.84E—02 0.314

BIANT-2 5.82E-01 1.747
BIANT-1 5.82E—-01 1.747
MOACS-1 0.634 1.747

Table C.124: Unadjusted and adjusted p-values obtained for Mukherje through the ap-
plication of Holm’s post hoc procedure, using the SPEA2 as control al-
gorithm in accordance with the computation time

Algorithm  Unadjusted p-value Adjusted p-value

Others <3.56E—-03 <0.034
DMOBAT-2 6.85E—03 0.055
DMOFPA-1 7.43E-03 0.055
DMOPSO-2 1.20E—-02 0.072
DMOPSO-5 1.30E—-02 0.072
DMOBAT-5 1.99E-02 0.080

DMOCSA-1-3 2.30E—-02 0.080
NSGA-II 0.026 0.080

DMOBAT-1 0.090 0.090
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