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Abstract

The main goal of this work is to show the efficiency of the modified fully coupled constitutive equations in the framework of the micromorphic continua in getting really mesh independent solutions even with high values of ductile damage. The generalized framework of the micromorphic continua is presented in order to extract three balance equations from the generalized principle of virtual power after introducing new micromorphic degrees of freedom (dofs) and their first gradients: the classical equilibrium equation and the micromorphic balance equations concerning the damage and the isotropic hardening. In the framework of the thermodynamics of irreversible processes, the state relations and the evolution equations are derived from the state and dissipation potentials. These potentials are enriched by introducing the microcracks closure phenomenon as well as the damage effect on the isotropic hardening.

The strong forms defining the IBVP are used to derive their associated weak forms. The latter are discretized in time through an Euler scheme with a global dynamic explicit solver and an implicit iterative local integration scheme and in a space domain using finite elements. The discretized mass matrices and the internal forces are given for the dynamic explicit resolution scheme as well as the local resolution scheme for the integration of the overall constitutive equations on each Gauss point.

The associated numerical aspects are treated in the framework of ABAQUS®/Explicit thanks to the appropriate user's subroutine VUEL for the implementation of the new micromorphic 2D quadrilateral assumed strain and 2D axisymmetric finite elements.

The proposed numerical methodology is validated after performing a detailed parametric study of the complete micromorphic model in order to analyze the role and investigate the effect of each micromorphic material parameter.

A methodology for identifying and properly choosing the value of the micromorphic internal length related to the micromorphic damage by associating it to the width of the shear bands that appear during the localized necking stage is also introduced thanks to the experimental ESPI strain rate field measurements. Finally, applications are made to simulate tensile tests, bending and blanking operations on metallic components of 430 stainless steel, DP1000 and DP600 dual phase steels respectively in order to validate the proposed nonlocal micromorphic formulation and to show its efficiency in giving mesh independent solutions compared to the purely local model. 
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General Introduction

Nowadays, the fully local constitutive equations have been well established to model the induced material softening behavior due to thermal, damage and other microstructure-dependent phenomena. However, the solutions of the evolution problem based on these fully local constitutive equations are highly sensitive to the space and time discretization. The natural way to overcome this drawback is to account for an appropriate neighborhood of each material point by introducing some characteristic lengths, representative of the materials' microstructures, into constitutive equations.

The mechanics of generalized continua makes possible the straightforward introduction of these characteristic lengths, related to the microstructure, into the constitutive equations of the materials. The most recent and comprehensive reviews of these generalized continua and their use to solve various problems in mechanics of solids and fluids is found in the recent books by [START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF][START_REF] Eringen | Nonlocal continuum field theories[END_REF] and older works (Mindlin and Tiersten,1962;Toupin, 1962[START_REF] Toupin | Theories of elasticity with couple-stress[END_REF]Mindlin,1964[START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF]Eringen and Suhubi,1964;Green and Rivlin 1964a, 1964b, 1965;Green,1965;[START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]Eringen, 1965aEringen, , 1965b;;[START_REF] Bringen | Balance laws of micromorphic mechanics[END_REF]. The application of this micromorphic framework to model the materials' behavior in plasticity with damage can be found in [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF]Saanouni, 2012;[START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF][START_REF] Hamed | Formulations micromorphiques en élastoplasticité non-locale avec endommagement en transformations finies[END_REF]).

Various generalized continuum theories have been developed during the last decades in order to account for some effects of the characteristic lengths related to the material's microstructure and leading to a wide range of models [START_REF] Sidoroff | Microstructure and plasticity[END_REF][START_REF] Maugin | Nonlocal theories or gradient-type theories: a matter of convenience?[END_REF][START_REF] Aifantis | The physics of plastic deformation[END_REF][START_REF] Forest | Strain gradient cristal plasticity: thermomechanical formulations and applications[END_REF]Aifantis, 2003;Forest andSievert, 2003, 2006;[START_REF] Liebe | Theory and numerics of geometrically nonlinear gradient plasticity[END_REF][START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF][START_REF] Forest | Some links between Cosserat, strain gradient crystal plasticity and the statistical theory of dislocations[END_REF][START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF]Hirschberger and Steinmann, 2009; Forest and Aifantis, 2010 among many others). As summarized by Forest [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF][START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF], all these generalized continuum theories, based on the assumption of local action [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF], can be classified into two classes: (i) the higher grade continua and (ii) the higher order continua. Higher grade continua are those based on higher order spatial derivatives of the displacement field as originally proposed by [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF][START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF]). Higher order continua are based on the introduction of additional degrees of freedom as pioneered by the Cosserat brothers (Cosserat, 1896(Cosserat, , 1909[START_REF] Cosserat | Théorie des corps déformables[END_REF],and extensively developed by Eringen in 1960s [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF]Eringen, 1965aEringen, , 1965b[START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF]. A third class of generalized continuum theories is the so called strictly nonlocal continuum field theories, summarized in the recent book [START_REF] Eringen | Nonlocal continuum field theories[END_REF] where a unified foundation of the basic field equations is presented and various main contributing works in the field are referenced. The class of nonlocal theories, which are not based on the principle of the local action, are ''concerned with the physics of material bodies whose behavior at a material point is influenced by the state of all points of the body'' as stated by Eringen in his introduction [START_REF] Eringen | Nonlocal continuum field theories[END_REF].

Note that, the micromorphic theory initially proposed by [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF][START_REF] Mindlin | Micro-structure in linear elasticity[END_REF], introduces a general non compatible full field of micro-strains as an extra degree of freedom additional to the classical displacement field. It can be applied to any macroscopic quantity in order to introduce a characteristic length scale in the original classical continuum model in a systematic way, as presented by [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF]. From the comparison between nonlocal and micromorphic theories presented in [START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF] it can be concluded that when the micromorphic variable remains as close as possible to the plastic strain, the micromorphic model reduces to the largely used strain gradient theory.

Additionally to the generalized continuum theories (higher grade, higher order and nonlocal), other approximate regularization methods have been widely used. For the mechanics of materials exhibiting damage induced softening, a great number of papers have been published in this simplified framework with the main goal to regularize the associated IBVPs (Initial and Boundary Value Problems) by proposing the introduction of some ''localization limiters'' in the classical local constitutive equations, using either strain-gradients, damage-gradients or equivalently some averaging using specific integral equations (Pijaudier-Cabot and [START_REF] Pijaudier-Cabot | Nonlocal damage theory[END_REF][START_REF] Bazant | Nonlocal continuum damage, localization instability and convergence[END_REF][START_REF] Saanouni | On the creep crack-growth prediction by a nonlocal damage formulation[END_REF][START_REF] Lesne | Nonlocal damage model to describe creep fracture in the framework of damage mechanics[END_REF][START_REF] Tvergaard | Effects of non-local damage in porous plastic solids[END_REF][START_REF] Frémond | Damage, gradient of damage and principle of virtual power[END_REF][START_REF] Li | A mixed element method in gradient plasticity for pressure dependent materials and modelling of strain localization[END_REF][START_REF] Svedberg | A thermodynamically consistent theory of gradient-regularized plasticity coupled to damage[END_REF][START_REF] Borino | A thermodynamic approach to nonlocal plasticity and related variational approaches[END_REF] [START_REF] Sornin | About elastoplastic nonlocal formulations with damage gradients[END_REF]. It has been shown in recent works that the major part of the approximated models are in fact a particular case of the straightforward generalized continuum theories (Hirschberger and Steinmann, 2009;[START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF][START_REF] Forest | Some links between recent gradient thermo-elasto-plasticity theories and the thermomechanics of generalized continua[END_REF]Saanouni, 2012).

On the other hand, to account for the damage activation (under tension) and deactivation (under compression) various approaches have been proposed [START_REF] Marigo | Modelling of brittle and fatigue damage for elastic material by growth of microvoids[END_REF]Ju, 1989aJu, , 1989b;;[START_REF] Chaboche | Damage induced anisotropy: on the difficulties associated with the active/passive unilateral condition[END_REF][START_REF] Chaboche | Development of continuum damage mechanics for elastic solids sustaining anisotropic and unilateral damage[END_REF]Lemaitre, 1992 Ganczarski and Cegielski, 2010, ...). In order to introduce this aspect in the present model, the simplest idea consists of introducing the damage effect (through coupling) differently into the positive and negative parts of each tensorial state variable under concern. Such a kind of modelling poses the problem of convexity loss due to the discontinuity of the potential depending on positive and negative parts (Ladeveze, 1993; Lemaitre and Desmorat, 2005 ; Lemaitre et al, 2009; Ganczarski and Cegielski, 2010; [START_REF] Issa | Numerical prediction of thermomechanical field localization in orthogonal cutting[END_REF]Saanouni, 2012). To avoid these difficulties, in this work we will follow the same approach given in [START_REF] Issa | Numerical prediction of thermomechanical field localization in orthogonal cutting[END_REF][START_REF] Badreddine | Damage anisotropy and its effect on the plastic anisotropy evolution under finite strains[END_REF]. According to this approach, the decomposition into positive and negative parts is accounted only for the damage energy density release rate Y in order to have higher values in tension than in compression.

All these simplified regularization methods allow us to achieve a mesh independent solution. In the meanwhile, the macroscopic crack, defined as the location of the completely damaged elements, seems to be always depending on the mesh size limited in a single row of elements [START_REF] Sornin | Sur les formulations élastoplastiques non-locales en gradient dendommagement[END_REF][START_REF] Sornin | About elastoplastic nonlocal formulations with damage gradients[END_REF]. In fact, the Helmholtz equation that comes to regularize the damage is simply postulated in which the nonlocal damage simply replaces the local damage in the constitutive equations to reassure the coupling effects.

The present work is part of the ANR project "Micromorfing" which brings together three academic partners: the UTT (PI), the UTC and the Ecole des Mines de Paris (Mines ParisTech). The main objective of this project is to develop an 'advanced' modeling of multiphysic thermomechanical coupling in the framework of the generalized continuum mechanics (micromorphic theory) to introduce the concept of internal lengths that are representative of the materials microstructures while accounting for the various initial and induced anisotropies under large deformations. The targeted applications concern mainly the simulation of metal forming processes in order to improve them with respect to the ductile damage occurrence either to avoid the damage occurrence or in contrary to enhance the damage occurrence. In fact, optimizing various manufacturing processes in order to obtain metallic parts with controlled defects while reducing the overall cost in terms of raw materials, energy required for their manufacturing or their use in service and environmental impact, is now a vital necessity. The fracture of metallic components during their manufacture or during their industrial use is a consequence of the strong localization of thermomechanical fields (as strains, temperature or damage) inside more or less narrow zones. The strong interactions (or coupling) between the intensive thermomechanical fields (stress, strain, hardening, heat, damage …) inside these localization zones, result in some induced softening due to the damage effect and/or to the temperature increase. For quasi-static problems, the mechanics of materially simple (or Cauchy) continua has been shown to be no longer sufficient to model these highly localized phenomena in presence of the damage-induced softening. In the dynamic case including damage effect, the numerical solution of these problems leads to the localization bands whose width is very small and not related to the underlying microstructure.

Roughly speaking, the project "Micromorfing" is composed by four main scientific tasks. The first one concerns the theoretical aspects related to both (i) the derivation of the additional (micromorphic) balance equations and (ii) the derivation of the fully coupled constitutive equations. The second task is of experimental nature and aims to propose a "fine" full field based experimental method to measure the localization zones in order to identify the additional micromorphic material parameters directly related to the internal length scales linked to each targeted micromorphic phenomenon. The task three is related to the computational aspects in the framework of the FE method using fully adaptive numerical techniques (adaptive remeshing, adaptive time incrementation) together with the hyper-reduction of the model. Finally, the fourth task aims to apply the methodology to the numerical simulation of various metal forming processes. Note that the hyper-reduction of the models is investigated by CdM/MineParistech (Post doc), the adaptive remeshing is performed by the team of LRM at UTC (PhD and Post doc) while, the experimental method (a part of PhD work at LNIO/UTT) and the theoretical part as well as its implementation into ABAQUS®/Explicit FE software (the present PhD work at LASMIS/UTT) was performed by the two research teams at UTT.

In the present PhD thesis we present our works in the framework of the generalized continua in order to reformulate the IBVP for elastoplastic solids undergoing induced material softening due to the presence of the ductile damage. For this reason and in order to develop our model, we have chosen a formulation based on the micromorphic theory which belongs to the category of the higher order continua.

In the first chapter we focus on the presentation of a macroscopic formulation in time independent plasticity with a strong coupling with the ductile damage in the mechanical framework of the generalized continua but under isothermal conditions. The general framework of the generalized continua is then presented in the framework of the micromorphic theory. In this framework we deduce the micromorphic balance equations from the generalized principle of virtual power with additional micromorphic degrees of freedom (dofs). Then, the use of the thermodynamics of irreversible processes with an enhanced space of state variables, allows us to formulate the nonlocal constitutive equations with both micromorphic isotropic ductile damage and micromorphic isotropic hardening. The elastoplastic damage model in the framework of the materially simple continua is given as a special case derived from the nonlocal model by deactivating the micromorphic effects. We also dedicate a paragraph for the notion of the micro-cracks closure since some properties and the behavior of a representative volume element are affected by the presence of induced softening. We conclude with a paragraph concerning the extension of the model to finite plastic strains and a discussion on the objectivity requirement.

The second chapter is dedicated to the numerical aspects related to the solution of the IBVP. The weak forms associated to the problem are formulated starting from the complete set of the balance equations. A nonlinear algebraic system is then obtained starting from the displacement-based finite element space discretization of the three weak forms. The resolution of this system by a dynamic explicit scheme and the local integration of the constitutive equations at each Gauss point are extensively discussed. A paragraph concerning the stability conditions for the micromorphic damage problem is added, as well as the formulation of two micromorphic 2D elements. We close this chapter with a paragraph containing a brief representation of the 2D adaptive remeshing methodology to be applied on the last chapter of the thesis.

In the third chapter a relatively exhaustive parametric study of the proposed micromorphic model is conducted. We present an extended and relatively complete parametric study in order to investigate the effect and the influence of each micromorphic parameter as well as their role to the IBVP solution. The study is made for a model containing a) only micromorphic damage, b) only micromorphic isotropic hardening and c) a complete model containing both. We close this chapter by clarifying the conditions that have to be respected before choosing the appropriate values of these micromorphic parameters in order to make sure that the solution is physically acceptable and independent from the mesh size. This parametric study of the micromorphic model was performed and the results were carefully analyzed to well understand the predictive possibilities of the proposed micromorphic fully coupled constitutive equations.

In the fourth chapter we will only focus on the parametric study concerning the elasticity, plasticity and local damage parameters and we will propose a methodology for identifying and properly choosing the values of the micromorphic internal length related to the micromorphic damage for a current material by associating it with the width of the shear bands that appear during the localized necking stage of a simple uniaxial tensile test.

Finally, the fifth chapter is dedicated to some applications including a bending and a blanking test, showing the efficiency and the predictive capabilities of a complete micromorphic model.

The manuscript is afterwards complete by general conclusions as well as the main perspectives of our work.

Chapter 1

Formulation of an elastoplastic damaged model in the framework of the generalized continua.

The micromorphic theory.

Introduction

This chapter is dedicated to the presentation of the formulation of an elastoplastic model with damage in the framework of the generalized continua based on the micromorphic theory. We start by presenting the general framework of the mechanics of generalized continua by classifying them into 'higher grade' and 'higher order'. The generalized framework of the micromorphic continua is briefly presented in order to extract additional balance equations: the classical equilibrium equation and the micromorphic balance equations related to the additional micromorphic phenomena under concern. In the framework of the thermodynamics of irreversible processes with state variables, the state relations and the evolution relations are derived from the state and dissipation potentials. These potentials are enriched by introducing the micro-cracks closure phenomenon as well as different damage effect on the isotropic hardening. We close this chapter by one paragraph concerning the extension to finite strains under the formulation of a rotated frame.

Mechanics of the generalized continua: the micromorphic theory

The Mechanics of Materially Simple Continua (MMSC) suppose that the mechanical state at any material point of area  is completely determined by the history of state variables in an arbitrarily small neighborhood surrounding this point [START_REF] Truesdell | The Classical Field Theories[END_REF]. In this context, the knowledge of the first transformation gradient F (or first displacement gradient) is sufficient in order to determine the mechanical state (kinematic, behavior) of this point and the continuum is called materially simple or local [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF].

However, in several situations, the displacement vector and its first gradient are not sufficient to define the mechanical state in a material point. In such cases, it is necessary to add other kinematic variables or dofs (degrees of freedom) to enrich the kinematical description of the continuum, as well as their gradients of first, second or higher order, in the principle of virtual power and as new arguments in the state and dissipation potentials. We call this the mechanics of generalized continua (MGC) or materially non-simple continua [START_REF] Truesdell | The non-linear field theories of mechanics[END_REF]. These theories all seek to define the mechanical state at a material point in terms of a more or less vast domain surrounding the point, or even of the whole domain. Finally, this introduces a kind of scale effect in terms of the morphology of the spatial distribution of the different material phases inside the representative volume element (RVE) and of the size of the various constituent elements, or the effects of the gradients of physical fields. Different variations of these theories can be found in the literature and reference books such as those of the Cosserat brothers, whose book was first published in 1909 (Cosserat, 1909) and republished recently in 2009 [START_REF] Cosserat | Théorie des corps déformables[END_REF]. Also among these, [START_REF] Kröner | Mechanics of generalized continua[END_REF]Stojanovic, 1970;Brulin and Hsieh, 1982;[START_REF] Mülhaus | Continuum Models for Materials with Microstructure[END_REF][START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF][START_REF] Eringen | Microcontinuum Field Theories. II: Fluent Media[END_REF][START_REF] Eringen | Nonlocal continuum field theories[END_REF]Truesdell and[START_REF] Truesdell | The non-linear field theories of mechanics[END_REF][START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF].

It is often proposed to classify MMCG theories into three distinct theories [START_REF] Forest | Elastoviscoplastic constitutive frameworks for generalized continua[END_REF]Saanouni, 2012;Saanouni and Hamed, 2012;[START_REF] Labergère | Labergère, A Rassineux, K Saanouni. 2D adaptive mesh methodology for simulation of metal forming processes with damage[END_REF] as summarized in Fig. 1.1:

Higher grade continua, based on the introduction of higher order of the spatial derivatives of the displacement vector u (in addition to the first displacement vector, which defines the strain tensor) in the principle of virtual power, as initially proposed by (Toupin, 1962;[START_REF] Toupin | Theories of elasticity with couple-stress[END_REF][START_REF] Mindlin | On first strain-gradient theories in linear elasticity[END_REF].

Higher order continua, consisting of the use of additional degrees of freedom (dof) introduced in the principle of virtual power, leading to additional balance equations with their appropriate boundary conditions to be added to the local classical equilibrium equations. This assumption was initially proposed by the Cosserat brothers (Cosserat, 1909) and subsequently applied by [START_REF] Eringen | Nonlinear theory of simple micro-elastic solids-I[END_REF], [START_REF] Eringen | Balance laws of micromorphic mechanics[END_REF]. The additional dofs are new kinematic variables along with their higher order gradients. The simplest of these theories is limited to the first gradients of these new kinematic variables, as with MMSC, which utilizes the displacement and its first gradient. Moreover, by using the thermodynamics of irreversible processes in a way identical to the one used for MMSC, we obtain generalized constitutive equations as functions of the internal lengths, characteristic of the continuum's microstructure. With regard to higher order generalized continua, Forest [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF] shows that the main equations suggested in the literature, including the Cosserat brothers' theory, can be obtained as special cases of a micromorphic theory first introduced by Eringen [START_REF] Eringen | Microcontinuum field theories: I. Foundations and Solids[END_REF], [START_REF] Eringen | Nonlocal continuum field theories[END_REF]. Second gradient [START_REF] Mindlin | Second gradient of strain and surface-tension in linear elasticity[END_REF] Gradient of internal variables (Maugin 1990) Fully intergral formulation (Eringen 1972) Figure 1.1: Classification of the nonlocal theories, found in the recent work of Eringen [START_REF] Eringen | Nonlocal continuum field theories[END_REF] All of the MGC theories presented above are based on the principle of local action. So by excluding the strictly nonlocal continua based on integral formulations, in which the localization of the integral equations to a given material point causes the occurrence of "residual" localization terms with appropriate (complex) discontinuity conditions [START_REF] Eringen | Nonlocal continuum field theories[END_REF], then the MGC theories are formally grouped into the first two relatively distinct families from a conceptual perspective [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF].

Regarding the theoretical framework which we have chosen to build our nonlocal formulation, we will start by giving the principal and the major steps. We have developed a formulation of an elastoplastic damaged model in the context of generalized continua in the framework of the micromorphic theory. The kinematics of a micromorphic continuum rely on the displacement u and its first gradient u  as well as a certain number of mciromorphic variables noted as n z and their first gradients n z  . These additional dofs are chosen in order to represent the micromorphic phenomena involved in our model.

We consider a materially simple continuum whose behavior is described by local state variables. By following the approach recommended by Samuel Forest [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF], the development of a micromorphic model is described by the following steps:

 From the strain-like state variables, we choose one (or more) scalar state variable(s) referred as z , which carries the targeted gradient effect. We then associate to this state variable a micromorphic (or nonlocal) state variable noted as z , which is of the same nature as the "local" state variable z . Consequently, the degrees of freedom are enriched by the insertion of the micromorphic variable z and its first gradient z  additionally to the displacement and its first gradient.

 Rewrite the principle of virtual power by taking into consideration the micromorphic contributions.

 By applying the generalized principle of virtual power, we obtain the differential balance equations along with their boundary conditions. Thus, one additional balance equation corresponds to each micromorphic phenomenon.

 Expand the space of the state variables by introducing the micromorphic variables and their first gradients.

 Extend and apply the principle of energy conservation (1 st principle of thermodynamics) as well as the entropy inequality (2 nd principle of thermodynamics) by using the internal state variables, including the contribution of the micromorphic variables z and z  .

 Use of the generalized Clausius-Duhem inequality in order to obtain: o generalized state relations from a state potential, and o generalized evolution equations. The choice of the state and dissipation potentials is made in a way similar to the one of the classical local theory in order to extract all the constitutive equations of the dissipative phenomena.

This approach is particularly suited to describe the behavior of nonlinear solids with various dissipative phenomena, including the role of state variable gradients, as we will see in the following. In this section, we will use this approach to extend the thermodynamic framework in order to formulate the overall equations (conservation laws and constitutive equations) in the framework of a micromorphic continuum.

Theoretical modeling of the nonlocal micromorphic damage model

In metal forming through large inelastic strains, inelastic flow localization phenomena in specific areas, known as intense shear bands, are very often observed. These shear bands are generally the result of softening behavior provoked by microscopic physical phenomena. Among these phenomena, which are responsible for the formation of intense shear bands in metals there is softening, whether thermal or caused by any other physical phenomenon, in particular ductile damage. Generally, in these intense (visco)plastic shear bands, ductile fracture develops following from the three stages of nucleation, growth, and coalescence of microvoids at the source of the formation of macroscopic cracks. Thus, constitutive equations which take account of thermal and damage effects (or coupling) are characterized by a softening or negative hardening behavior, even if the material initially exhibits positive hardening, as schematized in Fig. 1.2. This is so for all time-independent models with hardening and ductile damage which are characterized by a relationship between stress and strain rates involving the continuous tangent operators. However, the introduction of viscosity (viscoplasticity models) does not remove all the "locks" resulting from the study of the mathematical properties and the local nature of these tangent operators especially if the softening is mainly due to the disappearance of all or of a part of the components of the tangent stiffness matrix of the structure as a result of the coupling with damage.

These theoretical difficulties are obstacles to the validity of the local models formulated in the framework of the mechanics of materially simple continua (MMSC). In order to introduce the induced softening phenomena, it is compulsory to reformulate the constitutive equations in the framework of the mechanics of generalized continua (MGC). In fact, the MGC enable the natural introduction of various internal lengths characteristic of the material's microstructure.

Despite the fact that the micromorphic effects can be linked to various phenomena (Saanouni 2012, Saanouni and[START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF], in this thesis we limit ourselves to the micromorphic effects linked to the isotropic hardening and the isotropic ductile damage under isothermal conditions. For this, we place ourselves within the context of the micromorphic theory presented in Paragraph 1.2. We will reconsider the elastoplastic behavior with isotropic ductile damage by limiting ourselves to purely mechanical aspects of an isothermal elastoplastic damageable solid totally isotropic without considering the quasi-unilateral effect as well as initial and induced anisotropies. However, the consideration of these phenomena as an aspect of a micromorphic formulation does not pose any obstacles [START_REF] Liu | Advanced modelling for sheet metal forming under high temperature[END_REF].

In addition to the four classical pairs of state variables defined as ( , ) 

The Generalized principle of virtual power

The virtual power of internal forces int P  of the classical local continuum is extended to the generalized micromorphic continuum level by using the two additional micromorphic degrees of freedom r and d associated to the micromorphic isotropic hardening and the micromorphic isotropic damage respectively. Starting from the generalized formulation given in (Saanouni, 2012;[START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF] and keeping the damage and isotropic hardening as the targeted micromorphic phenomena, we conclude to the following expression:

  * * * * * int : P u Yd Rr Y d R r dV               (1.1)
where,  indicates the Cauchy stress tensor, Y and R are the stress-like variables associated to d and r , while Y and R are the stress-like variables linked to their first gradients.

Similarly, the virtual power of external forces (body forces and contact forces via the boundaries of the solid)

ext P  are enriched by:             * * * * * * * * u d gd r gr ext u d r P f u f d f d f r f r dV F u F d F r dS                              (1.2)
where u f is the classical body force while d f , gd f , r f and gr f are the micromorphic body forces associated to the micromorphic variables and their respective first gradients. Also u F is the classical external force while d F and r F are the micromorphic external forces applied on the boundary  . Finally, the virtual power of inertia forces can be expressed as:

  * * * ar d V P u u d d r r dV            (1.3)
where u is the acceleration, d and r denote the acceleration associated to the micromorphic damage and the micromorphic isotropic hardening respectively. Finally, d  and r  are the scale factors which map the local material density to the micromorphic level [START_REF] Nedjar | Elastoplastic-damage modelling including the gradient of damage: formulation and computational aspects[END_REF]. If these two parameters are zero, then the micromorphic acceleration quantities can be ignored.

The generalized virtual power enhanced with the micromorphic damage takes the following form for any given kinematically admissible fields:

* * * int , ,
.

.

ext a P P P u d r K A       (1.4)
In the meanwhile, it is also worth presenting how this model can 'restore' its classical local behavior if we neglect all the micromorphic effects. We will reconsider the theoretical formulations in order to obtain the original classical local damage model as well as to compare and distinguish it from the above extended micromorphic (nonlocal) model.

By neglecting the additional micromorphic dofs related to the micromorphic damage d and the micromorphic isotropic hardening r , the virtual power of the internal forces writes under the classical form:

  * int : P dV       (1.5)
Accordingly, the virtual power of the external forces will retrieve its classical form, by dropping the generalized body and external forces associated with micromorphic fields:

    ** uu ext P f u dV F u dS        (1.6)
Finally, the virtual power of inertia reduces to:

  * a V P u u dV    (1.7)

Balance equations

The application of the virtual power thus leads to three partial differential equations, with their associated boundary conditions. By substituting Eq.(1.1) to Eq.(1.3) into the generalized form of virtual power Eq.(1.4) and using of the divergence theorem to transform the volume integration, leads to the local (well known) balance of momentum while the other two express the micromorphic forces equilibrium equations:

            () () () u u r gr r gr r d gd d gd d f u in a n F on R R f f r in b R f n F on Y Y f f d in c Y f n F on                                                            (1.8)
We will return to these two partial differential equations later in order to express them in the strain space. Note that each micromorphic phenomenon introduced into the principle of virtual power gives rise to an additional differential problem of the type given by Eq.(1.8b) or Eq.(1.8c). The same approach can therefore be followed to obtain other differential equations governing other micromorphic phenomena, such as, kinematic hardening and plastic strain. Let us note here that if all the micromorphic variables are canceled, the equations Eq.(1.8b) and Eq.(1.8c) disappear and we retrieve the local case characterized by the equilibrium of a materially simple continuum Eq.(18.a).

By following exactly the same procedure as for the micromorphic model, we obtain the classical equilibrium equation associated to the displacement, as the sole degree of freedom for the classical local case:

u u f u in n F on                 
(1.9)

Formulation of the micromorphic damage model

In the terms of the local state in its current configuration and under isothermal conditions, a deformable solid is defined by:  The displacement vector u as the sole degree of freedom; As a matter of fact, the extension of this materially simple continuum to a micromorphic one (or a generalized continuum) depends on selecting some additional pairs of state variables that will determine the targeted micromorphic effects. Let us suppose that a pair of scalar variables ( , ) zZ is responsible for a specific micromorphic effect. Consequently, we have introduced one pair of micromorphic (scalar) variables called ( , ) zZ and the micromorphic continuum will be defined by:  The following dofs:

u and z to be introduced in the virtual power;  The following pairs of state variables:  We need a state potential expressed in the strain space by the Helmholtz free energy:

( , , , , , ) e 
d r z z     ;  A dual dissipation potential in the stress space: * ( , , , , , ) Y R X Z Z  .
For this type of micromorphic continuum, we can rewrite the energy balance as well as the entropy inequality and deduce from these the Clausius-Duhem inequality for micromorphic continuum in a manner similar to local theory. Assuming, as a first approximation, that the "entropy production" vector remains defined for micromorphic continuum, as in the MMSC theory, by the ratio of the heat-flow vector to absolute zero, the only difference comes from the internal forces power. The differentiation of the state potential with respect to all local and micromorphic state variables with the additional decomposition of the Eulerian strain rate leads to rewriting the inequality and deducing the expressions of the local stress-like variables as well as the micromorphic ones. The remaining residual term of the inequality defines the classical local volume dissipation. It is interesting to note that this dissipation is perfectly local and has the same form as the one resulting for the materially simple continua theory. This comes out from the hypothesis that the micromorphic variables do not dissipate due to the lack of any relative experimental information on the evolution of these variables. However, an additional decomposition of the micromorphic rate variables in reversible and irreversible parts allows overcoming this drawback under the current situation. This procedure of the theory of generalized continuum mechanics will be used throughout this section in order to extend the constitutive equations to account for the damage induced softening of the micromorphic continua.

Choice of the state variables

Based on the local state method [START_REF] Germain | Cours de mécanique des milieux continus[END_REF] we use state variables for which the values at each instant t and in each material point determine the material response. This approach is quite suitable for the formulation of the constitutive equations for a deformable solid with several dissipative phenomena. Thus, each dissipative phenomenon has its own state variable the evolution of which is governed by its own evolution equation. In this thesis, we will limit ourselves to the formulation of constitutive equations for deformable solids, using exclusively the local state method, which is the method best adapted to the modeling of deformable solids in large plasticity accounting for many dissipative phenomena.

By restricting ourselves to exclusively isothermal conditions and with the provision of virtual metal forming applications, for an elastoplastic deformable solid, we assume the following hypotheses:

-H1: The reversible (elastic) strains remain small compared to the irreversible (plastic or viscoplastic) inelastic strains. In this case, we can consider rigorously the additive decomposition of the total deformation rates.

-H2: Volume variations generated by inelastic (or irreversible) strains are negligible. This hypothesis is acceptable as long as the microvoids remain small until the final rupture of the RVE.

-H3: The updated Lagrangian formulation is used for the development of the behavior model. We consider that the two successive configurations are very close and we make the hypothesis of the total incompressibility despite the presence of damage. These simplifying hypotheses allow us to consider that the density remains constant 0 ()   and as a result, the Kirchhoff and the Cauchy stress tensors are almost identical. Note that taking into account the compressibility induced by the damage does not pose any particular difficulties [START_REF] Chaboche | A CDM approach of ductile damage with plastic compressibility[END_REF]Saanouni, 2012).

-H4: Two types of non-linear hardenings are taken into account:

 the isotropic hardening that controls the variation in the radius of the elastic domain,  the kinematic hardening that governs the translation of the elastic domain in the loading space.

-H5: The damage is of ductile nature. To simplify the coupling with damage, we consider that the ductile damage is developed under the form of small isotropic spherical cavities. The damage effect at the level of an RVE will then be introduced by means of a scalar variable 01 c dd    such that if 0 d  the RVE will be considered as safe or undamaged while if d reaches a critical limit c d , the RVE is supposed fully damaged.

Under these hypotheses, we have associated a pair of state variables to each physical phenomenon. Each pair consists of a strain-like variable together with its dual force or stress-like variable as given in These local and micromorphic (or nonlocal) state variables will be used inside the state potential in order to define the state relations as well as in the dissipation potential for obtaining the evolution equations of each physical local or micromorphic phenomenon.

Y Micromorphic isotropic hardening r r     R R      Micromorphic isotropic damage d d       Y Y     

Definition of the total energy equivalence hypothesis and effective state variables

In order to formulate a behavior model in the context of the thermodynamics of irreversible processes by following the local state method, we should ensure the continuity property of the concerned media. However, the presence of the damage, which can be represented by a more or less random distribution of microvoids, introduces discontinuities in the RVE. Extensive discussions in the literature propose to define an equivalent homogeneous "safe" RVE, without damage by a homogeneous transformation adapted of the damaged RVE. This fictive transformation leads to the definition of effective variables as a function of the actual state variables. Throughout all this work, the hypothesis of total energy equivalence was chosen to construct the set of effective state variables [START_REF] Saanouni | On the Anelastic Flow with Damage[END_REF](Saanouni, , 2012)).

More precisely, at any time (t), an RVE in its real deformed and damaged configuration, and where the thermomechanical state, at this time, is defined by the set of pairs of state variables from Table 1.1; we associate an equivalent undamaged fictive configuration, the state of which is described by the effective state variables listed in Table 1.2, in such a manner that the total energy defined over both real and fictive configurations is the same. This hypothesis is indeed a generalization of the elastic energy equivalence hypothesis initially proposed by [START_REF] Cordebois | Endommagement anisotrope en élasticité et plasticité[END_REF].

We consider a damaged RVE whose mechanical state is described by the couples of the state variables: ( , ),( , ),( , ) e X r R    and ( , ) dY in the rotated configuration. We constract an equivalent homogeneous undamaged RVE the mechanical state of which is described by the effective variables:

      , , , , , e X r R 
   so that the total energy defined in the two configurations is the same.

In terms of the Helmhold's free energy, we assume that the total energy W is decomposed in the elastic energy e W and the inelastic energies r W and W  associated to the isotropic and kinematic hardenings respectively. 

ee ela kin iso W W X X W Rr Rr                  (1.10) 11 22 11 .. 22 miso g miso W Rr Rr W R r R r             (1.
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.2: Definition of the total energy equivalence hypothesis in strain space

In the isotropic damage case, the general relations between the state and the effective variables can be written under the following form: In order to justify our choice, we consider the following hypotheses:

                  , , , ee ela ela kin kin iso iso gd gd X X g d gd R R r g d r gd                    (1.12)         , miso miso miso miso R R r g d r gd R R r g d r gd             (1.
 The damage effect on the elastic behavior and the kinematic hardening are

    1 el kin g d g d d 
  in order to simplify our numerical developments.

 The coupling function associated to the isotropic hardening is treated differently :

    iso el g d g d  
The coupling function associated to the micromorphic isotropic hardening is treated with the approximately the same function of local isotropic hardening :

For defining the damage-isotropic hardening coupling, we choose:

  1 iso g d d  
. The parameter  is the material parameter governing the effect of the damage on the isotropic hardening to be defined for each material type. The micromorphic isotropic hardening damage function is 

  1 miso r g d d    .
  :0 D Yd Rr Y d R r             (1.14)
where,  is the specific Helmholtz free energy for a micromorphic solid to be chosen as the state potential. As in local continuum mechanics, the state potential is assumed to be a closed convex function of the overall classical local strain-like state variables (elastic strain e  , kinematic hardening strain  , isotropic hardening strain r and the local damage d ) as well as the micromorphic variables variables d and r along with their respective first gradients d  and r  . Accordingly, the time derivative of the specific Helmholtz free energy

  , , , , , , , e 
d r d r d r

  

 is given by:

:: e e d r d r d r d r r r dd                                         (1.15)
By substituting Eq.(1.15) into Eq.(1.14) and assuming that the total strain rate tensor decomposes according to the additive decomposition of total strain rate eJ p DD   ( eJ  being the Jaumann derivative of the small elastic strain tensor) and under the assumption that the micromorphic variables do not dissipate:

: : : 0 e e p Y d R r r d Y d R r r d D d r dr                                                                                   (1.16)
For the sake of simplicity, we assume that the five terms

e          , Y d         , R r         , Y d         and R r        
do not depend on their rates respectively, as well as that the micromorphic variables do not dissipate. Consequently, by following the standard arguments, we retrieve the following state relations together with the local residual dissipations:

The classical local state relations:

( ), ( ), ( ), ( ) e a X b R c Y d rd                        (1.17)
The micromorphic state relations:

, ( ) ( ) ( ), ( ) 
Y a R b r d Y c R d r d             (1.18)
The classical local intrinsic dissipation (note that the micromorphic damage is assumed with no intrinsic dissipation (Saanouni, 2012;[START_REF] Saanouni | Micromorphic approach for finite gradient-elastoplasticity fully coupled with ductile damage: Formulation and computational aspects[END_REF])):

: : 0 in p D X Rr Yd        (1.19)
The stress-like variables ,Y , R , X are given by the state relations (Eq.(1.17)). Their associated rates of strain-like variables: p D , d , r , have to be deduced from an appropriate local yield function together with a local dissipation potential. These are defined in the effective rotated configuration as closed and convex scalar-valued functions of the associated stress-like variables in the effective stress space according to the classical thermodynamics of irreversible processes. We assume here that the plastic flow governs all the macroscopic dissipative phenomena, so a single surface formulation is used with a unified yield function

  , , ; f R X d  and a plastic potential   , , , ; F R X Y d 
from which all the local rates of the strain-like variables are deduced based on the generalized normality rule (see Saanouni, 2012 among others):

( ), ( ), ( ), ( ) p 
F f F F F D a r b c d d R X Y                         (1.20)
where the plastic multiplier  is a positive Lagrange multiplier derived from the consistency condition with respect to the yield function. 

  

 to be our state potential written in the fictive rotated configuration as a closed convex function of all local and micromorphic arguments defined in the effective strain space. On the other hand, the micromorphic state variables are assumed to contribute to the Helmholtz free energy in terms of the relative difference with respect to the local variables of the same nature. This introduces a coupling between macro and micromorphic variables [START_REF] Forest | Micromorphic Approach for Gradient Elasticity, Viscoplasticity, and Damage[END_REF].

Under these assumptions, and with the ability divide the generalized potential into two terms by an additive decomposition, the Helmholtz free energy can be written under the following form:

    , , , , 
, ;
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where, H are the micromorphic moduli related to the first gradients of the isotropic hardening and damage respectively (all assumed to be positive or zero) while the parameter  is the parameter defining the coupling between the damage and the isotropic hardening.

Using the local and micromorphic state relations in Eq.(1.17) and Eq.(1.18) with the state potential (1.21), we obtain the local the stress-like variables that are associated with all strain-like variables:

-Cauchy stress tensor:

        1 : 1 1 2
g e e e ee e d d tr

                  (1.24)
-Kinematic hardening stress:

  2 1 3 g X d C         (1.25)
-Isotropic hardening stress:

(1 ) (1 ) 1 1 g r R d Qr Q d r d d r r                   (1.26)
-Damage stress:
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(1.28) -Stress-like variables of micromorphic damage and its first gradient:

  () () g Y H d d a d Y H d b d                (1.29)
-Stress-like variables of micromorphic isotropic hardening and its first gradient:

    1 1 1 ( ) (1 ) ( ) ( ) g rr g g r R Q d d r d r a r R d Q r b r                          (1.30)
At this point, it is interesting to note that the state relations Eq.(1.24)-Eq.(1.30) can be decomposed into classical local and the extended nonlocal parts with the help of the micromorphic state relations as given in Eq. (1.33) and Eq(1.34) below:

  1: e loc d        (1.31)   2 1 3 loc X X d C    (1.32)
  
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It is clear that the Cauchy stress Eq.(1.31) and the kinematic hardening stress tensor Eq.(1.32) remain under a purely local form while the other two thermodynamic forces associated to damage Eq.(1.33) and the isotropic hardening Eq.(1.34) are the sums of the classical local (indicated as loc) and and the nonlocal micromorphic contributions (indicated as nloc) resulting from the micromorphic state variables. The micromorphic isotropic hardening R in Eq.(1.30a) affects the stress force R Eq.(1.26) and equally the thermodynamic damage force Y Eq. (1.27) as shown clearly in Eq.(1.28c).

Local state potential and state relations

In the absence of any micromorphic fields, the differential form of the first law of thermodynamics transforms to the traditional one:

  :0 e       (1.35)
Consequently, the Helmholtz free energy   Using the second law of thermodynamics and the above equations, the following classical state relations are obtained:

() ( ) ( ) ( ) e a Y b R c X d dr                        (1.36)
along with the local dissipations: 
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-Damage stress force:

12 1 1 1 : : : : 2 3 2 ee Y C d Qr d                  (1.40)
-Isotropic hardening stress force:

  1 R Qr d Qr r          (1.41) 
-Kinematic hardening stress force:
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1.4.4 The effect of the micro-cracks closure

Another phenomenon that we have introduced is the notion of microcracks closure. When an RVE undergoes stress which leads to the formation of microdefects in tension, the physical properties and the behavior of this RVE are affected by the presence of induced softening. However, during the unloading and progressive transformation into the compressive phase, the micro-cracks close progressively until complete closure if the compression force is sufficient. Two main consequences arise during the compressive phase of the loading path: a) The damage rate will be much lower, if not zero, when the previous microcracks tend to close in compression, b) The physical properties of the damage material and mainly the moduli of elasticity and hardening, tend to return to their initial values before the damage occurrence when the micro-cracks are fully closed in compression.

The point (b) is not an easy task because it introduces a loss of continuity and/or convexity of the state and dissipation potentials. This aspect will not be considered in this work and the physical properties of the damaged material will be affected irreversibly by the damage even when all the microcracks are closed in compression. However, the fact that the damage evolves more slowly (or not at all) in compression than in tension will be considered following the simple approach presented in (Ladeveze, 1984; [START_REF] Lemaitre | Mécanique des matériaux solides[END_REF][START_REF] Desmorat | Modeling microdefects closure effect with isotropic/anisotropic damage[END_REF][START_REF] Pirondi | Simulation of failure under cyclic plastic loading by damage models[END_REF]Saanouni, 2012). This simple approach, useful only with the isotropic damage, will be summarized here after. It preserves the continuity and the convexity of the state and dissipation potentials while giving a different damage rate under positive (tension) and negative (compression) loading paths.

For the isotropic damage case, we could deal with this effect by decomposing the effective state variables into positive and negative parts [START_REF] Challamel | Strain-based anisotropic damage modelling and unilateral effects[END_REF][START_REF] Challamel | A variationally-based nonlocal damage model to predict diffuse microcracking evolution[END_REF][START_REF] Murakami | Constitutive and damage evolution equations of elastic-brittle materials based on irreversible thermodynamics[END_REF] with the help of the spectral decomposition of any symmetric second-rank tensor T in the form: 

T T T T d T T T dT d T T T dT              (1.44)
Then the following derivatives of the positive and negative parts of the tensor T can easily be obtained:

    0 1 00 0 1 00 :1 0 1 00 :1 0 1 00 ij ik jl i i kl ij ik jl i i kl ij ij ik jl ij i kl i ij ij ik jl ij i kl i T T if T if T TT T T if T if T TT T T if T TT if T T T if T TT if T                                                                   (1.45)
We wish to consider the microcracks closure effect only on the damage evolution. More complex formulations can be found in literature [START_REF] Issa | Modélisation et simulation numérique des procédés de fabrication sous conditions extrêmes[END_REF][START_REF] Issa | Numerical prediction of thermomechanical field localization in orthogonal cutting[END_REF]Saanouni, 2012;[START_REF] Yue | Ductile damage prediction in sheet metal forming processes[END_REF]. To achieve this, we do not change the state relations but we introduce a new energy density release rate noted as: [START_REF] Krajcinovic | Continus damage mechanics revisited: Basic concepts and definitions[END_REF], leading to a lower damage growth under the compressive phase of the loading path, with two extreme cases: (i) 1  makes no difference between the damage growth under positive and negative loading paths and, (ii) 0  for which the damage growth takes place only under the positive part of the applied loading path.

( ( )) ( ( 

Intrinsic dissipation analysis for time independent plasticity

In section 1.4.3.2, we introduced the form of the state potential in the strain space, from which we have deduced the state relations, based on the Clausius-Duhem inequality. We now need to analyze the different dissipative phenomena, in order to define their evolution equations with the help of an appropriate yield function and a dissipation potential by following the local state method. We limit ourselves to the case where the micromorphic variables do not dissipate, which leads to the classical local dissipation defined in Eq. (1.19).

Since the force-like variables   , , , RXY  are given by the state relations Eq.(1.24)-Eq. (1.27) above, the associated flux variables ( p D , r , , d ) will result from the application of the generalized normality rule and the maximum volumic dissipation analysis. Of course, the micromorphic strain-like variables ( , ) rd are nothing but the micromorphic dofs, solutions of the two partial differential equations Eq.(1.8b) and Eq.(1.8c). By focusing our attention on the isothermal case for the isotropic elastoplastic and incompressible solids, we limit ourselves to the single yield surface for both plasticity and damage (choice of two yield surfaces can be found in Saanouni, 2012).

Plastic potential and evolution equations

To account for the damage effects, and limiting ourselves to the isotropic plastic flow for the sake of simplicity, the von Mises equivalent stress in both the yield function and the plastic potential is chosen. In this case, the micromorphic variables R and Y are included in the yield function and the plastic potential via the state variables R (Eq.(1.26)) and Y (Eq.(1.27)). The von Mises yield function and the plastic dissipation potential taken from [START_REF] Saanouni | On the Anelastic Flow with Damage[END_REF]Saanouni, 2012) are then written under the following forms:

  , , , 1 1 py 
X R f X R d d d          (1.48)   1 2 0 3 ( : ) 1 , , , 4 (1 ) 2 Q(1 ) ( 1)(1 ) s pp YY a X X bR S F X R d f C d d s d S             (1.49)
with the norm 

    3 : 2 X X X        defining
          (1.50)
where, n is the outside normal to the yield surface and  is the Lagrange plastic multiplier.

-Kinematic hardening strain rate

p p F Da X          (1.51) -Isotropic hardening strain rate         1 () 1 1 1 1 1 1 1 1 p r F R rb R Qd d Q br b d r d d r Qd d                               (1.52) 34 -Isotropic damage rate 0 () (1 ) s p loc nloc F Y Y Y d Y d S        (1.53)
with the Macauley brackets x  indicating the positive part of x .

We can note here that, if the scalar parameters a and b are zero, the kinematic and isotropic hardening evolution equations (Eq.(1.51) and Eq(1.52)) will retrieve their linear forms.

We recall that in Eq.(1.27) the thermodynamic force Y contains the micromorphic contributions as indicated by Eq. (1.33). We also note that Eq. (1.48) indicates that the evolution of isotropic hardening contains the classical local term together with a nonlocal contribution based on the micromorphic isotropic hardening variable.

As indicated in the paragraph about the micromorphic dissipation analysis, the assumption that the micromorphic variables do not dissipate leads to purely local intrinsic dissipation.

Transformation of the micromorphic balance equations to the strain space

The micromorphic balance equations (1.8b, 1.8c) are expressed in the stress space as functions of the micromorphic thermodynamic force variables. Going back to these equations, it is possible to transform them in the strain space as functions of the strain-like variables obtained in the previous paragraph. To achieve this, we substitute the micromorphic stress-like variables for the micromorphic ductile damage and the isotropic hardening as expressed in the equations Eq.(1.29) and Eq.(1.30) in the equations Eq.(1.8b) and Eq.(1.8c) respectively.

By noting

 

Lap X being the Laplacian of X , we remark that as long as the micromorphic moduli g Q and g H remain constant, we obtain:

      1 ( ) ( 1 ) 1 ( 
) .

gg r r r div R div Q d r Q d Lap r d d r                 (1.54) ( ) ( ) ( ) gg div Y div H d H Lap d    (1.55)
By substituting the micromorphic variables in Eq.(1.29) and Eq.(1.30) in the previously obtained balance equations, we get:

-The balance equation of the micromorphic isotropic hardening

          1 1 ( ) . 1 1 1 
(1 )

g r gr r r r r r g gr r r Q d Lap r d d r Q d d r d r f f r in d Q r f n F on                                           (1.56)
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-The balance equation of the micromorphic damage

        g d gd d g gd d H Lap d H d d f f d in H d f n F on                      (1.57)
For the sake of simplicity and without any experimental information, if the overall micromorphic body and contact forces are neglected: the above balance equations (Eq.(1.56) and Eq.(1.57)) can be rewritten in the strain space under the following form:

          21 1 ( ) . 1 1 1 0 r r r r r r g r d Lap r d d r d d r d r Q Q r n                                (1.59)     2 ( ) 0 d d g d Lap d d d H H d n              (1.60)
where, r and d are the internal length scale parameters related to the micromorphic isotropic hardening and the micromorphic damage, defined by the ratio of the micromorphic moduli: We prefer to use the Eq.(1.59) and Eq(1.60) as strong forms from which their associated weak forms will be deduced in order to solve the fully coupled IBVP as discussed in next chapter, instead of Eq.(1.8b) and Eq.(1.8c).

Let us mention that, if the micromorphic damage inertia is neglected (i.e., 0 

Extension to the finite plastic strains and the objectivity requirement

The constitutive equations presented above were formulated under the small strain assumption. We will now proceed to the extension of this model to the finite transformations in order to be able to simulate the metal forming applications under large strains. For this end, we will start by briefly mentioning the kinematics of finite transformations with an emphasis to the objectivity principle. To describe the deformation of the solid we introduce the vectorial field () X  as:

: ( ) ( , ) X X x X t   (1.62)
The displacement and the velocity vectors of any material point in S at time (t) are defined by:

( , ) ( , ) u x t x X t X  and u v t    (1.63)
The gradient of the transformation ( , ) Xt  is given by:

( ) 1 1 xu F Grad u X X X                 (1.64)
According to the polar decomposition theorem, any homogeneous transformation can be seen as the product of a pure rotation and of a pure stretch (or elongation). This means that any non-singular gradient of a homogeneous transformation F can be multiplicatively decomposed, under the following form:

.. F R U V R  (1.65)
where the symmetric and positive definite second-rank tensors U and V are called left and right pure stretch tensors, and R is the rigid body orthogonal rotation tensor. U is a Lagrangian tensor defined defined in 0 C while V is purely Eulerian tensor, defined in 

    . . . . . . . TT T T T dx dx dX F F dX dX C dX C F F     (1.66)   11 . . . . . . . TT T T T dX dX dx F F dx dx B dx B F F        (1.67)
Accordingly, the Lagrangian Green-Lagrange strain tensor E defined in a point 0 P in 0 C and the Eulerian Euler-Almansi strain tensor  defined in a point t P in t C are given by:

1 11 ( ) ( ) 22 
C I I B        (1.68)
Moreover, the Eulerian velocity gradient in T C is defined by:

1 ( ) . v v X grad v F F L xx X            (1.69)
It is possible to decompose L in a symmetric part noted as D defining the local strain rates and an antisymmetric part noted as W defining the local rotation rates:

11 ( ) ( ) 22 TT D L L W L L     (1.70)
The most widely used measure of the stress in a point of a continuum is the Cauchy stress, defined using the measure of the elementary internal force in a point The density of massic power expressed in terms of the different stress and strain measures introduced above writes under the following form: 00 :

: : :

S P D D F E          (1.75)
This is nothing but the so-called stress-strain conjugacy principle which defines stress-strain measure relation in order to define a constitutive equation.

Total strain rate decomposition

For metal forming processes it is vital that we consider the context of finite transformations for any behavior model that uses tensorial state variables. Accordingly, the formulation of nonlinear constitutive equations for inelastic solids under finite transformations, faces two basic problems:

1. How could we decompose the total strain tensors into reversible and irreversible parts? 2. Which formalism should we use in order to formulate the constitutive equations fulfilling the objectivity requirement?

These two aspects are widely discussed in the literature and an exhaustive analysis can be found in [START_REF] Stolz | Anélasticité et stabilité[END_REF]Doghri, 2000;[START_REF] Maugin | The Thermomechanics of Plasticity and Fracture[END_REF] Despite the fact that the choice of a purely Eulerian formalism leads to the best description of the finite transformations on the current deformed configuration, crucial problems of objectivity could appear. On the other hand, objectivity problems posed by a Lagrangian formalism, which consists of working on the initial configuration, lead to very complex constitutive equations.

In order to fulfil the objectivity requirement, the concept of the rotated frame formulation (RFF) is used. This supposes that all the constitutive equations will be written on the current configuration locally rotated by the orthogonal rotation tensor Q [START_REF] Mandel | Equations constitutives et directeurs dans les milieux plastiques et viscoplastiques[END_REF][START_REF] Rice | Inelastic relations for solids, an internal variable theory and its application to metal plasticity[END_REF][START_REF] Sidoroff | The geometrical concept of intermediate configuration and elastic plastic finite strain[END_REF][START_REF] Sidoroff | Incremental constitutive equation for large strain elastoplasticity[END_REF] C where all the tensorial variables will be transferred is called "isocline" and has exactly the same orientation with the initial configuration 0 C and it is obtained through a multiplicative decomposition of the transformation gradient as well as the polar decomposition in the rotating frame:

ˆp pp e e e F F F Q F V Q F V F     (1.77)
where p F is the rotated gradient of the plastic transformation p F , ˆp F is the gradient of plastic transformation and e V is the left and purely elastic strain tensor. This rotation could be defined by two different ways. The first consists of using a privileged frame and calculating its rotation while it moves. This privileged frame is generally defined by the material microstructure as the crystallographic orientation for the monocrystalline materials. The second relies on postulating, a priori, a kinematic equation that governs the evolution of the orthogonal tensor Q :

0 . ( ) 1 T Q Q Q W Qt        (1.78)
where Q W characterizes the choice of the rotated frame.

For any second-rank tensor

T defined in the current configuration, its transfer to the locally rotated configuration ( t C or p t C in Fig. 1.5) by the rotation tensor Q according to:

.. 

T T Q T Q  ( 1 
Q V L V V V D a W Q Q W Q W Q b W Q Q W Q W Q c              (1.80) with 1 . L F F  
is the velocity gradient of the total strain with respect to C .
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sA ep p e p p D F F W F F              
are the plastic strain and the plastic rotation rates with respect to ir t C and

1 . p pp W F F     
is the velocity of the plastic rotations.

The Eq.(1.80a) represents the decomposition of the strain rates which is equivalent to ep     under the small strains assumption. Considering the strains of the metallic materials, we assume that the reversible (elastic) strains are very small compared with irreversible ones. This assumption is translated as  being the Jaumann derivative with respect to W . The equations (1.80b) and (1.80c) represent the rotation rates of the two rotated frames defined in Fig. 1.5.
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Extension to finite transformations

Let us suppose that z is a second-rank tensorial variable to which we associate its rotated objective variable Q z defined by: ..

T Q z Q z Q  (1.84)
The rotated frame defined by the rotation Q is an orthonormal rotation depending on the material and its rotated derivatives with respect to this frame is given by:

( . . ) . . . . .. .. T T Q QQ T QQ T QQ d Q z Q Dz Q Q z z W W z Dt dt z z W W z z z W W z               (1.85)
where dz z dt  is the classical material derivative of the variable z . We note that the choice of the rotated frame is made through the choice of the rotation tensor Q W . There are many possible choices, among them the two well-known defined by:

 If Q WW  , then the classical Jaumann derivative is obtained.  If . T Q W R R 
, then the Green-Naghdi rotation derivative is obtained, where R is described in Eq(1.65).

The material derivative of Eq. (1.84) gives:

. . . . . . T TT Q z Q z Q Q z Q Q z Q    (1.86)
By exploiting the equations Eq.(1.85) and Eq.(1.86), we obtain a relation between the material derivatives and the rotational ones of the variable

Q z .. T Q Q Dz z Q Q Dt  or . . . T Q Q Dz Q z Q Dt  (1.87)
The choice of the rotational objective derivative depends on the chosen frame configuration. The objectivity of the stress and strain tensors by the rotating frame principle is the simplest to implement. Indeed, at each calculation increment, the reference configuration coincides with the current configuration during the calculation. Among these rotational derivatives, we find the derivative of Green-Naghdi in proper rotation [START_REF] Dafalias | Corotational rates for kinematic hardening at large plastic deformations[END_REF]. In fact, in the set of applications, we will limit ourselves to using the rotating reference frame proper or Green-Naghdi such that

QR  ,
where the rigid body tensor is the tensor resulting from the polar decomposition of the gradient of the transformation. The rotation increment is obtained from the total rotation tensor. Indeed, the derivative is as follows:

.

T Q W R R  (1.88)

Conclusions

In this chapter, the theoretical formulation of the thermomechanical nonlocal micromorphic model is systematically presented: A complete set of generalized micromorphic constitutive equations is derived in the context of the thermodynamics of irreversible processes to capture the strongly nonlocal behavior of the materials in the localization regions. It contains the formulations of the balance equations, the state relations and the evolution equations. The micromorphic model coupled with elato-plasticity, ductile damage and mixed hardening as well as the nonlocal effects. We have resumed the principal nonlocal formulations used in order to regularize an IBVP and obtain one unique solution independent of the space discretization. As a result, we proposed a more robust nonlocal formulation in the framework of the generalized continua and more specifically in the framework of the micromorphic theory where we presented a complete formulation consisting of the overall constitutive equations for the damage and the isotropic hardening. We also showed that the equations of a simple local continuum can be easily retrieved and studied through the micromorphic theory. The complete set of equations will be discretized in space by the finite element method and in time by the finite difference method in order to resolve numerically the IBVP as presented in the following Chapter 2.

Introduction

In Chapter 1, we formulated a complete set of constitutive equations of a micromorphic solid submitted to large irreversible strains accounting, among others, for the isotropic ductile damage evolution. Also partial differential equations (PDEs) describing the momentum balance were deduced from the generalized principle of virtual powers. Similarly, the constitutive equations governing the evolution of the dissipative phenomena were obtained as ordinary differential equations (ODEs). The complete set of these equations (PDEs and ODEs) define the so-called Initial and Boundary Value Problem (IBVP). The actual chapter is dedicated to the numerical aspects and the procedures related to the resolution of the micromorphic evolution problem in the framework of the Finite Element Method (FEM). To achieve this, we start by giving the strong forms of the IBVP and its associated variational or weak forms. Then, we describe the time discretization based on appropriate finite differences schemes and the space discretization based on the finite element method including the formulation of different finite elements with additional micromorphic degrees of freedom. Regarding the global resolution scheme, we examine the global resolution of the three balance equations (i.e. classical mechanical as well as micromorphic isotropic damage and micromorphic isotropic hardening equilibrium equations). We give a detailed description of the local integration scheme of the fully coupled constitutive equations in order to compute all the state variables at the end of each load increment on each integration or Gauss point for each element for the upcoming computation of the internal forces which appear in the weak forms associated to the balance equations. The local integration algorithm consists of discretizing all the constitutive equations over a typical time integral

of size t  defined by   1 n n n t t t t t     
where n t is the origin of this time interval. This leads to calculating the values of all the mechanical fields at the end of increment 1 n t  as well as the loading increment

1 1 2 n n tD      
and the rotation increment

1 1 T n nn Q Q Q     
while the values of all the fields at the beginning of time increment n t are known. This integration algorithm is based on the use of a purely implicit Euler scheme combined with an appropriate asymptotic scheme (Saanouni, 2012). For each integration point concerned by the plastic flow, the iterative method of elastic prediction-plastic correction is used to integrate numerically the complete set of constitutive equations thanks to a Newton-Raphson resolution procedure in order to converge towards a point lying on the current loading surface when the plastic admissibility condition is fulfilled.

Note that a huge number of academic books related to the numerical aspects connected to the time and space discretization of nonlinear solid mechanics are found in literature, e.g [START_REF] Bathe | Finite Element Procedures[END_REF][START_REF] Zienkiewicz | The Finite Element Method for Solids and Structural Mechanics[END_REF][START_REF] Hughes | The Finite Element Method. Linear Static and Dynamic Finite Element Analysis[END_REF]Crisfield, 1991;[START_REF] Bonnet | Nonlinear Continuum Mechanics for Finite Element Analysis[END_REF], Simo 1998, Belytcshko 2000…) 

Initial and boundary value problem associated to virtual metal forming processes

In this section, we will pose the problem of nonlinear evolution for a micromorphic solid with ductile damage in finite strains, the constitutive equations of which were given in the first chapter. For the sake of brevity and simplicity, we consider only elastoplastic (rate-independent) solids with isotropic damage with a single yield surface, the state relations of which are developed in section 1.4.3 with the possible microcracks closure effect analyzed in section 1.4.4, and the evolution equations of the dissipative phenomena addressed in section 1.4.5 for time-independent plasticity. The problem posed is thus the following: compute all the IBVP unknowns at each time 0 ,

Strong forms of the IBVP

f t t t    at any material point ( , )
x X t of the solid in the current configuration t  by determining all the mechanical fields. The unknowns can be distinguished in the two following groups:

 The kinematic unknown variables (or degrees of freedom) which in this case are:

( , ), ( , ) u x t r x t and ( , )

d x t .
 The pairs of state variables on the current deformed and damaged configuration: the local These kinematic and state variables should fulfill:

state variables         ( , ), ( , ) , ( , ), ( , ) , ( , ), ( , ) , ( , ), ( , 
1. All of the following fields equations concerning together with their appropriate initial and boundary conditions:

 The classical equilibrium in Eq.(1.8a)
 The additional micromorphic balance equations shown in Eq.(1.59) and Eq.(1.60).

All these three strong forms are summarized again in Table 2.1 where r  is chosen to be equal to zero in Eq.(1.59) as the particular case which will be implemented. 

Classical local equilibrium

u u f u in n F on                  Micromorphic damage equilibrium     2 ( ) 0 d d g d Lap d d d H H d n              Micromorphic isotropic hardening equilibrium           21 1 ( ) . 1 1 1 0 r r r r r r g r d Lap r d d r d d r d r Q Q r n                               
    1 11 1 , . , , 22 
TT F u L F F D L L W L L          (2.1)
3. All the constitutive equations deduced in Chapter 1: the state relations (Eq.(1.24)-Eq. (1.30)) and their associated evolution equations (Eq.(1.50)-Eq.(1.53)) summarized in Table 2.2. For the rest of the thesis, we neglect the coupling between the local damage and the micromorphic isotropic hardening stress variable. The parameter r  is then set to 0 (

0 r   ).

Local State variables Evolution equations

-Cauchy stress

        1 : 1 1 2 e e e ee d d tr             1 p n D d    -Kinematic hardening   2 1 3 X d C  p Da    -Isotropic hardening (1 ) (1 ) 1 g R d Qr Q d r d r r                   0 r         1 11 1 1 Q r br b d r d r Qd d                   0 r   -Isotropic ductile damage E A R d Y Y Y Y Y     with     1 2 1 1 :: 2 1 : 3 11 1 22 1 ee E A R d Y YC r Y d Qr d Q d r r d Y H d d                                 0 () (1 
)

s loc nloc Y Y Y d dS     

Micromorphic state variables

-Micromorphic damage   g Y H d d d Y H d d                -Micromorphic isotropic hardening   1 () g R Q d r r R Q r       Table 2.2:
The overall state relations and evolution equations of the behavior model

Weak forms of the IBVP

Following the FEM, the weak forms associated to the strong forms of the IBVP can be obtained using the weighted residuals method. According to the configuration on which these equations are defined, several weak formulations are possible:

-total Lagrangian formulation, in which all kinematic and state variables used are defined on the reference configuration at the initial time (undeformed configuration), -total Eulerian formulation, in which all kinematic and state variables used are defined on the current deformed configuration, -updated Lagrangian formulation, in which the reference configuration is a completely known deformed configuration; -Arbitrary Lagrangien Eulerian (ALE) formulation in which the material points and the fixed grid (mesh) are governed by two different kinematics (or transformation gradients).

In the mechanics of nonlinear solids and more particularly for metal forming problems, the updated Lagrangian formulation is quite satisfactory, especially when it is associated with an efficient adaptive remeshing procedure. This makes it efficient enough to follow the history of each material point and to handle the large geometrical changes of the deforming solid and related boundary conditions.

In this thesis concerned by metal forming under large strains, we focus on the updated Lagrangian formulations in order to deduce the weak forms of the balance equations for the classical and the micromorphic problem. This allows us to solve the IBVP using the displacement-based finite element method.

2.2.2.1

Weak forms associated to the equilibrium equations By using the updated Lagrangian formulation, the weak forms associated to the strong forms (Eq.(1.8)) can be easily obtained thanks to the weighted residuals method [START_REF] Belytschko | Non Linear Finite Elements for Continua and Structures[END_REF].

We start from the extension of the Hu-Washizu weak form proposed by Fish and Belytschko [START_REF] Fish | A general finite element procedure for problems with high gradients[END_REF] to derive the following weak forms for:

 The weak form associated to the classical local equilibrium:

            , , : : 0 ee tt TT a a a a a a u u s u d u d u f u dV F u dS                                (2.2)
where,  denotes a variation, a  is the assumed strain rate, a  the assumed stress evaluated by the constitutive law and s u

 the symmetric part of the velocity gradient.

 The weak form associated to the micromorphic damage:

2 ( , ) ( ) 0 . . t t t d d d J d d d ddV d d ddV ddV d K A H                       (2.3)
 The weak form associated to the micromorphic isotropic hardening:

    2 ( , ) 1 1 ( ) 0 . 
.

t t t r r r J r r d r rdV d r r rdV rdV r K A Q                          (2.4)
where u

 is the kinematically admissible virtual velocity field and d  and r  are the kinematically admissible virtual velocity fields associated to the micromorphic damage and the micromorphic isotropic hardening respectively.

These three forms are strongly coupled as well as highly nonlinear so their analytical resolution is not possible. Accordingly, numerical methods based on the appropriate time and space discretization are required to solve the discretized nonlinear equations defining the IBVP. This leads to a nonlinear algebraic system that should be resolved using the appropriate Newton-type iterative scheme or direct non-iterative scheme.

Time and space discretization

In this paragraph we will discuss the time discretization of the weak forms of the IBVP introduced in section 2.2.2.1, over the interval 0 , f tt   as well as the spatial discretization over the domain t  .

In the context of FEM, the time interval 0 ,

f tt   is divided into subintervals of size t  that are not
necessarily constant while the domain t  is decomposed into geometrically simple subdomains in order to express the IBVP in an incremental form of a nonlinear algebraic system to be solved over each time increment.

Time discretization of the IBVP

The typical time interval is divided into subintervals of the form

  0 1 1 1 ,, t N f n n n n n t t t t t t         ,
where

11 n n n t t t    
is the incremental time step, not necessarily constant and t N is the total number of the time increments. The purpose is solving a nonlinear problem in each one of these subintervals in order to compute all the unknowns of the IBVP at the time In each FE e  the main unknowns of the IBVP (here the displacement, the micromorphic damage and isotropic hardening fields) are approximated, based on a nodal approximation by subdomains, using the appropriate polynomial interpolation functions. For the sake of simplicity, the elements are considered as isoparametric, e.g., the geometry of each element is approached by the same interpolation functions with the unknown fields. Any reference element called r  of the reference space expressed by the local coordinates e  corresponding to e  can be transformed into its real correspondent element by following the coordinate transformation relationship: N  are the interpolation polynomials shape functions in terms of local coordinates in the reference space.

    1 ( ) ( ) ( ) ( )
By applying the nodal approximation to the main real and virtual unknowns of the IBVP involved in the three weak forms (Eq.(2.2)-Eq.(2.4)), the real and virtual displacement vectors, the micromorphic damage and isotropic hardening are expressed on a typical reference element, in the following matrix forms: 

                ( , ) ( ) ( ) () ( , ) ( ) ( ) ( , ) ( ) ( ) () ( , ) ( ) ( ) ( , ) ( ) ( ) () ( , ) ( ) ( 
t N d t b d t N d t r t N r t c r t N r t                                         (2.6)
where

,, Following the same procedure for the first time derivative and the acceleration fields, we get: 

                ( , ) ( ) ( ) () ( , ) ( ) ( ) ( , ) ( ) ( ) () ( , ) ( ) ( ) ( , ) ( ) ( ) () ( , ) ( ) ( 
                                        and                 ( , ) ( ) ( ) () ( , ) ( ) ( ) ( , ) ( ) ( ) () ( , ) ( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( 
                                   () c      (2.7)
Moreover, the calculation of the first gradients of the real and virtual nodal variables involved in the three weak forms leads to: 

            () ()
NN u u u B u xx NN u u u B u xx                                                                     (2.8)             () ()
                                                                         (2.9)             () ()
N N r r r B r xx NN r r r B r xx                                                              (2.10)
Substituting Eq.(2.6)-Eq.(2.10) into Eq.(2.2)-Eq.(2.4), the elementary discretized weak forms for a typical element () e take the following form: 

                              int int int () () ()
J v u M u F F a J d d M d F F b J r r M r F F c                       (2.11)
where, the consistent mass matrices, the internal and external forces for a typical reference element () e are given in the reference element by: -Displacement field: 

                (2.12)     int e r T e e e e v F B J dV       (2.13)       eu rt TT e e u e e u e ext v s F N f J dV N F J dS             (2.14) with     det det ee v J J x        
 is the determinant of the Jacobian matrix of the volume mapping transformation between the real and the reference elements e r  while e s J is the Jacobian of the boundaries (or surface) transformation.

-Micromorphic damage:

  The lumped mass matrix is used to diagonalize the global mass matrix. For each row, the diagonal lumped mass term is obtained by summing the different terms associated to each column: 

M N N J dV Q        (2.18)             2 int
F d B B N N r J dV                (2.19)        
1 1 1 1 e e e r
v i j v i v j j j M M N N J dV N N J dV N J dV                     (2.21)

Numerical computation of the large strain rate tensor

To integrate the behavior model, in the case of large deformations and rotations, it is important to choose a kinematic approximation over a time step to evaluate the strain rate tensor

1 2 n D  ,
according to an incrementally objective integration algorithm. The most usual approach is to proceed by the calculation of the material position and to sequence as follows,

11 n n n x x u     (2.22)
The transformation tensor at the time t n+1 is written in the following form, 1

. .

n n n n n n n n nn x x x u F F F I F X x X x                       (2.23) 
Nevertheless, assuming the hypothesis of approximation of the real path by a linear scheme at constant velocity, the schema under consideration causes a variation of volume. Winget and Hughes (Winget and Hughes, 1980) then proposed as a linear relation the following expression,

1 n n n x x u       (2.24) and . 
.

n n n n n n x F F F F x          (2.25)
We use a half-step implementation scheme assuming an implicit Euler schema in time with 1 2

 

In order to calculate the symmetric strain rate tensor .,

nn n L F F     (2.26)
a classic central difference scheme is used for the computation of the first term:

1 1 1 2 11 1 . n nn n n n nn F F u FF tt x          (2.27)
The inversion of the increment of the transformation gradient gives:

1 1 1 1 1 1 1 2 11 1 22 2 . . . n n n n n nn nn x x F F F F F xx                     (2.28)
The strain rate gradient tensor at the half-step is: . . .

n n n n n n n n n n n nn u x u L F F F F tt x x x                 (2.29)
The gradient tensor of strain velocities can be decomposed in symmetric and antisymmetric parts.

The symmetric part of the tensor is the total deformation rate, noted as 1 2 n D  , and described as:

11 1 22 2 1 2 T nn n D L L       (2.30) 
In the same way, we express the rate of rotation, noted

1 2 n   , by 1 1 1 2 2 2 1 2 T n n n LL         (2.31)

Formulation of some finite elements

The introduction of the new micromorphic balance equations in the IBVP requires the construction of special elements based on appropriate mixed variational forms as the Hu-Washizu form, with a particular decomposition of the transformation gradients.

Formulation of the mixed variational form

As already presented, Fish and Belytschko [START_REF] Fish | A general finite element procedure for problems with high gradients[END_REF] proposed an extension of Hu-Washizu's variational principle in the case of nonlinear solids mechanics. We start from there in order to derive the following form for our micromorphic IBVP:

(2.32)
where, denotes a variation, is the assumed strain rate, the assumed stress evaluated by the constitutive law and the symmetric part of the velocity gradient.

            , , : : 0 ee tt TT a a a a a a u u s u d u d u f u dV F u dS                                 a  a  s u  2.

A 4-node quadrilateral assumed strain element

We have impemented in Abaqus/Explicit® a quadrilateral 2D element initially proposed by Wang [START_REF] Voyiadjis | Theoretical formulation of a coupled elastic-plastic anisotropic damage model for concrete using the strain energy equivalence concept[END_REF]). This element is called 'assumed strain' element and it is defined in such a way to avoid the occurrence of volumetric expansion locking and shear locking.

We discretize this variational form in an elementary domain e  and we focus on a typical element () e between the instants n t and 1 n t  by switching to matrix notations. Simo and Hughes [START_REF] Simo | Computational Inelasticity[END_REF], suggested the projection of the discretized velocity gradient

1 2 n B     , so that       1 1 2 1 2 e e s n n n u B u        
. This new operator   orthogonal to the difference between the symmetric part of the velocity gradient and the assumed strain rate tensor. This choice allows us to simplify the Hu-Washizu variational principle and rewrite it under the following form:

        :0 e t t T a a a u u d u f u dV F u dS                       (2.33)
Figure 2.2: The quadrilateral element

The isoparametric shape functions of the element for the displacement field in the reference space are expressed as:

1 ( , ) (1 ) 
(1 ) 4 i i i N          (2.34)
and for the micromorphic fields as:

1 ( , ) ( , ) (1 )(1 ) 4 
i i r i i d NN             (2.35)
All the above shape functions can be also expanded in terms of a set of orthogonal base vectors as:

              1 1 1 1 ( , ) ( , ) ( , ) 4 4 4 4 r d N N N s h                  (2.36)
where

1 1 1 1 1 1 1 1         (2.37)
are the vectors of the nodal co-ordinates in the reference space and

1 1 1 1 1 1 1 1 sh    = (2.38)
being the translation and the hourglass vectors respectively.

To ensure the objectivity conditions of the model, we use a corotational system defined in the centroid of the element (see Fig. 2.3) built by the shape functions defined in the reference space ( , )

 . The orientation of this corotational triad is governed by the orthogonal rotation tensor Q which is expressed under the following form:

  All the operators in the form of a vector or matrix and the various mechanical fields (stress tensor, strain rate tensor, internal variable tensor) will be transported in the corotational coordinate frame in order to guarantee the objectivity of the tensorial increments. Only the nodal elementary forces (internal and external) will be turned at the end of the calculation in the global reference of the part.

The jacobian matrix   J is written in this 2D case as: 

         
    0 det J J J J J         (2.41)
where

                                                0 11 16 4 1 16 1 16 J X Y Y X A J h Y X h X Y J h X Y h Y X                    (2.42)
where

A is the area of the element.

The gradient operator   ; and the tensor

1 1 1 2 2 2 ha n n n B B B                        
that completes the formulation of the strain rate tensor components for any other point of the element and can be expressed as:

0 1 2 0 0 x y n y x b Bb b b            (2.43) with                             ( 0) ( 0) 1 4 1 4 x y N b Y Y Ax N b X X Ay                            (2.44)
where ( , ) xy the co-ordinates of an arbitrary point in the corotational space frame. Finally, the assumed strain rate field can be expressed under the following analytical form:

  0 00 11 2 0 ( 0) 2 x yn n xy BU                     (2.45) with 1 1 2 3 4 1 2 3 4 1 1 n x x x x y y y y n n x y U u u u u u u u u U U U                  (2.46)
The form of the second part of the gradient operator is based on the expression developed by Wang (Wang et. al, 2001). To eliminate volumetric and shear locking phenomena, an assumed strain rate field is proposed to replace the classical strain rate fields obtained by the symmetric gradient operator. Hence, the volumetric energy and the shear energy corresponding to the hourglass terms tend to be zero. So, we use the following assumed strain rate field: 

        0 1 1 1 1 1 1 1 1 2 2 2
B u B u B B u                                                                                     (2.
                                                                (2.48) where (2.49) 
The vector    is calculated by the following expression:

              1 4 xy h h X b h Y b       (2.50)
and it is called hourglass stabilization vector, identical to the    -projection operator proposed by Belytschko [START_REF] Belytschko | Non Linear Finite Elements for Continua and Structures[END_REF].

Different values of the parameters e 1 , e 2 and e 3 can be chosen. In the case of e 1 =1, e 2 =0 and e 3 =1, we find the expression of the classical strain rate fields obtained by a symmetric gradient operator:

    0 0 1 0 2 2 h x x e h s y y n h xy xy u                                     with              2 h x x x x h y y y y h xy y y x x x y b b U b b U b b U b b U                                   (2.51)
But, to eliminate volumetric locking phenomena, the volume dilatation rate corresponding to the hourglass terms can be expressed as:

               12 1 2 1 2 () () ha ha ha v x y x x x y y y ha h h h v x y v e e b b U b b U a e e e e b                                  (2.52)                             11 44 11 44 xx yy b Y b Y JJ b X b X JJ                 If we choose 12 1 2 ee   
the volumetric locking associated to the new assumed strain rate operator can be eliminated.

The shear strain rate corresponding to the hourglass terms can be expressed as: If we let 3 0 e  , the shear locking can also be eliminated.

The new expression of the assumed strain rate operator as the following expression:

1 1 1 2 2 2 1 1 1 1 2 2 2 2 1 1 1 1 2 2 2 2 0 0 0 0 x y x y ha x y x y n n n b b b b B B B b b b b                                                                              (2.53)
Finally, the assumed strain rate field can be expressed under this following form:

        0 1 1 1 1 1 , 222 1 1 1 1 2 a x a a n yn nnn a xy and B B B U                                                      (2.54)
The assumed Cauchy stress tensor at the 1 n  step is updated from calling the elastoplastic behavior model:

            ,, 0 1 1 1 1 1 , 0,0 , , x a a a ep n n n n n n y xy C                                          (2.55)
where ep C   is the material tangential modulus matrix of an elastolastic behavior model.

The vector of the nodal internal forces is then evaluated by mixed integration Gauss point as:

      0 int int int 1 1 1 ea n n n F F F     (2.56) with         11 0 0 0 0 1 1 1 int 1 1 0 1 1 0,0 0,0 0,0 2 2 2 11 1 e T T T a a a n n n n n n n GP F B dV B J d d B A                                         (2.57)       11 int 1 1 1 1 1 1 1 , , 2 2 2 2 11 4 e T T T T a a a nn n n n n n GP F B B dV B B J d d                                                                       (2.58)     4 int 1 1 1 1, 22 1 PG PG PG PG II II TT a PG PG PG a I I I n nn n I F B B J                             (2.59) 63 with 1 2 3 4 1 2 3 4 1 2 3 4 1. 1 1 1 1 , , , 3 3 3 3 1 1 1 1 , , , 3 3 3 3 
PG PG PG PG PG PG PG PG PG PG PG PG                       (2.60)
To add of the contribution of the micromorphic variables, we need to define a gradient operator of the scalars: We use the same operator to build the gradient of the micromorphic damage and micromorphic isotropic hardening:

0 xx x ee r g g g d y yy bb b B B B B B b bb                                                       (2.61)
The internal micromorphic damage force vector is then computed:

              T e e e e e i d d d d K F B B N N d J dV B B N N J d d d                               (2.62)
4 Gauss integration points are used for the integration:

     4 0 0 , , 1 
PG PG PG PG PG PG II I I I I T T T T T T PG PG PG PG PG e e I g I g I g g I g I g d d d I K B B B B B B N N J                                                       (2.63)
The external micromorphic damage force vector is also integrated with 4 Gauss integration points: 

       
F N d J dV N d J d d N d J                      (2.64)
In the same way, we compute the internal and external force associated to the micromorphic isotropic hardening: 

                        2 int
F d B B N N r J dV d B B N N J d d r                                 (2.65)          0 0 4 , 1 , ,
B B B B B B K d J N N                                                                  (2.66)                  
F d r N J dV N d r J d d N d r J                               (2.67)

A 4-node quadrilateral axisymmetric element

By following the assumed strain method introduced above, we develop a simple four -node axisymmetric element [START_REF] Fredriksson | Simple and accurate four-node axisymmetric element[END_REF]. The strain-driven format obtained is well suited for materials with non-linear stress-strain relations. For this element, the orthogonal projection of the stress and strain fields through the B-bar approach by Simo and Hughes [START_REF] Simo | Computational Inelasticity[END_REF] and the    -projection operator suggested by Flanagan and Belytschko [START_REF] Flanagan | A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[END_REF] are applied.

The shape functions remain the same and the mapping of the four-node quiadrilateral element is defined by:

    ( , ) , ( , ) r N r z N z      (2.68)
where r and z denote the polar co-ordinates and the nodal coordinates:

1 2 3 4 1 2 3 4 , r r r r r z z z z z  (2.69)
Similarly, the radial displacement r u and the axial displacement z u are approximated by: The strain rate components become:

      0 = 0 r r z z U u N u N u U               (2.
      1 , 1 , 0 0 0 0 0 0 r r Plan n a z z n rz rz                                                                                   (2.71)
The strain rate tensor   

      0 1 1 1 1 1 1 1 , 2 2 2 2 plan plan axi axi n nn n n n n B U B B B U                                              (2.72) with   1 1 2 3 4 1 2 3 4 1 axi n r r r r z z z z n U u u u u u u u u             (2.73)
And the ortho-radial strain rate component is defined by

    1 1 1 2 3 4 1 2 1 0000 nn n B U N N N N U r           (2.74)
By following Flangan and Belytschko, we introduce the average operator: The orthoradial operator becomes:

11 22 1 ˆplan plan nn A B B r dA V                (2.
1 2 1 ˆ0 n Bc V    (2.77) with     A c N dA   .
So, the different gradient operators can be now expressed under this form:

1 2 1 1 1 1 1 1 2 2 2 2 2 2 ˆˆp l n plan plan plan plan plan pl n n n n n n B B B B B B B                                                    (2.78) 1 2 1 1 1 1 1 1 2 2 2 2 2 2 ˆˆn n n n n n n B B B B B B B                    (2.79)
The assumed Cauchy stress tensor at the 1 n  step is updated as we call the elastoplastic behavior model:

        ,, 11 , r plan a a a z ep n n n rz C                                         (2.80)
where ep C   is the material tangential modulus matrix of an elastolastic behavior model.

The vector of the nodal internal forces is again evaluated by this new expression:

          int int int int int 1 11 11 ˆê plan plan n nn nn F F F F F         (2.81) with     1 int 1 1 0,0 2 ˆT plan plan plan n n n F B V         (2.82)     4 int 1 1 , 1 2 1 PG PG PG PG PG PG I I I I II plan PG plan plan In n n I F B r J                (2.83)       int 1 1 1 2 ˆˆn n n F B V        (2.84)       4 int 1 1 1 2 1 PG PG PG PG I I I I PG I n n n I F B r J              (2.85)
For the four-node axisymmetric element, we only add the micromorphic damage as the new degree of freedom. The new expressions of internal and external micromorphic force vectors are:

     0 0 4 1 , , PG PG PG PG I I I I PG PG PG PG II II T T T T T T PG PG PG PG g I g I g g I g I g PG I d e e I d d B B B B B B K r J N N                                                            (2.86)
The external micromorphic damage force vector is integrated with also 4 Gauss integration point:

    4 1 PG PG PG PG PG PG PG PG I I I I I I II e PG e I ext d d I F N d r J             (2.87)
2.6 Global resolution scheme

Dynamic explicit analysis

Considering the explicit dynamic analysis procedure in Abaqus®/Explicit the solutions of the IBVP with the three forms presented above are obtained simultaneously by an explicit coupling, based upon the implementation of an explicit integration rule together with the use of diagonal or lumped mass matrices. Many dynamic explicit schemes that appear in the literature (e.g., [START_REF] Hughes | The Finite Element Method. Linear Static and Dynamic Finite Element Analysis[END_REF][START_REF] Belytschko | Non Linear Finite Elements for Continua and Structures[END_REF]) can be used to treat the different coupled problems.

For the present IBVP that consists of many equations, a sequential resolution method is preferred, meaning that the three problems are successively resolved at the same time increment

  1 , n n n t t t t     .
The objective is to obtain all the nodal unknowns and all the state variables at time 1 .

n t 

We start by the resolution of the mechanical problem in order to determine its solution at time 

          int 0 ext nn n n M Ü F F    (2.88)
Since the internal forces vector is already known at time n t , the acceleration vector at the same time is expressed as:

          1 int u ext nn n n Ü M F F   (2.89)
The equations of motion for the body are integrated using the explicit central difference integration scheme and the vectors of the global velocity and the global displacements are respectively:

            1 11 22 1 1 1 2 2 nn n n n n nn n tt U U U U U t U             (2.90)
where the indices 11 , 22

nn             
indicate the middle of two successive time increments.

The solutions of the micromorphic damage and the micromorphic isotropic hardening are also integrated in time using the above explicit central difference scheme as presented for the displacement fields.

At each time increment   1 , n n n t t t t     , the overall state variables at n t and the increments of all the displacement-like variables are provided to compute the state variables at for the isotropic hardening at the beginning of the analysis step; 2) Go to the next time step.

The explicit dynamic procedure requires no iterations and no tangent stiffness matrix. However, the explicit procedure, which integrates through time by using many time increments, is conditionally stable. The stable time increment considering the damping effect is given by:

    2 max 2 1 u t      (2.91)
In which max  is the elementary highest eigenvalue of the mechanical system and 1   is the damping parameter. A conservative estimate of the stable time increment is given by the minimum taken over all the elements. The above stability limit can be rewritten as:

min e u d L t C     (2.92)
where 

Stability condition for the micromorphic damage problem

For the explicit case (VUEL subroutine) we take into account the micromorphic inertia and we compute the diagonal lumped mass matrix (Eq.(2.21)) for both the mechanical and the micromorphic damage problem by using .

We follow the same steps to define the stable time increment for the micromorphic damage problem by solving the same equation adapted properly as:

2 det 0 ee d d d KM         (2.95)
where

    2 dd ee e d d d d K B B Jd N N Jd       (2.96) 
Let us also note that in 1D the isoparametric shape functions of the element for the displacement and the micromorphic damage fields in the reference space are expressed as:

11 22 d N    (2.97)
For the jacobian :

2 e L J 
where e l is the length of the 1D element. The gradient operator as the following expression:

1 11 d e B L  (2.98)
After integration, we get the following different matrices:

The micromorphic lumped mass matrix:

10 01 2 e e de d AL M H         (2.99)
where e A is the section of the 1D element. The micromorphic stiffness matrix: 

    2 2 2 2 1 2 2 1 11 1 1 1 1 2 1 1 1 1

Local integration scheme

For solving the algebraic system given later in Eq.(2.127), the computation of the internal and the external forces demands the evaluation of the local stress tensor To calculate these state variables at the end of each time step, we should numerically integrate the overall ordinary differential equations. Many integration methods are widely discussed within the literature [START_REF] Wilkins | Calculation of elastic-plastic flow, methods of computational plysics[END_REF][START_REF] Dautray | Analyse mathématique et calcul numérique pour les sciences et les techniques[END_REF].

In presence of the nonlinear isotropic and kinematic hardenings, it has been shown in [START_REF] Nesnas | An integral formulation of coupled damage and viscoplastic constitutive equations: formulation and computational issues[END_REF], [START_REF] Saanouni | Computational Damage Mechanics. Application to Metal Forming[END_REF], [START_REF] Badreddine | On non-associative anisotropic finite plasticity fully coupled with isotropic ductile damage for metal forming[END_REF], Saanouni (2012b)) that combining the asymptotic scheme (Walker and Freed, 1991) with the return-mapping algorithm, leads to an efficient and robust unconditionally stable integration scheme in presence of the ductile damage. This method is followed here to integrate the above fully coupled constitutive equations with micromorphic damage.

The equations of our behavior model are first order ordinary differential equations and can formally be expressed under two forms, either as: 

  1 ( , ) , 
                        (2.106)
as the solution of Eq.(2.104).

Applying the solutions Eq.(2.105) and Eq.(2.106) under the fully implicit assumption ( 1)

  , allows us to rewrite the state variables, at the end of the time step 1 n t  for the time-independent plasticity, under the following form:

 The Cauchy stress and the plastic strain tensors:

    11 11 1 1 1 1 1 1 3 , 2 1 1 ( )1 2 pp p nn n n n n n ee n n n n e e n Z n Z d d tr µ                               (2.107)
with the elastic deformation

1 1 1 1 e e e pp n n n n n n d                      (2.108)
 The ductile damage:

  10 1 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 (1 ) 1 1 1 1 : 
: : ( ) 2 3 2 2 s p n nn n ee n n n n n n n n n n YY dd dS Y C d Qr d Q r r H d d                                           (2.109)
 The isotropic hardening:

1 1 1 1 1 1 1 1 1 1 1 1 exp 1 exp 1 1 ( ) (1 ) 
(1 ) 1

pp n n n n n n n n n n n n n Q bQr Q Q Q Q r r b b Qr d QQ b d Q Q R d Qr Q r d d r                                                                                  (2.110)
 The kinematic hardening:

1 1 1 1 1 1 exp( ) (1 exp( )) 1 2 (1 ) 3 pp n nn n n n n n aa ad X d C                                (2.111)

Local integration of time-independent plasticity 2.7.1.1 Elastic prediction

Let us suppose that the total incremental strain   over the current time step is completely elastic meaning the absence of any induced plastic flow, hardening or damage i.e., 0 p   . In this case, the elastic trial strain at time 1 n t  is given by:

1 trial e nn        (2.112)
which results to the trial stress deduced from Eq.(2.107):

11 ( 1) :

trial trial nn n d      (2.113)
Since 0 p   , for this trial elastic loading increment, the von Mises yield criterion (Eq.(1.48)) corresponding to this trial stress rewrites as:

1 1 1 1 trial n n trial n ny n n X R f d d            (2.114) If 1 0 trial n f  
, then the solution is effectively elastic, meaning that the trial stress state 

  1 1 1 1 1 , , , 0 
n n n n n f X R Y      
 is fulfilled. Under this case, the von Mises yield function takes the following form:

1 1 1 1 1 1 1 1 n n n n y n n X R f d d                (2.116)
To proceed with this viscoplastic correction, the discretized, nonlinear and fully coupled evolution equations must be solved using the Newton-Raphson iterative scheme to determine the stress-like variables and the admissibility conditions at 1 n t  , the so-called return mapping algorithm.
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The stress-like variables at the end of the time increment are expressed as:  The Cauchy stress tensor:

    1 1 1 1 1 1 1 1 1 : 1 : 11 e trial p p n n n n n n n n n nn dd dd                                            (2.117)
 The stress-like variable for the isotropic hardening:

     1 11 1 11 1 exp 1 exp 1 1 p p n n n n n nn Q bQr Q Q Q Q R d Q Q r b b QQ b Q Q d d Qr                                                              (2.118)
 The stress-like variable of kinematic hardening:

1 1 1 1 2 (1 ) exp( ) (1 exp( 
)) [START_REF] Pires | On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials[END_REF] 1

pp n n n n n n X d C a a ad                         (2.119)
 The deviatoric stress tensor:

1 1 1 dev n n n ZX    



(2.120)

The tensor 1 n Z  is written under the form:

* 1 11 1 1 1 2 1 1 exp 13 p p n nn n ne n d C C C Z Z d a n d a C                                   (2.121)
where

** 1 1 1 1 1 2 1 exp 3 1 dev p n nn n nn n d CC Z X d C a C d                            (2.122) Since 1 1 1 3 2 n n n Z n Z    
, the tensor can be rewritten as:

11 1 2 3 nn n Z Z n    (2.123)
and by using the plasticity criterion obtain:

1 1 1 1 1 2 1 3 1 n n n ny n R Z d n d                    (2.

124)

.

By substituting Eq.(2.118) to Eq.(2.124) we retrieve a second expression of the deviatoric tensor:

11 11 1 1 1 11 1 1 1 1 exp 1 1 2 3 1 1 exp 1 n n n p n n n n n n n p n n y d d d QQ d R Qr b dQ d Zn Q Q Q d b d bQ                                                                     (2.125)
Finally, the equality of the two expressions (in Eq.(2.121) and Eq.(2.125)), gives:

11 1 1 * 1 1 1 1 1 3 1 exp 1 1 1 1 exp 1 exp n n n pp e n n n n n n n pp y d d d C C C a R Qr a C d d d Z d Q Q Q Q Q bb Q b Q                                                                                                           (2.126)
So, considering the fully isotropic plasticity, we obtain the following two highly nonlinear equations with two independent variables p   and d :

* 11 1 1 1 1 1 3 1 exp 1 1 1 1 exp 1 1 1 1 exp p p e n n n p n n n n n n n n p y C C C a aC d d d d QQ f Z R Qr b d Q d d Q Q Q b bQ                                                                                           10 11 0 0 1 s p n n n n n YY g d d S d                                                  (2.127)
This system of two equations with two unknowns is resolved by an iterative Newton-Raphson algorithm in order to linearize them under the following form:

1 1 1 0 0 (...) 0 s s p p n n p n ff f d g g g d d                                          (2.128)
with s being the number of iterations and the corrections of p   and

1 n d   given by:         1 1 11 ss p p p ss nn d d d                    (2.129)
After calculating the four terms

1 n p f     , 1 1 n n f d     , 1 n p g     , 1 1 n n g d    
of the jacobian matrix, we obtain:

* 1 1 1 11 1 1 3 ( ) exp 1 1 1 1 1 ( ) exp 1 1 1 p e n nn pp n n n n p nn n n CC µ C C a C Z fd d d d d Q Q b Q Q b R Qr QQ d d                                                                         
(2.130)

11 1 * 1 1 1 3/ 2 11 1 1 1 1 3 1 exp 1 1 (1 ) 1 2 (1 ) exp 1 1 n n n pp e n n n n n nn nn n p n n d d d C C C µ a R Qr aC d Z d fd dd d QQ b Q d d                                                                           11 3/ 2 1 1 exp 2 (1 ) (1 
)

1 p n n n n nn d R Qr QQ b Q d dd                             (2.131)         1 1 0 1 1 0 11 11 ,, 1 
11 pp p n n n n nn pp nn Y d Y Y d Y gY SS dd                       (2.132)         1 1 1 0 1 1 1 1 1 1 1 0 1 1 , 1 1 1 , 1 s p nn n n n p n s p n nn n Y d Y Y Sd d g d Y d Y S d                                      (2.133)
From the system Eq.(2.128) and for each iteration, we get: 

s p p nn n n n n Y d Y g d d dS             (2.135) (1 ) 
which is quite useful for accelerating the convergence and reducing the computation time.

Implementation in Abaqus®/Explicit

In order to solve the IBVP, we have implemented some finite elements with additional micromorphic degrees of freedom as well as a micromorphic behavior model combined with an integration algorithm to compute each state variable for each integration/Gauss point. In this paragraph we will give a short discussion with some details on the methodology followed for the implementation of the new elements based on a micromorphic behavior model and the finite elements in Abaqus/Explicit®. By using Abaqus/Explicit® we have the ability to implement our own element along with its numerical integration in order to compute all the state variables at each load increment. This is done by following the form of a proposed subroutine called inside the VUEL (Abaqus User Subroutines Reference Manual).

The current VUEL, built to implement the integration algorithm of the proposed micromorphic model, is written in Fortran90. Without going into many details and without giving any parts of the code, we present the major steps for a Gauss point of a typical element for a load increment in

  1 , n n n t t t t     :
 At the beginning of a time increment: we read all the variables related to the current time increment and we restore the values of all the variables at the end of the previous step   We highlight this case where a completely damaged element appears in the dynamic explicit resolution scheme. We note again that all the stress-like variables are equal to zero for an element the Gauss points of which are totally damaged. As a consequence, the vectors     int , ee ext FF are vanished. In our case, the completely damaged elements remain in the mesh but without any mechanical state and, apparently, the nodes connecting these elements do not have any contribution to the global internal force vector. At any case, this element should be removed from the whole structure with the use of an adaptive remeshing procedure [START_REF] Borouchaki | Adaptive remeshing for ductile fracture prediction in metal firming[END_REF][START_REF] Borouchaki | Adaptive remeshing in large plastic strain with damage[END_REF][START_REF] Labergère | 2D-Adaptive methodology for metal forming simulation[END_REF][START_REF] Labergère | Labergère, A Rassineux, K Saanouni. 2D adaptive mesh methodology for simulation of metal forming processes with damage[END_REF][START_REF] Labergère | Numerical simulation of continuous damage and fracture in metal-forming processes with 2D mesh adaptive methodology[END_REF][START_REF] Issa | Prediction of serrated chip formation in orthogonal metal cutting by advanced adaptive 2D numerical methodology[END_REF]. Whenever a remeshing technique is not applied, these elements are 'hidden' during the post-processing of the results after the end of the simulation.

Since the post-processing step for elements with additional degrees of freedom is not available on the version 6.13-1 of Abaqus/Explicit®, we had to overcome this difficulty by using an external software for this purpose (GID). By adapting and using this software we succeed in treating properly and quite fast the long and difficult post-processing operations resulting from the large quantities of information obtained after the end of a simulation.

Adaptive analysis in 2D: The adaptive remeshing methodology

During metal forming processes, the large plastic strains that occur in regions of the part undergoing deformation, lead to highly localized strain zones. Inside these necking zones, microscopic defects may appear leading frequently to the initiation of macroscopic cracks. The numerical simulation of these processes using Finite Element Methods based on updated Lagrangian formulation leads to large distortion of the initial mesh. For this reason, adaptive meshing procedures are necessary in order to perform the full analysis. If the constitutive equations take into account the description of the macroscopic cracks initiation, the simulation of crack growth becomes thereafter possible. A number of authors (Andrade [START_REF] Pires | On the finite element prediction of damage growth and fracture initiation in finitely deforming ductile materials[END_REF] [START_REF] Vaz | Aspects of ductile fracture and adaptive mesh refinement in damaged elasto-plastic materials[END_REF] have proposed an adaptive meshing frame in which fully damaged elements are removed from the mesh leading to the determination of new boundaries inside the deformed part. Frequent remeshing must be thereafter performed in order to avoid large element distortion and to enhance the accuracy of the analysis in areas where gradients are highly localized. Accordingly, a robust mesh generation procedure is needed [START_REF] Coupez | Parallel meshing and remeshing[END_REF]. The objective to describe, with reasonable accuracy, macroscopic crack initiation and growth, can only be reached if the new moving boundaries are discretized with an optimal mesh size.

The previous works have been published regarding the mesh adaptation in elastoplasticity or viscoplasticity, while using appropriate local criteria to remove the cracked elements. A 2D adaptive meshing procedure for metal forming by large plastic deformation has been proposed by using linear triangular elements and the procedure has been tested on a number of examples [START_REF] Labergere | Srain rate districution and localization band with evolution during tensile test[END_REF]. However, some basic properties of the linear elements may lead to inaccuracies when high nonlinearities appear.

In this thesis, a 2D adaptive methodology using 2D bilinear assumed strain quadrangular elements in axisymmetric configuration is proposed and successfully applied to highly non-linear metal forming problems with damage occurrence. The proposed methodology is based on the following tools and techniques:

 ABAQUS/EXPLICIT® software to solve the initial and boundary value problem. At each Gauss point, appropriate constitutive equations are used through the user defined material subroutine VUMAT.  Appropriate error indicators used to compute the map of the mesh size including refinement and coarsening of the mesh.  2D mesh generator (DIAMESH2D)  Fields transfer procedures between the old and the new mesh based on diffuse approximation (Brancherie and Villon, 2006; Labergere, 2014)  Specific procedure to adapt the loading sequences that depend on the size and the number of the fully damaged elements.

The efficiency of this methodology is illustrated through the simulation of some blanking operations detailed in Chapter 5.

2D Adaptive numerical methodology

I.

2D adaptive meshing resolution scheme

The procedure adapts the load sequence and the mesh size using appropriate error indicators. The mesh generator DIAMESH2D is thereafter performed using linear or quadratic Quadrangular or Triangular elements [START_REF] Rassineux | An automatic mesh generator for planar domains[END_REF], according to the following steps (see Fig. Transfert the mechanical fields for the old mesh to the new mesh

M n M n+1
Increase of the next loading sequence , where

x and y are the global system of coordinates and   a is the approximation parameters vector calculated by minimizing a criterion based on the interpolation of the set of neighboring nodes, as: For the nodal variables a polynomial interpolation based on the FE interpolation shape functions is used depending on the element type.
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III. The error indicator

When dealing with strong material and kinematical non linearities, the mesh adaptation to the higher field gradients is a crucial issue. Many authors have proposed different error estimators based on different physical consideration [START_REF] Babuska | A posteriori error estimates for the finite element method[END_REF][START_REF] Georges | Mécanique et Ingénierie des Matériaux[END_REF][START_REF] Zienkiewicz | Error estimation and adaptivity in flow formulation for forming problems[END_REF]. The mesh size, all over the domain, can be derived in a first step from geometrical considerations. An adaptation of the contour lines to the curvature in the first step of the analysis greatly improves the robustness of contact analysis especially whenever bilateral contact due to self-contact occurs. In this context, a masterslave surface method is used and many projections are performed. A coarse representation of the contact zone may impede the convergence of the process. For instance, the vicinity of the tools and more generally potential contact as well as auto contact between surfaces is taken into account even before a contact may occur. In a 2D context, the contact between bodies as well as the auto-contact problems are rather easy to detect and therefore to handle. Once the contact is detected an adequate element size is locally affected.

Mesh size map based on damage and equivalent plastic strain

The prediction of the mesh size is based on the values of some selected fields weighted by their time derivatives. Therefore, we also developed an empirical formula to predict the mesh size map based on the values of the main non linearity sources such as: plasticity and damage. On a number of predefined intervals, mesh size gradation has a predefined expression and therefore thresholds are defined. These intervals enable us to describe the main steps of the evolution of the mechanical behavior (elasticity, plasticity, damage). The whole meshing process is controlled by four element sizes max max min min

p p dam x x x x       
where: In a second step, the mesh size under plasticity denoted as

p x
 is weighted by the damage variable D. The lowest value of mesh size denoted as

d x  is min dam x 
. The different functions used to compute these mesh sizes are given in Table 2.3.

The initiation and propagation of macroscopic cracks are simulated here by deleting the fully damaged elements having the same smallest size min dam x  for a given material. Accordingly, there is no significant loss of mass if the removed elements have the smallest size. On the other hand, this ensures a kind of mesh independency, since the same material 

Conclusions

In this chapter dedicated to the numerical aspects of the initial boundary value problem, we have presented the weak forms of the IBVP. We discussed hereafter the finite difference time discretization and the finite element space discretization as well as the numerical computation of the large strain rate tensor. Two types of 2D elements, a 4-node quadrilateral assumed strain and a 4-node quadrilateral axisymmetric element, have been formulated to which we have added the new micromorphic degrees of freedom. We have also presented the numerical methods associated to this IBVP in terms of the global resolution scheme. Finally, we give attention to the local integration of the evolution equations and a brief representation of the 2D adaptive remeshing methodology.

This numerical methodology will be used in the following chapters in order to validate the proposed model through some examples concerning several metal forming applications.

Introduction

In the first chapter we formulated a micromorphic model with multiphysic coupling. To the local phenomena (hardenings, damage) we added the equivalent micromorphic variables for the isotropic hardening and the ductile damage as new degrees of freedom and additional state variables. In the second chapter, the following numerical aspects associated to this model were presented: (i) the variational forms of the IBVP, (ii) the global resolution scheme, (iii) the new finite elements with the additional micromorphic degrees of freedom and (iv) the local integration scheme of the complete set of the fully coupled constitutive equations. This chapter is dedicated to the validation of the proposed model from both theoretical and numerical points of view. A detailed parametric study is performed on a simple uniaxial tensile test in order to explore the performance of the proposed nonlocal formulation and its ability to achieve acceptable solutions. In particular, the role of the micromorphic material parameters is studied for the two micromorphic phenomena concerning three models: the first only with micromorphic damage, the second only with micromorphic isotropic hardening and the third with the combination of them both.

Behavior model and specimen

Choice of the parameters

For all the validation examples and the parametric study, the model with mixed hardening strongly coupled with ductile damage is used (see Table 2.2 in Chapter 2). For this model, the local parameters for the 430(X8Cr17) steel were identified through an inverse method based on the appropriate experimental force-displacement curves and they are presented in Table 3 g QQ for the micromorphic isotropic hardening. These different values are carefully selected in order to investigate their effects on the plastic flow and damage localization. More particularly, the impact of the values of these micromorphic parameters on the thickness of the macroscopic crack defined as the area of all the completely damaged elements, as well as their ability to provide a mesh independent solution at convergence, are examined.

Specimen

The thin metallic specimens tested were made of 430(X8Cr17) steel with effective length of 45.0 mm and thickness of 0.2 mm as shown in Fig. 3.1. For the sake of element validation, they were all modeled with Q4 quadrilateral plane stress elements and we have only treated the case of a tensile test. Figure 3.2 presents the geometry and the three different meshes using the micromorphic finite elements developed in Chapter 2. The specimen is subjected to an imposed displacement applied to the upper head with 0.015 u  mm/min. In the following we discuss, in some details, the distribution of the mechanical fields in the specimen as predicted by the fully coupled model. We recall that the elements were implemented in Abaqus®/Explicit through the VUEL user's subroutine while the numerical integration of the overall constitutive equations are implemented in the same code through the VUMAT user's subroutine as detailed in Chapter 2.

Parametric study of the micromorphic model

In this section a relatively exhaustive parametric study of the micromorphic model is presented by focusing on the role of the four micromorphic parameters related to both micromorphic damage, e.g., ( , ) g HH and micromorphic isotropic hardening, e.g., ( , )

g QQ . We examine the effect of the different values of each one of these parameters on the quality of the numerical solution in terms of the global force-displacement and stress-strain responses as well as the distribution of the mechanical fields inside the specimen.

Since the micromorphic moduli

H and Q are the most important parameters which control the localization phenomena (as can be seen in the strong forms in Table 2.1 of Chapter 2), we will focus on these. For this, we start by examining the model with micromorphic damage only, followed by the model which carries the effect of the micromorphic hardening only. Finally, we conclude with the model including both micromorphic damage and isotropic hardening which is our complete micromorphic model. For all the cases, we use only the Q4 elements with the required micromorphic dofs and we compare the results with the solutions obtained by the local model.

Model only with micromorphic damage

In this case all the phenomena are supposed to remain of local nature and only the damage is taken as micromorphic, giving one additional degree of freedom and one additional micromorphic balance equation. We recall that in this case only one internal length is activated, the one related to the micromorphic damage given by / g d HH 

.

Before proceeding to the parametric study of the micromorphic damage model, let us retrieve and examine the purely local solution. We remind that the results for this tensile test for the local damage model as well, were obtained using the ABAQUS/EXPLICIT VUEL and VUMAT user's subroutines applied to the Q4 elements with the displacement being the sole degree of freedom by deactivating the micromorphic moduli H and g H . Figures 3.3, 3.4 and 3.5 show the distribution of ,, eq dp respectively, one step before the first crack appears, (e.g.,

d 

for the central element located at the intersection of the two shear bands) while Figure 3.6 illustrates the typical force-displacement curves obtained at the end of each simulation for the three different mesh sizes. In Figures 3.3a, 3.4a and 3.5a we have added the damage isovalues at the final fracture of the specimen showing the macroscopic crack path for each mesh size. From these results we observe that, as expected, the solutions are highly dependent on the mesh size mainly during the damage induced softening stage (Figure 3.6). As expected, the consequence of this mesh dependency is clearly shown by the non-unique force-displacement curves at the damage induced softening stage. The thickness of the totally damaged zone (macroscopic crack) is reduced to a single row of elements for all the cases but without following the same orientation as shown in Figures 3.3a, 3.4a and 3.5a. Indeed, the final crack appears to be horizontal for the coarse mesh size of 0.8 mm (Figure 3.3a), while for the two other finest meshes the macroscopic crack follows one of the shear bands with two different orientations. This difference seems clearly governed by the numerical difference in local damage values. Let us also note that, for this local model, the equivalent plastic strain at fracture (ductility) is "nearly" independent from the mesh size with 56% Note, that for this case, the symmetry of the localized shear bands is perfectly preserved. It's worth noting than even the nonlocal effect coming from the relatively high value 160.0 g H  is not obvious and this can be explained by the fact that it is the parameter H that controls nloc Y and that seems to have the biggest influence on the nonlocality effect. 3.3, by the force-displacement curves (Figure 3.13) and by the stress-strain curves (Figure 3.14), the regularization effect exists but it is less essential for an d of 0.1 mm and 1.0 mm for which the mechanical responses are higher but still close to the local solution with a fracture occurring for displacement values of 11.34 mm and 11.9 mm respectively. However, no fracture is observed at the end of the applied load for the highest value of . The effect is directly mapped to the very slow evolution the low values of the local damage as shown in Figure 3.27 while due to high diffusion, d and d tend to evolve identically giving again a very small and negligible value to the term () dd  close to zero. As a matter of fact, these two solutions are yet not acceptable due to the lack of their physical substance.

By examining the

Fu  curve in Figure 3.20 and comparing the three micromorphic solutions to the local one, we see that for From all the force-displacement figures obtained we observe that:

 H has a preponderant effect on the rupture displacement: the higher the value of H is, the more delayed the rupture is. In fact, for 

 If the value of

H is low, the more the solution approaches the local one. This is explained by the fact that nloc Y is directly proportional to H in a way that low values of H give a low value of nloc Y so the micromorphic model tends to match the local one.  For a constant value of H , the more  We also compare now the distribution of ( , , )

eq dp for the local and all the nonlocal cases;

the isovalues of the damage, the equivalent plastic strain and the von Mises stress corresponding to the moment of the rupture. The more the values of H and g H increase, the more the damage is homogenized around the macroscopic crack, which propagates along a single row of elements for all the cases. For the distribution of p , we can note the progressive growth of the ductility and consequently of the necking as the values of H and g H increase.

In conclusion, it is the parameter H that controls nloc Y and that seems to have the biggest influence on the nonlocality. In fact, the solution is almost identical to the local one for the lower values of H while the nonlocality effect becomes more important to the global response as the values of H increase, which is obvious from the Fu  and the eq p   curves. All these figures represent the the responses of one Gauss point of an element in the center of the specimen in the intersection of the two bands.

Effect of the mesh size

In order to examine the influence of the mesh size on the micromorphic IBVP regularization We present the results for all the cases and we make a discussion on them followed by a conclusion at the end of the paragraph. We conclude by saying that in order to achieve better regularization and as more mesh independent solutions as possible:

1) the size of the chosen internal length should be sufficiently bigger than the size of the elements () and 2) The most appropriate choice for the micromorphic moduli should depend on the fact that the values of H and g H should be restricted in an "intermediate value" interval so that they are neither too low, in order to retrieve the local solutions, nor too high so that the micromorphic damage effect is so excessively strong that leads to no rupture appearance despite the large displacement as shown for example for the case of 1000.0 g HH  .

d h  ,

Model with micromorphic isotropic hardening

The model only with micromorphic isotropic hardening gives one more partial differential equation supplementary to the local equilibrium equation, which is governed by the internal length

/ g r QQ 
. As a result, the micromorphic scalar r becomes a nodal unknown variable additionally to the displacements. This isotropic hardening model described by the pair of the parameters ( , )

g QQ is the objective of the following parametric study similar to the one shown before regarding the micromorphic damage moduli.

Uncoupled model only with micromorphic isotropic hardening

For this case, we activate only the micromorphic isotropic hardening in order to investigate any effects of coming from the several pairs of ( , ) g QQ but without indicating the coupling with the local ductile damage.

First, we fix the value of g Q and want to vary Q by making the following choices of the representative internal length: We continue by fixing the value of Q and varying Q by making the following choices of the representative internal length: As shown from the Fu  curves in figures 3.40 and 3.41 there is no effect resulting from the presence of micromorphic for the current choices.

Model only with micromorphic isotropic hardening coupled with local damage-effect of r for a fixed mesh

We continue with a brief study on the effect coming from the micromorphic isotropic hardening moduli by fixing the value of g Q and varying the value of r between 0.1, 1.0 and 5.0 mm for a fixed mesh of 0.2 h  mm.

(i) For

0.1 ( ) Q MPa 
: the values of g Q giving the three targeted values of the micromorphic isotropic hardening internal lengths together with the associated fracture displacements are summarized in Table 3.8. 

Model with micromorphic damage and micromorphic isotropic hardening

For this section we complete the micromorphic model by indicating the presence of both micromorphic damage and micromorphic isotropic hardening and we compare the Fu  responses with the proportional obtained by the experimental tensile tests in order to validate the choice of all the micromorphic parameters. Moreover, it is interesting to take a look at the results (Tables 3.10 to 3.12) for the same choice of internal length but by keeping the isotropic hardening parameters 0 g QQ  . It's worth noting that the presence of micromorphic isotropic hardening leads to larger rupture displacements, however a crack is achieved for the last test case ( 5.0 60.0, 1500.0 We continue the study by inverting the process and fixing the value of 1.0 d  mm and varying r in order to examine its effect for a fixed mesh size of 0.2 h  mm. We compare again with the experimental results. 3.13).

g d mm H H    ) in contrast
Clearly the choice of Q and g Q can affect the rupture displacement. As observed from the Fu  curves in Figure 3 ) but for all the three cases, the difference () rr  remains positive.

Finally, we also note that the combination of 

Effect of the mesh size

Finally, we study the effect of the mesh size including both micromorphic damage and isotropic hardening. We choose three different mesh sizes 0. For a last test we want to study the effect of the mesh size for the Q4 element by taking the same mesh sizes used before ( 0. As a result and after summarizing the results concerning the effect of the mesh size for a model with only micromorphic damage or micromorphic isotropic hardening, we confirm that a micromorphic damage model is necessary and enough in order to achieve the regularization of the IBVP solution undergoing induced softening due to the damage effect. 

H H mm Q Q mm h mm h mm h mm          0 

Conclusions

In this chapter we have performed a relatively complete parametric study on three nonlocal micromorphic behavior models:

 One micromorphic damage model,  One micromorphic isotropic hardening model and  One model with the contributions of both micromorphic damage and isotropic hardening.

The metallic specimens of 430 stainless steel were meshed with the 2D quadrilateral assumed strain element and the numerical tensile tests were implemented in Abaqus®/Explicit.

The purpose of this study was the terms to regularize a micromorphic model and to examine the capacity of a micromorphic behavior model to give solutions independent from the mesh size. Finally, the numerical results concerning the model with both micromorphic damage and isotropic hardening were compared to the experimental Fu  curve obtained by the tensile tests for specimens of the same geometry and material.

The principle conclusions of this study are:

 The micromorphic damage is necessary and enough to regularize the numerical solution of the IBVP;

 the size of the chosen micromorphic damage internal length should be sufficiently bigger than the size of the elements ()

d h  ;
 for a constant mesh, the more the values of H and g H increase, the more the rupture is retarded;

 the choice for the micromorphic moduli should depend on the fact that the values of H and g H stay close to an "intermediate value", neither too low (so that the presence of nonlocality is negligible) nor too high (so that the micromorphic damage effect is so excessively strong that leads to no rupture appearance and non-physical solutions);  the nonlocal model with both micromorphic damage and micromorphic isotropic hardening is highly capable to obtaining mesh independent solutions.

These conclusions allow us to make a proper choice of the values of the micromorphic material parameters with respect to the desirable mesh size and were carefully followed and applied for the metal forming applications presented in Chapter 5.

Introduction

As presented in Chapter 2, the micromorphic constitutive equations derived from the framework of the irreversible thermodynamics and the generalized principle of virtual power are characterized by a group of specific material parameters which need to be determined from the experimental data. Before proceeding to the material parameter identification in this chapter, the parametric study of the micromorphic model was performed in chapter 4 and the results were carefully analyzed to well understand the predictive possibilities of the proposed micromorphic fully coupled constitutive equations. The detailed study of the effect of the material parameters entering the fully coupled constitutive equations is discussed in (Saanouni, 2012). Furthermore, here we will only focus on the parametric study concerning the elasticity, plasticity and local damage parameters and we will propose a methodology for identifying and properly choosing the value of the micromorphic moduli ( , ) g HH related to the micromorphic isotropic ductile damage for this current material by associating it with the width of the shear bands that appear during the localized necking stage of a simple uniaxial tensile test.

Material parameters identification methodology

For this thesis, in order to identify the material parameters (for elasticity, local isotropic and kinematic hardening, local and nonlocal micromorphic damage parameters), we use the uniaxial tensile test for a specimen of 430 stainless steel with isotropic behavior the geometry of which is given in Fig. 4.2. Figure 4.1 shows the tensile response Force vs displacement u ( Fu  ) obtained by the experiment: I 133 45° with respect to the rolling direction. The specimen was set in the tensile machine with the bottom clamp fixed, the top clamp lifted under controlled speed, which was kept constant at 0.5 mm/min in the early stage and decreased to 0.015 mm/min near and beyond to the maximum force load to observe precisely the state of diffuse and local necking [START_REF] Bao | Influence of Specimen Geometry on Strain Localization Phenomena in Steel Sheets[END_REF]. It should be pointed out that the tensile test evolution is monitored through the average total strain computed from the cross-beam displacement and the initial gauge length of the specimens as When all mechanical fields are considered homogeneous in the useful zone of the specimen and the value of the damage is really small, the stress tensor is simplified in the framework of uniaxial stress:

00 0 0 0 0 0 0 xx         with 00 1 xx Fu Sl      (4.1) 
where xx  is the uniaxial Cauchy stress component and

0 0 0 S b e 
is the initial area of the specimen;

And, for the strain tensor: 

                  (4.3)
where  is the Poisson coefficient, xx  and e xx  are respectively the total strain and elastic strain in the tensile direction x.

The Hooke law and the decomposition of the total strain for monotonic loading tensile path give the different relations:

xx xx E   (4.4) ep xx xx xx     (4.5)
where E is the Young's modulus and p xx  is the plastic strain in the tensile direction x.

Step n°1 : Identification of the elastic material parameters (E,  and  y )

For the stage I, it is possible to translate the Fu  curve into a The cumulative plastic strain norm is then defined by

2 : 3 pp pe xx xx xx xx xx p E              (4.6) 
We can now work on the proportional To clarify the decomposition of the isotropic and kinematic hardening phenomena, a cycle loading path is generally used (a cyclic shear test for exemple). However, in the case of this stainless steel, only monotonic tensile tests have been realized. In the case of this steel, we assume that the kinematic hardening phenomena are activated and appear just after the elastic behavior. The parameters C and a associated to the kinematic hardening are calibrated to fit the first part of the plastic curve for ( 0.05) p 

. So, we use the second part of the plastic curve to fit the parameters Q and b associated to the isotropic hardening. An optimization procedure based on BFGS quasi-Newton algorithm is used to find the most suitable values for the local isotropic and kinematic hardening parameters and fit the 'test' curve to the experimental one under the best agreement. For the overall third step, we have reached the value of max F meaning that we pass from the diffuse to the highly localized necking and since all the mechanical fields have turned inhomogeneous, the use of the   curve is no more possible. As a result, we switch to an inverse identification and with the introduction of the numerical simulation of the same tensile test, respecting the geometry, the velocity and the boundary conditions, we perform several tests for the identification of the material parameters related to the ductile damage by comparing the numerical and the experimental Fu  curves.

Step 3-i: The sensitivity of each local damage parameter on the force/displacement response in the case of a tensile test has been studied in different references (Saanouni 2012; Labergere et. al, 2014 among others). The knowledge issue on these studies can be resumed in different points:

I.
The parameter s governs the nonlinearity of the damage evolution: the higher value of s , the earlier the final fracture time, the smaller the plastic strain and the more brittle behavior of the material. Considering the formula of damage evolution in Eq.(1.53), when the parameter s approaches to zero, the damage rate will become approximately proportional to the plastic multiplier (effective plastic strain rate)

  The parameter S is directly linked to the material ductility and governs the apparition of the fracture after the diffuse necking. Meanwhile, it is observed that its effect is to delay or accelerate the damage growth without modifying the shape of the damage evolution or the Fu  curves.
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No extended study or special treatment has been performed on the parameters , s  and  in order to further identify their effect. Different metallic materials have been identified in different works (see [START_REF] Liu | Advanced modelling for sheet metal forming under high temperature[END_REF]. Generally, a good agreement for their values are found between 12 s  and 1 4 2  while some further investigation has been done for the parameter S due to its higher sensitivity. For the present material we use 1 s  and 1.

  We note that we also set the initial damage force 0 0 Y  and 0  for the effect of the microcracks closure.

Step 3-ii: The last group of material parameters left to be identified are the ones related to the micromorphic damage and more precisely the micromorphic internal length. We note that we deactivate the coupling with the micromorphic isotropic hardening as well as the respective micromorphic parameters Q and g Q and for the sake of simplicity we intend to propose a methodology to identify

/ g d HH  .
As shown in the previous chapter, the numerical and the experimental Fu  curves were used in order to investigate the effects of H and g H and approach their most appropriate choice but without taking into account the notion of the micromorphic internal length d . For this purpose and under the perceptible existence of nonlocality, the experimental strain field measurements coming from the Electronic Speckle Pattern Interferometry (ESPI) during the tensile test of the 430 stainless steel has been done. The strain rate component xx  measured by ESPI is used to determine the evolution of the band width during the localization. The idea is to define a link between d and the measured integral band width.

Necking as an unstable behavior in ductile solids has been studied for many years. However, less work has been done on the measurement of the width of the localization bands and its evolution during loading. It is also well known that the mesh size dependence of the post-bifurcation necking behavior is still an open problem in numerical analysis [START_REF] Bažant | Continuum Theory for Strain-Softening[END_REF]. Indeed, with a purely local constitutive behavior, the solution for the strain distribution is no longer unique and can only be computed for a given mesh size [START_REF] Labergere | Srain rate districution and localization band with evolution during tensile test[END_REF]. Generalized continua schemes can overcome this difficulty (Jirásek and Rolshoven, 2009; Mazière and Forest, 2013) by introducing additional parameters that need special treatment for their identification. For this reason, the study of the strain localization behavior from an experimental perspective using photomechanical methods is introduced. Electronic Speckle Pattern Interferometry (ESPI) has been used for the deformation measurement, because of its specific advantages, such as high spatial and displacement resolutions.

The principles of ESPI are simple: a speckle field, e.g. a seemingly random intensity pattern, is produced by the interference of the wave fronts, when a coherent light illuminates a rough diffusing surface. A micro-displacement or deformation of the object surface leads to changes of the speckle field and thus the deformation information can be obtained from the correlated evolution of the initial speckle pattern [START_REF] Labergere | Srain rate districution and localization band with evolution during tensile test[END_REF][START_REF] Guelorget | Strain Rate Measurement by Electronic Speckle Pattern Interferometry: A New Look at the Localization Onset[END_REF]. The experimental setup is represented in Figures 4.4 The fringe patterns shown in Fig. 4.6 represent the displacement field increment between the capture of two phases maps separated by the duration indicated besides each picture. Constant and homogenous strain appears as a uniform fringe pattern in which the fringes are straight and perpendicular to the tensile direction. So, in the elastic and homogenous plastic deformation range, there is no change in the fringe pattern appearance. As soon as the plastic deformation becomes inhomogeneous, the fringes start to curve, with a non-uniform spacing, and concentrate in the middle of the specimen forming an hourglass shape which can be interpreted as two crossing localization bands, as can be seen in Fig. 4.6. This hourglass shape narrows progressively and, around 23% of average strain, turns into an "X" shape. The fringe spatial frequency is higher in the middle of the specimen than along the two edges of the specimen which means that the strain is higher in the middle. In the area outside the "X", where there is no fringe, the material stops deforming plastically and undergoes elastic unloading when the force decreases. At the beginning of the localization, the hourglass shape is symmetric, and then it loses the symmetry when it turns into an "X". Then the fringes (deformations) start to concentrate in one of the bands (or one of the branches of "X"), thus the other one tends to disappear gradually and finally the specimen breaks along the band left. The transition between the symmetric hourglass ")(" and the asymmetric "X" is interpreted as the onset of the localized necking. For extracting global information and physically relevant parameters, the strain rate pattern is modeled assuming that the strain rate field is a system of two straight crossing bands based on the "X" shape of the fringe pattern. The strain rate distribution along each band is supposed to be constant. The whole strain rate distribution is assumed to be a simple superposition (sum) of the strain rate distribution of these two bands. This model is not a mechanical model but a purely analytical model used to describe the strain rate pattern and extract global parameters and completely independent of the constitutive behavior of the material. The strain rate distribution in each band is described by a linear combination of a Gaussian and a Lorentzian function [START_REF] Bao | Influence of Specimen Geometry on Strain Localization Phenomena in Steel Sheets[END_REF]:
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where 1 i  or 2 indicates one of the two localized bands, and (x, y) are the coordinates of the points (x is parallel to the tensile direction), with:

 max i  is the maximum strain rate,  , i G Gaussian function,  , i L Lorentzian function,  i  and 1 i  
are the weights of the Gaussian and the Lorentzian functions respectively. 140

The Gaussian and Lorentzian functions are defined as following: 2 ( , , , , ) exp The inclination angles of the bands are defined as the angles between the band length and the tensile direction. The experimental parameters of the model are identified by a least squares fitting procedure from the velocity maps obtained by ESPI.

ii i i i i x a y b G a b B x y B           (4.11) 2 1 ( , , , , ) 1 i 
The obtained evolution of the strain rate map is shown on Fig. 4.6 for a test at 0.015 mm/min. The evolutions with the global average strain of the bands widths are shown. In all cases, the specimens failed in the same direction, along the band that was oriented almost perpendicular to the rolling direction or along the band 1 (B 1 ) as illustrated in Figure 4.7. Thereby for the sake of simplicity, this band will be called dominant band and the other one disappearing band, and the superscript "dom" and "dis" will be used to distinguish them. On the strain rate maps evolution, the observations made on the fringe patterns are clearer. In a first stage, the maps exhibit a symmetric hourglass shape. In a second stage, defined as the localized necking, one band starts to predominate and the shape turns into an asymmetric "X" shape. The strain rate in the dominant band increases progressively until fracture.

The maximum strain rate of the band dom (dominant band B 1 ) increases exponentially with the cross-beam displacement while the maximum strain rate of band dis (disappearing band B 2 ) increases slowly and even starts to decrease close to the end of the test. During the diffuse necking, the hourglass pattern formed by the two bands is symmetric and the maximum strain rates of the two bands are equal. Then, the strain rate of the two bands starts to diverge.

The bandwidths B dom and B dis of the two bands, in all cases, decrease with the total average strain or time. At the beginning, the two bandwidths decrease simultaneously and then they separate: B dis tends to stabilize while B dom continues decreasing. The widths of the two bands decrease at a similar rate during the diffuse necking. Then, when the localized necking stage starts, the width of the dominant band continues decreasing until the rupture, while the width of the disappearing band continues to decrease for a while and then stabilizes. Based on this observation, which is consistent with the strain rate evolutions, two substages are distinguished in the localized necking regime. The transition of these two sub-stages is defined as the stabilization of the disappearing band width.

As already mentioned, generalized continua schemes introduce additional parameters that need special treatment for their identification. One of these is the internal length related to the micromorphic damage. Since ESPI allows the identification of the physical characteristics of the localization, such as bandwidths, band orientations and maximum strain rates of the bands at any moment of the necking, one first attempt is done under the idea of 'linking' the notion of the micromorphic internal length to the one of the bandwidths in order to give it some physical meaning and propose a numerical methodology to identify it.

In this spirit, and by numerically implementing the mathematical model given by Eq.(4.10)-Eq.(4.12) and calculating the numerical strain rate at a given time We note

max max 1 1 1 1 1 2 2 2 2 2 , , , , , , , , , 

P a b B a b B

       the best optimal parameters to fit the gradient evolution of the strain rate on the tensile direction.

Experimental (EPSI) data Numerical data

Computation of xx  in one direction at a defined experimental time t we make a brief study of the effect of the parameter S and its sensitivity regarding the mesh size and the micromorphic regularization length.

  exp x, y, xx t    ,, num xx x y t      max max 1 1 1 1 1 1 2 2 2 2 2 2 ( , , ) , , , , , , , , , , , , fit B 
First we fix the mesh size at 0. Obviously as expected and as mentioned at the beginning of the chapter, the parameter S has an essential effect on the ductility of the material by retarding or accelerating the final fracture depending highly on the choice of the internal length and the mesh size. The same effect on the final rupture displacement can also result from the choices of ( , g HH ) as discussed in the previous chapter. The goal is not to precise the value of the micromorphic regularization length according to the material and its microstructure, but to verify our strategy and the accuracy of connecting the width of the dominant band to the micromorphic regularization length scale related to the micromorphic damage in an effort to determine it physically and give some information about its measurement.

For these tests we varied the value of the parameter S between 4. After taking a look at the results of this first test case we can see that the variation of the mesh size does not affect the evolution of the band and the tendency to decrease is respected as observed in the experiment. While using 0. (case 1) the widths evolve at a much lower level which does not allow an appropriate fitting. We note here that from the numerical point of view, for 0.4 h  mm all the specimens failed at the opposite direction, so the experimental B dom is represented by the numerical band B 2 .

Influence of the moduli  

, g HH on the evolution of the integral bandwidth with for two different mesh sizes. Similarly, to the case 1, we conclude that the mesh size does not affect the evolution of the band and the tendency is still decreasing but the numerical curves still fail to approach enough the experimental one. The size of the bandwidths is still lower than the experimental one, however by increasing the value of S we see that the starting point of B 2 is higher than 15 mm and higher than the previous case 1 where 4.5 S 

. The analysis of these previous results shows that if we continue increasing the value of S , the fitting between the numerical and experimental bandwidth becomes more accurate. 

Material characterization based on local indentation test

Instrusmented Indentation Testing (IIT) is a form of mechanical testing that significantly expands on the capabilities of traditional hardness testing. IIT employs high-resolution instrumentation to continuously control and monitor the loads and displacements of an indenter as it is driven into and withdrawn from a material. Mechanical properties are derived from the indentation loaddisplacement data obtained in simple tests. The advantages of IIT are numerous, as indentation loaddisplacement data contain a wealth of information, and techniques have been developed for characterizing a variety of mechanical properties. The technique most frequently employed measures the hardness, but it also gives the elastic modulus (Young's modulus) from the same data. Mechanical properties are routinely measured from submicron indentations, and with careful technique, properties have even been determined from indentations only a few nanometers deep.

The most frequently used indenter in IIT testing is the Berkovich indenter, a three-sided pyramid with the same depth-to-area relation as the four-sided Vickers pyramid used commonly in microhardness work. The Berkovich geometry is preferred to the Vickers because a three-sided pyramid can be ground to a point, thus maintaining its self-similar geometry to very small scales. An example of small indentations located at specific points in an aluminium and a nickel alloy is shown in Fig. 4.19 (Hay and Phaar, 2001) and Fig. 4.20 [START_REF] Hay | Introduction to Instrumented Indentation Testing[END_REF] respectively. The two mechanical properties measured most frequently by IIT methods are hardness (H) and elastic modulus (Young's modulus) ()  . A simple methodology has been developed to measure these two quantities (H and E) for isotropic materials exhibiting no time dependence in their deformation behavior, that is, no creep or viscoelasticity (Oliver and [START_REF] Pharr | An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments[END_REF]. A schematic of the indentation process for an axisymmetric indenter of arbitrary profile is shown in Fig. 4.22. As the indenter is driven into the material, both elastic and plastic deformation processes occur, producing a hardness impression that conforms to the shape of the indenter to some contact depth c h . The radius of the circle of contact is a . As the indenter is withdrawn, only the elastic portion of the displacement is recovered, which effectively allows one to separate the elastic properties of the material from the plastic. A schematic representation of indentation load () P versus displacement . The parameter has the dimensions of force per unit distance and is known as the elastic contact stiffness, or more simply, the contact stiffness. The hardness and elastic modulus are derived from these quantities. The fundamental relations from which H and E are determined are:

/ H P A  (4. 13 
)
where P is the load and A is the projected contact area at that load, and:

2 r S E A    (4.14)
where r E is the reduced elastic modulus and  is a constant shape factor that depends on the geometry of the indenter [START_REF] Bulychev | Determining Young's Modulus from the Indenter Penetration Diagram[END_REF][START_REF] Pharr | An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments[END_REF]. Eq.(4.13) is a working definition for the hardness as measured by instrumented indentation testing. The reduced modulus, r E , is used in Eq.(4.14) to account for the fact that elastic displacements occur in both the indenter and the sample. The elastic modulus of the test material, E ,is calculated from r E using: In the framework of the micromorphic regularization length identification, a second thought was to realize a nanoindentation test. The idea here is to obtain some additional experimental information regarding the Young's modulus this time in the area of the localized necking, and link it directly to d ; accordingly, the measurements of the hardness could be also linked to identify

/ g r QQ  .
For the indentation tests, we changed the material and the geometry of the specimen and we replaced the 430 stainless steel component by a low carbon steel, DC04 (containing 0.06% of carbon) with 0.8 mm thickness, the geometry of which is given in Fig. 4.24. As can be seen from Fig. 4.28, there is an obvious variation and a drop in the middle of the axis for the Young's modulus at 125.0 GPa. The first thing that has to be further investigated is the origin of this drop at the localized necking, e.g, if it is a result of the damage flow or if the nanoindenter has With indentation testing, we can capture better and extract useful information about the behavior of the material at the area of the highly localized necking stage before the final rupture while the ESPI measurements give the evolution of strain rates from the early stage of the diffused necking until the localization. According to these measurements, as already presented, the integral bandwidth of B dom at 25% of the total average strain is around 0.2 mm (Figure 4.8). To describe mathematically the strain rate distributions, a versatile pseudo-Voigt function was chosen. This time, for a first approximation and for the sake of simplicity, we choose a Lorentzian function (Eq.(4.12)) of same width 0.2 B  mm and we plot it along the x-axis as seen in Figure 4.29. 

By substituting

Conclusions and perspectives

This chapter was dedicated to the material parameters identification for a 430 stainless steel specimen.

We presented the identification process given in three steps that analyze the techniques followed for each group of parameters according to associated phenomena. During the first and the second steps for the local parameters, due to the homogeneity of the mechanical fields we can transform the experimental Fu  curve into: For the third step due to the induced softening caused by the damage effect and the inhomogeneity of the mechanical fields, we use the inverse identification methodology based on a virtual tensile FEM model. The identification of the local material parameters related to the ductile damage (S, s, β, , Y 0 ) has been done by several numerical simulation loops.

Regarding the last group of material parameters related to the micromorphic damage and more precisely the micromorphic regularization length / Due to time constraints, the results of the indentation test were not further treated and we did not continue to any numerical implementations or analysis of the hardness curve which seems more complicated since its variations are less visible according to these first results. However, we presented the general idea and the test process and we leave it for further investigation in future works as a perspective and a possible second accurate methodology for the identification of the micromorphic internal lengths related to the damage and the isotropic hardening.

Introduction

The Chapter 3 was dedicated to the parametric study of the micromorphic model and the Chapter 4 to the identification of the local and the micromorphic material parameters based the on experimental tensile tests. In this last chapter, the validation of our numerical methodology based on a micromorphic approach is investigated through two metal forming processes: the bending of a DP1000 sheet and the blanking operation of a DP600 sheet. According to the conclusions of Chapter 3, we will use the model only with micromorphic damage due to its capacity to provide us with unique solutions. Consequently, only one pair of micromorphic parameters ( , ) g HH will be activated and their choice is carefully made to assure physical solutions and acceptable crack propagation in the completely damaged zone.

Bending test Introduction

Cold bending is an increasingly used process to form various lightweight mechanical components with more and more advanced high-strength steels, mainly to meet the needs of aircraft and automotive industries. The air bending test is taken from the experimental work of [START_REF] Soyarslan | A comboned experimental-numerical investigation of ductile fracture in bending of a class of ferritic-martensitic steel[END_REF]Gharbi et.al, 2011) in which the 3D measurement of the strain field conducted via Aramis-GOM system (Figure 5.1) makes possible the measurement of the strain distribution over the specimen until the final fracture. The microstructure investigation shows that the cracks have an alternative behavior in the apex of the bended surface. The cracks in the cross section have a zigzagshaped path. This behavior can be explained just by localization induced softening in the material. 

5.2.2.1

Behavior model with local damage ( 0, 0 g HH  )

Figure 5.5 compares the experimental Fu  curve to the numerically predicted ones illustrating the expected mesh dependence since the force-displacement curves are sensitive to the mesh size. As expected, the displacement at the final fracture is clearly mesh dependent: The simulation of the bending process gives the local damage distribution as shown in Fig. 5.4 for the different mesh sizes at the values of punch displacement for which the crack has initiated. A phenomenon of network localization begins to appear; shear bands oriented around 45° to the axis of the folding are initiated on the lower edge of the blank and seem to propagate in the thickness. For the three mesh size configurations, a macro-crack has clearly developed with a stair-step morphology. Clearly, the maximum damage values are highly concentrated inside one row of elements with a zig-zag evolution during the crack propagation. mm, two times higher than the highest mesh size and 3.5 times than higher than the lowest mesh size. A horizontal line (dashed lines in Fig. 5.7) is used to plot the evolution of local damage (noted as "d_loc") and nonlocal damage (noted as "d_n.loc") when the macro fissure has spread through about half of the thickness of the sheet. The adaptive analysis methodology described in Paragraph 2.8 of Chapter 2 is now applied to a blanking operation of a circular thin sheet. The axisymmetric sheet has an initial external radius 200.0 R  mm and a thickness 1.2 e  mm. The punch diameter is 12.0 mm and the clearance between the fixed die and the moving punch is 0.12 mm as shown in Figure 5.9 [START_REF] Labergere | Numerical design of extrusion process using finite thermo elastoviscoplasticity with damage. Prediction of chevron shaped cracks[END_REF][START_REF] Labergere | Srain rate districution and localization band with evolution during tensile test[END_REF]. In order to complete the analysis of these results, we also plot the evolution of both local and micromorphic damage on the same plane for the three different mesh configurations i M . The measurements were done on three lines of the deformed sheet as shown in Figure 5.12: a top line indicated as LH line, a middle line indicated as LM line and a bottom line indicated as LB (Figure 5.12) for a punch displacement equal to 0.5 U  mm, before the final rupture. mm has now propagated along the shear band. We clearly see that the smallest mesh size is well applied to mesh the sheet along the shear band and the length of the cracks 0.25  mm is approximatively the same for the three configurations.

For the same punch displacement ( 0.73 U  mm), we also show the isovalues of the micromorphic damage in Fig. 5.17. For the two configurations 2 M and 3 M , the nonlocal damage is higher at the tip of the crack and reaches a maximum value of 0.2 . The width of the localization band corresponding to the nonlocal damage remains also identical. For the configuration 1 M , the evolution of the gradient of the nonlocal damage is no more clear but the width of the localization band located in the sheet between the tip of the crack and the fillet of the punch seems to have the same shape with the two other configurations The experimentally and the numerically predicted fracture shape are represented in Fig. 5.18 for the three minimum mesh sizes at 0.9 U mm. The obtained results are in good agreement concerning the convex zone ( 0.12 mm), sheared zone ( 0.33 mm), fracture zone ( 0.75 mm) and the bur ( 0.04 mm). For the three configurations, the shape of the crack is approximatively the same. We have also a relatively good agreement with the experimental crack geometry. 

General conclusions and perspectives

This work was focused on a nonlocal formulation of an elastoplastic behavior model with isotropic and kinematic hardening together with softening or negative hardening induced by the presence of isotropic ductile damage. In framework of the generalized continua, the micromorphic theory has been applied assuming that the isotropic ductile damage and the isotropic hardening are the two principal micromorphic phenomena. As a result, two additional micromorphic kinematic variables, d and r have enriched the space of degrees of freedom of the IBVP. These variables, as well as the body, contact and inertia forces are included in the generalized extended form of the principal of virtual power. This leads to obtaining, additionally to the classic local equilibrium equation, two new partial differential equations (PDEs) along with their Neumann-type boundary conditions, as the balance equations related to the micromorphic phenomena that are taken into consideration. By using the appropriate additional state relations (stress-like micromorphic variables), these two additional PDEs obtained in the stress space, can be expressed in the strain space.

Furthermore, the space of the state variables is also enriched by new pairs of micromorphic state . This allows a micromorphic extension of the thermodynamics of irreversible processes through the construction of a state potential, a yield criterion and a plastic potential as appropriate convex functions of the overall strain-like state variables that allows us to extract the complete set of evolution equations for an elastoplastic micromorphic solid with damage and hardening. It is worth noting that in this isotropic and isothermal formulation, the dissipation of the micromorphic phenomena is neglected due to the absence of adequate experimental information. It is also remarkable, that the evolution equations of the targeted micromorphic phenomena can be written under additive terms, one related to the classical local evolution and a second one, nonlocal, coming from the evolution of the micromorphic variables.

In the second chapter the numerical aspects of the IBVP related to the motion of the micromorphic solid under a given loading path, are presented. The principal equations that define the IBVP are firstly given and we continued by obtaining the three associated highly nonlinear and strongly coupled weak forms. The time and space discretization (by finite differences and finite elements respectively) are also discussed and the dynamic explicit global resolution scheme is also described. We continued with the formulation of two 2D micromorphic finite elements and the stability condition for the micromorphic damage problem. An implicit algorithm that combines the   method with an asymptotic scheme for the reduction of the size of the material Jacobian matrix is discussed in detail. Finally, we gave a brief representation of the technical aspects regarding:

 the implementation of the finite elements and the behavior model into Abaqus/Explicit by using the associated user's subroutines;  the 2D adaptive remeshing methodology.

In the third chapter an extended parametric study is performed on the model with micromorphic isotropic damage and micromorphic isotropic hardening. The objective is to explore the effect and the influence of the micromorphic model on the mesh independency of the solutions by using different mesh sizes and different values of the associated internal lengths. According to the results obtained from this parametic study we can conclude that:  The presence of micromorphic damage is necessary and enough to regularize the IBVP in contrast to the micromorphic isotropic hardening;

 The micromorphic damage model can give mesh independent solutions under the following conditions: o the size of the chosen internal length should be sufficiently bigger than the size of the elements () d h  , and o The most appropriate choice for the micromorphic moduli should depend on the fact that the values of H and g H should be restricted in an "intermediate value" interval so that they are neither too low, in order to retrieve the local solutions, nor too high so that the micromorphic damage effect is so excessively strong that leads to no rupture appearance despite the large displacements.

In Chapter 4 we have given the major steps for the material parameters identification concerning the elasticity, plasticity and local damage. Afterwards, we proposed a numerical methodology for identifying the value of the micromorphic internal length related to the micromorphic damage by linking it to the width of the shear bands that appear during the localized necking and comparing with the experimental bandwidths obtained by the ESPI measurements in order to validate the accuracy of this first identification effort.

Finally, the fifth chapter was dedicated to two 2D applications, a bending and a blanking test, showing the efficiency and the predictive capabilities of a complete micromorphic damage model. This work has opened a new field for further investigation on the formulation of nonlocal micromorphic behavior models. Concerning the "Micromorfing" ANR program, many open questions raise, the deeper investigation of which is essential.  Bring together the numerical developments performed by CdM/MinesParisTech concerning the hyper-reduction of the models (HROM) and those performed by LRM/UTC concerning the 3D adaptive remeshing and their application to our formulation using our elements extended to 3D.

 From the theoretical point of view: some extension could be added concerning:  The introduction of induced anisotropies due to the plastic flow, damage, distortion of the yield surface etc…; 

The introduction of the micromorphic dissipation including the micromorphic plastic strains as well as the dissipation relative to the micromorphic phenomena; 

The extension to viscoplastisity and strong coupling with temperature; 

The exploration of the kinematic aspects related to the micromorphic variables in finite transformations and the impact on the objectivity of the model (choice of rotation frames);  A link between the micromorphic and the micro-macro formulations, in the framework of the appropriate homogenization methods in order to improve the calculation of media with microstructure [START_REF] Forest | Milieux continus généralisés et matériaux hétérogènes[END_REF]; 

The analytical study of some closed form solutions.

 From the numerical point of view:  The formulation of 3D micromorphic elements;  Introduction of additional degrees of freedom (kinematic hardening, plastic strain…);  Adaptive remeshing for the micromorphic model in 3D;  Meshless methods adapted for gradient models; La puissance virtuelle des forces internes du milieu local est étendue au niveau du milieu micromorphique généralisé en utilisant les deux degrés de liberté micromorphiques supplémentaires associés respectivement à l'écrouissage isotrope micromorphique r et à l'endommagement isotrope micromorphique d . L'application de la puissance virtuelle conduit ainsi à trois équations aux dérivées partielles, avec leurs conditions aux limites associées ; l'équation de bilan locale tandis que les deux autres expriment des équations de bilan de forces micromorphiques:
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En se basant sur la méthode de l'état local [START_REF] Germain | Cours de mécanique des milieux continus[END_REF] 

  Ecrouissage cinématique  X Ecrouissage isotrope r R Endommagement ductile isotrope d Y Ecrouissage isotrope micromorphique r r     R R      Endommagement ductile isotrope micromorphique d d       Y Y     
                  (1.2) -Ecrouissage cinématique:   2 1 3 g X d C         (1.3) 
-Ecrouissage isotrope:

(

) (1 ) 1 1 g r R d Qr Q d r d d r r                   1 
-Endommagement ductile isotrope:

g E A R d Y Y Y Y Y d           (1.5) avec,     1 2 1 1 1 : : ( ) 2 1 : ( ) 3 1 1 1 1 1 ( ) 2 2 2 11 () ee E A g R r r r r d Ya Y C b rr Y d Qr d Q d r d r d Q r r c dd Y H d d d                                                    (1.6) 
-Endommagement ductile isotrope micomorphique et son premier gradient: -Ecrouissage cinématique: En utilisant la formulation lagrangienne actualisée, les formes faibles associées aux formes fortes (Eq.(1.1a), Eq.(1.15) et Eq.(1.16)) peuvent être facilement obtenues grâce à la méthode des résidus pondérés [START_REF] Belytschko | Non Linear Finite Elements for Continua and Structures[END_REF]. Nous partons de l'extension de la forme faible de Hu-Washizu proposée par Fish et Belytschko [START_REF] Fish | A general finite element procedure for problems with high gradients[END_REF]) pour dériver les formes faibles suivantes:  Forme faible associée aux équations d'équilibre classiques: 
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) s pp YY a X X bR S F X R d f C d d s d S             (1.10) avec la norme     3 : 2 X X X        définissant
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 Forme faible associée aux équations de bilan de l'écrouissage isotrope micromorphique: Ces trois formes sont fortement couplées et non linéaires de sorte que leurs résolutions analytiques sont impossible. En conséquence, des méthodes numériques basées sur la discrétisation temporelle et spatiale par des Eléments Finis appropriés, est nécessaire pour résoudre les équations non linéaires discrétisées définissant le PVIL. Cette approche conduit à un système algébrique non linéaire qui peut être résolu en utilisant le schéma itératif de type Newton.
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L'introduction des nouvelles équations d'équilibre micromorphiques dans le PVIL nécessite la construction d'éléments spéciaux, basée sur des formes variationnelles appropriées comme celles de Hu-Washizu, avec une décomposition particulière des gradients de transformation. Nous avons implémenté dans Abaqus/Explicit® un élément 2D quadrilatéral initialement proposé par Wang et. al, (2004). Cet élément 2D bilinéaire quadrangle à déformation postulée est défini de manière à éviter l'apparition de verrouillage au cisaillement transverse et à l'incompressibilité. En suivant la méthode de déformation postulée, nous développons un simple élément 2D axisymétrique à quatre noeuds. Pour cet élément, la projection orthogonale des champs de contrainte et de déformation par l'approche B-bar de Simo et Hughes [START_REF] Simo | Computational Inelasticity[END_REF]) et l'opérateur de    -projection, suggérée par Flanagan et Belytschko [START_REF] Flanagan | A uniform strain hexahedron and quadrilateral with orthogonal hourglass control[END_REF] est appliquée.

Considérant la procédure d'analyse dynamique explicite dans Abaqus/Explicit les solutions du PVIL à trois formes présentées ci-dessus, sont obtenues simultanément par un couplage explicite, basé sur l'implémentation d'une règle d'intégration explicite avec l'utilisation de matrices de masse diagonales. Pour chaque rangée, le terme de masse localisée diagonale est obtenu en additionnant les différents termes associés à chaque colonne: 
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Comme 0 p   , pour cet incrément de chargement élastique essai, le critère de charge de von Mises (Eq. (1.9)) correspondant à cette contrainte d'essai se réécrit comme: Dans ce cas, la fonction de charge de von Mises prend la forme suivante: 
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(2.10)

Ce système de deux équations à deux inconnues est résolu par un schéma itératif Newton-Raphson afin de les linéariser sous la forme suivante: Au cours des simulations numériques de divers procédés de mise en forme, les grandes déformations plastiques qui se produisent dans les zones de forte déformation plastique conduisent à des zones de déformation hautement localisées. À l'intérieur de ces zones de strictions, des défauts microscopiques peuvent apparaître fréquemment conduisant à l'apparition de fissures macroscopiques. La simulation numérique de ces processus, en utilisant la méthode des éléments finis basée sur la formulation lagrangienne actualisée, conduit à une grande distorsion d'élément au cours de la simulation. Pour cette raison, les procédures de maillage adaptatif sont nécessaires pour effectuer une analyse complète. Dans cette thèse, une méthodologie de remaillage adaptatif 2D est proposée et appliquée avec succès à des problèmes de mise en forme hautement non linéaires avec apparition de l'endommagement. La procédure adapte la séquence de chargement et la taille du maillage, en utilisant des indicateurs d'erreur appropriés. Le générateur de maillage DIAMESH2D est ensuite réalisé à l'aide d'éléments quadrangulaires ou triangulaires linéaires ou quadratiques [START_REF] Rassineux | An automatic mesh generator for planar domains[END_REF], selon les étapes suivantes (Fig. 2.1): Transfert the mechanical fields for the old mesh to the new mesh

M n M n+1
Increase of the next loading sequence Comme indiqué dans la section précédente, les courbes Fu  numériques ont été utilisées pour étudier les effets de H et g H et choisir l'approche la plus appropriée, sans prendre en compte la notion de longueur micromorphique interne d . A cause de cet effet et sous l'existence perceptible de non-localité, nous avons réalisé une mesure expérimentale des champs des taux de déformation à l'aide de l'Interférométrie Electronique Spectroscopique (ESPI) au cours d'un essai de traction de l'acier inoxydable 430. Le taux de déformation xx  mesuré par ESPI est utilisé pour déterminer l'évolution de la largeur de bande de localisation. L'idée est de définir un lien entre d et la largeur de bande intégrale mesurée. La distribution du taux de déformation totale est supposée être une simple superposition (somme) de la distribution du taux de déformation de ces deux bandes. Ce modèle n'est pas un modèle mécanique mais un modèle purement analytique utilisé pour décrire le l'évolution spatiale du taux de déformation et extraire les paramètres globaux et complètement indépendants du comportement constitutif du matériau. La distribution du taux de déformation dans chaque bande est décrite par une combinaison linéaire d'une fonction gaussienne et d'une fonction lorentzienne:

      1 2 max max ( , ) , , , , , , ( , , , , (1 ) 
, , , , ) Dans le quatrième chapitre, les principales étapes pour l'identification des paramètres de matériaux ont été citées concernant l'élasticité, la plasticité et l'endommagement local. Par la suite, une méthodologie numérique a été proposée pour l'identification des valeurs des longueurs internes micromorphiques, liées à l'endommagement micromorphique dû à la largeur des bandes de cisaillement qui apparaissent lors de la striction localisée. Et par la suite une comparaison avec les largeurs expérimentales obtenues par les mesures ESPI, a permis de valider la précision de ce premier effort d'identification.
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Finalement, le cinquième chapitre a été consacré à deux applications en 2D, un essai de pliage et une opération de découpage, montrant l'efficacité et les capacités prédictives d'un modèle à l'endommagement micromorphique.
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Figure 1 . 2 :

 12 Figure 1.2: Schematic representation of the damage effect on the force-elongation curve (Saanouni, 2012)

e

   for the plastic flow, ( , ) dY for the ductile damage, ( , ) rR for the isotropic and ( , ) X  for the kinematic hardening, we introduce four different pairs of micromorphic state variables noted as   , rRand   , dY accounting for the micromorphic isotropic hardening and the micromorphic isotropic ductile damage as well as the pairs of their respective first gradients: ( , ) rR  and ( , ) dY  .

13 )

 13 There are many possible options for the choice of the functions   functions are positive and decreasing with respect to the scalar isotropic damage variable d ; they tend to unity when 0 d  and to zero if d approaches its critical value c d , generally close to 1.

  The value of the parameter r coupling with the local damage variable.1.4.3 State potential and state relations 1.4.3.1 Thermodynamics of irreversible processesBy assuming the isothermal conditions, the local form of the Clausius-Duhem inequality, derived by combining the first and the second principles of thermodynamics, is enriched with the micromorphic variables:

  a closed convex function of the classical local state variables: e  , d , r and  .

e

  are the three eigenvalues and corresponding eigenvectors of the tensor T and i T is the positive part of i T defined by: and negative parts of the second-rank tensor T verify the following orthogonality and differentiability properties:

d

  ) from the micromorphic damage balance equation (Eq.(1.60)), we are leaded to the well-known Helmholtz equation proposed in the framework of the so called implicit nonlocal damage formulations as in Engelen et al. (2003), Geers et al. (2003),[START_REF] Geers | Finite strain logarithmic hyperelasto-plasticity with softening: a strongly non-local implicit gradient framework[END_REF] and the framework of the so-called gradientenhanced models[START_REF] Engelen | Nonlocal implicit gradient-enhanced elasto-plasticity for the modelling of softening behaviour[END_REF][START_REF] Peerlings | Enhanced damage modelling for fracture and fatigue[END_REF] Peerlings et al., 2001;[START_REF] Peerlings | A thermodynamically motivated implicit gradient damage framework and its application to brick masonry cracking[END_REF]) .
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 61 Kinematics of finite transformationsWe consider a deformable solid 1

Figure 1 . 3 :

 13 Figure 1.3: Kinematics of finite transformation(Saanouni, 2012) 

1

 1 

Figure 1 . 4 :C

 14 Figure 1.4: Schematic representation of the polar decomposition(Saanouni, 2012) 

;

  Simo and Ortiz, 1985; Sidoroff and Dogui, 2001, Badreddine et al, 2010; Saanouni 2012 among others), where the rotated configuration is Lagrangian by its orientation and Eulerian by the eigenvalues of the physical quantities. As shown in Fig. 1.5, the configuration p t

Figure 1 . 5 :

 15 Figure 1.5: Definition of two locally rotated objective configurations(Saanouni, 2012) 

FF

  as micromorphic boundary forces noted as r F on r for the micromorphic isotropic hardening and d F on d for the micromorphic damage. Due to lack of information and for the sake of simplicity, we neglect all the micromorphic forces by taking 0

Figure 2 . 1 :

 21 Figure 2.1: Schematization of the IBVP(Saanouni, 2012) 

1 nt

 1  since their values are supposed to be known at any time from the beginning of the time interval at 0 t until the time n t .More precisely, for our micromorphic problem, the discrete nodal fields     , known at the beginning of the increment n t . The goal is to calculate    

1 nt 53 2. 3 . 2

 15332  by using the discretized weak forms to be mentioned in the following paragraph. Space discretization of the IBVP using finite elementsIn the framework of the FEM, the domain t  is discretized into a finite number

        are the matrices of the interpolation functions for each element () e for the displacement, the micromorphic damage field and the micromorphic isotropic hardening field respectively. These functions depend only of the node coordinates and are independent of time. The terms ,, correspond to the nodal displacement, micromorphic damage and isotropic hardening for each node i expressed in the global reference space.

r

  indicating the classical isotropic hardening of the element. The consistent mass matrices are often favorably replaced by their diagonal forms called the lumped mass matrices, obtained by concentrating the constant mass of the element in its different nodes. Several methods are used to diagonalize the mass matrices, as can be found in literature[START_REF] Jurgen | Finite element procedures[END_REF]; T J R, 1987; Zienkiewicz and Taylor, 2005).

1 2 nD

 12  or, half-step consider the development of the tensor gradient strain rate

Figure 2 . 3 :

 23 Figure 2.3: Corotational definition of the Q4-URI element

  u  contain the nodal displacements in the r and z direction respectively. 65

  the element volume per radian.

1 ntt

 1  by keeping the values of the micromorphic damage and the micromorphic isotropic hardening constant at time .n The mechanical equation is then written under the following form:

  the accelerations of the displacement-like variables by solving the weak forms of the IBVP. The main steps of the dynamic explicit resolution scheme are summarized as follows: 1) Resolution of the displacement equation (Eq.(2.2)) and the micromorphic equations (damage and isotropic hardening) in Eq.(2.3) and Eq.(2.4). a) Compute the lumped mass matrix e u M   for once, using the Eq.(2.21) and the lumped mass matrix of the micromorphic fields e d M   for the damage (Eq.(2.15)) and e r M   (Eq.(2.18))



  ) and Eq.(2.20); g) Compute the acceleration   1 n Ü  and the velocity   time rates of the micromorphic fields   according to the Eq.(2.89) and Eq.(2.90).

  section 2.3.2. The following equation (Eq.(2.94)) is then solved in 1D for one element the elementary highest eigenvalue of the mechanical system and e K the elementary stiffness matrix. Considering the stability condition provided by Abaqus®/Explicit, we define the stable time increment for the mechanical problem as:

   and the kinematic hardening 1 n   at each integration point for each element at time step    , according to the already known state variables at time n t , the state relations Eq.(1.24) to Eq.(1.27) and the evolution equations Eq.(1.50) to Eq.(1.53).

  lying inside the yield surface (e.g. elastic unloading), and the state variables are updated as follows giving the elastic solution: , it means that the trial stress state lies outside of the yield surface, something not admissible in time independent plasticity. The solution is then plastic and the trial solution should be corrected to determine the final values of the state variables ,

  each iteration which as a result, allows us to deduce the values of   to the calculation of all the other variables at time1 n t  .It is worth noting that we can simplify the system with two equations and two unknowns in one highly non-linear scalar equation with one unknown the Newton-Raphson loop, supposing that the damage at time



  at a Gauss point, we exit the routine, by maintaining the state variables and keeping them unchanged at   n t .  Else, ( if for example nc dd  ) the elastic prediction-plastic correction code is applied:  Calculation of the trial criterion by using the loading increment in     we continue to the plastic correction by applying the Newton- Raphson iterative scheme until the convergence ( Update all the state variables at   1 n t  . In case 1 nc dd   (total rupture test) in one Gauss point, we set we neglect all the stress-like stress variables and preserve the latest values of the strain-like variables.

o

  2.4): o Step n°1: The initial part is coarsely meshed with respect to a maximum element size max x  and the local curvature of the tools; o Step n°2: ABAQUS/EXPLICIT is used with a user defined VUEL user subroutine in order to solve the problem for the first load sequence and the final solution (displacement and state variables) at the end of the current loading sequence for the current mesh () i M is obtained; o Step n°3: If the number of fully damaged elements does not exceed a given threshold and if all the fully damaged elements have the smallest mesh size min dam x  , these fully damaged elements are removed. New boundaries are then defined with respect to a new mesh size based on the error indicators. If the total number of the fully damaged elements exceeds the known threshold or if the size of any fully damaged element exceeds min dam x  , the analysis is cancelled for this loading sequence. A new load sequence is then carried out for a reduced loading amplitude. o Step n°4: Error indicators based either on the local curvature of the tools at the contact boundaries and/or the Hessian of the plastic strain and damage rates are calculated and a new map of mesh sizes is derived from those error indicators; o Step n°5: Knowing the mesh sizes map a new mesh Step n°6: Data from mesh () i M are transferred to the newly created mesh Step n°7: A new input file for the analysis is prepared for a new loading sequence and the analysis is restarted from step 2.
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 24 Figure 2.4: 2D adaptive remeshing scheme[START_REF] Labergere | Srain rate districution and localization band with evolution during tensile test[END_REF] 

  is provided. X denotes the coordinate vector at which the approximation is computed. The contribution of each nodal value to the approximation is influenced by a weighting function  
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 25 Figure 2.5: Diffuse transfer procedure

:

  The smallest mesh size of fully damaged elements which are thereafter removed Whenever the accumulated plastic strain p does not exceed a given threshold denoted by max p , the mesh size variation evolves linearly from max that the size decreases exponentially to reach the minimum value min p x  .
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 31 Local material parameters for the 430 steel specimen For the micromorphic (nonlocal) parameters, different values were taken into consideration for the pairs: ( , ) g HH for the micromorphic damage and ( , )
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 3132 Figure 3.1: Specimen geometry (Bao et al., 2015)
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 33343536 Figure 3.3: Local damage, equivalent plastic strain and von Mises stress eigenvalues before the final rupture of the first element for 0.8 h  mm giving 11.73 rupt u  mm

Figures 3 .

 3 Figures 3.9a.2, 3.10a.2 and 3.11a.2 show the shape of the finale crack for the three cases of 6.4 H  along the band that concentrated the highest amount of plastic strain leading to the final rupture. Figures 3.8 and 3.12 show the comparisons of the eq
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 3738 Figure 3.7: Comparison of the global force-displacement responses of the local and the micromorphic model for a fixed 6.4 H  and three different values of g H
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 39310631133313 Figure 3.9: Local and micromorphic damage, equivalent plastic strain and von Mises stress distribution for 6.4, 0.1 d H  mm (i.e.

d 3 .

 3 Figures 3.15a.2 and 3.16a.2 show the shape of the finale crack for 0.06 / 60.0 0.1 d  mm and 60.0 / 60.0 1.0 d  mm, along the band that concentrated the highest amount of plastic strain leading to the final rupture. Figures 3.14 and 3.19 show the comparisons of the eq
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 3143153163173183604 Figure 3.14: Comparison of the eq

Figure 3 .

 3 Figure 3.22a.2 shows the shape of the finale crack for 10.0 / 1000.0 0.1 d  mm along the band that concentrated the highest amount of plastic strain leading to the final rupture. Figures 3.21 and 3.27 show the comparisons of the eq
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 3203213223233243253263 Figure 3.20: Comparison of the global force-displacement responses of the local and the micromorphic model for a fixed high value of the modulus 1000.0 H 

H constant and equal to 6 . 4 ,

 64 and it is the largest observed for this study resulting from the extremely high value of 100060.0 and 1000.0 respectively by varying the value of the internal length d between 0.1, 1.0 and 5.0 mm in order to observe the effect of the micromorphic damage moduli in terms of the global Fu  and eq p   curves, distribution of mechanical fields, local damage evolution and regularization of the solution. For all the tests, we examine the evolution of ,, d d p and eq  as well as the evolution of the local damage, the eq p   and force-displacement curves for each case and we compare with the results obtained from the purely local model as shown above.

gH

  increases (larger d ), the more the rupture is delayed as well, for example, for 60

5 :

 5 Figures 3.28, 3.30, 3.32, 3.34 and 3.36 represent the global local and micromorphic Fu  responses for all the six the cases for the three different meshes compared with the local case

  ,3.31, 3.33, 3.35, 3.37 and 3.39. 
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 32833333333333 Figure 3.28: comparison of the global force-displacement responce of the local and the micromorphic model for three mesh sizes ( 0.6 , 10.0, 3.6 g d mm H H    )

For 2 Figure 3 . 40 :

 2340 Figure 3.40: Force-displacement response of the uncoupled micromorphic model ( 2.5 g Q  )

For 7 :Figure 3 .

 73 Figure 3.41: force-displacement response of the uncoupled micromorphic model ( 0.1 Q  )
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 834233 Figure 3.42: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic isotropic hardening distributions at

3. 3 . 3 . 1 9 :Figure 3 . 44 :Figure 3 . 45 :Figure 3 . 46 :Figure 3 . 47 :Figure 3 . 47 .

 3319344345346347347 Figure 3.44: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic isotropic hardening distributions at 12.3 rupt u  mm for 1000.0 , 25000.0, 60.0 gQ Q H    ,

  with keeping the isotropic hardening under a purely local form:

13 :Figure 3 .

 133 Figure 3.48: comparison of the global force-displacement responce of the experimental and the micromorphic model for 100.0, 100.0, 1.0 , 5.0 , 10.0 , 15.0 g r r r d H H mm mm mm mm      
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 349350351 Figure 3.49: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic isotropic hardening distributions at 12.66 rupt u  mm for 1000.0 , 25000.0, 100.0 gQ Q H    ,
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 3533543554 Figure 3.53: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic isotropic hardening distributions at 12.9 rupt u  mm for 0.8 h  mm

Figure 3 .

 3 Figure 3.56 shows the global Fu  responses obtained for the three mesh sizes. The figure clearly shows the dependence of the solution on the size of the element, as seen for the purely local model and we conclude that the model with micromorphic isotropic hardening coupled with local damage fails to regularize the problem by giving an independent and unique solution.

Figure 3 . 56 :

 356 Figure 3.56: Global force-displacement response of the micromorphic isotropic hardening model for

Figure 4 . 1 :

 41 Figure 4.1: Experimental Fu  curve obtained from the tensile test for a specimen made of 430(X8Cr17) stainless steel The specimens on which the tests were performed are made of stainless steel 430(X8Cr17) with effective length of 0 45.0 l  mm, width of

Figure 4 . 2 :

 42 Figure 4.2: Geometry of the used specimen

2 )

 2 The uniaxial loading path and Poisson effect linked to the different strain component:



  curve in order to identify the elasticity material parameters regarding the Young's modulus  and the yield stress . y After this study and for the specific material we conclude that: of the isotropic (Q, b) and kinematic (C, a) hardening parameters Since we are still before the value max F of the maximum force and before the heterogeneity of the fringes followed by the diffuse necking, we can still work on the   curve by taking into consideration this time the plastic part of the curve where the values of the local damage d are still relatively low.

p

  curve as shown in Fig.4.3. 

Figure 4 . 3 : 7 )

 437 Figure 4.3: Experimental vs numerical plastic part

9 )

 9 Step n°3 : Identification of the local damage (S, s, β , , Y 0 ) and micromorphic damage   , g HH parameters For the third and the last step of the identification process we use the stage (III) of the Fu  curve. The damage parameters that have to be identified are both of local and nonlocal nature and thus we can divide this step in two: Step 3-i, for the identification of the local damage parameters, e.g, Step3-ii, for the identification of the internal length

  of the parameter  representing the nonlinearity of damage is negligible. II. When the local damage 0.1 d  , the increase of parameter  accelerates the evolution of the local damage variable d . III.The parameter  controls the influence of the local damage on the isotropic hardening.Considering the formula of R Y in Eq.(1.28c), the higher values of  provide a smaller value of

  and 4.5.

Figure 4 . 4 :

 44 Figure 4.4: Experimental set-up: in-plane speckle interferometry

Figure 4 . 5 :

 45 Figure 4.5: The laser beam path schematized as a red line

  stage can be divided into two sub-stages, one where the disappearing band is still active and another where it disappears (Figure4.6).

Figure 4 . 6 :

 46 Figure 4.6: Evolutions of the fringe patterns (top row) obtained by ESPI and the corresponding strain rate maps (bottom row) during the reference test

  the inclination of the band i with respect to the transverse direction,  i b : represents the location of the band i ,  i B : represents the integral width of the band i .

Figure 4 . 7 :

 47 Figure 4.7: Illustration of the parameters, the image on the left is a fringe pattern and that on the right is the corresponding strain rate map obtained

Figure 4 . 8 :

 48 Figure 4.8: Evolutions of the localization band characters vs total average strain (or time), (Bao et al., 2015)

  an element located in the central zone we manage to extract the values of the numerical bandwidth B dom during the diffuse and the localized necking and compare the numerical results with the experimental ones shown in Figure4.8. The steps of the proposed methodology are given in the following Table4.1.

N 3

 3 is the number element located in the usefull area of the specimen. Iterative procedure for the identification of the local damage parameter S and micromorphic moduli   ,

Figure 4 . 14 :

 414 Figure 4.14: Evolution of the localization dominant band for ( 100.0, 36.0) g HH  and

Figure 4 . 15 :

 415 Figure 4.15: Evolution of the localization dominant band for ( 100.0, 64.0) g HH  and

Figure 4 . 16 :

 416 Figure 4.16: Evolution of the localization dominant band for ( 100.0, 36.0) g HH  , numericalexperimental comparison for two varying meshes 0,2 h mm  and 0,4 h mm 

Figure 4 . 19 :

 419 Figure 4.19: Berkovich indentation in aluminum Figure 4.20: Residual impression in nickel, made by a Berkovich diamond indenter As shown schematically in Fig. 4.21, equipment for performing instrumented indentation tests consists of three basic components: (a) an indenter of specific geometry usually mounted to a rigid column through which the force is transmitted, (b) an actuator for applying the force, and (c) a sensor for measuring the indenter displacements.

Figure 4 . 21 :

 421 Figure 4.21: Schematic representation of the basic components of an instrumented indentation testing system

  () h data obtained during one full cycle of loading and unloading is presented in Fig. 4.23. The important quantities are the peak load max () P , the maximum depth max () h , the final or residual depth after unloading () f h , and the slope of the upper portion of the unloading curve () dP dh  

  Poisson's ratio for the test material, and ind  and ind  are the elastic modulus and Poisson's ratio, respectively, of the indenter. For diamond, the elastic constants 1141 Pharr, 1992; Simmons and Wang, 1971).

Figure 4 .

 4 Figure 4.22 axisymmetric indentation showing Figure 4.23 indentation load displacement data during one various quantities used in analysis complete cycle of loading and unloading

Figure 4 .

 4 Figure 4.24: DC04 specimen geometry (Bao et al., 2015)

Figure 4 .Figure 4 . 26 :

 4426 Figure 4.25: DC04 specimen after the tensile test

Figure 4 . 27 :

 427 Figure 4.27: Small Berkovich indentations located at specific points in the DC04 sample

Figure 4 . 28 :

 428 Figure 4.28: Variations of the hardness () H and the Young's modulus () E in the localized necking area located in the central line of the sample

  Modulus (GPa) gone outside the plastic area and has performed some Berkovich indentations on the resin and not on the sample due to its small thickness.With the help of the effective Young's Modulus calculate the damage isovalues and plot it as well along the axis (Figure4.29). For example, for the maximum value of the damage

  into the micromorphic balance equation (Eq.(1.60)) of Fig. 4.29 and a possible analytical form of d coming from the Eq.(4.16), we might succeed in finding another link between the bandwidth B and d .

Figure 4 . 29 :

 429 Figure 4.29: Local damage vs Lorentzial function () LB

  a) A proportional to the elastic part (I) e xx xx   curve in order to identify the elasticity material parameters regarding the Young's modulus  , and the yield stress . y  b) A proportional to the plastic part (II) p   curve in order to identify the isotropic (

  the numerical tensile test results to relate it to the width of the dominant band and propose a methodology to identify the couple of ( , ) g HH .
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 51 Figure 5.1: Air bending setup enhanced with online measurement system GOM-Aramis

Figure 5 . 2 :Figure 5 . 3 :Table 5 . 1 :

 525351 Figure 5.2: Force-displacement response of a DP1000 tensile test

Figure 5 . 4 :

 54 Figure 5.5 compares the experimentalFu  curve to the numerically predicted ones illustrating the expected mesh dependence since the force-displacement curves are sensitive to the mesh size. As expected, the displacement at the final fracture is clearly mesh dependent:10.98 fr U  mm for

Figure 5 . 5 :

 55 Figure 5.5: Experimental and numerical force-displacement curves of DP1000 for air-bending for the local model 5.2.2.2 Behavior model with micromorphic damage (

Figure 5 . 6 :Figure 5 . 7 Figure 5 . 8 :

 565758 Figure 5.6: Experimental and numerical force-displacement curves of DP1000 for air-bending for the micromorphic model

Figure 5 .

 5 [START_REF] Badreddine | Damage anisotropy and its effect on the plastic anisotropy evolution under finite strains[END_REF] shows the evolution of both local and micromorphic damage along these horizontal lines of the ruptured specimen at the moment of , the micromorphic damage is lower than the local damage () dd  . At the beginning of the damage flow we have dd  , but as the damage increases inside the localization zone the local damage increases more rapidly than the micromorphic damage. Accordingly, the difference between d and d increases inside the damaged zone and at the final fracture 1the fracture criterion uses the local damage d instead of the micromorphic damage d which never reaches the critical value of the damage at fracture, i.e., 1.0. d  The evolution of local and nonlocal damage appears practically identical for the three mesh cases but the crack always propagates in final stage along a single row of elements.

Figure 5 . 9 :

 59 Figure 5.9: Schematic representation of the axisymmetric blanking process

= 9 .

 9 0 µm have been chosen to refine the area of the sheet where the crack is expected to appear. Figure5.10 shows the first mesh adaptation performed using the geometrical error indicator based on the curvature of the tools and the cutting edges. The mesh is refined in the areas of the smallest curvature of the punch and the die. The size distribution of the initial mesh is important because it determines the accuracy of the contact algorithm between the tools and the sheet.

Figure 5 . 10 :Figure 5 .

 5105 Figure 5.10: Initial mesh of the sheet Figures 5.11 present the isovalues of the von Mises stress for the punch displacement 0.5 U  mm and for the three different mesh configurations i M .The 2D mesh adaptation proved to be quite efficient as the mesh refinement follows the contact areas together with the zones with higher plasticity and damage. In addition, the mesh is clearly coarsened inside the inactive areas (no plastic flow). For the three configurations i M , a crack initiates and appears near the contact between the sheet and the fillet of the die. The value of the von Mises stress near the crack is high and reaches an average value of 960.0 MPa. In the case of

Figures 5 .

 5 13 to 5.15 show the evolution of local vs micromorphic damage along the three drawn lines for µm, we observe that the micromorphic damage is higher than the local one along all the three lines. When dd  the term of the damage force local damage d is then accelerated to fill the difference with the nonlocal damage d . For the line LB near the crack, the maximum nonlocal damage reaches the value of 0.12 . For the two other lines LM and LH, the maximum nonlocal damage reaches up to 0.05 .In contrast, for the two other configurations min dam x  = 6.0 µm and min dam x  = 3.0 µm, the difference () dd remains always positive. In these two configurations, the term of damage force is negative; the evolution of the local damage d is slower. The evolutions of the nonlocal damage for the three lines and for the two configurations M 1 and M 2 seem to be quasi identical. For the line LB, the value of the maximum nonlocal damage is equal to 0.1 for the two smallest mesh sizes
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 512513514515 Figure 5.12: Schematization of high (purple) middle (blue) and bottom (green) lines of the deformed sheet for the measurement of local and micromorphic damage along the axis at 0.5 U  mm

Figure 5 . 16 :Figure 5 . 17 :

 516517 Figure 5.16: Crack propagation and adaptive mesh for punch displacement 0.73 U  mm

Figure 5 . 18 :

 518 Figure 5.18: Experiental vs numerical cut for the three mesh sizes at the end of the applied load

Figure 1 . 1 .

 11 Figure 1.1. Schéma des différentes théories en mécanique des milieux continus



  est le champ de vitesse virtuelle cinématiquement admissible et d  et r  sont les champs de vitesse virtuels cinématiquement admissibles associés respectivement à l'endommagement micromorphique et à l'écrouissage isotrope micromorphique.

  , alors que la solution soit effectivement élastique, cela signifie que l'état de contrainte d'essai se trouve à l'intérieur de la surface d'écoulement, et les variables d'état sont mises à jour comme suit pour donner la solution élastique: , cela signifie que l'état de contrainte d'essai se trouve en dehors de la surface de charge, ce qui n'est pas admissible dans la plasticité indépendante du temps. La solution est alors plastique et la solution d'essai doit être corrigée pour déterminer les valeurs finales des variables d

Figure 2 . 1 :oo

 21 Figure 2.1: méthodologie de remaillage adaptatif 2D (Labergere et. al, 2014)

mmTable 3 . 1 Figure 3 . 2

 3132 Figure 3.1 Le spécimen maillé avec 0.2 h  mm

Figure 3 . 3 Figure 3 .

 333 Figure 3.3 Courbes eq p   du modèle local et du modèle micromorphique pour

Figure 3 . 5 Figure 3 . 6 d

 3536 Figure 3.5 Endommagement local avant la fin de la charge appliquée (à

4 .

 4 Méthodologie d'identification de la longueur interne d .

1 i 2 (

 12  ou 2 représente l'une des deux bandes localisées, et (x, y) sont les coordonnées des points (x est parallèle à la direction de traction), avec : des fonctions gaussienne et lorentzienne respectivement.Les fonctions Gaussienne et Lorentzienne sont définies comme suit : l'inclinaison de la bande i par rapport à la direction transversale,  i b : représente l'emplacement de la bande ,  i B : représente la largeur intégrale de la bande i (Figure 4.1).

Figure 4 . 1 .

 41 Figure 4.1. Illustration des paramètres, l'image de gauche est un diagramme de frange et celle de droite est la carte de taux de déformation correspondante obtenue.

Figure 4 . 2 .

 42 Figure 4.2. Evolution des caractères de la bande de localisation par rapport à la déformation moyenne totale (ou temps), (Bao, François, Le Joncour, 2015)
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5 . 2 80

 52 bande commence correctement à 20 mm, suit exactement le même comportement que la largeur de bande obtenue pour 60.0 H  mais n'atteint pas un ajustement exact car elle diminue significativement à la déformation moyenne totale de 24% , tout en donnant une erreur plus petite que dans le cas précédent.Concernant le groupe des paramètres de matériaux liés à l'endommagement micromorphique et plus précisément la longueur de régularisation micromorphique utilisé les mesures expérimentales de l'ESPI et les résultats des essais de traction numériques pour la relier à la largeur de la bande dominante et proposer une méthodologie pour identifier une paire de Applications à des opérations de pliage et de découpage Dans ce dernier chapitre, nous validons la prédiction de notre méthodologie numérique basée sur une approche micromorphique dans le cas de deux procédés de mise en forme, un essai de pliage d'une tôle de DP1000 et le découpage d'une tôle en DP600. Selon les conclusions du Chapitre 3, nous n'utiliserons le modèle qu'avec l'endommagement micromorphiques dus à sa capacité à donner des solutions uniques. Par conséquent, une seule paire de paramètres micromorphiques, ( , )g HH sera activée et leurs choix seront soigneusement effectués pour assurer des solutions physiques et une propagation de fissure acceptable dans la zone complètement endommagée. Simulation d'un essai de pliageCe test a été modélisé en déformation plane 2D sans tenir compte de la symétrie. La feuille en acier DP1000 est discrétisée avec l'élément de déformation plane quadrangulaire Q4 proposé au chapitre 2, a été implémenté dans le logiciel ABAQUS®/Explicit via la routine VUEL.Trois petites tailles d'éléments ( s M ) ont été utilisées pour mailler la tôle dans la zone où la rupture peut apparaître: mm (3500 éléments).La formulation micromorphique est maintenant prise en compte en activant la contribution de la variable d'endommagement micromorphique d en fixant
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 515253 Figure 5.1. Courbes numériques et expérimentale de force-déplacement du DP1000 pour le pliage pour le modèle micromorphique

Figure 5 . 4 : 2 50

 542 Figure 5.4: Schéma du procédé de découpage axisymétrique

Figure 5 . 5 .Figure 5 . 6 .

 5556 Figure 5.5. Isovaleurs de l'endommagement micromorphique pour un déplacement du poinçon 0.73 U  mm
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	Phenomenon Mechanical variables Plastic flow Kinematic hardening Isotropic hardening Isotropic ductile damage	Internal Variable Observable state variables  Eulerian total strain tensor Non observable state variables e   r d	Dual Variable  Cauchy stress tensor  X R

Table 1 .

 1 

1: State variables associated with phenomena field

  1.4.3.2 Choice of state potential and state relationsSimilar to the local formulation, we choose the Helmholtz free energy

		, , , , , , , e d r d r d r	

  the von Mises equivalent stress, while

					 is
					y
	the initial size of the plastic yield surface. The parameters a and	b in Eq. (1.49) characterize the
	nonlinearity of the kinematic and isotropic respectively and finally,	,, Ss and	Y characterize the
					0
	nonlinear evolution of the ductile damage. It is worth noting that, despite the fact that Eq.(1.48) and
	Eq.(1.49) are identical to the classical local theory, the indirect contribution of the micromorphic
	state variables is taken into consideration since the state variables	Y and	R carry the micromorphic
	effects as shown by Eq.(1.33) and Eq.(1.34).
	Applying the generalized normality rule to the local yield function (Saanouni and Chaboche, 2003;
	Saanouni, 2012; Forest 2016) and dissipation potential above, leads to the following evolution
	equations:			
	-Plastic strain rate	
					dev
	F		
		3 ( nX	)
	p	p		
	D		,	with	n
		1	d		2	X

  Let us consider a deformable and damageable micromorphic solid made of an elastoplastic metallic material with ductile damage. At time t this solid occupies a volume

	At eat time	t	0 ,  f t t   , where 0 t and

t  with a boundary t  as shown in Fig. 2.1 and it contains a completely damaged area of volume d t  complementary to t  with a boundary d t  , so that nd t  is the not totally damaged deformable volume. f t are the beginning and the end of the applied loading path respectively, and the solid undergoes body forces noted as u t f , boundary forces noted as u t F on F t  , contact forces noted as

  )

														ir	x	t		x	t					x	t	X	x	t	r	x	t	R	x	t	d	x	t	Y	x	t	and the
	micromorphic forces, ( R	x	,	t	),	Y	(	x	,	) t associated to the two micromorphic dofs, as well as the
	two following pairs of micromorphic state variables 	( , ), ( , ) r x t R x t 		and
		d 	(	x	,	t	),	Y	(	x	,	t	)		.											
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1: The local and micromorphic balance equations 2. The kinematic equations:
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  ; Borouchaki et al., 2005; Bouchard et al., 2000; Bouchard et al., 2003; Boussetta et al., 2006; Ceretti et al., 1997; Labergere et al., 2007; Labergere et al., 2008; Labergere et al., 2010;

  As the domain geometry is time dependent, emphasis must be given to the transfer of the different fields during the process. In order to recover the different fields, a second order diffuse interpolation method is used. The main steps of the diffuse approximation method[START_REF] Breitkopf | Explicit form and efficient computation of MLS shape functions and their derivatives[END_REF] among others) are given here. The different state variables namely

	II.	Field transfer		
									Update the itération n=n+1
									t	n	1  	t	n	t  	n
									step	step	step
		"" phys S	(plastic strain, stress, damage, isotropic hardening,…) are computed at each
		Computation of the mesh size map by using integration point of each element using the local integration procedure. Thereafter, a Monge
		error estimators and geometrical size indicators patch surface of equation ( , ) S x y is built:
									22
		( , ) 1, , , , , xy S S x y x y xy  		  a		  P X a ( )	(2.136)
								Generation of the initial 22
							mesh M 0 of the deformed
		with	X		(	, x	y	)	part
									Computation of the mesh
									size map by using error
			yes				t	1 step n  	total t	estimators and geometrical/physical size
									indicators
				END			no
									Delete the previous
									abaqus® simulation and
									update	1 t  n
									step
									Estimation and correction
									of the new loading
									sequence	t 	n	by
									step
									analysing the history of the
								Correct quality of all distorted	no	previous FEM abaqus® computation
									elements
									no
								yes
									yes	The mesh size of the all damaged
									element are equal
									to	min dam x 
									yes	 Deletion of the damaged element in the mesh M n
									 Build the new boundaries
									(crack propagation)
								no
									t 	n	1 	t   	n
									step	step
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		Areas of mechanical behavior	parameter	Evolution of the element size					
	Elastoplastic size indicator	Purely elastic area  Homogeneous plastic 0 p    * 0 pp  Highly localized plastic zone  zone  	max x  * p , max p x  1  , max p x  , min p x 	max xx p    max p x x     min p p x x    max    xx max max * p p      max 1 exp p  p x  p x 	1  		p		p	*			
	Damage size indicator	Plastic zone with low damage value   min dd  Plastic zone with moderate damage value   min max d d d  Plastic zone with high damage value   max dd 	min min d , max d d , min dam x  , min dam x  min d , max d	dam xx     dam x x p min dam    min dam dam xx   	x  	p		min min dd max dd  	x  	p

* pp  * p , 3: Element size with respect to the cumulated plastic strain p and the damage variable d

  giving the three targeted values of the damage micromorphic internal lengths together with the associated fracture displacements are summarized in Table3.2.

	(i) For	H 	6.4	: the values of g
						g				
				() HN		u
											d	rupt
					0.064		0.1 mm	11.1mm
						6.4			1.0 mm	11.1mm
					160.0			5.0 mm	11.13 mm
	Table 3.2: Values of the micromorphic material parameters and fracture displacement for	H 	6.4
	As shown in Table 3.2, in Figure 3.7 by the force displacement curves and in Figure 3.8 by the
	stress-strain curves, due to the low value of the modulus	H 	6.4	, the regularization effect is small
	and the mechanical responses are close to the local solution with a fracture occurring for a
	displacement of	11.1 mm.
	In terms of the distribution of the mechanical fields inside the specimen for this case with a low
	value of	H , when	0.064 d  mm, the maximum value of local damage just before the / 6.4 0.1
	final fracture of the specimen is	d 	50.0%	(Figure 3.9a.1), the maximum micromorphic damage is
											max
	d 	19.0%	(Figure 3.9b), the maximum accumulated plastic strain is	p 	58.0%	(Figure 3.9c)
	max										max
	and the maximum von Mises stress		eq	,	Max		659.0	MPa (Figure 3.9d). For	6.4 d  mm / 6.4 1.0
	we obtain							
				1600				local_h=0.8mm	local_h=0.4mm	local_h=0.2mm
				1400			
				1200			
				1000			
				force(N)		600 800			
						400			
						200			
											displacement (mm)
							0			
								0	1	2	3	4	5	6	7	8	9 10 11 12 13 14
	1 Effect of the internal length	d for a constant mesh
	We examine the effect of the micromorphic damage modulus	H by taking three different values:
	a low value	H 	6.4	, a medium value	H 	60.0	and a high value	H 	1000.0	. For each of these three
	values, the values of the modulus g H are varied in order to obtain the following three values of the
	damage internal length	d of	0.1, 1.0 and	5.0 mm.

H

Table 3 .

 3 10: Local damage, equivalent plastic strain, von Mises stress, local isotropic hardening

			maximum values at	rupt u 	11.3	mm for	d		0.1 mm H ,		60,	H	g		0.6
	d	rupt p				r								eq	u	rupt
	0.41	0.89				0.41					719.0	12.0 mm
	Table 3.11: Local damage, equivalent plastic strain, von Mises stress, local isotropic hardening
			maximum values at	rupt u 	12.46	mm for	d		1.0 mm H ,		60.0,	H	g		60.0
	d	max	max p				r							eq	u	rupt
	0.24	2.90				0.5				872	no rupture

Table 3 .

 3 12: Local damage, equivalent plastic strain, von Mises stress, local isotropic hardening

	maximum values at	u 	15.0	mm for	d		5.0 mm H ,		60.0,	H	g		1500.0

3.3.3.2 Effect of r for a fixed d and a fixed mesh

  Figures 3.53 to 3.55 confirm the independence of the thickness of the crack even though it appears to be horizontal for all the mesh sizes but always on a single row of elements. In terms of the distribution of the studied mechanical fields, ,

														h	8 mm h , 	0.4 mm	and	h		0.2 mm	; we give
	strong values to the isotropic hardening parameters	( Q		1000,	Q	g		2500,		5.0 mm )	and
															r
	acceptable intermediate values to the micromorphic damage moduli (	H		60,	H	g		60,		1.0 mm )	.
															d
	Figure 3.52 shows the global responses in terms of the	Fu 	curves obtained for the three mesh
	sizes by using the Q4 element. The figure clearly shows the independence of the solution regarding
	the mesh size (for	h	0.8  , mm u	12.9 mm	, for	h	0.4  , mm u	12.7	mm	and for
										rupt					rupt
	msh	0.2  , rupt mm u	12.55 mm	) while rupt dp and	eq  , they seem
	to obtain their highest values for	h 	0.2	mm (	67%, dp  70%, 		712.0	MPa as seen in
													max	rupt	eq
	Figure 3.55), while	r and	r remain unaffected by the mesh size with	r	0.34	and	r	0.25	for the
	three cases.												
		Figure 3.52: Comparison of the global force-displacement responce of the experimental and the
									micromorphic model for
		gg		
	(	60,	1.0	),	(	1000.0,		2500.0,	5.0	),	0.8	,	0.4	,	0.2
															r
		d												

  4.3.3 Influence of the moduli  behavior since the starting and ending values of B 1 are in absolute agreement with the experimental B dom while the error remains relatively small and even negligible.

	, HH in the evolution of the integral bandwidth with g / 36.0/100.0 0.6 g HH   mm compared with 0.4 h  mm, Approximately the same tendency is observed in the case of  Case 3.b: 0.4 h  mm, d  0.4 h  mm (Figure 4.18). For
	6.0  S  approaches sufficiently the experimental curve between / 21.6/ 60.0 0.6 g d HH    / 21.6/ 60 0.6   mm the dominant band starts evolving at around mm. 21% and 25% of total average strain but 24 mm,
	The same parametric studies are analyzed. 30 drops rapidly giving a big error until 25% of the total average strain. On the other hand, when
		/		36.0/100.0		0.6	mm, the band starts correctly at	20 mm, follows exactly the same
	 Case 3.a: g d HH h  /  Figure 4.17: Evolution of the localization dominant band for 0.2 mm, / 36.0/100.0 0.6 g d HH    mm compared with 21.6/ 60.0 0.6   mm. ( 100.0, 36.0) h  g HH  and 0.2 ( 60.0, 21.6) g HH  , numerical-experimental comparison for 0,2 h mm  0 5 10 15 20 25 30 20,6 21,6 22,6 23,6 24,6 B_dom_exp mm, B1_num_H=60 B1_num_H=100 total average strain(%) bandwidth(mm) Figure 4.18: Evolution of the localization dominant band for ( 100.0, 36.0) g HH  and ( 60.0, 21.6) g HH  , numerical-experimental comparison for 0,4 h mm  For this last case, we fix 6.0 S  and 0.6 d  mm with two different combinations / 36.0/100.0 0.6 g HH    mm and / 21.6/ 60 0.6 g d HH    mm) for the two different mesh sizes. ( d The results seem quite interesting this time for 0.2 h  mm (Figure 4.17). For the choice of / 21.6/ 60.0 0.6 g d HH    mm the band width starts higher than all the previous cases (around 25 mm) followed by a good fitting between 21% and 23% of total average strain but with a big error at 25% of total average strain. For / 36.0/100.0 0.6 g d HH    mm we observe the most accurate 0 5 10 15 20 25 20,6 21,6 22,6 23,6 24,6 B_dom_exp B2_num_H=60 B2_num_H=100 total average strain(%) bandwidth(mm) g d HH g d HH behavior as the bandwidth obtained for 60.0 but does not achieve an exact fitting since it also decreases significantly at 24% of total average strain yet giving a smaller error than the previous H  case.

Table 5 .

 5 2: Local material parameters for the DP600 steel sheet The sheet is discretized with quadrangular bilinear axisymmetric micromorphic elements presented in Chapter 3 and implemented in a VUEL ABAQUS®/Explicit subroutine. Friction between the tools and the sheet is modelled by the classical Coulomb model with a constant friction coefficient 0.15   . The different element size parameters used by different error size estimator for the adaptive remeshing procedure are given in Table 5.3:

	max x 	x 	p		x 	p		1	x 	dam	d	min	d	max
		max		min				min		
	(mm)	(mm)		(mm)			(µm)		
	1.0	0.4	0.22	0.1	5.0	3.0,6.0	0.005	0.05
									or	9.0		
					Table 5.3: mesh size indicator		
	Three small mesh size configurations (indicated as					

* p

  , nous utilisons des variables d'état pour lesquelles les valeurs à chaque instant t et à chaque point matériel, déterminent la réponse matérielle. Chaque phénomène dissipatif a sa propre variable d'état dont l'évolution est dirigée par sa propre équation d'évolution. Dans cette thèse, nous nous limitons à des conditions exclusivement isothermes et aux modélisations et simulations numériques d'opération de mise en forme par déformation plastique (emboutissage, forgeage, découpage, pliage, …). Ainsi, nous avons utilisons un couple de variables internes d'état de déformation et duale en contrainte pour décrire chaque phénomène physique. Nous proposons les couples de variables regroupés dans le tableau (Tableau 1.1).

	Phénomène	Variable interne	Variable duale
	Variables d'état observables	
			
	Variables mécaniques	mesure eulérienne	contrainte de
		des déformations totales	Cauchy
	Variables d'état non observables	
	Déformation élastique réversible	e	

Table 1 .3 Variables d'état associées aux phénomènes physiques à décrire

 1 Nous choisissons l'énergie libre de Helmholtz comme potentiel d'état écrit sur la configuration fictive en fonction de toutes les variables internes locales et micromorphiques définis dans l'espace de déformation effective. En utilisant les relations d'état locales et micromorphiques couplé au potentiel d'état, nous obtenons les contraintes locales et les relations d'état micromorphiques:

	-Contrainte de Cauchy:				
	g e	  1 d	:	e	  1 d		  e ee 1 2 tr	e	

  ) découleront de l'application de la règle de normalité généralisée et de l'analyse de dissipation volumique maximale. Pour tenir compte des effets de l'endommagement, et en nous limitant au flux plastique isotrope pour des raisons de simplicité, nous avons choisis la contrainte équivalente de von Mises comme norme de contrainte pour définir la fonction de charge et un potentiel plastique. La fonction de charge de von Mises et le potentiel de dissipation plastique proposées sont référencées dans[START_REF] Saanouni | On the Anelastic Flow with Damage[END_REF] Saanouni, 2012) et s'écrivent alors sous les formes suivantes:

	 	e 	1 2 1 e µ  	est l'opérateur d'élasticité linéaire,	C et Q sont les modules respectifs
	de l'écrouissage cinématique et isotrope,	Q ,	H , g Q et g H (positifs ou nuls) sont les propriétés
	micromorphiques du solide et le paramètre  défini le couplage entre l'endommagement local et
	l'écrouissage isotrope.		
	Puisque les variables duales  	,	, RXY ,		sont données par les relations d'état, les variables de flux
	associées ( p D ,		

r , , d

  Eq.(1.2) à Eq.(1.5) et les équations d'évolution Eq.(1.11) à Eq.(1.14). Afin de calculer ces variables d'état à la fin de chaque pas de temps, nous devons intégrer numériquement les équations différentielles ordinaires globales. En présence des écrouissages isotrope et cinématique non linéaires, il a été montré[START_REF] Nesnas | An integral formulation of coupled damage and viscoplastic constitutive equations: formulation and computational issues[END_REF], Saanouni et Chaboche (2003), Badreddine et al. (2010), Saanouni (2012b)) que la combinaison d'un schéma asymptotique (Walker et Freed, 1991) avec l'algorithme de prédiction élastique/correction plastique par retour radial, conduit à un schéma d'intégration efficace inconditionnellement stable en présence d'endommagement ductile. Cette méthode est suivie ici pour intégrer les équations constitutives complètement couplées à l'endommagement micromorphique.

	pas de temps 	t	     , en fonction des variables d'état déjà connues à l'instant 1 nn t t	n t , les relations
	d'état Supposons que la déformation incrémentale totale   à l'échelle actuelle de temps soit
	complètement élastique, ce qui signifie l'absence de tout écoulement plastique induit, écrouissage
	ou endommagement, c'est-à-dire	0  . Dans ce cas, la déformation élastique essai à l'instant p 	1 t  n
	est donnée par:
		1 essai nn e      		(2.5)
		qui résulte de la contrainte d'essai:
		11
					2.4)
		où e ij M est la matrice de masse élémentaire,	e i N représente les fonctions d'interpolation,  est la
	densité et	e v J est le déterminant de la matrice jacobienne.
					1   , l'endommagement local n	1 d  , n
	l'écrouissage isotrope	1 r  et cinématique n	1   , à chaque point d'intégration de chaque élément au n
					202

Pour résoudre le système algébrique donné dans l'équation (2.11), le calcul des forces internes et externes exige l'évaluation du tenseur des contraintes locales

  2.9) 203 Pour procéder à cette correction plastique, les équations d'évolution discrétisées, non linéaires et fortement couplées doivent être résolues en utilisant le schéma itératif de Newton-Raphson, pour déterminer les variables de contrainte et les conditions d'admissibilité à 1 n t  . Ainsi, compte tenu de la plasticité isotrope, nous obtenons les deux équations fortement non linéaires suivantes avec deux

	variables indépendantes p   et	1 d  : n		
																	3   e    p  	1 aC exp C C a     p C            	
	f	n	1 		Z	* n	1 		1 1	 	d d	n n	1 	1 1      	n n d d  	11 1 1 n n d R    1 1 n n d d           	n Qr	1 	   	exp	p  QQ b Q          		0
																		1 bQ exp Q Q b     p Q             	y
																						s	
																p							
																		YY	
																			n	10	
	g	n	11 n d	d	n	 1		d	n				S		0	

Evolution de la bande dominante de localisation pour

  le comportement le plus précis puisque les valeurs de début et de fin de B 1 sont en accord absolu avec le B dom expérimental alors que l'erreur reste relativement faible et même négligeable.À peu près la même tendance est observée dans le cas de dominante commence à évoluer à 24 mm, et s'approche suffisamment de la courbe expérimentale entre 21% et 25% de la contrainte moyenne totale, mais chute rapidement donnant une grosse erreur jusqu'à 25% de la contrainte moyenne totale. D'un

		30 Pour ce cas, nous réparons	S 	6.0	et	d 	0.6	mm avec deux combinaisons différentes
				g											g
	(		H		36.0		25 0.6	mm et			H		21.6		0.6	mm) pour les deux tailles de maille
		d													d
				H		100.0								H	60.0
	15 20 différentes. Les résultats semblent être très intéressants pour choisi 21.6 0.6 60.0 g d H H    mm puisque la largeur de bande commence plus haut que tous les B_dom_exp 0.2 h  mm (Figure 4.3). Nous avons bande(mm) B1_num_H=60 de cas précédents (environ 24 mm) suivi d'un bon ajustement entre 21% et 23% de la contrainte
	0 5 10 moyenne totale, mais avec une grosse erreur à 20,6 21,6 taux de deformation total(%) 22,6 23,6 25% de la contrainte moyenne totale. Pour 24,6 B1_num_H=100 g largeur 36.0 0.6 100.0 d H H    mm on observe 0.4 h  mm (Figure 4.4). Pour
	Figure 4.3. Evolution de la bande dominante de localisation pour ( 60.0, g 21.6) g HH  , et comparaison entre les données numériques et expérimentales pour 100.0, 36.0) g HH  h  et 0, 2  1.b: 0.4 h  mm, 36.0 0.6 H 100.0 g d H    mm comparé à 0.4 mm h  mm, 21.6 0.6 60.0 H H    36.0 mm la bande autre côté, quand ( d 0.6
														100.0
							g								
		xx num		,, x y t d	 	H H		60.0 21.6		0.6	mm.
									30					
									25					
						largeur de bande(mm)			10 15 20						B2_num_H=100 B2_num_H=60 B_dom_exp
																g
							h 	.2 5	mm,				H		36.0		0.6	mm	comparé	à	h 	0.2	mm,
															d
																H	100.0
						H	g		21.6 0		0.6	mm. taux de deformation total(%)
				d											
						H		60.0 20,7			21,7	22,7	23,7	24,7
																(	100.0, HH  g	36.0)	et
		(		60.0,		21.6)							h		0, 4	mm
																212

Figure 4.4. g HH  , et comparaison entre les données numériques et expérimentales pour
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Parametric study of the micromorphic model. Chapter 4 Experimental aspects: local and micromorphic damage material parameters identification methodology.

This difference can be explained by the need to introduce a micromorphic variable associated to the isotropic hardening in order to enhance the regularization at this stage.

Figure 5.19: Experimental and numerical force-displacement curves of DP600 for blanking predicted by the micromorphic model.

Conclusions

With the simple uniaxial tensile test presented extensively in the previous chapter and these last two more realistic applications, we have confirmed the ability of our micromorphic model to obtain nearly unique solutions for different mesh sizes. In this Chapter 5, we have applied our micromorphic model for the prediction of ductile cracks initiation and propagation on an air-bending test and on an industrial blanking process. For the two metal forming processes the nonlocal model only with micromorphic damage was used. What is left, is the application of the mixed model with both micromorphic damage and isotropic hardening as presented in Chapter 3 by activating Q and g Q and optimizing the numerical implementation, in order to validate its accuracy by obtaining mesh independent solutions.



Use of Implicit (quasi-static or dynamic) solver and coupling of different solvers;

 Parametric study and applications:  The role and the influence of the micromorphic densities; 

The role and the influence of the micromorphic body and contact forces; 

The improvement of the identification methodology based on 3D full-field measurement in order to determine as uniquely as possible the best values of the micromorphic internal lengths related to the micromorphic phenomena;  More and more complex industrial metal forming applications.

 From the experimental point of view:  The numerical treatment and validation of the nanoindntation test for the introduction of a second micromorphic internal length identification methodology;  Adaptation and implementation of the 3D-DHI microscope for 3D displacement/velocity fields measurements with nanometer accuracy on loaded mechanical specimens;  Complementary characterizations for the measurement of the surface topography of the localization zones at several stages before fracture.

All these aspects are either under development, in the framework of the ANR program, or taken into high consideration as scientific priorities of the 'Formage virtuelle' team of LASMIS.