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Abstract 

The main goal of this work is to show the efficiency of the modified fully coupled constitutive 

equations in the framework of the micromorphic continua in getting really mesh independent 

solutions even with high values of ductile damage. The generalized framework of the 

micromorphic continua is presented in order to extract three balance equations from the 

generalized principle of virtual power after introducing new micromorphic degrees of freedom 

(dofs) and their first gradients: the classical equilibrium equation and the micromorphic balance 

equations concerning the damage and the isotropic hardening.  In the framework of the 

thermodynamics of irreversible processes, the state relations and the evolution equations are 

derived from the state and dissipation potentials. These potentials are enriched by introducing 

the microcracks closure phenomenon as well as the damage effect on the isotropic hardening.   

 The strong forms defining the IBVP are used to derive their associated weak forms. The latter 

are discretized in time through an Euler scheme with a global dynamic explicit solver and an 

implicit iterative local integration scheme and in a space domain using finite elements. The 

discretized mass matrices and the internal forces are given for the dynamic explicit resolution 

scheme as well as the local resolution scheme for the integration of the overall constitutive 

equations on each Gauss point.  

The associated numerical aspects are treated in the framework of ABAQUS®/Explicit thanks to 

the appropriate user’s subroutine VUEL for the implementation of the new micromorphic 2D 

quadrilateral assumed strain and 2D axisymmetric finite elements. 

The proposed numerical methodology is validated after performing a detailed parametric 

study of the complete micromorphic model in order to analyze the role and investigate the effect 

of each micromorphic material parameter. 

A methodology for identifying and properly choosing the value of the micromorphic internal 

length related to the micromorphic damage by associating it to the width of the shear bands that 

appear during the localized necking stage is also introduced thanks to the experimental ESPI 

strain rate field measurements. 

Finally, applications are made to simulate tensile tests, bending and blanking operations on 

metallic components of 430 stainless steel, DP1000 and DP600 dual phase steels respectively in 

order to validate the proposed nonlocal micromorphic formulation and to show its efficiency in 

giving mesh independent solutions compared to the purely local model. 
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General Introduction 

Nowadays, the fully local constitutive equations have been well established to model the induced 

material softening behavior due to thermal, damage and other microstructure-dependent 

phenomena. However, the solutions of the evolution problem based on these fully local constitutive 

equations are highly sensitive to the space and time discretization. The natural way to overcome this 

drawback is to account for an appropriate neighborhood of each material point by introducing some 

characteristic lengths, representative of the materials’ microstructures, into constitutive equations. 

The mechanics of generalized continua makes possible the straightforward introduction of these 

characteristic lengths, related to the microstructure, into the constitutive equations of the materials. 

The most recent and comprehensive reviews of these generalized continua and their use to solve 

various problems in mechanics of solids and fluids is found in the recent books by (Eringen, 1999, 

2002) and older works (Mindlin and Tiersten,1962; Toupin, 1962, 1964; Mindlin,1964, 1965; Eringen 

and Suhubi,1964; Green and Rivlin 1964a, 1964b, 1965; Green,1965; Truesdell and Noll, 1965; 

Eringen, 1965a, 1965b; Bringen, 1970). The application of this micromorphic framework to model the 

materials’ behavior in plasticity with damage can be found in (Forest, 2006; Saanouni, 2012; 

Saanouni and Hamed, 2013; Hamed 2012).  

Various generalized continuum theories have been developed during the last decades in order to 

account for some effects of the characteristic lengths related to the material’s microstructure and 

leading to a wide range of models (Sidoroff, 1975; Maugin, 1979; Aifantis, 1987; Forest et al., 2002; 

Aifantis, 2003; Forest and Sievert, 2003, 2006; Liebe et al., 2003; Forest, 2006; Forest, 2008; Forest, 

2009; Hirschberger and Steinmann, 2009; Forest and Aifantis, 2010 among many others). As 

summarized by Forest (Forest, 2006, 2009), all these generalized continuum theories, based on the 

assumption of local action (Truesdell and Noll, 2004), can be classified into two classes: (i) the higher 

grade continua and (ii) the higher order continua. Higher grade continua are those based on higher 

order spatial derivatives of the displacement field as originally proposed by (Mindlin, 1965; Mindlin 

and Eshel, 1968). Higher order continua are based on the introduction of additional degrees of 

freedom as pioneered by the Cosserat brothers (Cosserat, 1896, 1909, 2009),and extensively 

developed by Eringen in 1960s (Eringen and Suhubi, 1964; Eringen, 1965a, 1965b, 1999). A third class 

of generalized continuum theories is the so called strictly nonlocal continuum field theories, 

summarized in the recent book (Eringen, 2002) where a unified foundation of the basic field 

equations  is presented and various main contributing works in the field are referenced. The class of 

nonlocal theories, which are not based on the principle of the local action, are ‘‘concerned with the 

physics of material bodies whose behavior at a material point is influenced by the state of all points 

of the body’’ as stated by Eringen in his introduction (Eringen, 2002). 

Note that, the micromorphic theory initially proposed by (Eringen and Suhubi, 1964; Mindlin, 

1964), introduces a general non compatible full field of micro-strains as an extra degree of freedom 

additional to the classical displacement field. It can be applied to any macroscopic quantity in order 

to introduce a characteristic length scale in the original classical continuum model in a systematic 

way, as presented by (Forest, 2009). From the comparison between nonlocal and micromorphic 

theories presented in (Forest and Aifantis, 2010) it can be concluded that when the micromorphic 

variable remains as close as possible to the plastic strain, the micromorphic model reduces to the 

largely used strain gradient theory.  
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Additionally to the generalized continuum theories (higher grade, higher order and nonlocal), 

other approximate regularization methods have been widely used. For the mechanics of materials 

exhibiting damage induced softening, a great number of papers have been published in this 

simplified framework with the main goal to regularize the associated IBVPs (Initial and Boundary 

Value Problems) by proposing the introduction of  some ‘‘localization limiters’’ in the classical local 

constitutive equations, using either strain-gradients, damage-gradients or equivalently some 

averaging using specific integral equations (Pijaudier-Cabot and Bazant, 1987; Bazant and Pijaudier-

Cabot, 1988; Saanouni et al., 1989; Lesne and Saanouni, 1990; Tvergaard and Needleman, 1995; 

Frémond and Nedjar, 1996; Li and Cescotto, 1997; Svedberg and Runesson, 1997; Borino et al., 1999; 

De Borst et al., 1999; Ganghoffer et al., 1999; Kuhl and Ramm, 1999; Svedberg and Runesson, 2000; 

Nedjar, 2001; Peerlings et al., 1996, 2001, 2002; Bazant and Jirasek, 2002; Areias, 2003; Engelen et 

al., 2003; Geers et al., 2003; Lorentz and Andrieux, 2003; Jirasek and Rolshoven, 2003; Geers, 2004; 

Yuan and Chen, 2004; Santaoja, 2002; Cesar de Sa et al., 2006; Sornin and Saanouni, 2011). It has 

been shown in recent works that the major part of the approximated models are in fact a particular 

case of the straightforward generalized continuum theories (Hirschberger and Steinmann, 2009; 

Forest, 2009; Forest and Aifantis, 2010; Saanouni, 2012).  

On the other hand, to account for the damage activation (under tension) and deactivation (under 

compression) various approaches have been proposed (Marigo, 1985; Ju, 1989a, 1989b; Chaboche, 

1992, 1993; Lemaitre, 1992; Ladveze, 1993; Chaboche et al., 1995; Desmorat, 2000; Lemaitre and 

Desmorat, 2005; Desmorat and Cantournet, 2007; Lemaitre et al., 2009; Voyiadjis et al., 2009; 

Ganczarski and Cegielski, 2010, ...). In order to introduce this aspect in the present model, the 

simplest idea consists of introducing the damage effect (through coupling) differently into the 

positive and negative parts of each tensorial state variable under concern. Such a kind of modelling 

poses the problem of convexity loss due to the discontinuity of the potential depending on positive 

and negative parts (Ladeveze, 1993; Lemaitre and Desmorat, 2005 ; Lemaitre et al, 2009; Ganczarski 

and Cegielski, 2010; Issa et al, 2012; Saanouni, 2012). To avoid these difficulties, in this work we will 

follow the same approach given in (Issa et al., 2012; Badreddine et al., 2015).  According to this 

approach, the decomposition into positive and negative parts is accounted only for the damage 

energy density release rate Y  in order to have higher values in tension than in compression. 

All these simplified regularization methods allow us to achieve a mesh independent solution. In 

the meanwhile, the macroscopic crack, defined as the location of the completely damaged elements, 

seems to be always depending on the mesh size limited in a single row of elements (Sornin, 2007; 

Sornin and Saanouni, 2011). In fact, the Helmholtz equation that comes to regularize the damage is 

simply postulated in which the nonlocal damage simply replaces the local damage in the constitutive 

equations to reassure the coupling effects. 

The present work is part of the ANR project “Micromorfing” which brings together three academic 

partners: the UTT (PI), the UTC and the Ecole des Mines de Paris (Mines ParisTech). The main 

objective of this project is to develop an 'advanced' modeling of multiphysic thermomechanical 

coupling in the framework of the generalized continuum mechanics (micromorphic theory) to 

introduce the concept of internal lengths that are representative of the materials microstructures 

while accounting for the various initial and induced anisotropies under large deformations. The 

targeted applications concern mainly the simulation of metal forming processes in order to improve 

them with respect to the ductile damage occurrence either to avoid the damage occurrence or in 

contrary to enhance the damage occurrence. In fact, optimizing various manufacturing processes in 
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order to obtain metallic parts with controlled defects while reducing the overall cost in terms of raw 

materials, energy required for their manufacturing or their use in service and environmental impact, 

is now a vital necessity. The fracture of metallic components during their manufacture or during their 

industrial use is a consequence of the strong localization of thermomechanical fields (as strains, 

temperature or damage) inside more or less narrow zones. The strong interactions (or coupling) 

between the intensive thermomechanical fields (stress, strain, hardening, heat, damage …) inside 

these localization zones, result in some induced softening due to the damage effect and/or to the 

temperature increase. For quasi-static problems, the mechanics of materially simple (or Cauchy) 

continua has been shown to be no longer sufficient to model these highly localized phenomena in 

presence of the damage-induced softening. In the dynamic case including damage effect, the 

numerical solution of these problems leads to the localization bands whose width is very small and 

not related to the underlying microstructure. 

Roughly speaking, the project “Micromorfing” is composed by four main scientific tasks. The first 

one concerns the theoretical aspects related to both (i) the derivation of the additional 

(micromorphic) balance equations and (ii) the derivation of the fully coupled constitutive equations. 

The second task is of experimental nature and aims to propose a “fine” full field based experimental 

method to measure the localization zones in order to identify the additional micromorphic material 

parameters directly related to the internal length scales linked to each targeted micromorphic 

phenomenon. The task three is related to the computational aspects in the framework of the FE 

method using fully adaptive numerical techniques (adaptive remeshing, adaptive time 

incrementation) together with the hyper-reduction of the model. Finally, the fourth task aims to 

apply the methodology to the numerical simulation of various metal forming processes. Note that 

the hyper-reduction of the models is investigated by CdM/MineParistech (Post doc), the adaptive 

remeshing is performed by the team of LRM at UTC (PhD and Post doc) while, the experimental 

method (a part of PhD work at LNIO/UTT) and the theoretical part as well as its implementation into 

ABAQUS®/Explicit FE software (the present PhD work at LASMIS/UTT) was performed by the two 

research teams at UTT. 

In the present PhD thesis we present our works in the framework of the generalized continua in 

order to reformulate the IBVP for elastoplastic solids undergoing induced material softening due to 

the presence of the ductile damage. For this reason and in order to develop our model, we have 

chosen a formulation based on the micromorphic theory which belongs to the category of the higher 

order continua. 

In the first chapter we focus on the presentation of a macroscopic formulation in time 

independent plasticity with a strong coupling with the ductile damage in the mechanical framework 

of the generalized continua but under isothermal conditions. The general framework of the 

generalized continua is then presented in the framework of the micromorphic theory. In this 

framework we deduce the micromorphic balance equations from the generalized principle of virtual 

power with additional micromorphic degrees of freedom (dofs). Then, the use of the 

thermodynamics of irreversible processes with an enhanced space of state variables, allows us to 

formulate the nonlocal constitutive equations with both micromorphic isotropic ductile damage and 

micromorphic isotropic hardening. The elastoplastic damage model in the framework of the 

materially simple continua is given as a special case derived from the nonlocal model by deactivating 

the micromorphic effects. We also dedicate a paragraph for the notion of the micro-cracks closure 

since some properties and the behavior of a representative volume element are affected by the 
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presence of induced softening. We conclude with a paragraph concerning the extension of the model 

to finite plastic strains and a discussion on the objectivity requirement. 

The second chapter is dedicated to the numerical aspects related to the solution of the IBVP. The 

weak forms associated to the problem are formulated starting from the complete set of the balance 

equations. A nonlinear algebraic system is then obtained starting from the displacement-based finite 

element space discretization of the three weak forms. The resolution of this system by a dynamic 

explicit scheme and the local integration of the constitutive equations at each Gauss point are 

extensively discussed. A paragraph concerning the stability conditions for the micromorphic damage 

problem is added, as well as the formulation of two micromorphic 2D elements. We close this 

chapter with a paragraph containing a brief representation of the 2D adaptive remeshing 

methodology to be applied on the last chapter of the thesis. 

In the third chapter a relatively exhaustive parametric study of the proposed micromorphic model 

is conducted. We present an extended and relatively complete parametric study in order to 

investigate the effect and the influence of each micromorphic parameter as well as their role to the 

IBVP solution. The study is made for a model containing a) only micromorphic damage, b) only 

micromorphic isotropic hardening and c) a complete model containing both.  We close this chapter 

by clarifying the conditions that have to be respected before choosing the appropriate values of 

these micromorphic parameters in order to make sure that the solution is physically acceptable and 

independent from the mesh size. This parametric study of the micromorphic model was performed 

and the results were carefully analyzed to well understand the predictive possibilities of the 

proposed micromorphic fully coupled constitutive equations.  

In the fourth chapter we will only focus on the parametric study concerning the elasticity, 

plasticity and local damage parameters and we will propose a methodology for identifying and 

properly choosing the values of the micromorphic internal length related to the micromorphic 

damage for a current material by associating it with the width of the shear bands that appear during 

the localized necking stage of a simple uniaxial tensile test. 

Finally, the fifth chapter is dedicated to some applications including a bending and a blanking test, 

showing the efficiency and the predictive capabilities of a complete micromorphic model. 

The manuscript is afterwards complete by general conclusions as well as the main perspectives of 

our work.  
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Chapter 1  

Formulation of an elastoplastic damaged model 

in the framework of the generalized continua. 

The micromorphic theory. 
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1.1 Introduction 

This chapter is dedicated to the presentation of the formulation of an elastoplastic model with 

damage in the framework of the generalized continua based on the micromorphic theory. We start 

by presenting the general framework of the mechanics of generalized continua by classifying them 

into ‘higher grade’ and ‘higher order’. The generalized framework of the micromorphic continua is 

briefly presented in order to extract additional balance equations: the classical equilibrium equation 

and the micromorphic balance equations related to the additional micromorphic phenomena under 

concern. In the framework of the thermodynamics of irreversible processes with state variables, the 

state relations and the evolution relations are derived from the state and dissipation potentials. 

These potentials are enriched by introducing the micro-cracks closure phenomenon as well as 

different damage effect on the isotropic hardening. We close this chapter by one paragraph 

concerning the extension to finite strains under the formulation of a rotated frame. 

 

1.2 Mechanics of the generalized continua: the micromorphic 

theory  

The Mechanics of Materially Simple Continua (MMSC) suppose that the mechanical state at any 

material point of area   is completely determined by the history of state variables in an arbitrarily 

small neighborhood surrounding this point (Truesdell and Toupin, 1960). In this context, the 

knowledge of the first transformation gradient F  (or first displacement gradient) is sufficient in 

order to determine the mechanical state (kinematic, behavior) of this point and the continuum is 

called materially simple or local (Truesdell and Noll, 1965). 

However, in several situations, the displacement vector and its first gradient are not sufficient to 

define the mechanical state in a material point. In such cases, it is necessary to add other kinematic 

variables or dofs (degrees of freedom) to enrich the kinematical description of the continuum, as well 

as their gradients of first, second or higher order, in the principle of virtual power and as new 

arguments in the state and dissipation potentials. We call this the mechanics of generalized continua 

(MGC) or materially non-simple continua (Truesdell and Noll, 2004). These theories all seek to define 

the mechanical state at a material point in terms of a more or less vast domain surrounding the 

point, or even of the whole domain. Finally, this introduces a kind of scale effect in terms of the 

morphology of the spatial distribution of the different material phases inside the representative 

volume element (RVE) and of the size of the various constituent elements, or the effects of the 

gradients of physical fields. Different variations of these theories can be found in the literature and 

reference books such as those of the Cosserat brothers, whose book was first published in 1909 

(Cosserat, 1909) and republished recently in 2009 (Cosserat, 2009). Also among these, (Kröner, 1967; 

Stojanovic, 1970; Brulin and Hsieh, 1982; Mülhaus, 1995; Eringen, 1999; Eringen, 2001; Eringen, 

2002; Truesdell and Noll, 2004 and Forest, 2006). 

It is often proposed to classify MMCG theories into three distinct theories (Forest and Sievert, 

2003; Saanouni, 2012; Saanouni and Hamed, 2012; Labergère, 2015) as summarized in Fig. 1.1: 
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Higher grade continua, based on the introduction of higher order of the spatial derivatives of the 

displacement vector u (in addition to the first displacement vector, which defines the strain tensor) 

in the principle of virtual power, as initially proposed by (Toupin, 1962; Toupin, 1964; Mindlin, 1968). 

Higher order continua, consisting of the use of additional degrees of freedom (dof) introduced in 

the principle of virtual power, leading to additional balance equations with their appropriate 

boundary conditions to be added to the local classical equilibrium equations. This assumption was 

initially proposed by the Cosserat brothers (Cosserat, 1909) and subsequently applied by (Eringen, 

1964), (Eringen, 1970). The additional dofs are new kinematic variables along with their higher order 

gradients. The simplest of these theories is limited to the first gradients of these new kinematic 

variables, as with MMSC, which utilizes the displacement and its first gradient. Moreover, by using 

the thermodynamics of irreversible processes in a way identical to the one used for MMSC, we 

obtain generalized constitutive equations as functions of the internal lengths, characteristic of the 

continuum’s microstructure. With regard to higher order generalized continua, Forest (Forest, 2006) 

shows that the main equations suggested in the literature, including the Cosserat brothers’ theory, 

can be obtained as special cases of a micromorphic theory first introduced by Eringen (Eringen, 

1999), (Eringen, 2002). 

Continuum 

Mechanics

Hypothesis of local 

action

Hypothesis of 

nonlocal action

Generalized continua

Simple continua Cauchy continua 1832

High order 

continua

High grade 

continua

Cosserat continua 1896

Micromorphic

(Eringen 1964,

Mindlin 1964)

Second gradient

(Mindlin 1965)

Gradient of internal 

variables

(Maugin 1990)

Fully intergral formulation

(Eringen 1972)

 

Figure 1.1: Classification of the nonlocal theories, found in the recent work of Eringen (Eringen, 

2002) 

 

All of the MGC theories presented above are based on the principle of local action. So by 

excluding the strictly nonlocal continua based on integral formulations, in which the localization of 

the integral equations to a given material point causes the occurrence of “residual” localization terms 

with appropriate (complex) discontinuity conditions (Eringen, 2002), then the MGC theories are 
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formally grouped into the first two relatively distinct families from a conceptual perspective (Forest, 

2006). 

Regarding the theoretical framework which we have chosen to build our nonlocal formulation, we 

will start by giving the principal and the major steps. We have developed a formulation of an 

elastoplastic damaged model in the context of generalized continua in the framework of the 

micromorphic theory.  The kinematics of a micromorphic continuum rely on the displacement u and 

its first gradient u as well as a certain number of mciromorphic variables noted as nz  and their first 

gradients nz . These additional dofs are chosen in order to represent the micromorphic phenomena 

involved in our model.  

We consider a materially simple continuum whose behavior is described by local state variables. 

By following the approach recommended by Samuel Forest (Forest, 2009), the development of a 

micromorphic model is described by the following steps: 

 From the strain-like state variables, we choose one (or more) scalar state variable(s) 

referred as z , which carries the targeted gradient effect. We then associate to this state 

variable a micromorphic (or nonlocal) state variable noted as z , which is of the same 

nature as the “local” state variable z . Consequently, the degrees of freedom are enriched 

by the insertion of the micromorphic variable z and its first gradient z additionally to 

the displacement and its first gradient. 

 Rewrite the principle of virtual power by taking into consideration the micromorphic 

contributions. 

 By applying the generalized principle of virtual power, we obtain the differential balance 

equations along with their boundary conditions. Thus, one additional balance equation 

corresponds to each micromorphic phenomenon. 

 Expand the space of the state variables by introducing the micromorphic variables and 

their first gradients. 

 Extend and apply the principle of energy conservation (1st principle of thermodynamics) 

as well as the entropy inequality (2nd principle of thermodynamics) by using the internal 

state variables, including the contribution of the micromorphic variables z and z . 

 Use of the generalized Clausius-Duhem inequality in order to obtain: 

o generalized state relations from a state potential, and 

o generalized evolution equations. 

     The choice of the state and dissipation potentials is made in a way similar to the one of 

the classical local theory in order to extract all the constitutive equations of the dissipative 

phenomena. 

This approach is particularly suited to describe the behavior of nonlinear solids with various 

dissipative phenomena, including the role of state variable gradients, as we will see in the following. 

In this section, we will use this approach to extend the thermodynamic framework in order to 

formulate the overall equations (conservation laws and constitutive equations) in the framework of a 

micromorphic continuum. 
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1.3 Theoretical modeling of the nonlocal micromorphic damage 

model 

In metal forming through large inelastic strains, inelastic flow localization phenomena in specific 

areas, known as intense shear bands, are very often observed. These shear bands are generally the 

result of softening behavior provoked by microscopic physical phenomena. Among these 

phenomena, which are responsible for the formation of intense shear bands in metals there is 

softening, whether thermal or caused by any other physical phenomenon, in particular ductile 

damage. Generally, in these intense (visco)plastic shear bands, ductile fracture develops following 

from the three stages of nucleation, growth, and coalescence of microvoids at the source of the 

formation of macroscopic cracks. 

 

Figure 1.2: Schematic representation of the damage effect on the force-elongation curve 

(Saanouni, 2012) 

Thus, constitutive equations which take account of thermal and damage effects (or coupling) are 

characterized by a softening or negative hardening behavior, even if the material initially exhibits 

positive hardening, as schematized in Fig. 1.2. This is so for all time-independent models with 

hardening and ductile damage which are characterized by a relationship between stress and strain 

rates involving the continuous tangent operators. However, the introduction of viscosity 

(viscoplasticity models) does not remove all the “locks” resulting from the study of the mathematical 

properties and the local nature of these tangent operators especially if the softening is mainly due to 

the disappearance of all or of a part of the components of the tangent stiffness matrix of the 

structure as a result of the coupling with damage. 

These theoretical difficulties are obstacles to the validity of the local models formulated in the 

framework of the mechanics of materially simple continua (MMSC). In order to introduce the 

induced softening phenomena, it is compulsory to reformulate the constitutive equations in the 

framework of the mechanics of generalized continua (MGC). In fact, the MGC enable the natural 

introduction of various internal lengths characteristic of the material’s microstructure. 
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Despite the fact that the micromorphic effects can be linked to various phenomena (Saanouni 

2012, Saanouni and Hamed 2013), in this thesis we limit ourselves to the micromorphic effects linked 

to the isotropic hardening and the isotropic ductile damage under isothermal conditions. For this, we 

place ourselves within the context of the micromorphic theory presented in Paragraph 1.2. We will 

reconsider the elastoplastic behavior with isotropic ductile damage by limiting ourselves to purely 

mechanical aspects of an isothermal elastoplastic damageable solid totally isotropic without 

considering the quasi-unilateral effect as well as initial and induced anisotropies. However, the 

consideration of these phenomena as an aspect of a micromorphic formulation does not pose any 

obstacles (Liu, 2017).  

In addition to the four classical pairs of state variables defined as ( , )
e

   for the plastic flow, 

( , )d Y for the ductile damage, ( , )r R for the isotropic and ( , )X for the kinematic hardening, we 

introduce four different pairs of micromorphic state variables noted as  ,r R and  ,d Y accounting 

for the micromorphic isotropic hardening and the micromorphic isotropic ductile damage as well as 

the pairs of their respective first gradients: ( , )r R  and ( , )d Y . 

1.3.1 The Generalized principle of virtual power 
The virtual power of internal forces 

intP  of the classical local continuum is extended to the 

generalized micromorphic continuum level by using the two additional micromorphic degrees of 

freedom r and d  associated to the micromorphic isotropic hardening and the micromorphic 

isotropic damage respectively. Starting from the generalized formulation given in (Saanouni, 2012; 

Saanouni and Hamed, 2013) and keeping the damage and isotropic hardening as the targeted 

micromorphic phenomena, we conclude to the following expression:  

 * * * * *

int :P u Yd Rr Y d R r dV 


                                                                                     (1.1) 

where,   indicates the Cauchy stress tensor, Y  and R  are the stress-like variables associated to 

d and r , while Y and R are the stress-like variables linked to their first gradients.  

Similarly, the virtual power of external forces (body forces and contact forces via the boundaries of 

the solid) 
extP  are enriched by: 

     

     

* * * * *

* * *

u d gd r gr

ext

u d r

P f u f d f d f r f r dV

F u F d F r dS

 




          
  

      
  




                                                (1.2) 

where uf  is the classical body force while df , gdf , 
rf and grf  are the micromorphic body forces 

associated to the micromorphic variables and their respective first gradients. Also uF  is the classical 

external force while dF and rF  are the micromorphic external forces applied on the boundary  . 

Finally, the virtual power of inertia forces can be expressed as: 

 * * *

a rd

V

P u u d d r r dV                                                                                                              (1.3) 
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where u  is the acceleration, d and r  denote the acceleration associated to the micromorphic 

damage and the micromorphic isotropic hardening respectively. Finally, 
d

  and 
r  are the scale 

factors which map the local material density to the micromorphic level (Nedjar, 2001). If these two 

parameters are zero, then the micromorphic acceleration quantities can be ignored. 

The generalized virtual power enhanced with the micromorphic damage takes the following 

form for any given kinematically admissible fields: 

* * *

int , , . .ext aP P P u d r K A                                                                                                           (1.4)                                             

 

In the meanwhile, it is also worth presenting how this model can ‘restore’ its classical local 

behavior if we neglect all the micromorphic effects. We will reconsider the theoretical formulations 

in order to obtain the original classical local damage model as well as to compare and distinguish it 

from the above extended micromorphic (nonlocal) model. 

By neglecting the additional micromorphic dofs related to the micromorphic damage d  and the 

micromorphic isotropic hardening r , the virtual power of the internal forces writes under the 

classical form: 

 *

int :P dV  


                                                                                                                                  (1.5)                                                                                                                                

Accordingly, the virtual power of the external forces will retrieve its classical form, by dropping 

the generalized body and external forces associated with micromorphic fields: 

   * *u u

extP f u dV F u dS 
 

                                                                                                        (1.6)                                                                                                    

Finally, the virtual power of inertia reduces to: 

 *

a

V

P u u dV                                                                                                                                     (1.7)                                                                                                                        

1.3.2 Balance equations 
The application of the virtual power thus leads to three partial differential equations, with 

their associated boundary conditions. By substituting Eq.(1.1) to Eq.(1.3) into the generalized 

form of virtual power Eq.(1.4) and using of the divergence theorem to transform the volume 

integration, leads to the local (well known) balance of momentum while the other two express 

the micromorphic forces equilibrium equations: 
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   

 

   

 

( )

( )

( )

u

u

r gr

r

gr r

d gd

d

gd d

f u in
a

n F on

R R f f r in

b

R f n F on

Y Y f f d in

c

Y f n F on

  



 



 



    


  

        


    


        


    


                                                                     (1.8) 

We will return to these two partial differential equations later in order to express them in the 

strain space. Note that each micromorphic phenomenon introduced into the principle of virtual 

power gives rise to an additional differential problem of the type given by Eq.(1.8b) or Eq.(1.8c). The 

same approach can therefore be followed to obtain other differential equations governing other 

micromorphic phenomena, such as, kinematic hardening and plastic strain. Let us note here that if all 

the micromorphic variables are canceled, the equations Eq.(1.8b) and Eq.(1.8c) disappear and we 

retrieve the local case characterized by the equilibrium of a materially simple continuum Eq.(18.a). 

By following exactly the same procedure as for the micromorphic model, we obtain the classical 

equilibrium equation associated to the displacement, as the sole degree of freedom for the classical 

local case: 

u

u

f u in

n F on

  



    


  
                                                                                                                       (1.9) 

 

1.4 Formulation of the micromorphic damage model  

In the terms of the local state in its current configuration and under isothermal conditions, a 

deformable solid is defined by: 

 The displacement vector u  as the sole degree of freedom; 

 Several pairs of local state variables ( , )
e

  , ( , )d Y , ( , )r R and ( , )X , where 
t

Ddt  
is the Eulerian total strain measure; 

 A state potential expressed in the strain space by the Helmholtz free energy ( , , , )
e

r d    

where 
e e

t
D dt    and 

e ir
D D D  ;  

 A dual dissipation potential in the stress space *( , , , )Y R X  if the irreversible 

deformation process is time-dependent; or a yield function ( , , , )f X R d and a dissipation 

potential ( , , , )F X R d  if the irreversible deformation process is time-independent 

(Saanouni 2012). 

As a matter of fact, the extension of this materially simple continuum to a micromorphic one (or a 

generalized continuum) depends on selecting some additional pairs of state variables that will 
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determine the targeted micromorphic effects. Let us suppose that a pair of scalar variables ( , )z Z   is 

responsible for a specific micromorphic effect. Consequently, we have introduced one pair of 

micromorphic (scalar) variables called ( , )z Z  and the micromorphic continuum will be defined by: 

 The following dofs: u and z to be introduced in the virtual power; 

 The following pairs of state variables: ( , )
e

  , ( , )d Y , ( , )r R , ( , )X , ( , )z Z and ( , )z Z  . 

 We need a state potential expressed in the strain space by the Helmholtz free energy: 

( , , , , , )
e

d r z z     ; 

 A dual dissipation potential in the stress space: *( , , , , , )Y R X Z Z  . 

For this type of micromorphic continuum, we can rewrite the energy balance as well as the 
entropy inequality and deduce from these the Clausius–Duhem inequality for micromorphic 
continuum in a manner similar to local theory. Assuming, as a first approximation, that the “entropy 
production” vector remains defined for micromorphic continuum, as in the MMSC theory, by the 
ratio of the heat-flow vector to absolute zero, the only difference comes from the internal forces 
power.  The differentiation of the state potential with respect to all local and micromorphic state 
variables with the additional decomposition of the Eulerian strain rate leads to rewriting the 
inequality and deducing the expressions of the local stress-like variables as well as the micromorphic 
ones. The remaining residual term of the inequality defines the classical local volume dissipation. It is 
interesting to note that this dissipation is perfectly local and has the same form as the one resulting 
for the materially simple continua theory. This comes out from the hypothesis that the micromorphic 
variables do not dissipate due to the lack of any relative experimental information on the evolution 
of these variables. However, an additional decomposition of the micromorphic rate variables in 
reversible and irreversible parts allows overcoming this drawback under the current situation.  

 
This procedure of the theory of generalized continuum mechanics will be used throughout this 

section in order to extend the constitutive equations to account for the damage induced softening of 

the micromorphic continua. 

1.4.1 Choice of the state variables 
Based on the local state method (Germain, 1973) we use state variables for which the values at 

each instant t and in each material point determine the material response. This approach is quite 

suitable for the formulation of the constitutive equations for a deformable solid with several 

dissipative phenomena. Thus, each dissipative phenomenon has its own state variable the evolution 

of which is governed by its own evolution equation. In this thesis, we will limit ourselves to the 

formulation of constitutive equations for deformable solids, using exclusively the local state method, 

which is the method best adapted to the modeling of deformable solids in large plasticity accounting 

for many dissipative phenomena.  

By restricting ourselves to exclusively isothermal conditions and with the provision of virtual 

metal forming applications, for an elastoplastic deformable solid, we assume the following 

hypotheses: 

-H1: The reversible (elastic) strains remain small compared to the irreversible (plastic or 

viscoplastic) inelastic strains. In this case, we can consider rigorously the additive decomposition 

of the total deformation rates. 
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-H2: Volume variations generated by inelastic (or irreversible) strains are negligible. This 

hypothesis is acceptable as long as the microvoids remain small until the final rupture of the RVE. 

-H3: The updated Lagrangian formulation is used for the development of the behavior model. We 

consider that the two successive configurations are very close and we make the hypothesis of the 

total incompressibility despite the presence of damage. These simplifying hypotheses allow us to 

consider that the density remains constant 0( )  and as a result, the Kirchhoff and the Cauchy 

stress tensors are almost identical. Note that taking into account the compressibility induced by 

the damage does not pose any particular difficulties (Chaboche et al, 2006; Saanouni, 2012). 

-H4: Two types of non-linear hardenings are taken into account: 

 the isotropic hardening that controls the variation in the radius of the elastic domain, 

 the kinematic hardening that governs the translation of the elastic domain in the 
loading space.   

-H5: The damage is of ductile nature. To simplify the coupling with damage, we consider that the 

ductile damage is developed under the form of small isotropic spherical cavities. The damage 

effect at the level of an RVE will then be introduced by means of a scalar variable 0 1cd d  

such that if 0d   the RVE will be considered as safe or undamaged while if d  reaches a critical 

limit cd  , the RVE is supposed fully damaged. 

Under these hypotheses, we have associated a pair of state variables to each physical 

phenomenon. Each pair consists of a strain-like variable together with its dual force or stress-like 

variable as given in Table 1.1. 

 

Phenomenon Internal Variable Dual Variable 

Observable state variables 

Mechanical variables 
  

Eulerian total strain tensor 

  
Cauchy stress tensor 

Non observable state variables 

Plastic flow e  
  

Kinematic hardening   X  

Isotropic hardening r  R  

Isotropic ductile damage  d  Y  

Micromorphic isotropic hardening 
r

r





 

R

R



  

Micromorphic isotropic damage 
d

d



  

Y

Y



  

Table 1.1: State variables associated with phenomena field 
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These local and micromorphic (or nonlocal) state variables will be used inside the state potential 

in order to define the state relations as well as in the dissipation potential for obtaining the evolution 

equations of each physical local or micromorphic phenomenon. 

1.4.2 Definition of the total energy equivalence hypothesis and effective state 

variables 
In order to formulate a behavior model in the context of the thermodynamics of irreversible 

processes by following the local state method, we should ensure the continuity property of the 

concerned media. However, the presence of the damage, which can be represented by a more or less 

random distribution of microvoids, introduces discontinuities in the RVE. Extensive discussions in the 

literature propose to define an equivalent homogeneous "safe" RVE, without damage by a 

homogeneous transformation adapted of the damaged RVE. This fictive transformation leads to the 

definition of effective variables as a function of the actual state variables. Throughout all this work, 

the hypothesis of total energy equivalence was chosen to construct the set of effective state 

variables (Saanouni, 1994, 2012). 

More precisely, at any time (t), an RVE in its real deformed and damaged configuration, and 

where the thermomechanical state, at this time, is defined by the set of pairs of state variables from 

Table 1.1; we associate an equivalent undamaged fictive configuration, the state of which is 

described by the effective state variables listed in Table 1.2, in such a manner that the total energy 

defined over both real and fictive configurations is the same. This hypothesis is indeed a 

generalization of the elastic energy equivalence hypothesis initially proposed by (Cordebois and 

Sidoroff, 1982). 

We consider a damaged RVE whose mechanical state is described by the couples of the state 

variables: ( , ),( , ),( , )
e

X r R    and ( , )d Y  in the rotated configuration. We constract an equivalent 

homogeneous undamaged RVE the mechanical state of which is described by the effective variables: 

     , , , , ,e X r R   so that the total energy defined in the two configurations is the same. 

In terms of the Helmhold’s free energy, we assume that the total energy W is decomposed in the 

elastic energy eW  and the inelastic energies rW  and W  associated to the isotropic and kinematic 

hardenings respectively. 

1 1
: :

2 2

1 1
: :

2 2

1 1

2 2

e e

ela

kin

iso

W

W X X

W Rr Rr

   

 


 




 



 


                                                                                                                           (1.10)                                                                                                                             

1 1

2 2

1 1
. .

2 2

miso

g

miso

W Rr Rr

W R r R r


 


    


                                                                                                                            (1.11) 
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Deformed and damaged real 

RVE 
Healthy undamaged fictive RVE 

Rotated configurations (RVE) 

  

Internal state variables 

 ,e   

 , X  

 ,r R  

 ,r R  

 ,r R  

 ,d Y  

 ,e   

 , X  

 ,r R
 

 ,r R  

,r R
 
 
 

 

 

Total energy 

g

T ela kin iso miso misoW W W W W W      
   , , , , , , ,e e

T TW r d r W r r     

Table 1.2: Definition of the total energy equivalence hypothesis in strain space 

  

In the isotropic damage case, the general relations between the state and the effective variables 

can be written under the following form: 

 
  

 
  

 
  

,

,

,

e e

ela

ela

kin

kin

iso

iso

g d
g d

X
X g d

g d

R
R r g d r

g d


  

 


 




 



 


                                                                                                             (1.12) 

 

 
 

 
 

, miso

miso

miso

miso

R
R r g d r

g d

R
R r g d r

g d


 





   


                                                                                                            (1.13) 
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There are many possible options for the choice of the functions  elg d ,  cing d  and  isog d . 

These functions are positive and decreasing with respect to the scalar isotropic damage variable d ; 

they tend to unity when 0d   and to zero if d approaches its critical value cd , generally close to 1.  

In order to justify our choice, we consider the following hypotheses: 

 The damage effect on the elastic behavior and the kinematic hardening are 

    1el king d g d d    in order to simplify our numerical developments.  

 The coupling function associated to the isotropic hardening is treated differently : 

   iso elg d g d  

 The coupling function associated to the micromorphic isotropic hardening is treated with 
the approximately the same function of local isotropic hardening :  
 

For defining the damage-isotropic hardening coupling, we choose:   1isog d d   . The 

parameter   is the material parameter governing the effect of the damage on the isotropic 

hardening to be defined for each material type. The micromorphic isotropic hardening damage 

function is   1miso rg d d   . The value of the parameter
r  activates ( 1)r  or deactivates 

( 0)r  the coupling with the local damage variable. 

1.4.3 State potential and state relations 

1.4.3.1 Thermodynamics of irreversible processes 

By assuming the isothermal conditions, the local form of the Clausius-Duhem inequality, derived 

by combining the first and the second principles of thermodynamics, is enriched with the 

micromorphic variables: 

 : 0D Yd Rr Y d R r                                                                                                   (1.14) 

where,   is the specific Helmholtz free energy for a micromorphic solid to be chosen as the state 

potential. As in local continuum mechanics, the state potential is assumed to be a closed convex 

function of the overall  classical local strain-like state variables (elastic strain e , kinematic hardening 

strain  , isotropic hardening strain r and the local damage d ) as well as the micromorphic variables 

variables d and r  along with their respective first gradients d and r . Accordingly, the time 

derivative of the specific Helmholtz free energy  , , , , , , ,e d r d r d r      is given by: 

: :e

e
d r d r d r

d r r rd d

       
  

 

       
         
      

                                 (1.15) 

 

By substituting Eq.(1.15) into Eq.(1.14) and assuming that the total strain rate tensor decomposes 

according to the additive decomposition of total strain rate eJ pD D   ( eJ being the Jaumann 

derivative of the small elastic strain tensor) and under the assumption that the micromorphic 

variables do not dissipate: 
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 
 

  
    
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         

     

    
        

   

   
     

   

                                                                                (1.16) 

For the sake of simplicity, we assume that the five terms
e


 



 
 

 
, Y

d



 

 
 

,

R
r



 

 
 

, Y
d



 

 
 

 and R
r



 

 
 

do not depend on their rates respectively, as 

well as that the micromorphic variables do not dissipate. Consequently, by following the 

standard arguments, we retrieve the following state relations together with the local residual 

dissipations: 

The classical local state relations: 

( ), ( ), ( ), ( )
e

a X b R c Y d
r d

   
    

 

   
    

   
                                                   (1.17) 

The micromorphic state relations: 

, ( ) ( )

( ), ( )

Y a R b
rd

Y c R d
rd

 
 

 
 

 
 



 
 



                                                                                                              (1.18) 

The classical local intrinsic dissipation (note that the micromorphic damage is assumed with no 

intrinsic dissipation (Saanouni, 2012; Saanouni and Hamed, 2013)): 

: : 0in pD X Rr Yd                                                                                                              (1.19) 

 

The stress-like variables ,Y , R , X  are given by the state relations (Eq.(1.17)). Their associated 

rates of strain-like variables: pD , d , r , have to be deduced from an appropriate local yield function 

together with a local dissipation potential. These are defined in the effective rotated configuration as 

closed and convex scalar-valued functions of the associated stress-like variables in the effective 

stress space according to the classical thermodynamics of irreversible processes. We assume here 

that the plastic flow governs all the macroscopic dissipative phenomena, so a single surface 

formulation is used with a unified yield function  , , ;f R X d  and a plastic potential 

 , , , ;F R X Y d  from which all the local rates of the strain-like variables are deduced based on the 

generalized normality rule (see Saanouni, 2012 among others): 

( ), ( ), ( ), ( )p F f F F F
D a r b c d d

R X Y
     

 

    
      

    
                                       (1.20) 

where the plastic multiplier  is a positive Lagrange multiplier derived from the consistency 

condition with respect to the yield function. 
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1.4.3.2 Choice of state potential and state relations 

Similar to the local formulation, we choose the Helmholtz free energy   

 , , , , , , ,e d r d r d r     to be our state potential written in the fictive rotated configuration as a 

closed convex function of all local and micromorphic arguments defined in the effective strain space. 

On the other hand, the micromorphic state variables are assumed to contribute to the Helmholtz 

free energy in terms of the relative difference with respect to the local variables of the same nature. 

This introduces a coupling between macro and micromorphic variables (Forest, 2009).  

Under these assumptions, and with the ability divide the generalized potential into two terms by 

an additive decomposition, the Helmholtz free energy can be written under the following form: 

   , , , , , ;e

g mr d r d r d                                                                                                    (1.21) 

with, 

     

2

2

1 1 1
: : :

2 3 2

1 1 1
1 : : 1 : 1

2 3 2

e e

e e

C Qr

d d C d Qr

    

   

   

      

                                                                  (1.22) 

and 

     
2 21 1 1 1

1 1 1
2 2 2 2

g g

m r rQ d r d r d Q r r H d d H d d                         (1.23) 

     

 where, 1 1 2 1e eµ     is the positive definite and symmetric forth-rank tensor of the elastic 

moduli, C  and Q  are the kinematic and isotropic hardening macro moduli, Q  and H  are the 

coupling moduli with respect to the isotropic hardening and the damage respectively while 
gQ  and 

gH  are the micromorphic moduli related to the first gradients of the isotropic hardening and 

damage respectively (all assumed to be positive or zero) while the parameter  is the parameter 

defining the coupling between the damage and the isotropic hardening. 

Using the local and micromorphic state relations in Eq.(1.17) and Eq.(1.18) with the state 

potential (1.21), we obtain the local the stress-like variables that are associated with all strain-like 

variables: 

- Cauchy stress tensor: 

      1 : 1 1 2
g e e e

e ee
d d tr


      




      


                                                                      (1.24) 

 

- Kinematic hardening stress: 

        
2

1
3

g
X d C


 




  


                                                                                                                         (1.25)                                                                                                 
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- Isotropic hardening stress: 

(1 ) (1 ) 1 1
g

rR d Qr Q d r d d r
r

   


 


        
 

                                                             (1.26)                                                                                                            

 

- Damage stress: 

g

E A R dY Y Y Y Y
d





     


                                                                                                                 (1.27) 

 

with, 

 

 

1 2 1

1

1
: : ( )

2

1
: ( )

3

1 1
1 1

2 2 1 1

1
( )

2

( )

e e

E

A

R r r

r

g

r

d

Y a

Y C b

r r
Y d Qr d Q d r d r

d d

d Q r r c

Y H d d d

   

 



 

 

   


 

 




 


 



 
      
    


   



  


                              (1.28) 

 

- Stress-like variables of micromorphic damage and its first gradient: 

  ( )

( )g

Y H d d a
d

Y H d b
d








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                                                                                                                     (1.29) 

 

- Stress-like variables of micromorphic isotropic hardening and its first gradient: 

  1 1 1 ( )
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R Q d d r d r a
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                                                                    (1.30) 

 

At this point, it is interesting to note that the state relations Eq.(1.24)-Eq.(1.30) can be decomposed 

into classical local and the extended nonlocal parts with the help of the micromorphic state relations 

as given in Eq.(1.33) and Eq(1.34) below: 

 1 : e

loc d                                                                                                                                       (1.31) 
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 
2

1
3

locX X d C                                                                                                                                  (1.32) 

                                            

 

2

1 1

1 1 1
: : :

2 3 2

1 1
1 1

2 21 1

loc nloc

e e

loc

g

nloc r r r

r

Y Y Y

Y C Qr

r r
Y Y d Q d r d r d Q r r

d d

   

 

   

    


 



  



   

  
          

    

      (1.33)                                                                  
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  

1

1 1 1

loc nloc

loc

nloc r

R R R

R d Qr

R Q d r d d r



  


 


 


     


                                                                                           (1.34)                                                                                                        

                                   

It is clear that the Cauchy stress Eq.(1.31) and the kinematic hardening stress tensor Eq.(1.32) 

remain under a purely local form while the other two thermodynamic forces associated to damage 

Eq.(1.33) and the isotropic hardening Eq.(1.34) are the sums of the classical local (indicated as loc) 

and and the nonlocal micromorphic contributions (indicated as nloc) resulting from the 

micromorphic state variables. The micromorphic isotropic hardening R in Eq.(1.30a) affects the 

stress force R  Eq.(1.26) and equally the thermodynamic damage force Y  Eq. (1.27) as shown clearly 

in Eq.(1.28c). 

1.4.3.3 Local state potential and state relations 

In the absence of any micromorphic fields, the differential form of the first law of 

thermodynamics transforms to the traditional one: 

 : 0e                                                                                                                                        (1.35)                                                                                                                       

Consequently, the Helmholtz free energy  , , ,e d r   reduces to a closed convex function of the 

classical local state variables: e , d , r and  .  

Using the second law of thermodynamics and the above equations, the following classical state 

relations are obtained: 
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( ) ( ) ( )
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
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  
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                                                                             (1.36)                                                                                 

along with the local dissipations: 

: : 0
pin D Yd Rr X                                                                                                      (1.37) 
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By setting the micromorphic moduli equal to zero ( 0, 0, 0, 0g gQ H Q and H    ), the 

generalized Helmholtz free energy that we had already chosen as the generalized state potential in 

Eq.(1.21), reduces to its local form: 

 , ,e

g r                                                                                                                                         (1.38) 

Using the state relations in Eq.(1.17), the classical local stress-like variables are obtained as 

follows: 

- Cauchy stress tensor (always under a purely local form): 

      1 : 1 1 2e e e

e ee
d d tr
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      




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                                                                       (1.39) 

 

- Damage stress force: 

1 21 1 1
: : : :

2 3 2

e eY C d Qr
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                                                                                (1.40) 

 

- Isotropic hardening stress force: 

 1R Qr d Qr
r




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                                                                                                                      (1.41) 

 

- Kinematic hardening stress force: 

 
2

: 1 :
3

X C d C


  



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                                                                                                             (1.42) 

 

1.4.4 The effect of the micro-cracks closure 

Another phenomenon that we have introduced is the notion of microcracks closure. When an 

RVE undergoes stress which leads to the formation of microdefects in tension, the physical 

properties and the behavior of this RVE are affected by the presence of induced softening. 

However, during the unloading and progressive transformation into the compressive phase, the 

micro-cracks close progressively until complete closure if the compression force is sufficient. Two 

main consequences arise during the compressive phase of the loading path: 

a) The damage rate will be much lower, if not zero, when the previous microcracks tend to close 

in compression, 

b)  The physical properties of the damage material and mainly the moduli of elasticity and 

hardening, tend to return to their initial values before the damage occurrence when the 

micro-cracks are fully closed in compression. 

The point (b) is not an easy task because it introduces a loss of continuity and/or convexity of the 

state and dissipation potentials. This aspect will not be considered in this work and the physical 

properties of the damaged material will be affected irreversibly by the damage even when all the 
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microcracks are closed in compression. However, the fact that the damage evolves more slowly 

(or not at all) in compression than in tension will be considered following the simple approach 

presented in (Ladeveze, 1984; Lemaitre, 1985; Desmorat, 2007; Pirondi, 2006; Saanouni, 2012).  

This simple approach, useful only with the isotropic damage, will be summarized here after. It 

preserves the continuity and the convexity of the state and dissipation potentials while giving a 

different damage rate under positive (tension) and negative (compression) loading paths.   

For the isotropic damage case, we could deal with this effect by decomposing the effective state 

variables into positive and negative parts (Challamel, 2005, 2010; Murakami and Kamiya, 1997) with 

the help of the spectral decomposition of any symmetric second-rank tensor T  in the form: 

3

1

i i i

i

T T T

T T e e

 




 

 
                                                                                                                                    (1.43) 

  

where, iT  and ie are the three eigenvalues and corresponding eigenvectors of the tensor T and 

iT is the positive part of iT defined by:  max 0,i iT T .  These positive and negative parts of the 

second-rank tensor T verify the following orthogonality and differentiability properties:
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

                                                                                                                       (1.44) 

  

Then the following derivatives of the positive and negative parts of the tensor T can easily be 

obtained: 
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                                                                    (1.45) 

 

We wish to consider the microcracks closure effect only on the damage evolution. More complex 
formulations can be found in literature (Issa, 2010; Issa et al., 2012; Saanouni, 2012; Yue, 2014). To 
achieve this, we do not change the state relations but we introduce a new energy density release 
rate noted as: 

( ( )) ( ( )) ( )e e e

A R dY Y Sign tr Sign tr Y Y Y         
 

                                                              (1.46)                                                                
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with respect to which the damage rate is derived and  the energy density release rate Y   is used 

instead of Y  in the damage evolution. The new form of 
eY 

 shall be derived from an appropriate 

form of the state potential accounting for the spectral decomposition of the effective small 

elastic strain tensor 1 1e e ed d       for the elastic part of energy density release rate 
eY 

 given in the following form: 

2 2

: 3 ( ) : 3 ( )

e e e

e e e e e e

e e e e

Y Y Y

tr tr         

  

 

    

 
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  

                                                        (1.47) 

where the parameter  ( 0 1  ) is related to the  microcracks closure effect and allows 

reducing the damage rate under the negative parts of the applied load. The tensors e  and e  

are the positive and negative parts of the small elastic strain tensor. Also, the new form of energy 

density release rate induces a sensibility to the micro-cracks closure effect of the hardening  parts 

( , )A RY Y  as well as the micromorphic  part ( )Y  through the function 

( ( )) ( ( ))e eSign tr Sign tr   
 

 which takes the value 1 if the hydrostatic strain is positive 

( ( ) 0)etr    and the value  if the hydrostatic stress is negative ( ( ) 0)etr   . The value of this 

parameter is usually taken equal to 0.2 (Lemaitre, 1985; Krajcinovic, 1985), leading to a lower 

damage growth under the compressive phase of the loading path, with two extreme cases: (i) 

1  makes no difference between the damage growth under positive and negative loading 

paths and, (ii) 0  for which the damage growth takes place only under the positive part of the 

applied loading path. 

1.4.5 Intrinsic dissipation analysis for time independent plasticity 

In section 1.4.3.2, we introduced the form of the state potential in the strain space, from which 

we have deduced the state relations, based on the Clausius–Duhem inequality. We now need to 

analyze the different dissipative phenomena, in order to define their evolution equations with the 

help of an appropriate yield function and a dissipation potential by following the local state method. 

We limit ourselves to the case where the micromorphic variables do not dissipate, which leads to the 

classical local dissipation defined in Eq.(1.19). 

Since the force-like variables  , , ,R X Y are given by the state relations Eq.(1.24)-Eq.(1.27) 

above, the associated flux variables ( pD , r , , d )  will result from the application of the generalized 

normality rule and the maximum volumic dissipation analysis. Of course, the micromorphic strain-like 

variables ( , )r d  are nothing but the micromorphic dofs, solutions of the two partial differential 

equations Eq.(1.8b) and Eq.(1.8c). By focusing our attention on the isothermal case for the isotropic 

elastoplastic and incompressible solids, we limit ourselves to the single yield surface for both 

plasticity and damage (choice of two yield surfaces can be found in Saanouni, 2012). 
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1.4.5.1 Plastic potential and evolution equations 

To account for the damage effects, and limiting ourselves to the isotropic plastic flow for the sake 

of simplicity, the von Mises equivalent stress in both the yield function and the plastic potential is 

chosen. In this case, the micromorphic variables R  and Y  are included in the yield function and the 

plastic potential via the state variables R  (Eq.(1.26)) and Y  (Eq.(1.27)). The von Mises yield function 

and the plastic dissipation potential taken from (Saanouni et al., 1994; Saanouni, 2012) are then 

written under the following forms: 

 , , ,
1 1

p y

X R
f X R d

d d 


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
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 
                                                                                                  (1.48) 
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   
   

                                     (1.49) 

 

with the norm    
3

:
2

X X X       defining the von Mises equivalent stress, while y  is 

the initial size of the plastic yield surface. The parameters a and b  in Eq. (1.49) characterize the 

nonlinearity of the kinematic and isotropic respectively and finally, , ,S s   and 0Y  characterize the 

nonlinear evolution of the ductile damage. It is worth noting that, despite the fact that Eq.(1.48) and 
Eq.(1.49) are identical to the classical local theory, the indirect contribution of the micromorphic 
state variables is taken into consideration since the state variables Y  and  R  carry the micromorphic 
effects as shown by Eq.(1.33) and Eq.(1.34).  
 

Applying the generalized normality rule to the local yield function (Saanouni and Chaboche, 2003; 

Saanouni, 2012; Forest 2016) and dissipation potential above, leads to the following evolution 

equations:  

- Plastic strain rate 

3 ( )
,

21

dev
pp

F n X
D with n

Xd


 

 

 
  

 
                                                                                (1.50) 

where, n  is the outside normal to the yield surface and   is the Lagrange plastic multiplier. 

- Kinematic hardening strain rate 

p p
F

D a
X

  


   


                                                                                                                              (1.51) 

- Isotropic hardening strain rate 

 
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  
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                                                 (1.52) 
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- Isotropic damage rate 

0( )

(1 )

s

p loc nloc
F Y Y Y

d
Y d S



  

 
                                                                                                    (1.53) 

with the Macauley brackets x   indicating the positive part of x . 

We can note here that, if the scalar parameters a  and b  are zero, the kinematic and isotropic 

hardening evolution equations (Eq.(1.51) and Eq(1.52)) will retrieve their linear forms. 

We recall that in Eq.(1.27) the thermodynamic force Y  contains the micromorphic contributions 

as indicated by Eq.(1.33). We also note that Eq.(1.48) indicates that the evolution of isotropic 

hardening contains the classical local term together with a nonlocal contribution based on the 

micromorphic isotropic hardening variable. 

As indicated in the paragraph about the micromorphic dissipation analysis, the assumption that 

the micromorphic variables do not dissipate leads to purely local intrinsic dissipation.  

 

1.5 Transformation of the micromorphic balance equations to the 

strain space 

The micromorphic balance equations (1.8b, 1.8c) are expressed in the stress space as functions of 

the micromorphic thermodynamic force variables. Going back to these equations, it is possible to 

transform them in the strain space as functions of the strain-like variables obtained in the previous 

paragraph. To achieve this, we substitute the micromorphic stress-like variables for the 

micromorphic ductile damage and the isotropic hardening as expressed in the equations Eq.(1.29) 

and Eq.(1.30) in the equations  Eq.(1.8b) and Eq.(1.8c) respectively.   

By noting  Lap X  being the Laplacian of X , we remark that as long as the micromorphic moduli 

gQ  and gH  remain constant, we obtain: 

    1( ) ( 1 ) 1 ( ) .g g

r r rdiv R div Q d r Q d Lap r d d r                                                         (1.54) 

( ) ( ) ( )g gdiv Y div H d H Lap d                                                                                                                (1.55) 

    

By substituting the micromorphic variables in Eq.(1.29) and Eq.(1.30) in the previously obtained 

balance equations, we get: 

- The balance equation of the micromorphic isotropic hardening 

       11 ( ) . 1 1 1

(1 )

g r gr

r r r r r

g gr r

r

Q d Lap r d d r Q d d r d r f f r in

d Q r f n F on

    



     

 

              

        

 (1.56) 
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- The balance equation of the micromorphic damage 

     

 

g d gd

d

g gd d

H Lap d H d d f f d in

H d f n F on

       


     
 

                                                                     (1.57) 

              

For the sake of simplicity and without any experimental information, if the overall micromorphic 

body and contact forces are neglected:   

0

0

0

d r
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F F
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f f

 

 

 

                                                                       (1.58) 

the above balance equations (Eq.(1.56) and Eq.(1.57)) can be rewritten in the strain space under the 

following form:                                                                                                     

     
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         

   


                     (1.59) 
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                                                                                                                 (1.60) 

where, r  and 
d

 are the internal length scale parameters related to the micromorphic isotropic 

hardening and the micromorphic damage, defined by the ratio of the micromorphic moduli: 

2 2( ) ( )
d

g g

r

Q H
a b

HQ
                                                                                                                    (1.61) 

We prefer to use the Eq.(1.59) and Eq(1.60) as strong forms from which their associated weak 

forms will be deduced in order to solve the fully coupled IBVP as discussed in next chapter, instead of 

Eq.(1.8b) and Eq.(1.8c).  

Let us mention that, if the micromorphic damage inertia is neglected (i.e., 0
d

  ) from the 

micromorphic damage balance equation (Eq.(1.60)), we are leaded to the well-known Helmholtz 
equation proposed in the framework of the so called implicit nonlocal damage formulations as in 
Engelen et al. (2003), Geers et al. (2003), Geers (2004) and the framework of the so-called gradient-
enhanced models (Engelen et al., 2003; Peerlings, 1999; Peerlings et al., 2001; Peerlings et al., 2004) . 
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1.6 Extension to the finite plastic strains and the objectivity 

requirement 

The constitutive equations presented above were formulated under the small strain assumption. 

We will now proceed to the extension of this model to the finite transformations in order to be able 

to simulate the metal forming applications under large strains. For this end, we will start by briefly 

mentioning the kinematics of finite transformations with an emphasis to the objectivity principle. 

1.6.1 Kinematics of finite transformations 

We consider a deformable solid 1S  of volume 0  in its initial configuration 0C  at the time 0t . At 

any instant t , the solid occupies a volume t  in its actual configuration tC . In an orthonormal 

Euclidian space, the initial position of a material point 0P  in  0C  of coordinates X  transforms into 

the point tP  of coordinates ( , )x X t  in tC  (see Fig. 1.3) by  ( , )x X t  .  

 

Figure 1.3: Kinematics of finite transformation (Saanouni, 2012) 

To describe the deformation of the solid we introduce the vectorial field ( )X  as: 

: ( ) ( , )X X x X t                                                                                                                                  (1.62) 

 

The displacement and the velocity vectors of any material point in 1S  at time (t) are defined by:

( , ) ( , )u x t x X t X       and      
u

v
t





                                                                                                     (1.63)          

The gradient of the transformation ( , )X t  is given by: 

 

( ) 1 1
x u

F Grad u
X X X




  
      

  
                                                                                             (1.64) 

                  

 
According to the polar decomposition theorem, any homogeneous transformation can be seen as 

the product of a pure rotation and of a pure stretch (or elongation). This means that any non-singular 
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gradient of a homogeneous transformation F  can be multiplicatively decomposed, under the 

following form: 

. .F R U V R 
                                                                                                                                                         (1.65) 

                                      

where the symmetric and positive definite second-rank tensors U  and V  are called left and right 

pure stretch tensors, and R  is the rigid body orthogonal rotation tensor. U  is a Lagrangian tensor 

defined defined in 0C  while V  is purely Eulerian tensor, defined in tC  (Fig. 1.4). 

 

Figure 1.4: Schematic representation of the polar decomposition (Saanouni, 2012) 

 

To define the deformations of the solid, we introduce the Cauchy-Green tensors; the right one C  

in 0C  and the left one B  in tC . The scalar vector of two non-collinear transformed vectors in the 

configuration tC  is given by: 

   . . . . . . .
T TT T Tdx dx dX F F dX dX C dX C F F                                                                (1.66) 

 

  1 1
. . . . . . .

T TT T TdX dX dx F F dx dx B dx B F F
  

                                                                   (1.67) 

 

Accordingly, the Lagrangian Green–Lagrange strain tensor E  defined in a point 0P  in 0C  and the 

Eulerian Euler–Almansi strain tensor   defined in a point tP  in tC are given by: 

11 1
( ) ( )

2 2
C I I B


                                                                                                          (1.68) 

 

Moreover, the Eulerian velocity gradient in TC is defined by: 
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1
( ) .

v v X
grad v F F L

x xX

  
    
 

                                                                                                       (1.69) 

        

It is possible to decompose L  in a symmetric part noted as D  defining the local strain rates and 

an antisymmetric part noted as W  defining the local rotation rates: 

1 1
( ) ( )

2 2

T T
D L L W L L                                                                                                                 (1.70) 

             

The most widely used measure of the stress in a point of a continuum is the Cauchy stress, 

defined using the measure of the elementary internal force in a point tP   of the current configuration

tC . It is an Eulerian measurement defined as 

.dS dF                                                                                                                                                       (1.71) 

However, we can also define the Kirchhoff stress tensor as                          

J                                                                                                                                                              (1.72) 

                                  

with 0

0

det( ) tV
J F

V




    where 0 ,   representing the material density in 0C  and tC  respectively. 

Two other Lagrangien stress tensors can be defined as following: 

 The unsymmetric second-rank operator called the Boussinesq or Piola–Lagrange stress 
tensor, non-symmetric and neither purely Eulerian nor purely Lagrangian, defined by: 

 

0.dS dF                                                                                                                                       (1.73) 

                  

 The second-rank tensor S  , which is symmetric due to the symmetry of    and is purely 

Lagrangian, is called the Piola–Kirchhoff stress tensor, defined by: 
 

0 0.S dS dF                                                                                                                                      (1.74) 

                   

In all the above formulations, dF  is the elementary force in tC  applied on an element of area 

dS  while 0dF  is obtained by the convective transport of  dF  from tC  to 0C  applied on an element 

of area 0dS . 

The density of massic power expressed in terms of the different stress and strain measures 

introduced above writes under the following form: 

0 0

: : : :
S

P D D F E
 


  

                                                                                                                (1.75) 

This is nothing but the so-called stress-strain conjugacy principle which defines stress-strain 

measure relation in order to define a constitutive equation. 
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1.6.2 Total strain rate decomposition 

For metal forming processes it is vital that we consider the context of finite transformations for 

any behavior model that uses tensorial state variables. Accordingly, the formulation of nonlinear 

constitutive equations for inelastic solids under finite transformations, faces two basic problems: 

1. How could we decompose the total strain tensors into reversible and irreversible parts? 

2. Which formalism should we use in order to formulate the constitutive equations fulfilling 

the objectivity requirement? 

These two aspects are widely discussed in the literature and an exhaustive analysis can be found in 
(Stolz, 1987; Doghri, 2000; Maugin, 1992; Rougee, 1997; Sidoroff, 2001; Nemat-Nasser, 2004; Stolz, 
2009; Badreddine, 2006; Saanouni 2012) 

In this work we consider the framework of elastoplastic finite strains based on the classical 

multiplicative decomposition of the total transformation gradient F  into elastic 
e

F  and plastic 
p

F  

parts (Lee et al., 1983)., i.e.  

.
e p

F F F                                                                                                                                                      (1.76) 

 
Despite the fact that the choice of a purely Eulerian formalism leads to the best description of the 

finite transformations on the current deformed configuration, crucial problems of objectivity could 

appear. On the other hand, objectivity problems posed by a Lagrangian formalism, which consists of 

working on the initial configuration, lead to very complex constitutive equations. 

In order to fulfil the objectivity requirement, the concept of the rotated frame formulation (RFF) is 

used. This supposes that all the constitutive equations will be written on the current configuration 

locally rotated by the orthogonal rotation tensor Q  (Mandel, 1971; Rice, 1971; Sidoroff, 1973, 1982; 

Simo and Ortiz, 1985; Sidoroff and Dogui, 2001, Badreddine et al, 2010; Saanouni 2012 among 

others), where the rotated configuration is Lagrangian by its orientation and Eulerian by the 

eigenvalues of the physical quantities.  

As shown in Fig. 1.5, the configuration 
p

tC where all the tensorial variables will be transferred is 

called “isocline” and has exactly the same orientation with the initial configuration 0C  and it is 

obtained through a multiplicative decomposition of the transformation gradient as well as the polar 

decomposition in the rotating frame: 

ˆ
pp pe e e

F F F Q F V Q F V F                                                                                                         (1.77) 

where 
p

F is the rotated gradient of the plastic transformation 
p

F , ˆ
p

F is the gradient of plastic 

transformation and 
e

V  is the left and purely elastic strain tensor.  
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Figure 1.5: Definition of two locally rotated objective configurations (Saanouni, 2012) 

 

It is obvious that the configurations tC  and p

tC have been rotated by Q so that they have the 

same Lagrangian orientation as the initial configuration 0C while the configuration e

tC keeps the 

same orientation as the actual configuration tC . 

This rotation could be defined by two different ways. The first consists of using a privileged frame 

and calculating its rotation while it moves. This privileged frame is generally defined by the material 

microstructure as the crystallographic orientation for the monocrystalline materials. The second 

relies on postulating, a priori, a kinematic equation that governs the evolution of the orthogonal 

tensor Q : 

0

.

( ) 1

T

QQ Q W

Q t

 




                                                                                                                                                 (1.78) 

 

where QW characterizes the choice of the rotated frame. 

For any second-rank tensor T  defined in the current configuration, its transfer to the locally rotated  

configuration ( tC  or p

tC in Fig. 1.5)  by the rotation tensor Q according to: 

. .
T

T Q T Q                                                                                                                                                    (1.79) 

By using the Eq.(1.77) and writing the velocity gradient with respect to C  we obtain: 
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                                                                                           (1.80) 

          

with 
1

.L F F


  is the velocity gradient of the total strain with respect to C . 

1 1
. , .

s A
e pp e p p

D F F W F F
     

      
 are the plastic strain and the plastic rotation rates with respect 

to ir

tC and 
1ˆˆ ˆ.

pp p

W F F
 

  
 

 is the velocity of the plastic rotations. 

The Eq.(1.80a) represents the decomposition of the strain rates which is equivalent to 
e p

      

under the small strains assumption. Considering the strains of the metallic materials, we assume that 
the reversible (elastic) strains are very small compared with irreversible ones. This assumption is 

translated as 1
e e

V    with 1
e

  and the relation in Eq.(1.80a) transforms to: 

 

2
p

se eJp pe

irD W D D       
 

                                                                                                      (1.81) 

                 

with peJ
 being the Jaumann derivative with respect to 

p
W . Between the quantities 

p
W  and W  we 

deduce the following relation: 

2
A

p pe
W W D  

 
                                                                                                                                   (1.82) 

                                         

By neglecting the term 
A

pe
D 

 
, the Eq.(1.81) rewrites under the following form: 

2
T

se eJp p pe
D W D D       

 
                                                                                                      (1.83) 

           

with TeJ
 being the Jaumann derivative with respect to W . The equations (1.80b) and (1.80c) 

represent the rotation rates of the two rotated frames defined in Fig. 1.5. 

1.6.3 Extension to finite transformations 

Let us suppose that z  is a second-rank tensorial variable to which we associate its rotated 

objective variable Qz   defined by: 

. .
T

Qz Q z Q                                                                                                                                                   (1.84) 

     

The rotated frame defined by the rotation Q  is an orthonormal rotation depending on the 

material and its rotated derivatives with respect to this frame is given by: 
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                                                                                    (1.85) 

  

where 
d z

z
dt

  is the classical material derivative of the variable z . We note that the choice of the 

rotated frame is made through the choice of the rotation tensor QW . There are many possible 

choices, among them the two well-known defined by: 

 If QW W , then the classical Jaumann derivative is obtained. 

 If .
T

QW R R , then the Green-Naghdi rotation derivative is obtained, where R  is described 

in Eq(1.65). 

The material derivative of Eq. (1.84) gives: 

. . . . . .
T T T

Qz Q z Q Q z Q Q z Q                                                                                                               (1.86)    

 

By exploiting the equations Eq.(1.85) and Eq.(1.86), we obtain a relation between the material 

derivatives and the rotational ones of the variable Qz  

. .
T Q

Q

D z
z Q Q

Dt
  or . . .

TQ

Q

D z
Q z Q

Dt
                                                                                                       (1.87) 

 

The choice of the rotational objective derivative depends on the chosen frame configuration. The 

objectivity of the stress and strain tensors by the rotating frame principle is the simplest to 

implement. Indeed, at each calculation increment, the reference configuration coincides with the 

current configuration during the calculation. Among these rotational derivatives, we find the 

derivative of Green-Naghdi in proper rotation (Dafalias, 1983). In fact, in the set of applications, we 

will limit ourselves to using the rotating reference frame proper or Green-Naghdi such that Q R , 

where the rigid body tensor is the tensor resulting from the polar decomposition of the gradient of 

the transformation. The rotation increment is obtained from the total rotation tensor. Indeed, the 

derivative is as follows: 

.
T

QW R R                                                                                                                                                    (1.88) 
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1.7 Conclusions 

In this chapter, the theoretical formulation of the thermomechanical nonlocal micromorphic 

model is systematically presented: A complete set of generalized micromorphic constitutive 

equations is derived in the context of the thermodynamics of irreversible processes to capture the 

strongly nonlocal behavior of the materials in the localization regions. It contains the formulations of 

the balance equations, the state relations and the evolution equations. The micromorphic model 

coupled with elato-plasticity, ductile damage and mixed hardening as well as the nonlocal effects. 

We have resumed the principal nonlocal formulations used in order to regularize an IBVP and obtain 

one unique solution independent of the space discretization. As a result, we proposed a more robust 

nonlocal formulation in the framework of the generalized continua and more specifically in the 

framework of the micromorphic theory where we presented a complete formulation consisting of 

the overall constitutive equations for the damage and the isotropic hardening. We also showed that 

the equations of a simple local continuum can be easily retrieved and studied through the 

micromorphic theory. The complete set of equations will be discretized in space by the finite element 

method and in time by the finite difference method in order to resolve numerically the IBVP as 

presented in the following Chapter 2. 
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Chapter 2  

Numerical Aspects. 
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2.1 Introduction 

In Chapter 1, we formulated a complete set of constitutive equations of a micromorphic solid 

submitted to large irreversible strains accounting, among others, for the isotropic ductile damage 

evolution. Also partial differential equations (PDEs) describing the momentum balance were deduced 

from the generalized principle of virtual powers. Similarly, the constitutive equations governing the 

evolution of the dissipative phenomena were obtained as ordinary differential equations (ODEs). The 

complete set of these equations (PDEs and ODEs) define the so-called Initial and Boundary Value 

Problem (IBVP). The actual chapter is dedicated to the numerical aspects and the procedures related 

to the resolution of the micromorphic evolution problem in the framework of the Finite Element 

Method (FEM). To achieve this, we start by giving the strong forms of the IBVP and its associated 

variational or weak forms. Then, we describe the time discretization based on appropriate finite 

differences schemes and the space discretization based on the finite element method including the 

formulation of different finite elements with additional micromorphic degrees of freedom. Regarding 

the global resolution scheme, we examine the global resolution of the three balance equations (i.e. 

classical mechanical as well as micromorphic isotropic damage and micromorphic isotropic hardening 

equilibrium equations). We give a detailed description of the local integration scheme of the fully 

coupled constitutive equations in order to compute all the state variables at the end of each load 

increment on each integration or Gauss point for each element for the upcoming computation of the 

internal forces which appear in the weak forms associated to the balance equations. The local 

integration algorithm consists of discretizing all the constitutive equations over a typical time integral 

of size t  defined by  1n n nt t t t t    where 
nt  is the origin of this time interval. This leads to 

calculating the values of all the mechanical fields at the end of increment 
1nt 

 as well as the loading 

increment 1
1

2
nnt D     and the rotation increment 

11

T

nn n
Q Q Q

    while the values of all the 

fields at the beginning of time increment 
nt  are known. This integration algorithm is based on the 

use of a purely implicit Euler scheme combined with an appropriate asymptotic scheme (Saanouni, 

2012). For each integration point concerned by the plastic flow, the iterative method of elastic 

prediction-plastic correction is used to integrate numerically the complete set of constitutive 

equations thanks to a Newton-Raphson resolution procedure in order to converge towards a point 

lying on the current loading surface when the plastic admissibility condition is fulfilled. 

Note that a huge number of academic books related to the numerical aspects connected to the 

time and space discretization of nonlinear solid mechanics are found in literature, e.g (Bathe, 1996; 

Zienkiewicz, 2005; Hughes, 1987; Crisfield, 1991; Bonnet 1997, Simo 1998, Belytcshko 2000…) 
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2.2 Initial and boundary value problem associated to virtual metal 

forming processes 

In this section, we will pose the problem of nonlinear evolution for a micromorphic solid with 

ductile damage in finite strains, the constitutive equations of which were given in the first chapter. 

For the sake of brevity and simplicity, we consider only elastoplastic (rate-independent) solids with 

isotropic damage with a single yield surface, the state relations of which are developed in section 

1.4.3 with the possible microcracks closure effect analyzed in section 1.4.4, and the evolution 

equations of the dissipative phenomena addressed in section 1.4.5 for time-independent plasticity. 

2.2.1 Strong forms of the IBVP 
Let us consider a deformable and damageable micromorphic solid made of an elastoplastic 

metallic material with ductile damage. At time t  this solid occupies a volume 
t  with a boundary 

t  

as shown in Fig. 2.1 and it contains a completely damaged area of volume d

t  complementary to 
t  

with a boundary d

t , so that nd

t  is the not totally damaged deformable volume.     

At eat time 
0 , ft t t   , where 

0t  and ft  are the beginning and the end of the applied loading path 

respectively, and the solid undergoes body forces noted as u

tf , boundary forces noted as u

tF on F

t , 

contact forces noted as C

tF  on C

t , micromorphic body forces , , ,gr r gd df f f f as well as 

micromorphic boundary forces noted as rF on rF
 for the micromorphic isotropic hardening and dF

on d
F

 for the micromorphic damage. Due to lack of information and for the sake of simplicity, we 

neglect all the micromorphic forces by taking 0grf  , 0rf  , 0rF  , 0gdf  , 0df  , 0dF  . 

 

Figure 2.1: Schematization of the IBVP (Saanouni, 2012) 

The problem posed is thus the following: compute all the IBVP unknowns at each time 
0 , ft t t  

at any material point ( , )x X t  of the solid in the current configuration
t by determining all the 

mechanical fields. The unknowns can be distinguished in the two following groups: 
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 The kinematic unknown variables (or degrees of freedom) which in this case are: 

( , ), ( , )u x t r x t  and ( , )d x t . 

 The pairs of state variables on the current deformed and damaged configuration: the local 

state variables        ( , ), ( , ) , ( , ), ( , ) , ( , ), ( , ) , ( , ), ( , )
ir

x t x t x t X x t r x t R x t d x t Y x t   and the 

micromorphic forces, ( , ), ( , )R x t Y x t  associated to the two micromorphic dofs, as well as the 

two following pairs of micromorphic state variables  ( , ), ( , )r x t R x t  and 

 ( , ), ( , )d x t Y x t . 

These kinematic and state variables should fulfill: 

1. All of the following fields equations concerning together with their appropriate initial and 

boundary conditions: 

 The classical equilibrium in Eq.(1.8a) 

 The additional micromorphic balance equations shown in Eq.(1.59) and Eq.(1.60). 

All these three strong forms are summarized again in Table 2.1 where 
r  is chosen to be 

equal to zero in Eq.(1.59) as the particular case which will be implemented. 

 

Classical local equilibrium u

u

f u in

n F on

  



    


  
 

Micromorphic damage 
equilibrium    2

( ) 0

d

d

g

d
Lap d d d

H

H d n





   



  

 

Micromorphic isotropic 
hardening equilibrium      

 

2 11 ( ) . 1 1 1

0

r
r r r r r

g

r
d Lap r d d r d d r d r

Q

Q r n

     
     

         

   


 

Table 2.1: The local and micromorphic balance equations 

 

2. The kinematic equations: 

   1 1 1
1 , . , ,

2 2

T T
F u L F F D L L W L L


                                                            (2.1) 

3. All the constitutive equations deduced in Chapter 1: the state relations (Eq.(1.24)-Eq. (1.30)) 

and their associated evolution equations (Eq.(1.50)-Eq.(1.53)) summarized in Table 2.2. For 

the rest of the thesis, we neglect the coupling between the local damage and the 

micromorphic isotropic hardening stress variable. The parameter 
r is then set to 0 ( 0r  ). 
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Local State variables Evolution equations 

- Cauchy stress 

      1 : 1 1 2e e e

e ed d tr            1

p n
D

d



 

- Kinematic hardening 

 
2

1
3

X d C   

pD a    

- Isotropic hardening 

(1 ) (1 ) 1
g

R d Qr Q d r d r
r

  





       
 

 

 0r    

 
  1
1 1

11

Q
r br b d r d r

Q dd

 



 
     
 





 0r   

- Isotropic ductile damage 

E A R dY Y Y Y Y     with 

 

 

1 2 1

1
: :

2

1
:

3

1 1
1

2 2 1

e e

E

A

R

d

Y

Y C

r
Y d Qr d Q d r r

d

Y H d d

  



 

 

  


 


 



 
     

 
   


 

 
 

0( )

(1 )

s

loc nlocY Y Y
d

d S

  



 

Micromorphic state variables 

- Micromorphic damage 

 

g

Y H d d
d

Y H d
d








   




  



 

- Micromorphic isotropic hardening 

 1

( )g

R Q d r r

R Q r

   

 

 

Table 2.2: The overall state relations and evolution equations of the behavior model 
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2.2.2 Weak forms of the IBVP 
Following the FEM, the weak forms associated to the strong forms of the IBVP can be obtained 

using the weighted residuals method. According to the configuration on which these equations are 
defined, several weak formulations are possible: 

- total Lagrangian formulation, in which all kinematic and state variables used are defined on 
the reference configuration at the initial time (undeformed configuration), 

- total Eulerian formulation, in which all kinematic and state variables used are defined on the 
current deformed configuration, 

- updated Lagrangian formulation, in which the reference configuration is a completely known 
deformed configuration; 

- Arbitrary Lagrangien Eulerian (ALE) formulation in which the material points and the fixed 
grid (mesh) are governed by two different kinematics (or transformation gradients). 
 

In the mechanics of nonlinear solids and more particularly for metal forming problems, the 
updated Lagrangian formulation is quite satisfactory, especially when it is associated with an efficient 
adaptive remeshing procedure. This makes it efficient enough to follow the history of each material 
point and to handle the large geometrical changes of the deforming solid and related boundary 
conditions.  

 
In this thesis concerned by metal forming under large strains, we focus on the updated Lagrangian 

formulations in order to deduce the weak forms of the balance equations for the classical and the 

micromorphic problem. This allows us to solve the IBVP using the displacement-based finite element 

method. 

2.2.2.1 Weak forms associated to the equilibrium equations 

By using the updated Lagrangian formulation, the weak forms associated to the strong forms 

(Eq.(1.8)) can be easily obtained thanks to the weighted residuals method (Belytschko, 2001).  

We start from the extension of the Hu-Washizu weak form proposed by Fish and Belytschko 

(Fish and Belytschko, 1990) to derive the following weak forms for: 

 The weak form associated to the classical local equilibrium: 

           , , : : 0
e e

t t

T T
a a a a a a u u

su d u d u f u dV F u dS          
 

 

          
    

  (2.2) 

where,   denotes a variation, 
a  is the assumed strain rate, 

a  the assumed stress 

evaluated by the constitutive law and s u  the symmetric part of the velocity gradient.  

 

 The weak form associated to the micromorphic damage: 

2( , ) ( ) 0 . .

t t t

d

d

d
J d d d ddV d d ddV ddV d K A

H


     

  

                                         (2.3) 
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 The weak form associated to the micromorphic isotropic hardening: 

     2( , ) 1 1 ( ) 0 . .

t t t

r
r

r
J r r d r rdV d r r rdV rdV r K A

Q

  
     

  

              

(2.4) 

 

where u is the kinematically admissible virtual velocity field and d and r  are the kinematically 

admissible virtual velocity fields associated to the micromorphic damage and the micromorphic 

isotropic hardening respectively.  

These three forms are strongly coupled as well as highly nonlinear so their analytical resolution is 
not possible. Accordingly, numerical methods based on the appropriate time and space discretization 
are required to solve the discretized nonlinear equations defining the IBVP. This leads to a nonlinear 
algebraic system that should be resolved using the appropriate Newton-type iterative scheme or 
direct non-iterative scheme. 

 

2.3 Time and space discretization 

In this paragraph we will discuss the time discretization of the weak forms of the IBVP introduced 

in section 2.2.2.1, over the interval 
0 , ft t   as well as the spatial discretization over the domain 

t . 

In the context of FEM, the time interval 
0 , ft t    is divided into subintervals of size t  that are not 

necessarily constant while the domain 
t is decomposed into geometrically simple subdomains in 

order to express  the IBVP in an incremental form of a nonlinear algebraic system to be solved over 

each time increment. 

2.3.1 Time discretization of the IBVP 

The typical time interval is divided into subintervals of the form  0 1 1

1

, ,
tN

f n n n n

n

t t t t t t 



       , 

where 
1 1n n nt t t    is the incremental time step, not necessarily constant and 

tN is the total 

number of the time increments. The purpose is solving a nonlinear problem in each one of these 

subintervals in order to compute all the unknowns of the IBVP at the time 
1nt 

 since their values are 

supposed to be known at any time from the beginning of the time interval at 
0t  until the time 

nt . 

More precisely, for our micromorphic problem, the discrete nodal fields    ,
n n

u d and  
n

r are 

supposed to be known at the beginning of the increment
nt . The goal is to calculate    1 1

,
n n

u d
 

and 

 
1n

r


 at the time 
1nt 

by using the discretized weak forms to be mentioned in the following 

paragraph. 
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2.3.2 Space discretization of the IBVP using finite elements 
In the framework of the FEM, the domain 

t is discretized into a finite number 
teN  of 

subdomains or finite elements noted as 
e  so that 

1

,
teN

t e i j

e

       where ( )e indicates 

the element, 
1

teN

e

is the operator indicating the addition over all the elements and  , 1, tei j N .  

In each FE 
e  the main unknowns of the IBVP (here the displacement, the micromorphic damage 

and isotropic hardening fields) are approximated, based on a nodal approximation by subdomains, 

using the appropriate polynomial interpolation functions. For the sake of simplicity, the elements are 

considered as isoparametric, e.g., the geometry of each element is approached by the same 

interpolation functions with the unknown fields. Any reference element called 
r of the reference 

space expressed by the local coordinates e  corresponding to 
e  can be transformed into its real 

correspondent element by following the coordinate transformation relationship: 

   
1

( ) ( ) ( ) ( )
Nen

e e e e e e e

i i i

i

x N x or x N x   


                                                                                    (2.5) 

where Nen  are the nodes defining 
e , e

ix are the nodal coordinates of the specific element and 

( )e

iN  are the interpolation polynomials shape functions in terms of local coordinates  in the 

reference space. 

 

By applying the nodal approximation to the main real and virtual unknowns of the IBVP involved 

in the three weak forms (Eq.(2.2)-Eq.(2.4)), the real and virtual displacement vectors, the 

micromorphic damage and isotropic hardening are expressed on a typical reference element, in the 

following matrix forms:  

   

   

 

 

 

 

( , ) ( ) ( )
( )

( , ) ( ) ( )

( , ) ( ) ( )
( )

( , ) ( ) ( )

( , ) ( ) ( )
( )

( , ) ( ) ( )

e e e

i

e e e

i

e e e

id

e e e

id

e e e

r i

e e e

r i

u t N u t
a

u t N u t

d t N d t
b

d t N d t

r t N r t
c

r t N r t

 

   

 

   

 

   

    


   

 




 




                                                                                                  (2.6) 

 

where , ,e e e

rd
N N N           are the matrices of the interpolation functions for each element ( )e for 

the displacement, the micromorphic damage field and the micromorphic isotropic hardening field 

respectively. These functions depend only of the node coordinates and are independent of time. The 

terms , ,e e e

i i iu d r correspond to the nodal displacement, micromorphic damage and isotropic 

hardening for each node i  expressed in the global reference space. 
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Following the same procedure for the first time derivative and the acceleration fields, we get:  

   

   

 
 

 

 

( , ) ( ) ( )
( )

( , ) ( ) ( )

( , ) ( ) ( )

( )

( , ) ( ) ( )

( , ) ( ) ( )
( )

( , ) ( ) ( )

e e e

i

e e e

i

e e e

id

e e e

id

e e e

r i

e e e

r i

u t N u t
a

u t N u t

d t N d t

b

d t N d t

r t N r t
c

r t N r t

 

   

 

   

 

   

    


   

 


 


 




and 

   

   

 
 

 

 

( , ) ( ) ( )
( )

( , ) ( ) ( )

( , ) ( ) ( )

( )

( , ) ( ) ( )

( , ) ( ) ( )

( , ) ( ) ( )

e e e

i

e e e

i

e e e

id

e e e

id

e e e

r i

e e e

r i

u t N u t
a

u t N u t

d t N d t

b

d t N d t

r t N r t

r t N r t

 

   

 

   

 

   

    


   

 


 





( )c






                                 

(2.7) 

Moreover, the calculation of the first gradients of the real and virtual nodal variables involved in 

the three weak forms leads to:  

     

     

( )

( )

e e
e e e e e

i i i

e e
e e e e e

i i i

N N
u u u B u

x x

N N
u u u B u

x x






   



       
                 


      

                 

                                                                   (2.8) 

 

     

     

( )

( )

e e

e e e e ed d
i i id

e e

e e e e ed d
i i id

N N
d d d B d

x x

N N
d d d B d

x x






   



       
                     


      

                    

                                                                 (2.9) 

 

     

     

( )

( )

e e
e e e e ed r

i i r i

e e
e e e e er r

i i r i

N N
r r r B r

x x

N N
r r r B r

x x






   



      
                  


      

                

                                                                 (2.10) 

 

Substituting Eq.(2.6)-Eq.(2.10) into Eq.(2.2)-Eq.(2.4), the elementary discretized weak forms for a 

typical element ( )e take the following form:  
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        

        
        

int

int

int

( )

( )

( )

e e e e e e e

u i i ext

e e e e e e e

i id d d ext d

e e e e e e e

i r i r ext rd

J v u M u F F a

J d d M d F F b

J r r M r F F c

 

 

 

 

 

    

     

     

                                                                     (2.11) 

where, the consistent mass matrices, the internal and external forces for a typical reference element 

( )e are given in the reference element by: 

- Displacement field: 

e
r

T
e e e e

vM N N J dV


                                                                                                                               (2.12) 

    int
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T
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vF B J dV
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                                                                                                                            (2.13) 
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with    det dete e

vJ J x           is the determinant of the Jacobian matrix of the volume 

mapping transformation between the real and the reference elements e

r  while e

sJ  is the Jacobian 

of the boundaries (or surface) transformation. 

- Micromorphic damage: 
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 with ed  being the local ductile damage of the element e . 

- Micromorphic isotropic hardening: 
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with 
er  indicating the classical isotropic hardening of the element. The consistent mass matrices are 

often favorably replaced by their diagonal forms called the lumped mass matrices, obtained by 

concentrating the constant mass of the element in its different nodes. Several methods are used to 
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diagonalize the mass matrices, as can be found in literature (Jurgen, 1996; T J R, 1987; Zienkiewicz 

and Taylor, 2005). 

The lumped mass matrix is used to diagonalize the global mass matrix. For each row, the diagonal 

lumped mass term is obtained by summing the different terms associated to each column: 

1 1 1

1

e e e
r r r

nddls nddls nddls
lp e e e e e e e e e

ii ij i j v i j v i v

j j j

M M N N J dV N N J dV N J dV  
    



                                                  (2.21) 

 

2.4 Numerical computation of the large strain rate tensor 
To integrate the behavior model, in the case of large deformations and rotations, it is important 

to choose a kinematic approximation over a time step to evaluate the strain rate tensor 1

2
nD  , 

according to an incrementally objective integration algorithm. The most usual approach is to proceed 

by the calculation of the material position and to sequence as follows, 

1 1n n nx x u                                                                                                                                              (2.22) 

The transformation tensor at the time tn+1 is written in the following form, 
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                                                                     (2.23) 

Nevertheless, assuming the hypothesis of approximation of the real path by a linear scheme at 

constant velocity, the schema under consideration causes a variation of volume. Winget and Hughes 

(Winget and Hughes, 1980) then proposed as a linear relation the following expression, 

1n n nx x u                                                                                                                                              (2.24) 

        and            
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                                                                                                                      (2.25) 

We use a half-step implementation scheme assuming an implicit Euler schema in time with 
1

2
   

In order to calculate the symmetric strain rate tensor 1

2
nD  or, half-step consider the development of 

the tensor gradient strain rate 1

2
nL  , such as, 

1
1 1
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                                                                                                                                         (2.26) 

a classic central difference scheme is used for the computation of the first term: 
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The inversion of the increment of the transformation gradient gives: 
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                                                                                    (2.28) 

The strain rate gradient tensor at the half-step is: 
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                                                           (2.29) 

The gradient tensor of strain velocities can be decomposed in symmetric and antisymmetric parts. 

The symmetric part of the tensor is the total deformation rate, noted as 1

2
nD  , and described as: 
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In the same way, we express the rate of rotation, noted 1

2
n 

, by 
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2.5 Formulation of some finite elements 
The introduction of the new micromorphic balance equations in the IBVP requires the 

construction of special elements based on appropriate mixed variational forms as the Hu-Washizu 

form, with a particular decomposition of the transformation gradients. 

2.5.1 Formulation of the mixed variational form  
As already presented, Fish and Belytschko (Fish and Belytschko, 1990) proposed an extension of 

Hu-Washizu's variational principle in the case of nonlinear solids mechanics. We start from there in 

order to derive the following form for our micromorphic IBVP: 

  

(2.32) 

where,  denotes a variation,  is the assumed strain rate,  the assumed stress evaluated by 

the constitutive law and  the symmetric part of the velocity gradient.  
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2.5.1.1 A 4-node quadrilateral assumed strain element 

We have impemented in Abaqus/Explicit® a quadrilateral 2D element initially proposed by Wang 

(Wang et. al, 2004). This element is called ‘assumed strain’ element and it is defined in such a way to 

avoid the occurrence of volumetric expansion locking and shear locking.  

We discretize this variational form in an elementary domain 
e and we focus on a typical element 

( )e  between the instants 
nt  and

1nt 
 by switching to matrix notations. Simo and Hughes (Simo and 

Hughes, 1998), suggested the projection of the discretized velocity gradient 1
2

n
B



 
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, so that
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. This new operator 1
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 
  

 is chosen in a way to be able to evaluate the 

assumed strains rate tensor    1 11 2 2

a a e

nn n
B u

 

 
  

 as well as generate an assumed stress tensor 

 1a

n   orthogonal to the difference between the symmetric part of the velocity gradient and the 

assumed strain rate tensor. This choice allows us to simplify the Hu-Washizu variational principle and 

rewrite it under the following form: 

       : 0
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                                               (2.33) 

 

 

Figure 2.2: The quadrilateral element 

The isoparametric shape functions of the element for the displacement field in the reference space 

are expressed as: 

1
( , ) (1 )(1 )

4
i i iN                                                                                                                              (2.34) 

and for the micromorphic fields as: 

1
( , ) ( , ) (1 )(1 )

4ii
r i id

N N                                                                                                            (2.35) 

 
All the above shape functions can be also expanded in terms of a set of orthogonal base vectors as: 
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1 1 1 1

( , ) ( , ) ( , )
4 4 4 4
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N N N s h                                                        (2.36) 

 
where  
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1 1 1 1 1 1 1 1                                                                                            (2.37) 

are the vectors of the nodal co-ordinates in the reference space and  

1 1 1 1 1 1 1 1s h   =                                                                                                (2.38) 

being the translation and the hourglass vectors respectively. 

To ensure the objectivity conditions of the model, we use a corotational system defined in the 

centroid of the element (see Fig. 2.3) built by the shape functions defined in the reference space

( , )  . The orientation of this corotational triad is governed by the orthogonal rotation tensor Q  

which is expressed under the following form: 
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                                                        (2.39) 

   

 

Figure 2.3: Corotational definition of the Q4-URI element 

 

All the operators in the form of a vector or matrix and the various mechanical fields (stress tensor, 

strain rate tensor, internal variable tensor) will be transported in the corotational coordinate frame 

in order to guarantee the objectivity of the tensorial increments. Only the nodal elementary forces 

(internal and external) will be turned at the end of the calculation in the global reference of the part. 

The jacobian matrix  J  is written in this 2D case as:  
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                                       (2.40) 
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with 
1 2 3 4X x x x x and 

1 2 3 4Y y y y y  being the coordinates of the node in the 

corotational coordinate frame. The determinant of the jacobian can be written explicitly under the 

following form: 

   0detJ J J J J                                                                                                                        (2.41) 

where  
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                                                                      (2.42) 

where A  is the area of the element. 

The gradient operator 1
2

a

n
B



 
  

 is decomposed into two parts; the strain tensor 0
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n
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

 
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 which gives 

the overall strain rate components  
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
 in the center of the element ( 0)   ; and the tensor 
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 that completes the formulation of the strain rate tensor components 

for any other point of the element and can be expressed as: 
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where ( , )x y  the co-ordinates of an arbitrary point in the corotational space frame. 

Finally, the assumed strain rate field can be expressed under the following analytical form: 

 

0

0 0

1 1
2

0

( 0)
2

x

y nn

xy

B U

 









 

 
           

                                                                                                               (2.45) 
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The form of the second part of the gradient operator is based on the expression developed by 
Wang (Wang et. al, 2001). To eliminate volumetric and shear locking phenomena, an assumed strain 
rate field is proposed to replace the classical strain rate fields obtained by the symmetric gradient 
operator. Hence, the volumetric energy and the shear energy corresponding to the hourglass terms 
tend to be zero. So, we use the following assumed strain rate field: 
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where  

                                                                  (2.49) 

 

The vector    is calculated by the following expression: 
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and it is called hourglass stabilization vector, identical to the   -projection operator proposed by 

Belytschko (Belytschko, 2001).  

Different values of the parameters e1, e2 and e3 can be chosen. In the case of e1=1, e2=0 and e3=1, 

we find the expression of the classical strain rate fields obtained by a symmetric gradient operator: 
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But, to eliminate volumetric locking phenomena, the volume dilatation rate corresponding to the 

hourglass terms can be expressed as: 
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If we choose 
1 2

1

2
e e    the volumetric locking associated to the new assumed strain rate 

operator can be eliminated. 
 

The shear strain rate corresponding to the hourglass terms can be expressed as: 
32 2ha h

xy xye     

If we let 
3 0e  , the shear locking can also be eliminated. 

 
The new expression of the assumed strain rate operator as the following expression: 
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                      (2.53) 

 
Finally, the assumed strain rate field can be expressed under this following form:  
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(2.54) 

The assumed Cauchy stress tensor at the 1n   step is updated from calling the elastoplastic behavior 

model: 
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                          (2.55) 

where epC    is the material tangential modulus matrix of an elastolastic behavior model. 

The vector of the nodal internal forces is then evaluated by mixed integration Gauss point as: 
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with  
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    with     
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                                                                                     (2.60) 

 

To add of the contribution of the micromorphic variables, we need to define a gradient operator 

of the scalars: 
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We use the same operator to build the gradient of the micromorphic damage and micromorphic 

isotropic hardening: 

0x xxe e

r g g gd

y y y

b bb
B B B B B

b b b

   

 

   
    
                                      

                                             (2.61) 

 

The internal micromorphic damage force vector is then computed: 
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4 Gauss integration points are used for the integration: 
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 The external micromorphic damage force vector is also integrated with 4 Gauss integration points: 
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In the same way, we compute the internal and external force associated to the micromorphic 

isotropic hardening: 
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2.5.1.2 A 4-node quadrilateral axisymmetric element 

By following the assumed strain method introduced above, we develop a simple four -node 

axisymmetric element (Fredriksson and Ottosen, 2006). The strain-driven format obtained is well 

suited for materials with non-linear stress-strain relations. For this element, the orthogonal 

projection of the stress and strain fields through the B-bar approach by Simo and Hughes (Simo, 

1998) and the   -projection operator suggested by Flanagan and Belytschko (Flanagan and 

Belytschko, 1981) are applied.  

The shape functions remain the same and the mapping of the four-node quiadrilateral element 

is defined by: 

   ( , ) , ( , )r N r z N z    
                                                                                                               (2.68) 

where r  and z  denote the polar co-ordinates and the nodal coordinates: 

1 2 3 4 1 2 3 4,r r r r r z z z z z                                                                                                        (2.69) 

Similarly, the radial displacement ru  and the axial displacement zu  are approximated by: 
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                                                                                                  (2.70)                                                                                             

 where 1 2 3 3r r r r rU u u u u  and 1 2 3 4z z z z zU u u u u contain the nodal displacements in the 

r  and z direction respectively. 
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The strain rate components become: 
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                                                              (2.71) 

The strain rate tensor  1
,

Plan

n
 

   is computed with the same equation used for the 2D plane 

strain element: 
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And the ortho-radial strain rate component is defined by 
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By following Flangan and Belytschko, we introduce the average operator:  
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V rdA   is the element volume per radian. 

The orthoradial operator becomes: 
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So, the different gradient operators can be now expressed under this form: 
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The assumed Cauchy stress tensor at the 1n   step is updated as we call the elastoplastic behavior 

model: 
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where epC    is the material tangential modulus matrix of an elastolastic behavior model. 

The vector of the nodal internal forces is again evaluated by this new expression: 
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For the four-node axisymmetric element, we only add the micromorphic damage as the new 

degree of freedom. The new expressions of internal and external micromorphic force vectors 

are: 
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 The external micromorphic damage force vector is integrated with also 4 Gauss integration point: 
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                                                                                      (2.87) 

 

2.6 Global resolution scheme 

2.6.1 Dynamic explicit analysis 
Considering the explicit dynamic analysis procedure in Abaqus®/Explicit the solutions of the IBVP 

with the three forms presented above are obtained simultaneously by an explicit coupling, based 

upon the implementation of an explicit integration rule together with the use of diagonal or lumped 
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mass matrices. Many dynamic explicit schemes that appear in the literature (e.g., Hughes 1987, 

Belytschko, 2001) can be used to treat the different coupled problems. 

For the present IBVP that consists of many equations, a sequential resolution method is 

preferred, meaning that the three problems are successively resolved at the same time increment

 1,n n nt t t t    . The objective is to obtain all the nodal unknowns and all the state variables at time 

1.nt    

We start by the resolution of the mechanical problem in order to determine its solution at time 

1nt  by keeping the values of the micromorphic damage and the micromorphic isotropic hardening 

constant at time .nt  The mechanical equation is then written under the following form: 

        int 0extn nn n
M Ü F F                                                                                                                (2.88) 

Since the internal forces vector is already known at time nt , the acceleration vector at the same 

time is expressed as: 

        
1

intu ext n nnn
Ü M F F


                                                                                                                   (2.89) 

The equations of motion for the body are integrated using the explicit central difference 

integration scheme and the vectors of the global velocity and the global displacements are 

respectively: 

     

     

1
1 1

2 2

111
2

2

n n

n n n

nn n n

t t
U U U

U U t U



 

 

  
 

  

                                                                                                           (2.90) 

 where the indices 
1 1

,
2 2

n n
   

    
   

 indicate the middle of two successive time increments. 

The solutions of the micromorphic damage and the micromorphic isotropic hardening are also 

integrated in time using the above explicit central difference scheme as presented for the 

displacement fields.  

At each time increment 1,n n nt t t t    , the overall state variables at nt  and the increments of all 

the displacement-like variables are provided to compute the state variables at 1nt   and the 

accelerations of the displacement-like variables by solving the weak forms of the IBVP. The main 

steps of the dynamic explicit resolution scheme are summarized as follows:    

  

1) Resolution of the displacement equation (Eq.(2.2)) and the micromorphic equations (damage 

and isotropic hardening)  in Eq.(2.3) and Eq.(2.4).   

 a) Compute the lumped mass matrix 
e

uM    for once, using the Eq.(2.21) and the lumped mass 

matrix of the micromorphic fields e

d
M 
   for the damage (Eq.(2.15)) and e

rM 
  (Eq.(2.18)) 

for the isotropic hardening at the beginning of the analysis step;  
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b) Estimate the new stable time increment  1 min , ,n u rd
t t t t      using the Eq.(2.93);  

c) Update the displacement field       1 11
2

nn n n
U U U t  

    using the Eq.(2.90) and the  

micromorphic variables       11

2

n n n

d d t d
 

    and       11
2

n n n
r r t r

 
   ;  

d) Call the material behavior model and update the state variables, e.g.
1 1 1 1, , ,n n n nr d    

 , by 

the local integration scheme (Paragraph 2.8);  

e) Compute the internal forces  int

eF  and external forces e

extF  using the Eq.(2.13) and 

Eq.(2.14);   

f) Compute the micromorphic internal  int

e

d
F


 and  int

e

rF 
 from Eq.(2.16) and Eq.(2.19), and 

external forces e

ext d
F


and e

ext rF 
, using  Eq.(2.17) and Eq.(2.20);  

g) Compute the acceleration 
1n

Ü


and the velocity  3

2
n

U


 the accelerations 
1n

d


and 
1n

r


, 

and the time rates of the micromorphic fields   3

2
n

d


 and  3

2
n

r


 according to the Eq.(2.89) 

and Eq.(2.90). 

2) Go to the next time step. 

The explicit dynamic procedure requires no iterations and no tangent stiffness matrix. However, 

the explicit procedure, which integrates through time by using many time increments, is conditionally 

stable. The stable time increment considering the damping effect is given by: 

  2

max

2

1
ut

  
 

 

                                                                                                                          (2.91) 

 In which max  is the elementary highest eigenvalue of the mechanical system and 1   is the 

damping parameter. A conservative estimate of the stable time increment is given by the minimum 

taken over all the elements. The above stability limit can be rewritten as: 

min e
u

d

L
t

C

 
   

 
                                                                                                                                             (2.92) 

where, eL  is the characteristic element size and dC is the current effective, dilatational wave speed 

of the material approximated by ( 2 ) / .d e eC µ    

Similarly, considering different values of the micromorphic density , rd
  , leads to the stability 

limits associated to each micromorphic field in order for the associated stable time increments

 , rd
t t    to be defined. Since each IBVP has one critical stable time increment, the global stability 

limit is governed by the minimum value of all the critical stable conditions:  

 min , ,u rd
t t t t                                                                                                                                     (2.93) 
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2.6.2 Stability condition for the micromorphic damage problem 
For the explicit case (VUEL subroutine) we take into account the micromorphic inertia and we 

compute the diagonal lumped mass matrix (Eq.(2.21)) for both the mechanical and the micromorphic 

damage problem by using  
e
r

T
e e e e

vM N N J dV


           and  
e
r

e e e ed
vd d d

M N N J dV
H






     as 

introduced in section 2.3.2. The following equation (Eq.(2.94)) is then solved in 1D for one element 

2det 0e eK M         
                                                                                                                          (2.94) 

with max   being the elementary highest eigenvalue of the mechanical system and eK the 

elementary stiffness matrix. Considering the stability condition provided by Abaqus®/Explicit, we 

define the stable time increment for the mechanical problem as:
max

2
min e

u

d

L
t

C

 
   

 
.   

We follow the same steps to define the stable time increment for the micromorphic damage 

problem by solving the same equation adapted properly as:  

2det 0e e

d d d
K M         

                                                                                                                           (2.95) 

where 

   2

d d

e e

e

d d d d
K B B Jd N N Jd

 

                                                                                              (2.96) 

Let us also note that in 1D the isoparametric shape functions of the element for the displacement 

and the micromorphic damage fields in the reference space are expressed as: 

1 1

2 2d
N

  
                                                                                                                                  (2.97) 

 For the jacobian : 
2

eL
J   where el  is the length of the 1D element. The gradient operator as the 

following expression: 

1
1 1

d

e

B
L

                                                                                                                                           (2.98) 

After integration, we get the following different matrices: 

The micromorphic lumped mass matrix: 

1 0

0 12

e
e d e

d

A L
M

H




 
     

 
                                                                                                                          (2.99) 

where eA  is the section of the 1D element. 

The micromorphic stiffness matrix: 

 

 

2 2 2 21

22
1

1 11 1 1 1 2 11

1 1 1 1 1 24 2 61 1

e
e e e ed d e

d

e e

Ll
K A d A A

L L

 


 





           
                             
 (2.100) 
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For the same reasons, 
max

2
d

d

t


  . The resolution of Eq.(2.95) gives that 

  22
max

2 32

12

ed

d

d
ed

L
t

H L




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

                                                                                                            (2.101) 

If we suppose the local damage d  to be constant in the 1D element, we can also show with the 
same procedure that: 

  22

2 3 1

112
r

r e

r

e

L
t

dQ L



 



                                                                                                              (2.102) 

 

2.7 Local integration scheme 
For solving the algebraic system given later in Eq.(2.127), the computation of the internal and the 

external forces demands the evaluation of the local stress tensor 1n  ,  the local damage 1nd  , the 

isotropic hardening 1nr   and the kinematic hardening 1n  at each integration point for each element 

at time step  1n nt t t    , according to the already known state variables at time nt , the state 

relations Eq.(1.24) to Eq.(1.27) and the evolution equations Eq.(1.50) to Eq.(1.53). To calculate these 

state variables at the end of each time step, we should numerically integrate the overall ordinary 

differential equations. Many integration methods are widely discussed within the literature (Wilkins, 

1964; Dautray, 1984). 

In presence of the nonlinear isotropic and kinematic hardenings, it has been shown in (Nesnas 
and Saanouni (2002), Saanouni and Chaboche (2003), Badreddine et al. (2010), Saanouni (2012b)) 
that combining the asymptotic scheme (Walker and Freed, 1991) with the return-mapping algorithm, 
leads to an efficient and robust unconditionally stable integration scheme in presence of the ductile 
damage. This method is followed here to integrate the above fully coupled constitutive equations 
with micromorphic damage.    

 
The equations of our behavior model are first order ordinary differential equations and can 

formally be expressed under two forms, either as: 

 1

( , )
,

( ) for n n

n n

y y t
t t t

y t y t t





 

 
                                                                                                          (2.103)                                   

or     

 
 1

( , ) ( , )
,

( ) for
n n

n n

y y t y t y
t t t

y t y t t

 

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 

 
                                                                                                    (2.104) 

 By applying the classical  -method, we obtain 

  1 1 0 1forn n n ny y t y y                                                                                            (2.105) 

 as the solution of Eq.(2.103), and 

   exp ( ) 1 exp ( ) ( ) 0 1forn n n t n ny y y y t y                                                       (2.106) 
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 as the solution of Eq.(2.104). 

Applying the solutions Eq.(2.105) and Eq.(2.106) under the fully implicit assumption ( 1)  , allows 

us to rewrite the state variables, at the end of the time step 1nt  for the time-independent plasticity, 

under the following form: 

 The Cauchy stress and the plastic strain tensors: 

  

1 1
1 1

11

1 1 11

3
,

21

1 ( )1 2

p p p n n
n n n

nn

e e

n n nn e e

n Z
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d tr µ

  
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 
 
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  


    


   

                                                                               (2.107) 

 with the elastic deformation  

1
1
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e e ep p n
n n n

n

n

d
       




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

                                                                                (2.108) 

 

 The ductile damage: 
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(2.109) 

  

 The isotropic hardening: 

1
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(2.110) 

  

 The kinematic hardening: 
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                                                        (2.111) 
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2.7.1 Local integration of time-independent plasticity 

2.7.1.1 Elastic prediction 

Let us suppose that the total incremental strain   over the current time step is completely 

elastic meaning the absence of any induced plastic flow, hardening or damage i.e., 0p  . In this 

case, the elastic trial strain at time 1nt  is given by: 

1

trial e

n n     
                                                                                                                                                         (2.112) 

which results to the trial stress deduced from Eq.(2.107):  

1 1(1 ) :
trial trial

n nnd                                                                                                                                     (2.113) 

Since 0p  , for this trial elastic loading increment, the von Mises  yield criterion (Eq.(1.48)) 

corresponding to this trial stress rewrites as: 

1

1
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d d 
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                                                                                                         (2.114) 

 

 If 1 0trial

nf   , then the solution is effectively elastic, meaning that the trial stress state 1

trial

n   is lying 

inside the yield surface (e.g. elastic unloading), and the state variables are updated as follows giving 

the elastic solution: 

,
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 
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                                                                                           (2.115) 

 

2.7.1.2 Plastic correction 

If 1 0trial

nf   , it means that the trial stress state lies outside of the yield surface, something not 

admissible in time independent plasticity. The solution is then plastic and the trial solution should be 

corrected to determine the final values of the state variables , , ,X R Y  and make sure that the 

yield condition  111 1 1, , , 0nnn n nf X R Y      is fulfilled. Under this case, the von Mises yield 

function takes the following form: 
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                                                                                                       (2.116) 

   

To proceed with this viscoplastic correction, the discretized, nonlinear and fully coupled evolution 

equations must be solved using the Newton-Raphson iterative scheme to determine the stress-like 

variables and the admissibility conditions at 1nt  , the so-called return mapping algorithm.  
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The stress-like variables at the end of the time increment are expressed as: 

 The Cauchy stress tensor: 

   1 1
1 11 1

1 1

1 : 1 :
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                 (2.117) 

 

 The stress-like variable for the isotropic hardening: 
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(2.118) 

 

 The stress-like variable of kinematic hardening: 
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                            (2.119) 

 

 The deviatoric stress tensor: 

1 11

dev

n nnZ X                                                                                                                                     (2.120) 

 

The tensor 1nZ  is written under the form: 

*1
1 1 11

1
2 1 1 exp

1 3

p pn
n n nn e

n

d C C C
Z Z d a n

d a C
  

  

     
                    

                              (2.121) 

where 
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 , the tensor can be rewritten as: 
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and by using the plasticity criterion obtain: 
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. 

By substituting Eq.(2.118) to Eq.(2.124) we retrieve a second expression of the deviatoric tensor: 

1 1

1 1

1

1 1

1 1

1 1 1
1 exp

1 12

3

1 1 exp 1

n n n p

n n n

n n

n n

p

n n y

d d d Q Q
d R Qr b

d Qd
Z n

Q Q Q
d b d

b Q

  

 


 

 

 



 

 

                              
                    

   (2.125) 

 

Finally, the equality of the two expressions (in Eq.(2.121) and Eq.(2.125)), gives: 
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(2.126) 

So, considering the fully isotropic plasticity, we obtain the following two highly nonlinear 

equations with two independent variables p  and d : 
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This system of two equations with two unknowns is resolved by an iterative Newton-Raphson 

algorithm in order to linearize them under the following form: 
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with s being the number of iterations and the corrections of p   and 1nd   given by: 
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From the system Eq.(2.128) and for each iteration, we get: 
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This allows us to obtain the values of p  and 1nd   for each iteration which as a result, allows 

us to deduce the values of  
1s

p


 and  
1

1

s

nd


 until convergence. At convergence, we obtain the 

final values of p and 1nd  leading to the calculation of all the other variables at time 1nt   . 

It is worth noting that we can simplify the system with two equations and two unknowns in one 

highly non-linear scalar equation with one unknown p under the form ( ) 0.pf    It is enough to 

exit the equation 1ng  from the Newton-Raphson loop, supposing that the damage at time 1nt  is 

written under the following form: 

 1 0

1 1

,
0

(1 )

s
pp

n n

n n n

n

Y d Y
g d d

d S

 

 

 
   


                                                                          (2.135) 

   which is quite useful for accelerating the convergence and reducing the computation time. 

2.7.2 Implementation in Abaqus®/Explicit 
In order to solve the IBVP, we have implemented some finite elements with additional 

micromorphic degrees of freedom as well as a micromorphic behavior model combined with an 

integration algorithm to compute each state variable for each integration/Gauss point. In this 

paragraph we will give a short discussion with some details on the methodology followed for the 

implementation of the new elements based on a micromorphic behavior model and the finite 

elements in Abaqus/Explicit®. 

By using Abaqus/Explicit® we have the ability to implement our own element along with its 

numerical integration in order to compute all the state variables at each load increment. This is done 

by following the form of a proposed subroutine called inside the VUEL (Abaqus User Subroutines 

Reference Manual).  

The current VUEL, built to implement the integration algorithm of the proposed micromorphic 

model, is written in Fortran90. Without going into many details and without giving any parts of the 

code, we present the major steps for a Gauss point of a typical element for a load increment in

 1,n n nt t t t     : 

 At the beginning of a time increment: we read all the variables related to the current time 

increment and we restore the values of all the variables at the end of the previous step  nt . 

 If 1n cd d  at a Gauss point, we exit the routine, by maintaining the state variables and 

keeping them unchanged at  nt . 

 Else, ( if for example 
n cd d ) the elastic prediction- plastic correction code is applied: 

 Calculation of the trial criterion by using the loading increment in  1,n n nt t t t    :  

- If 1 0trial

nf   we preserve all the state variables at  nt , keep 1 1

trial

n n   and 

we exit the routine 

- If 1 0trial

nf   we continue to the plastic correction by applying the Newton-

Raphson iterative scheme until the convergence ( 1 0trial

nf   ). 
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 Update all the state variables at  1nt  . 

 In case 
1n cd d  (total rupture test) in one Gauss point, we set 

1 1,nd   we neglect all the 

stress-like stress variables and preserve the latest values of the strain-like variables. 

We highlight this case where a completely damaged element appears in the dynamic explicit 

resolution scheme. We note again that all the stress-like variables are equal to zero for an element 

the Gauss points of which are totally damaged. As a consequence, the vectors    int ,e e

extF F are 

vanished. In our case, the completely damaged elements remain in the mesh but without any 

mechanical state and, apparently, the nodes connecting these elements do not have any 

contribution to the global internal force vector. At any case, this element should be removed from 

the whole structure with the use of an adaptive remeshing procedure (Borouchaki 2002, 2005; 

Labergère, 2009, 2011, 2014; Issa, 2011).   Whenever a remeshing technique is not applied, these 

elements are ‘hidden’ during the post-processing of the results after the end of the simulation. 

Since the post-processing step for elements with additional degrees of freedom is not available on 

the version 6.13-1 of Abaqus/Explicit®, we had to overcome this difficulty by using an external 

software for this purpose (GID). By adapting and using this software we succeed in treating properly 

and quite fast the long and difficult post-processing operations resulting from the large quantities of 

information obtained after the end of a simulation. 

 

2.8 Adaptive analysis in 2D: The adaptive remeshing methodology 
During metal forming processes, the large plastic strains that occur in regions of the part 

undergoing deformation, lead to highly localized strain zones. Inside these necking zones, 
microscopic defects may appear leading frequently to the initiation of macroscopic cracks. The 
numerical simulation of these processes using Finite Element Methods based on updated Lagrangian 
formulation leads to large distortion of the initial mesh. For this reason, adaptive meshing 
procedures are necessary in order to perform the full analysis. If the constitutive equations take into 
account the description of the macroscopic cracks initiation, the simulation of crack growth becomes 
thereafter possible. A number of authors (Andrade Pires et al., 2004; Borouchaki et al., 2005; 
Bouchard et al., 2000; Bouchard et al., 2003; Boussetta et al., 2006; Ceretti et al., 1997; Labergere et 
al., 2007; Labergere et al., 2008; Labergere et al., 2010; Vaz and Owen, 2001) have proposed an 
adaptive meshing frame in which fully damaged elements are removed from the mesh leading to the 
determination of new boundaries inside the deformed part. Frequent remeshing must be thereafter 
performed in order to avoid large element distortion and to enhance the accuracy of the analysis in 
areas where gradients are highly localized. Accordingly, a robust mesh generation procedure is 
needed (Coupez et al., 2000). The objective to describe, with reasonable accuracy, macroscopic crack 
initiation and growth, can only be reached if the new moving boundaries are discretized with an 
optimal mesh size. 

 
The previous works have been published regarding the mesh adaptation in elastoplasticity or 

viscoplasticity, while using appropriate local criteria to remove the cracked elements. A 2D adaptive 
meshing procedure for metal forming by large plastic deformation has been proposed by using linear 
triangular elements and the procedure has been tested on a number of examples (Labergere, 2014). 
However, some basic properties of the linear elements may lead to inaccuracies when high 
nonlinearities appear. 

In this thesis, a 2D adaptive methodology using 2D bilinear assumed strain quadrangular elements 
in axisymmetric configuration is proposed and successfully applied to highly non-linear metal forming 
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problems with damage occurrence. The proposed methodology is based on the following tools and 
techniques:  

 ABAQUS/EXPLICIT® software to solve the initial and boundary value problem. At each 
Gauss point, appropriate constitutive equations are used through the user 
defined material subroutine VUMAT. 

 Appropriate error indicators used to compute the map of the mesh size including 
refinement and coarsening of the mesh. 

 2D mesh generator (DIAMESH2D) 

 Fields transfer procedures between the old and the new mesh based on diffuse 
approximation (Brancherie and Villon, 2006; Labergere, 2014) 

 Specific procedure to adapt the loading sequences that depend on the size and the 
number of the fully damaged elements. 

 
The efficiency of this methodology is illustrated through the simulation of some blanking 

operations detailed in Chapter 5. 

2.8.1 2D Adaptive numerical methodology 

I. 2D adaptive meshing resolution scheme 

The procedure adapts the load sequence and the mesh size using appropriate error indicators. 

The mesh generator DIAMESH2D is thereafter performed using linear or quadratic Quadrangular or 

Triangular elements (Rassineux, 1991), according to the following steps (see Fig.2.4): 

o Step n°1: The initial part is coarsely meshed with respect to a maximum element size maxx   

and the local curvature of the tools; 
o Step n°2: ABAQUS/EXPLICIT is used with a user defined VUEL user subroutine in order to 

solve the problem for the first load sequence and the final solution (displacement and state 

variables) at the end of the current loading sequence for the current mesh ( )iM  is obtained; 

o Step n°3: If the number of fully damaged elements does not exceed a given threshold and if 

all the fully damaged elements have the smallest mesh size min

damx  , these fully damaged 

elements are removed. New boundaries are then defined with respect to a new mesh size 
based on the error indicators. If the total number of the fully damaged elements exceeds the 

known threshold or if the size of any fully damaged element exceeds min

damx , the analysis is 

cancelled for this loading sequence. A new load sequence is then carried out for a reduced 
loading amplitude. 

o Step n°4: Error indicators based either on the local curvature of the tools at the contact 
boundaries and/or the Hessian of the plastic strain and damage rates are calculated and a 
new map of mesh sizes is derived from those error indicators; 

o Step n°5: Knowing the mesh sizes map a new mesh 1( )iM  is generated using DIAMESH2D 

software. 

o Step n°6: Data from mesh ( )iM are transferred to the newly created mesh 1( )iM   based on 

diffuse approximation procedure. 
o Step n°7: A new input file for the analysis is prepared for a new loading sequence and the 

analysis is restarted from step 2. 
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Figure 2.4: 2D adaptive remeshing scheme (Labergere et. al, 2014) 
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(crack propagation) 

yes 

yes 
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II. Field transfer 

       As the domain geometry is time dependent, emphasis must be given to the transfer of the 
different fields during the process. In order to recover the different fields, a second order 
diffuse interpolation method is used. The main steps of the diffuse approximation method 
(Breitkopf et al., 2000 among others) are given here. The different state variables namely 

" "physS  (plastic strain, stress, damage, isotropic hardening,…) are computed at each 

integration point of each element using the local integration procedure. Thereafter, a Monge 

patch surface of equation ( , )S x y  is built: 

   
2 2

( , ) 1, , , , , ( )
2 2

x y
S S x y x y xy a P X a                                                                 (2.136) 

  

        with ( , )X x y , where x and y  are the global system of coordinates and  a  is the 

approximation parameters vector calculated by minimizing a criterion based on the 
interpolation of the set of neighboring nodes, as: 

           
2

1

, phys

pi n

i i iX

i

J a w X X P X X a S X





                                                    (2.137) 

 

       iX  denotes the vector coordinates at which the quantity  phys iS X is given; pn  is the 

number of points at which  phys iS X is provided. X denotes the coordinate vector at which 

the approximation is computed. The contribution of each nodal value to the approximation is 

influenced by a weighting function  , ( )i iw X X w X  such that ( , ,) 0iw X   inside the 

domain of influence of the node i and ( , ,) 0iw X   otherwise, providing a local character to 

the approximation. 
 

Figure 2.5: Diffuse transfer procedure 
 

       Figure 2.5 represents the influence zone at each old Gauss point of the old mesh ( )iM  and 

the evaluation of the mechanical fields for each new Gauss point of the new Mesh 1( )iM   

       For the nodal variables a polynomial interpolation based on the FE interpolation shape 
functions is used depending on the element type. 

 

Old mesh 

Influence zone 

New mesh 

New Gauss 

points ? 

Old Gauss 

points 
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III. The error indicator 

When dealing with strong material and kinematical non linearities, the mesh adaptation 
to the higher field gradients is a crucial issue. Many authors have proposed different error 
estimators based on different physical consideration (Babuska and Rheinboldt, 1978; 
Georges, 2001; Zienkiewicz et al., 1988). The mesh size, all over the domain, can be derived 
in a first step from geometrical considerations. An adaptation of the contour lines to the 
curvature in the first step of the analysis greatly improves the robustness of contact analysis 
especially whenever bilateral contact due to self-contact occurs. In this context, a master-
slave surface method is used and many projections are performed. A coarse representation 
of the contact zone may impede the convergence of the process. For instance, the vicinity of 
the tools and more generally potential contact as well as auto contact between surfaces is 
taken into account even before a contact may occur. In a 2D context, the contact between 
bodies as well as the auto-contact problems are rather easy to detect and therefore to 
handle. Once the contact is detected an adequate element size is locally affected. 

 

Mesh size map based on damage and equivalent plastic strain 
 

The prediction of the mesh size is based on the values of some selected fields weighted by their 
time derivatives. Therefore, we also developed an empirical formula to predict the mesh size map 
based on the values of the main non linearity sources such as: plasticity and damage. On a number of 
predefined intervals, mesh size gradation has a predefined expression and therefore thresholds are 
defined. These intervals enable us to describe the main steps of the evolution of the mechanical 
behavior (elasticity, plasticity, damage). The whole meshing process is controlled by four element 

sizes max max min min

p p damx x x x          

where: 

maxx  : maximum element size 

max

px  : maximum mesh size for plasticity 

min

px  : minimum mesh size for plasticity 

min

damx  : The smallest mesh size of fully damaged elements which are thereafter removed 

 

Whenever the accumulated plastic strain p does not exceed a given threshold denoted by maxp ,  

the mesh size variation evolves linearly from maxx  to max

px  and indeed max max

px x   . When 

maxp p , we consider that the size decreases exponentially to reach the minimum value min

px . 

In a second step, the mesh size under plasticity denoted as 
px  is weighted by the damage variable 

D. The lowest value of mesh size denoted as 
dx  is min

damx . The different functions used to compute 

these mesh sizes are given in Table 2.3. 
The initiation and propagation of macroscopic cracks are simulated here by deleting the fully 

damaged elements having the same smallest size min

damx  for a given material. Accordingly, there is no 

significant loss of mass if the removed elements have the smallest size. On the other hand, this 

ensures a kind of mesh independency, since the same material min

damx  has a constant same value 

inside the damaged zones. 
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 Areas of mechanical behavior parameter Evolution of the element size 
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Plastic zone with low damage 

value  mind d  
mind  dam px x    

Plastic zone with moderate 
damage value 

 min maxd d d   

mind , maxd

, 
min

damx  
  min

min

max min

dam dam p pd d
x x x x

d d


    


 

Plastic zone with high damage 

value  maxd d  
mind , maxd

, 
min

damx  

min

dam damx x    

Table 2.3:  Element size with respect to the cumulated plastic strain p and the damage variable d   

 

 

2.9 Conclusions 
In this chapter dedicated to the numerical aspects of the initial boundary value problem, we have 

presented the weak forms of the IBVP. We discussed hereafter the finite difference time 

discretization and the finite element space discretization as well as the numerical computation of the 

large strain rate tensor. 

 Two types of 2D elements, a 4-node quadrilateral assumed strain and a 4-node quadrilateral 

axisymmetric element, have been formulated to which we have added the new micromorphic 

degrees of freedom. We have also presented the numerical methods associated to this IBVP in terms 

of the global resolution scheme. Finally, we give attention to the local integration of the evolution 

equations and a brief representation of the 2D adaptive remeshing methodology. 

This numerical methodology will be used in the following chapters in order to validate the 

proposed model through some examples concerning several metal forming applications. 
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Chapter 3  

Parametric study of the micromorphic model. 
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3.1 Introduction  

In the first chapter we formulated a micromorphic model with multiphysic coupling. To the local 

phenomena (hardenings, damage) we added the equivalent micromorphic variables for the isotropic 

hardening and the ductile damage as new degrees of freedom and additional state variables. In the 

second chapter, the following numerical aspects associated to this model were presented: (i) the 

variational forms of the IBVP, (ii) the global resolution scheme, (iii) the new finite elements with the 

additional micromorphic degrees of freedom and (iv) the local integration scheme of the complete 

set of the fully coupled constitutive equations. 

This chapter is dedicated to the validation of the proposed model from both theoretical and 

numerical points of view. A detailed parametric study is performed on a simple uniaxial tensile test in 

order to explore the performance of the proposed nonlocal formulation and its ability to achieve 

acceptable solutions. In particular, the role of the micromorphic material parameters is studied for 

the two micromorphic phenomena concerning three models: the first only with micromorphic 

damage, the second only with micromorphic isotropic hardening and the third with the combination 

of them both.  

3.2  Behavior model and specimen 

3.2.1 Choice of the parameters 
For all the validation examples and the parametric study, the model with mixed hardening 

strongly coupled with ductile damage is used (see Table 2.2 in Chapter 2). For this model, the local 

parameters for the 430(X8Cr17) steel were identified through an inverse method based on the 

appropriate experimental force-displacement curves and they are presented in Table 3.1. 

 430(X8Cr17) steel 

Elasticity parameters 220000.0

0.29

E MPa






  

Plasticity parameters 300.0

1135.0

2.0

4300.0

40.0

y MPa

Q MPa

b

C MPa















  

Damage parameters 

0

4.5

1.0

1.0

0.0

S

s

Y











  

Table 3.1: Local material parameters for the 430 steel specimen 

For the micromorphic (nonlocal) parameters, different values were taken into consideration for 

the pairs: ( , )gH H  for the micromorphic damage and ( , )gQ Q  for the micromorphic isotropic 

hardening. These different values are carefully selected in order to investigate their effects on the 

plastic flow and damage localization. More particularly, the impact of the values of these 

micromorphic parameters on the thickness of the macroscopic crack defined as the area of all the 
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completely damaged elements, as well as their ability to provide a mesh independent solution at 

convergence, are examined. 

3.2.2 Specimen 
The thin metallic specimens tested were made of 430(X8Cr17) steel with effective length of    

45.0 mm and thickness of 0.2 mm as shown in Fig. 3.1. For the sake of element validation, they were 

all modeled with Q4 quadrilateral plane stress elements and we have only treated the case of a 

tensile test. Figure 3.2 presents the geometry and the three different meshes using the 

micromorphic finite elements developed in Chapter 2. 

 

Figure 3.1: Specimen geometry (Bao et al., 2015) 

 

         
0.2

7502

7367

h mm

N nodes

N elements







               
0.4

2295

2207

h mm

N nodes

N elements







               
0.8

700

642

h mm

N nodes

N elements







  

Figure 3.2: The specimen meshed with three different element sizes ( 0.2h  mm, 0.4h  mm and

0.8h  mm)     

The specimen is subjected to an imposed displacement applied to the upper head with   

0.015u  mm/min. In the following we discuss, in some details, the distribution of the mechanical 

fields in the specimen as predicted by the fully coupled model. We recall that the elements were 
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implemented in Abaqus®/Explicit through the VUEL user’s subroutine while the numerical integration 

of the overall constitutive equations are implemented in the same code through the VUMAT user’s 

subroutine as detailed in Chapter 2. 

3.3 Parametric study of the micromorphic model 

In this section a relatively exhaustive parametric study of the micromorphic model is presented by 

focusing on the role of the four micromorphic parameters related to both micromorphic damage, 

e.g., ( , )gH H and micromorphic isotropic hardening, e.g., ( , )gQ Q . We examine the effect of the 

different values of each one of these parameters on the quality of the numerical solution in terms of 

the global force-displacement and stress-strain responses as well as the distribution of the 

mechanical fields inside the specimen. 

Since the micromorphic moduli H  and Q  are the most important parameters which control the 

localization phenomena (as can be seen in the strong forms in Table 2.1 of Chapter 2), we will focus 

on these.  For this, we start by examining the model with micromorphic damage only, followed by 

the model which carries the effect of the micromorphic hardening only. Finally, we conclude with the 

model including both micromorphic damage and isotropic hardening which is our complete 

micromorphic model. For all the cases, we use only the Q4 elements with the required micromorphic 

dofs and we compare the results with the solutions obtained by the local model.  

3.3.1 Model only with micromorphic damage  
In this case all the phenomena are supposed to remain of local nature and only the damage is 

taken as micromorphic, giving one additional degree of freedom and one additional micromorphic 

balance equation. We recall that in this case only one internal length is activated, the one related to 

the micromorphic damage given by /g

d
H H  . 

Before proceeding to the parametric study of the micromorphic damage model, let us retrieve 

and examine the purely local solution. We remind that the results for this tensile test for the local 

damage model as well, were obtained using the ABAQUS/EXPLICIT VUEL and VUMAT user’s 

subroutines applied to the Q4 elements with the displacement being the sole degree of freedom by 

deactivating the micromorphic moduli H  and gH . 

Figures 3.3, 3.4 and 3.5 show the distribution of , , eqd p   respectively, one step before the first 

crack appears, (e.g., 1.0d   for the central element located at the intersection of the two shear 

bands) while Figure 3.6 illustrates the typical force-displacement curves obtained at the end of each 

simulation for the three different mesh sizes. In Figures 3.3a, 3.4a and 3.5a we have added the 

damage isovalues at the final fracture of the specimen showing the macroscopic crack path for each 

mesh size. From these results we observe that, as expected, the solutions are highly dependent on 

the mesh size mainly during the damage induced softening stage (Figure 3.6). As expected, the 

consequence of this mesh dependency is clearly shown by the non-unique force-displacement curves 

at the damage induced softening stage. The thickness of the totally damaged zone (macroscopic 

crack) is reduced to a single row of elements for all the cases but without following the same 

orientation as shown in Figures 3.3a, 3.4a and 3.5a. Indeed, the final crack appears to be horizontal 

for the coarse mesh size of 0.8 mm (Figure 3.3a), while for the two other finest meshes the 

macroscopic crack follows one of the shear bands with two different orientations. This difference 
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seems clearly governed by the numerical difference in local damage values. Let us also note that, for 

this local model, the equivalent plastic strain at fracture (ductility) is “nearly” independent from the 

mesh size with 56%ruptp  for 0.8h  mm and 0.4h  mm while 60%ruptp   for 0.2h  mm. 

(a)-Damage (b)-Equi. Plast. 
Strain 

(c)-von Mises stress 

   

Figure 3.3: Local damage, equivalent plastic strain and von Mises stress eigenvalues before the 

final rupture of the first element for 0.8h  mm giving 11.73ruptu  mm  

a)-Damage (b)-Equi. Plast. 
Strain 

(c)-von Mises stress 

 
  

Figure 3.4: Local damage, equivalent plastic strain and von Mises stress eigenvalues before the 

final rupture of the first element for 0.4h  mm giving 11.4ruptu  mm  
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(a)-Damage (b)-Equi. Plast. 
strain 

(c)-von Mises stress 

   

Figure 3.5: Local damage, equivalent plastic strain and von Mises stress eigenvalues before the 

final rupture of the first element for 0.2h  mm giving 11.1ruptu  mm    

 

Figure 3.6: Force-displacement responses of the local model for three mesh sizes 

3.3.1.1 Effect of the internal length 
d

for a constant mesh   

We examine the effect of the micromorphic damage modulus H by taking three different values: 

a low value 6.4H  , a medium value 60.0H   and a high value 1000.0H  . For each of these three 

values, the values of the modulus gH are varied in order to obtain the following three values of the 

damage internal length 
d

 of 0.1, 1.0 and 5.0 mm.  
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(i) For 6.4H  : the values of gH giving the three targeted values of the damage micromorphic 

internal lengths together with the associated fracture displacements are summarized in Table 3.2. 

( )gH N  
d

 
ruptu  

0.064  0.1 mm 11.1mm 

6.4  1.0 mm 11.1mm 

160.0  5.0 mm 11.13 mm 

Table 3.2: Values of the micromorphic material parameters and fracture displacement for 6.4H   

As shown in Table 3.2, in Figure 3.7 by the force displacement curves and in Figure 3.8 by the 

stress-strain curves, due to the low value of the modulus 6.4H  , the regularization effect is small 

and the mechanical responses are close to the local solution with a fracture occurring for a 

displacement of 11.1  mm.   

In terms of the distribution of the mechanical fields inside the specimen for this case with a low 

value of H , when 0.064 / 6.4 0.1
d
  mm, the maximum value of local damage just before the 

final fracture of the specimen is max 50.0%d   (Figure 3.9a.1), the maximum micromorphic damage is 

max 19.0%d   (Figure 3.9b), the maximum accumulated plastic strain is max 58.0%p   (Figure 3.9c) 

and the maximum von Mises stress , 659.0eq Max   MPa (Figure 3.9d). For 6.4 / 6.4 1.0
d
  mm 

we obtain 
max 37.0%d  (Figure 3.10a.1), max 40.0%d   (Figure 3.10b), 

max 55.0%p   (Figure 3.10c) 

and max 663.0eq  MPa (Figure 3.10d). While for the highest value of micromorphic damage internal 

length 160.0 / 6.4 5.0
d
  mm, we obtain 

max 34.0%d  (Figure 3.11a.1), max 11.0%d  (Figure 

3.11b),
max 56.0%p   (Figure 3.11c) and max 664.0eq   MPa (Figure 3.11d). 

Figures 3.9a.2, 3.10a.2 and 3.11a.2 show the shape of the finale crack for the three cases of 

6.4H    along the band that concentrated the highest amount of plastic strain leading to the final 

rupture. Figures 3.8 and 3.12 show the comparisons of the eq p   responses of the local and the 

micromorphic model and the local damage evolution for the local and the micromorphic model 

respectively for a point lying in the middle of the specimen in the intersection of the two shear 

bands.  

Note, that for this case, the symmetry of the localized shear bands is perfectly preserved.   
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Figure 3.7: Comparison of the global force-displacement responses of the local and the 

micromorphic model for a fixed 6.4H   and three different values of gH    

 

Figure 3.8: Comparison of the eq p   responses of the local and the micromorphic model for a 

fixed 6.4H   and three different values of gH  

It is obvious that the weak presence of nonlocality, mainly due to the low value of the modulus 

H (here 6.4H  ), does not have a great influence on the evolution of the demonstrated mechanical 

fields and their maximum values stay close to the ones obtained by the local model as expected. The 

more the values of the micromorphic moduli tend to zero, the more the solution approaches the 

local one. 

It’s worth noting than even the nonlocal effect coming from the relatively high value 160.0gH   

is not obvious and this can be explained by the fact that it is the parameter H that controls nlocY and 

that seems to have the biggest influence on the nonlocality effect. 
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(a.1)- Local Damage (a.2)- Local Damage at 
12.5u  mm 

(b)- Micromo. Damage (c)- Equi. plast. strain (d)- von Mises stress 

     

Figure 3.9: Local and micromorphic damage, equivalent plastic strain and von Mises stress 

distribution for 6.4, 0.1
d

H   mm (i.e. 0.064gH   ) at 11.1ruptu  mm   

(a.1)- Local Damage (a.2)- Local Damage at 
13.0u  mm 

(b)- Micromo. Damage (c)- Equi. plast. strain (d)- von Mises stress 

     

Figure 3.10: Local and micromorphic damage, equivalent plastic strain and von Mises stress 

distribution for 6.4, 1.0
d

H   mm at 11.1ruptu  mm (i.e. 6.4gH   ) 
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(a.1)- Local Damage (a.2)- Local Damage at 
13.0u  mm 

(b)- Micromo. Damage (c)- Equi. plast. 
strain 

(d)- von Mises stress 

     

Figure 3.11: Local and micromorphic damage, equivalent plastic strain and von Mises stress 

distributions for 6.4, 5.0
d

H   mm at 11.13ruptu  mm (i.e. 160.0gH   ) 

 

Figure 3.12: comparison of the local damage evolution for the local and the micromorphic model 

for 6.4H  at the end of the imposed displacement 15.0u  mm  
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 (ii) For 60.0H  : The values of gH giving the three targeted values of the damage 

micromorphic internal lengths together with the associated fracture displacements (if any) are 

summarized in Table 3.3. 

( )gH N  
d

 
ruptu  

0.6  0.1 mm 11.34 mm 

60.0  1.0 mm 11.9 mm 

1500.0  5.0  mm No crack 

Table 3.3: Values of the micromorphic material parameters and fracture displacement (if any) for 

60.0H   

 

 

Figure 3.13: Comparison of the global force-displacement responses of the local and the 

micromorphic model for a fixed 60.0H    

As shown in Table 3.3, by the force-displacement curves (Figure 3.13) and by the stress-strain 

curves (Figure 3.14), the regularization effect exists but it is less essential for an 
d

 of 0.1 mm and 

1.0 mm for which the mechanical responses are higher but still close to the local solution with a 

fracture occurring for displacement values of 11.34 mm  and 11.9 mm respectively. However, no 

fracture is observed at the end of the applied load for the highest value of 5.0
d
 mm.   

In terms of the distribution of the mechanical fields inside the specimen, when

0.06 / 60.0 0.1
d
  mm takes its lowest value, the maximum value of local damage just before 

the final fracture of the specimen is max 41.0%d  (Figure 3.15a.1), the maximum micromorphic 

damage is max 25.0%d   (Figure 3.15b), the maximum accumulated plastic strain is max 75.0%p   

(Figure 3.15c) and the maximum von Mises stress , 698.0eq Max   MPa (Figure 3.15d). For 

60.0 / 60.0 1.0
d
  mm we obtain 

max 41.0%d  (Figure 3.16a.1), max 21.0%d   (Figure 3.16b), 
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max 89.0%p   (Figure 3.16c) and max 720.0eq  MPa (Figure 3.16d). Finally, for the highest value of 

micromorphic damage internal length 1500.0 / 60.0 5.0
d
  mm, we obtain 

max 24.0%d  (Figure 

3.18a), max 12.0%d  (Figure 3.18b),
max 290.0%p  (Figure 3.18c) and max 873.0eq   MPa (Figure 

3.18d) which are the values obtained at the end of the applied load with no fracture occurrence. 

Figures 3.15a.2 and 3.16a.2 show the shape of the finale crack for  0.06 / 60.0 0.1
d
  mm and 

60.0 / 60.0 1.0
d
  mm, along the band that concentrated the highest amount of plastic strain 

leading to the final rupture. Figures 3.14 and 3.19 show the comparisons of the eq p   responses of 

the local and the micromorphic model and the local damage evolution for the local and the 

micromorphic model respectively for a point lying in the middle of the specimen in the intersection 

of the two shear bands. Figure 3.17 shows the evolution of , ,d d p  and eq  the case of 

1500.0 / 60.0 5.0
d
  mm and for a relatively large displacement of 12.0 mm in the absence of 

final rupture. Once again for this case, the symmetry of the localized shear bands is perfectly 

preserved.   

 

Figure 3.14: Comparison of the eq p   responses of the local and the micromorphic model for a 

fixed 60.0H    

For the case 1500.0 / 60.0 5.0
d
  mm it is clearly shown that the micromorphic damage 

effect is excessively strong due to 1500.0gH   and yields to no appearance of the final fracture up 
to the imposed displacement of 15.0 mm (Figure 3.18) despite the extremely high values of 

max 290%p  and max 872.0eq  MPa. The effect is directly mapped to the very slow evolution and the 

low values of the local damage (Figure 3.19). We can note here that clearly the material ductility 

increases by increasing both H and gH . 
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  (a.1) Local Damage (a.2) Local Damage at 
13.0u  mm 

      (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

     

Figure 3.15: Local damage, micromorphic damage, equivalent plastic strain and von Mises stress 

distributions for 60.0, 0.1
d

H   mm at 11.13ruptu   mm (i.e. 0.6gH  ) 

(a.1) Local Damage (a.2) Local Damage at 
12.5u  mm 

      (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

     

Figure 3.16: Local and micromorphic damage, equivalent plastic strain and von Mises stress 

distributions for 60.0, 1.0
d

H    mm at 11.5ruptu  mm (i.e. 60.0gH  ) 
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(a) Local Damage       (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

    

Figure 3.17: Local damage, micromorphic damage, equivalent plastic strain and von Mises stress 

distributions at 12.0u  mm for 60.0, 5.0
d

H   mm (i.e. 1500.0gH  ) 

(a) Local Damage       (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

    

Figure 3.18: Local damage, micromorphic damage, equivalent plastic strain and von Mises stress 

distributions at the end of the applied load ( 15u  mm) for 60.0, 5.0
d

H   mm (i.e. 1500.0gH  ) 
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Figure 3.19: comparison of the local damage evolution for the local and the micromorphic model 

for 60.0H  at the end of the imposed displacement 15.0u  mm  

 

 (iii) For 1000.0H  : The values of gH giving the three targeted values of the damage 

micromorphic internal lengths together with the associated fracture displacements (if any) are 

summarized in Table 3.4. 

( )gH N  d
 ruptu  

10.0  0.1 mm 14.1mm 

1000.0  1.0  mm no crack 

25000.0  5.0  mm no crack 

Table 3.4: Values of the micromorphic material parameters and fracture displacement (if any) for 

1000.0H   

As shown in Table 3.4, by the force-displacement curves (Figure 3.20) and by the stress-strain 

curves (Figure 3.21), the final fracture is observed at 14.1mm displacement only for 0.1
d
  mm far 

from the fracture displacement predicted by the local model. No fracture is observed at the end of 

the applied load for 
d

 of 1.0 mm and 5.0 mm.   

When 10.0 /1000.0 0.1
d
  mm the maximum value of local damage just before the final 

fracture reaches max 86.0%d  (Figure 3.22a.1), the maximum micromorphic damage max 80.0%d   

(Figure 3.22b), the maximum accumulated plastic strain max 229.0%p  (Figure 3.22c) and the 

maximum equivalent von Mises stress 825.0eq   MPa (Figure 3.22d).  For 

1000.0 /1000.0 1.0
d
  mm we obtain

max 14.6%d   (Figure 3.24a) close to max 14.3%d   (Figure 

3.24b),
max 287.0%p  (Figure 3.24c) and max 901.0eq  MPa (Figure 3.24d). Finally, concerning the 
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highest value of the internal length 25000.0 /1000.0 5.0
d
  mm we obtained max 4.2%d 

(Figure 3.26a) very close to the micromorphic damage max 3.9%d  (Figure 3.26b),
max 124.0%p   

(Figure 3.26c)and max 907.0eq  MPa (Figure 3.26d). 

Figure 3.22a.2 shows the shape of the finale crack for 10.0 /1000.0 0.1
d
  mm along the band 

that concentrated the highest amount of plastic strain leading to the final rupture. Figures 3.21 and 

3.27 show the comparisons of the eq p   responses of the local and the micromorphic model and 

the local damage evolution for the local and the micromorphic model respectively for a point lying in 

the middle of the specimen in the intersection of the two shear bands. It is also interesting to take a 

look at the evolution of , ,d d p  and eq in Figures 3.23 and 3.25 for 1000.0 /1000.0 1.0
d
  mm 

and 25000.0 /1000.0 5.0
d
  mm respectively for a relatively large displacement of 12.0 mm in 

the absence of final rupture. 

 

 

Figure 3.20: Comparison of the global force-displacement responses of the local and the 

micromorphic model for a fixed high value of the modulus 1000.0H    
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Figure 3.21: Comparison of the eq p   responses of the local and the micromorphic model for a 

fixed high value of the modulus 1000.0H    

 

(a) Local Damage (a.2) Local Damage at 
15.0u  mm 

      (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

     

Figure 3.22: Local and micromorphic damage, equivalent plastic strain and von Mises stress 

distributions for 1000.0, 0.1
d

H   mm at 14.1ruptu  mm (i.e. 10.0gH  ) 
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(a) Local Damage       (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

    

Figure 3.23: Local and micromorphic damage, equivalent plastic strain and von Mises stress 

distributions at 12u  mm for 1000.0, 1.0
d

H   mm (i.e. 1000.0gH  ) 

(a) Local Damage       (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

    

Figure 3.24: Local and micromorphic damage, equivalent plastic strain and von Mises stress at the 

end of the applied displacement ( 15.0u  mm) for 1000.0, 1.0
d

H   mm (i.e. 1000.0gH  ) 
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(a) Local Damage       (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

    

Figure 3.25: Local and micromorphic damage, equivalent plastic strain and von Mises stress at 12.0u  mm 

for 1000.0, 5.0
d

H   mm (i.e. 25000.0gH   ) 

(a) Local Damage       (b) Micromo. Damage (c) Equi. plast. strain (d) von Mises stress 

    

Figure 3.26: Local and micromorphic damage, eq. plastic strain and von Mises stress distributions at the end 

of the applied displacement ( 15.0u  mm) for 1000.0, 5.0
d

H   mm (i.e. 25000.0gH  ) 
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Figure 3.27: comparison of the local damage evolution for the local and the micromorphic model 

for 1000.0H  at the end of the imposed displacement 15.0u  mm  

 

Similarly to the previous case ( 1500.0 / 60.0 5.0
d
  mm), the same observations are made for 

1000.0/1000.0 1.0
d
  mm and 25000.0/1000.0 5.0

d
  mm. It is clearly shown  that the 

micromorphic damage effect is excessively strong due to 1000.0H  and gH  up to 25000.0gH   
and yields to no appearance of rupture although the displacement reaches up to 15.0 mm (Figure 
3.20) and the 

max 200%p   . The effect is directly mapped to the very slow evolution the low values 

of the local damage as shown in Figure 3.27 while due to high diffusion, d  and d  tend to evolve 

identically giving again a very small and negligible value to the term ( )d d close to zero. As a matter 

of fact, these two solutions are yet not acceptable due to the lack of their physical substance. 
 
By examining the F u  curve in Figure 3.20 and comparing the three micromorphic solutions to 

the local one, we see that for 10.0 /1000.0 0.1
d
  mm, 14.1ruptu  mm and it is the largest 

observed for this study resulting from the extremely high value of 1000.0H  . 

 

Summary 

We keep H constant and equal to 6.4, 60.0 and 1000.0  respectively by varying the value of the 

internal length 
d

  between 0.1, 1.0  and 5.0 mm in order to observe the effect of the micromorphic 

damage moduli  in terms of the global F u and eq p   curves, distribution of mechanical fields, 

local damage evolution and regularization of the solution. 

For all the tests, we examine the evolution of , ,d d p  and eq  as well as the evolution of the local 

damage, the eq p   and force-displacement curves for each case and we compare with the results 

obtained from the purely local model as shown above. 
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From all the force-displacement figures obtained we observe that: 

 H  has a preponderant effect on the rupture displacement: the higher the value of H is, the 

more delayed the rupture is. In fact, for 6.4H   the rupture displacement is 11.1ruptu mm,  

for 60.0H  12.ruptu mm and for 1000.0H  14.0ruptu mm only for the case of 5.0
d
  

mm. 

 If the value of H is low, the more the solution approaches the local one. This is explained by 

the fact that nlocY  is directly proportional to H in a way that low values of H give a low value 

of nlocY so the micromorphic model tends to match the local one. 

 For a constant value of H , the more gH increases (larger
d

), the more the rupture is 

delayed as well, for example, for 60.0, 0.6gH H  11.0ruptu  mm, while for 

60.0, 60.0gH H  11.9ruptu  mm. 

 We also compare now the distribution of ( , , )eqd p   for the local and all the nonlocal cases; 

the isovalues of the damage, the equivalent plastic strain and the von Mises stress 

corresponding to the moment of the rupture. The more the values of H and gH increase, 

the more the damage is homogenized around the macroscopic crack, which propagates 

along a single row of elements for all the cases. For the distribution of p , we can note the 

progressive growth of the ductility and consequently of the necking as the values of H and
gH increase.    

 

In conclusion, it is the parameter H that controls nlocY and that seems to have the biggest 

influence on the nonlocality. In fact, the solution is almost identical to the local one for the lower 

values of H while the nonlocality effect becomes more important to the global response as the 

values of H increase, which is obvious from the F u  and the eq p   curves. All these figures 

represent the the responses of one Gauss point of an element in the center of the specimen in the 

intersection of the two bands. 

 

3.3.1.2 Effect of the mesh size 

In order to examine the influence of the mesh size on the micromorphic IBVP regularization 

ability for different values of the micromorphic moduli ( , gH H ) giving three values of the damage 

internal length of 0.6 mm, 0.8 mm and 1.0 mm (see table 3.5), the following three Q4 element sizes 

have been selected; 0.2h  mm, 0.4h  mm and 0.8h  mm. Clearly, 0.2h  mm is three times 

lower than the smallest value of damage internal length 0.6
d
 mm; 0.4h  mm is 1.5 times lower 

than the smallest value of the damage internal length, while 0.8h  mm is equal to the middle value 

of the damage internal length 0.8
d
 mm. 
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( )H MPa  ( )gH N  d
 

10.0  3.6  0.6 mm 

100.0  36  0.6 mm 

10.0  6.4  0.8 mm 

100.0  64.0  0.8 mm 

10.0  10.0  1.0 mm 

100.0  100.0  1.0 mm 

Table 3.5: Values of the material micromorphic parameters and the generated values of the 

damage internal length to be used with three different mesh sizes 

Figures 3.28, 3.30, 3.32, 3.34 and 3.36 represent the global local and micromorphic F u  

responses for all the six the cases for the three different meshes compared with the local case 

( 0).gH H   Also the distribution of the local damage field d  at the moment of the crack initiation 

are shown in Figures 3.29, 3.31, 3.33, 3.35, 3.37 and 3.39. 

We present the results for all the cases and we make a discussion on them followed by a 

conclusion at the end of the paragraph. 

 Case (I.a), 0.6 , 10.0, 3.6g

d
mm H H    

 

Figure 3.28: comparison of the global force-displacement responce of the local and the 

micromorphic model for three mesh sizes ( 0.6 , 10.0, 3.6g

d
mm H H   )  
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0.2h mm  

11.1ruptu mm
  

0.4h mm  

11.4ruptu mm
 

0.8h mm  

11.73ruptu mm
 

   

Figure 3.29: local damage isovalues at the corresponding ruptu  for three mesh sizes                             

  ( 0.6 , 10.0, 3.6g

d
mm H H   )  

 Case (I.b), 0.6 , 100.0, 36.0g

d
mm H H    

 

Figure 3.30: comparison of the global force-displacement responce of the local and the 

micromorphic model for three mesh sizes ( 0.6 , 100.0, 36.0g

d
mm H H   )  
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0.2h mm  

11.6ruptu mm
  

0.4h mm  

11.8ruptu mm
 

0.8h mm  

12.2ruptu mm
 

   

Figure 3.31: local damage isovalues at the corresponding ruptu  for three mesh sizes       

 ( 0.6 , 100.0, 36.0g

d
mm H H   )  

 Case (II.a), 0.8 , 10, 6.4g

d
mm H H    

 
Figure 3.32: comparison of the global force-displacement responce of the local and the 

micromorphic model for three mesh sizes ( 0.8 , 10.0, 6.4g

d
mm H H   )  
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0.2h mm  

11.1ruptu mm
  

0.4h mm  

11.4ruptu mm
 

0.8h mm  

11.7ruptu mm
 

   

Figure 3.33: local damage isovalues at the corresponding ruptu   for three mesh sizes   

  ( 0.8 , 10.0, 6.4g

d
mm H H   ) 

Case (II.b), 0.8 , 100.0, 64.0g

d
mm H H    

 

Figure 3.34: comparison of the global force-displacement responce of the local and the 

micromorphic model for three mesh sizes 0.8 , 100.0, 64.0g

d
mm H H     
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0.2h mm  

11.9ruptu mm
  

0.4h mm  

12ruptu mm
 

0.8h mm  

12.2ruptu mm
 

   

Figure 3.35: local damage isovalues at the corresponding ruptu  for three mesh sizes   

 ( 0.8 , 100.0, 64.0g

d
mm H H   )  

 Case (III.a), 1.0 , 10.0, 10.0g

d
mm H H    

 

Figure 3.36: comparison of the global force-displacement responce of the local and the 

micromorphic model for three mesh sizes ( 1.0 , 10.0, 10.0g

d
mm H H   )  
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0.2h mm  

11.1ruptu mm
  

0.4h mm  

11.4ruptu mm
 

0.8h mm  

11.7ruptu mm
 

 
  

Figure 3.37: local damage isovalues at the corresponding ruptu  for three mesh sizes              

( 1.0 , 10.0, 10.0g

d
mm H H   ) 

 

 Case (III.b), 1.0 , 100.0, 100.0g

d
mm H H    

 

Figure 3.38: comparison of the global force-displacement responce of the local and the 

micromorphic model for three mesh sizes ( 1.0 , 100.0, 100.0g

d
mm H H   )   
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0.2h mm  

12.4ruptu mm
  

0.4h mm  

12.4ruptu mm
 

0.8h mm  

12.48ruptu mm
 

   

Figure 3.39: local damage isovalues at the corresponding ruptu  for three mesh sizes              

( 1.0 , 100.0, 100.0g

d
mm H H   )  

 

Obviously, the fact that we use a micromorphic damage model and the activation of the 

micromorphic moduli are not enough to guarantee unconditional mesh independent solutions. 

By observing the cases where 0.6
d
 mm for ( 10.0, 3.6)gH H  (Figure 3.28), 0.8

d
 mm 

for ( 10.0, 6.4)gH H   (Figure 3.32) and 1.0
d
 mm for ( 10.0, 10.0)gH H   (Figure 3.36) 

we see that we obtain the exact local solutions due to the low values of H and gH that are not 

sufficient to indicate the presence and the effect of the micromorphic contribution which seems 

negligible. 

On the other hand, when 0.6
d
 mm for ( 100.0, 36.0)gH H   (Figure 3.30), and    

0.8
d
 mm for ( 100.0, 64.0)gH H   (Figure 3.34), the solutions seem mesh independent only 

for 0.4h mm  and 0.2h mm  by giving rupture displacements at 11.7ruptu mm and 

12ruptu mm respectively. Let us note here that the difference of 0.3 mm is due to the increase 

of gH from 36.0 N to 64.0 N since the value of H is fixed to10.0 . 

Finally, the best regularization seems to be achieved for 1.0
d
 mm when 

( 100.0, 100.0)gH H  (Figure 3.38). For this case, the internal length is bigger than the three 
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mesh sizes and the values of H  and gH are high enough in order to indicate the micromorphic 

effects by giving the same rupture displacement at 12.4ruptu mm yet the biggest among the 6 

cases tested.  

We conclude by saying that in order to achieve better regularization and as more mesh 

independent solutions as possible: 

1) the size of the chosen internal length should be sufficiently bigger than the size of the 

elements ( )
d

h , and  

2) The most appropriate choice for the micromorphic moduli should depend on the fact 

that the values of H  and gH  should be restricted in an “intermediate value” interval so 

that they are neither  too low, in order to retrieve the local solutions, nor too high so 

that the micromorphic damage effect is so excessively strong that leads to no rupture 

appearance despite the large displacement as shown for example for the case of 

1000.0gH H  .  

 

3.3.2 Model with micromorphic isotropic hardening 
The model only with micromorphic isotropic hardening gives one more partial differential 

equation supplementary to the local equilibrium equation, which is governed by the internal length

/g

r Q Q . As a result, the micromorphic scalar r becomes a nodal unknown variable additionally 

to the displacements. This isotropic hardening model described by the pair of the parameters 

( , )gQ Q  is the objective of the following parametric study similar to the one shown before regarding 

the micromorphic damage moduli.  

3.3.2.1 Uncoupled model only with micromorphic isotropic hardening 

For this case, we activate only the micromorphic isotropic hardening in order to investigate any 

effects of coming from the several pairs of ( , )gQ Q but without indicating the coupling with the local 

ductile damage.  

First, we fix the value of gQ and want to vary Q by making the following choices of the 

representative internal length:   

For 2.5 ( )gQ N  

( )Q MPa  r  

250   0.1 mm 

2.5  1.0 mm 

0.1  5.0 mm 

Table 3.6: Values of the micromorphic material parameters for 2.5gQ   
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Figure 3.40: Force-displacement response of the uncoupled micromorphic model ( 2.5gQ  ) 

 We continue by fixing the value of Q and varying Q by making the following choices of the 

representative internal length:   

For 0.1 ( )Q MPa  

( )gQ N  r  

0.001   0.1 mm 

0.1  1.0  mm 

2.5  5.0  mm 

Table 3.7: Values of the micromorphic material parameters for 0.1Q   

 

Figure 3.41: force-displacement response of the uncoupled micromorphic model ( 0.1Q  )  
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As shown from the F u   curves in figures 3.40 and 3.41 there is no effect resulting from the 

presence of micromorphic for the current choices. 

3.3.2.2 Model only with micromorphic isotropic hardening coupled with local damage-effect 

of r  for a fixed mesh 

We continue with a brief study on the effect coming from the micromorphic isotropic hardening 

moduli by fixing the value of 
gQ and varying the value of 

r
 between 0.1, 1.0  and 5.0 mm for a fixed 

mesh of 0.2h  mm.  

(i) For 0.1 ( )Q MPa : the values of gQ  giving the three targeted values of the micromorphic 

isotropic hardening internal lengths together with the associated fracture displacements are 

summarized in Table 3.8. 

( )gQ N  r  
ruptu  

0.001   0.1 mm 11.07 mm 

0.1  1.0 mm 11.07 mm 

2.5  5.0 mm 11.07 mm 

Table 3.8: Values of the micromorphic material parameters and fracture displacement for 

0.1Q   

(a) Local Damage (b) Equi. pl.strain (c) von Mises stress (d) r  (e) r   

     

Figure 3.42: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic isotropic 

hardening distributions at 11.07ruptu  mm for 0.1Q  , 0.1, 1.0, 5.0r  mm (i.e. 0.001, 0.1, 2.5gQ  ) 
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Figure 3.43 comparison of the global force-displacement responce of the local and the 

micromorphic model for 0.1Q    

Figure 3.43 show the F u  curves obtained for the 3 cases. We note that only the parameter Q  

that defines nlocR  and consequantly nlocY  could sensibly affect the global. No influence is observed 

from varying the parameter gQ . 

Moreover and for these explored values, the distribution of the demonstrated mechanical fields 

(Figures 3.42) remain unaffected and identical for all the internal lengths since for all the cases 

max52%, 40%, 660, 0.32rupt eqp d r and 0.28r  . 

3.3.3 Model with micromorphic damage and micromorphic isotropic hardening 

For this section we complete the micromorphic model by indicating the presence of both 

micromorphic damage and micromorphic isotropic hardening and we compare the F u responses 

with the proportional obtained by the experimental tensile tests in order to validate the choice of all 

the micromorphic parameters. 

3.3.3.1 Effect of d  for a fixed r  and a fixed mesh 

We keep the mesh size fixed at 0.2h  mm, / 5.0g

r Q Q  mm and 60.0H   and we vary 

the value of 
d

 in order to examine its effect on the F u responses and the distribution of the 

mechanical fields for the mixed model.   
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1000.0 ( ), 25000.0 ( ), 5.0g

rQ MPa Q N   mm 

( )H MPa  ( )gH N  d
 ruptu  

60.0   0.6  0.1 mm 12.3mm 

60.0  60.0  1.0 mm 12.45 mm 

60.0  1500.0  5.0 mm 13.9 mm 

Table 3.9: Values of the micromorphic material parameters and fracture displacement for 

1000.0, 25000.0, 5.0 , 60.0g

rQ Q mm H      

(a) Local damage (b) Micromorphic 
damage 

(c) Equi. pl. strain (d) von Mises 
stress 

(e) r  (f) r  

  
     

Figure 3.44: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 12.3ruptu  mm for 1000.0 , 25000.0, 60.0gQ Q H   ,

0.6gH  (i.e. 5.0 , 0.1r d
mm mm  )  
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(a) Local damage (b) 
Micromorphic 

damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.45: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 12.45ruptu  mm for 1000.0 , 25000.0, 60.0gQ Q H   ,

60.0gH  (i.e. 5.0 , 1.0r d
mm mm  ) 
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(a) Local damage (b) Micromorphic 
damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.46: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 13.9ruptu  mm for 1000.0 , 25000.0, 60.0gQ Q H   ,

1500.0gH   (i.e. 5.0 , 5.0r d
mm mm  ) 
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Figure 3.47: Comparison of the global force-displacement responce of the experimental and the 

micromorphic model for 5.0 , 0.1 , 1.0 , 5.0r d d d
mm mm mm mm      

 

For this case we till keep the mesh fixed at 0.2h  mm and 5.0rl  mm and we investigate the 

effect of 
d

 at the presence of micromorphic isotropic hardening. In order to enhance the 

micromorphic effect coming from the isotropic hardening, we increase the values of the parameters 

( 1000.0Q  and 25000.0gQ  ) and to assure the final rupture of the specimen we choose an 

intermediate value for 60.0H   and we vary the internal length among 0.1, 1.0
d
  and 5.0 mm.  

As expected, the more we increase the value of gH  e.g, the value of 
d

, the more the rupture 

displacement is enlarged e.g, 14.0ruptu  mm for 1500.0gH  as shown from the F u   curve in 

Figure 3.47. In terms of , ,rupt eqd p   and r  their values tend to increase as we increase the value of 

d
(Figures 3.44 to 3.46). On the other hand, the value of r  remains the same ( 0.24)r  for 

0.1
d
 mm and 1.0

d
 mm but slightly increases up to 0.27r when 1500.0gH  . Another 

observation is that the orientation of the crack is not respected and appears to be horizontal when 

1.0
d
 mm but it always propagates along a single row of elements for all the cases. Unlike 

, ,rupt eqd p   and ,r the values of the micromorphic damage d  seem to decrease by increasing the 

difference ( )d d  from case to case respectively. 

Moreover, it is interesting to take a look at the results (Tables 3.10 to 3.12) for the same choice of 

internal length but by keeping the isotropic hardening parameters 0gQ Q  . It’s worth noting that 

the presence of micromorphic isotropic hardening leads to larger rupture displacements, however a 

crack is achieved for the last test case ( 5.0 60.0, 1500.0g

d
mm H H   ) in contrast with keeping 

the isotropic hardening under a purely local form:   
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d  
ruptp  r  eq   

ruptu  

0.41   0.75  0.38  698.0   11.3mm 

Table 3.10: Local damage, equivalent plastic strain, von Mises stress, local isotropic hardening 

maximum values at 11.3ruptu  mm for 0.1 , 60, 0.6g

d
mm H H    

 

d  
ruptp  r  eq   

ruptu  

0.41   0.89  0.41  719.0   12.0 mm 

Table 3.11: Local damage, equivalent plastic strain, von Mises stress, local isotropic hardening 

maximum values at 12.46ruptu  mm for 1.0 , 60.0, 60.0g

d
mm H H    

 

maxd  maxp  r  eq   
ruptu  

0.24   2.90  0.5  872   no rupture 

Table 3.12: Local damage, equivalent plastic strain, von Mises stress, local isotropic hardening 

maximum values at 15.0u  mm for 5.0 , 60.0, 1500.0g

d
mm H H    

3.3.3.2 Effect of r  for a fixed 
d

 and a fixed mesh 

We continue the study by inverting the process and fixing the value of 1.0
d
 mm and varying r

in order to examine its effect for a fixed mesh size of 0.2h  mm. We compare again with the 

experimental results. 

100.0 ( ), 100.0 ( ), 1.0g

d
H MPa H N mm    

( )Q MPa  ( )gQ N  r  
ruptu  

1000.0   25000.0  5.0 mm 12.66 mm 

1000.0  100000.0  10.0 mm 13.6 mm 

10.0  2250.0  15.0 mm 12.48 mm 

Table 3.13: Values of the micromorphic material parameters and fracture displacement for 

100.0, 100.0, 1.0g

d
H H mm    
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Figure 3.48: comparison of the global force-displacement responce of the experimental and the 

micromorphic model for 100.0, 100.0, 1.0 , 5.0 , 10.0 , 15.0g

r r rd
H H mm mm mm mm       

The mesh size remains fixed at 0.2h  mm and 1.0
d
l  mm and we investigate the effect of r  at 

the presence of micromorphic damage. We choose 1.0
d
 mm with 100.0gH H  and we vary 

the internal length among 5.0, 10.0r   and 10.0 mm (Table 3.13).  

Clearly the choice of Q and gQ can affect the rupture displacement. As observed from the F u  

curves in Figure 3.48, the lowest value of Q ( 10.0)Q   gives 12.48ruptu  mm and similarly to the 

micromorphic damage model, the rupture displacement can be affected by the gradient modulus if 

Q remains fixed e.g, for 1000.0Q  and 25000.0gQ  12.66ruptu  mm, while for 1000.0Q  and 

100000.0gQ  13.6ruptu  mm. 

In terms of of , ruptd p and eq (Figures 3.49 to 3.51) their values tend to increase as we increase 

the value of .r  On the other hand, r  and r  tend to behave differently this time. By keeping 

1000.0Q  they both tend to decrease by increasing the internal length (increasing the value of gQ ). 

As expected, r takes its lowest value for 10.0Q   ( 0.17r ) but for all the three cases, the 

difference ( )r r  remains positive. 

Finally, we also note that the combination of 5.0 , 1.0r d
mm mm  leads to a horizontal rather 

than a diagonal crack.  
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(a) Local damage (b) Micromorphic 
damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.49: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 12.66ruptu  mm for 1000.0 , 25000.0, 100.0gQ Q H   ,

100.0gH   (i.e. 5.0 , 1.0r d
mm mm  ) 
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(a) Local damage (b) Micromorphic 
damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.50: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 13.6ruptu  mm for 1000.0 , 100000.0, 100.0gQ Q H   ,

100.0gH   (i.e. 10.0 , 1.0r d
mm mm  ) 
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(a) Local damage (b) Micromorphic 
damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.51: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 12.48ruptu  mm for 10.0 , 2250.0, 100.0gQ Q H   ,

100.0gH   (i.e. 10.0 , 1.0r d
mm mm  ) 
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3.3.3.3 Effect of the mesh size 

Finally, we study the effect of the mesh size including both micromorphic damage and isotropic 

hardening. We choose three different mesh sizes 0.8 , 0.4h mm h mm  and 0.2h mm ; we give 

strong values to the isotropic hardening parameters ( 1000, 2500, 5.0 )g

rQ Q mm    and 

acceptable intermediate values to the micromorphic damage moduli ( 60, 60, 1.0 )g

d
H H mm   . 

Figure 3.52 shows the global responses in terms of the F u   curves obtained for the three mesh 

sizes by using the Q4 element. The figure clearly shows the independence of the solution regarding 

the mesh size (for 0.8 , 12.9rupth mm u mm  , for 0.4 , 12.7rupth mm u mm   and for

0.2 , 12.55ruptmsh mm u mm  ) while Figures 3.53 to 3.55 confirm the independence of the thickness 

of the crack even though it appears to be horizontal for all the mesh sizes but always on a single row 

of elements. In terms of the distribution of the studied mechanical fields, , ruptd p and eq , they seem 

to obtain their highest values for 0.2h  mm ( max 67%, 70%, 712.0rupt eqd p    MPa as seen in 

Figure 3.55), while r and r remain unaffected by the mesh size with 0.34r and 0.25r for the 

three cases. 

 

Figure 3.52: Comparison of the global force-displacement responce of the experimental and the 

micromorphic model for

( 60, 1.0 ), ( 1000.0, 2500.0, 5.0 ), 0.8 , 0.4 , 0.2g g

rd
H H mm Q Q mm h mm h mm h mm        
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(a) Local damage (b) Micromorphic 
Damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.53: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 12.9ruptu  mm for 0.8h  mm 
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(a) Local damage (b) Micromorphic 
damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.54: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 12.7ruptu  mm for 0.4h  mm 
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(a) Local damage (b) Micromorphic 
Damage 

(c) Equiv. pl. 
strain 

(d) von Mises 
stress 

(e) r  (f) r  

       

Figure 3.55: Local damage, equivalent plastic strain, von Mises stress, local and micromorphic 

isotropic hardening distributions at 12.55ruptu  mm for 0.2h  mm 
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3.3.3.4 Effect of the mesh for a micromorphic isotropic hardening model size for a fixed
r

  

For a last test we want to study the effect of the mesh size for the Q4 element by taking the same 

mesh sizes used before ( 0.8 , 0.4 , 0.2h mm h mm h mm   ). We deactivate the micromorphic 

damage moduli ( 0gH H  ) and we fix the value of / 100000.0 /1000.0 10.0g

r Q Q   mm. 

Figure 3.56 shows the global F u  responses obtained for the three mesh sizes. The figure clearly 

shows the dependence of the solution on the size of the element, as seen for the purely local model 

and we conclude that the model with micromorphic isotropic hardening coupled with local damage 

fails to regularize the problem by giving an independent and unique solution. 

As a result and after summarizing the results concerning the effect of the mesh size for a model 

with only micromorphic damage or micromorphic isotropic hardening, we confirm that a 

micromorphic damage model is necessary and enough in order to achieve the regularization of the 

IBVP solution undergoing induced softening due to the damage effect.  

   

Figure 3.56: Global force-displacement response of the micromorphic isotropic hardening model 

for 0.0, 10.0 , 0.8 , 0.4 , 0.2rd
mm h mm h mm h mm       
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3.4 Conclusions  

In this chapter we have performed a relatively complete parametric study on three nonlocal 

micromorphic behavior models: 

 One micromorphic damage model, 

 One micromorphic isotropic hardening model and 

 One model with the contributions of both micromorphic damage and isotropic hardening. 

The metallic specimens of 430 stainless steel were meshed with the 2D quadrilateral assumed 

strain element and the numerical tensile tests were implemented in Abaqus®/Explicit. 

The purpose of this study was the terms to regularize a micromorphic model and to examine the 

capacity of a micromorphic behavior model to give solutions independent from the mesh size. 

Finally, the numerical results concerning the model with both micromorphic damage and isotropic 

hardening were compared to the experimental F u curve obtained by the tensile tests for 

specimens of the same geometry and material. 

The principle conclusions of this study are: 

 The micromorphic damage is necessary and enough to regularize the numerical solution 

of the IBVP; 

 the size of the chosen micromorphic damage internal length should be sufficiently bigger 

than the size of the elements ( )
d

h ;  

 for a constant mesh, the more the values of H and gH increase, the more the rupture is 

retarded; 

 the choice for the micromorphic moduli should depend on the fact that the values of H  

and gH  stay close to an “intermediate value”, neither  too low (so that the presence of 

nonlocality is negligible) nor too high (so that the micromorphic damage effect is so 

excessively strong that leads to no rupture appearance and non-physical solutions); 

 the nonlocal model with both micromorphic damage and micromorphic isotropic 

hardening is highly capable to obtaining mesh independent solutions. 

These conclusions allow us to make a proper choice of the values of the micromorphic material 

parameters with respect to the desirable mesh size and were carefully followed and applied for 

the metal forming applications presented in Chapter 5.  
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Chapter 4  

Experimental aspects: local and micromorphic damage material 

parameters identification methodology. 
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4.1  Introduction 

As presented in Chapter 2, the micromorphic constitutive equations derived from the framework 

of the irreversible thermodynamics and the generalized principle of virtual power are characterized 

by a group of specific material parameters which need to be determined from the experimental data. 

Before proceeding to the material parameter identification in this chapter, the parametric study of 

the micromorphic model was performed in chapter 4 and the results were carefully analyzed to well 

understand the predictive possibilities of the proposed micromorphic fully coupled constitutive 

equations. The detailed study of the effect of the material parameters entering the fully coupled 

constitutive equations is discussed in (Saanouni, 2012). Furthermore, here we will only focus on the 

parametric study concerning the elasticity, plasticity and local damage parameters and we will 

propose a methodology for identifying and properly choosing the value of the micromorphic moduli 

( , )gH H related to the micromorphic isotropic ductile damage for this current material by 

associating it with the width of the shear bands that appear during the localized necking stage of a 

simple uniaxial tensile test. 

4.2.1 Material parameters identification methodology 

For this thesis, in order to identify the material parameters (for elasticity, local isotropic and 

kinematic hardening, local and nonlocal micromorphic damage parameters), we use the uniaxial 

tensile test for a specimen of 430 stainless steel with isotropic behavior the geometry of which is 

given in Fig. 4.2. Figure 4.1 shows the tensile response Force vs displacement u ( F u ) obtained by 

the experiment: 

 

Figure 4.1: Experimental F u  curve obtained from the tensile test for a specimen made of 

430(X8Cr17) stainless steel 

The specimens on which the tests were performed are made of stainless steel 430(X8Cr17) with 

effective length of 0 45.0l  mm, width of 0 15.0b  mm, and thickness of 0 0.2e  mm, and cut along 
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45° with respect to the rolling direction. The specimen was set in the tensile machine with the 

bottom clamp fixed, the top clamp lifted under controlled speed, which was kept constant at         

0.5 mm/min in the early stage and decreased to 0.015mm/min near and beyond to the maximum 

force load to observe precisely the state of diffuse and local necking (Bao et al., 2015). It should be 

pointed out that the tensile test evolution is monitored through the average total strain computed 

from the cross-beam displacement and the initial gauge length of the specimens as 0( / )nl l l . 

 

Figure 4.2: Geometry of the used specimen 

 

We divide the curve ( F u  curve in Fig. 4.1) into three stages according to the nature of the 

material parameters to be identified and we follow three steps respectively to complete the 

procedure: 

 Stage I considering only the elastic behavior (I),  

 Stage II considering a homogeneous elasto-plastic flow of the specimen. In this step, the 

effect of isotropic ductile damage on the global behavior can be neglected (II) 

 Stage III considering a heterogeneous elasto-plastic flow with a significant effect of ductile 

damage. 

When all mechanical fields are considered homogeneous in the useful zone of the specimen and 

the value of the damage is really small, the stress tensor is simplified in the framework of uniaxial 

stress: 

0 0

0 0 0

0 0 0

xx



 
 


 
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with       
0 0

1xx

F u

S l


 
  

 
                                                                                               (4.1) 

where xx  is the uniaxial Cauchy stress component and 0 0 0S b e  is the initial area of the 

specimen; 

And, for the strain tensor:  

0 0

0 0

0 0

xx

yy

zz
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The uniaxial loading path and Poisson effect linked to the different strain component: 

( )

1
( )

2

e e e

yy zz xx

yy zz xx

v for elastic behavior Stage I

for elastoplastic behavior Stages II III

  

  

   



   


                                                           (4.3) 

where  is the Poisson coefficient, xx  and e

xx  are respectively the total strain and elastic strain in 

the tensile direction x. 

The Hooke law and the decomposition of the total strain for monotonic loading tensile path give 

the different relations: 

xx xxE                                                                                                                                                           (4.4) 

e p

xx xx xx                                                                                                                                                       (4.5) 

where E  is the Young’s modulus and p

xx  is the plastic strain in the tensile direction x. 

 

Step n°1 : Identification of the elastic material parameters (E,  and y) 

For the stage I, it is possible to translate the F u curve into a e

xx xx   curve in order to identify 

the elasticity material parameters regarding the Young’s modulus   and the yield stress .y  

After this study and for the specific material we conclude that: 220. , 0,3E GPa v   and 

300.y MPa    

Step n°2 : Identification of the isotropic (Q, b) and kinematic (C, a) hardening parameters 

Since we are still before the value 
maxF  of the maximum force and before the heterogeneity of 

the fringes followed by the diffuse necking, we can still work on the    curve by taking into 

consideration this time the plastic part of the curve where the values of the local damage d are 

still relatively low. 

The cumulative plastic strain norm is then defined by 

 
2

:
3

p p p e xx
xx xx xx xxp

E


                                                                                                      (4.6) 

We can now work on the proportional p   curve as shown in Fig. 4.3. 
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Figure 4.3: Experimental vs numerical plastic part 

 

The elastoplastic behavior model given in Chapter 1 can be simplified in an analytic form in the 

case of a homogeneous tensile loading path (see Saanouni, 2012 for more details): 

   ( ) 1 1ap bp

xx y

C Q
p e e

a b
                                                                                                        (4.7) 

By using the formula above, the value of the yield stress y  obtained by the step 1 and respecting 

the following condition: 

C Q

a b
                                                                                                                                                                (4.8) 

 

To clarify the decomposition of the isotropic and kinematic hardening phenomena, a cycle loading 

path is generally used (a cyclic shear test for exemple). However, in the case of this stainless steel, 

only monotonic tensile tests have been realized. In the case of this steel, we assume that the 

kinematic hardening phenomena are activated and appear just after the elastic behavior. The 

parameters C and a  associated to the kinematic hardening are calibrated to fit the first part of the 

plastic curve for ( 0.05)p  . So, we use the second part of the plastic curve to fit the parametersQ   

and b associated to the isotropic hardening. An optimization procedure based on BFGS quasi-Newton 

algorithm is used to find the most suitable values for the local isotropic and kinematic hardening 

parameters and fit the ‘test’ curve to the experimental one under the best agreement. 
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At the end of this step, we conclude that:  

3400.0 , 40.0C MPa a                                                                                                                                      

1135.0 , 2.0Q MPa b                                                                                                                             (4.9) 

 

Step n°3 : Identification of the local damage (S, s, β , , Y0) and micromorphic damage  ,gH H

parameters 

For the third and the last step of the identification process we use the stage (III) of the F u  

curve. The damage parameters that have to be identified are both of local and nonlocal nature and 

thus we can divide this step in two: 

 Step 3-i, for the identification of the local damage parameters, e.g, 
0, , , , .S s Y    

 Step3-ii, for the identification of the internal length 
g

d

H

H
  related to the micromorphic 

damage. 

For the overall third step, we have reached the value of 
maxF meaning that we pass from the 

diffuse to the highly localized necking and since all the mechanical fields have turned 

inhomogeneous, the use of the   curve is no more possible. As a result, we switch to an inverse 

identification and with the introduction of the numerical simulation of the same tensile test, 

respecting the geometry, the velocity and the boundary conditions, we perform several tests for the 

identification of the material parameters related to the ductile damage by comparing the numerical 

and the experimental F u curves.  

Step 3-i: The sensitivity of each local damage parameter on the force/displacement response in 

the case of a tensile test has been studied in different references (Saanouni 2012; Labergere et. al, 

2014 among others). The knowledge issue on these studies can be resumed in different points: 

I. The parameter s governs the nonlinearity of the damage evolution: the higher value of s , the 
earlier the final fracture time, the smaller the plastic strain and the more brittle behavior of 
the material. Considering the formula of damage evolution in Eq.(1.53), when the parameter
s  approaches to zero, the damage rate will become approximately proportional to the 

plastic multiplier (effective plastic strain rate) 
 1

d
d







 if the effect of the parameter 

representing the nonlinearity of damage is negligible. 
II. When the local damage 0.1d  , the increase of parameter   accelerates the evolution of 

the local damage variable d  . 
III. The parameter controls the influence of the local damage on the isotropic hardening. 

Considering the formula of 
RY  in Eq.(1.28c), the higher values of  provide a smaller value of 

RY  for damage 0.1d  , but accelerate the evolution of 
RY when damage approaches the 

critical damage. 
IV. The parameter S  is directly linked to the material ductility and governs the apparition of the 

fracture after the diffuse necking. Meanwhile, it is observed that its effect is to delay or 
accelerate the damage growth without modifying the shape of the damage evolution or the 
F u  curves. 

 



  

137 
 

No extended study or special treatment has been performed on the parameters ,s  and  in 

order to further identify their effect. Different metallic materials have been identified in different 

works (see Liu, 2017).  Generally, a good agreement for their values are found between 1 2s   and 

1
4

2
  while some further investigation has been done for the parameter S due to its higher 

sensitivity. For the present material we use 1s  and 1.   We note that we also set the initial 

damage force 
0 0Y   and 0  for the effect of the microcracks closure. 

Step 3-ii: The last group of material parameters left to be identified are the ones related to the 

micromorphic damage and more precisely the micromorphic internal length. We note that we 

deactivate the coupling with the micromorphic isotropic hardening as well as the respective 

micromorphic parameters Q  and gQ  and for the sake of simplicity we intend to propose a 

methodology to identify /g

d
H H .  

As shown in the previous chapter, the numerical and the experimental F u curves were used in 

order to investigate the effects of H and gH and approach their most appropriate choice but 

without taking into account the notion of the micromorphic internal length
d

. For this purpose and 

under the perceptible existence of nonlocality, the experimental strain field measurements coming 

from the Electronic Speckle Pattern Interferometry (ESPI) during the tensile test of the 430 stainless 

steel has been done. The strain rate component 
xx measured by ESPI is used to determine the 

evolution of the band width during the localization. The idea is to define a link between 
d

and the 

measured integral band width. 

Necking as an unstable behavior in ductile solids has been studied for many years. However, less 

work has been done on the measurement of the width of the localization bands and its evolution 

during loading. It is also well known that the mesh size dependence of the post-bifurcation necking 

behavior is still an open problem in numerical analysis (Bažant et al., 1984). Indeed, with a purely 

local constitutive behavior, the solution for the strain distribution is no longer unique and can only be 

computed for a given mesh size (Labergere et al., 2014). Generalized continua schemes can 

overcome this difficulty (Jirásek and Rolshoven, 2009; Mazière and Forest, 2013) by introducing 

additional parameters that need special treatment for their identification. For this reason, the study 

of the strain localization behavior from an experimental perspective using photomechanical methods 

is introduced. Electronic Speckle Pattern Interferometry (ESPI) has been used for the deformation 

measurement, because of its specific advantages, such as high spatial and displacement resolutions.  

The principles of ESPI are simple: a speckle field, e.g. a seemingly random intensity pattern, is 

produced by the interference of the wave fronts, when a coherent light illuminates a rough diffusing 

surface. A micro-displacement or deformation of the object surface leads to changes of the speckle 

field and thus the deformation information can be obtained from the correlated evolution of the 

initial speckle pattern (Labergere et al., 2014; Guelorget et al., 2006). The experimental setup is 

represented in Figures 4.4 and 4.5. 
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Figure 4.4: Experimental set-up: in-plane speckle interferometry 

 

Figure 4.5: The laser beam path schematized as a red line 

The fringe patterns shown in Fig. 4.6 represent the displacement field increment between the 

capture of two phases maps separated by the duration indicated besides each picture. Constant and 

homogenous strain appears as a uniform fringe pattern in which the fringes are straight and 

perpendicular to the tensile direction. So, in the elastic and homogenous plastic deformation range, 

there is no change in the fringe pattern appearance. As soon as the plastic deformation becomes 

inhomogeneous, the fringes start to curve, with a non-uniform spacing, and concentrate in the 

middle of the specimen forming an hourglass shape which can be interpreted as two crossing 

localization bands, as can be seen in Fig. 4.6. 

This hourglass shape narrows progressively and, around 23% of average strain, turns into an “X” 

shape. The fringe spatial frequency is higher in the middle of the specimen than along the two edges 

of the specimen which means that the strain is higher in the middle. In the area outside the “X”, 

where there is no fringe, the material stops deforming plastically and undergoes elastic unloading 

when the force decreases. At the beginning of the localization, the hourglass shape is symmetric, and 

then it loses the symmetry when it turns into an “X”. Then the fringes (deformations) start to 

concentrate in one of the bands (or one of the branches of “X”), thus the other one tends to 

disappear gradually and finally the specimen breaks along the band left. The transition between the 

symmetric hourglass “)(” and the asymmetric “X” is interpreted as the onset of the localized necking.  
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The localized necking stage can be divided into two sub-stages, one where the disappearing band 

is still active and another where it disappears (Figure 4.6). 

 

 

Figure 4.6: Evolutions of the fringe patterns (top row) obtained by ESPI and the corresponding 

strain rate maps (bottom row) during the reference test 

 

For extracting global information and physically relevant parameters, the strain rate pattern is 

modeled assuming that the strain rate field is a system of two straight crossing bands based on the 

“X” shape of the fringe pattern. The strain rate distribution along each band is supposed to be 

constant. The whole strain rate distribution is assumed to be a simple superposition (sum) of the 

strain rate distribution of these two bands. This model is not a mechanical model but a purely 

analytical model used to describe the strain rate pattern and extract global parameters and 

completely independent of the constitutive behavior of the material. The strain rate distribution in 

each band is described by a linear combination of a Gaussian and a Lorentzian function (Bao et al., 

2015): 

     

1 2

max max

( , )

, , , , , , ( , , , , (1 ) , , , , )

B B

xx

B

i i i i i i i i i i i i i i i

x y

with a b B x y G a b B x y L a b B x y

  

     

 

  
                       (4.10)                                                                  

where 1i   or 2  indicates one of the two localized bands, and (x, y) are the coordinates of the 

points (x is parallel to the tensile direction), with: 

 max

i  is the maximum strain rate, 

 ,iG  Gaussian function,                                                                                                                     

 ,iL  Lorentzian function, 

 
i  and 1 i  are the weights of  the Gaussian and the Lorentzian functions respectively. 
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The Gaussian and Lorentzian functions are defined as following: 

2

( , , , , ) exp i i

i i i

i

x a y b
G a b B x y

B


   
    
   

                                                                                                (4.11) 

2

1
( , , , , )

1

i i i

i i

i

L a b B x y
x a y b

B



  

  
 

                                                                                                         (4.12)      

with (Figure 4.7): 

 
ia : represents the inclination of the band i   with respect to the transverse direction, 

 ib : represents the location of the band i , 

 
iB : represents the integral width of the band i . 

 

Figure 4.7: Illustration of the parameters, the image on the left is a fringe pattern and that on the 

right is the corresponding strain rate map obtained 

 

The inclination angles of the bands are defined as the angles between the band length and the 

tensile direction. The experimental parameters of the model are identified by a least squares fitting 

procedure from the velocity maps obtained by ESPI. 

The obtained evolution of the strain rate map is shown on Fig. 4.6 for a test at 0.015 mm/min. 

The evolutions with the global average strain of the bands widths are shown. In all cases, the 

specimens failed in the same direction, along the band that was oriented almost perpendicular to the 

rolling direction or along the band 1 (B1) as illustrated in Figure 4.7. Thereby for the sake of simplicity, 

this band will be called dominant band and the other one disappearing band, and the superscript 

“dom” and “dis” will be used to distinguish them. On the strain rate maps evolution, the observations 

made on the fringe patterns are clearer. In a first stage, the maps exhibit a symmetric hourglass 

shape. In a second stage, defined as the localized necking, one band starts to predominate and the 

shape turns into an asymmetric “X” shape. The strain rate in the dominant band increases 

progressively until fracture. 

The maximum strain rate of the banddom (dominant band B1) increases exponentially with the 

cross-beam displacement while the maximum strain rate of banddis (disappearing band B2) 

increases slowly and even starts to decrease close to the end of the test. During the diffuse necking, 

the hourglass pattern formed by the two bands is symmetric and the maximum strain rates of the 

two bands are equal. Then, the strain rate of the two bands starts to diverge. 
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The bandwidths Bdom and Bdis of the two bands, in all cases, decrease with the total average strain 

or time. At the beginning, the two bandwidths decrease simultaneously and then they separate: Bdis 

tends to stabilize while Bdom continues decreasing.  

 

Figure 4.8: Evolutions of the localization band characters vs total average strain (or time),                

(Bao et al., 2015) 

The widths of the two bands decrease at a similar rate during the diffuse necking. Then, when the 

localized necking stage starts, the width of the dominant band continues decreasing until the 

rupture, while the width of the disappearing band continues to decrease for a while and then 

stabilizes. Based on this observation, which is consistent with the strain rate evolutions, two sub-

stages are distinguished in the localized necking regime. The transition of these two sub-stages is 

defined as the stabilization of the disappearing band width. 

As already mentioned, generalized continua schemes introduce additional parameters that need 

special treatment for their identification. One of these is the internal length related to the 

micromorphic damage. Since ESPI allows the identification of the physical characteristics of the 

localization, such as bandwidths, band orientations and maximum strain rates of the bands at any 

moment of the necking, one first attempt is done under the idea of ‘linking’ the notion of the 

micromorphic internal length to the one of the bandwidths in order to give it some physical meaning 

and propose a numerical methodology to identify it. 

In this spirit, and by numerically implementing the mathematical model given by                

Eq.(4.10)-Eq.(4.12) and calculating the numerical strain rate at a given time  , ,num

xx x y t  at each 

gauss point of an element located in the central zone we manage to extract the values of the 

numerical bandwidth Bdom during the diffuse and the localized necking and compare the numerical 

results with the experimental ones shown in Figure 4.8. The steps of the proposed methodology are 

given in the following Table 4.1. 

 

We note max max

1 1 1 1 1 2 2 2 2 2, , , , , , , , ,P a b B a b B       the best optimal parameters to fit the gradient 

evolution of the strain rate on the tensile direction. 
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Experimental (EPSI) data Numerical data 

Computation of xx in one direction at a defined experimental time t 

 

 exp x,y,xx t   , ,num

xx x y t  

   max max

1 1 1 1 1 1 2 2 2 2 2 2( , , ) , , , , , , , , , , , ,fit B B

xx P x y a b B x y a b B x y         

 

Least square optimization to minimize the space of the 

experimental parameters 

     

exp

exp

exp

2
exp exp exp exp exp exp

1

min ( )

, , ,

P

N

fit

xx i i xx i i

i

P

P x y P x y 




  
  

where max exp exp exp max exp exp exp
1 21 1 1 2 2 2exp

, , , , , , ,P a b B a b B      

and expN is the number of measured experimental 

point. 
exp exp,i ix y  are the coordinate of the experimental 

point 

Least square optimization to minimize the space 

of the numerical parameters 

     
ele 2

1

min ( )

, , ,

num

num

P

N
num num PG PG fit PG PG

xx i i xx i i

i

P

P x y P x y 



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where 

max max
1 1 1 1 2 2 2 2, , , , , , ,num num num num num num

num
P a b B a b B      

and eleN is the number element located in the 

usefull area of the specimen. ,PG PG

i ix y  are the 

coordinate of the Gauss point 

Experimental Bdom 

 

Numerical Bdom 

 

 

Table 4.1: experimental vs numerical identification methodology 
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4.3 Iterative procedure for the identification of the local damage 

parameter S  and micromorphic moduli  ,gH H  

Before presenting the results comparing exp

domB  with num

domB  we make a brief study of the effect of 

the parameter S and its sensitivity regarding the mesh size and the micromorphic regularization 

length. 

First we fix the mesh size at 0.2h  mm and the micromorphic regularization length at 

/ 36.0/100.0 0.6g

d
H H   mm h . We test the cases of 4.5, 5.0S S   and 6.0S  . The 

results on the effect on the numerical F u  curves are shown in Fig. 4.9.  

For 4.5S  we have that 11.67ruptu  mm, for 5.0S   12.27ruptu  mm and finally for 6.0S   

13.35ruptu  mm.    

 

Figure 4.9: Experimental vs numerical F u curve, 0.6 , 0.2
d

mm h mm   

For a second test, we keep the same value of / 36.0/100.0 0.6g

d
H H   mm and we fix 

the mesh size at 0.4h  mm. The results on the effect on the numerical F u  curves are shown in 

Fig. 4.10. 

For 4.5S  we have that 11.91ruptu  mm, for 5.0S   12.45ruptu  mm and finally for 6.0S   

13.44ruptu  mm.    
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Figure 4.10: Experimental vs numerical F u curve, 0.6 , 0.4
d

mm h mm   

For the third test, we fix the mesh size at 0.2h  mm and the internal length at 

/ 64.0/100.0 0.8g

d
H H   mm. We test the cases of 4.5, 5.0S S   and 6.0S  . The 

results on the effect on the numerical F u  curves are shown in Fig. 4.11. 

For 4.5S  we get a 11.94ruptu  mm, for 5.0S   12.58ruptu  mm and finally for 6.0S   

13.3ruptu  mm    

 

Figure 4.11: Experimental vs numerical F u curve, 0.8 , 0.2
d

mm h mm   
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Obviously as expected and as mentioned at the beginning of the chapter, the parameter S  has an 

essential effect on the ductility of the material by retarding or accelerating the final fracture 

depending highly on the choice of the internal length and the mesh size. The same effect on the final 

rupture displacement can also result from the choices of ( , gH H ) as discussed in the previous 

chapter. The goal is not to precise the value of the micromorphic regularization length according to 

the material and its microstructure, but to verify our strategy and the accuracy of connecting the 

width of the dominant band to the micromorphic regularization length scale related to the 

micromorphic damage in an effort to determine it physically and give some information about its 

measurement. 

For these tests we varied the value of the parameter S  between 4.5, 5.0S S   and 6.0S  due 

to its impact on the numerical F u  curves. The mesh sizes which we chose are the finest ones with 

0.2h  mm and 0.4h  mm and the micromorphic regularization length takes either the value of 

0.6
d
 mm or 0.8

d
 mm with different choices of the respective micromorphic moduli  , .gH H   

4.3.1 Influence of the moduli  ,gH H  on the evolution of the integral bandwidth with 

4.5S   

 Case 1.a: 0.2h  mm, / 3.6/10.0 0.6g

d
H H   mm compared with 0.2h  mm, 

/ 36.0/100.0 0.6g

d
H H   mm. 

 

Figure 4.12: Evolution of the localization dominant band for ( 100, 36)gH H   and 

( 10, 3,6)gH H  , numerical-experimental comparison for 0,2h mm  
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 Case 1.b: 0.2h  mm, / 6.4/10.0 0.8g

d
H H   mm compared with 0.2h  mm, 

/ 64.0/100.0 0.8g

d
H H   mm. 

 

 

Figure 4.13: Evolution of the localization dominant band for ( 100.0, 64.0)gH H   and 

( 10.0, 6.4)gH H  , numerical-experimental comparison for 0,2h mm  
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 Case 1.c: 0.4h  mm, / 3.6/10.0 0.6g

d
H H   mm compared with 0.4h  mm, 

/ 36.0/100.0 0.6g

d
H H   mm. 

 

 

Figure 4.14: Evolution of the localization dominant band for ( 100.0, 36.0)gH H   and 

( 10.0, 3.6)gH H  , numerical-experimental comparison for 0,4h mm  
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 Case 1.d: 0.4h  mm, / 6.4/10.0 0.8g

d
H H   mm compared with 0.4h  mm, 

/ 64.0/100.0 0.8g

d
H H   mm. 

 

Figure 4.15: Evolution of the localization dominant band for ( 100.0, 64.0)gH H   and 

( 10.0, 6.4)gH H  , numerical-experimental comparison for 0,4h mm  

 

After taking a look at the results of this first test case we can see that the variation of the mesh 

size does not affect the evolution of the band and the tendency to decrease is respected as observed 

in the experiment. While using 0.2h  mm the bandwidth starts approximately at 20 mm  for 20.6%  

of total average strain for both 0.6
d
 mm and 0.8

d
 mm (Figures 4.12 and 4.13) and it seems 

like the behavior of the numerical curves are not affected by the variation of  , .gH H  On the other 

hand, for 0.4h  mm (Figures 4.14 and 4.15) the width of the dominant band starts lower at around 

10 15 mm except the case of / 64.0/100.0 0.8g

d
H H   mm where it starts at 20 mm for 

20.6%  of total average strain. For all the cases, the decreasing tendency is in agreement with the 

experimental results, however for 4.5S  (case 1) the widths evolve at a much lower level which 

does not allow an appropriate fitting. We note here that from the numerical point of view, for 

0.4h  mm all the specimens failed at the opposite direction, so the experimental Bdom is 

represented by the numerical band B2. 

 



  

149 
 

4.3.2 Influence of the moduli  ,gH H  on the evolution of the integral bandwidth with 

5.0S    

 Case 2: 0.2h  mm, / 36.0 /100.0 0.6g

d
H H   mm compared with 0.4h  mm, 

/ 36.0 /100.0 0.6g

d
H H   mm. 

 

Figure 4.16: Evolution of the localization dominant band for ( 100.0, 36.0)gH H  , numerical-

experimental comparison for two varying meshes 0,2h mm  and 0,4h mm  

 

We increase the value of 5.0S   and we want to observe the behavior of the evolution of the 

numerically obtained bandwidths in the terms of a constant / 36.0 /100.0 0.6g

d
H H   mm 

for two different mesh sizes. Similarly, to the case 1, we conclude that the mesh size does not affect 

the evolution of the band and the tendency is still decreasing but the numerical curves still fail to 

approach enough the experimental one. The size of the bandwidths is still lower than the 

experimental one, however by increasing the value of S  we see that the starting point of B2 is higher 

than 15mm and higher than the previous case 1 where 4.5S  . The analysis of these previous results 

shows that if we continue increasing the value of S , the fitting between the numerical and 

experimental bandwidth becomes more accurate. 
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4.3.3 Influence of the moduli  ,gH H  in the evolution of the integral bandwidth with

6.0S    

 

The same parametric studies are analyzed. 

 Case 3.a: 0.2h  mm, / 36.0/100.0 0.6g

d
H H   mm compared with 0.2h  mm, 

/ 21.6/60.0 0.6g

d
H H   mm. 

 

 

Figure 4.17: Evolution of the localization dominant band for ( 100.0, 36.0)gH H   and 

( 60.0, 21.6)gH H  , numerical-experimental comparison for 0,2h mm  
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 Case 3.b: 0.4h  mm, / 36.0/100.0 0.6g

d
H H   mm compared with 0.4h  mm, 

/ 21.6/60.0 0.6g

d
H H   mm. 

 

Figure 4.18: Evolution of the localization dominant band for ( 100.0, 36.0)gH H   and 

( 60.0, 21.6)gH H  , numerical-experimental comparison for 0,4h mm  

 

For this last case, we fix 6.0S   and 0.6
d
 mm with two different combinations                             

( / 36.0/100.0 0.6g

d
H H   mm and / 21.6/60 0.6g

d
H H   mm) for the two 

different mesh sizes. 

The results seem quite interesting this time for 0.2h  mm (Figure 4.17). For the choice of 

/ 21.6/60.0 0.6g

d
H H   mm the band width starts higher than all the previous cases 

(around 25 mm) followed by a good fitting between 21%  and 23%  of total average strain but with 

a big error at 25%  of total average strain. For / 36.0/100.0 0.6g

d
H H   mm we observe 

the most accurate behavior since the starting and ending values of B1 are in absolute agreement with 

the experimental Bdom while the error remains relatively small and even negligible. 
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Approximately the same tendency is observed in the case of 0.4h  mm (Figure 4.18). For 

/ 21.6/60 0.6g

d
H H   mm the dominant band starts evolving at around 24 mm, 

approaches sufficiently the experimental curve between 21%  and 25%  of total average strain but 

drops rapidly giving a big error until 25%  of the total average strain. On the other hand, when  

/ 36.0/100.0 0.6g

d
H H   mm, the band starts correctly at 20 mm, follows exactly the same 

behavior as the bandwidth obtained for 60.0H  but does not achieve an exact fitting since it also 

decreases significantly at 24%  of total average strain yet giving a smaller error than the previous 

case.   

 

4.4 Material characterization based on local indentation test 

Instrusmented Indentation Testing (IIT) is a form of mechanical testing that significantly expands 

on the capabilities of traditional hardness testing. IIT employs high-resolution instrumentation to 

continuously control and monitor the loads and displacements of an indenter as it is driven into and 

withdrawn from a material. Mechanical properties are derived from the indentation load-

displacement data obtained in simple tests. The advantages of IIT are numerous, as indentation load-

displacement data contain a wealth of information, and techniques have been developed for 

characterizing a variety of mechanical properties. The technique most frequently employed 

measures the hardness, but it also gives the elastic modulus (Young’s modulus) from the same data. 

Mechanical properties are routinely measured from submicron indentations, and with careful 

technique, properties have even been determined from indentations only a few nanometers deep.  

The most frequently used indenter in IIT testing is the Berkovich indenter, a three-sided pyramid 

with the same depth-to-area relation as the four-sided Vickers pyramid used commonly in 

microhardness work. The Berkovich geometry is preferred to the Vickers because a three-sided 

pyramid can be ground to a point, thus maintaining its self-similar geometry to very small scales. An 

example of small indentations located at specific points in an aluminium and a nickel alloy is shown in 

Fig. 4.19 (Hay and Phaar, 2001) and Fig.4.20 (Hay, 2009) respectively. 

                                                                
Figure 4.19: Berkovich indentation in aluminum                                             Figure 4.20: Residual impression in nickel,                                     

                  made by a Berkovich diamond indenter 

As shown schematically in Fig. 4.21, equipment for performing instrumented indentation tests 

consists of three basic components: (a) an indenter of specific geometry usually mounted to a rigid 

column through which the force is transmitted, (b) an actuator for applying the force, and (c) a 

sensor for measuring the indenter displacements.  
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Figure 4.21: Schematic representation of the basic components of an instrumented indentation 

testing system 

 

The two mechanical properties measured most frequently by IIT methods are hardness (H) and 

elastic modulus (Young’s modulus) ( ) . A simple methodology has been developed to measure 

these two quantities (H and E) for isotropic materials exhibiting no time dependence in their 

deformation behavior, that is, no creep or viscoelasticity (Oliver and Pharr, 1992). A schematic of the 

indentation process for an axisymmetric indenter of arbitrary profile is shown in Fig. 4.22. As the 

indenter is driven into the material, both elastic and plastic deformation processes occur, producing 

a hardness impression that conforms to the shape of the indenter to some contact depth ch  . The 

radius of the circle of contact is a . As the indenter is withdrawn, only the elastic portion of the 

displacement is recovered, which effectively allows one to separate the elastic properties of the 

material from the plastic. A schematic representation of indentation load ( )P versus displacement 

( )h data obtained during one full cycle of loading and unloading is presented in Fig. 4.23. The 

important quantities are the peak load max( )P , the maximum depth max( )h , the final or residual depth 

after unloading ( )fh , and the slope of the upper portion of the unloading curve ( )
dP

dh
  . The 

parameter has the dimensions of force per unit distance and is known as the elastic contact 

stiffness, or more simply, the contact stiffness. The hardness and elastic modulus are derived from 

these quantities. The fundamental relations from which H and E are determined are: 

/H P A                                                                                                                                                        (4.13) 

  

where P is the load and A is the projected contact area at that load, and: 

2
r

S
E

A




                                                                                                                                                  (4.14) 
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where rE  is the reduced elastic modulus and   is a constant shape factor that depends on the 

geometry of the indenter (Bulychev et. al, 1975; Oliver and Pharr, 1992). Eq.(4.13) is a working 

definition for the hardness as measured by instrumented indentation testing. The reduced modulus,

rE , is used in Eq.(4.14) to account for the fact that elastic displacements occur in both the indenter 

and the sample. The elastic modulus of the test material, E ,is calculated from rE  using: 

22 11 1 ind

r ind

 
 

  
    

1
2

2 11
1 ind

r ind

E






 
   

  
                                                                         (4.15)                                       

 

where is the Poisson’s ratio for the test material, and ind and 
ind  are the elastic modulus and 

Poisson’s ratio, respectively, of the indenter. For diamond, the elastic constants 1141ind  GPa and 

0.07ind  (Oliver and Pharr, 1992; Simmons and Wang, 1971). 

                              
Figure 4.22 axisymmetric indentation showing            Figure 4.23 indentation load displacement data during one 

 various quantities used in analysis           complete cycle of loading and unloading  

 

In the framework of the micromorphic regularization length identification, a second thought was 

to realize a nanoindentation test. The idea here is to obtain some additional experimental 

information regarding the Young’s modulus this time in the area of the localized necking, and link it 

directly to
d

; accordingly, the measurements of the hardness could be also linked to identify

/g

r Q Q . 

For the indentation tests, we changed the material and the geometry of the specimen and we 

replaced the 430 stainless steel component by a low carbon steel, DC04 (containing 0.06% of carbon) 

with 0.8 mm thickness, the geometry of which is given in Fig. 4.24. 

 

Figure 4.24: DC04 specimen geometry (Bao et al., 2015) 

 S 
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The specimen underwent a uniaxial tensile test before reaching the final rupture (Figure 4.25). In 

order to capture the necking area with the highest damage concentration, it was cut along the 

thickness in two lines of approximately 20.mm length in its central area (Figure 4.26a), embedded 

and then polished to remove possible microstructural changes and surface defects during the 

cutting (Figure 4.26b). 

 

Figure 4.25: DC04 specimen after the tensile test 

 

            

(a)                                                                                         (b) 

Figure 4.26: Cut, embedded and polished samples 

 

We afterwards performed the nanoindentation tests of 60 Berkovich indents along the central 

line (Figure 4.27) in order to measure and observe the variation of the hardness and the Young’s 

modulus (Figure 4.28) in the necking area.  
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Figure 4.27: Small Berkovich indentations located at specific points in the DC04 sample 

 

 

 

 

 

Figure 4.28: Variations of the hardness ( )H  and the Young’s modulus ( )E  in the localized necking 

area located in the central line of the sample  

 

As can be seen from Fig. 4.28, there is an obvious variation and a drop in the middle of the axis for 

the Young’s modulus at 125.0  GPa. The first thing that has to be further investigated is the origin of 

this drop at the localized necking, e.g, if it is a result of the damage flow or if the nanoindenter has 
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gone outside the plastic area and has performed some Berkovich indentations on the resin and not 

on the sample due to its small thickness. 

With the help of the effective Young’s Modulus  1E d E  , we can calculate the damage 

isovalues and plot it as well along the axis (Figure 4.29). For example, for the maximum value of the 

damage maxd  at (0,0)  we obtain: 1.0 / 1.0 125.0/ 225.0 0.44d E E     . 

With indentation testing, we can capture better and extract useful information about the 

behavior of the material at the area of the highly localized necking stage before the final rupture 

while the ESPI measurements give the evolution of strain rates from the early stage of the diffused 

necking until the localization. According to these measurements, as already presented, the integral 

bandwidth of Bdom at 25%  of the total average strain is around 0.2  mm (Figure 4.8). To describe 

mathematically the strain rate distributions, a versatile pseudo-Voigt function was chosen. This time, 

for a first approximation and for the sake of simplicity, we choose a Lorentzian function (Eq.(4.12)) of 

same width 0.2B  mm and we plot it along the x-axis as seen in Figure 4.29. 

By substituting max

2
( )

1

d
d x

x

B



 

  
 

 into the micromorphic balance equation (Eq.(1.60))

   2

d

d
d

Lap d d d
H


   under its static form ( d

d

H


 =0) we get that:  

  
2

2

max1
d

x
Lap d d d

B


  
        

                                                                                                 (4.16) 

With the help of Fig. 4.29 and a possible analytical form of d  coming from the Eq.(4.16), we 

might succeed in finding another link between the bandwidth B  and 
d

. 
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Figure 4.29: Local damage vs Lorentzial function ( )L B    

 

4.5 Conclusions and perspectives 

This chapter was dedicated to the material parameters identification for a 430 stainless steel 

specimen.  

We presented the identification process given in three steps that analyze the techniques followed 

for each group of parameters according to associated phenomena. During the first and the second 

steps for the local parameters, due to the homogeneity of the mechanical fields we can transform 

the experimental F u  curve into: 

a) A proportional to the elastic part (I) e

xx xx   curve in order to identify the elasticity material 

parameters regarding the Young’s modulus  , and the yield stress .y  

b) A proportional to the plastic part (II) p  curve in order to identify the isotropic ( , )Q b  and 

kinematic ( , )C a  hardening parameters. 

For the third step due to the induced softening caused by the damage effect and the 

inhomogeneity of the mechanical fields, we use the inverse identification methodology based on a 

virtual tensile FEM model. The identification of the local material parameters related to the ductile 

damage (S, s, β, , Y0) has been done by several numerical simulation loops. 

Regarding the last group of material parameters related to the micromorphic damage and more 

precisely the micromorphic regularization length /g

d
H H , we made use of both the ESPI 
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experimental measurement and the numerical tensile test results to relate it to the width of the 

dominant band and propose a methodology to identify the couple of ( , )gH H . 

Due to time constraints, the results of the indentation test were not further treated and we did 

not continue to any numerical implementations or analysis of the hardness curve which seems more 

complicated since its variations are less visible according to these first results. However, we 

presented the general idea and the test process and we leave it for further investigation in future 

works as a perspective and a possible second accurate methodology for the identification of the 

micromorphic internal lengths related to the damage and the isotropic hardening. 
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Chapter 5  

2D metal forming applications. 
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5.1  Introduction 

The Chapter 3 was dedicated to the parametric study of the micromorphic model and the Chapter 

4 to the identification of the local and the micromorphic material parameters based the on 

experimental tensile tests. In this last chapter, the validation of our numerical methodology based on 

a micromorphic approach is investigated through two metal forming processes: the bending of a 

DP1000 sheet and the blanking operation of a DP600 sheet. According to the conclusions of Chapter 

3, we will use the model only with micromorphic damage due to its capacity to provide us with 

unique solutions. Consequently, only one pair of micromorphic parameters ( , )gH H will be activated 

and their choice is carefully made to assure physical solutions and acceptable crack propagation in 

the completely damaged zone. 

5.2 Bending test Introduction 

Cold bending is an increasingly used process to form various lightweight mechanical components 

with more and more advanced high-strength steels, mainly to meet the needs of aircraft and 

automotive industries. The air bending test is taken from the experimental work of (Soyarslan et al., 

2012; Gharbi et.al, 2011) in which the 3D measurement of  the strain field conducted via Aramis-

GOM system (Figure 5.1) makes possible the measurement of the strain distribution over the 

specimen until the final fracture. The microstructure investigation shows that the cracks have an 

alternative behavior in the apex of the bended surface. The cracks in the cross section have a zigzag-

shaped path. This behavior can be explained just by localization induced softening in the material. 

 

 

Figure 5.1: Air bending setup enhanced with online measurement system GOM-Aramis 

 

5.2.1  Identification of the DP1000 local material parameters 
We need the simulation of a tensile test in order to determine the local material parameters of 

the behavior model. The DP1000 steel material parameters have been determined by the 

identification procedure described in Chapter 4 but only with a local damage behavior model. The 

tensile tests are conducted on Zwick Roell testing machine of type B0066550 (sensor Extensometer 

Zwick Roell, type B0066791). The geometry of the tensile specimen was followed regarding EN 

10002-1:2001(D) with a thickness of 1.55 mm. All the experimental and bending operations have 
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been conducted by the international Partner the Institute of Forming Technology and Lightweight 

Construction, TU Dortmund. 

  

Figure 5.2: Force-displacement response of a DP1000 tensile test 
 

A good agreement is observed between the experimental and numerical force displacement 

response (Figure 5.2) and a critical damage threshold 0.9cd   is chosen to initiate the initiation of 

the microcracks. A 2D adaptive remeshing procedure was used to adapt the mesh size for the 

plasticity and damage evolution only for the tensile test model. The maximum mesh size     

max 8.0x  mm, the minimum mesh size for plasticity min 0.2px  mm and the minimum mesh size 

for damage min 0.02damx  mm. 

U
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 m
m
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Figure 5.3: Evolution of the mesh size and cumulated plastic strain for different displacements U   
 

Starting from the initial coarse mesh, the mesh refinement follows the plastic strain and strain 

rate giving an isotropic mesh distribution of size min

px  inside the central area of the specimen where 

the plastic flow is highly active (Figure 5.3) and a clear formation of a diffuse necking is observed. For 

7.45U  mm a localized neck is, as expected, clearly observed inside one shear bands. 

All the local material parameters are given in the Table 5.1: 
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 DP1000 dual phase steel 

Elasticity parameters 220.

0.3

E GPa






  

Plasticity parameters 810.0

3800.0

15.0

69500.0

240.0

y MPa

Q MPa

b

C MPa

a

 









  

Damage parameters 

0

12.0

1.0

1.2

0.0

4.0

S MPa

s

Y















  

Table 5.1: Local material parameters for the DP1000 steel sheet 

 

5.2.2 Simulation of the bending procedure 
This test was modelled in 2D plane strain without considering any initial symmetry in order to 

avoid enforcing any symmetric solution. The sheet made of DP1000 steel is discretized with the Q4 

quadrangular plane strain element, proposed in Chapter 2, has been implemented in the software 

ABAQUS®/Explicit via the subroutine VUEL as discussed in the same chapter. Friction between the 

tools and the specimen is defined by the Coulomb model with a constant friction parameter 0.15  . 

The punch velocity used is equal to 18.0 mm/s and the total time used depends on the test 

configuration. A following configuration is chosen for the bending operation (Figure 5.2):  

 Die distance 24.0 mm; 

 Die radius 1.0 mm;  

 Punch radius 1.0 mm;  

 The specimen geometry was fixed with 50×25 mm (length times width). The thickness is   

1.55 mm. 

Three small mesh sizes ( sM ) have been used to mesh the sheet in the area where the failure is 

expected to appear:  

 sM = 0.1 mm (2340 elements),  

 sM = 0.08 mm (2602 elements),  

 sM = 0.06 mm (3500 elements). 
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5.2.2.1 Behavior model with local damage ( 0, 0gH H  ) 

Figure 5.5 compares the experimental F u  curve to the numerically predicted ones illustrating 

the expected mesh dependence since the force-displacement curves are sensitive to the mesh size. 

As expected, the displacement at the final fracture is clearly mesh dependent: 10.98frU  mm for 

0.1sM  mm, 10.26frU  mm for 0.08sM  mm and 9.36frU  mm for 0.06sM  mm.  

(a) 

 

 

(b) 

 

 

(c) 

 

 

Figure 5.4: Local damage values of the failed bending specimen in the framework of the local 
approach for different mesh sizes 

 

The simulation of the bending process gives the local damage distribution as shown in Fig.5.4 for 

the different mesh sizes at the values of punch displacement for which the crack has initiated. A 

phenomenon of network localization begins to appear; shear bands oriented around 45° to the axis 
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of the folding are initiated on the lower edge of the blank and seem to propagate in the thickness. 

For the three mesh size configurations, a macro-crack has clearly developed with a stair-step 

morphology. Clearly, the maximum damage values are highly concentrated inside one row of 

elements with a zig-zag evolution during the crack propagation. 

  

Figure 5.5: Experimental and numerical force-displacement curves of DP1000 for air-bending for the 
local model 

5.2.2.2 Behavior model with micromorphic damage ( /g

d
H H ) 

The micromorphic formulation is now taken into consideration by activating the contribution of the 

micromorphic damage variable d . The micromorphic damage model the is applied to the air bending 
test in order to prove the agreement between the numerical solutions and the experimental results 
and reduce the dependence of the responses against the refinement of the mesh (Diamantopoulou 

et al., 2017). We set 
280.0 .H N mm , 3.6gH N  giving the internal length / 0.21g

d
H H 

mm, two times higher than the highest mesh size and 3.5 times than higher than the lowest mesh 
size. 

  

Figure 5.6: Experimental and numerical force-displacement curves of DP1000 for air-bending for the 
micromorphic model 
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Unlike the local model (see Figure 5.5), the F u  curves predicted by the micromorphic model 
give the same fracture displacement value as indicated in Fig. 5.6. Oscillations observed on the 
evolution of the cutting force are due to a modelling problem of the contact between the die and the 
sheet. The contact procedure based on a master surface approach (matrices) slave nodes (sheet) 
remains dependent on the conditions of the discretization the contact surfaces. 

 

(a) 

 
Local damage distribution 

 

Nonlocal damage distribution 

 

(b) 

 

 

 

 

(c) 

 

 

 

 

Figure 5.7 Local (left) and micromorphic (right) damage distributions at the end of the bending load 
as predicted by the micromorphic approach for different mesh sizes. 

 

Plot curve line 
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Figure 5.8: Local vs micromorphic damage evolution at the moment of frU  for the three mesh sizes  

 

The final distribution of the local damage as predicted by the micromorphic formulation is shown 
in Figure 5.7.  We can see that the damage localization bandwidth becomes smoother than the local 
damage case (i.e. the damage gradient varies less than in the local case).  

A horizontal line (dashed lines in Fig. 5.7) is used to plot the evolution of local damage (noted as 
“d_loc”) and nonlocal damage (noted as “d_n.loc”) when the macro fissure has spread through about 
half of the thickness of the sheet. Figure 5.8 shows the evolution of both local and micromorphic 

damage along these horizontal lines of the ruptured specimen at the moment of frU for 

0.1, 0.08s sM M   and 0.06sM   mm. Clearly, the micromorphic damage is lower than the local 

damage ( )d d . At the beginning of the damage flow we have d d , but as the damage increases 

inside the localization zone the local damage increases more rapidly than the micromorphic damage. 

Accordingly, the difference between d  and d  increases inside the damaged zone and at the final 

fracture  1 . 0cd d   while 0.55d . Note that the fracture criterion uses the local damage d  

instead of the micromorphic damage d  which never reaches the critical value of the damage at 

fracture, i.e., 1.0.d    
The evolution of local and nonlocal damage appears practically identical for the three mesh cases 

but the crack always propagates in final stage along a single row of elements. 
. 
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5.3 Metal forming process: blanking (or cutting) operation 

The adaptive analysis methodology described in Paragraph 2.8 of Chapter 2 is now applied to a 

blanking operation of a circular thin sheet. The axisymmetric sheet has an initial external radius

200.0R  mm and a thickness 1.2e  mm. The punch diameter is 12.0 mm and the clearance 

between the fixed die and the moving punch is 0.12 mm as shown in Figure 5.9 (Labergere et. al, 

2010, 2014). 

 

Figure 5.9: Schematic representation of the axisymmetric blanking process 

 

The material is a DP600 steel and its parameters are given in Table 5.2. Only the micromorphic 
formulation is taken into consideration by activating the contribution of the micromorphic damage 

variable d  by setting
250.0 .H N mm , 0.02gH N  giving the internal length 

/ 0.02g

d
H H  mm. 

 

 DP600 dual phase steel 

Elasticity parameters 220.0

0.29

E GPa






  

Plasticity parameters 410.0

1010.0

2.0

7000.0

40.0

y MPa

Q MPa

b

C MPa















  

Damage parameters 

0

22.0

2.0

1.2

0.0

4.0

S MPa

s

Y















  

Table 5.2: Local material parameters for the DP600 steel sheet 
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The sheet is discretized with quadrangular bilinear axisymmetric micromorphic elements 

presented in Chapter 3 and implemented in a VUEL ABAQUS®/Explicit subroutine. Friction between 

the tools and the sheet is modelled by the classical Coulomb model with a constant friction 

coefficient 0.15  . The different element size parameters used by different error size estimator for 

the adaptive remeshing procedure are given in Table 5.3: 

maxx  

(mm) 

max

px  

(mm) 

*p  
min

px  

(mm) 

1  
min

damx  

(µm) 

mind  maxd  

1.0   0.4   0.22   0.1   5.0   3.0,6.0  

or 9.0   

0.005   0.05   

Table 5.3: mesh size indicator 

Three small mesh size configurations (indicated as 
iM ) 

1M   min

damx = 3.0 µm, 
2M  min

damx = 6.0

µm and M3 min

damx = 9.0 µm have been chosen to refine the area of the sheet where the crack is 

expected to appear. Figure 5.10 shows the first mesh adaptation performed using the geometrical 

error indicator based on the curvature of the tools and the cutting edges. The mesh is refined in the 

areas of the smallest curvature of the punch and the die. The size distribution of the initial mesh is 

important because it determines the accuracy of the contact algorithm between the tools and the 

sheet.  

 

 

 Figure 5.10: Initial mesh of the sheet  

Figures 5.11 present the isovalues of the von Mises stress for the punch displacement 0.5U  mm 

and for the three different mesh configurations iM . The 2D mesh adaptation proved to be quite 

efficient as the mesh refinement follows the contact areas together with the zones with higher 

plasticity and damage. In addition, the mesh is clearly coarsened inside the inactive areas (no plastic 

flow). For the three configurations iM , a crack initiates and appears near the contact between the 

sheet and the fillet of the die. The value of the von Mises stress near the crack is high and reaches an 

average value of 960.0 MPa. In the case of min

damx = 9.0 µm and min

damx = 6.0 µm the von Mises gradient 

is concentered along the principal shear band where the crack can propagate. 
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 Von Mises Stress (MPa) 

min 3.0damx m   

 

min 6.0damx m   

 

min 9.0damx m   

 

Figure 5.11: von Mises stress distribution inside the sheet thickness for punch displacement 0.5U  mm 
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In order to complete the analysis of these results, we also plot the evolution of both local and 

micromorphic damage on the same plane for the three different mesh configurations iM . The 

measurements were done on three lines of the deformed sheet as shown in Figure 5.12: a top line 
indicated as LH line, a middle line indicated as LM line and a bottom line indicated as LB (Figure 5.12) 
for a punch displacement equal to 0.5U  mm, before the final rupture. Figures 5.13 to 5.15 show 

the evolution of local vs micromorphic damage along the three drawn lines for min

damx = 9.0 µm, 

min

damx = 6.0 µm and min

damx = 3.0 µm respectively. 

For min

damx = 9.0 µm, we observe that the micromorphic damage is higher than the local one along 

all the three lines. When d d  the term of the damage force  d
Y H d d    is positive, the 

evolution of the local damage d  is then accelerated to fill the difference with the nonlocal damage

d . For the line LB near the crack, the maximum nonlocal damage reaches the value of 0.12 . For the 
two other lines LM and LH, the maximum nonlocal damage reaches up to 0.05  .  

In contrast, for the two other configurations min

damx = 6.0 µm and min

damx = 3.0 µm, the difference 

( )d d  remains always positive. In these two configurations, the term of damage force 

 dY H d d    is negative; the evolution of the local damage d  is slower. The evolutions of the 

nonlocal damage for the three lines and for the two configurations M1 and M2 seem to be quasi 
identical. For the line LB, the value of the maximum nonlocal damage is equal to 0.1 for the two 

smallest mesh sizes min

damx = 6.0 µm and min

damx = 3.0 µm.  

 

 

Figure 5.12: Schematization of high (purple) middle (blue) and bottom (green) lines of the deformed 
sheet for the measurement of local and micromorphic damage along the axis at 0.5U  mm 
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Figure 5.13: Local vs micromorphic damage evolution at 0.5U  mm for min

damx = 9.0 µm 

 

 

 

Figure 5.14: Local vs micromorphic damage evolution at 0.5U  mm for min

damx = 6.0 µm 
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Figure 5.15: Local vs micromorphic damage evolution at 0.5U  mm for min

damx = 3.0 µm 

 

For the same punch displacement ( 0.73U  mm), we also present mesh adaptation in Fig. 5.16. 

The macroscopic crack lengths on the actual meshed configurations are shown and the adaptive 

character of the 2D mesh is clearly observed. The crack that initiated for 0.5U  mm has now 

propagated along the shear band. We clearly see that the smallest mesh size is well applied to mesh 

the sheet along the shear band and the length of the cracks 0.25 mm is approximatively the same 

for the three configurations.  

For the same punch displacement ( 0.73U  mm), we also show the isovalues of the 
micromorphic damage in Fig. 5.17. For the two configurations 

2M  and
3M , the nonlocal damage is 

higher at the tip of the crack and reaches a maximum value of 0.2 . The width of the localization band 
corresponding to the nonlocal damage remains also identical. For the configuration 

1M , the 

evolution of the gradient of the nonlocal damage is no more clear but the width of the localization 
band located in the sheet between the tip of the crack and the fillet of the punch seems to have the 
same shape with the two other configurations 

2M  and 
3M .  
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min 3.0damx m   

 

min 6.0damx m   

 

min 9.0damx m   

 

Figure 5.16: Crack propagation and adaptive mesh for punch displacement 0.73U  mm 
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min 3.0damx m   

 

min 6.0damx m   
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min 9.0damx m   

 

Figure 5.17: Micromorphic damage isovalues for punch displacement 0.73U  mm 

 

The experimentally and the numerically predicted fracture shape are represented in Fig. 5.18 for 

the three minimum mesh sizes at 0.9U mm. The obtained results are in good agreement 

concerning the convex zone ( 0.12 mm), sheared zone ( 0.33 mm), fracture zone ( 0.75 mm) and the 

bur ( 0.04 mm). For the three configurations, the shape of the crack is approximatively the same. We 

have also a relatively good agreement with the experimental crack geometry. 
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min 3.0damx m 

 

 

min 6.0damx m 

 

 

min 9.0damx m 

 

 

Figure 5.18: Experiental vs numerical cut for the three mesh sizes at the end of the applied load 

 

Finally, the F u  curves predicted by the micromorphic model give almost the same value of 

fracture displacement as shown in Fig. 5.19 independent from the mesh size. However, we observe a 

slight difference between the three numerical and the experimental results in the softening phase. 
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This difference can be explained by the need to introduce a micromorphic variable associated to the 

isotropic hardening in order to enhance the regularization at this stage. 

  

Figure 5.19: Experimental and numerical force-displacement curves of DP600 for blanking predicted 
by the micromorphic model. 

 

5.4 Conclusions 

With the simple uniaxial tensile test presented extensively in the previous chapter and these last 

two more realistic applications, we have confirmed the ability of our micromorphic model to obtain 

nearly unique solutions for different mesh sizes.  In this Chapter 5, we have applied our 

micromorphic model for the prediction of ductile cracks initiation and propagation on an air-bending 

test and on an industrial blanking process. For the two metal forming processes the nonlocal model 

only with micromorphic damage was used. What is left, is the application of the mixed model with 

both micromorphic damage and isotropic hardening as presented in Chapter 3 by activating Q  and 

gQ and optimizing the numerical implementation,  in order to validate its accuracy by obtaining 

mesh independent solutions.    
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General conclusions and perspectives 

This work was focused on a nonlocal formulation of an elastoplastic behavior model with isotropic 

and kinematic hardening together with softening or negative hardening induced by the presence of 

isotropic ductile damage. In framework of the generalized continua, the micromorphic theory has 

been applied assuming that the isotropic ductile damage and the isotropic hardening are the two 

principal micromorphic phenomena. As a result, two additional micromorphic kinematic variables, d  

and r  have enriched the space of degrees of freedom of the IBVP. These variables, as well as the 

body, contact and inertia forces are included in the generalized extended form of the principal of 

virtual power. This leads to obtaining, additionally to the classic local equilibrium equation, two new 

partial differential equations (PDEs) along with their Neumann-type boundary conditions, as the 

balance equations related to the micromorphic phenomena that are taken into consideration. By 

using the appropriate additional state relations (stress-like micromorphic variables), these two 

additional PDEs obtained in the stress space, can be expressed in the strain space. 

Furthermore, the space of the state variables is also enriched by new pairs of micromorphic state 

variables ( , )d Y , ( , )r R  as well as their first gradients ( , )d Y  and ( , )r R . This allows a 

micromorphic extension of the thermodynamics of irreversible processes through the construction of 
a state potential, a yield criterion and a plastic potential as appropriate convex functions of the 
overall strain-like state variables that allows us to extract the complete set of evolution equations for 
an elastoplastic micromorphic solid with damage and hardening. It is worth noting that in this 
isotropic and isothermal formulation, the dissipation of the micromorphic phenomena is neglected 
due to the absence of adequate experimental information. It is also remarkable, that the evolution 
equations of the targeted micromorphic phenomena can be written under additive terms, one 
related to the classical local evolution and a second one, nonlocal, coming from the evolution of the 
micromorphic variables.  

 
In the second chapter the numerical aspects of the IBVP related to the motion of the 

micromorphic solid under a given loading path, are presented. The principal equations that define 
the IBVP are firstly given and we continued by obtaining the three associated highly nonlinear and 
strongly coupled weak forms. The time and space discretization (by finite differences and finite 
elements respectively) are also discussed and the dynamic explicit global resolution scheme is also 
described. We continued with the formulation of two 2D micromorphic finite elements and the 
stability condition for the micromorphic damage problem. An implicit algorithm that combines the 
 method with an asymptotic scheme for the reduction of the size of the material Jacobian matrix 
is discussed in detail. Finally, we gave a brief representation of the technical aspects regarding: 
 the implementation of the finite elements and the behavior model into Abaqus/Explicit by 

using the associated user’s subroutines; 
 the 2D adaptive remeshing methodology.    
 
In the third chapter an extended parametric study is performed on the model with micromorphic 

isotropic damage and micromorphic isotropic hardening. The objective is to explore the effect and 
the influence of the micromorphic model on the mesh independency of the solutions by using 
different mesh sizes and different values of the associated internal lengths. According to the results 
obtained from this parametic study we can conclude that: 

 
 
 The presence of micromorphic damage is necessary and enough to regularize the IBVP in 

contrast to the micromorphic isotropic hardening; 
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 The micromorphic damage model can give mesh independent solutions under the following      
conditions: 
o the size of the chosen internal length should be sufficiently bigger than the size of the              

elements ( )
d

h , and  

o The most appropriate choice for the micromorphic moduli should depend on the fact 

that the values of H  and gH  should be restricted in an “intermediate value” interval so 
that they are neither too low, in order to retrieve the local solutions, nor too high so that 
the micromorphic damage effect is so excessively strong that leads to no rupture 
appearance despite the large displacements. 

 
In Chapter 4 we have given the major steps for the material parameters identification concerning 

the elasticity, plasticity and local damage. Afterwards, we proposed a numerical methodology for 

identifying the value of the micromorphic internal length related to the micromorphic damage by 

linking it to the width of the shear bands that appear during the localized necking and comparing 

with the experimental bandwidths obtained by the ESPI measurements in order to validate the 

accuracy of this first identification effort.  

Finally, the fifth chapter was dedicated to two 2D applications, a bending and a blanking test, 

showing the efficiency and the predictive capabilities of a complete micromorphic damage model. 

This work has opened a new field for further investigation on the formulation of nonlocal 

micromorphic behavior models. Concerning the “Micromorfing” ANR program, many open questions 

raise, the deeper investigation of which is essential. 

 Bring together the numerical developments performed by CdM/MinesParisTech concerning 

the hyper-reduction of the models (HROM) and those performed by LRM/UTC concerning the 

3D adaptive remeshing and their application to our formulation using our elements extended 

to 3D.    

 From the theoretical point of view: some extension could be added concerning: 

 The introduction of induced anisotropies due to the plastic flow, damage, distortion 

of the yield surface etc…; 

 The introduction of the micromorphic dissipation including the micromorphic plastic 

strains as well as the dissipation relative to the micromorphic phenomena; 

 The extension to viscoplastisity and strong coupling with temperature;  

 The exploration of the kinematic aspects related to the micromorphic variables in 

finite transformations and the impact on the objectivity of the model (choice of rotation 

frames); 

 A link between the micromorphic and the micro-macro formulations, in the 

framework of the appropriate homogenization methods in order to improve the calculation of 

media with microstructure (Forest, 2006); 

 The analytical study of some closed form solutions. 

  

 From the numerical point of view:   

 The formulation of 3D micromorphic elements; 

 Introduction of additional degrees of freedom (kinematic hardening, plastic strain…); 

 Adaptive remeshing for the micromorphic model in 3D; 

 Meshless methods adapted for gradient models; 
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 Use of Implicit (quasi-static or dynamic) solver and coupling of different solvers; 

 

 Parametric study and applications:   

 The role and the influence of the micromorphic densities; 

 The role and the influence of the micromorphic body and contact forces; 

 The improvement of the identification methodology based on 3D full-field 

measurement  in order to determine as uniquely as possible the best values of the 

micromorphic internal lengths related to the micromorphic phenomena; 

 More and more complex industrial metal forming applications. 

 

 From the experimental point of view:   

 The numerical treatment and validation of the nanoindntation test for the 

introduction of a second micromorphic internal length identification methodology; 

 Adaptation and implementation of the 3D-DHI microscope for 3D 

displacement/velocity fields measurements with nanometer accuracy on loaded 

mechanical specimens; 

 Complementary characterizations for the measurement of the surface topography of 
the localization zones at several stages before fracture. 

 
All these aspects are either under development, in the framework of the ANR program, or taken 

into high consideration as scientific priorities of the ‘Formage virtuelle’ team of LASMIS.    
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Résumé en français 

 

1. Contexte théorique. 

Cette thèse est consacrée à la présentation de la formulation d'un modèle de comportement 

élastoplastique fortement couplé à l’endommagement ductile isotrope dans le cadre des milieux 

généralisés basés sur la théorie micromorphique. Les milieux continus matériellement simples 

supposent que l'état mécanique à n'importe quel point matériel de la zone  est complètement 

déterminé par l'histoire des variables d'état dans un voisinage arbitrairement petit entourant ce 

point (Truesdell and Toupin, 1960). Dans ce contexte, la connaissance du premier gradient de 

transformation F  (ou premier gradient de déplacement) est suffisante pour déterminer l'état 

mécanique de ce point et le milieu est appelé matériellement simple ou local. (Truesdell and Noll, 

1965). Cependant, dans plusieurs situations, le vecteur de déplacement et son premier gradient ne 

sont pas suffisants pour définir l'état mécanique d’un point matériel. Dans de tels cas, il est 

nécessaire d'ajouter d'autres variables cinématiques ou ddls (degrés de liberté) pour enrichir la 

description cinématique du milieu. Ainsi que leurs gradients de premier, deuxième ou plus haut 

ordre, dans le principe des puissances virtuelles et comme nouveau arguments dans l'état et les 

potentiels de dissipation. Cette approche est décrite comme la mécanique des milieux généralisés ou 

milieux matériellement non simple (Truesdell and Noll, 2004). Il est souvent proposé de classer les 

théories des milieux généralisés en trois théories distinctes (Forest et Sievert, 2003) et (Saanouni, 

2012), présentées dans la Figure 1.1: 

Milieux continus de degré supérieur, qui sont basés sur l’introduction des dérivées spatiales 

d’ordre supérieurs des déplacements dans le principe des puissances virtuelles comme initialement 

proposé par: (Toupin, 1962), (Toupin, 1964), (Mindlin, 1968). 

Milieux continus d’ordre supérieur, qui s’appuient sur le rajout de degrés de liberté additionnelles 

dans le principe des puissances virtuelles comme l’ont proposé les frères Cosserat (Cosserat, 1986, 

1909, 2009) et utilisé par (Eringen, 1964, 1970).  

Milieux continus non locaux dont une synthèse récente se trouve dans (Eringen, 2002). 
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Figure 1.1. Schéma des différentes théories en mécanique des milieux continus 

 

En ce qui concerne le cadre théorique que nous avons choisi pour construire notre formulation 

non locale, nous avons développé une formulation d'un modèle endommagé élastoplastique des 

milieux généralisés dans le cadre de la théorie micromorphique. La cinématique d'un milieu 

micromorphique repose sur un le déplacement u  et son premier gradient u  ainsi que sur un 

certain nombre de variables micromorphiques notées nz  et leurs premiers gradients nz .  

La puissance virtuelle des forces internes du milieu local est étendue au niveau du milieu 

micromorphique généralisé en utilisant les deux degrés de liberté micromorphiques supplémentaires 

associés respectivement à l’écrouissage isotrope micromorphique r et à l’endommagement isotrope 

micromorphique d . 

L'application de la puissance virtuelle conduit ainsi à trois équations aux dérivées partielles, 

avec leurs conditions aux limites associées ; l’équation de bilan locale tandis que les deux autres 

expriment des équations de bilan de forces micromorphiques: 
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r gr
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
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

  

        


    


        


    


                                                          (1.1) 

 

En se basant sur la méthode de l’état local (Germain, 1973), nous utilisons des variables d'état 

pour lesquelles les valeurs à chaque instant t  et à chaque point matériel, déterminent la réponse 

matérielle. Chaque phénomène dissipatif a sa propre variable d'état dont l'évolution est dirigée par 

sa propre équation d'évolution. Dans cette thèse, nous nous limitons à des conditions exclusivement 

isothermes et aux modélisations et simulations numériques d’opération de mise en forme par 

déformation plastique (emboutissage, forgeage, découpage, pliage, …). Ainsi, nous avons utilisons un 

couple de variables internes d'état de déformation et duale en contrainte pour décrire chaque 

phénomène physique. Nous proposons les couples de variables regroupés dans le tableau (Tableau 

1.1). 

 

Phénomène Variable interne Variable duale 

Variables d’état observables 

Variables mécaniques 

  

mesure eulérienne 
des déformations totales 


 

contrainte de 
Cauchy 

Variables d’état non observables 

Déformation élastique réversible e  


 

Ecrouissage cinématique   X  

Ecrouissage isotrope r  R  

Endommagement ductile isotrope d  Y  

Ecrouissage isotrope micromorphique 
r

r





 

R

R



  

Endommagement ductile isotrope 
micromorphique 

d

d



  

Y

Y



  

Table 1.3 Variables d’état associées aux phénomènes physiques à décrire 
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Nous choisissons l'énergie libre de Helmholtz comme potentiel d'état écrit sur la configuration 

fictive en fonction de toutes les variables internes locales et micromorphiques définis dans l'espace 

de déformation effective. En utilisant les relations d'état locales et micromorphiques couplé au 

potentiel d'état, nous obtenons les contraintes locales et les relations d’état micromorphiques: 

- Contrainte de Cauchy: 

      1 : 1 1 2
g e e e

e ee
d d tr


      




      


                                                                         (1.2) 

- Ecrouissage cinématique: 

 
2

1
3

g
X d C


 




  


                                                                                                                            (1.3) 

- Ecrouissage isotrope: 

(1 ) (1 ) 1 1
g

rR d Qr Q d r d d r
r

   


 


        
 

                                                                 (1.4)                                                                                                            

- Endommagement ductile isotrope: 

g

E A R dY Y Y Y Y
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                        (1.6) 

 

- Endommagement ductile isotrope micomorphique et son premier gradient: 

  ( )

( )

g
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Y H d d a
d

Y H d b
d
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                                                                                                                     (1.7) 

 

- Ecrouissage isotrope micromorphique et son premier gradient: 

  1 1 1 ( )
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                                                                       (1.8) 
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où, 1 1 2 1e eµ     est l’opérateur d’élasticité linéaire, C  et Q  sont les modules respectifs 

de l’écrouissage cinématique et isotrope, Q , H , gQ et gH  (positifs ou nuls) sont les propriétés 

micromorphiques du solide et le paramètre   défini le couplage entre l'endommagement local et 

l’écrouissage isotrope. 

Puisque les variables duales  , , ,R X Y sont données par les relations d'état, les variables de flux 

associées ( pD , r , , d ) découleront de l'application de la règle de normalité généralisée et de 

l'analyse de dissipation volumique maximale. Pour tenir compte des effets de l'endommagement, et 

en nous limitant au flux plastique isotrope pour des raisons de simplicité, nous avons choisis la 

contrainte équivalente de von Mises comme norme de contrainte pour définir la fonction de charge 

et un potentiel plastique. La fonction de charge de von Mises et le potentiel de dissipation plastique 

proposées sont référencées dans (Saanouni et al., 1994; Saanouni, 2012) et s'écrivent alors sous les 

formes suivantes: 

 , , ,
1 1

p y

X R
f X R d

d d 


 


  

 
                                                                                                    (1.9) 

 
12

03 ( : ) 1
, , ,

4 (1 ) 2 Q(1 ) ( 1)(1 )

s

p p

Y Ya X X bR S
F X R d f

C d d s d S 





   
   

                                     (1.10) 

avec la norme    
3

:
2

X X X       définissant la contrainte équivalente von Mises, 

tandis que y  la limite d’élasticité du matériau vierge. Les paramètres a  et b en Eq. (1.10) 

caractérisent respectivement la non-linéarité de l’écrouissage cinématique et isotrope et finalement, 

, ,S s   et 
0Y caractérisent l'évolution non linéaire de l’endommagement ductile. L'application de la 

règle de normalité généralisée à la fonction de charge locale (Saanouni et Chaboche, 2003, Saanouni, 

2012, Forest 2016) et au potentiel de dissipation ci-dessus conduit aux équations d'évolution 

suivantes: 

- Déformation plastique: 

3 ( )
,

21

dev
pp

F n X
D with n

Xd


 

 

 
  

 
                                                                               (1.11) 

où, n  est la normale à l'extérieur de la surface de rendement et   est le multiplicateur plastique de 

Lagrange. 

- Ecrouissage cinématique: 

p p
F

D a
X

  


   


                                                                                                                              (1.12) 

 

- Ecrouissage isotrope: 

   
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(1.13) 
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- Endommagement ductile isotrope : 

0( )

(1 )

nlo

s

cp loc
F Y Y

d
Y d

Y

S



  

 
 

                                                                                                  (1.14) 

En utilisant les expressions des variables forces thermodynamiques ((1.2)-(1.8)) dans ((1.1) a, c), il 

est tout à fait possible d’exprimer les équations de bilan micromorphiques en fonction de variables 

déformations :                                                                                             

     

 

2 11 ( ) . 1 1 1
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r
r r r r r
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r
d Lap r d d r d d r d r
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Q r n

     
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(1.15)                                                                                                                                                                                                       
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H d n
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   


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                                                                                                                   (1.16) 

où, r  et 
d

 sont les longueurs internes relatives aux deux phénomènes micromorphiques 

comme étant la racine carrée des rapports entre les modules micromorphiques: 

2 2( ) ( )
d

g g

r

Q H
a b

HQ
                                                                                                                      (1.17) 

Nous préférons utiliser les équations (1.16)-(1.17) comme des formes fortes à partir desquelles les 

formes faibles associées seront déduites pour résoudre le PVIL. Nous notons que pour le reste de la 

thèse, nous négligerons le couplage entre l’éndommagement local et l’écrouissage isotrope 

micromorphique (le paramètre 0.r  )  

 

2. Aspects numériques. 

En utilisant la formulation lagrangienne actualisée, les formes faibles associées aux formes fortes 

(Eq.(1.1a), Eq.(1.15) et Eq.(1.16)) peuvent être facilement obtenues grâce à la méthode des résidus 

pondérés (Belytschko, 2001). Nous partons de l'extension de la forme faible de Hu-Washizu proposée 

par Fish et Belytschko (Fish et Belytschko, 1990) pour dériver les formes faibles suivantes:  

 Forme faible associée aux équations d’équilibre classiques: 

           , , : : 0
e e

t t

T T
a a a a a a u u

su d u d u f u dV F u dS          
 

 

          
        

(2.1) 

où,  dénote une variation, 
a  est le taux des déformations postulées, 

a  est le tenseur des 

contraintes postulées et s u  représente la partie symétrique du gradient de vitesse.  

 Forme faible associée aux équations de bilan de l’endommagement micromorphique: 
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 2( , ) 0 . .
d

t t t

D
d

d ddV d d ddV ddVJ d d K A
H

d


   

  

                                   (2.2) 

 Forme faible associée aux équations de bilan de l’écrouissage isotrope 

micromorphique: 

      21 0 ., 1

t t t

r
r r

r
J r r d r rdV d r r rdV rd KV

Q
r A  

    
  

              

(2.3) 

où u est le champ de vitesse virtuelle cinématiquement admissible et d et r sont les champs 

de vitesse virtuels cinématiquement admissibles associés respectivement à l'endommagement 

micromorphique et à l’écrouissage isotrope micromorphique.  

Ces trois formes sont fortement couplées et non linéaires de sorte que leurs résolutions 

analytiques sont impossible. En conséquence, des méthodes numériques basées sur la discrétisation 

temporelle et spatiale par des Eléments Finis appropriés, est nécessaire pour résoudre les équations 

non linéaires discrétisées définissant le PVIL. Cette approche conduit à un système algébrique non 

linéaire qui peut être résolu en utilisant le schéma itératif de type Newton. 

L'introduction des nouvelles équations d'équilibre micromorphiques dans le PVIL nécessite la 

construction d'éléments spéciaux, basée sur des formes variationnelles appropriées comme celles de 

Hu-Washizu, avec une décomposition particulière des gradients de transformation. Nous avons 

implémenté dans Abaqus/Explicit® un élément 2D quadrilatéral initialement proposé par Wang et. al, 

(2004). Cet élément 2D bilinéaire quadrangle à déformation postulée est défini de manière à éviter 

l’apparition de verrouillage au cisaillement transverse et à l’incompressibilité. En suivant la méthode 

de déformation postulée, nous développons un simple élément 2D axisymétrique à quatre nœuds. 

Pour cet élément, la projection orthogonale des champs de contrainte et de déformation par 

l'approche B-bar de Simo et Hughes (Simo, 1998) et l'opérateur de   -projection, suggérée par 

Flanagan et Belytschko (Flanagan et Belytschko, 1981) est appliquée. 

Considérant la procédure d'analyse dynamique explicite dans Abaqus/Explicit les solutions du PVIL 

à trois formes présentées ci-dessus, sont obtenues simultanément par un couplage explicite, basé sur 

l'implémentation d'une règle d'intégration explicite avec l’utilisation de matrices de masse 

diagonales. Pour chaque rangée, le terme de masse localisée diagonale est obtenu en additionnant 

les différents termes associés à chaque colonne: 

1 1 1

1

e e e
r r r

nddls nddls nddls
lp e e e e e e e e e

ii ij i j v i j v i v

j j j

M M N N J dV N N J dV N J dV  
    



                                                    (2.4) 

où e

ijM  est la matrice de masse élémentaire, 
e

iN  représente les fonctions d’interpolation,  est la 

densité et
e

vJ  est le déterminant de la matrice jacobienne.  

Pour résoudre le système algébrique donné dans l'équation (2.11), le calcul des forces internes et 

externes exige l'évaluation du tenseur des contraintes locales 1n  , l'endommagement local 1nd  , 

l’écrouissage isotrope 1nr   et cinématique 1n  , à chaque point d'intégration de chaque élément au 
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pas de temps  1n nt t t    , en fonction des variables d'état déjà connues à l'instant nt , les relations 

d'état Eq.(1.2) à Eq.(1.5) et les équations d'évolution Eq.(1.11) à Eq.(1.14). Afin de calculer ces 

variables d'état à la fin de chaque pas de temps, nous devons intégrer numériquement les équations 

différentielles ordinaires globales. En présence des écrouissages isotrope et cinématique non 

linéaires, il a été montré (Nesnas et Saanouni (2002), Saanouni et Chaboche (2003), Badreddine et al. 

(2010), Saanouni (2012b)) que la combinaison d’un schéma asymptotique (Walker et Freed, 1991) 

avec l'algorithme de prédiction élastique/correction plastique par retour radial, conduit à un schéma 

d'intégration efficace inconditionnellement stable en présence d’endommagement ductile. Cette 

méthode est suivie ici pour intégrer les équations constitutives complètement couplées à 

l’endommagement micromorphique.  

Supposons que la déformation incrémentale totale   à l’échelle actuelle de temps soit 

complètement élastique, ce qui signifie l'absence de tout écoulement plastique induit, écrouissage 

ou endommagement, c'est-à-dire 0p  . Dans ce cas, la déformation élastique essai à l’instant 1nt 

est donnée par: 

1

essai e

n n     
                                                                                                                                                             (2.5) 

qui résulte de la contrainte d'essai:  

1 1(1 ) :
essai essai

n nnd                                                                                                                                       (2.6) 

 Comme 0p  , pour cet incrément de chargement élastique essai, le critère de charge de von 

Mises (Eq. (1.9)) correspondant à cette contrainte d'essai se réécrit comme: 

1

1
1 1
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nnessai n
n y
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X R
f

d d 









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                                                                                                           (2.7) 

 Si 1 0trial

nf   , alors que la solution soit effectivement élastique, cela signifie que l'état de contrainte 

d'essai se trouve à l'intérieur de la surface d'écoulement, et les variables d'état sont mises à jour 

comme suit pour donner la solution élastique: 

,

1 1 1 1 1

1 1
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 
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 

 

 

                                                                                             (2.8) 

Si 1 0trial

nf   , cela signifie que l'état de contrainte d'essai se trouve en dehors de la surface de 

charge, ce qui n'est pas admissible dans la plasticité indépendante du temps. La solution est alors 

plastique et la solution d'essai doit être corrigée pour déterminer les valeurs finales des variables 

d'état , , ,X R Y et s'assurer que la condition de charge  111 1 1, , , 0nnn n nf X R Y      est remplie. 

Dans ce cas, la fonction de charge de von Mises prend la forme suivante: 

11
1

1

1 1
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
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                                                                                                          (2.9) 
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Pour procéder à cette correction plastique, les équations d'évolution discrétisées, non linéaires et 

fortement couplées doivent être résolues en utilisant le schéma itératif de Newton-Raphson, pour 

déterminer les variables de contrainte et les conditions d'admissibilité à 1nt  . Ainsi, compte tenu de la 

plasticité isotrope, nous obtenons les deux équations fortement non linéaires suivantes avec deux 

variables indépendantes p et
1nd 

:     

* 1 1

11 1

1 1

3 1 exp

1 1 11
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(2.10) 

Ce système de deux équations à deux inconnues est résolu par un schéma itératif Newton-

Raphson afin de les linéariser sous la forme suivante: 

1 1
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                                                                             (2.11) 

  où s est le nombre d'itérations et p  et 1nd  les corrections données par: 

   

   

1

1

1 1

s s
p p p

s s

n nd d d

   
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



 

     

  

                                                                                                                       (2.12) 

Au cours des simulations numériques de divers procédés de mise en forme, les grandes 

déformations plastiques qui se produisent dans les zones de forte déformation plastique conduisent 

à des zones de déformation hautement localisées. À l'intérieur de ces zones de strictions, des défauts 

microscopiques peuvent apparaître fréquemment conduisant à l'apparition de fissures 

macroscopiques. La simulation numérique de ces processus, en utilisant la méthode des éléments 

finis basée sur la formulation lagrangienne actualisée, conduit à une grande distorsion d’élément au 

cours de la simulation. Pour cette raison, les procédures de maillage adaptatif sont nécessaires pour 

effectuer une analyse complète. Dans cette thèse, une méthodologie de remaillage adaptatif 2D est 

proposée et appliquée avec succès à des problèmes de mise en forme hautement non linéaires avec 

apparition de l’endommagement. La procédure adapte la séquence de chargement et la taille du 

maillage, en utilisant des indicateurs d'erreur appropriés. Le générateur de maillage DIAMESH2D est 

ensuite réalisé à l'aide d'éléments quadrangulaires ou triangulaires linéaires ou quadratiques 

(Rassineux, 1991), selon les étapes suivantes (Fig.2.1): 
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Figure 2.1: méthodologie de remaillage adaptatif 2D (Labergere et. al, 2014) 

 

3. Etude paramétrique. 

Dans cette section, une étude paramétrique relativement exhaustive du modèle micromorphique 

est présentée en mettant l'accent sur le rôle des deux paramètres micromorphiques ( , )gH H liés à 

l’endommagement micromorphique. Nous examinons l'effet des différentes valeurs de chacun de 

ces paramètres sur la qualité de la solution numérique en termes de réponses force-déplacement et 

contrainte-déformation globales dans le cas d’essais de traction uniaxiale à partir d’éprouvette plate. 

Les éprouvettes plates métalliques testés sont en acier 430 X8Cr17) et ont tous été modélisés avec 

des éléments quadrangles à déformation postulée Q4. 

 

 Initialisation of mechanical fields : ,u [], 

[],
0 0stept s , iteration n=0 

 Initialisation of the loading sequence ; 

0 total
step

t
t

Nbseq
 

, 
1 0

step stept t   

 

Build of the input file and call the 
FEM solver softawre 

Abaqus®+VUEL 

 Recovery of the different mechanical fields at 

the sequence 1n

stept   : 

o Internal variables at Gauss Points 

o Nodal variables of the part u , ,d r  

o Kinematic of the rigid tools, …. 

 Deformed mesh Mn based on displacement u  

Detection of all 
totally 

damaged 
elements 

endommages 

Generation of the new 
mesh Mn+1 

Transfert the 
mechanical fields for 
the old mesh to the 

new mesh 

Mn Mn+1 

Increase of the next 
loading sequence 

1n n

step stept t    

1n

step totalt t   

END no 

Update the itération n=n+1 

1n n n

step step stept t t    
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of all distorted 

elements 

The mesh size of 
the all damaged 

element are equal 

to min

damx  

Estimation and correction 
of the new loading 

sequence 
n

stept  by 

analysing the history of the 
previous FEM abaqus® 

computation 

Delete the previous 
abaqus® simulation and 

update 
1n

stept 
 

yes 

Computation of the mesh size map by using 
error estimators and geometrical size 

indicators 

Generation of the initial 
mesh M0 of the deformed 

part 

yes 

no 

no 

no 

Computation of the mesh 
size map by using error 

estimators and 
geometrical/physical size 

indicators 

 Deletion of the damaged 
element in the mesh Mn  

 Build the new boundaries 
(crack propagation) 

yes 

yes 
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Nous rappelons que dans ce cas une seule longueur interne est activée, celle liée à 

l'endommagement micromorphique donnée par /g

d
H H . 

0.2

7502

7367

h mm

N nodes

N elements







 

                                      Figure 3.1 Le spécimen maillé avec 0.2h  mm 

 

Nous examinons l'effet du module d'endommagement micromorphique H en prenant une valeur 

moyenne de 60.0H  . Les valeurs du module gH sont variées afin d'obtenir les trois valeurs 

suivantes de la longueur interne 
d

de 0.1, 1.0 et 5.0 mm. 

( )gH N  
d

 
ruptu  

0.6  0.1 mm 11.34 mm 

60.0  1.0 mm 11.9 mm 

1500.0  5.0  mm pas de rupture observée 

Table 3.1 Valeurs des paramètres de matériau micromorphiques et déplacement de la fracture pour 

60.0H   

 

 

Figure 3.2 Comparaison des réponses force-déplacement globales du modèle local et du modèle 

micromorphique pour un 60.0H    
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Figure 3.3 Courbes 
eq p   du modèle local et du modèle micromorphique pour   

 

Comme le montrent le Tableau 3.1, les courbes force-déplacement (Figure 3.2) et les courbes 

contrainte-déformation (Figure 3.3), l'effet de régularisation existe mais il est moins essentiel pour 

un
d

de 0.1 mm et de 1.0 mm pour lesquels les réponses mécaniques sont plus élevées mais 

toujours proches de la solution locale avec une rupture se produisant pour des valeurs de 

déplacement de =11.34 mm et =11.9 mm respectivement. Cependant, aucune rupture n'est 

observée à la fin de la charge appliquée pour la valeur la plus élevée de 5.0
d
 mm. 

Pour le cas de 1500.0 / 60.0 5.0
d
  mm il est clairement montré que l'effet de 

l’endommagement micromorphique est excessivement fort du fait que 1500.0gH  et ne permet 

pas de prédire une rupture finale jusqu'à la fin de déplacement imposé de 15.0 mm (Figure 3.2) 

malgré les valeurs extrêmement élevées de
max 290%p   et max 872eq  MPa observées. L'effet est 

directement mis en correspondance avec l'évolution très lente de l’endommagement local ainsi que 

ses faibles valeurs (Figure 3.4). Nous pouvons noter clairement ici que la ductilité du matériau 

augmente en augmentant les deux valeurs des modules H et gH . 
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Figure 3.4 évolution de l’endommagement local du modèle local et micromorphique à la fin de 

déplacement 15.0u  mm  

 

(a.1) Endo. local à  

ruptu =11.34mm, 
d

=0.1mm 

(a.2) Endo. local à  

u =13.0mm, =0.1mm  

(a.3) Endo. local à  

    =11.9mm, =1.0mm 

(a.4) Endo. local à  

u =12.5mm, =1.0mm 

(a.5) Endo. local à  

u =15.0mm, =5.0mm 

   
 

 

Figure 3.5 Endommagement local avant la fin de la charge appliquée (à
ruptu )  et la forme de la fissure 

finale pour les trois valeurs de
d

( 60.0H   )  
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(a.1) Endo. microm. à  

=11.34mm, =0.1mm 

(a.2) Endo. microm. à  

=11.9mm, =1.0mm 

(a.3) Endo. microm à  

=15.0mm, =5.0mm 

   

Figure 3.6 Endommagement micromorphique avant la fin de la charge appliquée (à )  pour les trois 

valeurs de
d

( 60.0H   )  

En termes de distribution de l’endommagement à l'intérieur de l'échantillon, quand 

0.06 / 60.0 0.1
d
  mm, la valeur maximale de l’endommagement local juste avant la rupture 

finale de l'échantillon est 
max 41.0%d   (Figure 3.5a.1) et l’endommagement micromorphique 

maximale est max 25.0%d  (Figure 3.6a). Pour 60.0 / 60.0 1.0
d
  mm nous obtenons 

max 41.0%d   (Figure 3.5a.2) et max 21.0%d   (Figure 3.6a.2) tandis que pour 

1500.0 / 60.0 5.0
d
  mm, nous obtenons 

max 24.0%d   (Figure 3.5a.5), max 12.0%d   (Figure 

3.6a.3). 

En conclusion, c'est le paramètre H qui contrôle 
nlocY et qui semble avoir le plus d'effet sur la 

non-localité. En fait, la solution est presque identique à la solution locale pour les valeurs les plus 

faibles de alors que l'effet de non-localité devient plus important pour la réponse globale comme 

les valeurs de augmentent, ce qui est évident à partir des courbes F u  et eq p  . Toutes ces 

figures représentent les réponses d'un point de Gauss d'un élément au centre de l'échantillon à 

l'intersection des deux bandes. 
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4. Méthodologie d'identification de la longueur interne 
d

. 

Comme indiqué dans la section précédente, les courbes F u numériques ont été utilisées pour 

étudier les effets de H et gH et choisir l’approche la plus appropriée, sans prendre en compte la 

notion de longueur micromorphique interne
d

. A cause de cet effet et sous l'existence perceptible 

de non-localité, nous avons réalisé une mesure expérimentale des champs des taux de déformation à 

l’aide de l'Interférométrie Electronique Spectroscopique (ESPI) au cours d’un essai de traction de 

l'acier inoxydable 430. Le taux de déformation
xx  mesuré par ESPI est utilisé pour déterminer 

l'évolution de la largeur de bande de localisation. L'idée est de définir un lien entre 
d

et la largeur 

de bande intégrale mesurée. La distribution du taux de déformation totale est supposée être une 

simple superposition (somme) de la distribution du taux de déformation de ces deux bandes. Ce 

modèle n'est pas un modèle mécanique mais un modèle purement analytique utilisé pour décrire le 

l’évolution spatiale du taux de déformation et extraire les paramètres globaux et complètement 

indépendants du comportement constitutif du matériau. La distribution du taux de déformation dans 

chaque bande est décrite par une combinaison linéaire d'une fonction gaussienne et d'une fonction 

lorentzienne: 

     

1 2

max max

( , )

, , , , , , ( , , , , (1 ) , , , , )

B B

xx

B

i i i i i i i i i i i i i i i

x y

avec a b B x y G a b B x y L a b B x y

  

     

 

  
                            (4.1) 

où 1i  ou 2  représente l'une des deux bandes localisées, et (x, y) sont les coordonnées des 

points (x est parallèle à la direction de traction), avec : 

 max

i  le taux de déformation maximum, 

 ,iG  la fonction Gaussienne,                                                                                                                     

 ,iL  la fonction Lorentzienne, 

 
i  et 1 i  les poids des fonctions gaussienne et lorentzienne respectivement. 

Les fonctions Gaussienne et Lorentzienne sont définies comme suit : 

2

( , , , , ) exp i i

i i i

i

x a y b
G a b B x y

B


   
    
   

                                                                                                       (4.2) 

2

1
( , , , , )

1

i i i

i i

i

L a b B x y
x a y b

B



  

  
 

                                                                                                           (4.3) 

ia : représente l'inclinaison de la bande i par rapport à la direction transversale, 

 ib : représente l'emplacement de la bande , 

 
iB : représente la largeur intégrale de la bande i (Figure 4.1). 

 

Figure 4.1. Illustration des paramètres, l'image de gauche est un diagramme de frange et celle de droite 

est la carte de taux de déformation correspondante obtenue. 

i
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Les largeurs Bdom et Bdis des deux bandes, dans tous les cas, diminuent avec la contrainte moyenne 

totale ou le temps. Au début, les deux largeurs de bande diminuent simultanément et ensuite elles 

se séparent: Bdis tend à se stabiliser tandis que Bdom continue de diminuer. 

 

 

Figure 4.2. Evolution des caractères de la bande de localisation par rapport à la déformation moyenne 

totale (ou temps), (Bao, François, Le Joncour, 2015) 

 

Dans cet esprit, et en implémentant numériquement le modèle mathématique donné par les 

équations (4.1) à (4.3) et en calculant le taux de déformation numérique à un instant donné

 à chaque point gauss des éléments situés dans la zone centrale, on arrive à extraire les 

valeurs de la largeur de bande numérique Bdom pendant la striction diffuse et la striction localisée et 

comparer les résultats numériques avec ceux expérimentaux montrés dans la Figure 4.2. 

Influence des modules  ,gH H dans l'évolution de la bande intégrale avec 

6.0S  . 

Nous notons que le paramètre S est directement lié à la ductilité et régit l'apparition de la 

fracture après la striction diffuse. En attendant, on observe que son effet est de retarder ou 

d'accélérer la croissance de l’endommagement sans modifier la forme de l'évolution de 

l’endommagement ou les courbes .F u   

Les études paramétriques suivantes sont analysées. 

 1.a. 0.2h  mm, 
36.0

0.6
100.0

g

d

H

H
   mm comparé à 0.2h  mm, 

21.6
0.6

60.0

g

d

H

H
   mm. 

 , ,num

xx x y t
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Figure 4.3. Evolution de la bande dominante de localisation pour ( 100.0, 36.0)gH H   et 

( 60.0, 21.6)gH H  , et comparaison entre les données numériques et expérimentales pour 0,2h mm  

 

 1.b: 0.4h  mm, 
36.0

0.6
100.0

g

d

H

H
   mm comparé à 0.4h  mm, 

21.6
0.6

60.0

g

d

H

H
   mm. 

 

Figure 4.4. Evolution de la bande dominante de localisation pour ( 100.0, 36.0)gH H   et 

( 60.0, 21.6)gH H  , et comparaison entre les données numériques et expérimentales pour 0,4h mm  
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Pour ce cas, nous réparons 6.0S   et 0.6
d
 mm avec deux combinaisons différentes 

(
36.0

0.6
100.0

g

d

H

H
   mm et 

21.6
0.6

60.0

g

d

H

H
   mm) pour les deux tailles de maille 

différentes. Les résultats semblent être très intéressants pour 0.2h  mm (Figure 4.3). Nous avons 

choisi 
21.6

0.6
60.0

g

d

H

H
   mm puisque la largeur de bande commence plus haut que tous les 

cas précédents (environ 24 mm) suivi d'un bon ajustement entre 21%  et 23%  de la contrainte 

moyenne totale, mais avec une grosse erreur à 25%  de la contrainte moyenne totale. Pour 

36.0
0.6

100.0

g

d

H

H
   mm on observe le comportement le plus précis puisque les valeurs de 

début et de fin de B1 sont en accord absolu avec le Bdom expérimental alors que l'erreur reste 

relativement faible et même négligeable. 

À peu près la même tendance est observée dans le cas de 0.4h  mm (Figure 4.4). Pour 

21.6
0.6

60.0

g

d

H

H
   mm la bande dominante commence à évoluer à 24 mm, et s'approche 

suffisamment de la courbe expérimentale entre 21%  et 25%  de la contrainte moyenne totale, mais 

chute rapidement donnant une grosse erreur jusqu'à 25%  de la contrainte moyenne totale. D'un 

autre côté, quand 
36.0

0.6
100.0

g

d

H

H
   mm, la bande commence correctement à 20 mm, suit 

exactement le même comportement que la largeur de bande obtenue pour 60.0H   mais n'atteint 

pas un ajustement exact car elle diminue significativement à la déformation moyenne totale de 24% , 

tout en donnant une erreur plus petite que dans le cas précédent. 

Concernant le groupe des paramètres de matériaux liés à l’endommagement micromorphique et 

plus précisément la longueur de régularisation micromorphique
g

d

H

H
 , nous avons utilisé les 

mesures expérimentales de l'ESPI et les résultats des essais de traction numériques pour la relier à la 

largeur de la bande dominante et proposer une méthodologie pour identifier une paire de ( , )gH H . 

 

5. Applications à des opérations de pliage et de découpage 

Dans ce dernier chapitre, nous validons la prédiction de notre méthodologie numérique basée sur 

une approche micromorphique dans le cas de deux procédés de mise en forme, un essai de pliage 

d'une tôle de DP1000 et le découpage d'une tôle en DP600. Selon les conclusions du Chapitre 3, nous 

n'utiliserons le modèle qu'avec l’endommagement micromorphiques dus à sa capacité à donner des 

solutions uniques. Par conséquent, une seule paire de paramètres micromorphiques, ( , )gH H  sera 

activée et leurs choix seront soigneusement effectués pour assurer des solutions physiques et une 

propagation de fissure acceptable dans la zone complètement endommagée. 
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 Simulation d’un essai de pliage 

Ce test a été modélisé en déformation plane 2D sans tenir compte de la symétrie. La feuille en 

acier DP1000 est discrétisée avec l'élément de déformation plane quadrangulaire Q4 proposé au 

chapitre 2, a été implémenté dans le logiciel ABAQUS®/Explicit via la routine VUEL. 

Trois petites tailles d'éléments (
sM ) ont été utilisées pour mailler la tôle dans la zone où la 

rupture peut apparaître: 

 
sM = 0.1 mm (2340 éléments),  

 
sM = 0.08 mm (2602 éléments),  

 
sM = 0.06 mm (3500 éléments). 

La formulation micromorphique est maintenant prise en compte en activant la contribution 

de la variable d'endommagement micromorphique d  en fixant
280.0 .H N mm , 3.6gH N

nous obtenons la valeur de la longueur interne / 0.21g

d
H H mm  . 

 

 

Figure 5.1. Courbes numériques  et expérimentale de force-déplacement du DP1000 pour le pliage 

pour le modèle micromorphique 
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Figure 5.2. Évolution de l’endommagement local et micromorphique pour les trois tailles de maille 

Contrairement au modèle local, la courbe prédite par le modèle micromorphique donne la même 
valeur de déplacement de la fracture comme indiquée à la Figure 5.1. La distribution finale de 
l’endommagement local, telle que prédit par la formulation micromorphique, est illustrée à la Figure 
5.3. Nous pouvons voir que la bande de localisation de l’endommagement devient plus lisse que le 
cas de l’endommagement local (c'est-à-dire que le gradient l’endommagement varie moins que dans 
le cas local). La Figure 5.3 montre l'évolution de l’endommagement local et micromorphique le long 

des lignes horizontales de l'échantillon de rompue au moment de ruptu pour 0.1, 0.08s sM M   et 

0.06sM  mm. Clairement, l’endommagement micromorphique est plus faible que 

l’endommagement local ( )d d . Au début de l’écoulement de l’endommagement, nous avons d d

, mais comme l’endommagement augmente à l'intérieur de la zone de localisation, 
l’endommagement local augmentent plus rapidement que l’ endommagement micromorphique. En 

conséquence, la différence entre d  et d augmente à l'intérieur de la zone endommagée et au niveau 

de la fracture finale 1.0cd d   et 0.55d . 
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(b) 

 

 

 

 

(c) 

 

 

 

 

Figure 5.3: Isovaleurs de l’endommagement local et micromorphique de l'échantillon de pliage 

rompu dans le cadre de l'approche micromorphique pour les différents maillages à la fin du déplacement 

imposé 

 

 Simulation d’une opération de découpage 

La méthodologie d'analyse adaptative décrite au paragraphe 2 est validée lors d'une 

opération de découpage d'une tôle mince circulaire. La tôle circulaire a une épaisseur de 1.2e 

mm. Le diamètre du poinçon est de 12.0 mm et le jeu entre la matrice fixe et le poinçon mobile 

est de 0.12  mm, comme montré dans la figure 5.4 (Labergere et al., 2010, 2014). 
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Figure 5.4: Schéma du procédé de découpage axisymétrique  

 

Le matériau est un acier DP600 et seule la formulation micromorphique en endommagement est 
prise en compte en activant la contribution des variable d'endommagement micromorphique 

250.0 .H N mm , 0.02gH N  donnant la longueur interne / 0.02g

d
H H  mm. La tôle est 

discrétisée avec des éléments micromorphiques quadrangulaires bilinéaires axisymétriques 
implémentés ABAQUS®/Explicit via la routine VUEL et trois configurations de maillage (nommées Mi) 

M1 min

damx = 3.0 µm, M2 min

damx = 6.0 µm et M3 min

damx = 9.0 µm ont été choisis pour raffiner la zone 

de la tôle où les fissures apparaissent.  

Pour le même déplacement de poinçon ( 0.73U  mm), nous montrons les isovaleurs de 
l'endommagement micromorphique de la Figure 5.5. Pour les deux configurations M2 et M3, 
l'endommagement non local est plus élevé à l'extrémité de la fissure et atteint une valeur maximale 
de 0.2. La largeur de la bande de localisation correspondant à l’endommagement non locale reste 
également identique. Pour la configuration M1, l'évolution du gradient de l'endommagement non 
local n'est pas plus claire mais la largeur de la bande de localisation située dans la tôle entre 
l'extrémité de la fissure et le congé du poinçon semble avoir la même forme que les deux autres 
configurations M2 et M3. 

Enfin, la courbe F u prédite par le modèle micromorphique donne la même valeur de 

déplacement à rupture 0.9U mm comme indiquée sur la figure 5.6. Cependant, nous observons 
une légère différence entre les trois réponses numériques et les résultats expérimentaux dans la 
phase de l’adoucissement de la Figure 5.7. Cette différence peut être expliquée par la nécessité 
d'introduire une variable micromorphique associée à l’écrouissage isotrope afin d'améliorer la 
régularisation à ce stade. 
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min 3.0damx m   

 

min 6.0damx m   
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min 9.0damx m   

 

Figure 5.5. Isovaleurs de l’endommagement micromorphique pour un déplacement du poinçon   
0.73U  mm 

  

Figure 5.6. Réponses globales numériques et expérimentale de découpage pour les trois tailles de maillage  
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6. Conclusions générales  

Ce travail a été consacré à une formulation non locale d'un modèle de comportement 

élastoplastique à l’écrouissage isotrope et cinématique, associés à un découlement induit par la 

présence de l’endommagement ductile isotrope. Dans le cadre des milieux généralisés, la théorie 

micromorphique a été appliquée en supposant que l’endommagement ductile isotrope et 

l’écrouissage isotrope sont les deux principaux phénomènes micromorphiques. En conséquence, 

deux variables cinématiques micromorphiques supplémentaires, d  et r ont enrichi l'espace des 

degrés de liberté du PVIL. 

Dans le deuxième chapitre, les aspects numériques du PVIL liés au mouvement du solide 

micromorphique, sous un chemin de chargement donné ont été présentés. Les équations principales 

qui définissent le PVIL ont d'abord été données et ensuite trois formes faiblement couplées et 

fortement non linéaires ont été obtenues. La discrétisation temporelle et spatiale (par différences et 

éléments finis respectivement) est également discutée suivie d’un schéma explicite de résolution 

globale dynamique. Finalement, une brève représentation des aspects techniques a été décrite, 

concernant: 

 l'implémentation des éléments finis et du modèle de comportement dans Abaqus®/Explicit en 

utilisant la routine VUEL; 

 la méthodologie de remaillage adaptatif 2D. 

Dans le troisième chapitre, une étude paramétrique est réalisée sur le modèle pour 

l’endommagement isotrope micromorphique et pour l’écrouissage isotrope micromorphique. Les 

résultats obtenus par cette étude paramétrique ont montré que: 

 La présence de l’endommagement micromorphique est nécessaire et suffisante pour 
régulariser l'IBVP, contrairement à l’écrouissage isotrope micromorphique;  

 Le modèle à l'endommagement micromorphique peut donner des solutions indépendantes 
du maillage sous les conditions suivantes: 
 la taille de la longueur interne choisie doit être considérablement plus grande que la 

taille des éléments ( )
d

h , et 

 Le choix le plus approprié des modules micromorphiques va dépendre des valeurs  de H

et gH qui doivent être restreintes dans un intervalle de "valeur intermédiaire", afin 
qu'elles ne soient ni trop faibles, pour récupérer les solutions locales, ni trop élevées 
sinon l'effet de l’endommagement micromorphique sera excessivement fort et va 
dissimuler l'apparition de rupture malgré des grands déplacements. 
 

Dans le quatrième chapitre, les principales étapes pour l'identification des paramètres de 

matériaux ont été citées concernant l'élasticité, la plasticité et l’endommagement local. Par la suite, 

une méthodologie numérique a été proposée pour l’identification des valeurs des longueurs internes 

micromorphiques, liées à l’endommagement micromorphique dû à la largeur des bandes de 

cisaillement qui apparaissent lors de la striction localisée. Et par la suite une comparaison avec les 

largeurs expérimentales obtenues par les mesures ESPI, a permis de valider la précision de ce 

premier effort d'identification. 

Finalement, le cinquième chapitre a été consacré à deux applications en 2D, un essai de pliage et 

une opération de découpage, montrant l'efficacité et les capacités prédictives d'un modèle à 

l’endommagement micromorphique. 
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En conclusion, ce travail a ouvert un nouveau champ d'investigation sur la formulation des 

modèles de comportement micromorphiques non locaux. A propos du programme ANR 

"Micromorfing", de nombreuses questions ouvertes concernant les aspects théoriques, numériques 

et expérimentaux se posent, dont l'approfondissement est essentiel. Tous ces aspects sont soit en 

cours de développement dans le cadre du programme ANR, soit pris en compte en tant que priorités 

scientifiques de l'équipe «Formage Virtuel» de LASMIS. 
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