
HAL Id: tel-02974918
https://theses.hal.science/tel-02974918

Submitted on 22 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Machine Learning for Financial Products
Recommendation

Baptiste Barreau

To cite this version:
Baptiste Barreau. Machine Learning for Financial Products Recommendation. Computational Engi-
neering, Finance, and Science [cs.CE]. Université Paris-Saclay, 2020. English. �NNT : 2020UPAST010�.
�tel-02974918�

https://theses.hal.science/tel-02974918
https://hal.archives-ouvertes.fr

Machine Learning for Financial
Products Recommendation

Apprentissage Statistique pour la Recommandation

de Produits Financiers

Thèse de doctorat de l'université Paris-Saclay

École doctorale n°573
Interfaces : Approches interdisciplinaires, fondements, applications et

innovation
Spécialité de doctorat : Mathématiques appliquées

Unité de recherche : Université Paris-Saclay, CentraleSupélec, Mathématiques et
Informatique pour la Complexité et les Systèmes, 91190, Gif-sur-Yvette, France.

Référent : CentraleSupélec

Thèse présentée et soutenue à Gif-sur-Yvette, le 15
septembre 2020, par

 Baptiste BARREAU

Composition du Jury

Michael BENZAQUEN
Professeur, École Polytechnique Président

Charles-Albert LEHALLE
Head of Data analytics, Capital Fund Management, HDR Rapporteur & Examinateur

Elsa NEGRE
Maître de conférences, Université Paris-Dauphine, HDR Rapporteur & Examinatrice

Eduardo ABI JABER
Maître de conférences, Université Paris 1 Examinateur

Sylvain ARLOT
Professeur, Université Paris-Sud Examinateur

Damien CHALLET
Professeur, CentraleSupélec Directeur de thèse

Sarah LEMLER
Maître de conférences, CentraleSupélec Co-Directrice de thèse

Frédéric ABERGEL
Professeur, BNP Paribas Asset Management Invité

Laurent CARLIER
Head of Data & AI Lab, BNPP CIB Global Markets Invité

 Th
ès

e
de

 d
oc

to
ra

t
N

N
T

: 2
02

0U
PA

ST
01

0

Résumé

L’anticipation des besoins des clients est cruciale pour toute entreprise — c’est particulièrement
vrai des banques d’investissement telles que BNP Paribas Corporate and Institutional Banking
au vu de leur rôle dans les marchés financiers. Cette thèse s’intéresse au problème de la pré-
diction des intérêts futurs des clients sur les marchés financiers, et met plus particulièrement
l’accent sur le développement d’algorithmes ad hoc conçus pour résoudre des problématiques
spécifiques au monde financier.

Ce manuscrit se compose de cinq chapitres, répartis comme suit:

- Le chapitre 1 expose le problème de la prédiction des intérêts futurs des clients sur les
marchés financiers. Le but de ce chapitre est de fournir aux lecteurs toutes les clés néces-
saires à la bonne compréhension du reste de cette thèse. Ces clés sont divisées en trois
parties: une mise en lumière des jeux de données à notre disposition pour la résolution du
problème de prédiction des intérêts futurs et de leurs caractéristiques, une vue d’ensemble,
non exhaustive, des algorithmes pouvant être utilisés pour la résolution de ce problème,
et la mise au point de métriques permettant d’évaluer la performance de ces algorithmes
sur nos jeux de données. Ce chapitre se clôt sur les défis que l’on peut rencontrer lors
de la conception d’algorithmes permettant de résoudre le problème de la prédiction des
intérêts futurs en finance, défis qui seront, en partie, résolus dans les chapitres suivants;

- Le chapitre 2 compare une partie des algorithmes introduits dans le chapitre 1 sur un jeu
de données provenant de BNP Paribas CIB, et met en avant les di�cultés rencontrées pour
la comparaison d’algorithmes de nature di�érente sur un même jeu de données, ainsi que
quelques pistes permettant de surmonter ces di�cultés. Ce comparatif met en pratique
des algorithmes de recommandation classiques uniquement envisagés d’un point de vue
théorique au chapitre précédent, et permet d’acquérir une compréhension plus fine des
di�érentes métriques introduites au chapitre 1 au travers de l’analyse des résultats de ces
algorithmes;

- Le chapitre 3 introduit un nouvel algorithme, Experts Network, i.e., réseau d’experts,
conçu pour résoudre le problème de l’hétérogénéité de comportement des investisseurs
d’un marché donné au travers d’une architecture de réseau de neurones originale, inspirée
de la recherche sur les mélanges d’experts. Dans ce chapitre, cette nouvelle méthodologie
est utilisée sur trois jeux de données distincts: un jeu de données synthétique, un jeu de
données en libre accès, et un jeu de données provenant de BNP Paribas CIB. Ce chapitre
présente aussi en plus grand détail la genèse de l’algorithme et fournit des pistes pour
l’améliorer;

- Le chapitre 4 introduit lui aussi un nouvel algorithme, appelé History-augmented collabora-
tive filtering, i.e., filtrage collaboratif augmenté par historiques, qui proposes d’augmenter
les approches de factorisation matricielle classiques à l’aide des historiques d’interaction

i

des clients et produits considérés. Ce chapitre poursuit l’étude du jeu de données étudié
au chapitre 2 et étend l’algorithme introduit avec de nombreuses idées. Plus précisément,
ce chapitre adapte l’algorithme de façon à permettre de résoudre le problème du cold
start, i.e., l’incapacité d’un système de recommandation à fournir des prédictions pour de
nouveaux utilisateurs, ainsi qu’un nouveau cas d’application sur lequel cette adaptation
est essayée;

- Le chapitre 5 met en lumière une collection d’idées et d’algorithmes, fructueux ou non,
qui ont été essayés au cours de cette thèse. Ce chapitre se clôt sur un nouvel algorithme
mariant les idées des algorithmes introduits aux chapitres 3 et 4.

La recherche présentée dans cette thèse a été conduite via le programme de thèses CIFRE, en col-
laboration entre le laboratoire MICS de CentraleSupélec et la division Global Markets de BNP
Paribas CIB. Elle a été conduite dans le cadre du mandat de l’équipe Data & AI Lab, une équipe
de science des données faisant partie de la recherche quantitative et dévouée à l’application des
méthodes d’apprentissage statistique aux problématiques des di�érentes équipes de Global Mar-
kets.

Mots-clés. Apprentissage statistique, finance, systèmes de recommandation, clustering su-
pervisé, systèmes de recommandation dépendants du contexte, systèmes de recommandation
dépendants du temps, apprentissage profond, réseaux de neurones.

ii

Abstract

Anticipating clients’ needs is crucial to any business — this is particularly true for corporate
and institutional banks such as BNP Paribas Corporate and Institutional Banking due to their
role in the financial markets. This thesis addresses the problem of future interests prediction in
the financial context and focuses on the development of ad hoc algorithms designed for solving
specific financial challenges.

This manuscript is composed of five chapters:

- Chapter 1 introduces the problem of future interests prediction in the financial world. The
goal of this chapter is to provide the reader with all the keys necessary to understand the
remainder of this thesis. These keys are divided into three parts: a presentation of the
datasets we have at our disposal to solve the future interests prediction problem and their
characteristics, an overview of the candidate algorithms to solve this problem, and the
development of metrics to monitor the performance of these algorithms on our datasets.
This chapter finishes with some of the challenges that we face when designing algorithms
to solve the future interests problem in finance, challenges that will be partly addressed
in the following chapters;

- Chapter 2 proposes a benchmark of some of the algorithms introduced in Chapter 1 on
a real-word dataset from BNP Paribas CIB, along with a development on the di�culties
encountered for comparing di�erent algorithmic approaches on a same dataset and on
ways to tackle them. This benchmark puts in practice classic recommendation algorithms
that were considered on a theoretical point of view in the preceding chapter, and provides
further intuition on the analysis of the metrics introduced in Chapter 1;

- Chapter 3 introduces a new algorithm, called Experts Network, that is designed to solve
the problem of behavioral heterogeneity of investors on a given financial market using a
custom-built neural network architecture inspired from mixture-of-experts research. In
this chapter, the introduced methodology is experimented on three datasets: a synthetic
dataset, an open-source one and a real-world dataset from BNP Paribas CIB. The chapter
provides further insights into the development of the methodology and ways to extend it;

- Chapter 4 also introduces a new algorithm, called History-augmented Collaborative Filter-
ing, that proposes to augment classic matrix factorization approaches with the information
of users and items’ interaction histories. This chapter provides further experiments on the
dataset used in Chapter 2, and extends the presented methodology with various ideas.
Notably, this chapter exposes an adaptation of the methodology to solve the cold-start
problem and applies it to a new dataset;

- Chapter 5 brings to light a collection of ideas and algorithms, successful or not, that
were experimented during the development of this thesis. This chapter finishes on a new

iii

algorithm that blends the methodologies introduced in Chapters 3 and 4.

The research presented in this thesis has been conducted under the French CIFRE Ph.D. pro-
gram, in collaboration between the MICS Laboratory at CentraleSupélec and the Global Mar-
kets division of BNP Paribas CIB. It has been conducted as part of the Data & AI Lab mandate,
a data science team within Quantitative Research devoted to the applications of machine learn-
ing for the support of Global Markets’ business lines.

Keywords. Machine learning, finance, recommender systems, supervised clustering, context-
aware recommender systems, time-aware recommender systems, deep learning, neural net-
works.

iv

Contents

Résumé i

Abstract iii

Acknowledgements 5

1 Recommendations in the financial world 7
1.1 Predicting future interests . 7

1.1.1 Enhancing sales with recommender systems 7
1.1.2 An overview of bonds and options . 9

1.2 Understanding data . 12
1.2.1 Data sources . 12
1.2.2 Exploring the heterogeneity of clients and assets 13

1.3 A non-exhaustive overview of recommender systems 14
1.3.1 Benchmarking algorithms . 16
1.3.2 Content-filtering strategies . 17
1.3.3 Collaborative filtering strategies . 19
1.3.4 Other approaches . 26
1.3.5 The cold-start problem . 27

1.4 Evaluating financial recommender systems . 27
1.4.1 Deriving symmetrized mean average precision 27
1.4.2 A closer look at area under curve metrics 30
1.4.3 Monitoring diversity . 31

1.5 The challenges of the financial world . 32

2 First results on real-world RFQ data 35
2.1 From binary to oriented interests . 35
2.2 A benchmark of classic algorithms . 36

2.2.1 Historical models . 36
2.2.2 Resource redistribution models . 37
2.2.3 Matrix factorization models . 39
2.2.4 Gradient tree-boosting models . 40
2.2.5 Overall benchmark . 41

2.3 Concluding remarks . 42

3 A supervised clustering approach to future interests prediction 43
3.1 Heterogeneous clusters of investors . 44

3.1.1 Translating heterogeneity . 44
3.1.2 Non-universality of investors . 45
3.1.3 Related work . 46

1

3.2 Introducing Experts Network . 47
3.2.1 Architecture of the network . 47
3.2.2 Disambiguation of investors’ experts mapping 48
3.2.3 Helping experts specialize . 49
3.2.4 From gating to classification . 49
3.2.5 Limitations of the approach . 50

3.3 Experiments . 50
3.3.1 Synthetic data . 50
3.3.2 IBEX data . 55
3.3.3 BNPP CIB data . 58

3.4 A collection of unfortunate ideas . 59
3.4.1 About architecture . 59
3.4.2 About regularization . 61
3.4.3 About training . 62

3.5 Further topics in Experts Networks . 63
3.5.1 Boosting ExNets . 63
3.5.2 Towards a new gating strategy . 64

3.6 Concluding remarks . 65

4 Towards time-dependent recommendations 67
4.1 Tackling financial challenges . 67

4.1.1 Context and objectives . 67
4.1.2 Related work . 68

4.2 Enhancing recommendations with histories . 69
4.2.1 Some definitions . 69
4.2.2 Architecture of the network . 70
4.2.3 Optimizing HCF . 70
4.2.4 Going further . 71

4.3 Experiments . 71
4.3.1 Evolution of forward performance with training window size 72
4.3.2 Evolution of forward performance with time 74
4.3.3 Evolution of forward performance with history size 75

4.4 Further topics in history-augmented collaborative filtering 75
4.4.1 Sampling strategies . 76
4.4.2 Evolution of scores with time . 77
4.4.3 Solving cold-start . 78
4.4.4 Application to primary markets of structured products 81

4.5 Concluding remarks . 83

5 Further topics in financial recommender systems 85
5.1 Mapping investors’ behaviors with statistically validated networks 85
5.2 A collection of small enhancements . 89

5.2.1 A focal version of Bayesian Personalized Ranking 89
5.2.2 Validation strategies in non-stationary settings 90
5.2.3 Ensembling with an entropic stacking strategy 91

5.3 First steps towards lead-lag detection . 93
5.3.1 Simulating lead-lag . 94
5.3.2 A trial architecture using attention . 95
5.3.3 First experimental results . 96

5.4 Towards history-augmented experts . 98

2

Conclusions and perspectives 101

Conclusions et perspectives 103

Bibliography 105

List of Figures 115

List of Tables 117

Glossary 119

A Basics of deep learning 121
A.1 General principles of neural networks . 121

A.1.1 Perceptrons . 121
A.1.2 Multi-layer perceptrons . 123
A.1.3 Designing deep neural networks . 124

A.2 Stochastic gradient descent . 125
A.2.1 Defining the optimization problem . 125
A.2.2 Deriving the SGD algorithm . 126
A.2.3 A couple variations of SGD . 127

A.3 Backpropagation algorithm . 128
A.4 Convolutional neural networks . 130

3

4

Acknowledgements

I would like to express my gratitude to Frédéric Abergel and Laurent Carlier for providing
me with the opportunity to conduct this Ph.D. thesis within BNP Paribas Corporate and
Institutional Banking. Thanks to Frédéric Abergel for accepting to be my academic Ph.D.
supervisor, and for his initial and precious guidance on my research. Many thanks to Damien
Challet, who took over the supervision of my thesis for the last two years and who, thanks to
his academic support and his deep and thoughtful questions, fueled me with the inspiration I
required to pursue this work. Thanks also to Sarah Lemler for following my work, even remotely,
and for her help when I needed it.

I would also like to thank the fantastic Global Markets Data & AI Lab team as a whole and, more
particularly, its Parisian division for their welcome and all the good times we spent together
during these past three years. Many thanks to Laurent Carlier for being my industrial Ph.D.
supervisor and our countless and fruitful discussions on our research ideas. Thanks to Julien
Dinh for following my work and examining it with his knowledgeable scrutiny. Special thanks
to William Benhaim, François-Hubert Dupuy, Amine Amiroune, the more recent Jeremi Assael
and Alexandre Philbert, and our two graduate program rotations, Victor Geo�roy and Jean-
Charles Nigretto, for our fruitful discussions and our pub crawls that, without doubt, fueled
the creativity required for this work. Many thanks also to the interns Lola Moisset, Dan Sfedj,
Camille Garcin, and Yassine Lahna, with whom I had the chance to work on topics related to the
research presented in this manuscript and deepen my knowledge of the presented subjects.

I am sincerely grateful to my family as a whole and more particularly to my parents, Annick
and Bruno Barreau, for their love and support during my entire academic journey, which ends
with this work. My deepest thanks go to the one who shares my life, Camille Ra�n, for her
unconditional support and her heartwarming love, in both good and bad times.

5

6

Chapter 1

Recommendations in the financial
world

Mathematics have made their appearance in corporate and institutional banks in the 90s with
the development of quantitative research teams. Quantitative researchers, a.k.a. quants, are
devoted to applying all tools of mathematics to help the traders and salespeople, a.k.a. sales,
of the bank. Quants have historically focused on developing tools and innovations for the use of
traders — the recent advances of machine learning, however, have allowed them to provide new
kinds of solutions for the previously overlooked salespeople. Notably, deep learning methodolo-
gies allow assisting sales with their daily tasks in many ways, from automating repetitive tasks
by leveraging natural language processing tools to providing decision-support algorithms such
as recommender systems. This thesis provides an in-depth exploration of recommender systems,
their application to the context of a corporate and investment bank, and how we can improve
models from literature to better suit the characteristics of the financial world.

This chapter introduces the context and research question examined in this thesis (Section 1.1),
elaborates on and explores the data we use (Section 1.2), gives an overview of recommender
systems (Section 1.3), sets the evaluation strategy that we use in all further experiments (Section
1.4) and provides insights into the challenges we face in a financial context (Section 1.5).

1.1 Predicting future interests
This section introduces the financial context, defines the recommendation problem that we want
to solve, and provides first insights into the datasets we study.

1.1.1 Enhancing sales with recommender systems
BNP Paribas CIB is a market maker. The second Markets in Financial Instruments Directive,
MiFID II, a directive of the European Commission for the regulation of financial markets, defines
a market maker as "a person who holds himself out on the financial markets on a continuous basis
as being willing to deal on own account by buying and selling financial instruments against that
person’s proprietary capital at prices defined by that person," see (The European Commission,
2014, Article 4-7).

Market makers play the role of liquidity providers in the financial markets by quoting both buy
and sell prices for many di�erent financial assets. From the perspective of a market maker, a.k.a.
the sell side, we call bid the buy price and ask the sell price, with pbid < pask. Consequently, on
the buy side, a client has to pay the ask price to buy a given product. The business of a market

7

maker is driven by the bid-ask spread, i.e., the di�erence between bid and ask prices — the
role of a market maker is therefore not to invest in the financial markets but to o�er investors
the opportunity to do so. The perfect situation happens when the market maker directly finds
buyers and sellers for the same financial product at the same time. However, this ideal case is
not common, and the bank has to su�er risk from holding products before they are bought by
an investor or from stocking products to cope with demand. These assets, called axes, need to
be carefully managed to minimize the risk to which the bank is exposed. This management is
part of the role of traders and sales, and has notably been studied in Guéant et al. (2013).

Sales teams are the interface between the bank and its clients. When a client wants to buy or sell
a financial asset, she may call a sales from a given bank, or directly interact with market makers
on an electronic platform such as the Bloomberg Dealer-to-Client (D2C) one (Bloomberg, 2020).
It can happen that a client does not want to buy/sell a given product at the moment of the
sales’ call, but shows interest in it. Sales can then register an indication of interest (IOI) in
BNPP CIB systems, a piece of valuable information for further commercial discussions, and for
the prediction of future interests. On D2C platforms, clients can request prices from market
makers in two distinct processes called request for quotation (RFQ) and request for market
(RFM). RFQs are directed, meaning that these requests are specifically made for either a buy
or sell direction, whereas RFMs are not. RFMs can be seen as more advantageous to the client,
as she provides less information about her intent in this process. However, for less liquid assets
such as bonds, the common practice is to perform RFQs. Market makers continuously stream
bid and ask prices for many assets on D2C platforms. When a client is interested in a given
product, she can select n providers and send them an RFQ — providers then respond with
their final price, and the client chooses to buy or sell the requested product with either one of
these n providers, or do nothing. Only market makers among these n receive information about
the client’s final decision. A typical value of n is 6, such as for the Bloomberg D2C platform.
Fermanian et al. (2016) provide an extensive study along with a modeling of the RFQ process.
Responding to calls and requests is the core of a sales’ work. But sales can also directly contact
clients and suggest relevant trade ideas to them, e.g., assets on which the bank is axed and for
which it might o�er a better price than its competitors. This proactive behavior is particularly
important for the bank as it helps manage financial inventories and better serve the bank’s
clients when their needs are correctly anticipated.

Correctly anticipating clients’ needs and interests, materialized by the requests they perform, is
therefore of particular interest to the bank. Recommender systems, defined as "an information-
filtering technique used to present the items of information (video, music, books, images, Web-
sites, etc.) that may be of interest to the user" (Negre, 2015), could help us better anticipate
these requests and support the proactive behavior of sales by allowing them to navigate the
complexity of markets more easily. Consequently, the research problem that we try to solve in
this thesis is the following:

At a given date, which investor is interested in buying and/or selling a given
financial asset?

This thesis aims at designing algorithms that try to solve this open question while being well-
suited to the specificities of the financial world, further examined in Section 1.5.

8

1.1.2 An overview of bonds and options
The mandate of the Data & AI Lab covers multiple asset classes, from bonds to options on
equity or foreign exchange market, as known as FX. In-depth knowledge of these financial
products is not required to understand the algorithms that are developed in this thesis. However,
it is essential to know what these products and their characteristics are to design relevant
methodologies. This section consequently provides an overview of the financial assets that will
be covered in this thesis. It does not require prior knowledge of mathematical finance, and
only aims at providing insights into the main characteristics and properties of these assets. An
in-depth study of financial assets can be found in Hull (2014).

Bonds

It is possible to leverage financial markets to issue debt in the form of bonds. Fabozzi (2012,
Chapter 1) defines a bond as "a debt instrument requiring the issuer to repay to the lender the
amount borrowed plus interest over a specified period of time." There are three main types of
bonds, defined by their issuer — municipal bonds, government bonds, and corporate bonds.
The definitions and examples provided in this section are freely inspired by Hull (2014, Chap-
ter 4).

Bonds, as other financial assets, are issued on primary markets, where investors can buy them
for a limited period of time. In the context of equities, initial public o�erings (IPO) are an
example of a primary market. The issuance date of a bond corresponds to its entry on the
secondary market. On the secondary market, investors can freely trade bonds before their
maturity date, .i.e., their expiry date. Consequently, bonds have a market price determined by
bid and ask, and usual features related to its evolution can be computed.

Figure 1.1: Cash flows of a bond.

The interest rate of a bond is usually defined annually. Interests are either paid periodically as
coupons or in full at maturity, in which case the bond is called a zero-coupon. The cash flows
of a bond are summed up in Fig. 1.1. Classically, coupons are paid on a semiannual basis.
Bonds are expressed in percent, i.e., the value of a bond at issuance is considered to be 100.
For example, the value of a semiannual coupon bond with an interest rate of 10% a year after
issuance is 100 ú 1.05 ú 1.05 = 110.25. If we consider a compounding of m times per annum, the
terminal value of an investment of 100 at rate R after n years is given by 100 ú (1 + R/m)mn.
Considering the m æ Œ limit, it can be shown that the terminal value converges to 100 ú e

Rn.
This is known as continuous compounding and is used for further computations.

The theoretical price of a bond is defined as the present value of the future cash flows received
by the owner of the bond. Future cash flows are discounted using the Treasury zero-coupon
rates maturing at the time of these cash flows, as Treasury bonds are considered risk-free.
For instance, in the case of a 2-year bond with a 6% rate delivering semiannual coupons, the

9

theoretical price of the bond pt, expressed in basis points, is defined as pt = 3e
≠T0.5ú0.5 +

3e
≠T1.ú1. +3e

≠T1.5ú1.5 +103e
≠T2.ú2., where Tn is the n-year Treasury zero-coupon rate. The yield

y of a bond is defined as the single discount rate that equals the theoretical bond price, i.e., in
basis points, pt = 3e

≠yú0.5 +3e
≠yú1. +3e

≠yú1.5 +103e
≠yú2.. The yield can be found using iterative

methods such as Newton-Raphson. High yields can come from either high coupons or a low
theoretical bond value — its interpretation is consequently subject to caution. It is, however,
a useful quantity to understand bonds, and yield curves representing yield as a function of
maturity for zero-coupon government bonds are often used to analyze rates markets. The bond
spread corresponds to the di�erence, expressed in basis points, between the bond yield and the
zero-coupon rate of a risk-free bond of the same maturity.

Another useful quantity is the duration of a bond. Noting ci, i œ [[1; n]] the cash flow at time
ti, the theoretical bond price can be written pt =

q
n

i=1 cie
≠yti , where y denotes the yield. The

duration of the bond is then defined as

Dt =
q

n

i=1 ticie
≠yti

pt

=
nÿ

i=1
ti

C
cie

≠yti

pt

D

. (1.1)

Duration can be understood as a weighted average of payment times with a weight corresponding
to the proportion of the bond’s total present value provided by the i-th cash flow. It consequently
measures how long on average an investor has to wait before receiving payments.

Finally, bonds also receive a credit rating representing the credit worthiness of their issuer.
Credit rating agencies such as Moody’s or Standard & Poors publish them regularly for both
corporate and governmental bonds. As they are meant to indicate the likelihood that the debt
will be fully repaid, investors use such ratings to guide their investment choices.

More information about interest rates in general and bonds in particular can be found in Hull
(2014, Chapter 4). In this work, we cover corporate and G10 bonds, i.e., governmental bonds
from countries of the G10 group (Germany, Belgium, Canada, United States, France, Italy,
Japan, Netherlands, United Kingdom, Sweden, Switzerland).

Options

Hull (2014, Chapter 10) defines options as financial contracts giving holders the right to buy
or sell an underlying asset by (or at) a certain date for a specific price. The right to buy an
underlying asset is named a call option, and the right to sell is named a put option. The price
at which the underlying asset can be bought/sold is called the strike price. The date at which
the underlying asset can be bought/sold is called the maturity date, as in bonds. If the option
allows exercising this right at any time before maturity, it is said to be American. If the right
can only be exercised at maturity, the option is said to be European. American options are the
most popular ones, but we consider here European options for ease of analysis. Investors have
to pay a price to acquire an option, regardless of the exercise of the provided right.

Options can be bought or sold, and can even be traded. Buyers of options are said to have long
positions, and sellers are said to have short positions. Sellers are also said to write the option.
Figure 1.2 shows the four di�erent cases possible and their associated payo�s.

To understand the interest of options, let us take the example of an investor buying a European
call option for 100 shares of a given stock with a strike price of 50Ä at a price of 5Ä per share.
Assume the price at the moment of the contract was 48Ä. If at maturity, the price of the stock
is 57Ä, the investor exercises its right to buy 100 shares of the stock at 50Ä and directly sells
them. She makes a net profit of 700-500=200Ä. If the investor would have invested the same
amount in the stock directly, she would have made a profit of 9Ä per share and could have

10

Figure 1.2: The four di�erent options payo� structures. (·)+ denotes here max (·, 0).

bought only 4 of them, making a net profit of 36Ä. Options are leverage instruments: for the
same amount of money invested, they provide the opportunity to obtain far better returns at
the cost of higher risk. We see in this example that at prices below 55Ä, the options investor
would start losing money, whereas the buyer of the shares would still make a profit.

In the case of equity options, Hull (2014, Chapter 11) enumerates six factors a�ecting the price
of an option:

- the current price of the equity, noted S0;
- the strike price K;
- the time to maturity T ;
- the volatility of the underlying ‡;
- the risk-free interest rate r;
- the dividends D expected to be paid, if any.

Using the no-arbitrage principle stating that there are no risk-free investments insuring strictly
positive returns, an analysis of these factors allows deriving lower and upper bounds on the
option price (Hull, 2014, Chapter 11). The arbitrage analysis allows as well to uncover the
call-put parity. This property links call and put prices by the formula:

Ccall + Ke
≠rT + D = Cput + S0, (1.2)

considering that stocks with no dividends have D = 0.

The price of an option can be derived analytically using stochastic calculus. If we assume,
among other hypotheses that one can find in Hull (2014, Chapter 15), that stock prices follow
a geometric Brownian motion dSt = St (µdt + ‡dBt) where µ is the drift and ‡ the volatility,
we can derive the Black-Scholes equation (Black and Scholes, 1973):

ˆC

ˆt
+ rS

ˆC

ˆS
+ 1

2‡
2
S

2 ˆ
2
C

ˆS2 ≠ rC = 0, (1.3)

11

where C is the price of the (European) option, S the price of the underlying, ‡ the volatility of
the underlying and r the risk-free rate. Notably, this equation links the price of the option to
the volatility of the underlying. Using the bounds found in the arbitrage analysis, the equation
can be used both to derive the price of an option using the historical volatility computed from
past prices of its underlying and to determine the implied volatility from the option current
price. Implied volatility is an indicator that is used for markets analysis, and can serve as input
in more complex models.

Moreover, calls and puts can be combined in option strategies to form new payo� structures.
Classic combinations include the following:

- Call spread. A call spread is the combination of a long call at a given strike and a short
call at a higher strike. The payo� corresponds to the one of a call, with a cap on the
maximum profit possible. Call spreads allow benefiting from a moderate increase in price,
at a lower cost than a classic call option.

- Put spread. A put spread is the combination of a short put at a given strike and a long
put at a higher strike. The payo� corresponds to the one of a put, with a cap on the
maximum profit possible. Put spreads allow benefiting from a moderate decrease in price,
at a lower cost than a classic put option.

- Straddle. Buying a straddle corresponds to buying a call and a put with the same strike
prices and maturities on the same underlying. This position is used in high volatility
situations when an investor reckons that the underlying price might evolve a lot in either
direction.

- Strangle. Buying a strangle corresponds to buying a call and a put with the maturities
on the same underlying, but with di�erent strike prices. This position is used in the same
situation as a straddle, but can be bought at a lower price.

1.2 Understanding data
We introduced the global characteristics of the RFQ datasets that are studied in this thesis in
Section 1.1. However, an in-depth exploration of the data is required to understand the chal-
lenges that lie within data: from this exploration follow insights that can guide the construction
of an algorithm tailored to face these challenges. Consequently, this section explains the data
sources at hand and provides an exploratory analysis of a particularly important characteristic
of the datasets we study in this thesis.

1.2.1 Data sources
To solve the problem exposed in Section 1.1, we have various sources of data at our disposal.
For all the asset classes that we may consider, we count three data categories.

- Client-related data. When an investor becomes a BNPP CIB client, she fills Know
Your Customer (KYC) information that can be used in our models, such as her sector
of activity, her region, . . . , i.e., a set of categorical features. Due to their size and/or the
nature of their business, some clients may also have to periodically report the content of
their portfolio. This data is particularly valuable, as an investor cannot sell an asset she
does not have. Consequently, knowing their portfolio allows for more accurate predictions
— in particular, in the sell direction.

- Asset-related data. Financial products are all uniquely identified in the markets by their
International Securities Identification Number (ISIN, 2020). Depending on the nature of
the asset, categorical features can be derived to describe it. For instance, bonds can
be described through their issuer, also known as the ticker of the bond, the sector of

12

activity of the latter, the currency in which it was issued, its issuance and maturity dates,
. . . Market data of the assets can also be extracted, i.e., numerical features such as the
price, the volatility or other useful financial indicators. Usually, these features are recorded
on a daily basis at their close value, i.e., their value at the end of the trading day. For
options, both market data for the option and its underlying can be extracted.

- Trade-related data. The most important data for recommender systems is the trade-
related one. This data corresponds to all RFQs, RFMs, and IOIs that were gathered by
sales teams (see Section 1.1.1). These requests and indications of interest provide us with
the raw interest signal of a client for a given product. As the final decision following a
request is not always known, we use the fact that a client made a request on a particular
product as a positive event of interest for that product.

These di�erent sources are brought together in various ways depending on the algorithms that
we use, as exposed in Section 1.3 and in the next chapters of this thesis.

1.2.2 Exploring the heterogeneity of clients and assets
An essential characteristic of our RFQ datasets, common to many fields of application, is hetero-
geneity. Heterogeneity of activity is deeply embedded in our financial datasets and appears on
both the client and asset sides. We explore here the case of the corporate bonds RFQ database,
studying a portion ranging from 07/01/2017 to 03/01/2020. In this period, we count roughly
4000 clients and 30000 bonds. Of these 4000 clients, about 23% regularly disclose the content of
their bond portfolios — this information is consequently di�cult to use in a model performing
predictions for all clients.

Let us begin with the heterogeneity of clients. A glimpse at heterogeneity can be taken by
looking at a single client: the most active client accounted for 5% of all performed RFQs alone,
and up to 6.4% when taking into account all its subsidiaries. The heterogeneity of clients can
be further explored with Fig. 1.3. In Fig. 1.3a, we see that 80% of the accounted RFQs were
made by less than 10% of the client pool. Most of BNPP CIB business is consequently done
with a small portion of its client reach: a recommender system could help better serve this
portion of BNPP clients by providing sales with o�ers tailored to their needs. The histogram
shown in Fig. 1.3b provides another visualization of this result. We see here that a few clients
request prices for thousands of unique bonds, whereas over the same period, some clients only
request prices for a handful of bonds. Clients are consequently profoundly heterogeneous. Note
however that this heterogeneity, to some extent, might only be perceived as such as we do not
observe the complete activity of our clients and only what they do on platforms on which BNPP
CIB is active.

We now give a closer look at the heterogeneity of bonds. In particular, here, the most active
bond accounted for 0.3% of all RFQs, and up to 1% when aggregating all bonds emitted by
the same issuer. A global look at these statistics is presented in Fig. 1.4a. To avoid bias
from expiring products, we only account in this graph for bonds with issue and maturity dates
strictly outside of the considered period. We see here that 80% of the RFQs were done on more
than 30% of the considered assets. The heterogeneity of bonds is consequently less pronounced
that the heterogeneity of clients. There are however more pronounced popularity e�ects, as
can be seen in Fig. 1.4b. Here, we see that only a small portion of bonds are shared among
the client pool. Most bonds can be considered as niche, and are only traded by a handful
of clients. Consequently, even though bonds are, on average, more active than clients, their
relative popularities reveal their heterogeneity.

In Fig. 1.3 and 1.4, (b) graphs both show the sparsity of this dataset. Most clients only
trade a handful of bonds, and most bonds are only traded by a handful of clients. It can

13

(a) (b)

Figure 1.3: (a) Cumulative proportion of clients as a function of the cumulative proportion of
RFQs, with clients ordered in descending order of activity. We see that 80% of RFQs account for
less than 10% of the clients. (b) Histogram representing the number of unique assets of interest
to a particular client. The x-axis shows the number of clients in the bucket corresponding to a
specific number of unique assets. A few clients show interest in more than a thousand bonds,
whereas the largest buckets show interest for a couple ones only.

consequently become di�cult to build recommender systems able to propose the entire asset
pool to a given client, and reciprocally. This phenomenon is referred to in the literature as the
long tail problem (Park and Tuzhilin, 2008), which refers to the fact that for most items, very
few activity is recorded. Park and Tuzhilin (2008) proposes a way to tackle this by splitting the
item pool in a head and tail parts and train models on each of these parts, the tail model being
trained on clustered items. More broadly, the long tail is tackled by systems that favor diverse
recommendations, i.e., recommendations that are made outside of the usual clients’ patterns.
Diversity is, however, hard to assess: as recommendations outside of clients’ patterns cannot be
truly assessed on historical data, one has to monitor their e�ciency with A/B testing. Section
1.4 introduces metrics that give a first insight into the diversity of a model without having to
fall back on live monitoring.

1.3 A non-exhaustive overview of recommender systems

For the remainder of this thesis, the terms clients and users (resp. financial products/assets
and items) are used interchangeably to match the vocabulary used in recommender systems
literature.

Digitalization brought us in a world where more and more of our decisions are taken in spite of in-
formation overload. Recall that Negre (2015) defines recommender systems as "an information-
filtering technique used to present the items of information (video, music, books, images, Web-
sites, etc.) that may be of interest to the user." Recommender systems have consequently gained
much traction as they help users navigating problems overcrowded with potential choices. They
can be found almost everywhere, from booking a hotel room (e.g., with Booking.com (Bernardi
et al., 2015)), a flat (e.g., with AirBnB (Haldar et al., 2019)), shopping online (e.g., on Ama-
zon.com (Sorokina and Cantu-Paz, 2016)). . . to watching online videos (e.g., on YouTube (Cov-
ington et al., 2016)) or films (e.g., on Netflix (Koren, 2009a)). This section provides a non-
exhaustive overview of recommender systems to lay the ground on which we build algorithms
well-suited to the challenges of the financial world.

Recommender systems are built from the feedback that users provide about their items of

14

(a) (b)

Figure 1.4: (a) Cumulative proportion of assets as a function of the cumulative proportion of
RFQs, with assets ordered in descending order of activity. To avoid bias from expiring products,
we only consider bonds alive in the whole period studied in this graph. We see that 80% of
RFQs account for roughly 30% of the assets. (b) Histogram representing the number of unique
clients interested in a particular asset. The x-axis shows the number of assets in the bucket
corresponding to a specific number of unique clients. We see that a few assets are traded by
lots of clients, whereas lots of assets were of interest for a small portion of the clients pool only.

interest. Users can provide two sorts of feedback depending on the considered application:
either an explicit or an implicit one. Explicit feedback corresponds to the ratings users give
to items, such as a "thumbs up" on YouTube or a ten-star rating on IMDb. Implicit feedback
corresponds to any feedback that is not directly expressed by users, such as a purchase history,
a browsing history, clicks on links. . . : the interest of the user for the item is implied from her
behavior. As explained in Section 1.1.1, our goal is to predict the future RFQs of BNPP CIB
clients, given the RFQs they made and the RFQs made by everyone else. RFQs are also an
example of implicit feedback: requesting the price of a product does not say anything about the
client’s appeal for that product, or what the client ultimately chooses to do with it. As implicit
feedback is our setting of interest in this thesis, we focus on it from now on.

In the implicit feedback setting, recommender systems can be understood as mappings f :
t, u, i ≠æ x

t

ui
, where t is a given time-step, u œ U is a given client, i œ I is a given product

and x
t

ui
represents the interest of client u for product i at t. In most applications, the interest’s

dependence on time is ignored. x
t

ui
is usually interpreted either as a probability of interest or as

a score of interest, depending on the chosen mapping f . For a given client u, at a given t, the
corresponding recommendation list is the list of all products ranked by their score in descending
order, i.e., as

1
x

t

u(|I|≠i), i œ I

2
with (·) the order statistics. For some real-world applications,

e.g., YouTube (Covington et al., 2016), the cardinality of I prevents from computing scores for
all i œ I and workarounds are used to compute scores for a relevant portion of items only. In
our setting of interest, the cardinalities of both U and I allow for computing the scores of all
(client, product) pairs — we consequently focus on finding well-suited f mappings.

There are two recommender systems paradigms (Koren et al., 2009):

- Content-filtering. This approach characterizes clients and/or products through profiles,
which are then used to match clients with relevant products and conversely. A classical
formulation involves learning a mapping fu : t, i ≠æ x

t

ui
for each u œ U , with classic

supervised learning approaches where the items’ profiles are used as inputs to the fu’s.
Conversely, mappings could depend on items and use as inputs users’ profiles. An al-

15

ternative approach is to use a global mapping f : t, u, i ≠æ x
t

ui
using as input, e.g., a

concatenation of u and i profiles at t, and features depending on both u and i.
- Collaborative filtering. The term, coined by Goldberg et al. (1992) for Tapestry, the

first recommender system, refers to algorithms making predictions about a given client
using the knowledge of what all other clients have been doing. According to Koren et al.
(2009), the two main areas of collaborative filtering are neighborhood methods and latent
factor models. Neighborhood methods compute weighted averages of the rating vectors
of users (resp. items) to find missing (user, item) ratings, e.g., using user-user (resp.
item-item) similarities as weights. Latent factor models characterize users and items with
vector representations of given dimension d inferred from observed ratings and use these
vectors to compute missing (user, item) ratings. These two approaches can be brought
together, e.g., as in (Koren, 2008).

Content- and collaborative filtering are not contradictory and can be brought together, e.g., as
in Basilico and Hofmann (2004). Learning latent representations of users and items, as is done in
latent factor models, has advantages beyond inferring missing ratings. These representations can
be used a posteriori for clustering, visualization of user-user, item-item or user-item relationships
and their evolution with time,. . . These applications of latent factors are particularly useful for
business, e.g., to understand how BNP Paribas CIB clients relate to each other and consequently
reorganize the way sales operate. For that reason, the collaborative filtering algorithms we study
here are mainly latent factor models.

We now examine how baseline recommender systems can be obtained, develop on the content
filtering approach with a specific formulation of the problem as a classification one, expand on
some collaborative filtering algorithms and provide insights into other approaches for recom-
mender systems.

1.3.1 Benchmarking algorithms
Baselines are algorithms that serve as reference for determining the performance of a proposal
algorithm. Consequently, baselines are crucial for understanding how well an algorithm is doing
on a given problem. In computer vision problems such as the ImageNet challenge (Russakovsky
et al., 2015), the baseline is a human performance score. However, obtaining a human per-
formance baseline is more complicated in recommender systems as the goal is to automate a
task that is inherently not doable by any human: it would require at the very least an in-depth
knowledge of the full corpus of users and items for a human to solve this recommendation
task.

A simple recommender system baseline is the historical one. Using a classical train/test split
of the observed events, a first baseline is given by the mapping fhist : (u, i) ≠æ rui with rui œ N
the number of observed events for the (u, i) couple on the train split. The score can also be
expressed as a frequency of interest, either on the user- or item-side; i.e., on the user-side
as rui/

q
iœI

rui. The historical model can also be improved using the temporal information,
considering that at a given t, closer interests should weigh more in the score. An example of
such mapping is

fhist : (t, u, i) ≠æ
t≠1ÿ

tÕ=1
e

≠⁄(t+1≠t
Õ)

r
t
Õ

ui (1.4)

where r
t
Õ

ui
denotes the number of observed events for the (u, i) couple at t

Õ, and ⁄ is a decay
factor. Note that the sum stops at t ≠ 1 for prediction at t since observed events at t cannot be
taken into account for predicting that time-step. In the following, we mainly use the most simple
instance of baseline where the score of a (u, i) couple is given by their number of interactions
observed in the training split.

16

1.3.2 Content-filtering strategies
We previously defined content filtering algorithms as mapping profiles of users, items, or both
of them to the interest x

t

ui
. The di�culty of this approach lies in the construction of users and

items’ profiles, as they require data sources other than the observation of interactions between
the two. As exposed in Section 1.2, we have at our disposal multiple data sources from which
to build such profiles. Concretely, each of the three sources outlined in Section 1.2.1 leads to a
profile — one can consequently build a user profile, an item profile, and an interaction profile
from the available data.

The profile of a user (resp. item) is built from the numerical and categorical information
available describing her (resp. its) state. Numerical features such as the buy/sell frequency
of a user or the price of an item can be directly used. However, categorical features, e.g.,
the user’s country or the company producing the item, require an encoding for an algorithm
to make use of them. Categories can be encoded in various ways, the most popular ones in
machine learning being one-hot encoding, frequency encoding and target encoding. One-hot
encoding converts a category c œ [[1; K]] to the c-th element ec of the canonical basis of RK ,
ec = (0, . . . , 1, . . . , 0) œ RK , i.e., a zero vector with a 1 in the c-th position. Frequency encoding
converts a category c œ [[1; K]] to its frequency of appearance in the training set. Target encoding
converts a category c œ [[1; K]] to the mean of targets y observed for particular instances of that
category. One-hot encoding is a simple and widespread methodology for dealing with categorical
variables; frequency and target encoding, to the best of our knowledge, could be more qualified
of "tricks of the trade" used by data science competitors on platforms such as Kaggle (Kaggle
Inc., 2020). One-hot encodings are, by essence, sparse and grow the number of features used
by a model by as many categories there are per categorical feature. Deep learning models
usually handle categorical features through embeddings, i.e., trainable latent representations of
a size specifically chosen for each feature. These embeddings are trained along with all other
parameters of the neural networks.

Provided with embeddings of categorical features describing the state of a particular user (resp.
item), a profile of this user (resp. item) can be obtained by the concatenation of the numerical
features and embeddings related to her. These profiles are then used to learn mappings fi

for all i œ I (resp. fu for all u œ U), or can be concatenated to learn a global mapping
f : (t, u, i) ≠æ x

t

ui
. One can also add cross-features depending on both u and i, such as the

frequency at which u buys or sells i. Indeed, in the financial context, it is usual for investors
to re-buy or re-sell in the future products they bought or sold previously — cross-features
describing the activity of a user u on an item i are consequently meaningful. A good practice
for numerical features is to transform them using standard scores, as known as z-scores. A
feature x is turned into a z-score z with z = x≠µ

‡
, where µ and ‡ are the mean and standard

deviation of x, computed using the training split of the data. Z-scores can also be computed on
categories of a given categorical feature, using µc and ‡c for all c œ [[1; K]], provided that we have
enough data for each category to get meaningful means and variances. The distribution of a
feature can vary much with categories: for instance, the buying frequency of a hedge fund is not
the same as the one of a central bank. Using z-scores modulated per category of a categorical
feature consequently helps to make these categories comparable.

In the implicit feedback setting, the recommendation problem can be understood as a classi-
fication task. Provided with a profile, i.e., a set of features x describing a particular (t, u, i)
triplet, we want to predict whether u is interested in i or not at t, i.e., predict a binary target
y œ {0, 1}. If, as mentioned in Section 1.1.1, we want to predict whether u is interested in
buying and/or selling i, the target y can consequently take up to four values corresponding to a
lack of interest, an interest in buying, in selling or in doing both, the last case happening only
when the time-step is large enough to allow for it — the size of the time-step usually depends

17

on the liquidity of the considered asset class, as mentioned in Section 2.2.4. Classification is a
supervised learning problem for which many classic machine learning algorithms can be used.
A classic way to train a classifier is to optimize its cross-entropy loss, defined for a sample x

as

l(x) = ≠
Cÿ

i=1
yi(x) log ŷi(x) ,

a term derived from maximum likelihood where C is the total number of classification classes,
yi(x) = y(x)=i and ŷi(x) the probability of class i outputted by the model for sample x. A
variation of cross-entropy, the focal loss (Lin et al., 2017), can help in cases of severe class
imbalance. Focal loss performs an adaptive, per-sample reweighing of the loss, defined for a
sample x as

lfocal(x) = ≠
Cÿ

i=1
(1 ≠ ŷi(x))“

yi(x) log ŷi(x) , (1.5)

with “ an hyperparameter, usually chosen in the]0; 4] range and depending on the imbalance
ratio, defined in the binary case as the ratio of the number of instances in the majority class
and the ones in the minority class. In imbalance settings, the majority class is easily learnt
by the algorithm and accounts for most of the algorithm loss performance. The (1 ≠ ŷi(x))“

term counterbalances this by disregarding confidently classified samples, and focuses the sum
on "harder-to-learn" ones. Consequently, when the imbalance ratio is high, higher values of “

are favored.

The classifier can take many forms, from logistic regression (Hastie et al., 2009, Chapter 4) to
feed-forward neural networks (Goodfellow et al., 2016). To date, one of the most widespread
classes of algorithms is gradient tree-boosting algorithms (Hastie et al., 2009, Chapters 9,10).
Popular implementations of gradient tree-boosting are XGBoost (Chen and Guestrin, 2016)
and LightGBM (Ke et al., 2017). In a classic supervised learning setting with tabular data,
these algorithms most often obtain state-of-the-art results without much e�ort. However, to
handle time, these algorithms have to rely on hand-engineered features, as they only map a
given input x to an output y. Instead of relying on hand-engineered features incorporating
time, we could let the algorithm learn by itself how features should incorporate it using neural
networks. Fawaz et al. (2019) provides a review of deep learning algorithms tackling time series
classification. Two neural network architectures can be used to handle time series: recurrent
neural networks, such as the Long Short-Term Memory (Hochreiter and Schmidhuber, 1997), or
convolutional neural networks (see Appendix A.4). These networks map an input time series to
a corresponding output one. For instance, in our case, we could use as input a series of features
describing the state of a (u, i) pair at every considered time-step and as output the observed
interest at that time. Convolutional neural networks are mostly used in visual recognition tasks.
Their unidimensional counterpart used in natural language processing (NLP) tasks is, however,
also appropriate for time series classification. WaveNet-like architectures (Oord et al., 2016),
illustrated in Fig. 1.5, are particularly relevant to handle short- and long-term dependencies in
time series through their causal, dilated convolutions.

Content-filtering is consequently a very diverse approach in terms of potential algorithms to use,
as it can be seen as re-framing the problem of recommendation to the supervised learning task
of classification. Its main shortcomings are linked to the usage of features. One needs to have
features, i.e., external data sources, to build profiles, which is not a given in all recommender
systems. Moreover, when profiling the (t, u, i) triplet, hand-engineering cross-features can lead
to overfitting the historical data. An overfitted algorithm would then only recommend past
interactions to a user: in most application cases, such recommendations are valueless for a
user.

18

Because models with causal convolutions do not have recurrent connections, they are typically faster
to train than RNNs, especially when applied to very long sequences. One of the problems of causal
convolutions is that they require many layers, or large filters to increase the receptive field. For
example, in Fig. 2 the receptive field is only 5 (= #layers + filter length - 1). In this paper we use
dilated convolutions to increase the receptive field by orders of magnitude, without greatly increasing
computational cost.

A dilated convolution (also called à trous, or convolution with holes) is a convolution where the
filter is applied over an area larger than its length by skipping input values with a certain step. It is
equivalent to a convolution with a larger filter derived from the original filter by dilating it with zeros,
but is significantly more efficient. A dilated convolution effectively allows the network to operate on
a coarser scale than with a normal convolution. This is similar to pooling or strided convolutions, but
here the output has the same size as the input. As a special case, dilated convolution with dilation
1 yields the standard convolution. Fig. 3 depicts dilated causal convolutions for dilations 1, 2, 4,
and 8. Dilated convolutions have previously been used in various contexts, e.g. signal processing
(Holschneider et al., 1989; Dutilleux, 1989), and image segmentation (Chen et al., 2015; Yu &
Koltun, 2016).

Input

Hidden Layer
Dilation = 1

Hidden Layer
Dilation = 2

Hidden Layer
Dilation = 4

Output
Dilation = 8

Figure 3: Visualization of a stack of dilated causal convolutional layers.

Stacked dilated convolutions enable networks to have very large receptive fields with just a few lay-
ers, while preserving the input resolution throughout the network as well as computational efficiency.
In this paper, the dilation is doubled for every layer up to a limit and then repeated: e.g.

1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512, 1, 2, 4, . . . , 512.

The intuition behind this configuration is two-fold. First, exponentially increasing the dilation factor
results in exponential receptive field growth with depth (Yu & Koltun, 2016). For example each
1, 2, 4, . . . , 512 block has receptive field of size 1024, and can be seen as a more efficient and dis-
criminative (non-linear) counterpart of a 1�1024 convolution. Second, stacking these blocks further
increases the model capacity and the receptive field size.

2.2 SOFTMAX DISTRIBUTIONS

One approach to modeling the conditional distributions p (xt | x1, . . . , xt�1) over the individual
audio samples would be to use a mixture model such as a mixture density network (Bishop, 1994)
or mixture of conditional Gaussian scale mixtures (MCGSM) (Theis & Bethge, 2015). However,
van den Oord et al. (2016a) showed that a softmax distribution tends to work better, even when the
data is implicitly continuous (as is the case for image pixel intensities or audio sample values). One
of the reasons is that a categorical distribution is more flexible and can more easily model arbitrary
distributions because it makes no assumptions about their shape.

Because raw audio is typically stored as a sequence of 16-bit integer values (one per timestep), a
softmax layer would need to output 65,536 probabilities per timestep to model all possible values.
To make this more tractable, we first apply a µ-law companding transformation (ITU-T, 1988) to
the data, and then quantize it to 256 possible values:

f (xt) = sign(xt)
ln (1 + µ |xt|)

ln (1 + µ)
,

3

Figure 1.5: The WaveNet architecture, using causal and dilated convolutions. Causal convolu-
tions relate their output at t to inputs at t

Õ Æ t only. Dilated convolutions, as known as à trous
convolutions, only consider as inputs to a particular output index the multiples of the dilation
factor at that index. Dilated convolutions extend the receptive field of the network, i.e., the
period of time taken into account for the computation of a particular output. WaveNets used
stacked dilated convolutions, with a dilation factor doubled up to a limit and repeated, e.g., 1,
2, 4, 16, 32, 1, 2, 4, 16, 32, . . . to get the widest receptive field possible. Illustration taken from
Oord et al. (2016).

1.3.3 Collaborative filtering strategies
The collaborative filtering approach refers to algorithms using global information consisting of
all observed (t, u, i) interactions to make local predictions about a given unobserved (t, u, i)
triplet. As a matter of fact, recommendation tasks can be understood as predicting links in a
bipartite graph Gt = (U, I, Et) with U the set of users, I the set of items and Et the set of edges
connecting them, which may evolve with time depending on the studied problem. Et can be
summarized as an adjacency matrix A

t œ R|U |◊|I| where a
t

ui
= 1 if (u, i) œ Et, 0 else. When Et

evolves with time, the global information can be summarized in a three-dimensional, adjacency
tensor A œ RT ◊|U |◊|I| with T the total number of time-steps considered and A[t; u; i] = A

t[u; i].
Note that A

t, and by extension A, is generally sparse, meaning that most of its entries are 0 —
only a small portion of all the (u, i) couples are observed with a positive interaction. See Fig.
1.6 for an illustration of a bipartite graph and its associated adjacency matrix.

Figure 1.6: An example of bipartite graph and its associated adjacency matrix, where |U | = 3
and |I| = 5.

Consequently, one can think of collaborative filtering algorithms as learning to reconstruct the
full adjacency matrix/tensor from an observed portion of it. We examine here algorithms that
particularly influenced the work presented in this thesis. An extensive review of collaborative
filtering can be found in (Su and Khoshgoftaar, 2009), and a survey of its extensions in (Shi

19

et al., 2014).

Matrix factorization and related approaches

Matrix factorization models learn to decompose the adjacency matrix into two matrices of
lower dimension representing respectively users and items. For now, we disregard the influence
of time, setting t = 0 and writing for convenience A := A0. A matrix factorization model learns
latent, sparse and lower-rank representations of users and items P œ R|U |◊d

, Q œ R|I|◊d such
that

A ¥ PQ
T (1.6)

with d an hyperparameter of the algorithm usually chosen as d π |U |, |I|. This equation is
illustrated in Fig. 1.7. It follows that a given user u is mapped to a latent representation pu œ Rd,
and a given item i respectively to qi œ Rd. The recommendation score of a given (u, i) couple
corresponds to the scalar product of their latent representations, xui = Èpu, qiÍ ¥ aui.

Figure 1.7: An illustration of the principle of matrix factorization in a recommendation frame-
work.

A variation of matrix factorization, called nonnegative matrix factorization (NMF) (Paatero
and Tapper, 1994; Hoyer, 2004) considers constraining the latent representations of users and
items to nonnegative vectors. The motivation is twofold. First, in the implicit feedback setting,
the matrix A is nonnegative itself, and it consequently makes sense to express it with matrices
sharing the same constraint. Second, the latent factors can be understood as a decomposition
of the final recommendation score, and a decomposition of an element in its latent components
is generally expressed as a summation, from which an explanation can be derived — e.g., in
(Hoyer, 2004) with the decomposition of face images in their parts (mouth, nose, . . .) found
using nonnegative matrix factorization. However, in a financial setting, latent factors are not
explicit and cannot be conceptualized into meaningful components of a recommendation score.
For that reason, the rationale behind NMF is usually dealt with a classic matrix factorization
where scores are constrained to a given range, e.g., using the sigmoid function ‡(x) = 1/(1+e

≠x)
to map xui to [0; 1] in the implicit feedback setting.

Classic matrix factorization learns latent representations pu, ’u œ U , qi, ’i œ I by minimizing
the squared distance of the reconstruction PQ

T to the adjacency matrix A, computed on the
set of observed scores Ÿ (Koren et al., 2009), as

min
pú,qú

ÿ

(u,i)œŸ

1
aui ≠ q

T

i pu

22
+ ⁄(ÎqiÎ2 + ÎpuÎ2) (1.7)

with ⁄ an hyperparameter controlling the level of L2-norm regularization. The parameters of this
model can be learnt either with stochastic gradient descent (see Appendix A) or with alternating

20

least squares (Hu et al., 2008; Pilászy et al., 2010; Takács and Tikk, 2012). A probabilistic
interpretation of this model (Mnih and Salakhutdinov, 2008) shows that this objective function
is equivalent to a Gaussian prior assumption on the latent factors.

This formulation of matrix factorization is particularly relevant for explicit feedback. In implicit
feedback however, all unobserved events are considered negative, and positive ones are implied
— a (u, i) pair considered positive does not assuredly correspond to a true positive event, as
explained in the incipit of this section. To counter these assumptions, Hu et al. (2008) introduce
a notion of confidence weighing in the above equation. Keeping rui as the number of observed
interactions of the (u, i) pair in the considered dataset, the authors introduce two definitions of
confidence:

- Linear: cui = 1 + –rui

- Logarithmic: cui = 1 + – log(1 + rui/‘)

where –, ‘ are hyperparameters of the algorithm. We empirically found logarithmic confidences
to provide better results, a performance that we attribute to logarithms flattening the highly
heterogeneous users’ and items’ activity we observe in our datasets (see Section 1.2.2). Defining
pui := rui>0 = aui, the implicit feedback objective is written

min
pú,qú

ÿ

u,i

cui

1
pui ≠ q

T

i pu

22
+ ⁄(ÎqiÎ2 + ÎpuÎ2). (1.8)

Note that the summation is now performed on all possible (u, i) pairs. Most often, the total num-
ber of pairs makes stochastic gradient descent impractical, and these objectives are optimized
using alternating least squares. In our case, however, the total number of pairs of a few millions
— tens of millions, in the worst case — still allows for gradient descent optimizations.

A related approach is Bayesian Personalized Ranking (BPR) (Rendle et al., 2009), an optimiza-
tion method specifically designed for implicit feedback datasets. The goal, as initially exposed,
is to provide users with a ranked list of items. BPR abandons the probability approach for xui

used in the above algorithms to focus on a scoring approach. The underlying idea of BPR is
to give a higher score to observed (u, i) couples than unobserved ones. To do so, the authors
formalize a dataset D = {(u, i, j)|i œ I

+
u · j œ I\I

+
u } where I

+
u is the set of items which have

a positive event with user u in the considered data. D is consequently formed of all possible
triplets containing a positive (u, i) pair and an associated negative item j. The BPR objective
is then defined as maximizing the quantity

LBP R =
ÿ

(u,i,j)œD

ln ‡(xuij) ≠ ⁄ Î�Î2 (1.9)

where xuij is the score associated to the (u, i, j) triplet, defined such that p(i >u j|�) := xuij(�)
with >u the total ranking associated to u — i.e., the ranking corresponding to the preferences
of u in terms of items, see Rendle et al. (2009, Section 3.1)—, and ⁄ is an hyperparameter
controlling the level of regularization. As D grows exponentially with the number of users and
items, this objective is approximated using negative sampling (Mikolov et al., 2013). Following
matrix factorization ideas, we define xuij = xui ≠ xuj , with xui = q

T

i
pu where pu, qi are latent

factors defined as previously. The BPR objective is a relaxation of the ROC AUC score (see
Section 1.4), a ranking metric also used in the context of binary classification. BPR combined
with latent factors is, at the time of writing this thesis, one of the most successful and widespread
algorithms to solve implicit feedback recommendation.

In specific contexts, Average Precision (AP) and the related mean Average Precision (mAP) are
more reliable metrics than ROC AUC to score recommender systems — see Section 1.4 for an
in-depth explanation of AP, mAP and a comparison of AP and AUC. Optimizing a relaxation

21

of mAP is proposed in (Eban et al., 2017; Henderson and Ferrari, 2016). Extending the work of
Chapelle and Wu (2010), Shi et al. (2012) propose a relaxation of mAP trained in a way similar
to BPR. They derive a smoothed approximation of user-side mAP as

LmAP = 1
|U |

|U |ÿ

u=1

1
|I|q

i=1
aui

|I|ÿ

i=1
aui‡(xui)

|I|ÿ

j=1
auj‡(xuij) (1.10)

with ‡, xui, xuij defined as previously. This term corresponds to a smoothed approximation
of the interpretation of mAP as an average of precisions at L, detailed in Section 1.4. Using
properties of average precision, Shi et al. (2012) also derive a sampling technique to approximate
the summations in a fast way. Still, as appealing as it seems to directly optimize mAP, this
appears too computation-intensive to be of practical use.

Neural network-based models

In recent years, neural networks have made their appearance in the field of recommender sys-
tems. We cover here some interesting neural architectures and approaches that extend the above
algorithms.

20"/�3" 1,/

3&!",�3" 1,/0

�3"/�$"�3"/�$"

4�1 %�3" 1,/ 0"�/ %�3" 1,/

"*�"!!"!�0"�/ %�1,("+0"*�"!!"!�3&!",�4�1 %"0

"5�*-)"��$"
$"+!"/

$",$/�-%&
"*�"!!&+$

1/�&+&+$
0"/3&+$

�"��

�"��

�"��

�--/,5ă�1,-��

0,#1*�5

)�00�-/,���&)&1&"0

+"�/"01�+"&$%�,/
&+!"5

Figure 3: Deep candidate generation model architecture showing embedded sparse features concatenated with
dense features. Embeddings are averaged before concatenation to transform variable sized bags of sparse IDs
into fixed-width vectors suitable for input to the hidden layers. All hidden layers are fully connected. In
training, a cross-entropy loss is minimized with gradient descent on the output of the sampled softmax.
At serving, an approximate nearest neighbor lookup is performed to generate hundreds of candidate video
recommendations.

case in which the user has just issued a search query for“tay-
lor swift”. Since our problem is posed as predicting the next
watched video, a classifier given this information will predict
that the most likely videos to be watched are those which
appear on the corresponding search results page for “tay-
lor swift”. Unsurpisingly, reproducing the user’s last search
page as homepage recommendations performs very poorly.
By discarding sequence information and representing search
queries with an unordered bag of tokens, the classifier is no
longer directly aware of the origin of the label.

Natural consumption patterns of videos typically lead to
very asymmetric co-watch probabilities. Episodic series are
usually watched sequentially and users often discover artists
in a genre beginning with the most broadly popular before
focusing on smaller niches. We therefore found much better
performance predicting the user’s next watch, rather than
predicting a randomly held-out watch (Figure 5). Many col-
laborative filtering systems implicitly choose the labels and
context by holding out a random item and predicting it from
other items in the user’s history (5a). This leaks future infor-

mation and ignores any asymmetric consumption patterns.
In contrast, we “rollback” a user’s history by choosing a ran-
dom watch and only input actions the user took before the
held-out label watch (5b).

3.5 Experiments with Features and Depth
Adding features and depth significantly improves preci-

sion on holdout data as shown in Figure 6. In these exper-
iments, a vocabulary of 1M videos and 1M search tokens
were embedded with 256 floats each in a maximum bag size
of 50 recent watches and 50 recent searches. The softmax
layer outputs a multinomial distribution over the same 1M
video classes with a dimension of 256 (which can be thought
of as a separate output video embedding). These models
were trained until convergence over all YouTube users, corre-
sponding to several epochs over the data. Network structure
followed a common “tower” pattern in which the bottom of
the network is widest and each successive hidden layer halves
the number of units (similar to Figure 3). The depth zero
network is e�ectively a linear factorization scheme which

Figure 1.8: Candidate generation network of the YouTube recommender system. It is composed
of a feed-forward neural network, receiving as inputs a series of features related to the behavior
of the user on the platform, and features related to the age of the training sample. The network
outputs an embedding of the considered user, which is mapped to N nearest neighbors at serving
time to obtain the set of videos that are scored by the ranking network. Illustration taken from
Covington et al. (2016).

With millions of users and billions of videos, YouTube is a particularly relevant field of ap-
plication for recommender systems. When a user is connected to the YouTube platform, a

22

customized set of videos appears on the home page. Covington et al. (2016) explain that these
recommendations are made using a two-parts recommender system, using two distinct neural
networks. The first one is a candidate generation network, which role is to select a set of per-
sonalized videos for a given user among the total corpus of YouTube videos, and the second
one is a ranking network, which role is to rank selected videos to promote content that engages
users. To promote engagement, the ranking network is trained on expected watch time instead
of click-through-rate.

The recommendation task is split into two separate tasks because of the particularly high number
of items to recommend — there are billions of candidate YouTube videos. We focus here on
the candidate generation network, illustrated in Fig. 1.8, as it corresponds more closely to our
setting. This network is trained on cross-entropy, using as classes the total corpus of YouTube
videos considered. The probability of a class is determined using the softmax function, such
that for a given (u, i) couple, with u œ U a user and i œ I a video, the corresponding probability
is given by e

Èxu,xiÍ/
q

jœI
e

Èxu,xjÍ where the xis are trainable embeddings of the videos and xu

corresponds to the output of the network. Interestingly, the purpose of this architecture is to
output user embeddings. The network only maintains embeddings of videos, search tokens and
the considered categorical variables, and assimilates users as the average embedding of their
watch history in its input. Doing so allows for providing recommendations to new users very
easily, as no embedding is directly attached to the users. It is also worth noting that even though
YouTube provides ways for users to give explicit feedback (thumbs up/down, subscribing. . .),
authors use implicit feedback signals to build positive events. Implicit feedback allows for more
positives in general, and, in particular, for more positives in the long tail of YouTube videos
where users provide in general far less feedback explicitly, as seen in Section 1.2.2.

1000 0 0 ……
User (u)

0000 1 0 ……
Item (i)

MF User Vector MF Item Vector

GMF Layer ……

Score TargetTrainingŷui yui

MLP Layer 1

MLP User Vector MLP Item Vector

Element-wise
Product

Concatenation

MLP Layer 2

MLP Layer X

NeuMF Layer

Log loss
𝝈

ReLU

ReLU

Concatenation

Figure 3: Neural matrix factorization model

so that they can mutually reinforce each other to better
model the complex user-iterm interactions?

A straightforward solution is to let GMF and MLP share
the same embedding layer, and then combine the outputs of
their interaction functions. This way shares a similar spirit
with the well-known Neural Tensor Network (NTN) [33].
Specifically, the model for combining GMF with a one-layer
MLP can be formulated as

ŷui = �(hT a(pu � qi + W

�
pu

qi

�
+ b)). (11)

However, sharing embeddings of GMF and MLP might
limit the performance of the fused model. For example,
it implies that GMF and MLP must use the same size of
embeddings; for datasets where the optimal embedding size
of the two models varies a lot, this solution may fail to obtain
the optimal ensemble.

To provide more flexibility to the fused model, we allow
GMF and MLP to learn separate embeddings, and combine
the two models by concatenating their last hidden layer.
Figure 3 illustrates our proposal, the formulation of which
is given as follows

�GMF = pG
u � qG

i ,

�MLP = aL(WT
L(aL�1(...a2(W

T
2

�
pM

u

qM
i

�
+ b2)...)) + bL),

ŷui = �(hT

�
�GMF

�MLP

�
),

(12)
where pG

u and pM
u denote the user embedding for GMF

and MLP parts, respectively; and similar notations of qG
i

and qM
i for item embeddings. As discussed before, we use

ReLU as the activation function of MLP layers. This model
combines the linearity of MF and non-linearity of DNNs for
modelling user–item latent structures. We dub this model
“NeuMF”, short for Neural Matrix Factorization. The deriva-
tive of the model w.r.t. each model parameter can be cal-
culated with standard back-propagation, which is omitted
here due to space limitation.

3.4.1 Pre-training
Due to the non-convexity of the objective function of NeuMF,

gradient-based optimization methods only find locally-optimal
solutions. It is reported that the initialization plays an im-
portant role for the convergence and performance of deep
learning models [7]. Since NeuMF is an ensemble of GMF

and MLP, we propose to initialize NeuMF using the pre-
trained models of GMF and MLP.

We first train GMF and MLP with random initializations
until convergence. We then use their model parameters as
the initialization for the corresponding parts of NeuMF’s
parameters. The only tweak is on the output layer, where
we concatenate weights of the two models with

h �
�

�hGMF

(1 � �)hMLP

�
, (13)

where hGMF and hMLP denote the h vector of the pre-
trained GMF and MLP model, respectively; and � is a
hyper-parameter determining the trade-o� between the two
pre-trained models.

For training GMF and MLP from scratch, we adopt the
Adaptive Moment Estimation (Adam) [20], which adapts
the learning rate for each parameter by performing smaller
updates for frequent and larger updates for infrequent pa-
rameters. The Adam method yields faster convergence for
both models than the vanilla SGD and relieves the pain of
tuning the learning rate. After feeding pre-trained parame-
ters into NeuMF, we optimize it with the vanilla SGD, rather
than Adam. This is because Adam needs to save momentum
information for updating parameters properly. As we ini-
tialize NeuMF with pre-trained model parameters only and
forgo saving the momentum information, it is unsuitable to
further optimize NeuMF with momentum-based methods.

4. EXPERIMENTS
In this section, we conduct experiments with the aim of

answering the following research questions:

RQ1 Do our proposed NCF methods outperform the state-
of-the-art implicit collaborative filtering methods?

RQ2 How does our proposed optimization framework (log
loss with negative sampling) work for the recommen-
dation task?

RQ3 Are deeper layers of hidden units helpful for learning
from user–item interaction data?

In what follows, we first present the experimental settings,
followed by answering the above three research questions.

4.1 Experimental Settings
Datasets. We experimented with two publicly accessible
datasets: MovieLens4 and Pinterest5. The characteristics of
the two datasets are summarized in Table 1.

1. MovieLens. This movie rating dataset has been
widely used to evaluate collaborative filtering algorithms.
We used the version containing one million ratings, where
each user has at least 20 ratings. While it is an explicit
feedback data, we have intentionally chosen it to investigate
the performance of learning from the implicit signal [21] of
explicit feedback. To this end, we transformed it into im-
plicit data, where each entry is marked as 0 or 1 indicating
whether the user has rated the item.

2. Pinterest. This implicit feedback data is constructed
by [8] for evaluating content-based image recommendation.

4http://grouplens.org/datasets/movielens/1m/
5https://sites.google.com/site/xueatalphabeta/
academic-projects

Figure 1.9: The NeuMF architecture, which combines matrix factorization with a multilayer
perceptron to perform recommendation. The outputs of both models are concatenated and
fed to a logistic regression model trained with cross-entropy. Illustration taken from He et al.
(2017).

An architecture directly related to matrix factorization is the one presented in He et al. (2017),
which builds on the work presented in Cheng et al. (2016). He et al. (2017) introduce a dual
architecture called NeuMF, illustrated in Fig. 1.9. The core idea is to augment the capacities of
a classic matrix factorization with the feature extraction capabilities of deep learning without
harming the results of any of the two in any way. To that extent, NeuMF maintains two sets of
user and item embeddings. One set is devoted to the matrix factorization layer, which computes
their element-wise product xu § xi, and the other is used as inputs to a feed-forward multilayer

23

perceptron with ReLU activations (Nair and Hinton, 2010). The outputs of the matrix fac-
torization layer and the multilayer perceptron are then concatenated as [hMF , (1 ≠ –)hMLP],
where – is a trade-o� hyperparameter. The concatenation is then fed to a logistic regression
model trained with cross-entropy.

Neural Tensor Factorization KDD’18, Aug 2018, London, UK

Item Embedding Time Embedding

Layer 1

Layer nMLP

…

IjIj T̂k̂Tk

Tk�sTk�s

Projection Layer

Tk�s+1Tk�s+1 Tk�2Tk�2 Tk�1Tk�1

train

LSTM Time Encoder

Raw Time Embedding

sigmoid sigmoid tanh sigmoid

X +

X
X

tanh

sigmoid sigmoid tanh sigmoid

X +

X
X

tanh

sigmoid sigmoid tanh sigmoid

X +

X
X

tanh

sigmoid sigmoid tanh sigmoid

X +

X
X

tanh

hh

cc
hh

x̂i,j,kx̂i,j,k xi,j,kxi,j,k

0 0 0 … 1 0 0

User Embedding
UiUi

0 1 0 … 0 0 0
User Input (i) Item Input (j)

0 0 0 … 0 10

0 1 … 1 0 00 0

0 00 0

Time Input (k)

1 0

time sequence

…

1

Figure 1: The Neural network based Tensor Factorization
(NTF) Framework.

general compared to others [38]. As a general tensor factoriza-
tion framework, NTF is also flexible to integrate other variants of
recurrent neural networks.

• To model the non-linearity of multi-dimensional interactions, we
decide to use a Multi-layer Perceptron (MLP) on top of the first
two layers. Let us consider the generated tensor with user-item-
time dimensions as an example. The projected temporal embed-
ding vectors will be fed into a multi-layer neural architecture
together with the embedding vectors of users and items. This en-
ables NTF to incorporate the learned complex dependencies in the
temporal dimension into the factorization process as constrains.
By doing so, we can detect the implicit patterns of user-item-time
interactions through each layer in the MLP framework and model
the non-linear combinations of latent factors to make better pre-
dictions. Finally, the latent vectors will be mapped to quantitative
values (i.e., x̂i, j,k) which represents future interactions across
different dimensions.

3.2 Modeling Temporal Dynamics via LSTM
Recurrent Neural Network (RNN) has been widely used to address
various challenges in time series analysis. However, two key lim-
itations exist in the basic RNN. First, it is difficult to train due to
the problem of gradient vanishing and exploding, since the gradient
might approach zero (vanish) or diverge (explode) as it is propagated
back through time steps during the training process. Second, it is
incapable to model long-distance dependencies in sequence data. To
obviate the above problems and make the architecture more effective,
LSTM is introduced as a special kind of RNN to model long-term
dependencies and addresses the vanishing gradient problem by devel-
oping a more complicated hidden unit. In particular, LSTM proposes
to derive the vector representations of hidden states ht and ct for

Algorithm 1: Training the NTF model.
Input: Tensor X � RI���K , observed interaction set X, sequence

length s , and batch size bsize.
Paras :Embedding matrices U � RI�L , I � R��L , T � RK�L , and

other hidden parameters � .
1 Initialize all parameters;
// Sample a minibatch of size bsize.

2 foreach Tbatch = sample(X, bsize) do
3 foreach �i, j, k � � Tbatch do

/* Gather embeddings for all dimensions.

*/
4 Ui = U[i, :], Ij = I[j, :];
5 c = c0, h = h0; // init. hidden states
6 for t � (k � s) to (k � 1) do
7 c, h = LSTM(T[t, :], c, h); // according to Eq.3
8 end
9 T̂k = Projection(h); // encoded time

embedding

10 x̂i, j,k = MLP([Ui ; Ij ; T̂k]); // according to Eq.6
11 xi, j,k = X[i, j, k];
12 update loss L w.r.t 1

2 (xi, j,k � x̂i, j,k)2;
13 end
14 update all parameters w.r.t L;
15 end

each time step t as follows:

it =� (Wiht�1 +Vixt + bi)
ot =� (Woht�1 +Voxt + bo)
ft =� (Wf ht�1 +Vf xt + bf)
�ct =�(Wcht�1 +Vcxt + bc)
ct =ft � ct�1 + it � �ct

ht =ot � �(ct) (3)

whereW� � Rds�ds represents the transformation matrix from the
previous state (i.e., ct�1 and ht�1) to LSTM cell and V� � Rdx�ds

are the transformation matrices from input to LSTM cell, where dx
and ds denotes the dimension of input vectors and hidden states, re-
spectively. Furthermore, b� � Rds is defined as a vector of bias term.
� (·) and �(·) represents the sigmoid and tanh function, respectively.
The � operator denotes the element-wise product. In Eq. 3, it , ot ,
and ft represents input gate, output gate and forget gate, respectively.
For simplicity, we denote Eq. 3 as [ct ,ht] = LSTM(�, ct�1,ht�1) in
the following subsections.

3.3 Fusion of LSTM and TF
In this subsection, we present how we fuse LSTM and TF under
the NTF framework to model the time-evolving interactions across
three dimensions RI , R� and RK . In relational data, dynamic char-
acteristics are observed across different time slots. In this work,
we consider temporal factors affecting the interactions over time
based on a global trend by assuming that the interactions between
multi-dimensions evolve in a smooth way. In particular, to capture
the temporal smoothness, we further assume that the embedding
vectors of the temporal dimension depends on embedding vectors

Figure 1.10: A neural tensor factorization architecture. Users and embeddings are treated as
previously, whereas time embeddings are generated using an LSTM encoder. Illustration taken
from Wu et al. (2018).

Last, one can use neural network architectures to perform tensor factorization, as done in (Wu
et al., 2018). Considering a temporal context with t œ [[1; T]], a tensor factorization model de-
composes a three-dimensional tensor into latent d-dimensional representations of users xu, items
xi, and time xt. Elements of the original tensor are then approximated by

q
d

l=1 xu,lxi,lxt,l, and
the network is trained with euclidean distance between original elements and their approxi-
mation. The model is illustrated in Fig. 1.10. Embeddings of users and items are used as
previously. In this architecture, each time-step is embedded. These embeddings serve as inputs
to an LSTM encoder, which uses the s previous time-steps k œ [[t ≠ s; t ≠ 1]] to compute the
current time-step embedding xt. Note that tensor factorization approaches such as this one can
only make predictions for time-steps seen during training — they are unable to extrapolate, i.e.,
perform predictions in the future.

Note, however, that doubts were cast on some neural network approaches. Dacrema et al. (2019)
claim in a recent report that most results of neural network recommenders are not reproducible.
Consequently, deep learning in recommender systems must be taken with a grain of salt, and
carefully examined against algorithms that proved their e�ciency on multiple benchmarks, such
as the one presented in Chapter 2.

24

Resource redistribution models

Resource redistribution models were introduced in (Zhou et al., 2007). The underlying idea is
to perform a weighted one-mode projection, i.e., projecting the bipartite graph on a user graph
by connecting users that interacted with the same items (or resp. for items with users), in a
way that preserves the information encoded in the bipartite graph. These weights W can then
be used to make personalized recommendations — e.g., considering a vector fu = (aui)iœI œ R|I|

and a weight matrix corresponding to the one-mode projection of the bipartite graph on the
items graph, personal recommendations for user u can be obtained as Wfu.

Zhou et al. (2010) uses this principle to derive two models, called HeatS and ProbS for heat-
spreading and probabilistic spreading, respectively aiming at diversity and accuracy of recom-
mendations, and propose a hybrid model that combines the qualities of the two. The resource-
distribution strategies for both these models is illustrated in Fig. 1.11. The corresponding
weight matrices W

H
, W

P œ R|I|◊|I| are written

W
H

ij = 1
ki

|U |ÿ

u=1

auiauj

ku

(1.11)

W
P

ij = 1
kj

|U |ÿ

u=1

auiauj

ku

, (1.12)

where kú represent the degree of the corresponding node in the bipartite graph, and aui is
defined as previously. We see here that W

H = (W P)T . The hybrid method, called SPHY in
(Zeng et al., 2014) for similarity-preferential hybrid, is obtained with

W
SP HY

ij = 1
k

1≠⁄

i
k

⁄

j

|U |ÿ

u=1

auiauj

ku

, (1.13)

with ⁄ an hyperparameter to tune.

Zeng et al. (2014) extend these models by proposing to scale the weight matrices with a hy-
perparameter ◊ as (W SP HY)◊ in a one-mode projection on the users graph. The role of ◊ is to
enhance or suppress the e�ects of similar users. Consequently, its value depends on the sparsity
of the one-mode network: in sparse cases, one would decrease the weight of similar users with
◊ < 1 so that rarely seen users have weights closer to more popular ones, and consequently be
recommended nonetheless.

Contrarily to most publications in recommender systems, these algorithms stress the importance
of diversity in recommendations and provide a direct way to obtain more diverse ones, along with
metrics monitoring this diversity. Moreover, as these algorithms only rely on direct operations
on the adjacency matrices, they are easily implemented and provide results faster than any of
the above algorithms.

25

0

1

0

0

1
(a)

��

0

1/2

1/2

1

(b)

��

0

3/4

1/3

1/2

2/3
(c)

0

1

0

0

1
(d)

��

0

1/3

5/6

5/6

(e)

��

0

5/8

3/8

5/24

19/24
(f)

Fig. 1. The HeatS (a,b,c) and ProbS (d,e,f) algorithms (Eqs. 1 and 2) at work on the
bipartite user-object network. Objects are shown as squares, users as circles, with the target
user indicated by the shaded circle. While the HeatS algorithm redistributes resource via a
nearest-neighbour averaging process, the ProbS algorithm works by an equal distribution of
resource among nearest neighbours.

Table 1. Properties of the tested datasets.

dataset users objects links sparsity
Netflix 10 000 6 000 701 947 1.17 · 10�2

RYM 33 786 5 381 613 387 3.37 · 10�3

Delicious 10 000 232 657 1 233 997 5.30 · 10�4

Table 2. Performance of the recommendation algorithms according to each of the four metrics: recovery of deleted links,
precision enhancement, personalization, and surprisal.

Netflix RYM Delicious
method r eP (20) h(20) I(20) r eP (20) h(20) I(20) r eP (20) h(20) I(20)
GRank 0.057 58.7 0.450 1.79 0.119 57.3 0.178 4.64 0.314 147 0.097 4.23
USim 0.051 68.5 0.516 1.82 0.087 150 0.721 5.17 0.223 249 0.522 4.49
ProbS 0.045 70.4 0.557 1.85 0.071 185 0.758 5.32 0.210 254 0.783 5.81
HeatS 0.102 0.11 0.821 12.9 0.085 121 0.939 10.1 0.271 30.8 0.975 12.6

Table 3. Performance of individual rec-
ommendation algorithms for a probe set
consisting of only low-degree (k < 100)
objects.

method r eP (20) h(20) I(20)
GRank 0.327 0.000 0.525 1.68
USim 0.308 0.000 0.579 1.72
ProbS 0.279 0.014 0.610 1.74
HeatS 0.262 0.679 0.848 13.1

Table 4. Tuning the HeatS+ProbS hybridization pa-
rameter � to optimize for r produces simultaneous
improvements in other metrics. The relative changes
are given in percentage terms against the pure ProbS
algorithm.

dataset � �r �eP (20) �h(20) �I(20)
Netflix 0.23 10.6% 16.5% 28.5% 28.8%
RYM 0.41 6.8% 10.8% 20.1% 17.2%
Delicious 0.66 1.2% -6.0% 22.5% 61.7%

6 www.pnas.org — — Footline Author

Figure 1.11: HeatS, which process is illustrated in (a,b,c), redistributes resource via an averaging
procedure where users receive a level of resource equal to the mean amount possessed by their
neighboring items, and objects then receiving back the mean of their neighboring users’ resource
levels. ProbS, in (d,e,f), evenly distributes among neighboring users the initial resource and
then evenly redistributes it back to those users’ neighboring items. Illustration taken from Zhou
et al. (2010).

1.3.4 Other approaches
For the interested reader, we mention here a few more approaches that caught our attention but
that were not tried extensively in our setting and may be worth further investigations.

For now, we mainly derived algorithms that can either be classified under the supervised or
unsupervised learning paradigms (Murphy, 2012, Chapter 1). The problem of recommendation
can, however, also be stated under the reinforcement learning paradigm, by considering agents
receiving rewards for making good recommendations. To that extent, contextual-bandits for
recommendation have received some attention (Li et al., 2010; Wang et al., 2016). Zheng et al.
(2018) adapted the Deep Q-Learning algorithm (Mnih et al., 2013) to news recommendation.
These approaches are appealing in the sense that they are able to adapt to the current needs
of the users directly. However, these algorithms need to interact with the final user to be used
directly, and this cannot be done in our business setup.

From now on, we used methods that extract information from the bipartite graph structure
of the model, but some recommender systems directly use this structure to make predictions.
Eksombatchai et al. (2018) use random walks on a weighted bipartite graph to perform rec-
ommendations in real-time and is used in production at Pinterest. Wang et al. (2019) use

26

graph neural networks to enhance classic matrix factorization strategies with the information
of higher-order connectivity from the bipartite graph.

1.3.5 The cold-start problem
Cold-start refers to the fact that one needs to gather enough information about a new user or
item to include it in the predictions of a recommender system (Bobadilla et al., 2013). Notably,
in matrix factorization-related approaches, the set of users and items on which predictions can
be made is determined by the sets on which the adjacency matrix was built, and cannot be
changed unless retraining the algorithm.

In most cases, recommender systems su�er from the user cold-start — an e-commerce website is
not able to onboard a new client in its recommender system before gathering enough information
about its shopping patterns. In the CIB business, however, onboarding new clients is not that
common — the financial setting su�ers more from item cold-start. As a matter of fact, financial
products such as bonds and options have a limited lifespan: new products are constantly emitted
to replace expiring ones. For a matrix factorization-like algorithm, however, these two products
are distinct and could not be assimilated. Bobadilla et al. (2013) provide multiple ways in which
user and item cold-start can be tackled. We also provide in the next chapters ways to battle it
in general, and more especially in the case of item cold-start.

1.4 Evaluating financial recommender systems
Evaluating recommender systems can be done in many ways, depending on how the problem is
framed. We describe below the set of metrics we use for the remainder of this thesis.

1.4.1 Deriving symmetrized mean average precision
The problem of retrieving probabilities of interest p̂ introduced in Section 1.3.2 can be under-
stood as a classification task - our target is a discrete value in {0, . . . , C ≠1} with C the number
of classes that we consider. If we are only interested in the binary interest of our clients, C = 2;
if we want to introduce buy and/or sell interests, we use C = 4 to represent no interest, buy
interest, sell interest and interest into buying and selling the considered asset in the considered
window of time.

In such a classification setting, metrics based on the confusion matrix, see Fig. 1.12, are used
to assess the performance of algorithms. In a binary setting, denoting the prediction of the
monitored algorithm for a particular sample ŷ, the confusion matrix compares the predicted ŷ

with the true labels y, distinguishing between four di�erent cases.

Figure 1.12: The confusion matrix outline.

27

This confusion matrix can then be summed up through a collection of metrics such as precision,
which corresponds to the proportion of correct predictions that were made, recall, also called
true positive rate, which corresponds to the proportion of the real targets that were retrieved,
false positive rate, which corresponds to the proportion of negative events predicted as positive,
i.e., the proportion of "false alarms"... Formulas for these quantities are given in Table 1.1.

Table 1.1: Examples of metrics describing the confusion matrix.

Precision (P) T P

T P +F P

Recall (R or TPR) T P

T P +F N

False Positive Rate (FPR) F P

F P +T N

True Negative Rate (TNR) T N

F P +T N

False Discovery Rate (FDR) F P

F P +T P

However, a comparison criterion must be unique: one algorithm could beat its competitors on a
given metric but not on the others, leading to an ambiguous choice of preferred algorithm. As
we would like to compare our algorithms with a combination of confusion matrix-based metrics
nonetheless, we have to rely on summary metrics. The most common ones are F -scores, defined
as

F— = (1 + —
2) · P · R

(—2 · P) + R
. (1.14)

F1 score is the most common one and corresponds to the harmonic mean between precision and
recall. Less classic options include F2 scores, which weigh more recall than precision, and F0.5
score which weigh more precision than recall. Consequently, the choice of — entirely depends
on the use case we want to assess.

We examined here the case of binary classification tasks. In a multiclass setting, it is usual to
derive scores for each class in a one-versus-all setup, identical to a binary one, and average found
scores using a given strategy. The most common averaging strategies are micro- and macro-
averaging. For classes c œ {0, . . . , C ≠ 1}, macro-averaging is defined as, with the example of
precision P ,

Pmacro = 1
C

ÿ

c

Pc, (1.15)

where Pc is the precision of class c obtained considering the one-versus-all setup. Micro-
averaging is defined as, with the example of precision,

Pmicro =
q

c
TPcq

c
TPc +

q
c
FPc

. (1.16)

As appears in these formulas, macro-averaging treats all classes equally, whereas micro-averaging
takes into consideration the relative weight of all classes. In the financial setup, it is often the
case that the considered classes are ill-balanced, i.e., that the distribution of classes among
samples is not uniform at all. In our future interest prediction setting, it appears that a client
will most of the time not be interested in a given product, leading to an over-representation
of the "no interest" class, i.e., to severe imbalance. The "positive interest" class is the one that
truly matters: its performance must consequently not be drowned under the performance of
the "no interest" one. For that reason, when required, we choose macro-averaging procedures
to give equal weights to all considered classes.

However, most algorithms do not directly lead to the class prediction ŷ. In a binary setting,
classification algorithms learn the probability of the positive class p̂ = p◊(y = 1|x), and we
have to introduce a threshold · such that ŷ = 1 if p̂ > · and 0 else: the above metrics are

28

consequently highly dependent on this threshold · . A better summary metrics strategy to
avoid this dependence is to look at area under curves. In binary classification tasks, the area
under the receiver operating characteristic curve, abbreviated as AUC ROC or AUC for
short, is often used. The ROC curve is defined as f(FPR) = TPR, where each point corresponds
to a given threshold · . The AUC has a remarkable statistical property (Fawcett, 2006):

Proposition 1.4.1. The AUC score is equivalent to the probability that the scored algorithm at-
tributes a higher score to a randomly chosen positive sample than to a randomly chosen negative
one.

Proof. Let us call X1 a random variable describing the scores of true positives with distribution
p1, X0 a random variable describing the scores of true negatives with distribution p0 and assume
their independence. AUC score is defined as the area under the TPR-FPR curve. Considering
scores in — if we use as scores the probability of the positive class p◊(y = 1|x), this range is
restricted to [0; 1] —, we can write AUC as the following:

AUC =
≠Œ⁄

+Œ

P (X1 > ·)dP (X0 > ·), (1.17)

where P (X1 > ·) and P (X0 > ·) respectively correspond to TPR and FPR, and · is the
threshold. Note that the integral is defined from +Œ to ≠Œ: as FPR corresponds to the
x-axis, we scan thresholds from highest to lowest — P (X0 > +Œ) = 0 corresponds to the
left-hand side of the x-axis.

Using p1 and p0, we get:

AUC =
≠Œ⁄

+Œ

+Œ⁄

·

p1(x)dx(≠p0(·)d·) (1.18)

AUC =
+Œ⁄

≠Œ

+Œ⁄

·

p1(x)dxp0(·)d· (1.19)

But the last integral can be re-written AUC = P (X1 > X0), hence the property. ⇤
From this property, we can see that AUC scores of 0.5 correspond to random classifiers, and
a good classifier consequently has an AUC greater than 0.5. In cases of severe imbalance,
however, it appears that AUC ROC is ill-suited to monitor performance. As this metric uses
FPR, in case of severe imbalance FP ∫ TN — a small variation in the number of false
positives will therefore not impact the FPR, consequently biasing AUC towards high scores.
This bias leads to the wrong belief that the monitored model is performing well in cases of
severe imbalance. The average precision score (AP) corrects this issue. AP corresponds to
the area under the f(R) = P curve, as known as the precision-recall curve. An extensive study
of the relationship between AP and AUC ROC can be found in (Davis and Goadrich, 2006),
and an intuitive comparison of AUC ROC and AP can be found in Section 1.4.2. AP score
can also be interpreted as the average of the precisions of top-L predictions, noted P@L, for
all L corresponding to the ranks of true events in the full recommendation list. For both these
metrics, the closer the score to 1, the better the algorithm.

However, recommender systems are not usual classification tasks, and we need to tailor these
metrics to correspond more closely to our ultimate goal of delivering every day relevant recom-
mendations to our clients. Recommender systems can be thought of as information retrieval
systems: a recommender system provides ranked lists of potentially interesting items to a user,

29

who willingly — or not — queried it. An overview of useful metrics for information retrieval
can be found in (Manning et al., 2010). We stick here with AP for its above-cited properties,
using a slight variation of it. Instead of AP, we monitor the performance of our models using
mean average precision (mAP), defined as

mAP = 1
|Q|

ÿ

qœQ

AP (q), (1.20)

where q is a query. We define queries in two ways:

- User-side. A query corresponds to the recommendation list of a given user at a given
date.

- Item-side. A query corresponds to the recommendation list of a given item at a given
date.

The item-side query is introduced to obtain the item perspective usually not monitored in
recommender systems. This perspective is particularly relevant for corporate banks — to control
her risk, a market maker needs to control her positions, i.e., make sure she does not hold a
given position for too long. It is consequently of strategic interest to find relevant clients for a
given asset, and item queries allow for monitoring the corresponding performance. Moreover,
salespeople usually monitor the provided recommendations by looking at the predicted scores
for a particular client or asset — we consequently need our models to provide useful rankings
at the client and asset scales, and that is what user- and item-side mAP scores evaluate. Note
that mean AUC scores can be defined in the same way, as

mAUC = 1
|Q|

ÿ

qœQ

AUC(q). (1.21)

Finally, as we want to describe the performance of our algorithms with one score only, we
introduce the symmetrized mAP, defined as the harmonic mean between the user- and item-
side mAP. From now on, this score is used to monitor the performance of our algorithms — when
applicable. As seen in Section 1.3.2, content-filtering approaches may rely on cross-features for
which we might lack data, preventing us from computing them at any time for all couples. In
such cases, we favor using AP on the overall task instead.

1.4.2 A closer look at area under curve metrics
To understand the behavioral di�erences between AUC and AP, we study a couple of examples
to get a better intuition at how they score particular recommendations. We consider here
recommendation lists of size 10000 to mimic our actual user-side setting, that we score with
both AUC and AP.

Consider a user having two interests at a given date, and first examine a case where these
interests were ranked 10-th and 100-th.

- Following the probabilistic interpretation of AUC, in that case we can compute an AUC
of 0.5 ú ((1 ≠ 9

9999) + (1 ≠ 98
9998)) ¥ 0.995. The score consequently highlights what would

be an excellent recommendation.
- Using the P@L interpretation of AP, we compute a score of 0.5 ú (1/10 + 2/100) ¥ 0.06.

The score consequently highlights what would be a very poor recommendation.

Now, consider the extreme case where the two interests are ranked first and last. We get the
following:

30

- With the probabilistic interpretation, we compute an AUC of 0.5 ú (1 + (1 ≠ 1)) = 0.5. It
corresponds to the score of a random recommendation.

- With the P@L interpretation, we compute an AP of 0.5 ú (1 + 2/10000) = 0.5001, the
score of a quite good recommendation.

From these examples, we see that AUC scores do not di�erentiate predictions relatively to
their position in the recommendation list. This behavior leads to a good score in the first
example, and a bad one in the second. A recommender system with good AUC is consequently
a recommender that is good on a broad scale. Contrarily, AP weighs heavier the top of the
recommendation list due to its usage of P@L. It follows that in the first example, the AP score
is quite low due to the first true event appearing in the 10-th position only. But in the second
example, the relatively good AP score is entirely driven by the fact that the first prediction was
indeed correct.

Consequently, AP is more adapted in cases where we matter most about the first recommenda-
tions that the system does. In our business case, that is the reason why we favor AP: considering
that recommendation lists are sales’ calls plannings, a salesperson needs to get good returns on
her calls fast, as their time (and patience) is limited. There are no correct metrics to use in the
absolute — there are metrics more adapted to a given situation.

1.4.3 Monitoring diversity
Qualitative metrics can also be used to monitor our recommender systems. The precision of
recommender systems is, of course, of great importance. Still, a system only targeting precision
might fall into the trap of always recommending the same items, thereby a self-sustained loop
— a client who is only recommended already seen items keeps treating them with us, and maybe
finds another counterparty for other items that may be of interest for her. Moreover, we also
want to recommend items in the long tail (see Section 1.2.2). For these reasons, monitoring the
diversity of our systems following the ideas introduced in Zhou et al. (2010) and continued in
Zeng et al. (2014) is also helpful.

We introduce two qualitative metrics called diversity and similarity. Diversity D(L) is defined
as

D(L) = 1
L

ÿ

iœI

ÿ

uœU

ki iœR1:L,u (1.22)

with R1:L,u the top-L ranked items for user u and ki the degree of item i as computed on the
training dataset, the degree corresponding to the number of unique users connected to item i

in the bipartite graph corresponding to the training dataset. D(L) corresponds to the average
degree of an item present in the top-L recommendation lists of all our users at a given date —
the lower the metric, the more diverse the recommendations. Similarity S(L) is defined as

S(L) = 2
|U |(|U | ≠ 1)

ÿ

u>v

Cuv(L)
L

(1.23)

with Cuv(L) the number of identical items in top-L recommendation lists of users u and v.
S(L) corresponds to the average number of identical items in the top-L recommendation lists
for all pairs of users, at a given date. The lower the metric, the less similar the recommendation
lists. L depends here on the asset class and has to be chosen in accordance with the users of
the recommender system. Both of these metrics are introduced on the user-side and could be
computed on the item-side as well. As the purpose of these metrics is only qualitative, it is here
more relevant to stick with un-symmetrized values to keep their interpretation intact.

31

These metrics are monitored along with symmetrized mAP in our further experiments, when ap-
plicable. In cases of approximately equal symmetrized mAP performances, we favor algorithms
obtaining better diversity and similarity scores.

1.5 The challenges of the financial world
In this chapter, we gave a relatively broad overview of the problem we want to solve, what
data we have at our disposal to solve it and algorithms that can solve it. In doing so, we met
challenges among which the heterogeneity of clients and assets (Section 1.2.2) and the item
cold-start problem (Section 1.3.5). We explore here, haphazardly, additional challenges that we
face in future financial interest prediction and that we will, partly, tackle in the remainder of
this work.

We already mentioned in Section 1.1 that the RFQ information is imperfect. We only know a
part of clients’ interests, either the ones expressed on a platform where BNPP CIB operates
or the ones told to salespeople. The final decision of the client is not always known, due to
the rules of D2C platforms seen in Section 1.1.1. We have to keep this fact in mind when
constructing our algorithms — what appears to us as no interest events could be real interests
that we did not monitor. Moreover, the financial setup brings about two challenges: the buy-
sell asymmetry, and the potentially cyclic interests. The asymmetry corresponds to the fact
that a client can only sell a product she already possesses — such a piece of information can
be obtained for some of BNP Paribas CIB clients from their portfolio snapshots, but does not
concern the majority of them. The second challenge di�erentiates the financial setup from
a classic e-commerce recommendation problem. In finance, buying a given product does not
prevent at all from re-buying it in the future, a behavior that would be far rarer, e.g., for an
Amazon customer. We consequently have to keep all of the past interests of a client in her
potential future interests. There is even a tendency for a client to trade what she has already
traded in the past: studying the corporate bonds RFQ database, in 2019, on average 28% of
clients’ RFQs are made on products they already traded before. If we restrict to the 500 most
active clients of 2019, this figure rises to 58%, meaning that active clients have a high tendency
to replicate their past behaviors.

Another challenge comes from the specificities of asset classes: there cannot be a single, cross-
asset model. Each asset class has its own characteristics and features, as exposed in Section
1.1.2. We also observe di�erent behaviors depending on the asset class — professional investors
do not trade equity, options, and bonds in the same ways and have proper strategies for each of
these asset classes. Moreover, in the same asset class, investors might even react di�erently to
the same input signal: in equity, for instance, a price decrease does not mean the same for trend
followers and mean-reverting traders. A global, cross-asset model is consequently not a good
option, and we also need ways to adapt to the potentially many di�erent trading strategies that
investors have in each asset class, i.e., their behavioral heterogeneity.

Yet another challenge, usually disregarded in the recommender systems literature, is the impor-
tance of time, omnipresent in finance. Financial indicators continuously evolve, and with them
the interests of clients: consequently, time must be taken into account to provide relevant rec-
ommendations. This evolution of interests with time is related to what is known as concept drift
in the recommender systems literature. Tsymbal (2004) identifies concept drift as coming either
from a change in the underlying data distribution or a change in the target concept. Drift can
also be sudden or gradual. Financial time series are highly non-stationary — consequently, the
primary source of concept drift we have to face is a gradual or abrupt change in the underlying
data distribution. This challenge is, to the best of our knowledge, not addressed su�ciently by
literature as it conceptually di�ers from the usual trends or seasonalities.

32

Additional challenges come from the way our future interest prediction problem is framed. A
standard assumption in the recommender systems literature is that we can directly interact with
the final users of the system. However, as seen in Section 1.1, the recipients of the provided
recommendations are not directly the clients of the bank, but the salespeople with whom clients
are engaged in business discussions. We consequently cannot resort to A/B testing strategies
or bandit algorithms: sales take a risk when calling a client on behalf of the bank, and need
to be able to trust the system. For a sales to follow a recommendation, predictions must be
understandable. Giving insights into why recommendations are made helps sales gain confidence
in the system, and provides them with ways to introduce the trade idea to their clients. This
falls in the field of interpretability, where many di�erent proposals have been made to try and
understand the predictions made by black-box algorithms such as neural networks or gradient
tree boosting algorithms. A popular method is LIME (Ribeiro et al., 2016), which learns
an interpretable, linear model around the prediction to be interpreted. For neural networks,
methods such as DeepLIFT (Shrikumar et al., 2017), which backpropagates the output to be
interpreted to the input features, have been proposed. Lundberg and Lee (2017) propose to
unify the field of interpretability using the game theory notion of Shapley values (Shapley, 1953).
Finally, Kim et al. (2017) propose to interpret outputs using user-defined concepts instead of
input features, which may not always be meaningful to a non-specialist.

On a more practical note, our predictions must also be reliable and user-friendly. Scores must
be good indicators of the confidence we have that the interest might happen so as not to lose
time on unlikely interests. Moreover, scores must also be easily readable by our users: for
instance, if we take as score the probability of interest in a given product, it will most often be
very low — a more meaningful score here could be the daily variation of predicted probability.
A scoring scale, e.g., between 0 and 5, could also be instituted following sales’ wishes and needs.
Consequently, we see that sales have to be fully integrated into the design of the recommender
system’s specifications to provide them with meaningful help and enhance their proactivity.
Among these technical considerations, we also find legal aspects: as in most businesses, there
are compliance challenges related to the design of such an algorithm. Thus, great care must be
taken into the data sources we use, and the results we disclose to our clients.

33

34

Chapter 2

First results on real-world RFQ data

Chapter 1 introduces the future interest prediction task to a great extent and provides insights
into suitable algorithms for solving this task. The goal of Chapter 2 is to further these insights
through the application of classic recommender systems to the future interest prediction problem
using a real-world RFQ dataset from BNP Paribas CIB. In this chapter, Section 2.1 reviews
strategies allowing to handle multi-class outputs with models designed for binary ones and
consequently bridge the gap between content-filtering and collaborative filtering algorithms,
and Section 2.2 presents a benchmark of classic, seminal algorithms introduced in Section 1.3.

2.1 From binary to oriented interests
In Section 1.1, we introduced the problem of future interest prediction as predicting whether a
client is interested in buying and/or selling a given financial asset at a given time. However,
most collaborative filtering algorithms cannot handle per se a multi-class classification setting
such as this one and only deal with binary interests. However, collaborative filtering and,
more particularly, matrix factorization-like algorithms are particularly interesting in that they
allow for a posteriori analysis of latent representations of users and items, a feature we do
not retrieve in content-filtering strategies. Consequently, this section explores two ideas that
allow bridging the gap between binary and multi-class prediction settings, enabling the usage
of matrix factorization-like algorithms for the future interest prediction task.

A simple strategy for dealing with multi-class prediction is, when applicable, to split the predic-
tion task into multiple tasks. As a matter of fact, our future interest prediction task is composed
of two nested prediction tasks. The first one aims to find whether a client has an interest in a
given product, and the second one seeks to retrieve the nature of this interest, i.e., whether it is
an interest in buying and/or selling the considered product. Consequently, in such a setting, it is
possible to use two algorithms to solve each of these tasks: a matrix factorization-like algorithm
would deal with the interest/no interest prediction task, and a second algorithm with the inter-
est’s nature retrieval. A natural choice for this second algorithm would be a content-filtering
one using appropriate, handcrafted features, trained on a cross-entropy objective. Another sim-
ple idea that deals with any multi-class prediction setting is to split the prediction task into as
many tasks as there are classes, each task being a "one-versus-all" retrieval of a given class. A
matrix factorization-like algorithm can then be used for each of these tasks.

However, the "one-versus-all" strategy does not exploit the potential correlations between the
di�erent classes of the prediction task. Exploiting these correlations can only be done with algo-
rithms that directly address the multi-class framing of the prediction problem. We introduced
in Section 1.3.3 the tensor factorization idea for tackling temporal contexts. The same idea

35

can be applied to multi-class classification, by considering three-dimensional adjacency tensors
A œ R|U |◊|I|◊C , with C the number of classes. Using a tensor factorization model using latent
representations of users, items and classes respectively denoted P œ R|U |◊d, Q œ R|I|◊d and
K œ RC◊d with d the latent dimension, the score of the c class of a given (u, i) couple is given
by

x
c

ui =
dÿ

l=1
pu,lqi,lkc,l. (2.1)

This algorithm can then be trained using a cross-entropy entropy objective, as

l =
ÿ

c

y
c

ui log ‡ (xc

ui) , (2.2)

with y
c

ui
:= au,i,c and ‡ the sigmoid function.

In this thesis, we focus on the development of ad hoc algorithmic designs aimed at solving
specific challenges of the financial sector, as will be seen in Chapters 3 and 4. Consequently, the
binary-to-multi-class problem considered in this section appears as a technicality, and will not
be evoked further. From now on, we use the most natural setting for the considered algorithms,
be it binary or multi-class.

2.2 A benchmark of classic algorithms
This section presents a benchmark of algorithms presented in Section 1.3 on a G10 bonds
RFQ dataset from BNP Paribas CIB which is more extensively studied in Chapter 4. Our
dataset comprises hundreds of clients and thousands of bonds and ranges from 01/08/2018 to
30/09/2019. We consider as training set the events from 01/08/2018 to 31/07/2019, as valida-
tion set the events from 01/08/2019 to 31/08/2019 and as test set the events from 01/09/2019
to 30/09/2019. First, we examine the methodology and hyperparameters considered for algo-
rithms of four di�erent model classes. Second, we present, compare, and analyze the results
obtained with these algorithms on all the metrics introduced in Section 1.4. All models are
scored on a perimeter composed of all the couples U ◊ I = {(u, i)|u œ U, i œ I}, with U (resp.
I) the set of all users (resp. items) observed in the training set, for all the dates of the scored
split of data. Qualitative metrics were all computed using L = 20, where L corresponds to the
number of top recommended items or users, depending on the chosen side (see Section 1.4.3).

2.2.1 Historical models
We first consider historical models, as introduced in Section 1.3.1. In this benchmark, we use
two historical models: a naive one that we note "Histo", and a temporal one that we note
"⁄-Histo". ⁄-Histo di�ers from the Histo model in that events are penalized according to their
observation date: the further away in the past the observation of a (u, i) couple, the lower its
weight in the score of the (u, i) couple.

The scores are computed using the training set only, using for ⁄-Histo a temporal penalty
inspired from the one introduced in Section 1.3.1, defined as e

≠⁄(T ≠t), where T is the final day
of the training set and t is the observation day of the event. These scores are then re-used to
perform recommendations on all dates of the validation and test sets.

Figure 2.1 shows the evolution of the validation performance, defined by the symmetrized mAP
score, with the ⁄ parameter. This parameter can be interpreted in terms of half-life — the
range of values considered corresponds to half-lives ranging from roughly two years to a day.
The best validation performance is obtained for a value of ⁄ ¥ 0.02, corresponding to a half-life

36

Figure 2.1: Evolution of validation symmetrized mAP score with ⁄. The optimal value is found
for ⁄ ¥ 0.02, corresponding to a half-life of roughly a month. The horizontal, red dotted line
corresponds to the performance of the unpenalized Histo model.

of roughly a month. Interestingly, on the range of ⁄ values considered, all instances of ⁄-Histo
outperform the classic Histo model, showing the superiority of temporal approaches.

2.2.2 Resource redistribution models
We now focus on the resource redistribution models, as seen in Section 1.3.3, and more partic-
ularly on the hybrid SPHY model introduced in Zeng et al. (2014). This algorithm performs
recommendations through transformations of the adjacency matrix into user similarity matrices
and is controlled by two hyperparameters — ⁄, that controls the hybridization between models
aiming at diversity and precision of recommendations, and ◊, that controls the reliance on sim-
ilar users. ⁄ = 0 corresponds to the model aiming at diversity of recommendations, and ⁄ = 1
to the model aiming at precision of recommendations. Using ◊ > 1 enhances the reliance on
similar users for the recommendations of a particular user, and using ◊ < 1 lowers that reliance.
We search for the optimal ⁄ and ◊ values with an exhaustive grid search, considering ⁄ values
in the [0; 1] range and ◊ values in the [0.1; 3] range.

Figure 2.2 illustrates the validation symmetrized mAP performance of an exhaustive grid of ⁄

and ◊ values in a heatmap. We see that the best performances are found in the bottom-right
corner of the heatmap, i.e., for ⁄ > 0.5 and ◊ > 1. The optimal value is found for ⁄ = 0.85 and
◊ = 2.2. Best performances are found for ⁄ values that favor the model targeting precision of
recommendations in the hybridization, corresponding to the model’s expected behavior. Inter-
estingly, the optimal performance is obtained for a hybrid model, with ⁄ = 0.85: introducing a
moderate amount of diversity in the provided recommendations consequently enhances model
performances. Best performances are also found for ◊ values above 1, i.e., for models that give
more weight to similar users in the scoring process.

Figure 2.3 illustrates the validation diversity metric performance on the same exhaustive grid.
Diversity, defined in Section 1.4, corresponds to the mean degree of top-20 recommended items
on the user-side(Fig. 2.3(a)), and to the mean degree of top-20 recommended users on the
item-side (Fig. 2.3(b)). A low diversity value consequently corresponds to more diverse recom-
mendation lists: a low mean degree means that the recommendation lists comprise less popular

37

Figure 2.2: Heatmap visualization of the evolution of validation symmetrized mAP score with
the ⁄ and ◊ parameters of the SPHY model. The optimal value is found for ⁄ = 0.85 and
◊ = 2.2.

(a) (b)

Figure 2.3: Heatmap visualization of the evolution of validation diversity metrics with the ⁄

and ◊ parameters of the SPHY model, computed using top-L lists with L = 20. (a) Validation
user-side diversity. (b) Validation item-side diversity.

items or users. Interestingly, the two graphs have particularly distinct profiles. In Fig. 2.3(a),
we see that the most diverse models in terms of recommended items are obtained for low ⁄

values, corresponding to the expected behavior of the model. In Fig. 2.3(b), we see that the
most diverse models in terms of recommended users are obtained for low ⁄ values, as expected,
but also for low ◊ values, i.e., for ◊ < 1. Indeed, models with ◊ < 1 lower the weight of similar
users in the scoring process, leading to less di�erentiated users, and consequently more diversity
in the users recommended for a given item.

Finally, Fig. 2.4 illustrates the validation similarity metric performance on the same exhaus-
tive grid. Similarity, also defined in Section 1.4, corresponds to the mean overlap of top-20
recommendation lists of users on the user-side, illustrated in Fig. 2.4(a), and of items on the
item-side, illustrated in Fig. 2.4(b). We also see two distinct profiles here. In Fig. 2.4(a), we
see that the most dissimilar recommendation lists are obtained for ⁄ values in the [0.05; 0.7]
range, evolving accordingly with the ◊ values: as the hybrid model tends more and more towards
precision of recommendations, a higher reliance on similar users is required to get dissimilar

38

(a) (b)

Figure 2.4: Heatmap visualization of the evolution of validation similarity metrics with the ⁄

and ◊ parameters of the SPHY model, computed using top-L lists with L = 20. (a) Validation
user-side similarity. (b) Validation item-side similarity.

recommendation lists for all users. Indeed, polarizing users around their most similar peers ap-
pear to specialize their recommendation lists, and consequently lead to dissimilar lists overall.
In Fig. 2.4(b), we see that the most dissimilar items’ recommendation lists are obtained either
for low values of ⁄ and ◊ or, more interestingly — and counterintuitively —, for values of ◊ ¥ 1
and ⁄ > 0.5. Slightly less dissimilar lists are also obtained with values of ⁄ ¥ 0.2 and ◊ > 2, a
behavior already encountered on the user-side in Fig. 2.4(a).

2.2.3 Matrix factorization models
We examine in this benchmark two matrix factorization approaches based on the implicit feed-
back and BPR objectives, introduced in Section 1.3.3, that we respectively call MF - Implicit
and MF - BPR. For both models, hyperparameters are found using a combination of a hundred
trials of random search and hand fine-tuning. The MF - Implicit algorithm with best validation
symmetrized mAP performance used an embedding size d = 512, batches of size 256, a L2
penalty weight of 4e

≠7, a learning rate of 7e
≠4 and a logarithmic confidence with parameters

– = 4 and ‘ = 10. The confidence weights are illustrated in Fig. 2.5, which shows the evolution
of weights with the number of occurrences r — in the considered dataset, the maximal value of
r is 223, and confidence weights are consequently found in the [1; 14] range.

The MF - BPR algorithm with best validation symmetrized mAP performance used embeddings
of size d = 1024, batches of size 256, a L2 penalty weight of 2e

≠7 and a learning rate of 9e
≠5.

Both algorithms were trained with the Adam optimizer (Kingma and Ba, 2015), with early
stopping and a patience of 50.

39

Figure 2.5: Evolution of confidence weights c with the number of occurrences of a given couple
r, with a logarithmic weighing using – = 4, ‘ = 10.

2.2.4 Gradient tree-boosting models
Finally, we also include in this benchmark a content-filtering approach based on a gradient tree
boosting model implementation, LightGBM (Ke et al., 2017). To train this algorithm, we rely
on handcrafted, proprietary features describing the state of a given (date, user, item) triplet
and that can be split into three groups:

- Activity features. These features correspond to frequencies of activity, aggregated at
various levels: activity of the considered user, of the considered user on the considered
item, of the considered item, of the sector of activity of the considered user,. . . computed
with running means of various window sizes.

- Market features. These features correspond to the market data related to the considered
item, e.g., its price, yield, spread,. . . computed with running means of various window sizes
and transformed into z-scores.

- Categorical features. These features correspond to categorical, static information re-
lated to the considered triplet, e.g., the sector of activity of the considered user, the day
of the week, the issuer of the item,. . .

However, activity features describing the activity of a particular (user, item) couple require to
observe events for that couple to be computed. Consequently, for this experiment, we regard as
negative events at a given date all the (user, item) couples for which we observed at least one
positive event in the past six months and that are not positive at this date. To manage bonds’
illiquidity, we increase the proportion of positive events in this perimeter by considering that
positive (date, user, item) triplets remain positive for the following four business days. It follows
that the (date, user, item) perimeter used to train our LightGBM instances is only composed
of historical events. Consequently, this algorithm cannot perform predictions for (user, item)
couples that were not observed in the recent past at a given date, as activity features cannot be
computed for such couples. The LightGBM algorithm is trained on this dataset with a binary
cross-entropy objective.

To compare LightGBM instances to the collaborative filtering approaches presented above, we
keep as scoring perimeter the couples formed by all users and items observed during the training
period on all the dates of the split to be scored. If a (date, user, item) triplet is present in
the LightGBM dataset, it is attributed the score corresponding to the predicted probability of
positive event; if not, it is attributed a score of 0. This trick allows for comparing all our models,

40

but biases LightGBM average precision scores towards higher values. This can be explained by
the fact that couples obtaining a 0 score with this methodology are, overall, less likely to be
positive, and composed of less popular users and items. Consequently, for a given user (resp.
item), historical items (resp. users) will appear on top of the recommendation lists, leading to
overall better average precision scores. Consequently, LightGBM results presented in Section
2.2.5 should be taken with a grain of salt.

Hyperparameters for this algorithm are optimized using a combination of a hundred trials of
random search and hand-fine tuning. The algorithm with the best validation symmetrized mAP
performance used trees with a maximal depth of 20, a maximal number of leaves of 256 and a
minimum of 100 samples per leaf, a maximum of 500 trees, trained with a learning rate of 0.02,
a subsampling of 90% of the training data every 5 trees and early stopped with a patience of
50.

2.2.5 Overall benchmark
We present in this section the results obtained for all models considered in this benchmark
on all the metrics introduced in Section 1.4. Table 2.1 shows the symmetrized mAP scores on
validation and test sets for all models. We see that the best model in terms of symmetrized mAP
is LightGBM, as expected from the bias introduced in the scoring methodology and outlined
in Section 2.2.4. Interestingly, the second-best algorithm is the ⁄-Histo model — including a
temporal penalty in a basic historical model consequently provides a strong baseline model.

Table 2.1: Comparison of classic algorithms on symmetrized mAP scores, computed on the
validation and test sets. Metrics expressed in percentage.

Algorithm Valid mAP Test mAP
Histo 15.80 13.33

⁄-Histo 22.01 17.13
SPHY 11.06 9.94

MF - Implicit 13.87 11.61
MF - BPR 16.31 14.01
LightGBM 31.42 29.52

Let us now examine the overall AUC and AP metrics, and the decomposition of test symmetrized
mAP into user- and item-side mAP scores, as seen in Table 2.2. Expectedly, the best model in
terms of overall AUC is the MF - BPR algorithm, as this model is trained on a relaxation of
the AUC metric. We also remark that historical models rank higher among models in terms of
AP than AUC — historical couples are more likely to appear on top of recommendation lists as
investors tend to replicate a consequent portion of their trades, as seen in Section 1.5. As AP
puts a heavier weight on the top of recommendation lists, as explained in Section 1.4.2, securing
one good recommendation on the top of the list ensures strong AP performances. The same
phenomenon is exacerbated in the LightGBM experiment due to its restricted scoring perimeter.
Moreover, user-side mAP scores are always lower than item-side ones. Therefore, for the RFQ
prediction problem, ranking clients for financial assets is an easier task than ranking assets for
clients.

Finally, Table 2.3 presents the qualitative metrics results of all the considered algorithms. The
most diverse algorithm appears to be LightGBM, closely followed by ⁄-Histo. Interestingly,
LightGBM provided very similar recommendation lists on both the user and item sides — the
construction of the LightGBM dataset results in restricted pools of scored users and items but
does not restrain from recommending rather "novel" users and items. A surprising result is that
the most dissimilar recommendation lists were obtained with the ⁄-Histo model, closely followed

41

Table 2.2: Comparison of classic algorithms on overall AUC and Average Precision scores, and
user- and item-side mAP scores. Metrics computed on the test set, and expressed in percentage.

Algorithm Overall AUC Overall AP User-side mAP Item-side mAP
Histo 84.80 3.72 10.38 18.61

⁄-Histo 85.0 4.98 14.69 20.85
SPHY 90.46 1.61 7.42 15.06

MF - Implicit 91.61 2.12 9.29 15.46
MF - BPR 92.81 2.78 10.86 19.70
LightGBM 74.90 14.99 26.63 33.12

by the Histo model. Consequently, it appears that users, and reciprocally items, "specialize" on
a given set of products, and that item popularity is a relative notion among users.

Table 2.3: Comparison of classic algorithms on qualitative metrics — diversity (D) and similar-
ity (S) metrics obtained on the test set. Degrees taken into account for diversities are computed
on the training set. Metrics computed using L = 20.

Algorithm Duser Ditem Suser Sitem

Histo 91.75 183.28 8.28% 16.24%
⁄-Histo 85.29 166.94 7.37% 13.06%
SPHY 117.86 250.86 16.95% 38.95%

MF - Implicit 105.01 212.91 10.35% 22.07%
MF - BPR 100.24 183.89 9.76% 16.37%
LightGBM 81.10 161.44 69.93% 78.92%

2.3 Concluding remarks
The benchmark presented in this chapter makes it possible to better understand the di�erent
models and metrics introduced in Chapter 1, and provides further insights into the challenges
of future interest predictions. Notably, the benchmark shows that beating a good baseline is a
hard task. In this benchmark’s experiment, the simple Histo and ⁄-Histo models obtain very
competitive performances on almost all considered metrics, and ⁄-Histo is the second-best model
as determined by validation mAP performance, beating all the collaborative filtering approaches
considered. The low performance of collaborative filtering approaches can be attributed to
the non-stationarity of our data, compensated for with the temporal penalty in the ⁄-Histo
model. An in-depth study of this phenomenon and how collaborative filtering approaches can
be adapted to tackle it is conducted in Chapter 4.

Moreover, we also encountered the relative di�culty of comparing models using di�erent scor-
ing approaches, such as LightGBM and the collaborative filtering algorithms considered in this
benchmark. As these two approaches do not natively use the same scoring perimeters, reconcil-
ing them is inevitably done at the detriment of one of them. A competitor to LightGBM, using
the same scoring methodology, is introduced in Chapter 3.

42

Chapter 3

A supervised clustering approach to
future interests prediction

The work exposed in this chapter has been orally presented at the 24th Workshop of Economics
with Heterogeneous Interacting Agents and was selected for an oral presentation at the 13th

Financial Risks International Forum organized by the Institut Louis Bachelier. It has been
selected for publication in the Algorithmic Finance journal under the title "Deep Prediction of
Investor Interest: a Supervised Clustering Approach".

This chapter proposes a neural network architecture for the future interest prediction problem
that performs both investor clustering and modeling at the same time, thereby introducing
a supervised clustering approach. The relevance of this architecture for the clustering and
modeling tasks is controlled in an experiment on a synthetic scenario, and the performance of
the algorithm is monitored on two real-world databases, a publicly available dataset about the
position of investors in the Spanish stock market and a proprietary RFQ dataset from BNP
Paribas Corporate and Institutional Banking already presented in Section 1.2.

In this chapter, we examine the heterogeneity of investors and introduce a mathematical mod-
eling of this heterogeneity (see Section 3.1), we introduce the above-mentioned neural network
architecture designed to tackle heterogeneous clusters of investors (see Section 3.2), we exper-
iment this architecture on the synthetic and real-world datasets (see Section 3.3), we present
the path of ideas that led to the introduced design (see Section 3.4) and we elaborate on ways
to extend the current version (see Section 3.5).

43

3.1 Heterogeneous clusters of investors
Predicting future investor activity is a challenging problem in finance, as already stressed in
Chapter 1. Two of the challenges that make this problem particularly di�cult are the substantial
heterogeneity of both investors and assets (see Section 1.2), compounded by the non-stationary
nature of markets and investors and the limited time over which predictions are relevant. This
chapter explicitly tackles the first di�culty; the second one will be further explored in Chapter
4.

3.1.1 Translating heterogeneity
The heterogeneity of investors translates into a heterogeneity of investment strategies (Tum-
minello et al., 2012; Musciotto et al., 2018): for the same set of information, e.g., financial
and past activity indicators, investors can take totally di�erent actions. Take for instance the
case of an asset whose price has just decreased: some investors will buy it because they have
positive long-term price increase expectations and thus are happy to be able to buy this asset at
a discount; reversely, some other investors will interpret the recent price decrease as indicative
of the future trend or risk and refrain from buying it. We consequently expect a collection of
heterogeneous behaviors to emerge in our RFQ datasets.

It has been shown that ad hoc methods are surprisingly e�cient at clustering investors according
to their trades in a single asset (Tumminello et al., 2012). Besides, clusters of investors deter-
mined for several assets separately have a substantial overlap (Baltakys et al., 2018), which
shows that one may be able to cluster investors for more than a few assets at a time. The
activity of a given cluster may also systematically depend on some clusters’ previous activity,
which can then be used to predict the investment flow of investors (Challet et al., 2018). Here,
we leverage deep learning to train a single neural network on all the investors and all the assets
of a given market and give temporal predictions for each investor, following the content filtering
strategy exposed in Chapter 1, Section 1.3.2. Our goal is to leverage these clusters of investors,
expected to follow distinct investment strategies, to enhance predictions of single investors.

Formally, in our setting, we call strategy a mapping f from current information x to the expres-
sion of interest to buy and/or sell a given asset, encoded by a categorical variable y: f : x ‘æ y.
We call here

D = {fk : x ‘æ y}k (3.1)

the set of all the investment strategies that an investor may follow. Unsupervised clustering
methods suggest that the number of di�erent strategies that describe investors’ decisions is
finite (Musciotto et al., 2018). We therefore expect our dataset to have a finite number K of
clusters of investors, each following a given investment strategy fk. Consequently, we expect D
to be such that |D| = K, i.e.

D = {fk : x ‘æ y}k=1,··· ,K . (3.2)

Alternatively, D can be thought of as the set of distinguishable strategies, which may be smaller
than the total number of strategies and, therefore, be considered an e�ective set of strategies.
Consequently, a suitable algorithm to meet our goal needs to infer the set of investment strategies
D.

44

3.1.2 Non-universality of investors
A simple experiment shows how investors di�er. We first transform BNP Paribas CIB bonds’
Request for Quotation (RFQ) database, along with market data and categorical information re-
lated to the investors and bonds, into a dataset of custom-made, proprietary features describing
the investors’ interactions with all the bonds under consideration, as seen in Section 2.2.4. This
dataset is built so that each row can be mapped to a triplet (date, investor, financial product).
This structure allows us, for a given investor and at a given date, to provide probabilities of
interest in buying and/or selling a given financial product in a given time frame. As the final
decision following an RFQ is not always known, we consider the RFQ itself as the signal of
interest in a product. Consequently, we consider a given day to be a positive event for a given
investor and a given financial product on the day when the investor signaled his interest in that
product and the following four business days. The reason is twofold: first because bonds are by
essence illiquid financial products and second because this increases the proportion of positive
events.

At each date, negative events are randomly sampled in the (Investor, Financial Product) pairs
that were observed as positive events in the past and that are not positive at this date. Using
this dataset, we conduct an experiment to illustrate the non-universality of investors, i.e., the
fact that investors have distinct investment strategies. The methodology of this experiment is
reminiscent of the one used in Sirignano and Cont (2019) to study the universality of equity
limit order books.

Figure 3.1: Universality matrix of investors’ strategies: the y-axis shows investors’ sector used to
train a gradient tree boosting model while the x-axis shows investors’ sector on which predictions
are made using the model indicated on y-axis. Scores are average precision, macro-averaged
over classes and expressed in percentages.

We use a dataset constructed as described above with five months of bonds’ RFQ data. We
split this dataset into many subsets according to the investors’ business sector, e.g., one of these

45

subsets contains investors coming from the Insurance sector only. We consider here only the
sectors with a su�cient amount of data samples to train and test a model. The remaining
sectors are grouped under the Others flag. Note that this flag is mainly composed of Corporate
sectors, such as car industry, media, technology, telecommunications. . . For each sector, some of
the latest data is held out, and a LightGBM model (Ke et al., 2017) is trained on the remaining
data. This model is then used for prediction on the held-out data of the model’s underlying
sector, and for all the other sectors as well. For comparison purposes, an aggregated model
using all sectors at once is also trained and tested in the same way.

Because classes are unbalanced, we compute the average precision score of the obtained results,
as advised by Davis and Goadrich (2006), macro-averaged over all the classes (see Section 1.4.1),
which yields the universality matrix shown in Fig. 3.1. The y-axis labels the sector used for
training, and the x-axis is the section on which the predictions are made.

We observe that some sectors are inherently di�cult to predict, even when calibrated on their
data only — this is the case for Asset Managers of Private Banks and Pension Funds. On the
contrary, some sectors seem to be relatively easy to predict, e.g., Broker Dealers and, to some
extent, Central Banks. Overall, we note that there is always some degree of variability of the
scores obtained by a given model — no universal model gives good predictions for all the sectors
of activity. Thus follows the non-universality of clients. In addition, it is worth noting that
the aggregated model obtained better performance in some sectors than the models trained
on these sectors’ data only. As a consequence, a suitable grouping of sectors would improve
predictions for some sectors. This observation is in agreement with the above K-investment
strategies hypothesis.

Following on these hypotheses, the algorithm introduced in this chapter leverages deep learning
both to uncover the structure of similarity between investors, namely the K clusters, or strate-
gies, and to make relevant predictions on each inferred cluster. The advantage of deep learning
lies in that it allows solving both tasks at once and thereby unveils the structure of investors
that most closely corresponds to their trading behavior in a self-consistent way.

3.1.3 Related work
The work conducted in this chapter finds its roots in mixture-of-experts research, which began
with Jacobs et al. (1991), from which we keep the essential elements that drive the structure pre-
sented in Section 3.2, and more particularly the gating and expert blocks. A rather exhaustive
history of the research performed on this subject can be found in Yuksel et al. (2012).

The main inspiration for our work is Shazeer et al. (2017), which, although falling within the
conditional computation framework, presented the first adaptation of mixture of experts for deep
learning models. We build on this work to come up with a novel structure designed to solve
the particular problem presented in Section 3.1. As far as we know, the approach we propose
is new. We use an additional loss term to improve the learning of the strategies, reminiscent of
the one introduced in Liu and Yao (1999).

46

3.2 Introducing Experts Network

We introduce here a new algorithm called the Experts Network (ExNet). The ExNet is purposely
designed to be able to capture the hypotheses formulated in Section 3.1, i.e., to capture a finite,
unknown number K of distinct investment strategies D = {fk : x ‘æ y}k=1,··· ,K .

3.2.1 Architecture of the network

Figure 3.2: Global architecture of the Experts Network. The network is composed of two blocks:
an expert block, comprising n independent neural networks, and a gating block, consisting of an
independent neural network whose role is to allocate investors to the di�erent experts. These
blocks receive di�erent input data, indexed by the same (Date, Client, Financial Product)
triplet.

The structure of an ExNet, illustrated in Fig. 3.2, comprises two main parts: a gating block
and an experts block. Their purposes are the following:

- The gating block is an independent neural network whose role is to learn how to dispatch
investors to n experts defined below. This block receives a distinct, categorical input, the
gating input, corresponding to an encoding of the investors and such that the i-th gating
input sample is related to the same investor than the i-th experts’ input sample. Its output
consists of a vector of size n, which contains the probabilities that the input should be
allocated to the n experts, computed by a softmax activation.

- The experts block is made of n independent sub-networks, called experts. Each expert
receives as input the same data, the experts’ input, corresponding to the features used to
solve the classification or regression task at hand, e.g., in our case, the features outlined
in Section 3.1: for a given row, the intensity of the investor’s interest in the financial asset
considered, the total number of RFQ done by the investor, the price and the volatility
of the asset. . . As investors are dispatched to the experts through the gating block, each
expert will learn a mapping f : x ‘æ y that most closely corresponds to the actions of
its attributed investors. Consequently, the role of an expert is to retrieve a given fk,

47

corresponding to one of the K underlying clusters of investors we hypothesized.

The outputs of these two blocks are combined through

f(x|a) =
nÿ

i=1
p(i|a)fi(x), (3.3)

where a denotes the investor related to data sample x and p(i|a) is the probability that investor
a is assigned to expert i. Our goal is that K experts learn to specialize in K clusters. As K is
unknown, retrieving all clusters requires that n Ø K, i.e., n should be "large enough". We will
show below that high values of n do not impact the network ability to retrieve the K clusters;
using large n values therefore ensures that the n Ø K condition is respected and only impacts
computational e�ciency. The described architecture corresponds in fact to a meta-architecture.
The architecture of the experts is still to be chosen, and indeed any neural network architecture
could be used. For simplicity and computational ease, we use here rather small feed-forward
neural networks for the experts, all with the same architecture, but one could easily use experts
of di�erent architectures to represent a more heterogeneous space of strategies.

Both blocks are trained simultaneously using gradient descent and backpropagation, with a loss
corresponding to the task at hand, be it a regression or classification task, and computed using
the final output of the network only, f(x|a). One of the most important features of this network
lies in the fact that the two blocks do not receive the same input data. We saw previously that
the gating block receives as input an encoding of the investors. As this input is not time-
dependent, the gating block of the network can be used a posteriori to analyze how investors
are dispatched to experts with a single pass of all investors’ encodings through this block alone,
thereby unveiling the underlying structure of investors interacting in the considered market.

For a given investor a, the gating block computes attribution probabilities of investor a to each
expert

p(x|a) = Softmax (Wexperts ú x) , (3.4)

where x is a trainable d-dimensional embedding of the investor a, Wexperts is a trainable n ◊ d-
dimensional matrix where the i-th row corresponds to the embedding of the corresponding
expert, and we define Softmax(x)k = e

xk/
q

i
e

xi .

3.2.2 Disambiguation of investors’ experts mapping
The ExNet architecture is similar to an ensemble of independent neural networks, where the
gating block of the network gives the weighing of the average. We empirically noticed that
ExNets might assign equal weights to all experts for all investors without additional penalization.
To avoid this behavior, and help each investor follow a single expert, we introduce an additional
loss term

Lentropy = ≠ 1
|B|

ÿ

iœB

nÿ

j=1
p(j|ai) log p(j|ai), (3.5)

where B is the current batch of data considered, n is the number of experts, and p(j|ai) is the
attribution of investor ai to the j-th expert. This loss term corresponds exactly to the entropy
of the probability distribution over experts of a given investor. Minimizing this loss term will
therefore encourage distributions over experts to peak on one expert only.

48

3.2.3 Helping experts specialize
Without a suitable additional loss term, the network has a tendency to let a few experts learn
the same investment strategy, which also leads to more ambiguous mappings from investors
to experts. Thus, to help the network finding di�erent investment strategies and to increase
its discrimination power regarding investors, we add a specialization loss term, which involves
cross-experts correlations, weighted accordingly to their relative attribution probabilities. It is
written as:

Lspec =
nÿ

i=1

nÿ

j=1,j ”=i

wi,jfli,j (3.6)

with wi,j =
pipjq

n

i=1
q

n

j=1,j ”=i
pipj

if i ”= j, 0 else, (3.7)

and pi =
q

aœA
p

a

iq
aœA p

a
i >0

. (3.8)

Here, i, j œ {1, . . . , n}, fli,j is the batch-wise correlation between experts i and j outputs,
averaged over the output dimension, and pi is the batch-wise mean attribution probability to
expert i, with p

a

i
the attribution probability of investor a to expert i, computed on the current

batch of investors that counted this expert in their top L only. The intuition behind this weight
is that we want to avoid correlation between experts that were confidently selected by investors,
i.e., to make sure that the experts that matter do not replicate the same investment strategy. As
the number of the investors clustered around a given expert should not matter in this weighing,
we only account for the nonnegative probabilities for all the considered investors in the weights,
computed using relative mean probabilities pi. In some experiments, it was found useful to
rescale Lspec from [≠1; 1] to [0; 1].

This additional loss term is reminiscent of Liu and Yao (1999). As a matter of fact, in ensembles
of machine learning models, negatively correlated models are expected to perform better than
positively correlated ones. A better performance can also be expected from the experts of an
ExNet, as negatively correlated experts better span the space of investment strategies. As the
number of very distinct strategies grow, we can expect to find strategies that more closely match
the ones investors follow in the considered market, or the basis functions on which investment
strategies can be decomposed.

3.2.4 From gating to classification
Up to this point, we only discussed gating inputs related to investors. However, as seen above,
being able to retrieve the structure of attribution of inputs to experts only requires to use
categorical data as input to the gating part of the network. In fact, gating can be performed on
whatever is thought to be suitable — for instance, it is reasonable to think that bond investors
have di�erent investment strategies depending on the bonds’ grades or on the sector of activity
of the bond issuers. Higher-level details about investors could also be considered, e.g., because
investment strategies may depend on factors such as the sector of activity of the investor, i.e.,
whether it is a hedge fund, a central bank, or an asset manager, or the region of the investor.
The investor dimension could even be totally forgotten, and the gating performed on asset-
related categories only. Gating allows one to retrieve the underlying structure of interactions of
a given category or set of categories. Consequently, one can purposely set categories to study
how they relate to the problem one wants to study. However, this may impact the model’s
performance, as chosen categories do not necessarily have distinct decision rules.

Note also that the initialization of weights in the gating network has a major impact on the
algorithm’s future performance. To find relevant clusters, i.e., clusters that are composed of

49

unequivocally attributed categories and that correspond to the original clusters expected in the
dataset, categories need to be able to explore many di�erent clusters’ configurations before the
exploitation of one relevant configuration. Consequently, the gating block must be initialized
so that all the expert weights are fairly evenly initially distributed to allow for this exploration.
In our implementation, we use a random normal initialization scheme for the d-dimensional
embeddings of the categories and of the experts.

3.2.5 Limitations of the approach
Our approach allows us to treat well a known, fixed base of investors. However, it cannot
e�ciently deal with new investors or, at a higher level, new categories, as seen in Section 3.2.4,
as embeddings for these new types of elements would need to be trained from scratch. To cope
with such situations, we recommend using sets of fixed categories to describe the evolving ones.
For instance, instead of performing gating on investors directly, one can use investors’ categories
such as sector, region,. . . that are already present in the dataset and on which we can train
embeddings. Doing so improves the robustness of our approach to unseen categories. Note that
this limitation corresponds to the cold-start problem, already encountered in Section 1.3.5 and
further explored in Section 4.4.3.

3.3 Experiments
Before testing the ExNet architecture on real data, we first check its ability to recover a known
strategy set, to attribute investors correctly to strategies, and finally to classify the interest of
investors on synthetic data. We then show how our methodology compares with other algorithms
on two di�erent datasets: a dataset open-sourced1 as part of the experiments presented in
Gutiérrez-Roig et al. (2019), and a BNP Paribas CIB dataset. Source code for the experiments
on synthetic data and the open-source dataset is provided and can be found at https://github.
com/BptBrr/deep_prediction.

3.3.1 Synthetic data

Generating the dataset

Taking a cue from BNP Paribas CIB bonds’ RFQ database (cf. Section 1.2.2), we define
three clusters of investors, each having a distinct investment strategy, which we label as "high-
activity", "low-activity" and "medium-activity". Each cluster contains a di�erent proportion of
investors, and each investor within a cluster has the same activity frequency: the "high-activity"
cluster accounts for roughly 70% of the dataset samples while containing roughly 10% of the
total number of investors. The "low-activity" cluster accounts for roughly 10% of the samples
while containing roughly 50% of the total number of investors. The "medium-activity" cluster
accounts for the remaining number of samples and investors. In all the clusters, we assume that
investors are equally active.

We model the state of investors as a binary classification task, with a set of p features, denoted
by X œ Rp, and a binary output Y representing the fact that an investor is interested or not in
the considered asset. Investor a belonging to cluster c follows the decision rule given by

Ya = (‡(wT

a X) > U) œ {0, 1} (3.9)

, where
wa = wc + ba œ Rp

, (3.10)
1Data available at https://zenodo.org/record/2573031

50

wc œ Rp being the cluster weights and ba ≥ N (0, –) œ R an investor-specific bias, Xi ≥ N (0, 1)
for i = 1, · · · , p, U is distributed according to the uniform distribution on [0, 1], and ‡ is the
logistic function.

The experiment is conducted using a generated dataset of 100, 000 samples, 500 investors and
p = 5 features. This dataset is split into train/validation/test sets, corresponding to 70/20/10%
of the whole dataset. – is set to 0.5, and the cluster weights are taken as follows:

- High-activity cluster: whigh = (5, 5, 0, 0, ≠5)
- Low-activity cluster: wlow = (≠5, 0, 5, 0, 5)
- Medium-activity cluster: wmedium = (≠5, 0, 5, 5, 0)

These weights are chosen so that the correlation between the low- and medium-activity clusters
is positive, but both are negatively correlated with the high-activity cluster. In this way, we
build a structure of clusters, core decision rules, and correlation patterns that are su�ciently
challenging to demonstrate the usefulness of our approach.

Results

We examine the performance of our proposed algorithm, ExNet, against a benchmark algorithm,
LightGBM (Ke et al., 2017). LightGBM is a widespread implementation of gradient boosting, as
shown, for example, by the percentage of top Kaggle submissions that use it. The LightGBM is
fed with the experts’ input and an encoding of the corresponding investors, used as a categorical
feature in the LightGBM algorithm. For comparison purposes, experiments are also performed
on a LightGBM model fed with experts’ input and an encoding of the investors’ underlying
clusters, i.e., whether the investor belongs to the high-, low- or medium-activity cluster, called
LGBM-Cluster.

ExNets are trained using the cross-entropy loss since we want to solve a classification prob-
lem. The network is optimized using Nadam (Dozat, 2016), a variation of the Adam optimizer
(Kingma and Ba, 2015) using Nesterov’s Accelerated Gradient (Nesterov, 1983), reintroduced
in the deep learning framework by Sutskever et al. (2013), and Lookahead (Zhang et al., 2019).
For comparison purposes, experiments are also performed on a multi-layer perceptron model
fed with the experts’ inputs concatenated with a trainable embedding of the investors, called
Embed-MLP — consequently, this model di�ers from a one-expert ExNet in that such an ExNet
would not use an embedding of the investor to perform its predictions. All neural network mod-
els presented here used the rectified linear unit, ReLU(x) = max(x, 0), as activation function
(Nair and Hinton, 2010).

LightGBM, ExNet and Embed-MLP results are shown in Table 3.1. They were obtained using a
combination of random search (Bergstra and Bengio, 2012) and manual fine-tuning. LightGBM-
Cluster results used the hyperparameters found for LightGBM. These results correspond to the
model achieving the best validation accuracy over all our tests. The LightGBM and LightGBM-
Cluster shown had 64 leaves, a minimum of 32 samples per leaf, a maximum depth of 10, a
learning rate of 0.005, and a subsample ratio of 25% with a frequency of 2. ExNet-Opt, the
ExNet which achieved the best validation accuracy, used 16 experts with three hidden layers of
sizes 64, 128 and 64, a dropout rate (Srivastava et al., 2014) of 40%, loss weights ⁄spec = 7e

≠3

and ⁄entropy = 1e
≠3, a batch size of 1024, and a learning rate of 7e≠3. The Embed-MLP model

shown used two hidden layers of size 128 and 64, a dropout rate of 15%, an embedding size
d = 64, a batch size of 64, and a learning rate of 4.2e

≠5.

To study the influence of the number of experts on the performance of ExNets, we call ExNet-n
an ExNet algorithm with n experts and vary n. These ExNets used experts with no hidden
layers, batch-normalized inputs (Io�e and Szegedy, 2015), and an investor embedding of size

51

d = 64. They were trained for 200 epochs using early stopping with a patience of 20. These
experiments were carried out with a learning rate of e

≠3 and a batch size of 64, which led to
satisfactory solutions in all tested configurations. In other words, we only vary n to be able to
disentangle the influence of n for an overall reasonably good choice of other hyperparameters.
Only the weights attributed to the specialization and entropy losses, ⁄spec and ⁄entropy, were
allowed to change across experiments.

Table 3.1: Experimental results on synthetic data: accuracy of predictions, expressed in per-
centage, on train, validation and test sets, and on subsets of the test set corresponding to the
original clusters to be retrieved.

Algorithm Train Acc. Val Acc. Test Acc. High Acc. Medium Acc. Low Acc.
LGBM 96.38 92.05 92.41 92.85 90.47 92.34

LGBM-Cluster 93.89 92.33 92.94 93.03 92.54 93.89
Embed-MLP 93.87 92.88 93.19 93.20 93.14 92.24
ExNet-Opt 93.57 92.99 93.47 93.56 93.09 93.17

ExNet-1 74.86 74.56 74.56 80.39 48.67 38.72
ExNet-2 90.73 90.59 90.86 91.66 87.32 82.71
ExNet-3 92.73 92.50 93.06 92.97 93.47 93.89

ExNet-10 92.91 92.66 93.16 93.12 93.36 93.89
ExNet-100 92.71 92.55 93.04 92.96 93.41 93.89

Perfect model 93.62 93.51 93.71 93.75 93.52 94.82

Table 3.1 contains the results for all the tested implementations. As the binary classification
considered here is balanced, we use accuracy as the evaluation metric. This table reports re-
sults on train, validation, and test splits of the dataset, and a view of the test results on the
three di�erent clusters generated. As the generation process provides us with the probabili-
ties of positive events, it is also possible to compute metrics for a model that would output
these probabilities, denoted here as perfect model, which sets the mark of what good predictive
performance is in this experiment.

We see here that the LGBM implementation fails to retrieve the di�erent clusters completely.
LGBM focused on the high-activity cluster and mixed the two others, which led to poorer
predictions for both of these clusters, particularly for the medium-activity one. In comparison,
LGBM-Cluster performed significantly better on the medium- and low-activity clusters. Embed-
MLP better captured the structure of the problem but appears to mix the medium- and low-
activity clusters as well — the performance on the low-activity cluster is the lowest of the
three and the medium- and low-activity clusters’ decision functions are similar —,albeit getting
a better predictive performance. ExNet-Opt, found with random search, captured well all
clusters and obtained the best overall performances.

Moreover, the ExNet-n experiment shows how the algorithm behaves as n increases. ExNet-1
successfully captured the largest cluster in terms of samples, i.e., the high-activity one, partly
ignoring the two others, and therefore obtained poor overall performance. ExNet-2 behaved
as the LGBM experiment, retrieving the high-activity cluster and mixing the remaining two.
ExNet-3 perfectly retrieved the three clusters, as expected. Even better, the three clusters were
also perfectly retrieved with ExNet-10 and ExNet-100: this is because the ExNet algorithm,
thanks to the additional specialization loss, is not sensitive to the number of experts even if
n ∫ K, as long as there are enough of them. Thus, when n Ø K, the ExNet can retrieve the
K initial clusters and predict the interests of these clusters satisfactorily.

52

Further analysis of specialization

The previous results show that as long as n Ø K, the ExNet algorithm can e�ciently capture the
investment strategies corresponding to the underlying investor clusters. One still needs to check
that the attribution to experts is working well, i.e., that the investors are mapped to a single,
unique expert. To this end, we retrieved from the gating block the attribution probabilities to
the n experts of all the investors a posteriori. For comparison, we also analyze the investors’
embeddings of Embed-MLP. The comparison of the final embeddings of ExNet-Opt and the
ones trained in the Embed-MLP algorithm is shown in Fig. 3.3.

Figure 3.3: UMAP visualization of investors embeddings for both Embed-MLP (left) and ExNet
(right) algorithms. Colors correspond to investors’ original clusters: high-activity is shown in
blue, medium-activity in green and low-activity in red.

To visualize embeddings, we use here the UMAP algorithm (McInnes et al., 2018), which is par-
ticularly relevant as it seeks to preserve the topological structure of the embeddings’ data man-
ifold in a lower-dimensional space, thus keeping vectors that are close in the original space close
in the embedding space, and making inter-cluster distances meaningful in the two-dimensional
plot.

Consequently, the two-dimensional map given by UMAP is a helpful tool for understanding
how investors relate to each other according to the deep learning method considered. In these
plots, high-activity investors are shown in blue, low-activity investors in red and medium-
activity investors in green. We can see in Fig. 3.3 that the Embed-MLP algorithm did not
make an apparent distinction between the low- and medium-activity clusters, contrarily to the
ExNet, which separated these two categories except for a few low-activity investors mixed in
the medium-activity cluster. The ExNet algorithm was, therefore, completely able to retrieve
the original clusters.

The attribution probabilities to the di�erent experts of ExNet-Opt are shown in Fig. 3.4. We
see in this figure that the attribution structure of this ExNet instance is quite noisy, with three
di�erent behaviors discernable. The first group of investors corresponds to the low-activity
cluster, the second group to the medium-activity cluster, and the last one to the high-activity
cluster. Here, attributions are very noisy and investors of a same cluster are not uniquely
mapped to an expert.

However, it is possible to achieve a more satisfactory experts attribution, as one can see in Fig.
3.5 with the plots of ExNet-100. The more precise attribution comes from the fact that the
ExNet-100 instance used a higher level of ⁄entropy than ExNet-Opt — at the expense of some
performance, we can obtain far cleaner attributions to the experts. We see here on the left

53

Figure 3.4: Distribution over experts of all investors for ExNet-Opt, obtained with random
search. Each column shows the attribution probabilities of a given investor, where colors rep-
resent experts.

plot that all investors were attributed almost entirely to one expert only, with for each of the
corresponding experts mean attribution probabilities p > 99%, even with an initial number of
experts of 100, i.e., the n ∫ K setting. One can directly see on the UMAP plot three well-
defined, monochromatic clusters. We can also see here that a low-activity investor got mixed
in the medium-activity cluster, and that two separated low-activity clusters appear — these
separated clusters originate from the fact that some low- and medium-activity investors were
marginally attributed to the expert corresponding to the other cluster, as appearing on the
experts’ distribution plot.

Figure 3.5: Distribution over experts of all investors and UMAP visualization of investors em-
beddings for the ExNet-100 algorithm. Each column of the left plot shows the attribution
probabilities of a given investor, where colors represent experts. Colors on the right plot cor-
respond to investors’ original clusters: high-activity is shown in blue, medium-activity in green
and low-activity in red.

54

The ExNet-100 therefore solved the problem that we originally defined, obtaining excellent
predictive performance on the three original clusters and uniquely mapping investors to one
expert only, thereby explicitly uncovering the initial structure of the investors, a feature that
an algorithm such as Embed-MLP is unable to perform.

3.3.2 IBEX data

Constructing the dataset

This experiment uses a real-world, publicly available dataset published as part of Gutiérrez-
Roig et al. (2019) (https://zenodo.org/record/2573031) which contains data about a few
hundred private investors trading 8 Spanish equities from the IBEX index, from January 2000
to October 2007. For a given stock and each day and each investor, the dataset gives the end-
of-the-day position, the open, close, maximum, and minimum prices of the stock as well as the
traded volume.

We focus here on the stock of the Spanish telecommunication company Telefónica, TEF, as it
is the stock with the largest number of trades. Using this data, we try to predict, at each date,
whether an investor will be interested in buying TEF or not. An investor is considered to have
an interest into buying TEF when

�p
a

t = p
a

t ≠ p
a

t≠1 > 0, (3.11)

where p
a
t is the position of investor a at time t. We only consider here the buy interest, as the

sell interest of private investors can be driven by exogenous factors that cannot be modeled,
such as a liquidity shortage of an investor, whereas the buy interest of an investor depends,
to some extent, on market conditions. Thus, we face a binary classification problem which is
highly unbalanced: on average, a buy event occurs with a frequency of 2.7%.

We consider a temporal split of our data in three parts: training data is taken from January
2000 to December 2005, validation data from January 2006 to December 2006, and test data
from January 2007 to October 2007. We restrict our investor perimeter to investors that bought
TEF more than 20 times during the training period. We build two kinds of features:

- Position features. Position is shifted such that at date t corresponds pt≠1, and is nor-
malized for each investor using statistics computed on the training set. This normalized,
shifted position is used as a feature, along with moving averages of it with windows of 1
month, 3 months, 6 months and 1 year.

- Technical analysis features. We compute all the features available in the ta package
(Padial, 2018), which are grouped under five categories: Volume, Volatility, Trend, Mo-
mentum, and Others features. As most of these features use close price information, we
shift them such that features at a date t only use the information available up to t ≠ 1.

We are left with 308 rather active investors and 63 features composing six di�erent groups.

55

Results

ExNet and LightGBM are both trained using a combination of random search (Bergstra and
Bengio, 2012) and hand fine-tuning. Because of the class imbalance of the dataset, the ExNet is
trained using the focal loss (Lin et al., 2017), an adaptive re-weighting of the cross-entropy loss
introduced in Section 1.3.2. Other popular techniques to handle class imbalance involve under-
sampling the majority class and/or oversampling the minority one, such as SMOTE (Chawla
et al., 2002). The “ parameter of this loss is randomly searched, as any other hyperparameter
of the network. We also use the baseline buy activity rate of each investor in the training period
as a benchmark.

Table 3.2: Experimental results on IBEX data: average precision scores, expressed in percent-
age.

Algorithm Train Val Test
Historical 9.68 4.55 2.49

LGBM 22.22 7.53 5.35
ExNet-4 18.37 8.63 6.45

The LightGBM shown in Table 3.2 used 16 leaves with a minimum of 128 samples per leaf,
a maximum depth of 4, a learning rate of 0.002, a subsample ratio of 35% with a frequence
of 5, a sampling of 85% of columns per tree, with a patience of 50 for a maximum number of
trees of 5000. The ExNet shown used 4 experts with two hidden layers of size 32 and 32 with
a dropout ratio of 50%, embeddings of size d = 32, an input dropout of 10%, ⁄spec = 7.7e

≠4

and ⁄entropy = 4.2e
≠2, a focal loss of parameter “ = 2.5, a batch size of 1024, a learning rate of

7.8e
≠4 and was trained using Nadam and Lookahead, with an early stopping of patience 20. As

can be seen on this table, both algorithms beat the historical baseline, and the ExNet achieved
overall better test performance. While the precision of LightGBM is better in the training set,
it is inferior to that of ExNet in the validation set, a sign that ExNet is less prone to overfitting
than LightGBM.

Figure 3.6: Distribution over experts of all investors and UMAP visualization of investors
embeddings for the ExNet algorithm on the TEF dataset. Each column of the left plot shows
the attribution probabilities of a given investor, where colors represent experts — same colors
are used on the right plot. We call here cluster 1 the blue cluster on the right, cluster 2 the
blue cluster on the left and cluster 3 the red cluster on the top-left corner.

Figure 3.6 gives a more in-depth view of the results obtained by the ExNet algorithm. Three
distinct behaviors appear in the left plot. Some of the investors were entirely attributed to the

56

blue expert (Cluster 1), some investors used a combination of the blue expert and two others
(Cluster 2) and some used combinations of the light blue and red experts (Cluster 3). These
three clusters are remarkably spaced in the UMAP plot on the right. Therefore, it appears
that the ExNet retrieved three distinct behavioral patterns from the investors interacting on
the TEF stock, leading to overall better performance than the LightGBM, who was not able to
capture them, as the experiments performed in Section 3.3.1 show.

Experts analysis

We saw in Section 3.3.2 that the ExNet algorithm retrieved three di�erent clusters. Let us
investigate in more detail what these clusters correspond to. First, the investors’ typical trading
frequency attributed to each of these three clusters is clearly di�erent. The investors that were
mainly attributed to the blue expert in Fig. 3.6, corresponding to cluster 1 on the UMAP plot,
can be understood as "low-activity" investors, trading on average 2.1% of the time. Cluster 2
can be understood as medium-activity investors, buying on average 5.5% of the days; cluster 3
is made of high-activity investors buying on average 13.9% of the time. The ExNet therefore
retrieved particularly well three distinct behaviors, corresponding to three di�erent activity
patterns.

To get a better understanding of these three clusters, we can try to assess these clusters’
sensitivity to the features used in the model. We use here permutation importance, a popular
method in machine learning, whose principle was described for a similar method in Breiman
(2001). This method replaces a given feature by permutations of all its values in the inputs
and assesses how the model’s performance evolves in that setting. We applied this methodology
to the six groups of features: we performed the shu�e a hundred times and averaged the
corresponding performance variations. For each of the three clusters, we pick the investor who
traded the most frequently and apply permutation importance to characterize the cluster’s
behavior. Results are reported in Table 3.3.

Table 3.3: Percentage of average precision variation when perturbing features of the group given
in the first column for the three clusters appearing in Fig. 3.6, using permutation importance.
Cluster 1 corresponds to the cluster of low-activity investors, cluster 2 to the medium-activity
ones and cluster 3 to the high-activity ones.

Feature group Cluster 1 Cluster 2 Cluster 3
Position -37.4% -43.1% -23.7%
Volume -18.6% +10.6% -19.9%

Volatility -22.8% -4.5% -2.1%
Trend -9% -2.4% -3.7%

Momentum +1.7% +4.3% -13.5%
Others -0.7% +8.3% +0.2%

We see that the three groups have di�erent sensibilities to the groups of features that we use
in this model. While all clusters are particularly sensitive to position features, the respective
sensitivity of groups to the other features vary: leaving aside cluster 2 that only looks sensitive
to position, cluster 1 is also sensitive to volume, volatility, and trend, whereas cluster 3 is also
sensitive to volume and momentum. Consequently, the clusters encode not only the activity
rate, but also the type of information that a strategy needs, and by extension the family of
the strategies used by investors, thereby validating the intuition that underpins the ExNet
algorithm.

57

3.3.3 BNPP CIB data
The previous experiments proved the ability of the network to retrieve the structure of investors
with a finite set of fixed investment strategies, and the usefulness of our approach on a real-
world dataset. We now give an overview of the results we obtain on the BNPP CIB bonds’
RFQ dataset specified in Section 3.1 for the non-universality of clients’ study.

As a reminder, assets considered are corporate bonds. The data used ranges from early 2017 to
the end of 2018 with temporal train/val/test splits and is made of custom proprietary features
using clients-related, assets-related, and trades-related data, as seen in Section 2.2.4. Our goal
is, at a given day, to predict the interest of a given investor into buying and/or selling a given
bond; each row of the dataset is therefore indexed by a triplet (date, investor, bond). Targets
are constructed as previously explained in Section 3.1. In the experiment, we consider 1422
di�erent investors interacting around a total of more than 20000 distinct bonds.

The left-hand plot of Fig. 3.7 shows the distribution over experts for all the 1422 considered
investors. We see three di�erent patterns appearing: one which used the brown expert only,
another one the green expert only and a composite one. These patterns lead to four clusters
on the right-hand plot. In this plot, as previously done in the IBEX experiment, each point
corresponds to an investor, whose color is determined by the expert to which she is mainly
attributed, with colors matching the ones of the left-hand plot. We empirically remark that
these clusters all have di�erent activities: the larger brown cluster is twice more active than the
green one, the two smaller clusters having in-between average activities. The ExNet therefore
retrieved distinct behavioral patterns, confirmed by a global rescaled specialization loss below
0.5, hence negatively correlated experts.

Obtaining finer clusters could be achieved in multiple ways. A higher-level category could be
used as gating input: instead of encoding investors directly, one could encode their sector of
activity, in the fashion of the non-universality of clients experiment. With an encoding of the
investors, training an ExNet on a restricted set of investors corresponding to one of the retrieved
clusters only would also lead to a finer clustering of the investors — a two-stage gating process
could even directly lead to it and will be part of further investigations on the ExNet algorithm.
Note however that these maps (and ExNets) are built from measures of simultaneous distance,
hence, do not exploit lead-lag relationships — how ExNets could be adapted to a temporal
setting to retrieve lead-lag relationships will be worthy of future investigations as well.

Figure 3.7: Distribution over experts of all investors and UMAP visualization of investors
embeddings for the ExNet algorithm on the BNPP CIB Bonds’ RFQ dataset. Each column
of the left plot shows the attribution probabilities of a given investor, where colors represent
experts — same colors are used on the right plot.

58

On a global scale, these plots help us understand how investors relate to each other. Therefore,
one can use them to obtain a better understanding of BNP Paribas CIB business and how
BNP Paribas CIB clients’ behave on a given market through a thorough analysis of the learned
experts.

3.4 A collection of unfortunate ideas
Designing the ExNet architecture presented above took time, e�orts, and a consequent number
of dead ends. Throughout the development of this algorithm, and more generally, for all the
work presented in this thesis, Occam’s razor served as a guiding principle: when competing
algorithms led to similar results, we always favored the simpler one. This section presents,
along with milestone designs that led to the actual one, a compendium of potentially promising
ideas that led to mild disappointments, and consequently su�ered the razor blade.

3.4.1 About architecture
Although the network presented in Section 3.2 is inspired to a great extent by the work of
Shazeer et al. (2017), a lot of architectural variations were tried to obtain more satisfactory
results. We examine here two of the most promising ideas we tested.

Representing the shared features of investment strategies

The ExNet design corresponds to the intuition that on a given market, investors tend to
form clusters corresponding to particular investment strategies. Investment strategies, how-
ever, might share features — at the very least, their shared goal of making money. This core
behavior underpinning all potential investment strategies can be explicitly represented as an-
other independent neural network, receiving as input the same features experts do.

The corresponding architecture is depicted in Fig. 3.8. We see that an "average" block, using
the same input as experts, is systematically added to the recombination of experts, leading to
an output

f(x|a) = favg(x) +
nÿ

i=1
fi(x)p(i|a). (3.12)

In such a setting, experts fi(x) learn what amounts to residuals of the final output, in a manner
close to the first step of a boosting algorithm (Hastie et al., 2009, Chapter 10), or more recently
to a residual block (He et al., 2016).

This architecture was proven successful in learning the output but failed to cluster investors to
experts correctly, and was consequently abandoned to designs that succeeded at both tasks.

A gating strategy built for exploration

The initial design of the ExNet’s gating block was a lot closer to the architecture presented in
(Shazeer et al., 2017). The idea is that, for a given investor a, the gating block performs the
following computation :

p(x|a) = Softmax

3
KeepTopL

3
Wgatingx + ‘ ú

Ò
Softplus(Wnoisex)

44
(3.13)

where x is a trainable d-dimensional embedding of the investor a, Wnoise, Wgating are trainable
weights of the network, ‘ ≥ N (0, 1), the softmax function defined as before and with the
softplus function defined as Softplus(x) = log(1 + exp x). The KeepTopL function, introduced

59

Figure 3.8: Global architecture of the Average Network. The average block learns the core
behavior underpinning all investment strategies, and experts learn residuals describing how
these strategies di�er from the core.

in (Shazeer et al., 2017), is designed to restrict the scope of the gating process by transforming
its input so that only the top L values are considered. This function is written:

KeepTopL(x, L)i =
I

xi if xi in top L values of x;
≠Œ else. (3.14)

KeepTopL adds sparsity to the network, with L < n and usually set such that L π n. As we
want experts to specialize in the investment strategy of a particular cluster of investors, the
KeepTopL function drives the network away from ensembling strategies, i.e., a setting where
all investors are dispatched equiprobably amongst all experts, as an investor is restricted to
using at most L experts. However, setting L = 1 is problematic as a given investor will not
su�ciently try out new expert configurations. Consequently, L must be tuned along with the
other hyperparameters of the network.

Noise is introduced in the gating procedure through the ‘ term along with the Wnoise weight
matrix to enhance the exploration of expert configurations by a given investor. Since Wnoise

is trainable and shared by all investors’ embeddings, it allows for a given investor to set the
confidence it has in its attribution to given experts, and change it if not appropriate by setting
high levels of noise for irrelevant experts. Borrowing from the reinforcement learning vocabulary,
we can say that L enhances exploitation of relevant experts, whereas Wnoise enhances exploration
of experts attributions.

This gating architecture is the first one that led to successes in both prediction and clustering
tasks. However, the design introduces a new hyperparameter, L, which plays a crucial role
in the algorithm’s potential success. The discontinuity induced by the KeepTopL function
makes initialization of the network critical — for a given investor, experts not selected at the
beginning of training have a high probability not to be used at all, even though the noise term is
supposedly able to counterbalance this e�ect. L consequently needs to be large enough to cover
most experts in the beginning, which contradicts its purpose. The current design, through the

60

entropy loss, induces sparsity without enforcing it: it is a smoother, more straightforward way
to perform the same task that we consequently favored.

3.4.2 About regularization
The regularization terms presented in Sections 3.2.2 and 3.2.3 have known a series of evolutions
following the architectural ones seen above. We explore here the evolution of the specialization
and sparsity terms that led to their current versions.

Evolution of specialization term

The first version of the specialization term was inspired from the total variation measure
(Berestycki, 2016, Section 1.2). Total variation measures the distance between two probability
distributions. In a setting where experts output class probabilities, as is the case in the future
interests prediction setting, total variation can enforce the di�erentiation of experts outputs
by ensuring large distances between probability distributions. As we want to maximize total
variation and as it is bounded by 1, the corresponding loss term we first used was written

Lspec = 1 ≠ 1
n2|B|

nÿ

i=1

nÿ

j=1

ÿ

xœB

Cÿ

c=1
|f c

i (x) ≠ f
c

j (x)|, (3.15)

where n is the number of experts, B a batch of data, C the number of output classes and f
c

i
(x)

the output of expert i for class c œ [[1; C]]. This term did not lead to satisfactory results: the
L1 penalization of the di�erence of the outputs here drives them such that one gets close to 1
and the other close to 0. We deemed that such a penalty term harmed the optimization of the
prediction loss, and moved towards smoother versions of this penalty.

A smoother way to enforce di�erentiation of experts is to penalize their correlations, as exposed
in Section 3.2.3. As we want to avoid similar experts, the idea is to penalize correlated ones —
the corresponding term was written

Lspec = 2
n(n ≠ 1)

nÿ

i=1

nÿ

j=1,j ”=i

max
1
fli,j , 0

2
, (3.16)

where all parameters are defined as in Section 3.2.3. We see that this term di�ers from the
current one in two ways: the maximum function and the weighing of the individual terms.
The maximum served as a way only to penalize positively correlated experts. Although this
perfectly avoids replication, it misses the fact that slightly correlated experts are expected to
span the space of investment strategies better. The averaging here is also problematic: a good
specialization loss could be obtained by driving unused experts to be negatively correlated.
The weights used in the current version correct this by only accounting for used experts, which
allows for small clusters to still matter in the specialization penalty.

61

Evolution of parsimony term

The parsimony term currently used is an entropy loss, as seen in Section 3.2.2. Before using
entropy, we tried to enforce sparsity by acting on the variance of the probability distributions
outputted by the gating block — the highest possible variance of a probability distribution is
attained with a probability of 1 for a class, and 0 everywhere, which is the sparse result we wish
to obtain. The corresponding penalty was written:

Lparsimony = 1
|B|

ÿ

xœB

3 1
n‡2

x

4
, (3.17)

where B is a batch of data, n the number of experts and ‡x the standard deviation of the
gating output of the investor corresponding to sample x. However, the inverse used in this loss
term is problematic as the incurred penalty is not linear with regard to the underlying sparsity:
distributions far from being sparse would incur a high penalty, whereas distributions closer to
it would not matter much anymore in the term. Consequently, distributions trained with such
a penalty would not attain the level of sparsity we wished for.

The parsimony term then disappeared with the introduction of the KeepTopL function seen in
Section 3.4.1: sparsity was then a direct result of the L hyperparameter, and we consequently
abandoned the idea of enforcing it through a penalty term. The term finally reappeared in its
current entropic form, which allowed dispensing with the noised gating architecture.

3.4.3 About training
A few tricks were also tried to enhance the training of the network, as it was particularly di�cult
in the first iterations of the methodology to converge to an ExNet that would be both good
at prediction and clustering. Although these tricks disappeared in the current version of the
network, we mention them here for the record.

Using pre-computed embeddings

Training a relevant clustering of investors from scratch is a di�cult task. A reasonable idea is
to initialize these embeddings with meaningful values to help the network learning embeddings
leading to clusters that serve the prediction task. We tried using the embeddings of a matrix
factorization algorithm trained on the same predictive task, in the fashion of the implicit version
of matrix factorization introduced in (Hu et al., 2008) and explained in Section 1.3.3. However,
this initialization did not prove useful in helping either the prediction or the clustering tasks
and led to similar final results for both.

Alternating tasks training

ExNets solve two distinct tasks at once: a clustering task and a prediction task, both potentially
subject to overfitting the training data. Classic regularization techniques will prevent overfitting
for the prediction task, but might not be su�cient for the clustering one.

For this reason, we introduce an alternating training schedule. The idea is to split the training
data into two parts, both respecting investors’ proportions, i.e., an x% split of the dataset
should contain x% of each investor’s data. This ensures that both splits use the same set of
investors and that their relative appearance proportions are maintained in both splits. Training
is then done according to the following schedule:

1. Train the whole network for an epoch of a given split to warm the network up.

2. Loop until convergence:

62

- Train the gating block of the network only on a given split;
- Train the experts block of the network only on the other split.

The goal of this schedule was to improve the generalization of expert repartitions we obtain
from the network. Training the network in such a way, however, did not prove useful whatsoever
for improving out-of-sample performance on either task.

3.5 Further topics in Experts Networks
Although the ExNet algorithm proved its usefulness, as seen in Section 3.3, there is always
room for improvement. We introduce here a couple of enhancements of the algorithm that have
shown promise.

3.5.1 Boosting ExNets
Before introducing ExNets in the BNPP CIB RFQ prediction framework, leading algorithms
were all gradient tree-boosting models such as XGBoost (Chen and Guestrin, 2016) or Light-
GBM (Ke et al., 2017). The idea behind gradient boosting is to enhance the capacity of a simple,
basis function by adding an ensemble of such functions (Hastie et al., 2009, Chapter 10). Neural
networks are consequently not the perfect candidate for boosting, as these models are designed
to capture complexity through depth.

Instead of directly plugging a neural network as basis function of a gradient boosting model, it is,
however, possible to translate the core ideas behind boosting to a neural network architecture.
We consequently designed such an architecture to boost the performance of an ExNet — the
global architecture is depicted in Fig. 3.9. Experts blocks can here be thought of as the basis
function of the boosting strategy. A single gating network is shared across all boosting stages
to allow for a posteriori analysis of the obtained clustering. The output of stage k is written

fk(x|a) = ÷fk≠1(x|a) +
ÿ

i

fk,i(x) + p(i|a), (3.18)

and all stages incur a loss lk on their outputs. The whole network is trained in an end-to-end
fashion using stochastic gradient descent and backpropagation.

This network has the expected behavior: during training, each boosting stage has lower loss
values than its direct predecessor. However, the overall gain of performance over a classic ExNet
of this approach is marginal at the expense of far higher computation time. We consequently
still favor the original ExNet architecture.

The approach taken for this network is reminiscent of residual networks (He et al., 2016). A
residual network is made of residual blocks performing the computation y = F(x, {Wi}) + x,
where x is the block input, y the block output, F an operator and Wi, bi the parameters of the
operator — He et al. (2016) use F = W2f(W1x), with f an activation function. The initial goal
of residual networks is to allow for network growth by tackling the vanishing gradient problems
through skip-connections using the identity function. These connections allow for a better flow
of the gradient throughout the network. Huang et al. (2018) explore the connection between
residual networks and gradient boosting theory, through a BoostResNet model that boosts over
features, instead of the classical boosting over outputs. Instead of using boosting for the neural
network, a way to enhance the results of the ExNet could be to use residual networks as experts
in the network. As residual networks can be interpreted as ensembles of relatively shallow
networks (Veit et al., 2016), such a network would be an ensemble. . . of ensembles.

63

Figure 3.9: Global architecture of a boosted ExNet. A given stage k of boosting is computed
using previous stages as fk(x|a) = ÷fk≠1(x|a) +

q
i
fk,i(x) + p(i|a).

3.5.2 Towards a new gating strategy
The gating block of ExNets revolves around the idea of a one-to-one mapping between investors
and experts. In the current version of the algorithm, this mapping is encouraged by an entropy
loss, as seen in Section 3.2.2. However, the one-to-one mapping could be directly embedded
in the network architecture — for a given investor, we could sample the corresponding expert
using the categorical distribution defined by this investor’s gating output.

Sampling is, however, a non-di�erentiable operation: we already encountered this problem

64

with the KeepTopL function in Section 3.4.1. The Gumbel-Softmax distribution, introduced
simultaneously by Jang et al. (2017) and Maddison et al. (2017), solves this issue by replacing
the non-di�erentiable sample with a di�erentiable one. The trick is to draw samples y œ �n≠1,
with �n≠1 the n ≠ 1-simplex and n the number of experts, with yi defined as

yi = exp((log(fii) + gi)/·)
q

n

j=1 exp((log(fij) + gj)/·) . (3.19)

Here, g1, . . . , gn are i.i.d. samples drawn from a Gumbel(0,1) distribution — Gumbel(0,1) are
easily drawn with g = ≠ log(≠ log(u)) where u ≥ U([0, 1]) —, fi1, . . . , fin are the allocation
probabilities for the considered investors as obtained with the gating block of the ExNet, and ·

is a parameter controlling the temperature of the softmax distribution. The Gumbel-Softmax
has the nice property that when · ≠æ 0, the distribution converges to a categorical one.
Consequently, smoothly annealing · during training allows for a quasi-categorical distribution
with di�erentiable samples all along, solving the issues raised in Section 3.4.1. Guo et al. (2019)
present an adaptation of this trick in the context of transfer learning.

Gumbel-Softmax has been adapted to ExNets but is still in its infancy for now. It has shown first
promising results, leading to relevant yet imperfect one-to-one mappings between investors and
experts, but it appears to be very sensitive to the annealing schedule of the · parameter. The
development of a schedule leading to satisfying results will be the subject of further research.

3.6 Concluding remarks
In this chapter, we introduced a novel algorithm, ExNet, based on the financial intuition that in
a given market, investors may act di�erently when exposed to the same signals and form clusters
around a finite number of investment strategies. This algorithm performs both prediction, be
it regression or classification, and clustering at the same time. The fact that these operations
are trained simultaneously leads to a clustering that most closely serves the prediction task and
a prediction improved by the clustering. Moreover, one can use this clustering a posteriori,
independently, to examine how individual agents behave and interact with each other. To help
the clustering process, we introduced two additional loss terms that penalize the correlation be-
tween the inferred investment strategies and the entropy of the investors’ allocations to experts.
Thanks to an experiment with simulated data, we proved the usefulness of our approach, and
we discussed how the ExNet algorithm performs on an open-source dataset of Spanish stock
market data and data from BNP Paribas CIB.

This chapter extended the original article by providing insights into the development of the
algorithm, including the di�culties encountered, the failed attempts, and potential leads for
further improvements. Further research on ExNets will include how such architectures could be
extended and staged and how they could be adapted to retrieve lead-lag relationships in a given
market. Finally, it is worth noting that the ExNet architecture can be applied wherever one
expects agents to use a finite number of decision patterns, e.g., in e-shopping or movie opinion
databases (Bennett et al., 2007).

65

66

Chapter 4

Towards time-dependent
recommendations

The work exposed in this chapter has been selected as a short paper to the 14th ACM Confer-
ence on Recommender Systems, RecSys2020, under the title "History-Augmented Collaborative
Filtering for Financial Recommendations".

Chapter 3 tackled the challenge of investors’ behavioral heterogeneity. In this chapter, we pro-
pose a novel collaborative filtering algorithm that captures the temporal context of a user-item
interaction through the user and item recent histories, thereby tackling the non-stationarity of
investors’ interests with a custom neural network architecture. The performance and properties
of the algorithm are monitored in a series of experiments on a G10 bond request for quotation
proprietary database from BNP Paribas CIB.

This chapter introduces the context and reach of this work (see Section 4.1), explains in great
extent the neural network architecture proposed to meet the targeted goals (see Section 4.2),
presents experiments proving the usefulness of the said architecture (see Section 4.3) and elab-
orates on ways to further the proposed work, along with details about its development and a
new use case (see Section 4.4).

4.1 Tackling financial challenges
In this section, we briefly review some of the notions introduced in Chapter 1, expose the
challenges we want to tackle with our recommender systems and present recommender systems
research related to these challenges.

4.1.1 Context and objectives
When a client wants to trade a financial product, she either requests prices on an electronic
platform where many di�erent market makers operate in a process called a request for quotation
(RFQ), or contact a salesperson of a bank. Reciprocally, salespeople can also directly contact
clients and suggest relevant trade ideas to them, e.g., financial products held by the bank and on
which it might o�er a better price than its competitors. Section 1.1.1 already elaborated on the
crucial importance of proactive salespeople for the bank. To support salespeople’s proactivity,
we can provide them with an RFQ recommender system purposefully designed to assist them
in their daily tasks. Consequently, our goal is to design a recommender system that suits
the particularities of the financial world. The RFQ recommendation problem is an imperfect
information and an implicit feedback problem: we only observe the electronic RFQs performed

67

on the platforms on which BNP Paribas provides services, and we do not explicitly observe
clients’ opinions about the products they request. Implicit feedback is a classic recommender
system setup already addressed by the research community, e.g., in (Hu et al., 2008). The
financial environment, however, brings about specific issues that require attention. To that
end, the algorithm we introduce here has three main aims:

- To incorporate time. In a classic e-commerce environment, leaving aside popularity
and seasonal e�ects, recommendations provided at a given date may remain relevant for
a couple of months, since users’ shopping tastes do not markedly evolve with time. In
the financial world, a user is interested in a financial product at a given date not only
because of the product’s intrinsic characteristics but also because of the current market
conditions. Time is consequently crucial for RFQ prediction and should be taken into
account in a manner that allows for future predictions.

- To obtain dynamic embeddings. Being able to capture how clients (resp. financial
products) relate to each other and how this relationship evolves with time is of great
interest for business, as it allows getting a deeper understanding of the market. One of
our goals is consequently to keep the global architecture of matrix factorization algorithms
where the recommendation score of a (client, product) couple is given by the scalar product
of their latent representations.

- To symmetrize users and items. Classic recommender systems focus on the client-
side. However, the product-side is also of interest in the context of a corporate bank.
To control her risk, a market maker needs to control her positions, i.e., make sure she
does not hold a given position for too long. Consequently, coming up with the relevant
client for a given asset is also important, and the symmetry of clients and assets will be
integrated here in both our algorithms and evaluation strategies.

We tackle these goals with a context-aware recommender system that only uses client-product
interactions as its signal source. Notably, the context considered here is temporal and will be
inferred from clients’ and products’ past behaviors. The terms clients and users (resp. financial
products/assets and items) will be used interchangeably to match the vocabulary used in the
recommender systems literature.

4.1.2 Related work
Time-dependent collaborative filtering is an active area of research that has known many devel-
opments over the years (Shi et al., 2014). Introducing time in matrix factorization was done in
Koren (2009b) with the timeSVD++ algorithm. Ding and Li (2005) propose to downweigh past
samples in a memory-based collaborative filtering algorithm. Tensor factorization algorithms
can also handle time by considering the user-item co-occurrence matrix as a three-dimensional
tensor, where the additional dimension corresponds to time, e.g., in Xiong et al. (2010) and Wu
et al. (2018), the latter using neural network architectures. However, algorithms relying on ma-
trix or tensor factorization do not allow for making predictions in the future. Enhancing latent
factor models with Kalman filters as in Sarkar et al. (2007) or with LSTM cells (Hochreiter and
Schmidhuber, 1997) to capture the dynamics of rating vectors as in Wu et al. (2017) alleviates
this issue. Using historical data to introduce dynamics in a neural network recommender sys-
tem was done in Covington et al. (2016), where the authors assimilate YouTube users to their
viewing histories.

The algorithm introduced in this paper is, to some extent, reminiscent of graph neural networks
(Hamilton et al., 2017) and their adaptation to recommendation (Wang et al., 2019), where one
would stop at first-order connectivity. Using time to enhance recommendations with random
walks on bipartite graphs was explored in Xiang et al. (2010). How graph neural networks
behave with dynamic bipartite graphs is to the best of our knowledge yet to be discovered and

68

could lead to an extension of this work. A first attempt at financial products recommendation
was made in Wright et al. (2018), with the particular example of corporate bonds.

4.2 Enhancing recommendations with histories
We introduce a neural network architecture that aims at producing recommendations through
dynamic embeddings of users and items, that we call History-augmented Collaborative Filtering
(HCF).

4.2.1 Some definitions

Let U be the set of all users and I the set of all items. Let us note xu œ Rd for u œ U , xi œ Rd

for i œ I the d-dimensional embeddings of all the users and items we consider. Let t œ [[0 ; Œ]]
be a discrete timestep, taken as days in this work. For a given u, at a given t, we define ht

u
as the items’ history of u, i.e. the set of items found to be of interest to u in the past — we
respectively define ht

i as item i users’ history. We use here as histories the last n events that
happened strictly before t to either user u or item i. If at a given t we observe 0 Æ n

Õ
< n

previous events, histories are only formed of those n
Õ events. By doing so, we place users on the

same event scale — high-activity users will have histories spanning a couple of days, whereas
low-activity ones will span a couple of months (resp. for items). Histories formed of items/users
of interest in a past window of fixed size were also tried but led to inferior performance than
the previous history definition.

Figure 4.1: a. Global architecture of the HCF network, composed of two symmetric user and
item blocks. b. Illustration of the application of a one-dimensional convolution of kernel size 1
along the embedding dimension axis of our inputs xu and h

t
u for a user u œ U , where –, —, “ are

the parameters of the convolution filter and l œ [[1; d]]. The same computation holds for items
i œ I respectively.

69

4.2.2 Architecture of the network
Figure 4.1.a shows the global architecture of the HCF network. It is composed of two sym-
metric blocks — a user block and an item block. The core components of these blocks are
one-dimensional convolutions of kernel size 1 which compute dynamic embeddings of users
(resp. items). The user block of HCF uses the embeddings of users xu and the corresponding
histories’ average embeddings

h
t

u = 1
|htu|

ÿ

iœhtu

xi (4.1)

at time t as inputs, and respectively for items. If ht
u is empty, we use h

t
u = 0. Convolutions

are performed along the embedding dimension axis, considering user and history embeddings
as channels (see Fig. 4.1.b). Convolutions were chosen because we empirically found that
all architectures performing computations involving both xu,l and h

t

u,lÕ with l ”= l
Õ œ [[1; d]]

the l-th component of the embedding systematically led to poorer performance than a linear
component-wise combination of xu and h

t
u. One-dimensional convolutions of kernel size 1 along

the embedding size axis can be seen as a variation of the linear component-wise combination
with shared parameters across all components, thus allowing for network depth.

4.2.3 Optimizing HCF
The network is trained using the bayesian personalized ranking (BPR) loss (Rendle et al., 2009),
a surrogate of the ROC AUC score (Manning et al., 2010) already introduced in Section 1.3.3.
It is defined in (Rendle et al., 2009) as

LBP R = ≠
ÿ

(u,i,j)œD

ln ‡(xuij), (4.2)

where
D =

Ó
(u, i, j)|i œ I

+
u · j œ I\I

+
u

Ô
(4.3)

with I
+
u the subset of items that were of interest for user u in the considered dataset, and

xuij = xui ≠ xuj , with xui the score of the (u, i) couple. ‡ is the sigmoid function, defined as
‡(x) = 1/(1 + e

≠x). The underlying idea is to rank items of interest for a given u higher than
items of no interest for that u, and D corresponds to the set of all such possible pairs for all
users appearing in the considered dataset. D grows exponentially with the number of users
and items considered. It is consequently usual to approximate LBP R with negative sampling
(Mikolov et al., 2013).

In our proposed methodology, scores become time-dependent. Data samples are therefore not
seen as couples, but as triplets (t, u, i). To enforce user-item symmetry in the sampling strategy,
we define the sets

D
t

u =
Ó

(t, u, i, j)|i œ I
t,+
u · j œ I\ht

u
Ô

(4.4)

D
t

i =
Ó

(t, u, v, i)|u œ U
t,+
i

· v œ U\ht
i
Ô

(4.5)

with I
t,+
u the subset of items that had a positive interaction with user u at time t, and U

t,+
i

the
subset of users that had a positive interaction with item i at time t. For a given positive triplet
(t, u, i), we sample either a corresponding negative one in D

t
u or D

t

i
with equal probability. Note

that considering samples as triplets adds a sampling direction, as a couple that was active at a
time t may no longer be active at other times t + t

Õ or t ≠ t
ÕÕ, t

Õ
, t

ÕÕ
> 0. Such sampling strategies

will be more extensively studied in further iterations of this work.

70

4.2.4 Going further
HCF retains a matrix factorization-like architecture to allow for using dynamic embeddings
of users and items a posteriori, e.g., for clustering, visualization, analysis of the evolution of
relationships with time,. . . Note that the network outlined in this article only uses the user-item
interactions signal. More complex features could be used in the user (resp. item) block, as long
as they only depend on users (resp. items). Both blocks would then require encoders to map
user and item embeddings to the same space.

Using features could also alleviate the well-known cold-start problem (see (Koren et al., 2009), or
Section 1.3.5). This problem can arise for both users and items and is mainly targeted at users
in the literature. However, new clients are not frequent in the CIB business. The item cold-
start problem is a more important challenge to address in a financial recommender system, as
new financial products constantly appear in the markets. With the outlined methodology, such
products could not be scored directly. Nevertheless, some financial assets, and more particularly
bonds, can be defined by the collection of their characteristics: embedding these characteristics
instead of the bonds themselves would allow for forming scores for any bond at any time. This
approach is explored further in Section 4.4.3.

4.3 Experiments
We conduct a series of experiments to understand the behavior of the proposed HCF algorithm
on a proprietary database of RFQs on governmental bonds from the G10 countries. This
database accounts for hundreds of clients and thousands of bonds and ranges from 08/01/2018
to 09/30/2019. We examine here the performance of our proposal in comparison to benchmark
algorithms in two experiments. Benchmark algorithms, chosen for their relative respect of the
aims outlined in Section 4.1, are a historical baseline and two matrix factorization algorithms
trained with objectives corresponding to (Hu et al., 2008) and (Rendle et al., 2009), that we
respectively call MF - implicit and MF - BPR. Further details about these models can be found
in Section 1.3 and in Section 2.2. We adopt for MF - BPR the symmetrical sampling strategy
outlined in Section 4.2. The historical baseline scores a (user, item) couple with their observed
number of interactions during the training period considered.

In this section, the performance of our models is evaluated using mean average precision (mAP)
(Manning et al., 2010), defined as

mAP = 1/|Q| ú
ÿ

qœQ

AP(q) (4.6)

where Q is the set of queries to the recommender system, and AP(q) is the average precision
score of a given query q. To monitor the performance of our algorithms on both the user- and
item-sides, we define two sets of queries over which averaging:

- User-side queries. Queries correspond to the recommendation list formulated every
day for all users;

- Item-side queries. Queries correspond to the recommendation list formulated every
day for all items.

These two query sets lead to user- and item-side mAPs that we summarize with a harmonic
mean in a symmetrized mAP score used to monitor all the following experiments, as

mAPsym = 2 ú mAPu ú mAPi

mAPu + mAPi

. (4.7)

71

See Section 1.4 for further details on this score. The user and item perimeters considered for
the computation of the mAP scores are all the potential couples formed of all the users and
items encountered during the training period1

4.3.1 Evolution of forward performance with training window size
This experiment aims at showing how benchmark algorithms and our HCF proposal behave with
regards to stationarity issues. We already advocated the importance of time in the financial
setup — taking the user side, clients behavior is non-stationary, owing to the non-stationarity
of the financial markets themselves but also externalities such as punctual needs for liquidity,
regulatory requirements, . . . In machine learning, this translates into the fact that the utility of
past data decreases with time. However, machine learning and more particularly deep learning
algorithms work best when provided with large datasets (LeCun et al., 2015): there is an
apparent trade-o� between non-stationarity and the need for more training data. Our goal in
this experiment is to show that introducing time in the algorithm reduces this trade-o�.

To prove this, we examine the evolution of forward performance as the training window size
grows. We split the G10 bonds RFQ dataset into three contiguous parts — a train part that
ranges from up to 08/01/2018 to 07/31/2019 (up to one year), a validation part from 08/01/2019
to 08/30/2019 (one month) and a test part from 09/01/2019 to 09/30/2019 (one month). Vali-
dation is kept temporally separated from the training period to avoid signal leakages (De Prado,
2018). For all the considered algorithms, we train an instance of each on many training win-
dow sizes ranging from a week to a year using carefully hand-tuned hyperparameters and early
stopping, monitoring validation symmetrized mAP.

Figure 4.2: Evolution of validation symmetrized mAP with training window size. Whereas
benchmark algorithms seem to have an optimal training window size, our HCF proposal keeps
improving with the training window size.

We see in Fig. 4.2 that all benchmark algorithms present a bell-shaped curve. They attain a
peak after which their performance only degrades as we feed these models more data, a behavior
which corroborates the non-stationarity vs. amount of data trade-o�. On the contrary, HCF

1This scoring perimeter proved to be the fairest with regard to all considered models, as a model is consequently
scored only on what it can score and nothing else. Fixing the perimeter for all algorithms to all the couples
encountered in the maximal training window and attributing the lowest possible score to otherwise unscorable
couples only lowers the mAP scores of candidate algorithms that cannot obtain satisfactory results on such
window sizes, as the added couples are not frequently observed as positive events. This phenomenon is observed
in Section 2.2.5.

72

only gets better with training data size. Notably, HCF 12m, which obtained best validation
performance, used n = 20 and blocks with two hidden layers and ReLU activations.

To show that these bell-shaped curves are not an artifact of the hyperparameters chosen in
the previous experiment, we conduct a systematic hyperparameter search for multiple training
window sizes using a combination of a hundred trials of random search (Bergstra and Bengio,
2012) and hand-tuning. The optimal sets of hyperparameters for each considered window size
are then used as in the previous experiment to obtain graphs of their validation mAP scores
against the training window size. Results are shown in Figure 4.3. MF - BPR 6m and 12m
optimal hyperparameters happened to coincide, and their results are consequently shown on
the same graph.

Figure 4.3: Evolution of validation symmetrized mAP with training window size. Left: Optimal
MF - implicit for the 1m, 3m, 6m and 12m windows. A consensus arises around the 1m window.
Right: Optimal MF - BPR for the 1m, 2m, 3m, 6m and 12m windows. A consensus arises around
the 2m-3m windows, slightly favoring the 2m window.

We see here that for both MF - implicit and MF - BPR, hyperparameters optimized for many
di�erent window sizes seem to agree on optimal window size, respectively around one month and
two months, with slight variations around these peaks. Consequently, bell shapes are inherent
to these algorithms, which proves their non-stationarity vs. data size trade-o�.

To obtain test performances that are not penalized by the discontinuity of the training and test
windows, we retrain all these algorithms with the best hyperparameters and window size found
for the validation period on dates directly preceding the test period, using the same number of
training epochs as before. The performances of all the considered algorithms are reported in
Table 4.1.

Table 4.1: Window size study — symmetrized mAP scores, in percentage.

Algorithm Window Valid mAP Test mAP
Historical 3m 18.51 16.86

MF - implicit 1m 19.94 19.24
MF - BPR 2m 21.89 20.05

HCF 12m 24.43 25.02

We see here that our HCF algorithm, augmented with the temporal context, obtained bet-
ter performances on both validation and test periods than the static BPR and implicit MF
algorithms. Consequently, introducing time is essential to obtain better performances in the
financial setup that we consider.

73

4.3.2 Evolution of forward performance with time
It follows from the experiment conducted in Section 4.3.1 that our benchmark algorithms cannot
make proper use of large amounts of past data and have to use short training window sizes to
get good performances compared to historical models. Moreover, the results of these algorithms
are less stable in time than HCF results. Fig. 4.4 visualizes the results reported on Table 4.1
on a daily basis for all the considered algorithms.

Figure 4.4: Daily evolution of symmetrized mAP during the test period. Light shades cor-
respond to the true daily symmetrized mAP values, and dark ones to exponentially weighted
averages (– = 0.2) of these values.

We see a downward performance trend for all the benchmark algorithms — the further away
from the training period, the lower the daily symmetrized mAP. On the contrary, HCF has
stable results over the whole test period: introducing temporal context through user and item
histories hinders the non-stationarity e�ects on the model’s forward performances.

The results from Section 4.3.1 and the observed downward performance trend consequently
suggest that benchmark models need very frequent retraining to remain relevant regarding the
future interests of users (resp. items). A simple way to improve their results is to retrain these
models daily with a fixed, sliding window size w — predictions for each day of the testing
period are made using a model trained on the w previous days. Each model uses here the
number of epochs and hyperparameters determined as best on the validation period in the
previous experiment. Results of these sliding models are shown in Table 4.2, where HCF results
correspond to the previous ones.

Table 4.2: Sliding study — symmetrized mAP scores, expressed in percentage.

Algorithm Window Test mAP
Historical (sliding) 3m 20.32

MF - implicit (sliding) 1m 24.27
MF - BPR (sliding) 2m 24.46

HCF 12m 25.02

We see that both implicit and BPR matrix factorizations significantly improved their results
compared to their static versions from Table 4.1, but are still below the results of HCF trained
on 12 months. Consequently, our HCF proposal is inherently more stable than our benchmark
algorithms and captures time in a more e�cient manner than their daily retrained versions.

74

4.3.3 Evolution of forward performance with history size
To conclude our experiments, we examine how HCF’s performance evolves as we change the
number of events n considered in history. Histories of size n = 20 were found to be optimal in
validation in the experiment of Section 4.3.1. Our goal in this experiment is to examine how the
performance of HCF evolves with this history size, all other hyperparameters being equal. The
HCF algorithm was trained here in the same setup as the one leading to the test performances
from Table 4.1 with history size as the only free hyperparameter, investigated in the n œ [[5; 50]]
range. Results are shown in Figure 4.5.

Figure 4.5: Evolution of HCF test performance with history size, all other hyperparameters
kept fixed.

It appears from this graph that, all other hyperparameters being equal, there is an optimal
history size of around n = 20, which matches the optimal one found in the experiment of
Section 4.3.1. This result shows that HCF uses histories as a rather recent summary of the
behavior of a user/item. However, depending on the user or item, "recent" does not necessarily
mean the same thing — for low-activity users, n = 20 can span weeks, whereas it does not even
span a day for the high-activity ones. Consequently, it would appear that personalizing n such
that we use a distinct nú, ú œ {u, i}, for all users and items could help improve the results of
HCF. How this personalization could be done will be the subject of further research.

4.4 Further topics in history-augmented collaborative filtering
The previous sections introduced the HCF algorithm and presented experiments proving its
utility for the problem of future interest prediction. In this section, we examine supplementary
material and experiments that extend and complete the notions previously introduced in this
chapter.

75

4.4.1 Sampling strategies
Negative samplers for BPR have been the subject of numerous research attempts. Notably, Ding
et al. (2019) propose to use a di�erent, restricted set of items from which to sample for every user
and demonstrate that sampling negatives from the whole item space is not necessary to achieve
good performance. Zhang et al. (2013) introduce a dynamic negative sampler that samples with
more probability negative items ranked higher than positive ones — a related idea is presented
in Section 5.2.1. Section 4.2.3 introduces a symmetrized, history-aware sampling strategy for
attributing negative samples to the observed positive ones. Along with the development of HCF,
we tried many di�erent variations of the sampling strategy. We present five di�erent strategies
in this section, all following the user-item symmetry of Section 4.2.3:

- Naive sampling. The naive strategy uniformly draws negative samples from the entire
user (resp. item) pool, giving no consideration whatsoever to positives.

- Weighted sampling. The weighted strategy extends naive sampling by attributing sampling
weights to users (resp. items) corresponding to their observed popularity in the training
set. The idea is to compare positives to "relevant" negatives, where relevance is defined
by popularity.

- History-aware sampling. The history-aware strategy, presented in Section 4.2.3, uniformly
draws negative samples from the set of items (resp. users) that were not observed in the
current history of the considered user (resp. item). The idea is to restrain negatives from
being drawn among recent positives.

- Backward sampling. The backward sampling strategy uniformly draws negative samples
from the pool of users (resp. items) that were positive in the past n days. Taking the
user-side, the idea is to compare a positive (t, u, i) triplet with a negative (t, u, j) triplet
that is very likely to be of interest as well, and consequently focus on the fact that user
u (deliberately or not) chose i instead of j, a positive-negative pair that we deem to bear
more information than a naive one.

- Temporal sampling. As HCF considers (t, u, i) triplets, time is a sampling direction that
we can also consider among the user and item directions. The temporal sampling strategy
uniformly draws a past date t

Õ
< t for a positive (t, u, i) triplet, and consider as negative

the (tÕ
, u, i) triplet. The idea is to compare a couple (u, i) at times when it was positive

and negative and therefore where historical contexts were di�erent: it focuses on the fact
that the couple was positive at this particular t and (most likely) not at t

Õ, resulting in
an expectedly more informative pairing than a naive one.

As of now, the sampling strategies that were observed to be the most e�cient are the naive and
history-aware ones. Even more, the backward and temporal strategies failed to converge, as well
as the weighted strategy, depending on the chosen weighing scheme. A potential explanation
for this non-convergence is that BPR optimizes a relaxation of the AUC score, a score which
weighs equally all potential pairings of positive and negative events (see Section 1.4.2). The
failing strategies deplete the pool of potential negatives up to a point where, in the temporal
strategy, no negative user or item is shown to a given positive triplet: only a small part of all
potential pairs is considered, leading to poor convergence. However, these sampling strategies
try to focus on more informative triplets to pair with positive ones. Consequently, we could
expect a combination of multiple sampling strategies to perform better than a given strategy
alone. Such combinations will be the subject of further research on HCF.

76

4.4.2 Evolution of scores with time
To examine the behavior of the HCF algorithm, we can monitor the evolution of scores on
a more microscopic way than through global performance metrics such as symmetrized mAP.
The density of scores outputted by the HCF 12m model leading to the test performance shown
in Section 4.3.1 is shown in Fig. 4.6. We see that predicted scores seem to follow a normal
distribution, with outlying scores going up to 5.6. In the methodology introduced in 4.2, there
is no architectural choice constraining the admissible range of scores. This could be easily
corrected with a final score outputted by

f(Èxt

u, x
t

iÍ) (4.8)

with f a squashing function such as the sigmoid or hyperbolic tangent functions.

Figure 4.6: Density of scores. On the considered test period, predicted scores range from ≠25.6
to 5.6.

Let us now look at the particular scores we obtain for given (user, item) couples over time.
Figure 4.7 examines the case of a medium-activity user and a high-activity one on the same
item, and Figure 4.8 the case of a low-activity user on two distinct items. The first thing we can
note in Fig. 4.7 is that the scoring scale of a particular user changes a lot — in Fig. 4.7(a) scores
range between 2.5 and 5.6 on the considered period, and in Fig. 4.7(b) scores range between
≠6.5 and ≠4.3, even though the user considered in (b) is reputedly more active. Consequently,
it seems that scores are not comparable for two particular users in the proposed methodology
— a characteristic that the use of a squashing function for scores can correct. Moreover, we
see in Fig. 4.7(a) that scores increase every time the user declares an interest in the considered
product — integrating the product in the user’s history consequently helps driving scores up
for that particular product, a characteristic we expected from our methodology. The same
only partly holds for the high-activity user of Fig. 4.7(b). As histories are restricted to the n

last interests of a user, a highly-active one will have a fast history turnover, hence a potential
fast drop in interest for the considered item. Finally, we see that even though the scored item
is the same for both users, the medium-activity user’s score decreases over time, whereas the
high-activity one seems to be mean-reverting.

Figure 4.8 illustrates the evolution of scores with time for a same low-activity client on two
di�erent items. In Fig. 4.8(a), we see that the score of the item increases considerably after
the reported trade. The score then drops a few days after and stabilizes at a higher value than
before the trade. If Fig. 4.7(b) explored the case of a frequent history turnover, this figure
illustrates the opposite: the drop in score can be imputed to a trade on another item, and the

77

(a) (b)

Figure 4.7: Evolution of scores with time. Dates are in Excel format, and dotted vertical lines
represent true events during the considered period on the considered (user, item) couple. Here,
the same item is considered with two distinct users. (a) This figure illustrates the case of a
medium-activity client. We see that the score increases every time the item is traded, and that
it globally decreases over time. (b) This figure illustrates the case of a high-activity client. We
see that the score most often increases when the item is traded, and can decrease after a trade,
a behavior we impute to the frequent history turnover of high-activity clients. On a global scale,
the score has a mean-reverting behavior.

stable behavior to a quasi-frozen history. The same behavior can also be seen in Fig. 4.8(b).
However, the score seems to be more unsteady — this behavior can be imputed to the fact that
the considered item is more active than the previous one, and consequently has a faster-evolving
embedding due to its faster history turnover.

These four examples allow us to delve further into the microscopic behavior of the HCF algo-
rithm. Notably, we see the influence of histories on the predicted scores — including items (resp.
users) in the users’ (resp. items’) histories drives scores higher for these items. Consequently,
these graphs validate the methodology pursued with HCF: enhancing static embeddings with
histories lead to dynamic scorings that evolve accordingly with histories’ contents.

4.4.3 Solving cold-start
Section 4.2.4 provided a first insight into ways to solve the cold-start problem with the proposed
methodology. In this section, we develop in greater extent how to solve cold-start and present
results on the dataset studied in the experiments of Section 4.3. Note that this section focuses
on item cold-start, but the presented methodology is also applicable to user cold-start.

Our goal is to replace the static embedding used to represent items with an embedding ob-
tained through numerical and categorical features describing the state of the item at time t.
Consequently, the dynamics in the network might now come from both the item latent repre-
sentations, e.g., through market-related numerical features, and the usage of histories. Calling
fnum,ú and fcat,ú respectively the numerical features and the embeddings associated to the cat-
egorical features related to ú œ {u, i} and keeping the notations introduced in Section 4.2, we
now use

xú = Wú([fnum,ú, fcat,ú]) (4.9)

as embedding for ú, where [·, ·] is the concatenation operator and Wú œ RN◊d is a projection
matrix, with N = (|fnum,ú| +

q
l
dim(fcat,ú,l)) is the size of the featurized representation, d

the target embedding size and textdim(fcat,ú,l) the dimension of the l-th category’s embedding.

78

(a) (b)

Figure 4.8: Evolution of scores with time. Dates are in Excel format, and dotted vertical lines
represent true events during the considered period on the considered (user, item) couple. Here,
the same user is considered with two di�erent items. (a) This figure illustrates the case of
a low-activity client on a given item. The score increases considerably after the trade, and
stabilizes to a higher value than before the trade a few days later. (b) This figure illustrates
the case of a low-activity client on a more active item than in (a). The score increases after the
trade as well, and is more unsteady due to the history turnover of the scored item.

Note that this formulation does not prevent from using a static embedding directly related to
the identity of ú, as an encoding of the identity could be included in the categorical features
describing ú. All embeddings of users, items, and their histories are computed in this manner.

Let us consider a simple version of this "featurized" HCF algorithm. As item cold-start is the
main concern in our setting, we keep for users the previously introduced static embeddings. In
this version, items are represented by a collection of numerical and categorical features:

- Numerical features. We use as numerical features the annualized time to maturity and
time since issuance, and the current coupon rate of the bond.

- Categorical features. We use as categorical features embeddings of the bond’s ticker,
the emission currency, the coupon type, the bond’s rating, and the corresponding bucket
of issued amount. Sizes of these embeddings are hyperparameters of the network.

We train this algorithm on the same training and validation ranges and with the same hyperpa-
rameters than the 12m HCF of Section 4.3.1, and obtain test performance in the same manner.
However, due to technical di�culties related to the ways we associate features to the historical
elements, we resort here to the naive sampling strategy described in Section 4.4.1. Results are
shown in Table 4.3. We see that the performance of the featurized version of HCF is slightly
below the "classic" one in this setting, but still above the performance of the sliding algorithms
introduced in Section 4.3.2. We only use here a small number of features to characterize bonds
— adding features related to market data would most certainly help enhance performances.

Interestingly, we remarked that validation loss was more unsteady in the featurized version than
the classic one when training the algorithm. As we use a restricted set of features to characterize
items, the representation of a negatively sampled item might be close to a positive one, leading
to ambiguous positive-negative comparisons. Consequently, a richer set of features would lead
to improved performances and a more stable training.

Moreover, these two versions of HCF can be compared using the qualitative metrics introduced
in Section 1.4.3. The results are shown in Table 4.4. For a reminder, diversity measures the
mean degree of the objects present in the top-L recommendation lists of the considered side

79

Table 4.3: Comparison of classic and featurized versions of HCF — symmetrized mAP scores,
in percentage.

Algorithm Valid mAP Test mAP
HCF 24.43 25.02

featurized HCF 23.92 24.90

— i.e., Duser measures the mean degree of the top-L items recommended — and similarity
measures the overlap between the top-L recommendation lists of the considered side — i.e.,
Sitem measures the average percentage of common users between the top-L recommendation
lists of items. We see in Table 4.4 that the featurized HCF has more diverse recommendations
and less similar recommendation lists on both the user and item sides. Consequently, using
"featurized" representations of items improves the diversity of the provided recommendations.

Table 4.4: Comparison of classic and featurized versions of HCF — diversity (D) and similarity
(S) metrics obtained on the test set. Degrees taken into account for diversities are computed
on the training set. Metrics computed using L = 20.

Algorithm Duser Ditem Suser Sitem

HCF 94.7 211.5 17.2% 21.0%
featurized HCF 85.3 195.8 11.3% 16.9%

Using features to represent items paves the way to new potential representations of scores,
extending the work presented in Section 4.4.2. Figure 4.9 illustrates the evolution of scores for
a particular user with the values of two numerical features: time since issuance, and time to
maturity. Plotted scores correspond to the test period, defined in Section 4.3.1 as ranging from
09/01/2019 to 09/30/2019. The chosen user is the most active one during this period, and items
plotted in this figure are American Treasury bonds — we see that a gap appears on both figures,
originating from the fact that Treasury bonds are emitted every five years. We see that both
Fig. 4.9(a) and Fig. 4.9(b) present an S-shaped score evolution: the most attractive bonds are
the newly emitted ones, and close-to-maturity bonds are the least appealing for the considered
user. We see that the predicted scores place positive events on average above negative ones, as
shown by the dotted lines representing the attributed average scores to positive and negative
events. Interestingly, the considered user showed interest in less than 10-years-old bonds only
but spanned almost entirely the range of maturities.

If the plots from the classic version of HCF shown in 4.4.2 help us validate the expected behavior
of the algorithms, the featurized version helps us uncover more information about the behavior
of particular investors on the markets. Consequently, featurized HCF has two main advantages
over its classic version. First, featurized HCF solves the cold-start problem — using features
to represent users and items allows for computing scores for any couple at any time, provided
that these new users and items can be defined in terms of the features used to train the HCF
model. Second, featurized HCF allows for richer a posteriori analyses of scores than the ones
permitted with the classic version and is thus of greater interest to understand the business.

On a final note, let us elaborate on user cold-start. We already advocated in Section 4.2.4 that
the user cold-start is not a relevant problem in finance, as corporate banks such as BNP Paribas
deal with a rather fixed base of investors. Moreover, if we wanted to tackle user cold-start, fully
"featurized" user representations would not solve the problem entirely as a unique representation
of users as features, at the exclusion of the user’s identity, is di�cultly achievable. Indeed, the
potential features we can use to represent users include, e.g., numerical data about invested
amounts, size of the user’s portfolio, the user’s sector of activity, the user’s region. . . which

80

(a) (b)

Figure 4.9: Evolution of American Treasury bonds scores during the test period for the most
active user with two di�erent features. Figure (a) plots the evolution of score with the annual-
ized elapsed time since issuance, and Figure (b) plots the evolution of score with the annualized
remaining time to maturity. Red dots correspond to positive events on the considered period,
and blue ones to negative events. The red and blue horizontal dotted lines respectively repre-
sent the average score of positive and negative events. Both figures are S-shaped, showing that
newly emitted bonds are the most attractive and close-to-maturity ones the least attractive.
On average, positive events were scored higher than negative ones.

are not su�cient to di�erentiate all users. However, these features can help us hinder the
e�ect of the clients’ heterogeneity (see Section 1.2.2) on the network’s training. Using the
notation introduced above, we define user embeddings as xu = Wu([fnum,u, fcat,u]), with the
users’ identities included among others in the considered categories of fcat,u.

Such user embeddings share many parameters: embeddings corresponding to a class of a given
category, e.g., European investors, will be trained every time a European investor appears in
training, and all users share the Wu weights projecting the embedding to the targeted size.
Contrarily to an algorithm which would only embed users’ identities, these featurized user
representations have shared elements across users. A low-activity client, which embedding will
only be trained when the client is encountered during training, would consequently obtain a
more informative representation with the featurized version. Proving that low-activity users get
improved performance from such a strategy is yet to be done and will be the subject of further
research.

4.4.4 Application to primary markets of structured products
Section 1.1.2 explores bonds and options, and gives insights into their potential interests to
investors. However, as appealing as these financial products can be, they might not su�ce to
meet the specific needs of some investors. When investors want to invest in products tailored
to their current situation, they have to rely on structured products. Structured products are
flexible, customizable investments that are usually defined as the combination of a risk-free
asset, such as a zero-coupon or governmental bond, and a risky asset, such as an exotic option.
As structured products are customized to the needs of a given investor, they are particularly
illiquid products in secondary markets. Therefore, we focus on the primary market of structured
products and aim at anticipating clients’ needs in that particular market. This section explores
the problem of structured products primary recommendation and outlines a methodology for
solving it.

81

According to Bloomberg, the structured products market weighed seven trillion dollars in 2019
(Bloomberg Professional Services, 2019). There are many di�erent kinds of structured products
— two popular ones are the following:

- Reverse Convertible. Reverse Convertibles are financial products linked to a particular
stock or basket of stocks that are particularly relevant in situations where an investor
expects a stable or low increase in the underlying. They deliver regular, high coupons
and a payout at maturity that depends on the closing values of the underlying — if
the underlying never closes below a given barrier, the payout corresponds to the initial
payment (the principal); otherwise, the payout corresponds to the principal discounted by
the actual performance of the underlying. Reverse convertibles are typically short-term
investments, with a maturity of one year.

- Autocall. Autocalls are financial products linked to a particular stock or basket of stocks
that are particularly relevant in situations where an investor expects a stable or low in-
crease in the underlying but are more restrictive than reverse convertibles and consequently
less expensive. An autocall delivers regular, high coupons and a payout that depends on
the closing values of the underlying — if the underlying closes above a predetermined bar-
rier, the principal is immediately paid and the investor will not receive further coupons;
if the underlying never closes above a second given barrier, the payout corresponds to
the principal, and otherwise the payout corresponds to the principal discounted by the
actual performance of the underlying. Autocalls are typically medium-term investments
that span a few years.

These two examples give insights into the customizable characteristics of structured products,
from the underlying stock or basket of stocks to the specific barriers required for autocalls
and reverse convertibles. Our goal is to design a model that could help structured products’
salespeople better serve their clients by providing them with relevant structured product ideas,
i.e., characteristics that match their current needs. More specifically, the chosen model should
be able to score any collection of characteristics for any particular investor to help salespeople
navigate potentially interesting ideas for their clients. To pursue this goal, we have at our
disposal data corresponding to the structured products that BNP Paribas CIB clients bought,
and at what date they bought them. Contrarily to the previously seen situations, this data
does not come from D2C platforms (see Section 1.1.1), but from the Over The Counter (OTC)
trading activity of the bank.

As structured products are customized to match the interests of their investors at a particular
time, there is no notion of "unique product" on which we can rely, such as in bonds. When a
client invests in a structured product, she invests in a collection of characteristics that suits her
needs at that time. A specific set of characteristics can still be tagged as a unique product to
allow for our previous methodologies, but it is highly doubtful that these characteristics will
be of interest to another client. Consequently, historical baseline algorithms that rely solely on
(user, item) couple frequencies for their predictions are not as relevant as previously to solve the
structured products’ primary recommendation problem. More broadly, only algorithms that do
not su�er from the cold-start problem can be used to e�ciently solve this problem.

The featurized HCF algorithm introduced in Section 4.4.3 is consequently one of the few pro-
posals that both match the challenges of structured products’ recommendation and the targeted
goals, and allows for taking time into account in a satisfying way, as seen in the experiments of
Section 4.3 and extended in Section 4.4.2. Using a set of proprietary features to describe the
characteristics of the structured products, the product’s underlying and its market conditions,
we can train a featurized HCF model with the naive sampling strategy from Section 4.4.1 and
contiguous splits of data, following the methodology outlined in Section 4.3.1. Note that it is
also possible to use content-filtering approaches, as seen in Section 1.3.2, to solve this problem,

82

using the same kind of features as the ones outlined above for HCF. Such algorithms could be
trained on a cross-entropy objective, with negative events sampled as in the HCF methodology
— the imbalance ratio should be controlled to obtain relevant probabilities.

As a given structured product will only appear a couple of times in our data, scoring the
algorithms becomes particularly tricky: the methodologies explained in Section 1.4 and 4.3 are
not applicable anymore, as restraining the scoring perimeter to the users and items observed
during training would not capture the actual trades that happened during the testing period.
Consequently, we change the scoring perimeter previously defined as all potential (user, item)
couples formed of users and items appearing in the training period to a perimeter defined by
the couples formed of all users seen during the training period and all the products that were
traded during the past month. This provides a perimeter of relevant items to which compare
the scores predicted for the positive ones. As previously, we can use the symmetrized mAP
score for evaluation. Table 4.5 shows first results of three algorithms on the primary structured
products prediction problems: a historical baseline obtained as suggested above by considering
sets of characteristics as our unique products, a "featurized" MF trained with the BPR loss,
and a "featurized" HCF model — see Section 4.4.3 for more details. These algorithms use a
training set that can range from 02/01/2019 to 12/31/2019, a validation set that ranges from
01/01/2020 to 01/31/2020 and a test set that ranges from 02/01/2020 to 29/02/2020. We use
for these algorithms the window sizes the closest possible to the optimal ones found in Section
4.3.1, and the MF and HCF algorithms use the same values for their common hyperparameters.

Table 4.5: Comparison of historical, featurized MF and HCF algorithms on the primary struc-
tured products prediction problem. Symmetrized mAP scores, expressed in percentages.

Algorithm Valid mAP Test mAP
Histo - 3m 10.96 8.75

featurized MF (BPR) - 2m 13.67 11.93
featurized HCF - 11m 34.33 32.75

We see that the featurized HCF obtained, by far, the best validation and test performances.
Note that the featurized HCF algorithm only di�ers from featurized MF by its usage of histories.
Consequently, it appears that the introduction of time in the primary prediction problem is
crucial, validating again the approach taken for HCF. Further research e�ort will be devoted to
improving our models for the primary structured product prediction problem.

4.5 Concluding remarks
This chapter introduces a novel HCF algorithm, a time-aware recommender system that uses
user and item histories to capture the dynamics of the user-item interactions, and that provides
dynamic recommendations that can be used for future predictions. In the context of financial
G10 bonds RFQ recommendations, we show that for classic matrix factorization algorithms, a
trade-o� exists between the non-stationarity of users’ and items’ behaviors and the size of the
datasets that we use for training. This trade-o� is overcome with history-augmented embed-
dings. Moreover, such embeddings outperform sliding versions of classic matrix factorization
algorithms and prove to be more stable predictors of the future interests of the users and items.

This chapter also supplements the HCF algorithm with its featurized extension, provides insights
into potential sampling strategies, studies predicted scores, and presents a use-case for which
the featurized version of HCF is particularly relevant. Further research on the HCF subject will
include how history sizes could be personalized, how sampling strategies could be combined and
how we could tackle clients’ heterogeneity more e�ciently with featurized user representations.

83

84

Chapter 5

Further topics in financial
recommender systems

Developing the two algorithms presented in chapters 3 and 4 required countless experiments, as
can be seen in both chapters from the many iterations these algorithms have known. However,
iterating on the models introduced in the previous chapters is not the only work that has been
done during the elaboration of this thesis. Consequently, this chapter collects, haphazardly,
the other experiments we conducted and ideas we developed and that do not deserve their own
chapter.

This chapter introduces statistically validated networks and their application to BNP Paribas
CIB datasets (see Section 5.1), elaborates on minor improvements that help previously intro-
duced algorithms achieve better performance (see Section 5.2), presents an experiment trying
to capture lead-lag relationships using neural networks (see 5.3) and paves the way for a model
bridging the ideas introduced in chapters 3 and 4 (see Section 5.4).

5.1 Mapping investors’ behaviors with statistically validated
networks

Clustering clients can be done in many ways. Provided with user profiles, a wide range of
clustering algorithms can be used to group lookalike clients — classic ways include K-means
(Hastie et al., 2009, Chapter 13) and DBSCAN (Ester et al., 1996). In this section, we consider
a rather unusual graph mining method that detects regular, common patterns among clients
and that leads to a behavioral-based clustering of clients, reminiscent of the work presented
in Chapter 3, and apply it to the corporate bonds RFQ datasets of BNP Paribas CIB. The
method, called statistically validated networks, is described in Tumminello et al. (2011) and has
been successfully applied to a financial dataset in Tumminello et al. (2012).

The financial dataset studied in Tumminello et al. (2012) corresponds to the trading behavior
of individual investors on the Nokia stock. As bonds are less liquid products than stocks,
the data related to a given bond is far sparser than it is the case for a given stock such as
Nokia. Consequently, the methodology outlined in Tumminello et al. (2012) cannot be directly
transposed to our bonds RFQ dataset. To use this methodology, we consider the interactions
clients have with the bond market as a whole by considering all bonds as one.

The idea behind statistically validated networks is to connect clients according to their RFQ
patterns. Let us consider a bipartite graph G = (C, T, E) with C the set of clients, T the set
of considered trading days, and E the set of edges connecting them. Clients can be connected

85

to a trading day by three di�erent kinds of links, corresponding to their observed behavior on
that day — a "buy" link if the client mostly requests bonds’ prices for the buy direction on that
day, a "sell" link if the client mostly requests bonds’ prices for the sell direction on that day, or
a "buy-sell" link if the client requests prices for both directions on that day in a balanced way.
Links are determined using

r(i, t) = Vb(i, t) ≠ Vs(i, t)
Vb(i, t) + Vs(i, t) , (5.1)

where i œ C represents a client, t œ T a trading day, and Vb and Vs are the aggregated requested
amount of buy and sell movements for client i on day t. We consider that the link between i

and t is a buy link if r(i, t) > fl, a sell link if r(i, t) < ≠fl and a buy-sell link if ≠fl < r(i, t) < fl

with Vb(i, t) > 0 and Vs(i, t) > 0. If client i is linked to day t with a buy link, we say that i in
in a buy state during that day, and respectively for all other link types. Following Tumminello
et al. (2012), the threshold value is taken to be fl = 0.01. Note that taking fl = 0 is equivalent
to considering buy and sell links only.

We now want to project this bipartite graph into a one-mode graph that connects clients ac-
cording to their RFQ patterns. A first idea is to consider a graph G

Õ = (C, E
Õ) where (i, j) œ E

Õ

if i and j both made a move on the same day, e.g., if for a given day t, client i is in a buy
state and client j in a sell state, i and j are connected in G

Õ with a buy-sell link. However, this
approach rapidly fails: as co-occurrence of states might happen for totally unrelated reasons,
the corresponding graph would be fully connected with a high probability. Consequently, we
have to correct for potentially random co-occurrences of states. To do so, the idea introduced
in Tumminello et al. (2011) is to use a statistical test to check whether co-occurrence of states
between two given clients is random. We note GSV N = (C, ESV N) the corresponding graph.

The statistical test is the following. We consider as null hypothesis that co-occurrence of states
P and Q for clients i and j is random, and want to test whether this hypothesis holds. Let
NP be the number of days client i spent in state P , NQ the number of days client j spent in
state Q, NP,Q the number of days when we observe the co-occurrence of state P for client i and
state Q for client j and T the total number of trading days we consider — for ease of notation,
we assimilate the set of trading days to its number of elements. Under the null hypothesis,
the probability of observing X co-occurrences of the given states for the two clients is given
by the hypergeometric distribution, that we note H(X|T, NP , NQ). Consequently, the p-value
corresponding to the described statistical test is given by

p(NP,Q) = 1 ≠
NP,Q≠1ÿ

X=0
H(X|T, NP , NQ) (5.2)

As this test is performed for all possible client pairs and all possible combinations of states, we
rely on multiple hypotheses testing to conclude on rejections of the null. Classic methods to
account for multiple hypotheses are the Bonferroni correction (Bland and Altman, 1995) and
the Benjamini-Hochberg procedure (Benjamini and Hochberg, 1995). The Bonferroni correction
aims at controlling the family-wise error rate (FWER), defined as FWER = P(FP Ø 1), with
FP the number of false positives. Bonferroni ensures that FWER Æ –, with – the chosen
significance level of the test, by rejecting an hypothesis Hi if its corresponding p-value pi is such
that pi Æ –

m
, with m the total number of hypotheses considered.

We focus here on the Benjamini-Hochberg procedure, which is a more conservative way to
account for multiple hypotheses. This procedure aims at controlling the false discovery rate
(FDR), defined as the expectation of the false discovery proportion (FDP), written FDP =
FN/ max(R, 1), with FN the number of false negatives and R the total number of rejections.
The Benjamini-Hochberg procedure attempts to control the FDR at level –. The procedure
works as the following:

86

1. Order hypotheses in ascending order with regard to their associated p-values, p(1), ..., p(m),
with (·) denoting the order statistics of the p-values and a total of m hypotheses to test;

2. Find the Benjamini-Hochberg cuto� defined as k̂ = max
;

i : p(i) Æ i–

m

<
;

3. Either reject hypotheses H(1), ..., H(k̂) or perform no rejections if k̂ is not defined.

We apply this procedure with a significance level of – = 0.01, following the values experimented
in Tumminello et al. (2011) and Tumminello et al. (2012). Counting now all undirected potential
links between two clients, there are in total m = 9|C|(|C| ≠ 1)/2 di�erent hypotheses that we
need to test.

The validated links, i.e., the links for which the corresponding p-value was rejected, form a
statistically validated network of clients. Multiple types of links can link two clients, as we test
for each client pair a total of nine di�erent links — let us call these links single. If multiple
types of links are validated for a given client couple, we say these clients are linked with a
multi-link. For instance, if a "buy-buy" and a "sell-sell" link connect two clients, we consider
them connected by a "buy-buy/sell-sell" link, translating the fact that these clients tend to buy
or sell at the same moments. Tumminello et al. (2011) and Tumminello et al. (2012) note that
only some kinds of multi-links tend to appear — Tumminello et al. (2012) evoke the prevalence
of the "buy-buy/sell-sell" and "buy-sell/sell-buy" links, thereby showing positive and negative
correlations in the clients’ trading behaviors.

The statistically validated network obtained on the corporate bonds RFQ dataset is shown in
Fig. 5.1. The corresponding graph was obtained using fl = 0, to avoid detection of buy-sell
links in the bipartite graphs — as these links were very infrequent, the SVN methodology did
not validate any such links during our experiments, thereby potentially masking the validation
of buy-sell, buy-buy or sell-sell links in the one-mode projection. When removing buy-sell links
from the bipartite graph, the total number of hypotheses to test becomes m = 4|C|(|C| ≠ 1)/2.
An analysis of this result validates the methodology a posteriori. Indeed, we see in Fig. 5.1 that
clients of a same sector of activity tend to be linked. O�cial institutions, a sector predominantly
composed of central banks, are the most linked clients, and we see that o�cial institutions are
linked together with buy-buy links and linked to other banks by buy-sell links, corresponding to
the fact that central banks buy bonds from banks to maintain stable inflation rates, a mechanism
known as quantitative easing. Moreover, we see that asset managers are often paired together
and that a few banks are linked by "buy-buy/sell-sell" multi-links shown on the graph as "bb-ss"
links, showing a positive correlation between their RFQ patterns.

Clusters can be extracted from this network with algorithms such as Infomap, introduced in
Rosvall and Bergstrom (2008). The Infomap algorithm forms clusters using random walks on a
weighted graph GSV N , where weights are given by the number of single links between a clients’
pair. However, such clusters could not be used per se to get a better understanding of our client
pool on the whole. From the few thousands of clients present in our corporate bonds RFQ
dataset, we see that less than a hundred of them end up being validated in the final network.
Even when considering the interactions of clients with the bonds’ market overall, our data is still
very sparse to obtain a relevant clustering of our clients’ pool. However, the obtained clustering
could be used as a feature of a predictive model, such as the ones introduced in chapters 3 and 4.
Note that instead of deriving a statistically validated network of clients, the same method could
be applied to bonds — as analysis of obtained results becomes more di�cult in this setting, the
final clusters obtained could be used in a model.

Consequently, this section shows that statistically validated networks are a powerful data mining
tool to extract information from clients’ co-occurring patterns. However, the illiquidity of the

87

Figure 5.1: Statistically Validated Network obtained on the corporate bonds RFQ data from
BNP Paribas CIB. Each dot corresponds to a client, where node color represents the client’s
sector of activity. We see seven types of links happening, three of them being multi-links. Clients
of a same sector of activity tend to be paired together, and we see that o�cial institutions —
mainly central banks — are linked together with buy-buy links and linked to other banks with
buy-sell links, a phenomenon we attribute to the mechanism of quantitative easing.

bonds’ market, compared, e.g., to the stock market, hinders the quality of obtained results.
The obtained SVNs only cover a small portion of our clients’ pool, making their results di�cult
to use in practice. The clustering obtained with SVNs can be used as a feature of a predictive
model — corresponding classes will, however, be very ill-balanced, which could lead to mixed
results.

88

5.2 A collection of small enhancements
During the development of the algorithms presented in chapters 3 and 4, a lot of small improve-
ments have been tried to enhance the performance of our predictive models. In this section,
we present three of these most successful variations that we deem not worth their own research
studies.

5.2.1 A focal version of Bayesian Personalized Ranking
Chapter 4 extensively studied and applied the BPR objective function of Rendle et al. (2009). In
this chapter, we proposed ways to augment BPR through di�erent sampling strategies, namely
with a symmetrized, history-aware sampling (see Sections 4.2.3, 4.4.1). The BPR objective
could also be enhanced with the ideas underpinning the focal loss (Lin et al., 2017) (see Section
1.3.2).

The focal loss is a variation of cross-entropy that weighs hard-to-classify samples more, as

lfocal(x) = ≠
Cÿ

i=1
(1 ≠ ŷi(x))“

yi(x) log ŷi(x) , (5.3)

with C the number of classes considered in the classification problem, (x, y) a given sample where
y is a C-dimensional one-hot encoding of the class corresponding to sample x, ŷ a predictor and
“ a hyperparameter controlling the adaptive weighing. The term (1 ≠ ŷi(x))“ emphasizes the
loss on the wrongly classified samples, or classified with low confidence. This idea can be easily
adapted to the BPR objective, as

lBP R,focal = (1 ≠ ‡(xuij))“ ln ‡(xuij), (5.4)

where ‡ denotes the sigmoid function, xuij is the score associated to the (u, i, j) triplet where
(u, i) is a positive couple and j a negative item, and “ is an hyperparameter controlling the
adaptive weighing. The BPR objective is constructed such that ‡(xuij) represents P(i >u j)
(Rendle et al., 2009), with >u the total ranking defined by user u, i.e., the order defined by the
interests of u. Consequently, the (1 ≠ ‡(xuij))“ term focuses the loss on samples for which the
model puts negative items higher than positive ones in its ranking. Note that setting “ = 0
leads to the classic BPR objective.

We experiment this new loss on the HCF model, using the hyperparameters and window sizes of
the HCF 12m model of Section 4.3.1 and the same experimental setup for obtaining validation
and test performances. Results are shown in Table 5.1.

Table 5.1: Comparison of classic and focal versions of HCF — symmetrized mAP scores, in
percentage.

Algorithm Valid mAP Test mAP
HCF 24.43 25.02

focal HCF - “ = 1 24.68 25.44
focal HCF - “ = 2 24.53 25.31
focal HCF - “ = 3 24.39 25.16

We see that the best model with regards to validation performance is an HCF model trained
with the focal BPR objective using “ = 1. Note here that a more thorough search for “ in
the]0; 2] range would be necessary to find the optimal “ value. We see that the validation

89

performance falls below the classic version for “ = 3 — with too high “ values, the low weight
of triplets (u, i, j) such that P(i >u j) ¥ 0.5, i.e., triplets for which the network is indecisive,
hinders the network performance. The “ = 1 model achieved a test performance marginally
above classic HCF, with a +1.7% increase in symmetrized mAP score. Consequently, our focal
BPR objective proposal helps achieve overall better performances by focusing the BPR objective
on hard-to-rank positive-negative pairs.

5.2.2 Validation strategies in non-stationary settings
K-fold cross-validation is a widespread technique for estimating the prediction error of a machine
learning model (Hastie et al., 2009, Chapter 7.10). The idea is to split available data into K

equally-sized parts, to train a model on K ≠1 of these parts and test it on the held-out last one.
Noting Ÿ : {1, . . . , n} ≠æ {1, . . . , K} the partition function splitting the samples {(xi, yi)}i=1,...,n

into K folds, the cross-validation estimate of the prediction error is given by

CV(f̂) = 1
n

nÿ

i=1
L(yi, f̂

≠Ÿ(i)(xi)), (5.5)

with f̂ the predictor, L the considered evaluation function, and f̂
≠Ÿ(i) a predictor trained on all

K folds except for the one where sample i lies. K-fold cross validation allows for obtaining good
estimates of the prediction error when there is not su�cient data to use a separate, held-out
validation set.

However, in the financial context, De Prado (2018, Chapter 7) advocates that K-fold validation
is prone to signal leakages. Indeed, in non-stationary settings samples cannot be considered
i.i.d. anymore: when using temporal folds of data, on the boundaries between train and valida-
tion splits, it is often the case that (xt, yt) ¥ (xtÕ , ytÕ) for t

Õ close enough to t. De Prado (2018,
Chapter 7) consequently proposes a "purged" K-fold cross-validation procedure, illustrated in
Fig. 5.2. The procedure, similar to what is known in the literature as h‹-block cross-validation
(Racine, 2000), follows the idea of classic K-fold cross-validation but avoids leakages by dis-
carding samples "close" to the validation block, i.e., in a h-sized window around the validation
block. A complete overview of cross-validation strategies suitable for time series prediction can
be found in Bergmeir and Benítez (2012).

However, when plenty of data is at our disposal, there is no need to use such cross-validation
strategies: using a held-out, large validation set is su�cient to monitor the generalization
performance of a model. In such cases, the common practice is to use contiguous splits of
data ordered as training, validation, and test splits, as was done in the experiments of Chapter
3 and 4. Such a validation strategy emulates the real-world environment of the model, which will
be used for predicting events after the training period. There are, however, two observations
we can consider when choosing a validation strategy:

- We expect the performance of a model on the validation set to be a good predictor of the
model’s generalization performance. Consequently, the most important characteristic we
should aim at when searching for an appropriate validation set is the correlation between
the validation and test performances.

- In non-stationary environments, the further away from the training period the predictions,
the worse their performance. Consequently, an appropriate validation strategy would
ideally let samples temporally close to the testing period in the training set.

Following these observations, we try a validation strategy that uses contiguous splits of data
ordered as validation, training, and test splits. Using the G10 bonds RFQ dataset (see Section
4.3 for more details), we train 200 instances of a LightGBM (Ke et al., 2017) with randomly

90

A SOLUTION: PURGED K-FOLD CV 107

FIGURE 7.2 Purging overlap in the training set

k�, performance will not improve, indicating that the backtest is not pro!ting from
leaks. Figure 7.2 plots one partition of the k-fold CV. The test set is surrounded by
two train sets, generating two overlaps that must be purged to prevent leakage.

7.4.2 Embargo

For those cases where purging is not able to prevent all leakage, we can impose
an embargo on training observations after every test set. The embargo does not
need to affect training observations prior to a test set, because training labels Yi =
f [[ti,0, ti,1]], where ti,1 < tj,0 (training ends before testing begins), contain informa-
tion that was available at the testing time tj,0. In other words, we are only con-
cerned with training labels Yi = f [[ti,0, ti,1]] that take place immediately after the
test, tj,1 � ti,0 � tj,1 + h. We can implement this embargo period h by setting Yj =
f [[tj,0, tj,1 + h]] before purging. A small value h � .01T often suf!ces to prevent
all leakage, as can be con!rmed by testing that performance does not improve
inde!nitely by increasing k � T . Figure 7.3 illustrates the embargoing of train
observations immediately after the testing set. Snippet 7.2 implements the embargo
logic.

Figure 5.2: A split of purged K-fold cross-validation, a.k.a., h‹-block cross-validation. To
remove the dependence e�ects on the validation block, data samples before and after the block
are discarded from the training set. Illustration taken from De Prado (2018, Chapter 7).

sampled hyperparameters in two di�erent configurations: contiguous splits in the training,
validation and test order and in the validation, training and test order, respectively illustrated
in Fig. 5.3(a) and (b). We see that both experiments obtain relatively similar results. The
correlation between validation and test performances is good in both cases, the R

2 score being
in favor of experiment (b). Moreover, the best model in terms of validation performance obtains
a marginally better test performance in the "validation, training" setting than in the "training,
validation" one.

Consequently, in our RFQ datasets, it seems that the validation, training, test order is an
appropriate validation strategy candidate. As it allows for better immediate model performance,
the training period being the closest possible to the testing one, we favor this splits’ ordering.
Note, however, that contiguity of the validation and training sets is still necessary. Using a
validation set too far away in the past leads to poor correlation between validation and test
performances — another hint at the non-stationary behavior of the RFQ datasets.

5.2.3 Ensembling with an entropic stacking strategy
When using fast-to-calibrate models such as gradient tree boosting algorithms, it is usual to
test large random grids of potential hyperparameter combinations to find an optimal model
for the task at hand. However, instead of only using the optimal model as defined by the
performance on a held-out validation set, we could try to combine all trained models to improve
the performance of the optimal one. This idea is known as stacking in the literature, an idea
initiated in Wolpert (1992), and that has known many further developments.

We want here to linearly combine multiple instances of a given model, as

f̂ =
ÿ

i

–if̂i, (5.6)

where f̂ denotes the linear combination, f̂i is a pre-trained instance of a given model, and the
set of weights {–i}i are such that ’i, –i Ø 0 and

q
i
–i = 1. The non-negativity constraint

91

(a) (b)

Figure 5.3: Overall average precision test performance as a function of overall average precision
validation performance. Blue dots represent instances of the LightGBM algorithm trained on
the G10 bonds RFQ dataset, each dot corresponding to randomly sampled hyperparameters.
Red dashed line represents a linear fit of these data points. In both experiments, correlation
between validation and test performances is good. (a) Correlation between validation and test
performances with a validation set positioned right after the training set. R

2 score: 0.69. (b)
Correlation between validation and test performances with a validation set positioned right
before the training set. R

2 score: 0.89.

on the –i was first introduced in Breiman (1996). Note that this formulation is particularly
reminiscent of the ExNet methodology, introduced in Chapter 3.

Let us consider here that the model instances are trained as usually exposed in this thesis, i.e.,
using a training, validation, and test splitting of the available data. Our process is to train the
{–i}i on the validation set only to avoid overfitting the training split, until convergence of the
considered loss — e.g., in a classification setting, we train these weights using a cross-entropy
objective computed on (f̂(xi), yi) for i in the validation set. The set of {–i}i weights can be
understood as a probability distribution along the instances considered in the stacked ensemble.
To obtain meaningful weight repartitions, it is usual to regularize the –i weights, e.g., using an
L1 penalty to select relevant instances to be used in the combination. In this work, we follow
the spirit introduced with ExNets in Section 3.2.2 and penalize the weights with entropy, as

Lentropy = ≠
ÿ

i

–i log(–i). (5.7)

Let us examine the outlined methodology in an experiment on a foreign exchange options RFM
dataset — see Section 1.1 for more details. Here, we want to combine the top-30 LightGBM (Ke
et al., 2017) instances in terms of validation loss in a stacked ensemble. The model converges
after roughly 40 epochs. Weight repartition is illustrated in Fig. 5.4. Interestingly, we see
that the top model was not significantly used here and that the weights span the top-20. The
combination uses in total 6 instances with a weight –i Ø 0.05.

Figure 5.5 examines the correlation between the considered instances. In Fig. 5.5(a), we see
that the instances are overall largely positively correlated, with correlations above 98% for all
model pairs. However, if we focus on the instances selected with –i Ø 0.05, we see that the
correlations of the selected models are among the lowest, except for two specific instances. This
behavior was anticipated, as we expect dissimilar models to perform better when combined than
similar ones.

92

Figure 5.4: Weight repartition along the considered instances. Model indexes are ordered by
performance on the validation set. We see that weights span the top-20, and that the best
model was not significantly selected in the combination.

On a final note, the stacked ensemble obtained better performance on both validation and test
splits than the single optimal model. Consequently, we see that stacked models yield better
results than a single, well-tuned instance of a model by leveraging all models obtained during
the hyperparameter optimization process. Moreover, this experiment only considered the top-30
models. Including a larger number of models would allow discovering smaller correlations be-
tween models — following on the above experiment, better results are expected when using less
correlated models. Consequently, further iterations of this work will consider a more thorough
panel of potential instances to combine.

5.3 First steps towards lead-lag detection
In finance, the notion of lead-lag refers to the fact that the activity of an investor on a given
market might trigger the activity of other investors at a later date — more generally, it refers
to the correlation of two time series, one being lagged with regards to the other. Lead-lag
relationships are particularly helpful for understanding the endogenous portion of financial
markets (Hardiman et al., 2013). Statistically validated networks, introduced in Section 5.1,
have been successfully adapted and applied to the detection of lead-lag e�ects in diverse financial
markets (Curme et al., 2015; Challet et al., 2018).

This section introduces a batch of ideas to detect lead-lag using neural networks, from lead-
lag modeling to a network specifically designed to detect it. Although not fully mature, we
hope these ideas are a step towards functional lead-lag detection modules in neural network
architectures.

93

(a) (b)

Figure 5.5: Heatmap visualization of the Pearson correlations between the outputs f̂i of the
considered LightGBM instances. (a) Correlations of all top-30 instances. All instances are
largely positively correlated. (b) Correlations of instances with –i Ø 0.05. We see that these
correlations are among the lowest correlations obtained over all possible instance pairs.

5.3.1 Simulating lead-lag
Following ideas from the ExNet experiments on synthetic data (see Section 3.3.1), we design
an experiment to prove that our methodology is able to retrieve lead-lag relationships. In lead-
lag situations, there are what we call in this work leaders and followers. We consider a given
pool of investors U , in which we find leaders l œ L and followers f œ F , with L, F µ U and
L fi F = U . Note that we only consider a situation where leaders act on their own, and cannot
follow anyone. The underlying idea is that followers mimic the behavior of one or more leaders
with a delay — a lag — ·f , that depends on the considered follower. In terms of inputs and
outputs, for a follower to obtain the same output with a given lag, the follower should mimic
her leader’s input on the lagged day.

We represent this in a manner similar to Section 3.3.1. Again, we model the problem as a
binary classification task using a set of p features, noted X œ Rp, that we map to a binary
output noted Y . X samples are drawn from a normal distribution N (0, 1). The behavior of
leaders is described by the following equation:

P(yl

t|xl

t) = ‡

1
w

T
x

l

t

2
, (5.8)

where w are the decision weights, x
l
t the features describing the state of leader l at time t and

y
l
t represents the decision of leader l at time t. The behavior of followers, more intricate, is

described by:

P(yf

t
|xf

t
, {x

l

t≠·f
}lœLf

) = ‡

Q

aw
T

Q

a—x
f

t
+ (1 ≠ —) 1

|Lf |
ÿ

lœLf

x
l

t≠·f

R

b

R

b , (5.9)

where w are the decision weights shared with leaders, x
f

t
the features describing the state of

follower f at time t, y
f

t
represents the decision of follower f at time t, Lf is the set of leaders that

f follows, ·f œ {1, 2, ...} := � is the lag of follower f and — is an hyperparameter controlling
the e�ect of leaders on followers. For a given follower, her decision is driven at —% by her own
features, and at (1 ≠ —)% by the features of her leader(s), observed at the lag ·f corresponding
to her.

94

The final decision of a given investor is then determined with

Y
ú

t = (P(yú
t) > U) œ {0, 1}, ú œ {l, f}, (5.10)

where U is uniformly drawn in [0; 1]. As our interest is in retrieving who follows who, we
use a common decision rule for all investors not to add more complexity on top of an already
di�cult problem. The number of leaders followed Lf and the lags ·f are randomly drawn for all
followers. In this section, we consider a simple case where p = 5 features are used, ’f, |Lf | = 1
and ·f = 1, and we vary the value of — to determine our ability to retrieve leaders and followers
in a pool of 100 clients examined during 1000 time-steps. As in Section 3.3.1, decision weights
are given by w = (5, 5, 0, 0, ≠5). With such weights, binary outputs are balanced.

5.3.2 A trial architecture using attention
We introduce here an architecture that mostly relies on the attention mechanism. Attention,
popularized by Transformer networks (Vaswani et al., 2017), is a deep learning concept par-
ticularly important in natural language processing. As of now, Transformer networks are the
core component of all state-of-the-art language models, from GPT-2 (Radford et al., 2019) to
BERT (Devlin et al., 2019) and their numerous improvements and variations (Dai et al., 2019;
Yang et al., 2019; Liu et al., 2019; Clark et al., 2020). In NLP, the idea of attention is to enrich
the representation of a given word using the words that surrounds it in a particular sentence,
thereby contextualizing words’ representations. To detect lead-lag relationships, we try here to
adapt this idea to enrich the features of a given investor with the features — lagged or not —
of other investors.

To do so, we introduce two sets of attention weights, {–cl,u œ R|U |}uœU and {–lag,u œ R|�|+1}uœU ,
respectively the attention weights of investors to investors, i.e., potential leaders, and investors
to lags — the +1 refers to the attention given to the current time-step. For a given investor,
at a given time-step t, the idea is to visualize data as a "cube" xt œ R|U |◊p◊(|�|+1) and reduce
this volume, identical for all investors at a given time-step, into a personalized sample using
the attention weights corresponding to the considered investor, as illustrated in Fig. 5.6. Doing
this for all investors, we obtain a design matrix X̃t that can be used as the input of a basic
feed-forward neural network, trained with cross-entropy to retrieve targets yt. Due to the
computational requirements of this volume reduction, a batch of data is composed of the features
of all investors for a given date.

Figure 5.6: Example of data volume reduction for a particular investor using investor and lag
attentions. The original three-dimensional tensor is reduced to a sample x̃t œ Rp through two
weighted averages, where weights are given by the investor and lag attentions of the considered
investor.

Taking inspiration from Vaswani et al. (2017), we define attention weights using three sets of
embeddings, all sharing the same dimension d:

95

- Investor query embeddings. These embeddings are used to query the attention weights
corresponding to a particular investor, be it investor-investor or investor-lag attentions.

- Investor key embeddings. These embeddings, used in conjunction with investor query
embeddings, give the queried investor compatibility to the considered key investor. In-
vestor query and key embeddings introduce asymmetry: lead-lag relationships are ori-
ented, and the corresponding attention weights matrix consequently cannot be symmetric.

- Lag key embeddings. These embeddings, used in conjunction with investor query
embeddings, give the queried investor compatibility to the considered key lag.

The compatibility between the query and key embeddings is determined using

{–ú,u}uœU =
)
‡

1
ÈquK

T

ú Í
2 *

uœU
, (5.11)

with ú œ {cl, lag}, ‡ the sigmoid function, qu œ Rd the query embedding of investor u and
Kú œ Rdú◊d the dú considered key embeddings. Note that di�erent query embeddings could be
used to match lag keys: we use the same query embeddings for both attention modules to share
parameters across two intricately linked attention-retrieval tasks, as the attention an investor
has to pay to another investor is only valid for a given lag.

All attention weights are modulated by the sigmoid function, so that –ú,u œ [0; 1], ’ú œ {cl, lag},
’u œ U — a given investor either has to pay attention to a particular investor (resp. lag), or
not. As we want investors to focus on a few leaders at most only, we enforce sparsity of the
investor-investor attention weights with an entropic penalty similar to the one introduced in
Section 3.2.2 that drives attention weights to either 0 or 1.

5.3.3 First experimental results
We experiment the methodology outlined in Section 5.3.2 on two synthetic datasets, created
according to 5.3.1 with respectively — = 0 and — = 0.2, — corresponding to the reliance of a
follower, in percentage, on her own features. The two datasets contain 1000 dates, 800 of them
being used for training and 200 as a validation set used for early stopping.

Let us first examine the — = 0 case, illustrated in Fig. 5.7. In this setting, a follower’s decision
function is entirely given by her leader’s features. We see in Fig. 5.7(a) that the network was
able to retrieve the leaders of almost all followers, but failed to learn that leaders only follow
themselves, except for one. Interestingly, the attribution patterns of the two followers that did
not retrieve their leader is the same: these two followers have the same original leader and
managed to retrieve the leader’s features using the features of other followers. The investor-lag
attention weights shown in Fig. 5.7(b) confirm this. On the leader side, we see that the leader
that learned to follow herself also learned to pay attention to a lag of 0, i.e., the current time-
step. Most leaders have 0 attention weights on both lags — the network completely failed to
learn the behavior of these leaders, and only provided them with 0 features. On the follower
side, we see that almost all followers learned to pay attention to the lag of 1. The two followers
that did not are the ones that recomposed the features of their leader with followers — we see
here that they pay attention to a lag of 0, with a weight we can interpret as a scaling factor
which counters the summation of many investors.

Let us now examine the — = 0.2 experiment, illustrated in Fig. 5.8. In this setting, the decision
function of followers depends on both their features and the features of their leader. We see in
Fig. 5.8(a) that with a few exceptions, almost all investors learnt to pay attention to themselves.
However, no follower learned to pay attention to a leader — the network completely failed to
retrieve lead-lag relationships in this setting. This behavior is confirmed in Fig. 5.8(b), where
we see that no weight was given for anyone to lags of 1.

96

(a) (b)

Figure 5.7: Heatmap visualization of investor-investor and investor-lag attention weights for the
— = 0 experiment. (a) Investor-investor attention weights. Followers almost all retrieved their
leader, but leaders did not learn to follow themselves. (b) Investor-lag attention weights. Only
one leader learnt to pay attention to the right lag, and most leaders do not pay attention to any
lag, and consequently gets x̃t = 0, ’t. Followers mostly learnt to pay attention to the right lag.

(a) (b)

Figure 5.8: Heatmap visualization of investor-investor and investor-lag attention weights for
the — = 0.2 experiment. (a) Investor-investor attention weights. All investors learnt to follow
themselves, but followers did not retrieve their leaders at all. (b) Investor-lag attention weights.
We see that all investors learnt to focus on lag 0, and totally discarded the lag of 1.

We see from these two experiments that our proposal is able to retrieve lead-lag relationships
in the — = 0 setting — when most investors only act according to a lagged set of their leader’s
features, the network is able to detect them, at the expense of the leaders who only followed
themselves. In the — = 0.2 setting, we see the opposite phenomenon — as everyone needs to
follow herself, the network completely discards the lead-lag relationships in the dataset. Of the
many variations of the attention weights formulas that were tried, the current one gave the
most promising results, although still clearly insu�cient. There are a few ways we could try to
improve this model:

- It follows from these two experiments that the proposed architecture has trouble paying
attention to both each investor and their potential leaders. The self-attention of investors
to themselves could be enforced in the model by choosing only to use the attention module

97

to detect lead-lag and not self-oriented relationships, i.e., by adding the features of a given
investor at a given time-step to the result of the attention module depicted in Fig. 5.6.
However, such a model would be entirely designed to mimic the mathematical formulation
of the problem, consequently introducing bias in the process.

- In the current methodology, we enforce sparsity by penalizing the entropy of the attention
weights in the same way as in Section 3.2.2. However, this penalty enforces to get either
0 or 1 but does not prevent many 1 from happening. This penalty term could, therefore,
be coupled to a L0 penalty, as is done in Guo et al. (2019) with a term

lú = 1
|U |

ÿ

uœU

A

max
A

ÿ

i

–ú,u,i ≠ kú, 0
BB2

, (5.12)

with ú œ {cl, lag}, –ú,u,i the i-th term of the attention weight vector –ú,u and kú the
maximal number of admissible weights used for ú. Such a penalty would help correct the
behavior shown for the two outlying followers of the — = 0 experiment shown in Fig. 5.7.

- A problem of the current methodology could be that the network cannot really explore
di�erent lag or leaders’ configurations before having to exploit its findings. Exploration of
di�erent configurations could be enhanced with the Gumbel-Softmax sampling strategy
outlined in Section 3.5.2.

These three ideas could improve the current results and hopefully lead to satisfactory lead-lag
relationships retrieval on synthetic data. If the first results of this attempt at lead-lag detection
using neural network architectures are promising, further research is required to get a fully
functional model that could work on both synthetic and real-world data.

5.4 Towards history-augmented experts
Chapters 3 and 4 introduced algorithms respectively aiming at taking into account the het-
erogeneity of investment strategies and at introducing time in future interests’ prediction using
clients’ and assets’ trading histories. These two goals are not orthogonal, and could both partic-
ipate in the success of a financial recommender system. In this section, we explore to a greater
extent how the ideas underpinning the ExNet and HCF algorithms could be merged into a new
history-augmented experts network algorithm.

The ExNet algorithm revolves around the idea that not all investors follow the same decision
function, and that the set of potential decision functions should be made explicit in the network
architecture to uncover post-training the structure of relationships between investors’ behav-
iors. In classic matrix factorization algorithms such as the ones introduced in Section 1.3.3, the
decision function corresponds to the scalar product between user and item latent representa-
tions. Consequently, the user and item embeddings encode features deemed useful by the model
during training for interests’ prediction. As all users (resp. items) have their own embeddings,
the model can learn to encode di�erent features for each. Consequently, matrix factorization
algorithms, to a certain extent, already personalize decision functions — the structure explicitly
uncovered in ExNets with the gating block is tantamount to the result we would obtain by using
clustering methods directly on the users’ embeddings of a matrix factorization algorithm.

However, the history-enhancement step of the HCF algorithm introduces a level of complexity
that might not be relevant to share between all users or items. Taking the user-side, the
composition of a user’s embedding and the embedding of her recent item history should, e.g.,
be di�erent for users in search of novelty and users that rely heavily on their past behavior.
Consequently, the convolution module, which takes care of the transformation of a static user
embedding into a time-aware user embedding, could be considered as an expert of the HCF user

98

block. Moreover, this remark also holds on the item-side: for a popular item, less care might
be taken to its history than for a less popular one that heavily relies on a small user pool. A
proposal architecture using experts to span the space of compositions into dynamic embeddings
is illustrated in Fig. 5.9. This network architecture is similar to the ExNet architecture and
adapted to the user-item symmetry introduced in HCF.

Figure 5.9: A proposal neural network architecture merging the ideas underpinning the ExNet
and HCF algorithms. The network is composed of a user and item blocks, as HCF, and each
block is decomposed into nú experts, as ExNets. A gating block outputs the attribution weights
of users (resp. items) to their experts. As in ExNets, these weights p(·|ú), ú œ {u, i}, are such
that p(e|ú) Ø 0’e œ {1, . . . , nú} and

q
nú
e=1 p(e|ú).

The network uses two user and item blocks decomposed into respectively nu and ni experts.
Each block retrieves the final embeddings x

t
u and x

t

i
using the embeddings computed at each

expert’s level, as

x
t

ú =
núÿ

e=1
p(e|ú)xt

ú,e, (5.13)

where ú œ {u, i}, nú denotes the number of experts used on the ú-side, p(e|ú) is the attribution
weight of ú to expert e as outputted by the gating block of the ú-side and x

t
ú,e is the dynamic

embedding outputted by expert e. As we expect the challenges of experts’ disambiguation and
specialization (see Sections 3.2.2 and 3.2.3) to be present as well in this setting, the entropy
and specialization loss terms should also be used.

Note that this proposal architecture uses the static embeddings of users and items as gating
inputs. To match the dynamic aspects introduced with HCF, the gating blocks could use the

99

same convolution modules as the experts of this network and become time-dependent. This
architecture is also fully compatible with the "featurized" version of HCF introduced in Section
4.4.3. Whether this proposal architecture and its featurized variation are superior to both the
ExNet and HCF architectures or not is yet to be proven, and will be the subject of further
research.

100

Conclusions and perspectives

Recommender systems must be adapted to the context of a corporate and institutional bank to
provide relevant predictions. In this thesis, we prove the benefits of deep learning methodologies
for the future interest prediction problem with ad hoc algorithms specifically designed to tackle
challenges of the financial world.

With the Experts Network (ExNet) algorithm, we address the heterogeneity of investors’ behav-
iors in financial markets. This custom neural network architecture obtains competitive results
with respect to gradient tree boosting algorithms, which are particularly successful approaches
in tabular data contexts. We demonstrate that the ExNet algorithm is able to retrieve clus-
ters of investors showing di�erent trading frequencies, and, more interestingly, di�erent trading
strategies. Moreover, the network outputs an a posteriori map of investors explicitly unveiling
their behavioral similarities in the considered market. The History-augmented Collaborative
Filtering (HCF) algorithm solves the problem of the non-stationarity of investors’ behaviors.
We show that this bespoke architecture obtains overall better results than competitor matrix
factorization-based algorithms, but also that the results of HCF remain stable in time without
having to regularly re-train the algorithm.

The ExNet and HCF algorithms used to solve these challenges are novel neural network archi-
tectures that respectively define and improve the state-of-the-art for these specific tasks. The
performance of these algorithms can even be further enhanced using overall improvements such
as the focal BPR loss or our temporal validation strategy in a non-stationary context.

Still, various research directions can be pursued to continue and extend the work of this thesis.
ExNets can be robustified by using the Gumbel-Softmax strategy in their gating block. ExNets
could also be staged — the presented architecture is only composed of one gating stage, but
more complex gating structures could be tried to find finer-grained clusterings of investors.
Moreover, ExNets detect correlations between investors’ behaviors: they could consequently be
leveraged in the lead-lag detection research. The approach taken for the HCF algorithm can
also be further improved. Mainly, what appears to be the most relevant lead is to personalize
the history sizes for users and items. Indeed, a more accurate representation of the users’
and items’ underlying dynamics could be obtained with a customized history size, depending,
for instance, on users’ and items’ activity. Moreover, the introduction of time leads to a new
sampling direction for BPR optimization that is not fully leveraged yet.

The algorithm introduced in Chapter 5, blending the underlying ideas of the ExNet and HCF
algorithms, is also yet to be implemented and duly experimented. The architecture, conceptually
simple, is however computationally very demanding — the following years will most certainly
provide us with the appropriate tools for training such architectures in a reasonable amount of
time. Finally, the future interest predictions provided by our deep learning algorithms should
be made more directly interpretable to help salespeople better present the recommendations we
provide to the clients of the bank.

101

I sincerely hope that the research presented in this thesis will be helpful to both academic
researchers wanting to know more about the application of recommender systems to the financial
world, and to industrial researchers aiming at improving the results of their future interest
prediction algorithms.

102

Conclusions et perspectives

Les systèmes de recommandation doivent être adaptés au contexte d’une banque d’investissement
pour fournir des prédictions pertinentes. Dans cette thèse, nous faisons la preuve de l’utilité
des méthodologies d’apprentissage profond pour le problème de prédiction des intérêts futurs à
l’aide d’algorithmes ad hoc spécifiquement conçus pour faire face aux défis du monde financier.

Avec l’algorithme de réseau d’experts (ExNet), nous adressons le problème de l’hétérogénéité
de comportement des investisseurs sur les marchés financiers. Cette architecture de réseau de
neurones nouvelle obtient des résultats compétitifs vis-à-vis d’approches de gradient boosting
utilisant des arbres de classification, approches particulièrement fructueuses dans le contexte
de données tabulaires. Nous démontrons que l’algorithme ExNet est à même de retrouver des
groupes d’investisseurs suivant leurs fréquences d’investissement, mais aussi suivant leurs straté-
gies d’investissement. De plus, le réseau fournit un graphe a posteriori d’investisseurs dévoilant
de façon explicite leurs similarités comportementales sur le marché considéré. L’algorithme de
filtrage collaboratif augmenté par historiques (HCF) résout le problème de la non-stationnarité
des comportements des investisseurs. Nous montrons que cette architecture, conçue pour ce
problème, obtient de meilleures performances que des approches concurrentes aux spécifica-
tions proches, mais également que les résultats obtenus avec HCF sont stables dans le temps,
évitant ainsi d’avoir à ré-entraîner l’algorithme de façon régulière.

Les algorithmes ExNet et HCF utilisés pour résoudre ces défis sont des architectures de réseau
de neurones nouvelles qui respectivement définissent et améliorent l’état de l’art pour ces tâches
spécifiques. Par ailleurs, les résultats obtenus avec ces algorithmes peuvent encore être améliorés
à l’aide de modifications globales telles que la version focale de la fonction de coût de Bayesian
Personalized Ranking (BPR), i.e., classement bayésien personnalisé, ou notre stratégie de vali-
dation temporelle pour contextes non-stationnaires.

De nombreuses directions de recherche peuvent cependant encore être poursuivies pour con-
tinuer et étendre le travail présenté dans cette thèse. Les ExNets peuvent être rendus plus
robustes par l’utilisation de la distribution Gumbel-Softmax dans le bloc de gating, i.e., de
répartition des investisseurs considérés. La répartition faite par les ExNets peut également se
faire sur plusieurs niveaux — l’architecture présentée ne comporte qu’un niveau de répartition,
mais des structures plus complexes, à plusieurs niveaux de granularité, pourraient mener à des
partitionnements plus fins des investisseurs. Par ailleurs, les ExNets détectent les corrélations
entre les comportements des investisseurs: ils pourraient donc être exploités dans une approche
de détection de comportements meneur-suiveur sur les marchés. L’approche considérée pour
l’algorithme HCF peut également être améliorée de plusieurs façons. En particulier, la per-
sonnalisation des tailles d’historique utilisées pour les clients et produits apparaît comme l’une
des meilleures pistes d’amélioration potentielles. En e�et, une représentation plus précise des
dynamiques des clients et produits pourrait être obtenue via une taille d’historique adaptée à
chaque, et dépendant, par exemple, de leur activité. De plus, l’introduction du temps dans
l’algorithme ajoute une direction potentielle de tirage aléatoire pour l’optimisation via BPR qui

103

n’a jusqu’ici pas été pleinement prise en compte.

L’algorithme introduit au chapitre 5 mariant les idées des algorithmes ExNet et HCF est égale-
ment encore à implémenter et tester comme il se doit. L’architecture, conceptuellement simple,
demande cependant de grandes ressources de calcul — les prochaines années fourniront assuré-
ment des outils plus appropriés pour entraîner de telles architectures en un temps raisonnable.
Enfin, les prédictions d’intérêts futurs fournies par nos algorithmes d’apprentissage profond
devraient être rendues plus directement interprétables pour faciliter la présentation de nos
recommandations par les vendeurs aux clients de la banque.

J’espère sincèrement que la recherche présentée dans cette thèse pourra être utile à la fois
aux chercheurs académiques souhaitant en connaître davantage sur l’application des systèmes
de recommandation au monde financier ainsi qu’aux chercheurs du secteur privé cherchant à
améliorer les résultats de leurs algorithmes de prédiction des intérêts futurs.

104

Bibliography

K. Baltakys, J. Kanniainen, and F. Emmert-Streib. Multilayer aggregation with statistical
validation: Application to investor networks. Scientific Reports, 8(1):8198, 2018.

J. Basilico and T. Hofmann. Unifying collaborative and content-based filtering. In Proceedings
of the twenty-first International Conference on Machine Learning, page 9, 2004.

Y. Bengio. Practical recommendations for gradient-based training of deep architectures. In
Neural Networks: Tricks of the Trade, pages 437–478. Springer, 2012.

Y. Benjamini and Y. Hochberg. Controlling the false discovery rate: A practical and powerful
approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodolog-
ical), 57(1):289–300, 1995.

J. Bennett, S. Lanning, et al. The Netflix Prize. In Proceedings of KDD Cup and Workshop,
volume 2007, page 35. New York, NY, USA., 2007.

N. Berestycki. Mixing times of markov chains: Techniques and examples. Latin American
Journal of Probability and Mathematical Statistics (ALEA), 2016.

C. Bergmeir and J. M. Benítez. On the use of cross-validation for time series predictor evalua-
tion. Information Sciences, 191:192–213, 2012.

J. Bergstra and Y. Bengio. Random search for hyper-parameter optimization. Journal of
Machine Learning Research, 13(Feb):281–305, 2012.

L. Bernardi, J. Kamps, J. Kiseleva, and M. J. Müller. The continuous cold start problem in
e-commerce recommender systems. 2015.

F. Black and M. Scholes. The pricing of options and corporate liabilities. Journal of Political
Economy, 81(3):637–654, 1973.

M. J. Bland and D. G. Altman. Multiple significance tests: the Bonferroni method. British
Medical Journal, 310(6973):170, 1995.

Bloomberg. Bloomberg Professional Services. https://www.bloomberg.com/professional/,
2020. Last accessed on 04/01/2020.

Bloomberg Professional Services. Sure time to grasp the potential of
structured products. https://www.bloomberg.com/professional/blog/
sure-time-to-grasp-the-potential-of-structured-products/, 2019. Last accessed on
06/01/2020.

J. Bobadilla, F. Ortega, A. Hernando, and A. Gutiérrez. Recommender systems survey.
Knowledge-based Systems, 46:109–132, 2013.

L. Breiman. Stacked regressions. Machine Learning, 24(1):49–64, 1996.

105

L. Breiman. Random forests. Machine Learning, 45(1):5–32, 2001.

D. Challet, R. Chicheportiche, M. Lallouache, and S. Kassibrakis. Statistically validated lead-
lag networks and inventory prediction in the foreign exchange market. Advances in Complex
Systems, 21(08):1850019, 2018.

O. Chapelle and M. Wu. Gradient descent optimization of smoothed information retrieval
metrics. Information Retrieval, 13(3):216–235, 2010.

N. V. Chawla, K. W. Bowyer, L. O. Hall, and P. W. Kegelmeyer. SMOTE: synthetic minority
over-sampling technique. Journal of Artificial Intelligence Research, 16:321–357, 2002.

T. Chen and C. Guestrin. XGBoost: A scalable tree boosting system. In Proceedings of the
twenty-second ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 785–794, 2016.

H.-T. Cheng, L. Koc, J. Harmsen, T. Shaked, T. Chandra, H. Aradhye, G. Anderson, G. Cor-
rado, W. Chai, M. Ispir, et al. Wide & deep learning for recommender systems. In Proceedings
of the first Workshop on Deep Learning for Recommender Systems, pages 7–10, 2016.

K. Clark, M.-T. Luong, Q. V. Le, and C. D. Manning. ELECTRA: Pre-training text encoders as
discriminators rather than generators. International Conference on Learning Representations,
2020.

P. Covington, J. Adams, and E. Sargin. Deep neural networks for YouTube recommendations.
In Proceedings of the tenth ACM Conference on Recommender Systems, pages 191–198. ACM,
2016.

C. Curme, M. Tumminello, R. N. Mantegna, E. H. Stanley, and D. Y. Kenett. Emergence of
statistically validated financial intraday lead-lag relationships. Quantitative Finance, 15(8):
1375–1386, 2015.

M. F. Dacrema, P. Cremonesi, and D. Jannach. Are we really making much progress? a worrying
analysis of recent neural recommendation approaches. In Proceedings of the thirteenth ACM
Conference on Recommender Systems, pages 101–109, 2019.

Z. Dai, Z. Yang, Y. Yang, J. G. Carbonell, Q. V. Le, and R. Salakhutdinov. Transformer-XL:
Attentive language models beyond a fixed-length context. In Proceedings of the fifty-seventh
Annual Meeting of the Association for Computational Linguistics, pages 2978–2988, 2019.

J. Davis and M. Goadrich. The relationship between Precision-Recall and ROC curves. In
Proceedings of the twenty-third International Conference on Machine Learning, pages 233–
240. ACM, 2006.

M. L. De Prado. Advances in financial machine learning, chapter 7. John Wiley & Sons, 2018.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirectional
transformers for language understanding. In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages 4171–4186. Association for Computational
Linguistics, 2019.

J. Ding, G. Yu, X. He, F. Feng, Y. Li, and D. Jin. Sampler design for bayesian personalized
ranking by leveraging view data. IEEE Transactions on Knowledge and Data Engineering,
2019.

Y. Ding and X. Li. Time weight collaborative filtering. In Proceedings of the fourteenth ACM
International Conference on Information and Knowledge Management, pages 485–492, 2005.

106

P. Domingos. A few useful things to know about machine learning. Communications of the
ACM, 55(10):78–87, 2012.

T. Dozat. Incorporating Nesterov momentum into Adam. 2016.

E. Eban, M. Schain, A. Mackey, A. Gordon, R. Rifkin, and G. Elidan. Scalable learning of
non-decomposable objectives. In Artificial Intelligence and Statistics, pages 832–840, 2017.

C. Eksombatchai, P. Jindal, J. Z. Liu, Y. Liu, R. Sharma, C. Sugnet, M. Ulrich, and J. Leskovec.
Pixie: A system for recommending 3+ billion items to 200+ million users in real-time. In
Proceedings of the 2018 World Wide Web Conference, pages 1775–1784, 2018.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. A density-based algorithm for discovering
clusters in large spatial databases with noise. In KDD, volume 96, pages 226–231, 1996.

F. J. Fabozzi. Bond Markets, Analysis and Strategies — 8th Edition. Prentice Hall, 2012.

H. I. Fawaz, G. Forestier, J. Weber, L. Idoumghar, and P.-A. Muller. Deep learning for time
series classification: a review. Data Mining and Knowledge Discovery, 33(4):917–963, 2019.

T. Fawcett. An introduction to ROC analysis. Pattern Recognition Letters, 27(8):861–874, 2006.

J.-D. Fermanian, O. Guéant, and J. Pu. The behavior of dealers and clients on the european
corporate bond market: the case of multi-dealer-to-client platforms. Market Microstructure
and Liquidity, 2, 2016.

P. I. Frazier. A tutorial on Bayesian optimization. arXiv preprint arXiv:1807.02811, 2018.

T. Galanti, L. Wolf, and T. Hazan. A theoretical framework for deep transfer learning. Infor-
mation and Inference: A Journal of the IMA, 5(2):159–209, 2016.

D. Goldberg, D. Nichols, B. M. Oki, and D. Terry. Using collaborative filtering to weave an
information tapestry. Communications of the ACM, 35(12):61–70, 1992.

I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016.

O. Guéant, C.-A. Lehalle, and J. Fernandez-Tapia. Dealing with the inventory risk: a solution
to the market making problem. Mathematics and Financial Economics, 7(4):477–507, 2013.

Y. Guo, H. Shi, A. Kumar, K. Grauman, T. Rosing, and R. Feris. SpotTune: transfer learning
through adaptive fine-tuning. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 4805–4814, 2019.

M. Gutiérrez-Roig, J. Borge-Holthoefer, A. Arenas, and J. Perelló. Mapping individual behavior
in financial markets: synchronization and anticipation. EPJ Data Science, 8(1):10, 2019.

M. Haldar, M. Abdool, P. Ramanathan, T. Xu, S. Yang, H. Duan, Q. Zhang, N. Barrow-
Williams, B. C. Turnbull, B. M. Collins, et al. Applying deep learning to AirBnB search.
In Proceedings of the twenty-fifth ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining, pages 1927–1935, 2019.

W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. In
Advances in Neural Information Processing Systems, pages 1024–1034, 2017.

S. J. Hardiman, N. Bercot, and J.-P. Bouchaud. Critical reflexivity in financial markets: a
Hawkes process analysis. The European Physical Journal B, 86(10):442, 2013.

T. Hastie, R. Tibshirani, and J. Friedman. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction. Springer Science & Business Media, 2009.

107

K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pages 770–778, 2016.

X. He, L. Liao, H. Zhang, L. Nie, X. Hu, and T.-S. Chua. Neural collaborative filtering. In
Proceedings of the 26th International Conference on World Wide Web, pages 173–182, 2017.

X. He, Z. He, X. Du, and T.-S. Chua. Adversarial personalized ranking for recommendation.
In The forty-first International ACM SIGIR Conference on Research & Development in In-
formation Retrieval, pages 355–364, 2018.

P. Henderson and V. Ferrari. End-to-end training of object class detectors for mean average
precision. In Asian Conference on Computer Vision, pages 198–213. Springer, 2016.

S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Computation, 9(8):1735–
1780, 1997.

K. Hornik, M. Stinchcombe, H. White, et al. Multilayer feedforward networks are universal
approximators. Neural Networks, 2(5):359–366, 1989.

P. O. Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of Machine
Learning Research, 5(Nov):1457–1469, 2004.

Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit feedback datasets. In
2008 Eighth IEEE International Conference on Data Mining, pages 263–272. IEEE, 2008.

F. Huang, J. Ash, J. Langford, and R. Schapire. Learning deep ResNet blocks sequentially
using boosting theory. In Proceedings of the thirty-fifth International Conference on Machine
Learning, 2018.

J. C. Hull. Options, futures and other derivatives — 9th Edition. Pearson Education, 2014.

S. Io�e and C. Szegedy. Batch Normalization: Accelerating deep network training by reducing
internal covariate shift. In International Conference on Machine Learning, pages 448–456,
2015.

ISIN. ISIN Organization. https://www.isin.org/, 2020. Last accessed on 04/03/2020.

R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.
Neural Computation, 3(1):79–87, 1991.

E. Jang, S. Gu, and B. Poole. Categorical reparameterization with Gumbel-Softmax. Interna-
tional Conference on Learning Representations, 2017.

Kaggle Inc. Kaggle. https://www.kaggle.com/, 2020. Last accessed on 04/23/2020.

A. Karpathy. Stanford CS231n Convolutional Neural Networks for Visual Recognition. http:
//cs231n.github.io/convolutional-networks/, 2016. Accessed: 2020-05-11.

G. Ke, Q. Meng, T. Finley, T. Wang, W. Chen, W. Ma, Q. Ye, and T.-Y. Liu. LightGBM: A
highly e�cient gradient boosting decision tree. In Advances in Neural Information Processing
Systems, pages 3146–3154, 2017.

B. Kim, M. Wattenberg, J. Gilmer, C. Cai, J. Wexler, F. Viegas, and R. Sayres. Interpretability
beyond feature attribution: Quantitative testing with concept activation vectors (TCAV).
arXiv preprint arXiv:1711.11279, 2017.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. International Conference
on Learning Representations, 2015.

108

Y. Koren. Factorization meets the neighborhood: a multifaceted collaborative filtering model.
In Proceedings of the fourteenth ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pages 426–434, 2008.

Y. Koren. The BellKor solution to the Netflix grand prize. Netflix Prize Documentation, 81
(2009):1–10, 2009a.

Y. Koren. Collaborative filtering with temporal dynamics. In Proceedings of the fifteenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 447–456,
2009b.

Y. Koren, R. Bell, and C. Volinsky. Matrix factorization techniques for recommender systems.
Computer, 42(8):30–37, 2009.

Y. LeCun, Y. Bengio, and G. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

L. Li, W. Chu, J. Langford, and R. E. Schapire. A contextual-bandit approach to personalized
news article recommendation. In Proceedings of the nineteenth International Conference on
World Wide Web, pages 661–670, 2010.

T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár. Focal loss for dense object detection.
In Proceedings of the IEEE International Conference on Computer Vision, pages 2980–2988,
2017.

Y. Liu and X. Yao. Simultaneous training of negatively correlated neural networks in an en-
semble. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 29(6):
716–725, 1999.

Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis, L. Zettlemoyer, and
V. Stoyanov. RoBERTa: A robustly optimized BERT pretraining approach. arXiv preprint
arXiv:1907.11692, 2019.

S. M. Lundberg and S.-I. Lee. A unified approach to interpreting model predictions. In Advances
in Neural Information Processing Systems, pages 4765–4774, 2017.

L. v. d. Maaten and G. Hinton. Visualizing data using t-SNE. Journal of Machine Learning
Research, 9(Nov):2579–2605, 2008.

C. J. Maddison, A. Mnih, and Y. W. Teh. The concrete distribution: A continuous relaxation
of discrete random variables. International Conference on Learning Representations, 2017.

C. Manning, P. Raghavan, and H. Schütze. Introduction to information retrieval, volume 16,
chapter 8.4, pages 100–103. Cambridge University Press, 2010.

L. McInnes, J. Healy, and J. Melville. UMAP: Uniform manifold approximation and projection
for dimension reduction. arXiv preprint arXiv:1802.03426, 2018.

T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. Distributed representations of
words and phrases and their compositionality. In Advances in Neural Information Processing
Systems, pages 3111–3119, 2013.

A. Mnih and R. R. Salakhutdinov. Probabilistic matrix factorization. In Advances in Neural
Information Processing Systems, pages 1257–1264, 2008.

V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou, D. Wierstra, and M. Riedmiller.
Playing Atari with deep reinforcement learning. In Advances in Neural Information Processing
Systems, 2013.

109

V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley, D. Silver, and
K. Kavukcuoglu. Asynchronous methods for deep reinforcement learning. In International
Conference on Machine Learning, pages 1928–1937, 2016.

K. P. Murphy. Machine learning: a probabilistic perspective. MIT Press, 2012.

F. Musciotto, L. Marotta, J. Piilo, and R. N. Mantegna. Long-term ecology of investors in a
financial market. Palgrave Communications, 4(1):92, 2018.

V. Nair and G. E. Hinton. Rectified linear units improve restricted Boltzmann machines. In
Proceedings of the twenty-seventh International Conference on Machine Learning (ICML-10),
pages 807–814, 2010.

E. Negre. Information and Recommender Systems. John Wiley & Sons, 2015.

Y. E. Nesterov. A method for solving the convex programming problem with convergence rate
o(1/k

2). In Dokl. Akad. Nauk SSSR, volume 269, pages 543–547, 1983.

M. Nielsen. Neural Networks and Deep Learning. Determination Press, 2015.

A. v. d. Oord, S. Dieleman, H. Zen, K. Simonyan, O. Vinyals, A. Graves, N. Kalchbrenner,
A. Senior, and K. Kavukcuoglu. WaveNet: A generative model for raw audio. arXiv preprint
arXiv:1609.03499, 2016.

P. Paatero and U. Tapper. Positive matrix factorization: A non-negative factor model with
optimal utilization of error estimates of data values. Environmetrics, 5(2):111–126, 1994.

D. L. Padial. Technical Analysis Library using Pandas. https://github.com/bukosabino/ta,
2018.

Y.-J. Park and A. Tuzhilin. The long tail of recommender systems and how to leverage it. In
Proceedings of the 2008 ACM Conference on Recommender Systems, pages 11–18, 2008.

I. Pilászy, D. Zibriczky, and D. Tikk. Fast ALS-based matrix factorization for explicit and
implicit feedback datasets. In Proceedings of the fourth ACM Conference on Recommender
Systems, pages 71–78, 2010.

J. Racine. Consistent cross-validatory model-selection for dependent data: hv-block cross-
validation. Journal of Econometrics, 99(1):39–61, 2000.

A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever. Language models are
unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. BPR: Bayesian personalized
ranking from implicit feedback. In Proceedings of the twenty-fifth Conference on Uncertainty
in Artificial Intelligence, pages 452–461. AUAI Press, 2009.

M. T. Ribeiro, S. Singh, and C. Guestrin. "Why should I trust you?" Explaining the predictions
of any classifier. In Proceedings of the twenty-second ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, pages 1135–1144, 2016.

M. Rosvall and C. T. Bergstrom. Maps of random walks on complex networks reveal community
structure. Proceedings of the National Academy of Sciences, 105(4):1118–1123, 2008.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. Nature, 323(6088):533–536, 1986.

O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. ImageNet large scale visual recognition challenge. Inter-
national Journal of Computer Vision, 115(3):211–252, 2015.

110

P. Sarkar, S. M. Siddiqi, and G. J. Gordon. A latent space approach to dynamic embedding of
co-occurrence data. In Artificial Intelligence and Statistics, pages 420–427, 2007.

L. S. Shapley. A value for n-person games. Contributions to the Theory of Games, 2(28):
307–317, 1953.

N. Shazeer, A. Mirhoseini, K. Maziarz, A. Davis, Q. Le, G. Hinton, and J. Dean. Outrageously
large neural networks: The sparsely-gated mixture-of-experts layer. International Conference
on Learning Representations, 2017.

Y. Shi, A. Karatzoglou, L. Baltrunas, M. Larson, A. Hanjalic, and N. Oliver. TFMAP: opti-
mizing MAP for top-n context-aware recommendation. In Proceedings of the thiry-fifth In-
ternational ACM SIGIR Conference on Research and Development in Information Retrieval,
pages 155–164, 2012.

Y. Shi, M. Larson, and A. Hanjalic. Collaborative filtering beyond the user-item matrix: A
survey of the state of the art and future challenges. ACM Computing Surveys (CSUR), 47
(1):1–45, 2014.

A. Shrikumar, P. Greenside, and A. Kundaje. Learning important features through propagating
activation di�erences. In Proceedings of the thirty-fourth International Conference on Machine
Learning, pages 3145–3153. JMLR. org, 2017.

J. Sirignano and R. Cont. Universal features of price formation in financial markets: Perspectives
from deep learning. Quantitative Finance, 19(9):1449–1459, 2019.

D. Sorokina and E. Cantu-Paz. Amazon search: The joy of ranking products. In Proceedings
of the thiry-ninth International ACM SIGIR Conference on Research and Development in
Information Retrieval, pages 459–460, 2016.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov. Dropout: A simple
way to prevent neural networks from overfitting. Journal of Machine Learning Research, 15
(1):1929–1958, 2014.

X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Advances in
Artificial Intelligence, 2009, 2009.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In International Conference on Machine Learning, pages 1139–
1147, 2013.

G. Takács and D. Tikk. Alternating least squares for personalized ranking. In Proceedings of
the sixth ACM Conference on Recommender Systems, pages 83–90, 2012.

The European Commission. Markets in Financial Instruments Directive, II — Scopes and
Definitions. 2014.

A. Tsymbal. The problem of concept drift: definitions and related work. Computer Science
Department, Trinity College Dublin, 106(2):58, 2004.

M. Tumminello, S. Micciche, F. Lillo, J. Piilo, and R. N. Mantegna. Statistically validated
networks in bipartite complex systems. PloS one, 6(3), 2011.

M. Tumminello, F. Lillo, J. Piilo, and R. N. Mantegna. Identification of clusters of investors
from their real trading activity in a financial market. New Journal of Physics, 14(1):013041,
2012.

111

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, £. Kaiser, and
I. Polosukhin. Attention is all you need. In Advances in Neural Information Processing
Systems, pages 5998–6008, 2017.

A. Veit, M. J. Wilber, and S. Belongie. Residual networks behave like ensembles of relatively
shallow networks. In Advances in Neural Information Processing Systems, pages 550–558,
2016.

H. Wang, Q. Wu, and H. Wang. Learning hidden features for contextual bandits. In Pro-
ceedings of the twenty-fifth ACM International Conference on Information and Knowledge
Management, pages 1633–1642, 2016.

X. Wang, X. He, M. Wang, F. Feng, and T.-S. Chua. Neural graph collaborative filtering.
In Proceedings of the fourty-second International ACM SIGIR Conference on Research and
Development in Information Retrieval, pages 165–174, 2019.

D. H. Wolpert. Stacked generalization. Neural Networks, 5(2):241–259, 1992.

D. Wright, L. Capriotti, and J. Lee. Machine learning and corporate bond trading. Algorithmic
Finance, 7(3-4):105–110, 2018.

C.-Y. Wu, A. Ahmed, A. Beutel, A. J. Smola, and H. Jing. Recurrent recommender networks.
In Proceedings of the tenth ACM International Conference on Web Search and Data Mining,
pages 495–503, 2017.

X. Wu, B. Shi, Y. Dong, C. Huang, and N. Chawla. Neural tensor factorization. arXiv preprint
arXiv:1802.04416, 2018.

L. Xiang, Q. Yuan, S. Zhao, L. Chen, X. Zhang, Q. Yang, and J. Sun. Temporal recommendation
on graphs via long- and short-term preference fusion. In Proceedings of the sixteenth ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 723–732,
2010.

L. Xiong, X. Chen, T.-K. Huang, J. Schneider, and J. G. Carbonell. Temporal collaborative
filtering with bayesian probabilistic tensor factorization. In Proceedings of the 2010 SIAM
International Conference on Data Mining, pages 211–222. SIAM, 2010.

Z. Yang, Z. Dai, Y. Yang, J. Carbonell, R. R. Salakhutdinov, and Q. V. Le. XLNet: Generalized
autoregressive pretraining for language understanding. In Advances in Neural Information
Processing Systems, pages 5754–5764, 2019.

S. E. Yuksel, J. N. Wilson, and P. D. Gader. Twenty years of mixture of experts. IEEE
Transactions on Neural Networks and Learning Systems, 23(8):1177–1193, 2012.

A. Zeng, A. Vidmer, M. Medo, and Y.-C. Zhang. Information filtering by similarity-preferential
di�usion processes. EPL (Europhysics Letters), 105(5):58002, 2014.

M. R. Zhang, J. Lucas, G. Hinton, and J. Ba. Lookahead Optimizer: k steps forward, 1 step
back. arXiv preprint arXiv:1907.08610, 2019.

W. Zhang, T. Chen, J. Wang, and Y. Yu. Optimizing top-n collaborative filtering via dy-
namic negative item sampling. In Proceedings of the thirty-sixth International ACM SIGIR
Conference on Research and Development in Information Retrieval, pages 785–788, 2013.

G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N. J. Yuan, X. Xie, and Z. Li. Drn: A deep reinforce-
ment learning framework for news recommendation. In Proceedings of the 2018 World Wide
Web Conference, pages 167–176, 2018.

112

T. Zhou, J. Ren, M. Medo, and Y.-C. Zhang. Bipartite network projection and personal rec-
ommendation. Physical Review E, 76(4):046115, 2007.

T. Zhou, Z. Kuscsik, J.-G. Liu, M. Medo, J. R. Wakeling, and Y.-C. Zhang. Solving the apparent
diversity-accuracy dilemma of recommender systems. Proceedings of the National Academy
of Sciences, 107(10):4511–4515, 2010.

113

114

List of Figures

1.1 Cash flows of a bond . 9
1.2 The four di�erent options payo� structures . 11
1.3 Study of the heterogeneity of clients . 14
1.4 Study of the heterogeneity of corporate bonds . 15
1.5 The WaveNet architecture . 19
1.6 An example of bipartite graph and its associated adjacency matrix 19
1.7 The principle of matrix factorization . 20
1.8 Candidate generation network of the YouTube recommender system 22
1.9 The NeuMF architecture . 23
1.10 A neural tensor factorization architecture . 24
1.11 Illustration of HeatS and ProbS . 26
1.12 The confusion matrix outline . 27

2.1 Evolution of validation symmetrized mAP score with ⁄ 37
2.2 Heatmap visualization of SPHY performance . 38
2.3 Heatmap visualization of SPHY diversity performance 38
2.4 Heatmap visualization of SPHY similarity performance 39
2.5 Evolution of confidence weights . 40

3.1 Universality matrix of investors’ strategies . 45
3.2 Global architecture of the Experts Network . 47
3.3 UMAP visualization of investors embeddings for Embed-MLP and ExNet 53
3.4 Distribution over experts of all investors for ExNet-Opt 54
3.5 Distribution over experts of all investors and UMAP visualization of investors

embeddings for ExNet-100 . 54
3.6 Distribution over experts of all investors and UMAP visualization of investors

embeddings for ExNet on the TEF dataset . 56
3.7 Distribution over experts of all investors and UMAP visualization of investors

embeddings for ExNet on the BNPP CIB Bonds’ RFQ dataset 58
3.8 Global architecture of the Average Network . 60
3.9 Global architecture of a boosted ExNet . 64

4.1 Architecture of the HCF network and details on used convolutions 69
4.2 Evolution of validation symmetrized mAP with training window size 72
4.3 Evolution of validation symmetrized mAP with training window size with bench-

mark optimized for various windows . 73
4.4 Daily evolution of symmetrized mAP during the test period 74
4.5 Evolution of HCF test performance with history size 75
4.6 Density of scores . 77
4.7 Evolution of scores with time for a medium- and high-activity user on a same item 78

115

4.8 Evolution of scores with time for a low-activity user on two di�erent items 79
4.9 Evolution of American Treasury bonds scores during the test period for the most

active user with two di�erent features . 81

5.1 Statistically Validated Network obtained on corporate bonds RFQ data 88
5.2 A split of purged K-fold cross-validation . 91
5.3 Overall average precision test performance as a function of overall average preci-

sion validation performance . 92
5.4 Weight repartition of the entropic stacking strategy 93
5.5 Heatmap visualization of the Pearson correlations between the stacked models . . 94
5.6 Example of data volume reduction for a particular investor using investor and

lag attentions . 95
5.7 Heatmap visualization of investor-investor and investor-lag attention weights for

the — = 0 experiment . 97
5.8 Heatmap visualization of investor-investor and investor-lag attention weights for

the — = 0.2 experiment . 97
5.9 A proposal neural network architecture merging the ideas underpinning the ExNet

and HCF algorithms . 99

A.1 Global outline of the perceptron model . 121
A.2 A simple perceptron and its R2 representation . 122
A.3 The NAND perceptron . 122
A.4 An example of multi-layer perceptron . 124
A.5 An example of convolutional layer . 131
A.6 An example of convolutional neural network . 133

116

List of Tables

1.1 Some confusion matrix metrics . 28

2.1 Comparison of classic algorithms on mAP . 41
2.2 Comparison of classic algorithms on AUC and AP 42
2.3 Comparison of classic algorithms on qualitative metrics 42

3.1 Experimental results on synthetic data . 52
3.2 Experimental results on IBEX data . 56
3.3 Permutation importance results on IBEX experiment 57

4.1 Window size study . 73
4.2 Sliding study . 74
4.3 Comparison of classic and featurized versions of HCF 80
4.4 Qualitative comparison of classic and featurized versions of HCF 80
4.5 Comparison of historical, featurized MF and HCF algorithms on the primary

structured products prediction problem . 83

5.1 Comparison of classic and focal versions of HCF 89

117

118

Glossary

CIB. Corporate and Institutional Bank.
Sales. Financial lingo referring to salespeople.
D2C. Dealer-to-Client. Refers to electronic platforms where clients can stream prices for many
financial assets as given by market makers.
RFQ. Request For Quotation. A process in which a client declares her interest into buy-
ing/selling a given amount of a given financial asset.
RFM. Request For Market. A process in which a client declares her interest in a given financial
asset.
IOI. Indication of Interest. Indication recorded by sales that a given client might have an
interest for a given financial asset.
G10. Refers to the G10 group of countries, composed of Germany, Belgium, Canada, United
States of America, France, Italy, Japan, Netherlands, United Kingdom, Sweden, and Switzer-
land.
NLP. Natural Language Processing. Refers to a subfield of machine learning interested into
the understanding of human language.
MLP. Multi-Layer Perceptron. Refers to a feed-forward, fully-connected neural network. See
Appendix A for more information.
LGBM. Refers to the LightGBM algorithm (Ke et al., 2017).
LSTM. Long-Short Term Memory. A specific type of recurrent neural networks introduced in
Hochreiter and Schmidhuber (1997).
ExNet. Experts Network. Refers to a novel neural network architecture introduced in this
manuscript in Chapter 3.
HCF. History-augmented Collaborative Filtering. Refers to a novel neural network architec-
ture introduced in this manuscript in Chapter 4.
MF. Matrix Factorization. A collaborative filtering algorithm outlined in Section 1.3.3.
NMF. Nonnegative Matrix Factorization. A collaborative filtering algorithm outlined in Sec-
tion 1.3.3.
BPR. Bayesian Personalized Ranking. A loss function used in collaborative filtering, and in-
troduced in Section 1.3.3.
UMAP. Uniform Manifold Approximation and Projection. A dimension reduction algorithm
introduced in McInnes et al. (2018).
AUC ROC. Area Under the Receiver Operating Characteristic Curve. Also encountered as
AUC, or ROC AUC. A binary classification metric.
AP. Average Precision. A binary classification metric.
mAP. Mean Average Precision. In this work, used for short of symmetrized mean average
precision, a metric introduced in Section 1.4.

119

120

Appendix A

Basics of deep learning

The purpose of this appendix is to delve into the mathematics onto which deep learning lies.
The structure of this appendix is as follows:

- Introducing the general principles on which the field of deep learning relies;
- Providing the reader with the mathematical tools required for training neural networks,

i.e., the gradient descent and backpropagation algorithms;
- Thoroughly presenting the concepts behind the two classic neural network architectures

of multi-layer perceptrons and convolutional neural networks.

For ease of understanding, we focus on a supervised learning framework throughout this ap-
pendix.

A.1 General principles of neural networks
This section introduces general principles of neural networks, from the historical perceptron
model to multi-layer perceptrons and presents heuristics and ideas to guide the design of neural
network architectures.

A.1.1 Perceptrons
Neural networks are a very popular toolbox to tackle supervised learning problems, from natural
language processing tasks to computer vision ones. To understand their popularity, we trace
back their history, relying mainly on the outline given by Nielsen (2015). In 1957, Frank
Rosenblatt introduced the perceptron, a model broadly mimicking the functioning of a biological
neuron: a perceptron receives inputs and then makes the decision to fire or not fire based on
these inputs. The model of the perceptron is illustrated in Fig. A.1.

∈ {0,1}Output

'(

')

…
Inputs

Figure A.1: Global outline of the perceptron model. A perceptron takes inputs x1, ..., xn and
outputs either 0 or 1, mimicking the behavior of a biological neuron.

The perceptron takes inputs x1, ..., xn and outputs either 0 or 1, corresponding to the firing of

121

a biological neuron. Firing is determined using a set of weights {w1, ..., wn} and a bias denoted
b, according to

output =
I

0 if w · x + b 6 0
1 if w · x + b > 0 (A.1)

By carefully tuning the weights and bias, the perceptron attributes to a given set of inputs
a value of either 0 or 1. Fig. A.2 illustrates a simple perceptron based on the decision rule
3x ≠ 2y + 1 > 0.

!

"

3

-2

1 -4,8 -4 -3,2 -2,4 -1,6 -0,8 0 0,8 1,6 2,4 3,2 4 4,8

-2,4

-1,6

-0,8

0,8

1,6

2,4

#$%&$% 	 = 	0

#$%&$% 	 = 1

Decision boundary

Figure A.2: A simple perceptron and its R2 representation. This perceptron corresponds to the
decision rule 3x ≠ 2y + 1 > 0.

This example highlights the fact that a perceptron can be seen as a linear classifier, and that
the corresponding decision boundary is given by the equation

Èw, xÍ + b = 0. (A.2)

On one side of this boundary, the output of the perceptron is 1; on the other side, including
the boundary itself, the output is 0. In Rn, the decision boundary corresponds to a hyperplane.
Following on this, we see that perceptrons are able to solve linearly separable problems. But
perceptrons can be easily connected together by considering the outputs of some as the inputs
of others, thereby creating a network of perceptrons — a neural network. The hope is then that
such a network is able to solve more di�cult problems than linearly separable ones.

Ler us consider the NAND perceptron to go further on this idea. Recall that the NAND
gate, which takes as input two binary variables x1 and x2 and outputs x1 NAND x2, i.e.,
the not and logic operation, is a universal logic gate. This means that from the NAND gate,
we are able to construct any other boolean function, and thereby performing any calculation.
Consequently, if we are capable of mimicking the NAND gate with a perceptron, a neural
network can theoretically compute any function.

!"

!#

-2

-2

3

Figure A.3: The NAND perceptron, defined by the equation ≠2x1 ≠ 2x2 + 3 > 0. The only pair
(x1, x2) which gives 0 as output is the pair (1, 1), corresponding to the not and logic operation.

122

The perceptron depicted in Fig. A.3 is equivalent to the NAND logic operator. The only
pair (x1, x2) which gives 0 as output is the pair (1, 1). Perceptrons have thus the computational
universality property of the NAND gate, provided that all weights and biases are set in advance.

However, perceptrons are neither a simple ersatz of NAND gates nor another way to design
logic circuits. The main interest of perceptrons and neural networks is their learning property.
Instead of manually designing a network to solve a given problem, a neural network can learn
by itself how to adjust and tune its weights and biases for the problem at hand. Learning is
permitted by the gradient descent and backpropagation algorithms, that will be further explored
in this appendix.

A.1.2 Multi-layer perceptrons
The properties of perceptrons outlined in Section A.1.1 can be seen as a first motivation to "go
deep" and design large neural networks, although we lack theoretical guarantees for now. Let
us focus first on a prerequisite for the learning property to be valid.

Perceptrons have binary outputs, as previously seen. However, it is very doubtful that any
learning can happen in such a setting. Assume that we have a learning process able to carefully
tune the weights and biases of a neural network — if the weights and biases of a given perceptron
in the network are such that w · x + b ¥ 0, even a small change in either w or b is very likely
to make the perceptron reverse its decision, and thereby completely change the decision of the
whole network. Consequently, we need to introduce the concept of activation functions.
Instead of binary outputs, consider now that neuron outputs are computed as f(w · x + b),
where f is a given non-linear function. f needs to be non-linear, otherwise a neural network of
such units would reduce to a single layer of neurons, since the set of linear functions is closed
under composition. The di�erential of the activation function shows us that this new output is
such that

df =
ÿ

j

ˆf

ˆwj

dwj + ˆf

ˆb
db. (A.3)

Consequently, a small change in weights or bias causes a small change in the output, pro-
portionally to the partial derivative of the changed quantity. Historically, the first activation
function considered was the sigmoid function ‡(x) := (1 + e

≠x)≠1. Since a perceptron is a
neuron which activation function is the Heaviside step function, a sigmoid neuron performs a
smooth, continuous approximation of the perceptron. Classic activation functions include func-
tions with a shape approximating the Heaviside function such as the sigmoid and hyperbolic
tangent functions, or functions with interesting derivatives, such as the ReLU function defined
by f(x) = max(0, x) which gradient is 1 for all positive inputs.

We will henceforth focus our study on neural networks composed of such neurons. These
networks are called, by extension, multi-layer perceptrons. Fig. A.4 illustrates this concept
with the example of a four-layer perceptron. Each neuron composing the network is linked to
the others, such that each layer takes as inputs the outputs of the previous layer.

In fact, a theoretical guarantee ensures that multi-layer perceptrons are universal approxima-
tors. This guarantee can be stated as the following:

Theorem A.1.1. For any measurable function mapping a finite-dimensional space to another
finite-dimensional space, there exists a neural network with one hidden layer which can approx-
imate this function to any desired degree of accuracy. This holds regardless of the activation

123

Input layer Hidden layers Output layer

Figure A.4: An example of multi-layer perceptron. This multi-layer perceptron is composed of
four layers. Intermediary layers are called hidden.

function used.

This theorem guarantees that neural networks with one hidden layer are universal function
approximators. Proofs of such results are quite technical, and can be found for instance in
Hornik et al. (1989) for the case of continuous activation functions and squashing functions,
which are functions respectively tending to 0 and 1 as their input tends towards ≠Œ and +Œ.
As reassuring as this result can be, it only concerns relatively shallow neural networks. In that
sense, the need to go deep does not rely on theory, but merely on practice and experimentation.

A.1.3 Designing deep neural networks
Let us now derive a mathematical formulation of neural networks, following a framework used,
among others, in Galanti et al. (2016). A neural network architecture is a set (V, E, f), where
V denotes the set of neurons, E the set of directed edges, and f the activation function. We
represent the weights and biaises of the network with a weight function w : E æ R — the biases
are included with the assumption that each layer includes a "bias" neuron, linked to all the
neurons of the following layer only. Following on this, we can classify neural networks according
to their architecture (V, E, f), defining the class C(V,E,f) as the set of all neural networks which
architecture is (V, E, f).

Neurons are organized in disjoint layers L0, ..., LN , such that V = fiN

i=0Li. The number of
neurons in a given layer, |Li|, is called the size of the layer Li. Using the graph terminology, we
talk about fully-connected layers when, ’i œ {0, ...N ≠ 1}, all neurons in layer Li are connected
to all neurons in layer Li+1. A feed-forward neural network is a neural network which graph
contains no directed cycles. Using these notations, we can therefore state that the class of multi-
layer perceptrons is the set of all classes C(V,E,f) such that the resulting network is feed-forward,
with fully-connected layers.

We call a neural network deep when it has more than one hidden layer, i.e. when N > 2.
Otherwise, we call it shallow. One of the main problems of deep learning is the design of
such networks, i.e., choosing the appropriate neural network class C(V,E,f) to solve a given
problem. The sizes of the input and output layers depend entirely on the problem at hand, and
are consequently easily found. For instance, let us consider that we want to build a network
detecting the presence of cars and planes in an image. The input layer would take images —

124

assuming that we are working with 128*128 RGB images, the size of the input, i.e., of the L0
layer, would be of 128 ú 128 ú 3 = 49152. The output layer would consist of two neurons, each
giving the probability that there is, say, a car for the first one, and a plane for the second one.

What is however more problematic is the design of the hidden layers. How many layers should
we use, and with how many neurons in each? There is, as of now, no mathematical theory that
can guide us towards what would be considered a "good" or "e�cient" design. We have to rely
on heuristics, which are often only useful for given sets of problems. The number of hidden
layers and neurons in them are a part of the hyperparameters of the network, parameters that
we have to tune and engineer carefully in order to get the network to solve the problem we
want.

A classic heuristic is to adopt a diamond shape in the design of hidden layers. Starting with
the input layer, we use several hidden layers with a growing number of neurons, and then we
decrease this number so that it comes back to the size of the output layer. When doing so, we
immerse the problem we want to solve in a higher-dimensional space, where it is supposedly
more easily solved, and we then go back smoothly to the output space dimension. A common
idea is also to use powers of 2 as hidden layer sizes. Doing this allows ones to see more clearly
how the network reacts when we increase or reduce the number of neurons in a given layer: it
is doubtful that adding a few neurons only would have an e�ect on the e�ciency of a network,
and this rule consequently guides the choice of layer sizes. Such ideas and heuristics, commonly
used by practitioners, can be found for instance in Bengio (2012).

A.2 Stochastic gradient descent
In deep learning, learning is usually performed using two algorithms, one of which being the
stochastic gradient descent (SGD) or one of its numerous variations. In this section, we introduce
the gradient descent algorithm from which SGD is derived, and then briefly mention a couple
useful variations of SGD.

A.2.1 Defining the optimization problem
An optimization problem is composed of three distinct parts, as stated in Domingos (2012).
These three parts are the following:

- The model. The model part of the problem consists of the class of neural networks we
consider and the data at our disposal. For example, a given class C(V,E,f) in the class of
multi-layer perceptrons. We suppose that the training data consists of i.i.d. samples of
an unknown probability distribution, e.g., (xi, yi)i=1...n ≥i.i.d. µ. A

- The loss function. The loss function is the function that we need to optimize using our
model. It is a function of the weights and biases of the network that we write L(w, b). A
classic example of loss function is the mean squared error (MSE), which in our case has
the following form, writing ai the output of the network for an input xi:

L(w, b) =
nÿ

i=1
Îyi ≠ aiÎ2

2. (A.4)

For ease of notation, we introduce v = (w, b) such that L is now a function of v, denoted
L(v).

- The optimization method. Also denoted the optimizer in literature, the optimization
method is the algorithm we use to search in the considered class of neural networks the
one whose weights minimize the loss function using training data. Gradient descent and
its variations are examples of such methods, and are the ones we focus on in this appendix.

125

A.2.2 Deriving the SGD algorithm
Let us now consider optimization methods, and more particularly gradient descent. The gradi-
ent descent algorithm is based on the following functional analysis fact.

Proposition A.2.1. Assume that L(v) is defined and di�erentiable in the neighbourhood of a
point z. L decreases fastest in the opposite direction of its gradient ÒL(z).

Using this idea, starting from a given point z0 and supposing that the loss function has all
required regularity, we can construct a series of points z1, ...zn such that

zi+1 = zi ≠ ÷ÒL(zi) ’i œ N, (A.5)

with, for ÷ small enough, the fact that

L(z0) > L(z1) > ... > L(zn). (A.6)

We stop when the di�erence in loss between two steps becomes very small, typically smaller
than an ‘ > 0 fixed beforehand. We therefore have an algorithm allowing us to compute a series
of point which converges towards a minimum of the loss function. Note that the minimum we
find using this algorithm may only be a local minimum of the loss. ÷ is called the learning
rate, and can be changed at every step of our algorithm.

Assume now that the loss function is separable, i.e. that it can be broken down into pieces
that only depend on one sample of the training set {(xi, yi)}i=1...n. The loss can then be written

L(v) = 1
n

nÿ

i=1
Li(v). (A.7)

Following on this, the gradient ÒL(v) can be decomposed in the same manner. But when
we compute the sequence of points in the gradient descent algorithm, we would then have to
calculate, at each step, 1

n

q
n

i=1 ÒLi(v), which can be computationally very expensive when the
training set is large, as is typically required for training deep neural networks.

To overcome this issue, we introduce the idea of stochastic gradient descent. At every step,
instead of using all the available training data to calculate the gradient, we only calculate
it using a small subset of the training examples picked uniformly at random, that we call a
mini-batch. The gradient computed on that mini-batch of data approximates the true gradient,

dfrac1m

ÿ

iœB

ÒLi(zj) ¥ ÒL(zj), (A.8)

where B is a subset of {1, ..., n} picked uniformly at random and such that |B| = m. Note
that this approximator is unbiased. We then update z using this approximated gradient and
iterate this process, picking subsets of the remaining training examples until all are used. When
the pool of training examples if depleted, we say that we completed an epoch. Algorithm 1

126

summarizes these steps.

Algorithm 1: The stochastic gradient descent algorithm.
Data: Training set {(xi, yi)}i=1...n ≥i.i.d.

µ

Result: A local minimum of the loss function L
Initialize v = (w, b), set the learning rate ÷;
for l = 1, ...epochs do

Set the training set to be the whole data;
for i = 1...n/m do

Pick uniformly at random m training examples from the training set;

Calculate the approximate gradient 1
m

q
jœB

ÒLj(v);

Update v following v := v ≠ ÷
1
m

q
jœB

ÒLj(vi);
Subtract chosen examples from the training set;

The mini-batch size m, the number of epochs and the learning rate ÷ are all hyperparameters of
the optimization problem, along with the hyperparameters of the neural network architecture.

A.2.3 A couple variations of SGD
The previous section introduced the classic SGD algorithm, but there exist also many other
extensions and variants of the underlying idea. We briefly discuss in this section two of its most
classic extensions, the momentum method and RMSProp. A recap of these two methods can
also be found in the supplements of Mnih et al. (2016).

The momentum method was first introduced in Rumelhart et al. (1986). This method uses a
slightly di�erent updating step, remembering at each step the di�erence between the previous
value of z, zi≠1, and the current value zi; denoting �iz = zi ≠ zi≠1, the momentum update rule
is defined as the following, where the gradient is approximated using a mini-batch :

zi+1 = zi ≠ ÷ÒL(zi) + –�iz. (A.9)

This update rule is designed following basic physics principles. If we consider that our point z

represents a ball on the "hilly space" that is our loss function L, the momentum update has a
simple physics analogy. The gradient part of the update corresponds to the force applied to the
ball, and the delta part to a viscous force governed by the – coe�cient, a new hyperparameter
of the problem. A typical value of – is – = 0.9. We observe that when using this rule, z is
updated along its previous direction, thereby preventing the oscillations one can observe with
classic SGD and that are due to the mini-batch approximation.

RMSProp, which stands for Root Mean Square Propagation, relies on a di�erent idea. RMSProp
uses an adaptative learning rate, which is found at each step using the previous gradients of the
loss.

At each step, RMSProp keeps a moving mean of the squared gradients,

v(zi) := ‹v(zi≠1) + (1 ≠ ‹)(ÒL(zi))2
, (A.10)

where ‹ is called the forgetting factor. We then use this mean to adapt the learning rate to the

127

current step through the update rule defined by

zi+1 = zi ≠ ÷


v(zi)
ÒL(zi). (A.11)

All gradients used here are mini-batches approximations. This method, unpublished, was pro-
posed by G. Hinton and T. Tieleman in 2012. Hinton suggests to take ‹ = 0.9. This method
was experimentally shown to adapt the learning rate in an e�cient way, thereby accelerating
convergence of stochastic gradient descent. At the time of writing this appendix, the most
widespread optimizer is Adam (Kingma and Ba, 2015), which e�ciently combines the ideas of
momentum and RMSProp optimizers.

A.3 Backpropagation algorithm
SGD provides a way to update the weights and biases of a neural network using gradients,
but assumes that we can e�ectively compute these gradients. In deep learning, gradients are
computed using the backpropagation algorithm.

Let us first define the notations we use to refer to a neural network. Assuming a neural network
of a given class C(V,E,f) with L layers, for l = 1, ..., L, we denote as w

l

j,k
the weight for the

connection of neuron k in layer (l ≠ 1) to neuron j in layer l, and b
l

j
for the bias for neuron j

in layer l. For each layer, we can therefore define a weight matrix W
l and a bias vector bl. We

also introduce al, the activation vector of layer l, which components are defined such that

a
l

j = f

A
ÿ

k

w
l

jka
l≠1
k

+ b
l

j

B

. (A.12)

Using these notations, the computations performed by a neural network can be summarized in
the following vectorized form:

al = f

1
W

lal≠1 + bl
2

. (A.13)

Let us finally introduce the weighted input zl, such that

zl := W
lal≠1 + bl

, (A.14)

therefore verifying al = f(zl).

Backpropagation provides us with a way to compute the partial derivatives of the loss function
with regard to any weight w

l

j,k
, i.e., ˆL

ˆw
l
j,k

, and any bias b
l

j
, i.e., ˆL

ˆb
l
j
, of our network. Back-

propagation relies on two assumptions on the loss function L. The first one is the separability
hypothesis that was already required for SGD. The second one is that the partial losses obtained
through separability can be written as functions of the outputs of the neural network only, i.e.,
such that Li = Li(aL) — MSE, introduced in Section A.2.1, is an example of such a loss. For
ease of notation, working from now on on such losses Li, we drop the subscript i.

Let us note
”

l

j := ˆL
ˆz

l

j

(A.15)

the error of neuron j in layer l, and ”
l the associated vector. The backpropagation algorithm

gives us a way to calculate these errors, and to relate them to the partial derivatives of interest
ˆL

ˆw
l
j,k

and ˆL
ˆb

l
j

that we need for SGD. The algorithm relies on four equations, stated in the fol-
lowing proposition.

128

Proposition A.3.1. Using the framework defined above, we have the following equations:

”
L = ÒaLL § f

Õ(zL), (A.16)

”
l = ((W l+1)T

”
l+1) § f

Õ(zl) (A.17)

ˆL
ˆb

l

j

= ”
l

j (A.18)

ˆL
ˆw

l

j,k

= a
l≠1
k

”
l

j (A.19)

where § designates the Hadamard product, i.e. the component-wise vector product.

Proof. All these equations rely on the chain rule of derivation.

A.16 : Recall that ”
L

j
= ˆL

ˆz
L
j

. Applying the chain rule, this equation becomes ”
L

j
=

q
k

ˆL
ˆa

L

k

ˆa
L

k

ˆz
L

j

.

But, recalling the definition of a
L, ˆa

L

k

ˆz
L

j

is nil for all k ”= j, and thus we get ”
L

j
= ˆL

ˆa
L

j

ˆa
L

j

ˆz
L

j

.

Hence, using that a
L

j
= f(zL

j
), we obtain that

”
L

j = ˆL
ˆa

L

j

f
Õ(zL

j),

and hereby the result.

A.17 : We have that ”
l

j
= ˆL

ˆz
l
j
. Using the chain rule, we obtain

”
l

j =
ÿ

k

ˆL
ˆz

l+1
k

ˆz
l+1
k

ˆz
l

j

=
ÿ

k

ˆz
l+1
k

ˆz
l

j

”
l+1
k

,

plugging in the definition of ”. We also know that z
l+1
k

=
q

j
w

l+1
k,j

a
l

j
+b

l+1
k

=
q

j
w

l+1
k,j

f(zl

j
)+b

l+1
k

.

We thus obtain, di�erentiating this expression by z
l

j
,

ˆz
l+1
k

ˆz
l

j

= w
l+1
k,j

f
Õ(zl

j).

Plugging this expression in the previous sum, we find that

”
l

j =
ÿ

k

w
l+1
k,j

”
l+1
k

f
Õ(zl

j)

= ((W l+1)T
”

l+1)jf
Õ(zl

j),

thus the result.

A.18 : Starting again from the fact that ”
l

j
= ˆL

ˆz
l
j

and using the chain rule, we obtain

”
l

j =
ÿ

k

ˆL
ˆb

l

k

ˆb
l

k

ˆz
l

j

=
ÿ

k

ˆL
ˆb

l

k

{j = k}

129

since b
l

j
= z

l

j
≠

q
k

w
l

j,k
a

l≠1
k

, hence the result.

A.19 : Starting now from ˆL
ˆw

l
j,k

and using the chain rule, we obtain

ˆL
ˆw

l

j,k

= ˆL
ˆz

l

j

ˆz
l

j

ˆw
l

j,k

= ”
l

ja
l≠1
k

,

since z
l

j
=

q
k

w
l

j,k
a

l≠1
k

+ b
l

j
. We therefore have proven all the equations. ⇤

These four equations provide us with a way to compute the output error ”
L, and then propagate

it in our network in a backwards motion to find the gradients we need to update the weights
and biases. We can therefore write the learning procedure, our optimizer, as the following,
combining backpropagation and stochastic gradient descent. This pseudocode is inspired by
(Nielsen, 2015).

1. Input a set of i.i.d. training examples {(xi, yi)}i=1...n.

2. For each training example i, set the activation input a
i,1, and execute the following steps:

- a. Feedforward : for each layer l = 2, . . . , L, compute the weighted input z
i,l =

W
l
a

i,l≠1 + b
l and the corresponding activation a

i,l = f(zi,l).
- b. Output error : Compute the output error ”

i,L, using equation A.16.
- c. Backpropagation of the errors: for each layer l = L ≠ 1, ..., 2, compute the errors

”
i,l using equation A.17.

3. Stochastic Gradient Descent : for each layer l = L, ..., 2, update the weights and biases
using mini-batches B, following the (classic) SGD defined in the previous section where at each
step the update rule becomes

- a. W
l = W

l ≠ ÷

m

q
iœB

”
i,l(ai,l≠1)T (Equation A.19)

- b. b
l = b

l ≠ ÷

m

q
iœB

”
i,l (Equation A.18)

Using this optimizer, we can find in the network class C(V,E,f) the set of weights and biases
minimizing the loss function L on the training dataset. We now have all the required elements
of our optimization problem, and can therefore learn from the training data an e�cient network
solving the problem at hand.

A.4 Convolutional neural networks
Let us close this appendix with the broad principles and functioning of convolutional neural
networks (CNN), also encountered in this thesis in Chapter 4. This section is inspired from
LeCun et al. (2015) and Karpathy (2016).

Convolutional neural networks can be understood as a kind of feed-forward neural networks
specifically designed to process data in the form of multiple arrays, according to LeCun et al.
(2015). For instance, a color image is composed of three two-dimensional arrays — one for
each RGB channel —, language and time series can be seen as one-dimensional arrays, or audio
spectrograms as two-dimensional arrays — one dimension for time, and one for frequency. CNNs
are state-of-the-art algorithms in the fields of computer vision and speech recognition, their
popularity having constantly grown since their massive success in the ImageNet competition
(Russakovsky et al., 2015).

130

The image classification example presented in Section A.1.3 highlights that classic multi-layer
perceptrons do not scale well to computer vision tasks. For images as small as 128*128, the
size of the input layer is of more than 49000. Consequently, following the heuristics introduced
in A.1.3 to design the network architecture, an appropriate deep neural network would need to
be deep and wide, resulting in longer computation times and potential overfitting due to the
particularly high number of parameters. Moreover, images have inherent properties that multi-
layer perceptrons do not take into account — CNNs are designed in that purpose, following
inspiration from the human visual cortex.

A CNN is most commonly built using three di�erent kind of layers: convolutional layers, pooling
layers and fully-connected layers. The goal of here is to provide intuition about their functioning
— computational details are left to references such as Goodfellow et al. (2016).

Convolutional layers are constituted of a set of learnable neurons called filters. Filters are
spatially smaller than their input, i.e., in terms of height and width, but share the same depth.
The spatial size of a convolutional filter is called its receptive field. Considering the example of
a filter of size 3*3 used on a 128*128*3 input image, the filter successively computes

3ÿ

l=1

3ÿ

k=1

3ÿ

d=1
xi+l,j+k,dal,k,d + b (A.20)

where {al,k,d}l,k,d and b are the 10 trainable parameters of the filter. This filter is applied to
all (i, j) positions of the input image to form a two-dimensional activation map that stores
the result of the convolution product between the filter and the corresponding portion of the
input. A convolutional layer is usually composed of multiple filters, which activation maps are
stacked together to form the output volume of the layer. Figure A.5 presents an example of
convolution layer with 5 filters on a 32*32*3 image. This figure illustrates the local connectivity
of convolutional filters: a given slice of the output activation volume is connected to a small
portion of the input volume only, significantly di�ering from the fully-connected setting of
the previously studied multi-layer perceptrons. Consequently, convolutional filters provide an
e�cient way to detect local spatial correlations in the inputs, such as edges and corners.

Figure A.5: An example of convolutional layer using with 5 filters, applied to a 32*32*3 image.
Illustration taken from Karpathy (2016).

The output volume dimension is determined by the hyperparameters of the convolutional layer.
These hyperparameters are the following:

- Depth. The depth of the output volume corresponds to the number of filters used in
the convolution layer, and consequently controls the number of neurons connected to the
same region of the input volume.

131

- Stride. The stride of the layer controls the way filters are applied over the input. Applying
filters to all (i, j) positions of the input correspond to a stride of 1, but depending on filter
sizes, practitioners can choose to apply filters every s pixels — that s corresponds to the
stride hyperparamter.

- Padding. The padding controls the output volume spatial size by adding zeros to the
borders of the input image. In literature, a valid padding corresponds to not adding zeros
on the borders, and a same padding to adding zeros such that the output volume has the
same spatial size than its input. Concretely, by applying 3*3 filters on a 128*128 image,
for the 127-th and 128-th positions of the x- and y-axis there is not enough pixels to
compute the convolution product — in this situation, padding the input image using two
"borders" of zeros allows to retrieve 128*128 activation maps in output.

In a convolution layer, the number of weights and biases is given by f ◊ n
2 ◊ d, with f the

number of filters, n the filter size and d the input depth. A depth slice of the output volume of
a convolution layer has been obtained using the same parameters — this is called the parameter
sharing scheme. This scheme is related to the property of translation invariance — as a given
filter searches for a specific pattern in its input, constraining a slice depth to the same filter
makes it search for the feature in the exact same way in the whole input.

Pooling layers reduce the size of their input following a non-linear pooling function. The most
common pooling layer is the max-pooling. The max-pooling layer partitions each depth slice of
the input into non-overlapping rectangles, and outputs the maximum of each of these regions.
Pooling layers allow to gradually reduce the spatial size of the input, thereby reducing the
number of parameters needed for computations and hence preventing overfitting.

Fully-connected layers correspond to the classic layers introduced in Section A.1.2. These layers
are usually found at the end of computer vision networks and perform the classification or
regression task at hand using the features extracted by the convolution layers of the network.

These types of layers are usually interwoven with ReLU activations, defined as f(x) = max(0, x),
and all together form what we call (deep) convolutional neural networks. An example of such
network is shown in Fig. A.6. In this figure, information flows bottom-up, from the picture of a
Samoyed dog to its decomposition into features learnt by the network and a classification task
performed by a last fully-connected layer. Among all 1000 classes of the ImageNet classification
task, the right class is attributed 16% of probability.

In this thesis, we make use of one-dimensional convolution layers in Chapter 4. The com-
putations performed with one-dimensional convolution layers follow the same idea than two-
dimensional ones: for a given time series {xt}t and a filter of size n, a one-dimensional convo-
lution computes

nÿ

l=1

mÿ

d=1
xt+l,dal,d + b, (A.21)

with m the number of features per time-step t comprised in xt.

132

raw pixels could not possibly distinguish the latter two, while putting
the former two in the same category. This is why shallow classifiers
require a good feature extractor that solves the selectivity–invariance
dilemma — one that produces representations that are selective to
the aspects of the image that are important for discrimination, but
that are invariant to irrelevant aspects such as the pose of the animal.
To make classifiers more powerful, one can use generic non-linear
features, as with kernel methods20, but generic features such as those
arising with the Gaussian kernel do not allow the learner to general-
ize well far from the training examples21. The conventional option is
to hand design good feature extractors, which requires a consider-
able amount of engineering skill and domain expertise. But this can
all be avoided if good features can be learned automatically using a
general-purpose learning procedure. This is the key advantage of
deep learning.

A deep-learning architecture is a multilayer stack of simple mod-
ules, all (or most) of which are subject to learning, and many of which
compute non-linear input–output mappings. Each module in the
stack transforms its input to increase both the selectivity and the
invariance of the representation. With multiple non-linear layers, say
a depth of 5 to 20, a system can implement extremely intricate func-
tions of its inputs that are simultaneously sensitive to minute details
— distinguishing Samoyeds from white wolves — and insensitive to
large irrelevant variations such as the background, pose, lighting and
surrounding objects.

Backpropagation to train multilayer architectures
From the earliest days of pattern recognition22,23, the aim of research-
ers has been to replace hand-engineered features with trainable
multilayer networks, but despite its simplicity, the solution was not
widely understood until the mid 1980s. As it turns out, multilayer
architectures can be trained by simple stochastic gradient descent.
As long as the modules are relatively smooth functions of their inputs
and of their internal weights, one can compute gradients using the
backpropagation procedure. The idea that this could be done, and
that it worked, was discovered independently by several different
groups during the 1970s and 1980s24–27.

The backpropagation procedure to compute the gradient of an
objective function with respect to the weights of a multilayer stack
of modules is nothing more than a practical application of the chain

rule for derivatives. The key insight is that the derivative (or gradi-
ent) of the objective with respect to the input of a module can be
computed by working backwards from the gradient with respect to
the output of that module (or the input of the subsequent module)
(Fig. 1). The backpropagation equation can be applied repeatedly to
propagate gradients through all modules, starting from the output
at the top (where the network produces its prediction) all the way to
the bottom (where the external input is fed). Once these gradients
have been computed, it is straightforward to compute the gradients
with respect to the weights of each module.

Many applications of deep learning use feedforward neural net-
work architectures (Fig. 1), which learn to map a fixed-size input
(for example, an image) to a fixed-size output (for example, a prob-
ability for each of several categories). To go from one layer to the
next, a set of units compute a weighted sum of their inputs from the
previous layer and pass the result through a non-linear function. At
present, the most popular non-linear function is the rectified linear
unit (ReLU), which is simply the half-wave rectifier f(z) = max(z, 0).
In past decades, neural nets used smoother non-linearities, such as
tanh(z) or 1/(1 + exp(−z)), but the ReLU typically learns much faster
in networks with many layers, allowing training of a deep supervised
network without unsupervised pre-training28. Units that are not in
the input or output layer are conventionally called hidden units. The
hidden layers can be seen as distorting the input in a non-linear way
so that categories become linearly separable by the last layer (Fig. 1).

In the late 1990s, neural nets and backpropagation were largely
forsaken by the machine-learning community and ignored by the
computer-vision and speech-recognition communities. It was widely
thought that learning useful, multistage, feature extractors with lit-
tle prior knowledge was infeasible. In particular, it was commonly
thought that simple gradient descent would get trapped in poor local
minima — weight configurations for which no small change would
reduce the average error.

In practice, poor local minima are rarely a problem with large net-
works. Regardless of the initial conditions, the system nearly always
reaches solutions of very similar quality. Recent theoretical and
empirical results strongly suggest that local minima are not a serious
issue in general. Instead, the landscape is packed with a combinato-
rially large number of saddle points where the gradient is zero, and
the surface curves up in most dimensions and curves down in the

Figure 2 | Inside a convolutional network. The outputs (not the filters)
of each layer (horizontally) of a typical convolutional network architecture
applied to the image of a Samoyed dog (bottom left; and RGB (red, green,
blue) inputs, bottom right). Each rectangular image is a feature map

corresponding to the output for one of the learned features, detected at each
of the image positions. Information flows bottom up, with lower-level features
acting as oriented edge detectors, and a score is computed for each image class
in output. ReLU, rectified linear unit.

Red Green Blue

Samoyed (16); Papillon (5.7); Pomeranian (2.7); Arctic fox (1.0); Eskimo dog (0.6); white wolf (0.4); Siberian husky (0.4)

Convolutions and ReLU

Max pooling

Max pooling

Convolutions and ReLU

Convolutions and ReLU

4 3 8 | N A T U R E | V O L 5 2 1 | 2 8 M A Y 2 0 1 5

REVIEWINSIGHT

© 2015 Macmillan Publishers Limited. All rights reserved

Figure A.6: An example of convolutional neural network, applied to the ImageNet 1000-classes
classification task. Illustration taken from LeCun et al. (2015).

133

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Titre : Apprentissage statistique pour la recommandation de produits financiers

Mots clés : apprentissage statistique, finance, systèmes de recommandation, clustering supervisé, systèmes
de recommandation dépendants du temps, apprentissage profond

Résumé : L’anticipation des besoins des clients est
cruciale pour toute entreprise — c’est
particulièrement vrai des banques d’investissement
telles que BNP Paribas Corporate and Institutional
Banking au vu de leur rôle dans les marchés
financiers. Cette thèse s’intéresse au problème de la
prédiction des intérêts futurs des clients sur les
marchés financiers, et met plus particulièrement
l’accent sur le développement d’algorithmes ad hoc
conçus pour résoudre des problématiques
spécifiques au monde financier.
Ce manuscrit se compose de cinq chapitres, répartis
comme suit :
- Le chapitre 1 expose le problème de la prédiction
des intérêts futurs des clients sur les marchés
financiers. Le but de ce chapitre est de fournir aux
lecteurs toutes les clés nécessaires à la bonne
compréhension du reste de cette thèse. Ces clés sont
divisées en trois parties : une mise en lumière des jeux
de données à notre disposition pour la résolution du
problème de prédiction des intérêts futurs et de leurs
caractéristiques, une vue d’ensemble, non exhaustive,
des algorithmes pouvant être utilisés pour la
résolution de ce problème, et la mise au point de
métriques permettant d’évaluer la performance de
ces algorithmes sur nos jeux de données. Ce chapitre
se clôt sur les défis que l’on peut rencontrer lors de
la conception d’algorithmes permettant de résoudre
le problème de la prédiction des intérêts futurs en
finance, défis qui seront, en partie, résolus dans les
chapitres suivants ;
- Le chapitre 2 compare une partie des algorithmes
introduits dans le chapitre 1 sur un jeu de données
provenant de BNP Paribas CIB, et met en avant les
difficultés rencontrées pour la comparaison
d’algorithmes de nature différente sur un même jeu
de données, ainsi que quelques pistes permettant de
surmonter ces difficultés. Ce comparatif met en
pratique des algorithmes de recommandation
classiques uniquement envisagés d’un point de vue

théorique au chapitre précédent, et permet
d’acquérir une compréhension plus fine des
différentes métriques introduites au chapitre 1 au
travers de l’analyse des résultats de ces
algorithmes ;
- Le chapitre 3 introduit un nouvel algorithme,
Experts Network, i.e., réseau d’experts, conçu pour
résoudre le problème de l’hétérogénéité de
comportement des investisseurs d’un marché
donné au travers d’une architecture de réseau de
neurones originale, inspirée de la recherche sur les
mélanges d’experts. Dans ce chapitre, cette
nouvelle méthodologie est utilisée sur trois jeux de
données distincts : un jeu de données synthétique,
un jeu de données en libre accès, et un jeu de
données provenant de BNP Paribas CIB. Ce chapitre
présente aussi en plus grand détail la genèse de
l’algorithme et fournit des pistes pour l’améliorer ;
- Le chapitre 4 introduit lui aussi un nouvel
algorithme, appelé History-augmented
collaborative filtering, i.e., filtrage collaboratif
augmenté par historiques, qui proposes
d’augmenter les approches de factorisation
matricielle classiques à l’aide des historiques
d’interaction des clients et produits considérés. Ce
chapitre poursuit l’étude du jeu de données étudié
au chapitre 2 et étend l’algorithme introduit avec
de nombreuses idées. Plus précisément, ce chapitre
adapte l’algorithme de façon à permettre de
résoudre le problème du cold start, i.e., l’incapacité
d’un système de recommandation à fournir des
prédictions pour de nouveaux utilisateurs, ainsi
qu’un nouveau cas d’application sur lequel cette
adaptation est essayée ;
- Le chapitre 5 met en lumière une collection
d’idées et d’algorithmes, fructueux ou non, qui ont
été essayés au cours de cette thèse. Ce chapitre se
clôt sur un nouvel algorithme mariant les idées des
algorithmes introduits aux chapitres 3 et 4.

Université Paris-Saclay
Espace Technologique / Immeuble Discovery

Route de l’Orme aux Merisiers RD 128 / 91190 Saint-Aubin, France

Title : Machine learning for financial products recommendation

Keywords : machine learning, finance, recommender systems, supervised clustering, time-aware

recommender systems, deep learning

Abstract : Anticipating clients’ needs is crucial to any

business — this is particularly true for corporate and

institutional banks such as BNP Paribas Corporate

and Institutional Banking due to their role in the

financial markets. This thesis addresses the problem

of future interests prediction in the financial context

and focuses on the development of ad hoc

algorithms designed for solving specific financial

challenges.

This manuscript is composed of five chapters:

- Chapter 1 introduces the problem of future interests

prediction in the financial world. The goal of this

chapter is to provide the reader with all the keys

necessary to understand the remainder of this thesis.

These keys are divided into three parts: a

presentation of the datasets we have at our disposal

to solve the future interests prediction problem and

their characteristics, an overview of the candidate

algorithms to solve this problem, and the

development of metrics to monitor the performance

of these algorithms on our datasets. This chapter

finishes with some of the challenges that we face

when designing algorithms to solve the future

interests problem in finance, challenges that will be

partly addressed in the following chapters;

- Chapter 2 proposes a benchmark of some of the

algorithms introduced in Chapter 1 on a real-word

dataset from BNP Paribas CIB, along with a

development on the difficulties encountered for

comparing different algorithmic approaches on a

same dataset and on ways to tackle them. This

benchmark puts in practice classic recommendation

algorithms that were considered on a theoretical

point of view in the preceding chapter, and provides

further intuition on the analysis of the metrics

introduced in Chapter 1;

- Chapter 3 introduces a new algorithm, called

Experts Network, that is designed to solve the

problem of behavioral heterogeneity of investors

on a given financial market using a custom-built

neural network architecture inspired from mixture-

of-experts research. In this chapter, the introduced

methodology is experimented on three datasets: a

synthetic dataset, an open-source one and a real-

world dataset from BNP Paribas CIB. The chapter

provides further insights into the development of

the methodology and ways to extend it;

- Chapter 4 also introduces a new algorithm, called

History-augmented Collaborative Filtering, that

proposes to augment classic matrix factorization

approaches with the information of users and

items’ interaction histories. This chapter provides

further experiments on the dataset used in Chapter

2, and extends the presented methodology with

various ideas. Notably, this chapter exposes an

adaptation of the methodology to solve the cold-

start problem and applies it to a new dataset;

- Chapter 5 brings to light a collection of ideas and

algorithms, successful or not, that were

experimented during the development of this

thesis. This chapter finishes on a new algorithm that

blends the methodologies introduced in Chapters

3 and 4.

