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Also known as the Internet of Things (IoT), the proliferation of connected objects offers unprecedented opportunities to consumers. From fitness trackers to medical assistants, through smarthome appliances, the IoT objects are evolving in a plethora of application fields.

However, the benefits that they can bring to our society increase along with their privacy implications. Continuously communicating valuable information via wireless links such as Bluetooth and Wi-Fi, those connected devices support their owners within their activities. Most of the time emitted on open channels, and sometimes in the absence of encryption, those information are then easily accessible to any passive attacker in range.

In this thesis, we explore two major privacy concerns resulting from the expansion of the IoT and its wireless communications: physical tracking and inference of users information. Based on two large datasets composed of radio signals from Bluetooth/BLE devices, we first defeat existing anti-tracking features prior to detail several privacy invasive applications. Relying on passive and active attacks, we also demonstrate that broadcasted messages contain cleartext information ranging from the devices technical characteristics to personal data of the users such as e-mail addresses and phone numbers.

In a second time, we design practical countermeasures to address the identified privacy issues. In this direction, we provide recommendations to manufacturers, and propose an approach to verify the absence of flaws in the implementation of their protocols.

Finally, to further illustrate the investigated privacy threats, we implement two demonstrators. As a result, Venom introduces a visual and experimental physical tracking system, while Himiko proposes a human interface allowing to infer information on IoT devices and their owners.
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Résumé

Également connue sous le nom d'Internet des Objets (IdO), la prolifération des objets connectés offre des opportunités sans précédent aux consommateurs. Des moniteurs d'activité physique aux assistants médicaux, en passant par les appareils électroménagers pour maisons intelligentes, les objets IdO évoluent dans une pléthore de domaines d'application.

Cependant, les avantages qu'ils peuvent apporter à notre société augmentent conjointement avec leurs implications en matière de vie privée. Communiquant continuellement de précieuses informations par le biais de liaisons non filaires telles que le Bluetooth et le Wi-Fi, ces appareils connectés accompagnent leurs propriétaires dans leurs activités. La plupart du temps émises sur des canaux ouverts, et parfois en l'absence de chiffrement, ces informations sont alors facilement accessibles pour tout attaquant passif à portée.

Dans cette thèse, nous explorons deux problèmes de vie privée majeurs résultant de l'expansion de l'IdO et de ses communications sans fil : le traçage physique et l'inférence d'informations utilisateurs. Sur la base de deux grands ensembles de données composés de signaux radio issus de périphériques Bluetooth/BLE, nous mettons d'abord en échec les fonctionnalités anti-traçage existantes avant de détailler plusieurs applications invasives pour la vie privée. En s'appuyant sur des attaques passives et actives, nous démontrons également que les messages diffusés contiennent des informations en clair allant des caractéristiques techniques des appareils aux données personnelles des utilisateurs telles que des adresses e-mail et numéros de téléphone.

Dans un second temps, nous concevons des contre-mesures pratiques pour résoudre les problèmes de vie privée identifiés. Dans ce sens, nous fournissons des recommandations aux fabricants, et proposons une approche afin de vérifier l'absence de failles dans l'implémentation de leurs protocoles.

Enfin, dans le but d'illustrer davantage les menaces de vie privée enquêtées, nous implémentons deux démonstrateurs. Par conséquent, Venom introduit un système de traçage physique visuel et expérimental, tandis qu'Himiko propose une interface humaine permettant d'inférer des informations sur les appareils IdO et leurs propriétaires. field. The device is randomizing its address (in italic) over time while incrementing the Sequence Number (in bold) in the broadcasted data. Such a 2-byte long counter can be leveraged by a passive attacker to link together frames generated with the three different device addresses. . . . III. [START_REF] Celosia | DEMO: Himiko: A Human Interface for Monitoring and Inferring Knowledge on Bluetooth-Low-Energy Objects[END_REF] Functional diagram of Valkyrie. A network trace along with a set of rules are provided as inputs to the tool. The Wireshark dissector is leveraged for the protocol field denomination that must be specified in rules. At the end of the analysis, Valkyrie outputs a report specifying verified rules and breached ones with detailed warning messages. . . . . . . . . . . . . . . . 
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Introduction

This chapter introduces the privacy challenges induced by the increasing adoption of wireless communicating devices. To glimpse the purpose of our study, the Internet of Things (IoT) concept as well as its privacy implications are clarified in Section I.1. Afterwards, Section I.2 provides technical details on the radio communication standards considered throughout this thesis. Synthesizing its content, the structure of this manuscript is developed in Section I.3. To finish, Section I.4 furnishes a brief notice delimiting the efforts and contributions of each researcher who participated in this work.

I.1 Internet of Things and privacy

The Internet of Things (IoT) is a concept introduced to designate connected objects that form a network of physical devices. Emerging from overlapping trends such as the miniaturization, widespread network access and location positioning technology, the number of IoT devices is growing quickly. As of today, those connected objects are estimated to 31 billion units, and it is predicted that they will reach 75 billion in 2025 [START_REF]Statistica. Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025[END_REF].

Generally equipped with sensors and/or actuators, IoT devices share the ability to sense, analyze their environments and communicate. To this end, they rely on autonomous communication between physical objects within the Internet infrastructure. Therefore, it is possible to augment those objects with knowledge of the Internet in various fields of application such as transport, manufacturing and agriculture, for instance.

With the wide and rapid adoption of the IoT, the number of applications in which users are involved as well as the level of interaction with the user are both bound to increase. As an illustration, temperatures and lights of a smarthome adapt to inhabitants, while smart meters collect and report their energy consumption; in healthcare, medical sensors and implants check the health of the patients and provide medical assistance; in fitness, applications on wristbands record and monitor physical activities of sportsmen; etc.

I.1. Internet of Things and privacy

Overall, the IoT redefines the digital frontiers impacting our society on the economic, technical, social, industrial and political levels [START_REF] Bouhaï | Frontières numériques et savoir[END_REF]. Moreover, focusing on the ameliorations brought by the deployment of such connected devices, the IoT can be beneficial for humanity.

As an example, it has the potential to improve road safety, children care, health related analysis, entertainment and even the knowledge of ourselves through the quantified self.

To be efficient, the IoT applications require ever more sensors to be set up into our environments. From microphones to video cameras, through thermal and motion sensors, the establishment of such a diverse and broad sensor fabric into our society induces risks that have to be investigated.

As one of the most discussed risk, the privacy protection of users represents an important obstacle to the IoT adoption [START_REF] Bertino | Data Security and Privacy in the IoT[END_REF]. From one side, privacy is assimilated as a problem that is not relevant in our current society as it goes against the constant exhibition of our daily lives through social networks [START_REF] Manach | La vie privée, un problème de vieux cons?[END_REF]. From the other side, privacy is believed not to be necessary if you have nothing to hide [START_REF] Daniel | I've got nothing to hide and other misunderstandings of privacy[END_REF].

Within this heterogeneous situation, legislators are working to establish a legal framework for privacy. For instance, the European Parliament seriously takes into account this problem along with its associated debates to legislate on those questions [START_REF]REPORT with recommendations to the Commission on Civil Law Rules on Robotics[END_REF]. Note that, specified as a fundamental right for everyone in the Universal Declaration of Human Rights (UDHR) [START_REF]Universal declaration of human rights[END_REF], the privacy protection is still one of the discussion subjects in the European Parliament.

However, privacy remains difficult to define and formalize because of the complexity of the contexts that have to be considered. To glimpse this complexity, privacy is first defined in 1890 as "the right to be left alone" [START_REF] Samuel | The right to privacy[END_REF], while Westin [START_REF] Westin | Privacy and freedom[END_REF] later considers that privacy "provides individuals and groups in society with a preservation of autonomy, a release from role-playing, a time for self-evaluation and for protected communication". In turn, the UDHR stipulates that "no one shall be subjected to arbitrary interference with his privacy, family, home or correspondence, nor to attacks upon his honour and reputation. Everyone has the right to the protection of the law against such interference or attacks" [29, Article 12]. As a result, whether it is focused on what happens to individuals when their information are used [START_REF] Samuel | The right to privacy[END_REF][START_REF]Universal declaration of human rights[END_REF] or on access and exposition of users information [START_REF] Westin | Privacy and freedom[END_REF], there exist essential differences between those definitions.

In the meantime, behaviors, preferences, and activities of consumers are being more regularly recorded and monitored with the rise of the IoT. Indeed, connected objects are collecting data on users prior to send them to remote servers in order to enable a variety of services.

As a consequence, privacy have to be ensured within devices, during the storage, transmission and processing of users information [START_REF] Barki | M2M security: Challenges and solutions[END_REF]. In this direction, we can cite works done on data protection and privacy in IoT [START_REF] Shafagh | Talos: Encrypted query processing for the internet of things[END_REF][START_REF] Sanaah | Lightweight encryption for smart home[END_REF], but also on the formalization of privacy policies and preferences to protect consumers [START_REF] Davies | Privacy mediators: Helping IoT cross the chasm[END_REF][START_REF] Neisse | SecKit: a model-based security toolkit for the internet of things[END_REF][START_REF] Chen | Intelligent agents meet the semantic web in smart spaces[END_REF].

I.2. Background

In those researches, we noticed the difficulty that users can have to manually define their own privacy policies depending on each context. Actually, they are often ill-prepared to deal with the complexity of the systems, and thus do not manage to conceive the impact of sharing their data on their privacy. During our study, we faced supplementary privacy related ambiguities such as the lack of information on how users information are stored and the lack of guidelines plainly stating how to delete those data. As there is a clear momentum in the development of the IoT, companies have to better explain their practices regarding the processing of personal information.

In this thesis, we explore privacy challenges that wireless communications of the IoT devices can raise. More precisely, we focus our work on the data exposed by connected objects to physically track and infer information on their corresponding owners.

I.2 Background

In this section, we furnish technical details on both the Bluetooth and Bluetooth Low Energy (BLE) radio communication standards to understand our research. In this regard, we underline that we do not provide a complete overview of such standards. Nevertheless, we cover particular points that are further exploited during our studies.

I.2.1 Bluetooth

Bluetooth operates within the 2.4 GHz Industrial, Scientific and Medical (ISM) band through 79 1-MHz channels. To exchange data over radio communications, this technology leans on a multi-layered stack split into two parts [START_REF]Bluetooth Core Specification v5.2[END_REF]Vol 4, Part E, sec. Implemented in microprocessors dongles, the Controller stack contains the Bluetooth radio interface, while the Host is an operating system part that processes high level data. Actually, the Logical Link Control and Adaptation Protocol (L2CAP) layer provides a link between those two stacks. Moreover, this packet based protocol follows channels communication models where specific commands can be sent between devices.

As defined in the Bluetooth Core Specification [38, Note that, the (UAP, LAP) pair is the minimum needed to establish a link with a remote device.

I.2.2 Bluetooth Low Energy (BLE)

Bluetooth Low Energy (BLE) is a lightweight subset of Bluetooth that has been introduced in 2010 as part of the Bluetooth Core Specification version 4.0 [START_REF]Bluetooth Core Specification v4.0[END_REF]Vol 6]. In fact, BLE and Bluetooth share elements such as range and radio frequency band 1 but differ on several points such as channel mapping, data transfer rate and power consumption.

Indeed, although Bluetooth can handle a lot of data at the cost of a high energy consumption, BLE is plebiscited by battery-powered appliances that only need to periodically exchange small amounts of data.

As a consequence, the BLE technology is more suitable for connected objects with low power computing resources which need to synchronize data with their applications. For instance, heart rate monitors and smartwatches rely on BLE to communicate with nearby smartphones and tablets. As a result, BLE communications can be of two types: broadcasted and connected. Compared to connection, we highlight that the broadcasting provides neither security nor privacy protection as BLE devices in range are able to receive data emitted in clear over advertisement packets. Depending on the situation, a BLE device can endorse various roles following a Client-Server scheme. In order to simplify our explanations, we solely define the two most important roles: Central and Peripheral.

I.2.2.1 Protocol

Instead of the

A Peripheral device periodically broadcasts advertisement packets to announce its presence and, if connectable, accepts an incoming connection request from a Central. Meanwhile, a Central device listens to advertisement packets and, when applicable, initiates a connection with a Peripheral. As an illustration, a smartphone can connect to a smartwatch to send notifications and collect sensor readings.

Note that, a Peripheral stops to advertise as soon as a Central is connected to it. Until the existing connection is ended, it thus undermines the possibility for other Centrals in range to discover and connect to it. Moreover, we emphasize that a BLE device cannot endorse both roles at the same time. 

I.2.2.3.1 Discovery mechanism

When a Peripheral is in advertising mode, advertisement packets are periodically broadcasted on each advertising channels. In addition to the frame header, advertisement packets can contain up to 31 bytes of data called advertising data. Those packets being broadcasted in clear, we draw the attention to the fact that their content can be thus collected and processed by any nearby device.

Furthermore, a Central can query a Peripheral by sending a directed scan request that triggers back a scan response. Transmitted over the three identical physical advertising channels, scan responses follow the same format as advertisement packets but carry different elements of information.

I.2.2.3.2 Advertising data

The BLE advertising payload consists of the AdvA field (equal to the BD_ADDR of the advertising Peripheral) followed by a sequence of one or more Advertising Data (AD) structures including items of information.

In particular, an AD structure is composed of a 1-byte field indicating the length of the Generally, AD structures embed device characteristics, capabilities and supported services, but also data coming from custom applications. Leveraging online resources of the Bluetooth Special Interest Group (SIG) [START_REF]Generic Access Profile -Assigned Numbers[END_REF], we noticed a total of 44 AD types, and listed some of the most commonly advertised in Table I

.1.
With regard to the advertising payload, it can be either 1) set by the application or 2) automatically filled by the Bluetooth stack based on services configured into the Generic Attribute (GATT) profile of the Peripheral (see Section I.2.2.4). Between those two options, the single difference is that the first option allows the appliance to have full control over the advertising payload. Especially, it is useful to send proprietary data such as those that can be carried by the Manufacturer Specific Data AD structure (see Table I.1).

I.2.2.3.3 Service Universally Unique Identifiers (UUIDs)

Complying with RFC 4122 [START_REF] Leach | A universally unique identifier (uuid) urn namespace[END_REF], a UUID is a 128-bit identifier that is mostly used to identify devices and resources. In the context of Bluetooth/BLE, UUIDs are leveraged to identify services [START_REF]Bluetooth Core Specification v5.2[END_REF]Vol 3, Part B, sec. 2.5].

I.2. Background 10

Inventoried by the Bluetooth SIG [START_REF]Generic Access Profile -Assigned Numbers[END_REF], a Peripheral can rely on 12 AD types dedicated to the broadcasting of UUIDs to advertise its services. Among them, the most commonly practiced are the Complete List of 16-bit Service Class UUIDs and the Service Data-16-bit UUID AD types (see Table I.1).

For the sake of space saving into the 31-byte long advertising payload, some of those AD structures include the full UUID (i.e. 128-bit long), while others embed a truncated version (i.e. 16 or 32-bit long). To make this possible, the Bluetooth SIG adopted XXXXXXXX-0000-10008000-00805f9b34fb [38, Vol 3, Part B, sec. 2.5.1] as the standard base UUID where the 32 MSB (represented by X) are up to manufacturers.

Overlaying a 16-bit UUID in the X digits above, all Bluetooth SIG specified services [START_REF]GATT Specifications -GATT Services[END_REF] such as the Heart Rate Service and Continuous Glucose Monitoring then use this base UUID. As an example, the Heart Rate Service is advertised as 0x180d (i.e. a 16-bit UUID) but actually represents 0000180d-0000-1000-8000-00805f9b34fb, the corresponding 128-bit UUID. Also, 128-bit UUIDs can be fully customized by manufacturers (see Table C.3 in Appendix C). Nevertheless, we point out that the generated UUIDs are for practical purposes unique. Furthermore, unlike most numbering schemes, their uniqueness does not depend on a central registration authority. As a consequence, RFC 4122 compliant UUID generators such as [START_REF] Transparentech | Online UUID Generator[END_REF][START_REF]uuidgen -Create a new UUID value[END_REF] shall be then used to avoid collisions.

I.2.2.4 Generic Attribute (GATT)

In BLE, the Attribute (ATT) is a Client-Server stateless protocol based on attributes where devices can endorse each role regardless of their BLE role (i.e. Peripheral or Central) [START_REF]Bluetooth Core Specification v5.2[END_REF]Vol 3

, Part F, sec. 2].
Data exposed by a Server are presented in a GATT profile which is a hierarchical structure of attributes allowing the transfer of information between a Client and a Server. Likewise, it provides a reference framework for all GATT based profiles covering precise use cases and ensuring interoperability between devices from different vendors.

As data related to applications and users must be formatted then sent according to its rules, this makes GATT a key element of the Bluetooth Core Specification. Note that, a GATT profile is only accessible after a connection has been established between two BLE devices meaning that they have already gone through the advertising process.

Identified by a UUID (see Section I.2.2.3.3), attributes within a GATT profile can be either services or characteristics. In the hierarchical structure, conceptually related characteristics are grouped below a same service (see Figure I.6).

In addition to their UUIDs, characteristics are composed of an attribute handle, a set of properties and a value. The handle specifies the position of the characteristic in the profile, while the value holds the actual data of the characteristic. Properties are metadata that specify which ATT operations (i.e. read, write, etc.) can be executed on each particular attribute and with which security requirements (i.e. encryption, authentication). Independently applied on each characteristic, such access permissions are mostly implementation specific 1 .

Similarly, a service is identified by its UUID and associated with two handles (Handle Start and Handle End ) specifying a range of characteristics that are hierarchically dependent from this service.

In fact, vendors are free to define their own services and characteristics, but the Bluetooth SIG has already set up a number of them [START_REF]GATT Specifications[END_REF]. For instance, the Device Information [START_REF]Device Information -GATT Services[END_REF] service contains the 

I.3 Document structure

In addition to this introductory chapter that provides the prerequisites for understanding our studies, this manuscript is composed of five chapters.

To start, a state of the art dealing with radio signals, connected objects and their privacy aspects is established in Chapter II. Thereafter, Chapter III describes how passive and active eavesdroppers can leverage BLE advertising data and metadata to physically track devices and their corresponding owners over time. As the second investigated privacy threat, the exploitation of the Bluetooth/BLE wireless communications in order to infer information on remote users is presented in Chapter IV. Applied to the specific case of Apple BLE Continuity protocols, Chapter V discloses a collection of personal data leaks ranging from device technical characteristics to e-mail addresses and phone numbers of consumers. To finish, the limitations of our research along with its perspectives for future work as well as its industrial, social and media impacts conclude this document in Chapter VI.

Note that, throughout our work, we aim to illustrate that the wireless communications of the IoT can raise privacy concerns. In this direction, we set up and experiment attacks based on the Bluetooth/BLE radio communication standards. However, we highlight that the scope of this thesis can be further extended to wireless standards in general as they could imply similar privacy issues (see Section VI.2).

I.4 Contributions notice

Within this manuscript, each chapter results from scientific papers that are all co-authored with Mathieu Cunche [START_REF] Mathieu | [END_REF], one of the supervisors of this thesis.

To define methodologies and protocols for experiments, Mathieu guided this research considering insights that I, Guillaume Celosia [START_REF] Celosia | [END_REF], provided. The design and prototyping of tools, the building of datasets through collections of radio signals, the processing of data as well as the software production only involved me.

Finally, the writing of the papers was fairly shared between us. To be transparent, this means that some reformulated parts of this document originally come from Mathieu.

Chapter II

State of the Art

This chapter reviews the state of the art relevant to the domains and techniques approached in this thesis. In particular, service discovery mechanisms used in wireless technologies are first introduced in Section II.1. Then, Section II.2 demonstrates that radio signals broadcasted by such discovery mechanisms are a source of privacy leaks. Physical tracking and device fingerprinting techniques along with their applications are detailed in Section II.3. Section II.4 discusses additional privacy threats that aim to infer users information based on their carried connected devices. Technical as well as legal existing privacy protections in wireless technologies are analyzed in Section II.5. Section II.6 presents the paradigm of the Internet of Things (IoT) before providing an overview of its deployment and privacy implications. To finish, the motivation for this thesis and its contributions to the state of the art are outlined in Section II.7.

II.1 Service discovery mechanisms in the wireless era

Service discovery is defined as the action of finding a service provider for a requested service. As a consequence, service discovery mechanisms are network protocols allowing the detection of services offered by devices on a computer network. As such, a network service can be any software or hardware entity that a user might be interested to use. For instance, printing, sharing photos and file transfer are network services.

In the context of wireless technologies, discovery of service 1 is provided prior to establish a connection between devices. Service discovery protocols are then specifically designed as the set of available services dynamically changes based on the proximity of mobile devices. For instance, the pairing of Bluetooth earphones requires the remote smartphone to determine 1) which Bluetooth profiles such as hands free and advanced audio distribution profiles are supported by the earphones, and 2) what protocol multiplexer settings are II.1. Service discovery mechanisms in the wireless era needed to connect to them. Service discovery protocols are thus a key component of wireless network systems. In particular, the discovery of services is an essential feature for the usability of ad hoc networks, and will ensure availability of services to users and applications. Since the massive development of ubiquitous computing, the service discovery paradigm arises bringing wireless communications as one of the important mediums of transmission of information or data to other devices.

In order to discover their surroundings, wireless devices can use either an active or a passive service discovery mode.

In the active mode, devices advertise their presence through the broadcast of radio signals to be connected. For instance, Bluetooth enabled devices emit advertisement packets crowded with data such as names, appearances and manufacturer specific data.

In the passive mode, devices passively listen to broadcasted signals announcing characteristics and capabilities of the corresponding peripheral. Back to the previous example, devices passively listen to advertisement packets broadcasted by nearby devices in order to connect to it.

Note that, as mobile devices are battery-powered, they prefer the active service discovery mode because of its reduced energy consumption with regard to the passive one. Moreover, it is the only mode that allows to reach hidden devices (i.e. devices that do not advertise their presence broadcasting radio signals) and speed up reassociation with them.

As a result, service discovery mechanisms are the first step toward wireless communications between devices. Here, wireless communications refer to the transmission of information over a distance without requiring wires or any other electrical conductors. As a consequence, information and data are transmitted over the air through electromagnetic waves such as infrared and, most of the time, radio frequencies. Intended distances can vary from centimeters for Near Field Communication (NFC) to thousands of kilometers for satellite communications, and thus encompasses various types of applications including smartphones, global positioning system (GPS), headphones, garage door openers, wireless keyboards, etc.

Figure II.1 presents a scale based classification of data networks from the Personal Area Network (PAN) to the Wide Area Network (WAN), along with corresponding ranges and wireless standards. In this thesis, the Wireless Personal Area Network (WPAN) will be only addressed through the Bluetooth technology.

WPAN, works like a PAN except that it uses a wireless communication medium instead of a wired one. Basically, it interconnects hand-held and mobile devices such as smartphones, headsets and smartwatches but also smarthome appliances [START_REF] Kooker | Bluetooth, zigbee, and wibree: A comparison of wpan technologies[END_REF]. In a more general way, it comprises all devices that are centered around a personal workspace. With regard to the range, it mainly depends on the device antenna capabilities but it does not usually exceed a hundred meters (see Figure II.1). As a result, Bluetooth, ZigBee, infrared or any similar wireless technologies can be part of a WPAN.

In the following, we will only deal with wireless communications relying on radio signals.

As a consequence, we discard infrared and less common methods of communication using other electromagnetic wireless technologies such as light, magnetic fields and ultrasound.

II.2 Radio signals as a source of privacy leaks

Connectivity is a key element of connected objects that often rely on wireless communications through radio technologies. Indeed, compared to wired technologies, wireless technologies require a lightweight infrastructure and involve lower deployment costs. With the proliferation of wireless communicating devices, the amount of radio signals broadcasted by connected objects is bound to increase, and thus to be available over the air. Actually, the democratization of radio software [START_REF] Blossom | GNU radio: tools for exploring the radio frequency spectrum[END_REF][START_REF] Biondi | Scapy -Packet crafting for Python2 and Python3[END_REF] and hacking tools [START_REF] Ossmann | HackRF, an open source SDR platform[END_REF][START_REF] Ossmann | Ubertooth One: an open source Bluetooth test tool[END_REF] facilitates the access to such signals. From now, anyone with basic computer skills can then exploit radio communications and trigger attacks.

As a result, most wireless technologies have addressed this threat through protection mechanisms such as encryption that guarantee the confidentiality of data transmitted over the network. However, even if the content of wireless communications can be protected, metadata (i.e. source/destination addresses, size and frequency of messages) are available in clear and can leak personal information. In fact, the existence as well as characteristics of radio communications can be collected and analyzed to infer personally identifiable information (PII).

For instance, radio signals can be used to uniquely identify a device, either because they contain a unique identifier or hold enough information to create a fingerprint of this device. Based on this information, it is thus possible to track the whereabouts of the person carrying the wireless communicating device. Physical tracking is the name of this privacy threat that commercial applications already exploit to track individuals leveraging Bluetooth and Wi-Fi device addresses [START_REF] Fung | How stores use your phone's WiFi to track your shopping habits[END_REF][START_REF] Mavroudis | Eavesdropping whilst you're shopping: Balancing personalisation and privacy in connected retail spaces[END_REF].

Beyond physical tracking, radio signals often contain enough information to identify the nature of the emitting device. Indeed, they generally include elements such as device names, appearances and service related data revealing the type of device or its purpose [START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF].

Furthermore, features of the radio traffic can be characteristic of a given application [START_REF] Siby | Iotscanner: Detecting privacy threats in iot neighborhoods[END_REF].

For instance, a surveillance camera will generate a continuous and high rate transmission while a smart outlet will broadcast signals based on sporadic actions of the user [START_REF] Apthorpe | A smart home is no castle: Privacy vulnerabilities of encrypted iot traffic[END_REF].

Moreover, because it is dedicated to a specific application, the radio technology itself can reveal the nature of the communicating device. For instance, smart meters and therapeutic medical implants are respectively using the Wireless Meter Bus (WMBUS) on the Based on such inventory, it can be then possible to derive a detailed profile of the users. For instance, medical and health monitoring appliances can betray a specific medical condition: a blood-pressure monitoring system can imply a cardiovascular disease while a glucometer is usually associated with diabetes. The wealth of a household can also be inferred based on the price range of the detected devices. As an example, Bertrand and Kamenica demonstrated [START_REF] Bertrand | Coming Apart? Cultural Distances in the United States Over Time[END_REF] that the ownership of Apple devices is a reliable indicator of wealth.

Finally, the observation of radio communications in a smart environment can be used to infer the activity of its users [START_REF] Apthorpe | Spying on the smart home: Privacy attacks and defenses on encrypted iot traffic[END_REF]. For instance, connected appliances in a smarthome such as light bulbs, air conditioning systems and voice assistants will only broadcast signals when they react to user presence or when they are in use. As a result, the emission or lack of those signals can reveal the presence of people in the house. Furthermore, if those signals can be associated with specific appliances, it can be possible to draw a detailed picture of the activity in the house: light turned on, fridge opened, kettle started, garage door opened, etc.

To summarize, even though data carried over the radio link can be protected by security mechanisms such as the encryption, characteristics and metadata associated with radio signals can be rich sources of information to infer private data.

II.3 Physical tracking and device fingerprinting

The fact that most connected devices may betray their presence through the broadcasting of radio signals can be exploited by eavesdroppers to capture and analyze mobility traces of corresponding users in the physical world. As such, the process of device fingerprinting is part of physical tracking as it intends to gather information about a targeted device for the identification purpose. In the following, we focus on those complementary privacy threats that both aim to track a person during its journey.

Physical tracking is defined as the activity that consists to follow the whereabouts of an individual along time in the physical world. In order to better understand the purpose of radio based physical tracking systems, an overview of radio geolocation is first provided.

Geolocation consists in positioning an object in space by measuring its distances from reference points whose positions are known beforehand. As an example, the distances from three distinct points are sufficient to determine a position on a plane. Another famous example is the Global Positioning System (GPS): reference points are satellites whose positions are computed in real-time, and the distances between the object and those satellites are then deduced from the travel times of radio signals broadcasted by this object.

Based on the GPS approach, it is then possible to divert radio technologies from their main uses for geolocation purposes. For instance, even if the Bluetooth was not developed for localization at first, some solutions relying on this technology have been proposed for indoor asset tracking [START_REF] Wang | Bluetooth positioning using RSSI and triangulation methods[END_REF]. By using scattered Bluetooth enabled sensors as reference points, the Received Signal Strength Indication (RSSI) is then used to evaluate the distance to the signaling transmitter from the received signal strength. Also known as trilateration, this principle of position determination allows to determine the position of a Bluetooth terminal over an area of interest.

As a result, radio geolocation can be done in two ways. The first case corresponds to the previously described system where radio enabled devices leverage the deployed wireless infrastructure to determine their position without using the GPS module. In particular, services provided by the World Wide Web Consortium (W3C) Geolocation Application Programming Interfaces (API) standardize an interface to retrieve the geographical location information from a device. To this end, they use a request system along with a database containing positions of Bluetooth monitoring sensors on a global scale. Note that, this type of service is also provided by companies such as Apple, Google, Skyhook and Mozilla through its Mozilla Location Service (MLS) [START_REF]Mozilla Location Service (MLS)[END_REF]. Likewise, to return a more accurate location information, other sources of information such as radio-frequency identification (RFID) and Global System for Mobile communications (GSM) cell identifiers can be correlated.

The second case of radio geolocation corresponds to a system that passively listens to wireless communications in order to detect and track mobile devices having their wireless interfaces enabled. In addition to the RSSI, each radio enabled sensor collects incoming wireless signals to extract a unique identifier such as a Bluetooth device address along with other technical information. Collecting sensors then report those extracted data to a remote server where they can be stored for further analysis such as aggregating statistics and estimating mobility of individuals. the collaboration of remote devices. Especially, this means that it is passive and does not require to install an application on wireless devices in order to be detectable by the system.

Therefore, we are currently witnessing the emergence of radio based tracking systems that record large-scale movements of individuals thanks to signals broadcasted by their carried devices [START_REF] Musa | Tracking unmodified smartphones using wi-fi monitors[END_REF]. Leveraging the deployed ubiquitous infrastructure 1 , it is then possible to exploit wireless communications for analytics and profiling purposes in monitored areas. In this spirit, Nguyen et al. demonstrated [START_REF] Le T Nguyen | IdentityLink: userdevice linking through visual and RF-signal cues[END_REF] that video and radio technologies can be jointly used to track and monitor human activities. Moreover, physical tracking have diverse applications such as digital surveillance [START_REF] Snowden | Against the law: Countering lawful abuses of digital surveillance[END_REF] and road monitoring [START_REF] Rouf | Security and Privacy Vulnerabilities of In-Car Wireless Networks: A Tire Pressure Monitoring System Case Study[END_REF] that are mostly performed without consents of targeted persons. As such, it might violate the privacy of the individuals.

Device fingerprinting is a process used to identify a device based on artifacts stemming from its specific software and hardware features. Also called signature, a device fingerprint is thus a representation of a stable pseudo-identifier built from collected information of such artifacts.

Device fingerprinting has a number of useful applications. For instance, it can control digital rights management (DRM) leveraging serial numbers assigned to the device hardware [START_REF] Milano | Content control: Digital watermarking and fingerprinting[END_REF], prevent bank fraud by identifying whether an online banking session has been hijacked [START_REF] Emmanual | Techniques for fraud monitoring and detection using application fingerprinting[END_REF] and detect network intrusions [START_REF] Formby | Who's in Control of Your Control System? Device Fingerprinting for Cyber-Physical Systems[END_REF]. In the following, we focus on the tracking applications relying on wireless device fingerprinting.

Tracking and analytics are two of the many possible goals of wireless device fingerprinting.

In particular, in the retail sector, the visitor analytics has become a key concept to provide businesses with greater visibility into visiting habits of their stores. Those profiling solutions can be also leveraged to identify and track customers across shelves gauging their visit duration as well as their willingness to buy certain products rather than others. This II.3. Physical tracking and device fingerprinting 21 information can be then exploited to reorganize shops toward influencing customer sales.

As for service discovery mechanisms (see Section II.1), device fingerprinting techniques can be either active or passive. Passive fingerprinting requires the eavesdropper to observe the wireless traffic generated by its targeted device, while active fingerprinting techniques require him to interact with the remote device (i.e. by initiating a connection or, at least, sending packets to the target).

Whether active or passive, the idea behind wireless device fingerprinting techniques is to extract specific device information such as Bluetooth advertised elements or Wi-Fi service set identifiers (SSIDs). The extracted information are further processed to compute a unique identifier of the targeted device thus forming the fingerprint of the device. Note that, information constituting the fingerprint can be extracted from both the software and hardware features.

In fact, even if same types of device (e.g. the same brand of smartphone or the same model of smartwatch) are carried by many people, each of them uses different configurations.

At the software level, two smartphones of the same model running the same version of their operating system (OS) can have different radio identities based on the customization of their features. This can then lead to the broadcast of wireless signals that are crowded with different data. For instance, this is the case of Bluetooth signals broadcasted by Bose headsets where device names can be customized to include the names of their corresponding owners (see Section IV.3.2.3).

From the hardware side, even though those two previous smartphones are of the same model, they can embed different wireless chipsets. As a consequence, radio related characteristics such as the channel selection algorithm and the transmission power of emitted signals can differ. This process of device fingerprinting at the radio hardware level is also known as radio frequency fingerprinting, and is commonly used by cellular operators to prevent cloning of cell phones: a device having the same software identity as the original one is declared as being cloned if its radio fingerprint differs. Furthermore, we point out that it is sometimes possible to distinguish two devices using the same chipset model because of the imperfections induced in the manufacturing process [START_REF] Brik | Wireless device identification with radiometric signatures[END_REF][START_REF] Adam C Polak | Identifying wireless users via transmitter imperfections[END_REF].

Finally, the only requirement to uniquely distinguish devices over time is to compute fingerprints that are both sufficiently stable and diverse. In practice, the improvement of the stability of the fingerprint tends to impact its diversity and vice versa [START_REF] Dang Vo-Huu | Fingerprinting Wi-Fi devices using software defined radios[END_REF]. As an example, the customization of Information Elements (IEs) carried by Wi-Fi probe requests increases diversity [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF]. However, at the same time, this reduces stability as the whole device fingerprint changes when the collection of advertised IEs is modified. In other words, this means that neither stability nor diversity is fully achievable.

II.4 Inferring users information in the physical world

The previous Section II.3 described physical tracking and device fingerprinting as first types of attack that aim to track individuals based on radio signals broadcasted by their carried devices. In this section, we highlight two other types of radio based attack jeopardizing the privacy of users as well: activity inference and inventory attacks.

Activity inference aims to recognize the activity of an individual through series of observations of radio signals emitted by its wireless communicating devices.

Due to its strength in providing personalized support for many practical applications including quantified self and energy conservation in smarthomes, activity inference is one of the new privacy threats that was introduced with the massive deployment of connected objects.

The effectiveness of such an attack mainly relies on the diversity of radio signals that exist.

For instance, a remote control for a smart television (TV) will broadcast a different signal than a remote control for a connected speaker. As a result, by observing characteristics such as the frequency band and the modulation of those radio signals, the attacker can then distinguish when his target is watching TV from when he is listening to music.

Moreover, the correlation between temporal patterns and type of collected radio signals allows to profile a targeted individual revealing its habits as well as its traits of character [START_REF] Zomet | Privacy-aware personalized content for the smart home[END_REF].

To illustrate this statement, a person who uses its connected vacuum cleaner every day is probably maniac as he likes when things are always cleaned and tidied. An other person who will drink coffee ten times a day is certainly more stressed than when only two coffees are brewed from its wireless coffee machine, for instance.

In any case, activity inference provides a lot of information to eavesdroppers that can be further exploited for other targeted attacks such as phishing, door-to-door selling and even thefts. Indeed, the absence of broadcasted radio signals can be also leveraged to betray a vacant smarthome.

Inventory attacks consist in establishing a list of connected objects associated with an individual in order to infer personal characteristics.

Note that, the inventory attacks and activity inference are strongly related as knowing the type of device that emitted the radio signals can be the prerequisite of the activity inference. As a consequence, the inventory attacks can be assimilated as the first step toward establishing a complete profile of an individual.

With the proliferation of application domains for connected objects, users have surrounded themselves with devices corresponding to an increasing number of use cases (see the list of Bluetooth device classes [START_REF]Assigned Numbers for Baseband[END_REF], as an illustration). Therefore, we are witnessing the emergence of inventory attacks enabled by wireless communications. Actually, for the needs The nature of the owned devices can then serve as a basis to infer personal information.

As an example, the presence of hearing aids can reveal that the corresponding owner has hearing deficiency, while the usage of a cycling speed sensor indicates that he is a cyclist. Table II.1 presents a non-exhaustive list of possible personal information inferences leveraging types of connected devices.

Once the inventory of devices is established, the next step of the attack is to draw a profile of the targeted user. Some devices such as fitness trackers and speakers can be associated with special uses that can reveal points of interests (e.g. in those cases, sport and music). More worrisome, presence of devices such as Bluetooth insulin pens and glucose monitors can leak a medical condition of the owner (e.g. in this case, diabetes).

Last but not least, a standard of living can be also derived from the information provided by the inventory of devices. As an example, the wealth of a household crowded with connected devices of famous brand such as Apple or Google is probably higher than the one with a cheap smart outlet alone.

To finish, similarly to physical tracking applications, the inference of personal data through inventory attacks can be exploited by advertisers and marketers to trigger targeted advertising campaigns. As an example, an offer can be specifically designed for a set of users in order to influence them to supplement their collections of devices. In this spirit, the advertising campaigns can be adapted according to the brands of the devices owned by the targeted persons. For instance, advertisers will more likely target Apple fans to announce the release of a new Apple iPhone smartphone as they will be more receptive to it than Huawei lovers.

II.5 Privacy protections in wireless technologies

Radio signals have been difficult to reach as the required hardware is expensive and mainly intended for professionals. As a consequence, the absence of radio enabled equipment on the consumer market makes vendors obtain a pseudo-security of the data exchanged over the air. However, it is important to remind that this type of pseudo-security relying on technical lacks is referenced as one of the worst observable practices in computer security.

Allowing to understand most mechanisms of wireless communications, the evolution of technologies has provided the population with modest equipment. Geneiatakis et al. have even shown [START_REF] Geneiatakis | Security and privacy issues for an IoT based smart home[END_REF] that spying has become a new game in which anyone, with basic computer skills, can take part.

Therefore, such a democratization of software and radio hacking tools made manufacturers to take into account privacy protections within the development of their connected objects. Moreover, the enforcement of the General Data Protection Regulation (GDPR) puts both legal and economic pressures on vendors regarding the privacy preservation of customers (see Section II.6.4).

Aiming to give control to individuals over their personal data, the GDPR is challenging as it provides a vague definition of personal data. For instance, even though the process of device fingerprinting only collects technical data on wireless devices (i.e. not PII such as e-mail addresses or names of users), the resulting fingerprints fall into the category of personal data. Actually, those bits of information relate to individuals and can be further exploited to identify them. In the context of the GDPR, a personal data is thus defined as any information that can be leveraged to identify an individual, wireless device identifiers being part of it.

Based on the general guidelines about consent of users and legitimate interests provided by the GDPR, several efforts on wireless communications have been conducted to protect users against privacy breaches.

To prevent third parties from leveraging device addresses in order to track users, the address randomization has been introduced [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF]. Behind this concept, the idea is to frequently replace the address of the device (i.e. the Media Access Control (MAC) address) with a new random and temporary one. As a result, a tracking system will no longer be able to link radio signals broadcasted by a single device and thus to estimate the mobility of individuals. In fact, while tracking was a known threat since years [START_REF] Greenstein | Can Ferris Bueller Still Have His Day Off? Protecting Privacy in the Wireless Era[END_REF][START_REF] Scott Saponas | Devices That Tell on You: Privacy Trends in Consumer Ubiquitous Computing[END_REF], MAC address randomization has been long promoted before vendors started to consider it in commercial devices [START_REF] Langheinrich | Privacy by design -Principles of privacy-aware ubiquitous systems[END_REF][START_REF] Gruteser | Enhancing location privacy in wireless LAN through disposable interface identifiers: a quantitative analysis[END_REF]. Note that, address randomization has begun to be implemented in 2014 [START_REF] Hutchinson | iOS 8 to stymie trackers and marketers with MAC address randomization[END_REF] as the main feature of various operating systems, namely Google Android since Android 6 [START_REF]Android Open Source Project[END_REF], Apple iOS from iOS 8 [START_REF] Skinner | Privacy and your app[END_REF], Linux drivers since kernel 3.18 [START_REF] Grumbach | iwlwifi: mvm: support random MAC address for scanning[END_REF], Microsoft Windows from Windows 10 [90], and has even made its way to wireless standards [START_REF]IEEE Standard for Information technology -Telecommunications and information exchange between systems Local and metropolitan area networks -Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Preassociation Discovery[END_REF][START_REF]Bluetooth Core Specification v5.2[END_REF].
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Due to the lack of standardization, device fingerprinting is more difficult to tackle as it is mainly dependent from software and hardware features of devices. Besides, if software features can be addressed by manufacturers at the kernel or firmware level, the hardware remains impossible to modify as it includes intrinsic characteristics of wireless chipsets.

As opposed to the technical point of view, the only legal requirement is then to ensure that companies using device fingerprinting techniques are operating according to laws. This means that either providing a legitimate interest to collect and process fingerprints of nearby devices or asking consents of their corresponding owners is mandatory not to collide with regulations. In this case, the legitimate interest will be likely reserved for particular applications such as identity theft and fraud prevention, while consents of users have to be collected by companies that leverage device fingerprinting for advertising purposes, for instance.

To protect users against activity inference, some works [START_REF] Srinivasan | Protecting your daily in-home activity information from a wireless snooping attack[END_REF][START_REF] Yoshigoe | Overcoming invasion of privacy in smart home environment with synthetic packet injection[END_REF] based on radio technologies proposed countermeasures that consist to obscure the real network traffic with 1) the injection of a synthetic one and 2) the addition of random delays in the transmission of sensor signals. Nonetheless, as for device fingerprinting, those approaches need to be extended to deal with the case where wireless communications themselves are potential sources of privacy leaks.

Compared to the other threats, inventory attacks are relatively new as they were raised accordingly to the massive deployment of single-purpose wireless devices. For instance, cycling sensors and glucometers are respectively used by cyclists and diabetic individuals. As a consequence, there is little work that has been done to design countermeasures.

To put in a nutshell, thanks to technological advances, the landscape of wireless communications has become accessible by the general public. From now, characteristics of radio technologies can be leveraged to breach privacy of users, and raise several issues from physical tracking to inventory attacks. Moreover, even if privacy protections such as MAC address randomization have been widely adopted, they possess limitations Nowadays, the definition of the IoT has evolved due to the convergence of technologies such as commodity sensors and real-time analytics [START_REF] Rouse | Internet of things (IoT)[END_REF]. In fact, all wireless sensor networks, embedded and automation/control systems contribute to enable the IoT. Moreover, in the consumer market, the IoT is, most of the time, assimilated with smarthome appliances such as lighting fixtures and thermostats that can be controlled via remote devices such as smartphones and tablets.

In this thesis, we study the IoT from the point of view of wireless networks. As a consequence, we define the IoT as a term used to designate all the physical devices, generally equipped with sensors and/or actuators, that are linked and communicate through wireless networks.

Over the past decade, the number of connected devices has grown quickly. As of today, the number of IoT devices is estimated to 31 billion units, and it is forecasted that this number will reach 75 billion in 2025 [START_REF]Statistica. Internet of Things (IoT) connected devices installed base worldwide from 2015 to 2025[END_REF]. This booming market affects all domains from the agriculture to healthcare, through transportation and entertainment.

Among domains of application in which the IoT is widely adopted, there are several in which connected devices are interacting with people. For instance, thermostats and lightbulbs in a smarthome adapt the temperature and light to occupants, while smart meters collect and report the energy consumption. In healthcare, medical sensors and implants monitor health and provide medical assistance to patients. In fitness, wristbands record and report physical activities of sportsmen. In vehicles, sensors report pressure of tires, acceleration and speed to the control unit, while the later communicates with the infrastructure and other vehicles. Figure II.4 presents a typical example of connected devices that can be found in a household.

Thus, with the rapid adoption of the IoT, the number of applications involving consumers and the level of interaction with the user are both bound to increase. In fact, a growing portion of IoT devices are created for consumer use. Behaving as a team of assistants, consumers can then benefit from the information evaluation and data analysis of the IoT that enhance the way they live, work and play. However, the development of the IoT is not going without concerns. To be efficient, IoT devices need to store and process data to trigger actions and scenarios defined by users. For this purpose, connected objects collect data about activities of users before being sent to remote servers of IoT manufacturers in order to enable various services. This leaves the door wide open for privacy and security threats where the collection of the consumer data can be further exploited to infer personal information. As an example, Molina-Markham et al. demonstrated [START_REF] Molina-Markham | Private memoirs of a smart meter[END_REF] that high resolution data reported by smart meters can be used to infer the activities of inhabitants in a household.

II.6.2 Radio communications in the Internet of Things

As described in Section II.6.1, behind the IoT paradigm are devices that help people to take decisions and automatize actions through information evaluation and data analysis. Nevertheless, to acquire data, one of the crucial components of the IoT is the communication network. On the one hand, the communication network of the domestic IoT can be seen as the gateway between an IoT device and a software platform such as IF This Then That (IFTTT), for instance. On the other hand, the industrial IoT devices mostly form a local network topology where they dynamically and non-hierarchically connect to directly exchange data between themselves.

The rapid development and evolution of wireless technologies have the potential to provide flexibility and mobility to the billions IoT devices. In particular, data speed rates, wide ranges and low power capabilities of wireless technologies such as Bluetooth, Wi-Fi and 4G enable most mobile IoT applications. Indeed, reinventing not only the way individuals connect to the Internet but also the way surrounding devices can be leveraged in everyday activities, the IoT devices are mainly carried by people over time. As a consequence, wireless is becoming the primary form of communication to face with the high demand for connectivity generated by IoT devices. By definition, wireless communications involve the transmission of information over a distance without using wires or any electrical conductors. Note that, the transmission of information can range from a few meters (e.g. an infrared remote control for a speaker) to thousands of kilometers (e.g. radio communications). To transmit and receive data, IoT devices can leverage various wireless technologies such as Wi-Fi, ZigBee, Z-Wave, 4G and Bluetooth, as presented in Figure II.5. All those technologies are used depending on the application offered by the device. For instance, ZigBee was specifically designed for Machine-to-Machine (M2M) networks (e.g. a thermostat sending the temperature to an application software that will adjust the heater in the room based on this information), while Bluetooth is more commonly used in consumer applications such as fitness trackers and smartwatches.

As wireless technologies enable IoT devices to transmit and receive data without a physical infrastructure, they have pros and cons. Undeniably, reducing the wire restriction is one of the benefits of wireless compared to wired devices. Inter alia, wireless technologies also enable accessibility where ground lines cannot be laid.

Other benefits include the dynamic network formation, easy deployment and low cost. Indeed, wireless networks do not require an elaborate physical infrastructure or maintenance practices, hence reducing the cost. In addition, using wireless technologies, people can exchange data from anywhere, at anytime, regardless of their locations. This means that there is no need to physically connect the device to be able to send and receive messages. Finally, the constant connectivity and data speed rate also ensure that people can quickly respond to emergency situations.

Despite those benefits, wireless communications raise several issues. One of the most common issues is interference. In fact, the speed and viability of the wireless signals drop as more and more devices are using the same frequency. This can lead a wireless network II.6. Overview of the Internet of Things deployment and its privacy implications 29

to malfunction and, in extreme cases, to the complete loss of wireless communications. In addition, compared to a wired network, getting a consistent coverage and data speed rate can be difficult as wireless signals are attuned by obstacles such as walls and doors, for instance.

To finish, flexibility and mobility provided by wireless technologies raise issues related to security and privacy. Actually, contents of wireless communications are more exposed to attack than wired ones. As a result, if not properly secured, data and metadata broadcasted by IoT devices can be exploited to threaten security and privacy of users (see Section II.2).

II.6.3 Privacy aspects of the Internet of Things

Frequently associated with the collection of large amount of data, IoT devices become more prevalent raising significant challenges with regard to the privacy protection of users [START_REF] Henrik Ziegeldorf | Privacy in the Internet of Things: threats and challenges[END_REF].

To support this, the European Union (EU) commission even highlighted [START_REF] Sundmaeker | Vision and challenges for realising the Internet of Things. Cluster of European Research Projects on the Internet of Things[END_REF] security and privacy as major IoT research challenges.

To make the matter worst, a Pew Research Report discussed [START_REF] Anderson | The Gurus Speak[END_REF] privacy issues of the IoT and states that such a massive deployment of those connected objects will result in a world with a "small class of 'watchers' and a much larger class of the experimented upon, the watched". Into the same research report, Marc Rotenberg, the Electronic Privacy Information Center (EPIC) president, puts an emphasis on the fact that the IoT users "are just another category of things".

Indeed, aiming to provide better services that fulfill personal preferences in order to improve the user experience, information collected by the IoT can be also leveraged by companies to draw detailed profiles of individuals.

In this spirit, many research have shown how data collected from the IoT can be used to infer personal information. One of the most famous examples is how readings from a smartmeter can reveal the activity of people leaving in a household [START_REF] Molina-Markham | Private memoirs of a smart meter[END_REF]. In addition, with the emergence of wearable devices and advent of quantified self, users collect data such as calories burned, number of steps and sleep quality on their daily activities that can further threaten their privacy [START_REF] Leibenger | Privacy challenges in the quantified self movement -an EU perspective[END_REF][START_REF] Fereidooni | Fitness trackers: fit for health but unfit for security and privacy[END_REF].

Another related field of application is health, which is by nature sensitive and for which the use of connected devices can expose the users to privacy threats [START_REF] Fereidooni | Fitness trackers: fit for health but unfit for security and privacy[END_REF]. Moreover, Beresford and Stajano showed [START_REF] Alastair | Location privacy in pervasive computing[END_REF] that many sensitive information about a user such as its home location, religion and health issues can be inferred through the collection of location data, leveraging dedicated trackers or smartphones. Note that, in addition to localization purposes, we draw the attention to the fact that the geolocation data collection is sometimes necessary to enable the corresponding IoT applications (e.g. indoor navigation, fitness tracking, weather alerts, etc.).
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As a consequence, data collected through IoT devices can be used to generate enriched information on their owners. Even if this problem of data confidentiality exists, we point out that we do not further consider it in our work. In other words, whether they are protected by a security mechanism or available in clear, data carried by radio signals are not of interest within our studies.

Nevertheless, we aim to demonstrate that, beyond data, the characteristics and metadata associated with the signals can be a rich source of information to infer personal data. To better illustrate this statement, a passive attacker leveraging radio signals broadcasted by smarthome devices can learn when occupants are waking up (when the lightbulb in the kitchen is turned on), when they brush their teeth (thanks to smart toothbrushes), when they eat (thanks to the smart fridge), when they receive visitors in their house (thanks to the smart doorbell), etc.

In this thesis, we address privacy challenges within the wireless communications of the IoT.

To this purpose, we will then focus on the metadata associated with those communications, and not the actual data conveyed by the radio link. For instance, in the case of a connected glucometer sending a blood sugar level over the air, we will consider the metadata included in the wireless communications such as the type of the device (i.e. a glucometer), its identifier (i.e. a device address), as well as its time and duration of use, excluding the blood sugar level.

II.6.4 Privacy in a connected world

The ubiquitous nature of the IoT increases attempted attacks aiming to extract personal data. To guarantee both the liability management associated with collected data and the information privacy related to the use of IoT devices, legal policies and frameworks have been designed.

Indeed, privacy protections get a lot of attention because of EU regulations such as the GDPR and the ePrivacy Regulation (ePR). Note that, those regulations both aim at strengthening the data protection within the EU increasing, at the same time, the pressure on companies with regard to the protection of their customers.

First, the GDPR, which is setting a general framework for data protection, has become active since May 25 th , 2018. From its provisions, four key principles emerged, namely consent, transparency, personal rights and accountability.

To address the consent, Article 7 stipulates that "consent should be given by a clear positive act by which the data subject expresses in a free, specific, informed and unambiguous manner his consent to the processing of personal data concerning him, for example by means of a written statement, including electronically, or an oral statement". Regarding the transparency, Article 12 states that organizations must provide individuals with clear and unambiguous information about how their data are processed. Last but not least, II.6. Overview of the Internet of Things deployment and its privacy implications 31 new personal rights have appeared within the GDPR such as the right to be forgotten for all users and the right to data portability allowing an individual to recover, in a reusable form, the information he has provided. Finally, the principle of accountability gathers all the measures making companies more responsible when they process personal data.

Actually, most companies are affected by the provisions of the GDPR which objective is to strengthen the supervision of practices related to the collection and use of personal data. Moreover, it is important to note that the GDPR only concerns the protection of personal data related to natural persons. This means that processing data related to legal persons is out of the scope, unless they are required to collect data on representatives of legal persons. For instance, data collected from business cards such as e-mail addresses and phone numbers fall into the scope of the GDPR, while data such as company names and corporate objects are excluded.

Second, focusing on the case of privacy in digital communications, the ePR [107] has been introduced as an extension to the GDPR. At the origin, the GDPR and ePR should have been enforced at the same time. However, the ePR has attracted criticisms by industry lobbying that postponed its enforcement to 2020.

Indeed, French press publishers and representatives of the telecoms and digital industries deplored the ePR and asked for its revision. Similarly, the American Chamber of Commerce to the EU considered that the ePR hinders innovation. Amazon, Microsoft, and the French branch of the Interactive Advertising Bureau (IAB) also shared this point of view. Finally, the Developers Alliance, including Facebook, Google and Intel, reported that the ePR could cost businesses in Europe more than 550 billion euros.

Compared to the GDPR, the ePR goes further with regard to the processing of personal data. In fact, if the GDPR focuses on personal data, the ePR protects all forms of communication. This means that the ePR does not only apply to personal data, but also to the content and metadata of communications such as network identifiers (e.g. device addresses) that can be further leveraged for physical tracking, targeted advertising and personalization of content. Also known as opt-in, the ePR thus generalizes the concept of explicit consent, and has same levels of sanction as the GDPR in the case of an infringement.

In addition, the ePR also applies to legal persons, unlike the GDPR.

To tackle privacy issues raised by the IoT, regulation and protection authorities have started taking steps. In particular, the independent French administrative regulatory body Commission Nationale de l'Informatique et des Libertés (CNIL) has published [START_REF]Privacy Impact Assessment (PIA) -Application to IoT devices[END_REF] an extension of its Privacy Impact Assessment (PIA) framework dedicated to the IoT. This document explicitly mentions several risks associated with wireless communications in the IoT including "remote detection of electromagnetic signals". Similarly, the opinion of the G29 (Working Party of Article 29) on the Recent Developments on the Internet of Things [109] noted the tracking risk associated with the IoT. Especially, it is mentioned that "wearable things kept in close proximity of data subjects result in the availability of a range of other identifiers [...] allowing data subject location tracking".
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In parallel, consumers become increasingly aware about the privacy implications of IoT devices. This can be characterized by the fact that a growing number of people are taking privacy into consideration within their choices of consumption. As a result, it becomes a common thing to adopt products including privacy preserving features such as Qwant [110], a search engine that does not collect information on its users. Furthermore, high-tech companies are integrating privacy protection features in their flagship products. As an example, the Apple iPhone smartphone includes a protection against the radio based physical tracking since the release of Apple iOS 8. To finish, a 2016 survey [START_REF] Silver Eco | Groupe La Poste: les Français et les objets connectés[END_REF], describing the relationship French people have with connected objects, pointed out the fact that the confidentiality of personal data is one aspect that can curb the acquisition of a connected object.

From now, the IoT vendors are subject to both legal and economic pressures regarding privacy preservation of their consumers. Hence, they are bound to consider privacy protections when developing their products, in conformance with regulations such as the GDPR and ePR that advise the privacy by design approach. Note that, the concept of privacy by design requires to think about the protection of personal data before developing a product or a service.

II.6.5 Concluding remarks and open questions

IoT devices are everywhere, to the point of blending into daily lives [START_REF] Baraniuk | Surveillance: The hidden ways you're tracked[END_REF]. In a world where activities and behaviors are increasingly monitored, it is important that manufacturers and implementers think about how to inform their consumers with regard to the collection and usage of their personal data. To this end, previous sections highlighted the needs for both regulations and technical countermeasures to bridge the gap between the data leaked by the IoT through radio communications and the personal rights of individuals.

Even if the legal side is not addressed by the studies carried out in this thesis, questions such as "who collects my personal information ?", "what are personal information collected ?", "how are they stored and used ?", "to whom are they disclosed ?" and "for what purposes ?" shall be clearly covered by privacy policies of companies, but also by regulations and protection authorities. In addition, transparency about data collection is as important for the trust in IoT vendors as for the relationships with governments. Indeed, even if commercial purposes are the first that come to mind, it is not without thought that the wealth of information on individuals collected through their carried IoT devices can attract the interests from governments [START_REF] Gellman | NSA tracking cellphone locations worldwide, Snowden documents show[END_REF][START_REF] Scahill | The NSA's secret role in the US assassination program[END_REF].

From the technological point of view, the massive deployment of the IoT devices has not been followed by significant changes in governance models for privacy. Moreover, even if MAC address randomization has been introduced as a countermeasure to address the radio based physical tracking, it can still exist misimplementations that defeat this anti-tracking feature. To date, little attention has been paid to technically tackle the previously discussed privacy threats such as device fingerprinting, activity inference and inventory attacks. In fact, if each threat individually leaks a small amount of data, in aggregate they can be leveraged to draw complete profiles of users. This is more worrisome when we have in mind that those collected data can be analyzed not only by device owners, but also by third parties.

At a theoretical level, questions such as "how can individuals challenge the use of their collected information ?", "how can companies express their privacy policies in a concise, meaningful and universal language ?" and "how can users give a valid form of consent to those privacy policies ?" are still open. To respect personal rights of individuals, answers to those questions shall include efforts from both the legal and technical sides. Note that, the ability to revoke earlier forms of consent has to be discussed as well.

Finally, if information security and privacy are threatened by the IoT, civil liability is also part of the new risks brought by this paradigm. Indeed, most connected devices can communicate between them to take decisions without requiring the physical intervention of their owners. Under those circumstances, the question "who is responsible if things go wrong ?" shall be addressed. In other words, when an IoT device causes damages, who will be responsible ? Are devices that were interacting or actors that were involved in the communications ? Furthermore, existing statutory civil liability regimes governing product liability and liability for physical injuries caused by an object are not suitable for the IoT. As the ins and outs are more complex than in other non-IoT cases, questions about civil liability thus need to be carefully studied.

To conclude, the development of the IoT has an evidence-based 1 impact on the privacy of users. Data collected through those prevalent devices can be aggregated with other innovations to track activities and behaviors, but also to draw profiles of users including their traits of character as well as their medical conditions. As a consequence, it is urgent to combine legal efforts with technical ones in order to design privacy preserving features specific to the IoT, and answer the following questions: "what are techniques available to protect users ?", "how to impose their implementation ?", "how to verify that their implementation is correct ?" and "how to explain those mechanisms to the end-users ?".

II.7 Thesis motivation

In this section, we provide the motivation for this thesis with regard to the IoT related privacy issues, namely physical tracking, device fingerprinting, activity inference and inventory attacks. Facing the state of the art, both lacks of technical countermeasures and legal weaknesses are highlighted in the following.

Physical tracking is the process that exploits identifying elements in wireless communications in order to track IoT devices and their corresponding owners over time. In the literature, MAC address randomization has been introduced to tackle this threat. However, II.7. Thesis motivation 34 this privacy preserving mechanism only focuses on a particular type of metadata: the device addresses. As a result, previous works [START_REF] Freudiger | How talkative is your mobile device? An experimental study of Wi-Fi probe requests[END_REF][START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Matte | Defeating MAC address randomization through timing attacks[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF][START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF][START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF] demonstrated that this anti-tracking feature can be defeated leveraging other metadata such as sequence numbers included in Wi-Fi probe requests but also data embedded in wireless communications.

Even though they can be protected thanks to encryption methods, this thesis pursues on the path started by those works asking the question: "how can those previously identified threats be generalized to other technologies (e.g. Bluetooth), and to the IoT ?".

Device fingerprinting offers another method of physical tracking based on the specific and unique configuration of IoT devices. To date, this threat has been studied a lot in the context of canvas [START_REF] Mowery | Pixel perfect: Fingerprinting canvas in HTML5[END_REF] and browser fingerprinting [START_REF] Eckersley | How unique is your web browser[END_REF], which ensure that companies can identify and track users across the web. Nevertheless, it has been demonstrated [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Matte | Wi-Fi tracking: Fingerprinting attacks and counter-measures[END_REF] that data and metadata exposed in radio signals include elements that can be aggregated to form a device fingerprint. Even if it does not involve personal data per se, device fingerprinting allows to distinguish users, thus enabling the physical tracking. Compared to the existing research, this thesis aims to answer the question: "is fingerprinting also possible for IoT related wireless technologies (e.g. Bluetooth/BLE) ?".

Activity inference leverages series of observation to infer the activity of an individual. Assimilated to the activity inference, the Activity Recognition (AR) has been the subject of many works [START_REF] Oscar | A survey on human activity recognition using wearable sensors[END_REF][START_REF] Su | Activity recognition with smartphone sensors[END_REF][START_REF] Narayanan | Activity recognition on streaming sensor data[END_REF] where supervised machine learning techniques were used to mine data. Nonetheless, in the context of wireless communications, data broadcasted through radio signals are not always available in clear. As a consequence, to deal with the case where radio signals are the potential source of private leaks, this thesis will address the following questions: "in order to infer the activity of a user, is an approach based on the analysis of the temporal features of the wireless traffic possible to define ?" and, if so, "how can variations on the intensity of the wireless traffic (i.e. number of messages by unit of time) and on the periodicity of radio signals be leveraged ?".

Inventory attacks aim to infer private and potentially sensitive information based on a list of devices associated with a user. Given a list of device identifiers, this type of attack outputs personal attributes corresponding to the profile of the user. As a new threat raised in parallel with the deployment of the IoT devices, little work has been done. As a consequence, we will address this open research field through the design of an approach to infer information on users based on a list of their devices. To this purpose, this thesis will elucidate the following questions: "can a methodology be developed to associate personal attributes with a class of device ?" and, if so, "can it be automatized considering the information found in third party specifications and codes ?".

Legal regulations and protection authorities stipulate general laws that mostly apply to the collection and usage of personal data. Indeed, even if some efforts such as the extension dedicated to the IoT of the PIA framework from the CNIL [START_REF]Privacy Impact Assessment (PIA) -Application to IoT devices[END_REF] and the opinion of the G29 related to the deployment of the IoT [109] can be noticed, the case where wireless communications themselves can be sources of privacy leakages lacks from considerations. In this thesis, we are neither able to reform nor extend existing laws, and we do not pretend to do so. However, we hope that our scientific contributions II.7. Thesis motivation 35 demonstrating privacy breaches through the IoT devices will bring evidences of legal weaknesses, thereby alerting regulators about the needs to design and harden new privacy protections specific to the IoT.

Consumer awareness is an act of making sure the consumer is aware of the information about the products, services and consumers rights. Even though they are more and more sensitive to privacy issues, consumers are generally not aware about privacy leakages through radio based attacks such as physical tracking and activity inference. To make the matter worst, they are even less aware that their personal information can be exploited by third parties for commercial or government intelligence purposes. Therefore, to raise awareness, we will develop demonstrators featuring some of the analyzed privacy threats. Enhanced with graphical interfaces allowing a clear exhibition of the results, such demonstrators will be showcased in scientific events to illustrate the conducted research, as well as in vulgarization events to address a wider audience (e.g the general public, data protection authorities and policy makers).

Chapter III Tracking users leveraging advertising data and metadata

This chapter exposes how passive and active attackers can leverage advertising data and metadata broadcasted by wireless communicating devices in order to track their corresponding owners over time. To this end, physical tracking in the context of wireless communications is first discussed in Section III.1. Then, Section III.2 details the methodology used to collect and process two distinct datasets crowded with BLE advertisement packets and GATT profiles. Tracking concerns stemming from passive attacks are described in Section III.3, and Section III.3.5 presents Venom, a Visual and ExperimeNtal Blue-tOoth Low Energy tracking systeM developed for public awareness-raising purposes and experiments on privacy-enhancing features. GATT profiles fingerprinting, an active attack that can be also exploited to undermine the BLE privacy-preserving scheme, is studied in Section III.4. Section III.5 proposes Valkyrie (Verification of Addresses LinKabilitY in address Randomization ImplemEntations), a generic framework for verifying privacy provisions in wireless networks. Lastly, the conclusion for this chapter is provided in Section III.6.

Corresponding contributions : [6, 9, 5, 4]

III.1 Introduction

IoT devices are found in many applications and domains from healthcare, quantified self, entertainment as well as end-devices such as smartphones, tablets and laptop computers. All those battery-powered devices rely on wireless technologies such as Bluetooth/BLE or Wi-Fi to communicate. As a result, in their daily lives, users are carrying wireless enabled devices.

Because of the ever active discovery mechanisms, those devices periodically emit messages

III.1. Introduction

that are populated with a variety of information including identifiers such as device addresses for Bluetooth and MAC addresses for Wi-Fi. Actually, those messages are broadcasted in clear, exposing their contents to eavesdroppers in range.

As a consequence, while wireless technologies bring hands-on facilities, they also have the potential to expose users to privacy threats such as physical tracking [START_REF] Wong | Location privacy in bluetooth[END_REF][START_REF] Scott Saponas | Devices That Tell on You: Privacy Trends in Consumer Ubiquitous Computing[END_REF][START_REF] Musa | Tracking unmodified smartphones using wi-fi monitors[END_REF][START_REF] Bonné | WiFiPi: Involuntary tracking of visitors at mass events[END_REF][START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF][START_REF] Issoufaly | BLEB: Bluetooth Low Energy Botnet for large scale individual tracking[END_REF][START_REF] Oosterlinck | Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits[END_REF]. Sets of sensors are leveraged by tracking systems and collect such identifiers contained in signals emitted by wireless enabled devices. Afterwards, those identifiers are processed to detect the presence of users and estimate their mobility (see Section II.3).

From customers analytics in shops [START_REF] Demir | Analysing the privacy policies of Wi-Fi trackers[END_REF][START_REF]The Store Of The Future: 150+ Startups Transforming Brick-And-Mortar Retail In One Infographic[END_REF] to locating war opponents [START_REF] Meyers | Danger Close: Fancy Bear Tracking of Ukrainian Field Artillery Units[END_REF], through commuters monitoring [START_REF] Olejnik | Privacy of London Tube Wifi Tracking[END_REF] and urban planning [START_REF] Constantine | Urban phenology: Toward a real-time census of the city using Wi-Fi data[END_REF], wireless based physical tracking has thus found diverse applications.

In response to this growing privacy concern, it has been proposed to replace those permanent identifiers with periodically changing random pseudonyms [START_REF] Gruteser | Enhancing location privacy in wireless LAN through disposable interface identifiers: a quantitative analysis[END_REF]. This practice, called address randomization, has been adopted by vendors [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF] and has even made its way to wireless standards [START_REF]IEEE Standard for Information technology -Telecommunications and information exchange between systems Local and metropolitan area networks -Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Preassociation Discovery[END_REF][START_REF]Bluetooth Core Specification v5.2[END_REF]. As an example, the Bluetooth Core Specification version 4.0 introduced the LE Privacy feature [39, Vol 3, Part C, sec. 10.7] that defines the use of temporary and random link layer identifiers. In addition, address randomization has become a default anti-tracking feature included in major mobile operating systems [START_REF]Privacy: MAC Randomization[END_REF][START_REF] Apple | About the security content of iOS 8[END_REF].

In this chapter, we present an analysis of the privacy provisions of the LE Privacy feature, as well as its limitations. Our studies are based on two datasets of real-world observations of BLE advertisement packets and GATT profiles collected over a period of five months, and respectively associated with more than 53500 and 13200 different device addresses.

First, we analyze the deployment of the address randomization mechanism in the wild. Our results show that the LE Privacy feature is widely adopted and that most implementations follow the specifications by using short lived and uniformly distributed pseudonyms. Nevertheless, we also discovered that a still significant fraction of devices are not exhibiting those properties, exposing their users to tracking.

Second, despite the correct use of random device addresses, we demonstrate that the content of advertisement packets can defeat the LE Privacy feature. Indeed, we found that some devices include static identifiers in those packets and others include counters that are not reset upon an address change. Furthermore, we identified fields containing temporary identifiers, but for which the renewal is not done at the same time as the random address change. In particular, we point out that custom data included by Apple, Microsoft and Google proximity protocols can be leveraged to defeat the privacy-preserving scheme.

In parallel, it is important to mention that previous works have independently focused on the privacy aspects of BLE. Indeed, Issoufaly and Tournoux introduced [START_REF] Issoufaly | BLEB: Bluetooth Low Energy Botnet for large scale individual tracking[END_REF] a BLE botnet of smartphones for wide scale tracking, and highlighted that BLE privacy features are not used by some wearable devices. In turn, Fawaz et al. presented BLE-Guardian [START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF], a solution to protect BLE users from privacy threats. In addition, they discussed several privacy issues of BLE advertisement, some of which are analyzed in detail in our research. More precisely, they noted that some manufacturers do not use random addresses, and that some of the temporary identifiers are used for long periods of time. By providing an updated as well as a detailed review of those issues 1 , we consolidate those observations. Likewise, Becker et al. demonstrated [START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF] that the LE Privacy feature can be defeated leveraging the advertising payload. By deeply investigating the device address randomization scheme fact, we complement this work not limiting us to empirical observations.

In order to raise public awareness toward physical tracking systems, we then follow our work by implementing Venom, a Visual and ExperimeNtal BluetOoth Low Energy tracking systeM. Used for demonstrational purposes, this system tracks users through their BLE enabled devices (e.g. headphones, smartwatches and fitness trackers), and displays collected data of participants thanks to its user-friendly interface. Note that, we also put an emphasis on the fact that Venom can be used to deploy and test privacy-enhancing features for physical tracking systems.

Last but not least, we focus on the GATT profile exposed by connectable BLE devices as part of the mandatory ATT protocol. As a reminder, this profile presents a description of features supported by a device through concepts of services and characteristics. Moreover, as most of its elements are readable without authentication, a GATT profile can be easily collected by any device in range. Leveraging the content of such a profile, we demonstrate that an active attacker can build a fingerprint that can be used to single-out the device and, once more, undermine the LE Privacy provisions.

Finally, we address the problem of verifying the correctness of the address randomization implementation to improve its effectiveness. More specifically, the objective is to check whether an implementation is affected by one or several previously identified issues (i.e. static identifiers and non-reset counters). Thereafter, we strengthen the privacy properties required by the address randomization that have been produced in recent research efforts.

To this purpose, we begin by formalizing the concept of frame unlinkability (that is the objective sought by address randomization) before to present Valkyrie (Verification of Addresses LinKabilitY in address Randomization ImplemEntations), a generic framework to automatically verify privacy provisions based on a network capture. Using a representative set of BLE and Wi-Fi enabled devices, we evaluate Valkyrie and conclude on the fact that this tool is able to detect issues in the generated wireless traffic.

III.2 Methodology and datasets

In this section, we present the methodology used to study tracking issues raised by the wireless communicating BLE devices. More particularly, we detail the approaches used to collect, parse, anonymize and sanitize our datasets. In order to have a complete view on 1. Several of the privacy concerns affecting BLE and discussed in this chapter (i.e. static identifiers and non-reset counters) were also found in the context of 802.11 [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF].

III.2. Methodology and datasets

40 physical tracking concerns in the BLE, we studied this privacy threat triggering passive and active attacks. As a consequence, our work are based on two distinct datasets that we collected over five months during commute, work and leisure times. In the following, the dataset leveraged for the passive attacks is denoted as dataset P assive , while dataset Active is the dataset used for the active attacks.

III.2.1 Data collection protocol

To collect the data, we used a Raspberry Pi [START_REF] Pi | Teach, Learn, and Make with Raspberry Pi[END_REF] single-board computer equipped with several CSR v4.0 Bluetooth USB dongles [START_REF][END_REF].

On the one hand, dataset P assive is made of advertisement packets and scan responses. To collect advertisement packets on BLE advertising channels, we developed a C software based on the BlueZ [START_REF] Bluez | BlueZ -Official Linux Bluetooth protocol stack[END_REF] libraries, the official Linux Bluetooth stack. Furthermore, as advertising data can be obtained from both advertisement packets and scan responses (see Section I.2.2.3.1), we designed our software to collect advertisement packets and automatically send scan requests to obtain potential scan responses from discovered Peripherals.

On the other hand, dataset Active is populated with BLE GATT profiles. In order to collect those GATT profiles, one of the CSR Bluetooth dongles continuously scans for advertising Peripheral using the bluepy [START_REF] Harvey | bluepy -A Bluetooth LE interface for Python[END_REF] Python library. The remaining dongles try to connect to discovered connectable Peripheral prior to enumerate attributes of their GATT profiles using our custom multi-threaded version of the bleah [START_REF] Margaritelli | This Is Not a Post About BLE, Introducing BLEAH[END_REF] BLE scanner tool.

III.2.2 Data structure

dataset P assive and dataset Active contain records that each respectively corresponds to an advertising frame (i.e. an advertisement packet or a scan response) or a GATT profile. A record includes a timestamp along with a header and a payload. The data obtained from the data collection are stored as raw records that are organized as follows:

-Metadata: timestamp; -Header: PDU type, BD_ADDR type; -Payload: BD_ADDR, advertising data (dataset P assive ) or GATT profile (dataset Active );

Advertising data within dataset P assive are then parsed to extract AD structures and their various fields. To perform this task, we implemented our own Python parser based on online official Bluetooth SIG resources and other sources of information such as the RaMBLE [START_REF] Lester | The Emergence of Bluetooth Low Energy[END_REF] Android mobile application, the advlib [START_REF] Imran | Low-power wireless advertising software library for distributed M2M and contextual IoT[END_REF] advertisement packet decoding library and bleah. The resulting data are then stored in a relational database which comprises 179 attributes corresponding to the metadata, fields of the header and parsed AD structures.

Concerning dataset Active , the bleah tool is able to enumerate and parse a GATT profile by default. As a reminder, a GATT profile is a hierarchical structure of attributes that are grouped into services, each service containing conceptually related characteristics (see Section I.2.2.4). Therefore, we only formatted each captured GATT profile as a JSON string (see Figure B.1 in Appendix B) before to be stored in separate files for further analysis.

III.2.3 Datasets anonymization

Data collection of both dataset P assive and dataset Active were performed in the wild, from different items among which most of those are related to physical users. As a result, to minimize the privacy risks associated with the collected data, we applied modifications to prevent user re-identification. In particular, we focused on attributes corresponding to identifiers (Stable device addresses, device names, etc.) and on temporal data (timestamps). Therefore, the following transformations were applied:

-Device addresses: the Stable BD_ADDR (Public and Random Static) have been pseudonymized through keyed-hashing 1 of the 24-bit lowest part (NIC), thus leaving the 24-bit highest part (OUI) unmodified; -Names of persons: fields potentially containing names were sanitized by searching and key-hashing substrings that were matching the pattern of a name (" * .'s . * | * . 's . * ", " * . de . * ") or strings from a dictionary 2 of names; -Timestamps: the temporal information has been transformed from absolute (date and time) to relative (time elapsed since the beginning of the collection campaign).

Nevertheless, to conduct the analysis of the random addresses distribution in dataset P assive (Section III.3.3.2), we kept the list of raw Random Static addresses that were stripped from any other information.

III.2.4 Datasets sanitization and preprocessing

Before performing our studies, dataset P assive as well as dataset Active went through steps of sanitization and preprocessing to remove unwanted records. Indeed, as our studies focus on physical tracking, we are only interested in BLE devices linked to individuals. However, there is a number of devices that does not fall into this category.

Filtering BLE beacons: BLE beacons are static devices deployed in the physical space to enable localization services such as indoor positioning, as an example. By definition, Using this approach, we identified and removed a total of 50439 advertisement records accounting for 0.63% of our original dataset P assive . Note that, statistics for dataset Active are not available as we designed our software not to enumerate GATT profiles belonging to BLE beacons. In fact, leveraging the regular expressions on the broadcasted advertising data, our collecting device did not to connect to BLE beacons, thus ousting their corresponding GATT profiles from dataset Active .

Filtering malformed payloads: Corrupted BLE frames are automatically discarded by the BLE stack thanks to the CRC. However, even if an advertisement packet has a correct CRC, it is still possible that some advertising data contain one or more malformed AD structures that can affect the correctness of our studies. We define a malformed AD structure as a structure that does not follow the format shown in Figure I.5, and thus cannot be correctly parsed. As a result, we removed all the records that have at least one malformed AD structure, leading to the suppression of 1958 advertisement records representing 0.02% of our original dataset P assive . Similarly to the filtering of BLE beacons, statistics about malformed GATT profiles are not available as they were automatically removed during the enumeration process, leaving the dataset Active with only well-structured profiles. Note that, a malformed GATT profile is a profile that is not structured accordingly to Figure I.6 and, therefore, that cannot be further formatted as a JSON string.

To finish, Table III.2 presents the distribution of BD_ADDR and records among the device address types in our sanitized datasets. dataset P assive contains about 8 million records and includes more than 53500 distinct BD_ADDR, while dataset Active gathers GATT profiles from 13295 distinct BD_ADDR. Note that, devices using Private addresses (Random Non-resolvable and Random Resolvable) can be observed several times under a different pseudonym. As a consequence, in the Private part of the datasets, the number of actual devices is expected to be smaller than the reported number of distinct device addresses. 

III.3 Passive tracking

In this work, leveraging dataset P assive , we analyze the privacy issues associated with the advertising mechanism of BLE. First, we identify that, while widely adopted, the current implementation of BLE address randomization is suffering from serious issues. Indeed, some implementations fail at following the Bluetooth Core Specification on the maximum lifetime and the uniform distribution of random identifiers. Furthermore, we found that the payload of the advertisement packet can hamper the randomization mechanism by exposing static identifiers and non-reset counters. In particular, we discovered that custom data embedded in those frames by protocols of Apple, Microsoft and Google can be used to defeat the address randomization scheme.

Then, we present Venom, an experimental tracking platform aiming to raise public awareness about physical tracking technologies and to experiment privacy-preserving mechanisms. By collecting advertisement packets broadcasted by their BLE enabled devices, Venom tracks users and displays related information.

III.3.1 Attacker model

In this section, we consider an external attacker which continuously monitors the traffic on BLE advertising channels. This attacker is thus able to capture the advertisement packets generated by BLE devices in range. Moreover, we assume that the attacker is passive: he only captures traffic and does not interact with the wireless channel through injection or jamming.

On the victim side, we only make the assumption that his device has its Bluetooth interface turned on and broadcasts advertisement packets.

Based on the captured advertising traffic, the goal of the attacker is to track a device beyond the address randomization scheme. More specifically, a successful attack is defined as the attacker being able to link two sets of advertisement packets generated by a single device but with two distinct BD_ADDR. Consequently, a successful attack links together two pseudonyms of a device. Figure III.1 shows an example where a device generates traffic with three different BD_ADDR, but it is possible to link together the three sets of advertisement packets based on a static identifier found within the advertising data.

III.3.2 Adoption of the LE Privacy feature

As a reminder, the device address is the main source of passive tracking attacks that have been addressed by the address randomization countermeasure (see Section II.5).

From Table III.2, we can first observe that Private addresses (Random Resolvable and Random Non-resolvable) account for about 60% of the advertisement packets found in dataset P assive . This shows that the privacy-preserving mechanism of BLE is widely adopted by the industry. Also, this means that a number of devices are still using Stable addresses.

In fact, dataset P assive includes more than 5500 Stable device addresses that can be trivially used to track the corresponding users [START_REF] Aveek K Das | Uncovering privacy leakage in ble network traffic of wearable fitness trackers[END_REF][START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF][START_REF] Issoufaly | BLEB: Bluetooth Low Energy Botnet for large scale individual tracking[END_REF]. Moreover, we computed that 80% of those Stable identifiers are of type Public, thus revealing the globally unique MAC address assigned by the manufacturer to the device.

Among the Private category, we can observe that a large part of advertisement packets belongs to the Random Resolvable type (4M packets) representing more than 84% of the traffic generated by Private addresses. As such, this suggests that the resolvable feature of LE Privacy is being endorsed by vendors over the non-resolvable option.

III.3.3 Device address randomization scheme analysis

In this section, we leverage dataset P assive to analyze current implementations of the LE Privacy feature, and more particularly the lifetime as well as the uniform distribution of the random addresses. Finally, the robustness of Random Resolvable addresses against a basic attack is analyzed too.

III.3.3.1 Lifetimes of device addresses

In order to prevent tracking, Random Resolvable and Random Non-resolvable addresses are temporary identifiers that are supposed to be renewed on a regular basis. In the Bluetooth Core Specification [38, Vol 6, Part B, sec. 6.1], a maximum duration of 15 minutes is recommended for both Random Resolvable and Random Non-resolvable addresses. On the opposite, Random Static addresses (the third type of random addresses) are not supposed to be changed, and are thus expected to be used for an extended duration.

Within this study, we computed the lifetime of each address found within dataset P assive . Due to our method of data collection, the duration for which a device stays in range during the collection cannot be controlled nor measured. As a consequence, measured lifetimes should be considered as a conservative estimation. Indeed, a device may continue to use its BD_ADDR after1 it goes out of the range of our collecting device.

For For this research, we used the random addresses found within dataset P assive and tested whether this set of random values followed a uniform distribution 1 . For each random address, we extracted the part that has been generated with a PRNG 2 before to submit those values to the Kolmogorov-Smirnov (KS) statistical test [START_REF] Indra | Handbook of methods of applied statistics[END_REF].

By definition, the KS test is used to test whether one distribution of values differs substantially from theoretical expectations. It then outputs the distance (the statistic) between the empirical distribution and the reference distribution, as well as a significance score (the p-value) that gives the probability of obtaining this distance if the values were drawn from the reference distribution [START_REF] Tw Kirkman | Statistics to use: Kolmogorov-Smirnov test[END_REF]. When the p-value is below a certain threshold (values of 0.1, 0.05, and 0.01 are typically used), the null hypothesis is rejected.

Run on each type of random addresses, this test produced the results reported in Table III.3. For Random Resolvable and Random Non-resolvable addresses, the p-values obtained are high (> 0.15), while the p-value for Random Static is very small (< 10 -5 ). As a result, this means that the hypothesis that all BD_ADDR are uniformly generated can be rejected for the Random Static addresses and kept for both Random Resolvable and Random Non-resolvable addresses.

Showing that some ranges of values are more common than others, the non-uniform distribution of Random Static addresses can be clearly observed on Figure III.3. In fact, we identified that some categories of devices are using specific values for the higher part of the device address (the leftmost 24 bits). For instance, Sony SRS portable speakers and Samsung Gear smartwatches respectively use c7:d5:0b (13 devices) and dc:c1:c6 (10 1. Since those random values have been produced by different instances and implementations, it is thus not possible to test most of the properties required by FIPS.

2. Not all the bits of random BD_ADDR are supposed to be random. First, the two MSB are fixed to specify the type of the random address, and are consequently not random. Then, for Random Non-resolvable and Random Static addresses, the 46 remaining bits are random. Actually, for the Random Resolvable addresses, only 22 bits are random because the 24 LSB are computed from the random part prand and the IRK (see Section I.2.2.2). devices) as a prefix. The same way MAC addresses are allocated by OUI, this suggests that some Random Static addresses are allocated by range, potentially revealing information on the type and manufacturer of the device (see Section IV.3.2).

Although the sets of Random Non-resolvable and Random Resolvable addresses appear to be uniformly distributed, this does not guarantee that all those random addresses are generated with a FIPS compliant PRNG, and that there are no other flaws in their generation.

III.3.3.3 Unsuccessful IRK brute forcing

To allow the identification of a Peripheral by a Central device with which it has already been paired (see Section I.2.2.2), Random Resolvable addresses include a non-random part. Actually, the 24 MSB of a Random Resolvable BD_ADDR are composed of two fixed bits specifying the type of the random address (Resolvable), followed by a 22-bit random part (prand), while the 24 LSB are equal to the hash of prand concatenated with a 128-bit secret value called IRK. As a result, the security of this scheme relies on the fact that the IRK cannot be easily guessed by an attacker.

Using the Random Resolvable addresses at our disposal, we tried a brute force attack using a dictionary containing naive values such as all zeros, all ones, incremental sequences 

III.3.4 Defeating device address randomization

According to the results of the previous sections, it appears that the address randomization implementation globally avoids common pitfalls. Nevertheless, in the following, we show that data such as static identifiers and non-reset counters included in the rest of the advertising payload can negate the privacy protection provided by the address randomization.

III.3.4.1 Static advertising identifiers

Most of the time, device names and service UUIDs are broadcasted by BLE enabled devices for identification purposes. In this section, we point out that such identifiers can undermine the anti-tracking feature when they are static (i.e. they do not change over time).

Device names: Moreover, we discovered that a number of device names advertised over Private addresses include a part corresponding to a unique identifier. For instance, device names of Xiaomi Amazfit fitness trackers match the following pattern Amazfit-XXXX, where XXXX are hexadecimal digits. Likewise, we identified several other families of devices such as Boosted Boards skateboards and Nokia/Withings smartwatches that include an identifier in their device names as well. In practice, the size of such an identifier varies from one to four bytes, and can be used to track the device over time.

From our observations on the Public addresses, we found that the identifier included in the device name is often the lowest part of the device address. For devices using Private addresses, this suggests that the digital identifiers embedded within the device names can be a part of the device Public BD_ADDR.

Service UUIDs: Service UUIDs are identifiers that can be found in several AD structures such as the Complete List of 16-bit Service Class UUIDs or the Service Data-16bit UUID structures. Such UUIDs can be advertised in a full (128 bits) or in a shortened version (16 or 32 bits). In fact, their main purpose is to expose services to nearby Centrals before establishing a connection, but they can be also used to exchange service data in a connectionless way.

In this context, a UUID is tailored to identify a service rather than a device. However, we observed that some 128-bit UUIDs are customized by manufacturers to include a complete Public address in the LSB, thus forming a device unique identifier. Within advertisement packets using Private addresses, we found a total of 180 distinct UUIDs. Leveraging the registered OUI of the included Public addresses along with the advertised device names, we discovered that 1) some of those UUIDs belong to the Nokia/Withings manufacturer and 2) others are broadcasted by Steel smartwatches (9 devices). As such, this practice introduces a secondary unique identifier that can be used to track the device over time. 

III.3.4.2 Proximity protocols

In advertisement packets, AD structures such as the Manufacturer Specific Data and the Service Data-16-bit UUID structures can be used to carry application specific data.

In the following, we focus on four prevalent proximity protocols found within advertisement packets, and discuss on the fact that their broadcasted data can expose information that can reduce or even negate the address randomization mechanism. Our findings are summarized in Table III Acting as a frame counter, the IV is a 2-byte integer that is incremented over time, but that can remain unchanged in several consecutive advertisement packets. Actually, we observed that this counter is not reset when the BD_ADDR changes in the randomization scheme (see Figure III.5). Based on this IV, it is then possible to link different addresses belonging to the same device, as it has been shown with the Sequence Number field included in 802.11 probe requests [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF].

On the other hand, although it is not documented, the Apple Nearby Info protocol seems to be used to inform nearby devices about the presence and state of a device (see Section V. OS Build 17763.437) left idled, we witnessed that the lifetime of the BD_ADDR is about 16 minutes, while the Device Hash lasts for approximately 60 minutes (see Figure III.9). First, we can observe that Random Non-resolvable addresses used to advertise Microsoft CDP data last longer than the Bluetooth Core Specification recommended duration of 15 minutes. Thereafter, the switch to a new Device Hash is not synchronized with the change of BD_ADDR. As a result, the Microsoft CDP advertising data undermine the address randomization scheme through the exposure of an identifier whose lifetime overlaps the one of the BD_ADDR.

From dataset P assive , we computed that more than 89% of Random Non-resolvable addresses include the Microsoft company identifier (0x0006) in the Manufacturer Specific Data AD structure and follow the format of the data shown in Figure III.8.

Leveraging the Device Type field found within the Microsoft CDP data, we identified that 96% of such Random Non-resolvable addresses are broadcasted from Microsoft Windows 10 computers (desktops and laptops). Despite the use of address randomization, this suggests that a large fraction of the BLE enabled Microsoft devices are trackable. Furthermore, it appears that most Microsoft Windows 10 computers are affected by this issue as we discovered that CDPUserSvc, the service responsible for broadcasting those Microsoft CDP messages, is enabled by default.

III.3.4.2.3 Google Nearby

The Google Nearby [149] protocol is an Android feature that allows users to discover devices in range and establish direct communication channels with them. Moreover, this protocol is present on all modern Android devices since Android KitKat (version 4. advertisement traffic, we partially identified the format of the Google Nearby payload (see Figure III.10). More precisely, this payload includes a 2-byte Counter that is incremented over time, but which does not necessarily change for each advertisement packet. In fact, as for the Apple Handoff protocol, we observed that this Counter is not reset when the device switches to a new random address. In addition, we found that a 3-byte static identifier is included in the Manufacturer Specific Data AD structure of the scan responses of the Peripheral, and can be also leveraged to defeat the randomization scheme.

In dataset P assive , we computed that more than 17.7% of Random Resolvable addresses advertise a Google 16-bit service UUID over the Service Data-16-bit UUID AD structure, among which 39% of those respect the format of the Google Nearby service data presented in Figure III.10. Leveraging the advertised device names, we detected that some of those broadcasted service data come from Google Chromecast devices. Indeed, the Google Nearby protocol is used by such devices to facilitate their setup process [START_REF] Google | Use Nearby to find Chromecast devices[END_REF].

Since Google Chromecast are usually sedentary devices, the tracking risk is limited. However, the Google Nearby protocol is designed to be integrated in any type of device, and especially mobile handsets and wearable equipment.

III.3.5 Practical application: Venom, an experimental BLE tracking system

Despite efforts from both the industry and data protection authorities, the previous sections demonstrated that the privacy of users is still in jeopardy. Additionally, the fact that tracking technologies are not well known by the general public aggravates the situation.

In this section, we then introduce Venom, a Visual and ExperimeNtal BluetOoth Low Energy tracking systeM, to shed light on privacy issues of BLE enabled devices. In the following, we show how it can be used for demonstrational purposes in order to raise user awareness about radio based physical tracking technologies. Also, we explain how this platform can be leveraged as a basis to develop and test privacy-preserving mechanisms. To this end, we present a primitive and easy-to-use BLE based opt-out mechanism that does not involve any action from users on their devices, unlike the one proposed in Wombat [START_REF] Matte | Wombat: An experimental wi-fi tracking system[END_REF]. Venom is a BLE tracking system supporting collection, storage and processing of advertisement packets. Those features are implemented over a distributed infrastructure composed of:

-Clients: wireless monitoring-capable devices that collect advertisement packets and forward them to the broker; -Broker: receives data from clients, stores and processes them (i.e. parse advertisement packets, analyze advertising data, etc.) in a local database.

To collect advertisement packets, Venom only requires Bluetooth interfaces supporting the BLE protocol. Actually, this is the case for most off-the-shelf Bluetooth cards on computers running a Unix-like system. To enable the communication between the clients and the broker, the Venom tracking system relies on its own custom Wi-Fi network. Finally, the advertisement packets parser has been built from the online official Bluetooth SIG resources, third-party public resources 1 and the reverse engineering of the Apple Handoff, Apple Nearby Info, Microsoft CDP and Google Nearby proximity protocols.

In addition to its principal features, we enriched Venom with a user interface along with an opt-out client:

-User interface: displays information about tracked devices through proximity detection 2 . Note that, the interface has been made to address as much types of audiences as possible (i.e. the general public, industrials, researchers and students); -Opt-out client: implements a basic opt-out mechanism for users that do not want to be tracked by the system (see Section III.3.5.2).

Figure III.11 presents the architecture of Venom that features core functionalities of industrial Bluetooth/BLE tracking systems: device detection, identification and itinerary tracking. To present principles of radio-based tracking systems, and to initiate discussions on corresponding privacy issues, we assume that those functionalities are enough.

Information captured by the system are only data contained in advertisement packets sent by BLE devices having an enabled Bluetooth interface. Thus, traffic data from associated devices and timing or physical-layer information are not considered. The display includes metadata of the advertisement packet (i.e. BD_ADDR, BD_ADDR type, etc.), and a list of extracted information along with an inference of the device type based on its advertised device name.

To minimize privacy risks for users, we keep as little necessary information as possible. In particular, collected data of a participant are kept for a maximum of 15 minutes after its 1. The advlib [START_REF] Imran | Low-power wireless advertising software library for distributed M2M and contextual IoT[END_REF] advertisement packet decoding library, the RaMBLE [START_REF] Lester | The Emergence of Bluetooth Low Energy[END_REF] Android mobile application, and the bleah [START_REF] Margaritelli | This Is Not a Post About BLE, Introducing BLEAH[END_REF] BLE scanner tool.

2. Nearby devices are detected using the RSSI. departure. Furthermore, Venom only detects devices in close range 1 of antennas to ensure that only volunteering participants will have their data collected and processed.

III.3.5.2 Privacy protection feature

Most tracking systems collect data of users without their consents. Therefore, to bring users possibilities to escape tracking, opt-out mechanisms have been deployed. Generally, such mechanisms involve a webpage on which the user has to declare its device address. However, this approach presents usability issues preventing users from protecting their privacy through opt-out mechanisms.

In this work, we leverage BLE core elements to transmit the opt-out 2 decision. In fact, we implemented a usable opt-out mechanism to which a device, whose owner wants to opt out, only has to be close to the Opt-out Bluetooth antenna of Venom. Note that, this differs from the opt-out mechanism introduced in [START_REF] Matte | Wombat: An experimental wi-fi tracking system[END_REF], with which Wi-Fi devices willing to opt out must associate to an access point. Finally, upon this event, the tracking system will learn the BD_ADDR by parsing received nearby advertisement packets.

III.3.5.3 Interaction with participants

During the demonstration, visitors are tracked leveraging advertisement packets broadcasted by their carried BLE devices. At the entry, they are informed of the presence of the tracking system and the opt-out (or opt-in) mechanism. By bringing their device close to the Report Bluetooth antenna of Venom, they are able to test the information collected from their devices. As a feedback to the participant, a comprehensive analysis of the collected data (i.e. identifier, brand of the device, etc.) along with an approximate 

III.4 Active tracking based on GATT profiles

In the context of wireless technologies, the possibility of singling-out a device based on its technical characteristics and attributes for tracking purposes has been explored by several works [START_REF] Bratus | Active behavioral fingerprinting of wireless devices[END_REF][START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF][START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF]. Moreover, in [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF], the authors demonstrated that the content of 802.11 probe requests can be used to fingerprint devices and defeat the address randomization.

In the following, we give evidence that this problem is not limited to 802.11 as BLE suffers from similar issues. To this end, we discuss how the GATT profile -which is a hierarchical structure of attributes allowing the transfer of information between a Client and a Server (see Section I.2.2.4) -can be used to create a fingerprint that can be exploited to circumvent the anti-tracking feature of the BLE standard (i.e. the device address randomization). Leveraging dataset Active , we analyze the potential of this fingerprint and show that it can be used to uniquely identify a number of devices.

III.4.1 Attacker model

In this section, we consider an active attacker which monitors the BLE advertising channels to detect nearby connectable Peripherals, connect to them and collect their GATT profiles using several ATT Read By Type Request [START_REF]Bluetooth Core Specification v5.2[END_REF]Vol 3,Part F,sec. 3.4.4]. Furthermore, we assume that the device used by the attacker has not been paired with any Peripheral: it cannot authenticate itself and access protected values of characteristics. As described in Section III.2.1, those assumptions can be satisfied using off-the-shelf hardware and open-source software. In addition, we found that a full GATT profile can be collected in a matter of seconds (see Table III.6).

On the target side, we assume that the device has its Bluetooth interface turned on, is in communication range and is discoverable.

Based on the collected GATT profile, the objective of the attacker is to generate a fingerprint of the device in order to track it despite its address randomization scheme (see Figure III.12). 

III.4.2 GATT profiles fingerprinting

Following the approach of Vanhoef et al. [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF] that was applied to 802.11 probe requests, we study how much identifying information can be found in GATT profiles. Especially, we study how services and characteristics can be used to create a fingerprint of the device. In case this fingerprint is unique enough, it can be used to track a device despite the address randomization.

III.4.2.1 GATT fingerprint artifacts

The GATT profile of a BLE device is a data structure that can be easily accessed and that includes a number of data elements that can be used for fingerprinting.

First, the number of possible components is large: online GATT specifications [START_REF]GATT Specifications[END_REF] describe a list of 40 services and 226 characteristics that can be complemented by vendors with their own custom elements. In total, we found 263 distinct services and 1086 distinct characteristics in dataset Active . In addition, characteristics are associated with a value that can contain up to 512 bytes of data [38, Vol 3, Part F, sec. 3.2.9]. Also, all those elements are accompanied by metadata: handles and properties respectively represented by two bytes and eight flags.

Second, the content of a profile will vary depending on the device type as the GATT profile reflects the features and the characteristics of the device. For instance, the Cycling Power Measurement characteristic will be only included in cycle devices, while only weight scales will expose the Weight Scale Feature characteristic.

Finally, values associated with characteristics may vary from one device to another as they can reflect the device state or identity. As an illustration, this is the case of identifiers such as the Device Name and Model Number String.

Overall, a GATT profile is a data structure containing a large number of elements that are subject to variations between devices, and thus hold a potential for fingerprinting. To create the fingerprint of a BLE device, we considered the following artifacts:

-List of services, including for each service:

-Handles (start-end): the handle range associated with the service (two 16-bit identifiers); -UUID: the UUID associated with the service (a 128-bit identifier).

-List of characteristics, including for each characteristic:

-Handle: the handle associated with the characteristic (a 16-bit identifier); -UUID: the UUID associated with the characteristic (a 128-bit identifier); -Properties: the properties of the characteristic (8 bits); -Value: the value of the characteristic (from 0 to 512 bytes).

III.4.2.2 Fingerprinting evaluation

To evaluate the fingerprinting potential offered by the GATT profiles, we leveraged dataset Active . Previously presented artifacts were then extracted from dataset Active prior to be stored in a database in which each fingerprint is associated with a device address and a timestamp. Thereafter, the resulting database was processed to compute fingerprinting metrics: entropy (Section III.4.2.3) and anonymity sets (Section III.4.2.4).

Impact of random addresses on the evaluation: dataset Active includes records from devices using random addresses (Private addresses). A device using the address randomization scheme can be observed multiple times under different pseudonyms, and thus the corresponding fingerprint will be counted multiple times instead of one. This overcounting will have an impact on the privacy metrics: the entropy will be reduced and the size of the anonymity set will be increased. Therefore, values reported for the Private part of dataset Active shall be considered as an underestimation of the fingerprinting potential.

III.4.2.3 Empirical entropy

Leveraging dataset Active , we evaluate the quantity of information brought by the services and characteristics of GATT profiles. The entropy is a metric used to measure the amount of identifying information brought by an element of the fingerprint [START_REF] Eckersley | How unique is your web browser[END_REF]. In this work, the database of fingerprints was processed to compute an empirical evaluation of the entropy of each artifact i using the following formula:

H i = - j∈E i f i,j * log 2 f i,j (III.1)
where E i is the domain of possible values for an artifact i and f i,j is the frequency (i.e. probability) of the value j for the artifact i in dataset Active . Note that, the absence of an artifact was also considered as a possible value.

Table III.7 presents the entropy for the ten most common services and characteristics exposed in dataset Active , as well as for the overall profile. The Entropy column presents the amount of identifying bits provided by the artifacts. The Stability column presents the fraction of devices observed several times for which the value of the artifact is constant throughout dataset Active . Finally, the Affected devices column presents the fraction of devices that include this artifact in their GATT profiles.

A first observation is the high stability of the fingerprint: the overall fingerprint is stable in more than 95% of the cases. The entropy of single artifacts is typically comprised between 0 and 2 bits. However, some artifacts such as the Device Name and the Model Number

String characteristic can bring up to 3.152 bits of information. Indeed, those artifacts are in fact identifiers.

Variations can be also observed between the types of device address: the Device Name brings less information for Private than for Stable addresses. Actually, we witnessed that for devices using Private addresses, this characteristic is often configured to carry a generic value 1 . This is likely a deliberate choice done for privacy reasons. Nevertheless, developers Table III.7 -Empirical entropy computed from dataset Active for services and characteristics exposed within GATT profiles. For each item: the entropy brought by the attribute, the percentage of devices for which this item is stable over time, and the percentage of devices that include this item in their GATT profiles. Overall, characteristics seem to bring more information than services (4.380 bits against 2.111 bits). This is explained by the fact that characteristics hold more artifacts than services. When considering the full fingerprint, which includes both the characteristics and the services, we can observe that the entropy is the same as with the characteristics alone. This is due to the fact that artifacts of a service (i.e. handles and UUID) are fully determined by artifacts of its characteristics (remind that characteristics are hierarchically dependent from services). In other words, services do not bring additional information with regard to characteristics. 

III.4.2.4 Anonymity sets

To further study the fingerprinting potential of GATT profiles, we used the concept of anonymity set, which is defined as a set of entities that share the same fingerprint. From a privacy point of view, the larger the anonymity set the better.

Aided by the kmap [START_REF] György Gulyás | Near-optimal fingerprinting with constraints[END_REF] Python tool, we computed the anonymity sets for the fingerprints contained in dataset Active . Figures III.13a and III.13b respectively show the distributions of the set sizes for Stable and Private addresses.

For Stable addresses, the anonymity sets are small with 94.75% of sets of size 1, meaning that those devices can be uniquely identified by their fingerprints. As those devices can be already identified through their Stable addresses, this is not critical. However, it demonstrates the potential for unique identification based on the GATT profile.

Moving to Private addresses, we observe that a smaller number of devices are uniquely identifiable (4.28%), and that 74.33% of devices are in anonymity sets of size 100 or more. This improvement can be explained by the fact that vendors include less identifying information in GATT profiles of devices using Private addresses.

Focusing on devices using Private addresses, we found that a large number of them are Apple iPhone smartphones A possible explanation to this phenomenon is that Apple distributes a large number of 
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devices but focused on a small number of models (i.e. a single line of products with few variants per generation). Furthermore, the software running on those devices is homogeneous 1 . As such, it seems that a side effect of Apple commercial and technical policies is to reduce possibilities of uniquely identifying their devices based on technical characteristics.

III.5 Verification of privacy provisions in wireless networks

With regard to the tracking issues detailed in the previous sections, the correct implementation of the device address randomization appears not to be trivial.

In this section, we thus address the problem of verifying the correctness of an address randomization implementation through an automated verification tool. To this end, we introduce an approach to identify issues based on a capture of the traffic generated by a device. In fact, this approach relies on rules specifying requirements for a correct implementation of address randomization.

Then, we prototype Valkyrie (Verification of Addresses LinKabilitY in address Randomization ImplemEntations), a software tool that, based on a set of rules, verifies that a given sequence of frames generated by a device does not compromise the address randomization scheme.

Finally, we evaluate this tool on a corpus of frame captures corresponding to 60 devices implementing address randomization for both BLE and Wi-Fi. As a side note, we highlight that the results are convincing as Valkyrie is able to detect the previously identified tracking issues (i.e. static identifiers and non-reset counters) in the generated wireless traffic.

III.5.1 Address randomization and its limitations

Following the appearance of wireless tracking [START_REF] Haase | BlueTrack -Imperceptible tracking of bluetooth devices[END_REF][START_REF] Liebig | Modelling Microscopic Pedestrian Mobility using Bluetooth[END_REF][START_REF] Musa | Tracking unmodified smartphones using wi-fi monitors[END_REF][START_REF] Versichele | The use of Bluetooth for analysing spatiotemporal dynamics of human movement at mass events: A case study of the Ghent Festivities[END_REF][START_REF] Abedi | Bluetooth and Wi-Fi MAC address based crowd data collection and monitoring: benefits, challenges and enhancement[END_REF][START_REF] Bonné | WiFiPi: Involuntary tracking of visitors at mass events[END_REF], address randomization has been introduced to protect privacy of users. As a reminder, the address randomization idea is to replace the link layer identifier 2 with a temporary and random one. This countermeasure denies the link layer identifier to be used as a reliable element for tracking.

In Wi-Fi, address randomization has been adopted in various OS (i.e. iOS, Android, Windows and Linux), and recently in the 802.11 standard [START_REF]IEEE Standard for Information technology -Telecommunications and information exchange between systems Local and metropolitan area networks -Specific requirements Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications Amendment 5: Preassociation Discovery[END_REF]. In Bluetooth, address Despite a large adoption of this anti-tracking measure, we previously showed that using a rotating link layer identifier is not enough to prevent tracking. More precisely, the rest of the frame may include other unique identifiers or artifacts that can be used for tracking (see Section III.3) or fingerprinting (see Section III.4) a device over address changes [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF].

For instance, a counter (i.e. Sequence Number) included in 802.11 frames was not reset upon the address change in the early randomization implementation in iOS [START_REF] Freudiger | How talkative is your mobile device? An experimental study of Wi-Fi probe requests[END_REF]. As a consequence, it was possible to link together two consecutive address fields by observing the increasing values of the Sequence Number field (see Figure III.14).

Even if the link layer identifier is correctly rotated, overlooked elements and implementation errors can then still undermine the privacy protection.

III.5.2 Privacy properties of network traffic

In this section, we discuss properties necessary to prevent tracking in face of a passive attacker.

III.5.2.1 Frame unlinkability

The objective of measures such as address randomization is to avoid an observer from tracking a device over an extended period of time. To achieve this objective, we argue that it is mandatory to prevent the attacker from linking together frames generated by a single device.
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Frame linking can be done based on their contents [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF], timings [START_REF] Matte | Defeating MAC address randomization through timing attacks[END_REF] or even their properties at the physical layer [START_REF] Dang Vo-Huu | Fingerprinting Wi-Fi devices using software defined radios[END_REF]. In this section, we only focus on the frame content as the two other approaches are less reliable [START_REF] Matte | Defeating MAC address randomization through timing attacks[END_REF] or require specialized hardware [START_REF] Dang Vo-Huu | Fingerprinting Wi-Fi devices using software defined radios[END_REF].

In the context of wireless traffic, unlinkability [START_REF] Pfitzmann | Anonymity, unlinkability, unobservability, pseudonymity, and identity management-a consolidated proposal for terminology[END_REF] of frames implies that the attacker cannot distinguish whether they are related or not. This indistinguishability can be expressed as follows:

P (f 1 ∼ f 2 ) = P (f 1 ∼ f 2 ) = 1/2 (III.2)
where f 1 ∼ f 2 means that f 1 and f 2 are related and f 1 ∼ f 2 signifies that they are not.

Let us consider that those frames are composed of n fields {h i } 1≤i≤n . Assuming that values of those in-frame fields are independent1 , unlinkability at the frame level and at the field level is equivalent:

P (f 1 ∼ f 2 ) = P (f 1 ∼ f 2) ⇔ 1≤i≤n P (f 1 .h i ∼ f 2 .h i ) = P (f 1 .h i ∼ f 2 .h i ) (III.3)
To enforce unlinkability of frames, it is thus sufficient to ensure that fields are unlinkable. In other words, if for each field h i , the value of f 1 .h i is unlinkable with f 2 .h i then f 1 and f 2 are unlinkable.

III.5.2.2 Empirical unlinkability properties

Actually, the aforementioned properties can be used as a design help, but are not suitable for an empirical verification that would be performed on a sequence of frames. Indeed, the evaluation of the probabilities will be limited by practical constraints such as the duration of the observation and the frequency of identifier rotation. Therefore, we derived properties that can be applied to a sequence of limited size.

Let us consider a device d generating a sequence of frames f i , each frame including a link layer identifier f i .addr, as well as a set of n fields {f i .h j } 1≤j≤n .

For any two consecutive frames f i 1 and f i 2 for which f i 1 .addr = f i 2 .addr (link layer identifier rotation), the fields {h j } 1≤j≤n of f i 1 and f i 2 must satisfy the following:

1. if h j is an identifier or a data field: where d m (x, y) = x -y if x > y and x + m -y otherwise, measures the distance between two values modulo m.

f i 1 .h j = f i 2 .h j 2. if h j is a counter field modulo m: d m (f i 1 .h j , f i 2 .h j ) > δ
In the following, we will employ those empirical properties to identify issues in the address randomization implementations.

III.5.3 Design and implementation

In this section, we present the design of Valkyrie (Verification of Addresses LinKabilitY in address Randomization ImplemEntations), a software tool that can verify the enforcement of privacy properties on (wireless) network traffic traces.

As inputs, Valkyrie takes a network traffic trace generated by a device as well as a set of rules to be checked. Then, it verifies those rules independently and produces a set of warning messages for each breached rule (see Figure III.15). The code is available online [START_REF] Celosia | Valkyrie -A generic framework for verifying privacy provisions in wireless networks[END_REF].

III.5.3.1 Rules syntax

To specify rules presented in Section III.5.2, we designed a custom syntax. A rule specifies the link layer field that is rotating and upon which a property must be enforced: this field is called address in our syntax. Then, the rule needs to specify the field that must satisfy the property: this field is called the target. Each rule is also associated with a type, noted type, which defines the type of property that needs to be satisfied. Currently, our tool includes two rule types: SYNC _ ID _ CHG and SYNC _ CNT _ CHG, which respectively cover the identifier/data and counter properties. Optional parameters can be appended to those rules: for instance, the distance δ in the case of the SYNC _ CNT _ CHG rule. Finally, a rule has the following form: type, address, target <, optional parameters > (III.4)

Valkyrie leverages on pyshark [START_REF] Kiminewt | PyShark -Python packet parser using wireshark's tshark[END_REF], a python wrapper for tshark (the command line version of Wireshark [START_REF] Combs | Wireshark -The world's foremost and widely-used network protocol analyzer[END_REF]), for the naming of frames and fields. As such, this means that the protocol field denomination used in the rules corresponds to the Wireshark one.

As a result, the tool can be applied to any of the Wireshark supported protocols, and even more by using dissectors which are frame parsers that can be written for any protocol. In this study, we wrote our custom dissector [START_REF] Celosia | Joker -A Wireshark dissector for Bluetooth Low Energy (BLE) advertisement packets of Apple Continuity, Microsoft CDP and Garmin proprietary protocols[END_REF] 

III.5.3.2 Verification process

Given a network trace along with a set of rules, Valkyrie verifies that those rules are satisfied. Algorithm 1 describes this process which, for each rule, is performed as follows: for each consecutive frames f 1 and f 2 having distinct address, verify that f 1 .target = f 2 .target in the case of SYNC _ ID _ CHG, and d(f 1 .target, f 2 .target) > δ in the case of SYNC _ CNT _ CHG.

To compute the distance between two values of a counter field, we consider that the counter is looping, i.e. it will go back down to zero after having reached the maximum value. Thus, the distance can be computed as presented in Section III.5.2.2.

III.5.3.3 Address reuse detection

In addition to those properties on the frame fields, Valkyrie also verifies that device addresses are not reused. More specifically, once used during a time interval, an address

Input: -Set of n rules R = {r i } 0≤i<n -Network trace T composed of frames f i Output: Boolean vector V whose element V [i] describes the satisfaction of rule r i foreach r i ∈ R do V [i] = f alse; foreach f 1 and f 2 ∈ T do if f 1 .address ! = f 2 .address then if (r i .type == SYNC _ ID _ CHG and f 1 .target ! = f 2 .target) or (r i .type == SYNC _ CNT _ CHG and d(f 1 .target, f 2 .target) > δ) then V [i] = true; end end end end Algorithm 1: Verification algorithm of Valkyrie.
should not be reused later in order not to lead a passive eavesdropper to trivially link distinct frames broadcasted by the device. To this purpose, we provided Valkyrie with a feature that is able to detect address reuse by recording addresses appearing within a trace.

III.5.4 Experimental evaluation

In this section, we perform the evaluation of Valkyrie based on wireless traffic generated by real-world devices. To this end, we focus on two prominent IoT supported wireless technologies implementing address randomization: BLE and Wi-Fi.

III.5.4.1 Tested devices

Equipped with a BLE and/or a Wi-Fi interface, the evaluation is based on a set of 60 devices that can be categorized into three types: laptop, smartwatch and smartphone. This set covers major manufacturers such as Apple, Google, Huawei, Motorola, Sony and Xiaomi.

Some smartphones are tested with different OS versions. For instance, the Apple iPhone XR has been evaluated with iOS versions 12.1.2 and 12.4.1, while Android 7.1 and 9 have been experimented with the Google Pixel XL.

Table III.9 details the full list of tested devices that constitutes a representative sample of devices used in the world. Note that, all those devices are owned by the Furious MAC research group at the United States Naval Academy [START_REF]Furious MAC is a project to understand, map, and correlate wireless hardware identifiers[END_REF] or its institutions. To be 5 <SYNC _ CNT _ CHG;bthci _ evt.bd _ addr;apple _ handoff.iv> transparent, this signifies that the corpus of traffic traces over which we tested Valkyrie was constituted by this research group prior to be graciously shared with us.

III.5.4.2 Traffic capture protocol

For each device, a traffic capture was obtained by isolating the device in a Faraday cage 1 and was then stored in the pcap format. This rules out the possibility that devices were connected to another device or an access point. As a consequence, they only generated discovery traffic: advertisement packets for BLE and probe requests for Wi-Fi. Moreover, during captures, devices were left untouched with their wireless interface (i.e. BLE or Wi-Fi) enabled. Note that, each capture lasts 20 minutes or gathers 200 frames, whichever is first.

III.5.4.3 Rules specifications

The verification process is based on a set of rules. Leveraging the language designed in Section III.5.3.1, Table III.8 specifies five rules corresponding to the five main issues affecting address randomization according to the literature (see Section III.5.1).

The three first rules cover issues related to identifiers in the frame body such as the WPS UUID field in Wi-Fi ( 1 ), and the Auth Tag and Device Hash respectively found in Apple Nearby Info ( 2 ) and Microsoft CDP ( 3 ) BLE messages. The last two rules cover predictable counter fields, namely the Sequence Number in Wi-Fi ( 4 ) and the IV in Apple Handoff BLE messages ( 5 ).

1. A Faraday cage is an enclosure used to block the entry or escape of an electromagnetic field. In our study, it has been leveraged to prevent external radio signals from being added to the traffic captured from the benched device.

III.5.4.4 Results

For each capture, we ran Valkyrie loaded with the rules set corresponding to the wireless technology: rules 1 and 4 for Wi-Fi, and 2 , 3 and 5 for BLE. For each rule, Table III.9 gathers raised issues. Note that, an issue is raised if the rule is unsatisfied at least once.

A first observation is that all devices are affected by at least one issue, and that more than 73% are affected by two or more.

In Wi-Fi, the most prevalent issue is the non-reset Sequence Number [START_REF] Celosia | Valkyrie: A Generic Framework for Verifying Privacy Provisions in Wireless Networks[END_REF], which affects 98.3% of devices. The results on smartphones experimented with different versions of their OS such as Apple iPhone 5S and Google Pixel XL show that software updates hampered tracking based on this Sequence Number.

However, although this issue was supposed to be corrected in version 8 of Android [START_REF] Hogben | Changes to Device Identifiers in Android O[END_REF], some devices running this OS version such as Huawei P20 Lite and Sony Xperia XZ1 are still affected. In [START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF], Martin et al. already identified this address randomization misimplementation that seems to be related to the manufacturer. Finally, 8.3% of tested devices are prone to the static WPS UUID issue ( 1 ).

In BLE, all Apple devices except the Apple MacBook Pro laptop match with corresponding rules 2 and 5 . In fact, the Apple MacBook Pro is not affected by rule 2 as it does not contain any Auth Tag in its emitted Apple Nearby Info BLE messages.

Similarly, rule 3 is only raising an issue with the Dell G3 laptop broadcasting Microsoft CDP frames, which is the only device running Windows. As a result, Valkyrie verified the expected non-reset counter and static identifier concerns in which all Apple and Microsoft benched BLE devices expose their owners to tracking.

Lastly, Valkyrie detected that 45% of devices reuse random device addresses, especially smartphones of manufacturers Apple, ASUS, Blackberry, HTC, Huawei, LG, Motorola, Sony, Xiaomi and ZTE (see Table III.9). De facto, it is unclear why a device reuses an address. The possible explanations include: poor PRNGs used for address generation or a switch to a static address of the device.

Note that, given the limited length (i.e. 20 minutes) of the capture, results may include false negatives: some devices might be breaking one of the rules, but the capture was not long enough to catch this behavior. For instance, the Sequence Number issue ( 4 ) was not found in the capture from the Apple iPhone 5S running iOS 11.2.1, while it appears not to have been fixed until iOS 13.1 at least. To put in a nutshell, the evaluation demonstrates that the current implementation of Valkyrie is usable and allows to detect most privacy-threatening behaviors such as static identifiers and non-reset counters. Furthermore, the proposed rule specification language was flexible enough to express associated requirements.

III.6 Conclusion

To conclude, this chapter aimed to demonstrate how passive and active attackers can track users leveraging advertising data and metadata broadcasted by their carried BLE devices.

Overall, the detailed contributions complement previous works [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF][START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF][START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF] that revealed the difficulties in the implementation of the device address randomization.

First, we analyzed the privacy provisions and issues in current implementations of the BLE advertising mechanism. In particular, even if address randomization is widely adopted by vendors, we discovered that a number of devices still use Stable addresses, thus exposing their owners to tracking. Furthermore, we found that some devices exceed the recommended maximum duration of the random addresses.

Despite the use of a random device address, we also identified that the content of the advertisement packets can be used to track users. Indeed, the address randomization scheme can be rendered useless by static identifiers and non-reset counters included by some devices in their advertising data. Especially, we showed that custom data embedded in proximity protocols of Apple, Microsoft and Google can be leveraged to defeat the address randomization.

Note that, on April 5 th , 2019, we informed the manufacturers 1 of the identified privacy issues. However, as of July 7 th , 2020, none 2 of those issues have been addressed.

Actually, a part of the presented issues are the results of manufacturers that do not follow the Bluetooth Core Specification. For instance, the inclusion of the LE Bluetooth Device Address AD structure in advertising data is against the specifications.

Nevertheless, most issues are the results of practices that are not forbidden by the specifications (e.g. using a custom UUID that includes a device address is compliant with the specifications). Similarly, there are no instructions about the nature of the information that can be carried by the Manufacturer Specific Data and Service Data-16-bit UUID AD structures. With regard to the privacy implications, the Bluetooth Core Specification does not provide any guidelines about the content of the advertising payload.

1. Notifications have been sent to: Apple, Arcadyan, Boosted Boards, Google, LG Innotek, Microsoft, Nokia/Withings, Samsung, Sony and Xiaomi.

2. As far as we know.

Second, for the sake of transparency, we considered that it is necessary to show the general public how physical tracking can stem from wireless technologies. As a consequence, we introduced Venom, a Visual and ExperimeNtal BluetOoth Low Energy tracking systeM that aims to 1) raise user awareness about radio based physical tracking technologies and 2) experiment privacy-preserving mechanisms. As opposed to Wombat [START_REF] Matte | Wombat: An experimental wi-fi tracking system[END_REF], its counterpart applied to the Wi-Fi technology, Venom leverages a wireless infrastructure to track users through their BLE enabled devices.

To outline the fundamentals, we described the architecture of this system before to present how it can be leveraged for demonstrational purposes. Thereafter, we explained how Venom can be used to deploy and test privacy-enhancing features. To this end, we described a primitive and easy-to-use BLE based opt-out mechanism allowing users to express their dissent to the tracking.

Beyond public awareness, the objective of Venom is to support that it is imperative to complement the Bluetooth Core Specification with additional requirements that will cover privacy issues on the BLE protocol, and especially on the advertising mechanism.

Third, we studied data exposed within GATT profiles of BLE devices. Particularly, we demonstrated that the content of a GATT profile can be leveraged to fingerprint a device. In fact, identifiers and values composing this profile are diverse enough to act as a fingerprint. Even if it features anti-tracking mechanisms such as the device address randomization, this fingerprint can be then used to track a device.

To the best of our knowledge, there is no indication that those fingerprinting techniques are currently exploited in the wild. In the web ecosystem, introduction of anti-tracking techniques has triggered [START_REF] Nikiforakis | Cookieless monster: Exploring the ecosystem of web-based device fingerprinting[END_REF] the deployment of fingerprinting techniques by web trackers.

The recent adoption of address randomization in wireless technologies [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF] can trigger a similar move by the industry of physical tracking. Once more, taking this threat into account by reviewing and complementing the Bluetooth Core Specification with additional requirements is needed.

Lastly, we presented the first attempt at automatically verifying the correctness of address randomization implementation. To this purpose, we discussed requirements for protecting users against tracking, and derived a list of properties leveraging works done by the community.

Afterwards, we prototyped Valkyrie (Verification of Addresses LinKabilitY in address Randomization ImplemEntations), a versatile tool able to verify properties written in a Wireshark based language. Based on the previously identified issues within address randomization implementation (i.e. static identifiers and non-reset counters), we showed that properties associated with such issues can be expressed using this language. Relying on a representative set of BLE and Wi-Fi enabled devices, we evaluated the proposed tool demonstrating that Valkyrie was able to detect issues in the generated wireless traffic.

As such, the developed approach can be applied by vendors to verify that privacy properties are enforced by their devices. In addition, it can be included as a part of a certification process to verify that some devices are meeting privacy requirements. Finally, provided that it is supported by Wireshark or that a dissector exists, we point out that this approach can be adapted to any protocol.

Chapter IV Inferring users information from Bluetooth/BLE wireless communications

This chapter demonstrates how passive and active eavesdroppers can exploit wireless communications of Bluetooth/BLE enabled devices to infer information on their corresponding users. To begin, the adoption of the Bluetooth/BLE technology along with its privacy implications are introduced in Section IV.1. Thereafter, Section IV.2 details the threat model that is considered throughout this chapter. Users sensitive information such as personal characteristics and medical conditions that can leak from passive observations of the BLE advertisement traffic are described in Section IV.3. Section IV.4 shows that data exposed within GATT profiles can be actively mined to infer a plethora of users information too, while the activity inference through a Bluetooth based timing attack is analyzed in Section IV.4.3. Section IV.5 presents Himiko, a Human Interface for Monitoring and Inferring Knowledge on Bluetooth Low Energy Objects. With regard to the reported privacy vulnerabilities, a set of recommendations that could be addressed by manufacturers as well as the Bluetooth SIG is provided in Section IV.6. To finish, Section IV.7 concludes this chapter.

Corresponding contributions : [8, 7, 6, 9]

IV.1 Introduction

Bluetooth is a 2.4 GHz ISM radio communication standard developed by the Bluetooth SIG to exchange data over a short range 1 . Jointly released with the Bluetooth version IV.1. Introduction 77 4.0 [START_REF]Bluetooth Core Specification v4.0[END_REF], BLE brings several improvements including a lower power consumption at the cost of a reduced bandwidth.

As a result, BLE has been adopted for most battery-powered devices such as smartphones, smartwatches, fitness wristbands, headphones, etc. According to the Bluetooth SIG, more than four billion devices supporting Bluetooth/BLE have been shipped in 2019 [168]. Therefore, Bluetooth is becoming a key element in daily lives where users are likely to leave their Bluetooth interfaces enabled most of the time.

Because of its massive adoption, Bluetooth has been subject to various attacks aiming to compromise security and, more particularly, privacy of users. For instance, Bluetooth has been exploited to track location of users [START_REF] Wong | Location privacy in bluetooth[END_REF][START_REF] Gruteser | Enhancing location privacy in wireless LAN through disposable interface identifiers: a quantitative analysis[END_REF][START_REF] Issoufaly | BLEB: Bluetooth Low Energy Botnet for large scale individual tracking[END_REF], infer their physical activities [START_REF] Aveek K Das | Uncovering privacy leakage in ble network traffic of wearable fitness trackers[END_REF] and even profile them through inventory attacks [START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF].

To prevent those threats, privacy-preserving features have been integrated into the Bluetooth Core Specification. LE Privacy [38, Vol 3, Part C, sec. 10.7], the most important feature, defines the use of temporary link layer identifiers that substitute the device address with random temporary pseudonyms. However, despite those improvements, it has been shown [START_REF] Aveek K Das | Uncovering privacy leakage in ble network traffic of wearable fitness trackers[END_REF][START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF] that some information can still leak from Bluetooth/BLE devices.

In this chapter, we disclose privacy leaks that stem from activity inference and inventory attacks. To this purpose, we rely on the two datasetsdataset P assive and dataset Activepreviously used in Chapter III. Constituted of real-world observations of advertisement packets and GATT profiles collected over a period of five months, we remind that those datasets are respectively associated with more than 53500 and 13200 different device addresses (see Table III.2).

First, we introduce our threat model that considers the case of Bluetooth/BLE devices announcing themselves by broadcasting advertisement packets, and including privacy issues in their exposed data. To pursue, we assume an attacker that can be both passive (i.e. he only scans for observable data, hiding its presence on the wireless channel) and active (i.e. he can exchange Bluetooth frames with its target). Moreover, we limit the presented attacks solely to the inference of users information. As users profiling results from the gathering then correlation of multiple inferred information, this process is thus not considered.

Second, as collection of information on users in the physical world is a growing trend, companies can leverage the opportunities offered by wireless devices to track and profile users. Leveraging dataset P assive , we support this statement identifying several elements that can be used to infer information about the owner of a BLE enabled device. In particular, we show that advertisement packets include data that can reveal the manufacturer, model and type of the device as well as names of users, exposing them to inventory attacks and inference of sensitive attributes. For instance, some medical devices are broadcasting their types (e.g. hearing aid, glucometer, insulin pen, etc.) trivially betraying a medical condition of their corresponding owners.
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Third, leveraging dataset Active , we begin by highlighting that data included in GATT profiles can be mostly read without authentication. As a reminder, a GATT profile is a structure containing services and characteristics supported by the BLE device, and that has the possibility to deny reading of data to unauthenticated devices leveraging access control properties (see Section I.2.2.4). From this observation, we shed light on several issues where such profiles can be mined to infer sensitive information such as personal characteristics impacting privacy of users. Note that, we draw the attention to the fact that a part of those information can be inferred from advertisement packets found within dataset P assive too. Indeed, the content of the advertisement packets can be assimilated as a brief summary of the information exposed in corresponding GATT profiles. As such, this means that advertisement packets and GATT profiles share elements such as device names and service UUIDs on which we based our observations to infer users information.

During this study, we also discover that manufacturers such as LG can divert the use of Bluetooth SIG defined characteristics for other purposes, raising serious privacy issues at the same time. Overall, results of this work point out that provisions of the LE Privacy alone are not enough to guarantee privacy of users.

Fourth, we consider a scenario in which the attacker is interested in learning information on the activity of a remote Bluetooth enabled device. In practice, a part of the Bluetooth operations are handled by the operating system and are relying on resources shared with the rest of the system. The speed at which the Bluetooth tasks are handled is thus affected by the overall load of the system. Based on this idea, we demonstrate an active attack that allows a remote attacker to infer information on state changes by leveraging the Bluetooth connectivity of the targeted device. To this purpose, this attack relies on a request-response mechanism (ping) provided by the L2CAP layer of the Bluetooth. By flooding the target with requests while recording the round-trip time (RTT), the attacker can analyze the timing information to detect device state changes. To gather additional information about the user, those state changes could be further correlated with other sources of information (e.g. visual observations).

Last but not least, to both raise awareness about the privacy issues that the BLE advertising mechanism can involve and alert on the need to complement privacy considerations of the Bluetooth Core Specification, we implement Himiko (Human Interface for Monitoring and Inferring Knowledge on Bluetooth Low Energy Objects). In fact, this tool aims to expose the information that an eavesdropper can infer by leveraging the content of advertisement packets and GATT profiles of BLE enabled devices. The advertising raw data are collected and processed from devices that have their Bluetooth interface enabled. Afterwards, the user is shown the information that are leaking from his device.

Finally, we suggest a set of solutions to mitigate reported privacy vulnerabilities. In this regard, we discuss countermeasures that could be implemented by manufacturers, and focus on improvements of the Bluetooth Core Specification to strengthen discovery procedures of GATT profiles.

IV.2. Threat model
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IV.2 Threat model

A wide variety of sensors can be found in consumer IoT devices. Depending on the type of device and its field of application, emitted data can be exploited by eavesdroppers to infer information about activities (e.g. running, sleeping, cooking, etc.) but also attributes (e.g. deafness, heart disease, music lover, etc.) of individuals. As a consequence, wireless communications from IoT devices can raise privacy concerns.

In particular, this is the case of inference attacks such as activity inference and inventory attack (see Section II.4) that can leverage data mining techniques to analyze data broadcasted by IoT devices and infer personal information on their corresponding owners. Actually, the main objective of such inference attacks is to piece together technical information such as the type and manufacturer of a device in order to determine a more sensitive information. For instance, a connected glucometer can betray a diabetic user, while someone carrying a Nintendo device is likely a gamer.

In this chapter, we study wireless communications from Bluetooth/BLE enabled devices, and especially privacy issues included in their advertising data and patterns.

To this end, we consider an external attacker which continuously monitors the advertising traffic on Bluetooth/BLE channels. Depending on the triggered attack, we assume that this attacker can be either passive or active. In some cases, this means that interactions with remote devices are considered (see Section IV.4). However, we point out that the attacker never interacts with the wireless channel through injection or jamming.

As such, the attacker is then able to 1) capture the advertisement packets broadcasted by nearby BLE enabled devices and 2) exchange Bluetooth frames with its target. Note that, those assumptions can be satisfied using off-the-shelf hardware and open-source software. As described in Section III.2.1, a 10$ CSR v4.0 Bluetooth USB dongle along with Bluetooth tools featured GNU/Linux distribution is enough to meet those requirements.

Concerning the content of the BLE wireless communications, advertising payloads are assumed to be in clear, encrypted or both 1 . Therefore, the attacker can sometimes have access to cleartext information such as a blood sugar level and pressure respectively broadcasted from a glucometer and a blood pressure sensor, for instance.

Nevertheless, we assume that the device used by the attacker has not been previously paired with any Peripheral: it cannot authenticate itself and access protected values of characteristics. Note that, available in clear, packet header information and traffic metadata such as speed rate and periodicity of data emissions are also part of our studies.

On the victim side, we only make the assumptions that his device has its Bluetooth interface turned on and is in communication range. It is important to mention that the IV.3. Passive information inference based on advertising data 80 short range of commodity Bluetooth interfaces can be a limitation to the impact of the attacks exposed in this chapter. Nonetheless, this range can be significantly extended 1 with the help of custom hardware solutions [START_REF] Hering | The BlueSniper 'rifle'. 12th DEFCON[END_REF][START_REF] Laurie | Bluetooone[END_REF].

Definitely, the goal of our modeled attacker is to identify and classify signals of Bluetooth/BLE enabled devices. More specifically, leveraging observations on the advertising data and metadata, a successful attack is defined as the attacker being able to infer sensitive information that can disclose ongoing activities and/or user related characteristics such as his interests, his character traits and his medical condition.

Finally, attacks described in this chapter can constitute a first step toward more elaborated attacks. Indeed, combined with another source of information, they can be leveraged to further identify a user. As an example, the detected state changes of a device can be combined with visual observations of a set of smartphone users [START_REF] Le T Nguyen | IdentityLink: userdevice linking through visual and RF-signal cues[END_REF]. The attacker can then correlate observable actions (e.g. smartphone in pocket, smartphone in use, etc.) to establish a link between a physical entity (i.e. a user) and a network identifier (i.e. a BD_ADDR).

Note that, being able to identify and recognize users through their broadcasted data can constitute a basis for profiling [START_REF] Henrik Ziegeldorf | Privacy in the Internet of Things: threats and challenges[END_REF]. However, user profiling is an advanced privacy threat that we will not deal with in this thesis. In fact, only users information that can be directly inferred from the observations of advertising data and metadata are studied.

IV.3 Passive information inference based on advertising data

In this section, we study privacy threats stemming from the BLE advertising mechanism, leveraging dataset P assive (see Section III.2). To this purpose, we demonstrate how some elements of advertising data can be exploited to infer information on manufacturers prior to show how some others can be mined to identify the type of device, exposing the owner to inventory attacks.

IV.3.1 Inferring information on manufacturers

In this section, we detail how data carried by advertisement packets found within dataset P assive can leak information on manufacturers. As a reminder, dataset P assive has been collected over five months, contains about eight million records and includes more than 53500 distinct BD_ADDR (see Section III.2). Moreover, since some of those BD_ADDR are random pseudonyms, the number of actual devices is expected to be smaller than the number of distinct device addresses.

1. From a hundred meters to a mile. First, we can observe the prevalence of Samsung and Apple, two companies producing electronic devices such as smartphones and tablets. Bose, a known company for its high quality headsets, comes third with 13.6% of Public addresses of dataset P assive . Then, OUI such as TexasIns and SuuntoOy respectively betray manufacturers of chipsets and fitness trackers.

Also, we note the presence of Google with 1.82% of Public addresses. Leveraging device names broadcasted by such items, we found they are mostly Google Chromecast (see Section III.3.4.2.3). In addition, even though they are not made to be carried by users over time, we show that they can be leveraged to determine identities of their owners as they can be customized to embed first names and last names in their advertising data (see Section IV.3.2.3).

As a side note, because they configure their products to use Public addresses, we point out the fact that all those companies are trivially exposing their customers to physical tracking.

IV.3.1.2 Company Identifiers

Company Identifiers (IDs) are 16-bit numbers assigned by the Bluetooth SIG to companies [START_REF]Company Identifiers -Assigned Numbers[END_REF]. Actually, such identifiers are included in the Manufacturer Specific Data AD structure that is dedicated to carry custom data of manufacturers. As such, the presence of a company ID suggests that the device is manufactured by this company. However, it may not always be the case as third party manufacturers may use company IDs to enable compatibility with the feature.
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As an example, leveraging our laboratory hardware, we discovered that Chipolo keyrings advertise the Apple company ID (0x004c) followed by the format of the Apple iBeacon Manufacturer Specific Data AD structure for localization purposes. In dataset P assive , we also found that Fossil Q Venture smartwatches broadcast data related to the Google company ID (0x00e0) suggesting that Fossil uses a protocol of Google to be compatible with Android smartphones.

To push the study further, we computed the distribution of company IDs assigned by the Bluetooth SIG among registered OUI of Public addresses. From our experimental results (see Table IV.1), we can observe that manufacturers such as Logitech and Bose do not seem to include the company IDs corresponding to their OUI, unlike Samsung and Apple, the two predominant manufacturers in dataset P assive . Thus, for a number of companies, the company ID found within advertising data can be an indicator of the manufacturer.

In 

IV.3.2 Inferring information on devices and their owners

BLE advertising data include information that can cause privacy threats beyond physical tracking. Indeed, we discovered that the characteristics of a device such as its manufacturer, model or type can be inferred. In the context of inventory attacks and profiling [START_REF] Greenstein | Can Ferris Bueller Still Have His Day Off? Protecting Privacy in the Wireless Era[END_REF], those elements of information can become a privacy threat where an attacker will try to infer information based on advertising data broadcasted by the device carried by the user. For instance, a medical device can reveal a medical condition, and profiling individuals based on their devices is a direction taken by some companies [START_REF] Zomet | Privacy-aware personalized content for the smart home[END_REF].

In this section, we present a review of the information that can be inferred from advertising data. Our findings are summarized in Table IV.2.
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IV.3.2.1 Device model and manufacturer

Model and manufacturer of BLE enabled devices are information that can be inferred from multiple advertising data elements.

Public BD_ADDR: The Public device address is an identifier that can be exposed in the AdvA field of the advertising payload (see Section I.2.2.3.2) but also in other AD structures (see Section III.3.4.1). In fact, such an identifier can be leveraged to determine the device manufacturer because, as a MAC address [38, Vol 2, Part B, sec. 1.2], its 24 MSB part corresponds to the OUI of the manufacturer. Furthermore, since MAC addresses are typically allocated by batch, a Public address can be used to identify the device model. This approach has been demonstrated with Wi-Fi MAC addresses [START_REF] Martin | Decomposition of MAC address structure for granular device inference[END_REF] and can be reproduced with BLE Public BD_ADDR. In addition, as shown in Section III.3.3.2, some Random Static addresses appear to be allocated by range as well. In those cases, the device model can be also inferred from the Random Static address.

Device names: As human friendly descriptors, the Complete Local Name and Shortened Local Name [146, Part A, sec. 1.2] AD structures often include identifiers of manufacturers and models of devices. As opposed to Public device addresses, there is no standardized nomenclature of the manufacturer. However, device names carried by those two AD structures are a rich source of information that can be correlated with online marketplaces such as Google Shopping [START_REF] Google | Google Shopping: Buy on Google | Get good deals from your merchants[END_REF] and Amazon [174] to deduce the manufacturer.

For instance, we identified that devices including patterns such as LE-Bose and Jabra in their device names are respectively Bose and Jabra manufactured headsets (see Table C.1 in Appendix C for an extended list of discovered patterns of device names). Moreover, we found that devices such as Garmin fitness trackers and Bang&Olufsen headphones include the name of their models in their device names.

Company IDs and service UUIDs: Advertising data can include several identifiers tight to companies. In particular, this is the case of company IDs that are included in the Manufacturer Specific Data AD structure. Like company IDs, members UUIDs are 16-bit identifiers published by the Bluetooth SIG [START_REF]16 Bit UUIDs for Members -Assigned Numbers[END_REF]. Such members UUIDs can be included in the Service Data-16-bit UUID and Complete List of 16-bit Service Class UUIDs AD structures. In fact, the presence of those indicators suggests that the device features a service that has been designed by the corresponding company. Furthermore, some companies can design their own 16-bit UUIDs. Although not publicly available, this information can be obtained by analyzing the advertisement traffic generated by the devices. Similarly, 128-bit service UUIDs can be generated by manufacturers and can be leveraged as well. For instance, the adab09ad-6e7d-4601-bda2-bffaa68956ba custom 128-bit service UUID broadcasted by Fitbit fitness trackers is associated with the Fitbit manufacturer (see Table C For the sake of compatibility, it is possible that a service is implemented by other companies than the one that has designed it. Nonetheless, in practice, we witness that those identifiers are generally included by devices of the associated manufacturer (see Section IV.3.1.2). Thus, company IDs and members UUIDs can be indicators of the company that has produced the device.

From dataset P assive , we computed that more than 78% of Stable and 95% of Private addresses are associated with at least one company identifier (i.e. company ID or members UUID) in the advertising payload, indicating that the manufacturer can be identified.

Manufacturer Specific Data: In addition to the company ID, data embedded in the Manufacturer Specific Data AD structure can include fields indicating the model of the device. Indeed, this is the case of Garmin (company ID 0x0087), for which the 16 MSB of data disclose the model of the device: 0x0657 and 0x0802 respectively indicate a Garmin Forerunner 620 and a Garmin Fenix 3 fitness smartwatch.

IV.3.2.2 Device type

As for the model and manufacturer, the type of a device is an information that can be determined mining the advertising data.

Public BD_ADDR: From previous observations, the manufacturer of a device can be derived from its Public BD_ADDR. Nevertheless, when this manufacturer is focused on a single class of products, it becomes possible to infer the type of the device from the Public address. For instance, OUI associated with Nintendo and OculusVR respectively reveal a video game platform and a virtual reality headset.

Company IDs: Carried by the Manufacturer Specific Data AD structure, company IDs can also constitute a source of information for the identification of the device type. Leveraging the core business of a manufacturer, we found that company IDs such as 0x02f2, 0x0321 and 0x036d respectively betray GoPro cameras, Jewelbots smart wristbands and AirBolt smartlocks.

Service UUIDs: Service UUIDs are processed by BLE enabled devices to discover services offered by nearby Peripherals before to establish a connection. In fact, some service UUIDs assigned by the Bluetooth SIG reveal particular characteristics of a device that can lead to the inference of its type. As an example, looking at the online Bluetooth SIG database of 16-bit service UUIDs [START_REF]GATT Specifications -GATT Services[END_REF], we can infer that devices which broadcast the Running Speed and Cadence service UUID (0x1814) are likely fitness trackers, while those that advertise the Insulin Delivery service UUID (0x183a) are healthcare devices.

Moreover, as mentioned in Section IV.3.2.1, a custom 128-bit service UUID can disclose attributes of a device such as its manufacturer and its model that can lead to an implicit identification of its type. For instance, the aa745be2-9025-4bf2-a318-91f3dba2999f 128-bit service UUID is associated with Garmin Nuvi GPS, while 0000de00-3dd4-4255-8d62-6dc7b9bd5561 is advertised by Nikon cameras.

Nonetheless, even though those service UUIDs are customized by the manufacturers, we discovered that some of them are hardcoded in open-source specifications and codes. This is particularly the case with the Google hearing aid specifications [START_REF]Hearing Aid Audio Support Using Bluetooth LE[END_REF] and the Sony SmartBand SWR-10 open API [START_REF] Barriga | Open API of Sony SmartBand SWR-10[END_REF]. As a consequence, such online resources can be leveraged as well to identify the type of a device.

Manufacturer Specific Data: In addition to disclose the model of the device (see Section IV.3.2.1), the Manufacturer Specific Data AD structure can embed data that betray the type of the device. Actually, we found that the Microsoft CDP protocol includes a Device Type field (see Figure III.8) that provides information on the nature of the device. As a consequence, when the value of this field is filled accordingly to the Microsoft CDP specifications [148, sec. 2.2.2.2.3], we can infer the type of the advertising device by lookup in the specifications: Xbox One (0x01), Windows 10 Desktop (0x09), Windows 10 Phone (0x0b), etc. Analogously, we observed that Apple Continuity protocols can leak the device type (and model) through the Manufacturer Specific Data AD structure (see Section V.5). The level of information provided by values of those AD structures can be general (e.g. tag, clock, etc.) but also precise. For instance, the Appearance code 0x00c1 disclose a sport watch, while the Class of Device code 0x022808 indicates a toy vehicle. More worrisome, certain codes indicate specific medical devices: Appearance codes such as 0x0d00 and 0x0d48 respectively betray a glucose monitor and an insulin pen, while the Class of Device code 0x022930 denotes a knee prosthesis.

According to the Bluetooth Core Specification [146, Part A, sec. 1], the Appearance AD structure is not considered as sensitive and can be included in advertisement packets. On the contrary, no such specification can be found for the Class of Device AD structure, leaving the freedom of decision to manufacturers to include such a structure in their advertisement packets.

In dataset P assive , we found that more than 5.3% of Public and 13.3% of Random Static addresses include either an Appearance or a Class of Device AD structure in their advertising data (see Table D.1 in Appendix D). In addition, for Private addresses, only 0.01% of Random Resolvable BD_ADDR broadcast data carried by the Appearance AD structure, while the Class of Device type is not advertised.
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Among the most common appearances and class of devices, we found that devices such as Tile iTag keyrings, Giant RideSense cycling sensors and Diggro ID10x heart rate belts explicitly advertise their external appearances allowing a passive eavesdropper to infer the type of the device based on those information.

IV.3.2.3 Identity of the owner

The Complete Local Name and Shortened Local Name AD structures carry a textual description of the device that can be often customized by users. As a result, a number of those device names include the identity of the owner under the form of a full name, a first name, a last name or a nick name.

For instance, we found that Bose headsets and Apple smartphones broadcast such device names that include the name of the owner: LE-Bose Alice and Bob's iPhone. As those devices can be visually identifiable, a passive observer can then correlate information mined from the device name with visual observations to identify the individual. To make the matter worst, this privacy threat can be further extended leveraging online social networks such as Facebook [178], Instagram [179] and Twitter [180] where such devices names can leak the physical identity of the owner.

During our dataset anonymization process (see Section III.2.3), we identified and subsequently anonymized a total of 10.9% of the 1300 distinct device names advertised from 0.4% of the addresses of dataset P assive .

IV.4 Active information inference

As part of the ATT protocol, discoverable BLE enabled devices expose a data structure called GATT profile describing supported features through concepts of services and characteristics (see Section I.2.2.4). Actually, this profile can be accessed by any active eavesdroppers in range and can expose users to privacy issues.

In this section, leveraging dataset Active , we first shed light on several issues where such GATT profiles can be mined to infer sensitive information that can impact the privacy of users.

In a second time, we demonstrate how a Bluetooth harmless inherent request-response mechanism can have privacy implications. More specifically, we introduce a timing attack that can be triggered by an active attacker in order to infer the activity of a remote device. 

IV.4.1 Observations on the dataset

As a reminder, our study is based on dataset Active which is constituted of BLE GATT profiles from 13295 distinct Bluetooth device addresses collected over five months (see Section III.2).

Note that, dataset Active was divided into two parts depending on the nature of the address used by devices (i.e. Stable or Private). In fact, devices using Private addresses can be observed several times under a different pseudonym. Therefore, in the Private part of dataset Active , the number of actual devices is expected to be smaller than the reported number of distinct device addresses.

IV.4.1.1 Services and characteristics

Table IV.3 presents the distribution of the top 10 services and characteristics found within dataset Active .

First, we can observe that Generic Access and Generic Attribute are the two most included services with respectively 99.01% and 97.34% of GATT profiles. In fact, those services contain generic information about the device such as its name and its appearance that are carried by the Device Name and Appearance characteristics.

Afterwards, we witness custom services of manufacturers such as Finally, the Battery Level, Current Time, Body Sensor Location and Sensor Location are four characteristics that are only readable within GATT profiles of devices using Stable addresses. As for the PnP ID characteristic, this is likely due to privacy preserving choices as they can be useful material to defeat the anti-tracking feature [START_REF] Olejnik | The leaking battery[END_REF][START_REF] Le T Nguyen | IdentityLink: userdevice linking through visual and RF-signal cues[END_REF].

IV.4.2 Inferring information from GATT profiles

In this section, we present a number of elements found in GATT profiles that can be used to infer potentially sensitive information on the device and its corresponding user.
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In particular, often readable without authentication (see Table IV.4), we found that the value of characteristics is a rich source of information.

To summarize our findings, we identified that information included in GATT profiles can be used to infer the device type, model, manufacturer, software version and the name of the user.

De facto, all those information can threaten the privacy of the device owner. Indeed, information on the device model can lead to inventory attacks [START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF], and the name of the user can reveal the identity of the owner (see Section IV.3.2.3). Furthermore, we found that the value of some characteristics can hold identifiers, which can be leveraged for tracking despite the device address randomization. Leveraging dataset Active , we found that the format of this identifier is often specific to a vendor and thus can be leveraged to infer the manufacturer. As an example, Ultimate Ears and Bose respectively code their serial numbers following the "ˆ1...LZ0....800$" and "ˆ07....[Z,P][6,7,8]" regular expressions.
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System identifiers: The value of the System ID characteristic is a 64-bit structure which consists of a 40-bit manufacturer-defined identifier concatenated to a 24-bit OUI. By definition, the OUI is issued by the IEEE Registration Authority to companies and, as a consequence, can reveal the manufacturer. For instance, manufacturers such as Xiaomi and Amazfit include their OUI within the value of their System ID characteristic.

PnP identifiers: The PnP ID characteristic carries a set of values that are used to create a unique identifier for the device. Included in this characteristic is a Vendor ID Source, a Vendor ID, a Product ID and a Product Version field. The Vendor ID Source specifies the type of the Vendor ID value: a company identifier assigned by the Bluetooth SIG [START_REF]Company Identifiers -Assigned Numbers[END_REF] or a value assigned by the USB Implementers Forum [START_REF]Membership Lookup & List[END_REF]. From our observations, manufacturers such as Gigaset (company ID 0x0180) and Freebox (USB ID 0x10eb) include an identifiable PnP ID in their GATT profiles.

Therefore, the PnP ID can reveal the manufacturer but also the device model and software version. For instance, Product ID of Fitbit Surge and Fitbit Charge are respectively 0x0010 and 0x0013, while the Product Version of the Bose SoundSport Free earphones is 0x0132 and corresponds to the value carried by its Software Revision String (i.e.

1.3.2).

Version identifiers: The Software Revision String, Hardware Revision String and Firmware Revision String characteristics include a UTF-8 string that respectively represents the version of the software, the hardware and the firmware of the device. To illustrate, we observed that devices of Polar and Xiaomi manufacturers include the Firmware Revision String characteristic disclosing their firmware versions.

Also, in addition to the tracking issues that those version identifiers can raise 1 , they can be leveraged by eavesdroppers to gain knowledge on the OS of the targeted device prior to trigger an attack.

IV.4.2.3 Enumerated type values

Some characteristics are associated with enumerated values whose meanings are specified by the GATT specifications [START_REF]GATT Specifications[END_REF].

Appearances: The Appearance characteristic represents information about the external appearance of the device. Readable in more than 99% of GATT profiles, such a characteristic can provide a broad description of the device as well as a more specific one.

As an example, appearance values of Apple TV and Garmin Forerunner 230 devices are respectively Generic Media Player and Watch: Sports Watch.

Moreover, as reported in Section IV.3.2.2, certain appearances indicate specific medical 1. Because they are related to the device hardware, hardware revision strings are supposed to be more stable identifiers than the software and firmware revision ones. Chain Ring devices such as an Insulin Pen that can trivially betray a medical condition of the owner.
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Sensor locations: The Body Sensor Location and Sensor Location characteristics are indicating the position of the device on the user. As such, they provide clues to infer the type of device. Indeed, the presence of one of those characteristics indicates that the device is a sensor, and its value can further specify the type of sensor (see Table IV.5 and Table IV.6 for respectively a list of Body Sensor Location and Sensor Location values). Leveraging dataset Active , we observed that manufacturers such as Suunto, Geonaute and Mio Global reveal the location of the device on its owner this way.

IV.4.2.4 Measurement values

Frequently standardized and expressed as the product of numerical value and unit, the measurement value is the value given by a measuring instrument or device. As such, it can thus reveal the current state of a device.
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During our study, we discovered that Mio Global Alpha 2 smartwatches expose a readable value within their Running Speed and Cadence Measurement characteristic revealing the physical activity of the user (i.e. walking or running). As a result, such a characteristic can constitute an additional source of information that can be exploited to profile or physically identify a user [START_REF] Aveek K Das | Uncovering privacy leakage in ble network traffic of wearable fitness trackers[END_REF].

IV.4.2.5 Names of services and characteristics

Beyond values carried by characteristics, names of services and characteristics can be leveraged as an indicator to reveal both the device type and manufacturer. For instance, the Cycling Speed and Cadence Feature characteristic will be only included in cycle devices, while the presence of the Running Speed and Cadence Measurement characteristic denotes running sensors.

In addition, we found that UUIDs of attributes exposed within GATT profiles can be customized by manufacturers. Leveraging online specifications and codes such as the Apple Notification Center Service (NCS) [185] and Xiaomi Mi Band 2 [START_REF] Nikishaev | MiBand2 -Library to work with Xiaomi MiBand 2[END_REF] ones, it becomes possible to uncover meanings of custom UUIDs, disclosing the corresponding manufacturer at the same time. As an example, the 7905f431-b5ce-4e99-a40f-4b1e122d00d0 and 00000006-0000-3512-2118-0009af100700 UUIDs are respectively associated with the Apple NCS service and Xiaomi Mi Band 2 battery characteristic.

IV.4.2.6 Misused characteristics

During our experiments, we observed that some characteristics can be misused: they carry data that are not related to their initial purpose.

In particular, through the LG G5 and LG G6 smartphones, we identified that the LG manufacturer exploits the Altitude Bluetooth SIG defined characteristic to include a static device address while using a Random Resolvable device address. As a reminder, we highlight that a static identifier advertised over random addresses can negate the anti-tracking feature.

Similarly, those devices leverage the Location Name and HTTP Headers characteristics to expose static UUIDs that constitute additional stable identifiers to undermine the LE Privacy provisions (see Section III.3.4.1).

Furthermore, although

LG appears to be the only manufacturer to misuse Bluetooth SIG defined characteristics in dataset Active , there could be other unobserved manufacturers that are making similar implementation misconceptions.

IV.4.3 Activity inference through a Bluetooth based timing attack

In this section, we introduce a timing attack that can be triggered by a nearby attacker in order to infer the activity of a remote Bluetooth device.

Especially, by observing timing variations of the ping mechanism of the L2CAP layer, we demonstrate that it is possible to detect state changes of a device, for instance when it goes in or out of the locked state. In addition, our experimental results show that the change point detection analysis of the timing allows to detect state changes with a high accuracy.

Finally, we briefly discuss the applicability of this attack to IoT devices.

IV.4.3.1 Device address acquisition

A prerequisite of our attack is the knowledge of the BD_ADDR of the targeted device.

In fact, the attacker needs this information in order to send L2CAP ping requests to his target (see Section I.2.1). As a result, several techniques to obtain this device address are presented in the following.

Bluetooth inquiry scan: A Bluetooth device can be set in discoverable (as opposed to non-discoverable mode). Once in this mode, it will answer to inquiry signals and reveal its BD_ADDR. By performing an inquiry scan, the attacker can thus obtain the device addresses of nearby devices. Moreover, although it is supposed to be only used during pairing process, a number of Bluetooth devices are left in discoverable mode. 
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Correlated Wi-Fi MAC address: On mobile devices, Bluetooth and Wi-Fi can be embedded on the same chipset, and their device addresses are often contiguous [START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF]. As an illustration, the BD_ADDR of an Apple iPhone smartphone is mostly equal to its Wi-Fi MAC address plus or minus 1. To make the matter worst, the Wi-Fi MAC address is available in clear in many frames. Also, even if the device can hide its true MAC address using random MAC addresses in certain situations, Martin et al. demonstrated [START_REF] Martin | A study of MAC address randomization in mobile devices and when it fails[END_REF] that it can be still possible to obtain the original MAC address. Therefore, the attacker can exploit Wi-Fi to obtain the BD_ADDR of a device.

IV.4.3.2 Attack description

In the following, we describe a timing attack that uses the ping mechanism of the L2CAP layer (see Section I.2.1) to infer state changes of a Bluetooth enabled device. By measuring variations of the request-response round-trip time (RTT), this attack allows a nearby eavesdropper to identify when its targeted device goes through a change of state.

Given a device identified by its BD_ADDR, the attacker floods the L2CAP layer of the Bluetooth interface of his victim by sending Echo Request packets in large number. Each of those requests should trigger an Echo Response back. Then, the attacker measures the corresponding RTT and uses it to infer information on the status of the device.

The idea behind this attack is that the ping flood will stress the Bluetooth stack up to the L2CAP layer. The speed rate at which those ping requests are processed will depend on available resources of the target.

On mobile operating systems, available resources for the processing of those requests can vary depending on the smartphone state. For instance, those resources will be reduced if an application is running, or if the smartphone is in a power saving mode. As a consequence, the observations on the RTT can be exploited to gain information on the device state.

By showing the variations of the RTT when the device goes alternatively in the idle and locked states, Figure IV.3 presents an illustration of this attack.

Using this approach, it is possible to run a state change identification attack in which the attacker can detect when the targeted device changes its state: for instance, when it goes from the idle to the locked state (see Figure IV.3).

IV.4.3.3 State change identification

Based on the measured RTTs, our attack aims at detecting state changes of smartphones.

Let O = {o k } be the sequence of observations (ping RTTs) and T = {t k } their corresponding timestamps. Similarly, let C = {c i } be the sequence representing the state changes: As previously observed, the change of state is characterized by modifications of the measured amplitude of RTTs. Detecting amplitude changes in temporal series is a problem known as change point detection [START_REF] Basseville | Detection of abrupt changes: theory and application[END_REF] for which several methods have been developed. Besides, one of them is the percentage change algorithm. Based on a sequence of temporal values, it outputs a series of percentage P = {p i } corresponding to the likelihood of a change at a given time: the higher the probability at a given point, the most likely the change.

c i =
Having this sequence of percentage changes, the next step is then to select the actual change points. This is done by setting a threshold value h and considering change points as all the time points for which the percentage change is above the threshold (i.e. time points t i for which p i > h).

For our study, we used pct _ change(), the implementation of the percentage change of the pandas Python library [189]. Using the experimental approach detailed in Section IV.4.3.5, we then identified the threshold. In order to cope with the high variations of the RTTs, we rely on the average RTTs over a period of one second. To finish, 

IV.4.3.4 Measurements of the L2CAP ping RTTs

Figure IV.4 describes our attack that requires to be able to send a large number of L2CAP ping requests at a regular interval, and to measure their corresponding RTTs. To this purpose, we based the implementation of our experimental tool on the native Flood Ping function of l2ping [START_REF] Borges | l2ping.c -BlueZ -Bluetooth protocol stack for Linux[END_REF], a software available in BlueZ [START_REF] Bluez | BlueZ -Official Linux Bluetooth protocol stack[END_REF].

Actually, we modified l2ping to include several new features. As it waited for an Echo Response packet back before reissuing an Echo Request, a static code review along with a dynamic execution analysis revealed that the Flood Ping function of l2ping did not allow flooding. Thus, we removed this limitation by implementing concurrent threads capable of sending ping requests in parallel. Also, this allowed us to increase the request rate while ensuring that they were sent at a regular interval.

Then, we optimized the ping identifiers 1 (IDs) management to guarantee continuous RTT measurements and maintain a constant ping requests rate. Indeed, the identifiers used for measurements cannot be reused until the corresponding responses have been received.

To bypass this issue, we interleaved two ping classes: A ping class requests that are only sent for flooding (ID ∈ {0}), and B ping class that are used for measurements as well (ID ∈ [1; 255]).

IV.4.3.5 Experimental evaluation

In this section, leveraging a set of three smartphones, we present the experimental evaluation of our Bluetooth based timing attack. Device states: Throughout our experimental study, we focused on a set of states that are representative of the standard usages of a smartphone. First, we considered locked, idle and active as states in which a device is often set. Thereafter, we considered a popular application (Shazam) to represent the state when the device is running an application. Moreover, we selected another application (BLEScanner ) which actively uses the Bluetooth interface of the device. Finally, we also considered two states (BT inquiry and Wi-Fi Scan) in which the device uses its Bluetooth or Wi-Fi wireless interface.

To summarize, the seven considered device states are the following:

-locked : the phone is left untouched after its screen has been turned off; -idle: the screen is on, and no application 1 is running neither in the foreground nor in the background; -active: the screen is on, no application 1 is running neither in the foreground nor in the background, and the user only swipes his finger over the screen; -Shazam: the Shazam [191] application is running in the foreground; -BLEScanner : the BLEScanner [192] application is running in the foreground; -BT inquiry: an inquiry scan for nearby discoverable Bluetooth devices is performed in the foreground; -Wi-Fi Scan: a scan for nearby Wi-Fi networks is performed in the foreground.

IV.4.3.5.2 Experimental protocol

To evaluate the performances of our approach as well as the potential differences between the various states, we conducted series of measurements. For each pair of the states listed above: we alternatively put the smartphone in each of the state for 10 seconds for an 1. Apart from system specific applications.
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As the transition between the states requires to go through one intermediary state, some pairs were not possible. For instance, it is not possible to go directly from the Shazam state to the BT inquiry one as it is necessary to go through the active state first. While performing those manipulations, the device was submitted to active L2CAP ping measurements and the time of transitions were manually noted. The output of each experiment is a set of RTT measurements and a set of timestamps corresponding to changes of states.

Note that, as the state change monitoring was done manually, it does not have the same accuracy as the RTT measurements timestamps. Thus, we considered the granularity of time change detection of one second, which corresponds to the manual measurement expected accuracy.

Based on those measurements, it is possible to evaluate the state change identification attack. The performance evaluation has been done using the following metrics: True Positive Rate (TPR): the ratio of correct inference, False Positive Rate (FPR): the ratio of incorrect inference. In the case of the state change identification attack, a true positive is the detection of an actual change of state, while a false positive is a detection of a state change where there is none.

Flooding parameters: We want to maximize the stress on the Bluetooth stack while maintaining regular measurements. In particular, we want to avoid Bluetooth requests being dropped because the load was too high. Through empirical experiments, we found that sending a request every 6 milliseconds was producing good results in term of RTT variations. To keep a sufficient granularity of the measurements, we set the interval for B ping class requests to 18 milliseconds.

IV.4.3.5.3 Results

In the following, we focus on the results obtained with the Apple iPhone 6 device. In fact, its recent Bluetooth version as well as its monitoring ease with low generated noise makes this smartphone the ideal candidate to demonstrate our attack.

The efficiency of our state change identification technique has been evaluated using the previously described experimental protocol. Figure IV.5 presents the Receiver Operating Characteristic (ROC) curves of this detector for state changes either from or to the idle state.

From those curves, we can assert that our approach is able to detect those changes with a high accuracy. As an example, it reaches a TPR of 0.917 for a FPR of 0.046. Overall, the Area Under the Curve (AUC) is high and close to 1. Note that, similar performances are observed for all cases except for the active state, which is close to the idle state as the only practical difference is that the user swipes his finger over the screen. Although the experimental evaluation has been only performed on smartphones, all Bluetooth devices that support this request-response mechanism of the L2CAP layer are potentially threatened. As a consequence, IoT devices can be also subject to this attack.

To aggravate the situation, by taking advantage of those single-task connected objects, the attacker can define the action that is taking place by analyzing variations of RTTs.

For instance, variations of RTTs in a Bluetooth e-cigarette [START_REF] Fidel | E-cigarette is better with Bluetooth[END_REF] can allow the attacker to know when his target is smoking without having previously fingerprinted different states of this device.

IV.5 Implementation: Himiko, a Human Interface for Monitoring and Inferring Knowledge on Bluetooth Low Energy Objects

In this section, we introduce Himiko, a Human Interface for Monitoring and Inferring Knowledge on Bluetooth Low Energy Objects. In fact, this tool aims to extend our work by capturing and processing in real-time the content of advertisement packets and GATT profiles.

Based on the online official Bluetooth SIG resources [START_REF]Specifications -Assigned Numbers[END_REF] along with our research findings (see Section IV.3.2 and Section IV.4.2), we implemented a Python parser that can decode both structured (specified) and manufacturer specific (non-specified) data. In addition, we also provide a user-friendly interface to display the extracted information.

IV.5.1 The Himiko tool

The Himiko tool is based on a three-step process. First, advertisement packets emitted by a BLE enabled device are captured through a Bluetooth interface. Then, the raw data are parsed and processed to extract information that can both defeat the randomization mechanism (see Section III.3.4) and be used to infer attributes of the owner. Finally, results of the processing are displayed as a feedback to the user. The architecture of the tool is presented in Figure IV.6.

To capture the advertisement packets, Himiko only requires two Bluetooth cards supporting the BLE protocol. This is the case for most basic off-the-shelf Bluetooth cards on modern computers running a Unix-like system. Devices in range are detected using the RSSI, and leveraging external dongles such as a CSR v4.0 Bluetooth USB dongle can simplify the proximity estimation of users devices. Actually, Himiko is composed of three main files. The first one, orchestrator.sh, is a Bash script configuring the Bluetooth interfaces to enter in the BLE scanning mode featured by the bluepy [START_REF] Harvey | bluepy -A Bluetooth LE interface for Python[END_REF] Python library. The latter outputs the captured advertising raw data in a string stream, which can be then parsed and processed in real-time by the second Python script, demo.py.

This second script is composed of three Python modules -parserModule, profilerModule and searchingModule -that respectively parse the advertising raw data, fetch the GATT profile of the device and search for this device on Google Shopping [START_REF] Google | Google Shopping: Buy on Google | Get good deals from your merchants[END_REF] and Qwant [110] online marketplaces. Finally, hmi.html embeds web technologies (i.e. CSS, JavaScript and PHP) that structure and beautify results of the analysis before to be displayed in a Mozilla Firefox [START_REF] Mozilla | Download Firefox -Free Web Browser[END_REF] web browser.

The knowledge base used by parserModule to decode advertisement packets and GATT profiles has been built from the online official Bluetooth SIG resources, third-party public resources 1 and the reverse engineering of the Apple Handoff, Apple Nearby Info, Microsoft CDP and Google Nearby proximity protocols (see Section III.3.4.2).

Note that, the only information captured by Himiko are data contained in advertisement packets and GATT profiles of BLE devices having an enabled Bluetooth interface. As a consequence, traffic data sent by associated devices and timing or physical-layer information are not considered.

The display includes the metadata of the advertisement packet (i.e. BD_ADDR, type of BD_ADDR, etc.), a list of the extracted information, an inference of the device type based on its advertised device name, and a dump of the GATT profile of the device. In addition, we point out that a GATT profile is readable by default as the Bluetooth Core Specification [38, Vol 3, Part G, sec. 8.1] does not consider included information as private or confidential.

Finally, when a BLE device broadcasts its device name, the owner of the involved device 1. The advlib [START_REF] Imran | Low-power wireless advertising software library for distributed M2M and contextual IoT[END_REF] advertisement packet decoding library, the RaMBLE [START_REF] Lester | The Emergence of Bluetooth Low Energy[END_REF] Android mobile application and the bleah [START_REF] Margaritelli | This Is Not a Post About BLE, Introducing BLEAH[END_REF] BLE scanner tool.

IV.6. Recommendations 104 can decide to provide additional information 1 on the device in order to improve the device identification capabilities of Himiko. Also, in order to minimize privacy risks for the users of Himiko, we apply the minimization principle and keep as little necessary information as possible. In particular, all collected data are kept in memory during the processing time before being immediately erased when the results are displayed to the users. Furthermore, the tool only detects devices in close range of the antenna 2 to ensure that only volunteering participants will have their data collected and processed.

IV.5.2 Interaction with participants

During the demonstration, participants are able to interact with Himiko by testing the information broadcasted by their BLE enabled devices. By bringing their device close to the Bluetooth antennas of the tool, they will trigger a capture event that will record an advertisement packet emitted by their device. Such a packet contains raw data that will be parsed and processed to compute a comprehensive analysis of the emitted information of the device.

Results of this process are then displayed on a screen as a feedback to the user. As an example, Figure F.1 in Appendix F presents the output triggered by a Chipolo Classic BLE keyring device. Moreover, as previously mentioned in Section IV.5.1, when a device advertises its device name, participants will have the opportunity to contribute to the knowledge base of Himiko by providing additional information on their devices.

IV.6 Recommendations

In this section, in light of the presented active information inference issues, we provide recommendations that should be considered by manufacturers of Bluetooth/BLE enabled devices, but also by the Bluetooth SIG to improve the Bluetooth Core Specification.

Restricting access to values of characteristics included within GATT profiles:

During our work, we found that a number of characteristics are readable without authentication, and expose the device to both fingerprinting (see Section III.4) and inference of sensitive information (see Section IV.4). In many cases, it is not clear why this information is left openly available.

A simple solution should be to use the permission system of GATT to ensure that those values can be only read by authenticated devices (see Section I.2.2.4). To be efficient, 1. Assisted by the operator, the owner can provide a regular expression matching the device name along with information such as the vendor, model and type.

2. A few centimeters. this mechanism should be set on all characteristics by default, and its removal should be justified by a valid requirement.

In order to simulate the adoption of this measure, we removed all values of characteristics within dataset Active at the exception of mandatory ones (i.e. values of the Device Name, Appearance and Service Changed characteristics). Afterwards, we re-evaluated the entropy and found that removing those values has a significant impact on the fingerprinting potential: the overall entropy goes down from 4.380 (see Table III.7) to 2.765 bits (see Table IV.9).

In cases where this solution cannot be adopted, values should be as general as possible. As an example, the value of the Model Number String characteristic within Apple devices could just be Apple or iOS instead of iPhone10,4 or iPad8,3 (as reported by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF]). Note that, we believe that this recommendation has to be addressed by manufacturers at the kernel or firmware level.

Minimizing exposure of GATT profiles:

The current version of the Bluetooth Core Specification [38, Vol 3, Part G, sec. 8.1] stipulates the following: "the list of services and characteristics that a device supports is not considered private or confidential information, and therefore the Service and Characteristic Discovery procedures shall always be permitted". Nevertheless, we demonstrated that this is not the case.

Indeed, even if values are not readable, the list of services and characteristics available in a GATT profile can be leveraged for fingerprinting and inference of sensitive information. Furthermore, we showed that the exhibition of metadata such as names of services and IV.7. Conclusion
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characteristics is enough to leak sensitive information of users (see Section IV.4.2.5).

As a consequence, a potential mitigation technique would be to minimize the exposure of GATT profiles. This could be done by setting access control properties to services and characteristics so that only authenticated devices can access them.

By default, an unauthenticated device will then uniquely see basic services and characteristics (e.g. Generic Attribute and Service Changed), and only authenticated devices will be able to see the full list. For instance, a Peripheral that solely allows the reading of its Battery Level characteristic value to authenticated devices should hide the presence of the corresponding Battery Service during the service discovery procedure for unauthenticated devices. To our mind, this recommendation has to be addressed by the Bluetooth SIG as an erratum to the Bluetooth Core Specification.

Preventing the activity inference through the Bluetooth based timing attack:

The presented timing attack (see Section IV.4.3) is practical because any Bluetooth hosts in range can exchange L2CAP ping requests at a high rate. Therefore, a first naive countermeasure should be to limit the rate at which a remote host can perform those actions. Likewise, flood detection and blacklisting mechanisms can be supplementary protections that manufacturers could implement in order to undermine this attack.

Additionally, from our experiments, we attested that the accuracy of the timing measurements is also a key element of the attack. Thus, introducing a perturbation by enforcing a random back-off time in the response process could reduce its efficiency as well.

To finish, although Bluetooth features mutual authentication mechanisms, we showed that the access to L2CAP services is not limited to authenticated hosts. Hence, restricting such access exclusively to authenticated hosts could be another way to prevent this kind of attack.

IV.7 Conclusion

To conclude, this chapter aimed to demonstrate how passive and active attackers can infer information on users (i.e. their attributes, ongoing activities, etc.) from wireless communications of their carried Bluetooth/BLE enabled devices.

First, we detailed our threat model that considers devices including privacy issues in data exposed within advertisement packets and GATT profiles. In particular, we defined a successful 1 attack as an eavesdropper being able to learn information on nearby users, either through inventory attacks or activity inference. As a side note, we draw the attention to the fact that we limited our model to information that can be directly inferred from the observations of exposed data.
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Second, relying on our described threat model, we demonstrated that advertising data hold enough information to disclose the manufacturer, model and type of a device, that can betray personal characteristics as well as the medical condition of its corresponding owner. Especially, we showed that such devices information can be inferred from advertising data contained in the Appearance and Manufacturer Specific Data AD structures, but also from service UUIDs and Public BD_ADDR. For instance, the Appearance code 0x0d48 denotes an insulin pen, while the 0000de00-3dd4-4255-8d62-6dc7b9bd5561 service UUID is broadcasted by Nikon cameras.

Furthermore, when advertising data include names of users, we explained how an attacker can leverage visual observations to match the physical identity of the individual with its network identifier (i.e. its BD_ADDR). As an illustration, Bose headsets and Apple smartphones leak names of their owners through their advertised devices names.

As for Chapter III, on April 5 th , 2019, we informed the manufacturers 1 of the identified privacy issues. However, as of July 7 th , 2020, none 2 of those issues have been addressed.

Third, we analyzed data exposed within GATT profiles of BLE enabled devices. Leveraging dataset Active , we first found that human readable and digital identifiers embedded in characteristics such as Device Name, Appearance, Manufacturer Name String, Model Number String and Software Revision String can be mostly accessed (i.e. read) without authentication. Then, we described how they can be mined to infer information on the device such as its type, model, manufacturer and software version. Similarly, we pointed out that metadata such as names of services and characteristics can be leveraged to threaten the privacy of users as well.

Besides, during this work, we discovered that the LG manufacturer diverts several Bluetooth SIG defined characteristics for other purposes. In fact, we found that the LG G5 and G6 smartphones carry static identifiers within characteristics such as Altitude while using Random Resolvable device addresses. In addition to the physical tracking concerns that this misuse can raise, this finding assesses the lack of control with regard to the release of connected devices.

Fourth, we presented a Bluetooth based timing attack that exploits a request-response mechanism of the L2CAP layer in order to infer the activity of a smartphone. More specifically, we demonstrated that combining timing measurements with a change point detection analysis allow to detect a device state changes with a high accuracy.

To begin this study, we provided four methods aiming to obtain a Bluetooth device address, a prerequisite for this timing attack. To exacerbate the situation, we identified that three of those methods acquire this device unique identifier when it is in non-discoverable mode.

Because of the tracking and privacy issues that can result, a device address must be 1. Notifications have been sent to: AirBolt, Apple, Bang&Olufsen, Bose, Diggro, Fitbit, Garmin, Giant, Google, GoPro, Jabra, Jewelbots, Logitech, Microsoft, Nikon, Nintendo, OculusVR, Samsung, Sony and Tile.

2. To the best of our knowledge.
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difficult to obtain, and more particularly when a device is in a mode that hides it from any other devices in range.

To pursue our work, we described the attack and the set of three Bluetooth featured smartphones on which it has been tested. Then, we explained how to detect changes between seven distinct states that have been chosen to be representative of the standard usage of a smartphone. From the experimental results, we attested that a remote active attacker can easily get information on the state of a device (i.e. idle, locked, etc.), that can be further exploited to obtain additional information on its user. As an example, the state change identification can be correlated with visual observations in order to identify a user manipulating his device.

Fifth, in light of the reported privacy issues, we introduced Himiko, a Human Interface for Monitoring and Inferring Knowledge on Bluetooth Low Energy Objects. Beyond its userfriendly interface, we put efforts into implementing this tool to 1) raise public awareness with regard to the information that can be disclosed within BLE enabled devices and 2) alert on the need to complement the Bluetooth Core Specification with additional requirements that would cover privacy issues on the BLE protocol. In fact, even if the Bluetooth Core Specification includes privacy considerations, they remain limited to the management of random link layer identifiers. Nevertheless, we showcased other elements of the advertising mechanism that can be used to breach privacy.

Lastly, we provided a set of recommendations to limit the impact of the outlined privacy threats. To our mind, the most straightforward solution is either to remove the unnecessary information that are being leaked in clear or set appropriate security permissions on them (e.g. allowing the reading of characteristic values only to authenticated devices). In addition, the amount of data exposed during services and characteristics discovery procedures of GATT profiles should be kept to a bare minimum to avoid fingerprinting and inference of users information.

Likewise, we specified three potential countermeasures in order to protect devices from the activity inference through the Bluetooth based timing attack. Note that, those countermeasures range from the naive implementation of flood detection and blacklisting mechanisms by manufacturers to more complex protections such as the enforcement of a random back-off time in the ping response process.

Chapter V

The case of personal data leaks in Apple BLE Continuity protocols

This chapter deals with personal data leaks applied to the case of Apple BLE Continuity protocols. At first, Apple Continuity protocols and their applications are introduced in Section V.1. Afterwards, Section V.2 details our thorough reverse engineering of such continuity protocols. Leveraging identifiers and counters included in Apple Continuity messages, passive tracking concerns are demonstrated in Section V.3. Section V.4 discusses a new active tracking threat based on the replay of corrupted Handoff messages. Exposed device status and characteristics are listed in Section V.5. Section V.6 shows that messages broadcasted by HomeKit accessories can betray human activities in a smarthome. A method to recover hashed e-mail addresses and phone numbers contained in messages of AirDrop and Nearby Action protocols is presented in Section V.7. Section V.8 exploits passive observations on the BLE advertising traffic to infer Siri voice commands of a remote user. The impact of the reported attacks with regard to their feasibility and privacy risk that can result from collected information is evaluated in Section V.9. Section V.10 provides recommendations that should be addressed by Apple to undermine the identified privacy vulnerabilities. At last, the conclusion of this chapter is given in Section V.11, while Section V.12 furnishes additional remarks.

Corresponding contribution : [3]

V.

Introduction

Smart devices interacting with each other are bringing new types of applications1 that simplify configuration procedures and enhance the user experience. To enable those features, Besides, Apple Continuity protocols, the prominent family of protocols developed by Apple, can be found in all Apple products but also in devices from third-party companies 1 . As a consequence, such protocols are embedded in more than 1.5 billion active devices [199], including smartphones, laptops, earphones, smartwatches and smarthome appliances.

To enable services such as activity transfer, remote printing and smarthome monitoring, Apple Continuity protocols rely on BLE. Indeed, messages are carried by advertisement packets that are broadcasted over the air and thus made available to all devices in range.

In practice, we previously witnessed that wireless communications functionalities of smart devices can represent privacy threats. More specifically, Bluetooth/BLE and Wi-Fi signals can be leveraged for tracking users [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF][START_REF] Issoufaly | BLEB: Bluetooth Low Energy Botnet for large scale individual tracking[END_REF] and inferring other private attributes [START_REF] Greenstein | Can Ferris Bueller Still Have His Day Off? Protecting Privacy in the Wireless Era[END_REF][START_REF] Mathieu Cunche | Linking wireless devices using information contained in Wi-Fi probe requests[END_REF][START_REF] Aveek K Das | Uncovering privacy leakage in ble network traffic of wearable fitness trackers[END_REF].

To remedy to the tracking issue, we shed light on the LE Privacy feature [38, Vol 3, Part C, sec. 10.7] that defines the use of temporary and random link layer identifiers. Nevertheless, several works [START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF][START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF] have disclosed privacy menaces associated with BLE jeopardizing the privacy of users despite the LE Privacy provisions. Furthermore, serious issues have been discovered [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF] in Apple Continuity protocols, allowing an attacker to track a device through passive and active attacks.

In this chapter, we pursue on the path started by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF] and present a collection of new privacy concerns in Apple Continuity protocols. Based on a detailed reverse engineering of Apple Continuity protocols, we demonstrate how cleartext information exposed in BLE advertisement packets can be exploited for physical tracking but also to reveal personal information and users activities.

First, we present continuity protocols and describe the methodology that we used to provide an extensive reverse engineering of Apple Continuity protocols along with the format of their corresponding messages. Likewise, we discuss general features of such messages emphasizing that some of them are advertised over stable device addresses, trivially exposing their users to tracking.

Second, we identify new fields included within Apple Continuity messages under the form of identifiers and counters that can be exploited for passive tracking attacks. Among those fields, we found that the Lid Open Count as well as battery levels of AirPods earphones can be leveraged together to track their corresponding owners. Thereafter, we outline an additional privacy threat in which the global energy of the system could be fingerprinted to improve the amount of identifying information.

Third, we present a novel active attack that can be both used to track individuals and link devices belonging to the same iCloud account. Based on the replay of corrupted
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Handoff messages, this attack supplements the one introduced in [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF] which relies on Instant Hotspot messages in order to force a device to reveal its presence and identity. Moreover, we underline the fact that our attack is easier to exploit as Handoff messages are emitted by a wider range of devices, and therefore are more common than Instant Hotspot ones.

Fourth, we compile a list of several fields exposing characteristics of the device (e.g. category, model, OS version, color, etc.) and information on its status that can be used to infer the ongoing activity. Being advertised in clear, we then detail how those fields can be leveraged as a first step toward four possible privacy invasive applications, namely inventory attacks, visual identification, event correlation and activity monitoring.

Fifth, we show that messages broadcasted by HomeKit accessories include a Global State Number (GSN) that can leak human activities in a smarthome. In particular, we demonstrate that monitoring the increment of such field betrays a state change that is induced by the user, either in reaction to an environment modification (e.g. the user passes by a motion sensor and its detection causes the increment of the GSN) or because he executes a particular command (e.g. the user turns on/off its connected lightbulb). Throughout this study, we monitor an Eve motion sensor as well as an Osram lightbulb, and highlight that applying this attack to the whole range of HomeKit enabled devices (e.g. door sensors, thermostats, faucets1 , etc.) can reveal accurate information on smarthome activities.

Sixth, we discover that AirDrop and Nearby Action messages contain hashed e-mail addresses and phone numbers. Through guesswork attacks, we describe how they can be recovered in a matter seconds when the set of potential identifiers is constituted of several thousand entries. In addition, according to the performances of our simulation, we observe that this kind of attack is practical as the worst-case scenario (i.e. all the existing e-mail addresses) can be tested within an hour.

Seventh, we find that "Hey Siri" messages include a perceptual hash of voice commands and present how it can be exploited to infer a spoken command of a remote user. To begin this work, we introduce the Philips Robust Hash (PRH) algorithm and make some observations on the generation of the perceptual hash of Siri. Afterwards, we show how to build a dictionary of hundred commands and digests that will further serve to evaluate our dictionary attack on perceptual hashes. From the experimental results, we obtain a precision as high as 67% with a recall of 52% for an exact match of the perceptual hash.

Last but not least, we provide a discussion on the impact of the reported attacks. Relying on several elements such as the feasibility of such attacks with regard to the range, the context in which they can be performed and the privacy risk resulting from the information that an attacker can collect, we point out that the majority of exhibited attacks are easy to implement, and raise serious privacy leaks at the same time. Furthermore, we draw the attention to the fact that they can be mostly triggered by a passive attacker.

Finally, we furnish four potential solutions to mitigate the identified issues. Complementing the ones proposed in [START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF] and [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], we specify that the described countermeasures should V.2. Reverse engineering of Apple Continuity protocols 113 be addressed by Apple during the design and implementation of continuity protocols to preserve the privacy of their users.

V.2 Reverse engineering of Apple Continuity protocols

In this section, we first provide insights on continuity protocols prior to describe the methodology that we used to reverse engineer the suite of Apple Continuity protocols. Also, we present general features of Apple Continuity messages such as their content protection and the use of random device addresses.

V.2.1 Continuity protocols

Continuity protocols are network mechanisms that enable short range communications for services running on mobile devices and connected appliances. As such, they constitute the network element of Apple Continuity services [START_REF]All your devices. One seamless experience[END_REF], and similar protocols have been developed by major vendors: Google Nearby [149] and Microsoft CDP [148]. Most of the time, those protocols are leveraged to automatize configuration procedures through proprietary message structures. As a result, typical continuity services include activity transfer, multimedia content streaming, file sharing, device pairing, monitoring and control of smarthome accessories to name a few.

In a traditional Ethernet network, all communications go through a router that processes and delivers each data packets to the correct destination. On the contrary, continuity protocols do not need a central device and thus can improve throughput, energy efficiency and delay.

Basically, continuity protocols rely on wireless technologies such as Bluetooth/BLE and Wi-Fi to carry information between devices. As they are directly used by applications, such protocols can be seen as part of the application layer of the Open Systems Interconnection (OSI) model. Nevertheless, they sometimes include features (i.e. sequence number and reconnection) of other layers such as the session and transport layers. Because they only involve device-to-device (D2D) communications, the network layer is limited to a bare minimum, and both the data link and physical layers are handled by the underlying wireless protocol (e.g. Bluetooth, BLE or Wi-Fi).

V.2.2 Methodology

In this chapter, the presented analysis required an in-depth understanding of Apple Continuity protocols for which most specifications are not public. As a consequence, we V.2. Reverse engineering of Apple Continuity protocols 114 had to rely on supplementary sources of information, namely BLE traffic traces, outputs of Apple debugging tools and disassembled binaries.

Although limited in details and quantity, it is important to mention that there exist some official documents about Apple Continuity protocols and associated services. More specifically, we can cite the Apple Platform Security guide [START_REF]Apple Platform Security[END_REF] and the HomeKit Accessory Protocol (HAP) specifications [START_REF]HomeKit Accessory Protocol Specification (Non-Commercial Version) -Release R2[END_REF].

As Apple Continuity messages are embedded in BLE advertisement packets, the capture and generation of those packets were at the core of our study. In this regard, the capture was done leveraging our custom sniffer implemented over the bluepy [START_REF] Harvey | bluepy -A Bluetooth LE interface for Python[END_REF] Python library, while a Bash script based on hcitool [START_REF] Borges | hcitool.c -BlueZ -Bluetooth protocol stack for Linux[END_REF] was used to generate advertisement packets.

In both cases, we used a CSR v4.0 Bluetooth USB dongle as transceiver. In order to isolate signals from a device, we placed the monitoring system next to it and filtered out packets coming from other devices based on their RSSI.

For the experiments, all the tests were performed in our laboratory against our devices and the ones owned by our institutions. As a result, those tests involved a range of Apple devices including iPhone smartphones, iPad tablets, AirPods earphones, MacBook laptops and Watch smartwatches that were running across different versions of Apple iOS, macOS and watchOS operating systems. In addition, we considered products from partner companies too that are compatible with the Apple ecosystem such as the Eve Motion sensor and the Osram Smart+ lightbulb.

Likewise, we relied on two Apple debugging tools: PacketLogger and PacketDecoder.

Available on the Apple Developer website [START_REF]Apple Developer[END_REF], those tools provide information on the content of received BLE frames, as well as on steps in the corresponding protocol.

Finally, we had recourse to disassembly in order to gain additional knowledge on Apple Continuity protocols. In fact, we used the Hopper [START_REF] Bénony | Hopper v4 -The macOS and Linux Disassembler[END_REF] software to disassemble several macOS binaries such as PacketLogger, PacketDecoder, CoreSpeech, HomeKit Accessory Simulator and sharingd. Based on the disassembled codes, we were then capable of identifying the precise format of continuity messages, and the signification of some codes (e.g. device model, activity level, action type, etc.). Also, we were able to analyze the implementation of some functionalities such as the perceptual hash of Siri voice commands (see Section V.8). The data are stored in a Manufacturer Specific Data AD structure (0xff) which starts with the company identifier of Apple (0x004c), followed by one or several continuity messages (CM) presented as a TLV format. Flags is an optional AD structure that is not specific to Apple Continuity protocols, and that can be included by any devices to indicate their discoverable modes and capabilities.

V.2.3 General features of Apple Continuity messages

byte each whereas Value is Length-byte long). In total, we have identified twelve different types of Apple Continuity messages that are listed in Table V.5.

Note that, for a given device, the Apple Continuity messages included in BLE advertisement packets can vary over time depending on its status and activity. For instance, advertisement packets generated by an iPhone will always include a Nearby Info message, and will occasionally 1 include a Handoff message.

V.2.3.1 Content protection

In practice, Apple Continuity messages are never encrypted as a whole. As part of the advertisement packets, their content is therefore exposed in clear. However, Proximity Pairing and Handoff messages include an encrypted payload (through AES-128 and 256 in ECB mode).

Similarly, other elements of data are not transmitted in clear but are hashed using SHA-256 then truncated. This is the case of Wi-Fi SSIDs, e-mail addresses and phone numbers found in AirDrop [START_REF] Apple | AirDrop security[END_REF] and some Nearby Action messages (see Section V.7).

Finally, Handoff, Nearby Action and Nearby Info messages are authenticated through an Auth Tag that is computed using AES-256 in GCM mode [START_REF] Apple | [END_REF]. 

V.2.3.2 Use of random device addresses

In order to prevent physical tracking issues, we found that 1) advertisement packets including Apple Continuity messages are mostly using Random Non-resolvable or Random Resolvable addresses and 2) the Bluetooth Core Specification recommendation on the maximum lifetime of 15 minutes is enforced.

Nonetheless, we identified several exceptions. Indeed, AirPrint and AirPlay messages are using Public addresses, thus exposing the BD_ADDR. Analogously, AirDrop and "Hey Siri" messages use a Random Non-resolvable device address that never changes until the user turns off then on the Bluetooth interface of his device. As a consequence, such messages expose their users to tracking as their device addresses over which they are advertised remain stable over time.

V.2.4 Details of Apple Continuity protocols

In this section, we review the Apple Continuity messages found within BLE advertisement packets. For each message type, we present the associated service, the data format and the basics of the corresponding protocol (see Table V.5 for a summary of the Apple Continuity messages).

AirPrint: AirPrint is a feature included in Apple devices to discover compatible 1 printers and print documents via a wireless network without having to install additional drivers.

Transmitted each time the user tries to print a document through AirPrint, those messages (see Figure V.2) include the complete IP address (IPv4 or IPv6) of the remote printer that can be leveraged as a first step toward a more elaborated attack [START_REF] Cui | When firmware modifications attack: A case study of embedded exploitation[END_REF].

AirDrop: AirDrop is a service which enables the transfer of files between Apple devices over Bluetooth and Wi-Fi. Transmitted each time the user attempts an AirDrop transfer, those messages (see Figure V.3) are composed of several 2-byte long fields containing hashed identifiers. Actually, we found that those hashes are the sixteen MSB of the SHA-256 digests of e-mail addresses and phone numbers configured into the iCloud accounts of the users (see Section V.7).

HomeKit: HomeKit is a framework for the monitoring and management of smarthome intelligence gathering [START_REF] Kewley | Dynamic approaches to thwart adversary intelligence gathering[END_REF], we draw the attention to the fact that this conveyed IP address could be exploited by a remote attacker.

Magic Switch:

The Magic Switch protocol is undocumented but seems to be related to the watchOS operating system. As observed by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], only Apple Watches emit those messages. Transmitted when the Watch has lost the Bluetooth connection to its paired iPhone and when its screen is on, Magic Switch messages (see Figure V.8) include a 2-byte Data field that can expose the user to tracking (see Section V.3), followed by a Confidence on Wrist field that appears to be an indicator that the watch is worn (see Table G Handoff: Handoff [START_REF] Apple | [END_REF] allows activities to be transferred between devices associated with the same iCloud account. As an illustration, a user who is browsing an article in Safari on its MacBook laptop can then move to its nearby iPhone (that is signed into the same iCloud account) and open the same webpage automatically on its smartphone. Transmitted each time the user interacts (i.e. opens, runs or closes) with a Handoff enabled application (e.g. Mail, Safari, Maps, Contact, etc.) [START_REF]Use Handoff to continue a task on your other devices[END_REF], those messages (see Figure V.9) include an Initialization Vector (IV), a payload encrypted with AES-256 in ECB mode and an Auth Tag generated with AES-256 in GCM mode [START_REF] Apple | [END_REF]. As reported by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], we observed that the IV is not random and is incremented every time the payload changes (see Section III.3.4.2.1). Moreover, tracking issues raised by Handoff messages are presented in Section V.3.1 and Section V.4.1.

Instant Hotspot: Instant Hotspot is a feature designed to share the cellular connectivity of an iPhone or an iPad over Wi-Fi with nearby devices that are associated with the same iCloud account. De facto, this feature relies on two types of messages: Tethering Target Presence and Tethering Source Presence.

Transmitted each time the user does a Wi-Fi scan to discover surrounding Wi-Fi networks, Tethering Target Presence messages (see Figure V.10) include a 4-byte Identifier field that is generated from a Destination Signaling Identifier (DSID) tied to the iCloud account [START_REF]Instant Hotspot[END_REF]. In practice, we witnessed that a scan is performed when the user opens or navigates in the Wi-Fi and network settings menu. Additionally, as observed by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], the DSID is rotated only once every 24 hours involving tracking concerns (see Section V.3).

On the other hand, Tethering Source Presence messages are transmitted by Apple devices that are capable of sharing a cellular connection. Broadcasted in response to Tethering Target Presence messages coming from devices associated with the same iCloud account, those messages (see Figure V.11) include fields representing the current state of the device: Battery Level, nature of cellular connection (Network Type) and cellular Signal Strength (as reported by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF]). Nearby: Although it is not documented, the Nearby protocol appears to be used to inform nearby devices about the presence and state of a device. Furthermore, as they can include authentication tags, we assume that Nearby messages can be leveraged in authentication processes. In fact, this protocol uses two types of messages: Nearby Action and Nearby Info. Activity Level element, while the tracking threat related to the Auth Tag is exposed in Section V.3.

V.3 Passive tracking

In the context of wireless communications, the use of temporary and random link layer identifiers has been introduced as a countermeasure against physical tracking (see Section II.5). However, it has been shown that the content of frames can be used to fingerprint a device and link its distinct MAC addresses [START_REF] Vanhoef | Why MAC address randomization is not enough: An analysis of Wi-Fi network discovery mechanisms[END_REF]. Applied to the BLE technology, this kind of issue has been also demonstrated [START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF] leveraging static identifiers and non-reset counters exposed within advertisement packets (see Section III.3.4).

In this section, we complement previous works by presenting a collection of new artifacts contained in Apple Continuity messages that can be leveraged for passive tracking purposes. Stable Random Non-resolvable addresses: Advertisement packets including AirDrop and "Hey Siri" messages use Random Non-resolvable addresses that are not changed over time. Indeed, we witnessed the same values for more than seven days.

V.3.1 Identifiers and counters

Bad synchronization in pseudonym changes: As reported in [START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF] and [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], we attested that the change of the Auth Tag embedded in Nearby Info messages is not completely synchronized with the change of the device address: for a short duration after the address Stable identifiers in AirDrop and Nearby Action (Wi-Fi Password) messages: AirDrop and Nearby Action (Wi-Fi Password) messages include hashed e-mail addresses and phone numbers that constitute stable identifiers 1 .

Stable identifier in Tethering Target Presence messages: Tethering Target Presence messages contain a 4-byte long Identifier tied to the iCloud account that is rotated only once every 24 hours, and thus acts as a stable identifier too.

Stable data in Magic Switch messages: The 2-byte long Data field found within Magic Switch messages appears to be stable over time. In fact, we discovered that such a field can remain unchanged during more than 30 minutes.

Non-reset IV: As part of the Handoff messages, the 2-byte long IV element is an incremental counter that is not reset when the random device address changes, and therefore that can be leveraged to link consecutive addresses (see Section III.3.4.2.1).

V.3.2 AirPods battery levels and Lid Open Count

Broadcasted by AirPods earphones, Proximity Pairing messages expose information about battery levels and the Lid Open Count (see Section V.2.4) that can be exploited for tracking [START_REF] Olejnik | The leaking battery[END_REF]. Presented with a resolution of 10 levels, those messages include three battery level indicators: one for each earphone, and one for the case. Also, the messages contain a charging status, as well as a Lid Open Count field that is a 1-byte counter incremented each time the case lid is opened. Note that, those information are only emitted when the AirPods are outside the case, and the battery level of the case is solely exposed when the lid is opened.

For our experiment, Proximity Pairing messages generated by AirPods have been recorded during a day: the AirPods were intermittently used and put back in their case after each usage session. Figure V.15 presents the evolution of the artifacts exposed by the benched set of AirPods. Throughout this study, the battery level of the case decreases and the Lid Open Count increases. Likewise, battery levels of earphones decrease while in use, and are brought back to 100% by being stored in the case. Furthermore, it appears that battery levels are quite identical for both earphones.

Alone, the Lid Open Count holds a potential for tracking. Indeed, it is a counter taking 16 values that can be used to identify the AirPods during a session of use (since it is stable), and between two sessions (it is incremented by one). Concerning the battery levels of the earphones, they take one of 10 values that evolves at a slower rate than the address 1. Also, as reported by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], the change. As a consequence, the combination of the Lid Open Count along with the battery levels of the AirPods can take a total of 16 × 10 = 160 different values.

In addition, we point out that the AirPods used during this study were brand new, and their battery levels were evolving almost exactly at the same rate. Nevertheless, we can imagine pairs of AirPods with a contrasted battery levels evolution. As a result, this would further improve the amount of identifying information.

Finally, we emphasize that the global energy of the system could be exploited as well to defeat the address randomization scheme. Actually, by modeling the energy transfer between the case and the AirPods, it would be possible to create a global energy fingerprint that could be leveraged to track a set of AirPods between usage sessions. In this regard, we leave this possibility for future work.

V.4 Active tracking/linking

As some Apple Continuity protocols are interactive, the reception of a message may trigger a reaction under the form of a new message emission. Leveraging this mechanism, eavesdroppers can then mount active tracking attacks in which they will replay messages to force a device to reveal its presence and identity.

Tethering Source Pres. In most cases, a device will only react to messages coming from a known source: a device it has been previously paired with or that belongs to the same iCloud account. As a consequence, this feature implies that some messages will solely trigger a reaction from specific devices.

Introduced by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], this kind of replay attack against an Apple Continuity protocol was illustrated through the replay of Tethering Target Presence (Instant Hotspot) messages that triggered a reaction from a source associated with the same iCloud account (see Figure V.16). Note that, Tethering Target Presence messages can be only replayed for at most 24 hours due to the rotating DSID.

In the following, we describe a novel active attack based on the replay of corrupted Handoff messages that allows an attacker to 1) track a device and its corresponding owner over time and 2) link devices associated with the same iCloud account.

V.4.1 Replay of corrupted Handoff messages

During our work, we discovered a new replay attack based on Handoff messages that are used to enable activity transfer between devices (see Section V.2.4).

From our experiments, we also found that Handoff messages are far more common than Tethering Target Presence ones and, in the Handoff protocol, source and destination roles can be endorsed by iPhones, iPads, MacBooks and Watches. Therefore, the Handoff replay attack can target a wider range of devices than the Instant Hotspot one.

In fact, this replay attack relies on resynchronization mechanism in which a device initiates a new synchronization procedure through a connection request when it receives a corrupted Handoff message: an authentication tag inconsistent with the payload and the IV, or an IV not greater than the last one received. Note that, in addition to the fact that we witnessed this behavior to be implemented in the sharingd binary, we confirmed it on our tested devices as well (see Table V.1).

To further illustrate the attack, Figure V.17 shows that such a resynchronization mechanism can be leveraged as follows:

1. the attacker captures a Handoff message emitted by a Device A; 2. the attacker later replays this message with a modified IV field (e.g. by setting it to zero); 3. a second Device B (associated with the same iCloud account) will respond to this message by initiating a connection, thus revealing its presence and its current device address.

By exploiting this attack, the eavesdropper is then able to detect the presence and the current address of any Handoff compatible device in range associated with the same iCloud account.

In principle, the presented Handoff based replay attack is similar to the Instant Hotspot one discovered by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF]. However, because it relies on Handoff messages, it is far easier to exploit.

Indeed, Handoff messages are broadcasted whenever the user interacts with one of the several compatible applications, whereas Tethering Target Presence messages are only advertised when a device searches for Wi-Fi connectivity (see Section V.2.4). Moreover, Handoff messages affect a much wider range of devices than Instant Hotspot ones: the source of Instant Hotspot messages is necessarily an iPhone, an iPad or a MacBook, and the destination can uniquely be a device with cellular connectivity (i.e. an iPhone or an iPad). To finish, Handoff messages can be emitted and received by all types of Apple devices, excluding AirPods. 

V.4.2 Experimental evaluation of replay attacks

Leveraging a set of Apple devices, we appraised both the Handoff and Instant Hotspot [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF] replay attacks.

To begin, each device was linked to an iCloud account. Thereafter, we captured a message (Handoff or Tethering Target Presence) emitted by a secondary device associated with the same iCloud account. In proximity of the benched device, we then replayed the message and monitored the wireless channel for a response. Finally, Table V.1 presents the results of the experimental evaluation where we can observe that the Handoff based attack affects all devices, except the AirPods. On the contrary, the Instant Hotspot replay attack only involves devices capable of sharing cellular connectivity such as iPhones and Cellular capable iPads [START_REF]Use Instant Hotspot to connect to your Personal Hotspot without entering a password[END_REF].

V.4.3 Device linking

In addition to the tracking concerns, those described attacks can be leveraged to link devices associated with the same iCloud account, and thus belonging to the same user. Indeed, both Handoff and Instant Hotspot replay attacks trigger a reaction from other devices associated with the same iCloud account. In order to detect and identify other devices belonging to the same user, an attacker that has captured messages emitted by a particular device can then replay those messages later.

As each device potentially exposes different types of information, we point out that device linking increases the amount of information that can be gathered on an individual. Furthermore, such a privacy threat could be exploited to identify points of interest of the user by detecting devices that were left at home or at the office, for instance.
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V.5 Exposed device status and characteristics

From our observations in Section V.2.4, some Apple Continuity messages include fields providing information on the status of a device (e.g. idle, screen on, playing video, etc.) or its characteristics:

Category and class are exposed by the Category field of HomeKit messages (see Table G 

V.5.1 Applications

Inventory attacks: The information provided on the nature of the device can be used in inventory attacks [START_REF] Fawaz | Protecting privacy of {BLE} device users[END_REF] where the attacker will leverage the list of owned devices to infer attributes of a subject such as its wealth or medical condition. To the best of our knowledge, Apple Continuity protocols are not yet included in medical devices. Nonetheless, the ownership of Apple devices has been shown [START_REF] Bertrand | Coming Apart? Cultural Distances in the United States Over Time[END_REF] to be a reliable indicator of wealth.

Visual identification: Physical characteristics of the device such as its category, class, model and color can be used for visual identification. In fact, it could serve to establish a link [START_REF] Le T Nguyen | IdentityLink: userdevice linking through visual and RF-signal cues[END_REF] between a visual identity (i.e. a person holding a device) and its radio identity (i.e. the device address embedded in BLE advertisement packets).

Event correlation: By exposing status changes in real-time, it is possible to correlate the identity of a device with specific events that occur. As an example, sending a message to an e-mail address will trigger a state change associated with a device address.

Activity monitoring: Exposure of a detailed description of device status has the potential to exhibit in real-time the activity of a user on its device, but also in its smart environment (see Section V.6). As such, this information could be then exploited to learn the habits of users, or to implement activity-based advertising systems [START_REF] Sala | An exploration into activityinformed physical advertising using PEST[END_REF].

V.6 Leaking smarthome activity

Broadcasted by powered appliances, HomeKit messages contain information that can be leveraged to infer the activity in a smarthome. Indeed, those messages include a GSN that is used to keep track of the device state changes [202, sec. 7.4.6.3], and that is incremented each time the state is modified.

For a number of smarthome devices, a state change is the consequence of an executed command (e.g. turning on/off a lightbulb) or a reaction to an environment modification induced by the user (e.g. the user passes by a motion sensor and its detection causes the increment of the GSN). Therefore, the state change in smarthome appliances can be an indicator of the presence and activity within a household [START_REF] Copos | Is anybody home? Inferring activity from smart home network traffic[END_REF].

To demonstrate this activity inference menace, we conducted an experiment in our laboratory involving two smarthome accessories that transmit HomeKit messages over BLE: a motion sensor (Eve Motion) and a connected lightbulb (Osram Smart+). Installed in our office, such advertised HomeKit messages were then recorded by our custom sniffer.

For each device, the GSN was extracted from the captured messages and translated into a temporal sequence of state changes. For both the Eve Motion sensor and Osram Smart+ lightbulb, the GSN changes can be leveraged as an indicator that leaks the presence and activity of the user in its office.

In order to get an insight on the activity in the office, it is possible to exploit the GSN.

First, any movement in the field of the motion sensor will induce a change of GSN, thus revealing the activity and presence in the room. Likewise, turning on or off the lightbulb will be reflected by a change of GSN. Note that, manually turning on/off the light using a physical switch leads to a GSN change as well.

As shown in Figure V.18, the GSN of the motion sensor is a good indicator of presence in the office, while the data provided by the lightbulb reveal the boundaries of the office work activity. Actually, it is important to mention that this attack does not allow the direct inference of a specific activity. Rather, it exposes a coarse grain information: in our case, moving in the room and using a light.

Lastly, HomeKit messages are broadcasted by various types of devices including door sensors, thermostats, and faucets (see Table G.3 in Appendix G). As a consequence, applying this attack to the whole range of HomeKit enabled devices has the potential to reveal detailed information on smarthome activities [START_REF] Copos | Is anybody home? Inferring activity from smart home network traffic[END_REF].

V. Through experiments with a device linked to an iCloud account on which two e-mail addresses and one phone number were configured, we confirmed the aforementioned information. Indeed, after triggering the emission of AirDrop and Nearby Action messages, corresponding hashes were extracted from captured messages, and were matching with the 16 (respectively 24) MSB of the SHA-256 digests of the identifiers.

V.7.1 Recovering hashed identifiers

As a cryptographic hash function, SHA-256 is resistant to pre-image attacks. In other words, given a digest d, finding x such that SHA-256(x) = d is computationally infeasible. Nonetheless, when the set from which the values are drawn is small enough, re-identification through a brute force attack may become practical. Also called guesswork, the brute force attack for re-identification has been successfully employed against hashed e-mails and other digital identifiers [START_REF] Bonneau | The science of guessing: analyzing an anonymized corpus of 70 million passwords[END_REF][START_REF] Demir | The pitfalls of hashing for privacy[END_REF][START_REF] Marx | Hashing of personally identifiable information is not sufficient[END_REF].

At first, let us consider a hash function h() that produces digests of length l and a digest d that has been obtained by hashing the value x, i.e. h(x) = d. In fact, the objective of the guesswork is to find all the pre-images of d in a set S of possible values. As a result, a guesswork attack will proceed by hashing all the elements in S and returning any element s ∈ S such that h(s) = d. In our case, h() = MSB k (SHA-256()), where MSB k () represents the function returning the k MSB of the input.

In term of time, the cost of the guesswork can be expressed as: c = m/z, where m is the size of S (i.e. the number of elements to be tested) and z the hashing speed of the attacker.

Also, another parameter to consider is the potential false positives returned by the

V.7.2.1 E-mail addresses

Basically, e-mail addresses can be up to 307 characters 1 long [START_REF] Demir | The pitfalls of hashing for privacy[END_REF] corresponding to 2 1666 different values. As a result, it is not realistic to envision an exhaustive search over all the possible values, and the attacker will have to rely on dictionary of practical size for the attack.

To build such a dictionary, an attacker can either obtain a list of existing e-mails or try to generate e-mail addresses by assembling names and domains. For the sake of simplicity, we will focus on the first case (i.e. list of existing e-mails), and refer the interested readers to previous works done on the synthesis of e-mail addresses and identifiers [START_REF] Demir | The pitfalls of hashing for privacy[END_REF].

To evaluate our guesswork attack, we then considered several lists that can be used by an attacker:

-all existing e-mail addresses worldwide; -e-mails found in leaked database [START_REF] Hunt | The 773 Million Record "Collection #1" Data Breach[END_REF]; -e-mails of Gmail users [START_REF] Elias | Google's rocky path to email domination[END_REF]; -e-mails of our university department; -e-mails of PETS 2019 participants [START_REF]Symposium Attendance -PoPETs Acceptance Rates[END_REF].

V.7.2.2 Phone numbers

In practice, phone numbers follow a general format that represents 8.11 × 10 14 possible values [START_REF] Marx | Hashing of personally identifiable information is not sufficient[END_REF]. Nevertheless, this space can be significantly reduced if the attacker has additional information on its target such as the region in which its phone number is registered. Moreover, this set can be further truncated by selecting a subdivision of the geographical regions or number ranges of specific operators. In particular, the attacker can focus on phone numbers of mobile operators as iCloud accounts are usually configured with a mobile phone number. Note that, a resourceful attacker can also have access to a database of all registered phone numbers in a region.

In order to evaluate a potential attack, we considered several sets that an attacker can use:

-all possible values following the number format of a region; -all possible values following the mobile number format of a region; -all registered mobile/landline numbers in the region.

For our study, we selected France as region.

1. 54 and 253 characters respectively for the username and the domain.

V.8.1 Perceptual hashing

Commonly used for content identification [START_REF] Haitsma | A Highly Robust Audio Fingerprinting System[END_REF], perceptual hashing is a technique to compute the digest of a signal such as an image or a sound. In fact, a key property of the perceptual hashing is that two perceptually similar signals x ∼ x should produce digests at a close distance, d(h(x), h(x )) < ε, where ε is a threshold representing the robustness of the hashing algorithm [START_REF] Knospe | Privacy-enhanced perceptual hashing of audio data[END_REF].

For audio signals, one state of the art technique is the Philips Robust Hash (PRH) [START_REF] Haitsma | A Highly Robust Audio Fingerprinting System[END_REF]. Producing a 32-bit long digest of an audio signal, this algorithm first decomposes the signal in overlapping frames prior to apply the following process to each frame: switching to the frequency domain using a Fast Fourier Transform (FFT), decomposition of the signal into 33 non-overlapping bands and computation of the energy in each band. Then, it generates a 32-bit digest in which the bits depend on the energy variation between consecutive bands and frames. For a detailed presentation of the algorithm, we point the interested readers to the work of Haitsma and Kalker [START_REF] Haitsma | A Highly Robust Audio Fingerprinting System[END_REF].

V.8.2 Observations on Siri's perceptual hash

Twice as short as the output of the standard PRH algorithm, the Perceptual Hash included in "Hey Siri" messages is 16-bit long. Moreover, by analyzing the CoreSpeech binary, we identified that the pHash() function is in charge of computing this perceptual hash.

Actually, we were unable to fully reverse engineer such a function. Nonetheless, we were capable of identifying several characteristics: it takes an audio signal as input, it returns a 16-bit integer, it uses a FFT, it computes energy in the frequency domain, and bits of the hashes are computed based on the differences between consecutive elements of a buffer. Together, all those features suggest that this code implements a variant of the PRH algorithm.

To continue our study, we analyzed the stability of the perceptual hashes among different users by setting up an experiment that involved two male individuals. Table V.3 presents the experimental results where we can notice that the same commands produce significantly different hashes when spoken by two different users. As a consequence, this indicates that the perceptual hash depends on the command but also on the user: the speaking speed, the voice tone as well as the pronunciation appears to have an impact on the generated digest. 

Exploiting Siri's perceptual hash

As noticed by Knospe [START_REF] Knospe | Privacy-enhanced perceptual hashing of audio data[END_REF], the compactness of the digest prevents the reconstruction of the original audio signal. However, because it is a robust and identifying representation of an audio signal, the digest can still reveal information about the voice command.

In this section, we show how perceptual hashes can be leveraged by a passive attacker to infer commands spoken by a remote user.

V.8.3.1 Dictionary attack on perceptual hashes

By definition, the perceptual hashing implies that a given command should produce the same output modulo small variations. Knowing the digest of a given command, it would be thus possible for an attacker to infer the command issued to the voice assistant.

For this experiment, we supposed that the attacker has captured a perceptual hash ȳ that has been produced when the target spoke the command x to the voice assistant, i.e. ȳ = h(x). Based on the captured hash ȳ, the aim of the attacker is then to identify the command x. Also, we further assumed that the attacker has a dictionary that contains a list of commands and their corresponding digests: D = {(x i , y i )} 0≤i<n , where y i is the digest of the command x i , and n the size of the dictionary. Using the dictionary D, the attacker can perform a custom dictionary attack by finding the command x k ∈ D such that y k = h(x k ), and y k is close enough to ȳ: k = Argmin(d(y i , ȳ)) 0≤i<n and d(y k , ȳ) ≤ ε. Algorithm 2 describes the procedure of this attack that takes the intercepted hash and the dictionary as inputs, and returns a command of the dictionary or nothing if it has not found a close enough hash. 

V.8.3.2 Building a dictionary of commands and digests

To be practical, the attack requires that the attacker holds a dictionary of commands and hashes. Prior to the attack, such a dictionary could be created during a learning phase in which the attacker would be able to capture voice commands and perceptual hashes: as an example, by being physically present in the same room. Likewise, another approach could be to monitor the BLE advertising traffic and correlate perceptual hashes with observable events such as network traffic and state changes of smarthome appliances (see Section V.6).

To build our dictionary, we considered the possibility of using a voice synthesizer. Nevertheless, as observed in Section V.8.2, the values of the perceptual hashes depend on the speaker. Therefore, it is not possible to build a universal dictionary. Note that, this issue could be tackled with the help of machine learning to mimic the voice of the target [START_REF] Gopala | Festvox: Tools for creation and analyses of large speech corpora[END_REF]. In this regard, we leave this direction for future work.

V.8.3.3 Evaluation

In order to evaluate the performance of the dictionary attack, we leveraged a dictionary A of hundred commands (see Table H.1 in Appendix H) that was built based on a list of common Siri commands [START_REF] Sparhandy | Siri commands -Endless functions of your virtual assistant[END_REF]. Then, each command was spoken to the device and the corresponding perceptual hash was recorded.

Afterwards, we played a second set B of commands composed of two sets: B 1 including fifty commands from the dictionary A, and B 2 including fifty commands external to the dictionary A (see Table H.1 in Appendix H). Based on the corresponding hashes, we ran the dictionary attack for various values of the threshold ε. To measure how successful the attack was, we rely on its precision and recall [START_REF] Fu | Effective social graph deanonymization based on graph structure and descriptive information[END_REF]. In our case, the precision is defined as the proportion of correctly matched commands among all matched commands, while the recall is characterized as the proportion of correctly matched commands among B 1 . Figure V.20 presents the precision and recall of the dictionary attack.

For a threshold of ε = 0 (i.e. an exact match of the perceptual hashes), a precision as high as 67% with a recall of 52% can be obtained. By taking larger values of ε, this will relax this constraint leading to higher recall at the cost of a precision reduction.

In addition, due to the small size of our dictionary, the performance presented above is likely to be overestimated. Indeed, if the size of the dictionary increases, the distance between hashes will diminish and increase the probability of collision. Besides, there is an upper bound 1 for the number of distinguishable commands that can be expressed as 2 16-2ε . As a result, for ε = 2, the number of distinguishable commands is at most 2 12 = 4096.

V.9 Impact of the attacks

In this section, we examine the impact of the presented attacks on the privacy of users.

To start, we consider the feasibility of those attacks with regard to the range. Although BLE was designed to provide a range of up to a hundred meters in outdoor environments [START_REF] Gunnar | Things You Should Know About Bluetooth Range[END_REF],

1. Perceptual hashes can be seen as words of a code of length 16 with correction capacity ε. Thus, the number of distinguishable hashes is the dimension of the code k. From the Singleton bound and the definition of minimal distance: k ≤ 16 -2ε. we witnessed that it is usually shorter in practice. Indeed, we measured the BLE range of several advertising Apple devices and found that they can be all received at least to 61 and 38 meters respectively in outdoor and indoor environments (see Table V.4). As such, this means that our attacks can be executed from a significant distance like from the other side of the street or from another room, for instance.

As some messages may be only available in certain conditions, a second element to consider is then the context in which the attack can be achieved. As an illustration, Nearby Info messages are continuously available thus constantly exposing the user to the corresponding tracking threat. On the other hand, AirDrop messages, that can be harvested for identifiers (see Section V.7), are only available upon a file transfer. Table V.5 summarizes the context in which the messages are broadcasted along with their corresponding threats.

Provided that the aforementioned conditions are met, most of those attacks are straightforward to implement. However, hashed identifiers and voice commands recoveries may be more complex to perform: they both require prior knowledge under the form of a dictionary, and the voice command attack can be negatively impacted by speech variations (see Section V.8.2).

To finish, a last aspect to consider is the privacy risk [START_REF] Gerber | Investigating People's Privacy Risk Perception[END_REF] associated with the elements of information obtained by a potential attacker. Through physical tracking and activity inference, users may be affected by stalking, surveillance and burglary. More worrisome, e-mail addresses and phone numbers may expose users to spear-phishing and malicious account recoveries. Overall, we highlight that most information elements could be leveraged to profile the user as they reveal identifiers, activities, whereabouts and owned devices. 

V.10 Recommendations

In this section, we present a set of recommendations for the design and implementation of continuity protocols. Complementing the ones introduced in [START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF] and [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], we point out that all the following protection measures should be addressed by Apple.

Encryption and content minimization of continuity messages: When possiblee.g. when devices are associated with the same iCloud account and share cryptographic keys, or when such keys are exchanged during a pairing procedure between two devicesthe content of Apple Continuity messages should be encrypted 1 . In case the data cannot be encrypted, the content exposed in clear should be kept to a bare minimum: for instance, by avoiding the exposure of the device status and characteristics (see Section V.5).

Timestamps: Timestamping Apple Continuity messages is a simple countermeasure that could be considered to defeat the replay attacks detailed in Section V.4. Furthermore, most Apple devices have a local clock and broadcasted messages already contain authentication tags. Therefore, including a timestamp with a coarse granularity (i.e. seconds or minutes) would be enough to prevent long term tracking while avoiding to expose users to clock-based fingerprinting [START_REF] Arackaparambil | On the reliability of wireless fingerprinting using clock skews[END_REF].

Synchronization between continuity protocols and device address changes:

Identifiers, counters and data embedded in continuity messages can expose users to tracking if they are not rotated exactly at the same time as the BLE device address (see V.11. Conclusion 140 Section V.3). To tackle this privacy menace, the rotation of the address and the content of Apple Continuity messages should be then carefully synchronized. Note that, the BLE device address and continuity protocols do not belong to the same network layer. Thus, from a technical point of view, this could make the synchronization challenging.

Use of temporary random device addresses when advertising: At the exception of smarthome appliances, most Apple devices are made to be carried by users over time. To undermine related physical tracking issues, continuity messages that are advertised over a stable device address (see Section V.2.3.2) have to implement the privacy provisions of the LE Privacy feature [38, Vol 3, Part C, sec. 10.7]. Moreover, in order not to be predictable by a remote attacker [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], the rotation of the temporary pseudonyms should be done stochastically instead of relying on a 15 minutes fixed timer.

V.11 Conclusion

To conclude, this chapter disclosed a collection of privacy issues in the Apple Continuity protocols that range from mild leakages, such as the exhibition of device models, to serious leakages such as the exposure of PII (i.e. e-mail addresses and phone numbers).

First, we defined the ins and outs of continuity protocols before to present the methodology that we used to reverse engineer1 the suite of Apple Continuity protocols. General features of Apple Continuity messages are discussed as well and we witnessed that, even if Apple devices have cryptological capabilities, such messages are never encrypted as a whole. Besides, we pointed out that messages of AirPrint, AirDrop, "Hey Siri" and AirPlay are advertised over Public and stable Random Non-resolvable device addresses, trivially exposing their users to physical tracking.

Second, we made an inventory of identifiers and counters carried by Apple Continuity messages that can be leveraged for passive tracking purposes. Beyond those artifacts, we also demonstrated that the Lid Open Count and battery levels of AirPods earphones embedded within Proximity Pairing messages hold together a potential for tracking users. Moreover, we highlighted that fingerprinting the system through its global energy can constitute an additional privacy threat that would further improve the amount of identifying information.

Third, we discovered that the interactivity of Apple Continuity protocols can be leveraged to mount active tracking attacks for which the principle is simple: by replaying captured messages, the attacker will force a device to reveal its presence and identity. To follow this finding, we described then experimentally evaluated a novel active attack based on the replay of corrupted Handoff messages. In addition to tracking, we emphasized that such a replay attack can serve to link Apple devices belonging to the same user too.
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Fourth, we compiled an exhaustive list of device status and characteristics broadcasted in clear within Apple Continuity messages. From the device class to its battery status, through its model and color, we showcased that such fields provide meaningful information on the device that could lead to a plethora of privacy invasive applications. In this regard, we detailed four of those applications, namely inventory attacks, visual identification, event correlation and activity monitoring.

Fifth, we found that smarthome appliances, such as an Eve motion sensor and an Osram connected lightbulb, include a Global State Number (GSN) in their HomeKit emitted messages that a passive attacker can leverage to gain knowledge on the presence and activity of an individual within its household. More specifically, we showed that such a GSN is each time incremented in reaction to an environment modification induced by the user, or when this latter triggers a particular command.

Sixth, we demonstrated how hashed e-mail addresses and phone numbers exposed within AirDrop and Nearby Action messages can be recovered through guesswork attacks. To this end, we selected different sets of identifiers and provided insights on how to build a dictionary of practical size prior to simulate those attacks. Afterwards, we analyzed the experimental results, and asserted that recovering hashed identifiers without ambiguity is possible in a matter of seconds when the set of potential value contains several thousand identifiers.

Seventh, we detailed how the perceptual hash advertised over "Hey Siri" messages can be passively exploited in order to infer spoken commands of a remote user. To start this study, we introduced the Philips Robust Hash algorithm that is one state of the art perceptual hashing technique. Thereafter, we followed our work by analyzing the CoreSpeech binary in order to understand how Apple devices compute such a hash. Ultimately, we presented how to build a dictionary of hundred commands and digests before to experiment a dictionary attack on perceptual hashes of Siri. From our results, we observed that a precision as high as 67% with a recall of 52% can be obtained for an exact match of the perceptual hashes.

Last but not least, we evaluated the impact of the reported attacks relying on several elements, namely the feasibility of such attacks with regard to the range, the context in which they can be performed, and the privacy risk resulting from the information that a potential attacker can obtain. Furthermore, upon some minimalist conditions are met (i.e. the attacker is in range and is able to capture the Apple Continuity messages broadcasted by its target), we attested that most of those attacks are straightforward to implement.

Finally, to protect users against the uncovered privacy threats, we provided a set of recommendations that should be taken into account during the design and implementation of Apple Continuity protocols. From the encryption and content minimization of continuity messages to the use of temporary random device addresses when advertising, we pointed out that all the described countermeasures should be addressed by Apple.

V.12. Concluding remarks 142 V.12 Concluding remarks Several severe security and privacy threats have been exposed in Google [START_REF] Antonioli | Nearby Threats: Reversing, Analyzing, and Attacking Google's 'Nearby Connections' on Android[END_REF] and Apple [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF][START_REF] Stute | A billion open interfaces for Eve and Mallory: MitM, DoS, and tracking attacks on iOS and macOS through Apple Wireless Direct Link[END_REF] continuity protocols. In all cases, the specifications were not public and the authors had to rely on reverse engineering to understand the system prior to identify its flaws.

As a result, this is yet another demonstration that security through obscurity does not work. Also, this shows that even companies with extended resources and dedicated security/privacy teams cannot only rely on internal scrutiny of their systems to avoid such issues.

To specify dedicated protocols, or at least to set up guidelines for the design and implementation, we believe that those technologies could benefit a joint standardization effort 1 with security researchers.

To finish, it is important to mention that the privacy issues demonstrated in this chapter were reported to Apple, Eve and Osram on May 29 th , 2019. However, as of July 7 th , 2020, none 2 of those issues have been corrected. Given the popularity of the appliances produced by Apple and partner companies, hundreds of millions users are then currently impacted as the discovered concerns apply to all the 1.5 billion active Apple devices worldwide [199]. To make the matter worst, most of the presented vulnerabilities can be passively exploited by a remote eavesdropper.

Note that, in order to allow the reproduction of our research results, we publicly released a Wireshark dissector [START_REF] Celosia | Joker -A Wireshark dissector for Bluetooth Low Energy (BLE) advertisement packets of Apple Continuity, Microsoft CDP and Garmin proprietary protocols[END_REF] that parses messages advertised by the BLE Apple Continuity protocols.

1. Since continuity protocols are transversal to several wireless technologies, such standardization works could take place at IETF rather than in technology-specific organizations such as IEEE 802 and Bluetooth SIG.

2. At the exception of the exposed Lid Open Count that is now reset each time the AirPods are back in case.

Chapter VI Conclusion

This chapter provides the final conclusion with regard to the work done on privacy issues induced by the use of wireless communicating IoT devices. At the beginning, a summary relating our studies on the physical tracking and inference of users information threats is given in Section VI.1. Then, Section VI.2 outlines the limitations of this thesis as well as its perspectives for future work. The industrial, social and media impacts that stem from our research are detailed in Section VI.3. At the end, Section VI.4 furnishes concluding remarks highlighting that the users privacy cannot be fully achieved through the sole technical side.

VI.1 Summary

There is a clear momentum in the development of the IoT, and a growing pressure for more privacy from both regulators and consumers. During this thesis, we then aimed at strengthening the research activity on the IoT, and especially on its radio link. As a result, we presented privacy challenges that wireless communications of the IoT devices can raise.

State of the Art: By introducing service discovery mechanisms in wireless devices, we began our state of the art. Afterwards, we demonstrated that radio signals are a source of privacy leaks that can fall into two categories: physical tracking and inference of users information. In the context of wireless technologies, we reviewed existing privacy considerations. As of today, we found that device address randomization as well as data encryption are the only mechanisms used by manufacturers to preserve the privacy of their customers. As a reminder, device address randomization is intended to replace the link layer identifier with a temporary and random one in order to tackle physical tracking issues, while data encryption is the process of encoding information to prevent unauthorized access. However, we pointed out that such mechanisms alone cannot protect the privacy of users. More worrisome, even if data are encrypted, metadata can also betray sensitive information.
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After this survey, we gave an overview of the IoT deployment prior to show that its massive adoption increases wireless communications proportionally to its related privacy threats. To finish our state of the art, we point out that privacy protection regulations and entities such as the GDPR, the ePR and the CNIL conduct efforts to slow down the deployment of wireless based analytics systems.

Tracking users leveraging advertising data and metadata: Physical tracking was the first privacy threat that we dealt with in this thesis. To study this menace, we leveraged two datasets 1 crowded with BLE advertisement packets (dataset P assive ) and GATT profiles (dataset Active ) that we collected in the wild. To minimize the privacy risks associated with the captured data, we further presented how we anonymized and sanitized such datasets before to describe passive and active attacks. As its name suggests, passive attacks are the most devious as the eavesdroppers leave no traces on wireless channels.

To start the first milestone of this thesis, we made some observations on dataset P assive . Although the LE Privacy feature appears to be widely adopted, we discovered that some manufacturers still use Stable devices addresses when advertising, trivially exposing their users to tracking. Note that, the LE Privacy feature was introduced in Bluetooth Core Specification version 4.0 [39, Vol 3, Part C, sec. 10.7] and specifies the use of temporary random pseudonyms. Despite those provisions, we analyzed the device address randomization and uncovered that some random addresses have lifetimes exceeding the recommended maximum duration of the Bluetooth Core Specification, while some others seem not to be randomly generated.

Based on our passive attacker model whose objective was to defeat the device address randomization scheme leveraging advertising data and metadata, we exposed that static identifiers and non-reset counters included in advertisement packets of manufacturers such as Apple, Microsoft and Google can hamper the anti-tracking feature.

In order to raise public awareness toward physical tracking concerns that can stem from wireless technologies, we implemented Venom, a Visual and ExperimeNtal BluetOoth Low Energy tracking systeM. Through its graphical interface, this demonstrator also aimed to alert on the fact that privacy protection in the wireless era goes beyond the device address randomization. To support this statement, we described how Venom can be used to experiment privacy-preserving mechanisms, and prototyped one that does not require any actions from users on their devices to express their dissent to tracking.

In a second time, after passive attacks, we focused on the possibilities of an active attacker that exploits GATT profiles to link distinct random addresses generated by a single device. Relying on dataset Active , we exhibited that the content of a GATT profile can be leveraged to fingerprint a device. Indeed, we found that identifiers and values composing this profile are diverse enough to act as a fingerprint.

As a conclusion of this first milestone, we proposed the first attempt at automatically 1. Used throughout this thesis, we draw the attention to the fact that those two datasets are not exclusively dedicated to study the physical tracking issue.

verifying the correctness of address randomization implementation through Valkyrie (Verification of Addresses LinKabilitY in address Randomization ImplemEntations), a versatile tool that is able to check properties written in a Wireshark based language. From previous works done by the community, we presented limitations of the address randomization as well as privacy properties of network traffic. Based on the definition of the frame unlinkability, we then designed a specific rules syntax, a verification process and an address reuse detection mechanism. To evaluate Valkyrie, we relied on a set of sixty different devices composed of laptops, watches and smartphones running across distinct OS versions. Finally, we asserted that this tool is able to detect issues in the generated wireless traffic.

Inferring users information from Bluetooth/BLE wireless communications: To follow our study on physical tracking, we examined how passive and active attackers can infer users information from the Bluetooth/BLE wireless communications. To this end, we established our threat model that was considered throughout this second milestone of this thesis, and identified passive attacks that could be set up. Moreover, it is important to mention that we limited our threat model to information that can be directly inferred from the observations of exposed data.

Leveraging dataset P assive , we showed that the advertising data hold enough information to reveal the device model, type and manufacturer through the OUI, company IDs and service UUIDs, for instance. More worrisome, we found that such a device information can betray a medical condition of its corresponding user (e.g. a glucometer and an insulin pen both reveal diabetes). In the same vein, we observed that the identity of the owner under the form of its first name, last name or complete name can be included in the payload of advertisement packets raising serious privacy issues.

To complete our work, we analyzed active attacks over services, characteristics, and readable characteristics exposed within GATT profiles of dataset Active . From our observations, we noticed that leaked information through identifiers and enumerated types can be leveraged for inventory attacks. Likewise, we made an unexpected discovery in which the LG manufacturer diverts Bluetooth SIG defined characteristics to include data that are not related to their initial purpose. As an example, the LG G5 and G6 smartphones use the Altitude Bluetooth SIG defined characteristic to carry a static device address. As such, this finding assesses the lack of control with regard to the release of connected objects.

Then, we depicted an activity inference attack that exploits a request-response mechanism of the L2CAP layer of the Bluetooth stack to infer the activity of a smartphone. Combining timing measurements with a change point detection analysis, we demonstrated that a nearby eavesdropper can be able to detect state changes of a device with a high accuracy.

Similarly to Venom, we wanted to raise public awareness about the information that can be inferred from the observations of the data contained within the advertisement packets and GATT profiles. As a consequence, we prototyped Himiko, a Human Interface for Monitoring and Inferring Knowledge on Bluetooth Low Energy Objects. Through this tool, we also highlighted that privacy considerations of the Bluetooth Core Specification have to be complemented.

Finally, from restricting the access to values of characteristics included within GATT profiles to enforcing a random back-off time in the L2CAP ping response process, we concluded this second milestone by furnishing recommendations that limit the impact of the outlined privacy threats.

The case of personal data leaks in Apple BLE Continuity protocols: In order to improve the illustration of the aforementioned physical tracking and inference of users information issues, we continued our research presenting a collection of personal data leaks that apply to the particular case of Apple BLE Continuity protocols. Given the popularity of the appliances produced by Apple and partner companies, we underline that hundreds of millions users are then currently impacted as the discovered concerns apply to all the 1.5 billion active Apple devices worldwide [199].

To open the third milestone of this thesis, we described the methodology that we used to thoroughly reverse engineer the suite of Apple Continuity protocols. Also, we discussed general features of their advertised messages such as their content protection and the use of random device addresses. Besides, we showed that 1) the payload of Apple Continuity messages is never encrypted as a whole and 2) some protocols such as AirPrint, AirDrop, "Hey Siri" and AirPlay use stable device addresses, thus exposing their users to tracking.

To pursue our work, we compiled a list of identifiers and counters included in broadcasted messages that can lead to passive tracking menaces. Beyond those artifacts, we found that battery levels and the Lid Open Count of AirPods earphones hold together a potential for tracking users.

Afterwards, we discovered a novel active tracking attack based on corrupted Handoff messages. Supplementing the Instant Hotspot replay attack introduced by Martin et al. [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF], we emphasized that our attack is easier to exploit as Handoff messages are more common than Instant Hotspot ones.

To infer the activity and presence of an individual within its smarthome, we showed how a remote attacker can exploit increments of the Global State Number (GSN) embedded within HomeKit messages. Note that, we draw the attention to the fact that this attack does not allow the direct inference of a specific activity but exposes a coarse grain information (e.g. moving in a room, using a light, etc.).

Included within AirDrop and Nearby Action messages, we also demonstrated how hashed e-mail addresses and phone numbers can be recovered through guesswork attacks (i.e. brute force attacks for re-identification). As the prerequisite of those attacks, we selected different sets of identifiers from official and leaked databases, and described how to build a dictionary of practical size prior to simulate our attacks. From the experimental results, we asserted that recovering those hashed identifiers is possible without ambiguity in a matter of seconds when the set of potential value contains several thousand identifiers.

From our reverse engineering of Apple Continuity protocols, we uncovered that "Hey Siri" messages embed a 2-byte long perceptual hash. To push our study further, we made some observations on the Siri's perceptual hashes at our disposal, and showcased that they depend on the command but on the user too. Indeed, the speaking speed, the voice tone as well as the pronunciation appear to have an influence on the generated digest. To evaluate our attack on such hashes, we built a dictionary of hundred commands and digests. For an exact match of the perceptual hashes, the results revealed that a precision as high as 67% with a recall of 52% can be obtained.

Last but not least, we appraised the impact of the reported privacy vulnerabilities. Relying on the feasibility of our presented attacks with regard to the range, the context in which they can be performed and the privacy risk resulting from the information that a potential attacker can collect, we attested that most of those attacks are straightforward to implement.

To finish, from the encryption and content minimization of continuity messages to the use of temporary random device addresses when advertising, we concluded this third milestone by providing recommendations that should be addressed by Apple to protect the privacy of their users.

As a side note, all the privacy issues identified during our research were responsibly disclosed to the following manufacturers: AirBolt, Apple, Arcadyan, Bang&Olufsen, Boosted Boards, Bose, Diggro, Eve, Fitbit, Garmin, Giant, Google, GoPro, Jabra, Jewelbots, LG/LG Innotek, Logitech, Microsoft, Nikon, Nintendo, Nokia/Withings, OculusVR, Osram, Samsung, Sony, Tile and Xiaomi.

VI.2 Limitations and perspectives

In this section, we detail the limitations of this thesis through a set of ten perspectives that could be applied to future work.

The pairing process of Bluetooth is based on key passing to identify devices and cipher communications. When a connection initiator or responder has NoInputNoOutput capabilities, the key generation method defaults to the unauthenticated Just Works mode [38, Vol 3, Part H, sec. 2.3.5.2]. As such, this means that devices such as smartphones and smartwatches with secure options have to downgrade their security to communicate with a NoInputNoOutput device. To extend our work, a first perspective could be then to leverage the possibilities offered by this downgrade attack to fetch IRKs (see Section I.2.2.2) of nearby devices in order to track their corresponding owners over time.

Briefly exploited, the Microsoft CDP and Google Nearby BLE proximity protocols merit as much attention as the Apple Continuity ones. In this regard, Google Nearby has been thoroughly reverse engineered by Antonioli et al. [START_REF] Antonioli | Nearby Threats: Reversing, Analyzing, and Attacking Google's 'Nearby Connections' on Android[END_REF]. However, to the best of our knowledge, there is no similar work on the Microsoft CDP protocol. As a consequence, an in-depth study on this protocol (and on proximity protocols in general 1 ) could be a second perspective to consider.

De facto, the Venom demonstrator leverages the BD_ADDR and data included within advertisement packets to passively track devices. A third perspective could be to enrich this demonstrator with the GATT profiles fingerprinting technique (see Section III.4.2) to improve its tracking algorithm. Moreover, integrating privacy-preserving data structures as introduced by Alaggan et al. [START_REF] Alaggan | Privacy-Preserving t-Incidence for WiFi-based Mobility Analytics[END_REF] could augment the system as well. Note that, we point out that Venom has been made to deploy and test privacy-enhancing features for tracking systems. To this purpose, we implemented a fully-functional platform that future research works could also reuse in order to experiment their custom privacy protection mechanisms.

Envisioned as a fourth perspective, we could develop a more generic automated version of the attempt at verifying the correctness of address randomization implementation that we provided in Section III.5. Indeed, we witnessed that the manual leakage search is cumbersome in practice, and engineers need a good understanding of protocols before to write new rules. In its current state, our proposed approach is thus mainly suitable for regression testing. Since all the vendor-specific extensions are hard to manually tackle, an automated approach would scale better. In fact, with enough network traffic captures from the same device types 2 for a lot of device types, a fully automated version could run as follows:

-if a field is the same (or related in a similar fashion, e.g. a counter) in all captures, then it is probably a fixed part of this packet type or structure; -if a field is the same (or related) in all devices of a certain type, but different to other device types, then it is probably a feature that can be used to identify this device type; and in many cases uniquely link those devices, provided that there is only a limited number observed at a given time; -if a field is the same (or related) to just one device, but different to other devices of the same type, then it is a unique feature and a clear linkability leakage.

Applying this process, our Valkyrie tool could then automatically work with never seen vendor extensions and consider the sequence of extension blocks too. Likewise, it would allow being easily ported to more packets and protocols, as long as there exist Wireshark dissectors.

As a fifth perspective, our Bluetooth based timing attack (see Section IV.4.3) could be evaluated on several different IoT devices. Beyond our theoretical discussion on its applicability to connected objects (see Section IV. 4.3.6), this would allow to further appraise the impact of this attack on the privacy of users, while bringing results more statistically significance at the same time. In addition, we relied on detecting changes within solely seven device states. As a result, the exploration of more fine-grained inferences

1. With the multiplication of connected devices and their related applications/services, this perspective can be extended to all the existing proximity protocols.

2. But from different instances.

could benefit this work: for instance, by selecting other states that could leak web-surfing, use of GPS and downloading data.

During our study on Apple Continuity protocols, we showed that battery levels as well as the Lid Open Count of AirPods earphones can be used together to defeat the address randomization scheme. At the end of our demonstration, we highlighted that the global energy of the system could be exploited as well for tracking purposes (see Section V.3.2).

As such, a sixth perspective could start with modeling the energy transfer between the case and the AirPods prior to create a global energy fingerprint that could be leveraged to track a set of AirPods between usage sessions.

In this same study, we detailed how perceptual hashes included within "Hey Siri" messages can lead a passive eavesdropper to infer spoken commands of a remote user. To this end, we observed that the values of such perceptual hashes depend on the speaker (see Section V.8.2). As a seventh perspective, we could tackle this issue by building a universal dictionary of commands and digests with the help of machine learning to mimic the voice of the target [START_REF] Gopala | Festvox: Tools for creation and analyses of large speech corpora[END_REF].

Overall, the contributions that we provided in this thesis are mainly focused on the BLE technology. A eighth perspective could be then to extend our research to other similar 1 IoT radio technologies such as Z-Wave and ZigBee. In particular, we can ask the question: "how our presented results on physical tracking issues and inventory attacks could be applied to other technologies ?". Additionally, evaluating the impact of our demonstrated attacks on wireless technologies such as LoRa and Sigfox could be considered too as their long range (i.e. several miles) could more expose devices to privacy breaches.

To defeat the device address randomization, a ninth perspective could be to correlate advertising data of BLE with data and metadata that other technologies such as Wi-Fi can furnish. As a reminder, this approach has been already introduced in Section IV.4.3.1 where we leveraged emitted Wi-Fi frames to obtain a BD_ADDR, even if the targeted Bluetooth device was not in discoverable mode.

Furthermore, to bring more material to such a ninth perspective, we could add the problem of connected vehicles which are likely to embed a plethora of wireless communicating sensors. More precisely, to provide insights on this future work, we made an experiment with Tire Pressure Monitoring Systems (TPMS). Note that, TPMS aim to monitor the air pressure inside the pneumatic tires on various types of vehicles. Deploying on each wheel of a vehicle, a TPMS sensor then sends its tire pressure data to TPMS receivers via Ultra High Frequency (UHF) radio 2 . Actually, additional information such as the TPMS serial number is also transmitted to the receivers. Acting as a unique and static identifier, it is important to mention that this information can be collected research where we can observe that collecting TPMS messages continuously broadcasted by our car 1 parked near our laboratory could lead to several privacy threatening applications such as physical tracking and worker surveillance. Moreover, by leveraging the static identifiers carried by such TPMS messages, it could be then possible to link the random device addresses generated by the BLE devices that belong to the driver and/or passengers of the car.

Lastly, a tenth and endless perspective would be to jointly work with regulation entities in order to 1) undermine the abuse of wireless technologies and 2) bring our technical point of views to public debate with regard to their privacy implications. In this direction, we described two main privacy vulnerabilities (i.e. physical tracking and inference of users information) throughout this thesis, and endeavored to give recommendations (see Section IV.6 and Section V.10) that manufacturers have to take into account during the design and implementation of their protocols to preserve the privacy of their users. In parallel, we draw the attention to the fact that this perspective can be linked to the implementation verification of the protocols and the providing of tools such as Valkyrie [START_REF] Celosia | Valkyrie -A generic framework for verifying privacy provisions in wireless networks[END_REF] to audit and/or certify such implementations.

VI.3 Impacts of our research

Outside the scientific community, we adopted a strategy to disseminate our results whose objective was to reach all stakeholders: from regulators to consumers, through industrials. Leveraging this approach, the impacts we had are detailed as follows.

Impact on the industry: The outcomes of this thesis have been discussed with industrials developing and/or deploying IoT products. More precisely, we were contacted by Google with regard to our paper [START_REF] Celosia | Saving Private Addresses: An Analysis of Privacy Issues in the Bluetooth-Low-Energy Advertising Mechanism[END_REF] demonstrating that the BLE advertising data can be leveraged to defeat the LE Privacy feature. Actually, the general knowledge established around this issue gave rise to several meetings and interviews with the privacy engineers 2 of Google in order to understand how the identified pitfalls (i.e. static identifiers and non-reset counters in advertisement packets) might affect their software and devices.

As mentioned in Section VI.1, the privacy issues found during our research were responsibly 3 disclosed to twenty eight manufacturers including Microsoft, Nokia/Withings, Samsung and Sony. In fact, some of them such as Microsoft considered our findings and allowed us 4 to publish our results, others such as Sony redirected our requests to their own disclosure platform in order to register our discovered vulnerabilities but, thereafter, appeared to ignore our warnings, and most of the remaining manufacturers did not react at all 5 .

1. To minimize the privacy implications that this experiment can raise, we only collected TPMS messages emitted by a car at our disposal.

2. Especially, with Eun-Jeong Shin [237]. 3. We left manufacturers time to react to our solicitations. 4. After having reviewed their systems/protocols. 5. They did not even respond to our e-mails.
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Note that, the responsible disclosure with regard to the case of the privacy leaks in Apple Continuity protocols is more particular. Indeed, we found major flaws and, more than a year later, they did nothing 1 to address such issues. Did Apple consider the reported privacy concerns as not serious ? Or are those concerns too complicated to fix ? Overall, this seems to be in contradiction with the Apple claimed motto [238]: "privacy is a fundamental human right. At Apple, it's also one of our core values".

Finally, supporting the IoT chair at INSA Lyon, the SPIE ICS company has been privileged by having a direct access to our results. Indeed, regular meetings have assured that this industrial benefits from the developed expertise on privacy preservation within wireless communications. As a side note, we refer the interested readers to the white book [START_REF]IoT & Privacy -Comment assurer la confidentialité sur les réseaux sans fil ? L'exemple du BLE[END_REF] relating our exchanges in the context of this chair.

Popularization: Mathieu Cunche [START_REF] Mathieu | [END_REF], one of the supervisors of this thesis, diffused the findings of our study at INSA Lyon through the master level courses Sécurité et Vie Privée [START_REF] Mathieu | Télécommunications -Sécurité et vie privée[END_REF] that is dedicated to the privacy protection.

In addition, to allow the reproduction of our research results, we put efforts to produce software [START_REF] Celosia | Joker -A Wireshark dissector for Bluetooth Low Energy (BLE) advertisement packets of Apple Continuity, Microsoft CDP and Garmin proprietary protocols[END_REF][START_REF] Celosia | Valkyrie -A generic framework for verifying privacy provisions in wireless networks[END_REF]. Besides, we point out that the Furious MAC research group at the United States Naval Academy relied [START_REF]An Apple Continuity Protocol Reverse Engineering Project[END_REF] on our reverse engineering of Apple Continuity protocols (see Section V.2) to implement their custom Wireshark dissector 2 . Through a talk [START_REF] Martin | Reverse Engineering Apple's BLE Continuity Protocol for Tracking, OS Fingerprinting, and Behavioral Profiling[END_REF] that they give at SchmooCon XVI (an American hacker convention), they also participated to the popularization of our work on Apple Continuity.

Lastly, during the COVID-19 pandemic, we made our technical insights on the BLE available to French journalists [243,[START_REF] Tonic | Programmez! podcast 17 : tracking et Covid19[END_REF] to better inform the general public of the privacy implications that the use of such a technology can have, especially when it is employed in a proximity tracing mobile application.

Our work in the press: Our study on personal data leaks in Apple Continuity protocols [START_REF] Celosia | Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-Low-Energy Continuity Protocols[END_REF] has been relayed a lot in the press. Indeed, several famous French Information and Communications Technology (ICT) websites [START_REF] Innocente | Bluetooth : Continuité n'est pas assez étanche avec l'échange de données[END_REF][START_REF] Naitmazi | Continuity d'Apple : une fuite du Bluetooth permet de récupérer vos informations[END_REF] as well as a popular science magazine [START_REF] Hertel | Des chercheurs français découvrent des fuites d'informations sensibles sur les appareils Apple[END_REF] alerted the general public of our discoveries. Likewise, this work made the front page of Le Progrès [START_REF] Lepetitgaland | Connexions Apple : un étudiant de l'Insa Lyon détecte des failles[END_REF], a daily newspaper that reports primarily on local news in the Rhône-Alpes region.

VI.4 Concluding remarks

In this ending section, we explain what we hope will happen to our research results.

1. At the exception of a minor improvement on the Lid Open Count of Proximity Pairing messages emitted by AirPods (see Section V.12).

2. Differing from the one they released, our Wireshark dissector [START_REF] Celosia | Joker -A Wireshark dissector for Bluetooth Low Energy (BLE) advertisement packets of Apple Continuity, Microsoft CDP and Garmin proprietary protocols[END_REF] is as capable of parsing messages from Apple Continuity protocols as from additional BLE proprietary protocols such as the Microsoft CDP [148] and Garmin ones.

Beyond science, our objective is to raise public awareness through this thesis. Leveraging our findings along with the demonstrators and media coverage, we increased the visibility of the privacy issues associated with wireless communications of the IoT devices. Indeed, it is our belief that informed consumers will select more privacy friendly appliances forcing industrials to develop privacy preserving systems and, at the same time, inciting legislators as well as regulators to seriously consider those issues.

Having our results integrated into products and processes of industrials is also one of our expected outcome. To this end, we gave the industry access to software and experimental platforms in order to evaluate their products during the development phases. In particular, we draw the attention on the implemented approach within our Valkyrie tool (see Section III.5). As a part of a certification process, vendors could then rely on such a tool to verify that privacy properties are enforced by their devices. Note that, this joins the privacy by design approach advised by the GDPR and ePR regulations (see Section II.6.4).

Bluetooth/BLE and Wi-Fi are radio technologies that we focused in our work. In fact, those technologies are part of the IEEE 802 standards committee which specifies Wireless Personal Area Network (WPAN) standards. Currently, it is important to mention that such standardization bodies conduct efforts toward improving security and privacy protection when developing standards. In this regard, our work could benefit future radio standards in order to elaborate guidelines, ensure that appropriate measures are taken to correct critical flaws, and avoid privacy concerns such as those identified in this thesis.

From users privacy protection to general public information, government bodies such as the CNIL have an important role to play too. Respectively detailed in Section III.3.5 and Section IV.5, our Venom and Himiko demonstrators could be then suggested as an addition to the Laboratoire d'Innovation Numérique de la CNIL (LINC) [249].

To finish, Data Protection Authorities (DPA) could amplify the social impact of our research by reusing our findings. As an example, this could take the form of our results being cited within their opinions and regulatory documents such as the PIA of CNIL dedicated to the IoT [START_REF]Privacy Impact Assessment (PIA) -Application to IoT devices[END_REF], but also the opinion of the G29 (Working Party of Article 29) on the deployment of the IoT [109]. Table G.13 -Extended list of Tethering Source Presence Network Type codes (as reported in [START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF]). 
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  1.1] (see Figure I.1).

Figure I. 1 -Figure I. 2 -Figure I. 3 -

 123 Figure I.1 -Representation of the Bluetooth stack along with its Logical Link Control and Adaptation Protocol (L2CAP) layer.

Bluetooth 79 1 -

 1 MHz channels, BLE operates on 40 2-MHz physical channels. Three of those channels -channel 37 (2402 MHz), 38 (2426 MHz) and 39 (2480 MHz)are dedicated to the discovery mechanism called advertisement, while the 37 remaining ones are leveraged for data transmissions [38, Vol 6, Part B, sec. 1.4] (see Figure I.4).

Figure I. 4 -

 4 Figure I.4 -Representation of the Bluetooth Low Energy (BLE) spectrum emphasizing the advertising channels (channel 37 (2402 MHz), 38 (2426 MHz) and 39 (2480 MHz)).

  Contains the preferred connection interval range of the Peripheral 0x16 Service Data-16-bit UUID Consists of a 16-bit service UUID along with the data associated with this service 0x19 Appearance Describes the physical representation of the device (sports watch, insulin pen, etc.) 0x26 Transport Discovery Data Determines the organization and transport of the supported service 0xff Manufacturer Specific Data Contains custom data for manufacturerdefined applications AD structure (excluding itself), followed by a 1-byte field specifying the type of the AD and finally, a sequence of up to 29 bytes of data (see Figure I.5).
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 6 Figure I.6 -Structure of a GATT profile. Services are composed of a UUID along with two handles (Handle Start and Handle End) delimiting the hierarchically dependent characteristics. Characteristics are each constituted of a handle, a UUID, a set of properties and a value containing data.

Figure II. 2 -

 2 Figure II.2 -Example of radio technologies used by wireless devices along with associated frequency bands and applications.

Figure II. 3

 3 Figure II.3 presents a Bluetooth based physical tracking system where RSSI and identifiers embedded in wireless signals broadcasted by nearby devices are leveraged by several sensors to accurately 1 determine the position of the involved device. With regard to the first case, it is important to mention that this type of physical tracking system does not need

Figure II. 3 -

 3 Figure II.3 -Representation of a Bluetooth based physical tracking system.
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 6274 Figure II.4 -Example of IoT devices surrounding users.

II. 6 .Figure II. 5 -

 65 Figure II.5 -Representation of wireless technologies used by IoT devices.

III. 3 .Figure III. 1 -

 31 Figure III.1 -Representation of a successful attack. The BLE device is randomizing its BD_ADDR (in italic) over time while keeping a static identifier (in bold) in the advertising data. Such a 5-byte identifier can be used by a passive attacker to link together the packets generated with the three different BD_ADDR.

Figure III. 2 -

 2 Figure III.2 -Empirical cumulative distribution function for lifetimes of device addresses.

Figure III. 3 -

 3 Figure III.3 -Distribution of Random Static addresses using a resolution of 1024 bins (size of a bin = 2 36 ).

Figure III. 5 -

 5 Figure III.5 -Sequence of Apple Handoff advertisement packets showing that the IV is not reset after the change of BD_ADDR at 900.003.

Figure III. 9 -

 9 Figure III.9 -Sequence of Microsoft CDP advertisement packets in which the lifetime of the Device Hash overlaps the BD_ADDR randomization scheme. At 959.719, the BD_ADDR changes while the Device Hash remains identical until 3599.113.
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 10 Figure III.10 -Format of the Google Nearby Service Data-16-bit UUID AD structure.
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 3 Passive tracking 55 III.3.5.1 The Venom tracking system
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 11 Figure III.11 -Architecture of the Venom tracking system.
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 4 Active tracking based on GATT profiles 57 representation of the user itinerary inside the room is then displayed on a screen (see Figure A.1 in Appendix A).

Figure III. 12 -

 12 Figure III.12 -Representation of a successful attack. The BLE device is randomizing its BD_ADDR (in italic) over time while keeping a static GATT profile. Such a GATT profile can be leveraged by an active attacker to generate a fingerprint of the device before to link together its three different BD_ADDR.

1 .

 1 For instance, the value of the Device Name characteristic is iPhone for both an Apple iPhone 6 and an Apple iPhone 8 smartphone (see Figure B.1 in Appendix B).

Figure III. 13 -

 13 Figure III.13 -Anonymity sets of GATT profiles in dataset Active . The dot size is proportional to the number of devices in the set.

1 .

 1 The identification of the device model is based on the values of the Model Number String and Manufacturer Name String characteristics along with the presence of Apple specific services (Apple Continuity Service, Apple Nearby Service, etc.).

Figure III. 15 -

 15 Figure III.15 -Functional diagram of Valkyrie. A network trace along with a set of rules are provided as inputs to the tool. The Wireshark dissector is leveraged for the protocol field denomination that must be specified in rules. At the end of the analysis, Valkyrie outputs a report specifying verified rules and breached ones with detailed warning messages.
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 31 Figure IV.1 -Distribution of OUI among Public device addresses.

Appearance

  and Class of Device: The Bluetooth Core Specification defines Appearance [38, Vol 3, Part C, sec. 12.2] and Class of Device [38, Vol 3, Part C, sec. 3.2.4] as two AD structures that carry information about the nature of a device, and more specifically its external appearance.

1 Figure IV. 3 -

 13 Figure IV.3 -Bluetooth ping flood RTTs (individual and average), percentage change and actual state (ground truth) while alternating between the idle and locked states. The percentage change is computed from the average RTTs. Vertical bars correspond to the times of the actual state changes.

11 Figure IV. 4 -

 114 Figure IV.4 -Representation of the Bluetooth based timing attack. The attacker floods his target with L2CAP ping requests while measuring their corresponding RTTs. Note that, only Echo Response of B ping class are represented.
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 5 Figure IV.5 -ROC curves for the state change identification from the idle state with the Apple iPhone 6 smartphone.
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 56 Figure IV.6 -Architecture of the Himiko tool.
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 1 Introduction 111 major vendors have developed protocols: Google Nearby [149], Microsoft CDP [148] and protocols used by Apple Continuity [196].

Figure V. 1 -

 1 Figure V.1 -Structure of a BLE advertisement packet used to carry data of Apple Continuity protocols.The data are stored in a Manufacturer Specific Data AD structure (0xff) which starts with the company identifier of Apple (0x004c), followed by one or several continuity messages (CM) presented as a TLV format. Flags is an optional AD structure that is not specific to Apple Continuity protocols, and that can be included by any devices to indicate their discoverable modes and capabilities.
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 56 Figure V.5 -Format of the Proximity Pairing message.
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 7 Figure V.7 -Format of the AirPlay message.
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 8 Figure V.8 -Format of the Magic Switch message.
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 910 Figure V.9 -Format of the Handoff message.
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 11 Figure V.11 -Format of the Tethering Source Presence (Instant Hotspot) message.
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 121314 Figure V.12 -Format of the Nearby Action (iOS Setup) message.
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 3 Passive tracking 122 change, the old Auth Tag is used with the new device address (see Section III.3.4.2.1).

  Hash 3 field of Nearby Action (Wi-Fi Password) messages (see Figure V.13) contains the first three bytes of the SHA-256 hash of the SSID the client device is attempting to join.

Figure V. 15 -

 15 Figure V.15 -Evolution of battery levels and the Lid Open Count from Proximity Pairing messages broadcasted by a set of AirPods earphones. Different device addresses are represented by grey/white areas. Those data depict a day during which AirPods are used intermittently and the case is never charged. Battery levels and the Lid Open Count remain stable during periods longer than the lifetime of the random device addresses.

TetheringFigure V. 16 -

 16 Figure V.16 -Replay of Tethering Target Presence (Instant Hotspot) messages as presented in [1]. By replaying such messages emitted by a Device A, an attacker triggers the emission of Tethering Source Presence (Instant Hotspot) messages by the Device B associated with the same iCloud account.

Figure V. 17 -

 17 Figure V.17 -Replay of Handoff messages with a modified IV. By replaying a Handoff message including an IV less than the last one received (i.e. in this case, 0xe35a), the attacker forces Device B to initiate a new synchronization procedure with Device A through a connection request.

129 0Figure V. 18 -

 12918 Figure V.18 -Representation of the GSN changes extracted from HomeKit messages during two days.For both the Eve Motion sensor and Osram Smart+ lightbulb, the GSN changes can be leveraged as an indicator that leaks the presence and activity of the user in its office.

  Input: D = {(x i , y i )} 0≤i<n , ȳ, ε Output: x such that y = D(x ) and y = Argmin(d(y, ȳ)) y∈D and d(y , ȳ) < ε x = ∅; r = +∞; for (x, y) ∈ D do if d(y, ȳ) <= ε then if d(y, ȳ) < r then x = x; r = d(y, ȳ); end end end Algorithm 2: Dictionary attack on perceptual hashes.

V. 9 .Figure V. 20 -

 920 Figure V.20 -Performance evaluation of the dictionary attack on Siri's perceptual hashes. The precision and recall are presented as a parametric curve computed using the threshold ε. The distance threshold ε covers the interval [0; 4].
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 3 with off-the-shelf hardware and open source software. As an illustration, Figure I.1 in Appendix I presents a draft of this VI.3. Impacts of our research 151

4 - 5 - 6 - 7 - 8 - 9 - 10 -

 45678910 Extended list of "Hey Siri" Device Class codes. Extended list of Nearby Action Device Class codes. Extended list of Proximity Pairing Device Model codes. Extended list of Nearby Action Device Model codes. Extended list of Proximity Pairing Device Color codes. Extended list of Nearby Action Device Color codes. Extended list of Nearby Action OS Version codes.

0x09

  Screen on and video playing 0x0aWatch is on wrist and unlocked 0x0bRecent user interaction 0x0dUser is driving a vehicle 0x0e Phone call or FaceTime* * As reported in[START_REF] Martin | Handoff All Your Privacy -A Review of Apple's Bluetooth Low Energy Continuity Protocol[END_REF].

  

  

  . . . . . Format of the Apple Nearby Info Manufacturer Specific Data AD structure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.7 Sequence of Apple Nearby Info advertisement packets showing that the BD_ADDR and Apple Nearby Info Auth Tag changes are not synchronized. At 900.091, the old Auth Tag is used with the new BD_ADDR. . III.8 Format of the Microsoft CDP Manufacturer Specific Data AD structure. III.9 Sequence of Microsoft CDP advertisement packets in which the lifetime of the Device Hash overlaps the BD_ADDR randomization scheme. At 959.719, the BD_ADDR changes while the Device Hash remains identical until 3599.113. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III.10 Format of the Google Nearby Service Data-16-bit UUID AD structure. III.11 Architecture of the Venom tracking system. . . . . . . . . . . . . . . . . . III.12 Representation of a successful attack. The BLE device is randomizing its BD_ADDR (in italic) over time while keeping a static GATT profile. Such a GATT profile can be leveraged by an active attacker to generate a fingerprint of the device before to link together its three different BD_ADDR. III.13 Anonymity sets of GATT profiles in dataset Active . The dot size is proportional to the number of devices in the set. . . . . . . . . . . . . . . . . . . III.14 Example of the device address linking via a non-reset Sequence Number

	LIST OF FIGURES	xv
	III.6	
	xiv	

  Visual and Experimental Bluetooth Low Energy Tracking System. In Proceedings of the 13th Conference on Security and Privacy in Wireless and Mobile Networks, pages 346-348, 2020 3. Guillaume Celosia and Mathieu Cunche. Saving Private Addresses: An Analysis of Privacy Issues in the Bluetooth-Low-Energy Advertising Mechanism. In MobiQuitous 2019 -16th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services, pages 444-453, 2019 4. Guillaume Celosia and Mathieu Cunche. DEMO: Himiko: A Human Interface for Monitoring and Inferring Knowledge on Bluetooth-Low-Energy Objects. In Proceedings of the 12th Conference on Security and Privacy in Wireless and Mobile Networks, pages 292-293, 2019 Guillaume Celosia and Mathieu Cunche. Privacy Threats from the Bluetooth Low Energy Service Discovery Mechanism. In Annual seminar of the Inria PRIVATICS team, 2019 4. Guillaume Celosia and Mathieu Cunche. Detection of Bluetooth surveillance systems. In Presentation for Inria EPI: Data and Algorithmic Transparency and Accountability (DATA), 2018 5. Guillaume Celosia and Mathieu Cunche. Privacy concerns in IoT radio communica-Guillaume Celosia and Mathieu Cunche. Preserving Privacy in Wireless Communications of the Internet of Things (IoT). In Annual seminar of the Inria PRIVATICS team, 2018 Wireshark dissector for BLE advertisement packets of Apple Continuity, Microsoft CDP and Garmin proprietary protocols 3. Venom, an experimental BLE tracking system (not public yet) 4. Himiko, a human interface for monitoring and inferring knowledge on BLE objects (not public yet) 5. Koba, a Python library to parse BLE advertising data (not public yet)

	List of Contributions	xxvi
	7. Software production	
	1. Valkyrie [21], a generic framework for verifying privacy provisions in wireless networks
	2. Joker [22], a	

1. Guillaume Celosia and Mathieu Cunche. Discontinued Privacy: Personal Data Leaks in Apple Bluetooth-Low-Energy Continuity Protocols. Proceedings on Privacy Enhancing Technologies, 2020(1):26-46, 2020 International Conferences 1. Guillaume Celosia and Mathieu Cunche. Valkyrie: A Generic Framework for Verifying Privacy Provisions in Wireless Networks. In Proceedings of the 13th Conference on Security and Privacy in Wireless and Mobile Networks, pages 278-283, 2020 2. Guillaume Celosia and Mathieu Cunche. DEMO: Venom: a 5. Guillaume Celosia and Mathieu Cunche. Detecting smartphone state changes through a Bluetooth based timing attack. In Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and Mobile Networks, pages 154-159, 2018 xxiv 2. Guillaume Celosia and Mathieu Cunche. DEMO: Himiko: A Human Interface for Monitoring and Inferring Knowledge on Bluetooth-Low-Energy Objects. In Salon de l'Internet Des Objets (SIDO), 2019 3. tions. In Pitch for the INSA Lyon -SPIE ICS IoT chair, 2018 6. Mathieu Cunche, Célestin Matte, and Guillaume Celosia. Wi-Fi Scanner: How many data can be collected on your smartphone ? In The Web Conference, 2018

  Vol 3, Part A, sec. 4.8], ping relies on a request-response mechanism of the L2CAP layer: an Echo Request command is sent to a remote L2CAP device, and solicits an Echo Response back. As those requests are only designed to test a link between two Bluetooth devices, it is important to mention that they do not require any mutual authentication.
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  Preamble, the Access Address, the Protocol Data Unit (PDU) and the Cyclic Redundancy Check (CRC) (see Figure I.5). In the case of advertisement packets, the Access Address shall be set to the predefined value 0x8e89bed6 [38, Vol 6, Part B, sec. 2.1.2]. Divided into two parts, the PDU embeds a 2-byte header and a variable size payload. On the one hand, the header describes the type of the PDU and indicates the class of the BLE device address (i.e. Public or random) [38, Vol 1, Part A, sec. 3.2.2]. On the other hand, the payload part contains the BD_ADDR followed by the advertising data. Finally, used for internal protocol management, the Preamble and CRC fields are automatically computed then filled by the Bluetooth stack prior to emit advertisement packets. the IRK allows the Central device to resolve the Peripheral address that would look random otherwise. For further details on the generation and resolution of such Random Resolvable addresses, we refer the interested readers to the Bluetooth Core Specification [38, Vol 6, Part B, sec. 1.3.2.2/3]. Stable: device addresses that are used by a device indefinitely or for an extended period of time (i.e. Public and Random Static addresses); -Private: device addresses that are supposed to change frequently 1 (i.e. Random Non-resolvable and Random Resolvable addresses).

		MSB		
		Preamble	Access Address	Protocol Data Unit (PDU)	CRC
	Header Based on their temporal persistence, we also classified those device address types into two Payload
	categories:			
	-	AdvA AD 0 AD 1 AD 2 AD 3	AD n
		Length Type	Data
		1 byte	1 byte	(Length-1) bytes
					specifications
	of MAC addresses [41, sec. 8.2];	
	-Random Static (MSB=0b11): a randomly generated device address that can be
	renewed after each power cycle, and that shall not change during the use of the
	device;			
	-Random Non-resolvable (MSB=0b00): a randomly generated address that can
	be renewed at any time, and that shall not be equal to either the Random Static nor
	the Public device address;		

At the physical layer

[START_REF]Bluetooth Core Specification v5.2[END_REF] Vol 6

, Part B, sec. 2.1], BLE packets are split into four fields: the LSB Figure I.5 -Format of the BLE advertisement packet. The payload part of the Protocol Data Unit (PDU) contains the Advertising Address (AdvA) field followed by Advertising Data (AD) structures. The Length field represents the length of the AD structure (excluding itself); Type specifies the nature of the following data and Data are the advertising data.

I.2.2.2 Device addressing and privacy features

During communications, a BLE device is identified by its BD_ADDR contained within the Advertising Address (AdvA) field of its advertising payload (see Figure I.5).

As part of the LE Privacy features [38, Vol 1, Part A, sec. 5.4.5], BLE has introduced random addresses allowing devices to replace their real BD_ADDR with temporary pseudonyms when broadcasting advertisement packets

[START_REF] Woolley | Bluetooth Technology Protecting Your Privacy[END_REF]

.

In addition to the globally unique Media Access Control (MAC) address, BLE supports three types of random addresses which can be identified leveraging the two MSB of the BD_ADDR

[38, 

Vol 6, Part B, sec. 1.3.2]. As a consequence, there are four types of BD_ADDR in BLE: -Public: the address uniquely allocated to the device by the manufacturer in accordance to the Institute of Electrical and Electronics Engineers (IEEE) -Random Resolvable (MSB=0b01): an address composed of a 22-bit random number prand and a 24-bit hash produced by the hashing of prand with a 128-bit secret Identity Resolution Key (IRK). Shared between two BLE devices at the time I.2. Background 8 of pairing, I.2.2.3 Advertisement Aforementioned in Section I.2.2.1, advertisement is the name of the BLE discovery mechanism that allows Central devices to discover Peripherals in range. More precisely, it is used to broadcast connectionless data for applications as well as a prerequisite for a Central to set up a connection with a Peripheral.

Table I . 1 -

 I1 Description of the most commonly advertised AD types.

	AD Name type	Description
	0x01 Flags	Indicates discoverable modes and device capabilities
	0x03 Complete List of 16-bit Service Class UUIDs	Lists 16-bit UUIDs of the supported ser-vices
	0x09 Complete Local Name	Contains a string providing a user-friendly description of the device
	0x0a Tx Power Level	Indicates the transmitted power level of the advertisement packet
	0x0d Class of Device	Indicates the type of device (computer, phone, wearable, etc.)
	0x12 Slave Connection Interval Range	

  Model Number String, Software Revision String and System ID characteristics. As another example, the Battery Service [49] embeds the Battery Level characteristic.

	I.3. Document structure	12
	Lastly, the BLE includes security mechanisms such as encryption and authentication
	that can be used within the ATT protocol. Certain values of characteristics can be then
	exclusively accessed by an authenticated Client [38, Vol 3, Part C, sec. 10.3]. Note that,
	the value is the sole element protected by this feature. Therefore, the list of services and
	characteristics as well as the associated metadata (i.e. handles and properties) do not
	require any authentication to be accessed [38, Vol 3, Part G, sec. 8.1].	

  Nowadays, connected objects support a variety of application domains bringing a diversity of constraints with regard to communication aspects. Range, bandwidth and energy consumption depict the three most important communication constraints that are satisfied leveraging radio technologies. Each of those technologies is characterized by different frequency bands, modulation, coding and protocol. Figure II.2 presents the most common radio technologies used by wireless devices along with their corresponding frequency bands and applications.

			Toys			Personal assistants
	Smart meters Medical implants: pacemakers, neuromuscular stimulators	Tire Pressure Monitoring Systems Keyless entry systems RC power sockets PIR sensors Door sensors Thermostats, HVAC	Smartwatches, fitness trackers Glucometers, blood-pressure monitors, weight scales Smartphones, tablets, computers
				Lightbulbs		
	169 MHz	400 MHz	433 MHz	868 MHz	2.4 GHz	5.7 GHz
				LPWAN		
	Ultra Low Power Medical Data Service	LPD433 (Low Power Device)	(Sigfox, LoRa, ...) Insteon	Wi-Fi (IEEE 802.11)
		(MEDS)	IEEE 802.15.4	Z-Wave		Bluetooth
	WMBUS				ZigBee	

Some of the radio technologies are legacy technologies that have been used in other contexts (e.g. Bluetooth and Wi-Fi), while others have been specifically developed to match the need of connected objects (e.g. LPWAN and ZigBee). Although many of those technologies are based on standards with open specifications, there is also a number of proprietary technologies for which the full specifications are not publicly available. In particular, this is the case of the Low Power Device (LPD433) operating on the 433 MHz band and gathering

  169 MHz band and the Medical Data Service (MEDS) on the 400 MHz band (see Figure II.2). Therefore, by monitoring and analyzing features of radio signals, it is possible to build an inventory of the connected objects installed in a household or carried by a person.

  Table II.1 -Non-exhaustive list of personal information inferred from types of connected devices. Samsung and Asus respectively broadcast GALAXY Gear and VivoWatch as an explicit identifier (see Table C.1 in Appendix C).

	Type of device	Inferred personal information
	Hearing aids	User has hearing deficiency
	Glucose monitor	User has diabetes
	Weight scale	User controls his weight
	Blood pressure sensor User has heart disease
	Fitness tracker	User is a sportsman
	Cycling speed sensor	User is a cyclist
	Pets tracker	User owns a pet 1
	Toy for children	User has children
	Coffee machine	User drinks coffee
	High quality speaker	User loves music
	of service discovery mechanisms (see Section II.1), wireless communicating devices mostly
	emit identifiers in clear revealing their natures. For instance, Bluetooth smartwatches
	manufactured by	

  Table III.1 -Beacon filtering regular expressions statistics.they are not associated with an individual and are thus of little interest in the context of our studies. Based on regular expressions (see TableIII.1) used to identify the main standards 1 of BLE beacons, the records associated with beacons have been filtered out the dataset.

	Beacon type	Advertising data regular expressions	Adv. packets BD_ADDR % # % #
	Apple iBeacon	^0201061aff4c000215	0.63	50328 0.41	222
	Google Eddystone	^0201060303aafe.{2}16aafe[01234]0 0.001	90	0.04	24
	Radius Networks AltBeacon ^1bff.{4}beac	0.0003 21	0.006 3

  Table III.2 -Distribution of BD_ADDR and records among the device address types.

			Stable	Private
			Public Static Non-res. Res.
		#BD_ADDR	4.4k	1.1k	9.5k	38.5k
	dataset P assive	#Records #Advertisement packets	2.9M 2.2M	220k 130k	740k 700k	4M 2.6M
		#Scan responses	700k	90k	40k	1.4M
	dataset Active	#BD_ADDR	1.4k	0.5k	0.02k	11.4k

Table III . 3 -

 III3 Results of the Kolmogorov-Smirnov test on the random part of random addresses against a uniform distribution.

	BD_ADDR type	Statistic p-value
	Random Static	0.049615 3.851678×10 -6
	Random Non-resolvable 0.006928 0.153595
	Random Resolvable	0.002908 0.636685

Table III . 4 -

 III4 List of IRK values used during the brute force attack. hexstring is defined as

	0x0123456789abcdef.		
	Description	IRK values	#Distinct IRK values
	IRK furnished in the example of the Blue-		
	tooth Core Specification [38, Vol. 3, Part H,	ec0234a357c8ad05341010a60a397d9b	1
	App. D.7]		
	Naive incremental sequence of bytes	0102030405060708090a0b0c0d0e0f10	1
	Naive sequence of bytes	00112233445566778899aabbccddeeff	1
	Concatenation of two hexstring	0123456789abcdef0123456789abcdef	1
	Same hexadecimal character	00000000000000000000000000000000, 11111111111111111111111111111111, ...	16
	hexstring interleaved with same hexadeci-mal character	00102030405060708090a0b0c0d0e0f0, 01112131415161718191a1b1c1d1e1f1, ...	16
	Same hexadecimal character interleaved with hexstring	000102030405060708090a0b0c0d0e0f, 101112131415161718191a1b1c1d1e1f, ...	16
	hexstring concatenated with same hexadec-imal character	0123456789abcdef0000000000000000, 0123456789abcdef1111111111111111, ...	16
	Same hexadecimal character concatenated with hexstring	00000000000000000123456789abcdef, 11111111111111110123456789abcdef, ...	16
	Previous IRK values (Bluetooth example	b9d793a06a01014350da8c753a4320ce,	
	IRK, naive sequence of bytes, etc.) reversed	01f0e0d0c0b0a0908070605040302010, ...	84
	by character		
	Previous IRK values (Bluetooth example	9b7d390aa610103405adc857a33402ec,	
	IRK, naive sequence of bytes, etc.) reversed	100f0e0d0c0b0a090807060504030201, ...	84
	by byte		
		Total	187

of numbers, as well as the IRK furnished in the example of the Bluetooth Core Specification

[START_REF]Bluetooth Core Specification v5.2[END_REF] Vol 3

, Part H, App. D7] (see Table

III

.4 for the detail of the dictionary). In total, we then tested 187 distinct IRK values against 38482 Random Resolvable addresses and found no matches. Therefore, this suggests that IRK used in real-world implementations are not naively generated.

  Complete Local Name and Shortened Local Name are two AD types that are respectively used to advertise a complete and a shortened version of local names assigned to devices. From dataset P assive , we found that more than 1.7% of Random Resolvable and 0.06% of Random Non-resolvable addresses include either a Complete Local Name or a Shortened Local Name AD structure in their advertising payloads (see Table D.1 in Appendix D).

Table III . 5 -

 III5 Summary of the studied proximity protocols along with their benched elements and tracking sources. Public or random). Nevertheless, the Bluetooth Core Specification [146, Part A, sec. 1] requires not to embed such an AD structure in the advertising data. Especially, this is important for devices that use random BD_ADDR. However, we found that a number of devices using random addresses are including this AD structure in their advertising data, and expose their Public device addresses. Leveraging the OUI of those advertised addresses, we identified that manufacturers such as LG Innotek and Arcadyan expose their Public BD_ADDR this way.

	Proximity protocol	Benched element Name Size	Tracking source
	Apple Handoff	IV	2 bytes	Non-reset counter
	Apple Nearby Info	Auth Tag	3 bytes	Static identifier
	Microsoft CDP	Device Hash 19 bytes Static identifier
	Google Nearby	Counter	2 bytes	Non-reset counter
	(i.e.			

LE Bluetooth Device Address: The LE Bluetooth Device Address [146, Part A, sec. 1.16] AD type can be used by a Peripheral to broadcast a local device address and its class III.3. Passive tracking 50

  Introduced in the Apple iOS 8 and Apple OS X Yosemite operating systems, the Apple Handoff protocol allows users to switch from one Apple device to another and seamlessly continue an ongoing activity. For instance, a user who is reading an article on its Apple iPhone smartphone can move to its Apple MacBook laptop in range and automatically open the same webpage. Format of the Apple Handoff Manufacturer Specific Data AD structure.
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	MSB					LSB
	0x0c Length	Version	IV	AES-GCM Auth Tag	Encrypted Payload
	1 byte 1 byte		1 byte 2 bytes	1 byte	10 bytes
	Figure III.4 -Time (s) BD _ ADDR		IV	Handoff Data
	897.173	59:07:ee:1e:6c:72 fe02 2c2feab9d7...
	898.594	59:07:ee:1e:6c:72 ff02 f8823f6a51...
	899.256	59:07:ee:1e:6c:72 0003 1e4761159e...
	899.820	59:07:ee:1e:6c:72 0103 a135354fb2...
	900.003	76:46:5d:85:9e:f2 0103 a135354fb2...
	900.252	76:46:5d:85:9e:f2 0203 0f4869c816...

.5. III.3.4.2.1 Apple Handoff and Apple Nearby Info The Apple Handoff [147] and Apple Nearby Info protocols are part of the Apple Continuity features. To enable this feature, Apple devices rely on Apple Handoff data carried by the Manufacturer Specific Data AD structure. The format of such an Apple Handoff structure is presented in Figure III.4. It starts with an identifier indicating the type of the advertising data, in this case Apple Handoff (0x0c), and includes several fields such as an Initialization Vector (IV), an AES-GCM Auth Tag and a 10-byte encrypted payload.

  Similarly to the Apple Handoff, the Apple Nearby Info protocol relies on the Manufacturer Specific Data AD structure to broadcast data. Following the same type-length-value (TLV) encoding scheme, the Apple Nearby Info AD structure starts with an identifier indicating the Apple Nearby Info protocol (0x10). Afterwards, it includes several fields such as the Activity Level of the device and an Auth Tag (see FigureIII.6). Format of the Apple Nearby Info Manufacturer Specific Data AD structure. Sequence of Apple Nearby Info advertisement packets showing that the BD_ADDR and Apple Nearby Info Auth Tag changes are not synchronized. At 900.091, the old Auth Tag is used with the new BD_ADDR. Format of the Microsoft CDP Manufacturer Specific Data AD structure.The Microsoft Connected Devices Platform (CDP) [148] protocol provides a discovery system for Microsoft devices to authenticate and verify themselves, as well as a way to exchange data. Similarly to the Apple Handoff and Apple Nearby Info protocols, data of Microsoft CDP are carried by the Manufacturer Specific Data AD structure.

	0x10 Length 1 byte 1 byte MSB Figure III.6 -III.3. Passive tracking Time (s) BD _ ADDR Activity Level 1 byte 899.885 43:26:33:d5:78:61 60c708 Information Auth Tag LSB 1 byte 3 bytes Auth Tag 899.990 43:26:33:d5:78:61 60c708 900.091 6d:01:ff:0a:52:84 60c708 900.203 6d:01:ff:0a:52:84 9d88fb 900.354 6d:01:ff:0a:52:84 9d88fb Figure III.7 -0x01 Device Type 1 byte 1 byte Device Hash 19 bytes LSB MSB Version & Flags Salt 2 bytes 4 bytes Device Hash 959.108 37:ee:cb:91:79:0a db950efc53eff7e427f2a91ae9a67b... 959.522 37:ee:cb:91:79:0a db950efc53eff7e427f2a91ae9a67b... 959.719 18:e3:48:43:af:84 db950efc53eff7e427f2a91ae9a67b... 1919.074 2d:39:47:eb:2c:e8 db950efc53eff7e427f2a91ae9a67b... 2879.527 19:fc:04:f1:f3:9a db950efc53eff7e427f2a91ae9a67b... 3599.113 19:fc:04:f1:f3:9a db950efc53eff7e427f2a91ae9a67b... 3599.189 19:fc:04:f1:f3:9a 4658a402b7da02e09585cb8c4aa1c7... 3839.851 19:fc:04:f1:f3:9a 4658a402b7da02e09585cb8c4aa1c7... Figure III.8 -Time (s) BD _ ADDR 3839.984 39:95:ae:3f:ed:cb 4658a402b7da02e09585cb8c4aa1c7...	52

2.4).

Note that, in this work, we only focus on two particular Apple Continuity protocols (i.e. Apple Nearby Info and Apple Handoff). Nevertheless, in Chapter V, we push this study further by extending our results to the suite of Apple Continuity protocols.

To prevent physical tracking based on the Auth Tag, the Apple Nearby Info protocol periodically rotates this 3-byte identifier every time the BD_ADDR is changed. However, based on our observations on an Apple iPhone 6 and an Apple iPhone 8 smartphone (respectively running iOS 12.1.3 and iOS 12.3), the change of the Auth Tag is not completely synchronized with the change of the BD_ADDR: for a short duration after the BD_ADDR change, the old Auth Tag is used with the new device address (see Figure III.7). Leveraging the Auth Tag, it is then possible to link two BD_ADDR generated by the same device.

In dataset P assive , we found that among the 31000 Private addresses that include an Apple Manufacturer Specific Data AD structure, more than 79% of them include an Auth Tag.

III.3.4.2.2 Microsoft Connected Devices Platform (CDP)

Based on the online Microsoft specifications along with empirical observations on advertisement packets, we identified the format of the Microsoft CDP AD structure (see Figure

III.8)

. In particular, it embeds an identifier that is derived from a salted hashing of the unique device identifier [148, sec. 2.2.2.2.3]. Using a BLE enabled laptop running Microsoft Windows 10 Professional (version 1809,

Table III . 6 -

 III6 Average time to collect a GATT profile among different devices.

	Type of device	Device	Time (s)
	Lightbulb	Osram Smart+	6.531
	Motion sensor	Eve Motion	6.468
	Socket outlet	Eve Energy	5.919
	Smartphone	Apple iPhone 8	4.354
	Smartphone	Apple iPhone 6	4.259
	Keyring	Nut	4.148
	TV dongle	Google Chromecast	3.660
	Fitness wristband	Fitbit Inspire	3.231
	Presentation remote Logitech Spotlight	2.860
	Smartwatch	Apple Watch Series 3	2.853
	Heart rate monitor	Polar H7	2.751
	Fitness wristband	Fitbit Flex	2.552
	Headset	Bose SoundLink Around-Ear II	2.181
	Speaker	Divacore Ktulu2+	1.742
	Keyring	Chipolo	1.426
		Average	3.662

5b:eb:b9:c5:f4:ee 6c:dc:32:08:38:04 5f:c6:5c:25:b7:5a

  1 . By dividing the Private part of dataset Active between non-iPhone devices (see Figure III.13c) and iPhones (see Figure III.13d), we found that a majority of iPhones were sharing their fingerprints with many other devices: 85.49% are in anonymity sets of size 100 or more. On the other hand, non-iPhone devices using Private addresses have less common fingerprints as 74.38% of them are in anonymity sets of size 10 or less, and 32.09% of them are unique.

  Example of the device address linking via a non-reset Sequence Number field. The device is randomizing its address (in italic) over time while incrementing the Sequence Number (in bold) in the broadcasted data. Such a 2-byte long counter can be leveraged by a passive attacker to link together frames generated with the three different device addresses. randomization was introduced in 2010 through the version 4.0 of the standard [39, Vol 3, Part C, sec. 10.7]. Moreover, according to Becker et al.[START_REF] Johannes K Becker | Tracking anonymized bluetooth devices[END_REF] and our observations in Section III.3.2, it seems that address randomization is included in a significant part of BLE devices.
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	4e:a5:8a:66:18:2d	6b:41:bc:1b:9e:d5	5c:d0:7c:6b:c0:7c
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	Figure III.14 -		

1. Apple devices regularly receive software updates to ensure maximum security and functionality

[START_REF]Secure software updates overview[END_REF]

. 2. In general, a globally unique identifier.

  to parse BLE messages of Apple Handoff, Apple Nearby Info and Microsoft CDP protocols (see Section III.5.4.3).

Syntax III.4 is then used to translate formal rules defined in Section III.5.2 into practical ones. As an example, in the case of 802.11, the counter rule applied to the Sequence Number can be written as: < SYNC_CNT_CHG; wlan.ta; wlan.seq > (III.5)

where wlan.ta designates the transmitter address of the device and wlan.seq, the Sequence Number.

Table III . 8 -

 III8 List of specified rules for the experimental evaluation. <SYNC _ ID _ CHG;wlan.ta;wps.uuid _ e> Auth Tag (Apple Nearby Info) 2 <SYNC _ ID _ CHG;bthci _ evt.bd _ addr;apple _ nearby _ info.auth _ tag> Device Hash (Microsoft CDP) 3 <SYNC _ ID _ CHG;bthci _ evt.bd _ addr;microsoft _ cdp.device _ hash>

	Benched element	Rule ( : applied to Wi-Fi /	: applied to BLE)
	WPS UUID (Wi-Fi) 1 Sequence Number (Wi-Fi) 4 <SYNC _ CNT _ CHG;wlan.ta;wlan.seq>
	IV (Apple Handoff)		

Table III . 9 -

 III9 List of evaluated devices along with their OS versions and identified issues. Gray lines depict a software update of the involved devices.
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	III.5.4.5 Evaluation summary						
	Type	Device	OS version	1	Identifier 2	3	Counter 4 5	Addr. reuse
		Apple MacBook Pro (13", 2015)	macOS 10.13.6					
	Laptop	Dell G3 17-3779	Win 10 Pro (v1809)					
		HP EliteBook Folio 1040 G3	Ubuntu 16.04.6 LTS					
	Watch	Apple Watch Series 2 Apple Watch Series 3	watchOS 5.0.1 watchOS 5.1.3					
		Apple iPhone 5C	iOS 9.3.1					
		Apple iPhone 5S	iOS 10.3.2					
		Apple iPhone 5S	iOS 11.2.1					
		Apple iPhone 5SE	iOS 11.3					
		Apple iPhone 6	iOS 12.1					
		Apple iPhone 6S	iOS 11.4					
		Apple iPhone 6S Plus	iOS 12					
		Apple iPhone 7	iOS 11.2.6					
		Apple iPhone 7 Plus	iOS 12.0.1					
		Apple iPhone 8 Plus	iOS 11.4.1					
		Apple iPhone XR	iOS 12.1.2					
		Apple iPhone XR	iOS 12.4.1					
		Apple iPhone XS	iOS 13.1					
		Apple iPhone XS Max	iOS 12.1					
		Aquos sense	Android 8.0.0					
		ASUS Zenfone 3	Android 7					
		ASUS Zenfone 3 Deluxe	Android 6.0.1					
		Blackberry Privilege	Android 5.1.1					
		Google Pixel XL	Android 7.1					
		Google Pixel XL	Android 9					
		HTC One A9	Android 6					
		HTC U11	Android 7.1.1					
		Huawei Mate10 lite	Android 7					
		Huawei Nexus 6P	Android 6.0.1					
		Huawei P10 Lite	Android 7					
		Huawei P20 Lite	Android 8.0.0					
		Huawei P9	Android 6					
		Huawei P9 Lite	Android 6					
		Huawei Y7 Prime (2018)	Android 8.0.0					
	Phone	LG V20 Motorola Moto G Play (6th gen.)	Android 7 Android 8.0.0					
		Motorola Moto e	Android 5.1					
		Motorola Moto E (4th gen.)	Android 7.1.1					
		Motorola Moto E Plus (4th gen.)	Android 7.1.1					
		Motorola Moto G (3rd gen.)	Android 5.1.1					
		Motorola Moto G (4th gen.) Plus	Android 6.0.1					
		Motorola Moto G (5th gen.)	Android 7					
		Motorola Moto G (5th gen.) Plus	Android 7					
		Motorola Moto G4 Plus	Android 6.0.1					
		Motorola Moto G5	Android 7					
		Motorola Moto G5 Plus	Android 7					
		Motorola Moto GS (5th gen.)	Android 7.1.1					
		Motorola Moto Z Play	Android 6.0.1					
		Motorola Moto Z Play	Android 9					
		Motorola Nexus 6	Android 7					
		OnePlus 2	Android 6.0.1					
		OnePlus 3T	Android 7					
		Sony Xperia X Compact	Android 7					
		Sony Xperia X Compact	Android 8.0.0					
		Sony Xperia XZ Premium	Android 8.0.0					
		Sony Xperia XZ1	Android 8.0.0					
		Xiaomi Mi 5	Android 7					
		Xiaomi Mi A1	Android 7.1.2					
		Xiaomi Mi A1	Android 8.0.0					
		Xiaomi Redmi 3S	Android 6.0.1					
		Xiaomi Redmi 4A	Android 7.1.2					
		Xiaomi Redmi 4X	Android 7.1.2					
		Xiaomi Redmi 5 Plus	Android 7.1.2					
		Xiaomi Redmi 5A	Android 7.1.2					
		ZTE Blade X Max	Android 7.1.1					
		ZTE Grand X 4	Android 6.0.1					

Table IV . 1 -

 IV1 Distribution of company IDs assigned by the Bluetooth SIG among registered OUI of Public addresses. Numerical values are numbers of Public addresses.

	OUI	Co. ID Samsung Apple IBM SGLItalia ARTiming Harman Sony Google TomTom Suunto
	SamsungE	1022	
	Apple	600	
	Logitech	341	
	Bose		261	
	TexasIns	187		2
	SunitecE	104	
	HonHaiPr	40	47	5

Google 44 TomtomSo 41 SuuntoOy 36

  addition to those observations, we considered the distribution of those company IDs among the device address types. Figure IV.2 shows the distribution of Stable and Private device addresses that match a company ID assigned by the Bluetooth SIG among all Stable and Private BD_ADDR. At first, we can see that some company IDs are associated with one category of addresses. For instance, the Samsung company ID is only associated with Stable addresses and is Distribution of the Bluetooth SIG assigned company IDs among Stable and Private addresses. Table IV.2 -Summary of the information that can be inferred from BLE advertising data. Apple, Microsoft and Google) account for the majority of the records. Especially, Apple represents more than 52% (2.5M advertisement records).

	IV.3. Passive information inference based on advertising data	83
	BD_ADDR (%)	0 5 10 15 20 25 S a m s u n g A p p l e U n k n o w n	I B M S G L I t a l i a G a r m i n A R T i m i n g H a r m N i p p o n S . S o n y O t h e r s a n public static	BD_ADDR (%)	0 10 20 30 40 50 60 70 80 90	A p p l e	M i c r o s o f t	G o o g l e	L G	O t h e r s resolvable non-resolvable
			Company ID						Company ID
		(a) Stable addresses (4300 BD_ADDR)		(b) Private addresses (45300 BD_ADDR)
	Figure IV.2 -Advertising element	Inferred information Manufacturer Model Type Owner identity
		Public BD_ADDR							
		Device names							
		Manufacturer Specific Data							
		Company IDs							
		Manufacturer data							
		Service UUIDs							
		Appearance							
		Class of Device							
	Focusing on Private addresses (see Figure IV.2b), we can witness that three companies
	(i.e.								

seldom seen with Private addresses. The opposite trend can be observed for the Microsoft company ID that is only associated with Private addresses. For other companies such as Apple, both Stable and Private addresses are associated with the company ID suggesting a diversity in the implementations.

  .2 and Table C.3 in Appendix C for respectively an extended list of discovered custom 16-bit and 128-bit service UUIDs).

Table IV . 3 -

 IV3 Distribution of the top 10 services and characteristics in dataset Active .

			Device addresses (%)
			All	Stable Private
		Generic Access	99.01 92.99	100
		Generic Attribute	97.34 81.35	99.97
		Apple Continuity	84.74 6.48	97.64
	Services	Apple Nearby Service Device Information Battery Service Current Time Service	84.32 4.36 69.74 55.90 57.86 5.58 57.08 0.05	97.50 72.02 66.48 66.48
		Apple Media Service	57.07 0	66.48
		Apple NCS Service	57.07 0	66.48
		ISSC Transparent	3.86	27.26	0
		Overall*	99.17 94.16	100
		Device Name	99.65 97.56	100
		Appearance	98.90 92.40	99.97
	Characteristics	Service Changed Apple Continuity Apple Nearby Manufacturer Name String Model Number String Battery Level Current Time	97.34 81.35 84.74 6.48 84.32 4.36 69.38 53.40 69.32 52.98 58.65 11.16 57.30 1.65	99.97 97.64 97.50 72.02 72.02 66.48 66.48
		Apple MS Entity Attribute 57.07 0	66.48
		Overall*	99.96 99.73	100

* Devices that include at least one of the top 10 service or characteristic.

Table IV . 4 -

 IV4 Apple and ISSC. From our observations in Section III.4.2.4, we found that a large number of GATT profiles in dataset Active are issued from Apple iPhone smartphones. As a result, this explains why services and characteristics of Apple overpopulate dataset Active .Coming fifth with 69.74% of GATT profiles, the Device Information service embeds manufacturer and/or vendor information about a device. Among its included characteristics, we can cite the Manufacturer Name String and Model Number String which can be privacy-invasive characteristics that we further study in Section IV.4.2.1.Last but not least, as most connected devices are battery-powered, it is not surprising that the Battery Service is part of our top 10 distribution. Indeed, leveraging such a service, a device can expose the state of its battery through characteristics such as the Battery Level. Similarly, many Bluetooth devices have the ability to store and show time information. To this end, they can leverage the Current Time Service to expose time information to other nearby BLE enabled devices through the Current Time characteristic.TableIV.4 presents an extended list of readable values from Bluetooth SIG defined characteristics exposed in dataset Active .From this list, we can observe that both Device Name and Appearance are included in more than 98% of the devices and are readable in about 99.5% of the cases. This is normal as they are mandatory to implement and to be readable without authentication [38, Vol 3, Part C, sec. 12]. Selection of Bluetooth SIG defined characteristics values that have been observed as readable at least once in dataset Active . Percentages reported for readable values are fractions of devices for which this value is readable.String which are characteristics that both Stable and Private device addresses use to expose their manufacturers and model names. System ID and PnP ID carry digital identifiers whose values are readable in more than 94% of GATT profiles including those characteristics. In addition, we can observe that PnP ID is a characteristic for which devices using Private addresses do not expose its values. As such a characteristic embeds a unique identifier, this can be explained by the fact that it cannot be compliant with the privacy protection brought by Private addresses. Also, beyond tracking concerns, we further demonstrate that values of those characteristics can lead an attacker to infer information such as the model and manufacturer of a device that can breach the privacy of its owner (see Section IV.4.2.2).

				Readable values		
	Characteristic		All	Stable		Private
		%	#	%	#	%	#
	Device Name	99.49 13182 99.18 1821 99.54 11361
	Appearance	99.48 13082 98.56 1714 99.62 11368
	Manufacturer Name String	99.48 9177	99.40 999	99.49 8178
	Model Number String	99.36 9158	99.40 991	99.36 8167
	Software Revision String	97.04 1017	97.68 1010 50	7
	Hardware Revision String	95.95 996	96.58 989	50	7
	Serial Number String	97.12 979	97.79 972	50	7
	Firmware Revision String	94.99 835	95.72 828	50	7
	System ID	97.51 822	98.31 815	50	7
	PnP ID	98.02 741	98.02 741	0	0
	Battery Level	2.45	191	90.95 191	0	0
	Current Time	0.41	31	100	31	0	0
	Body Sensor Location	70	28	100	28	0	0
	Sensor Location	100	8	100	8	0	0
	Service Changed	0.02	2	0.13	2	0	0
	Software Revision String, Hardware Revision String, Serial Number String, Fir-
	mware Revision String,						
	IV.4.1.2 Readable characteristics					

Finally, it is important to note that more than 99% devices include at least one of the services and characteristics presented in our computed top 10 distribution. Provided that they are readable without authentication, information such as device names, appearances, manufacturer names, device models and battery levels can be trivially accessed by remote attackers, and can raise privacy concerns (see Section IV.4.2).

A similar observation can be made on the

Service Changed characteristic which is mandatory [38, Vol 3, Part G, sec. 7] and shall be only used to indicate to connected devices that services have changed (i.e. added, removed or modified). Additionally, we can notice the presence of the Manufacturer Name and Model Number IV.4. Active information inference 90

  .4.2.1 Human readable identifiers GATT profiles can include characteristics for which the value is a human readable string. For instance, this is the case of the Device Name, Model Number String and Finally, the Manufacturer Name String contains a UTF-8 string that directly reveals the manufacturer of the device. Among manufacturers spotted in dataset Active , we noted that Porsche, Oculus and Apple include the Manufacturer Name String characteristic.

	Manufacturer Name String.
	IV.4.2.2 Digital identifiers
	Serial number strings: The Serial Number String characteristic carries a variable-
	length UTF-8 string representing the serial number for a particular instance of the device.

The Device Name characteristic is available and readable in more than 99% of the profiles, and often includes names of manufacturer, model and user such as Polar M400 and Alice's MacBook Pro. Note that, during our dataset anonymization process (see Section III.2.3), we identified and redacted a total of 14.2% of the 1336 distinct device names found within dataset Active that potentially contain the identity of the owner.

Similarly, values carried by the

Model Number String explicitly identify the device model. For instance, the model number of an Apple iPhone 8 is iPhone10,4 [182], while iPad8,3 and MacBookPro15,1 respectively indicate a 11-inch Apple iPad Pro and a 2018 15-inch Apple MacBook Pro [183].

Table IV . 5 -

 IV5 List of Body Sensor Location values extracted from [2, sec. 3.24.2.1].

	Value Description
	0x01	Chest
	0x02	Wrist
	0x03	Finger
	0x04	Hand
	0x05	Ear Lobe
	0x06	Foot

Table IV . 6 -

 IV6 List of Sensor Location values extracted from [2, sec. 3.152.2.1].

	Value Description
	0x01	Top of shoe
	0x02	In shoe
	0x03	Hip
	0x04	Front Wheel
	0x05	Left Crank
	0x06	Right Crank
	0x07	Left Pedal
	0x08	Right Pedal
	0x09	Front Hub
	0x0a	Rear Dropout
	0x0b	Chainstay
	0x0c	Rear Wheel
	0x0d	Rear Hub
	0x0e	Chest
	0x0f	Spider
	0x10	

  Bluetooth Upper Address Part (UAP) computation: By default, a Bluetooth device is in non-discoverable mode and does not respond to inquiry signals. Nevertheless, during communications with a previously paired object, Bluetooth frames are exchanged. While only the Lower Address Part (LAP) is available in clear as part of the header of those frames, an attacker can derive the UAP by leveraging information provided by the CRC and Header Error Check (HEC) fields[START_REF] Ossmann | Discovering the Bluetooth UAP[END_REF]. As a result, by monitoring communications between two Bluetooth devices, the attacker can obtain the minimal (UAP, LAP) pair required to send L2CAP ping requests.

	BLE Public address: By broadcasting advertisement packets, BLE devices advertise
	their presence. In practice, even if the LE Privacy feature has introduced random device
	addresses to reduce physical tracking concerns, many BLE devices still use their Pub-

lic BD_ADDR (see Section III.

3.2)

. Usually, the Public device address is shared between the BLE stack and all the other Bluetooth elements. To reach the L2CAP layer, such a Public address can be then leveraged. As a consequence, collecting Public BD_ADDR found within advertisement packets can reveal the device addresses of Bluetooth devices in range.

  1. Used to match L2CAP Echo Request with Echo Response, we remind that the Identifier is 8-bit long (see Section I.2.1). As a consequence, such an Identifier can take 256 values (∈ [0; 255]) implying that only 256 active pings can be handled in parallel.

Table IV . 7 -

 IV7 List of tested devices Experiments have been performed using three devices listed in TableIV.7. Those devices cover both Android and iOS, the two most popular mobile OS, as well as older (Apple iPhone 4) and more recent devices (Samsung Galaxy A3 and Apple iPhone 6). Apple iPhone 4, the oldest smartphone in our set of devices, has an early Bluetooth version. As all Bluetooth versions implement the L2CAP ping mechanism, it shows that the attack can be efficient on old Bluetooth versions as well.

	Device	OS	Bluetooth version
	Apple iPhone 4	iOS 7.1.2	2.1
	Apple iPhone 6	iOS 11.0.3	4.2
	Samsung Galaxy A3 Android 5.0.2	4.0
	IV.4.3.5.1 Considered devices and states	
	Tested devices:		

Table IV . 8 -

 IV8 Apple iPhone 6 state change identification with AUC values.Table IV.8 summarizes results of the state change identification for the Apple iPhone 6 smartphone by showing the AUC for each state transition. As shown for the idle case, AUCs are high and all above 0.9 demonstrating the good performances of the state change detector. Comparable performances were obtained on the two other smartphones. Indeed, for the Apple iPhone 4, AUC ∈ [0.922; 0.980] where the lowest and highest values respectively represent Wi-Fi Scan to locked and locked to BT inquiry states transitions (see Table E.1 in Appendix E).On the other hand, the attack was more difficult to perform on the Samsung Galaxy A3 as it only accepts ten thousand Echo Request before to reset the L2CAP connection. In this case, we kept the experimental protocol with a lower overall session of 60 seconds corresponding to a total of 6 changes. AUC ∈ [0.913; 0.985] represents the results with this smartphone where the lowest and highest values respectively correspond to BLEScanner to locked and Wi-Fi Scan to idle states transitions (see Table E.2 in Appendix E). IV.5. Implementation: Himiko, a Human Interface for Monitoring and Inferring Knowledge on Bluetooth Low Energy Objects 102 IV.4.3.6 Applicability to IoT devices

	From ↓ to →	idle	locked active Shazam BLEScanner BT inquiry Wi-Fi Scan
	idle	-	0.976	0.939	0.968	0.978	0.960	0.975
	locked	0.988	-	0.960	0.964	0.973	0.967	0.981
	active	0.931 0.989	-	0.965	0.966	0.973	0.974
	Shazam	0.962 0.944	0.958	-	N/A	N/A	N/A
	BLEScanner	0.987 0.971	0.978	N/A	-	N/A	N/A
	BT inquiry	0.942 0.956	0.964	N/A	N/A	-	N/A
	Wi-Fi Scan	0.959 0.967	0.966	N/A	N/A	N/A	-

  Table IV.9 -Empirical entropy of characteristics exposed within GATT profiles of dataset Active , without values (i.e. only handles, UUIDs and properties are considered).

					Entropy (bits)
				All	Stable Private
			Device Name*	1.913 1.191	0.731
	Characteristics	<Hdle, UUID, Prop>	Appearance* Service Changed* Apple Continuity Apple Nearby Manuf. Name String Model Number String Battery Level Current Time	1.148 0.625 0.766 0.566 0.680 0.317 0.720 0.306 1.372 0.517 1.327 0.491 0.985 0.361 0.886 0.289	0.578 0.290 0.462 0.499 1.031 1.030 0.879 0.866
			Apple MS Entity Att. 0.835 0.277	0.831
			Overall	2.764 1.208	1.564
			Overall (services +	2.765 1.208	1.564
			characteristics)		
	* Value of this characteristic is kept during the entropy com-
	putation because the Bluetooth Core Specification specifies
	it as mandatory.		

  To transmit data to nearby devices, Apple Continuity protocols use the Manufacturer Specific Data AD structure of BLE advertisement packets. Starting with two bytes that indicate the company identifier of Apple (code 0x004c), this AD embeds one or several Apple Continuity messages, accounting for up to 27 bytes. Outlined in Figure V.1, those Apple Continuity messages follow a TLV format (Type and Length are encoded on one

	MSB		Payload	LSB
	Header	AdvA	Flags AD (optional)	Apple Manufacturer Specific Data AD
	Length	0xff 0x004c CM 0	CM 1	CM n
	1 byte	1 byte	2 bytes	
			Type Length	Value
			1 byte 1 byte Length bytes

  1. This feature is built in most popular printer models, such as the ones listed on the Apple website[208]. Format of the AirDrop message. Format of the HomeKit message.equipment supporting the HAP[START_REF]HomeKit Accessory Protocol Specification (Non-Commercial Version) -Release R2[END_REF]. Note that, the HAP enables users to discover, configure and create actions to control HomeKit accessories. Constantly transmitted by powered HomeKit appliances, those messages (see Figure V.4) include fields identifying the device and its category, as well as a Global State Number (GSN) that is incremented each time the device state changes. In Section V.6, privacy implications of the GSN are further detailed. Proximity Pairing is a feature to facilitate the pairing procedure of audio devices with an iPhone or an iPad[210]. Constantly transmitted by active Apple audio devices (earphones and headsets), Proximity Pairing messages (see Figure V.5) include an encrypted payload concatenated to fields describing the device attributes (i.e. model and color), its position (i.e. in ear/case) through the UTP element and its current status: battery levels, charging status and lid open counter1 . In Section V.3, tracking concerns inherent to those device status related fields are discussed. Siri is the Apple virtual assistant that uses voice commands issued by a user to answer questions and perform actions. Broadcasted each time the user submits a command via voice activation, "Hey Siri" messages (see Figure V.6) include fields associated with the expressed Siri voice command: a Perceptual Hash (see Section V.8) and indicators of Signal-to-Noise Ratio (SNR) and Confidence. Likewise, those messages embed a field describing the Device Class. In Section V.8, we demonstrate how Siri voice commands can be inferred based on observations of the Perceptual Hash.

		MSB							LSB
		0x05 Length	0x00	Version Hashes	0x00 1 byte
		1 byte 1 byte	8 bytes	1 byte	Hash 0 Hash 1 Hash 2	Hash 3
							2 bytes 2 bytes 2 bytes	2 bytes
	MSB Figure V.3 -0x06 Adv. interval & Length Status Flags Device ID Category	Global State Number	Configuration Number	LSB Compatible Version
	1 byte	1 byte	1 byte	6 bytes	2 bytes		2 bytes	1 byte	1 byte
	Figure V.4 -Proximity Pairing: "Hey Siri":				

  .1 in Appendix G).

	0x09 Length 1 byte 1 byte MSB	Flags 1 byte	Config Seed 1 byte	4 bytes Address IPv4	LSB

  Public addresses: AirPrint and AirPlay messages are transmitted by devices using their Public addresses. Similarly, we found that a MacBook laptop continuing an activity via Handoff broadcasts Nearby Info messages with its Public address.Extended lifetime of Random Resolvable addresses: When a device is in power saving mode, it can keep the same Random Resolvable address for a duration that exceeds the Bluetooth Core Specification recommended maximum duration of 15 minutes [38, Vol 3, Part C, App. A]. Actually, we observed some Random Resolvable addresses that carry Nearby Info messages for more than four days.

Table V . 1 -

 V1 Experimental evaluation of replay attacks based on Handoff and Tethering Target Presence (Instant Hotspot) messages against different Apple devices. Only supports Wi-Fi (i.e. not Cellular capable).

	Apple device	Model OS version	Vulnerable to ............ replay attack corrupted Handoff Instant Hotspot
	AirPods (2 nd generation)	A1602 1A691	
	iPad (5 th generation)*	A1822 iOS 12.3.1	
	iPad Mini 3*	A1599 iOS 11.4	
	iPhone 6	A1586 iOS 11.4.1	
	iPhone 8	A1905 iOS 12.4	
	MacBook Air (13", 2014) A1466 macOS 10.12.3	
	MacBook Pro (13", 2015) A1502 macOS 10.13.6	
	Watch Series 2	A1757 watchOS 5.0.1	
	Watch Series 3	A1858 watchOS 5.1.3	

* 

  .3 in Appendix G) as well as the Device Class of "Hey Siri" and Nearby Action messages (see Table G.4 and Table G.5 in Appendix G). Note that, analogous findings with regard to the disclosure of the device type (and model) through the Manufacturer Specific Data AD structure have been highlighted in Section IV.3.2. Model is exposed by the Device Model fields of Proximity Pairing and Nearby Action messages (see Table G.6 and Table G.7 in Appendix G). is exposed by the Device Color field of Proximity Pairing and Nearby Action messages (see Table G.8 and Table G.9 in Appendix G).OS version is exposed by the OS Version field of Nearby Action messages (see Table G.10 in Appendix G).In addition, the message type can be leveraged to fingerprint the device. As an illustration, Proximity Pairing messages are exclusively emitted by audio devices (earphones and headsets), while Magic Switch messages are only advertised by watches.Similarly, elements describing the state of the device can be found in Apple Continuity messages:Position (i.e. inear/case) of the AirPods earphones is exposed by the UTP element of Proximity Pairing messages (see Table G.11 in Appendix G). of the device is exposed by the Activity Level field of Nearby Info messages (see Table G.12 in Appendix G) but also by the types of broadcasted continuity messages (e.g. AirPlay messages betray multimedia content streaming, AirPrint messages are involved in printing tasks, etc.). changes are exposed by the Lid Open Count and Global State Number field respectively contained within Proximity Pairing and HomeKit messages. Cellular connectivity is exposed by both the Network Type (see Table G.13 in Appendix G) and Signal Strength fields of Tethering Source Presence (Instant Hotspot) messages. Battery status is exposed through the Battery Indication and Battery Level elements of Proximity Pairing and Tethering Source Presence (Instant Hotspot) messages.

	Color Activity State V.6. Leaking smarthome activity	128

  7 Leaked e-mail addresses and phone numbers Description of the process used to compute hashed identifiers found within AirDrop and Nearby Action messages. The identifier (i.e. an e-mail address or a phone number) is first hashed with SHA-256 then truncated to keep only the 16 and 24 MSB respectively for AirDrop and Nearby Action messages.By analyzing the sharingd binary, we found that the identifiers are hashed using the SHA-256 function (without any salt), and are then truncated to 16 or 24 bits respectively for AirDrop and Nearby Action messages (see Figure V.19).

	V.7. Leaked e-mail addresses and phone numbers	130
	username@domain.net	
	SHA-256	0x93db690d...9c40
	+33123456789	
		0x93db	0x93db69
	AirDrop hash	Nearby Action hash
		(16 bits)	(24 bits)
	Figure V.19 -	

During our reverse engineering of Apple Continuity protocols (see Section V.2.4), we observed that AirDrop and Nearby Action messages can include hashed e-mail addresses, phone numbers and SSIDs. In the following, although those identifiers are not exposed in clear, we describe how their values can be recovered through guesswork attacks

[START_REF] Bonneau | The science of guessing: analyzing an anonymized corpus of 70 million passwords[END_REF][START_REF] Demir | The pitfalls of hashing for privacy[END_REF]

.

Table V . 3 -

 V3 Perceptual hashes obtained from voice commands issued by two male individuals. The Hamming distances are computed between hashes of U ser A and U ser B considered as binary values (i.e. sequences of bits).

	Voice command	Perceptual Hash Hamming U ser A U ser B distance
	Call Mark.	0xeff0 0xb608	9
	Call Bob.	0xfdf0 0xaf08	8
	Play some music.	0x9f82 0x9547	6
	Search the web for 'privacy'. 0x39ef 0xfe81	10
	Send a message to Mark.	0x1438 0xb3b4	8
	Send a message to Bob.	0x10b0 0xb31c	8
	Set a timer for 3 minutes.		

Table V . 4 -

 V4 Experimental evaluation of the range of Apple Continuity BLE messages leveraging various Apple devices in different environment settings.

			Range (in meters)
	Apple device	Model	Indoor (#walls*) Outdoor 0 1 2 3
	AirPods (2 nd generation)	A1602 49 45 41 39	61
	iPad (5 th generation)	A1822 51 49 44 41	63
	iPad Mini 3	A1599 50 48 44 42	62
	iPhone 6	A1586 50 46 43 38	62
	iPhone 8	A1905 51 49 46 42	65
	MacBook Air (13", 2014) A1466 52 50 47 45	65
	MacBook Pro (13", 2015) A1502 52 51 49 47	67
	Watch Series 2	A1757 50 47 45 42	61
	Watch Series 3	A1858 51 49 46 43	62
	* Walls are constituted of plasterboard and are about 15 centimeters
	thick.		

Table V . 5 -

 V5 Summary of the Apple Continuity messages (CM) with their conditions of emission and associated privacy threats. The Apple Watch loses the Bluetooth connection to its paired iPhone and its screen is on.
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	Apple CM type	Code Message emission	Privacy threats Activity infer. Device attr. Tracking User info
	AirPrint	0x03 On user action	
	AirDrop	0x05 On user action	
	HomeKit	0x06 Constantly	
	Proximity Pairing	0x07 Constantly	
	"Hey Siri"	0x08 On user action	
	AirPlay	0x09 On user action	
	Magic Switch	0x0b On user physical* action	
	Handoff	0x0c On user action	
	Instant Hotspot		
	Teth. Target Pres. Nearby		
	Nearby Action	0x0f On user action	
	Nearby Info	0x10 Constantly	

0x0d On user action Teth. Source Pres. 0x0e Reaction to Target Pres. *

Table G . 3 -

 G3 Extended list of HomeKit Category codes.

Table G .

 G 11 -Extended list of Proximity Pairing UTP codes.

	UTP	Description
	0x01 In Ear
	0x02 In Case
	0x03 Airplane

Table G .

 G 12 -Extended list of Nearby Info Activity Level codes.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI069/these.pdf © [G. Celosia], [2020], INSA Lyon, tous droits réservés
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The more general service set includes the device/network subset.

Likewise, we do not know how long the device used its BD_ADDR before to be caught by our collecting device.

Some Private addresses have even been observed for more than 69 days.Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI069/these.pdf © [G. Celosia], [2020], INSA Lyon, tous droits réservés

This is usually the case in BLE and Wi-Fi discovery traffic.Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI069/these.pdf © [G. Celosia], [2020], INSA Lyon, tous droits réservés

For instance, sending a file to a nearby device, transferring an activity to another device and sharing a network connection.

This is for you my Memel. Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI069/these.pdf © [G. Celosia], [2020], INSA Lyon, tous droits réservés

As the detailed research required an in-depth understanding of Apple Continuity protocols for which most specifications are not public, we underline that this work of reverse engineering is a key point of our study.Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2020LYSEI069/these.pdf © [G. Celosia], [2020], INSA Lyon, tous droits réservés

V. [START_REF] Celosia | DEMO: Himiko: A Human Interface for Monitoring and Inferring Knowledge on Bluetooth-Low-Energy Objects[END_REF]. Leaked e-mail addresses and phone numbers 131 guesswork: value x such as h(x) = d but x = x. Indeed, m, the size of the set S, is potentially larger than the number of hash values n. As a consequence, it is likely that a given hash can have several pre-images in the set S. Described in [START_REF] Demir | The pitfalls of hashing for privacy[END_REF], this case where m > n falls under the many-to-one model, and the average number of elements of S matching a given digest is r = m/n.

In the general case, and assuming that the identifier used to produce the hash is included in the set (i.e. x ∈ S), the average number of identifiers returned by the guesswork [START_REF] Demir | The pitfalls of hashing for privacy[END_REF] is the following:

Since the attacker is only interested in the value x (i.e. the identifier associated with the iCloud account), the number r should be kept as small as possible.

V.7.1.1 A posteriori confirmation

In the case where the guesswork returns several identifiers, the attacker will need additional information to narrow down the one used by the iCloud account.

To perform this confirmation, one possible approach is to exploit the device status information leaked by Nearby Info messages through an event correlation attack (see Section V.5.1). Actually, the attacker can send messages to each identifier while monitoring for a device that goes from idle (code 0x03) to active (code 0x07) (see Table G.12 in Appendix G). In the same way, the attacker can rely on visual observations: the target will pick up its phone or read the message.

V.7.2 Identifier sets for the guesswork

To be tested against a hashed value, the guesswork attack requires a set of elements S. As previously mentioned, the size of this set will have an impact on efficiency of the guesswork (i.e. on the cost and number of false positives). Therefore, the set S should be as small as possible.

In this section, we discuss the potential approaches available to the attacker in order to build such a set of identifiers.

V.8. Voice Assistant commands 133

Table V.2 -Evaluation of hypothetical guesswork attacks on hashed e-mail addresses and phone numbers. For each set of identifiers, the corresponding size is used to evaluate the cost of the attack and the average number of values that will be returned as matching the digest (supposing the set includes the original identifier). The hashing speed of the attacker is assumed to be 2000 kH/s. 

V.7.3 Simulation results

Leveraging different sets of e-mail addresses and phone numbers, Table V.2 presents the outcome of the hypothetical attacks. For our simulation, it is important to mention that we assumed the attacker to be able to test identifiers at the rate of 2000 kH/s 1 .

As the worst-case scenario (i.e. all the existing e-mail addresses) can be tested within an hour (3600 seconds), the attack cost appears to be reasonable and practical in every cases.

Ranging from one up to several thousands, the number of matching values depends on the size of the digest. For a 16-bit long digest of AirDrop, the list of values returned by the attack can contain several thousand identifiers. However, with the 24 bits of the Nearby Action, the set is much smaller and can be, in some cases, curtailed to a single element. Finally, the hashed identifier can be recovered without ambiguity in a matter of seconds when the set of potential value is small enough (i.e. several thousand identifiers).

V.8 Voice Assistant commands

When receiving voice commands, a Siri enabled device will emit "Hey Siri" messages including a digest of the command under the form of a Perceptual Hash (see Section V.2.4).

In this section, we analyze how this data can be leveraged to gain knowledge on spoken commands.

Appendices

Appendix A

Example output of Venom 

Appendix B

Example of a GATT profile from an Apple iPhone 8 smartphone { "metadata" : { "timestamp" : "40365" } "header" : { "pdu _ type" : "ADV _ IND", "bd _ addr _ type" : "random" } "payload" : { "bd _ addr" : "4a:af:85:51:42:b4", "service _ 0" : { "handle _ start" : "0001", "handle _ end" : "0005", "name" : "Generic Access", "UUID" : "00001800-0000-1000-8000-00805f9b34fb", "characteristics" : [ { "handle" : "0003", "name" : "Device Name", "UUID" : "00002a00-0000-1000-8000-00805f9b34fb", "properties" : "READ", "value" : "iPhone" }, { "handle" : "0005", "name" : "Appearance", "UUID" : "00002a01-0000-1000-8000-00805f9b34fb", "properties" : "READ", "value" : "Generic Phone" } ] }, "service _ 1" : { "handle _ start" : "0006", "handle _ end" : "0009", "name" : "Generic Attribute", "UUID" : "00001801-0000-1000-8000-00805f9b34fb", "characteristics" : [ { "handle" : "0008", "name" : "Service Changed", "UUID" : "00002a05-0000-1000-8000-00805f9b34fb", "properties" : "INDICATE", "value" : "" } ] }, "service _ 2" : { "handle _ start" : "000a", "handle _ end" : "000e", "name" : "Apple Continuity Service", "UUID" : "d0611e78-bbb4-4591-a5f8-487910ae4366", "characteristics" : [ { "handle" : "000c", "name" : "Continuity Characteristic", "UUID" : "8667556c-9a37-4c91-84ed-54ee27d90049", "properties" : "NOTIFY WRITE EXTENDED PROPERTIES", "value" : "" } ] }, "service _ 3" : {...}, <--Apple Nearby Service "service _ 4" : {...}, <--Battery Service "service _ 5" : {...}, <--Current Time Service "service _ 6" : { "handle _ start" : "001e", "handle _ end" : "0022", "name" : "Device Information", "UUID" : "0000180a-0000-1000-8000-00805f9b34fb", "characteristics" : [ { "handle" : "0020", "name" : "Manufacturer Name String", "UUID" : "00002a29-0000-1000-8000-00805f9b34fb", "properties" : "READ", "value" : "Apple Inc." }, { "handle" : "0022", "name" : "Model Number String", "UUID" : "00002a24-0000-1000-8000-00805f9b34fb", "properties" : "READ", "value" : "iPhone10,4" } ] }, "service _ 7" : {...}, <--Apple Notification Center Service "service _ 8" : {...} <--Apple Media Service } }