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(i)

∥ , ê⊥), (ê
(r)
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û1, û2 : principal directions of wavefront

v̂1, v̂2 : principal directions of particle surface

Wp : exit point of a p-order scattered ray
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Chapter 1 Introduction

This chapter introduces the research background and significance of the thesis from

the aspect of particle scattering. It reviews the research history and current status of related

fields, briefly describes the analytical and numerical methods for light scattering, and puts

more effort on the introduction of two approximation methods: the geometrical optics ap-

proximation (GOA) and the vectorial complex ray model (VCRM), where the incident wave

is represented by a collection of discrete rays. Finally, the research content and method, the

content of each chapter, the overall framework, the results and the innovations of the thesis

are introduced.

1.1 Research background and significance

Light scattering by particles is a field of active research with high relevance for science

and engineering. It promotes our understanding of the interaction between light and particles

and concerns an increasing number of modern technologies, ranging from the measurement

and the manipulation of particles to optical communications in turbid media.

Particles are abundant in natural and artificial environments. In many fields of science

and engineering, such as combustion diagnosis, atmospheric optics, remote sensing, scatter-

ing by interplanetary dust grains, bio-optical imaging, colloidal chemistry, materials science,

coating technology and particle sizing technology, one often has to deal with particles rang-

ing from nanoscale to macroscopic.

Since the advent of laser, optical measurement technologies have been favored for its

non-contact, accurate and fast merits. The techniques based on elastic light scattering for

particle analysis (such as phase Doppler, extinction method, rainbow technology and small

particle imaging technology) have found wide applications. The basic principle of these

techniques is based on the fact that the intensity distribution, polarization characteristics and

spectral characteristics of scattered light are all related to the particles [1, 2]. According

to the characteristics of the scattered light, a lot of information about the particles can be

retrieved, such as the size, shape, speed of motion, temperature, density and compositions.

Efficient theoretical and numerical tools to predict the scattering characteristics of light by

various particles are thus essential.

Many models and methods have been developed for analyzing the light scattering by
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particles. Each method generally has its own range of applicability determined primarily

by the particle size relative to the wavelength of incident light. The scattering by those

particles that are very small compared to the wavelength can be calculated by the Rayleigh

approximation [1, 2]. The particles of size comparable to the wavelength lie in the range

commonly called the resonance region, where the separation of variables techniques[1, 2]

and numerical methods [3, 4] are usually utilized. And those particles of size much larger

than the wavelength can be addressed by the approximation methods, in which the incident

wave is represented as a collection of discrete rays, for example, the GOA method [1].

Among the particles of various forms in nature, one group of them are of smooth surface

due to surface tension, such as the raindrops [5–8], droplets in industry [9–13], underwater

bubbles [14–29], liquid jets [30–36] and so on. As the effects of gravity and air forces

become non-ignorable, their geometric shapes are deformed from a sphere or an infinite

cylinder, indicating that their scattering characteristics cannot be resolved by the separation

of variables techniques. Besides, their size parameters1 usually range from hundreds to

thousands or even larger, making the calculation far beyond the capabilities of the existing

numerical methods. The developments of alternative approaches allowing fast and accurate

(at least asymptotical) calculations are needed for carrying out in-situ characterization of

these particles.

For a nonspherical particle of size much larger than the wavelength (size parameter is

generally over 100), the approximate methods based on the assumption that the light wave

can be represented by a bundle of discrete rays provide feasible ways for calculating the scat-

tering field. Many researchers have contributed to the development of GOA for dealing with

spherical or spheroidal particles/bubbles [1, 37–43], faceted particles [44, 45] and natural

raindrops [6]. In a GOA model, each ray is characterized by its direction, amplitude, polar-

ization and phase. However, for a particle of curved surface, the GOA encounters difficulties

or even obstacles in calculating the shift in ray intensity due to the divergence/convergence

of wave (divergence factor) and the shift in phase due to focal lines, except for a spherical

or spheroidal particle. For this reason, the applications of GOA are under restrictions.

In this context, Ren et al. [46] proposed the vectorial complex ray model (VCRM), a

new model for describing the interaction of light rays with a large particle. The distinctive

features of VCRM are that: 1) the curvature of wavefront is integrated as an intrinsic prop-

erty of a light ray, by which one can directly calculate the divergence factor and the phase

1Size parameter depicts the size of particle compared to the wavelength of light. It is calculated as 2πa/λ with a being

the equivalent radius of particle and λ being the wavelength of light.
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shift due to focal lines; 2) the ray directions and the Fresnel coefficients are calculated by

the wave vectors and their components; 3) the interference of all scattered rays in the whole

region is taken into account.

Since the light scattering by a nonspherical particle of size much larger than the wave-

length is still a challenging problem in the field of light scattering, this thesis is devoted to

the extension of VCRM, with aims to solve the light scattering by infinite cylinders of vari-

ous forms, and more importantly, to solve the scattered intensity of plane wave and shaped

beam by large nonspherical particles in 3D space.

1.2 Research status of light scattering by particles

This section summarizes the research status of various calculation methods for the light

scattering by particles.

1.2.1 Analytical methods

The search for an exact analytical solution to the scattering field has been traditionally

reduced to solving the vector Helmholtz equation for the time-harmonic electric field using

the separation of variables techniques in one of the few coordinate systems in which this

equation is separable. For this reason, the separation of variables technique are limited to

particles of simple forms such as spheres, spheroids, circular or elliptical cylinders.

Lorenz [47] and Mie [48], independently, derived the solution for an isotropic homo-

geneous sphere in 1890 and 1908. The method that they proposed is now the well-known

Lorenz-Mie theory (LMT). The LMT is a rigorous solution of the Maxwell equations and

contains all the effects that contribute to the scattering. It was expounded later in depth by

Van de Hulst [1] and by Bohren and Huffman [2]. Aden and Kerker provided a solution for

the scattering by a coated sphere in 1951 [49]. Wait in 1955 presented a solution for the scat-

tering by a homogeneous, isotropic, infinite circular cylinder [50]; and it was extended to the

scattering by an isotropic, infinite elliptical cylinder by Kim and Yeh in 1991 [51]. Oguchi

in 1973 and Asano and Yamamoto in 1975 derived a general solution for the scattering by

homogeneous, isotropic spheroidal particles [52, 53].

To give a clear interpretation to the various physical processes in scattering, the Debye

series expansion (DSE) method [54] was developed for a homogeneous [55] and coated [56]

sphere respectively in 1992 and 1994. In 2006, Li et al. [57] derived the formula for the

DSE in the light scattering by a multilayered sphere and introduced an efficient algorithm

permitting stable calculation for a large multilayered sphere. Wu and Li in 2008 [58] pre-
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sented a simplified but rigorous iterative formula for the DSE in the light scattering by an

infinite circular cylinder of multiple layers. In 2010, Shen and Wang [59] provided a stable,

reliable and robust algorithm for the DSE calculation of the scattering of plane wave by a

uniform sphere in a wide range of sizes and refractive indices. Xu and Lock contributed to

the development of DSE for the light scattering by a spheroid [60], and by a homogeneous or

coated nonspherical particle in combination with the extended boundary condition method

[61, 62].

With the advent of lasers and their growing applications, the LMT met one of its fun-

damental limitations, i.e., the assumption that the incident wave must be a plane wave. To

address this problem of LMT, in 1988, G. Gouesbet and G. Gréhan et al. presented a theo-

retical description of the scattering of a Gaussian beam by a homogeneous and isotropic par-

ticle of spherical shape, which is now known as the generalized Lorenz-Mie theory (GLMT)

[63, 64]. An equivalent approach for the scattering by a dielectric sphere located arbitrarily

within a Gaussian beam was presented by Barton et al. [65, 66]. In the framework of GLMT,

Ren et al. in 1994 and 1996 derived the radiation pressure (pushing force) and the reverse

radiation pressure (pulling force) exerted by Gaussian beam on spherical particles [67, 68].

Onofri et al. [69] presented a solution in the framework of GLMT for the scattering of an

arbitrary shaped beam by a multilayered sphere. Ren and Méès et al. [70, 71] extended the

GLMT to the scattering of Gassian beam by infinite circular cylinders, while Gouesbet and

Méès contributed to the extension of GLMT to the scattering by infinite elliptical cylinders

[72, 73]. Han and Wu et al. devoted to the scattering of shaped beams by spheroidal parti-

cles [74–76]. Wang and Han et al. applied the GLMT to the scattering of shaped beam by

a sphere with an eccentrically located spherical inclusion [77, 78]. Later, Wang et al. pro-

posed an algorithm in the framework of GLMT to address the internal field distribution of a

radially inhomogeneous droplet illuminated by an arbitrary shaped beam in a wide range of

size parameters [79]. More comprehensive reviews of the GLMT can be found in [80, 81].

It is unlikely that these analytical solutions will be significantly extended in the future.

Indeed, the solution for the simplest finite nonspherical particles, spheroids, is already so

complex that it behaves like a numerical solution as Mishchenko pointed out in [3].

1.2.2 Numerical methods

Numerical methods provide exact solutions to the scattering of electromagnetic/light

wave by nonspherical particles. Most of them fall into two broad categories [3]: the dif-

ferential equation methods which compute the scattering field by solving the vector wave
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equation in the frequency or in the time domain; and the integral equation methods which

are based on the volume or surface integral counterparts of Maxwell’s equations, with ex-

ceptions of those hybrid techniques or methods. Here a brief introduction is made to those

commonly used numerical methods for the scattering of light by nonspherical particles.

In the discrete dipole approximation (DDA), a scatterer is divided into small cubical

subvolumes (“dipoles”), and the interaction between the dipoles are approximated based on

the integral equation for the electric field [82–85]. It can be applied to simulating the light

scattering by finite 3D objects of arbitrary geometry.

The finite-difference time domain (FDTD) method solves the Maxwell equations in the

time domain by using the finite-difference analog. It was originally developed by Yee in

1966 [86]. After that, the FDTD method has been extensively applied to solving various

electromagnetic problems [87–94]. The most relevant literatures are [44, 95], where Yang

and Liou et al. proposed the solutions for the light scattering by ice crystal particles.

The T-matrix method may be the most accurate and efficient numerical method for solv-

ing the scattering of electromagnetic wave by a nonspherical particle, and can achieve the

widest range of size parameter (up to 200 or 300 dependent on the particle shape [96–99]).

As one renowned method to compute the T-matrix in the T-matrix formulation of light scat-

tering, the extended boundary condition method (EBCM), or Waterman’s T-matrix method,

was initially proposed by Waterman in 1965 and 1971 [100, 101]. It was later developed

by Barber and Hill [102], Mishchenko [103–105] and others. The standard EBCM [105] is

very efficient but will encounter a loss of precision when the particle size becomes larger, the

maximum size being affected by the particle aspect ratio. On the other hand, the invariant

imbedding method (IIM) was originally proposed by Johnson in 1988 [106]. Bi, Sun and

Yang et al. [107, 108] and others have made significant contributions to the development of

IIM. It is based on an electromagnetic volume integral equation and obtains the T-matrix by

growing the scattering volume incrementally in a shell-by-shell manner. The IIM is applica-

ble to particles of relatively large size parameters and extreme aspect ratios. But it is not as

efficient as the EBCM due to the large number of differential shells required to discretize the

particle volume. Bi and Yang et al. [96] improved the computational efficiency of IIM by

combining the IIM with the LMT and applied to the spheroids and cylinders of size param-

eters beyond the convergence limit of EBCM. They also proposed a numerical combination

of IIM with EBCM [97], which not only enhanced the efficiency of IIM but also extended

the convergence limit of EBCM.

However, a numerical method is severely limited by the particle size. Generally speak-
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ing, when the size parameter of particle is over 100, the computation using a numerical

method becomes rather time- and memory-consuming.

1.2.3 GOA

The geometric optics approximation (GOA) (otherwise known as the ray tracing or ray

optics approximation) is an approximate method for the light scattering by large particles,

where the incident wave is described by a bundle of light rays. Van de Hulst in his renowned

book [1] presented a relatively systematic description of GOA for the scattering of plane

wave by a spherical particle, where the direction, amplitude and phase for each scattered

ray of perpendicular or parallel polarization were derived. Besides, many researchers have

extended and applied the GOA to various scattering problems including:

• The scattering by particles of various forms. Glantschnig and Chen [109] simplified the

calculation for the superposition of the externally reflected rays and the refracted rays

with the diffraction and obtained a closed formula for the scattering in the forward angu-

lar range (0◦ − 60◦) by a water droplet. Adler and Lock et al. [110, 111] examined the

scattering by an infinite cylinder of deformed cross section in terms of ray tracing, rainbow

angles and the rainbow intensity due to Fresnel coefficients. Hovenac [112] developed an

algorithm for predicting the far-field scattering from a particle being symmetric about the

optical axis. Lock [37, 38] addressed the reflection, transmission and diffraction of the

light rays scattered by an arbitrarily oriented spheroid. Sadeghi et al. [6] extended the

GOA to the 3D scattering field near the rainbows produced by natural large raindrops

(neither spheres nor spheroids). Yang and Liou [45] proposed a new geometrical optic-

s model which used the ray-tracing technique to solve the near field on the ice crystal

surface and then transformed the near field to the far field based on the electromagnet-

ic equivalence theorem. Bi et al. [113] assessed the uncertainties with the conventional

geometrical optics in remote sensing and radiative transfer simulations.

• The scattering by bubbles. In 2008, Yu et al. [41] studied the scattering of plane wave by

a spherical bubble based on GOA, where the total reflection effect was taken into account

to improve the calculation accuracy. In 2012, He et al. [42] studied the scattering of plane

wave by a spheroidal bubble with end-on incidence, where the effects of the size and

the aspect ratio of bubble and the width of incident beam on the scattering patterns were

analyzed. In 2016, Sentis and Onofri et al. [114] improved the GOA by combining it with

the physical optics approximation (POA) in modeling the scattering properties of large

spherical bubbles, where the interference between higher-order rays, the Goos–Hänchen
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shift, the tunneling phase and the weak caustic associated with the critical angle were

taken into account.

• The scattering by coated particles. Lock et al. [56] presented an intuitive interpretation to

the first-order rainbow from a coated sphere by using ray theory in 1994. In 2004, Xu et

al. [115] provided an algorithm by means of GOA for calculating the scattered intensity

by a coated spherical particle in the forward angular range (0◦ − 60◦). In 2014, Zhai et al.

[116] examined the scattering processes of a coated sphere with the GOA method. They

parameterized the light rays interacting with a coated sphere and simplified the calculation

for those terms of degeneracy paths and repeated paths.

• Ray tracing in inhomogeneous media. The path of a light ray in inhomogeneous media

is curved. In the 1960s, Montagnino [117] and Marchand [118] contributed to the de-

velopment for the methods for tracing the ray paths in inhomogeneous media. In 1982,

Sharma et al. [119] proposed an efficient method for tracing the light rays passing through

gradient-index media. Later, Sharma achieved a method for computing the optical path

in gradient-index media, which proved to be more accurate and faster after a compari-

son with other methods [120]. As for the spherical particles of inhomogeneous media,

Li et al. [121] presented a solution in 2007 to the scattered intensity of plane wave by a

gradient-index sphere in the forward angular range (0◦ − 60◦). In 2008 and 2015, Lock et

al. [122, 123] analyzed the scattering of plane wave by a Luneburg lens.

• The scattering by chiral particles. In 2015, the rainbow angles of a chiral sphere were

calculated using ray tracing by Wu et al. [124]. In 2019, the scattering pattern of plane

wave by a chiral sphere in the forward direction (0◦ − 90◦) has been solved with GOA by

Lu et al. [125].

• The scattering of shaped beam. In 2006, Xu et al. extended the GOA for calculating

the scattered intensity of circular Gaussian beam by a sphere [39] and by a spheroid with

end-on incidence [40], where the Gaussian beam was described by a bundle of light rays

of different propagation directions, amplitudes and phases. To calculate the optical forces

of an arbitrary shaped beam, Shao et al. in 2019 decomposed an arbitrary light beam

into plane waves. The intensity of each plane wave was dependent on the Fourier angular

spectrum; and each plane wave was further represented by a bundle of light rays parallel

in propagation direction [126].

• The scattering by absorbing particles. In 2005, Chang [127] detailed a ray tracing method



8 Chapter 1. Introduction

to characterize the plane wave propagating in a lossy media. Yu et al. in 2009 presented

a method based on GOA to address the light scattering by an absorbing sphere, where

the effective refractive index and the effective refractive angle were introduced, and the

formulas for the phase shifts due to reflections and refractions were derived [128]. In

2018, Lindqvist et al. [129] derived a ray-optics solution which took into account the

inhomogeneous nature of the represented wave inside an absorbing particle and applied it

to the light scattering by ice particles in the near-infrared wavelengths.

• The coupling with physical optics. In 2015, Huang et al. combined the GOA and the

concept of divergence factor with the physical optics (PO) and the physical theory of

diffraction for the scattering by perfectly electrical conducting targets [130]. Sentis et al.

in 2016 coupled the GOA with the POA and developed an improved version of GOA,

which allows one to predict the scattering pattern by large bubbles with high accuracy

[114].

• The application to optical forces. Ashkin in 1992 calculated the forces of single-beam

gradient radiation pressure on micron-sized dielectric spheres in the ray optics regime

[131]. Zhou et al. in 2012 calculated the optical forces on a triaxial ellipsoid by vectorial

ray tracing [132]. Later Shao et al. in 2019 combined the Fourier optics and ray optics for

calculating the optical force of an arbitrary shaped beam exerted on a spherical particle

[126].

• The application to inelastic scattering. The theoretical treatment of inelastic scattering by

wave theory is rather complicated and, most of the calculations are limited to a spherical

particle of homogeneous medium or with inclusions of size smaller than the wavelength.

Being flexible and efficient in computation, the ray optics was utilized to calculate the

inelastic scattering by a large spherical particle [133, 134], by a particle of any shape

where the particle surface was described by triangles [135], and by a spherical particle

with inclusions [136].

A GOA method provides clear insight into the reflection and refraction processes and

has advantage in the cases where the exact numerical methods are hard to achieve or no

rigorous theory exists, as concluded by Xu et al. [39]. However, a careful reader may notice

that most of the GOA methods available today have addressed only the scattered intensity

by spherical or spheroidal particles, or faceted ice crystals. This is mainly due to the fact that

although the GOA is flexible in principle, it usually encounters difficulties or even obstacles



1.2 Research status of light scattering by particles 9

in accounting for the divergence factor and the phase shift due to focal lines, which restricts

the precision and application of GOA.

1.2.4 VCRM

To resolve these difficulties encountered in GOA, Ren et al. in 2011 proposed the vec-

torial complex ray model (VCRM) [46]. In VCRM, the curvature of wavefront is integrated

as an intrinsic property of a light ray, by which the divergence factor and the phase shift

due to focal lines can be calculated directly. Furthermore, the ray directions and the Fresnel

coefficients are calculated by the wave vectors and their components, which avoids the te-

dious calculation when a nonspherical particle is involved. Although it is a high-frequency

approximation model, the VCRM provides one feasible way for calculating the scattered

intensity of plane wave or shaped beam by a large particle of arbitrarily smooth surface2.

The validity of VCRM has been examined numerically by comparing with the multi-

level fast multipole algorithm (MLFMA) for the light scattering by a large ellipsoidal par-

ticle [137]. Furthermore, Onofri et al. experimentally examined the VCRM for the light

scattering by a large oblate droplet trapped in an acoustic field [138].

Ren et al. applied the VCRM to the light scattering in the transversal plane of an

ellipsoidal particle in 2012 [139]. Jiang et al. applied it to the scattering of plane wave and

Gaussian beam by elliptical cylinders in 2012 and 2013 [140, 141]. Onofri et al. retrieved

the evolution of the principal curvature radii and the refractive index of an oblate droplet with

a minimization method that involves VCRM predictions and experimental light scattering

patterns in 2015 [138]. Sun et al. improved the three-dimensional (3D) ray tracing by

considering the wave-front distortion and phase shift in the scattering by a spheroid in 2016

[142].

However, the VCRM is still in its early stage of development. The existing numerical

implementations of VCRM address only the scattering in a few simple configurations. One

of them is that all light rays should propagate in a two-dimensional (2D) plane, for example,

in one of the symmetric planes of a spheroidal particle.

In the past few years, several researchers have been trying to find a solution to the 3D

scattered intensity by large nonspherical particles in the framework of VCRM. Recently, in

Yang’s doctoral thesis which was defended in the December of 2019 [143], an alternative

implementation of VCRM using statistic approach has been achieved for the 3D scattered

intensity by a pendent droplet. But, the statistic approach requires a huge number of photons,

2By smooth surface, it means that the particle surface is differentiable to the second order or more.
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at least 108 to 1010 to obtain an acceptable result for a pendent droplet of 2 mm. This statistic

approach, though effective, is so time- and memory-consuming that it violates the efficient

merit of VCRM.

1.3 Main content and frame arrangement

Because of the flexible and efficient merits of VCRM, this thesis is devoted to the

extension of VCRM to the light scattering by an infinite cylinder of arbitrarily smooth cross

section, and more importantly, to the scattered intensity of plane wave and shaped beam by a

large nonspherical particle in 3D space. This thesis focuses mainly on the following issues:

1. The extension of VCRM to the 2D scattering of plane wave by an infinite cylinder of any

smooth cross section.

2. The calculation method based on VCRM for the 3D scattered intensity by a large particle

of any smooth surface.

3. The application of the proposed method to calculating and analyzing the scattered inten-

sity of plane wave by a real liquid jet of complex surface in 3D space.

4. The examination of the proposed method by experiments.

5. The extension to the 3D scattered intensity of shaped beam, an elliptical Gaussian beam

for example.

The scattering by inhomogeneous particles is not involved here, because the variation

of wavefront in inhomogeneous media remains unknown.

The thesis includes seven Chapters. The content of each Chapter is outlined as follows:

Chapter 1 introduces the research background and the significance of this thesis, re-

views the research history of related fields, points out the issues that this thesis aims to solve,

introduces the main content and the frame arrangement, and outlines the research results and

innovations.

Chapter 2 discusses in depth the classical GOA method for the scattering of plane

wave by circular cylinders and spheres.

Chapter 3 introduces the interaction of light rays with a cylinder in the framework of

VCRM and, extends the VCRM to the scattering of plane wave by an infinite cylinder of any
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smooth cross section. The proposed algorithm is applied to solving the full diagram of the

scattered intensity by a cylinder whose cross section takes the shape of a natural raindrop.

The effects of shape deformation, refractive index and the direction of incident wave on the

scattering patterns are investigated and quantitatively analyzed.

Chapter 4 proposes the calculation method for the 3D scattering of plane wave by a

large particle of any smooth surface. In the framework of VCRM, the ray tracing, divergence

factor, phase shifts due to focal lines and optical path, and cross polarization in 3D scattering

are addressed by an elegant way using vectorial rays and wave-front curvature. To account

for the superposition of scattered ray in 3D space, a triangulation-based interpolation method

is proposed, thus breaking through the bottle-neck problem for VCRM in calculating the 3D

scattered intensity.

Chapter 5 realizes the calculation for the 3D scattered intensity of plane wave by a

real liquid jet. The geometric model of a continuous water jet near the nozzle is established

through image edge detection and data fitting. By applying the calculation method proposed

in Chapter 4, the 3D scattering field by the jet is successfully simulated. Emphasis is put

on the 3D intensity distribution near the first-order and second-order rainbows. The effect

of the stream-wise curvature of jet surface on the scattering characteristics is analyzed. The

difference from the scattering field by an infinite cylinder is discussed. An experimental

setup is also established for measuring the 3D scattered intensity by a liquid jet, and the

result by simulation is examined by the experiment.

Chapter 6 proposes a ray description method in the framework of VCRM for incident

elliptical Gaussian beams. After the validation of the proposed model by comparing with

the GLMT for spherical particles, the 3D scattered intensity of elliptical Gaussian beam

by a real liquid jet which has a complex geometry has been successfully calculated. The

scattering characteristics of the elliptical Gaussian beams of different divergence angles are

investigated. The spatial characteristics of the scattering field of a tightly focused elliptical

Gaussian beam is analyzed.

Chapter 7 concludes the work of the current thesis and gives perspectives for the future.

1.4 The innovations

This thesis addresses the 2D and 3D scattered intensity by a large particle of arbitrarily

smooth surface in the framework of VCRM. The innovations are as follows:

1. Based on the VCRM, an algorithm is proposed for solving the light scattering by an infi-
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nite cylinder of arbitrarily smooth surface in the high-frequency limit. For the scattering

by an infinite cylinder, the rigorous LMT is limited to the cylinders which have circular or

elliptical cross sections; while the GOA method, except for a circular or elliptical cylin-

der, is hard to calculate the divergence factor and the phase shift due to focal lines. The

algorithm proposed in this thesis allows one to obtain the direction, amplitude, phase, po-

larization and divergence factor for each scattered ray, and the final interference intensity

of the scattered rays from an infinite cylinder of arbitrarily smooth surface. It provides an

effective tool for calculating and analyzing the scattering patterns by a cylinder of cross

section ranging from simple to complex.

2. The bottle-neck problem of VCRM in calculating the 3D scattered intensity has been

solved. Inspired by the idea of triangulation in the area of Computer Graphics, the di-

rection of each 3D scattered ray is represented as a vertex in the (φ, ψ) space, where φ

and ψ are respectively the azimuth angle and the elevation angle. These vertexes which

represent the directions of scattered rays are firstly meshed by triangles. Then, inside

each generated triangle, interpolation is carried out for the amplitudes and phases at the

grid points which are enclosed by the triangle, according to the amplitudes and phas-

es of the three vertexes (three scattered rays). The overlapping triangles at a grid point

(φi, ψ j) account for the interference effect in the scattering direction of azimuth angle φi

and elevation angle ψ j. By introducing this triangulation-based interpolation method, the

calculation for the superposition of the scattered rays in 3D space can be achieved. Be-

sides, the ray tracing, divergence factor, phase shifts due to focal lines and optical path,

and cross polarization encountered in 3D scattering are addressed in the framework of

VCRM. It provides an effective and efficient approach to the scattered intensity in 3D

space by a large smooth particle of any shape.

3. The scattered intensity of plane wave in 3D space by a real liquid jet has been successfully

simulated and experimentally validated. The study of the light scattering by a liquid jet

is motivated primarily by the needs for developing optical means to characterize the jet

size and refractive index (temperature). However, the scattering pattern of a real jet can

hardly be calculated using the existing analytical theories or numerical methods because

of the jet’s complex geometry and large size (compared to wavelength). In this thesis,

the 3D far-field scattered intensity of plane wave by a real liquid jet has been solved.

It is found that due to the stream-wise curvature of jet surface, the scattered rays of

different orders by a real jet are naturally separated in the 3D space, leading to scattering
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patterns that have rarely been observed. Besides, an experiment has also been carried out.

The agreement between the simulated 3D scattered intensity and the experimental result

validates the proposed algorithm which is based on VCRM while allows to calculate 3D

scattering field.

4. Many researchers have contributed to the development and application of the GLMT for

the scattering of a Gaussian beam by particles. However, the GLMT is applicable only to

particles of simple forms so that the separation of variable method could be carried out.

In this thesis, the ray model for incident elliptical or circular Gaussian beam is proposed

in the framework of VCRM, thus making it possible to calculate the scattered intensity

of laser beam by a large particle of any smooth surface. As an example, the 3D far-field

scattered intensity of elliptical Gaussian beam by a real liquid jet has been achieved.

The scattering characteristics near the first-order and second-order rainbows for incident

elliptical Gaussian beams of different divergence angles are investigated in 3D space.



14 Chapter 1. Introduction



15

Chapter 2 Light scattering by a circular cylinder or a sphere based

on GOA

2.1 Overview

The scattering of plane wave by an infinite circular cylinder under normal incidence or

by a spherical particle is one of the basic problems in the filed of light scattering [1]. When

the transversal size of cylinder or the radius of sphere is much larger than the wavelength of

light, the geometrical optics approximation (GOA) method provides an asymptotic solution

to the scattering field. Although it is not as exact as the LMT or DSE, the calculation by

GOA is much simpler and more efficient. In this chapter, the GOA method for calculating

the scattered intensity by a circular cylinder under normal incidence and by a sphere are

discussed. It provides the fundamental conceptions of the interaction of light rays with a

particle, thus facilitating the understanding of the VCRM and its extensions in the following

chapters.

2.2 Light scattering by an infinite circular cylinder

2.2.1 Calculation method

Consider an infinite circular cylinder illuminated by a plane wave as shown in Fig. 2.1.

The Cartesian coordinate system Oxyz is set such that the z axis is along the cylinder axis

and the x axis coincides with the direction of the incident plane wave. The transversal radius

of the cylinder is denoted as a. The refractive indices of the surrounding medium and the

cylinder are 1 and m, respectively. The scattering angle θ denotes the direction of a scattered

ray and is counted in the xy plane from the x axis.

The incident plane wave is regarded as a bundle of light rays of same direction, equal

amplitude and equal phase. For an incident light ray, it is subjected to continual reflections

and refractions by the cylinder surface. Thus, theoretically speaking, there is an infinite

series of emergent rays. An externally-reflected ray is of order p = 0, a transmitted ray

without internal reflection is of p = 1, while an emergent ray which undergoes p − 1 times

of internal reflections is a p-order scattered ray as illustrated in Fig. 2.2. Such a definition

for the order of a scattered ray gives certain convenience in later calculation.

For the convenience of calculation, the complementary angles of the incident angle α
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and the refracted angle β are introduced as τ and τ′, respectively. τ = 0 indicates the grazing

incidence while τ = π/2 indicates the central incidence. For one of the emergent rays that

originate from the same incident ray, its angle with the cylinder surface is always τ. For

any light ray inside the cylinder which originates from this incident ray, its angle with the

cylinder surface is a constant of value τ′ as shown in Fig. 2.2.

From Fig. 2.2, one can derive that the total deviation angle of a p-order emergent ray

from the incident direction (x axis) is

θ′ = 2τ − 2pτ′ (2-1)

In practice, the scattered light is observed in [0, 2π], or in the region of [0, π] considering the

symmetry of the scattering field. The scattering angle θ in the interval [0, π] is related to the

total deviation angle by

θ′ = c2π + qθ (2-2)

where c is an integer equal to the times that the emergent ray has crossed the x axis. q is

equal to +1 or −1 ensuring that θ is in the interval [0, π].

At the first reflection, the ratio of the reflected amplitude to the incident amplitude is

calculated according to the Fresnel reflection coefficients:

r⊥ =
sin τ − m sin τ′

sin τ + m sin τ′
(2-3)

r∥ =
m sin τ − sin τ′

m sin τ + sin τ′
(2-4)

where the subscript ⊥ indicates the polarization perpendicular to the scattering plane xy,

while ∥ indicates the polarization parallel to the scattering plane xy. These two polarizations

are respectively along ê⊥ and ê∥ as shown in Fig. 2.1.

At a reflection inside the circular cylinder, τ and τ′ are reversed compared to the first

reflection. Thus, the reflection coefficients at an internal reflection are −r⊥ and −r∥. Accord-

ing to the conservation of energy, the refraction coefficient tX and the reflection coefficient

rX are related by

tX
2 m sin τ′

sin τ
+ rX

2 = 1 (2-5)

where X =⊥ or ∥. Thus, the refraction coefficient (always positive) can be expressed as

tX =
(
1 − rX

2
)1/2

(
sin τ

m sin τ′

)1/2

(2-6)
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For a scattered ray of order p ≥ 1, it has undergone p − 1 times of internal reflections and

two times of refractions: one refraction from air to cylinder and one refraction from cylinder

to air. The refraction coefficients at the two refractions are denoted as tX and t′X, respectively.

According to Eq. (2-6) and the fact that τ and τ′ are reversed at the two refractions, we have

tXt′X =
(
1 − rX

2
)

(2-7)

Then, the variation of the amplitude of a p-order scattered ray due to the reflection and

refraction coefficients is obtained as

εX,p =


rX if p = 0

(1 − rX
2)(−rX)p−1 if p ≥ 1

(2-8)

where the term (1 − rX
2) corresponds to the two refractions, while (−rX)p−1 the p − 1 times

of internal reflection.
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Fig 2.3 Schematic diagram of the divergence of a ray pencil interacting with a circular cylinder.

On the other hand, a reflected/refracted ray pencil might be converging or diverging

and its intensity will be higher or lower accordingly. Consider a ray pencil of width dl in the

xy plane, thickness dz along the axis of cylinder and uniform light intensity I0. It illuminates

the surface of cylinder in an area of dsdz where the complementary angle of incident angle

varies from τ to τ + dτ. The incident energy S inc is I0dldz. By simple geometric principles,

one can deduce that dl is equal to sinτds where ds = adτ as shown in Fig. 2.3. Thus, the

light energy incident in the area dsdz can also be expressed as

S inc = I0a sin τdτdz (2-9)
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The incident energy is then subjected to continual divisions because of refractions and

reflections. For a p-order scattered ray pencil of polarization X, the light energy is reduced

to

S X,p = S incε
2
X,p (2-10)

Suppose the scattering angle of this scattered ray pencil ranges from θ to θ + dθ as

shown in Fig. 2.3. The transversal area of the scattered ray pencil, at a distance r far from

the emergent point, is denoted as ds′dz. In fact, the transversal area of the incident ray pencil

is so small that the width dl tends to be zero. Thus, the area of the scattered ray pencil on

the cylinder can be regarded as zero, i.e. s0 → 0 (s0 is illustrated in Fig. 2.3). Then, the arc

length of the scattered ray pencil ds′ is approximated to be

ds′ = rdθ (2-11)

Then, the light intensity of the scattered ray pencil observed at r and of polarization X

can be obtained by IX,p =
S X,p

ds′dz
, that is

IX,p =
I0a sin τdτdzε2

X,p

rdθdz

=
a

r
I0ε

2
X,pD

(2-12)

The coefficient D is called the divergence factor of a light ray and is defined for an infinite

circular cylinder as

D =
sin τ

dθ/dτ
(2-13)

From Eqs. (2-1) and (2-2), we have dθ/dτ = ±dθ′/dτ. Considering that the divergence

factor D should be positive, dθ/dτ is calculated to be

dθ

dτ
=

∣∣∣∣∣
dθ′

dτ

∣∣∣∣∣

=
2 |m sin τ′ − p sin τ|

m sin τ′

(2-14)

By omitting the term I0 in Eq. (2-12) and then multiplying by kr, the dimensionless

scattered intensity in the far field is expressed by

IX,p = kaDε2
X,p (2-15)

where k is the wave number of the scattered ray (k = 2π/λ). The dimensionless term ka is

the size parameter which depicts the size of particle relative to the wavelength of light.

For an incident beam of coherent length much larger than the size of particle, the inter-
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ference between different scattered rays should be taken into account. Besides the amplitude

discussed in the preceding part, the calculation for the interference field needs also the in-

formation about the phase for each scattered ray.

For a particle illuminated by plane wave, there are three factors that affect the phase of

a scattered ray: reflection, optical path and focal lines. The time factor is chosen as exp(iωt).

(1) The phase shift due to reflections ϕX,r. According to the Fresnel formulas, the refrac-

tion coefficients are always positive, which means the refraction does not alter the

phase; while the reflection coefficients may be negative, indicating the reflection may

change the sign of the amplitude and thereby introduce a phase shift of π (−1 = eiπ).

On the other hand, when total reflection occurs, all the energy of light is reflected

and the Fresnel reflection coefficients r⊥ and r∥ are equal to exp(iδ⊥) and exp(iδ∥),

respectively, where the phase shifts δ⊥ and δ∥ are given by



δ⊥ = 2 arctan

(√
sin2 α−M2

t

cosα

)

δ∥ = 2 arctan

(√
sin2 α−M2

t

M2
t cosα

) (2-16)

where Mt is the refractive index of the refracted medium relative to the incident medi-

um.

A scattered ray might have undergone one or more times of reflection. Since these re-

flection coefficients, being positive or negative, real or imaginary, are already included

in the factor εX,p defined in Eq. (2-8), the phase shift of a p-order scattered ray due to

reflections, ϕX,r, can be retrieved directly by the argument (phase) of εX,p:

εX,p = ∥εX,p∥ exp(iϕX,r) (2-17)

(2) The phase shift due to optical path ϕp,OP. The phase shift ϕp,OP of a scattered ray is

caused by its optical path, usually compared to a reference ray. The reference ray, free

of the refraction by the particle, arrives at the center of particle in the the direction of

the incident ray and then emerges in the same direction as the scattered ray.

As shown in Fig. 2.4, the externally-reflected ray (p = 0) has a shorter optical path

than the reference ray, thus it has a positive phase when compared to the reference ray:

ϕ0,OP =
2π

λ
2σ (2-18)
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Fig 2.4 Schematic diagram of the virtual rays (dotted) serving as the references in calculating the optical

paths of scattered rays.

where σ equals a sin τ. The scattered rays of p ≥ 1 have longer optical paths than the

reference rays. For the scattered ray of p = 1, the phase shift due to optical path is

− 2π
λ

ms, where the negative sign indicates that the phase lags for a longer optical path.

s is the geometric length between two successive interactions, equal to 2a sin τ′. Then,

its phase relative to the reference ray is calculated by

ϕ1,OP = −
2π

λ
ms − (−2π

λ
2d)

=
2π

λ
(2a sin τ − 2ma sin τ′)

(2-19)

Then, for the scattered ray of order p, the phase shift relative to the reference ray is

deduced as

ϕp,OP =
2π

λ
2a(sin τ − pm sin τ′) (2-20)

(3) The phase shift due to focal lines ϕp,FL. Because of the Gouy anomaly [144–146], at

the passage of any focal line the phase advances by π/2. Two types of focal lines are

categorized by van de Hulst (the pp. 201 and 202 of [1]) for the scattering of plane

wave by a sphere:

type A: Any point of intersection of two adjacent rays in a meridional cross section

is a point of a focal curve.

type B: Any point where a ray intersects the axis is a point of focal line because the

corresponding rays in other meridional sections have the same point of interac-
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tion.

aF

(a) type A

Meridional 

plane #1 #2
bF

(b) type B

Fig 2.5 Two types of focal lines defined by van de Hulst [1] in the scattering by a sphere. For a circular

cylinder concerned in this section, only the focal lines of type A exist.

These two types of focal lines are illustrated in Fig. 2.5. For an infinite circular

cylinder, only the focal lines of type A exist and the total number of the type A focal

lines is p − (1 − s)/2, where p is the order of the scattered ray and s takes the sign

of dθ′/dτ. Thus, the phase shift due to focal lines in the case of an infinite circular

cylinder is

ϕp,FL =
π

2

[
p − (1 − s)/2

]
(2-21)

The total phase of a scattered ray of polarization X (X =⊥ or ∥) and order p is the

summation of these three kinds of phase shifts:

ϕX,p = ϕX,r + ϕp,OP + ϕp,FL (2-22)

It should be noted that the phase shifts due to optical path and focal lines, ϕp,OP and ϕp,FL,

are independent of polarization.

Finally, according to Eqs. (2-15) and (2-22), the complex amplitude of a p-order scat-

tered ray of polarization X can be obtained as

ẼX,p =

√
π

2
kaDεX,p exp(iϕX,p) (2-23)

The coefficient
√
π/2 is added so that the amplitude calculated by GOA is consistent with

that by LMT [147].

Since this thesis is devoted to the scattering of light, an approximate model is used for
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the diffraction component [2, 140, 147]:

Ẽd =
1 + cos θ

2

sin(ka sin θ)

sin θ
exp

(
i
3π

2

)
(2-24)

The scattering field at the scattering angle θ is then the summation of the complex

amplitudes of those rays scattered in this direction and the corresponding diffraction com-

ponent:

ẼX(θ) =

∞∑

p=0

ẼX,p(θ) + Ẽd(θ) (2-25)

In practice, the upper limit of p is usually set as 7 because the scattered rays of a higher

order p have much lower intensity. Then, the scattered intensity in the scattering direction θ

is computed by

IX(θ) = ẼX(θ)Ẽ∗X(θ) (2-26)

2.2.2 Results and discussions

Since the GOA method is valid only for a particle of size much larger than the wave-

length, it is necessary to examine its applicable domain before its application. In Fig. 2.6,

the scattered intensity calculated by the GOA method described in the preceding section is

compared with LMT for three circular cylinders of same refractive index but different size

parameters. Here, the perpendicular polarization is concerned. From the comparison, it may

conclude that:

• The prediction for light scattering based on the GOA method is satisfying only when

the size parameter 2πa/λ is over 100.

• The larger the size parameter, the better the agreement of GOA with LMT will be.

• When 2πa/λ > 100, the discrepancy of GOA from LMT exists mainly near the caus-

tics (the rainbow angles for example) and in the region where surface wave is impor-

tant.

Although the deficiency in predicting the light intensity near caustics and the effect

of surface waves, the GOA method still captures most part of the scattering diagram for a

particle of size parameter over 100.

The GOA method allows to distinguish the contributions from different orders of scat-

tered rays and thus provides a clear interpretation to the scattering pattern. Fig. 2.7 shows an

example for decomposing the total interference field into several single-order scattered light.
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Fig 2.6 Comparison of the scattered intensity calculated by GOA with that by LMT for different size

parameters. m = 1.3322.
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Fig 2.7 The total and the single-order scattered intensity by a circular cylinder for two polarizations. For

clarity, only the scattered light of p = 0, 1, 2 and 3 are presented.
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For clarity, only the main contributors (p = 0, 1, 2, 3) are presented. The size parameter is

about 1241 (a = 125 µm, λ = 0.6328 µm). The relative refractive index m is set as 1.3322.

For the perpendicular polarization as shown in Fig. 2.7(a), one can see that the forward

scattering field (θ < 82.2◦) results primarily from the interference between the p = 0 and

p = 1 scattered rays. The diffraction component is not concerned here. While in the region

where 105◦ < θ < 129.3◦, the interference between the p = 0 and the p = 3 scattered

rays forms the second-order rainbow. And in the region where θ > 137.8◦, the intensity of

the scattered rays of p = 0 and p = 2 are dominating. Besides these main contributors,

there exist perceivable caustics within 40◦ < θ < 45◦, which are the third- and fourth-order

rainbows formed by the p = 4 and p = 5 scattered rays, respectively; and in the Alexander’s

dark band (129.3◦ < θ < 137.8◦), the fifth-order rainbow is formed by the interference

between the p = 0 and the p = 6 scattered rays.

As to the parallel polarization as shown in Fig. 2.7(b), the intensity of the p = 2 and

the p = 3 are much lower (about 1/10) compared to those in the case of perpendicular po-

larization. This is attributed to the fact that the Fresnel reflection and refraction coefficients

are different for two polarizations. Moreover, the first-order and the second-order rainbows

are not as clear as those in the perpendicular polarization. At θ = 73.9◦, the intensity of the

p = 0 scattered ray drops down to zero, indicating the corresponding incident ray is reflected

at the Brewster’s angle.

Considering that the first-order rainbow will be repeatedly mentioned in the following

chapters, a detail discussion on the formation mechanism and the intensity distribution of

the first-order rainbow from a circular cylinder is given here.
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Fig 2.8 First-order rainbow calculated by GOA for an infinite circular cylinder. The calculation param-

eters are the same with those in Fig. 2.7(a).
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By first-order rainbow, one usually means the interference fringes of p = 2 scattered

rays in the region where θ > 137.8◦ (for m = 1.3322) as show in Fig. 2.8. These interference

fringes present as peaks and troughs, usually referred to as the Airy structures. The extremal

angle for the p = 2 rays is called the first-order rainbow angle. Since the p = 0 scattered

rays also have considerable contribution in this scattering region, the participation of the

p = 0 rays in the interference with the p = 2 rays leads to the subsidiary Ripple structures

upon the Airy structures as show in Fig. 2.8. These high-frequency Ripple structures are of

significant importance in carrying out high-accuracy measurement for the variation of size

and refractive index [11, 28, 148, 149].

It should be noted that at the rainbow angle, the scattered intensity is incorrectly pre-

dicted as infinity, while beyond the rainbow angle the scattered intensity of p = 2 rays drops

abruptly to zero. This abrupt change of intensity arises from the intrinsic defect of ray op-

tics. To tackle with this problem, one feasible way is by taking into account the diffraction

effect in the region where light intensity shows discontinuity. To improve this defect of ray

optics needs much more effort and is beyond the scope of current thesis.

2.3 Light scattering by a spherical particle

Compared to the calculation method for the scattering by an infinite circular cylinder

as given in Sec. 2.2.1, the divergence factor D and the numbers of focal lines are different

in the scattering by a spherical particle. This is because an infinite circular cylinder has a

curvature equal to zero along the cylinder axis, while a sphere does not. This section covers

the solution of GOA to the scattering of plane wave by a spherical particle. For concise,

those calculation processes which are identical to the ones for a circular cylinder will not be

repeated here.

2.3.1 Calculation method

Because of the spherical symmetry, the scattered light in one meridional plane is ex-

actly the same as the scattered light in another meridional plane. Thus, one needs only the

calculation for the scattered light in one of the meridional planes. In one meridional plane of

the spherical particle, the ray paths are same with the paths in the cross section of a circular

cylinder, if the circular cylinder and the sphere have identical radius and refractive index.

For a p-order ray of polarization X (X =⊥ or ∥) scattered by a sphere of radius a, its
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intensity at a distance r from the sphere is given by [1]

IX,p =
a2

r2
Dε2

X,pI0 (2-27)

where the divergence factor D is defined by

D =
sin τ cos τ

sin θdθ/dτ

=
m sin τ sin τ′ cos τ

2 sin θ|m sin τ′ − p sin τ|

(2-28)

These symbols in Eqs. (2-27) and (2-28) have been explained in the preceding Sec. 2.2.1.

By omitting the term I0 in Eq. (2-27) and then multiplying by (kr)2, the dimensionless

scattered intensity in the far field by the sphere is expressed as

IX,p = (ka)2Dε2
X,p (2-29)

where k is the wave number of the scattered ray (k = 2π/λ). The amplitude formula is then

obtained as

EX,p = ka
√

DεX,p (2-30)

Besides the focal lines of type A as for an infinite circular cylinder, the focal lines of

type B in Fig. 2.5 also exist for a spherical particle. In fact, the focal lines of type A are

caused by the convergence of wave in the meridional plane, while the focal lines of type B

arise from the convergence of wave in the direction perpendicular to the meridional plane.

For a sphere, the number of the type A focal lines for a p-order scattered ray is given by

p − (1 − s)/2, where s takes the sign of dθ′/dτ as has been discussed for a circular cylinder.

While the number of the type B focal lines is given by −2c + (1 − q)/2 [1], where c and q

have been discussed in Eq. (2-2).

Thus, the total phase shift due to focal lines in the case of a spherical particle is

ϕp,FL =
π

2

[
p − 2c +

1

2
s − 1

2
q

]
(2-31)

The phase shifts due to reflection and optical path are the same as those for a circular

cylinder and will not be repeated here. Then, by substituting the value of ϕp,FL into Eq.

(2-22), the total phase ϕX,p of a light ray scattered by a spherical particle can be obtained.

The complex amplitude of a p-order scattered ray of polarization X in the scattering by

a spherical particle is then expressed as

ẼX,p = ka
√

DεX,p exp(iϕX,p) (2-32)
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Since it is not within the scope of this thesis to discuss the diffraction component, the

forward diffraction is simply calculated by applying Babinet’s principle. The amplitude of

the forward diffraction of plane wave by a sphere is given by [37, 46]

Ed = (ka)2 J1(kaθ)

kaθ
(2-33)

where J1() is the Bessel function of the first kind of order 1. A more sophisticated model for

the forward diffraction can be found in [150, 151].

2.3.2 Results and discussions

In Fig. 2.9, the scattered intensity calculated by the GOA is compared with LMT for

three homogeneous spherical particles of different radii. The relative refractive index m is

1.3322 and the wavelength of incident plane wave λ is 0.6328 µm. Here the perpendicular

polarization is concerned. Since the comparison between GOA and LMT has been made for

circular cylinders of size parameters ranging from 50 to 300 in Fig. 2.6, the comparison for

the spherical particles will focus on larger size parameters.

One can see that the agreement of GOA with the rigorous LMT is generally satisfying.

And, as the radius a is increased from 50 µm to 300 µm, the agreement is getting better. One

notable discrepancy is near the first-order and second-order rainbow angles (129.3◦ < θ <

137.8◦). The incorrect prediction for the light intensity near rainbow caustics arises from the

intrinsic defect of the ray model of light as have been discussed in Sec. 2.2.2, rather than the

calculation method itself. Another notable discrepancy is caused by the fact that the GOA

method does not include the surface wave effects [55]. For example, the discrepancy in the

backward scattering area where θ > 165◦ is due to the surface wave of order p = 2.

Fig. 2.10 analyzes the contributions of the surface waves of different orders, calculated

with the Mieplot software [152], in the scattering by spherical particles of different radii.

One can see from Fig. 2.10(a) that for a spherical particle of radius a = 50 µm, the surface

wave of order p = 2 has considerable intensity for θ > 165◦, so comes the notable discrep-

ancy of GOA from LMT in this region as shown in Fig. 2.9(a). Besides, the surface waves

of orders p = 1, 3 and 5 are also worthy of consideration in the scattering regions where

55◦ < θ < 110◦, which leads to some perceivable discrepancies in these regions as shown

Fig. 2.9(a).

But for a spherical particle of a larger radius (a = 300 µm) as presented in Fig. 2.10(b),

the surface waves of orders p = 1, 2,... and 6 have much lower intensity in most of the

affected regions. On the other hand, according to the amplitude formula given in Eq. (2-30),



30 Chapter 2. Light scattering by a circular cylinder or a sphere based on GOA

0 30 60 90 120 150 180

10
1

10
3

10
5

10
7

10
9

S
ca

tt
er

ed
 i

n
te

n
si

ty
LMT

GOA

(a) a = 50 µm (2πa/λ = 496.5)

0 30 60 90 120 150 180

10
1

10
3

10
5

10
7

10
9

S
ca

tt
er

ed
 i

n
te

n
si

ty

LMT

GOA

(b) a = 150 µm (2πa/λ = 1489.4)
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(c) a = 300 µm (2πa/λ = 2978.8)

Fig 2.9 Comparison of the scattered intensity calculated by GOA with that by LMT for three spherical

particles of different radii. m = 1.3322.
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Fig 2.10 Surface wave contributions for two spherical particles of different radii.
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the amplitudes of the scattered rays are increased with the size parameter ka. Thus, the

effects of surface waves on a spherical particle of a larger size are weakened. As shown in

Fig. 2.9, the scattered intensity for 55◦ < θ < 110◦ and θ > 165◦ calculated by GOA agrees

better with the LMT for a larger spherical particle.
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Fig 2.11 Zoomed view of Fig. 2.9(c) in linear scale for the first-order rainbow calculated by GOA and

LMT.

In the measurement of the size and the refractive index (temperature) of a spherical

droplet/raindrop by the scattered light, the commonly-utilized information is the scattering

pattern of the first-order rainbow. The zoomed view of Fig. 2.9(c) for the first-order rainbow

is presented in Fig. 2.11. Except the discrepancy in the immediate vicinity of the rainbow

angle (caustic), the agreement of GOA with LMT is very good in the other parts of the first-

order rainbow. And the rainbow fringes in those parts (θ > 138◦) are fairly adequate in the

inverse calculation for the size and refractive index. One distinct advantage of GOA over

the rigorous LMT is the computational efficiency for large particles, which is critical for

carrying out real-time measurements.

2.4 Summary

In this Chapter, the GOA for calculating the light scattering by infinite circular cylinders

and spheres are discussed in detail. The calculation results are compared with the rigorous

LMT. The comparisons show that the GOA method is valid when the size parameter of

particle is over 100. And, the scattered intensity calculated by GOA agrees better with the

LMT for a larger spherical particle.

However, since the light rays in the framework of GOA do not reflect the divergence or

convergence characteristic of the represented wave, the GOA method encounters difficulties
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or even obstacles in accounting for the divergence factor and the phase shift due to focal

lines when the geometry of particle/target becomes complex. In the following parts of this

thesis, the VCRM, which resolves these difficulties encountered in GOA, will be introduced

and extended.
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Chapter 3 Light scattering by a cylinder of arbitrarily smooth

surface based on VCRM

The study of the light scattering by an infinite cylinder provides an easier way to un-

derstand the interaction of light wave with particles. With regard to the practical uses, an

efficient method to predict the light scattering by a cylinder is essential in the optical mea-

surement techniques for the size and refractive index of optical fibers [110, 153–155] and

liquid cylinders [32, 33, 156], and in the rendering of biological fibers such as hair and fur

[157–160]. However, the available electromagnetic approaches for the light scattering by

infinite cylinders are usually limited to those cylinders of circular or elliptical cross section-

s. To the author’s best knowledge, there is still no satisfying solution for calculating the

intensity distribution of the scattering field by a cylinder of other cross section.

In this chapter, based on the vectorial complex ray model (VCRM), a calculation

method is proposed to calculate the light scattering, in the high-frequency limit, by an infi-

nite cylinder of arbitrarily smooth cross section.

3.1 The difference of VCRM from GOA

For a particle of size much larger than the wavelength, i.e. in the high-frequency limit,

the incident wave can be approximated by a bundle of rays, and each of them consists of

propagation direction, polarization, amplitude and phase. The directions of the refracted

and reflected rays can be calculated according to the Snell’s law. The amplitudes are calcu-

lated by the Fresnel refraction and reflection coefficients. The phase lags when a light ray

experiences a longer optical path; and it is also well known that the phase of reflected ray

may have a shift compared to the phase of the incident ray. Besides the aforesaid ones, the

amplitude and phase of a light ray are also affected by:

• The divergence/convergence of the represented wavefront. It is understandable by con-

sidering the fact that the light intensity of a convergent or divergent beam is varied at

different axial positions, a result to meet the rule of energy conservation.

• The phase due to focal lines. A convergent beam has a phase shift after passing the

focal lines, or the focal point (two crossing focal lines). This anomalous shift of phase is

attributed to the confinement of wave either in spatial or in temporal, or even in spectral

domain [1, 145, 146, 161, 162].
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As have been discussed in the chapter 2, the divergence of wavefront (divergence factor)

and the phase shift due to focal lines can be obtained in analytical forms based on GOA

when a plane wave is refracted and reflected by a sphere or by a circular cylinder. But, more

particles (or objects in a general sense) in nature are lack of the symmetry like a sphere or

a circular cylinder. It then becomes rather tedious or even impossible for the conventional

GOA method to compute the divergence of beam and the numbers of focal lines, which

limits the precision of GOA in dealing with nonspherical particles.

In this context, Ren et al. [46] proposed the vectorial complex ray model (VCRM). Its

advantages over the GOA method are that

• In VCRM, the curvature of wavefront is integrated as an intrinsic property of a light ray,

by which one can calculate the divergence factor and the phase shift due to focal lines

directly. It is because of this that the VCRM removes the biggest obstacle for GOA in

calculating the light scattering by large nonspherical particles.

• The ray directions and the Fresnel coefficients are calculated by the wave vectors and their

components, which avoids the tedious calculation in GOA when nonspherical particle is

involved.

The VCRM is receiving more and more attention for its capability to solve the scatter-

ing of wave by large nonspherical particles with sufficient precision and high efficiency.

3.2 Calculation method

As to the 2D light scattering by an infinite cylinder, the available numerical implemen-

tation of VCRM addressed only the scattering by infinite cylinders of circular or elliptical

cross sections [140]. In this section, a calculation method based on VCRM is proposed to

solve the light scattering by an infinite cylinder of arbitrarily smooth cross section. The s-

tudy is limited to the case when the cylinder is under normal incidence, i.e. all light rays

stay in the transversal plane of the cylinder.

Consider a homogeneous cylinder (Fig. 3.1) of refractive index m and geometry given

in the Cartesian coordinate system Oxyz by:

f (x, y) = 0 (3-1)

The z axis coincides with the main axis of the cylinder (perpendicular to the paper plane).

The cylinder has a smooth surface, in other words, the function f (x, y) is differentiable to
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the second order or more. The reason for this requirement will be explained later. The

wave numbers in the surrounding medium and in the cylinder are k = 2π/λ and km = mk,

respectively, λ being the wavelength of light in free space.

Incident rays Cylinder

x

y

( ),f x y =

m

Fig 3.1 An infinite cylinder of cross section f (x, y) = 0 under normal incidence. The cylinder axis (z

axis) is perpendicular to the paper plane.

3.2.1 Ray tracing

In VCRM, the direction of a light ray is represented by the wave vector as shown in

Fig. 3.2. Consider a light ray of wave vector k⃗i incident on the cylinder. The unit vectors

normal to and tangent to the interface of cylinder are n̂ and τ̂, respectively. The Snell’s law

indicates that the tangent components of the refracted wave vector k⃗t, the reflected k⃗r and the

incident k⃗i are equal:

k(t)
τ = k(r)

τ = k(i)
τ (3-2)

where k
(i)
τ = k⃗i · τ̂ is the inner product of k⃗i with τ̂. Then, the normal components of the

refracted wave and the reflected wave, k
(t)
n and k

(r)
n , are determined respectively by

k(t)
n = ±

√
k2

t − k
(t)
τ

2
and k(r)

n = −k(i)
n (3-3)

where kt is the wave number of the refracted wave and the ± takes the sign of k
(i)
n with

k
(i)
n = k⃗i · n̂. The unit normal vector n̂ is given by

n̂ =
f ′x

( f ′x
2 + f ′y

2)1/2
· x̂ +

f ′y

( f ′x
2 + f ′y

2)1/2
· ŷ = nx · x̂ + ny · ŷ (3-4)

where f ′x and f ′y are the derivatives of the surface function f (x, y) = 0 with respect to x and

y, respectively. Besides, the unit tangent vector τ̂ is given by

τ̂ =
− f ′y

( f ′x
2 + f ′y

2)1/2
· x̂ +

f ′x

( f ′x
2 + f ′y

2)1/2
· ŷ = τx · x̂ + τy · ŷ (3-5)

After obtaining the normal and tangent components of the refracted and reflected rays,
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n̂

t̂

ikk

rkk

tkk

Fig 3.2 Local coordinate system (n̂, τ̂) to describe the wave vectors at one interaction.

a simple transformation leads to the their expressions in the Cartesian coordinate system.

For example, the expression of the refracted wave vector in the Oxyz system is obtained by

k⃗t =

[
k

(t)
x

k
(t)
y

]
=

[
k

(t)
τ τx + k

(t)
n nx

k
(t)
τ τy + k

(t)
n ny

]
(3-6)

where nx, ny and τx, τy are the x- and y-components of n̂ and τ̂, respectively, which have

already been given in Eqs. (3-4) and (3-5). For a cylinder under normal incidence, the

z-component of wave vector is zero.

To ease the calculation for the coordinates of the next interaction, a distance factor

η is introduced to bridge the coordinates of two successive interaction points (xp, yp) and

(xp+1, yp+1): 
xp+1 = xp + ηkx

yp+1 = yp + ηky

(3-7)

where (kx, ky) is the wave vector from the current interaction point (xp, yp) to the next point

(xp+1, yp+1). By the fact that both (xp, yp) and (xp+1, yp+1) satisfy the same function f (x, y) =

0, we have

f (xp + ηkx, yp + ηky) − f (xp, yp) = 0 (3-8)

This is an equation with η being the sole unknown. For an object of simple shape, this equa-

tion can be solved analytically. Otherwise, it is to be solved numerically by, for example,

the Newton downhill method. It is worth noting that several solutions may be found for η if

the cylinder has a complex geometry. One can prove this by drawing a line across a given

closed curve, and counting the points of intersection as the geometry of the closed curve

becomes complex. But, only the smallest positive value is the correct solution for η because

a ray, unlike a line, has its starting point and positive direction. By substituting the solved η
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into Eqs. (3-7), the coordinates of the next interaction point can be obtained.

To designate the order of a scattered ray, the traditional notation (commonly used in the

GOA and DSE) is adopted: the externally-reflected rays are of order p = 0, the transmitted

rays without internal reflection are of p = 1, while the emergent rays which have been

through p − 1 times of internal reflections are the p-order scattered ray as illustrated in Fig.

3.3. The exit point and the scattering direction of a p-order ray is denoted as Wp and k⃗p,

respectively.

0kk

0W

1W

2W

1p =

2p =

1kk

2kk

Incident ray

0p =

Fig 3.3 Notations for the order, the exit point and the direction of a scattered ray.

3.2.2 Amplitude

In the scattering by a dielectric cylinder, the amplitude of a light wave is affected by:

1) the Fresnel reflection/refraction coefficients and, 2) the divergence/convergence of wave-

front. The Fresnel reflection and refraction coefficients in conventional geometric optics or

ray optics are calculated with the incident and refracted angles [163]. However, the acqui-

sition of these angles is a rather daunting work when a nonspherical particle is involved,

especially for the scattering in 3D space. For this reason, in VCRM the normal components

of wave vectors are used instead of the incident and refracted angles to calculate the Fresnel

coefficients:

r⊥ =
k

(i)
n − k

(t)
n

k
(i)
n + k

(t)
n

; r∥ =
M2

t k
(i)
n − k

(t)
n

M2
t k

(i)
n + k

(t)
n

t⊥ =
2k

(i)
n

k
(i)
n + k

(t)
n

; t∥ =
2Mtk

(i)
n

M2
t k

(i)
n + k

(t)
n

(3-9)

k
(i)
n and k

(t)
n are the normal components of the incident and the refracted wave vectors, respec-

tively; and they should adopt their absolute values in Eq. (3-9) considering that the replaced
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incident and refracted angles range in [0, π/2]. Mt is the refractive index of the refracted

medium relative to the incident medium. For a refraction from air into the particle, Mt = m;

while for a refraction from the particle into air, Mt = 1/m.

The refraction and reflection coefficients at the interaction point W j ( j = 0, 1, 2, ...) are

denoted as tX, j and rX, j, respectively. For a p-order scattered ray, the variation of amplitude

caused by refraction and reflection coefficients is

εX,p =



rX,0, p = 0

tX,0tX,p

∏p−1

j=1
rX, j, p ≥ 1

(3-10)

Eq. (3-10) indicates that, for example, a scattered ray of order p = 2 has been through one

refraction (tX,0) at W0, one internal reflection (rX,1) at W1 and an eventual refraction (tX,2) into

the surroundings at W2.

On the other hand, at the refraction or reflection by a particle/target of curved surface,

the wave-front shape is altered. For example, an incident wave of planar wavefront is no

longer a plane wave if it is refracted or reflected by a curved interface. The convergence or

divergence of wavefront leads to the variation in light intensity, hence the amplitude.

For an infinite cylinder illuminated by a plane wave with normal incidence, the scat-

tered rays have cylindrical wavefronts of varied curvatures. One principal direction of the

wavefront is along the cylinder axis (z-axis) and the corresponding curvature is zero. The

other one is in the xy plane; and at each interaction, the curvature radii1 of the refracted and

the incident wavefronts, Rt and Ri, are bridged by the curvature radius of cylinder ρ through

[46, 140, 164]

k
(t)
n

2

ktRt

=
k

(i)
n

2

kiRi

+
k

(t)
n − k

(i)
n

ρ
(3-11)

Replacing k
(t)
n and kt respectively by k

(r)
n (k

(r)
n = −k

(i)
n ) and ki returns the curvature radius of

the reflected wavefront Rr:

k
(i)
n

2

kiRr

=
k

(i)
n

2

kiRi

+
−2k

(i)
n

ρ
(3-12)

For an infinite cylinder (or a 2D particle/target in a general sense) of cross section given

by function f (x, y) = 0, the curvature radius ρ can be calculated through

ρ =
( f ′x

2 + f ′y
2)3/2

f ′y
2 f ′′xx − 2 f ′x f ′y f ′′xy + f ′x

2 f ′′yy

(3-13)

where f ′′xx, f ′′xy and f ′′yy are the second-order derivatives. A careful reader may have noticed

1Curvature radius is the reciprocal of curvature.
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that the curvature radius ρ may be negative or positive. In fact, the sign of ρ determines

whether the local surface of particle is convex or concave along the normal vector defined in

Eq. (3-4):

• A positive curvature radius indicates the particle at this point has a convex surface along

the normal vector;

• A negative curvature radius indicates a concave surface along the normal vector.

The calculation for the curvature radius ρ requires the second-order derivatives of the

cylinder’s surface function. Thus, the method based on VCRM for the scattering by cylinders

is currently restricted to cylinders of smooth surface.

Besides the sudden change at refraction or reflection, a converging or diverging wave-

front is subjected to gradual variation in homogeneous medium. For a wavefront of curvature

radius R, after a propagation distance d, its curvature radius becomes

R′ = R + d (3-14)

Here a positive curvature is attributed to a diverging wavefront. Fig. 3.4 illustrates the

gradual variation of a converging wavefront (R < 0) when propagating in homogeneous

medium. After passing the point O, it is transformed into a diverging wavefront with R > 0.

O

R 'R

0R < 0R >

kk

Converging Diverging

d

Fig 3.4 Schematic diagram of the incremental variation of wavefront in homogeneous medium.

To give readers a better understanding of Eq. (3-11) and Eq. (3-14), here we take a

circular cylinder as an example. As shown in Fig. 3.5, an incident ray pencil of planar

wavefront is incident on the cylinder at W0. The radius of the circular cylinder a is 50 µm.

For a circular cylinder or a sphere, the curvature radius ρ at each point of surface is equal

to the radius a. The wavelength of incident light λ = 0.6328 µm, and the relative refractive

index m = 1.33. The impact factor of the incident ray is 0.94, which marks the position of
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Fig 3.5 Variation of the wavefront of a ray pencil refracted by a circular cylinder.

the incident ray (for a ray of central incidence, the impact factor is 0; while for the grazing

ray, it equals 1). The incident ray is then refracted by the circular cylinder at W0 and W1.

We can see that the wave-front shape experiences sudden changes precisely at the refraction.

Besides, the wavefront undergoes incremental change in the part from W0 to W1 and in the

part from W1 to the far field.

For the cylindrical wavefronts illustrated in Fig. 3.4, suppose the light intensity at the

wavefront of curvature radius R is I, while the light intensity at the wavefront of curvature

radius R′ is I′. According to the conservation of energy, the energy fluxes passing through

these two wavefronts are equal, indicating I′|R′| = I|R|. Thus, we have

I′ =

∣∣∣∣∣
R

R′

∣∣∣∣∣ I (3-15)

From Eqs. (3-11)-(3-13), the curvature radii of the refracted and the reflected wave-

fronts at each interaction with a cylinder of any smooth surface can be calculated. The

curvature radius of the refracted wavefront at the interaction point W j ( j = 0, 1, 2, 3...) is

denoted as R
(t)

j
, while the curvature radius of the reflected wavefront at W j as R

(r)

j
.

For an externally reflected ray (p = 0) of curvature radius R
(r)

0
, the light intensity at the

reflection point is calculated as IX,0rX,0
2, where IX,0 is the intensity of the incident plane wave

for polarization X (X =⊥ or ∥). After a distance of r from the exit point W0, its intensity can

be calculated according to Eq. (3-15) as

IX,p=0,r =

∣∣∣∣∣∣∣
R

(r)

0

R
(r)

0
+ r

∣∣∣∣∣∣∣
IX,0rX,0

2 (3-16)

For a transmitted ray (p = 1), the incident wavefront have been through two refrac-

tions at W0 and W1, at which the curvature radii of the refracted wavefronts are R
(t)

0
and R

(t)

1
,
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respectively. Besides the sudden changes at refractions, the wavefront is subjected to incre-

mental change from W0 to W1 and from W1 to the observation point. Thus, the light intensity

of this p = 1 ray at the observation point is given by

IX,p=1,r =

∣∣∣∣∣∣∣
R

(t)

0

R
(t)

0
+ s0

R
(t)

1

R
(t)

1
+ r

∣∣∣∣∣∣∣
IX,0t2

X,0t2
X,1 (3-17)

where s0 is the geometric length from W0 to W1, and r is the geometric length from the exit

point W1 to the observation point.

For a scattered ray of p = 2, the incident wavefront has been through a refraction at W0,

an internal reflection at W1 and a refraction at W2 (W2 is the exit point). The curvature radii of

the refracted wavefront at W0 is denoted as R
(t)

0
, the reflected wavefront at W1 as R

(r)

1
and the

refracted wavefront at W2 as R
(t)

2
. Besides these sudden changes, the wavefront is subjected

to incremental change from W0 to W1, from W1 to W2 and from W2 to the observation point.

Thus, the light intensity of this p = 2 ray at the observation point is given by

IX,p=2,r =

∣∣∣∣∣∣∣
R

(t)

0

R
(t)

0
+ s0

R
(r)

1

R
(r)

1
+ s1

R
(t)

2

R
(t)

2
+ r

∣∣∣∣∣∣∣
IX,0t2

X,0r2
X,1t2

X,2 (3-18)

where s1 is the geometric length from W1 to W2.

For a scattered ray of p ≥ 2, the incident wavefront has been through a refraction at W0,

p− 1 times of internal reflections respectively at W1, W2, ..., Wp−1 and an eventual refraction

at the exit point Wp. By taking into account both the sudden changes at the reflections and

refractions and the incremental changes along the ray paths, the light intensity of this p-order

ray at the observation point is given by

IX,p,r =

∣∣∣∣∣∣∣
R

(t)

0

R
(t)

0
+ s0

R
(r)

1

R
(r)

1
+ s1

R
(r)

2

R
(r)

2
+ s2

...
R

(r)

p−1

R
(r)

p−1
+ sp−1

R
(t)
p

R
(t)
p + r

∣∣∣∣∣∣∣
IX,0t2

X,0r2
X,1r2

X,2...r
2
X,p−1t2

X,p (3-19)

where s j is the geometric length from W j to W j+1 ( j = 0, 1, ..., p− 1), and r is the geometric

length from the exit point Wp to the observation point.

The whole effect of wave-front variation on the light intensity of a p-order scattered

ray, calculated at a distance r from the exit point, is depicted by the divergence factor Dp,r,

with

Dp,r =



∣∣∣∣∣∣∣
R

(r)

0

R
(r)

0
+ r

∣∣∣∣∣∣∣
, p = 0

∣∣∣∣∣∣∣
R

(t)

0

R
(t)

0
+ s0


p−1∏

j=1

R
(r)

j

R
(r)

j
+ s j


R

(t)
p

R
(t)
p + r

∣∣∣∣∣∣∣
, p ≥ 1

(3-20)
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Thus, the p-order scattered intensity given in Eq. (3-19) can be expressed as

IX,p,r = Dp,rIX,0ε
2
X,p (3-21)

where εX,p is the variation of amplitude due to refraction and reflection which has been

discussed in Eq. (3-10). The subscript r indicates the light intensity is calculated at a distance

r from the exit point.

In the far-field case, i.e. r → ∞, the divergence factor for a p-order scattered ray is

calculated as

Dp =



∣∣∣R(r)

0

∣∣∣, p = 0

∣∣∣∣∣∣∣
R

(t)

0

R
(t)

0
+ s0


p−1∏

j=1

R
(r)

j

R
(r)

j
+ s j

 R(t)
p

∣∣∣∣∣∣∣
, p ≥ 1

(3-22)

The dimensionless intensity of a light ray scattered by an infinite cylinder is then calculated

in the far field as

IX,p =
π

2
kDpε

2
X,p (3-23)

A constant π/2 is multiplied so that the dimensionless scattered intensity calculated by GOA

and VCRM is consistent with that by LMT [147].

Then, the far-field amplitude for a p-order light ray of polarization X scattered by an

infinite cylinder is obtained as

EX,p =
∣∣∣εX,p

∣∣∣
√

kDpπ/2 (3-24)

When the refractive index of the cylinder has an imaginary part mi, an attenuation factor

exp(−kmi

∑p−1

j=0
s j) is to be multiplied, where

∑p−1

j=0
s j is the total geometric path passed inside

the cylinder.

3.2.3 Phase

When the cylinder is illuminated by light rays from a coherent light source, the phase

of each scattered ray should be calculated correctly to account for the interference effect.

Here, the time factor is chosen as exp(iωt), which is consistent with that in [1].

(1) Phase differences of the incident rays

When a shaped beam is concerned, the phases of the incident rays relative to a given

plane (beam waist for example) are different. The calculation for the phase differences

within the incident rays will be addressed in Chapter 6. In this chapter, the incident plane
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wave is under consideration, and the phase differences among the incident rays are zero.

(2) Phase shift due to optical path ϕp,OP

Those scattered rays emerging in the same direction will interfere with each other in

the far field or on the focal plane of a focal lens. Since they may have undergone different

optical paths, the corresponding phase shift ϕp,OP differs between them. The optical path of a

scattered ray is calculated by setting a reference ray. The reference ray arrives at the center of

the cylinder in the direction of the incident ray and then emerges out in the same direction as

the concerned scattered ray, as if there is no particle. Fig. 3.6 shows the schematic diagram

in computing the optical path of a p = 1 ray relative to its reference ray. Defined in this way,

the reference ray is consistent for all those scattered rays propagating in the same direction.

0W

1W

1p =
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ps

s

Reference ray

1kk

Incident ray
O

Fig 3.6 Schematic diagram in counting the optical path of a p = 1 ray relative to the reference ray.

In the scattering of plane wave by a spherical particle or a circular cylinder, the optical

path can be calculated analytically as did in Chapter 2. For a cylinder of any cross section,

an elegant formula is proposed here to calculate the phase shift due to optical path:

ϕp,OP =
2π

λ

σi + σp − m

p−1∑

j=0

s j

 (3-25)

where σi =
−−−→
W0O· k̂i and σp =

−−−→
OWp · k̂p as shown in Fig. 3.6. The k̂i and k̂p are the normalized

wave vectors of the incident ray k⃗i at W0 and the emergent ray k⃗p at Wp, respectively. s j is

the geometric length from the interaction point W j to W j+1, and the sum
∑p−1

j=0
s j represents

the total geometric length experienced inside the cylinder.

(3) Phase shifts at reflection

According to the Fresnel formulas shown in Eq. (3-9), rX may be negative, indicating

the reflection may introduce a phase shift of π. Besides, when total reflection occurs, the

normal component of the refracted wave vector in Eq. (3-3) becomes imaginary, i.e. k
(t)
n =

−i

√
kτ

2 − k2
t . Consequently, rX is a complex number of unitary modulus and argument δX
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given by 

δ⊥ = 2 arctan

(√
ki

2 − k
(i)
n

2 − kt
2/k(i)

n

)

δ∥ = 2 arctan

(√
ki

2 − k
(i)
n

2 − kt
2/k(i)

n /M
2
t

) (3-26)

where ki and kt are the wave numbers of the incident wave and the refracted wave, respec-

tively. The explanation to k
(i)
n and Mt can be found in Eq. (3-9).

The total phase shift of a p-order scattered ray due to reflection is then the argument

(phase) of εX,p.

ϕX,r = arg(εX,p) (3-27)

(4) Phase shift due to focal lines

A converging wave experiences a phase shift as it passes through its focus, a phe-

nomenon known as the Gouy shift [144–146]. More explicitly, the phase advances by π/2

at the passage of each focal line or by π at a focal point (two crossing focal lines). In fact,

the type A focal lines defined in [1] can be equivalently determined according to the conver-

gence of wavefront in the meridional plane of sphere, while the type B focal lines according

to the convergence of wavefront in the direction perpendicular to the meridional plane. In

GOA, it is a daunting task to address the focal lines, especially when a nonspherical particle

is involved. But in VCRM, the curvature of wavefront is integrated as an intrinsic proper-

ty of a light ray, which allows us to determine directly whether and where a focal line is

encountered.

The curvature radius of a light ray refracted or reflected by an infinite cylinder of arbi-

trarily smooth surface is calculated by Eq. (3-11). If the curvature radius is changed from

negative to positive between two successive interaction points or between the exit point and

infinity, it indicates that the wavefront has undergone a conversion from converging to di-

verging. Then, we can infer that a focal line has been encountered. Fig. 3.7 illustrates the

focal line of a cylindrical wavefront, at which the wavefront is transformed from converging

to diverging.

By counting the total number N of the focal lines that a light ray has encountered in its

interaction with the cylinder, the corresponding phase shift is therefore

ϕp,FL = Nπ/2 (3-28)

Finally, the complex amplitude for a p-order scattered ray of polarization X is obtained



3.3 Description of the scatterer 47

F
o

cal lin
e

converging

diverging

Fig 3.7 The focal line for a converging wave of cylindrical wavefront.

as

ẼX,p = EX,p exp
[
i
(
ϕX,r + ϕp,OP + ϕp,FL

)]
(3-29)

The diffraction component is calculated according to Eq. (2-24) with replacement of

the radius of circular cylinder by the half width of the illuminated part.

3.3 Description of the scatterer

The method described in Sec. 3.2 is applicable to the scattering of plane wave by an

infinite cylinder of arbitrarily smooth cross section. Here, it is applied to solving the light

scattering by a composite elliptical cylinder (CEC) [110, 111]. In the Cartesian coordinate

system as shown in Fig. 3.8, the upper part (y ≥ 0) of a CEC is defined by:

x2/a2 + y2/b2
1 = 1 (3-30)

while the lower part (y < 0) by

x2/a2 + y2/b2
2 = 1 (3-31)

where b1 and b2 are the semi-axes along y axis of the upper and the lower parts, respectively.

a is the common semi-axis in x direction. The direction of the incident wave makes an angle

θ0 with respect to the x axis, while the scattering angle θ is measured from the x axis. The

angles are positive for counterclockwise rotations, while negative for clockwise rotations.

At (x, y), the curvature radius of the cylinder is given by

ρ = a2b2
(
x2/a4 + y2/b4

)3/2
(3-32)

where b equals b1 when y ≥ 0 or b2 when y < 0.

The reason for choosing such a model is that, by changing the geometric parameters a,

b1 or b2, a CEC may take a variety of cross sections ranging from simple to highly-deformed.

A circular cylinder and an elliptical cylinder are among the special cases. Moreover, such
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Fig 3.8 Geometry of the composite elliptical cylinder (CEC).

a shape, when extended in the three-dimensional form, is a better model for a real rain-

drop/droplet than a sphere or a spheroid [5–8].

Suppose the wave vector originating from the interaction point Wp is (kx, ky), its next

interaction with the cylinder occurs at Wp+1, the coordinates of which can be obtained by

introducing the distance factor η, as have been given in Eq. (3-7). Two cases are involved

according to the locations of the two successive interactions.

(1). The two successive interactions are on the same (upper or lower) part. (xp, yp) and

(xp+1, yp+1) satisfy the same equation, Eq. (3-30) or Eq. (3-31), and η is solved as

η = −2
(
b2kxxp + a2kyyp

)
/
(
b2k2

x + a2k2
y

)
(3-33)

where b = b1 if they are on the upper part, otherwise b = b2.

(2). The two successive interactions occur on different parts: from upper to the lower

part; or from lower to the upper part. In the former situation, η is given as

η =
(
−B +

√
B2 − 4AC

)
/ (2A) (3-34)

with

A =
k2

x

a2
+

k2
y

b2
2

B = 2

(
kxxp

a2
+

kyyp

b2
2

)

C =

(
1

b2
2

− 1

b2
1

)
y2

p

(3-35)

In the latter situation, the parameter η is calculated in the same way except exchanging b1
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and b2.

Then, the position of next interaction is determined by substituting the value of η into

Eq. (3-7).

3.4 Results and discussion

Based on the method described above, a code has been written for calculating the scat-

tered intensity of plane wave by CEC. The incident plane wave (λ = 0.6328µm) is simulated

by 4000 discrete parallel rays of equal phase and equal amplitude. These light rays propa-

gate in the xy plane and make an incident angle θ0 with the x axis. After the incidence, the

light rays are subjected to continual refractions and reflections by the cylinder. Here, only

the scattered rays of orders p = 0, 1, 2,...7 participate in the calculation considering that a

higher-order ray has much lower intensity.

Since there is no other method available for calculating the scattered intensity of light

by a cylinder of deformed transversal shape and transversal size much larger than the wave-

length, the proposed method and the code are validated by comparing the results with exist-

ing theories for two special cases.

Firstly, the CEC is degenerated into a circular cylinder by setting b1 = b2 = a. The

calculated scattering diagram is compared with the results of LMT [1, 2], DSE [165] and

GOA [1] as shown in Fig. 3.9. For VCRM, GOA and DSE, the scattered light of orders

p ≤ 7 are taken into account. The relative refractive index m is 1.333. The incident angle θ0

equals 0. The electric vector is polarized along the main axis of the cylinder (z axis), namely,

the perpendicular polarization is concerned.

One can see that, when the CEC takes a circular cross section, the calculated result

of VCRM is identical to that of the GOA. Moreover, the result of VCRM agrees well with

those of the LMT and the DSE. The notable discrepancy is found in the immediate vicinity

of caustics, for example, at the first- and the second-order rainbow angles. Another discrep-

ancy, perceivable in the regions where 80◦ < θ < 110◦ and where θ → 180◦, is caused by

surface waves. These discrepancies arise from the limitation of ray model [6, 55, 138, 166]

rather than the calculation method itself.

Secondly, the CEC is degenerated into an elliptical cylinder by setting b1 = b2 = b

and b , a. The calculated scattering diagram is compared in Fig. 3.10 with that of a long

ellipsoid [139] of the same cross section in the xy plane, but elongated along z axis such that

the ellipsoid approximates the elliptical cylinder. m = 1.333 and θ0 = 0◦. The perpendicular

polarization is concerned here. The differences between the two curves are relatively small,
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Fig 3.9 Comparison of VCRM with LMT, DSE and GOA for the scattered intensity of plane wave by

a circular cylinder. The curves for DSE, LMT and GOA have been offset respectively by 10−4, 10−2 and

102 for clarity.

(Elliptical cylinder)

a

 μmb =

(Long ellipsoid)

Fig 3.10 Comparison of the calculated scattering diagram of an elliptical cylinder (b1 = b2 = b = 50 µm,

a = 1.2b) with that of a long ellipsoid (a = 60 µm, b = 50 µm, c = 5000 µm). For clarity, diffraction is

not included.
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but it is worth considering the reasons for these differences. Unlike an infinite cylinder,

the curvature of the elongated ellipsoid along z axis is never zero. This non-zero curvature

causes convergence/divergence of wavefront and consequently introduces a shift in phase.

Besides, the formulas of divergence factor (Eq. (3-22)) and amplitude (Eq. (3-24)) for

a cylinder are different from those for an ellipsoid (see Eqs. (2) and (3) in [139]), thus

affecting the magnitude.

The scattering characteristics of light by CEC which has deformed cross section will

be given and discussed in the following parts of this chapter. By a deformed cylinder, we

mean a cylinder with cross section being neither circular nor elliptical.

3.4.1 Scattering patterns for diverse deformations

The cylinder is deformed such that its cross section approximates the shape of a natural

raindrop [5]. The relation between such a deformed cylinder and a raindrop is much like that

between a circular cylinder and a sphere. The size of a raindrop is described by the radius

of the equivalent volume sphere r0, which is related to a, b1 and b2 through [8]

r3
0 = a2

(
b1

2
+

b2

2

)
= a3

(
ξ1

2
+
ξ2

2

)
(3-36)

The axis ratios ξ1 and ξ2 are defined respectively by

ξ1 =
b1

a
, ξ2 =

b2

a
(3-37)

A natural raindrop of size larger than 0.4 mm cannot be treated as a spherical particle

[6], and the shape deformation increases as the raindrop continues to grow. The two axis

ratios ξ1 and ξ2 as functions of r0 are given by [8]:



ξ1 + ξ2 = 2

(
1 + f1 · r

( f2+ f3·r0+ f4·r3
0
)

0

)−1

ξ1 − ξ2 = f5 ·
(

2

ξ1 + ξ2

− 1

)
· r0 · exp

(
− f6 ·

√
r0

)
(3-38)

with the coefficients f1 = 0.08001, f2 = 2.414, f3 = −0.2911, f4 = 0.009831, f5 = 13.44 and

f6 = 2.508. The unit of the equivalent radius r0 is millimeter. Fig. 3.11 shows the calculated

ξ1 and ξ2 for different raindrop sizes. For a droplet of small size, the two axis ratios ξ1 and ξ2

tend to be 1, indicating the droplet approximates a spherical particle. As the size of raindrop

becomes larger, the deformation from a spherical particle becomes more and more evident.

In this part, the effect of the transversal deformation of cylinder on its scattering field
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Fig 3.11 The variation of the axis ratios ξi (bi/a) with the equivalent radius r0.

is investigated.

Fig. 3.12 shows the calculated results for the intensity distribution of the scattering

field by five CECs of diverse deformations. Here, the perpendicular polarization is con-

cerned. The direction of the incident wave deviates from the x axis by −20◦, i.e. the incident

angle θ0 equals −20◦. The relative refractive index m is 1.333; and the wavelength of the

incident wave λ is 0.6328 µm. These five CECs are deformed such that their cross sections

approximate the shapes of a raindrop at different sizes. The equivalent radius of the raindrop

r0 ranges from 0.5 mm to 1.5 mm, while the corresponding geometric parameters a, b1 and

b2 of the CECs are tabulated in Table 3.1. The axis ratios b1/a and b2/a are shown in the in-

set of Fig. 3.12. As r0 ranges from 0.5 mm to 1.5 mm, the size parameter 2πr0/λ varies from

approximately 5000 to 14900, far beyond the capabilities of the existing electromagnetic

approaches.

Table 3.1 Geometric parameters of the CEC at different equivalent radius r0 (unit: mm)

r0 0.50 0.75 1.00 1.25 1.50

a 0.503 0.760 1.026 1.301 1.585

b1 0.499 0.748 0.995 1.238 1.477

b2 0.490 0.711 0.905 1.070 1.209

From Fig. 3.12, one can see that the scattering field has a distinct variation as the cylin-

der is deformed differently. One remarkable phenomenon is the shift of the first-order rain-

bow in the downward scattering region (θ < 0◦), whose scattering angle θ is changed by 16.4◦

as the equivalent radius r0 is increased from 0.5 mm to 1.25 mm. The sensitivity indicates

that the first-order rainbows from two CECs of diverse deformations have distinctly-different
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Fig 3.12 The scattered intensity of plane wave by five CECs of diverse deformations.

scattering angles. This adds to the evidence that the twinned rainbows in nature arise from

the scattering by two groups of raindrops which have different sizes and at least one of them

is nonspherical [6]. Besides, it is found that even a single deformed CEC could bring forth

twinned second-order rainbows as shown in Fig. 3.12 when r0 = 1.50 mm, in which case

the cross section of CEC has a considerable deformation (b1/a = 0.931, b2/a = 0.762).

3.4.2 Scattering patterns for varied refractive indices

Besides the deformation of the transversal shape, the refractive index of CEC is another

factor worthy of consideration. Here, the medium of CEC is assumed to be pure water. The

refractive indices of pure water for λ = 0.6328 µm at different temperatures are tabulated

[167] in Table 3.2. The intensity distribution of the scattering field by a CEC at these tem-

peratures are presented in Fig. 3.13. The perpendicular polarization is concerned here. The

cross section of the CEC takes the shape of a raindrop when r0 = 0.75 mm (a = 0.760 mm,

b1/a = 0.984 and b2/a = 0.935). The incident angle θ0 is equal to −20◦ (same with that in

Fig. 3.12).

Table 3.2 Refractive indices of pure water for λ = 0.6328µm at different temperatures T (◦C)

T 5 10 15 20 25 30

m 1.3330 1.3328 1.3325 1.3321 1.3316 1.3311

From Fig. 3.13, one can see that as the temperature of water is increased from 5◦C to

30◦C, the scattering field is subjected only to a slight change. This is due to the fact that

the refractive index m is altered only by 0.0019 as given in Table 3.2. Without doubt, even

a small variation in m has an impact on the scattering pattern because the refractive index
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Fig 3.13 The scattering diagrams of a CEC as the temperature T goes up from 5◦C to 30◦C. The cross

section of the CEC takes the shape of a raindrop of equivalent radius 0.75 mm. For clarity, the curves for

T = 10◦C, 15◦C,...and 30◦C have been shifted by 102, 104,...and 1010, respectively.

affects directly the directions and the phases of the scattered rays. Fig. 3.14 is the zoomed

view of Fig. 3.13, showing the detail for the variation of the first-order rainbow in the region

where θ = [−166.5◦,−163.2◦]. We can see that the first-order rainbow angle is shifted, but

only by 0.3◦, as the temperature of water is increased by 25◦C.
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Fig 3.14 Detail for the variation of the first-order rainbow as the temperature goes up.

3.4.3 Scattering patterns for different incident angles

Due to the asymmetric cross section of a deformed CEC, the scattered light is distribut-

ed differently if the direction of incident wave is changed. Thus, the scattering patterns for
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different incident angles are also needed for a full understanding of the scattering character-

istics of light by a cylinder of deformed cross section.

For a CEC of fixed cross section and refractive index, the variation of its scattering field

with the direction of incident wave is shown in Fig. 3.15. The CEC used here is of the same
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1b

Fig 3.15 Variation of the scattering diagram of a CEC as the incident angle θ0 varies from −20◦ to 20◦

in steps of 10◦. The cross section of the CEC is the same as the one used in Fig. 3.13. m = 1.333.

cross section as the one in Fig. 3.13, while the refractive index m is fixed at 1.333. The

incident angle θ0 ranges from −20◦ to 20◦ in steps of 10◦, which simulate the cases when the

sun has an inclination of ±20◦ relative to the horizontal plane of the concerned raindrops.

Since the scattering angle θ, defined in Fig. 3.8, is measured from the preset x axis, the

scattering diagram has a holistic movement with the incident angle θ0 as shown in Fig. 3.15.

But, unlike a circular cylinder, the scattering field by a CEC of deformed cross section is

altered, if we go into detail, for different incident angles. For example, in the downward

scattering regions (θ < 0), the fifth-order rainbow has rather low intensity when θ0 = −20◦,

while it is submerged by the second-order rainbow when θ0 = −10◦, but it becomes relatively

clear when θ0 = 10◦ and 20◦.

Fig. 3.16 shows the detail for the scattering angles of the first-order, the second-order

and the fifth-order rainbows. The incident angle θ0 varies from −20◦ to 20◦ in steps of 2◦. For

comparison, the rainbow angles of a circular cylinder are also presented. The circular cylin-

der has a radius of 0.75 mm (the equivalent radius of the CEC), while the other parameters

are same with the CEC.

One can see that the angular width between the first-order and the second-order rain-

bows (a region known as the Alexander’s dark band) for the CEC is much wider than that for

the circular cylinder. It indicates that a natural raindrop has a wider Alexander’s dark band
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0.75 mm (the one used in Fig. 3.15). m = 1.333.
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than a spherical particle of equivalent radius. This is in accordance with the prediction made

by Sadeghi et al. [6]. Besides, as shown in Fig. 3.16(b), the fifth-order rainbow formed

by the CEC might separate from the second-order rainbow at certain incident angles, which

makes it possible to observe the fifth-order rainbow. But for the circular cylinder, the fifth-

order rainbow is not within the Alexander’s dark band and is overwhelmed by the second-

order rainbow, whose intensity is much greater. This gives insight into the conditions under

which one might be able to observe a natural fifth-order rainbow [168].

In Sec. 3.4, the scattering patterns of the CECs whose cross sections take the shapes of

natural raindrops are calculated in the whole scattering region. The effects of shape defor-

mation, refractive index and the direction of incident wave on the scattering characteristics,

especially on the rainbows, are quantitatively analyzed. It has been found that

• The first-order rainbows formed by CECs of diverse deformations are distinctly different

in scattering angle, which may explain why the formation of the twinned rainbows in

nature requires two groups of raindrops of different shapes.

• The variation of atmospheric temperature (5◦C ∼ 30◦C) only has a slight effect on the

rainbow position.

• The Alexander’s dark band of the CEC whose cross section is deformed like a natural

raindrop is wider than that of a circular cylinder.

• The elevation angle of the sun affects the emergence or submergence of the fifth-order

rainbow.

Although these phenomena are found in the scattering patterns of deformed cylinders, they

are capable of explaining certain natural phenomena produced by deformed raindrops. This

is because the relation between a deformed CEC and a nonspherical raindrop in nature is

much like the relation between a circular cylinder and a spherical particle.

3.5 Summary

This chapter reported the extension of VCRM allowing to account, in the high-frequency

limit, for the direction, polarization, curvature of wavefront, amplitude, phase and scattered

intensity of the light rays interacting with an infinite cylinder of arbitrary while smooth

cross section. Based on the proposed method, a numerical study has been performed on the

scattering patterns of composite elliptical cylinders (CECs), whose cross sections can take
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various shapes ranging from circular, elliptical to highly-deformed. The effects of shape

deformation, refractive index and the direction of incident wave on the scattering patterns

of the CECs whose cross sections approximate the shapes of natural raindrops were inves-

tigated and quantitatively analyzed, which provided insight into how these factors affect the

appearance of a natural rainbow.

Being flexible and numerically efficient (a full scattering diagram is obtained in few

seconds on a laptop computer (Intel i7-8550U @1.80GHz)), the proposed method is thought

to have important applications in calculating and analyzing the scattering characteristics of

light by cylindrical objects of cross sections ranging from simple to complex.
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Chapter 4 Calculation method for the 3D light scattering by a large

nonspherical particle

In the preceding chapter, the light scattering by an infinite cylinder of arbitrarily smooth

cross section under normal incidence was solved in the framework of VCRM, where light

rays stayed in a single plane and the scattering was just a two-dimensional (2D) problem. In

this chapter, an algorithm based on VCRM is proposed to calculate the three-dimensional

(3D) scattered intensity by a large nonspherical particle of any smooth surface.

4.1 Overview of the difficulties in solving 3D scattered intensity

Once the scattered rays are spread into the 3D space, several difficulties are encountered

in the calculation for the scattered intensity.

1. The first difficulty is the tedious computation in ray tracing. The conventional GOA

method which tries to compute the incident and refracted angles may already be frustrat-

ing here. But with VCRM, where the directions of light rays are described by their wave

vectors, one can carry out the ray tracing in 3D space much more easily.

2. The second one is the calculation for the local curvatures of the concerned nonspherical

particle at each interaction point; and the following calculation for the principal curva-

tures and principal directions of the wavefront after refraction or reflection.

3. The third difficulty is to deal with cross polarization effect, considering that the polariza-

tion state is usually varied at different points of interaction.

4. The fourth one is to compute the phase shifts when a light ray propagates in 3D space.

5. The last and the bottle-neck one is to account for the interference effect, since the light

rays may be scattered into any direction and may be even folded in the 3D space.

These problems encountered in the 3D light scattering by large nonspherical particles

will be addressed one by one in the following parts of this chapter.

4.2 Ray tracing in 3D scattering

In Sec. 3.2.1, the tracing for the light rays propagating within a single plane was de-

scribed, where the plane of incidence Σinc, consisting of the wave vectors and the normal
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vector, was consistent at all points of interaction. As soon as a 3D scattering problem is

involved, the light rays are no longer in the same plane and the plane of incidence Σinc might

be altered for two successive points of interaction. We need therefore to determine the Σinc

firstly, so that the vectorial Snell’s law could be applied.

ê^ n̂

t̂

incS

ikk

rkk
tkk

Fig 4.1 Local coordinate system (τ̂, n̂, ê⊥) for describing the incident wave vector k⃗i, the reflected k⃗r and

the refracted k⃗t.

At one interaction, the wave vector of the incident ray is denoted as k⃗i and the unit

normal vector of the dioptric surface is calculated as n̂ (the formula for calculating the normal

vector will be given in next section). The Σinc at this point is the plane containing the k⃗i and

n̂ as shown in Fig. 4.1. The unit vector perpendicular to Σinc is defined by

ê⊥ =
k⃗i × n̂∥∥∥∥k⃗i × n̂

∥∥∥∥
(4-1)

Then, the unit vector τ̂ tangent to the dioptric surface and located in Σinc is determined by:

τ̂ = n̂ × ê⊥ (4-2)

The normal component and the tangent component of the incident wave vector, kn and

kτ, are then obtained by the inner products k⃗i · n̂ and k⃗i · τ̂, respectively. According to

Eqs. (3-3) and (3-2), the normal component and the tangent component of the refracted or

reflected wave vector can be acquired.

In numerical implementation, the expression of a wave vector from the local coordinate

system (τ̂, n̂, ê⊥) to the Cartesian coordinate system can be transformed easily. For example,

the refracted wave vector is given in (x̂, ŷ, ẑ) by

k⃗t =



k
(t)
x

k
(t)
y

k
(t)
z

 =



k
(t)
τ τx + k

(t)
n nx

k
(t)
τ τy + k
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n nz
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where nx, ny and nz are the three components of the unit normal vector n̂ along x̂, ŷ and ẑ,

respectively; while τx, τy and τz the three components of the unit tangent vector τ̂.

A light ray propagates straightforward in a homogeneous medium. The coordinates of

two successive interaction points (xp, yp, zp) and (xp+1, yp+1, zp+1) are related by



xp+1

yp+1

zp+1

 =



xp

yp

zp

 + η ·



kx

ky

kz

 (4-4)

where (kx, ky, kz) is the wave vector between the two interactions. η is called the distance

factor (η > 0).

Suppose that the surface function of particle is f (x, y, z) = 0. The distance factor η

between two successive points can be solved by equation

f (xp + ηkx, yp + ηky, zp + ηkz) − f (xp, yp, zp) = 0 (4-5)

Thus, the search for the position of the next interaction is now boiled down to solving this

one-variable equation. It should be noted that there may be several solutions for η, and the

minimum positive one corresponds to the actual position of the next interaction. The reason

for this has been discussed in Sec. 3.2.1. Then, the coordinates of the next interaction point

are obtained by substituting the value of η into Eq. (4-4).

Through the procedure described above, the coordinates of each interaction point and

the direction of each scattered ray can be calculated step by step. The following parts will

address the amplitude and the phase.

4.3 Curvature of wavefront

To characterize the divergence or convergence of wavefront, the local curvature of

wavefront is integrated as a new property of a light ray in VCRM. In a general case, a

local wavefront can be any shape, dependent on the values of its two principal curvatures ζ1

and ζ2. A planar wavefront (ζ1 = 0 and ζ2 = 0), a cylindrical wavefront (ζ1 = 0 or ζ2 = 0) as

discussed in Chapter 3 and a spherical wavefront (ζ1 = ζ2 , 0) are among the special cases.

Fig. 4.2 illustrates a local wavefront whose principal curvature radii are R1 and R2 (re-

ciprocals of the principal curvatures, R1 = 1/ζ1 and R2 = 1/ζ2). The two tangent directions

û1 and û2, along which the wavefront has the minimum and the maximum curvatures (prin-

cipal curvatures ζ1 and ζ2), are called the principal directions of wavefront. The direction of

the representing light ray is denoted as k⃗ (wave vector). The two principal directions û1 and
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û2 lie in the tangent plane of wavefront and are orthogonal to each other, satisfying

û1 × û2 =
k⃗

∥⃗k∥
(4-6)
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Fig 4.2 Schematic diagram of a local wavefront.

In the free propagation within a homogeneous medium, the curvature radii of a con-

verging or diverging wavefront are changed gradually with the propagation distance. After

a distance d, the curvature radii can be directly calculated according to

R′j = R j + d (4-7)

where j = 1 or 2. A positive curvature is attributed to a diverging wavefront, as illustrated

in Fig. 3.4.
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Fig 4.3 Evolution of a local wavefront within a homogeneous medium.

Fig. 4.3 shows an example, in the framework of VCRM, for a light ray of converging

wavefront propagating in a homogeneous medium. At O, the ray has a converging wavefront
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with R1 < 0 and R2 < 0. F1 and F2 are two points of the focal lines in the planes (û1, k⃗) and

(û2, k⃗), respectively. If F1 , F2, the wavefront is astigmatic and will have a saddle surface

between F1 and F2, where R′
1
< 0 but R′

2
> 0. After passing F2 and F1, at the point O′ for

example, the local wavefront becomes diverging with R′
1
> 0 and R′

2
> 0. As to the two

principal directions û1 and û2, they have no change in a homogeneous medium.

Besides the gradual variation in the free propagation within a homogeneous medium,

the wavefront is subjected to a sudden change upon being refracted or reflected. For ex-

ample, when a planar wavefront is refracted or reflected by a curved interface, it may be

converged or diverged dependent on the two principal curvatures of the particle surface and

the relative refractive index. Fig. 4.4 illustrates the sudden change of wavefront at a refrac-

tion by the interface of particle.

Incident

ikk
tkk

Refracted

Particle surface

Fig 4.4 Schematic diagram of the sudden change of wavefront caused by refraction.

To calculate the variation of wavefront at a refraction or at a reflection, the shape infor-

mation of the particle, more precisely, the principal curvatures and the principal directions

of the particle’s local surface at the refraction or reflection are required. The computation

for the principal curvatures and the principal directions of a 3D surface involves the knowl-

edge of Differential Geometry. This chapter presents the calculation method for 3D parti-

cles/objects of parameterized surface X = X(α, β). For those 3D particles/objects of implicit

surface f (x, y, z) = 0, the calculation method will be presented in the following Chapter 6,

where the iso-phase surface of elliptical Gaussian beam has an implicit function.

Let X = X(α, β) be the parametric expression of particle surface, where X is a vector-

valued function of the parameters α and β1. More knowledge about parameterized surface

can be found in Differential Geometry books and literatures, such as [169–171]. The first-

1For example, the surface function (x/a)2 + (y/b)2 + (z/c)2 = 1 for an ellipsoid can be expressed by two parameters α

and β as X(α, β) = (a cosα cos β, b cosα sin β, c sinα), with −π/2 ≤ α ≤ π/2 and 0 ≤ β < 2π.
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order derivatives of X are calculated as X′α = ∂X/∂α and X′β = ∂X/∂β, while the second-

order derivatives are X′′αα = ∂
2X/∂α2, X′′αβ = ∂

2X/∂α∂β and X′′ββ = ∂
2X/∂β2. The X′α and X′β

are two vectors tangent to the particle surface, indicating that the unit vector normal to the

particle surface can be obtained by

n̂ =
X′α × X′β

∥X′α × X′β∥
(4-8)

The coefficients of the first fundamental form [169–171] (E, F,G) are calculated by



E = X′α · X′α
F = X′α · X′β
G = X′β · X′β

(4-9)

while the coefficients of the second fundamental form (L,M,N) by



L = X′′αα · n̂
M = X′′αβ · n̂
N = X′′ββ · n̂

(4-10)

Then, the two principal curvatures and the corresponding principal directions of the

particle surface can be found in the Weingarten equations in matrix form [172]

Jweingarten =
1

EG − F2

[
MF − LG NF − MG

LF − ME MF − NE

]
(4-11)

The eigenvalues of Jweingarten are −1/ρ1 and −1/ρ2, where 1/ρ1 and 1/ρ2 are the two prin-

cipal curvatures of the particle surface (ρ1 and ρ2 are the principal curvature radii). The

eigenvectors of Jweingarten, v⃗1 and v⃗2, correspond to the principal directions of the particle

surface. The curvature matrix of the particle surface is then obtained as

C =

[
1/ρ1 0

0 1/ρ2

]
(4-12)

A careful reader may have noticed that this calculation method for the principal cur-

vatures and principal directions of particle surface requires the second-order derivatives of

particle surface. It is because of this requirement that the current VCRM is restricted to

particles of smooth surface.

It should be noted that the two principal directions v⃗1 = [v
(1)
α , v

(1)

β ] and v⃗2 = [v
(2)
α , v

(2)

β ]

are two orthogonal vectors in the space expanded by X′α and X′β. They can be transformed
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into the Cartesian coordinate system (x̂, ŷ, ẑ) through:


v⃗1 = v

(1)
α X′α + v

(1)

β X′β

v⃗2 = v
(2)
α X′α + v

(2)

β X′β
(4-13)

Their normalized vectors are denoted as v̂1 and v̂2, respectively.

From the calculation above, the curvature matrix C (whose diagonal elements are the

two principal curvatures 1/ρ1 and 1/ρ2) and the two principal directions v̂1 and v̂2 at a local

point of particle surface are obtained.

On the other hand, suppose that the two principal curvature radii of the incident wave-

front are respectively R
(i)

1
and R

(i)

2
, and the corresponding principal directions are û

(i)

1
and û

(i)

2
.

The curvature matrix of the incident wavefront is denoted as

Qi =

[
1/R(i)

1
0

0 1/R(i)

2

]
(4-14)

The projection matrix between (û
(i)

1
, û(i)

2
) and (v̂1, v̂2) is defined by [164]

Θi =

[
û

(i)

1
· v̂1 û

(i)

1
· v̂2

û
(i)

2
· v̂1 û

(i)

2
· v̂2

]
(4-15)

To describe the wavefront of the refracted ray, an orthogonal coordinate system (û
(t)

1
, û(t)

2
)

in the tangent plane of the refracted wavefront is needed. For simplicity, û
(t)

1
is simply set as

the ê⊥ which has already been defined in Eq. (4-1), while û
(t)

2
is defined by

û
(t)

2
=

ê⊥ × k⃗t∥∥∥∥ê⊥ × k⃗t

∥∥∥∥
(4-16)

The projection matrix between (û
(t)

1
, û(t)

2
) and (v̂1, v̂2) is

Θt =

[
û

(t)

1
· v̂1 û

(t)

1
· v̂2

û
(t)

2
· v̂1 û

(t)

2
· v̂2

]
(4-17)

Then, the curvature matrix of the refracted wavefront Qt is related to that of the incident

wavefront Qi by [46, 164, 173]:

ktΘ
T
t QtΘt = kiΘ

T
i QiΘi +

(
k(t)

n − k(i)
n

)
C (4-18)

where ki and kt are the wave numbers of incident and refracted waves, respectively. k
(i)
n and

k
(t)
n are the normal components of the incident and refracted wave vectors, respectively. The

letter T indicates the transposition of matrix.

The curvature matrix Qt contains the information about the shape of the wavefront after
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the refraction. The eigenvalues of Qt are the two principal curvatures 1/R(t)

1
and 1/R(t)

2
of the

refracted wavefront, while the eigenvectors are the corresponding principal directions. It

should be noted that the eigenvectors of Qt are two vectors in the local coordinate system

(û
(t)

1
, û(t)

2
), and they can be transformed into the (x̂, ŷ, ẑ) system in the same way as did in Eq.

(4-13). While for the reflected wavefront, its principal curvatures and principal directions

are obtained in the similar way.

After the refraction or reflection, the curvature radii of wavefront are again subjected to

incremental variation as given in Eq. (4-7) when the light ray propagates in a homogenous

medium.

Through the procedure given above, the principal curvatures and principal directions

of the refracted and the reflected wavefronts at each interaction point with a particle of any

smooth surface can be calculated step by step. At the interaction point W j ( j = 0, 1, 2, 3...),

the two principal curvature radii of the refracted wavefront are denoted as R
(t)

1, j and R
(t)

2, j, while

the principal curvature radii of the reflected wavefront as R
(r)

1, j and R
(r)

2, j.

Different from the divergence factor of a cylindrical wavefront as deduced in Sec. 3.2.2,

the calculation for the divergence factor of a general wavefront in 3D scattering involves

two principal curvature radii. For a p-order scattered ray at a distance r from the exit point,

the divergence factor which accounts for the overall variation in light intensity due to the

divergence or convergence of wavefront is given by

Dp,r =



∣∣∣∣∣∣∣
R

(r)

1,0R
(r)

2,0

(R
(r)

1,0 + r)(R
(r)

2,0 + r)

∣∣∣∣∣∣∣
, p = 0

∣∣∣∣∣∣∣
R

(t)

1,0R
(t)

2,0

(R
(t)

1,0 + s0)(R
(t)

2,0 + s0)


p−1∏

j=1

R
(r)

1, jR
(r)

2, j

(R
(r)

1, j + s j)(R
(r)

2, j + s j)


R

(t)

1,pR
(t)

2,p

(R
(t)

1,p + r)(R
(t)

2,p + r)

∣∣∣∣∣∣∣
, p ≥ 1

(4-19)

where s j is the geometric length from W j to W j+1 ( j = 0, 1, ..., p− 1), and r is the geometric

length from the exit point Wp to the observation point.

In the far-field case, i.e. r → ∞, the divergence factor for a p-order scattered ray is

calculated as

Dp =



∣∣∣R(r)

1,0R
(r)

2,0

∣∣∣, p = 0

∣∣∣∣∣∣∣
R

(t)

1,0R
(t)

2,0

(R
(t)

1,0 + s0)(R
(t)

2,0 + s0)


p−1∏

j=1

R
(r)

1, jR
(r)

2, j

(R
(r)

1, j + s j)(R
(r)

2, j + s j)

 R
(t)

1,pR
(t)

2,p

∣∣∣∣∣∣∣
, p ≥ 1

(4-20)

The divergence factor Dp calculates the variation in light intensity caused by the diver-
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gence or convergence of wavefront for a p-order scattered ray, thus the value
√

Dp is the

corresponding variation in amplitude. In the following part, we will discuss another factor

affecting the amplitude.

4.4 Cross polarization

In the special cases when the incident plane Σinc at each interaction remains unchanged,

the polarization state does not change if the electric vector is either perpendicular or parallel

to Σinc. The scattering by a sphere [1, 39], by an infinite cylinder under normal incidence

[110, 111, 140, 141, 153, 154], or by a spheroid with end-on incidence [40] is among these

special cases. These configurations where polarization state is preserved have one basic

requirement: the incident plane Σinc is consistent for different points of interaction so that

the electric vectors are always perpendicular or parallel to the Σinc.

However, in general cases, the incident planes at successive interactions might not co-

incide and consequently the cross polarization occurs [38, 174]. For an electric vector of

vibration direction perpendicular (or parallel) to the Σinc at one interaction, the vibration

direction at the next interaction where Σinc is different will be no longer perpendicular (or

parallel) to the incident plane. In such cases, a linearly-polarized electric vector will change

its direction of vibration after the refraction or reflection because the Fresnel coefficients for

the perpendicular component and the parallel component are usually different. Furthermore,

if total reflection occurs, after the reflection, the linear polarization becomes elliptical po-

larization since the phase difference between the perpendicular and the parallel components

may reach π/6 when the relative refractive index is 1/1.3322.

This part covers the solution for the polarization state, namely the vibration direction

and the amplitude of the electric vector, when a light ray is scattered by a 3D nonspherical

particle.

Suppose the Jones vector of the incident electric vector at one interaction is given by

E⃗i =

[
E1eiϕ1

E2eiϕ2

]
(4-21)

where the complex amplitudes E1eiϕ1 and E2eiϕ2 are the components of the incident electric

vector along ê1 and ê2, respectively, with ê1 and ê2 being two orthogonal base vectors within

the vibration plane of the incident elector vector. The phases ϕ1 and ϕ2 discussed in this

section only refer to the phase shifts caused by reflection, since those phase shifts due to

optical path and focal lines are independent of polarization.
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To apply the Fresnel formulas, one needs the parallel and perpendicular components of

E⃗i with respect to the incident plane Σinc at this interaction, i.e. the component along the ê
(i)

∥

which is parallel to the Σinc, and the component along the ê⊥ which is perpendicular to Σinc.

The direction ê⊥ has been defined in Eq. (4-1), while ê
(i)

∥ can be determined by

ê
(i)

∥ =
ê⊥ × k⃗i∥∥∥∥ê⊥ × k⃗i

∥∥∥∥
(4-22)

( )ˆ
i

e
( )

e
ê^

ê

ê

Fig 4.5 Illustration of the two coordinate systems (ê1, ê2) and (ê
(i)

∥ , ê⊥) within the vibration plane of

incident electric vector.

In the vibration plane of the incident electric vector as illustrated in Fig. 4.5, the coor-

dinate transformation matrix from (ê1, ê2) to (ê
(i)

∥ , ê⊥) is calculated by2

M1 =

[
(ê

(i)

∥ · ê1) (ê
(i)

∥ · ê2)

(ê⊥ · ê1) (ê⊥ · ê2)

]
(4-23)

Then, the Jones vector of the incident electric vector in the coordinate system (ê
(i)

∥ , ê⊥) is

obtained as 
E

(i)

∥ e
iϕ

(i)

∥

E
(i)
⊥ eiϕ

(i)
⊥

 = M1E⃗i (4-24)

One noteworthy fact about Eq. (4-24) is that the elements of Jones vector depend on the

choice of the coordinate system. If these elements (complex amplitudes) are known in one

coordinate system, they can be determined in another coordinate system by using coordinate

transformation matrix [175].

According to Fresnel formulas, the Jones vector of the electric vector after refraction

2In the thesis, a bold variable indicates a 2 × 2 matrix, while a variable with arrowhead means a 2D or 3D vector.
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can be obtained by

E⃗t =


E

(t)

∥ e
iϕ

(t)

∥

E
(t)
⊥ eiϕ

(t)
⊥

 =
[
t∥ 0

0 t⊥

] 
E

(i)

∥ e
iϕ

(i)

∥

E
(i)
⊥ eiϕ

(i)
⊥

 = Jt M1E⃗i (4-25)

where Jt is the Jones matrix for refraction, and its diagonal elements are the Fresnel refrac-

tion coefficients. On the other hand, the Jones vector of the electric vector after reflection is

calculated by

E⃗r =


E

(r)

∥ e
iϕ

(r)

∥

E
(r)
⊥ eiϕ

(r)
⊥

 =
[
r∥ 0

0 r⊥

] 
E

(i)

∥ e
iϕ

(i)

∥

E
(i)
⊥ eiϕ

(i)
⊥

 = Jr M1E⃗i (4-26)

where Jr is the Jones matrix containing the Fresnel coefficients for reflection. The Fresnel

reflection and refraction coefficients r∥, r⊥ and t∥, t⊥ are calculated directly by the normal

components of the incident and refracted wave vectors as given in Eq. (3-9).
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Fig 4.6 Definition of the base vectors (ê
(i)

∥ , ê⊥), (ê
(r)

∥ , ê⊥) and (ê
(t)

∥ , ê⊥) for describing the parallel and the

perpendicular components of the incident, reflected and refracted electric vectors.

It should be noted that the Jones vectors of the refracted and reflected electric vectors E⃗t

and E⃗r in Eqs. (4-25) and (4-26) are expressed in the local coordinate systems (ê
(t)

∥ , ê
(t)
⊥ ) and

(ê
(r)

∥ , ê
(r)
⊥ ), respectively, with ê

(t)
⊥ = ê

(r)
⊥ = ê⊥, while ê

(t)

∥ and ê
(r)

∥ are defined in the same way

as did in Eq. (4-22) just by replacing k⃗i with k⃗t and with k⃗r, respectively. Fig. 4.6 presents

an illustration of these base vectors. The wave vectors k⃗i, k⃗r and k⃗t lie in the same plane, the

incident plane Σinc at this interaction. The base vector ê⊥ is perpendicular to the Σinc, while

ê
(i)

∥ , ê
(r)

∥ and ê
(t)

∥ are within the Σinc. As to the vibration directions of the electric vectors, for

example, the refracted electric vector vibrates within the plane constituted by ê⊥ and ê
(t)

∥ .

The refracted or the reflected light ray may then act as the incident ray at the next

interaction. If so, the procedure from Eq. (4-21) to Eq. (4-26) is to be repeated. Otherwise,

it emerges out of the particle and contributes to the scattering field. For a scattered ray of

wave vector k⃗s (s = r when the reflected ray is scattered out of the particle, while s = t if

the refracted ray is scattered out), two orthogonal unit vectors in the vibration plane of E⃗s
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(electric vector of the scattered ray k⃗s) are introduced as

êφ =
ẑ × k⃗s∥∥∥∥ẑ × k⃗s

∥∥∥∥
and êθ =

k⃗s × êφ∥∥∥∥⃗ks × êφ

∥∥∥∥
. (4-27)

For a fixed Cartesian coordinate system (x̂, ŷ, ẑ), the two base vectors êθ and êφ are only

related to the direction of the scattered ray k⃗s/∥⃗ks∥. It indicates the coordinate system (êθ, êφ)

for describing the electric vector is consistent for those scattered rays emerging in the same

direction.

In the vibration plane of E⃗s, the coordinate transformation matrix from the coordinate

system (ê
(s)

∥ , ê⊥) to (êθ, êφ) is calculated as

M2 =


(êθ · ê(s)

∥ ) (êθ · ê⊥)

(êφ · ê(s)

∥ ) (êφ · ê⊥)

 (4-28)

Then, the Jones vector of E⃗s expressed in (êθ, êφ) is obtained:

E⃗s =


Eθe

iϕθ

Eφeiϕφ

 = M2 J s M1E⃗i (4-29)

The complex amplitudes Eθe
iϕθ and Eφeiϕφ are the two orthogonal components of the electric

vector of scattered ray along êθ and êφ, respectively. For any two scattered rays propagating

in the same direction, their electric vectors are expressed in the same coordinate system.

Thus, the calculation method described above enables the straightforward addition of two

scattered electric vectors for superposition. Besides, the calculation for the incident and

refracted angles (as did in [174]), which could be rather tedious especially in 3D scatter-

ing, is avoided. The method proposed here simplifies considerably the calculation for the

polarization states of the light rays in 3D scattering when cross polarization is involved.

4.5 Phase shift in 3D scattering

In the preceding Sec. 3.2.3, the factors which affect the phase shift in the 2D scattering

of plane wave by a cylinder of any smooth cross section has been discussed in detail. For

the 3D scattering of plane wave by a nonspherical particle of any smooth surface, some of

those factors need further discussions.

As to the phase shift due to optical path in the 3D scattering of plane wave by a particle

of any shape, the formula proposed in Eq. (3-25) holds too. As shown in Fig. 4.7, the

reference ray arrives at an artificially defined point O and then exits in the direction of the

concerned scattered ray. For simplicity, the position of O is better set at the center of particle.
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The method proposed in Eq. (3-25) for calculating the phase due to optical path is very easy

O

W
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isReference ray
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W

W

O

Reference ray

Reference ray
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ps s

p =

p =

(2D object) (3D object)

m
m

kk

Incident ray

kk

Incident ray

Fig 4.7 Schematic diagram in calculating the optical path of a scattered ray relative to the reference ray.

For clarity, an example for a scattered ray of order p = 1 is shown.

to implement. It only needs the direction of the incident ray k̂i at the incident point W0, the

direction of the scattered ray k̂p, and the coordinates at each interaction W0,W1, ...Wp. More

importantly, the proposed formula is applicable to a 2D or 3D particle of any shape.

Due to the presence of cross polarization, the electric vector of a 3D scattered ray is

resolved into two components, Eθe
iϕθ and Eφeiϕφ as given in Eq. (4-29). The arguments ϕθ

and ϕφ record the phase shifts due to reflection for the two polarizations.

In the 3D scattering by a nonspherical particle, the wavefront of a scattered ray in the

near field3 is usually astigmatic or spherical, presenting as a curved surface in the 3D space.

Compared to a cylindrical wavefront, an astigmatic or spherical wavefront has two non-

zero principal curvatures. The calculation for the two principal curvatures of a scattered

wavefront can be found in Sec. 4.3. If any of the two curvatures is changed from negative to

positive between two successive interaction points or between the exit point and infinity, it

indicates that the wavefront has undergone a conversion from converging to diverging in the

corresponding principal direction. We can then infer that a focal line has been encountered

in this principal direction. By counting the total number N of the focal lines that have been

encountered in both of the principal directions, the phase shift due to focal lines is then

calculated by Nπ/2.

The phase difference between the incident rays is zero for plane wave incidence. The

case with shaped beam incidence will be discussed in detail in the Chapter 6.

3A scattered wave in the far field approximates a spherical wave.
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4.6 Interpolation of amplitude and phase in 3D scattering

When a light wave is scattered by a nonspherical particle, the scattered rays are usually

irregularly distributed. For a concerned scattering direction, the calculation for the scat-

tered intensity usually involves the interpolation of the scattered rays nearby. However, the

interpolation in 3D scattering is not an easy task since:

1. Both amplitude and phase are bivariate functions.

2. The light rays from the same scattering order or from different orders may be folded

one or more times, indicating that the amplitude and the phase may also be multi-valued

functions. The superposition of light in the folding area must be taken into account.

Sadeghi et al. [6] used quadrilateral patches, each of which was composed of four rays,

to evaluate the amplitude and phase shift due to the convergence/divergence of wavefront;

then they implemented bilinear interpolation in each patch to calculate the amplitude and

the phase in the query directions. Besides the complexity in implementation, their method

was limited to the scattering region near the rainbows because they encountered obstacles to

calculate the phase in other scattering directions. To the best knowledge of the author, there

is still no solution yet applicable to the full scattering field in 3D space by a nonspherical

particle of size much larger than the wavelength of light.

As discussed in the preceding sections of this chapter, the direction, amplitude and

phase for each 3D scattered ray can be calculated in the framework of VCRM. In this section,

an algorithm is proposed to address the bottle-neck problem for VCRM to calculate 3D

scattered intensity, namely, the interpolation of the bivariate and multiple-valued scattered

data for the final interference intensity in 3D space.

j

z

x

y
y

Incident

Scattered ray

skk

Fig 4.8 Definition of the direction (φ, ψ) of a scattered ray in the 3D space.

For a scattered ray in the 3D space, its direction is described by the azimuth angle φ

and the elevation angle ψ as shown in Fig. 4.8. φ is measured in the horizontal plane from
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the x axis, while ψ is the elevation angle relative to the horizontal plane. They are calculated

according to 
tanφ = ky/kx

tanψ = kz/(k
2
x + k2

y)1/2
(4-30)

where kx, ky and kz are x-, y- and z-component of the wave vector k⃗s, respectively.
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Fig 4.9 Schematic diagram of the 3D scattering space discretized uniformly with grid points.

The whole 3D scattering space with φ = [−180◦, 180◦] and ψ = [−90◦, 90◦] is dis-

cretized uniformly with grid points as shown in Fig. 4.9. The angular intervals along the φ

axis and along the ψ axis are ∆φ and ∆ψ, respectively. Each grid point represents a scattering

direction in the 3D space.
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Folded area

Fig 4.10 Schematic diagram of two groups of scattered rays (marked as the sample points) which are

folded with each other.

The directions of scattered rays are described in the (φ, ψ) coordinate system as sample

points, which are always distributed irregularly (as illustrated in Fig. 4.10). The light rays

from the same scattering order or from different orders may be folded with each other. In

the folded area, the superposition of light occurs. The calculation for the scattered intensity

at each grid point requires the interpolation of the sample points around it. It is worth noting
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that the grid points represent the query directions in the 3D space, while the sample points

represent the calculated directions of the scattered rays.
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Fig 4.11 Procedure of the triangulation. (1) In each iteration, only two adjacent layers of incident rays

are considered; (2) The scattered rays are irregularly distributed in terms of the scattering direction (φ, ψ);

(3) The triangles meshed in the triangulation of the sample points.
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Fig 4.12 The Delaunay criterion used in triangulation. (a) Ai+1 is not a successful candidate since the

circumcircle of triangle △AiB jAi+1 contains other sample points; (b) B j+1 with AiB j forms successfully a

triangle.

Firstly, we need to determine which grid points are enclosed by the sample points. As

illustrated in Fig. 4.11, for two adjacent layers of incident rays, say sets A0 and B0, we have

two sets of scattered data, say A and B. They are irregularly distributed in terms of scattering

direction (φ, ψ). The band between these two sets A and B is meshed incrementally with

triangles as shown in Fig. 4.11(3). In generating a new triangle, for the sake of simplicity and

topological correctness, the candidate vertexes for the front edge AiB j (i, j = 1, 2, 3, ...) are

always chosen in {Ai+1, B j+1}, and the successful one satisfies the Delaunay criterion [176–

178] as shown in Fig. 4.12. In the Delaunay criterion for triangulation, the circumcircle

of the meshed triangle should not enclose other vertexes. By this way, the long and thin

triangles, which may deteriorate the interpolation accuracy, can be avoided to the maximum

extent possible.

As shown in Fig. 4.11(3), the meshed triangles form an area enclosed by the sample

points. Those grid points which lie inside the meshed triangles will be disposed of for their

amplitudes and phases.
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For a meshed triangle, its three vertexes are denoted as v j = (φ j, ψ j) with j = 1, 2, 3.

If a grid point is inside the triangle, the coordinates of the grid point vq = (φq, ψq) need to

satisfy: 

(−−→v1v2 × −−→v1v3) · (−−→v1v2 × −−→v1vq) > 0

(−−→v2v3 × −−→v2v1) · (−−→v2v3 × −−→v2vq) > 0

(−−→v3v1 × −−→v3v2) · (−−→v3v1 × −−→v3vq) > 0

(4-31)

To accelerate the procedure of finding the grid points that are inside a concerned triangle,

only the grid points which lie within the rectangular area bounded by the three vertexes are

to be searched.

For a grid point vq = (φq, ψq) inside the concerned triangle, its amplitude and phase

are to be interpolated according to the amplitudes and phases of the three sample points

(the vertexes of triangle). As have been discussed in the preceding parts of this chapter, the

amplitude and phase for each 3D scattered ray can be determined in VCRM. Here we note

the amplitudes (or the phases) at the sample points v j as f j ( j = 1, 2, 3). Then, the amplitude

(or the phase) fq at the grid point vq = (φq, ψq) can be acquired through linear interpolation:

fq = f1 + λ1( f2 − f1) + λ2( f3 − f1) (4-32)

where λ1 and λ2 are determined by solving


φq = φ1 + λ1(φ2 − φ1) + λ2(φ3 − φ1)

ψq = ψ1 + λ1(ψ2 − ψ1) + λ2(ψ3 − ψ1)
(4-33)

The physical meaning of (4-32) and (4-33) is that the amplitude and the phase in a query

scattering direction (φq, ψq) can be obtained through the interpolation of the surrounding

three sampled rays. Fig. 4.13 presents a schematic diagram for this.

( )1 1,j y

( )2 2,j y

( )3 3,j y ( ),q qj y

……

…
…

( )1 1,j y

( )2 2,j y

( )3 3,j y

( ),q qj y

j

y
Sample points

Grid points

Query point

Fig 4.13 Inclusion of a grid point inside a meshed triangle. The amplitude and the phase at the enclosed

grid point, referred to as the query point (φq, ψq), are to be interpolated. In the right illustrates this query

scattering direction and the three sampled rays around it.
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If a non-linear interpolation method is to be applied, some Delaunay refinement algo-

rithms [179–181] are needed to refine the meshed triangles so that each triangle is approxi-

mate to an equilateral triangle, which improves the accuracy of interpolation.

Sample points

Grid points

Interference point

……

…
…

j

y

Fig 4.14 Schematic diagram of two intersecting triangles. A grid point inside the intersecting area is an

interference point, where the interference of light must be taken into account.

The scattered rays from the same order p or from different orders may be folded in

certain scattering directions. As a result, the triangles meshed with the representing sample

points may intersect with each other. If two or more triangles intersect at one grid point

(φ, ψ) as shown in Fig. 4.14, the interference of light must be taken into account. For one

of the polarizations along êθ and êφ as defined in Eq. (4-27), assume the amplitude and the

phase in the direction (φ, ψ) interpolated by the j-th ( j = 1, 2...) intersecting triangle are

a j and ϕ j, respectively, then the sum of complex amplitudes accounts for the interference

effect:

Ẽ(φ, ψ) =
∑

j=1

a j exp(iϕ j) (4-34)

Considering the cross polarization effect, the complex amplitude Ẽ(φ, ψ) in Eq.(4-34) should

be calculated separately for the two polarizations. The total electric field in the scattering

direction (φ, ψ) can then be obtained by

E⃗(φ, ψ) =



∑
j=1 a

(1)

j
exp(iϕ(1)

j
)

∑
j=1 a

(2)

j
exp(iϕ(2)

j
)

 (4-35)

where the element
∑

j=1 a
(1)

j
exp(iϕ(1)

j
) is the summed complex amplitude along the polariza-

tion direction êθ, while
∑

j=1 a
(2)

j
exp(iϕ(2)

j
) the summed complex amplitude along the polar-

ization direction êφ.
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The final scattered intensity in the scattering direction (φ, ψ) is calculated by the inner

product of E⃗(φ, ψ) with its complex conjugate:

I(φ, ψ) = E⃗(φ, ψ) · E⃗(φ, ψ)∗ (4-36)

The triangulation-based interpolation algorithm proposed above is summarized as fol-

lows:

1. The incident light wave is simulated by layers of light rays.

2. The calculation is initialized for the rays from the first layer to generate the first set of

scattered rays. Each scattered ray is marked as a sample point in the (φ, ψ) plane.

3. In each iteration, a new set of rays is added from the next layer to obtain a new set of

scattered rays.

4. For two adjacent layers of incident rays, say sets A0 and B0, we have two sets of scattered

rays, say A and B. They are irregularly distributed in terms of scattering direction (φ, ψ)

as shown in Fig. 4.11(2).

5. The band between these two adjacent sets A and B is meshed incrementally with triangles.

For the sake of simplicity and topological correctness, the candidate vertexes for the

front edge AiB j (i, j = 1, 2, 3, ...) are always chosen in {Ai+1, B j+1}, and the successful

one satisfies the Delaunay criterion. In this way, the long and thin triangles, which may

deteriorate the interpolation accuracy, can be avoided.

6. Through iteration, the triangulation of the sample points from any two adjacent layers of

incident rays is carried out.

7. In each of the meshed triangles, linear interpolation is carried out for the amplitudes and

the phases at the grid points which are enclosed by the concerned triangle.

8. The intersecting triangles at one grid point account for the interference effect in the rep-

resented scattering direction.

4.7 Summary

This chapter reported the first realization of a calculation method in the framework

of VCRM for the 3D scattered intensity by a large nonspherical particle of any smooth

surface. The ray tracing, divergence factor, phase shifts due to focal lines and optical path,
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and cross polarization were addressed by an elegant way using vectorial rays and the wave-

front curvature. A triangulation-based interpolation algorithm has been developed to break

through the bottle-neck problem for VCRM to account for the interference of scattered rays

in 3D space.

The following chapter will present an application of the proposed method to the 3D

scattering of plane wave by a real liquid jet and the experimental examination.
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Chapter 5 The 3D scattering of plane wave by a real liquid jet and

experimental examination

In principle, the method proposed in the preceding chapter can be applied to the scat-

tering in all directions by a large and smooth particle of any shape. A real liquid jet which

has a complex geometry is taken as an example here. Having a non-zero curvature along

the jet axis, the geometric profile of a real liquid jet is much more complex than that of an

infinite cylinder. Besides, the radius of jet’s cross section usually ranges from tens to hun-

dreds of microns, which is much larger than the wavelength of the incident laser beam (size

parameter ranging approximately from 500 to 5000). For these two reasons, the calculation

for the light scattering by a real liquid jet poses challenge or even an impossible task for the

existing analytical theories and numerical methods. In this chapter, the calculation for the

3D far-field scattered intensity of plane wave by a real liquid jet is achieved with the pro-

posed calculation method, which is based on VCRM while allows to calculate the scattered

intensity in 3D space.

5.1 Introduction to a real liquid jet

A real liquid jet usually presents a complex profile with varying radius [30, 34, 182–

185]. Even for a jet without artificial disturbance, due to the effect of surface tension and

gravitational force, its transversal radius shows a continuous contraction till the breakup.

The liquid jet used here is a capillary water jet ejected in the air from a long stainless-steel

needle with a circular orifice (inside and outside diameters are respectively 0.95 and 1.32

mm). A pressure of 2.1 bar is imposed on the distilled water within the reservoir; besides, a

flowmeter regulates and stabilizes the flow rate at 39 ml/min. At 19.0◦C, the refractive index

of the distilled water is 1.3322 for the light with wavelength λ = 632.8 nm.

The profile of the water jet near the orifice is obtained through image edge detection

and data fitting as shown in Fig. 5.1. The transversal radius r as function of the distance

from the orifice h is given by

r(h) = 0.4997exp(−0.0183h) + 0.1377exp(−1.7990h) (5-1)

The R-square (coefficient of determination) is 0.998, so the fitting is satisfactory. By at-

taching the origin of Cartesian coordinate system to the exit of jet (h = 0) and setting the z
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Fig 5.1 The image and the extracted profile of the water jet near the orifice.

axis coincident with the jet axis (z = −h), the jet profile can be expressed in the Cartesian

coordinate system as

r(z) = 0.4997exp(0.0183z) + 0.1377exp(1.7990z) (5-2)

where z ranges from 0 to −5.5 mm. Then the surface function of the liquid jet is given by

f (x, y, z) = x2 + y2 − r(z)2 = 0 (5-3)

According to Eq. (5-1), the stream-wise curvature of the jet surface along the jet axis

can be calculated. Fig. 5.2 shows the variation of the curvature with the falling height h.

One can see that the stream-wise curvature decreases exponentially from 0.4 mm−1 near the

exit to 10−3 mm−1 when h = 3.5 mm, which means the curvature radius in the stream-wise

direction is very small (2.5 mm) at the beginning but is very large (several meters) when the

falling distance h is more than 3.5 mm.

Due to the presence of stream-wise curvature, the scattering field by a real liquid jet

is different from that by an infinite cylinder. Firstly, the light rays scattered by a liquid jet

are no longer within one transversal section, instead, they are spread into the 3D space,

as illustrated in Fig. 5.3. Secondly, since the scattered light of different orders are elevated
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Fig 5.2 The stream-wise curvature of jet surface as function of the falling height h.
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Fig 5.3 Schematic diagram of the ray path for a light ray interacting with a liquid jet.
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Fig 5.4 Experimental observation of the scattering field near the first-, the second-, the fifth- and the

sixth-order rainbows by a capillary water jet.
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differently from the horizontal plane, the scattering field by a liquid jet shows an interference

pattern against common sense as shown in Fig. 5.4. The scattered light of different orders

are separated from each other, but interference still exists within the single-order scattered

light of p ≥ 2.

In the following, the 3D scattering field of plane wave by the capillary water jet modeled

in Eq. (5-1) will be simulated by the calculation method proposed in the preceding Chapter

4.

5.2 Simulation of the 3D scattering field

The calculation for the 3D scattered intensity by a real jet is far beyond the capabilities

of most electromagnetic approaches because:

1. A real jet has a geometric profile being so complex that the separation of variable methods

such as LMT and Debye cannot be applied.

2. The size parameter of the concerned jet is nearly 5000, which requires unimaginable

computer memories and computation time for the numerical methods such as FDTD,

T-matrix and DDA.

With the calculation method proposed in Chapter 4, which is based on VCRM while allows

to calculate the scattered intensity in 3D space, the simulation for the 3D scattering field of

plane wave by a real jet is successfully achieved here.

Before showing the intensity distribution of the scattering field, the result of ray tracing

is presented firstly to offer readers an intuitive understanding of the ray paths.

Based on the ray tracing method discussed in Sec. 4.2, the tracing of the light rays

scattered by the jet is shown in Fig. 5.5. The refractive index of jet is 1.3322; and the

surface function has been given in Eqs. (5-1) and (5-3). As a comparison, the tracing for

the light rays scattered by an infinite circular cylinder is also presented. The infinite cylinder

has the same refractive index as the jet, but its cross section has a constant radius of r0 (the

initial radius of the jet). The direction of the incident rays is perpendicular to the jet/cylinder

axis. For clarity, only one layer of the incident rays and the corresponding scattered rays of

p ≤ 2 are shown.

From Fig. 5.5, one can see that for the infinite cylinder, its scattered rays stay in the

same plane as the incident rays; while for the real jet, due to the non-zero curvature along

the jet axis, the emergent rays are scattered into 3D space. More specifically, because the



5.2 Simulation of the 3D scattering field 83

(a) Cylinder

(b) Jet

Fig 5.5 Tracing of the scattered rays: (a) by an infinite circular cylinder; (b) by a real jet.
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normal vectors of jet surface point downwards, the externally reflected rays (p = 0) are tilted

downwards, while the scattered rays of order p ≥ 1 are tilted upwards. Moreover, the higher

the order is, the greater the elevation from the horizon will be (as illustrated in Fig. 5.3).

Through ray tracing, one can obtain the directions of the scattered rays. Furthermore,

according to Secs. 4.3-4.5, the corresponding amplitudes and phases for these 3D scattered

rays can be calculated. And, through the triangulation-based interpolation algorithm pro-

posed in Sec. 4.6, one can acquire the complex amplitude and the final interference intensity

in each scattering direction of the 3D space.

Fig. 5.6(a) presents the configuration in calculation. A monochrome plane wave of

wavelength λ = 632.8 nm is used. The direction of the incident rays is perpendicular to

the jet axis, and it is set as the x axis of Cartesian coordinate system, while the incident

electric vector is linearly polarized along the jet axis (z axis). The incident light has a planar

wavefront of uniform intensity, i.e. a plane wave (see later for the experimental realization

of this beam). The incident light spot has a thickness of 1.0 mm along the z axis, and its

center on the jet is set as h = 2.4 mm. The relative refractive index of the jet m is set as

1.3322.

Fig. 5.6(b) shows the simulated result of the 3D scattered intensity by the jet. φ and

ψ are the azimuth angle and the elevation angle, respectively. For clarity, only the scattered

light of p = 0, 2 and 3 near the first- and second-order rainbows (φ = [125◦, 140.5◦]) are

shown. The first-order rainbow arises from the interference of the p = 2 scattered light itself,

while the second-order rainbow from the interference of the p = 3 scattered light. Due to the

cross-polarization effect, the scattered light generally has a polarization state different from

the incident light. And the scattered intensity are calculated according to Eq. (4-36). The

hot map shows clearly the variation of intensity with the azimuth angle φ and the elevation

angle ψ. Considering that the intensity of the p = 0 and p = 3 light are much weaker than

that of the p = 2 light in this area, their intensity I0 and I3 are multiplied by a factor of 10 in

calculating the hot map.

We note firstly that the scattered light of different orders by the real jet are deviated out

of the horizontal plane (ψ = 0◦). And, the elevation angles for the scattered light of different

orders are different. These p = 2 and p = 3 scattered light are located at positive elevation

angles (ψp=2,3 > 0 and ψp=3 > ψp=2), while p = 0 scattered light lies in the region below the

horizontal plane where ψp=0 < 0. As a result, the scattered rays of different orders do not

interfere with each other. But, the scattered rays of same order p might superpose with each

other and form the interference fringes as shown in Fig. 5.6(b).
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Fig 5.6 The configuration and the corresponding 3D scattered intensity by the liquid jet. (a) the beam

profile incident on the jet; (b) the scattering field near the first- and second-order rainbows. For clarity,

the intensity of p = 0 and p = 3, I0 and I3, have been amplified by a factor of 10.
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In Fig. 5.7, the scattered intensity of plane wave by the liquid jet is compared with that

by an infinite cylinder. The calculation parameters for the cylinder are the same with those

for the jet, except that the cylinder has a constant radius of r = 480 µm, equal to the radius

of the jet at h = 2.4 mm. Three methods are used in calculating the scattered intensity by the

infinite cylinder: GOA (p ≤ 3), DSE (p = 2, 3) and LMT. For clarity, the results calculated

by DSE and LMT are offset by 0.5 and 0.1, respectively.

Fig 5.7 The scattered intensity near the first- and the second-order rainbows (φ = [125.0◦, 140.5◦]) for

an infinite cylinder and a real jet.

One can see that for an infinite cylinder under normal incidence, the scattered light of

all orders stay within the plane perpendicular to the cylinder axis, i.e. within the horizontal

plane with ψ = 0◦. And the scattered intensity is only the function of the azimuth angle φ. In

terms of ray optics, those scattered rays which have same azimuth angle will interfere with

each other.

But for a real jet, due to the stream-wise curvature of jet surface, the scattered light of

different orders are naturally separated into different elevation angles ψ. As shown in Fig.

5.7, the scattered intensity by a real jet is not only the function of the azimuth angle φ but

also the function of the elevation angle ψ. The hot map presents the variation with φ and ψ

of the scattered intensity by the jet.

One the other hand, it is found that as the incident beam moves downwards, i.e. when

h is increased, the separation of scattered light along the ψ axis is lessen as shown in Fig.
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Fig 5.8 The 3D scattered intensity by the water jet when h = 3.0 mm. The other parameters are the same

with those in Fig. 5.7(b).

5.8. Besides, the spreading of scattered light along the ψ axis also becomes shrinked. For

example, the scattered light of p = 0 spreads approximately from ψ = −1.0◦ to ψ = −1.8◦

when the incident plane wave illuminates the jet at h = 2.4 mm (shown in Fig. 5.6). But

when h = 3.0 mm as shown in Fig. 5.8, the p = 0 scattered light is constrained to the

region from ψ = −1.0◦ to ψ = −1.2◦. This is due to the fact that at a point farther from the

exit of orifice, the stream-wise curvature of jet surface is smaller. In the region where the

stream-wise curvature is near zero, the scattered light of different orders by the jet tend to

rejoin in the horizontal plane (ψ = 0◦) just like an infinite cylinder.

The simulation result by the calculation method based on VCRM for 3D scattering will

be examined by an experiment in the following section.

5.3 Experimental setup

To validate the calculation method proposed in the preceding Chapter 4 and the sim-

ulation for the 3D scattered intensity by a real jet, an experiment is carried out. The setup

is shown in Fig. 5.9, while the schematic diagram is given in Fig. 5.10. The experimental

setup mainly contains three parts:

• Light source with beam shaping module;

• Generation and control of the liquid jet;
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• Image acquisition part.

mirror

polarizer

Laser

Screen 

(translucent)

Camera 1

Jet

Beam

expander
lens

lens slit

Camera 2

filter

mirror

Fig 5.9 Experimental setup for measuring the scattered intensity by a liquid jet.

The monochrome light from a He-Ne laser (λ = 632.8 nm) passes a polarizer such

that the electric vectors vibrate along ẑ (jet axis). After the beam expander (20X), the laser

beam is expanded and collimated. Then, a rectangular slit with width 14.0 mm and height

1.0 mm is used to crop the expanded laser beam. A 4 f system is used between the slit and

the jet; and the focal lengths of the first lens and the second lens, f1 and f2, are equal to 20

cm. Besides, at the center of the 4 f system, a spatial filter (Iris Diaphragm1 as shown in

Fig. 5.10) is used to suppress the diffraction caused by the slit. Eventually, the light spot

incident on the jet has a width (along ŷ) of 14.0 mm (much greater than the jet diameter) and

thickness (along ẑ) of 1.0 mm as shown in the bottom right of Fig. 5.10.

The liquid jet flows along the opposite direction of ẑ and passes through the center of the

laser beam. At the jet position, the laser beam presents approximately a planar wavefront

of uniform intensity, which matches the incident wave in simulation. The position of the

incident light spot on the jet is set the same as that in simulation, i.e. h = 2.4 mm. The 3D

scattered intensity is displayed on a translucent screen (sufficiently far away from the jet, i.e.

in the far field), and is then recorded by the camera #1 (HAMAMATSU, C9100-022). The

recorded scattered intensity near the first-order and second-order rainbows is shown in Fig.

1https://www.thorlabs.us/thorproduct.cfm?partnumber=ID20
2http://meyerinst.com/digital-cameras/hamamatsu/C9100-02.pdf
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Fig 5.10 Schematic diagram of the experimental setup.

5.11. At the same time, another camera (JAI, RM-4200 CL) captures the image of the water

jet which has been shown in Fig. 5.1.

1st rainbow

2nd rainbow

p = 0

(1)

(2)

Intensity along the line (1)

Intensity along the line (2)

(I0 10)

(I3 10)

Fig 5.11 Experimental observation of the scattered intensity of plane wave by the water jet near the

first-order and second-order rainbows. For clarity, the intensity of the p = 0 and p = 3, I0 and I3, have

been amplified by a factor of 10. h = 2.4 mm.

As predicted by simulation, the scattered light of different orders observed in exper-

iment are indeed separated. Besides, the scattered light of the same order p could still

interfere itself, forming the “low-frequency” interference fringes as shown in the insets of

Fig. 5.11.
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5.4 Comparison of simulated result with that by experiment

The following part covers the comparison of the calculated 3D scattered intensity with

the one measured by experiment.

Since the intensity of first-order rainbow is much greater than that of second-order

rainbow, the scattering patterns near the two rainbows are measured separately with differ-

ent exposure time. The comparison between the simulation and the experiment for the 3D

scattered intensity near the first-order rainbow is given in Fig. 5.12(a), while the compari-

son near the second-order rainbow is given in Fig. 5.12(b). For clarity, near the first-order

rainbow, the examination is made in three slices: ψ = 1.9◦, 2.3◦ and 2.7◦. In a slice of

fixed elevation angle ψ, the scattered intensity varies only with the azimuth angle φ. For the

second-order rainbow, the examination is made in the slices of ψ = 3.0◦ and 4.0◦. Besides,

the p = 0 scattered light is recorded with the same exposure time as the second-order rain-

bow. As shown in Fig. 5.12b, the examination of the p = 0 scattered intensity is made in

two slices of two fixed azimuth angles (φ = 125.7◦ and 128.7◦), since the p = 0 intensity in

this area varies mainly with the variable ψ.

Two notable features are observed: (1) the scattered light of different orders are natu-

rally separated but the “low-frequency” Airy fringes still exist because of the interference

of the scattered rays from the same order; (2) the scattered intensity varies also with the

elevation angle ψ, which is attributed to the variation of the surface curvature along the jet

axis. In this aspect, the jet acts much like a concave lens (see the jet profile shown in Fig.

5.1).

We can see that a good agreement is found not only in the direction of φ, where the

simulated peaks and troughs (rainbow fringes) match the experimental results very well, but

also in the direction of ψ, where the simulated intensity as function of the elevation angle ψ

also fits well with that by experiment.

The main discrepancy is at the rainbow angles (caustics). It is caused by the intrinsic

defect of ray model, which predicts an infinite intensity there [6, 55, 138, 166]. To improve

this, the physical optics [114, 186, 187] is to be resorted to. Handling with this flaw existing

in ray optics needs much more effort and is not within the scope of the present thesis.

5.5 Summary

The calculation method proposed in Chapter 4, which is based on VCRM while allows

to calculate the scattered intensity in 3D space, has been successfully applied to solving the
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(a) near the first-order rainbow

(b) near the second-order rainbow

Fig 5.12 Experimental examination of the simulation results for the 3D scattered intensity near the first-

order and second-order rainbows of a real jet. The hot maps present the relative intensity in the images

captured by experiment.
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3D scattered intensity by a real liquid jet. Taking advantage of the ability of VCRM for

interpreting the scattering mechanism, a systematic analysis has been made for the scattered

light of different orders, in regard to their separation or interference in 3D space.

The computation was completed on a laptop (Intel i7-8550U @1.80GHz), and the cal-

culation for obtaining the 3D scattering field of p ≤ 3 took about 20 minutes. Though

the performance is not the focus of this thesis, the triangulation and interpolation processes

might speed up in future by applying parallel computation, which I believe will reduce the

time to minutes, or even seconds.

Experiment has also been carried out to verify the proposed method and to verify the

simulated results. An incident wave of limited width 1 mm which has approximately unifor-

m intensity and planar wavefront has been achieved in experiment, thus complying with the

incident plane wave with sheet spot used in simulation. Good agreements have been found

not only on the spatial separation of different scattering orders but also on the interference

intensity and the angular extension ranges.

In the following chapter, the ray model of incident elliptical Gaussian beam will be

established in the framework of VCRM, and the 3D scattered intensity of elliptical Gaussian

beam by a real liquid jet will be solved and analyzed.
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Chapter 6 The 3D scattering of elliptical Gaussian beam by a real

liquid jet

The light beam emitted from a laser device generally has a Gaussian profile, thus mak-

ing important the research on the scattering of Gaussian beam by particles. Many researcher-

s have contributed to the development and application of the GLMT for the scattering of a

Gaussian beam by particles. However, the GLMT is applicable only to those particles of

simple forms such as spherical or spheroidal particles, or circular or elliptical cylinders.

In this Chapter, the calculation for the 3D scattered intensity of elliptical Gaussian beam

by a large nonspherical particle of any smooth shape is achieved by VCRM.

6.1 Ray model of elliptical Gaussian beam

Compared to a plane wave, the light rays which characterize an elliptical Gaussian

beam1 are different in direction, amplitude, phase and wave-front curvatures. In this section,

the calculation for these properties will be addressed.

Consider an elliptical Gaussian beam with simple astigmatism [188–192] which prop-

agates along the ŵ axis of the coordinate system (û, v̂, ŵ) as shown in Fig. 6.1, the incident

electric field can be expressed by

E⃗G(u, v,w) = E⃗0EG exp(iϕ), (6-1)

where E⃗0 = E0uû + E0vv̂. The ratio E0u : E0v determines the vibration direction. For

example, the case with E0u = 0 indicates the wave is polarized along v̂. EG is the normalized

amplitude, while ϕ is the phase. They are given respectively by [147, 188–192]

EG(u, v,w) =

√
r0u

ru

√
r0v

rv

exp

(
− u2

ru
2
− v2

rv
2

)
(6-2)

and

ϕ(u, v,w) = −2π

λ

(
w +

u2

2Ru

+
v2

2Rv

)

+
1

2
tan−1

(
w − Ou

lu

)
+

1

2
tan−1

(
w − Ov

lv

) (6-3)

where r0u is the beam-waist radius of the elliptical Gaussian beam in the plane containing ŵ

1A circular Gaussian beam is the special case of elliptical Gaussian beam.
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and û, while r0v is the beam-waist radius in the plane containing ŵ and v̂. The r j ( j = u, v) is

the characteristic radius of beam at which the field amplitude falls to 1/e of the axial value,

and it is given by

r j = r0 j

1 +
(
w − O j

l j

)2
1/2

(6-4)

ŵ

û

v̂

vr vr

ur

ur

GOuO vO

Fig 6.1 The coordinate system (û, v̂, ŵ) used in describing an elliptical Gaussian beam of beam-waist

radii r0u and r0v. For a circular Gaussian beam, r0u = r0v and Ou = Ov = OG.

The origin of beam system (û, v̂, ŵ) is denoted as OG : (0, 0, 0). The positions of

the beam waists in (ŵ, û) and (ŵ, v̂) planes2 are (0, 0,Ou) and (0, 0,Ov), respectively. The

Rayleigh distance l j indicates the axial position where the intensity is one half of the peak

intensity at the beam waist. It is related to the beam-waist radius r0 j and the wavelength λ

by

l j =
πr2

0 j

λ
(6-5)

The curvature radius R j of the wavefront at (0, 0,w) is calculated as

R j = (w − O j)

1 +
(

l j

w − O j

)2 (6-6)

The gradient of the phase function is defined as

∇ϕ = (ϕ′u, ϕ
′
v, ϕ
′
w) (6-7)

where ϕ′u, ϕ′v and ϕ′w are the first-order derivatives of the phase function with respect to u, v

2The (ŵ, û) plane is expanded by base vectors ŵ and û, while the (ŵ, v̂) plane is expanded by ŵ and v̂.
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and w, respectively. They are calculated as:

ϕ′u = −
ku

Ru

ϕ′v = −
kv

Rv

ϕ′w = −k − 1

2
ku2 l2

u − (w − Ou)2

[l2
u + (w − Ou)2]2

− 1

2
kv2 l2

v − (w − Ov)
2

[l2
v + (w − Ov)2]2

+
1

2

lu

l2
u + (w − Ou)2

+
1

2

lv

l2
v + (w − Ov)2

(6-8)

The dependence of ϕ′u, ϕ′v and ϕ′w on the values of u, v and w indicates that the gradient

(ϕ′u, ϕ
′
v, ϕ
′
w) at different points of an iso-phase surface (a wavefront) is varied. At a point of

coordinates (u, v,w), the unit vector which defines the direction of the local wave vector is

obtained by

k̂ = − ∇ϕ
∥∇ϕ∥

(6-9)

k̂ is the normalized wave vector normal to the local wavefront and characterizes the propa-

gation direction of the wave at (u, v,w). The negative sign indicates that the wave direction

is opposite to the gradient of phase function, considering that the phase lags along the prop-

agation direction (the phase ϕ is decreased with w as given in Eq. (6-3)).

Fig. 6.2 shows an example for the intensity profiles of an elliptical beam at different

axial positions. Besides, three sampled wavefronts (iso-phase surfaces) and the wave vectors

normal to the wavefronts are presented. For generating a beam with distinctly curved wave-

fronts, the beam-waist radius in the (ŵ, û) plane, r0u, is set as 1 µm, while the beam-waist

radius in the (ŵ, v̂) plane, r0v, as 2 µm. The position of beam-waist center in the (ŵ, û) plane,

Ou, is set at −50 µm, while the position of beam-waist center in the (ŵ, v̂), Ov, is set at 0 µm

(the origin of the beam system).

Table 6.1 Parameters of the elliptical Gaussian beam in Fig. 6.2.

Beam axis Polarization r0u/µm r0v/µm Ou/µm Ov/µm λ/nm

ŵ v̂ 1 2 -50 0 632.8

As shown in Fig. 6.2(a), the orientation of the elliptical light spot changes by as much

as π radians as the beam passes through the beam-waist centers Ou and Ov. Meanwhile, the

wavefront may have three kinds of shapes (converging, saddle or diverging) according to

the observation position (before, between or after Ou and Ov), as shown in the Fig. 6.2(b).

After the passage of Ou, the beam becomes diverging in the (ŵ, û) plane. Since the beam

still converges in the orthogonal (ŵ, v̂) plane, the shapes of the wavefronts between Ou and
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(a)

(b)

Fig 6.2 Variation of the intensity and the iso-phase surface of an elliptical Gaussian beam: (a) the

intensity profiles at different axial positions; (b) three iso-phase surfaces sampled respectively at w =

−125 µm, w = −25 µm and w = 75 µm. The vectors normal to the iso-phase surfaces depict the

propagation directions.
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Ov present as saddle surfaces. Only by passing both Ou and Ov, the wavefronts are diverging

in both the (ŵ, û) and the (ŵ, v̂) planes.

In Fig. 6.2(b), the vectors normal to the wavefronts are calculated by Eq. (6-9), rep-

resenting the propagation directions of the wave at different points. Different from a plane

wave, the wave directions of a shaped beam cannot be characterized by a bundle of straight

rays in a strict sense. Instead, they are calculated at the concerned points, for example at the

incident points.

The expression of k̂ in the Cartesian coordinates sytem (x̂, ŷ, ẑ) can be obtained by

k̂ = −
ϕ′uû + ϕ′vv̂ + ϕ

′
wŵ

∥ϕ′uû + ϕ′vv̂ + ϕ
′
wŵ∥

(6-10)

To obtain the two principal curvatures as well as the corresponding principal directions

of incident elliptical Gaussian beam at a concerned point (u, v,w), two irrelevant base vectors

in the tangent plane of iso-phase surface are defined as follows:

α̂ = v̂ × k̂/∥v̂ × k̂∥ (6-11)

β̂ = k̂ × α̂ (6-12)

Further, three scalars are defined as:

ϕαα = α̂ · H(ϕ) · α̂T ; (6-13)

ϕαβ = α̂ · H(ϕ) · β̂T ; (6-14)

ϕββ = β̂ · H(ϕ) · β̂T . (6-15)

where the superscript T indicates the transposition. H(ϕ) is the Hessian matrix of the phase

function defined by

H(ϕ) =



ϕ′′uu ϕ′′uv ϕ′′uw

ϕ′′vu ϕ′′vv ϕ′′vw

ϕ′′wu ϕ′′wv ϕ′′ww

 (6-16)

These second-order derivatives of the phase function with respect to u, v and w are calculated
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as

ϕ′′uu = −
k

Ru

ϕ′′vv = −
k

Rv

ϕ′′uv = ϕ
′′
vu = 0

ϕ′′uw = ϕ
′′
wu = −ku

l2
u − (w − Ou)2

[
l2
u + (w − Ou)2

]2

ϕ′′vw = ϕ
′′
wv = −kv

l2
v − (w − Ov)

2

[
l2
v + (w − Ov)2

]2

ϕ′′ww = ku2 3l2
u − (w − Ou)2

Ru

[
l2
u + (w − Ou)2

]2
+ kv2 3l2

v − (w − Ov)
2

Rv

[
l2
v + (w − Ov)2

]2

− lu

Ru

[
l2
u + (w − Ou)2

] − lv

Rv

[
l2
v + (w − Ov)2

]

(6-17)

Then the Gauss curvature ζG of the local wavefront at (u, v,w) is obtained by [193]

ζG = (ϕααϕββ − ϕ2
αβ)/ϕ

2
n (6-18)

while the mean curvature ζM by

ζM = (ϕαα + ϕββ)/(2ϕn) (6-19)

where ϕn = (ϕ′2u +ϕ
′2
v +ϕ

′2
w )1/2. According to ζG = ζ1ζ2 and ζM = (ζ1+ζ2)/2, the two principal

curvatures ζ1 and ζ2 can then be determined by

ζ1 = ζM − χ|ζ2
M − ζG|

1/2
(6-20)

ζ2 = ζM + χ|ζ2
M − ζG|

1/2
(6-21)

The sign function χ equals 1 or −1, the criterion for choosing which can be found in [193].

The corresponding principal directions in Cartesian coordinate system are calculated by

u⃗1 = ϕαβ · α̂ + (ζ1ϕn − ϕαα) · β̂ (6-22)

u⃗2 = (ζ2ϕn − ϕββ) · α̂ + ϕαβ · β̂ (6-23)

Their normalized vectors are denoted as û1 and û2, respectively. The two principal directions

are orthogonal to each other. Along the principal directions û1 and û2, the curvatures of local

wavefront are ζ1 and ζ2, respectively. And among ζ1 and ζ2, one is the minimum curvature

of the wavefront, while another is the maximum curvature.

Fig. 6.3 shows the calculated result for the principal directions at each point of a saddle
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Fig 6.3 The calculated principal directions for the saddle wavefront in Fig. 6.2(b).

iso-phase surface.

Till now, the amplitude, phase, direction, principal curvatures and principal directions

of each light ray which characterizes a local wavefront of an elliptical Gaussian beam can

be obtained. These light rays illuminate the concerned particle; and then, they are subjected

to continual reflections and refractions by the particle.

It should be noted that the coordinate system (û, v̂, ŵ) which describes the beam may

be different from the coordinate system which describes the particle. Suppose the particle is

described in the Cartesian coordinate system (x̂, ŷ, ẑ) and centered at O : (0, 0, 0), while co-

ordinate system (û, v̂, ŵ) which describes the Gaussian beam is centered at OG : (xG, yG, zG)

as shown in Fig. 6.4.

z

yO

x

w

v

u

GOQ

z

y
x

Fig 6.4 Two coordinate systems established respectively for the particle and the beam.
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The position vector of a point Q : (x0, y0, z0) in the system of (x̂, ŷ, ẑ) is expressed as

−−→
OQ = x0 x̂ + y0ŷ + z0ẑ (6-24)

where x0, y0 and z0 are the projections of
−−→
OQ on x̂, ŷ and ẑ, respectively. Then, the vector

from OG to the point Q,
−−−→
OGQ, is calculated in the system of (x̂, ŷ, ẑ) by

−−→
OQ −−−−→OOG. That is:

−−−→
OGQ = (x0 − xG)x̂ + (y0 − yG)ŷ + (z0 − zG)ẑ (6-25)

Then, the components of
−−−→
OGQ along û, v̂ and ŵ are obtained through:



−−−→
OGQ · û = (x0 − xG)x̂ · û + (y0 − yG)ŷ · û + (z0 − zG)ẑ · û
−−−→
OGQ · v̂ = (x0 − xG)x̂ · v̂ + (y0 − yG)ŷ · v̂ + (z0 − zG)ẑ · v̂
−−−→
OGQ · ŵ = (x0 − xG)x̂ · ŵ + (y0 − yG)ŷ · ŵ + (z0 − zG)ẑ · ŵ

(6-26)

Finally, the point Q of coordinates (x0, y0, z0) in the particle system (x̂, ŷ, ẑ) is expressed in

the beam system (û, v̂, ŵ) as:



u0

v0

w0

 =



(û · x̂) (û · ŷ) (û · ẑ)

(v̂ · x̂) (v̂ · ŷ) (v̂ · ẑ)

(ŵ · x̂) (ŵ · ŷ) (ŵ · ẑ)





x0 − xG

y0 − yG

z0 − zG

 (6-27)

On the other hand, suppose the direction of a light ray in the beam system is:

k̂ = kuû + kvv̂ + kwŵ (6-28)

where ku, kv and kw are the projections of the normalized wave vector k̂ on û, v̂ and ŵ,

respectively. In the particle system (x̂, ŷ, ẑ), the unit vector which has the same direction as

k̂ is obtained by 

k̂ · x̂ = kuû · x̂ + kvv̂ · x̂ + kwŵ · x̂
k̂ · ŷ = kuû · ŷ + kvv̂ · ŷ + kwŵ · ŷ
k̂ · ẑ = kuû · ẑ + kvv̂ · ẑ + kwŵ · ẑ

(6-29)

Then, the direction of the concerned ray in the particle system (x̂, ŷ, ẑ) is obtained as

k̂ = kx x̂ + kyŷ + kzẑ (6-30)

where the kx, ky and kz are calculated according to



kx

ky

kz

 =



(x̂ · û) (x̂ · v̂) (x̂ · ŵ)

(ŷ · û) (ŷ · v̂) (ŷ · ŵ)

(ẑ · û) (ẑ · v̂) (ẑ · ŵ)





ku

kv

kw

 (6-31)
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6.2 Phase shift due to optical path

For a particle illuminated by an elliptical or a circular Gaussian beam, the phase shifts

of a scattered ray due to reflections and focal lines can be calculated in the same way as

that for the scattering of a plane wave, which have been discussed in detail in Secs. 3.2.3

and 4.5, and will not be repeated here. However, it is worth noting that for a shaped beam,

the incident light rays which characterize the beam are different in phase. According to Eq.

(6-3), the phase is dependent on the spatial position (u, v,w), indicating that the formula

for the phase shift due to optical path proposed in Eq. (3-25) needs an amendment when a

shaped beam is used as the light source.

The Gouy shift terms tan−1(w−Ou

lu
) and tan−1(w−Ov

lv
) in Eq. (6-3) can be interpreted as a

phase difference between the elliptical Gaussian beam and a plane wave of equal wavelength

and identical propagation direction [161]. Thus, the reference ray is chosen such that it has a

planar wavefront propagating in the ŵ direction (axial direction of the Gaussian beam); after

passing through the particle center, the reference ray emerges out in the same direction as

the concerned scattered ray. Fig. 6.5 illustrates an example for calculating the optical path

of a p = 1 ray relative to the reference ray.

W

OReference ray w

ps

p =m
kk

pppppppppppppppppsssssssssssssssssssss

mmmmmmmmmmmmmmmmmmmmmmm

s

N

ŵ

W

Fig 6.5 Schematic diagram for calculating the optical path of a scattered ray relative to the reference ray

(dotted blue line) in the 3D scattering of a shaped beam.

On the particle surface, suppose an illuminated point W0 : (x0, y0, z0) as shown in Fig.

6.5. The coordinates of W0 in the beam system, (u0, v0,w0), can be obtained according to the

Eq. (6-27). Then, the phase of the incident ray which characterizes the elliptical Gaussian

beam at W0 is calculated by substituting (u0, v0,w0) into Eq. (6-3):

ϕi = ϕ(u0, v0,w0) (6-32)
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The phase shift due to optical path for a p-order scattered ray at its emergent point is

calculated according to the phase at the incident point ϕi and the optical path it has experi-

enced inside the particle, that is

ϕp = ϕi −
2π

λ
m

p−1∑

j=0

s j (6-33)

For an externally reflected ray (p = 0) at its emergent point, ϕp is simply equal to the ϕi,

since it has no extra optical path compared to the incident ray. s j is the geometric length

from the interaction point W j to W j+1. The negative sign indicates that the phase lags for a

longer optical path. The emergent point of a p-order scattered ray is denoted as Wp, while

the emergent direction is denoted as k̂p.

The phase of the reference ray is calculated at Np, where Np is a point on the reference

ray and satisfies
−−−−→
WpNp ⊥ k̂p, as

ϕre f = −
2π

λ
σp (6-34)

where σp =
−−−→
OWp · k̂p, as illustrated in Fig. 6.5.

Finally, the phase shift due to optical path of a p-order scattered ray relative to the

reference ray is obtained as

ϕp,OP = ϕp − ϕre f

= ϕ(u0, v0,w0) +
2π

λ

σp − m

p−1∑

j=0

s j


(6-35)

6.3 Comparison with GLMT for a spherical particle

Before the calculation for particles of complex geometry, the proposed method is firstly

examined by comparing with GLMT for the scattering by a spherical particle.

The radius of the spherical particle is set as 25 µm, while its refractive index relative

to the air is denoted as m. The incident Gaussian beam has a circular light spot of beam-

waist radius 10 µm, namely r0u = r0v = 10 µm and Ou = Ov = OG. The beam center OG

coincides with the particle center O. The beam coordinate system (û, v̂, ŵ) and the Cartesian

coordinate system (x̂, ŷ, ẑ) are set such that ŵ = x̂, û = ŷ and v̂ = ẑ. Fig. 6.6 shows the

configuration in calculation. The scattering angle θ is counted in the xy plane from x̂.

Fig. 6.7 shows the comparison results for the scattered intensity by the dielectric spher-

ical particle of different refractive indices. Due to symmetry, the scattering diagrams in any

two scattering planes (the planes containing the beam axis ŵ = x̂) are the same. Thus,
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10 μm

25 μm

O
x

y

q

Fig 6.6 Configuration in calculating the scattering of circular Gaussian beam by a spherical particle.

one needs only to calculate the scattering of the light rays inside one scattering plane, for

example, the scattering in the xy plane. The transverse electric (TE) polarization is under

consideration, that is, the incident electric vector is linearly polarized along the z axis (ver-

tical to the paper plane), with E0z = 1 and E0y = 0. In VCRM, the scattered rays of orders

p ≤ 7 are taken into account.

Table 6.2 Parameters of the circular Gaussian beam in Fig. 6.7.

Beam axis Polarization r0z/µm r0y/µm Oz/µm Oy/µm λ/nm

x̂ ẑ 10 10 0 0 632.8

One can see that the agreement is rather satisfying. Since the effect of diffraction is

not within the scope of the current thesis, so comes in the difference in the forward region

(θ ≤ 2.5◦). The size parameter of the spherical particle in Fig. 6.7 is only about 250; for

larger particles, the agreement would be better.

Besides, it should be noted that for such a tightly focused beam, the characterization

by rays may bring about inaccuracy, especially near the beam waist. For this reason, in the

following calculations, the beam waist in the plane where the beam is tightly focused is set

far away from the particle.

Although the VCRM provides only an approximation solution to the light scattering, it

has distinct advantage over the GLMT in the aspect of nonspherical particles: the VCRM

only requires the particle surface to be smooth. The following parts of this chapter deal with

the 3D scattering of elliptical Gaussian beam by a real liquid jet of complex shape.



104 Chapter 6. The 3D scattering of elliptical Gaussian beam by a real jet

0 30 60 90 120 150 180

1E-4

1E-2

1

1E2

1E4

1E6

1E8
S

ca
tt

er
ed

 i
n
te

n
si

ty
VCRM

GLMT

Diffraction

(a) m = 2.0

0 30 60 90 120 150 180

1E-4

1E-2

1

1E2

1E4

1E6

1E8

S
ca

tt
er

ed
 i

n
te

n
si

ty

VCRM

GLMT

(b) m = 1.33

0 30 60 90 120 150 180

1E-4

1E-2

1

1E2

1E4

1E6

1E8

S
ca

tt
er

ed
 i

n
te

n
si

ty

VCRM

GLMT

(c) m = 1.1

Fig 6.7 Comparison of VCRM with GLMT for the scattered intensity of circular Gaussian beam by a

spherical particle of different refractive indices m. For clarity, the intensity by VCRM has been shifted by

a factor of 10.
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6.4 Scattering of an elliptical Gaussian beam by a real jet

Here we take the liquid jet modeled in Sec. 5.1 as the scatterer. As has already been

discussed, the light scattering by a real liquid jet can hardly be solved by the analytical mod-

els or the existing numerical methods. In the following parts of this chapter, the scattering

of elliptical Gaussian beam by a real liquid jet in 3D space will be simulated and analyzed

based on VCRM.

The research on the scattering of elliptical Gaussian beam by a liquid jet is motivated

primarily by the need for measuring the jet properties (size, refractive index or instability)

by optical method. The beam-waist radius of the incident Gaussian beam in the plane con-

taining the jet axis is preferred to be small, so that the scattering light from different parts

of the jet can be distinguished. A typical configuration for such an elliptical light spot is

presented in Fig. 6.8(a).

The jet axis coincides with the z axis of Cartesian coordinate system, while the beam

axis is defined as the x axis (perpendicular to the paper plane in Fig. 6.8(a)). The incident

beam is linearly polarized along the z axis (E0z = 1 and E0y = 0)3. The relative refractive

index of the jet is 1.3322 for wavelength λ = 632.8 nm. The beam-waist radius along the

jet axis, r0z, is 0.4 mm, while the beam-waist radius along the ŷ axis, r0y, is 1.6 mm. The

divergence angle in the xz (vertical) plane, γz = λ/πr0z, is 0.029◦, while the divergence angle

in the xy (horizontal) plane, γy = λ/πr0y, is 0.007◦. The beam centers in the horizontal and

vertical planes, Oy and Oz are set at x = 0 (on the jet axis) and x = −30 cm, respectively.

The distance of the center of light spot from the exit, denoted as h, is 3 mm as shown in Fig.

6.8(a).

Table 6.3 Parameters of the elliptical Gaussian beam in Fig. 6.8.

Beam axis Polarization r0z/mm r0y/mm Oz/mm Oy/mm λ/nm

x̂ ẑ 0.4 1.6 -300 0 632.8

At the incident points, the directions, phases and amplitudes of wave, and the principal

curvatures and principal directions of wavefront are determined according to Sec. 6.1. Then,

based on the calculation method proposed in Chapter 4, the direction, phase, amplitude,

polarization and divergence factor for each scattered ray and, the final interference intensity

of all scattered rays in the 3D space can be obtained.

Fig. 6.8(b) shows the simulated result for the scattered intensity of the elliptical Gaus-

3Analogous to the TE incidence in the scattering by a cylinder, here the polarization of incident beam is set along the

jet axis (z axis).
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2nd rainbow angle

1st rainbow angle

p = 2

p = 3 (I3 10)

p = 0 (I0 10)

(b) Scattering field

Fig 6.8 Simulated result of the 3D scattered intensity of elliptical Gaussian beam by a real jet: (a)

the profile of the incident elliptical Gaussian beam on the jet; (b) the scattering field near the first- and

second-order rainbows. For clarity, the intensity of the p = 0 and p = 3, I0 and I3, have been amplified

by a factor of 10.
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sian beam by the jet. φ and ψ are the azimuth angle and the elevation angle, respective-

ly. Here the focus is put on the scattering field near the first- and second-order rainbows

(φ = [125◦, 141◦]).

Since the radial range of a Gaussian beam has no boundary in theory, we need to trun-

cate the radial range and just retain the main part of energy in calculation. Here, the radial

range of the incident Gaussian beam is truncated at 1.5 times of the beam-waist radius,

where the light intensity falls to 1.11% of its axial value. This truncation sets a limit to the

observation range (the scattered light has a limited extent along the ψ axis), but has little

effect on the precision of results since only the trivial part of energy is cut off.

As shown in Fig. 6.8(b), the elevation angle ψ of the p = 0 scattered light ranges

approximately from −1.2◦ to −0.9◦. Besides, because of the Gaussian profile of incident

beam, the energy of the p = 0 scattered light is mainly distributed at ψ = −1.0◦.

Considering that the divergence angle of the incident beam is only 0.029◦ in xz plane,

the elevation angle of scattered light is mainly related to the surface curvature of jet along

the z axis. In this aspect, the scattering of an elliptical Gaussian beam with very small

divergence angle is analogous to the scattering of a wave of planar wavefront. However,

there is notable difference here because an elliptical Gaussian beam, even with a near-zero

divergence angle, has non-uniform intensity. The Gaussian profile of intensity leads to the

Gaussian-like distribution of the rainbow fringes along the axis of ψ, as shown in Fig. 6.8(b).

Please notice the difference from the rainbow fringes for a wave of planar wavefront and

uniform intensity given in Fig. 5.8.

As the incident Gaussian beam illuminates the jet at a different position, the corre-

sponding scattering field shall be altered because the stream-wise curvature of jet surface

is changed. Fig. 6.9 shows the scattering field when the incident position moves down to

h = 3.5 mm. It is found that as the distance of beam center from the exit of orifice is in-

creased, the deviation of scattered light from the horizontal plane (ψ = 0◦) becomes smaller.

For example, the p = 3 scattered light for h = 3.0 mm (shown in Fig. 6.8(b)) lies in the

region where ψ ranges approximately from 2.6◦ to 3.6◦, while the p = 3 scattered light for

h = 3.5 mm (shown in Fig. 6.9) is less elevated with ψ ranging approximately from 2.5◦ to

2.9◦. This is attributed to the decrease of the stream-wise curvature of jet surface. Besides,

as the expansion along the ψ axis becomes shrunken, the intensity of the scattered light is

greater. For example, even without amplification, the second-order rainbows in Fig. 6.9 can

be observed clearly.

Furthermore, the 3D scattered intensity of a circular Gaussian beam by the jet is calcu-
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2nd rainbow angle

1st rainbow angle

p = 3

p = 2

p = 0

Fig 6.9 The scattering field near the first- and second-order rainbows when the incident position moves

down to h = 3.5 mm.

lated as shown in Fig. 6.10. The beam-waist radius of the incident circular Gaussian beam

is 0.4 mm, comparable to the transversal radius of jet. The beam centers Oz and Oy are set

on the jet axis. The other calculation parameters are the same as those used in Fig. 6.8(a).

Table 6.4 Parameters of the circular Gaussian beam in Fig. 6.10.

Beam axis Polarization r0z/mm r0y/mm Oz/mm Oy/mm λ/nm

x̂ ẑ 0.4 0.4 0 0 632.8

From Fig. 6.10(b), one can see that for this circular Gaussian beam, the rainbows

have much lower intensity than those in Fig. 6.8(b). This is because the first- and second-

order rainbows are formed by the incident light adjacent to the edge of particle [166, 194,

195], where the incident circular Gaussian beam with a beam-waist radius comparable to the

particle radius has only 1/e2 of its central intensity.

6.5 Effect of divergence angle on the scattering field

The preceding section covers the results for the 3D scattered intensity of an elliptical

Gaussian beam whose divergence angle is less than 0.03◦ in both the vertical and the hor-

izontal planes. For a beam of a larger divergence angle, the propagation directions of the

incident rays will be distinctly different, and the scattering field might present some interest-

ing phenomena which do not exist in the scattering of a plane wave or an elliptical Gaussian
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Beam

y

z

(a) Configuration

2nd rainbow angle

1st rainbow angle

p = 3 (I3 10)

p = 2

p = 0 (I0 10)

(b) Scattering field

Fig 6.10 Simulated result of the 3D scattered intensity of a circular Gaussian beam with beam-waist

radius comparable to the jet radius. (a) the profile of the incident circular Gaussian beam on the jet; (b)

the scattering field near the first- and second-order rainbows. For clarity, the intensity of p = 0 and p = 3,

I0 and I3, have been amplified by a factor of 10.
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beam of small divergence. In this section, the influence of divergence angle on the scattering

field is investigated.

Firstly, consider an elliptical Gaussian beam which propagates along the x axis has a

considerable divergence angle in the plane containing the jet axis (xz plane). The beam-

waist radius in the xz plane, r0z, is set as small as 8 µm (divergence angle γz = 1.44◦).

The beam profile in this plane is shown in Fig. 6.11(a). To focus on the influence of the

divergence angle in the vertical xz plane, the divergence angle in the horizontal xy plane,

γy, is fixed as 0.007◦, the same as that in Figs. 6.8 and 6.9. The beam-waist center in the

xz plane, Oz, is at x = −20 mm, while the beam-waist center in the xy plane, Oy, is set at

x = 0 (coincides with the jet axis). The intensity profiles of this elliptical Gaussian beam at

different transversal sections are presented in Fig. 6.11(b). They are sampled respectively at

x = −20 mm (beam-waist center in xz plane), x = −10 mm and x = 0 (the position of the

jet).

Table 6.5 Parameters of the tightly focused elliptical Gaussian beam in Fig. 6.11.

Beam axis Polarization r0z/mm r0y/mm Oz/mm Oy/mm λ/nm

x̂ ẑ 8 × 10−3 1.6 -20 0 632.8

Beam-waist center Jet position

2.88

(a) profile in xz plane

x = -20 mm x = -10 mm x=0

1.6 mm
8 μm

(b) transversal profiles of intensity

Fig 6.11 An elliptical Gaussian beam with a considerable divergence angle in the vertical xz plane: (a)

the beam diameter in the vertical xz plane; (b) the intensity profiles in the transversal yz planes sampled

at three positions.

This beam illuminates the jet at a position of 5 mm away from the exit of orifice (h = 5

mm). The calculated scattering field of this tightly focused elliptical Gaussian beam by the

jet is shown in Fig. 6.12.

Because of the considerable divergence angle in xz plane, the directions of the incident
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p = 3 (I3 10)

p = 0 (I0 10)

p = 2

Fig 6.12 Single-order scattered intensity of the tightly focused elliptical Gaussian beam modeled in Fig.

6.11 by the liquid jet. For clarity, I0 and I3 have been amplified by a factor of 10.

rays which characterize the elliptical Gaussian beam are of considerable divergence in the

xz plane, that is, the z-components of wave vectors become significant. Consequently, the

elevation angles of scattered rays, which are directly related to the z-components of the

scattered wave vectors, become much different from those in the scattering of an elliptical

Gaussian beam with small divergence angle. When compared to the results in Fig. 6.8(b)

and Fig. 6.9 where γz = 0.029◦, the scattering field for γz = 1.44◦ as shown in Fig. 6.12 has

a notable feature: the scattered light is expanded along the ψ axis and the scattered light of

orders p = 2 and p = 3 overlap with the light of p = 0.

The comparison of Fig. 6.12 with Figs. 6.8(b) and 6.9 indicates that the superposition

or separation of the scattered light of different orders can be regulated by changing the di-

vergence angle of the incident beam. To further prove this, Fig. 6.13 presents the calculated

scattering fields for two different divergence angles. In Fig. 6.13(a), the beam-waist radius

in xz plane r0z is 6 µm and the corresponding divergence angle γz is about 1.92◦, while in

Fig. 6.13(b) the beam-waist radius r0z is 16 µm and γz is decreased to 0.72◦. The other

parameters are the same as those in Fig. 6.12.

From the comparison in Fig. 6.13, one can see that for an incident elliptical Gaussian

beam which has a larger divergence angle in the xz plane (γz = 1.924◦, Fig. 6.13(a)), the

scattered light has a greater range of elevation angle ψ and, the scattered light of different

orders overlap and superpose with each other. But in Fig. 6.13(b) where the divergence
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p = 3

p = 0

p = 2

2nd rainbow angle

1st rainbow angle

(a) γz = 1.92◦ (r0z = 6 µm)

p = 3

p = 0

p = 2

2nd rainbow angle

1st rainbow angle

(b) γz = 0.72◦ (r0z = 16 µm)

Fig 6.13 Simulated 3D scattered intensity for two elliptical Gaussian beams of different divergence

angles in xz plane.
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angle γz is lessened, the scattered light of different orders are separated in the way similar

to the case when a plane wave illuminates the jet, where the stream-wise curvature of jet

surface becomes the dominant factor for the separation.

6.6 Spatial characteristics of the 3D scattering field

It is well known that the angular distribution of the scattered intensity near the first-

order rainbow of a spherical droplet can be decomposed into two components: the “low-

frequency” component (referred to as the Airy structures) and the “high-frequency” compo-

nent (Ripple structures), which are attributed to the interference of the p = 2 scattered rays

themselves and the interference of the p = 0 rays with the p = 2 rays, respectively. This

decomposition can be achieved by using a femtosecond laser [196] where the scattered light

of different orders are separated in the time domain. With the calculation method for 3D

scattering (Chapter 4), the calculation for the scattered light by a large nonspherical particle

can be achieved in the 3D space, which enables us to separate the scattered light of different

orders in the space domain.

As discussed in the preceding Secs. 6.4 and 6.5, by adjusting the divergence angle

of the incident elliptical Gaussian beam, the scattered light of different orders from a real

liquid jet may be separated from or superpose with each other in the 3D space. Here, the

scattering field given in Fig. 6.13(a) is taken for an example. The zoomed view of the

scattered intensity near the first-order rainbow is shown in Fig. 6.14. For the convenience of

the readers, the parameters for the elliptical Gaussian beam are tabulated in Table 6.6.

Table 6.6 Parameters of the elliptical Gaussian beam in Figs. 6.13(a) and 6.14.

Beam axis Polarization r0z/mm r0y/mm Oz/mm Oy/mm λ/nm

x̂ ẑ 6 × 10−3 1.6 -20 0 632.8

From Fig. 6.14, one can see that the elevation angle ψ of the p = 0 scattered light

ranges from −3.8◦ to 2.0◦, while the elevation angle of the p = 2 scattered light ranges from

about −1.5◦ to 4.4◦. Along the sampled line (A) where φ = 139.0◦, the intensity distribution

of the p = 0 scattered light is compared with that of the p = 2 light in Fig. 6.15. In the

overlapping region (−1.5◦ ≤ ψ ≤ 2.0◦), the scattered light of p = 2 and p = 0 superpose and

interfere with each other. Consequently, this first-order rainbow shows different interference

patterns in the two regions: ψ > 2.0◦ and ψ ≤ 2.0◦.

In the region where ψ > 2.0◦, the rainbow fringes result from the interference within

the p = 2 scattered rays. Thus, only the Airy structures are formed in this region. The
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1st rainbow angle

(a)

(b)

(c)
p = 2

&p = 0 

p = 2 

p = 0 
(A)

(d)

Fig 6.14 Zoomed view of the interference fringes near the first rainbow.
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8

overlapping region

Fig 6.15 Single-order intensity of the p = 0 and p = 2 scattered light along the sampled line (A).
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Airy

(a) ψ = 2.2◦

Airy+Ripple

(b) ψ = 1.0◦

Airy+Ripple

(c) ψ = 0◦

Airy+Ripple

(d) ψ = −1.0◦

Fig 6.16 The rainbow fringes sampled at four different elevation angles.
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intensity along the sampled line (a) where ψ = 2.2◦ is shown in Fig. 6.16(a). One can see

that the first-order rainbow contains only the “low-frequency” Airy structures for ψ = 2.2◦.

As to the overlapping region, the rainbow fringes are formed by the superposition be-

tween the p = 2 and the p = 0 scattered rays. The intensity along the sampled line (b)

where ψ = 1.0◦ is shown in Fig. 6.16(b). The notable difference from the interference

fringes in Fig. 6.16(a) is the appendage of the “high-frequency” Ripple structures on the

“low-frequency” Airy structures. But, the Ripple structures are still not distinct because at

this elevation angle, the intensity of the p = 0 scattered rays is still much lower compared to

the p = 2 rays as given in Fig. 6.15. As we go downward further till ψ = 0◦, the intensity of

the p = 2 rays is decreased, while the intensity of the p = 0 rays is increased. Consequent-

ly, their interference effect becomes more distinct as shown in Fig. 6.16(c). Furthermore,

according to Fig. 6.15, the intensity of the p = 2 rays is roughly equal to that of the p = 0

rays when ψ = −1.0◦. Along the sampled line (d) where ψ = −1.0◦, the rainbow fringes are

presented in Fig. 6.16(d). One can see that the interference effect between p = 2 and p = 0

rays is the most distinct for ψ = −1.0◦.

It concludes from the Figs. 6.14 and 6.16 that the separation and the superposition of

the scattered light of different orders can be coexisting in the scattering of elliptical Gaus-

sian beam by a real liquid jet. This analysis in the space domain helps to have a better

understanding of the 3D scattering of shaped beam by a large nonspherical particle.

6.7 Summary

In this chapter, the ray model for incident elliptical Gaussian beam has been proposed

in the framework of VCRM. Not only the propagation direction, amplitude and phase, but

also the principal curvatures and principal directions at each point of the incident wavefront

have been successfully characterized by light rays. It is now possible to calculate the 3D

scattered intensity of laser beam by a large particle of any smooth surface based on VCRM.

After the examination by comparing with GLMT for the scattering by a spherical par-

ticle of different refractive indices, the proposed method was then applied to solving and

analyzing the 3D far-field scattered intensity of elliptical Gaussian beam by a real liquid

jet of complex shape. It has been found that by changing the divergence angle of the in-

cident elliptical Gaussian beam, the scattered light by a real jet for different orders p can

be separated from or interfere with each other, resulting in different scattering patterns. A

quantitative analysis has also been made for the spatial characteristics of the scattering field

when a tightly focused beam illuminates the jet.
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It is wished to promote the understanding of the 3D scattering of laser beam by a large

nonspherical particle and to provide methodology for solving the 3D scattered intensity of

other shaped beams by large nonspherical particles under the framework of VCRM.
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Chapter 7 Conclusions and perspectives

This thesis is devoted to the development of vectorial complex ray model (VCRM) for

solving the 2D and 3D scattered intensity of plane wave or shaped beam by large particles

of any smooth surface. This chapter draws the conclusions of the current thesis and gives

perspectives in future studies.

7.1 Conclusions

For a nonspherical particle of size much larger than the wavelength (size parameter

ranging from several hundreds to thousands or even larger), the calculation for the scattered

intensity of light is a formidable or even impossible task using the exact numerical methods

such as DDA, FDTD and T-matrix. One feasible way is to approximate the incident light

wave as a bundle of rays and then, to study the interaction of rays with the particle. In

a GOA method, the wave-front curvature of light wave is not included, making it difficult

to calculate the shift in amplitude and the shift in phase due to the divergence and conver-

gence of wavefront. In the VCRM, developed recently in the Coria institute & University

of Rouen Normandy, the concept of wave-front curvature is introduced to the ray model of

light to describe the wave-front divergence or convergence. Moreover, the ray directions

and the Fresnel coefficients are calculated by the wave vectors and their components, which

considerably simplifies the calculation when a nonspherical particle is involved.

For the flexibility and efficiency merits of VCRM, this thesis aimed to extend the VCR-

M to solving the following issues and has achieved substantial progress:

1. The 2D light scattering by an infinite cylinder of arbitrarily smooth cross section. In

the high-frequency limit, this thesis has provided a solution, based on VCRM, to the

whole scattering field by an infinite cylinder of any cross section. The proposed method

is flexible and, in principle, only requires the cross section of cylinder to be smooth. It

permits now to calculate and analyze the scattering characteristics of light by an infinite

cylinder with cross section ranging simple to complex.

Based on the proposed method, a numerical study has been performed on the light scat-

tering by composite elliptical cylinders (CECs), whose cross sections approximate the

shapes of natural raindrops. The effects of shape deformation, refractive index and the

direction of incident wave on the scattering patterns of CECs have been investigated and
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quantitatively analyzed, which provided insight into how these factors affect the appear-

ance of a natural rainbow.

2. The 3D light scattering by a large particle of any smooth surface. This thesis reported the

first realization of a calculation method in the framework of VCRM for the 3D scattered

intensity by a large nonspherical particle. The problems such as the ray tracing, the cal-

culation of the divergence factor, the phase shifts due to focal lines and optical path, and

the cross polarization effects encountered in calculating the 3D scattering field have been

addressed. Moreover, a triangulation-based interpolation algorithm has been proposed

to resolve the bottle-neck problem for VCRM to address the interference of light in 3D

space. The proposed calculation method is directly applicable to calculating the scattered

intensity in any direction of 3D space by a large particle of any smooth shape.

3. The simulation of the 3D scattering field by a real liquid jet and experimental examina-

tion. In this thesis, the calculation for the 3D far-field scattered intensity of plane wave by

a real liquid jet has been achieved with the proposed calculation method, which is based

on VCRM while allows to calculate the scattered intensity in 3D space. It has been found

that due to the stream-wise curvature of jet surface, the scattered light of different orders

are naturally separated in the 3D space. Consequently, the interference field shows a very

interesting pattern that has not been found in the scattering by an infinite cylinder or a

sphere.

An experiment has also been carried out to verify the calculation method proposed for 3D

scattering and to verify the calculation result. By using a 4 f optical system and a spatial

filter, an incident wave of limited width 1 mm and of approximately uniform intensity

and planar wavefront has been generated, which complied with the incident wave used

in simulation. Good agreements between experiment and simulation have been found

not only on the spatial separation of different scattering orders but also on the scattered

intensity and the angular extension ranges.

4. The 3D scattering field of elliptical Gaussian beam by a real liquid jet. A ray description

method for incident elliptical Gaussian beams has been proposed in the framework of

VCRM, thus making it possible to calculate the 3D scattered intensity of laser beam by a

large particle of any smooth surface. The propagation direction, amplitude, phase, prin-

cipal curvatures and principal directions at each point of the incident elliptical Gaussian

beam are characterized with a light ray. Then, all the light rays that represent the incident

elliptical Gaussian beam illuminate the particle and are scattered to all possible directions
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of 3D space. After the validation by comparing with GLMT for the light scattering by

spherical particles, the 3D far-field scattered intensity of elliptical Gaussian beam by a

real jet which has a complex shape has been simulated and analyzed.

The influence of the beam divergence angle on the spatial distribution of the scattering

field near the first- and second-order rainbows has been investigated. It has been found

that by changing the divergence angle of the incident elliptical Gaussian beam, the scat-

tered light by a real jet for different orders p can be separated from or superpose with

each other, resulting in different interference patterns. A quantitative analysis has also

been made for the spatial characteristics of the scattering field when a tightly focused

beam illuminates the jet.

7.2 Perspectives

One major innovation of the current thesis is the first realization of an algorithm in

the framework of the VCRM to calculate the 3D scattered intensity, in the high-frequency

limit, by a smooth particle of any shape. Although the proposed method was devoted to the

3D scattered intensity by a real liquid jet in this thesis, the calculation for the 3D scattered

intensity of plane wave or elliptical Gaussian beam by other nonspherical particles, natural

raindrops/droplets for example (see Fig. 7.1), should not be too difficult.

Fig 7.1 The shapes of natural raindrops with increasing radii (from [6]).

Another practical application is the calculation for the temporal-spatial distribution of

the light rays transmitted from sea into air or from air into sea. In the presence of wind, the

sea surface shows a wavy profile of ups and downs as shown in Fig. 7.2. The JONSWAP

spectrum [197] is used here. The wind region is set as 20 km. For wind speed being 4.4

m/s (class-3 wind), the power spectral density is mainly concentrated upon the angular fre-

quencies ranging from 1.41 to 9.39 rad/s. The corresponding wavelength of the wavy sea

surface varies approximately from 0.70 m to 30.97 m. Since the roughness of sea surface is

generally much larger than the wavelength of the commonly used 532 nm green light, it is

reasonable to describe the incident laser beam by a bundle of light rays.



122 Chapter 7. Conclusions and perspectives

Fig 7.2 A wavy sea surface when the wind speed is 4.4 m/s.

Fig. 7.3 shows the preliminary results for the temporal-spatial distribution of the light

rays transmitted from the sea, observed at the height of a satellite (the turbulence of air is

not included). The spot of the incident beam on the sea surface is of 2× 2 m2. The refractive

index of the sea water relative to the air is 1.333 and the wavelength of light in air is 532 nm.

For comparison, the right column of Fig. 7.3 presents the results when wind speed reaches

12.3 m/s (class-6 wind). One can see that the wavy sea surface has a significant influence on

the spatial distribution of the transmitted light spot; and the spatial distribution varies with

the time t. As the wind speed is increased, the transmitted light spot has a larger deviation

from the center of receiving region, as the pentagram shows. It indicates that the acceptable

probability of optical signal drops down when wind speed is increased.

More work is needed in future to obtain the polarization and the 3D intensity distribu-

tion of the coherent/incoherent light transmitted from sea surface. The author believes these

issues could be well solved with the calculation method proposed in this thesis.

The calculation method proposed in this thesis for the 2D and 3D scattered intensi-

ty by large nonspherical particles may serve as the foundations for addressing the inverse

problems, namely the measurements for the size, geometry and refractive index of relevant

particles.

Besides the perspective applications, the fundamental researches on the physical prob-

lems of the ray model of light (including the GOA and VCRM) are also of significant impor-

tance. One challenging problem in the ray model of light is to calculate the light intensity

near caustics. To achieve this, the combination of geometrical optics with physical optics is

one interesting and significant work in the future. Another problem to be solved is the in-

clusion of surface waves. The author believes that the breakthrough of these two bottle-neck
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Fig 7.3 Preliminary result for the temporal-spatial distribution of the light rays transmitted from the

sea at the height of a satellite (485 km). The colormap illustrates the received photon numbers (relative

values). The wind speeds for the left column and the right column are 4.4 m/s and 12.3 m/s, respectively.
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problems, which exist in all ray models of light, will make the VCRM a powerful tool in

solving the light scattering by particles/targets
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[77] J. Wang, G. Gouesbet, Y. Han, G. Gréhan, Study of scattering from a sphere with an eccentrically

located spherical inclusion by generalized Lorenz–Mie theory: internal and external field distri-

bution, Journal of the Optical Society of America A 28 (2011) 24–39. doi:10.1364/JOSAA.28.

000024.

[78] J. Wang, L. Han, Y. Han, G. Gouesbet, X. Wu, Y. Wu, Shaped beam scattering from a single

lymphocyte cell by generalized Lorenz–Mie theory, Journal of Quantitative Spectroscopy and

Radiative Transfer 133 (2014) 72 – 80. doi:10.1016/j.jqsrt.2013.07.012.
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[154] G. Świrniak, J. Mroczka, Approximate solution for optical measurements of the diameter and

refractive index of a small and transparent fiber, Journal of the Optical Society of America A 33

(2016) 667–676. doi:10.1364/JOSAA.33.000667.
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ences: numerical and experimental behaviour at rainbow angles, Optics Communications 195

(2001) 49 – 54. doi:10.1016/S0030-4018(01)01332-3.

[195] J. A. Adam, The mathematical physics of rainbows and glories, Physics Reports 356 (2002) 229

– 365. doi:10.1016/S0370-1573(01)00076-X.

[196] P. Laven, Time domain analysis of scattering by a water droplet, Applied Optics 50 (2011) F29–

F38. doi:10.1364/AO.50.000F29.

[197] F. Yang, D. Su, Y. Ma, C. Feng, A. Yang, M. Wang, Refraction correction of airborne lidar

bathymetry based on sea surface profile and ray tracing, IEEE Transactions on Geoscience and

Remote Sensing 55 (2017) 6141–6149. doi:10.1109/TGRS.2017.2721442.



140 References



141

Resume/作者简介

1. Personal information

Name Qingwei Duan

Date of Birth 8 February 1991

Place of Birth Province Henan, China

Nationality Chinese

2. Education

2017.09–2020.06 Doctor degree (joint PhD.)
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RÉSUMÉ

Cette thèse est dédiée à une étude de diffusion de la lumière dans l’espace (3D) d’une

onde plane ou d’un faisceau laser, dans le cadre du modèle tracée de rayons vectoriels com-

plexes (VCRM Vectorial Complex Ray Model en anglais), par une grosse particule de sur-

face lisse. Les principaux travaux réalisés se résument comme suit :

Dans un premier temps, une méthode de calcul pour la diffusion 2D de l’onde plane par

un cylindre infini de section quelconque est proposée. Cette méthode est ensuite appliquée

à la simulation de l’intensité diffusée de l’onde plane par un cylindre elliptique composé

(CEC), dont la section est formée par deux demi-ellipses de paramètres différents. Les effets

de la déformation, de l’indice de réfraction et de la direction de l’onde incidente sur les

champs diffués, en particulier les positions des arcs-en-ciel ainsi que leurs dispositions de

l’intensité, sont analysées quantitativement.

Puis, les travaux se sont étendus à la diffusion dans l’espace (3D) d’une onde plane par

une particule de forme quelconque en tenant en compte les déphasages dus aux lignes focales

et au chemin optique, la divergence et la convergence du front d’onde, et la polarisation

croisée. Un algorithme d’interpolation basé sur la triangulation est développé qui permet de

prendre en compte l’inférence des rayons diffusés dans l’espace.

La méthode proposée pour la diffusion 3D est appliquée à la simulation de l’intensité

diffusée d’une onde plane par un jet de liquide réel. Ceci a permis d’interpréter le mécanisme

de diffusion dans l’espace: l’analyse de mode de diffusion, la séparation ou l’interférence

de différents ordres. Une expérience est menée pour vérifier la méthode de calcul et pour

examiner les résultats simulés.

Afin de prendre en compte la forme du faisceau incident, une méthode de description

d’un faisceau gaussien elliptique incident par rayons est proposée, qui permet de calculer

l’intensité diffusée en 3D d’un faisceau gaussien circulaire ou elliptique par une grosse par-

ticule. Le calcul de l’intensité diffusée en champ lointain d’un faisceau gaussien elliptique

par un jet de liquide réel est réalisé avec succès. Les champs de diffusion aux alentours des

arcs-en-ciel du premier et du second ordres pour les faisceaux incidents de différents angles

et divergences sont étudiés.

Mots-clés: diffusion de la lumière tracée de rayons vectoriels complexes, diffusion tridi-

mensionnelle, grosses particules non sphériques, optique géométrique, jets liquides
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摘摘摘要要要

越来越多的光学应用技术涉及到粒子的光散射特性计算与分析。针对不同的粒

子，研究者提出并发展了各种光散射理论和计算方法。不同的理论模型和计算方法

具有不同的适用范围，目前仍面临的挑战之一是大尺寸非球形粒子的光散射计算问

题。在矢量复射线模型（VCRM）框架下，本文系统研究了大尺寸非球形粒子对平

面波和有形波束散射的三维场分布计算方法及实验验证。主要研究工作和成果如

下：

本文首先基于VCRM研究并提出了平面波经任意光滑截面柱体散射后的二维散

射场计算方法。将提出的计算方法应用于解决复合椭柱（CEC，截面可为圆形，椭

圆形以及高度变形的各种形状）的光散射场计算问题。以横截面为实际雨滴形状

的CEC柱体为研究客体，对其0到360度的散射场实现了计算，并定量分析了柱体

形态、折射率和入射光方向对散射场分布特性（尤其是对彩虹）的影响。

本文基于VCRM，首次提出了一种用于大尺寸非球形粒子三维光散射场的计算

方法。在VCRM框架下解决了三维散射中的光线追迹，波束的会聚和发散，由于焦

散线和光程引起的相位变化以及交叉极化等问题，得到经复杂形态粒子散射后三维

光线的振幅和相位。此外，提出了基于三角剖分的插值算法，解决了散射光线在三

维空间中的干涉叠加问题，从而突破了VCRM向三维散射拓展中遇到的瓶颈问题。

利用所提出的大尺寸非球形粒子三维光散射场计算方法，实现了对低速条件下

真实液体射流光散射场的模拟与分析。并利用VCRM可揭示散射机理的特点，对各

阶散射光在三维空间中的分离和干涉进行了系统的分析。此外，为验证所提出的三

维光散射计算方法以及检验真实射流三维光散射场的模拟结果，搭建了液体射流的

三维光散射场测量实验系统，实验测量结果和理论模拟结果吻合。

在VCRM框架下，提出了椭圆高斯光束的射线描述方法，为包括强会聚的激光

束经复杂形态粒子散射后的三维光场提供了一种可行的计算方法。实现了真实液体

射流对椭圆高斯光束三维散射场的模拟计算。研究了不同波束发散角对彩虹附近散

射场分布的影响，并对强会聚波束入射下的三维散射场的空间分布特性进行了定量

分析。大尺寸复杂形态粒子的椭圆高斯波束散射计算不但证明了VCRM的灵活性，

也为VCRM框架下研究其他复杂波束的三维散射问题提供重要的解决思路。

关键词：光散射，矢量复射线模型，三维散射，大尺寸非球形粒子，几何光学近似，

液体射流
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ABSTRACT

In the framework of vectorial complex ray model (VCRM), this thesis aims to solve the

three-dimensional (3D) scattered intensity of plane wave or shaped beam by a large particle

of any smooth surface. The main work and achievements are summarized as follows:

As the first step, the calculation method based on VCRM for the 2D scattered intensity

of plane wave by a cylinder of any smooth cross section is proposed. And the proposed

method is applied to solving the scattered intensity of plane wave by a composite elliptical

cylinder (CEC), whose cross section can take various shapes ranging from circular, elliptical

to highly-deformed. The effects of shape deformation, refractive index and incident direction

on the scattering fields, especially on the rainbows, are quantitatively analyzed.

Based on VCRM, the ray tracing, the phase shifts due to focal lines and optical path,

the divergence and convergence of wavefront, and the cross polarization in 3D scattering

are addressed. An interpolation algorithm based on triangulation has been developed which

permits to take into account the interference of 3D scattered rays, thus breaking through the

bottle-neck problem for VCRM in the extension to 3D scattering.

The proposed method, which is based on VCRM while allows to calculate 3D scatter-

ing field, is applied to simulating the 3D scattered intensity of plane wave by a real liquid

jet. Furthermore, taking advantage of the ability of VCRM for interpreting the scattering

mechanism, a systematic analysis is made for the scattered light of different orders, in re-

gard to their separation or interference in 3D space. An experiment is carried out to verify

the proposed method for 3D scattering and to examine the simulated results.

In the framework of VCRM, a ray description method for incident elliptical Gaussian

beam is proposed, thus providing one feasible way to calculate the 3D scattered intensity of

elliptical or circular Gaussian beam by a large particle of any smooth surface. The calcu-

lation for the 3D far-field scattered intensity of elliptical Gaussian beam by a real liquid jet

is successfully achieved. The scattering fields near the first- and second-order rainbows for

incident beams of different divergence angles are investigated in 3D space. These results as

well as the proposed method open a promising way to characterize finely the structure of a

real liquid jet and particles of other complex surfaces.

Keywords: light scattering, vectorial complex ray model, three-dimensional scattering,

large nonspherical particles, geometrical optics approximation, liquid jets
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