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Chapter 1 Introduction

This chapter introduces the research background and significance of the thesis from
the aspect of particle scattering. It reviews the research history and current status of related
fields, briefly describes the analytical and numerical methods for light scattering, and puts
more effort on the introduction of two approximation methods: the geometrical optics ap-
proximation (GOA) and the vectorial complex ray model (VCRM), where the incident wave
is represented by a collection of discrete rays. Finally, the research content and method, the
content of each chapter, the overall framework, the results and the innovations of the thesis

are introduced.

1.1 Research background and significance

Light scattering by particles is a field of active research with high relevance for science
and engineering. It promotes our understanding of the interaction between light and particles
and concerns an increasing number of modern technologies, ranging from the measurement

and the manipulation of particles to optical communications in turbid media.

Particles are abundant in natural and artificial environments. In many fields of science
and engineering, such as combustion diagnosis, atmospheric optics, remote sensing, scatter-
ing by interplanetary dust grains, bio-optical imaging, colloidal chemistry, materials science,
coating technology and particle sizing technology, one often has to deal with particles rang-

ing from nanoscale to macroscopic.

Since the advent of laser, optical measurement technologies have been favored for its
non-contact, accurate and fast merits. The techniques based on elastic light scattering for
particle analysis (such as phase Doppler, extinction method, rainbow technology and small
particle imaging technology) have found wide applications. The basic principle of these
techniques is based on the fact that the intensity distribution, polarization characteristics and
spectral characteristics of scattered light are all related to the particles [1, 2]. According
to the characteristics of the scattered light, a lot of information about the particles can be
retrieved, such as the size, shape, speed of motion, temperature, density and compositions.
Efficient theoretical and numerical tools to predict the scattering characteristics of light by

various particles are thus essential.

Many models and methods have been developed for analyzing the light scattering by
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particles. Each method generally has its own range of applicability determined primarily
by the particle size relative to the wavelength of incident light. The scattering by those
particles that are very small compared to the wavelength can be calculated by the Rayleigh
approximation [1, 2]. The particles of size comparable to the wavelength lie in the range
commonly called the resonance region, where the separation of variables techniques[1, 2]
and numerical methods [3, 4] are usually utilized. And those particles of size much larger
than the wavelength can be addressed by the approximation methods, in which the incident

wave is represented as a collection of discrete rays, for example, the GOA method [1].

Among the particles of various forms in nature, one group of them are of smooth surface
due to surface tension, such as the raindrops [5—8], droplets in industry [9-13], underwater
bubbles [14-29], liquid jets [30-36] and so on. As the effects of gravity and air forces
become non-ignorable, their geometric shapes are deformed from a sphere or an infinite
cylinder, indicating that their scattering characteristics cannot be resolved by the separation
of variables techniques. Besides, their size parameters! usually range from hundreds to
thousands or even larger, making the calculation far beyond the capabilities of the existing
numerical methods. The developments of alternative approaches allowing fast and accurate
(at least asymptotical) calculations are needed for carrying out in-situ characterization of

these particles.

For a nonspherical particle of size much larger than the wavelength (size parameter is
generally over 100), the approximate methods based on the assumption that the light wave
can be represented by a bundle of discrete rays provide feasible ways for calculating the scat-
tering field. Many researchers have contributed to the development of GOA for dealing with
spherical or spheroidal particles/bubbles [1, 37-43], faceted particles [44, 45] and natural
raindrops [6]. In a GOA model, each ray is characterized by its direction, amplitude, polar-
ization and phase. However, for a particle of curved surface, the GOA encounters difficulties
or even obstacles in calculating the shift in ray intensity due to the divergence/convergence
of wave (divergence factor) and the shift in phase due to focal lines, except for a spherical

or spheroidal particle. For this reason, the applications of GOA are under restrictions.

In this context, Ren et al. [46] proposed the vectorial complex ray model (VCRM), a
new model for describing the interaction of light rays with a large particle. The distinctive
features of VCRM are that: 1) the curvature of wavefront is integrated as an intrinsic prop-

erty of a light ray, by which one can directly calculate the divergence factor and the phase

!Size parameter depicts the size of particle compared to the wavelength of light. It is calculated as 27a/A with a being
the equivalent radius of particle and A being the wavelength of light.
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shift due to focal lines; 2) the ray directions and the Fresnel coefficients are calculated by
the wave vectors and their components; 3) the interference of all scattered rays in the whole
region is taken into account.

Since the light scattering by a nonspherical particle of size much larger than the wave-
length is still a challenging problem in the field of light scattering, this thesis is devoted to
the extension of VCRM, with aims to solve the light scattering by infinite cylinders of vari-
ous forms, and more importantly, to solve the scattered intensity of plane wave and shaped

beam by large nonspherical particles in 3D space.

1.2 Research status of light scattering by particles

This section summarizes the research status of various calculation methods for the light

scattering by particles.

1.2.1 Analytical methods

The search for an exact analytical solution to the scattering field has been traditionally
reduced to solving the vector Helmholtz equation for the time-harmonic electric field using
the separation of variables techniques in one of the few coordinate systems in which this
equation is separable. For this reason, the separation of variables technique are limited to
particles of simple forms such as spheres, spheroids, circular or elliptical cylinders.

Lorenz [47] and Mie [48], independently, derived the solution for an isotropic homo-
geneous sphere in 1890 and 1908. The method that they proposed is now the well-known
Lorenz-Mie theory (LMT). The LMT is a rigorous solution of the Maxwell equations and
contains all the effects that contribute to the scattering. It was expounded later in depth by
Van de Hulst [1] and by Bohren and Huffman [2]. Aden and Kerker provided a solution for
the scattering by a coated sphere in 1951 [49]. Wait in 1955 presented a solution for the scat-
tering by a homogeneous, isotropic, infinite circular cylinder [50]; and it was extended to the
scattering by an isotropic, infinite elliptical cylinder by Kim and Yeh in 1991 [51]. Oguchi
in 1973 and Asano and Yamamoto in 1975 derived a general solution for the scattering by
homogeneous, isotropic spheroidal particles [52, 53].

To give a clear interpretation to the various physical processes in scattering, the Debye
series expansion (DSE) method [54] was developed for a homogeneous [55] and coated [56]
sphere respectively in 1992 and 1994. In 2006, Li et al. [57] derived the formula for the
DSE in the light scattering by a multilayered sphere and introduced an efficient algorithm
permitting stable calculation for a large multilayered sphere. Wu and Li in 2008 [58] pre-
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sented a simplified but rigorous iterative formula for the DSE in the light scattering by an
infinite circular cylinder of multiple layers. In 2010, Shen and Wang [59] provided a stable,
reliable and robust algorithm for the DSE calculation of the scattering of plane wave by a
uniform sphere in a wide range of sizes and refractive indices. Xu and Lock contributed to
the development of DSE for the light scattering by a spheroid [60], and by a homogeneous or
coated nonspherical particle in combination with the extended boundary condition method

[61, 62].

With the advent of lasers and their growing applications, the LMT met one of its fun-
damental limitations, i.e., the assumption that the incident wave must be a plane wave. To
address this problem of LMT, in 1988, G. Gouesbet and G. Gréhan et al. presented a theo-
retical description of the scattering of a Gaussian beam by a homogeneous and isotropic par-
ticle of spherical shape, which is now known as the generalized Lorenz-Mie theory (GLMT)
[63, 64]. An equivalent approach for the scattering by a dielectric sphere located arbitrarily
within a Gaussian beam was presented by Barton et al. [65, 66]. In the framework of GLMT,
Ren et al. in 1994 and 1996 derived the radiation pressure (pushing force) and the reverse
radiation pressure (pulling force) exerted by Gaussian beam on spherical particles [67, 68].
Onofri et al. [69] presented a solution in the framework of GLMT for the scattering of an
arbitrary shaped beam by a multilayered sphere. Ren and Mées et al. [70, 71] extended the
GLMT to the scattering of Gassian beam by infinite circular cylinders, while Gouesbet and
Mées contributed to the extension of GLMT to the scattering by infinite elliptical cylinders
[72, 73]. Han and Wu et al. devoted to the scattering of shaped beams by spheroidal parti-
cles [74-76]. Wang and Han et al. applied the GLMT to the scattering of shaped beam by
a sphere with an eccentrically located spherical inclusion [77, 78]. Later, Wang et al. pro-
posed an algorithm in the framework of GLMT to address the internal field distribution of a
radially inhomogeneous droplet illuminated by an arbitrary shaped beam in a wide range of

size parameters [79]. More comprehensive reviews of the GLMT can be found in [80, 81].

It is unlikely that these analytical solutions will be significantly extended in the future.
Indeed, the solution for the simplest finite nonspherical particles, spheroids, is already so

complex that it behaves like a numerical solution as Mishchenko pointed out in [3].

1.2.2 Numerical methods

Numerical methods provide exact solutions to the scattering of electromagnetic/light
wave by nonspherical particles. Most of them fall into two broad categories [3]: the dif-

ferential equation methods which compute the scattering field by solving the vector wave
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equation in the frequency or in the time domain; and the integral equation methods which
are based on the volume or surface integral counterparts of Maxwell’s equations, with ex-
ceptions of those hybrid techniques or methods. Here a brief introduction is made to those

commonly used numerical methods for the scattering of light by nonspherical particles.

In the discrete dipole approximation (DDA), a scatterer is divided into small cubical
subvolumes (“dipoles”), and the interaction between the dipoles are approximated based on
the integral equation for the electric field [82—85]. It can be applied to simulating the light
scattering by finite 3D objects of arbitrary geometry.

The finite-difference time domain (FDTD) method solves the Maxwell equations in the
time domain by using the finite-difference analog. It was originally developed by Yee in
1966 [86]. After that, the FDTD method has been extensively applied to solving various
electromagnetic problems [87-94]. The most relevant literatures are [44, 95], where Yang

and Liou et al. proposed the solutions for the light scattering by ice crystal particles.

The T-matrix method may be the most accurate and efficient numerical method for solv-
ing the scattering of electromagnetic wave by a nonspherical particle, and can achieve the
widest range of size parameter (up to 200 or 300 dependent on the particle shape [96-99]).
As one renowned method to compute the T-matrix in the T-matrix formulation of light scat-
tering, the extended boundary condition method (EBCM), or Waterman’s T-matrix method,
was initially proposed by Waterman in 1965 and 1971 [100, 101]. It was later developed
by Barber and Hill [102], Mishchenko [103—-105] and others. The standard EBCM [105] is
very efficient but will encounter a loss of precision when the particle size becomes larger, the
maximum size being affected by the particle aspect ratio. On the other hand, the invariant
imbedding method (IIM) was originally proposed by Johnson in 1988 [106]. Bi, Sun and
Yang et al. [107, 108] and others have made significant contributions to the development of
IIM. It is based on an electromagnetic volume integral equation and obtains the T-matrix by
growing the scattering volume incrementally in a shell-by-shell manner. The IIM is applica-
ble to particles of relatively large size parameters and extreme aspect ratios. But it is not as
efficient as the EBCM due to the large number of diftferential shells required to discretize the
particle volume. Bi and Yang et al. [96] improved the computational efficiency of IIM by
combining the IIM with the LMT and applied to the spheroids and cylinders of size param-
eters beyond the convergence limit of EBCM. They also proposed a numerical combination
of IIM with EBCM [97], which not only enhanced the efficiency of IIM but also extended
the convergence limit of EBCM.

However, a numerical method is severely limited by the particle size. Generally speak-
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ing, when the size parameter of particle is over 100, the computation using a numerical

method becomes rather time- and memory-consuming.

1.2.3 GOA

The geometric optics approximation (GOA) (otherwise known as the ray tracing or ray
optics approximation) is an approximate method for the light scattering by large particles,
where the incident wave is described by a bundle of light rays. Van de Hulst in his renowned
book [1] presented a relatively systematic description of GOA for the scattering of plane
wave by a spherical particle, where the direction, amplitude and phase for each scattered
ray of perpendicular or parallel polarization were derived. Besides, many researchers have

extended and applied the GOA to various scattering problems including:

o The scattering by particles of various forms. Glantschnig and Chen [109] simplified the
calculation for the superposition of the externally reflected rays and the refracted rays
with the diffraction and obtained a closed formula for the scattering in the forward angu-
lar range (0° — 60°) by a water droplet. Adler and Lock et al. [110, 111] examined the
scattering by an infinite cylinder of deformed cross section in terms of ray tracing, rainbow
angles and the rainbow intensity due to Fresnel coeflicients. Hovenac [112] developed an
algorithm for predicting the far-field scattering from a particle being symmetric about the
optical axis. Lock [37, 38] addressed the reflection, transmission and diffraction of the
light rays scattered by an arbitrarily oriented spheroid. Sadeghi et al. [6] extended the
GOA to the 3D scattering field near the rainbows produced by natural large raindrops
(neither spheres nor spheroids). Yang and Liou [45] proposed a new geometrical optic-
s model which used the ray-tracing technique to solve the near field on the ice crystal
surface and then transformed the near field to the far field based on the electromagnet-
ic equivalence theorem. Bi et al. [113] assessed the uncertainties with the conventional

geometrical optics in remote sensing and radiative transfer simulations.

e The scattering by bubbles. In 2008, Yu et al. [41] studied the scattering of plane wave by
a spherical bubble based on GOA, where the total reflection effect was taken into account
to improve the calculation accuracy. In 2012, He et al. [42] studied the scattering of plane
wave by a spheroidal bubble with end-on incidence, where the effects of the size and
the aspect ratio of bubble and the width of incident beam on the scattering patterns were
analyzed. In 2016, Sentis and Onofri et al. [114] improved the GOA by combining it with
the physical optics approximation (POA) in modeling the scattering properties of large

spherical bubbles, where the interference between higher-order rays, the Goos - Hanchen
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shift, the tunneling phase and the weak caustic associated with the critical angle were

taken into account.

o The scattering by coated particles. Lock et al. [56] presented an intuitive interpretation to
the first-order rainbow from a coated sphere by using ray theory in 1994. In 2004, Xu et
al. [115] provided an algorithm by means of GOA for calculating the scattered intensity
by a coated spherical particle in the forward angular range (0° — 60°). In 2014, Zhai et al.
[116] examined the scattering processes of a coated sphere with the GOA method. They
parameterized the light rays interacting with a coated sphere and simplified the calculation

for those terms of degeneracy paths and repeated paths.

e Ray tracing in inhomogeneous media. The path of a light ray in inhomogeneous media
is curved. In the 1960s, Montagnino [117] and Marchand [118] contributed to the de-
velopment for the methods for tracing the ray paths in inhomogeneous media. In 1982,
Sharma et al. [119] proposed an efficient method for tracing the light rays passing through
gradient-index media. Later, Sharma achieved a method for computing the optical path
in gradient-index media, which proved to be more accurate and faster after a compari-
son with other methods [120]. As for the spherical particles of inhomogeneous media,
Li et al. [121] presented a solution in 2007 to the scattered intensity of plane wave by a
gradient-index sphere in the forward angular range (0° — 60°). In 2008 and 2015, Lock et
al. [122, 123] analyzed the scattering of plane wave by a Luneburg lens.

o The scattering by chiral particles. In 2015, the rainbow angles of a chiral sphere were
calculated using ray tracing by Wu et al. [124]. In 2019, the scattering pattern of plane
wave by a chiral sphere in the forward direction (0° — 90°) has been solved with GOA by
Luetal. [125].

o The scattering of shaped beam. In 2006, Xu et al. extended the GOA for calculating
the scattered intensity of circular Gaussian beam by a sphere [39] and by a spheroid with
end-on incidence [40], where the Gaussian beam was described by a bundle of light rays
of different propagation directions, amplitudes and phases. To calculate the optical forces
of an arbitrary shaped beam, Shao et al. in 2019 decomposed an arbitrary light beam
into plane waves. The intensity of each plane wave was dependent on the Fourier angular
spectrum; and each plane wave was further represented by a bundle of light rays parallel

in propagation direction [126].

o The scattering by absorbing particles. In 2005, Chang [127] detailed a ray tracing method
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to characterize the plane wave propagating in a lossy media. Yu et al. in 2009 presented
a method based on GOA to address the light scattering by an absorbing sphere, where
the effective refractive index and the effective refractive angle were introduced, and the
formulas for the phase shifts due to reflections and refractions were derived [128]. In
2018, Lindqvist et al. [129] derived a ray-optics solution which took into account the
inhomogeneous nature of the represented wave inside an absorbing particle and applied it

to the light scattering by ice particles in the near-infrared wavelengths.

o The coupling with physical optics. In 2015, Huang et al. combined the GOA and the
concept of divergence factor with the physical optics (PO) and the physical theory of
diffraction for the scattering by perfectly electrical conducting targets [130]. Sentis et al.
in 2016 coupled the GOA with the POA and developed an improved version of GOA,
which allows one to predict the scattering pattern by large bubbles with high accuracy

[114].

o The application to optical forces. Ashkin in 1992 calculated the forces of single-beam
gradient radiation pressure on micron-sized dielectric spheres in the ray optics regime
[131]. Zhou et al. in 2012 calculated the optical forces on a triaxial ellipsoid by vectorial
ray tracing [132]. Later Shao et al. in 2019 combined the Fourier optics and ray optics for
calculating the optical force of an arbitrary shaped beam exerted on a spherical particle

[126].

e The application to inelastic scattering. The theoretical treatment of inelastic scattering by
wave theory is rather complicated and, most of the calculations are limited to a spherical
particle of homogeneous medium or with inclusions of size smaller than the wavelength.
Being flexible and efficient in computation, the ray optics was utilized to calculate the
inelastic scattering by a large spherical particle [133, 134], by a particle of any shape
where the particle surface was described by triangles [135], and by a spherical particle

with inclusions [136].

A GOA method provides clear insight into the reflection and refraction processes and
has advantage in the cases where the exact numerical methods are hard to achieve or no
rigorous theory exists, as concluded by Xu et al. [39]. However, a careful reader may notice
that most of the GOA methods available today have addressed only the scattered intensity
by spherical or spheroidal particles, or faceted ice crystals. This is mainly due to the fact that

although the GOA is flexible in principle, it usually encounters difficulties or even obstacles
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in accounting for the divergence factor and the phase shift due to focal lines, which restricts

the precision and application of GOA.

1.24 VCRM

To resolve these difficulties encountered in GOA, Ren et al. in 2011 proposed the vec-
torial complex ray model (VCRM) [46]. In VCRM, the curvature of wavefront is integrated
as an intrinsic property of a light ray, by which the divergence factor and the phase shift
due to focal lines can be calculated directly. Furthermore, the ray directions and the Fresnel
coeflicients are calculated by the wave vectors and their components, which avoids the te-
dious calculation when a nonspherical particle is involved. Although it is a high-frequency
approximation model, the VCRM provides one feasible way for calculating the scattered
intensity of plane wave or shaped beam by a large particle of arbitrarily smooth surface.

The validity of VCRM has been examined numerically by comparing with the multi-
level fast multipole algorithm (MLFMA) for the light scattering by a large ellipsoidal par-
ticle [137]. Furthermore, Onofri et al. experimentally examined the VCRM for the light
scattering by a large oblate droplet trapped in an acoustic field [138].

Ren et al. applied the VCRM to the light scattering in the transversal plane of an
ellipsoidal particle in 2012 [139]. Jiang et al. applied it to the scattering of plane wave and
Gaussian beam by elliptical cylinders in 2012 and 2013 [140, 141]. Onofri et al. retrieved
the evolution of the principal curvature radii and the refractive index of an oblate droplet with
a minimization method that involves VCRM predictions and experimental light scattering
patterns in 2015 [138]. Sun et al. improved the three-dimensional (3D) ray tracing by
considering the wave-front distortion and phase shift in the scattering by a spheroid in 2016
[142].

However, the VCRM is still in its early stage of development. The existing numerical
implementations of VCRM address only the scattering in a few simple configurations. One
of them is that all light rays should propagate in a two-dimensional (2D) plane, for example,
in one of the symmetric planes of a spheroidal particle.

In the past few years, several researchers have been trying to find a solution to the 3D
scattered intensity by large nonspherical particles in the framework of VCRM. Recently, in
Yang’s doctoral thesis which was defended in the December of 2019 [143], an alternative
implementation of VCRM using statistic approach has been achieved for the 3D scattered

intensity by a pendent droplet. But, the statistic approach requires a huge number of photons,

2By smooth surface, it means that the particle surface is differentiable to the second order or more.
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at least 10® to 10' to obtain an acceptable result for a pendent droplet of 2 mm. This statistic
approach, though effective, is so time- and memory-consuming that it violates the efficient

merit of VCRM.

1.3 Main content and frame arrangement

Because of the flexible and efficient merits of VCRM, this thesis is devoted to the
extension of VCRM to the light scattering by an infinite cylinder of arbitrarily smooth cross
section, and more importantly, to the scattered intensity of plane wave and shaped beam by a

large nonspherical particle in 3D space. This thesis focuses mainly on the following issues:

1. The extension of VCRM to the 2D scattering of plane wave by an infinite cylinder of any

smooth cross section.

2. The calculation method based on VCRM for the 3D scattered intensity by a large particle

of any smooth surface.

3. The application of the proposed method to calculating and analyzing the scattered inten-

sity of plane wave by a real liquid jet of complex surface in 3D space.
4. The examination of the proposed method by experiments.

5. The extension to the 3D scattered intensity of shaped beam, an elliptical Gaussian beam

for example.

The scattering by inhomogeneous particles is not involved here, because the variation

of wavefront in inhomogeneous media remains unknown.

The thesis includes seven Chapters. The content of each Chapter is outlined as follows:

Chapter 1 introduces the research background and the significance of this thesis, re-
views the research history of related fields, points out the issues that this thesis aims to solve,
introduces the main content and the frame arrangement, and outlines the research results and
innovations.

Chapter 2 discusses in depth the classical GOA method for the scattering of plane
wave by circular cylinders and spheres.

Chapter 3 introduces the interaction of light rays with a cylinder in the framework of

VCRM and, extends the VCRM to the scattering of plane wave by an infinite cylinder of any



1.4 The innovations 11

smooth cross section. The proposed algorithm is applied to solving the full diagram of the
scattered intensity by a cylinder whose cross section takes the shape of a natural raindrop.
The effects of shape deformation, refractive index and the direction of incident wave on the
scattering patterns are investigated and quantitatively analyzed.

Chapter 4 proposes the calculation method for the 3D scattering of plane wave by a
large particle of any smooth surface. In the framework of VCRM, the ray tracing, divergence
factor, phase shifts due to focal lines and optical path, and cross polarization in 3D scattering
are addressed by an elegant way using vectorial rays and wave-front curvature. To account
for the superposition of scattered ray in 3D space, a triangulation-based interpolation method
is proposed, thus breaking through the bottle-neck problem for VCRM in calculating the 3D
scattered intensity.

Chapter 5 realizes the calculation for the 3D scattered intensity of plane wave by a
real liquid jet. The geometric model of a continuous water jet near the nozzle is established
through image edge detection and data fitting. By applying the calculation method proposed
in Chapter 4, the 3D scattering field by the jet is successfully simulated. Emphasis is put
on the 3D intensity distribution near the first-order and second-order rainbows. The effect
of the stream-wise curvature of jet surface on the scattering characteristics is analyzed. The
difference from the scattering field by an infinite cylinder is discussed. An experimental
setup is also established for measuring the 3D scattered intensity by a liquid jet, and the
result by simulation is examined by the experiment.

Chapter 6 proposes a ray description method in the framework of VCRM for incident
elliptical Gaussian beams. After the validation of the proposed model by comparing with
the GLMT for spherical particles, the 3D scattered intensity of elliptical Gaussian beam
by a real liquid jet which has a complex geometry has been successfully calculated. The
scattering characteristics of the elliptical Gaussian beams of different divergence angles are
investigated. The spatial characteristics of the scattering field of a tightly focused elliptical
Gaussian beam is analyzed.

Chapter 7 concludes the work of the current thesis and gives perspectives for the future.

1.4 The innovations

This thesis addresses the 2D and 3D scattered intensity by a large particle of arbitrarily

smooth surface in the framework of VCRM. The innovations are as follows:

1. Based on the VCRM, an algorithm is proposed for solving the light scattering by an infi-
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nite cylinder of arbitrarily smooth surface in the high-frequency limit. For the scattering
by an infinite cylinder, the rigorous LMT is limited to the cylinders which have circular or
elliptical cross sections; while the GOA method, except for a circular or elliptical cylin-
der, is hard to calculate the divergence factor and the phase shift due to focal lines. The
algorithm proposed in this thesis allows one to obtain the direction, amplitude, phase, po-
larization and divergence factor for each scattered ray, and the final interference intensity
of the scattered rays from an infinite cylinder of arbitrarily smooth surface. It provides an
effective tool for calculating and analyzing the scattering patterns by a cylinder of cross

section ranging from simple to complex.

. The bottle-neck problem of VCRM in calculating the 3D scattered intensity has been
solved. Inspired by the idea of triangulation in the area of Computer Graphics, the di-
rection of each 3D scattered ray is represented as a vertex in the (¢, ) space, where ¢
and y are respectively the azimuth angle and the elevation angle. These vertexes which
represent the directions of scattered rays are firstly meshed by triangles. Then, inside
each generated triangle, interpolation is carried out for the amplitudes and phases at the
grid points which are enclosed by the triangle, according to the amplitudes and phas-
es of the three vertexes (three scattered rays). The overlapping triangles at a grid point
(@i, ;) account for the interference effect in the scattering direction of azimuth angle ¢;
and elevation angle ;. By introducing this triangulation-based interpolation method, the
calculation for the superposition of the scattered rays in 3D space can be achieved. Be-
sides, the ray tracing, divergence factor, phase shifts due to focal lines and optical path,
and cross polarization encountered in 3D scattering are addressed in the framework of
VCRM. It provides an effective and efficient approach to the scattered intensity in 3D

space by a large smooth particle of any shape.

. The scattered intensity of plane wave in 3D space by a real liquid jet has been successfully
simulated and experimentally validated. The study of the light scattering by a liquid jet
is motivated primarily by the needs for developing optical means to characterize the jet
size and refractive index (temperature). However, the scattering pattern of a real jet can
hardly be calculated using the existing analytical theories or numerical methods because
of the jet’s complex geometry and large size (compared to wavelength). In this thesis,
the 3D far-field scattered intensity of plane wave by a real liquid jet has been solved.
It is found that due to the stream-wise curvature of jet surface, the scattered rays of

different orders by a real jet are naturally separated in the 3D space, leading to scattering
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patterns that have rarely been observed. Besides, an experiment has also been carried out.
The agreement between the simulated 3D scattered intensity and the experimental result
validates the proposed algorithm which is based on VCRM while allows to calculate 3D
scattering field.

4. Many researchers have contributed to the development and application of the GLMT for
the scattering of a Gaussian beam by particles. However, the GLMT is applicable only to
particles of simple forms so that the separation of variable method could be carried out.
In this thesis, the ray model for incident elliptical or circular Gaussian beam is proposed
in the framework of VCRM, thus making it possible to calculate the scattered intensity
of laser beam by a large particle of any smooth surface. As an example, the 3D far-field
scattered intensity of elliptical Gaussian beam by a real liquid jet has been achieved.
The scattering characteristics near the first-order and second-order rainbows for incident

elliptical Gaussian beams of different divergence angles are investigated in 3D space.



14

Chapter 1.

Introduction




15

Chapter 2 Light scattering by a circular cylinder or a sphere based
on GOA

2.1 Overview

The scattering of plane wave by an infinite circular cylinder under normal incidence or
by a spherical particle is one of the basic problems in the filed of light scattering [1]. When
the transversal size of cylinder or the radius of sphere is much larger than the wavelength of
light, the geometrical optics approximation (GOA) method provides an asymptotic solution
to the scattering field. Although it is not as exact as the LMT or DSE, the calculation by
GOA is much simpler and more efficient. In this chapter, the GOA method for calculating
the scattered intensity by a circular cylinder under normal incidence and by a sphere are
discussed. It provides the fundamental conceptions of the interaction of light rays with a
particle, thus facilitating the understanding of the VCRM and its extensions in the following

chapters.

2.2 Light scattering by an infinite circular cylinder

2.2.1 Calculation method

Consider an infinite circular cylinder illuminated by a plane wave as shown in Fig. 2.1.
The Cartesian coordinate system Oxyz is set such that the z axis is along the cylinder axis
and the x axis coincides with the direction of the incident plane wave. The transversal radius
of the cylinder is denoted as a. The refractive indices of the surrounding medium and the
cylinder are 1 and m, respectively. The scattering angle 6 denotes the direction of a scattered

ray and is counted in the xy plane from the x axis.

The incident plane wave is regarded as a bundle of light rays of same direction, equal
amplitude and equal phase. For an incident light ray, it is subjected to continual reflections
and refractions by the cylinder surface. Thus, theoretically speaking, there is an infinite
series of emergent rays. An externally-reflected ray is of order p = 0, a transmitted ray
without internal reflection is of p = 1, while an emergent ray which undergoes p — 1 times
of internal reflections is a p-order scattered ray as illustrated in Fig. 2.2. Such a definition

for the order of a scattered ray gives certain convenience in later calculation.

For the convenience of calculation, the complementary angles of the incident angle «
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Fig 2.2 Ray path in the transversal section of circular cylinder.
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and the refracted angle S are introduced as 7 and 7’, respectively. T = 0 indicates the grazing
incidence while v = m/2 indicates the central incidence. For one of the emergent rays that
originate from the same incident ray, its angle with the cylinder surface is always 7. For
any light ray inside the cylinder which originates from this incident ray, its angle with the

cylinder surface is a constant of value 7" as shown in Fig. 2.2.

From Fig. 2.2, one can derive that the total deviation angle of a p-order emergent ray

from the incident direction (x axis) is
0 =2t -2p7 (2-1)

In practice, the scattered light is observed in [0, 27], or in the region of [0, ] considering the
symmetry of the scattering field. The scattering angle 6 in the interval [0, ] is related to the
total deviation angle by

0 =c2n+qgb (2-2)

where c is an integer equal to the times that the emergent ray has crossed the x axis. g is

equal to +1 or —1 ensuring that 6 is in the interval [0, x].

At the first reflection, the ratio of the reflected amplitude to the incident amplitude is

calculated according to the Fresnel reflection coefficients:

3 sint —msint’ (2-3)

r, = — -
SINT+mSsInt

msinT —sin 7’
= — (2-4)

msinT + sinT
where the subscript L indicates the polarization perpendicular to the scattering plane xy,
while || indicates the polarization parallel to the scattering plane xy. These two polarizations

are respectively along ¢, and ¢, as shown in Fig. 2.1.

At a reflection inside the circular cylinder, T and 7’ are reversed compared to the first
reflection. Thus, the reflection coefficients at an internal reflection are —r, and —r. Accord-
ing to the conservation of energy, the refraction coeflicient tx and the reflection coefficient

ry are related by
,msint’

—— +ry =1 (2-5)
SInT

where X =1 or ||. Thus, the refraction coeflicient (always positive) can be expressed as

. 1/2
) ) -

msint’
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For a scattered ray of order p > 1, it has undergone p — 1 times of internal reflections and
two times of refractions: one refraction from air to cylinder and one refraction from cylinder
to air. The refraction coeflicients at the two refractions are denoted as 7y and #},, respectively.

According to Eq. (2-6) and the fact that 7 and 7’ are reversed at the two refractions, we have

txly = (1 - rxz) (2-7)

Then, the variation of the amplitude of a p-order scattered ray due to the reflection and

refraction coefficients is obtained as

if =0
exp={ 0P 2-8)
(l—rX )(—rx)p 1 if pZ 1

where the term (1 — ry?) corresponds to the two refractions, while (-rx)?~! the p — 1 times

of internal reflection.

X
Ray pencil
I, lai s
T+dr
a Z S

Fig 2.3 Schematic diagram of the divergence of a ray pencil interacting with a circular cylinder.

On the other hand, a reflected/refracted ray pencil might be converging or diverging
and its intensity will be higher or lower accordingly. Consider a ray pencil of width d! in the
xy plane, thickness dz along the axis of cylinder and uniform light intensity /. It illuminates
the surface of cylinder in an area of dsdz where the complementary angle of incident angle
varies from 7 to 7 + dt. The incident energy S, is Ipdldz. By simple geometric principles,
one can deduce that d! is equal to sintds where ds = adt as shown in Fig. 2.3. Thus, the

light energy incident in the area dsdz can also be expressed as

Sinc = lpasintdrdz 2-9)
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The incident energy is then subjected to continual divisions because of refractions and
reflections. For a p-order scattered ray pencil of polarization X, the light energy is reduced

to

Sxp = SincEx, (2-10)

Suppose the scattering angle of this scattered ray pencil ranges from 6 to 6 + d6 as
shown in Fig. 2.3. The transversal area of the scattered ray pencil, at a distance r far from
the emergent point, is denoted as ds’dz. In fact, the transversal area of the incident ray pencil
is so small that the width d! tends to be zero. Thus, the area of the scattered ray pencil on
the cylinder can be regarded as zero, i.e. so — 0 (sg is illustrated in Fig. 2.3). Then, the arc

length of the scattered ray pencil ds’ is approximated to be
ds' = rdf (2-11)

Then, the light intensity of the scattered ray pencil observed at r and of polarization X

can be obtained by Iy, = ;%jz, that is

Lasindrdzey,
Iy, = :
xp rd6dz (2-12)
a

_ 2
= ;Iogx’pD

The coeflicient D is called the divergence factor of a light ray and is defined for an infinite

circular cylinder as
sint

" dojdr
From Egs. (2-1) and (2-2), we have df/dt = +d@’/dr. Considering that the divergence

(2-13)

factor D should be positive, df/dr is calculated to be
do |do

dr  |dr

_ 2|msint’ — psinT]

(2-14)

msint’
By omitting the term I, in Eq. (2-12) and then multiplying by kr, the dimensionless

scattered intensity in the far field is expressed by
Iy, = kaDsy, (2-15)

where k is the wave number of the scattered ray (k = 2w/A1). The dimensionless term ka is
the size parameter which depicts the size of particle relative to the wavelength of light.

For an incident beam of coherent length much larger than the size of particle, the inter-
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ference between different scattered rays should be taken into account. Besides the amplitude

discussed in the preceding part, the calculation for the interference field needs also the in-

formation about the phase for each scattered ray.

For a particle illuminated by plane wave, there are three factors that affect the phase of

a scattered ray: reflection, optical path and focal lines. The time factor is chosen as exp(iw?).

)

2)

The phase shift due to reflections ¢x .. According to the Fresnel formulas, the refrac-
tion coeflicients are always positive, which means the refraction does not alter the
phase; while the reflection coefficients may be negative, indicating the reflection may

change the sign of the amplitude and thereby introduce a phase shift of 7 (=1 = ™).

On the other hand, when total reflection occurs, all the energy of light is reflected
and the Fresnel reflection coefficients r, and r are equal to exp(i6,) and exp(id)),
respectively, where the phase shifts §, and ¢, are given by

) M
0, = 2arctan (&)

cosa

— (2-16)
0) = 2 arctan (M)

M? cosa

where M, is the refractive index of the refracted medium relative to the incident medi-

um.

A scattered ray might have undergone one or more times of reflection. Since these re-
flection coefficients, being positive or negative, real or imaginary, are already included
in the factor ey, defined in Eq. (2-8), the phase shift of a p-order scattered ray due to

reflections, ¢y, can be retrieved directly by the argument (phase) of ey ,:

exp = llex,ll explidx,) (2-17)

The phase shift due to optical path ¢, op. The phase shift ¢, op of a scattered ray is
caused by its optical path, usually compared to a reference ray. The reference ray, free
of the refraction by the particle, arrives at the center of particle in the the direction of

the incident ray and then emerges in the same direction as the scattered ray.

As shown in Fig. 2.4, the externally-reflected ray (p = 0) has a shorter optical path

than the reference ray, thus it has a positive phase when compared to the reference ray:

2
®o.op = 720' (2-18)
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Fig 2.4 Schematic diagram of the virtual rays (dotted) serving as the references in calculating the optical
paths of scattered rays.

where o equals a sin 7. The scattered rays of p > 1 have longer optical paths than the
reference rays. For the scattered ray of p = 1, the phase shift due to optical path is
—%”ms, where the negative sign indicates that the phase lags for a longer optical path.
s is the geometric length between two successive interactions, equal to 2a sin7’. Then,

its phase relative to the reference ray is calculated by

2 2
d10p = _Tms - (—7261)
(2-19)

= ;(Za sint — 2masint’)

Then, for the scattered ray of order p, the phase shift relative to the reference ray is

deduced as

2
%m:§M@m—mqu (2-20)

(3) The phase shift due to focal lines ¢, ;. Because of the Gouy anomaly [144-146], at
the passage of any focal line the phase advances by /2. Two types of focal lines are

categorized by van de Hulst (the pp. 201 and 202 of [1]) for the scattering of plane
wave by a sphere:

type A: Any point of intersection of two adjacent rays in a meridional cross section

1s a point of a focal curve.

type B: Any point where a ray intersects the axis is a point of focal line because the

corresponding rays in other meridional sections have the same point of interac-
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tion.
A A
Meridional
lane #1
P F,
F, r’/
(a) type A (b) type B

Fig 2.5 Two types of focal lines defined by van de Hulst [1] in the scattering by a sphere. For a circular
cylinder concerned in this section, only the focal lines of type A exist.

These two types of focal lines are illustrated in Fig. 2.5. For an infinite circular

cylinder, only the focal lines of type A exist and the total number of the type A focal

lines is p — (1 — 5)/2, where p is the order of the scattered ray and s takes the sign

of d¢’ /dr. Thus, the phase shift due to focal lines in the case of an infinite circular
cylinder is

bprr =5 [p=(1-9)/2] @-21)

The total phase of a scattered ray of polarization X (X =L or ||) and order p is the

summation of these three kinds of phase shifts:

Oxp = Oxr + Gpor+ GprL (2-22)

It should be noted that the phase shifts due to optical path and focal lines, ¢, op and ¢, r;,
are independent of polarization.
Finally, according to Egs. (2-15) and (2-22), the complex amplitude of a p-order scat-

tered ray of polarization X can be obtained as

—_—~ 7T .
Ex, = , /EkaDe:X’p exp(idx ) (2-23)

The coefficient yz/2 is added so that the amplitude calculated by GOA is consistent with
that by LMT [147].

Since this thesis is devoted to the scattering of light, an approximate model is used for
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the diffraction component [2, 140, 147]:

~— 1+ cos@sin(ka sin 6) 3
E; = > g exp (17) (2-24)

The scattering field at the scattering angle 6 is then the summation of the complex

amplitudes of those rays scattered in this direction and the corresponding diffraction com-

ponent:

Ex(®) = ) Ex,(0) + E,(0) (2-25)

p=0
In practice, the upper limit of p is usually set as 7 because the scattered rays of a higher
order p have much lower intensity. Then, the scattered intensity in the scattering direction 6
is computed by

Ix(8) = Ex(0)Ex(6) (2-26)

2.2.2 Results and discussions

Since the GOA method is valid only for a particle of size much larger than the wave-
length, it is necessary to examine its applicable domain before its application. In Fig. 2.6,
the scattered intensity calculated by the GOA method described in the preceding section is
compared with LMT for three circular cylinders of same refractive index but different size
parameters. Here, the perpendicular polarization is concerned. From the comparison, it may

conclude that:

e The prediction for light scattering based on the GOA method is satisfying only when

the size parameter 27a/A is over 100.
e The larger the size parameter, the better the agreement of GOA with LMT will be.

e When 27a/A > 100, the discrepancy of GOA from LMT exists mainly near the caus-
tics (the rainbow angles for example) and in the region where surface wave is impor-

tant.

Although the deficiency in predicting the light intensity near caustics and the effect
of surface waves, the GOA method still captures most part of the scattering diagram for a
particle of size parameter over 100.

The GOA method allows to distinguish the contributions from different orders of scat-
tered rays and thus provides a clear interpretation to the scattering pattern. Fig. 2.7 shows an

example for decomposing the total interference field into several single-order scattered light.
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Fig 2.6 Comparison of the scattered intensity calculated by GOA with that by LMT for different size
parameters. m = 1.3322.
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Fig 2.7 The total and the single-order scattered intensity by a circular cylinder for two polarizations. For
clarity, only the scattered light of p = 0, 1, 2 and 3 are presented.
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For clarity, only the main contributors (p = 0, 1,2, 3) are presented. The size parameter is

about 1241 (a = 125 um, A = 0.6328 wm). The relative refractive index m is set as 1.3322.

For the perpendicular polarization as shown in Fig. 2.7(a), one can see that the forward
scattering field (8 < 82.2°) results primarily from the interference between the p = 0 and
p = 1 scattered rays. The diffraction component is not concerned here. While in the region
where 105° < 6 < 129.3°, the interference between the p = 0 and the p = 3 scattered
rays forms the second-order rainbow. And in the region where 6 > 137.8°, the intensity of
the scattered rays of p = 0 and p = 2 are dominating. Besides these main contributors,
there exist perceivable caustics within 40° < 8 < 45°, which are the third- and fourth-order
rainbows formed by the p = 4 and p = 5 scattered rays, respectively; and in the Alexander’s
dark band (129.3° < 8 < 137.8°), the fifth-order rainbow is formed by the interference
between the p = 0 and the p = 6 scattered rays.

As to the parallel polarization as shown in Fig. 2.7(b), the intensity of the p = 2 and
the p = 3 are much lower (about 1/10) compared to those in the case of perpendicular po-
larization. This is attributed to the fact that the Fresnel reflection and refraction coeflicients
are different for two polarizations. Moreover, the first-order and the second-order rainbows
are not as clear as those in the perpendicular polarization. At 8 = 73.9°, the intensity of the
p = 0 scattered ray drops down to zero, indicating the corresponding incident ray is reflected
at the Brewster’s angle.

Considering that the first-order rainbow will be repeatedly mentioned in the following
chapters, a detail discussion on the formation mechanism and the intensity distribution of

the first-order rainbow from a circular cylinder is given here.
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Fig 2.8 First-order rainbow calculated by GOA for an infinite circular cylinder. The calculation param-
eters are the same with those in Fig. 2.7(a).
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By first-order rainbow, one usually means the interference fringes of p = 2 scattered
rays in the region where 6 > 137.8° (for m = 1.3322) as show in Fig. 2.8. These interference
fringes present as peaks and troughs, usually referred to as the Airy structures. The extremal
angle for the p = 2 rays is called the first-order rainbow angle. Since the p = 0 scattered
rays also have considerable contribution in this scattering region, the participation of the
p = O rays in the interference with the p = 2 rays leads to the subsidiary Ripple structures
upon the Airy structures as show in Fig. 2.8. These high-frequency Ripple structures are of
significant importance in carrying out high-accuracy measurement for the variation of size

and refractive index [11, 28, 148, 149].

It should be noted that at the rainbow angle, the scattered intensity is incorrectly pre-
dicted as infinity, while beyond the rainbow angle the scattered intensity of p = 2 rays drops
abruptly to zero. This abrupt change of intensity arises from the intrinsic defect of ray op-
tics. To tackle with this problem, one feasible way is by taking into account the diffraction
effect in the region where light intensity shows discontinuity. To improve this defect of ray

optics needs much more effort and is beyond the scope of current thesis.

2.3 Light scattering by a spherical particle

Compared to the calculation method for the scattering by an infinite circular cylinder
as given in Sec. 2.2.1, the divergence factor D and the numbers of focal lines are different
in the scattering by a spherical particle. This is because an infinite circular cylinder has a
curvature equal to zero along the cylinder axis, while a sphere does not. This section covers
the solution of GOA to the scattering of plane wave by a spherical particle. For concise,
those calculation processes which are identical to the ones for a circular cylinder will not be

repeated here.

2.3.1 Calculation method

Because of the spherical symmetry, the scattered light in one meridional plane is ex-
actly the same as the scattered light in another meridional plane. Thus, one needs only the
calculation for the scattered light in one of the meridional planes. In one meridional plane of
the spherical particle, the ray paths are same with the paths in the cross section of a circular

cylinder, if the circular cylinder and the sphere have identical radius and refractive index.

For a p-order ray of polarization X (X =L or ||) scattered by a sphere of radius a, its
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intensity at a distance r from the sphere is given by [1]
IX,p = ﬁDSX,pIO (2-27)

where the divergence factor D is defined by

SINTCOST

sin 6d6/dt

msinTsint’ cosT

D=
(2-28)

2sinflmsint’ — psinT|

These symbols in Egs. (2-27) and (2-28) have been explained in the preceding Sec. 2.2.1.
By omitting the term I, in Eq. (2-27) and then multiplying by (kr)?, the dimensionless

scattered intensity in the far field by the sphere is expressed as
Iy, = (ka)’Dey,, (2-29)

where k is the wave number of the scattered ray (k = 2/A1). The amplitude formula is then
obtained as
Ex, = kaVDey, (2-30)

Besides the focal lines of type A as for an infinite circular cylinder, the focal lines of
type B in Fig. 2.5 also exist for a spherical particle. In fact, the focal lines of type A are
caused by the convergence of wave in the meridional plane, while the focal lines of type B
arise from the convergence of wave in the direction perpendicular to the meridional plane.
For a sphere, the number of the type A focal lines for a p-order scattered ray is given by
p — (1 —5)/2, where s takes the sign of d6’/dt as has been discussed for a circular cylinder.
While the number of the type B focal lines is given by —2¢ + (1 — ¢)/2 [1], where ¢ and ¢
have been discussed in Eq. (2-2).

Thus, the total phase shift due to focal lines in the case of a spherical particle is

n 1 1
¢p,FL = 5 [p —2c+ ES - Eq:| (2-31)

The phase shifts due to reflection and optical path are the same as those for a circular
cylinder and will not be repeated here. Then, by substituting the value of ¢, r; into Eq.
(2-22), the total phase ¢y, of a light ray scattered by a spherical particle can be obtained.

The complex amplitude of a p-order scattered ray of polarization X in the scattering by

a spherical particle is then expressed as

Ey, = kaVDex,, exp(i¢x,,) (2-32)
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Since it is not within the scope of this thesis to discuss the diffraction component, the
forward diffraction is simply calculated by applying Babinet’s principle. The amplitude of
the forward diffraction of plane wave by a sphere is given by [37, 46]

o Ji(kaf) ]
Eq = (ka)y'——= (2-33)

where J;() is the Bessel function of the first kind of order 1. A more sophisticated model for

the forward diffraction can be found in [150, 151].

2.3.2 Results and discussions

In Fig. 2.9, the scattered intensity calculated by the GOA is compared with LMT for
three homogeneous spherical particles of different radii. The relative refractive index m is
1.3322 and the wavelength of incident plane wave A is 0.6328 um. Here the perpendicular
polarization is concerned. Since the comparison between GOA and LMT has been made for
circular cylinders of size parameters ranging from 50 to 300 in Fig. 2.6, the comparison for
the spherical particles will focus on larger size parameters.

One can see that the agreement of GOA with the rigorous LMT is generally satisfying.
And, as the radius a is increased from 50 um to 300 wm, the agreement is getting better. One
notable discrepancy is near the first-order and second-order rainbow angles (129.3° < 6 <
137.8°). The incorrect prediction for the light intensity near rainbow caustics arises from the
intrinsic defect of the ray model of light as have been discussed in Sec. 2.2.2, rather than the
calculation method itself. Another notable discrepancy is caused by the fact that the GOA
method does not include the surface wave effects [55]. For example, the discrepancy in the
backward scattering area where 6 > 165° is due to the surface wave of order p = 2.

Fig. 2.10 analyzes the contributions of the surface waves of different orders, calculated
with the Mieplot software [152], in the scattering by spherical particles of different radii.
One can see from Fig. 2.10(a) that for a spherical particle of radius a = 50 um, the surface
wave of order p = 2 has considerable intensity for 6 > 165°, so comes the notable discrep-
ancy of GOA from LMT in this region as shown in Fig. 2.9(a). Besides, the surface waves
of orders p = 1, 3 and 5 are also worthy of consideration in the scattering regions where
55° < 6 < 110°, which leads to some perceivable discrepancies in these regions as shown
Fig. 2.9(a).

But for a spherical particle of a larger radius (¢ = 300 um) as presented in Fig. 2.10(b),
the surface waves of orders p = 1, 2,... and 6 have much lower intensity in most of the

affected regions. On the other hand, according to the amplitude formula given in Eq. (2-30),
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Fig 2.9 Comparison of the scattered intensity calculated by GOA with that by LMT for three spherical
particles of different radii. m = 1.3322.
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the amplitudes of the scattered rays are increased with the size parameter ka. Thus, the
effects of surface waves on a spherical particle of a larger size are weakened. As shown in
Fig. 2.9, the scattered intensity for 55° < 6 < 110° and 6 > 165° calculated by GOA agrees
better with the LMT for a larger spherical particle.
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Fig 2.11 Zoomed view of Fig. 2.9(c) in linear scale for the first-order rainbow calculated by GOA and
LMT.

In the measurement of the size and the refractive index (temperature) of a spherical
droplet/raindrop by the scattered light, the commonly-utilized information is the scattering
pattern of the first-order rainbow. The zoomed view of Fig. 2.9(c) for the first-order rainbow
is presented in Fig. 2.11. Except the discrepancy in the immediate vicinity of the rainbow
angle (caustic), the agreement of GOA with LMT is very good in the other parts of the first-
order rainbow. And the rainbow fringes in those parts (6 > 138°) are fairly adequate in the
inverse calculation for the size and refractive index. One distinct advantage of GOA over
the rigorous LMT is the computational efficiency for large particles, which is critical for

carrying out real-time measurements.

2.4 Summary

In this Chapter, the GOA for calculating the light scattering by infinite circular cylinders
and spheres are discussed in detail. The calculation results are compared with the rigorous
LMT. The comparisons show that the GOA method is valid when the size parameter of
particle is over 100. And, the scattered intensity calculated by GOA agrees better with the
LMT for a larger spherical particle.

However, since the light rays in the framework of GOA do not reflect the divergence or

convergence characteristic of the represented wave, the GOA method encounters difficulties
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or even obstacles in accounting for the divergence factor and the phase shift due to focal
lines when the geometry of particle/target becomes complex. In the following parts of this
thesis, the VCRM, which resolves these difficulties encountered in GOA, will be introduced

and extended.
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Chapter 3 Light scattering by a cylinder of arbitrarily smooth
surface based on VCRM

The study of the light scattering by an infinite cylinder provides an easier way to un-
derstand the interaction of light wave with particles. With regard to the practical uses, an
efficient method to predict the light scattering by a cylinder is essential in the optical mea-
surement techniques for the size and refractive index of optical fibers [110, 153—-155] and
liquid cylinders [32, 33, 156], and in the rendering of biological fibers such as hair and fur
[157-160]. However, the available electromagnetic approaches for the light scattering by
infinite cylinders are usually limited to those cylinders of circular or elliptical cross section-
s. To the author’s best knowledge, there is still no satisfying solution for calculating the
intensity distribution of the scattering field by a cylinder of other cross section.

In this chapter, based on the vectorial complex ray model (VCRM), a calculation
method is proposed to calculate the light scattering, in the high-frequency limit, by an infi-

nite cylinder of arbitrarily smooth cross section.

3.1 The difference of VCRM from GOA

For a particle of size much larger than the wavelength, i.e. in the high-frequency limit,
the incident wave can be approximated by a bundle of rays, and each of them consists of
propagation direction, polarization, amplitude and phase. The directions of the refracted
and reflected rays can be calculated according to the Snell’s law. The amplitudes are calcu-
lated by the Fresnel refraction and reflection coefficients. The phase lags when a light ray
experiences a longer optical path; and it is also well known that the phase of reflected ray
may have a shift compared to the phase of the incident ray. Besides the aforesaid ones, the

amplitude and phase of a light ray are also affected by:

e The divergence/convergence of the represented wavefront. It is understandable by con-
sidering the fact that the light intensity of a convergent or divergent beam is varied at

different axial positions, a result to meet the rule of energy conservation.

e The phase due to focal lines. A convergent beam has a phase shift after passing the
focal lines, or the focal point (two crossing focal lines). This anomalous shift of phase is
attributed to the confinement of wave either in spatial or in temporal, or even in spectral

domain [1, 145, 146, 161, 162].
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As have been discussed in the chapter 2, the divergence of wavefront (divergence factor)
and the phase shift due to focal lines can be obtained in analytical forms based on GOA
when a plane wave is refracted and reflected by a sphere or by a circular cylinder. But, more
particles (or objects in a general sense) in nature are lack of the symmetry like a sphere or
a circular cylinder. It then becomes rather tedious or even impossible for the conventional
GOA method to compute the divergence of beam and the numbers of focal lines, which
limits the precision of GOA in dealing with nonspherical particles.

In this context, Ren et al. [46] proposed the vectorial complex ray model (VCRM). Its
advantages over the GOA method are that

e In VCRM, the curvature of wavefront is integrated as an intrinsic property of a light ray,
by which one can calculate the divergence factor and the phase shift due to focal lines
directly. It is because of this that the VCRM removes the biggest obstacle for GOA in

calculating the light scattering by large nonspherical particles.

e The ray directions and the Fresnel coefficients are calculated by the wave vectors and their
components, which avoids the tedious calculation in GOA when nonspherical particle is

involved.

The VCRM is receiving more and more attention for its capability to solve the scatter-

ing of wave by large nonspherical particles with sufficient precision and high efficiency.

3.2 Calculation method

As to the 2D light scattering by an infinite cylinder, the available numerical implemen-
tation of VCRM addressed only the scattering by infinite cylinders of circular or elliptical
cross sections [140]. In this section, a calculation method based on VCRM is proposed to
solve the light scattering by an infinite cylinder of arbitrarily smooth cross section. The s-
tudy is limited to the case when the cylinder is under normal incidence, i.e. all light rays
stay in the transversal plane of the cylinder.

Consider a homogeneous cylinder (Fig. 3.1) of refractive index m and geometry given

in the Cartesian coordinate system Oxyz by:

flx,y)=0 (3-1)

The z axis coincides with the main axis of the cylinder (perpendicular to the paper plane).

The cylinder has a smooth surface, in other words, the function f(x,y) is differentiable to
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the second order or more. The reason for this requirement will be explained later. The
wave numbers in the surrounding medium and in the cylinder are kK = 27/ and &, = mk,

respectively, A being the wavelength of light in free space.
_> y
—

— f(x,y)=0

Incident rays Cylinder

Fig 3.1 An infinite cylinder of cross section f(x,y) = 0 under normal incidence. The cylinder axis (z
axis) is perpendicular to the paper plane.

3.2.1 Ray tracing

In VCRM, the direction of a light ray is represented by the wave vector as shown in

Fig. 3.2. Consider a light ray of wave vector k; incident on the cylinder. The unit vectors

normal to and tangent to the interface of cylinder are 7 and 7, respectively. The Snell’s law

indicates that the tangent components of the refracted wave vector 12, the reflected k, and the
incident £; are equal:

KO =k = kD (3-2)

where kf) = 15 - 7 is the inner product of 15 with 7. Then, the normal components of the

refracted wave and the reflected wave, k% and k", are determined respectively by

KO = k2 — k9% and kO = —k® (3-3)

where k, is the wave number of the refracted wave and the + takes the sign of k¢ with

[ - . A e .
k) = k; - #. The unit normal vector 7 is given by

i A K ) A X
3 X Y=n,-X+n,-y (3-4)
5+ ROV &+ D2

where f{ and f are the derivatives of the surface function f(x,y) = 0 with respect to x and

n=

y, respectively. Besides, the unit tangent vector 7 is given by

_‘f; A fx, A A A
(f;2+f;2)]/2 A (f;2+f;2)1/2 Y ETXATy 0y (3'5)

2=

After obtaining the normal and tangent components of the refracted and reflected rays,
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Fig 3.2 Local coordinate system (71, T) to describe the wave vectors at one interaction.

a simple transformation leads to the their expressions in the Cartesian coordinate system.
For example, the expression of the refracted wave vector in the Oxyz system is obtained by

O I P S Sy A0
k= M - [k% + k;”ny] -0

where n,, n, and 7,, 7, are the x- and y-components of 7 and 7, respectively, which have
already been given in Eqgs. (3-4) and (3-5). For a cylinder under normal incidence, the

z-component of wave vector is zero.

To ease the calculation for the coordinates of the next interaction, a distance factor

n is introduced to bridge the coordinates of two successive interaction points (x,,y,) and
(Xps1s Yp+1):
{x,m = X, + nk, (3-7)
Yp+1 = Yp + 1k,
where (k,, k,) is the wave vector from the current interaction point (x,, y,) to the next point
(Xp+1,Yp+1)- By the fact that both (x,,y,) and (x,.1,y,+1) satisfy the same function f(x,y) =

0, we have
f(xp + nk,, Ypt+ nky) - f(xp, )’p) =0 (3-8)

This is an equation with 7 being the sole unknown. For an object of simple shape, this equa-
tion can be solved analytically. Otherwise, it is to be solved numerically by, for example,
the Newton downhill method. It is worth noting that several solutions may be found for 7 if
the cylinder has a complex geometry. One can prove this by drawing a line across a given
closed curve, and counting the points of intersection as the geometry of the closed curve
becomes complex. But, only the smallest positive value is the correct solution for 77 because

a ray, unlike a line, has its starting point and positive direction. By substituting the solved n
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into Egs. (3-7), the coordinates of the next interaction point can be obtained.

To designate the order of a scattered ray, the traditional notation (commonly used in the
GOA and DSE) is adopted: the externally-reflected rays are of order p = 0, the transmitted
rays without internal reflection are of p = 1, while the emergent rays which have been
through p — 1 times of internal reflections are the p-order scattered ray as illustrated in Fig.
3.3. The exit point and the scattering direction of a p-order ray is denoted as W, and Izp,

respectively.

*__—

Incident ray

Fig 3.3 Notations for the order, the exit point and the direction of a scattered ray.

3.2.2 Amplitude

In the scattering by a dielectric cylinder, the amplitude of a light wave is affected by:
1) the Fresnel reflection/refraction coefficients and, 2) the divergence/convergence of wave-
front. The Fresnel reflection and refraction coeflicients in conventional geometric optics or
ray optics are calculated with the incident and refracted angles [163]. However, the acqui-
sition of these angles is a rather daunting work when a nonspherical particle is involved,
especially for the scattering in 3D space. For this reason, in VCRM the normal components

of wave vectors are used instead of the incident and refracted angles to calculate the Fresnel

coeflicients:

ki — Ky M7 — k!
r, = — s N = -

ky + K, MK + k)

(3-9)

. 2k . 2M k)
L0 . 0 NT TS50 . 0

kY + K M2 + k)

k' and £k are the normal components of the incident and the refracted wave vectors, respec-

tively; and they should adopt their absolute values in Eq. (3-9) considering that the replaced
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incident and refracted angles range in [0, r/2]. M, is the refractive index of the refracted
medium relative to the incident medium. For a refraction from air into the particle, M; = m;
while for a refraction from the particle into air, M; = 1/m.

The refraction and reflection coefficients at the interaction point W; (j = 0, 1,2, ...) are
denoted as tx ; and ry ;, respectively. For a p-order scattered ray, the variation of amplitude
caused by refraction and reflection coefficients is

X0 p=0
Exp = (3-10)
Ix01x,p Hi:l] rxj, P21
Eq. (3-10) indicates that, for example, a scattered ray of order p = 2 has been through one
refraction (x) at Wy, one internal reflection (ry ;) at W and an eventual refraction (¢ ;) into
the surroundings at W,.

On the other hand, at the refraction or reflection by a particle/target of curved surface,
the wave-front shape is altered. For example, an incident wave of planar wavefront is no
longer a plane wave if it is refracted or reflected by a curved interface. The convergence or
divergence of wavefront leads to the variation in light intensity, hence the amplitude.

For an infinite cylinder illuminated by a plane wave with normal incidence, the scat-
tered rays have cylindrical wavefronts of varied curvatures. One principal direction of the
wavefront is along the cylinder axis (z-axis) and the corresponding curvature is zero. The
other one is in the xy plane; and at each interaction, the curvature radii' of the refracted and
the incident wavefronts, R, and R;, are bridged by the curvature radius of cylinder p through

[46, 140, 164]
kflt)z B k;i)Z . kff) _ k;i)
kR, kiR Y

(3-11)

Replacing kﬁf) and k; respectively by k,([) (kﬁ,r) = —k,(f)) and k; returns the curvature radius of

the reflected wavefront R,:
A
kiRr - kiRi P

For an infinite cylinder (or a 2D particle/target in a general sense) of cross section given

(3-12)

by function f(x,y) = 0, the curvature radius p can be calculated through

(f/Z + /2)3/2
_ x Ty
- ’2 144 4 4 ’2 144
KL= 20055+

w and fi7 are the second-order derivatives. A careful reader may have noticed

o (3-13)

4
xx?

where

!Curvature radius is the reciprocal of curvature.
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that the curvature radius p may be negative or positive. In fact, the sign of p determines
whether the local surface of particle is convex or concave along the normal vector defined in

Eq. (3-4):

e A positive curvature radius indicates the particle at this point has a convex surface along

the normal vector;
¢ A negative curvature radius indicates a concave surface along the normal vector.

The calculation for the curvature radius p requires the second-order derivatives of the
cylinder’s surface function. Thus, the method based on VCRM for the scattering by cylinders
is currently restricted to cylinders of smooth surface.

Besides the sudden change at refraction or reflection, a converging or diverging wave-
front is subjected to gradual variation in homogeneous medium. For a wavefront of curvature

radius R, after a propagation distance d, its curvature radius becomes
R =R+d (3-14)

Here a positive curvature is attributed to a diverging wavefront. Fig. 3.4 illustrates the
gradual variation of a converging wavefront (R < 0) when propagating in homogeneous

medium. After passing the point O, it is transformed into a diverging wavefront with R > 0.

v
=

d

Fig 3.4 Schematic diagram of the incremental variation of wavefront in homogeneous medium.

To give readers a better understanding of Eq. (3-11) and Eq. (3-14), here we take a
circular cylinder as an example. As shown in Fig. 3.5, an incident ray pencil of planar
wavefront is incident on the cylinder at W,. The radius of the circular cylinder a is 50 pm.
For a circular cylinder or a sphere, the curvature radius p at each point of surface is equal
to the radius a. The wavelength of incident light A = 0.6328 wm, and the relative refractive

index m = 1.33. The impact factor of the incident ray is 0.94, which marks the position of
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Inci. ray

Fig 3.5 Variation of the wavefront of a ray pencil refracted by a circular cylinder.

the incident ray (for a ray of central incidence, the impact factor is 0; while for the grazing
ray, it equals 1). The incident ray is then refracted by the circular cylinder at W, and W;.
We can see that the wave-front shape experiences sudden changes precisely at the refraction.
Besides, the wavefront undergoes incremental change in the part from W, to W; and in the
part from W, to the far field.

For the cylindrical wavefronts illustrated in Fig. 3.4, suppose the light intensity at the
wavefront of curvature radius R is /, while the light intensity at the wavefront of curvature
radius R’ is I’. According to the conservation of energy, the energy fluxes passing through

these two wavefronts are equal, indicating I’|R’| = I|R|. Thus, we have
R
I'=|—|1 3-15
=z (3-15)

From Egs. (3-11)-(3-13), the curvature radii of the refracted and the reflected wave-
fronts at each interaction with a cylinder of any smooth surface can be calculated. The
curvature radius of the refracted wavefront at the interaction point W; (j = 0,1,2,3...) is

denoted as Ry), while the curvature radius of the reflected wavefront at W; as R;r).

For an externally reflected ray (p = 0) of curvature radius Rg), the light intensity at the
reflection point is calculated as Iy 7y, where Iy is the intensity of the incident plane wave
for polarization X (X =L or ||). After a distance of r from the exit point W, its intensity can

be calculated according to Eq. (3-15) as

R(r )

——| Ixorxo’ (3-16)

JX [7—0 7
5 > r

For a transmitted ray (p = 1), the incident wavefront have been through two refrac-

tions at Wy and W, at which the curvature radii of the refracted wavefronts are Rg) and R(lt),
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respectively. Besides the sudden changes at refractions, the wavefront is subjected to incre-
mental change from W, to W, and from W, to the observation point. Thus, the light intensity

of this p = 1 ray at the observation point is given by

® 0
RO Rl

0] (1)
Ry +soR," +r

Ixpe1, = Ixotyofy. (3-17)

where s is the geometric length from W, to Wi, and r is the geometric length from the exit

point W, to the observation point.

For a scattered ray of p = 2, the incident wavefront has been through a refraction at W,
an internal reflection at W and a refraction at W, (W, is the exit point). The curvature radii of
the refracted wavefront at W, is denoted as Rg), the reflected wavefront at W, as R(lr) and the
refracted wavefront at W, as R(zt) . Besides these sudden changes, the wavefront is subjected
to incremental change from W, to Wy, from W, to W, and from W, to the observation point.

Thus, the light intensity of this p = 2 ray at the observation point is given by

® % 0
RO Rl R2

Rg) + 5o R(lr) + 5 R(zt) +r

2 2 2
IX,pzz’r = IX,OtX,OrX,]tX,Z (3-18)

where s, is the geometric length from W, to W,.

For a scattered ray of p > 2, the incident wavefront has been through a refraction at W,
p — 1 times of internal reflections respectively at W;, W,, ..., W,_; and an eventual refraction
at the exit point W,,. By taking into account both the sudden changes at the reflections and
refractions and the incremental changes along the ray paths, the light intensity of this p-order

ray at the observation point is given by

® r (r) ) 0)
Iy, = (fo (fl (52 (r)RP‘l (f” IxofxorxiTa Ty pily, (3-19)
Ry +soR|" + 51 Ry, + 5, R1H+sp_1Rp +r A | ’

where s; is the geometric length from W;to W;,; (=0, 1, ..., p—1), and r is the geometric

length from the exit point W, to the observation point.

The whole effect of wave-front variation on the light intensity of a p-order scattered

ray, calculated at a distance r from the exit point, is depicted by the divergence factor D, ,,

with
R b=0
Rg) +rl
Dy = o p-1 (r) 0 (5-20)
Ry (]—I R, ] R, sl
Rg) +50  je1 R.(/.') +5; Rg) +r
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Thus, the p-order scattered intensity given in Eq. (3-19) can be expressed as
IX,p,r = Dp,rIX,()S?(,p (3-21)

where &y, is the variation of amplitude due to refraction and reflection which has been
discussed in Eq. (3-10). The subscript r indicates the light intensity is calculated at a distance

r from the exit point.

In the far-field case, i.e. r — oo, the divergence factor for a p-order scattered ray is

calculated as
| RV, p=0

(1) p-1 (r)
Ro | | J 0)
(0 (r) RP
R+ s Rj +5;

J=1

(3-22)

, p=>1

The dimensionless intensity of a light ray scattered by an infinite cylinder is then calculated

in the far field as
T
Ix, = EkD,,g;p (3-23)

A constant /2 is multiplied so that the dimensionless scattered intensity calculated by GOA
and VCRM is consistent with that by LMT [147].

Then, the far-field amplitude for a p-order light ray of polarization X scattered by an

Ex, = |ex,| \JkD,m/2 (3-24)

When the refractive index of the cylinder has an imaginary part m;, an attenuation factor

infinite cylinder is obtained as

exp(—km; Z;’:—& s;) is to be multiplied, where 25.:(} s is the total geometric path passed inside

the cylinder.

3.2.3 Phase

When the cylinder is illuminated by light rays from a coherent light source, the phase
of each scattered ray should be calculated correctly to account for the interference effect.

Here, the time factor is chosen as exp(iwt), which is consistent with that in [1].

(1) Phase differences of the incident rays

When a shaped beam is concerned, the phases of the incident rays relative to a given
plane (beam waist for example) are different. The calculation for the phase differences

within the incident rays will be addressed in Chapter 6. In this chapter, the incident plane
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wave is under consideration, and the phase differences among the incident rays are zero.

(2) Phase shift due to optical path ¢, op

Those scattered rays emerging in the same direction will interfere with each other in
the far field or on the focal plane of a focal lens. Since they may have undergone different
optical paths, the corresponding phase shift ¢, op differs between them. The optical path of a
scattered ray is calculated by setting a reference ray. The reference ray arrives at the center of
the cylinder in the direction of the incident ray and then emerges out in the same direction as
the concerned scattered ray, as if there is no particle. Fig. 3.6 shows the schematic diagram
in computing the optical path of a p = 1 ray relative to its reference ray. Defined in this way,

the reference ray is consistent for all those scattered rays propagating in the same direction.

Fig 3.6 Schematic diagram in counting the optical path of a p = 1 ray relative to the reference ray.

In the scattering of plane wave by a spherical particle or a circular cylinder, the optical
path can be calculated analytically as did in Chapter 2. For a cylinder of any cross section,

an elegant formula is proposed here to calculate the phase shift due to optical path:
2r &
bpor =" |oit o, —m s (3-25)
=0

— > A —_—> A . . E “ .
where o; = WyO-k; and o, = OW,,-k,, as shown in Fig. 3.6. The k; and k, are the normalized
wave vectors of the incident ray l?l- at Wy and the emergent ray I?p at W), respectively. s; is
the geometric length from the interaction point W; to W;,, and the sum Z;’;& s j represents

the total geometric length experienced inside the cylinder.

(3) Phase shifts at reflection

According to the Fresnel formulas shown in Eq. (3-9), ry may be negative, indicating
the reflection may introduce a phase shift of 7. Besides, when total reflection occurs, the
normal component of the refracted wave vector in Eq. (3-3) becomes imaginary, i.e. KD =

—i+Jk:* — k?. Consequently, ry is a complex number of unitary modulus and argument dy
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given by
5, =2 arctan( k2 — k0% - kzZ/kz(f))

8, = 2 arctan ( k2 = k% = 2k /M,Z)

where k; and k; are the wave numbers of the incident wave and the refracted wave, respec-

(3-26)

tively. The explanation to kf,i) and M, can be found in Eq. (3-9).

The total phase shift of a p-order scattered ray due to reflection is then the argument
(phase) of ex,.

¢x,r = arg(ex,p) (3-27)

(4) Phase shift due to focal lines

A converging wave experiences a phase shift as it passes through its focus, a phe-
nomenon known as the Gouy shift [144—146]. More explicitly, the phase advances by 7/2
at the passage of each focal line or by & at a focal point (two crossing focal lines). In fact,
the type A focal lines defined in [1] can be equivalently determined according to the conver-
gence of wavefront in the meridional plane of sphere, while the type B focal lines according
to the convergence of wavefront in the direction perpendicular to the meridional plane. In
GOA, it is a daunting task to address the focal lines, especially when a nonspherical particle
is involved. But in VCRM, the curvature of wavefront is integrated as an intrinsic proper-
ty of a light ray, which allows us to determine directly whether and where a focal line is

encountered.

The curvature radius of a light ray refracted or reflected by an infinite cylinder of arbi-
trarily smooth surface is calculated by Eq. (3-11). If the curvature radius is changed from
negative to positive between two successive interaction points or between the exit point and
infinity, it indicates that the wavefront has undergone a conversion from converging to di-
verging. Then, we can infer that a focal line has been encountered. Fig. 3.7 illustrates the
focal line of a cylindrical wavefront, at which the wavefront is transformed from converging

to diverging.

By counting the total number N of the focal lines that a light ray has encountered in its

interaction with the cylinder, the corresponding phase shift is therefore

¢prL = Nm/2 (3-28)

Finally, the complex amplitude for a p-order scattered ray of polarization X is obtained
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iverging

Fig 3.7 The focal line for a converging wave of cylindrical wavefront.

as

Ex, = Ex,exp [i (¢X,r + ¢pop + ¢p,FL)] (3-29)

The diffraction component is calculated according to Eq. (2-24) with replacement of

the radius of circular cylinder by the half width of the illuminated part.

3.3 Description of the scatterer

The method described in Sec. 3.2 is applicable to the scattering of plane wave by an
infinite cylinder of arbitrarily smooth cross section. Here, it is applied to solving the light
scattering by a composite elliptical cylinder (CEC) [110, 111]. In the Cartesian coordinate
system as shown in Fig. 3.8, the upper part (y > 0) of a CEC is defined by:

x/a* +y* /bt =1 (3-30)

while the lower part (y < 0) by
xX*la* +y* /b =1 (3-31)

where b; and b, are the semi-axes along y axis of the upper and the lower parts, respectively.
a is the common semi-axis in x direction. The direction of the incident wave makes an angle
6, with respect to the x axis, while the scattering angle 6 is measured from the x axis. The

angles are positive for counterclockwise rotations, while negative for clockwise rotations.

At (x,y), the curvature radius of the cylinder is given by
_o2g2( 2,4 242
p—ab(x/a +y/b) (3-32)

where b equals by when y > 0 or b, when y < 0.
The reason for choosing such a model is that, by changing the geometric parameters «,
b, or b,, a CEC may take a variety of cross sections ranging from simple to highly-deformed.

A circular cylinder and an elliptical cylinder are among the special cases. Moreover, such
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Fig 3.8 Geometry of the composite elliptical cylinder (CEC).

a shape, when extended in the three-dimensional form, is a better model for a real rain-
drop/droplet than a sphere or a spheroid [5-8].

Suppose the wave vector originating from the interaction point W), is (k,, k), its next
interaction with the cylinder occurs at W), the coordinates of which can be obtained by
introducing the distance factor 7, as have been given in Eq. (3-7). Two cases are involved
according to the locations of the two successive interactions.

(1). The two successive interactions are on the same (upper or lower) part. (x,,y,) and

(Xp+1,Yp+1) satisfy the same equation, Eq. (3-30) or Eq. (3-31), and 7 is solved as
n=-2(bkex, + d’kyy,) / (DK + k) (3-33)

where b = b, if they are on the upper part, otherwise b = b,.

(2). The two successive interactions occur on different parts: from upper to the lower

part; or from lower to the upper part. In the former situation, 7 is given as

n=(-B+ VB2-44C)/ (24) (3-34)
with
ack b
a2 b2

(3-35)

In the latter situation, the parameter 7 is calculated in the same way except exchanging b,



3.4 Results and discussion 49

and b,.
Then, the position of next interaction is determined by substituting the value of 7 into
Eq. (3-7).

3.4 Results and discussion

Based on the method described above, a code has been written for calculating the scat-
tered intensity of plane wave by CEC. The incident plane wave (4 = 0.6328 um) is simulated
by 4000 discrete parallel rays of equal phase and equal amplitude. These light rays propa-
gate in the xy plane and make an incident angle 6, with the x axis. After the incidence, the
light rays are subjected to continual refractions and reflections by the cylinder. Here, only
the scattered rays of orders p = 0, 1, 2,...7 participate in the calculation considering that a
higher-order ray has much lower intensity.

Since there is no other method available for calculating the scattered intensity of light
by a cylinder of deformed transversal shape and transversal size much larger than the wave-
length, the proposed method and the code are validated by comparing the results with exist-
ing theories for two special cases.

Firstly, the CEC is degenerated into a circular cylinder by setting by = b, = a. The
calculated scattering diagram is compared with the results of LMT [1, 2], DSE [165] and
GOA [1] as shown in Fig. 3.9. For VCRM, GOA and DSE, the scattered light of orders
p < 7 are taken into account. The relative refractive index m is 1.333. The incident angle 6,
equals 0. The electric vector is polarized along the main axis of the cylinder (z axis), namely,
the perpendicular polarization is concerned.

One can see that, when the CEC takes a circular cross section, the calculated result
of VCRM is identical to that of the GOA. Moreover, the result of VCRM agrees well with
those of the LMT and the DSE. The notable discrepancy is found in the immediate vicinity
of caustics, for example, at the first- and the second-order rainbow angles. Another discrep-
ancy, perceivable in the regions where 80° < 8 < 110° and where § — 180°, is caused by
surface waves. These discrepancies arise from the limitation of ray model [6, 55, 138, 166]
rather than the calculation method itself.

Secondly, the CEC is degenerated into an elliptical cylinder by setting by = b, = b
and b # a. The calculated scattering diagram is compared in Fig. 3.10 with that of a long
ellipsoid [139] of the same cross section in the xy plane, but elongated along z axis such that
the ellipsoid approximates the elliptical cylinder. m = 1.333 and 6, = 0°. The perpendicular

polarization is concerned here. The differences between the two curves are relatively small,
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Fig 3.9 Comparison of VCRM with LMT, DSE and GOA for the scattered intensity of plane wave by
a circular cylinder. The curves for DSE, LMT and GOA have been offset respectively by 107, 1072 and

10? for clarity.
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Fig 3.10 Comparison of the calculated scattering diagram of an elliptical cylinder (b, = b, = b = 50 pm,
a = 1.2b) with that of a long ellipsoid (a = 60 um, b = 50 wm, ¢ = 5000 um). For clarity, diffraction is
not included.
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but it is worth considering the reasons for these differences. Unlike an infinite cylinder,
the curvature of the elongated ellipsoid along z axis is never zero. This non-zero curvature
causes convergence/divergence of wavefront and consequently introduces a shift in phase.
Besides, the formulas of divergence factor (Eq. (3-22)) and amplitude (Eq. (3-24)) for
a cylinder are different from those for an ellipsoid (see Egs. (2) and (3) in [139]), thus

affecting the magnitude.

The scattering characteristics of light by CEC which has deformed cross section will
be given and discussed in the following parts of this chapter. By a deformed cylinder, we

mean a cylinder with cross section being neither circular nor elliptical.

3.4.1 Scattering patterns for diverse deformations

The cylinder is deformed such that its cross section approximates the shape of a natural
raindrop [5]. The relation between such a deformed cylinder and a raindrop is much like that
between a circular cylinder and a sphere. The size of a raindrop is described by the radius

of the equivalent volume sphere ry, which is related to a, b; and b, through [8]

by, b & &
3 22 2= A2 422 B,
ro—a(2+2) a(2+2) (3-36)
The axis ratios & and &, are defined respectively by
b b
f=—, &= (3-37)
a a

A natural raindrop of size larger than 0.4 mm cannot be treated as a spherical particle
[6], and the shape deformation increases as the raindrop continues to grow. The two axis

ratios &1 and &, as functions of r( are given by [8]:

-1
fres 2(1 + /i r(()f2+f3"°+f4~r8))
(3-38)

2
fl—§2=f5'(m—1)"’0'exp(—f6' \/r_o)

with the coefficients f; = 0.08001, f, = 2.414, f; = —0.2911, f, = 0.009831, f5 = 13.44 and
f6 = 2.508. The unit of the equivalent radius ry is millimeter. Fig. 3.11 shows the calculated
&) and &, for different raindrop sizes. For a droplet of small size, the two axis ratios &; and &,
tend to be 1, indicating the droplet approximates a spherical particle. As the size of raindrop

becomes larger, the deformation from a spherical particle becomes more and more evident.

In this part, the effect of the transversal deformation of cylinder on its scattering field
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Fig 3.11 The variation of the axis ratios &; (b;/a) with the equivalent radius 7.

is investigated.

Fig. 3.12 shows the calculated results for the intensity distribution of the scattering
field by five CECs of diverse deformations. Here, the perpendicular polarization is con-
cerned. The direction of the incident wave deviates from the x axis by —20°, i.e. the incident
angle 6, equals —20°. The relative refractive index m is 1.333; and the wavelength of the
incident wave A is 0.6328 um. These five CECs are deformed such that their cross sections
approximate the shapes of a raindrop at different sizes. The equivalent radius of the raindrop
ro ranges from 0.5 mm to 1.5 mm, while the corresponding geometric parameters a, b; and
b, of the CECs are tabulated in Table 3.1. The axis ratios b; /a and b,/a are shown in the in-
set of Fig. 3.12. As ry ranges from 0.5 mm to 1.5 mm, the size parameter 27r/A varies from
approximately 5000 to 14900, far beyond the capabilities of the existing electromagnetic
approaches.

Table 3.1 Geometric parameters of the CEC at different equivalent radius r( (unit: mm)
ro 050 075 1.00 1.25 1.50
a 0503 0.760 1.026 1.301 1.585
by 0.499 0.748 0.995 1.238 1.477
b, 0.490 0.711 0.905 1.070 1.209

From Fig. 3.12, one can see that the scattering field has a distinct variation as the cylin-
der is deformed differently. One remarkable phenomenon is the shift of the first-order rain-
bow in the downward scattering region (6 < 0°), whose scattering angle 6 is changed by 16.4°
as the equivalent radius ry is increased from 0.5 mm to 1.25 mm. The sensitivity indicates

that the first-order rainbows from two CECs of diverse deformations have distinctly-different



3.4 Results and discussion 53

4 N
o
(] b/a bya
150 0931 0762
g j
= "il "y I‘I” 5
g ‘ - 125 0952 0823 WS
e
E i -
8 100 0970 0832 WM&
< ]
0.75 0984 0935 |||Z-
=3
d : |
ity FAinbow 0.50 0.993 0.974
-180 -150 -120 90 -60 -30 0 30 60 90 120 150 180
\_ Scattering angle 0 [deg.] Y,

Fig 3.12 The scattered intensity of plane wave by five CECs of diverse deformations.

scattering angles. This adds to the evidence that the twinned rainbows in nature arise from
the scattering by two groups of raindrops which have different sizes and at least one of them
is nonspherical [6]. Besides, it is found that even a single deformed CEC could bring forth
twinned second-order rainbows as shown in Fig. 3.12 when ry = 1.50 mm, in which case

the cross section of CEC has a considerable deformation (b;/a = 0.931, b,/a = 0.762).

3.4.2 Scattering patterns for varied refractive indices

Besides the deformation of the transversal shape, the refractive index of CEC is another
factor worthy of consideration. Here, the medium of CEC is assumed to be pure water. The
refractive indices of pure water for 4 = 0.6328 pum at different temperatures are tabulated
[167] in Table 3.2. The intensity distribution of the scattering field by a CEC at these tem-
peratures are presented in Fig. 3.13. The perpendicular polarization is concerned here. The
cross section of the CEC takes the shape of a raindrop when ry = 0.75 mm (a = 0.760 mm,
bi/a = 0.984 and b,/a = 0.935). The incident angle 6, is equal to —20° (same with that in
Fig. 3.12).

Table 3.2 Refractive indices of pure water for A = 0.6328um at different temperatures 7' (°C)

T 5 10 15 20 25 30
m 1.3330 1.3328 1.3325 1.3321 1.3316 1.3311

From Fig. 3.13, one can see that as the temperature of water is increased from 5°C to
30°C, the scattering field is subjected only to a slight change. This is due to the fact that
the refractive index m is altered only by 0.0019 as given in Table 3.2. Without doubt, even

a small variation in m has an impact on the scattering pattern because the refractive index
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Fig 3.13 The scattering diagrams of a CEC as the temperature 7 goes up from 5°C to 30°C. The cross
section of the CEC takes the shape of a raindrop of equivalent radius 0.75 mm. For clarity, the curves for
T = 10°C, 15°C,...and 30°C have been shifted by 10?, 10*,...and 10'°, respectively.

affects directly the directions and the phases of the scattered rays. Fig. 3.14 is the zoomed
view of Fig. 3.13, showing the detail for the variation of the first-order rainbow in the region
where 6 = [-166.5°, —-163.2°]. We can see that the first-order rainbow angle is shifted, but

only by 0.3°, as the temperature of water is increased by 25°C.
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Fig 3.14 Detail for the variation of the first-order rainbow as the temperature goes up.

3.4.3 Scattering patterns for different incident angles

Due to the asymmetric cross section of a deformed CEC, the scattered light is distribut-

ed differently if the direction of incident wave is changed. Thus, the scattering patterns for
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different incident angles are also needed for a full understanding of the scattering character-
istics of light by a cylinder of deformed cross section.
For a CEC of fixed cross section and refractive index, the variation of its scattering field

with the direction of incident wave is shown in Fig. 3.15. The CEC used here is of the same
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Fig 3.15 Variation of the scattering diagram of a CEC as the incident angle 6, varies from —20° to 20°
in steps of 10°. The cross section of the CEC is the same as the one used in Fig. 3.13. m = 1.333.

cross section as the one in Fig. 3.13, while the refractive index m is fixed at 1.333. The
incident angle 6, ranges from —20° to 20° in steps of 10°, which simulate the cases when the
sun has an inclination of +20° relative to the horizontal plane of the concerned raindrops.
Since the scattering angle 6, defined in Fig. 3.8, is measured from the preset x axis, the
scattering diagram has a holistic movement with the incident angle 6, as shown in Fig. 3.15.
But, unlike a circular cylinder, the scattering field by a CEC of deformed cross section is
altered, if we go into detail, for different incident angles. For example, in the downward
scattering regions (6 < 0), the fifth-order rainbow has rather low intensity when 6, = —20°,
while it is submerged by the second-order rainbow when 6, = —10°, but it becomes relatively
clear when 6, = 10° and 20°.

Fig. 3.16 shows the detail for the scattering angles of the first-order, the second-order
and the fifth-order rainbows. The incident angle 6, varies from —20° to 20° in steps of 2°. For
comparison, the rainbow angles of a circular cylinder are also presented. The circular cylin-
der has a radius of 0.75 mm (the equivalent radius of the CEC), while the other parameters
are same with the CEC.

One can see that the angular width between the first-order and the second-order rain-
bows (a region known as the Alexander’s dark band) for the CEC is much wider than that for

the circular cylinder. It indicates that a natural raindrop has a wider Alexander’s dark band
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than a spherical particle of equivalent radius. This is in accordance with the prediction made
by Sadeghi et al. [6]. Besides, as shown in Fig. 3.16(b), the fifth-order rainbow formed
by the CEC might separate from the second-order rainbow at certain incident angles, which
makes it possible to observe the fifth-order rainbow. But for the circular cylinder, the fifth-
order rainbow is not within the Alexander’s dark band and is overwhelmed by the second-
order rainbow, whose intensity is much greater. This gives insight into the conditions under
which one might be able to observe a natural fifth-order rainbow [168].

In Sec. 3.4, the scattering patterns of the CECs whose cross sections take the shapes of
natural raindrops are calculated in the whole scattering region. The effects of shape defor-
mation, refractive index and the direction of incident wave on the scattering characteristics,

especially on the rainbows, are quantitatively analyzed. It has been found that

e The first-order rainbows formed by CECs of diverse deformations are distinctly different
in scattering angle, which may explain why the formation of the twinned rainbows in

nature requires two groups of raindrops of different shapes.

e The variation of atmospheric temperature (5°C ~ 30°C) only has a slight effect on the

rainbow position.

e The Alexander’s dark band of the CEC whose cross section is deformed like a natural

raindrop is wider than that of a circular cylinder.

e The elevation angle of the sun affects the emergence or submergence of the fifth-order

rainbow.

Although these phenomena are found in the scattering patterns of deformed cylinders, they
are capable of explaining certain natural phenomena produced by deformed raindrops. This
is because the relation between a deformed CEC and a nonspherical raindrop in nature is

much like the relation between a circular cylinder and a spherical particle.

3.5 Summary

This chapter reported the extension of VCRM allowing to account, in the high-frequency
limit, for the direction, polarization, curvature of wavefront, amplitude, phase and scattered
intensity of the light rays interacting with an infinite cylinder of arbitrary while smooth
cross section. Based on the proposed method, a numerical study has been performed on the

scattering patterns of composite elliptical cylinders (CECs), whose cross sections can take
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various shapes ranging from circular, elliptical to highly-deformed. The effects of shape
deformation, refractive index and the direction of incident wave on the scattering patterns
of the CECs whose cross sections approximate the shapes of natural raindrops were inves-
tigated and quantitatively analyzed, which provided insight into how these factors affect the
appearance of a natural rainbow.

Being flexible and numerically efficient (a full scattering diagram is obtained in few
seconds on a laptop computer (Intel 17-8550U @ 1.80GHz)), the proposed method is thought
to have important applications in calculating and analyzing the scattering characteristics of

light by cylindrical objects of cross sections ranging from simple to complex.
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Chapter 4 Calculation method for the 3D light scattering by a large
nonspherical particle

In the preceding chapter, the light scattering by an infinite cylinder of arbitrarily smooth
cross section under normal incidence was solved in the framework of VCRM, where light
rays stayed in a single plane and the scattering was just a two-dimensional (2D) problem. In
this chapter, an algorithm based on VCRM is proposed to calculate the three-dimensional

(3D) scattered intensity by a large nonspherical particle of any smooth surface.

4.1 Overview of the difficulties in solving 3D scattered intensity

Once the scattered rays are spread into the 3D space, several difficulties are encountered

in the calculation for the scattered intensity.

1. The first difficulty is the tedious computation in ray tracing. The conventional GOA
method which tries to compute the incident and refracted angles may already be frustrat-
ing here. But with VCRM, where the directions of light rays are described by their wave

vectors, one can carry out the ray tracing in 3D space much more easily.

2. The second one is the calculation for the local curvatures of the concerned nonspherical
particle at each interaction point; and the following calculation for the principal curva-

tures and principal directions of the wavefront after refraction or reflection.

3. The third difficulty is to deal with cross polarization effect, considering that the polariza-

tion state is usually varied at different points of interaction.
4. The fourth one is to compute the phase shifts when a light ray propagates in 3D space.

5. The last and the bottle-neck one is to account for the interference effect, since the light

rays may be scattered into any direction and may be even folded in the 3D space.

These problems encountered in the 3D light scattering by large nonspherical particles

will be addressed one by one in the following parts of this chapter.

4.2 Ray tracing in 3D scattering

In Sec. 3.2.1, the tracing for the light rays propagating within a single plane was de-

scribed, where the plane of incidence X;,., consisting of the wave vectors and the normal
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vector, was consistent at all points of interaction. As soon as a 3D scattering problem is
involved, the light rays are no longer in the same plane and the plane of incidence X;,. might
be altered for two successive points of interaction. We need therefore to determine the %;,.

firstly, so that the vectorial Snell’s law could be applied.

- D

inc

o )

Fig 4.1 Local coordinate system (7, i1, €, ) for describing the incident wave vector IE: the reflected k_; and
the refracted k_;

At one interaction, the wave vector of the incident ray is denoted as k; and the unit
normal vector of the dioptric surface is calculated as 7 (the formula for calculating the normal
vector will be given in next section). The Z;,. at this point is the plane containing the k; and

i as shown in Fig. 4.1. The unit vector perpendicular to X;,. is defined by

1
>

ixn
X

- 4-1)
ki

e, =

>

Then, the unit vector 7 tangent to the dioptric surface and located in X;,. is determined by:
T=nxe, (4-2)

The normal component and the tangent component of the incident wave vector, &, and
k., are then obtained by the inner products k; -7 and k; - 7, respectively. According to
Egs. (3-3) and (3-2), the normal component and the tangent component of the refracted or
reflected wave vector can be acquired.

In numerical implementation, the expression of a wave vector from the local coordinate
system (7,71, €, ) to the Cartesian coordinate system can be transformed easily. For example,
the refracted wave vector is given in (%, ¥, ) by

K1 1697, + kY,

B,
ke = |k | = K7, + K, (4-3)
KOl K, + kn,
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where n,, n, and n; are the three components of the unit normal vector 7 along %, y and Z,

respectively; while 7,, 7, and 7, the three components of the unit tangent vector 7.

A light ray propagates straightforward in a homogeneous medium. The coordinates of

two successive interaction points (X, y,, Zp) and (X,+1, y,+1, Zp+1) are related by

Xp+l Xp k,
Yp+1| = |Vp +n- ky (4'4)
Zp+1 Zp kZ

where (k,, ky, k;) is the wave vector between the two interactions. 7 is called the distance

factor (n > 0).

Suppose that the surface function of particle is f(x,y,z) = 0. The distance factor n

between two successive points can be solved by equation

f(xp + ka, Ypt nky, Zp t+ nkz) - f(xp’ Yps Zp) =0 (4'5)

Thus, the search for the position of the next interaction is now boiled down to solving this
one-variable equation. It should be noted that there may be several solutions for 7, and the
minimum positive one corresponds to the actual position of the next interaction. The reason
for this has been discussed in Sec. 3.2.1. Then, the coordinates of the next interaction point

are obtained by substituting the value of 7 into Eq. (4-4).

Through the procedure described above, the coordinates of each interaction point and
the direction of each scattered ray can be calculated step by step. The following parts will

address the amplitude and the phase.

4.3 Curvature of wavefront

To characterize the divergence or convergence of wavefront, the local curvature of
wavefront is integrated as a new property of a light ray in VCRM. In a general case, a
local wavefront can be any shape, dependent on the values of its two principal curvatures
and {,. A planar wavefront ({; = 0 and {, = 0), a cylindrical wavefront ({; = 0 or {; = 0) as

discussed in Chapter 3 and a spherical wavefront ({; = {, # 0) are among the special cases.

Fig. 4.2 illustrates a local wavefront whose principal curvature radii are R, and R, (re-
ciprocals of the principal curvatures, Ry = 1/{; and R, = 1/,). The two tangent directions
ity and i1, along which the wavefront has the minimum and the maximum curvatures (prin-
cipal curvatures {; and ¢{3), are called the principal directions of wavefront. The direction of

the representing light ray is denoted as K (wave vector). The two principal directions #; and
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i, lie in the tangent plane of wavefront and are orthogonal to each other, satisfying

iy X iy =

(4-6)

v
=

Fig 4.2 Schematic diagram of a local wavefront.

In the free propagation within a homogeneous medium, the curvature radii of a con-
verging or diverging wavefront are changed gradually with the propagation distance. After

a distance d, the curvature radii can be directly calculated according to
R.=R;j+d 4-7)

where j = 1 or 2. A positive curvature is attributed to a diverging wavefront, as illustrated

in Fig. 3.4.

converging >| saddle >| diverging >

Fig 4.3 Evolution of a local wavefront within a homogeneous medium.

Fig. 4.3 shows an example, in the framework of VCRM, for a light ray of converging

wavefront propagating in a homogeneous medium. At O, the ray has a converging wavefront
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with Ry < 0and R, < 0. F; and F, are two points of the focal lines in the planes (i1, l?) and
(i1y, 1?), respectively. If F'; # F,, the wavefront is astigmatic and will have a saddle surface
between F; and F,, where R| < 0 but R, > 0. After passing I, and F, at the point O for
example, the local wavefront becomes diverging with Ri > 0 and R}, > 0. As to the two
principal directions i; and ii,, they have no change in a homogeneous medium.

Besides the gradual variation in the free propagation within a homogeneous medium,
the wavefront is subjected to a sudden change upon being refracted or reflected. For ex-
ample, when a planar wavefront is refracted or reflected by a curved interface, it may be
converged or diverged dependent on the two principal curvatures of the particle surface and
the relative refractive index. Fig. 4.4 illustrates the sudden change of wavefront at a refrac-

tion by the interface of particle.

Refracted

Incident Particle surface

-

Fig 4.4 Schematic diagram of the sudden change of wavefront caused by refraction.

To calculate the variation of wavefront at a refraction or at a reflection, the shape infor-
mation of the particle, more precisely, the principal curvatures and the principal directions
of the particle’s local surface at the refraction or reflection are required. The computation
for the principal curvatures and the principal directions of a 3D surface involves the knowl-
edge of Differential Geometry. This chapter presents the calculation method for 3D parti-
cles/objects of parameterized surface X = X(a, ). For those 3D particles/objects of implicit
surface f(x,y,z) = 0, the calculation method will be presented in the following Chapter 6,
where the iso-phase surface of elliptical Gaussian beam has an implicit function.

Let X = X(«a,B) be the parametric expression of particle surface, where X is a vector-
valued function of the parameters « and 3'. More knowledge about parameterized surface

can be found in Differential Geometry books and literatures, such as [169-171]. The first-

'For example, the surface function (x/a)? + (y/b)* + (z/c)* = 1 for an ellipsoid can be expressed by two parameters a
and B8 as X(«,B) = (acosacosB,bcosasinf, csina), with —r/2 <@ < /2 and 0 < 8 < 2n.
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order derivatives of X are calculated as X, = 0X/0a and X[’; = 0X/0B, while the second-
order derivatives are X/, = 9*X/da’, X, = 8°X/dadp and X, = °X/9*. The X, and X,
are two vectors tangent to the particle surface, indicating that the unit vector normal to the
particle surface can be obtained by

X, x X;

— 4-8
X, X X, ()

n=

The coefficients of the first fundamental form [169-171] (E, F, G) are calculated by

E=X, X,
F=X, X, (4-9)
G=X, X,

while the coeflicients of the second fundamental form (L, M, N) by

L=X}, f
M =X i (4-10)
N=Xy i

Then, the two principal curvatures and the corresponding principal directions of the
particle surface can be found in the Weingarten equations in matrix form [172]

1 MF -LG NF -MG

Jweingarten = EG — F2 |LF = ME MF - NE (4_11)

The eigenvalues of Jyeingarren are —1/p; and —1/p,, where 1/p; and 1/p, are the two prin-
cipal curvatures of the particle surface (p; and p, are the principal curvature radii). The
eigenvectors of Jyeingariens V1 and ¥, correspond to the principal directions of the particle
surface. The curvature matrix of the particle surface is then obtained as

_|1/p1 0O )
C—[ 0 1/p2] (4-12)

A careful reader may have noticed that this calculation method for the principal cur-
vatures and principal directions of particle surface requires the second-order derivatives of
particle surface. It is because of this requirement that the current VCRM is restricted to

particles of smooth surface.

It should be noted that the two principal directions V; = Wb, vg)] and ¥, = V2, vg) ]

are two orthogonal vectors in the space expanded by X, and Xj. They can be transformed
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into the Cartesian coordinate system (%, ¥, Z) through:

(4-13)

171 (I)X/ +v(1)X/
Vy = va)X’ +v(2)X’

Their normalized vectors are denoted as ¥, and ¥, respectively.

From the calculation above, the curvature matrix C (whose diagonal elements are the
two principal curvatures 1/p, and 1/p;,) and the two principal directions »; and ¥, at a local
point of particle surface are obtained.

On the other hand, suppose that the two principal curvature radii of the incident wave-
front are respectively R(li) and R(’) and the corresponding principal directions are i A(’) and it A(’)

The curvature matrix of the incident wavefront is denoted as

1/RY 0
Qi = [ ! (i)] (4-14)
0 1/R5
The projection matrix between (u(ll), it(z’)) and (91, ¥,) is defined by [164]
(l) PPN () IS
0, = [ bt Lf(lo ‘:z] (4-15)
Uy -vi Uy - Va

To describe the wavefront of the refracted ray, an orthogonal coordinate system (i, A", ! ))
in the tangent plane of the refracted wavefront is needed. For simplicity, it is simply set as

the ¢, which has already been defined in Eq. (4-1), while i A(’) is defined by

5
e, Xk
a0 = E Xk (4-16)
e, Xk,
The projection matrix between (&, 2) and (9, ,) is
A o A(f) PN
u,” -vVqi Vo
0, = A(lt) ~ A(t) ~ 4-17)
iy - D1 -_

Then, the curvature matrix of the refracted wavefront @, is related to that of the incident

wavefront Q; by [46, 164, 173]:
0] 0,0, = kO] 00, + (K - k") C (4-18)

where k; and k, are the wave numbers of incident and refracted waves, respectively. k.’ and
k" are the normal components of the incident and refracted wave vectors, respectively. The
letter 7" indicates the transposition of matrix.

The curvature matrix Q, contains the information about the shape of the wavefront after
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the refraction. The eigenvalues of Q; are the two principal curvatures 1 /R(lt) and 1/ R(zt) of the
refracted wavefront, while the eigenvectors are the corresponding principal directions. It
should be noted that the eigenvectors of Q, are two vectors in the local coordinate system
(it(f), ﬁ(zt)), and they can be transformed into the (&, y, Z) system in the same way as did in Eq.
(4-13). While for the reflected wavefront, its principal curvatures and principal directions

are obtained in the similar way.

After the refraction or reflection, the curvature radii of wavefront are again subjected to
incremental variation as given in Eq. (4-7) when the light ray propagates in a homogenous

medium.

Through the procedure given above, the principal curvatures and principal directions
of the refracted and the reflected wavefronts at each interaction point with a particle of any
smooth surface can be calculated step by step. At the interaction point W; (j = 0,1,2,3...),
the two principal curvature radii of the refracted wavefront are denoted as R(lt’). and R(2”)j, while

J
the principal curvature radii of the reflected wavefront as RY} and R(zr}.

Different from the divergence factor of a cylindrical wavefront as deduced in Sec. 3.2.2,
the calculation for the divergence factor of a general wavefront in 3D scattering involves
two principal curvature radii. For a p-order scattered ray at a distance r from the exit point,
the divergence factor which accounts for the overall variation in light intensity due to the

divergence or convergence of wavefront is given by

(r) p(r)
R1,0R2,0 -0
R+ (RY ’ p=
(R} o+ Ry, +71)
D,,=
(0 p® -1 (r) p(r) () p)

Rl,ORZ,O [lp_[ Rl,jRZ,j ) Rl,pRZ,p > 1

Ry + s0) Ry + 50) Uit R+ 5B+ 5)) ) (RY, + PR + 1)
(4-19)

where s; is the geometric length from W;to W;,; (=0, 1, ..., p—1), and r is the geometric

length from the exit point W, to the observation point.

In the far-field case, i.e. r — oo, the divergence factor for a p-order scattered ray is

calculated as

() p(r) _
|R1,0R2,0 ) p=0
D, = () p(t) -1 (r) p(r) 4-20
p RU\RY, [h RVR ] ogo| s (4-20)
r r 1, 2.p|° -
(RY}O + so)(R;’}O +50) i (R(lj. +s j)(R;j,. +s)) T

The divergence factor D, calculates the variation in light intensity caused by the diver-
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gence or convergence of wavefront for a p-order scattered ray, thus the value /D, is the
corresponding variation in amplitude. In the following part, we will discuss another factor

affecting the amplitude.

4.4 Cross polarization

In the special cases when the incident plane X;,. at each interaction remains unchanged,
the polarization state does not change if the electric vector is either perpendicular or parallel
to Z;,.. The scattering by a sphere [1, 39], by an infinite cylinder under normal incidence
[110, 111, 140, 141, 153, 154], or by a spheroid with end-on incidence [40] is among these
special cases. These configurations where polarization state is preserved have one basic
requirement: the incident plane X, is consistent for different points of interaction so that

the electric vectors are always perpendicular or parallel to the Z;,..

However, in general cases, the incident planes at successive interactions might not co-
incide and consequently the cross polarization occurs [38, 174]. For an electric vector of
vibration direction perpendicular (or parallel) to the X, at one interaction, the vibration
direction at the next interaction where X;,. is different will be no longer perpendicular (or
parallel) to the incident plane. In such cases, a linearly-polarized electric vector will change
its direction of vibration after the refraction or reflection because the Fresnel coefficients for
the perpendicular component and the parallel component are usually different. Furthermore,
if total reflection occurs, after the reflection, the linear polarization becomes elliptical po-
larization since the phase difference between the perpendicular and the parallel components

may reach 7/6 when the relative refractive index is 1/1.3322.

This part covers the solution for the polarization state, namely the vibration direction
and the amplitude of the electric vector, when a light ray is scattered by a 3D nonspherical

particle.

Suppose the Jones vector of the incident electric vector at one interaction is given by

= E e
E = [E;ei ¢2] (4-21)

where the complex amplitudes E;e'’' and E,e'® are the components of the incident electric
vector along é; and é,, respectively, with &, and &, being two orthogonal base vectors within
the vibration plane of the incident elector vector. The phases ¢; and ¢, discussed in this
section only refer to the phase shifts caused by reflection, since those phase shifts due to

optical path and focal lines are independent of polarization.
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To apply the Fresnel formulas, one needs the parallel and perpendicular components of
E; with respect to the incident plane X;,. at this interaction, i.e. the component along the él(‘i)
which is parallel to the %;,., and the component along the ¢, which is perpendicular to ;..

The direction ¢, has been defined in Eq. (4-1), while él(li) can be determined by

($

A _
e =

LS

(4-22)

=~

Q>

1 X
J_X

i

N

(ONPN

Fig 4.5 TIllustration of the two coordinate systems (é;, &) and (é” ,e,) within the vibration plane of

incident electric vector.

In the vibration plane of the incident electric vector as illustrated in Fig. 4.5, the coor-

dinate transformation matrix from (&, &) to (él(li), é,) is calculated by?

(4-23)

(eL-e) (eL-&)

M, l &) -en) (@ éz)l

Then, the Jones vector of the incident electric vector in the coordinate system (él(\i)’ é,)1s

obtained as o
Ee"

W ,ig?
Eles

} = M\E, (4-24)

One noteworthy fact about Eq. (4-24) is that the elements of Jones vector depend on the
choice of the coordinate system. If these elements (complex amplitudes) are known in one
coordinate system, they can be determined in another coordinate system by using coordinate

transformation matrix [175].

According to Fresnel formulas, the Jones vector of the electric vector after refraction

2In the thesis, a bold variable indicates a 2 x 2 matrix, while a variable with arrowhead means a 2D or 3D vector.
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can be obtained by

-

M ,ig)’
E = Eje

El(lt) ei¢|(|[) f 0
E?ewﬁ” 10 1, Eﬁ)eifﬂ”

where J, is the Jones matrix for refraction, and its diagonal elements are the Fresnel refrac-

]:LME (4-25)

tion coeflicients. On the other hand, the Jones vector of the electric vector after reflection is

El(lr)ei¢|(|r) n 0
E0 | 10 1

where J, is the Jones matrix containing the Fresnel coefficients for reflection. The Fresnel

calculated by ,
E I(Ii) 4

E—) _
a E Y) it

}=LME (4-26)

reflection and refraction coefficients ry, r, and #, ¢, are calculated directly by the normal

components of the incident and refracted wave vectors as given in Eq. (3-9).

-
4 ZA\

mnc

(S /

Fig 4.6 Definition of the base vectors (él(li), e.), (él(lr), é,) and (é‘("), ¢,) for describing the parallel and the
perpendicular components of the incident, reflected and refracted electric vectors.

It should be noted that the Jones vectors of the refracted and reflected electric vectors E, p

and E, in Eqgs. (4-25) and (4-26) are expressed in the local coordinate systems (é(’) é(f) and

Il
(él(lr), é(l’)), respectively, with é(j) = é(p = ¢,, while él(l') and él(lr) are defined in the same way

as did in Eq. (4-22) just by replacing k; with K, and with k,, respectively. Fig. 4.6 presents
an illustration of these base vectors. The wave vectors l?[, l?, and 13 lie in the same plane, the
incident plane Z;,. at this interaction. The base vector ¢, is perpendicular to the X;,., while
él(\i)’ él(lr)

example, the refracted electric vector vibrates within the plane constituted by ¢, and él(lt ),

and él(l’) are within the %;,.. As to the vibration directions of the electric vectors, for

The refracted or the reflected light ray may then act as the incident ray at the next
interaction. If so, the procedure from Eq. (4-21) to Eq. (4-26) is to be repeated. Otherwise,
it emerges out of the particle and contributes to the scattering field. For a scattered ray of
wave vector K, (s = r when the reflected ray is scattered out of the particle, while s = ¢ if

the refracted ray is scattered out), two orthogonal unit vectors in the vibration plane of E,



70 Chapter 4. Calculation method for the 3D light scattering

(electric vector of the scattered ray I?S) are introduced as

> >

. X k; . ks x e,

€p = — and €y = f (4-27)
' XKy ks X eq)'

For a fixed Cartesian coordinate system (%, $, Z), the two base vectors &, and &, are only
related to the direction of the scattered ray l?s / ||I?S||. It indicates the coordinate system (&g, €,,)
for describing the electric vector is consistent for those scattered rays emerging in the same
direction.

In the vibration plane of E,, the coordinate transformation matrix from the coordinate
() »

system (é” ,e1) to (&g, &) is calculated as
Mo - [(@9 4" (@ éu] (428)
2 — A (s A N -
@,-2)") (6,-2.)
Then, the Jones vector of ES expressed in (&g, &,) is obtained:
= Ege'? =
E, = £ oite| = M,J M E,; (4-29)
[

The complex amplitudes Ege'® and E e are the two orthogonal components of the electric
vector of scattered ray along &y and é,, respectively. For any two scattered rays propagating
in the same direction, their electric vectors are expressed in the same coordinate system.
Thus, the calculation method described above enables the straightforward addition of two
scattered electric vectors for superposition. Besides, the calculation for the incident and
refracted angles (as did in [174]), which could be rather tedious especially in 3D scatter-
ing, is avoided. The method proposed here simplifies considerably the calculation for the

polarization states of the light rays in 3D scattering when cross polarization is involved.

4.5 Phase shift in 3D scattering

In the preceding Sec. 3.2.3, the factors which affect the phase shift in the 2D scattering
of plane wave by a cylinder of any smooth cross section has been discussed in detail. For
the 3D scattering of plane wave by a nonspherical particle of any smooth surface, some of
those factors need further discussions.

As to the phase shift due to optical path in the 3D scattering of plane wave by a particle
of any shape, the formula proposed in Eq. (3-25) holds too. As shown in Fig. 4.7, the
reference ray arrives at an artificially defined point O and then exits in the direction of the

concerned scattered ray. For simplicity, the position of O is better set at the center of particle.
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The method proposed in Eq. (3-25) for calculating the phase due to optical path is very easy

(2D object)

/
|
1
'
'
'

Fig 4.7 Schematic diagram in calculating the optical path of a scattered ray relative to the reference ray.
For clarity, an example for a scattered ray of order p = 1 is shown.

to implement. It only needs the direction of the incident ray k; at the incident point Wy, the
direction of the scattered ray lAcp, and the coordinates at each interaction Wy, Wy, ...W,. More

importantly, the proposed formula is applicable to a 2D or 3D particle of any shape.

Due to the presence of cross polarization, the electric vector of a 3D scattered ray is
resolved into two components, Ege” and E e as given in Eq. (4-29). The arguments ¢

and ¢, record the phase shifts due to reflection for the two polarizations.

In the 3D scattering by a nonspherical particle, the wavefront of a scattered ray in the
near field® is usually astigmatic or spherical, presenting as a curved surface in the 3D space.
Compared to a cylindrical wavefront, an astigmatic or spherical wavefront has two non-
zero principal curvatures. The calculation for the two principal curvatures of a scattered
wavefront can be found in Sec. 4.3. If any of the two curvatures is changed from negative to
positive between two successive interaction points or between the exit point and infinity, it
indicates that the wavefront has undergone a conversion from converging to diverging in the
corresponding principal direction. We can then infer that a focal line has been encountered
in this principal direction. By counting the total number N of the focal lines that have been
encountered in both of the principal directions, the phase shift due to focal lines is then
calculated by Nx/2.

The phase difference between the incident rays is zero for plane wave incidence. The

case with shaped beam incidence will be discussed in detail in the Chapter 6.

3A scattered wave in the far field approximates a spherical wave.
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4.6 Interpolation of amplitude and phase in 3D scattering

When a light wave is scattered by a nonspherical particle, the scattered rays are usually
irregularly distributed. For a concerned scattering direction, the calculation for the scat-
tered intensity usually involves the interpolation of the scattered rays nearby. However, the

interpolation in 3D scattering is not an easy task since:
1. Both amplitude and phase are bivariate functions.

2. The light rays from the same scattering order or from different orders may be folded
one or more times, indicating that the amplitude and the phase may also be multi-valued

functions. The superposition of light in the folding area must be taken into account.

Sadeghi et al. [6] used quadrilateral patches, each of which was composed of four rays,
to evaluate the amplitude and phase shift due to the convergence/divergence of wavefront;
then they implemented bilinear interpolation in each patch to calculate the amplitude and
the phase in the query directions. Besides the complexity in implementation, their method
was limited to the scattering region near the rainbows because they encountered obstacles to
calculate the phase in other scattering directions. To the best knowledge of the author, there
is still no solution yet applicable to the full scattering field in 3D space by a nonspherical
particle of size much larger than the wavelength of light.

As discussed in the preceding sections of this chapter, the direction, amplitude and
phase for each 3D scattered ray can be calculated in the framework of VCRM. In this section,
an algorithm is proposed to address the bottle-neck problem for VCRM to calculate 3D
scattered intensity, namely, the interpolation of the bivariate and multiple-valued scattered

data for the final interference intensity in 3D space.

z Scattered ray

Incident

Fig 4.8 Definition of the direction (¢, ¥) of a scattered ray in the 3D space.

For a scattered ray in the 3D space, its direction is described by the azimuth angle ¢

and the elevation angle ¢ as shown in Fig. 4.8. ¢ is measured in the horizontal plane from
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the x axis, while i is the elevation angle relative to the horizontal plane. They are calculated

according to

{tan ¢ = ky/k, (430)

tany = k,/(k* + kf,)”2
where k,, k, and k;, are x-, y- and z-component of the wave vector l?s, respectively.
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Fig4.9 Schematic diagram of the 3D scattering space discretized uniformly with grid points.

The whole 3D scattering space with ¢ = [-180°,180°] and ¥ = [-90°,90°] is dis-
cretized uniformly with grid points as shown in Fig. 4.9. The angular intervals along the ¢
axis and along the i axis are Ag and Ay, respectively. Each grid point represents a scattering

direction in the 3D space.

Iy .

90" Folded area e  Grid points
° o L]
©  Sample points
° [ ] [ ]
[ ) [ ] L]
v . . o
(] [ ] [ ]
Ay I
L] o [ ] [ ] ° [ ] ° [ ] ° ]
>
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-90° : >
—-180° (] 180°

Fig 4.10 Schematic diagram of two groups of scattered rays (marked as the sample points) which are
folded with each other.

The directions of scattered rays are described in the (¢, ¥) coordinate system as sample
points, which are always distributed irregularly (as illustrated in Fig. 4.10). The light rays
from the same scattering order or from different orders may be folded with each other. In
the folded area, the superposition of light occurs. The calculation for the scattered intensity

at each grid point requires the interpolation of the sample points around it. It is worth noting
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that the grid points represent the query directions in the 3D space, while the sample points

represent the calculated directions of the scattered rays.

1 : v
particle o o o o e o e o e o o o o o e o o o o o
‘boundary e o o o o o0 o o o . .
AO @ L] L] L] L] @ .® L] L] L] L] L] L]

A® ® @
BO ® @ @ o o o o e o ®o . o o . .
s \ . Bo@o e@Qe o o o o o . .
% 14

(M @ 3)

Fig 4.11 Procedure of the triangulation. (1) In each iteration, only two adjacent layers of incident rays
are considered; (2) The scattered rays are irregularly distributed in terms of the scattering direction (¢, ¥);
(3) The triangles meshed in the triangulation of the sample points.

i+l

A O

j+1
B; !

(a) (b)

Fig 4.12 The Delaunay criterion used in triangulation. (a) A;;; is not a successful candidate since the
circumcircle of triangle AA;B;A;,; contains other sample points; (b) B;,; with A;B; forms successfully a
triangle.

Firstly, we need to determine which grid points are enclosed by the sample points. As
illustrated in Fig. 4.11, for two adjacent layers of incident rays, say sets Ay and By, we have
two sets of scattered data, say A and B. They are irregularly distributed in terms of scattering
direction (¢, ¥). The band between these two sets A and B is meshed incrementally with
triangles as shown in Fig. 4.11(3). In generating a new triangle, for the sake of simplicity and
topological correctness, the candidate vertexes for the front edge A;B; (i, j = 1,2,3,...) are
always chosen in {A;;1, B}, and the successful one satisfies the Delaunay criterion [176—
178] as shown in Fig. 4.12. In the Delaunay criterion for triangulation, the circumcircle
of the meshed triangle should not enclose other vertexes. By this way, the long and thin
triangles, which may deteriorate the interpolation accuracy, can be avoided to the maximum
extent possible.

As shown in Fig. 4.11(3), the meshed triangles form an area enclosed by the sample
points. Those grid points which lie inside the meshed triangles will be disposed of for their

amplitudes and phases.
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For a meshed triangle, its three vertexes are denoted as v; = (¢;,¢;) with j = 1,2, 3.
If a grid point is inside the triangle, the coordinates of the grid point v, = (¢,,¥,) need to
satisfy:
(V1V3 X Vv3) - (V93 X Vivg) > 0
(V203 X V207) - (V293 X V2vg) > 0 (4-31)
(V3V1 X 313) - (VaV] X V3vg) > 0
To accelerate the procedure of finding the grid points that are inside a concerned triangle,

only the grid points which lie within the rectangular area bounded by the three vertexes are

to be searched.

For a grid point v, = (¢,, ¥,) inside the concerned triangle, its amplitude and phase
are to be interpolated according to the amplitudes and phases of the three sample points
(the vertexes of triangle). As have been discussed in the preceding parts of this chapter, the
amplitude and phase for each 3D scattered ray can be determined in VCRM. Here we note
the amplitudes (or the phases) at the sample points v; as f; (j = 1,2, 3). Then, the amplitude
(or the phase) f, at the grid point v, = (¢, /,) can be acquired through linear interpolation:

fo=h+a(fa=f)+0(6- 1) (4-32)

where A; and A, are determined by solving

(4-33)

©q = @1+ (02 — 1) + (3 — 1)
Vg =+ 4 =) + L3 = ¢)

The physical meaning of (4-32) and (4-33) is that the amplitude and the phase in a query
scattering direction (¢,, ¥,) can be obtained through the interpolation of the surrounding

three sampled rays. Fig. 4.13 presents a schematic diagram for this.

N4
O  Sample points (% W, )
®  Grid points
+  Query point
?

Fig 4.13 Inclusion of a grid point inside a meshed triangle. The amplitude and the phase at the enclosed
grid point, referred to as the query point (¢,, ¥,), are to be interpolated. In the right illustrates this query
scattering direction and the three sampled rays around it.
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If a non-linear interpolation method is to be applied, some Delaunay refinement algo-
rithms [179-181] are needed to refine the meshed triangles so that each triangle is approxi-

mate to an equilateral triangle, which improves the accuracy of interpolation.

O  Sample points
e Grid points

- Interference point

g

Fig 4.14 Schematic diagram of two intersecting triangles. A grid point inside the intersecting area is an
interference point, where the interference of light must be taken into account.

The scattered rays from the same order p or from different orders may be folded in
certain scattering directions. As a result, the triangles meshed with the representing sample
points may intersect with each other. If two or more triangles intersect at one grid point
(¢, ¥) as shown in Fig. 4.14, the interference of light must be taken into account. For one
of the polarizations along &, and &, as defined in Eq. (4-27), assume the amplitude and the
phase in the direction (¢, ¢) interpolated by the j-th (j = 1,2...) intersecting triangle are
a; and ¢;, respectively, then the sum of complex amplitudes accounts for the interference
effect:

E(e.w) = ) ajexplig;) (4-34)

=1
Considering the cross polarization effect, the complex amplitude E(p, ) in Eq.(4-34) should
be calculated separately for the two polarizations. The total electric field in the scattering

direction (¢, ) can then be obtained by

. =1 a§~” CXP(1¢§1))
E(p,¥) = (4-35)
3 j-1ay exp(io?)

where the element ) ;_, ai.l) exp(igb;l) ) is the summed complex amplitude along the polariza-

)

tion direction &y, while }’;_; a ; exp(i¢5.2)) the summed complex amplitude along the polar-

ization direction &,,.
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The final scattered intensity in the scattering direction (¢, ¥) is calculated by the inner

product of E (¢, ¥) with its complex conjugate:

I, ) = E(g,4) - E(g, )" (4-36)

The triangulation-based interpolation algorithm proposed above is summarized as fol-

lows:
1. The incident light wave is simulated by layers of light rays.

2. The calculation is initialized for the rays from the first layer to generate the first set of

scattered rays. Each scattered ray is marked as a sample point in the (¢, y) plane.

3. In each iteration, a new set of rays is added from the next layer to obtain a new set of

scattered rays.

4. For two adjacent layers of incident rays, say sets Ay and B, we have two sets of scattered
rays, say A and B. They are irregularly distributed in terms of scattering direction (¢, ¥)

as shown in Fig. 4.11(2).

5. The band between these two adjacent sets A and B is meshed incrementally with triangles.
For the sake of simplicity and topological correctness, the candidate vertexes for the
front edge A;B; (i, j = 1,2,3,...) are always chosen in {A;|, Bj;}, and the successful
one satisfies the Delaunay criterion. In this way, the long and thin triangles, which may

deteriorate the interpolation accuracy, can be avoided.

6. Through iteration, the triangulation of the sample points from any two adjacent layers of

incident rays is carried out.

7. In each of the meshed triangles, linear interpolation is carried out for the amplitudes and

the phases at the grid points which are enclosed by the concerned triangle.

8. The intersecting triangles at one grid point account for the interference effect in the rep-

resented scattering direction.

4.7 Summary

This chapter reported the first realization of a calculation method in the framework
of VCRM for the 3D scattered intensity by a large nonspherical particle of any smooth

surface. The ray tracing, divergence factor, phase shifts due to focal lines and optical path,
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and cross polarization were addressed by an elegant way using vectorial rays and the wave-
front curvature. A triangulation-based interpolation algorithm has been developed to break
through the bottle-neck problem for VCRM to account for the interference of scattered rays
in 3D space.

The following chapter will present an application of the proposed method to the 3D

scattering of plane wave by a real liquid jet and the experimental examination.
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Chapter 5 The 3D scattering of plane wave by a real liquid jet and
experimental examination

In principle, the method proposed in the preceding chapter can be applied to the scat-
tering in all directions by a large and smooth particle of any shape. A real liquid jet which
has a complex geometry is taken as an example here. Having a non-zero curvature along
the jet axis, the geometric profile of a real liquid jet is much more complex than that of an
infinite cylinder. Besides, the radius of jet’s cross section usually ranges from tens to hun-
dreds of microns, which is much larger than the wavelength of the incident laser beam (size
parameter ranging approximately from 500 to 5000). For these two reasons, the calculation
for the light scattering by a real liquid jet poses challenge or even an impossible task for the
existing analytical theories and numerical methods. In this chapter, the calculation for the
3D far-field scattered intensity of plane wave by a real liquid jet is achieved with the pro-
posed calculation method, which is based on VCRM while allows to calculate the scattered

intensity in 3D space.

5.1 Introduction to a real liquid jet

A real liquid jet usually presents a complex profile with varying radius [30, 34, 182-
185]. Even for a jet without artificial disturbance, due to the effect of surface tension and
gravitational force, its transversal radius shows a continuous contraction till the breakup.
The liquid jet used here is a capillary water jet ejected in the air from a long stainless-steel
needle with a circular orifice (inside and outside diameters are respectively 0.95 and 1.32
mm). A pressure of 2.1 bar is imposed on the distilled water within the reservoir; besides, a
flowmeter regulates and stabilizes the flow rate at 39 ml/min. At 19.0°C, the refractive index

of the distilled water is 1.3322 for the light with wavelength 4 = 632.8 nm.

The profile of the water jet near the orifice is obtained through image edge detection
and data fitting as shown in Fig. 5.1. The transversal radius r as function of the distance

from the orifice 4 is given by
r(h) = 0.4997exp(—0.0183Ah) + 0.1377exp(—1.7990h) 5-1

The R-square (coefficient of determination) is 0.998, so the fitting is satisfactory. By at-

taching the origin of Cartesian coordinate system to the exit of jet (2 = 0) and setting the z
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Fig 5.1 The image and the extracted profile of the water jet near the orifice.

axis coincident with the jet axis (z = —h), the jet profile can be expressed in the Cartesian

coordinate system as
r(z) = 0.4997exp(0.0183z) + 0.1377exp(1.7990z2) (5-2)
where z ranges from 0 to —5.5 mm. Then the surface function of the liquid jet is given by
fOry.2)=x"+y" = (@) =0 (5-3)

According to Eq. (5-1), the stream-wise curvature of the jet surface along the jet axis
can be calculated. Fig. 5.2 shows the variation of the curvature with the falling height /.

! near the

One can see that the stream-wise curvature decreases exponentially from 0.4 mm™
exit to 107> mm™' when 4 = 3.5 mm, which means the curvature radius in the stream-wise
direction is very small (2.5 mm) at the beginning but is very large (several meters) when the
falling distance 4 is more than 3.5 mm.

Due to the presence of stream-wise curvature, the scattering field by a real liquid jet
is different from that by an infinite cylinder. Firstly, the light rays scattered by a liquid jet
are no longer within one transversal section, instead, they are spread into the 3D space,

as illustrated in Fig. 5.3. Secondly, since the scattered light of different orders are elevated
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Fig 5.2 The stream-wise curvature of jet surface as function of the falling height 4.
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Fig 5.3 Schematic diagram of the ray path for a light ray interacting with a liquid jet.
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Fig 5.4 Experimental observation of the scattering field near the first-, the second-, the fifth- and the
sixth-order rainbows by a capillary water jet.
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differently from the horizontal plane, the scattering field by a liquid jet shows an interference
pattern against common sense as shown in Fig. 5.4. The scattered light of different orders
are separated from each other, but interference still exists within the single-order scattered
light of p > 2.

In the following, the 3D scattering field of plane wave by the capillary water jet modeled
in Eq. (5-1) will be simulated by the calculation method proposed in the preceding Chapter
4.

5.2 Simulation of the 3D scattering field

The calculation for the 3D scattered intensity by a real jet is far beyond the capabilities

of most electromagnetic approaches because:

1. Areal jet has a geometric profile being so complex that the separation of variable methods

such as LMT and Debye cannot be applied.

2. The size parameter of the concerned jet is nearly 5000, which requires unimaginable
computer memories and computation time for the numerical methods such as FDTD,
T-matrix and DDA.

With the calculation method proposed in Chapter 4, which is based on VCRM while allows
to calculate the scattered intensity in 3D space, the simulation for the 3D scattering field of
plane wave by a real jet is successfully achieved here.

Before showing the intensity distribution of the scattering field, the result of ray tracing
is presented firstly to offer readers an intuitive understanding of the ray paths.

Based on the ray tracing method discussed in Sec. 4.2, the tracing of the light rays
scattered by the jet is shown in Fig. 5.5. The refractive index of jet is 1.3322; and the
surface function has been given in Egs. (5-1) and (5-3). As a comparison, the tracing for
the light rays scattered by an infinite circular cylinder is also presented. The infinite cylinder
has the same refractive index as the jet, but its cross section has a constant radius of ry (the
initial radius of the jet). The direction of the incident rays is perpendicular to the jet/cylinder
axis. For clarity, only one layer of the incident rays and the corresponding scattered rays of
p < 2 are shown.

From Fig. 5.5, one can see that for the infinite cylinder, its scattered rays stay in the
same plane as the incident rays; while for the real jet, due to the non-zero curvature along

the jet axis, the emergent rays are scattered into 3D space. More specifically, because the
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Fig 5.5 Tracing of the scattered rays: (a) by an infinite circular cylinder; (b) by a real jet.
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normal vectors of jet surface point downwards, the externally reflected rays (p = 0) are tilted
downwards, while the scattered rays of order p > 1 are tilted upwards. Moreover, the higher

the order is, the greater the elevation from the horizon will be (as illustrated in Fig. 5.3).

Through ray tracing, one can obtain the directions of the scattered rays. Furthermore,
according to Secs. 4.3-4.5, the corresponding amplitudes and phases for these 3D scattered
rays can be calculated. And, through the triangulation-based interpolation algorithm pro-
posed in Sec. 4.6, one can acquire the complex amplitude and the final interference intensity

in each scattering direction of the 3D space.

Fig. 5.6(a) presents the configuration in calculation. A monochrome plane wave of
wavelength 4 = 632.8 nm is used. The direction of the incident rays is perpendicular to
the jet axis, and it is set as the x axis of Cartesian coordinate system, while the incident
electric vector is linearly polarized along the jet axis (z axis). The incident light has a planar
wavefront of uniform intensity, i.e. a plane wave (see later for the experimental realization
of this beam). The incident light spot has a thickness of 1.0 mm along the z axis, and its
center on the jet is set as 4 = 2.4 mm. The relative refractive index of the jet m is set as

1.3322.

Fig. 5.6(b) shows the simulated result of the 3D scattered intensity by the jet. ¢ and
Y are the azimuth angle and the elevation angle, respectively. For clarity, only the scattered
light of p = 0, 2 and 3 near the first- and second-order rainbows (¢ = [125°, 140.5°]) are
shown. The first-order rainbow arises from the interference of the p = 2 scattered light itself,
while the second-order rainbow from the interference of the p = 3 scattered light. Due to the
cross-polarization effect, the scattered light generally has a polarization state different from
the incident light. And the scattered intensity are calculated according to Eq. (4-36). The
hot map shows clearly the variation of intensity with the azimuth angle ¢ and the elevation
angle ¢. Considering that the intensity of the p = 0 and p = 3 light are much weaker than
that of the p = 2 light in this area, their intensity I, and /5 are multiplied by a factor of 10 in

calculating the hot map.

We note firstly that the scattered light of different orders by the real jet are deviated out
of the horizontal plane (¥ = 0°). And, the elevation angles for the scattered light of different
orders are different. These p = 2 and p = 3 scattered light are located at positive elevation
angles (Y>3 > 0 and ,—3 > ¥,—»), while p = 0 scattered light lies in the region below the
horizontal plane where ,—o < 0. As a result, the scattered rays of different orders do not
interfere with each other. But, the scattered rays of same order p might superpose with each

other and form the interference fringes as shown in Fig. 5.6(b).
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Fig 5.6 The configuration and the corresponding 3D scattered intensity by the liquid jet. (a) the beam
profile incident on the jet; (b) the scattering field near the first- and second-order rainbows. For clarity,
the intensity of p = 0 and p = 3, I and I3, have been amplified by a factor of 10.
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In Fig. 5.7, the scattered intensity of plane wave by the liquid jet is compared with that
by an infinite cylinder. The calculation parameters for the cylinder are the same with those
for the jet, except that the cylinder has a constant radius of r = 480 um, equal to the radius
of the jet at 1 = 2.4 mm. Three methods are used in calculating the scattered intensity by the
infinite cylinder: GOA (p < 3), DSE (p = 2, 3) and LMT. For clarity, the results calculated
by DSE and LMT are offset by 0.5 and 0.1, respectively.

jet scattering
(VCRM) - - -

140 -2

Fig 5.7 The scattered intensity near the first- and the second-order rainbows (¢ = [125.0°, 140.5°]) for
an infinite cylinder and a real jet.

One can see that for an infinite cylinder under normal incidence, the scattered light of
all orders stay within the plane perpendicular to the cylinder axis, i.e. within the horizontal
plane with v = 0°. And the scattered intensity is only the function of the azimuth angle ¢. In
terms of ray optics, those scattered rays which have same azimuth angle will interfere with
each other.

But for a real jet, due to the stream-wise curvature of jet surface, the scattered light of
different orders are naturally separated into different elevation angles ¢. As shown in Fig.
5.7, the scattered intensity by a real jet is not only the function of the azimuth angle ¢ but
also the function of the elevation angle . The hot map presents the variation with ¢ and ¢
of the scattered intensity by the jet.

One the other hand, it is found that as the incident beam moves downwards, i.e. when

h is increased, the separation of scattered light along the i axis is lessen as shown in Fig.
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Fig 5.8 The 3D scattered intensity by the water jet when 2 = 3.0 mm. The other parameters are the same
with those in Fig. 5.7(b).

5.8. Besides, the spreading of scattered light along the y axis also becomes shrinked. For
example, the scattered light of p = 0 spreads approximately from ¢ = —1.0° to ¢ = —1.8°
when the incident plane wave illuminates the jet at 4 = 2.4 mm (shown in Fig. 5.6). But
when 4 = 3.0 mm as shown in Fig. 5.8, the p = 0 scattered light is constrained to the
region from ¢y = —1.0° to = —1.2°. This is due to the fact that at a point farther from the
exit of orifice, the stream-wise curvature of jet surface is smaller. In the region where the
stream-wise curvature is near zero, the scattered light of different orders by the jet tend to
rejoin in the horizontal plane (¢ = 0°) just like an infinite cylinder.

The simulation result by the calculation method based on VCRM for 3D scattering will

be examined by an experiment in the following section.

5.3 Experimental setup

To validate the calculation method proposed in the preceding Chapter 4 and the sim-
ulation for the 3D scattered intensity by a real jet, an experiment is carried out. The setup
is shown in Fig. 5.9, while the schematic diagram is given in Fig. 5.10. The experimental

setup mainly contains three parts:
e Light source with beam shaping module;

e Generation and control of the liquid jet;
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e Image acquisition part.

mirror

” oh8 mirror
Beam &
expander

polarizer

(translucent)

" Camera 1

Fig 5.9 Experimental setup for measuring the scattered intensity by a liquid jet.

The monochrome light from a He-Ne laser (1 = 632.8 nm) passes a polarizer such
that the electric vectors vibrate along Z (jet axis). After the beam expander (20X), the laser
beam is expanded and collimated. Then, a rectangular slit with width 14.0 mm and height
1.0 mm is used to crop the expanded laser beam. A 4 f system is used between the slit and
the jet; and the focal lengths of the first lens and the second lens, f; and f>, are equal to 20
cm. Besides, at the center of the 4 f system, a spatial filter (Iris Diaphragm1 as shown in
Fig. 5.10) is used to suppress the diffraction caused by the slit. Eventually, the light spot
incident on the jet has a width (along y) of 14.0 mm (much greater than the jet diameter) and
thickness (along 2) of 1.0 mm as shown in the bottom right of Fig. 5.10.

The liquid jet flows along the opposite direction of Z and passes through the center of the
laser beam. At the jet position, the laser beam presents approximately a planar wavefront
of uniform intensity, which matches the incident wave in simulation. The position of the
incident light spot on the jet is set the same as that in simulation, i.e. 2 = 2.4 mm. The 3D
scattered intensity is displayed on a translucent screen (sufficiently far away from the jet, i.e.
in the far field), and is then recorded by the camera #1 (HAMAMATSU, C9100-022). The

recorded scattered intensity near the first-order and second-order rainbows is shown in Fig.

!https://www.thorlabs.us/thorproduct.cfm?partnumber=ID20
Zhttp://meyerinst.com/digital-cameras/hamamatsu/C9100-02.pdf
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Fig 5.10 Schematic diagram of the experimental setup.

5.11. At the same time, another camera (JAI, RM-4200 CL) captures the image of the water

jet which has been shown in Fig. 5.1.
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Fig 5.11 Experimental observation of the scattered intensity of plane wave by the water jet near the
first-order and second-order rainbows. For clarity, the intensity of the p = 0 and p = 3, I, and I3, have
been amplified by a factor of 10. & = 2.4 mm.

As predicted by simulation, the scattered light of different orders observed in exper-
iment are indeed separated. Besides, the scattered light of the same order p could still
interfere itself, forming the “low-frequency” interference fringes as shown in the insets of

Fig. 5.11.
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5.4 Comparison of simulated result with that by experiment

The following part covers the comparison of the calculated 3D scattered intensity with
the one measured by experiment.

Since the intensity of first-order rainbow is much greater than that of second-order
rainbow, the scattering patterns near the two rainbows are measured separately with differ-
ent exposure time. The comparison between the simulation and the experiment for the 3D
scattered intensity near the first-order rainbow is given in Fig. 5.12(a), while the compari-
son near the second-order rainbow is given in Fig. 5.12(b). For clarity, near the first-order
rainbow, the examination is made in three slices: ¢ = 1.9°, 2.3° and 2.7°. In a slice of
fixed elevation angle i, the scattered intensity varies only with the azimuth angle ¢. For the
second-order rainbow, the examination is made in the slices of ¢ = 3.0° and 4.0°. Besides,
the p = 0 scattered light is recorded with the same exposure time as the second-order rain-
bow. As shown in Fig. 5.12b, the examination of the p = 0 scattered intensity is made in
two slices of two fixed azimuth angles (¢ = 125.7° and 128.7°), since the p = 0 intensity in
this area varies mainly with the variable .

Two notable features are observed: (1) the scattered light of different orders are natu-
rally separated but the “low-frequency” Airy fringes still exist because of the interference
of the scattered rays from the same order; (2) the scattered intensity varies also with the
elevation angle y, which is attributed to the variation of the surface curvature along the jet
axis. In this aspect, the jet acts much like a concave lens (see the jet profile shown in Fig.
5.1).

We can see that a good agreement is found not only in the direction of ¢, where the
simulated peaks and troughs (rainbow fringes) match the experimental results very well, but
also in the direction of i, where the simulated intensity as function of the elevation angle
also fits well with that by experiment.

The main discrepancy is at the rainbow angles (caustics). It is caused by the intrinsic
defect of ray model, which predicts an infinite intensity there [6, 55, 138, 166]. To improve
this, the physical optics [114, 186, 187] is to be resorted to. Handling with this flaw existing

in ray optics needs much more effort and is not within the scope of the present thesis.

5.5 Summary

The calculation method proposed in Chapter 4, which is based on VCRM while allows

to calculate the scattered intensity in 3D space, has been successfully applied to solving the
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Fig 5.12 Experimental examination of the simulation results for the 3D scattered intensity near the first-
order and second-order rainbows of a real jet. The hot maps present the relative intensity in the images

captured by experiment.
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3D scattered intensity by a real liquid jet. Taking advantage of the ability of VCRM for
interpreting the scattering mechanism, a systematic analysis has been made for the scattered
light of different orders, in regard to their separation or interference in 3D space.

The computation was completed on a laptop (Intel 17-8550U @ 1.80GHz), and the cal-
culation for obtaining the 3D scattering field of p < 3 took about 20 minutes. Though
the performance is not the focus of this thesis, the triangulation and interpolation processes
might speed up in future by applying parallel computation, which I believe will reduce the
time to minutes, or even seconds.

Experiment has also been carried out to verify the proposed method and to verify the
simulated results. An incident wave of limited width 1 mm which has approximately unifor-
m intensity and planar wavefront has been achieved in experiment, thus complying with the
incident plane wave with sheet spot used in simulation. Good agreements have been found
not only on the spatial separation of different scattering orders but also on the interference
intensity and the angular extension ranges.

In the following chapter, the ray model of incident elliptical Gaussian beam will be
established in the framework of VCRM, and the 3D scattered intensity of elliptical Gaussian

beam by a real liquid jet will be solved and analyzed.
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Chapter 6 The 3D scattering of elliptical Gaussian beam by a real
liquid jet

The light beam emitted from a laser device generally has a Gaussian profile, thus mak-
ing important the research on the scattering of Gaussian beam by particles. Many researcher-
s have contributed to the development and application of the GLMT for the scattering of a
Gaussian beam by particles. However, the GLMT is applicable only to those particles of
simple forms such as spherical or spheroidal particles, or circular or elliptical cylinders.

In this Chapter, the calculation for the 3D scattered intensity of elliptical Gaussian beam

by a large nonspherical particle of any smooth shape is achieved by VCRM.

6.1 Ray model of elliptical Gaussian beam

Compared to a plane wave, the light rays which characterize an elliptical Gaussian
beam! are different in direction, amplitude, phase and wave-front curvatures. In this section,
the calculation for these properties will be addressed.

Consider an elliptical Gaussian beam with simple astigmatism [188-192] which prop-
agates along the W axis of the coordinate system (it, ¥, w) as shown in Fig. 6.1, the incident

electric field can be expressed by
Ec(u, v,w) = EoEg exp(i@), (6-1)

where EO = Ey,it + Eo,v. The ratio Ey, : E, determines the vibration direction. For
example, the case with E, = 0 indicates the wave is polarized along ¥. E is the normalized

amplitude, while ¢ is the phase. They are given respectively by [147, 188—192]
2 2
Ec(u,v,w) = Tou [Tov exp (_u_2 - v_z) (6-2)
Nr. N rn r2on

2 2
¢(u,v,w)=—2—ﬂ(w+ . )

and

A 2R, 2R,
(6-3)
+ ltan_1 W= O + ltan_1 w=-0,
2 lu 2 lV

where r, is the beam-waist radius of the elliptical Gaussian beam in the plane containing w

'A circular Gaussian beam is the special case of elliptical Gaussian beam.
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and i, while ry, is the beam-waist radius in the plane containing w and V. The r; (j = u,v) is
the characteristic radius of beam at which the field amplitude falls to 1/e of the axial value,

and it is given by
1/2

=)
1+ (6-4)
I

Fj=Toj

P A
’Olt‘?’

/

0, 0, O,

Fig 6.1 The coordinate system (i, ¥, W) used in describing an elliptical Gaussian beam of beam-waist
radii rg, and ry,. For a circular Gaussian beam, ry, = rp, and O, = O, = Og.

The origin of beam system (i, , W) is denoted as Og : (0,0,0). The positions of
the beam waists in (W, #z) and (W, D) planes® are (0,0, O,) and (0,0, O,), respectively. The
Rayleigh distance /; indicates the axial position where the intensity is one half of the peak
intensity at the beam waist. It is related to the beam-waist radius ry; and the wavelength A

by
2

nrg.
[ =— 6-5
== (6-5)
The curvature radius R; of the wavefront at (0, 0, w) is calculated as
[\2
Rj=(w=-0)) 1+(W_10j)l (6-6)
The gradient of the phase function is defined as

where ¢/, ¢/ and ¢/, are the first-order derivatives of the phase function with respect to u, v

2The (W, &) plane is expanded by base vectors W and i, while the (4, ») plane is expanded by # and 7.
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and w, respectively. They are calculated as:

,  ku

by = "R

, kv

¢, = R
¢ =—k— lkuz li —(w=-0,) ~ lkvz 2 —(w—0,)> (6-8)
' 27 [B+(w=0) 2 [B+(w-0,)?]

+l b +l L,
22+(w=-0,)" 282+ (w-0,)?

The dependence of ¢, ¢/ and ¢/, on the values of u, v and w indicates that the gradient
(¢, 9., ¢,,) at different points of an iso-phase surface (a wavefront) is varied. At a point of
coordinates (u, v, w), the unit vector which defines the direction of the local wave vector is

obtained by
V¢
IVl

k is the normalized wave vector normal to the local wavefront and characterizes the propa-

he (6-9)

gation direction of the wave at (u, v, w). The negative sign indicates that the wave direction
is opposite to the gradient of phase function, considering that the phase lags along the prop-
agation direction (the phase ¢ is decreased with w as given in Eq. (6-3)).

Fig. 6.2 shows an example for the intensity profiles of an elliptical beam at different
axial positions. Besides, three sampled wavefronts (iso-phase surfaces) and the wave vectors
normal to the wavefronts are presented. For generating a beam with distinctly curved wave-
fronts, the beam-waist radius in the (W, it) plane, ry,, is set as 1 pum, while the beam-waist
radius in the (W, ¥) plane, ry,, as 2 um. The position of beam-waist center in the (W, it) plane,
0,, is set at —50 pum, while the position of beam-waist center in the (W, ), O,, is set at 0 um

(the origin of the beam system).

Table 6.1 Parameters of the elliptical Gaussian beam in Fig. 6.2.

Beam axis Polarization ry,/um rp,/um  O,/um O,/um A/nm

w % 1 2 -50 0 632.8

As shown in Fig. 6.2(a), the orientation of the elliptical light spot changes by as much
as m radians as the beam passes through the beam-waist centers O, and O,. Meanwhile, the
wavefront may have three kinds of shapes (converging, saddle or diverging) according to
the observation position (before, between or after O, and O,), as shown in the Fig. 6.2(b).
After the passage of O,, the beam becomes diverging in the (W, it) plane. Since the beam

still converges in the orthogonal (W, ) plane, the shapes of the wavefronts between O, and
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Fig 6.2 Variation of the intensity and the iso-phase surface of an elliptical Gaussian beam: (a) the
intensity profiles at different axial positions; (b) three iso-phase surfaces sampled respectively at w =
—125 pm, w = -25 pm and w = 75 um. The vectors normal to the iso-phase surfaces depict the
propagation directions.
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O, present as saddle surfaces. Only by passing both O, and O,, the wavefronts are diverging

in both the (W, &t) and the (W, ) planes.

In Fig. 6.2(b), the vectors normal to the wavefronts are calculated by Eq. (6-9), rep-
resenting the propagation directions of the wave at different points. Different from a plane
wave, the wave directions of a shaped beam cannot be characterized by a bundle of straight
rays in a strict sense. Instead, they are calculated at the concerned points, for example at the

incident points.

The expression of k in the Cartesian coordinates sytem (£, §, 2) can be obtained by

Gull + ¢V + $W

k= L
g1t + ¢V + ¢, Wl

(6-10)

To obtain the two principal curvatures as well as the corresponding principal directions
of incident elliptical Gaussian beam at a concerned point (u, v, w), two irrelevant base vectors

in the tangent plane of iso-phase surface are defined as follows:

& =D xk/|ID x k|l (6-11)
B=kxa (6-12)
Further, three scalars are defined as:
Doa :&H(¢)&T’ (6-13)
bop = & H(¢) - 5" (6-14)
¢pp =B - H(p) B (6-15)

where the superscript T indicates the transposition. H(¢) is the Hessian matrix of the phase

function defined by

i Puv Puw
Hp) =P P D (6-16)
Pow Buv P

These second-order derivatives of the phase function with respect to u, v and w are calculated
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as
. k
P "R
B k
¢ = "R
Gy = P, =0
P y li —(w-0,)
e [2 +(w -0, (6-17)
P _vlaww—oy
e [2 +(w—-0,)]
%&:W235—w—oy +h93£—m—0y

R, [B+(w—-0)7 R,[2+(w—0,)]
lll lV
CRJE+w -0 R/[B+w-0)]

Then the Gauss curvature {; of the local wavefront at (u, v, w) is obtained by [193]
L6 = (Baaps — $2p)/ &, (6-18)
while the mean curvature £, by
Eu = (Paa + dpp)/ L) (6-19)

where ¢, = (¢> +¢>+¢/>)!/2. According to {g = {14, and &y = ({1 +»)/2, the two principal

curvatures {; and ¢, can then be determined by

0= 0u -y -2l (6-20)
L= lu+ X0 -2l (6-21)

The sign function y equals 1 or —1, the criterion for choosing which can be found in [193].

The corresponding principal directions in Cartesian coordinate system are calculated by

il = Gop - @+ (160 — Pua) - B (6-22)
ity = ({on — Bpp) - A + up - B (6-23)

Their normalized vectors are denoted as i1, and i1,, respectively. The two principal directions
are orthogonal to each other. Along the principal directions #; and i, the curvatures of local
wavefront are {; and {, respectively. And among ¢, and {;, one is the minimum curvature
of the wavefront, while another is the maximum curvature.

Fig. 6.3 shows the calculated result for the principal directions at each point of a saddle
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Fig 6.3 The calculated principal directions for the saddle wavefront in Fig. 6.2(b).

1so-phase surface.

Till now, the amplitude, phase, direction, principal curvatures and principal directions
of each light ray which characterizes a local wavefront of an elliptical Gaussian beam can
be obtained. These light rays illuminate the concerned particle; and then, they are subjected

to continual reflections and refractions by the particle.

It should be noted that the coordinate system (i, ¥, w) which describes the beam may
be different from the coordinate system which describes the particle. Suppose the particle is
described in the Cartesian coordinate system (X, y,Z) and centered at O : (0, 0, 0), while co-
ordinate system (i, ¥, w) which describes the Gaussian beam is centered at Og : (xg, Yg, 2G)

as shown in Fig. 6.4.

Fig 6.4 Two coordinate systems established respectively for the particle and the beam.
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The position vector of a point Q : (X, Yo, Z0) in the system of (X, ¥, Z) is expressed as
—) N R R
O0Q = xpX + o9 + 202 (6-24)

. - R .
where xj, yo and z are the projections of OQ on X, y and Z, respectively. Then, the vector

from Og to the point Q, O Q, is calculated in the system of (X, §,Z) by OQ — OOg. That is:

% N N N
06Q = (X0 = x6)X + (Yo = ya)y + (20 — 26)2 (6-25)
% .
Then, the components of OgQ along i, ¥ and W are obtained through:
OgQ it = (xo = x6)X - i+ (Yo = yg)y - it + (20 — 26)Z - .
(6-26)

% N N A N N A N
O0cQ -V = (X0 = X)XV + (o= ye)y -V + (20 —26)2 - ¥
—_—

OcQ-w=(x0—xc)X - W+ o= Ye)) - W+ (20 —26)2- W
Finally, the point Q of coordinates (xo, yo, Zo) in the particle system (%, ¥, Z) is expressed in

the beam system (i1, v, W) as:

Up (@-x)y (a-y) (@-2)||x —xg
vl|l=[0-%) -5 @-D||yv-yc (6-27)
wo| [W-%) W-9) W-2)[z0— 2

On the other hand, suppose the direction of a light ray in the beam system is:

k =k, +k,d+ kW (6-28)

where k,, k, and k,, are the projections of the normalized wave vector kon i, ¥ and W,

respectively. In the particle system (&, 9, Z), the unit vector which has the same direction as

k is obtained by

k-2=kp -2+kV-2+kW-%
k-y=kit-9+kd-9+kw-9 (6-29)
k-2=kp-2+kd-2+kW-2

Then, the direction of the concerned ray in the particle system (X, , ) is obtained as
k=kai+kd+kz (6-30)
where the k., k, and k, are calculated according to

ke [@-@) (-9 @)k,
k=100 G-9 G W)k

k. 1E-@) @-9) @-W)]]ke

(6-31)
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6.2 Phase shift due to optical path

For a particle illuminated by an elliptical or a circular Gaussian beam, the phase shifts
of a scattered ray due to reflections and focal lines can be calculated in the same way as
that for the scattering of a plane wave, which have been discussed in detail in Secs. 3.2.3
and 4.5, and will not be repeated here. However, it is worth noting that for a shaped beam,
the incident light rays which characterize the beam are different in phase. According to Eq.
(6-3), the phase is dependent on the spatial position (i, v, w), indicating that the formula
for the phase shift due to optical path proposed in Eq. (3-25) needs an amendment when a
shaped beam is used as the light source.

The Gouy shift terms tan‘l(W;—uO“) and tan‘l(wg—f)") in Eq. (6-3) can be interpreted as a
phase difference between the elliptical Gaussian beam and a plane wave of equal wavelength
and identical propagation direction [161]. Thus, the reference ray is chosen such that it has a
planar wavefront propagating in the w direction (axial direction of the Gaussian beam); after
passing through the particle center, the reference ray emerges out in the same direction as
the concerned scattered ray. Fig. 6.5 illustrates an example for calculating the optical path

of a p = 1 ray relative to the reference ray.

Reference ray w, O

Fig 6.5 Schematic diagram for calculating the optical path of a scattered ray relative to the reference ray
(dotted blue line) in the 3D scattering of a shaped beam.

On the particle surface, suppose an illuminated point Wy : (xo, Yo, z0) as shown in Fig.
6.5. The coordinates of W, in the beam system, (i, vy, ), can be obtained according to the
Eq. (6-27). Then, the phase of the incident ray which characterizes the elliptical Gaussian
beam at W, is calculated by substituting (u, vy, wp) into Eq. (6-3):

¢i = ¢(uo, vo, Wo) (6-32)
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The phase shift due to optical path for a p-order scattered ray at its emergent point is
calculated according to the phase at the incident point ¢; and the optical path it has experi-

enced inside the particle, that is

—

2 T
by =di=m Y s, (6-33)
=0

For an externally reflected ray (p = 0) at its emergent point, ¢, is simply equal to the ¢,
since it has no extra optical path compared to the incident ray. s; is the geometric length
from the interaction point W; to W, ;. The negative sign indicates that the phase lags for a
longer optical path. The emergent point of a p-order scattered ray is denoted as W, while

the emergent direction is denoted as k,.

The phase of the reference ray is calculated at N,, where N, is a point on the reference
. f— A~
ray and satisfies W,N,, L k,, as

2n
¢ref = _70-;7 (6'34)

% ~ . . .
where o, = OW,, - k,, as illustrated in Fig. 6.5.

Finally, the phase shift due to optical path of a p-order scattered ray relative to the

reference ray is obtained as
¢p,0P = ¢p - ¢ref
2 & (6-35)
= ¢(ug, vo, Wo) + 31 [Up — mz sj)
=0

6.3 Comparison with GLMT for a spherical particle

Before the calculation for particles of complex geometry, the proposed method is firstly

examined by comparing with GLMT for the scattering by a spherical particle.

The radius of the spherical particle is set as 25 wm, while its refractive index relative
to the air is denoted as m. The incident Gaussian beam has a circular light spot of beam-
waist radius 10 um, namely rg, = rp, = 10 um and O, = O, = Og. The beam center Og
coincides with the particle center O. The beam coordinate system (iz, ¥, W) and the Cartesian
coordinate system (&, 9, Z) are set such that w = X, & = y and ¥ = Z. Fig. 6.6 shows the
configuration in calculation. The scattering angle 6 is counted in the xy plane from .

Fig. 6.7 shows the comparison results for the scattered intensity by the dielectric spher-
ical particle of different refractive indices. Due to symmetry, the scattering diagrams in any

two scattering planes (the planes containing the beam axis w = X) are the same. Thus,



6.3 Comparison with GLMT for a spherical particle 103

Fig 6.6 Configuration in calculating the scattering of circular Gaussian beam by a spherical particle.

one needs only to calculate the scattering of the light rays inside one scattering plane, for
example, the scattering in the xy plane. The transverse electric (TE) polarization is under
consideration, that is, the incident electric vector is linearly polarized along the z axis (ver-
tical to the paper plane), with Ey, = 1 and Ej,, = 0. In VCRM, the scattered rays of orders

p < 7 are taken into account.

Table 6.2 Parameters of the circular Gaussian beam in Fig. 6.7.

Beam axis Polarization ro,/um ro/um  O;/um Oy/um A/nm

X 2 10 10 0 0 632.8

One can see that the agreement is rather satisfying. Since the effect of diffraction is
not within the scope of the current thesis, so comes in the difference in the forward region
(6 < 2.5°). The size parameter of the spherical particle in Fig. 6.7 is only about 250; for

larger particles, the agreement would be better.

Besides, it should be noted that for such a tightly focused beam, the characterization
by rays may bring about inaccuracy, especially near the beam waist. For this reason, in the
following calculations, the beam waist in the plane where the beam is tightly focused is set

far away from the particle.

Although the VCRM provides only an approximation solution to the light scattering, it
has distinct advantage over the GLMT in the aspect of nonspherical particles: the VCRM
only requires the particle surface to be smooth. The following parts of this chapter deal with

the 3D scattering of elliptical Gaussian beam by a real liquid jet of complex shape.
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Fig 6.7 Comparison of VCRM with GLMT for the scattered intensity of circular Gaussian beam by a
spherical particle of different refractive indices m. For clarity, the intensity by VCRM has been shifted by
a factor of 10.
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6.4 Scattering of an elliptical Gaussian beam by a real jet

Here we take the liquid jet modeled in Sec. 5.1 as the scatterer. As has already been
discussed, the light scattering by a real liquid jet can hardly be solved by the analytical mod-
els or the existing numerical methods. In the following parts of this chapter, the scattering
of elliptical Gaussian beam by a real liquid jet in 3D space will be simulated and analyzed
based on VCRM.

The research on the scattering of elliptical Gaussian beam by a liquid jet is motivated
primarily by the need for measuring the jet properties (size, refractive index or instability)
by optical method. The beam-waist radius of the incident Gaussian beam in the plane con-
taining the jet axis is preferred to be small, so that the scattering light from different parts
of the jet can be distinguished. A typical configuration for such an elliptical light spot is
presented in Fig. 6.8(a).

The jet axis coincides with the z axis of Cartesian coordinate system, while the beam
axis is defined as the x axis (perpendicular to the paper plane in Fig. 6.8(a)). The incident
beam is linearly polarized along the z axis (Ey, = 1 and Eo, = 0)>. The relative refractive
index of the jet is 1.3322 for wavelength 4 = 632.8 nm. The beam-waist radius along the
jet axis, rq,, is 0.4 mm, while the beam-waist radius along the § axis, roy, is 1.6 mm. The
divergence angle in the xz (vertical) plane, y, = A/xr,, is 0.029°, while the divergence angle
in the xy (horizontal) plane, y, = A/nro,, is 0.007°. The beam centers in the horizontal and
vertical planes, O, and O, are set at x = 0 (on the jet axis) and x = —30 cm, respectively.
The distance of the center of light spot from the exit, denoted as 4, is 3 mm as shown in Fig.
6.8(a).

Table 6.3 Parameters of the elliptical Gaussian beam in Fig. 6.8.

Beam axis Polarization ro,/mm ro/mm O,/mm Oy/mm A/nm

X Z 0.4 1.6 -300 0 632.8

At the incident points, the directions, phases and amplitudes of wave, and the principal
curvatures and principal directions of wavefront are determined according to Sec. 6.1. Then,
based on the calculation method proposed in Chapter 4, the direction, phase, amplitude,
polarization and divergence factor for each scattered ray and, the final interference intensity
of all scattered rays in the 3D space can be obtained.

Fig. 6.8(b) shows the simulated result for the scattered intensity of the elliptical Gaus-

3 Analogous to the TE incidence in the scattering by a cylinder, here the polarization of incident beam is set along the
jet axis (z axis).
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(b) Scattering field

Fig 6.8 Simulated result of the 3D scattered intensity of elliptical Gaussian beam by a real jet: (a)
the profile of the incident elliptical Gaussian beam on the jet; (b) the scattering field near the first- and
second-order rainbows. For clarity, the intensity of the p = 0 and p = 3, [y and /3, have been amplified
by a factor of 10.
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sian beam by the jet. ¢ and ¢ are the azimuth angle and the elevation angle, respective-
ly. Here the focus is put on the scattering field near the first- and second-order rainbows
(p = [125°,141°])).

Since the radial range of a Gaussian beam has no boundary in theory, we need to trun-
cate the radial range and just retain the main part of energy in calculation. Here, the radial
range of the incident Gaussian beam is truncated at 1.5 times of the beam-waist radius,
where the light intensity falls to 1.11% of its axial value. This truncation sets a limit to the
observation range (the scattered light has a limited extent along the ¢ axis), but has little

effect on the precision of results since only the trivial part of energy is cut off.

As shown in Fig. 6.8(b), the elevation angle ¢ of the p = 0 scattered light ranges
approximately from —1.2° to —0.9°. Besides, because of the Gaussian profile of incident

beam, the energy of the p = 0 scattered light is mainly distributed at yy = —1.0°.

Considering that the divergence angle of the incident beam is only 0.029° in xz plane,
the elevation angle of scattered light is mainly related to the surface curvature of jet along
the z axis. In this aspect, the scattering of an elliptical Gaussian beam with very small
divergence angle is analogous to the scattering of a wave of planar wavefront. However,
there is notable difference here because an elliptical Gaussian beam, even with a near-zero
divergence angle, has non-uniform intensity. The Gaussian profile of intensity leads to the
Gaussian-like distribution of the rainbow fringes along the axis of ¢, as shown in Fig. 6.8(b).
Please notice the difference from the rainbow fringes for a wave of planar wavefront and

uniform intensity given in Fig. 5.8.

As the incident Gaussian beam illuminates the jet at a different position, the corre-
sponding scattering field shall be altered because the stream-wise curvature of jet surface
is changed. Fig. 6.9 shows the scattering field when the incident position moves down to
h = 3.5 mm. It is found that as the distance of beam center from the exit of orifice is in-
creased, the deviation of scattered light from the horizontal plane (i = 0°) becomes smaller.
For example, the p = 3 scattered light for 2 = 3.0 mm (shown in Fig. 6.8(b)) lies in the
region where i ranges approximately from 2.6° to 3.6°, while the p = 3 scattered light for
h = 3.5 mm (shown in Fig. 6.9) is less elevated with i ranging approximately from 2.5° to
2.9°. This is attributed to the decrease of the stream-wise curvature of jet surface. Besides,
as the expansion along the ¢ axis becomes shrunken, the intensity of the scattered light is
greater. For example, even without amplification, the second-order rainbows in Fig. 6.9 can

be observed clearly.

Furthermore, the 3D scattered intensity of a circular Gaussian beam by the jet is calcu-
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Fig 6.9 The scattering field near the first- and second-order rainbows when the incident position moves
down to & = 3.5 mm.

lated as shown in Fig. 6.10. The beam-waist radius of the incident circular Gaussian beam
is 0.4 mm, comparable to the transversal radius of jet. The beam centers O, and O, are set

on the jet axis. The other calculation parameters are the same as those used in Fig. 6.8(a).

Table 6.4 Parameters of the circular Gaussian beam in Fig. 6.10.

Beam axis Polarization ro,/mm rp/mm O,/mm O,/mm A/nm

X b4 0.4 0.4 0 0 632.8

From Fig. 6.10(b), one can see that for this circular Gaussian beam, the rainbows
have much lower intensity than those in Fig. 6.8(b). This is because the first- and second-
order rainbows are formed by the incident light adjacent to the edge of particle [166, 194,
195], where the incident circular Gaussian beam with a beam-waist radius comparable to the

particle radius has only 1/e? of its central intensity.

6.5 Effect of divergence angle on the scattering field

The preceding section covers the results for the 3D scattered intensity of an elliptical
Gaussian beam whose divergence angle is less than 0.03° in both the vertical and the hor-
izontal planes. For a beam of a larger divergence angle, the propagation directions of the
incident rays will be distinctly different, and the scattering field might present some interest-

ing phenomena which do not exist in the scattering of a plane wave or an elliptical Gaussian
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(b) Scattering field

Fig 6.10 Simulated result of the 3D scattered intensity of a circular Gaussian beam with beam-waist
radius comparable to the jet radius. (a) the profile of the incident circular Gaussian beam on the jet; (b)
the scattering field near the first- and second-order rainbows. For clarity, the intensity of p = 0 and p = 3,
Iy and I3, have been amplified by a factor of 10.
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beam of small divergence. In this section, the influence of divergence angle on the scattering
field is investigated.

Firstly, consider an elliptical Gaussian beam which propagates along the x axis has a
considerable divergence angle in the plane containing the jet axis (xz plane). The beam-
waist radius in the xz plane, r(,, is set as small as 8 um (divergence angle y, = 1.44°).
The beam profile in this plane is shown in Fig. 6.11(a). To focus on the influence of the
divergence angle in the vertical xz plane, the divergence angle in the horizontal xy plane,
Yy, 1s fixed as 0.007°, the same as that in Figs. 6.8 and 6.9. The beam-waist center in the
xz plane, O, is at x = —20 mm, while the beam-waist center in the xy plane, O,, is set at
x = 0 (coincides with the jet axis). The intensity profiles of this elliptical Gaussian beam at
different transversal sections are presented in Fig. 6.11(b). They are sampled respectively at
x = =20 mm (beam-waist center in xz plane), x = —10 mm and x = 0O (the position of the

jet).

Table 6.5 Parameters of the tightly focused elliptical Gaussian beam in Fig. 6.11.

Beam axis Polarization ro,/mm  roy/mm O;/mm O,/mm A/nm

§x 107 1.6 -20 0 632.8

[\

X

E)
=]
) 0
y [mm] y [mm] y [mm]
(x=-20 mm) (x=-10 mm) (x=0)

(b) transversal profiles of intensity

Fig 6.11 An elliptical Gaussian beam with a considerable divergence angle in the vertical xz plane: (a)
the beam diameter in the vertical xz plane; (b) the intensity profiles in the transversal yz planes sampled
at three positions.

This beam illuminates the jet at a position of 5 mm away from the exit of orifice (h = 5
mm). The calculated scattering field of this tightly focused elliptical Gaussian beam by the
jetis shown in Fig. 6.12.

Because of the considerable divergence angle in xz plane, the directions of the incident
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Fig 6.12 Single-order scattered intensity of the tightly focused elliptical Gaussian beam modeled in Fig.
6.11 by the liquid jet. For clarity, I, and /5 have been amplified by a factor of 10.

rays which characterize the elliptical Gaussian beam are of considerable divergence in the
xz plane, that is, the z-components of wave vectors become significant. Consequently, the
elevation angles of scattered rays, which are directly related to the z-components of the
scattered wave vectors, become much different from those in the scattering of an elliptical
Gaussian beam with small divergence angle. When compared to the results in Fig. 6.8(b)
and Fig. 6.9 where vy, = 0.029°, the scattering field for y, = 1.44° as shown in Fig. 6.12 has
a notable feature: the scattered light is expanded along the ¢ axis and the scattered light of
orders p = 2 and p = 3 overlap with the light of p = 0.

The comparison of Fig. 6.12 with Figs. 6.8(b) and 6.9 indicates that the superposition
or separation of the scattered light of different orders can be regulated by changing the di-
vergence angle of the incident beam. To further prove this, Fig. 6.13 presents the calculated
scattering fields for two different divergence angles. In Fig. 6.13(a), the beam-waist radius
in xz plane ry, is 6 um and the corresponding divergence angle vy, is about 1.92°, while in
Fig. 6.13(b) the beam-waist radius ry, is 16 um and 7y, is decreased to 0.72°. The other

parameters are the same as those in Fig. 6.12.

From the comparison in Fig. 6.13, one can see that for an incident elliptical Gaussian
beam which has a larger divergence angle in the xz plane (y, = 1.924°, Fig. 6.13(a)), the
scattered light has a greater range of elevation angle i and, the scattered light of different

orders overlap and superpose with each other. But in Fig. 6.13(b) where the divergence
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Fig 6.13 Simulated 3D scattered intensity for two elliptical Gaussian beams of different divergence
angles in xz plane.
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angle vy, is lessened, the scattered light of different orders are separated in the way similar
to the case when a plane wave illuminates the jet, where the stream-wise curvature of jet

surface becomes the dominant factor for the separation.

6.6 Spatial characteristics of the 3D scattering field

It is well known that the angular distribution of the scattered intensity near the first-
order rainbow of a spherical droplet can be decomposed into two components: the “low-
frequency” component (referred to as the Airy structures) and the “high-frequency” compo-
nent (Ripple structures), which are attributed to the interference of the p = 2 scattered rays
themselves and the interference of the p = 0 rays with the p = 2 rays, respectively. This
decomposition can be achieved by using a femtosecond laser [196] where the scattered light
of different orders are separated in the time domain. With the calculation method for 3D
scattering (Chapter 4), the calculation for the scattered light by a large nonspherical particle
can be achieved in the 3D space, which enables us to separate the scattered light of different
orders in the space domain.

As discussed in the preceding Secs. 6.4 and 6.5, by adjusting the divergence angle
of the incident elliptical Gaussian beam, the scattered light of different orders from a real
liquid jet may be separated from or superpose with each other in the 3D space. Here, the
scattering field given in Fig. 6.13(a) is taken for an example. The zoomed view of the
scattered intensity near the first-order rainbow is shown in Fig. 6.14. For the convenience of

the readers, the parameters for the elliptical Gaussian beam are tabulated in Table 6.6.

Table 6.6 Parameters of the elliptical Gaussian beam in Figs. 6.13(a) and 6.14.

Beam axis Polarization ro,/mm  roy/mm O,/mm O,/mm A/nm

X Z 6x107° 1.6 -20 0 632.8

From Fig. 6.14, one can see that the elevation angle i of the p = 0 scattered light
ranges from —3.8° to 2.0°, while the elevation angle of the p = 2 scattered light ranges from
about —1.5° to 4.4°. Along the sampled line (A) where ¢ = 139.0°, the intensity distribution
of the p = 0O scattered light is compared with that of the p = 2 light in Fig. 6.15. In the
overlapping region (—1.5° < ¢ < 2.0°), the scattered light of p = 2 and p = 0 superpose and
interfere with each other. Consequently, this first-order rainbow shows different interference
patterns in the two regions: ¢ > 2.0° and ¢ < 2.0°.

In the region where ¥ > 2.0°, the rainbow fringes result from the interference within

the p = 2 scattered rays. Thus, only the Airy structures are formed in this region. The
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Fig 6.14 Zoomed view of the interference fringes near the first rainbow.
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Fig 6.15 Single-order intensity of the p = 0 and p = 2 scattered light along the sampled line (A).
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Fig 6.16 The rainbow fringes sampled at four different elevation angles.
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intensity along the sampled line (a) where = 2.2° is shown in Fig. 6.16(a). One can see
that the first-order rainbow contains only the “low-frequency” Airy structures for ¢ = 2.2°.

As to the overlapping region, the rainbow fringes are formed by the superposition be-
tween the p = 2 and the p = 0 scattered rays. The intensity along the sampled line (b)
where v = 1.0° is shown in Fig. 6.16(b). The notable difference from the interference
fringes in Fig. 6.16(a) is the appendage of the “high-frequency” Ripple structures on the
“low-frequency” Airy structures. But, the Ripple structures are still not distinct because at
this elevation angle, the intensity of the p = 0 scattered rays is still much lower compared to
the p = 2 rays as given in Fig. 6.15. As we go downward further till = 0°, the intensity of
the p = 2 rays is decreased, while the intensity of the p = O rays is increased. Consequent-
ly, their interference effect becomes more distinct as shown in Fig. 6.16(c). Furthermore,
according to Fig. 6.15, the intensity of the p = 2 rays is roughly equal to that of the p = 0
rays when ¢ = —1.0°. Along the sampled line (d) where ¢ = —1.0°, the rainbow fringes are
presented in Fig. 6.16(d). One can see that the interference effect between p =2 and p = 0
rays is the most distinct for ¢ = —1.0°.

It concludes from the Figs. 6.14 and 6.16 that the separation and the superposition of
the scattered light of different orders can be coexisting in the scattering of elliptical Gaus-
sian beam by a real liquid jet. This analysis in the space domain helps to have a better

understanding of the 3D scattering of shaped beam by a large nonspherical particle.

6.7 Summary

In this chapter, the ray model for incident elliptical Gaussian beam has been proposed
in the framework of VCRM. Not only the propagation direction, amplitude and phase, but
also the principal curvatures and principal directions at each point of the incident wavefront
have been successfully characterized by light rays. It is now possible to calculate the 3D
scattered intensity of laser beam by a large particle of any smooth surface based on VCRM.

After the examination by comparing with GLMT for the scattering by a spherical par-
ticle of different refractive indices, the proposed method was then applied to solving and
analyzing the 3D far-field scattered intensity of elliptical Gaussian beam by a real liquid
jet of complex shape. It has been found that by changing the divergence angle of the in-
cident elliptical Gaussian beam, the scattered light by a real jet for different orders p can
be separated from or interfere with each other, resulting in different scattering patterns. A
quantitative analysis has also been made for the spatial characteristics of the scattering field

when a tightly focused beam illuminates the jet.
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It is wished to promote the understanding of the 3D scattering of laser beam by a large
nonspherical particle and to provide methodology for solving the 3D scattered intensity of

other shaped beams by large nonspherical particles under the framework of VCRM.
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Chapter 7 Conclusions and perspectives

This thesis is devoted to the development of vectorial complex ray model (VCRM) for
solving the 2D and 3D scattered intensity of plane wave or shaped beam by large particles
of any smooth surface. This chapter draws the conclusions of the current thesis and gives

perspectives in future studies.

7.1 Conclusions

For a nonspherical particle of size much larger than the wavelength (size parameter
ranging from several hundreds to thousands or even larger), the calculation for the scattered
intensity of light is a formidable or even impossible task using the exact numerical methods
such as DDA, FDTD and T-matrix. One feasible way is to approximate the incident light
wave as a bundle of rays and then, to study the interaction of rays with the particle. In
a GOA method, the wave-front curvature of light wave is not included, making it difficult
to calculate the shift in amplitude and the shift in phase due to the divergence and conver-
gence of wavefront. In the VCRM, developed recently in the Coria institute & University
of Rouen Normandy, the concept of wave-front curvature is introduced to the ray model of
light to describe the wave-front divergence or convergence. Moreover, the ray directions
and the Fresnel coeflicients are calculated by the wave vectors and their components, which
considerably simplifies the calculation when a nonspherical particle is involved.

For the flexibility and efficiency merits of VCRM, this thesis aimed to extend the VCR-

M to solving the following issues and has achieved substantial progress:

1. The 2D light scattering by an infinite cylinder of arbitrarily smooth cross section. In
the high-frequency limit, this thesis has provided a solution, based on VCRM, to the
whole scattering field by an infinite cylinder of any cross section. The proposed method
is flexible and, in principle, only requires the cross section of cylinder to be smooth. It
permits now to calculate and analyze the scattering characteristics of light by an infinite

cylinder with cross section ranging simple to complex.

Based on the proposed method, a numerical study has been performed on the light scat-
tering by composite elliptical cylinders (CECs), whose cross sections approximate the
shapes of natural raindrops. The effects of shape deformation, refractive index and the

direction of incident wave on the scattering patterns of CECs have been investigated and



120 Chapter 7. Conclusions and perspectives

quantitatively analyzed, which provided insight into how these factors affect the appear-

ance of a natural rainbow.

2. The 3D light scattering by a large particle of any smooth surface. This thesis reported the
first realization of a calculation method in the framework of VCRM for the 3D scattered
intensity by a large nonspherical particle. The problems such as the ray tracing, the cal-
culation of the divergence factor, the phase shifts due to focal lines and optical path, and
the cross polarization effects encountered in calculating the 3D scattering field have been
addressed. Moreover, a triangulation-based interpolation algorithm has been proposed
to resolve the bottle-neck problem for VCRM to address the interference of light in 3D
space. The proposed calculation method is directly applicable to calculating the scattered

intensity in any direction of 3D space by a large particle of any smooth shape.

3. The simulation of the 3D scattering field by a real liquid jet and experimental examina-
tion. In this thesis, the calculation for the 3D far-field scattered intensity of plane wave by
a real liquid jet has been achieved with the proposed calculation method, which is based
on VCRM while allows to calculate the scattered intensity in 3D space. It has been found
that due to the stream-wise curvature of jet surface, the scattered light of different orders
are naturally separated in the 3D space. Consequently, the interference field shows a very
interesting pattern that has not been found in the scattering by an infinite cylinder or a

sphere.

An experiment has also been carried out to verify the calculation method proposed for 3D
scattering and to verify the calculation result. By using a 4f optical system and a spatial
filter, an incident wave of limited width 1 mm and of approximately uniform intensity
and planar wavefront has been generated, which complied with the incident wave used
in simulation. Good agreements between experiment and simulation have been found
not only on the spatial separation of different scattering orders but also on the scattered

intensity and the angular extension ranges.

4. The 3D scattering field of elliptical Gaussian beam by a real liquid jet. A ray description
method for incident elliptical Gaussian beams has been proposed in the framework of
VCRM, thus making it possible to calculate the 3D scattered intensity of laser beam by a
large particle of any smooth surface. The propagation direction, amplitude, phase, prin-
cipal curvatures and principal directions at each point of the incident elliptical Gaussian
beam are characterized with a light ray. Then, all the light rays that represent the incident

elliptical Gaussian beam illuminate the particle and are scattered to all possible directions
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of 3D space. After the validation by comparing with GLMT for the light scattering by
spherical particles, the 3D far-field scattered intensity of elliptical Gaussian beam by a

real jet which has a complex shape has been simulated and analyzed.

The influence of the beam divergence angle on the spatial distribution of the scattering
field near the first- and second-order rainbows has been investigated. It has been found
that by changing the divergence angle of the incident elliptical Gaussian beam, the scat-
tered light by a real jet for different orders p can be separated from or superpose with
each other, resulting in different interference patterns. A quantitative analysis has also
been made for the spatial characteristics of the scattering field when a tightly focused

beam illuminates the jet.

7.2 Perspectives

One major innovation of the current thesis is the first realization of an algorithm in
the framework of the VCRM to calculate the 3D scattered intensity, in the high-frequency
limit, by a smooth particle of any shape. Although the proposed method was devoted to the
3D scattered intensity by a real liquid jet in this thesis, the calculation for the 3D scattered
intensity of plane wave or elliptical Gaussian beam by other nonspherical particles, natural

raindrops/droplets for example (see Fig. 7.1), should not be too difficult.

0.5mm 1mm 1.5mm 2.5mm

Fig 7.1 The shapes of natural raindrops with increasing radii (from [6]).

Another practical application is the calculation for the temporal-spatial distribution of
the light rays transmitted from sea into air or from air into sea. In the presence of wind, the
sea surface shows a wavy profile of ups and downs as shown in Fig. 7.2. The JONSWAP
spectrum [197] is used here. The wind region is set as 20 km. For wind speed being 4.4
m/s (class-3 wind), the power spectral density is mainly concentrated upon the angular fre-
quencies ranging from 1.41 to 9.39 rad/s. The corresponding wavelength of the wavy sea
surface varies approximately from 0.70 m to 30.97 m. Since the roughness of sea surface is
generally much larger than the wavelength of the commonly used 532 nm green light, it is

reasonable to describe the incident laser beam by a bundle of light rays.
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Fig 7.2 A wavy sea surface when the wind speed is 4.4 m/s.

Fig. 7.3 shows the preliminary results for the temporal-spatial distribution of the light
rays transmitted from the sea, observed at the height of a satellite (the turbulence of air is
not included). The spot of the incident beam on the sea surface is of 2 x 2 m?. The refractive
index of the sea water relative to the air is 1.333 and the wavelength of light in air is 532 nm.
For comparison, the right column of Fig. 7.3 presents the results when wind speed reaches
12.3 m/s (class-6 wind). One can see that the wavy sea surface has a significant influence on
the spatial distribution of the transmitted light spot; and the spatial distribution varies with
the time 7. As the wind speed is increased, the transmitted light spot has a larger deviation
from the center of receiving region, as the pentagram shows. It indicates that the acceptable

probability of optical signal drops down when wind speed is increased.

More work is needed in future to obtain the polarization and the 3D intensity distribu-
tion of the coherent/incoherent light transmitted from sea surface. The author believes these

issues could be well solved with the calculation method proposed in this thesis.

The calculation method proposed in this thesis for the 2D and 3D scattered intensi-
ty by large nonspherical particles may serve as the foundations for addressing the inverse
problems, namely the measurements for the size, geometry and refractive index of relevant

particles.

Besides the perspective applications, the fundamental researches on the physical prob-
lems of the ray model of light (including the GOA and VCRM) are also of significant impor-
tance. One challenging problem in the ray model of light is to calculate the light intensity
near caustics. To achieve this, the combination of geometrical optics with physical optics is
one interesting and significant work in the future. Another problem to be solved is the in-

clusion of surface waves. The author believes that the breakthrough of these two bottle-neck
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Fig 7.3 Preliminary result for the temporal-spatial distribution of the light rays transmitted from the
sea at the height of a satellite (485 km). The colormap illustrates the received photon numbers (relative
values). The wind speeds for the left column and the right column are 4.4 m/s and 12.3 m/s, respectively.
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problems, which exist in all ray models of light, will make the VCRM a powerful tool in
solving the light scattering by particles/targets
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RESUME

Cette these est dédiée a une étude de diffusion de la lumiere dans I’espace (3D) d’une
onde plane ou d’un faisceau laser, dans le cadre du modele tracée de rayons vectoriels com-
plexes (VCRM Vectorial Complex Ray Model en anglais), par une grosse particule de sur-
face lisse. Les principaux travaux réalisés se résument comme suit :

Dans un premier temps, une méthode de calcul pour la diffusion 2D de I’onde plane par
un cylindre infini de section quelconque est proposée. Cette méthode est ensuite appliquée
a la simulation de I’intensité diffusée de I’onde plane par un cylindre elliptique composé
(CEC), dont la section est formée par deux demi-ellipses de parametres différents. Les effets
de la déformation, de ’indice de réfraction et de la direction de I’onde incidente sur les
champs diffués, en particulier les positions des arcs-en-ciel ainsi que leurs dispositions de
I’intensité, sont analysées quantitativement.

Puis, les travaux se sont étendus a la diffusion dans 1’espace (3D) d’une onde plane par
une particule de forme quelconque en tenant en compte les déphasages dus aux lignes focales
et au chemin optique, la divergence et la convergence du front d’onde, et la polarisation
croisée. Un algorithme d’interpolation basé sur la triangulation est développé qui permet de
prendre en compte I'inférence des rayons diffusés dans 1’espace.

La méthode proposée pour la diffusion 3D est appliquée a la simulation de 1’intensité
diffusée d’une onde plane par un jet de liquide réel. Ceci a permis d’interpréter le mécanisme
de diffusion dans I’espace: 1’analyse de mode de diffusion, la séparation ou I’interférence
de différents ordres. Une expérience est menée pour vérifier la méthode de calcul et pour
examiner les résultats simulés.

Afin de prendre en compte la forme du faisceau incident, une méthode de description
d’un faisceau gaussien elliptique incident par rayons est proposée, qui permet de calculer
I’intensité diffusée en 3D d’un faisceau gaussien circulaire ou elliptique par une grosse par-
ticule. Le calcul de I’intensité diffusée en champ lointain d’un faisceau gaussien elliptique
par un jet de liquide réel est réalisé avec succes. Les champs de diffusion aux alentours des
arcs-en-ciel du premier et du second ordres pour les faisceaux incidents de différents angles

et divergences sont étudiés.

Mots-clés: diffusion de la lumiere tracée de rayons vectoriels complexes, diffusion tridi-

mensionnelle, grosses particules non sphériques, optique géométrique, jets liquides
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ABSTRACT

In the framework of vectorial complex ray model (VCRM), this thesis aims to solve the
three-dimensional (3D) scattered intensity of plane wave or shaped beam by a large particle
of any smooth surface. The main work and achievements are summarized as follows:

As the first step, the calculation method based on VCRM for the 2D scattered intensity
of plane wave by a cylinder of any smooth cross section is proposed. And the proposed
method is applied to solving the scattered intensity of plane wave by a composite elliptical
cylinder (CEC), whose cross section can take various shapes ranging from circular, elliptical
to highly-deformed. The effects of shape deformation, refractive index and incident direction
on the scattering fields, especially on the rainbows, are quantitatively analyzed.

Based on VCRM, the ray tracing, the phase shifts due to focal lines and optical path,
the divergence and convergence of wavefront, and the cross polarization in 3D scattering
are addressed. An interpolation algorithm based on triangulation has been developed which
permits to take into account the interference of 3D scattered rays, thus breaking through the
bottle-neck problem for VCRM in the extension to 3D scattering.

The proposed method, which is based on VCRM while allows to calculate 3D scatter-
ing field, is applied to simulating the 3D scattered intensity of plane wave by a real liquid
jet. Furthermore, taking advantage of the ability of VCRM for interpreting the scattering
mechanism, a systematic analysis is made for the scattered light of different orders, in re-
gard to their separation or interference in 3D space. An experiment is carried out to verify
the proposed method for 3D scattering and to examine the simulated results.

In the framework of VCRM, a ray description method for incident elliptical Gaussian
beam is proposed, thus providing one feasible way to calculate the 3D scattered intensity of
elliptical or circular Gaussian beam by a large particle of any smooth surface. The calcu-
lation for the 3D far-field scattered intensity of elliptical Gaussian beam by a real liquid jet
is successfully achieved. The scattering fields near the first- and second-order rainbows for
incident beams of different divergence angles are investigated in 3D space. These results as
well as the proposed method open a promising way to characterize finely the structure of a

real liquid jet and particles of other complex surfaces.

Keywords: light scattering, vectorial complex ray model, three-dimensional scattering,

large nonspherical particles, geometrical optics approximation, liquid jets



	Acknowledgements
	List of Figures
	List of Tables
	Annotation of Symbols
	Abbreviations
	Chapter  1  Introduction
	1.1Research background and significance
	1.2Research status of light scattering by particles
	1.2.1Analytical methods
	1.2.2Numerical methods
	1.2.3GOA
	1.2.4VCRM

	1.3Main content and frame arrangement
	1.4The innovations

	Chapter  2  Light scattering by a circular cylinder or a sphere based on GOA
	2.1Overview
	2.2Light scattering by an infinite circular cylinder
	2.2.1Calculation method
	2.2.2Results and discussions

	2.3Light scattering by a spherical particle
	2.3.1Calculation method
	2.3.2Results and discussions

	2.4Summary

	Chapter  3  Light scattering by a cylinder of arbitrarily smooth surface based on VCRM
	3.1The difference of VCRM from GOA
	3.2Calculation method
	3.2.1Ray tracing
	3.2.2Amplitude
	3.2.3Phase

	3.3Description of the scatterer
	3.4Results and discussion
	3.4.1Scattering patterns for diverse deformations
	3.4.2Scattering patterns for varied refractive indices
	3.4.3Scattering patterns for different incident angles

	3.5Summary

	Chapter  4  Calculation method for the 3D light scattering by a large nonspherical particle
	4.1Overview of the difficulties in solving 3D scattered intensity
	4.2Ray tracing in 3D scattering
	4.3Curvature of wavefront
	4.4Cross polarization
	4.5Phase shift in 3D scattering
	4.6Interpolation of amplitude and phase in 3D scattering
	4.7Summary

	Chapter  5  The 3D scattering of plane wave by a real liquid jet and experimental examination
	5.1Introduction to a real liquid jet
	5.2Simulation of the 3D scattering field
	5.3Experimental setup
	5.4Comparison of simulated result with that by experiment
	5.5Summary

	Chapter  6  The 3D scattering of elliptical Gaussian beam by a real liquid jet
	6.1Ray model of elliptical Gaussian beam
	6.2Phase shift due to optical path
	6.3Comparison with GLMT for a spherical particle
	6.4Scattering of an elliptical Gaussian beam by a real jet
	6.5Effect of divergence angle on the scattering field
	6.6Spatial characteristics of the 3D scattering field
	6.7Summary

	Chapter  7  Conclusions and perspectives
	7.1Conclusions
	7.2Perspectives

	References
	Resume
	ABSTRACT

