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Introduction

One of the specific challenges for the design of aircrafts is to minimize the risk
of injury to the persons on board throughout the duration of a potential water
landing. To this effect, the motion of the aircraft along with the loadings
acting on it are growingly studied during the design phase. However, the
ditching process is extremely violent and challenging to solve numerically as
it encapsulates multiphase physics, fragmentation and complex dynamics of
the air-water interface.

Classical mesh-based Lagrangian methods have been used for the simu-
lation of airborne vehicle impact on water. Examples include the Finite El-
ement Method (FEM) used in the works of Vignjevic et al. [99], Pentecôte
et al. [89] and Ortiz et al. [85]. Yet, these mesh-based methods had a hard
time reliably solving this kind of violent impact problems, mainly due to the
prohibitively large distortion incurred by the meshes. The mesh-based Finite
Volume Method (FVM) was also used for the simulation of aircraft ditch-
ing, for instance in the works of Wick [106], Guo et al. [39] and Qu et al. [90].
Still, this approach is usually dependent on an interface tracking method (e.g.
Level-Set, Volume Of Fluids), and its accuracy is highly linked to the accu-
racy of the interface tracking.

The SPH method has recently been identified as a good candidate for sim-
ulating violent multiphase impact problems thanks to its mesh-less and La-
grangian properties. Indeed, the absence of a mesh within the SPH method is
a huge advantage for solving flows with violent deformations, since it avoids
altogether the problem of mesh distortion that plagues the other aforemen-
tioned numerical methods. Moreover, the Lagrangian formalism of the SPH
method omits the discretization of any convection term within the governing
equations. This aspect is particularly advantageous in the context of multi-
phase flows, since it prevents any diffusion of the interface between the flu-
ids, effectively suppressing the need of any interface tracking technique.

The SPH method was first introduced by Gingold and Monaghan [32]
and Lucy [59] to solve astrophysical problems, after which it was used for
flow simulations due to its relatively simple handling of complex interfaces,
especially when considered as free surfaces. The SPH method was extended
to model incompressible fluids through two approaches. The first approach
consists in treating them as “weakly-compressible” [71, 97] where the fluid
real sound speeds are replaced by appropriate numerical values that main-
tain low density variations, while a stiff equation of state is used to explicitly
link the pressure to the density. However, this approach classically suffers
from high-frequency oscillations that are detrimental to the resulting pres-
sure field. The second approach, called “incompressible SPH” (ISPH) and in-
troduced by Cummins and Rudman [22], enforces incompressibility through
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a divergence free velocity field via a pressure Poisson equation [14]. This ap-
proach helps eliminating the spurious oscillations of the pressure, but it is
computationally expensive since the Poisson equation needs to be solved for
each particle at each iteration.

The ISPH method has been extended to multiphase flows [43, 41]. Com-
binations of incompressible-compressible SPH methods also exist for simu-
lating water-air flows [57]. However, the weakly-compressible SPH formu-
lation is predominantly used within the SPH community in the multiphase
framework. Historically, Colagrossi and Landrini [18] presented in 2003 one
of the first multiphase SPH models, still used to this day, which was able to
handle air-water simulations at realistic density ratios of 1000. Bearing sim-
ilarities with [18], Grenier et al. [34, 35] derived a multiphase model based
on Lagrangian variational principles. Monaghan and Rafiee [75] presented
another SPH method for simulating multiphase flows with high-density ra-
tios. All of these models were validated on test cases involving a light and a
heavy phase, showing good results that agreed with the experiments or with
other numerical methods. However, they all use sound speeds in the light
phase that are larger compared to the heavy phase, which can be subject to
criticism as in reality the opposite is true, and also yielded to the presence of
high-frequency oscillations in the fluid domain.

Therefore, in view of these challenges, one of the aims of the present the-
sis is the development of a weakly-compressible multiphase SPH model, that
is able to handle interfacial flows with high density ratios. This model should
also be capable of handling the presence of a free-surface, which for instance
in the context of air-water flows, means that only the water phase is mod-
eled instead of both air and water, a potentially relevant choice whenever the
air is not expected to influence the solution. Moreover, the proposed model
should yield quality pressure fields, i.e. without the spurious oscillations
which are inherent to the weakly-compressible approach. Practically speak-
ing, the proposed model was implemented and validated on the SPH-Flow
software, which is a property of NextFlow Software and Ecole Centrale de
Nantes, co-developed with the support of CNR-INM.

The first chapter of this work is a bibliographical study which presents the
fundamentals of the SPH method and its application to the Euler equations.
Indeed, here the viscosity terms of the Navier-Stokes equations can be ne-
glected since, throughout this thesis, we will be dealing with high Reynolds
number problems, such as high speed water impacts. Then the classical sta-
bilization techniques used in SPH are highlighted, and special care is taken to
detail the boundary conditions in the multiphase SPH context. Also, all the
numerical tools (particle disordering, particle refinement) used throughout
this work are exhibited in the last section of this bibliographical study.

The second chapter starts with a survey of the main multiphase weakly
compressible SPH models present in the literature. Special care was taken
in highlighting the pros and cons of each model. Then, the proposed model,
called the Multiphase δ-SPH scheme, is fleshed out in detail in terms of its
governing equations and its stabilizing terms. An alternative derivation of
the proposed model will be provided, and its set of governing equations is
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compared to the first derivation. Later, the numerical stability of the Multi-
phase δ-SPH scheme is investigated, regarding the maximal stable time steps
depending on the sound speed ratio of the simulated phases.

Based on this knowledge, the validation of the proposed Multiphase δ-
SPH scheme is carried out in Chapter 3. A series of validation tests are per-
formed over three different benchmarks widely used in the SPH literature. A
fourth test case is introduced, featuring the water entry of a corrugated panel
involving the entrapment of an air cavity, showing how the proposed SPH
method is able to treat complex water impact events.

Later, a comparison between the proposed Multiphase δ-SPH scheme and
another Riemann-based SPH model is performed. First, the stability curve of
the Riemann-SPH model will be investigated and compared to the one of
our proposed model. Conclusions regarding the efficiency of each model
will be drawn out, including their respective computational costs. Then, the
test cases used to validate the Multiphase δ-SPH scheme in Chapter 3 are re-
run using the Riemann-SPH model, and a comparison is made regarding the
quality of the pressure field and numerical diffusion yielded by each model.

The fifth and final chapter is in direct link with the industrial context
of this work. Indeed, the present thesis is partly funded by the European
Commission under the Horizon 2020 research programme. It is part of the
SARAH (increased Safety And Robust certification for ditching of Aircrafts
and Helicopters) project, a collaborative endeavor aiming at establishing
novel simulation-based approaches to the analysis of aircraft and helicopter
ditching. Results of the SARAH project are expected to support the certi-
fication of future aircrafts and helicopters while enhancing the safety of air
transport in general.

Therefore, in Chapter 5 a numerical investigation of a ditching problem
using the SPH method is carried out. It is based on the experimental cam-
paign of Iafrati et al. [44], which highlighted the occurrence of cavitation in
the water depending on impact velocity. In this chapter, a simple yet effective
technique of cavitation capturing is proposed and validated through a series
of 2D and 3D fuselage ditching simulations.
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Chapter 1

SPH fundamentals

1.1 The governing equations

1.1.1 The Euler equations

The Euler equations are a simplified form of the Navier-Stokes equations in
the case of inviscid flows. They express the conservation of mass, momen-
tum and energy of a fluid medium. The mass conservation is described in a
Lagrangian form by the following equation:

dρ

dt
= −ρ∇ · u (1.1)

where
d
dt

is the material derivative, ρ and u are the fluid’s density and ve-
locity respectively, and ∇· denotes the divergence operator. The momentum
conservation equation reads:

du
dt

= −∇P
ρ

+ g (1.2)

where P and g are respectively the pressure and the gravity, and ∇ is the
gradient operator. In a Lagrangian formalism, the trajectory of a material
particle is described by:

dx
dt

= u (1.3)

In order to close the system of equations (1.1) and (1.2), an equation of
state is introduced to link the pressure to the density. In the present thesis,
the Cole equation of state [21] is used to this effect:

P =
ρ0c2

0
γ

[(
ρ

ρ0

)γ

− 1
]

(1.4)

where c0, ρ0 and γ are the fluid reference sound speed, nominal density and
polytropic coefficient respectively. By using this particular barotropic equa-
tion of state there is no need to solve an energy equation since the pressure
and the energy are assumed independent.
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Therefore, throughout this study we use the following system of govern-
ing equations: 

dx
dt

= u

dρ

dt
= −ρ∇ · u

du
dt

= −∇P
ρ

+ g

P =
ρ0c2

0
γ

[(
ρ

ρ0

)γ

− 1
]

(1.5)

1.2 The SPH method

1.2.1 The SPH interpolation

The SPH (Smoothed Particle Hydrodynamics) is a meshless method. It is
based on the discretization of the domain into scattered points which are
not linked together by connectivities, conversely to other classic numerical
methods (e.g. Finite Elements/Volumes). Thus, it is essential within the SPH
method to derive operators that can estimate the fields and their gradients
while being free from the constraints of a mesh.

The fundamental idea of the SPH interpolation is the approximation of a
field quantity f (x) at a certain point x of the fluid domain D using the known
field quantity f (y) in its vicinity through the use of a convolution product.

As a first step we can write the following convolution:

〈 f 〉(x) = f ∗ δ(x) = f (x) =
∫

D
f (y)δ(x− y)dV (1.6)

where δ(.) is the Dirac distribution verifying:∫
D

δ(x)dV = 1 (1.7)

At the continuum level, the use of the Dirac distribution allows for the
exact evaluation of a function value at a considered point of space. The Dirac
distribution is then approximated by a regular function W. This function has
a compact support Ω and is called the interpolation kernel. This leads finally
to the following approximation [32]:

〈 f 〉(x) ' f ∗W =
∫

Ω
f (y)W(x− y, Rk)dV (1.8)

where the spatial parameter Rk is the kernel support radius. When Rk ap-
proaches 0, the kernel function must tend towards the Dirac distribution:

lim
Rk→0

W(x, Rk) = δ(x) (1.9)
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Furthermore, if the kernel is positive, symmetric, monotonically decreasing
and verifies: ∫

Ω
W(x, Rk)dV = 1 (1.10)

then the approximation (1.8) is second-order accurate [67] :

〈 f 〉 = f + O(R2
k) (1.11)

1.2.2 The SPH differential operators

Based on (1.8), the gradient of a function f can be evaluated as:

〈∇ f 〉(x) =
∫

Ω
∇y f (y)W(x− y, Rk)dV (1.12)

This expression holds only if the kernel support radius Rk is constant, which
is the case throughout the present work unless specified otherwise. Using
integration by parts, we have:

〈∇ f 〉(x) '
∫

∂Ω
f (y)W(x− y, Rk)ndS−

∫
Ω

f (y)∇yW(x− y, Rk)dV (1.13)

where ∂Ω denotes the boundary of the kernel support and n denotes the
normal to ∂Ω pointing outwards. When the kernel support does not intersect
the domain boundary, the first integral is null due the compactness property
of the kernel. The kernel gradient being antisymmetric:

∇xW(x− y, Rk) = −∇yW(x− y, Rk) (1.14)

then :
〈∇ f 〉(x) '

∫
Ω

f (y)∇xW(x− y, Rk)dV (1.15)

Note that (1.15) allows to determine the gradient of f simply through the
knowledge of f itself and the simple analytical computation of the kernel
gradient, which is an important feature of the SPH method. Furthermore,
the kernel gradient verifies:∫

Ω
∇W(x− y, Rk)dV = 0 (1.16)

and the approximation (1.15) is second-order accurate [67]:

〈∇ f 〉 = ∇ f + O(R2
k) (1.17)

1.2.3 The discretized SPH approximation

The SPH approximation is based on the discretization of a continuum into
N fluid elements called particles, which serve as interpolation points. To
each particle i are associated discrete values of the physical fields: position
xi, velocity ui, volume Vi, density ρi, etc.
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Using the midpoint quadrature rule for approximating integrals, the in-
terpolations (1.8) and (1.15) are discretized as follows:

〈 f 〉i =
N

∑
j=1

f jWijVj (1.18)

〈∇ f 〉i =
N

∑
j=1

f j∇iWijVj (1.19)

where f j = f (xj), Wij = W(xi − xj, Rk) and ∇iWij = ∇xW(xi − xj, Rk).
However, once discretized the SPH operators lose their second-order ac-

curacy as:
N

∑
j=1

WijVj 6= 1 and
N

∑
j=1
∇iWijVj 6= 0 (1.20)

in a general case [91]. The convergence is achieved theoretically if the number
of particles N is infinite and if the kernel tends towards the Dirac function.
Noting ∆x as a reference distance between two particles, these conditions are
equivalent to:

Rk
∆x
→ ∞ and Rk → 0 (1.21)

Numerically the first condition is impossible to achieve as in practice the
number of neighboring particles is fixed to keep non prohibitive CPU costs.
The effect of the ratio Rk/∆x on the convergence of the interpolations (1.18)
and (1.19) was investigated in [91, 82]. It was found that in practice, a good
compromise between precision and CPU time can be achieved with some
ratios, the convergence being limited to an acceptable error due to not re-
specting the ∆x/Rk → 0 condition. Throughout this work, the ratio Rk/∆x
is taken equal to 4 in 2D and 2.4 in 3D in order to limit the CPU time as the
number of neighboring particles drastically increases in 3D.

Nevertheless, some correction techniques were developed by the SPH
community in order to improve the precision of the interpolation. These will
be discussed in Section 1.3.3.

1.2.4 Adopted kernel function

The kernel W is a regular function with compact support, usually circular in
2D and spherical in 3D. The interpolation kernels remain one of the subjects
of research in SPH as different kernels could sometimes yield better or worse
results for the same considered test case, especially in terms of stability.

One of the most used kernels is the C2 Wendland kernel [105], for which
improved stability properties exist [24]. Noting q = ‖x‖/Rk, the C2 Wend-
land kernel is defined as follows:

W(x, Rk) =
1

Vk
θ(q) (1.22)
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where

θ(q) = C×
{
(1− q)4(1 + 4q) if 0 ≤ q ≤ 1,
0 otherwise.

(1.23)

and the kernel radius is Rk = 2h, where h is a spatial parameter called the
smoothing length of the kernel.

The constant C normalizes the kernel so that Eq. (1.10) is verified. It is
equal to 7 in 2D and 14 in 3D. The term Vk corresponds to the kernel support

volume (πR2
k in 2D and 4πR3

k
3 in 3D). Unless specified otherwise, this is the

kernel used throughout the present work.

1.3 Application to the Euler Equations

1.3.1 The weakly-compressible approach

It is possible to model flows considered incompressible using compressible
governing equations. Indeed, it was shown, see e.g. [10], that when the Mach
number is low, the full compressible solution is equal to the sum of the in-
compressible solution, of an acoustic contribution in O(Ma) and of addi-
tional terms in O(Ma2), where the Mach number is Ma = umax/c0 and umax
is the maximal flow speed. Therefore, the Mach number is the criterion that
characterizes the incompressibility of the flow.

A limit on the Mach number Ma is usually taken as a threshold below
which the compressible numerical solutions are considered close to the in-
compressible solution. The value of Ma ≤ 0.1 is commonly adopted within
this “weakly-compressible” approach, whereby the weakly-compressible
fluid dynamics closely follows its incompressible counterpart.

The weakly-compressible SPH (WCSPH) approach consists in choosing
the numerical sound speed c0 in Eq. (1.4) so as to respect the condition Ma ≤
0.1. This choice is legitimate since the acoustic contributions to the solutions
have a very small energy and will not impact the incompressible part of the
flow. Indeed, the density/pressure fluctuations are proportional to the Mach
number squared [10].

Note that this approach necessitates a priori the estimation of the maximal
speed umax reached during the flow evolution so that the condition on the
Mach number stays verified during the whole simulation. Moreover, this
condition on the Mach number infers that the numerical density variations
should be less than 1% within the weakly-compressible approach, which is
always checked post-computations.
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1.3.2 The SPH discretized governing equations

The governing equations are approximated here through the SPH interpola-
tion presented in the previous section. The regularized Euler equations read:

dx
dt

= u

dρ

dt
= −ρ〈∇ · u〉

du
dt

= −〈∇P〉
ρ

+ g

P =
ρ0c2

0
γ

[(
ρ

ρ0

)γ

− 1
]

(1.24)

Based on Eq. (1.15), the pressure gradient can be approximated as:

〈∇P〉(x) =
∫

Ω
P(y)∇xWdV (1.25)

which is discretized as follows:

〈∇P〉i = ∑
j

Pj∇iWijVj (1.26)

However, in practice this form of the pressure gradient induces numerical
instabilities since it violates the action-reaction principle, i.e. the discrete mo-
mentum conservation. Indeed, taking into account two interacting particles i
and j, Fi→j = −Fj→i is supposed to be verified, which is not true when using
Eq. (1.26):

− mi

ρi
Pj∇iWijVj 6=

mj

ρj
Pi∇jWijVi (1.27)

In order to restore the reciprocity of interactions, the pressure gradient
can be made anti-symmetrical using:

∇P = ∇P + P∇1 (1.28)

which yields:

〈∇P〉(x) =
∫

Ω
(P(y) + P(x))∇xWdV (1.29)

and its discretized form:

〈∇P〉i = ∑
j
(Pj + Pi)∇iWijVj (1.30)

Similarly, the velocity divergence operator is written so as to evaluate exactly
the divergence of constant fields:

∇ · u = ∇ · u−∇1 · u (1.31)
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meaning:

〈∇ · u〉(x) =
∫

Ω
(u(y)− u(x)) · ∇xWdV (1.32)

which is finally discretized as:

〈∇ · u〉i = ∑
j
(uj − ui) · ∇iWijVj (1.33)

Beyond this symmetrization process lies the concept of compatibility be-
tween the divergence and gradient operators. Indeed, the choice of the diver-
gence operator (1.32) for the continuity equation formally leads to the com-
patible form of the pressure gradient (1.29) in the momentum equation so as
to guarantee energy conservation of the system. This concept of compatibil-
ity was demonstrated by Bonet and Lok [7] using a variational approach, and
Monaghan [73] through a derivation based on a Lagrangian. It was further
extended for free-surface flows by Colagrossi et al. [16] using the Principle of
Virtual Works.

All in all, using Eqs. (1.29) and (1.32), the standard, weakly-compressible
discretized system of Euler equations reads:

dxi

dt
= ui (1.34)

dρi

dt
= −ρi ∑

j
(uj − ui)∇iWijVj (1.35)

dui

dt
= g− 1

ρi
∑

j
(Pi + Pj)∇iWijVj (1.36)

Pi =
ρ0ic2

0i
γi

[(
ρi

ρ0i

)γi

− 1
]

(1.37)

This scheme will be hereinafter referred to as “Standard Scheme”.

1.3.3 Improvement of the accuracy of the SPH operators

1.3.3.1 The Shepard correction

Several methods are available in the literature to enhance the order of accu-
racy of the SPH operators. One of them is the Shepard correction, which is
used to ensure the equality:

∑
j

WijVj = 1 (1.38)

regardless of the particles distribution in space. This is achieved by modify-
ing the kernel function as follows:

WS =
Wij

∑
j

WijVj
(1.39)
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1.3.3.2 The renormalization matrix

Another correction was proposed by Randles and Libersky [92] who intro-
duced a renormalization matrix that increases the order of the interpolation
(1.19):

〈∇ · f〉Li = ∑
j
(fj − fi) · Li · ∇iWijVj (1.40)

〈∇ f 〉Li = ∑
j
( f j − fi)Li∇iWijVj (1.41)

where Li is the renormalization matrix given by :

Li = [∑
j
(xj − xi)⊗∇iWijVj]

−1 (1.42)

This operator allows for the exact evaluation of linear field gradients.
A third correction was introduced by Dilts et al. [25] which allows to ex-

actly evaluate constant functions, linear functions and gradients of linear
functions, through the use of Moving Least Squares.

1.4 Stabilization techniques in SPH

The Lax equivalence theorem states that a numerical scheme converges to-
wards the solution of a system of differential equations if and only if the
scheme is consistent and stable [53].

The first condition of convergence is guaranteed since the Euler equations
were discretized in a consistent manner in Section 1.3.2 [7, 16, 100] provided
that conditions (1.21) are verified.

Stability means that the total variation of the numerical solution is
bounded at any fixed time t when the time step ∆t goes to 0 [53]. The stan-
dard SPH scheme (1.34-1.37), which is based on a space centered-like inter-
polation [100] and is generally solved via explicit time integration within the
WCSPH context, is known to be unconditionally unstable.

In order to ensure the stability of this Standard Scheme, numerical diffu-
sive terms are introduced within the equations. Many forms of stabilization
terms are available in the literature. The following sections will present the
main ones used within the SPH community. A detailed study of convergence
can be found in Vila [100].

1.4.1 Artificial viscosity

Monaghan [72] adapted the concept of artificial viscosity of Von Neumann
and Richtmyer [79] to the SPH method by introducing a pseudo-pressure
term:

Πij = −
1
8

Rkα(ρi + ρj)(ci + cj)µij (1.43)



1.4. Stabilization techniques in SPH 13

where

µij =


uij · xij

||xij||2 + εR2
k

if uij · xij < 0

0 otherwise
(1.44)

and where uij = ui − uj, xij = xi − xj, α is a coefficient chosen between 0.01
and 1 depending on the simulation, and ε is a parameter usually equal to
0.01, that avoids a singularity when xij = 0.

Once added in the momentum equation (1.36) it writes:

dui

dt
= g− 1

ρi
∑

j
(Pi + Pj + Πij)∇iWijVj (1.45)

The term (1.44) acts as a diffusive term, improving the stability of the scheme.

1.4.2 δ-SPH

In addition to adding a numerical viscous term to the momentum equation,
some authors studied the possibility of adding numerical diffusive terms also
in the continuity equations in order to filter out some of the spurious oscil-
lations in the pressure, which are a drawback of weakly-compressible SPH.
Indeed, since the pressure is computed via a state equation, a smooth density
field would automatically lead to a smooth pressure field.

Ferrari et al. [30] proposed to add a numerical diffusive term to the con-
tinuity equation in order to reduce the numerical noise inside the density
field, but it was inconsistent at the free-surface. Molteni and Colagrossi [69]
also studied the possibility of adding a numerical diffusive term inside the
continuity equation. Their formulation yielded good results but did not com-
pute correctly the hydrostatic problem. To circumvent this issue, Antuono et
al. [3] corrected the diffusive term of Molteni and Colagrossi [69] making it
compatible with the hydrostatic solution and yielding pressure fields with-
out spurious oscillations, even in the presence of a free-surface.

The governing equations of the δ-SPH model of Antuono et al. [3] read:

dρi

dt
= −ρi ∑

j
(uj − ui) · ∇iWijVj + δhc0Di

ρi
dui

dt
= −∑

j
(Pi + Pj)∇iWijVj + ρig + αhc0ρ0 ∑

j
πij∇iWijVj

dxi

dt
= ui

(1.46)

where πij is a viscosity term defined as:

πij =
uij · xij

||x2
ij||

(1.47)
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with the parameter α ranging between 0.01 and 0.1 depending on the prob-
lem at hand. For example for violent impact problems α = O(0.1) is gener-
ally adopted in order to stabilize the scheme.

The diffusive term denoted by Di is controlled by a dimensionless pa-
rameter δ, hence the denomination “δ-SPH”. In order to properly tune the
coefficient δ, Antuono et al. [3] presented a linear stability analysis which
yielded a variability range of δ in 0 < δ < 0.2.

Note that both numerical terms in the continuity and momentum equa-
tions are proportional to the smoothing length h in order to guarantee the
consistency with the Euler equations when h→ 0.

In the δ-SPH scheme the density diffusive term has the form of a den-
sity Laplacian. In SPH the Laplacian is generally approximated through the
Morris formula [76]:

〈∇2 f 〉i = 2 ∑
j
( f j − fi)

xji · ∇iWij

x2
ji

Vj (1.48)

where f is a generic scalar function. However, Antuono et al. [3] proved
that this formula diverges along the free-surface, and proposed a formulation
which recovers the convergence of the diffusive term over the entire fluid
domain.

Considering a generic kernel with the following structure:

W = W
(
−
||xij||2

h2

)
⇒ ∇iW

(
−
||xij||2

h2

)
=

2
h2 xjiW

(
−
||xij||2

h2

)
(1.49)

the expression (1.48) becomes:

〈∇2 f 〉i =
4
h2 ∑

j
( f j − fi)WijVj (1.50)

Using a Taylor expansion Antuono et al. proved that Eq. (1.50) comes from:

〈∇2 f 〉i =
4
h2 ∑

j
( f j − fi)WijVj − 2∇ fi · ∇Si +O((1− Si)) +O(h2) (1.51)

where Si = ∑
j

WijVj and ∇Si = ∑
j
∇iWijVj. This means that the Morris for-

mula converges to the Laplacian of f if ∇S = 0 and S = 1. Colagrossi et
al. [16] proved that these conditions hold inside the fluid but not near the

free-surface where ∇S diverges like
1
h

. Consequently, the Morris formula
also diverges near the free-surface.

Thus, Antuono et al. [3] proposed the following conservative expression
of the diffusive term:

〈D( f )i〉 =
4
h2 ∑

j

[
( f j − fi)−

1
2
(∇ f j +∇ fi) · xji

]
WijVj +O(h) (1.52)
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where the contribution of ∇S is eliminated. The convergence of 〈∇ f 〉 to ∇ f
is ensured by using the renormalized gradient presented in Section 1.3.3.2
to evaluate the gradients in Eq. (1.52). Finally, the definitive δ-SPH diffusive
term of Antuono et al. [3] reads:

Di = ∑
j

ψij · ∇iWijVj (1.53)

where
ψij = 2(ρj − ρi)

xji

||xij||2
− [〈∇ρ〉Li + 〈∇ρ〉Lj ] (1.54)

It is important to note that the δ-SPH model is still used even with kernels
that do not verify the structure of Eq. (1.49), such as the C2 Wendland kernel
(Section 1.2.4) used in this study (and in, e.g., [96]).

1.4.3 Riemann-SPH

Inspired from the Finite Volume Method, Vila [100] and Parshikov et al. [87]
proposed to stabilize the Standard Scheme by solving Riemann problems at
each pair interaction.

The Riemann problem is solved at the interface between particles i and j

located at x̄ij =
xi + xj

2
, with an interface velocity ūij =

ui + uj

2
and a normal

direction nij =
∇iWij

||∇iWij||
. The Riemann-SPH scheme proposed by Vila reads:



dxi

dt
= ui (1.55)

dVi

dt
= Vi ∑

j
(uj − ui) · ∇WijVj (1.56)

d(ρiVi)

dt
= −Vi ∑

j
2ρE(uE − u(x̄ij))∇iWijVj (1.57)

d(ρiViui)

dt
= ρiVig−Vi ∑

j
2(ρEuE ⊗ (uE − u(x̄ij)) + PEI)∇iWijVj(1.58)

where ρE, uE and pE are solutions of the Riemann problem formulated at
the interface between i and j. This solution can be computed via exact [46]
or linearized [77, 86] solvers. Throughout this work, the acoustic Riemann
solver of Murrone and Guillard [77] is used, which computes uE and pE as:

uE =
ρiciui + ρjcjuj

ρici + ρjcj
+

Pi − Pj

ρici + ρjcj
(1.59)

PE =
ρjcjPi − ρiciPj

ρici + ρjcj
+

ρiciρjcj(ui − uj)

ρici + ρjcj
(1.60)
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Although Eq. (1.57) does not keep particle masses constant anymore (since a
mass flux exists), the mass exchange is symmetrical between i and j, ensuring
the mass conservation of the system.

Taking for left and right states values of the Riemann problem the values
at the particles i and j leads to a very dissipative (and low order) scheme. To
decrease the numerical dissipation while increasing the order of the scheme,
Van Leer [55] proposed the MUSCL (Monotonic Upstream Scheme for Con-
servation Laws) method, which consists in replacing the left and right states
by piecewise linear reconstructions from the particles to the interface be-
tween i and j, as illustrated in Fig. 1.1.

FIGURE 1.1: An example of MUSCL type left and right state
piecewise linear reconstructions.

We will see later that the Riemann-SPH scheme can be adapted quite
straightforwardly to take into account multiphase flows.

1.5 Boundary conditions in SPH

We consider a fluid domain Ω where different fluids are present. The fluid
domain is limited by a solid boundary ∂ΩB and also by a free-surface ∂ΩF
(when the pressure of the lighter phase, usually a gas, does not affect the
dynamics of the heavy phase). The solid boundary consists of an external
frontier which contains Ω, and of solid bodies with can be inside the fluid do-
main and can move across ∂ΩF. Inside the fluid domain, interfaces between
different fluids can also be present. Fig. 1.2 shows a sketch of the problem,
which can be solved by the multiphase SPH model proposed in this thesis.

Therefore, in order to define well the tackled problems and solve the Euler
governing equations, we need to impose conditions on the domain bound-
aries and interfaces. These consist of kinematic and dynamic boundary con-
ditions.

The kinematic boundary conditions are enforced on the velocity of the
considered fluids. In the case of the Navier-Stokes equations, the kinematic
condition expresses the continuity of the tangential (no-slip) and normal ve-
locities at the interface ∂ΩI between two mediums X and Y :

uX (x) = uY (x), ∀x ∈ ∂ΩI (1.61)
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FIGURE 1.2: Sketch of the domain. The domain Ω is confined
by a solid boundary ∂ΩB, which comprises walls and solid bod-
ies. Different fluids a and b are present. They are delimited by

an interface ∂ΩI , while a free-surface ∂ΩF is also present.

For the Euler equations, a non-penetration condition is enforced, and ex-
presses the continuity of the normal velocity at the interface:

uX (x) · n = uY (x) · n, ∀x ∈ ∂ΩI (1.62)

where n is the normal to the interface. The same condition is applied if Y is
a rigid solid or the moving free-surface.

The dynamic boundary condition at the interface ∂ΩI between two medi-
ums X and Y expresses the continuity of the normal stresses across the in-
terface:

T X (x).n = T Y (x).n, ∀x ∈ ∂ΩI (1.63)

where T is the stress tensor. For the Euler equations and in the absence of
surface tension effects, this condition reduces to the continuity of pressure
across the interface.

The enforcement of these boundary conditions is a challenge for the SPH
method. The reasons for this are twofold. First, unlike other mesh-based
methods, it is difficult to impose boundary conditions on the mobile SPH
particles. Secondly, the kernel support is truncated near the limits of the
domain. Consequently, the surface term in the SPH gradient operator (1.13)
cannot be neglected anymore and needs to be soundly taken into account,
and the approximation of the volumic term becomes very poor due to lack of
particles in the support.

In this section, the general SPH kinematic and dynamic conditions at the
interface between two mediums X and Y are explained. These mediums can
represent:

• a fluid/solid interface, where in the present work the solid is always
taken as a non-deformable wall, or

• a fluid/fluid interface, as in a air/water configuration for instance, or
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• a fluid/void interface, i.e. a free-surface.

1.5.1 Solid boundary conditions in SPH

There are several techniques in the literature which make it possible to im-
pose kinematic and dynamic wall boundary conditions. These are split in
two frameworks.

The first consists of volumetric methods that extend the fluid domain by
considering a fictitious domain in which moving, see e.g. [18], or fixed [62]
ghosts particles are created in order to complete the kernel support for near-
wall particles. In this case, the kernel support is filled even close to the
boundary and no surface term need to be accounted for. The difficulty lies in
creating and imposing conditions to the ghost particles.

The second framework consists of surface term methods that aim to in-
troduce wall integrals in the differential operators of Section 1.3.2 [52, 29, 56,
102]. These methods are known as Boundary Integral Methods (BIM). Chi-
ron [11] extensively covered the state-of-the-art of these methods. Authors
like De Leffe [23], Feldman [28] and Leroy et al. [56] developed such Bound-
ary Integral Methods in SPH formalism, which has the advantage of better
handling complex wall geometries compared to the ghost particles method.

In the following sections, the moving ghosts particles and the BIM used
in this work are presented.

1.5.1.1 The moving ghost particles

The idea of this method is to complete the fluid particles kernel support by
adding a fictive domain ΩG of ghost particles. The position of these ghost
particles is computed by mirroring the fluid particles with respect to the
walls. The symmetrization include the fluid particles whose support inter-
sects the solid wall, see e.g. [18, 84].

For a plane wall, the position of the ghost particle g(i) mirrored from a
particle i is :

xg(i) = xi + 2(xw · n− xi · n)n (1.64)

where xw refers to the wall position and n to the wall normal. The no-
penetration condition (1.62) is enforced through :

ug(i) = ui + 2(uw · n− ui · n)n (1.65)

with uw the local velocity of the wall.
The ghost pressure must take into account the wall kinematics and the

presence of volumetric forces such as gravity, otherwise non-physical fluxes
appear through the solid boundaries. Differentiating the no-penetration con-
dition yields [81]:

du
dt
· n = (uw − u) · dn

dt
+

duw

dt
· n (1.66)
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then :
− 1

ρ

∂P
∂n

+ g · n = (uw − u) · dn
dt

+
duw

dt
· n (1.67)

And since by differentiating the Cole equation of state (1.4) we have:

∂P
∂n

=
∂P
∂ρ

∂ρ

∂n
= c2

0

(
ρ

ρ0

)γ−1
∂ρ

∂n
(1.68)

we get by integration [81]:

ρg(i) =
[

ρ
γ−1
i +

ρ
γ−1
0 (γ− 1)

c2
0

(
(u−uw) ·

dn
dt
− duw

dt
·n+g ·n

)
(xg(i)− xi) ·n

] 1
γ− 1

(1.69)
Then the ghost pressure is determined by the equation of state (1.4) using the
ghost density ρg(i).

The volume of the ghost particle also needs to be determined. In the case
of a plane wall, the volume of the ghost particle is taken equal to the corre-
sponding fluid counterpart :

Vg(i) = Vi (1.70)

In this work, apart from the ditching simulations, we will be dealing sys-
tematically with plane, non-moving walls for the 2D academic test case val-
idations. The position, velocity, density and volumes of the ghost particles
are sufficient to treat such cases. Nevertheless, the moving ghosts method
has also been extended to complex geometries in 3D [81, 100]. However, this
method is not ideal for the treatment of these industrial complex geometries,
in particular in presence of singularities. Boundary Integral Methods are pre-
ferred for such applications.

1.5.1.2 The Boundary Integral Method (BIM) with Cut-Face Approach
(CFA)

This method was developed by different authors, e.g. [28, 23, 56]. In our
laboratory it was developed within the Riemann-SPH scheme context, and
its adaptation to the δ-SPH scheme is in progress. This development of the
BIM method is reported here.

Near the domain boundaries, the property (1.10) is not verified since the
kernel support is truncated. In order to solve this problem, the interpolation
(1.8) can be rewritten as follows [23]:

〈 f 〉(x) = 1
γ(x)

∫
Ω

f (y)W(x− y, Rk)dV (1.71)

where γ(x) is the Shepard correction:

γ(x) =
∫

Ω
W(x− y, Rk)dV (1.72)
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The gradient and divergence operators (1.29) and (1.32) are then modified
respectively as follows:

〈∇P〉(x) = 1
γ(x)

∫
Ω
(P(y) + P(x))∇xWdV+

1
γ(x)

∫
∂Ω

(P(y) + P(x))W(x− y, Rk)ndS
(1.73)

〈∇ · u〉(x) = 1
γ(x)

∫
Ω
(u(y)− u(x)) · ∇xWdV+

1
γ(x)

∫
∂Ω

(u(y)− u(x)) · nW(x− y, Rk)dS
(1.74)

Note that the second integral of each operator is no longer null as the kernel
support intersects a wall. The domain frontier ∂Ω is then discretized into s
control surfaces and the velocity divergence and pressure gradient operators
are discretized as follows:

〈∇P〉i =
1
γi

∑
j∈F

(Pi + Pj)∇iWijVj +
1
γi

∑
j∈W

(Pi + Pj)Wijnjsj (1.75)

〈∇ · u〉i =
1
γi

∑
j∈F

(uj − ui) · ∇iWijVj +
1
γi

∑
j∈W

(uj − ui) · njWijsj (1.76)

where F andW denote respectively the set of neighboring particles belong-
ing to the fluid and the set of faces discretizing the wall. In practice, uj is re-
placed by the boundary condition velocity uw in the surface integrals. More-
over, in our method pj is replaced by a wall pressure pw, which is computed
as follows [31]:

Pw = Pi + ρjcjui · n (1.77)

The improvement of the BIM method precision is the subject of many
papers, notably concerning how to accurately compute the Shepard correc-
tion [28, 56] and the extension of the method to 3D configurations [102, 13].

The version used in the present PhD thesis is the Cut-Face Approach
(CFA) presented in detail in [13].

1.5.2 Free-surface conditions in SPH

The interface between a light and a heavy phase can be considered as a free-
surface if the evolution of the heavy phase is not affected by the light phase.
This allows for simulations involving only the heavy phase, which are called
“free-surface flows” throughout this work, i.e. the light phase is supposed to
be void.

If no surface tension is taken into account, the dynamic condition along
the free-surface states that the pressure is continuous across ∂ΩF, and equal
to the external pressure pe:

P = Pe, ∀x ∈ ∂ΩF (1.78)
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Since the light phase is not modeled, the kernel support near the free-surface
is truncated, which means that the kernel interpolation naturally enforces
the ambient pressure P = Pe on the free-surface particles. Usually, a change
of pressure origin leads SPH practitioners to consider P = 0 on the free-
surface, which automatically means that the stress is null on this boundary.
Indeed, Colagrossi et al. [16] proved, via the Principle of Virtual Works, that
this dynamic free-surface boundary condition is intrinsically satisfied in a
weak sense (using an integral formulation) within the SPH scheme, provided
compatible operators are used in the continuity and momentum equations.
This is a very important result which means that no additional treatment is
needed in order to satisfy the free-surface boundary condition. For more
details on the subject, the reader is referred to the original paper [16].

On the other hand, the kinematic free-surface condition states that a mi-
croscopic fluid particle initially on ∂ΩF will remain on it, i.e.:

u · nF = uF · nF, ∀x ∈ ∂ΩF (1.79)

where nF and uF are respectively the normal to the free-surface and the
free-surface velocity. Due to the Lagrangian nature of the SPH method, the
fluid particles located at the free-surface move at a velocity equal to the free-
surface velocity in the normal direction when Rk → 0, which means that the
free-surface kinematic condition is automatically satisfied [16].

1.5.3 Fluid/fluid interface conditions in SPH

At the interface between two fluids, the SPH differential operators take into
account the particles belonging to both fluids, which results in smoothing
out the physical quantities in the interface zone. This property is commonly
assumed within the SPH community to ensure the continuity of the pressure
and of the normal velocity across the interface, and consequently the kine-
matic and dynamic boundary conditions in the absence of surface tension
effects [18, 42, 34].

However, this same property has the nonphysical effect of smoothing out
other quantities of interest, mainly the density and the velocity divergence.
This is undesirable since physically speaking, the tangential velocity (in the
case of inviscid flows) and more importantly the density are not continuous
across the interface. More light will be shed of this problem and how to solve
it in Section 2.1.6.

1.6 Numerical tools in SPH

1.6.1 Particle disordering

The Lagrangian nature of SPH means that the particles naturally follow the
Lagrangian trajectories. Therefore, flows involving strong stretching lead to
an anisotropic evolution of the particle volumes, which in turn leads to linear
particle structures. An illustration of such particle structures is presented in
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FIGURE 1.3: Evolution of the purely Lagrangian evolution of
the flow past a square obstacle, taken from Colagrossi et al. [17],

also cited in Oger et al. [83].

Fig. 1.3, which shows the purely Lagrangian evolution of the flow around a
square-shaped obstacle [83].

For example at t = 3s, in the zone right to the square obstacle the particles
distribution is highly anisotropic which leads to a creation of voids between
the Lagrangian structures. These coherent structures affect the particles dis-
tribution inside the kernel support, which heavily decreases the accuracy of
the SPH operators.

To circumvent this issue, some techniques were developed with the aim
of introducing disorder within the particles distribution, in order to break
the anisotropic alignment of particles. The following paragraphs sum up the
main methods for disordering particles within the SPH community.

Monaghan [70] introduced a correction on the particles trajectory called
XSPH, which rewrites the first equation of the system (1.34)-(1.37) as:

dxi

dt
= ui + 2ε ∑

j

(
uj − ui

ρi + ρj

)
WijρjVj (1.80)

where the parameter ε is typically taken as 0.5. Although this method takes
into account the free-surface, it does not necessarily converge towards the
Euler equations, as the ε term is not guaranteed to tend towards 0 when
Rk → 0.

Oger et al. [83] introduced a transport velocity uoi within an Arbitrary
Lagrangian Eulerian (ALE) SPH formalism. In comparison with XSPH, this
method is consistent with the Euler equations and reads, in the Riemann-SPH
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context:

dxi

dt
= u0i

dVi

dt
= Vi ∑

j
(u0j − u0i) · ∇iWijVj

d(ρiVi)

dt
= −Vi ∑

j
2ρE(uE − u0(xij))∇iWijVj

d(ρiViui)

dt
= ρiVig−Vi ∑

j
2(ρEuE ⊗ (uE − u0(xij)) + PEI)∇iWijVj

(1.81)
with u0i = ui + δui and ||δui|| << ||ui||. The idea is to slightly modify the
Lagrangian velocity by adding a small velocity perturbation δui in order to
break the anisotropic particle structures inherent to the SPH method, and
to insert it consistently in the conservation laws through an ALE formalism.
Oger et al. [83] proposed the following form of the velocity perturbation:

δui =

−UcharRk,iñ if UcharRk,i||ñ|| < 0.25||ui||
−0.25||ui||

ñ
||ñ||

(1.82)

where the characteristic flow velocity Uchar = c0Ma controls the perturbation
amplitude, and ñ is a vector pointing towards the voids:

ñ = ∑
j
∇W(xi − xj, Rδ)Vj (1.83)

Note that the radius Rδ is not necessarily equal to the kernel’s support radius
Rk. Rδ = 2∆x is prescribed in order to impose the anisotropy correction
locally around the particle i.

Other methods have been developed for particle disordering, notably the
Particle Shifting method by Lind et al. [45] and Xu et al. [108] which are based
on Fick’s law of diffusion. However, these are mainly used within the in-
compressible SPH (ISPH) framework, and are not detailed here. Later in this
work, a particular case of the Oger et al. [83] law will be used, where the
velocity is modified only in the trajectory equation.

1.6.2 Varying spatial resolution

1.6.2.1 Variable-h

In SPH the computations are usually performed using a uniform particle dis-
tribution, meaning that the inter-particle distance is the same everywhere in
the domain. However, this is not ideal for example if the domain is very large
in comparison to the characteristic size of the physics of interest.

To this aim, one idea is to refine the resolution in the zones of interest
while coarsening it in the rest of the domain, in order to minimize the number
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of particles involved, and consequently the computational cost and memory
requirements.

In this context, varying spatial resolution techniques were introduced [40,
9, 78, 84, 37] which consist in slowly varying the kernel radius in time and
space. From a theoretical point of view, these methods should account for
the time and space derivatives of Rk in order to satisfy conservation require-
ments.

Oger et al. [84] considered a technique in which the kernel support of
each particle stays constant in time so that dRk/dt = 0. In the same time, the
kernel radius must vary in space slowly enough so as to make it possible to
neglect the ∇Rk terms in the equations, while avoiding reflection of acoustic
waves between the coarse and fine zones. Typically, this is achieved through
limiting the spatial evolution of Rk between adjacent particles to a maximum
value of 3%.

There are many variable-h formulations in the literature [81, 9]. In this
work, in order to conserve the reciprocity of interactions, the kernel radius
Rk in W(xi − xj, Rk) is taken equal to the half-sum Rk,ij = (Rk,i + Rk,j)/2, as
suggested in [37].

However, while a regular space distribution of the kernel radii is guaran-
teed at the start of the simulations, this situation can degrade later on due to
the Lagrangian nature of the SPH method. Indeed, the particles are allowed
to move according to the computed fluid velocity, which can lead to numeri-
cally unstable configurations where coarse and fine particles are improperly
mixed. To circumvent this problem, other approaches were developed, based
on local particle refinement.

1.6.2.2 Adaptive Particle Refinement

Particle refinement procedures were developed which aim to locally refine
the resolution based on a chosen criterion, such as velocity gradient or den-
sity. The adaptivity aspect of such procedures lies in the fact that the refine-
ment algorithm is applied and updated automatically throughout the simu-
lations.

Initially proposed by Feldman [28], the fundamental idea of these pro-
cedures is to split the coarse particles, called ’parents’, into several smaller
particles, referred to as ’children’. The properties of the smaller particles are
computed in a way that looks to conserve mass, momentum and energy.

Conversely, derefinement techniques are also made possible simply by
reciprocating the refinement procedure as initially proposed by Vacondio et
al. [98]. The child particles are merged into parent particles, coarsening the
distribution whenever needed. Different derefinement techniques are avail-
able in the literature [98, 5].

Dynamic refinement/derefinement methods were investigated within the
LHEEA laboratory. After an initial proposal by Barcarolo et al. [5], Chiron et
al. [12] proposed an improved refinement technique called Adaptive Parti-
cle Refinement (APR), based on the Adaptive Mesh Refinement (AMR) tech-
nique of the mesh-based methods [6]. Its robustness and accuracy at the
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FIGURE 1.4: A parent particle (red) is split into four children
particles (blue). Picture from Chiron et al. [12].

FIGURE 1.5: Particle refinement process. Here α = 0.5 and ε =
0.5. Picture from Chiron et al. [12].

coarse/fine interfaces was demonstrated. It also yielded results similar to
fully refined spatial resolutions in terms of accuracy, but with much lower
CPU times. The next section details the most important aspects of APR in
2D. The reader is referred to the original paper [12] for extensive details.

As proposed in Reyes López et al. [93], a parent particle is refined into
four child particles as shown in Fig. 1.4. The radius of child particles and the
spacing between them are defined following (see Fig. 1.5):

∆xc = 0.5∆xp (1.84)

and their radius is defined as:

Rc = 0.5Rp (1.85)

Throughout the refinement process the properties of child particles are ide-
ally defined in a conservative way. For example, the mass of a child particle
is computed as:

mc =
mp

4
(1.86)

which ensures mass conservation.
The energy and momentum can be conserved simply by copying the par-

ent velocity to the child particles. This is called injection. However this
method is not considered to be sufficiently accurate. An alternative way
of initializing the properties of the child particles can be drawn out from
the Adaptive Mesh Refinement method used for structured Cartesian grid
solvers (based on Finite Volumes for example) [6]. The initialization of child
variables is done by prolongation, which means that the fine particle values
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FIGURE 1.6: Prolongation procedure: the values of child par-
ticles are extrapolated from the parent particle. Picture from

Chiron et al. [12].

φc are interpolated from the coarse particle ones φp (Fig. 1.6). A straightfor-
ward linear interpolation is used as follows:

φc = φp +∇(φ)p · (xc − xp) (1.87)

where∇(φ)p is the parent particle’s gradient of conservative variables. Here
∇(φ)p is computed through a renormalized gradient operator:

∇(φ)i = Li · ∑
j∈Ωp

(φi − φj)⊗∇iWijVj (1.88)

where Li is the renormalized matrix given by Eq. (1.42) in Section 1.3.3.2,
calculated only over the set of parent particles Ωp. Note that unlike the in-
jection method, this prolongation (1.87) technique conserves momentum but
does not conserve kinetic energy nor angular momentum.

We have seen how the child particle properties are computed throughout
the refinement technique. As for the reciprocal derefinement process, when
child particles are merged, the properties of the ensuing parent particles must
also be initialized. This is referred to as restriction. As seen in Section 1.3.3.1,
in SPH the Shepard interpolation is usually used for field evaluation at a
given location. Here the restriction process uses a Shepard interpolation over
the set of child particles Ωc, for any field φ:

φp = ∑
j∈Ωc

φjWS
pjVj (1.89)

where WS is the Shepard kernel given by (1.39).
So far the child/parent particles values are computed through the

(de)refinement process. However, this method still needs to be improved
since adjacent coarse and fine particles have a radius ratio of 50%. This ratio
is greater than the recommended value of 3% which can lead to numerical
instabilities. Therefore, the child and parent particles still cannot interact di-
rectly with each other.

To circumvent this problem, the concept of guard cells of AMR is ex-
tended to the particular formalism of SPH. A third set of particles is created
from either side of the coarse/fine interface, called guard particles. Their
role is to act as boundary conditions of a SPH/SPH-like coupling between
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FIGURE 1.7: The child/parent guard particles are created at the
fine/coarse interface. The coupling between both refinement
levels is ensured via the guard particles. Picture from Chiron et

al. [12].

the coarse and fine domains. The conservative variables of the guard parti-
cles are computed using the restriction operation over the neighboring parent
and child particles, which ensures the coupling between the two refinement
levels [12]. Note that this interpolation is carried out using the child particle
radius for both parent and child guard particles, in order to minimize CPU
times.

Therefore, as illustrated in Fig. 1.7, the APR method used in this work
goes as follows:

• At the beginning of each substep of the temporal integration scheme,
the guard particles× and× are initialized using a restriction operation.

• The derivatives of the child particles are updated, taking into consid-
eration both guard × and child particles.

• Parent particles are updated taking into account both guard × and
parent particles.

One last note concerns the concept of adaptivity. The adaptivity of AMR
means that the refinement process is based on physical criteria, for examples
in zones of high vorticity, of density gradients, etc. This is not the case for the
present APR method. The adaptive aspect of APR lies behind the dynamic re-
finement zones that this method offers. For example, in practice many boxes
covering the interest zone can be created, with increasing refinement levels.
Moreover, a velocity can be associated to these boxes so that they can move
inside the domain if required, as will be seen in Chapter 5 which is dedicated
to the ditching simulations.
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Chapter 2

Proposition of an accurate
multiphase scheme

2.1 Multiphase SPH

2.1.1 Overview

Many hydrodynamic problems involve several non-mixing phases, possibly
with high density ratios such as air-water problems. Many applications ne-
cessitate taking into account the presence of air, e.g. in the case of air trap-
ping/cushioning. Thanks to its mesh-less and Lagrangian nature, the SPH
method is well suited for simulating flows where two fluids with different
densities interact as it allows to keep perfectly non-diffusive interfaces, un-
like Eulerian numerical methods where interface tracking is necessary, pos-
sibly with difficulties due to numerical interface smearing.

Yet, when the density ratios become large, many difficulties arise at the
interface between the fluids. Indeed, the equations of the Standard Scheme
are suitable for single-phase flows where the variables are continuous with-
out sharp jumps. However, in the case of flows where different fluids coexist,
the density is discontinuous at the interface between these fluids. The classic
SPH interpolation for the continuity equation leads to diffused density jumps
especially if the density ratio is high. Therefore, one of the most important
challenges facing the SPH community is to find ways to discretize the conti-
nuity and momentum equations so as to avoid the complete smoothing out
of the density jumps across the interface between two different fluids.

A sound discretization of the ∇ · u and ∇P/ρ terms in the continuity
and momentum equations, respectively, is generally key for simulating mul-
tiphase flows. In the case of simulations involving fluids with high density
ratios, a large density gradient exists at the interface. This means that the
equations should not encapsulate any formulation involving ∇ρ terms, at
the risk of facing very strong numerical instabilities.
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From all the possible symmetrized discretization of the Euler equa-
tions [84]: 

∇P
ρ

=
P
ρσ
∇
(

1
ρ1−σ

)
+ ρσ−2∇

(
P

ρσ−1

)
, σ ∈ R+

ρ∇ · u =
∇ · (ρσ−1u)− u · ∇ρσ−1

ρσ−2

(2.1)

only the case σ = 1 prohibits the existence of ∇ρ in the equations, which
coincides exactly with the Standard Scheme (1.34)-(1.37).

As already pointed out in Section 1.5, it is very important to note the dif-
ference between what is called an “interface” and a “free-surface” through-
out this work. For example in the case of air-water simulations, an interface
implicates the modeling of both the water and the air phases, while the free-
surface assumption means that only the water is modeled.

In this chapter, a new weakly-compressible multiphase SPH scheme is
proposed, called the Multiphase δ-SPH scheme. It is capable of handling
large density ratios and the presence of both interfaces and a free-surface, as
well as yielding quality pressure fields. In order to understand the logical
path towards this new scheme, the next sections will first present a summary
of the main weakly-compressible multiphase SPH formulations in chrono-
logical order. They will include the specificities of each scheme in terms of
the governing equations formulation for multiphase configurations, numer-
ical tools for stabilization and accuracy improvements, together with some
advantages and drawbacks of each scheme.

2.1.2 Colagrossi and Landrini scheme (2003)

In 2003, Colagrossi and Landrini [18] derived the first SPH multiphase model
able to treat high density ratios. Despite being developed more than 15 years
ago, it is still one of the most used multiphase schemes within the SPH com-
munity.

Colagrossi and Landrini kept the governing equations of the Standard
Scheme (1.34)-(1.37). As explained in the previous section, they offer the ad-
vantage of not involving any∇ρ terms. In order to remove nonphysical high-
frequencies from the pressure field, they used a density filtering technique:

〈ρi〉 = ∑
j

ρjWMLS
j (xi)dVj = ∑

j
mjWMLS

j (xi) (2.2)
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where the moving-least-square kernel WMLS
j is computed, e.g. in 2D,

through:

WMLS
j (xi) = [β0(xi) + β1(xi)(xi − xj) + β2(xi)(yi − yj)]Wij

β(xi) =

β0

β1

β2

 = A−1(xi)

1
0
0


A(xi) = ∑

j
Wj(xi)Ãij

Ãij =

 1 (xi − xj) (yi − yj)

(xi − xj) (xi − xj)
2 (yi − yj)(xi − xj)

(yi − yj) (yi − yj)(xi − xj) (yi − yj)
2


(2.3)

This procedure is carried out at a chosen frequency, i.e. at every chosen
number of time steps, increasing the computational time due to the inver-
sion of the matrix A for each fluid particle i. However, it presents advan-
tages concerning more regular pressure distribution for both interfacial and
free-surface flows. However, it introduced numerical instabilities close to the
free-surface for long time simulations (i.e. large number of time steps). For
instance, it does not preserve an hyperbolic situation. It is also not conserva-
tive.

For stabilization, Colagrossi and Landrini used a modified version of
the Monaghan and Gingold artificial viscosity presented in Section 1.4.1.
Through dam-break tests they showed that their version of the artificial vis-
cosity coupled with the density filtering technique improves the total energy
conservation. However, the modified artificial viscosity increases computa-
tional time as it requires an additional loop over the particles. Also for mul-
tiphase flows, the artificial viscosity terms are computed for each particle i
considering exclusively particles j belonging to the same fluid.

Colagrossi and Landrini also used the XSPH velocity correction discussed
in Section 1.6.1 which was shown to significantly improve the accuracy of the
two-phase flows solutions. The XSPH correction was used only within the
continuity equation, which was rewritten as follows:

∇.ui = ∑
j
(uj − ui).∇Wji

mj

ρj
+ ∑

j
(4uj −4ui).∇Wji

mj

ρj
(2.4)

where
4ui =

ε

2 ∑
j

mj

ρ̄ij
(uj − ui)Wji (2.5)

and ρ̄ij =
ρi + ρj

2
.

For two-phase flows a constant background pressure p0 is added to the
Cole equation of state in confined domains to avoid tensile instability, and it
is equal to 0 for free-surface flows. Moreover, in order to prevent particles
mixing and keep the interface sharp, a cohesive force was also added to the
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equation of state, which is rewritten as follows:

P(ρ) =
ρ0c2

0
γ

[(
ρ

ρ0

)γ

− 1
]
+ p0 − āρ2 (2.6)

where the last term, adopted from Nugent and Posch [80], acts as a cohesion
force and the paramerter ā controls its strength. The cohesion force acts only
on the particles belonging to the lighter fluid Y.

2.1.3 Hu and Adams scheme (2006)

Another widely used scheme today is the Hu and Adams [42] formulation
for multiphase SPH. It is based on the following approximation of the particle
densites:

ρi = mi/Vi = mi ∑
j

Wij (2.7)

where mi is the mass associated to particle i, and Vi is approximated from the
neighboring repartition of particles as 1/ ∑

j
Wij.

This formulation is able to take into account density discontinuities be-
tween different fluids since the the evaluation of the density of a particle i
does not depend on the density of its neighboring particles, but only on their
positions and kernel radii.

Nevertheless, the major drawback of the interpolation (2.7) is that it can-
not be used for flows involving a free-surface since the kernel support is trun-
cated in the free-surface region, which results in erroneous densities in this
zone. However, the advantage of this method lies in the fact that there is no
need for a temporal integration of a continuity equation, which guarantees
mass conservation.

Grenier [33] proved the compatibility of the momentum equation pro-
posed in the Hu and Adams model [42] with the density formulation (2.7)
through a variational approach. A similar demonstration will be detailed in
Section 2.3. The momentum equation of the Hu and Adams scheme reads:

mi
dui

dt
= −∑

j
(PiV2

i + PjV2
j )∇iWij + mig (2.8)

2.1.4 Multiphase Riemann-SPH scheme (2010)

The Riemann-SPH scheme developed by Vila and presented in Section 1.4.3
can be adapted to multiphase configurations by blocking mass fluxes be-
tween the particles at the interface between two fluids. The interfaces be-
tween particles of different fluids are considered here as contact discontinu-
ities, which translates into taking the velocity of the interface between the
particles equal to the velocity of the solution of the Riemann problem:

u(x̄ij) = uE (2.9)
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Therefore, the mass and momentum equations (1.57) and (1.58) of the Vila
scheme, presented in Section 1.4.3, become:

d(ρiVi)

dt
= 0 (2.10)

d(ρiViui)

dt
= ρiVig−Vi ∑

j
2PE∇iWijVj (2.11)

The velocity solution of the Riemann problem is also introduced within the
volume equation (1.56):

dVi

dt
= Vi ∑

j
(uj − ui) · ∇iWijVj (2.12)

= Vi ∑
j

2
(

uj + ui

2
− ui

)
· ∇iWijVj (2.13)

= Vi ∑
j

2(uE − ui) · ∇iWijVj (2.14)

Consequently, we get the following system of discrete equations [54]:

dxi

dt
= ui (2.15)

dVi

dt
= Vi ∑

j
2(uE − ui) · ∇iWijVj (2.16)

d(ρiVi)

dt
= 0 (2.17)

d(ρiViui)

dt
= ρiVig−Vi ∑

j
2PE∇iWijVj (2.18)

This scheme was shown to handle large density ratios and avoid interface
or pressure jump diffusion, while being very robust and stable [54]. How-
ever, it still requires the MUSCL method to avoid too much numerical dissi-
pation (Section 1.4.3).

Moreover, this scheme does not allow mass fluxes which means that it
cannot be written in an ALE formalism (contrary to the ALE version of the
Vila scheme, (1.55)-(1.58)). However, in order to eliminate the anisotropic
structures, it is still possible to move the particles at an arbitrary velocity,
although non-consistently, through replacing Eq. (2.15) by:

dxi

dt
= u0i (2.19)

where u0i is a velocity perturbation, e.g. the one proposed by Oger et al. [83]
and presented in Section 1.6.1, which is the particle shifting technique used
in conjunction with the Riemann-SPH scheme (2.15)-(2.18) throughout this
work.
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2.1.5 Monaghan and Rafiee scheme (2012)

The SPH form of the continuity equation adopted by Monaghan and
Rafiee [75] is the standard one, cf. Eq. (1.35).

The momentum equation is retrieved through the derivation of the accel-
eration of particle i from Lagrange’s equations, which yielded the expression
of the momentum equation given in Eq. (1.36).

To stabilize their scheme, they added the viscosity term Πij (cf. Section
1.4.1) to the momentum equation, which reads:

Πij = −
8ν̄ijuij · xij

ρ̄ij|xij|h̄ij
(2.20)

where ν is the kinematic viscosity, and the notation ρ̄ij = (ρi + ρj)/2 is used.
If the viscosity ratio between the considered fluids is large, the following
replacement is made in Eq. (2.20):

ν̄ij

ρ̄ij
→

2νiνj

νiρi + νjρj
(2.21)

Moreover, a numerical treatment is enforced at the interface through
adding a repulsive term Rij between fluids of different types to the momen-
tum equation, similarly to the one suggested by Monaghan in [74]. This re-
pulsive force reads:

Rij = 0.08
∣∣∣∣ρ0i − ρ0j

ρ0i + ρ0j

∣∣∣∣∣∣∣∣Pi + Pj

ρiρj

∣∣∣∣ (2.22)

Thus, the momentum equation of the Monaghan and Rafiee model reads
(excluding boundary forces [75]):

dui

dt
= −∑

j
mj

(
Pi + Pj

ρiρj
+ Rij + Πij

)
∇iWij (2.23)

Similarly to the Standard Scheme, the density is updated in time which
makes the multiphase model of Monaghan and Rafiee capable of handling
the presence of a free-surface. However, no information concerning the qual-
ity of pressure field was provided in their paper. Also, their scheme neces-
sitates a damping technique in order to correctly initialize the simulation.
Furthermore, their results showed visible nonphysical perturbations at the
interface between two fluids with a medium density ratio of 100 (e.g Figure 3
in [75]).

2.1.6 Grenier et al. scheme (2013)

Grenier et al. [35] proposed a multiphase model for interfacial and free-
surface flows. This scheme is detailed more than the previous ones here since
it will be the basis for the scheme proposed in this thesis which extends it.
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The continuity equation is expressed through the Volumetric Strain Rate
equation:

d(δV)

dt
= δVdiv(u) (2.24)

where δV is the volume associated to the material point which moves with
the flow velocity u.

As usually performed in the SPH framework, the divergence operator can
be approximated as:

〈div(u)〉i = ∑
j
(uj − ui) · ∇iWijVj (2.25)

From the above equations, the time evolution for the particle volumes can
be derived as:

dVi

dt
= Vi〈div(u)〉i (2.26)

and the mass mi of the generic particle i is evaluated by the initial condition
at time t = 0:

mi = ρi0Vi0 (2.27)

where ρi0 and Vi0 are respectively the initial density and volume of particle
i. Once the particle masses are initialized they do not change throughout the
simulation, which explicitly guarantees mass conservation. Furthermore, a
discussion about the volumes initialization is provided in Section 2.3.

The Grenier et al. [35] model differs from other SPH models where a con-
tinuity equation is written in terms of density. Indeed, in Grenier et al. [35]
the particle volumes are evaluated before the density, similarly to the Español
and Revenga [27] model. Here, after the time integration of (2.26), a Shepard
interpolation of the particles masses is used to evaluate the density field:

ρi = ∑
j∈χ

mjWS
ij ; WS

ij =
Wij

∑
k∈χ

WikVk
, ∀i ∈ χ (2.28)

where χ indicates a generic fluid in the domain Ω, with the above summa-
tions computed only using particles belonging to the same phase as particle
i. This allows for an explicit treatment of the density discontinuities since,
unlike the kernel Wij, the summation of the Shepard kernel is not affected by
the truncation of the kernel support. Also, it is worth noting that the Shepard
kernel WS requires a priori the knowledge of the particles volumes Vk in Eq.
(2.28), yielded by the evolution equation (2.26).

Once the density field is evaluated, the pressure is obtained through the
use of the equation of state (1.4), for each phase χ:

Pi = fχ(ρi) =
ρ0χc2

0χ

γχ

[(
ρi

ρ0χ

)γχ

− 1
]
+ p0, ∀i ∈ χ (2.29)

where γχ, ρ0χ and c0χ are respectively the polytropic coefficient, nominal
density and nominal sound speed of phase χ.
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Following the work of Colagrossi et al. [16], using the Principle of Vir-
tual Works, the smoothed divergence operator defined by (2.25) leads to the
following smoothed pressure gradient:

〈∇P〉i = ∑
j
(Pi + Pj)∇iWijVj (2.30)

Since the Shepard kernel is used in (2.28), in [34] the smoothed velocity di-
vergence and the smoothed pressure gradient operators were modified as:

〈div(u)〉i = ∑
j
(uj − ui)

∇iWij

Γi
Vj, 〈∇P〉i = ∑

j

(
Pi

Γi
+

Pj

Γj

)
∇iWijVj

Γi = ∑
k

WikVk

(2.31)
where Γi is a renormalization factor that takes into account possible kernel
support truncation. However, unlike the summation used in (2.28) for the
evaluation of densities, the summation for the Γi factor incorporates the par-
ticles belonging to other phases as well.

Grenier et al. [34] underlined the fact that a non-physical inter-penetration
of particles from different phases may occur when simulating multiphase
flows where surface tension effects are negligible. In order to prevent this, a
small repulsive force was introduced within the pressure gradient operator
as follows [34]:

∇Pi = ∑
j

(
Pi

Γi
+

Pj

Γj

)
∇iWijVj + εχ ∑

j∈χ̄

(

∣∣∣∣Pi

Γi

∣∣∣∣+ ∣∣∣∣Pj

Γj

∣∣∣∣)∇iWijVj (2.32)

where εχ is a parameter ranging between 0.01 and 0.1 that controls the inten-
sity of the repulsive term. The second summation applies only to the set of
particles that do not belong to the fluid of the ith particle. This set of parti-
cles is noted by χ̄. This choice naturally implies that on the free-surface, this
artificial pressure term is null.

2.1.7 Summary

In the previous sections we have seen that there multiple ways to derive SPH-
discretized governing equations for the aim of multiphase configurations.
Each method has its advantages and drawbacks, especially regarding their
capabilities in terms of handling the presence of a free-surface, stabilization
methods and quality of the pressure fields.

That being said, the Grenier et al. model [35] is able to treat multi-
phase flows in the presence of both interfaces and a free-surface. How-
ever, like other weakly-compressible SPH schemes, it suffers from numeri-
cal high-frequency oscillations within the pressure field. Therefore, one of
the problems tackled during this thesis is the improvement of the Grenier et
al. model, both in terms of computed pressure fields and stability. The next
section will present the contributions of this work in this context.
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2.2 Derivation of the Multiphase δ-SPH scheme

2.2.1 The proposed governing equations of the Multiphase δ-
SPH scheme

Grenier et al. [35] modified the smoothed velocity divergence and pressure
gradient operators by introducing a renormalization factor Γi (Eqs. (2.31)),
for taking into account possible kernel truncation. However, conversely to
the summation used in Eq. (2.28) for the evaluation of densities, the sum-
mation for the Γi factors incorporates the particle belonging to other phases
as well. It follows that Γi remains close to unity and plays a role only when
the particles are close to the free-surface. From a practical point of view we
found that the effects of the Γi terms are always negligible. Their use does
not improve the accuracy of the scheme and for this reason, they will not be
adopted in the rest of this work. A simple heuristic proof of this is given in
Section 3.2.

Therefore, we propose to rewrite the velocity divergence and pressure
gradient operators (2.31) of the Grenier et al. scheme, as:

〈div(u)〉i = ∑
j
(uj − ui)∇iWijVj (2.33)

〈∇P〉i = ∑
j
(Pi + Pj)∇iWijVj (2.34)

More precisely, the modified pressure gradient proposed by Grenier et
al. [34] was kept here, the only difference being the elimination of Γi factors
from the equation:

∇Pi = ∑
j
(Pi + Pj)∇iWijVj + εχ ∑

j∈χ̄

(|Pi|+ |Pj|)∇iWijVj (2.35)

In order to remove the spurious oscillations of pressure that challenge
the Grenier et al. scheme, we developed a simple yet effective treatment,
inspired from the single-phase δ-SPH model of Antuono et al. [1]. Indeed, the
diffusive δ-term presented in Section 1.4.2 was identified as a good candidate
to extend to the multiphase framework.

Therefore, the complete set of ODEs for the proposed model, referred to
as the Multiphase δ-SPH scheme in this work, written for a generic ith particle
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of a generic phase χ, is:

dxi

dt
= ui (2.36)

dVi

dt
= Vi ∑

j
(uj − ui) · ∇iWijVj + δhc0χ ∑

j∈χ

ψVSR
i · ∇iWijVj (2.37)

ρi
dui

dt
= −∑

j
(Pi + Pj)∇iWijVj + ρigi + αhc0χρ0χi ∑

j∈χ

πij∇iWijVj(2.38)

ρi = ∑
j∈χ

mjWS
ij (2.39)

Pi = fχ(ρi) (2.40)

The next section details the adaptation of the δ-SPH diffusive term ψVSR
i

to the governing equations of the proposed Multiphase δ-SPH scheme.

2.2.2 The proposed diffusive term in the Volumetric Strain
Rate equation

First, it is important to note that some fundamental differences exist be-
tween the governing equations of the Grenier et al. scheme and the Standard
Scheme, which makes the adaptation of the diffusive δ-term not straightfor-
ward.

On the one hand, the δ-SPH diffusive term is added to equation (1.35) of
the Standard Scheme which is a continuity equation written in terms of den-
sity, whereas in the Multiphase δ-SPH scheme a continuity equation does not
exist per se. Instead it is replaced by a Volumetric Strain Rate (VSR) equa-
tion, while the density is computed via a Shepard interpolation. Therefore,
any numerical diffusion to improve the pressure field should be added to
the Volumetric Strain Rate equation and not to the Shepard interpolation of
the density. Indeed, the main reason of computing density via a Shepard in-
terpolation is to avoid any numerical diffusion at the interface between two
different fluids in a multiphase context, and directly mixing it with a numer-
ical diffusive term would defeat its purpose.

On the other hand, as seen for the δ-SPH scheme, in the continuity equa-
tion the δ-diffusive term has the dimension of a Laplacian of density. Since
the Volumetric Strain Rate equation has the same form as the δ-SPH continu-
ity equation, the correction terms in both equations should take the same
form. Consequently, the numerical diffusive term within the Volumetric
Strain Rate equation should logically have the dimension of a Laplacian of
volume.

An intuitive approach is to directly replace the density by the volume
inside the diffusive term, as follows:

DVSR
i = ∑

j
ψVSR

ij · ∇iWijVj (2.41)
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where the superscript VSR denotes the terms adapted to the Volumetric
Strain Rate equation, and:

ψVSR
ij = 2(Vj −Vi)

xji

||xij||2
− [〈∇V〉Li + 〈∇V〉Lj ] (2.42)

This form of the diffusive term was tested on two problems, a dam-break
and a hydrostatic case, both in a single-phase configuration as a first attempt.
The results for the dam-break case were quite satisfactory, with smooth pres-
sure all over the domain. However, the same formulation of the numerical
diffusive term led to a solution that did not preserve the hydrostatic solu-
tion, where the particles near the free-surface tended to move upwards. This
problem was also reported in Antuono et al. [1].

This nonphysical behavior of the particles near the free-surface can be ex-
plained by the fact that in a simulation like the hydrostatic problem, the vari-
ation of the particle volumes within the kernel support are very small, which
means that the spatial gradient of the volumes is negligible. Therefore, the
adapted correction term 〈∇V〉Li + 〈∇V〉Lj almost vanishes for the hydrostatic
case, meaning that the diffusive term is simply reduced to its original form:

ψVSR
ij ≈ 2(Vj −Vi)

xji

||xij||2
(2.43)

which diverges at the free-surface as already established in Section 1.4.2, ren-
dering unstable the particles near the free-surface. Note that this problem
does not affect the dam-break simulation since it involves complex move-
ments of the particles, during which the gradient of volume has generally
non-zero values.

Consequently, this problem was circumvented by adopting the following
form of the numerical diffusive term:

ψVSR
i = Vi

[
2
(

1−
ρj

ρi

)
− 1

ρi

(
∇ρLi +∇ρLj

)
· xij

]
xij

||xij||2
(2.44)

In terms of dimension, this form of the diffusive term is still written for the
particle volumes and not for the density as in Eq. (1.54), so it is compatible
with the Volumetric Strain Equation. Moreover, the diffusion is still depen-
dent on the density variations, which also keeps it suitable for free-surface
flows.

In the Multiphase δ-SPH scheme (2.36)-(2.40), the parameter δ is always
set to 0.1 independently of the simulation and α = O(0.1), similarly to the
single-phase δ-SPH model [62] (Section 1.4.2). Note that the sums in the den-
sity and in the diffusive terms are made only over particles of the same phase
as particle i, as was proposed by Colagrossi et al. [18] and Grenier et al. [34,
35]. This is motivated by the fact that we do not want to alter the explicit
treatment of the interface discontinuities by allowing a diffusion mechanism
across the different phases. However, such a choice can lead to numerical
instabilities at these interfaces which necessitates the addition of a numerical
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surface tension term, as underlined in Section 2.1.6.

2.3 Alternative derivation of the Multiphase δ-
SPH scheme equations

The starting point of the derivation of the second set of governing equations
is to define the volume of a generic ith particle as a direct function of the
positions of its neighboring particles:

Vi =
1

∑
j

Wij
(2.45)

and its density as:
ρi(t) =

mi

Vi
= mi ∑

j
Wij (2.46)

This definition of the particle volumes was introduced by Español and
Revenga [27] within an SPH-DPD (Disspative Particle Dynamics) scheme.
As highlighted in their paper, the volume Vi defined as (2.45) does not co-
incide with the geometrical volume occupied by the particle, as the sum of
these volumes does not necessarily coincide with the total volume of the fluid
domain VT, i.e.:

∑
i

Vi 6= VT (2.47)

For this reason in [27] the quantity Vi is called “thermodynamic volume”,
in the sense that it is directly linked to Wij which also determines the inter-
particle forces in the momentum equation. This error in Eq. (2.47) decreases
when increasing the ratio Rk/∆x if the kernel function is not truncated.

In the present context of multiphase flows with free-surface, we circum-
vent the kernel truncation issue discussed in Section 2.1.3 by writing the time
derivative of (2.45) as follows:

dVi

dt
= −

∑
j

dWij

dt

(∑
j

Wij)2 ,
dWij

dt
=

dW(xi(t)− xj(t), Rk)

dt
= −(uj − ui) · ∇iWij

(2.48)
which yields the following expression of the volume time derivative:

dVi

dt
= V2

i ∑
j
(uj − ui) · ∇iWij (2.49)

In order to integrate Eq. (2.49) in time, the initial particle volumes Vi0
should be defined. These are known from the particles positions inside the
fluid at the initial time. Usually at t = 0 the particles are regularly positioned
in the domain. Therefore, at least at the initial instant, the “thermodynamic”
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volumes coincide with the geometrical ones, and can be initialized as such.
One can also use the particle packing technique described in [20], in which
case the volumes can be initialized by the obtained tessellation.

Next, we need to derive a momentum equation which is formally com-
patible with the volume equation (2.49) (see Section 1.3.2). To this aim, the
continuum Lagrangian [26] L of the system is discretized for a generic set of
SPH particles as:

L = ∑
j

mj
u2

j

2
−mjU(t, xj)−mje(ρj) (2.50)

where U is a generic potential energy per unit of mass whose gradient yields
a force field f, such as gravity in our case, i.e. f = −∂U/∂x, and e is the inter-
nal energy per unit of mass. e is supposed to be a function of the density field
only. Indeed, in the scope of the present work, we suppose that the entropy
is constant since we are not concerned with the irreversible thermodynamic
exchanges between particles. Further details on these aspects are presented
in Colagrossi et al. [19].

The dynamics of a particle i is described by Lagrange’s system of equa-
tions:

d
dt

(
∂L
∂ui

)
− ∂L

∂xi
= 0 (2.51)

where ∂./∂. denotes the partial derivative. The second term of (2.51) is writ-
ten as:

∂L
∂xi

= mifi −∑
j

mj

(
de(ρj)

dρj

)
∂ρj

∂xi
(2.52)

in which, following the first law of thermodynamics, the pressure Pj is equal
to the variation of the internal energy ej as a consequence of the variation of
the density field ρj:

Pj = ρ2
j

dej

dρj
(2.53)

which means that the term
dej

dρj
can be replaced by

Pj

ρ2
j
.

Next, we write the time derivative of the density equation (2.46):

dρj

dt
= mj ∑

k

(
dxj

dt
− dxk

dt

)
∇jWjk (2.54)

which yields the following expression of the Lagrangian increment of den-
sity:

δρj = mj ∑
k
(δxj − δxk)∇jWjk (2.55)
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From the last equation we finally obtain:

∂ρj

∂xi
= mj ∑

k
(δji − δki)∇jWjk (2.56)

where δji is the Kronecker delta function.
Substituting (2.56) in (2.52) and (2.52) in (2.51), and after rearranging the

summation indices, we obtain the following momentum equation:

mi
dui

dt
= mifi −∑

j
(PiV2

i + PjV2
j )∇iWij (2.57)

Similarly to Grenier et al. [35], the density can finally be computed via
a Shepard interpolation as Eq. (2.28) instead of Eq. 2.46 in order to keep a
sharp density jump at the interface between different fluids. Moreover, the
idea of adding the diffusive δ-term to the volume equation is maintained for
this scheme, in order to improve the quality of the pressure field.

To sum up, the complete set of governing equations of the proposed al-
ternative multiphase SPH formulation, written for the generic ith particle of
a generic phase χ, reads:

dxi

dt
= ui (2.58)

dVi

dt
= V2

i ∑
j
(uj − ui) · ∇iWij + δhc0χVi ∑

j∈χ

ψVSR
i · ∇iWij (2.59)

mi
dui

dt
=−∑

j
(PiV2

i + PjV2
j )∇iWij + mifi

+ αhc0χρ0χ ∑
j∈χ

πij
V2

i + V2
j

2
∇iWij

(2.60)

ρi = ∑
j∈χ

mjWS
ij (2.61)

Pi = fχ(ρi) (2.62)

Comparing this alternative set of governing equations (2.58)–(2.62) with
the Multiphase δ-SPH scheme (2.36)–(2.40), some minor differences arise in
terms of the particle volumes averaging inside the equations of volume and
momentum. However, in the weakly-compressible context of this work, the
variations of particle volumes within the kernel support are always very lim-
ited. It follows that the differences in using the two different schemes are in
practice always negligible, and are reduced when increasing the spatial res-
olution. This practical equivalence of the two formulations will be displayed
in Chapter 3 (see Section 3.3.3).
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2.4 Numerical stability of the Multiphase δ-SPH
scheme

2.4.1 Choice of sound speeds

A fourth-order explicit Runge-Kutta scheme is used to march in time the
system of equations (2.36)–(2.40). As described in [1], in order to reduce CPU
costs and improve the stability of the scheme, the diffusive δ-term is updated
outside the sub-time steps of the Runge-Kutta scheme while it is “frozen”
inside.

The time step of the simulations is set as:

∆t = min
i
(∆tc

i ), ∆tc
i = K

Rk
c0χ

∀i ∈ χ (2.63)

where ∆tc
i is the limit time step due to the acoustic constraint and K is the CFL

factor. The time step ∆tc
i then depends on the specific speed of sound c0χ of

each phase χ. The K factor is set smaller than the maximum value Kmax which
depends on the specific time scheme and the chosen kernel function, and
can also be problem dependent. For the simulations presented in Chapter 3,
K was set heuristically to 0.75, as with this value the scheme was found to
always be stable even for violent flow conditions.

As already stated before, this work focuses on interfacial flows in the pres-
ence of a free-surface, more specifically, problems where a liquid X interacts
with entrapped gas pockets Y and a free-surface FS. The gas Y, in some
conditions, can be compressed by the liquid phase, for example in the water
entry problem of Section 3.4), or in gas pockets formed after wave breaking.
For this reason, the compressibility of the gas matters. Since it is linked to
the speed of sound c0Y, the latter cannot be chosen freely for computational
convenience, but has to be equal to the real physical one.

In general, for cases where compressibility effects are important for the
gas dynamics, the Euler non-dimensional number should be preserved in
the simulation. It is defined as:

Eu =
P0Y

ρXU2
X

, P0Y =
ρ0Yc2

0Y
γY

(2.64)

where p0Y is the pressure of the entrapped gas pocket in rest condition and
UX is the speed of liquid acting against the gas pocket.

Conversely, the liquid phase X is treated as a weakly-compressible
medium (see Section 1.3.1), i.e. for computational convenience the speed of
sound can be reduced with respect to the real one up to the limit:

c0X ≥ 10 max
(

Umax,

√
∆Pmax

ρ0X

)
(2.65)
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where Umax and ∆Pmax are the maximum expected velocity and pres-
sure variation in phase X. The condition (2.65) guarantees the weakly-
compressible regime, that is, the fluid density variations for X shall remain
smaller than 1% (see e.g. [65]). This allows the adoption of a lower value of
the sound speed with respect to the actual value which would lead to very
small time steps and therefore, high computational costs.

The above conditions where the value of c0Y is equal to the physical
one and c0X is set to guarantee the weakly-compressible approach, can lead
to counter-intuitive situations in which the air phase is modeled using an
air sound speed larger than the liquid one. However, as explained in [18]
and [34] and shown in Section 3.4, the above choice remains a good approxi-
mation provided that the constraint (2.65) is respected.

In Colagrossi and Landrini (2003) [18] a further constraint, this time on
the ratio between the speeds of sound c0X and c0Y, is included and reads as:

P0Y = P0X ⇒
c0X

c0Y
=

√
γXρ0X

γYρ0Y
(2.66)

The nature of this constraint was not justified by [18]. The present study
will show that it is linked to a stability constraint of the scheme and can be
rewritten in a more complete fashion.

Through the simple test cases discussed in Section 2.4.2, heuristically we
found that the relation (2.66) allows for stable simulations when the CFL co-
efficient is set equal to K = 1.13. Conversely, by varying the K factor we
found further regions of stability which can be generally indicated as:

K < f
(

c0X

c0Y
, η

)
, η =

√
γXρ0Y

γYρ0X
< 1 (2.67)

where f is a monotonically non-increasing function of the variables (c0X/c0Y)
and η.

2.4.2 Stability regions through the Bagnold problem

In order to derive the regions of stability given by Eq. (2.67), a 1-D Bag-
nold problem [4] has been considered. In particular, the same configuration
adopted in [38] has been used for the test case: a liquid fluid patch is confined
between two gas pockets under gravity forcing. In the initial condition the
velocity is zero everywhere (see sketch in Fig. 2.1).

As in [38], the total length of the tank is H = 15m. For all the simulations
the following parameters have been used: H/∆x = 240, Rk/∆x = 4, for the
liquid γX = 7, and for the gas γY = 1.4, while δ = 0.1, α = 0.07, εχ = 0.02 for
both phases. This simple test case is used to study the conditions in which
the scheme stays stable. Several combinations of density ratios and speeds of
sound have been tested.

In Fig. 2.2 the stability region is studied in the plane (c0Y/c0X, K). Three
different ratios ρ0X/ρ0Y = 10, 100, 1000 have been considered which corre-
sponds to three η values of 0.71, 0.22, 0.071 (see Eq. (2.67) and considering
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FIGURE 2.1: 1D two-phase Bagnold test: a patch of fluid X is
confined by two gas pockets Y. At t = 0 the fluid velocity is

zero and the fluid is subjected to gravity.

the ratio of the polytropic coefficients fixed to the value γX/γY = 5). For this
simple case the maximum CFL value reached is Kmax = 1.4 which is much
higher than the 0.75 value used in the SPH simulations discussed in Chapter
3.

It is worth noting that in this 1-D test case particles advection is very small
which is not the case for the other SPH simulations presented in the paper.
The bullet dots in Fig. 2.2 represent the maximum K value to obtain a stable
SPH simulation for a given couple (c0Y/c0X, η). The unstable simulations,
not shown here for the sake of brevity, appear as being affected by numerical
high frequency pressure oscillations inside the two gas cavities with increas-
ing amplitude in time.

Using a set of forty-five simulations performed, the stability limits have
been simplified using just two lines for each considered value of η, where the
inclined lines present all the same steepness. A rule for the stability can be
established with the equation:

K < max
{ [

K∗ − κ log
(

c0X

c0Y

1
η

)]
, K∗ η

}
, η =

√
γXρ0Y

γYρ0X
< 1

(2.68)
where K∗ = 1.13. The steepness coefficient κ, as mentioned before, does not
depend on η while it could be dependent on the dissipation of the scheme,
i.e. in our case on the parameters δ and α.

In most of the simulations performed in this article the ratio c0X/c0Y is al-
ways less than one, since we consider the X phase as a liquid and Y phase as
a gas. As explained above, in such a condition, where c0Y is higher than c0X,
it follows that the first condition of Eq. (2.68) dominates. The optimal con-
dition c0X/c0Y = η, which allows to use K = K∗, may not be adopted since
the condition c0X = η c0Y may not satisfy the weakly-compressible criterion
(2.65). Therefore, in such a situation it is necessary to reduce the K parame-
ter through Eq. (2.68) to adopt the right speeds of sound. As a consequence
higher CPU costs are sometimes required.

On a theoretical note, Violeau and Leroy [101] performed a stability anal-
ysis of the weakly-compressible SPH equations using the von Neumann ap-
proach for single-phase unbounded flows. They obtained a theoretical sta-
bility criterion for the time step, depending on the kernel standard deviation,
the speed of sound and the viscosity. Consequently, the constraints studied in
this section deserve further investigation in order to theoretically understand
the reasons behind the shapes and limits of the obtained stability regions, this
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FIGURE 2.2: 1D two-phase Bagnold test: regions of stability.
Each bullet represents the maximum CFL number reached for
a given density ratio ρ0X/ρ0Y and speed of sound ratio c0X/c0Y,
X and Y being the heavier and lighter phases, respectively. The
solid lines represent the regression lines delimiting the stabil-
ity region for each η value, η being the parameter defined in
formula (2.66). The yellow bullets in the graph represent the

points where c0X/c0Y = η and K = K∗.
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time in a multiphase context, and to derive possible solutions to go beyond
these boundaries.
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Chapter 3

Validation of the proposed model

The proposed model was validated through three classic test cases: a hy-
drostatic problem, an oscillating elliptic fluid patch and a dam-break. These
simulations have the advantages of being easy to implement and widely used
within the SPH literature, with well-known experimental data and/or ana-
lytical solutions. In order to highlight the capabilities of the model, each
simulation was run in single-phase and multiphase configurations.

As a final test case, a more challenging problem is addressed: the water
impact of a corrugated panel with an entrapped air cavity. This problem also
presents complex free-surface dynamics and, therefore, is a good candidate
for showing how the proposed SPH method is able to treat this kind of water
impact flows.

3.1 Long-time evolution for the hydrostatic test-
case

In this section the evolution of a tank partially filled with water at rest with a
hydrostatic pressure distribution is simulated. This simple test case was cho-
sen in order to test the ability of the model of maintaining a stable free-surface
in both single and two-phase configurations. Indeed, new SPH formulations
can induce non-physical particle re-settlement due to lack of consistency of
the scheme in the presence of boundaries and volume forces. For instance
in [1] it was shown that the use of diffusive terms in the continuity equation
can induce instabilities at the free-surface if the latter is not properly taken
into account.

In the present study, for the single-phase configuration a two-dimensional
tank is half-filled with water at rest. For the air-water simulation, the other
half is filled with air, and the density ratio is 1000. The filling height is H and
a downward gravity acceleration g is present. The computed single-phase
and two-phase solutions are shown in Fig. 3.1 at t

√
g/H = 62.64.

Similarly to [1], in both solutions the free-surface is stable and the hydro-
static solution is well respected. However, in the two-phase configuration a
non-physical separation appeared at the interface region between air and wa-
ter. This problem was reported in [51], and a correction was proposed based
on a buoyancy model via the addition of a numerical term to the momentum
equation. Here, we simply add a background pressure Pb = 0.1 ρ0wgH where
ρ0w is the nominal density of water, which solves this issue, since we found
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FIGURE 3.1: Hydrostatic solution: particle configuration and
pressure distribution in single-phase (left) and two-phase

(right), at t
√

g/H = 62.64.

FIGURE 3.2: Hydrostatic solution: evolution of the kinetic en-
ergy for the single-phase and air-water configurations. The ki-
netic energy of each phase is made dimensionless using its ini-

tial potential energy.



3.2. Oscillating drop: single/two-phase simulations 51

that the interface separation is strongly linked to the appearance of nega-
tive pressure in the interface zone during the first time steps. The particles
generally stay on the initial Cartesian grid, although a small perturbation is
observed just underneath the free-surface and around the air-water interface.

Fig. 3.2 shows the normalized kinetic energy evolution up to t
√

g/H =
300. At the beginning of the simulation a small amount of potential energy
is converted to kinetic energy due to the relaxation of the particle Cartesian
lattice (see, e.g., [20]). Then the kinetic energy rapidly decreases towards zero
for both single and two-phase simulations, showcasing the good stability and
robustness of the model. The kinetic energy of the air-water simulation is ini-
tially higher and decays faster than its single-phase counterpart. This is due
on the one hand to the already mentioned fact that particles move a bit more
close to the interface in the multiphase simulation, and on the other hand
to the addition of the background pressure in the multiphase case, which
induces a higher level of numerical dissipation.

3.2 Oscillating drop: single/two-phase simula-
tions

In the present section a 2D fluid patch evolving in a quadratic potential field
Φ(x, y) = 1/2Ω2(x2 + y2) is considered, where Ω is a parameter that controls
the oscillations of the fluid patch. The fluid is inviscid and the radius of the
disk is R. The velocity field is assumed to have the following form:{

u = A(t)x
v = −A(t)y

(3.1)

where the initial condition A(t = 0) is set equal to the parameter A0. The ra-
tio Ω/A0 is set equal to 1. Following the study by Monaghan and Rafiee [75],
under these conditions the free surface evolves periodically with an ellipti-
cal shape. In the present work the objective of this test-case is to validate the
proposed SPH scheme by monitoring the evolution of the mechanical energy,
and by comparing our solutions of both the single and two-phase oscillating
drops with their analytical counterparts.

3.2.1 Single-phase case

Fig. 3.3 presents the initial and deformed shapes of the fluid patch at three
different time instants. The obtained free-surface configurations are com-
pared with the analytical solution provided in [75], resulting in a very good
agreement. This is further illustrated in the top plot of Fig. 3.4, where the pre-
dicted evolution of the ellipse semi-axis a(t) is plotted against the analytical
solution for 8 periods of oscillation.

A convergence study was made in order to evaluate the energy conserva-
tion properties of the scheme. The bottom plot of Fig. 3.4 shows the evolution
of the normalized mechanical energy for three increasing discretization ratios
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FIGURE 3.3: Single-phase oscillating drop: snapshots of the
evolution at different times. The dashed line represents the an-

alytical solution.
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FIGURE 3.4: Single-phase oscillating drop: at the top, compar-
ison between the predicted evolution of the semi-axis a(t) and
the analytical solution. At the bottom, time history of the nor-
malized mechanical energy variation for different discretiza-

tions.

Rk/∆x = 50, 100, 200. Similarly to Antuono et al. [2], for increasing numbers
of particles, smaller dissipations of the mechanical energy occur due to the
presence of the δ-term in the continuity equation, as its contribution goes to
zero when the inter-particle distance goes to zero. For the finest resolution
the dissipated energy after 10 oscillation periods is about 1% with respect to
the initial one.

The present test-case is also used to study the influence of the integrals
Γ in the Grenier et al. [34] model which have been removed in the present
scheme (see Section 2.1.6). Figure 3.5 shows the time history of the pressure
recorded at the center of the oscillating bubble evaluated with and without
taking into account the integral Γ, see Eq. (2.31). The two solutions remain
quite close, although the scheme without the Γ factors seems to remove the
acoustic pressure oscillations in a more effective way.

In the top plot of Fig. 3.5 a pressure oscillation is observed for both solu-
tions around t = 0.2T. This is due to the destruction of the particles tessella-
tion which originates from the initial Cartesian distribution. This leads to a
numerical pressure wave which is damped later in time. This phenomenon
was reported in [20], where a particle packing algorithm was used to cir-
cumvent this issue. Also, in our computations we found that initializing the
particles according to a polar distribution helps relieving this issue, as shown
in the bottom plot of Fig. 3.5. Besides, the initial particle configuration does
not affect the solution later in its evolution.
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FIGURE 3.5: Single-phase oscillating drop: time history of the
pressure at the bubble center r = 0. Top: computed with and
without taking into account the integral Γ. Bottom: computed

with initial polar/Cartesian particle distributions.

3.2.2 Multiphase case

Here we consider two initial concentric circular patches of fluid. The heavier
fluid occupies the inner circular region of radius R/2, while the lighter fluid
occupies the region between the outer circle of radius R and the inner circle.
After initializing both fluids according to the quadratic potential Φ(x, y) =
1/2Ω2(x2 + y2), we compute their evolution with the proposed SPH model.
Once again we keep the ratio Ω/A0 = 1. The heavier fluid needs to be in
the inner region, because if the phases are swapped the flow will become
unstable under the action of the potential Φ and a Rayleigh-Taylor instability
will take place.

This second benchmark is particularly interesting for the validation of the
present model since the multiphase domain is confined by a free surface. In
the initial condition the pressure is correctly initialized, and unlike [75], no
damping technique is needed to initialize the simulation. Fig. 3.6 illustrates
the initial configuration of the problem, with a density ratio ρinner/ρouter =
1000.

Fig. 3.7 shows the evolution of the outer ellipse semi-axis a(t) for two
different density ratios, ρinner/ρouter = 10 and 1000. As predicted by the
analytical solution, the time evolution of the outer axis, a(t), is not affected
by the density ratio ρinner/ρouter. This is not the case for the pressure at the
center of the inner fluid which is plotted in Fig. 3.8.

Once again, a small perturbation at the end of the first quarter-period
occurs due to the initial Cartesian distribution of the particles. Apart from
that, the pressure predicted by the current model follows closely the analytic
incompressible solution for both density ratios.
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FIGURE 3.6: Two-phase oscillating drops: evolution of the pres-
sure field for the concentric circular bubbles problem at differ-

ent times. The dashed line represents the analytical solution
.
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FIGURE 3.7: Two-phase oscillating drops: time evolution of the
the outer ellipse semi-axis for a density ratio of 10 (top) and
1000 (bottom). The solution obtained by the proposed Multi-
phase δ-SPH scheme is compared with the analytic incompress-
ible flow solution. The axis time evolution a(t) is hardly af-

fected by the density ratio.

FIGURE 3.8: Two-phase oscillating drops: evolution of the pres-
sure at the center of the inner bubble for the density ratios 10

and 1000.
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FIGURE 3.9: Two-phase oscillating drops: pressure in the inner
and outer phases along the horizontal line y = 0, at the initial

time and after 2 periods.

Fig. 3.9 shows the pressure in the inner and outer phases along the hor-
izontal line y = 0 at the initial time and after 2 periods for the density ratio
ρinner/ρouter = 1000. The pressure after 2 periods matches quite accurately
the initial distribution as expected. At the interfaces, some particles, espe-
cially those from the lighter phase, deviate from the expected value. Aside
from these drawbacks in the local solution, the proposed model reproduces
the analytical incompressible kinematics with a satisfactory accuracy and
yields smooth pressure fields in both the lighter and outer phases (see also
Fig. 3.6).

3.3 Dam-break flow: single-phase and air-water
configurations

The third test case is a dam-break flow impacting a vertical wall. It is one
of the most popular test cases in the SPH community, due to the existence
of experimental results [66, 95, 8] for different setups (tank geometry, water
length and height, dry/wet bed etc.). Moreover, it is a challenging test case
because of the free-surface fragmentation and the viscous dissipation due to
the multiple breaking processes of the water splash-ups [65].
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FIGURE 3.10: Single-phase dam-break: initial configuration.

In the present study, the dam-break configuration follows the experi-
ments made by Lobovský et al. [58], where different impact pressure mea-
surements on the vertical wall are provided. The probes locations in our sim-
ulations were chosen in accordance with the ones from their experiments.

3.3.1 Single-phase simulation

The initial single-phase configuration is illustrated in Fig. 3.10. The dis-
cretization ratio is H/∆x = 200. Snapshots of the dam-break flow evolution
in the single-phase configuration are shown in Fig. 3.11.

The model clearly handles well the presence of the free-surface. Also,
thanks to the addition of the diffusive terms in the present model, no spu-
rious oscillations of pressure are observed. This is the main improvement
upon [34] as illustrated in Fig. 3.12, which highlights the differences in the re-
sulting pressure fields obtained with the proposed model and with the origi-
nal Grenier et al. model [34], where local pressure oscillations occurred, also
linked to bad particle arrangements.

3.3.2 Two-phase simulation

Another simulation of the same dam-break flow was run, this time in a mul-
tiphase configuration. The adopted density ratio is ρwater/ρair = 1000. The
background pressure value here is Pb = 0.1ρ0watergH. Also, since the oscil-
lations of the enclosed air cavity are of interest here, the sound speed of the
air phase is taken equal to its physical value c0air = 343 m/s. Fig. 3.13 shows
the dam-break evolution and the pressure field in the water phase. The latter
is in very good agreement with its single-phase counterpart (see Fig. 3.11),
as the pressure levels inside the water are almost identical in both cases up
to the cavity closure, after which the air cushioning effects become relevant
(see third plot of Fig. 3.13) and the two flow evolutions do not behave in the
same manner anymore.

This visual agreement is confirmed by monitoring the pressure signals at
two probes P1 and P2. As observed in Fig. 3.14, both models are in very good
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FIGURE 3.11: Single-phase dam-break: snapshots of the flow at
different times. Colors are representative of the dimensionless

pressure p/(ρwatergH) from 0 (blue) to 1 (red).
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FIGURE 3.12: Single-phase dam-break: snapshot of the flow at
t(g/H)1/2 = 9, using the original Grenier et al. model (top) and

the proposed model (bottom).

agreement up to around t(g/H)1/2 = 6, which corresponds to the first cav-
ity closure. Then the two-phase model predicts a pressure oscillation due to
the air cushioning effect of the entrapped air bubble, similarly to what was
reported in [18]. A different behavior is observed in the single-phase simu-
lation, in which this cavity is void. In this case the cavity collapses in a flat
impact around t(g/H)1/2 = 8, transforming some of the mechanical energy
into internal energy, in the form of traveling acoustic waves (see also [60] for
a detailed discussion about this phenomenon).

In Fig. 3.14 the pressure recordings from [58] are also reported. A satisfac-
tory agreement between numerical output and experimental data is achieved
for the first pressure peak for both probes whilst some discrepancies are ob-
served further in time. These differences are to be ascribed to relevant 3D
effects observed in [58]. In any case, the pressure signals obtained by the
present scheme are very close to those recently obtained by Meringolo et
al. [68] using a dynamic δ-SPH scheme.

3.3.3 On the equivalence between the two proposed multi-
phase SPH formulation

3.3.3.1 Effect of particle volumes averaging

The single-phase dam-break configuration was also run using the proposed
alternative derivation of the multiphase SPH formulation presented in Sec-
tion 2.3 and compared to the modified Grenier et al. formulation (2.36)–
(2.40). Snapshots of the obtained dam-break flow using both formulations
are presented in Fig. 3.15. The pressure fields obtained using both models are
quasi-identical, illustrating in practice the negligible effect of the difference
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FIGURE 3.13: Two-phase dam-break: snapshots of the flow
evolution at different times. Colors are representative of the
dimensionless pressure (P − Pb)/ρgH from 0 (blue) to 1 (red)

while the solid gray line is the air-water interface.
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FIGURE 3.14: Single/two-phase dam-break: time history of the
pressure signals at the probes P1 and P2. Comparison between
the Multiphase δ-SPH and experimental results from Lobovský

et al. [58].

in particle volume averaging between the two models within the weakly-
compressible context (as analyzed at the end of Section 2.3).

3.3.3.2 Mass conservation

On the one hand, both formulations use a Shepard correction to compute the
density (see, e.g., (2.28)). On the other and, the volumes are obtained via their
time evolution either through (2.37) or (2.45). This means that the quantity
ρiVi is not necessarily equal to the initial mass of the particles mi, which is
supposed to stay constant (see Section 2.1.6). In the original Grenier al. paper
[34], this is called a "relaxed link" between the particles masses, densities and
volumes.

Nevertheless, throughout our computations it was found that the mass
is indeed conserved despite the use of the Shepard correction. Keeping the
current single-phase dam-break configuration as an example, the time evo-
lution of the total "relaxed mass", defined as the product ∑

i
ρiVi, was moni-

tored and compared to the initial total mass ∑
i

mi. Fig. 3.16 shows the results

of a convergence study of the relaxed mass, which was carried out on both
formulations. The discretization ratio H/∆x is taken as 50, 100 and 200. A
juxtaposition of the time evolution curves of the relaxed mass of both models
is shown on Fig. 3.17.
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FIGURE 3.15: Single-phase dam-break: snapshots of the flow
at t(g/H)1/2 = 6.8. Top: modified Grenier et al. model (2.36)–
(2.40). Bottom: proposed alternative derivation of the SPH mul-
tiphase formulation (2.58)–(2.62). The obtained pressure fields

are quasi-identical.
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First, the convergence study shows for both models that even though the
relation mi = Viρi is not strictly satisfied, the maximal error between the ini-
tial constant mass and the relaxed mass is less than 0.001%. Also, note that
the highest peaks of mass variation occur after t(g/H)1/2 = 6, the time of
the aforementioned cavity closure, after which the flow is quite chaotic and
stronger dissipation will occur anyway. However, these small errors keep de-
creasing while increasing the particle resolution. Finally, Fig. 3.17 highlights
once again the equivalence between the two proposed formulations, display-
ing practically the same time evolution of the relaxed mass, with small per-
turbations registered post-cavity closure.

3.4 Fluid impact of a corrugated panel with
trapped gas cavity

In order to test the ability of the proposed model to correctly compute the
pressure in challenging problems such as water impacts, the problem of the
water entry of a corrugated panel on a liquid free-surface with a trapped gas
cavity is considered.

Khabakhpasheva et al. (2012) [49] provided a semi-analytical solution
for this problem derived from the Wagner theory. In that work they stud-
ied the initial stage of an incompressible liquid impact onto both rigid and
elastic corrugated panels, accounting for a compressible gas pocket trapped
between the corrugations, see the sketch in Fig. 3.18. The corrugation shape
is described by the following function:

f (x) = h
[

1− cos4
(

πx
2L̃

)]
(3.2)

where h and L̃ are the corrugation’s height and half-width respectively. This
panel shape is noted in literature as Mark III panel which is a type of con-
tainment tank of Liquified Natural Gas (LNG) carriers (for more details see,
e.g., [61]).

The distance between the two corrugations is 2L (see Fig. 3.18) whereas
the total panel length is 2c. Similarly to [49] the following dimensions are
adopted in all the simulations: h = 3.6 cm, 2L̃ = 5.6 cm and 2L = 34 cm.

At the initial time t = 0, the corrugations touch the free-surface at two
points x = ±L and the fluids are at rest. The gas cavity is bounded by the
panel and the interface, and the panel penetrates the liquid surface with a
forced purely vertical velocity U. In [49], the gas in the cavity is modeled
adopting the polytropic state equation (1.4). In that work the pressure inside
the cavity is assumed to be a function of the gas volume, which means that
the pressure is considered uniform in the gas phase. The solution provided
in [49] is general and valid for any density ratio between the liquid and the
gas phase.

Since the focus is on high density ratios configurations, in the following
test cases the considered fluids are air and water, respectively, with a density
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FIGURE 3.16: Single-phase dam-break: convergence study of
the total relaxed mass ∑

i
ρiVi, using the modified Grenier et al.

(2.36)–(2.40) scheme (top) and the proposed alternative deriva-
tion of the multiphase SPH formulation (2.58)–(2.62) (bottom),

for increasing discretization ratios H/∆x of 50, 100 and 200.
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FIGURE 3.17: Single-phase dam-break: time evolution of the
total relaxed mass ∑

i
ρiVi with the initial constant mass ∑

i
mi,

using the modified Grenier et al. (2.36)–(2.40) scheme and the
proposed alternative derivation of the multiphase SPH formu-

lation (2.58)–(2.62).

ratio of 1000, and the polytropic coefficients are set to γair = 1.4 and γwater =
7.

In order to correctly take into account the compressibility effects in the
air cavity the same value used in [49] for the gas speed of sound is adopted,
that is c0air = 343 m/s. As for the water sound speed, formula (2.65) is
used to guarantee the weakly-compressible hypothesis in the impact region,
this being the common choice in SPH to approximate incompressible fluids.
Based on the expected maximum pressure variation ∆Pmax = 1 atm in the
cavity, the sound speed in water is obtained as:

c0water = 10
√

∆Pmax/ρwater = 100 m/s.

Note that, following the stability conditions described in Section 2.4.2, the
CFL coefficient is set equal to K = 0.25, with α = 0.07. In order to avoid the
mixing of air and water, the artificial surface tension correction of Eq. (2.32)
is used, and the parameter εχ is set to 0.02.

In the following, the dimensionless variables are denoted by the super-
script *. The length L is taken as reference length scale of the problem, unless
specified otherwise; U and h/U are chosen as, respectively, the velocity and
time scales; the ratio P0air = c2

0air ρ0air/γair is taken as the pressure reference
scale in the gas cavity.

Two discretizations were tested, L/∆x = 160 and 640. These values are
based on the work of Marrone et al. [61], where the same type of corrugated
panel was tested with a dead-rise angle of 4◦, and in which these resolutions
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FIGURE 3.18: Fluid impact of a corrugated panel with trapped
gas cavity: sketch of the initial configuration of the problem.

FIGURE 3.19: Fluid impact of a corrugated panel with trapped
gas cavity. Left: Multi-resolution discretization of the domain.

Right: Zoom on the gas cavity vicinity.

yielded satisfactory, convergent results.
Note that the panel impact generates several acoustic waves which would

be reflected on the domain boundaries if the latter is not large enough, result-
ing in noisy pressure fields even in the air phase. Therefore, the domain is
made sufficiently large and its dimensions were chosen simply by comput-
ing the distance which acoustic waves would travel during the impact at the
adopted water sound speed.

The variable-h scheme discussed in [84] and described in Section 1.6.2.1
was used since the focus is on the gas cavity and its vicinity. The particle
size varies between the air cavity and the domain boundaries from fine to
coarse respectively, with a magnification factor of 100 between the smallest
and biggest particles.

Since the problem is 2D symmetrical with respect to the line x∗ = 0, a
symmetry boundary condition was used. The adopted discretization for the
finest case is shown in Fig. 3.19. Note that outside the corrugations, i.e. when
x∗ > 1, the air phase is not modeled so as to follow the configuration of
the semi-analytical solution of Khabakhpasheva et al. [49] (see Fig. 3.18, the
zones |x| > L are not air but void).
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FIGURE 3.20: Fluid impact of a corrugated panel with trapped
gas cavity: illustration of the inner and outer contact points.

FIGURE 3.21: Fluid impact of a corrugated panel with trapped
gas cavity: definition of the contact points after the first itera-

tion.

3.4.1 Results and analysis: Kinematics

The focus here is on the case where the impact velocity and the non-
dimensional length of the rigid panel are set to U = 2 m/s and c∗ = 2.
The obtained flow kinematics is studied by comparing and tracking the time
evolution of the inner and outer contact points, referred to as c∗1 and c∗2 re-
spectively, with the ones provided in [49]. The contact point are defined as
the abscissa of the intersection between the water front and the panel for the
outer contact point c∗2 , and as the triple point air/water/panel for the inner
contact point c∗1 , which are illustrated in Fig. 3.20.

In our simulations, the contact points definition was implemented as fol-
lows (see Fig. 3.21):

• First, a control zone is defined by setting a criterion of distance to the
corrugation wall. In particular, only particles with maximal distance to
the panel smaller than ∆x are considered in the control zone, in order
to guarantee the presence of at least one particle.

• Then, at each iteration the abscissas of the two air and water particles
inside the control zone and with the highest absolute x∗-coordinates,
are recorded as the inner and outer contact points, respectively (see Fig.
3.21).
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Fig. 3.22 shows the evolution of the air/water flow through four snap-
shots at different instants. After the panel hits the water surface, its corru-
gations penetrate it, and the air cavity starts to compress. Shortly after, the
extremities of the cavity start to creep under the corrugations and towards
the outside of the panel. This air movement is accompanied with the water
jet in the outer region freely moving towards the outside of the panel.

In Fig. 3.23 the evolution of the SPH contact points c∗1 and c∗2 are plotted
against the ones from [49]. The general trend of the predicted outer contact
point follows closely its semi-analytical counterpart. Also, the slope of both
curves changes at around t∗ = 0.5, when the water front reaches the inter-
section between the corrugation and the horizontal part of the panel, where
a change of convexity occurs. Finally, both these curves stagnate at c∗2 = 2
since it corresponds to the extremity of the panel.

The time evolution of the contact points is subdivided into four stages:

Stage 1) t∗ ≤ 0.45 is the compression stage of the entrapped cavity. At t∗ =
0.41 an increase of the inner contact point abscissa is registered, which
means the creeping of the cavity towards the outside of the corrugation.

Stage 2) It is characterized by the formation of a high speed water jet which
sucks the cavity towards the outside of the corrugation.

Stage 3) After the jet reaches the end of the panel, the suction effect decays.
As the panel continues to penetrate the water, the cavity resumes its
compression in this stage.

Stage 4) Around t∗ = 0.9, the gas cavity begins its decompression, as better
explained in the upcoming subsection 3.4.2 where the dynamic part of
the solution is investigated.

Note that the curves do not begin exactly at the same starting x∗-
coordinate. This is a consequence of the adopted definition for the contact
point. Indeed, as shown in Fig. 3.21, at the beginning of the simulation the
particles identified as contact points do not lie exactly on the axis x∗ = 1, this
difference decreasing as the resolution increases.

There are some differences between the SPH and semi-analytical slopes
which are limited and reflect the different natures of the solutions being com-
pared. As for the inner contact point c∗1 , it is strictly linked to the volume
variations of the air cavity. In Khabakhpasheva et al. [49] the air cavity was
prevented from reaching the head of the corrugation (x∗ = 1) by imposing
the condition ċ1 ≤ 0; with this constraint the horizontal velocity of the inner
contact point always points towards the center of the cavity, which means
that the air will never flow under the corrugation. In the present simulations
however, no condition on the inner contact point’s velocity is enforced, so
that the cavity is left to freely evolve in time.

This difference in behavior can be observed in Fig. 3.23 for c∗1 at t∗ '
0.45. As expected, the condition ċ1 ≤ 0 strongly influences the kinematics of
the air cavity. Indeed, the constrained contact point does not deviate much
from its original position whereas, without constraints, the air cavity starts
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FIGURE 3.22: Fluid impact of a corrugated panel with trapped
gas cavity: evolution of the air/water interface and free-surface

flows upon impact, at four different instants.
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FIGURE 3.23: Fluid impact of a corrugated panel with trapped
gas cavity: evolution of the SPH/semi-analytical inner and
outer contact points c∗1 and c∗2 for a panel length c∗ = 2. The

time evolutions are divided into 4 stages.

to move towards the outer region under the corrugation, as seen in Fig. 3.22.
Moreover, up to t∗ = 0.25 both models predict the same evolution of the air
cavity.

3.4.2 Results and analysis: Dynamics

In this subsection, the pressure evolution inside the gas cavity is analyzed
and compared to its semi-analytical counterpart. First, the simulation results
using coarse (L/∆x = 160) and fine (L/∆x = 640) discretization levels are
plotted in Fig. 3.24, showing close to converged results, even in terms of
pressure (see also Fig. 3.23 to observe this convergence). The SPH solution
can be viewed as a succession of 4 stages as was done for the discussion of
the solution kinematics (see subsection 3.4.1):

Stage 1) A compression of the gas occurs up to t∗ = 0.45, during which the
pressure grows linearly akin to an elastic reaction, due to the homoge-
neous water load around it as shown in Fig. 3.25.

Stage 2) During the high speed water jet motion, the cavity is sucked to-
wards the outside of the corrugation inducing a relaxation in the gas
cavity during which the pressure decreases.

Stage 3) After the jet reaches the end of the panel, the suction effect decays
and is counterbalanced by the water pressure from under the gas cav-
ity. Therefore, as the panel continues to penetrate the water, the cavity
resumes its compression in this stage.
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FIGURE 3.24: Fluid impact of a corrugated panel with trapped
gas cavity: comparison with the semi-analytical solution of the
pressure inside the cavity, for a panel length c∗ = 2. The pres-

sure curve is divided into 4 stages.

Stage 4) Around t∗ = 0.9, the pressure reaches its second peak then the gas
cavity begins its decompression as the loads balance out during this
final stage.

Interestingly, both the SPH and semi-analytical solutions predict these
four phases. The major difference is in Stage 2 where the SPH pressure de-
creases but the semi-analytical one stagnates. In [49], the pressure is directly
linked to the volume through the following equation:

P(t) = [V(t)]−γ − 1 (3.3)

and the volume itself is strongly dependent on the inner contact point evo-
lution c1(t). The speed ċ1 is computed at each time step and is set to zero
if the computed value is positive. The reasoning behind this condition is
extensively covered in [49]. Thus the contact point is prohibited from ever
moving towards the outside of the corrugation, which means that the cav-
ity volume either decreases or stagnates. Consequently, following Eq. (3.3),
the semi-analytical pressure can only stagnate or increase. Nevertheless,
both models predict the elastic compression in Stage 1, a second pressure
rise in Stage 3, and a final decompression in Stage 4, although at different
times/pressure levels due to the differences in constraints between the SPH
and semi-analytical frameworks. Note that authorizing c1 to go outwards
would largely increase the complexity of the semi-analytical solution where
a shape of the pocket leakage outside the corrugation would have to be im-
posed.

Next, the effect of the panel length on the cavity pressure is investigated.
The numerical and geometrical configurations are kept unchanged, however
this time the panel length c∗ = 3. The simulation was run with the fine
discretization ratio L/∆x = 640. Fig. 3.26 compares the evolutions of the
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FIGURE 3.25: Fluid impact of a corrugated panel with trapped
gas cavity: pressure field during the impact stages for four dif-
ferent time instants t∗ = 0.014, 0.42, 0.55, 0.90. The panel length

is c∗ = 2.
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FIGURE 3.26: Fluid impact of a corrugated panel with trapped
gas cavity: semi-analytical and computed pressure profiles in

the cavity, for panel lengths of c∗ = 2 and 3.

cavity pressures for both panel lengths c∗ = 2 and c∗ = 3. Fig. 3.26 regroups
the semi-analytical and computed pressure solutions for both panel lengths
c∗ = 2 and 3, from which some general conclusions can be made.

First, in accordance with [49], the shorter the panel, the lower the pres-
sure inside the cavity. Also, right away it can be seen that both pressure
curves follow the same general trend, in the sense that they both predict the
aforementioned 4 stages. The curves are superimposed during Stages 1 and 2
which is expected since the water does not reach c∗ yet. The solution with the
larger panel agrees with the conclusions made for the shorter panel, mean-
ing that the SPH pressure follows closely the semi-analytical one in terms of
compression + relaxation in Stage 3 and 4, albeit at different pressure levels
since the air cavity is not constrained within the SPH model, while it is set to
move only towards the inside within the semi-analytical model.
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Chapter 4

A comparison between the
Multiphase δ-SPH scheme and
Riemann-based SPH schemes

The Riemann-based SPH schemes were introduced as a way of improving
the stability and robustness of the SPH method. Contrary to the SPH schemes
based on diffusive/viscous terms, Riemann-SPH schemes do not rely on pa-
rameters dedicated to tune the diffusive terms. However, this feature can
be considered as a disadvantage of the method as much as it is an advan-
tage, since without parameter tuning the numerical diffusion of Riemann-
SPH schemes cannot be controlled.

As presented in Section 1.4.3, Riemann-SPH schemes are more expen-
sive than diffusive term-based SPH schemes. Indeed, on the one hand, it
absolutely necessitates the MUSCL correction to increase its convergence or-
der [55], and on the other hand, a particle shifting algorithm is highly rec-
ommended in order to avoid the anisotropic particle clustering discussed in
Section 1.6.1.

This being said, despite these drawbacks many works in the literature
proved the interesting improvements that the Riemann-SPH schemes offer,
especially in terms of stability, regularity of the pressure field and energy
conservation. Therefore, the present chapter aims to compare the proposed
Multiphase δ-SPH scheme with the Riemann-SPH scheme presented in Sec-
tion 2.1.4. This investigation focuses on the differences between the pressure
fields yielded by each scheme, their mechanical energy dissipation, and their
regions of stability in a multiphase context, as it was established for the Mul-
tiphase δ-SPH scheme in Section 2.4.

The test cases presented in Section 3 are performed here using the
Riemann-SPH scheme. For the sake of balance, the Riemann-SPH simu-
lations were run with and without the particle shifting method of Oger et
al. [83]. Indeed, no particle shifting algorithm was implemented for the Mul-
tiphase δ-SPH scheme, which means that the comparison with Riemann-SPH
with shifting would skew the results in favor of the latter.
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FIGURE 4.1: Two-phase 1D Bagnold problem: comparison of
the stability regions of the Riemann-SPH and Multiphase δ-
SPH schemes. The dotted and dashed lines represent re-
spectively the Multiphase δ-SPH and Riemann-SPH schemes.
The regression lines delimiting the regions of stability of each
scheme are plotted in solid lines, and each density ratio is rep-
resented by a specific color. The yellow/green bullets represent
the points where c0X/c0Y = η and K = K∗ for the Multiphase δ-

SPH/Riemann-SPH schemes.

4.1 Stability regions in a multiphase context

The 1-D Bagnold problem [4] studied in Section 2.4 is rerun here using the
Riemann-SPH scheme. The idea is to compare its stability region with the
Multiphase δ-SPH scheme’s one in a multiphase configuration. All the nu-
merical parameters are kept similar to the ones used in Section 2.4.

The flow is 1-D in the vertical direction so the particles are not expected
to stray from their initial Cartesian abscissas. Therefore, there is no need to
use a particle shifting algorithm in this particular case.

The three density ratios ρ0X/ρ0Y = 10, 100, 1000 are again considered
here. The stability region of the Riemann-SPH scheme is plotted in Fig. 4.1
in the plane (c0Y/c0X, K), along with the stability curves of the Multiphase δ-
SPH scheme for comparison purposes.

Many interesting stability properties can be drawn out from this fig-
ure. It should be noted that one sound speed ratio in particular stands out
from all the graphs corresponding to the different tested permutations of the
Multiphase δ-SPH/Riemann-SPH schemes and density/sound speed ratios,
which is the ratio c0X/c0Y = 1. Indeed, before and after this point the stabil-
ity regions of both schemes do not exhibit the same properties. Therefore, the
analysis of the results plotted in Fig. 4.1 is segmented into two zones: before
c0X/c0Y = 1 and after c0X/c0Y = 1.
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FIGURE 4.2: Two-phase 1D Bagnold problem: zoomed view of
the stability regions of the Riemann-SPH scheme. The green
bullets represent the points where c0X/c0Y = η and K = K∗ for

the Riemann-SPH scheme.

Firstly, in the zone where c0X/c0Y > 1 the stability regions of both
schemes is delimited by a horizontal line regardless of the density or sound
speed ratios. Any horizontal line can be viewed as a threshold below which
the simulations are always stable.

Secondly, the stability regions of the Multiphase δ-SPH scheme seem
to be very sensitive to the variation of density ratios in comparison to the
Riemann-SPH scheme. As seen in Fig. 4.1, increasing the density ratio im-
poses lower CFL coefficients for the Multiphase δ-SPH scheme. For example,
at c0x/c0y = 1, the parameter K goes from 0.87 to 0.08 between the density
ratios 10 and 1000, signifying a considerable decrease of 90%.

In contrast, the stability of the Riemann-SPH scheme is not as sensitive
to this change of density ratio, as the stability curves corresponding to the
three density ratios are close to be superimposed. Indeed, for instance at
c0X/c0Y = 1, K goes from 0.55 to 0.52 which corresponds to a decrease of
only 5% for the Riemann-SPH scheme.

For clarity purposes, Fig. 4.2 shows a zoom on the stability curves of the
Riemann-SPH scheme. The zone c0X/c0Y < 1 can also be divided in two
sound speed intervals. The first interval is defined by c0X/c0Y ∈ [0.87, 1],
where regardless of the density ratio the parameter K undergoes a linear de-
crease. The second interval corresponds to c0X/c0Y < 0.87 where the stability
curves are once again quasi-horizontal, similarly to the zone c0X/c0Y > 1
where the CFL threshold slightly changes depending on the density ra-
tio. Consequently, within this zone, the maximal stable CFL coefficients al-
lowed when using the Riemann-SPH schemes are capped by this threshold
(K∗Rie ≈ 0.62). On the other hand, the Multiphase δ-SPH scheme allows up
to nearly double this value (K∗δ ≈ 1.13) when c0X/c0Y = η, which is very
advantageous in terms of CPU costs.

However, as explained in Section 2.4, choosing the sound speed is usually
linked to physical considerations, which means that the ratio c0X/c0Y = η
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may not be achievable in order to guarantee the weakly-compressible regime.
Therefore, smaller time steps can sometimes be unavoidable with the Multi-
phase δ-SPH scheme.

Next, the dam-break flow and the fluid impact on a corrugated flat panel
test cases, presented in Section 3.3 and 3.4 respectively, will be performed us-
ing the Riemann-SPH scheme, and the results will be compared to the Mul-
tiphase δ-SPH scheme validations results. These more complex simulations
involve a free-surface and are much more susceptible to particle clustering
compared to the 1-D Bagnold test, which sheds more light on the computa-
tional demands of each SPH model.

4.2 Pressure field and mechanical energy decay

4.2.1 Single phase case: dam-break flow

The configuration of the single-phase dam-break flow described in Section
3.3 is kept unchanged. In this study, the case where the parameter α of the
Multiphase δ-SPH scheme is taken equal to 0 is studied first.

The highest adopted particle discretization for all configurations is
H/∆x = 400. The speed of sound is chosen so as to verify the weakly-
compressible approach based on the expected maximal pressure Pmax within
the flow. The value of Pmax is taken directly from the experimental results
of Lobovský et al. [58], which for our case is Pmax ≈ 9.1 kPa. Thus, follow-
ing Eq. (2.65), the adopted sound speed is c0 = 32 m/s in all the following
simulations.

4.2.1.1 Pressure field

Fig. 4.3 shows the first impact of the fluid against the impact wall for the
Multiphase δ-SPH scheme and for the Riemann-SPH scheme with and with-
out shifting, for the finest discretization H/∆x = 400. A zoom on the bottom
right corner of the tank is also provided.

At first glance, the three schemes seem to yield a similar repartition of
pressure within the fluid, with the Multiphase δ-SPH scheme exhibiting
slightly more pressure oscillations. However, by zooming on the impact cor-
ner, we can observe in the bottom plot of Fig. 4.3 the anisotropic particle
structures of the purely Lagrangian Riemann-SPH scheme, which completely
vanish when using particle shifting (middle plot) [83].

More interestingly, the top plot shows that the Multiphase δ-SPH scheme
does not exhibit such particle structures even in the absence of a particle shift-
ing technique, which can be considered as a plus of the proposed model. In-
deed, this technique is linked to a free-surface capturing algorithm to main-
tain the kinematic free-surface condition by avoiding shifting onto the free-
surface particles (cf. Marrone et al. [63]). Consequently, this increases the
number of loops over the particles which naturally inflates the CPU time.

For instance, Table 4.1 presents the CPU times of the dam-break simula-
tions using the Multiphase δ-SPH scheme and both Riemann-SPH schemes
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FIGURE 4.3: Single-phase dam-break: snapshots of the flow at
t
√

g/H = 3, obtained with the Multiphase δ-SPH scheme, and
with the Riemann-SPH scheme with and without particle shift-
ing. Zoomed views of the impact corner are provided on the

right of each snapshot.
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SPH model CPU time (s)
Proposed model 446 3921
Riemann-SPH without PS 1151 7202
Riemann-SPH with PS 1434 9069

H/∆x 200 400

TABLE 4.1: Single-phase dam-break: comparison of the
CPU times between the Multiphase δ-SPH, and Riemann-SPH
schemes with and without particle shifting (PS), for two spatial

resolutions.

(without and with particle shifting), for two spatial resolutions H/∆x =
200, 400. The CFL coefficient Kδ = KRie was taken equal to 0.375 to accom-
modate the stability of the single-phase Riemann-SPH model, although with
the Multiphase δ-SPH scheme it is possible to increase the CFL coefficient up
to 0.75 for single-phase simulations. The highest resolution dam-break simu-
lation took only 1.1h using the Multiphase δ-SPH scheme, compared to 2.5 h
and 2 h using the Riemann-SPH with and without particle shifting, respec-
tively.

Note that, to moderate this positive comment, leaving Lagrangian align-
ments as in the Riemann-SPH solution without shifting is per se a sign of
accuracy since the Lagrangian nature of the method is better respected.

Fig. 4.4 shows the recorded pressure on sensor P1 for the three schemes.
The pressure signals have the same evolution, the only difference being that
the Multiphase δ-SPH scheme exhibits more oscillations upon the plunging
wave impact. The three models predict the same pressure peak as the exper-
imental data by Lobovský et al. [58], and the pressure offset that follows the
impact can be explained by the 3D effects present in the experiments, and
which cannot be captured using the current 2D simulations. All in all, the
Multiphase δ-SPH scheme seems to yield satisfactory pressure results with
regard to the Riemann-SPH scheme, while being less demanding in terms of
CPU costs (cf. Table 4.1).

Note that the Multiphase δ-SPH scheme displays more pressure oscilla-
tions upon the wave impact than Riemann-SPH, as observed in Fig. 4.5. This
is due to taking the viscous parameter α equal to 0. An additional compu-
tation with the Multiphase δ-SPH scheme was performed, this time taking
α = 0.005, which yielded clearly better results in terms of further filtering
out the oscillations from the pressure field, see Fig. 4.6.

4.2.1.2 Mechanical energy decay

Next, the mechanical energy is monitored for the three schemes. Fig. 4.7
shows the mechanical energy decay obtained using the Multiphase δ-SPH
scheme with α = 0 and α = 0.005, and using the Riemann-SPH scheme
with and without shifting. As in Oger et al. [83], the mechanical energy is
non-dimentionalized by the difference between the initial and final potential
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FIGURE 4.4: Single-phase dam-break: pressure signals
recorded on sensor P1 using the Multiphase δ-SPH scheme

(α = 0), and Riemann-SPH with and without shifting.

energy, the latter corresponding to the configuration where the fluid is at rest
and filling the whole tank width.

As expected, the Riemann-SPH scheme without shifting is the more dis-
sipative of the three schemes. As explained in [83], the anisotropic particle
distribution damages the accuracy of the SPH operators which in turn leads
to larger energy dissipation.

The four schemes seem to dissipate energy at the same rate up to about
t
√

g/H = 2.36 which corresponds to the first impact of the fluid on the right
wall (illustrated in Fig. 4.3). Then, the Riemann-SPH scheme without shift-
ing starts to dissipate the energy at a higher rate. Moreover, increasing α to
0.005 induces a slight increase in the energy dissipation, which is an expected
result [68]. However, the dissipations of the Multiphase δ-SPH scheme with-
out artificial viscosity and the Riemann-SPH scheme with shifting are quite
similar throughout the simulation.

Later in time, at around t
√

g/H = 6.1 the plunging motion occurs as
shown in Fig. 4.5. All models display a second, more abrupt change of me-
chanical dissipation rate. This is explained by the fact that the plunging jet is
a phenomenon that triggers numerical dissipation [60, 83]. At the end of the
simulation, the registered dissipation rate of the Multiphase δ-SPH scheme
and the Riemann-SPH scheme is less than half the dissipation rate of the
Riemann-SPH scheme without shifting.

4.2.2 Multiphase case: fluid impact of a corrugated panel
with entrapped gas cavity

The problem of water entry of a corrugated panel with a trapped gas cavity
described in detail in Section 3.4 is rerun using the Riemann-SPH scheme.
The physical parameters of the water and air phases and, for the proposed
Multiphase δ-SPH model, the numerical parameters α = 0.07 and δ = 0.1,
are all kept unchanged from Section 3.4.
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FIGURE 4.5: Single-phase dam-break: snapshots of the flow at
t
√

g/H = 6.4, obtained with the Multiphase δ-SPH scheme
and the Riemann-SPH scheme with and without particle shift-
ing. Zoomed views on the plunging wave impact zone are pro-

vided on the right of each snapshot.
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FIGURE 4.6: Single-phase dam-break: snapshots of the flow at
t
√

g/H = 6.4, obtained with the Multiphase δ-SPH scheme
with α = 0 and α = 0.005, and the Riemann-SPH scheme with
shifting. The small increase of α strongly improves the pressure

field.
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FIGURE 4.7: Dam-break flow: comparison of the mechani-
cal energy decay between the Multiphase δ-SPH scheme (with
α = 0 and α = 0.005) and the Riemann-SPH scheme (with and

without shifting).

The choice of the fluid sound speeds is based on the weakly-compressible
approach as in Section 3.4, i.e. c0water = 100 m/s and c0air = 343 m/s, which
corresponds to a sound speed ratio of c0water/c0air = 0.29. Following the sta-
bility analysis of the Riemann-SPH scheme presented in Section 4.1, the CFL
coefficient KRie is taken equal to 0.6 (while Kδ = 0.25 for the Multiphase δ-
SPH scheme, as in Section 3.4). All the computations have been run with the
finest spatial resolution, L/∆x = 640.

Fig. 4.8 compares the time evolution of the contact points c∗1 and c∗2 ob-
tained through the Multiphase δ-SPH scheme and the Riemann-SPH scheme,
for the panel length c∗ = 2. We can observe that the Riemann-SPH scheme
predicts an evolution of the contact points which is very similar to the one
obtained via the Multiphase δ-SPH scheme. Indeed, both models yield a time
evolution that could be divided into the four stages already discussed in Sec-
tion 3.4.1.

Fig. 4.9 shows the pressure field inside the air and water phases yielded
by the Multiphase δ-SPH and Riemann-SPH schemes, at different time in-
stants which represent the four impact phases described in Section 3.4.1.

Overall both models yield the same repartition of pressure within the air
and water phases, despite some minor differences. Indeed, the Multiphase δ-
SPH scheme predicts a slightly higher pressure within the entrapped air cav-
ity. This observation is verified by comparing the average pressure within
the air phase plotted for both schemes in Fig. 4.10. Moreover, on this figure
some small oscillations of pressure are observed for the Multiphase δ-SPH
scheme throughout Phases 2 and 3. Although they do not seem to affect the
solution, it is possible to eliminate them simply via a small increase of the
viscous parameter α, similarly to the dam-break case where α = 0 → 0.005
was sufficient to eliminate the noise within the pressure field (see, e.g., Fig.
4.6).
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FIGURE 4.8: Fluid impact of a corrugated panel with entrapped
gas cavity: comparison of the time evolution of the contact
points c∗1 (in red) and c∗2 (in blue) predicted by the Multiphase δ-

SPH (dashed lines) and Riemann-SPH schemes (solid lines).

SPH model K CPU time (s)

Proposed model 0.25 4456
Riemann-SPH with PS 0.6 4991

TABLE 4.2: Fluid impact of a corrugated panel with entrapped
gas cavity: comparison of the CPU times between the Mul-
tiphase δ-SPH and Riemann-SPH with particle shifting (PS)

schemes.

Moreover, a local increase of pressure is predicted by the Multiphase δ-
SPH scheme in the air phase at the inner corner of the corrugation, which
propagates throughout the simulation across and beyond the corrugation, as
seen between t∗ = 0.28 and t∗ = 1.03. This difference is due to the lack of
particle shifting near these round corners. Indeed, the same overpressure
was registered in the simulation using the Riemann-SPH scheme without
shifting, as illustrated in Fig. 4.11.

Table 4.2 presents the CPU times of the simulations. The Multiphase δ-
SPH scheme still yields slightly faster results even though the maximal stable
CFL coefficient (0.25) is 2.4 smaller than the Riemann-SPH model (0.6). In
fact, at equivalent K, the Multiphase δ-SPH scheme seems to be around 2.7
times faster in this multiphase context.
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FIGURE 4.9: Fluid impact of a corrugated panel with entrapped
gas cavity: comparison of the pressure field within the air
and water phases yielded by the Multiphase δ-SPH scheme
(left column) and the Riemann-SPH scheme (right column),
during the impact stages at four different time instants t∗ =

0.28, 0.42, 0.55, 1.03. The panel length is c∗ = 2.
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FIGURE 4.10: Fluid impact of a corrugated panel with en-
trapped gas cavity: comparison of the time evolutions of the
pressure inside the entrapped air cavity predicted by the Mul-

tiphase δ-SPH (blue) and Riemann-SPH (green) schemes.
.

4.3 Summary of the comparison

In this chapter, the proposed Multiphase δ-SPH scheme was compared to
the Riemann-SPH scheme in terms of stability, pressure field and mechani-
cal energy decay. First, similarly to the Multiphase δ-SPH scheme in Section
2.4, the stability regions of the Riemann-SPH scheme was heuristically estab-
lished in the multiphase framework through the 1-D Bagnold test case. It
was found that the maximal stable CFL coefficients allowed by the Riemann-
SPH scheme were far less sensible to the changes in density or sound speed
ratios. It was also found that these maximal stable CFL values exceed the
ones commonly used within the community (0.75 for δ-SPH and 0.375 for
Riemann-SPH).

Secondly, a single-phase configuration of a dam-break test case was per-
formed using the two models in order to compare their respective resulting
pressure field and mechanical energy diffusion. Even in the absence of a par-
ticle shifting technique, the Multiphase δ-SPH scheme yields results that are
very comparable to the Riemann-SPH scheme with particle shifting in terms
of noise-free pressure and mechanical energy decay. Moreover, these satisfac-
tory results come at a lower CPU cost (2.3 times less that the Riemann-SPH
scheme for the highest resolution dam-break, using the same CFL coefficient
for both models).

Finally, the complex multiphase case of the water impact of a corrugated
panel on the water with entrapped air cavity was run using the Riemann-
SPH scheme. Small oscillations were observed for the Multiphase δ-SPH
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FIGURE 4.11: Fluid impact of a corrugated panel with en-
trapped gas cavity: comparison of the pressure field within the
air and water phases yielded by the Multiphase δ-SPH scheme
(left column) and the Riemann-SPH scheme (right column),
during the impact stages at four different time instants t∗ =
0.28, 0.42, 0.55, 1.03. The panel length is c∗ = 2. The same over-
pressure at the round corners of the corrugation is observed
for both the Multiphase δ-SPH scheme and the Riemann-SPH

scheme without shifting.
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scheme pressure which can easily be eliminated via a small increase in the
viscous parameter α, while both models suffer from small errors near the
corrugation corners in the absence of particle shifting. Nevertheless, both
models seem to predict the same evolution of the contact points and of the
pressure inside the air cavity, with no significant difference between the two
models in terms of CPU costs, although the Riemann-SPH scheme with par-
ticle shifting allowed a higher CFL coefficient (KRie = 0.6 against Kδ = 0.25).
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Chapter 5

Numerical investigation of an
aircraft ditching problem

Aircraft ditching poses many physical and numerical challenges over a wide
variety of themes. Indeed, aircrafts should be properly designed to survive
such an extremely dangerous landing process. In particular, it should be able
to withstand huge loads during the emergency landing. Therefore, its kine-
matic and dynamic responses should be well studied through experimental
and numerical investigations.

Full-scale aircraft impact tests have been performed in order to measure
the pressure response [88, 89]. However, due the cost of such tests, usually
scaled-model experiments are preferred [15], offering more possibilities in
terms of the tested impact conditions.

These experimental investigations are generally complemented by a nu-
merical approach. Indeed, the latter does not suffer from the classic limita-
tions that hinder the experimental testing, such as repeatability and scaling
issues.

In the context of the SARAH project, numerical investigations are carried
out using advanced, coupled numerical methods called “high fidelity” mod-
els, which are suited for the treatment of non-linear hydrodynamics. These
models are accurate but computationally costly compared to a “low fidelity”
approach, which is based on analytical or semi-analytical methods for the
simulation of water impacts. Classic examples of these can be found in [48,
103]. However, the hydrodynamic phenomena that occur during the ditch-
ing process are highly non-linear and coupled with the complex geometries
of the aircraft structures, which greatly hinders the capabilities of the low fi-
delity models. However, the high fidelity approach can be used to calibrate
the low fidelity models, which are faster but less accurate when not properly
calibrated.

Recently, the SPH method has been identified as a good candidate for
the numerical simulation of aircraft and helicopter ditching [107]. For this
task it offers many advantages. It is mesh-free which avoids the problem of
mesh distortion that challenges mesh-based methods such as the Finite Vol-
ume Method or the Finite Element Method which has been used for ditching
investigation [99, 85]. Furthermore, contrary to ALE/FVM models [47, 104],
it does not need any treatment to track or to capture the free-surface. In view
of its advantages, the SPH method can also be coupled with the FEM in or-
der to simulate aircraft ditching while taking also into account its structural
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FIGURE 5.1: Top view of the CNR-INM High Speed Ditching
Facility. The cords are V-shaped, and propel the specimen along

the guide rails from left to right [44].

response [94, 36].
In this work, we are focusing on the response of rigid aircraft fuselages.

The SPH method is used to numerically investigate the flow taking part in
the rear part of a fuselage which should be the part of the aircraft that touches
the water first, and compare the results with the findings of the experimental
campaign led by Iafrati et al. (2019) [44] during the SARAH project. The first
part of this chapter will present a recap of the experimental setup, includ-
ing the instrumentation and the fuselage geometry. In the second part, the
present numerical investigation is covered in detail, where the simulations
results are confronted to their experimental counterpart.

5.1 The experimental setup

5.1.1 Instrumentation

Iafrati et al. [44] performed their tests within the High Speed Ditching Facility
(HSDF) at CNR-INM in Rome, Italy (Fig. 5.1). The HSDF consists of a guide
suspended over a water basin, at the opposite of a towing tank which is 470 m
long, 13.5 m wide and 6.5 m deep. The guide enables vertical to horizontal
velocity ratios (V/U) ranging from 0.03 to 0.05.

A set of elastic cords accelerate a trolley that brings the specimen and the
acquisition box. The cords are attached to a U-shaped bar that pushes the
trolley. The latter is left to move freely just before the impact via a braking
system which acts on the cords. This way no external forces are acting on
the trolley during the impact, apart from the hydrodynamic forces and the
reaction of the guide. The pitch angle of the specimen can be varied from 4◦

to 10◦. The maximum horizontal velocity U is 47 m/s.
The trolley is connected to the acquisition box (Fig. 5.2) that measures

the loads exerted by the fluid in the horizontal and normal directions of the
specimen referential. A total of 30 pressure probes are installed on the spec-
imen as shown in Fig. 5.3. These are crucial for the numerical investigation
as the pressure signals measured by these probes are the main results used
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FIGURE 5.2: The trolley is attached to the guide. It carries the
acquisition box and the tested specimen [44].

FIGURE 5.3: Location of the pressure probes on the tested spec-
imen. Most of them are located in the rear part of the speci-
men, the trailing edge being to the left. The dashed line passes
through the mid-line point that touches the water surface first
at 8◦ pitch angle [44]. The arrow indicates the direction of U,

the longitudinal speed of the specimen.

for the comparison. More details on the measurement tools used during the
experimental campaign are available in [44].

Underwater visualizations are made possible through two high-speed
cameras, which are synchronized with the pressure signal acquisition. One
camera is located at the side in order to capture the impact velocity, and the
other is located underwater deep enough to cover the entirety of the impact
phase. The latter revealed the occurrence of cavitation/ventilation phenom-
ena depending on the test speed. Fig. 5.4 shows underwater snapshots at the
middle of impact at two different horizontal velocities, 21 m/s and 34.5 m/s.
The prediction of these air or vapor cavities is one of the main targets of the
present numerical investigation.

5.1.2 Fuselage geometry

The fuselage shapes, from which the full scale tested specimen are extracted,
are described by analytical functions. The fuselages have a circular-elliptical
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FIGURE 5.4: Snapshots of the underwater flow at two impact
horizontal velocities: 21 m/s (left) and 34 m/s (right). The cav-
itation pocket is clearly visible at 34 m/s underneath the speci-

men (the latter is delimited by the red dashed lines [44]).

FIGURE 5.5: Circular-elliptical cross section of the fuselage [44].

cross section. As displayed in Fig. 5.5, two parameters define the non-
dimensional cross section contour: the angle of tangency θ between the circle
and the ellipse and the ratio C/D.

The ellipse semi-axes are given by:

A =
C
D

sinθ√
( C

D )2 − 1
, C =

Atanθ√
( C

D )2 − 1
(5.1)

with

E = 1− cosθ − C
(

1− D
C

)
(5.2)

The dimensional equation of the ellipse is:(
y/r(x)

A

)2

+

(
z/r(x) + 1− (E/C)

C

)2

= 1 (5.3)
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FIGURE 5.6: Longitudinal section of the specimen. The
solid line is the bottom profile of the fuselage midline. The
empty/full boxes represent the position of the front/rear pres-

sure probes [44].

where r(x) is the radius of the circular portion of the fuselage at the longi-
tudinal position x, and the origin of the x axis is located at the fuselage bow
(xI ≤ x ≤ xE with xI = 6.71 m and xE = 7.95 m). The local radius is given
by:

r(x) = 0.5B

√
1−

(
x− FB.B

FB.B

)2

, 0 < x < FB.B

r(x) = 0.5B, FB.B < x < xH

r(x) = 0.5B + O(x), xH < x < LB.B

where LB, FB and RB are respectively the total, forward and rear portions
lengths of the fuselage, all scaled by the fuselage breadth B. xH = B(LB−RB)
is the rear end of the main fuselage. O(x) is an offset function given by:

O(x) = −B
E

sin
(

x− xH

K.RB.B

)[
x− xH

sin(1/i)RB.B

]1/i

(5.4)

The center of the cross section is located at (x, 0, 0) for 0 < x < xH and
at (x, 0,−O(x)) for xH < x < B.LB. For the considered shape, LB = 7.5,
FB = 1.5, RB = 2.5, K = 1.55, i = 2.6, C/D = 5, θ = 50◦ and B = 1.5 m.
The fuselage portion used for the test is with |y| ≤ 0.33 m. A view of the
longitudinal section of the test specimen along with the probes of interest are
shown in Fig. 5.6.

5.2 Numerical investigation

5.2.1 Proposed cavitation capturing technique

Cavitation is a phenomenon in which rapid changes of pressure in a liquid
lead to the formation of vapor-filled cavities, in places where the pressure is
sufficiently low. These cavities then collapse under higher pressures which
generates intense shock waves.

Cavitation is usually an undesirable phenomenon that frequently occurs
within industrial machinery, where it can cause massive wear, for example
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the erosion of the surface of turbines and propellers. Lately, avoiding cav-
itation has been identified as an important factor for the design of ditching
aircrafts [15]. The experiments of Iafrati et al. [44] showed the formation of
cavitation pockets underneath the tested fuselage parts, with a strong de-
pendence on the impact horizontal velocity. Therefore, one of the aims of the
present study is to check whether it is possible to predict the occurrence of
this phenomenon numerically.

Cavitation is inherently a multiphase problem where normally the liquid
and vapor phases must be both modeled. However, the density ratio be-
tween liquid and cavitation water vapor is about 80000, which is too high
a value for any state-of-the-art SPH multiphase model. In a first attempt,
in the present work, it is assumed that the cavitation problem is in fact a
single-phase phenomenon, which could be captured through the following
proposed technique.

Physically speaking, cavitation will only occur if the local pressure de-
clines to some point below the saturated vapor pressure of the liquid, noted
Psat. The water temperature during the ditching experiments is between 18◦

and 21◦ [44], which corresponds to a saturated vapor absolute pressure rang-
ing between 2.0 kPa and 2.7 kPa, corresponding to relative values of ∆Psat
between -99.3 kPa and -98.6 kPa (Patm = 101.3 kPa).

The proposed cavitation capturing technique works as follows. The pres-
sure P is compared at each time step to a set value of ∆Psat, and is reset to
PSPH

sat = ∆Psat if P < ∆Psat. In that case, the density is reset to:

ρsat = ρ0

(
1 +

PSPH
sat
B

)−γ

, B =
ρ0c2

0
γ

(5.5)

in order to maintain the use of the equation of state (1.4) linking the density
and the pressure.

Although this pressure manipulation is not physical, it at least guarantees
maintaining the cavitation pressure level in the zone of interest. However, it
poses the problem of not respecting the real mass of the cavitation pocket.
With our technique, the cavitating particles still belong to the liquid water
phase instead of a water vapor phase, whose density is many orders of mag-
nitude smaller. Therefore, a potential numerical cavitation pocket will be
naturally heavier than in reality.

5.2.2 2D configuration

5.2.2.1 Numerical setup

The effect of the horizontal velocity on the pressure and the loading on the
specimens is investigated in this section. The chosen pitch angle for the com-
parisons is 6◦. The vertical to horizontal velocity ratio V/U is taken equal to
0.0375. The underwater camera in [44] highlighted the occurrence of cavita-
tion starting from the impact speed U = 30.6 m/s. Therefore, in this work
two horizontal speeds are simulated, 21 m/s and 34 m/s, without and with
expected cavitation occurrence respectively.
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For these simulations and similarly to the corrugated flat panel impact
of Section 3.4, the adopted numerical sound speed in the water is based on
the expected maximal pressure, recorded for each horizontal velocity. For
the impact speed U = 21 m/s, the highest experimental pressure value is
Pexp

max ≈ 462 kPa, while in the case of 34.5 m/s, the highest pressure value was
Pexp

max ≈ 1260 kPa [44].
As explained in Section 1.3.1, in order to guarantee the weakly-

compressible regime, the maximal numerical Mach number reached within
our SPH simulations is Ma = U/c0 = 0.1. Formula (2.65) is once again used
in order to determine the numerical sound speed in the water based on the
maximal experimental pressure. Therefore, the water sound speed is set to
c0 = 215 m/s for U = 21 m/s and c0 = 355 m/s for U = 34.5 m/s.

Starting from these sound speed values, the domain size was taken large
enough so as to avoid the reflection of acoustic waves on the domain bound-
aries. The numerical tank is 20 m long, 4 m wide and 6 m deep. Besides,
the simulations have been conducted using the Adaptive Particle Refine-
ment (APR) technique described in Section 1.6.2.2, which allows to keep a
high spatial resolution around the fuselage part and a coarse discretization
elsewhere during the simulation. Indeed, the APR boxes are first initialized
around the fuselage part, then are made to follow its kinematics throughout
the water impact simulation.

Today the APR technique is developed solely for Riemann-SPH type
schemes in our lab. Consequently, instead of the Multiphase δ-SPH scheme,
throughout this study the Riemann-SPH scheme presented in Section 2.1.4 is
used. Furthermore, the boundary integral method based on a Cut-Face Ap-
proach (CFA, cf. Chiron et al. [13]) presented in Section 1.5.1.2 is exclusively
used for the imposition of the solid boundary conditions (tank and fuselage)
due to its ability to handle complex wall geometries.

In any case, a good calibration of the refinement boxes is crucial for the
simulations, in the sense that a fine enough discretization level must be
achieved without making the computation time prohibitive. Also, the refine-
ment boxes must be soundly placed in order to capture the main investigated
physics, which are the pressure/loads on the fuselage, and the possible oc-
currence of cavitation in the water underneath the rear part of the specimen.

Consequently, a 2D study is perfect for this kind of calibration, through
which the placement and numbers of refinement boxes can be optimized,
and a convergence study can be made in order to determine the minimal
acceptable discretization ratio, with faster CPU times compared to the 3D
case.

In order to obtain the 2D configuration, the 3D domain and the fuselage
geometry are both sliced through the y = 0 plane. Following [64], the 2D
computations were run using two discretization levels, ∆xmin = 3 mm and
∆xmin = 0.39 mm, both with seven refinement boxes.

As pictured in Fig. 5.6, the pressure probes of interest (P4, P9, P13, P17,
P21, P24, P28 and P30) are all located on the piercing edge (middle line of
the bottom surface) of the tested specimens. Fig. 5.7 shows the equivalent
numerical setup of the 2D fuselage (plane XZ cutting the piercing edge). The
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FIGURE 5.7: 2D ditching: zoom on the profile and the nearby
refinement boxes. The APR boxes (in red solid lines) are rotated
to follow the pitch angle of the profile. The yellow circles depict
the pressure probes of interest. For the sake of clarity, only the
refinement boxes corresponding to the two highest refinement

levels are shown.

refinement boxes were positioned so as to follow the pitch angle of the fuse-
lage. The choice of angling the refinement boxes is made in order to offer the
finest discretization level in the jet root zone, which is crucial for the compu-
tation of the local impact pressures.

The configuration shown in Fig. 5.7 ensures that the refinement boxes
completely envelop the profile, so that it offers the finest resolution in the
rear water zone just underneath the fuselage, where the targeted cavitation
phenomenon is expected to occur (rear probes P17 to P4). The number of
particles at the start of the simulations is 201844.

5.2.2.2 U=21 m/s - Results and comparison

First, the ditching behavior of the 2D profile is shown in Fig. 5.8 at different
time instants, for the impact speed U = 21 m/s. Similarly to the classic case
of a wedge impact [61, 109, 50], a high pressure zone is formed at the water jet
root, and continues to move along the specimen as it enters the free-surface.
The jet is very thin and follows the trajectory of the profile, which confirms
the choice of angling the highest resolution APR box.

Fig. 5.9 shows the 2D SPH pressure signals registered by the probes P17,
P21, P24 and P28 for the coarse and fine resolutions, in comparison with the
experimental results of Iafrati et al. [44]. The pressure signals were all shifted
in time so as to make the experimental and numerical pressure peaks P17
coincide.

The SPH pressure peaks are quicker to appear compared to the experi-
ments. This is explained by the fact that the 2D jet has less degrees of freedom
than in a 3D configuration, which means that it will be confined and forced to
move following the direction of the profile. Nevertheless, the jet propagation
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FIGURE 5.8: 2D ditching: zoom on the high pressure zone at
the water jet root.
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FIGURE 5.9: 2D ditching: experimental vs numerical pressure
signals registered by the probes P17, P21, P24 and P28 with the
coarse and fine resolutions, for the impact speed U = 21 m/s.

speed is relatively closer to the experiments when using the finer discretiza-
tion. The SPH solutions also seem to slightly over-predict the pressure am-
plitudes. This is expected since the 3D effects occurring in the experiments
will tend to lower maximal pressures, due to the flow evacuation through
the sides of the specimen. The simulation with the fine resolution yields the
closest results to the experiments at all the pressure probes. On the other
hand, as expected the coarse simulation yields less accurate pressure signals
especially at the early stages of the simulation, where the impact regions are
still under-resolved.

Both the experimental and SPH results register high-frequency fluctua-
tions of pressure which are captured by the probes P24 and P28, as seen in
Fig. 5.10. Those are due to fragmented jet of water that hovers over the nu-
merical probes, and to the general chaotic behavior at the water free-surface
that follows the impact of the specimen in the experiments. Another rea-
son behind these oscillations is the choice of the sound speed of water which
does not take into account the weakly-compressible assumption inside the
jet, since it is based on the maximal registered experimental pressure, regard-
less of the maximal jet sped. Indeed, the magnitude of velocity in the jet on
the probe P28 at t = 0.0448 s is around 60 m/s (Fig. 5.10) corresponding to a
Mach number of 0.28, which is beyond the weak-compressibility limit. Also,
note that the Cut-Face-based boundary integral approach (CFA) [13] used for
our ditching simulations was developed for the weakly-compressible regime,
the absence of which could damage the accuracy of the predicted pressure
field, as observed here. This point should be further investigated in the fu-
ture.

More importantly, for this impact speed the 2D SPH pressures registered
by the probes P17-P9, located at the rear part of the profile, do not reach
the water saturation pressure, as seen in Fig. 5.11. This effectively means
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FIGURE 5.10: 2D ditching: pressure oscillations (left) and ve-
locity (right) within the fragmented jet, captured by the probe

P28.

that both the SPH and experiments agree on the fact that the cavitation phe-
nomenon does not appear at this impact speed, even though the SPH compu-
tations predict lower values of pressure. Note that the numerical pressures in
this zone are negative, which means that an air suction phenomenon would
probably have occurred had an air phase been modeled within our simula-
tions. Thus, the discrepancy between the experimental/numerical pressure
signals could be caused by the absence of the air phase in the current nu-
merical configuration, and by the fact that the experiments are not 2D but
3D.

In the next section, the same numerical 2D configuration is kept, but with
a higher impact speed of U = 34.5 m/s, which according to the experiments
of Iafrati et al. [44], is enough to induce cavitation within the water.

5.2.2.3 U=34.5 m/s - Results and comparison

The time evolution of the pressure registered by the front probes is shown in
Fig. 5.12. Similarly to the previous impact speed, the pressure peaks are still
over-predicted by our SPH method in terms of amplitude and propagation
speed along the edge of the profile, with the finer resolution yielded slightly
more accurate results in comparison to the experimental curves of Iafrati et
al. [44].

Fig. 5.13 plots the time evolution of the pressure signals captured by the
rear probes P17-P4, for the impact speed U = 34.5 m/s in the 2D configura-
tion. Contrary to the previous impact speed, here the SPH registered pres-
sures at the rear of the profile do reach the saturation pressure level, and
stagnate at this value thanks to the proposed cavitation capturing technique
presented in Section 5.2.1.

However, it is important to note once again the significant discrepancy
between the experimental and numerical negative pressures captured at the
rear probes P17-P4. A close inspection of the underwater snapshots of the ex-
perimental flow reveals the existence of bubbly flow on the rear edges of the
specimens, as can be observed in Fig. 5.4 for both impact speeds U=21 m/s
and U=34.5 m/s. These highly three-dimensional bubbly flows result from
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FIGURE 5.11: 2D ditching: experimental vs numerical pressure
signals registered by the rear probes P17-P4 with the coarse and
fine resolutions, for the impact speed U = 21 m/s. The experi-

mental and SPH results agree on the absence of cavitation.
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FIGURE 5.12: 2D ditching: experimental vs numerical pressure
signals registered by the probes P17-P28 with the coarse and

fine resolutions, for the impact speed U = 34.5 m/s.

the mixing of air bubbles with the water upon the fuselage impact. Obvi-
ously, these are 3-D multiphase phenomena that cannot be captured in a 2D
single-phase configuration. Consequently, important numerical inaccuracies
should be expected in this region of the flow, especially in terms of the pre-
dicted numerical pressure in the rear portion of the fuselage.

Nevertheless, this initial 2-D approach effectively proved that the SPH
method can predict the occurrence of cavitation at this impact speed, in ac-
cordance with the experiments. Moreover, the implementation of the cavita-
tion technique does not seem to introduce any numerical instabilities within
the flow. A snapshot of the flow at t = 0.0392 s is provided in Fig. 5.14.
Indeed, underneath the rear portion of the fuselage the cavitation zone is
highlighted in red solid lines, wherein the particle pressures which reach the
prescribed saturation vapor value are blocked at this value. In this zone and
elsewhere in the water, the pressure is highly regular without any numerical
noise. This particular result is very encouraging for the extension to 3D.

5.2.3 3D study

5.2.3.1 Numerical setup

The sound speed values used for the 2D configuration were kept unchanged
for the 3D simulations. However, the passage from 2D to 3D configurations
poses some difficulties in terms of CPU cost. A good compromise between
particle refinement levels and CPU cost had to be achieved. The simulations
were run using a coarser discretization, ∆xmin = 3.125 mm, using 6 refine-
ment boxes, inclined at the fuselage pitch angle similarly to the 2D configu-
ration. Fig. 5.15 shows a global view of the numerical domain, including the
APR boxes and the fuselage portion. The latter was implemented following
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FIGURE 5.13: 2D ditching: experimental vs numerical pressure
signals registered by the rear probes P17-P4 with the coarse and
fine resolutions, for the impact speed U = 34.5 m/s. This time
the predicted pressure reaches the water saturation level, which

means that cavitation does occur in this zone.
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FIGURE 5.14: 2D ditching: snapshot of the flow at t = 0.0392 s.
The cavitation occurs in the water zone underneath the rear of
the profile, where the probes P17-P4 are located. The cavitation

zone contour is highlighted with a solid red line.

the analytical function provided by Iafrati et al. [44] and presented in Section
5.1.2.

5.2.3.2 U=21 m/s - Results and comparison

The evolution of the water surface deformations during the fuselage impact
is shown in Fig. 5.16 at different time instants. The pressure maps on the
fuselage are also presented in Fig. 5.17 at the corresponding time instants.

At the front part of the specimen, a parabolic-shaped jet is developed
starting from the region of curvature change. Similarly to the 2D simula-
tions, the jet keeps advancing towards the leading edge of the fuselage part
at a constant maximal pressure while it keeps penetrating the water.

Contrary to the 2D configuration however, the 3D jet propagation speed
computed with the SPH method is much closer to the jet propagation speed
of the experiments. This also was expected since the confinement is higher is
2D, inducing faster outflow around the specimen. This result is clear on Fig.
5.18, where the histories of the numerical and experimental pressure signals
captured by the probes P17-P30 are plotted. On the one hand, although a
small time shift still exists between the SPH and experimental pressure peaks,
the 3D numerical signals are very close to the experimental results. The ori-
gin of the slight time shift can be attributed to the fact that particle resolution
is still not fine enough, and also to the absence of the air phase within our
computations.

On the other hand, the discrepancy of pressure amplitude is still observed
for the probes P17 and P21, which is explained by the fact that at these early
ditching stages the corresponding impact zones are under-resolved, simi-
larly to the 2-D simulation with the same discretization level ∆xmin = 3 mm.
Nonetheless, later in time numerical pressure peaks are in very satisfactory
agreement with the experiments (P24, P28 and P30).
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FIGURE 5.15: 3D ditching: numerical domain used for the sim-
ulations. The panel is highlighted in yellow. The boxes repre-

sent the different APR resolution levels.

As visible in Fig. 5.17, the water impact of the fuselage also generates neg-
ative pressures underneath its rear, due to its double curved geometry [44].
At the impact speed U=21 m/s, underneath the curvature change zone the
numerical pressure reaches its lowest values without reaching the pressure
saturation level, as predicted in the experiments.

Fig. 5.19 shows the time evolution of the pressure signals registered by the
rear probes P17-P4. The SPH model predicts lower negative pressure values
in this zone especially at the probes P17 and P13, which is again linked to the
absence of air in our simulations.

5.2.3.3 U=34.5 m/s - Results and comparison

The SPH results for the impact speed U=34.5 m/s are presented in this sec-
tion. The time histories of the signals on the probes P17, P21, P24, P28 and
P30 are shown in Fig. 5.20. Similarly to the previous impact speed, the nu-
merical and experimental pressure peaks agree in terms of both the ampli-
tudes and propagation velocities.

The pressure signal captured by the probe P17 decreases to the set value
of the vapor pressure of water and stagnates at this value throughout the du-
ration of the simulations. This behavior is observed also at the rear probes
P13-P4, as shown in Fig. 5.21. This is a clear indication that the water pres-
sure in this zone has reached the cavitation threshold. Note that the experi-
ments predict a pre-cavitation phase where the pressure oscillates, which is
not predicted by our single-phase SPH model. Essentially though, the exper-
iments and the numerical results agree on the time the pressure reaches the
cavitation after the peak is registered at the probe P17.

The pressure map evolution on the fuselage is provided in Fig. 5.22 at
different time instants. As expected, the pressure reaches higher levels when
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FIGURE 5.16: 3D ditching: evolution of the water free-surface
during the fuselage impact at U=21 m/s. The probes of interest
are highlighted in purple. They are located on the piercing edge

(mid-line) of the fuselage.
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FIGURE 5.17: 3D ditching: evolution of the pressure map on
the fuselage impacting at U=21 m/s. As expected, the pres-
sure does not reach the pressure saturation level at this impact

speed.
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FIGURE 5.18: 3D ditching: experimental vs numerical pres-
sure signals recorded at the probes P17-P30, at the impact speed

U=21 m/s.

increasing the impact speed from 21 m/s to 34.5 m/s. More importantly,
the cavitation zone is clearly visible at the rear of the profile. Side and front
view of the cavitation pocket are provided in Fig. 5.23, where the particles of
higher pressure than the pressure saturation level are blanked.

A qualitative comparison of the cavitation pocket shape is provided in
Fig. 5.24, which shows a bottom view of the experimental and numerical
flows. Although the instant of the experimental snapshot is unclear, a clear
resemblance in the shape of the cavitation pocket between our numerical re-
sult and the experiments is visible, with only a slight difference in size in the
longitudinal and transversal directions. This discrepancy could be attributed
again to the particle resolution still not being fine enough at ∆xmin = 3 mm,
and to the fact that the cavitation is assumed here to be a single-phase phe-
nomenon, without a proper modeling of the water vapor and surrounding air
phases. In any case, it is somewhat surprising that the proposed cavitation
capturing technique does not introduce any numerical instabilities within
the flow, as the computed pressures can be considered to be in very good
agreement with the results of the experimental campaign of Iafrati et al.[44].

5.3 Summary of the numerical campaign

In the context of the SARAH project, a numerical investigation of an air-
craft fuselage ditching was carried out in this chapter, using a weakly-
compressible Riemann-SPH method. The effect of viscosity was not taken
into account as it is considered negligible compared to the effects of pressure
and inertia which are largely dominating in the high-speed impacts studied
here.
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FIGURE 5.19: 3D ditching: experimental vs numerical pressure
signals registered by the rear probes P17-P4, at the impact speed

U=21 m/s.
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FIGURE 5.20: 3D ditching: experimental vs numerical pres-
sure signals recorded at the probes P17-P30 at the impact speed

U=34.5 m/s.

The results are compared to the experimental work of Iafrati et al. [44],
which highlighted the occurrence of cavitation in the rear part of the tested
specimens. To this aim, a simple but effective cavitation capturing technique
was proposed here, which successfully predicted the occurrence of cavitation
in the rear part of the specimen in agreement with the experiments, without
ever introducing numerical instabilities.

Satisfactory agreement was found between the numerical and experimen-
tal campaigns, quantitatively in terms of pressure peak amplitudes and oc-
currence of cavitation depending on the horizontal impact speed, and quali-
tatively in terms of the clear resemblance of the SPH cavitation pocket shape
with the real one.

However, some differences between the numerical and experimental
pressure signals were observed at the rear probes. Indeed, the limitations
of a single-phase model were highlighted in this zone, since the absence of
air/water vapor phases unsurprisingly alter the predicted loading on the
rear part of the fuselage. Consequently, this numerical campaign should be
improved upon by considering a multiphase model that includes the exis-
tence of an air phase, and a water liquid-vapor phase transition model for a
more accurate prediction of cavitation.
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FIGURE 5.21: 3D ditching: experimental vs numerical pressure
signals registered by the rear probes P17-P4, at the impact speed

U=34.5 m/s.
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FIGURE 5.22: 3D ditching: evolution of the pressure map on
the fuselage impacting at U = 34.5 m/s. The pressure does
reach the water saturation level in the rear of the fuselage, in-
dicating the occurrence of cavitation. The probes of interest are

highlighted in purple.
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FIGURE 5.23: 3D ditching: side (top) and front (bottom) views
of the cavitation pocket, at t = 0.06 s.

FIGURE 5.24: 3D ditching: qualitative comparison of the cavi-
tation pocket shape and size between the numerical (top) and

experimental results (bottom).
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Conclusion

This research started with a bibliographical study that highlighted the fun-
damentals of the SPH method and its application to the Euler equations. The
state-of-the-art stabilization techniques were presented, followed by an ex-
position of the different boundary conditions that the target model should
guarantee within the multiphase context. Then, the numerical tools used
throughout this thesis were exhibited, such as adaptive particle refinement
(APR), and particle shifting methods.

Chapter 2 began with an overview of the state-of-the-art multiphase SPH
models, highlighting the pros and cons of each model. Consequently, the
Grenier et al. [35] model was identified as the best model to build upon, in
view of its ability to keep sharp the interface between fluids via a Shepard
computation of the density, and its use of a Volumetric Strain Rate equation
which allows the simulation of free-surface flows. A first derivation of the
governing equations of the weakly-compressible Multiphase δ-SPH scheme
was proposed, followed by an extension of the δ-SPH diffusive terms to mul-
tiphase flow in order to eliminate the spurious oscillations of pressure. Then,
the numerical stability of the proposed model was studied. It was found that
the choice of the sound speed for the different phases was driven by phys-
ical and numerical constraints that affect the stability of the scheme. Con-
sequently, a map of the maximal stable CFL coefficients with respect to the
phases’ sound speed and density ratios was elaborated.

In light of this stability analysis, the third chapter dealt with the valida-
tion of the proposed Multiphase δ-SPH scheme. Three well-known test-cases
were performed - hydrostatic, dam-break and oscillating fluid patches, in
single and two-phase configurations. The results highlighted the capabilities
of the model in terms of solving two-phase flows with high density ratios,
with or without a free-surface while yielding satisfactory pressure fields. A
fourth challenging test-case was introduced, involving the impact of a cor-
rugated MarkIII panel on a water free-surface, coupled with the presence of
an entrapped air cavity. The corrugations are small rigid structures under
the flat panel, whose shape is given by an analytical function. Our results
were compared to the findings of a semi-analytical by Khabakhpasheva et
al. [49] based on the Wagner conditions. The pressure field was found to be
quasi-uniform in the air bubble as expected. However, the air cavity vol-
ume evolution was found to be greatly impacted by the Wagner conditions,
since it adds further constraints on the movement of the inner contact point.
Nevertheless, aside from the Wagner condition’s restrictions, the agreement
between our SPH results and the semi-analytical solution can be considered
satisfactory.
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A variant of Riemann-based SPH schemes [54] also offers the possibil-
ity of handling interfacial flows in the presence of a free-surface. A stability
study was performed on this Riemann-SPH scheme, then its regions of sta-
bility were compared to the proposed Multiphase δ-SPH ones. A discussion
over the computational cost of each model ensued, showing that proposed
model was much more sensible to the increase in density and/or sound
speed ratios. With the maximal stable CFL coefficients determined for the
Riemann-SPH scheme, the dam-break and water impact of the corrugated
panel test cases used for the validation of the proposed model in Chapter 3
were rerun using Riemann-SPH. The comparison focused on the quality of
pressure fields and mechanical energy decay. It was shown that both models
yielded similar results provided some adjustments on each scheme are made.
On the one hand, a small increase in the parameter α of the proposed model
goes a long way in eliminating spurious oscillations of pressure, which as
expected, comes at the cost of slightly more diffusion. On the other hand,
the Riemann-SPH scheme is vastly improved also in the multiphase context
with the use of a particle shifting technique.

In relation with the European SARAH project, in Chapter 5 a numerical
investigation of fuselage ditching, at realistic impact speeds, was carried out
using the Riemann-SPH scheme discussed in Chapter 4. The ditching config-
urations were based on the experimental campaign led by Iafrati et al. [44],
also in the context of the SARAH project. Their experimental results high-
lighted the occurrence of the cavitation phenomenon in the water, depending
on the horizontal impact speed. Thus, one of the objectives of this investiga-
tion was to see whether it is possible to capture this cavitation phenomenon
numerically using SPH. To this aim, a simple yet effective cavitation captur-
ing technique was developed and validated first on 2D simulations of the
ditching problem. It was shown to introduce no numerical instabilities, the
quality of the pressure field remaining unaltered. Consequently, the full 3D
simulations were performed so as to compare the numerical and experimen-
tal loading on the fuselage. Satisfactory agreements were observed, in terms
of the registered pressure signals peaks and propagation along the specimen,
and in terms of the cavitation’s occurrence and pocket shape.

All in all, the main objectives of this thesis were to improve the SPH
method in the multiphase context, and to apply it to the simulation of
the emergency water landing of aircrafts. These targets were effectively
achieved. On the one hand, a new multiphase SPH model was proposed,
that is able to handle high density ratios between the fluids and the pres-
ence of a free-surface, while yielding noise-free pressure fields. On the other
hand, the SPH method was successfully used for the numerical simulation
of fuselage water impact at realistic speed conditions, within the scope of the
SARAH project.

Nevertheless, there is still room for improvement regarding the topics
treated in this thesis. Firstly, the absence of particle shifting within the pro-
posed Multiphase δ-SPH can be noted, which is solely due to time con-
straints. Thus, in the short term, a particle shifting technique should be
added, quite straightforwardly, to the proposed Multiphase δ-SPH model,
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which would enhance its results on the one hand, and enrich its comparison
with the Riemann-SPH scheme on the other hand.

Secondly, the heuristic stability regions obtained in Chapter 2 for the pro-
posed scheme can be further explored theoretically. For instance, the von
Neumann stability analysis performed by Violeau and Leroy [101] on the
single-phase weakly-compressible SPH equations, could be extended to our
multiphase SPH model equations.

Finally, although the proposed Multiphase δ-SPH model was a very good
candidate for the ditching simulations of Chapter 5, the numerical campaign
was carried out using the multiphase Riemann-SPH scheme. This choice
was purely a pragmatic one, since all the numerical tools available in our lab
that are crucial to these complex simulations are, to this day, only developed
for Riemann-based SPH schemes. Indeed, such numerical tools involve the
Adaptive Particle Refinement and Boundary Integral Method, which are not
straightforwardly adaptable to the Multiphase δ-SPH scheme. However, it is
easy to see the advantages that would be brought on by the proposed model
for the simulations of Chapter 5. As a first attempt, we considered ditch-
ing to be a single-phase problem, which means that, if used, the proposed
model would allow higher CFL coefficients in comparison to Riemann-SPH,
as shown in Chapter 4 with the much simpler dam-break test case, saving
considerable amounts of computational time. Moreover, this single-phase
approach is justified a posteriori, since very close agreement was observed
between the 3D numerical and experimental results. However, in the long
term these simulations should be improved upon in the future through the
use of a multiphase model, such as the one developed in this thesis, which
would take into account the surrounding air phase, in conjunction with a wa-
ter liquid-vapor phase transition model in order to better predict the physics
of cavitation.
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Titre: Amélioration de la méthode SPH pour écoulements multiphasiques et application à l’amerrissage 
d’urgence d’avions 

Mots clés: Smoothed Particle Hydrodynamics,  multiphasique, impact d’eau, amerrissage, δ-SPH 

Résumé: Cette thèse porte sur l'amélioration de la méthode 
SPH pour les écoulements multiphasiques, et son application à 
l'amerrissage d'urgence d'avions. Ce problème, appelé aussi 
«ditching», est caractérisé par des écoulements violents 
donnant suite à de larges déformations de la surface libre. En 
outre, le problème du ditching englobe des évolutions couplées 
des différentes phases présentes pendant l'impact, à savoir l'air, 
l'eau liquide et, dans des cas extrêmes, la vapeur d'eau. La 
méthode SPH est un excellent candidat pour simuler de tels 
problèmes. En effet, d'une part, l'absence de maillage dans 
cette méthode permet plus facilement de calculer les grandes 
déformations de la surface libre, en s'affranchissant 
complètement du problème de distorsion du maillage, 
contrairement aux autres méthodes numériques classiques 
telles que les Éléments Finis. D'autre part, la méthode SPH se 
prête naturellement à la simulation d'écoulements 
multiphasiques de par son formalisme lagrangien. L'absence de 
termes convectifs au sein des équations SPH prévient 
l'existence de diffusion numérique à l'interface entre les fluides, 
supprimant le besoin classique de schémas de capture 
d'interface. 
 

Lors de cette thèse, dans un premier temps, un nouveau 
modèle SPH faiblement compressible explicite a été 
développé, capable de simuler des écoulements 
multiphasiques à hauts ratios de densité, éventuellement en 
présence d'une surface libre, tout en produisant des champs 
de pression libres d'oscillations numériques. Une étude de la 
stabilité numérique de ce modèle a été menée, résultant en 
une définition heuristique des pas temps maximaux stables en 
fonction du ratio de vitesses du son des fluides mis en jeu. 
Ensuite, le modèle a été validé puis comparé à un schéma 
Riemann-SPH, en termes de domaine de stabilité, de champs 
de pression et de diffusion numérique. Finalement, dans le 
cadre du projet européen SARAH, la méthode SPH a été 
appliquée au problème d’amerrissage d'avions dans des 
conditions de vitesses d'impact réelles. Des expériences 
menées par des partenaires du projet ont démontré l'existence 
du phénomène de cavitation à partir de certaines vitesses 
d'impact. En conséquence, une technique de capture de 
cavitation numérique a été introduite dans cette thèse. Enfin, à 
l'issue de simulations SPH 2D et 3D, un accord satisfaisant a 
été observé entre l'expérience et nos résultats numériques. 

 

Title: Improvement of the SPH method for multiphase flows and application to the emergency water landing 
of aircrafts  

Keywords: Smoothed Particle Hydrodynamics, multi-phase flows, water impact, ditching, δ-SPH 

Abstract: This thesis focuses on the improvement of the 
SPH method for multiphase flows, and its application to 
emergency landing of aircrafts. This problem, also known as 
“ditching”, is characterized by violent flows resulting in large 
deformations of the free-surface. In addition, the ditching 
problem encompasses coupled evolutions of the different 
phases present during the impact, namely air, liquid water and, 
in extreme cases, water vapor. The SPH method is an excellent 
candidate for simulating such problems. Indeed, on the one 
hand, the absence of mesh within this method makes it easier 
to compute large deformations of the free-surface, completely 
eliminating the problem of mesh distortion, unlike other classical 
numerical methods such as Finite Elements. On the other hand, 
the SPH method naturally lends itself to the simulation of 
multiphase flows due to its Lagrangian formalism. The absence 
of convective terms within the SPH equations prevents the 
existence of numerical diffusion at the interface between fluids, 
eliminating the traditional need for interface capture schemes. 

During this thesis, first a new explicit weakly-compressible 
SPH model was developed, capable of simulating multiphase 
flows at high density ratios, possibly in the presence of a free-
surface, while producing pressure fields without spurious 
oscillations. A study of the numerical stability of this model was 
conducted, resulting in a heuristic definition of the maximum 
stable time steps as a function of the sound speed ratio of the 
fluids involved. Then, the model was validated and compared 
to a Riemann-SPH scheme, in terms of stability domain, 
pressure fields and numerical diffusion. Finally, as part of the 
European SARAH project, the SPH method was applied to the 
problem of aircraft ditching under real impact velocity 
conditions. Experiments conducted by other partners have 
demonstrated the existence of cavitation at certain impact 
speeds. As a result, a numerical cavitation capturing technique 
was introduced in this thesis. Finally, 2D and 3D SPH 
simulations yielded a satisfactory agreement between the 
experiments and our numerical results. 
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