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Abstract

The discovery of graphene in 2004 has inspired a great interest in two-dimensional
(2D) materials. In recent years, semiconducting 2D materials, in particular, are in the
limelight for their potential use in electronics and optoelectronics. From the perspec-
tive of metal-oxide-semiconductor field-effect transistors, their atomic thickness allows an
enhanced electrostatic control and their self-passivated surface reduces the potential pres-
ence of charge traps. Most importantly, the presence of a bandgap, contrary to graphene,
facilitates a high on/off ratio in logic devices. Among these semiconducting materials,
transition metal dichalcogenides (TMDs), with their large variety of band alignments and
bandgaps, have attracted great attention for their possible use in transistors, both as
monolayer materials or combined in van der Waals heterostructures. For such applica-
tions, the TMD quality is a priority, since the presence of defects might significantly affect
electron transport thus leading to performance degradation.

The present thesis reports on the impact of various defects, which are often observed
in experimental samples, on the transport properties of TMDs. The study is based on
quantum transport simulations, which combine an atomistic tight-binding description of
the system and the Green’s function formalism.

The first part of the thesis briefly introduces 2D materials, including their properties,
synthesis, and applications. The basics of the simulation approach are also detailed. In
particular, a thorough review of model Hamiltonians for TMDs, with a specific focus on
tight-binding models, is presented. Moreover, the Green’s function formalism, which is
the methodology adopted for the quantum transport simulations performed in the present
thesis, is briefly reviewed.

In the second part of the thesis, two types of typical TMD defects are simulated,
and the results physically interpreted. The first study concerns edge roughness in MoS2

ribbons, which play an important role in the miniaturization of TMD-based transistors.
The second study focuses on twin grain boundaries, which are often present in polycrys-
talline MoS2 obtained by large-scaling synthesis approaches, as chemical vapor deposition
or molecular beam epitaxy. The role of spin-orbit coupling, which is significantly large in
TMDs, is also taken into account. The results of these studies are quantitatively analyzed
in terms of quasi-ballistic, diffusive, and localized transport regimes.

The main outcome of this thesis is a better understanding and prediction of the impact
of defects on the transport properties of TMDs, with possible applications in the design
of performant TMD-based devices.



Résumé

La découverte du graphène en 2004 a suscité un grand intérêt pour les matériaux bidi-
mensionnels (2D). En particulier, ces dernières années, les matériaux 2D semi-conducteurs
sont à l’honneur pour leur utilisation potentielle en électronique et optoélectronique. Du
point de vue des transistors à effet de champ, leur épaisseur atomique permet un contrôle
électrostatique amélioré et leur surface auto-passivée réduit le risque potentiel de pièges
de charge. De façon plus importante encore, contrairement au graphène qui est semi-
métallique, la présence de la bande interdite dans les dichalcogénures de métaux de tran-
sition (TMDs) permet un rapport entre courants à l’état passant et à l’état bloqué élevé
dans les dispositifs logiques. Parmi ces matériaux semi-conducteurs, les TMDs, avec leur
grande variété de bandes interdites et d’alignements de bandes, ont attiré une attention
particulière pour leur possible utilisation dans les transistors, à la fois comme matériaux
monocouches ou combinés dans des hétérostructures van der Waals. Pour de telles ap-
plications, la qualité des TMDs est une priorité, car la présence de défauts peut affecter
de manière significative le transport d’électrons, conduisant ainsi à une dégradation des
performances.

La présente thèse rend compte de l’impact de divers défauts, qui sont souvent ob-
servés dans des échantillons expérimentaux, sur les propriétés de transport des TMDs.
L’étude est basée sur des simulations de transport quantique, qui combinent une descrip-
tion atomistique de type liaisons fortes du système et le formalisme de la fonction de
Green.

La première partie de la thèse présente brièvement les matériaux 2D, y compris leurs
propriétés, leur synthèse et leurs applications. Les bases de la méthode de simulation sont
également détaillées. En particulier, une revue exhaustive des modèles hamiltoniens pour
les TMDs, avec un accent particulier sur les méthodes des liaisons fortes, est présentée.
De plus, le formalisme de la fonction de Green, qui est la méthodologie adoptée pour les
simulations de transport quantique effectuées dans la présente thèse, est brièvement passé
en revue.

Dans la deuxième partie de la thèse, deux types de défauts typiques des TMDs sont
simulés et les résultats physiquement interprétés. La première étude concerne la rugosité
des bords des rubans MoS2, qui jouent un rôle important dans la miniaturisation des
transistors à base de TMDs. La deuxième étude se concentre sur les joints de grains de
type mirror-twin, qui sont souvent présents dans le MoS2 polycristallin obtenu par des
approches de synthèse à grande échelle, comme le dépôt chimique en phase vapeur ou
l’épitaxie par faisceau moléculaire. Le rôle du couplage spin-orbite, qui est important
dans les TMDs, est également pris en compte. Les résultats de ces études sont analysés
quantitativement en termes de régimes de transport quasi balistique, diffusif et localisé.

Les principaux résultats de cette thèse sont une meilleure compréhension et prédiction
de l’impact des défauts sur les propriétés de transport des TMDs, avec une application
possible dans la conception de dispositifs performants basés sur les TMDs.
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Chapter 1

Introduction to transition metal
dichalcogenides and goals of the
PhD

1.1 History of 2D materials

The discovery of graphene by Geim and Novoselov [1] and its great variety of
properties have opened the new era of two-dimensional (2D) materials in many
research fields ranging from theoretical condensed matter physics to material
science and nanoelectronic applications. Graphene has attracted tremendous
interest as demonstrated by the number of studies [2], [3] to investigate and
exploit its exceptional properties starting from the simple Dirac equation for
massless fermions [4], passing by applications in nanoelectronics [5] and spin-
tronics [6], [7], and up to unconventional superconductivity in magic-angle
graphene superlattices [8]. Few years after its discovery, a plethora of new
two-dimensional materials such as transition metal dichalcogenides (TMDs),
hexagonal boron nitride, black phosphorus, silicene and germanene, have been
predicted and in part successfully fabricated with a great variety of electronic
properties [9]. Among them, semiconducting materials have turned out to be
very promising for applications in electronics and optoelectronics [10], [11]. In
the perspective of metal-oxide semiconductor field-effect transistors (FETs),
2D materials benefit from inert (self-passivated) surfaces, which reduce the
incidence of traps at the interface with the oxide, and of a few-atom thinness,
which permits an enhanced electrostatic control. Above all, the advantage of
semiconducting 2D materials, compared to semi-metallic graphene [5], is the
presence of a band gap, which allows a much higher on/off current ratio in
logic FETs. The most thoroughly investigated 2D semiconducting materials
beyond graphene are the TMDs [12]. They are promising for their use in na-
noelectronics, especially for the realization of FETs [11], including the design
of tunnel FETs with lateral [10] and vertical [13] architectures. Some years
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after the first demonstration of a working MoS2-based transistor [14], Watcher
et al. [15] fabricated a complete microprocessor based on this material, thus
demonstrating the true potential of TMDs for electronics.

1.2 General properties of TMDs

In this Section, I briefly summarize the general properties of TMDs. Sub-
section 1.2.1 introduces the structural properties of TMDs in terms of their
different phases. In Subsec. 1.2.2, I outline their electronic and transport
properties.

1.2.1 Structural properties

The chemical formula of TMDs is MX2, where M is a transition metal atom
(i.e. and atom with a partially filled d sub-shell) and X is a chalcogen atom
(i.e. an element of group XVI, except oxygen, in general M=S, Se or Te).
We will focus on TMDs where the transition metal belongs to group VI, and
in particular X=Mo or W. A TMD monolayer consists of a layer of atoms M
sandwiched between two layers of atom X, and can exist in different structural
phases. Each phase corresponds to a different coordination sphere for the
transition metal atoms. The most common structural phases are 2H and 1T,
which are characterized by a trigonal prismatic and an octahedral coordination
of the transition metal atoms, respectively. These structural phases can be

Figure 1.1: Atomic structure of single layers of TMDs in their trigonal prismatic
(2H), distorted octahedral (1T) and dimerized (1T’) phases. Lattice vectors and
stacking of each atomic plane are indicated as arrows and in alphabetical order, re-
spectively. Reprint from Ref. [16]. Copyright (2017) Springer Science and Business
Media.
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Figure 1.2: MoS2 lattice structure. (a) Top view and (b) side view of the structure.
The two primitive lattice vectors, a1 and a2, are indicated in (a). d and θ, indicated
in (b), are the distance between the neighboring Mo and S atoms and the angle
between the bonding of Mo-S and the Mo layer, respectively. Purple and yellow
colors indicate Mo and S atoms, respectively.

classified in terms of different stacking orders of the three atomic layers. The
2H phase corresponds to an ABA stacking, and the 1T phase to an ABC
stacking of the chalcogen-metal-chalcogen atomic layers, see Figure 1.1. When
a distortion on the structure is induced, this could lead to the formation of
metal-metal bonds and thus to the dimerization of the 1T phase, which is
known as the 1T’ phase. Such a weak lattice distortion embodies distinctive
electronic properties, such as a topological phase [17].

Depending on the specific chalcogen and transition metal atoms, either the
2H or the 1T phase is the most stable one. The TMD electronic properties
can be radically different depending on their phase. For example, the 2H
phase of molybdenum disulfide (MoS2) is semiconducting, while its 1T phase
is metallic [18]–[20]. The phase transition in TMDs would thus allow the
engineering of the electronic properties on the same material. In MoS2, a
phase transition can be obtained, for example, by Li and K intercalation [18],
[21].

The common TMDs successfully fabricated and investigated in electronics
are semiconducting TMDs from group VI in the 2H phase (in particular MoS2,
MoSe2, WS2 and WSe2), which show sizable direct band gaps. Recently, few
years after the first realization of a working MoS2 transistor [14], transis-
tors based on TMD van der Waals heterostructures [22], [23] were fabricated
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and a complete microprocessor [15] based on these material was successfully
fabricated. In this aspect, MoS2 in the 2H phase is one of the representa-
tive semiconducting TMDs and has been widely investigated. MoS2 shows a
honeycomb structure, which consists of Mo and S atoms forming an S-Mo-S
sandwich in a triangular prismatic structure, see Figure 1.2.

Monolayer MoS2 in 2H phase has rhombic structure with the basis of
two sulfur atoms (top and bottom layers) and one molybdenum atom, see
Figure 1.2. The two primitive lattice vectors are defined as

a1 =
(√3a

2
,
a

2
, 0
)

and a2 =
(√3a

2
,−a

2
, 0
)
, (1.1)

where the lattice parameter is a=0.316 nm, as observed experimentally [24]
and in agreement with density functional theory (DFT) calculations [25]–[28].
The distance between the Mo layer and the S layers placed above and below
the Mo layer, see Figure 1.2(b), is 0.156 nm [29]. These parameters result in
a distance between neighboring Mo and S atoms d=0.240 nm, and an angle
between Mo-S bonding and the Mo plane θ=40.6◦ [29].

1.2.2 Electronic and transport properties

As the structure of MoS2 is hexagonal, its Brillouin zone (BZ) is also hexag-
onal. From to the Bravais lattice vectors in eq. (1.1), the reciprocal lattice
vectors are defined as

b1 =
4π√
3a

(1

2
,

√
3

2
, 0
)

and b2 =
4π√
3a

(1

2
,−
√

3

2
, 0
)
, (1.2)

as indicated in Figure 1.3. The important k-points in the hexagonal BZ are the
highly symmetric K/K’ points (at the corner of the BZ), the M point (in the
middle of the BZ edges), the Γ point (at the center of the BZ) and the Q points
along the line between Γ and K or K’ points. Monolayer MoS2 has a finite

Figure 1.3: BZ of MoS2. Γ, M, Q, K, and K’ are the highly symmetric k-points, of
which path indicated in dashed line is investigated for electronic properties.
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and direct band gap at the K/K’ points, which is promising for applications
in logic electronics. A value of the band gap of about 1.9 eV is obtained by
photoluminescence experiments [30], [31]. However, this value is expected to
be underestimated as a consequence of significant excitonic binding energy,
and indeed corresponds to the optical gap. Scanning tunneling spectroscopy
(STS) found the band gap for MoS2 of about 2.15 eV [32]. On the other hand,
theoretical studies by DFT calculations with typical functionals of the local
density approximation [33] and the generalized gradient approximation [34]
underestimate the band gap of MoS2 as 1.81 eV and 1.68 eV, respectively. In
order to overcome this issue, more advanced techniques have been adopted to
obtain the accurate band gap and dispersion. The use of the HSE06 hybrid
functional gives the best agreement with the STS results [29], [35], while GW
calculations show an overestimated band gap of 2.84 eV [36]. In this aspect, a
model calibrated with the DFT-HSE06 band structure is the most appropriate
to describe the electronic properties of MoS2, see more details in Sec. 2.1.2.

Apart from the band gap, the electronic structure of MoS2 shows other
interesting properties at the highly symmetric k-points in BZ, see the black
lines in Figure 1.4. At the K/K’ points, where the direct band gap is located,
the structure is electron-hole asymmetric. The band dispersion of the valence
band is characterized by the trigonal warping (TW), while that of the con-
duction band is nearly isotropic. This effect is undoubtedly significant for
understanding the behavior of the of hole carriers in MoS2 and related phe-
nomena, as investigated in Ref. [37] where this effect is exploited to induce a
valley polarization with potential barriers. The Q points play an important
role for the transport properties, since the difference between this local mini-

(a) (b)

Figure 1.4: Electronic structures of monolayer MoS2 by DFT calculations of
Ref. [25]. (a) Band structure with (black line) and without (dotted red line) spin-
orbit interaction. The monolayer MoS2 has a direct band gap at K point. (b)
Energy contour of spin-split hole pocket pairs for a binding energy of 0.8 eV. Elec-
tron spin orientations and BZ, which is consistent with Figure 1.3, are indicated by
black and red colors, and dashed green line, respectively. Reprint from Ref. [25].
Copyright (2011) American Physical Society.



8 1 Introduction to TMDs and goals of the PhD

mum and the global minimum of the conduction band at Γ is only 0.3 eV [27],
[29]. At the Γ point, on the other hand, the valence band is close to the top
of the valence band, which is at the K/K’ points. From DFT calculations, the
energy difference between them turns out to be only 0.15 eV [29], and thus
the electrons at the Γ point are expected to contribute to electron transport
as those at the K/K’ points. Note that these values of the energy differences
were numerically obtained without considering the effect of spin-orbit coupling
(SOC) in the model.

Indeed, SOC plays a very important role in MoS2 and in TMDs in gen-
eral. The broken spatial inversion symmetry in TMDs, see Figure 1.2, in-
duces a strong SOC, which lifts the spin degeneracy. In particular, a large
spin-splitting of about 0.2 eV occurs for the valence band at the K/K’ points,
see Figure 1.4(a). Note that the spin splitting at the (nonequivalent) K and K’
valleys is opposite because of the time-reversal symmetry, which implies that
electrons with opposite spin and at opposite k-points have the same energy, i.e.
E↑(k) = E↓(−k), see Figure 1.4(b). These intriguing features open the door
to new functionalities of these materials for spintronics or valleytronics [38].

Within the variety of TMDs, semiconducting TMDs have band gaps rang-
ing from 1.2 to 2.0 eV with effective masses from 0.45 to 0.65 me, which
are predicted by DFT calculations [39]. Moreover, the theoretically obtained
carrier mobility ranges from 350 cm2/(Vs) for MoS2 to 2500 cm2/(Vs) for
MoTe2 [40]. The experimental mobilities, however, are much lower due to
the low quality of the materials themselves and the interface with contacts.
Typically, the observed mobility is 3-160 cm2/(Vs) for MoS2 [41], [42] and
50 cm2/(Vs) for WS2 [43]. In this aspect, the impact of various disorders
found in experiments, which are discussed in Sec. 1.4, is the main focus of the
present thesis.

1.3 Synthesis of TMDs

The development of efficient synthesis techniques, particularly for large-scale
production, is a primary task towards the realization of 2D material-based
applications. In general, they can be classified into top-down and bottom-up
approaches. The former implies that 2D materials are extracted from their
bulk crystal by sizing it down, with the techniques introduced in Subsec. 1.3.1.
The latter approach consists in directly growing the layers of 2D materials on
a substrate. Two representative techniques, chemical vapor deposition and
molecular beam epitaxy, are discussed in Subsec. 1.3.2 and Subsec. 1.3.3,
respectively.
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1.3.1 Mechanical and chemical exfoliation

Mechanical exfoliation, which is also well known as the “scotch-tape” method,
was the very first technique to extract a few layers from bulk 2D materials,
and earned Andre Geim and Konstantin Novoselov the Nobel Prize in Physics
2010 for the discovery of graphene in 2004 [1]. Thanks to the weakness of
the van der Waals (vdW) coupling between the layers of 2D materials, a
mechanical force can easily detach few layers or even a single layer from the
bulk material. Indeed, its simplicity allows this technique to exfoliate many
other materials beyond graphene [4], [44], as h-BN [45], [46] and TMDs [44],
[45]. Furthermore, the quality of the exfoliated materials is usually high and
depends on that of the starting materials [47]. This technique is thus useful
for preparing few high-quality samples of 2D materials, mainly for laboratory
investigations. However, it is not suitable for large scale production.

Another method widely used to obtain single or multi-layers from bulk
materials is chemical exfoliation. After dissolving the target material in a
solvent, which results in a mixture of dispersed layers, single or few-layer 2D
materials can be isolated by sonication [48], [49]. The concentration of single-
or few-layers products depends on the solvent used for this process [50]. Due
to the slow evaporation, however, it is very challenging to fully remove the sol-
vent from the 2D materials after exfoliation. As a consequence, the resulting
quality is considerably lower than that obtained with mechanical exfoliation.
This causes a huge problem for TMDs, since it may be responsible for a struc-
tural phase change, which affects their electronic properties. In this aspect,
it is reported that a post-annealing process can restore the semiconducting
properties of MoS2 by changing the structural phase from 1T to 2H [51].
Compared to mechanical exfoliation, this technique is cheaper, scalable, and,
in particular, has great potential for application in flexible electronics, since
devices can be printed by using 2D inks [52], [53].

1.3.2 Chemical vapor deposition

One of the most widely used techniques to deposit thin films is chemical vapor
deposition (CVD). This technique is very versatile, as it can provide either
crystalline or amorphous films from precursors in different phases (gas, liq-
uid, solid). Furthermore, there exist different types of CVD, such as plasma-
enhanced CVD (PECVD) or cold/hot-wall CVD, which can be used for spe-
cific materials. Compared with other techniques, CVD allows us to obtain
a high surface uniformity with relatively easy control of the thickness of the
deposited materials [54]–[56].

Due to its extreme versatility and its ability to deposit large surfaces, CVD
is the most prominently used deposition technique for large scale production
of 2D materials. However, CVD TMDs may present several kinds of defects,
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which are expected to significantly impact the electronic and transport prop-
erties, with possible degradation of performance of the devices based on them.
One of the most common defects found in CVD TMDs is the polycrystallinity,
which is inherent in the synthesis process [54], [57]. The grain boundaries at
the interfaces between crystalline grains have been reported to strongly local-
ize electrons [58], with consequent carrier mobility degradation [59], [60]. In
addition, other intrinsic defects such as vacancies [56], which also result in the
decrease of carrier mobility [61], have been found in CVD TMDs. Lowering
their density is thus one of the most important issues in CVD growth. More
details about these defects are reviewed in Sec. 1.4.

1.3.3 Molecular beam epitaxy

Molecular beam epitaxy (MBE) is another technique of the bottom-up ap-
proach performed in the ultra-high vacuum (10−8 to 10−12 Torr). It enables
the precise control of the deposition of the number of layers with high qual-
ity. Using this technique, the successful growth of numerous TMDs such as
MoSe2 [62], WSe2 [63], MoTe2 [64], and WTe2 [65] has been reported.

Thanks to the accurate control of the layer chemical compositions and
the relatively low growth temperature, this technique turns out to be very
promising for the synthesis of vdW heterostructures [64]. Indeed, the strong
covalent intralayer coupling of 2D materials and weak vdW interlayer coupling
allows the deposition of 2D materials one on top of the other, regardless of
the extent of the lattice mismatch. Notably, vdW heterostructures of TMDs,
as MoTe2/MoS2 [64], and TMDs with graphene, as MoSe2/graphene [66],
were successfully synthesized thus indicating that this technique allows one to
effectively combine different 2D materials to obtain specific properties, such
as tuned band alignments, and metallic contacts on semiconductors.

1.4 Disorders in TMDs

The quality of TMD materials is one of the most critical factors for their use
in electronic devices. Despite the progress of the various synthesis techniques,
as discussed in Sec. 1.3, TMDs suffer from various defects such as vacancies,
polycrystallinity, and impurities. Even mechanically exfoliated TMDs, con-
trary to exfoliated graphene, shows defects such as, in particular, chalcogen
vacancies [67]. Understanding the role of these defects in the degradation of
the transport properties of TMDs is thus very important in view of their ap-
plications. In this section, several defects commonly found in experiments, as
point defects, grain boundaries and edge roughness, are briefly reviewed.
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1.4.1 Point defects

It has been reported that point defects inevitably form in TMDs during the
synthesis process [56], [68]. On the one hand, they may degrade the transport
properties, on the other hand they may provide new functionalities which are
not present in the pristine case, such as local magnetic moments induced by
antisites [69]. With respect to electronic and optoelectronic applications, how-
ever, lowering the density of point defects is crucial, as evident, for example,
from the enhancement of photoluminescence [70] and carrier mobility [61] re-
ported by reducing the density of sulfur vacancies in MoS2. In this subsection,
I introduce various types of point defects experimentally observed and their
electronic properties.

Figure 1.5: Intrinsic point defects found in CVD-grown monolayer MoS2. (A)
STEM images of various point defects: single sulfur vacancy (VS), disulfur va-
cancy (VS2), antisite defect of a Mo substituting a S2 (MoS2), vacancy of Mo and
nearby three sulfur atoms (VMoS3), vacancy of Mo and nearby three disulfur pairs
(VMoS6), and antisite defect of a S2 substituting a Mo S2Mo. (B) Relaxed struc-
tures, calculated by DFT, of the six types of point defects in (A). Reprinted from
[56]. Copyright (2013) American Chemical Society.
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Figure 1.5(a) shows the scanning transmission electron microscope (STEM)
images of point defects in CVD-grown monolayer MoS2 [56]. We can observe
several types of point defects, all showing a 3-fold symmetry except for the
MoS2 defect, which corresponds to an antisite defect of a Mo substituting a
S. An important aspect to consider is the structural stability of these defects,
which is related to the defect formation energies and can indicate the most
probable defect among those observed in experiments. The single sulfur va-
cancy (VS) turns out to have the lowest formation energy, while the other
types have twice or much larger formation energies. This indicates that VS

is the most frequent and common point defect type, which is consistent with
experimental observations of frequent and randomly distributed VS [56]. For
this reason, among the possible point defects, only single sulfur vacancies are
considered in the present thesis.

Figure 1.6 shows the band structures of MoS2 with a single sulfur vacancy,
obtained by DFT calculations and by a minimal tight-binding (TB) model,
where the orbital of the missing S atom were simply removed from the Hamil-
tonian. In both cases, we observe non-dispersive bands within the gap, which
indicates the localized nature of the states around the VS defect. Note that
that both DFT and TB approaches produce similar results in terms of the
gap states of the sulfur vacancy but at different energy levels. This suggests
that the minimal TB model can reproduce, though only roughly, the impact
of the sulfur vacancies on the electronic structure. We will thus use this model
for the quantum transport simulations of rather large systems with randomly
distributed vacancies, see Chapter 6. The DFT calculations for the study of
point defects were performed by Dr. François Triozon.

Figure 1.6: Band structures of the system of 6×6 supercell of MoS2 with a single
sulfur vacancy VS , obtained by (a) DFT calculations and (b) a minimal TB model
based on the parameterization of Ref. [29].
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1.4.2 Line defects and grain boundaries

Figure 1.7: Atomic structure of MTBs in CVD-grown MoS2. (A) STEM image of
a 4|4P grain boundary. The green dash line displays the position of the 4|4P grain
boundary, and the grain boundary steps are linked by octagons as indicated. The
blue triangles illustrate the orientation of the two grains with 60◦ rotation angle.
(B) STEM image of the 4|4P structures with the structural model overlaid. (C)
Schematic structure of the grain boundary and kinks as shown in (A). (D) STEM
image and overlaid structural model of a 4|4E type grain boundary, and the grain
boundary steps are linked by 4-fold coordinated Mo atoms as highlighted. (E)
Relaxed structure for 4|8 MTB, representing a 4|4P MTB with the highest kink
density. Reprinted from [56]. Copyright (2013) American Chemical Society.

As discussed in Subsec. 1.3.2, CVD [54]–[56] has emerged as a very efficient
growth technique for large-scale fabrication of TMDs, and it is promising for
industrial production. However, CVD TMDs may present several kinds of
defects, and in particular polycrystallinity, which is inherent in the synthesis
process. The grain boundaries at the interfaces between crystalline grains
have been reported to strongly localize electrons [58], with consequent carrier
mobility degradation [59], [60]. Therefore, understanding the impact of grain
boundaries on the transport properties of TMDs is of central importance.

Among the huge variety of grains boundaries with different geometries,
the mirror twin grain boundaries (MTBs) are commonly observed in experi-
ments [56], [71], [72]. An MTB is an inversion grain boundary that forms at
the interface between two grains with 60◦ rotation angle, see Fig. 1.7. Inter-
estingly, DFT calculations [56], [72], [73] reveal that a periodic MTB shows
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dispersive and metallic states within the bulk gap of the 2D semiconduct-
ing TMDs, while most of the tilt grain boundaries induce strongly localized
states [60]. Such a metallic nature has also been experimentally demonstrated
by STS [66]. With regard to FET applications, metallic MTBs along the tran-
sistor channel may result in a detrimental leakage current flowing through
the TMD gap. On the other hand, metallic MTB networks could drive new
opportunities for the realization of suited metallic contacts for semiconduct-
ing TMDs, as experimentally demonstrated [64]. In the literature, however,
electron transport in the presence of MTBs has been barely investigated the-
oretically, with existing studies mainly focusing on transport across periodic
and defect-free grain boundaries [72], [74], [75]. The interplay between MTB
states and disorder is one of the main subjects in the present thesis and will
be discussed in Chapter 6.

1.4.3 Edges and edge roughness

An important aspect of microelectronics is the progressive miniaturization
of the transistors [76]–[78], which enables the reduction of the power con-
sumption, the increase of the switching speed and the large scale integra-
tion. Indeed, it is known that, in standard bulk semiconductor-based transis-
tors, miniaturization is associated with performance degradation due to the
so-called short-channel effects. The further lateral confinement of the tran-
sistor channel, in the case for example of nanowire transistors or FinFETs,
exacerbates the problem of roughness at the interface between semiconductor
and oxide, thus affecting the charge mobility [79], [80].

We can expect analogous problems for devices based on 2D materials [82],
when using nanoribbons [83] as channel for ultrascaled devices. TMD ribbons
of very different widths can be fabricated by electrochemical/chemical meth-
ods [84], electron irradiation [85], encapsulation in carbon nanotubes [86],
electron beam and plasma dry etching [87] or morphological phase transi-
tion joint with MBE [81]. The last two techniques are more applicable for
mass production from an industrial point of view. A first problem with TMD
nanoribbons is the predicted [88]–[90] and experimentally observed [32], [91],
[92] presence of metallic edge states within the band gap of the pristine 2D
material, also called bulk band gap. As for the case of dispersive grain bound-
ary states discussed above, this could be detrimental for transistors, which
would be unable to properly switch off. Another serious problem is that, ex-
perimentally, nanoribbons usually suffer from edge roughness, see Fig. 1.8.
Typical width variations for a 10 nm wide ribbon are in the order of 1 nm, in
the optimal conditions of Ref. [81].

Due to the reduced dimensionality of the ribbons, their electronic structure
strongly depends on their width. Therefore, as observed for graphene, [93]
the transport properties of ultra-narrow TMD ribbons are expected to be



1.5 Possible applications of TMDs in nanoelectronics 15

Figure 1.8: Atomistic properties of MoSe2 nanoribbons fabricated by MBE. (a)
Large-scale TEM image of a nanoribbon. Yhe scale bar (at the lower right corner) is
20 nm long. Atomic-resolution images in the highlighted green and purple rectangles
are shown in (b) and (c), respectively. Note that the edge of (b) and (c) correspond
to Se-terminated and Mo-terminated edge, respectively. Scale bars at the bottom in
panels (b,c) are 1 nm long. Reprinted from [81]. Copyright (2017) Springer Nature.

significantly affected by roughness. This aspect is subject of study of the
present thesis and will be detailed in Chapter 5.

1.5 Possible applications of TMDs in nano-

electronics

After the discovery of graphene, countless studies on 2D materials and their
potential applications based on their electrical properties have been reported.
Beyond the electronic [10], [11], [13], [94] and optoelectronic [95], [96] applica-
tions, including transistors, phototransistors and detectors, 2D materials have
been attracting attention for a plethora of original possible applications in-
cluding, for example, spintronics [97], valleytronics [98], sensors [99] and many
others. Furthermore, with a wide variety of different 2D materials, ranging
over metallic, semiconducting and insulating materials, limitless combinations
of vdW stacking of different layered 2D materials can be synthesized. In this
section, I provide a non-comprehensive overview of some possible applications
of TMDs focused in the fields of electronics and optoelectronics.
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Figure 1.9: Schematics of TMD-based FETs. (a) Conventional FET based on
a monolayer MoS2. Reprinted from [14]. Copyright (2011) Springer Science and
Business Media. (b) Tunnel FET, consisting of a channel of Mo2 and a source of
p-type Ge. Reprinted from [103]. Copyright (2015) Springer Science and Business
Media.

1.5.1 Electronics

TMDs have attracted much attention for their possible use in electronic ap-
plications, particularly FETs, with a great potential for flexible and transpar-
ent devices. In particular, semiconducting TMDs with their variety of band
alignments and band gaps have been considered for the realization of logic
devices. One of the firstly demonstrated TMD-based FETs, a WSe2-based
FET in 2004 [100], showed high p-type mobility (∼500 cm2/V·s) with rather
low current on/off ratio (∼104), which is inadequate for applications in logic
devices. After several years, however, monolayer WSe2-based FETs [101] suc-
cessfully demonstrated higher on/off ratio (∼106) thanks to the use of high-κ
gate dielectrics. Monolayer MoS2-based FETs [14] with high electron mobility
(∼200 cm2/V·s) and on/off ratio (∼108) were also reported, see Fig. 1.9(a).
Moreover, TMD-based transistors show the possibility for flexible devices,
sustaining a bending strain of 1.5% in MoS2 FETs [102].

Beyond the typical MOSFETs, tunnel FETs with lateral [10] and verti-
cal [13] structures, as well as energy filtering steep-slope transistors [104] were
reported. The 2D-material-based tunnel FETs, which are operated with the
band-to-band-tunneling and thus can yield subthreshold swing (SS) below the
thermionic limit of ∼60 mV/dec at room temperature, are especially suitable
for low-power electronics. Indeed, an SS lower than the thermal limit was ex-
perimentally observed in bilayer MoS2 with 3.9 mV/dec [103], see the structure
in Fig. 1.9(b). Furthermore, the vdW stacking of different materials [22], [23]
opens unprecedented possibilities for the realization of original and complex
architectures. All-2D heterostructure tunnel-FETs based on WS2 layer sand-
wiched between graphene layers [105] or the vertical junction between SnSe2

and WSe2 [106] were demonstrated with a sub-thermionic SS, which represent
a significant advance towards completely 2D electronics.
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Another emerging application domain for 2D TMDs in electronics is that
of non-volatile memories [94]. At present, several technologies exist for mem-
ories: flash memories based on the charging of a floating gate electrode, re-
sistive memories based on the formation of conductive filaments in an insu-
lating medium, memories based on the polarization of ferroelectric materials,
or based on the thermal induction of a phase transition from insulator to
conductor. TMDs are useful for enhancing these technologies. For example,
graphene can be used as a floating gate and molybdenum disulfide as a dielec-
tric in flash memories [107]. 2D materials can also be employed for new tech-
nologies, maybe hardly compatible with Si technology but suitable for flexible,
low-cost, printed electronics. Among them, we find resistive memories based
on islands of conductive molybdenum disulfide, which act as trapping cen-
ters for charges, in a graphene oxide film [108], phase change memories where
TMDs are predicted to change phase under doping, strain or heating [109],
[110], or even all-2D tunneling memories [111], where graphene acts a floating
gate separated by insulating boron nitride from molybdenum disulfide, which
acts as transistor channel.

1.5.2 Optoelectronics

The direct band gap, which allows a high light absorption and efficient elec-
tron–hole pair generation, observed in several monolayer TMDs has attracted
interest for their use in optoelectronics. One of the first demonstrated pho-
todetectors based on MoS2 [112] achieved an extremely high photoresponsiv-
ity of 880 A·W−1, which is higher than that of commercial Si photodetectors,
and a photoresponse in the 400–680 nm range. Furthermore, the possibility of
tuning the band gap depending on the number of layers in the system allows
one to vary of the detection range [113]. In addition to MoS2, other TMDs,
including MoSe2 [114], WS2 [115], and WSe2 [116], have been used for the
phototransistors.

Moreover, thanks to the vdW stacking of different 2D materials, verti-
cally stacked structures have been investigated. Britnell et al. [117] demon-
strated a photoactive region of semiconducting WS2 layers sandwiched be-
tween graphene electrodes to generate and dissociate the photoexcited electron-
hole pairs, thus achieving a photoresponsivity of 0.1 A·W−1 and an extrin-
sic quantum efficient (EQE) of 30%. MoS2-based devices [118], as shown in
Fig. 1.10(a), were also reported and showed that a monolayer yielded higher
photoresponsivity comapred to a multilayer. Beyond the single type of TMDs,
the n-MoS2/p-WSe2 heterostructures of a photoactive part [119] were reported
to have the recombination of the majority carriers generated on each layer by
the tunneling, see Fig. 1.10(b). This suggests a great potential of TMDs
to combine with different 2D materials towards the complete optoelectronic
devices based on 2D materials.



18 1 Introduction to TMDs and goals of the PhD

Laser

GrT

GrB

MoS2

Graphene

Graphene

MoS2

WSe2

Cr/
Pd

SiO
2/Si

(a) (b)

Figure 1.10: Schematic diagrams of the photodetectors based on the vdW stacking
of graphene/TMDs/graphene. (a) The photoactive layer of MoS2. Reprinted from
[118]. Copyright (2016) Springer Science and Business Media. (b) The heterostruc-
tured photoactive layers of MoS2/WSe2. Reprinted from [119]. Copyright (2014)
Springer Science and Business Media.

The rich exciton physics observed in TMDs also offers many perspectives
for optoelectronic applications [96]. In particular, semiconducting TMDs with
a direct band gap have a great potential for light emitters due to the high ex-
citon binding energy (two orders of magnitude larger than in GaAs) and the
wide range in the wavelength. For example, monolayer TMDs sandwiched
between insulating hBN layers, which act as a barrier, and metallic elec-
trodes of graphene layers, demonstrated efficient light emission with EQE up
to 8.4% [120]. An emitter based on a lateral structure of p-n junction based
on WSe2 was also reported, but with a low efficiency of 0.1% [121].

1.6 Goal and structure of the thesis

Among various kinds of 2D materials, the present thesis focuses on semicon-
ducting TMDs since, as discussed in the previous section, they have shown
great potential in many fields ranging over electronics and optoelectronics,
thanks to their unique properties and the huge range of band alignments
and band gaps [122] they offer. Even though researchers have fabricated,
deeply analyzed, and applied TMDs in various devices, several issues still re-
main. For example, and very importantly, the experimental carrier mobility is
found to be one order of magnitude smaller than theoretically predicted [123].
This significant difference may come from the joint effect of intrinsic defects
of TMDs, contact resistance with electrodes [124], [125], and substrate ef-
fect [126]. Above all things, the quality of the materials themselves is the
most critical factor to control in view of performing electronic devices based
on the TMDs. Indeed, despite the progress of various synthesis techniques,
TMDs suffer from their intrinsic defects such as vacancies, roughness, grain
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boundaries, etc., as illustrated in Subsec. 1.4. In this respect, understanding
the impact of various intrinsic disorders on the transport properties of TMDs
becomes crucial for their use in electronics and optoelectronics.

One of the most broadly investigated TMDs both theoretically and exper-
imentally, is monolayer MoS2 in the 2H phase. It shares common and similar
electronic properties with other TMDs from group VI, as the direct band gap
at K/K’ valleys, and the presence of other valleys at Q and Γ point in the
conduction and valence bands, respectively [127].

For all these reasons, in this thesis I focus on MoS2 as a rep-
resentative TMD material to numerically investigate the impact of
various disorders on the transport properties.

For this study, quantum transport simulations were performed based on a
TB model and the Green’s function formalism. The specific TB model,
which allows the atomistic description of the disorders investigated in the
present thesis, was chosen after the careful consideration of different models,
see the details in Chapter 2, and in certain cases calibrated on DFT results.
The Green’s function formalism for the simulation of quantum transport is
briefly reviewed in Chapter 3. Some details of the numerical codes, and in
particular those I contributed to during my PhD, are reported in Chapter 4.

As the first result of the thesis, Chapter 5 reports on the effect of edge
roughness in TMD nanoribbons. This study highlights the double role of
edge disorder in reducing the charge mobility and, at the same time, in sup-
pressing the edge conductivity. These aspects are crucial in view of the use
of TMD nanoribbons in ultra-scaled transistors, where both charge mobility
and leakage currents are determinant.

The second focus of this thesis is on the impact of MTB grain bound-
aries and its interplay with short-range or long-range disorder, which is
detailed in Chapter 6. This study gives an idea of how conductive grain
boundaries in polycrystalline samples can degrade the transport properties
and, when present in transistor channels, the device performance. Interest-
ing blocking effects due to spin-valley locking and their robustness against
disorder are also highlighted.

Overall, I expect that the present thesis can contribute to the understand-
ing of the impact of various defects on the transport properties of TMDs,
and to the progress towards the realization and the design of TMD-based
devices.
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Chapter 2

Model Hamiltonian for 2D
TMDs

2.1 TB model

Both DFT calculations and TB models have been broadly used for the study
of TMDs. DFT allows an accurate description of the system but requires
high computational efforts for systems with a few hundred atoms. In con-
trast, though less accurate, TB models have much lower computational cost
and are highly flexible for the investigation of large systems with low geo-
metric symmetry and with various defects. In the last few years, several TB
models for TMDs have been proposed in the literature. TB models can be
classified into two groups depending on the way their parameters are defined:
one based on the structural symmetries [128]–[130] and the other based on
Slater-Koster (SK) two-center approximation [29], [131]–[133]. The former
takes into account the symmetries of the 2D TMD lattices to accurately re-
produce the DFT results with a small orbital basis. However, it requires a
large number of parameters to be fitted. Furthermore, such models are no
longer valid when the bulk symmetries they are based on are broken, as for
instance in the presence of geometrical defects. The TB models based on the
SK description, on the other hand, can be adapted (up to a certain extent)
to describe systems with lower symmetry. To identify the most appropriate
model for the description of the disordered systems of TMDs, including geo-
metrical distortions, a comprehensive analysis of TB models are reported in
this section.

In Subsec. 2.1.1, I introduce a general TB model and its different param-
eterizations. In Subsec. 2.1.2, I discuss different TB models of 2D TMDs,
reported in literature, and their advantages and disadvantages in terms of the
electronic structures. Then, I identify the most appropriate TB model for the
description of disordered TMD systems, as those considered during my PhD.
Finally, Subsec. 2.1.3 details the origin of SOC, its importance in TMDs, and
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its consequences for the electronic properties.

2.1.1 Brief introduction

In condensed matter physics, TB is one of the most largely used methods
to describe the electronic structure of systems. This approach, which was
firstly proposed by Bloch [134], is based on the use of a linear combinations
of atomic orbitals, which constitute a basis of spatially-localized states. Even
though this simple model is based on an incomplete atomic orbital basis and
(usually) a first-neighbor coupling between them, it allows a fine description of
any system regardless of whether it is metallic or semiconducting, and usually
over a rather large energy window.

Let us consider, for the sake of illustration, the simple case of a one-dimensional
(1D) periodic crystal with a single atom per unit cell. The wave function of
atomic orbital µ is indicated by φµ(r) and the periodicity of the system is de-
fined by the translation vector t. Then, the Bloch sum for the atomic orbital
µ, which satisfies Bloch theorem, is defined by

Φµ(k, r) =
1√
N

∑
t

eik·rφµ(r − t) , (2.1)

where N is the (large) number of cells in the crystal and the factor 1/
√
N is

for the normalization of the Bloch sum. In terms of the Bloch sums, a generic
electronic wave function can be written as

ψ(k, r) =
∑
µ

cµ(k)Φµ(k, r) , (2.2)

where {cµ(k)} are the coefficients of the Bloch sums. For this wave function
ψ(k, r) to be an eigenfunction of the system, we solve the Schrödinger equation

Hψ(k, r) =
( p2

2me

+ V (r)
)
ψ(k, r) = Eψ(k, r) , (2.3)

where V (r) denotes a periodic potential, which shows the translational invari-
ance V (r) = V (r − t), p is the momentum operator and me is the electron
mass.

By inserting eq. (2.2) into eq. (2.3) and multiplying by the conjugate trans-
pose of the Bloch sums, we obtain the determinantal compatibility condition
for eigenvectors and eigenvalues∥∥∥Aµ,ν(k)− EBµ,ν(k)

∥∥∥ = 0 , (2.4)

where

Aµ,ν(k) = 〈φµ(k, r)|H |φν(k, r)〉 , (2.5)

Bµ,ν(k) = 〈φµ(k, r)|φν(k, r)〉 . (2.6)
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By assuming that the overlap between atomic orbitals is negligible (which is
not always the case and may depend on the specific choice of the orbital-like
basis), the basis set turns out to be orthonormal, i.e. eq. 2.6 becomes a simple
delta function δµν . As for Aµ,ν(k) in eq. 2.5, we get

Aµ,ν(k) =
1

N

∑
ta,tb

eik·(ta−tb) 〈φµ(r − tb)|H |φν(r − ta)〉 (2.7)

=
∑
ta

eik·ta 〈φµ(r)|H |φν(r − ta)〉 , (2.8)

where the last equality follows from the translational invariance.

The (one-body) Hamiltonian of a crystal can be expressed as

H =
p2

2me

+
∑
ta

Va(r − ta) , (2.9)

where the potential is the sum of atomic potentials Va(r) centered on each
atom. We split the sum in two terms, one for ta = 0 and the other for ta 6= 0,
thus obtaining from eq. 2.7

Aµ,ν(k) =
∑
ta

eik·ta
∫
φ∗µ(r)

[ p2

2me

+ Va(r) +
∑
t′a 6=0

Va(r − t′a)
]
φν(r − ta) dr

= Eµδµν +
∑
ta

eik·ta
∫
φ∗µ(r)

∑
t′a 6=0

Va(r − t′a)φν(r − ta) dr , (2.10)

where Eµ is eigenvalue of atomic orbital µ for the isolated atom. The first term
of eq. 2.10 is diagonal and the main concern for the second term is that the
summation of the potentials includes the coupling of atomic orbitals over the
whole crystal. This could be a tremendously demanding problem, and thus we
need to limit the coupling between atomic orbitals in a proper way. Thanks
to the nature of localized atomic orbitals, we can limit such a coupling to the
nearest neighbor atoms, for example. By the two-center approximation, which
consists in considering the integrals in eq. 2.10 non-vanishing only when the
atomic potential and one of the two orbitals are centered on the same atom,
we can write Aµ,ν(k) as

Aµ,ν(k) = Eµδµν +
∑
t`

eik·t`
∫
φ∗µ(r)Va(r − t`)φν(r − t`)dr , (2.11)

where the sum over t` is limited to the translation vector to the nearest-neighbor
cells. The limitation of the number of couplings reduces the number of inte-
grals to consider.
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Figure 2.1: SK two-center integral between px and pz atomic orbitals. ax and az
are defined as the unit vectors along the axes of the px and pz orbitals, respectively.
R indicates the relative position vector. The integral can be expressed by the
weighted sum of two parameters, Vppσ and Vppπ, see eq. (2.12). d is a unit vector
of R and n is a unit vector normal to R in the plane of d and az.

The energy integrals of eq. 2.10 are unknown, because the atomic potentials
are unknown, and can be estimated in two ways. The first one is to fit them
directly by comparison with DFT bands and density of states. However, this
would entail a huge number of parameters to fit for a large atomic orbital
basis, and thus it is not appropriate for our purpose. The other method is the
SK parameterization [135], [136], which assumes that the atomic potentials
are spherically symmetric and considers the angular symmetry of the orbitals.
The two-center integrals can be calculated with a little number of parameters
and in terms of the direction cosine (l, m, n) of the relative position vectors
between couples of atoms R = Rν −Rµ the two orbitals belong to.

In the case of a system of p atomic orbitals, the energy integrals can be
obtained with only two parameters, Vppσ and Vppπ, where indices σ and π
indicate the perpendicular or parallel orientation of the two p orbitals. As
an example of the calculation for SK two-center integrals, Figure 2.1 shows
the energy integral between px and pz atomic orbitals. The energy integral
Epx,pz can be expressed by the sum of two components Vppσ and Vppπ, which
corresponds to the σ and π bonds with respect to the axis of the vector R,
respectively. As calculating each contribution by an inner product with the
corresponding unit vector, we obtain

Epx,pz = (ax · d)(az · d)Vppσ + (ax · n)(az · n)Vppπ. (2.12)

Since d and n are defined in terms of the direction cosines of R, we get

Epx,pz = lnVppσ − lnVppπ. (2.13)

Table 2.1 shows the other examples of the SK two-center integrals.
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Table 2.1: SK two-center energy integrals Eµ,ν =
∫
φ∗µ(r)Va(r−R)φν(r−R)dr

between two atomic orbitals φµ and φν . l, m, and n are the direction cosines
of the relative distance vector R of the two atoms.

Es,s Vssσ
Es,px lVspσ
Epx,px l2Vppσ + (1− l2)Vppπ
Epx,py lmVppσ − lmVppπ
Epx,pz lnVppσ − lnVppπ
Es,dxy

√
3lmVsdσ

Es,dx2−y2
√

3
2

(l2 −m2)Vsdσ
Es,d3z2−r2 (n2 − 1

2
(l2 +m2))Vsdσ

Epx,dxy
√

3l2mVpdσ +m(1− 2l2)Vpdπ
Epx,dyz

√
3lmnVpdσ − 2lmnVpdπ

Epx,dxz
√

3l2nVpdσ + n(1− 2l2)Vpdπ
Epx,dx2−y2

√
3

2
l(l2 −m2)Vpdσ + l(1− l2 +m2)Vpdπ

Epy ,dx2−y2
√

3
2
m(l2 −m2)Vpdσ −m(1 + l2 −m2)Vpdπ

Epz ,dx2−y2
√

3
2
n(l2 −m2)Vpdσ − n(l2 −m2)Vpdπ

Epx,d3z2−r2 l(n2 − 1
2
(l2 +m2)Vpdσ −

√
3ln2Vpdπ

Epy ,d3z2−r2 m(n2 − 1
2
(l2 +m2)Vpdσ −

√
3mn2Vpdπ

Epz ,d3z2−r2 n(n2 − 1
2
(l2 +m2)Vpdσ +

√
3n(l2 +m2)Vpdπ
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2.1.2 TB model for MoS2

In a periodic TMD crystal, the atomic positions are denoted by R = Ri+Rα,
where Ri is the Bravais lattice vector corresponding to the cell µ, and Rα is
the basis vector that identifies the atom (α = Mo, St, and Sb with t and b
indicating the top and bottom layers in the specific case of MoS2) within the
unit cell as shown in Fig. 1.2. With these three atoms per unit cell, the Bloch
sum of eq.2.1 is expressed as

Φα,µ(k, r) =
1√
N

∑
Ri

eik·(Ri+Rα)φα,µ(r −Ri −Rα) , (2.14)

where φα,µ(r) is the wave function of the µ orbital of the α atom. The atomic
orbital index µ runs over five d orbitals (dz2 , dxy, dx2−y2 , dzx, dyz) for α=Mo,
three p orbitals (ptx, p

t
y, p

t
z) for α=St, and three p orbitals (pbx, p

b
y, p

b
z) for α=Sb.

This choice, which is valid for the specific TB model we select, takes into
account the main orbitals that, according to DFT calculations, contribute to
the states with energy close to the charge neutrality point. However, different
TB models may consider a basis with a smaller number of orbitals or linear
combinations between them, as mentioned below. Note that we consider an
orthonormal set of orbitals as in Subsec. 2.1.1, i.e.∫

dr φα,µ(r −Ri −Rα) φ∗β,ν(r −Rj −Rβ) = δij δαβ δµν . (2.15)

Starting from this basis set of the eleven atomic orbitals per unit cell, the
matrix elements of the k-dependent Hamiltonian for the periodic system are
expressed as

〈Φα,µ(k, r)|H|Φβ,ν(k, r)〉 =
∑
Ri

eik·(Ri+Rβ−Rα)tαµ,βν(Ri+Rβ−Rα)+εαµδαµ,βν ,

(2.16)
where εαµ denotes the on-site energy of the µ orbital of the α atom, and
tαµ,βν is the hopping energy integral of eq. 2.10 between the µ orbital of the
α atom and the ν orbital of the β atom. For TMDs, the literature offer
two possible ways of obtaining these hopping energies: within the frame of
the structural symmetries [128]–[130] or by SK description [29], [131]–[133].
Different models may consider a different number of orbitals, as mentioned
above, which of course gives rise to Hamiltonian matrices with different size.

Before introducing and comparing the different TB models, I would like to
discuss the role of the mirror inversion symmetry with respect to the central
layer of Mo atoms in the pristine structure. This symmetry allows a unitary
transformation from the p orbitals of St and Sb to their symmetric and an-
tisymmetric combinations with respect to the transformation z → −z. The
transformed atomic orbital bases are listed on the right column in Table 2.2.
The Hamiltonian expressed on the transformed basis can be divided into two
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Table 2.2: Atomic orbitals in TB model and transformed ones under xy mirror
reflection symmetry (M1). t and b denotes the top- and bottom-layer sulfur
atoms. E and O indicate the parity of the basis functions with respect to the
mirror symmetry.

Index Basis function Basis function (M1)

1 dz2 (E)
2 dxy (E)
3 dx2−y2 (E)
4 dzx (O)
5 dyz (O)
6 ptx pex = 1√

2
(ptx + pbx) (E)

7 pbx pox = 1√
2
(ptx − pbx) (O)

8 pty pey = 1√
2
(pty + pbz) (E)

9 pby poy = 1√
2
(pty − pby) (O)

10 ptz pez = 1√
2
(ptz − pbz) (E)

11 pbz poz = 1√
2
(ptz + pbz) (O)

uncoupled blocks with respect to the mirror symmetry, corresponding to even
basis functions, HE, and odd basis functions, HO, as given by

HTB =

(
HE 0
0 HO

)
. (2.17)

The HE and HO matrices are given by

HE/O =

(
E
E/O
Mo +H

E/O
Mo−Mo H

E/O
Mo−S

H
E/O
S−Mo E

E/O
S +H

E/O
S−S

)
, (2.18)

where E
E/O
Mo and E

E/O
S denote the on-site energy matrices for Mo and S, respec-

tively, H
E/O
Mo−Mo and H

E/O
S−S are the hopping energy matrices between atomic

orbitals within the same types of atom, and H
E/O
Mo−S is the hopping matrix

between the different types of atom, namely Mo and S atoms. With this
classification, the eigenvalues of each block, i.e. the energy bands, can be
calculated separately. This reduces the computational cost dramatically, and
that is why most of the available TB models make use of the transformed
basis of Table 2.2.

Dias et al. [137] analyzed the electronic structures obtained by different
TB models and compared them to those obtained by DFT calculations, see
Fig. 2.2. Figures 2.2(a) and (b) show the band structure of monolayer MoS2

obtained by the 3-band model with only three d orbitals (indices 1, 2, 3
in Table 2.2), which considers the nearest-neighbor (NN) Mo-Mo hopping
energies and up to the third nearest-neighbor (TNN) Mo-Mo hopping energies,



28 2 Model Hamiltonian for 2D TMDs

Figure 2.2: Band structures of monolayer MoS2 along the path M-Γ-K-M, obtained
by DFT calculation (red dots) with GGA-PBE pseudopotential and by TB models
(blue curves). (a) 3-band NN model with 8 parameters by Xiao et al. [129], (b)
3-band TNN model with 19 parameters by Xiao et al. [129], (c) 5-band model with
28 parameters by Wu et al. [128], (d) 6-band model with 11 parameters by Rostami
et al. [133], (e) 11-band model with 12 parameters by Capellutti et al. [132], (f)
11-band model with 12 parameters by Ridolfi et al. [29], (g) 11-band model with 36
parameters by Fang et al. [130], and (h) 11-band model with 31 parameters by Dias
et al. [137]. In (e), (f), and (h), where the 11-band TB calculations are all based
on the SK method, the dotted green line bridging two green circles represents the
location of Q point in momentum space. Reprinted from [137]. Copyright (2018)
American Physical Society.

respectively. The latter shows well-reproduced bands over the whole BZ,
including at K, Γ, and even Q points, while the former is accurate only in the
vicinity of K and Γ points. The model taking into account the TNN hopping
energies, however, requires a much larger number of 19 parameters compared
to the 8 parameters for the former model. The band structure obtained by the
5-band model of Wu et al. [128] shows a better fitting with the DFT result on
the conduction band over approximately 2 eV, see Fig. 2.2(c). All the models
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above only take into account d orbitals. Therefore, they cannot be used to
describe systems with defects concerning the S atoms, as vacancies. The
model proposed by Fang et al. [130], on the contrary, considers all the orbitals
in Table 2.2, which includes p orbitals for S and d orbitals for Mo. The band
structure calculated with this model shows a good agreement with DFT over
the whole BZ and over a large energy window, see Fig. 2.2(g). Even though
these models based on the structural symmetries provide a rather accurate
description, they are difficult to extend to systems with low symmetry, such as
nanoribbons, or in the presence of certain types of disorder such as vacancies.

TB models based on the SK parametrization are more flexible and adapt-
able, since they are not based on the symmetry of the bulk system, but on
the relative positions between the atomic orbitals. Moreover, they require a
smaller number of the parameters to be fitted compared to that based on the
structural symmetries. Rostami et al. [133] use the 6-band model with the
even basis set (indices 1-3, 6, 8, and 10 of the transformed basis in Table 2.2).
The DFT band structure is well reproduced in the vicinity of the K and Γ
points, see Fig. 2.2(d). Furthermore, it gives reliable effective masses for both
electrons and holes at the K point. However, a weakness of this model, which
uses only the even basis, appears when the odd-parity bands take importance
as, for instance, for the edge states in nanoribbons [138]. The 11-band model
proposed by Capellutti et al. [132] is based on the complete set of the d orbitals
for Mo and of the p orbitals for S with only 12 parameters. The correspond-
ing band structure in Fig. 2.2(e), however, turns out to be inaccurate except
for the K valleys. This behavior is expected to result from taking into ac-
count only NN Mo-Mo, S-S, and Mo-S hopping energies in the model. Ridolfi
et al. [29] consider the same basis and coupling range, but the fitting was
performed with the data obtained by the hybrid HSE06 exchange-correlation
functional, which gives a reliable band gap, see Fig. 2.2(f). The band struc-
ture shows a better dispersion including Γ and Q points, however it is limited
to a small energy window around the band edges. Note that the mismatch
of the conduction bands with the DFT result is consequence of the different
GGA-PBE functional adopted for the DFT calculations. While the previous
two models with 11-band Hamiltonian reproduce the DFT band structure
only within a window of ∼1 eV from the edges, the recent work proposed by
Dias et al. [137] reproduces the band structure over the whole energy window
in Fig. 2.2(h). This accuracy in the band structure is due to the considera-
tion of next-NN hopping parameters of both Mo-Mo and S-S atoms into the
model. With such a model, however, it is difficult to describe systems with
broken mirror reflection symmetry, as for sulfur vacancies or rippled struc-
tures, since the TB parameterization is performed by using the transformed
basis of Table 2.1 constructed under the mirror symmetry. Therefore, the
model proposed by Ridolfi et al. [29] can be the most appropriate for our
purpose, in the sense that it is based on the SK description and allows us to
reasonably describe the disordered system with atomic vacancies or geometric
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distortion. Note that the energy window where the model is accurate is only
∼1 eV from the edges of the valence and conduction bands according to the
band structure of 2D MoS2, see Fig. 2.2(f).

2.1.3 Spin-orbit coupling

As discussed in Subsec. 1.2.2, the effect of SOC is significantly important
in TMDs. More precisely, it induces a large and opposite spin-splitting of
the valence band in the K and K’ valleys [139]. Before discussing the SOC
Hamiltonian for TMDs, we briefly illustrate the origin of SOC by using a semi-
classical model according to the derivation of ref. [140]. More formally, SOC
follows from a low-energy approximation of the relativistic Dirac equation, but
we prefer here to provide a more intuitive, though not rigorous, derivation.

Let us consider the case of an electron in orbit around the atomic nucleus.
In the electron’s reference frame, the nucleus is moving around the electron,
see Fig. 2.3(a). This moving positive charge induces a magnetic field, which
interacts with the spin magnetic moment of the electron and tends to align it
along the magnetic field. We can write the Hamiltonian related to the torque
as

H = −µ ·B , (2.19)

where B is the magnetic field induced by the moving positive charge and µ
is the dipole moment of the electron. Let us focus on the simple case of the
hydrogen atom, where the positive charge of the nucleus is that of a single
proton. In the reference frame of the electron, the proton moving around
the electron produces a current I, which flows along a ring with radius r.
According to the Biot-Savart law, this current induces a magnetic field

B =
µ0I

2r
. (2.20)

Figure 2.3: Schematic structure of a hydrogen atom for the SOC. (a) A positive
charge, which corresponds to the proton, is orbiting the electron in the rest frame
of the electron. (b) A ring of charge, which corresponds to the electron, rotates
about its axis.
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The current is expressed as I = e/T , where e > 0 is the proton charge and T
is the period of the orbit. In the rest frame of the nucleus, the orbital angular
momentum of the electron, which is along the same direction as the magnetic
field B, is L = rm(2πr/T ). Then, the magnetic field can be expressed in
terms of L as

B =
µ0

4π

e

mr3
L . (2.21)

We derive the magnetic dipole moment of the electron orbiting with radius
r and period T . The current of the ring is defined as q/T where q is the
electron charge, see Fig. 2.3(b). The magnetic dipole moment of this ring is
the product of the current by the area of the ring

µ =
qπr2

T
. (2.22)

And the angular momentum S of a ring with the mass m is calculated by the
multiplication of the moment of inertia and the angular velocity as

S =
2πmr2

T
. (2.23)

The magnetic dipole moment and the angular momentum are aligned and
thus we can derive the relation between them

µ =
( q

2m

)
S . (2.24)

However, this is the result in the classical electrodynamics. According to the
Dirac’s relativistic theory of the electron, the magnetic moment of the electron
turns out to be twice the classical value, so

µe = − e

m
S . (2.25)

Using eqs. 2.21 and 2.25, the resulting Hamiltonian of eq. 2.19 can be ex-
pressed as

H =
µ0

4π

e2

m2r3
L · S . (2.26)

By considering the rest frame of the electron, however, we have to take into
account that this it not an inertial reference frame. As the electron accelerates
around the nucleus in the rest frame of the nucleus, the positive charge does
around the electron in the rest frame of the electron. The Thomas preces-
sion is a kinematic correction of this error by a factor of 1

2
, as a result, the

Hamiltonian for SOC is defined as

H =
µ0

8π

e2

m2r3
L · S . (2.27)
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We can now analyze the effect of SOC in TMDs. The SOC Hamiltonian
can be established in terms of a pure intra-atomic SOC [131], [138], which is
given by

HSOC =
∑
α

λα
~
Lα · Sα , (2.28)

where λα is the intra-atomic SOC constant for each atom (α=Mo, S), L is
the atomic orbital angular momentum operator and S is the electron spin
operator. This SOC Hamiltonian is consistent with the result of the simple
model for the hydrogen, whose Hamiltonian of eq. (2.27) contains exclusively
the term L · S.

For the intra-atomic SOC constant λα, we used 75 meV for Mo and 52 meV
for S [131], which well reproduce the band spin-splitting at the K and K’
points, see Fig. 2.4. Using these values in the TB formulation results in
a spin-splitting of 151 meV at the K point of 2D MoS2, which is in good
agreement with the experimental value of 145 ± 4 meV [141].

2.2 k·p theory

The k·p methodology is a widely used theoretical approach in order to ex-
plore 2D TMD semiconductors [127], [142]–[144]. This approach exploits the
symmetries of the system and provides an accurate energy dispersion of the
valence band (VB) and the conduction band (CB) in the vicinity of special k-
points, for example K/K’, in terms of a relatively small number of parameters

Figure 2.4: Comparison of the band structures in the absence (black lines) and in
the presence (red lines) of SOC by using the TB parameterization of Ref. [29].
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as compared to the TB method. The number of these parameters is deter-
mined by the symmetry of the system and their values are fitted with the
DFT energy dispersion in the vicinity of the selected high symmetry points.

There are many k·p models for TMDs, which allow the investigation of the
electronic, optical and transport properties in an energy window around the
band gap. One of the simplest models is derived by adding a mass term to
the Dirac equation for graphene, which has a similar hexagonal lattice. More
advanced models are also available, which provide a more detailed description
of TMDs, including effects such as TW of the energy dispersion of the VB
and the asymmetry between electron and hole bands. In this section, a brief
introduction of the k·p model is provided and some models for TMDs are
illustrated.

While we do not make use of k·p Hamiltonians in our transport simula-
tions, because they lack the necessary atomistic accuracy, they are helpful to
illustrate the physics of the band structure of TMDs, and in particular the
role of SOC in the splitting of the VB.

2.2.1 A brief introduction

For a simple illustration of the k·p theory, let us consider the Schrödinger
equation eq. (2.3) for a periodic one-electron system. We consider a Bloch
function for ψ in the form

ψn,k(r) = eik·run,k(r), (2.29)

where n is the band index, k is the electron wave number and un,k(r) has
the periodicity of the crystal lattice, i.e. un,k(r + t) = un,k(r), where t is a
translation vector of the lattice. By combining eq. (2.3) and eq. (2.29), we
obtain

Hψn,k(r) =
( p2

2me

+ V
)
eik·run,k(r) = En(k) ψn,k(r) . (2.30)

In real space, the momentum operator p is expressed as −i~∇. Then, we
rewrite eq. (2.30) as

Hψn,k(r) =
p

2me

·
[
~keik·run,k(r) + eik·rp · un,k(r)

]
+ V (r)eik·run,k(r)

=
1

2me

[
~2k2eik·run,k(r) + 2~eik·r(k · p)un,k(r) + eik·rp2un,k(r)

]
+ V (r)eik·run,k(x)

= En(k) eik·r un,k(r) .

(2.31)

Here, we define the Hamiltonian as the sum of two terms as

H = H0 + Hk , (2.32)
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where H0 is the unperturbed Hamiltonian for the free electron, which is inde-
pendent of k and is given by

H0 ≡
p2

2me

+ V (r) , (2.33)

and Hk is the k-dependent Hamiltonian term expressed by

Hk ≡
~
me

k · p +
~2k2

2me

. (2.34)

When k is in the vicinity of 0, Hk is close to zero and can thus be considered
as a perturbation. Note that a similar perturbation method can be performed
around any k-point of interest, even if it is not 0. The k·p theory is based on
this k-dependent Hamiltonian and the perturbation theory, which is valid in
vicinity of the chosen k-point in the BZ.

2.2.2 k· p model for TMDs

Since many of the interesting properties of TMDs, such as the spin and valley
physics, mainly appear in the vicinity of the K/K’ points, as shown in Sub-
sec. 1.2.2, most k·p models have been proposed to describe TMDs around these
points. One of the simplest models is the 2-band Hamiltonian firstly proposed
by Xiao et al. [145], which considers one CB and one VB. This model takes
into account both the valley and the spin degrees of freedom to detail the
opposite spin-splitting at the inequivalent valleys K/K’, which is particularly
important for the VB. The k·p Hamiltonian of this model is based on that of
massive Dirac fermions, which indicates that MoS2 can be described by the
Hamiltonian of a monolayer graphene with a staggered sublattice potential

HD = ~v0(τkxσ̂x + kyσ̂y) +
∆

2
σ̂z , (2.35)

where τ is the valley index 1(-1) for the K(K’) valley, σα (α= x, y, z) denotes
the Pauli matrices and operates on the CB/VB index, ∆ is the band gap of
MoS2, and v0 corresponds to the Fermi velocity.

Unlike graphene, however, SOC plays an important role in MoS2, as men-
tioned in Subsec. 1.2.2. In particular, a large spin-splitting occurs at the edges
of the VB, while it is relatively small for the CB. By taking into account only
the spin-splitting of the VB, the SOC Hamiltonian [145] can be expressed as

HSOC = λτ
1− σ̂z

2
ŝz , (2.36)

where 2λ is the SOC-induced spin-splitting energy on the top of the VB,
and ŝz is the Pauli matrix for spin. This simple SOC Hamiltonian explicitly
describes the opposite spin-splitting at K/K’ valleys.
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Figure 2.5: Isoenergy contours of VB and CB by DFT calculations (symbols) and
k·p model (continuous lines) in the vicinity of K point. Reprinted from Ref. [146].
Copyright (2013) American Physical Society.

However, this model does not encompass some important features such
as the TW effect of the energy dispersion and electron-hole asymmetry [85],
[146], which results in different electron and hole effective masses. Compared
to graphene, where the TW effect is observed starting from ∼1 eV from the
band edges, for MoS2 the effect is already observed at ∼80 meV from the
band edges, particularly at the VB, see Fig. 2.5. To go beyond the simple
model and capture these properties, several other k·p models have been pro-
posed. One of the most complete k·p models is proposed by Kormányos et
al. [127]. The effective Hamiltonian is derived from a seven-band model by
systematically eliminating all degrees of freedom except those corresponding
to the VB and the CB, by using the Löwdin partitioning. The model makes
use of the spinful basis

∣∣Ψvb,cb, s
〉
=
∣∣Ψvb,cb

〉⊗
|s〉, where

∣∣Ψvb,cb
〉

is the spinless
Bloch wave function for the VB or the CB, and s denotes the spin degree of
freedom.

The low-energy effective-Hamiltonian Hτ,s
eff is expressed by

Hτ,s
eff = H0 +Hτ,s

k·p +Hτ,s
SOC , (2.37)

where H0 is the free-electron term, Hτ,s
k·p corresponds the k·p Hamiltonian, and

Hτ,s
SOC denotes the SOC Hamiltonian. The Hamiltonian for the free-electron

is defined as

H0 =
~2q2

2me

1 , (2.38)

where 1 is a unit matrix in the electron-hole space, me is the free electron
mass, and q = (qx, qy) is the wave vector measured from the K/K’ valleys in
momentum space.



36 2 Model Hamiltonian for 2D TMDs

The SOC Hamiltonian takes into account the spin-splitting of both the
VB and the CB, in contrast to the SOC Hamiltonian of eq. (2.36), which only
considers the spin-splitting of the VB. This SOC Hamiltonian is expressed by

Hτ,s
SOC =

(
τ∆vbŝz 0

0 τ∆cbŝz

)
, (2.39)

where ∆vb and ∆cb denote the strength of the spin-splitting at VB and CB,
respectively, and the index τ=1(-1) denotes the valley K(-K). In TMDs, the
spin-splitting at the CB is much lower than that at the VB. For MoS2, 2∆cb

and 2∆vb are 3 meV and 148 meV, respectively.

Finally, the k·p Hamiltonian Hτ,s
k·p is composed of four terms

Hτ,s
k·p = Hτ,s

D +Hτ,s
as +Hτ,s

3w +Hτ,s
cub . (2.40)

Hτ,s
D is the massive Dirac fermion model introduced in eq. (2.35). If considered

alone, this term would result in electron-hole symmetry and isotropic energy
dispersion. To overcome these problems, the k·p Hamiltonian includes two ex-
tra terms. Hτ,s

as is proposed for the description of the electron-hole asymmetry,
expressed by

Hτ,s
as =

(
ατ,sq

2 0
0 βτ,sq

2

)
, (2.41)

where ατ,s and βτ,s are the parameters for holes and electrons, respectively.
The electron-hole symmetry is broken when ατ,s 6= βτ,s. For the TW effect,
Hτ,s

3w is introduced, which is given by

Hτ,s
3w =

(
0 κτ,s(q

τ
+)2

κ∗τ,s(q
τ
−)2 0

)
, (2.42)

where q± is defined as q± = qx± iτqy. These off-diagonal terms are quadratic
in q± and lead to the TW of the energy dispersion as shown in Fig. 2.5. For
a better description, two additional terms are considered in eq. (2.40). The
Hamiltonian Hτ,s

cub,1 is off-diagonal and cubic in q±. It plays an important role
to obtain a better fitting with DFT results away from the K/K’ points. The
term Hτ,s

cub,2 is diagonal and cubic in q±, which allows the model to reproduce
the non-parabolicity of the bands.

This efficient methodology is widely adopted for the study of optoelectronic
properties of TMDs, e.g., the Zeeman effect of intralayer excitons in few-layer
TMDs [147], valley polarization of excitons and trions [148], and spin and
valley Hall conductivity in the presence of dopants in monolayer TMDs [149].

Despite the nicer picture provided and its physical clarity, this method-
ology has several limitations. One of the drawbacks is the validity region in
the momentum space around the selected k-points, usually the K/K’ valleys.
While this limitation may be not too severe for the study of optoelectronic
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properties, this is not the case for transport properties, since other k-points
correspond to states with energy close to the VB and CB edges. For example,
the energies at the Γ and Q valleys are practically found to be located at just
a few tens or hundreds of meV from the edges of VB and CB, respectively,
see Fig. 2.2.

The other aspect, which is difficult to take into account with the k·p theory,
is the presence of atomistic defects [74], [138], [150]. Depending on their
nature, these defects may induce gap states or activate intervalley scattering,
which results in a strong alteration of electron transport. Therefore, the k·p
theory is inappropriate for describing disordered systems, which is one of the
main objectives of the present study.

2.3 DFT based Hamiltonian

DFT-based Hamiltonians obtained from the projection onto a reduced basis
set of maximally localized Wannier functions (MLWFs) have been proposed
as a more sophisticated method for an accurate description of TMD materi-
als [130], [139], [151], [152]. We have seen that the accuracy of the electronic
structures obtained by various TB models is considerably sensitive to the num-
ber of atomic orbitals taken into account for the basis set and to the inclusion
of longer-range hopping terms, see Subsec. 2.1.2. At the same time, the k·p
theory only provides an accurate description in narrow energy windows and
around specific regions of the BZ, as shown in Subsec. 2.2.2. On the contrary,
the basis set of MLWFs, which is obtained by a systematic procedure, can
give more accurate Hamiltonian, able to reproduce the DFT results over the
whole BZ and a larger energy range.

The technique based on Wannier functions was firstly introduced by Gre-
gory Wannier [153], and it consists in a change of basis from the Bloch basis
in the momentum space, which is related to eigenstates of the Kohn-Sham
Bloch Hamiltonian of DFT calculations, into the localized Wannier basis set
in the real space. In the case of an isolated energy band with index n, where
isolated means that, in the energy range of interest, there are no degeneracy
points, such a change of basis is performed by the unitary transformation

wn,R(r) =
V

8π3

∫
BZ

e−ik·Rψn,kdk, (2.43)

where ψn,k is the Bloch eigenstates of band n, wn,R(r) is the Wannier function
corresponding to the primitive cell with lattice vector R, and V indicates the
volume of the unit cell. This technique [153]–[155] has been extended to
bands with degeneracy points, still with the aim of providing a convenient
basis of localized functions to conveniently describe the selected bands in a
given energy region. Recently, this approach has become popular thanks to
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the development of general and efficient algorithms to derive well-localized
Wannier functions in the framework of DFT calculations [156]–[159].

The spatially-localized feature of the MLWFs is analogous to that of lo-
calized molecular orbitals, and it brings information about the angular mo-
mentum and the nature of the chemical bonding (which is lacking from the
Bloch picture), thus allowing us to obtain a deeper understanding of chem-
ical coordination and bonding characteristics [160]. Besides this aspect, the
MLWFs have been used as an accurate basis for a variety of theoretical stud-
ies, and in particular for the construction of effective Hamiltonians, which
are useful for the simulation of transport properties [161], strongly-correlated
electrons [162], and photonic lattices [163]. As concerns electron transport,
the Wannierization process is particularly convenient because (i) it reduces
the size of the Hamiltonian, since the number of MLWFs to consider is deter-
mined by the energy range of interest, (ii) the localized nature of the Wannier
functions limit the Hamiltonian coupling terms to spatially close MLWFs,
which makes the slicing process possible and convenient, see Sec. 3.2.

Compared to other 2D materials such as graphene and boron nitride, elec-
tronic structure of TMD materials is more complex due to the contribution
of d orbitals of the transition metal and p orbitals of the chalcogen atoms, as
mentioned in Subsec. 2.1.2. Because of this intricacy, calibrating TB mod-
els on the band structures from DFT calculations is challenging and not a
standardized procedure. As a consequence, many different TB parameteriza-
tions have been proposed in the literature for TMDs, see Subsec. 2.1.2. The

Figure 2.6: Band structure of MoS2 obtained by DFT calculations (blue dots) and
by the Wannier Hamiltonian (red dots). The yellow shadowed region indicates the
energy region below the Fermi level. Reprinted from [151]. Copyright (2016) IOP
Publishing.
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Wannier procedure, on the contrary, is a systematic procedure for which, once
the bands to consider and the energy region of interest are defined, the final
MLWFs are obtained iteratively from the minimization of the spatial spread
of the functions. However, this procedure requires a first guess for the Wan-
nier orbitals, which impacts the success of the minimization. On the basis of
our previous analysis, for MoS2 it is reasonable to consider an initial guess
of p orbitals for the S atoms and d orbitals for the Mo. This leads to an 11-
band DFT based TB-like Hamiltonian [151], which well reproduce the DFT
band structure, see Fig. 2.6, over a larger energy range compared to the other
models.

There are several reasons why we do not make use of MLWFs in the present
study. First, compared to the TB basis, Wannier functions may be not as
much localized, which, in the Hamiltonian, entails a longer-range coupling and
then a heavier computational burden for the transport calculation. Also, the
Hamiltonian is very specific to the corresponding system simulated by DFT.
This means that the results will significantly vary for different geometries
or in the presence of defects, thus requiring DFT calculations for different
configurations. In other words, the method is not as general and adaptable
as a SK parametrization is. Finally, and in relation with the previous point,
depending on the size of the system to simulate, the DFT calculations and
the following Wannier procedure might be extremely time-consuming.

2.4 Summary

This Chapter is devoted to introduce different models to describe TMDs in
terms of the Hamiltonian, which is a primary task for the present thesis. I
introduced three different models and reviewed the resulting electronic prop-
erties. In particular, the TB model can be classified into two different ap-
proaches, the framework of the structural symmetries or the SK description.
Although the former may show a nicer electronic structure over a larger en-
ergy window, it is difficult to consider a disordered system in the presence of
the symmetry breaking. On the other hand, the latter can describe a sys-
tem regardless of the structural symmetries with atomic defects, of which
study is the most important part of the thesis. Moreover, k·p and DFT-based
Hamiltonians and their limitations are also discussed. k·p model is valid only
around the selected k-points and has a difficulty to take into account atom-
istic defects. The framework of the DFT-based Hamiltonians uses the basis
of Wannier functions that may not require a longer-range coupling, which can
results in a heavier computational effort. For all these reasons, the TB model,
particularly in the SK description, was used in all this thesis work.
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Chapter 3

Quantum transport model

This Chapter summarizes the quantum formalism adopted to simulate elec-
tron transport. After introducing the system description and namely the TB
Hamiltonian in Chapter 2, we focus here on the Green’s function approach for
quantum transport. First, in Sec. 3.1, I outline the second quantization for-
malism, which turns out to be very convenient for the definition of the charge
and current operators, whose expectation values are obtained in terms of the
Green’s functions, as illustrated in Sec. 3.2. I will also discuss some numeri-
cal techniques to efficiently calculate the Green’s functions of large systems,
and in particular the decimation-renormalization technique implemented in
the codes. I will finally discuss, in Sec. 3.3, the different quantum transport
regimes of disordered conductors. Their properties and statistical analysis will
be useful for the study of transport in disordered MoS2 performed in Chapters
5 and 6.

3.1 Basics of the second quantization formal-

ism

In this section, I briefly illustrate the second quantization formalism, which is
useful for the better understanding of the main topic in this chapter: Green’s
function formalism. What follows is just a summary of the most important
aspects and results, with no detailed derivations, which can be found in text-
books [164], [165]. Here we mainly follow Ref. [165].

3.1.1 Second quantization

When considering transport phenomena or many-body interactions, it is con-
venient to consider a Hilbert space able to describe systems with an undefined
number of particles. In the case of many distinguishable particles, a generic
states of N particles can be written in term of direct product of single-particle
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states in an extended Hilbert states as

|n1〉 |n2〉 . . . |nN〉 , (3.1)

where |ni〉 is the single-particle state that describes the particle i. In the case
of N identical particles (as electrons or phonons, for example), we use the
different notation

|n1n2n3 . . . nN〉 (3.2)

to indicate that one particle is in the state |n1〉, one in the state |n2〉 and
so on. The state in eq. (3.1) must represent the same physical state under
the permutation of the particles, since the particles are identical. This means
that a permutation just entails a phase factor that depends on the permutation
itself. In the case of two identical particles, as an important example, we have

|n2, n1〉 = eiα1↔2 |n1, n2〉 , (3.3)

where we considered the inversion 1 ↔ 2 and eiα1↔2 is the phase factor. If
we apply again the same inversion, we have the identity, for which the phase
factor must be 11. This implies that eiα1↔2 = ±1. Therefore, the state can be
either symmetric (for bosons) or antisymmetric (for fermions) under inversion
of two particles. Since a generic permutation P can be written as the product
of inversions of couples of particles, we have in general∣∣nP (1)nP (2) . . . nP (N)

〉
= (±1)σP |n1n2 . . . nN〉 (3.4)

where σP is the signature of the permutation, which is even or odd depending
on the even or odd number of inversions necessary to obtain the permutation.
Note that the above relation implies the Pauli exclusion principle for fermions.
In fact, if two fermions are in the same state, their inversion simply gives the
same state with a minus sign, which entails that the states is 0, i.e. two
fermions cannot occupy the same state.

It is straightforward to show that, if we require the normalization

〈n1n2 . . . nN |n1n2 . . . nN〉 = 1 (3.5)

for N particles in different states (i.e. |n1〉 6= |n2〉 6= . . . |nN〉), then

〈n′1n′2 . . . n′N |n1n2 . . . nN〉 =
∑
P

(±1)σP
N∏
i=1

δn′inP (i)
. (3.6)

According to the above results, we can express an N -particle state in terms
of product of single-particle states, i.e. with the notation of eq. (3.1) as

|n1, n2 . . . nN〉 =
1√
N !

∑
P

(±)σP
∣∣nP (1)

〉 ∣∣nP (2)

〉
. . .
∣∣nP (N)

〉
. (3.7)

The N !-term appearing in the normalization factor corresponds to the fact
that there are N ! possible permutations for N identical particles.

1In reality, this argument is not completely correct, and indeed it can be demonstrated
that in 2 dimensions different values can be observed [166]. However, this point is beyond
the scope of my presentation.
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3.1.2 Fock space and creation/annihilation operators

If we indicate the Hilbert space of N identical particles as HN , then we can
define a larger Hilbert space, called Fock space F , of all the possible states
with any particle number as the direct sum of all these spaces, i.e.

F ≡ H0 ⊕ H1 ⊕ H2 ⊕ . . . , (3.8)

where H0 only contains the empty (vacuum) state |0〉. The second quantiza-
tion introduces the creation c†α operator as a function between Hilbert spaces
that operates as follows

c†α : Hn−1 → Hn : c†nN |n1n2 . . . nN−1〉 ≡ |n1n2 . . . nN−1nN〉 . (3.9)

Therefore, c†α adds a particle in the state α to the state it operates on. This
allows us to write

|n1n2 . . . nN−1nN〉 = c†nN c†nN−1
. . . c†n1

|0〉 . (3.10)

It follows immediately that

c†αc
†
β |n1n2 . . . nN〉 = |n1n2 . . . nNβα〉 = (±) |n1n2 . . . nNαβ〉

= ±c†βc
†
α |n1n2 . . . nN〉 → [c†α, c

†
β]∓ = 0 , (3.11)

where [∗, ∗]− and [∗, ∗]+ indicate the commutator and the anticommutator,
respectively. The adjoint of c†α is the annihilation operator cα, which removes
a particle in the state α

cα : Hn → Hn−1 : cnN |n1n2 . . . nN−1nN〉 ≡ |n1n2 . . . nN−1〉 and [cα, cβ]∓ = 0.
(3.12)

Note that applying the annihilation operator to empty states cα |0〉 is the zero
and not the vacuum state |0〉. A slightly longer derivation, see Ref. [165],
allows us to obtain the important third commutation/anticommutation rule

[cα, c
†
β]∓ = δα,β . (3.13)

By means of the commutation/anticommutation rules, we can also demon-
strate that the operator n̂α ≡ c†αcα provides the number of particles in the
state |α〉. Consequently, the operator that counts the total number of particles
N̂ can be written as

N̂ =
∑
α

c†αcα . (3.14)

The above equations are valid for both bosons and fermions.
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3.1.3 More about creation/annihilation and field oper-
ators

Let us consider the set of the creation and annihilation operators {c†α} and
{cα} associated with an orthonormal basis {|α〉}. The operators {d†β} and {dβ}
associated with a different orthonormal basis {|β〉} can be simply obtained by

|β〉 =
∑
α

|α〉 〈α|β〉 → d†β =
∑
α

〈α|β〉 c†α and dβ =
∑
α

〈β|α〉 dα .

(3.15)
It is straightforward to demonstrate that, thanks to the orthonormality of the
basis, the commutation/annihilation rules are preserved:

[dα, dβ]∓ = [d†α, d
†
β]∓ = 0 and [dα, d

†
β]∓ = δα,β . (3.16)

Let us now consider the basis {|r〉} of the eigenstates of the position oper-
ator r̂. According to the above equations, we define the field operators ψ̂†(r)
and ψ̂(r) corresponding to the creation and the annihilation of a particle in
the state |r〉, i.e. at position r, as

ψ̂†(r) =
∑
α

c†αu
∗
α(r) and ψ̂(r) =

∑
α

cαuα(r) , (3.17)

where uα(r) = 〈r|α〉, i.e. {uα(r)} are the real-space wave functions associ-
ated to a general orthonormal basis {|α〉}. According to these relations, we
can define a state of N identical particles at position {rn} as

|r1, r2, . . . rN〉 = ψ̂†(r1)ψ̂†(r1)ψ̂†(r2) · · · ψ̂†(rN) |0〉 . (3.18)

One can easily verify that the commutation/anticommutation rules for the
field operators are

[ψ̂(r), ψ̂(r′)]∓ = [ψ̂†(r), ψ̂(r′)†]∓ = 0 and [ψ̂(r), ψ̂(r′)†]∓ = δ(r − r′) .(3.19)

In addition, we can write the operator of the total number of particles as

N̂ =

∫
dr n̂(r) , (3.20)

where n̂(r) = ψ̂†(r)ψ̂(r) is the spatial-density-of-particle operator.

3.1.4 Operators in the second quantization formalism

Let us examine how operators, among which notably the Hamiltonian, are
represented and work in the Fock space. For the purpose of this thesis, we
limit here to one-body operators, which independently act on each particle
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of the systems. For example, an operator acting on a system of N identical
particles can be expressed by

Ô =
N∑
i=1

ôi , (3.21)

where ôi acts as the single-particle operator ô on the ith state of many-particle
state and leaves the others unvaried, i.e.

ôi = 1̂1 ⊗ 1̂2 ⊗ . . . 1̂i−1 ⊗ ô⊗ 1̂i+1 ⊗ . . . 1̂N . (3.22)

When this operator is applied to a state, we simply get

Ô |n1, n2 . . . nN〉 = |ôn1, n2 . . . nN〉 + |n1, ôn2 . . . nN〉 +. . . + |n1, n2 . . . ônN〉 .
(3.23)

Since

|n1, . . . nk−1, ônk, nk+1 . . . nN〉 = d†kcnk |n1n2 . . . nN〉 , (3.24)

where d†k is the creation operator for an electron in the state ô |nk〉 and, ac-
cording to eq. (3.15), is given by

d†k =
∑
α

c†α 〈α|ô|nk〉 , (3.25)

where the |α〉 forms a complete orthonormal basis. We can then write the
operator Ô as

Ô =
∑
α,α′

〈α|ô|α′〉 c†αcα′ , (3.26)

where |α〉 and |α′〉 span the same complete orthonormal basis set. If now we
express ô |ni〉 in terms of the basis {|r〉} by using its completeness relation

ôi |ni〉 =

∫
dr 〈r| ôi |ni〉 |r〉 , (3.27)

then eq. (3.26) reads

Ô |n1, n2 . . . nN〉 =

∫
dr 〈r| ô1 |n1〉 |r, n2 . . . nN〉

+

∫
dr 〈r| ô2 |n2〉 |n1, r . . . nN〉 + · · ·

+

∫
dr 〈r| ôN |nN〉 |n1, n2 . . . r〉

=

[
N∑
i

∫
dr 〈r| ôi |ni〉 ψ̂†(r)cni

]
|n1, n2 . . . nN〉 .(3.28)
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By expressing the creation and annihilation operators in terms of the corre-
sponding field operators of eq. (3.17), we find

Ô =

∫
drdr′ 〈r| ô |r′〉ψ†(r)ψ(r′) . (3.29)

Equations (3.26) and (3.29) provide us with the representation of single-
particle operators in the second quantization formalism.

3.2 Green’s function formalism

Based on the concepts and notations introduced in Sec. 3.1, I introduce the
Green’s function formalism and the relevant physical quantities that can be
obtained from the Green’s functions. In this section, I will focus on the
essential aspects and main formulas the present thesis relies on. More details
about the formalism can be found in Refs. [167]–[173]. Since we are interested
in electron transport and neglect electron-phonon interaction, in what follows
we always refer to fermions.

3.2.1 Particle density and current operators

Let us consider the i “site” of the system, which corresponds to the ith state
of the orthonormal basis. In our case, this is an orbital-like state of a given
atom. The particle density operator n̂i on site i in terms of the creation and
annihilation operators is expressed as in eq. (3.14) by

n̂i = c†ici . (3.30)

Accordingly, the operator for the electronic charge on the site i is given by

Q̂i = (−e)c†ici, (3.31)

where e > 0 is the absolute value of the electron charge. By making use of
the charge continuity equation, the operator Îi corresponding to the current
outgoing site i is defined by minus the derivative of the charge operator on
site i with respect to time

Îi = −∂Q̂i

∂t
= − 1

i~
[Q̂i, Ĥ]− . (3.32)

Let us consider a single-particle Hamiltonian operator as a simple form of
eq. (3.26) in the second quantization representation, which is expressed by

Ĥ =
∑
mn

tmnc
†
mcn , (3.33)
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where tmn is called hopping energy for m 6= n and on-site energy for m = n.
Then, by using the anticommutation rules, the current operator of eq. (3.32)
can be explicitly written as

Îi =
e

i~
∑
mn

tmn[c†icic
†
mcn − c†mcnc

†
ici]

=
e

i~
∑
mn

tmn[c†i (δmi − c†mci)cn − c†m(δin − c†icn)ci]

=
e

i~
∑
m

(
timc

†
icm − tmic†mci

)
. (3.34)

In the above formula, the first term of the summation corresponds to the
particle current flow from site m to site i, while the second term corresponds
to the particle current flow in the opposite direction, i.e. from site i to site m.
Accordingly, the total net current flowing from site i to site m is expressed as

Îi→m =
e

i~
(timc

†
icm − tmic†mci) . (3.35)

The average current is obtained by taking the expectation value of the current
operator on the state of the system, which, as we will see later, is related to
the lesser Green’s function G< expressed by〈

c†αcβ
〉

=
~
i
G<
βα(τ = 0) . (3.36)

In terms of the lesser Green’s function, the current is written as

Iim = (−e)[timG<
mi(τ = 0)− tmiG<

im(τ = 0)]

=
(−e)
h

∫ ∞
−∞

dE[timG
<
mi(E)− tmiG<

im(E)]

=
(−e)
h

∫ ∞
−∞

dE 2Re[timG
<
mi(E)] , (3.37)

where G<(E) in the latter denotes the equivalent form in the energy domain
by the Fourier transform of G<(τ). In addition to the current, the Green’s
functions allow us to obtain physical quantities such as the density of states
and the transmission coefficient, as I will detail in Subsec. 3.2.5.

3.2.2 Schrödinger and Heisenberg pictures

Before giving the definition of the Green’s functions, it is useful to introduce
the Schrödinger and Heisenberg pictures to describe the time-evolution of a
quantum mechanical system determined by its Hamiltonian operator Ĥ.
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In the Schrödinger picture, a state
∣∣ΨS(t)

〉
evolves with time according to

the Schrödinger equation

i~
d

dt

∣∣ΨS(t)
〉

= Ĥ
∣∣ΨS(t)

〉
. (3.38)

When the state at time t0 is known, its evolution at time t can be written as∣∣ΨS(t)
〉

= Û(t, t0)
∣∣ΨS(t0)

〉
, (3.39)

where Û is the time evolution operator, which, for time-independent Hamil-
tonian operators, is given by

Û(t, t0) = e−iĤ(t−t0)/~ . (3.40)

The Heisenberg picture, which is more appropriate for our purposes, shifts
the time dependence from states to operators by defining∣∣ΨH

〉
≡

∣∣ΨS(t0)
〉
, (3.41)

ÔH(t) ≡ Û(t0, t) Ô
S Û(t, t0) . (3.42)

Note that, as expected,
〈
ΨS(t)

∣∣OS|ΨS(t)
〉

=
〈
ΨH
∣∣OH(t)|ΨH

〉
, i.e. the ex-

pectation value of an operator on a given state is the same in the two repre-
sentations. The evolution of Heisenberg operators is determined by

i~
d

dt
ÔH(t) =

[
ÔH(t), Ĥ

]
−
. (3.43)

This equation is only valid for time-independent Schrödinger operators. In
what follows, we omit the superscripts “S” and “H” since the chosen picture
is evident from the indicated or omitted time dependence. The field operators
of eq. (3.42) are expressed in the Heisenberg representation as

ψ̂†(r, t) = eiĤ(t−t0)/~ψ̂†(r)e−iĤ(t−t0)/~ and ψ̂(r, t) = eiĤ(t−t0)/~ψ̂(r)e−iĤ(t−t0)/~ .
(3.44)

In addition, the time-dependent creation and annihilation operators in a
generic basis are written as

c†α(t) = eiĤ(t−t0)/~ c†α e
−iĤ(t−t0)/~, (3.45)

cα(t) = eiĤ(t−t0)/~ cα e
−iĤ(t−t0)/~ . (3.46)

If {|α〉} is the basis of the Hamiltonian eigenstates with eigenvalues {Eα},
then

c†α(t) = eiEα(t−t0)/~ c†α(t0) and cα(t) = e−iEα(t−t0)/~ cα(t0) . (3.47)
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3.2.3 Definition of Green’s functions

We start by defining the time-ordered Green’s function in terms of the creation
and annihilation operators in the Heisenberg representation:

Gαβ(t, t′) ≡ − i
~

Tr
[
ρ̂ T̂ [cα(t)c†β(t′)]

]
, (3.48)

where T̂ is the time ordering operator that orders operators according to
decreasing time with a minus sign for each permutation (fermions), Tr is the
trace operator and ρ̂ is the density matrix operator at time t0. For a system
at thermodynamic equilibrium at time t0 (which we will take as very far in
the past), the density matrix operator is

ρ̂ =
e−(Ĥ−µN̂)/(kBT )

Tr
[
e−(Ĥ−µN̂)/(kBT )

] , (3.49)

where T is the temperature, µ is the chemical potential, kB is the Boltzmann
constant and N̂ is the number operator introduced in eq. (3.14).

There are other useful Green’s functions:

GR
αβ(t, t′) ≡ − i

~
Tr
[
ρ̂ [cα(t), c†β(t′)]+

]
θ(t− t′) , (3.50)

GA
αβ(t, t′) ≡ i

~
Tr
[
ρ̂ [cα(t), c†β(t′)]+

]
θ(t′ − t) , (3.51)

G>
αβ(t, t′) ≡ − i

~
Tr
[
ρ̂ cα(t) c†β(t′)

]
, (3.52)

G<
αβ(t, t′) ≡ i

~
Tr
[
ρ̂ c†β(t′) cα(t)

]
, (3.53)

where θ is the Heaviside step function. GR, GA, G>, and G< are the retarded
Green’s function, advanced Green’s function, greater Green’s function, and
lesser Green’s function, respectively. These functions are related to each other
via the relation

GR −GA = G> −G< . (3.54)

Furthermore, the time-ordered Green’s function can be expressed by using
lesser and greater Green’s functions as

Gαβ(t, t′) = G>
αβ(t, t′) θ(t− t′) +G<

αβ(t, t′) θ(t′ − t) . (3.55)

In the independent electron approximation, when {|α〉} is the basis set
of the eigenstates of the one-body Hamiltonian, the Green’s functions are
diagonal and eq. (3.47) allows us to write them as

GR
αβ(t, t′) = − i

~
e−iEατ/~ θ(τ) δαβ , (3.56)

GA
αβ(t, t′) =

i

~
e−iEατ/~ θ(−τ) δαβ , (3.57)
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where τ = t− t′ and Eα is the αth eigenvalue of the Hamiltonian. Note that
GR and GA do not depend on the state occupation. On the contrary, the
greater and lesser Green’s functions do depend on the states occupation, i.e.
on the density matrix. In fact, it is straightforward to demonstrate that, at
thermodynamic equilibrium, they are given by

G>
αβ(t, t′) = − i

~
e−iEατ/~ [1− f(Eα, µ, T )]δαβ (3.58)

G<
αβ(t, t′) =

i

~
e−iEατ/~ f(Eα, µ, T )δαβ , (3.59)

where f(E, µ, T ) is the Fermi-Dirac distribution function, µ is the chemical
potential of the system and T is the temperature.

Green’s function in the energy domain

We have shown that, for time-independent Hamiltonian operators, the Green’s
functions only depend on the time difference τ = t − t′. This allows us to
easily use the Fourier transform to express the Green’s function in the energy
domain. We define the Fourier transform F (E) in the energy domain of an
arbitrary time-dependent function F (τ) as

F (E) ≡
∫
dτ eiEτ/~ F (τ) so that F (τ) =

1

h

∫
dE e−iEτ/~ F (E) .

(3.60)
Accordingly, in the independent electron approximation, the (diagonal) re-
tarded Green’s function in the basis of the one-body Hamiltonian eigenstates
in the energy domain is

GR
αα(E) =

∫ +∞

−∞
dτeiEτ/~GR

αα(τ) = − i
~

∫ +∞

0

dτei(E−Eα)τ/~ . (3.61)

To make this integral convergent, we add a small and positive imaginary part
to the energy E = E + iε with ε→ 0+, and obtain

GR
αα(E) =

1

E + iε− Eα
. (3.62)

By passing from the basis of the one-body Hamiltonian eigenstates to a generic
basis, we get the matricial form

GR(E) =
1

E + iε−H
. (3.63)
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Analogously, the other Green’s functions in the energy domain (and at ther-
modynamic equilibrium) are

GR(E) =
1

E + iε−H
, (3.64)

GA(E) =
1

E − iε−H
, (3.65)

G>(E) = [1− f(E, µ, T )] [GR(E)−GA(E)] , (3.66)

G<(E) = −f(E, µ, T ) [GR(E)−GA(E)] . (3.67)

These Green’s functions are the key ingredients to calculate important physical
quantities, as I will detail in Subsec. 3.2.5.

3.2.4 Numerical evaluation of Green’s functions

In this subsection, I discuss some useful techniques to efficiently evaluate
the Green’s functions. Such techniques are implemented in the numerical
codes and allow us to deal with systems consisting of hundreds of thousands
of orbitals and to calculate physical quantities such as current, transmission
coefficient, and density of states.

Dyson equation for the retarded and advanced Green’s functions

Let us consider a system described by a single-particle Hamiltonian H. In
general, we can split the Hamiltonian into two components

H = H0 +W , (3.68)

where H0 is a simpler one, for which the retarded and advanced Green’s func-
tions are known, and the term W can be seen as a not necessarily small pertur-
bation. Then, the retarded Green’s function corresponding to the Hamiltonian
H can be calculated as

GR(E) =
1

E + iε− (H0 +W )

=
1

E + iε−H0

[E + iε− (H0 +W ) +W ]
1

E + iε− (H0 +W )

=
1

E + iε−H0

+
1

E + iε−H0

W

E + iε− (H0 +W )

= gR + gRWGR = gR +GRWgR , (3.69)
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where gR is the retarded Green’s function corresponding to the Hamiltonian
H0 andGR is that corresponding to the whole HamiltonianH. Equation (3.69)
is called Dyson equation, and it makes the calculation of the Green’s function
simpler by expressing it in terms of the known Green’s function corresponding
to the component H0.

Decimation-renormalization method

The Dyson equation is a powerful tool to calculate the Green’s function pro-
jected on a subspace of the system by decimating (i.e. eliminating) the degrees
of freedom corresponding to the complementary subspace, and by incorpo-
rating their effect in a renormalized energy-dependent Hamiltonian for the
subspace we are interested in.

For example, let us consider a Hilbert space and split it into subspaces A
and B. We indicate the Hamiltonian operators projected on the two subspaces
as HAA and HBB and the coupling between them as HAB and HBA. With
reference to the notation of eq. (3.68), we can define H0 = HA ⊕ HB and
W = HAB ⊕HBA, i.e.

H = H0 + W =

(
HAA 0

0 HBB

)
+

(
0 HAB

HBA 0

)
. (3.70)

The retarded Green’s function corresponding to the uncoupled subspaces can
be written as

gR(E) =

(
gRA(E) 0

0 gRB(E)

)
with gRA/B(E) =

1

E + iε−HAA/BB

,

(3.71)
while the retarded Green’s function of the complete coupled system is

GR(E) =

(
GR
AA(E) GR

AB(E)

GR
BA(E) GR

BB(E)

)
. (3.72)

From eq. (3.69), we obtain

GR
AA(E) = gRA(E) + gRA(E) HAB GR

BA

GR
AB(E) = gRA(E) HAB GR

BB

GR
BA(E) = gRB(E) HBA G

R
AA

GR
BB(E) = gRB(E) + gRB(E) HBA G

R
AB

(3.73)

If, for example, we are interested in calculating the retarded Green’s function
projected on subspace A, we can combine the first and the third lines of the
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previous equation and obtain

GR
AA(E) = gRA(E) + gRA(E) HAB gRB(E) HBA G

R
AA(E)

=
[(
gRA(E)

)−1 − HAB gRB(E) HBA

]−1

=
[
E + iε − HAA − ΣR(E)

]−1

= [E + iε−Heff(E)]−1 . (3.74)

This relation indicates that the Green’s function projected on subspace A can
be interpreted as that corresponding to the effective renormalized Hamiltonian
Heff(E) ≡ HA + ΣR(E), where the retarded self-energy

ΣR(E) ≡ HAB gRB(E) HBA = HAB
1

E + iε−HBB

HBA (3.75)

accounts for the coupling with subspace B. It is important to note that
the effective Hamiltonian does depend on the energy E, and that it has the
same size of the subspace A. Accordingly, we can say that the degrees of
freedom corresponding to subspace B are decimated into the self-energies and
the Hamiltonian of the subspace A is renormalized to Heff .

Renormalization method for a system between two contacts

The typical configuration that we consider for the simulation of electron trans-
port consists of a central system (C) connected to two semi-infinite leads on
the left side (L) and on right side (R) as electron reservoirs, see Fig. 3.1. With
reference to the Dyson equation illustrated above, we consider the Hamilto-
nian H0 corresponding to the three uncoupled regions, and the term W as the

Figure 3.1: Scheme of the system that consists of three parts, a central system (C)
and two semi-infinite leads on the left (L) and on the right (R). Hi for i = L,R,C
is the Hamiltonian of each uncoupled region. Hi,j for i 6= j is the coupling term
between neighboring regions, region i and region j.
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couplings between neighboring regions:

H =

HL 0 0
0 HC 0
0 0 HR

 +

 0 HLC 0
HCL 0 HCR

0 HRC 0

 = H0 + W . (3.76)

The hermiticity of the Hamiltonian operator implies HLC = H†CL and HRC =
H†CR. The infinite size of HR and HL can be treated by using the periodicity
of the semi-infinite leads, as I will discuss later.

The retarded Green’s functions corresponding to the uncoupled system gR

and to the whole system GR are expressed by

gR =

gRL 0 0
0 gRC 0
0 0 gRR

 and GR =

 GR
L GR

LC GR
LR

GR
CL GR

C GR
CR

GR
RL GR

RC GR
R

 . (3.77)

Among the different components of GR, what we are interested in is the
Green’s function projected on the central region, GR

C . According to the Dyson
equation of eq. (3.69) and eq. (3.75)

GR
C = gRC + gRC ΣL G

R
C + gRC ΣR G

R
C , (3.78)

where ΣL and ΣR are the self-energies of the left and right contacts, respec-
tively, and are defined as

ΣR
L ≡ HCL g

R
L (E) HLC and ΣR

R ≡ HCR g
R
R(E) HRC . (3.79)

The retarded Green’s function is then calculated as

GR
C(E) =

1

E + iε−HC − ΣR
L(E)− ΣR

R(E)
. (3.80)

Therefore, provided we can calculate retarded self-energies ΣR
L and ΣR

R, the
problem is reduced from the inversion of an infinite matrix to the inversion of
a finite matrix with size equal to the number of degree of freedom (or orbitals)
of the central region.

Renormalization of a periodic semi-infinite contact

In order to obtain the Green’s function of the central region by using eq. (3.80),
we need to calculate the self-energies of the semi-infinite contacts. In eq. (3.79),
the matrix size of the Green’s function for each isolated contact, gRL and gRR , is
equal to the size of the corresponding lead Hamiltonian, i.e. it is infinite. How-
ever, since the coupling W only operates between the central region and the
surface regions of the leads (i.e. those that are closer to the central region), we
just need to calculate the Green’s functions on these surface regions. This can
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Figure 3.2: Schematic diagram of the procedure for the renormalization of a peri-
odic and semi-infinite system. Surface (s) and bulk (b) denote odd and even index
of sites from left, respectively.

be done by exploiting the periodicity of the leads and thanks to an algorithm
based on the Dyson equation and developed by M. P. Lopez Sancho et al. in
Ref. [174], also called Sancho-Rubio algorithm. For simplicity, we represent
a lead as a semi-infinite series of points, see Fig. 3.2, where each point corre-
sponds to a primitive cell of the lead. We assume that the Hamiltonian only
couples neighbor cells. The first cell with index 1 is the surface cell, for which
we are interested in calculating the Green’s function. Due to the periodicity,
the Hamiltonian is the same for each cell, as well as the coupling Hamiltonian
between neighbor cells. We indicate the cells with odd index with the letter
“s”, which stands for “surface”, as is the case of cell 1, and those with even
index with the letter “b”, which stands for “bulk”. In order to obtain the
renormalized surface Hamiltonian and then the Green’s function on cell 1, all
the bulk points are decimated at once in each step until the coupling between
the leftmost point and the neighbor becomes negligible. Note that a small
imaginary part in the energy is necessary to make the calculation of Green’s
functions converged. With reference to the decimation-renormalization tech-
nique illustrated above, we consider as H0 the Hamiltonian of all the cells
uncoupled. More specifically, we consider as subspace A all the cells with odd
index, i.e. those labeled by the letter “s”, and as subspace B the remaining
cells with even index, i.e. those labeled by the letter “b”. At the initial step,
the cell-Hamiltonian h is the same for each cell, and the coupling Hamilto-
nian between neighboring cells is set to the coupling Hamiltonians wsb and
wbs between cells. At each step we decimate all the cells with even index,
which all have the same renormalized Hamiltonian and thus just require the
inversion of a single matrix with size equal to the number of orbitals within
each cell. After N steps, 2N−1 cells are decimated and the renormalized cou-
pling between the cells will vanish. This allows us to finally consider the first
surface cell as isolated and to calculate the corresponding Green’s function.
To be more specific, the decimation-renormalization procedure is summarized
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as follows:

0th step : h(0)
s = h0, h

(0)
b = h0, w

(0)
sb = wsb, w

(0)
bs = wbs, g

(0)
b =

1

E − hb

nth step : h(n)
s = h(n−1)

s + w
(n−1)
sb g

(n−1)
b w

(n−1)
bs ,

h
(n)
b = h

(n−1)
b + w

(n−1)
sb g

(n−1)
b w

(n−1)
bs + w

(n−1)
bs g

(n−1)
b w

(n−1)
sb ,

w
(n)
sb = w

(n−1)
sb g

(n−1)
b w

(n−1)
sb ,

w
(n)
bs = w

(n−1)
bs g

(n−1)
b w

(n−1)
bs ,

g
(n)
b =

1

E − h(n)
b

Nth step : w
(N)
sb ≈ 0 → Gs =

1

E − h(N)
s

, (3.81)

where the superscript indicates the number of steps and we dropped the label
R to indicate the retarded Green’s function. When all components of the
coupling term wNsb in the Nth step are close to zero, we can finally obtain the
renormalized Hamiltonian of the leftmost point and thus its Green’s function
Gs. This procedure allows us to efficiently calculate the Green’s function of
periodic and semi-infinite contacts, which are used to obtain the corresponding
self-energies.

Renormalization of a layered system

The tight-binding Hamiltonians considered in this manuscript typically limit
the coupling between few nearest neighbor orbitals. This has the important
advantage of allowing to partition the system under investigation in a set of
layers, each containing a certain number of orbitals, such that the Hamiltonian
only couples first neighbor layers, see Fig. 3.3. Let us imagine to have M lay-
ers, numbered from 1 to M . We indicate by Hmm the Hamiltonian projected
on layer m, and by Hm,m+1 and Hm,m−1 the coupling with its neighbor layers.
If we are interested in the retarded Green’s function on a specific layer, say
n, then we can proceed by decimating the other layers one-by-one, so to have
to invert, at each step, matrices with same size as the layer Hamiltonian. To
be more specific, we start by decimating layer 1 and renormalize accordingly
the Hamiltonian of layer 2

ΣR
(L)(E) = H21 [E + iε−H11]−1 H12 , (3.82)

where the label “L” indicates that we are renormalizing from the left. We
continue with the same procedure by calculating

ΣR
(L)(E) = Hm,m−1

[
E + iε−Hm−1,m−1 − ΣR

(L)(E)
]−1

Hm−1,m , (3.83)
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Figure 3.3: Scheme of the layered system with M layers. Each layer is a set of
orbitals and it is coupled only with its neighbor layers.

up to m = n. We then start the decimation from the right side by

ΣR
(R)(E) = Hm,m+1

[
E + iε−Hm+1,m+1 − ΣR

(R)(E)
]−1

Hm+1,m , (3.84)

from m = M − 1 down to m = n. The label “R” indicates that we are renor-
malizing from the left. We can finally obtain the retarded Green’s function
on layer n by calculating

GR
nn =

1

E + iε−Hn,n − ΣL
(R)(E)− ΣR

(R)(E)
. (3.85)

This technique, implemented in the codes, is very powerful, because it allows
us to treat very large systems without inverting huge matrices.

Keldysh theory

As discussed in Subsec. 3.2.1, the lesser Green’s function is necessary in or-
der to calculate the current flowing through the system. For systems out of
thermodynamic equilibrium, however, obtaining the lesser Green’s function is
more complicated, since, contrary to the retarded Green’s function, it con-
tains information about the occupation of the states. Thanks to the Keldysh
theory [175], the lesser Green’s function of the system out of equilibrium can
be expressed in terms of the Green’s functions for the system at equilibrium.
We do not illustrate the quite lengthy derivation of the theory [165], which is
based on the Feynman diagrammatic expansion of the time evolution opera-
tor, but just the main result, which is the analogous of the Dyson equation
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for out-of-equilibrium Green’s functions. Note that, for the following deriva-
tion, I limit to the non-interacting case, i.e. there is no electron-phonon and
electron-electron interaction.

We consider an (out-of-equilibrium) system with Hamiltonian H = H0 +
W , where H0 is the Hamiltonian for uncoupled subsystems and W is the
coupling term between them. In the absence of W , each subsystem would
be isolated and then individually at thermodynamic equilibrium. There-
fore, we know how to calculate the corresponding lesser Green’s functions,
see eq. (3.67). For example, H0 may correspond to the uncoupled leads and
central region, where clearly the leads would be at equilibrium with the con-
tacts at given temperature and chemical potential. We can thus easily define
the density matrix in terms of eq. (3.49) and obtain the lesser Green’s func-
tions as illustrated below. The presence of W , in our example the coupling
between the central region and the leads, drives the system out of equilibrium
and makes the current flow through the system. We consider that W is adia-
batically switched on from the time t0 (→ −∞) to the time t. In the Keldysh
formalism, the kinetic equation for the lesser Green’s function in the energy
domain reads

G< = g< + GR W g< + G< W gA , (3.86)

or equivalently as

G< = (1 +GR W ) g< (1 +W GA) , (3.87)

where G and g denote Green’s functions for the whole system described by H
and the uncoupled system described by H0, respectively.

For the left-central-right region scheme of system we consider here, g< is
the sum of the lesser Green’s functions for each region, g<L , g<C , and g<R . The
lesser Green’s function of each region can be calculated as g<i = −fi(gRi − gAi )
for i = L,C,R, since each of them is at equilibrium. Then, the lesser Green’s
function projected on the central region that we are interested in is expressed
as

G< = GR (Σ<
L + Σ<

R) GA = ifL G
R ΓL G

A + ifR G
R ΓRG

A , (3.88)

where

Σ<
L = −fL(ΣR

L − ΣA
L) = ifL ΓL (3.89)

Σ<
R = −fR(ΣR

R − ΣA
R) = ifR ΓR , (3.90)

and ΓL/R are called rate operators. The Fermi-Dirac occupation function
fL/R(E) stands for

fL(E) = f(E, µL, TL) and fR(E) = f(E, µR, TR) , (3.91)

where µL and TL are the chemical potential and the temperature of the left
contact and µR and TR are the chemical potential and the temperature of the
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right contact. Note that the equilibrium µC and TC for the central region are
not important, because due to the finite size of the central region its initial
equilibrium (or non-equilibrium) state does not affect the final state after the
connection of the infinite leads.

Some useful identities can be derived from these equations. For the Green’s
functions projected on the central region, we obtain

GR − GA = −i GR [ΓL + ΓR] GA , (3.92)

which is a by-product of eq. (3.88) for fL = fR.

3.2.5 Formulas for the density of states and the charge
current

Density of states

Let us consider a complete orthonormal basis of eigenstates of the Hamilto-
nian {|α〉} with the corresponding eigenvalues {Eα}. For the diagonal Hamil-
tonian, the operator form of the retarded Green’s function of eq. (3.64) can
be expressed as

GR(E) =
∑
α

|α〉 〈α|
E + iε− Eα

. (3.93)

Then, the Green’s function in the real-space representation is written as

GR(r, r′;E) =
∑
α

uα(r)u∗α(r′)

E + iε− Eα
. (3.94)

The summation contains terms of the type f(x) = 1/(x + iε), which, if de-
composed into its real and imaginary parts, gives

f(x) =
x

x2 + ε2
− i

ε

x2 + ε2
. (3.95)

The imaginary part is a Lorentzian function, which becomes −πδ(x) in the
limit ε → 0+. Then, the local density of states ρ(r, E) is obtained from the
imaginary part of the retarded Green’s function as

ρ(r, E) = − 1

π
Im{GR(r, r;E)} =

∑
α

|uα(r)|2δ(E − Eα) . (3.96)

Analogously, the density of states projected on the state |α〉 is given by

ρα(E) = − 1

π
Im{GR

αα(E)} = δ(E − Eα) . (3.97)
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The total density of states ρ(E) is obtained by summing over the different
orbitals (which corresponds to performing the trace) or by integrating in real
space:

ρ(E) = − 1

π
Im{Tr[GR(E)]} = − 1

π
Im

[∫
drGR(r, r;E)

]
=
∑
α

δ(E−Eα) ,

(3.98)
where Tr is the trace operator.

Charge current

Let us consider that the central region of our system extends from layer 1 to
layer M , see Fig. 3.4. Each layer is only coupled to the two neighbor ones.
Using eq. (3.37), the current from site (or orbital) i of layer 0 to site j of layer
1 can be written as

I0i,1j =
−e
h

∫ +∞

−∞
dE 2Re[t0i,1jG

<
1j,0i(E)] . (3.99)

In order to calculate the current, we have to evaluate the matrix elements of
the Green’s function. According to the kinetic equation of eq. (3.86) where
W is the coupling between layer 0 and 1 and between layer M and M + 1, the
current is

I0i,1j =
−e
h

∫ +∞

−∞
dE 2Re

[
t0i,1j

∑
kl

[
GR

1j,1k(E) t1k,0l g
<
0l,0i +G<

1j,1k(E) t1k,0l g
A
0l,0i

]]
.

(3.100)

Figure 3.4: Scheme of the system with a central region, from layer 1 to layer M ,
connected with two semi-infinite leads on the left side and right side.
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The total current is given by the sum of all the local currents from layer 0 to
layer 1

I =
∑
ij

I0i,1j

=
−e
h

∫ +∞

−∞
dE 2 Re

∑
ijkl

[
GR

1j,1k(E) t1k,0l g
<
0l,0i t0i,1j +G<

1j,1k(E) t1k,0l g
A
0l,0i t0i,1j

]

=
−e
h

∫ +∞

−∞
dE 2 Re

∑
ijk

[
GR

1j,1k(E) Σ<
1k,1j(L) +G<

1j,1k(E) ΣA
1k,1j(L)

]

=
−e
h

∫ +∞

−∞
dE 2 Re Tr

[
GR

11(E) Σ<
11(L) +G<

11(E) ΣA
11(L)

]
. (3.101)

When we substitute the lesser Green’s function of the central region with the
expression in eq. (3.88), we finally obtain

I =
e

h

∫
dE 2Re Tr

[
fL(GR

11ΣR
11(L) −GR

11ΣA
11(L) − iGR

11Γ11(L)G
A
11ΣA

11(L))

−ifRGR
1MΓMM(R)G

A
M1ΣA

11(L)

]
. (3.102)

If now we substitute the third term of the right-hand side with the expression
in eq. (3.105), the terms multiplying fL become

GR
11ΣR

11(L) −GR
11ΣA

11(L) − iGR
11Γ11(L)G

A
11ΣA

11(L)

= GR
11ΣR

11(L) −GA
11ΣA

11(L) + iGR
1MΓMM(R)G

A
M1ΣA

11(L) . (3.103)

Note that
Re Tr

[
GR

11ΣR
11(L) −GA

11ΣA
11(L)

]
= 0 (3.104)

according to the relation of 2Re[Tr[AB]] = Tr[AB + (AB)†] for any couple of
matrices A and B, and to the invariance under cyclic permutation of trace
operator. Then, the first two terms of eq. (3.103) are cancelled. Moreover, we
can demonstrate that GR

1MΓMM(R)G
A
M1ΣA

11(L) = GR
11Γ11(R)G

A
11ΣA

11(L). In fact,

eq. (3.92) specified to the sites of layers 1 and M becomes

GR
11 − GA

11 = −iGR
11 Γ11(L)G

A
11 − iGR

1M ΓMM(R) G
A
M1 , (3.105)

and since we can arbitrarily choose the number of layers to include in the
central region by shifting them between the leads and the central region, we
can consider that the latter extends from layer 1 to layer M ′ (M ′ ≥ 1;M ′ 6=
M). By comparison with eq. (3.105), we get

GR
1M ′ ΓM ′M ′(R) G

A
M ′1 = GR

1M ΓMM(R) G
A
M1 . (3.106)
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This equation allows us to substitute GR
1MΓMM(R)G

A
M1 with GR

11Γ11(R)G
A
11,

which makes the calculation simpler by restricting it on the first layer of
the central region. Therefore, by using eq. (3.106), we get

I =
e

h

∫
dE 2(fL − fR)Re

[
iGR

11Γ11(R)G
A
11Σ11(L)

]
=

e

h

∫
dE (fL − fR) Tr

[
GR

11Γ11(R)G
A
11Γ11(L)

]
, (3.107)

where the second line is obtained, in the same way as eq. (3.104), by consid-
ering that Γ(L,R) = i(ΣA

(L,R) − ΣA
(L,R)). Equation (3.107) is exactly the same

formula obtained in the framework of the Landauer-Büttiker formalism [176]
where the transmission coefficient is T (E) = Tr[GRΓ(R)G

AΓ(L)].

To be more quantitative, the room-temperature differential conductance
G(µ) as a function of the chemical potential µ can be calculated in terms of
T (E),

G(µ) =
e2

h

1

4kBτ

∫
dE cosh−2

(
E − µ
2kBτ

)
T (E) , (3.108)

where kB is the Boltzmann constant, and τ is the temperature.

3.3 Transport regimes

In this section, we summarize the main properties of the diffusive and localized
transport regimes, which emerge in initially ballistic conductors when disorder
is present. Indeed, from a semi-classical point of view, in a disordered system,
electrons diffuse in zigzag motion by bouncing between impurities, where the
distance traveled between two scattering events (the mean free path `) de-
creases for increasing impurity density. In quasi-1D disordered system, as is
the case of TMD ribbons considered in this manuscript, the transport regime
is ballistic when the mean free path is larger than the system size, quasi-
ballistic when it is longer than the system width but shorter then the system
length (from contact to contact), and diffusive when it is smaller than the
system size, see Fig. 3.5.

For strong disorder, the diffusion of electrons is highly affected and the
system enters the localized transport regime, with a significant suppression
of the conductance. Such a phenomenon, predicted in 1958 by P. W. Ander-
son [178], can indeed be explained in the frame of quantum mechanics, which
takes into account the wave nature of the particles. The idea is that, in the
presence of disorder and due to wave interference, a wave packet concentrated
at a given time at a given point in a 1D or 2D system, cannot spread beyond
a certain distance, i.e. it localizes in a finite spatial region, which can be
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Figure 3.5: Different transport regimes from ballistic to diffusive depending on the
length of the mean free path (le in the figure) with respect to the length L and the
width W of the conductor. The quasi-ballistic and diffusive regimes allow closed
electron paths and, by virtue of wave nature of the electrons, the observation of
quantum phenomena as weak localization, which are not considered in this thesis.
Reprint from Ref. [177]. c© Springer-Verlag Berlin Heidelberg 1988.

(much) smaller than the system itself if disorder is strong enough. The lo-
calization scaling theory outlined in this section aims to analyze statistically
the scaling of the conductance in the presence of disorders. What follows is a
brief summary of the important aspects and quantitative analysis detailed in
Ref. [179].

The focus of the statistical analysis of Ref. [179] is on chemically-disordered
carbon nanotubes, where impurities are randomly distributed over a tube
section with length L. Figure 3.6 shows the curves of relative fluctuations
∆T/〈T 〉 and |∆ lnT/〈lnT 〉| as a function of L, where T is the transmission
coefficient at a chosen reference electron energy, ∆T is the standard deviation
of T calculated over a large ensemble of different disorder configurations, 〈T 〉
is the average of T , ∆ lnT is the standard deviation of the logarithm of T and
〈lnT 〉 is its average. While ∆T/〈T 〉 increases for increasing L, |∆ lnT/〈lnT 〉|
first increases and reaches a peak near L = `, and then decreases, see Fig. 3.6.
These curves suggest a criterion to discriminate between the transport regimes
: the system remains in the quasi-ballistic or diffusive transport regime as
long as ∆T/〈T 〉 < 1 and enters the localized regime when ∆T/〈T 〉 > 1 and
|∆ lnT/〈lnT 〉| < 1. Where the two fluctuation curves cross, at L = Lc, the
resistance of the nanotube is of the order of the quantum resistance, thus
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Figure 3.6: Relative fluctuations ∆T/T and |∆ lnT/lnT | at E = 0.35 eV for a
(10,10) nanotube with 0.1% nitrogen doping as a function of the tube length L
(continuous lines). ∆T (∆ lnT ) is the standard deviation of T (lnT ) and T (lnT )
is the average of T (lnT ) over an ensemble of disorder realizations. The curve of
R = 1/T as a function of L (dashed line). `e and ξ denote a mean free path and
a localization length, respectively. In the present thesis notation, we indicate T by
〈T 〉, lnT by〈lnT 〉 and `e by `. Reprint from Ref. [179]. Copyright (2007) World
Scientific Pub Co Pte Lt.

indicating the localized transport regime, which is consistent with the argu-
ment of Thouless [180]. Thouless proposed that the normalized conductance
is related to the ratio of two energy scaling as G/G0 ≈ Eth/∆, where G is
the conductance, G0 = e2/h is conductance quantum, Eth = ~D/L2 denotes
the Thouless energy related to the time for a wave packet to diffuse to the
boundaries of the system and ∆ is the mean energy level spacing in the system
of size L. When Eth ≈ ∆ and the conductance is smaller than the quantum
conductance, the localization takes place [180].

The transition of the transport regime from ballistic, to diffusive and then
to localized can be statistically analyzed by considering the frequency distri-
bution of the transmission coefficient over an ensemble of disorder realizations.
When ∆T/〈T 〉 < 1 and the frequency distribution of T is very narrow with
a maximum close to its ballistic value N , where N is the number of active
modes in the system at the considered electron energy E, the transport regime
of the system is quasi-ballistic. When L increases, as long as ∆T/〈T 〉 < 1, the
frequency distribution becomes more symmetric, as a Gaussian distribution,
which indicates the diffusive transport regime. In this regime, the transmis-
sion decreases progressively for increasing L, and it is characterized by a mean
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free path ` such that
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N`
≡ Rco + Rch .

(3.109)
In eq. (3.109), we split the zero-temperature average resistance R in terms of
the contact resistance Rco and channel resistance Rch components. According
to this equation, the transmission is expected to be close to N for L � `,
which indicates the quasi-ballistic regime. For larger L of the order of the
mean free path, the system enters the diffusive regime, where it stays as long
as ∆T/〈T 〉 < 1.

For even larger L, the transmission decreases exponentially, thus indi-
cating that the system has entered the localized regime. Furthermore, a
strongly asymmetric frequency distribution of T with a peak close to zero with
∆T/〈T 〉 > 1 emerges. At the same time, the distribution of the transmission
coefficient logarithm lnT exhibits a Gaussian shape with |∆ lnT/〈lnT 〉| < 1.
In this regime, the average logarithm of the transmission coefficient scales as

〈lnT 〉 ∝ −L/ξ , (3.110)

where ξ is the localization length. The detailed fitting of the length scaling,
` and ξ, for the disordered systems considered in this thesis, is presented in
Sec. 5.2 and Sec. 6.2.

3.4 Summary

In this Chapter, I presented the theoretical framework of the present thesis,
which is the Green’s function formalism. After introducing the second quanti-
zation formalism, and in particular the creation and annihilation operators, in
Sec. 3.1.1, we defined the local charge operator and, by means of the charge
continuity equation, the current operator. The expectation values of these
operators were then expressed in terms of the Green’s function, defined in
Sec. 3.2. The retarded and advanced Green’s functions contain information
about the electronic structure, while the lesser and greater Green’s function
contain information about the statistics of the system, and therefore on the
thermal equilibrium or out-of-equilibrium condition. To allow their efficient
numerical evaluation, we introduced the decimation-renormalization method
of the periodic semi-infinite contact and layered system. This approach per-
mits us to evaluate the retarded and advanced Green’s functions projected
on the subsystem of interest and to reduce the number of degrees of freedom.
Analogously, we illustrated how the Keldysh theory provides us with kinetic
equations to obtain the out-of-equilibrium lesser and greater Green’s functions
in terms of those calculated at thermal equilibrium. This result is particu-
larly important, because electron transport is a non-equilibrium phenomenon,
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which occurs when the chemical potentials of the contacts are different. At
the end of Sec. 3.2, we derived the formulas of physical quantities such as
density of states, current, and transmission coefficient in terms of the Green’s
functions. These formulas are those implemented in the numerical code and
used to obtain all the results presented in Chapter 5 and 6. Lastly, in Sec. 3.3,
we discussed how (elastic) quantum transport can be classified in the ballis-
tic, quasi-ballistic, diffusive and localized regimes. The scaling theory here
summarized will be used to analyze the impact of various disorders on the
transport properties of MoS2 in Chapter 5 and 6.
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Chapter 4

Structure and implementation
of the numerical code

The numerical codes are written in both Fortran language and Matlab soft-
ware and run on a multi-processor server operating under the Linux operating
system. I made use of Matlab software for the graphic visualization of all the
results presented in the following Chapters. In Sec. 4.1, I will briefly introduce
the structure and procedure of the codes with a simple flowchart. Section 4.2
details the implementation of the TB Hamiltonian, which represents a signifi-
cant and essential part of my thesis work. In particular, the choice of SK TB
method for TMD materials allowed us to investigate the impact of various
disorders with atomistic precision, and thus its numerical implementation is
an important aspect.

4.1 General structure of the codes

The main code developed for the transport simulations consists of separate
subroutines, each assigned to a specific task such as the evaluation of self-
energies for contacts and renormalization of a layered system as discussed in
Subsec. 3.2.4. In particular, as a prior task for the simulations, the definition
of the Hamiltonian and its evaluation were, together with the geometrical
definition of the defects in TMD ribbons, the main contributions to the nu-
merical code development during my PhD, and they will be presented later in
Sec. 4.2. This Section illustrates the general structure and procedure of the
numerical codes.

Figure 4.1 shows the flowchart of the quantum transport simulations per-
formed by the numerical codes. The first step is to define a unit cell, which
is the building block of the system, for given lattice parameter and TMD
ribbon chirality (n,m). The ribbon chirality determines the unit cell and the
translation vectors, see Ref. [181] for more details. In this thesis, two repre-
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Figure 4.1: Flowchart of numerical code for the simulation of quantum electron
transport in TMD ribbons. VS denotes sulfur vacancies of MoS2.

sentative ribbon orientations are considered: armchair, which corresponds to
n = m = 1, and zigzag, which corresponds to n = 1 and m = 0. The resulting
unit cells and translation vectors are indicated in Fig. 4.2. We make use of
this unit cell as a building block to construct a system of width W and length
L. Note that the system consists of a central region (C), which extends over
length L, connected to the source and drain electron reservoirs by periodic
semi-infinite left (L) and right (R) leads.

Based on the spatial coordinates of the atoms, the Hamiltonian of the
system is calculated in the framework of the SK TB model with the parame-
terization of Ref. [29], as discussed in Sec. 2.1. On the basis of the coupling
between atomic orbitals as encoded in the TB Hamiltonian, the code defines
layers of orbitals that are only coupled with their neighbor layers. Once the
Hamiltonian is defined and the system is layered, the code evaluates the self-
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energies of the periodic semi-infinite contacts by the renormalization method.
Then, by using the calculated self-energies of the contacts and the Hamil-
tonian of the layered system, the Green’s functions for any layer within the
central region are calculated by decimating the other layers one-by-one and by
renormalizing the Hamiltonian accordingly. More details of these techniques
are presented in Subsec. 3.2.4. From the so-obtained Green’s functions, the
code extracts all the requested physical quantities, such as the local density
of states and transmission coefficient.

The main objective of my thesis is to investigate the impact of various dis-
orders on the transport properties of TMD materials. For this purpose, several
representative disorders found in experiments, as discussed in Sec. 1.4, are con-
sidered. Atomistic disorders such as vacancies, line defects and edge roughness
are introduced when building the system. In this respect, the calibration of
the geometrical (in particular the lattice distortion) and Hamiltonian param-
eters against DFT results is essential. Other considered sources of disorders
only introduce a variation of the on-site potentials of atoms, i.e. they appear
on the diagonal of the Hamiltonian matrix, and can then be introduced after
the geometric construction of the system. More specifically, I implemented
Anderson disorder [178], which corresponds to random very short-range po-
tential variations on the atoms of the system, as well as long-range Gaussian
impurities, which will be detailed in Sec. 6.1.

4.2 Implementation of TB Hamiltonians

In order to build the atomistic SK TB Hamiltonian of the system, we start
from the structure of TMD material, which shows a hexagonal geometry whose
primitive cell (blue rhombus) and lattice vectors (blue arrows) are indicated
in Fig. 4.2. For the representative orientations, zigzag and armchair, we make
use of a rectangular cell (red rectangle) as a unit block, whose lattice vectors
(red arrows) are aligned along the x- and y-directions, to build the complete
system. In the case of MoS2, such a cell contains six atoms: two Mo atoms and
four S atoms. We thus have 22 orbitals in total per cell (three p orbitals for
each S atom and five d orbitals for each Mo atom). Each layer of the system
is then built as a vertical series of cells and, accordingly, the whole system
can is obtained with a longitudinal series of layers. Note that the number of
cells in each layer determines the width of the system, while the number of
the layers in the central region determines its length.

The Hamiltonian in the second quantization representation for the mth
layer can be expressed as

Hm,m =
∑
α,µ

εαµc
†
αµcαµ +

∑
〈αβ〉,µν

[tαµ,βνc
†
αµcβν + H.c.] , (4.1)

where the operators c†αµ (cαµ) create (annihilate) an electron in the orbital µ
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Figure 4.2: Atomistic structure of a layered system as Fig. 3.3. In this example,
the transport direction aligns the zigzag orientation. Blue rhombus and arrows
represent the primitive cell and its lattice vectors of TMDs, respectively. Red
rectangle and arrows denote a unit cell and its lattice vectors of the representative
orientations (zigzag and armchair), respectively. Purple and yellow dots denote
molybdenum and sulfur atoms, respectively.

of the atom α belonging to layer m. The parameter εαµ is the on-site energy of
the orbital µ in the atom α and tαµ,βν is the hopping energy between the orbital
µ of the atom α and the orbital ν of the atom β. The first term contributes to
the diagonal elements of the matrix. For the second term, 〈αβ〉 denotes a sum
over pairs of atoms (α 6= β), whose couplings include the NN Mo-St,b, Mo-Mo,
and S-S (St-St, Sb-Sb, St-Sb) [29]. In the implemented code, this operation is
performed by scanning all the atoms of layer m and finding their neighbor
atoms in the same layer m within a given cut-off distance. Then, the hopping
energy for each pair is obtained by the SK two-center energy integrals given
in Table 2.1. In a similar way, the coupling term Hm±1,m can be obtained by
browsing the neighbor atoms within layer m± 1.

In the case of 2D systems, the system is obtained by periodically replicating
the cell along the transverse y-direction. By making use of the basis of the
Bloch states, we obtain a more manageable (and finite size) ky-dependent
Hamiltonian H(ky).
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Chapter 5

Transport in rough MoS2
ribbons

In microelectronics, an important aspect is the progressive miniaturization of
the transistors, which enables the reduction of the power consumption, the
increase of the switching speed and the large scale integration. This trend
was prophesized by the Moore’s law [76] and pragmatically coded in the In-
ternational Technology Roadmap for Semiconductors [77] and more recently
in the International Roadmap for Devices and Systems [78], which suggest
the implementation of nanometer-size channels for the next transistor gen-
eration. Keeping the pace with this trend is technologically very challeng-
ing. Indeed, it is known that, in standard bulk semiconductor-based transis-
tors, miniaturization is associated with performance degradation due to the
so-called short-channel effects. They include electrostatic issues as well as
source-to-drain direct tunneling, which originates from the quantum nature
of electrons. The further lateral confinement of the transistor channel, in the
case for example of nanowire transistors or FinFETs, exacerbates the problem
of roughness at the interface between semiconductor and oxide, thus affecting
the charge mobility [79], [80].

We can expect analogous problems for devices based on 2D materials [82],
when using nanoribbons [83] as channel for ultrascaled devices. For the use of
TMD nanoribbons, one issue is the presence of metallic edge states within the
bulk gap and the other is edge roughness inevitably found in experiments, see
more details in Subsec. 1.4.3. In particular, edge roughness is expected to play
a major role in narrow ribbons obtained from 2D materials, due to the large
length or surface ratio of the disordered edges with respect to the whole system
surface. In the case of semiconducting TMDs, a physical and quantitative
understanding of the impact of edge roughness on the transport properties of
ribbons with nanometer width is essential in view of their potential application
in ultrascaled nanoelectronics. In this Chapter, the impact of edge roughness
on the transport properties of MoS2 is investigated by means of atomistic
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description presented in Sec. 2.1 and the Green’s function technique detailed
in Sec. 3.2. Section 5.1 introduces the geometric structure for this study
and the model for edge roughness. In Sec. 5.2, we consider two aspects:
the conductance due to edge states within the bulk gap and that of bulk
states outside the gap. For better understanding, a quantitative insight by
estimating physical quantities such as localization length and mean free path
in terms of the transport regime is presented. Finally, Sec. 5.3 concludes.

This Chapter and its figures are largely reproduced from [J. Park, M. Mouis,
F. Triozon, and A. Cresti, Impact of edge roughness on the electron trans-
port properties of MoS2 ribbons, Journal of Applied Physics 124 (22), 224302
(2018), doi: 10.1063/1.5050383], with the permission of AIP Publishing.

5.1 Simulation model

For the investigation of the impact of edge roughness on MoS2 ribbons, we
make use of an atomistic description of TB model, which reasonably describes
atomistic disorders, and consider a 1D system along the x-direction. Edge
roughness is introduced over a region with length L of the system. Accord-
ing to the atomistic structure, the Hamiltonian can be obtained in the TB
description as discussed in Sec. 4.2.

In Subsec. 5.1.1, I introduce a model of edge roughness for MoS2 ribbons
and its parameterization by the comparison with the experimental results
of Ref. [81]. Furthermore, according to the model of edge roughness, the
geometric structure of the system as well as its Hamiltonian are detailed in
Subsec. 5.1.2.

5.1.1 Model of edge roughness

We consider MoS2 ribbons of width W , infinitely extended along the ribbon
axis on both sides, and with a section of length L with rough edges, as shown in
Fig. 5.1. Note that the two contacts are periodic in the x-direction without any
edge roughness while the central part of the system has edge roughness over
L. Edge roughness is introduced by generating random spatial profiles for the
edges with shift ∆(x) along the transverse direction y and with autocorrelation
function

〈∆(x′)∆(x− x′)〉 = ∆2
me
−|x|
√

2/`m , (5.1)

where ∆m is the roughness amplitude and `m is the correlation length. This
model is inspired by Ref. [182], where it is adopted to describe surface rough-
ness at the interface between silicon and silicon oxide.

Reference [81] provides transmission electron microscopy micrographs of
high-quality MoSe2 zigzag nanoribbons obtained by MBE, see Fig. 1.8. It
turns out that the roughness along the chalcogen-terminated edge is larger
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Figure 5.1: Sketch of (a) zigzag and (b) armchair MoS2 ribbons. Mo atoms are
in pink color, S atoms are in yellow color. The left part and right part of the
ribbons are pristine, which corresponds to the contacts. The central part has edge
roughness. In the region with rough edges, removed Mo and S atoms are indicated
in gray color.

than along the metal-terminated edge. We approximately reproduce the ex-
perimental profiles by setting `m = 5 nm, and ∆m = 0.5 nm and 0.25 nm,
respectively. This asymmetry of the two different edges can be interpreted in
terms of the energy gain. DFT calculations revealed that the energy gain of the
reconstructed Mo-terminated edge is 0.82 eV, while that of the reconstructed
Se-terminated edge is 0.16 eV, indicating that the Mo-terminated edge is
more stable and thus becomes straighter than the Se-terminated edge [81].
For a fair comparison with zigzag ribbons, we consider an intermediate value
∆m = 0.375 nm on both edges of armchair ribbons. An example of edge
roughness realization is illustrated in Fig. 5.1. Note that the rough edges are
allowed to exceed the nominal width W of the ribbon.

5.1.2 Model structure

As representative of the two main crystallographic orientations, we consider
zigzag (z-MoS2) and armchair (a-MoS2) ribbons, see Fig. 5.1. Note that, in
the absence of edge roughness, z-MoS2 terminate differently on the two edges,
either with S atoms or Mo atoms while a-MoS2 edges are symmetric and
contain both species. We consider the presence of edge roughness on both
edges over a region with length L, with the same parameters discussed above
for MoSe2. Left and right contacts connected to the central part are semi-
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infinite in the −x- and +x-direction, respectively. Note that the contacts are
pristine without edge roughness and thus they preserve their periodicity with
the translation vectors, which allows the renormalization of the contacts as
shown in Subsec. 3.2.4.

To describe the system, we make use of the TB model of Ridolfi et al. [29],
which properly takes into account the atomistic details of the system, in par-
ticular of the rough edges, and accurately reproduces the low-energy electronic
structure over the whole BZ, see Sec. 2.1.2. Note that we do not modify the
model parameters at the ribbon edges, thus implicitly assuming their perfect
passivation. To reduce the computational burden, we do not include SOC.
Indeed, SOC is found not to play an essential role in our case, as we will
discuss in Subsec. 5.2.6.

5.2 Results and discussion

By means of calculations of the Green’s functions introduced in Sec. 3.2 based
on the atomistic TB model, we explored the electronic properties as well as the
electron quantum transport of MoS2 ribbons in the presence of edge roughness.
As discussed in Subsec. 1.4.3, zigzag edges show metallic properties with the
presence of states along the edges for energies within the bulk band gap,
while for armchair edges the dispersive bands corresponding to edge states do
not completely close the bulk band gap, thus leaving some forbidden energy
ranges, see the red bands in the insets of Fig. 5.2. In what follows, I will
provide a detailed analysis of the electronic structure of these states and of
the robustness of their transport properties in the presence of edge roughness.
Furthermore, I will show the impact of edge roughness on the conductance for
energies outside the bulk band gap, which provides a physical understanding
of the transport degradation for the use in electronic applications.

This Section is organized as follows. Subsection 5.2.1 details the electronic
structure of MoS2 ribbons with two representative orientations, a-MoS2 and
z-MoS2. In Subsec. 5.2.2 and Subsec. 5.2.3, we investigate electron transport
of the edge and bulk states, respectively, in the presence of edge roughness.
Furthermore, the scaling analysis of the transport properties with physical
quantities is reported. The detailed analysis of the impact of edge roughness
on the conductance of the bulk states outside the gap are discussed in terms
of the mean free path in Subsec. 5.2.4. Moreover, the different impact of edge
roughness on a-MoS2 and z-MoS2 and the effect of SOC, which gives a large
spin-splitting of the VB in TMD materials, are discussed in Subsec. 5.2.5 and
Subsec. 5.2.6, respectively.
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Figure 5.2: (a) Inset: Band structure of a z-MoS2 with width W = 10 nm. The
bands corresponding to edge states are indicated by red lines. Main panel: Trans-
mission coefficient for the ribbon in the pristine case (L = 0) and in the presence
of edge roughness over a section of length L varying from 50 nm to 200 nm. The
parameters for edge disorder generation are `m = 5 nm, ∆m = 0.5 nm on the
S-terminated edge and 0.25 nm on the Mo-terminated edge. (b) Same as (a) for an
a-MoS2. In this case, ∆m = 0.375 nm on both edges.

5.2.1 Electronic properties

We consider zigzag and armchair MoS2 ribbons with width W = 10 nm. The
insets of Fig. 5.2 show the corresponding band structure as obtained from
the TB Hamiltonians. In the case of the z-MoS2, we observe three valence
valleys, two at the BZ sides and one at the center. They correspond to the
K/K’ valleys and Γ valley of 2D MoS2, respectively. Note that these bulk
bands (black lines) appear as quantized subbands due to lateral confinement.
As for the CB, we observe four main valleys, which correspond to the K/K’
and Q valleys of 2D MoS2. Importantly, some edge states (indicated by red
lines) are present within the bulk band gap. The edge states corresponding
to the band indicated by a dashed red line are located at the S-terminated
edge of ribbon, while the edge states corresponding to the bands indicated
by continuous red lines are on the Mo-terminated edge. This asymmetry,
which relates the energy of the edge states to their spatial distribution, is also
experimentally confirmed in the case of MoSe2 zigzag ribbons [81]. In the
case of the a-MoS2, the valence Γ and K/K’ valleys of 2D MoS2 are all folded
at the center of the BZ, where a single valley appears. In the CB, the K/K’
valleys of 2D MoS2 are folded at the center of the BZ and the Q valleys at the
sides. Again, edge states are present. However, they do not completely close
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the band gap. These states are doubly degenerate and located at both edges,
since the a-MoS2 has symmetric edges.

The main panels of Fig. 5.2 report the transmission coefficient T as a
function of the electron energy E for the pristine ribbons and in the presence
of edge roughness over ribbon sections of length L. For pristine ribbons,
T is quantized and equal to the number of active bands at energy E. In
particular, we observe the significant contribution of the bands from the Γ
valley for E . −200 meV. Analogous considerations hold for the Q valleys in
the CB. Note that such contributions would incorrectly not be present if we
made use of a simple k · p model, see Sec. 2.2. Within the bulk band gap, due
to the presence of the dispersive edge states, electron transport is possible in
the absence of edge roughness.

5.2.2 Localized transport regime of edge states

In the presence of edge roughness, the transmission coefficient of the edge
states is completely suppressed, and a transport gap opens in correspondence
of the band gap of 2D MoS2. As already reported in the literature [138],
this is a consequence of the quasi-1D nature of these states, which determines
their localization in the presence of short-range disorder. To better quan-

Figure 5.3: (a) Main panel: Average transmission coefficient as a function of the
electron energy for the z-MoS2 with width W = 10 nm in the energy range of the
bulk band gap. The average is performed over 100 realizations of edge roughness.
Inset: Frequency distribution of lnT for L = 10 nm at E = 0.5 eV. (b) Main
panel: Localization length as a function of the electron energy. The shadowed
regions correspond to energy ranges where we could not extract ξ, because too
small (inside the bulk band gap) or too large (just outside the bulk gap). Inset:
Average logarithm of the transmission coefficient as a function of L at E = 0.5 eV.
The continuous line corresponds to the linear fit.
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tify this behavior, we consider shorter lengths L ≤ 20 nm and an ensemble
of 100 edge disorder realizations for each length. Figure 5.3(a) reports the
average transmission coefficients 〈T 〉 as a function of the energy within the
band gap. We observe that 〈T 〉 rapidly decreases for increasing L and it is
already strongly suppressed for L = 20 nm. This suggests that the trans-
port regime is localized, as confirmed by the inset of Fig. 5.3(a), which shows,
for the representative energy E = 0.5 eV and length L = 10 nm, a typical
Gaussian frequency distribution of the transmission coefficient logarithm lnT
with |∆ lnT / 〈lnT 〉| < 1, where ∆ lnT is the standard deviation, in agree-
ment with the criterion of the localized transport regime discussed in Sec. 3.3.
The inset of Fig. 5.3(b) confirms the linear scaling of 〈lnT 〉 with L for the
representative energy E = 0.5 eV. The main panel of Fig. 5.3(b) reports the
localization length as a function of the energy, extracted from eq. (3.110).
We find that ξ ≈ 1-2 nm within the whole bulk gap, thus confirming the
extremely short localization length for the edge states and the suppression
of their transmission contribution for L & 20 nm. If, on the one hand, this
makes the experimental observation of edge states in realistic samples diffi-
cult, on the other, it restores the bulk gap and limits subthreshold leakage in
transistors. Note, however, that a residual edge conductivity is experimen-
tally measured in micrometer-size samples [92], which might be related to the
specific passivation of the edge dangling bonds.

5.2.3 Diffusive transport regime of bulk states

Outside the gap region, T decreases progressively when increasing L from
50 nm to 200 nm, as shown in Fig. 5.2. This suggests that a transition
from ballistic to diffusive transport regime takes place. To better investigate
this aspect, we consider again an ensemble of 100 different edge roughness
realizations for each length L. Figure 5.4 shows the average transmission
coefficients. We can confirm that the transport regime is diffusive by looking,
for given E and L, at the frequency distribution of T around its average value
〈T 〉, as discussed in Sec. 3.3. As in the example reported in the insets of
Fig. 5.4 for a representative energy E = 2.3 eV and length L = 100 nm,
we observe a typical Gaussian distribution with ∆T/〈T 〉 < 1, with ∆T the
standard deviation of T . According to eq. (3.109), the channel resistance Rch

scales linearly with L, which allows us to extract the mean free path `, see
Fig. 5.5. With the exception of the energy regions at the band gap edges, for
the chosen configuration and disorder parameters, both z-MoS2 and a-MoS2

show a relatively large mean free path ` between 40 nm and 60 nm. Therefore,
these ribbons are expected to be in the quasi-ballistic transport regime for L
in the order of tens of nm (L < `), and to stay in the diffusive regime up to
hundreds of nm (L < N`) before entering the localized regime (L� N`).
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5.2.4 Scaling of mean free path

We now consider how the mean free path scales with the ribbon width W and
the roughness strength ∆m. Figure 5.6 reports ` for a representative energy
E = −200 meV in the VB. But for some fluctuations, we observe that ` scales
linearly with the ribbon width and is inversely proportional to ∆

3/4
m . The fit

for this specific case is indicated in the caption of Fig. 5.6. Such a behav-
ior is consistent with the observation that the effect of the edge roughness is
expected to be proportional to the area of the disordered edges over that of
the pristine bulk region. The detrimental effect of edge roughness on electron
transport is thus considerably more significant in ultra-narrow ribbons. In-
deed, for W = 5 nm the mean free path can be less than 20 nm at the edges
of the bulk gap. Therefore, in that energy range, transport rapidly degrades
and enters the localized regime for longer ribbons, with an estimated local-
ization length ξ ≈ 75 nm. We can thus conclude that ultra-narrow ribbons
(W < 5 nm) undergo a stronger reduction of the charge mobility around the
bulk gap.

To be more quantitative, we calculated the room-temperature differential
conductance G(µ, L) of 5 nm wide ribbons with different roughness ampli-
tudes as a function of the chemical potential µ and the length L by using
eq. (3.108). To reduce the computational burden, we considered the aver-
age over only 10 realizations for each roughness amplitude, and not over an
ensemble of 100 realizations as for the other simulations. The results are
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Figure 5.4: Main panels: Average transmission coefficient as a function of the
electron energy for (a) the z-MoS2 and (b) the a-MoS2 of Fig. 5.2. The average is
performed over 100 realizations of edge roughness. Insets: Frequency distribution
of T for L = 100 nm at E = 2.3 eV, in the CB just above the bulk gap. The
standard deviation ∆T is around 0.3 in both cases.
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Figure 5.5: Main panels: Mean free path as a function of the electron energy for
(a) the z-MoS2 and (b) the a-MoS2 of Fig. 5.4. Insets: Average zero-temperature
channel resistance at two selected electron energies close to the edges of the bulk
gap, E = −100 meV and E = 2.3 eV. The continuous lines correspond to the linear
fit with length L.

Figure 5.6: Mean free path for a z-MoS2 at E = −200 meV as a function of
the ribbon width and for different strengths of the edge roughness. The case
1.0 × ∆m corresponds to ∆m = 0.5 nm on the S-terminated edge and 0.25 nm
on the Mo-terminated edge. In the other cases, ∆m are scaled accordingly. For the
configuration here considered, we find ` ≈ 2.61 W / ∆3/4 nm, where ∆ is the
average of ∆m on the two edges. The continuous lines correspond to the linear fit.
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Figure 5.7: Color map: average room-temperature differential conductance over an
ensemble of 10 zigzag ribbons of width 5 nm as a function of the chemical potential
µ and the length L of the rough ribbon section, for different values of the roughness
amplitude (a) 0.5×∆m, (b) 1.0×∆m, (c) 2.0×∆m, and (d) 3.0×∆m . The white
lines indicate the length where the conductance is 1%, 10%, 20% and 50% that of
the pristine ribbon.

anyway representative, since the long length of the ribbon and the temper-
ature smearing introduce a self-averaging effect, which limits the variability
between different disorder realizations. The white lines in Fig. 5.7 indicate
the length where the conductance is reduced to 50%, 20%, 10% and 1% that
of the pristine ribbon.

5.2.5 Different behavior of zigzag and armchair ribbons

In Fig. 5.2, we observe that for large L and E . −300 meV, the transmission
coefficient for E . −300 meV is more affected for a-MoS2 than for z-MoS2.
At first sight, this difference is surprising, because the number of conductive
modes are quite similar in the two cases, and the effective mass of 2D MoS2

at K, K’ and Γ points is rather isotropic [183]. Since the different behavior
starts at an energy that roughly coincides with the activation of the Γ valley,
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Figure 5.8: (a) Continuous line: Top VB of 2D MoS2. Dashed line: Top VB of
2D MoS2 with modified TB parameters to shift down the states at the Γ-point and
exclude their contribution to transport. The band shift is obtained by decreasing
the on-site energy of the orbital dz2 of Mo atoms by -0.4 eV, which corresponds to
the states at Γ. (b) Continuous lines: Average transmission coefficient for z-MoS2

(blue) and a-MoS2 (red). Dashed line: Average transmission coefficient for for z-
MoS2 (blue) and a-MoS2 (red) with the modified TB parameters. Arrows indicate
the energy where the average transmission coefficient for a-MoS2 and z-MoS2 starts
to differ.

we initially conjectured that its physical origin was related to some enhanced
inter-valley scattering. In order to examine this possibility, we made a change
of the TB parameters to artificially shift the valence Γ valley toward more neg-
ative energies, see Fig. 5.8(a). Then, we recalculated the average transmission
coefficient with the new parameters and compared it with the previous result,
see Fig. 5.8(b). Surprisingly, the smaller transmission coefficient of a-MoS2

compared to that of z-MoS2 is still observed with the modified parameters in
the same energy range. Therefore, we ruled out this possibility and excluded
any significant role of inter-valley scattering.

A clarifying physical insight can instead be gained by looking at the lo-
cal density of states. Figure 5.9 shows the difference between the density of
states, averaged over the ribbon length, across the ribbon section in the pres-
ence and in the absence of edge roughness. While for z-MoS2 no significant
variation is observed along the edges, for a-MoS2 localized edge states form
at negative energies (see arrows), which enhance electron scattering. Though
only the results for a single disorder realization are shown here, we verified
that this behavior is general. We ascribe such a difference to the different
way edge roughness affects the ribbon geometry in the two orientations. As
shown in Fig. 5.1(b), due to the orientation of the ribbon axis, in a-MoS2

the roughness mainly entails the formation of adjacent and extended zigzag
segments with Mo-terminated or S-terminated edges. As a consequence, edge
states form on the Mo-terminated regions (as at the Mo-terminated edges



82 5 Transport in rough MoS2 ribbons

ar
b.

 u
ni

t
(

)

Figure 5.9: (a) Difference of the density of state, averaged over the whole disordered
region, between a rough and a pristine z-MoS2 as a function of the electron energy
and the y-coordinate along the ribbon transverse section. The vertical features
correspond to the band edges in the pristine system, where van Hove singularities
appear. (b) Same as (a) for an a-MoS2. The arrows indicate the localized states in-
duced at the ribbon edges. It can be shown that they are located on Mo-terminated
edge segments.

of pristine z-MoS2 at negative energies), which are separated by the insu-
lating S-terminated regions (since the edge states in the S-terminated edges
of z-MoS2 are only present at positive energy). Note that, differently from
z-MoS2, pristine a-MoS2 do not show any edge state for E < 0, see the insets
of Fig. 5.2. These states, only induced by roughness, are at the origin of the en-
hanced backscattering, especially at more negative energies (E . −300 meV),
since the corresponding bulk modes have a more significant component at the
edges and thus their coupling to the induced edge states is larger.

5.2.6 Effect of spin-orbit coupling

Finally, we would like to comment on the role of SOC, whose strength is
quite substantial in TMDs [25], as discussed in Chapter 2. We repeated the
simulation for the z-MoS2 of Fig. 5.2(a) by doubling the basis and including
SOC in the Hamiltonian [131]. As illustrated in Fig. 5.10(a), the energy
bands of the pristine z-MoS2 show the expected spin-splitting of the VB at
the K/K’ valleys. To be more precise, in the absence of SOC, the edge of
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Model eq.(5.2)

Figure 5.10: (a) Band structure of the z-MoS2 ribbon of Fig. 5.2(a) in the presence
of SOC. The band structure in the absence of SOC is indicated by red thin lines,
for comparison. The yellow stripe indicates the energy separation between the
spin-split bands at K and K’ valleys. (b) Transmission coefficient for the pristine
ribbon and in the presence of edge roughness over a length L = 100 nm, with and
without SOC. Note that to take into account the spin degeneracy in the absence
of SOC, the transmission coefficients have been doubled compared to the previous
figures.

the VB at K and K’ valleys is at E ≈ 28 meV. In the presence of SOC, the
VB at K/K’ split into two series of bands, one starting at E ≈ 113 meV
and the other at E ≈ −57 meV. The split bands are spin polarized, with
opposite polarization at different valleys. This splitting is indicated by a
yellow horizontal strip in the figure, which separates the two series of spin-split
bands. If now we examine the average transmission coefficient 〈TSOC〉 obtained
for a rough ribbon with L = 100 nm with SOC, see Fig. 5.10(b), we obtain
that it can be roughly fitted by

〈TSOC(E)〉 ≈ 〈Tno−SOC(E − 85meV)〉 + 〈Tno−SOC(E + 85meV)〉
2

, (5.2)

where Tno−SOC is the transmission coefficient in the absence of SOC obtained
before (and multiplied by 2 to take into account spin degeneracy), while the
energy shifts correspond to the energy spin-splitting of the bands. In other
words, apart from the energy shift and the removed spin degeneracy, the
transmission coefficient is roughly the same as in the case without SOC inves-
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tigated before. This validates our previous assumption, and, more interest-
ingly, excludes any significant role of inter-valley scattering at low energies.
Indeed, due to the spin-valley locking [145] and the absence of magnetic disor-
der, inter-valley scattering just below the charge neutrality point is forbidden,
contrary to the case without SOC. Since the observed behavior is de facto
equivalent in the two cases, we can conclude that the complete suppression
of inter-valley scattering by SOC does not significantly affect the way edge
roughness degrades the electron transport.

5.3 Summary

In this Chapter, I presented a numerical study of the quantum electron trans-
port properties of MoS2 nanoribbons with edge roughness. The edge states of
the pristine ribbon are found to rapidly localize, with a localization length in
the nanometer order. As a consequence, the electron transport within the bulk
gap is strongly suppressed. For energies outside the bulk gap, the main conclu-
sion is that for ribbon widths larger than 10 nm and moderate (but realistic)
edge roughness, the system shows a rather large mean free path, which allows
the system to stay in the diffusive transport regime over a large range of ribbon
lengths. The effect of edge roughness is thus compatible with the use of TMD
ribbons in nanoelectronics. The mean free path decreases with the ribbon
width, thus more rapidly degrading the conductance of ultra-narrow ribbons,
especially for energies close to the bulk gap edges. Completely smooth edges,
as obtained for ribbons produced by electron irradiation [85] or encapsulation
in carbon nanotubes [86], would prevent the transport regime to become lo-
calized in ultra-narrow ribbons, but, at the same time, would not suppress
the edge conductance within the bulk gap.
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Chapter 6

Transport along and across
disordered mirror twin grain
boundaries in MoS2

For applications, a large-scale fabrication of large-area TMDs is crucial. In this
respect, CVD [54]–[56] has emerged as a very efficient growth technique, which
is promising for industrial production, as discussed in Sec. 1.3. However, CVD
TMDs may present several kinds of defects, which are expected to significantly
impact the electronic and transport properties, with possible degradation of
the device performance. The most common defect is the polycrystallinity
of CVD TMDs, which is inherent in the synthesis process, see more details
in Subsec. 1.4.2. The grain boundaries at the interfaces between crystalline
grains have been reported to strongly localize electrons [58], with consequent
carrier mobility degradation [59], [60]. Therefore, understanding the impact of
grain boundaries on the transport properties of TMDs is of central importance.

In this Chapter, based on the Green’s function approach discussed in
Sec. 3.2 and a DFT-calibrated TB model, we explore electron quantum trans-
port along and across grain boundaries in MoS2. Among the huge variety of
grains boundaries with different geometries, we focus here on MTBs, which
show interesting properties. As mentioned in Sec. 1.4, an MTB forms at the
interface between two grains with a 60◦ rotation angle, see Fig. 6.1(a) and
(b). DFT calculations [56], [72], [73] and STS [66] reveal that MTBs show
conducting states within the bulk gap of the two-dimensional semiconducting
TMDs. This is illustrated in Fig. 6.1 (c) and (d) in the case of MoSe2.

More precisely, we investigate the robustness of transport along the MTB
channels against short-range and long-range disorders. Such a study is im-
portant to understand to what extent grain boundaries could be deleterious
for applications, such as FETs based on 2D materials, where they could con-
tribute to the leakage current through the TMD band gap. At the same
time, conductive MTB networks, as those obtained by MBE [66], could be
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Figure 6.1: (a) Top and side view of the MTB considered in this thesis. (b) STM
image of an MTB in MoS2. (c) STM image of a network of MTBs in MoSe2 ob-
tained by MBE. One of the MTBs is indicated by a blue dashed line. (d) Energy
gap obtained by STS measurements along the line, indicated in (c), for three differ-
ent samples. The closure of the gap indicates that the grain boundary is metallic.
Panel (b) is adapted from Ref. [184]. Panels (c) and (d) are adapted with per-
mission from [Y. Ma et al., Metallic Twin Grain Boundaries Embedded in MoSe2

Monolayers Grown by MBE, ACS Nano 11 (5), 5130-5139 (2017), doi: 10.1021/ac-
snano.7b02172]. Copyright (2017) American Chemical Society.

exploited to realize metallic contacts from semiconducting TMDs. Therefore,
understanding how their conductivity is affected by the presence of disorder
is particularly important. Furthermore, we simulate electron transport across
an MTB in 2D MoS2 and provide a physical understanding of its degradation.
This study is important for applications in electronics and for the possible
perspectives it opens in spin-valleytronics.

In Sec. 6.1, I introduce the simulation model and detail the adopted pro-
cedure for the calibration of TB parameters for the description of systems
with MTBs. In Sec. 6.2, I present the simulation results together with a full
analysis of the impact of MTBs on the transport properties of MoS2. Lastly,
Sec. 6.3 concludes.

This Chapter and its figures are largely reproduced from [J. Park, K.-
H. Xue, M. Mouis, F. Triozon, and A. Cresti, Electron transport properties
of mirror twin grain boundaries in molybdenum disulfide: Impact of disorder,
Physical Review B 100 (23), 235403 (2019), doi: 10.1103/physrevb.100.235403],
c©2019 American Physical Society (APS).

6.1 Simulation model

TB models are computationally low-cost and highly flexible for the investiga-
tion of large systems with low geometric symmetry and with various defects,
as discussed in Sec. 2.1. In particular, the TB models based on the SK descrip-
tion can be adapted (up to a certain extent) to describe systems with lower
symmetry. Thus, we make use of the TB model of Ref. [29] for the description
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of TMD grain boundaries, which induce large geometrical distortions. A finer
tuning of the model takes into account the strain in the vicinity of the grain
boundaries, the calibration of the parameters to reproduce the energy levels
and density of states corresponding to the grain boundary states, and SOC,
which is known to play an important role in TMDs.

6.1.1 Calibration of the TB model

Strain effect

The presence of MTBs induces a large distortion in the geometric structure
of the 2D MoS2, with a change of the interatomic distances in the vicinity of
MTBs. Figure 6.2 shows the change of bonding distances with respect to the
pristine case, as obtained by DFT calculations, for the representative type of
4|4 P MTB shown in Fig. 1.7. The magnitude of strain is up to 4.5% and
this behavior is related to changes of the coordination number for the S atoms
along the MTB. While each S atom in the pristine case has three neighbor
Mo atoms, the S atoms in the 4|4 P MTB have four neighbor Mo atoms. The
region affected by strain is rather narrow, with a width of ∼1 nm around the
grain boundary.

The use of the SK TB model allows us to take in consideration the ef-
fect of strain. The two-center energy integral elements [185] depend on the
interatomic distance dij between i and j orbitals, which can be expressed as

Vij(dij) = Vij(d
0
ij)

(
d0
ij

dij

)γij
, (6.1)

where d0
ij is the equilibrium interatomic distance for the given hopping en-

ergy Vij, and γij is a fitting parameter. This parameter can be assumed as
γij = li + lj + 1 with li and lj the angular momenta of the orbitals i and j,
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Figure 6.2: Strain of bonding distances Mo-S between neighbor atoms in the vicin-
ity of a 4|4 P MTB, with respect to the distances in the pristine MoS2. Optimized
structure is obtained by DFT calculations.



88 6 Transport along and across disordered MTBs in MoS2

(a) (b)

Figure 6.3: The K-K direct bandgap and the K-Γ indirect bandgap under different
biaxial strains obtained with (a) non-orthogonal first-nearest neighbor sp3d5 TB
model [185] and (b) orthogonal 11-band model [138]. (a) Reprinted from [185].
Copyright (2017) Wiley Online Library.

respectively [133]. Together with the relaxed geometry obtained from DFT
calculations, this provides an accurate description of the effect of strain in-
duced by the MTB.

To verify whether this strain effect is properly reproduced by the TB
model, we investigate the bandgap engineering by biaxial strains and com-
pare the results with the previous study of Ref. [185]. Figure 6.3 shows the
comparison between both models for the direct energy gaps at K valley and
indirect gaps between K and Γ valleys as a function of strain. With both
models, a transition from direct to indirect gap occurs for a biaxial strain of
about 2.5 %. Furthermore, a semiconductor-metal transition is observed, but
at a strain of about 13 % with our chosen TB model, which is higher compared
to that found in Ref. [185].

Calibration with DFT results

Even after the consideration of the strain effect induced by MTBs, a further
calibration of the TB model is required for the accurate description of the
MTB states. To this aim, we analyze the wave functions of the MTB states
as resulting from the TB model, see Fig. 6.4, and compare them with those
obtained by DFT calculations. The shape of the MTB bands within the gap
as well as the different spatial extension of their wave functions for states on
bands 1© and 2©, which denote two MTB bands within the gap, well match
the DFT results [72], [184]. The bands corresponding to the edge states do
not match those of the cited references, since they depend on the specific edge
passivation. However, we are not interested here in edge states. As for the
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Figure 6.4: (a) Band structure obtained by DFT calculations for a ribbon with
width W = 2.2 nm and a periodic MTB along its axis. Such a narrow ribbon width
was chosen to reduce the computational burden. However, the shape of the MTB
bands is not significantly affected by the ribbon width, provided the ribbon is large
enough to avoid the coupling between edge and MTB states. 1© and 2© indicate
the two MTB bands within the bulk gap, which are highlighted in blue and green
lines. (b-g) Band structure of a zigzag ribbon with width W = 10 nm obtained
with the non-calibrated TB model and without SOC. The MTB bands within the
bulk gap are indicated in blue, green and purple lines. The MTB bands in blue and
green lines correspond to band 1© and band 2© in (a). The orange lines display
the MTB band above the bulk states at the Γ point. The red circles denote the
weight of the corresponding wave functions of (b) all d orbitals, and on the selected
orbitals of the molybdenum atoms in the MTB region: (c) dxy, (d) dyz, (e) dzx, (f)
dx2−y2 , and (g) dz2 . The contribution of S atoms to the MTB bands within the
bulk gap is insignificant compared to that of Mo atoms and thus not displayed.
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TB DFT

Figure 6.5: (a) Band structure obtained with the calibrated TB model for the rib-
bon of Fig. 6.4(b). The SOC-induced gap is indicated by an arrow. (b) Band struc-
ture obtained by DFT calculations for the ribbon of Fig. 6.4(a). The SOC-induced
gap, indicated by an arrow, is ∼60 meV, i.e. slightly narrower than ∼80 meV ob-
served for the TB case. Black and red lines display the bands without and with
SOC, respectively.

states along the MTB, the main difference with DFT calculations is the energy
downshift of band 1©. By the analysis of the wave function composition, we
observe that the main contributions to band 1© come from the Mo orbitals
dyz and dzx, see Figs. 6.4(c) and (d), respectively. To shift the energy of band
1©, we thus modified the on-site energies of the corresponding orbitals of the

Mo atoms closest to the MTB. The shift is +1 eV for the dzx orbital and
+0.2 eV for the dyz orbital. The extreme spatial localization along the grain
boundary of the states of band 1© allows us to shift it without significantly
affecting the other bands. Note that the extra MTB band indicated by purple
lines in Fig. 6.4, which possesses the same orbital contribution as band 1©,
is also shifted upward to the bottom of and inside the CB. The other aspect
to take into account is the presence of MTB states on the top of the VB at
the Γ point, which appears at even higher energies than the bulk states, see
the orange lines in Figs. 6.4. However, in the DFT results, the MTB states at
Γ in the VB are located at lower energies [184]. Therefore, we modified the
on-site energies of the same Mo atoms by -0.3 eV for the dxy orbital and by
-0.8 eV for the dz2 orbital, so to shift down and calibrate the energy of the
MTB states in the VB.

Figure 6.5(a) shows the band structure of a MoS2 ribbon with a periodic
MTB along its axis obtained with the calibrated TB model, with and without
SOC. The MTB states (band 1© and band 2©) within the bulk gap well
reproduce those of the DFT calculation, see Fig. 6.5(b). The MTB states
outside the bulk gap, as well as the presence of MTB states below the edge
of the VB and close to the edge of the CB, also agree with the results of
Ref. [184]. Note that the SOC couples band 1© and band 2©, which results
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in their anticrossing and in the opening of a small gap of the order of 60 meV,
which is indicated by an arrow in Fig. 6.5.

Details of the density functional theory calculations

The DFT results shown above and used for the TB Hamiltonian calibration
were obtained by Prof. Kan-Hao Xue, who had been visiting professor at
IMEP-LaHC for one year starting from September 2018. The computational
details of the DFT calculations are as follows. DFT calculations were carried
out using the plane-wave basis set with a kinetic energy cutoff of 500 eV
and the projector augmented-wave method, as implemented in the Vienna
Ab initio Simulation Package [186]. Generalized gradient approximation of
the Perdew-Burke-Ernzerhof functional form [187] was used. The valence
electron configurations were 4d and 5s for Mo, 3s and 3p for S, 1s for H.
The BZs were sampled using Γ-centered k-point mesh. Monolayer MoS2 was
fully relaxed with a vacuum layer greater than 2 nm to avoid its interaction
with periodic images along the c-axis. The resulting Mo-S bond length is
2.41 Å, while the a-axis lattice constant is 3.175 Å. A ribbon model with
MTB was set up, whose width is 2.24 nm and the optimized lattice constant
along the a-direction is 3.179 Å, very close to the pure monolayer case. At
least 1 nm vacuum space was introduced in the b- and c-directions, and four
hydrogen atoms per supercell were introduced to saturate the corresponding
four S atoms on the edges. The electronic structures were calculated either
with or without SOC.

6.1.2 Model structure

The main objectives of this Chapter are the study of the robustness of the
conductivity of the extended 1D states along the MTBs and the study of their
impact on the bulk conductance when transport is orthogonal to the MTB.
For the study of transport along the MTB, we consider MoS2 ribbons oriented
along the y-axis, with a periodic MTB along its axis, see Fig. 6.6(a). Note
that we exclusively focus on the rather common geometry called 4|4 P [56],
whose relaxed structure calculated by DFT is shown in Fig. 6.2. To focus
on the MTB transmission and suppress the contribution of the ribbon edge
states, which are also present in the bulk band gap and would thus complicate
the analysis, we consider a wide ribbon of W=10 nm, so to avoid the coupling
between the edges and MTBs. Moreover, we introduce edge roughness with
amplitude 0.25 nm over a length of at least 20 nm, so to suppress the edge-
state contribution to transport, as observed for L & 20 nm in Fig. 5.3(a) in
the previous Chapter.

To investigate transport across the MTB, which may give a physical un-
derstanding of polycrystalline MoS2, we consider a 2D system that is infinite
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Figure 6.6: Sketch of systems used to calculate the transport properties (a) along
and (b) across an MTB in MoS2. (a) MoS2 ribbon with a 1D periodic MTB. Semi-
infinite contacts are obtained by the prolongation of the pristine regions on both
sides along the y-axis. (b) 2D MoS2 with a perpendicular MTB. The cell shaded in
red is repeated periodically along the y-direction. Note that the contacts on the left
and right directions are semi-infinite along the x-axis. Dashed lines in red indicate
MTBs. Purple and yellow circles represent Mo and S atoms, respectively.

in both x- and y-directions with an MTB perpendicular to the transport di-
rection, see Fig. 6.6(b). In particular, the system is periodic along y-axis and
obtained by the periodic repetition of the unit cell highlighted in red. This
periodicity along the y-axis allows us to define a ky-dependent Hamiltonian
and, as a consequence, a ky-dependent transmission coefficient, which will be
discussed in Subsec. 6.2.3.

6.2 Results and discussion

By means of calculations of the Green’s functions based on the DFT-calibrated
TB model discussed in Subsec. 6.1.1, we explored the electronic properties of
MTBs as well as the electron quantum transport along and across an MTB
in MoS2, according to the system geometries described in Subsec. 6.1.2. As
discussed earlier in Subsec. 1.4.2, MTBs show metallic properties, with the
presence of extended states along the grain boundary for energies within the
bulk band gap. After analysing in detail the electronic structure of these states
also in terms of orbital composition, we investigated their transport proper-
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ties, and in particular their robustness against short-range and long-range
disorders. We also considered the case of a 2D MoS2 layer with an MTB
orthogonal to the transport direction, and provided a physical understanding
of the transport degradation that goes with it. Note that SOC is taken into
account in all calculations, which is found to play an important role, unless
otherwise specified.

This Section is organized as follows. Subsection 6.2.1 details the electronic
properties of the MTB. In Subsec. 6.2.2 and Subsec. 6.2.3, we investigate
the electron transport along and across an MTB, respectively. The scaling
analysis of the transport properties in the presence of disorder, the analysis
in terms of two individual MTB bands, and the importance of SOC are also
reported.

6.2.1 Electronic properties of MTBs

We consider MoS2 ribbons with a periodic MTB along their axis in the
y-direction, see Fig. 6.6(a). Note that the MTB is along the zigzag direc-
tion, which implies that edges are along the zigzag orientation. Figure 6.7(b)
shows the band structure of a zigzag ribbon with width W = 10 nm and a pe-
riodic MTB along its axis. These results are comparable with those previously
obtained in the literature by DFT calculations [184]. The electronic structure
consists of bulk bands, with direct gap at the K and K’ points, which ap-
pear as quantized subbands due to lateral confinement, and dispersive bands
within the bulk gap. Among these latter, in addition to those corresponding
to edge states, we find those (indicated by red dots) corresponding to MTB
states. The two MTB spin-degenerate bands within the bulk band gap, in-
dicated by 1© and 2© in Fig. 6.7(b), display different properties in terms of
wave functions and atomic orbital compositions, as discussed in the previous
section. In particular, band 1© exhibits a narrow wave function (with width
up to ∼0.8 nm) composed of dyz and dzx Mo orbitals, while band 2© shows
a spatially more extended wave function (with width up to ∼1.3 nm) mainly
stemming from dxy, dz2 and dx2 orbitals of Mo atoms, see more details in
Subsec. 6.1.1 and Fig. 6.7(c).

We would like to further comment on the effect of SOC, which is respon-
sible for the anticrossing of the two MTB bands and the opening of a small
gap in the order of 80 meV, see the inset of Fig. 6.7(b). This feature is also
observed in the DFT calculations, where the results with and without SOC
clearly show the band anticrossing and crossing, respectively, as we saw in
Fig. 6.5. The anticrossing is the consequence of the hybridization between
two MTB bands induced by the SOC coupling of the different orbitals com-
posing the two bands. Note that the bands are spin-degenerate, because, in
contrast with the pristine MoS2, in the presence of the MTB the system is in-
variant under inversion symmetry. Together with the time-reversal symmetry,
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Figure 6.7: (a) Side and top views of the relaxed atomic structure of a periodic
MTB in MoS2. Mo atoms are in purple color and S atoms are in yellow color.
The dashed rectangle indicates a unit cell for the ribbon, which is periodic along
the y-direction and whose lattice parameter is a = 0.316 nm. (b) Band structure
obtained with the calibrated TB model of a zigzag ribbon with width W = 10 nm
and a periodic MTB along its axis. 1© and 2© indicate the two spin-degenerate
MTB bands within the bulk gap, which are highlighted in blue and green lines.
The size of the red dots corresponds to the weight of the states on the molybdenum
atoms in the MTB region. The indicated K, K’ and Γ points correspond to the
projection of the corner and the center of the hexagonal BZ of 2D MoS2 onto the
1D BZ of the ribbon. Inset: band structures with (red line) and without (black
line) SOC in the region indicated by a square. The energy gap induced by SOC is
∼80 meV, which is close to that found by DFT calculations, see Fig. 6.5 for more
details. (c) Probability density of the states at E = 2 eV on bands 1© and 2© on
the atoms close to MTB.

this entails the Kramers degeneracy of the bands. While for the whole ribbon
the presence of the inversion symmetry requires the MTB to be exactly along
the ribbon axis (as in our case), such a symmetry always holds for the re-
gion around the grain boundary itself. As a consequence, the spin-degeneracy
of the MTB dispersive bands within the bulk band gap is expected to be
generally observed.

Let us now analyze how bulk states outside the bulk band gap are affected
by the MTB. As shown in Fig. 6.8(a), the shape and the spacing of the quan-
tized bulk VBs for the ribbon in the presence of the MTB are comparable to
those of a pristine ribbon with a half-width, i.e. W = 5 nm. This indicates
that the MTB has the effect of “cutting” the ribbon into two narrower ones.
The weak coupling between these resulting two ribbons induces a small split-
ting of the VBs, as observed in the figure. Note that the split bands of the
ribbon with MTB are spin-degenerate. On the contrary, the small splitting
observed for the pristine ribbon bands is due to the joint effect of SOC and
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Figure 6.8: (a) Band structures of a zigzag ribbon with W = 10 nm and the MTB
along its axis (same as in Fig. 6.7) and for a pristine zigzag ribbon with half-width
W = 5 nm. Only the VB region is shown. (b) Local density of states of the ribbon
with an MTB as a function of the x-coordinate along the ribbon transverse section
and the electron energy E. Edge states and MTB states within the bulk gap are
indicated by white arrows. A white dashed circle displays the region with reduced
density of states on the MTB.

absence of inversion symmetry. A more detailed physical insight can be gained
by looking at the local density of states (LDoS) displayed in Fig. 6.8(b) as
a function of the electron energy E and of the x-position across the ribbon.
The MTB is located in the center at x = 0 nm. In agreement with the band
structure of Fig. 6.7(b), the LDoS exhibits MTB states within the bulk band
gap, while it vanishes away from x = 0 nm. More importantly, as shown as
the dashed circle in Fig. 6.8(b), the LDoS turns out to be relatively low in the
vicinity of the MTB in the VB, thus illustrating and confirming the effective
separation of the ribbon into two narrower ribbons. This effect also signifi-
cantly affects the transport properties, as we will discuss in Subsec. 6.2.3.

6.2.2 Transport along MTBs

In this subsection, we investigate the electron transport along the MTB, as
shown in Fig. 6.6(a), in the energy region of the bulk gap, where the grain
boundary states are active and surrounded by an insulating bulk. We study
the robustness of the MTB conductive channels against additional short-range
disorder (single sulfur vacancies and Anderson disorder) and long-range (Gaus-
sian) impurities. We provide a quantitative scaling analysis in terms of the
different (quasi-ballistic, diffusive and localized) transport regimes, as dis-
cussed in Sec. 3.3. Before proceeding, we would like to recall that, for an
infinite periodic ribbon with an MTB but no additional disorder, the trans-
mission coefficient is quantized at values corresponding to the number of active
conductive channels at given energy.
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Sulfur vacancies

Sulfur vacancies, as one of the most common defects observed in experiments,
are expected to induce localized midgap states, which can significantly af-
fect transport [188]. These vacancies could be fatal for the conductive MTB
channels within the bulk gap.

To investigate this aspect, we introduce one single sulfur vacancy at dif-
ferent distances from the grain boundary, see Fig. 6.9(a). The impact of
the single sulfur vacancy is expected to be negligible when the vacancy is far
enough from the grain boundary, because the localized vacancy states and the
MTB states are spatially separated. Indeed, we do not observe any impact of
the vacancy when its distance d from the MTB is larger than ∼ 1.4 nm. This
is consistent with the fact that the vacancy state has a spatial extension of
about 0.5 nm [188], while the MTB states have a maximum extension of about
1.3 nm. For shorter distances and down to d ≈ 0.6 nm, however, the MTB
transmission shows some dips around specific energies, see Fig. 6.9(b). Such
dips are a clear indication of resonant scattering between the MTB states and
the localized vacancy states, as confirmed by the correspondence between the
dip energies and the energies of the vacancy states, see the dashed lines in
Fig. 6.9(c). When the vacancy is closer to the grain boundary (d = 0.3 nm),
its impact is much more effective and the transmission decreases over the
whole energy range. Interestingly, when the sulfur vacancy is exactly placed
on the grain boundary, we observe a strong suppression of two conductive
channels for energies E > 1.1 eV, as demonstrated by the nearly quantized
transmission coefficient T ≈ 4 and T ≈ 2 compared to T = 6 and T = 4
for the pristine system. We find that the suppressed conductive channels cor-

x

y

0.3 nm

0.6 nm

Figure 6.9: (a) Three sulfur vacancy positions, indicated by circles, at different
distances d from the MTB. (b) Transmission coefficient as a function of energy
for the pristine system and in the presence of a single sulfur vacancy at the three
positions specified in (a). (c) Band structure of the pristine ribbon in the bulk
gap region. The size of the dots indicates the weight of the sulfur component of
the corresponding states, which is only present for 1©. The dashed lines indicate
the energies of the localized sulfur vacancy states for the system of Fig. 1.6(b) in
inclusion of SOC.
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respond to the MTB spin-degenerate band 1©, which is contributed by the
sulfur atoms. The sulfur weight in the wave functions is indicated by dots in
Fig. 6.9(c). Sulfur orbitals hardly contribute to band 2©, which is active for
E & 1.1 eV, and thus the corresponding conductive channel is not appreciably
affected by the vacancy.

Anderson disorder

The short-range Anderson disorder [178] introduces a random potential en-
ergy for each atom with value in the range [−∆,∆], where ∆ is the disor-
der strength. Despite its simplicity, such a popular disorder model allows
a general physical understanding of the effect of very short-range disorders.
Figure 6.10(a) shows an example of generated random on-site potentials with
strength ∆ = 100 meV applied on the atoms close to the grain boundary over
a section of length L. Note that having disorder over the whole ribbon width
would not modify our results, which are focused on energies within the bulk
band gap. That is why we limit Anderson disorder to a stripe that is wide
enough to cover the spatial extension of MTB states. To better statistically
analyze the different transport regimes according to the theory outlined in
Sec. 3.3, we consider an ensemble of 100 Anderson disorder realizations for
each case under study.

Figure 6.10(b) reports the transmission coefficient for the pristine MTB
and the average transmission coefficients 〈T 〉 in the presence of Anderson
disorder as a function of the electron energy E within the bulk band gap
for ∆ = 100 meV and different lengths L. We can identify three energy
regions, indicated in Fig. 6.10(b) by the letters A (for E . 1.1 eV), B
(for 1.1 eV . E . 1.29 eV, i.e. below the SOC-induced gap) and C (for
E & 1.37 eV, i.e. above the SOC-induced gap). In region A, only band
1© is active and the decrease of 〈T 〉 with L is exponential for L > 100 nm.

According to the criterion discussed in Sec. 3.3, this suggests a transition
to the localized transport regime, with a Gaussian frequency distribution of
lnT , with |∆ lnT/〈lnT 〉| < 1. By using eq. (3.110), the localization length
is extracted as ξ ≈ 25−80 nm. Such a localization length entails a huge
transmission suppression when L is hundreds of nm. In region B, where six
conductive channels are active, i.e. both bands 1© and 2© contribute and
the energy is below the SOC-induced gap, 〈T 〉 decreases more slowly with
increasing L, as shown in Fig. 6.10(b). This suggests that the system is in
the diffusive transport regime, which is characterized by a mean free path
`, as obtained by eq. (3.109), ranging between 20 nm and 50 nm. Finally,
in region C, the average transmission coefficient decreases very slowly, which
indicates that the system is in transition from the quasi-ballistic to the dif-
fusive transport regime, as evidenced by the extremely large estimated mean
free path up to ∼0.8 µm. Therefore, at these energies the MTB conductive
channels are expected to be robust against Anderson disorder, and to stay in
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Figure 6.10: (a) Example of Anderson disorder realization with random on-site en-
ergies for the atoms over the section of length L, and with strength ∆ = 100 meV.
The width of the disordered section around the MTB is 2 nm. (b) Average trans-
mission coefficient as a function of the electron energy E for the MTB system
in the pristine case (L = 0 nm) and in the presence of Anderson disorder with
∆ = 100 meV and L varying from 50 nm to 200 nm. The average is performed
over 100 disorder realizations. (c) Mean free path ` as a function of the electron
energy E for different Anderson disorder strengths ∆. The energies where we could
not extract ` correspond to the energies close to the SOC-induced gap or where
the transport regime is localized. Inset: mean free path as a function of ∆ for two
representative energies E = 1.2 eV and E = 2.1 eV. The continuous lines corre-
spond to the fit ∝ ∆−2. (d) Average transmission coefficient as a function of E
for the MTB system in the presence of Anderson disorder with ∆ = 100 meV and
L = 50 nm, and sum of the average transmission of the two MTB bands. 〈T1〉 is
the average transmission of band 1© contribution and 〈T2〉 is that of band 2©.

the quasi-ballistic transport for L of the order of hundreds of nm (L < `) and
in the diffusive regime for L of the order of a few µm.

To illustrate the scaling analysis performed to statistically analyze the
transport regimes in the presence of Anderson disorder, we fix the disorder
strength to ∆ = 100 meV, and we select two representative energies E=1 eV
and E=1.8 eV. As shown in Fig. 6.10(b), at E=1 eV, 〈T 〉 rapidly decreases
when L increases. This suggests the transport regime is localized, as confirmed
by the linear decrease of the average logarithm of the transmission coefficient
〈lnT 〉 as a function of L, see Fig. 6.11(a). The localization length is then
extracted according to eq. (3.110), which gives ξ = 58 nm at the considered
energy. Also, Fig. 6.11(b) shows the typical [179] Gaussian frequency distri-
bution of lnT with |∆ lnT / 〈lnT 〉| < 1. At E=1.8 eV, 〈T 〉 decreases more
slowly for increasing L, thus suggesting a diffusive transport regime. This is
confirmed by Fig. 6.11(c), which shows the inverse of the average transmission
coefficient 〈T 〉 as a function of the length L. Its linear scaling allows us to
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Figure 6.11: Scaling analysis of the transport regimes, localized (a-b) and diffusive
regimes (c-d), for Anderson disorder with ∆ = 100 meV. (a) Average logarithm
of the transmission coefficient as a function of L at E = 1 eV, which corresponds
to the energy region A in Fig. 6.10 (b). The continuous line shows the linear fit.
The estimated localization length is ξ ≈ 58 nm. (b) Frequency distribution of lnT
for L = 300 nm at the same energy. (c) Inverse of the average of the transmission
coefficient as a function of L at E = 1.8 eV in the energy region C in Fig. 6.10
(b). The continuous line shows the linear fit. The estimated mean free path is
` ≈ 750 nm. (d) Frequency distribution of T for L = 300 nm at the same energy.

extract the mean free path according to eq. (3.109), which turns out to be
` = 750 nm at the considered energy. Moreover, we observe the typical [179]
Gaussian distribution with ∆T/〈T 〉 < 1, see Fig. 6.11(d).

The mean free path ` as a function of the energyE is reported in Fig. 6.10(c)
for different disorder strengths ∆. The energies for which ` is not defined cor-
respond to the SOC-induced gap or to regions where the transport regime is
localized. The mean free path scaling with the Anderson disorder strength ∆ is
reported in the inset of Fig. 6.10(c) for two representative energies E = 1.2 eV
and E = 2.1 eV (in regions B and C, respectively), where the transport regime
is diffusive. We find that ` is inversely proportional to ∆2 for both represen-
tative energies. Such a behavior is consistent with a weak scattering regime,
where the Fermi golden rule is a good approximation and yields a scattering
probability proportional to ∆2.

The origin of the different behaviors observed in the three regions can be
understood by noting that bands 1© and 2© contribute independently to the
transport properties. Indeed, it is possible to separate band 1© and band
2©, by artificially modifying the Hamiltonian to shift alternatively one of the

two bands at higher energy and isolate the contribution of the other. To this
aim, we only modify the on-site energies of the specific d orbitals of the Mo
atoms close to the MTB contributing to the states of the chosen band. To
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Figure 6.12: Separation of the MTB bands, 1© (green lines) and 2© (blue lines),
by modification of the Hamiltonian. (a) Band structure without any modification
for the ribbon of Fig. 6.7(b). (b) and (c) Band structures obtained by modification
of the Hamiltonian for isolating band 1© and band 2©, respectively.

isolate the contribution to transport of band 1©, band 2© is shifted upward
by increasing the on-site energies of the dxy and the dz2 orbitals by 0.5 eV
and 2.0 eV, respectively. To isolate the contribution to transport of band 2©,
band 1© is shifted upward by increasing the on-site energy of the dzx orbital
by 3.0 eV. The resulting modified band structures are reported in Fig. 6.12.
Compared to the unmodified band structure shown in Fig. 6.12(a), only one
band remains in its initial position, while the other one enters into the CB,
thus not contributing to transport in the energy range of the bulk band gap,
see Figs. 6.12(b) and (c).

Figure 6.10(d) demonstrates that the total average transmission is given by
the sum of the average transmission of the two bands, i.e. 〈T 〉 ≈ 〈T1〉+ 〈T2〉,
except, of course, around the SOC gap, where the two bands hybridize. This
means that Anderson disorder does not introduce any significant scattering
between these two bands with different orbital compositions, and that we can
analyze each band independently. In the first energy region (E . 1.1 eV),
the short mean free path and the transition to the localized transport regime
are due to the fact that electrons are at the bottom of band 1©. Therefore,
Anderson disorder is more effective in inducing intraband scattering. At higher
energies, in the region B and even more above the SOC gap, the wave number
separation between counter-propagating states in band 1© becomes larger,
thus significantly tempering the backscattering. In the region B, band 2©
provides four conductive channels. However, again, the small separation in the
BZ between counter-propagating states significantly enhances backscattering,
especially close to the bands extrema, i.e. at the van Hove singularities. As a
consequence, in this energy region the main contribution to transport comes
from band 1©. Analogously to what is observed for band 1©, in region C
above the SOC gap, the backscattering for the two conductive channels from
band 2© is strongly and progressively suppressed at higher energies. The
resulting transmission coefficient is close to the ballistic case.

To provide a more detailed analysis, Fig. 6.13 reports the mean free path
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Figure 6.13: Mean free path as a function of the electron energy in the presence of
Anderson disorder with strength ∆ varying from 50 meV to 250 meV. The individual
mean free paths of (a) band 1© and (b) band 2©, are calculated starting from the
modified Hamiltonian corresponding to the band structures in Fig. 6.12(b) and
Fig. 6.12(c), respectively.

of each band as a function of the energy E. At lower energies corresponding
to regions A and B in Fig. 6.10(b), band 1© exhibits a relatively large mean
free path compared to 2©. This behavior indicates the main contribution
of band 1© to transport. For higher energies above the SOC-induced gap,
on the other hand, both bands are activated and contribute to the diffusive
transport regime with relatively large mean free paths. The mean free path
corresponding to band 1© is shorter than for band 2©, and it becomes longer
for E > 1.8 eV.

Long-range disorder

We now consider the impact of long-range disorder, which corresponds to
real-space potential energy fluctuations induced, for example, by the presence
of charged impurities in the substrate underlying the 2D material. Adam
et al. [189] proposed a model of the potential profile U(r) for graphene as a
random distribution of Gaussian long-range scatterers

U(r) =
N∑
i=1

εie
−(r−Ri)

2

2χ2 , (6.2)
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where i is the impurity index, Ri is its random position, εi is a randomly chosen
potential energy that we select in the range [-∆,∆], N is the total number
of Gaussian impurities and χ denotes the spatial range. Here, we consider
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Figure 6.14: Main panel: Average transmission coefficient as a function of the
energy and for different L in the case of a SiO2 substrate. The averaging is per-
formed over 100 disorder realizations. Inset: Example of long-range potential profile
realization for a SiO2 substrate.

two energy potential profiles corresponding to SiO2 and hBN substrates. We
adopt the parameters available in the literature for graphene [190], which
are ∆ = 50 meV, χ = 10 nm and n = 1012 cm−2 for SiO2, and ∆ = 5 meV,
χ = 30 nm and n = 1011 cm−2 for hBN, where n is the density of impurities per
surface area. These parameters may be different for MoS2, due to the different
screening properties compared to those of graphene. Nonetheless, this effective
model provides a physical understanding of the impact of long-range disorder
on the transport properties of MTBs.

The inset of Fig. 6.14 shows the potential profile reproducing the effect of
the SiO2 substrate. We consider such a potential to be active over a section
of the system with length L. The transmission coefficient averaged over 100
different profile realizations for different L is reported in the main panel of
Fig. 6.14. We observe a huge suppression of the transmission only close to
edges of the transmission plateaus, where conductive channels are activated or
deactivated. This behavior is explained by the fact that the long-range disor-
der induces local shifts of quasi-1D MTB states along the MTB. In particular,
the band edges, which determine the activation of the conductive channels, are
smoothly shifted all along the grain boundary. The regions with the highest
and lowest shifts, which tend to be about ±∆ for long enough L, determine
the energy width of the decreased transmission region, as observed in the main
panel of Fig. 6.14. For the hBN substrate, we do not observe any significant
impact on the transport properties because of the extremely weak disorder
strength ∆.
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Figure 6.15: (a) Main panel: Zero-temperature conductance per unit of width
as a function of the electron energy for pristine 2D MoS2 and in the presence
of a transverse MTB. Inset: Conductance at the top of the VB in logarithmic
scale. (b) Zero-temperature conductance per unit of width at the top of the VB for
50 nm-wide MoS2 ribbons with a transverse MTB in the absence (black line) and
in the presence of short-range disorders in the region of the MTB, namely sulfur
vacancies over an L = 80 nm-long section and Anderson disorder over a 2 nm-wide
stripe surrounding the MTB with different strengths. In order to suppress edge
contribution to the transmission, we introduced edge roughness. (c) Transmission
coefficient as a function of the wave number and the electron energy for 2D MoS2

with a transverse MTB. The white lines correspond to the band profile of 2D MoS2,
while the dashed circles indicate the strong suppression of transmission in the VB.

6.2.3 Transport across MTBs

We now report the degradation of the electronic transmission of a 2D MoS2

layer in the presence of an MTB orthogonal to the transport x-direction,
see the sketch in Fig. 6.6(b). Note that the system is periodic along the
y-direction, which allows us to introduce the wave number ky and, through
the use of Bloch sums, to define the ky-dependent Hamiltonian H(ky). We
can thus calculate the transmission coefficient T (E, ky) for given energy E
and wave number ky, and obtain the zero-temperature conductance per unit
of width by integration over the 1D BZ

g(E) =
e2

h

1

2π

∫
B.Z.

T (E, ky) dky . (6.3)

Figure 6.15(a) compares the conductance per unit of width for pristine MoS2

and in the presence of the MTB. Of course, there is no transmission in the
energy region of the gap, since no state is available for injecting electrons.
We observe a general degradation of the conductance with a more than 50%
reduction.

Interestingly, as already observed in the literature [75], the conductance
is completely suppressed over about 150 meV from the top of the VB, which
corresponds to the SOC-induced splitting of the VB in 2D MoS2 [29], see the
inset of Fig. 6.15(a). In this energy region, in pristine 2D MoS2 the top of
the VB at K and K’ points are oppositely spin-polarized, i.e. we have the so-
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Figure 6.16: Top of the VB at the K and K’ points on the two sides of the
MTB. The SOC induces a splitting of the VBs at the K and K’ points. Due
to time reversal symmetry, the spin splitting is opposite at the two valleys. So,
for energies at the top of the VB, we have the so called spin-valley locking. On
the other side of the MTB, the lattice is rotated by 60◦. As a consequence, also
the BZ is rotated and the K and K’ valleys are inverted. Therefore, the spin-valley
polarization is inverted. In the spin-splitting energy region, just below the VB edge,
intravalley transmission is forbidden due to spin conservation (dotted arrows). At
the same time, intervalley transmission is forbidden by the system invariance under
translations along the MTB (dashed arrows). Only at energies below the spin-
splitting region, intravalley transmission is allowed (green arrows). This explains
why the conductance is completely suppressed at the top of the VB, as seen in
Fig. 6.15. However, if we include short-range disorder, indicated by the red dots
along the MTB, intervalley scattering (along the dashed arrows) is allowed by the
breaking of the translation symmetry, and the conductance increases as observed
in Fig. 6.15(b).

called spin-valley locking, see Sec. 1.2.2 and the discussion in Sec. 5.2.6. In the
presence of the MTB, opposite spin polarization at the K/K’ valleys is reversed
in the two grains on the two sides of the MTB due to the mirror reflection
symmetry of the system. Therefore, as a consequence of spin preservation, the
current can only flow in the presence of intervalley scattering, which is however
suppressed due to the y-translation symmetry. This mechanism, illustrated in
Fig. 6.16, results in the observed transport suppression [75]. The very small
but finite (10−8) residual transmission across the MTB, as shown in the inset
of Fig. 6.15(a), can be considered as zero within the calculation accuracy.

We investigate the robustness of this phenomenon against short-range dis-
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Figure 6.17: Transmission coefficient as a function of the wave number and the
electron energy in one of the two regions indicated by dashed circles in Fig. 6.15(c).
The band structure of a 20 nm-wide zigzag ribbon with a periodic MTB without
(green lines) and with (white lines) SOC is superimposed.

order, which is expected to induce intervalley scattering and activate trans-
port. To this aim, we consider a large ribbon (W = 50 nm) with edge
roughness and an MTB across its section. Figure 6.15(b) shows that the
conductance is still suppressed at the top of the VB, but there is a residual
transmission due to intervalley scattering induced by the ribbon edges. Given
the extremely small conductance, a residual contribution of edge state chan-
nels cannot be excluded. Note that, to be effective, intervalley scattering must
occur at the grain boundary, where electrons pass from one grain to the other.
Incidentally, at the top of the VB and within the same grain, intervalley scat-
tering is suppressed by the spin-valley locking mechanism. The conductance
increases when including Anderson disorder along the MTB (over a width
of 2 nm), see Fig. 6.15(b), which strongly enhances intervalley scattering all
along the grain boundary length. The conductance increase is larger for larger
Anderson disorder strength ∆ from 100 meV to 500 meV. A similar effect is
observed in the presence of sulfur vacancies with density nVS = 1013 cm−2,
whose extremely short-range nature entails a strong intervalley scattering.
Note that our model does not consider the Hartree potential induced in the
vicinity of MTB, whose estimation may be sensitive to the model details and
which is expected to entail a further reduction of the transmission for energies
close to the top of the VB [72], [75]. This choice does not affect our physical
analysis.

A further insight into the results of Fig. 6.15(a) can be gained from the
energy- and ky-resolved transmission coefficient T (E, ky) reported in Fig. 6.15(c).
This figure clearly shows the different contributions of the K/K’ valleys, close
to the sides of the BZ, and of the Γ valley at the center. The result confirms the
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complete suppression of transport at energies between the two SOC-split top-
most VBs. Surprisingly enough, we observe a strong suppression of T (E, ky)
at low energies in the VB, as indicated by dashed circles. This behavior is
related to the MTB effect of “cutting” the system into weakly coupled parts,
as mentioned in Subsec. 6.2.1. A more detailed physical insight is obtained
in terms of wave functions of the weakly coupled states. At the energies and
wave numbers where T (E, ky) is suppressed, the coupling between the two
parts of the system on the sides of the MTB is very small.

To support this interpretation, we superimpose the VBs of a 20 nm-wide
zigzag ribbon with a periodic MTB to the transmission coefficient. At first,
we do not consider SOC, see the green lines in Fig. 6.17. As discussed in
Subsec. 6.2.1, the band structure is determined by the coupling of the sub-
bands that reside on each side of the MTB. Since the coupling is weak, we
observe couples of split bands. Where the bands cross, see the green dots in
the figure, the coupling between the two regions at the sides of the MTB is
vanishing. This explains why the low transmission coefficient is exactly ob-
served at these crossing points. Note that increasing the width of the ribbon
would just increase the number of the subbands and crowd the crossing points
along the lowest transmission region (not shown here), thus confirming the va-
lidity of this picture in the 2D limit. Introducing the SOC, see the white lines
in Fig. 6.17, makes the interpretation more convoluted due to the absence
of the crossing points. This is because of the opposite spin-splitting energy
on the states at two sides of the MTB for given K/K’ valley, which again is
consequence of the spin-valley locking mechanism and the mirror symmetry.

In conclusion of this subsection, we would like to point out that transport
properties of the polycrystalline MoS2 can be highly dependent on the density
of the grain boundaries, which may cause a severe degradation of the conduc-
tivity. Controlling the density of grain boundaries will be a significant factor
for the use in electronic applications [59].

6.3 Summary

In this Chapter, we have numerically investigated the transport properties of
MoS2 in the presence of an MTB. Along the grain boundary, conductive chan-
nels develop at energies within the band gap of 2D MoS2. The conductance of
these states is found to be sensitive to chalcogen vacancies, relatively robust
against short-range Anderson disorder, and scarcely affected by long-range dis-
order. On the other side, transport across the MTB is significantly affected,
and its analysis in terms of wave number dependent transmission reveals pe-
culiar features of this grain boundary, as the separation of the ribbon into
two weakly coupled narrower ribbons. Moreover, as already demonstrated in
the literature [75], the transmission across the grain boundary is suppressed
in the energy range of the spin-orbit splitting of the VB, due to spin-valley
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locking. However, in the presence of short-range disorder, transmission is
partially allowed as a consequence of the induced intervalley scattering. Our
results provide physical and quantitative insight into the interplay between
grain boundaries and additional disorder. They could thus be beneficial to
the design of electronic devices based on TMDs, in particular for the control
of leakage current in FETs and the fabrication of 2D metallic contacts based
on grain boundary networks.



108



109

Chapter 7

Conclusions and perspectives

In this thesis, a thorough numerical study of the impact of various disorders
on the transport properties of MoS2, chosen as a paradigmatic TMD, was
presented. The quantum transport simulations were based on an atomistic
TB description calibrated, when necessary, with DFT results for a better
accuracy, and on the Green’s function techniques.

In Chapter 1, various properties, growth techniques, experimentally ob-
served defects, and applications of TMDs were briefly introduced. The ne-
cessity of the theoretical and numerical study on the impact of disorders on
electron transport in these materials emerged as a natural consequence of the
experimentally observed low charge mobility.

On the methodological side, in Chapter 2, several models of Hamiltonian
were thoroughly examined in order to identify the most appropriate to accu-
rately reproduce the properties of TMDs and their defects. Most importantly,
two different TB approaches, specifically the framework of the structural sym-
metries or the SK description, were reviewed in terms of their flexibility to
describe the electronic properties. In particular, the SK description was found
more adaptable to the description of disordered systems, where the presence
lattice distortions can induce a spatial symmetry breaking, and was therefore
chosen for the entire study of this thesis. Furthermore, the k·p model and DFT
based Hamiltonian, and their limitations, in our context, compared to the TB
model were discussed. The theoretical methodology of the Green’s function
formalism was presented in Chapter 3. The second quantization formalism,
with the important introduction of the creation and annihilation operators,
allowed us to define several other operators, as the local charge operator and
the current operator, in terms of the Green’s functions. Four relevant Green’s
functions were defined: the retarded and advanced Green’s functions, which
are related to the electronic structure, and the lesser and greater Green’s func-
tions, which contain information about the statistics of the system. For their
efficient numerical evaluations, several methods were introduced, in particu-
lar the decimation-renormalization method for the extraction of the retarded
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Green’s function on a subsystem of interest. Similarly, the Keldysh theory
allows one to obtain the out-of-equilibrium lesser and greater Green’s func-
tions in terms of those of the system at equilibrium. This is the key ingredient
that allows the simulation of electron transport in biased systems. Most im-
portantly, the explicit formulas for the electron current and the LDoS were
derived in terms of the Green’s functions. Their numerical implementation
and the relative code structure were briefly described in Chapter 4.1, which
notably reports how the layered structure was constructed in terms of the
TB Hamiltonian. At the end of Chapter 3, the different quantum transport
regimes (ballistic, quasi-ballistic, diffusive and localized) and their scaling the-
ory were introduced. They turned out to be valuable tools for a qualitative
and quantitative analysis of the simulation results.

The impact of two representative disorders was deeply investigated in this
thesis. Chapter 5 reports on the impact of edge roughness on the quantum
electron transport properties of MoS2 nanoribbons. In the presence of edge
roughness, the metallic edge states within the bulk gap tend to rapidly lo-
calize with an extremely small localization length, which indicates that the
conductance of the metallic edge states is strongly suppressed. On the other
hand, the electron transport outside the bulk gap was found to be moderately
affected by edge roughness, and to show a diffusive transport regime with a
rather large mean free path. This indicates that the effect of edge roughness
for ribbons widths larger than 10 nm is compatible with their use in nano-
electronic applications, since the leakage current due to edge states would be
suppressed without too much altering the on current. Ultra-narrow ribbons,
however, were found to be more affected by edge roughness, particularly for
energies close to the bulk gap edges according to the scaling of the mean free
path.

In Chapter 6, one of the most commonly observed grain boundaries in
experiments, MTB, was investigated. The MTB was found to support 1D
metallic states at energies within the band gap of 2D MoS2. We investigated
the robustness of these states against several short-range and long-range dis-
orders. The conductance along this MTB was found to be very sensitive to
chalcogen vacancies. On the contrary, it turned out to be relatively robust
against short-range Anderson disorder, and hardly affected by long-range dis-
order. Besides, the transport across the MTB in 2D MoS2 was investigated. In
the presence of the transverse MTB, the conductance is strongly suppressed,
particularly for the energies close to the top of the VB where the spin-orbit
splitting is observed. This behavior follows from the spin-valley locking, which
is due to the inverted spin-valley polarization in the grains at the two sides
of the MTB. However, we found that the presence of short-range disorder
partially allowed the transmission due to the induced intervalley scattering.
This study gives a physical insight into the interplay between grain bound-
aries and additional disorder. We expect that it could be helpful in the design
of large-scale electronic devices based on TMDs, especially for the control
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of leakage current in polycrystalline TMDs and potential use of MTB-based
metallic contacts.

In conclusion, the theoretical and numerical results presented in this the-
sis provide a physical understanding of the impact of various disorders on the
transport properties of TMDs, including the interplay with SOC. Most impor-
tantly, the statistical analysis in terms of the transport regimes and relative
scaling lengths allowed a quantitative insight into the role of disorder, which
could guide the design of TMD-based devices.

The methodology adopted and developed in this thesis, especially concern-
ing the Hamiltonian calibration, could be easily employed for the investigation
of different 2D materials of technological interest and other sources of disor-
der. In particular, chemical impurities and dislocations could be deleterious
for short-channel or tunnel FETs due to the formation of midgap states. Fi-
nally, some elements of the present work suggest that the research could be
profitably extended toward the study of spin transport in disorder TMDs.
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