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Résumé

Cette thèse porte sur l’étude statistique en grande dimension de données susceptibles
de contenir des aberrations.

Le problème de la détection de données aberrantes et celui de régression ro-
buste dans un contexte de grande dimension est fondamental en statistiques et a
de nombreuses applications. Dans la lignée de récents travaux proposant de traiter
conjointement ces deux problèmes de régression et de détection, nous considérons
dans la première partie de ce travail un modèle linéaire gaussien en grande dimen-
sion avec ajout d’un paramètre individuel pour chaque observation. Nous proposons
une nouvelle procédure pour simultanément estimer les coe�cients de la régression
linéaire et les paramètres individuels, en utilisant deux pénalités di�érentes basées
toutes les deux sur une pénalisation `1 ordonnée, nommée SLOPE [11]. Nous faisons
l’analyse théorique de ce problème: nous obtenons dans un premier temps une borne
supérieure pour l’erreur d’estimation à la fois pour le vecteur des paramètres in-
dividuels et pour le vecteur des coe�cients de régression. Puis nous obtenons un
résultat asymptotique sur le contrôle du taux de fausse découverte et sur la puissance
concernant la détection du support du vecteur des paramètres individuels. Nous
comparons numériquement notre procédure avec les alternatives les plus récentes, à
la fois sur des données simulées et sur des données réelles.

La seconde partie de ce travail est motivée par un problème issu de la génétique.
Des séquences particulières d’ADN, appelées multi-satellites, sont des indicateurs du
développement d’un type de cancer colorectal. Le but est de trouver parmi ces
séquences celles qui ont un taux de mutation bien plus élevé (resp. bien moin-
dre) qu’attendu selon les biologistes. Autrement dit, nous voulons aider à identiÆer
deux sortes de séquences aberrantes, respectivement nommées transformateurs et sur-
vivants par les biologistes [52]. Ce problème mène à une modélisation probabiliste
non-linéaire et n’entre ainsi pas dans le cadre abordé dans la première partie de
cette thèse. Nous traitons ainsi dans cette partie le cas de modèles linéaires général-
isés, avec de nouveau des paramètres individuels en plus du prédicteur linéaire, et
analysons les propriétés statistiques d’une nouvelle procédure estimant simultanément
les coe�cients de régression et les paramètres individuels. Nous utilisons de nouveau
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la pénalisation SLOPE mais nous nous restreignons au cas de la petite dimension.
La performance de l’estimateur est mesuré comme dans la première partie en terme
d’erreur d’estimation des paramètres et de taux de fausse découverte concernant la
recherche du support du vecteur des paramètres individuels.

Toutes les expériences numériques de ce travail reposent sur l’utilisation d’une
librairie open-source écrite en Python et C++ [6].
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Abstract

This thesis is devoted to the statistical study of large datasets that contain outlying
sample points.

The problems of outliers detection and robust regression in a high-dimensional
setting are fundamental in statistics, and have numerous applications. Following a
recent set of works providing methods for simultaneous robust regression and outliers
detection, we consider in a Ærst part a model of linear regression with individual inter-
cepts, in a high-dimensional setting. We introduce a new procedure for simultaneous
estimation of the linear regression coe�cients and intercepts, using two dedicated
sorted-`1 penalizations, also called SLOPE [11]. We develop a complete theory for
this problem: Ærst, we provide sharp upper bounds on the statistical estimation error
of both the vector of individual intercepts and regression coe�cients. Second, we
give an asymptotic control on the False Discovery Rate (FDR) and statistical power
for support selection of the individual intercepts. Numerical illustrations, with a com-
parison to recent alternative approaches, are provided on both simulated and several
real-world datasets.

Our second part is motivated by a genetic problem. Among some particular DNA
sequences called multi-satellites, which are indicators of the development or colorectal
cancer tumors, we want to Ænd the sequences that have a much higher (resp. much
lower) rate of mutation than expected by biologist experts. That is, our goal is to
help to identify those two kinds of outliers, called transformators (resp. surivors)
by experts [52]. This problem leads to a non-linear probabilistic model and thus
goes beyond the scope of the Ærst part. In this second part we thus consider some
generalized linear models with individual intercepts added to the linear predictor,
and explore the statistical properties of a new procedure for simultaneous estimation
of the regression coe�cients and intercepts, using again the sorted-`1 penalization.
We focus in this part only on the low-dimensional case and are again interested in
the performance of our procedure in terms of statistical estimation error and FDR.

Experiments are conducted using an open-source software written in Python and
C++ [6].
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Introduction

The guiding principle of this thesis is to show how the recent convex optimization
methods can help solving new robust estimation and outlier detection problem in
regression models. While the classical framework of robust estimation problems [3]
treat the regression coe�cient as the quantity of interest with no modelization of the
outlying data, recent healthcare applications [24, 79] point out the fact that outliers
could be the thing of interest and thus require speciÆc parametric modelization and
guarantees to detect them without making too many mistakes. This mere statement
motivates the use of a particular mathematical model called Mean-Shift outliers (MSO)
model [22] introduced in the 80

0s but that gained some interest very recently thanks
to new convex optimization techniques. Let us begin by presenting and motivating
the questions on which we want to shed some light in this thesis.

Motivations

Outliers are a fundamental problem in statistical data analysis. Roughly speaking, an
outlier is an observation point that di�ers from the data’s “global picture” [36]. A rule
of thumb is that a typical dataset may contain between 1% and 10% of outliers [35], or
much more than that in speciÆc applications such as web data, because of the inherent
complex nature and highly uncertain pattern of users’ web browsing [31]. This outliers
problem was already considered in the early 50’s [23, 30] and it motivated in the 70’s
the development of a new Æeld called robust statistics [41, 42].

In the linear regression setting, classical estimators, such as the least-squares, are
known to fail in presence of outliers [41]. In order to conduct regression analysis in
the presence of outliers, roughly two approaches are well-known. The Ærst is based
on detection and removal of the outliers to Æt least-squares on “clean” data [87]. Pop-
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Introduction

ular methods rely on leave-one-out methods (sometimes called case-deletion), Ærst
described in [22] with the use of residuals in linear regression. The main issue about
these methods is that they are theoretically well-designed for the situations where
only one given observation is an outlier. Repeating the process across all locations
can lead to well-known masking and swamping e�ects [34]. An interesting recent
method that does not rely on a leave-one-out technique is the so-called IPOD [73], a
penalized least squares method with the choice of tuning parameter relying on a BIC
criterion. This method relies on the so-called Mean-shift outliers model. A second
approach is based on robust regression, that considers loss functions that are less
sensitive to outliers [42]. This relies on the M-estimation framework, that leads to
good estimators of regression coe�cients in the presence of outliers, thanks to the
introduction of robust losses replacing the least-squares. However, the computation
of M-estimates is substantially more involving than that of the least-squares esti-
mates, which to some extend counter-balance the apparent computational gain over
previous methods. Moreover, robust regression focuses only on the estimation of the
regression coe�cients, and does not allow directly to localize the outliers, see also
for instance [91] for a recent review.

We might thus ask ourselves the following questions.

Question 1. What beneÆts are brought by the Mean-shift outliers model compared to
the classical robust regression techniques and how is it linked with the variable selection
problem ?

Alternative approaches have been proposed to perform simultaneously outlier
detection and robust regression. Such methods involve median of squares [74], S-
estimation [69] and more recently robust weighted least-squares [28], among many
others, see also [33] for a recent review on such methods. The MSO model and
related techniques such as IPOD [73] also perform both outlier detection and robust
estimation. However, many high-dimensional datasets, with hundreds or thousands
of covariates, do su�er from the presence of outliers. Robust regression and detection
of outliers in a high-dimensional setting is therefore important. Increased dimension-
ality and complexity of the data may amplify the chances of an observation being an
outlier, and this can have a strong negative impact on the statistical analysis. In such
settings, many of the aforementioned outlier detection methods do not work well. A

2



new technique for outlier detection in a high-dimensional setting is proposed in [1],
which tries to Ænd the outliers by studying the behavior of projections from the data
set. A small set of other attempts to deal with this problem have been proposed in
literature [86, 67, 32, 73, 26], and are described below with more details.

The MSO model seems well-suited to perform both estimation and outlier de-
tection because it relies on parameters for regression and also for outlyingness of
each observation. High-dimensional datasets can be handled because all the param-
eters can be penalized. In this setting, we can either consider the MSO model as
a ultra-high dimensional linear regression model and apply one penalization on a
concatenated version of the parameters as suggested in IPOD, or use two di�erent
penalizations for regression parameters and outlyingness parameters, as suggested in
Robust Lasso [32].

Question 2. How recent convex sparsity-inducing penalization can help to show strong
guarantees in the MSO model for both outlier detection problem and robust estimation in
the classical Gaussian Linear Model (LM) ?

Sparse inference techniques, in particular applied to high-dimensional linear re-
gression, are of importance in statistics, and have been an area of major developments
over the past two decades, with deep results in the Æeld of compressed sensing, and
more generally convex relaxation techniques [80, 15, 16, 19, 18]. These led to powerful
inference algorithms working under a sparsity assumption, thanks to fast and scalable
convex optimization algorithms [4]. The most popular method allowing to deal with
sparsity and variable selection is the LASSO [81], which is `1-penalized least-squares,
with improvements such as the Adaptive LASSO [94], among a large set of other
sparsity-inducing penalizations [13, 5].

Within the past few years, a large amount of theoretical results have been estab-
lished to understand regularization methods for the sparse linear regression model,
using so-called oracle inequalities for the prediction and estimation errors [43, 44, 53],
see also [13, 29] for nice surveys on this topic. Another line of works focuses on vari-
able selection, trying to recover the support of the regression coe�cients with a high
probability [49, 44, 21]. Other types of loss functions [85] or penalizations [25, 11]
have also been considered. Very recently, the sorted-`1 norm penalization has been
introduced [11, 12, 76] and very strong statistical properties have been shown. In
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particular, when covariates are orthogonal, SLOPE allows to recover the support of
the regression coe�cients with a control on the False Discovery Rate [11]. For i.i.d
covariates with a multivariate Gaussian distribution, oracle inequalities with optimal
minimax rates have been shown, together with a control on a quantity which is very
close to the FDR [76]. For more general covariate distributions, oracle inequalities
with an optimal convergence rate are obtained in [14].

Question 3. How can we generalize results in the context of Question 2 to other regres-
sion problem, particularly to Generalized Linear Models (GLM) ?

Real datasets, particularly in biological applications, often di�er from a linear
regression model. For binary data, a Bernoulli or binomial model should be used.
Therefore, studying to what extent our results can be adapted in the GLM setting is
interesting.

Outline

Each question presented above corresponds to a chapter of the thesis. Let us now
rapidly review the main contents and results of this thesis.

1 Summary of Chapter I

In Chapter I, we basically answer to Question 1. We review some statistical tools
for outlier detection in the context of Linear Regression. We particularly focus on
problems that have convex objectives, this restriction being at the core of much of
modern optimization theory. The primary reasons for targeting convex problems are
their widespread use in applications and their relative ease of solving them.

1.1 Convex optimization tools

First, many supervised machine learning problems can be cast into the minimization
of an expected loss over a data distribution, possibly penalizing some parameter,
writing
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1. Summary of Chapter I

min
µ2Rd

F (µ) = f (µ)+h(µ), (1)

where f is a goodness-of-Æt measure depending implicitly on some observed data and
h is a regularization term that imposes some structure to the solutions. Typically, f is
a di�erentiable function with a Lipschitz gradient, whereas h might be non-smooth.
Most machine learning optimization problems involve a data Ætting loss function f

averaged over sample points because of the empirical risk minimization principle [63].
Namely, the function f writes

f (µ) = 1

n

nX

i=1

fi (µ),

where n is the number of observations, and fi is the loss associated to the i th obser-
vation. In regression context, n independent and identically distributed observations
(xi , yi )i=1,...,n are given, where xi 2 Rp and yi 2 R respectively stand for the vector of
covariates and label of sample i . Each loss fi is then of the form `(yi , x>

i µ) where
typical examples of functions ` are:

• `(y, y 0
) = (y ° y 0

)
2 (Least Square loss),

• `(y, y 0
) = log

°
1+e°y y 0¢

(logistic loss with labels in {°1,1}),

Typical examples of function h include sparsity inducing penalization - such as the `1

penalization where h(µ) =Pd
i=1

|µi |. Such methods have been applied in the popular
goal of variable selection in various applications [80, 54]. Thus we recall some convex
optimization principle that will be used throughout the thesis.

Gradient Descent (GD) is the building block of the main Ærst-order optimization
algorithms. Starting at some initial point µ0, this algorithm minimizes a di�erentiable
function f by iterating the following equation

µt+1 = µt °¥tr f (µt
), (2)

where r f (µ) stand for the gradient of f evaluated at µ, and (¥t )t is a sequence of
step-sizes.

As emphasized by Equation (1), the function to be optimized can be non-smooth
in many situations because of the presence of a regularizing term. GD algorithm

5



Introduction

can then be extended to cases where the function h is convex and non-di�erentiable
whose proximal operator is easy to compute.

DeÆnition .1. Given a convex function h, we deÆne its proximal operator as

proxh(x) = argmin
y

£
h(y)+ 1

2
kx ° yk2

§
,

which is uniquely deÆned because of the strong convexity of the Euclidean norm.

The proximal operator can be seen as a generalization of the projection. Indeed,
if h = 0 on a convex set C and h =1 on C Ÿ, proxh is exactly the projection over C .
The computation of the proximal operator is also an optimization problem, but when
the function h is simple enough, the proximal operator has a closed form solution [5].
Using these proximal operators, the iteration of Equation (2) is then replaced by the
following iteration:

µt+1 = prox¥t h
°
µt °¥tr f (µt

)
¢

. (3)

1.2 Background on robust linear regression

We consider a linear model given by:

yi = x>
i Ø+"i , (4)

for i = 1, . . . ,n, where n is the sample size, Ø 2 Rp , xi 2 Rp , yi 2 R and "i 2 R re-
spectively stand for the linear regression coe�cients, vector of covariates, label and
noise of sample i . The idea of robust regression is to change the usual least squares
goodness of Æt to another goodness of Æt that will reduce the inØuence of outliers.
These methods gain popularity since the 80

0s and are variants of M-estimation [40],
which computes the following estimate of Ø:

Ø̂= argmin

Ø2Rp

nX

i=1

`(yi , x>
i Ø), (5)

with a loss function `(yi , ·) which is often non-convex.
This kind of method focuses on the estimation of the regression parameter and does
not consider outlier detection as a problem of interest. In the context of fraud

6



1. Summary of Chapter I

detection, anomaly detection, outliers are quantities of interest and thus should be
included in the model.

1.3 The Mean-Shift outlier model

The mean-shift single outlier model [22] is the Ærst model introducing a parameter to
decide whether a particular observation is an outlier or not. The model writes:

yi = x>
i Ø+µi0

+"i , (6)

for i = 1, . . . ,n, where n is the sample size, Ø 2 Rp , xi 2 Rp , yi 2 R and "i 2 R re-
spectively stand for the linear regression coe�cients, vector of covariates, label and
noise of sample i , and where i0 is the index of the observation we suspect to be an
outlier. If µi0

is non zero then observation i0 is an outlier. With the development of
convex optimization method and sparsity inducing penalization, this model has been
extended to the following mean-shift outlier model:

yi = x>
i Ø+µi +"i , (7)

with µ= (µ1,µ2, . . . ,µn)
> 2Rn in which a non-zero coordinate indicates that the corre-

sponding observation is an outlier. This model rewrites as a high-dimensional linear
regression model: with Y = (y1, y2, . . . , yn)

>, with X 2Rn£p with i th row given by x>
i ,

with an extended features matrix Z = [X I ] being the concatenation of X and the
identity matrix, and an unknown regression vector ∞= (Ø>

,µ>
)
>, the model given in

Equation (7) rewrites
Y = Z∞+",

where "= ("1,"2, . . . ,"n)
>.

The outlier detection problem is then a variable selection problem, therefore
we recall some classical results about estimation and variable selection, focusing on
the approach of minimization of the penalized negative log-likelihood using popular
sparsity-inducing penalizations. In this context, the optimization problem takes the
following form

min
∞

1

2n
kY °Z∞k2

2
+pen(∞),

where pen is usually a sparsity-inducing and convex function.
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We end this chapter by a discussion motivating the fact that we should apply two
di�erent penalizations instead of considering the concatenated problem above. This
has already been done successfully with the Lasso penalization in [32], in which the
minimization problem is of the following form

min
Ø,µ

1

2n
kY °XØ°µk2

2
+∏ØkØk1 +∏µkµk1,

where kxk1 =
Pn

i=1
|xi | for any x 2 Rn . A critical step is the choice of the tuning pa-

rameters ∏Ø,∏µ in the penalizations. Traditionally, it is achieved by a cross-validation
technique. We discuss in Section 4.3 of Chapter I this technique since in our context
data is non-stationary.

1.4 SLOPE

SLOPE is the acronym for Sorted L-One norm PEnalization [11], which is deÆned as
follows.

DeÆnition .2 ([12]). Let x 2 Rn . The sorted `1 norm associated to the positive non-
increasing sequence ∏= (∏1, . . . ,∏n) is deÆned as:

J∏(x) =
nX

i=1

∏i |x|(i ), (8)

where |x|(i ) is the i th largest element of |x| = (|x1|, . . . , |xn |).

This norm has demonstrated interesting properties in terms of estimation and
support recovery in linear regression with speciÆc design matrix. In Section 1.3 of
Chapter I we recall these results that motivate its future use.

2 Summary of Chapter II

In Chapter II, we deeply study the Mean-Shift outlier model of Equation (7). This
model gained interest recently with new developments in convex optimization [46,
73, 90]. Recall that Equation (7) also writes:

Y = XØ+µ+", (9)

8



2. Summary of Chapter II

where Y = (y1, y2, . . . , yn)
>, X 2 Rn£p with i th row given by x>

i , µ = (µ1,µ2, . . . ,µn)
>

and "= ("1,"2, . . . ,"n)
>.

We answer to Question 2 by studying the properties of µ̂ and Ø̂ being solution to
the following minimization problem:

(Ø̂, µ̂) 2 argmin

Ø,µ

1

2n
kY °XØ°µk2

2
+ J∏(Ø)+ J∏̃(µ), (10)

where J∏ and J∏̃ for two sequences ∏, ∏̃ of weights denotes the Slope norm given in
DeÆnition .2.

We study the properties of Ø̂ and µ̂ both in terms of estimation and variable
selection/outlier detection. Assuming the true parameters Ø and µ are respectively
k°sparse and s°sparse, our goal is to estimate properly not only the true parameters
but also the true support of µ, as it describes the outlying sample points.

2.1 Estimation results

The metrics used to measure the performance in term of estimation is the `2 norm.
In Section 3 of Chapter II we obtain the following error bound in Theorem II.4:

kØ̂°Øk2

2
+kµ̂°µk2

2
=O

µ
k log

µ
2ep

k

∂
+ s log

µ
2en

s

∂∂
,

where (Ø̂, µ̂) is given by Equation (10). This convergence rate is typical of what can be
found in the literature about parametric regression problems [44, 66]. This result is
based on a RE-type condition that we establish in Theorem II.1 (Section 3, Chapter
II), and that is known to be mandatory in order to derive fast rates of convergence for
penalizations based on the convex-relaxation principle [92]. We establish similar con-
vergence rates for other combinations of penalties in Theorem II.2 and Theorem II.3
(Section 3 of Chapter II).

2.2 Outlier detection results

The previous result makes sense regarding estimation, but not outlier detection since
it does not guarantee that we will recover the non-zero coe�cients of µ. For the
purpose of outlier detection we introduce the support and the sign of a vector.

9
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DeÆnition .3. The support of x 2Rn is

supp(x) = #
©
i 2 {1, . . . ,n} | xi 6= 0

™
,

where # stands for the cardinality, while the signed support of x 2Rn is

sgn(x) =
°

sgn(x1),sgn(x2), . . . , sgn(xn)
¢
,

where for any t 2R, sgn(t ) = 1 if t > 0, sgn(t ) =°1 if t < 0 and sgn(0) = 0.

The purpose of outlier detection is to Ænd an estimate µ̂ such that supp(µ̂) =
supp(µ). We use the False Discovery Rate (FDR, [8]) as a metric, which is the expec-
tation of false discoveries among all the discoveries, deÆned by

FDR(µ̂) = E
∑

#{i |µi = 0 and µ̂i 6= 0}

#{i | µ̂i 6= 0}

∏
. (11)

Note that in our context, a discovery is a non-zero coe�cient in µ since it corresponds
to Ænding an outlying sample point. We also deÆne the True Positive Rate, which is
the expected proportion of outliers found, deÆned as:

TPR(µ̂) = E
∑

#{i 2 {1, . . . ,n} | µ̂i 6= 0 and µi 6= 0}

#{i 2 {1, . . . ,n},µi 6= 0}

∏
. (12)

The main result of Section 4 of Chapter II is given in Theorem II.5 in which we
establish that for any target level q , we can set the sequence of weights ∏ and ∏̃ in
minimization (10) to obtain

TPR(µ̂) ! 1, limsupFDR(µ̂) ∑ q.

These theoretical results are supported by intensive numerical experiments. In par-
ticular, two interesting questions are raised.

• How much can we lower the outlier magnitude and still be able to Ænd them ?
The answer is basically that it can be lowered as much as it does not confound
with the Gaussian noise.

• To what extent is this result really asymptotic ? Numerical experiments suggest
that in a low-dimensional setting (few covariates) a small sample size is enough

10



3. Summary of Chapter III

to control the FDR. However, the higher the dimension, the higher the sample
size.

2.3 Noise variance

The choice of the weights ∏ and ∏̃ in the penalization (10) relies on the knowledge
of the noise variance æ2 [32, 11]. While æ2 is typically unknown in practice, cross-
validation can overcome this issue, but we explain in Section 4.3 that it is not an
option in our context because of non-stationarity .

In low-dimensional settings, the estimation of the noise variance is not an is-
sue [40, 71]. However the task of outlier detection in high-dimensional settings goes
beyond the traditional robust analysis which requires a large number of observa-
tions relative to the dimensionality [73, 42]. In Section 5.7 of Chapter II we propose
Algorithm 4, a new algorithm based on successive steps of estimating the model
parameters and updating the noise variance, in the spirit of [11]. Although no theoret-
ical results are shown for this algorithm, its performance is again measured through
intensive numerical simulations.

3 Summary of Chapter III

Chapter III answers to Question 3. The linear regression model is the Ærst model we
investigated on the outlier detection problem because it is the most familiar model
in the regression context and it is widely used in many Æelds of science. However
it remains a particular case, while other problems, such as binary classiÆcation, are
also of paramount importance.

One example is when from a binary outcome Y 2 {0,1} one wants to estimate
the probability P(Y = 1). This is motivated by a problem in biology: we consider
whole exome sequencing data for 47 primary colorectal cancer tumors, characterized
by a global genomic instability a�ecting repetitive DNA sequences (also known as
microsatellite unstable tumors, see [24]). In details, micro-satellites are portions of
DNA sequence that are composed of a base motif (one or several nucleotides) repeated
several times (generally 5 to 50). For example, A A A A A is a micro-satellite with
the base motif A (Adenine) repeated Æve times. Such portions of DNA have higher
mutation rate than other DNA sequences, leading to genetic diversity (instability).

11
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Here, the binary outcome Y describes whether a micro-satellite has been mutated
or not. The purpose is to estimate the mutation rate and Ænd outliers, which are
micro-satellites that are mutated more or less than expected. This requires the use of
a logistic model [24, 52], which is a particular case of the Generalized Linear Model
we study in Chapter III.

3.1 Outliers in Generalized Linear Models

The Generalized Linear Model (GLM) [61] generalizes linear regression by allowing
the linear model to be related to the response variable via a link function and by
allowing the magnitude of the variance of each measurement to be a function of its
predicted value. The corresponding log-density is given by:

log f (y ; x,Ø) = y x>Ø°b(x>Ø)+ c(y), (13)

where y 2 R is the label, x 2 Rp the vector of covariates, Ø 2 Rp the regression co-
e�cients, b a twice continuously di�erentiable function with derivative b0 being a
one-to-one function, and c a normalization function. Typical examples are:

• Gaussian linear model with variance æ2:

b(¥) = ¥2

2æ2
, c(y) =° log

°p
2ºæ2

¢
° y2

2æ2
.

• Logistic regression:
b(¥) = log(1+e¥), c(y) = 1.

Following recent work on modelling outliers in GLM [88], we include parameters
to take into account the presence of outliers in the following way: we have labels
y = (y1, ..., yn)

> whose elements are observations of independent random variables
from a distribution with log-density

log f (yi ; xi ,Ø?,µ?i ) = yi (x>
i Ø+µi )°b(x>

i Ø+µi )+ c(yi ), (14)

for i = 1, . . . ,n, where n is the sample size. A non-zero µi means that observation i is
an outlier, and Ø 2Rp , xi 2Rp , yi 2R respectively stand for the regression coe�cients,

12



3. Summary of Chapter III

vector of covariates, label of sample i . We assume that µ? 2Rn is sparse with support
S and that |S| = s ø n.

3.2 Outlier detection results

We focus in this part on the outlier detection property of the following penalized
negative log-likelihood estimator

(Ø̂, µ̂) 2 argmin

Ø2Rp ,µ2Rn
° 1

n

nX

i=1

°
yi (x>

i Ø+µi )°b(x>
i Ø+µi )

¢
+ J∏(µ), (15)

where J∏ is the Slope penalization given in DeÆnition .2 for a positive non-increasing
sequence ∏. We focus on the low-dimensional case therefore we do not apply any
penalization on the regression coe�cients.

Under assumptions on the distribution of the labels given in Section 2.3 of Chap-
ter III, we establish in Theorem III.1 the following result: for any Æxed target level Æ,
we have

TPR(µ̂) ! 1, limsupFDR(µ̂) ∑Æ, (16)

where (Ø̂, µ̂) is given by Equation (15), with ∏ depending on Æ. This basically means
that in appropriate settings we can recover the true support of µ? while keeping the
false discovery rate under a desired level.

3.3 The Binomial model and biological context

One particular model that satisÆes the required assumptions is the binomial model,
where observations come from independent Binomial distributions. The log-density
is then given by Equation (14) with:

b(¥) =°ns log(1°æ(¥)), æ(¥) = 1

1+e°¥ , c(y) = log

√
ns

y

!

,

where ns is the number of trials. In Section 5 of Chapter III, we perform intensive
simulations to illustrate the theoretical results, in particular regarding FDR control.

The interest in this model comes from a particular biological context. In the
study of colorectal cancer, one is interested in a global genomic instability a�ecting
repetitive DNA sequences. Hence, one observation consists in computing over ns
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patients the number of times a particular DNA sequence has been mutated, thus
leading to a binomial random variable. There are then as many observations as DNA
sequences of interest.

The particular dataset we study contains repetitive sequences (of di�erent lengths)
of the single nucleotide A, observed in ns = 47 colorectal cancer tumors. Based on
the observed mutation rate of these sequences across the 47 tumors, the goal is to
detect sequences that are much more (or less) mutated than they should. The results
are the following: over more than 45 thousands DNA sequences, we identify 151

outliers, see Figure A, which must be subject to further biological analysis. However,
the plot indicates some kind of overdispersion in the data, a phenomenon which is
not included in this model. The inclusion of overdispersion such as in [59] is beyond
the scope of this thesis and is to be developed in future works.

14



3. Summary of Chapter III

Figure A: Multi-satellites with base motif A: identiÆcation of 151 outliers for a target
FDR q = 0.05. DNA sequences composed of repetitions of nucleotide A are observed
in 47 tumors. Mutation rates are plotted against the length of the DNA sequence.
Red curve is the regression given by Ø̂ given by Equation (15). Blue dots are non-
outlier sample points. Green dots correspond to DNA sequences that mutated less
than expected. Black dots correspond to DNA sequences that mutated more than
expected. The last two categories are di�erent kind of outliers.
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“Y en a le même nombre que les autres. Parce que la farce est la même pour tous les saucissons.

Avec une moyenne de trente-deux à trente-quatre noisettes par pièce. Seulement, avec le hasard de

la coupe, vous êtes tombé sur une tranche où les éclats étaient mal répartis."

— Perceval, Kaamelott, Livre VI

CHAPTER I

A review of Statistical Tools for
Outliers Detection

1 Notations and Technical tools

In this Section we present tools that are used as the building blocks of this thesis.

1.1 Notations

Unless it is explicitly mentioned, n,m, p denote positive integers, Y denotes an ob-
servation vector in Rn , X a design matrix in Rn£p whose columns correspond to
covariates. We denote kxkq = (

Pn
i=1

|xi |q )
1/q the `q norm of any x 2 Rn for q 2N?,

and |x|0 the `0 "norm", namely the cardinality of {i | xi 6= 0}. The Euclidean inner
product in Rn is denoted by hu, vi or u>v for any u, v 2Rn .

1.2 Convex optimization tools

Convex optimization is important for training statistical learning model [5]. Con-
vex relaxations techniques, such as Lasso, allowed to solve model selection problem
through convex optimization [5]. In statistics, model selection is the task of selecting
a subset of covariates that perform best according to a given criteria. A common
procedure is to introduce a minimization problem with an objective function deÆned
as the weighted sum of two components: a term responsible for the goodness-of-Æt
(typically the negative log-likelihood of the model), and the second term which is
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I. A review of Statistical Tools for Outliers Detection

a sparsity-inducing penalization on parameters of the model so that a null coe�-
cient corresponds to an irrelevant variable. For least-square regression, the objective
function takes the following form:

min
Ø2Rp

1

2
kY °XØk2

2
+pen(Ø), (I.1)

where pen is any penalization function.
The theory of convex optimization guarantees the existence of a global minimum

if the penalization is convex. The most natural idea for model selection is the pe-
nalization pen(Ø) = |Ø|0. However, this penalization is not convex and so a popular
penalization is the convexiÆed version of |Ø|0, that is the `1 norm kØk1, which leads
to the popular Lasso minimization [81, 75, 43, 27]. Results about Lasso will be con-
sidered in Section 3.2, together with results about the Slope penalization introduced
in Section 1.3.

Subdi�erential. As enlighted by the example above, the penalization function can
be non-smooth, therefore we recall here the deÆnition and some properties of the
subdi�erential, that generalizes the notion of gradient to non-smooth function. The
following deÆnitions, properties and algorithms are based on [4].

DeÆnition I.1. Given a convex function g :Rp !R and a vector x 2Rp , let us deÆne the
subdi�erential of g at x as

@g (x) := {z 2Rp |8x 0 2Rp g (x)+ hz, x 0 °xi ∑ g (x 0
)}. (I.2)

The elements of @g (x) are called the subgradients of g at x.

The proposition below states that the subgradient allows to Ænd the optimum of
a (possibly non-smooth) convex function:

Proposition I.1. For any convex function g :Rp !R, a point x 2Rp is a global minimum
of g if and only if the condition 0 2 @g (x) holds.

Note that the concept of subgradient is mainly useful for nonsmooth functions.
If g is di�erentiable at x, the set @g (x) is indeed the singleton {rg (x)} and Proposi-
tion I.1 above reduces to the classical Ærst-order optimality condition rg (x) = 0.
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1. Notations and Technical tools

As we explained above, the penalization term in Equation (I.1) is typically a
sparsity-inducing norm. Therefore we must be able to compute the subgradient
of such a norm. This leads to the notion of dual norm below:

DeÆnition I.2. The dual norm J? of a norm J is deÆned for any vector z 2Rp by

J?(z) := max
x2Rp ,J (x)∑1

hz, xi, (I.3)

which allows to caracterize the subdi�erential of a norm:

Proposition I.2. The subdi�erential of a norm J in any x 2Rp is given by

@J (x) = {z 2Rp | J?(z) ∑ 1,hx, zi= J (x)}. (I.4)

Proximal gradient method. For smooth minimization problems, a fundamental
method is gradient descent. For non-smooth problem, it generalizes to subgradient
descent as long as an element of the subgradient can be found. However, faster
methods called proximal methods [4] have been recently introduced and only rely on
the computation of a proximal operator deÆned below:

DeÆnition I.3. The proximal operator of a convex function J , with parameter ∏ > 0, is
given by

prox∏J (x) := argmin

u2Rp

1

2
kx °uk2

2
+∏J (u), (I.5)

where x 2Rp .

Since the objective function is strictly convex, the proximal operator is uniquely
deÆned. Now let us consider a minimization problem of the form:

min
Ø2Rp

f (Ø)+∏J (Ø), (I.6)

with J a convex function for which the proximal operator can be computed and f a
smooth convex function whose gradient r f is L-lipschitz, namely:

kr f (u)°r f (v)k ∑ Lku ° vk, (I.7)

for any u, v 2 Rp . Note that the objective function Equation (I.1) is a particular case
of the one in Equation (I.6).
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I. A review of Statistical Tools for Outliers Detection

This minimization problem can be solved iteratively. Having a guess Øt at step t ,
Øt+1 is computed by minimizing a Ærst-order Taylor expansion of f around Øt :

Øt+1 = min
Ø2Rp

f (Øt
)+ hr f (Øt

),Ø°Øt i+ L
2
kØ°Øtk2

2
+∏J (Ø),

which can be rewritten as:

Øt+1 = min
Ø2Rp

1

2

∞∞Ø° (Øt ° 1

L
r f (Øt

))

∞∞2

2
+ ∏

L
J (Ø). (I.8)

Then Equation (I.8) leads to the use of the proximal operator in the following algo-
rithm:

Algorithm 1 Proximal Gradient Descent

initialize Ø
while not converged do

Ø√ prox∏
L J (Ø° 1

Lr f (Ø))

end while
return Ø

In some problem such as linear regression or logistic regression, L can be easily
computed. When L is harder to Ænd, one can use linesearch [4].

1.3 The Sorted L-One norm

This Section contains technical details about the penalization we will use, which has
been introduced and developed in [12], and therefore will be used in the proof of the
main results of Chapter II. In the rest of this Section, we consider ∏ = (∏1, . . . ,∏n) a
non-increasing sequence of positive real numbers.

DeÆnition I.4 ([12]). Let x 2 Rn . The sorted `1 penalization (Slope) associated to the
sequence ∏ is deÆned as:

J∏(x) =
nX

i=1

∏i |x|(i ), (I.9)

where |x|(i ) is the i th largest absolute value of the elements of x.
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Note that this includes `1 norm as a special case if ∏ is constant, but if not this
means that the higher the coordinate (in absolute value), the higher the individual
weight in the penalization.

Proposition I.3 ([12]). J∏ is a norm.

In particular, J∏ is a convex function.

DeÆnition I.5 ([76]). A vector a 2 Rn is said to majorize b 2 Rn (denoted b 4 a) if they
satisfy for all i 2 {1, . . . ,n}:

|a|(1) +·· ·+ |a|(i ) ∏ |b|(1) +·· ·+ |b|(i ). (I.10)

Proposition I.4 ([11]). The unit ball of the dual norm of J∏ is:

C∏ = {v 2Rn | v 4∏}. (I.11)

The property above is important as it allows to describe the subgradient of the
J∏ norm, which is, as seen in the previous subsection, a crucial tool in convex opti-
mization as it generalizes the gradient to non-di�erentiable functions. Hence, as a
particular case of Proposition I.2, we conclude with the following property:

Proposition I.5. The subdi�erential of the J∏ norm at any x 2Rn is given by:

@J∏(x) = {! 2C∏ | h!, xi= J∏(x)} . (I.12)

As explained in Section 1.2 above, the proximal operator is a convenient tool to
solve penalized optimization problems. A fast algorithm to compute the proximal op-
erator of J∏ has been developed [12], making this optimization problem easy to solve.
Note that this algorithm has been implemented in the open-source tick library [6],
available at https://x-datainitiative.github.io/tick/ that we will use in our
experiments.

1.4 Multiple testing

The concept of multiple testing arises naturally in model selection. Let us consider
Equation (I.1) with a sparsity-inducing penalization on Ø, and let us measure the
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e�ciency of our estimator in terms of variable selection. Formally we want to perform
p tests with hypothesis

H0,i :Øi = 0 versus H1,i :Øi 6= 0, i = 1, . . . , p, (I.13)

and decide to reject or not based on our estimator of Ø. This is a multiple testing
problem and several measures of e�ciency can be considered. We recall in the
following the basics of multiple testing and some interesting error measures to be
controlled.

Single test. Suppose that we test some null hypothesis H0. Let R denotes the
rejection of H0. A discovery is a rejection of this hypothesis. This name is motivated
by the fact that in applications, a null hypothesis corresponds to something expected,
a global trend, and so a rejection can correspond to a new trend that needs to
be explored. In the linear regression example above this would correspond to the
discovery of one variable of inØuence. A false discovery arises when H0 is rejected
whereas it is true.

When doing a single statistical test, one typically wants to control the Type I
error, namely the probability of making a false discovery, by a certain small level
Æ> 0 (which is typically of the order of 5%):

PH0
(R) ∑Æ.

Note that most of the time a statistical test is described by its p-value.

DeÆnition I.6. The p-value pval of a test is the smallest Æ that leads to the rejection of
H0, all other things being kept unchanged.

The proposition above gives an example of a computable p-value:

Proposition I.6. Consider a two-sided test H0 : Ø = 0 against H1 : Ø 6= 0 with a test
statistic T . If the test statistic is distributed as N (0,1) under the null hypothesis, then
the p-value is:

pval = 2(1°©(T obs
)),

where © is the c.d.f of N (0,1) and T obs is the observed value of the statistic.
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Note that Æ is always Æxed a priori, that is before performing the test. The p-value
is not always computable but when it is, one can equivalently decide to reject H0 if
pval ∑Æ. Therefore p-value is a convenient way to describe a test and the lower the
p-value the stronger the rejection.

Multiple tests. Now suppose we perform m tests, each of level Æ, that is:

PH0,i (Ri ) ∑Æ,

where H0,i and Ri respectively stand for the null hypothesis and the rejection of
the i -th test. Then, under independence, the probability of making at least one
false rejection is 1° (1°Æ)

m , meaning that we will make a false discovery with high
probability. In such a framework, it is not clear what quantity is relevant to be
controlled at some level Æ. Two popular possible quantities [38] are as follows.

DeÆnition I.7. The Family-wise Error Rate (FWER) is deÆned as:

FWER =P
≥ m[

i=1

(H0,i is true \Ri

¥
. (I.14)

This is the probability of making at least one false discovery. The False Discovery Rate
(FDR) is deÆned as:

FDR = E
h |H0 \R|

|R|

i
, (I.15)

where H0 and R are respectively the set of true null hypotheses and the set of rejected
hypotheses, namely

H0 =
©
i | H0,i is true

™
, R =

©
i | H0,i is rejected

™
.

The FDR is the expected number of the proportions of false discoveries among all the
discoveries.

A popular and still widely used procedure to control the FWER at level Æ is the
Bonferroni correction1, consisting in doing each of the m tests at level Æ/m, so that the

1Which is not due to the mathematician whose name has been given to this method (as often in
Mathematics particularly when it comes to women), but to Olive Jean Dunn [50]
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I. A review of Statistical Tools for Outliers Detection

union bound ensures that FWER ∑Æ. However, this is a very conservative procedure
in the sense that it leads to a small number of rejections [68].

In many applications it is not a problem to allow some false discoveries as long
as it allows to do much more true discoveries. That is why the control of the FDR
can be more interesting since it is less restrictive, as it controls the fraction of false
discoveries authorized instead of controlling the probability of making at least one
discovery. This is the quantity we will focus on for the problem of outliers detection
considered in Chapter 2 and Chapter 3.

A fundamental procedure is the following Benjamini-Hochberg procedure [9] that
achieves FDR ∑ Æ when the p-values p1, . . . , pm of the tests are independent. Then
the algorithm is the following:

Algorithm 2 The Benjamini-Hochberg procedure for FDR control

Input p1, . . . , pm p-values and Æxed level Æ.
Sort the pi p(1) ∑ p(2) ∑ . . . ,∑ p(m).
Compute the largest k such that p(k) ∑ k

mÆ.
Reject H0,(i ) for i = 1, . . . ,k .

Note that indepence assumption can be weakened and even arbitrary dependence
can be handled [10] (the Benjamini-Hochberg-Yekutieli procedure). The Benjamini-
Hochberg procedure is the most used and has a particularly interesting connection
with Slope [11] as explained in Section 3.3 of Chapter I.

2 Outliers in Linear Regression and Robust

Estimation

In this section we review some of the tools that are used when dealing with outliers
in regression problems. Mainly two approaches coexist: changing the goodness-of-
Æt to lower the inØuence of outliers, or adding parameters to take into account the
presence of outliers.
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2. Outliers in Linear Regression and Robust Estimation

2.1 Outliers in Linear Regression

Linear regression is an important tools in statistical data analysis. The model is
described as follows:

yi = x>
i Ø

?+"i (I.16)

for i = 1, . . . ,n, where n is the sample size and Ø? 2 Rp , xi 2 Rp , yi 2 R and "i 2 R
respectively stand for the linear regression coe�cients, vector of covariates, label and
noise of sample i . The noise is assumed to be independent and identically distributed
as N (0,æ2

).
In its basic applications where Ø has to be estimated from the sample, the Ordi-

nary Least Square (OLS) estimate minimizes the sum of squared residuals:

ØOLS = argmin

Ø2Rp

nX

i=1

(yi °x>
i Ø)

2
. (I.17)

In a statistical context, an observation is an outlier if it "deviates so much from
other observations as to arouse suspicions that it was generated by a di�erent mech-
anism" [37].

In a regression context, in particular in linear regression, there can be outliers
in the covariates or in the observed vector y . Observations having outliers in the
covariates are named inØuencial or high-leverage points.

DeÆnition I.8. Consider the model described by Equation (I.16) and let X be the matrix
in which the i th row is given by x>

i (design matrix). Suppose that X has rank p and
let H = X (X >X )

°1X >. Then, the leverage of observation i is deÆned as the i th diagonal
element of H and for all i 2 {1, . . . ,n}:

• 0 ∑ hi i ∑ 1,

• var(yi °x>
i Ø

OLS
) = (1°hi i )æ2.

This clearly shows that the higher the leverage, the higher the inØuence of the ob-
servation on the regression. Note that this deÆnition cannot be used when rank(X ) <
p, in particular in high dimension settings.

In this thesis, we focus on discovering outliers as unusual values of y , in low or
high dimension. This problem can be correlated with the former one, in the sense
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I. A review of Statistical Tools for Outliers Detection

that observations that are both high leverage points and outliers in y are di�cult to
detect [22].

In the following of this Section, we review some classical techniques to overcome
this issue of outliers in the observation vector y . Two approaches coexist and have
di�erent purposes: to get rid of the outliers inØuence to estimate the regression
coe�cients, or precisely identify the outliers besides the estimation of the regression
coe�cients.

2.2 Median of Means

In a general regression framework, (X ,Y ) is a pair of random variables, where Y 2R
is some label depending of some inputs X 2Rp . Then, one wishes to Ænd a function f

among some class F , for which f (X ) is a good prediction of Y . In linear regression,
f is to be found among the set of linear functions F = {ht , ·i | t 2 Rp

}. Naturally, the
best performance one may hope for is of the risk minimizer in the class, given by

t0 = argmin

t2Rp
E(ht , X i°Y )

2
. (I.18)

Assume that a sample (Xi ,Yi )i=1,...,n is given, assumed for now to be i.i.d. with the
same distribution as (X ,Y ). The aim is to approximate t0 with a small error (accuracy)
and with high probability (conÆdence) using these random data only. The most
natural way of choosing an estimate t̂ is by Empirical Risk Minimization (ERM) [63],
that is, by least squares regression:

t̂ = argmin

t2Rp

nX

i=1

(ht , Xi i°Yi )
2
.

Assume now that the dataset is made of n ° |O | i.i.d. data (Xi ,Yi )i2I with the same
distribution as (X ,Y ), and |O | outliers (Xi ,Yi )i2O that can be arbitrarily distributed,
in particular with another distribution than (X ,Y ). ERM is known to be sensitive to
outliers [58]. To overcome this issue, Median of Means (MoM) estimators [58, 57, 60]
rely on two building blocks:

1. Estimate the di�erence of the risks for all pairs t ,u 2Rp , namely replace mini-
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mization (I.18) by:

t0 = argmin

t2Rp
sup

u2Rp
E
£
(ht , X i°Y )

2 ° (hu, X i°Y )
2
§
.

2. Replace the calculation of the mean in ERM by the median of K means com-
puted over a partition of K blocks of the sample (Xi ,Yi )i=1,...,n .

Additional steps are then added depending on the context and the method [58, 57,
60]. Then with mild assumptions on (Xi ,Yi )i2O , MoM estimators perform as good
as ERM would on the clean subset [58, 60], namely, the calculated MoM estimator
t̂ MoM veriÆes:

kt̂ MoM ° t0k2 ∑Cæ

r
p
n

,

with large probability, where C > 0 is some numerical constant.
Note that MoM estimation also extents to the high-dimensional setting [57, 58],

providing optimal results for the estimation problem. However, MoM estimators do
not provide any guarantee about outliers detection, which is the problem we are
interested in.

2.3 MM-Estimates

In this section we review some popular robust regression methods, which are methods
based on the change of the loss function in the minimization (I.17), allowing to not
look too much at the outliers. The Ærst method, called M-estimation, has been
proposed by Huber [40] in 1964 and has been much more developed in the 70’s and
80’s [69, 89, 71].

M-Estimation. The term M-estimation is for Maximum Likelihood type Estima-
tor. A robust M-estimator minimises the sum of a less rapidly increasing objective
function than the least squares estimator, thus down-weighting the larger residuals.
Instead of minimizing (I.17), the estimator of the regression coe�cients is now deÆned
as:

Ø̂M = argmin

Ø2Rp

nX

i=1

`(yi , x>
i Ø), (I.19)
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I. A review of Statistical Tools for Outliers Detection

where ` is a loss function that can be chosen in multiple ways to reduce the inØuence
of observations with large residuals, such as a loss less rapidly increasing at °1 and
+1. For example, the Huber loss [40] is deÆned as:

`(y, z) = `Huber(y, z) =

8
<

:

1

2
(z ° y)

2 if |z ° y |∑ ±

±(|z ° y |° 1

2
±) if |z ° y | > ±

,

and thus allow not to take into account too much observations with large residuals.
Figure I.1 below recall some other popular losses, such as Tukey’s loss [3].

Figure I.1: Plot of losses as functions of the residuals

When p/n ! 0 and when observations have low leverages, M-estimators have nice
properties such as consistency and asymptotic normality [42] when ` is convex and
continuous.

DeÆnition I.9. An estimator ê(y) calculated from the data (x, y) is said to be scale
invariant if

ê(c y) = cê(y),
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2. Outliers in Linear Regression and Robust Estimation

for any positive constant c .

It is interesting to consider estimators satisfying this property since they provide
a coherent interpretation of the results. Indeed, if we change the scale of our mea-
surements y by an arbitrary change of units, the selected variables are the same and
the prediction changes accordingly.

To achieve scale invariance in M-estimation, it is convenient to use loss function
in the form

`(y, z) =¡
≥ y ° z

s

¥
,

where s is an estimate of the standard deviation æ of residuals [48]. The standard
deviation of the sample of residuals cannot be used for s because it is strongly a�ected
by outliers. Typical choice for s is the Median Absolute Deviation (MAD) scale
estimate, adjusted by a factor for asymptotically normal consistency [42]:

M AD = median(|y °X Ø̂|),

where Ø̂ is an estimate of the regression coe�cients and |y°X Ø̂| stands for the vector
with coordinates |yi ° x>

i Ø̂|. As Ø̂
M is not scale invariant, an iterative procedure that

gradually converges to an estimate for both errors and scale will be required [3]. This
approach is highly resistant to outlying observations as it is based on the median
rather that the mean [3].

S-estimation. Rousseeuw and Yohai [71] Ærst proposed these estimators, calling
them S-estimators because they are based on estimates of scale.

For any sample of residuals (yi ° x>
i Ø)i=1,...,n , we deÆne the scale estimate s(y1 °

x>
1
Ø, ..., yn °x>

n Ø) as a positive solution of

nX

i=1

¡
° yi °x>

i Ø

s

¢
= K , (I.20)

that is an M-estimate of scale, where ¡ is continuously di�erentiable, symmetric,
increasing on [0, a], constant on [a,1[ for some a > 0, ¡(0) = 0, where K is a constant
depending on ¡. Typical choice for ¡ is Tukey bisquare function plotted in Figure I.1,
for which appropriate values of K are discussed in [71, 70]. The S-estimator Ø̂scale is
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then deÆned as a solution of

min
Ø2Rp

s(y1 °x>
1
Ø, ..., yn °x>

n Ø), (I.21)

As before, this leads to an iterative procedure that requires initial estimates. Com-
pared to M-estimators, S-estimators are useful to handle cases where there are some
high-leverage observations in the data [70].

MM-Estimation. MM-estimators are obtained in three stages, combining M-estimation
and S-estimation to obtain a robust estimator that has the good properties of each
one of these [89]:

1. Compute a S-estimator and the corresponding residuals,

2. Using these residuals, compute an M-estimate of scale following Equation (I.20)
with objective function ¡0,

3. Compute an M-estimator with the scale obtained at the previous stage and
objective function ¡1 with ¡1 ∑¡0

The widely used rlm function from the R MASS package computes such an esti-
mator, using the same Tukey bisquare objective function in both Stages 2 and 3.

Such techniques of robust estimation can be computationally heavy, particularly
on large datasets and high dimension. Furthermore it focuses on the estimation
problem and does not provide any guarantee about outliers detection, which is the
problem we are interested in. What follows in this chapter is a summary of some
previously developed techniques that focus on the detection of outliers.

2.4 Mean-shift and variance-shift single outlier model

The two models below, contrary to Robust Regression explained above, include some
parameters to model the outliers.

Mean-shift single outlier model. Introduced in the 80’s, the mean-shift model [22]
has been the Ærst technique considering outliers as the object of interest. It relies on
studentized residuals to construct statistical testing to conclude whether or not an
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observation is an outlier. It requires the problem to be low-dimensional (small p) as
it uses the "hat matrix" H = X (X >X )

°1X > introduced in DeÆnition I.8.
Suppose we want to know if observation i is an outlier. First, one can slightly

modify the original model (I.16) to include a new parameter µi of interest:

yi = x>
i Ø

?+µi +"i , (I.22)

y j = x>
j Ø

?+" j j 6= i , (I.23)

where a non-zero µi means that observation i is detected as an outlier.
Those new parameters allow to measure the performances of inference procedures

in terms of the ability to discover outliers without making too many mistakes, which
was not possible with the robust regression procedures considered in the previous
paragraph. A natural way to do this is to construct a statistical test with the following
hypotheses:

H0 :µi = 0, H1 :µi 6= 0. (I.24)

Let r j , j = 1, . . . ,n be the residuals computed by OLS, namely:

r j = y j °x>
j Ø̂

OLS
.

Let æ̂ be the residual mean square, namely:

æ̂= 1

n °p

nX

j=1

r 2

j

and æ̂(i ) the residual mean square computed without the i th observation, that can be
computed with the following expression [22]:

æ̂2

(i )
=

(n °p)æ̂2 ° r 2

i /(1°hi i )

n °p °1
,

where hi i is the leverage introduced in DeÆnition I.8. Based on these quantities, the
following result holds:
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Theorem I.1 ([22]). DeÆne the quantity:

ti =
ri

æ̂(i )

p
1°hi i

= ri

s
n °p °1

n °p ° r 2

i

, (I.25)

then under H0, ti has a student distribution with parameter n °p °1.

Note that this can also be extended to test whether a Æxed set of observations is
a set of outliers [22].

A main issue is that it only allows to test one or a group of observations. To test
if each observation is an outlier, considering n times the Mean-shift single outlier
model above ends with n tests of the form of Equation (I.24). It is widely known that
performing many tests leads to many false rejections if we do not apply a multiple
testing procedure as explained in Section 1.4. However, even with this additional
computation, this framework leads to "masking" e�ects, such that an outlier is unde-
tected because of the presence of other adjacent ones. This phenomenon arises even
with low leverage observations [20].

Variance-shift single outlier model. The variance-shift model [64] also introduces
a single parameter to include in the model the possibility that one Æxed observation
is an outlier. The di�erence with the mean-shift model above is that instead of the
mean, this new parameter will inØuence the variance of the noise, as described below.
Fix an observation i that is a possible outlier, then deÆne the model as:

yi = x>
i Ø

?+Æiæi (I.26)

y j = x>
j Ø

?+" j , j 6= i , (I.27)

where the notations are the same as in Equation (I.16) except that the standard de-
viation of observation i is shifted by a factor Æi ∏ 1. A value Æi > 1 would lead
to the conclusion that observation i is an outlier. As in Theorem I.1, a test can be
constructed and would lead to the same masking issue.

However, both of the above models have also been studied via maximum likeli-
hood, through the problem of detecting the most likely outliers [22, 64]. It has been
shown [64] in the mean-shift single outlier model that this is equivalent to select the
observation i with maximum absolute value of ti deÆned in Theorem I.1, whereas
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in the variance-shift single outlier model the small sample distribution property of
the Maximum Likelihood Estimator is untractable. In particular, the inference of the
two models above are not equivalent in term of MLE, in the sense that it does not
necessarily lead to the same conclusion for identifying outliers [64].

The mean-shift and variance-shift single outlier models are less popular than
MM-estimation because (i ) these models are more e�cient to test whether or not a
Æxed (group of) observation(s) is outlying and (i i ) the estimation problem in presence
of outliers is historically more popular. However the new developments in the area of
convex penalization and sparsity-inducing penalization allow to overcome the main
issue of the mean-shift and variance-shift single outlier models, as explained in the
next Section.

2.5 A variable selection problem in high-dimensional linear

regression ?

Recent developments in convex optimization and sparsity inducing penalization such
as Lasso [81] or Slope [12] allow to do inference not only on a single parameter such
as in model (2.4) but on a whole vector which is assumed to be sparse.

The Mean-shift outlier model is the model we use for our problem and for which
new theory will be developed in Chapter II. It is described as above:

yi = x>
i Ø

?+µ?i +"i , (I.28)

for i = 1, . . . ,n, where n is the sample size. A non-zero µ?i means that observation
i is an outlier, and Ø? 2 Rp , xi 2 Rp , yi 2 R and "i 2 R respectively stand for the
linear regression coe�cients, vector of covariates, label and noise of sample i . In
what follows we assume that the noise is N (0,æ2

) and i.i.d. In matrix notation, this
model rewrites as:

Y = XØ?+µ?+", (I.29)

where Y = (y1, . . . , yn)
>, X 2 Rn£p is the feature (or design) matrix for which line i is

given by x>
i for i 2 {1, . . . ,n}, µ? = (µ?

1
, . . . ,µ?n )

> and "= ("1, . . . ,"n)
>.

In the linear model (no parameter µ?), the model is identiÆable if rank(X ) = p .
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But model (I.29) is clearly an ill-posed problem because the application

√
Ø

µ

!

7! XØ+µ

is not injective without assumptions on Ø,µ. A discussion about the identiÆability of
high-dimensional linear model is given in [72]. Therefore we impose sparsity on the
vector of individual intercepts µ?. Note that if the features are in high dimension, Ø?

can also be assumed sparse.
Interestingly, Model (I.29) can also be written as a (n + p)°dimensional linear

regression problem. DeÆne Z = [X In] 2Rn£(n+p) as the concatenation of X and the
n°dimensional identity matrix In . DeÆne ∞? = (Ø?>,µ?>)

> 2 Rn+p , then the model
has the following concatenated form:

Y = Z∞?+". (I.30)

In the following we assume that all design matrices X 2 Rn£p verify kXik = 1, i =
1, . . . , p, which is a common normalization assumption [76, 44].

False Discovery Rate. The False Discovery Rate of Equation (I.15) is a popular
measure of performance when one wants to encourage discoveries (rejected hypothe-
ses) without making too many mistakes [8]. In the context of parametric estimation,
there is a natural way to compute FDR to measure the performance of support recov-
ery of a true parameter µ with an estimator µ̂:

DeÆnition I.10. Given an estimator µ̂ of a true parameter µ, we deÆne the False Discovery
Rate for the support recovery of µ as

FDR(µ̂;µ) = E
"

#{i 2 {1, . . . ,n}, µ̂i 6= 0 and µi = 0}

#{i 2 {1, . . . ,n}, µ̂i 6= 0}

#

. (I.31)

This deÆnition matches the one of Equation (I.15) when considering H0,i = µ̂i = 0

for all i 2 {1, . . . ,n}. Another distinct measure of performance of an estimator, which
also comes from multiple testing, is the ability of the estimator not to miss too many
discoveries.
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DeÆnition I.11. The True Positive Rate of an estimator µ̂ of a true parameter µ is given
by

TPR(µ̂;µ) = E
"

#{i 2 {1, . . . ,n}, µ̂i 6= 0 and µi 6= 0}

#{i 2 {1, . . . ,n},µi 6= 0}

#

. (I.32)

There is a balance between FDR and TPR, as it is di�cult to achieve both low
FDR and high TPR. Indeed, a FDR equals to zero suggests that only few discoveries
are made and therefore TPR may be low too,. At the opposite if TPR is 1 then a
lot of discoveries are made, possibly leading to more false discoveries. Yet, in many
applications the priority is to maintain the FDR below a certain level (typically 5%).

Recently, Slope has been used in the context of high-dimensional linear regres-
sion [12, 76] and has demonstrated interesting properties regarding FDR control in
variable selection that we recall in the next Section. This motivated our use of this
penalization in the context of outliers detection as explained in Chapter II.

In the next Section, we recall important results about estimation and variable
selection in high-dimensional linear regression, and discuss the relevance of the con-
catenated model (I.30) above for our problem.

3 Convex penalization in high-dimensional linear

regression: estimation, variable selection

Equation (I.30) is seducing because it is a high-dimensional regression model, which
is well-known and has been well studied in the past few years in terms of estimation
bound [44, 66, 14, 76] and support recovery [49, 44, 12, 76]. Established results in
literature are presented in Section 3.2 and Section 3.3 below. They require hypotheses
on the design matrix X , we present now the most classical ones in the following
Section.

3.1 Classical hypotheses on the design matrix

The Ærst deÆnition is popular in compress sensing [47] as it allows to prove that basis
pursuit [16] allows exact recovery of a sparse signal Ø from "compressed measure-
ments" y = XØ [45].
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DeÆnition I.12 (Restricted Isometry Property, [47]). A matrix A 2Rn£p satisÆes RIP of
order s if there exists ± 2 [0,1[ such that for all x 2Rp with |x|0 ∑ s:

(1°±)

∞∞x
∞∞2

2
∑

∞∞Ax
∞∞2

2
∑ (1+±)

∞∞x
∞∞2

2
. (I.33)

The RIP condition above is one of the strongest in the literature about compressed
sensing, and implies various weaker assumptions (see [27] for a whole review and
comparison of required assumptions to derive estimation bounds in high-dimensional
linear model). Two other deÆnitions that lead to weaker assumptions are given below:

DeÆnition I.13 (Strong Restricted Eigenvalue condition, [14]). A matrix A 2 Rn£p

satisÆes SRE(s,c0) if there exists ∑> 0 such that:

min
x2CSRE (s,c0)

x 6=0

kAxk2

kxk2

∏ ∑, (I.34)

where
CSRE (s,c0) =

©
Ø 2Rp | kØk1 ∑ (1+ c0)

p
skØk2

™
. (I.35)

Note that this implies the left inequality of Equation (I.33). Di�erent versions
of RE conditions exist [43], di�ering in the subset on which the minimum is taken
in Equation (I.34). The version above is strong in the sense that the subset can be
less stringent. In the same spirit, [14] deÆnes a Weighted Restricted Eigenvalue (W RE )
condition as:

DeÆnition I.14 ([14]). Let c0 > 0, s 2 {1, . . . , p} and ∏ = (∏1, . . . ,∏p ) a non-increasing
sequence of positive numbers. Then a matrix A 2 Rn£p satisÆes the W RE(s,c0) condition
if:

∑(s,c0) := min
x2CW RE (s,c0)

x 6=0

kAxk2

kxk2

> 0, (I.36)

where

CW RE (s,c0) =
n
Ø 2Rp

, J∏(Ø) ∑ (1+ c0)kØk2

s
sX

i=1

∏2

i

o
, (I.37)

with J∏ the Slope norm introduced in DeÆnition I.4.

However, all these RE-types conditions are roughly equivalent [14]. A wide class
of random matrices satisÆes Equation (I.34) and Equation (I.36), and such assump-

36



3. Convex penalization in high-dimensional linear regression: estimation, variable
selection

tions are known to be mandatory in order to derive fast rates of convergence for
penalizations based on the convex-relaxation principle [92].

A last deÆnition that is used in literature is the notion of coherence, that measures
the correlation among the columns of a matrix.

DeÆnition I.15 (Coherence Property, [44]). A matrix A with unit-normed columns is
said to satisfy the Coherence Property if:

sup

1∑i< j∑p
|hAi , A j i|∑

A0

log p
, (I.38)

where A0 is some positive numerical constant.

Below we recall some estimation and variable selection results where hypotheses
on the design matrix are linked to the deÆnitions above. Results of Section 3.2 are
obtained with the `1 norm as sparsity-inducing penalization (Lasso [81]) and results
of Section 3.3 are obtained with Slope of DeÆnition I.4. Results are presented in
two di�erent sections because they are really di�erent in nature, particularly on the
question of variable selection.

3.2 Results for Lasso

Let X 2Rn£p , Ø 2Rp , "ªN (0,æ2In) and

Y = XØ+". (I.39)

Assume that Ø is k-sparse, that is |Ø|0 ∑ k . DeÆne Ø̂ as a solution of the following
minimization problem for some ∏> 0:

min
Ø2Rp

1

2
kY °XØk2

2
+∏kØk1. (I.40)

Three error measures can be interesting to evaluate: the prediction error kXØ°X Ø̂k2,
the estimation error kØ° Ø̂k2 and eventually, in terms of variable selection the sup-
port recovery of Ø that can be measured with the FDR and the TPR introduced in
DeÆnition I.10 and DeÆnition I.11 of Section 2.5.
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The following result is about the prediction error rate. Note that this type of
inequality appears several times in literature [66, 43, 14] with variations of design
hypothesis, probability and constants.

Theorem I.2 ([44]). Suppose that X obeys the coherence property. Suppose that k ∑
c0p/(kX k2

log p) for some positive numerical constant c0 and where kX k denotes the
largest singular value of X . Then the Lasso estimate (I.40) computed with ∏= 2æ

p
2log p

satisÆes
kXØ°X Ø̂k2

2
∑ 2Cæ2k log p (I.41)

with probability at least 1°6p°2log2 °p°1
(2º log p)

°1/2. The constant C may be taken
as 8(1+

p
2)

2.

The second result shows that under additional assumptions, the lasso estimate
can recover the support of the true regression parameter:

Theorem I.3 ([44]). Let I be the support of Ø and suppose that:

min
i2I

|Øi | > 8æ
q

2log p,

then under the assumptions of Theorem I.2 the lasso estimate obeys:

sgn(Ø̂) = sgn(Ø),

with probability at least 1°2p°1°((2º log p)
°1/2+|I |p°1

)°O(p°2log2
), with sgn deÆned

in DeÆnition .3 of Section 2.

This particularly implies that FDR(Ø̂;Ø) = 0 and TPR(Ø̂,Ø) = 1, namely perfect
recovery.

To obtain support recovery the Coherence Property roughly is the only condition
that appears in literature, along with a closely related condition named Irrepresentable
condition [49], which is weaker [27] but more of theoretical than practical interest.
Indeed, the only examples of matrices found in literature that verify the Irrepresentable
condition are random matrices that do not have a high correlation [93], which are
examples that also match the Coherence Property.

The last result presented here is about the prediction and estimation errors of the
regression parameter. Once again this type of result appears widely in literature and
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the transition from prediction error to estimation error always requires some RE-type
condition on the design matrix.

Theorem I.4 ([14]). Suppose that X obeys SRE(k,7). Let Ø̂ be the Lasso estimator with
tuning parameter ∏ satisfying ∏∏ 2(4+

p
2)æ

p
log(2ep/k). Then, we have:

P

µ
kXØ°X Ø̂k2

2
∑ 49k∏2

16∑2(k,7)

∂
∏ 1° 1

2

µ
k

2ep

∂k/∑2
(k,7)

, (I.42)

and

P

√

kØ° Ø̂k2 ∑
49

p
k∏

8∑2(k,7)

!

∏ 1° 1

2

µ
k

2ep

∂k/∑2
(k,7)

. (I.43)

Note that the theorem above can lead to a better rate than Theorem I.2 (k log(p/k)

instead of k log p) but requires the sparsity k to be known since it is used in the tuning
parameter ∏. If k is not known, it is still possible to compute an aggregated Lasso
estimator that adapt to the sparsity level and provides the rate k log(p/k) without
the knowledge of k [14]. This is the minimax optimal rate of convergence for high-
dimensional regression [66].

The next section focuses on Slope in the same context. Slope demonstrates the
very attractive property that contrary to the Lasso it automatically adapts to the
sparsity level. Moreover, while the Lasso theoretically provides a perfect support
recovery (Theorem I.3), in practice it can demonstrate a low TPR and a tendency
to shrink large coe�cients too much yet insu�ciently shrink small coe�cients by
applying the same penalty to every regression coe�cient [94]. Slope allows FDR
control for speciÆc design matrix, which is also very interesting because focusing
on FDR allows a more liberal procedure and a higher TPR. This is illustrated for
example in [12].

3.3 Results for Slope

In this Section we focus on the same minimization as Equation (I.40) replacing the
Lasso penalty by a Slope penalty:

min
Ø2Rp

1

2
kY °XØk2

2
+ J∏(Ø), (I.44)

where J∏ is given by Equation (I.9).
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The Ærst results have been obtained for orthogonal matrix design, namely X >X =
Ip [12]. Even if this design is very speciÆc, it is very interesting because it closely
links Slope with the Benjamini-Hochberg procedure and provides FDR control for
the support recovery of Ø.

Orthogonal design and connection with the Benjamini-Hochberg procedure.
When X is orthogonal, with Ỹ = X >Y , the model given by Equation (I.39) reduces to:

Ỹ =Ø+ "̃ (I.45)

after multiplication by X >, with "̃= X >" distributed as N (0,æ2Ip ).
In this context, a statistical testing for nullity of each regression coe�cient is given

by:
H0,i :Øi = 0 H1,i :Øi 6= 0, i = 1, . . . ,n.

Then under H0,i , ỹi is distributed as N (0,æ2
). Assuming that æ is known, the test

statistic is simply ỹi /æ. Therefore according to Proposition I.6 of Section 1.4, Chap-
ter I, the p-value of the i -th test is given by pi = 2(1°©(yi /æ)) and are independent,
where © is the cumulative distribution function of N (0,1).

Applying now the Benjamini-Hochberg procedure (B-H) described in Algorithm 2
(Section 1.4, Chapter I) with a Æxed level Æ leads to compare each p[i ] with Æi /n

namely looking for the largest k such that:

y(k) ∑æ©°1
°
1° kÆ

2n

¢
,

where y(1) ∏ y(2) ∏ · · · ∏ y(n), noting that the largest the value of y , the smallest the
p-value. Therefore the Benjamini-Hochberg procedure compares each y(i ) with

∏B H
i (Æ) :=æ©°1

°
1° iÆ

2n

¢
.

Note that Slope works with the same idea of penalizing more the largest coe�cients,
that would correspond to the highest p-values. Another remarkable property that
links B-H procedure and Slope is that with an orthogonal design, Slope applied with
the weights ∏B H

(Æ) leads to a FDR lower than Æ for the support estimation of Ø, as
recalled in the following theorem:.
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Theorem I.5 ([12]). Let X be orthogonal. Fix 0 < Æ < 1 and let Ø̂slope be a solution of
Equation (I.44) with ∏=∏BH(Æ). Then:

FDR(Ø̂slope
) ∑ Æk

p
. (I.46)

As mentioned in previous sections, we are also interested in the estimation and
prediction errors, that are the same in the particular case of an orthogonal design.
The following result holds:

Theorem I.6 ([76]). Let X be orthogonal and assume that p !1 with k/p ! 0. Fix
0 < q < 1. Let Ø̂slope be a solution of Equation (I.44) with ∏=∏BH(Æ). Then:

sup

kØk0∑k
E
£
kØ̂slope °Øk2

2

§
= (1+o(1))2æ2k log(p/k). (I.47)

In Section 3.4 it is shown that this result is optimal in some sense, demonstrating
once again the interesting properties of Slope.

However, an orthogonal design is very particular and stringent. The next two
paragraphs contain results for a more general design, beginning with a design that is
not too far from being orthogonal.

Near-Orthogonal design. The near-orthogonal situation is described by a Gaus-
sian independent random design. Namely, we suppose that entries of X 2 Rn£p

are independent and distributed as a N (0,1/
p

n). This is called a near-orthogonal
situation since such tall Gaussian matrices verify the Restricted Isometry Property
condition with the smallest known upper bound for random matrices [7].

FDR control is valid in orthogonal design, a natural question is to wonder if this
still holds in the near-orthogonal design deÆned above. The answer is yes, partially,
in the sense that the following asymptotic result holds:

Theorem I.7 ([76]). Fix 0 <Æ< 1 and let Ø̂slope be solution of Equation (I.44) with ∏=
(1+≤)∏B H (Æ) for some arbitrary constant 0 < ≤< 1. Suppose k/p ! 0 and (k log p)/n ! 0.
Then:

FDR(Ø̂slope
) ∑ (1+o(1))Æ. (I.48)
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Additionally, if the non-zero coe�cients of the true parameter Ø have absolute values
greater than (1+≤)∏B H

1
(Æ), then:

TPR(Ø̂slope
) ! 1. (I.49)

Note that this theorem nicely encourages the use of SLOPE in the variable selec-
tion context. Once again, as variable selection is not the only interest, estimation and
prediction errors are recalled in the following theorem.

Theorem I.8 ([76]). Under the same assumptions as Theorem I.7 the following results
hold:

sup

kØk0∑k
P

√
kØ̂slope °Øk2

2

2æ2k log(p/k)
> 1+3≤

!

! 0 (I.50)

and

sup

kØk0∑k
P

√
kX Ø̂slope °XØk2

2

2æ2k log(p/k)
> 1+3≤

!

! 0 (I.51)

Note that the bounds on the prediction and estimation errors are the same, which
is not surprising since X is nearly an isometry.

The bound (I.51) is sharp in the sense that no other estimator can do better in this
framework, as shown by the following theorem:

Theorem I.9 ([76]). Under the same assumptions as Theorem I.8, for any ≤> 0, we have:

inf

Ø̂
sup

kØk0∑k
P

√
kØ̂°Øk2

2

2æ2k log(p/k)
> 1°≤

!

! 0, (I.52)

where the inÆmum is taken over all possible estimators.

Optimality in a more general design is discussed in Section 3.4 below.

General design. The previous paragraphs give estimation and model selection re-
sults for a very particular design. Though model selection should be more compli-
cated for a general design, estimation results are more classical and generally ob-
tained with some RE condition (see DeÆnition I.13). Hence, the following estimation
and prediction results holds:
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Theorem I.10 ([14]). Assume that W RE(k,7) holds. Let Ø̂slope be solution of Equa-
tion (I.44) with ∏ j = Aæ

p
log(2p/ j ), j = 1, . . . , p with A ∏ 2(4/

p
2). Then

P

√

kØ̂slope °Ø?k2 ∑
9
Ps

i=1
∏2

j

4∑4(k,3)

!

∏ 1° 1

2

µ
k

2p

∂k/∑2
(k,3)

(I.53)

and

P

√

kX Ø̂slope °XØ?k2 ∑
49

Ps
i=1

∏2

j

16∑2(k,7)

!

∏ 1° 1

2

µ
k

2p

∂k/∑2
(k,7)

. (I.54)

This is actually a simpliÆed version of the theorem presented in [14], which is
slightly more general and also provides bounds in expectation instead of bounds with
high probability. Note that the weights used in Theorem I.10 above are not very
di�erent from ∏BH since

∏B H
j (Æ) :=æ©°1

(1° jÆ/2p) =æ(1+o(1))

q
2log(2p/ jÆ),

see [14]. Interestingly, authors in [14] provide links between the W RE condition and
other RE-type conditions, showing in particular that a wide class of random matrices
satisfy those conditions, such as matrices with i.i.d. sub-Gaussian rows.

3.4 Summary table and discussion

A natural question about the prediction and estimation errors of the previous Section
is the optimality of such rates. A very speciÆc case is already handled in Theorem I.9.
The following theorems, that require the right-hand side of the RIP condition of
DeÆnition I.33 (Section 3.1), provide the optimal rate in more general cases. The
global situation is then summarized in Table I.1 below.

Theorem I.11 ([66]). Assume that X satisÆes the right-hand side inequality in Equa-
tion (I.33) of order 2k, then:

min

Ø̂
max
|Ø|0∑k

E
£
kØ̂°Øk2

2

§
∏ c

1+±kæ2
log(p/k), (I.55)

for some positive constant c , where the minimum is taken over all possible estimators.
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Theorem I.12 ([66]). Assume that X satisÆes the right-hand side inequality in Equa-
tion (I.33) of order 2k with constant ±1, and the left-hand side inequality in Equa-
tion (I.33) of order 2k with constant ±2, then:

min

Ø̂
max
|Ø|0∑k

E
£
kX Ø̂°XØk2

2

§
∏ c(1+±2

1+±1

kæ2
log(p/k), (I.56)

for some positive constant c , where the minimum is taken over all possible estimators.

Penalization Estimation/Prediction rate Hypotheses on X
Lasso k log p RE-type or

Coherence property (prediction)
Slope k log(p/k) RE-type
Optimal rate k log(p/k) RIP-like (only right part for estimation)

Table I.1: Convergence rates, up to constants, associated to Lasso and Slope penaliza-
tions, together with hypotheses required on the design. The optimal rates are given
on the last row.

In particular we see that contrary to the Lasso, Slope achieves the optimal esti-
mation rate if X satisÆes RIP.

Now, recall that we are interested in Slope and Lasso properties in the high-
dimensional linear regression problem because our problem can be written in such
a form (see model of Equation (I.30)). Therefore, we want to know if a matrix that
has the concatenated shape Z = [X I ] veriÆes one of the classical hypotheses on the
design matrix exposed in Section 3.1.

Clearly, the identity part of Z does not allow to use neither the orthogonal situa-
tion nor the near-orthogonal situation results of Slope. However, the theorem below
highlights the fact that Z satisÆes RIP under some (strong) condition:

Theorem I.13 ([62]). Assume that X has independent and identically distributedN (0,1/n)

entries. Then, if n > c1(k + s) log((n +p)/(k + s)), Z = [X I ] satisÆes RIP of order k + s

with probability exceeding 1°3e°c2n , where c1 and c2 are constants that depend only on
the desired RIP constant ±.

To apply the results of high-dimensional linear model to our problem, we need
weak correlation between covariates (Theorem I.13), and high magnitude of the coef-
Æcients (Theorem I.3). However, this is not satisfying since we would like to identify
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outliers even in the presence of high correlation in X and low magnitude in µ?.
Roughly speaking, the maximum absolute value of n i.i.d. N (0,æ2

) is of order
æ

p
2logn, so that we want to be able to identify outliers of magnitude æ

p
2logn.

Moreover, no results about the variable selection properties of Slope are directly
applicable to our problem of outlier detection (support recovery). However, results
of Section 3.3 show the great interest of Slope, both for estimation and variable
selection, therefore we should Ænd a way to use this penalty. Interestingly, FDR
control has never been investigated theoretically in the context of outliers detection,
while it seems particularly relevant because it is widely known that Lasso can show
a lack of power in the context of variable selection [94]. This is precisely the aim of
Chapter II.

Moreover, it makes sense to penalize in di�erent ways Ø and µ since we might
not want to penalize Ø, for example in a low-dimensional setting. Recent approaches
follow this spirit and are presented in the next Section.

4 Convex penalization in the Mean-shift outlier

model: recent approaches

In this Section we go back to the mean-shift outlier model of Equation (I.29) which
writes, in matrix notation,

Y = XØ?+µ?+", (I.57)

with one regression parameter Ø? and one vector of individual intercepts µ?.

4.1 The "two penalizations" approach

In light of the previous section, a "two penalizations" approach is adopted, that is
one penalization is applied on the regression coe�cients and another penalization
is applied on the vector of individual intercepts. Note that µ? has to be sparse but
Ø? does not necessarily has to, so the setting considered includes the case of no
penalization on Ø. Then, the minimization problem is the following:

min
Ø,µ

1

2

nX

i=1

(yi °x>
i Ø+µi )

2 +∏1 J1(Ø)+∏2 J2(µ). (I.58)
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A general iterative algorithm which alternates between estimation of Ø and estimation
of µ is proposed in [90] and runs as follow:

Algorithm 3 Alternated minimizations

initialize Ø,µ
while not converged do

Ø√ argminØ
1

2

Pn
i=1

(yi °x>
i Ø+µi )

2 +∏1 J1(Ø)

µ√ argminµ
1

2

Pn
i=1

(yi °x>
i Ø+µi )

2 +∏2 J2(µ).

end while
return Ø,µ

However when penalizations allow it, proximal methods are more e�cient. The
example of Equation (I.58) with ∏1 = 0 and J2 = k ·k1 is given as an example in [90]
but no theoretical investigation is proposed.

4.2 Recent approaches

Recent approaches rely on the mean-shift outlier model with minimization given by
Equation (I.58) with lasso penalization on µ [32, 73, 90]. Note that sometimes a lasso
penalization is also applied on Ø [32, 90]. Thus, the minimization problem is the
following:

min
Ø,µ

1

2

nX

i=1

(yi °x>
i Ø+µi )

2 +∏1

pX

i=1

|Øi |+∏2

nX

i=1

|µi |. (I.59)

In the low-dimensional setting (∏1 = 0), the solution of this minimization is studied
in [73] and called soft-IPOD (Iterative Procedure for Outlier Detection). In [73], no
theoretical guarantee is demonstrated but some interesting properties are shown.
Assuming that n > p and that X has full rank p, authors Ærst show that Equation I.57
is reduced to a new linear regression model with n ° p observation, and µ as the
regression coe�cients, allowing to rely on a Bayesian Information Criterion to select
the tuning parameter ∏2. Indeed, letH =U DU> be a spectral decomposition of the
orthogonal projection H = X (X >X )

°1X >, where D is a diagonal matrix and U an
orthogonal matrix. Let Uc be the columns of U corresponding to a basis of ker H .
Then Uc 2 Mn,n°p because X , D and H have rank p . Since H is an orthogonal
projection on =X , the columns of Uc are orthogonal to =X and multiplying by U>

c
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the relation of Equation I.57
Y = XØ?+µ?+"

gives
Y 0 =U>

c µ
?+"0,

with Y 0 = U>
c Y 2 Rn°p and "0 ª N (0, In°p ). Then, authors show that their proce-

dure is equivalent to a M-estimation for estimation of the regression coe�cients and
therefore is not appropriate for high-leverage outliers. To overcome this di�culty, they
develop hard-IPOD, based on hard-thresholding instead of soft-thresholding, making
it a non-convex problem. The algorithm proposed is in the same spirit as [90], alter-
natively estimating Ø and µ, however a simpliÆed version is proposed, that allows to
compute the estimate of Ø only once at the end of the procedure.

Note that the two main drawbacks of Soft and Hard-IPOD is that it is limited
to low-dimensional settings and that the non-convex method shows no theoretical
guarantee and rely on a careful choice of an initial estimate. It should be noticed
that a high-dimensional version of IPOD is proposed in [73] but it is done through
the concatenated model of Equation (I.30), that we want to avoid for reasons already
exposed in Section 3.4, and the choice of the tuning parameter is ambiguous.

The only work in literature that also deals with high dimension and provides
theoretical results is the Robust Lasso [32]. Consider the model of Equation (I.29)
with T and S being the respective support of Ø? and s? and consider minimizing
Equation (I.59) and deÆne ∏ = ∏2/∏1. An hypothesis similar to RE condition of
DeÆnition I.13 is introduced, called Extended RE:

DeÆnition I.16. DeÆne the extended RE cone as:

C =
©
(Ø,µ) 2Rp £Rn | kØT ck1 +∏kµSck1 ∑ 3kØT k1 +3∏kµSk1

™
. (I.60)

We say that X 2 Rn£p satisÆes the extended RE condition if there exists ∑ > 0 such that
for all (Ø,µ) 2C :

kXØ+µk2 ∏ ∑(kØk2 +kµk2). (I.61)

Under this hypothesis, two results are given. The Ærst result is about estimation
rate, while the second result shows guarantee for the support recovery of both Ø? and
µ? under additional assumptions.
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Theorem I.14 ([32]). Assume that X satisÆes the Extended RE. DeÆne Ø̂, µ̂ as a solution
of (I.59) with ∏1 = 4æ

p
log p and ∏2 = 4æ

p
logn. Then we have:

kØ̂°Ø?k2 +kµ̂°µ?k2 ∑
12æ

∑2
(

q
k log p +

q
s logn). (I.62)

Note that a similar result holds for the prediction error, which leads to the same
convergence rate.

Assume now that the rows of X are i.i.d. and distributed as N (0,ß). Then under
an irrepresentable condition [32] on ß and if the magnitude of outliers is large enough,
it is shown in [32] that we can choose ∏1 and ∏2 in (I.59) such that a solution (Ø̂, µ̂)

recovers the signed support of Ø? and µ?, namely:

sgn(Ø̂) = sgn(Ø?), sgn(µ̂) = sgn(µ?).

The inØuence of the magnitude will be investigated in Chapter II when comparing
Robust Lasso to our procedure. We will show that a high magnitude is necessary for
Robust Lasso to be e�cient, whereas our procedure will be e�cient even with outliers
of low magnitudes.

Note that both [32, 73] rely on a Lasso penalization, but the penalization are ap-
plied di�erently: in [32], the procedure named Extended-LASSO uses two di�erent `1

penalties for Ø and µ, with tuning parameters that are Æxed according to theoretical
results, while the (soft-)IPOD procedure from [73] applies the same penalization to
both vectors, with a regularization parameter tuned with a modiÆed BIC criterion.

4.3 Tuning parameters

The choice of the tuning parameters ∏1 and ∏2 is crucial in model (I.59) since a large
parameter shrinks to zero many parameters, while a small parameter would leads to
a lack of power. It is known that the theoretical tunings proposed in Theorem I.3 or
Theorem I.14 are not necessarily interesting in practice, being too conservative [73].
This is why the criterion developed for IPOD [73] is interesting.

A popular way of choosing tuning parameters is to do cross validation [51]. Basi-
cally, cross validation uses data splitting and works in few steps: Ærst, deÆne a grid of
tuning parameter values, then for each value of the grid, use half of the data to do
inference on the parameters of the model (here Ø? and µ?), and use the other half to
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compute a score (typically the negative log- likelihood) that reØects the quality of this
Æt.

However, cross-validation is applied to an independent test sample from the
joint distribution of X and Y [51]. Therefore cross-validation cannot be applied
for model (I.29) since the parameter µ? induces non-stationarity in the data.

This is a new argument in favour of the Slope penalization, since the theoretical
weights of Slope are the one used in practice [12]. In Chapter II, we explore the use of
Slope as a penalization in the Equation (I.58) and compare it to the previous methods
exposed in this Chapter.
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CHAPTER II

SLOPE for Outliers Detection and
Robust Estimation in Linear Model

This Chapter is composed of the submitted article High-dimensional robust regression
and outliers detection with SLOPE available on arXiv:1712.02640.

Abstract

The problems of outliers detection and robust regression in a high-dimensional

setting are fundamental in statistics, and have numerous applications. Follow-

ing a recent set of works providing methods for simultaneous robust regression

and outliers detection, we consider in this paper a model of linear regression

with individual intercepts, in a high-dimensional setting. We introduce a new

procedure for simultaneous estimation of the linear regression coe�cients and

intercepts, using two dedicated sorted-`1 penalizations, also called SLOPE [11].

We develop a complete theory for this problem: Ærst, we provide sharp upper

bounds on the statistical estimation error of both the vector of individual in-

tercepts and regression coe�cients. Second, we give an asymptotic control on

the False Discovery Rate (FDR) and statistical power for support selection of the

individual intercepts. As a consequence, this paper is the Ærst to introduce a

procedure with guaranteed FDR and statistical power control for outliers de-

tection under the mean-shift model. Numerical illustrations, with a comparison

to recent alternative approaches, are provided on both simulated and several

real-world datasets. Experiments are conducted using an open-source software

written in Python and C++.
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1 Introduction

Outliers are a fundamental problem in statistical data analysis. Roughly speaking, an
outlier is an observation point that di�ers from the data’s “global picture” [36]. A rule
of thumb is that a typical dataset may contain between 1% and 10% of outliers [35], or
much more than that in speciÆc applications such as web data, because of the inherent
complex nature and highly uncertain pattern of users’ web browsing [31]. This outliers
problem was already considered in the early 50’s [23, 30] and it motivated in the 70’s
the development of a new Æeld called robust statistics [41, 42].

In this paper, we consider the problem of linear regression in the presence of
outliers. In this setting, classical estimators, such as the least-squares, are known to
fail [41]. In order to conduct regression analysis in the presence of outliers, roughly
two approaches are well-known. The Ærst is based on detection and removal of the
outliers to Æt least-squares on “clean” data [87]. Popular methods rely on leave-one-
out methods (sometimes called case-deletion), Ærst described in [22] with the use of
residuals in linear regression. The main issue about these methods is that they are
theoretically well-designed for the situations where only one given observation is an
outlier. Repeating the process across all locations can lead to well-known masking
and swamping e�ects [34]. An interesting recent method that does not rely on a
leave-one-out technique is the so-called IPOD [73], a penalized least squares method
with the choice of tuning parameter relying on a BIC criterion. A second approach
is based on robust regression, that considers loss functions that are less sensitive to
outliers [42]. This relies on the M-estimation framework, that leads to good estima-
tors of regression coe�cients in the presence of outliers, thanks to the introduction of
robust losses replacing the least-squares. However, the computation of M-estimates is
substantially more involving than that of the least-squares estimates, which to some
extend counter-balances the apparent computational gain over previous methods.
Moreover, robust regression focuses only on the estimation of the regression coe�-
cients, and does not allow directly to localize the outliers, see also for instance [91]
for a recent review.

Alternative approaches have been proposed to perform simultaneously outliers
detection and robust regression. Such methods involve median of squares [74], S-
estimation [69] and more recently robust weighted least-squares [28], among many
others, see also [33] for a recent review on such methods. The development of robust
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methods intersected with the development of sparse inference techniques recently.
Such inference techniques, in particular applied to high-dimensional linear regression,
are of importance in statistics, and have been an area of major developments over
the past two decades, with deep results in the Æeld of compressed sensing, and more
generally convex relaxation techniques [80, 15, 16, 19, 18]. These led to powerful
inference algorithms working under a sparsity assumption, thanks to fast and scalable
convex optimization algorithms [4]. The most popular method allowing to deal with
sparsity and variable selection is the LASSO [81], which is `1-penalized least-squares,
with improvements such as the Adaptive LASSO [94], among a large set of other
sparsity-inducing penalizations [13, 5].

Within the past few years, a large amount of theoretical results have been estab-
lished to understand regularization methods for the sparse linear regression model,
using so-called oracle inequalities for the prediction and estimation errors [43, 44, 53],
see also [13, 29] for nice surveys on this topic. Another line of works focuses on vari-
able selection, trying to recover the support of the regression coe�cients with a high
probability [49, 44, 21]. Other types of loss functions [85] or penalizations [25, 11]
have also been considered. Very recently, the sorted-`1 norm penalization has been
introduced [11, 12, 76] and very strong statistical properties have been shown. In
particular, when covariates are orthogonal, SLOPE allows to recover the support of
the regression coe�cients with a control on the False Discovery Rate [11]. For i.i.d
covariates with a multivariate Gaussian distribution, oracle inequalities with optimal
minimax rates have been shown, together with a control on a quantity which is very
close to the FDR [76]. For more general covariate distributions, oracle inequalities
with an optimal convergence rate are obtained in [14].

However, many high-dimensional datasets, with hundreds or thousands of co-
variates, do su�er from the presence of outliers. Robust regression and detection of
outliers in a high-dimensional setting is therefore important. Increased dimensional-
ity and complexity of the data may amplify the chances of an observation being an
outlier, and this can have a strong negative impact on the statistical analysis. In such
settings, many of the aforementioned outlier detection methods do not work well. A
new technique for outliers detection in a high-dimensional setting is proposed in [1],
which tries to Ænd the outliers by studying the behavior of projections from the data
set. A small set of other attempts to deal with this problem have been proposed in
literature [86, 67, 32, 73, 26], and are described below with more details.
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II. SLOPE for Outliers Detection and Robust Estimation in Linear Model

2 Contributions of the paper

Our focus is on possibly high dimensional linear regression where observations can
be contaminated by gross errors. This so-called mean-shifted outliers model can be
described as follows:

yi = x>
i Ø

?+µ?i +"i (II.1)

for i = 1, . . . ,n, where n is the sample size. A non-zero µ?i means that observation i

is an outlier, and Ø? 2 Rp , xi 2 Rp , yi 2 R and "i 2 R respectively stand for the linear
regression coe�cients, vector of covariates, label and noise of sample i . For the sake
of simplicity we assume throughout the paper that the noise is i.i.d centred Gaussian
with known variance æ2.

2.1 Related works

We already said much about the low-dimensional problem so we focus in this part on
the high-dimensional one. The leave-one-out technique has been extended in [86] to
high-dimension and general regression cases, but the masking and swamping prob-
lems remains. In other models, outliers detection in high-dimension also includes
distance-based approaches [67] where the idea is to Ænd the center of the data and
then apply some thresholding rule. The model (II.1) considered here has been recently
studied with LASSO penalizations [32] and hard-thresholding [73]. LASSO was used
also in [26], but here outliers are modelled in the variance of the noise. In [32, 73],
that are closer to our approach, the penalization is applied di�erently: in [32], the
procedure named Extended-LASSO uses two di�erent `1 penalties for Ø and µ, with
tuning parameters that are Æxed according to theoretical results, while the IPOD pro-
cedure from [73] applies the same penalization to both vectors, with a regularization
parameter tuned with a modiÆed BIC criterion. In [32], error bounds and a signed
support recovery result are obtained for both the regression and intercepts coe�-
cients. However, these results require that the magnitude of the coe�cients is very
large, which is one of the issues that we want to overcome with this paper.

It is worth mentioning that model (II.1) can be written in a concatenated form y =
Z∞?+", with Z being the concatenation of the covariates matrix X (with lines given by
the xi ’s) and the identity matrix In in Rn , and ∞? being the concatenation of Ø? and
µ?. This leads to a regression problem with a very high dimension n+p for the vector
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∞?. Working with this formulation, and trying to estimate ∞? directly is actually a bad
idea. This point is illustrated experimentally in [32], where it is shown that applying
two di�erent LASSO penalizations on Ø and µ leads to a procedure that outperforms
the LASSO on the concatenated vector. The separate penalization is even more
important in case of SLOPE, whose aim is FDR control for the support recovery of µ?.
Using SLOPE directly on ∞? would mix the entries of µ and Ø together, which would
make FDR control practically impossible due to the correlations between covariates
in the X matrix.

2.2 Main contributions

Given a vector ∏= [∏1 · · ·∏m] 2Rm
+ with non-negative and non-increasing entries, we

deÆne the sorted-`1 norm of a vector x 2Rm as

8x 2Rm
, J∏(x) =

mX

j=1

∏ j |x|( j ) , (II.2)

where |x|(1) ∏ |x|(2) ∏ · · · ∏ |x|(m). In [11] and [12] the sorted-`1 norm was used as a
penalization in the Sorted L-One Penalized Estimator (SLOPE) of coe�cients in the
multiple regression. Degenerate cases of SLOPE are `1-penalization whenever ∏ j are
all equal to a positive constant, and null-penalization if this constant is zero. We
apply two di�erent SLOPE penalizations on Ø and µ, by considering the following
optimization problem:

min
Ø2Rp ,µ2Rn

n
ky °XØ°µk2

2
+2Ω1 J∏̃(Ø)+2Ω2 J∏(µ)

o
(II.3)

where Ω1 and Ω2 are positive parameters, X is the n £p covariates matrix with rows
x1, . . . , xn , y = [y1 · · · yn]

T , µ = [µ1 · · ·µn]
T , kuk2 is the Euclidean norm of a vector u

and ∏ = [∏1 · · ·∏n] and ∏̃ = [∏̃1 · · · ∏̃p ] are two vectors with non-increasing and non-
negative entries.

In this artice we provide the set of sequences ∏ and ∏̃ which allow to obtain
better error bounds for estimation of µ? and Ø? than previously known ones [32], see
Section 3 below. Moreover, in Section 4 we provide speciÆc sequences which, under
some asymptotic regime, lead to a control of the FDR for the support selection of µ?,
and such that the power of the procedure (II.3) converges to one. Procedure (II.3)
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II. SLOPE for Outliers Detection and Robust Estimation in Linear Model

is therefore, to the best of our knowledge, the Ærst proposed in literature to robustly
estimate Ø?, estimate and detect outliers at the same time, with a control on the FDR for
the multi-test problem of support selection of µ?, and power consistency.

We compare in Section 5 our procedure to the recent alternatives for this prob-
lem, that is the IPOD procedure [73] and the Extended-Lasso [32]. The numerical
experiments given in Section 5 conÆrm the theoretical Ændings from Sections 3 and 4.
As shown in our numerical experiments, the other procedures fail to guarantee FDR
control or exhibit a lack of power when outliers are di�cult to detect, namely when
their magnitude is not far enough from the noise-level. It is particularly noticeable
that our procedure overcomes this issue.

The theoretical results proposed in this paper are based on two popular assump-
tions in compressed sensing or other sparsity problems, similar to the ones from [32]:
Ærst, a Restricted Eigenvalues (RE) condition [43] on X , then a mutual incoherence
assumption [55] between X and In , which is natural since it excludes settings where
the column spaces of X and In are impossible to distinguish. Proofs of results stated
in Sections 3 and 4 are given in Section 9 and 10, while preliminary results are given
in Sections 7 and 8. Section 11 provides contains supplementary extra numerical
results.

3 Upper bounds for the estimation of Ø? and µ?

Throughout the paper, n is the sample size whereas p is the number of covariables,
so that X 2 Rn£p . For any vector u, |u|0, kuk1 and kuk2 denote respectively the
number of non-zero coordinates of u (also called sparsity), the `1-norm and the
Euclidean norm. We denote respectively by ∏min(A) and ∏max(A) the smallest and
largest eigenvalue of a symmetric matrix A. We work under the following assumption

Assumption II.1. We assume the following sparsity assumption:

ØØØ?
ØØ
0
∑ k and

ØØµ?
ØØ
0
∑ s (II.4)

for some positive integers k and s, and we assume that the columns of X are normalized,
namely kX eik2 = 1 for i = 1, . . . ,n, where ei stands for the i -th element of the canonical
basis.
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3. Upper bounds for the estimation of Ø? and µ?

For the results of this Section, we consider procedure (II.3) with the following
choice of ∏:

∏i =æ

r
log

≥
2n
i

¥
, (II.5)

for i = 1, . . . ,n, and we consider three possibilities for ∏̃, corresponding to no penal-
ization, `1 penalization and SLOPE penalization on Ø.

Table II.1 below gives a quick view of the convergence rates of the squared `2

estimation errors of Ø? and µ? obtained in Theorems II.2, II.3 and II.4. We give
also the convergence rate obtained in [32] for `1 penalization applied to Ø and µ. In
particular, we see that using two SLOPE penalizations leads to a better convergence
rate than the use of `1 penalizations. Condition II.1 below is a Restricted Eigenvalue

Table II.1: Convergence rates, up to constants, associated to several penalization
techniques. NO means no-penalization, L1 stands for `1 penalization, while SL1
stands for SLOPE. We observe that SL1 + SL1 leads to a better convergence rate than
L1 + L1.

Penalization
(Ø / µ) Convergence rates Reference

NO/SL1 p _ s log(n/s) Theorem II.2

L1/L1 k log p _ s logn [32]

L1/SL1 k log p _ s log(n/s) Theorem II.3

SL1/SL1 k log(p/k)_ s log(n/s) Theorem II.4

(RE) type of condition which is adapted to our problem. Such an assumption is known
to be mandatory in order to derive fast rates of convergence for penalizations based
on the convex-relaxation principle [92].

Condition II.1. Consider two vectors ∏ = (∏i )i=1,...,n and ∏̃ = (∏̃i )i=1,...,p with non-
increasing and positive entries, and consider positive integers k, s and c0 > 0. We deÆne
the cone C (k, s,c0) of all vectors [Ø>

,µ>
]
> 2Rp+n satisfying

pX

j=1

∏̃ j

∏̃p

ØØØ
ØØ
( j )

+
nX

j=1

∏ j

∏n

ØØµ
ØØ
( j )

∑ (1+ c0)
°p

kkØk2 +
p

skµk2

¢
. (II.6)
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We also deÆne the cone C p
(s,c0) of all vectors [Ø>

,µ>
]
> 2Rp+n satisfying

nX

j=1

∏ j

∏n

ØØµ
ØØ
( j )

∑ (1+ c0)
°p

pkØk2 +
p

skµk2

¢
. (II.7)

We assume that there are constants ∑1,∑2 > 0 with ∑1 > 2∑2 such that X satisÆes the
following, either for all [Ø>

,µ>
]
> 2C (k, s,c0) or for all [Ø>

,µ>
]
> 2C p

(s,c0):

kXØk2

2
+kµk2

2
∏ ∑1

°
kØk2

2
+kµk2

2

¢
(II.8)

|hXØ,µi|∑ ∑2

°
kØk2

2
+kµk2

2

¢
. (II.9)

Equation (II.7) corresponds to the particular case where we do not penalize the
regression coe�cient Ø, namely ∏̃i = 0 for all i . Note also that Condition II.1 entails

kXØ+µk2 ∏
p
∑1 °2∑2

q
kØk2

2
+kµk2

2
,

which actually corresponds to a RE condition on [X >In]
> and that Equation (II.8) is

satisÆed if X satisÆes a RE condition with constant ∑ < 1. Finally, note that Equa-
tion (II.9), called mutual incoherence in the literature of compressed sensing, requires
in this context that for all Ø and µ from the respective cones the potential regression
predictor XØ is su�ciently not-aligned with potential outliers µ. An extreme case
of violation of this assumption occurs when X = In , where we cannot separate the
regression coe�cients from the outliers.

The Condition II.1 is rather mild.SpeciÆcally, Theorem II.1 below, shows that it
holds with large probability whenever X has i.i.d N (0,ß) rows, with ∏mi n(ß) > 0, and
the vectors Ø and µ are su�ciently sparse.

Theorem II.1. Let X 0 2Rn£p be a random matrix with i.i.dN (0,ß) rows and ∏mi n(ß) >
0. Let X be the corresponding matrix with normalized columns. Given positive integers
k, s and c0 > 0, deÆne r = s _ k(1+ c0)

2. If

p
n ∏C

p
r and

p
n ∏C 0

q
r log(p _n)
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3. Upper bounds for the estimation of Ø? and µ?

with

C ∏ 30

p
∏max(ß)

min j ß j j

≥256£5max j ß j j

∏min(ß)
_16

¥
and C 0 ∏ 72

p
10

(max j ß j j )
3/2

min j ß j j
p
∏min(ß)

,

then there are c,c 0 > 0 such that for any [Ø>
,µ>

]
> 2C (k, s,c0), we have

kXØk2

2
+kµk2

2
∏ min

n ∏min(ß)

128(max j ß j j )2
,

1

8

o°
kØk2

2
+kµk2

2

¢

2|hXØ,µi|∑ min

n ∏min(ß)

256£5(max j ß j j )2
,

1

16

o°
kØk2

2
+kµk2

2

¢

with a probability greater than 1° cn exp(°c 0n). These inequalities also hold for any
[Ø>

,µ>
]
> 2C p

(s,c0) when k is replaced by p in the above conditions.

The proof of Theorem II.1 is given in Appendix 9.1. It is based on recent bounds
results for Gaussian random matrices [65]. The numerical constants in Theorem II.1
are far from optimal and chosen for simplicity so that ∑1 > 2∑2 as required in As-
sumption II.1. A typical example for ß is the Toeplitz matrix [a|i° j |]i , j with a 2 [0,1),
for which ∏min(ß) is equal to 1° a [65]. The required lower bound on n is non-
restrictive, since k and s correspond to the sparsity of Ø? and µ?, that are typically
much smaller than n. Note also that C p

(s,c0) will only be used in low dimension,
and in this case p is again much smaller than n.

Let us deÆne ∑ =
p
∑1 °2∑2 for the whole Section, with ∑1 and ∑2 deÆned in

Assumption II.1. The three theorems below and their proofs are very similar in nature,
but di�er in some details, therefore are stated and proved separately. We emphasize
that the proofs give slightly more general versions of the theorems, allowing the
same result with µ̂ having any given support containing Supp(µ?). This is of great
theoretical interest and is a key point for the support detection of µ? investigated
in 4. The proof use a very recent bound on the inner product between a white
Gaussian noise and any vector, involving the sorted `1 norm [14]. Our Ærst result
deals with linear regression with outliers and no sparsity assumption on Ø?. We
consider procedure (II.3) with no penalization on Ø, namely

(Ø̂, µ̂) 2 argmin

Ø2Rp ,µ2Rn

n
ky °XØ°µk2

2
+2Ω J∏(µ)

o
, (II.10)
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with J∏ given by (II.2) and weights ∏ given by (II.5), and with Ω ∏ 2(4+
p

2). The-
orem II.2, below, shows that a convergence rate for procedure (II.10) is indeed p _
s log(n/s), as reported in Table II.1 above.

Theorem II.2. Suppose that Assumption II.1 is met with k = p, and that X satisÆes
Assumption II.1 on the cone C (k1, s1,4) with k1 = p/log2 and s1 = s log(2en/s)/ log2.
Then, the estimators (Ø̂, µ̂) given by (II.10) satisfy

kØ̂°Ø?k2

2
+kµ̂°µ?k2

2
∑ 4Ω2

∑4

sX

j=1

∏2

j +
5æ2

∑4
p ∑ æ2

∑4

µ
4Ω2s log

µ
2en

s

∂
+5p

∂
,

with a probability larger than 1° (s/2n)
s

/2°e°p .

The proof of Theorem II.2 is given in Appendix 9.2. The second result involves
a sparsity assumption on Ø? and considers `1 penalization for Ø. We consider this
time

(Ø̂, µ̂) 2 argmin

Ø,µ

n
ky °XØ°µk2

2
+2∫kØk1 +2Ω J∏(µ)

o
, (II.11)

where ∫ = 4æ
p

log p is the regularization level for `1 penalization, Ω ∏ 2(4+
p

2)

and J∏ is given by (II.2). Theorem II.3, below, shows that a convergence rate for
procedure (II.11) is indeed k log p _ s log(n/s), as reported in Table II.1 above.

Theorem II.3. Suppose that Assumption II.1 is met and that X satisÆes Assumption II.1
on the cone C (k1, s1,4) with k1 = 16k log p/log2 and s1 = s log(2en/s)/ log2. Suppose
also that

p
log p ∏ Ω log2/4. Then, the estimators (Ø̂, µ̂) given by (II.11) satisfy

kØ̂°Ø§k2

2
+kµ̂°µ§k2

2
∑ 36

∑4
æ2k log p + 4Ω2

∑4

sX

j=1

∏2

j ∑
4æ2

∑4

µ
9k log p +Ω2s log

µ
2en

s

∂∂
,

with a probability larger than 1° (s/2n)
s

/2°1/p .

The proof of Theorem II.3 is given in Appendix 9.4. The third result is obtained
using SLOPE both on Ø and µ, namely

(Ø̂, µ̂) 2 argmin

Ø,µ

n
ky °XØ°µk2

2
+2Ω J∏̃(Ø)+2Ω J∏(µ)

o
(II.12)

60



4. Asymptotic FDR control and power for the selection of the support of µ?

where Ω ∏ 2(4+
p

2), J∏ is given by (II.2), and where

∏̃ j =æ

s

log

≥
2p
j

¥

for j = 1, . . . , p . Theorem II.4, below, shows that the rate of convergence of estimators
provided by (II.12) is indeed k log(p/k)_ s log(n/s), as presented in Table II.1.

Theorem II.4. Suppose that Assumption II.1 is met and that X satisÆes Assumption II.1
on the cone C (k1, s1,4) with k1 = k log(2ep/k)/ log2 and s1 = s log(2en/s)/ log2. Then,
the estimators (Ø̂, µ̂) given by (II.12) satisfy

kØ̂°Ø§k2

2
+kµ̂°µ§k2

2
∑ C 0

∑4

≥ kX

j=1

∏̃2

j +
sX

j=1

∏2

j

¥

∑ C 0æ2

∑4

µ
k log

µ
2ep

k

∂
+ s log

µ
2en

s

∂∂
, (II.13)

with a probability greater than 1° (s/2n)
s
/2° (k/2p)

k
/2, where C 0 = 4Ω2 _ (3+C )

2
/2.

The proof of Theorem II.4 is given in Appendix 9.4. Note that according to
Theorem II.1, the assumptions of Theorem II.4 are satisÆed with probability converg-
ing to one when the rows of X are i.i.d from the multivariate Gaussian distribution
with the positive deÆnite covariance matrix, and when the signal is sparse such that
(k _ s) log(n _p) = o(n).

4 Asymptotic FDR control and power for the

selection of the support of µ?

We consider the multi-test problem with null-hypotheses

Hi : µ§
i = 0

for i = 1, . . . ,n, and we consider the multi-test that rejects Hi whenever µ̂i 6= 0, where µ̂
(and Ø̂) are given either by (II.10), (II.11) or (II.12). When Hi is rejected, or “discovered”,
we consider that sample i is an outlier. Note however that in this case, the value of
µ̂i gives extra information on how much sample i is oulying.
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We use the FDR as a standard Type I error for this multi-test problem [8]. The
FDR is the expectation of the proportion of falses discoveries among all discoveries.
Letting V (resp. R) be the number of false rejections (resp. the number of rejections),
the FDR is deÆned as

FDR(µ̂) = E
∑

V
R _1

∏
= E

"
#{i :µ?i = 0, µ̂i 6= 0}

#{i : µ̂i 6= 0}

#

. (II.14)

We use the Power to measure the Type II error for this multi-test problem. The Power
is the expectation of the proportion of true discoveries. It is deÆned as

¶(µ̂) = E
"

#{i :µ?i 6= 0, µ̂i 6= 0}

#{i :µ?i 6= 0}

#

, (II.15)

the Type II error is then given by 1°¶(µ̂).
For the linear regression model without outliers, a multi-test for the support selec-

tion of Ø? with controlled FDR based on SLOPE is given in [11] and [12]. SpeciÆcally,
it is shown that SLOPE with weights

∏BH

i =æ©°1

≥
1° i q

2n

¥
(II.16)

for i = 1, . . . ,n, where © is the cumulative distribution function of N (0,1) and
q 2 (0,1), controls FDR at the level q in the multiple regression problem with or-
thogonal design matrix X T X = I . It is also observed that when the columns of X

are not orthogonal but independent the weights have to be substantially increased
to guarantee FDR control. This e�ect results from the random correlations between
columns of X and the shrinkage of true nonzero coe�cients, and in context of LASSO
have been thoroughly discussed in [75].

In this paper we substantially extend current results on FDR controlling properties
of SLOPE. SpeciÆcally, Theorem II.5 below gives asymptotic controls of FDR(µ̂) and
¶(µ̂) for the procedures (II.10), (II.11) and (II.12), namely di�erent penalizations on Ø

and SLOPE applied on µ, with slightly increased weights

∏= (1+≤)∏BH
, (II.17)

where ≤ > 0, see also [76]. This choice of ∏ also yields optimal convergence rates,
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however considering it in Section 3 would lead to some extra technical di�culties.
Under appropriate assumptions on p,n, the signal sparsity and the magnitude of
outliers, Theorem II.5 not only gives FDR control, but also proves that the Power is
actually going to 1.

Note that all asymptotics considered here are with respect to the sample size n,
namely the statement d !+1 means that d = dn !+1 with n !+1.

Theorem II.5. Suppose that there is a constant M such that the entries of X satisfy
ØØxi , j

ØØpn ∑ M for all i , j 2 {1, . . .n}, and suppose that

|µ?i |∏ (1+Ω(1+2≤))2æ
q

logn

for any i = 1, . . . ,n such that µ?i 6= 0. Suppose also that s ! +1. Then, consider (Ø̂, µ̂)

given either by (II.10), (II.11) and (II.12), with ∏ given by (II.17). For Procedure (II.10),
assume the same as in Theorem II.2, and that

p(s log(n/s)_p)

n
! 0.

For Procedure (II.11), assume the same as in Theorem II.3, and that

(s log(n/s)_k log p)
2

n
! 0.

For Procedure (II.12), assume the same as in Theorem II.4, and that

°
s log(n/s)_k log(p/k)

¢
2

n
! 0.

Then, the following properties hold:

TPR(µ̂) ! 1, limsupFDR(µ̂) ∑ q. (II.18)

The proof of Theorem II.5 is given in Appendix 10. It relies on a careful look
at the KKT conditions, also known as the dual-certiÆcate method [49] or resolvent
solution [76]. The assumptions of Theorem II.5 are natural. The boundedness as-
sumption on the entries of X are typically satisÆed with a large probability when X

has random uniform (and uniformly bounded) entries, with columns normalized to
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1. Note that we could allow Gaussian distribution for the rows of X by assuming
|xi , j | ∑ M log(p_n)p

n
. Then, we should simply add the logarithmic factor log(p _n) in

the last two asymptotic conditions for our results to remain valid. When n !+1, it
is also natural to assume that s ! +1 (let us recall that s stands for the sparsity of
the sample outliers µ 2Rn ). The asymptotic assumptions roughly ask for the rates in
Table II.1 to converge to zero. Finally, the assumption on the magnitude of the non-
zero entries of µ§ is somehow unavoidable, since it allows to distinguish outliers from
the Gaussian noise. We emphasize that good numerical performances are actually
obtained with lower magnitudes, as illustrated in Section 5.1.

5 Numerical experiments

In this section, we illustrate the performance of procedure (II.10) and procedure (II.12)
both on simulated and real-world datasets, and compare them to several state-of-the
art baselines described below. Experiments are done using the open-source tick
library, available at https://x-datainitiative.github.io/tick/, notebooks al-
lowing to reproduce our experiments are available on demand to the authors.

5.1 Simulation settings

The matrix X is simulated as a matrix with i.i.d rows distributed as N (0,ß), with
Toeplitz covariance ßi , j = Ω|i° j | for 1 ∑ i , j ∑ p, with moderate correlation Ω = 0.4.
Some results with higher correlation Ω = 0.8 are given in Section 11. The columns of
X are normalized to 1. We simulate n observations according to model (II.1) with
æ = 1 and Ø§

i =
p

2log p
p

n. Two levels of magnitude are considered for µ?: low-
magnitude, where µ?i =

p
2logn and large-magnitude, where µ?i = 5

p
2logn. In all

reported results based on simulated datasets we display the average FDR, TPR and
MSE over 100 replications.

Setting 1 (low-dimension) This is the setting described above with n = 1000 and
p = 20. Here Ø?

1
= . . . = Ø?

20
=

p
2log20

p
n. Moreover, the sparsity of µ? varies

between 1% to 50%
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5. Numerical experiments

Setting 2 (high-dimension) This is the setting described above with n = 1500,
p = 2000 and a sparse Ø? with sparsity k = 50, with non-zero entries chosen uniformly
at random. Moreover, the sparsity of µ? varies between 1% to 20%

5.2 Considered procedures

We consider the following baselines, featuring the best methods available in literature
for the joint problem of outlier detection and estimation of the regression coe�cients,
together with the methods introduced in this paper.

E-SLOPE It is procedure (II.12). The weights used in SLOPE penalization of µ are
given by

∏BH

i (q ;n) =æ©°1
°
1° i q

2n

¢
, i = 1, . . . ,n, (II.19)

with q = 5% (target FDR). In high-dimensional setting, the weights used in SLOPE
penalization of Ø are given by (∏BH

j (1;n)) j=1,...,p . Similar results for q = 10% and
q = 20% are provided in Section 11.

E-LASSO This is Extended LASSO from [32], that uses two dedicated `1-penalizations
for Ø and µ with respective tuning parameters ∏Ø = 2æ

p
log p and ∏µ = 2æ

p
logn.

Soft-IPOD This is (soft-)IPOD from [73]. The Soft-IPOD considers Lasso penal-
ization on µ, and a BIC criterion is used to choose the tuning parameter of `1-
penalization. Note that this procedure, which involves a QR decomposition of X ,
makes sense only for p signiÆcantly smaller than n, so that we do not report the
performances of IPOD on simulations with a large p .

Hard-IPOD This is (hard-)IPOD from [73]. The hard-IPOD considers Hard-thresholding
on µ, which leads to a non convex procedure. Tuning parameter is chosen in the same
way as Soft-IPOD, and the same remark holds about the high-dimensional cases.

SLOPE It is SLOPE applied to the concatenated problem, namely y = Z∞? + ",
where Z is the concatenation of X and In and ∞? is the concatenation of Ø? and
µ?. We use a single SLOPE penalization on ∞, with weights given by (∏BH

j (q ;n +
p)) j=1,...,n+p We report the performances of this procedure both in low-dimensional

65



II. SLOPE for Outliers Detection and Robust Estimation in Linear Model

and high-dimensional experiments, but as it always penalizes Ø it would appear more
relevant in the high-dimensional cases. This is considered mostly to illustrate the fact
that working on the concatenated problem is indeed a bad idea, and that two distinct
penalizations must be used on Ø and µ.

Note that the di�erence between IPOD and E-LASSO is that, as explained in [32],
the weights used for E-LASSO to penalize µ (and Ø in high-dimension) are Æxed,
while the weights in IPOD are data-dependent. Another di�erence is that IPOD does
not extend well to a high-dimensional setting, since its natural extension (considered
in [73]) is a thresholding rule on the the concatenated problem, which is poorly
performing, as explained before and as illustrated in our numerical experiments.
Another problem is that there is no clear extension of the modiÆed BIC criterion
proposed in [73] for high-dimensional problems.

The tuning of the SLOPE or `1 penalizations in the procedure described above
requires the knowledge of the noise level. We overcome this simply by plugging
wherever it is necessary a robust estimation of the variance: we Ærst Æt a Huber
regression model, and apply a robust estimation of the variance of its residuals. All
procedures considered in our experiments use this same variance estimate (needed
only for real datasets).

Remark II.1. The noise level can be estimated directly by the Huber regression since in
our simulations p < n. When p is comparable to or larger than n and the signal (both
Ø? and µ?) is su�ciently sparse one can jointly estimate the noise level and other model
parameters in the spirit of scaled LASSO [77]. The corresponding iterative procedure for
SLOPE was proposed and investigated in [11] in the context of high-dimensional regression
with independent regressors.

5.3 Metrics

In our experiments, we report the “MSE coe�cients”, namely 1

nkØ̂°Ø?k2

2
and the

“MSE intercepts”, namely 1

nkµ̂° µ?k2

2
. We report also the FDR (II.14) and the

Power (II.15) to assess the procedures for the problem of outliers detection, where
the expectations are approximated by averages over 100 simulations.
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5.4 Results and conclusions on simulated datasets

We comment the displays provided in Figures II.1, II.2 and II.3 below. On Simulation
Setting 2 we only display results for the low magnitude case, since it is the most
challenging one.

• In the low dimensional setting, our procedure E-SLOPE allows for almost per-
fect FDR control. Note that in this setting the MSE is plotted after debiasing the
estimators, performing ordinary least squares on the selected support. The only
case where some procedures outperform E-SLOPE is Setting 1 (see Figure II.1,
where outliers are easy to detect.

• In the sparse (on Ø) high dimensional setting with correlated regressors, E-
SLOPE allows to keep FDR below the nominal level even when the outliers
consist 50% of the total data points. It also allows to maintain a small MSE and
high power.

• E-SLOPE provides a massive gain of power compared to previous state-of-the-
art procedures (power is increased by more than 30%) in settings where outliers
are di�cult to detect.

5.5 PGA/LPGA dataset

This dataset (available at http://users.stat.ufl.edu/~winner/datasets.html)
contains Distance and Accuracy of shots, for Professional Golf Association (PGA)
and Ladies Professional Golf Association (LPGA) players in 2008. This toy example,
where the output Y is the Distance of shot and X is the Accuracy (in this context
p = 1), will allow us to visually compare the performance of IPOD, E-LASSO and
E-SLOPE. Our data contain 197 points corresponding to PGA (men) players, to which
we add 8 points corresponding to LPGA (women) players, injecting outliers. We ap-
ply SLOPE and LASSO on µ with several levels of penalization. This leads to the
“regularization paths” given in the top plots of Figure II.4, that shows the value of
the 205 sample intercepts µ̂ as a function of the penalization level used in SLOPE
and LASSO. Vertical lines indicate the choice of the parameter according the corre-
sponding method (E-SLOPE, E-LASSO, IPOD). We observe that E-SLOPE correctly
discovers the conÆrmed outliers (women data), together with two men observations
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Figure II.1: Results for Simulation Setting 1 with high-magnitude outliers. The Ærst
row gives the FDR (left) and power (right) of each considered procedure for outliers
discoveries. The second row gives the MSE for regressors (left) and intercepts (right).

that could be investigated as outliers in view of the scatter plot. IPOD procedure
does quite good, with no false discovery, but misses some real outliers (women data)
and the suspicious points detected by E-SLOPE. E-LASSO does not make any false
discovery but clearly reveals a lack of power, with only one discovery.
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Figure II.2: Results for Simulation Setting 1 with low-magnitude outliers. The Ærst
row gives the FDR (left) and power (right) of each considered procedure for outliers
discoveries. The second row gives the MSE for regressors (left) and intercepts (right).
E-SLOPE gives the best power and provides the best MSEs while keeping the FDR
below the desired level.

Figure II.4: PGA/LPGA dataset: top plots show the regularization paths for both
types of penalization, bottom-left plot is a scatter plot of the data, with colored
points corresponding to the discoveries made by E-SLOPE, bottom-right plot show
the original data and the true outliers.
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Figure II.3: Results for Simulation Setting 2 with low-magnitude outliers. The Ærst
row gives the FDR (left) and power (right) of each considered procedure for outliers
discoveries. The second row gives the MSE for regressors (left) and intercepts (right).
Once again E-SLOPE provides the best power among procedure that keep the FDR
below the target level, and is competitive for estimating regressor coe�cients. All
procedures have a poor MSE when the number of outliers is large, since the sim-
ulation setting considered in this experiment is hard: low-magnitude outliers and
high-dimension.

5.6 Retail Sales Data

This dataset is from the U.S. census Bureau, for year 1992. The informations con-
tained in it are the per capita retail sales of 845 US counties (in $1000s). It also
contains Æve covariates: the per capita retail establishments, the per capita income
(in $1000s), per capita federal expenditures (in $1000s), and the number of males per
100 females. No outliers are known, so we artiÆcially create outliers by adding a small
amount (magnitude 8, random sign) to the retail sales of counties chosen uniformly at
random. We consider various scenarii (from 1% to 20% of outliers) and compute the
false discovery proportion and the power. Figure II.5 below summarizes the results
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for the three procedures.
The results are in line with the fact that E-SLOPE is able to discover more outliers

than its competitors. E-SLOPE has the highest power, and the FDP remains under
the target level.

Figure II.5: Left: False Discovery proportion, E-SLOPE remains under the target level;
Right: power, E-SLOPE performs better than the competitors.

5.7 Dealing with unknown variance

In all the previous simulations and real datasets analysises, the noise variance is
either known or can be estimated by robust regression techniques because of the low
dimension. However, dealing with unknown variance in a high-dimensional context
is still an open problem. In this section we present numerical results for Setting 2 of
Section 5.1 with optimization performed without the knowledge of æ. To this extent
we adapt the idea of scaled Lasso [78] and scaled Slope [11] in Algorithm 4 below.
The idea is to run E-Slope with a conservative estimation of æ, then to iteratively
compute a new estimate of æ and run E-Slope with this new estimate. Note that there
is no guarantee of convexity or consistency, or even convergence of this procedure.
The stopping criteria is when the di�erence of two succesive estimates of æ is small
enough.
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Algorithm 4 Scaled E-Slope

initialize æ̂
while not converged do

Let µ̂, Ø̂ E-Slope estimates for weights computed with æ̂
Set T = supp(µ̂)

Ÿ the subset of non-outlying points.
Set æ̂= MAD(yT °XT,·Ø̂)

end while
return Ø,µ,æ

Figures below illustrate the performance of Algorithm 4 in Setting 2 (high-dimensional)
described in Section 5.1. Figure II.6 illustrates the performance of Scaled E-Slope
when outliers are of high magnitude and q = 5% is the target FDR level. Scaled
E-Slope achieves perfect TPR, maintaining FDR below the target level. Figure II.7
illustrates the performance of Scaled E-Slope when outliers are of low magnitude
and q = 5%. While still controlling FDR, TPR drops when there is more than 10%

outliers. Figure II.8 illustrate the performance of Scaled E-Slope when outliers are of
low magnitude and q = 5%. The procedure again controls FDR, TPR is maintained
quite high. Note that in each of the above condition, Scaled E-Slope still outperforms
E-Lasso (with known æ).
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Figure II.6: Results for simulation Setting 2 with high-magnitude outliers. First row
gives the FDR (left) and TPR (right) for Scaled E-SLOPE with target FDR q = 5%.
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Figure II.7: Results for simulation Setting 2 with low-magnitude outliers. First row
gives the FDR (left) and TPR (right) for Scaled E-SLOPE with target FDR q = 5%.
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Figure II.8: Results for simulation Setting 2 with low-magnitude outliers. First row
gives the FDR (left) and TPR (right) for Scaled E-SLOPE with target FDR q = 10%.

6 Conclusion

In this chapter we introduce a novel approach for simultaneous robust estimation and
outliers detection in the linear regression model. Three main results are provided:
optimal bounds for the estimation problem in Section 3, that improve in particular
previous results obtained with LASSO penalization [32], and asymptotic FDR control
and power consistency for the outlier detection problem in Section 4. To the best of
our knowledge, this is the Ærst result involving FDR control in this context.

Our theoretical Ændings are conÆrmed on intensive experiments both on real
and synthetic datasets, showing that our procedure outperforms existing procedure
in terms of power, while maintaining a control on the FDR, even in challenging
situations such as low-magnitude outliers, a high-dimensional setting and highly cor-
related features.

Finally, this work extends the understanding of the deep connection between the
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SLOPE penalization and FDR control, previously studied in linear regression with
orthogonal [11] or i.i.d gaussian [76] features, which distinguishes SLOPE from other
popular convex penalization methods.

7 Technical inequalities

The following technical inequalities are borrowed from [14], where proofs can be
found. Let m,n, p be positive integers. In the following lemma, an inequality for the
sorted `1-norm J∏ (deÆned in equation II.2) is stated.

Lemma II.1. For any two x, y 2Rm , and any s 2 1, . . . ,m such that |x|0 ∑ s we have

J∏(x)° J∏(y) ∑§(s)kx ° yk2 °
mX

j=s+1

∏ j
ØØx ° y

ØØ
( j )

,

where

§(s) =

vuut
sX

j=1

∏2

j .

The following lemma gives a preliminary bound for the prediction error in our
context, that are the starting point of our proof.

Lemma II.2. Let h :Rp !R be a convex function. Consider a n £p design matrix X , a
vector " 2Rn and deÆne y = XØ?+" where Ø? 2Rp . If Ø̂ is a solution of the minimization
problem minØ2Rp (ky °XØk2

2
+2h(Ø)), then Ø̂ satisÆes:

kX Ø̂°XØ?k2

2
∑ ">X (Ø̂°Ø?)+h(Ø?)°h(Ø̂).

Proof. Because the proof in [14] is more general, we give a proof adapted to our
context. Optimality of Ø̂ allows to choose v in the subdi�erential of h sucht that

0 = X >
(X Ø̂° y)+ v = X >

(X Ø̂°XØ?°")+ v.
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Therefore,

kX Ø̂°XØ?k2

2
= (Ø̂°Ø?)

>X >X (Ø̂°Ø?)

= (Ø̂°Ø?)
>

(X >"° v)

= ">X (Ø̂°Ø?)+ hv,Ø?° Ø̂i.

Now, by deÆnition of subdi�erential, h(Ø?) ∏ h(Ø̂)+ hv,Ø?° Ø̂i. Combining this in-
equality with the previous equality leads to the conclusion. Á

The following lemma allows to bound the inner product between a white Gaussian
noise and any vector. The resulting bound involved the sorted `1 norm.

Lemma II.3. Let ±0 2 (0,1) and let X 2Rn£p with columns normed to 1. If " is N (0, In)

distributed, then the event

©
8u 2Rp

,">X u ∑ max(H(u),G(u))
™

is of probability at least 1°±0/2, where

H(u) = (4+
p

2)

pX

j=1

|u|( j )æ
q

log(2p/ j )

and
G(u) = (4+

p
2)æ

q
log(1/±0)kuk2.

8 Results related to Gaussian matrices

Inequalities for Gaussian random matrices are needed in this Chapter. They are
stated here for the sake of clarity and we refer the reader to [29] for proofs (except for
bounds II.23 and II.24 that are taken from Lemma 1 in [56]). Again, n and p denote
positive integers.

Lemma II.4. Let X 2Rn£p with i.i.dN (0, Ip ) rows. Denote by æmax the largest singular
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value of X . Then, for all ø∏ 0,

P

µ
æmaxp

n
∏ 1+

r
p
n
+ø

∂
∑ exp

µ
°nø2

2

∂
. (II.20)

Lemma II.5. Concentration inequalities:

• Let Z be N (0,1) distributed. Then for all q ∏ 0:

P
°
|Z |∏ q

¢
∑ exp

µ
°q2

2

∂
. (II.21)

• Let Z1, Z2, . . . , Zp be independent and N (0,æ2
) distributed. Then for all L > 0:

P

µ
max

i=1,...,p
|Zi | >æ

q
2log p +2L

∂
∑ e°L

. (II.22)

• Let X be ¬2
(n) distributed. Then, for all x > 0:

P
°
X °n ∏ 2

p
nx +2x

¢
∑ exp(°x). (II.23)

P
°
n °X ∏ 2

p
nx

¢
∑ exp(°x). (II.24)

The following recent result ([65], Theorem 1) will also be useful.

Lemma II.6. Let X 2 Rn£p with i.i.d N (0,ß) rows. There exists positive constants c

and c 0 such that with probability greater than 1° c 0 exp(°cn), we have for all z 2Rp :

kX zk2p
n

∏ 1

4

p
∏mi n(ß)kzk2 °9

s

max
j
ß j j

log p
n

kzk1, (II.25)

where ∏mi n(ß) is the lowest eigenvalue of ß.

9 Proof of Section 3

This section is devoted to the proof of our main results, stated in Section 3.
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9.1 Proof of Theorem II.1

DeÆne D the diagonal matrix such that X = X 0D (D is the diagonal matrix formed by
the inverse of the norm of each column of X 0). Applying now Lemma II.6 for X 0 and
Dz we obtain for all z 2Rp

kX zk2 ∏
1

4

p
∏mi n(ß)k

p
nDzk2 °9

s

max
j
ß j j

log p
n

k
p

nDzk1

∏
p

n
p
∏mi n(ß)

4M
kzk2 °9

q
max j ß j j log p

m
kzk1,

with probability greater than 1°c 0 exp(°cn), where M and m denote respectively the
maximum and minimum of the norms of the columns of X 0. Note that for all 1 ∑ i ∑ p,
the squared norm of the i th column of X 0 is æ2

i ¬2(n) distributed, so using the bounds
II.23 and II.24 of Lemma II.5 (respectively with x = n and x = n/16), together with a
union bound we obtain that with probability greater than 1°ne°n °ne°n/16

M ∑ (max
j
ß j j )

p
5n, m ∏ (min

j
ß j j )

r
n
2

,

and we eventually obtain

kX zk2 ∏
p
∏mi n(ß)

4
p

5max j ß j j
kzk2 °

9

min j ß j j

s
2log p max j ß j j

n
kzk1. (II.26)

Let us denote v = [Ø>
,µ>

]
> 2Rp+n 2C (k, s,c0) (see DeÆnition II.6). Then,

kØk1 ∑
pX

j=1

∏̃ j

∏̃p

ØØØ
ØØ
( j )

∑ (1+ c0)

≥p
kkØk2 +

p
skµk2

¥
. (II.27)

Thus we obtain
kØk1 ∑ (1+ c0)

≥p
kkØk2 +

p
skµk2

¥
. (II.28)
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Injecting (II.28) in (II.26) applied to the vector Ø now leads to

kXØk2 +kµk2 ∏ kØk2

≥ p
∏mi n(ß)

4
p

5max j ß j j
° 9

min j ß j j
(1+ c0)

s
2k(log p)max j ß j j

n

¥

+kµk2

≥
1° 9

min j ß j j
(1+ c0)

s
2s(log p)max j ß j j

n

¥
. (II.29)

For n large enough as explicited in the assumption of Theorem II.1, Equation (II.29)
turns to

kXØk2 +kµk2 ∏
p
∏mi n(ß)

8
p

5max j ß j j
kØk2 +

1

2
kµk2,

and thus, using the fact that 2(a2 +b2
) ∏ (a +b)

2,

kXØk2

2
+kµk2

2
∏ min

Ω
∏mi n(ß)

128£5(max j ß j j )2
,

1

8

æ
kvk2

2
. (II.30)

Now if v = [Ø>
,µ>

]
> 2 Rp+n 2C p

(s,c0), Equation (II.26) together with the inequality
kØk1 ∑

p
pkØk2 lead to

kXØk2 +kµk2 ∏ kØk2

≥ p
∏mi n(ß)

4
p

5max j ß j j
° 9

min j ß j j

s
2p log p max j ß j j

n

¥
+kµk2,

and we conclude as above. Thus the Ærst part of the theorem is satisÆed.
Now, we must lower bound the scalar product hXØ,µi.

Divide {1, . . . , p} = T1[T2[· · ·[Tt with Ti (1 ∑ i ∑ t°1) of cardinality k 0 containing the
support of the k 0 largest absolute values of Ø≥Si°1

j=1
T j

¥c and Tt of cardinality k 00 ∑ k 0 the

support of the remaining values. Divide in the same way {1, . . . ,n} = S1 [S2 [ · · ·[Sq

(of cardinalitys s0, . . . , s0, s00 ∑ s0) with respect to the largest absolute values of µ (k 0 and
s0 to be chosen later). We use this to lower bound the scalar product:

|hXØ,µi| = |hX 0DØ,µi|∑
qX

i=1

tX

j=1

|hX 0
Si ,T j

(DØ)T j ,µSi i|,

so
ØØhXØ,µi

ØØ∑ max
i , j

kX 0
Si ,T j

k2

1

m

tX

j=1

kØT j k2

qX

i=1

kµSi k2, (II.31)
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where we recall that m is the minimal value of the column norms of X 0. According
to Lemma II.4, conditionnally on Si and T j , we have with probability greater than
1°exp(°nø2

/2),

kX 0
Si ,T j

k2 ∑ kß1/2

T j ,T j
k
°p

k 0+
p

s0+
p

s0ø
¢
∑

p
∏max(ß)

°p
k 0+

p
s0+

p
s0ø

¢
.

Considering all possibilities for Si and T j , we have with probability greater than

1°
√

p
k 0

!√
n
s0

!

e°nø2
/2,

max
i , j

kX 0
Si ,T j

k2 ∑
p
∏max(ß)

°p
k 0+ (1+ø)

p
s0

¢
. (II.32)

Moreover, thanks to the decreasing value along the subset T j we can use the trick of
[44], writing for all j 2 {1, . . . , t °1} and all x 2 {1, . . . ,

ØØT j+1

ØØ}:

ØØØ
°
ØT j+1

¢
x

ØØØ∑
kØT j k1ØØT j

ØØ .

Squaring this inequality and summing over x gives:

kØT j+1
k2

2
∑

kØT j k2

1ØØT j
ØØ

ØØT j+1

ØØ
ØØT j

ØØ ∑
kØT j k2

1ØØT j
ØØ =

kØT j k2

1

k 0 .

Then,

tX

j=1

kØT j k2 ∑ kØk2 +
tX

j=2

kØT j k2 ∑ kØk2 +
1

p
k 0

t°1X

j=1

kØT j k1 ∑ kØk2 +
1

p
k 0
kØk1,

and so
tX

j=1

kØT j k2 ∑ kØk2 +
1

p
k 0

pX

j=1

∏̃ j

∏̃p

ØØØ
ØØ
( j )

. (II.33)

In the same way we obtain:

qX

i=1

kµSi k2 ∑ kµk2 +
1

p
s0

nX

j=1

∏ j

∏n

ØØµ
ØØ
( j )

. (II.34)
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Now if v = [Ø>
,µ>

]
> 2Rp+n 2C (k, s,c0),

tX

j=1

kØT j k2

qX

i=1

kµSi k2 ∑
°
kØk2 +

1
p

k 0
(1+ c0)(

p
kkØk2 +

p
skµk2)

¢

£
°
kµk2 +

1
p

s0
(1+ c0)(

p
kkØk2 +

p
skµk2)

¢

∑
°
2kØk2 +kµk2

¢°
2kµk2 +kØk2

¢

∑ 2kvk2

2
+5kµk2kØk2

∑ 5kvk2

2
,

where we chose k 0 = s0 = (1+c0)
2
(k_s). Combining this last inequality with Equations

(II.31) and (II.32), and using again that m ∏ min j ß j j
p

n/2 with probability greater
than 1°ne°n/16, lead to

ØØhXØ,µi
ØØ∑

p
∏max(ß)

min j ß j j
(2+ø)

s
2s0

n
5kvk2

2
. (II.35)

Note that with this choice of s0 and k 0, the assumptions on n and the constant C 0

deÆned in the theorem lead to

√
p
k 0

!

∑ (ep/k 0
)

k 0 ∑ exp(n/C 0
), and

√
n
s0

!

∑ (en/s0)s0 ∑

exp(n/C 0
) , so we have Equation (II.32) with probability greater than 1°exp

°
°n

°
ø2

/2°2C 0°1
¢¢
.

With the speciÆc assumption on n in the statement of the theorem, the term in the
right part of Equation (II.35) is small enough to obtain:

2 |hX b,ui|∑ min

Ω
∏mi n(ß)

256£5max j ß j j
,

1

16

æ
kvk2

2
(II.36)

Eventually, if v = [Ø>
,µ>

]
> 2 Rp+n 2 C p

(s,c0), Equation (II.34) still holds, and com-
bining it with Equation (II.32) and Equation (II.31) with t = 1 leads to:

ØØhXØ,µi
ØØ∑

p
∏max(ß)

min j ß j j
(
p

p + (1+ø)

p
s0)

r
2

n
kØk2

£
°
kµk2 +

1
p

s0
(1+ c0)

°p
pkØk2 +

p
skµk2

¢¢
. (II.37)
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Choosing s0 = (1+ c0)
2
(p _ s),

ØØhXØ,µi
ØØ∑

p
∏max(ß)

min j ß j j
(2+ø)

s
2s0

n
kØk2

°
2kµk2 +kØk2

¢

∑
p
∏max(ß)

min j ß j j
(2+ø)

s
2s0

n
2kvk2

2
.

We conclude as above, thus leading to the second part of the theorem.

9.2 Proof of Theorem II.2

We will actually show a slightly more general result. Let R be any subset of cardinality
r containing the support of the true parameter µ? and IR be the matrix obtained by
extracting columns with indices in R from the identity matrix. We consider the
following minimization:

Ø̂, µ̂= argmin

Ø,µ
ky °XØ° IRµk2

2
+2Ω J∏[r ] (µ),

where ∏[r ] contains the Ærst r terms of the sequence of weights deÆned in Section 3.
Obviously, the theorem will result from the case R = {1, . . . ,n}. Note that µ̂ belongs to
Rr .

DeÆning b = Ø̂°Ø? and u = IR (µ̂°µ?R ) where µ?R denotes the vector extracted from
µ? by selecting coordinates corresponding to indices in R (note that the eliminated
coordinates are zeros), we can apply Lemma II.2 to obtain:

kX b +uk2

2
∑ ">(X b +u)+Ω J∏[r ] (µ?)°Ω J∏[r ] (µ̂)

= ">(X b +u)+Ω J∏(IRµ
?
R )°Ω J∏(IR µ̂).

Note that it is crucial to have supp(µ?) Ω R in order to write µ? = IRµ
?
R . Applying

now Lemma II.1 we obtain:

kX b +uk2

n ∑ ">(X b +u)+Ω
°
§(s)kuk2 °

nX

j=s+1

∏ j |u|( j )

¢
, (II.38)
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where §(s) is deÆned as
qPs

j=1
∏2

j . Hence, using Cauchy-Schwarz inequality we get:

kX b +uk2

2
∑ kX >"k2kbk2 +">u +Ω

°
§(s)kuk2 °

nX

j=s+1

∏ j |u|( j )

¢
.

Then, by Lemma II.3, with probability greater than 1°±0/2 we have (the last inequal-
ity is used for the sake of simplicity):

">u ∑ max(H(u),G(u)) ∑ H(u)+G(u),

with H(u) and G(u) deÆned in Lemma II.3. Additionnally, 1

æ2 kX >"k2

2
follows a ¬2

law with p degrees of freedom, so by the third point in Lemma II.5 with x = Lp

this provides, chosing ±0 = (s/2n)
s , that with probability greater than 1° 1

2
(s/2n)

s °
exp(°Lp):

kX b +uk2

2
∑ cLæ

p
pkbk2 +H(u)+G(u)+Ω

°
§(s)kuk2 °

nX

j=s+1

∏ j |u|( j )

¢

∑ cLæ
p

pkbk2 +
Ω

2

nX

j=1

∏ j |u|( j )

+ Ω

2

q
s log(2n/s)kuk2 +Ω

°
§(s)kuk2 °

nX

j=s+1

∏ j |u|( j )

¢

∑ cLæ
p

pkbk2 +
°
2Ω§(s)kuk2 °

Ω

2

nX

j=s+1

∏ j |u|( j )

¢
,

where cL =
p

1+2L+2

p
L and where we used Equation (II.40) to obtain the last

inequality. The fact that the left part of the last inequality is positive gives:

nX

j=1

∏ j |u|( j ) ∑
nX

j=s+1

∏ j |u|( j ) +§(s)kuk2 ∑
2

Ω
cLæ

p
pkbk2 +5§(s)kuk2,

where the left part of the inequality is obtained using Cauchy-Schwarz inequality.
Hence,

nX

j=1

∏ j

∏n
|u|( j ) ∑

2cL

Ω

s
p

log2
kbk2 +5

s
s log(2en/s)

log2
kuk2, (II.39)

where we used the right part of the following inequality [14]
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s log

≥
2n
s

¥
∑

sX

j=1

log

≥
2n
j

¥
= s log(2n)° log(s!) ∑ s log

≥
2en

s

¥
. (II.40)

Choosing L = 1 lead to cL =
p

5, and reminding that Ω ∏ 2(4+
p

2) we conclude
that [b>

,u>
]
> 2 C p

(s1,4) (see DeÆnition II.6) with s1 = s log(2en/s)

log2
. Therefore, by

Condition II.1 and the deÆnition of ∑ therein :

2kX b +uk2

2
∑ 2

p
5æ

p
pkbk2 +4Ω§(s)kuk2

∑ 5æ2

∑2
p +∑2kbk2

2
+ 4Ω2§(s)

2

∑2
+∑2kuk2

2

∑ 4Ω2

∑2
§(s)

2 + 5æ2

∑2
p +∑2kvk2

2

∑ 4Ω2

∑2
§(s)

2 + 5æ2

∑2
p +kX b +uk2

2
.

Thus,

kX b +uk2

2
∑ 4Ω2

∑2
§(s)

2 + 5æ2

∑2
p,

and

kbk2

2
+kuk2

2
∑ 4Ω2

∑4
§(s)

2 + 5æ2

∑4
p. (II.41)

The proof of Theorem II.2 concludes by the inequality of Equation II.40.

9.3 Proof of Theorem II.3

As in the previous proof, the more general version still holds and in the same way we
obtained (II.38), with the same deÆnition of b and u, we now have:

kX b +uk2

2
∑ ">(X b +u)+∫(kØ?k1 °kØ̂k1)+Ω(§(s)kuk2 °

nX

j=s+1

∏ j |u|( j )).

With T being the support of the true regression vector Ø? we have, using the triangle
inequality:

kØ?k1 °kØ̂k1 = kØ?T k1 °kb +Ø?k1 = kØ?T k1 °kbT +Ø?T k1 °kbT ck1 ∑ kbT k1 °kbT ck1.
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Hence we can write:

kX b +uk2

2
∑ kX >"k1kbk1 +∫ (kbT k1 °kbT ck1)+">u

+Ω§(s)kuk2 °Ω
nX

j=s+1

∏ j |u|( j )

∑ kbT k1(∫+kX >"k1)°kbT ck1(∫°kX >"k1)+">u

+Ω§(s)kuk2 °Ω
nX

j=s+1

∏ j |u|( j ) .

With the choice ∫= 4æ
p

log p we have kX >"k1 ∑ ∫/2 according to Lemma II.5, with
probability greater than 1° 1

p . Using again Lemma II.3 to bound ">u, we obtain that
with probability greater than 1° 1

2

° s
2n

¢s ° 1

p :

kX b +uk2

2
∑ kbT k1(6æ

q
log p)°kbT ck1(2æ

q
log p)+2Ω§(s)kuk2 °

Ω

2

nX

j=s+1

∏ j |u|( j ) .

(II.42)
The fact that the left part of the inequality is positive gives:

4

Ω
æ

q
log pkbT ck1 +

nX

j=s+1

∏ j |u|( j ) ∑
12

Ω
æ

q
log pkbT k1 +4§(s)kuk2,

and using Cauchy-Schwarz inequality, this leads to:

4

Ω
æ

q
log pkbk1 +

nX

j=1

∏ j |u|( j ) ∑
16

Ω
æ

q
k log pkbk2 +5§(s)kuk2

Eventually we obtain, because ∏n =æ
p

log2 and
p

log p ∏ Ω log2

4
:

kbk1 +
nX

j=1

∏ j

∏n
|u|( j ) ∑

4æ
p

log p

Ω∏n
kbk1 +

nX

j=1

∏ j

∏n
|u|( j ) ∑

16æ
p

k log p

Ω∏n
kbk2 +

5§(s)

∏n
kuk2

(II.43)
and the concatenated vector of b and u is therefore in the cone C (k1, s1,4) with
k1 = 16k log p/log2 and s1 = s log(2en/s)/ log2. Starting from (II.42), we obtain,
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using again ∑ as the capacity constant in Condition II.1:

2kX b +uk2

2
∑ kbT k112æ

q
log p +4Ω§(s)kuk2

∑ 12æ
q

k log pkbk2 +4Ω§(s)kuk2

∑ 36

∑2
æ2k log p +∑2kbk2

2
+ 4Ω2

∑2
§(s)

2 +∑2kuk2

2

∑ 36

∑2
æ2k log p + 4Ω2

∑2
§(s)

2 +∑2kvk2

2

∑ 36

∑2
æ2k log p + 4Ω2

∑2
§(s)

2 +kX b +uk2

2
.

Thus,

kX b +uk2

2
∑ 36

∑2
æ2k log p + 4Ω2

∑2
§(s)

2

and using again Condition II.1 and the remark after:

kbk2

2
+kuk2

2
∑ 36

∑4
æ2k log p + 4

∑4
§(s)

2
. (II.44)

9.4 Proof of Theorem II.4

In the same way we obtained (II.38), we now have:

kX b +uk2

2
∑ ">(X b +u)+Ω

°
§̃(k)kbk2 °

pX

j=k+1

∏̃ j |b|( j )

¢
+Ω

°
§(s)kuk2 °

nX

j=s+1

∏ j |u|( j )

¢
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We use twice Lemma II.3 to bound ">X b and ">u with (k/2p)
k and (s/2n)

s as

respective choices of ±0, so that with probability 1° 1

2

° s
2n

¢s ° 1

2

≥
k

2p

¥k
:

kX b +uk2

2
∑ H(b)+G(b)+H(u)+G(u)

+Ω
°
§̃(k)kbk2 °

pX

j=k+1

∏̃ j |b|( j )

¢
+Ω

°
§(s)kuk2 °

nX

j=s+1

∏ j |u|( j )

¢

∑ Ω

2

pX

j=1

∏̃ j |b|( j ) +
Ω

2

q
k log(2p/k)kbk2 +Ω

°
§̃(k)kbk2 °

pX

j=k+1

∏̃ j |b|( j )

¢

+2Ω§(s)kuk2 °
Ω

2

nX

j=s+1

∏ j |u|( j )

∑ Ω

2
4§̃(k)kbk2 °

Ω

2

pX

j=k+1

∏̃ j |b|( j ) +2Ω§(s)kuk2 °
Ω

2

nX

j=s+1

∏ j |u|( j ) ,

where we use Equation (II.40) to obtain the last inequality. The left part of the
inequality is positive so

pX

j=k+1

∏̃ j |b|( j ) +
nX

j=s+1

∏ j |u|( j ) ∑ 4§̃(k)kbk2 +4§(s)kuk2, (II.45)

and
2kX b +uk2

2
∑ 4Ω§̃(k)kbk2 +4Ω§(s)kuk2. (II.46)

Equation (II.45) together with the Cauchy-Schwarz inequality leads to

pX

j=1

∏̃ j |b|( j ) +
nX

j=1

∏ j |u|( j ) ∑ 5§̃(k)kbk2 +5§(s)kuk2. (II.47)

Combining the equation above with Equation (II.40) shows that the concatenated
estimator is in C (k1, s1,4) with s1 and k1 as in the statement of the theorem (note
that ∏̃n = ∏n = æ

p
log2) and so, noting ∑ the capacity constant of Condition II.1,

Equation (II.46) leads to:
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2kX b +uk2

2
∑ (3+C )

2
§̃(k)

2

2∑2
+∑2kbk2

2
+4Ω2

§(s)
2

∑2
+∑2kuk2

2

∑ C 0

∑2

°
§̃(k)

2 +§(s)
2
¢
+kX b +uk2

2
,

where C 0 = 4Ω2 _ (3+C )
2
/2. Finally:

kX b +uk2

2
∑ C 0

∑2

°
§̃(k)

2 +§(s)
2
¢

,

and
kbk2

2
+kuk2

2
∑ C 0

∑4

°
§̃(k)

2 +§(s)
2
¢

. (II.48)

10 Proof of Theorem II.5

In this section, we give the proof of the asymptotic FDR control presented in Theorem
II.5. In the following, for a given matrix A and a given subset T , AT denotes the
extracted matrix formed by the columns of A with indices in T , whereas AT,· denotes
the extracted matrix formed by the rows of A with indices in T . For vectors, there is
no ambiguity. Moreover, S (of cardinal s) denotes the support of the true parameter
µ?.

We Ærst recall some properties on the dual of the sorted `1 norm, and also a
lemma taken from [76] and stated here without proof:

DeÆnition II.1 ([76]). A vector a 2 Rn is said to majorize b 2 Rn (denoted b 4 a) if they
satisfy for all i 2 {1, . . . ,n}:

|a|(1) +·· ·+ |a|(i ) ∏ |b|(1) +·· ·+ |b|(i ) .

Proposition II.1 ([11]). Let J∏ be the sorted `1 norm for a certain non-increasing sequence
∏ of length n. The unit ball of the dual norm is:

C∏ = {v 2Rn
: v 4∏}.
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Lemma II.7 ([76], Lemma A.9). Given any constant Æ> 1/(1°q), suppose max{Æs, s +
d} ∑ s? < n for any (deterministic) sequence d that diverges to 1. Let ≥1, . . . ,≥n°s be i.i.d
N (0,1). Then

(|≥|(s?°s+1) , |≥|(s?°s+2) , . . . , |≥|(n°s))4 (∏BH

s?+1
,∏BH

s?+2
, . . . ,∏BH

n )

with probability approaching one.

We adapt from [76] the deÆnition of a resolvent set below, useful to determine the
true support of the mean-shift parameters.

DeÆnition II.2. Let s? be an integer obeying s < s? < n. The set S?(S, s?) is said to be
a resolvent set if it is the union of S and of the s?° s indices corresponding to the largest
entries of the error term " restricted to S̄.

Let c be any positive constant and Æx s? ∏ s(1+c)/(1°q) (q being the target FDR
level), so that assumptions of Lemma II.7 are satisÆed. For clarity, we denote S? =
S?(S, s?). For a resolvent set S? of cardinality s?, deÆne the reduced minimization
as:

ØS?
,µS? = argmin

Ø2Rp ,µ2Rs?

©
ky °XØ° IS?µk2

2
+2Ω J∏̃(Ø)+2Ω J∏[s?] (µ)

™
, (II.49)

where ∏[s?] is the beginning (the Ærst s? terms) of the sequence of weights in the
global problem. Note that a resolvent set contains the support of the true parameter
µ?, so the generalized versions of the main results in Section 3, considered in the
proof in Section 9, hold.

We want to show that the estimator of the unreduced problem µ̂ has null values
for coordinates which indices are not in S?. Precisely, we will show that µ̂= IS?µ

S? .
The Ærst order conditions for global and reduced minimisation problem above are
respectively:

(
X >

(y °X Ø̂° µ̂) 2 Ω@J∏̃(Ø̂)

y °X Ø̂° µ̂ 2 Ω@J∏(µ̂)

(II.50)

(II.51)

and 8
<

:
X >

(y °XØS? ° IS?µ
S?

) 2 Ω@J∏̃(ØS?
)

I>S?(y °XØS? ° IS?µ
S?

) 2 Ω@J∏[s?] (µ
S?

)

(II.52)

(II.53)

90



10. Proof of Theorem II.5

Clearly, Equation (II.52) leads to Equation (II.50) taking Ø̂=ØS? and µ̂= IS?µ
S?

. We
must now show that this choice of Ø̂ and µ̂ satisÆes Equation (II.51).

First, y°X Ø̂°µ̂ must be in the unit ball of the dual norm, that is y °X Ø̂° µ̂4 Ω∏.
Because y °X Ø̂° µ̂ 2Rn is the concatenation of I>S?(y °X Ø̂° µ̂) and I>

S̄?
(y °X Ø̂° µ̂),

we must check that S? satisÆes:

I>
S?

(y °X Ø̂S? ° IS?µ̂
S?

)4 Ω∏°[s?]
,

where ∏°[s?] is the end of the sequence in the global problem (omitting the Ærst s?

terms). If so, noting that if a1 4 b1 and a2 4 b2 then a 4 b (with a and b being the
respective concatenation of a1, a2 and b1,b2) and combining it with Equation (II.53)
will lead to the belonging at the unit ball of the dual norm.

Equivalently, we must check that

yS? °XS?,·Ø
S? 4 Ω∏°[s?]

,

or also
XS?,·(Ø

?°ØS?
)+ IS?,·"4 Ω∏°[s?] (II.54)

Lemma II.7, together with the deÆnition of the resolvent set S? given in DeÆnition
II.2, allows us to handle the second term to obtain, with probability tending to one:

IS?,·"4 (∏BH
)
°[s?] 4 Ω(∏BH

)
°[s?]

.

It remains to control the term XS?,·(Ø
?°ØS?

). For our purpose, it is su�cient to show
that kXS?,·(Ø

?°ØS?
)k1 tends to zero when n goes to inÆnity, because in this case we

would have XS?,·(Ø
?°ØS?

)4 Ω≤(∏BH
)
°[s?] if n is large enough. Thus, let i 2 {1, . . . ,n}

and xi the i th row of X , then we have:

|hxi ,Ø?°ØS?i|∑
pX

j=1

|xi , j ||Ø?°ØS? | j ∑
M
p

n
kØ?°ØS?k1. (II.55)

Now we distinguish the three cases. For Equation (II.10), we do not assume sparsity
on Ø so we rely on the Cauchy-Schwarz inequality to obtain

|hxi ,Ø?°ØS?i|∑ M
p

n
p

pkØ?°ØS?k2.
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For procedure of Equation (II.11), Equation (II.43) (with R = S?, b = Ø? °ØS? and
u =µ?°µS? ) allows to upper-bound kØ?°ØS?k1 as follows:

kØ?°ØS?k1 ∑
16æ

p
k log p

Ω∏n
kØ?°ØS?k2 +

5§(s)

∏n
kµ?°µS?k2.

Then, using this bound in Equation (II.55) leads to the bound

|hxi ,Ø?°ØS?i|∑ M
p

n
C

°q
k log p _

r
s log

≥
2en

s

¥¢°
kØ?°ØS?k2 _kµ?°µS?k2

¢
,

with C being some positive constant and where we recall that §(s) ∑ æ

r
s log

≥
2en

s

¥

according to Equation (II.40).
For procedure of Equation (II.12), since

kØ?°ØS?k1 ∑
pX

j=1

∏̃ j

∏̃n

ØØØØ?°ØS?
ØØØ
( j )

,

the same arguments show that Equation (II.47) leads to the bound

|hxi ,Ø?°ØS?i|∑ M
p

n
C 0°

q
k log(2ep/k)_

q
s log(2en/s)

¢°
kØ?°ØS?k2 _kµ?°µS?k2

¢
,

with C 0 being some positive constant.
Therefore the coordinates are uniformly bounded by a quantity tending to zero

in each of the three cases of the theorem, thanks to the upper bounds obtained in
the proofs of Section 9, in Equations (II.41), (II.44), and (II.48). Now it is su�cient
to choose n such that

ØØØhxi ,Ø?°ØS?i
ØØØ ∑ Ω≤∏BH

n (it is important to notice that the
right term does not depend on n and equals to Ω≤©°1

(1° q/2)) to Ænally obtain
Equation (II.54). Note that Equation (II.54) is the necessary condition for y °XØS? °
IS?µ

S? to be feasible (meaning in the unit ball C∏ of the dual norm of J∏) but this is
also su�cient for being in the subdi�erential because

@J∏(x) = {! 2C∏ : h!, xi= J∏(x)},
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and as we have, due to Equation (II.53):

hI>S?(y °XØS? ° IS?µ
S?

),µS?i= J∏[s?] (µ
S?

),

then:
hy °XØS? ° IS?µ

S?
, IS?µ

S?i= J∏(IS?µ
S?

).

Therefore, with probability tending to one, µ̂= IS§µS? and in particular

supp(µ̂) Ω S?. (II.56)

We now show that the support of µ̂ contains the support of µ?. Considering
Equation (II.53) we have in particular the belonging to the unit ball of the dual norm,
that is to say:

I>S?(y °XØS? ° IS?µ
S?

)4 Ω∏[s?]
.

In particular we have

kI>S?(y °XØS? ° IS?µ
S?

)k1 ∑ Ω∏1.

Having y = XØ?+µ?+"= XØ?+ IS?(µ?)S? +", the inequality above re-writes as:

kXS?,·(Ø
?°ØS?

)+µ?S? °µ
S? + I>S?"k1 ∑ Ω∏1.

By the triangle inequality, we obtain:

kµ?S?°µ
S?k1 ∑ Ω∏1+kXS?,·(Ø

?°ØS?
)+ I>S?"k1 ∑ Ω∏1+kXS?,·(Ø

?°ØS?
)k1+kI>S?"k1

Now, we already said that we have kXS?,·(Ø
?°ØS?

)k1 ∑ Ω≤∏BH

n ∑ Ω≤∏BH

1
, and using

the standard bound on the norm of a Gaussian noise (see Lemma II.5), we also have,
with probability tending to one (precisely with probability 1°1/n):

kI>S?"k1 ∑ k"k1 ∑ 2æ
q

logn.

Combining the previous inequalities leads to:

kµ?S? °µ
S?k1 ∑ Ω∏1 +Ω≤∏BH

1
+2æ

q
logn = Ω(1+2≤)∏BH

1
+2æ

q
logn.
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A standard bound for the Gaussian quantile function gives ∏BH

1
∑æ

p
2log(2n/q), so

with q ∏ 2/n (this is quite artiÆcial, q is generally more than 0.01) we obtain:

k(µ?)S? °µS?k1 ∑ (1+Ω(1+2≤))2æ
q

logn.

Therefore, because the entries of µ? are of absolute values greater than the right
bound of the above inequality we obtain:

S Ω supp((µ?)S?) Ω supp(µS?
) Ω supp(µ̂),

and so the Power tends to one.
It remains to prove the FDR control, using Equation (II.56). DeÆne the False Dis-

covery Proportion (FDP) as V /(R _1), where R and V are deÆned in Equation (II.14).
Because of the inclusion S Ω supp(µ̂), the FDP is (R ° s)/R = 1° s/R with probability
tending to one. According to Equation (II.56) and the assumption on s?,

FDP = 1° s
R

∑ 1° s
s?

∑ 1° 1°q
1+ c

= q + c
1+ c

∑ q + c,

with probability tending to one. In expectation, and with n tending to inÆnity, we
obtain:

limsup
n!+1

FDR(µ̂) ∑ q + c,

and because c is arbitrarily close to zero, it leads to the conclusion.

11 Supplementary simulations

We gather here some extra-simulations in low dimension to complete the ones from
Section 5.1 with a higher FDR level or/and a higher correlation level for the design
matrix. As it is the most challenging case, we focus on experiments with outliers of
weak magnitudes.

InØuence of the correlation in X Figure II.9 and Figure II.10 below are the same
as in Section 5.1 for setting 1, excepted that the correlation in the design matrix is now
lower Ω = 0 (resp. higher Ω = 0.8). Results are similar to those obtained in Section 5.1.
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Note that the same conclusion arises in setting 2 (high-dimensional), which is not
displayed here.

InØuence of the target FDR level Figure II.11 and Figure II.12 below gather the
results of simulations in setting 1 and setting 2 of Section 5.1 with target FDR being
10%, with moderate correlation (Ω = 0.4) in X . E-LASSO and IPOD do not depend
on the target FDR but they are plotted again for the sake of comparison. The results
conÆrm the fact that E-SLOPE provides a high TPR together with a FDR control for
various target FDR level.

Figure II.9: Results for simulation Setting 1 with low-magnitude outliers and no cor-
relation. The Ærst row gives the FDR (left) and power (right) of each considered
procedure for outliers discoveries. The second row gives the MSE for regressors (left)
and intercepts (right). E-SLOPE provides high TPR while keeping FDR below the
target level, and provides the best MSEs.

95



II. SLOPE for Outliers Detection and Robust Estimation in Linear Model

Figure II.10: Results for simulation Setting 1 with low-magnitude outliers and high
correlation (Ω = 0.8). The Ærst row gives the FDR (left) and power (right) of each
considered procedure for outliers discoveries. The second row gives the MSE for
regressors (left) and intercepts (right). E-SLOPE provides high TPR while keeping
FDR below the target level, and provides the best MSEs.
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Figure II.11: Results for simulation Setting 1 with low-magnitude outliers, correlation
Ω = 0.4. The Ærst row gives the FDR (left) and power (right) of each considered
procedure for outliers discoveries. The second row gives the MSE for regressors (left)
and intercepts (right).
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Figure II.12: Results for simulation Setting 2 with low-magnitude outliers, correlation
Ω = 0.4. The Ærst row gives the FDR (left) and power (right) of each considered
procedure for outliers discoveries. The second row gives the MSE for regressors (left)
and intercepts (right).
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CHAPTER III

Extension to Generalized Linear
Models

Abstract

Generalized Linear Models [61] (GLMs) are routinely used in supervised

learning. The classical procedures for estimation are based on Maximum Like-

lihood and it is well known that the presence of outliers can have a large impact

on this estimator. Robust procedures are presented in the literature on GLMs

but they need a robust initial estimate in order to be computed [17, 83]. Here

we study robust estimation in GLMs, when a small number k of the n obser-

vations are arbitrarily corrupted. There has been some recent work connecting

robustness and sparsity in the context of linear regression with corrupted ob-

servations, by using the mean-shift outlier model (see Chapter II and [73, 32])

which explicitly models the outliers. Following these papers, we propose a pro-

cedure based on an explicit outlier response modeling in the GLM settings. We

establish an asymptotic control on the False Discovery Rate (FDR) and statisti-

cal power for support selection of the individual intercepts. As a consequence,

our procedure is the Ærst proposition with guaranteed FDR and statistical power

control for outliers detection under the mean-shift model in Generalized Linear

Model. Numerical illustrations are provided on both simulated and real-world

datasets. Experiments are conducted using an open-source software written in

Python and C++.
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1 Introduction

We consider Generalized Linear Models (GLMs) and we study a robust method for
estimating its parameters. Robust estimators for GLMs have been intensively studied
in the past few years [83, 17, 2]. However, these proposals either lack robustness
or require a robust initial estimator. GLMs are a very general class of models for
predicting a response given a covariate vector, and include many classical conditional
distributions such as Gaussian, logistic, etc. In such models, the data points are
typically low dimensional and are all assumed drawn from this model. In our setting,
some observations are outliers, and could have arbitrary values with no quantitative
relationship to the assumed generalized linear model.

The past few years have actually led to an understanding that outlier robust
estimation is intimately connected to sparse signal recovery [47, 73]. The main insight
here is that if the number of outliers is small, it could be cast as a sparse error vector
that is added to the standard noise. For the task of high dimensional robust linear
regression, there has been some interesting recent works that have provided bounds
on the performance of the convex regularization based estimators for general high-
dimensional robust estimation [32, 84] together with measures on the performance of
these estimators regarding outliers detection [84].

In this paper, we provide a part of such an analysis for GLMs beyond the standard
Gaussian linear model.

2 Contribution of the paper

We consider GLMs with canonical link functions and no dispersion parameter. Namely
we assume that we have a response vector y = (y1, ..., yn)

> whose elements are obser-
vations of independent random variables Y1, . . . ,Yn from a distribution with condi-
tional log-density given for any i = 1, . . . ,n by

log f (yi ; xi ,Ø?,µ?i ) = yi (xiØ
?+µ?i )°b(xiØ

?+µ?i )+ c(yi ), (III.1)

where n is the sample size, b is a twice continuously di�erentiable function with
derivative b0 being a one-to-one function, and Ø? 2 Rp , xi 2 Rp , yi 2 R respectively
stand for the regression coe�cients, vector of covariates, label of sample i . A non-
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zero µ?i means that observation i is an outlier and we assume that µ? 2Rn is sparse
with support S with |S| = s < n.

According to GLM theory [61] we recall that:

• E[Yi ] = b0
(xiØ

?+µ?i )

• Var(Yi ) = b00
(xiØ

?+µ?i )

• The link function is given by the inverse of b0.

2.1 Related works

As explained in Section 1, robust estimators for GLMs have been intensively studied
in the past few years. The Cook statistic [22], used to measure the inØuence of an
observation in linear models, can be extended to GLMs (see [61], Chapter 12). This
statistic is a measure of the distance between the maximum likelihood estimator Ø̂ and
the maximum likelihood estimator computed without observation i , Ø̂(i ). However,
this measure is non-robust and therefore, when there are several ouliers, it may su�er
from the same masking e�ect [34] as in linear regression.

To provide a higher robustness, recent approaches [83] rely on a type of M-
estimator, that may lead to a non-convex procedure and thus multiple solutions. To
overcome this issue, one must initialize the algorithm at an initial estimator which is
a very good approximation of the true parameter Ø? [82]. However, this approach
does not focus on the outliers detection but only on robust regression.

The model (III.1) above have been studied recently in [88] and allows to study
both robust regression and outliers detection. They propose a convex optimization
problem based on the minimization of a penalized negative log-likelihood, using
Lasso as the penalization. Error bounds are obtained in [88] for both the regression
and intercept coe�cients, but this does not answer to the outliers detection problem
we focus on in this Chapter.

2.2 Main contribution

In the same spirit as in Chapter II, the goal is to deÆne a convex minimization
problem that leads to the identiÆcation of outliers, which again are deÆned by the
non-zero coordinates of µ?.
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We focus on low-dimensional setting (small p) and perform penalized negative
log-likelihood minimization similarly to [88], using SLOPE penalization in the follow-
ing optimization problem:

min
Ø2Rp ,µ2Rn

° 1

n

nX

i=1

°
yi (xiØ+µ)°b(xiØ+µ)

¢
+ J∏(µ), (III.2)

with, for any x 2Rn :

J∏(x) =
nX

j=1

∏ j |x|( j ) , (III.3)

where |x|(1) ∏ |x|(2) ∏ · · ·∏ |x|(n) and ∏1 ∏∏2 ∏ · · ·∏∏n > 0.
In Section 3 we provide a sequence ∏ which allows to obtain, under some asymp-

totic regime and a control of the error bound, a control of the FDR for the support
selection of µ?, and such that the power of the procedure (III.2) converges to one.
In Section 4 we study the particular case of Binomial model, for which Assumption 1
and Assumption 2 given below are met. We then perform numerical experiments
in Section 5 to illustrate the theoretical Ændings of Section 3 and Section 4, and we
apply our procedure to whole exome sequencing data for colorectal cancer tumors.

2.3 Assumptions

In Section 3 we establish theoretical results under the following assumptions:

Assumption III.1. There exists M > 0 such that for each sample i and each covariates j

|xi , j |∑ Mp
n
, where xi , j is the value of the j -th covariates of sample i .

The boundedness assumption on the entries of X are typically satisÆed with a
large probability when X has random uniform (and uniformly bounded) entries, with
columns normalized to 1. Note that we could allow Gaussian distribution for the rows
of X by assuming |xi , j | ∑ M log(p_n)p

n
. Then, we should simply add the logarithmic

factor log(p _n) in the asymptotic assumption of Equation (III.6) for our results to
remain valid. The second assumption is on the conditional distribution of labels:

Assumption III.2. We assume that:

• The inverse of the link function, that is b0, is L-lipschitz.
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• For all i 2 {1, . . . ,n}, yi°E[yi ] is ci sub-Gaussian and the ci ’s are uniformly bounded
from above by a constant c , namely:

8i 2 {1, . . . ,n},8t > 0,P(|yi °E[yi ]|∑ t ) ∏ 1°2exp
°ci t 2 ∏ 1°2exp

°ct 2

. (III.4)

We then deÆne for any t > 0, F (t ) = 1°2exp
°ct 2

.

The assumption above are satisÆed for large class of GLMs, including Linear
Model and models with logit as link function (Bernoulli, Binomial, Categorical).
Note in particular that bounded variables satisfy the second assumption in Assump-
tion III.2 according to Hoe�ding’s inequality. Note also that some GLMs, such as
Poisson regression, do not meet the assumptions above. In Section 4 we study specif-
ically the Binomial model, which is well-suited for the real-world dataset we study in
Section 5.

The assumption below is a result to be established but that we will assume true
in the next sections. This result is similar to the result we proved in Theorem II.2
of Section 3, Chapter II, in the linear regression context. It is also closed to a result
used in [88] in a context of GLM.

Assumption III.3. Let R be any subset containing the true support S of µ? and ∏[|R|] be
the beginning (the Ærst |R| terms) of the sequence of weights in the global problem (III.2).

With ØR
,µR being solution of the following reduced minimization problem:

min
Ø2Rp ,µ2R|R|

° 1

n

nX

i=1

°
yi (xiØ+ IRµ)°b(xiØ+ IRµ)

¢
+ J∏[|R|] (µ), (III.5)

we assume that
kØ?°ØRk2

2
+kµ?°µRk2

2
=O(p log p _ s logn).

Finally, we work under the following asymptotic setting, which is similar to the
setting in which we obtained the results of Chapter II:

(p2
log p)/n, (s logn)/n °°°°°!

n!+1
0. (III.6)

This is typically satisÆed when p is Æxed and the number of outliers increases slower
than linearly as a function of the number of observations. This asymptotic setting
alows us to bound any term of the form hxi ,Ø?°ØRi by a quantity that vanishes.
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Under the three assumptions above we establish in the next section the analoguous
of the FDR control result obtained in the linear regression context in Theorem II.5 of
Section 4, Chapter II.

3 Theoretical results

We Ærst establish a preliminary result based on a lemma in [76] that we recall below.

Lemma III.1 ([76], Lemma A.9). Given any constant q > 1/(1°Æ), suppose that there
exists sequences s, s? and a (deterministic) sequence d that diverges to 1 such that

max{qs, s +d} ∑ s? < n.

Let U1,U2, . . . ,Un i.i.d. uniform random variables on [0,1]. Note U[1] ∑U[2] ∑ · · ·∑U[n]

the corresponding ordered statistics. Then:

P
°
8 j 2 {1, ...,n ° s?}, U[s?°s+ j ] ∏Æ(s?+ j )/n

¢
°°°°°!
n!+1

1. (III.7)

Corollary III.1 below is a generalization of a result for Gaussian random variables
in [76], Lemma A.9, to sub-Gaussian random variables. The proof of Corollary III.1
is given in Section 7.

Corollary III.1. Assume assumptions of Lemma III.1 are met. Let ≥1, . . . ,≥n be indepen-
dent sub-Gaussian random variables with the same constant c , namely the cumulative
distribution functions F|≥i | of the |≥i |’s verify:

8i 2 {1, . . . ,n},8t > 0,F|≥i |(t ) ∏ 1°2exp
°ct 2 = F (t ). (III.8)

We then have:

P
≥
8 j 2 {1, ...,n ° s?}, |≥|(s?°s+ j ) ∑

s
1

c
log

2n
Æ(s?+ j )

¥
°°°°°!
n!+1

1. (III.9)

We now consider the multi-test problem with null-hypotheses

Hi : µ§
i = 0
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for i = 1, . . . ,n, and we consider the multi-test that rejects Hi whenever µ̂i 6= 0, where
µ̂ (and Ø̂) are given by (III.2). When Hi is rejected, or “discovered”, we consider that
sample i is an outlier. Note however that in this case, the value of µ̂i gives extra
information on how much sample i is outlying.

We use the FDR as a standard Type I error for this multi-test problem [8]. The
FDR is the expectation of the proportion of falses discoveries among all discoveries.
Letting V (resp. R) be the number of false rejections (resp. the number of rejections),
the FDR is deÆned as

FDR(µ̂) = E
∑

V
R _1

∏
= E

"
#{i :µ?i = 0, µ̂i 6= 0}

#{i : µ̂i 6= 0}

#

. (III.10)

We use the Power (or True Positive Rate, TPR) to measure the Type II error for this
multi-test problem. The TPR is the expectation of the proportion of true discoveries.
It is deÆned as

TPR(µ̂) = E
"

#{i :µ?i 6= 0, µ̂i 6= 0}

#{i :µ?i 6= 0}

#

. (III.11)

The Type II error is then given by 1°TPR(µ̂).

Theorem III.1. Suppose that Assumptions III.1, III.2, III.3 of Section 2.3 are met. Suppose
also that non-zero coordinates of µ? are greater than C

p
p log p _ s logn and that s !1.

Consider then Ø̂, µ̂ given by procedure (III.2) with ∏= (1+≤)∏0
(Æ) where ≤> 0 and

∏0

i (Æ) = 1

n

r
1

c
log

2n
iÆ

,

with c given by Assumption III.2, any Æ 2]0,1[ and any i 2 {1, . . . ,n}. Then, the following
properties hold:

TPR(µ̂) ! 1, limsupFDR(µ̂) ∑Æ. (III.12)

Note that the magnitude of the outliers is required to grow as
p

s logn in The-
orem III.1 to perform outlier detection. The assumption seems necessary in linear
regression setting to distinguish outlier from pure random noise. However, there is
no reason why this assumption would be necessary to control the FDR. We illustrate
in numerical simulation of Section 5 that the FDR is indeed below a given level even
for lower magnitudes.
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The proof of Theorem III.1 is given in Section 7. Note that when n ! +1, it is
also natural to assume that s ! +1 (let us recall that s stands for the sparsity of
the sample outliers µ 2 Rn ). We emphasize that good numerical performances are
actually obtained with lower magnitudes, as illustrated in Section 5.

4 The Binomial model

A particular model we will focus on is the binomial model, where the elements yi of
the response vector y = (y1, ..., yn)

> are observations of independent random variables
from a Binomial distribution B(ns ,æ(xiØ

?+µ?i )), where ns is a Æxed integer and æ is
the sigmoid function, deÆned for all x 2 R as æ(x) = 1

1+e°x . These distributions have
the form of Equation (III.1) with b =°ns log(1°æ). Note, in addition, that b0 = nsæ is
Lipschitz.

We emphasize that Assumption III.2 is satisÆed in this case with c = 2

ns
since for

all t > 0:
P(|yi °E [yi ]| > t ) ∑ 2e° 2t2

ns (III.13)

by Hoë�ding deviation inequality of a sum of independent random variables [39]. In
this particular case, the minimization problem rewrites as:

min
Ø2Rp ,µ2Rn

1

n

nX

i=1

°
° yi (xiØ+µi )°ns log(1°æ(xiØ+µi ))

¢
+ J∏(µ), (III.14)

with ∏i = (1+≤)
1

n

q
ns
2

log
2n
iÆ .

Note that we could choose to take the proportions as observations, instead of the
counts. In this situation, observations are sub-Gaussian with constant c = 2ns and
that would lead to the following equivalent minimization problem:

min
Ø2Rp ,µ2Rn

1

n

nX

i=1

°
° yi

ns
(xiØ+µi )° log(1°æ(xiØ+µi ))

¢
+ J∏(µ), (III.15)

with ∏i = (1+≤)
1

n

q
1

2ns
log

2n
iÆ .

Finally, one could be more familiar with
p

n normalization of the feature matrix.
In this situation, again a equivalent problem would be obtained:
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min
Ø2Rp ,µ2Rn

1

n

nX

i=1

°
° yi

ns
(xiØ+

p
nµi )° log(1°æ(xiØ+

p
nµi ))

¢
+ J∏(µ), (III.16)

with ∏i = (1+≤)

q
1

2nns
log

2n
iÆ

5 Numerical experiments

In this section, we consider the binomial model given in the previous section and
illustrate the performance of procedure (III.14) both on simulated and real-world
datasets. Experiments are done using the open-source tick library [6], available
at https://x-datainitiative.github.io/tick/.

5.1 Simulation settings

The matrix X is simulated as a matrix with i.i.d row distributed as N (0,ß), with
Toeplitz covariance ßi , j = Ω|i° j | for 1 ∑ i , j ∑ p, with moderate correlation Ω = 0.4.
The columns of X are normalized to 1. We set non-zero elements of µ? to µ?i =
p

2logn. In all reported results based on simulated datasets, the sparsity of µ?

varies between 1% to 20%, and we display the averages of FDR, MSE and power over
100 replications.

Setting 1 (small ns) This is the setting described above with n = 500, ns = 30 and
p = 10.

Setting 2 (large ns) This is the setting described above with n = 500, ns = 100 and
p = 10.

5.2 Metrics

In our experiments, we report the “MSE coe�cients”, namely kØ̂°Ø?k2

2
and the “MSE

intercepts”, namely kµ̂°µ?k2

2
. We report also the FDR (III.10) and the TPR (III.11) to

assess the procedures for the problem of outliers detection, where the expectations
are approximated by averages over 100 simulations.
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5.3 Results and conclusions on simulated datasets

We comment the displays provided in Figures III.1 and III.2 below.

• In each setting, Slope provides FDR control.

• The FDR seems too low, meaning that power could be increased with a more
careful tuning of the weights.

• Simulations in both settings behave similarly except in term of Power, which is
better in Setting 2. This is expected since observations are then the mean of
much more realizations of Bernoulli random variables.

Figure III.1: Results for Simulation Setting 1. First row gives the FDR (left) and
TPR (right) of our procedure for outliers discoveries. Second row gives the MSE for
regressors (left) and intercepts (right).
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Figure III.2: Results for Simulation Setting 2. First row gives the FDR (left) and
TPR (right) of our procedure for outliers discoveries. Second row gives the MSE for
regressors (left) and intercepts (right).

5.4 Application to colorectal cancer tumors

5.4.1 Biological context

We consider whole exome sequencing data for 47 primary colorectal cancer tumors,
characterized by a global genomic instability a�ecting repetitive DNA sequences (also
known as microsatellite unstable tumors, see [24]).

In details, micro-satellites are portions of DNA sequence that are composed of a
base motif (one or several nucleotides) repeated several times (generally 5 to 50). For
example, A A A A A is a micro-satellite with the base motif A (Adenine) repeated Æve
times. Such portions of DNA have higher mutation rate than other DNA sequences,
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leading to genetic diversity (instability). The colorectal cancer a�ects genes called
mismatch repair (MMR) genes, responsible for the correction of transcription errors,
therefore the analysis of micro-satellites is particularly relevant as their instability is
directly connected to the behaviour of the MMR genes. The aim of the analysis is
to Ænd two categories of sequences: survivors (multi-satellites that mutated less than
expected) and transformators (multi-satellites that mutated more than expected), with
the idea that those sequences may play a key role (in good or bad) in the cancer
development.

In what follows, we restrict ourselves to repetitive sequences whose base motif is
the single nucleotide A, and which are in regulatory regions (following the coding
regions) that inØuence gene expression (3’ UTR). The same analysis could have been
run with di�erent base motifs and di�erent regions (exonic, intronic). It has been
shown in recent publications (see [79]), that the probability of mutation of a sequence
is dependent of the length of the repeat. The Ægure below show the mutation rate as
a function of the number of repeats of the base motif.

Figure III.3: Multi-satellites with base motif A: mutation rate over 47 cancer tumors
plotted versus the number of repeats of the base motif.

Based on Figure III.3 it clearly appears that the linear regression is not well suited
for this type of data, particularly because the output of interest is a mutation rate,
which is a measure in [0,1]. Here the task is close to classiÆcation, where one forces
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the values of the outcome variable to be bound between 0 and 1, applying a sigmoid
(or logistic) function and where the bounded values are then interpreted as the prob-
ability of belonging to one of the categories in which one wants to classify data. Here
we do not apply classiÆcation but a natural extension of the linear regression is to
consider Generalized Linear Model [61]. As a Ærst approach, our cancer data can be
viewed as means of Bernoulli observations over 47 samples, with mutation rate (that
is expectation of Bernoulli) depending on covariates including the number of base
motif repeats. This is the binomial model we focused on in the previous section.

We perform procedure (III.14) on this dataset, the only feature being the number
of repeats of the base motif, apart from the global intercept. Results are shown in
Figure III.4. We found 152 "transformators" outliers (portions of DNA sequence that
mutated more than expected) and 39 "survivors" outliers (portions of DNA sequence
that mutated less than expected), which must be subjected to further biological anal-
ysis.

Figure III.4: Multi-satellites with base motif A: identiÆcation of 191 outliers for a
target FDR q = 0.05.
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6 Conclusion and prospects

In regression context, dealing with outliers is essential to obtain a good estimation
of the regression parameters. As demonstrated in this work, the identiÆcation of
outliers can also be of even greater importance in some context, because outliers can
be the data of interest. In this work, we developed a new procedure to simultaneously
estimate the regression coe�cients and identify the outliers in particular cases of
generalized linear model. The main result of this chapter is the asymptotic FDR
control for the outlier detection problem. To the best of our knowledge, this is the
Ærst result involving FDR control in this context.

Our theoretical Ændings are conÆrmed on intensive experiments both on real and
synthetic datasets, with an application to a crucial healthcare problem.

Finally, this work extends the understanding of the deep connection between the
SLOPE penalization and FDR control, previously studied in linear regression with
orthogonal [11] or i.i.d Gaussian [76] features, which distinguishes SLOPE from other
popular convex penalization methods.

We conclude by noting that the theory in this chapter is still incomplete and for
example does not include all kinds of GLMs. This will be the objective of future work.
Moreover, the colorectal cancer dataset seems to su�er from an overdispersion, that
could have inØuenced the results of our analysis. A multi-layers model that take into
account this overdispersion (for example a hierarchical GLM [59]) could be of great
interest. This will also be the objective of future work.

7 Proof of Section 3

7.1 Proof of Corollary III.1

In this proof, given any random variables Z1, . . . , Zn , we note the corresponding in-
creasing (resp. decreasing) ordered statistics as Z[1] ∑ Z[2] ∑ · · · ∑ Z[n] (resp. Z(1) ∏
Z(2) ∏ · · ·∏ Z(n).

Let F°1

|≥i | denote the generalized inverse distribution function of the |≥i |’s, and
U1,U2, . . . ,Un i.i.d. uniform random variables on [0,1], with the following equalities
in distribution:

F°1

|≥i |(1°Ui ) = |≥i |. (III.17)
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≥̃i = F°1
(1°U[i ]), (III.18)

thus satisfying ≥̃1 ∏ ≥̃2 ∏ · · ·∏ ≥̃n . Note that in the following we apply Lemma 1, which
requires sorted random variables. Since the |≥i |’s are not identically distributed,
their generalized inverse distribution functions are not the same and thus there is
no theoretical guarantee that a permutation sorting the Ui ’s also sorts the |≥i |’s. We
construct the ≥̃i ’s to overcome this issue.

According to Lemma III.1, we obtain, since F°1 is non-decreasing:

P
°
8 j 2 {1, ...,n ° s?}, ≥̃s?°s+ j ∑ F°1

(1°Æ(s?+ j )/n)
¢
°! 1. (III.19)

To conclude it is now su�cient to prove that for all i 2 {1, . . . ,n}, |≥|(i ) ∑ ≥̃i . Let æ
be a permutation such that for all i 2 {1, . . . ,n}:

|≥æ(i )| = F°1

|≥æ(i )|(1°U[i ]).

Then Equation (III.8) guarantees that for all i 2 {1, . . . ,n},

|≥æ(i )| = F°1

|≥æ(i )|(1°U[i ]) ∑ F°1
(1°U[i ]) = ≥̃i .

Therefore by induction (and because the ≥̃i ’s are sorted), for all i , ≥̃i is greater than
or equal to at least n ° i +1 |≥ j |’s, in particular greater than or equal to the n ° i +1

smallest |≥ j |’s, including |≥|(i ) which is exactly the n ° i +1 smallest. This concludes
the proof.

7.2 Proof of Theorem III.1

In the following, for a given matrix A and a given subset T , AT denotes the extracted
matrix formed by the columns of A with indices in T , whereas AT,· denotes the
extracted matrix formed by the rows of A with indices in T . For vectors, there is no
ambiguity. Moreover, S (of cardinal s) denotes the support of the true parameter µ?.

We adapt from [76] the deÆnition of a resolvent set below, useful to determine the
true support of the mean-shift parameters.

DeÆnition III.1. Let s? be an integer obeying s < s? < n. The set S?(S, s?) is said to be
a resolvent set if it is the union of S and the s?° s indices corresponding to the largest
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absolute values entries of the residual vector y °E[y] restricted to S̄.

Let ≤ be any positive constant and Æx s? ∏ s(1+ ≤)/(1° q) (q being the target
FDR level), so that assumptions of Lemma III.1 are satisÆed. For clarity, we denote
S? = S?(S, s?). For a resolvent set S? of cardinality s?, deÆne ØS?

,µS? the solution of
the reduced minimization:

min

Ø2Rp ,µ2Rs?
° 1

n

nX

i=1

°
yi (xiØ+ Is?µ)°b(xiØ+ Is?µ)

¢
+ J∏[|s?|](µ), (III.20)

where ∏[s?] is the beginning (the Ærst s? terms) of the sequence of weights in the
global problem (III.2).

We want to show that the estimator of the unreduced problem µ̂ has null values
for coordinates which indices are not in S?. Precisely, we will show that µ̂= IS?µ

S? .
The Ærst order conditions for global and reduced minimisation problem above are
respectively:

(
X >

(y °b0
(X Ø̂+ µ̂)) = 0

y °b0
(X Ø̂+ µ̂) 2 n@J∏(µ̂)

(III.21)

(III.22)

and 8
<

:
X >

(y °b0
(XØS? + IS?µ

S?
)) = 0

I>S?(y °b0
(XØS? ° IS?µ

S?
)) 2 n@J∏[s?] (µ

S?
),

(III.23)

(III.24)

where b0 is applied coordinate-wise. Clearly, Equation (III.23) leads to Equation (III.21)
taking Ø̂=ØS? and µ̂= IS?µ

S?
. We must now show that this choice of Ø̂ and µ̂ satisÆes

Equation (III.22).
First, y °b0

(X Ø̂+µ̂) must be in the unit ball of the dual norm of the J∏ norm, that
is y °b0

(X Ø̂+ µ̂)4 n∏. Because y°b0
(X Ø̂+µ̂) 2Rn is the concatenation of I>S?(y °b0

(X Ø̂+ µ̂))

and I>
S̄?

(y °b0
(X Ø̂+ µ̂)), we must check that S? satisfy:

I>
S?

(y °b0
(XØS? + IS?µ

S?
))4 n∏°[s?]

,

where ∏°[s?] is the end of the sequence in the global problem (omitting the Ærst s?

terms). If so, noting that if a1 4 b1 and a2 4 b2 then a 4 b (with a and b being the
respective concatenation of a1, a2 and b1,b2) and combining it with Equation (III.24)
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will lead to the belonging to the unit ball of the dual norm.
Equivalently, we must check that

yS? °b0
(XS?,·Ø

S?
)4 n∏°[s?]

,

or also
b0

(XS?,·Ø
?

)°b0
(XS?,·Ø

S?
)+ IS?,·z 4 n∏°[s?]

, (III.25)

where z = y°E[y] = y°b0
(XØ?+µ?) is the vector of residuals. Corollary III.1, together

with the deÆnition of the resolvent set S? given in DeÆnition III.1, allows us to handle
the second term to obtain, with probability tending to one:

IS?,·z 4 n(∏0
)
°[s?]

It remains to control the term b0
(XS?,·Ø

?
)°b0

(XS?,·Ø
S?

). For our purpose, it is su�-
cient to show that it tends to zero in kk1 when n goes to inÆnity, because in this case
we would have b0

(XS?,·Ø
?

)°b0
(XS?,·Ø

S?
) 4 ≤(∏0

)
°[s?] if n is large enough. Thus, let

i 2 {1, . . . ,n} and xi the i th row of X , then we have:

|b0
(hxi ,Ø?i)°b0

(hxi ,ØS?i)|∑ L|hxi ,Ø?°ØS?i|∑
LM

p
p

p
n

kØ?°ØS?k2. (III.26)

When p/n = o(1), the uniform bound above tends to zero under the assumptions
made, that concludes the proof.

Note that Equation (III.25) is the necessary condition for y °b0
(XØS? + IS?µ

S?
)

to be feasible (meaning in the unit ball C∏ of the dual norm of J∏) but this is also
su�cient for being in the subdi�erential because

@J∏(x) = {! 2C∏ : h!, xi= J∏(x)},

and as we have, due to Equation (III.24):

hI>S?(y °b0
(XØS? + IS?µ

S?
)),µS?i= n J∏[s?] (µ

S?
),

then:
hy °b0

(XØS? + IS?µ
S?

), IS?µ
S?i= J∏(IS?µ

S?
).
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Therefore, with probability tending to one, µ̂= IS§µS? and in particular

supp(µ̂) Ω S?. (III.27)

Furthermore, assuming that the non-zero coordinates of µ? have absolute value
greater than C (p log p_s logn), then the assumed estimation rate in Assumption III.3
leads to the fact that S Ω supp(µ̂) and therefore the TPR is one.

It remains to show the FDR control. Because of the inclusion S Ω supp(µ̂), the FDP
is (R ° s)/R = 1° s/R with probability tending to one. According to Equation (III.27)
and the assumption on s?,

FDP = 1° s
R

∑ 1° s
s?

∑ 1° 1°Æ
1+≤ = Æ+≤

1+≤ ∑Æ+≤,

with probability tending to one. In expectation, and with n tending to inÆnity, we
obtain:

limsup
n!+1

FDR(µ̂) ∑Æ+≤,

and ≤ being arbitrarily close to zero leads to the conclusion. Á
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Titre : Apprentissage statistique pour la détection de données aberrantes et application en santé
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Résumé : Le problème de la détection de données

aberrantes et celui de régression robuste dans un

contexte de grande dimension est fondamental en

statistiques et a de nombreuses applications. Dans

la lignée de récents travaux proposant de traiter

conjointement ces deux problèmes de régression et

de détection, nous considérons dans la première

partie de ce travail un modèle linéaire gaussien en

grande dimension avec ajout d’un paramètre indivi-

duel pour chaque observation. Nous proposons une

nouvelle procédure pour simultanément estimer les

coefficients de la régression linéaire et les paramètres

individuels, en utilisant deux pénalités différentes

basées toutes les deux sur une pénalisation convexe

`1 ordonnée, nommée SLOPE. Nous faisons l’ana-

lyse théorique de ce problème: nous obtenons dans

un premier temps une borne supérieure pour l’erreur

d’estimation à la fois pour le vecteur des paramètres

individuels et pour le vecteur des coefficients de

régression. Puis nous obtenons un résultat asympto-

tique sur le contrôle du taux de fausse découverte et

sur la puissance concernant la détection du support

du vecteur des paramètres individuels. Nous compa-

rons numériquement notre procédure avec les alter-

natives les plus récentes, à la fois sur des données

simulées et sur des données réelles.

La seconde partie de ce travail est motivée par un

problème issu de la génétique. Des séquences parti-

culières d’ADN, appelées multi-satellites, sont des in-

dicateurs du développement d’un type de cancer co-

lorectal. Le but est de trouver parmi ces séquences

celles qui ont un taux de mutation bien plus élevé

(resp. bien moindre) qu’attendu selon les biologistes.

Ce problème mène à une modélisation probabiliste

non-linéaire et n’entre ainsi pas dans le cadre abordé

dans la première partie de cette thèse. Nous traitons

ainsi dans cette partie le cas de modèles linéaires

généralisés, avec de nouveau des paramètres indivi-

duels en plus du prédicteur linéaire, et analysons les

propriétés statistiques d’une nouvelle procédure esti-

mant simultanément les coefficients de régression et

les paramètres individuels. Nous utilisons de nouveau

la pénalisation SLOPE mais nous nous restreignons

au cas de la petite dimension. La performance de l’es-

timateur est mesuré comme dans la première partie

en terme d’erreur d’estimation des paramètres et de

taux de fausse découverte concernant la recherche

du support du vecteur des paramètres individuels.
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Abstract : The problems of outliers detection and ro-

bust regression in a high-dimensional setting are fun-

damental in statistics, and have numerous applica-

tions. Following a recent set of works providing me-

thods for simultaneous robust regression and out-

liers detection, we consider in a first part a model

of linear regression with individual intercepts, in a

high-dimensional setting. We introduce a new proce-

dure for simultaneous estimation of the linear regres-

sion coefficients and intercepts, using two dedicated

sorted-`1 convex penalizations, also called SLOPE.

We develop a complete theory for this problem: first,

we provide sharp upper bounds on the statistical es-

timation error of both the vector of individual inter-

cepts and regression coefficients. Second, we give an

asymptotic control on the False Discovery Rate (FDR)

and statistical power for support selection of the indivi-

dual intercepts. Numerical illustrations, with a compa-

rison to recent alternative approaches, are provided

on both simulated and several real-world datasets.

Our second part is motivated by a genetic problem.

Among some particular DNA sequences called multi-
satellites, which are indicators of the development

or colorectal cancer tumors, we want to find the se-

quences that have a much higher (resp. much lower)

rate of mutation than expected by biologist experts.

This problem leads to a non-linear probabilistic mo-

del and thus goes beyond the scope of the first part.

In this second part we thus consider some generali-

zed linear models with individual intercepts added to

the linear predictor, and explore the statistical proper-

ties of a new procedure for simultaneous estimation of

the regression coefficients and intercepts, using again

the sorted-`1 penalization. We focus in this part only

on the low-dimensional case and are again interested

in the performance of our procedure in terms of sta-

tistical estimation error and FDR.
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