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Tomorrow soon turns into yesterday.
Everything we see just fades away.

There’s sky and sand where mountains used to be.
Time drops by a second to eternity.

It doesn’t matter if we turn to dust;
Turn and turn and turn we must!

I guess I’ll see you dancin’ in the ruins tonight!

Dancin’ in the Ruins, Blue Öyster Cult





Acknowledgements

The preparation of this thesis was a long and exciting journey. This journey, which
would not have been possible without the help of many great people, was marked by
the meeting of many others. The following few words are an attempt to thank them
for their time, help and support.

I would like to start by expressing my deepest gratitude to my supervising team.
I thank Cristina Stoica Maniu and Cristina Vlad for their kindness, their trust, since
even before the beginning of my thesis, their insightful advice, their constant support
of my work, and for always encouraging me in moments when I needed it. Thanks
to them, I was also able to participate in many other academic and administrative
activities that reinforced the idea that I wanted to continue working in academia.
I also thank Professor Youmin Zhang for his constant support of my work and his
precious advice to further it, both on theoretical and practical aspects, as well as for
welcoming me in his lab in Montréal to start working on the real-time implementation
of the algorithms presented in this thesis. To be able to work under their guidance
has been a great privilege and no words could ever express how thankful I am for all
the work they have done to help me. I look forward to working with them again.

I am also grateful to the members of my thesis committee. I would like to
thank Pedro Castillo, Chargé de Recherches CNRS at Université Technologique
de Compiègne, and Nicolas Langlois, Professor at ESIGELEC, for accepting to
review my manuscript. I also thank Mirko Fiacchini, Chargé de Recherches CNRS at
GIPSA-lab, and Didier Theilliol, Professor at Université de Lorraine, for accepting
to be part of my committee and Saïd Mammar, Professor at Université d’Évry
Val-d’Essonne, for presiding it. The questions and remarks they had during the
reviewing phase and the defense are a valuable contribution to further the work
presented in this thesis.

It has been an honor being able to work with José Maestre and Eduardo Camacho
at Universidad de Sevilla. I thank them both for welcoming me in their team, for
their kindness and for the time they took to discuss new ideas and improvements of
my work. Their scientific insight and excellence has been of the greatest importance
to help me see the relevance and potential of my work. I really hope we will be able
to continue our collaboration in the future.

A special acknowledgment has to go to Alain Théron, Professor of Industrial
Sciences at Lycée Pierre de Fermat in Toulouse, who, with his classes, convinced me
that Automatic control was what I wanted to work with when he “brought us to the
Dark Side of the Force” by introducing the Laplace transform.

This feeling became even stronger during the seven years I spent at Centrale-
Supélec (which was still Supélec when I entered the school in 2013). For that, I thank
all the members of the Automatic Control Department of the school, Didier Dumur,

v



vi

Emmanuel Godoy, Gilles Duc, Dominique Beauvois, Guillaume Sandou, Sorin Olaru,
Pedro Rodriguez, Stéphane Font, Maria Makarov, Houria Siguerdidjane, Giorgio
Valmorbida, Sihem Tebbani, Antoine Chaillet and, of course, my two supervisors
Cristina Stoica Maniu and Cristina Vlad, for the high quality teaching and super-
vision they provide to engineering students and that I could receive myself. I also
thank them for the many teaching opportunities that were given to me as a teaching
assistant for the Automatic course, for all the lunch break tarot games and for all
the discussions, scientific or not, that we had. I would also like to extend my thanks
to Israel Hinostroza, researcher at the SONDRA laboratory, for his support during
the supervision, with Maria Makarov and Cristina Stoica Maniu, of my graduation
project, a project that launched me into the world of research with my first scientific
publication. Finally, I would like to thank Léon Marquet and Caroline Charles for
their prompt and excellent technical support in all circumstances and for all the
discussions we had about electronics and informatics.

I am grateful to the Laboratoire des Signaux et Systèmes and its LIA on In-
formation, Learning and Control for the funding of my stay in Professor Zhang’s
laboratory in Montréal. I would also like to thank the STIC Doctoral School for the
international mobility grant that allowed me to go to work in Seville.

This doctoral journey would not have been possible without the support of my
friends. I would like to thank all my friends from Supélec who were there to support
me during the last three years, and mainly Gwendoline, Mony, Thomas and Yaël for
the board game afternoons that we had, as well as Matthias and Marine, that I have
not seen as much as I would have liked. I also have to thank Brice, one of the best
friend I had through our time in prépa, Supélec and beyond, who has always been
there to help and encourage me when I needed it. This journey also allowed me to
meet many companions who made the trip more pleasant with all the discussions, the
lunch break Mölkky and tarot games or the board games and theater evenings that
we had. I would then like to thank Vincent for our never ending discussions on any
trivial subject that arose, Maxime for our philosophical debates on Automatic control
and research in general, Gauthier for all our discussions on music and drones, Dory
for all the work and jokes we did together and his deadly aim at Mölkky, Geoffray
and Martin for their encyclopedic knowledge of history and philosophy, Dario for his
unconditional defense of Genoa, Joy for her constant and communicative good mood
and positivity, Matthieu for his unfortunately unsuccessful attempts to keep us in a
righteous path, Fetra for his calm and serenity, Kodjo for his exuberance and the
debates only he is able to provoke, Antonello for his attempts to channel Vincent,
Andreea for her kindness, Nicolò for his craziness, as well as the others, Jérémy, Ugo,
Baptiste, Jean, Mert, Daniel, Benjamin and Merouane, with whom I spent less time
but were always there to participate in any of the discussions, debates or activities
that I mentioned.

Last but not least, my thanks and love go to my family, my mother, my father,
my sister, my stepfather and my grandparents who have always been there to advise
and support me in my decisions.



Table of Contents

List of Figures xi

List of Definitions xv

List of Assumptions xvii

List of Acronyms xix

List of Symbols xxi

Résumé en français xxv
Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

Qu’est-ce qu’un système multi-agents ? . . . . . . . . . . . . . . . . xxv
Aperçu des stratégies de commande des systèmes multi-agents . . . xxvii
Commande pour le déploiement . . . . . . . . . . . . . . . . . . . . xxix

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx
Déploiement dans le cas nominal . . . . . . . . . . . . . . . . . . . xxx
Déploiement sous perturbations déterministes bornées . . . . . . . . xxxi
Déploiement sous perturbations stochastiques non bornées . . . . . xxxi
Reconfiguration dans le cas d’un système multi-véhicules variant dans

le temps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii

Chapter 1 Introduction 1
1.1 Context and motivations . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What is a multi-agent system? . . . . . . . . . . . . . . . . 1
1.1.2 An overview of multi-agent system control strategies . . . . 3

1.1.2.1 Communication topologies . . . . . . . . . . . . . 3
1.1.2.2 Classification of the approaches for MAS control . 6

1.1.3 Deployment control . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.4 Main motivations and thesis orientation: Model Predictive

Control for the deployment of multi-vehicle systems . . . . . 12
1.2 Contributions of the thesis . . . . . . . . . . . . . . . . . . . . . . . 13

1.2.1 Deployment in the nominal case . . . . . . . . . . . . . . . . 13
1.2.2 Deployment under bounded deterministic perturbations . . 14
1.2.3 Deployment under unbounded stochastic perturbations . . . 14
1.2.4 Reconfiguration in the case of a time-varying multi-vehicle

system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.2.5 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

vii



viii Table of Contents

1.3 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

Chapter 2 Mathematical tools and set-theoretic elements 19
2.1 Definitions and useful properties of matrices . . . . . . . . . . . . . 19
2.2 Set-theoretic elements for control . . . . . . . . . . . . . . . . . . . 22

2.2.1 Ellipsoidal sets . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Polyhedral sets . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.3 Set operations . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.2.4 Sets in control theory . . . . . . . . . . . . . . . . . . . . . 34

2.3 Multi-vehicle system description . . . . . . . . . . . . . . . . . . . . 38
2.4 Voronoi tessellation and formation configuration . . . . . . . . . . . 41

2.4.1 Conventional Voronoi tessellation . . . . . . . . . . . . . . . 41
2.4.2 Generalized Voronoi tessellations . . . . . . . . . . . . . . . 44

2.4.2.1 Box-based guaranteed Voronoi tessellation . . . . . 44
2.4.2.2 Pseudo-Voronoi tessellation . . . . . . . . . . . . . 50

2.4.3 Chebyshev configuration of a multi-vehicle system . . . . . . 53
2.5 Continuous random variables and stochastic processes . . . . . . . . 56
2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Chapter 3 Decentralized control for the deployment of a multi-
vehicle system 61

3.1 Overview of the existing deployment algorithms in the nominal case 61
3.2 Problem formulation and first results . . . . . . . . . . . . . . . . . 64

3.2.1 Centralized MPC approach . . . . . . . . . . . . . . . . . . 64
3.2.2 Decentralized algorithm . . . . . . . . . . . . . . . . . . . . 68
3.2.3 Discussion on the convergence of the decentralized algorithm 69
3.2.4 Deployment results in the case of single integrator dynamics 74

3.3 Deployment of a quadrotor UAV fleet . . . . . . . . . . . . . . . . . 78
3.3.1 Agent model . . . . . . . . . . . . . . . . . . . . . . . . . . 78

3.3.1.1 Continuous-time nonlinear dynamics . . . . . . . . 78
3.3.1.2 Discrete-time linear dynamics . . . . . . . . . . . . 80

3.3.2 Global control strategy . . . . . . . . . . . . . . . . . . . . . 81
3.3.2.1 Overall architecture . . . . . . . . . . . . . . . . . 81
3.3.2.2 Inner-loop control . . . . . . . . . . . . . . . . . . 83
3.3.2.3 Outer-loop control . . . . . . . . . . . . . . . . . . 85

3.3.3 Deployment results . . . . . . . . . . . . . . . . . . . . . . . 87
3.4 Discussion on the stability of the deployment of UAVs . . . . . . . 92
3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

Chapter 4 Deployment of a multi-vehicle system subject to pertur-
bations 95

4.1 Bounded perturbations . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 96
4.1.2 Overview of robust tube-based MPC for systems with bounded

perturbations . . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.1.3 Deployment algorithm . . . . . . . . . . . . . . . . . . . . . 99

4.1.3.1 Deployment objective in the perturbed case . . . . 99
4.1.3.2 Optimization problem for the tube-based MPC . . 100
4.1.3.3 Tube envelope . . . . . . . . . . . . . . . . . . . . 101



Table of Contents ix

4.1.4 Proposed deployment results for MAS with bounded pertur-
bations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
4.1.4.1 Single integrator dynamics . . . . . . . . . . . . . 107
4.1.4.2 UAV dynamics . . . . . . . . . . . . . . . . . . . . 113

4.2 Unbounded stochastic perturbations . . . . . . . . . . . . . . . . . 119
4.2.1 System model . . . . . . . . . . . . . . . . . . . . . . . . . . 120
4.2.2 Overview of chance-constrained MPC for systems with stochas-

tic perturbations . . . . . . . . . . . . . . . . . . . . . . . . 123
4.2.3 Deployment algorithm . . . . . . . . . . . . . . . . . . . . . 124

4.2.3.1 Deployment objective and chance-constrained opti-
mization problem . . . . . . . . . . . . . . . . . . 124

4.2.3.2 Relaxation of the probabilistic constraints into alge-
braic constraints . . . . . . . . . . . . . . . . . . . 128

4.2.4 Proposed deployment results for MAS with stochastic pertur-
bations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
4.2.4.1 Single integrator dynamics . . . . . . . . . . . . . 135
4.2.4.2 UAV dynamics . . . . . . . . . . . . . . . . . . . . 140

4.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

Chapter 5 Extension to the deployment of a time-varying multi-
vehicle system 147

5.1 A first approach to reconfiguration . . . . . . . . . . . . . . . . . . 148
5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 150

5.1.2.1 Agent dynamics . . . . . . . . . . . . . . . . . . . 150
5.1.2.2 Incoming agents . . . . . . . . . . . . . . . . . . . 151
5.1.2.3 Outgoing agents . . . . . . . . . . . . . . . . . . . 153

5.1.3 Deployment results . . . . . . . . . . . . . . . . . . . . . . . 159
5.1.3.1 Incoming agents . . . . . . . . . . . . . . . . . . . 159
5.1.3.2 Outgoing agents . . . . . . . . . . . . . . . . . . . 162

5.2 A safer way to deal with outgoing vehicles . . . . . . . . . . . . . . 165
5.2.1 Limitation of the first reconfiguration algorithm . . . . . . . 165
5.2.2 Improved reconfiguration algorithm . . . . . . . . . . . . . . 169

5.2.2.1 A new transient objective . . . . . . . . . . . . . . 169
5.2.2.2 A new reconfiguration algorithm . . . . . . . . . . 174

5.3 Reconfiguration in the case of outgoing agents . . . . . . . . . . . . 178
5.3.1 Comparison of the two algorithms in the case of one outgoing

agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.3.2 Reconfiguration in the case of multiple outgoing agents . . . 181

5.3.2.1 Reconfiguration for single integrator dynamics . . 181
5.3.2.2 Reconfiguration for UAV dynamics . . . . . . . . . 187

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Chapter 6 Concluding remarks and future work 193
6.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
6.2 Future directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195

Bibliography 197





List of Figures

Chapter 1 Introduction
Figure 1.1: Centralized control architecture . . . . . . . . . . . . . . . . 4
Figure 1.2: Decentralized control architecture . . . . . . . . . . . . . . . 5
Figure 1.3: Distributed control architecture . . . . . . . . . . . . . . . . 6
Figure 1.4: Voronoi tessellation of a square for 5 generators with the

Euclidean norm (a) and the Manhattan norm (b). . . . . . . 10
Figure 1.5: Illustration of Lloyd’s algorithm at initialization, after the first

iteration and after the last iteration. . . . . . . . . . . . . . 11

Chapter 2 Mathematical tools and set-theoretic elements
Figure 2.1: An example of ellipsoidal set in R2. . . . . . . . . . . . . . . 24
Figure 2.2: An example of polyhedral set in R2. . . . . . . . . . . . . . . 26
Figure 2.3: An example of polytopic set in R2. . . . . . . . . . . . . . . 26
Figure 2.4: Equivalence between V-representation and H-representation

for a polytope in R2. . . . . . . . . . . . . . . . . . . . . . . 28
Figure 2.5: Intersection of two polytopes in R2. . . . . . . . . . . . . . . 30
Figure 2.6: Minkowski sum of two polytopes in R2. . . . . . . . . . . . . 32
Figure 2.7: Pontryagin difference of two polytopes in R2. . . . . . . . . . 33
Figure 2.8: Different scalings of a polytope in R2. . . . . . . . . . . . . . 34
Figure 2.9: Comparison of two approximations of the mRPI set of a system

in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 2.10: Construction of the Voronoi cell V3. . . . . . . . . . . . . . . 43
Figure 2.11: An example of Voronoi tessellation in R2. . . . . . . . . . . . 43
Figure 2.12: Maximum distance of a point to a box in R2. . . . . . . . . 45
Figure 2.13: Minimum distance of a point to a box in R2. . . . . . . . . . 46
Figure 2.14: Example of guaranteed Voronoi cell border generated by two

sets in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Figure 2.15: Box-based guaranteed Voronoi cell borders generated by two

rectangles in R2. . . . . . . . . . . . . . . . . . . . . . . . . 49
Figure 2.16: Linear approximation of a guaranteed cell border generated

by two sets in R2. . . . . . . . . . . . . . . . . . . . . . . . . 50
Figure 2.17: Box-based guaranteed Voronoi tessellation of five generator

sets in R2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Figure 2.18: An example of Delaunay triangulation in R2. . . . . . . . . . 52
Figure 2.19: An example of pseudo-Voronoi tessellation in R2. . . . . . . 53
Figure 2.20: Chebyshev center and Chebyshev ball of a polytope in R2. . 55
Figure 2.21: An example of Chebyshev configuration for 5 agents in a

classical Voronoi tessellation in R2. . . . . . . . . . . . . . . 56

xi



xii List of Figures

Chapter 3 Decentralized control for the deployment of a multi-
vehicle system

Figure 3.1: Initial position of the agents of Σ in X . . . . . . . . . . . . . 75
Figure 3.2: Configuration of Σ at different time instants. . . . . . . . . . 76
Figure 3.3: Trajectories of the agents of Σ and their associated Chebyshev

centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
Figure 3.4: Distance of each agent of Σ to its Chebyshev center over time. 78
Figure 3.5: Schematic representation of a quadrotor UAV. . . . . . . . . 79
Figure 3.6: Overall control architecture for a quadrotor UAV. . . . . . . 82
Figure 3.7: Structure of the position controller for a quadrotor UAV. . . 86
Figure 3.8: Initial position of the agents of Σ in Y . . . . . . . . . . . . . 88
Figure 3.9: Configuration of Σ at different time instants. . . . . . . . . . 89
Figure 3.10: Trajectories of the agents of Σ and their associated Chebyshev

centers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Figure 3.11: Distance of each agent of Σ to its Chebyshev center over time. 91
Figure 3.12: Norm of the error between the measured position and the

observed position of all agents of Σ. . . . . . . . . . . . . . . 91

Chapter 4 Deployment of a multi-vehicle system subject to pertur-
bations

Figure 4.1: Invariant sets for the tube-based MPC controller in the single
integrator dynamics case. . . . . . . . . . . . . . . . . . . . 108

Figure 4.2: Initial position of the MVS Σ in the output space. . . . . . . 109
Figure 4.3: Final position of the MVS Σ in the output space at t = 50 s. 110
Figure 4.4: Nominal trajectories of the agents of Σ and their associated

Chebyshev centers. . . . . . . . . . . . . . . . . . . . . . . . 111
Figure 4.5: Distance of the nominal position of each agent of Σ to its

Chebyshev center over time. . . . . . . . . . . . . . . . . . . 111
Figure 4.6: Norm of the estimation error of each agent of Σ. . . . . . . . 112
Figure 4.7: Norm of the deviation error of each agent of Σ. . . . . . . . 112
Figure 4.8: Invariant sets for the tube-based MPC controller in the UAV

case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
Figure 4.9: Structure of the position controller for a quadrotor UAV sub-

ject to perturbations. . . . . . . . . . . . . . . . . . . . . . . 115
Figure 4.10: Initial position of the MVS Σ in the output space. . . . . . . 116
Figure 4.11: Position of the MVS Σ in the output space at t = 1 s. . . . . 117
Figure 4.12: Final position of the MVS Σ in the output space at t = 50 s. 118
Figure 4.13: Distance of the nominal position of each agent of Σ to its

Chebyshev center over time. . . . . . . . . . . . . . . . . . . 118
Figure 4.14: Norm of the estimation error of each agent of Σ. . . . . . . . 119
Figure 4.15: Norm of the deviation error of each agent of Σ. . . . . . . . 119
Figure 4.16: Initial position of the MVS Σ in the output space. . . . . . . 137
Figure 4.17: Final position of the MVS Σ in the output space. . . . . . . 137
Figure 4.18: Distance of the estimated position of each agent of Σ to its

Chebyshev center over time. . . . . . . . . . . . . . . . . . . 138
Figure 4.19: Norm of the estimation error for each agent of Σ. . . . . . . 138
Figure 4.20: Structure of the position controller for a quadrotor UAV sub-

ject to perturbations. . . . . . . . . . . . . . . . . . . . . . . 142
Figure 4.21: Initial position of the MVS Σ in the output space. . . . . . . 142



List of Figures xiii

Figure 4.22: Final position of the MVS Σ in the output space. . . . . . . 143
Figure 4.23: Distance of the estimated position of each agent of Σ to its

Chebyshev center over time. . . . . . . . . . . . . . . . . . . 144
Figure 4.24: Norm of the estimation error for each agent of Σ. . . . . . . 144

Chapter 5 Extension to the deployment of a time-varying multi-
vehicle system

Figure 5.1: Example of construction of a neighbors’ barycenter for MAS
reconfiguration when one agent leaves the workspace. . . . . 158

Figure 5.2: Trajectories of the agents of Σ, the agents joining Σ and their
associated objectives. . . . . . . . . . . . . . . . . . . . . . . 161

Figure 5.3: Distance of each agent of Σ to its Chebyshev center over time. 162
Figure 5.4: Trajectories of the agents of Σ during the first phase of the

deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
Figure 5.5: Trajectories of the agents of Σ and agent 7 during the recon-

figuration phase of the deployment. . . . . . . . . . . . . . . 164
Figure 5.6: Trajectories of the agents of Σ during the third phase of the

deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Figure 5.7: Distance of each agent of Σ to its Chebyshev center or neigh-

bors’ barycenter over time. . . . . . . . . . . . . . . . . . . . 166
Figure 5.8: Distance of agent 7 to its objective over time. . . . . . . . . 166
Figure 5.9: Limit case of the barycentric approach for the MAS reconfigu-

ration when several agents leave the workspace. . . . . . . . 168
Figure 5.10: Construction of the contracted working regions. . . . . . . . 171
Figure 5.11: Attribution of weights to the neighbors of the agents of the

MAS Σ. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
Figure 5.12: Construction of the sets Oi(k) for the agents of the MAS Σ. 176
Figure 5.13: Position of the MAS Σ and of agent 7 at time t = 5.2 s. . . . 178
Figure 5.14: Construction of the safe objective of agent 6 at t = 5.2 s. . . 179
Figure 5.15: Position of the MAS Σ and of agent 7 at time t = 6.8 s. . . . 180
Figure 5.16: Distance of each agent of Σ to its Chebyshev center or safe

objective over time. . . . . . . . . . . . . . . . . . . . . . . . 181
Figure 5.17: Trajectories of the agents of Σ during the first phase of the

deployment. . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Figure 5.18: Construction of the safe objective of agent 2 at t = 4 s. . . . 183
Figure 5.19: Construction of the safe objectives of agents 2 and 5 at t = 5.2 s. 184
Figure 5.20: Final configuration of the MAS Σ at t = 40 s. . . . . . . . . 185
Figure 5.21: Distance of each agent of Σ to its Chebyshev center or safe

objective over time. . . . . . . . . . . . . . . . . . . . . . . . 186
Figure 5.22: Distance of the agents leaving Σ to their objectives over time. 186
Figure 5.23: Initial configuration of the MAS Σ at t = 0 s. . . . . . . . . . 188
Figure 5.24: Configuration of the MAS Σ at t = 5.4 s. . . . . . . . . . . . 189
Figure 5.25: Final configuration of the MAS Σ at t = 40 s. . . . . . . . . 190
Figure 5.26: Distance of each agent of Σ to its Chebyshev center or safe

objective over time. . . . . . . . . . . . . . . . . . . . . . . . 190
Figure 5.27: Norm of the difference between the estimation position and

the real position of each agent of Σ over time. . . . . . . . . 191





List of Definitions

Résumé en français
Définition Fr.1: Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Définition Fr.2: Système multi-agents . . . . . . . . . . . . . . . . . . . . xxvi

Chapter 1 Introduction
Definition 1.1: Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
Definition 1.2: Multi-agent system . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Mathematical tools and set-theoretic elements
Definition 2.1: Positive definite matrix . . . . . . . . . . . . . . . . . . . 19
Definition 2.2: Weighted quadratic norm . . . . . . . . . . . . . . . . . . 20
Definition 2.3: Linear Matrix Inequality . . . . . . . . . . . . . . . . . . 20
Definition 2.4: Bilinear Matrix Inequality . . . . . . . . . . . . . . . . . 21
Definition 2.5: Convex set . . . . . . . . . . . . . . . . . . . . . . . . . . 23
Definition 2.6: Convex hull . . . . . . . . . . . . . . . . . . . . . . . . . 23
Definition 2.7: Ellipsoidal set . . . . . . . . . . . . . . . . . . . . . . . . 23
Definition 2.8: Normalized ellipsoidal set . . . . . . . . . . . . . . . . . 24
Definition 2.9: Half-space or H-representation . . . . . . . . . . . . . . . 25
Definition 2.10: Polytope . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
Definition 2.11: Vertex or V-representation . . . . . . . . . . . . . . . . . 27
Definition 2.12: Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Definition 2.13: Unitary box . . . . . . . . . . . . . . . . . . . . . . . . . 29
Definition 2.14: Cartesian product of two sets . . . . . . . . . . . . . . . 29
Definition 2.15: Intersection of two sets . . . . . . . . . . . . . . . . . . . 29
Definition 2.16: Translation of a set . . . . . . . . . . . . . . . . . . . . . 31
Definition 2.17: Minkwoski sum of two sets . . . . . . . . . . . . . . . . . 31
Definition 2.18: Pontryagin difference of two sets . . . . . . . . . . . . . . 32
Definition 2.19: Scaling of a set . . . . . . . . . . . . . . . . . . . . . . . 33
Definition 2.20: Positive invariant set . . . . . . . . . . . . . . . . . . . . 35
Definition 2.21: Minimal positive invariant set . . . . . . . . . . . . . . . 35
Definition 2.22: Robustly positive invariant set . . . . . . . . . . . . . . . 35
Definition 2.23: Minimal robustly positive invariant set . . . . . . . . . . 35
Definition 2.24: Controlled invariant set . . . . . . . . . . . . . . . . . . . 35
Definition 2.25: Controlled λ-contractive set . . . . . . . . . . . . . . . . 36
Definition 2.26: Voronoi cell . . . . . . . . . . . . . . . . . . . . . . . . . 41
Definition 2.27: Guaranteed Voronoi cell . . . . . . . . . . . . . . . . . . 44
Definition 2.28: Chebyshev center of a polytope . . . . . . . . . . . . . . 54
Definition 2.29: Chebyshev configuration . . . . . . . . . . . . . . . . . . 55

xv



xvi List of Definitions

Definition 2.30: Probability density function . . . . . . . . . . . . . . . . 57
Definition 2.31: Mathematical expectation . . . . . . . . . . . . . . . . . 57
Definition 2.32: Expectation of a multivariate random variable . . . . . . 57
Definition 2.33: Variance matrix . . . . . . . . . . . . . . . . . . . . . . . 57
Definition 2.34: Covariance of two random variables . . . . . . . . . . . . 58
Definition 2.35: Independence of two random variables . . . . . . . . . . 58
Definition 2.36: Multivariate normal distribution . . . . . . . . . . . . . . 58
Definition 2.37: Normally distributed white noise . . . . . . . . . . . . . 59

Chapter 3 Decentralized control for the deployment of a multi-
vehicle system

Definition 3.1: Generalized controlled λ-contractive set . . . . . . . . . . 70
Definition 3.2: N -step controlled λ-contractiveness . . . . . . . . . . . . 86

Chapter 5 Extension to the deployment of a time-varying multi-
vehicle system

Definition 5.1: Neighbor of an agent . . . . . . . . . . . . . . . . . . . . 155



List of Assumptions

Chapter 2 Mathematical tools and set-theoretic elements
Assumption 2.1: Controllability . . . . . . . . . . . . . . . . . . . . . . 39
Assumption 2.2: Observability . . . . . . . . . . . . . . . . . . . . . . . 39
Assumption 2.3: Output space . . . . . . . . . . . . . . . . . . . . . . . 39
Assumption 2.4: Structure of the state vector . . . . . . . . . . . . . . . 39
Assumption 2.5: Knowledge of environment . . . . . . . . . . . . . . . . 40
Assumption 2.6: Homogeneity . . . . . . . . . . . . . . . . . . . . . . . 40

Chapter 3 Decentralized control for the deployment of a multi-
vehicle system

Assumption 3.1: Workspace . . . . . . . . . . . . . . . . . . . . . . . . . 64
Assumption 3.2: Equilibrium points . . . . . . . . . . . . . . . . . . . . 64
Assumption 3.3: λ-contractiveness of the Voronoi cells . . . . . . . . . . 70
Assumption 3.4: Shape of the input constraints . . . . . . . . . . . . . . 71
Assumption 3.5: Terminal constraint . . . . . . . . . . . . . . . . . . . . 71
Assumption 3.6: Output of the position subsytem . . . . . . . . . . . . 81
Assumption 3.7: Small angles . . . . . . . . . . . . . . . . . . . . . . . . 83
Assumption 3.8: Availability of measurements . . . . . . . . . . . . . . . 85

Chapter 4 Deployment of a multi-vehicle system subject to pertur-
bations

Assumption 4.1: Knowledge of environment in the perturbed case . . . . 99
Assumption 4.2: Process noise matrix . . . . . . . . . . . . . . . . . . . 120
Assumption 4.3: Normally distributed noises . . . . . . . . . . . . . . . 120
Assumption 4.4: Positive definite initialization . . . . . . . . . . . . . . 122
Assumption 4.5: Knowledge of environment under unbounded stochastic

perturbations . . . . . . . . . . . . . . . . . . . . . . . 125
Assumption 4.6: Invariance of the stochastic properties over the prediction

horizon . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Chapter 5 Extension to the deployment of a time-varying multi-
vehicle system

Assumption 5.1: Knowledge of the outgoing agent . . . . . . . . . . . . 155

xvii





List of Acronyms

BMI Bilinear Matrix Inequality

CC Chebyshev configuration
CCMPC Chance Constrained Model Predictive Control

FTC Fault-Tolerant Control
FTFC Fault-Tolerant Formation Control

GV Guaranteed Voronoi
GVC Guaranteed Voronoi Cell

LMI Linear Matrix Inequality
LTI Linear Time Invariant

MAS Multi-Agent System
MPC Model Predictive Control
mPI Minimal Positive Invariant
mRPI Minimal Robust Positive Invariant
MVS Multi-Vehicle System

RPI Robust Positive Invariant

UAV Unmanned Aerial Vehicle
UGV Unmanned Ground Vehicle

ZOH Zero Order Hold

xix





List of Symbols

Sets

N Set of the nonnegative integers

n,m Set of all integers i such that n ≤ i ≤ m, with n,m ∈ N

R, R∗, R+ Set of the real numbers, of the non-zero real numbers and
of the positive real numbers

Rn Set of n-dimensional real vectors

Bn Unitary box in Rn

Bn(α), α ∈ Rn Box in Rn

Rn×m Set of all real n-by-m matrices

{x} Singleton set, i.e. a set which only contains one element
(here vector x)

∅ Empty set

∂A Boundary of set A

A ⊆ B (resp. A ⊂ B) A is a subset (resp. strict subset) of B

A \ B Set difference of A and B, the elements of A that are not
in B

A× B Cartesian product of sets A and B

A ∩ B Intersection of sets A and B

A ∪ B Union of sets A and B

A⊕ B Minkowski sum of sets A and B

A	 B Pontryagin difference of sets A and B

|A| Cardinality of set A, i.e. the number of elements in A

Algebra

a ∈ R A real scalar

x ∈ Rn A real vector of n elements

xxi



xxii List of Symbols

A ∈ Rn×m A real matrix of n rows and m columns

In Identity matrix of size n-by-n

1n×m, 1n Matrices filled with ones of size n-by-m and n-by-n

0n×m, 0n Matrices filled with zeros of size n-by-m and n-by-n

A> Transpose of matrix A

A−1 Inverse of matrix A

A � 0 (resp. A � 0) Matrix A is positive definite (resp. semidefinite)

x > 0 (resp. x ≥ 0) Element-wise positivity (resp. nonnegativity) of vector x

|x|, x ∈ Rn Element-wise absolute value of vector x

‖x‖2 Euclidean norm of vector x such that ‖x‖2 =
√
x>x

‖x‖Q Weighted norm of vector x such that ‖x‖Q =
√
x>Qx

A⊗B Kronecker product of matrices A and B

det(x,y), x,y ∈ R2 Determinant of the matrix
[
x y

]
∈ R2×2

Probabilities

P(X ≤ x) Probability that the continuous random variable X ∈ R is
less than or equal to x ∈ R

P(X ∈ A) Probability that the continuous multivariate random vari-
able X ∈ Rn belongs to the set A ⊂ Rn

E(X) Mathematical expectation of the continuous random vari-
able X ∈ R

µX Mean of the continuous random variable X ∈ R, alternative
notation for E(X)

E(X) Mathematical expectation of the continuous multivariate
random variable X ∈ Rn

µX Mean of the continuous multivariate random variable X ∈
Rn, alternative notation for E(X)

ΣX Variance matrix of the continuous multivariate random
variable X ∈ Rn

Multi-agent system

Σ Multi-agent system

Vi(k) Voronoi cell of agent i at time k

Vgi (k) Guaranteed Voronoi cell of the set Wi at time k



List of Symbols xxiii

∂Vgi j(k) Border of the guaranteed Voronoi cell of the setWi induced
by generator set Wj at time k

Vpi (k) Pseudo-Voronoi cell of agent i at time k

∂Vpi j(k) Border of the pseudo-Voronoi cell of agent i induced by the
generator j at time k

ci(k) Chebyshev center of a set at time k

Robust control

xi State of agent i subject to perturbations

qxi Nominal state of agent i

x̂i Estimated state of agent i

x̃i Estimation error xi − x̂i of agent i

x̆i Deviation error x̂i − qxi of agent i

Sx Approximation of the mRPI set for the dynamics of x





Résumé en français

Sommaire

Contexte . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv
Qu’est-ce qu’un système multi-agents ? . . . . . . . . . . . . . . . . xxv
Aperçu des stratégies de commande des systèmes multi-agents . . . xxvii
Commande pour le déploiement . . . . . . . . . . . . . . . . . . . . xxix

Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxx
Déploiement dans le cas nominal . . . . . . . . . . . . . . . . . . . xxx
Déploiement sous perturbations déterministes bornées . . . . . . . . xxxi
Déploiement sous perturbations stochastiques non bornées . . . . . xxxi
Reconfiguration dans le cas d’un système multi-véhicules variant dans

le temps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxii

Contexte

Qu’est-ce qu’un système multi-agents ?
La notion de système multi-agents trouve ses origines dans le domaine de l’informa-
tique. Aujourd’hui, le concept de système multi-agents est utilisé dans de nombreuses
disciplines. Toutefois, comme présenté par Wooldridge and Jennings (1995), il n’est
pas facile de répondre à la question « qu’est-ce qu’un agent ? » En effet, la notion
d’agent n’a pas de définition transcendant le domaine dans lequel elle est utilisée.
C’est pour cela que Wooldridge (2009) propose, sur la base d’une liste de caractéris-
tiques présentée dans Wooldridge and Jennings (1995), une définition qui sera celle
utilisée tout au long de la présente thèse.

Définition Fr.1 : Agent (Wooldridge, 2009)

Un agent est un système informatique se trouvant dans un environnement donné,
capable de réaliser des actions de façon autonome dans cet environnement afin
d’atteindre l’objectif pour lequel il a été conçu.

La liste de caractéristiques associées à cette définition dans Wooldridge and
Jennings (1995) est :

(i) l’autonomie : agir sans l’intervention d’un opérateur humain ;

(ii) la perception : percevoir les changements dans son environnement par le biais
de capteurs ;

xxv
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(iii) l’interaction : communiquer avec les autres agents présents dans l’environne-
ment ;

(iv) la réactivité : répondre aux changements de son environnement ;

(v) la proactivité : prendre des initiatives afin de remplir sa mission.

Ces caractéristiques sont rendues possibles en pratique du fait des grandes tendances
de la recherche en informatique des soixante dernières années. Ainsi, un système
multi-agents peut être défini comme suit.

Définition Fr.2 : Système multi-agents

Un système multi-agents est un ensemble d’agents possédant les caractéristiques
(i)–(v).

Depuis leur introduction dans les années cinquante, les systèmes multi-agents
ont été utilisés dans de nombreux domaines tels que l’économie (Čech et al., 2013,
Malakhov et al., 2017, Herzog et al., 2017, Han et al., 2017, Gao et al., 2018), la
sociologie (Davidsson, 2002, Li et al., 2008, Serrano and Iglesias, 2016, Ramírez
et al., 2020), la biologie (Couzin et al., 2005, Roche et al., 2008, Ren et al., 2008,
Colosimo, 2018), l’informatique (Ferber and Gutknecht, 1998, DeLoach et al., 2001,
Bellifemine et al., 2007, Calvaresi et al., 2019) ou encore, l’automatique (Hespanha
et al., 2007, Bullo et al., 2009, Dimarogonas et al., 2011, Maestre and Negenborn,
2014). C’est dans le cadre de cette dernière discipline que s’inscrit le travail présenté
dans cette thèse. En effet, dans de nombreuses applications, un système complexe
peut se décomposer en sous-systèmes possédant les caractéristiques (i)–(v) évoquées
précédemment. Chaque sous-système peut alors être appelé agent tandis que le
système complexe est appelé système multi-agents au sens de la Définition Fr.2. La
différence principale avec l’informatique vient du fait que l’évolution de chaque agent
est régie par un système d’équations différentielles (pour un système à temps continu)
ou aux différences (pour un système à temps discret). Les agents sont alors dits
dynamiques. Dans la suite, la dénomination « système multi-agents » est alors utilisée
pour désigner un système composé de plusieurs agents dynamiques en interaction.

Une grande variété de systèmes multi-agents sont étudiés en automatique comme
les smart grids (Logenthiran et al., 2012, Radhakrishnan and Srinivasan, 2016, Singh
et al., 2017) et les microgrids (Dimeas and Hatziargyriou, 2005, Minchala-Avila et al.,
2015), les réseaux de distribution d’eau (Wang et al., 2017, Shahdany et al., 2019),
de circulation (Lin et al., 2012, Chanfreut et al., 2020), de fret (Negenborn et al.,
2008, Larsen et al., 2020) ou de capteurs mobiles (Cortés et al., 2004) ou bien encore
les formations multi-robots et multi-véhicules tant dans leur mouvement général
(D’Andrea and Dullerud, 2003, Wurman et al., 2008, Bullo et al., 2009, Prodan et al.,
2011, Alonso-Mora et al., 2015, Kamel et al., 2020) que pour leur groupement en
pelotons (Ploeg et al., 2013, Turri et al., 2016, Van De Hoef et al., 2017) ou leur
déploiement (Schwager et al., 2011, Nguyen and Stoica Maniu, 2016, Papatheodorou
et al., 2017). Pour toutes ces applications, l’automatique va se concentrer sur l’étude
des interactions entre les agents, ainsi que sur le développement de lois de commande
pour permettre aux agents d’atteindre un but commun.

Toutefois, une telle diversité d’applications mène à différentes voies de recherche
liées aux caractéristiques du système multi-agent étudié. En effet, la définition d’un
système comme celui-ci dispose de plusieurs degrés de liberté comme la nature
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de sa dynamique (linéaire variant dans le temps, par exemple), la nature de la
communication entre les agents ou les contraintes physiques s’appliquant sur le
système. Ainsi, la suite de ce résumé présente quelques exemples de stratégies de
commande liées à certains des critères susmentionnés.

Aperçu des stratégies de commande des systèmes
multi-agents
Afin d’asservir un système multi-agents, il est nécessaire de concevoir un algorithme
de commande fournissant un signal d’entrée à chacun des agents pour atteindre
un objectif commun. Comme cela a été évoqué précédemment, il existe différentes
classes d’algorithmes de commande pour des systèmes multi-agents. De nombreuses
classifications existent sur la base de paramètres divers mais ici sont seulement
présentées des stratégies différenciées en fonction d’abord de la topologie de commu-
nication entre les agents, puis de la façon dont le signal d’entrée est calculé. Cette
différenciation permet de donner un aperçu des techniques de commande existant
pour les systèmes multi-agents.

Topologies de communication

La communication entre les agents est un élément essentiel de la commande des
systèmes multi-agents. À partir de la définition du réseau de communication entre
les agents, les stratégies de commande peuvent être séparées en trois catégories :
les stratégies centralisées, décentralisées et distribuées (Tanenbaum and Van Steen,
2007).

Lorsque la commande est dite centralisée, chaque agent a connaissance de l’état
et du signal de commande des autres agents pour calculer son propre signal d’entrée.
Pour ce faire, un correcteur central collecte les informations utiles relatives à tous
les agents du système et calcule le signal de commande de chaque agent avant de le
lui envoyer. Les algorithmes de commande centralisés ont été abondamment étudiés
au cours des dernières décennies (Xu and Hespanha, 2006, Olfati-Saber et al., 2007,
Prodan et al., 2011, Changuel et al., 2014, Wang et al., 2015, Sujil et al., 2018). Ils
sont efficaces en ce sens que la commande de chaque agent est calculée à partir de la
connaissance du comportement de l’ensemble du système multi-agents. Cependant,
ils sont entièrement dépendants de la robustesse du réseau de communication devant
supporter de nombreux échanges entre les agents et le correcteur central. Le correcteur
doit lui-même être suffisamment puissant pour calculer les signaux de commande
désirés, la complexité du problème pouvant augmenter très rapidement avec le nombre
d’agents composant le système. Du fait des limitations des stratégies centralisées,
des stratégies décentralisées et distribuées ont vu le jour.

Dans le cas d’un algorithme de commande décentralisé, chaque agent calcule son
propre signal de commande à partir de la connaissance de son état et d’informations
partielles sur l’état du système multi-agents obtenues auprès d’une entité centrale
communiquant avec tous les agents. Ces stratégies sont utilisées pour de nombreuses
applications telles que la commande de microgrids (Liu et al., 2014), de smart
grids (Lu et al., 2011, Ayar et al., 2017), le suivi de trajectoire pour des robots
mobiles (Prodan, 2012, Angelini et al., 2018) ou l’évitement de collisions (Verginis
and Dimarogonas, 2019), cette liste n’étant évidemment pas exhaustive. Ce type de
stratégie fournit des lois de commande relativement extensible permettant d’asservir
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de nombreux agents. Toutefois, du fait des échanges limités entre les agents, atteindre
un objectif coopératif se trouve être plus complexe qu’avec une solution centralisée.

Un algorithme de commande distribué est similaire à un algorithme décentralisé
en ce sens que chaque agent calcule son propre signal de commande. Toutefois, un
algorithme distribué verra les agents échanger des informations entre eux, participant
au calcul du signal d’entrée, sans passer par une entité centrale. Une telle stratégie
de commande se trouve à mi-chemin entre une stratégie de commande centralisée
et une stratégie décentralisée. En effet, la charge de travail (en termes de calcul)
de chaque agent se trouve augmentée par rapport à une architecture décentralisée,
mais toujours inférieure à la charge de travail du correcteur central dans le cas
d’une architecture centralisée. De plus, chaque agent dispose de plus d’informations
sur l’état du système multi-agents que dans le cas décentralisé, lui permettant
d’atteindre plus facilement un objectif coopératif. En revanche, il n’a toujours pas
la connaissance complète du système que l’on peut atteindre avec une architecture
centralisée. Enfin, les stratégies décentralisées sont plus robustes que les deux autres
à la perte d’une partie des communications. Plusieurs productions scientifiques de la
dernière décennie proposent un état de l’art des stratégies de commande distribuée
existantes (Scattolini, 2009, Cao et al., 2012, Maestre and Negenborn, 2014, Rossi
et al., 2018).

Mode de calcul du signal de commande

Une autre façon de classifier les méthodes de commande de systèmes multi-agents
se fonde sur le type de problème résolu pour obtenir le signal d’entrée appliqué au
système. Les classes obtenues sont nombreuses et l’objectif ici n’est pas d’en produire
une liste exhaustive mais seulement de présenter quelques grandes catégories utilisées
pour la commande de systèmes multi-agents.

L’une des typologies de méthodes de commande les plus communes pour les
applications multi-agents est le consensus (Olfati-Saber and Murray, 2004, Ren and
Beard, 2008), fondé sur la théorie des graphes. En effet, le réseau de communication
inter-agents peut être vu comme un graphe dont les agents sont les sommets. Le
signal de commande de chaque agent sera alors calculé sur la base des connexions le
reliant au reste du réseau (Sorensen and Ren, 2006, Flores-Palmeros et al., 2019).

En ce qui concerne les problèmes de navigation, une approche trouvée fréquem-
ment dans la littérature (Hagelbäck and Johansson, 2008, Prodan, 2012, Ivić et al.,
2016, Baillard et al., 2018) utilise des champs de potentiel. L’objectif du système
multi-agents sera alors représenté par un potentiel attractif alors que les obstacles
seront représentés par des potentiels répulsifs. Ainsi, les agents se déplaceront en
direction de leur objectif tout en évitant les obstacles.

Pour des applications telles que les réseaux de circulation (Chanfreut et al.,
2020), les réseaux d’irrigation (Fele et al., 2014) ou les systèmes de grande échelle
plus généraux (Fele et al., 2018), la stratégie de commande peut être fondée sur la
théorie des jeux. Dans ce cas, les agents sont des joueurs, soit des entités prenant des
décisions intelligentes et rationnelles, évoluant dans un système de règles régissant
leur comportement (Osborne and Rubinstein, 1994). L’ensemble des règles correspond
alors aux contraintes s’appliquant sur le système et chaque joueur cherche à maximiser
ses gains par les décisions qu’il prend.

Enfin, l’une des classes de stratégies de commande les plus populaires des deux
dernières décennies est fondée sur l’optimisation. Le signal de commande est obtenu en
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résolvant un problème d’optimisation, sous contraintes ou non. Ce type de stratégies
peut prendre plusieurs formes telle que la commande optimale (Ji et al., 2006, Movric
and Lewis, 2013, Yuan et al., 2018), la commande par réseaux de neurones (Hou
et al., 2009, Wen et al., 2016, Yu et al., 2020) ou la commande prédictive qui a
connu un essor considérable au cours des vingt dernières années. La popularité de la
commande prédictive vient de sa capacité à résoudre des problèmes de commande
sous contraintes (Mayne et al., 2000). Les propriétés de cette stratégie de commande
ont été abondamment étudiées et documentées dans la littérature (Maciejowski, 2002,
Camacho and Bordons, 2007, Rawlings and Mayne, 2009, Kouvaritakis and Cannon,
2016) et appliquées dans de nombreuses applications multi-agents (Maestre and
Negenborn, 2014, Olaru et al., 2015). De plus, les stratégies de commande prédictive
classiques présentées par Maciejowski (2002) ou Rawlings and Mayne (2009) ont
été étendues pour traiter des problèmes complexes. Ces extensions ont par exemple
donné naissance à la commande prédictive explicite (Bemporad et al., 2002, Tøndel
et al., 2003) ou à la commande prédictive robuste lorsque le système est soumis à
des perturbations déterministes bornées (Mayne et al., 2005, 2006, Kouvaritakis
and Cannon, 2016) ou à des perturbations stochastiques (Cannon et al., 2010, 2012,
Kouvaritakis and Cannon, 2016).

Commande pour le déploiement
Lorsqu’un système multi-agents sera composé de véhicules autonomes (drones, robots
mobiles, véhicules de surface autonomes, etc.), le système est dit multi-véhicules. Ce
type de système multi-agents est utilisé pour de nombreuses applications telles que
le contrôle de feux de forêt (Merino et al., 2012, Yuan et al., 2019) ou de ressources
(Laliberte and Rango, 2009, Jin and Tang, 2010, d’Oleire Oltmanns et al., 2012),
la cartographie (Nex and Remondino, 2014, Han and Chen, 2014, Torres et al.,
2016) ou la surveillance (Li et al., 2019, Trujillo et al., 2019). Dans la plupart de ces
applications, le système multi-véhicules a pour objectif de maximiser la couverture
d’une zone donnée en étant potentiellement soumis à des contraintes opérationnelles.
Afin d’obtenir une telle couverture, une solution pour le système est de permettre
aux véhicules de se répartir en une configuration fixe rendant possible leur mission
dans l’environnement à l’intérieur duquel ils évoluent (Schwager et al., 2011).

Au cours des deux dernières décennies, plusieurs algorithmes pour le déploiement
autonome d’un système multi-véhicules ont été proposés en se fondant sur des
algorithmes de planification de mouvement (Choset, 2001), à base de champs de
potentiel (Howard et al., 2002) ou à base de partitions de Voronoï (Cortés et al., 2004,
Nguyen, 2016, Hatleskog, 2018). La partition de Voronoï est un objet mathématique
introduit par Dirichlet (1850) et approfondi par Voronoï (1908). Il permet de découper
un espace métrique muni d’une distance en un ensemble de cellules ne se chevauchant
pas et appelées cellules de Voronoï. Les cellules sont générées à partir d’un ensemble
de points de l’espace, appelés germes, et une cellule est obtenue comme la portion
de l’espace se trouvant plus près d’un germe que de tous les autres. La partition de
Voronoï classique est obtenue en utilisant la norme euclidienne comme distance, les
germes étant des points de l’espace de travail, mais d’autres distances (Aurenhammer,
1991) ainsi que des germes non ponctuels (Sugihara, 1993, Choset and Burdick, 1995)
peuvent être utilisés pour générer une partition de Voronoï.

Dans le cas du déploiement d’un système multi-véhicules, à un instant donné, les
germes sont les positions des véhicules. L’objectif du système est alors de se déployer
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en une configuration statique où la position de chaque véhicule est confondue avec
un point remarquable de la cellule de Voronoï dont le véhicule est le germe. L’une des
principales difficultés vient du fait que la partition de Voronoï varie dans le temps,
les germes étant mobiles, et que la configuration finale n’est pas connue a priori.
En se basant sur les travaux de Lloyd (1982), Cortés et al. (2004) proposent un
algorithme de commande optimale décentralisé pour le déploiement d’agents ayant
une dynamique simple intégrateur. Dans ces travaux, les agents cherchent à rejoindre
le centre de masse de leur cellule de Voronoï. Plusieurs algorithmes proposés dans la
littérature (Schwager et al., 2011, Song et al., 2013, Moarref and Rodrigues, 2014)
se fondent également sur une configuration où les agents reposent sur le centre de
masse de leur cellule de Voronoï. Toutefois, ces dernières années, des travaux se
fondant sur un autre point remarquable de la cellule, le centre de Tchebychev, ont
émergé (Nguyen, 2016, Hatleskog, 2018). L’avantage du centre de Tchebychev est
qu’il est en général plus simple à obtenir que le centre de masse puisqu’il est solution
d’un problème d’optimisation linéaire, là où le centre de masse est obtenu comme
un rapport d’intégrales de surface ou de volume. Enfin, Papatheodorou et al. (2016,
2017), Tzes et al. (2018) et Turanli and Temeltas (2020) étudient des algorithmes pour
le déploiement de systèmes multi-véhicules lorsque la position de chaque véhicule est
incertaine.

Contributions
Sur la base de ce qui a été introduit plus haut, la présente thèse propose différents
algorithmes de commande prédictive décentralisés pour le déploiement d’un système
multi-agents dans une zone convexe et bornée du plan. Ces algorithmes se basent sur
une partition de Voronoï de la zone à couvrir et utilisent le centre de Tchebychev de
ces cellules comme objectif de déploiement pour les agents. Les paragraphes ci-dessous
détaillent les contributions de la thèse pour chacun des algorithmes proposés.

Déploiement dans le cas nominal
Nguyen (2016) introduit un correcteur prédictif décentralisé pour le déploiement
d’un système multi-agents dans une zone convexe et bornée du plan dans le cas
nominal (c’est-à-dire lorsque les agents ne sont sujet à aucun défaut, incertitude ou
perturbation) avec lequel chaque agent est conduit vers le centre de Tchebychev de sa
cellule de Voronoï. Hatleskog (2018), quant à lui, donne une preuve de convergence
d’un algorithme de déploiement similaire pour des agents obéissant à une dynamique
simple intégrateur, les agents étant asservis par un correcteur par retour d’état sans
contraintes.

Suite à ces travaux, la présente thèse propose un correcteur prédictif centralisé
à base de cellules de Voronoï pour le déploiement d’un système multi-agents dans
une zone convexe et bornée du plan, chaque agent se dirigeant vers le centre de
Tchebychev de sa cellule. Après avoir formulé le pendant décentralisé de l’algorithme
de déploiement susmentionné, une preuve de faisabilité du problème d’optimisation
utilisé par le correcteur prédictif dans le cas où les agents obéissent à une dynamique
simple intégrateur est détaillée. La preuve de faisabilité mène à une discussion sur la
convergence de l’algorithme de déploiement décentralisé. Pour montrer l’efficacité
dudit algorithme, le correcteur prédictif est utilisé comme correcteur de position pour
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une flotte de drones quadrirotors, pour lesquels un modèle d’évolution non linéaire
est utilisé. Des pistes pour la preuve de convergence de l’algorithme de déploiement
pour une flotte de drones quadrirotors sont ensuite introduites.

Ces contributions ont mené à la publication des articles Chevet et al. (2018) et
Chevet et al. (2020b).

Déploiement sous perturbations déterministes bornées
Papatheodorou et al. (2016) et Papatheodorou et al. (2017) étudient le déploiement
d’un système où les agents sont soumis à une incertitude bornée sur la mesure de
position. Ces travaux se fondent sur la définition d’une partition de Voronoï garantie
à base d’ellipsoïdes pour laquelle les germes ne sont plus des points mais des disques.

Dans la même idée, la présente thèse introduit une nouvelle partition de Voronoï
garantie à base de boîtes où les germes de la partition de Voronoï ne sont plus
des points mais des boîtes (ou des rectangles lorsque l’espace est ramené au plan).
Une telle partition garantie est utilisée dans le cas où les agents sont soumis à des
perturbations bornées sur leur mesure de position.

Pour traiter le cas de perturbations déterministes bornées agissant sur un système,
une stratégie de commande prédictive à base de tubes (Mayne et al., 2005) peut être
utilisée. L’idée régissant un tel algorithme de commande est la séparation du signal
d’entrée appliqué au système en deux parties : l’une obtenue par résolution d’un
problème d’optimisation sur la dynamique nominale et l’autre par multiplication
de l’écart entre l’état réel et l’état nominal du système par un gain matriciel. Il est
alors garanti que l’état du système appartient à un ensemble, positivement invariant
de manière robuste pour la dynamique de l’écart évoqué précédemment, centré sur
l’état nominal du système. Alvarado (2007) propose un problème d’optimisation sous
contraintes d’inégalités matricielles linéaires pour obtenir la matrice de gain utilisée
pour un correcteur prédictif à base de tubes classique (Mayne et al., 2005).

Ainsi, la présente thèse propose un correcteur prédictif décentralisé à base de tubes
avec observateur pour le déploiement d’un système où les agents sont soumis à des
perturbations d’entrée et de sortie déterministes et bornées. Une nouvelle procédure
d’optimisation sous contraintes d’inégalités matricielles linéaires/bilinéaires est conçue
pour obtenir les gains matriciels du retour d’état et de l’observateur nécessaires
pour la stratégie de commande à base de tubes avec observateur. Cette procédure
minimise la taille des ensembles positivement invariants de manière robuste pour
les dynamiques d’erreur auxquels l’état du système appartient. Cela permet de
laisser suffisamment de degrés de liberté au correcteur prédictif pour optimiser
la performance du système. L’algorithme de déploiement décentralisé est ensuite
appliqué, dans un premier temps, à un système composé d’agents obéissant à une
dynamique simple intégrateur, puis pour la commande en position d’une flotte de
drones quadrirotors.

Ces contributions ont mené à la publication de l’article Chevet et al. (2019).

Déploiement sous perturbations stochastiques non bornées
Lorsqu’un système est soumis à des perturbations stochastiques, bornées ou non, des
contraintes probabilistes apparaissent dans le problème d’optimisation résolu par
le correcteur prédictif. Gavilan et al. (2012) proposent un correcteur prédictif sous
contraintes probabilistes pour un système pour lequel les contraintes doivent être
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satisfaites avec une probabilité égale à 1. À partir des propriétés stochastiques de la
perturbation, Gavilan et al. (2012) introduisent une méthode pour transformer les
contraintes probabilistes en contraintes algébriques.

Ainsi, la présente thèse introduit un nouveau correcteur prédictif décentralisé
sous contraintes probabilistes avec observateur pour le déploiement d’un système
où les agents sont soumis à des perturbations d’entrée et de sortie stochastiques et
non bornées. Toutefois, la perturbation stochastique, dont l’évolution est inconnue
sur l’horizon de prédiction, apparaît dans les contraintes du correcteur prédictif. Ces
contraintes doivent être respectées avec une probabilité égale à 1. Une procédure pour
transformer ces contraintes probabilistes en contraintes algébriques, pour pouvoir
résoudre le problème d’optimisation du correcteur, est conçue, accompagnée d’une
preuve de faisabilité. Cette procédure se fonde sur les propriétés stochastiques des
signaux de perturbation et cherche à trouver une borne permettant aux contraintes
d’être respectées pour presque toutes les perturbations agissant sur le système.
L’algorithme de déploiement décentralisé est ensuite appliqué, dans un premier
temps, à un système composé d’agents obéissant à une dynamique simple intégrateur,
puis, pour la commande en position d’une flotte de drones quadrirotors.

Ces contributions ont mené à la publication de l’article Chevet et al. (2020a).

Reconfiguration dans le cas d’un système multi-véhicules
variant dans le temps
Une autre contribution de cette thèse porte sur la reconfiguration d’un système
multi-agents se déployant pendant que des agents rejoignent ou quittent la zone de
déploiement. Ce problème se rapproche du domaine de la commande de formation
tolérante aux défauts étant donné que, bien souvent, les agents devant quitter la
zone de déploiement le font parce qu’ils sont défectueux.

Dans le cas d’agents rejoignant la zone de déploiement, l’algorithme proposé dans
cette thèse est une extension naturelle de l’algorithme de déploiement dans le cas
nominal. En effet, cet algorithme étant décentralisé, il est aisément extensible et
permet, par construction, d’ajouter de nouveaux agents à l’objectif de déploiement.

Dans le cas d’agents quittant la zone de déploiement, la présente thèse introduit
deux nouvelles stratégies se fondant sur un objectif transitoire, différent du centre
de Tchebychev de la cellule de Voronoï, pour les agents restant dans la zone de
déploiement, leur permettant d’éviter la trajectoire des agents quittant la zone. Dans
la première stratégie, l’objectif transitoire d’un agent est le barycentre des positions
pondérées de ses voisins. Avec la seconde stratégie, l’objectif transitoire est obtenu
par résolution d’un problème d’optimisation contraignant cet objectif à l’intérieur
d’une région de la zone de déploiement dans laquelle l’agent peut évoluer de manière
sûre, sans risquer de collisions avec les agents quittant l’espace de travail. Cette
stratégie a pour avantage de permettre une reconfiguration du système multi-agents
lorsque plusieurs agents quittent la zone de déploiement en même temps.

Pour le cas où des agents intègrent la zone de déploiement, des résultats de
simulation sont présentés pour un système où les agents obéissent à une dynamique
simple intégrateur. Pour le cas d’agents quittant la zone de déploiement, les deux
stratégies de reconfiguration sont comparées à l’aide d’un système composé d’agents
obéissant à une dynamique simple intégrateur, un agent quittant la zone au cours du
déploiement. Enfin, des résultats de simulation sont présentés pour la reconfiguration
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d’un système multi-agents lorsque deux agents quittent la zone de déploiement,
d’abord avec un système composé d’agents obéissant à une dynamique simple
intégrateur, puis avec une flotte de drones quadrirotors.

Ces contributions ont mené à la publication des articles Chevet et al. (2018) et
Chevet et al. (2020b).
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1.1 Context and motivations

1.1.1 What is a multi-agent system?
The notion of Multi-Agent System (MAS) takes its roots in the computer science
community. In the introduction of his book, Wooldridge (2009) gives five main
trends that lead the research and development in computing:

• Ubiquity: the capability to introduce processing power into devices where it was
once thought to be impossible due to both technical and economic restrictions;

• Interconnection: the networking of devices empowered with processing capa-
bilities to interact and communicate in a complex topology;

• Intelligence: the ability of computing devices to perform increasingly complex
tasks;

• Delegation: the possibility to trust and have confidence in the computing
devices when performing safety critical tasks;

1
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• Human-orientation: the interaction between humans and computing devices
rendered more natural, as it would be between two humans, by using concepts
and metaphors instead of machine code.

These trends have led to the emergence of MAS. However, as stated by Wooldridge
and Jennings (1995), the question “what is an agent?” is not easy to answer. Indeed,
despite the concept being used nowadays in a wide spectrum of topics, there is no
unified definition of the concept of agent. This is why, based on a list of properties
that an agent has to possess, Wooldridge and Jennings (1995) propose a definition
further improved in Wooldridge (2009) and that is the one accepted throughout the
present thesis.

Definition 1.1: Agent (Wooldridge, 2009)

An agent is a computer system that is situated in some environment, and that
is capable of autonomous actions in this environment in order to meet its design
objectives.

In their work, Wooldridge and Jennings (1995) present four properties associated
with Definition 1.1 that an agent has to obey. However, these properties can be
reorganized into five intertwined requirements:

(i) Autonomy: an agent is able to evolve without the direct intervention of a
human operator;

(ii) Perception: an agent is able, through sensors of very different natures, to
perceive the changes in its environment;

(iii) Interaction: an agent is able to communicate with other agents present in the
environment;

(iv) Reactivity: an agent is able to respond to changes in its environment when
necessary;

(v) Pro-activeness: an agent is able to take the initiative to fulfill its mission.

These requirements are made possible thanks to the main trends that have led
research and developments in computer science since its birth. Then, it is possible
to formulate a definition of a MAS.

Definition 1.2: Multi-agent system

A multi-agent system is a set of agents meeting the requirements (i)-(v).

Apart from computer science and artificial intelligence (Weiss, 1999, Wooldridge,
2009, Wang et al., 2016b, Grzonka et al., 2018), the notion of MAS is of interest
for several other scientific fields. MAS are used for example in economy (Čech
et al., 2013, Malakhov et al., 2017, Herzog et al., 2017, Han et al., 2017, Gao et al.,
2018), social sciences (Davidsson, 2002, Li et al., 2008, Serrano and Iglesias, 2016,
Ramírez et al., 2020), biology (Couzin et al., 2005, Roche et al., 2008, Ren et al.,
2008, Colosimo, 2018), computer science (Ferber and Gutknecht, 1998, DeLoach
et al., 2001, Bellifemine et al., 2007, Calvaresi et al., 2019) or control engineering
(Hespanha et al., 2007, Bullo et al., 2009, Dimarogonas et al., 2011, Maestre and
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Negenborn, 2014). This field of engineering is of interest for the remainder of this
thesis. In the last two decades, an increasing number of control applications where
the system can be decomposed into several subsystems, each of them meeting the
requirements (i)-(v), have appeared. The systems studied in such control applications
are thus covered by the scope of Definition 1.2 and are then dubbed MAS while
each subsystem is an individual agent. The main difference with computer science is
that in control applications, each agent obeys a given dynamical equation in addition
to the five previous requirements. This is why, in control engineering literature,
multi-agent systems are sometimes referred to as dynamical MAS. Then, in this
thesis, MAS designates a dynamical multi-agent system where each agent meets the
requirements (i)-(v) and obeys a dynamical equation.

Plenty of multi-agent systems are actively studied in control engineering such as
smart grids (Logenthiran et al., 2012, Radhakrishnan and Srinivasan, 2016, Singh
et al., 2017) and microgrids (Dimeas and Hatziargyriou, 2005, Minchala-Avila et al.,
2015), water distribution networks (Wang et al., 2017, Shahdany et al., 2019), traffic
(Lin et al., 2012, Chanfreut et al., 2020) and transportation networks (Negenborn
et al., 2008, Larsen et al., 2020), mobile sensor networks (Cortés et al., 2004), multi-
robot or multi-vehicle formation (D’Andrea and Dullerud, 2003, Wurman et al., 2008,
Bullo et al., 2009, Prodan et al., 2011, Alonso-Mora et al., 2015, Kamel et al., 2020),
vehicle platooning (Ploeg et al., 2013, Turri et al., 2016, Van De Hoef et al., 2017)
and deployment control (Schwager et al., 2011, Nguyen and Stoica Maniu, 2016,
Papatheodorou et al., 2017). For all these kinds of MAS, the control engineering
approach consists in the supervision of the interactions between the agents as well
as the development of a control strategy to lead the agents towards a common goal.

As always in control engineering, as pointed out by Nguyen (2016), each applica-
tion has its own characteristics that lead to different research directions. Indeed, the
definition of a MAS has several degrees of freedom such as the nature of the dynamics
(e.g. linearity, time-invariance, etc.), the nature of the communications between
the agents or the physical constraints on the system such as actuator limitations or
safety constraints. Then, the following paragraphs give several examples of MAS
control strategies based on different criteria.

1.1.2 An overview of multi-agent system control strategies
In order to control the agents of the MAS, it is necessary to design control algorithms
to obtain the input signal of each agent in order to achieve a common goal. There
exist different classes of control algorithms for multi-agent systems. These classes
depend on various parameters such as the communication topology between the
agents or the way the control input is computed. In the following are described two
ways to classify the control algorithms to give an overview of the existing control
techniques used for MAS.

1.1.2.1 Communication topologies

As discussed at the end of Section 1.1.1, communications are one of the critical
issues when dealing with MAS. Based on the communication topology between the
agents, the MAS control strategies are often divided in three classes: centralized,
decentralized and distributed strategies (Tanenbaum and Van Steen, 2007).
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1.1.2.1.1 Centralized topology In centralized control, all the agents know the
control policy of the other agents to compute its own. To do so, the information of all
agents is sent to a central controller C, this central controller being either an agent
of the MAS or an additional computer. Then, based on the agents’ information, the
central controller C computes the control input of each agent and sends it back to
the corresponding agent. Figure 1.1 gives an example of centralized architecture
for a MAS composed of N agents. Each agent of the MAS sends information, e.g.
its state vector xi(k), with i ∈ 1, N , in the case of Figure 1.1, to the controller C
which computes the control inputs to apply to the agents of the MAS and sends the
individual control inputs ui(k), with i ∈ 1, N , back to each agent.

C

Agent 1 · · · Agent i Agent j · · · Agent N

MAS

x1(k)
u1(k) xi(k)

ui(k)
xj(k)

uj(k)

xN(k)
uN(k)

Figure 1.1: Centralized control architecture

Such centralized strategies have been extensively studied for the control of multi-
agent systems in the past two decades (Xu and Hespanha, 2006, Olfati-Saber et al.,
2007, Prodan et al., 2011, Changuel et al., 2014, Wang et al., 2015, Sujil et al., 2018).
These strategies are efficient in the sense that the control input for each agent of
the MAS is computed with full knowledge of the multi-agent system’s behavior.
However, to obtain the control inputs for all the agents of the MAS, the central
controller C needs, at all times, full knowledge of each agent of the MAS and it also
has to be able, at all times, to send the control input to each agent of the MAS.
Due to this property, the MAS is heavily dependent on the communication between
the agents and the central controller and is highly sensitive to any communication
fault. Moreover, an increasing number of agents implies an increasing number of
communications, leading potentially to network saturation, and a control problem
of increasing size which can be computationally time-consuming depending on the
considered strategy, and therefore not applicable in real-time systems.

Depending on the considered application, such a dependence on the central
controller can be unsuitable. To overcome these limitations, decentralized and
distributed control policies have been developed.

1.1.2.1.2 Decentralized topology In a decentralized control structure, each
agent computes its own control policy with the knowledge of its own state while
exchanging information with a central entity. Figure 1.2 gives an example of
decentralized architecture for a multi-agent system composed of N agents. Each
agent of the MAS can exchange information (e.g. an aggregated state vector x(k)
containing all or part of the state vectors xi(k) of each agent i ∈ 1, N in the case of
Figure 1.2) with a central entity C. However, each agent computes its input signal
by sending information (e.g. its state vector xi(k), with i ∈ 1, N , and the aggregated
vector x(k) in the case of Figure 1.2) to a local controller Ci, with i ∈ 1, N , which
sends back the control input ui(k) to agent i.
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Figure 1.2: Decentralized control architecture

One of the most used decentralized strategy in control of multi-vehicle systems is
the leader-follower approach where the central entity is another agent and several
structures of the kind presented in Figure 1.2 can be cascaded. This approach is
mainly used in formation control (Consolini et al., 2008, Liu et al., 2016, Wang et al.,
2019) of MAS where the agents are mobile robots or vehicles. In a more general
framework, decentralized control strategies have been developed for numerous control
applications such as microgrids (Liu et al., 2014), smart grids (Lu et al., 2011, Ayar
et al., 2017), trajectory tracking for mobile robots (Prodan, 2012, Angelini et al.,
2018) or collision avoidance (Verginis and Dimarogonas, 2019).

A decentralized control strategy is easily scalable compared to a centralized
strategy since the addition of new agents to the MAS does not increase the complexity
of a central controller, each agent obtaining its own input with a local controller. A
decentralized structure is also resilient to the loss of the central entity since each
agent is able to either continue its mission by itself or reach a safe state by using its
local controller.

However, this comes with a drawback linked to the limited communications
between the agents since such communications have to be done through the central
entity. Indeed, the control input of an agent being computed solely from the
information of this agent, cooperative objectives can be more difficult to carry
out. The example of a fleet of several vehicles following a given trajectory while
maintaining a given formation is considered to illustrate this element. A common
strategy is for each vehicle to follow a trajectory provided by the formation leader
such that if every vehicle follows its trajectory, the formation is maintained. If
a perturbation or a fault occurs on one or several vehicles, their trajectory can
be modified. However, due to the absence of communications, a vehicle does not
know its relative position to another vehicle. Then, without additional strategies to
mitigate the perturbation or the fault, there is a potential risk of collision between
two or more vehicles which is a hindrance to cooperation. Some strategies in the
literature seek to guarantee a certain level of interaction between the agents to attain
global coordination of the MAS such as the one proposed by Morărescu and Fiacchini
(2016).

1.1.2.1.3 Distributed topology With a distributed control strategy, similarly
to the decentralized case, each agent computes its own control policy with the
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knowledge of its own state. However, the agents are able to exchange information
with all or part of the agents belonging to the MAS to obtain its control input.
Figure 1.3 gives an example of distributed architecture for a MAS composed of N
agents. Each agent computes its control input ui(k), with i ∈ 1, N , with a local
controller Ci. However, contrary to the decentralized case, each controller Ci is able
to exchange information with the controllers Cj of the other agents. In the example
of Figure 1.3, each controller exchanges information with its neighbors, the nature of
the information not being reported here. It can be noticed that such a structure is
an example among others and more connections between the local controllers could
be added.

Agent 1 · · · Agent i Agent j · · · Agent N
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· · ·Ci Cj

· · · CN

x1(k)

u1(k)

xi(k)

ui(k)
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xN(k)
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Figure 1.3: Distributed control architecture

The distributed strategies bridge the gap between centralized and decentralized
strategies. Indeed, they involve more communications than a decentralized control
strategy but less than a centralized one. The computational load delegated to
each agent is heavier than with a decentralized strategy but the complexity of
the control problem solved by each local controller is reduced compared to the
complexity of the problem solved by the central controller of a centralized architecture.
Moreover, a distributed strategy, as a decentralized strategy, is resilient to the loss
of communication with one or several local controllers and it allows to improve the
cooperation capabilities of the agents with respect to a decentralized strategy.

Due to these elements and the ubiquity trend presented in Section 1.1.1, dis-
tributed strategies are attracting increasing attention. Some examples include
Olfati-Saber (2006), Ren and Beard (2008) or Cao and Ren (2011) who use dis-
tributed consensus strategies or Viel (2017) who studies event-triggered control for
MAS. In their book, Maestre and Negenborn (2014) give a in-depth overview of exist-
ing distributed model predictive control algorithms. A state of the art of distributed
control techniques can be found in either Scattolini (2009), Cao et al. (2012) or Rossi
et al. (2018). Such strategies can also be applied to different types of multi-agent
systems such as microgrids (Khan et al., 2016, Cominesi et al., 2017), traffic networks
(Chanfreut et al., 2020), power grids (Bidram et al., 2014) or multi-vehicle systems
(Turri et al., 2016, Li et al., 2017b, Belkadi et al., 2017, 2019).

1.1.2.2 Classification of the approaches for MAS control

An element that goes with the choice of a communication topology for the multi-
agent system control structure is the nature of the controller itself, either central or
local. Indeed, the control problem solved to obtain the control input of the agents is
as important and dependent on the nature of the problem as the communication
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topology. Then, the following paragraph does not aim to be exhaustive but to
present some of the most widely used methods of the last twenty years to compute
the control input in the central or local controllers.

1.1.2.2.1 Graph theory The communication topology used by the agents of
a MAS to exchange information can be seen as a graph where the agents are the
nodes of the graph and the communication between two agents is a link, directed or
not, between the two nodes. Results from algebraic graph theory (Godsil and Royle,
2001) are therefore considered in combination with the dynamics of the agents to
compute the control inputs.

The main graph-theoretic strategy that has been extensively applied in multi-
agent system control application is the consensus (Olfati-Saber and Murray, 2004,
Ren and Beard, 2008), also called agreement (Mesbahi and Egerstedt, 2010). The
name consensus is self-descriptive. Indeed, in the case of consensus problems, the
agents aim to synchronize to a common value. Consensus strategies are often used
to address issues related to multi-vehicle systems such as rendezvous (Sorensen and
Ren, 2006) or formation control (Fax and Murray, 2004, Olfati-Saber, 2006, Flores-
Palmeros et al., 2019) and are related to synchronization problems (Ahmadizadeh
et al., 2016, Panteley and Loría, 2017).

1.1.2.2.2 Potential field As stated in Cheng et al. (2004), the idea of potential
field approaches is based on a physical analogy. Indeed, an electrically charged body
produces an electrical vector field that either attracts or repulses other electrically
charged bodies. This vector field is the gradient of a scalar function f of a vector
variable x. In most physics applications, this vector variable x is a vector of space
coordinates (e.g. Cartesian or spherical coordinates). A potential field approach in
control is then based on the construction of an artificial scalar function f which is
the sum of an attractive and a repulsive potential. The attractive potential is meant
to attract the system towards its desired objective while the repulsive potential takes
the system away from a given area of the state space in which it evolves. Then, the
negative gradient −∇f(x) indicates the most promising direction in the state space
to drive the system towards its objective.

Potential field approaches are often used in navigation problems (Hagelbäck and
Johansson, 2008, Prodan, 2012, Ivić et al., 2016, Baillard et al., 2018) where the
attractive potential is minimal on the objectives that the agents have to reach and
maximal on the obstacles such that the agents go towards their objectives while
avoiding obstacles. One of the main drawbacks of this approach is that it can drive
the system into a configuration corresponding to a local minimum of the potential
function. Rimon and Koditschek (1992) provide methods to compute artificial
potential functions free of local minima.

1.1.2.2.3 Game theory Game theory (Osborne and Rubinstein, 1994) is a
mathematical framework used to describe the behavior of interacting players. In such
a framework, a player is an intelligent and rational decision maker, i.e. an entity that
takes decisions from reasoning, which has to evolve within a set of rules guiding its
behavior. Game theory is often used in social sciences to represent human interaction
and social phenomena. Moreover, given its characteristics, such a framework is an
obvious tool to study MAS control problems. Indeed, the agents are players which
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have to reach an objective where they maximize their gain in the game, the rules of
the game being the constraints applied on the problem.

Game theoretic methods for MAS control have been increasingly studied in
the last decade. For example, Fele et al. (2017) present a game theoretic control
framework called coalitional control to deal with various problems. This framework
is based on the theory of coalitional games (Myerson, 1991), in which it is assumed
that cooperation always brings benefits to the players, but with the limitation that
forming new coalitions of agents might provide a lower gain than doing tasks with a
larger number of coalitions. Coalitional control has been used in the last years to
deal with irrigation canals (Fele et al., 2014), traffic networks (Chanfreut et al., 2020)
or more general large-scale systems (Fele et al., 2018). However, coalitional control
is just one of the many aspects of game theoretic control for multi-agent systems
and numerous other works deal with different game theoretic strategies (Quijano
et al., 2017). Such works are for example Semsar-Kazerooni and Khorasani (2009)
and Zhang et al. (2014) which mix respectively cooperative and differential game
theory with consensus problems or Khan et al. (2016) that use non-cooperative game
theory for the control of microgrid systems.

1.1.2.2.4 Optimization Optimization-based control methods compute the con-
trol input of a system as the solution of an optimization problem minimizing a given
criterion under constraints. Then, using efficient tools such as linear, quadratic,
mixed-integer or even semi-definite programming solvers, it is possible to obtain the
optimal input driving the agents of a MAS towards their objective. Optimization-
based control have been applied to multi-agent systems in different forms such
as optimal control (Ji et al., 2006, Movric and Lewis, 2013, Yuan et al., 2018) or
neural-network based control (Hou et al., 2009, Wen et al., 2016, Yu et al., 2020),
which have been attracting a lot of attention for the past ten years. One of the most
widely used optimization-based control method is model predictive control (MPC)
thanks to its effectiveness with constraint handling due to the receding horizon policy
it adopts (Mayne et al., 2000). The properties of MPC have been extensively studied
and are well documented in the literature (Maciejowski, 2002, Camacho and Bordons,
2007, Rawlings and Mayne, 2009, Kouvaritakis and Cannon, 2016). In the case of
multi-agent systems, Maestre and Negenborn (2014) and Olaru et al. (2015) present
a detailed overview of current uses and applications of MPC strategies.

In addition to the classical MPC as presented in Maciejowski (2002) or Rawlings
and Mayne (2009), several different flavors have been developed over the years to
deal with increasingly complex situations. For example, an explicit solution to the
MPC optimization problem can be found as a piecewise affine function (Bemporad
et al., 2002, Tøndel et al., 2003) obtained by exploiting the Karush-Kuhn-Tucker
conditions (Boyd and Vandenberghe, 2009). Moreover, robust versions have been
developed for the case of a perturbed system (Kouvaritakis and Cannon, 2016),
either when the perturbations are deterministic and bounded (Mayne et al., 2005,
2006) or have a stochastic nature (Cannon et al., 2010, 2012), both having been
applied on multi-agent systems (Prodan et al., 2011, Trodden and Richards, 2014,
Nikou and Dimarogonas, 2019, Lyons et al., 2012, Dai et al., 2016).
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1.1.3 Deployment control
Multi-vehicle systems (MVS) are a type of MAS where each agent is an autonomous
vehicle. They are used for a wide spectrum of real world missions such as forest fire
monitoring (Merino et al., 2012, Yuan et al., 2019), ground and resource monitoring
(Laliberte and Rango, 2009, Jin and Tang, 2010, d’Oleire Oltmanns et al., 2012),
mapping and modeling (Nex and Remondino, 2014, Han and Chen, 2014, Torres
et al., 2016) or even surveillance missions (Li et al., 2019, Trujillo et al., 2019). For
most of these applications, a MVS seeks to maximize the coverage of a given spatial
area under potential operating constraints. A way to achieve such a coverage is for
the MVS to self-deploy within the area it seeks to cover. The works cited above
have different ways to define what is a deployment for coverage. The definition that
is used for this thesis is the one from Schwager et al. (2011), which considers the
deployment of a multi-vehicle system as a strategically appropriate spreading of the
MVS in a given environment in order to reach a fixed configuration, the environment
being the spatial area that the vehicles aim to cover.

In the last twenty years, several works have studied the self-deployment of a
MVS problem such as Choset (2001), Howard et al. (2002), Cortés et al. (2004),
Li and Cassandras (2005), Murray (2007), Moarref and Rodrigues (2014), Nguyen
(2016), Papatheodorou et al. (2017) or Hatleskog (2018). The deployment of a MAS
is meant to ensure the maximal coverage of an environment with respect to a given
criterion. In that sense, several techniques have been proposed to deal with this
problem such as motion planning (Choset, 2001), potential field (Howard et al., 2002),
probabilistic (Li and Cassandras, 2005) or Voronoi-based techniques (Cortés et al.,
2004). Schwager et al. (2011) show that the last three approaches can be unified
through the use of a mixing function encoding the coverage criteria to be maximized.
Many of the works cited are based on the use of a time-varying Voronoi tessellation
of the deployment area. The Voronoi tessellation is a tool that has been introduced
by Dirichlet (1850) and further developed by Voronoï (1908). It is a way to partition
a metric space, equipped with a distance function, into a set of non-overlapping
regions called Voronoi cells. These cells are generated from a finite set of elements
belonging to the metric space, these elements being called generators. Each cell is
associated uniquely with one of the generators. The classical Voronoi tessellation is
obtained by using the Euclidean norm but Voronoi diagrams can also be obtained
from other types of distances (Aurenhammer, 1991) and for generators that are not
points but sets (Sugihara, 1993, Choset and Burdick, 1995). Figure 1.4 presents for
example the Voronoi tessellation of a square with five generators. The plot on the
left is obtained using the Euclidean distance and the one on the right is obtained
using the Manhattan distance where, if x =

[
x1 · · · xn

]> is a vector of Rn, the
Euclidean and the Manhattan norm are defined as:

‖x‖2 =

√√√√ n∑
i=1

x2i and ‖x‖1 =
n∑
i=1

|xi|,

respectively. Moreover, when the generators are not points but circles or ellipses, the
Voronoi tessellation is often called power Voronoi diagram (Aurenhammer, 1991).

For the deployment over an area, the positions of the vehicles of the MVS are the
generators of the Voronoi tessellation. The goal of the MVS is then to reach a static
configuration in which each vehicle lies on a remarkable point of the Voronoi cell
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Figure 1.4: Voronoi tessellation of a square for 5 generators with the Euclidean norm
(a) and the Manhattan norm (b).

generated by this vehicle. It can be noticed that the main difficulties in achieving the
deployment are, first, that, since the generators of the Voronoi tessellation move over
time, the Voronoi tessellation is time varying and, second, that the final configuration
is not known a priori due to the dynamics of the Voronoi tessellation. One of the first
approaches to define a Voronoi-based coverage of a given area is the Lloyd’s algorithm
(Lloyd, 1982), derived from the k-means clustering algorithm (MacQueen, 1967),
where the goal is to obtain a maximum coverage from a set of agents without any
dynamics. With Lloyd’s algorithm, the considered remarkable point of a cell is the
center of mass of the cell. Then, if pi(k) denotes the position of the agent i at time
k and ci(k) the center of mass of its Voronoi cell at time k, Lloyd’s algorithm runs
as presented in Algorithm 1.1. Figure 1.5 presents the result of Lloyd’s algorithm
for five agents inside a square. The circles represent the positions of the agents
at iteration k and the stars represent the centers of mass at iteration k. The first
diagram presented in Figure 1.5 is obtained from the initial positions, the second is
the one obtained after the first iteration of Lloyd’s algorithm and the third one is
the final result obtained after 26 iterations.

Algorithm 1.1: Lloyd’s algorithm.
Input: The initial positions of the agents pi(0), with i ∈ 1, N

1 while ci(k + 1) 6= ci(k) for all i do
2 Compute the Voronoi tessellation of the area from the positions pi(k);
3 Compute the center of mass ci(k) of each Voronoi cell;
4 Set pi(k + 1) = ci(k);
5 end

Output: The static configuration of the MAS

Recent work on the deployment of a MAS starts with the deployment of a
multi-sensor network in a convex two-dimensional area. In their paper, Cortés
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Figure 1.5: Illustration of Lloyd’s algorithm at initialization, after the first iteration
and after the last iteration.

et al. (2004) propose a decentralized optimal control algorithm for agents obeying
single integrator dynamics such that the MAS reaches a static centroidal Voronoi
configuration1. Based on this work, Sharifi et al. (2014) propose a distributed control
algorithm based on feedback linearization for the deployment into a centroidal
configuration in a so-called weighted Voronoi tessellation, where the distance between
two points is the Euclidean norm of the difference between their coordinates divided
by a given positive weight. Several other works propose control algorithms to drive
a MAS into a static configuration under constraints such as maximization of the
coverage (Schwager et al., 2011) or energy efficiency constraints (Song et al., 2013,
Moarref and Rodrigues, 2014) and even control strategies for MAS subject to drifts
(Bakolas and Tsiotras, 2013). In the last years, Nguyen (2016) proposed a new
deployment strategy where the remarkable point considered for the Voronoi cells is
not the center of mass of the cell, but the Chebyshev center (Boyd and Vandenberghe,
2009), i.e. the center of the largest ball contained in the Voronoi cell. This point
is obtained as the solution of a linear optimization problem and is often easier to
compute than the center of mass. Nguyen (2016) proposes state-feedback strategies,
including model predictive control, for the Voronoi-based deployment of a MAS
using the Chebyshev center of the Voronoi cells. This work has been further studied
in Hatleskog (2018) who provides a proof of convergence of the deployment strategy
in the one dimensional case and in the two dimensional case when the agents obey
single integrator dynamics and are controlled with an unconstrained state-feedback
controller. In addition, the problem of optimal coverage of an area when the location
of the agent is uncertain has been recently studied. Papatheodorou et al. (2016)
propose for example a distributed optimal control strategy for the deployment of a
multi-sensor network for which the position of the agent is uncertain and contained
inside a circle. These results have been further extended in Papatheodorou et al.
(2017), Tzes et al. (2018) or Turanli and Temeltas (2020).

1Centroidal configuration means that the agents lie on the center of mass of their Voronoi cells.
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1.1.4 Main motivations and thesis orientation: Model
Predictive Control for the deployment of
multi-vehicle systems

From the literature overview of Sections 1.1.1 and 1.1.2, it appears that the control
of multi-agent systems is a wide and active research topic. Thus, the present thesis is
limited to a given area that is overviewed in Section 1.1.3. Indeed, deployment control
of a multi-vehicle system is a task that is relevant for a wide range of applications as
detailed previously.

As presented in Section 1.1.3, several control strategies exist for the deployment
of a MAS using a Voronoi tessellation of the area in which the MAS is deployed.
However, the majority of these works are based on the center of mass of the Voronoi
cells to drive the agents towards a static configuration. Then, building on the results
of Nguyen and Stoica Maniu (2016) and Nguyen et al. (2017), the present thesis
deals with the deployment and reconfiguration of a multi-vehicle system inside a
bounded convex two-dimensional area.

The goal of the present work is to develop model predictive control algorithms for
the Voronoi-based deployment of a multi-vehicle system in a bounded convex two-
dimensional area and to apply the proposed control algorithms for the deployment
of a fleet of quadrotor unmanned aerial vehicles (UAVs). The first step for such
work is to adapt the decentralized model predictive controller proposed in Nguyen
(2016) for the deployment of agents obeying simple dynamics such as single or double
integrator dynamics. Thus, a decentralized deployment algorithm is proposed and
applied to a fleet of quadrotor UAVs obeying continuous-time nonlinear dynamics.
To this end, a cascaded control architecture is considered, where the decentralized
MPC algorithm is used for the position control of the vehicles, the position control
design being performed based on simplified models of the agents having double
integrator dynamics. The goal of the multi-vehicle system is then to deploy into a
static configuration in which each agent lies on the Chebyshev center of its associated
Voronoi cell. The use of MPC is justified in this context since it allows to consider
constraints on the future evolution of the system, limiting it to evolve inside its
Voronoi cell, used as a safety region to avoid collision with the other vehicles, and
restraining the speed and attitude of the system due to physical limitations. Moreover,
such a framework is favorable towards the use of a decentralized control algorithm.
Indeed, with just the knowledge of the other agents’ positions by measurements or
communication with a central entity, an agent is able to build its own Voronoi cell,
allowing it to then carry the burden of control input computation.

Nguyen (2016) or Hatleskog (2018) study the deployment of a MAS in the
nominal case. Papatheodorou et al. (2016), for example, opens the door on the
deployment of MAS subject to position uncertainty. Further investigations have
to be led in this direction to allow a system subject to more general perturbations
to be deployed over a given area. Robust MPC techniques have been developed
to account for bounded perturbations on a single system, for example in Mayne
et al. (2005) and Mayne et al. (2006). Then, based on these works, the present
thesis studies the deployment of a MAS when the agents are subject to bounded
deterministic perturbations and proposes a decentralized tube-based MPC algorithm
for the Voronoi-based deployment of a fleet of UAVs which drives the MAS into a
static configuration, guaranteeing that the distance between the agents and their
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Chebyshev center is bounded.
Nevertheless, perturbations are not always bounded and, in addition, they can

be of stochastic nature, as modeling errors or measurement noises. Such signals
acting on a system lead to the appearance of so-called chance constraints in the
optimization problem solved by the model predictive controller for single (Cannon
et al., 2012, Farina et al., 2016) or multi-agent systems (Dai et al., 2015, 2018). Then,
this thesis also investigates chance-constrained MPC techniques for the deployment
of MAS subject to unbounded stochastic perturbations.

Finally, based on the collision avoidance requirement, a question arises: what
happens if one or several agents have to leave or join the area in which the deployment
occurs? MPC algorithms can be used in this case, where the deploying multi-agent
system needs to be reconfigured to deal with the modification in the number of
agents. Indeed, it is possible to construct regions for the safe evolution of the agents
during the reconfiguration phase using set-theoretic tools (Blanchini and Miani,
2015), translated into constraints to obtain a safe transient objective. For each
agent, the elements needed for its safety require only the knowledge of the other
agents’ position, allowing for a decentralized algorithm to drive the MAS. Such
problems often arise in fault-tolerant formation control and are relevant for various
multi-vehicle system applications.

1.2 Contributions of the thesis
The present thesis proposes several flavors of decentralized MPC algorithms for
the deployment of a MAS over a convex bounded two dimensional area. These
algorithms are based on a Voronoi tessellation of the area to cover as well as on
the Chebyshev center of the Voronoi cells as an objective point for the agents to be
deployed. Then, the following paragraphs detail the contribution of this thesis for
each of the proposed MPC techniques.

1.2.1 Deployment in the nominal case
Nguyen (2016) introduces a decentralized model predictive controller for the de-
ployment of a nominal multi-agent system (i.e. no uncertainties, no fault) in a
convex bounded area, where each agent is driven towards the Chebyshev center of
its associated Voronoi cell. For its part, Hatleskog (2018) gives a proof of conver-
gence of the Voronoi and Chebyshev-based deployment algorithm for the case of
single integrator dynamics when the agents are driven with an unconstrained full
state-feedback controller.

The present thesis proposes a Voronoi-based centralized MPC for the deployment
of a MAS in a convex bounded area, each agent being driven towards the Chebyshev
center of its Voronoi cell. After formulating the decentralized version of this deploy-
ment algorithm, it provides a proof of feasibility of the MPC optimization problem
when the agents obey single integrator dynamics. This feasibility proof leads to a
discussion on the convergence of the decentralized deployment algorithm. To show
its efficiency, the proposed decentralized model predictive controller is used as the
position controller for quadrotor unmanned aerial vehicles, modeled as nonlinear
systems. Directions to prove the convergence of the deployment algorithm for a fleet
of quadrotor UAVs are then discussed.
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These contributions have led to the publication of the papers Chevet et al. (2018)
and Chevet et al. (2020b).

1.2.2 Deployment under bounded deterministic
perturbations

Papatheodorou et al. (2016) and Papatheodorou et al. (2017) study the deployment
of a MAS over an area when the agents are subject to bounded position uncertainty.
These works are based on the definition of an ellipsoidal-based so-called guaranteed
Voronoi tessellation taking into account the fact that the generators of the cells are
not points anymore but discs.

The present thesis introduces a new box-based guaranteed Voronoi tessellation
where the generators of the Voronoi tessellation are not points but boxes (i.e.
rectangles in a two-dimensional space). Such a guaranteed Voronoi tessellation is
used to cope with the bounded output perturbations acting on the system.

To deal with the case of bounded perturbations acting on a system, a tube-based
MPC strategy (Mayne et al., 2005) can be used. The idea behind such a control
algorithm is to decompose the control input applied to a system into two parts, one
obtained via optimization on the nominal dynamics and the other one by multiplying
the error between the real state and the nominal state of the system by a gain matrix.
The state of the system is then guaranteed to belong to a robust positively invariant
set for the error dynamics centered on the nominal state of the system. Alvarado
(2007) proposes a linear matrix inequality constrained optimization problem to
obtain the gain matrix used in classical state-feedback tube-based MPC (Mayne
et al., 2005).

This thesis then proposes a decentralized output-feedback tube-based MPC
strategy for the deployment of a multi-agent system subject to bounded deterministic
input and output perturbations. A novel linear/bilinear matrix inequality constrained
optimization-based procedure is designed to obtain the gain matrices of the state-
feedback part of the tube-based controller and of the observer introduced in the
output-feedback strategy. This procedure aims to minimize the size of the robust
positively invariant sets to which the state belongs such that the optimization part of
the tube-based controller has enough degrees of freedom to optimize the performance
of the system. The decentralized output-feedback tube-based MPC is firstly applied
for the deployment of a MAS composed of agents obeying single integrator dynamics,
and secondly for the position control of a fleet of quadrotor UAVs.

These contributions have led to the publication of the paper Chevet et al. (2019).

1.2.3 Deployment under unbounded stochastic
perturbations

When a system is subject to unbounded stochastic perturbations, probabilistic
constraints, also called chance constraints, appear on the optimization problem
solved by the model predictive controller. Gavilan et al. (2012) propose a state-
feedback chance-constrained model predictive controller for a single system where
the chance constraints have to be satisfied with a probability equal to 1. Based
on the stochastic properties of the perturbation, Gavilan et al. (2012) introduces a
method to relax probabilistic constraints into algebraic constraints.
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The present thesis introduces a new decentralized output-feedback chance-
constrained MPC algorithm for the deployment of a MAS when the agents are
subject to unbounded stochastic perturbations. However, the stochastic perturbation
signal, which is unknown over the prediction horizon of the MPC, appears in the
constraints of the MPC optimization problem. These constraints have to be satisfied
with a probability equal to 1. A relaxation procedure of the probabilistic constraints
into algebraic constraints in order to solve the MPC optimization problem is proposed
along with a proof of feasibility. This relaxation uses the stochastic properties of
the perturbations to find a bound allowing the constraints to be satisfied for almost
all perturbations acting on the system. The decentralized output-feedback chance-
constrained MPC is applied to the deployment of two MAS composed, respectively, of
agents obeying single integrator dynamics and of agents obeying nonlinear quadrotor
UAV dynamics.

These contributions have led to the publication of the paper Chevet et al. (2020a).

1.2.4 Reconfiguration in the case of a time-varying
multi-vehicle system

Another contribution of the present thesis deals with the reconfiguration of a deploying
multi-agent system when agents join or leave the area in which the deployment is
occurring. This problem is related to fault-tolerant formation control since the main
reasons leading an agent to leave the deployment area are related to faulty situations.

In the case of incoming agents, the proposed technique is a natural extension of the
nominal deployment strategy. Indeed, the deployment algorithm being decentralized,
it is easily scalable and allows intrinsically to consider additional agents.

To deal with the case of outgoing agents, the present work proposes two original
strategies based on a transient objective, different from the Chebyshev center of the
Voronoi cells, for the agents remaining in the deployment area allowing them to avoid
the trajectory of the outgoing agents. For the first strategy, the transient objective of
an agent is defined as the weighted barycenter of the agent’s neighbors. For the second
strategy, the transient objective of an agent is obtained by solving an optimization
problem constraining the objective to belong to a region of the deployment area in
which it is safe for this agent to evolve in order to avoid collisions with the outgoing
agents. The second strategy has the advantage of allowing a reconfiguration of the
MAS when several agents leave the deployment area simultaneously, increasing the
fault-related capabilities.

For the case of agents joining the deployment area, simulation results are presented
for a MAS with agents obeying single integrator dynamics. For the case of outgoing
agents, the two reconfiguration strategies are compared on a MAS composed of
agents obeying single integrator dynamics when one agent leaves the deployment
area. Finally, simulation results are presented for the second reconfiguration strategy
when two agents leave the deployment area with two MAS, the first one composed
of agents obeying single integrator dynamics and the second composed of agents
obeying nonlinear UAV dynamics.

These contributions have led to the publication of the papers Chevet et al. (2018)
and Chevet et al. (2020b).
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1.2.5 Publications
The work done during the preparation of this thesis has led to the submission and
publication of several conference and journal papers.
Peer-reviewed journal paper

• T. Chevet, C. Vlad, C. Stoica Maniu, and Y.M. Zhang. Decentralized MPC
for UAVs formation deployment and reconfiguration with multiple outgoing
agents. Journal of Intelligent & Robotic Systems, 97(1):155-170, 2020.

Peer-reviewed conference papers

• T. Chevet, C. Stoica Maniu, C. Vlad, Y.M. Zhang, and E.F. Camacho.
Chance-constrained MPC for Voronoi-based multi-agent system deployment.
In 21st IFAC World Congress. Berlin, Germany, July 12–17, 2020.

• T. Chevet, C. Stoica Maniu, C. Vlad, and Y.M. Zhang. Guaranteed Voronoi-
based deployment for multi-agent systems under uncertain measurements. In
18th European Control Conference, pages 4016–4021. Naples, Italy, June 25–28,
2019.

• T. Chevet, C. Stoica Maniu, C. Vlad, and Y.M. Zhang. Voronoi-based
UAVs formation deployment and reconfiguration using MPC techniques. In
International Conference on Unmanned Aircraft Systems, pages 9–14. Dallas,
TX, United States, June 12–15, 2018.

Other publications
Handouts

• T. Chevet, M.A. Lefebvre, V. Letort-Le Chevalier, D. Madhavan Brochier,
C. Maniu, G. Sandou, and C. Vlad. Model Representations and Analysis.
CentraleSupélec Handouts. 210 pages. 2020.

• T. Chevet, M.A. Lefebvre, V. Letort-Le Chevalier, C. Maniu, G. Sandou,
and C. Vlad. Modélisation. Représentations et analyse des modèles. Centrale-
Supélec Handouts (in French). 210 pages. 2020.

Peer-reviewed journal paper

• D. Merhy, C. Stoica Maniu, T. Alamo, E.F. Camacho, S. Ben Chabane,
T. Chevet, M. Makarov, and I. Hinostroza. Guaranteed set-membership
estimation of an octorotor’s position for radar applications. International
Journal of Control. In press.

Peer-reviewed conference papers

• C. Stoica Maniu, C. Vlad, T. Chevet, S. Bertrand, A. Venturino, G. Rousseau,
and S. Olaru. Control systems engineering made easy: Motivating students
through experimentation on UAVs. In 21st IFAC World Congress, Demonstra-
tor session. Berlin, Germany, July 12–17, 2020.
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• D. Merhy, C. Stoica Maniu, T. Alamo, E.F. Camacho, T. Chevet, M. Makarov,
and I. Hinostroza. Zonotopic set-membership state estimation applied to an
octorotor model. In 12th Summer Workshop on Interval Methods. Palaiseau,
France, July 23–26, 2019.

• C. Stoica Maniu, C. Vlad, T. Chevet, G. Rousseau, S. Bertrand, and S. Olaru.
Modernizing teaching through experimentation on UAVs formations. 12th IFAC
Symposium on Advances in Control Education, Invited Demonstration Session.
Philadelphia, PA, United States, July 7–9, 2019. In IFAC-PapersOnLine,
52(9):144–146, 2019.

Oral presentations

• T. Chevet, C. Stoica Maniu, C. Vlad, Y.M. Zhang, and E.F. Camacho.
Voronoi-based deployment of multi-vehicle systems. Seminar at Departamento
de Ingeniería de Sistemas y Automática, University of Seville, Spain, December
17, 2019.

• T. Chevet, M. Makarov, C. Stoica Maniu, I. Hinostroza, and P. Tarascon.
State estimation of an octorotor with unknown inputs. Application to radar
imaging. Seminar at Networked Autonomous Vehicles Lab, Concordia Univer-
sity, Montréal, Canada, October 31, 2017.

1.3 Thesis outline
The remainder of the present thesis is organized as follows.

Chapter 2: Mathematical tools and set-theoretic elements This chap-
ter provides the different mathematical results necessary for the development of the
decentralized model predictive control algorithms presented in this thesis. It starts
by recalling some properties on matrices and linear/bilinear matrix inequalities. It
then introduces necessary set-theoretic elements before presenting the notion of set
invariance in control theory. The general state-space representation of a MAS is
described along with the necessary assumptions for the development of the MPC
algorithms. Then, the construction of several types of Voronoi tessellation is detailed.
The construction of the classical Voronoi tessellation is given before introducing
two contributions of this thesis, i.e. the box-based guaranteed Voronoi tessellation
and the so-called pseudo-Voronoi tessellation, along with a formal definition of
a Chebyshev configuration. Finally, Chapter 2 presents some classical results on
continuous univariate and multivariate random variables.

Chapter 3: Decentralized control for the deployment of a multi-vehicle
system This chapter starts by giving a centralized and a decentralized formulation
of the Voronoi-based deployment algorithm. It then gives a proof of feasibility of the
MPC optimization problem when the agents obey single integrator dynamics and
discusses the convergence of the deployment algorithm. After, simulation results are
presented for the deployment of a MAS composed of agents obeying single integrator
dynamics. The nonlinear dynamics of quadrotor unmanned aerial vehicles are
introduced, as well as a cascaded control structure to allow the use of a decentralized
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output-feedback MPC strategy for position control. Simulation results are exposed
for the deployment of a MAS composed of agents obeying nonlinear quadrotor UAV
dynamics. Chapter 3 ends on a discussion of possible directions for the convergence
proof of the deployment algorithm when agents obey double integrator dynamics or
more complex dynamics.

Chapter 4: Deployment of a multi-vehicle system subject to perturba-
tions This chapter is twofold in the sense that it presents two robust decentralized
MPC algorithms for the deployment of a MAS: the first one for agents subject to
bounded deterministic perturbations, and the second one for agents subject to un-
bounded stochastic perturbations. In the first part, a decentralized output-feedback
tube-based model predictive controller is introduced along with two linear/bilinear
matrix inequality constrained optimization problems to obtain the observer and
state-feedback gain matrices necessary for the tube-based strategy. In the second part,
a decentralized output-feedback chance-constrained model predictive controller is ex-
posed along with a method allowing probabilistic constraints relaxation into algebraic
constraints. In both cases, simulation results are presented for the Voronoi-based
deployment of a MAS firstly composed of agents obeying single integrator dynamics
and secondly composed of agents obeying nonlinear quadrotor UAV dynamics.

Chapter 5: Extension to the deployment of a time-varying multi-
vehicle system This chapter aims to present reconfiguration algorithms for a MAS
in the case of agents joining or leaving the MAS during the deployment. It starts by
presenting the decentralized MPC strategy for the incoming agents. Then, a first
reconfiguration strategy to deal with the case of one agent leaving the deployment
area is introduced. This reconfiguration strategy is based on a transient objective
computed as an agent’s neighbors’ barycenter. Simulation results are presented in
both situations for a MAS composed of agents obeying single integrator dynamics.
Then, Chapter 5 introduces a new decentralized reconfiguration strategy to drive the
remaining agents safely away from the outgoing agents when several agents leave
the MAS simultaneously. This second strategy is based on a new transient objective
obtained by solving an optimization problem constraining it to belong to a region
in which it is safe for the remaining agent to evolve. This new algorithm is then
compared in simulation with the first reconfiguration strategy. Finally, simulation
results are presented for the deployment and reconfiguration of two MAS when two
agents leave the deployment area using the improved reconfiguration algorithm. The
first MAS is composed of agents obeying single integrator dynamics and the second
one of agents obeying nonlinear quadrotor UAV dynamics.

Chapter 6: Concluding remarks and future work This chapter completes
the present thesis by means of concluding remarks and gathers several open directions
of this work.
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2.1 Definitions and useful properties of matrices
As stated by Blanchini and Miani (2015) in the preface of their book, sets will
naturally appear with three aspects of control theory: constraints, uncertainties
and design specifications. In this context, this chapter focuses on the main set
properties necessary for the comprehension of the results elaborated in the present
thesis. Before introducing elements about sets, it is necessary to present some useful
definitions about matrices.

Definition 2.1: Positive definite matrix

A symmetric matrix P = P> ∈ Rn×n is called positive definite (respectively positive
semidefinite), denoted by P � 0 (respectively by P � 0), if x>Px > 0 (respectively
x>Px ≥ 0) for all x ∈ Rn \ {0n×1}.

19
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Definition 2.2: Weighted quadratic norm

Let P ∈ Rn×n be a positive semidefinite matrix and x ∈ Rn be a vector. The
quadratic norm of x weighted by P is the quantity ‖x‖P =

√
x>Px.

The two following properties of special matrices related to positive definiteness
are important for the results presented in this thesis.

Property 2.1: Exponential of a matrix (Hall, 2015)

Let A ∈ Rn×n be a matrix. Then, the exponential of matrix A:

exp(A) =
+∞∑
i=0

Ai

i!
(2.1)

is positive definite, denoted by exp(A) � 0.

Property 2.2: Product of matrices (Horn and Johnson, 2013)

Let A ∈ Rn×n be a positive semidefinite matrix and B ∈ Rn×m be a matrix with
m ≤ n. Then, the product B>AB is positive semidefinite. It is positive definite if
and only if A is positive definite and B has rank m.

The concept of positive definite matrices is also used to introduce Linear Matrix
Inequalities in control theory.

Definition 2.3: Linear Matrix Inequality (Boyd et al., 1994)

A Linear Matrix Inequality (LMI) is an expression of the following form:

F (x) = F0 +
n∑
i=1

xiFi � 0 (2.2)

where x =
[
x1 · · · xn

]> ∈ Rn is the vector of decision variables and the matrices
Fi ∈ Rm×m, with i ∈ 0, n, are symmetric.

♦

Remark 2.1: Non strict LMI
Definition 2.3 can be extended to the case where the inequality is not strict. In this
case, F (x) is considered to be positive semidefinite, denoted by F (x) � 0.

♦

Remark 2.2: Affine matrix
A matrix F (x) ∈ Rm×m is called affine in x ∈ Rn if it can be written as:

F (x) = F0 +
n∑
i=1

xiFi. (2.3)

If F0 = 0m, the the matrix F (x) is linear with respect to x.

LMI problems often arise in several domains of control engineering, such as robust
control (Scherer and Weiland, 2015) or state-estimation (Le et al., 2013) for example.
These problems often consist in minimizing a linear objective c>x, with c ∈ Rn
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under strict or nonstrict LMI constraints such as:

minimize
x

c>x

subject to

F (x) � 0.
(2.4)

These problems can be solved numerically with appropriate solvers. For example,
the Robust Control Toolbox of Matlab® provides a solver to solve the problems of
the form (2.4) called mincx. Other openly distributed toolboxes for Matlab® such
as CVX (Grant and Boyd, 2014, 2008) or YALMIP (Löfberg, 2004, 2020) allow to
solve problems of the form (2.2) but also more general problems where the LMIs are
nonstrict.

Property 2.3: Schur complement (Boyd et al., 1994)

Let Q(x) ∈ Rn×n and R(x) ∈ Rm×m be symmetric matrices affine in x and S(x) ∈
Rn×m a matrix affine in x. Then the LMI:[

Q(x) S(x)
S>(x) R(x)

]
� 0 (2.5)

is equivalent to: {
Q(x) � 0

R(x)− S>(x)Q−1(x)S(x) � 0
(2.6)

or: {
R(x) � 0

Q(x)− S(x)R−1(x)S>(x) � 0.
(2.7)

The concept of LMI can be extended to the more general case of Bilinear Matrix
Inequalities.

Definition 2.4: Bilinear Matrix Inequality

A Bilinear Matrix Inequality (BMI) is an inequality of the form:

F (x) = F0 +
n∑
i=1

xiFi +
n∑
i=1

n∑
j=1

xixjFij � 0 (2.8)

where x =
[
x1 · · · xn

]> ∈ Rn is the vector of decision variables and F0,Fi,Fij ∈
Rm×m, with i ∈ 1, n and j ∈ 1, n, are symmetric matrices.

BMI problems can sometimes be reduced to LMI problems using for instance
Property 2.3. When they cannot, specific optimization solvers exist such as PENBMI
(Henrion et al., 2005) or its open source counterpart PENLAB (Fiala et al., 2013)
that can solve optimization problems under BMI constraints. Such BMI constraints
often appear in control with one specific procedure presented hereafter.
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Theorem 2.1: S-procedure (Boyd et al., 1994)

Let Fi ∈ R, with i ∈ 0,m be quadratic functions of a variable x ∈ Rn:

Fi(x) = x>Qix+ 2f>i x+ ri (2.9)

where Qi ∈ Rn×n is a symmetric matrix, fi ∈ Rn and ri ∈ R, with i ∈ 0,m. If
∃τi ≥ 0, with i ∈ 1,m, such that:

F0(x)−
m∑
i=1

τiFi(x) ≥ 0 (2.10)

then F0(x) ≥ 0 for all x such that Fi(x) ≥ 0 for all i ∈ 1,m.

The link between the S-procedure defined in Theorem 2.1 and LMIs and BMIs is
not immediate from what is presented in Theorem 2.1. Using (2.9), the left hand
side of inequality (2.10) can be rewritten as:

F0(x)−
m∑
i=1

τiFi(x) = x>

(
Q0 −

m∑
i=1

τiQi

)
x+ 2

(
f0 −

m∑
i=1

τifi

)>

x

+

(
r0 −

m∑
i=1

τiri

)

=

[
x
1

]> 
Q0 −

m∑
i=1

τiQi f0 −
m∑
i=1

τifi

f>0 −
m∑
i=1

τif
>
i r0 −

m∑
i=1

τiri


[
x
1

]
.

Then, with the notation:

F =


Q0 −

m∑
i=1

τiQi f0 −
m∑
i=1

τifi

f>0 −
m∑
i=1

τif
>
i r0 −

m∑
i=1

τiri

 ,

inequality (2.10) is equivalent to the nonstrict matrix inequality:

F � 0. (2.11)

If the matrices Qi, the vectors fi and the scalars ri, with i ∈ 0,m, are known, then
(2.11) is a LMI where the vector of decision variables is τ =

[
τ1 · · · τm

]>. However,
if the terms Qi, fi and ri are also decision variables, then the expression (2.11) is a
BMI. The S-procedure is used in Chapter 4 to design tube-based model predictive
control policies.

2.2 Set-theoretic elements for control
Given their importance in control theory, this part of the present chapter focuses on
definitions relative to sets and operations on sets. One of the most common class
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of sets used in control is the class of convex sets (Boyd and Vandenberghe, 2009)
and all the results presented in this thesis are based on such convex sets, hence the
necessity of the following definition.

Definition 2.5: Convex set

A set S ∈ Rn is called convex if for all x1, . . . ,xk ∈ S, with k ≥ 2:

k∑
i=1

αixi ∈ S, with α1, . . . , αk ∈ R such that
k∑
i=1

αi = 1.

Another general definition which is of use in Sections 2.2.2 and 2.2.3 is that of
the convex hull of a finite set of points.

Definition 2.6: Convex hull

The convex hull of a finite set of points V = {v1, . . . ,vk}, with v1, . . . ,vk ∈ Rn and
k ≥ 2, is the set:

conv(V) =

{
x ∈ Rn

∣∣∣∣∣ x =
k∑
i=1

λivi, λi ∈ R+,
k∑
i=1

λi = 1

}

The remainder of this section is organized as follows: two types of sets, namely
ellipsoidal and polyhedral sets are defined in Sections 2.2.1 and 2.2.2 respectively.
Section 2.2.3 presents some classical operations on sets and Section 2.2.4 introduces
the concept of set invariance.

2.2.1 Ellipsoidal sets
Ellipsoids are one of the most widespread family of convex sets in control theory
(Kurzhanski and Vályi, 1997, Blanchini and Miani, 2015). They are used in numerous
areas such as identification (Polyak et al., 2004), state estimation (Schweppe, 1968,
Merhy, 2019) and, what is mainly relevant for this thesis, robust control (Boyd et al.,
1994, Poznyak et al., 2014). Due to their relevance in such fields, some definitions
are further detailed.

Definition 2.7: Ellipsoidal set

Given a symmetric positive definite matrix P = P> � 0 with P ∈ Rn×n, a vector
c ∈ Rn and a real scalar ρ > 0, the ellipsoid E (P , c, ρ) is the set:

E (P , c, ρ) =
{
x ∈ Rn

∣∣∣ (x− c)>P (x− c) ≤ ρ
}

(2.12)

where P is called the shape matrix, c the center and ρ the so called radius of
E (P , c, ρ).

Example 2.1: An ellipsoidal set in R2

Let P =

[
2 −1
−1 4

]
, c =

[
2
1

]
and ρ = 6. Then, Figure 2.1 shows, in red, the set
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E (P , c, 6). Moreover, the border of E (P , c, 6) is the set:

∂E (P , c, 6) =
{
x ∈ R2

∣∣∣ (x− c)>P (x− c) = 6
}

which is an ellipse.

x

y

−1
−1

0

0

1

1

2

2

3

3

4

4

c

∂E (P , c, 6)

E (P , c, 6)

Figure 2.1: An example of ellipsoidal set in R2.

Definition 2.8: Normalized ellipsoidal set

A normalized ellipsoidal set is an ellipsoidal set with ρ = 1, leading to:

E (Q, c, 1) = E (Q, c) =
{
x ∈ Rn

∣∣∣ (x− c)>Q(x− c) ≤ 1
}
.

Note that such a normalized set can be obtained from an ellipsoidal set by taking
Q = P /ρ.

Example 2.2: A normalized ellipsoidal set in R2

By taking the same numerical values as in Example 2.1, if Q = P /6, one has that
E (Q, c) = E (P , c, 6). This way, Figure 2.1 also represents the normalized ellipsoidal
set E (Q, c) in red and its border in black.

The attentive reader will have noticed that, for a normalized ellipsoidal set
E (Q, c), since the radius ρ is unitary, it can be omitted from the notation. The
same way, if c = 0n, the center is omitted from the notation, giving E (P , ρ) for a
centered ellipsoidal set or E (Q) for a centered normalized ellipsoidal set.

However, while simple to use and of reduced complexity, an ellipsoidal set can be
more conservative than other sets such as polyhedral sets introduced in Section 2.2.2.

2.2.2 Polyhedral sets
The family of polyhedral sets is another widespread family of convex sets appearing
in control theory (Blanchini and Miani, 2015). They appear in particular when linear
constraints are applied to a system. Polyhedral sets have two types of representation
either based on half spaces (Definition 2.9) or on vertices (Definition 2.11), making
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them very flexible and allowing them to be a good approximation of any convex
set (Bronstein, 2008). Another advantage of using polyhedral sets is that they are
invariant by the operations presented in Section 2.2.3, i.e. the result of an operation
between two polyhedral sets is a polyhedral set. Polyhedral sets are less conservative
than ellipsoidal sets. However, their complexity do not depend on the dimension of
the space but on the number of vertices, which can quickly increase.

Definition 2.9: Half-space or H-representation (Schrijver, 1998)

A polyhedral set or polyhedron P ⊂ Rn is the combination of finitely many linear
inequalities:

P = {x ∈ Rn |Hx ≤ θ}, (2.13)

with H ∈ Rm×n and θ ∈ Rm, where m is the number of inequalities defining P .

From a geometrical point of view, each row of H and the associated element of
θ in (2.13) define a closed half-space Pi, with i ∈ 1,m, such that:

Pi = {x ∈ Rn | hix ≤ θi}

where hi and θi are the i-th rows of H and θ, hence the name half-space representation
or H-representation. The border ∂Pi of Pi, is the hyperplane in Rn:

∂Pi = {x ∈ Rn | hix = θi}.

This way, the rows hi of H can be interpreted as the transpose of the normal vectors
to the hyperplanes ∂Pi and the elements θi of θ as the algebraic distances of these
hyperplanes to the origin 0n×1, if

∥∥h>
i

∥∥
2
= 1. Indeed, since the distance between

∂Pi and a vector x ∈ Rn is:

d(x, ∂Pi) =
|hix− θi|∥∥h>

i

∥∥
2

,

if
∥∥h>

i

∥∥
2
= 1, d(0n×1, ∂Hi) = |θi|.

Example 2.3: A polyhedron in R2

Let H =

[
3 2
0 1

]
and θ =

[
8
2

]
. Then, H and θ induce a polyhedron P in R2 (as per

Definition 2.9) represented in Figure 2.2. This figure also shows the hyperplanes ∂P1

and ∂P2 defined respectively by the first and second rows of H and θ, as well as the
normal vectors h>

1 and h>
2 .

However, as it can be seen in Example 2.3, a polyhedral set can be unbounded.
In control theory, a specific class of polyhedral sets is used, namely the class of
bounded polyhedral sets.

Definition 2.10: Polytope

A bounded polyhedron is called a polytope.

♦
Remark 2.3: H-polytope
A polytope defined by a H-representation is called a H-polytope.
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Figure 2.2: An example of polyhedral set in R2.

Example 2.4: A polytope in R2

Let H =

[
3 0 −1 −1 2
2 1 2 −1 −1

]>
and θ =

[
8 2 3 5 4

]>. Then H and θ induce

a polyhedron P in R2 (as per Definition 2.9) represented in Figure 2.3. It is obvious
from the representation in Figure 2.3 that P is a polytope since it is bounded.
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∂P3

∂P4
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Figure 2.3: An example of polytopic set in R2.

Before going further in the definitions about polyhedrons and polytopes, a way
to test if a polytope is empty or not is presented below.



2.2. Set-theoretic elements for control 27

Theorem 2.2: Farkas’ lemma (Matoušek and Gärtner, 2007)

Let H ∈ Rm×n and θ ∈ Rm. Then exactly one of the two following statements is
true:

1. There exists a vector x ∈ Rn such that Hx ≤ θ;

2. There exists a vector y ∈ Rm such that y ≥ 0, H>y = 0n×1 and θ>y < 0.

With Theorem 2.2, it is then possible to test if a polytope is empty or not given
its H-representation.

Now that the half-space representation of a polyhedron has been introduced, it
is time to introduce its dual representation, the vertex representation. However, this
definition is limited to the V-representation of a polytope, the general definition for
a polyhedron being out of the scope of this thesis.

Definition 2.11: Vertex or V-representation

A polytopic set or polytope P ⊂ Rn is the linear combination of finitely many points
called vertices v1, . . . ,vk ∈ Rn, with k ≥ 2:

P =

{
x ∈ Rn

∣∣∣∣∣ x =
k∑
i=1

λivi, λi ∈ R+,
k∑
i=1

λi = 1

}
. (2.14)

♦
Remark 2.4: V-polytope
A polytope defined by a V-representation is called a V-polytope.

♦

Remark 2.5: Polytope and convex hull of vertices
Consider a set of points V = {v1, . . . ,vk}, where vi ∈ Rn, with i ∈ 1, k, k ≥ 2. If V
is the set of the vertices of a polytope P ⊂ Rn, then:

P = conv(V),

i.e. a polytope is the convex hull of its vertices.

Two ways to represent polytopes have been introduced. However, these two
representations are formally different, since one needs a set of hyperplanes and the
other requires a set of vertices to induce a polytope. Intuitively, seeking all the
intersection points of the hyperplanes, one can find the vertices or define hyperplanes
from the vertices. While its proof is not trivial, the following theorem formalizes
this idea.

Theorem 2.3: Main theorem for polytopes (Ziegler, 2007)

A subset P ∈ Rn is the convex hull of a finite set of points if and only if it is a
bounded intersection of half-spaces.

Corollary 2.4: Equivalence of H- and V-representation of polytopes

A polytope P ∈ Rn admits a V-representation if and only if it admits a H-represen-
tation.
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Example 2.5: Equivalence between H and V-representation of polytopes
Let V be a family of vectors of R2:

V =

{
v1 =

[
3
1

]
,v2 =

[
1
3

]
,v3 =

[
−2
2

]
,v4 =

[
−2
−2

]
,v5 =

[
1
−2

]}
.

The polytope P = conv(V) is presented in Figure 2.4 as well as the points vi, with
i ∈ 1, 5.

With this basic example in two dimensions, it is easy to extract the H-representa-
tion of P by finding the equations of the lines joining two consecutive vertices. This
way:

P =

x ∈ Rn

∣∣∣∣∣∣∣∣∣∣


1 1
−1 3
−1 0
0 −1
3 −2

x ≤


4
8
2
2
7


.
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Figure 2.4: Equivalence between V-representation and H-representation for a polytope
in R2.

Example 2.5 illustrates the equivalence between H-representation and V-represen-
tation of a polytope given in Corollary 2.4. The construction of the H-representation
from a V-representation, presented in the case of a polytope in R2 in Example 2.5,
is known as the facet enumeration problem. The construction of the V-representa-
tion from a H-representation is known as the vertex enumeration problem. Several
algorithms exist to solve these problems (Fukuda and Prodon, 1995, Bremner et al.,
1998) but their runtime increases greatly with the number of vertices.

Finally, a special kind of polytope that is used to define perturbation sets in
Paragraph 2.4.2.1 or Section 4.1 or even to define constraint sets in the model
predictive controllers of Chapters 3 to 5 is introduced.
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Definition 2.12: Box

A box Bn(α) ⊂ Rn, with α =
[
α1 · · · αn

]> ∈ Rn, with αi ≥ 0 for all i ∈ 1, n, is
composed by n intervals:

Bn(α) = {x ∈ Rn | |x| ≤ α}. (2.15)

When α ∈ Rn in Definition 2.12 is reduced to 1n×1, the box Bn(α) is called a
unitary box.

Definition 2.13: Unitary box

A unitary box Bn ⊂ Rn is composed by n unitary intervals:

Bn = {x ∈ Rn | |x| ≤ 1n×1}. (2.16)

2.2.3 Set operations
Two types of convex sets, ellipsoidal and polytopic sets, have been introduced in the
previous paragraphs. This paragraph then introduces some useful operations on sets,
mainly on polytopic sets since, as mentioned in Section 2.2.2, the set of polytopes is
invariant by the operations that are presented in the following. Thus, the following
definitions are given for general sets X ,Y ⊂ Rn, but some useful properties on
polytopes coming from these definitions are introduced.

Definition 2.14: Cartesian product of two sets

The Cartesian product of two sets X ⊂ Rn and Y ⊂ Rm is the set:

X × Y = {(x,y) | x ∈ X and y ∈ Y}. (2.17)

Property 2.4: Cartesian product of two polytopes

Let P ⊂ Rn, Q ⊂ Rm be two polytopes for which a H-representation is known:

P = {x ∈ Rn |HPx ≤ θP} and Q = {x ∈ Rm |HQx ≤ θQ}.

The Cartesian product of P and Q is the set:

P ×Q =

{
x ∈ Rn+m

∣∣∣∣ diag(HP ,HQ)x ≤
[
θP
θQ

]}
. (2.18)

Definition 2.15: Intersection of two sets

The intersection of two sets X ,Y ⊂ Rn is the set:

X ∩ Y = {x ∈ Rn | x ∈ X and x ∈ Y}. (2.19)
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Property 2.5: Intersection of two polytopes

Let P ,Q ⊂ Rn be two polytopes for which a H-representation is known:

P = {x ∈ Rn |HPx ≤ θP} and Q = {x ∈ Rn |HQx ≤ θQ}.

The intersection of P and Q is the set:

P ∩Q =

{
x ∈ Rn

∣∣∣∣ [HP
HQ

]
x ≤

[
θP
θQ

]}
. (2.20)

♦

Remark 2.6: Redundant inequalities
In the H-representation (2.20) of the intersection of two polytopes, some inequalities
are redundant as shown in Example 2.6. However, algorithms exists, such as the
Fourier-Motzkin elimination method (Dantzig, 1972), to remove them.

Example 2.6: Intersection of two polytopes
Let P be the polytope introduced in Example 2.5 and Q a polytope induced by

HQ =

[
−11 −1 7
7 −3 1

]>
and θQ =

[
6 6 18

]>. Figure 2.5 presents the two polytopes

P and Q as well as their intersection P ∩Q.
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Figure 2.5: Intersection of two polytopes in R2.

As per Remark 2.6, it is obvious from Figure 2.5 that two inequalities are
redundant. These inequalities are the ones associated with the hyperplanes ∂P2

and ∂P3. Thus, the second and third rows of HP and θP can be omitted from the
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H-representation of P ∩Q such that:

P ∩Q =


x ∈ R2

∣∣∣∣∣∣∣∣∣∣∣∣


1 1
0 −1
3 −2
−11 7
−1 −3
7 1

x ≤


4
2
7
6
6
18




.

In general, the elimination of redundant constraints is not as simple as in
Example 2.6 (a plot was still needed to see which constraints were redundant) and
the complexity of the problem increases greatly with the number of inequalities and
the dimension of the vector space Rn.

Definition 2.16: Translation of a set

The translation of a set X ⊂ Rn by a vector t ∈ Rn is the set:

T(X , t) = {x+ t | x ∈ X}. (2.21)

Property 2.6: Translation of a V-polytope

Let P ⊂ Rn be a polytope for which a V-representation is known. Let v1, . . . ,vk ∈ Rn,
with k ≥ 2, be the vertices of P and consider t ∈ Rn. Then:

T(P , t) = conv({v1 + t, . . . ,vk + t}). (2.22)

Proof. The proof is immediate from Definition 2.11 and Definition 2.16. �

Property 2.7: Translation of a H-polytope

Let P ⊂ Rn be a polytope for which a H-representation is known. Let H ∈ Rm×n

and θ ∈ Rm the matrices inducing P and t ∈ Rn. Then:

T(P , t) = {x ∈ Rn |Hx ≤ θ +Ht}. (2.23)

Proof. Let P = {x ∈ Rn |Hx ≤ θ} be a polytope with H ∈ Rm×n and θ ∈ Rm.
Let pi ∈ ∂Pi, with i ∈ 1,m a point on the i-th border of P , thus verifying hipi = θi
where hi and θi are the i-th rows of H and θ, respectively. The translation of the
point pi by the vector t ∈ Rn verifies:

hi(pi + t) = θi + hit. (2.24)

Thus, if x ∈ Rn is such that x ∈ T(∂Pi, t), it has the form x = pi + t and verifies
(2.24). This way, T(∂Pi, t) = {x ∈ Rn | hix = θi + hit}, ∀i ∈ 1,m. Then, T(P , t) is
given by (2.23). �

Definition 2.17: Minkwoski sum of two sets

The Minkowski sum of two sets X ,Y ⊂ Rn is the set:

X ⊕ Y = {x+ y | x ∈ X ,y ∈ Y}. (2.25)
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♦

Remark 2.7: Minkowski sum of two V-polytopes (Ziegler, 2007)
If X ,Y ⊂ Rn are two polytopes for which a V-representation is known, their
Minkowski sum can be computed easily. Let x1, . . . ,xk,y1, . . . ,yl ∈ Rn, with
k, l ≥ 2, such that X = conv({x1, . . . ,xk}) and Y = conv({y1, . . . ,yl}). Then,
X ⊕ Y = conv(V) where:

V =
{
xi + yj,∀i ∈ 1, k, ∀j ∈ 1, l

}
.

Definition 2.18: Pontryagin difference of two sets

The Pontryagin difference of two sets X ,Y ⊂ Rn is the set:

X 	 Y = {x ∈ X | x+ y ∈ X ,∀y ∈ Y}. (2.26)

Example 2.7: Minkowski sum and Pontryagin difference of V-polytopes
Let P ⊂ R2 be the polytope introduced in Example 2.5. Let Q ⊂ R2 be the polytope:

Q = conv

({
q1 =

[
−1
−1

]
,q2 =

[
0
1

]
,q3 =

[
1
−1

]})
.

Figure 2.6 presents the Minkowski sum P ⊕Q of P and Q. As per Remark 2.7, it is
obtained by adding all the vertices of Q to the vertices of P and by taking the convex
hull of all the obtained points. It can be done graphically by centering the set Q on
all the vertices of P and by joining the maximum points.
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Figure 2.6: Minkowski sum of two polytopes in R2.

Figure 2.7 presents the Pontryagin difference P 	Q of P and Q. In this figure,
the set Q is centered on all the vertices of P 	Q to show that the sum of an element
from P 	Q and one from Q is an element of P.
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Figure 2.7: Pontryagin difference of two polytopes in R2.

From the graphical representations of Example 2.7, a special case of Minkowski
sum and Pontryagin difference can be formulated.

Property 2.8: Minkowski sum and translation

Let X ⊂ Rn be a set and t ∈ Rn a vector. Then, the Minkowski sum of X and {t}
is the translation of X by t:

X ⊕ {t} = T(X , t). (2.27)

Proof. The proof is immediate from Definitions 2.16 and 2.17. �

♦

Remark 2.8: Minkowski sum of a polytope and a singleton
From Properties 2.7 and 2.8, if P ⊂ Rn is a polytope for which a H-representation is
known and t ∈ Rn is a vector, the H-representation of P ⊕ {t} is:

P ⊕ {t} = {x ∈ Rn |Hx ≤ θ +Ht} (2.28)

with H ∈ Rm×n and θ ∈ Rm the matrices inducing P .

Definition 2.19: Scaling of a set

Let X ∈ Rn be a set and consider λ ∈ R+. The λ-scaled version of the set X is:

λX = {y ∈ Rn | y = λx,x ∈ X}. (2.29)

Property 2.9: V-representation of a scaled polytope

Let P ⊂ Rn be a polytope for which a V-representation is known. Let v1, . . . ,vk ∈ Rn,
with k ≥ 2, be the vertices of P and consider λ ∈ R+. The V-representation of λP
is then:

λP = conv({λv1, . . . , λvk}). (2.30)

Proof. The proof is immediate from Definition 2.11 and Definition 2.19. �
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Property 2.10: H-representation of a scaled polytope

Let P ⊂ Rn be a polytope for which a H-representation is known. Let H ∈ Rm×n

and θ ∈ Rm be the matrices inducing P and consider λ ∈ R+. The H-representation
of λP is then:

λP = {x ∈ Rn |Hx ≤ λθ}. (2.31)

Proof. Let P = {x ∈ Rn |Hx ≤ θ} be a polytope with H ∈ Rm×n and θ ∈ Rm.
Let pi ∈ ∂Pi, with i ∈ 1,m a point on the i-th border of P , thus verifying hipi = θi
where hi and θi are the i-th rows of H and θ, respectively. The scaling of the point
pi by λ ∈ R+ verifies:

hiλpi = λθi. (2.32)

Thus, if x ∈ Rn is such that x ∈ λ∂Pi, it has the form x = λpi and verifies (2.32).
This way, λ∂Pi = {x ∈ Rn | hix = λθi}, ∀i ∈ 1,m. Then, λP is given by (2.31). �

Example 2.8: Polytope scaling

Let P ⊂ R2 be the polytope induced by the matrices H =

[
−1 −3 3 5
4 −2 −7 1

]>
and

θ =
[
6 5 11 12

]>. Figure 2.8 presents the polytope P as well as its versions
scaled by λ = 1.5 and λ = 0.5.
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Figure 2.8: Different scalings of a polytope in R2.

2.2.4 Sets in control theory
The sets and the operations introduced in the previous paragraphs are used in
control theory in conjunction with properties of set invariance that are detailed
in the following. This paragraph thus introduces definitions of different kinds of
invariance properties for dynamical systems.
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The first two definitions are given for an autonomous discrete-time linear time
invariant (LTI) system. They are related to positive invariance of a set which is one
of the most important invariance property in control theory.

Definition 2.20: Positive invariant set (Blanchini and Miani, 2015)

Consider an autonomous discrete-time linear time invariant system with the dynam-
ics:

x(k + 1) = Ax(k) (2.33)

where A ∈ Rn×n is a Schur matrix and x(k) ∈ Rn for all k ∈ N. A set X ⊂ Rn is
called positive invariant for the dynamics (2.33) if x(k + 1) ∈ X for all x(k) ∈ X or
if:

AX ⊆ X . (2.34)

Definition 2.21: Minimal positive invariant set (Blanchini and Miani, 2015)

The set X ⊂ Rn is called minimal positive invariant (mPI) for the dynamics (2.33)
if it is the intersection of all the positive invariant sets for the dynamics (2.33).

Definition 2.22: Robustly positive invariant set (Blanchini and Miani, 2015)

Consider a perturbed autonomous discrete-time linear time-invariant system with
the dynamics:

x(k + 1) = Ax(k) +w(k) (2.35)

where A ∈ Rn×n is a Schur matrix, x(k) ∈ Rn for all k ∈ N and w(k) ∈ W ⊂ Rn a
perturbation signal. A set X ⊂ Rn is called robustly positive invariant (RPI) for the
dynamics (2.35) if x(k + 1) ∈ X for all x(k) ∈ X and w(k) ∈ W or if:

AX ⊕W ⊆ X . (2.36)

Definition 2.23: Minimal RPI set (Blanchini and Miani, 2015)

The set X ⊂ Rn is called minimal robustly positive invariant (mRPI) for the dynamics
(2.35) if it is the intersection of all the RPI sets for the dynamics (2.35).

Other works, such as Basile and Marro (1969), have presented the concept of set
invariance when the dynamics are not autonomous.

Definition 2.24: Controlled invariant set (Basile and Marro, 1969)

Consider a discrete-time linear time-invariant system with the dynamics:

x(k + 1) = Ax(k) +Bu(k) (2.37)

where A ∈ Rn×n, B ∈ Rn×m, x(k) ∈ Rn and u(k) ∈ Rm for all k ∈ N. The pair
(A,B) is assumed to be controllable. A set X ⊂ Rn is called controlled invariant for
the dynamics (2.37) if for all x(k) ∈ X , there exists a control law u(k) ∈ U ⊂ Rm

such that x(k + 1) ∈ X .

Finally, the scaling of sets can be used to define a last kind of invariance property.
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Definition 2.25: Controlled λ-contractive set (Blanchini and Miani, 2015)

A set X ⊂ Rn is called controlled λ-contractive, with λ ∈ [0, 1), for the dynamics
(2.37) if for all x(k) ∈ X , there exists a control law u(k) ∈ U ⊂ Rm such that
x(k + 1) ∈ λX .
If λ = 1, X is controlled invariant.

The last important element of this section is related to the construction of such
invariant sets. Several algorithms exist to compute RPI and mRPI sets (Raković
et al., 2005, Kofman et al., 2007, Olaru et al., 2010, Trodden, 2016) or even controlled
invariant sets (Fiacchini and Alamir, 2017). Most of these algorithms are based on H-
polytopes, leading to one of their main drawbacks, i.e. its complexity. Indeed, these
algorithms are iterative, which can make the number of vertices of the considered
polytopes quickly increase. This is why it is often better to compute invariant
sets offline and use the result online. In order to reduce the complexity of the
invariant set computation, ellipsoidal sets could be used. However, such sets would
induce quadratic constraints in the optimization problems of the model predictive
controllers of Section 4.1, while the constraints remain linear with H-polytopes.
Then, while the computation of invariant sets is simplified with the use of ellipsoidal
sets, the computation of the input signal with a model predictive controller is more
complicated if an ellipsoidal set is used instead of a polytopic set.

A method to compute polytopic invariant sets is based on Kofman et al. (2007)
followed by a procedure coming from Olaru et al. (2010). Indeed, Kofman et al.
(2007) provides a useful theorem to build an initial RPI set from the dynamics
of a perturbed autonomous discrete-time linear time invariant system when the
perturbation is bounded.

Theorem 2.5: Initial RPI set (Kofman et al., 2007)

Consider the system:
x(k + 1) = Ax(k) +w(k)

together with the notations from Definition 2.22. The perturbation vector is assumed
to be such that ‖w(k)‖∞ ≤ w for all k ∈ N, where w ∈ R+. Let A = V JV −1, with
V ,J ∈ Rn×n, be the Jordan decomposition of A. Then the set:

S =

{
x ∈ Rn

∣∣∣∣ [ V −1

−V −1

]
x ≤ 12×1 ⊗ (In − |J |)−1

∣∣V −1w1n×1

∣∣} (2.38)

is invariant for the dynamics (2.35).

From this initial shape, Olaru et al. (2010) propose an iterative algorithm to
build an ε-approximation of the mRPI set, where ε ∈ R∗

+, recalled in Algorithm 2.1.
In this algorithm, E (In, ε) ⊂ Rn is a centered ellipsoid and Bn is a unitary box of Rn

as defined in Definition 2.13. For a complete version, the reader can refer to Olaru
et al. (2010).

Algorithm 2.1 provides an approximation of the mRPI set depending on the
chosen value of the parameter ε. However, this method can end up being time
consuming depending on the dimension of the state space n and on the matrix A.

Trodden (2016) provides a faster method, while more conservative, than the one
proposed above. However, this method being based on the maximization of a cost
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Algorithm 2.1: ε-approximation of the mRPI set
Input: The matrix A, the disturbance bound w, the scalar ε ∈ R∗

+

1 Compute the Jordan decomposition of A;
2 Build the initial RPI set S with (2.38);
3 Initialize Sε = S;
4 Initialize l = 0;
5 while Al+1Sε 6⊂ E (In, ε) do
6 l = l + 1;
7 Sε = ASε ⊕ wBn;
8 end

Output: The ε-approximation Sε of the mRPI set

function under constraints, if the cost function is unbounded, there is no guarantee
to get a result. To present the optimization problem proposed by Trodden (2016),
it is necessary to introduce notations for some elements of the problem. First, the
H-representation of Bn as used in Algorithm 2.1 is:

Bn = {x ∈ Rn |Bx ≤ θBn}

and second, the set S from (2.38) has for simplified H-representation:

S = {x ∈ Rn | Sx ≤ θS}.

Then, the approximation of the mRPI set S∗ have for H-representation:

S∗ = {x ∈ Rn | Sx ≤ θ∗}

with θ∗ = c∗ + d∗ such that (Trodden, 2016):

(c∗,d∗) = maximize
ci,di,ξi,ωi

∀i∈1,2n

2n∑
i=1

ci + di (2.39a)

subject to

ci ≤ siAξi, ∀i ∈ 1, 2n, (2.39b)
Sξi ≤ c+ d, ∀i ∈ 1, 2n, (2.39c)
di ≤ siωi, ∀i ∈ 1, 2n, (2.39d)

Bωi ≤ wθBn , ∀i ∈ 1, 2n (2.39e)

where si, ci and di, with i ∈ 1, 2n, are the rows of S, c and d, respectively, and
ξi ∈ Rn and ωi ∈ Rn, with i ∈ 1, 2n, are optimization variables. Thus, as mentioned
earlier, if the problem is bounded, (2.39) provides an approximation of the mRPI
set which can be more conservative than the one provided by Olaru et al. (2010),
but is obtained faster. Example 2.9 provides an academic example of construction of
the mRPI set with the two methods.

Example 2.9: Comparison of two approximation of the mRPI set of a system

Consider the system x(k+1) = Ax(k)+w(k), with A =

[
0.8 0.1
0.3 0.5

]
and ‖w(k)‖∞ ≤

w = 0.1 for k ∈ N. The Jordan decomposition of A is:

A = V JV −1, with V =

[
−0.2638 1.2638

1 1

]
and J =

[
0.4209 0

0 0.8791

]
.
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Using Theorem 2.5, the initial RPI set is:

S =

x ∈ R2

∣∣∣∣∣∣∣∣

−0.6547 0.8273
0.6547 0.1727
0.6547 −0.8273
−0.6547 −0.1727

x ≤


0.0298
0.6845
0.0298
0.6845


.
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Figure 2.9: Comparison of two approximations of the mRPI set of a system in R2.

Figure 2.9 presents in red the initial RPI set defined above. The left plot (a)
shows the ε-approximation of the mRPI set Sε with ε = 10−5 in blue obtained with
Algorithm 2.1. On the right plot (b) is drawn the approximation of the mRPI set S∗

in blue obtained by solving (2.39).
The fact that S∗ is more conservative than Sε is obvious from Figure 2.9 since

Sε ⊂ S, while S∗ = S. However, it is not obvious from the plot that the V-
representation of Sε contains 149 vertices, its H-representation is composed of 79
inequalities and s = 88 iterations are needed to compute Sε. The approximation
S∗ has the same V-representation and H-representation as S, i.e. 4 vertices and 4
inequalities.

Finally, a trade-off between conservativeness and complexity can be made by
combining the methods from Olaru et al. (2010) and Trodden (2016). For this, the
while loop in Algorithm 2.1 can be modified to run for a limited number of iterations
arbitrarily chosen or until a maximal number of vertices or inequalities is reached.
Then, the H-representation of the obtained set can be used as input to (2.39).

2.3 Multi-vehicle system description
The elements introduced in the previous sections are used in the development of
control algorithms for multi-agent systems (MAS). For this, the dynamics of the
agents composing the MAS are introduced in the present section as well as the
assumptions necessary for the development of the control algorithms proposed in
this thesis.
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Let Σ be a multi-agent system composed of N agents. Each agent obeys discrete-
time LTI dynamics:

xi(k + 1) = Aixi(k) +Biui(k) (2.40a)
yi(k) = Cixi(k) (2.40b)

where xi ∈ Rni , ui ∈ Rmi , yi ∈ Rpi , Ai ∈ Rni×ni , Bi ∈ Rni×mi and Ci ∈ Rpi×ni ,
with i ∈ 1, N . For an agent i ∈ 1, N , the vector xi is called the state vector, ui
is called the input vector and yi is called the output vector. The output set Yi is
a subset of the state space Xi and is of lower or equal dimension, i.e. pi ≤ ni. In
the literature, several types of multi-vehicle systems (MVS) are considered. Some
examples include MVS composed of several unmanned aerial vehicles (Chevet et al.,
2020b), unmanned ground vehicles (Kamel et al., 2020) or even both unmanned
ground and aerial vehicles (Sharifi et al., 2014).

Assumption 2.1: Controllability
The pair (Ai,Bi) is controllable for all i ∈ 1, N .

Assumption 2.2: Observability
The pair (Ai,Ci) is observable for all i ∈ 1, N .

The goal of the control algorithms that are presented in the following chapters of
this thesis is to control the position of vehicles in a two-dimensional space. Hence,
each agent of Σ is a vehicle which evolves in an output space subset of R2, i.e.
pi = p = 2 ∀i ∈ 1, N . The output of an agent i ∈ 1, N is then the Cartesian position
yi(k) =

[
xi(k) yi(k)

]> of agent i in the plane R2.

Assumption 2.3: Output space
All agents of Σ share the same output space, i.e. Yi = Yj = Y ⊂ R2 for all i, j ∈ 1, N ,
i 6= j.

Assumption 2.4: Structure of the state vector
The state vector xi(k) of an agent i ∈ 1, N of Σ is composed of the Cartesian position
yi(k) =

[
xi(k) yi(k)

]> of agent i in the plane R2 and additional states (e.g. the
speed of the agent) such that:

xi(k) =


xi(k)
x1,i(k)
yi(k)
x2,i(k)


where x1,i ∈ Rn1,i and x2,i ∈ Rn2,i, with n1,i + n2,i + 2 = ni, n1,i, n2,i ≥ 0.

♦

Remark 2.9: Additional states
The additional states x1,i and x2,i appearing in Assumption 2.4 could refer to the
speed of the agents, their acceleration, etc.

Remark 2.10: Output matrix
Given the structure of the state vector xi(k) of agent i ∈ 1, N given in Assumption 2.4,



40 Chapter 2. Mathematical tools and set-theoretic elements

♦

the output matrix Ci is:

Ci =

[
1 01×n1,i

0 01×n2,i

0 01×n1,i
1 01×n2,i

]
for all i ∈ 1, N . The case n1,i = 0 and/or n2,i = 0 is handled by removing the
corresponding column in Ci.

The evolution of each agent of Σ is conditioned by the position of the other
agents in Y .
Assumption 2.5: Knowledge of environment
Each agent of Σ knows, at all time, the position of the other agents of Σ.

To make the notations more compact, the dynamics of each agent can be aggre-
gated in one single state-space model:

x(k + 1) = AΣx(k) +BΣu(k) (2.41a)
y(k) = CΣx(k) (2.41b)

where x =
[
x>
1 · · · x>

N

]> ∈ R
∑

i∈1,N ni , u =
[
u>
1 · · · u>

N

]> ∈ R
∑

i∈1,N mi , y =[
y>
1 · · · y>

N

]> ∈ R2N , AΣ = diag(A1, . . . ,AN), BΣ = diag(B1, . . . ,BN) and
CΣ = diag(C1, . . . ,CN).

In the formulation given by (2.41), the shape of AΣ, BΣ and CΣ show no
dependence between the state of the agents. However, as mentioned earlier, some
dependency appears from constraints given later in Chapters 3 to 5 since the evolution
of each agent of Σ are conditioned by the position of the other agents in Y .

Thus, the individual control input of an agent of Σ depends on the position of
the agents of Σ and it is:

ui(k) = ui(y1(k), . . . ,yN(k)) (2.42)

and the aggregated control input is u(k) = u(y(k)). In other words, despite the
absence of coupling between the agents in open-loop, the closed-loop strategy induces
a coupling between the agents, hence the necessity of the development of centralized,
distributed or decentralized multi-agent system control strategies.

It can be noted that, depending on the considered control strategy, the control
signal ui(k) of agent i ∈ 1, N can depend only on a part of the agents denoted by
Ni(k) ⊆ 1, N . Thus, (2.42) is modified to:

ui(k) = ui

(
yν1(k), . . . ,yν∣∣Ni(k)

∣∣(k)
)

where
{
ν1, . . . , ν|Ni(k)|

}
= Ni(k).

♦

Remark 2.11: Set of neighbors
The notation Ni(k) designates the set of neighbors of the agent i, with i ∈ 1, N , in
the subsequent chapters.

Assumption 2.6: Homogeneity
The dynamics of all agents are the same, i.e. Ai = Aj, Bi = Bj and Ci = Cj for
all i, j ∈ 1, N .
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Assumption 2.6 is made to simplify the presentation of the results in the following
chapters. However, the extension of these results to a heterogeneous MAS is easily
obtainable.

2.4 Voronoi tessellation and formation
configuration

The definitions about polytopes presented in Section 2.2.2 are used in the present
section to introduce the Voronoi tessellation, which is a fundamental tool for the
control algorithms presented in Chapters 3 to 5. The Voronoi tessellation consists in
a partition of a set in independent subsets based on generator points from this set
introduced by Dirichlet (1850) and Voronoï (1908).

Section 2.4.1 presents the basic definition and construction of the Voronoi tessel-
lation (Voronoï, 1908). In Section 2.4.2, some generalizations of the basic definition
on which the algorithms presented in this thesis are based are introduced. Finally,
Section 2.4.3 defines the Chebyshev configuration of a multi-vehicle system based on
the elements proposed in Sections 2.4.1 and 2.4.2.

2.4.1 Conventional Voronoi tessellation
As mentioned in the introduction of this section, the Voronoi tessellation is a way to
partition a set into independent subsets based on a finite number of points present in
this set, called generators. Thus, let Y = {x ∈ Rn |HYx ≤ θY}, with HY ∈ Rs×n,
θY ∈ Rs and s ∈ N, be a polytopic subset of Rn. Let y1, . . . ,yN ∈ Y be a set of
points of Y such that yi 6= yj for all i, j ∈ 1, N , i 6= j. The goal is to obtain subsets
Vi, with i ∈ 1, N of Y such that yi ∈ Vi and:

Y =
N⋃
i=1

Vi, with Vi ∩ Vj = ∅, ∀i, j ∈ 1, N , i 6= j. (2.43)

A simple way to partition Y following (2.43) is to consider that Vi is the set of
all points of Y that are closer to the generator yi than to all the other generators yj
with respect to a given norm.

Definition 2.26: Voronoi cell

Let Y be a polytopic subset of Rn. Let y1, . . . ,yN ∈ Y , with N ∈ N, be the generator
points of the Voronoi tessellation. Then, the Voronoi cell Vi of a generator point yi
is the set:

Vi =
{
y ∈ Y

∣∣ ‖y − yi‖2 ≤ ‖y − yj‖2, ∀j ∈ 1, N , i 6= j
}

. (2.44)

By considering the definition of ‖y‖2 =
√
y>y, expression (2.44) can be trans-

formed into:

Vi =
{
y ∈ Y

∣∣∣∣ (yj − yi)
>y ≤ 1

2

(
‖yj‖22 − ‖yi‖

2
2

)
, ∀j ∈ 1, N , i 6= j

}
(2.45)
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which is the H-representation of a polytope. Hence, to take the notations from
Definition 2.9:

HVi
=



(y1 − yi)
>

...
(yi−1 − yi)

>

(yi+1 − yi)
>

...
(yN − yi)

>

HY


θVi

=
1

2



‖y1‖22 − ‖yi‖
2
2...

‖yi−1‖22 − ‖yi‖
2
2

‖yi+1‖22 − ‖yi‖
2
2...

‖yN‖22 − ‖yi‖
2
2

θY


the matrices HY and θY inducing Y being necessary to keep the property that
Vi ⊂ Y. As per Remark 2.6, some of the lines of HVi

and θVi
are redundant and

can be omitted.
By going back to the geometrical interpretation of a H-representation introduced

in Section 2.2.2, this can be seen as the collection of inequalities defining half-spaces.
Let ∂Vij denote the border of Vi induced by the point yj . This border is a hyperplane:

∂Vij =
{
y ∈ Rn

∣∣∣∣ (yj − yi)
>y =

1

2

(
‖yj‖22 − ‖yi‖

2
2

)}
(2.46)

Such a hyperplane is defined by a normal vector and a point it passes by. The general
representation of a hyperplane H is:

H =
{
x ∈ Rn

∣∣ n>x = n>p
}

where n ∈ Rn is the normal vector and p ∈ Rn is a point known to belong to H.
From (2.46), it is obvious that the normal vector to ∂Vij is yj − yi. Then, from
(2.46) and the definition of the Voronoi cell (2.45), it is easy to deduce a point by
which ∂Vij passes. This point is the point located at half the distance between yi
and yj, i.e. (yi + yj)/2.

This geometric interpretation leads to an easy way to graphically represent a
Voronoi tessellation in R2 or R3. A border ∂Vij of a cell Vi induced by a point yj is
then the bisecting line (in R2) or bisecting plane (in R3) of the line segment between
yi and yj.

Example 2.10: Construction of a Voronoi tessellation in R2

Let Y ⊂ R2 be a polytope such that Y = 5B2. Let y1 =
[
4 4

]>, y2 =
[
3 −4

]>,
y3 =

[
1 0

]>, y4 =
[
−2 2

]> and y5 =
[
−3 −2

]> be 5 points of Y.
Figure 2.10 presents the construction of the Voronoi cell V3. The points p31,

p32, p34 and p35 are the middle points of the line segments joining y3 to y1, y2, y4

and y5, respectively. The normal vectors are also drawn. Finally, all the borders
∂V31, ∂V32, ∂V34 and ∂V35 are constructed as described above with the geometrical
elements previously introduced.

The cell V3 is then constructed as the intersection of all the half-spaces defined
by the hyperplanes ∂V31, ∂V32, ∂V34 and ∂V35. It is also limited on the right by the
fact that V3 ⊂ Y.

The other cells are obtained the same way as V3. However, it can be seen on
the figure that the construction of several borders can be avoided. For example, the
border ∂V51 is redundant with the border ∂V53 which is more restrictive. The resulting
Voronoi tessellation of Y is presented in Figure 2.11.



2.4. Voronoi tessellation and formation configuration 43

−4 −2 0 2 4

−4

−2

0

2

4
y1

y2

y3

y4

y5

p31

p32

p34

p35

∂V31

∂V32

∂V34

∂V35

Y V3

x

y

Figure 2.10: Construction of the Voronoi cell V3.
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Figure 2.11: An example of Voronoi tessellation in R2.
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2.4.2 Generalized Voronoi tessellations
From the definition of the Voronoi tessellation given in the previous paragraph,
generalizations have been proposed such as the ones in Sugihara (1993) or Choset
and Burdick (1995). In Choset and Burdick (1995), the generators of the Voronoi
tessellation are not defined as points as in Section 2.4.1 but as given subsets of the
set being tessellated. Evans and Sember (2008) and Tzes et al. (2018) give results
on the shape of a tessellation when the generating subsets are discs (the tessellation
is then often called power Voronoi diagram). Moreover, Evans and Sember (2008)
gives a preliminary result on the complexity of the tessellation when the generating
subsets are polytopes. From this, Chevet et al. (2019) introduces the shape of a
so-called box-based guaranteed Voronoi tessellation when the generating subsets are
boxes. The results introduced in Chevet et al. (2019) are recalled and a method to
explicitly compute the expression of the borders of the guaranteed cells as well as a
linear approximation of these borders is contributed in Paragraph 2.4.2.1. Finally,
Paragraph 2.4.2.2 presents a new generalization of the Voronoi tessellation named
hereafter pseudo-Voronoi tessellation.

2.4.2.1 Box-based guaranteed Voronoi tessellation

A kind of generalization of Voronoi tessellations has been used for some time in
control theory (Rowat, 1979, Choset and Burdick, 1995) and has recently been called
guaranteed Voronoi (GV) tessellation (Evans and Sember, 2008, Tzes et al., 2018,
Chevet et al., 2019) since its use arises from uncertainty on the position of agents due
to a perturbation on their measurement signal. The name guaranteed thus implies
that all the elements in a guaranteed Voronoi cell (GVC) are guaranteed to be closer
to all the possible positions of an agent than to all the possible positions of another
agent.

Definition 2.27: Guaranteed Voronoi cell

Let Y be a polytopic subset of Rn. Let W1, . . . ,WN ⊂ Y, with N ∈ N, be the
generator sets of the guaranteed Voronoi (GV) tessellation, assuming thatWi∩Wj =
∅, ∀i, j ∈ 1, N , i 6= j. Then, the guaranteed1 Voronoi cell Vgi of a generator set Wi is
the set:

Vgi =
{
y ∈ Y

∣∣ ‖y − zi‖2 ≤ ‖y − zj‖2,∀zi ∈ Wi, zj ∈ Wj, j ∈ 1, N, i 6= j
}

. (2.47)

With such a definition, in the general case, it is not guaranteed that the tessellation
covers the whole original polytope, i.e.:⋃

i∈1,N

Vgi ⊆ Y ,

while it is still guaranteed that for given i, j ∈ 1, N , i 6= j, Vgi ∩ V
g
j 6= ∅.

In the present thesis, the generator sets are considered to be boxes as defined
in Definition 2.12 centered on a point yi ∈ Y, with i ∈ 1, N . Thus, the subsets
W1, . . . ,WN of Y can be defined as:

Wi = Bn(αi)⊕ {yi} (2.48)
1In the notation Vg

i , the superscript g is used to designate a guaranteed Voronoi cell.
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where αi ∈ Rn and yi ∈ Y 	 Bn(αi), such that Wi ⊂ Y , with i ∈ 1, N . It is obvious
from Definition 2.27 that a H-representation of the cell is not immediate from (2.47).
The first step consists in looking at the border of the guaranteed cell of Wi induced
by Wj:

∂Vgi j =
{
y ∈ Y

∣∣∣∣ max
zi∈Wi

‖y − zi‖2 = min
zj∈Wj

‖y − zj‖2

}
. (2.49)

In the general case, i.e. when the sets Wi do not have a particular shape, these
maximum and minimum would be difficult to compute. However, in the case of boxes
as defined in (2.48), they can be explicitly formulated. To find these expressions, it
can be useful to look at what happens in two dimensions.

The maximum distance of a point to a box in R2 is reached for the vertex of the
box which is farthest from the point. Figure 2.12 presents an example for a given
set Wi = B2

([
1 2

]>)⊕ {yi}, with yi =
[
0 1

]>, and two points y1,y2 ∈ Y . Since
the objective of this example is to find the expression of the maximum distance from
a point to the set Wi, the shape of Y is irrelevant and Y = R2 such that Wi ⊂ Y
and yi ∈ Y 	 B2

([
1 2

]>). It can be seen in the figure that max
zi∈Wi

‖y1 − zi‖2, the

maximum distance from y1 ∈ Y to Wi, i.e. the box B2
([

1 2
]>) centered on yi, is

reached for zi = v1 and max
zi∈Wi

‖y2 − zi‖2 is reached for zi = v2.

x

y

−4 −3 −2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

yi

B2
([

1 2
]>)⊕ {yi}

y1

y2

v2

v1

Figure 2.12: Maximum distance of a point to a box in R2.

From the example of Figure 2.12, an expression for the maximum distance of a
point to a box in R2 can be formulated:

max
zi∈Wi

‖y − zi‖2 =
√

(|x− xi|+ αi,x)
2 + (|y − yi|+ αi,y)

2

where Wi is defined as in (2.48), with n = 2, αi =
[
αi,x αi,y

]>, yi =
[
xi yi

]> and
y =

[
x y

]>.
This expression can be generalized in Rn, giving:

max
zi∈Wi

‖y − zi‖2 = ‖|y − yi|+αi‖2. (2.50)
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The expression of the minimum distance of a point to a box is less straightforward.
It depends on the relative position of the point to the box and it is reached either
on a facet of the box or on a vertex or be zero if the point is inside the box. In the
example of Figure 2.13, the set Wj is Wj = B2

([
2 1

]>)⊕ {yj} with yj =
[
0 1

]>.
Then, R2 can be divided into nine areas of four types as shown in Figure 2.13.
In areas of type 1, the minimum distance from a point to Wj is the distance to
the point that has the same ordinate and is on the closest border of Wj (e.g. the
minimal distance from y1 to Wj is the distance from y1 to p1). In areas of type 2,
the minimum distance is the same as in areas of type 1 while replacing ordinate by
abscissa (e.g. the minimal distance from y2 to Wj is the distance from y2 to p2).
In areas of type 3, the minimum distance from a point to Wj is the distance to the
closer vertex of Wj (e.g. the minimal distance from y3 to Wj is the distance from
y3 to p3). Finally, in areas of type 4, the minimum distance from all points to Wj is
0 since the points are already in Wi.
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Figure 2.13: Minimum distance of a point to a box in R2.

From the example of Figure 2.13, an expression for the minimum distance of a
point to a box in R2 can be formulated:

min
zj∈Wj

‖y − zj‖2 =
√

(max{|x− xj| − αj,x, 0})2 + (max{|y − yj| − αj,y, 0})2

where Wj is defined as in (2.48), with αj =
[
αj,x αj,y

]>, zj =
[
xj yj

]> and
y =

[
x y

]>.
This expression can be generalized in Rn, giving:

min
zj∈Wj

‖y − zj‖2 =

√√√√ n∑
k=1

(max{|yk − yj,k| − αj,k, 0})2 (2.51)

where Wj = Bn(αj) ⊕ {yj}, with αj =
[
αj,1 · · · αj,n

]> ∈ Rn, the center of the
box yj =

[
yj,1 · · · yj,n

]> ∈ Y 	 Bn(αj) ⊂ Rn and y =
[
y1 · · · yn

]> ∈ Y ⊂ Rn.
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With the expressions given in (2.50) and (2.51), the shape of ∂Vgi j in R2 can be
deduced and generalized to higher dimensions (which is not treated in the present
thesis).

Given (2.50) and (2.51), the equation defining ∂Vgi j is piecewise and continuous.
Each piece is defined over an area corresponding to a type of area defined in
Figure 2.13. It is easy to verify that the intersection of ∂Vgi j and an area of type 1
or 2 defined for Wj is a parabolic arc. Indeed, if y ∈ ∂Vgi j is in an area of type 1:

(|x− xi|+ αi,x)
2 + (|y − yi|+ αi,y)

2 = (|x− xj| − αj,x)2

or, by developing and gathering the terms depending on x:

(|y − yi|+ αi,y)
2

= 2x(xi − xj)− 2αj,x|x− xj| − 2αi,x|x− xi|+ α2
j,x − α2

i,x + x2j − x2i (2.52)

which is the equation of a parabola.
If y is in an area of type 2 for Wj, the role of x and y are inverted in equation

(2.52).
The intersection of ∂Vgi j and an area of type 3 for Wj is a line segment since:

(|x− xi|+ αi,x)
2 + (|y − yi|+ αi,y)

2 = (|x− xj| − αj,x)2 + (|y − yj| − αj,y)2

or, equivalently:

2y(yj − yi) + 2αi,y|y − yi|+ 2αj,y|y − yj|+ α2
i,y − α2

j,y + y2i − y2j
= 2x(xi − xj)− 2αj,x|x− xj| − 2αi,x|x− xi|+ α2

j,x − α2
i,x + x2j − x2i

which is the equation of a line.
Finally, the intersection of ∂Vgi j with an area of type 4 for Wj is an elliptic arc

since:
(|x− xi|+ αi,x)

2 + (|y − yi|+ αi,y)
2 = 0

which is the equation of an ellipse.

Example 2.11: Construction of guaranteed borders
Let Wi = B2

([
2 1

]>) ⊕ {yi}, where yi =
[
−6 −7

]>, and Wj = B2
([

1 2
]>) ⊕

{yj}, where yj =
[
5 4

]> be two sets of R2. These two sets are drawn in Figure 2.14,
Wi in black and Wj in gray, as well as dashed lines delimiting the same areas as in
Figure 2.13 for the set Wi. For Wi, the red hatched area A1 is an area of type 1, the
green hatched area A2 is an area of type 2 and the blue hatched area is an area of
type 3. To build ∂Vgj i, it is necessary to find all the y ∈ R2 such that:

min
zi∈Wi

‖y − zi‖2 = max
zj∈Wj

‖y − zj‖2.

If a point of A1 is part of ∂Vgj i, it has to satisfy:

(|x− 5|+ 1)2 + (|y − 4|+ 2)2 = (|x+ 6| − 2)2

which is the equation of of a piecewise continuous parabola. This part of ∂Vgj i is
drawn as a dashdotted blue line in Figure 2.14.
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If a point of A2 is part of ∂Vgj i, it has to satisfy:

(|x− 5|+ 1)2 + (|y − 4|+ 2)2 = (|x+ 7| − 1)2

which is again the equation of a piecewise continuous parabola. This part of ∂Vgj i is
also drawn in a dashdotted blue line in Figure 2.14.

Finally, if a point of A3 is part of ∂Vgj i, it has to satisfy:

(|x− 5|+ 1)2 + (|y − 4|+ 2)2 = (|x+ 6| − 2)2 + (|x+ 7| − 1)2

which is, as discussed before, the equation of a piecewise continuous line. This part
of ∂Vgj i is drawn as a plain blue line in Figure 2.14.

In addition, ∂Vgj i also extends to the left and to the right of the part that is
presented in Figure 2.14. Indeed, to the left of A2, the border ∂Vgj i intersects an
area of type 3 for Wi and it is then composed of a piecewise continuous line. The
same way, below A1, the border ∂Vgj i intersects another area of type 3 for Wi and it
is composed of a piecewise continuous line.
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Figure 2.14: Example of guaranteed Voronoi cell border generated by two sets in R2.

The same way as for ∂Vgj i, the border ∂Vgi j is obtained by finding all the y ∈ R2

such that:
max
zi∈Wi

‖y − zi‖2 = min
zj∈Wj

‖y − zj‖2.

Figure 2.15 then presents the resulting borders ∂Vgi j in red and ∂Vgj i in blue for the
sets Wi and Wj.

From the equalities defining ∂Vgi j , inequalities defining Vgi can be deduced. How-
ever, because of the presence of parabolic or elliptic arcs, some of those inequalities are
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Figure 2.15: Box-based guaranteed Voronoi cell borders generated by two rectangles
in R2.

not linear which could pose a problem for the control algorithms that are developed
in the following chapters.

Due to the convexity of these arcs, a linear approximation of the parabolic and
elliptic arcs, albeit conservative, is easy to obtain. This approximation consists in
replacing the quadratic arcs by a line joining their intersection with the borders of
the area in which they are defined. Figure 2.16 gives the linear approximation of the
borders ∂Vgi j and ∂Vgj i from Example 2.11 where the original borders are the dashed
lines and the approximated borders are the plain light red and light blue lines. In
the remainder of this thesis, the linear approximation of the box-based guaranteed
Voronoi cells is always used.

From all the developments presented above, a H-representation of the guaranteed
Voronoi cells Vgi , with i ∈ 1, N , generated by sets Wi having the form (2.48) can
be constructed. The matrices of the H-representation of Vgi are then obtained by
appending all the linear inequalities induced by the borders ∂Vgi j from (2.49) and
the linear inequalities defining the polytopic set Y being tessellated.

Example 2.12: Box-based guaranteed Voronoi tessellation in R2

Let H =

[
3 0 −1 −1 2
2 1 2 −1 −1

]>
and θ =

[
24 6 9 15 12

]> inducing a polytope

Y in R2. Let:

y1 =

[
4
2

]
y2 =

[
−1
−10

]
y3 =

[
0
−4

]
y4 =

[
−8
−4

]
y5 =

[
−2
0

]
α1 =

[
1
0.5

]
α2 =

[
1
1

]
α3 =

[
1
1

]
α4 =

[
0.5
1

]
α5 =

[
0.5
1

]
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Figure 2.16: Linear approximation of a guaranteed cell border generated by two sets
in R2.

inducing the sets Wi = B2(αi)⊕ {yi}, with i ∈ 1, 5.
The guaranteed Voronoi tessellation of the boxes Wi, with i ∈ 1, 5 is presented in

Figure 2.17. It can be seen thatWi is not always totally included inside its guaranteed
cell Vgi , e.g. W3 6⊂ Vg3 .

2.4.2.2 Pseudo-Voronoi tessellation

Further generalization of the classical Voronoi tessellation introduced in Section 2.4.1
can be formulated. However, this generalization is presented only in R2, an extension
to higher dimensions being possible but of increased complexity.

Let Y ∈ R2 be a polytope in R2. Let y1, . . . ,yN ∈ Y be N points of Y such
that yi 6= yj for all i, j ∈ 1, N , i 6= j. This paragraph introduces a pseudo-Voronoi
tessellation2 of W generated by the points yi, with i ∈ 1, N such that:

Y =
N⋃
i=1

Vpi , with Vpi ∩ V
p
j = ∅, ∀i, j ∈ 1, N , i 6= j. (2.53)

In (2.46), the border ∂Vij of the Voronoi cell generated by the two points yi
and yj has been characterized as the hyperplane passing by (yi + yj)/2 with the
normal vector yj − yi. The border ∂Vpi j of the pseudo-Voronoi cell generated by two
points yi and yj is defined as the hyperplane passing by αijyj + (1− αij)yi, where
αij ∈ (0, 1), with the normal vector yj − yi, i.e.:

∂Vpi j =
{
y ∈ Y

∣∣∣ (yj − yi)
>y = (yj − yi)

>(αijyj + (1− αij)yi)
}

. (2.54)
2In the notation Vp

i , the superscript p is used to designate a pseudo-Voronoi cell.
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Figure 2.17: Box-based guaranteed Voronoi tessellation of five generator sets in R2.

In order to have Vpj ∩ V
p
i = ∅, it is necessary that αij ≤ 1− αji. Moreover, in order

to have:

Y =
N⋃
i=1

Vpi ,

it is also necessary that αij = 1− αji. However, this condition is not enough.
A necessary tool for further comprehension is the Delaunay triangulation, which

has been introduced in Delaunay (1934) as the dual graph of the Voronoi tessellation.
Several algorithms have been proposed to compute it (Delaunay, 1934, Preparata and
Shamos, 1985) but is not investigated here. The Delaunay triangulation associates
the generators of a Voronoi tessellation by group of three generators. In this thesis,
only a graphical method to understand how to build a Delaunay triangulation of
a set of generators T (y1, . . . ,yN) is presented, the reader can refer to Preparata
and Shamos (1985) for explicit algorithms to build it. Graphically, if a triangle of
generators is part of the Delaunay triangulation, the Voronoi cells of each of these
generators share one vertex. This vertex is the center of the circumscribed circle to
the triangle formed by the three generators (it can be noticed that this fact is the
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basis of the algorithm to build the Delaunay triangulation).

Example 2.13: Construction of a Delaunay triangulation
It is now possible to build the Delaunay triangulation T (y1,y2,y3,y4,y5) as the dual
graph of the Voronoi tessellation presented in Example 2.10. From Figure 2.11,
the obvious triangles of generators are T1 = {y1,y3,y4}, T2 = {y2,y3,y5}, T3 =
{y3,y4,y5}. However, a fourth triangle exists in T (y1,y2,y3,y4,y5). Indeed, if
Y was wider, the border ∂V12 would appear and intersect ∂V13 and ∂V23. Then,
the Voronoi cells V1, V2 and V3 would also share a vertex thus T4 = {y1,y2,y3} ∈
T (y1,y2,y3,y4,y5). These triangles are presented in Figure 2.18.
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Figure 2.18: An example of Delaunay triangulation in R2.

A way to ensure that the constraint (2.53) is satisfied with the Delaunay trian-
gulation T (y1, . . . ,yN) is to guarantee that for a triangle Tm ∈ T (y1, . . . ,yN), with
m ∈ 1, |T (y1, . . . ,yN)|, such that Tm = {yi,yj,yk}, with i, j, k ∈ 1, N , i 6= j 6= k,
the borders ∂Vpi j = ∂Vpj i, ∂V

p
i k = ∂Vpk i and ∂Vpj k = ∂Vpk j are concurrent at a single

point as in the classical Voronoi case. If this condition is not respected, there might
be parts of Y not covered by a cell Vpi .

Consider the vectors nij = yj − yi, nik = yk − yi, njk = yk − yj in R2 and
the scalars θij = n>

ij(αijyj + (1− αij)yi), θik = n>
ik(αikyk + (1− αik)yi) and θjk =

n>
jk(αjkyk + (1− αjk)yj). Then, the borders ∂Vpi j , ∂V

p
i k and ∂Vpj k are concurrent at

a single point if and only if:
det(nij,njk)θik − det(nik,njk)θij − det(nij,nik)θjk = 0. (2.55)

If a tessellation satisfies the conditions that have been presented in this paragraph,
it is called a pseudo-Voronoi tessellation because of its similarity with the classical
Voronoi tessellation. However, since the basic definition of a Voronoi cell (2.44) is
modified, the word “pseudo” is added.
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Example 2.14: Construction of a pseudo-Voronoi tessellation in R2

Let Y ⊂ R2 be a polytope such that Y = 5B2. Let y1 =
[
4 4

]>, y2 =
[
3 −4

]>,
y3 =

[
1 0

]>, y4 =
[
−2 2

]> and y5 =
[
−3 −2

]> be 5 points of Y. The Delaunay
triangulation of these points T (y1,y2,y3,y4,y5) has been presented in Example 2.13.

Consider the initial values α12 = 0.3 and α23 = 0.7 chosen arbitrarily. Despite
the fact that Vp1 and Vp2 do not visibly share a border, y1 and y2 belong to a triangle
as shown in Example 2.13, thus the need to chose a value for α12. Equation (2.55)
results in α13 = 0.14. Let α14 = 0.4, giving α34 = 23/26. Let α35 = 0.7, giving
α45 = 15/34. Finally, the previous values lead to α25 = 0.7.

Figure 2.19 presents the pseudo-Voronoi tessellation with the values given above.
The pseudo-Voronoi cells Vpi , with i ∈ 1, 5, have the same shape as the cells Vi of
the classical Voronoi tessellation in Example 2.10. Indeed, the normal vectors of the
borders of Vpi are the same as the normal vectors of the borders of Vi. However, the
dimension of the pseudo-Voronoi cells Vpi and of the Voronoi cells Vi are different.
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Figure 2.19: An example of pseudo-Voronoi tessellation in R2.

2.4.3 Chebyshev configuration of a multi-vehicle system
The Voronoi tessellation (either classical or generalized) defined in Sections 2.4.1
and 2.4.2 is used in the following chapter to constrain the movement of a multi-vehicle
system as defined in Section 2.3. However, a goal for such a multi-vehicle has also
to be introduced, which is the purpose of the present paragraph. To do so, the
Chebyshev center (Boyd and Vandenberghe, 2009) of a polytope is presented as well
as the definition of a Chebyshev configuration of a multi-vehicle system. The way
such objects are used for control purposes is out of the scope of this paragraph and
is further introduced in the following chapters.
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Before introducing the definition of the Chebyshev center of a polytope, it is
necessary to recall how the inclusion of a ball E (In, c, r) of center c ∈ Rn and
radius r ∈ R in a half-space H = {x ∈ Rn | hx ≤ θ}, with h ∈ R1×n and θ ∈ R, is
characterized. The ball E (In, c, r) can be written (Boyd and Vandenberghe, 2009):

E (In, c, r) = {c+ x | ‖x‖2 ≤ r,x ∈ Rn}.

Then, E (In, c, r) ⊂ H if and only if (Boyd and Vandenberghe, 2009):

max
‖x‖2≤r

(h(c+ x)) ≤ θ

which is equivalent to:
hc+ max

‖x‖2≤r
hx ≤ θ.

The term hx is the scalar product of the vectors h> and x thus the maximum of hx
is attained when h> and x are colinear and ‖x‖2 = r, i.e.:

max
‖x‖2≤r

hx = r
∥∥h>∥∥

2
.

Finally, E (In, c, r) ⊂ H if and only if:

hc+ r
∥∥h>∥∥

2
≤ θ.

A polytope Y ⊂ Rn is the intersection of a finite number of half-spaces such that
Y = {x ∈ Rn |HYx ≤ θY}, with HY ∈ Rm×n and θY ∈ Rm, where m ∈ N is the
number of half-spaces composing Y . If the rows of HY and θY are denoted by hi and
θi, with i ∈ 1,m, respectively, then, the fact that E (In, c, r) ⊂ Y is characterized by:

hic+
∥∥h>

i

∥∥
2
r ≤ θi, ∀i ∈ 1,m.

Definition 2.28: Chebyshev center of a polytope

Let Y ⊂ Rn be a polytope in Rn. The Chebyshev center of Y is the center cY of the
largest ball E (In, cY , rY) and it is computed by solving the optimization problem
(Boyd and Vandenberghe, 2009):

maximize
cY , rY

rY

subject to

rY ≥ 0,

θi ≥ hicY +
∥∥h>

i

∥∥
2
rY , ∀i ∈ 1,m

(2.56)

where hi and θi, with i ∈ 1,m, are respectively the rows of HY ∈ Rm×n and θY ∈ Rm

the matrices inducing Y .

Example 2.15: Chebyshev center of a polytope in R2

Let H and θ be the same matrices as in Example 2.4. Then, considering H = HY
and θ = θY induces a polytope Y in R2. The MPT3.0 toolbox (Herceg et al., 2013)
is used to solve the optimization problem (2.56) for the considered polytopic set Y.
Then, the Chebyshev center of the set Y is cY =

[
−0.8918 −1.2251

]> with a radius
rY = 2.0386.

Figure 2.20 presents the polytope Y, its Chebyshev center cY and its Chebyshev
ball E (I2, cY , rY).
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Figure 2.20: Chebyshev center and Chebyshev ball of a polytope in R2.

With the elements introduced in Section 2.4.1 and Definition 2.28, it is now
possible to introduce the Chebyshev configuration of a multi-vehicle system.

Definition 2.29: Chebyshev configuration (Nguyen, 2016)

A Chebyshev configuration (CC) of a multi-vehicle system Σ (2.41a)-(2.41b) is the
configuration where the output yi, with i ∈ 1, |Σ|, of each vehicle coincides with the
Chebyshev center of its Voronoi cell Vi, i.e. yi = cVi

for all i ∈ 1, |Σ|.

Property 2.11: Non-uniqueness of the Chebyshev configuration

A Chebyshev configuration of a multi-vehicle system Σ is not unique and depends
on the initial position of the vehicles.

Example 2.16: Chebyshev configuration of a multi-vehicle system in R2

Let Σ be a multi-vehicle system composed of 5 agents. These agents evolve inside
a polytope Y = 5B2 ⊂ R2. Figure 2.21 presents a Chebyshev configuration for Σ.
In this configuration, each vehicle output coincides with the Chebyshev center of its
Voronoi cell.

It can be noticed that while Definition 2.29 has been given for a classical Voronoi
tessellation as defined in Section 2.4.1, using a guaranteed or a pseudo-Voronoi tessel-
lation as defined in Section 2.4.2 does not change the definition. Such configurations
defined on different Voronoi tessellation are used in the remainder of this thesis.
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Figure 2.21: An example of Chebyshev configuration for 5 agents in a classical
Voronoi tessellation in R2.

2.5 Continuous random variables and stochastic
processes

In numerous real life applications, dynamical systems are subject to stochastic
perturbations as presented in Chapter 4. Such perturbations are often modeled as
Gaussian white noises which are stochastic processes. Thus, in order to develop
control algorithms for such systems, some results on multivariate continuous random
variables and stochastic processes have to be introduced. However, these results
are limited to what is useful for the development of the algorithm of Section 4.2.
Indeed, these results are based on measure theory (Halmos, 1950) and real analysis
(DiBenedetto, 2016) which are out of the scope of this thesis. Complements on
probability theory and stochastic processes can be found for example to Loève (1977,
1978) and Rosenblatt (1974).

A continuous random variable3 X is an application that maps an element of a
sample space Ω to an element of R. The same way, a multivariate continuous random
variable4 X is an application that maps an element of a sample space Ω to an element
of Rn, with n ∈ N. The definition of the sample space Ω is out of the scope of
this thesis and X ∈ R (respectively X ∈ Rn) is used abusively to denote X(ω) ∈ R
(respectively X(ω) ∈ Rn), the image of an element ω ∈ Ω by X (respectively X).

Then, specifying the probability law P of a random variable X ∈ R (respec-
tively X ∈ Rn) consists in finding the probability that X ∈ (−∞, a], with a ∈ R

3A continuous random variable is also called a univariate random variable.
4A multivariate random variable X is a vector of Rn where each component X1, . . . , Xn ∈ R of

X =
[
X1 · · · Xn

]> is a univariate continuous random variable.
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(respectively X ∈ P ⊂ Rn), denoted by P(X ≤ a) (respectively P(X ∈ P)).
The following definition of a probability density function is given in the multivariate

case but can be obtained in the univariate case by taking n = 1 and P = (−∞, a],
with a ∈ R.

Definition 2.30: Probability density function

Let X ∈ Rn be a multivariate continuous random variable. The probability density
function fX of X is the non-negative function such that:

P(X ∈ P) =
∫
P
fX(x)dx ∀P ⊂ Rn and

∫
Rn

fX(x)dx = 1.

From the existence of a probability density function, it is possible to define the
moments of a random variable. Only two moments are used and presented in this
thesis, namely the moment of order 1, or mathematical expectation, and the centered
moment of order 2, or variance.

Definition 2.31: Mathematical expectation

Let X ∈ R be a continuous random variable admitting a probability density function
fX . The mathematical expectation of X is defined as:

E(X) =

∫ +∞

−∞
xfX(x)dx.

Definition 2.32: Expectation of a multivariate random variable

Let X =
[
X1 · · · Xn

]> ∈ Rn be a multivariate continuous random variable, where
X1, . . . , Xn ∈ R are univariate random variables. The mathematical expectation of
X is the vector composed of the mathematical expectations of its components, i.e.:

E(X) =
[
E(X1) · · · E(Xn)

]> .

♦

Remark 2.12: Alternative notation for the expectation
The mathematical expectation of a random variable X ∈ R or X ∈ Rn is also called
the mean of X or X. In Chapter 4, the mathematical expectation of a multivariate
random variable X ∈ Rn is then denoted by:

E(X) = µX.

The definition of the variance is given only in the multivariate case since only
the variance of multivariate continuous random variables is used in this thesis. In
this case, the variance of a random variable is often referred as the variance matrix
of this random variable.

Definition 2.33: Variance matrix

Let X ∈ Rn be a multivariate continuous random variable. The variance matrix of
X is defined as:

ΣX = E
(
(X− E(X))(X− E(X))>

)
.
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Definition 2.34: Covariance of two random variables

Let X,Y ∈ Rn be two multivariate continuous random variables. The covariance
matrix of X and Y is defined as:

cov(X,Y) = cov(Y,X)> = E
(
(X− E(X))(Y − E(Y))>

)
.

Before introducing the probability distributions that are used in this thesis, it is
necessary to present the concept of independence of two random variables.

Definition 2.35: Independence of two random variables (Flury, 1997)

Two multivariate continuous random variables X,Y ∈ Rn are called independent if:

P((X,Y) ∈ P ×Q) = P(X ∈ P)P(Y ∈ Q)

where P ,Q ⊂ Rn.

The following property, useful for Chapter 4, is then given without proof.

Property 2.12: Covariance of independent variables

Let X,Y ∈ Rn be two independent multivariate continuous random variables. Then,
the covariance of X and Y is the null matrix:

cov(X,Y) = 0n.

Now that general definitions and properties have been given for continuous
random variables, it is necessary to introduce the multivariate normal distribution,
which is one of the probability distributions used in control theory.

Definition 2.36: Multivariate normal distribution

Let X ∈ Rn be a multivariate continuous random variable. Then, X has a multivariate
normal distribution with mean µX and variance matrix ΣX � 0 if X admits the
probability density function:

fX(x) =
1√

(2π)ndet(ΣX)
exp

(
−1

2
(x− µX)

>Σ−1
X (x− µX)

)
.

♦

Remark 2.13: Normally distributed variable
A multivariate continuous random variable X ∈ Rn having a multivariate normal
distribution is called normally distributed.

The chi-squared with n degrees of freedom, denoted by χ2
n is another probability

distribution that often appears in various scientific fields, mainly when statistical
tests are involved. A univariate continuous random variable having a chi-squared
distribution with n degrees of freedom is obtained as the sum of n squared normally
distributed univariate random variables. Then, Flury (1997) builds a univariate
random variable having a chi-squared distribution with n degrees of freedom from a
normally distributed multivariate continuous random variable X ∈ Rn.
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Property 2.13: Chi-squared distribution (Flury, 1997)

Let X ∈ Rn be a normally distributed multivariate continuous random variable with
mean µX and variance matrix ΣX � 0. Then, the univariate continuous random
variable:

Y = (X− µX)
>Σ−1

X (X− µX)

has a chi-squared distribution with n degrees of freedom.

The probability density function of a random variable having a chi-squared
distribution is not presented in this thesis. However, if X ∈ R is a univariate
continuous random variable with a chi-squared distribution with n degrees of freedom,
tables exist in the literature (Elderton, 1902) to obtain the solution α of the equation:

P(X ≤ α) = P

where P ∈ (0, 1).
Finally, the notion of normally distributed white noise is defined. Indeed, this

kind of noise appears in numerous real world applications as a perturbation on
dynamical systems. A white noise is the realization of a stochastic process. For this
thesis, even though it is an abuse of notation, a stochastic process is considered to
be a continuous random variable which depends on time. Then, a continuous-time
stochastic process is denoted by X(t) ∈ Rn and a discrete-time stochastic process is
denoted by X(k) ∈ Rn.

Definition 2.37: Normally distributed white noise

The continuous-time multivariate continuous random variable X(t) ∈ Rn is a normally
distributed white noise if:

• X(t) is normally distributed with mean µX(t) = 0n and variance matrix
ΣX(t) � 0 for all t ∈ R∗

+;

• X(t1) and X(t2) are independent for all t1, t2 ∈ R∗
+ such that t1 6= t2.

The above definition can be obtained in the discrete-time case by replacing
t ∈ R∗

+ by k ∈ N∗.

2.6 Conclusion
This chapter introduces the main mathematical tools necessary for the comprehension
of the results proposed in the remainder of this thesis. Thus, basic operations on
ellipsoids and polytopic sets are presented, together with the conventional and
generalized (box-based guaranteed and pseudo-) Voronoi tessellation of a polytopic
space in R2. Elements on the Chebyshev configuration for a classical tessellation are
also provided to the aim of using them in the context of multi-agent vehicles. Finally,
in order to develop control algorithms for systems subject to stochastic perturbations,
basic notions on continuous random variables and stochastic processes are recalled.
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3.1 Overview of the existing deployment
algorithms in the nominal case

A fundamental problem in control of autonomous multi-vehicle systems (MVS) is the
deployment over a given environment to carry out a certain mission. Autonomous
vehicles missions cover a wide spectrum of real world applications such as forest fire
monitoring (Merino et al., 2012, Yuan et al., 2019), ground and resource monitoring
(Laliberte and Rango, 2009, Jin and Tang, 2010, d’Oleire Oltmanns et al., 2012),
mapping and modeling (Nex and Remondino, 2014, Han and Chen, 2014, Torres
et al., 2016) or even surveillance missions (Li et al., 2019, Trujillo et al., 2019).
Several of these applications have been tested with one unmanned ground or aerial
vehicle (UGV or UAV) or multi-agent systems composed of either UGV, UAV or
both. For all these tasks, the word deployment is used in a broader sense than in
Schwager et al. (2011) to denote the fact that vehicles move over a given environment
to complete their mission.

61
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For the results presented in this thesis, the primary sense of deployment given by
Schwager et al. (2011), which considers the deployment of a multi-vehicle system as
a strategically appropriate spreading of the MVS in a given environment in order to
reach a fixed configuration, is used. The environment and the fixed configuration
remain to be characterized. A classical way to approach this problem is to consider
the deployment of the multi-vehicle system inside a convex bounded area. This area
is considered as the environment mentioned in the definition of Schwager et al. (2011).
Several approaches exist to deal with the deployment problem. Choset (2001) gives
an overview of methods used when the problem is seen as a motion planning problem.
Other techniques have been subsequently proposed such as potential field (Howard
et al., 2002), probabilistic (Li and Cassandras, 2005) or Voronoi-based (Cortés et al.,
2004). When the deployment of a MAS is meant to ensure a maximal coverage of an
environment according to a given criterion, Schwager et al. (2011) show that the last
three approaches can be unified through the use of a mixing function encoding the
associated criteria.

In the following, methods based on the tessellation of the environment are
considered. It is then partitioned into regions depending on the position of the
vehicles. An easy way to get such regions is to consider the Voronoi tessellation of
the environment where the position of each vehicle in the environment is a generator
point. Since the vehicles can move inside the environment, the resulting Voronoi cells
are time-varying. The overall problem is then known as a Voronoi-based deployment
of a multi-vehicle system. The deployment is then handled by driving the vehicles
towards a given point defined over their Voronoi cells.

One of the most widely used types of Voronoi-based deployment strategies is the
centroidal Voronoi configuration. The vehicles are then driven towards the center of
mass cMVi

of their Voronoi cell Vi computed as:

cMVi
=

∫
Vi

φ(y)ydy∫
Vi

φ(y)dy

where i is an identifier of the vehicle and φ is a mass density function defined over
the environment. The center of mass is computed each time the Voronoi tessellation
changes, i.e. at each time sample where the position of the vehicles is observed.
Such a strategy has been applied over the years to different types of multi-agent
systems (MAS): mobile sensor networks (Cortés et al., 2004), multi-robot systems
(Schwager et al., 2011) or autonomous vehicle systems (Sharifi et al., 2014, Moarref
and Rodrigues, 2014). The simplest way to reach the centroidal Voronoi configuration
is to steer each agent individually towards the center of mass of its associated Voronoi
cell, this center of mass being regularly updated given the configuration of the Voronoi
tessellation. The MAS then eventually reaches a static configuration where each
agent lies on its center of mass. This decentralized control algorithm is known in the
literature as Lloyd’s method (Lloyd, 1982).

However, depending on the complexity of the mass density function, the center
of mass defined above can end up being difficult to compute. Nguyen (2016) then
proposes a simpler approach based on the Chebyshev center (Boyd and Vandenberghe,
2009) of the Voronoi cells of the agents. Such a center is the solution of an optimization
problem which is reduced to the linear optimization problem (2.56) due to the
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polytopic nature of the Voronoi cell. The Chebyshev center is then often simpler to
obtain than the center of mass. Therefore, in this thesis, the objective point for each
agent is the Chebyshev center of its Voronoi cell.

Several control methods can be applied to the Voronoi-based deployment problem.
Cortés et al. (2004) propose a decentralized state feedback approach for both contin-
uous and discrete-time single integrator dynamics, as well as Hatleskog (2018) and
Nguyen et al. (2017) who consider a decentralized discrete-time state feedback, at
least as a first approach. Schwager et al. (2011) propose distributed continuous-time
consensus-like (Ren and Beard, 2008) controller. In Moarref and Rodrigues (2014)
or Nguyen and Stoica Maniu (2016), a decentralized optimal control approach is
considered to drive the agents towards a centroidal Voronoi configuration. Finally,
Sharifi et al. (2014) consider distributed continuous-time feedback linearization for
the MAS to be deployed in a generalized Voronoi tessellation. For purposes other
than Voronoi-based deployment, e.g. for formation control, other types of control
law can be used such as consensus-based control (Olfati-Saber and Murray, 2004,
Ren and Beard, 2008) or sliding mode control (Galzi and Shtessel, 2006, Hu et al.,
2015, Li et al., 2017a).

Despite the results obtained with all the control strategies mentioned above,
systems are often subject to constraints, either due to limitations in their sensors
or actuators or to limitations imposed by the user or the specific application. The
control strategies presented in the previous paragraph cannot take such constraints
into consideration and assume that the values of the control input remain within
acceptable physical limits or impose saturations on the inputs to force the system
to remain in a feasible area. One of the control methods that allows to take such
constraints into account is model predictive control (MPC). Such a control method
has been introduced in Nguyen and Stoica Maniu (2016) and Nguyen (2016) to drive
a MAS towards a Chebyshev configuration (i.e. a configuration in which all the
agents output coincides with the Chebyshev center of its Voronoi cell as defined in
Definition 2.29).

This chapter is then focused on the study of MPC to drive a multi-vehicle
system towards a Chebyshev configuration in a convex bounded region. First of
all, Section 3.2 formally presents the problem of the deployment of a multi-vehicle
system in a polytopic region of R2. Two model predictive control strategies are
then proposed for this deployment, a centralized approach in Section 3.2.1 and a
decentralized approach in Section 3.2.2, in the continuity of the work of Nguyen
(2016). The convergence and the performance of the proposed decentralized MPC
algorithm is analyzed for a MVS where all vehicles have single integrator dynamics.
In a second stage, Section 3.3 introduces the dynamics of a quadrotor unmanned
aerial vehicle (UAV) and applies the decentralized control algorithm of Section 3.2 to
a MVS composed of quadrotor UAVs. Finally, Section 3.4 discusses the convergence
and stability of the control strategy applied to a fleet of quadrotor UAVs. In the
remainder of this thesis, the multi-vehicle system is called indifferently multi-vehicle
system (MVS) or multi-agent system (MAS). In the latter case, it is implied that all
agents in the system are vehicles.
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3.2 Problem formulation and first results
This section is organized as follows. Section 3.2.1 formulates the control strategy for
the Voronoi-based deployment problem of a multi-vehicle system as a centralized
MPC optimization problem. The assumptions allowing the control algorithm to
be decentralized over all vehicles in the MVS are presented in Section 3.2.2 and a
discussion on the convergence of this algorithm is drawn in Section 3.2.3. Finally,
simulation results on single integrator dynamics systems are given in Section 3.2.4.

3.2.1 Centralized MPC approach
Let Σ be a multi-agent system composed on N agents. Each agent obeys the
dynamics (2.40). Since the MAS is homogeneous according to Assumption 2.6, all
the agents have the same dynamics and the dependency on the agent identifier
i ∈ 1, N can be dropped in the matrices such that:

xi(k + 1) = Axi(k) +Bui(k) (3.1a)
yi(k) = Cxi(k) (3.1b)

where xi ∈ Xi ⊂ Rn, ui ∈ Ui ⊂ Rm, yi ∈ Yi ⊂ R2, A ∈ Rn×n, B ∈ Rn×m and
C ∈ R2×n, with i ∈ 1, N . From Assumption 2.3, all the agents share the same output
space, then it is possible to also drop the dependency on the agent identifier such
that Yi = Y for all i ∈ 1, N . For the sake of simplicity, it can be assumed that, in
the nominal case, the state spaces and the input spaces satisfy Xi = X and Ui = U
for all i ∈ 1, N . The output yi of agent i ∈ 1, N is the Cartesian position of agent i
in the plane R2.
Assumption 3.1: Workspace
The output space Y of the MAS is a convex bounded polytope of R2. This polytope is
also called the workspace of the MAS.

The objective of the control algorithm that is presented in this chapter is to drive
the agents of the MAS towards a static configuration belonging to Y by controlling
their positions in a two-dimensional space. For the configuration to be static, the
points of Y that the agents reach have to be equilibrium points.

Assumption 3.2: Equilibrium points
The system dynamics (3.1) are such that for all y0 ∈ Y, there exist a state x0 ∈ X
and an input u0 ∈ U such that:

x0 = Ax0 +Bu0

y0 = Cx0.
(3.2)

♦

Remark 3.1
Assumption 3.2 is satisfied if the matrix:[

A− In B
C 02×m

]
is invertible. This is trivially the case for systems with integrator dynamics.
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The objective of the control algorithm then follows the same idea as the one
introduced in Nguyen (2016). The MAS is deployed inside a convex bounded polytope
Y as defined in Assumption 3.1. A discrete-time control law is applied to the MAS
to drive it towards a static final configuration. From the knowledge of the position
of each agent, it is possible to compute the Voronoi tessellation of Y by defining the
Voronoi cell Vi(k), with i ∈ 1, N , of each agent. In addition to its initial definition
in Section 2.4.1, a time dependency is added to the Voronoi cell. Indeed, since the
agents move inside the workspace Y , the Voronoi tessellation is time-varying. From
the knowledge of the Voronoi tessellation, the Chebyshev center can be obtained
from (2.56) with a slight modification in the centralized case which is presented
below in (3.6). A control input for the MAS is then computed to drive each agent
towards the Chebyshev center of its time-varying cell while constrained to remain
inside it.

As in Section 2.3, the dynamics of the agents can be gathered in one general
state-space representation of the MAS:

x(k + 1) = AΣx(k) +BΣu(k) (3.3a)
y(k) = CΣx(k) (3.3b)

where x, u and y are defined as in Section 2.3 with x(k) =
[
x1(k)

> · · · x>
N(k)

]> ∈
RNn, u(k) =

[
u1(k)

> · · · u>
N(k)

]> ∈ RNm and y(k) =
[
y1(k)

> · · · y>
N(k)

]> ∈
R2N , and the matrices expressions can be simplified with respect to the ones given in
Section 2.3 since now AΣ = IN ⊗A, BΣ = IN ⊗B and CΣ = IN ⊗C, the matrix
C being defined as in Remark 2.10.

From the output vector yi, with i ∈ 1, N , of each agent, the Voronoi tessellation
is computed as presented in (2.45) such that:

Vi(k) =
{
y ∈ Y

∣∣∣∣ (yj(k)− yi(k))
>y ≤ 1

2

(
‖yj(k)‖22 − ‖yi(k)‖

2
2

)
, ∀j ∈ 1, N , i 6= j

}
with i ∈ 1, N which is reduced to the more compact H-representation:

Vi(k) = {y ∈ Y |Hi(k)y ≤ θi(k)} (3.4)

where Hi(k) ∈ Rmi(k)×2 and θi(k) ∈ Rmi(k), with mi(k) the number of sides of
the cell Vi(k). For the detailed construction of such a cell, the reader can refer to
Section 2.4.1.

The next step rests on the computation of the Chebyshev center of each Voronoi
cell. For a centralized control algorithm, all the computations are run on a single
machine and the result is sent to each agent. They then have to implement the
control input that has been found for them by the central machine. Thus, depending
on the computing capabilities of this machine, the Chebyshev center can be computed
by solving sequentially or in parallel the N linear problems (2.56):

maximize
ci(k), ri(k)

ri(k)

subject to

ri(k) ≥ 0,

θi,j(k) ≥ hi,j(k)ci(k) +
∥∥h>

i,j(k)
∥∥
2
ri(k), ∀j ∈ 1,mi(k)

(3.5)



66 Chapter 3. Decentralized control for the deployment of a multi-vehicle system

where θi,j(k) and hi,j(k), with j ∈ 1,mi(k) and i ∈ 1, N , are the rows of θi(k) and
Hi(k) introduced in (3.4) and ci(k) and ri(k), which are a shortened form of cVi(k)

and rVi(k), are the Chebyshev center and Chebyshev radius of Vi(k).
Since the control algorithm is meant here to be centralized, the computation of

the Chebyshev centers can also be centralized. This centralization leads to a slightly
modified version of the previous optimization problem:

maximize
ci(k),ri(k),

∀i∈1,N

N∑
i=1

ri(k)

subject to

ri(k) ≥ 0, ∀i ∈ 1, N,

θi,j(k) ≥ hi,j(k)ci(k) +
∥∥h>

i,j(k)
∥∥
2
ri(k), ∀j ∈ 1,mi(k), ∀i ∈ 1, N

(3.6)

It is immediate that running N problems of type (3.5) is equivalent to running one
problem (3.6) since (3.6) maximizes the sum of N independent real positive variables.
In the following, c(k) denotes the aggregated vector of Chebyshev centers such that
c(k) =

[
c1(k)

> · · · cN(k)
>]> ∈ R2N . The objective of each agent i ∈ 1, N is to

track the movement of the Chebyshev center ci(k) of its Voronoi cell Vi(k) to obtain
yi(k) = ci(k) for all i ∈ 1, N or, in a centralized fashion, y(k) = c(k). This is done
by imposing that at all time instant k, the Chebyshev center ci(k) is an equilibrium
point for agent i ∈ 1, N obeying the dynamics (3.1). With Assumption 3.2, it is
possible to obtain the couple (xci(k),uci(k)) associated with the equilibrium point
ci(k) for all i ∈ 1, N , this couple being used as elements of the reference trajectories
for the state and input of agent i. The Chebyshev center tracking continues until
the MAS reaches a static configuration, i.e. until there is no further evolution of the
Voronoi cells Vi(k) and thus of the Chebyshev centers ci(k). From Assumption 3.2,
it is possible to define the couple (xc(k),uc(k)) for the MAS obeying the dynamics
(3.3) such that:

xc(k) = AΣxc(k) +BΣuc(k)

c(k) = CΣxc.
(3.7)

With all the elements computed above, the input u(k) from (3.3a) is computed
by finding the solution of the MPC optimization problem:

minimize
u(k+l),

∀l∈0,Np−1

Np−1∑
l=0

`(x(k + l),u(k + l),xc(k),uc(k)) + V (x(k +Np),xc(k)) (3.8a)

subject to

x(k + l + 1) = AΣx(k + l) +BΣu(k + l), ∀l ∈ 0, Np − 1, (3.8b)
x(k + l) ∈ XN , ∀l ∈ 0, Np − 1, (3.8c)
u(k + l) ∈ UN , ∀l ∈ 0, Np − 1, (3.8d)

CΣx(k + l) ∈ V1(k)× · · · × VN(k), ∀l ∈ 0, Np − 1, (3.8e)
x(k +Np) ∈ Ω(k) (3.8f)
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where `(x(k + l),u(k + l),xc(k),uc(k)), with l ∈ 0, Np − 1, is the stage cost:

`(x(k + l),u(k + l),xc(k),uc(k))

= ‖x(k + l)− xc(k)‖2Q + ‖u(k + l)− uc(k)‖2R (3.9)

and V (x(k +Np),xc(k)) is the terminal cost:

V (x(k +Np),xc(k)) = ‖x(k +Np)− xc(k)‖2P . (3.10)

The weighting matrices Q,P ∈ RNn×Nn and R ∈ RNm×Nm in (3.9) and (3.10)
are chosen such that Q = Q> � 0, P = P> � 0 and R = R> � 0. The prediction
horizon Np is a positive integer.

The constraint (3.8b) is used to predict the future state x(k + l + 1) for all
l ∈ 0, Np − 1 of the MAS given the value of the input sequence u(k + l) for all
l ∈ 0, Np − 1. The other constraints are meant to restrict the movement of the agents
of the MAS.

Constraint (3.8e) is meant to ensure that, over the prediction horizon Np, the
output of each agent lies inside the agent’s Voronoi cell Vi(k), with i ∈ 1, N , computed
at time k.

The constraint (3.8c) constrains the state vector of the MAS inside a convex
polytope XN over the prediction horizon, where X is the state space of the agents.
However, the constraint (3.8e) is more restrictive than CΣx(k + l) ∈ CΣXN for all
l ∈ 0, Np − 1. Indeed, CΣXN = YN which means, at the level of an agent, that
(3.8c) imposes that the position of each agent over the prediction horizon evolves
inside the workspace Y , i.e. Cxi(k+ l) ∈ Y for all l ∈ 0, Np − 1. Since, by definition,
Vi(k) ⊂ Y for all i ∈ 1, N , the constraint (3.8e) is more restrictive on CΣx(k + l)
than (3.8c). Then, given the structure of the state vector given in Assumption 2.4,
constraint (3.8c) constrains the other states than those participating in the output.

Constraint (3.8d), ensures that the input signal of the MAS remains inside a
convex polytope UN , where U is the input space of the agents.

Finally, (3.8f) is a terminal constraint, with Ω(k) the terminal set, added for
stability. The expression of the terminal set is discussed in Section 3.2.3 in the
decentralized case that is presented in Section 3.2.2 with an extension to the present
centralized case.

With standard MPC policy, the first element u(k) obtained from (3.8) is applied
to the MAS. As mentioned in Section 2.3, although the agents in the MAS appear
to be decoupled in the open-loop equations (3.3), the closed-loop control policy
(3.8) induces a coupling between the agents by means of the constraint (3.8e) and
the objective point (xc(k),uc(k), c(k)), which depends itself on the Voronoi cells by
means of equation (3.6). The whole procedure can be summarized by Algorithm 3.1,
this algorithm being applied at each time instant.

♦

Remark 3.2: Output constraint
The Voronoi cells Vi(k) for all i ∈ 1, N are considered constant over the prediction
horizon Np for the optimization problem (3.8) at time k.

♦

Remark 3.3: Different stage cost
The stage cost function (3.9) can be modified to take into account additional elements
to be minimized. For example, Chevet et al. (2018) or Chevet et al. (2020b) add a term
of the form ‖u(k + l + 1)− u(k + l)‖2S, where S ∈ RNm×Nm such that S = S> � 0,
to smooth the evolution of the control input.
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Algorithm 3.1: Centralized nominal MPC algorithm.
Input: The current state x(k) of the MAS

1 for i ∈ 1, N do
2 Compute the Voronoi cell Vi(k) of agent i with (2.45);
3 end
4 Compute the aggregated vector of Chebyshev centers c(k) with (3.6);
5 Compute the couple (xc(k),uc(k)) with (3.7) such that (xc(k),uc(k), c(k))

is an equilibrium point of (3.3);
6 Solve the optimization problem (3.8);

Output: The input signal u(k)

3.2.2 Decentralized algorithm
Often, centralized policies for control of MAS are not the most suitable control policies.
Indeed, when the goal is to drive a group of agents towards a given configuration, a
centralized control algorithm can be limited by several factors covering for example
the heavy computational load for the central computing unit or the delays or loss
of communication between this central unit and one or several agents. This is why
distributed or decentralized policies are preferred since they can, in some instances,
reduce the communication time between the machines while increasing the robustness
of the global MAS and the tolerance to faults. Here, due to Assumption 2.5, a
decentralized policy is chosen: each agent knows the position of the other agents of
the MAS, thus each agent is able to independently compute its Voronoi cell and its
associated Chebyshev center and can then solve its own MPC optimization problem.

Let i ∈ 1, N be an agent of the MAS. Then the computation of its Voronoi cell
Vi(k) and its Chebyshev center ci(k) have already been covered in Section 3.2.1, the
agent computing ci(k) by solving (3.5).

With Assumption 3.2, it is possible to find the couple (xci(k),uci(k)) such that
(xci(k),uci(k), ci(k)) is an equilibrium point of the dynamics (3.1):

xci(k) = Axci(k) +Buci(k)

ci(k) = Cxci(k).
(3.11)

With all the elements computed above, the input ui(k) for agent i ∈ 1, N from
(3.1) is computed by finding the solution of the optimization problem:

minimize
ui(k+l),

∀l∈0,Np−1

Np−1∑
l=0

`(xi(k + l),ui(k + l),xci(k),uci(k)) + V (xi(k +Np),xci(k))

(3.12a)
subject to

xi(k + l + 1) = Axi(k + l) +Bui(k + l), ∀l ∈ 0, Np − 1, (3.12b)
xi(k + l) ∈ X , ∀l ∈ 0, Np − 1, (3.12c)
ui(k + l) ∈ U , ∀l ∈ 0, Np − 1, (3.12d)

Cxi(k + l) ∈ Vi(k), ∀l ∈ 0, Np − 1, (3.12e)
xi(k +Np) ∈ Ωi(k) (3.12f)
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where `(xi(k + l),ui(k + l),xci(k),uci(k)), with l ∈ 0, Np − 1, is the stage cost:

`(xi(k + l),ui(k + l),xci(k),uci(k))

= ‖xi(k + l)− xci(k)‖
2
Qi

+ ‖ui(k + l)− uci(k)‖
2
Ri

(3.13)

and V (xi(k +Np),xci(k)) is the terminal cost:

V (xi(k +Np),xci(k)) = ‖xi(k +Np)− xci(k)‖
2
Pi

. (3.14)

The weighting matrices Qi,Pi ∈ Rn×n and Ri ∈ Rm×m in (3.13) and (3.14) are
chosen such that Qi = Q>

i � 0, Pi = P>
i � 0 and Ri = R>

i � 0. The prediction
horizon Np is a positive integer.

Given the shape of the optimization problem (3.12), it is immediate that the goal
of the cost function (3.12a) and the constraints (3.12b)-(3.12f) in the decentralized
case (3.12) is identical to the goal of the same elements in the centralized case (3.8).
The difference between (3.8) and (3.12) lies in the fact that the constraints of (3.8)
are applied to the state, input and output vectors of the entire MAS Σ, while the
constraints of (3.12) only restrain the state, input and output vectors of one agent
i ∈ 1, N of Σ. Then, since problem (3.12) is reduced to only one agent, the control
algorithm can be embedded into each agent, thus reducing the computational burden
and communication time.

For all l ∈ 0, Np − 1, the constraint (3.12b) predicts the future state xi(k+ l+1)
of the agent i given the value of the input sequence ui(k + l).

Constraint (3.12e) is meant to ensure that, over the prediction horizon Np, the
output of agent i belongs to the agent’s Voronoi cell Vi(k) computed at time k.

The constraint (3.12c) restricts the state of agent i to remain inside a convex
polytope X over the prediction horizon. However, as discussed in Section 3.2.1,
(3.12e) is more restrictive on Cxi(k+ l) for all l ∈ 0, Np − 1 than (3.12c). Then, the
constraint (3.12c) constrains the other states than those participating in the output.

Constraint (3.12d) ensures that the input signal of the agent remains inside a
convex polytope U , the input space of the agent.

Finally, the terminal constraint (3.12f) is added for stability purposes. This
constraint is discussed in Section 3.2.3.

♦

Remark 3.4: Weighting matrices
Per Assumption 2.6, all the agents of Σ share the same dynamics, hence, without
loss of generality, it is simpler to consider, Qi = Q, Ri = R and Pi = P for all
i ∈ 1, N .

♦

Remark 3.5: Output constraint
As in the centralized case, the Voronoi cells Vi(k), ∀i ∈ 1, N , are considered constant
over the prediction horizon Np for the optimization problem (3.12) at time k.

Then, Algorithm 3.2 summarizes the entire control procedure for an agent. This
procedure is applied for each agent at each time instant (it is assumed that the
agents’ clocks are synchronized).

3.2.3 Discussion on the convergence of the decentralized
algorithm

The contribution of the following paragraph is to provide a framework for the proof
of convergence of the decentralized algorithm of Section 3.2.2 (though it can be easily
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Algorithm 3.2: Decentralized nominal MPC algorithm for one agent.
Input: The current state xi(k) of agent i

1 Acquire the position of the other agents yj(k), with j ∈ 1, N , j 6= 1;
2 Compute the Voronoi cell Vi(k) of agent i with (2.45);
3 Compute the Chebyshev center ci(k) of agent i with (3.5);
4 Compute the couple (xci(k),uci(k)) with (3.11) such that

(xci(k),uci(k), ci(k)) is an equilibrium point of (3.1);
5 Solve the optimization problem (3.12);

Output: The input signal ui(k) of agent i

modified to be extended to the centralized algorithm of Section 3.2.1) for a specific
dynamics: the single integrator dynamics. This framework stems from the works of
Nguyen (2016) and Hatleskog (2018), the latter providing a proof of convergence for
the deployment of a MAS when a linear state-feedback controller is used instead of
MPC.

Before starting the convergence analysis of the proposed algorithm, it is necessary
to introduce an existing result on a generalization of the definition of the controlled
λ-contractiveness of a set given in Definition 2.25.

Definition 3.1: Generalized controlled λ-contractive set (Nguyen, 2016)

A convex set Y ⊂ Rp is said to be controlled λ-contractive, with λ ∈ [0, 1), for
the dynamics (3.1) if for any y0 ∈ Y and any x(k) ∈ X ⊂ Rn such that Cx(k) =
y(k) ∈ Y , there exists a control law u(k) ∈ U ⊂ Rm such that y(k + 1) ∈ {y0} ⊕
λ(Y ⊕ {−y0}).

In his work, Hatleskog (2018) considers that the control input for an agent
i ∈ 1, N obeying the dynamics (3.1) is given by ui(k) = K(xi(k),Vi(k)), where K
is a continuous function. Then, to prove the convergence of the MAS to a static
Chebyshev configuration, Hatleskog (2018) assumes four regularity conditions. Three
of these conditions have already been provided:

• the system (3.1) is controllable according to Assumption 2.1;

• the system (3.1) is observable according to Assumption 2.2;

• the system (3.1) admits equilibrium points according to Assumption 3.2.

The last regularity condition is based on the generalization of the notion of controlled
λ-contractiveness of a set given in Definition 3.1.
Assumption 3.3: λ-contractiveness of the Voronoi cells
For any agent i ∈ 1, N of the MAS, its Voronoi cell Vi(k) is controlled λ-contractive
with respect to the dynamics (3.1).

One of the few dynamics that verifies such restrictive conditions is the single
integrator dynamics of the type:

xi(k + 1) = xi(k) + Tsui(k) (3.15a)
yi(k) = xi(k) (3.15b)
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where Ts is the sampling rate. In this case, the state vector xi(k) ∈ R2, with i ∈ 1, N ,
is also the output yi(k) of the system, i.e. the position of agent i in the plane R2,
while the input vector ui(k) ∈ R2 is the horizontal velocity of agent i. While these
dynamics might seem simplistic, numerous vehicle dynamics can be reduced to single
integrator dynamics of type (3.15) (Ren and Beard, 2008). In the following, all the
agents are assumed to obey the single integrator dynamics (3.15).

In Hatleskog (2018), the chosen control law ui(k) = K(xi(k),Vi(k)) is an uncon-
strained state-feedback such that ui(k) = K(xi(k)− ci(k)), with ci(k) the Cheby-
shev center of the Voronoi cell Vi(k). The gain matrix K ∈ R2×2 can be chosen by
any method as long as the closed-loop dynamics is stable (Hatleskog, 2018). Since
the control law proposed in the present thesis is subject to constraints, additional
assumptions have to be made.

Assumption 3.4: Shape of the input constraints
The input constraints set U used in (3.12d) is a box B2(αu), where αu ∈ R2.

♦

Remark 3.6: Shape of the state constraints
From the dynamics (3.15), the state space X and the output space Y are equal.
Then, in the case of single integrator dynamics, the constraint (3.12c) is redundant
with (3.12e) and it is dropped.

Assumption 3.5: Terminal constraint
The set Ωi, with i ∈ 1, N , in the terminal constraint (3.12f) is chosen to be:

Ωi(k) = {ci(k)} ⊕ λi(Vi(k)⊕ {−ci(k)}), (3.16)

with λi ∈ [0, 1), where ci(k) is the Chebyshev center of agent i’s Voronoi cell Vi(k).

Given Assumption 3.3, it is guaranteed that there exists a real λi ∈ [0, 1) such
that (3.12f) is feasible.

♦

Remark 3.7: Choice of the value of the contraction factor
The contraction factor λi ∈ [0, 1), with i ∈ 1, N , can be chosen in different ways. A
first approach would be to chose λi such that Ωi(k) is reachable in Np steps by the
system. Another approach would be to add λi(k) as a decision variable in (3.12) by
adding λi(k) to the cost function (3.12a) to be minimized and adding:

0 ≤ λi(k) < 1 (3.17)

as a constraint.

Theorem 3.1: Feasibility of the decentralized MPC optimization problem

If the agents in the MAS obey the dynamics (3.15) and Assumptions 3.3 to 3.5 are
verified, then the optimization problem (3.12) is always feasible.

Proof. For the optimization problem (3.12) to be feasible, the set of constraints
(3.12c)-(3.12f) has to be satisfied. The claim that problem (3.12) is always feasible
is mathematically translated to the claim that the constraint set is never empty. For
the remainder of this proof, xi, with i ∈ 1, N , is used instead of yi since the system
obeys the dynamics (3.15), where yi = xi.
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The first step of the proof is to obtain the H-representation of the sets Vi(k) and
Ωi(k) appearing in constraints (3.12e) and (3.12f) to formulate those two constraints
as linear inequalities. To do so, the expression of the Voronoi cell Vi(k) given in
(2.45) is used. From this equation the rows of the matrices Hi(k) and θi(k) inducing
the Voronoi cell Vi(k) of agent i are written:

hi,j(k) = (xj(k)− xi(k))
> (3.18)

θi,j(k) =
1

2

(
‖xj(k)‖22 − ‖xi(k)‖

2
2

)
, (3.19)

with j ∈ 1, N \ {i}. However, (3.19) can be written:

θi,j(k) =
1

2

(
‖xj(k)‖22 − ‖xi(k)‖

2
2

)
=

1

2
(xj(k)− xi(k))

>(xj(k) + xi(k))

= (xj(k)− xi(k))
>
(
1

2
xj(k) +

(
1− 1

2

)
xi(k)

)
=

1

2
(xj(k)− xi(k))

>︸ ︷︷ ︸
hi,j(k)

(xj(k)− xi(k)) + (xj(k)− xi(k))
>xi(k)

=
1

2

∥∥hi,j(k)>∥∥22 + hi,j(k)xi(k)

giving, according to Remark 2.8:

Vi(k) = {xi(k)} ⊕ Ci(k) (3.20)

where:
Ci(k) =

{
x ∈ R2

∣∣Hi(k)x ≤ κi(k)
}

with the elements of κi(k) ∈ RN−1 being the κi,j(k) = 1
2

∥∥hi,j(k)>∥∥22 ≥ 0 for all
j ∈ 1, N \ {i}. Using Remark 2.8, Vi(k) can be rewritten such that:

Vi(k) =
{
x ∈ R2

∣∣Hi(k)x ≤ κi(k) +Hi(k)xi(k)
}

.

Moreover, given the definition of Ωi(k) in Assumption 3.5, it can be verified with
Remark 2.8 and Property 2.10 that:

Ωi(k) = {x ∈ Rn |Hi(k)x ≤ λiκi(k) + λiHi(k)xi(k) + (1− λi)Hi(k)ci(k)}

or, equivalently:

Ωi(k) = {λixi(k) + (1− λi)ci(k)} ⊕ λiCi(k).

These results will come in handy later in this proof.
For the next part of the proof, the feasibility of the constraints (3.12e) and (3.12f)

is studied separately. Indeed, while the constraint on the input vector (3.12d) is a
constraint on ui(k + l) for all l ∈ 0, Np − 1, the constraint on the output (or state
vector in the present case) (3.12e) is a constraint on ui(k + l) for all l ∈ 0, Np − 2
and the terminal constraint (3.12f) is a constraint on ui(k+Np− 1). Then, as a first
step, the constraints (3.12b), (3.12e) and (3.12d) are aggregated over the horizon
0, Np − 2 before studying (3.12f) along with (3.12b) and (3.12d) for l = Np − 1.
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Consider:

Xi(k) =

 xi(k + 1)
...

xi(k +Np − 1)

 Ui(k) =

 ui(k)
...

ui(k +Np − 2)



F = 1Np−1×1 ⊗ I2 G = Ts ·


1 0 · · · 0
... . . . . . . ...
... . . . 0
1 · · · · · · 1

⊗ I2

such that the constraint (3.12b) can be rewritten, for all l ∈ 0, Np − 2:

Xi(k) = Fxi(k) +GUi(k). (3.21)

Thus, since xi = yi, the constraints (3.12d)-(3.12e) can be aggregated as:

Hh
i (k)Xi(k) ≤ κhi (k) +Hh

i (k)
(
1(Np−1)×1 ⊗ xi(k)

)
(3.22a)

Hh
U(k)Ui(k) ≤ θhU(k) (3.22b)

where Hh
i (k) = INp−1⊗Hi(k), κhi (k) = 1(Np−1)×1⊗κi(k), Hh

U(k) = INp−1⊗HU(k)
and θhU(k) = 1(Np−1)×1 ⊗ θU(k), with HU(k) and θU(k) the matrices inducing U
in R2. It can be noticed that, with dynamics (3.15), 1(Np−1)×1 ⊗ xi(k) = Fxi(k).
Injecting (3.21) into (3.22a), the inequalities (3.22) become:

Hh
i (k)GUi(k) ≤ κhi (k)

Hh
U(k)Ui(k) ≤ θhU(k).

Given its definition, κhi (k) ≥ 0 and, since U is a box, θhU(k) ≥ 0, by Definition 2.12.
Then, there exists no vector y ≥ 0 such that

[
κhi (k)

> θhU(k)
>]y < 0 and, by

Theorem 2.2, the set of constraints:{
U ∈ R2(Np−1)

∣∣∣∣ [Hh
i (k)G

Hh
U(k)

]
U ≤

[
κhi (k)
θhU(k)

]}
is not empty.

Finally, given Assumption 3.5 and the associated Remark 3.7, the terminal
constraint is built such that the terminal sets Ωi(k) is reachable in Np steps with
the constraint u(k + l) ∈ U for all l ∈ 0, Np − 1.

Thus, the set of constraints of problem (3.12) is never empty, guaranteeing the
feasibility of problem (3.12). �

The feasibility of the decentralized MPC algorithm has been proven. With the
proposed control algorithm, the regularity assumptions of Hatleskog (2018) are
verified, hence, for a proof of convergence of the overall decentralized algorithm, the
reader can refer to Hatleskog (2018).

♦

Remark 3.8: Different dynamics
Theorem 3.1 is valid for the case of agents obeying single integrator dynamics. In
Section 3.3, the agents are assumed to obey double integrator dynamics. Then, a
discussion on the convergence of the deployment algorithm in this case is drawn in
Section 3.4.
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♦

Remark 3.9: Feasibility of (3.8)
By following the same steps as in the proof of Theorem 3.1, it can be proven that the
centralized problem (3.8) is feasible. In the centralized case, the terminal constraint
for optimization problem (3.8) would be chosen such that:

Ω(k) = Ω1(k)× · · · × ΩN(k)

where Ωi(k), with i ∈ 1, N , is defined in (3.16).

3.2.4 Deployment results in the case of single integrator
dynamics

Let Σ be a system composed of N agents. The agents are vehicles obeying the
single integrator dynamics presented in (3.15). This is a reasonable assumption often
made for vehicles such as unmanned ground vehicles (UGV) (Ren and Beard, 2008,
Pickem et al., 2017). In the case of UGV, the agent’s state vector xi, with i ∈ 1, N ,
is the position of this agent in the plane R2 denoted by xi(k) =

[
xi(k) yi(k)

]>,
while the input vector ui is the horizontal velocity of the vehicle denoted by ui(k) =[
vx,i(k) vy,i(k)

]>. The output vector yi being identical to the state vector xi, it is
not used in the following.

Let the state space be:

X =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


3 2
0 1
−1 2
−1 −1
2 −1

x ≤


24
6
9
15
12


 (3.23)

and the input space be:

U = B2(12×1) =

x ∈ R2

∣∣∣∣∣∣∣∣

−1 0
1 0
0 −1
0 1

x ≤ 14×1

. (3.24)

The sets X = Y and U satisfy Assumptions 3.1 and 3.4.
For a first example, consider N = 10 agents in Σ. The agents use the decentralized

MPC strategy of Algorithm 3.2. The sampling period used in (3.15) is Ts = 0.2 s and
the prediction horizon is Np = 10. In this problem, given the size of the workspace
X and the constraints on the control input, the contraction factor λi is chosen such
that λi = 0.9 for all i ∈ 1, N . With such a value, an agent located on a vertex of X
can reach λiX in less than Np steps. The weighting matrices are chosen such that
Q = R = I2 and P is the solution of the algebraic Riccati equation:

A>PA− P −A>PB
(
B>PB +R

)−1
B>PA+Q = 02

with A = I2 and B = TsI2. The solver for the optimization problem (3.12) is
generated with CVXGEN (Mattingley and Boyd, 2012, 2013).

The vehicles start from random positions inside the polytopic set X and start
moving towards their Chebyshev centers. The initial configuration is displayed in



3.2. Problem formulation and first results 75

Figure 3.1. The agents are represented by circles and the Chebyshev center of their
Voronoi cells by stars. The Voronoi cell of each agent is also presented. It can be
noticed that in the present example, some agents start from very close positions such
as agents 2, 4, 5, 7 and 10. It would not be possible for a real system since each
vehicle would have a given size prohibiting them to be too close from each other.
However, in the case of the present simulation, punctiform systems are considered.
It has to be noted that it is possible to bias the randomness of the starting position
by ensuring that two agents cannot be closer than a given distance.
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Agent’s initial position xi(0) Initial Chebyshev center ci(0)

Figure 3.1: Initial position of the agents of Σ in X .

The agents of Σ then evolve inside X by following their Chebyshev center. Some
snapshots of the deployment are presented in Figure 3.2. These snapshots show the
deployment of the agents (represented as in Figure 3.1 by circles) and the Chebyshev
centers of their Voronoi cells (represented as in Figure 3.1 by stars) as well as the
Voronoi tessellation at different time instants.

Figure 3.2 can be analyzed along with Figure 3.3. Indeed, Figure 3.3 presents the
complete trajectory of all agents as well as the trajectory of the Chebyshev centers.
In this figure, it is possible to see that the Chebyshev center trajectory (dashed line)
can undergo abrupt changes such as the trajectories of c3, c5, c6 or c7. These abrupt
changes can be explained by the fact that the shape of a Voronoi cell changes from
one time sample to the other due to the global movement of the MAS. For example,
agents 1, 2, 4 and 10 have a tendency to move to the left of X , liberating space for
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(b) Deployment at t = 6 s.
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(c) Deployment at t = 10 s.
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(d) Deployment at t = 15 s.
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(e) Deployment at t = 20 s.
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(f) Deployment at t = 50 s.

Figure 3.2: Configuration of Σ at different time instants.
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agents 5, 6 and 7, making their Chebyshev centers coming back to the left of X after
a first movement to the right. However, these changes do not affect the convergence
of the overall algorithm since it is obvious from Figure 3.3 that each agent reaches
its Chebyshev center and the MAS reaches a static Chebyshev configuration.
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Figure 3.3: Trajectories of the agents of Σ and their associated Chebyshev centers.

This convergence is even more obvious when analyzing Figure 3.4, which shows
the distance of each agent to its Chebyshev center over time, denoted by di(k),
with i ∈ 1, N . Pikes appear on the distance between agent 1 and 9 and their
respective Chebyshev centers. This sudden increase in the distance can be observed
in Figure 3.2. Around t = 14 s, the position of the Chebyshev center of agent 1
greatly changes, as well as the position of the Chebyshev center of agent 9 around
t = 6 s, causing the pikes in Figure 3.4.

Overall, the system reaches the objective described previously, i.e. it deploys to
a static Chebyshev configuration as defined in Definition 2.29: each agent lies on
the Chebyshev center of its Voronoi cell. As expected, the optimization problem is
always feasible with the choice of λi, with i ∈ 1, N , made earlier, knowing that the
feasibility of the terminal constraint (3.12f) can be guaranteed by adding λi as a
decision variable in (3.12) as mentioned in Remark 3.7.
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Figure 3.4: Distance of each agent of Σ to its Chebyshev center over time.

3.3 Deployment of a quadrotor UAV fleet
As specified in Section 3.2.3, the assumptions made for the convergence of the
problem reduce the possible dynamics of the agents to a very strict class. The aim of
this section is to apply the decentralized control algorithm (i.e. Algorithm 3.2) to a
fleet of quadrotor unmanned aerial vehicles (UAV). The model of a quadrotor UAV
is continuous-time nonlinear with twelve states and not observable with the output
matrix described in Remark 2.10. Thus, the model of the UAV has to be linearized,
discretized and decomposed into several subsystems. With such a decomposition, the
position subsystem of a quadrotor UAV is modeled as double integrator dynamics on
which it is possible to apply the decentralized MPC strategy of Algorithm 3.2. Then,
the present section shows in simulation that the convergence is also ensured in the
case of double integrator dynamics which are also widely used to represent vehicles
(Ren and Beard, 2008). The first paragraph of this section, Section 3.3.1, presents
the continuous-time nonlinear model of a quadrotor UAV that is used to test the
decentralized deployment algorithm Algorithm 3.2. Then, Section 3.3.2 presents the
control architecture allowing to consider only double integrator dynamics for the
position control of such a vehicle. Finally, Section 3.3.3 shows simulation results of
the deployment algorithm applied on a UAV fleet.

3.3.1 Agent model
3.3.1.1 Continuous-time nonlinear dynamics

The dynamics of a quadrotor UAV has been extensively studied. It can be derived
from Lagrangian mechanics (Bouabdallah et al., 2004, Castillo et al., 2005, Sabatino,
2015) however, such a derivation is out of the scope of the present thesis.

The continuous-time nonlinear dynamics of a quadrotor UAV can be expressed
as a function of the state vector:

x =
[
x y z φ θ ψ vx vy vz ωx ωy ωz

]> (3.25)
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Table 3.1: State variables of a quadrotor UAV.

x, y, z Cartesian coordinates of the UAV in Earth’s frame
φ, θ, ψ Roll, pitch and yaw angles of the UAV
vx, vy, vz Linear speed of the UAV is Earth’s frame
ωx, ωy, ωz Angular speed of the UAV
ft Total upward thrust of the UAV
τx, τy, τz Torques on the axes of the UAV

and the input vector:

u =
[
ft τx τy τz

]> (3.26)

such that:
ẋ = f(x,u). (3.27)

The physical meaning of all variables presented in (3.25) and (3.26) are gathered in
Table 3.1. In (3.25), (3.26) and (3.27), as well as for the remainder of this paragraph,
the time dependence is dropped to simplify the notations.

L

f4

f3

f1

f2

φ θ

ψ

xUAV yUAV

zUAV

xEarthyEarth

zEarth

Figure 3.5: Schematic representation of a quadrotor UAV.

Figure 3.5 gathers some elements necessary to understand the model considered
in this thesis. The vectors xUAV, yUAV and zUAV are attached to the UAV’s frame
while xEarth, yEarth and zEarth are attached to the Earth’s frame. The total upward
thrust ft is such that:

ft =

(
4∑
i=1

fi

)>

zUAV.

The torques τx, τy and τz are such that a positive value of the torque induces a
variation of φ, θ and ψ respectively in the direction indicated in Figure 3.5. The
length L denotes the length of an arm of the quadrotor, from the center of inertia to
one rotor’s rotation axis. This length is not used here but influences some control
strategies (Wang et al., 2016a, Chevet et al., 2020b).



80 Chapter 3. Decentralized control for the deployment of a multi-vehicle system

Table 3.2: Values of UAV model’s parameters (Chevet et al., 2020b).

Mass m = 1.4 kg
Inertia components Ix = Iy = 0.03 kg ·m2

Iz = 0.04 kg ·m2

Arm’s length L = 0.2m
Gravitational acceleration g = 9.81m · s−2

With these elements, the continuous-time nonlinear state space model can be
written (Chevet et al., 2020b):

ẋ = vx (3.28a)
ẏ = vy (3.28b)
ż = vz (3.28c)
φ̇ = ωx + (ωy sinφ+ ωz cosφ) tan θ (3.28d)
θ̇ = ωy cosφ− ωz sinφ (3.28e)

ψ̇ = ωy
sinφ

cos θ
+ ωz

cosφ

cos θ
(3.28f)

v̇x =
ft
m

(cosφ sin θ cosψ + sinφ sinψ) (3.28g)

v̇y =
ft
m

(cosφ sin θ sinψ − sinφ cosψ) (3.28h)

v̇z =
ft
m

cosφ cos θ − g (3.28i)

ω̇x =
Iy − Iz
Ix

ωyωz +
τx
Ix

(3.28j)

ω̇y =
Iz − Ix
Iy

ωxωz +
τy
Iy

(3.28k)

ω̇z =
Ix − Iy
Iz

ωxωy +
τz
Iz

(3.28l)

where m is the mass of the quadrotor UAV, Ix, Iy and Iz the moments of inertia
around each axis of the UAV and g is the gravitational acceleration. The numerical
values of these parameters are gathered in Table 3.2.

3.3.1.2 Discrete-time linear dynamics

The state vectors of the form x =
[
x y z 01×2 ψ 06×1

]> associated with an
input vector of the form u =

[
mg 01×3

]> are the only admissible type of equilibrium
points for the system described by equations (3.28). The nonlinear system can thus
be linearized around an equilibrium point (x,u) as:

ẋ =


03 03 I3 03

03 03 03 I3
03 M 03 03

03 03 03 03

 (x− x) +


08×1 08×1 08×1 08×1

m−1 0 0 0
0 I−1

x 0 0
0 0 I−1

y 0
0 0 0 I−1

z

 (u− u) (3.29)
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where:

M = g

 sinψ cosψ 0

− cosψ sinψ 0
0 0 0

 .

♦

Remark 3.10: Notation
In the following, to simplify the notations, x and u designate the variations of the
state and input of the position subsystem around the equilibrium point.

Since it is quite sparse, the system (3.29) can be separated into a position and an
attitude subsystem. However, only one is of interest for the deployment objective that
is presented later in this section: the horizontal position subsystem. This subsystem
is written:

ẋ =


ẋ
v̇x
ẏ
v̇y

 =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0



x− x
vx

y − y
vy

+


0 0

0 g cosψ
0 0

−g cosψ 0

[φθ
]

. (3.30)

To simplify and without loss of generality, it can be assumed that the considered
equilibrium point of (3.28) is x =

[
01×2 z 01×9

]>. With this value for the equi-
librium state vector, it is possible to discretize the dynamics (3.30) with the Euler
method with the sampling period Ts:

x(k+1) =


x(k + 1)
vx(k + 1)
y(k + 1)
vy(k + 1)

 =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1



x(k)
vx(k)
y(k)
vy(k)

+ 1

2
gTs


0 Ts
0 2
−Ts 0
−2 0

[φθ
]

. (3.31)

Assumption 3.6: Output of the position subsytem

The output of the horizontal position subsystem (3.31) is
[
x(k) y(k)

]>.

It is not necessary to describe the other subsystems since the control strategy
for the variables other than x, y, vx and vy is based on feedback linearization as
described in Paragraph 3.3.2.2.

3.3.2 Global control strategy
In order to apply the decentralized MPC strategy of Algorithm 3.2 to the position
subsystem (3.31), a control architecture for the quadrotor UAV (3.28) has to be
designed. Paragraph 3.3.2.1 introduces the overall control architecture for a UAV,
while Paragraph 3.3.2.2 and Paragraph 3.3.2.3 present the control strategies for the
inner and outer loops that appear in the architecture of Paragraph 3.3.2.1.

3.3.2.1 Overall architecture

Given the model of the position subsystem given in (3.31) and the full state-space
model (3.28) of a quadrotor UAV, a cascaded control scheme seems to be a solution
for the control of the system. From the models in Section 3.3.1, the outer loop is
meant to control the horizontal position of the vehicle, while the inner loop is meant
to control the attitude of the vehicle, i.e. the pitch and roll angles φ and θ. However,
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with such a structure, some variables present in (3.28) do not appear in this control
structure, i.e. the altitude z and the yaw angle ψ. However, it is also necessary
to control the altitude and yaw angle of the quadrotor UAV. Then, the altitude is
controlled with a subsidiary loop, while the control of the yaw angle is integrated to
the inner loop described before.

Position
controller

Attitude
controller

Altitude
controller

UAV

Thrust ft

Torques[
τx τy τz

]>
Position reference[

xr yr
]>

Altitude
reference zr

Angle reference[
φr θr

]>

Angles
[
φ θ ψ

]>
Angular speeds

[
ωx ωy ωz

]>
Horizontal position

[
x y

]>

Altitude z, Vertical speed vz
Angles

[
φ θ ψ

]>

Figure 3.6: Overall control architecture for a quadrotor UAV.

Figure 3.6 provides a schematic view of the overall control structure for a UAV:

• The altitude controller is used for take-off and landing (which is out of the
scope of this thesis) and for maintaining altitude of the quadrotor UAV during
the flight. It receives measurements of attitude, altitude and vertical speed
as well as a constant reference zr = z (the equilibrium value z described in
Paragraph 3.3.1.2) to compute a value of total thrust provided to the UAV.

• The attitude controller is used to follow the angle reference necessary to move
the quadrotor UAV from a given position in the plane to a given objective.
It receives measurements of attitude and angular speeds as well as a pitch
and roll reference from the position controller (the yaw reference ψr being
ψr = ψ = 0° as described in Paragraph 3.3.1.2) to compute torque values that
are provided to the UAV.

• The position controller receives a position reference, namely the Chebyshev
center of the Voronoi cell associated to the UAV, as well as position measure-
ments from the UAV itself that enable the deployment algorithm to be carried
out.

• The total thrust and torques are then converted by the UAV to a rotor speed
value for each of the four rotors. Such a conversion is not treated in this thesis.

Both the attitude and altitude controller are described in Paragraph 3.3.2.2.
However, this description is only presented for reproducibility of the results described
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in Section 3.3.3, a complete study of such controllers being out of the scope of this
thesis. The position controller is extensively described in Paragraph 3.3.2.3.

3.3.2.2 Inner-loop control

In this paragraph, the altitude and the attitude controller are briefly described.
As mentioned in Paragraph 3.3.1.2, these controllers are obtained via feedback
linearization (Isidori, 1995) and a full procedure for the overall control of a quadrotor
UAV can be found in Voos (2009).

In order to derive the attitude controller, it is first necessary to make an assump-
tion on the angles.

Assumption 3.7: Small angles

The roll, pitch and yaw angles are sufficiently small so that φ̇ = ωx, θ̇ = ωy and
ψ̇ = ωz. Such a behavior is obtained when |φ|, |θ|, |ψ| < 30°.

♦

Remark 3.11: Limit value of the angles
In the literature (Abdolhosseini et al., 2013), the limit value of |φ|, |θ|, |ψ| < 15° can
be found. In this case, a linear MPC strategy is used to control the position and
attitude hence the need to constrain the angles tightly for the linearized model to be
valid over the entire control space. The control structure proposed here being more
robust, it is possible to relax the limit value of the angles to the one proposed in
Assumption 3.7.

With Assumption 3.7, it is possible to derive the attitude controller. The angular
speed dynamics are described in (3.28j)-(3.28l) as:

ω̇x =
Iy − Iz
Ix

ωyωz +
τx
Ix

(3.32a)

ω̇y =
Iz − Ix
Iy

ωxωz +
τy
Iy

(3.32b)

ω̇z =
Ix − Iy
Iz

ωxωy +
τz
Iz

. (3.32c)

By following the procedure of Voos (2009), the control inputs are of the form:

τx = fx(ωx, ωy, ωz) + τ ∗x (3.33a)
τy = fy(ωx, ωy, ωz) + τ ∗y (3.33b)
τz = fz(ωx, ωy, ωz) + τ ∗z (3.33c)

where τ ∗x , τ ∗y and τ ∗z are new input variables. In order to maintain the linearity in ωx
and τ ∗x , it is then necessary that:

ω̇x =
Iy − Iz
Ix

ωyωz +
1

Ix
fx(ωx, ωy, ωz) +

τ ∗x
Ix

= Kxωx +
τ ∗x
Ix
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or, by doing the same thing for ωy and ωz:

Iy − Iz
Ix

ωyωz +
1

Ix
fx(ωx, ωy, ωz) = Kxωx (3.34a)

Iz − Ix
Iy

ωxωz +
1

Iy
fy(ωx, ωy, ωz) = Kyωy (3.34b)

Ix − Iy
Iz

ωxωy +
1

Iz
fz(ωx, ωy, ωz) = Kzωz (3.34c)

where Kx, Ky and Kz are gains. Obtaining fx, fy and fz from (3.34) and using them
in (3.33), the control inputs are:

τx = KxIxωx − (Iy − Iz)ωyωz + τ ∗x (3.35a)
τy = KyIyωy − (Iz − Ix)ωxωz + τ ∗y (3.35b)
τz = KzIzωz − (Ix − Iy)ωxωy + τ ∗z . (3.35c)

Using the inputs defined in (3.35) in (3.32) and Assumption 3.7:

φ̈ = Kxφ̇+
τ ∗x
Ix

θ̈ = Kyθ̇ +
τ ∗y
Iy

ψ̈ = Kzψ̇ +
τ ∗z
Iz

.

By choosing τ ∗x = Kφ(φr − φ), τ ∗y = Kθ(θr − θ) and τ ∗z = Kψ(ψr − ψ), it is then
possible to tune the values of Kx, Kφ, Ky, Kθ, Kz and Kψ to obtain the desired
behavior for the attitude controller with classical closed-loop second order tuning.

Thus, the attitude controller is such that:

τx = KxIxωx − (Iy − Iz)ωyωz +Kφ(φr − φ) (3.36a)
τy = KyIyωy − (Iz − Ix)ωxωz +Kθ(θr − θ) (3.36b)
τz = KzIzωz − (Ix − Iy)ωxωy +Kψ(ψr − ψ) (3.36c)

where the values of Ix, Iy and Iz are given in Table 3.2 and Kx = Ky = Kz =
−72 kg−1 ·m−2, Kφ = Kθ = 48N · kg ·m3 and Kψ = 64N · kg ·m3, assuming that
the yaw reference ψr is always 0°. With such values, there is no overshoot in the
step response of the attitude loop and a 5% response time of 0.1 s.

The same procedure can be applied for the altitude controller. The dynamics of
the vertical speed is given by (3.28i):

v̇z =
ft
m

cosφ cos θ − g

thus, the input guaranteeing the linearity in f ∗
t is:

ft = fv(vz, φ, θ) +
m

cosφ cos θ
f ∗
t . (3.37)

Injecting (3.37) into (3.28i) gives the expression of fv guaranteeing linearity in vz:

fv(vz, φ, θ) =
m

cosφ cos θ
(g +Kvvz)
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where Kv is a gain. Again, by choosing f ∗
t = Kw(zr − z), where zr is the altitude

reference to be followed, the altitude controller is such that:

ft =
m

cosφ cos θ
(g +Kvvz +Kw(zr − z)) (3.38)

where Kv = 36 s−1 and Kw = 400 s−2 to have no overshoot in the step response of
the altitude loop and a 5% response time of 0.2 s.

3.3.2.3 Outer-loop control

With the inner loop and the subsidiary control loop of the overall control structure
of Figure 3.6, it is now possible to focus on the position controller. This controller
follows Algorithm 3.2 for one UAV agent. An additional step of state estimation
is considered. Indeed, in Section 3.2.2, the assumptions that the system (3.1) is
observable (Assumption 2.2) and that equilibrium points exist for the dynamics (3.1)
(Assumption 3.2) are made. It is implicit in Section 3.2.2 that the full state vector is
known for the control strategy to work.

Here, the considered system for the control design is the linearized discrete-
time position subsystem defined in (3.31). To simplify the discussion, the following
notations are valid until the end of Section 3.3:

xi(k) =


xi(k)
vx,i(k)
yi(k)
vy,i(k)

 A =


1 Ts 0 0
0 1 0 0
0 0 1 Ts
0 0 0 1



ui(k) =

[
φi(k)
θi(k)

]
B =

1

2
gTs


0 Ts
0 2
−Ts 0
−2 0


yi(k) =

[
xi(k)
yi(k)

]
C =

[
1 0 0 0
0 0 1 0

]
(3.39)

where the index i is appended to the notations introduced in Section 3.3.1 to denote
that the variable is related to the UAV agent i of Σ, where i ∈ 1, N , with N = |Σ|.
The assumptions of controllability (Assumption 2.1) and observability of the system
(Assumption 2.2) as well as the existence of equilibrium points (Assumption 3.2) are
verified by the dynamics:

xi(k + 1) = Axi(k) +Bui(k)

yi(k) = Cxi(k)
(3.40)

with the matrices A, B and C defined in (3.39). However, it is also easy to verify that
the Voronoi cells are not controlled λ-contractive in this case, thus Assumption 3.3
does not hold. This is overlooked for the time being and a discussion on this matter
is lead in Section 3.4.
Assumption 3.8: Availability of measurements
Only the position measurements yi(k) coming from the continuous-time nonlinear
UAV are available to the position controller.
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Due to Assumption 3.8, it is necessary to introduce an observer to retrieve the
full state vector xi(k) from the value of yi(k), with i ∈ 1, N . Since the system is
nominal and with quite simple dynamics, a Luenberger observer (Luenberger, 1964)
is adequate. This observer is designed such that:

x̂i(k + 1) = Ax̂i(k) +Bui(k) +L(yi(k)− ŷi(k)) (3.41)

where yi, with i ∈ 1, N , is the measured output from the UAV agent, x̂i is the state
obtained from the observer, ŷi = Cx̂i is the estimated output and L ∈ R4×2 is the
gain of the Luenberger observer.

The structure of the position controller for an agent i ∈ 1, N is then presented
in Figure 3.7. Algorithm 3.2 runs the MPC optimization problem (3.12) with the
difference that the observed state x̂i(k) is used instead of the state xi(k) to compute
the input signal ui(k). This input signal then passes through a zero order hold
(ZOH) running at the sampling rate of the outer loop Ts to send the reference to the
inner-loop controller. The measurement yi(k) comes back from the UAV agent, is
processed by the Luenberger observer (3.41) and the observed state is sent to the
MPC algorithm.

MPC ZOH

Observer

ui(k) Angle reference[
φr θr

]>
x̂i(k)

Ts

Position measurement
yi(k)

Other agent positions
yj(k), j ∈ 1, N , j 6= i

Figure 3.7: Structure of the position controller for a quadrotor UAV.

Another issue that has to be addressed here is the terminal constraint (3.12f).
It has been mentioned that Assumption 3.3 does not hold anymore with double
integrator dynamics such as (3.40) with the matrices A, B and C given in (3.39).
However, the terminal constraint can be built on the same concept of λ-contractive
controlled invariant set described in Definition 3.1. In his thesis, Nguyen (2016)
introduces a concept that is interesting for a constraint such as the one used in
Assumption 3.5, the N -step controlled λ-contractiveness.

Definition 3.2: N -step controlled λ-contractiveness (Nguyen, 2016)

A convex set Y ∈ Rp is said to be N -step controlled λ-contractive, with λ ∈ [0, 1),
for the dynamics (3.1) if for any y0 ∈ Y and any x(k) ∈ X ⊂ Rn such that
Cx(k) = y(k) ∈ Y, there exists a control sequence {u(k), . . . ,u(k +N − 1)} such
that y(k +N) ∈ {y0} ⊕ λ(Y ⊕ {−y0}).

With the concept exposed in Definition 3.2, a useful result arises.
Theorem 3.2: Controlled λ-contractiveness of a polytope (Nguyen, 2016)

Let a system following the dynamics (3.1) satisfy Assumptions 2.1, 2.2 and 3.2 with
X bounded. Then, for all λ ∈ [0, 1), there exists a finite integer N(λ) such that any
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convex set Y ⊂ Rp is N(λ)-step controlled λ-contractive.

Then, with Theorem 3.2, it is always possible, taking a long enough prediction
horizon Np, to consider a terminal constraint of the form given in Assumption 3.5.
Thus, the terminal constraint (3.12f) is modified to be such that:

Cxi(k +Np) ∈ {ci(k)} ⊕ λi(k)(Vi(k)⊕ {−ci(k)}). (3.42)

3.3.3 Deployment results
Let Σ be a system composed of N agents. These agents are UAVs obeying the
dynamics (3.28). Each agent uses the control structure presented in Section 3.3.2 to
move inside a polytopic set. Let the output space be the same as in Section 3.2.4:

Y =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


3 2
0 1
−1 2
−1 −1
2 −1

x ≤


24
6
9
15
12


 (3.43)

and the input space for the MPC algorithm be, according to Assumption 3.7 and
Assumption 3.4:

U = B2
(π
6
· 12×1

)
=

x ∈ R2

∣∣∣∣∣∣∣∣

−1 0
1 0
0 −1
0 1

x ≤ π

6
· 14×1

. (3.44)

Since the MPC algorithm concerns the position subsystem (3.40) with the matrices
from (3.39), it is also necessary to give a constraint for the other state variables, i.e.
vx,i and vy,i, with i ∈ 1, N , that are controlled via the MPC. Thus, the state space is:

X =

x ∈ R4

∣∣∣∣∣∣∣∣Cx ∈ Y and


0 −1 0 0
0 1 0 0
0 0 0 −1
0 0 0 1

x ≤ 2 · 14×1

 (3.45)

which constrains the speed to be such that |vx,i|, |vy,i| ≤ 2m · s−1, with i ∈ 1, N .
The example presented here follows the same idea as the one presented in

Section 3.2.4. Consider N = 10 agents in Σ and the prediction horizon Np = 10
steps for all agents with a contraction factor for the terminal constraint λi = 0.9,
with i ∈ 1, N . The sampling rate used in (3.31) is Ts = 0.2 s. The weighting matrices
are chosen such that Q = I4, R = I2 and P is the solution of the algebraic Riccati
equation:

A>PA− P −A>PB
(
B>PB +R

)−1
B>PA+Q = 04

with A and B defined in (3.39). The observer gain is obtained as a linear quadratic
regulator with weighting matrices Qobs = 10I4 and Robs = I2, giving:

L =


1.0971 0
0.8303 0

0 1.0971
0 0.8303

 .
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Finally, the solver for the optimization problem (3.12) is generated with CVXGEN
(Mattingley and Boyd, 2012, 2013).

The UAVs start from random positions inside the polytopic set Y. The initial
value of the other variables is 0 except the altitude zi(0) = zr = 5m, with i ∈ 1, N .
Each vehicle then starts moving towards its Chebyshev center. The behavior is
globally the same as the one obtained for single integrator dynamics in Section 3.2.4.
In each of the figures referenced until the end of this paragraph, the position of the
UAV agents is the “real” position yi, with i ∈ 1, N , the output of the continuous-time
nonlinear dynamics (3.28), and not the observed position ŷi.

The initial configuration of Σ in Y is displayed in Figure 3.8. The UAV agents
are represented by circles and the Chebyshev center of their associated cell by stars.
The initial Voronoi cell of each agent is also presented. Contrary to the example in
Section 3.2.4, the UAVs are placed sufficiently far from one another so that they are
not superposed (since their diameter is of 2L = 40 cm according to Table 3.2).
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Figure 3.8: Initial position of the agents of Σ in Y .

The agents of Σ follow their Chebyshev centers inside Y . Some snapshots of the
deployment are presented in Figure 3.9. These snapshots show the position of the
UAV agents, represented by circles, and the Chebyshev centers they are tracking,
represented by stars, inside their Voronoi cells.

By examining Figure 3.9 along with Figure 3.10, it is immediate that the behavior
of the MAS is close, if not identical, to the behavior observed for single integrator
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(f) Deployment at t = 50 s.

Figure 3.9: Configuration of Σ at different time instants.
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dynamics in Section 3.2.4. As in the last case, the Chebyshev center position can
undergo an abrupt change such as what can be seen between Figure 3.9(b) and
Figure 3.9(c) where the position of c6 (in the red Voronoi cell) changes greatly due
to the overall movement of the MAS. As in the single integrator case, such changes
do not affect the convergence of the algorithm as can be seen in Figure 3.10.
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Figure 3.10: Trajectories of the agents of Σ and their associated Chebyshev centers.

As well as for the single integrator case, a measure of the convergence of the
system to a static Chebyshev configuration is the distance from the agents’ position
to their Chebyshev center over time. This distance is displayed in Figure 3.11 for
each agent. All distances are calculated as:

di(k) = ‖yi(k)− ci(k)‖2
for all i ∈ 1, N . The distances converge to 0 with some occasional pikes due to the
sudden change of the Chebyshev center position.

Finally, one of the differences with the single integrator case is the presence of an
observer in the control loop. Even though the “real” value of the yi was used for the
previous plots, it would be interesting to see the difference between the measured
position yi and the observed position ŷi over time. In Figure 3.12 are presented the
value of the norm of the aforementioned difference:

εi(k) = ‖yi(k)− ŷi(k)‖2
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Figure 3.11: Distance of each agent of Σ to its Chebyshev center over time.

for all i ∈ 1, N over time. Given that for all agents, εi is always less than 0.04m, it is
then reasonable to use the proposed observer in the control loop since the deviation
between the measured output and the observed output is negligible.
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Figure 3.12: Norm of the error between the measured position and the observed
position of all agents of Σ.
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3.4 Discussion on the stability of the deployment
of UAVs

In Section 3.2, a control algorithm based on MPC has been introduced as well as a
proof of feasibility of the problem for agents with single integrator dynamics. The
convergence proof is not treated since the proposed controller for agents with single
integrator dynamics (classical dynamics when dealing with autonomous vehicles)
satisfies the assumptions made by Hatleskog (2018) to show convergence of the
decentralized deployment problem proposed in Section 3.2. Thus, combining the
feasibility result of Theorem 3.1 with the proof of Hatleskog (2018), it is immediate
that the proposed algorithm converges.

However, Section 3.3 introduces the idea of using the decentralized algorithm
presented in Section 3.2.2 for a different type of dynamics, i.e. double integrator
dynamics. While still quite simple and classical in autonomous vehicle modeling,
one of the essential assumption of Hatleskog (2018) is not satisfied anymore. Indeed,
Assumption 3.3 leads to the fact that the depth, i.e. the minimal distance of the
position of an agent yi(k) to the border of its Voronoi cell ∂Vi(k), increases with
the applied control input, or that min(d(yi(k), ∂Vi(k))) < min(d(yi(k + 1), ∂Vi(k))).
This assumption is essential for the convergence proof in Hatleskog (2018) to hold.

With double integrator dynamics, Assumption 3.3 is not guaranteed anymore.
Thus, the convergence is not a priori guaranteed. Meanwhile, simulations show
that the system still converges towards a static Chebyshev configuration. While
only one simulation has been shown in Section 3.3.3, Monte-Carlo simulations with
random starting points and random convex shape for the output space Y still lead
to convergence. Thus, it seems that Assumption 3.3 can be relaxed, potentially
under some conditions. However, the proof of this statement is difficult to formulate.
Such a proof is twofold: first, the fact that the decentralized MPC controller is
stable has to be exhibited before dealing with the convergence to a static Chebyshev
configuration of the MAS, where each agent obeys double integrator dynamics.

A fundamental ingredient for the stability of MPC is recursive feasibility (Löf-
berg, 2012), i.e. the fact that finding a feasible solution at time k for the MPC
optimization problem implies that a feasible solution exists at time k + 1 for this
same optimization problem. In the literature (Limón et al., 2018, Köhler et al.,
2018), proofs of recursive feasibility often (if not always) assume the existence of
a feasible sequence of input signals to the MPC optimization problem at time k,
e.g. {u(k), . . . ,u(k +Np − 1)}, and show that this same sequence shifted by one
element, e.g. {u(k + 1), . . . ,u(k +Np − 1),u(k +Np)}, is still feasible at time k+1.
The last element u(k +Np) of the shifted sequence is constructed from the fact that
the state of the system is supposed to be inside an invariant set at time k +Np − 1,
leading to the existence of the element u(k +Np).

The deployment problem studied in this chapter is closely related to another kind
of control application that can be found in the literature: the MPC tracking problem
(Dughman and Rossiter, 2015). Indeed, the objective for each agent is to track a
time-varying objective in order to finally reach a static and stable configuration.
The main complication that arises in such a problem, causing recursive feasibility
issues, is the time-varying terminal constraint (3.12f) of the MPC optimization
problem (3.12). Indeed, the objective appearing in the cost function (3.12a) has
to belong to the set that is used as a terminal constraint. Often, the choice of a
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terminal constraint centered on the objective point is made. With the deployment
problem, as seen in the simulations of Section 3.2.4 or Section 3.3.3, this objective
point can change abruptly from one time step to the other, these changes being
impossible to predict with the strategy proposed here. Such a behavior can lead to
recursive feasibility issues for the MPC as explained in Dughman and Rossiter (2015).
Several strategies exist to deal with time-varying terminal constraints. For example,
Limón et al. (2008) and Limón et al. (2018) introduce a new decision variable in
the optimization problem used for the MPC that is used as a virtual reference that
guarantees recursive feasibility of the controller. Another example can be found in
Simon et al. (2014), which resembles the algorithm proposed in Section 3.2. Indeed,
it uses a scaled and translated version of an invariant set for the dynamics of the
considered system (here, the UAV agents), where the scaling factor is a decision
variable as well as the translation vector which is close to the concept of virtual
reference introduced by Limón et al. (2008).

Another element that can make the proof of recursive feasibility difficult is the
presence of the time-varying constraints (3.12e) on the output of an agent. Indeed,
since the constraint on the output of each agent changes at each time step, it is
a priori difficult to guarantee that a sequence feasible at time k is still feasible at
time k + 1. In the literature, in order to deal with time-varying constraints, it is
often assumed that the evolution of the sets involved in such constraints is known
a priori as in Köhler et al. (2018). With the problem at hand, constraint (3.12e)
would then be replaced by yi(k + l) ∈ Vi(k + l), with i ∈ 1, N , for all l ∈ 0, Np − 1.
The initial constraints Vi(l) for all l ∈ 0, Np − 1 would be obtained by finding an
initial trajectory for all the agents and constructing all the Voronoi cells along the
prediction horizon. The constraints would then be updated by shifting the trajectory
of Voronoi cells by one element and constructing the last one with the knowledge
of the last element of the trajectory of each agent. With such constraints, the
optimization problem would be recursively feasible if used in combination with the
method from Limón et al. (2018) or Simon et al. (2014) which allows to deal with
the terminal constraint. However, such a strategy would only work in a centralized
or distributed framework, the latter requiring too many communications between
the agents. The main advantage of the control algorithm proposed in Section 3.2
is that it is based only on the current position of the other agents to compute the
control input of a given agent, thus limiting the need for communications and the
complexity of the overall problem.

A proof of stability of the decentralized control algorithm Algorithm 3.2 could
start with a strategy similar to the one proposed in Köhler et al. (2018) combined
with the virtual reference of Limón et al. (2018) or the terminal sets of Simon et al.
(2014). The constraints on the output would then be modified to what was described
above by computing a so-called trajectory of Voronoi cells for each agent. Then, a
proof of stability of the centralized algorithm of Section 3.2.1 would be formulated. It
should then be adapted for the decentralized approach of Section 3.2.2 with modified
output constraints. The last step of the proof would be to prove that a suboptimal
yet stable controller is obtained by restricting the problem introduced above to the
one presented in Section 3.2.2. Another possibility would be to find a condition under
which the time-varying constraints present in the proposed problem are recursively
feasible. Work on recursive feasibility of time-varying constraints has been done by
Liu and Stursberg (2019), but this is limited to polyhedral constraints of the form
Hx ≤ θ, where only θ is time-varying. In the problem considered in this chapter,
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both H and θ are time-varying, which complicates the problem.
Once the stability of the decentralized MPC algorithm is proven, the convergence

of the deployment algorithm is studied. The proof of convergence would then be
adapted from the proof of Hatleskog (2018).

However, it can be verified with Monte-Carlo simulations that any initial con-
figuration in any convex set (wide enough for the agents to fit and move inside)
converges towards a static Chebyshev configuration when the agents obey quadrotor
UAV dynamics. It then must be possible to relax Assumption 3.3 and still obtain
convergence of the deployment algorithm.

3.5 Conclusion
This chapter presents a novel model predictive control algorithm to perform a
Voronoi-based deployment of a multi-agent system where each agent is tracking
the Chebyshev center of the Voronoi cell it belongs to. This algorithm, derived
from the one introduced in Nguyen (2016), is presented in both centralized and
decentralized forms. A proof of feasibility is proposed in the case of single integrator
dynamics which, combined with the proof of convergence of Hatleskog (2018), proves
convergence of the deployment algorithm in the case of single integrator dynamics.
Simulations then show an example of deployment of a MAS composed of vehicles
having single integrator dynamics. Using the decentralized deployment algorithm,
the MAS converges to a static Chebyshev configuration.

In a second part, the decentralized deployment algorithm is applied to a fleet of
UAVs. The position dynamics used for the MPC are reduced to double integrator
and the other dynamics are controlled with a controller obtained from feedback
linearization. Simulations performed using nonlinear models for all agents show that
the system deploys and converges to a static Chebyshev configuration. The chapter
ends on a discussion about said convergence. Indeed, one essential assumption for the
proof of converge given in Hatleskog (2018) is not satisfied in the case of dynamics
more complex than single integrator. Moreover, time-varying constraints appearing
in the MPC algorithm are another drawback. Future work on such a deployment
algorithm should tackle the problem of proving convergence for a wider variety of
dynamics than single integrator dynamics.

While Chapter 3 deals with a Voronoi-based deployment of a multi-agent system
in the nominal case, Chapter 4 considers perturbation and measurement noise on
the agent dynamics. Then, it presents robust algorithms to allow the agents to
track the Chebyshev center of their Voronoi cell when they are subject to bounded
deterministic perturbations as well as when they are subject to unbounded stochastic
perturbations.
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The deployment problem for a multi-vehicle system (MVS) has been introduced
in Chapter 3. However, it has only been approached in the case where the vehicle
dynamics are nominal, i.e. their dynamics are of the form (2.40) and the vehicles
are not subject to any form of perturbation. This situation is not realistic since this
kind of system is meant to operate in real conditions, where the vehicles are affected
by noises from the sensors or external perturbations from the environment.

The contribution of this chapter is the deployment of a MVS subject to bounded
perturbations in Section 4.1 and then investigates control strategies when the agents in
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the MVS are affected by stochastic noises and external perturbations in Section 4.2.
In both cases, the model considered for a vehicle is presented along with other
dynamics (prediction model, state observer) that are necessary to formulate the
model predictive control problem for the Voronoi-based deployment of a MVS. In
addition, an overview of existing control methods for systems subject to bounded and
unbounded perturbations is developed according to the considered case. Then, in
each case, the deployment algorithm is presented. Finally, the deployment algorithm
is tested on multi-vehicle systems where each vehicle obeys single integrator and
quadrotor unmanned aerial vehicle (UAV) dynamics. As in Chapter 3, the names
multi-agent system (MAS) and multi-vehicle system (MVS) are used indifferently
since here, the agents are all vehicles.

4.1 Bounded perturbations
In the following section, bounded perturbations are considered on the system model.
To this end, Section 4.1.1 introduces the necessary modifications on the dynamics of
an agent part of a larger MAS as well as the essential dynamics for the development of
a control algorithm. Section 4.1.2 presents an overview of existing methods for control
of systems subject to bounded perturbations. The decentralized model predictive
control algorithm for Voronoi-based deployment of a MAS presented in Section 3.2.2
is modified using a tube-based MPC approach with guaranteed Voronoi cells to cope
with bounded perturbations in Section 4.1.3 before finally being applied in simulation
to a MAS composed of agents obeying single integrator or UAV dynamics.

4.1.1 System model
Let Σ be a multi-agent system composed of N agents. Each agent obeys discrete-time
linear time-invariant dynamics as in the previous chapter. In addition to (3.1), each
agent is now considered to be subject to bounded input and output perturbations.
The dynamics of an agent is then:

xi(k + 1) = Axi(k) +Bui(k) + di(k) (4.1a)
yi(k) = Cxi(k) +wi(k) (4.1b)

where xi ∈ X ⊂ Rn, ui ∈ U ⊂ Rm, yi ∈ Y ⊂ R2, with i ∈ 1, N , A ∈ Rn×n,
B ∈ Rn×m and C ∈ R2×n. With Assumption 2.6, all the agents share the same
dynamics and, with Assumption 3.1, all the agents share the same output space.
Then the dependency in i ∈ 1, N is dropped for A, B and C as well as for the output
space Y which is a part of the plane R2. The dependency in i ∈ 1, N for X and U is
also dropped for the sake of simplicity. The signals di ∈ D ⊂ Rn and wi ∈ W ⊂ R2,
with i ∈ 1, N , are the input and output perturbations, respectively. The sets D and
W are boxes such that D = Bn(αd) and W = B2(αw), where αd ∈ Rn and αw ∈ R2.

In order to apply control strategies to such a system, it is necessary to define the
nominal dynamics associated to (4.1):

qxi(k + 1) = Aqxi(k) +Bqui(k) (4.2a)
qyi(k) = Cqxi(k) (4.2b)

where qxi ∈ Rn, qui ∈ Rm and qyi ∈ R2. The matrices A, B and C are the same as
in (4.1). This is the dynamics that the system would follow if it was not subject to
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any perturbation and is identical to the dynamics used in Chapter 3. It is assumed
that Assumption 3.2 holds for the system defined by (4.2) and that the nominal
dynamics (4.2) then admits equilibrium points. The dynamics (4.2) is the one used
in the model predictive controller presented in Section 4.1.3.

Since, in the general case, there are more states than measured outputs, i.e.
n ≥ 2, the state of system (4.2) is estimated with a Luenberger observer (Luenberger,
1964). The dynamics of the state observer is then:

x̂i(k + 1) = Ax̂i(k) +Bui(k) +L(yi(k)− ŷi(k)) (4.3a)
ŷi(k) = Cx̂i(k) (4.3b)

where L ∈ Rn×2 is the observer gain, x̂i(k) ∈ Rn is the estimated state vector and
ŷi(k) ∈ R2 is the estimated output vector.

From the dynamics of the estimated state, it is possible to derive the estimation
error x̃i, i.e. the difference between the real state xi and the estimated state x̂i,
obeying the dynamics:

x̃i(k + 1) = xi(k + 1)− x̂i(k + 1)

= Axi(k) +Bui(k) + di(k)−Ax̂i(k)−Bui(k)−L(yi(k)− ŷi(k))

= (A−LC)(xi(k)− x̂i(k))−Lwi(k) + di(k)

that can be summarized as:

x̃i(k + 1) = (A−LC)x̃i(k)−Lwi(k) + di(k). (4.4)

Another necessary dynamics for the remainder of this section is the deviation error
x̆i, i.e. the difference between the estimated state x̂i and the nominal state qxi,
obeying the dynamics:

x̆i(k + 1) = x̂i(k + 1)− qxi(k + 1)

= Ax̂i(k) +Bui(k) +L(yi(k)− ŷi(k))−Aqxi(k)−Bqui(k)

= Ax̆i(k) +B(ui(k)− qui(k)) +LCx̃i(k) +Lwi(k).

Since the control algorithm that is presented in Section 4.1.3 is based on classical
robust tube-based MPC (Mayne et al., 2006), the control input is chosen such that:

ui(k) = qui(k) +K(x̂i(k)− qxi(k)) (4.5)

where qui is obtained by solving a MPC optimization problem and K ∈ Rm×n is a
gain. Then, the deviation error dynamics can be summarized as:

x̆i(k + 1) = (A+BK)x̆i(k) +LCx̃i(k) +Lwi(k). (4.6)

Given the dynamics (4.4) and (4.6), the gain matrices L and K have to be
chosen such that A−LC and A+BK have their poles with module lower than
one. Moreover, based on the definition of the estimation and deviation error, it is
also immediate that:

xi(k) = qxi(k) + x̃i(k) + x̆i(k). (4.7)
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4.1.2 Overview of robust tube-based MPC for systems
with bounded perturbations

When systems are subject to perturbations, existing control methods have to be
adapted to cope with the different behavior that could arise from the action of
endogenous or exogenous signals. One of the most widely studied case is when these
perturbations are contained in a compact set as for the dynamics (4.1). One of the
most famous approaches to deal with perturbations belonging to such a set is based
on H∞ optimization methods (Zames, 1981, Green and Limebeer, 2012). Another
widespread approach is based on sliding mode (Drakunov and Utkin, 1992).

However, when dealing with dynamical systems subject to operating constraints,
the most popular control technique is tube-based model predictive control (Langson
et al., 2004, Mayne et al., 2005, 2006, Kouvaritakis and Cannon, 2016) which has
been first studied in the state-feedback case (Langson et al., 2004, Mayne et al.,
2005) where only the state equation (4.1a) is used, and later on the output-feedback
case (Mayne et al., 2006), where both the state and the output are affected by
perturbations.

The tube-based MPC strategy is based on the combination of a model predictive
controller and a state-feedback controller such that the control input is given by
(4.5). In the state-feedback case, the estimated state x̂i is replaced by the state xi
itself in (4.5) since there is no need for state estimation. In this case, such a control
strategy ensures that the system’s state remains inside a robust positively invariant
(RPI) set for the dynamics xi(k + 1) = (A+BK)xi(k) + di(k) centered on the
nominal state qxi(k). The goal is then to find the minimal RPI (mRPI) (Blanchini
and Miani, 2015), or an approximation of it, for the aforementioned dynamics. Then,
it is guaranteed (Mayne et al., 2005) that if xi(0) ∈ {qxi(0)} ⊕ Sd, where Sd is an
approximation of the mRPI set for the dynamics of xi(k) − qxi(k), then one has
xi(k) ∈ {qxi(k)} ⊕ Sd for all k > 0. The way this control strategy works in the
output feedback case is quite similar. The controller ensures that the system’s state
remains inside the sum of the approximation Sx̃ of the mRPI set for the estimation
error dynamics (4.4) and of the approximation Sx̆ of the mRPI set for the deviation
error dynamics (4.6) centered on the nominal state. Then, it is guaranteed (Mayne
et al., 2006) that if xi(0) ∈ {qxi(0)} ⊕ Sx̃ ⊕ Sx̆, then, the following expression holds
xi(k) ∈ {qxi(k)} ⊕ Sx̃ ⊕ Sx̆ for all k > 0.

Subsequent work on tube-based MPC has tried to improve its capabilities. For
example Alvarado et al. (2007) and Limón et al. (2010) adapted the control strategy
from Mayne et al. (2005) for trajectory tracking. Cannon et al. (2012) developed
a tube-based MPC when the bounded perturbations have a stochastic nature1.
Moreover, tube-based strategies have been applied on single vehicles such as ground
vehicles (González et al., 2011, Gao et al., 2014, Kayacan et al., 2015, Sun et al.,
2018), aerial vehicles (Santos et al., 2018, Chevet et al., 2019, Michel et al., 2019) or
even spacecrafts (Mirshams and Khosrojerdi, 2016, Mammarella et al., 2018).

When it comes to multi-agent systems, several schemes of tube-based MPC have
been developed. For example, Prodan et al. (2011) use tube-based MPC to drive
several agents along a given trajectory, while using RPI sets for their dynamics
to derive a safe configuration avoiding collision. Nikou and Dimarogonas (2019)
present a decentralized tube-based MPC algorithm for navigation of a multi-agent

1In this thesis, the case of unbounded stocahstic perturbations is further investigated in
Section 4.2.
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system, while Trodden and Richards (2014) propose a distributed scheme for linear
agents, the agents being coupled by constraints in both cases. The case of bounded
stochastic perturbations has also been studied and it is addressed in Section 4.2.

The deployment problem when the agents are subject to bounded perturbations
has been addressed in Chevet et al. (2019). It is based on the work on optimal
coverage by systems with uncertain location (Papatheodorou et al., 2016, 2017, Tzes
et al., 2018). It starts by considering that the uncertainty on the location of an
agent is represented by a perturbation on the output equation (4.1b) and derives a
tube-based MPC scheme to drive the agents into a static Chebyshev configuration.
Then, in the case of Chevet et al. (2019), the perturbation di(k) appearing in (4.1a)
is such that di(k) = 0n×1 and wi(k) ∈ W for all i ∈ 1, N , k ≥ 0. The remainder of
this section builds upon Chevet et al. (2019) to also consider bounded perturbations
on the state equation which is a generalization of the strategy already exposed.

4.1.3 Deployment algorithm
As in Chapter 3, the objective of the deployment algorithm that is presented in this
paragraph is to drive the MAS defined in Section 4.1.1 into a static configuration
in Y . The set Y is a convex bounded polytope of R2 as defined in Assumption 3.1.
However, an important difference with the algorithm for the nominal case presented
in Chapter 3 appears due to the bounded perturbations on the dynamics (4.1).
Indeed, the deployment algorithm in the nominal case is based on the Voronoi
tessellation of Y, where the positions yi ∈ Y, with i ∈ 1, N , are the generators of
the said tessellation. Here, a bounded additive perturbation exists on the position
yi of each agent i ∈ 1, N and it is not reliable enough for each agent to compute its
Voronoi cell.

4.1.3.1 Deployment objective in the perturbed case

Based on Assumption 2.5, a first assumption is made to deal with the case of bounded
perturbations.
Assumption 4.1: Knowledge of environment in the perturbed case
Each agent of Σ knows, at all time, the nominal output of the other agents of Σ.

With Assumption 4.1 and the knowledge of the output perturbation set W , it is
possible for each agent to compute its guaranteed Voronoi cell (GVC) as defined in
Paragraph 2.4.2.1.

♦

Remark 4.1: Inhomogeneous perturbations
In the case of inhomogeneous perturbations on the agents of Σ, i.e. in the case
where each agent is affected by a different perturbation belonging to a set W(i),
with i ∈ 1, N , Assumption 4.1 is modified to include the knowledge of all W(i).

The deployment objective is modified to cope with the perturbations. At each
time instant, each agent i ∈ 1, N computes its guaranteed Voronoi cell Vgi (k) with
the knowledge of qyj(k), with j ∈ 1, N , j 6= i. The generator sets of such GVC are
the boxes W centered on the nominal position of each agent Wi(k) = {qyi(k)} ⊕W .
The construction of the guaranteed Voronoi tessellation generated by rectangles has
been extensively presented in Paragraph 2.4.2.1 and the reader can refer to it for
more information.
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With the knowledge of its guaranteed Voronoi cell Vgi (k), each agent is able
to compute the Chebyshev center ci(k) of Vgi (k) by solving the problem (3.5).
The objective of the controller is then to drive the agent towards the Chebyshev
center ci(k) of Vgi (k) using a tube-based MPC algorithm. However, while in the
nominal case, each agent had to reach the Chebyshev center of its Voronoi cell, i.e.
lim
k→∞

yi(k) = lim
k→∞

ci(k), here, the nominal position of each agent has to reach the
Chebyshev center of its GVC, i.e. lim

k→∞
qyi(k) = lim

k→∞
ci(k), while the position yi(k)

of the agent belongs to a RPI set centered on qyi(k). To do so, the input signal
is as presented in (4.5), where qui(k) is obtained by solving a MPC optimization
problem and K is a gain matrix that has to be computed2. The following paragraph
introduces the optimization problem solved to obtain qui(k) as well as the associated
constraints.

4.1.3.2 Optimization problem for the tube-based MPC

Let i ∈ 1, N be an agent of the MAS. The computation of its guaranteed Voronoi
cell Vgi (k) and its Chebyshev center ci(k) have been covered in Paragraph 4.1.3.1.
With Assumption 3.2, it is possible to find a couple (qxci(k), quci(k)) such that
(qxci(k), quci(k), ci(k)) is an equilibrium point of (4.2) satisfying:

qxci(k) = Aqxci(k) +Bquci(k)

ci(k) = Cqxci(k).
(4.8)

With all the elements computed above, the nominal input qui(k) for agent i ∈ 1, N
is computed by finding the solution of the optimization problem:

minimize
qui(k+l),

∀l∈0,Np−1

Np−1∑
l=0

`(qxi(k + l), qui(k + l), qxci(k), quci(k)) + V (qxi(k +Np), qxci(k))

(4.9a)
subject to

qxi(k + l + 1) = Aqxi(k + l) +Bqui(k + l), ∀l ∈ 0, Np − 1, (4.9b)
qxi(k + l) ∈ qX , ∀l ∈ 0, Np − 1, (4.9c)
qui(k + l) ∈ qU , ∀l ∈ 0, Np − 1, (4.9d)

Cqxi(k + l) ∈ qVgi (k), ∀l ∈ 0, Np − 1, (4.9e)
Cqxi(k +Np) ∈ qΩi(k) (4.9f)

where `(qxi(k + l), qui(k + l), qxci(k), quci(k)), with l ∈ 0, Np − 1, is the stage cost:

`(qxi(k + l), qui(k + l), qxci(k), quci(k))

= ‖qxi(k + l)− qxci(k)‖
2
Qi

+ ‖qui(k + l)− quci(k)‖
2
Ri

(4.10)

and V (qxi(k +Np), qxci(k)) is the terminal cost:

V (qxi(k +Np), qxci(k)) = ‖qxi(k +Np)− qxci(k)‖
2
Pi

. (4.11)
2The computation of the gain matrix K is detailed in Paragraph 4.1.3.3.
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The weighting matrices Qi,Pi ∈ Rn×n and Ri ∈ Rm×m in (4.10) and (4.11) are
chosen such that Qi = Q>

i � 0, Pi = P>
i � 0 and Ri = R>

i � 0. The prediction
horizon Np is a positive integer.

The decentralized optimization problem (4.9) is similar to the decentralized
problem (3.12) used in the nominal case. However, contrary to the nominal case, as
was explained in the previous paragraphs, the model predictive controller runs for
the nominal system (4.2), hence the presence of the nominal state and nominal input
in the cost function as well as in the constraints of (4.9). Moreover, the constraints
have to be heavily modified with respect to their nominal counterpart to be adapted
to the tube-based control law that is applied in the case of bounded perturbations.

The constraint (4.9b) predicts the future value of the nominal state qxi(k + l + 1)
for all l ∈ 0, Np − 1 of the agent i given the value of the decision variables, i.e. the
nominal input sequence qui(k + l) for all l ∈ 0, Np − 1.

In constraints (4.9c)-(4.9f), the notation q· over a set denotes a set to which an
invariant set has been “subtracted”. For example, the constraint (4.9c) ensures that,
over the prediction horizon Np, the nominal state of agent i lies inside the state
space X , a convex polytope, to which the mRPI set for the estimation error Sx̃ and
the mRPI set for the deviation error Sx̆ are subtracted. Then, the nominal state is
constrained inside qX = X 	Sx̃	Sx̆. Indeed, the final objective of the control law is
to have xi ∈ X and the expression of qX is obtained from the relation (4.7).

The constraint (4.9d) ensures that the nominal input of agent i lies inside the
input set qU = U	KSx̆ over the prediction horizon Np, where U is a convex polytope.
This relation comes from the expression of the full control input (4.5) and the fact
that, as for the state, the goal is to have ui ∈ U .

The constraint (4.9e) constrains the agent’s nominal output to belong to a
restricted version of the agent’s guaranteed Voronoi cell qVgi (k) = V

g
i (k)	CSx̃	CSx̆

over the prediction horizon. The expression of qVgi (k) has the same origin as the
expression of qX . For the same reason as in Section 3.2.2, this constraint is more
restrictive on the states participating in the output than the state constraint (4.9e).

Finally, the terminal set appearing in the constraint (4.9f) is defined as qΩi(k) =

Ωi(k) 	C(Sx̃ ⊕ Sx̆) where Ωi(k) is defined in Assumption 3.5. Indeed, if qΩi(k) =

{ci(k)}⊕λi(k)(Vgi (k)⊕ {−ci(k)})	C(Sx̃ ⊕ Sx̆), it is ensured that qΩi(k) is controlled
invariant by Theorem 3.2 for the nominal dynamics (4.2).

By solving the optimization problem (4.9), the first element qui(k) of the control
input (4.5) to be applied to the system (4.3) is obtained. However, for the second part
of the control input as well as for solving the optimization problem, it is necessary
to find a gain matrix K for the state-feedback part of the input and invariant sets
Sx̃ and Sx̆ for the error dynamics (4.4) and (4.6), respectively. The proposed tuning
procedure to obtain the state-feedback and observer gain matrices K and L and the
method proposed to compute the invariant sets Sx̃ and Sx̆ are presented in the next
paragraph.

4.1.3.3 Tube envelope

♦
Remark 4.2: Index
For this entire paragraph, the index i ∈ 1, N is used to designate an agent of Σ.

When designing a tube-based MPC scheme, the gain matrix K appearing in
the control input (4.5) has an important role as well as the observer gain matrix
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L appearing in the estimation error dynamics (4.4). The design method for both
gain matrices K and L is based on the method proposed by Limón et al. (2010).
However, in Limón et al. (2010), the tuning is proposed in the state-feedback case
(i.e. only the gain matrix K is obtained). Given the dynamics of the estimation and
deviation error (4.4) and (4.6), both gain matrices K and L are linked and could be
obtained from one single optimization problem. However, such a procedure would be
complex and lead to polynomial matrix inequalities while the procedures proposed in
the following lead to bilinear matrix inequalities (BMI) that can be simplified, and
even relaxed into linear matrix inequalities (LMI). Then, the procedures proposed in
this thesis consider that the gains are independent and are tuned sequentially. A
discussion on the robustification of such a procedure is held in Section 4.3.

The tuning procedure for the control gain matrix K in Limón et al. (2010) is based
on three elements. For the present problem, i.e. input and output perturbations on
the system, these elements are:

(i) the existence of a RPI set S̆ (respectively S̃) for the dynamics (4.6) (respectively
(4.4));

(ii) the RPI set is such that the sets X 	 S̆ and U 	KS̆ (respectively X 	 S̃) are
not empty and large enough for the MPC to have enough degrees of freedom
to optimize the performance of the system ;

(iii) the size of the RPI set S̆ (respectively S̃) is minimal to reduce the impact of
perturbations on the closed-loop system.

For this procedure, the RPI sets are considered to be centered and normalized
ellipsoidal sets S̃ = E (P̃ ) and S̆ = E (P̆ ), with P̃ , P̆ ∈ Rn×n such that P̃ = P̃> � 0

and P̆ = P̆> � 0. In (ii), the sets X 	 S̃ and X 	 S̆ are preferred to the set
X 	 S̃ 	 S̆ since the use of the latter would lead, as mentioned earlier, to polynomial
matrix inequalities in the tuning procedure.

♦

Remark 4.3: Invariant sets for the tuning procedures
The RPI sets S̃ and S̆ defined for the tuning procedures are not the same sets as Sx̃
and Sx̆ used for control. Indeed, the sets S̃ and S̆ are outer ellipsoidal approximations
of the mRPI sets Sx̃ and Sx̆ for the dynamics (4.4) and (4.6), respectively.

The elements (i)-(iii) can be translated mathematically for both procedures. The
fact that S̃ is RPI for (4.4) can be translated into:

x̃i(k + 1)>P̃ x̃i(k + 1) ≤ 1, ∀x̃i(k) ∈ S̃, ∀di(k) ∈ D, ∀wi(k) ∈ W .

Taking into account that x̃i(k + 1) is convex with respect to di(k) and wi(k), by
applying the S-procedure (Theorem 2.1), the previous equation is satisfied if there
exists a real τ ≥ 0 such that:

((A−LC)x̃i(k)−Lw + d)>P̃ ((A−LC)x̃i(k)−Lw + d)

+ τ
(
1− x̃i(k)

>P̃ x̃i(k)
)
≤ 1, ∀d ∈ vert(D), ∀w ∈ vert(W)

where vert(D) and vert(W) are the sets of all vertices of the sets D and W , respec-
tively. Such an inequality can be rewritten:[

x̃i(k)
1

]> [
τ P̃ −A>

LP̃AL A>
LP̃ (Lw − d)

(Lw − d)>P̃AL 1− τ − (Lw − d)>P̃ (Lw − d)

] [
x̃i(k)
1

]
≥ 0 (4.12)
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for all d ∈ vert(D) and w ∈ vert(W), where AL = A−LC. The matrix appearing
in (4.12) can be rewritten ∀x̃i(k) ∈ S̃, ∀d ∈ vert(D), ∀w ∈ vert(W), as the BMI:[

τ P̃ −A>
LP̃AL A>

LP̃ (Lw − d)

(Lw − d)>P̃AL 1− τ − (Lw − d)>P̃ (Lw − d)

]
� 0

which can be separated into:[
τ P̃ 0n×1

01×n 1− τ

]
−
[

A>
L

(d−Lw)>

]
P̃
[
AL d−Lw

]
� 0,

∀d ∈ vert(D), ∀w ∈ vert(W), or, equivalently, into:

[
τ P̃ 0n×1

01×n 1− τ

]
−

[
A>

LP̃

(d−Lw)>P̃

]
P̃−1

[
P̃AL P̃ (d−Lw)

]
� 0, (4.13)

∀d ∈ vert(D), ∀w ∈ vert(W). By using the Schur complement (2.7), (4.13) is
equivalent to: τ P̃ 0n×1 A>

LP̃

01×n 1− τ (d−Lw)>P̃

P̃AL P̃ (d−Lw) P̃

 � 0, ∀d ∈ vert(D), ∀w ∈ vert(W).

Thus, the inequality (4.12) is equivalent to the BMI:

 τ P̃ ? ?
01×n 1− τ ?

P̃A− Ỹ C P̃d− Ỹ w P̃

 � 0, ∀d ∈ vert(D), ∀w ∈ vert(W) (4.14)

with the decision variables τ ∈ R+, P̃ ∈ Rn×n and Ỹ = P̃L ∈ Rn×2. The placeholder
? designates symmetrical terms. The attentive reader notices that in (4.14), the only
bilinear term is the product between the scalar τ and the matrix P̃ . Then, the BMI
(4.14) can be relaxed into a LMI if τ is fixed arbitrarily.

To ensure that S̃ is of minimal size as per (iii), the measure of the size of the
RPI set chosen in Limón et al. (2010) is also chosen here. It consists in a parameter
η̃ such that S̃ ⊆

√
η̃X . Thus, minimizing the size of S̃ can be transformed into the

problem of the minimization of the value of the parameter η̃ subject to the constraint
S̃ ⊆

√
η̃X . Considering that X is a polytope induced by HX ∈ Rrx×n and θX ∈ Rrx ,

the constraint S̃ ⊆
√
η̃X can be rewritten as a LMI (Boyd et al., 1994):

[
η̃θ2X ,j hX ,j

h>
X ,j P̃

]
� 0, ∀j ∈ 1, rx (4.15)

where h>
X ,j and θX ,j are the j-th rows of HX and θX , with j ∈ 1, rx.
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With all these elements, the BMI constrained optimization problem to be solved
to find the observer gain matrix L while minimizing the size of the set S̃ is:

minimize
τ, η̃, P̃ , Ỹ

η̃

subject to τ P̃ ? ?
01×n 1− τ ?

P̃A− Ỹ C P̃d− Ỹ w P̃

 � 0, ∀d ∈ vert(D), ∀w ∈ vert(W),

[
η̃θ2X ,j ?

h>
X ,j P̃

]
� 0, ∀j ∈ 1, rx,

τ ≥ 0,

η̃ ∈ [0, 1).

(4.16)

This problem has n2/2+5n/2+2 scalar decision variables and |vert(D)| · |vert(W)|+
rx + 3 constraints.

By solving (4.16), it is then possible to obtain L = P̃−1Ỹ . Then, using L and the
perturbation set D ⊕ (−LW), Algorithm 2.1 is used to obtain an approximation of
the mRPI set Sx̃ for the dynamics (4.4). However, since this set is used in the tuning
procedure for the control gain matrix K as well as to obtain an approximation of the
mRPI set Sx̆ for the dynamics (4.6), the combination of Algorithm 2.1 and (2.39)
can be used to keep a reasonable number of vertices for Sx̃. For another objective
than the deployment or to keep a reasonable complexity, other methods can be used
to compute the approximation of the mRPI set such as the ones proposed in Raković
et al. (2005) or Alvarado (2007).

When the observer gain matrix L and the approximation of the mRPI set Sx̃ for
the dynamics (4.4) are obtained, the tuning procedure for the control gain matrix
K is run. This procedure is quite similar to the tuning procedure to obtain the
observer gain matrix L. The set S̆ is RPI for (4.6) if:

x̆i(k + 1)>P̆ x̆i(k + 1) ≤ 1, ∀x̆i(k) ∈ S̆, ∀x̃i(k) ∈ Sx̃, ∀wi(k) ∈ W .

Taking into account that x̆i(k + 1) is convex with respect to x̃i(k) and wi(k), by
applying the S-procedure (Theorem 2.1), the previous equation is satisfied if there
exists a real scalar τ ≥ 0 such that:

((A+BK)x̆i(k) +LCx̃+Lw)>P̆ ((A+BK)x̆i(k) +LCx̃+Lw)

+ τ
(
1− x̆i(k)

>P̆ x̆i(k)
)
≤ 1, ∀x̃ ∈ vert(Sx̃), ∀w ∈ vert(W)

where vert(Sx̃) and vert(W) are the sets of all vertices of the sets Sx̃ and W,
respectively. Such an inequality can be rewritten:[
x̆i(k)
1

]> [
τ P̆ −A>

KP̆AK −A>
KP̆L(Cx̃+w)

−(Cx̃+w)>L>P̆AK 1− τ − (Cx̃+w)>L>P̆L(Cx̃+w)

] [
x̆i(k)
1

]
≥ 0

(4.17)
for all x̃ ∈ vert(Sx̃) and w ∈ vert(W), where AK = A+BK. The matrix appearing
in (4.17) can be rewritten ∀x̆i(k) ∈ S̆, ∀x̃ ∈ vert(Sx̃), ∀w ∈ vert(W), as the BMI:[

τ P̆ −A>
KP̆AK −A>

KP̆L(Cx̃+w)

−(Cx̃+w)>L>P̆AK 1− τ − (Cx̃+w)>L>P̆L(Cx̃+w)

]
� 0
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which is equivalent, by using the Schur complement (2.7), to: τ P̆ 0n×1 A>
K

01×n 1− τ (Cx̃+w)>L>

AK L(Cx̃+w) P̆−1

 � 0, ∀x̃ ∈ vert(Sx̃), ∀w ∈ vert(W)

which can be decomposed, using the Schur complement (2.6) ∀x̃ ∈ vert(Sx̃), ∀w ∈
vert(W), into:[

1− τ (Cx̃+w)>L>

L(Cx̃+w) P̆−1

]
−
[

01×n

AKP̆−1

]
1

τ
P̆
[
0n×1 P̆−1A>

K

]
� 0

which is equivalent, by using the Schur complement (2.6), to: τ P̆−1 0n×1 P̆−1A>
K

01×n 1− τ (Cx̃+w)>L>

AKP̆−1 L(Cx̃+w) P̆−1

 � 0, ∀x̃ ∈ vert(Sx̃), ∀w ∈ vert(W).

Thus, the inequality (4.17) is equivalent to the BMI: τZ̆ ? ?
01×n 1− τ ?

AZ̆ +BY̆ L(Cx̃+w) Z̆

 � 0, ∀x̃ ∈ vert(Sx̃), ∀w ∈ vert(W) (4.18)

with the decision variables τ ∈ R+, Z̆ = P̆−1 ∈ Rn×n and Y̆ = KZ̆ ∈ Rm×n. As
for (4.14), the attentive reader notices that in (4.18), the only bilinear term is the
product between the scalar τ and the matrix Z̆. Then, the BMI (4.18) can be relaxed
into a LMI if τ is fixed arbitrarily.

Using the same measure of the size of S̆ as for S̃, minimizing the size of S̆ consists
in minimizing the value of a parameter η̆ subject to the constraint S̆ ⊆

√
η̆X that

can be written, by applying the Schur complement (2.7), as the LMI:[
η̆θ2X ,j hX ,jP̆

−1

P̆−1h>
X ,j P̆−1

]
� 0, ∀j ∈ 1, rx (4.19)

or: [
η̆θ2X ,j ?

Z̆h>
X ,j Z̆

]
� 0, ∀j ∈ 1, rx (4.20)

where Z̆ is defined as for (4.18).
For the tuning of the control gain matrix K, Limón et al. (2010) proposes a last

constraint. Indeed, this gain K has an impact on the size of the input constraint
set qU = U 	KSx̆ in the MPC problem (4.9). Thus, a constraint to restrict the
size of the set KSx̆ of admissible control inputs for the state-feedback part of the
controller would be useful to increase the control range of its MPC part. By denoting
HU ∈ Rru×m and θU ∈ Rru the matrices inducing U in Rm and hU ,j and θU ,j, with
j ∈ 1, ru, their rows, such a constraint would have the form:

hU ,jKx ≤ √ρjθU ,j, ∀j ∈ 1, ru, ∀x ∈ S̆
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where ρj ∈ (0, 1] for all j ∈ 1, ru, which can be rewritten as the LMI:[
ρjθ

2
U ,j hU ,jK

K>h>
U ,j P̆

]
� 0, ∀j ∈ 1, ru (4.21)

By applying the Schur complement (2.7), the LMI (4.21) is equivalent to the LMI:[
ρjθ

2
U ,j ?

Y̆ >h>
U ,j Z̆

]
� 0, ∀j ∈ 1, ru (4.22)

where Z̆ and Y̆ are defined as for (4.18).
With all these elements, the BMI constrained optimization problem to be solved

to find the controller gain matrix K is:

minimize
τ,η̆,Z̆,Y̆ ,
ρj ,∀j∈1,ru

αη̆ + β

r∑
j=1

ρj

subject to τZ̆ ? ?
01×n 1− τ ?

AZ̆ +BY̆ L(Cx̃+w) Z̆

 � 0, ∀x̃ ∈ vert(Sx̃), ∀w ∈ vert(W),

[
η̆θ2X ,j ?

Z̆h>
X ,j Z̆

]
� 0, ∀j ∈ 1, rx,[

ρjθ
2
U ,j ?

Y̆ >h>
U ,j Z̆

]
� 0, ∀j ∈ 1, ru,

ρj ∈ (0, 1], ∀j ∈ 1, ru,

τ ≥ 0,

η̆ ∈ [0, 1)

(4.23)

with α, β ∈ R+ two weights. This problem has n2/2 + (2m+ 1)n/2 + ru + 2 scalar
decision variables and |vert(Sx̃)| · |vert(W)|+ 3ru + rx + 3.

As for (4.16), the only bilinear term is the product between the scalar τ and
the matrix Z̆. Then, the problem (4.23) can be relaxed into a LMI constrained
problem if τ is fixed arbitrarily. Moreover, the values of the decision variables ρj,
with j ∈ 1, ru, can be chosen beforehand to impose a given behavior as in Limón
et al. (2010). In this last case, the cost function of (4.23) is changed simply into η̆.

By solving (4.23), it is then possible to obtain K = Y̆ Z̆−1. Then, using K and
the set L(CSx̃ ⊕W) containing the signal L(Cx̃i(k) +wi(k)), the same procedure
used to obtain Sx̃ is used for Sx̆.

For both tuning procedures, no constraint relative to the output set has been
formulated. This is due to the fact that such constraints would be linked to the
time varying guaranteed Voronoi cells that are not available a priori. The tuning
procedures presented above are meant to be run before using the gains and the
invariant sets in the MPC problem (4.9). Thus, constraints on the output cannot be
formulated to tune the observer and controller gain matrices L and K.
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As mentioned in Section 4.1.2, Mayne et al. (2006) show that, with the control
input defined in (4.5), as long as x̃i(0) ∈ Sx̃ and x̆i(0) ∈ Sx̆, it is guaranteed that
xi(k) ∈ {qxi(k)}⊕Sx̃⊕Sx̆ for all k ≥ 0. Then, the set Sx̃⊕Sx̆ defines the envelope of
a tube centered on the trajectory qxi(k) in which the state xi(k) of the agent i ∈ 1, N
evolves.

4.1.4 Proposed deployment results for MAS with bounded
perturbations

In this paragraph the tube-based MPC strategy proposed in Section 4.1.3 is applied
to two multi-vehicle systems. These two MVS are composed of vehicles obeying
single integrator dynamics for the first case and of quadrotor UAVs as described in
Section 3.3 for the second case.

4.1.4.1 Single integrator dynamics

Let Σ be a multi-vehicle system composed of N = 6 agents deployed into the output
space:

Y = X =

x ∈ R2

∣∣∣∣∣∣∣∣

−1 4
−3 −2
3 −7
5 1

x ≤


24
20
44
48


. (4.24)

Each agent i ∈ 1, N obeys the discrete-time single integrator dynamics:

xi(k + 1) = xi(k) + Tsui(k) + di(k)

yi(k) = xi(k) +wi(k)
(4.25)

where xi(k) ∈ R2, ui(k) ∈ U with the input set U = B2(2 · 12×1), di(k) ∈ D with
the input perturbation set D = B2(0.05 · 12×1) and wi(k) ∈ W with the output
perturbation setW = B2(0.1 · 12×1). A value of Ts = 0.2 s is chosen for the sampling
period.

Using the notations from (4.1), in (4.25), A = C = I2 and B = TsI2. As stated
in Raković et al. (2005), the mRPI set for the dynamics (4.4) is defined as:

S̃∞ =
+∞⊕
j=0

(A−LC)j(D ⊕ (−LW)).

Given the simplicity of A and C, it is immediate that S̃∞ is finitely determined and
as small as possible if L = I2. Moreover, with L = I2, the dynamics (4.4) is stable.
Using L = I2 for the observer gain as in Chevet et al. (2019), (A−LC)j = 02 for
all j > 0 and (A−LC)0 = I2, thus:

Sx̃ = S̃∞ = D ⊕ (−I2W). (4.26)

♦

Remark 4.4: Value of the observer gain matrix
With the tuning procedure described in Paragraph 4.1.3.3 for the dynamics (4.25),
the optimization problem (4.16) also gives L = I2.
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Solving the BMI constrained optimization problem (4.23), it is then possible to
obtain the control gain matrix K. With the weights α = β = 1, the control gain
matrix obtained with the optimization problem (4.23) is then:

K = −5I2.

♦

Remark 4.5: Value of the control gain matrix
The arguments used to chose the value of L could have been used here to chose
K = −5I2 such that A+BK = 02 to have a finitely determined mRPI set S̆∞.

As for the dynamics (4.4), the mRPI set for the dynamics (4.6) is defined as:

S̆∞ =
+∞⊕
j=0

(A+BK)jL(CSx̃ ⊕W)

Since the gain matrix K obtained via the tuning procedure is such that A+BK = 02,
the mRPI set Sx̆ for the dynamics (4.6) is:

Sx̆ = S̆∞ = Sx̃ ⊕W . (4.27)

The sets Sx̃, Sx̆ and KSx̆ are presented in Figure 4.1.
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Figure 4.1: Invariant sets for the tube-based MPC controller in the single integrator
dynamics case.

The nominal input qui(k) from (4.5) is computed by solving the optimization
problem (4.9). As in Section 3.2.4, the weighting matrices are chosen such that
Q = R = I2 and P is the solution of the algebraic Riccati equation:

A>PA− P −A>PB
(
B>PB +R

)−1
B>PA+Q = 02

with A = I2 and B = TsI2. The prediction horizon is chosen to be Np = 10. The
scaling factor used in the terminal constraint is chosen to be λi = 0.9, with i ∈ 1, N .

The initial value of qxi(0) for all i ∈ 1, N is chosen randomly such that the sets
{qxi(0)}⊕W do not overlap. The initial value of the estimated state x̂i for all i ∈ 1, N
is initialized such that x̂i(0) = qxi(0) and the state xi is initialized to a random value
in {qxi(0)} ⊕ Sx̃. During the entire simulation, the input and output perturbation
signals di(k) and wi(k) take random values in D and W for all i ∈ 1, N , this value
changing every 10 s.

The initial configuration of the MAS Σ in Y is displayed in Figure 4.2. The
initial nominal position qxi(0), with i ∈ 1, N , of the agents is represented by circles,
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the real position of the agents xi(0), by diamonds and the initial Chebyshev center
position ci(0), by stars. In addition to the guaranteed Voronoi tessellation of the
MAS, are also presented the output constraint sets qVgi (0) for the MPC problem (4.9)
with dashed frontiers. The sets {qxi(0)} ⊕ Sx̃ ⊕ Sx̆ are shown to ensure that xi(0) is
correctly initialized.
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Agent’s initial nominal position qxi(0) Guaranteed Voronoi cell Vg
i (0)

Agent’s initial position xi(0) Output constraint set qVg
i (0)

Initial Chebyshev center ci(0) Tube section {qxi(0)} ⊕ Sx̃ ⊕ Sx̆

Figure 4.2: Initial position of the MVS Σ in the output space.

The agents of Σ then follow their Chebyshev centers inside Y. The final con-
figuration is shown in Figure 4.3 with the same elements as in Figure 4.2. It is
obvious from Figure 4.3 that the nominal position qxi, with i ∈ 1, N has reached the
Chebyshev center ci of its guaranteed Voronoi cell Vgi . The real position xi, with
i ∈ 1, N , of the agents is guaranteed to belong to the mRPI set centered on the
nominal position qxi drawn with dash dotted frontiers.

Finally, Figure 4.4 presents the trajectory of the Chebyshev centers ci(k) and of
the nominal positions qxi(k) over the entire simulation. This confirms the fact that
the nominal position qxi converges to its objective ci.

Another measure of this convergence is presented in Figure 4.5. This figure
presents the distance over time between the Chebyshev center and the nominal
position such that:

di(k) = ‖qxi(k)− ci(k)‖2
for all i ∈ 1, N . As expected from the nominal case, the distances converge to 0.
The plot is cut after t = 25 s since the distance stays at zero for the remainder of
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Figure 4.3: Final position of the MVS Σ in the output space at t = 50 s.

the simulation.
An interesting measure of the efficiency of the proposed control algorithm is the

norm of the estimation error x̃i as well as the norm of the deviation error x̆i. Indeed,
these two quantities quantify the fact that the state of the agent i ∈ 1, N remains
inside the invariant set centered on qxi(k) and bounded by Sx̃ ⊕ Sx̆. Figure 4.6 and
Figure 4.7 show the evolution of these two norms over time. While the signals in
Figure 4.6 might be difficult to understand, one element is of importance. Indeed, the
norm remains bounded by the maximum norm of the vectors of Sx̃, i.e. ‖x̃max‖2 =
max
x∈Sx̃

‖x‖2. Given the shape of Sx̃, the maximum norm is ‖x̃max‖2 = 0.21m. Every
plot in Figure 4.6 is below the value of ‖x̃max‖2. The shape of the plots comes from
the fact that, given (4.4), the estimation error converges quickly to di(k)−Lwi(k).
Since the perturbation signals di(k) and wi(k) take random values every 10 s, the
norm of the estimation error ‖x̃i(k)‖2 converges to the norm ‖di(k)−Lwi(k)‖2.
The same remark concerns Figure 4.7: every plot remains below the maximum
norm of the vectors of Sx̆, i.e. ‖x̆max‖2 = max

x∈Sx̆

‖x‖2. Given the shape of Sx̆, the
maximum norm is ‖x̆max‖2 = 0.35m, which is indeed an upper bound of the plots
in Figure 4.7. The pikes that appear in this figure occur for every change of the
perturbation signals di(k) and wi(k). After every change, the norm of the deviation
error ‖x̆i(k)‖2 converges to ‖LCx̃i(k) +Lwi(k)‖2 since the control gain matrix K
is chosen such that the dynamics (4.6) is stable.
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Figure 4.4: Nominal trajectories of the agents of Σ and their associated Chebyshev
centers.
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Figure 4.6: Norm of the estimation error of each agent of Σ.
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Figure 4.7: Norm of the deviation error of each agent of Σ.

Since there is no offset cancellation strategy (Limón et al., 2010), the estimation
and deviation errors never go back to zero. Indeed, the goal of the presented control
strategy is to drive the MVS to a static Chebyshev configuration without collisions
despite the presence of bounded perturbations on the agents’ dynamics. Then,
the control strategy proves to be efficient since the MVS is deployed into a static
Chebyshev configuration. Moreover, the state of the agents, despite the perturbations,
is guaranteed to remain in a given set known beforehand which, coupled with the
guaranteed Voronoi tessellation, guarantees, by construction, that no collision can
occur between two vehicles.
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4.1.4.2 UAV dynamics

Let Σ be a multi-vehicle system composed of N = 6 agents deployed in the output
space:

Y = B2(10 · 12×1). (4.28)
Each agent i ∈ 1, N is a quadrotor UAV obeying the dynamics and the control
strategy presented in Section 3.3. The predictive controller used for the outer loop
in Paragraph 3.3.2.3 is replaced by the tube-based MPC described in Section 4.1.3.

The dynamics (3.31) is replaced by:

xi(k + 1) = Axi(k) +Bui(k) + di(k)

yi(k) = Cxi(k) +wi(k)
(4.29)

where A, B and C are defined in (3.39), ui(k) ∈ U = B2
(
π
6
· 12×1

)
, di(k) ∈

D = B4
(
10−2 ·

[
0.5 2 0.5 2

]>), wi(k) ∈ W = B2(0.01 · 12×1) and xi(k) ∈ X =

B4
([

10 3 10 3
]>). The definition of the sets D and W is based on Michel et al.

(2019).
The tuning procedures for the observer and controller gain matrices L and K

are computationally heavy if the four state dynamics (4.29) is used. Given the state
matrices (3.39), the position subsystem (4.29) can be separated into two independent
subsystems on which the tuning procedures are applied. These two subsystems are:[

xi(k + 1)
vx,i(k + 1)

]
=

[
1 Ts
0 1

] [
xi(k)
vx,i(k)

]
+

1

2
gTs

[
Ts
2

]
θi(k) +

[
1 0 0 0
0 1 0 0

]
di(k)

xi(k) =
[
1 0

] [ xi(k)
vx,i(k)

]
+
[
1 0

]
wi(k)

(4.30)

and:[
yi(k + 1)
vy,i(k + 1)

]
=

[
1 Ts
0 1

] [
yi(k)
vy,i(k)

]
− 1

2
gTs

[
Ts
2

]
φi(k) +

[
0 0 1 0
0 0 0 1

]
di(k)

yi(k) =
[
1 0

] [ yi(k)
vy,i(k)

]
+
[
0 1

]
wi(k)

(4.31)

with g = 9.81m · s−2 and Ts = 0.2 s. With the decomposition given in (4.30) and
(4.31), the tuning procedures are run two times to obtain the gain matrices Lx and
Kx for (4.30) and Ly, Ky for (4.31) such that:

L =

[
Lx 02×1

02×1 Ly

]
and K =

[
01×2 Ky

Kx 01×2

]
.

Then, using these gains, it is possible to obtain the sets Sx̃,x and Sx̆,x, approximations
of the mRPI sets for the estimation error and deviation error of the subsystem (4.30)
and the sets Sx̃,y and Sx̆,y, approximations of the mRPI sets for the estimation
error and deviation error of the subsystem (4.31) such that Sx̃ = Sx̃,x × Sx̃,y and
Sx̆ = Sx̆,x × Sx̆,y.

Solving the BMI constrained problem (4.16) for (4.30) and (4.31) by considering
τ as a decision variable yields:

Lx = Ly =

[
0.9901
1.0482

]
.
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Then, Algorithm 2.1 is run to obtain Sx̃,x and Sx̃,y which are such that Sx̃,x = Sx̃,y.
Let Hx̃ and θx̃ be the matrices inducing Sx̃,x and Sx̃,y in R2. Then:

Sx̃ =
{
x ∈ R2

∣∣ (I2 ⊗Hx̃)x ≤ 12×1 ⊗ θx̃

}
.

The values of Hx̃ and θx̃ are not reported here since Sx̃,x is composed of 43 inequalities.
However, it is shown in Figure 4.8.

Solving the BMI constrained problem (4.23) for (4.30) and (4.31) by considering
τ as a decision variable gives, with the weights α = 10 and β = 0.1:

Kx = −Ky =
[
−0.3628 −0.4986

]
.

Then, Algorithm 2.1 is run to obtain Sx̆,x and Sx̆,y which are such that Sx̆,x = Sx̆,y.
From the definition of these two sets, Sx̆ is obtained the same way as Sx̃. Again, since
Sx̆,x is composed of 29 inequalities, the values of the matrices inducing it are not
reported here. However, it is shown in Figure 4.8. Along with the sets Sx̃,x = Sx̃,y
and Sx̆,x = Sx̆,y, Figure 4.8 also displays the set KSx̆.
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Figure 4.8: Invariant sets for the tube-based MPC controller in the UAV case.

According to Section 3.3.2, a cascaded control structure is considered to control
each UAV. For the inner loop, a continuous-time controller based on feedback
linearization is used for attitude control. For the outer loop, the discrete-time
tube-based MPC of Section 4.1.3 is used for position control. However, for simulation
purpose, the controller of the inner loop is run in discrete-time with a sampling
period of 1ms. This sampling period is 200 times shorter than the sampling period
of the outer loop. It is not a problem in the nominal case described in Section 3.3.3
but in the perturbed case, this might cause a larger estimation error and even
lead to instability. Then the outer loop needs a modified version of the position
controller described in Figure 3.7. This structure is based on the ones used in
Chevet et al. (2020a) and Rousseau et al. (2018). The MPC part of the tube-based
MPC controller runs at the sampling period Ts. However, the control input applied
to the agent i ∈ 1, N is changed to ui(kin) = qui(k) + K(x̂i(kin)− qxi(k)) for all

kin ∈
Ts
T in
s

k,
Ts
T in
s

(k + 1)− 1 where T in
s = 1ms is the sampling period of the inner loop.

The gain matrix Lin of the observer is obtained by pole placement. The poles placed
to obtain Lin are the eigenvalues of A− LC. The matrix A used to get the gain
matrix Lin is the matrix A of (4.30) and (4.31) obtained by replacing Ts by T in

s .
With such a structure, the estimated state x̂i(kin) used for the tube-based controller
is more accurate and guarantees that the estimation and deviation errors remain
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inside their respective sets. Indeed, having the observer running at Ts and using
x̂i(k) for the control input might provoke a transient state where the estimation and
deviation error do not belong to their sets, voiding the stability guarantees.

Tube-based
MPC ZOH

T in
s

+
Observer

x̂i(kin)

+

K

+

z−1

Nominal
system

qui(k)

qxi(k)

TsOther agents
nominal positions

qyj(k), j ∈ 1, N , j 6= i

ZOH
−

UAV
yi(kin)

ui(kin)

Ts T in
s

Figure 4.9: Structure of the position controller for a quadrotor UAV subject to
perturbations.

As in Section 3.3.3, the contraction factor for the terminal constraint is λi = 0.9,
with i ∈ 1, N . The weighting matrices are chosen such that Q = I4, R = I2 and P
is the solution of the algebraic Riccati equation:

A>PA− P −A>PB
(
B>PB +R

)−1
B>PA+Q = 04

with A and B defined in (3.39). The solver for the optimization problem (4.9) is
generated with CVXGEN (Mattingley and Boyd, 2012, 2013). Moreover, the UAVs
are simulated with the full nonlinear model described in Section 3.3.

The only components of the state vector of each UAV agent that are initialized
are the position components. The speed, angles and angular speeds are null at
k = 0 and the altitude is such that zi(0) = z̄ = 5m for all i ∈ 1, N . The nominal
position qyi of the N quadrotor UAVs is initialized to a random value such that the
sets {qyi(0)} ⊕W do not overlap. The initial value of the estimated state x̂i for all
i ∈ 1, N is set such that Cx̂i(0) = qyi(0) and the other components are zero, and the
position yi is initialized to a random value in {qyi(0)} ⊕CSx̃, the components of xi
not participating in Cxi being zero. During the whole simulation, the input and
output perturbation signals di(k) and wi(k) take a random value in D and W for
all i ∈ 1, N every 10 s.

The initial configuration of the MAS Σ in Y is displayed in Figure 4.10. The
nominal position qyi(0), with i ∈ 1, N , of the agents is represented by circles, the real
position of the agents yi(0), by diamonds, and the Chebyshev center position ci(0),
by stars. In addition to the guaranteed Voronoi tessellation of the MAS are also
presented the output constraint sets qVgi (0) for the MPC problem (4.9) with dashed
frontiers. The sets {qyi(0)} ⊕C(Sx̃ ⊕ Sx̆) are shown to ensure that yi(0) is correctly
initialized.

The agents of Σ then follow their Chebyshev centers inside Y . An intermediate
state, at t = 1 s, of the deployment is presented in Figure 4.11 and the final
configuration is shown in Figure 4.12 with the same elements as in Figure 4.10.
It is obvious from Figure 4.12 that the nominal positions qyi, with i ∈ 1, N , have
reached the Chebyshev centers ci of their guaranteed Voronoi cell Vgi . Moreover,
Figure 4.12 gives the impression that the real position yi, with i ∈ 1, N , of the agents
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Figure 4.10: Initial position of the MVS Σ in the output space.

has converged to the corresponding nominal position qyi. Indeed, due to the small
amplitude of the perturbations, the estimation and deviation errors x̃i and x̆i are
small, leading to yi ≈ qyi.

For Figures 4.10 to 4.12, the area not covered by the guaranteed Voronoi tessella-
tion is reduced with respect to what appears in the single integrator dynamics case
of Paragraph 4.1.4.1. Indeed, the perturbation applied to the output is smaller than
the perturbation applied in the single integrator case, thus bringing the guaranteed
Voronoi tessellation close to the classical Voronoi tessellation.

A measure of the convergence of the system to a static configuration is presented
in Figure 4.13. This figure presents the distance over time between the Chebyshev
center and the nominal position such that:

di(k) = ‖qyi(k)− ci(k)‖2
for all i ∈ 1, N . As expected from the nominal case, the distances converge to 0.
Since the distance stays at zero for the remainder of the simulation, the plot is cut
after 25 s.

As for the single integrator case presented in Paragraph 4.1.4.1, the efficiency of
the proposed control algorithm can be measured via the norm of the estimation error
x̃i as well as the norm of the deviation error x̆i. Figure 4.14 and Figure 4.15 show
the evolution of these two norms over time. Since no offset cancellation strategy
(Limón et al., 2010) is present in the proposed control algorithm, the estimation and
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Figure 4.11: Position of the MVS Σ in the output space at t = 1 s.

deviation errors never go back to zero but their norms converge to a constant value.
The maximum norm of the vectors of Sx̃ and Sx̆ are defined as in Paragraph 4.1.4.1
and are such that ‖x̃max‖2 = 0.4380m and ‖x̆max‖2 = 1.5058m. These two values
are indeed upper bounds of the plots presented in Figure 4.14 and Figure 4.15. Once
again, the pikes that appear in both figures come from the change of the perturbation
signals di(k) and wi(k) every 10 s.

The amplitude of the perturbations the tube-based MPC of Section 4.1.3 can
deal with is however limited. Indeed, if the perturbation sets D and W are too wide,
the invariant sets associated with the error dynamics (4.4) and (4.6) might end up
being too wide, equating the output constraint set to the empty set. A discussion
on further robustification of the tube-based MPC introduced in Section 4.1.3 is then
drawn in Section 4.3.

In Section 4.1, a tube-based MPC algorithm with state estimation and guaranteed
Voronoi cells is introduced for the deployment of a multi-vehicle system subject to
bounded perturbations. The next section discusses the case of unbounded stochastic
perturbations and proposes a chance-constrained MPC algorithm for the Voronoi-
based deployment of a MVS.
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Figure 4.12: Final position of the MVS Σ in the output space at t = 50 s.
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Figure 4.14: Norm of the estimation error of each agent of Σ.
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Figure 4.15: Norm of the deviation error of each agent of Σ.

4.2 Unbounded stochastic perturbations

In the following section, unbounded stochastic perturbations will be considered on the
system model. To this end, Section 4.2.1 introduces the necessary modifications on
the model of an agent part of a larger MAS before presenting an overview of existing
methods for control of systems subject to unbounded stochastic perturbations in
Section 4.2.2. The decentralized model predictive control algorithm presented in
Section 3.2.2 is reformulated to cope with agents which dynamics is subject to
process and measurement noises. The proposed chance-constrained MPC algorithm
is then exposed in Section 4.2.3 before finally being applied in simulation to a MAS
composed of vehicle agents following single integrator or UAV dynamics.
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4.2.1 System model
Let Σ be a multi-agent system composed of N agents. Each agent obeys discrete-time
linear time-invariant dynamics as in the previous chapter. However, while it was
not relevant for the cases presented in Chapter 3 and Section 4.1, it is important to
note that such discrete-time dynamics often, if not always, arise from discretized
continuous-time dynamics. The continuous-time linear time-invariant dynamics of
an agent subject to process and measurement noise is written:

ẋi(t) = ACxi(t) +BCui(t) +Mdi(t)

yi(t) = Cxi(t) +wi(t)
(4.32)

where xi ∈ X ⊂ Rn, ui ∈ U ⊂ Rm, yi ∈ Y ⊂ R2, with i ∈ 1, N , AC ∈ Rn×n,
BC ∈ Rn×m, C ∈ R2×n and M ∈ Rn×q, q ≤ n. Since the agents share the same
dynamics and the same output space by Assumptions 2.6 and 3.1, the dependency in
i ∈ 1, N is dropped for AC , BC and C and for Y. The dependency in i ∈ 1, N for
X and U is also dropped for the sake of simplicity. The signals di ∈ Rq and wi ∈ R2,
with i ∈ 1, N , are the process and measurement noises.
Assumption 4.2: Process noise matrix
The matrix M ∈ Rn×q has rank q, with q ≤ n.

The process noise signal di(t) present in the dynamics (4.32) is in fact twofold.
It is the sum di(t) = pi(t) +ws

i (t) of a deterministic exogenous perturbation signal
denoted by pi(t) ∈ Rq and a normally distributed white noise signal ws

i ∈ Rq (as
defined in Definition 2.37) representing the modeling errors. As such, the mean and
variance matrix of di(t) are such that µdi

(t) = pi(t) and Σdi
(t) = Σws

i
(t). For its

part, the measurement noise signal wi(t) is such that µwi
(t) = 02×1 and a variance

matrix given in the following assumption.
Assumption 4.3: Normally distributed noises
The signal ws

i (t) and the measurement noise wi, with i ∈ 1, N , are independent and
normally distributed white noises as defined in Definition 2.37. The means of ws

i (t)
and wi(t) are then µws

i
(t) = 0q×1 and µwi

(t) = 02×1 and their variance matrices are
the positive definite matrices Σws

i
(t) � 0 and Σwi

(t) � 0.

The discrete-time linear time-invariant dynamics used later for control purposes
is obtained by discretizing (4.32):

xi(k + 1) = Axi(k) +Bui(k) + δi(k)

yi(k) = Cxi(k) + γi(k)
(4.33)

where A ∈ Rn×n, B ∈ Rn×m and C ∈ Rp×n. The signals δi ∈ Rn and γi ∈ R2, with
i ∈ 1, N , are the discrete-time process and measurement noises. The matrices in
(4.33) are obtained as (Franklin et al., 1997):

A = exp(AC · Ts) and B =

∫ Ts

0

exp(AC · τ)Bdτ

where Ts is the sampling period and exp is the exponential function. The matrix C
is not modified by the discretization process.
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The discretization of the random signals is not as straightforward as the dis-
cretization of the state-space matrices. Indeed, the discrete-time process noise is
(Franklin et al., 1997):

δi(k) =

∫ Ts

0

exp(AC · τ)Mdi((k + 1)Ts − τ)dτ

while the discrete-time measurement noise is γi(k) = wi(kTs). However, for control
purposes, it is important to characterize random signals such as the discrete-time
process and measurement noises δi(k) and γi(k) with their mean and variance. They
can be obtained from the value of the mean and variance matrix of their continuous-
time counterparts di(k) and wi(k). For the following mathematical developments,
let hk(t) = (k + 1)Ts − t.

By definition of the mathematical expectation, it is immediate that:

µγi
(k) = E(γi(k)) = E(wi(kTs)) = µwi

(kTs) (4.34)

and, by linearity of the mathematical expectation:

µδi(k) = E(δi(k)) =
∫ Ts

0

exp(AC · τ)ME(di(hk(τ)))dτ

=

∫ Ts

0

exp(AC · τ)Mµdi
(hk(τ))dτ . (4.35)

Moreover, it is a well known result (Kamen and Su, 1999) that:

Σγi
(k) =

1

Ts
Σwi

(kTs) (4.36)

for all k ≥ 0 such that Σγi
(k) � 0. The variance matrix of δi(k) is:

Σδi(k) = E
(
(δi(k)− µδi(k))(δi(k)− µδi(k))

>
)

= E

(∫ Ts

0

exp(AC · τ)M (di(hk(τ))− µdi
(hk(τ)))dτ

·
∫ Ts

0

(di(hk(ν))− µdi
(hk(ν)))

>M> exp
(
A>
C · ν

)
dν

)
which, by Fubini’s theorem (DiBenedetto, 2016), gives:

Σδi(k) = E

(∫ Ts

0

∫ Ts

0

exp(AC · τ)M(di(hk(τ))− µdi
(hk(τ)))·

(di(hk(ν))− µdi
(hk(ν)))

>M> exp
(
A>
C · ν

)
dτdν

)
.

By definition:

E
(
(di(hk(τ))− µdi

(hk(τ)))(di(hk(ν))− µdi
(hk(ν)))

>
)
= Σdi

(τ)δ(τ − ν)

where δ is the Dirac delta function such that δ(τ − ν) 6= 0 when τ = ν. Thus, by
linearity of the mathematical expectation:

Σδi(k) =

∫ Ts

0

exp(AC · τ)MΣdi
(τ)M> exp

(
A>
C · τ

)
dτ . (4.37)
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Property 4.1: Positive definiteness of the process noise variance matrix

The variance matrix Σδi(k) of the discrete-time process noise is positive definite for
all k ≥ 0.

Proof. Given Assumption 4.3, Σdi
(t) � 0 for all t ∈ R+. By combining Assump-

tion 4.2 and Property 2.2:

x> exp(AC · t)MΣdi
(t)M> exp

(
A>
C · t

)
x > 0

for all x ∈ Rn \ {0n×1}, t ∈ R+. By integration over [0, Ts], it is immediate that
x>Σδi(k)x > 0, hence the result. �

Due to the presence of unknown process and measurement noise, the real value
of the state is unknown and has to be estimated. To do so, a Luenberger observer
(Luenberger, 1964) is introduced. The dynamics of the state observer is then:

x̂i(k + 1) = Ax̂i(k) +Bui(k) +L(yi(k)− ŷi(k))

ŷi(k) = Cx̂i(k)
(4.38)

where L ∈ Rn×2 is the observer gain.
From the dynamics of the estimated state, it is possible to derive the estimation

error x̃i, i.e. the difference between the real state xi and the estimated state x̂i,
obeying the dynamics:

x̃i(k + 1) = (A−LC)x̃i(k)−Lγi(k) + δi(k) (4.39)

the calculations leading to an equation similar to (4.4) in Section 4.1.1, where δi and
γi replace di and wi, respectively.

Due to the presence of the process and measurement noise in the dynamics of
the estimation error (4.39), x̃i can be characterized by its mean and variance matrix.
The mean of the estimation error is defined recursively by following the dynamics:

µx̃i
(k + 1) = (A−LC)µx̃i

(k)−Lµγi
(k) + µδi(k). (4.40)

♦

Remark 4.6: Independence
Due to Assumption 4.3, δi(k) and γi(k) are independent for all k ∈ N. By the
same assumption, δi(k) and δi(l) (respectively γi(k) and γi(l)) for all k, l ∈ N are
independent due to the whiteness of ws

i (t) (respectively wi(t)).

The variance matrix of the estimation error x̃i can also be defined recursively.
The estimation error x̃i(k) only depends on x̃i(k− 1), δi(k− 1) and γi(k− 1). Then
x̃i(k), δi(k) and γi(k) are independent by Remark 4.6. Then, the dynamics of the
variance matrix of the estimation error x̃i is:

Σx̃i
(k + 1) = (A−LC)Σx̃i

(k)(A−LC)> +LΣγi
(k)L> +Σδi(k). (4.41)

Assumption 4.4: Positive definite initialization
The initial estimation error variance matrix is positive definite, i.e. Σx̃i

(0) � 0.
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Property 4.2: Positive definiteness of the estimation error variance

The variance matrix Σx̃i
(k) of the estimation error x̃i, with i ∈ 1, N , is positive

definite for all k > 0.

Proof. Consider the dynamics (4.41). Since Σδi(k) � 0 and Σγi
(k) � 0 for all

k ≥ 0 and Σx̃i
(0) � 0 by Assumption 4.4, by recursion, it leads to Σx̃i

(k) � 0 for all
k > 0. Indeed, (A−LC)Σx̃i

(k)(A−LC)> � 0 and LΣγi
(k)L> � 0 according to

Property 2.2 and Σδi(k) � 0 for all k ≥ 0 by Property 4.1 thus their sum is positive
definite. �

4.2.2 Overview of chance-constrained MPC for systems
with stochastic perturbations

As in Section 4.1, perturbations are added to the system model (4.33). However,
these perturbations now have a stochastic nature and the control methods have to
be adapted to cope with this new kind of endogenous or exogenous signals. As in
the classical bounded perturbations case presented in 4.1, several control strategies
have been studied and applied when the perturbations on a system are stochastic.
For example, as in the deterministic perturbations case, H∞ optimization methods
can be used (Ugrinovskii, 1998) as well as sliding mode control (Niu et al., 2005).

However, as stated previously, when dealing with dynamical systems subject to
operating constraints, one of the most popular technique is model predictive control,
and most particularly, stochastic, or chance-constrained, MPC (Farina et al., 2016),
when the system is subject to perturbations having a stochastic nature. In this case,
the system follows the dynamics presented in (4.33), leading to the definition of
constraints of the form P(x ∈ X ) ≥ P denoting the fact that the probability of the
vector x belonging to the set X has to be greater or equal to an arbitrary value P .
Such constraints can be defined on any of the decision variables of the problem (e.g.
the input vector sequence).

Farina et al. (2016) reviewed several existing methods of chance-constrained
model predictive control (CCMPC) and they found three main CCMPC categories
for linear systems. To define their categories, they use the superposition principle
to separate the state equation of (4.33) into a stochastic part depending only on
the stochastic variable (e.g. δi and/or γi in (4.33)) and a deterministic part which
can be assimilated to the nominal system defined in (4.2). They can then make a
distinction between what they call “open-loop” control methods and “disturbance
feedback” or “state-feedback” control. The “open-loop” control methods can be
found for example in Blackmore et al. (2011), Gavilan et al. (2012), Hashimoto
(2013) or Chevet et al. (2020a). Such methods are called “open-loop” since the
controller only acts on the deterministic part while the stochastic part evolves in
an uncontrolled open-loop fashion. Such an evolution is opposed to the feedback
methods, where the control signal acts on both the deterministic and stochastic part
of the system. For disturbance feedback (Prandini et al., 2012, Zhang et al., 2013,
Korda et al., 2014), the control input is an affine function of the disturbance over the
prediction horizon and the optimization problem is meant to find the value of the
parameters of this function. In the case of state feedback (Primbs and Sung, 2009,
Cannon et al., 2010, 2012, Kouvaritakis and Cannon, 2016), the formulation of the
problem is similar, if not identical, to the tube-based MPC approach presented in
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Section 4.1.2, the main difference being that a stochastic RPI set has to be defined
for the control strategy to work. Both feedback methods have the advantage of
enlarging the feasibility region of the MPC optimization problem.

Regardless of the category defined in Farina et al. (2016) the controller falls into,
the main problem that will appear is the presence of unknown terms in the constraints.
This is due to the probabilistic nature of said constraints and the fact that stochastic
signals are taken into account when expressing them. To overcome this difficulty,
the probabilistic constraints are reformulated into algebraic constraints by using the
properties of the stochastic process used to represent the perturbation. This often
amounts to tighten the constraints by finding a bound on the perturbation signal
ensuring that the probabilistic constraint is respected with the required probability.

CCMPC approaches have been used for the control of different types of vehicles
(Blackmore et al., 2011) such as ground vehicles (Carvalho et al., 2014, Wan et al.,
2017), spacecrafts (Gavilan et al., 2012, Zhu et al., 2018) or unmanned aerial vehicles
(Chevet et al., 2020a). Chance-constrained approaches have also been developed for
multi-agent systems (Lyons et al., 2012, Dai et al., 2015, 2016, 2018) and applied on
vehicles such as UAVs (Chevet et al., 2020a) or multi-robot frameworks (Zhu and
Alonso-Mora, 2019).

This section focuses on the work presented in Chevet et al. (2020a). The CCMPC
algorithm presented is derived from the work of Gavilan et al. (2012) which describes
an “open-loop” (as per Farina et al. (2016) naming) scheme to control a spacecraft.
The controller proposed in Gavilan et al. (2012) is improved to work in the case
where full state information is not known and state estimation is necessary. It is
then applied in a decentralized fashion to a multi-agent system composed first of
agents obeying single integrator dynamics before being applied to a MAS composed
of quadrotor UAVs.

4.2.3 Deployment algorithm
As in Chapter 3, the objective of the deployment algorithm that is presented in this
paragraph is to drive the MAS defined in Section 4.2.1 into a static configuration in Y .
The set Y is a convex bounded polytope as defined in Assumption 3.1. However, an
important difference with the algorithm for the nominal case presented in Chapter 3
appears due to the unbounded stochastic perturbation on the dynamics (4.33).
Indeed, such perturbations induce the presence of probabilistic constraints in the
MPC problem. As described in Section 4.2.2, such constraints have to be relaxed
into algebraic constraints for the optimization problem on which the MPC is based
to be solvable. This section then describe how such a relaxation can be done.

4.2.3.1 Deployment objective and chance-constrained optimization
problem

In the nominal case of Chapter 3, the MPC algorithm uses as input the current state
of the system xi(k) for all i ∈ 1, N . In the case of systems subject to perturbations
and/or with an output yi(k) such that yi(k) 6= xi(k), the characterization of the
system is done via the estimated state x̂i(k) obtained through a state observer. Then,
in this case, the MPC uses this estimated state of the system x̂i(k) to obtain the
control input ui(k) to be applied to the system. As for the bounded perturbations
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case, a first assumption is made, based on Assumption 2.5, to deal with the case of
stochastic perturbations.
Assumption 4.5: Knowledge of environment under unbounded stochastic pertur-

bations
Each agent of Σ knows, at all time, the estimated position of the other agents of Σ.

The deployment objective is the same as the one presented in Section 3.2. At each
time instant, each agent i ∈ 1, N computes its Voronoi cell Vi(k) with the knowledge
of ŷj(k), with j ∈ 1, N , j 6= i, by Assumption 4.5. Then, with the knowledge
of its Voronoi cell, each agent is able to compute the Chebyshev center ci(k) of
Vi(k) by solving the problem (3.5). The objective of the controller is then to drive
each agent towards the Chebyshev center ci(k) of Vi(k) using a chance-constrained
MPC algorithm. However, while in the nominal case, each agent had to reach
the Chebyshev center of its Voronoi cell, i.e. lim

k→+∞
yi(k) = lim

k→+∞
ci(k), here, the

estimated position of each agent has to reach the Chebyshev center of its Voronoi
cell, i.e. lim

k→+∞
ŷi(k) = lim

k→+∞
ci(k).

In order to introduce the optimization problem on which the MPC is based, it is
necessary to formulate the evolution of the estimated state vector over the prediction
horizon Np ∈ N. Since the dynamics (4.38) are defined recursively, it is possible to
write:

x̂i(k + l) = Ax̂i(k + l − 1) +Bui(k + l − 1) +LCx̃i(k + l − 1) +Lγi(k + l − 1)

= Alx̂i(k) +
l−1∑
j=0

Al−j−1(Bui(k + j) +L(Cx̃i(k + j) + γi(k + j))).

Then, defining the following vectors and matrices:

X̂i(k) =

 x̂i(k + 1)
...

x̂i(k +Np)

 F =

 A
...

ANp



Ui(k) =

 ui(k)
...

ui(k +Np − 1)

 G =


B 0n×m · · · 0n×m

AB B
. . . ...

... . . . 0n×m
ANp−1B · · · AB B



X̃i(k) =

 x̃i(k)
...

x̃i(k +Np − 1)

 Gx̃ =


LC 0n×n · · · 0n×n

ALC LC
. . . ...

... . . . 0n×n
ANp−1LC · · · ALC LC



Γi(k) =

 γi(k)
...

γi(k +Np − 1)

 Gγ =


L 0n×2 · · · 0n×2

AL L
. . . ...

... . . . 0n×2

ANp−1L · · · AL L


the estimated state over the prediction horizon is:

X̂i(k) = F x̂i(k) +GUi(k) +Gx̃X̃i(k) +GγΓi(k). (4.42)
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However, the estimation error x̃i is also defined recursively and can be expressed
over the prediction horizon. Defining:

∆i(k) =

 δi(k)
...

δi(k +Np − 1)

 G̃δ =


In 0n×n · · · 0n×n

A−LC In
. . . ...

... . . . 0n×n
(A−LC)Np−1 · · · A−LC In



F̃ =

 A−LC
...

(A−LC)Np

 G̃γ =


L 0n×2 · · · 0n×2

(A−LC)L L
. . . ...

... . . . 0n×2

(A−LC)Np−1L · · · (A−LC)L L


the estimation error over the prediction horizon is:

X̃i(k + 1) = F̃ x̃i(k)− G̃γΓi(k) + G̃δ∆i(k). (4.43)

The system (4.38) satisfies Assumption 3.2, i.e. there exists a couple (x̂ci(k),uci(k))
such that (x̂ci(k),uci(k), ci(k)) is an equilibrium point of the nominal dynamics (3.1)
satisfying:

x̂ci(k) = Ax̂ci(k) +Buci(k)

ci(k) = Cx̂ci(k).
(4.44)

Since the equilibrium point is the constant objective point over the entire prediction
horizon, it is possible to define X̂ci(k) = 1Np×1⊗ x̂ci(k) and Uci(k) = 1Np×1⊗uci(k).

With all these elements, based on Gavilan et al. (2012) and Chevet et al. (2020a),
a decentralized chance-constrained model predictive controller for an agent i ∈ 1, N
obeying the dynamics (4.33) is formulated as:

minimize
Ui(k)

J
(
X̂i(k),Ui(k), X̂ci(k),Uci(k)

)
(4.45a)

subject to

P
(
X̂i(k) ∈ X

)
≥ Px, (4.45b)

Ui(k) ∈ U , (4.45c)

P
((

INp ⊗C
)
X̂i(k) ∈ V i(k)

)
≥ Py (4.45d)

where the cost function (4.45a) is:

J
(
X̂i(k),Ui(k), X̂ci(k),Uci(k)

)
= E

(∥∥∥X̂i(k)− X̂ci(k)
∥∥∥2
Qi

+ ‖Ui(k)−Uci(k)‖
2
Ri

)
. (4.46)

The weighting matrices Qi ∈ RNpn×Npn and Ri ∈ RNpm×Npm are block diagonal
matrices composed of Np individual positive definite matrices Qi,Pi ∈ Rn×n and
Ri ∈ Rm×m such that Q>

i = Qi � 0, P>
i = Pi � 0, R>

i = Ri � 0, Qi =
diag

(
INp−1 ⊗Qi,Pi

)
and Ri = INp ⊗Ri.
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♦

Remark 4.7: Terminal cost and terminal constraint
By construction of the matrix Qi, the terminal cost is embedded in the term∥∥∥X̂i(k)− X̂ci(k)

∥∥∥2
Qi

of the cost function (4.46). The same way, by construction of

the set V i(k) described below, the terminal constraint is embedded in the constraint
(4.45d).

Let HX ∈ Rrx×n and θX ∈ Rrx (respectively HU ∈ Rru×m and θU ∈ Rru)
be the matrices inducing X (respectively U). Then, the set X (respectively U)
used in the constraint (4.45b) (respectively (4.45c)) is induced by the matrices
HX = INp ⊗ HX ∈ RrxNp×nNp and θX = 1Np×1 ⊗ θX ∈ RrxNp×1 (respectively
HU = INp ⊗HU ∈ RruNp×mNp and θU = 1Np×1 ⊗ θU ∈ RruNp×1). The set V i(k) is
constructed based on the Voronoi cell Vi(k) and the invariant set Ωi(k) is defined as
in Assumption 3.5. If Hi(k) ∈ Rry(k)×2 and θi(k) ∈ Rry(k) are the matrices inducing
Vi(k) in R2, H i(k) = INp ⊗Hi(k) ∈ Rry(k)Np×2Np and:

θi(k) =

[
1(Np−1)×1 ⊗ θi(k)

θi(k) + (1− λi(k))Hi(k)ci(k)

]
∈ Rry(k)Np×1,

with λi(k) ∈ [0, 1), are the matrices inducing V i(k). The last line of θi(k) is obtained
from the definition of Ωi(k) = {ci(k)} ⊕ λi(k)(Vi(k)⊕ {−ci(k)}) with Property 2.7
and Property 2.10.

With these parameters, the constraint (4.45b) is meant to ensure that the
estimated state over the prediction horizon X̂i(k) remains inside X with a probability
greater than or equal to Px ∈ [0, 1]. The constraint (4.45c) is meant to ensure that
the control input over the prediction horizon Ui(k) remains inside the input set U .
Finally, the constraint (4.45d) ensures that the estimated position over the prediction
horizon Ŷi(k) =

(
INp ⊗C

)
X̂i(k) of the agent i ∈ 1, N remains inside the set V i(k)

induced by H i(k) and θi(k) given above with a probability greater than or equal
to Py ∈ [0, 1]. It can be noticed that if Px = 1, the constraint (4.45b) is an equality
constraint. The same way, if Py = 1, the constraint (4.45d) is an equality constraint.

Before investigating further the constraints appearing in problem (4.45), the cost
function (4.46) is expressed as a function of the control sequence Ui(k) and the
available information at time k, i.e. X̂i(k), µx̂i

(k), µγi
(k), X̂ci(k) and Uci(k). Indeed,

the norms can be expanded in order to calculate the mathematical expectation. Using
(4.42), the expansion of the norms is:∥∥∥X̂i(k)− X̂ci(k)

∥∥∥2
Qi

=
(
X̂i(k)− X̂ci(k)

)>
Qi

(
X̂i(k)− X̂ci(k)

)
= Ui(k)

>G>QiGUi(k)

+ 2
(
F x̂i(k) +Gx̃X̃i(k) +GγΓi(k)− X̂ci(k)

)>
QiGUi(k)

+ fx

(
x̂i(k), X̃i(k),Γi(k), X̂ci(k)

)
‖Ui(k)−Uci(k)‖

2
Ri

= (Ui(k)−Uci(k))
>Ri(Ui(k)−Uci(k))

= U>
i (k)RiUi(k)− 2Uci(k)

>RiUi(k) + fu(Uci(k)))

where fx and fu are functions of terms that will not be relevant for the optimization
process since they are terms that do not depend on the decision variable Ui(k).
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Assumption 4.6: Invariance of the stochastic properties over the prediction horizon
The mean and variance matrix of the noise signals δi and γi are constant over the
prediction horizon.

Taking the expectation of the previous norms considering Assumption 4.6, the
cost function (4.46) is then reduced to:

J
(
X̂i(k),Ui(k), X̂ci(k),Uci(k)

)
= Ui(k)

>(G>QiG+Ri

)
Ui(k)− 2Uci(k)

>RiUi(k)

+ 2
(
F x̂i(k) +Gx̃µX̃i

(k) +GγµΓi
(k)− X̂ci(k)

)>
QiGUi(k)

+ fx

(
x̂i(k),µX̃i

(k),µΓi
(k), X̂ci(k)

)
+ fu(Uci(k))

(4.47)

where µΓi
(k) = 1Np×1 ⊗ µγi

(k) is the mean of the discrete-time measurement noise
over the prediction horizon and:

µX̃i
(k) =

 µx̃i
(k)
...

µx̃i
(k +Np − 1)


is the mean of the state estimation error over the prediction horizon. In the vector
µX̃i

(k), each individual mean µx̃i
(k + l + 1) for all l ∈ 0, Np − 1 is calculated recur-

sively with (4.40) from µx̃i
(k). Indeed, µx̃i

(k) is known and, with Assumption 4.6,
µδi(k + l) = µδi(k) and µγi

(k + l) = µγi
(k) for all l ∈ 0, Np − 1, µδi(k) and µγi

(k)
being known.

Finally, since the functions fx and fu in (4.47) are fixed by the system properties,
they are constant and are not minimized. They can then be removed from the
expression of the cost function. Thus, the cost function to be minimized is:

J
(
X̂i(k),Ui(k), X̂ci(k),Uci(k)

)
= Ui(k)

>(G>QiG+Ri

)
Ui(k)− 2Uci(k)

>RiUi(k)

+ 2
(
F x̂i(k) +Gx̃µX̃i

(k) +GγµΓi
(k)− X̂ci(k)

)>
QiGUi(k).

(4.48)

With (4.48), the cost function that is minimized by the optimization problem
(4.45) do not contain any unknown stochastic term. However, the probabilistic
constraints (4.45b) and (4.45d) prevent the problem to be easily solvable. As
explained before, such constraints have to be relaxed into algebraic constraints to
end up with a classical optimization problem that can be solved with a quadratic
programming solver. Such a relaxation is the purpose of Paragraph 4.2.3.2.

4.2.3.2 Relaxation of the probabilistic constraints into algebraic
constraints

In order to be able to formulate the constraints (4.45b) and (4.45d) as algebraic
constraints, it is first necessary to express them as a function of the different signals
acting on the system (4.38).

With the notations introduced in Paragraph 4.2.3.1, it is possible to rewrite the
constraint (4.45b) as a function of the different signals acting on the system. The
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event which probability is studied is the event X̂i(k) ∈ X . Such an event can be
rewritten, with (4.42), as the inequality:

HX X̂i(k) ≤ θX

⇔HXGUi(k) ≤ θX −HX

(
F x̂i(k) +Gx̃X̃i(k) +GγΓi(k)

)
. (4.49)

The same way, the event which probability is studied in (4.45d) is the event(
INp ⊗C

)
X̂i(k) ∈ V i(k) which can be rewritten as the inequality:

H i(k)CX̂i(k) ≤ θi(k)

⇔H i(k)CGUi(k) ≤ θi(k)−H i(k)C
(
F x̂i(k) +Gx̃X̃i(k) +GγΓi(k)

)
(4.50)

where C = INp ⊗ C. In both inequalities (4.49) and (4.50), a stochastic term

Ξi(k) =
[
X̃i(k)

> Γi(k)
>
]>
∈ R(2+n)Np appears.

Theorem 4.1: Satisfaction of the constraints (Cannon et al., 2012)

At time k, the constraints (4.45b) and (4.45d) are satisfied if and only if Ui(k)
satisfies:

HXGUi(k) ≤ θX −HXF x̂i(k)− bx(k) (4.51)
H i(k)CGUi(k) ≤ θi(k)−H i(k)CF x̂i(k)− by(k) (4.52)

where bx(k) ∈ RrxNp and by(k) ∈ Rry(k)Np are defined as the minimum values such
that, respectively:

P
(
HX

[
Gx̃ Gγ

]
Ξi(k) ≤ bx(k)

)
= Px (4.53)

P
(
H i(k)C

[
Gx̃ Gγ

]
Ξi(k) ≤ by(k)

)
= Py. (4.54)

In the general case, the bounds bx and by satisfying (4.53) and (4.54) are not
easy to compute. However, here, given Assumption 4.3, the stochastic term Ξi(k) is
defined from normally distributed signals. Thus, Ξi(k) is normally distributed. With
such a property, it would be possible to find the bound bx =

[
bx,1 · · · bx,rxNp

]> by
solving:

minimize
bx(k)

f(bx(k)) (4.55a)

subject to

P
(
HX

[
Gx̃ Gγ

]
Ξi(k) ≤ bx(k)

)
= Px (4.55b)

where:

P
(
HX

[
Gx̃ Gγ

]
Ξi(k) ≤ bx(k)

)
=

∫ bx,rxNp (k)

−∞
· · ·
∫ bx,1(k)

−∞
fΞ,x(x1, . . . , xrxNp)dx1 · · · dxrxNp
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where fΞ,x is the probability density function of the random variable HXGΞΞi(k),
with GΞ =

[
Gx̃ Gγ

]
. The bound by(k) can be found by solving a problem similar

to (4.55), replacing bx(k) by by(k), HX
[
Gx̃ Gγ

]
by H iC

[
Gx̃ Gγ

]
and Px by

Py.
However, a problem such as (4.55) is difficult to solve. Usually (Farina et al.,

2016), the probabilistic constraints are separated such that (4.53) (the same can be
said for (4.54)) would rather be:

P(ejHXGΞΞi(k) ≤ ejbx(k)) = Px

where ej ∈ R1×rxNp , with j ∈ 1, rxNp, is a vector of the canonical basis of RrxNp such
that:

e1 =
[
1 0 · · · 0

]
· · · erxNp =

[
0 · · · 0 1

]
.

♦

Remark 4.8: Index
In the following it is implicitly assumed that when ej is used, j is in the range 1, rxNp

unless stated otherwise.
A way to avoid the complexity of solving the previous optimization problem

(4.55), albeit conservative, is found in Gavilan et al. (2012) or Chevet et al. (2020a).
It consists in setting Px = Py = 1 such that the constraint is satisfied for all
perturbations. The constraints (4.45b) and (4.45d) are then equality constraints
since a probability cannot be higher than 1. Then, the constraint (4.45b) can be
relaxed by taking:

− ejbx(k) = min
Ξi(k)∈DΞ

−ejHXGΞΞi(k) (4.56)

with j ∈ 1, rxNp, where DΞ is the support of the distribution of the random variable
Ξi. The same can be done to relax (4.45d). For the minimum (4.56) to exist,
the support DΞ has to be bounded. Here, since Ξi follows a multivariate normal
distribution, the support is unbounded. Thus, to obtain the bounds bx(k) and by(k),
the problem (4.56) has to be modified.

Since Ξi(k) is normally distributed with mean µΞi
(k) and variance matrix ΣΞi

(k),
the random variable:

ξi(k) = (Ξi(k)− µΞi
(k))>Σ−1

Ξi
(k)(Ξi(k)− µΞi

(k)) (4.57)

follows a chi-squared law with (n+ 2)Np degrees of freedom according to Prop-
erty 2.13, denoted by χ2

(n+2)Np
, since Ξi(k) ∈ R(n+2)Np .

Since the chi-squared distribution is often used in statistical testing, tables exist
(Elderton, 1902) to find the value of the parameter α such that:

P(ξi(k) ≤ α) = Pχ (4.58)

with Pχ ∈ [0, 1]. With this parameter α, it is then guaranteed with probability Pχ
that all the random vectors Ξi(k) are inside the ellipsoid E (ΣΞi

(k)−1,µΞi
(k), α). To

ensure that most of the perturbations are covered by the bounds bx(k) and by(k), it
is preferable to chose Pχ as close to 1 as possible. In the following, only the procedure
to find bx(k) is treated, this procedure being immediately transposable to by(k).
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With the knowledge of the bounding ellipsoid E (ΣΞi
(k)−1,µΞi

(k), α), the prob-
lem (4.56) is changed into:

−ejbx(k) = minimize
Ξi(k)

− ejHXGΞΞi(k) (4.59a)

subject to

(Ξi(k)− µΞi
(k))>Σ−1

Ξi
(k)(Ξi(k)− µΞi

(k)) ≤ α. (4.59b)

Despite the problem (4.59) being formulated, the positive definiteness of ΣΞi
(k)

has been implicitly assumed since the definition of ξi(k). A formal proof of such a
property has to be drawn.

Property 4.3: Positive definiteness of the variance matrix of Ξi

The variance matrix ΣΞi
(k) is positive definite for all k > 0.

Proof. By definition:

ΣΞi
(k) = E

(
Ξi(k)Ξi(k)

>)− E(Ξi(k))E(Ξi(k))
>.

Considering Ξi(k) =
[
X̃i(k)

> Γi(k)
>
]>

, with X̃i(k) and Γi(k) the estimation error
and the measurement noise, respectively, which are random variables, over the
prediction horizon:

ΣΞi
(k) =

 ΣX̃i
(k) cov

(
X̃i(k),Γi(k)

)
cov
(
X̃i(k),Γi(k)

)>
ΣΓi

(k)


where ΣX̃i

(k) ∈ R(n+2)Np×(n+2)Np is described below in (4.60), ΣΓi
(k) = INp ⊗

Σγi
(k) ∈ R2Np×2Np and:

cov
(
X̃i(k),Γi(k)

)
= E

(
X̃i(k)Γi(k)

>
)
− E

(
X̃i(k)

)
E(Γi(k))>.

The expression of the covariance matrix of X̃i(k) can be deduced from (4.43).
Remark 4.6 states that x̃i(k− 1), Γi(k− 1) and ∆i(k− 1) are independent, yielding
null covariances. Thus the variance matrix ΣX̃i

(k) is such that:

ΣX̃i
(k) = F̃Σx̃i

(k − 1)F̃> + G̃γΣΓi
(k − 1)G̃>

γ + G̃δΣ∆i
(k − 1)G̃>

δ , (4.60)

where:
Σ∆i

(k − 1) = diag
(
Σδi(k − 1), INp−1 ⊗Σδi(k)

)
∈ RnNp×nNp (4.61)

and:
ΣΓi

(k − 1) = diag
(
Σγi

(k − 1), INp−1 ⊗Σγi
(k)
)
∈ R2Np×2Np . (4.62)

Indeed, ∆i(k − 1) =
[
δi(k − 1)> δi(k)

> · · · δi(k +Np − 2)>
]>. Then, from As-

sumption 4.3, the δi(k − 1 + l) are independent for all l ∈ 0, Np − 1. The variance
matrix of ∆i(k − 1) is then:

Σ∆i
(k − 1) = diag(Σδi(k − 1),Σδi(k), . . . ,Σδi(k +Np − 2)).
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However, with Assumption 4.6, the variance matrix of δi(k+ l) is considered constant
for all l ∈ 0, Np − 1. Then, Σδi(k) = Σδi(k + 1) = · · · = Σδi(k +Np − 1), hence the
expression given in (4.61). By replacing δi by γi, the same reasoning leads to the
expression of ΣΓi

(k − 1) given in (4.62).
The only term that remains to be calculated in the variance matrix ΣΞi

(k) is
cov
(
X̃i(k),Γi(k)

)
. In the expression of X̃i(k) given in (4.43), all the terms are

independent of Γi(k), leading to null covariances, except the one term depending on
Γi(k − 1). Then, the covariance appearing in ΣΞi

(k) is such that:

cov
(
X̃i(k),Γi(k)

)
= cov

(
−G̃γΓi(k − 1),Γi(k)

)
= −G̃γcov(Γi(k − 1),Γi(k))

= −G̃γE


 γi(k − 1)

...
γi(k +Np − 2)

 [γi(k)> · · · γi(k +Np − 1)>
].

From Assumption 4.3, E
(
γi(k + a)γi(k + b)>

)
= Σγi

(k)δ(a−b), where δ is the Dirac
delta function. Then, it leads to:

cov
(
X̃i(k),Γi(k)

)
= −G̃γΣΓi,L(k)

where:

ΣΓi,L(k) =


02 · · · · · · · · · 02

Σγi
(k)

. . . ...
02

. . . . . . ...
... . . . . . . . . . ...
02 · · · 02 Σγi

(k) 02

 ∈ R2Np×2Np .

The variance matrix of Ξi(k) is then finally:

ΣΞi
(k) =

[
ΣX̃i

(k) −G̃γΣΓi,L(k)

−ΣΓi,L(k)
>G̃>

γ ΣΓi
(k)

]
. (4.63)

Consider the matrix:

S(k) = ΣX̃i
(k)− G̃γΣΓi,L(k)Σ

−1
Γi
(k)ΣΓi,L(k)

>G̃>
γ (4.64)

obtained by using the Schur complement (2.7) on the matrix ΣΞi
(k) in (4.63). The

variance matrix ΣΞi
(k) is positive definite if and only if ΣΓi

(k) � 0 and S(k) � 0
by Property 2.3. It then remains to prove that ΣΓi

(k) � 0 and S(k) � 0.
The variance matrix ΣΓi

(k) given by (4.62) is positive definite (thus invertible)
since Σγi

(k) � 0 for all k > 0. Moreover, since Σγi
(k) is diagonal, its inverse is the

diagonal matrix Σ−1
γi
(k), and Σ−1

Γi
(k) = INp ⊗Σ−1

γi
(k). Then:

ΣΓi,L(k)Σ
−1
Γi
(k)ΣΓi,L(k)

> =


02 02 · · · · · · 02

02 Σγi
(k)

. . . ...
... . . . . . . . . . ...
... . . . . . . 02

02 · · · · · · 02 Σγi
(k)


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since Σγi
(k)> = Σγi

(k), and, by injecting this result and (4.60) into (4.64):

S(k) = F̃Σx̃i
(k − 1)F̃> + G̃γi

ΣΓi,1(k − 1)G̃>
γ + G̃δΣ∆i

(k − 1)G̃>
δ

where:

ΣΓi,1(k − 1) = ΣΓi
(k − 1)−ΣΓi,L(k)Σ

−1
Γi
(k)ΣΓi,L(k)

>

= diag
(
Σγi

(k − 1),02(Np−1)×2(Np−1)

)
.

Property 4.2 gives Σx̃i
(k − 1) � 0, thus F̃Σx̃i

(k − 1)F̃> � 0 according to
Property 2.2. By definition, ΣΓi,1(k − 1) � 0 thus, with Property 2.2, it leads
to G̃γΣΓi,1(k − 1)G̃>

γ � 0. To prove that S(k) � 0, it remains to prove that
G̃δΣ∆i

(k − 1)G̃>
δ � 0.

By definition, G̃δ = InNp + T , where T is the strictly lower block triangular
matrix:

T =


0n · · · · · · 0n

A−LC
. . . ...

... . . . . . . ...
(A−LC)Np−1 · · · A−LC 0n


and:

G̃δiΣ∆i
(k − 1)G̃>

δi
=
(
InNp + T

)
Σ∆i

(k − 1)
(
InNp + T

)>
= Σ∆i

(k − 1) + TΣ∆i
(k − 1)

+Σ∆i
(k − 1)T> + TΣ∆i

(k − 1)T>.

Since Σδi(k − 1) � 0 and Σδi(k) � 0, the variance matrix Σ∆i
(k − 1) is positive

definite. The products TΣ∆i
(k− 1) and Σ∆i

(k− 1)T> are strictly lower and upper
block triangular matrices, respectively, their eigenvalues are then their diagonal
elements. Then, the matrices TΣ∆i

(k−1) and Σ∆i
(k−1)T> are positive semidefinite.

By Property 2.2, TΣ∆i
(k − 1)T> � 0.

Finally, it is proven that S(k) is positive definite as the sum of positive semidefinite
matrices and at least one positive definite matrix. Moreover, ΣΓi

(k) is positive
definite by definition since Σγi

(k) is positive definite. Then, it is proven from
Property 2.3 that the variance matrix ΣΞi

(k) of Ξi(k) is positive definite for all
k > 0. �

Under the assumptions of this section, the problem (4.59) is feasible. Based on
the method from Gavilan et al. (2012), an explicit solution to (4.59) is proposed.

Let Σ = ΣΞi
(k)−1/α and zi(k) = Σ1/2(Ξi(k)− µΞi

(k)). Since Σ is symmetric
by definition, Σ1/2 is symmetric and Σ−1/2 is also symmetric. Then, the optimization
problem (4.59) can be rewritten:

−ejbx(k) = minimize
zi(k)

− ejHXGΞ

(
Σ−1/2zi(k) + µΞi

(k)
)

subject to

zi(k)
>zi(k) ≤ 1.

(4.65)
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Using the notations aj = −ejHXGΞ, fz(zi(k)) = aj
(
Σ−1/2zi(k) + µΞi

(k)
)

and
gz(zi(k)) = zi(k)

>zi(k)− 1, the following expressions hold:

∇fz(zi(k)) =
(
Σ−1/2

)>
a>
j (4.66a)

∇gz(zi(k)) = 2zi(k) (4.66b)

where ∇ is the gradient operator. The optimal value of zi(k), denoted by z∗i (k), can
then be found by using the Karush-Kuhn-Tucker conditions (Boyd and Vandenberghe,
2009).

The Karush-Kuhn-Tucker conditions gather a stationarity condition:

∇fz(z∗i (k)) + ζ∇gz(z∗i (k)) = 0(n+2)Np×1, (4.67)

a primal feasibility condition:
gz(z

∗
i (k)) ≤ 0, (4.68)

a dual feasibility condition:
ζ ≥ 0, (4.69)

and a complementary slackness condition:

ζgz(z
∗
i (k)) = 0. (4.70)

Using (4.66), the stationarity condition (4.67) can be rewritten:

z∗i (k) = −
1

2ζ
Σ−1/2a>

j . (4.71)

The value of z∗i (k) can be injected into the complementary slackness condition (4.70),
knowing that gz(z∗i (k)) = z∗i (k)

>z∗i (k)− 1:

ζ2 =
1

4
ajΣ

−1a>
j . (4.72)

The multiplier ζ satisfies the dual feasibility condition (4.69) when taking the positive
square root of (4.72). Finally, combining (4.71) and (4.72), the expression of z∗i (k)
is:

z∗i (k) = −
Σ−1/2a>

j√
ajΣ−1a>

j

(4.73)

The vector z∗i (k) satisfies the primal feasibility condition (4.68) since gz(z∗i (k)) = 0.
Injecting (4.73) into (4.65), the value of the bound is:

ejbx(k) = ejHXGΞ

(
Σ−1/2z∗i (k) + µΞi

(k)
)

= ejHXGΞ

Σ−1/2
Σ−1/2G>

ΞH
>
X e

>
j√

ejHXGΞΣ−1G>
ΞH

>
X e

>
j

+ µΞi
(k)


such that, remembering that Σ = ΣΞi

(k)−1/α, the bound for the robust satisfaction
of the constraint (4.45b) is:

ejbx(k) =
√
αejHXGΞΣΞi

(k)G>
ΞH

>
X e

>
j + ejHXGΞµΞi

(k) (4.74)



4.2. Unbounded stochastic perturbations 135

for all j ∈ 1, rxNp. Equation (4.74) is used to find by(k), the bound for the robust
satisfaction of the constraint (4.45d), by replacing HX by H i(k)C.

With the bounds bx(k) and by(k), the chance-constrained MPC optimization
problem (4.45) is reformulated into the classical MPC optimization problem:

minimize
Ui(k)

J
(
X̂i(k),Ui(k), X̂ci(k),Uci(k)

)
(4.75a)

subject to

HXGUi(k) ≤ θX −HXF x̂i(k)− bx(k), (4.75b)
Ui(k) ∈ U , (4.75c)

H i(k)CGUi(k) ≤ θi(k)−H iCF x̂i(k)− by(k) (4.75d)

where J
(
X̂i(k),Ui(k), X̂ci(k),Uci(k)

)
is given by (4.48), the matrices in (4.75b)

and (4.75d) have been extensively described in Paragraph 4.2.3.1 and the bounds
bx(k) and by(k) are found with (4.74).

However, despite the will for the chance constraints (4.45b) and (4.45d) to be
satisfied for all perturbations, expressed by choosing Px = Py = 1, the ellipsoid
E (ΣΞi

(k)−1,µΞi
(k), α) contains almost all the perturbations and there is probability

1− Pχ that the constraints are not satisfied. Indeed, the fraction Pχ can be as close
to 1 as possible but not exactly equal to 1 due to the properties of the chi-squared
distribution. The control strategy presented in this paragraph can then allow the
constraints to not be satisfied with a probability 1 − Pχ. This concludes on the
algebraic relaxation of the proposed probabilistic constraints.

4.2.4 Proposed deployment results for MAS with
stochastic perturbations

In this paragraph the chance-constrained MPC strategy proposed above is applied
to two multi-vehicle systems. These two MVSs are composed of vehicles obeying
single integrator dynamics for the first system and quadrotor UAVs dynamics as
described in Section 3.3 for the second system. Then, Paragraph 4.2.4.1 presents
the deployment of a MAS composed of vehicles obeying single integrator dynamics
subject to unbounded stochastic perturbations, while Paragraph 4.2.4.1 shows the
deployment of a MAS composed of quadrotor UAVs subject to the same kind of
perturbations.

4.2.4.1 Single integrator dynamics

Let Σ be a multi-agent system composed of N = 6 vehicles obeying the continuous-
time dynamics:

ẋi(t) = ui(k) + di(t)

yi(t) = xi(t) +wi(t)
(4.76)

with xi,ui,yi,di,wi ∈ R2, which is discretized as:

xi(k + 1) = xi(k) + Tsui(k) + δi(k)

yi(k) = xi(k) + γi(k)
(4.77)
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where Ts = 0.2 s is the sampling period. The variance matrices of di(t) and wi(t) are
constant over time and are, respectively, Σdi

(t) = 0.01·I2 and Σwi
(t) = 10−4·I2 for all

i ∈ 1, N . Then, from (4.36) and (4.37), Σγi
(k) = 5 ·10−3 ·I2 and Σδi(k) = 2 ·10−3 ·I2

for all i ∈ 1, N and for all k ≥ 0. For all agents, the variance matrix of the estimation
error is initialized as Σx̃i

(0) = 0.1 · I2, while its initial mean is µx̃i
(0) = 02×1. The

mean of the measurement noise wi is always zero for all i ∈ 1, N , i.e. µwi
(t) = 02×1.

A discussion on the value of the mean of the process noise di is held later in this
paragraph. For now, it is considered to be also zero, i.e. µdi

(t) = 02×1 for all
i ∈ 1, N . The values of the mean vectors µδi(k) and µγi

(k) are then immediately
02×1 from (4.34) and (4.35).

The MVS is deployed inside the output space:

Y = X =

x ∈ R2

∣∣∣∣∣∣∣∣

−1 4
−3 −2
3 −7
5 1

x ≤


24
20
44
48




with an input space U = B2(2 · 12×1). The goal for the MVS is then to deploy in Y
into a static Chebyshev configuration, where the estimated state of each agent lies
on the Chebyshev center of its Voronoi cell.

As for the tube-based MPC case of Paragraph 4.1.4.1, the weighting matrices
are chosen such that Q = R = I2 and P is the solution of the algebraic Riccati
equation:

A>PA− P −A>PB
(
B>PB +R

)−1
B>PA+Q = 02

with A = I2 and B = TsI2. The prediction horizon is chosen to be Np = 10. The
scaling factor used in the terminal constraint is chosen to be λi = 0.9, with i ∈ 1, N .
The parameter Pχ is chosen to be Pχ = 0.99 such that, according to chi-squared
tables (Elderton, 1902), the parameter α appearing in (4.58) is α = 63.691 since the
random variable ξi(k) of (4.57) follows a chi-squared law with 40 degrees of freedom.
Finally, the observer gain matrix L is chosen such that it is the solution of a LQR
design problem with the weighting matrices QL = 10 · I2 and RL = I2.

The estimated state x̂i, with i ∈ 1, N , is initialized to a random position in Y
such that the optimization problem (4.45) is feasible. The real state xi, with i ∈ 1, N ,
is initialized with xi(0) = x̂i(0).

The initial and final configuration of the multi-agent system Σ in Y are displayed
in Figures 4.16 and 4.17. The estimated states x̂i(0) and x̂i(250), with i ∈ 1, N , are
represented by circles while the Chebyshev centers ci(0) and ci(250) are represented
by stars. It is obvious from Figure 4.17 that the estimated position x̂i, with i ∈ 1, N ,
has reached the Chebyshev center ci of its Voronoi cell Vi.

As for the tube-based case, a measure of the convergence of Σ to a static
configuration is given by the distance between the estimated states and the Chebyshev
centers:

di(k) = ‖x̂i(k)− ci(k)‖2 (4.78)
with i ∈ 1, N . As shown by Figure 4.18, all these distances converge to 0. Moreover,
Figure 4.19 shows that the norm of the estimation error x̃i, with i ∈ 1, N , denoted
by ‖x̃i(k)‖2, remains bounded with ‖x̃i(k)‖2 ≤ 0.008m.

To show that the estimation error x̃i(k) and the distance di(k) remain bounded
when the mean of the process noise µdi

is not null, simulations are run to compare
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Figure 4.16: Initial position of the MVS Σ in the output space.
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Figure 4.17: Final position of the MVS Σ in the output space.
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Figure 4.18: Distance of the estimated position of each agent of Σ to its Chebyshev
center over time.
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Figure 4.19: Norm of the estimation error for each agent of Σ.

the efficiency of the chance-constrained MPC (4.75) with that of the nominal MPC
(3.12) similarly to Gavilan et al. (2012). Three batches of 2000 simulations are run
for a total of 6000 simulations. Half of these simulations, i.e. 3000 simulations, are
run with the CCMPC of Section 4.2.3, while the other half are run with the nominal
MPC of Section 3.2.2. In all the simulations, the mean of the process noise di(t) is
modified such that:

µdi
(t) =

{
02×1 if t < 2 s
µdi

else

where µdi
∈ R2 is a vector which components are chosen randomly in one of three

given intervals I. Thus, for each interval I, there are 1000 simulations of Σ where
each agent is subject to a given perturbation di(k) and driven with the chance-
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constrained MPC (4.75). Then, 3000 more simulations (1000 simulations for a given
interval I) are run with the exact same scenario, where each agent is driven with
the decentralized nominal MPC (3.12). In this last case, the agents are simulated
using the dynamics (4.77) and the control input is obtained by replacing the state
xi by the estimated state x̂i in the optimization problem (3.12).

For each of the three batches, the interval I is such that I = [−1, 1], I =
[−1.5, 1.5] and I = [−2, 2], respectively. When running the simulation, whenever
an agent does not satisfy a constraint, the whole simulation is stopped and its
results are not counted in the following. The results on the deployment success rate
are gathered in Table 4.1. For each batch of simulations, 100% of the simulations
with the chance-constrained MPC result in the deployment of the MAS in a static
configuration. With the nominal MPC for the first batch, i.e. for I = [−1, 1],
24.2% of the simulations result in at least one agent not satisfying a constraint. This
percentage goes up to 84.8% for the second batch, i.e. for I = [−1.5, 1.5], and 98.5%
for the third one, i.e. for I = [−2, 2]. Since the number of successful simulations for
the second and third batch is not representative, a comparative analysis is performed
between the performances of the CCMPC and of the nominal MPC for the first
batch only.

The mean value of di(k), with i ∈ 1, N , as defined in (4.78) for k ∈ 30, 150, where
k = 150 is the end of the simulation, is computed. The value of k = 30 for the
beginning of the interval is chosen such that the MAS has converged into a static
Chebyshev configuration based on the results presented in Figure 4.18. The use of
the mean value of di(k) allows to remove the potential sudden variations that can
appear on di(k) due to a sudden change in the position of the Chebyshev center
ci(k) as was observed in the nominal case in Section 3.2.4. Let mdi denote the
aforementioned mean, i.e.:

mdi =
1

121

150∑
k=30

di(k).

The mean mdi is studied for each agent and the results are gathered in Table 4.2.
For each simulation, six agents are deployed in the workspace Y. This means that
6000 values for mdi are retrieved in the chance-constrained case and 4548 values are
retrieved in the nominal case since only 758 simulations ran successfully, the other
242 ending up in at least one agent not satisfying the constraints. With the use of the
CCMPC, the maximum value of mdi is maxmdi = 25.38 cm and 100% of the 6000
simulated agents are such that mdi ≤ maxmdi . With the use of the nominal MPC,
the maximum value of mdi is maxmdi = 154.41 cm. To compare with the CCMPC
case, only 3.03% of the 6000 simulated agents are able to maintain mdi ≤ 25.38 cm
while 72.77% of these 6000 agents are such that 25.38 cm < mdi ≤ 154.41 cm. For
the other 24.2% of the simulated agents no value is obtained for mdi since the
simulations were interrupted.

Since for all simulations, µγi
(t) = 02×1, there is no significant difference in the

values of the norm of the estimation error ‖xi(k)− x̂i(k)‖2. However, the Monte-
Carlo simulations could be repeated to measure the impact of a non null mean for
the measurement noise, caused potentially by a bias on the sensors. These results
highlight the necessity of the robust chance-constrained model predictive controller
proposed in this section for the deployment of a MAS subject to unbounded stochastic
perturbations.
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Table 4.1: Comparison of the deployment success rate with the CCMPC scheme and
the nominal MPC scheme.

I = [−1, 1] I = [−1.5, 1.5] I = [−2, 2]
Nominal

MPC CCMPC Nominal
MPC CCMPC Nominal

MPC CCMPC

Number of
simulations 1000 1000 1000 1000 1000 1000

Simulation
success rate 75.8% 100% 15.2% 100% 1.5% 100%

Table 4.2: Comparison of the mean value of the distance mdi for the agents in the
case I = [−1, 1].

mdi ≤ 25.38 cm 25.38 cm < mdi ≤ 154.41 cm
Number of

simulated agents
Number of

agents
Percentage
of agents

Number of
agents

Percentage
of agents

Nominal MPC 6000 182 3.03% 4366 72.77%
CCMPC 6000 6000 100% 0 0%

4.2.4.2 UAV dynamics

Let Σ be a multi-agent system composed of N = 6 vehicles. Each agent i ∈ 1, N
is a quadrotor UAV obeying the dynamics and the control structure presented in
Section 3.3. The predictive controller used for the outer loop in Paragraph 3.3.2.3 is
replaced by the chance-constrained MPC described in Paragraph 4.2.3.2.

The linearized continuous-time dynamics of the outer loop are:

ẋi(t) =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

xi(t) +


0 0
0 g
0 0
−g 0

ui(t) +


0 0
1 0
0 0
0 1


︸ ︷︷ ︸

M

di(t)

yi(t) =

[
1 0 0 0
0 0 1 0

]
xi(t) +wi(t)

(4.79)

where xi ∈ R4, ui,yi,di,wi ∈ R2. Assumption 4.2 is satisfied since M has full rank.
In the dynamics of (4.79), the perturbation di(t) only acts on the horizontal speed of
the UAVs. Indeed, the perturbations considered are potential wind gusts. Moreover,
the main source of modeling error when linearizing the position subsystem is on the
horizontal speed dynamics.

Then, the dynamics (4.79) is discretized as:

xi(k + 1) = Axi(k) +Bui(k) + δi(k)

yi(k) = Cxi(k) + γi(k)
(4.80)

where A, B and C are the matrices defined in (3.39), with the sampling period
Ts = 0.2 s. The variance matrices of di and wi are Σdi

(t) = 10−3 · I2 and Σwi
(t) =
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10−5 · I2 for all i ∈ 1, N . With (4.37) and (4.36), Σγi
(k) = 5 · 10−5 · I2 and:

Σδi(k) = 10−4 ·


0.027 0.2 0 0
0.2 2 0 0
0 0 0.027 0.2
0 0 0.2 2

 .

The variance matrix of the estimation error is initialized as Σx̃(0) = 10−3 · I4 while
its mean is initialized as µx̃i

(0) = 04×1. The mean of the measurement and process
noises wi and di are always zero for all i ∈ 1, N , i.e. µwi

(t) = µdi
(t) = 02×1. The

values of the mean vectors µδi(k) and µγi
(k) are then immediately 04×1 and 02×1,

respectively, from (4.35) and (4.34).
The MVS is deployed inside the output space:

Y =

x ∈ R2

∣∣∣∣∣∣∣∣

−1 4
−3 −2
3 −7
5 1

x ≤


24
20
44
48




and the state space is such that CX = Y and the horizontal speeds vx,i(k) and
vyi(k), with i ∈ 1, N , belong to B2(2 · 12×1) with an input space U = B2

(
π
6
· I2
)
.

As discussed in Paragraph 4.1.4.2, the outer loop controller has to be modified
with respect to Paragraph 3.3.2.3. Indeed, according to Section 3.3.2, a cascaded
control structure is considered to control each UAV. For the inner loop, a continuous-
time controller based on feedback linearization is used for attitude control. For the
outer loop, the discrete-time CCMPC of Section 4.2.3 is used for position control.
However, for simulation purpose, the controller of the inner loop is run in discrete-
time with a sampling period of 1ms. This sampling period is 200 times shorter
than the sampling period of the outer loop. Indeed, the control input applied to

the agent i ∈ 1, N is changed to ui(kin) = ui(k) for all kin ∈
Ts
T in
s

k,
Ts
T in
s

(k + 1)− 1,

where T in
s = 1ms is the sampling period of the inner loop. The gain matrix Lin of

the observer shown in Figure 4.20 is obtained by solving a LQR design problem with
the weighting matrices QLin = 10 · I4 and RLin = I2 for the dynamics (4.80), where
the sampling period is replaced by T in

s = 1ms. The resulting control structure is
presented in Figure 4.20.

As in Section 3.3.3, the contraction factor for the terminal constraints is λi = 0.9,
with i ∈ 1, N . The weighting matrices are chosen such that Q = I4, R = I2 and P
is the solution of the algebraic Riccati equation:

A>PA− P −A>PB
(
B>PB +R

)−1
B>PA+Q = 04

with A and B defined in (3.39). The observer gain matrix L of the outer loop used
in the CCMPC block is obtained as the solution of a LQR design problem with
the weighting matrices QL = 10 · I4 and RL = I2 for the dynamics (4.80). The
prediction horizon is chosen such that Np = 10. The solver for optimization problem
(4.45) is generated with CVXGEN (Mattingley and Boyd, 2012, 2013). The evolution
model for the quadrotor UAV agents in the simulation is then the nonlinear model
of (3.28).

The position yi of each UAV agent is initialized to a random value of Y such
that the optimization problem (4.59) is feasible. The altitude zi of each agent is
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CCMPC ZOH Observer

ZOH

UAV

z−1

T in
s

x̂i(k)

ui(k)
TsOther agents

estimated positions
ŷj(k), j ∈ 1, N , j 6= i

yi(kin)

T in
sTs

ui(kin)
x̂i(kin)

Figure 4.20: Structure of the position controller for a quadrotor UAV subject to
perturbations.

initialized to zi(0) = z̄ = 5m. Moreover, the speeds, angles and angular speeds are
null at k = 0. The estimated state x̂i of each agent is such that x̂i(0) = xi(0).
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Agent’s initial estimated position x̂i(0) Initial Chebyshev center ci(0)

Initial Voronoi cell Vi(0)

Figure 4.21: Initial position of the MVS Σ in the output space.

The initial and final configuration of the MAS Σ in Y are displayed in Figure 4.21
and Figure 4.22 respectively. The estimated positions ŷi(0) and ŷi(250), with
i ∈ 1, N , are represented by circles, while the Chebyshev centers ci(0) and ci(250)
are represented by stars. As for the single integrator case of Paragraph 4.2.4.1, it is
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Figure 4.22: Final position of the MVS Σ in the output space.

obvious from Figure 4.22 that the estimated position ŷi, with i ∈ 1, N , has reached
the Chebyshev center ci of its Voronoi cell Vi. The real positions of the agents are not
shown since, given the noise variances, they are close to the estimated position. This
assertion is supported by the norm of the estimation errors shown in Figure 4.24.

As for the tube-based case, a measure of the convergence of Σ to a static
configuration is given by the distance between the estimated positions and the
Chebyshev centers:

di(k) = ‖ŷi(k)− ci(k)‖2

with i ∈ 1, N . As shown by Figure 4.23, all these distances converge to 0. However,
the convergence is slower than in the bounded perturbations case of Paragraph 4.1.4.2
due to the high level of noise. Indeed, a static configuration is reached in around 15 s
for the unbounded stochastic perturbations case, while it is reached in around 8 s for
the bounded deterministic perturbations case. Moreover, Figure 4.24 shows, as in
the single integrator case, that the norm of the estimation error remains bounded
with ‖xi(k)− x̂i(k)‖2 ≤ 42 cm. Due to the modified control strategy and the more
complex dynamics, the norm of the estimation error is larger than the one obtained
in the single integrator case of Paragraph 4.2.4.1, where ‖xi(k)− x̂i(k)‖2 ≤ 0.8 cm.
A similar approach than the one developed in Paragraph 4.2.4.1 could be developed
here to show that the error remains bounded when the mean of the process noise,
i.e. the external disturbance, is not null.
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Figure 4.23: Distance of the estimated position of each agent of Σ to its Chebyshev
center over time.
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Figure 4.24: Norm of the estimation error for each agent of Σ.

4.3 Conclusion
This chapter presents two control strategies to perform the robust Voronoi-based
deployment of a multi-agent system (MAS) where each agent is tracking the Cheby-
shev center of the Voronoi cell or guaranteed Voronoi cell it belongs to. The vehicles
composing the MAS are subject to perturbations either bounded deterministic or
unbounded stochastic. In both cases, a solution based on model predictive control
(MPC) has been proposed to adapt the deployment algorithm presented in Chapter 3
to the perturbed case.

As a first step, the input and output perturbations are considered deterministic
and bounded. Thus, a decentralized model predictive controller is derived from
existing robust output feedback tube-based MPC (Mayne et al., 2006) and adapted for
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the deployment control of a MAS. Such a control strategy is based on the knowledge
of invariant sets for error dynamics. In order for the optimization problem to remain
feasible, these invariant sets have to be of minimal size. Since their size depends on
the value of the observer and state feedback controller gain matrices appearing in the
output feedback tube-based MPC strategy, tuning procedures derived from the one
given by Alvarado (2007) are introduced. These procedures are used to obtain the
observer and state feedback gain matrices guaranteeing that the robust positively
invariant sets for the associated stable dynamics are of minimal size. Simulations are
run on both single integrator and nonlinear UAV dynamics to show that the MAS
deploys in a static Chebyshev configuration with guarantees that the state of the
system remains bounded inside a set such that, despite the perturbations, collisions
between the agents are avoided.

However, despite being efficient, such a strategy is limited in the case of real
systems, which opens the way to interesting future research directions. Indeed, in
the double integrator case, i.e. for the position control of a quadrotor unmanned
aerial vehicles fleet, the strategy depends on the availability of measurements at an
important rate which is not realistic. This is due to the properties of the Luenberger
observer which might not be adapted to such an application. Then, a more robust
observer should be used such as Kalman filter (Chui and Chen, 2017, Chevet et al.,
2017) or even set-membership state estimation techniques (Le et al., 2013) on which
tube-based MPC techniques have already been studied (Le, 2012) in the case of
a single system. This last possibility could be coupled with the tuning procedure
proposed in the present thesis since both are based on bilinear matrix inequalities.
Indeed, one of the main point arising in the deployment problem is the appearance
of time-varying constraints, discussed in Chapter 3, in the optimization problem. An
online computation of the invariant sets based on set-membership state estimation
would then allow to take such time-varying constraints into account, which is not
the case for the method proposed in the present thesis. However, an analysis of the
computation time is necessary.

Then, in a second stage, stochastic and unbounded perturbations are considered.
Such perturbations are then characterized by a mean and a variance matrix. The
mean represents an external deterministic disturbance for the input perturbation or
a sensor bias for the output perturbation while the variance matrix is related to the
process or measurement noise to which the system is subject. To perform the robust
deployment of the MAS, a novel output feedback decentralized model predictive
controller is derived from the state feedback chance-constrained MPC strategy
introduced in Gavilan et al. (2012). Indeed, Gavilan et al. (2012) proposes a state-
feedback chance-constrained model predictive controller applied to a single system. In
the present thesis, the control strategy is improved to obtain a decentralized output-
feedback chance-constrained model predictive controller applied to a MAS. This
strategy consists in using the stochastic properties of the perturbations to compute
a probabilistic bound to the perturbation signal, relaxing the chance constraints of
the optimization problem into algebraic constraints. Finally, simulations on a MAS
composed of agents obeying single integrator dynamics or nonlinear quadrotor UAVs
dynamics show that the MAS deploys in a static Chebyshev configuration. Monte-
Carlo simulations in the single integrator dynamics case show that the behavior of
such a control strategy is analogous to the robust tube-based MPC case in the sense
that, with the proposed chance-constrained MPC, the errors remain bounded.

As for the tube-based MPC case, such a strategy can be limited in the case of real
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systems. The same problem linked to the observer arises. Moreover, this strategy,
with the formulation given in the present thesis, works for stochastic processes
characterized by their mean and variance matrix, i.e. the Gaussian processes. A
logical next step of the work presented in this thesis would be to adapt it to different
probability distributions. Another possibility would be to study tube-based chance-
constrained techniques as developed in Cannon et al. (2012) adapted to the case
of the deployment of a MAS. Indeed, the work of Cannon et al. (2012) and the
subsequent improvements of their algorithm as presented in Dai et al. (2015) or Dai
et al. (2018), for example, are based on the assumption that the constraints are
constant over time while in the deployment case, the constraints are time-varying. A
tube-based strategy could then be coupled with a set-membership state estimation
technique or a tuning procedure similar to the one used for the tube-based MPC
case.



Chapter 5
Extension to the deployment of a
time-varying multi-vehicle system

Table of Contents

5.1 A first approach to reconfiguration . . . . . . . . . . . . . . . . . . 148
5.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
5.1.2 Problem formulation . . . . . . . . . . . . . . . . . . . . . . 150

5.1.2.1 Agent dynamics . . . . . . . . . . . . . . . . . . . 150
5.1.2.2 Incoming agents . . . . . . . . . . . . . . . . . . . 151
5.1.2.3 Outgoing agents . . . . . . . . . . . . . . . . . . . 153

5.1.3 Deployment results . . . . . . . . . . . . . . . . . . . . . . . 159
5.1.3.1 Incoming agents . . . . . . . . . . . . . . . . . . . 159
5.1.3.2 Outgoing agents . . . . . . . . . . . . . . . . . . . 162

5.2 A safer way to deal with outgoing vehicles . . . . . . . . . . . . . . 165
5.2.1 Limitation of the first reconfiguration algorithm . . . . . . . 165
5.2.2 Improved reconfiguration algorithm . . . . . . . . . . . . . . 169

5.2.2.1 A new transient objective . . . . . . . . . . . . . . 169
5.2.2.2 A new reconfiguration algorithm . . . . . . . . . . 174

5.3 Reconfiguration in the case of outgoing agents . . . . . . . . . . . . 178
5.3.1 Comparison of the two algorithms in the case of one outgoing

agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
5.3.2 Reconfiguration in the case of multiple outgoing agents . . . 181

5.3.2.1 Reconfiguration for single integrator dynamics . . 181
5.3.2.2 Reconfiguration for UAV dynamics . . . . . . . . . 187

5.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Chapter 3 introduces the deployment problem of a multi-agent system over a
convex bounded area in the nominal case. For its part, Chapter 4 discusses the same
problem when the agents are subject to input and output perturbations. In both
these chapters, the multi-agent system is constant over time, i.e. the number of
agents in the system does not evolve during the deployment. The present chapter
deals with the case where the number of agents is time varying. A first Voronoi-based
reconfiguration algorithm using a decentralized MPC approach is proposed for a
time-varying multi-agent system (MAS). The considered dynamics for the agents
and the reconfiguration strategy when either agents join or one agent leaves the
MAS are detailed. Finally results on the case of incoming agents and one outgoing
agent during the deployment are presented.

After analyzing the possible limitations of the previous reconfiguration algorithm
for the case of several agents leaving the MAS, a robustified algorithm is proposed

147
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to deal with the case of several simultaneous outgoing agents. A comparison is
then made between the two algorithms for the case of one outgoing agent before
presenting reconfiguration results in simulation for the case of multiple outgoing
agents with the robustified algorithm.

The algorithm for the case of agents joining the multi-agent system has been
introduced in Chevet et al. (2018). For the case of agents leaving the system, Chevet
et al. (2018) presents a novel decentralized MPC-based reconfiguration algorithm.
For its part, Chevet et al. (2020b) robustifies the algorithm of Chevet et al. (2018)
by designing a novel safe objective along with a safety region in which the remaining
agents of the MAS evolve to avoid potential collisions with the outgoing agents.

5.1 A first approach to reconfiguration
Section 5.1.1 inscribes the problem of the present chapter in the context of fault
tolerant formation control. Then, Section 5.1.2 starts by introducing the general
agent dynamics used throughout this chapter, before presenting two reconfiguration
algorithms, one for the case of agents joining the multi-agent system, and one for
the case of agents leaving this system. Finally, Section 5.1.3 presents reconfiguration
results for both single integrator and nonlinear quadrotor unmanned aerial vehicle
dynamics.

5.1.1 Motivation
This thesis presents several control algorithms for the deployment of a multi-agent
system (MAS). Despite being subject to perturbations, bias or noise, each agent
is always considered healthy, that is, it is not subject to any fault. Varga (2017)
defines a fault as an unexpected variation of one or several physical parameters of a
plant leading it to evolve outside its normal operation mode. A fault can occur on
either an actuator, a sensor or an internal component (Blanke et al., 2000, Varga,
2017). A fault can be characterized by a modification of the input or output signal
(e.g. in this sense, the output perturbation considered in Section 4.1.1 can result
from a sensor fault) or a modification of the dynamics (e.g. a modification of the A,
B and/or C matrices from the dynamics (2.40)). When a system can be subject
to a fault, a fault detection and isolation scheme has to be used to know when the
system is faulty and on which part the fault acts exactly. When a system is faulty, a
fault-tolerant control scheme (Zhang and Jiang, 2008, Amin and Hasan, 2019) can
be used to mitigate the fault and allow the system to continue working despite the
fault or reach a state in which it is possible to stop or repair it safely. Robust control
or adaptive control fall into the category of fault-tolerant control (Blanke et al.,
2000) and, in this sense, the tube-based model predictive control scheme presented in
Section 4.1.3 can be deemed as fault-tolerant since, as mentioned earlier, the output
perturbation can result from a sensor fault.

In the present chapter, the focus is not on a fault appearing on individual agents
but rather on the multi-agent system itself. Such a fault consists in the addition or
the removal of one or several agents from the MAS in the case of MAS deployment.
The removal of agents can result from faults occurring on these agents, from the
change in the mission objective resulting in the need of less agents in the MAS or
even from the need for these agents to recharge. The addition of agents results
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mainly from the need of more agents in the MAS to carry out its mission. For
example, in a search and rescue mission after an avalanche, more agents could be
needed to better cover the area around a victim after it was found. Then, the control
algorithms presented in the following are part of a specific branch of fault-tolerant
control (FTC), i.e. fault-tolerant formation control (FTFC).

FTFC strategies often rely on a predefined formation (Kamel et al., 2020). When
one or several agents taking part in this formation are faulty, based on the severity
of the fault, a modification on the control algorithm is made. Then, Kamel et al.
(2020) define three categories of FTFC (also called fault-tolerant cooperative control)
strategies in the case of unmanned ground vehicles that are immediately transposable
to the case of any vehicle.

The first two are strategies that can be used to mitigate mild to moderate faults,
i.e. faults that do not incapacitate the agent, namely individual FTFC and motion
re-coordination. Individual FTFC consists in using a FTC strategy (Blanke et al.,
2016) directly on the faulty agent to mitigate the fault effect while the other agents
continue their mission as if nothing happened. In this case, used for example in Zhou
et al. (2014), Xu et al. (2014), Hua et al. (2017) or Khalili et al. (2019), the formation
behavior is not taken into account for the mitigation strategy and each faulty agent
adapts its control law to be able to continue the mission of the MAS. For its part,
motion re-coordination consists in adapting the control algorithm of both healthy
and faulty agents. It takes into account the capabilities of the faulty agents such
that the healthy ones limit their movement to maintain the formation’s integrity
or carry out a larger part of the mission to lighten the faulty agents’ task. For
example, when the mission involves path following, a re-planning of the trajectory
is performed so that, even with limited physical capabilities, each agent is able to
follow the new trajectory. This kind of method is find for example in Chamseddine
et al. (2012), Wang et al. (2014) or Yu et al. (2016). In the case of consensus-based
algorithms, such as in Saboori and Khorasani (2015), the motion re-coordination
strategy involves the decrease of the importance of the faulty agents to carry out
the mission.

Finally, the third category is the one to which the algorithms of this chapter
belong to: the category of task assignment strategies. However, while Kamel et al.
(2020) limit it to the case of severe fault occurring on one or several agents, here,
only moderate faults (or even no faults) are considered. Nevertheless, such strategies
come from the need for a faulty (or not) agent to leave the formation or, in the
present case, for a healthy agent to join the formation. Then, the healthy agents
remaining in the formation have to reconfigure themselves to adopt a new formation
either without the outgoing agents (faulty or not) or with the incoming healthy
agents. In the case of path following for a formation of vehicles, a natural strategy,
used for example in Kamel et al. (2015) or Hafez and Kamel (2016), is to “abandon”
the faulty agent along the way. Then, the healthy agents adopt a new formation
shape while avoiding collision with the agent left behind. Strategies of the same kind
can be found in Ghamry and Zhang (2016) or Huang et al. (2019).

In the present work, no path following or any global movement of the formation
is involved. Thus, task assignment strategies as presented in the cited publications
are not easily applicable. Indeed, these methods, proposed for MAS composed of
various kinds of vehicles, involve leaving faulty agents where they are, while the
others continue their movement. For the deployment problem, it is not possible for
the faulty agent to be abandoned where it is since it would become an obstacle to
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the deployment of the MAS. In this chapter, task assignment methods are tinged
with motion re-coordination. Indeed, the idea is to have the healthy agents making
room for the faulty ones to leave the workspace without colliding with other agents.
The collision avoidance concern is then left to the healthy agents with respect to the
limited physical capabilities of the faulty agents, hence the motion re-coordination
idea. However, since the main objective is to remove (or integrate) agents from
the formation, the algorithms of this chapter indeed belong to the task assignment
family.

The proposed methods are meant to be applied on any type of multi-vehicle
system. Then, since they can be applied to unmanned ground or surface vehicles,
they are developed for a deployment and reconfiguration mission in a two-dimensional
planar area. It could be argued that for vehicles able to move in the three spatial
directions, such as unmanned aerial vehicles, the agents leaving the workspace in
which the MAS is deployed could change their altitude and then move away from
the workspace. However, if such a vehicle is faulty, it could be impossible for it to
increase its altitude, and in missions such as forest fire monitoring, decreasing the
altitude might be dangerous for the vehicle, leading potentially to its total loss. For
these reasons, the methods presented in the following are developed for a planar
movement, despite the potential three-dimensional movement capabilities of some
vehicles.

In the case of outgoing agents, the control algorithms presented in this chapter
are based on a novel transient objective for the healthy agents ensuring collision
avoidance with the faulty agents by construction. These algorithms are based on the
work of Chevet et al. (2018) and Chevet et al. (2020b). The control algorithm for
the case of incoming agents incorporates the new vehicles in a natural extension of
the deployment algorithm presented in Chapter 3. It is based on the work of Chevet
et al. (2018).

5.1.2 Problem formulation
5.1.2.1 Agent dynamics

Let Σ be a multi-agent system composed of N agents. Each agent obeys discrete-time
linear time-invariant dynamics as in Chapter 3. The general dynamics are the same
as the one used in Chapter 3, i.e.:

xi(k + 1) = Axi(k) +Bui(k) (5.1a)
yi(k) = Cxi(k) (5.1b)

where xi ∈ X ⊂ Rn, ui ∈ U ⊂ Rm, yi ∈ Y ⊂ R2, A ∈ Rn×n, B ∈ Rn×m and
C ∈ R2×n, with i ∈ 1, N . As in the previous chapters, the multi-agent system
is homogeneous by Assumption 2.6, the dependency in the identifier i is dropped
for the matrices A, B and C as well as for the state, input and output spaces
X , U and Y. All the agents share the same two-dimensional output space (or
workspace) by Assumption 2.3 and the system (5.1) admits equilibrium points as
per Assumption 3.2.

When the multi-agent system operates normally, each agent follows the deploy-
ment algorithm presented in Section 3.2.2. The properties of the model predictive
controller are the same as the one described in Section 3.2.2. In this case, the
algorithm followed by the MAS presents no difference with Algorithm 3.2.
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However, this chapter aims to improve this algorithm to make it resilient to the
addition or removal of one or several agents to the MAS. Thus, in the nominal case,
i.e. when the system operates without modification in the number of agents, it is
clear that the MAS is simply deployed in the workspace Y and the algorithm needs
not be modified. Nevertheless, Paragraph 5.1.2.2 introduces the modification of the
algorithm to make it able to integrate agents in the MAS. Moreover, Paragraph 5.1.2.3
presents a new algorithm to make the MAS able to be deployed in Y while agents
leave Y without causing collisions with the remaining agents.

5.1.2.2 Incoming agents

Let E be a set of agents present in R2 \ Y . The objective for the incoming agents of
E (which can also be called entering agents) is to join Σ, while Σ is deployed inside
Y. Thus, the goal for E is to enter Y. After entering Y, the set E is part of Σ and
participates in the deployment of the multi-agent system Σ. With this in mind, the
following paragraph is a natural extension of the decentralized deployment algorithm
presented in Section 3.2.2 to allow the agents outside the workspace to participate
in the deployment of Σ.

The objective of the present control algorithm is then to drive the agents of E
inside the workspace Y with a decentralized model predictive controller. To do so,
an objective point yE

i (k) for each agent i ∈ 1, |E| of E is defined as the point in the
interior of Y, i.e. the point of Y \ ∂Y, where ∂Y is the border of Y, closer to the
position yi(k) of agent i than any other point of Y \ ∂Y . This property is translated
mathematically as:

yE
i (k) = argmin

y∈Y\∂Y
‖yi(k)− y‖2, ∀i ∈ 1, |E|. (5.2)

This point yE
i (k) is chosen since it is computationally easy to obtain and, given the

deployment strategy followed by the agents of Σ, the incoming agents of E enter the
workspace Y at a point relatively far from the position of the deploying agents of Σ.

Then, since yE
i (k) ∈ Y, it is possible, according to Assumption 3.2, to find a

couple
(
xE
i (k),u

E
i (k)

)
such that

(
xE
i (k),u

E
i (k),y

E
i (k)

)
is an equilibrium point of the

dynamics (5.1):

xE
i (k) = AxE

i (k) +BuE
i (k)

yE
i (k) = CxE

i (k).
(5.3)

The couple
(
xE
i (k),u

E
i (k)

)
is then used as a reference point for the decentralized

MPC algorithm driving agent i of E. When agent i enters Y , it switches from E to
Σ and starts participating in the deployment of Σ by following Algorithm 3.2.

While the agents of Σ follow Algorithm 3.2, the agents of E compute their input
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ui(k), with i ∈ 1, |E|, by finding the solution to the optimization problem:

minimize
ui(k+l),

∀l∈0,Np−1

Np−1∑
l=0

`
(
xi(k + l),ui(k + l),xE

i (k),u
E
i (k)

)
+ V

(
xi(k +Np),x

E
i (k)

)
(5.4a)

subject to

xi(k + l + 1) = Axi(k + l) +Bui(k + l), ∀l ∈ 0, Np − 1, (5.4b)
xi(k + l) ∈ XE, ∀l ∈ 0, Np − 1, (5.4c)
ui(k + l) ∈ U , ∀l ∈ 0, Np − 1 (5.4d)

where `
(
xi(k + l),ui(k + l),xE

i (k),u
E
i (k)

)
, with l ∈ 0, Np − 1, is the stage cost:

`
(
xi(k + l),ui(k + l),xE

i (k),u
E
i (k)

)
=
∥∥xi(k + l)− xE

i (k)
∥∥2
QE

i
+
∥∥ui(k + l)− uE

i (k)
∥∥2
RE

i
(5.5)

and V
(
xi(k +Np),x

E
i (k)

)
is the terminal cost:

V
(
xi(k +Np),x

E
i (k)

)
=
∥∥xi(k +Np)− xE

i (k)
∥∥2
PE

i
. (5.6)

The weighting matrices QE
i ,P

E
i ∈ Rn×n and RE

i ∈ Rm×m in (5.5) and (5.6) are
chosen such that QE

i = QE
i
> � 0, P E

i = P E
i

> � 0 and RE
i = RE

i
> � 0. The

prediction horizon Np is a positive integer.
The constraint (5.4b) is used to predict the future state xi(k + l + 1) for all

l ∈ 0, Np − 1 of the agent i ∈ 1, |E| given the value of the input sequence ui(k+ l) for
all l ∈ 0, Np − 1. The other two constraints are meant to restrict the movement of
agent i of E. Constraint (5.4d) is meant to ensure that, over the prediction horizon
Np, the input signal of the agent remains inside a convex polytope U , the input space
of the agent, obtained from limitations on the actuators (e.g. physical limitations)
or from the considered application. Moreover, constraint (5.4c) ensures that, over
the prediction horizon, the state remains inside a convex polyhedron XE obtained
from the potential physical limitations of the system.

♦

Remark 5.1: Output constraints
Contrary to the MPC optimization problem (3.12), XE does not impose constraints
on the position of the agent since it is not restricted to evolve in Y but can move
inside R2.

For the reason invoked in Remark 5.1, contrary to the deployment algorithm of
Section 3.2.2, no constraint on the output appears in problem (5.4). Indeed, for the
agents of E, the objective is to rally Σ. Then, it is unnecessary to enforce the fact
that the outputs of the agents belong to a given area.

Agent i ∈ 1, |E| uses (5.4) to compute its input signal until it reaches Y . When
this agent is such that yi(k) ∈ Y , it leaves E and joins Σ. As soon as it joins Σ, it
starts participating in the deployment of Σ in Y by following Algorithm 3.2. This
procedure is summarized by Algorithm 5.1.

Such a procedure does not impact the agents already present in Y . Indeed, the
decentralized algorithm used for the deployment of the MAS, i.e. Algorithm 3.2,
makes the agents dependent only on the knowledge of the position of the other
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Algorithm 5.1: Decentralized algorithm for the inclusion of an agent to
the MAS.

Input: The initial position yi(0) of agent i ∈ 1, |E|
1 k ← 0;
2 while yi(k) 6∈ Y do
3 Compute the objective position yE

i (k) = argmin
y∈Y\∂Y

‖yi(k)− y‖2;

4 Compute
(
xE
i (k),u

E
i (k)

)
with (5.3) such that

(
xE
i (k),u

E
i (k),y

E
i (k)

)
is an

equilibrium point of (5.1);
5 Apply ui(k), first element of the solution of the optimization problem

(5.4) to agent i;
6 k ← k + 1;
7 end
8 kin ← k;
9 for k ≥ kin do

10 Follow Algorithm 3.2;
11 end

agents. Thus, it is naturally resilient to the inclusion of any number of agents to the
MAS (as long as the agents can fit inside Y without colliding with each other) and
it does not need to be modified.

5.1.2.3 Outgoing agents

Let Σ be the MAS described in Paragraph 5.1.2.1. All the agents of Σ follow
Algorithm 3.2 to deploy into the workspace Y . At some point during the deployment,
one agent o ∈ 1, N , called outgoing agent, part of Σ, has to leave the MAS. Then,
agent o is removed from Σ. Contrary to the case of incoming agents, the behavior of
the agents remaining in Y , while o leaves Y , has to be modified.

Agent o is deemed non cooperative either because it is subject to a fault or
because it is not needed anymore for the mission of Σ. It then has to leave the
workspace Y to avoid impairing the other agents of Σ during their normal mission
proceeding. To leave the workspace Y , agent o follows an objective point yO

o ∈ R2\Y ,
this point being imposed by external processes out of the scope of the present thesis
or by an external user, by using a decentralized model predictive control policy. The
point yO

o is constant over time1. Given the dynamics of the vehicles considered in
the present thesis, it is possible to expand Assumption 3.2 to a larger part of R2

than Y so that it is possible to find a couple
(
xO
o ,u

O
o

)
such that

(
xO
o ,u

O
o ,y

O
o

)
is an

equilibrium point of (5.1).
Let

(
xO
o ,u

O
o

)
be such a couple, satisfying:

xO
o = AxO

o +BuO
o

yO
o = CxO

o .
(5.7)

Even if the outgoing agent o is subject to a fault, the pair
(
xO
o ,u

O
o

)
is computed with

the nominal dynamics (5.1). Indeed, it is an objective point that the outgoing agent
tries to reach while it is leaving Y. What happens to agent o when it is outside Y,

1However, the following results could be easily adapted to the case where yO
o is time-varying.
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i.e. when the other agents of Σ can safely continue their mission, is out of the scope
of the present work. Then, even if the dynamics of the outgoing agent is modified,
due to a fault, it follows the equilibrium point

(
xO
o ,u

O
o ,y

O
o

)
of the nominal system

to leave Y and then follows any suitable strategy to get to safety.
The outgoing agent o ∈ 1, N computes its input uo(k) by finding the solution to

the optimization problem:

minimize
uo(k+l),

∀l∈0,Np−1

Np−1∑
l=0

`
(
xo(k + l),uo(k + l),xO

o ,u
O
o

)
+ V

(
xo(k +Np),x

O
o

)
(5.8a)

subject to

xo(k + l + 1) = Axo(k + l) +Buo(k + l), ∀l ∈ 0, Np − 1, (5.8b)
xo(k + l) ∈ XO, ∀l ∈ 0, Np − 1, (5.8c)
uo(k + l) ∈ UO, ∀l ∈ 0, Np − 1 (5.8d)

where `
(
xo(k + l),uo(k + l),xO

o ,u
O
o

)
, with l ∈ 0, Np − 1, is the stage cost:

`
(
xo(k + l),uo(k + l),xO

o ,u
O
o

)
=
∥∥xo(k + l)− xO

o

∥∥2
Qo

+
∥∥uo(k + l)− uO

o

∥∥2
Ro

(5.9)

and V
(
xo(k +Np),x

O
o

)
is the terminal cost:

V
(
xo(k +Np),x

O
o

)
=
∥∥xo(k +Np)− xO

o

∥∥2
Po

. (5.10)

The weighting matrices Qo,Po ∈ Rn×n and Ro ∈ Rm×m in (5.9) and (5.10) are
chosen such that Qo = Q>

o � 0, Po = P>
o � 0 and Ro = R>

o � 0. The prediction
horizon Np is a positive integer.

The constraint (5.8b) is used to predict the future state xo(k + l + 1) for all
l ∈ 0, Np − 1 of the agent o given the value of the input sequence uo(k + l) for all
l ∈ 0, Np − 1. The other two constraints are meant to restrict the movement of agent
o. Constraint (5.8d) is meant to ensure that, over the prediction horizon Np, the
input signal of the agent remains inside a convex polytope UO, the input space of
the agent. Moreover, constraint (5.8c) ensures that, over the prediction horizon,
the state vector remains inside a convex polyhedron XO. The sets UO and XO are
obtained, as for the case of incoming agents, from the physical limitations of the
actuators and of the system or from possible specific restrictions imposed by the
considered application. Moreover, XO does not constrain the position of agent o
since its objective is to leave Y to reach R2 \ Y .

The problem (5.8) is written for a healthy agent having to leave the workspace
because it is not needed anymore for the deployment mission. In the case of a faulty
agent, it is modified to take into account potential modifications due to a fault. This
modification impacts the three constraints of (5.8) since the matrices A and B of
the dynamics appearing in (5.8b) are modified and the sets UO and XO are changed
to account for the modified physical capabilities of agent o.

As for the incoming agent case of Paragraph 5.1.2.2, no constraint on the output
appears in eq. (5.8). Indeed, since the goal of agent o is to leave the workspace Y , it
would be counterproductive to impose that its output remains inside a given area.
The procedure followed by the outgoing agent is summarized by Algorithm 5.2.
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Algorithm 5.2: Decentralized algorithm for the removal of the agent o
from the MAS.
1 for k ≥ 0 do
2 if agent o leaves Σ then
3 kout ← k;
4 Go to 9;
5 else
6 Follow Algorithm 3.2;
7 end
8 end
9 Acquire the objective point yO

o ;
10 Compute the couple

(
xO
o ,u

O
o

)
with (5.7) such that

(
xO
o ,u

O
o ,y

O
o

)
is an

equilibrium point of (5.1);
11 for k ≥ kout do
12 Solve the optimization problem (5.8) to obtain the input signal uo(k);
13 Apply uo(k) to the agent;
14 end

However, contrary to the case of Paragraph 5.1.2.2, the other agents of Σ which
do not leave the workspace Y do not follow Algorithm 3.2. As mentioned earlier,
their behavior is modified to avoid collisions with the outgoing agent o. This first
approach has been introduced in Chevet et al. (2018).

Assumption 5.1: Knowledge of the outgoing agent
The agents of Σ know the position yo(k) and the objective yO

o of the outgoing agent o.

Definition 5.1: Neighbor of an agent

For an agent i ∈ 1, N \ {o} of Σ, a neighbor ν of agent i is one of the following:

• another agent of Σ having a Voronoi cell contiguous to Vi(k);

• the outgoing agent o if its Voronoi cell is contiguous to Vi(k);

• a vertex of Vi(k) lying on ∂Y .

The set of all neighbors of agent i at time k is denoted by Ni(k).

The position yo(k) ∈ R2 and the objective yO
o of the outgoing agent o define

a hyperplane ∂Ho(k) = {x ∈ R2 | ho(k)x = θo(k)} in R2, where ho(k) ∈ R1×2 and
θo(k) ∈ R, which is known by each agent of Σ as per Assumption 5.1. Then, a new
objective point, different from the Chebyshev center ci(k) of the Voronoi cell Vi(k),
is computed for each agent i ∈ 1, N \ {o}. This new objective point is the barycenter
yb
i (k) ∈ R2 of the neighbors of agent i as defined in Definition 5.1:

yb
i (k) =

∑
ν∈Ni(k)

ων,i(k)yν(k)∑
ν∈Ni(k)

ων,i(k)
(5.11)
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where ων,i(k) is a weight attributed to the neighbor ν ∈ Ni(k) of agent i ∈ 1, N \ {o}
depending on its relative position to ∂Ho(k) and yν(k) ∈ R2 is the position of the
neighbor ν ∈ Ni(k). A procedure has then to be designed to attribute the weights
ων,i(k) to the neighbors.

Let d(yi(k), ∂Ho(k)) denote the distance of agent i ∈ 1, N \{o} to the hyperplane
∂Ho(k) defined as:

d(yi(k), ∂Ho(k)) = min
y∈∂Ho(k)

‖yi(k)− y‖2.

If the conditions:

• d(yν(k), ∂Ho(k)) ≥ d(yi(k), ∂Ho(k)), with ν ∈ Ni(k), i.e. the neighbor ν ∈
Ni(k) is farther from ∂Ho(k) than agent i;

• ho(k)(yν(k)− yo(k)) · ho(k)(yi(k)− yo(k)) ≥ 0, with ν ∈ Ni(k), i.e. the
neighbor ν and agent i belong to the same half-space delimited by ∂Ho(k)

are met, then ων,i(k) = κ, where κ ∈ R, with κ > 1. Else, ων,i(k) = 1. With such a
choice of weights, the barycenter ends up driving the remaining agent i away from
the trajectory of the outgoing agent, thus leaving room for the outgoing agent to
leave Y safely. This procedure is summarized in Algorithm 5.3.

Algorithm 5.3: Computation of the neighbors’ barycenter of a remaining
agent of Σ.

Input: The list of neighbors Ni(k) of agent i ∈ 1, N \ {o}, the position of
the neighbors yν(k), ∀ν ∈ Ni(k), the position of the outgoing agent
yo(k), the hyperplane ∂Ho(k) = {x ∈ R2 | ho(k)x ≤ θo(k)}

1 for ν ∈ Ni(k) do
2 if ho(k)(yν(k)− yo(k)) · ho(k)(yi(k)− yo(k)) ≥ 0 then
3 if d(yν(k), ∂Ho(k)) > d(yi(k), ∂Ho(k)) then
4 ων,i(k)← κ;
5 else
6 ων,i(k)← 1;
7 end
8 else
9 ων,i(k)← 1;

10 end
11 end
12 Compute the neighbors’ barycenter of agent i with (5.11);

Output: The neighbors’ barycenter yb
i (k) of agent i

Example 5.1: Construction of a neighbor’s barycenter
Let Σ be a MAS composed of 10 agents deployed in Y = B2(10 · 12×1) as presented
in Figure 5.1. At a given time k, agent 3 has to leave Σ and the workspace Y.
It has for objective yO

3 =
[
−9 −12

]> ∈ R2 \ Y, chosen arbitrarily and depicted
by asterisks in Figure 5.1, which defines with y3(k) the hyperplane ∂H3(k) =
{x ∈ R2 | h3(k)x = θ3(k)}, represented as a solid line in Figure 5.1.

This example then presents how the neighbors’ barycenters of the agents 2 and 5
are obtained. The hyperplanes ∂D2(k) and ∂D5(k), represented with dashed lines,
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are the sets of all the points of R2 at the same distance of the hyperplane ∂H3(k) as
agents 2 and 5, respectively, defined as:

∂Di(k) =
{
x ∈ R2

∣∣ d(x, ∂H3(k)) = d(yi(k), ∂H3(k))
}

where i ∈ {2, 5}. They are presented in Figure 5.1 to graphically compare the
distances but are not necessary for the real procedure.

Agents 4, 5, 8, 9 and 10 have a Voronoi cell contiguous to V2(k), the Voronoi cell
V3(k) of the outgoing agent 3 is also contiguous to V2(k) and 11 and 12 are vertices
of V2(k) lying on ∂Y. Then, by Definition 5.1, the set of neighbors of agent 2 is
N2(k) = {3, 4, 5, 8, 9, 10, 11, 12}. Agents 2, 6 and 9 have a Voronoi cell contiguous
to V5(k) and the Voronoi cell V3(k) of the outgoing agent 3 is contiguous to V5(k).
Then, by Definition 5.1, the set of neighbors of agent 5 is N5(k) = {2, 3, 6, 9}.

It can be seen in Figure 5.1 that d(yν(k), ∂H3(k)) ≥ d(y2(k), ∂H3(k)) and
h3(k)(yν(k)− y3(k)) · h3(k)(y2(k)− y3(k)) ≥ 0 for all ν ∈ {8, 10, 11, 12}. Then,
ων,2(k) = κ for all ν ∈ {8, 10, 11, 12}, while ων,2(k) = 1 for all ν ∈ {3, 4, 5, 9}.
Again, it can be seen in Figure 5.1 that only neighbor 2 is located further from
∂H3(k) than agent 5 among the neighbors that are on the same side of ∂H3(k)
as agent 5, thus d(y2(k), ∂H3(k)) ≥ d(y5(k), ∂H3(k)) and h3(k)(y2(k)− y3(k)) ·
h3(k)(y5(k)− y3(k)) ≥ 0. Then ω2,5(k) = κ, while ων,5(k) = 1 for all ν ∈ {3, 6, 9}.

From (5.11), the barycenters are:

yb
2(k) =

κ(y8(k) + y10(k) + y11(k) + y12(k)) + y3(k) + y4(k) + y5(k) + y9(k)

4(κ+ 1)

yb
5(k) =

κy2(k) + y3(k) + y6(k) + y9(k)

κ+ 3

where y11(k) and y12(k) are the coordinates in R2 of the vertices of V2(k) lying on
∂Y.

When κ = 3, the neighbors’ barycenter of agents 2 and 5 are presented in
Figure 5.1 with squares. The other neighbors’ barycenter of agents 1, 4, 6, 7, 8, 9
and 10 can then be obtained the same way.

♦

Remark 5.2: Heterogeneous MAS
In the case of heterogeneous MAS, different weights κi could be considered for
different type of vehicles.

While the outgoing agent o is inside Y , i.e. while yo(k) ∈ Y , the objective point
of the agents of Σ is changed from the Chebyshev center ci(k) of the Voronoi cell
Vi(k), with i ∈ 1, N \{o}, to the neighbors’ barycenter yb

i (k). With such an objective
point, the agents of Σ are driven away from the trajectory of the outgoing agent o
represented by the hyperplane ∂Ho(k).

According to Assumption 3.2, there exists a couple
(
xb
i (k),u

b
i (k)

)
, with i ∈

1, N \ {o}, such that
(
xb
i (k),u

b
i (k),y

b
i (k)

)
is an equilibrium point of (5.1) satisfying:

xb
i (k) = Axb

i (k) +Bub
i (k)

yb
i (k) = Cxb

i (k).
(5.12)
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Figure 5.1: Example of construction of a neighbors’ barycenter for MAS reconfigura-
tion when one agent leaves the workspace.

Then, the agents of Σ compute their input ui(k), with i ∈ 1, N \ {o}, by finding the
solution of the optimization problem:

minimize
ui(k+l),

∀l∈0,Np−1

Np−1∑
l=0

`
(
xi(k + l),ui(k + l),xb

i (k),u
b
i (k)

)
+ V

(
xi(k +Np),x

b
i (k)

)
(5.13a)

subject to

xi(k + l + 1) = Axi(k + l) +Bui(k + l), ∀l ∈ 0, Np − 1, (5.13b)
xi(k + l) ∈ X , ∀l ∈ 0, Np − 1, (5.13c)
ui(k + l) ∈ U , ∀l ∈ 0, Np − 1, (5.13d)

Cxi(k + l) ∈ Vi(k), ∀l ∈ 0, Np − 1, (5.13e)
xi(k +Np) ∈ Ωi(k) (5.13f)
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where `
(
xi(k + l),ui(k + l),xb

i (k),u
b
i (k)

)
, with l ∈ 0, Np − 1, is the stage cost:

`
(
xi(k + l),ui(k + l),xb

i (k),u
b
i (k)

)
=
∥∥xi(k + l)− xb

i (k)
∥∥2
Qi

+
∥∥ui(k + l)− ub

i (k)
∥∥2
Ri

(5.14)

and V
(
xi(k +Np),x

b
i (k)

)
is the terminal cost:

V
(
xi(k +Np),x

b
i (k)

)
=
∥∥xi(k +Np)− xb

i (k)
∥∥2
Pi

. (5.15)

The weighting matrices Qi,Pi ∈ Rn×n and Ri ∈ Rm×m in (5.14) and (5.15) are
chosen such that Qi = Q>

i � 0, Pi = P>
i � 0 and Ri = R>

i � 0. The prediction
horizon Np is a positive integer.

All the constraints of problem (5.13) have the same objective as the constraints
of the nominal case problem (3.12) described in Section 3.2.2. Then, the meaning of
the constraints of problem (5.13) are not described here.

As soon as the outgoing agent o is outside Y, i.e. when yo(k) ∈ R2 \ Y, the
agents of Σ, which are still in the workspace Y resume their deployment following
Algorithm 3.2. The algorithm followed by the agents of Σ during the extraction of
an agent is summarized in Algorithm 5.4.

Algorithm 5.4: Decentralized algorithm followed by a remaining agent for
the reconfiguration of the MAS when only one agent leaves the system.
1 k0 ← 0;
2 for k ≥ k0 do
3 if agent o leaves Σ and yo(k) ∈ Y then
4 Compute the neighbors’ barycenter yb

i (k) of agent i ∈ 1, N \ {o} with
Algorithm 5.3;

5 Compute the couple
(
xb
i (k),u

b
i (k)

)
with (5.12) such that(

xb
i (k),u

b
i (k),y

b
i (k)

)
is an equilibrium point of (5.1);

6 Solve the optimization problem (5.8) to obtain the input signal ui(k);
7 Apply ui(k) to the agent;
8 else
9 Follow Algorithm 3.2;

10 end
11 end

5.1.3 Deployment results
5.1.3.1 Incoming agents

Let Σ be a multi-agent system composed of N = 10 agents deployed in the workspace:

Y =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


3 2
0 1
−1 2
−1 −1
2 −1

x ≤


24
6
9
15
12


.
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Three agents 11, 12 and 13 start respectively from:

y11(0) =

[
−10
−10

]
y12(0) =

[
−10
5

]
y13(0) =

[
5
−10

]
while the other agents start from random positions yi(0) ∈ Y , with i ∈ 1, N . All the
agents obey the single integrator dynamics (3.15) and the reconfiguration algorithm
in the case of incoming agents is tested only with agents obeying this dynamics since,
as for the nominal deployment case of Chapter 3, the results are quite similar in the
UAV dynamics case.

The objective of the agents of Σ is to deploy into a Chebyshev configuration as
in Chapter 3 while agents 11, 12 and 13 aim to join Y to integrate Σ and participate
in the deployment. Their initial objectives to enter the workspace are, respectively:

yE
11(0) =

[
−7.125
−7.125

]
yE
12(0) =

[
−7.71
0.42

]
yE
13(0) =

[
1.56
−8.28

]
as obtained from (5.2). Then, from (5.3), since A = I2, B = TsI2, where Ts
is the sampling period, and C = I2, xE

i (0) = yE
i (0) and uE

i (0) = 02×1 for all
i ∈ {11, 12, 13}.

The sampling period used is Ts = 0.2 s and the contraction factor for the terminal
constraint is λi = 0.9 with a prediction horizon Np = 10. The results exposed here
are more succinct than those presented in the previous paragraphs since they are
close to what happens in the nominal case in Section 3.2.4.

The considered dynamics is the same as the one presented in Section 3.2.4. The
input set is then still U = B2(2 · 12×1), while the weighting matrices are chosen such
that Qi = Ri = I2 and Pi is the solution of the algebraic Riccati equation for all
i ∈ 1, N . These tuning parameters are used for the deploying agents of Σ driven with
the MPC (3.12). Meanwhile, for the incoming agents driven with the MPC (5.4),
UE = U , QE

i = RE
i = I2 and P E

i is the solution of the algebraic Riccati equation for
all i ∈ 11, 13. Since the state vector of the incoming agents is exactly the position of
these agents, as discussed in Paragraph 5.1.2.2, XE = R2 and (5.4c) can be dropped.
The solvers for optimization problems (3.12) and (5.4) are generated with CVXGEN
(Mattingley and Boyd, 2012, 2013).

Then, Figure 5.2 presents the trajectory of the agents of Σ as well as the
trajectory of the three incoming agents that are integrated to Σ when they enter
the workspace Y . These trajectories are presented in the final Voronoi configuration
at k = 150. The trajectories of the agents are displayed as solid lines while the
trajectory of the Chebyshev center of their Voronoi cell is presented as a dashed
line. The initial position of the 10 agents of Σ and of the three incoming agents
are represented by circles. The 10 agents of Σ begin to deploy by following the
Chebyshev center of their cell, the initial centers being represented with stars. Each
incoming agent follows its objective point yE

i (k), with i ∈ 11, 13, the initial objectives
yE
i (0) being represented with diamonds. When an incoming agent reaches Y, it

joins the MAS Σ. The incoming agents integrate Σ at different time instants. Then,
with Assumption 2.5, all 13 agents of Σ are able to compute their Voronoi cell and
the associated Chebyshev center. The initial Chebyshev centers of the incoming
agents 11, 12 and 13 are represented with a triangle. Then, these agents naturally
participate in the deployment of Σ over Y until the MAS reaches a static Chebyshev
configuration.
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In Figure 5.2, it can be seen that the three agents 11, 12 and 13 can join Σ with
a minimal impact on the deployment of the agents already present in Y. The only
impact can be seen on the position of the Chebyshev center of the agents close to
the point of entry of agents 11, 12 and 13, i.e. agents 3 and 5.
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Figure 5.2: Trajectories of the agents of Σ, the agents joining Σ and their associated
objectives.

This behavior is highlighted by the distances presented in Figure 5.3. The
distances are defined as:

di(k) = ‖yi(k)− ci(k)‖2
for all i ∈ 1, N and:

di(k) =

{ ∥∥yi(k)− yE
i (k)

∥∥
2

if yi(k) ∈ R2 \ Y
‖yi(k)− ci(k)‖2 otherwise

for all i ∈ 11, 13. The graph presents pikes for the distances d11, d12 and d13 at t = 3 s,
t = 4.8 s and t = 3.6 s, respectively. These pikes are due to the entrance of agents
11, 12 and 13 inside Y and the fact that they suddenly change their objective from
yE
i (k), with i ∈ 11, 13, to ci(k). These agents then participate in the deployment of

Σ and each agent ultimately reaches its Chebyshev center. On the graph Figure 5.3,
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a pike also appear on d3(k) at t = 6 s following a sudden change in the position of
the Chebyshev center c3(k) due to the overall movement of the MAS Σ.
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Figure 5.3: Distance of each agent of Σ to its Chebyshev center over time.

5.1.3.2 Outgoing agents

Let Σ be a multi-agent system composed of N = 10 agents deployed in the workspace:

Y =

x ∈ R2

∣∣∣∣∣∣∣∣∣∣


3 2
0 1
−1 2
−1 −1
2 −1

x ≤


24
6
9
15
12


.

All the agents start from random positions yi(0) ∈ Y , with i ∈ 1, N . All the agents
obey the single integrator dynamics (3.15) and the reconfiguration algorithm in the
case of one outgoing agent is tested only with agents obeying this dynamics since, as
for the nominal deployment case of Chapter 3, the results are quite similar in the
UAV dynamics case.

The objective of the agents of Σ is to deploy into a Chebyshev configuration as
in Chapter 3. However, at time t = 5 s agent 7 has to leave the workspace Y. Its
objective is to reach:

yO
7 =

[
10
10

]
.

Then, agent 7 follows Algorithm 5.2 to get out of Y while the remaining agents of Σ
track their neighbors’ barycenter as per Algorithm 5.4. When agent 7 is outside Y ,
the agents of Σ resume their deployment by tracking the Chebyshev center of their
Voronoi cell.

The sampling period used is Ts = 0.2 s and the contraction factor for the terminal
constraint is λi = 0.9 for all i ∈ 1, N , with a prediction horizon Np = 10. The
input set is U = UO = B2(2 · 12×1) and the weighting matrices for the MPCs (3.12),
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(5.8) and (5.13) are Qi = Ri = I2 and Pi is the solution of the algebraic Riccati
equation for all i ∈ 1, N . Since the state vector of the outgoing agent is exactly the
position of this agent, as discussed in Paragraph 5.1.2.3, XO = R2, i.e. the constraint
(5.8c) can be dropped when solving the MPC (5.8) problem. For the computation
of the neighbors’ barycenter, the value of κ appearing in Algorithm 5.3 is κ = 3.
The solvers for optimization problems (3.12), (5.8) and (5.13) are generated with
CVXGEN (Mattingley and Boyd, 2012, 2013).

Figure 5.4 presents the Voronoi tessellation at time t = 5 s, as well as the
trajectories of all the agents i ∈ 1, N as solid lines and the trajectories of their
Chebyshev centers ci(k) as dashed lines from t = 0 s to t = 5 s. At t = 5 s, agent 7
leaves Σ and the workspace Y. The behavior is identical to what can be observed
in Section 3.2.4 and is not further described here. The only difference with the
nominal case is that some agents (e.g. agent 8) are not able to reach their Chebyshev
center before agent 7 starts leaving the workspace, which is not a problem since the
reconfiguration can occur at any point during the deployment of Σ.
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Figure 5.4: Trajectories of the agents of Σ during the first phase of the deployment.

Figure 5.5 presents the trajectories of all the agents i ∈ 1, N as solid lines while
agent 7 is leaving Y from t = 5.2 s (i.e. k = 26) to t = 8.8 s (i.e. k = 44), i.e. during
the reconfiguration phase. It presents the trajectories of the neighbors’ barycenters
yb
i (k) for all i ∈ 1, N \ {7} as dashed lines. In this figure, the Voronoi tessellation is
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not presented for readability reasons. It can be seen in Figure 5.5 that the positions
of the neighbors’ barycenters vary greatly at each time instant in a reduced time
frame which is still acceptable since this time frame is short. The agents are globally
able to track their neighbors’ barycenter while agent 7 leaves the workspace. The
objective of the outgoing agent 7 is not presented in the figure for readability reasons.
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Figure 5.5: Trajectories of the agents of Σ and agent 7 during the reconfiguration
phase of the deployment.

Finally, Figure 5.6 is similar to Figure 5.4 since it presents the same elements for
the agents of Σ when agent 7 is out of Y . The trajectories are presented from t = 9 s
(i.e. k = 45) to t = 40 s (i.e. k = 200) inside the Voronoi tessellation at t = 40 s.

As for the other cases presented in this thesis, it is interesting to look at the
distances between the agents and their objectives. This distance is defined as:

di(k) =

{ ∥∥yi(k)− yb
i (k)

∥∥
2

if y7(k) ∈ Y
‖yi(k)− ci(k)‖2 otherwise

for all i ∈ 1, N \ {7} and:

d7(k) =

{ ‖y7(k)− c7(k)‖2 if k < 25∥∥y7(k)− yO
7 (k)

∥∥
2

otherwise.
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Figure 5.6: Trajectories of the agents of Σ during the third phase of the deployment.

Figure 5.7 presents the distances di(k) for all i ∈ 1, N \ {7}. The behavior previously
observed appears clearly on the value of the distances. Indeed, at t = 5.2 s, an
important change on the distance to the objective point appears since each agent
starts tracking its neighbors’ barycenter instead of the Chebyshev center of its
Voronoi cell. Then, at t = 8.8 s, a new important change occurs since the agents go
back to the deployment objective instead of tracking their neighbors’ barycenter. The
agents then converge towards their Chebyshev center. During the time frame where
agent 7 leaves the workspace Y , it is obvious from Figure 5.7 and Figure 5.5 that the
movement of the entire multi-agent system is not negligible. This is something that
the algorithm provided in Section 5.2.2 aims to improve. Finally, Figure 5.8 presents
the distance d7(k) which exhibits the fact that it is able to rally its objective point
outside the workspace.

5.2 A safer way to deal with outgoing vehicles

5.2.1 Limitation of the first reconfiguration algorithm
In the following, Σ is the multi-agent system described in Paragraph 5.1.2.1. While
Algorithm 5.4 and Algorithm 5.2 are effective to deal with the case of one agent
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Figure 5.7: Distance of each agent of Σ to its Chebyshev center or neighbors’
barycenter over time.
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Figure 5.8: Distance of agent 7 to its objective over time.

leaving the MAS Σ, Chevet et al. (2020b) highlights a limitation that can arise when
several agents leave Σ at the same time.

Indeed, the transient objective proposed in Paragraph 5.1.2.3 for an agent i of Σ,
i.e. the neighbors’ barycenter yb

i , is relatively simple. The barycenter yb
i is computed

only from the position of the neighbors of agent i which guarantees, by construction,
that when one agent leaves the workspace, agent i is driven away from it. However,
when two agents leave the workspace at the same time, there is no guarantee that
the neighbors’ barycenter does not end up lying on (or really close to) the trajectory
of one of the outgoing agent.

Let o ∈ O(k) ⊂ 1, N index the agents leaving Σ at time instant k. In this
case, where several agents leave the workspace, Algorithm 5.3 from the previous
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section is naturally modified into Algorithm 5.5 described below. Let ∂Ho(k), with
o ∈ O(k), be the hyperplane described by the position yo(k) of the outgoing agent
o and its target point yO

o . For an agent i ∈ 1, N \ O(k), if the neighbor ν ∈ Ni(k)
is on the same side of all the hyperplanes ∂Ho(k) as agent i and farther from all
these hyperplanes than agent i, then it is assigned the weight ων,i(k) = κ, otherwise
ων,i(k) = 1. A limitation related to this objective point arises when at least two
agents leave Σ. Indeed, if a remaining agent is located between the trajectories of
these two outgoing agents, the neighbors’ barycenter might not guarantee anymore
that the remaining agent is driven away from the outgoing agents, leading to a
collision risk. Example 5.2 then illustrates the limitation of the barycentric approach.

Algorithm 5.5: Computation of the neighbors’ barycenter of a remaining
agent of Σ when several agents leave the workspace.

Input: The list of neighbors Ni(k) of agent i ∈ 1, N \O(k), the positions of
the neighbors yν(k), ∀ν ∈ Ni(k), the positions of the outgoing
agents yo(k), ∀o ∈ O(k), the hyperplanes
∂Ho(k) = {x ∈ R2 | ho(k)x = θo(k)}, ∀o ∈ O(k)

1 for ν ∈ Ni(k) do
2 for o ∈ O(k) do
3 if ho(k)(yν(k)− yo(k)) · ho(k)(yi(k)− yo(k)) ≥ 0 then
4 if d(yν(k), ∂Ho(k)) > d(yi(k), ∂Ho(k)) then
5 ων,i(k)← κ;
6 else
7 ων,i(k)← 1;
8 Go to 1;
9 end

10 else
11 ων,i(k)← 1;
12 Go to 1;
13 end
14 end
15 end
16 Compute the neighbors’ barycenter of agent i with (5.11);

Output: The neighbors’ barycenter yb
i (k) of agent i

Example 5.2: Limit case of the reconfiguration algorithm in the case of several
outgoing agents
The conditions are exactly the same as for Example 5.1. However, now, at a given
time k, agents 2 and 3 leave Σ and the workspace Y as illustrated in Figure 5.9. They
have for objectives yO

2 =
[
−12 −6.2

]> ∈ R2 \ Y and yO
3 =

[
−9 −12

]> ∈ R2 \ Y
which define the hyperplanes ∂H2(k) and ∂H3(k), with y2(k) and y3(k), respectively.

Since there is no difference in the configuration with respect to Example 5.1,
the neighbor set of agent 5 is still N5(k) = {2, 3, 6, 9}. However, here, ∂H2(k) and
∂H3(k) are parallel. It is thus impossible for any neighbor of agent 5 to be farther
from both ∂H2(k) and ∂H3(k) than agent 5. Then, from Algorithm 5.5, all the
neighbors of agent 5 receive the weight ων,5(k) = 1 for all ν ∈ N5(k).

The neighbors’ barycenter yb
5(k) of agent 5 is then presented in Figure 5.9 as a
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square. This objective is directly on the trajectory of agent 3, which could lead to a
collision between agents 3 and 5 during the movement.
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Figure 5.9: Limit case of the barycentric approach for the MAS reconfiguration when
several agents leave the workspace.

Then, while the strategy of Paragraph 5.1.2.3 works well in the case of one
outgoing agent, it is limited in the case of several agents leaving the MAS. Section 5.2.2
introduces a new transient objective to drive the agents of Σ safely away from all
the outgoing agents as well as an improved algorithm to limit the overall movement
of the entire MAS.
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5.2.2 Improved reconfiguration algorithm
5.2.2.1 A new transient objective

Using the notations of the previous paragraph, the neighbors’ barycenter of agent i
of Σ, with i ∈ 1, N \O(k), satisfies:∑

ν∈Ni(k)

ων,i(k)
(
yb
i (k)− yν(k)

)
= 02×1.

Based on this relation, a new safe objective ys
i(k) is designed. Indeed, the neighbors’

barycenter is the unconstrained minimum:

yb
i (k) = argmin

y∈R2

∥∥∥∥∥∥
∑

ν∈Ni(k)

ων,i(k)(y − yν(k))

∥∥∥∥∥∥
2

2

. (5.16)

Due to the lack of constraints in the previous minimization problem, there is no
guarantee, as illustrated in Section 5.2.1, that the objective of the agents remaining
inside the workspace Y allow them to be driven to safety and to avoid collision with
the outgoing agents. Then, the new objective ys

i(k) is the solution of:

ys
i(k) = arg min

y ∈ R2

∑
ν∈Ni(k)

ων,i(k)
2‖y − yν(k)‖22

subject to

y ∈ Ri(k)

(5.17)

where Ri(k) is a region where it is safe for agent i to evolve. In problem (5.17),
the cost function is equivalent to the cost function of (5.16) since by the triangular
inequality:∥∥∥∥∥∥

∑
ν∈Ni(k)

ων,i(k)(y − yν(k))

∥∥∥∥∥∥
2

2

≤

 ∑
ν∈Ni(k)

ων,i(k)‖y − yν(k)‖2

2

and by the Cauchy-Schwarz inequality: ∑
ν∈Ni(k)

ων,i(k)‖y − yν(k)‖2

2

≤ |Ni(k)|
∑

ν∈Ni(k)

ων,i(k)
2‖y − yν(k)‖22.

In addition, |Ni(k)| acting as a scaling factor, it can be omitted in the minimization
problem (5.17).

The region Ri(k) is defined as the intersection of two sets:

• the contracted Voronoi cell Vi(k, λVi
) of agent i defined as:

Vi(k, λVi
) = ci(k)⊕ λVi

(Vi(k)⊕ {−ci(k)})

where ci(k) is the Chebyshev center of the Voronoi cell Vi(k) and λVi
∈ [0, 1)

is a scaling factor;
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• the contracted working region Wi(k, λWi
) defined from the hyperplanes ∂Ho(k),

with o ∈ O(k), where λWi
∈ [0, 1) is a scaling factor.

The contracted working region has been introduced in Chevet et al. (2020b). Let
yo(k), with o ∈ O(k), be the positions of the outgoing agents and yO

o their objectives
in R2\Y . These vectors define |O(k)| hyperplanes ∂Ho(k) = {x ∈ R2 | ho(k)x = θo(k)}
in R2. The working region of agent i ∈ 1, N \O(k) is then defined as:

Wi(k) =
{
y ∈ R2

∣∣ ho(k)(yi(k)− yo(k)) · ho(k)(y − yo(k)) ≥ 0, ∀o ∈ O(k)
}

(5.18)
or as the set of all points on the same side of all the hyperplanes ∂Ho(k) as yi(k).
The definition of Wi(k) of (5.18) is that of a polyhedron. Then, in the following, the
working region of agent i is represented equivalently as:

Wi(k) =
{
x ∈ R2

∣∣HWi
(k)x ≤ θWi

(k)
}

(5.19)

with HWi
(k) ∈ Rsi(k)×2 and θWi

(k) ∈ Rsi(k), where si(k) ∈ 1, |O(k)|. The working
region as defined in (5.19) is convex but can be unbounded.

Let cWi
(k) be the Chebyshev center of the intersection Wi(k)∩Y of the working

regionWi(k) and the workspace Y . The intersectionWi(k)∩Y is necessary to ensure
that the Chebyshev center cWi

(k) exists, since Wi(k) is generally unbounded. Then,
the contracted working region is defined as:

Wi(k, λWi
) = cWi

(k)⊕ λWi
(Wi(k)⊕ {−cWi

(k)}). (5.20)

It can be noticed that the Chebyshev center cWi
(k) is used only for the definition of

Wi(k, λWi
) and is not used per se in the following control algorithms.

♦

Remark 5.3: Shared working region
Given the definition of the working region Wi(k) of agent i ∈ 1, N \ O(k), several
agents can share the same working region (and as such, the same contracted working
region) such that Wi(k) =Wj(k) for two agents i, j ∈ 1, N \O(k).

Example 5.3: Construction of a contracted working region
Let Σ be the MAS of Example 5.2. Agents 2 and 3 leave the workspace Y towards
the objectives yO

2 =
[
−12 −8

]> and yO
3 =

[
−9 −12

]> depicted by squares in
Figure 5.10. At a given time k, the positions y2(k) and y3(k) of agents 2 and 3
combined with their objectives define two hyperplanes ∂H2(k) and ∂H3(k) represented
as solid lines in Figure 5.10.

By expression (5.18), the working regions of agents 1, 4, 5, 7 and 9 are contained
in-between ∂H2(k) and ∂H3(k) and, as per Remark 5.3, W1(k) =W4(k) =W5(k) =
W7(k) =W9(k). The working regionW1(k), i.e. the area between the two hyperplanes
∂H2(k) and ∂H3(k), is displayed in light blue in Figure 5.10. Moreover, the working
region W6(k) of agent 6 is the half-space below ∂H3(k), which is displayed in light
red in Figure 5.10. The working regions of agents 8 and 10 are the half-space above
∂H2(k) such that W8(k) =W10(k), which is displayed in light green in Figure 5.10.

The Chebyshev centers cWi
(k), with i ∈ 1, 10 \ {2, 3}, of the intersection of the

working regions Wi(k) with the workspace Y are displayed with stars in Figure 5.10.
Then, choosing λWi

= 0.8 for all i ∈ {1, 4, 5, 7, 9}, λW6 = 0.5 and λWi
= 0.7 for all

i ∈ {8, 10}, the contracted working regions Wi(k, λWi
) for all i ∈ {1, 4, 5, 7, 9} are

displayed in dark blue, the region W6(k, λW6) is displayed in dark red and the regions
Wi(k, λWi

) for all i ∈ {8, 10} are displayed in dark green.
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Figure 5.10: Construction of the contracted working regions.

With these definitions, the safe objective ys
i(k) is then the solution of (5.17) such

that ys
i(k) ∈ Vi(k, λVi

) ∩Wi(k, λWi
). Then, due to the fact that ys

i(k) ∈ Wi(k, λWi
),

it is guaranteed that agent i is driven away from the trajectories of all the outgoing
agents o ∈ O(k).

In the following, the neighbors are defined as in Definition 5.1. As for the case of
Paragraph 5.1.2.3, the weights ων,i(k), with ν ∈ Ni(k), have to be attributed given
the relative position of the neighbors of agent i ∈ 1, N \O(k) to agent i and to the
outgoing agents o ∈ O(k). The way these weights are attributed is close to what is
presented in Algorithm 5.5. Let ωh, ωl and ωe be three positive weights such that
ωh > ωl > ωe ≥ 0. The weight ωh is attributed to so-called “heavy” neighbors, the
weight ωl to “light” neighbors and the weight ωe to outgoing (or exiting) neighbors.
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Then if the neighbor ν ∈ Ni(k) is an outgoing agent, the neighbor receives the
outgoing weight ων,i(k) = ωe. If ho(k)(yν(k)− yo(k)) · ho(k)(yi(k)− yo(k)) ≥ 0
and d(yν(k), ∂Ho(k)) > d(yi(k), ∂Ho(k)) for all o ∈ O(k), the neighbor receives
the heavy weight ων,i(k) = ωh. Otherwise the neighbor receives the light weight
ων,i(k) = ωl. This procedure is summarized in Algorithm 5.6.

Algorithm 5.6: Attribution of the weights for the computation of the safe
objective of a remaining agent of the MAS Σ.

Input: The list of neighbors Ni(k) of agent i ∈ 1, N \O(k), the position of
the neighbors yν(k), ∀ν ∈ Ni(k), the positions of the outgoing
agents yo(k), ∀o ∈ O(k), the hyperplanes
∂Ho(k) = {x ∈ R2 | ho(k)x = θo(k)}, ∀o ∈ O(k)

1 for ν ∈ Ni(k) do
2 if ν ∈ O(k) then
3 ων,i(k)← ωe;
4 else
5 for o ∈ O(k) do
6 if ho(k)(yν(k)− yo(k)) · ho(k)(yi(k)− yo(k)) ≥ 0 then
7 if d(yν(k), ∂Ho(k)) > d(yi(k), ∂Ho(k)) then
8 ων,i(k)← ωh;
9 else

10 ων,i(k)← ωl;
11 Go to 1;
12 end
13 else
14 ων,i(k)← ωl;
15 Go to 1;
16 end
17 end
18 end
19 end

Example 5.4: Weight attributions to neighbors
Let Σ be the MAS of Example 5.3. Agents 2 and 3 leave the workspace Y towards
the objectives yO

2 and yO
3 depicted by squares in Figure 5.11. At a given time k, the

positions y2(k) and y3(k) of agents 2 and 3 combined with their objectives define
two hyperplanes ∂H2(k) and ∂H3(k) represented as solid lines in Figure 5.11.

In Figure 5.11, the light blue area, defined for agent 5, is the set of all points y
such that:

h2(k)(y − y2(k)) · h2(k)(y5(k)− y2(k)) ≥ 0

d(y, ∂H2(k)) > d(y5(k), ∂H2(k))

h3(k)(y − y3(k)) · h3(k)(y5(k)− y3(k)) ≥ 0

d(y, ∂H3(k)) > d(y5(k), ∂H3(k)).

Thus, if a neighbor of agent 5 is inside this area, it receives the weight ωh and is
called a “heavy” neighbor. The set of neighbors of agent 5 is N5(k) = {2, 3, 6, 9}.
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There are no elements of N5(k) in the area described before thus no neighbors of
agent 5 receive the weight ωh. Agents 2 and 3 are outgoing agents and thus receive
the weight ω2,5(k) = ω3,5(k) = ωe. Finally, agents 6 and 9 receive the weight
ω6,5(k) = ω9,5(k) = ωl and are called “light” agents.
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Figure 5.11: Attribution of weights to the neighbors of the agents of the MAS Σ.

The light red area of Figure 5.11, defined for agent 6, is the set of all points y
such that:

h2(k)(y − y2(k)) · h2(k)(y6(k)− y2(k)) ≥ 0

d(y, ∂H2(k)) > d(y6(k), ∂H2(k))

h3(k)(y − y3(k)) · h3(k)(y6(k)− y3(k)) ≥ 0

d(y, ∂H3(k)) > d(y6(k), ∂H3(k)).
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Thus, if a neighbor of agent 6 is inside this area, it receives the “heavy” weight
ωh. The set of neighbors of agent 6 is N6(k) = {3, 5, 9, 11, 12, 13}, where 11, 12
and 13 are not agents but vertices of the Voronoi cell V6(k) of agent 6 lying on ∂Y.
Vertices 12 and 13 are the only neighbors of agent 6 in the area described before,
thus ω12,6(k) = ω13,6(k) = ωh. Agent 3 is an outgoing agent and thus receives the
weight ω3,6(k) = ωe. Finally, agents 5 and 9 as well as vertex 11 receive the weight
ω5,6(k) = ω9,6(k) = ω11,6(k) = ωl.

Finally, in Figure 5.11, the light green area, defined for agent 10, is the set of all
points y such that:

h2(k)(y − y2(k)) · h2(k)(y10(k)− y2(k)) ≥ 0

d(y, ∂H2(k)) > d(y10(k), ∂H2(k))

h3(k)(y − y3(k)) · h3(k)(y10(k)− y3(k)) ≥ 0

d(y, ∂H3(k)) > d(y10(k), ∂H3(k)).

Thus, if a neighbor of agent 10 is inside this area, it receives the weight ωh. The
set of neighbors of agent 10 is N10(k) = {1, 2, 8, 9, 14, 15} where 14 and 15 are not
agents but vertices of the Voronoi cell V10(k) of agent 10 lying on ∂Y. Vertex 15
and agent 8 are the only neighbors of agent 10 in the area described before, therefore
ω8,10(k) = ω15,10(k) = ωh. Agent 2 is an outgoing agent and thus receives the weight
ω2,10(k) = ωe. Finally, agents 1 and 9 as well as vertex 14 receive the weight
ω1,10(k) = ω9,10(k) = ω14,10(k) = ωl.

The weights attributed for the computation of ys
5(k), ys

6(k) and ys
10(k) are pre-

sented in Figure 5.11 in blue, red and green, respectively.
The same procedure can be applied to the other agents of Σ but is not be presented

here. However, the construction of the safe objective ys
i(k), with i ∈ 1, 10 \ {2, 3} is

not presented in this example since an additional layer to the reconfiguration algorithm
concerning the computation of this objective point is presented in Paragraph 5.2.2.2.

5.2.2.2 A new reconfiguration algorithm

In Paragraph 5.1.2.3, a reconfiguration algorithm where the remaining agents of the
multi-agent system Σ follow a transient objective to avoid the trajectory of agents
leaving the workspace Y is proposed. With the new safe objective allowing the
agents to evolve inside a safe region proposed in Paragraph 5.2.2.1, this algorithm
is efficient in allowing the agents of Σ remaining in the workspace Y to avoid the
trajectory of the outgoing agents, it can be improved on some aspects. Indeed, with
such a strategy, all the agents of Σ remaining in the workspace Y move until all the
outgoing agents leave Y before resuming their deployment objective. The present
paragraph then proposes an improved way to deal with MAS reconfiguration in the
case of outgoing agents.

In order to avoid too much movement from the MAS, only the agents risking a
collision with an outgoing agent follow the new transient safe objective ys

i(k), with
i ∈ 1, N \O(k), defined in the previous paragraph, while the other agents continue
their deployment objective by following the Chebyshev center ci(k) of their Voronoi
cell Vi(k). To do so, each agent of Σ has to discriminate which outgoing agents are
harmless to it and which are not.
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Let Oi(k), with i ∈ 1, N\O(k), denote the set of all the outgoing agents considered
potentially harmful by agent i of Σ. For all outgoing agents o ∈ O(k), let:

∂Oo(k) =
{
x ∈ R2

∣∣∣ (yO
o − yo(k)

)>
(x− yo(k)) = 0

}
(5.21)

which separates the plane R2 into two parts. An outgoing agent o ∈ O(k) is
then considered harmful by agent i ∈ 1, N \ O(k) if yi(k) and yO

o lie on the same
side of ∂Oo(k), i.e. if

(
yO
o − yo(k)

)>
(yi(k)− yo(k)) ≥ 0. In this case, if o 6∈

Oi(k), the outgoing agent o is added to Oi(k), otherwise, Oi(k) does not change.
However, as soon as yi(k) and yO

o lie on different sides of ∂Oo(k), i.e. when(
yO
o − yo(k)

)>
(yi(k)− yo(k)) < 0, the outgoing agent o is removed from Oi(k).

This procedure is summarized in Algorithm 5.7.

Algorithm 5.7: Construction of the set Oi(k) of the outgoing agents
considered by the agent i.

Input: The positions yo(k) and objectives yO
o , ∀o ∈ O(k), of the outgoing

agents, the position yi(k) of agent i and the set Oi(k − 1)
1 for o ∈ O(k) do
2 if

(
yO
o − yo(k)

)>
(yi(k)− yo(k)) ≥ 0 and o /∈ Oi(k − 1) then

3 Oi(k)← Oi(k − 1) ∪ {o};
4 else if

(
yO
o − yo(k)

)>
(yi(k)− yo(k)) < 0 and o ∈ Oi(k − 1) then

5 Oi(k)← Oi(k − 1) \ {o};
6 end
7 end

Output: The updated set Oi(k) of the agent i ∈ 1, N \O(k)

♦

Remark 5.4: Behind and in front
In the following, an agent satisfying

(
yO
o − yo(k)

)>
(yi(k)− yo(k)) ≥ 0 is said to be

in front of the outgoing agent o ∈ O(k).
An agent satisfying

(
yO
o − yo(k)

)>
(yi(k)− yo(k)) < 0 is said to be behind the

outgoing agent o ∈ O(k).

Based on the set Oi(k) constructed with Algorithm 5.7, agent i of Σ then
computes its safe objective ys

i(k) by solving (5.17). However, a slight modification
to Algorithm 5.6 is done. Indeed, the line 5 is changed from “for o ∈ O(k) do” to
“for o ∈ Oi(k) do” to take into account the new way of dealing with outgoing agents.
The same procedure is done for the construction of the contracted working region.
Indeed, the definition of the working region given in (5.18) is replaced with:

Wi(k) =
{
y ∈ R2

∣∣ ho(k)(yi(k)− yo(k)) · ho(k)(y − yo(k)) ≥ 0, ∀o ∈ Oi(k)
}

.
(5.22)

Example 5.5: Construction of the sets Oi(k)
Let Σ be the multi-agent system of Example 5.4 in the exact same conditions. The
agents 2 and 3 leave the workspace to join the points yO

2 and yO
3 depicted as squares

in Figure 5.12. In Figure 5.12 both hyperplanes ∂O2(k) and ∂O3(k) are presented
as solid lines. Then, if an agent i of Σ remaining inside Y belongs to the area
colored in light blue, the set Oi(k) of the outgoing agents it considers is such that
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Oi(k) = {2, 3}, which is verified for agents 1, 6, 8, 9 and 10. Indeed, these agents
are in front of both agents 2 and 3 with respect to their objectives. On the other hand,
if an agent i of Σ remaining inside Y belongs to the area colored in light red, its set
Oi(k) is such that Oi(k) = 3, which is verified only for agent 5. Indeed, agent 5 is in
front of agent 3 but behind agent 2. Finally, if an agent i of Σ remaining inside Y
belongs to the white area, its set Oi(k) is empty since the agent is behind both agents
2 and 3. This is verified for agents 4 and 7 such that O4(k) = O7(k) = ∅.

−10 −5 0 5 10

−10

−5

0

5

10

Y

∂H2(k)

∂H3(k)

∂O2(k) ∂O3(k)

1

2 3

4

5

6

7

8

9

10

yO
3

yO
2

x

y

Agent’s position yi(k) Outgoing agent’s objective yO
o , o ∈ {2, 3}

Figure 5.12: Construction of the sets Oi(k) for the agents of the MAS Σ.

Contrary to Example 5.4, the weight attributions for the neighbors of agent 5
is then slightly modified given the considered modification of Algorithm 5.6. Indeed,
d(yν(k), ∂H2(k)), with ν ∈ N5(k), is not considered anymore for the weight attribution
procedure. However, this does not change the result given the configuration of the
system.
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In addition, since the definition of the working region of an agent has been
modified from (5.18) to (5.22), some conclusions of Example 5.3 are modified. Indeed,
given the configuration of the MAS at time k, W4(k) and W7(k) are not defined
since O4(k) = O7(k) = ∅. Moreover, since O5(k) = {3} 6= O9(k), it is immediate
that W5(k) 6=W9(k).

There is no modification in the behavior of the outgoing agents with respect
to what was presented in Paragraph 5.1.2.3, i.e. the outgoing agents then still
follow the decentralized MPC algorithm of Algorithm 5.2 to leave the workspace Y .
However, for the remaining agents, Algorithm 5.4 is modified to incorporate all the
improvements presented in this section.

If an agent i, with i ∈ 1, N \ O(k), remaining in the workspace Y is such that
Oi(k) = ∅, it follows Algorithm 3.2 without modification. However, if Oi(k) 6= ∅,
agent i follows the safe objective ys

i(k) with a decentralized MPC algorithm.
According to Assumption 3.2, let (xs

i(k),u
s
i(k)), with i ∈ 1, N \O(k), be a couple

such that (xs
i(k),u

s
i(k),y

s
i(k)) is an equilibrium point of (5.1), i.e.:

xs
i(k) = Axs

i(k) +Bus
i(k)

ys
i(k) = Cxs

i(k).
(5.23)

Then, the agents of Σ such that Oi(k) 6= ∅ compute their input ui(k), with i ∈
1, N \ O(k), by finding the solution of problem (5.13), while replacing xb

i (k) and
ub
i (k) by xs

i(k) and us
i(k), respectively. The procedure for the reconfiguration of the

MAS Σ in the case of outgoing agents is then summarized in Algorithm 5.8.

Algorithm 5.8: Decentralized algorithm followed by a remaining agent for
the reconfiguration of the MAS when several agents leave the system.
1 for k ≥ 0 do
2 if O 6= ∅ then
3 Compute Oi(k) of agent i ∈ 1, N \O with Algorithm 5.7;
4 if Oi(k) = ∅ then
5 Follow Algorithm 3.2;
6 else
7 Attribute weights to agent i’s neighbors with Algorithm 5.6

(modified with Oi(k) instead of O at line 5);
8 Compute the safe objective ys

i(k) of agent i by solving (5.17);
9 Compute the couple (xs

i(k),u
s
i(k)) with (5.12) such that

(xs
i(k),u

s
i(k),y

s
i(k)) is an equilibrium point of (5.1);

10 Solve the optimization problem (5.13) (by replacing xb
i (k) and

ub
i (k) by xs

i(k) and us
i(k)) to obtain the input signal ui(k);

11 Apply ui(k) to agent i;
12 end
13 else
14 Follow Algorithm 3.2;
15 end
16 end
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5.3 Reconfiguration in the case of outgoing
agents

5.3.1 Comparison of the two algorithms in the case of one
outgoing agent

In order to exhibit the improvement of the algorithm described in Section 5.2 with
respect to the one presented in Paragraph 5.1.2.3, the exact same scenario as the
one described in Paragraph 5.1.3.2 is considered. However, instead of following
Algorithm 5.4 used when only one agent leaves the workspace, the remaining agents
of Σ follow Algorithm 5.8 used when one or several agents leave the workspace.
Agent 7 still follows Algorithm 5.2 and leaves Σ at t = 5 s.

The first phase of the deployment is identical to the one presented in Figure 5.4
since it only consists in the deployment of the MAS and is then not reported here.
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Figure 5.13: Position of the MAS Σ and of agent 7 at time t = 5.2 s.

Figure 5.13 presents the position of Σ and agent 7 at time t = 5.2 s (i.e. k = 26).
In this figure are presented the hyperplanes ∂H7(26) and ∂O7(26) described in
Section 5.2. Since agent 7 moves towards the point yO

7 =
[
10 10

]>, agents 5 and 8
are behind agent 7 and, per Algorithm 5.7, O5(26) = O8(26) = ∅ since they are not
in the same half-space delimited by ∂O7(26) as yO

7 . Agents 5 and 8 then continue to
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track their Chebyshev center c5(k) and c8(k), represented as stars in Figure 5.13,
according to Algorithm 5.8. However, though agent 9 is in the limit case as it
lies on ∂O7(26), it is considered to be in front of agent 7 and Oi(26) = {7} for all
i ∈ 1, N \ {5, 7, 8} since they are in front of agents 7. They then start tracking the
safe objective ys

i(26), with i ∈ 1, N \{5, 7, 8}, represented as diamonds in Figure 5.13,
according to Algorithm 5.8.
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Figure 5.14: Construction of the safe objective of agent 6 at t = 5.2 s.

For the computation of the safe objectives ys
i(k), with i ∈ 1, N \ {5, 7, 8}, the

weights λVi
and λWi

described in Paragraph 5.2.2.1 are chosen to be 0.5 and 0.8,
respectively, for all the agents. Figure 5.14 details the construction of the safe
objective ys

6(26), the procedure being the same for all the other agents. The line
∂D6(26) is used to graphically see which neighbors of agent 6 receive a heavy
weight ωh and which neighbors receive a light weight ωl. Indeed, all the points
y ∈ R2 above ∂D6(26) are such that d(y, ∂H7(26)) ≥ d(y6(26), ∂H7(26)). The set
of neighbors of agent 6 N6(26) is N6(26) = {2, 4, 7, 8, 11, 12}, where 11 and 12 are
vertices of the Voronoi cell V6(26) lying on the border ∂Y of the workspace Y.
Then, per Algorithm 5.6, ων,6(26) = ωh for all ν ∈ {8, 11, 12}, ων,6(26) = ωl for all
ν ∈ {2, 4} and ω7,6(26) = ωe. The contracted Voronoi cell V6(26, λV6) of agent 6 is
the area delimited by the dashed line in Figure 5.14. The contracted working region
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W6(26, λW6) of agent 6 is the area colored in red in Figure 5.14. It can be noted that,
as explained in Paragraph 5.2.2.1, W6(26, λW6) = Wi(26, λWi

) for all i ∈ {1, 2, 4}.
Then, by choosing ωh = 5, ωl = 1 and ωe = 0, the safe objective ys

6(26) of agent 6 is
obtained by solving (5.17).
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Figure 5.15: Position of the MAS Σ and of agent 7 at time t = 6.8 s.

As agent 7 moves towards its objective yO
7 as shown in Figure 5.14, the agents

tracking their safe objective ys
i(k), with i ∈ 1, N \ {5, 7, 8}, resume tracking their

Chebyshev centers when they pass on the other side of ∂O7(k), i.e. as soon as they
are behind agent 7. For example, at time t = 6.8 s (k = 34), agents 4, 6, 9 and
10 resumed tracking the Chebyshev center of their Voronoi cell as illustrated in
Figure 5.15. The only agents still tracking their safe objective are agents 1, 2 and 3.

It is difficult to show the trajectories of the agents and of their objectives over time
as it is done in Paragraph 5.1.3.2, since the movement cannot be decomposed into
distinct phases. Indeed, all the agents change their objective asynchronously, contrary
to the case of Paragraph 5.1.2.3, where they track their neighbors’ barycenter as
soon as agent 7 leaves Σ and starts leaving Y and resume tracking their Chebyshev
center when agent 7 is out of Y . Then, only the distances:

di(k) =

{
‖yi(k)− ys

i(k)‖2 if Oi(k) 6= ∅
‖yi(k)− ci(k)‖2 otherwise



5.3. Reconfiguration in the case of outgoing agents 181

for all i ∈ 1, N \ {7} are shown in Figure 5.16. The distance d7(k) is identical
to the one showed in Figure 5.8 since agent 7 follows the same algorithm as in
Paragraph 5.1.3.2. From Figure 5.16, it can be seen that the overall movement of
the multi-agent system Σ is reduced compared to what was achieved in Figure 5.7
with the algorithm from Paragraph 5.1.2.3. This reduction comes from the fact that
the remaining agents do not wait for the outgoing agents to have left the workspace
Y to resume their deployment by tracking the Chebyshev center of their Voronoi
cell. Moreover, the changes occurring in the distances di have a reduced amplitude
compared to those of Paragraph 5.1.3.2 and occur less often. Near the end of the
simulation, a pike appears in d9(k) due to a sudden change in the position of c9(k)
resulting from the global movement of Σ.
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Figure 5.16: Distance of each agent of Σ to its Chebyshev center or safe objective
over time.

Finally, Algorithm 5.8 not only provides a safe objective for the reconfiguration
of Σ when one agent leaves the MAS, but it also reduces the overall movement of
the MAS during reconfiguration. Such a result shows that Algorithm 5.8 would, for
example, reduce the energy consumption of the agents of the MAS compared to
what Algorithm 5.4 achieves while enabling it to perform a safe reconfiguration.

5.3.2 Reconfiguration in the case of multiple outgoing
agents

The following section provides simulation results for the reconfiguration of a multi-
agent system in the case of several agents leaving the MAS. The reconfiguration
strategy for the remaining agents of Σ is the one described in Algorithm 5.8, while
the outgoing agents use Algorithm 5.2. The simulations are run for the two dynamics
considered along this thesis, single integrator and UAV dynamics.

5.3.2.1 Reconfiguration for single integrator dynamics

Let Σ be a multi-agent system composed of N = 12 agents obeying the single
integrator dynamics (3.15). These agents are deployed in the workspace X = Y =
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B2(7.5 · 12×1) with an input space U = B2(2 · 12×1). The sampling rate used in
(3.15) is Ts = 0.2 s. The prediction horizon for the model predictive controllers of
Algorithm 5.2 and Algorithm 5.8 is Np = 10 and the contraction factor for the
terminal constraint is λi = 0.9 for all i ∈ 1, N . The weighting matrices for the MPC
are Q = R = I2 and P is the solution of the algebraic Riccati equation.

For this simulation scenario, the agents of Σ start deploying inside Y from random
positions yi(0) ∈ Y , with i ∈ 1, N represented by circles in Figure 5.17. At t = 4 s,
agent 7 leaves Σ to join yO

7 =
[
0 10

]>. Then, while agent 7 is leaving Y, agent 9
also leaves Σ at t = 5.2 s to join yO

9 =
[
10 0

]>. Thus, during the deployment, the
set O(k) of the outgoing agents is:

O(k) =


∅ for k < 20
{7} for 20 ≤ k < 26.
{7, 9} for 26 ≤ k
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Figure 5.17: Trajectories of the agents of Σ during the first phase of the deployment.

While agents 7 and 9 leave the workspace, the other agents are in a reconfiguration
phase before resuming their deployment to reach a Chebyshev configuration as
presented in Algorithm 5.8. For the reconfiguration phase, the weights ωh, ωl and ωe
used to compute the safe objective ys

i(k) for all i ∈ 1, N \O(k) are chosen to be 5, 1
and 0 respectively. The contraction factor to compute the contracted Voronoi cells
Vi(k, λVi

) is λVi
= 0.5 for all i ∈ 1, N \O(k) and the contraction factor to compute

the contracted working region Wi(k, λWi
) is λWi

= 0.8 for all i ∈ 1, N \O(k).
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Figure 5.17 shows the trajectories of the agents of Σ as solid lines and of the
Chebyshev center of their Voronoi cells during the first phase of the deployment as
dashed lines, i.e. for all k such that O(k) = ∅, in the Voronoi tessellation at t = 3.8 s.
The observations that could be made on the MAS are the same as what is explained
in Section 3.2.4.
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Figure 5.18: Construction of the safe objective of agent 2 at t = 4 s.

In Figure 5.18, the construction of the safe objective ys
2(20) of agent 2 is detailed.

This agent is chosen since it is in front of agent 7 and has a collision risk with the
outgoing agent. The light red area is the contracted working region W2(20, λW2) of
agent 2 (which is also the contracted working region of agents 8, 9 and 11). The
contracted Voronoi cell V2(20, λV2) of agent 2 is the area delimited by the dashed
line. Then, the hyperplane ∂D2(20) is:

∂D2(20) =
{
y ∈ R2

∣∣ d(y, ∂H7(20)) = d(y2(20), ∂H7(20))
}

such that all the neighbors of agent 2 on the right of ∂D2(20) receive the heavy weight
ωh. The neighbor set N2(20) of agent 2 is N2(20) = {5, 8, 9, 11, 12}. Given the relative
positions of the neighbors of agent 2 to ∂D2(20), the weight terms ων,2(20) = ωh for
all ν ∈ {8, 9, 11} and ων,2(20) = ωl for all ν ∈ {5, 12} are attributed. Then, the safe
objective ys

2(20) is computed by solving (5.17) with the elements described before.
The construction of the safe objectives ys

i(20) for all i ∈ {3, 5, 8, 9, 10, 11, 12} is done
by following the same procedure. It can also be seen from Figure 5.18 that agents 1,
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4 and 6 continue tracking their Chebyshev center according to Algorithm 5.7 since
they are behind the outgoing agent 7.
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Figure 5.19: Construction of the safe objectives of agents 2 and 5 at t = 5.2 s.

While agent 7 is leaving Y, agent 9 decides to leave Σ at t = 5.2 s. Then,
Figure 5.19 presents the position of the agents at t = 5.2 s and details the construction
of the safe objectives of agents 2 and 5. According to Algorithm 5.7, at time t = 5.2 s,
Oi(26) = ∅ for i ∈ {1, 3, 4, 6} since these agents are behind both outgoing agents,
thus, agents 1, 3, 4 and 6 follow the Chebyshev center of their Voronoi cells. At
time t = 5.2 s the sets of the outgoing agents considered by agents 2 and 5 are,
respectively, O2(26) = {7, 9} and O5(26) = {7} since agent 2 is in front of both
outgoing agents, while agent 5 is in front of agent 7 and behind of agent 9. The
neighbor sets N2(26) and N5(26) of agents 2 and 5 are N2(26) = {7, 8, 9, 11, 12}
and N5(26) = {3, 7, 10, 12}. Agent 11 is the only neighbor of agent 2 farther from
∂H7(26) and ∂H9(26) than agent 2 and on the same side of these hyperplanes as
agent 2. Then, according to Algorithm 5.6, agent 11 receives the weight ωh such
that ω11,2(26) = ωh. Agents 8 and 12 are not on the same side of both ∂H7(26) and
∂H9(26) as agent 2, thus they receive the light weight ωl such that ων,2(26) = ωl
for ν ∈ {8, 12}. Finally, since agents 7 and 9 are outgoing agents, they receive the
weight ωe such that ων,2(26) = ωe for ν ∈ {7, 9}. The same way, ων,5(26) = ωh for
ν ∈ {3, 10}, ω12,5(26) = ωl and ω7,5(26) = ωe. The areas inside the dashed lines
are the contracted Voronoi cells V2(26, λV2) and V5(26, λV5). From the definition of
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the contracted working region given in Paragraph 5.2.2.2 in (5.22), the contracted
working region W5(26, λW5) of agent 5 is obtained by considering only the half-space
defined by ∂H7(26). This contracted working region is colored in blue in Figure 5.19.
For its part, the contracted working region W2(26, λW2) of agent 2 is obtained by
considering the half-spaces defined by both ∂H7(26) and ∂H9(26). This region is
colored in red in Figure 5.19. Then, solving (5.17), the safe objectives ys

2(26) and
ys
5(26) of agents 2 and 5 are found. The other safe objectives are found by following

the same procedure.
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Figure 5.20: Final configuration of the MAS Σ at t = 40 s.

Agents 7 and 9 continue tracking their objectives yO
7 and yO

9 and leave Y at
t = 9 s and t = 7.6 s. In between the time the agents 7 and 9 leave Σ and the time
they are outside Y , the remaining agents of Σ avoid the trajectories of agents 7 and
9 by following their safe objectives ys

i(k), with i ∈ 1, N \O(k). Moreover, as soon
as they are behind both outgoing agents, the remaining agents resume tracking the
Chebyshev center of their Voronoi cells ci(k). The final Voronoi configuration at
t = 40 s is presented in Figure 5.20.

Finally, Figure 5.21 presents the distances:

di(k) =

{
‖yi(k)− ys

i(k)‖2 if Oi(k) 6= ∅
‖yi(k)− ci(k)‖2 otherwise

for all i ∈ 1, N \ {7, 9}, while Figure 5.22 presents the distances:

di(k) =

{ ∥∥yi(k)− yO
i (k)

∥∥
2

if i ∈ O(k)

‖yi(k)− ci(k)‖2 otherwise
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Figure 5.21: Distance of each agent of Σ to its Chebyshev center or safe objective
over time.
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Figure 5.22: Distance of the agents leaving Σ to their objectives over time.

for i ∈ {7, 9}. From Figure 5.21, it can be seen that the reconfiguration strategy
allows the agents to have a limited number of changes in their objectives during the
reconfiguration phase. It also allows the system to return quickly to a reconfiguration
strategy such that the MAS reaches a static Chebyshev configuration quickly after
the last outgoing agent has left the workspace Y. The main changes occur on the
distances of the agents of Σ to their objectives at t = 4 s and t = 5.2 s, i.e. when
agents 7 and 9 leave Σ and when the agents of Σ resume tracking the Chebyshev
center of their Voronoi cells. Figure 5.22 shows that the outgoing agents 7 and 9 are
able to reach their objectives yO

7 and yO
9 .
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5.3.2.2 Reconfiguration for UAV dynamics

Let Σ be a multi-agent system composed of N = 12 agents obeying the UAV dynamics
presented in Section 3.3. Then, for position control, the linearized dynamics of (3.30)
are used, while the simulation is run with the nonlinear model of a quadrotor UAV
(3.28). The MAS is deployed in the workspace Y = B2(7.5 · 12×1) with the input
space U = B2

(
π
6
· 12×1

)
. In addition to the output and input space, the state space

is defined as:

X =

x ∈ R4

∣∣∣∣∣∣∣∣Cx ∈ Y and


0 −1 0 0
0 1 0 0
0 0 0 −1
0 0 0 1

x ≤ 2 · 14×1


thus constraining the horizontal speed of each agent i ∈ 1, N to |vx,i|, |vy,i| ≤
2m · s−1. The sampling rate used in the position subsystem of (3.30) is Ts = 0.2 s.
The prediction horizon for the model predictive controllers of Algorithm 5.2 and
Algorithm 5.8 is Np = 10 and the contraction factor for the terminal constraint is
λi = 0.9 for all i ∈ 1, N . The weighting matrices for the MPC are Q = I4, R = I2
and P is the solution of the algebraic Riccati equation. As in Section 3.3.3, it is
necessary to introduce a Luenberger observer to estimate the state of the position
subsystem. The observer gain is obtained as a linear quadratic regulator with
weighting matrices Qobs = 10I4 and Robs = I2, giving:

L =


1.0971 0
0.8303 0

0 1.0971
0 0.8303

 .

The example presented here follows the same idea as the one presented in
Paragraph 5.3.2.1. The agents of Σ start deploying inside Y from random positions
yi(0) ∈ Y , while the other states have a null initial value except the altitude which
is such that zi(0) = 5m for all i ∈ 1, N . The estimated states x̂i of all the agents
i ∈ 1, N are initialized such that x̂i(0) = xi(0). At t = 4 s, agent 4 leaves Σ to join
yO
4 =

[
5 10

]>. Then, while agent 4 is leaving Y, agent 10 leaves Σ at t = 5.2 s to
rally yO

10 =
[
10 10

]>. Thus, during the deployment, the set O(k) of the outgoing
agents is:

O(k) =


∅ for k < 20
{4} for 20 ≤ k < 26.
{4, 10} for 26 ≤ k

While agents 4 and 10 leave the workspace, the remaining agents of Σ enter a
reconfiguration phase before resuming their deployment in a Chebyshev configuration
following Algorithm 5.8. For the reconfiguration, the weights to compute the safe
objective ys

i(k) for all i ∈ 1, N \O(k) are chosen such that ωh = 5, ωl = 1 and ωe = 0.
The contraction factors for the computation of the contracted Voronoi cells Vi(k, λVi

)
is λVi

= 0.5 and the contraction factor for the computation of the contracted working
regions Wi(k, λWi

) is λWi
= 0.8 for all i ∈ 1, N \O(k). The way the safe objectives

are computed is not described here since it is not different from what is presented in
Paragraph 5.3.2.1.
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Figure 5.23: Initial configuration of the MAS Σ at t = 0 s.

Figure 5.23, Figure 5.24 and Figure 5.25 show the configuration of Σ at different
time instants. The initial configuration at t = 0 s is displayed in Figure 5.23, while
the final configuration at t = 40 s is presented in Figure 5.25. Then, Figure 5.24
illustrates the configuration at time t = 5.4 s, while agents 4 and 10 are leaving the
workspace Y . In these three figures, the position yi(k), with i ∈ 1, N , of the agents
is represented by a circle while the Chebyshev centers ci are represented by stars
and the safe objectives ys

i by diamonds. Moreover, in Figure 5.24 are shown as solid
lines the hyperplanes ∂H4(27) and ∂H10(27) defined by the outgoing agents 4 and
10 and their objectives yO

4 and yO
10 as well as the hyperplanes ∂O4(27) and ∂O10(27),

respectively orthogonal to ∂H4(27) and ∂H10(27), allowing to obtain graphically
the sets Oi(27) for all i ∈ 1, N \O(27). Since the construction of these hyperplanes
is based on the estimated position ŷi(k), with i ∈ O(k), of the outgoing agents,
the estimated positions of all the agents are shown in Figure 5.24 with squares.
The estimated positions are not presented in Figure 5.23 and Figure 5.25 since
ŷi(0) = yi(0) for all i ∈ 1, N and, according to Figure 5.27, ŷi(200) ≈ yi(200).
From Figure 5.24, it can be seen that the agents i ∈ {2, 3, 11} are in front of the
outgoing agents 4 and 10, that the agents i ∈ {1, 6, 9} are in front of agent 10 but
behind agent 4 while agents i ∈ {5, 7, 8, 12} are behind both outgoing agents. Then
Oi(27) = {4, 10} for i ∈ {2, 3, 11}, Oi(27) = {10} for i ∈ {1, 6, 9} and Oi(27) = ∅
for i ∈ {5, 7, 8, 12}. These sets are used to compute the safe objectives ys

i(27) of
agents 1, 2, 3, 6, 9 and 11 as presented extensively before.

In Figure 5.24, it can be seen that at t = 5.4 s, agent 2 and agent 4 are close.
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Figure 5.24: Configuration of the MAS Σ at t = 5.4 s.

This is due to the fact that the contracted working region W2(27, λW2) is too wide,
allowing for the safe objective to be too close to the trajectory of the outgoing agents.
Indeed, this region is obtained by contracting the region in between the hyperplanes
∂H4(27) and ∂H10(27) which is tight. Then, a contraction factor λW2 = 0.8 is not
really effective in reducing the size of the area in which the safe objective ys

2(27)
can be found. To obtain a safe objective ys

2(27) farther from ∂H4(27) that what is
obtained in Figure 5.24, a smaller contraction factor λW2 has to be chosen.

Finally, Figure 5.26 presents the distances:

di(k) =

{
‖yi(k)− ys

i(k)‖2 if Oi(k) 6= ∅
‖yi(k)− ci(k)‖2 otherwise

for all i ∈ 1, N \ {4, 10}. The distances of agents 4 and 10 to their objective points
are not shown since the behavior of the agents is similar to what is achieved for
the deployment of a multi-UAV system as shown in Section 3.3.3. For its part,
Figure 5.27, shows the norm of the estimation error:

εi(k) = ‖yi(k)− ŷi(k)‖2

for all i ∈ 1, N .
A behavior similar to the one seen in the single integrator dynamics case is

observed. When agent 4 leaves Σ at t = 4 s, the change of objective for all the agents



190 Chapter 5. Extension to the deployment problem

−5 0 5

−5

0

5

1

2

3

4

5

6

7

8

9

10

11

12

−5 0 5

−5

0

5

x

y

Agent’s final position yi(200) Final Chebyshev center ci(200)

Figure 5.25: Final configuration of the MAS Σ at t = 40 s.
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Figure 5.26: Distance of each agent of Σ to its Chebyshev center or safe objective
over time.

of Σ, except the ones behind agent 4, is seen in Figure 5.26 with a sudden change in
the distance between the agents and their objectives. Then, the agents start rallying
their safe objectives until agent 10 leaves Σ at t = 5.2 s. While agents 4 and 10
leave the workspace Y, the agents of Σ either track their safe objective or resume
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tracking the Chebyshev center of their Voronoi cell. When both the outgoing agents
are outside Y , all the agents have resumed deploying into a Chebyshev configuration
which they are able to reach since the distance of the agents to their Chebyshev
centers converges to 0m. The norm εi(k), with i ∈ 1, N , displayed in Figure 5.27
shows that the estimation error remains small except for the two outgoing agents
when they start rallying their objectives yO

4 and yO
10. While the values of ε4(k) and

ε10(k) remain reasonably small, the sudden change is due to the attitude and speed
of the outgoing agents which make the approximation of the nonlinear model of a
UAV (3.27) by a linear model approaching its limits.
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Figure 5.27: Norm of the difference between the estimation position and the real
position of each agent of Σ over time.

5.4 Conclusion
This chapter deals with the reconfiguration of a multi-agent system (MAS) performing
a Voronoi-based deployment in a two-dimensional convex bounded area when the
number of agents in the MAS changes. Two reconfiguration strategies are presented,
one when the number of agents increases because agents join the MAS, and the other
when the number of agents decreases because agents need to leave the MAS.

The reconfiguration strategy in the case of incoming agents is a natural extension
of the deployment strategy of Chapter 3 and allows to integrate agents seamlessly
to the MAS. The agents that integrate the MAS then participate in its deployment
into a static Chebyshev configuration. This strategy can be further improved by
combining it with the robust deployment strategies of Chapter 4.

For its part, the reconfiguration strategy in the case of outgoing agents is more
complex. It stems from problems arising in fault-tolerant formation control and is
meant to allow agents to leave safely the workspace in which the MAS is deployed
without colliding with the agents remaining in the workspace. The strategies
presented in this chapter are based on the use of an objective different from the
Chebyshev center for the agents remaining in the workspace, and allowing them
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to avoid the trajectories of the outgoing agents. This objective is calculated as a
weighted barycenter of the remaining agents. A first strategy able to deal with the
case of a single outgoing agent is introduced. However, this strategy is limited in
the case of multiple outgoing agents. Another reconfiguration algorithm is then
proposed. It is based on a new transient objective, again computed as a weighted
barycenter, but constrained to remain inside a region obtained as the intersection
of a contracted version of the Voronoi cell of the agent and a contracted version
of the area contained between the trajectories of the outgoing agents, called here
working region. When there is no risk of collision, the remaining agents of the MAS
resume tracking their Chebyshev center in order to deploy into a static Chebyshev
configuration.

Despite being only mentioned in this thesis, the strategy is easily adaptable in the
case of a fault occurring on one of the agents. An example of use of this reconfiguration
when the outgoing agents are faulty can be found in Chevet et al. (2020b). To cover
a wider spectrum of faults on the agents, the reconfiguration strategy proposed in
this chapter could be combined with the robust deployment strategies proposed in
Chapter 4. Moreover, the examples presented in this thesis always assume contraction
factors for the construction of the reconfiguration objectives to be identical for all the
agents. This can lead to dangerous situations, as presented in the UAV reconfiguration
example of Paragraph 5.3.2.2, where the region to which the reconfiguration objective
belongs to is not tight enough and allows for an objective to be too close to the
trajectory of an outgoing agent. This kind of situation could be avoided by developing
an efficient strategy to adapt the value of the contraction factors depending on the
relative position of the agents remaining in the workspace to the trajectories of the
outgoing agents.



Chapter 6
Concluding remarks and future work

6.1 Conclusion
The present thesis introduces several deployment and reconfiguration strategies
for a multi-agent system (MAS). The proposed control strategies are based on
decentralized model predictive control (MPC) laws and lead the MAS into a static
configuration over a convex bounded two-dimensional area. The configuration is
such that each agent lies on the Chebyshev center of a Voronoi cell of which it is
the generator. Then, the contributions of this thesis are threefold. It first studies
the deployment of a MAS in the nominal case and applies it to a fleet of quadrotor
unmanned aerial vehicles (UAVs). It secondly studies the deployment of a MAS when
the agents are subject to perturbations, either bounded deterministic or unbounded
stochastic perturbations. Finally, reconfiguration strategies are proposed to deal
with the case of agents joining or leaving the MAS.

Based on the work of Nguyen (2016), a centralized and a decentralized MPC
algorithms are proposed in Chapter 3 to allow a MAS to deploy into a two-dimensional
convex bounded area. Each agent is constrained in the MPC optimization problem
to remain inside a Voronoi cell, of which it is the generator, and tracks the Chebyshev
center of this Voronoi cell. For the case of agents obeying single integrator dynamics,
a proof of feasibility of the decentralized MPC optimization problem is proposed,
together with the convergence of the MAS deployment into a static Chebyshev
configuration.

To deal with the case of a fleet of quadrotor UAVs, a cascaded control structure
where the decentralized MPC is used to control the position of the UAVs is proposed.
Simulations results showing the efficiency of the deployment when the UAVs are
modeled as nonlinear systems are presented.

However, in real world applications, the agents are often subject to perturbations,
either external (caused by the environment they evolve in), or internal (caused by
faults or noises). With this in mind, a decentralized output-feedback tube-based
MPC algorithm is designed for the deployment of a MAS subject to input and output
bounded deterministic perturbations. In this framework, the position of the agents
is not punctiform anymore but contained inside a box. Thus, a new box-based
guaranteed Voronoi tessellation is then proposed in Chapter 2 to ensure that the
agents are constrained to evolve inside an area in which there is no risk of collision
with the other agents. To drive the agents in the guaranteed Voronoi tessellation, the
proposed tube-based MPC strategy decomposes the computation of the control input
into two parts. The first one is obtained by solving a nominal MPC optimization
problem that neglects the bounded perturbations. The second one is obtained by
multiplying the difference between the estimated state and the unperturbed nominal
state of the system by a gain matrix. The state-feedback is designed to keep the
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actual state within a tube envelope around the nominal state and ensures that
the actual state deviation is bounded in the presence of uncertain dynamics with
bounded deterministic perturbations. In addition, to obtain the estimated state,
an observer is introduced in the control loop. For these reasons, in Chapter 4, two
linear/bilinear matrix inequality constrained optimization problems are proposed in
order to obtain the gains of a Luenberger observer and of the state-feedback part of
the tube-based MPC controller.

In some cases (i.e. systems subject to process and measurement noises), the per-
turbations acting on a system can be unbounded and have a stochastic nature. Thus,
Chapter 4 introduces an output-feedback chance-constrained MPC algorithm for the
Voronoi-based deployment of a MAS subject to unbounded stochastic perturbations.
Indeed, in this context, it is necessary to enforce that the constraints appearing in the
MPC optimization problem are satisfied with a given probability. Then, using the
stochastic properties of these signals, an optimization-based procedure is proposed to
relax the probabilistic constraints into algebraic constraints. A proof of feasibility of
this procedure is provided as well as an explicit solution to the optimization problem,
allowing the online relaxation of constraints. With the proposed procedure, the
controller is able to deal with time-varying stochastic properties of the perturbation
signals.

For both the bounded deterministic and unbounded stochastic perturbations
cases, the efficiency of the deployment strategies are illustrated on two types of
multi-agent systems. To do so, two MAS are considered for each strategy. A first
multi-agent system is composed of agents obeying single integrator dynamics, while
the other is composed of quadrotor UAVs modeled with nonlinear dynamics. In the
case of a fleet of quadrotor UAVs, the robust model predictive controller is used as
the position controller of the agents.

For operational reasons, the MAS may need to incorporate new agents to par-
ticipate in its deployment. Then, Chapter 5 proposes a natural extension of the
decentralized deployment algorithm of Chapter 3 to allow new agents to join the
MAS and to deploy over the convex bounded two-dimensional area. However, while
the MAS may need to include new agents, the converse is also true, and a reconfigu-
ration strategy is needed to allow agents to leave the multi-agent system and the
deployment area while the remaining agents avoid colliding with them.

A first reconfiguration strategy is introduced to deal with the case of a single
outgoing agent. While this agent leaves the deployment area using a decentralized
model predictive controller, the remaining agents track a transient objective allowing
them to be driven away from the trajectory of the outgoing agent. This transient
objective is the weighted barycenter of the neighbors of an agent. If a neighbor of
a remaining agent is farther away from the outgoing agent’s trajectory than the
remaining agent, it receives a higher weight than the other neighbors. A second
reconfiguration strategy is then presented to deal with the case of several agents
leaving the MAS simultaneously. With this new strategy, each remaining agent
decides if it continues tracking the Chebyshev center of its Voronoi cell or if it tracks
a new transient objective depending on its relative position to both the outgoing
agents and their objectives outside the deployment area. The new transient objective
is then obtained by solving an optimization problem, constraining it to belong to
an area in which it is ensured that no risk of collision with the outgoing agents
exists for the remaining agents. These two reconfiguration strategies are compared in
simulation for the case of one agent leaving a MAS composed of agents obeying single
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integrator dynamics. Then, the efficiency of the second reconfiguration strategy in
the case of several agents leaving the deployment area simultaneously is illustrated.

6.2 Future directions
All along this thesis, directions opened by the proposed work have been discussed.
A synthetic view of these perspectives is presented here.

The Voronoi-based deployment and reconfiguration strategies introduced through-
out this thesis are two-dimensional since they are meant to be applied in any kind
of multi-agent system composed of vehicles, some of them, as unmanned ground
or surface vehicles, which cannot move in more than two dimensions. However,
unmanned aerial or underwater vehicles are able to move in the three directions of
space. Then, a generalization of the proposed control strategies for the Voronoi-
based deployment and reconfiguration of multi-agent systems in a convex bounded
three-dimensional area could be studied. Such a generalization would cover both the
nominal and perturbed case. Moreover, an extension of the reconfiguration strategies
in the case of outgoing agents introduced in Chapter 5 would be needed. Indeed, the
working regions of the remaining agents are based on the trajectories of the outgoing
agents. However, in three dimensions, an infinite number of hyperplanes contain this
trajectory. Thus, an efficient scheme should be introduced to select the appropriate
hyperplanes to define the remaining agents’ working regions.

To generalize the deployment strategy in the nominal case, following the discussion
at the end of Chapter 3, the recursive feasibility and stability of model predictive
control under time-varying constraints has to be further investigated. To do so, it
may be necessary to adopt a centralized or distributed control strategy instead of a
decentralized one. Then, to provide more degrees of freedom to the optimization
problem on which the model predictive controller is based, the pseudo-Voronoi
tessellation proposed in Chapter 2 could be used. With this new tessellation, the
border of a cell generated by two agents passes by a point located on the line segment
joining these two agents. This location would be added as a decision variable to the
problem.

When dealing with systems subject to bounded deterministic perturbations,
robust control strategies are used. In the present thesis, a Luenberger observer is
used to estimate the state of the agents of the MAS. Future work on the deployment
of a multi-agent system subject to bounded deterministic perturbations should study
the use of a more robust observer such as Kalman filters or set-membership state
estimation techniques. The latter method could be combined with the linear/bilinear
matrix inequality constrained gain tuning procedure proposed in Chapter 4 to
compute the gains necessary for the decentralized output-feedback tube-based MPC
as well as the associated invariant sets online. Indeed, the MPC optimization
problems are subject to time-varying constraints which influence the shape and size
of the invariant sets. Thus, computing them online would allow to take this time
dependence into account. An analysis of the computation time of such a strategy is
necessary.

The aforementioned gain tuning procedure for the output-feedback tube-based
model predictive controller consists in solving two linear/bilinear matrix inequality
constrained optimization problems sequentially. Further studies of a common tuning
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procedure, where both gains are obtained from a single polynomial matrix inequality
constrained optimization problem, should be carried out.

Since the output-feedback decentralized chance-constrained MPC strategy intro-
duced in Chapter 4 is based, as the tube-based MPC strategy, on the estimation
of the state with a Luenberger observer, the same future direction concerning the
use of more robust observers holds. Moreover, the unbounded stochastic perturba-
tions considered in this case are normally distributed. Thus, the adaptation of the
chance-constrained strategy to other probability distributions should be investigated.
Such investigations would study the possibility to use the stochastic properties
of the distributions to relax the probabilistic constraints appearing in the MPC
optimization problem into algebraic constraints.

Another direction for the deployment of a MAS subject to unbounded stochastic
perturbations is to use tube-based chance-constrained MPC techniques. Indeed,
the algebraic relaxation procedure of Chapter 4 is meant to find a probabilistic
bound to the perturbations. Then, a bounded set containing a fraction (ideally
close to 1) of the unbounded stochastic perturbations could be defined. Thus, the
tube-based MPC strategy introduced for bounded perturbations could be used for
the deployment of a MAS subject to unbounded stochastic perturbations.

The reconfiguration strategies of Chapter 5 have been introduced for nominal
agents. Then, considering perturbations, either bounded deterministic or unbounded
stochastic, the robust control strategies of Chapter 4 could be used for the re-
configuration of a MAS subject to perturbations. Moreover, the deployment and
reconfiguration strategy in the case of multiple outgoing agents is based on the
definition of safe operating regions for the remaining agents. These safe regions are
obtained by contracting areas to which a remaining agent belongs. However, in the
strategy proposed in Chapter 5, the contraction factors are chosen arbitrarily by the
user. Thus, further improvements of this algorithm should include an efficient scheme
to adapt the value of the contraction factors depending on the relative position of
the remaining agents to the outgoing agents.

In the present thesis, the proposed deployment and reconfiguration strategies are
tested in simulation. Thus, future work should focus on the implementation of the
control algorithms on real multi-vehicle systems.
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Résumé : Cette thèse porte sur le développe-
ment de techniques de commande prédictive
pour le déploiement et la reconfiguration d’un
système multi-agents dans une zone convexe
et bornée en deux dimensions. Un nouvel
algorithme de commande prédictive décentral-
isé, fondé sur une partition de Voronoï de l’es-
pace pour le déploiement d’une flotte de drones
quadrirotor, est construit. La loi de commande
prédictive décentralisée est d’abord rendue plus
robuste pour supporter des perturbations déter-
ministes bornées s’appliquant sur les agents, in-
troduisant une nouvelle partition de Voronoï
garantie fondée sur des boîtes pour assurer la
sécurité du déploiement. Dans ce cas, un nou-
veau correcteur prédictif fondé sur des tubes
avec observateur est conçu en résolvant des

problèmes d’optimisation sous contraintes d’in-
égalités matricielles linéaires/bilinéaires. En-
suite, pour supporter des perturbations stochas-
tiques non bornées, un nouvel algorithme de
commande prédictive sous contraintes proba-
bilistes est proposé, rendu résoluble par la trans-
formation des contraintes probabilistes appa-
raissant dans le problème d’optimisation en con-
traintes algébriques. Enfin, une stratégie de re-
configuration fondée sur un correcteur prédictif
décentralisé est conçue pour permettre à des
agents de rejoindre ou de quitter le système
multi-agents durant son déploiement. Des ré-
sultats de simulation sur une flotte de drones
quadrirotor valident l’efficacité des stratégies de
commande proposées.
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Abstract: This thesis presents Model Predic-
tive Control (MPC) techniques for the deploy-
ment and the reconfiguration of a dynamical
Multi-Agent System (MAS) in a bounded con-
vex two-dimensional area. A novel decentral-
ized predictive control law for the Voronoi-
based deployment of a fleet of quadrotor Un-
manned Aerial Vehicles (UAVs) is derived. The
proposed decentralized MPC is firstly robusti-
fied to deal with bounded deterministic per-
turbations acting on the agents, introducing a
new box-based guaranteed Voronoi tessellation
to ensure a safe deployment. In this case, a new
output-feedback tube-based MPC is designed

by solving constrained optimization procedures
relying on linear/bilinear matrix inequalities.
Secondly, to deal with unbounded stochastic
perturbations, a new output-feedback chance-
constrained MPC algorithm is proposed, solved
by mean of a relaxation of the considered prob-
abilistic constraints into algebraic constraints.
Finally, a decentralized MPC-based reconfigura-
tion strategy is designed to deal with the case of
agents joining or leaving the multi-agent system
during the deployment. Illustrative simulation
results on a fleet of quadrotor UAVs validate the
effectiveness of the proposed control strategies.
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