

Gaz quantique dans un potentiel périodique dépendant du temps : de la modulation perturbative aux résonances de l'effet tunnel assisté par le chaos

Maxime Arnal

Directeur de thèse : David Guéry-Odelin Co-directrice de thèse : Juliette Billy

Équipe Atomes froids Laboratoire Collisions Agrégats Réactivité

> Soutenance de thèse 8 octobre 2020

Les technologies quantiques

- Avancées technologiques majeures : laser, transistor, IRM, ...
- Exploitation d'effets de plus en plus subtils

Quantum manifesto (2016)

Les technologies quantiques

- Avancées technologiques majeures : laser, transistor, IRM, ...
- Exploitation d'effets de plus en plus subtils

Quantum manifesto (2016)

• 23 octobre 2019 : Sycamore, 53 qubits

F. Arute et al., Nature 574, 7779 (2019)

• 28 août 2020 : calcul Hartree-Fock

Google AI Quantum, Science 369, 6507 (2020)

Les technologies quantiques

- Avancées technologiques majeures : laser, transistor, IRM, ...
- Exploitation d'effets de plus en plus subtils

Quantum manifesto (2016)

• Réalisation analogique d'un modèle quantique

Phénomène physique

Phénomène physique

Modèle

Phénomène physique

Phénomène physique

Phénomène physique

"Nature isn't classical, dammit, and if you want to make a simulation of nature, you'd better make it quantum mechanical"

Int. J. Theor. Phys 21, 6-7 (1982)

Simulation

Extraction d'informations

Modèle

Phénomène physique

Extraction d'informations

• Plateformes possibles : gaz quantiques, ions piégés, circuits supraconducteurs, boites quantiques, centres NV ...

Quelques réalisations des simulateurs quantiques

• Transition superfluide/isolant de Mott M. Greiner *et al.*, Nature **415**, 6867 (2002)

• Équation d'état d'un gaz de fermions S. Nascimbène *et al.,* Nature **463**, 7284 (2010)

- Localisation d'Anderson
 - J. Billy *et al.*, Nature **453**, 7197 (2008) J. Chabé *et al.*, PRL **101**, 25 (2008)

• Propriétés topologiques du modèle SSH S. de Léséleuc *et al.,* Science **365**, 6455 (2019)

Quelques réalisations des simulateurs quantiques

- Atomes froids/ultra-froids = systèmes "simples"
 - Pièges optiques = potentiels "parfaits"
 - Système **bien contrôlé** (préparation de l'état initial, dynamique, mesures, ...)

Quelques réalisations des simulateurs quantiques

- Atomes froids/ultra-froids = systèmes "simples"
 - Pièges optiques = potentiels "parfaits"

 Système bien contrôlé (préparation de l'état initial, dynamique, mesures, ...) -Notre dispositif-Réseau optique 1D Condensat de Bose-Einstein de ⁸⁷Rb

Onde de matière macroscopique décrite par une fonction d'onde ψ

Potentiel périodique dépendant du temps

Notre dispositif expérimental

- Interférences de deux lasers contra-propageants
- Potentiel périodique, période spatiale *d* = 532 nm

$$H = \frac{p^2}{2m} - \frac{s(t)E_L}{2}\cos\left(k_L x + \varphi(t)\right)$$

$$k_L = \frac{2\pi}{d} \qquad E_L = \frac{\hbar^2 k_L^2}{2m}$$

- Interférences de deux lasers contra-propageants
- Potentiel périodique, période spatiale *d* = 532 nm

$$H = \frac{p^2}{2m} - \frac{s(t)E_L}{2}\cos(k_L x + \varphi(t))$$

Contrôle de
la profondeur

$$k_L = \frac{2\pi}{d} \qquad E_L = \frac{\hbar^2 k_L^2}{2m}$$

- Interférences de deux lasers contra-propageants
- Potentiel périodique, période spatiale *d* = 532 nm

$$H = \frac{p^2}{2m} - \frac{s(t)E_L}{2} \cos \left(k_L x + \varphi(t)\right)$$
Contrôle de la position

$$k_L = \frac{2\pi}{d} \qquad E_L = \frac{\hbar^2 k_L^2}{2m}$$

- Interférences de deux lasers contra-propageants
- Potentiel périodique, période spatiale *d* = 532 nm

Une physique riche !

Une physique riche !

Chaos et simulation quantique

Simulation quantique

• Système quantique hautement contrôlable

Théorie du chaos

• Faibles variations dans les paramètres du système conduisent à des résultats différents

• Émulation d'autres systèmes par ingénierie d'Hamiltonien

• Chaos quantique : système dont l'équivalent classique est chaotique

Simulation de systèmes désordonnés

Chaos et désordre

- Rotateur frappé (kicked rotor)
 - Localisation dynamique : Moore et al. (1994), Ringot et al. (2000)
 - Localisation d'Anderson : Chabé et al. (2008), Manai et al. (2015)

Hamiltonien du
rotateur frappécorrespondance
⇔Hamiltonien de la
transition Anderson

Chaos joue le rôle de désordre

Chaos et contrôle

- Systèmes chaotiques : sensibilité exponentielle aux conditions initiales
- En contrepartie : système hautement versatile

Contrôle par le chaos

E. Ott et al. (1990)

Controlling chaos in the brain

Steven J. Schiff^{*}, Kristin Jerger^{*}, Duc H. Duong^{*}, Taeun Chang^{*}, Mark L. Spano[†] & William L. Ditto[‡]

Controlling Cardiac Chaos

Alan Garfinkel, Mark L. Spano, William L. Ditto, James N. Weiss

Chaos et contrôle

- Systèmes chaotiques : sensibilité exponentielle aux conditions initiales
- En contrepartie : système hautement versatile Co

Contrôle par le chaos

E. Ott et al. (1990)

Controlling chaos in the brain

Steven J. Schiff^{*}, Kristin Jerger^{*}, Duc H. Duong^{*}, Taeun Chang^{*}, Mark L. Spano[†] & William L. Ditto[‡]

Controlling Cardiac Chaos

Alan Garfinkel, Mark L. Spano, William L. Ditto, James N. Weiss

• Cas du transport quantique en présence de chaos

- Résonances dans l'effet tunnel
 - S. Tomsovic et D. Ullmo (1994)
- Exploiter une dynamique mixte pour contrôler le taux tunnel
- Collaboration avec LPT (G. Lemarié,
 B. Georgeot et M. Martinez) et LPTMS
 (O. Giraud et D. Ullmo)

Défi expérimental !

Plan

- Introduction \checkmark
- Calibration de la profondeur du réseau optique
- Dynamique classique
 - Émergence de chaos
 - Étude des bifurcations
- Dynamique quantique : effet tunnel dynamique dans un espace des phases mixtes
 - Mécanisme à deux niveaux : cas régulier
 - Mécanisme à trois niveaux : effet tunnel assisté par le chaos (CAT)
- Conclusion

Plan

- Introduction \checkmark
- Calibration de la profondeur du réseau optique
- Dynamique classique
 - Émergence de chaos
 - Étude des bifurcations
- Dynamique quantique : effet tunnel dynamique dans un espace des phases mixtes
 - Mécanisme à deux niveaux : cas régulier
 - Mécanisme à trois niveaux : effet tunnel assisté par le chaos (CAT)
- Conclusion

Nécessité d'une calibration précise

- Dynamique chaotique : sensibilité aux paramètres expérimentaux
- Paramètres :
 - fréquence de modulation
 - amplitude de modulation
 - profondeur du réseau optique

• Méthodes de calibration existantes : diffraction Kapitza-Dirac, expansion du nuage, ...

- Nouvelle méthode reposant sur le contrôle de la phase du réseau
 - Méthode robuste
 - Valable sur une grande plage de profondeur
 - Erreur de l'ordre de quelques pourcents

PRL **117**, 010401 (2016) PRA **97**, 043617 (2018)

Calibration - protocole expérimental

• Chargement dans le réseau

$$H = \frac{p^2}{2m} - \frac{sE_L}{2}\cos\left(k_L x\right)$$

Calibration - protocole expérimental

- Chargement dans le réseau
- Déplacement soudain du réseau

$$H = \frac{p^2}{2m} - \frac{sE_L}{2}\cos\left(k_L x + \varphi_0\right)$$

Calibration - protocole expérimental

- Chargement dans le réseau
- Déplacement soudain du réseau

$$H = \frac{p^2}{2m} - \frac{sE_L}{2}\cos\left(k_L x + \varphi_0\right)$$

• On mesure la dynamique intrasite

Description en ondes de Bloch

- Structure de bandes \Leftrightarrow profondeur
- Avantages de notre méthode :
 - indépendant des interactions interatomiques
 - indépendant du confinement extérieur
 - valide sur une grande gamme de profondeur (0 < s < 50)

Mesure robuste et précise (~2%) *in situ* de la profondeur du réseau optique

Plan

- Introduction \checkmark
- Calibration de la profondeur du réseau optique
- Dynamique classique
 - Émergence de chaos
 - ◆ Étude des bifurcations
- Dynamique quantique : effet tunnel dynamique dans un espace des phases mixtes
 - Mécanisme à deux niveaux : cas régulier
 - Mécanisme à trois niveaux : effet tunnel assisté par le chaos (CAT)
- Conclusion

• Réseau optique modulé en amplitude (adimensionné):

$$h_{\gamma,\varepsilon_0} = \frac{p^2}{2} - \gamma \left(1 + \varepsilon_0 \cos(t)\right) \cos(x)$$

$$x$$
 $\cos(t)$

$$\gamma = s \left(\frac{\nu_L}{\nu}\right)^2$$
 ε_0 $\nu_L = \frac{E_L}{h}$

• Réseau optique modulé en amplitude (adimensionné):

$$h_{\gamma,\varepsilon_0} = \frac{p^2}{2} - \gamma \left(1 + \varepsilon_0 \cos(t)\right) \cos(x)$$

$$x$$
 $\cos(t)$

 $\gamma = s \left(\frac{\nu_L}{\nu}\right)^2$ ε_0 $\nu_L = \frac{E_L}{h}$

• Réseau optique modulé en amplitude (adimensionné):

$$h_{\gamma,\varepsilon_0} = \frac{p^2}{2} - \gamma \left(1 + \varepsilon_0 \cos(t)\right) \cos(x)$$

$$x$$
 $\cos(t)$

• Réseau optique modulé en amplitude (adimensionné):

$$h_{\gamma,\varepsilon_0} = \frac{p^2}{2} - \gamma \left(1 + \varepsilon_0 \cos(t)\right) \cos(x)$$

$$x$$
 $\cos(t)$

 $\gamma = s \left(\frac{\nu_L}{\nu}\right)^2 \qquad \qquad \varepsilon_0 \qquad \qquad \nu_L = \frac{E_L}{h}$

Espace des phases mixte

• Réseau optique modulé en amplitude (adimensionné):

$$h_{\gamma,\varepsilon_0} = \frac{p^2}{2} - \gamma \left(1 + \varepsilon_0 \cos(t)\right) \cos(x)$$

- Pour un couple (γ , ε_0) deux types de trajectoires: régulière et chaotique

Espace des phases mixte

• Espace des phases stroboscopique : représentation de l'état du système tous les temps tels que *vt* = 2*n*

Espace des phases mixte

• Espace des phases stroboscopique : représentation de l'état du système tous les temps tels que *vt* = 2*n*

• Les paramètres (γ , ε_0) contrôlent le paysage de l'espace des phases stroboscopique

Bifurcations

• Pour une valeur de ε_0 fixée et en augmentant γ , nous observons des **bifurcations** :

Peut-on expérimentalement sonder un espace des phases stroboscopique et voir ces bifurcations ?

• La dispersion en impulsion nous permet de retrouver la nature de la trajectoire : $\varepsilon_0 = 0.27$

• La dispersion en impulsion nous permet de retrouver la nature de la trajectoire :

• La dispersion en impulsion nous permet de retrouver la nature de la trajectoire :

Réalisation d'un super-réseau effectif ajustable

• La dispersion en impulsion nous permet de retrouver la nature de la trajectoire :

Réalisation d'un super-réseau effectif ajustable

Plan

- Introduction \checkmark
- Calibration de la profondeur du réseau optique
- Dynamique classique \checkmark
 - Émergence de chaos \checkmark
 - Étude des bifurcations \checkmark
- Dynamique quantique : effet tunnel dynamique dans un espace des phases mixtes
 - Mécanisme à deux niveaux : cas régulier
 - Mécanisme à trois niveaux : effet tunnel assisté par le chaos (CAT)

Conclusion

Espace des phases mixte et effet tunnel

- Particule classique toutes les deux périodes de modulation
- Reste dans l'îlot de gauche

Espace des phases mixte et effet tunnel

- Particule classique toutes les deux périodes de modulation
- Fonction d'onde ⇒ transport par effet tunnel

• Reste dans l'îlot de gauche

• Trajectoires classiques fermées ⇔ barrière d'énergie

Effet tunnel dynamique M. J Davis et E. J. Heller (1981)

Les deux types d'effet tunnel dynamique

• Effet tunnel "régulier" : mécanisme à deux niveaux

• Effet tunnel assisté par le chaos : mécanisme à trois niveaux

Le chaos peut faciliter ou supprimer le transport quantique grâce à des résonances

- Façonnage du taux tunnel par ingénierie de l'espace des phases
- Résonances jamais observées

Les expériences de 2001

• Expériences pionnières par W. D. Phillips (NIST, USA) et M. G. Raizen (U. Texas, USA) : observation d'oscillations tunnel

Hensinger et al., Nature 412, 6842 (2001)

Steck et al., Science 293, 5528 (2001)

Les expériences de 2001

Hensinger *et al.*, Nature **412**, 6842 (2001)

• Expériences pionnières par W. D. Phillips (NIST, USA) et M. G. Raizen (U. Texas, USA) : observation d'oscillations tunnel

Steck et al., Science 293, 5528 (2001)

• Oscillations entre des états d'impulsion opposée dans un réseau périodiquement modulé

Les atomes font demi-tour par effet tunnel !

Comment nous revisitons ces expériences

• Les atomes font périodiquement demi-tour :

• Faible contraste, peu d'oscillations

Faible variation de la fréquence d'oscillation tunnel

- Notre proposition :
 - Condensat de Bose-Einstein
 - Faible nombre d'atomes (diminuer l'effet des interactions)
 - Paramètres expérimentaux ⇒ régime semi-classique
 - Réseau optique loin de résonance
 - Gravité compensée par un piège optique horizontal
 - Îlots en *x* : plus robuste (chargement + dynamique)

Ensemble des paramètres expérimentaux

• Nouveau paramètre expérimental : $[x, p] = i\hbar_{\text{eff}}$

$$\gamma = s \left(\frac{\nu_L}{\nu}\right)^2$$
 ε_0 $\hbar_{\text{eff}} = 2 \left(\frac{\nu_L}{\nu}\right)$

s : profondeur adimensionnée
ν : fréquence de modulation
ε₀: amplitude de modulation

$$\nu_L = \frac{h}{2md^2}$$

• h_{eff} contrôle la surface des fonctions d'onde dans l'espace des phases (Heisenberg) :

Effet tunnel régulier - Mécanisme à deux niveaux

• Effet tunnel dynamique :

$$\delta \propto \hbar_{
m eff} \, \omega_{
m tunnel} \propto \hbar_{
m eff} \, {
m e}^{-S/\hbar_{
m eff}}$$

Effet tunnel régulier - Bilan

• Cas régulier obtenu avec ($\gamma = 0.25$, $\varepsilon_0 = 0.14$):

X

CAT - Mécanisme à trois niveaux

• Deux états réguliers (S et AS) + un état chaotique (*e.g.* S)

CAT - Mécanisme à trois niveaux

• Deux états réguliers (S et AS) + un état chaotique (e.g. S)

 $H = \begin{pmatrix} \boldsymbol{\varepsilon} & \boldsymbol{0} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{\varepsilon}^{+} & \boldsymbol{\beta} \\ \boldsymbol{0} & \boldsymbol{\beta} & \boldsymbol{\varepsilon}_{c} \end{pmatrix}$

• Dans le sous-espace des états S, deux échelles d'énergie : $\Delta = \frac{\epsilon^+ - \epsilon_c}{2}$ et β $\beta \gg |\Delta|$

 $\beta \ll |\Delta|$

• Faible mélange : l'état chaotique participe peu au transport

Les états se repoussent

 Fort mélange : deux états mixtes

E

 $\omega_{ ext{tunnel}}$

• Dynamique à trois états : deux fréquences d'oscillation

L'état chaotique modifie drastiquement la différence d'énergie des états

 $1/\hbar_{\rm eff}$

CAT - Protocole expérimental

Comparaison et bilan

- Cas régulier obtenu avec (γ = 0.25, ε_0 = 0.14)
- Cas chaotique obtenu avec ($\gamma = 0.375$, $\varepsilon_0 = 0.24$)

Comparaison et bilan

• Variation non monotone du taux tunnel

Comparaison et bilan

- Variation non monotone du taux tunnel
- Deux types de simulations numériques :

Comparaison et bilan

- Variation non monotone du taux tunnel
- Deux types de simulations numériques :
 - ► N=∞ Sans interaction ► N=13

• États impliqués bien identifiés

Une telle resonance = signature emblématique d'une dynamique mixte

Conclusion

- Réseau 1D périodiquement modulé = système non-intégrable
- Très grand contrôle des paramètres de l'expérience (*s*, *N*, position, ...)
 - Bifurcations d'orbites régulières
 - Effet tunnel dynamique "régulier"
 - Première mesure d'une résonance de l'effet tunnel assisté par le chaos
- Autres résonances de l'effet tunnel :

Perspectives

- Premiers résultats pour du transport quantique médié par des états de Floquet délocalisés
 - Indépendant de l'espèce atomique
 - Nouveau type de contrôle de l'effet tunnel
- Effet des interactions interatomiques ?

Perspectives

• Transport à longue portée intrinsèque ; signature expérimentale ?

Remerciements

• Équipe atomes froids : David, Juliette, Bruno, Gabriel, Nathan

- Collaborateurs LPT : Bertrand, Gabriel, Maxime
- Collaborateurs LPTMS : Olivier, Denis

• LCAR : • Direction : Jean-Marc L'Hermite

- Secrétariat : Carole Lecinana, Christine Soucasse, Anna Soler
- Services techniques : Stéphane Faure, Jean-Philippe Loisel, Laurent Polizzi, Éric Panader, William Volondat, Philippe Paquier, Emmanuelle Kierbel
- Financements :

• et bien d'autres...

