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Effets d’écoulements et de confinement dans les modèles discrets et continus d’interfaces

Cette thèse examine les propriétés de l’interface entre deux phases dans un système de
phases séparées. Nous regardons comment les effets de taille finies modifient les propriétés
statistiques de ces interfaces, en particulier comment la dépendance de l’énergie libre par
rapport à la taille du système donne lieu à des interactions de Casimir critique à longue
portée proche du point critique. Souvent, les interfaces sont décrites par des modèles simpli-
fiés ou coarse-grained dont les seuls degrés de liberté sont les hauteurs de l’interface. Nous
rappelons comment les propriétés statiques et dynamiques de ces interfaces sont retrou-
vées à partir de modèles microscopiques de spins et de la théorie statistique des champs.
Nous étudions ensuite les effets de taille finie pour les interfaces continues comme le mod-
èle Edwards-Wilkinson ou discrètes comme le modèle Solid-On-Solid, et discutons leur per-
tinence dans le cadre de l’effet Casimir critique.

Dans la seconde partie de la thèse, nous examinons des modèles d’interfaces sous écoule-
ment possédant des états stationnaires hors-équilibre. Nous développons ces équations dans
le cadre du modèle C d’une interface, ayant un état stationnaire hors-équilibre lorsque soumis
à un écoulement uniforme. L’état stationnaire hors-équilibre résultant exhibe des propriétés
retrouvées dans les expériences sur des colloïdes sous cisaillement, notamment la suppres-
sion des fluctuations de la hauteur de l’interface et une augmentation de la longueur de cor-
rélation des fluctuations. Finalement, nous proposons un nouveau modèle pour des inter-
faces uni-dimensionnelles qui est une modification du modèle Solid-on-Solid contenant un
terme supplémentaire d’entropie, dont la correspondance à des systèmes physiques reste à
être trouvée.

Mots-cléfs : Modèles d’interface, Théorie d’ordonnancement des phases, Modèle d’Ising,
Modèle Solid-On-Solid, Force de Casimir, Écoulements stationnaires hors-équilibre

Confinement and driving effects on continuous and discrete model interfaces
This thesis examines the properties of the interface between two phases in phase separated
systems. We are interested in how finite size effects modify the statistical properties of these
interfaces, in particular how the dependence of the free energy on the system size gives rise
to long range critical Casimir forces close to the critical point. Often the interfaces in phase
separated systems are described by simplified or coarse grained models whose only degrees
of freedom are the interface height. We review how the statics and dynamics of these interface
models can be derived from microscopic spin models and statistical field theories. We then
examine finite size effects for continuous interface models such as the Edwards Wilkinson
model and discrete models such as the Solid-On-Solid model and discuss their relevance to
the critical Casimir effect.

In the second part of the thesis we examine models of driven interfaces which have nonequi-
librium steady states. We develop a model C type model of an interface which shows a
nonequlibrium steady state even with constant driving. The resulting nonequlibrium steady
state shows properties seen in experiments on sheared colloidal systems, notably the sup-
pression of height fluctuations but an increase in the fluctuations’ correlation length. Finally
we propose a new model for one dimensional interfaces which is a modification of the solid-
on-solid model and containing an extra entropic term, whose correspondance with physical
systems is yet to be found.
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Résumé en français

La majorité des systèmes statistiques peuvent être décrits par un paramètre d’ordre, comme
la magnétisation moyenne dans les systèmes magnétiques, la densité dans un fluide ou l’orientation
moyenne des polymères dans les cristaux liquides. Les propriétés statiques et dynamiques
de tels systèmes sont bien décrites par la théorie statistique des champs. Dans cette théorie,
le champ φ est soumis à un hamiltonien H(φ), et ses propriétés peuvent être dérivée de la
fonction de partition Z. Lorsque ces systèmes possèdent une transition de phase au point cri-
tique, il y a une discontinuité de l’énergie libre due à la modification des micro-configurations
possibles ; dans les systèmes magnétiques on passe ainsi d’une magnétisation nulle à une
magnétisation finie, les liquides qui étaient auparavant mélangés se séparent, et les polymères
adoptent une direction moyenne commune. Dans la phase ordonnée on retrouve alors des
composantes connexes où la valeur de φ est quasi-constante. Entre ces composantes con-
nexes se situe l’interface entre les phases. Dans cette thèse, nous nous intéressons partic-
ulièrement aux propriétés statiques et dynamiques des interfaces dans des modèles continus
et discrets soumis à des contraintes telles que le confinement et le cisaillement.

Description d’une interface

La première partie de cette thèse est consacrée à la description des interfaces à partir de
la théorie statistique des champs. L’utilisant un champ externe φ4 dans l’Hamiltonien in-
duit une séparation de phase en dessous de la température critique, ce qui donne une in-
terface dont le profil peut-être calculé grâce aux équations dynamiques du modèle A dans
le cas stationnaire. L’énergie libre associée à cette interface est directement reliée à la ten-
sion superficielle σ par la relation de Cahn-Hilliard. Depuis les équations de théorie statis-
tique des champs, en considérant une interface d’épaisseur nulle, on retrouve les équations
d’Edwards-Wilkinson pour le modèle A et le modèle B. La réduction du nombre de degrés
de liberté par cette transformation d’un volume en surface permet leur étude grâce à des
intégrales de chemin.

Ensuite nous expliquons le modèle le plus simple sur réseaux - le modèle d’Ising - qui
décrit un réseau orthonormé de spins avec une interaction entre plus proches voisins plus
un champ externe. Ce modèle, où chaque site du réseau prend la valeur σ1 =±1, permet de
modéliser un système de gaz sur réseau ou de liquides binaires en faisant un changement
de variable sur σi . En appliquant la même approximation d’interface d’épaisseur nulle que
précédemment, on trouve cette fois-ci le modèle Solid-On-Solid. La fonction de partition
SOS a l’avantage d’être diagonalisable grâce à la matrice de transfert. Dans la limite thermo-
dynamique, seul l’état fondamental (qui possède la plus grande valeur propre de la matrice
de transfert) est nécessaire pour obtenir toutes les observables du système.
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Dans ce premier chapitre, une grande importance est également donnée quant à la dif-
férence entre les différents ensembles statistiques. La complexité de l’ensemble canonique
provient de la contrainte sur la hauteur totale de l’interface qui ne peut être intégrée au for-
malisme des matrices de transfert issus de l’ensemble grand-canonique. Pour étudier ces
différences, il faut donc utiliser des méthodes numériques. Dans l’ensemble canonique, il
est également possible d’introduire des états stationnaires hors-équilibre grâce à l’advection
d’un champ de vitesse.

Méthodes numériques

Dans le second chapitre, nous développons les simulations de Monte Carlo Métropolis, qui
permettent d’explorer l’espace des configurations et ainsi obtenir les valeurs moyennes d’observables.
Ces méthodes sont particulièrement adaptées aux systèmes sur réseau comme le modèle
d’Ising ou Solid-On-Solid, dont les implémentations de Glauber ou de Kawasaki fixent l’ensemble
thermodynamique du système.

Néanmoins, l’énergie libre n’est pas une valeur mesurable directement dans les simula-
tions de Monte Carlo, et il faut alors utiliser des méthodes indirectes. La méthode de Vasilyev
consiste à découpler progressivement une rangée du système afin d’obtenir la dérivée de
l’énergie libre par rapport à la taille du système. Cette méthode ne fonctionnant pas dans le
cas du modèle SOS à cause de l’absence de terme de volume dans l’hamiltonien, la méth-
ode Lopes-Jacquin-Holdsworth développée dans le cas d’un champ magnétique uniforme
est plus pertinente. Puisque l’intensité du champ magnétique est la valeur conjuguée de la
magnétisation totale, l’intégrale de la magnétisation entre deux intensités permet d’obtenir
la différence entre l’énergie libre des deux systèmes. Cette méthode utilisant la magnétisa-
tion, elle ne peut être utilisée lorsque le paramètre d’ordre est conservé. Il n’existe dans la
littérature aucune méthode pour mesurer l’énergie libre dans des simulations numériques
de Kawasaki pour le modèle SOS.

Le chapitre se termine avec une petite liste d’astuces pour optimiser et paralléliser le code
numérique.

Interfaces à l’équilibre et effets de taille finie

Lorsque la longueur de corrélation est du même ordre de grandeur que la taille du système,
la contrainte imposée sur les modes mous de fluctuations ajoute une partie singulière à
l’énergie libre. Cette dépendance de l’énergie libre en fonction de la taille du système im-
plique une force thermodynamique qui s’appelle force de Casimir dans le cas des fluctua-
tions du champ électromagnétique entre deux plaques diélectriques parfaitement conduc-
trices, ou effet Casimir critique dans les systèmes critiques. Après avoir exposé ces deux effets
grâce à la mécanique quantique et le groupe de renormalisation, cette force de confinement
est étudiée dans le cas des interfaces confinées.

En utilisant le formalisme de Matsubara pour l’équation du propagateur de l’hamiltonien
dans le cas d’une interface continue soumise à un champ externe, la distribution de proba-
bilité de l’interface, l’énergie libre, la fonction de corrélation à deux points et la longueur de
corrélation sont explcitiés en fonction de l’énergie de l’état fondamental et du premier état
excité. En appliquant ce formalisme à une interface libre et confinée, nous retrouvons des
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résultats connus sur la force thermodynamique. Dans le cas où cette interface ne possède
pas de tension superficielle (comme c’est le cas dans les systèmes critiques), la correction de
taille finie à la tension superficielle proposée par Privman nous permet de retrouver quanti-
tativement le même comportement que pour la force de Casimir critique, ce qui jette un lien
intéressant entre la physique est interfaces et celle des systèmes critiques. Nous utilisons
également ce formalisme dans le cas où l’interface est confinée à cause d’une pression afin
de trouver la hauteur de moyenne de l’interface et sa variance.

Puisque la méthode Lopes-Jacquin-Holdsworth de calcul de l’énergie libre dans les simu-
lations de Monte Carlo n’est pas utilisable dans la dynamique de Kawasaki et que la méthode
de Vasilyev ne l’est pas non plus pour les modèles SOS, nous généralisons la méthode LJH
pour des champs externes non-uniformes, permettant ainsi l’intégration sur une magnétisa-
tion généralisée qui n’est plus conservée dans une dynamique de Kawasaki. La généralisation
de cette méthode permet de démontrer numériquement une ressemblance forte entre les en-
sembles canoniques et grand-canoniques dans le modèle SOS et ouvre la voie à des études
plus poussées de l’effet Casimir critique sur les modèles d’Ising dans l’ensemble canonique.

Ce troisième chapitre s’achève par la diagonalisation exacte de la matrice de transfert
du modèle SOS en absence de potentiel externe, généralisant ainsi les résultats de Privman,
avec une étude des limites à faible et haute température ainsi que dans la limite thermody-
namique.

Le modèle Particles-Over-Particles

Le modèle SOS est un modèle d’interface provenant de l’approximation à basse tempéra-
ture du modèle d’Ising. Nous développons dans ce quatrième chapitre un nouveau modèle
prennant en compte le terme d’entropie associé aux simlations numériques dans le mod-
èle d’Ising et faisant défaut dans SOS, que l’on nomme Particles-Over-Particles. Ce terme
d’entropie apparaît lorsque l’on considère non plus juste la hauteur de l’interface (comme
dans SOS), mais également le nombre de particules en dessous. En labellisant ainsi les partic-
ules, il devient possible de créer des modèles avec M types différents de particules, chacune
étant régie par un coefficient cinétique ou un coefficient de diffusion dans le cas où elles
appartiennent à des ensembles thermodynamiques différents. De nombreuses difficultés
surviennent lors de l’implémentation de Metropolis sur dans ce modèle et les applications
physiques sont laissées en suspens. Ces deux questions sont laissées comme exercice pour
les lecteurs.

Interfaces stationnaires hors-équilibre

Lorsqu’une interface est advectée par un champ de vitesse, sa largeur et sa longueur de cor-
rélation sont modifiées. Le cinquième et dernier chapitre s’intéresse à un écoulement uni-
forme et constant.

À cause de l’invariance galiléenne de translation dans le référentiel de l’écoulement, l’équation
dynamique du modèle B reste inchangée. Le cas d’un champ soumis au modèle B et couplé
à un autre champ soumis au modèle A (afin de briser l’invariance galiléenne) a été l’objet
d’un article publié dans Journal of Statistical Mechanics: Theory and Experiment en mars
2020, et la première partie de ce chapitre est une reproduction de l’article original. À partir
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des équations couplées donnant le modèle C, une relation fermée pour la dynamique d’une
interface soumis à un écoulement uniforme et constant dans l’espace de Fourrier est trou-
vée. Le résultat principal de cet article est la preuve que des systèmes hors-équilibre peuvent
avoir des propriétés similaires à celles des systèmes à l’équilibre via un redimensionnement
effectif des observables. Dans les systèmes où l’écoulement est uniforme, conformément aux
expériences de Derks et aux simulations numériques de Smith, nous trouvons que la tension
superficielle effective de l’interface augmente avec l’intensité de l’écoulement. De plus, nous
montrons comment ce modèle permet de décrire l’interface entre deux phases de colloïdes
ayant une activité différente en jouant sur la température de chaque phase.

Dans le cas ou l’écoulement n’est pas appliqué qu’au niveau de l’interface, des études
numériques du modèle SOS montrent une diminution de la tension superficielle en fonction
de l’intensité de l’écoulement, contrairement aux calculs précédents, mais en accord avec
la génération de vagues par le vent sur l’eau. Des pistes de réflexion sont apportées sur la
différence entre les deux types de cisaillement.
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Introduction

Most statistical mechanical models can be described using an order parameter, such as the
mean magnetization in a magnetic system, the density of a liquid or gas or the average ori-
entation of liquid crystals [1]. During a continuous phase transition, the correlation length
diverges [2]. When the correlation length becomes of the same order of magnitude as the ex-
perimental or numerical system size, finite size effect become stronger, leading to interesting
new physics, for example the critical Casimir effect [3].

In a system where the order parameter is conserved, or when it is fixed at values corre-
sponding to two different phases, an interface is formed between both phases. In systems
with a rectangular geometry this interface is at flat at first order as the system tends to min-
imise the area between the two phases to minimize the interfacial energy generated by the
surface tension. However thermal fluctuations induce fluctuations of the interface. From a
theoretical point of view, one can study the statistical properties, both static and dynamic, of
interfaces between two phases through different though complementary methods. Histori-
cally, the first method was through lattice models, and more precisely the Ising model [4, 34].
Those models are well-suited for numerical analysis due to their discrete nature, while posing
analytical challenges due to the large number of degrees of freedom. Analytic studies of the
interface are limited to two dimensional systems [5]. Numerical simulations of phase sepa-
rated Ising models are straightforward, whilst the identification of the interface and unam-
biguous definition of the interface’s position are not obvious. For this reason coarse grained
models of the interface have been proposed. The Solid-On-Solid model [6] is an approxima-
tion of the Ising model in d dimensions which describes the position of an interface under
certain simplifying circumstances. For two dimensional Ising systems this means that the
transfer matrix method can be applied either analytically or numerically and the results are
directly comparable with numerical simulations.

Coarse graining the Ising model leads the Landau-Ginzburg Hamiltonian description in
terms of a continuous field [7]. Using this description one can derive the equations for both
the dynamics and statics of the interface. In particular, within this formalism the effective
partition function of the interface describes a random walker in a potential, then using path
integrals [8] two dimensional systems can be analysed using a quantum mechanical treat-
ment.

When modeling experiments using statistical mechanics it is important to identify the
correct thermodynamic ensemble to describe the system. For instance in an Ising spin which
describes interacting spins with s = ±1 the total magnetisation is not necessarily conserved
as a single spin can change its sign. However if the spins’ sum is fixed and each spin can
exchange with each other by swapping sites (to describe a lattice gas for example), the two
ensembles are clearly different. It is thus interesting to study how ensemble differences in
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the underlying lattice model affect the statics and dynamics of interfaces in these models.
The thesis’ outline is as following :

• In the first chapter we explain how the interface’s statics can be modeled in terms of
various discrete and continuous interface models. In particular we review phase order-
ing kinetics for the evolution of the order parameter in coarse grained systems, from
which one can deduce the equilibrium dynamics of the interface using a method in-
troduced by Bray and coworkers [9]. Discrete models are convenient for numerical
studies of the interfaces. The most famous one is the Ising model, which is can be stud-
ied in both the canonical and grand-canonical ensembles, even though the interface
has no formal numerical definition. The interface approximation of the Ising model
is called the Solid-On-Solid model, which can be adressed through the transfer matrix
method. After explaining how those discrete models work, we discuss the case of out-
of-equilibrium interfaces, and how the driving affect the properties in experimental
and numerical studies.

• In the second chapter we discuss the basics of numerical simulations [10] for lattice
systems, and in particular two methods to compute the free energy for equilibrium
systems. In the first method by Vasiliyev et al, its derivative is computed with respect to
the system size by decoupling a layer of the system [11], a method which does not work
for SOS models . For SOS models it is thus more convenient to use the Lopes-Jacquin-
Holdsworth method [12] which gives the difference of free energy between two points
in parameter-space by integrating over the total magnetization. We also discuss some
numerical tips we have found particularly useful.

• The third chapter is devoted to finite size effects for various models. A particularly in-
teresting manifestation of finite size effects is the so called Casimir interaction [13].
For completeness we describe the original quantum calculation of Casimir for two per-
fectly conducting plates at zero temperature [14], the generalization to arbitrary di-
electric materials [15] and the critical Casimir effect which was first predicted by Fisher
and de Gennes which is due to thermal fluctuations in critical or near critical systems.
A natural question to ask is whether interface models can capture the same finite size
scaling as predicted by Fisher and de Gennes. To this end we analyse finite size effects
in the continuous elastic line model where the underlying interface is described by a
Brownian motion in an external potential. These models have been studied extensively
in the literature but we find a number of new results. First we consider an elastic surface
(corresponding to the Edwwards-Wilkinson model) confined between two hard walls.
The resulting free energy is well known and does not correspond to what is expected
from the critical Casimir effect, whilst we show that by including a phenomenological
finite size correction to the surface tension (or line stiffness) proposed by Privman [16]
one can recover the quantitative form predicted by the critical Casimir effect. We also
derive the statistics of the equilibrium interface, in particular the fluctuations of the
integrated height (corresponding to the average magnetisation in a spin model). Then
we analyse the so called Airy line, corresponding to an interface above a hard wall but
with a linear potential (corresponding to an applied pressure in the constant pressure
ensemble) pushing the interface toward the wall.
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Then, we generalize the LJH method [12] for the free energy’s measurement in numeri-
cal simulations for any external field, which allows to use it in conserved dynamics. The
method is used in the case of an exotic potential in SOS, both in Glauber and Kawasaki
dynamics, in agreement with transfer matrix results.

Finally we examine finite size effects in the Solid-on-Solid model. While first analysed
by Privman [16], we give a complete derivation allowing to compute the correlation
length and to show that for large systems the physics is essentially the same as for con-
tinuum Brownian models, while determining the effective surface tension.

• In the fourth chapter we introduce a new d −1 lattice model similar to SOS in which we
have taken into account the entropy. This model, that we call Particles-Over-Particles,
takes the litteral definition of the height of the interface by assuming the existence of
particles under it. Through this lens, we are able to form systems with many different
types of particles which are in different statistical ensembles and different activities,
and show the numerical limitations that have to overcame.

• The last chapter explains how uniform driving alters the properties of the interface.
The first section is essentially a published paper [17], where we consider an interface
model which can be driven out of equilibrium by a uniform driving field. In order for a
uniform field to have an effect on the system we introduce two fields, a colloidal field
with model B conserved dynamics and a solvent field with model A dynamics. This
combination of dynamics is called model C dynamics [18]. The system is driven out
of equilibrium by assuming that the driving acts only on the colloidal field. Using the
method of Bray et al [9] we derive the interface dynamics and compute its correlation
function in the resulting non-equilibrium steady state. The properties are considerably
different to the standard capillary wave properties of equilibrium surfaces and some of
the results can be interpreted in terms of an effective surface tension. The calculations
exhibit some of the phenomenology seen in experiments on sheared interface [19]. Fi-
nally we discuss the same model without driving but with different temperatures for
the two fields to simulate active colloid systems, again a rich phenomenology of non-
equilibrium states emerges. Afterwards we show how uniform driving in SOS model
decreases surface tnsion and discuss briefly the physical difference between this sys-
tem and model C dynamics stated prior.

This thesis has been possible thanks to the ANR’s grant FISICS, the Laboratoire Onde
Matière d’Aquitaine from Université de Bordeaux, and the Laboratoire de Physique at ENS
Lyon. The numerical simulations benefited from the numerical resources of the Mésocentre
de Calcul Intensif Aquitain [20], with the help of Nguyen Ky Nguyen. All my numerical codes
can be found on Github [21]. I also wish to thank Josiane Parzych (LOMA) and Laurence
Mauduit (ENS LYON) for all the administration procedures and their support.

xv



CONTENTS

xvi



Chapter 1

Equilibrium interface dynamics

This chapter is a review of the dynamics of statistical systems, and how phase transitions - in
particular those who possess a phase separation - occur dynamically [18]. The most famous
example is the Ising model without any external field, its order parameter being the total
magnetization.

In the high temperature phase, the system is homogeneous and its total magnetization
is zero, while below the critical temperature there will be phase separation. When the order
parameter is not conserved (Glauber dynamics or Model A), one the two phases takes over
the whole system due to spontaneous symmetry breaking. In a continuous phase transition
where the critical point is reached from the disordered state to the ordered stated, the domain
size - equal to the system’s correlation length - diverges close to the critical temperature TC.
In a thermodynamical system it becomes infinite, implying that the system takes an infinite
amount of time to reach equilibrium : it’s the critical slowing down. The process of domain
growth is known as coarsening and phase ordering kinetics is the theory that has been devel-
oped to understand the phenomenon of coarsening[22]. In Fig 1.1, we show an example of
coarsening in the Ising model with respect to time, where one phase will take over the whole
system due to its finite size. In the case of an infinite system, we talk about spinodal decom-
position. When the order parameter is conserved (Kawasaki dynamic or Model B), the system
locally separates into two phases of opposite mean magnetization divided by an interface
whose surface minimizes the energy between both phases. This interface is characterised by
its surface tension and its average position.

While the phase diagram of a system can be determined via its Hamiltonian and equi-
librium statistical mechanics, the dynamics of coarsening depend on the details that do not
show up in single time thermodynamic observables. Therefore, one needs to construct dy-
namical models that capture the underlying evolution of the state of the system. In particular,
there is a big difference between equilibrium systems where the order parameter is conserved
and those where it is not conserved in the thermodynamic limit.
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t=0 MC t=100 MC

t=400 MC t=1000 MC

Figure 1.1: Numerical simulations of coarsening from a quench from a disordered state T =∞ to an
ordered state T = T2D,C [23] for different times, in Monte Carlo steps, for a 600×600 system with non-
conserved Glauber dynamics and periodic boundary conditions.

1.1 Models for equilibrium fields

1.1.1 Statics of systems with a finite number of degrees of freedom

Measuring observables in experimental setups means to measure the derivative of the par-
tition function Z with respect to its conjugate variable. This measure is done with a certain
degree of spatial and temporal resolution, which means in a statistical language that they
measure the average of the observable over some space and time. If Φ(x, t ) is the physical
field of our system, our device having a temporal resolution of ∆t and a spatial resolution
over a volume V will measure

φ(x, t ) = 1

V∆t

∫ t

t−∆t
d t ′

∫
V

dx′Φ(x′, t ′) (1.1)

This means that one is naturally lead to consider statistical field theories where the system
is described in terms of a local field φ(x, t ). We start to examine the case of a system with a
finite number of degrees of freedom.

Consider a system in the canonical ensemble with a Hamiltonian H(q) where qi for 1 ≤ i ≤
N represent a finite number of continuous spatial degrees of freedom and where in a classical

2
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system we have already integrated over the corresponding momenta. The partition function
for the system is given by

Z =
∫

dqexp
(−βH(q)

)
(1.2)

In general the integral which gives the partition function cannot be computed analytically. In
equilibrium, the probability density function Peq (q) of the degrees of freedom is given by

Peq (q) = exp
(−βH(q)

)
Z

(1.3)

The simplest approximation to compute Z is the mean field approximation where the in-
tegral is approximated by the integrand at its largest value - in mathematics this is the Laplace
method for approximating an integral and in this context it is just an expansion about the
minimum energy configuration of the system. The mean field approximation is thus

ZMF = exp
(−βH(q∗)

)
(1.4)

where q∗ is the value of q which minimises H (note that the approximation becomes exact in
the zero temperature limit - β→∞ - as the system will minimise its energy). The values q∗

i
are determined from

∂H

∂qi
|q=q∗ = 0 (1.5)

Within this approximation any thermodynamic observable is given by

〈 f (q)〉 = f (q∗) (1.6)

In order to reach the correct equilibrium Gibbs-Boltzmann distribution, the following
Langevin equation

d qi

d t
=−Li j

∂H(q)

∂q j
+ηi (t ) (1.7)

needs to satisfy some conditions. Here, Li j is a matrix operator which has to be carefully
chosen andηi (t ) is zero mean Gaussian white noise with correlation function

〈ηi (t )η j (t ′)〉 = Γi jδ(t − t ′) (1.8)

The Gaussian white noise represents the effects of thermal fluctuations on the system, and
we assume that the correlation time of these fluctuations is extremely short with respect to
the dynamics of the degrees of freedom qi (in fact due to critical slowing down, the dynamics
become very slow close to the critical point). There is no momentum term in this Langevin
equation and for this reason it is often called the overdamped Langevin equation.

As Eq. (1.8) is for a correlation function, the matrix Γi j must be symmetric and cannot
have any negative eigenvalues.

In the absence of noise or thermal fluctuations, so at zero temperature, the system min-
imises its energy. Therefore if

∂H(q)

∂q j
= 0 (1.9)

with no noise then we have d qi
d t = 0, that is to say it is the term ∂H(q)

∂q j
that drives the dynamics

in that case. As long as the matrix L−1
i j exists the zero temperature dynamics will take the

3
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system to the local minimum of H and to the absolute minimum in absence of metastable
configurations.

Under these assumptions, the Fokker-Planck equation for the probability density func-
tion of the degrees of freedom is

∂p(q, t )

∂t
= ∂

∂qi

[
1

2
Γi j

∂p(q, t )

∂qi
+p(q, t )Li j

∂H(q)

∂q j

]
(1.10)

This can be written as
∂p(q, t )

∂t
+ ∂

∂qi
Ji (q, t ) = 0 (1.11)

where the J(q, t ) is the probability current. Since the system is in equilibrium with zero cur-
rent when p(q, t ) = Peq (q) as given by Eq. (1.3), this gives[

−β
2
Γi j +Li j

]
∂H(q)

∂q j
= 0 (1.12)

which holds for any choice of H is we chose

Γi j = 2TLi j (1.13)

where Boltzmann’s constant has been set to kB = 1.

1.1.2 Statistical field theory

The partition function of a system with Hamiltonian H[φ] depending on a continuous field
φ(x) is given by a functional integral

Z =
∫

d [φ]exp(−βH[φ]), (1.14)

the functional integral over all possible fieldsφ can be taken as a limit whereφ is defined at a
finite number of points on a lattice where the lattice spacing is taken to zero. In many cases,
the system has been coarse-grained andφ represents a spatially varying order parameter, for
instance the local density averaged over some small volume. In this case the Hamiltonian H
is strictly speaking a free energy and contains terms that depend on the temperature.

The mean field approximation to partition function is then given by

ZMF = exp(−βH[φMF]) (1.15)

whereφMF is the mean field solution which minimises H. By definition of a functional deriva-
tive

F[φ+δφ]−F[φ] =
∫

dx
δF

δφ(x)
δφ(x), (1.16)

if a field φ maximises H we must have

δH

δφ(x)
= 0 (1.17)

4
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Figure 1.2: Double-well potential (1.19) forλ= 1 in function of the temperature difference with respect

to the critical temperature with m2 = T−TC. In the ordered phase, the minima are at φC =±
√

−6m2

λ ,
while for the ordered phase it is at φC = 0. In black, the addition of a uniform magnetic field h(x) = 1
makes the positive phase metastable.

We now consider the standard Landau-Ginzburg Hamiltonian [1] describing Ising like
systems where

H[φ] =
∫

dx
κ

2
[∇φ]2 +V(φ) (1.18)

The first term represents an energetic cost of varying the field φ. The second potential
term has two minima at φ = ±φc , and, in the low temperature or phase separated phase,
without loss of generality we can chose V(φc ) = V(−φc ), while it has a single minimum at
φ= 0 in the high temperature phase.

The standard potential for phase separations, called theφ4 model, is given by the double-
well

V(φ) = 1

2
m2φ2 + λ

4!
φ4 (1.19)

where m2 = T−TC. For m2 < 0, the minima are atφC =±
√
−6m2

λ ±, while at m2 ≥ 0, the single
minimum is at φC = 0, as shown in Fig 1.2. We can also couple our system with the magnetic
field of Hamiltonian

H1 =−
∫

d d xh(x)φ(x) (1.20)

in order to favorise one phase over the other one. As the only important feature of this po-
tential is to have phase separation in two phases, the absolute value of φC is irrelevant. For
example, if φ describes a density field, the φ4 potential will have two minima at φC = 0 and
φC = 1, while for spin systems it will be φC =±1.

It is easy to see that
δH

δφ(x)
=−κ∇2φ(x)+V′(φ) (1.21)

5
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By analogy with discrete systems from Eq. (1.7), the continuous Langevin equation has the
form

∂φ(x)

∂t
=−L

δH

δφ(x)
+η(x, t ) (1.22)

The white noise correlator should have the form

〈η(x, t )η(x′, t )〉 = δ(t − t ′)Γ(x,x′) (1.23)

where here Γ(x,x′) is an operator (before it was a matrix) defined by its action on functions f
as

Γ f (x) =
∫

dx′Γ(x,x′) f (x′) (1.24)

and L is also an operator with

L f (x) =
∫

dx′L(x,x′) f (x′) (1.25)

Following the same arguments for systems with a finite number of degrees of freedom, both
operations must follow the relation

Γ(x,x′) = 2TL(x,x′) (1.26)

which is sometimes called the fluctuation dissipation theorem as it essentially is equivalent.
The simplest form of dynamics is given by L(x,x′) = αδ(x− x′) which gives the model A

dynamics
∂φ(x)

∂t
=−α δH

δφ(x)
+η(x, t ) (1.27)

with the noise correlator

〈η(x, t )η(x′, t )〉 = 2Tαδ(t − t ′)δ(x−x′) (1.28)

The average value of φ

φ(t ) = 1

V

∫
dx φ(x, t ) (1.29)

is clearly not generally conserved by this dynamics. Model A corresponds to a system in the
grand-canonical ensemble, where α is the kinetic coefficient related to the relaxation time of
the system [18].

Model B dynamics amounts to choosing

L(x−x′) =−D∇2δ(x−x′) (1.30)

The fact that L is a positive semi-definite operator can be seen by taking its Fourier transform.
The evolution equation here is

∂φ(x)

∂t
= D∇2 δH

δφ(x)
+η(x, t ) (1.31)

where
〈η(x, t )η(x′, t )〉 =−2TDδ(t − t ′)∇2δ(x−x′) (1.32)
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By introducing the vectorial white noise with components ηi (x, t ) such that

〈ηi (x, t )ηi (x′, t ′)〉 = δi jδ(x−x′)δ(t − t ) (1.33)

where δi j = 1 for i = j and is zero otherwise, it can be rewritten as

η(x, t ) =∇·η(x, t ) (1.34)

As one can verify the two noises have the same correlation function. In this way Eq. (1.31)
becomes

∂φ(x)

∂t
=∇· [D∇ δH

δφ(x)
+η(x, t )] (1.35)

From this it is easy to see that the order parameter is conserved - thus model B describes
conserved phase ordering dynamics. This model corresponds to the canonical ensemble,
and is useful to describe diffusion or accretion systems.

Without the noise fluctuations, Eq. (1.27) and Eq. (1.31) are called the Time Dependent
Ginzburg-Landau equation [24] and the Cahn-Hilliard equation[25] equations, which gives
the mean field’s dynamics.

1.1.3 Surface tension

Minimizing the free energy can be done by simply choosing φ(x) = φc or φ(x) = −φc every-
where, which amounts to a free energy of F = H[φc ] = 0. However in a system with a con-
served order parameter ∫

dx φ(x) = 0 (1.36)

the homogeneous solution cannot hold. In this case the system separates into two homoge-
neous phases where φ(x) = ±φc . By setting the interface at z = 0 and taking the field profile
perpendicular to it φ(x) =φK(z) (K standing for kink as it is known as the kink solution in the
literature) where limz→∞ =−φc and limz→∞ =−φc , Eq. (1.21) gives

−κ d 2

d z2
φK(z)+V′(φK) = 0 (1.37)

The interface Hamiltonian is written as

H[φK] = A
∫

d z
κ

2

(
dφK(z)

d z

)2

+V(φK(z)) (1.38)

where A is the surface area of the system in the plane perpendicular to the direction z. Mul-
tiplying Eq. (1.37) by dφ/d z and by integrating we find

− κ

2
(

dφK

d z
)2 +V(φK) = C (1.39)

where C is a constant. As φK(z) →±φc as z →±∞ and V(±φc ) = 0, the priore equation gives
C = 0, which allows to rewrite the interface Hamiltonian as

H[φK] = A
∫

d z κ

(
dφK(z)

d z

)2

(1.40)
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Figure 1.3: Surface tension (1.41) versus ξ for the φ4 solution (1.43).

The Cahn-Hilliard estimate of the surface tension [25] is defined as the free energy per unit
area

σ=
∫

d z κ

(
dφK(z)

d z

)2

(1.41)

In the case of the φ4 model defined at Eq. (1.19), Eq. (1.37) becomes

κφ′′
K(z) = m2φK(z)

(
1+φCφK(z)2) (1.42)

This potential is only defined by the ratio between m2 and λ, so without loss of generality we
set φC = 1. The solution becomes

φK(z) = tanh

(
z

ξ

)
(1.43)

where ξ=
√

−2κ
m2 . This correlation length diverges when T → TC. From Fig 1.3 we see that the

bigger the correlation length of the system, the smaller the surface tension is. The experimen-
tal study of quasi-critical systems, which have fluctuations at a macroscopic length scale, is a
good way to probe the properties of ultra-low surface tension systems [26]. Such systems are
very susceptible to hydrodynamic instabilities caused by thermal noise, as in microfluidics
for example [27].

1.2 Models for equilibrium interfaces

1.2.1 Basic continuous model

The simplest effective model of interface is to assume that the interface is parameterised by
a height profile which is a single-valued function h(r), where x = (r, z). The interface hamil-

8



CHAPTER 1. EQUILIBRIUM INTERFACE DYNAMICS

tonian is thus
H[h] =σA[h] (1.44)

where A[h] is the area of the interface. The interface area is given by

A[h] =
∫

A
dr

√
1+ [∇h]2 (1.45)

where the integral is over the plane perpendicular to the z axis which is taken to be of area A.
When the fluctuations of the interface are small, an expansion to quadratic order in h gives

H[h] = Aσ+ σ

2

∫
A

dr [∇h]2 (1.46)

The first term is independent of the height, so the effective Hamiltonian for the surface be-
comes

He f f [h] = σ

2

∫
A

dr [∇h]2 (1.47)

The basic model describing the height of an interface at z = h(r) above a plane with coor-
dinates r has the Hamiltonian

H[h] =
∫

dx
σ

2
[∇h(x)]2 +V(h(x)) (1.48)

The first term corresponds to the surface energy. In principle surfaces can also have bending
energies. While surface energies correspond to stretching the surface to increase its size,
bending energies correspond to curving the surface. The standard bending energy for small
surface energies [28] is given by

Hb[h] =
∫

dr
κb

2
[∇2h(r)]2 (1.49)

where κb is called the bending rigidity. The term V(h) represents the potential energy of the
surface per unit area. For instance, if the surface interacts via an infinite hard-core potential
with a solid surface at z = 0, it can be modelled by the potential V(z) = 0 for z > 0 and V(z) =∞
for z ≤ 0. Another example is where the surface describes the surface of a liquid such as water,
again with a solid surface at z = 0, in the presence of gravity the potential energy of the water
column above the area element dx is given by

δV =
∫ h(r)

0
d z ρg z = 1

2
ρg h2(r) (1.50)

where ρ is the (mass) density of the liquid. This then gives

H[h] =
∫

dr
σ

2
[∇h(r)]2 + 1

2
ρg h2(r) (1.51)

The correlation length of the interface is given by

ξ=
(
σ

ρg

) 1
2

(1.52)
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In the more general context, if V(h) has a minimum at some point hm , first order expansion
gives h = h f (x)+hm , where h f (x) represents the height fluctuations about the mechanically
stable flat interface h(x) = hm , which gives the effective Hamiltonian for the fluctuations

He f f [h f ] =
∫

dr
σ

2
[∇h f (r)]2 + 1

2
V′′(hm)h2

f (r) (1.53)

where the constant term AV(hm) is dropped. The above field theory is Gaussian and so, when
the approximations made to derive it are valid, all of the statistical properties of the height
fluctuations can be deduced. However for general potentials V(h) the model cannot be solved
exactly in two dimensions but can in principle be solved in one dimension as we will see
below.

1.2.2 Effective dynamics of interface heights

From the original phase ordering kinetics, one can derive an approximation for the dynamics
of the interface’s height. Here we use the method of Bray and Cavagnha [9, 29], which was
used to study the dynamics of sheared interfaces, in the absence of shear to determine the
dynamical properties of interfaces in phase separated systems for both model A and model
B dynamics.

Imagining that the system is phase separated in the z direction by an interface whose
average is set to be at z = 0, we set

φ(z,r, t ) = f (z −h(r, t )) (1.54)

where f (z) =φK(z) is the kink solution from mean field theory.

1.2.2.1 Model A dynamics

For model A dynamics, substituting Eq. (1.54) into Eq. (1.27) and making use of the following
results

∂ f (z −h(r, t ))

∂t
=− f ′(z −h(r, t ))

∂h(r, t )

∂t
(1.55)

∇ f (z −h(r, t ) =[ez −∇h(r, t )] f ′(z −h(r, t )) (1.56)

∇2 f (z −h(r, t )) = f ′′(z −h(r, t ))−∇2h(r, t ) f ′(z −h(r, t ))+ [∇h(r, t )]2 f ′′(z −h(r, t )) (1.57)

we find

− f ′(z −h(r, t ))
∂h(r, t )

∂t
=ακ[

f ′′(z −h(r, t ))−∇2h(r, t ) f ′(z −h(r, t ))+ [∇h(r, t )]2 f ′′(z −h(r, t ))
]

(1.58)

−αV′( f ′(z −h(r, t )))+η(r, z, t ) (1.59)

After multiplying both sides of this equation by f ′(z −h(r, t )) and defining ζ = z −h(r, t ), we
integrate ζ over [−∞,∞] while using the following identities∫ ∞

−∞
dζ f ′(ζ) f ′′(ζ) =[

1

2
f ′2(ζ)]∞−∞ = 0∫ ∞

−∞
dζ f ′(ζ)V′( f ) =

∫ ∞

−∞
dζ

dV( f )

dζ
= [V( f (ζ))]∞−∞ = 0

10
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Note that the first relation above holds as f (ζ) = ±φc as ζ→±∞ and the second as V(φc ) =
V(−φc ) = 0. The terms that are left then give

−
∫ ∞

−∞
f ′2(ζ)dζ

∂h(r, t )

∂t
=−α

∫ ∞

−∞
f ′2(ζ)dζ κ∇2h(r, t )+

∫ ∞

−∞
dζη(r,ζ+h(r, t )) f ′(ζ) (1.60)

Now using the Cahn-Hillard estimate of the surface tension, Eq. (1.41) thus becomes

σ

κ

∂h(r, t )

∂t
= ασ∇2h(r, t )+ξ(r, t ) (1.61)

where the noise term is given by

ξ(r, t ) =−
∫ ∞

−∞
dζη(r,ζ+h(r, t )) f ′(ζ) (1.62)

The noise term has zero mean and correlation function

〈ξ(r, t )ξ(r′, t ′)〉 =2αTδ(t − t ′)δ(r− r′)
∫ ∞

−∞
dζdζ′δ(ζ−ζ′) f ′(ζ) f ′(ζ′)

=2αTδ(t − t ′)δ(r− r′)
∫ ∞

−∞
dζ f ′2(ζ) = 2αTσ

κ
δ(t − t ′)δ(r− r′) (1.63)

This now gives
∂h(r, t )

∂t
= κα∇2h(r, t )+η(r, t ) (1.64)

where

〈η(r, t )η(r′, t ′)〉 = 2αTκ

σ
δ(t − t ′)δ(r− r′) (1.65)

Now defining α′ = κα
σ we can write

∂h(r, t )

∂t
= α′σ∇2h(r, t )+η(r, t ) (1.66)

This has the form of model A dynamics (as in Eq. (1.27)) for the height profile with Hamilto-
nian He f f as given in (1.47), that is to say

∂h(r, t )

∂t
=−α′δHe f f [h]

δh(r)
+η(r, t ) (1.67)

with
〈η(r, t )η(r′, t ′)〉 = 2Tα′δ(t − t ′) (1.68)

This dynamical calculation is thus consistent with the idea of describing the surface in terms
of a height variable with an energy given by the surface tension. The equation (1.67) is known
as the Edwards-Wilkinson equation [30, 31]. This equation can be used to determine how the
domains of a coarsening system grow at low temperatures. To do this we ignore the noise
term and assume that at t = 0 the correlations of the height are short range, so

C(r− r′,0) = 〈h(r,0)h(r′,0)〉 = C0δ(r− r′) (1.69)

11
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In Fourier space the noiseless Edwards-Wilkinson equation becomes

∂h̃(k, t )

∂t
=−α′σk2h̃(k, t ) (1.70)

and so
h̃(k, t ) = h(k,0)exp(−α′σk2t ) (1.71)

The two point correlation function becomes

〈h̃(k, t )h̃(k′, t ′)〉 = 〈h(k,0)h(k′,0)〉exp(−α′σ[k2 +k ′2]t ). (1.72)

Now recall that if
〈h(r, t )h(r′, t ′)〉 = C(r− r′, t ) (1.73)

then
〈h̃(k, t )h̃(k′, t ′)〉 = (2π)dδ(k+k′)C̃(k, t ) (1.74)

where

C̃(k, t ) =
∫

drexp(−i k · r)C(r, t ) (1.75)

is the Fourier transform of the correlation function, which is a function of a single position
due to invariance by translation in space, and d is the dimension of space (so here d = 2 for a
surface in 3d space and d = 1 for a surface in a 2d space). Putting all this together gives

C̃(k, t ) = C0 exp(−2α′σk2t ) (1.76)

Inverting the Fourier transform, we have

C(r, t ) = C0

(8πα′σt )
d
2

exp(− r2

16πα′σt
) (1.77)

From this we see that if C(r, t ) ∼ g ( r
`(t ) )r (t ) then the length scale `(t ) ∼ t

1
2 . This agrees with

what is found in the Ising model under Glauber dynamics, where the growth exponent is also
given by z = 1

2 [32].

1.2.2.2 Model B dynamics

For model B dynamics, taking the same ansatz as in Eq. (1.54), model B dynamics is rewritten
as

−∇−2∂φ(x, t )

∂t
=−D

δH

δφ(x)
+θ(x, t ) (1.78)

Here −∇−2 represents the Green’s function G which obeys to

∇2G(x−x′) =−δ(x−x′) (1.79)

and

θ(x, t ) =−∇−2η(x, t ) =
∫

dx′G(x−x′)η(x, t ) (1.80)
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The correlation function of θ(x, t ) is given by

〈θ(x, t )θ(y, t ′)〉 =−2DTδ(t − t ′)
∫

dx′G(x−x′)dy′G(y−y′)∇2δ(x′−y′)

=−2DTδ(t − t ′)
∫

dx′G(x−x′)dy′∇2G(y−y′)δ(x′−y′)

=2DTδ(t − t ′)G(x−y) (1.81)

where we have integrated by parts in the second line and used

−∇2G(y−y′) = δ(y−y′) (1.82)

in the third.
Now multiplying by f ′(z −h(r, t )) and integrating z over [−∞,∞], we find

−
∫

d z f ′(z −h(r, t ))
∫

d z ′dr′ G(z − z ′,r− r′) f ′(z ′−h(r′, t ))
∂h(r′, t )

∂t
=−Dσ∇2h(r, t )+χ(r, t ),

(1.83)

with the noise

χ(r, t ) =
∫

d z f ′(z −h(r, t ))θ(r, z, t ). (1.84)

Assuming that the height fluctuations are small, only the lowest order terms in h in the deter-
ministic terms and the noise are kept, which we will see later is compatible thermodynami-
cally. The equation becomes

−
∫

d z f ′(z)
∫

d z ′dr′ G(z − z ′,r− r′) f ′(z ′)
∂h(r′, t )

∂t
=−Dσ∇2h(r, t )+χ(r, t ) (1.85)

and now the noise is given by

χ(r, t ) =
∫

d z f ′(z)θ(r, z ′, t ) (1.86)

This equation which is linear in h can now be Fourier transformed in the plane r. In terms of
the Fourier transform of h we find

−
∫

d z f ′(z)
∫

d z ′dr′ G̃(z − z ′,k) f ′(z ′)
∂h̃(k, t )

∂t
= Dk2σh̃(k, t )+ χ̃(k, t ) (1.87)

The Fourier transform of G in the r plane obeys

d 2G̃(z − z ′,k)

d z2
−k2G̃(z − z ′,k) =−δ(z − z ′) (1.88)

and the solution to this equation (with the boundary condition that G̃(z − z ′,k) → 0 as |z −
z ′|→∞) is

G̃(z − z ′,k) = exp(−k|z − z ′|)
2k

(1.89)

where the notation k = |k| is used, so k is positive. Using the sharp interface approximation,
we write

f (z) = 2φcδ(z) (1.90)

13
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that is to say we have replaced the smooth kink solution with a step like solution f (z) =
φc sgn(z). This then gives

−4φ2
c G̃(0,k)

∂h(k, t )

∂t
= Dk2σh̃(k, t )+ χ̃(k, t ) (1.91)

which is rewritten as
∂h̃(k, t )

∂t
=−Dk3σ

2φ2
c

h̃(k, t )+ ξ̃(k, t ) (1.92)

with

ξ̃(k, t ) =− k

2φ2
c
χ̃(k, t ) (1.93)

where

χ̃(k, t ) =
∫

d z f ′(z)θ̃(k, z, t ) (1.94)

The correlation function of θ̃(k, t ) is

〈θ(k, t )θ(k′, t ′)〉 = 2DT(2π)dδ(t − t ′)δ(k+k′)G̃(z − z ′,k) (1.95)

From this the correlation function in Fourier space is

〈χ(k, t )χ(k′, t ′)〉 = 2DT(2π)dδ(t − t ′)δ(k+k′)
∫

d zd z ′ f (z) f (z ′)G̃(z − z ′,k) (1.96)

Now, using the sharp interface approximation Eq. (1.90), we obtain

〈χ(k, t )χ(k′, t ′)〉 = 2DT(2π)dδ(t − t ′)δ(k+k′)
2φ2

c

k
(1.97)

and consequently

〈ξ(k, t )ξ(k′, t ′)〉 = 2DT(2π)dδ(t − t ′)δ(k+k′)
k

2φ2
c

(1.98)

The interface dynamics for model B in Fourier space is thus

∂h(k, t )

∂t
=−Dk3σ

2φ2
c

h̃(k, t )+ ξ̃(k, t ) (1.99)

which in real space this has the form

∂h(r)

∂t
=−L

δHe f f

δh(r)
+ξ(r, t ) (1.100)

where the operator L is defined via its Fourier transform

L̃(k) = Dk

2φ2
c

(1.101)

Now if we look at Eq. (1.99) we see that the solution without noise is a function of k3t , which
in real space corresponds to x3/t . From this we see that the coarsening length scale grows

as `(t ) ∼ t
1
3 and consequently the coarsening exponent is z = 1

3 . Coarsening for conserved
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model B or diffusive dynamics is slower than that of model A [33]. One of the reasons for this
slowing down with respect to nonconserved dynamics is that material must be physically
transported by diffusion (by exchanging spins in the language of lattice spin models), where
as for model A dynamics the composition can change at any given point by spin flipping.
As a cautionary note, if we had taken the Hamiltonian in Eq. (1.47) and applied model B
conserved dynamics, as in Eq. (1.31), for the height field we would not have obtained this
equation.

Without using the sharp interface approximation, Eq. (1.87) can be written as

Q(k)
∂h̃(k, t )

∂t
=−Dk2σh̃(k, t )− χ̃(k, t ) (1.102)

where

Q(k) =
∫

d zd z ′ f ′(z) G̃(z − z ′,k) f ′(z ′) (1.103)

Notice that from Eq. (1.102) that

〈χ(k, t )χ(k′, t ′)〉 = 2DT(2π)dδ(t − t ′)δ(k+k′)Q(k) (1.104)

and so
∂h̃(k, t )

∂t
=−L̃(k)µ̃(k)+η(k) (1.105)

where µ(x) = δHe f f /δh(x), L̃(k) = D/Q(k) and

〈η(k, t )η(k′, t ′)〉 = 2T(2π)dδ(t − t ′)δ(k+k′)L̃(k) (1.106)

1.3 Lattice models

1.3.1 The Ising model

The Hamiltonian of an Ising model of size L′×L′×L and composed of N sites i whose value
correspond to σi =±1 is

H =− ∑
〈i j 〉

Jσiσ j +B
V(σi )+V(σ j )

2
(1.107)

where
∑

〈i j 〉 is a sum over all pairs of nearest neighbours, and the external parameter B hav-
ing the energy dimension is applied to the funcion of the internal variables V(σi ) which has
been symmetrized. The Ising model[4, 34] is therefore a lattice model with short interactions
between particles. Since all particles σi in the system are equal to ±1, this system is called a
lattice based spin model. When σi is continuous, it is called the XY model [35]. J is the cou-
pling parameter of the system and can be non-uniform if the nearest neighbours interaction
is J = Ji j . If Ji j < 0, the system favorises homogeneous phases and is called ferromagnetic.
while if Ji j > 0, the system favorises configurations where each spin has an opposite sign with
respect to all of their neighbours, which modelises antiferromagnetic materials. We now set
Ji j = 1.

The mean-field theory with a φ4 potential has been developed from this model [36], and
exact relationship between both of them has been found in 4 dimensions and above [37]. A
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Figure 1.4: Snapshot of Monte Carlo simulations of the Ising model for two different temperatures in
two dimensions(T = 0.7TC (left) and T = 0.95TC (right)) with periodic boundary conditions in x. The
interface between both phases is set by the fixed boundary conditions on y .

fast way to convince ourselves is to take the finite difference derivative at first order of Eq
(1.18).Supposing the sole role of the potential is to set the field to ±φC on each site, then we
have

[∇∇∇φ(i )]2 =
(
∂φ(i )

∂x

)2

+
(
∂φ(i )

∂y

)2

+
(
∂φ(i)

∂z

)2

= (φ(x, y, z)−φ(x +1, y, z))2 + (φ(x, y, z)−φ(x, y +1, z))2 + (φ(x, y, z)−φ(x, y, z +1))2

= 2(1−φ(x, y, z)φ(x +1, y, z)+2(1−φ(x, y, z)φ(x, y +1, z)+2(1−φ(x, y, z)φ(x, y, z +1)
(1.108)

where the distance between two sites is set to 1. From this we easily see some bulk energy to
which we add the sites’ nearest neighbours interactions in an Ising-like fashion.

This model precisely describes phase transitions in uniaxial magnetic systems[38, 39, 40].
It is also the simplest model of its eponymous universality class, which also contains liq-
uid/gas transitions and binary fluids. In these mappings, the value ni = 1

2 (1−σi ) = 0,1 repre-
sents the occupation of a cell in a lattice fluid, and the valueσi =±1 gives the label of a binary
species A or B. This model does not have a phase transition in 1D, but a phase transition in
2D was foumd in 1944[23] at the critical temperature

T2D,C = 2J

kB ln(1+p
2)

' 2.27
J

kB
(1.109)

The renormalization group approaches have deep connexions with the Ising model [41,
2]. Even though results have been found for d = 4 (which is the upper critical dimension),
no analytical solution has been found in 3 dimensions. Numerous numerical simulations
[42, 43] have shown that the 3-dimensional phase transition occurs at

T3D,C ' 4.51
J

kB
(1.110)

By making the transformation[2]

ni = σi +1

2
(1.111)
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so that ni (σi = 1) = 1 and ni (σi =−1) = 0, the Hamiltonian liquid/gas Hamiltonian is

H =− ∑
〈i j 〉

Ji j
(
4ni n j −2(ni +n j )+1

)+B
∑
〈i j 〉

V(σi )+V(σ j )

2
(1.112)

Dropping the constant term
∑

〈i j 〉 Ji j , it becomes

HLG =−4
∑
〈i j 〉

Ji j ni n j +2
∑
〈i j 〉

Ji j (ni +n j )+B
∑
〈i j 〉

V(σi )+V(σ j )

2

=−4J
∑
〈i j 〉

Jni n j +µc
∑

i
ni +B

∑
〈i j 〉

V(σi )+V(σ j )

2
(1.113)

where Ji j is set to J, and the intrinsic chemical potential for a liquid-gas system is µc = 4Jc,
with c the number of nearest neighbours dependeing on the dimensionality of the system.
A positive magnetic phase is thus analogous to a high density state such a liquid, while the
negative magnetic phase is equal to a low density state such as a gas. An onsite potential
V(σi ) further modifies the chemical potential, µ=µc+δµ[V(σi )] in the same fashion as in Fig
1.2. The chemical potential µ is the conjugate variable to the total number of particles

∑
i ni ,

while the magnetic field B is the conjugate variable to the total magnetisation
∑

i σi . The two
are connected through the mapping such that B ∼ µ−µc , so that liquid-gas and Ising model
systems share common thermodynamic features such as the universality class for critical
fluctuations. For the fluid the grand canonical ensemble corresponds to the Gibbs ensemble
with fixed T and µ and canonical ensemble with fixed T and N . In the magnetic system
these ensembles correspond to fixed T,B and T,M respectively. The model also describes
adsorption of a gas in a lattice or binary fluids between particles of different species A and B.

By imposing +− boundary conditions in the z direction, the existence of an interface is
forced, as seen in Fig 1.4. Those BC can be fixed, imposing σ(z = 0) = −1 and σ(z = L) = +1,
or free but with a local external field V(z) = h(δ0,z −δz,L). An interface is characterized by its
mean and its width. The easiest way to find it is to fit the magnetization profile

m(z) = 1

L′2 〈
∑
x y
σ(x, y, z)〉 (1.114)

to mean field results from Eq (1.43). The mean position of the interface is

m = 〈h〉 = 1

L′2 〈
∑

i
σi 〉 (1.115)

and the width of the interface is then defined as

w 2 = 〈h2〉−〈h〉2 (1.116)

This can be rewritten [44] as

w 2 = 2

∫ L
0 d zz dm(z)

d z∫ L
0 d z dm(z)

d z

(1.117)
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The surface tension of the interface is now defined as the free energy difference between the
bulk and the interface [45]. If Z++ is the partition function of a system with (++) BC, and Z+−

with (+−) BC, then the surface tension [46] is given by

σ= lim
L′,L→∞

1

L′2 ln

(
Z+−

Z++

)
(1.118)

By diagonalization of the transfer matrix (which will be defined later), we find that the surface
tension of a the interface between two pure phases + and − is given in a two-dimensional
Ising model [5] by

σ= 2βJ+ log(tanh(βJ)) (1.119)

meaning that the hotter the system, the wider the interface becomes.
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1.3.2 The Solid-On-Solid Model

In order to get the Edwards-Wilkinson equation of an interface from statistical field theory,
the approximation

φ(x, t ) = f (z −h(r, t )) (1.120)

was used. Its translation in lattice models is

σi , j = sgn(hi − j ) (1.121)

where sgn(x < 0) = −1 and sgn(x > 0) = 1, and hi is the height of the interface at site i . This
is the low temperature approximation of the Ising model, where there are no overhangs from
the + phase into the − phase and vice versa. If we note J⊥ the vertical bond energy between
two Ising spins and J∥ the horizontal bond energy, this approximation becomes equivalent to
a highly anisotropic Ising model where J⊥ À J∥ [47].

In a slab or semi-infinite geometry as seen in Fig 1.5, the height of the interface corre-
sponds to the number of spins − in the column i , while for an infinite geometry, hi is inter-
preted as the number of excess spins − with respect to the mean height, set in the figure at
z = 0 [48]. In this representation, height profiles represent an interface height and not a num-
ber of particles, since there is no entropy term associated with the number of ways that the
hi particles on each site can be chosen from the N particles available. In chapter 4, a model
with those characteristics will be adressed. Using the identities

min(a,b) = |a +b|− |a −b|
2

(1.122)

max(a,b) = |a +b|+ |a −b|
2

(1.123)

we have

L∑
j=0

sgn(h − j )sgn(h′− j ) = L−2|h −h′| (1.124)

which, from the 2-D Ising Hamiltonian (1.107) of size L′×L, gives

H = 2JL′(1−L)+2J
L′∑

i=0
|hi −hi+1|+B

L′∑
i=0

V(hi ) (1.125)

with external potential

BV(hi ) = B
L∑

j=0
V(sgn(hi − j )) (1.126)

For periodic boundary conditions, hL′ = h0.
Another way to compute the energy for a SOS configuration is to directly count the num-

ber of energy bonds for a L′×L Ising model under the approximation (1.121). There are L−1
vertical bonds per column, where all have an energy of −J, while the link that goes though the
interface has an energy of +J. The total contribution to energy from vertical bonds is thus

E⊥ =−JL′(L−2) (1.127)
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Figure 1.5: Possible configuration of the SOS model for a semi-infinite geometry (left) and infinite
geometry (right). The red line shows the origin z = 0. In the i -th column the interface is at height hi .
Particles under the interface are from the Ising − phase, while particles over it are from the + phase.

There are L′×L horizontal bonds. In a pure phase system, the horizontal energy would be
−JL′L. Neverthelesss, there are

∑
i |hi −hi+1| bonds which have an energy of +J, which gives

the horizontal energy contribution

E∥ =−JL′L+2J
∑

i
|hi −hi+1| (1.128)

By adding both, we find back Eq (1.125).
By setting 2J = J and getting rid of the bulk energy, we obtain the Solid-On-Solid Hamil-

tonian

H = J
L′∑

i=0
|hi −hi+1|+B

V(hi )+V(hi+1)

2
(1.129)

The first system where the SOS model has been applied was crystals’ growth in 1972 [6].
Since then, the model has been used with some success in naphthalene cristals[49], experi-
mental expitaxial growth[50], polymer membranes [51, 52], or interfacial wetting [53], all of
them being interface physical systems.

In the SOS model, the sites i of height hi can take any value in [0,L]. The Restrictied Solid-
On-Solid model (RSOS) is a variation where sites can only take the value hi+1 ∈ [hi −1,hi ,hi +
1][54]. This approximation works for very low temperatures or very smooth interfaces [55,
56].

Another model, closer to the continuous model of Hamiltonian (1.47) is the Discrete
Gaussian model which has the following gaussian interaction

H = J
L′∑

i=0
(hi −hi+1)2 +B

V(hi )+V(hi+1)

2
(1.130)

and also has a restricted version. At low temperature, since height differences are typically
small the typical energy cost of height differences 0,±1 is the same in every SOS model no
matter the exponent, leading to similar qualitative freatures of all those models [59]. Because
the SOS model has an exact relation with the XY model [57] no matter the power law used
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for the interaction,even though GSOS is the direct discrete version of continuous models, we
use SOS because its transfer matrix is easier to diagonalise, as we will show in Section 3.4.
With a generalization of this model to continuous heights, it has been shown that extreme
deviations statistics of the interface is described by a scaling function [58].

Since the dimensionality of the system has been reduced in only taking into account the
height interface hi at site i instead of the position of all particles, we can think of an interface
as a partially self-avoiding walk. This idea, which will be developed in section 3.2, has proven
quiet powerful in finding exact solutions of the generating function [60] or the extreme devi-
ations statistics of the interface [61, 58].

In the canonical ensemble, the height interface is fixed to N, which is translated in the
partition function as

Z(N) = ∑
h0h1...hL′

exp(−β∑
i

H(hi ,hi+1))δ∑
i hi ,N (1.131)

In the grand-canonical ensemble, the conjugate variable to the height interface is the chem-
ical potential µ, and the grand partition function Ξ is related to the canonical partition func-
tion by

Ξ(µ) =∑
N

Z(N)exp((βµN)

= ∑
h0h1...hL′

exp(−βHe f f (h0,h1, ...,hL′) (1.132)

where

He f f = J
L′∑

i=0
|hi −hi+1|+

L′∑
i=0

BV(hi )−µhi (1.133)

In Fig 1.6, the mean number of particles per site with respect to the chemical potential is plot-
ted, for different size of the system, in the thermodynamic limit L′ →∞. When the chemical
potential is too small, the Lagrange’s multiplier of the mean height is negligible, allowing the
interface to fluctuate freely, meaning that the mean value for µ= 0 is L

2 .

1.3.3 Transfer matrix

In a more general fashion, the SOS Hamiltonian takes the form

H =
L′∑

i=0
f (hi ,hi+1)+BV(hi ,hi+1)

where f (hi ,h j ) is the energy interaction between two nearest neighbours and BV(hi ,h j ) =
B

V(hi )+V(h j )
2 is the external potential. The partition function is

Z =
L∑

h1=0

L∑
h2=0

...
L∑

hL′=0
exp(−β

L′∑
i=0

H(hi ,hi+1)) = ∑
h1h2...hL′

L′∏
i=0

exp(−βH(hi ,hi+1)) (1.134)

We define the transfer matrix

T(hi ,h j ) = e−βH(hi ,h j ) (1.135)
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Figure 1.6: Mean height of the SOS interface (1.132) with respect to −µ through diagonalization of the
transfer matrix for β= 1, in the limit L′ →∞.

In Fig 1.7, an infinite matrix corresponding to the limit L →∞ is represented, where each site
can take any value in [−∞,∞]. To diagonalize numerically such matrices, we translate the
whole system with hi → hi − L

2 , where L is the matrix’s size, which we tend to ∞ afterwards.
The constraint (1.131) cannot be expressed in the transfer matrix formalism, which induces
a change in properties from this ensemble with respect to the transfer matrix results [62].

Since the system has periodic boundary conditions hL+1 = h1, we have T(hL,hL+1) =
T(hL,h1) [63]. The matrix is thus symmetric, meaning that it can be diagonalized with the
eigenvectors and the eigenvalues

T|λ〉 = λ|λ〉 (1.136)

Those eigenvectors are orthonormal

〈λ|λ′〉 = δλλ′ (1.137)

We set λ0 as the biggest eigenvalue of T, by λ1 the second biggest eigenvalue, and so on. The
partition function can then be rewritten, in terms of the transfer matrix [5] as

Z = ∑
h1h2...hL′

∏
i

T(hi ,hi+i ) = Tr (TL′
) =∑

λ

〈λ|TL′ |λ〉 =∑
λ

λL′
(1.138)

In the thermodynamic limit L′ → ∞, only the biggest eigenvector is relevant since the
partition function becomes

Z(L →∞) ' λL′
0 (1.140)

We find that the free energy per site is

f =− 1

L′β
ln(Z) '−1

β
ln(λ0) (1.141)

22



CHAPTER 1. EQUILIBRIUM INTERFACE DYNAMICS

T =



. . .
...

...

e−βH(−1,−1) e−βH(−1,0) e−βH(1,−1)

. . . e−βH(0,0) . . .
e−βH(1,−1) e−βH(1,0) e−βH(1,1)

...
...

. . .

 (1.139)

Figure 1.7: Infinite and symmetrical transfer matrix 1.135.
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Figure 1.8: Free energy per site Ω(L′) with respect to the number of sites L′ compared to the thermo-
dynamic value Ω(∞), for a system of maximum height L = 100, β= 1, J = 1 and V(hi ) = 0.

In Fig 1.8 the evolution of the free energy per site Ω(L′) is shown without external field, com-
paring it to the thermodynamic limit. From that figure, the thermodynamic limit becomes
valid for L′ > 150.

To compute the mean height value per site M, the height matrix M̂ is introduced and is
defined by its action over the vectors |h〉 in the matrix transfer’s base by

= δh,h′h (1.142)

The density is

M = 〈h〉 = 1

L′
∑

i
hi = 1

Z

∑
λ

λL′〈λ|M̂|λ〉 ' 〈λ0|M̂|λ0〉 (1.143)

and the mean displacement per site is

w 2 = 〈(h −M)2〉 = 1

Z

∑
λ

λL′〈λ|M̂2|λ〉−〈λ|M̂|λ〉2 ' 〈λ0|M̂2|λ0〉−M2 (1.144)
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Those two obversables are found by computing the first and second moment of the proba-
bility distribution that a site i is at height hi

p(h) = 1

Z

∑
λ

λL′〈λ|h〉2 ' 〈λ0|h〉2 (1.145)

The two-point correlation function of the system is computed by

C(r ) = 〈hi hi+r 〉−M2 = 1

Z

∑
λ 6=λ0

〈λ0|M|λ〉〈λ|M|λ0〉
(
λ

λ0

)r

(1.146)

which becomes, in the long distance r limit,

C(r ) ' 〈λ0|M|λ1〉〈λ1|M|λ0〉
(
λ1

λ0

)r

(1.147)

The correlation function has an exponential decay at large distances, which allows us to de-
fine the correlation length at large distance ξ

ξ=− 1

ln(λ1
λ0

)
(1.148)

1.4 Systems driven by imposed hydrodynamic flows

A system which does not respect the Gibbs-Boltzmann distribution is said to be out of equi-
librium. The dynamics of the system can lead the configurations from very unlikely ones
(for example from initial conditions) to more probable ones. Once the equilibrium state is
reached, all the configurations have their Gibbs-Boltzmann probability to occur. Equilibrium
and steady-state should thus not be confused. Steady state out of equilibrium systems can
be created experimentally by injecting energy into the system with a laser [64], by inducing
a shear flow in a Couette cell in liquids [65, 19] or in glassy materials [66, 67]. Those systems
should be analysed through model H dynamics which couples diffusive model B dynamics to
hydrodynamics in the low Reynolds number Stokes flow regime. In these dynamics the order
parameter field will itself induce a hydrodynamics flow which will modify the imposed one.
However this full situation is very difficult to analyse and to a first approximation one can
assume that the back reaction of the order parameter field on the hydrodynamic flow is small
with respect to the imposed hydrodynamic flow and so the Langevin equation is simply

∂φ(x, t )

∂t
+∇· (v(x)φ(x, t )) =−L

δH

δφ(x)
+η(x, t ), (1.149)

where L is given by the underlying model A or B dynamical operator and the noise has the
correlation function as given by Eq. (1.26), and v(x) is the imposed (time independent) hy-
drodynamic flow or can equally well be an external drive imposed on the particles, due to the
gravitational or electric field for example.

The simplest case one can consider is the uniform driving field v(x) = v0 [68, 69]. Unfor-
tunately this simple driving does not lead to a new steady state. Basically all of the colloidal
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Figure 1.9: Snapshot of the interface a sample of fluorescently labeled poly(methyl methacry-late)
(PMMA) colloidal spheres in polystyrene close to the critical point, for different shear rates. The bot-
tom panel schematically shows the flow geometry with the plane of zero velocity located at the inter-
face. From [19].
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Figure 1.10: Snapshot of a 2D Ising model with respect to the shear (1.151) with Kawasaki dynamics at
T = 0.9T2D,C.
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particles acquire an average velocity v0 and so move along at the same speed relative to each
other. Mathematically this can be seen by making the Galilean transformation

φ(x, t ) =φ(x−v0t , t ) =φ(y, t ) (1.150)

This transformation eliminates the driving from the evolution equation (1.149) and so we
find an equilibrium system.

The most studied example is where the driving is a shear flow [19, 70]. The effective dy-
namics of the surface term in the presence of a shear flow, parallel to the interface [9, 29], is
written as

v(x) = γzex (1.151)

The addition of a shear flow leads to the appearance of a nonlinear term in h and the interface
statistics thus become non-Gaussian. In Fig 1.10 we show the influence of such a shear flow
in numerical simulations, which is exactly the behaviour to be seen in capillary waves in
polymer melts [65, 19], see Fig 1.9 . The shear has a confining effect on the interface [71, 72,
73], thus increasing the effective surface tension of the system. The main result of those two
papers is that out of equilibrium steady state systems can behave as equilibrium ones, where
the observables are rescaled into effective ones. In Chap 5 we study the effect of a uniform
driving v(x) = γec using a coupling between model A and model B dynamics, and explain
theoretically why such systems behave like equilibrium ones.

1.5 Conclusion

Statistical field theory [22] is a powerful tool to study the dynamics of equilibrium fields [36].
The two main models are model A and model B [18], which decribe the dynamics of a field
respectively in grand-canonical and the canonical ensemble. In the case of phase separated
systems, the interface is mostly defined by its surface tension, which is equal to the difference
of free energy between the bulk and the interface [25, 5]. From the equations of model A and
B we have derived the Edwards-Wilkinson equation [30] for both ensembles. The Ising model
[4, 34] provides a good way to study the behaviour of the field by discretization, which is eas-
ier to compute in numerical simulations [10]. The same kind of dimensional reduction can
be done in order to get an interface lattice model which is called the Solid-On-Solid model [6].
This model allows the use of the transfer method in an easier way than the Ising model[74].
Also, the presence of out-of-equilibrum hydrodynamic flows tend to present interesting fea-
tures. One such example is thee Couette shear [19], which has been found to smoothen the
interface [72] and have effective equilibrium properties.
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Chapter 2

Numerical methods

In 1949, Metropolis et.al [75] presented a method to compute, through Monte Carlo simula-
tions, the expectation value of statistical quantities. If Q is an observable quantity of a statisti-
cal system, such as the total energy or density of particles per site, then the expectation value
is computed by weighting its value over all configurations C with respect to their statistical
weight. Considering the system to be at thermodynamic equilibrium, every configuration C
follows the Gibbs-Boltzmann distribution, and the mean value 〈Q〉 is

〈Q〉 =
∑

C Q(C)exp(−βE(C))∑
C exp(−βE(C))

(2.1)

For example, in a SOS system of size 100×100 - which is small compared to the thermody-
namic limit as discussed in figure 1.8 - there exists 100100 different possible configurations.
In comparison, numerical simulations can explore up to 109 configurations in a reasonable
amount of CPU time.

Lattice models are well fitted for Monte Carlo simulations, where the goal is to com-
pute such quantities. In the SOS model, all observables (and even quantities not observable
such as the free energy) can be directly computed thanks to the matrix transfer in the grand-
canonical ensemble, even though the canonical ensemble stays out of reach of that method.

In this chapter, we start by explaining how Monte Carlo Metropolis algorithms work based
upon the statistical ensemble we’re interested in, at or out of equilibrium, and then some
technical considerations about optimizing numerical simulations are given.

This work was made possible thanks to the Mésocentre de Calcul Intensif Aquitain (MCIA)[20],
where I have made the vast majority of the numerical simulations. All the code I have pro-
duced can be found on Github [21] under Creative Commons BY 3.0 licence1. Numerical
simulations where made with C++, parallelization with MPI, data treatment with Python, and
some minor scripts in Bash.

1https://creativecommons.org/licenses/by/3.0/fr/deed.en
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2.1 Estimator

Monte Carlo simulations explore the configurations’ space in a random fashion [10] with a
probability p(C). By choosing M states C0, ...,CM, the estimator QM of Q is given by

QM =
∑M

i=0 Q(Ci )p(Ci )−1 exp(−βE(Ci ))∑M
i=0 p(Ci )−1 exp(−βE(Ci ))

(2.2)

The bigger the sample number M, the better estimate the estimator provides for 〈Q〉, up to
the limit QM→∞ = 〈Q〉. If we select the configurations over which the system’s sample is done
according to the Gibbs-Boltzmann distribution p(ν) = Z−1e−βE(C), the estimator of 〈Q〉 is

QM = 1

M

M∑
i=0

Q(Ci ) (2.3)

The error over this estimate is

E(Q) =
√

2τ

M
(〈Q2〉−〈Q〉2) (2.4)

This error does depend from the correlation time τ since if two states are really close in time,
they would be strongly correlated, adding little information to the estimator. In practice, it
is just needed τ

M < 10−4 to obtain an error under 1%. This correlation time τ is computed
through the autocorrelation function

C (t ) = 〈Q(t ′)Q(t + t ′)〉−〈Q〉2 = 1

t

∫ t

0
Q(t ′)Q(t + t ′)−〈Q〉2d t ′ (2.5)

which behaves as an exponential at long time[76]. A first order estimate of τ is thus given for

τ=
∫ ∞

0
C (t )/C (0)d t (2.6)

Similarly, the measurement of the correlation length ξ is given at first order by integration the
two-point correlation function

C ( j ) = 1

L′
L′∑

i=0
〈hi hi+ j 〉−〈h〉2 (2.7)

2.2 Monte Carlo Metropolis algorithm

A dynamic for systems with a discrete configuration state can be built using Markov chains.
Let the dynamic evolve in a discrete time n, and pn(C) the probability that the system is in
configuration C at time n. At that time step, if the system is in state C, it can jump to another
state C′ with a transition probability ρ(C → C′). The system at time n +1 thus only depends
of the state at time n : it is called a Markovian process, and has no inertia nor memory of
what have happened prior to time n. The probability pn+1(C) to be in state C at time n +1 is
equal to the probability that the system was already in state C at time n and stays put with a
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transition probability ρ(C → C) , plus the probability that it was in state C′ and jumps towards
C with a transition probability ρ(C′ → C). The master equation of such a dynamic is

pn+1(C) = ρ(C → C)pn(C)+ ∑
C′ 6=C

ρ(C′ → C)pn(C′) (2.8)

Since ρ(C′ → C) is a probability, it meets the requirements∑
C′
ρ(C′ → C) = 1 (2.9)

Now, if the dynamics describes a system in interaction with a heat bath, the equilibrium dis-
tribution is given by

peq (C) = exp(−βE(C))

Z
(2.10)

with Z the partition function. Since the equilibrium distribution is also stationary, the prob-
ability to be at configuration C at time n +1 is

peq (C) = ρ(C → C)peq (C)+ ∑
C′ 6=C

ρ(C′ → C)peq (C′) (2.11)

The emergence of equilibrium probability densities ensures that the transition rate from a
state to another one is equal to the rate from the reciprocal transition∑

C′
p(C)ρ(C → C′) =∑

C′
p(C′)ρ(C′ → C) (2.12)

which leads to the detailed balance condition [10]

ρ(C′ → C)

ρ(C → C′)
= p(C)

p(C′)
= exp(−βE(C))

exp(−βE(C′))
(2.13)

Hence by adopting the detailed balance condition for the transition probabilities, the steady
state distribution computed by Eq (2.11) corresponds to the equilibrium Gibbs-Boltzmann
distribution. During a Metropolis step, the transition probability of C → C′ depends of the
probability g (C → C′) that this transition would be chosen amongst all the other possible
transitions, and the acceptance rate A(C → C′), which gives

ρ(C → C′) = g (C → C′)A(C → C′) (2.14)

For a lattice model site L′ sites, a Monte Carlo time step is done when we have proceeded to
L′ transition tries.

2.2.1 Glauber dynamics

In the SOS model with L′ sites of height comprised in [0,L], sites i are chosen for the Glauber
algorithm [77] at random with a uniform probability 1

L′ , plus an integer α=±1 with probabil-
ity 1

2 . If the configuration C has the Hamiltonian H(h0,h1...,hi , ...hL′), then the new generated
configuration will have the Hamiltonian H(h0,h1...,hi +α, ...hL′). If α=+1, then a particle at
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site i is added, otherwise it is removed. In the case that hi +α 6∈ [0,L] , the generated config-
uration is not valid and discarded. If the generated configuration is valid, the probability of
selecting this transition is

g (C → C′) = 1

2L′ (2.15)

From Eq. (2.13), detailed balance gives

ρ(C → C′)
ρ(C′ → C)

= A(C → C′)
A(C′ → C)

= exp(−β(E(C′)−E(C)) (2.16)

Is it possible to choose any acceptance rate A(C → C′) which satisfies detailed balance. A
Metropolis algorithm is an algorithm which has the following acceptance rate

A(C → C′) =
{

exp(−β(E(C′)−E(C)) if E(C′)−E(C) > 0

1 otherwise
(2.17)

and is said to be the faster acceptance rate in CPU-time. In practice, if ∆E > 0, an integer is
uniformly chosen between r ∈ [0,1]. If r < A(C → C′) then the transition is accepted, other-
wise the transition is rejected and the system stays in the configuration C.

Since
∑

i hi is not conserved over time, Glauber dynamics corresponds to model A. A
snapshot of such a system is showed in Fig 2.1, with perdioci boundary conditions on x.

The energy difference between two configurations is

∆E = |hi−1 − (hi +α)|+ |hi+1 − (hi +α)|− |hi−1 −hi |− |hi+1 −hi | (2.18)

It is not needed to compute the total height at each time step. We stock
∑

i hi in a variable
that is updated each time a transition is accepted by

〈h〉M+1 = 〈h〉M +α (2.19)

The same can be done for
∑

i h2
i , which gives the interface’s width, and the total energy of the

system with
∑

i |hi −hi+1.
In order to accelerate the equilibration process, we can directly start from the total height

computed by the transfer matrix, which is close to the equilibrium states. By looking at the
temporal evolution of E(t ), one can get the equilibrium time and the correlation time once
equilibrium has been reached. It is better practice to study the equilibration time by taking
the total energy rather than the number density, or magnetization, since without an external
potential, the interface is delocalised and total number of particles is only bounded by the
boundary conditions. In Fig 2.2, the energy with respect to time and the autocorrelation
function of the system in absence of chemical potential from a ground state hi = 0 for all i are
shown. The very small correlation and equilibration times means that numerical simulations
reach the equilibrium distribution after 103 MC steps, so that 107 MC steps will give results
accurate up to 1%.

In the SOS model, results from the Glauber dynamics are expected to be exactly the same
as the transfer matrix method, as shown in Fig 2.3. Since the interface is not localised for
small µ, even though thermal equilibrium is quickly reached, the mean height fluctuates a
lot, making its measurement irrelevant in the delocalised limit. Since we can get exact results
from the transfer matrix, the Glauber dynamics presents little interest for SOS models in the
grand-canonical ensemble. Nevertheless, because there does not exist a transfer matrix for-
mulation of the canonical ensemble, Monte Carlo simulations become interesting.
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Figure 2.1: Snapshot of a Glauber simulation of a SOS system at β= 1, µ= 0.01 and L =∞.
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Figure 2.2: Plot of the energy per site (top) and the autocorrelation function (bottom) with Glauber
dynamics from an initial state where hi = 0, for different temperatures.
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Figure 2.3: Mean height value per site with respect to µ different system size L both by Glauber dy-
namics and diagonalization of the transfer matrix (which has already been shown in Fig 1.6) for β= 1
and L′ = 256.

31



CHAPTER 2. NUMERICAL METHODS

0 200 400 600 800 1000
t

0.00

0.25

0.50

0.75

1.00

E
(t

) T = 0.7,τeq = 109

T = 0.78,τeq = 36

T = 0.86,τeq = 27

T = 0.95,τeq = 34

0 100 200 300 400 500
t

0.00

0.25

0.50

0.75

1.00

C
(t

)/
C

(0
)

T = 0.7,τcor = 11

T = 0.78,τcor = 8

T = 0.86,τcor = 7

T = 0.95,τcor = 6

Figure 2.4: Plot of the energy per site (top) and the autocorrelation function (bottom) with Kawasaki
dynamics from an initial state where hi = 0, for different temperatures.

2.2.2 Kawasaki dynamics

In the Kawasaki’s algorithm [78], a site i is randomly chosen with probability 1
L′ , as one of its

two nearest neighboors i −1 or i +1 with probability 1
2 . For example, if we take the neighboor

site i −1 (it holds the same for the site i +1), a new configuration is generated with Hamilto-
nian H(h0, ...,hi−1+1,hi −1, ...hL′), where a particle from site i diffuses it to the neighbooring
site. A non-local version of this algorithm also exists, but only the local version can imple-
ment hydrodynamic flows. The selection probability is

g (C → C′) = 1

2L′ (2.20)

with te same acceptance rate as in Glauber’s dynamics (2.17).
Here, the total height is obviously conserved. In the case that a particle is transfered from

site i to site i +1, the energy difference is

∆E = |hi−1 − (hi −1)|+ |hi+1 +1− (hi −1)|+ |hi+1 +1− (hi+2)|
− (|hi−1 −hi |+ |hi+1 −hi |+ |hi+1 −hi+2|) (2.21)

In Fig 2.4, we remark that both the equilibration and the correlation times are larger than
for non-conserved dynamics, which is normal since the correlation length during coarsening

goas as t
1
2 in model A and as t

1
3 in model B. Nevertheless they are of the same order of mag-

nitude, which means that numerical simulations will take up roughly the same CPU-time.
This dynamics describes the diffusion of particles at the interface. It is thus possible to

add some hydrodynamic flow which breaks equilibrium. Since we have supposed that our
configurations obeys the Gibbs-Boltzmann distribution, the Metropolis method stays perti-
nent if we assume that the dynamic is slow compared to the heat exchange with the reservoir.
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H0 H(λ) H1

Figure 2.5: Progessive decoupling of the k-th layer of the system in order to compute the freen energy
through the Crossover Hamiltonian. Blue bonds have an energy of βJ, red ones an energy of λβJ and
the green ones an energy of(1−λ)βJ. Reproduction 2D of [11].

2.3 Computing size dependent free energy

2.3.1 The Layer method

It is not possible to compute from Monte Carlo simulations the free energy of a system, since
it is not a derivative of the partition function. However, its derivative with respect to the
system size can be easily computed. Separating the total free energy of the confined system
in a bulk and a singular part

F(t ,h,L) = L′2 (
L fbulk +β−1 fex

)
(2.22)

where fbulk is a bulk term, and fex the excess free energy due to boundary conditions and to
system spanning correlations, we define the thermodynamic force per unit area as

p(t ,h,L) =− 1

L′2
∂F

∂L
=− fbulk −β−1∂ fex

∂L
(2.23)

This force is composed of a bulk term and an excess term defined as the related Casimir force
per unit area by

fcasi mi r =−β−1∂ fex

∂L
(2.24)

In the limit L → ∞, the excess free energy due to the confinement is zero, so the bulk free
energy from Eq (2.22) can be substracted from the infinite system limit. For two systems of

size L1 and L2, where
(

L1
L2

)d ¿ 1, at first order the Casimir force is thus

fex(L1) '− 1

L′2
∂F(L1)

∂L
+ 1

L′2
∂F(L2)

∂L
(2.25)

To compute it, Vasilyev et al. [11] developed a method to compute this derivative thanks
to a dummy coupling parameter. Even though the system’s size is discrete, it is possible to
obtain a continuous-like size of the system thanks to the progressive decoupling the k-th
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layer of the system. If H0 is the Hamiltonian of size L and H1 the Hamiltonian of size L−1 (see
Fig 2.5), then they define the crossover Hamiltonian as

Hcr (λ) = (1−λ)H0 +λH1 (2.26)

with λ ∈ [0,1], which interpolates from H0 to H1 when λ goes from 0 to 1. As λ goes on, the
k-th layer of the system is gradually decoupled from it, meaning that the interaction energy
of all vertical bonds between layer k and layers k−1 and k+1 are now equal to (1−λ)βJ, while
the layers k+1 and k−1 are gradually couple with an energy λβJ. The crossover Hamitlonian
Htr (λ) also depends on the position of the decoupled layer k ∈ 1,2, ...,L . The free energy
associated with this system is

Fcr (λ) =−kBT ln

( ∑
h1...hL

exp(−βHtr (λ))

)
(2.27)

The derivative of the free energy with respect to λ is thus

∂Fcr (λ)

∂λ
= 〈H1 −H0〉Hcr (λ) (2.28)

where 〈·〉Hcr (λ) represents the statistical mean value in the crossover system, easily computable
in numerical simulations. By integrating over the coupling constant, the difference of free en-
ergy between the coupled and the fully decoupled systems is

F1 −F0 =
∫ 1

0
dλ〈H1 −H0〉Hcr (λ) (2.29)

Finally, in the thick limit where L À 1, the derivative is

−∂F(t ,h,L)

∂L
'

∫ 1

0
dλ〈H1 −H0〉Hcr (λ) (2.30)

Even though Hcr (λ) depends of which layer we decided to decouple, and by transition H1−H0

and 〈H1 −H0〉Hcr (λ), the integrand
∫ 1

0 dλ〈H1 −H0〉Htr (λ) should be independent of this choice,
as long as boundary conditions are not affected by the k-th layer.

For the SOS model, it is possible to exactly compute the energy variation produced by the
decoupling, and is equal to

Hcr,SOS(λ) = H0,SOS−
λJ

2

∑
x

[
sgn(k −1−h(x))sgn(k +1−h(x))− sgn(k −h(x))

(
sgn(k −1−h(x))+ sgn(k +1−h(x))

)]
(2.31)

where the prefactor 1
2 take into account the prefactor between Ising and SOS models in Hamil-

tonian (1.125). By doing the table of values , we notice that every term in the sum is equal to
−1 independently of k, since contrary to Ising models, SOS models do not possess any bulk
energy. We thus have to find another method to compute the thermodynamic force in the
SOS model.
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2.3.2 The Lopes-Jacquin-Holdsworth method

In the case of a chemical potential conjugated with the total height, Lopes et al. saw that [12]

〈∑
i

hi 〉(µ,L) =−δF(µ,L)

δµ
(2.32)

Integrating over the chemical potential, we have

∆F(µ1,µ2) = F(µ1,L)−F(µ2,L) =−
∫ µ2

µ1

dµ′〈∑
i

hi 〉µ′ (2.33)

If we know the analytical form of the free energy in the limits µ2 →∞ or µ1 → 0, this method
provides a way to directly measure the free energy of the system for any temperature or size
by integrating over the chemical potential.

In the limit µ2 →∞, the correlation length at the reference state will be small so that the
reference free energy will be essentially that of the bulk. As a consequence, it should contain
all the information of the Casimir force (2.23). That derivative force can then be computed
by

δL
∂F(µ1,L)

∂L
=∆F(µ1,µ2,L)−∆F(µ1,µ2,L−δL) (2.34)

where δL is the difference thickness between two systems, and which is then independent
of µ2 in the large chemical potential limit as the free energy F(µ2,L) converges to the bulk
energy. Since in Kawasaki dynamics the total height is constant, this method does work only
for model A.

The computation of the difference of free energy depends largely of the chemical poten-
tial µ2. However, since we are interested in the Casimir force (2.25), it is sufficient to chose
a suitable chemical potential µ2 for which the excess free energy can be safely considered
negligible [12] . The dummy function

D(µ,L1,L2) = 〈M(L1)−M(L1 −1)− (M(L2)−M(L2 −1)〉 (2.35)

is thus defined to be the error function of the method, where M =∑
i hi are taken at the same

temperature and chemical potential, omitted in the notation for the sake of lightness. The
contribution of high µ becomes negligible to the Casimir force when the function D becomes
null.

The method only makes sense in the Glauber dynamics. In the Kawasaki dynamics, since∑
i hi is set to a constant, the integration is done over a constant. We will show in Sec 3.3 a

generalized method to bypass this problem.

2.4 Tips and tricks

The simulation’s speed of SOS models is so great compared to Ising ones that it is possible
to study systems over a wider range of parameters. A SOS simulation of 107 MC steps takes
roughly 20 minutes to complete once fully optimized. Even though, if we want to launch
hundreds of those simulations, it can easily take days, which forces us to optimize the code.
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In C++, if compiling with g++, the first thing to do is to compile the programme with the −O3
flag, which makes you gain an order of magnitude in CPU time.

The most important part of Monte Carlo simulations are the pseudo Random Number
Generator (pRNG), which are called at least twice for each transition attempt. The C++ stan-
dard library proposes the function default_random_engine as the default pRNG. A lot of CPU
time can be saved by switching to sfc64 or xoroshiro pRNGs. Furthemore, the generation of
±1 numbers only require one bit, while the pRNG always generates a 64-bits number, thus
wasting 63-bits at each boolean generation. A wasteless method which speeds considerably
the simulation’s speed can be found in [79].

Lastly, the easiest way to gain real time is to make the code parallel. We can do that ei-
ther by domain decomposition - which would allow us to simulate larger systems - or par-
allelise directly over the simulation’s parameters (as the temperature or the chemical poten-
tial). While the first one is useless in SOS model because of the short correlation length of
such systems, the latter can be done via two libraries : OpenMP and MPI. It took me some
time to understand that the memory-shared OpenMP protocol has a lot of problems with
pRNGs, making this library not suited for Monte Carlo simulations. On the contrary, the MPI
library provides impermeability between threads, which makes it the better choice.

2.5 Conclusion

In this chapter, we have explained how to compute expectation values of observables in our
system [10], thanks to the Monte Carlo Metropolis algorithm [75]. For that, we need to sup-
pose that the system is in thermal equilibrium with a heat bath, and that it respects detailed
balance. We have two different possible algorithms : the Glauber dynamics [77] allows to
study the systems in the grand-canonical ensemble, while the Kawasaki dynamics [78] is for
canonical ones. Nevertheless, since the transfer matrix method gives exact results for the
grand-canonical ensemble, only the Kawasaki dynamics is relevant for SOS models.

In addition to that, measuring the free energy of the system is not an easy task, as we
can only compute its derivative. The first method we have presented is about progressively
decoupling a layer of the system [11], even though for SOS models, which do not possess a
bulk energy, the method does not work. Another method is to integrate over the conjugate
variable coupled to the total height [12], which is the chemical potential. This method does
not work for Kawasaki algorithms. Since as we have discussed Glauber simulations are not
relevant for our models, we find that we have no way to compute the free energy in Monte
Carlo methods for the only relevant ensemble which is the canonical one. In a latter chapter,
we will see how to fix this issue.
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Chapter 3

Equilibrium Interface models and their
finite size effects

Models for interfaces arise naturally in phase separated systems, as explained in Chapter 1.
Finite size corrections manifest when the correlation length becomes of the order of mag-
nitude of the system’s size. When undergoing a continuous phase separation, the system
exhibits finite size corrections in the form of a long range critical Casimir interaction, as de-
scribed in the first section. In the second section we examine finite size effects in continuous
interface models in one dimension, and show that while they have similar long-range inter-
actions, the forces induced by interface confinement are quite different. In the low surface
tension limit though, a correspondence between interface and critical physics is shown. In
the last section, we compute the size-dependent eigenvalues of the transfer matrix for the
free SOS model, and compare the results with previous works.

3.1 The Casimir effect

A review about the quantum and the critical Casimir effect is done in this section for com-
pleteness, starting from the effect was first observed [14] and describing the basis of the Lif-
shitz theory that generalises Casimir’s contribution to general dielectric materials beyond the
perfectly conducting plate paradigm, and ends with the critical Casimir effect.

3.1.1 Quantum Casimir effect

In an ideal conductor, the free charges can move arbitrarily quickly to cancel out any elec-
tric charge in the plane [80]. Thus, a perfectly conducting plate in the (x, y) plane imposes
boundary conditions on the electromagnetic field

E×n = 0; B ·n = 0 (3.1)

The quantum Hamiltonian for the electromagnetic field is given by

H =∑
k,λ

~ω(k,λ)

[
a†(k,λ)a(k,λ)+ 1

2

]
(3.2)
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Here λ denotes the polarisation (there are two polarisation states) and k the wave vector. The
dispersion relation for photons is

ω(k,λ) = |k|c. (3.3)

The ground state energy of the electromagnetic field [14] is given by

E0 = 〈0|H|0〉 = H =∑
k,λ

1

2
~ω(k,λ) =∑

k
~|k|c (3.4)

The presence of conduction plates at z = 0 and z = L means that the wave vectors kz must
be quantised according to kz = nπ/L where n ∈ {0, 1, 2, · · · } while if the (x, y) plane has a large
area A one can write ∑

kx ,ky

· = A

(2π)2

∫
d 2k · (3.5)

This then gives

E0(L) = ~cA

(2π)2

∞∑
n=0

∫
d 2k

(
k2 + n2π2

L2

) 1
2

(3.6)

= ~cA

(2π)

∞∑
n=0

∫ ∞

0
kdk

(
k2 + n2π2

L2

) 1
2

(3.7)

The problem with the above expression is that it is clearly divergent. However it can be ren-
dered finite by cutting off the high momentum degrees of freedom by writing

E0(L) = ~cA

(2π)

∞∑
n=0

∫ ∞

0
kdk

(
k2 + n2π2

L2

) 1
2

f

(
(k2 + n2π2

L2
)

1
2

)
(3.8)

where f is a smooth function such that f (p) = 1 for p ¿Λ and f (p) = 0 for p ÀΛ. Here, Λ is
an ultraviolet cut-off and f thus only counts the contribution of photons with a momentum
less than ~Λ. For this sort of calculation to make physical sense the physical result at the end
should be independent of both the choice of f and Λ.

In the limit L →∞, the sum over discrete modes is replaced by an integral

E0(L) = ~cA

(2π)

∫ ∞

0

L

π
dν

∫ ∞

0
kdk

(
k2 +ν2) 1

2 f
(
(k2 +ν2)

1
2

)
(3.9)

using the relation dν=π/L.For large L it becomes

E0(L) = ALεbulk (3.10)

where εbulk is a bulk energy density per unit of volume, that is to say the total energy is exten-
sive. The computation above only calculates the energy of the EM field between the plates.
If the physical system extends up to L′ À L, then the total energy of both the interior and the
exterior of the plates is given by

Etot al (L) = E0(L)+A(L′−L)εbulk (3.11)

The part of the energy that depends on L is given by

U(L) = E0(L)−ALεbulk (3.12)
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It is the derivative of U which gives the physical interaction between the two plates : the pres-
sure associated with this interaction in the colloid science literature is called the disjoining
pressure [81], where to compute the effective interaction the bulk pressure has to be sub-
tracted. We write now

ALεbulk = ~cA

(2π)

∫ ∞

0
dn

∫ ∞

0
kdk

(
k2 + n2π2

L2

) 1
2

f

(
(k2 + n2π2

L2
)

1
2

)
(3.13)

where the L dependence is in the integral. This then gives

U(L) = ~cA

(2π)

[ ∞∑
n=0

g (n)−
∫ ∞

0
dn g (n)

]
(3.14)

where

g (n) =
∫ ∞

0
kdk

(
k2 + n2π2

L2

) 1
2

f

(
(k2 + n2π2

L2
)

1
2

)
= 1

2

∫ ∞
n2π2

L2

duu
1
2 f (u

1
2 ) (3.15)

Using the Euler-Mauclarin formula

∞∑
n=0

g (n)−
∫ ∞

0
dn g (n) =−B1g (0)− 1

2
B2g ′(0)− 1

24
B4g ′′′(0)−·· · (3.16)

where Bn are the Bernoulli numbers1, we find that

g ′(n) =−π
3

L3
n2 f (

nπ

L
) (3.17)

Noticing than in the region around n = 0, f = 1 is a constant, this function has the following
properties

g ′(0) = 0 (3.18)

g ′′(0) = 0 (3.19)

g ′′′(0) = −2π3

L3
(3.20)

Higher order derivatives are zero so the full result is given by the first three terms of the Euler-
Maclaurin formula, so the energy becomes

U(L) = ~cA

(2π)

[
−g (0)− π3

360L3

]
(3.21)

The first term independent of L can be interpreted as a surface energy. The effective L depen-
dent interaction is given by

Ui nt (L) =−~π2cA

720L3
(3.22)

so the effective interaction is attractive. Interestingly, Casimir thought that his calculation
could explain the stability of the electron [14, 82]. The model of the electron is one of a per-
fectly conducting shell carrying an electric charge e. If the radius of the shell is a then the
electrostatic energy of due to the charge is given by

EChar g e =
e2

8πaε0
(3.23)

1The first Bernoulli numbers are explicitly given by B1 = 1 ,B2 = 1
2 , B4 =− 1
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There is thus a repulsive force on the shell which should make it expand. Casimir thought
that the Casimir force on a spherical geometry, if is an attractive force as is the case for the
parallel plate geometry, could stabilise the electron. Clearly by dimensional analysis

ECas =−Z~c

a
(3.24)

the balance of the Casimir and electric forces would then require

Z = e2

8π~c
(3.25)

However, in the case of conducting spherical shell, the constant Z ' −0.046175 is negative
[83, 84, 85], while the same calculation for a cylindrical geometry predicts an attractive force
[84].

3.1.2 Lifshitz Theory

The Casimir calculation is based on the boundary conditions imposed on the EM field due
to a conductor. However, this is an ideal mathematical limit, conductors being conductors
because free charges can move to cancel out the electric field in the conducting surface. The
Casimir force can also be seen as due to correlations induced in the charge fluctuations in
each plate, allowing for an alternative method based on sources which recovers the Casimir
force [86, 87]. In a sense therefore the effect can be interpreted without reference to the zero
point energy of the vacuum and the Casimir calculation works due to the fact that the math-
ematical limit in going to a perfect conductor works. Using a stochastic formulation of elec-
trodynamics by Rytov [88], the Casimir calculation was generalized by Lifshitz for interac-
tions between arbitrary electrical bodies, characterized by their local electric and magnetic
response[15]. Even though this theory is very general, the microscopic justification is not
completely rigorous, source terms (random currents and dipole fluctuations) are introduced
to Maxwell’s equations to give a Langevin formulation of Maxwell’s equations in the pres-
ence of dielectric bodies. The correlation functions of the white noise terms depend on the
temperature of the system and are determined via the quantum fluctuation dissipation theo-
rem. The Lifshitz theory is computationally difficult to work with and it was reformulated in
a way more useful for practical calculations and that can be applied to experimental setups
[89, 90]. Rytov’s formulation has the advantage that it can be used to treat out of equilib-
rium situations where different bodies are held at different temperatures. This allows both
the computation of out of equilibrium forces and radiative heat transfer.

The theory in the presence of electromagnetic media is written in terms of the electric
and magnetic fields E and B and the displacement and magnetizing fields D and H which are
assumed to obey local relations in real space and Fourier space

D̃(ω) = ε(ω)Ẽ(ω); B̃(ω) =µ(ω)H̃(ω) (3.26)

where ε̃(ω) and µ̃(ω) are the frequency dependent permittivity and permeability. The bound-
ary conditions at the interface between two materials 1 and 2 are given by

B1n = B2n D1n = D2n (3.27)

E1t = E2t H1t = H2t (3.28)
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where n denotes the normal component and t the tangential component to the interface.
Forces can be computed using the vacuum (assuming that the surface where the force is

computed is next to the vacuum) Maxwell stress tensor.

Ti j = ε
(
Ei E j − 1

2
δi j E2

)
+ 1

µ

(
Bi B j − 1

2
δi j B2

)
(3.29)

Notice that the stress tensor is quadratic in the fields E and B, this means that even if the
fields are on average zero, both thermal and quantum fluctuations give rise to forces.

In media Maxwells equations are

∇×E = −∂B

∂t
(3.30)

∇×H = J− ∂D

∂t
(3.31)

∇·D = ρ (3.32)

∇·B = 0 (3.33)

In a dielectric medium or conductor where there are no applied external fields there is no
free charge or current. As such, the average values of E and B are zero. Rytov’s idea was to
add a random current to induce both thermal and quantum fluctuations into the problem.
Assuming that the only contribution to the current comes from a fluctuating polarization
density P, we can write

∂ρ

∂t
+∇· J = 0 =⇒ ∇·

[
−∂P

∂t
+ J

]
= 0 (3.34)

where we have used
ρ=−∇·P (3.35)

This means that the current is given by

J = ∂P

∂t
(3.36)

or in Fourier space
J̃(ω) = iωP̃(ω) (3.37)

Now if we assume that the fluctuations in the polarization density are uncorrelated in space,
the fluctuation dissipation theorem tells us that the correlation function of the polarization
density in Fourier space is given by

〈Pα(ω;x)P†
β

(ω;x′)〉s ym = ~ε′′(ω)

2
coth

( ~ω
2kBT

)
δ(ω−ω′)δ(x−x′)δαβ (3.38)

ε(ω) = ε′(ω)+ iε′′(ω) (3.39)

The Lifshitz calculation for slab geometries gives a force per unit area between two slabs of
media separated by a distance L

F

A
= −kBT

πc3

∞∑
n=0

ω3
n

∫ ∞

1
d pp2

[
1− (s1 +p)(s2 +p)

(s1 −p)(s2 −p)
exp(−2pωnL

c
)

]
+

[
1− (s1 +pε1)(s2 +pε2)

(s1 −pε1)(s2 −pε2)
exp(−2pωnL

c
)

]
(3.40)
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where ε= ε0ε, si =
√
εi −1+p2,ω= 2πnkBT

~ are the Mastubara frequencies [8] and εi = εi (iωn).
Note that the integral over real frequencies has become a sum over discrete Matsubara fre-
quencies, they come from the poles in the hyperbolic cotangent.

One needs to know the dielectric response at imaginary frequency, this is done using the
Kramers-Kronig relation

ε(iω) = 1+ 2

π

∫ ∞

0
dζ

ζε′′(ζ)

ω2 +ζ2
(3.41)

3.1.3 Critical Casimir effect

In systems having a continuous phase transition the correlation length diverges as the crit-
ical point is approached. This means that the correlation length has a size comparable to
that of the system size, which leads to strong finite-size effects in the free energy. Following
the arguments of Fisher and de Gennes [3], we describe how a version of the Casimir effect
manifests in critical systems.

3.1.3.1 Bulk scaling for near critical systems

The free energy for a system consisting of N spins has a singular part at a critical temperature
Tc which can be written as

F(t ,h) = N f (t ,h) (3.42)

where t = (T−Tc )/Tc measures the distance from the critical point and h is the external ap-
plied magnetic field. Assuming that the only relevant parameters are T and h (equivalently
the concentration or chemical potential of a binary mixture), which is true for d < 4 [7], carry-
ing out a renormalisation group transformation blocking spins in blocks of linear size b into
new effective spins, we have

N f (t ,h) = N′ f (t ′,h′) (3.43)

Clearly the number of spins in the blocked system is given by bd N′ = N and the RG transfor-
mation for t and h are given by t ′ = by1 t and h′ = by2 h, where y1 and y2 are positive and are
the RG exponents for the fields t and h (from which all critical exponents can be deduced).
This means that

f (t ,h) = 1

bd
f (by1 t ,by2 h) (3.44)

We begin by working with t > 0 but the arguments here are trivially generalisable to the case
t < 0. In Eq. (3.44), if b is chosen such that by1 t = 1, then, at the critical field h = 0, we find

f (t ,0) = t
d
y1 f (1,0) (3.45)

The singularity in the specific heat is defined via

c ∼ ∂2

∂t 2
f (t ,0) (3.46)

and is equal to

c ∼ t
d
y1

−2 ∼ t−α (3.47)
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where α is the exponent associated with the divergence of the specific heat. This means that

α= 2− d

y1
(3.48)

The RG transformation for the correlation function has the form

C(r, t ,h) = λ2(b)C(r /b,by1 t ,by2 h) (3.49)

Clearly length scales transform as r ′ = r /b. Again setting h = 0 and choosing by1 t = 1 gives

C(r, t ,h) = λ2(t−
1

y1 )C(r /t−
1

y1 ,1,0). (3.50)

The correlation function, by definition is given by

C(r, t ) ∼ f (r /ξ), (3.51)

where ξ is the correlation length. This immediately tells us that ξ = t−
1

y1 and from the usual
definition

ξ∼ t−ν (3.52)

one have ν= 1/y1. These two formula for y1 then give the hyper scaling relation

α= 2−dν (3.53)

The exponents α and ν are the ones that are important in the critical Casimir effect.

3.1.3.2 Finite size scaling

Consider a system which is finite in one direction with either periodic boundaries or two
surfaces. While the critical system has h = 0, there can be local surface fields at each surface
a and b. This represents a preference of the surfaces for one phase or the other. The finite
scaling hypothesis for a slab system of large area A but with finite width L can be stated as

f (t ,ha ,hb ,L−1) = 1

bd
f (by1 t ,bya ha ,byb hb ,bL−1) (3.54)

and see that the field L−1 is a relevant field with RG exponent yL = 1. The surface fields are
not necessarily relevant so ya and yb can be either positive or negative. The important point
about finite size scaling is that when L is finite the singularity due to the thermodynamic
phase transition is smoothed out by the system’s finite size (note that we assume that the
system has no two-dimensional phase transition in the region we are looking at). When L is
large there should be a bulk contribution to the free energy plus a surface term (so we are
considering the limit L →∞ before ξ→∞)

f (t ,ha ,hb ,L−1) = f (t ,ha ,hb ,0)+L−1∂ f (t ,ha ,hb ,0)

∂x4

= 1

bd
f (by1 t ,bya ha ,byb hb ,0)+ 1

bd−1
L−1∂ f (by1 t ,bya ha ,byb hb ,0)

∂x4
(3.55)
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where we have carried out the Taylor expansion for L−1 small using both versions of Eq. (3.59)
and ∂

∂xn
indicates the partial derivative with respect to the nth argument. The second term

gives a total contribution to the singular part of the free energy of the order AL×L−1 and is
thus a surface tension γ and so we have

γ= 1

bd−1

∂ f (by1 t ,bya ha ,byb hb ,0)

∂x4
(3.56)

Setting bt y1 = 1 then gives close to the critical point

γ∼ t
d−1
y1
∂ f (1, limt→0 t−

ya
y1 ha , limt→0 t−

ya
y1 hb ,0)

∂x4
= t (d−1)νC′ = ξ−(d−1)C′ (3.57)

The formula relating the surface tension and the correlation length, in the above C′ is a con-
stant depending on the universality class.

Now keeping L finite and setting by1 t = 1 in Eq. (3.59) the function can be rewritten as

f (t ,ha ,hb ,L−1) = t
d
y1 f (1, t−

ya
y1 ha , t−

yb
y1 hb , t−

1
y1 L−1) (3.58)

f (t ,ha ,hb ,L−1) = 1

ξd
f (1,ξya ha ,ξyb hb ,ξ/L) (3.59)

f (t ,ha ,hb ,L−1) = 1

Ld
θ(

L

ξ
,ξya ha ,ξyb hb) (3.60)

Now crucially as ξ→∞ the function θ is analytic so taking the limit ξ→∞ gives

f (0,ha ,hb ,L−1) = 1

Ld
θ(0, lim

ξ→∞
ξya ha , lim

ξ→∞
ξyb hb) (3.61)

Clearly for each surface there are 3 possibilities: limξ→∞ ξya ha = ±∞, if the surface fields
are relevant, as well as limξ→∞ ξya ha = 0 if the surface fields are irrelevant. There is clearly
also a similar argument when the system has periodic boundary conditions and there are no
surface fields. Near the critical point depending on the boundary conditions there should be
scaling functions when the surface fields attract the same phase θ++(x), where they attract
different phases and θ+−(x), and θpbc (x) when the boundary conditions are periodic. There
should also be a zero surface field case θ00 when the surfaces fields are irrelevant or zero (this
is however unlikely). Fisher and de Gennes argued, without proof, that the force for (++)
boundary conditions should be attractive where as the (+−) case should produce repulsive
forces [3, 91].

The total singular part of the free energy is thus given by

F = AL f (t ,ha ,hb ,L−1) = A

Ld−1
θ(

L

ξ
,ξya ha ,ξyb hb). (3.62)

The scale of the energy is set by the energy of thermal fluctuations kBT, so we find the
critical Casimir energy

F(t = 0) = kBTAC

Ld−1
(3.63)

where C is a constant depending on the surface universality class.
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3.2 Finite size scaling in one dimensional interface models

Confining statistical systems generates Casimir forces when the correlation length of the fluc-
tuations becomes of the order of the minimum size of the system, be it for perfect conductor
plates in vacuum or in confined critical systems. We have also seen that interfaces between
two phases can be described by surface models, so it is physically obvious that finite size
effects also arise in those systems. In what follows we will study the size dependence of a
number of continuous and discrete interface models (corresponding to the interfaces of two
dimensional systems). While long range forces are generated by confinement, we find that
those models have quantitatively different behaviours to the critical Casimir effect. However
if one assumes a phenomenological proposal by Privman [16] to introduce a finite size cor-
rection to the surface tension, the critical Casimir effect can be quantitatively recovered.

3.2.1 Continuous models in one dimension

In one dimension the partition function for a surface model of the type discussed in Sec 1.2
can be written as a path integral

Z(t ) =
∫

d [h]exp

(
−βσ

2

∫ t

0
h′2(x)d x −β

∫ t

0
V(h(x))d x

)
(3.64)

where t is the length of the system and the notation is chosen so the variable x can be thought
of as a time in path integral language. It is convenient to fix both the starting point h(0) = x
and the end point h(t ) = x and define what is known as the propagator [8]

K(h,h′, t ) =
∫

h(0)=h
d [h]δ(h′−h(t ))exp

(
−β

2

∫ t

0
σh′2(x)d x −β

∫ t

0
V(h(x))d x

)
(3.65)

The propagator is an example of a path integral and is the sum over all paths going between
h and h′ in what can be taken to be the time t . It can be shown [92] that the path integral
obeys an imaginary time Schrödinger equation

∂K(h,h′, t )

∂t
=−ĤK(h,h′, t ) (3.66)

where Ĥ is the Hamiltonian operator

Ĥ =− 1

2σβ

∂2

∂h2
+βV(h) (3.67)

and, with a suitable normalisation, the initial condition

K(h,h′, t ) = δ(h −h′) (3.68)

If the Hamiltonian operator Ĥ has eigenfunctions ψn , normalised so that∫
dh ψ2

n(h) = 1 (3.69)

and with eigenvalues εn , it is easy to see that the propagator can be written as

K(h,h′, t ) =∑
n

exp(−tεn)ψn(h)ψn(h′) (3.70)
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If the system has periodic boundary conditions but leave the initial value h(0) of the height
to be free, then using the normalisation of the eigenfunctions, we find

Z(t ) =
∫

dhK(h,h, t ) =∑
n

exp(−tεn) (3.71)

Now in the thermodynamic limit t →∞ if there is a gap between the ground state energy ε0

and the first excited state, g = ε1 − ε0 which is non-zero, applying ground state dominance
gives

Z(t ) = exp(−tε0) (3.72)

which gives the free energy per unit length as

f = 1

β
ε0 (3.73)

As well as the free energy we are interested in the probability distribution of the height at a
single point (which is independent of the point chooses due to invariance by translation of
the system). For instance the probability distribution of h(0) is given by

p1(h) =
∫

d [h]δ(h(0)−h)exp
(
−β

2

∫ t
0 h′2(x)d x −β∫ t

0 V(h(x))d x
)

Z(t )

=K(h,h, t )

Z(t )

=
∑

n exp(−tεn)ψ2
n(h)∑

n exp(−tεn)
(3.74)

and so as t →∞, ground state dominance gives

p1(h) =ψ2
0(h) (3.75)

where the normalisation of the probability density function for h follows from the normali-
sation of the wave functions.

The joint probability density function for two heights separated by a time or distance x is
given by

p2(h,h′, x) =
∫

d [h]δ(h(0)−h)δ(h(x)−h′)exp
(
−β

2

∫ t
0 h′2(x)d x −β∫ t

0 V(h(x))d x
)

Z(t )

=K(h,h′, x)K(h′,h, t −x)

Z(t )

=
∑

nm exp(−xεn)ψn(h)ψn(h′)exp(−[L−x]εm)ψm(h′)ψm(h)∑
n exp(−tεn)

(3.76)

Due to ground state dominance only the term with m = 0 survives in the sum above (as as x
is taken such that x ¿ t ) so we find

p2(h,h′, x) = ∑
n
ψ0(h′)ψ0(h)ψn(h′)ψn(h)exp(−x[εn −ε0])) (3.77)

= p1(h)p1(h′)+∑
n〉0

ψ0(h′)ψ0(h)ψn(h′)ψn(h)exp(−x[εn −ε0])) (3.78)
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From this we see that when x[εn −ε0] À 1 for all n, in particular when x[ε1 −ε0] À 1, we have

p2(h,h′, x) ∼ p1(h)p2(h′) (3.79)

so that the height at large distances are uncorrelated or equivalently are independent random
variables. This gives a correlation length

ξ= 1

ε1 −ε0
(3.80)

3.2.2 The confined elastic line

We consider now the case where V(h) = 0 for 0 < h < L and V(h) = 0 otherwise. This corre-
sponds to a one dimensional elastic line confined between two impenetrable walls separated
by a distance L, as shown in a schematics in Fig 3.1. The Hamiltonian Ĥ is that for a quantum
well of width L and with eigenfunctions [93]

ψ(h) =
√

2

L
sin(

π(n +1)h

L
) (3.81)

where n ≥ 0 are integers. The ground state energy of such a system is

ε0 = 1

2σβ

π2

L2
(3.82)

and so, in the thermodynamic limit, the free energy per unit length is

f = 1

2σβ2

π2

L2
= T2π2

2σL2
(3.83)

Here the pressure (in this case pressure in a force per unit length) is given by

P =−∂ f

∂L
= π2T2

σL3
(3.84)

which is repulsive. Physically, the fluctuations of the surface repel the walls. The pressure
has the Casimir like characteristic that it behaves as a long range power law type interaction,
however a two dimensional critical Casimir system (see (3.63)) would have a free energy per
unit length f = CT/L. We also see that the free energy scales as T2 rather than T (as is the case
for the Casimir interaction).

Since a critical system has zero surface tension, using a model with a finite surface ten-
sion for the critical interface is clearly not appropriate. However it has been conjectured by
Privman [16] that the term σ, which Privman refers to the stiffness, should be modified by fi-
nite size effects (although he considers a case where the height L of the system and the length
t are of the same order). The simplest conjecture proposed by Privman[16] is that

σ(L) ≈σb +
Ta

L
(3.85)

with a being dimensionless. This amounts to assuming that the corrections are analytic in
the variable 1/L. It seems difficult to justify this from a more microscopic view, however if we
use this we find that

f = 1

2σ(L)β2

π2

L2
= T2π2

2[σb + Ta
L ]L2

(3.86)
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Figure 3.1: Schematics of an interface confined between 0 and L = 30 (this is not a numerical simula-
tion).

At the critical point where σb = 0, we find

fc = Tπ2

2aL
(3.87)

and this does have exactly the form predicted for a critical system in Eq. (3.63). As such,
Casimir-type interactions have an interesting manifestation in interface physics, and deeper
development could lead to new interesting physics.

Going back to interface models, using Eq. (3.80) the correlation length is given by

ξ= 2

3

σL2

Tπ2
(3.88)

thus it increases as the surface tension is increased or the temperature is lowered. This makes
physical sense as the surface should become flatter under these conditions. Also, as the sys-
tem becomes more confined, the correlation length increases, again as confinement kills
fluctuations. The correlation length tells us that if we wanted to simulate this system then
we need to take

t À ξ (3.89)

in order to be in the thermodynamics limit and so t À σL2

Tπ2 . Thus, for L large, in general we
would need to simulate rather large systems. The probability distribution function of the
height at a single point is given by

p1(h) = 2

L
sin2(

πh

L
) (3.90)

and from this

〈h〉 = L

2
(3.91)

which is rather obvious. The width of the interface is given by

w =
√
〈h2〉−〈h〉2 (3.92)
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and here it is given by

w = L

√
1

12
− 1

2π2
= 0.180756 L (3.93)

During this thesis we have considered models of surfaces where the overall surface inte-
gral is fixed. In magnetic systems this corresponds to systems with conserved magnetisation.
It is surprisingly difficult to deal with this constraint in a hard way both for continuous sur-
faces, treated via the Schrödinger equation, and for discrete systems with the transfer matrix.
In principle one can always introduce a magnetic field to fix the average total magnetisation
to zero. However, there will always be fluctuations around the average value. If there are N
sites, the fluctuations of the magnetisation by site scale as 1/

p
N. However, the total magneti-

sation has fluctuations of the order of
p

N and so the condition of fixed total magnetisation
is only imposed approximately by an applied magnetic field.

In the confined Edwards Wilkinson model we consider the magnetisation M defined by

M =
∫ t

0
d x h(x) (3.94)

We know, from symmetry arguments, that without an external applied field we have

〈M〉 = tL

2
(3.95)

which can be shown explicitly from the formula

〈M〉 = t
∫ L

0
dhhψ2

0(h) (3.96)

Interestingly, if we write things in terms of the traditional bra and ket notation of quantum
mechanics, we see that

〈M〉 = t〈0|h|0〉 (3.97)

and so
〈0|h|0〉 =∆ε0,1(h) (3.98)

where ∆ε0,1(h) is the shift in the ground state energy to first order in perturbation theory in-
duced by a perturbation of the potential ∆V(h) = h. However this is just the thermodynamic
expression

〈M〉 =−t
∂

∂λ
f (λ)|λ=0 (3.99)

for a potential U(h) = V(h)+λh. The variance of M can be computed by using Eq. (3.78),
which gives

〈M2〉c =
∫ t

0
d xd x ′[h(x)h(x ′)−〈h2〉]

=
∞∑

n>0

(∫ L

0
dh hψ0(h)ψn(h)

)2 ∫ t

0
d xd x ′ exp(−[εn −ε0]|x −x ′|) (3.100)

and for large t carrying out the integration over x and x ′ gives

〈M2〉c = 2t
∑

n>0

1

εn −ε0

(∫ L

0
dh hψ0(h)ψn(h)

)2

(3.101)
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From second order perturbation theory we see that this is just equivalent to the thermody-
namic identity

〈M2〉c =−Tt
∂2

∂λ2
f (λ)|λ=0 (3.102)

Using the explicit form of the eigenfunctions we find

〈M2〉c = 16L4tσβ

π2

∞∑
n=1

1

(n +1)2 −1

[∫ 1

0
du u sin(πu)sin(π(n +1)u)

]2

(3.103)

It can then be shown that∫ 1

0
du u sin(πu)sin(π(n +1)u) =−2(n +1)(1+cos((n +1)π)

π2[(n +1)2 −1]2
(3.104)

From this we see that only the modes where n is odd contribute to the fluctuations of the
magnetisation. Consequently we find

〈M2〉c = 256L4tσβ

π6

∞∑
n, odd ,=1

(n +1)2

[(n +1)2 −1]5
(3.105)

= 1024L4tσβ

π6

∞∑
k=0

(k +1)2

[(2k +2)2 −1]5
(3.106)

= L4tσβ(15−π2)

π4
(3.107)

This formula deserves some comment. A first trivial comment is that 〈M2〉c ∼ t in accordance
with the thermodynamic arguments given above. Secondly the variance diverges as σβ→∞,
which is normal as the low energy configuration zero mode - a straight line - is unaffected
by the confining walls and so in principal this line can lie anywhere on [0,L], explaining the
scaling with L4.

3.2.3 The Airy line

This is an example of the constant volume ensemble. Physically we could also consider the
case of a system which is confined softly by an externally imposed pressure P0 (which can
also be treated as a chemical potential depending on the context) in the constant pressure
ensemble. In this case the potential is given by

V(h) =
{

P0h for h > 0

∞ for h ≤ 0

The time independent Schrödinger equation for the eigenfunctions here is

− 1

2σβ

d 2ψn(h)

dh2
+P0βhψn(h) = εnψn(h) (3.108)

The corresponding eigenfunctions have boundary conditions ψn(0) = 0 due to the hard wall
potential at h = 0 and they must also decay to zero as h →∞ so as to be normalisable.
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The key to find the eigenfunctions is to transform the Schrödinger into the Airy equation
which is

d 2 y(x)

d x2
−x y(x) = 0. (3.109)

This equation has solutions Ai(x) which decay as

Ai(x) ∼ exp(−2
3 x

3
2 )Γ( 5

6 )Γ( 1
6 )

4π
3
2 x

1
4

, (3.110)

as x →∞ and so are normalizable as eigenfunctions. For x〈0 the Airy function oscillates and
has an infinite number of negative zeros −αn such that Ai(−αn) = 0.

We make the change of variable h = `z ′ to find

1

2σβ`2

d 2ψn(z ′)
d z ′2 −P0β`(z ′−εn)ψn(z ′) = 0, (3.111)

where εn = εn/(P0β`). Now we choose ` so that

2σβ2P0`
3 = 1, (3.112)

and we see that

`=
(

1

2β2σP0

) 1
3

, (3.113)

is an intrinsic length scale.
d 2ψn(z ′)

d z ′2 − (z ′−εn)ψn(z ′) = 0. (3.114)

Finally if we use z = z ′−εn we obtain Airy’s equation [94]

d 2ψn(z)

d z2
− zψn(z) = 0 (3.115)

and so
ψn(z) = cnAi(z), (3.116)

where cn is a normalisation constant. This means that in terms of the original height variable
h,

ψn(h) = cnAi(
h

`
−εn) (3.117)

The boundary condition ψn(h) implies that εn = αn+1. This means that the ground state
energy is

ε0 = α1P0β`= α1P0β

(2σβ2P0)
1
3

= α1P
2
3
0 β

1
3

2
1
3σ

1
3

, (3.118)

and where we note that α1 = 2.33811.

f = α1P
2
3
0

2
1
3σ

1
3β

2
3

. (3.119)
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From the original partition function we see that h is conjugate to P0 and so we find the aver-
age height is given by

h̄ = 〈h〉 = ∂ f

∂P0
= 2

3

α1

2
1
3σ

1
3β

2
3 P

1
3
0

= 2

3
α1` (3.120)

and solving for P0 in terms of h gives

P0 = 4

27

α3
1T2

σh
3 , (3.121)

We see that P0 behaves exactly in the same way as the pressure of a confined elastic line in
term of the temperature and surface tension. Only the overall numerical prefactor is differ-
ent.

The correlation length is given by

ξ= 2
1
3 (σT)

1
3

(α2 −α1)P
2
3
0

. (3.122)

When written in terms of h the above correlation length behaves in the same way as for the
free elastic line, however when P0 is fixed we see that the behavior as a function of T and
σ is quite different. The correlation length still increases with σ but now decreases as the
temperature drops.

The probability density function for the height of the interface at a single point is given by

p1(h) = Ai2( h
` −α1)∫ ∞

0 dh′Ai2( h′
` −α1)

(3.123)

Writing the height variable in terms of the length scale `, h(x) = `z(x), we find that z has the
single point probability density function

p(z) = Ai2(z −α1)∫ ∞
0 d z ′Ai2(z ′−α1)

= Ai2(z −α1)

Ai′2(−α1)
(3.124)

Using this we find that the average height is given by

〈h〉 = h = `z0, (3.125)

where

z0 =
∫ ∞

0 d zzAi2(z −α1)∫ ∞
0 d zAi2(z −α1)

. (3.126)

Interestingly comparison with the thermodynamic calculation giving Eq. (3.120) shows that
the identity

z0 = 2

3
α1, (3.127)

must hold - this surprising identity can be verified numerically. Here we find that the average
height given by

〈h〉 = 0.697089 `. (3.128)
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Figure 3.2: The scaled probability density function p(z) for the distribution of the height at a single
point for the Airy line given in Eq. (3.124)

The variance of the magnetisation is then given by

〈M2〉c = −TL
∂2

∂λ2
f (λ)|λ=0 =−TL

∂2

∂P2
f (P)|P=P0 (3.129)

= L
α1

2
1
3σ

1
3β

5
3

2

9
P
− 4

3
0 . (3.130)

In terms of the average height this then gives

〈M2〉c = 9

4α3
1

Lσβh
4

(3.131)

3.3 The generalized Lopes-Jacquin-Holdsworth Method

In Sec 2.3.2, we have shown a way to numerically compute the free energy of a system at a
chemical potential µ in absence of another potential. Here we generalise the method for any
kind of external potential. We will explain the method for the Ising model, but the derivation
for the SOS model is straightforward.

For any external field which can be written as BV(σ), where V(σ) is a function of the inter-
nal microscopic variables σi , the Hamiltonian of the Ising model is

H =−J
∑
σiσ j −B

∑
i

V(σi ) (3.132)

The mean value of the external potential is

〈∑
i

V(σi )〉 =∑
h

∑
i

V(σi )exp(−βH)

=− ∂F(µ)

∂B
(3.133)
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where F is the free energy of the system. For any potential of the form (3.135), we can integrate
the previous equation to find

F(B1)−F(B2) =−
∫ B2

B1

dB′〈∑
i

V(σi )〉B′ (3.134)

If we know the analytical form of the free energy in the limits B2 → ∞ or B1 → 0, this
method provides a way to directly measure it for any temperature or size by integrating over
the chemical potential. From the total free energy, we recover the Casimir form through Eq.
(2.34). The limit B1 → 0 is the free system limit, in which its free energy can not be computed
analytically. However, when B2 → ∞, for the majority of external fields BV(σ) in which we
may be interested, there is often a configuration limit whose free energy can be computed
analytically. For example, if V(σ) =σ, the configuration limit is the one where all spins point
towards the same direction, leading to a free energy of 0. Thus, we have

F(B1)−Fanal y ti c (∞) =−
∫ ∞

B1

dB′〈∑
i

V(σi )〉B′ (3.135)

In numerical simulations, it is not possible to range over infinity, and a criterion has to be de-
fined to know the error made between the analytic case µ2 =∞ and the maximal µ2 achieved
in simulations. As in Eq (2.35), we define the function

D(B,L1,L2) = 〈M∗(L1)−M∗(L1 −1)− (M∗(L2)−M∗(L2 −1)〉 (3.136)

with the generalized magnetization M∗ =∑
i V(σi ). A suitable upper limit of integration if we

want to get the Casimir force is when the function D reaches 0 within the precision of the
simulation.

For the SOS Hamiltonian

H = J
∑

i
|hi −hi+1|+B

∑
i

V(hi ) (3.137)

we define the generalised mean height as

h∗ = 〈∑
i

V(hi )〉 (3.138)

Equation (3.135) writes as

F(B1)−F(B2) =−
∫ B2

B1

dµ′h∗(B′) (3.139)

which can directly be verified with the transfer matrix for SOS systems. In the limit B →∞,
the generalised height is zero, while the free energy F(∞) can often be computed analytically.
To minimize the error between the analytical limit and the numerical simulations, a suitable
choice of the upper integration’s limit B2 is given by∫ ∞

B2

dB′h∗(B′)) ¿
∫ B2

B1

dB′h∗(B′) (3.140)

54



CHAPTER 3. EQUILIBRIUM INTERFACE MODELS AND THEIR FINITE SIZE EFFECTS

0 1 2 3 4 5 6
B2

1.2

1.0

0.8

0.6

0.4

0.2

0.0

F(
B 1

)
F(

)

Transfer Matrix free energy 
Transfer Matrix integration, B2 = 6
Monte Carlo integration, B2 = 2
Monte Carlo integration, B2 = 6

Figure 3.3: Difference in free energy directly computed from transfer matrix, compared to numerical
integration over the generalized height, for different upper limit B2. The parameters are L′ = 256,
L = 200 and β= 1 for 5e7 Monte Carlo steps.

An heuristic argument to find a suitable upper limit for integration is when h∗(B2) ¿ h∗(B1).
In Fig 3.3, we see the free energy computed from the matrix transfer, compared to the inte-
gration procedure (3.135) for the SOS model for the chemical potential V(hi ) = hi in Monte
Carlo simulations, where we see the agreement for B2 large enough.

Since the order parameter is conserved in model B, the generalized Lopes-Jacquin-Holdswroth
method can be used to compute the free energy for Kawasaki dynamics for potentials differ-
ent from the chemical potential. As a proof of concept, we take a potential of the form

V(hi ) =−|hi − L

2
| (3.141)

Such potential will press the interface along h = 0 and h = L compared to the classical chem-
ical potential which presses the interface at h = 0, as seen in Fig 3.4. Far away from L

2 , both
potentials are equivalent in symmetric fashion, and shall behave similarly for large B, be-
cause the free energy only depends on the interface fluctuations and not about the mean
height.

In the B →∞ limit, the system has two equilibrium positions h = 0 et h = L, which gives
the transfer matrix

T = eβB L
2

(
1 e−βJL

e−βJL 1

)
(3.142)

The eigenvalues are λ± = eβB L
2 (1±e−βJL), so the free energy is

F(B →∞) =−B
L

2
(3.143)
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Figure 3.4: Snapshots of systems for the potential (3.141) and the chemical potential for β = 1 and
B = 2 with L = 40 and L′ = 256
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Figure 3.5: Difference in free energy directly computed from transfer matrix with the potential (3.141),
compared to numerical integration over the generalized height. The parameters are L′ = 256, L = 20
and β= 1, B2 = 1for 107 Monte Carlo steps.
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In Fig 3.5 we show the difference of free energy computed from the transfer matrix between
B1 finite and B2 = 1, and the integration procedure (3.139) with the generalized height with
the matrix transfer and Monte Carlo simulations, both for Glauber and Kawasaki dynamics.
The disagreement between the expected value and the simulation results from B2 are too
small, which we also see in the integration of the generalized height from the transfer matrix.
We can convince ourselves by doing the integration from the transfer matrix for a larger B2.
Also, it is worth noting that for this system, there is no significant difference in results for the
two different dynamics.

This method opens a new way to compute the free energy for any kind of external po-
tential of the form BV(h), or BV(σ) in the case of the Ising or SOS models for conserved and
non-conserved dynamics, such as non-uniform external fields [95]. Applied to Ising models,
this method allows to check the differences between Glauber and Kawasaki critical Casimir
forces, to see if there are any far away from the thermodynamic limit.

3.4 The confined Solid-On-Solid model

From exact diagonalization of the SOS transfer matrix in the infinite case [96], finite-size ef-
fects were studied both for the SOS and RSOS model [97, 98]. Nevertheless the derivation
of eigenvectors and eigenvalues were not explicit in the latter case. Those eigenvalues are
a multiple of an integer, and the study of the eigenvalues issued from an odd integer were
not discussed. In addition to redoing properly this computation, we add an analysis to the
correlation length and the limits of high and low temperatures for the free energy.

We consider the free interface confined between 0 and L, with no external field. The SOS
transfer matrix is thus given by

T(hi ,h j ) = exp(−βJ|hi −h j |) (3.144)

Since positions are comprised from 0 to L,the transfer matrix is

Ti j = exp(−βJ|i − j |) = r |i− j | (3.145)

where

r = exp(−β J) (3.146)

To find the eigenvectors of T, we consider the vector denoted by [a] which has components

[a]i = ai (3.147)

where i is an index ranging from 0 to L. The action of the SOS transfer matrix on this vector
is given by

[T [a]]i =
L∑

j=0
r |i− j |a j (3.148)
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so

[T [a]]i =r i
i∑

j=0
r− j a j + r−i

L∑
j=i+1

r j a j

=r i
i∑

j=0
r− j a j + r−i

L−i−1∑
k=0

r i+1+k ai+1+k

=r i 1− r−(i+1)ai+1

1− r−1)a
+ r ai+1 1− r L−i aL−i

1− r a

=
[

r a

1− r a
−

a
r

1− a
r

]
ai + r i

1− a
r

− r L+1−i aL+1

1− r a
(3.149)

We now define

λ(a) = r a

1− r a
−

a
r

1− a
r

=
1
r − r

1
r + r −a − 1

a

(3.150)

and notice that
λ(a) = λ(a−1) (3.151)

We can thus write

[T [a]]i = λ(a)ai + r i

1− a
r

− r L+1−i aL+1

1− r a
(3.152)

Now, considering the action of the transfer matrix on the vector [a−1], we get

[
T [a−1]

]
i = λ(a)a−i + r i

1− 1
r a

− r L+1−i a−(L+1)

1− r
a

(3.153)

Looking for an eigenvector of the form

v = [a]+ c[a−1] (3.154)

the action of T on v is[
T ([a]+ c[a−1]

]
i = λ(a)[ai + ca−i ]+ r i

(
1

1− a
r

+ c

1− 1
r a

)
− r L+1−i

(
aL+1

1− r a
+ c

a−(L+1)

1− r
a

)
(3.155)

so v is an eigenvector, with eigenvalue λ(a), if

1

1− a
r

+ c

1− 1
r a

= 0 (3.156)

aL+1

1− r a
+ c

a−(L+1)

1− r
a

= 0 (3.157)

The above equations implies that

c =− r a −1

a(r −a)
(3.158)

and
c2 = a2L (3.159)

Therefore we find
vi = ai ±aL−i (3.160)
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Ground state eigenvector

We expect the ground state eigenvector (corresponding to the largest eigenvalue) to be sym-
metric with respect to the middle of the system and so

vi = vL−i (3.161)

which implies that we should have c = aL.
This then gives the equation determining the values of a the largest eigenvalue, and in

general for the eigenvalues which are symmetric ( c = 1),

aL+1 = 1− r a

r −a
. (3.162)

As a check on the above derivation we consider the case L = 1 where there are only two
sites. In this case, the transfer matrix is given explicitly by

T =
(

1 r
r 1

)
(3.163)

and the largest eigenvector is easily seen to be given by

λ0 = 1+ r (3.164)

In this case, we see that Eq. (3.162) gives

a2 = 1− r a

r −a
(3.165)

which has three solutions

a1 = −1 (3.166)

a2 = 1

2

(
−

√
r 2 +2r −3+ r +1

)
(3.167)

a3 = 1

2

(√
r 2 +2r −3+ r +1

)
(3.168)

We see that a2 = 1/a3, and |a2| = |a3| = 1, and that

λ(−1) = 1− r

1+ r
(3.169)

while
λ(a2) = λ(a3) = 1+ r (3.170)

corresponds to the maximal eigenvalue. Note that λ(−1) is not the other eigenvalue of the
transfer matrix, this has to be found by considering solutions with c =−1, as we will see later.

The equation (3.162) determining a can also be written as

aL =−r − 1
a

r −a
(3.171)

From this we see that if a is a solution then 1/a and a =−1 are always a solution.
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We now introduce θ and

a = exp(iθ) (3.172)

Then the parameter of the eigenvector is

exp(i Lθ) =−r −exp(−iθ)

r −exp(iθ)
(3.173)

From Eq. (3.150), we have

λ(θ) = sinh(βJ)

cosh(βJ)−cos(θ)
. (3.174)

Notice that in order to construct a real eigenvector corresponding to λ0 we can use the fact
that vi (a) = ai + aL−i and vi (a−1) = a−i + a−L+i are both eigenvectors with the same eigen-
value. This means that ui (a) = vi (a)+ vi (−a) is also an eigenvector and all its components
are real.

Clearly the largest eigenvalue corresponds to the value of θ closest to 0, so we look for an
eigenvalue such that Lθ∼ 1. Writing

φ= Lθ (3.175)

this gives for L large

exp(iφ) ≈−r −1+ i φL

r −1− i φL
≈−1+2i

φ

L(1− r )
(3.176)

and so we find to leading order in 1/L

θ= (2n +1)π

L
(3.177)

We notice that this approximation is only valid if L(1− r ) À 1. For large β this approximation
is simply equivalent to L À 1, while when β is small it requires that HβÀ 1.

The closest eigenvector to the real axis has n = 0 so we have

λ0 ≈ sinh(βJ)

cosh(βJ)−cos(πL )
≈ sinh(βJ)

cosh(βJ)−1+ π2

2L2

≈ coth(
βJ

2
)(1− π2

4sinh2(βJ
2 )L2

) (3.178)

In the limit L → ∞, the ground-state eigenvalue is the same as the Sine-Gordon chain of
length L′ → ∞ fixed at h(0) = h(L′) = 0 with a SOS interaction between nearest neighboors
[96], which is normal since boundary conditions on the x-axis are negligible in the thermo-
dynamic limit.

First excited state eigenvector

In order to compute the second eigenvalue λ1 we look for an odd or antisymmetric solution
with c =−1. We thus find

exp(i Lθ) = r −exp(−iθ)

r −exp(iθ)
(3.179)

For large L we look for a solution of the form θ=φ/L and this gives

exp(iφ) ≈ 1 (3.180)

60



CHAPTER 3. EQUILIBRIUM INTERFACE MODELS AND THEIR FINITE SIZE EFFECTS

0 20 40 60 80 100
L

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0
sinh( J)

cosh( J) cos( /L)

1
sinh( J)

cosh( J) cos(2 /L)

Figure 3.6: λ0 and λ1 as a function of L computed by numerical diagonalisation of the transfer matrix,
compared to the analytical approximations for large L: Eq. (3.178) and Eq. (3.181). Here we have
chosen for J = 1 and β= 1.

and so we chose solutions φ = 2nπ for integer n. However the solution n = 0 which corre-
sponds to a = 1 has v(i ) = ai − aL−i = 0 and so does not correspond to an eigenvector. We
thus take the next solution φ= 2π which gives

λ1 ≈ sinh(βJ)

cosh(βJ)−cos( 2π
L )

≈ sinh(βJ)

cosh(βJ)−1+ 2π2

L2

≈ coth(
βJ

2
)(1− π2

sinh2(βJ
2 )L2

) (3.181)

In Fig 3.6, we show the agreement between the computation of the first two eigenvalues com-
puted by numerical diagonalisation and compared with the analytical approximations Eq.
(3.178) and Eq. (3.181) which are valid for the large L limit.

The correlation length is now given by

ξ= 1

ln(λ0
λ1

)
= 1

ln(
cosh(βJ)−cos(πL )

cosh(βJ)−cos( 2π
L )

)
≈ 4

3

sinh2(βJ
2 )L2

π2
(3.182)

and we see that this has the same form as that for the free elastic line in Eq. (3.88). Further-
more, the free energy per site is given in the thermodynamic limit and for large L by

f =−1

β
ln(λ0) ≈−1

β

[
ln(coth(

βJ

2
))− π2

4sinh2(βJ
2 )L2

]
(3.183)

and this gives a pressure

P =−∂ f

∂L
= Tπ2

2sinh2(β2 )L3
(3.184)
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This has the same form as the pressure for the elastic line in Eq. (3.84) if we make the
identification of the effective surface tension to be used in the elastic line model

σe f f =
2

β
sinh2(

βJ

2
) (3.185)

We should note that this is also consistent with the equality deduced by comparing the cor-
relation length of the two models.

We see that in the limit of large L and for appropriately low temperatures, the finite size
SOS model reproduces the phenomenology of the elastic line (confined Edwards-Wilkinson
surface). This is not surprising as at low temperatures, jumps of more that two lattice spac-
ings in the height are suppressed by a factor or exp(−βJ) with respect to staying at the same
height moving up or down by one site. The low temperature SOS model thus becomes effec-
tively equivalent to the RSOS model and thus is equivalent to a local random walk model.

High temperature limit

To explore the high temperature limit we can note that if we write

z = r −exp(−iθ) (3.186)

we can write Eq. (3.173) as

exp(i Lθ) =−z

z
= exp(2iψ+ iπ) (3.187)

where

tan(ψ) = sin(θ)

r −cos(θ)
(3.188)

This then gives
Lθ= 2ψ+π (3.189)

and so

tan(ψ) = sin(θ)

r −cos(θ)
= tan(

Lθ

2
+ π

2
) =−cot(

Lθ

2
) (3.190)

which finally gives

tan(
Lθ

2
) = cos(θ)− r

sin(θ)
(3.191)

In this form we see that our calculations agree with those of Svravick et al [97]. Futhermore
when β→ 0 we know that the elements of the transfer matrix all tend to one and that the
largest eigenvalue has all components equal. This means that in the infinite temperature
limit, θ= 0. Therefore in Eq. (3.191) we look for solutions where θ is small. Taylor expanding
gives to leading order

Lθ2

2
≈ 1− r − θ2

2
(3.192)

which gives

θ≈
√

2(1− r )

L+1
(3.193)

However the above expansion assumes that θL ¿ 1 and so√
2L(1− r ) ¿ 1 (3.194)
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This means that the height can fluctuate by of order L from site to site. The high temperature
approximation is thus equivalent to

θ≈
√

2βJ

L+1
. (3.195)

Therefore at high temperature this means that LβJ ¿ 1, which gives a maximal eigenvalue

λ0 = L+1 (3.196)

and a free energy

f =−1

β
ln(L+1) (3.197)

which is the obvious result coming from the infinite temperature entropy. This result suggests
that the solution for θ at small β can be written as a perturbation series of the form

θ=
√
βJ

∞∑
n=0

bn(βJ)n (3.198)

The first two terms give

θ=
√
βJ

√
2βJ

L+1
−βJ

2+2L+L2

6
p

2(1+L)
3
2

 (3.199)

and from this we find

f =−1

β
ln(L+1−βJ

L2 +2L

3
) (3.200)

and where we show in Fig 3.7 the agreement of the high-temperature approximation (3.200)
with respect to the direct diagonalization of the transfer matrix. As pointed out above this
result gives the high temperature entropy but it also exhibits the correct average energy ε per
unit length at high temperature. To see this we note that all values of h are equiprobable at
infinite temperature and so

ε= 1

(L+1)2
J

L∑
i , j=0

|i − j | = J
L2 +2L

3
(3.201)
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Figure 3.7: Free energy with respect to β for L = 100 and J = 1 in the high-temperature limit, by direct
diagonalization of the transfer matrix and by Eq (3.200).

3.5 Conclusion

Finite-size effects corrections in the free energy are important when the correlation length
becomes of the order of magnitude of the system’s size. The derivative of the free energy with
respect to the system size yields a confinement pressure, which can be seen for electromag-
netic fields [14, 88, 15] and for critical systems [3], which has long-range interaction.

For continuous 1D interface systems, we use the path integral method [8] to compute
the energy of all states, which gives us in the thermodynamic limit f = 1

βε0 and ξ= 1
ε1−ε0

. The
computation of the free energy of a continuous 1D interface is thus mapped to a 1D quantum
problem. This method can be used for all potentials V(h), and so we apply it to two speficic

cases. In the confined elastic line, we find the free energy per unit length f = T2π2

2σL2 , which
gives a different power-law than the critical Casimir force, which is to be expected since criti-
cal systems have no surface tension. Using a conjecture [16] about the finite-size corrections
on the surface tension, we show the correspondence between both models in the case σ= 0,
and thus that interface physics exhibits Casimir-like interactions in the right limit : this rela-
tionship between interface and critical systems could lead to interesting new physics. In the
semi-infinite geometry though, we compute the average height when the interface is under
pressure.

For discrete Solid-On-Solid models, the path integral cannot be directly applied, and
methods adapted to discrete systems must be used. The first method is to compute the free
energy through numerical simulations. We generalize the LJH method [12] to any external
potential both for Ising and SOS models, and compare it to the transfer matrix in the case of
SOS for Kawsasaki dynamics in the SOS model - which was the special case where neither the
Layer method nor the LJH method were pertinent. This generalised method opens new ways
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to study finite-size effects on critical systems under different thermodynamical ensembles,
namely the critical Casimir force in Kawasaki Ising systems.

For the confined SOS interface, we followed Švrakić [97] to obtain the exact eigenvalues
and eigenvectors of the transfer matrix in the case V(h) = 0. This gives us a free energy which
has a the same dependence to the system’s size than the confined elastic line.
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Chapter 4

Beyond Solid-On-Solid : the
Particles-Over-Particles model

While Ising models describe bulk behaviour of magnetic systems [4, 34] and interfaces be-
tween two coexisting phases [46], a direct interface lattice models exists, which is called Solid-
On-Solid. This model was first studied by Gilmer and Bennema [99, 6] as a way to compute
the crystal growth, whose dynamical equation will be later known as the Edwards-Wilkinson
equation [30, 31] . In a second time, correspondance between SOS and the highly anisotropic
Ising model at low temperature where found [47, 96], with the exact derivation of the SOS
hamiltonian from the Ising one explained in Sec 1.3.2. When using an exponent of 2 in the
interaction between nearest sites, the Gaussian SOS exhibits similar behavior to fluid inter-
faces [100, 101]. In Monte Carlo simulations for the Ising model, spins are taken with a uni-
form probability [75, 10], allowing the study of interface dynamics [102, 103, 72, 104]. On the
contrary in the SOS aproximation it is the heights which are taken with a uniform probability
[50, 62], thus discarding bulk information.

Driven by this lack of correspondence between both models, in this chapter we modern-
ize Temperley’s model [105] with a model that we call Particles-Over-Particles which takes
into account combinatorial terms, giving rise to an entropic contribution. By noticing that
the height h of the interface is the sum of all particles of size a = 1 which are put under it,
we first develop the partition function and transfer matrix of our model and compare it to
SOS, then we develop the M-particles system where we introduce multiple types of particles
stacked vertically, where each type may obey to a different dynamic, kinetic coefficient or
diffusive constant.

4.1 The model

In a SOS system of size L′ , the height of the interface at site i is noted hi ∈ [0,L] at site i , and
fixing the total number of particles to be N the partition function is given by

ZSOS(N) = ∑
h0h1...hL′

δ∑
i hi ,N exp

(
−βJ

L′∑
i=1

|hi+1 −hi |−βB
L′∑

i=1
V(hi )

)
(4.1)

where V(h) is a function of the internal variables hi and B the coupling parameter which has
the dimension of energy. As done in the case of a perfect gas, if the height profiles represent
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particle numbers which are all identical, the partition function is given by

ZPOP(N) = 1

N!

∑
h1,h2···hL′

δ∑L′
i=1 hi ,N

N!∏L′
i=1 hi !

exp

(
−βJ

L′∑
i=1

|hi+1 −hi |−βB
L′∑

i=1
V(hi )

)
(4.2)

Here the combinatorial term N!∏L
i=1 hi !

represents the number of ways that the hi particles on

each site can be chosen from the N particles available. In the same fashion as the Solid-
On-Solid, we call this model the Particles-Over-Particles model, since particles are stacked
in columns of height hi . The constraint on the particle number makes the computation of
the partition function at fixed N complicated both analytically and numerically. However,
changing into the grand canonical ensemble using the formula

Ξ=∑
N

exp(βµN)ZPOP(N) (4.3)

where Ξ is the grand partition function and µ the chemical potential, we find

ΞPOP = ∑
h1,h2···hL′

1∏L′
i=1 hi !

exp

(
−βJ

L′∑
i=1

|hi+1 −hi |−βB
L′∑

i=1
[V(hi )−µhi ]

)
(4.4)

The model differs from the usual solid on solid model in that a number of particle configu-
rations give rise to the same height configurations. The grand partition function can then be
written as

Ξ= ∑
h1,h2···hL′

exp
(−βHe f f (h1,h2 · · ·hL′)

)
(4.5)

where

He f f = J
L′∑

i=1
|hi+1 −hi |+

L′∑
i=1

[BV(hi )−µhi + 1

β
ln(hi !)] (4.6)

The transfer matrix is

TPOP(h,h′) = TSOS(h,h′)exp

(
− ln(h)+ ln(h′)

2

)
(4.7)

Contrary to the SOS model where there needs to be a confining external field in order to
localize the interface [106, 107], the entropic term gives a stable position for the interface. In
absence of external field B = 0, the effective potential is given by

Ve f f (h) =−µh + 1

β
ln(h!) (4.8)

If the chemical potential is large enough, the number of particles N is large enough to use
Striling’s formula and approximate a continuous derivative with the finite-difference in h, so

Ve f f (h)′ =−µ+ 1

β
ln(h) (4.9)

which gives the mean height

〈h〉 = exp(βµ) (4.10)
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Figure 4.1: Mean height of the SOS (for reference) and POP model with respect the chemical potential
µ through transfer matrix with different maximal heights in the thermodynamic limit L′ →∞, com-
pared to the Striling’s approximation Eq (4.10),at β= 1.

In Fig 4.1, we show the mean height (4.10) compared to the transfer matrix diagonalisation
with different matrix size and the Monte Carlo simulations at β = 1. When 〈h〉 À 1, the Stir-
ling’s formula becomes valid and Eq. (4.10) becomes accurate. Since 〈h〉 cannot exceed the
maximum size of the system, saturation occurs at largeµ. SOS mean height is also plotted as a
reference, where we see that even in the limitµ= 0, the mean height is equal to 〈h〉(µ= 0) = L

2 .
The Kawasaki implementation is straightforward, a particle n is chosen with probability

1
N at each Monte Carlo step, then an attempt to move the particle to the left or right using
Metropolis acceptance rate is made.

The Glauber case is trickier. At equilibrium, we expect that as many particles are added
as subtracted, so an attempt with probability 0.5 to add a particle is made, and the attempt to
remove one is done with the same probability. When adding a particle, a site i is chosen with
uniform probability 1/L′, so the selection rate is

g (hi → hi +1) = 1

2L′ (4.11)

To remove a particle 1, a particle n is chosen with uniform probability 1/N, meaning that the
selection probability is

g (hi → hi −1) = hi

2N
(4.12)

1In C++, we can use a std :: vector in which we add or remove particles. After each success attempt, we
rebuild the distribution std :: uni f or m_i nt_di str i buti on(0,N−1), where N is the number of particles. This
operation is lightweight and should not cause any slowing down. For the next section’s algorithm with multiple
particle types, we use std :: di scr ete_di str i buti on〈〉.
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In the case that there is no particle in the system, that phase is skipped and we immediately
proceed to attempt to add a new particle. In order to satisfy detailed balance, acceptance
rates need to verify

g (hi → hi +1)

g (hi +1 → hi )

A(hi → hi +1)

A(hi → hi +1)
= N

L′(hi +1)

A(hi → hi +1)

A(hi → hi +1)

=exp(−β(E(hi +1)−E(hi )) (4.13)

Choosing an acceptance rate that satisfies this condition is not as easy as the Metropolis ac-
ceptance rate [75], and we provide no clear answer as to how to solve this problem. Using the
Metropolis acceptance rate (A(µ→ ν) = 1 if∆E〈0) does not to provide the correct equilibrium
averages expected by the transfer matrix.

Here, the combinatoric term is directly taken into account in the selection probability,
which is why it is difficult to find a good acceptance rate. Nevertheless, it is possible to use
uniform selection probability as with SOS and introduce the combinatoric term in the energy.

4.2 M-particles POP system

The Ising model with spins σ=±1 has a direct mapping with liquid/gas and binary mixtures
systems [2], which are systems with two types of particles (for the liquid/gas model σ is a
"density of particles"). On the contrary, SOS models only need the existence of one type of
particles, since everything that is over the interface is not taken into account. We can imagine
multi-layering of non-miscible liquids having different densities [108, 109], forming many
layers with M−1 interfaces, M being the number of particles’ type. We can decide to study
one specific interface between two particle types, and in such case the classic SOS model
would be enough, with J being the surface energy cost between both liquids.

In this multi-layered system, we consider a model of a surface delimiting a bulk phase of
L′ sites which contains M different particle types p1...pM. Nm is the total number of particles
of type m and nm,i denotes the number of particles of type m at site i . The interface height
is hi =∑

m nm,i . Taking into account the entropic contribution, the effective Hamiltonian for
the model is

H[M] = J
∑

i
|hi −hi+1|+B

∑
i

V(hi )−∑
m
µm

∑
i

nm,i + 1

β

∑
m

∑
i

ln(nm,i ) (4.14)

We assume that the particles in each column are demixed, i.e. the permitted particle config-
urations are taken to be stacked vertically such that the stack of pm+1 particles lies on top of
the pm particles, as seen in Fig 4.2 for M = 2. This assumption is not particularly necessary
when considering that the energy interaction between layers is zero. The first term in the
Hamiltonian corresponds to the surface tension with a gas phase above the stacks of parti-
cles. As discused with the SOS model, a restricted or gaussian version of Eq. (4.14) can be
made.

The grand partition function is given by

Ξ= ∑
n1...nM

exp(−βH[M]) (4.15)

70



CHAPTER 4. BEYOND SOLID-ON-SOLID : THE PARTICLES-OVER-PARTICLES MODEL

p1

p1

p1

p1

p2

p1

p1

p1

p1

p1

p2

p2

p1

p1

p1

p2

p2

p2

p2

p1

p1

p1

p1

p2

p2

p2

p2

p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

p1

p2

p2

p2

p1

p1

p1

p1

p2

p2

p1

p1

p2

p2

p2

5
4
1

7
5
2

7
3
4

8
4
4

7
7
0

9
6
3

6
4
2

5
2
3

hi =
n1, i =
n2, i =

z = 0

Figure 4.2: Possible POP configuration with two types of particles p1 and p2. The red line shows the
origin z = 0. In the i -th column the interface is at height hi , with n1,i particles of type p1 at site i , and
same for particles p2. There are no particles at the top of the interface.

If M = 2, the the statics of the above can be reduced to the study of a single particle model
by making the change of variable n2,i = hi−n1,i . Using the binomial relation (a +b)n1 =∑h

h′=0
h!

h′!(h−h′)! a
h′

bh′−h ,
the sum over the variables n1,i can be trivially carried out and we find

Ξ=∑
h

exp

(
−βJ

∑
i
|hi −hi+1|−βB

∑
i

V(hi )−∑
i

ln(hi !)+βµe
∑

i
hi

)
=∑

h
exp

(−βHe f f (h1,h2...hL′)
)

(4.16)

where µe = 1
β ln(exp(βµ1)+ exp(βµ2) is the effective chemical potential for the variables hi .

If we add a third type of particle, we clearly see that the same reduction can be carried out.
Thus, by recursivity, for any number of particle type M, we have the same effective Hamilto-
nian as the single particle system (4.6), with an effective chemical potential

µe = 1

β
ln

(∑
m

exp(βµm)

)
(4.17)

An interesting thing to remark is that even if the chemical potential of a particle type µm = 0,
its contribution to the effective chemical potential is nonzero. This reduced theory can be
numerically solved in equilibrium by transfer matrix methods.

Now let the subset M̄ of particle types from the M particle types be in the canonical en-
semble, while all the other ones are in the grand-canonical one. This is the so-called model
C [18], which describes the coupling between conserved and non-conserved fields, such as
impurities in liquids [110] or ionic conductors moving through a lattice set up by different
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types of ions [111, 112]. The total partition function is then

Ξ=∑
h

exp
(−βHe f f (h1,h2...hL′)

) ∏
m∈M̄

δ∑L′
i=1 hi ,Nm

(4.18)

with the average number of particles per site being

〈nm〉 = 1

βL′
∂

∂µm
ln(Ξ)

= 1

βL′
∂µe

∂µm

∂

∂µe
ln(Ξ)

= exp(βµm)∑
m exp(βµm)

(4.19)

where = 〈∑m nm〉.
Mixing Glauber and Kawasaki dynamics for different particle types could be implemented

using the following algorithm. Each non-conserved particle type possess a kinetic coefficient
αm , while each conserved particle type has a diffusive coefficient Dm . We set pm = αm if
the particle is non-conserved, and pm = Dm otherwise, and we normalize it in order to have∑

m pm = 1. At each Monte Carlo step, a particle of type m is chosen with probability pm ,
and then we proceed with Glauber or Kawasaki dynamics for a single-type particle system,
as described in the previous section. To satisfy detailed balance, we have to understand how
this coefficient pm changes the selection probability g , and we get the same difficulties as in
the single-particle type Glauber case.

Nevertheless, when all particles are under Kawasaki dynamics and pm = 1/M is a con-
stant, then the ratio between selection rates is equal, which solves all the issues.

This algorithm could prove useful for studying multi-particle systems where each particle
type is under different potentials (think of an ion in a neutral solvent under magnetic field)
or different temperature [113], some of them which are under non-equilibrium forces like
shearing.

4.3 Continuum Theory

In order to understand the statics of the model we write a continuum version of the theory
with M field nm(x) and we take the a Gaussian form for the surface energy

H =
∫

d x
σ

2
[

d

d x
(
∑
m

nm)]2 +V(n1(x), ...,nM(x)) (4.20)

where σ is the surface tension and

V(n1(x), ...nM(x)) =∑
m

−µmnm(x)+Tnm(x)[ln(nm(x))−1] (4.21)

We have used Stirlings formula and thus assumed that the typical value of nm(x) aree large.
We now expand V(n1(x), ...nM(x)) by writing nm(x) = nm +φm(x) where (n1, ..nM) is the min-
imum of V(n1, ..nM). Here we find

nm = exp(βµm) (4.22)
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This gives an effective Hamiltonian for the fluctuations of the fiels φm

H f =
σ

2

∫
d x[

d

d x
(
∑
m
φm]2 +∑

m
rmφ

2
m(x) (4.23)

where

rm = T

σnm
(4.24)

A straight-forward calculation then shows that the Fourier transform of the connected height-
height fluctuation correlation function is

C̃hh(k) = T

σ

1

k2 + re
(4.25)

where re =∏
m rm/

∑
m rm . We thus find

= T

2σme
= 1

2

√
Th

σ
, (4.26)

where h =∑
m nm .

4.4 Conclusion

There are two ways of interpreting the interface’s description thought its height {hi }. The first
one is to only see the height as the interface’s degrees of freedom [99, 6], while the second
one is to interpret that height as a number of particles of type A which are below the inter-
face with particles of type B, which is the physical phenomenon happening in crystal growth.
This interpretation requires the addition of an entropic term [105], which localises the free
interface in a semi-infinite geometry, contrary to SOS models [107]. The system can also be
composed of multiple layers of different particles [multilayer], and this new model can take
that into account for numerical simulations. The problem lies in the numerical algorithm.
Taking a height with non-uniform probability is tricky, as it changes the selection probability
g (C → C′), so the acceptance probability A(C → C′) is not as simple as the Metropolis one
[75, 10]. We let the resolution of this problem - and as such the study of new physics through
numerical simulations of this model - to the community.
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Chapter 5

Driven interfaces

One of the most natural ways of creating a non-equilibrium steady state is by applying exter-
nal driving forces, as shown in Fig 5.1. Driving arises naturally in sedimenting systems due to
gravity, in systems with free charges under the action of an electric field, and also due to the
radiation pressure exerted by a laser. Experiments where a phase separated colloidal system
is sheared parallel to the interface show that driving due to shear tends to suppress surface
fluctuations [19], and similar results are found where Ising models are numerically sheared
[73, 104]. These results are somewhat surprising, for instance they are contrary to the obser-
vation that wind generates waves on the ocean. One may think that the precise nature of the
driving plays a role, for instance uniformly driving a system may be intrinsically diferent to
applying a shear field which is manifestly nonuniform.

In this capter we investigate driving using three different methos. In the first section -
which is almost a verbatim of a paper we have published [17] - we develop model C interfaces
(model B interface is invariant under galilian transformation under driving) and find that the
height fluctuations are suppressed and the correlation length of the fluctuations is increased.
In the second section, we discuss driving in the SOS model, where the galilean invariance
is broken by the discrete-time nature of numerical simulations, and find an increase of the
interface width with respect to driving.

5.1 The effect of driving on model C interfaces

Constructing a continuum model which is analytically tractable and is also affected by uni-
form driving is straightforward but contains some subtleties. In a continuum system it is clear
that uniform driving can only move a system away from equilibrium when the driving acts
differently on different particle types. For instance, consider a system of identical interacting
Brownian particles driven by a uniform force. The force will induce the same average velocity
on all the particles, consequently, in the frame moving with this average velocity, we will re-
cover the unmodified equilibrium state. However, when multiple particle types are present,
the mean velocity induced on different species are different and no Galilean transformation
is possible. Perhaps the first such study of this phenomenon was due to Onsager [114], who
studied the conductivity of electrolytes and in doing so showed how the correlation functions
in the steady state were modified by the electric field. Recently there have been many studies
of driven multi-particle Brownian systems [115, 116, 117, 118, 119, 120], including the elec-
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trolyte problem, and rich new physics has been found, even in the case of purely Gaussian
theories [121, 122] based on stochastic density functional theory [123].

The dynamics of discrete particle systems is however affected by uniform driving of iden-
tical particles. The study of driven lattice gases has revealed a wide range of intriguing phys-
ical phenomena and indeed shown how driving can even lead to phase separation [112, 124,
125, 102]. The discrete nature of the dynamics of these systems, both in space and time,
means that no Galilean transformation to an equilibrium state exists. Analytical studies of
these systems require a phase ordering kinetics description in terms of a continuum order
parameter. In order to break Galilean invariance the local mobility of the particles can be
taken to be dependent on the local order parameter, this is then sufficient to induce non-
trivial steady states under driving [112, 125, 73, 104]. Interfaces between the separated phases
in uniformly driven systems have non capillary behaviors which are, even today, not fully
understood [125]. Taking random driving in a given direction also leads to non-equilibrium
steady states, if the noise is Gaussian and white, the fluctuation dissipation theorem is vio-
lated and novel interface fluctuations are induced which, again, are not of the capillary type
[124].

Driving can also be deterministic but space dependent, for instance if one considers ap-
plied shear flows, the spatial dependence of the flow means no Galilean transformation to
an equilibrium steady state is possible and this therefore leads to non-equilibrium steady
states. The effect of shear on interfaces in these type of systems yields interface equations of
the stochastic Burgers type and the statistics are no thus longer Gaussian due to the presence
of nonlinearities [9, 29, 73, 104, 70, 126]

In this chapter we analyse what is known, in the classification of Hohenberg and Halperin
[18], as model C type dynamics for two fields, one with conserved model B type dynamics,
which is in addition convected at a uniform velocity to mimic driving. We refer to this first
field as the colloid field. This colloid field is coupled to an additional field which undergoes
model A non-conserved dynamics and which is not subjected to the driving. The model A
field can be thought of a passive solvent and its coupling to the model B field is chosen in such
a way that it has no influence on the non-driven equilibrium steady state. We then derive
the effective dynamics between two separated low temperature phases by using a method
introduced in [9, 29] for the study of interfaces under shear flow. This method yields a Gaus-
sian theory for the interface statistics and driving introduces interesting new physics, notably
we find that the effective surface tension of the system is increased but also the correlation
length of interface fluctuations (due to an effective gravitational term) are increased. These
observations are in qualitative agreement with experimental results on sheared low tension
interfaces in phase separated colloidal systems [19]. In this experimental system the inter-
face fluctuations were also found to be well described by Gaussian statistics and this is our
principal motivation for studying theories which remain Gaussian but are modified by driv-
ing. While the long wavelength theory we find is of a capillary type, we also find new, higher
derivative terms, which are generated in the spectrum of the height fluctuations.

As an aside, we also show how the model introduced here can be used to analyse the effect
of activity on the dynamics of the surface between two phases of active colloids. The activ-
ity is implemented by taking a different temperature for the colloid and solvent fields, this
difference in temperatures leads to significantly modified surface statistics which again de-
velop dependencies on static and dynamical variables of the model which otherwise remain
hidden for the equilibrium version of the problem.

76



CHAPTER 5. DRIVEN INTERFACES

5.1.1 The underling two field model

We consider a coarse grained model for two scalar fields ψ and φ with Hamiltonian

H[ψ,φ] = H1[ψ]+H2[ψ,φ] (5.1)

The Hamiltonian H1 is of the classic Landau-Ginzburg form

H1[ψ] =
∫

dx
[κ

2
[∇ψ(x)]2 +V(ψ(x))− g zψ(x)

]
(5.2)

The last term represents the energy due to a gravitational field and will introduce a finite
correlation length in the fluctuations between the two phases. We assume that the above
Hamiltonian has two stable phases with average concentrations of the fieldφ(x) given by the
constant values ψ1 and ψ2, the difference between the order parameter in the two different
phases is denoted by by ∆ψ=ψ2−ψ1 > 0. This means that we find the phase 1 as z →∞ and
the phase 2 as z →−∞. The term H2 is taken to be a simple quadratic coupling between the
fields

H2 =
∫

dx
λ

2
(1−ψ(x)−φ(x))2 (5.3)

which is an approximative conservation law of total volume fraction of the phases. The fieldφ
can be though of as the local volume fraction of the solvent in a colloidal system. However the
presence of this solvent field does not change the effective equilibrium statistical mechanics
of the colloid field ψ as the partition function can be written as

Z =
∫

d [φ]d [ψ]exp(−βH1[ψ]−βH2[ψ,φ]) = CZe f f (5.4)

where Ze f f is the effective partition function for the field ψ, after we have integrated out the
degrees of freedom corresponding to the field φ, and C is a constant term resulting from this
integration. The effective partition function is thus simply given by

Ze f f =
∫

d [ψ]exp(−βH1[ψ]) (5.5)

and, as stated above, we see that the field φ thus has no effect on the equilibrium statistical
mechanics of the field ψ.

We now consider the dynamics of the fields. We take local diffusive model B dynamics for
the field ψ and non-conserved model A dynamics for the field φ

∂ψ(x, t )

∂t
+v ·∇ψ(x, t ) = D∇2 δH

δψ(x)
+
p

2DT∇·η1(x, t ) (5.6)

∂φ(x, t )

∂t
= −α δH

δφ(x)
+
p

2αTη2(x, t ). (5.7)

The first equation corresponds to standard model B dynamics but with an advection term
by a constant velocity field v. In Fig 5.1, we show the effect of that advection term in the
presence of an interface. Since phase 1 is more diluted than phase 2, there are less particles
which are driven at constant velocity v. The second equation has no advection term and is
simple model A dynamics. In principle we can also treat the case where the dynamics of the
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r

z

Figure 5.1: Schematics of the advection term v ·∇ψ(x, t ) for a field under the interface approximation
(5.18). The red and blue phase respectively correspond to φ2 and ψ1, with φ2 >ψ1, and the solid line
the interface between phases.

field φ is also diffusive and thus of model B type, the analysis given here can be extended to
this case but the analysis of the resulting equations is considerably more complicated. The
use of model A dynamics for the solvent is justified by assuming that its dynamics is faster
than that of the colloids and that the volume fraction can vary due to local conformational
changes rather than diffusive transport.

The noise terms above are uncorrelated and Gaussian with zero mean, their correlation
functions are given by

〈η1i (x, t )η1 j (x′, t )〉 = δi jδ(t − t ′)δ(x−x′) (5.8)

〈η2(x, t )η2(x′, t )〉 = δ(t − t ′)δ(x−x′), (5.9)

and T is the temperature in units where kB = 1. These dynamical equations are thus explicitly
given by

∂ψ(x, t )

∂t
+v ·∇ψ(x, t ) = D∇2[

δH1

δψ(x)
+λ(φ(x, t )+ψ(x, t ))]+

p
2DT∇·η1(x, t ) (5.10)

and
∂φ(x, t )

∂t
=−αλ[φ(x, t )+ψ(x, t )]+

p
2αTη2(x, t ). (5.11)

Taking the temporal Fourier transform, defined with the convention

F̃(x,ω) =
∫ ∞

−∞
d t exp(−iωt )F(x, t ), (5.12)

we can eliminate the field φ̃ which is given by

φ̃(x,ω) = −αλψ̃(x,ω)+p
2αTη̃2(x,ω)

iω+αλ , (5.13)
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this then gives the closed equation for ψ̃:[
1− λD∇2

iω+αλ
]

iωψ̃(x,ω)+v ·∇ψ̃(x,ω) = D∇2µ̃(x,ω)+ ζ̃(x,ω), (5.14)

where

µ(x, t ) = δH1

δψ(x, t )
(5.15)

is the effective chemical potential associated with the field ψ and the noise term is given by

ζ̃(x,ω) =
p

2αTDλ

iω+αλ ∇2η̃2(x,ω)+
p

2DT∇· η̃1(x,ω). (5.16)

Inverting the temporal Fourier transform then gives the effective evolution equation

∂ψ(x, t )

∂t
−λD∇2

∫ t

−∞
d t ′ exp(−αλ(t − t ′))

∂ψ(x, t ′)
∂t

+v ·∇ψ(x, t ) = D∇2µ(x, t ′)+ζ(x, t ). (5.17)

5.1.2 Effective interface dynamics

Following Sec 1.2.2, we derive the dynamical equation for the interface h(r), where

ψ(x, t ) = f (z −h(r, t )) (5.18)

and f (z) →ψ2 as z →−∞ and f (z) →ψ2 as z →∞, and we use the sharp interface aproxi-
mation

f ′(z) =∆ψδ(z) (5.19)

We also assume that the driving is in the r = (x, y). The dynamical evolution for the field ψ in
Eq. (5.17) is first written as

∇−2
[
∂ψ(x, t )

∂t
+v ·∇ψ(x, t )

]
−λD

∫ t

−∞
d t ′ exp(−αλ(t − t ′))

∂ψ(x, t ′)
∂t ′

= Dµ(x, t ′)+∇−2ζ(x, t )

(5.20)
Using the relations (1.57) and (1.59), where V(ψ(x)) = V(ψ(x)) − g zψ(x), multiplying both
sides by f ′(z −h(r, t )) and integrating over z as in Eq (1.57) and (1.59), we obtain∫ ∞

−∞
d z f ′(z −h(r, t )µ(x, t ) = κ∇2h(r, t )

∫ ∞

−∞
d z f ′(z −h(r, t ))2 −

∫ ∞

−∞
d zg z f ′(z −h(r, t ))

= κ∇2h(r, t )
∫ ∞

−∞
d z ′ f ′(z ′)2 −

∫ ∞

−∞
d z ′g (z ′+h(r, t )) f ′(z ′)

= κ∇2h(r, t )
∫ ∞

−∞
d z ′ f ′(z ′)2 −∆ψg h(r, t ). (5.21)

By using the Cahn-Hilliard estimate of the surface tension (1.41), we thus find∫ ∞

−∞
d z f ′(z −h(r, t )µ(x, t ) =σ[∇2h(r, t )−m2h(r, t )] (5.22)

where m2 =∆ψg /σ.
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We now carry out the same operation on the left hand side of Eq. (5.20). First we have

∇−2∂ψ(x, t )

∂t
+v ·∇ψ(x, t )+λD

∫ t

−∞
d t ′ exp(−αλ(t − t ′))

∂ψ(x, t ′)
∂t ′

=

−∇−2 f ′(z −h(r, t ))[
∂h(r, t )

∂t
+v ·∇h(r, t )]+λD

∫ t

−∞
d t ′ exp(−αλ(t − t ′)) f ′(z −h(r, t ′))

∂h(r, t ′)
∂t ′

≈−∇−2 f ′(z)[
∂h(r, t )

∂t
+v ·∇h(r, t )]+λD

∫ t

−∞
d t ′ exp(−αλ(t − t ′)) f ′(z)

∂h(r, t ′)
∂t ′

(5.23)

where in the last line above we have neglected terms quadratic in h. Note that the neglecting
of these additional terms is not strictly justified, they could potentially induce non-perturbative
effects which render the surface fluctuations non-Gaussian. However we see here that the
first order computation we carry out tends to reduce fluctuations with respect to equilibrium
or non-driven interfaces and so if the equilibrium theory can be described by an equation
which is linear in height fluctuations, it seems physically reasonable to assume that the the
approximation also holds for the driven interface. Again, we multiply the above by f ′(z) and
integrate over z.

Putting this all together we obtain

∆ψ2
∫

drG(0,r− r′)[
∂h(r, t )

∂t
+v ·∇h(r, t )]+ σλD

κ

∫ t

−∞
d t ′ exp(−αλ(t − t ′))

∂h(r, t ′)
∂t ′

=
σ[∇2h(r, t )−m2h(r, t )]+ξ(r, t ) (5.24)

where G =−∇−2, or more explicitly

∇2G(z − z ′,r− r′) =−δ(z − z ′)δ(r− r′) (5.25)

The noise term ξ is given by

ξ(r, t ) =
∫ ∞

−∞
d z f ′(z −h(r, t ))∇−2ζ(x, t ). (5.26)

Now, as the equations of motion have been derived to first order in h and we wish to recover
the correct equilibrium statistics for the non-driven system, we ignore the h dependence in
the noise and make the approximation

ξ(r, t ) ≈
∫ ∞

−∞
d z f ′(z)∇−2ζ(x, t ). (5.27)

The correlation function of this noise is most easily evaluated in terms of its Fourier transform
with respect to space and time defined by

F̂(q,ω) =
∫

d tdrexp(−iωt − i q · r)F(r, t ). (5.28)

Using the relations Eqs. (1.41) and (5.19) one can show that

〈ξ̂(q,ω)ξ̂(q′,ω′)〉 = 2T(2π)dδ(ω+ω′)δ(q+q′)
[
σ

κ

αD2λ2

ω2 +α2λ2
+ D∆ψ2

2q

]
(5.29)
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In full Fourier space the equation of motion for the field ψ then reads[
i (ω+q ·v)

∆ψ2

2q
+ Dσλ

κ

iω

αλ+ iω

]
ĥ(q,ω) =−Dσ(q2 +m2)ĥ(q,ω)+ ξ̂(q,ω) (5.30)

From this, the full Fourier transform of the correlation function of the interface height is
given by

Ĉ(q,ω) = 2TD

[
∆ψ2

2q (ω2 +α2λ2)+ σαDλ2

κ

]
∣∣∣i [αλ∆ψ

2

2q (ω+q ·v)+ λσD
κ ω+Dσ(q2 +m2)ω]+ [αλDσ(q2 +m2)− ∆ψ2

2q ω(ω+q ·v)]
∣∣∣2

(5.31)
Using the above we can extract the equal time height-height correlation function in the steady
states. Its spatial Fourier transform can shown to be given by

C̃s(q) = 1

2π

∫
dωĈ(q,ω) (5.32)

This integral has the same form as

I( f (ω)) =
∫

dω

2π

f (ω)∣∣i (Aω+B)+ (C−Dω−Eω2)
∣∣ (5.33)

so we see that the integral we need to evaluate can be written in the form

I = aI(ω2)+bI(1) (5.34)

The calculation of Eq. (5.32) can be carried out in the presence of a forcing term on the height
profile in order to compute the response function for the surface which has a denominator
of the form

Den = i (Aω+B)+ (C−Dω−Eω2) (5.35)

and due to causality the above only has poles in the upper complex plane (due to the con-
vention of Fourier transforms used here). Consequently we find that∫

dω

2π

1

i (Aω+B)+ (C−Dω−Eω2)
= 0 (5.36)

as one may close the integration contour in the lower half of the complex plane. Taking the
real and imaginary part of Eq. (5.36) leads to

CI(1)−DI(ω)−EI(ω2) = 0 (5.37)

AI(ω)+BI(1) = 0 (5.38)

Using this we can express I(ω2) as a function of I(1), and explicitly we have

I(ω2) = I(1)

E
[C+ DB

A
] (5.39)

To evaluate I(1) we now use

I(1) =−Im
∫

dω

2π

1

Aω+B

1

i (Aω+B)+ (C−Dω−Eω2)
(5.40)
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The integrand above has no poles in the lower half of the complex plane but has a half pole
at ω=−B/A on the real axis, thus using standard complex analysis we find

I(1) = 1

2(CA+BD− EB2

A )
(5.41)

Then after some laborious, but straightforward algebra, we obtain that

C̃s(q = T

(
2Dσq(κ[q2 +m2]+λ)+ακλ∆ψ2

)2 +κ2∆ψ4(q ·v)2

σ[q2 +m2]
(
2Dqσ(κ[q2 +m2]+λ)+ακλ∆ψ2

)2 +κ(
κσ[q2 +m2]+λσ)

∆ψ4(q ·v)2

(5.42)

In the absence of driving, i.e. when v = 0 we recover the equilibrium correlation function

C̃s(q) = C̃eq (q) = T

σ[q2 +m2]
, (5.43)

here we see that 1/m = ξeq is the so called capillary length, which is the equilibrium correla-
tion length of the height fluctuations. We also notice that the correlation function for wave
vectors perpendicular to the driving direction is simply the equilibrium one.

If we write Cs(q) = T/Hs(q) we can interpret Hs(q) as an effective quadratic Hamiltonian
for the height fluctuations, it is thus given by

Hs(q) =σ[q2 +m2]+ κλσ∆ψ4(q ·v)2(
2Dσq(κ[q2 +m2]+λ)+ακλ∆ψ2

)2 +κ2∆ψ4(q ·v)2
(5.44)

For small q we find

Hs(q) =σm2 +σq2(1+ v2 cos2(θ)

α2λκ
), (5.45)

where θ is the angle between the wave vector q and the direction of the driving. This thus
gives a direction dependent surface tension

σs(θ) =σ(1+ v2 cos2(θ)

v2
0

) (5.46)

where we have introduced the intrinsic velocity v0 =
p
α2λκ which depends on the micro-

scopic dynamical quantity α associated with the model A dynamics of the field φ, as well as
the microscopic static quantities κ (which generates the surface tension) and λ the coupling
between the field ψ and φ. This appearance of dynamical and static quantities that are oth-
erwise hidden in equal time correlation functions in equilibrium is already implicit in the
works of Onsager [114] where it is used to compute the conductivity of Brownian electrolytes
and the explicit expressions were derived using stochastic density functional theory in [121].
We also note that the universal thermal Casimir effect between model Brownian electrolyte
systems driven by an electric field exhibits similar features, developing a dependency on both
additional static and dynamical variables with respect to the equilibrium case [127]

However for this small q expansion we see that the microscopic quantities D, the diffusion
constant of the field φ, and the order parameter jump ∆ψ do not appear.
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From the above, we see that in the direction of the driving the surface tension increases
and the fluctuations of the surface are thus suppressed. We may also write

Hs(q) =σs(θ)[q2 +m2
e (θ)], (5.47)

with

m2
s (θ) = m2

1+ v2 cos2(θ)
v2

0

, (5.48)

this corresponds to a correlation length

ξs = ξeq

√
1+ v2 cos2(θ)

v2
0

, (5.49)

and we see that it is increased in the direction of the driving.
As we have just remarked that the above results appear to be independent of the order

parameter jump ∆ψ and the diffusion constant D, however the next order correction to Hs

for small q is given by

Hs(q) =σs(θ)[q2 +m2
e (θ)]− 4Dqσ2(λ+κm2)(q ·v)2

α3κ2λ2∆ψ2
, (5.50)

and so the small q expansion breaks down at ∆ψ= 0, indeed one can see that the system has
exactly the equilibrium correlation function when ∆ψ= 0.

In the limit of large q we see that the effective Hamiltonian is given, to leading order, by
the original equilibrium Hamiltonian and so the out of equilibrium driving has no effect on
the most energetic modes of the system.

The results here predict that for unconfined surfaces the long range height fluctuations
are described by an isotropic form of capillary wave theory with an anisotropic surface ten-
sion which is largest in the direction of driving. Numerical simulations of driven lattice gases
in two dimensions [125] show a more drastic change upon driving and find Cs(q) ∼ 1/q .66

and thus a strong deviation from capillary wave theory.

5.1.3 A model of active interfaces

We can apply the results derived in the previous section to analyse a simple model for sur-
faces formed between two phases of active colloids. Activity is modelled by assuming that
the colloidal field ψ has a temperature different to that of the solvent field φ. This models
the effect that activity leads to enhanced colloidal diffusivity over and above the Brownian
motion of particles due to thermal fluctuations [113].

In the absence of any driving the dynamical equations for the field ψ and φ become

∂ψ(x, t )

∂t
= D∇2 δH

δψ(x)
+

√
2DT1∇·η1(x, t ) (5.51)

∂φ(x, t )

∂t
= −α δH

δφ(x)
+

√
2αT2η2(x, t ). (5.52)
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Following the same arguments as above we find that

Ĉ(q,ω) = 2D

[
T1

∆ψ2

2q (ω2 +α2λ2)+T2
σαDλ2

κ

]
∣∣∣iω[αλ∆ψ

2

2q + λσD
κ +Dσ(q2 +m2)]+ [αλDσ(q2 +m2)− ∆ψ2

2q ω2]
∣∣∣2 . (5.53)

The equal time steady state height fluctuations thus have correlation function

C̃s(q) = T1

σ(q2 +m2)

1− (1− T2

T1
)
λσ

κ

1
αλ∆ψ2

2Dq + λσ
κ +σ(q2 +m2)

 . (5.54)

We see, again, that the inclusion of a non-equilibrium driving changes the statistics of height
fluctuations and leads to a steady state that depends on both dynamical variables D and α as
well as static ones∆ψ, λ andκ that remain hidden in the equilibrium case. This phenomenon
is again seen in the behavior of the universal thermal Casimir force between Brownian con-
ductors held at different temperatures [128].

If we assume strong activity we can take the limit T1 À T2, in this case we find

C̃s(q) = T1

σ(q2 +m2)

αλ∆ψ2

2Dq +σ(q2 +m2)

αλ∆ψ2

2Dq + λσ
κ +σ(q2 +m2)

. (5.55)

Interpreted in terms of an effective Hamiltonian for an equilibrium system at the temperature
T1 the above gives

Hs(q) =σ(q2 +m2)

1+ λσ

κ

q
αλ∆ψ2

2D +qσ(q2 +m2)

 . (5.56)

psi In the case of an unconfined interface (where there is no gravitational effect on the surface
fluctuations) i.e. m = 0 we see that for small q

Hs(q) ≈σq2 + 2Dσ2

κα∆ψ2
q3. (5.57)

We see that the effective surface tension is not modified but a reduction of fluctuations due
to the presence of the term in q3 arises. As in the case of a driven system, we see that the large
q behavior of the effective Hamiltonian is given by the equilibrium case where T = T1 = T2.

In the case where the interface is confined, we see that for small q one obtains

Hs(q) ≈σm2
[

1+ 2Dσ

κα∆ψ2
q

]
, (5.58)

and thus at the largest length scales of the problem there is a qualitative departure from cap-
illary wave behavior induced by activity, and the correlation length of height fluctuations at
the largest length scales is given by

ξa = 2Dσ

κα∆ψ2
. (5.59)

The above result should be compared with that obtained in [124] for systems with anisotropic
thermal white noise, which breaks detailed balance and mimics random driving of the system
parallel to the interface; for free interfaces it was found that Cs(q) ∼ 1/q .
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5.1.4 Conclusion

We have presented a model to analyse the effect of uniform driving on the dynamics of the in-
terface in a two phase system. In order to generate a non-equilibrium state a second hidden
order parameter was introduced. This models the behaviour of a local or solvent degree of
freedom which is not influenced by the driving field. In this way, we obtain out of equilibrium
interface fluctuations which are described by Gaussian statistics as found in the experimental
study of [19]. The agreement with this experimental study also extends to qualitative agree-
ment with the increase of the effective surface tension in the direction of driving and also an
increase in the correlation length of the height fluctuations with respect to a non-driven equi-
librium interface. However, we note that numerical simulations of a sheared Ising interface
[72, 104] also reveal a reduction of interface fluctuations but the lateral correlation length is
found to be reduced.

The basic idea underlying this study would be interesting to apply to a number of possible
variants of this model, for instance both the dynamics of the main field φ and the solvent
field φ could be varied. To make a direct link with driven colloidal interfaces one should
study model H type dynamics for the main field φ and other variants for the dynamics of the
solvent field φ could also be considered.

As mentioned above, in lattice based models driving induces non-equilibrium states even
in the simple Ising lattice gas. A model analogous to that studied here can be formulated in a
lattice based systems using the Hamiltonian

H =−J
∑
(i j )

Si S j (1+σ(i j )), (5.60)

where Si = ±1 are Ising spins at the lattice sites i , and σ(i j ) = ±1 are Ising like dynamical
solvent variables associated with the lattice links (i j ). The static partition function is given
by

Z = Trσi j ,Si exp

[
βJ

∑
(i j )

Si S j (1+σ(i j ))

]
, (5.61)

and the trace over the solvent variables can be trivially carried out to give

Z = TrSi

(
exp

[
βJ

∑
(i j )

Si S j

] ∏
(i j )

2cosh(βJSi S j )

)
= [2cosh(βJ)]LTrSi exp(βJ

∑
(i j )

Si S j ), (5.62)

where L is the number of links on the lattice of the model. We thus see that the underlying
effective static model is precisely the zero field Ising model.

This model can then be driven in a number of ways, for instance using conserved Kawasaki
dynamics for the Ising spins to model diffusive dynamics in the presence of a uniform driving
field parallel to the surface between the two phases at a temperature below the ferromagnetic
ordering temperature Tc . The dynamics of the Ising spins on the lattice links can be given by
non-conservative single spin flip, for instance Glauber, dynamics to keep the analogy with
the continuum model discussed in the paper but diffusive dynamics or indeed a mixture of
diffusive and non-conserved dynamics could be implemented. It would be interesting to see
to what extent this modification of the driven lattice gas model affects the non-equilibrium
driven states that arise.
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It is also clear that this lattice model can be used to simulate the effect of activity where
the Ising spins S1 corresponding to the colloid field undergo Kawasaki dynamics at the tem-
perature T1 where as the link variablesσ(i j ) undergo single spin flip non-conserved dynamics
at the temperature T2.

5.2 Driven SOS model

Common experience with wind generated waves shows us that the effective surface tension
of driven interfaces decrease with driving, as seen in a homemade wind generation system in
Fig 5.2. The difference in this kind of system comes from the way the interface is driven. In
the previous section, the whole system was driven, while in wind generated waves only the
upper phase has an hydrodynamic flow, meaning that the velocity field is

v(x, t ) =Θ(h(r, t ))ex (5.63)

where Θ(·) is the Heaviside step function. While in the previous section, in order to break the
Galilean invariance, we were forced to couple the colloidal field φ(x, t ) with a solvent field
φ(x, t ), this kind of velocity field does not require such artifact to give out-of-equilibrium
steady states only with the colloidal field. Even though the full computation for this new
system was not carried, numerical simulations on SOS models under Kawasaki dynamics
allows for direct study. In the case of a uniform driving in lattice based numerical simulations,
the invariance is broken because of the discrete-time nature of the algorithm. In a SOS model
under Kawasaki dynamics, the implementation of a constant driving flow is as follows. From
the configuration C a configuration C′ is chosen as explained is Sec 2.2.2, meaning a random
site i and its nearest neighboor i ±1 are chosen in such a way that the first one give one of its
particles to the second. Under a flow, the difference of energy between both states is

∆Ed =∆Eeq ± v (5.64)

where v is the intensity of the drive, and the sign depends on the direction of the flow. For
example, if the flow goes to the right, then every configuration which moves a particle to the
right will have an additional energy +v , while if the particle goes against the flow, it will have
an additional energy −v . We suppose here that the uniform driving in SOS systems is equal
to driving in Eq. (5.63) since there is no bulk behaviour.

Implementing a shear v |L/2− y | as in Fig 1.10 is tricky, because it requires to know the
height of the particle and thus have access to bulk information which does not exist in SOS
models. Here, only the particles at the interface can move and change height accordingly to
the interface’s height of the neighboring site. The vertical movement of the particle, couple
to the horizontal one, is what makes the SOS model different to the Ising one, and physical
arguments forbids the use of hi , hi+1 or even the average hi+hi+1

2 as the shear contribution
might be zero depending of the configuration, even though it should always be present.

Under periodic boundary conditions, the direction of the flow should not alter the steady
state. The average total energy has thus to be an even function with respect to the drive v , ie

〈E(v)〉 = 〈E(−v)〉 (5.65)
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Figure 5.2: Homemade wind generated waves with a hair dryer, where the water has been coloured in
blue for contrast. The stronger the wind output, the larger the interface width becomes.

and same goes for the surface tension σ(v). From Eqs. (1.41) and (1.43), the surface tension
is

σ(v) =
∫ ∞

−∞
d zJ

d tanh
(

z
ξ⊥(v)

)
d z

2

=
∫ ∞

−∞
d zJ

1

cosh4( x
ξ⊥(v) )ξ2

⊥
(5.66)

where ξ⊥(v) is the interfacial correlation length. This interface width has the same qualitative
behaviour as the interface width 〈w〉 =

√
〈h2〉−〈h〉2.

In Fig 5.3 we show some snapshots of numerical simulations under Kawasaki dynamics,
and visually see how the interface width effectively increases with the driving for the same
mean value 〈h〉, while in Fig 5.4 we plot the interface width and the surface tension with
respect to the drive. The first thing we notice is that the interface width increases with the
imposed driving in an almost linear way, as does the mean height of wind generated waves
with respect to the wind surface velocity [129]. The second thing we notice is that there are
a change of regime at v = 2J and v = 4J, with a net change in the derivative. The change
of energy ∆E has values in [−4,−2,0,2,4], so we see that there are three regimes : the weak
driving regime for v < 2J , the middle regime for 2J < v < 4J where some moves with adding
energy to the system are always accepted, and the strong driving regime for v > 4J where all
moves adding energy are accepted, ending with a saturation when the bond energy becomes
negligible with respect to the driving. This discontinuity in the derivative of the interface
width is not seen in the GSOS model, which exhibits a smoother while qualitatively similar
behaviour.
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Figure 5.3: Snapshot of the SOS interface with Kawasaki dynamics at β= 1 and 〈h〉 = 4.51 for different
drivings using Eq (5.64).
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Figure 5.4: Interface width w =
√

〈h2〉−〈h〉2 and surface tension σ computed from the integral (5.66)
with respect to the drive v , with L′ = 256, L = 200, 〈h〉 = 4.5, and β= J = 1 for 5 ·107 MC steps.
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5.3 Conclusions

We presented two models to analyse the effect of uniform driving on the dynamics of the
interface in a two phase system. Using dynamics derived from model B[9, 29] and adding a
coupling field from model A in order to remove galilean invariance in the equations, we found
that the driving does increase the effective surface tension in the direction of driving and
increases the correlation length along the interface with respect to a non-driven equilibrium
interface, as seen in colloid epxeriments [19] and numerical simulations [104]. This work
resulted in a published article [17].

We also studied the effect of driving in SOS models, and found that contrary to Ising sys-
tems [72] and model C systems, the driving does reduce the surface tension in a similar fash-
ion as wind generated waves [129]. We conjecture that solving model B with the velocitiy
field v(x, t ) = Θ(h(r, t ))ex would lead to similar behaviour, and that the physicial diference
between the two systems is how the interface is sheared : in the model C case the bulk is
driven while in wind generated waves only particles at the interface are driven. SOS models
provide a direct way to simulation such driving, and we propose the following implementa-
tion for the Ising model. At low temperature in a phase separated system, the interface height
at point r is defined as h(r) = ∑L

z=0σ(r, z). To mimic wind driving, only spins which are over
the interface would be affected by the driving.

In this chapter, we have shown how out-of-equilibrium steady states can exhibit similar
behaviour as equilibrium systems, with a rescaling of the system’s observables. The primary
goal of the thesis was to study the effect of out-of-equilibrium steady states in confined ge-
ometry, and the results shown in the chapter show no compeling evidence of new physics to
be found there.
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