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Effets d'écoulements et de confinement dans les modèles discrets et continus d'interfaces

Cette thèse examine les propriétés de l'interface entre deux phases dans un système de phases séparées. Nous regardons comment les effets de taille finies modifient les propriétés statistiques de ces interfaces, en particulier comment la dépendance de l'énergie libre par rapport à la taille du système donne lieu à des interactions de Casimir critique à longue portée proche du point critique. Souvent, les interfaces sont décrites par des modèles simplifiés ou coarse-grained dont les seuls degrés de liberté sont les hauteurs de l'interface. Nous rappelons comment les propriétés statiques et dynamiques de ces interfaces sont retrouvées à partir de modèles microscopiques de spins et de la théorie statistique des champs. Nous étudions ensuite les effets de taille finie pour les interfaces continues comme le modèle Edwards-Wilkinson ou discrètes comme le modèle Solid-On-Solid, et discutons leur pertinence dans le cadre de l'effet Casimir critique.

Dans la seconde partie de la thèse, nous examinons des modèles d'interfaces sous écoulement possédant des états stationnaires hors-équilibre. Nous développons ces équations dans le cadre du modèle C d'une interface, ayant un état stationnaire hors-équilibre lorsque soumis à un écoulement uniforme. L'état stationnaire hors-équilibre résultant exhibe des propriétés retrouvées dans les expériences sur des colloïdes sous cisaillement, notamment la suppression des fluctuations de la hauteur de l'interface et une augmentation de la longueur de corrélation des fluctuations. Finalement, nous proposons un nouveau modèle pour des interfaces uni-dimensionnelles qui est une modification du modèle Solid-on-Solid contenant un terme supplémentaire d'entropie, dont la correspondance à des systèmes physiques reste à être trouvée. 

Mots

Confinement and driving effects on continuous and discrete model interfaces

This thesis examines the properties of the interface between two phases in phase separated systems. We are interested in how finite size effects modify the statistical properties of these interfaces, in particular how the dependence of the free energy on the system size gives rise to long range critical Casimir forces close to the critical point. Often the interfaces in phase separated systems are described by simplified or coarse grained models whose only degrees of freedom are the interface height. We review how the statics and dynamics of these interface models can be derived from microscopic spin models and statistical field theories. We then examine finite size effects for continuous interface models such as the Edwards Wilkinson model and discrete models such as the Solid-On-Solid model and discuss their relevance to the critical Casimir effect.

In the second part of the thesis we examine models of driven interfaces which have nonequilibrium steady states. We develop a model C type model of an interface which shows a nonequlibrium steady state even with constant driving. The resulting nonequlibrium steady state shows properties seen in experiments on sheared colloidal systems, notably the suppression of height fluctuations but an increase in the fluctuations' correlation length. Finally we propose a new model for one dimensional interfaces which is a modification of the solidon-solid model and containing an extra entropic term, whose correspondance with physical systems is yet to be found.

Résumé en français

La majorité des systèmes statistiques peuvent être décrits par un paramètre d'ordre, comme la magnétisation moyenne dans les systèmes magnétiques, la densité dans un fluide ou l'orientation moyenne des polymères dans les cristaux liquides. Les propriétés statiques et dynamiques de tels systèmes sont bien décrites par la théorie statistique des champs. Dans cette théorie, le champ φ est soumis à un hamiltonien H(φ), et ses propriétés peuvent être dérivée de la fonction de partition Z. Lorsque ces systèmes possèdent une transition de phase au point critique, il y a une discontinuité de l'énergie libre due à la modification des micro-configurations possibles ; dans les systèmes magnétiques on passe ainsi d'une magnétisation nulle à une magnétisation finie, les liquides qui étaient auparavant mélangés se séparent, et les polymères adoptent une direction moyenne commune. Dans la phase ordonnée on retrouve alors des composantes connexes où la valeur de φ est quasi-constante. Entre ces composantes connexes se situe l'interface entre les phases. Dans cette thèse, nous nous intéressons particulièrement aux propriétés statiques et dynamiques des interfaces dans des modèles continus et discrets soumis à des contraintes telles que le confinement et le cisaillement.

Description d'une interface

La première partie de cette thèse est consacrée à la description des interfaces à partir de la théorie statistique des champs. L'utilisant un champ externe φ 4 dans l'Hamiltonien induit une séparation de phase en dessous de la température critique, ce qui donne une interface dont le profil peut-être calculé grâce aux équations dynamiques du modèle A dans le cas stationnaire. L'énergie libre associée à cette interface est directement reliée à la tension superficielle σ par la relation de Cahn-Hilliard. Depuis les équations de théorie statistique des champs, en considérant une interface d'épaisseur nulle, on retrouve les équations d'Edwards-Wilkinson pour le modèle A et le modèle B. La réduction du nombre de degrés de liberté par cette transformation d'un volume en surface permet leur étude grâce à des intégrales de chemin.

Ensuite nous expliquons le modèle le plus simple sur réseaux -le modèle d'Ising -qui décrit un réseau orthonormé de spins avec une interaction entre plus proches voisins plus un champ externe. Ce modèle, où chaque site du réseau prend la valeur σ 1 = ±1, permet de modéliser un système de gaz sur réseau ou de liquides binaires en faisant un changement de variable sur σ i . En appliquant la même approximation d'interface d'épaisseur nulle que précédemment, on trouve cette fois-ci le modèle Solid-On-Solid. La fonction de partition SOS a l'avantage d'être diagonalisable grâce à la matrice de transfert. Dans la limite thermodynamique, seul l'état fondamental (qui possède la plus grande valeur propre de la matrice de transfert) est nécessaire pour obtenir toutes les observables du système. v Dans ce premier chapitre, une grande importance est également donnée quant à la différence entre les différents ensembles statistiques. La complexité de l'ensemble canonique provient de la contrainte sur la hauteur totale de l'interface qui ne peut être intégrée au formalisme des matrices de transfert issus de l'ensemble grand-canonique. Pour étudier ces différences, il faut donc utiliser des méthodes numériques. Dans l'ensemble canonique, il est également possible d'introduire des états stationnaires hors-équilibre grâce à l'advection d'un champ de vitesse.

Méthodes numériques

Dans le second chapitre, nous développons les simulations de Monte Carlo Métropolis, qui permettent d'explorer l'espace des configurations et ainsi obtenir les valeurs moyennes d'observables. Ces méthodes sont particulièrement adaptées aux systèmes sur réseau comme le modèle d'Ising ou Solid-On-Solid, dont les implémentations de Glauber ou de Kawasaki fixent l'ensemble thermodynamique du système.

Néanmoins, l'énergie libre n'est pas une valeur mesurable directement dans les simulations de Monte Carlo, et il faut alors utiliser des méthodes indirectes. La méthode de Vasilyev consiste à découpler progressivement une rangée du système afin d'obtenir la dérivée de l'énergie libre par rapport à la taille du système. Cette méthode ne fonctionnant pas dans le cas du modèle SOS à cause de l'absence de terme de volume dans l'hamiltonien, la méthode Lopes-Jacquin-Holdsworth développée dans le cas d'un champ magnétique uniforme est plus pertinente. Puisque l'intensité du champ magnétique est la valeur conjuguée de la magnétisation totale, l'intégrale de la magnétisation entre deux intensités permet d'obtenir la différence entre l'énergie libre des deux systèmes. Cette méthode utilisant la magnétisation, elle ne peut être utilisée lorsque le paramètre d'ordre est conservé. Il n'existe dans la littérature aucune méthode pour mesurer l'énergie libre dans des simulations numériques de Kawasaki pour le modèle SOS.

Le chapitre se termine avec une petite liste d'astuces pour optimiser et paralléliser le code numérique.

Interfaces à l'équilibre et effets de taille finie

Lorsque la longueur de corrélation est du même ordre de grandeur que la taille du système, la contrainte imposée sur les modes mous de fluctuations ajoute une partie singulière à l'énergie libre. Cette dépendance de l'énergie libre en fonction de la taille du système implique une force thermodynamique qui s'appelle force de Casimir dans le cas des fluctuations du champ électromagnétique entre deux plaques diélectriques parfaitement conductrices, ou effet Casimir critique dans les systèmes critiques. Après avoir exposé ces deux effets grâce à la mécanique quantique et le groupe de renormalisation, cette force de confinement est étudiée dans le cas des interfaces confinées.

En utilisant le formalisme de Matsubara pour l'équation du propagateur de l'hamiltonien dans le cas d'une interface continue soumise à un champ externe, la distribution de probabilité de l'interface, l'énergie libre, la fonction de corrélation à deux points et la longueur de corrélation sont explcitiés en fonction de l'énergie de l'état fondamental et du premier état excité. En appliquant ce formalisme à une interface libre et confinée, nous retrouvons des vi résultats connus sur la force thermodynamique. Dans le cas où cette interface ne possède pas de tension superficielle (comme c'est le cas dans les systèmes critiques), la correction de taille finie à la tension superficielle proposée par Privman nous permet de retrouver quantitativement le même comportement que pour la force de Casimir critique, ce qui jette un lien intéressant entre la physique est interfaces et celle des systèmes critiques. Nous utilisons également ce formalisme dans le cas où l'interface est confinée à cause d'une pression afin de trouver la hauteur de moyenne de l'interface et sa variance.

Puisque la méthode Lopes-Jacquin-Holdsworth de calcul de l'énergie libre dans les simulations de Monte Carlo n'est pas utilisable dans la dynamique de Kawasaki et que la méthode de Vasilyev ne l'est pas non plus pour les modèles SOS, nous généralisons la méthode LJH pour des champs externes non-uniformes, permettant ainsi l'intégration sur une magnétisation généralisée qui n'est plus conservée dans une dynamique de Kawasaki. La généralisation de cette méthode permet de démontrer numériquement une ressemblance forte entre les ensembles canoniques et grand-canoniques dans le modèle SOS et ouvre la voie à des études plus poussées de l'effet Casimir critique sur les modèles d'Ising dans l'ensemble canonique.

Ce troisième chapitre s'achève par la diagonalisation exacte de la matrice de transfert du modèle SOS en absence de potentiel externe, généralisant ainsi les résultats de Privman, avec une étude des limites à faible et haute température ainsi que dans la limite thermodynamique.

Le modèle Particles-Over-Particles

Le modèle SOS est un modèle d'interface provenant de l'approximation à basse température du modèle d'Ising. Nous développons dans ce quatrième chapitre un nouveau modèle prennant en compte le terme d'entropie associé aux simlations numériques dans le modèle d'Ising et faisant défaut dans SOS, que l'on nomme Particles-Over-Particles. Ce terme d'entropie apparaît lorsque l'on considère non plus juste la hauteur de l'interface (comme dans SOS), mais également le nombre de particules en dessous. En labellisant ainsi les particules, il devient possible de créer des modèles avec M types différents de particules, chacune étant régie par un coefficient cinétique ou un coefficient de diffusion dans le cas où elles appartiennent à des ensembles thermodynamiques différents. De nombreuses difficultés surviennent lors de l'implémentation de Metropolis sur dans ce modèle et les applications physiques sont laissées en suspens. Ces deux questions sont laissées comme exercice pour les lecteurs.

Interfaces stationnaires hors-équilibre

Lorsqu'une interface est advectée par un champ de vitesse, sa largeur et sa longueur de corrélation sont modifiées. Le cinquième et dernier chapitre s'intéresse à un écoulement uniforme et constant.

À cause de l'invariance galiléenne de translation dans le référentiel de l'écoulement, l'équation dynamique du modèle B reste inchangée. Le cas d'un champ soumis au modèle B et couplé à un autre champ soumis au modèle A (afin de briser l'invariance galiléenne) a été l'objet d'un article publié dans Journal of Statistical Mechanics: Theory and Experiment en mars 2020, et la première partie de ce chapitre est une reproduction de l'article original. À partir vii des équations couplées donnant le modèle C, une relation fermée pour la dynamique d'une interface soumis à un écoulement uniforme et constant dans l'espace de Fourrier est trouvée. Le résultat principal de cet article est la preuve que des systèmes hors-équilibre peuvent avoir des propriétés similaires à celles des systèmes à l'équilibre via un redimensionnement effectif des observables. Dans les systèmes où l'écoulement est uniforme, conformément aux expériences de Derks et aux simulations numériques de Smith, nous trouvons que la tension superficielle effective de l'interface augmente avec l'intensité de l'écoulement. De plus, nous montrons comment ce modèle permet de décrire l'interface entre deux phases de colloïdes ayant une activité différente en jouant sur la température de chaque phase.

Dans le cas ou l'écoulement n'est pas appliqué qu'au niveau de l'interface, des études numériques du modèle SOS montrent une diminution de la tension superficielle en fonction de l'intensité de l'écoulement, contrairement aux calculs précédents, mais en accord avec la génération de vagues par le vent sur l'eau. Des pistes de réflexion sont apportées sur la différence entre les deux types de cisaillement. viii

Introduction

Most statistical mechanical models can be described using an order parameter, such as the mean magnetization in a magnetic system, the density of a liquid or gas or the average orientation of liquid crystals [START_REF] Landau | Physique théorique -T9 Physique Statistique[END_REF]. During a continuous phase transition, the correlation length diverges [START_REF] Goldenfeld | Lectures on Phase Transitions and the Renormalization Group[END_REF]. When the correlation length becomes of the same order of magnitude as the experimental or numerical system size, finite size effect become stronger, leading to interesting new physics, for example the critical Casimir effect [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF].

In a system where the order parameter is conserved, or when it is fixed at values corresponding to two different phases, an interface is formed between both phases. In systems with a rectangular geometry this interface is at flat at first order as the system tends to minimise the area between the two phases to minimize the interfacial energy generated by the surface tension. However thermal fluctuations induce fluctuations of the interface. From a theoretical point of view, one can study the statistical properties, both static and dynamic, of interfaces between two phases through different though complementary methods. Historically, the first method was through lattice models, and more precisely the Ising model [START_REF] Niss | History of the Lenz-Ising Model 1920-1950: From Ferromagnetic to Cooperative Phenomena[END_REF][START_REF] Niss | History of the Lenz-Ising Model 1950-1965: from irrelevance to relevance[END_REF]. Those models are well-suited for numerical analysis due to their discrete nature, while posing analytical challenges due to the large number of degrees of freedom. Analytic studies of the interface are limited to two dimensional systems [START_REF] Abraham | The transfer matrix for a pure phase in the twodimensional Ising model[END_REF]. Numerical simulations of phase separated Ising models are straightforward, whilst the identification of the interface and unambiguous definition of the interface's position are not obvious. For this reason coarse grained models of the interface have been proposed. The Solid-On-Solid model [START_REF] Gilmer | Simulation of Crystal Growth with Surface Diffusion[END_REF] is an approximation of the Ising model in d dimensions which describes the position of an interface under certain simplifying circumstances. For two dimensional Ising systems this means that the transfer matrix method can be applied either analytically or numerically and the results are directly comparable with numerical simulations.

Coarse graining the Ising model leads the Landau-Ginzburg Hamiltonian description in terms of a continuous field [START_REF] Amit | Field theory, the renormalization group, and critical phenomena: graphs to computers[END_REF]. Using this description one can derive the equations for both the dynamics and statics of the interface. In particular, within this formalism the effective partition function of the interface describes a random walker in a potential, then using path integrals [START_REF] Matsubara | A New Approach to Quantum-Statistical Mechanics[END_REF] two dimensional systems can be analysed using a quantum mechanical treatment.

When modeling experiments using statistical mechanics it is important to identify the correct thermodynamic ensemble to describe the system. For instance in an Ising spin which describes interacting spins with s = ±1 the total magnetisation is not necessarily conserved as a single spin can change its sign. However if the spins' sum is fixed and each spin can exchange with each other by swapping sites (to describe a lattice gas for example), the two ensembles are clearly different. It is thus interesting to study how ensemble differences in xiii CONTENTS the underlying lattice model affect the statics and dynamics of interfaces in these models.

The thesis' outline is as following :

• In the first chapter we explain how the interface's statics can be modeled in terms of various discrete and continuous interface models. In particular we review phase ordering kinetics for the evolution of the order parameter in coarse grained systems, from which one can deduce the equilibrium dynamics of the interface using a method introduced by Bray and coworkers [START_REF] Bray | Interface fluctuations under shear[END_REF]. Discrete models are convenient for numerical studies of the interfaces. The most famous one is the Ising model, which is can be studied in both the canonical and grand-canonical ensembles, even though the interface has no formal numerical definition. The interface approximation of the Ising model is called the Solid-On-Solid model, which can be adressed through the transfer matrix method. After explaining how those discrete models work, we discuss the case of outof-equilibrium interfaces, and how the driving affect the properties in experimental and numerical studies.

• In the second chapter we discuss the basics of numerical simulations [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] for lattice systems, and in particular two methods to compute the free energy for equilibrium systems. In the first method by Vasiliyev et al, its derivative is computed with respect to the system size by decoupling a layer of the system [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], a method which does not work for SOS models . For SOS models it is thus more convenient to use the Lopes-Jacquin-Holdsworth method [START_REF] Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF] which gives the difference of free energy between two points in parameter-space by integrating over the total magnetization. We also discuss some numerical tips we have found particularly useful.

• The third chapter is devoted to finite size effects for various models. A particularly interesting manifestation of finite size effects is the so called Casimir interaction [START_REF] Milton | The Casimir effect: Physical manifestation of zero-point energy[END_REF].

For completeness we describe the original quantum calculation of Casimir for two perfectly conducting plates at zero temperature [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF], the generalization to arbitrary dielectric materials [START_REF] Lifshitz | On the theory of magnetic susceptibility of metals at low temperatures[END_REF] and the critical Casimir effect which was first predicted by Fisher and de Gennes which is due to thermal fluctuations in critical or near critical systems. A natural question to ask is whether interface models can capture the same finite size scaling as predicted by Fisher and de Gennes. To this end we analyse finite size effects in the continuous elastic line model where the underlying interface is described by a Brownian motion in an external potential. These models have been studied extensively in the literature but we find a number of new results. First we consider an elastic surface (corresponding to the Edwwards-Wilkinson model) confined between two hard walls.

The resulting free energy is well known and does not correspond to what is expected from the critical Casimir effect, whilst we show that by including a phenomenological finite size correction to the surface tension (or line stiffness) proposed by Privman [START_REF] Privman | Finite-Size Properties of the Angle-Dependent Surface Tension of Rough Interfaces[END_REF] one can recover the quantitative form predicted by the critical Casimir effect. We also derive the statistics of the equilibrium interface, in particular the fluctuations of the integrated height (corresponding to the average magnetisation in a spin model). Then we analyse the so called Airy line, corresponding to an interface above a hard wall but with a linear potential (corresponding to an applied pressure in the constant pressure ensemble) pushing the interface toward the wall.
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Then, we generalize the LJH method [START_REF] Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF] for the free energy's measurement in numerical simulations for any external field, which allows to use it in conserved dynamics. The method is used in the case of an exotic potential in SOS, both in Glauber and Kawasaki dynamics, in agreement with transfer matrix results.

Finally we examine finite size effects in the Solid-on-Solid model. While first analysed by Privman [START_REF] Privman | Finite-Size Properties of the Angle-Dependent Surface Tension of Rough Interfaces[END_REF], we give a complete derivation allowing to compute the correlation length and to show that for large systems the physics is essentially the same as for continuum Brownian models, while determining the effective surface tension.

• In the fourth chapter we introduce a new d -1 lattice model similar to SOS in which we have taken into account the entropy. This model, that we call Particles-Over-Particles, takes the litteral definition of the height of the interface by assuming the existence of particles under it. Through this lens, we are able to form systems with many different types of particles which are in different statistical ensembles and different activities, and show the numerical limitations that have to overcame.

• The last chapter explains how uniform driving alters the properties of the interface. The first section is essentially a published paper [START_REF] Dean | The effect of driving on model C interfaces[END_REF], where we consider an interface model which can be driven out of equilibrium by a uniform driving field. In order for a uniform field to have an effect on the system we introduce two fields, a colloidal field with model B conserved dynamics and a solvent field with model A dynamics. This combination of dynamics is called model C dynamics [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF]. The system is driven out of equilibrium by assuming that the driving acts only on the colloidal field. Using the method of Bray et al [START_REF] Bray | Interface fluctuations under shear[END_REF] we derive the interface dynamics and compute its correlation function in the resulting non-equilibrium steady state. The properties are considerably different to the standard capillary wave properties of equilibrium surfaces and some of the results can be interpreted in terms of an effective surface tension. The calculations exhibit some of the phenomenology seen in experiments on sheared interface [START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF]. Finally we discuss the same model without driving but with different temperatures for the two fields to simulate active colloid systems, again a rich phenomenology of nonequilibrium states emerges. Afterwards we show how uniform driving in SOS model decreases surface tnsion and discuss briefly the physical difference between this system and model C dynamics stated prior.

This thesis has been possible thanks to the ANR's grant FISICS, the Laboratoire Onde Matière d'Aquitaine from Université de Bordeaux, and the Laboratoire de Physique at ENS Lyon. The numerical simulations benefited from the numerical resources of the Mésocentre de Calcul Intensif Aquitain [START_REF]Mésocentre de Calcul Intensif Aquitain[END_REF], with the help of Nguyen Ky Nguyen. All my numerical codes can be found on Github [START_REF] Gersberg | Github with all my programs[END_REF]. I also wish to thank Josiane Parzych (LOMA) and Laurence Mauduit (ENS LYON) for all the administration procedures and their support.

xv Chapter 1

Equilibrium interface dynamics

This chapter is a review of the dynamics of statistical systems, and how phase transitions -in particular those who possess a phase separation -occur dynamically [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF]. The most famous example is the Ising model without any external field, its order parameter being the total magnetization.

In the high temperature phase, the system is homogeneous and its total magnetization is zero, while below the critical temperature there will be phase separation. When the order parameter is not conserved (Glauber dynamics or Model A), one the two phases takes over the whole system due to spontaneous symmetry breaking. In a continuous phase transition where the critical point is reached from the disordered state to the ordered stated, the domain size -equal to the system's correlation length -diverges close to the critical temperature T C . In a thermodynamical system it becomes infinite, implying that the system takes an infinite amount of time to reach equilibrium : it's the critical slowing down. The process of domain growth is known as coarsening and phase ordering kinetics is the theory that has been developed to understand the phenomenon of coarsening [START_REF] Bray | Theory of phase-ordering kinetics[END_REF]. In Fig 1 .1, we show an example of coarsening in the Ising model with respect to time, where one phase will take over the whole system due to its finite size. In the case of an infinite system, we talk about spinodal decomposition. When the order parameter is conserved (Kawasaki dynamic or Model B), the system locally separates into two phases of opposite mean magnetization divided by an interface whose surface minimizes the energy between both phases. This interface is characterised by its surface tension and its average position.

While the phase diagram of a system can be determined via its Hamiltonian and equilibrium statistical mechanics, the dynamics of coarsening depend on the details that do not show up in single time thermodynamic observables. Therefore, one needs to construct dynamical models that capture the underlying evolution of the state of the system. In particular, there is a big difference between equilibrium systems where the order parameter is conserved and those where it is not conserved in the thermodynamic limit. [START_REF] Onsager | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[END_REF] for different times, in Monte Carlo steps, for a 600 × 600 system with nonconserved Glauber dynamics and periodic boundary conditions.

Models for equilibrium fields 1.Statics of systems with a finite number of degrees of freedom

Measuring observables in experimental setups means to measure the derivative of the partition function Z with respect to its conjugate variable. This measure is done with a certain degree of spatial and temporal resolution, which means in a statistical language that they measure the average of the observable over some space and time. If Φ(x, t ) is the physical field of our system, our device having a temporal resolution of ∆t and a spatial resolution over a volume V will measure

φ(x, t ) = 1 V∆t t t -∆t d t V d x Φ(x , t ) (1.1)
This means that one is naturally lead to consider statistical field theories where the system is described in terms of a local field φ(x, t ). We start to examine the case of a system with a finite number of degrees of freedom.

Consider a system in the canonical ensemble with a Hamiltonian H(q) where q i for 1 ≤ i ≤ N represent a finite number of continuous spatial degrees of freedom and where in a classical system we have already integrated over the corresponding momenta. The partition function for the system is given by

Z = d q exp -βH(q) (1.2)
In general the integral which gives the partition function cannot be computed analytically. In equilibrium, the probability density function P eq (q) of the degrees of freedom is given by

P eq (q) = exp -βH(q) Z (1.
3)

The simplest approximation to compute Z is the mean field approximation where the integral is approximated by the integrand at its largest value -in mathematics this is the Laplace method for approximating an integral and in this context it is just an expansion about the minimum energy configuration of the system. The mean field approximation is thus

Z MF = exp -βH(q * ) (1.4)
where q * is the value of q which minimises H (note that the approximation becomes exact in the zero temperature limit -β → ∞ -as the system will minimise its energy). The values q * i are determined from

∂H ∂q i | q=q * = 0 (1.5)
Within this approximation any thermodynamic observable is given by

〈 f (q)〉 = f (q * ) (1.6)
In order to reach the correct equilibrium Gibbs-Boltzmann distribution, the following Langevin equation

d q i d t = -L i j ∂H(q) ∂q j + η i (t ) (1.7)
needs to satisfy some conditions. Here, L i j is a matrix operator which has to be carefully chosen andη i (t ) is zero mean Gaussian white noise with correlation function

〈η i (t )η j (t )〉 = Γ i j δ(t -t ) (1.8)
The Gaussian white noise represents the effects of thermal fluctuations on the system, and we assume that the correlation time of these fluctuations is extremely short with respect to the dynamics of the degrees of freedom q i (in fact due to critical slowing down, the dynamics become very slow close to the critical point). There is no momentum term in this Langevin equation and for this reason it is often called the overdamped Langevin equation. As Eq. (1.8) is for a correlation function, the matrix Γ i j must be symmetric and cannot have any negative eigenvalues.

In the absence of noise or thermal fluctuations, so at zero temperature, the system minimises its energy. Therefore if ∂H(q) ∂q j = 0 (1.9)

with no noise then we have d q i d t = 0, that is to say it is the term ∂H(q) ∂q j that drives the dynamics in that case. As long as the matrix L -1 i j exists the zero temperature dynamics will take the system to the local minimum of H and to the absolute minimum in absence of metastable configurations. Under these assumptions, the Fokker-Planck equation for the probability density function of the degrees of freedom is

∂p(q, t ) ∂t = ∂ ∂q i 1 2 Γ i j ∂p(q, t ) ∂q i + p(q, t )L i j ∂H(q) ∂q j (1.10)
This can be written as ∂p(q, t ) ∂t

+ ∂ ∂q i J i (q, t ) = 0 (1.11)
where the J(q, t ) is the probability current. Since the system is in equilibrium with zero current when p(q, t ) = P eq (q) as given by Eq. (1.3), this gives

- β 2 Γ i j + L i j ∂H(q) ∂q j = 0 (1.12)
which holds for any choice of H is we chose

Γ i j = 2TL i j (1.13)
where Boltzmann's constant has been set to k B = 1.

Statistical field theory

The partition function of a system with Hamiltonian H[φ] depending on a continuous field φ(x) is given by a functional integral

Z = d [φ] exp(-βH[φ]), (1.14) 
the functional integral over all possible fields φ can be taken as a limit where φ is defined at a finite number of points on a lattice where the lattice spacing is taken to zero. In many cases, the system has been coarse-grained and φ represents a spatially varying order parameter, for instance the local density averaged over some small volume. In this case the Hamiltonian H is strictly speaking a free energy and contains terms that depend on the temperature. The mean field approximation to partition function is then given by

Z MF = exp(-βH[φ MF ]) (1.15)
where φ MF is the mean field solution which minimises H. By definition of a functional derivative

F[φ + δφ] -F[φ] = d x δF δφ(x) δφ(x), (1.16) 
if a field φ maximises H we must have δH δφ(x) = 0 (1.17 In the ordered phase, the minima are at φ C = ± -6m 2 λ , while for the ordered phase it is at φ C = 0. In black, the addition of a uniform magnetic field h(x) = 1 makes the positive phase metastable.

We now consider the standard Landau-Ginzburg Hamiltonian [START_REF] Landau | Physique théorique -T9 Physique Statistique[END_REF] describing Ising like systems where

H[φ] = d x κ 2 [∇φ] 2 + V(φ) (1.18)
The first term represents an energetic cost of varying the field φ. The second potential term has two minima at φ = ±φ c , and, in the low temperature or phase separated phase, without loss of generality we can chose V(φ c ) = V(-φ c ), while it has a single minimum at φ = 0 in the high temperature phase.

The standard potential for phase separations, called the φ 4 model, is given by the doublewell

V(φ) = 1 2 m 2 φ 2 + λ 4! φ 4 (1.19)
where m 2 = T -T C . For m 2 < 0, the minima are at φ C = ± -6m 2 λ ±, while at m 2 ≥ 0, the single minimum is at φ C = 0, as shown in Fig 1 .2. We can also couple our system with the magnetic field of Hamiltonian

H 1 = -d d xh(x)φ(x) (1.20)
in order to favorise one phase over the other one. As the only important feature of this potential is to have phase separation in two phases, the absolute value of φ C is irrelevant. For example, if φ describes a density field, the φ 4 potential will have two minima at φ C = 0 and φ C = 1, while for spin systems it will be φ C = ±1. The white noise correlator should have the form

〈η(x, t )η(x , t )〉 = δ(t -t )Γ(x, x ) (1.23)
where here Γ(x, x ) is an operator (before it was a matrix) defined by its action on functions f as

Γ f (x) = d x Γ(x, x ) f (x ) (1.24)
and L is also an operator with

L f (x) = d x L(x, x ) f (x ) (1.25)
Following the same arguments for systems with a finite number of degrees of freedom, both operations must follow the relation

Γ(x, x ) = 2TL(x, x ) (1.26)
which is sometimes called the fluctuation dissipation theorem as it essentially is equivalent. The simplest form of dynamics is given by L(x, x ) = αδ(xx ) which gives the model A dynamics ∂φ(x) ∂t = -α δH δφ(x)

+ η(x, t ) (1.27)
with the noise correlator

〈η(x, t )η(x , t )〉 = 2Tαδ(t -t )δ(x -x ) (1.28)
The average value of φ

φ(t ) = 1 V d x φ(x, t ) (1.29)
is clearly not generally conserved by this dynamics. Model A corresponds to a system in the grand-canonical ensemble, where α is the kinetic coefficient related to the relaxation time of the system [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF]. Model B dynamics amounts to choosing

L(x -x ) = -D∇ 2 δ(x -x ) (1.30)
The fact that L is a positive semi-definite operator can be seen by taking its Fourier transform. The evolution equation here is

∂φ(x) ∂t = D∇ 2 δH δφ(x) + η(x, t ) (1.31) where 〈η(x, t )η(x , t )〉 = -2TDδ(t -t )∇ 2 δ(x -x ) (1.32)
By introducing the vectorial white noise with components η i (x, t ) such that

〈η i (x, t )η i (x , t )〉 = δ i j δ(x -x )δ(t -t ) (1.33)
where δ i j = 1 for i = j and is zero otherwise, it can be rewritten as [START_REF] Tuszy Ński | Exact solutions to the time-dependent Landau-Ginzburg model of phase transitions[END_REF] and the Cahn-Hilliard equation [START_REF] Cahn | Free Energy of a Nonuniform System. I. Interfacial Free Energy[END_REF] equations, which gives the mean field's dynamics.

η(x, t ) = ∇ • η(x,

Surface tension

Minimizing the free energy can be done by simply choosing φ(x) = φ c or φ(x) = -φ c everywhere, which amounts to a free energy of F = H[φ c ] = 0. However in a system with a conserved order parameter

d x φ(x) = 0 (1.36)
the homogeneous solution cannot hold. In this case the system separates into two homogeneous phases where φ(x) = ±φ c . By setting the interface at z = 0 and taking the field profile perpendicular to it φ(x) = φ K (z) (K standing for kink as it is known as the kink solution in the literature) where lim z→∞ = -φ c and lim z→∞ = -φ c , Eq. (1.21) gives

-κ d 2 d z 2 φ K (z) + V (φ K ) = 0 (1.37)
The interface Hamiltonian is written as

H[φ K ] = A d z κ 2 d φ K (z) d z 2 + V(φ K (z)) (1.38)
where A is the surface area of the system in the plane perpendicular to the direction z. Multiplying Eq. (1.37) by d φ/d z and by integrating we find

- κ 2 ( d φ K d z ) 2 + V(φ K ) = C (1.39)
where C is a constant. As φ K (z) → ±φ c as z → ±∞ and V(±φ c ) = 0, the priore equation gives C = 0, which allows to rewrite the interface Hamiltonian as The Cahn-Hilliard estimate of the surface tension [START_REF] Cahn | Free Energy of a Nonuniform System. I. Interfacial Free Energy[END_REF] is defined as the free energy per unit area

H[φ K ] = A d z κ d φ K (z) d z 2 (1.
σ = d z κ d φ K (z) d z 2 (1.41)
In the case of the φ 4 model defined at Eq. (1.19), Eq. (1.37) becomes

κφ K (z) = m 2 φ K (z) 1 + φ C φ K (z) 2 (1.42)
This potential is only defined by the ratio between m 2 and λ, so without loss of generality we set φ C = 1. The solution becomes

φ K (z) = tanh z ξ (1.43)
where ξ = -2κ m 2 . This correlation length diverges when T → T C . From Fig 1 .3 we see that the bigger the correlation length of the system, the smaller the surface tension is. The experimental study of quasi-critical systems, which have fluctuations at a macroscopic length scale, is a good way to probe the properties of ultra-low surface tension systems [START_REF] Hennequin | Drop Formation by Thermal Fluctuations at an Ultralow Surface Tension[END_REF]. Such systems are very susceptible to hydrodynamic instabilities caused by thermal noise, as in microfluidics for example [START_REF] Atencia | Controlled microfluidic interfaces[END_REF].

Models for equilibrium interfaces 1.2.1 Basic continuous model

The simplest effective model of interface is to assume that the interface is parameterised by a height profile which is a single-valued function h(r), where x = (r, z). The interface hamil-tonian is thus H

[h] = σA[h] (1.44)
where A[h] is the area of the interface. The interface area is given by

A[h] = A d r 1 + [∇h] 2 (1.45)
where the integral is over the plane perpendicular to the z axis which is taken to be of area A.

When the fluctuations of the interface are small, an expansion to quadratic order in h gives

H[h] = Aσ + σ 2 A d r [∇h] 2 (1.46)
The first term is independent of the height, so the effective Hamiltonian for the surface becomes

H e f f [h] = σ 2 A d r [∇h] 2 (1.47)
The basic model describing the height of an interface at z = h(r) above a plane with coordinates r has the Hamiltonian

H[h] = d x σ 2 [∇h(x)] 2 + V(h(x)) (1.48) 
The first term corresponds to the surface energy. In principle surfaces can also have bending energies. While surface energies correspond to stretching the surface to increase its size, bending energies correspond to curving the surface. The standard bending energy for small surface energies [START_REF] Diehl | The interface in a Ginsburg-Landau-Wilson model: Derivation of the drumhead model in the low-temperature limit[END_REF] is given by

H b [h] = d r κ b 2 [∇ 2 h(r)] 2 (1.49)
where κ b is called the bending rigidity. The term V(h) represents the potential energy of the surface per unit area. For instance, if the surface interacts via an infinite hard-core potential with a solid surface at z = 0, it can be modelled by the potential V(z) = 0 for z > 0 and V(z) = ∞ for z ≤ 0. Another example is where the surface describes the surface of a liquid such as water, again with a solid surface at z = 0, in the presence of gravity the potential energy of the water column above the area element d x is given by

δV = h(r) 0 d z ρg z = 1 2 ρg h 2 (r) (1.50)
where ρ is the (mass) density of the liquid. This then gives

H[h] = d r σ 2 [∇h(r)] 2 + 1 2 ρg h 2 (r) (1.51)
The correlation length of the interface is given by

ξ = σ ρg 1 2 
(1.52)

In the more general context, if V(h) has a minimum at some point h m , first order expansion gives h = h f (x) + h m , where h f (x) represents the height fluctuations about the mechanically stable flat interface h(x) = h m , which gives the effective Hamiltonian for the fluctuations

H e f f [h f ] = d r σ 2 [∇h f (r)] 2 + 1 2 V (h m )h 2 f (r) (1.53)
where the constant term AV(h m ) is dropped. The above field theory is Gaussian and so, when the approximations made to derive it are valid, all of the statistical properties of the height fluctuations can be deduced. However for general potentials V(h) the model cannot be solved exactly in two dimensions but can in principle be solved in one dimension as we will see below.

Effective dynamics of interface heights

From the original phase ordering kinetics, one can derive an approximation for the dynamics of the interface's height. Here we use the method of Bray and Cavagnha [START_REF] Bray | Interface fluctuations under shear[END_REF][START_REF] Bray | Interface fluctuations, Burgers equations, and coarsening under shear[END_REF], which was used to study the dynamics of sheared interfaces, in the absence of shear to determine the dynamical properties of interfaces in phase separated systems for both model A and model B dynamics. Imagining that the system is phase separated in the z direction by an interface whose average is set to be at z = 0, we set

φ(z, r, t ) = f (z -h(r, t )) (1.54)
where f (z) = φ K (z) is the kink solution from mean field theory.

Model A dynamics

For model A dynamics, substituting Eq. (1.54) into Eq. (1.27) and making use of the following results

∂ f (z -h(r, t )) ∂t = -f (z -h(r, t )) ∂h(r, t ) ∂t (1.55) ∇ f (z -h(r, t ) =[e z -∇h(r, t )] f (z -h(r, t )) (1.56) ∇ 2 f (z -h(r, t )) = f (z -h(r, t )) -∇ 2 h(r, t ) f (z -h(r, t )) + [∇h(r, t )] 2 f (z -h(r, t )) (1.57) we find -f (z -h(r, t )) ∂h(r, t ) ∂t =ακ f (z -h(r, t )) -∇ 2 h(r, t ) f (z -h(r, t )) + [∇h(r, t )] 2 f (z -h(r, t )) (1.58) -αV ( f (z -h(r, t ))) + η(r, z, t ) (1.59)
After multiplying both sides of this equation by f (zh(r, t )) and defining ζ = zh(r, t ), we integrate ζ over [-∞, ∞] while using the following identities

∞ -∞ d ζ f (ζ) f (ζ) =[ 1 2 f 2 (ζ)] ∞ -∞ = 0 ∞ -∞ d ζ f (ζ)V ( f ) = ∞ -∞ d ζ d V( f ) d ζ = [V( f (ζ))] ∞ -∞ = 0
Note that the first relation above holds as f (ζ) = ±φ c as ζ → ±∞ and the second as V(φ c ) = V(-φ c ) = 0. The terms that are left then give

- ∞ -∞ f 2 (ζ)d ζ ∂h(r, t ) ∂t = -α ∞ -∞ f 2 (ζ)d ζ κ∇ 2 h(r, t ) + ∞ -∞ d ζη(r, ζ + h(r, t )) f (ζ) (1.60)
Now using the Cahn-Hillard estimate of the surface tension, Eq. (1.41) thus becomes

σ κ ∂h(r, t ) ∂t = ασ∇ 2 h(r, t ) + ξ(r, t ) (1.61)
where the noise term is given by

ξ(r, t ) = - ∞ -∞ d ζη(r, ζ + h(r, t )) f (ζ) (1.62)
The noise term has zero mean and correlation function This dynamical calculation is thus consistent with the idea of describing the surface in terms of a height variable with an energy given by the surface tension. The equation (1.67) is known as the Edwards-Wilkinson equation [START_REF] Edwards | The Surface Statistics of a Granular Aggregate[END_REF][START_REF] Halpin-Healy | Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics[END_REF]. This equation can be used to determine how the domains of a coarsening system grow at low temperatures. To do this we ignore the noise term and assume that at t = 0 the correlations of the height are short range, so

〈ξ(r, t )ξ(r , t )〉 =2αTδ(t -t )δ(r -r ) ∞ -∞ d ζd ζ δ(ζ -ζ ) f (ζ) f (ζ ) =2αTδ(t -t )δ(r -r ) ∞ -∞ d ζ f 2 (ζ) = 2αTσ κ δ(t -t )δ(r -r ) (1.
C(r -r , 0) = 〈h(r, 0)h(r , 0)〉 = C 0 δ(r -r ) (1.69)
In Fourier space the noiseless Edwards-Wilkinson equation becomes

∂ h(k, t ) ∂t = -α σk 2 h(k, t ) (1.70) and so h(k, t ) = h(k, 0) exp(-α σk 2 t ) (1.71)
The two point correlation function becomes

〈 h(k, t ) h(k , t )〉 = 〈h(k, 0)h(k , 0)〉 exp(-α σ[k 2 + k 2 ]t ). (1.72) Now recall that if 〈h(r, t )h(r , t )〉 = C(r -r , t ) (1.73) then 〈 h(k, t ) h(k , t )〉 = (2π) d δ(k + k ) C(k, t ) (1.74) where C(k, t ) = d r exp(-i k • r)C(r, t ) (1.75)
is the Fourier transform of the correlation function, which is a function of a single position due to invariance by translation in space, and d is the dimension of space (so here d = 2 for a surface in 3d space and d = 1 for a surface in a 2d space). Putting all this together gives

C(k, t ) = C 0 exp(-2α σk 2 t ) (1.76)
Inverting the Fourier transform, we have

C(r, t ) = C 0 (8πα σt ) d 2 exp(- r 2 16πα σt ) (1.77)
From this we see that if C(r, t ) ∼ g ( r (t ) )r (t ) then the length scale (t ) ∼ t 1 2 . This agrees with what is found in the Ising model under Glauber dynamics, where the growth exponent is also given by z = 1 2 [START_REF] Paul | Domain growth in Ising systems with quenched disorder[END_REF].

Model B dynamics

For model B dynamics, taking the same ansatz as in Eq. (1.54), model B dynamics is rewritten as

-∇ -2 ∂φ(x, t ) ∂t = -D δH δφ(x) + θ(x, t ) (1.78)
Here -∇ -2 represents the Green's function G which obeys to

∇ 2 G(x -x ) = -δ(x -x ) (1.79) and θ(x, t ) = -∇ -2 η(x, t ) = d x G(x -x )η(x, t ) (1.80)
The correlation function of θ(x, t ) is given by

〈θ(x, t )θ(y, t )〉 = -2DTδ(t -t ) d x G(x -x )d y G(y -y )∇ 2 δ(x -y ) = -2DTδ(t -t ) d x G(x -x )d y ∇ 2 G(y -y )δ(x -y ) =2DTδ(t -t )G(x -y) (1.81)
where we have integrated by parts in the second line and used

-∇ 2 G(y -y ) = δ(y -y ) (1.82)
in the third. Now multiplying by f (zh(r, t )) and integrating z over [-∞, ∞], we find

-d z f (z -h(r, t )) d z d r G(z -z , r -r ) f (z -h(r , t )) ∂h(r , t ) ∂t = -Dσ∇ 2 h(r, t ) + χ(r, t ), (1.83) 
with the noise

χ(r, t ) = d z f (z -h(r, t ))θ(r, z, t ). (1.84) 
Assuming that the height fluctuations are small, only the lowest order terms in h in the deterministic terms and the noise are kept, which we will see later is compatible thermodynamically. The equation becomes

-d z f (z) d z d r G(z -z , r -r ) f (z ) ∂h(r , t ) ∂t = -Dσ∇ 2 h(r, t ) + χ(r, t ) (1.85)
and now the noise is given by

χ(r, t ) = d z f (z)θ(r, z , t ) (1.86)
This equation which is linear in h can now be Fourier transformed in the plane r. In terms of the Fourier transform of h we find

-d z f (z) d z d r G(z -z , k) f (z ) ∂ h(k, t ) ∂t = Dk 2 σ h(k, t ) + χ(k, t ) (1.87)
The Fourier transform of G in the r plane obeys

d 2 G(z -z , k) d z 2 -k 2 G(z -z , k) = -δ(z -z ) (1.88)
and the solution to this equation (with the boundary condition that G

(z -z , k) → 0 as |z - z | → ∞) is G(z -z , k) = exp(-k|z -z |) 2k (1.89)
where the notation k = |k| is used, so k is positive. Using the sharp interface approximation, we write

f (z) = 2φ c δ(z) (1.90)
that is to say we have replaced the smooth kink solution with a step like solution f (z) = φ c sgn(z). This then gives

-4φ 2 c G(0, k) ∂h(k, t ) ∂t = Dk 2 σ h(k, t ) + χ(k, t ) (1.91)
which is rewritten as

∂ h(k, t ) ∂t = - Dk 3 σ 2φ 2 c h(k, t ) + ξ(k, t ) (1.92) with ξ(k, t ) = - k 2φ 2 c χ(k, t ) (1.93) where χ(k, t ) = d z f (z) θ(k, z, t ) (1.94)
The correlation function of θ(k, t ) is

〈θ(k, t )θ(k , t )〉 = 2DT(2π) d δ(t -t )δ(k + k ) G(z -z , k) (1.95)
From this the correlation function in Fourier space is

〈χ(k, t )χ(k , t )〉 = 2DT(2π) d δ(t -t )δ(k + k ) d zd z f (z) f (z ) G(z -z , k) (1.96)
Now, using the sharp interface approximation Eq. (1.90), we obtain

〈χ(k, t )χ(k , t )〉 = 2DT(2π) d δ(t -t )δ(k + k ) 2φ 2 c k (1.97)
and consequently

〈ξ(k, t )ξ(k , t )〉 = 2DT(2π) d δ(t -t )δ(k + k ) k 2φ 2 c (1.98)
The interface dynamics for model B in Fourier space is thus

∂h(k, t ) ∂t = - Dk 3 σ 2φ 2 c h(k, t ) + ξ(k, t ) (1.99)
which in real space this has the form

∂h(r) ∂t = -L δH e f f δh(r) + ξ(r, t ) (1.100)
where the operator L is defined via its Fourier transform

L(k) = Dk 2φ 2 c (1.101)
Now if we look at Eq. (1.99) we see that the solution without noise is a function of k 3 t , which in real space corresponds to x 3 /t . From this we see that the coarsening length scale grows as (t ) ∼ t 1 3 and consequently the coarsening exponent is z = 1 3 . Coarsening for conserved model B or diffusive dynamics is slower than that of model A [START_REF] Huse | Corrections to late-stage behavior in spinodal decomposition: Lifshitz-Slyozov scaling and Monte Carlo simulations[END_REF]. One of the reasons for this slowing down with respect to nonconserved dynamics is that material must be physically transported by diffusion (by exchanging spins in the language of lattice spin models), where as for model A dynamics the composition can change at any given point by spin flipping.

As a cautionary note, if we had taken the Hamiltonian in Eq. (1.47) and applied model B conserved dynamics, as in Eq. (1.31), for the height field we would not have obtained this equation.

Without using the sharp interface approximation, Eq. (1.87) can be written as

Q(k) ∂ h(k, t ) ∂t = -Dk 2 σ h(k, t ) -χ(k, t ) (1.102)
where

Q(k) = d zd z f (z) G(z -z , k) f (z ) (1.103)
Notice that from Eq. (1.102) that

〈χ(k, t )χ(k , t )〉 = 2DT(2π) d δ(t -t )δ(k + k )Q(k) (1.104) and so ∂ h(k, t ) ∂t = -L(k) μ(k) + η(k) (1.105) 
where

µ(x) = δH e f f /δh(x), L(k) = D/Q(k) and 〈η(k, t )η(k , t )〉 = 2T(2π) d δ(t -t )δ(k + k ) L(k) (1.106)

Lattice models 1.3.1 The Ising model

The Hamiltonian of an Ising model of size L × L × L and composed of N sites i whose value correspond to

σ i = ±1 is H = - 〈i j 〉 Jσ i σ j + B V(σ i ) + V(σ j ) 2 (1.107)
where 〈i j 〉 is a sum over all pairs of nearest neighbours, and the external parameter B having the energy dimension is applied to the funcion of the internal variables V(σ i ) which has been symmetrized. The Ising model [START_REF] Niss | History of the Lenz-Ising Model 1920-1950: From Ferromagnetic to Cooperative Phenomena[END_REF][START_REF] Niss | History of the Lenz-Ising Model 1950-1965: from irrelevance to relevance[END_REF] is therefore a lattice model with short interactions between particles. Since all particles σ i in the system are equal to ±1, this system is called a lattice based spin model. When σ i is continuous, it is called the XY model [START_REF] Gupta | Phase Transition in the 2 D XY Model[END_REF]. J is the coupling parameter of the system and can be non-uniform if the nearest neighbours interaction is J = J i j . If J i j < 0, the system favorises homogeneous phases and is called ferromagnetic. while if J i j > 0, the system favorises configurations where each spin has an opposite sign with respect to all of their neighbours, which modelises antiferromagnetic materials. We now set J i j = 1.

The mean-field theory with a φ 4 potential has been developed from this model [START_REF] Bellac | Equilibrium and Non-Equilibrium Statistical Thermodynamics[END_REF], and exact relationship between both of them has been found in 4 dimensions and above [START_REF] Aizenman | Proof of the Triviality of φ d 4 Field Theory and Some Mean-Field Features of Ising Models for d > 4[END_REF]. A fast way to convince ourselves is to take the finite difference derivative at first order of Eq (1.18).Supposing the sole role of the potential is to set the field to ±φ C on each site, then we have

[∇ ∇ ∇φ(i )] 2 = ∂φ(i ) ∂x 2 + ∂φ(i ) ∂y 2 + ∂φ(i) ∂z 2 = (φ(x, y, z) -φ(x + 1, y, z)) 2 + (φ(x, y, z) -φ(x, y + 1, z)) 2 + (φ(x, y, z) -φ(x, y, z + 1)) 2 = 2(1 -φ(x, y, z)φ(x + 1, y, z) + 2(1 -φ(x, y, z)φ(x, y + 1, z) + 2(1 -φ(x, y, z)φ(x, y, z + 1) (1.108)
where the distance between two sites is set to 1. From this we easily see some bulk energy to which we add the sites' nearest neighbours interactions in an Ising-like fashion. This model precisely describes phase transitions in uniaxial magnetic systems [START_REF] De Jongh | Experiments on simple magnetic model systems[END_REF][START_REF] Wold | The Ising Model and Real Magnetic Materials[END_REF][START_REF] Ikeda | Neutron scattering study of two-dimensional Ising nature of K2CoF4[END_REF]. It is also the simplest model of its eponymous universality class, which also contains liquid/gas transitions and binary fluids. In these mappings, the value n i = 1 2 (1 -σ i ) = 0, 1 represents the occupation of a cell in a lattice fluid, and the value σ i = ±1 gives the label of a binary species A or B. This model does not have a phase transition in 1D, but a phase transition in 2D was foumd in 1944 [START_REF] Onsager | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[END_REF] at the critical temperature

T 2D,C = 2J k B ln(1 + 2) 2.27 J k B (1.109)
The renormalization group approaches have deep connexions with the Ising model [START_REF] Frohlich | On the triviality of λϕ4 theories and the approach to the critical point in D>4 dimensions[END_REF][START_REF] Goldenfeld | Lectures on Phase Transitions and the Renormalization Group[END_REF]. Even though results have been found for d = 4 (which is the upper critical dimension), no analytical solution has been found in 3 dimensions. Numerous numerical simulations [START_REF] Talapov | The magnetization of the 3D Ising model[END_REF][START_REF] Preis | GPU accelerated Monte Carlo simulation of the 2D and 3D Ising model[END_REF] have shown that the 3-dimensional phase transition occurs at

T 3D,C 4.51 J k B (1.110)
By making the transformation [START_REF] Goldenfeld | Lectures on Phase Transitions and the Renormalization Group[END_REF] 

n i = σ i + 1 2 (1.111)
so that n i (σ i = 1) = 1 and n i (σ i = -1) = 0, the Hamiltonian liquid/gas Hamiltonian is

H = - 〈i j 〉 J i j 4n i n j -2(n i + n j ) + 1 + B 〈i j 〉 V(σ i ) + V(σ j ) 2 (1.112)
Dropping the constant term 〈i j 〉 J i j , it becomes

H LG = -4 〈i j 〉 J i j n i n j + 2 〈i j 〉 J i j (n i + n j ) + B 〈i j 〉 V(σ i ) + V(σ j ) 2 = -4J 〈i j 〉 Jn i n j + µ c i n i + B 〈i j 〉 V(σ i ) + V(σ j ) 2 (1.113)
where J i j is set to J, and the intrinsic chemical potential for a liquid-gas system is µ c = 4Jc, with c the number of nearest neighbours dependeing on the dimensionality of the system. A positive magnetic phase is thus analogous to a high density state such a liquid, while the negative magnetic phase is equal to a low density state such as a gas. An onsite potential V(σ i ) further modifies the chemical potential, µ = µ c +δµ[V(σ i )] in the same fashion as in Fig 1 .2. The chemical potential µ is the conjugate variable to the total number of particles i n i , while the magnetic field B is the conjugate variable to the total magnetisation i σ i . The two are connected through the mapping such that B ∼ µµ c , so that liquid-gas and Ising model systems share common thermodynamic features such as the universality class for critical fluctuations. For the fluid the grand canonical ensemble corresponds to the Gibbs ensemble with fixed T and µ and canonical ensemble with fixed T and N . In the magnetic system these ensembles correspond to fixed T, B and T, M respectively. The model also describes adsorption of a gas in a lattice or binary fluids between particles of different species A and B. By imposing +boundary conditions in the z direction, the existence of an interface is forced, as seen in Fig 1 .4. Those BC can be fixed, imposing σ(z = 0) = -1 and σ(z = L) = +1, or free but with a local external field V(z) = h(δ 0,z -δ z,L ). An interface is characterized by its mean and its width. The easiest way to find it is to fit the magnetization profile

m(z) = 1 L 2 〈 x y σ(x, y, z)〉 (1.114)
to mean field results from Eq (1.43). The mean position of the interface is

m = 〈h〉 = 1 L 2 〈 i σ i 〉 (1.115)
and the width of the interface is then defined as

w 2 = 〈h 2 〉 -〈h〉 2 (1.116)
This can be rewritten [START_REF] Stecki | Magnetization profiles of the planar fluctuating interface in a d =2 Ising strip[END_REF] as

w 2 = 2 L 0 d zz d m(z) d z L 0 d z d m(z) d z (1.117)
The surface tension of the interface is now defined as the free energy difference between the bulk and the interface [START_REF] Richards | Numerical transfer-matrix study of surface-tension anisotropy in Ising models on square and cubic lattices[END_REF]. If Z ++ is the partition function of a system with (++) BC, and Z +- with (+-) BC, then the surface tension [START_REF] Abraham | Interface profile of the Ising ferromagnet in two dimensions[END_REF] is given by

σ = lim L ,L→∞ 1 L 2 ln Z +- Z ++ (1.118)
By diagonalization of the transfer matrix (which will be defined later), we find that the surface tension of a the interface between two pure phases + andis given in a two-dimensional Ising model [START_REF] Abraham | The transfer matrix for a pure phase in the twodimensional Ising model[END_REF] by

σ = 2βJ + log(tanh(βJ)) (1.119)
meaning that the hotter the system, the wider the interface becomes.

The Solid-On-Solid Model

In order to get the Edwards-Wilkinson equation of an interface from statistical field theory, the approximation

φ(x, t ) = f (z -h(r, t )) (1.120)
was used. Its translation in lattice models is

σ i , j = sgn(h i -j ) (1.121)
where sgn(x < 0) = -1 and sgn(x > 0) = 1, and h i is the height of the interface at site i . This is the low temperature approximation of the Ising model, where there are no overhangs from the + phase into thephase and vice versa. If we note J ⊥ the vertical bond energy between two Ising spins and J ∥ the horizontal bond energy, this approximation becomes equivalent to a highly anisotropic Ising model where J ⊥ J ∥ [START_REF] Swendsen | Roughening transition in the solid-on-solid model[END_REF].

In a slab or semi-infinite geometry as seen in Fig 1 .5, the height of the interface corresponds to the number of spinsin the column i , while for an infinite geometry, h i is interpreted as the number of excess spinswith respect to the mean height, set in the figure at z = 0 [START_REF] Van Leeuwen | Pinning of a rough interface by an external potential[END_REF]. In this representation, height profiles represent an interface height and not a number of particles, since there is no entropy term associated with the number of ways that the h i particles on each site can be chosen from the N particles available. In chapter 4, a model with those characteristics will be adressed. Using the identities

min(a, b) = |a + b| -|a -b| 2 (1.122) max(a, b) = |a + b| + |a -b| 2 (1.123) we have L j =0 sgn(h -j ) sgn(h -j ) = L -2|h -h | (1.124)
which, from the 2-D Ising Hamiltonian (1.107) of size L × L, gives

H = 2JL (1 -L) + 2J L i =0 |h i -h i +1 | + B L i =0 V(h i ) (1.125) with external potential BV(h i ) = B L j =0 V(sgn(h i -j )) (1.126)
For periodic boundary conditions, h L = h 0 . Another way to compute the energy for a SOS configuration is to directly count the number of energy bonds for a L × L Ising model under the approximation (1.121). There are L -1 vertical bonds per column, where all have an energy of -J, while the link that goes though the interface has an energy of +J. The total contribution to energy from vertical bonds is thus

E ⊥ = -JL (L -2)
(1.127) There are L × L horizontal bonds. In a pure phase system, the horizontal energy would be -JL L. Neverthelesss, there are i |h ih i +1 | bonds which have an energy of +J, which gives the horizontal energy contribution

E ∥ = -JL L + 2J i |h i -h i +1 | (1.128) 
By adding both, we find back Eq (1.125). By setting 2J = J and getting rid of the bulk energy, we obtain the Solid-On-Solid Hamiltonian

H = J L i =0 |h i -h i +1 | + B V(h i ) + V(h i +1 ) 2 (1.129)
The first system where the SOS model has been applied was crystals' growth in 1972 [START_REF] Gilmer | Simulation of Crystal Growth with Surface Diffusion[END_REF]. Since then, the model has been used with some success in naphthalene cristals [START_REF] Elwenspoek | Kinetic roughening and step free energy in the solid-on-solid model and on naphthalene crystals[END_REF], experimental expitaxial growth [START_REF] Wilby | Scaling in a solid-on-solid model of epitaxial growth[END_REF], polymer membranes [START_REF] Boal | Mechanics of the Cell: Second edition[END_REF][START_REF] Gompper | Steric Interactions in Multimembrane Systems: A Monte Carlo Study[END_REF], or interfacial wetting [START_REF] Fisher | Walks, walls, wetting, and melting[END_REF], all of them being interface physical systems.

In the SOS model, the sites i of height h i can take any value in [0, L]. The Restrictied Solid-On-Solid model (RSOS) is a variation where sites can only take the value

h i +1 ∈ [h i -1, h i , h i + 1][54]
. This approximation works for very low temperatures or very smooth interfaces [START_REF] Kim | Conserved growth in a restricted solid-on-solid model[END_REF][START_REF] Vaysburd | Critical RSOS models in external fields[END_REF].

Another model, closer to the continuous model of Hamiltonian (1.47) is the Discrete Gaussian model which has the following gaussian interaction

H = J L i =0 (h i -h i +1 ) 2 + B V(h i ) + V(h i +1 ) 2 (1.130)
and also has a restricted version. At low temperature, since height differences are typically small the typical energy cost of height differences 0, ±1 is the same in every SOS model no matter the exponent, leading to similar qualitative freatures of all those models [START_REF] Swendsen | Monte Carlo studies of the interface roughening transition[END_REF]. Because the SOS model has an exact relation with the XY model [START_REF] Knops | Exact Relation between the Solid-on-Solid Model and the XY Model[END_REF] no matter the power law used for the interaction,even though GSOS is the direct discrete version of continuous models, we use SOS because its transfer matrix is easier to diagonalise, as we will show in Section 3.4.

With a generalization of this model to continuous heights, it has been shown that extreme deviations statistics of the interface is described by a scaling function [START_REF] Schehr | Universal asymptotic statistics of maximal relative height in one-dimensional solid-on-solid models[END_REF].

Since the dimensionality of the system has been reduced in only taking into account the height interface h i at site i instead of the position of all particles, we can think of an interface as a partially self-avoiding walk. This idea, which will be developed in section 3.2, has proven quiet powerful in finding exact solutions of the generating function [START_REF] Owczarek | Exact solution of the discrete (1+1)-dimensional SOS model with field and surface interactions[END_REF] or the extreme deviations statistics of the interface [START_REF] Majumdar | Airy Distribution Function: From the Area Under a Brownian Excursion to the Maximal Height of Fluctuating Interfaces[END_REF][START_REF] Schehr | Universal asymptotic statistics of maximal relative height in one-dimensional solid-on-solid models[END_REF].

In the canonical ensemble, the height interface is fixed to N, which is translated in the partition function as

Z(N) = h 0 h 1 ...h L exp(-β i H(h i , h i +1 ))δ i h i ,N (1.131)
In the grand-canonical ensemble, the conjugate variable to the height interface is the chemical potential µ, and the grand partition function Ξ is related to the canonical partition function by

Ξ(µ) = N Z(N) exp((βµN) = h 0 h 1 ...h L exp(-βH e f f (h 0 , h 1 , ..., h L ) (1.132)
where

H e f f = J L i =0 |h i -h i +1 | + L i =0 BV(h i ) -µh i (1.133)
In Fig 1 .6, the mean number of particles per site with respect to the chemical potential is plotted, for different size of the system, in the thermodynamic limit L → ∞. When the chemical potential is too small, the Lagrange's multiplier of the mean height is negligible, allowing the interface to fluctuate freely, meaning that the mean value for µ = 0 is L 2 .

Transfer matrix

In a more general fashion, the SOS Hamiltonian takes the form

H = L i =0 f (h i , h i +1 ) + BV(h i , h i +1 )
where f (h i , h j ) is the energy interaction between two nearest neighbours and BV(h i ,

h j ) = B V(h i )+V(h j ) 2
is the external potential. The partition function is

Z = L h 1 =0 L h 2 =0 ... L h L =0 exp(-β L i =0 H(h i , h i +1 )) = h 1 h 2 ...h L L i = 0 exp(-βH(h i , h i +1 )) (1.134)
We define the transfer matrix In Fig 1 .7, an infinite matrix corresponding to the limit L → ∞ is represented, where each site can take any value in [-∞, ∞]. To diagonalize numerically such matrices, we translate the whole system with h i → h i -L 2 , where L is the matrix's size, which we tend to ∞ afterwards. The constraint (1.131) cannot be expressed in the transfer matrix formalism, which induces a change in properties from this ensemble with respect to the transfer matrix results [START_REF] Siegert | Scaling behavior of driven solid-on-solid models with diffusion[END_REF].

T(h i , h j ) = e -βH(h i ,h j ) (1.135)
Since the system has periodic boundary conditions h L+1 = h 1 , we have T(h L , h L+1 ) = T(h L , h 1 ) [START_REF] Pearce | Exact solution of cyclic solid-on-solid lattice models[END_REF]. The matrix is thus symmetric, meaning that it can be diagonalized with the eigenvectors and the eigenvalues T|λ〉 = λ|λ〉 (1.136)

Those eigenvectors are orthonormal

〈λ|λ 〉 = δ λλ (1.137)
We set λ 0 as the biggest eigenvalue of T, by λ 1 the second biggest eigenvalue, and so on. The partition function can then be rewritten, in terms of the transfer matrix [START_REF] Abraham | The transfer matrix for a pure phase in the twodimensional Ising model[END_REF] as

Z = h 1 h 2 ...h L i T(h i , h i +i ) = Tr (T L ) = λ 〈λ|T L |λ〉 = λ λ L (1.138)
In the thermodynamic limit L → ∞, only the biggest eigenvector is relevant since the partition function becomes

Z(L → ∞) λ L 0 (1.140)
We find that the free energy per site is (1,-1) . . . e -βH(0,0) . . . e -βH(1,-1) e -βH(1,0) e -βH (1,1) . . . . . . . . . 

f = - 1 L β ln(Z) - 1 β ln(λ 0 ) (1.141) T =         . . . . . . . . . e -βH(-1,-1) e -βH(-1,0) e -βH
        (1.139)
F(L , ) F( ) = 1 ln( 0 ) F(L ) = 1 L ln( L )
Figure 1.8: Free energy per site Ω(L ) with respect to the number of sites L compared to the thermodynamic value Ω(∞), for a system of maximum height L = 100, β = 1, J = 1 and V(h i ) = 0.

In Fig 1 .8 the evolution of the free energy per site Ω(L ) is shown without external field, comparing it to the thermodynamic limit. From that figure, the thermodynamic limit becomes valid for L > 150.

To compute the mean height value per site M, the height matrix M is introduced and is defined by its action over the vectors |h〉 in the matrix transfer's base by

= δ h,h h (1.142)
The density is

M = 〈h〉 = 1 L i h i = 1 Z λ λ L 〈λ| M|λ〉 〈λ 0 | M|λ 0 〉 (1.143)
and the mean displacement per site is

w 2 = 〈(h -M) 2 〉 = 1 Z λ λ L 〈λ| M2 |λ〉 -〈λ| M|λ〉 2 〈λ 0 | M2 |λ 0 〉 -M 2 (1.144)
Those two obversables are found by computing the first and second moment of the probability distribution that a site i is at height

h i p(h) = 1 Z λ λ L 〈λ|h〉 2 〈λ 0 |h〉 2 (1.145)
The two-point correlation function of the system is computed by

C(r ) = 〈h i h i +r 〉 -M 2 = 1 Z λ =λ 0 〈λ 0 |M|λ〉〈λ|M|λ 0 〉 λ λ 0 r (1.146)
which becomes, in the long distance r limit,

C(r ) 〈λ 0 |M|λ 1 〉〈λ 1 |M|λ 0 〉 λ 1 λ 0 r (1.147)
The correlation function has an exponential decay at large distances, which allows us to define the correlation length at large distance

ξ ξ = - 1 ln( λ 1 λ 0 ) (1.148)

Systems driven by imposed hydrodynamic flows

A system which does not respect the Gibbs-Boltzmann distribution is said to be out of equilibrium. The dynamics of the system can lead the configurations from very unlikely ones (for example from initial conditions) to more probable ones. Once the equilibrium state is reached, all the configurations have their Gibbs-Boltzmann probability to occur. Equilibrium and steady-state should thus not be confused. Steady state out of equilibrium systems can be created experimentally by injecting energy into the system with a laser [START_REF] Girot | Conical Interfaces between Two Immiscible Fluids Induced by an Optical Laser Beam[END_REF], by inducing a shear flow in a Couette cell in liquids [START_REF] Derks | Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell[END_REF][START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF] or in glassy materials [START_REF] Berthier | Nonequilibrium dynamics and fluctuation-dissipation relation in a sheared fluid[END_REF][START_REF] Berthier | Shearing a Glassy Material: Numerical Tests of Nonequilibrium Mode-Coupling Approaches and Experimental Proposals[END_REF]. Those systems should be analysed through model H dynamics which couples diffusive model B dynamics to hydrodynamics in the low Reynolds number Stokes flow regime. In these dynamics the order parameter field will itself induce a hydrodynamics flow which will modify the imposed one. However this full situation is very difficult to analyse and to a first approximation one can assume that the back reaction of the order parameter field on the hydrodynamic flow is small with respect to the imposed hydrodynamic flow and so the Langevin equation is simply

∂φ(x, t ) ∂t + ∇ • (v(x)φ(x, t )) = -L δH δφ(x) + η(x, t ), (1.149)
where L is given by the underlying model A or B dynamical operator and the noise has the correlation function as given by Eq. (1.26), and v(x) is the imposed (time independent) hydrodynamic flow or can equally well be an external drive imposed on the particles, due to the gravitational or electric field for example. The simplest case one can consider is the uniform driving field v(x) = v 0 [START_REF] Leung | Field theory of critical behavior in a driven diffusive system[END_REF][START_REF] Bray | Coarsening dynamics of a nonconserved field advected by a uniform shear flow[END_REF]. Unfortunately this simple driving does not lead to a new steady state. Basically all of the colloidal particles acquire an average velocity v 0 and so move along at the same speed relative to each other. Mathematically this can be seen by making the Galilean transformation

φ(x, t ) = φ(x -v 0 t , t ) = φ(y, t ) (1.150)
This transformation eliminates the driving from the evolution equation (1.149) and so we find an equilibrium system. The most studied example is where the driving is a shear flow [START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF][START_REF] Thiébaud | Nonequilibrium fluctuations of an interface under shear[END_REF]. The effective dynamics of the surface term in the presence of a shear flow, parallel to the interface [START_REF] Bray | Interface fluctuations under shear[END_REF][START_REF] Bray | Interface fluctuations, Burgers equations, and coarsening under shear[END_REF], is written as

v(x) = γze x (1.151)
The addition of a shear flow leads to the appearance of a nonlinear term in h and the interface statistics thus become non-Gaussian. In Fig 1 .10 we show the influence of such a shear flow in numerical simulations, which is exactly the behaviour to be seen in capillary waves in polymer melts [START_REF] Derks | Confocal microscopy of colloidal dispersions in shear flow using a counter-rotating cone-plate shear cell[END_REF][START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF], see Fig 1 .9 . The shear has a confining effect on the interface [START_REF] Smith | Driven interfaces in the Ising model[END_REF][START_REF] Smith | Interfaces in Driven Ising Models: Shear Enhances Confinement[END_REF][START_REF] Smith | Interfaces in confined Ising models: Kawasaki, Glauber and sheared dynamics[END_REF], thus increasing the effective surface tension of the system. The main result of those two papers is that out of equilibrium steady state systems can behave as equilibrium ones, where the observables are rescaled into effective ones. In Chap 5 we study the effect of a uniform driving v(x) = γe c using a coupling between model A and model B dynamics, and explain theoretically why such systems behave like equilibrium ones.

Conclusion

Statistical field theory [START_REF] Bray | Theory of phase-ordering kinetics[END_REF] is a powerful tool to study the dynamics of equilibrium fields [START_REF] Bellac | Equilibrium and Non-Equilibrium Statistical Thermodynamics[END_REF].

The two main models are model A and model B [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF], which decribe the dynamics of a field respectively in grand-canonical and the canonical ensemble. In the case of phase separated systems, the interface is mostly defined by its surface tension, which is equal to the difference of free energy between the bulk and the interface [START_REF] Cahn | Free Energy of a Nonuniform System. I. Interfacial Free Energy[END_REF][START_REF] Abraham | The transfer matrix for a pure phase in the twodimensional Ising model[END_REF]. From the equations of model A and B we have derived the Edwards-Wilkinson equation [START_REF] Edwards | The Surface Statistics of a Granular Aggregate[END_REF] for both ensembles. The Ising model [START_REF] Niss | History of the Lenz-Ising Model 1920-1950: From Ferromagnetic to Cooperative Phenomena[END_REF][START_REF] Niss | History of the Lenz-Ising Model 1950-1965: from irrelevance to relevance[END_REF] provides a good way to study the behaviour of the field by discretization, which is easier to compute in numerical simulations [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF]. The same kind of dimensional reduction can be done in order to get an interface lattice model which is called the Solid-On-Solid model [START_REF] Gilmer | Simulation of Crystal Growth with Surface Diffusion[END_REF]. This model allows the use of the transfer method in an easier way than the Ising model [START_REF] Privman | Asymptotic degeneracy of the transfer matrix spectrum for systems with interfaces: Relation to surface stiffness and step free energy[END_REF]. Also, the presence of out-of-equilibrum hydrodynamic flows tend to present interesting features. One such example is thee Couette shear [START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF], which has been found to smoothen the interface [START_REF] Smith | Interfaces in Driven Ising Models: Shear Enhances Confinement[END_REF] and have effective equilibrium properties.

Chapter 2

Numerical methods

In 1949, Metropolis et.al [START_REF] Metropolis | The Monte Carlo Method[END_REF] presented a method to compute, through Monte Carlo simulations, the expectation value of statistical quantities. If Q is an observable quantity of a statistical system, such as the total energy or density of particles per site, then the expectation value is computed by weighting its value over all configurations C with respect to their statistical weight. Considering the system to be at thermodynamic equilibrium, every configuration C follows the Gibbs-Boltzmann distribution, and the mean value 〈Q〉 is

〈Q〉 = C Q(C) exp(-βE(C)) C exp(-βE(C)) (2.1)
For example, in a SOS system of size 100 × 100 -which is small compared to the thermodynamic limit as discussed in figure 1.8 -there exists 100 100 different possible configurations.

In comparison, numerical simulations can explore up to 10 9 configurations in a reasonable amount of CPU time.

Lattice models are well fitted for Monte Carlo simulations, where the goal is to compute such quantities. In the SOS model, all observables (and even quantities not observable such as the free energy) can be directly computed thanks to the matrix transfer in the grandcanonical ensemble, even though the canonical ensemble stays out of reach of that method.

In this chapter, we start by explaining how Monte Carlo Metropolis algorithms work based upon the statistical ensemble we're interested in, at or out of equilibrium, and then some technical considerations about optimizing numerical simulations are given. This work was made possible thanks to the Mésocentre de Calcul Intensif Aquitain (MCIA) [START_REF]Mésocentre de Calcul Intensif Aquitain[END_REF], where I have made the vast majority of the numerical simulations. All the code I have produced can be found on Github [START_REF] Gersberg | Github with all my programs[END_REF] under Creative Commons BY 3.0 licence 1 . Numerical simulations where made with C++, parallelization with MPI, data treatment with Python, and some minor scripts in Bash.

Estimator

Monte Carlo simulations explore the configurations' space in a random fashion [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] with a probability p(C). By choosing M states C 0 , ..., C M , the estimator Q M of Q is given by

Q M = M i =0 Q(C i )p(C i ) -1 exp(-βE(C i )) M i =0 p(C i ) -1 exp(-βE(C i )) (2.2)
The bigger the sample number M, the better estimate the estimator provides for 〈Q〉, up to the limit Q M→∞ = 〈Q〉. If we select the configurations over which the system's sample is done according to the Gibbs-Boltzmann distribution p(ν) = Z -1 e -βE(C) , the estimator of 〈Q〉 is

Q M = 1 M M i =0 Q(C i ) (2.
3)

The error over this estimate is

E(Q) = 2τ M (〈Q 2 〉 -〈Q〉 2 ) (2.4)
This error does depend from the correlation time τ since if two states are really close in time, they would be strongly correlated, adding little information to the estimator. In practice, it is just needed τ M < 10 -4 to obtain an error under 1%. This correlation time τ is computed through the autocorrelation function

C (t ) = 〈Q(t )Q(t + t )〉 -〈Q〉 2 = 1 t t 0 Q(t )Q(t + t ) -〈Q〉 2 d t (2.5)
which behaves as an exponential at long time [START_REF] Wansleben | Monte Carlo investigation of critical dynamics in the three-dimensional Ising model[END_REF]. A first order estimate of τ is thus given for

τ = ∞ 0 C (t )/C (0)d t (2.6)
Similarly, the measurement of the correlation length ξ is given at first order by integration the two-point correlation function

C ( j ) = 1 L L i =0 〈h i h i + j 〉 -〈h〉 2 (2.7)

Monte Carlo Metropolis algorithm

A dynamic for systems with a discrete configuration state can be built using Markov chains. Let the dynamic evolve in a discrete time n, and p n (C) the probability that the system is in configuration C at time n. 

p n+1 (C) = ρ(C → C)p n (C) + C =C ρ(C → C)p n (C ) (2.8) Since ρ(C → C) is a probability, it meets the requirements C ρ(C → C) = 1 (2.9)
Now, if the dynamics describes a system in interaction with a heat bath, the equilibrium distribution is given by

p eq (C) = exp(-βE(C)) Z (2.10)
with Z the partition function. Since the equilibrium distribution is also stationary, the probability to be at configuration C at time n + 1 is

p eq (C) = ρ(C → C)p eq (C) + C =C ρ(C → C)p eq (C ) (2.11)
The emergence of equilibrium probability densities ensures that the transition rate from a state to another one is equal to the rate from the reciprocal transition

C p(C)ρ(C → C ) = C p(C )ρ(C → C) (2.12)
which leads to the detailed balance condition [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF] 

ρ(C → C) ρ(C → C ) = p(C) p(C ) = exp(-βE(C)) exp(-βE(C )) (2.13)
Hence by adopting the detailed balance condition for the transition probabilities, the steady state distribution computed by Eq (2.11) corresponds to the equilibrium Gibbs-Boltzmann distribution. During a Metropolis step, the transition probability of C → C depends of the probability g (C → C ) that this transition would be chosen amongst all the other possible transitions, and the acceptance rate A(C → C ), which gives

ρ(C → C ) = g (C → C )A(C → C ) (2.14)
For a lattice model site L sites, a Monte Carlo time step is done when we have proceeded to L transition tries.

Glauber dynamics

In the SOS model with L sites of height comprised in [0, L], sites i are chosen for the Glauber algorithm [START_REF] Glauber | Time-Dependent Statistics of the Ising Model[END_REF] at random with a uniform probability 1 L , plus an integer α = ±1 with probability 1 2 . If the configuration C has the Hamiltonian H(h 0 , h 1 ..., h i , ...h L ), then the new generated configuration will have the Hamiltonian H(h 0 , h 1 ..., h i + α, ...h L ). If α = +1, then a particle at site i is added, otherwise it is removed. In the case that h i + α ∈ [0, L] , the generated configuration is not valid and discarded. If the generated configuration is valid, the probability of selecting this transition is

g (C → C ) = 1 2L (2.15)
From Eq. (2.13), detailed balance gives

ρ(C → C ) ρ(C → C) = A(C → C ) A(C → C) = exp(-β(E(C ) -E(C)) (2.16)
Is it possible to choose any acceptance rate A(C → C ) which satisfies detailed balance. A Metropolis algorithm is an algorithm which has the following acceptance rate and is said to be the faster acceptance rate in CPU-time. In practice, if ∆E > 0, an integer is uniformly chosen between r ∈ [0, 1]. If r < A(C → C ) then the transition is accepted, otherwise the transition is rejected and the system stays in the configuration C. Since i h i is not conserved over time, Glauber dynamics corresponds to model A. A snapshot of such a system is showed in Fig 2 .1, with perdioci boundary conditions on x.

A(C → C ) = exp(-β(E(C ) -E(C)) if E(C ) -E(C) > 0 1 otherwise (2.
The energy difference between two configurations is

∆E = |h i -1 -(h i + α)| + |h i +1 -(h i + α)| -|h i -1 -h i | -|h i +1 -h i | (2.18)
It is not needed to compute the total height at each time step. We stock i h i in a variable that is updated each time a transition is accepted by

〈h〉 M+1 = 〈h〉 M + α (2.19)
The same can be done for i h 2 i , which gives the interface's width, and the total energy of the system with i |h ih i +1 .

In order to accelerate the equilibration process, we can directly start from the total height computed by the transfer matrix, which is close to the equilibrium states. By looking at the temporal evolution of E(t ), one can get the equilibrium time and the correlation time once equilibrium has been reached. It is better practice to study the equilibration time by taking the total energy rather than the number density, or magnetization, since without an external potential, the interface is delocalised and total number of particles is only bounded by the boundary conditions. In Fig 2 .2, the energy with respect to time and the autocorrelation function of the system in absence of chemical potential from a ground state h i = 0 for all i are shown. The very small correlation and equilibration times means that numerical simulations reach the equilibrium distribution after 10 3 MC steps, so that 10 7 MC steps will give results accurate up to 1%.

In the SOS model, results from the Glauber dynamics are expected to be exactly the same as the transfer matrix method, as shown in Fig 2 .3. Since the interface is not localised for small µ, even though thermal equilibrium is quickly reached, the mean height fluctuates a lot, making its measurement irrelevant in the delocalised limit. Since we can get exact results from the transfer matrix, the Glauber dynamics presents little interest for SOS models in the grand-canonical ensemble. Nevertheless, because there does not exist a transfer matrix formulation of the canonical ensemble, Monte Carlo simulations become interesting. 

Kawasaki dynamics

In the Kawasaki's algorithm [START_REF] Kawasaki | Diffusion Constants near the Critical Point for Time-Dependent Ising Models[END_REF], a site i is randomly chosen with probability 1 L , as one of its two nearest neighboors i -1 or i +1 with probability 1 2 . For example, if we take the neighboor site i -1 (it holds the same for the site i + 1), a new configuration is generated with Hamiltonian H(h 0 , ..., h i -1 + 1, h i -1, ...h L ), where a particle from site i diffuses it to the neighbooring site. A non-local version of this algorithm also exists, but only the local version can implement hydrodynamic flows. The selection probability is

g (C → C ) = 1 2L (2.20)
with te same acceptance rate as in Glauber's dynamics (2.17).

Here, the total height is obviously conserved. In the case that a particle is transfered from site i to site i + 1, the energy difference is

∆E = |h i -1 -(h i -1)| + |h i +1 + 1 -(h i -1)| + |h i +1 + 1 -(h i +2 )| -(|h i -1 -h i | + |h i +1 -h i | + |h i +1 -h i +2 |) (2.21)
In Fig 2 .4, we remark that both the equilibration and the correlation times are larger than for non-conserved dynamics, which is normal since the correlation length during coarsening goas as t 1 2 in model A and as t 1 3 in model B. Nevertheless they are of the same order of magnitude, which means that numerical simulations will take up roughly the same CPU-time.

This dynamics describes the diffusion of particles at the interface. It is thus possible to add some hydrodynamic flow which breaks equilibrium. Since we have supposed that our configurations obeys the Gibbs-Boltzmann distribution, the Metropolis method stays pertinent if we assume that the dynamic is slow compared to the heat exchange with the reservoir. 

Computing size dependent free energy 2.3.1 The Layer method

It is not possible to compute from Monte Carlo simulations the free energy of a system, since it is not a derivative of the partition function. However, its derivative with respect to the system size can be easily computed. Separating the total free energy of the confined system in a bulk and a singular part

F(t , h, L) = L 2 L f bul k + β -1 f ex (2.22)
where f bul k is a bulk term, and f ex the excess free energy due to boundary conditions and to system spanning correlations, we define the thermodynamic force per unit area as

p(t , h, L) = - 1 L 2 ∂F ∂L = -f bul k -β -1 ∂ f ex ∂L (2.23)
This force is composed of a bulk term and an excess term defined as the related Casimir force per unit area by

f casi mi r = -β -1 ∂ f ex ∂L (2.24)
In the limit L → ∞, the excess free energy due to the confinement is zero, so the bulk free energy from Eq (2.22) can be substracted from the infinite system limit. For two systems of size L 1 and L 2 , where L 1 L 2 d 1, at first order the Casimir force is thus

f ex (L 1 ) - 1 L 2 ∂F(L 1 ) ∂L + 1 L 2 ∂F(L 2 ) ∂L (2.25)
To compute it, Vasilyev et al. [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF] developed a method to compute this derivative thanks to a dummy coupling parameter. Even though the system's size is discrete, it is possible to obtain a continuous-like size of the system thanks to the progressive decoupling the k-th layer of the system. If H 0 is the Hamiltonian of size L and H 1 the Hamiltonian of size L-1 (see Fig 2.5), then they define the crossover Hamiltonian as

H cr (λ) = (1 -λ)H 0 + λH 1 (2.26)
with λ ∈ [0, 1], which interpolates from H 0 to H 1 when λ goes from 0 to 1. As λ goes on, the k-th layer of the system is gradually decoupled from it, meaning that the interaction energy of all vertical bonds between layer k and layers k -1 and k +1 are now equal to (1-λ)βJ, while the layers k +1 and k -1 are gradually couple with an energy λβJ. The crossover Hamitlonian H t r (λ) also depends on the position of the decoupled layer k ∈ 1, 2, ..., L . The free energy associated with this system is

F cr (λ) = -k B T ln h 1 ...h L exp(-βH t r (λ)) (2.27)
The derivative of the free energy with respect to λ is thus

∂F cr (λ) ∂λ = 〈H 1 -H 0 〉 H cr (λ) (2.28)
where 〈•〉 H cr (λ) represents the statistical mean value in the crossover system, easily computable in numerical simulations. By integrating over the coupling constant, the difference of free energy between the coupled and the fully decoupled systems is

F 1 -F 0 = 1 0 d λ〈H 1 -H 0 〉 H cr (λ) (2.29)
Finally, in the thick limit where L 1, the derivative is

- ∂F(t , h, L) ∂L 1 0 d λ〈H 1 -H 0 〉 H cr (λ) (2.30)
Even though H cr (λ) depends of which layer we decided to decouple, and by transition H 1 -H 0 and 〈H 1 -H 0 〉 H cr (λ) , the integrand

1 0 d λ〈H 1 -H 0 〉 H t r (λ)
should be independent of this choice, as long as boundary conditions are not affected by the k-th layer.

For the SOS model, it is possible to exactly compute the energy variation produced by the decoupling, and is equal to

H cr,SOS (λ) = H 0,SOS - λJ 2 x sgn(k -1 -h(x)) sgn(k + 1 -h(x)) -sgn(k -h(x)) sgn(k -1 -h(x)) + sgn(k + 1 -h(x)) (2.31)
where the prefactor 1 2 take into account the prefactor between Ising and SOS models in Hamiltonian (1.125). By doing the table of values , we notice that every term in the sum is equal to -1 independently of k, since contrary to Ising models, SOS models do not possess any bulk energy. We thus have to find another method to compute the thermodynamic force in the SOS model.

The Lopes-Jacquin-Holdsworth method

In the case of a chemical potential conjugated with the total height, Lopes et al. saw that [START_REF] Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF] 

〈 i h i 〉(µ, L) = - δF(µ, L) δµ (2.32)
Integrating over the chemical potential, we have

∆F(µ 1 , µ 2 ) = F(µ 1 , L) -F(µ 2 , L) = - µ 2 µ 1 d µ 〈 i h i 〉 µ (2.33)
If we know the analytical form of the free energy in the limits µ 2 → ∞ or µ 1 → 0, this method provides a way to directly measure the free energy of the system for any temperature or size by integrating over the chemical potential.

In the limit µ 2 → ∞, the correlation length at the reference state will be small so that the reference free energy will be essentially that of the bulk. As a consequence, it should contain all the information of the Casimir force (2.23). That derivative force can then be computed by

δL ∂F(µ 1 , L) ∂L = ∆F(µ 1 , µ 2 , L) -∆F(µ 1 , µ 2 , L -δL) (2.34)
where δL is the difference thickness between two systems, and which is then independent of µ 2 in the large chemical potential limit as the free energy F(µ 2 , L) converges to the bulk energy. Since in Kawasaki dynamics the total height is constant, this method does work only for model A.

The computation of the difference of free energy depends largely of the chemical potential µ 2 . However, since we are interested in the Casimir force (2.25), it is sufficient to chose a suitable chemical potential µ 2 for which the excess free energy can be safely considered negligible [START_REF] Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF] . The dummy function

D(µ, L 1 , L 2 ) = 〈M(L 1 ) -M(L 1 -1) -(M(L 2 ) -M(L 2 -1)〉 (2.35)
is thus defined to be the error function of the method, where M = i h i are taken at the same temperature and chemical potential, omitted in the notation for the sake of lightness. The contribution of high µ becomes negligible to the Casimir force when the function D becomes null.

The method only makes sense in the Glauber dynamics. In the Kawasaki dynamics, since i h i is set to a constant, the integration is done over a constant. We will show in Sec 3.3 a generalized method to bypass this problem.

Tips and tricks

The simulation's speed of SOS models is so great compared to Ising ones that it is possible to study systems over a wider range of parameters. A SOS simulation of 10 7 MC steps takes roughly 20 minutes to complete once fully optimized. Even though, if we want to launch hundreds of those simulations, it can easily take days, which forces us to optimize the code.

In C++, if compiling with g++, the first thing to do is to compile the programme with the -O3 flag, which makes you gain an order of magnitude in CPU time.

The most important part of Monte Carlo simulations are the pseudo Random Number Generator (pRNG), which are called at least twice for each transition attempt. The C++ standard library proposes the function default_random_engine as the default pRNG. A lot of CPU time can be saved by switching to sfc64 or xoroshiro pRNGs. Furthemore, the generation of ±1 numbers only require one bit, while the pRNG always generates a 64-bits number, thus wasting 63-bits at each boolean generation. A wasteless method which speeds considerably the simulation's speed can be found in [START_REF] Ankerl | Fast random bool in C++[END_REF].

Lastly, the easiest way to gain real time is to make the code parallel. We can do that either by domain decomposition -which would allow us to simulate larger systems -or parallelise directly over the simulation's parameters (as the temperature or the chemical potential). While the first one is useless in SOS model because of the short correlation length of such systems, the latter can be done via two libraries : OpenMP and MPI. It took me some time to understand that the memory-shared OpenMP protocol has a lot of problems with pRNGs, making this library not suited for Monte Carlo simulations. On the contrary, the MPI library provides impermeability between threads, which makes it the better choice.

Conclusion

In this chapter, we have explained how to compute expectation values of observables in our system [START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF], thanks to the Monte Carlo Metropolis algorithm [START_REF] Metropolis | The Monte Carlo Method[END_REF]. For that, we need to suppose that the system is in thermal equilibrium with a heat bath, and that it respects detailed balance. We have two different possible algorithms : the Glauber dynamics [START_REF] Glauber | Time-Dependent Statistics of the Ising Model[END_REF] allows to study the systems in the grand-canonical ensemble, while the Kawasaki dynamics [START_REF] Kawasaki | Diffusion Constants near the Critical Point for Time-Dependent Ising Models[END_REF] is for canonical ones. Nevertheless, since the transfer matrix method gives exact results for the grand-canonical ensemble, only the Kawasaki dynamics is relevant for SOS models.

In addition to that, measuring the free energy of the system is not an easy task, as we can only compute its derivative. The first method we have presented is about progressively decoupling a layer of the system [START_REF] Vasilyev | Universal scaling functions of critical Casimir forces obtained by Monte Carlo simulations[END_REF], even though for SOS models, which do not possess a bulk energy, the method does not work. Another method is to integrate over the conjugate variable coupled to the total height [START_REF] Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF], which is the chemical potential. This method does not work for Kawasaki algorithms. Since as we have discussed Glauber simulations are not relevant for our models, we find that we have no way to compute the free energy in Monte Carlo methods for the only relevant ensemble which is the canonical one. In a latter chapter, we will see how to fix this issue.

Chapter 3 Equilibrium Interface models and their finite size effects

Models for interfaces arise naturally in phase separated systems, as explained in Chapter 1. Finite size corrections manifest when the correlation length becomes of the order of magnitude of the system's size. When undergoing a continuous phase separation, the system exhibits finite size corrections in the form of a long range critical Casimir interaction, as described in the first section. In the second section we examine finite size effects in continuous interface models in one dimension, and show that while they have similar long-range interactions, the forces induced by interface confinement are quite different. In the low surface tension limit though, a correspondence between interface and critical physics is shown. In the last section, we compute the size-dependent eigenvalues of the transfer matrix for the free SOS model, and compare the results with previous works.

The Casimir effect

A review about the quantum and the critical Casimir effect is done in this section for completeness, starting from the effect was first observed [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF] and describing the basis of the Lifshitz theory that generalises Casimir's contribution to general dielectric materials beyond the perfectly conducting plate paradigm, and ends with the critical Casimir effect.

Quantum Casimir effect

In an ideal conductor, the free charges can move arbitrarily quickly to cancel out any electric charge in the plane [START_REF] Feynman | [END_REF]. Thus, a perfectly conducting plate in the (x, y) plane imposes boundary conditions on the electromagnetic field

E × n = 0; B • n = 0 (3.1)
The quantum Hamiltonian for the electromagnetic field is given by

H = k,λ ω(k, λ) a † (k, λ)a(k, λ) + 1 2 (3.2)
Here λ denotes the polarisation (there are two polarisation states) and k the wave vector. The dispersion relation for photons is ω(k, λ) = |k|c.

(3.

3)

The ground state energy of the electromagnetic field [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF] is given by

E 0 = 〈0|H|0〉 = H = k,λ 1 2 ω(k, λ) = k |k|c (3.4)
The presence of conduction plates at z = 0 and z = L means that the wave vectors k z must be quantised according to k z = nπ/L where n ∈ {0, 1, 2, • • • } while if the (x, y) plane has a large area A one can write

k x ,k y • = A (2π) 2 d 2 k • (3.5)
This then gives

E 0 (L) = c A (2π) 2 ∞ n=0 d 2 k k 2 + n 2 π 2 L 2 1 2 (3.6) = c A (2π) ∞ n=0 ∞ 0 kd k k 2 + n 2 π 2 L 2 1 2 (3.7) 
The problem with the above expression is that it is clearly divergent. However it can be rendered finite by cutting off the high momentum degrees of freedom by writing

E 0 (L) = c A (2π) ∞ n=0 ∞ 0 kd k k 2 + n 2 π 2 L 2 1 2 f (k 2 + n 2 π 2 L 2 ) 1 2 (3.8)
where f is a smooth function such that f (p) = 1 for p Λ and f (p) = 0 for p Λ. Here, Λ is an ultraviolet cut-off and f thus only counts the contribution of photons with a momentum less than Λ. For this sort of calculation to make physical sense the physical result at the end should be independent of both the choice of f and Λ.

In the limit L → ∞, the sum over discrete modes is replaced by an integral

E 0 (L) = c A (2π) ∞ 0 L π d ν ∞ 0 kd k k 2 + ν 2 1 2 f (k 2 + ν 2 ) 1 2
(3.9)

using the relation d ν = π/L.For large L it becomes E 0 (L) = AL bul k (3.10)
where bul k is a bulk energy density per unit of volume, that is to say the total energy is extensive. The computation above only calculates the energy of the EM field between the plates. If the physical system extends up to L L, then the total energy of both the interior and the exterior of the plates is given by

E t ot al (L) = E 0 (L) + A(L -L) bul k (3.11)
The part of the energy that depends on L is given by

U(L) = E 0 (L) -AL bul k (3.12)
It is the derivative of U which gives the physical interaction between the two plates : the pressure associated with this interaction in the colloid science literature is called the disjoining pressure [START_REF] Stubenrauch | Disjoining pressure in thin liquid foam and emulsion films-new concepts and perspectives[END_REF], where to compute the effective interaction the bulk pressure has to be subtracted. We write now

AL bul k = c A (2π) ∞ 0 d n ∞ 0 kd k k 2 + n 2 π 2 L 2 1 2 f (k 2 + n 2 π 2 L 2 ) 1 2 (3.13)
where the L dependence is in the integral. This then gives

U(L) = c A (2π) ∞ n=0 g (n) - ∞ 0 d n g (n) (3.14)
where

g (n) = ∞ 0 kd k k 2 + n 2 π 2 L 2 1 2 f (k 2 + n 2 π 2 L 2 ) 1 2 = 1 2 ∞ n 2 π 2 L 2 d uu 1 2 f (u 1 2 ) (3.15)
Using the Euler-Mauclarin formula

∞ n=0 g (n) - ∞ 0 d n g (n) = -B 1 g (0) - 1 2 B 2 g (0) - 1 24 B 4 g (0) -• • • (3.16)
where B n are the Bernoulli numbers 1 , we find that

g (n) = - π 3 L 3 n 2 f ( nπ L ) (3.17) 
Noticing than in the region around n = 0, f = 1 is a constant, this function has the following properties g (0) = 0 (3.18)

g (0) = 0 (3.19) g (0) = - 2π 3 L 3 (3.20)
Higher order derivatives are zero so the full result is given by the first three terms of the Euler-Maclaurin formula, so the energy becomes

U(L) = c A (2π) -g (0) - π 3 360L 3 (3.21)
The first term independent of L can be interpreted as a surface energy. The effective L dependent interaction is given by

U i nt (L) = - π 2 c A 720L 3 (3.22)
so the effective interaction is attractive. Interestingly, Casimir thought that his calculation could explain the stability of the electron [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF][START_REF] Carazza | The Casimir Electron Model[END_REF]. The model of the electron is one of a perfectly conducting shell carrying an electric charge e. If the radius of the shell is a then the electrostatic energy of due to the charge is given by E Char g e = e2 8πa 0 (3.23) There is thus a repulsive force on the shell which should make it expand. Casimir thought that the Casimir force on a spherical geometry, if is an attractive force as is the case for the parallel plate geometry, could stabilise the electron. Clearly by dimensional analysis

E Cas = - Z c a (3.24)
the balance of the Casimir and electric forces would then require

Z = e 2 8π c (3.25)
However, in the case of conducting spherical shell, the constant Z -0.046175 is negative [START_REF] Boyer | Quantum Electromagnetic Zero-Point Energy of a Conducting Spherical Shell and the Casimir Model for a Charged Particle[END_REF][START_REF] Milton | Casimir self-stress on a perfectly conducting spherical shell[END_REF][START_REF] Bowers | Casimir energy of a spherical shell[END_REF], while the same calculation for a cylindrical geometry predicts an attractive force [START_REF] Milton | Casimir self-stress on a perfectly conducting spherical shell[END_REF].

Lifshitz Theory

The Casimir calculation is based on the boundary conditions imposed on the EM field due to a conductor. However, this is an ideal mathematical limit, conductors being conductors because free charges can move to cancel out the electric field in the conducting surface. The Casimir force can also be seen as due to correlations induced in the charge fluctuations in each plate, allowing for an alternative method based on sources which recovers the Casimir force [START_REF] Schwinger | Casimir Effect in Dielectrics[END_REF][START_REF] Schwinger | Casimir energy for dielectrics[END_REF]. In a sense therefore the effect can be interpreted without reference to the zero point energy of the vacuum and the Casimir calculation works due to the fact that the mathematical limit in going to a perfect conductor works. Using a stochastic formulation of electrodynamics by Rytov [START_REF] Rytov | Principles of Statistical Radiophysics[END_REF], the Casimir calculation was generalized by Lifshitz for interactions between arbitrary electrical bodies, characterized by their local electric and magnetic response [START_REF] Lifshitz | On the theory of magnetic susceptibility of metals at low temperatures[END_REF]. Even though this theory is very general, the microscopic justification is not completely rigorous, source terms (random currents and dipole fluctuations) are introduced to Maxwell's equations to give a Langevin formulation of Maxwell's equations in the presence of dielectric bodies. The correlation functions of the white noise terms depend on the temperature of the system and are determined via the quantum fluctuation dissipation theorem. The Lifshitz theory is computationally difficult to work with and it was reformulated in a way more useful for practical calculations and that can be applied to experimental setups [START_REF] Van Kampen | On the macroscopic theory of Van der Waals forces[END_REF]90]. Rytov's formulation has the advantage that it can be used to treat out of equilibrium situations where different bodies are held at different temperatures. This allows both the computation of out of equilibrium forces and radiative heat transfer. The theory in the presence of electromagnetic media is written in terms of the electric and magnetic fields E and B and the displacement and magnetizing fields D and H which are assumed to obey local relations in real space and Fourier space

D(ω) = (ω) Ẽ(ω); B(ω) = µ(ω) H(ω) (3.26)
where ˜ (ω) and μ(ω) are the frequency dependent permittivity and permeability. The boundary conditions at the interface between two materials 1 and 2 are given by

B 1n = B 2n D 1n = D 2n (3.27) E 1t = E 2t H 1t = H 2t (3.28)
where n denotes the normal component and t the tangential component to the interface. Forces can be computed using the vacuum (assuming that the surface where the force is computed is next to the vacuum) Maxwell stress tensor.

T i j = E i E j - 1 2 δ i j E 2 + 1 µ B i B j - 1 2 δ i j B 2 (3.29)
Notice that the stress tensor is quadratic in the fields E and B, this means that even if the fields are on average zero, both thermal and quantum fluctuations give rise to forces.

In media Maxwells equations are

∇ × E = - ∂B ∂t (3.30) ∇ × H = J - ∂D ∂t (3.31) ∇ • D = ρ (3.32) ∇ • B = 0 (3.33)
In a dielectric medium or conductor where there are no applied external fields there is no free charge or current. As such, the average values of E and B are zero. Rytov's idea was to add a random current to induce both thermal and quantum fluctuations into the problem. Assuming that the only contribution to the current comes from a fluctuating polarization density P, we can write ∂ρ ∂t

+ ∇ • J = 0 =⇒ ∇ • - ∂P ∂t + J = 0 (3.34)
where we have used ρ = -∇ • P (3.35) This means that the current is given by

J = ∂P ∂t (3.36)
or in Fourier space J(ω) = i ω P(ω) (3.37)

Now if we assume that the fluctuations in the polarization density are uncorrelated in space, the fluctuation dissipation theorem tells us that the correlation function of the polarization density in Fourier space is given by

〈P α (ω; x)P † β (ω; x )〉 s ym = (ω) 2 coth ω 2k B T δ(ω -ω )δ(x -x )δ αβ (3.38) (ω) = (ω) + i (ω) (3.39)
The Lifshitz calculation for slab geometries gives a force per unit area between two slabs of media separated by a distance L

F A = - k B T πc 3 ∞ n=0 ω 3 n ∞ 1 d pp 2 1 - (s 1 + p)(s 2 + p) (s 1 -p)(s 2 -p) exp(- 2pω n L c ) + 1 - (s 1 + pε 1 )(s 2 + pε 2 ) (s 1 -pε 1 )(s 2 -pε 2 ) exp(- 2pω n L c ) (3.40)
where = 0 ε, s i = i -1 + p 2 , ω = 2πnk B T are the Mastubara frequencies [START_REF] Matsubara | A New Approach to Quantum-Statistical Mechanics[END_REF] and ε i = ε i (i ω n ). Note that the integral over real frequencies has become a sum over discrete Matsubara frequencies, they come from the poles in the hyperbolic cotangent.

One needs to know the dielectric response at imaginary frequency, this is done using the Kramers-Kronig relation

ε(i ω) = 1 + 2 π ∞ 0 d ζ ζε (ζ) ω 2 + ζ 2 (3.41)

Critical Casimir effect

In systems having a continuous phase transition the correlation length diverges as the critical point is approached. This means that the correlation length has a size comparable to that of the system size, which leads to strong finite-size effects in the free energy. Following the arguments of Fisher and de Gennes [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF], we describe how a version of the Casimir effect manifests in critical systems.

Bulk scaling for near critical systems

The free energy for a system consisting of N spins has a singular part at a critical temperature T c which can be written as

F(t , h) = N f (t , h) (3.42) 
where t = (T -T c )/T c measures the distance from the critical point and h is the external applied magnetic field. Assuming that the only relevant parameters are T and h (equivalently the concentration or chemical potential of a binary mixture), which is true for d < 4 [START_REF] Amit | Field theory, the renormalization group, and critical phenomena: graphs to computers[END_REF], carrying out a renormalisation group transformation blocking spins in blocks of linear size b into new effective spins, we have

N f (t , h) = N f (t , h ) (3.43)
Clearly the number of spins in the blocked system is given by b d N = N and the RG transformation for t and h are given by t = b y 1 t and h = b y 2 h, where y 1 and y 2 are positive and are the RG exponents for the fields t and h (from which all critical exponents can be deduced). This means that

f (t , h) = 1 b d f (b y 1 t , b y 2 h) (3.44)
We begin by working with t > 0 but the arguments here are trivially generalisable to the case t < 0. In Eq. (3.44), if b is chosen such that b y 1 t = 1, then, at the critical field h = 0, we find

f (t , 0) = t d y 1 f (1, 0) (3.45)
The singularity in the specific heat is defined via

c ∼ ∂ 2 ∂t 2 f (t , 0) (3.46)
and is equal to

c ∼ t d y 1 -2 ∼ t -α (3.47)
where α is the exponent associated with the divergence of the specific heat. This means that

α = 2 - d y 1 (3.48)
The RG transformation for the correlation function has the form

C(r, t , h) = λ 2 (b)C(r /b, b y 1 t , b y 2 h) (3.49)
Clearly length scales transform as r = r /b. Again setting h = 0 and choosing b y

1 t = 1 gives C(r, t , h) = λ 2 (t -1 y 1 )C(r /t -1 y 1 , 1, 0). (3.50)
The correlation function, by definition is given by

C(r, t ) ∼ f (r /ξ), (3.51) 
where ξ is the correlation length. This immediately tells us that ξ = t -1 y 1 and from the usual definition ξ ∼ t -ν (3.52)

one have ν = 1/y 1 . These two formula for y 1 then give the hyper scaling relation

α = 2 -d ν (3.53) 
The exponents α and ν are the ones that are important in the critical Casimir effect.

Finite size scaling

Consider a system which is finite in one direction with either periodic boundaries or two surfaces. While the critical system has h = 0, there can be local surface fields at each surface a and b. This represents a preference of the surfaces for one phase or the other. The finite scaling hypothesis for a slab system of large area A but with finite width L can be stated as

f (t , h a , h b , L -1 ) = 1 b d f (b y 1 t , b y a h a , b y b h b , bL -1 ) (3.54)
and see that the field L -1 is a relevant field with RG exponent y L = 1. The surface fields are not necessarily relevant so y a and y b can be either positive or negative. The important point about finite size scaling is that when L is finite the singularity due to the thermodynamic phase transition is smoothed out by the system's finite size (note that we assume that the system has no two-dimensional phase transition in the region we are looking at). When L is large there should be a bulk contribution to the free energy plus a surface term (so we are considering the limit L → ∞ before ξ → ∞)

f (t , h a , h b , L -1 ) = f (t , h a , h b , 0) + L -1 ∂ f (t , h a , h b , 0) ∂x 4 = 1 b d f (b y 1 t , b y a h a , b y b h b , 0) + 1 b d -1 L -1 ∂ f (b y 1 t , b y a h a , b y b h b , 0) ∂x 4 (3.55)
where we have carried out the Taylor expansion for L -1 small using both versions of Eq. (3.59) and ∂ ∂x n indicates the partial derivative with respect to the n t h argument. The second term gives a total contribution to the singular part of the free energy of the order AL × L -1 and is thus a surface tension γ and so we have

γ = 1 b d -1 ∂ f (b y 1 t , b y a h a , b y b h b , 0) ∂x 4 (3.56)
Setting bt y 1 = 1 then gives close to the critical point

γ ∼ t d -1 y 1 ∂ f (1, lim t →0 t - y a y 1 h a , lim t →0 t - y a y 1 h b , 0) ∂x 4 = t (d -1)ν C = ξ -(d -1) C (3.57)
The formula relating the surface tension and the correlation length, in the above C is a constant depending on the universality class. Now keeping L finite and setting b y 1 t = 1 in Eq. (3.59) the function can be rewritten as

f (t , h a , h b , L -1 ) = t d y 1 f (1, t - y a y 1 h a , t - y b y 1 h b , t -1 y 1 L -1 ) (3.58) f (t , h a , h b , L -1 ) = 1 ξ d f (1, ξ y a h a , ξ y b h b , ξ/L) (3.59) f (t , h a , h b , L -1 ) = 1 L d θ( L ξ , ξ y a h a , ξ y b h b ) (3.60) 
Now crucially as ξ → ∞ the function θ is analytic so taking the limit ξ → ∞ gives

f (0, h a , h b , L -1 ) = 1 L d θ(0, lim ξ→∞ ξ y a h a , lim ξ→∞ ξ y b h b ) (3.61)
Clearly for each surface there are 3 possibilities: lim ξ→∞ ξ y a h a = ±∞, if the surface fields are relevant, as well as lim ξ→∞ ξ y a h a = 0 if the surface fields are irrelevant. There is clearly also a similar argument when the system has periodic boundary conditions and there are no surface fields. Near the critical point depending on the boundary conditions there should be scaling functions when the surface fields attract the same phase θ ++ (x), where they attract different phases and θ +-(x), and θ pbc (x) when the boundary conditions are periodic. There should also be a zero surface field case θ 00 when the surfaces fields are irrelevant or zero (this is however unlikely). Fisher and de Gennes argued, without proof, that the force for (++) boundary conditions should be attractive where as the (+-) case should produce repulsive forces [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF][START_REF] Gambassi | Critical Casimir effect in classical binary liquid mixtures[END_REF]. The total singular part of the free energy is thus given by

F = AL f (t , h a , h b , L -1 ) = A L d -1 θ( L ξ , ξ y a h a , ξ y b h b ). (3.62)
The scale of the energy is set by the energy of thermal fluctuations k B T, so we find the critical Casimir energy

F(t = 0) = k B TAC L d -1 (3.63)
where C is a constant depending on the surface universality class.

Finite size scaling in one dimensional interface models

Confining statistical systems generates Casimir forces when the correlation length of the fluctuations becomes of the order of the minimum size of the system, be it for perfect conductor plates in vacuum or in confined critical systems. We have also seen that interfaces between two phases can be described by surface models, so it is physically obvious that finite size effects also arise in those systems. In what follows we will study the size dependence of a number of continuous and discrete interface models (corresponding to the interfaces of two dimensional systems). While long range forces are generated by confinement, we find that those models have quantitatively different behaviours to the critical Casimir effect. However if one assumes a phenomenological proposal by Privman [START_REF] Privman | Finite-Size Properties of the Angle-Dependent Surface Tension of Rough Interfaces[END_REF] to introduce a finite size correction to the surface tension, the critical Casimir effect can be quantitatively recovered.

Continuous models in one dimension

In one dimension the partition function for a surface model of the type discussed in Sec 1.2 can be written as a path integral

Z(t ) = d [h] exp - βσ 2 t 0 h 2 (x)d x -β t 0 V(h(x))d x (3. 64 
)
where t is the length of the system and the notation is chosen so the variable x can be thought of as a time in path integral language. It is convenient to fix both the starting point h(0) = x and the end point h(t ) = x and define what is known as the propagator [START_REF] Matsubara | A New Approach to Quantum-Statistical Mechanics[END_REF] K

(h, h , t ) = h(0)=h d [h]δ(h -h(t )) exp - β 2 t 0 σh 2 (x)d x -β t 0 V(h(x))d x (3.65)
The propagator is an example of a path integral and is the sum over all paths going between h and h in what can be taken to be the time t . It can be shown [START_REF] Kleinert | Path Integrals in Quantum Mechanics, Statistics, Polymer Physics, and Financial Markets[END_REF] that the path integral obeys an imaginary time Schrödinger equation

∂K(h, h , t ) ∂t = -ĤK(h, h , t ) (3.66)
where Ĥ is the Hamiltonian operator

Ĥ = - 1 2σβ ∂ 2 ∂h 2 + βV(h) (3.67)
and, with a suitable normalisation, the initial condition

K(h, h , t ) = δ(h -h ) (3.68)
If the Hamiltonian operator Ĥ has eigenfunctions ψ n , normalised so that

d h ψ 2 n (h) = 1 (3.69)
and with eigenvalues n , it is easy to see that the propagator can be written as

K(h, h , t ) = n exp(-t n )ψ n (h)ψ n (h ) (3.70)
If the system has periodic boundary conditions but leave the initial value h(0) of the height to be free, then using the normalisation of the eigenfunctions, we find

Z(t ) = d hK(h, h, t ) = n exp(-t n ) (3.71)
Now in the thermodynamic limit t → ∞ if there is a gap between the ground state energy 0 and the first excited state, g = 1 -0 which is non-zero, applying ground state dominance gives Z(t ) = exp(-t 0 ) (3.72) which gives the free energy per unit length as

f = 1 β 0 (3.73)
As well as the free energy we are interested in the probability distribution of the height at a single point (which is independent of the point chooses due to invariance by translation of the system). For instance the probability distribution of h( 0) is given by

p 1 (h) = d [h]δ(h(0) -h) exp - β 2 t 0 h 2 (x)d x -β t 0 V(h(x))d x Z(t ) = K(h, h, t ) Z(t ) = n exp(-t n )ψ 2 n (h) n exp(-t n ) (3.74)
and so as t → ∞, ground state dominance gives

p 1 (h) = ψ 2 0 (h) (3.75)
where the normalisation of the probability density function for h follows from the normalisation of the wave functions. The joint probability density function for two heights separated by a time or distance x is given by

p 2 (h, h , x) = d [h]δ(h(0) -h)δ(h(x) -h ) exp - β 2 t 0 h 2 (x)d x -β t 0 V(h(x))d x Z(t ) = K(h, h , x)K(h , h, t -x) Z(t ) = nm exp(-x n )ψ n (h)ψ n (h ) exp(-[L -x] m )ψ m (h )ψ m (h) n exp(-t n ) (3.76)
Due to ground state dominance only the term with m = 0 survives in the sum above (as as x is taken such that x t ) so we find

p 2 (h, h , x) = n ψ 0 (h )ψ 0 (h)ψ n (h )ψ n (h) exp(-x[ n -0 ])) (3.77) = p 1 (h)p 1 (h ) + n〉0 ψ 0 (h )ψ 0 (h)ψ n (h )ψ n (h) exp(-x[ n -0 ])) (3.78)
From this we see that when x[ n -0 ] 1 for all n, in particular when x[ 1 -0 ] 1, we have

p 2 (h, h , x) ∼ p 1 (h)p 2 (h ) (3.79)
so that the height at large distances are uncorrelated or equivalently are independent random variables. This gives a correlation length

ξ = 1 1 -0 (3.80)

The confined elastic line

We consider now the case where V(h) = 0 for 0 < h < L and V(h) = 0 otherwise. This corresponds to a one dimensional elastic line confined between two impenetrable walls separated by a distance L, as shown in a schematics in Fig 3 .1. The Hamiltonian Ĥ is that for a quantum well of width L and with eigenfunctions [START_REF] Cohen-Tannoudji | Mécanique quantique[END_REF] 

ψ(h) = 2 L sin( π(n + 1)h L ) (3.81)
where n ≥ 0 are integers. The ground state energy of such a system is

0 = 1 2σβ π 2 L 2 (3.82)
and so, in the thermodynamic limit, the free energy per unit length is

f = 1 2σβ 2 π 2 L 2 = T 2 π 2 2σL 2 (3.83)
Here the pressure (in this case pressure in a force per unit length) is given by

P = - ∂ f ∂L = π 2 T 2 σL 3 (3.84)
which is repulsive. Physically, the fluctuations of the surface repel the walls. The pressure has the Casimir like characteristic that it behaves as a long range power law type interaction, however a two dimensional critical Casimir system (see (3.63)) would have a free energy per unit length f = CT/L. We also see that the free energy scales as T 2 rather than T (as is the case for the Casimir interaction). Since a critical system has zero surface tension, using a model with a finite surface tension for the critical interface is clearly not appropriate. However it has been conjectured by Privman [16] that the term σ, which Privman refers to the stiffness, should be modified by finite size effects (although he considers a case where the height L of the system and the length t are of the same order). The simplest conjecture proposed by Privman [START_REF] Privman | Finite-Size Properties of the Angle-Dependent Surface Tension of Rough Interfaces[END_REF] is that

σ(L) ≈ σ b + Ta L (3.85)
with a being dimensionless. This amounts to assuming that the corrections are analytic in the variable 1/L. It seems difficult to justify this from a more microscopic view, however if we use this we find that

f = 1 2σ(L)β 2 π 2 L 2 = T 2 π 2 2[σ b + Ta L ]L 2
(3.86) Figure 3.1: Schematics of an interface confined between 0 and L = 30 (this is not a numerical simulation).

At the critical point where σ b = 0, we find

f c = Tπ 2 2aL (3.87)
and this does have exactly the form predicted for a critical system in Eq. (3.63). As such, Casimir-type interactions have an interesting manifestation in interface physics, and deeper development could lead to new interesting physics. Going back to interface models, using Eq. (3.80) the correlation length is given by

ξ = 2 3 σL 2 Tπ 2 (3.88)
thus it increases as the surface tension is increased or the temperature is lowered. This makes physical sense as the surface should become flatter under these conditions. Also, as the system becomes more confined, the correlation length increases, again as confinement kills fluctuations. The correlation length tells us that if we wanted to simulate this system then we need to take t ξ (3.89) in order to be in the thermodynamics limit and so t σL 2 Tπ 2 . Thus, for L large, in general we would need to simulate rather large systems. The probability distribution function of the height at a single point is given by

p 1 (h) = 2 L sin 2 ( πh L ) (3.90)
and from this

〈h〉 = L 2 (3.91)
which is rather obvious. The width of the interface is given by

w = 〈h 2 〉 -〈h〉 2 (3.92)
and here it is given by

w = L 1 12 - 1 2π 2 = 0.180756 L (3.93)
During this thesis we have considered models of surfaces where the overall surface integral is fixed. In magnetic systems this corresponds to systems with conserved magnetisation. It is surprisingly difficult to deal with this constraint in a hard way both for continuous surfaces, treated via the Schrödinger equation, and for discrete systems with the transfer matrix. In principle one can always introduce a magnetic field to fix the average total magnetisation to zero. However, there will always be fluctuations around the average value. If there are N sites, the fluctuations of the magnetisation by site scale as 1/ N. However, the total magnetisation has fluctuations of the order of N and so the condition of fixed total magnetisation is only imposed approximately by an applied magnetic field.

In the confined Edwards Wilkinson model we consider the magnetisation M defined by

M = t 0 d x h(x) (3.94)
We know, from symmetry arguments, that without an external applied field we have

〈M〉 = t L 2 (3.95)
which can be shown explicitly from the formula

〈M〉 = t L 0 d hhψ 2 0 (h) (3.96)
Interestingly, if we write things in terms of the traditional bra and ket notation of quantum mechanics, we see that 〈M〉 = t 〈0|h|0〉 (3.97)

and so 〈0|h|0〉 = ∆ 0,1 (h) (3.98) where ∆ 0,1 (h) is the shift in the ground state energy to first order in perturbation theory induced by a perturbation of the potential ∆V(h) = h. However this is just the thermodynamic expression

〈M〉 = -t ∂ ∂λ f (λ)| λ=0 (3.99)
for a potential U(h) = V(h) + λh. The variance of M can be computed by using Eq. (3.78), which gives

〈M 2 〉 c = t 0 d xd x [h(x)h(x ) -〈h 2 〉] = ∞ n>0 L 0 d h hψ 0 (h)ψ n (h) 2 t 0 d xd x exp(-[ n -0 ]|x -x |) (3.100)
and for large t carrying out the integration over x and x gives

〈M 2 〉 c = 2t n>0 1 n -0 L 0 d h hψ 0 (h)ψ n (h) 2 (3.101)
From second order perturbation theory we see that this is just equivalent to the thermodynamic identity

〈M 2 〉 c = -Tt ∂ 2 ∂λ 2 f (λ)| λ=0 (3.102)
Using the explicit form of the eigenfunctions we find

〈M 2 〉 c = 16L 4 t σβ π 2 ∞ n=1 1 (n + 1) 2 -1 1 0 d u u sin(πu) sin(π(n + 1)u) 2 (3.103) It can then be shown that 1 0 d u u sin(πu) sin(π(n + 1)u) = - 2(n + 1)(1 + cos((n + 1)π) π 2 [(n + 1) 2 -1] 2 (3.104)
From this we see that only the modes where n is odd contribute to the fluctuations of the magnetisation. Consequently we find

〈M 2 〉 c = 256L 4 t σβ π 6 ∞ n, odd ,=1 (n + 1) 2 [(n + 1) 2 -1] 5 (3.105) = 1024L 4 t σβ π 6 ∞ k=0 (k + 1) 2 [(2k + 2) 2 -1] 5 (3.106) = L 4 t σβ(15 -π 2 ) π 4 (3.107)
This formula deserves some comment. A first trivial comment is that 〈M 2 〉 c ∼ t in accordance with the thermodynamic arguments given above. Secondly the variance diverges as σβ → ∞, which is normal as the low energy configuration zero mode -a straight line -is unaffected by the confining walls and so in principal this line can lie anywhere on [0, L], explaining the scaling with L 4 .

The Airy line

This is an example of the constant volume ensemble. Physically we could also consider the case of a system which is confined softly by an externally imposed pressure P 0 (which can also be treated as a chemical potential depending on the context) in the constant pressure ensemble. In this case the potential is given by

V(h) = P 0 h for h > 0 ∞ for h ≤ 0
The time independent Schrödinger equation for the eigenfunctions here is

- 1 2σβ d 2 ψ n (h) d h 2 + P 0 βhψ n (h) = n ψ n (h) (3.108)
The corresponding eigenfunctions have boundary conditions ψ n (0) = 0 due to the hard wall potential at h = 0 and they must also decay to zero as h → ∞ so as to be normalisable.

The key to find the eigenfunctions is to transform the Schrödinger into the Airy equation which is

d 2 y(x) d x 2 -x y(x) = 0. (3.109)
This equation has solutions Ai(x) which decay as

Ai(x) ∼ exp(-2 3 x 3 2 )Γ( 5 6 )Γ( 1 6 ) 4π 3 2 x 1 4 , (3.110)
as x → ∞ and so are normalizable as eigenfunctions. For x〈0 the Airy function oscillates and has an infinite number of negative zeros -α n such that Ai(-α n ) = 0. We make the change of variable h = z to find

1 2σβ 2 d 2 ψ n (z ) d z 2 -P 0 β (z -ε n )ψ n (z ) = 0, (3.111) 
where ε n = n /(P 0 β ). Now we choose so that

2σβ 2 P 0 3 = 1, (3.112)
and we see that

= 1 2β 2 σP 0 1 3 , ( 3.113) 
is an intrinsic length scale.

d 2 ψ n (z ) d z 2 -(z -ε n )ψ n (z ) = 0. (3.114)
Finally if we use z = z -ε n we obtain Airy's equation [START_REF] Albright | Integrals of products of Airy functions[END_REF] 

d 2 ψ n (z) d z 2 -zψ n (z) = 0 (3.115)
and so ψ n (z) = c n Ai(z), (3.116) where c n is a normalisation constant. This means that in terms of the original height variable h,

ψ n (h) = c n Ai( h -ε n ) (3.117)
The boundary condition ψ n (h) implies that ε n = α n+1 . This means that the ground state energy is

0 = α 1 P 0 β = α 1 P 0 β (2σβ 2 P 0 ) 1 3 = α 1 P 2 3 0 β 1 3 2 1 3 σ 1 3 , (3.118)
and where we note that α 1 = 2.33811.

f = α 1 P 2 3 0 2 1 3 σ 1 3 β 2 3 . (3.119)
From the original partition function we see that h is conjugate to P 0 and so we find the average height is given by

h = 〈h〉 = ∂ f ∂P 0 = 2 3 α 1 2 1 3 σ 1 3 β 2 3 P 1 3 0 = 2 3 α 1 (3.120)
and solving for P 0 in terms of h gives P 0 = 4 27

α 3 1 T 2 σh 3 , (3.121) 
We see that P 0 behaves exactly in the same way as the pressure of a confined elastic line in term of the temperature and surface tension. Only the overall numerical prefactor is different.

The correlation length is given by

ξ = 2 1 3 (σT) 1 3 (α 2 -α 1 )P 2 3 0 . (3.122)
When written in terms of h the above correlation length behaves in the same way as for the free elastic line, however when P 0 is fixed we see that the behavior as a function of T and σ is quite different. The correlation length still increases with σ but now decreases as the temperature drops.

The probability density function for the height of the interface at a single point is given by

p 1 (h) = Ai 2 ( h -α 1 ) ∞ 0 d h Ai 2 ( h -α 1 ) (3.123)
Writing the height variable in terms of the length scale , h(x) = z(x), we find that z has the single point probability density function

p(z) = Ai 2 (z -α 1 ) ∞ 0 d z Ai 2 (z -α 1 ) = Ai 2 (z -α 1 )
Ai 2 (-α 1 ) (3.124)

Using this we find that the average height is given by

〈h〉 = h = z 0 , (3.125) 
where The variance of the magnetisation is then given by 

z 0 = ∞ 0 d zzAi 2 (z -α 1 ) ∞ 0 d zAi 2 (z -α 1 ) . ( 3 
n = 0 n = 1 n = 2 n = 3 n = 4
〈M 2 〉 c = -TL ∂ 2 ∂λ 2 f (λ)| λ=0 = -TL ∂ 2 ∂P 2 f (P)| P=P 0 (3.129) = L α 1

The generalized Lopes-Jacquin-Holdsworth Method

In Sec 2.3.2, we have shown a way to numerically compute the free energy of a system at a chemical potential µ in absence of another potential. Here we generalise the method for any kind of external potential. We will explain the method for the Ising model, but the derivation for the SOS model is straightforward.

For any external field which can be written as BV(σ), where V(σ) is a function of the internal microscopic variables σ i , the Hamiltonian of the Ising model is

H = -J σ i σ j -B i V(σ i ) (3.132)
The mean value of the external potential is

〈 i V(σ i )〉 = h i V(σ i ) exp(-βH) = - ∂F(µ) ∂B (3.133)
where F is the free energy of the system. For any potential of the form (3.135), we can integrate the previous equation to find

F(B 1 ) -F(B 2 ) = - B 2 B 1 d B 〈 i V(σ i )〉 B (3.134)
If we know the analytical form of the free energy in the limits B 2 → ∞ or B 1 → 0, this method provides a way to directly measure it for any temperature or size by integrating over the chemical potential. From the total free energy, we recover the Casimir form through Eq. (2.34). The limit B 1 → 0 is the free system limit, in which its free energy can not be computed analytically. However, when B 2 → ∞, for the majority of external fields BV(σ) in which we may be interested, there is often a configuration limit whose free energy can be computed analytically. For example, if V(σ) = σ, the configuration limit is the one where all spins point towards the same direction, leading to a free energy of 0. Thus, we have

F(B 1 ) -F anal y t i c (∞) = - ∞ B 1 d B 〈 i V(σ i )〉 B (3.135)
In numerical simulations, it is not possible to range over infinity, and a criterion has to be defined to know the error made between the analytic case µ 2 = ∞ and the maximal µ 2 achieved in simulations. As in Eq (2.35), we define the function

D(B, L 1 , L 2 ) = 〈M * (L 1 ) -M * (L 1 -1) -(M * (L 2 ) -M * (L 2 -1)〉 (3.136) 
with the generalized magnetization M * = i V(σ i ). A suitable upper limit of integration if we want to get the Casimir force is when the function D reaches 0 within the precision of the simulation.

For the SOS Hamiltonian

H = J i |h i -h i +1 | + B i V(h i ) (3.137)
we define the generalised mean height as

h * = 〈 i V(h i )〉 (3.138) Equation (3.135) writes as F(B 1 ) -F(B 2 ) = - B 2 B 1 d µ h * (B ) (3.139)
which can directly be verified with the transfer matrix for SOS systems. In the limit B → ∞, the generalised height is zero, while the free energy F(∞) can often be computed analytically.

To minimize the error between the analytical limit and the numerical simulations, a suitable choice of the upper integration's limit B 2 is given by

∞ B 2 d B h * (B )) B 2 B 1 d B h * (B ) (3.140) 
In Fig 3 .5 we show the difference of free energy computed from the transfer matrix between B 1 finite and B 2 = 1, and the integration procedure (3.139) with the generalized height with the matrix transfer and Monte Carlo simulations, both for Glauber and Kawasaki dynamics.

The disagreement between the expected value and the simulation results from B 2 are too small, which we also see in the integration of the generalized height from the transfer matrix. We can convince ourselves by doing the integration from the transfer matrix for a larger B 2 . Also, it is worth noting that for this system, there is no significant difference in results for the two different dynamics. This method opens a new way to compute the free energy for any kind of external potential of the form BV(h), or BV(σ) in the case of the Ising or SOS models for conserved and non-conserved dynamics, such as non-uniform external fields [START_REF] Bissacot | Phase Transition in Ferromagnetic Ising Models with Nonuniform External Magnetic Fields[END_REF]. Applied to Ising models, this method allows to check the differences between Glauber and Kawasaki critical Casimir forces, to see if there are any far away from the thermodynamic limit.

The confined Solid-On-Solid model

From exact diagonalization of the SOS transfer matrix in the infinite case [START_REF] Guyer | Sine-Gordon chain as a model for a two-dimensional interface[END_REF], finite-size effects were studied both for the SOS and RSOS model [START_REF] Švrakić | Finite-size corrections for inclined interfaces in two dimensions: Exact results for Ising and solid-on-solid models[END_REF][START_REF] Privman | Finite-size scaling for the restricted solid-on-solid model of the two-dimensional wetting transition[END_REF]. Nevertheless the derivation of eigenvectors and eigenvalues were not explicit in the latter case. Those eigenvalues are a multiple of an integer, and the study of the eigenvalues issued from an odd integer were not discussed. In addition to redoing properly this computation, we add an analysis to the correlation length and the limits of high and low temperatures for the free energy.

We consider the free interface confined between 0 and L, with no external field. The SOS transfer matrix is thus given by

T(h i , h j ) = exp(-βJ|h i -h j |) (3.144) 
Since positions are comprised from 0 to L,the transfer matrix is

T i j = exp(-βJ|i -j |) = r |i -j | (3.145)
where

r = exp(-β J) (3.146)
To find the eigenvectors of T, we consider the vector denoted by [a] which has components

[a] i = a i (3.147)
where i is an index ranging from 0 to L. The action of the SOS transfer matrix on this vector is given by

[T [a]] i = L j =0 r |i -j | a j (3.148) so [T [a]] i =r i i j =0 r -j a j + r -i L j =i +1 r j a j =r i i j =0 r -j a j + r -i L-i -1 k=0 r i +1+k a i +1+k =r i 1 -r -(i +1) a i +1 1 -r -1 )a + r a i +1 1 -r L-i a L-i 1 -r a = r a 1 -r a - a r 1 -a r a i + r i 1 -a r - r L+1-i a L+1 1 -r a (3.149)
We now define

λ(a) = r a 1 -r a - a r 1 -a r = 1 r -r 1 r + r -a -1 a (3.150)
and notice that λ(a) = λ(a -1 ) (

We can thus write

[T [a]] i = λ(a)a i + r i 1 -a r - r L+1-i a L+1 1 -r a (3.152)
Now, considering the action of the transfer matrix on the vector [a -1 ], we get

T [a -1 ] i = λ(a)a -i + r i 1 -1 r a - r L+1-i a -(L+1) 1 -r a (3.153)
Looking for an eigenvector of the form

v = [a] + c[a -1 ] (3.154) the action of T on v is T ([a] + c[a -1 ] i = λ(a)[a i + c a -i ] + r i 1 1 -a r + c 1 -1 r a -r L+1-i a L+1 1 -r a + c a -(L+1) 1 -r a (3.155) so v is an eigenvector, with eigenvalue λ(a), if 1 1 -a r + c 1 -1 r a = 0 (3.156) a L+1 1 -r a + c a -(L+1) 1 -r a = 0 (3.157)
The above equations implies that

c = - r a -1 a(r -a) (3.158) and c 2 = a 2L (3.159) 
Therefore we find

v i = a i ± a L-i (3.160)

Ground state eigenvector

We expect the ground state eigenvector (corresponding to the largest eigenvalue) to be symmetric with respect to the middle of the system and so

v i = v L-i (3.161)
which implies that we should have c = a L . This then gives the equation determining the values of a the largest eigenvalue, and in general for the eigenvalues which are symmetric ( c = 1),

a L+1 = 1 -r a r -a . ( 3.162) 
As a check on the above derivation we consider the case L = 1 where there are only two sites. In this case, the transfer matrix is given explicitly by

T = 1 r r 1 (3.163)
and the largest eigenvector is easily seen to be given by

λ 0 = 1 + r (3.164)
In this case, we see that Eq. (3.162) gives

a 2 = 1 -r a r -a (3.165)
which has three solutions

a 1 = -1 (3.166) a 2 = 1 2 -r 2 + 2r -3 + r + 1 (3.167) a 3 = 1 2 r 2 + 2r -3 + r + 1 (3.168)
We see that a 2 = 1/a 3 , and

|a 2 | = |a 3 | = 1, and that λ(-1) = 1 -r 1 + r (3.169) while λ(a 2 ) = λ(a 3 ) = 1 + r (3.170)
corresponds to the maximal eigenvalue. Note that λ(-1) is not the other eigenvalue of the transfer matrix, this has to be found by considering solutions with c = -1, as we will see later.

The equation (3.162) determining a can also be written as

a L = - r -1 a r -a (3.171)
From this we see that if a is a solution then 1/a and a = -1 are always a solution.

We now introduce θ and

a = exp(i θ) (3.172)
Then the parameter of the eigenvector is

exp(i Lθ) = - r -exp(-i θ) r -exp(i θ) (3.173) 
From Eq. (3.150), we have

λ(θ) = sinh(βJ) cosh(βJ) -cos(θ) . ( 3.174) 
Notice that in order to construct a real eigenvector corresponding to λ 0 we can use the fact that v i (a) = a i + a L-i and v i (a -1 ) = a -i + a -L+i are both eigenvectors with the same eigenvalue. This means that u i (a) = v i (a) + v i (-a) is also an eigenvector and all its components are real.

Clearly the largest eigenvalue corresponds to the value of θ closest to 0, so we look for an eigenvalue such that Lθ ∼ 1. Writing φ = Lθ (3.175) this gives for L large

exp(i φ) ≈ - r -1 + i φ L r -1 -i φ L ≈ -1 + 2i φ L(1 -r ) (3.176) 
and so we find to leading order in 1/L

θ = (2n + 1)π L (3.177)
We notice that this approximation is only valid if L(1r ) 1. For large β this approximation is simply equivalent to L 1, while when β is small it requires that Hβ 1.

The closest eigenvector to the real axis has n = 0 so we have

λ 0 ≈ sinh(βJ) cosh(βJ) -cos( π L ) ≈ sinh(βJ) cosh(βJ) -1 + π 2 2L 2 ≈ coth( βJ 2 )(1 - π 2 4 sinh 2 ( βJ 2 )L 2 ) (3.178)
In the limit L → ∞, the ground-state eigenvalue is the same as the Sine-Gordon chain of length L → ∞ fixed at h(0) = h(L ) = 0 with a SOS interaction between nearest neighboors [START_REF] Guyer | Sine-Gordon chain as a model for a two-dimensional interface[END_REF], which is normal since boundary conditions on the x-axis are negligible in the thermodynamic limit.

First excited state eigenvector

In order to compute the second eigenvalue λ 1 we look for an odd or antisymmetric solution with c = -1. We thus find

exp(i Lθ) = r -exp(-i θ) r -exp(i θ) (3.179) 
For large L we look for a solution of the form θ = φ/L and this gives and so we chose solutions φ = 2nπ for integer n. However the solution n = 0 which corresponds to a = 1 has v(i ) = a ia L-i = 0 and so does not correspond to an eigenvector. We thus take the next solution φ = 2π which gives

exp(i φ) ≈ 1 (3.180)
0 sinh( J) cosh( J) cos( /L) 1 sinh( J) cosh( J) cos(2 /L)
λ 1 ≈ sinh(βJ) cosh(βJ) -cos( 2π L ) ≈ sinh(βJ) cosh(βJ) -1 + 2π 2 L 2 ≈ coth( βJ 2 )(1 - π 2 sinh 2 ( βJ 2 )L 2 ) (3.181)
In Fig 3 .6, we show the agreement between the computation of the first two eigenvalues computed by numerical diagonalisation and compared with the analytical approximations Eq. (3.178) and Eq. (3.181) which are valid for the large L limit. The correlation length is now given by

ξ = 1 ln( λ 0 λ 1 ) = 1 ln( cosh(βJ)-cos( π L ) cosh(βJ)-cos( 2π L ) ) ≈ 4 3 sinh 2 ( βJ 2 )L 2 π 2 (3.182)
and we see that this has the same form as that for the free elastic line in Eq. (3.88). Furthermore, the free energy per site is given in the thermodynamic limit and for large L by

f = - 1 β ln(λ 0 ) ≈ - 1 β ln(coth( βJ 2 )) - π 2 4 sinh 2 ( βJ 2 )L 2 (3.183)
and this gives a pressure

P = - ∂ f ∂L = Tπ 2 2 sinh 2 ( β 2 )L 3 (3.184)
This has the same form as the pressure for the elastic line in Eq. (3.84) if we make the identification of the effective surface tension to be used in the elastic line model

σ e f f = 2 β sinh 2 ( βJ 2 ) (3.185)
We should note that this is also consistent with the equality deduced by comparing the correlation length of the two models. We see that in the limit of large L and for appropriately low temperatures, the finite size SOS model reproduces the phenomenology of the elastic line (confined Edwards-Wilkinson surface). This is not surprising as at low temperatures, jumps of more that two lattice spacings in the height are suppressed by a factor or exp(-βJ) with respect to staying at the same height moving up or down by one site. The low temperature SOS model thus becomes effectively equivalent to the RSOS model and thus is equivalent to a local random walk model.

High temperature limit

To explore the high temperature limit we can note that if we write

z = r -exp(-i θ) (3.186) 
we can write Eq. (3.173) as and so

exp(i Lθ) = - z z = exp(2i ψ + i π) (3.187) 
tan(ψ) = sin(θ) r -cos(θ) = tan( Lθ 2 + π 2 ) = -cot( Lθ 2 ) (3.190) which finally gives tan( Lθ 2 ) = cos(θ) -r sin(θ) (3.191) 
In this form we see that our calculations agree with those of Svravick et al [START_REF] Švrakić | Finite-size corrections for inclined interfaces in two dimensions: Exact results for Ising and solid-on-solid models[END_REF]. Futhermore when β → 0 we know that the elements of the transfer matrix all tend to one and that the largest eigenvalue has all components equal. This means that in the infinite temperature limit, θ = 0. Therefore in Eq. (3.191) we look for solutions where θ is small. Taylor expanding gives to leading order Lθ

2 2 ≈ 1 -r - θ 2 2 (3.192) which gives θ ≈ 2(1 -r ) L + 1 (3.193)
However the above expansion assumes that θL 1 and so

2L(1 -r ) 1 (3.194)
This means that the height can fluctuate by of order L from site to site. The high temperature approximation is thus equivalent to .195) Therefore at high temperature this means that LβJ 1, which gives a maximal eigenvalue

θ ≈ 2βJ L + 1 . ( 3 
λ 0 = L + 1 (3.196)
and a free energy

f = - 1 β ln(L + 1) (3.197)
which is the obvious result coming from the infinite temperature entropy. This result suggests that the solution for θ at small β can be written as a perturbation series of the form

θ = βJ ∞ n=0 b n (βJ) n (3.198)
The first two terms give

θ = βJ   2βJ L + 1 -βJ 2 + 2L + L 2 6 2(1 + L) 3 2   (3.199) 
and from this we find

f = - 1 β ln(L + 1 -βJ L 2 + 2L 3 ) (3.200)
and where we show in Fig 3 .7 the agreement of the high-temperature approximation (3.200) with respect to the direct diagonalization of the transfer matrix. As pointed out above this result gives the high temperature entropy but it also exhibits the correct average energy per unit length at high temperature. To see this we note that all values of h are equiprobable at infinite temperature and so 

= 1 (L + 1) 2 J L i , j =0 |i -j | = J L 2 + 2L 3 (3.201)

Conclusion

Finite-size effects corrections in the free energy are important when the correlation length becomes of the order of magnitude of the system's size. The derivative of the free energy with respect to the system size yields a confinement pressure, which can be seen for electromagnetic fields [START_REF] Casimir | On the attraction between two perfectly conducting plates[END_REF][START_REF] Rytov | Principles of Statistical Radiophysics[END_REF][START_REF] Lifshitz | On the theory of magnetic susceptibility of metals at low temperatures[END_REF] and for critical systems [START_REF] Gambassi | The Casimir effect: From quantum to critical fluctuations[END_REF], which has long-range interaction.

For continuous 1D interface systems, we use the path integral method [START_REF] Matsubara | A New Approach to Quantum-Statistical Mechanics[END_REF] to compute the energy of all states, which gives us in the thermodynamic limit f = 1 β 0 and ξ = 1 1 -0 . The computation of the free energy of a continuous 1D interface is thus mapped to a 1D quantum problem. This method can be used for all potentials V(h), and so we apply it to two speficic cases. In the confined elastic line, we find the free energy per unit length f = T 2 π 2 2σL 2 , which gives a different power-law than the critical Casimir force, which is to be expected since critical systems have no surface tension. Using a conjecture [START_REF] Privman | Finite-Size Properties of the Angle-Dependent Surface Tension of Rough Interfaces[END_REF] about the finite-size corrections on the surface tension, we show the correspondence between both models in the case σ = 0, and thus that interface physics exhibits Casimir-like interactions in the right limit : this relationship between interface and critical systems could lead to interesting new physics. In the semi-infinite geometry though, we compute the average height when the interface is under pressure.

For discrete Solid-On-Solid models, the path integral cannot be directly applied, and methods adapted to discrete systems must be used. The first method is to compute the free energy through numerical simulations. We generalize the LJH method [START_REF] Cardozo | Critical Casimir forces in a magnetic system: An experimental protocol[END_REF] to any external potential both for Ising and SOS models, and compare it to the transfer matrix in the case of SOS for Kawsasaki dynamics in the SOS model -which was the special case where neither the Layer method nor the LJH method were pertinent. This generalised method opens new ways

Chapter 4

Beyond Solid-On-Solid : the Particles-Over-Particles model While Ising models describe bulk behaviour of magnetic systems [START_REF] Niss | History of the Lenz-Ising Model 1920-1950: From Ferromagnetic to Cooperative Phenomena[END_REF][START_REF] Niss | History of the Lenz-Ising Model 1950-1965: from irrelevance to relevance[END_REF] and interfaces between two coexisting phases [START_REF] Abraham | Interface profile of the Ising ferromagnet in two dimensions[END_REF], a direct interface lattice models exists, which is called Solid-On-Solid. This model was first studied by Gilmer and Bennema [START_REF] Gilmer | Computer simulation of crystal surface structure and growth kinetics[END_REF][START_REF] Gilmer | Simulation of Crystal Growth with Surface Diffusion[END_REF] as a way to compute the crystal growth, whose dynamical equation will be later known as the Edwards-Wilkinson equation [START_REF] Edwards | The Surface Statistics of a Granular Aggregate[END_REF][START_REF] Halpin-Healy | Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics[END_REF] . In a second time, correspondance between SOS and the highly anisotropic Ising model at low temperature where found [START_REF] Swendsen | Roughening transition in the solid-on-solid model[END_REF][START_REF] Guyer | Sine-Gordon chain as a model for a two-dimensional interface[END_REF], with the exact derivation of the SOS hamiltonian from the Ising one explained in Sec 1.3.2. When using an exponent of 2 in the interaction between nearest sites, the Gaussian SOS exhibits similar behavior to fluid interfaces [START_REF] Müller-Krumbhaar | Kinetic Gaussian model[END_REF][START_REF] Baillie | Solid on solid on fluid lattices[END_REF]. In Monte Carlo simulations for the Ising model, spins are taken with a uniform probability [START_REF] Metropolis | The Monte Carlo Method[END_REF][START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF], allowing the study of interface dynamics [START_REF] Schmittmann | Driven diffusive systems. An introduction and recent developments[END_REF][START_REF] Müller | Profile and Width of Rough Interfaces[END_REF][START_REF] Smith | Interfaces in Driven Ising Models: Shear Enhances Confinement[END_REF][START_REF] Smith | Lateral transport of thermal capillary waves[END_REF]. On the contrary in the SOS aproximation it is the heights which are taken with a uniform probability [START_REF] Wilby | Scaling in a solid-on-solid model of epitaxial growth[END_REF][START_REF] Siegert | Scaling behavior of driven solid-on-solid models with diffusion[END_REF], thus discarding bulk information.

Driven by this lack of correspondence between both models, in this chapter we modernize Temperley's model [START_REF] Temperley | Statistical mechanics and the partition of numbers II. The form of crystal surfaces[END_REF] with a model that we call Particles-Over-Particles which takes into account combinatorial terms, giving rise to an entropic contribution. By noticing that the height h of the interface is the sum of all particles of size a = 1 which are put under it, we first develop the partition function and transfer matrix of our model and compare it to SOS, then we develop the M-particles system where we introduce multiple types of particles stacked vertically, where each type may obey to a different dynamic, kinetic coefficient or diffusive constant.

The model

In a SOS system of size L , the height of the interface at site i is noted h i ∈ [0, L] at site i , and fixing the total number of particles to be N the partition function is given by

Z SOS (N) = h 0 h 1 ...h L δ i h i ,N exp -βJ L i =1 |h i +1 -h i | -βB L i =1 V(h i ) (4.1)
where V(h) is a function of the internal variables h i and B the coupling parameter which has the dimension of energy. As done in the case of a perfect gas, if the height profiles represent particle numbers which are all identical, the partition function is given by

Z POP (N) = 1 N! h 1 ,h 2 •••h L δ L i =1 h i ,N N! L i =1 h i ! exp -βJ L i =1 |h i +1 -h i | -βB L i =1 V(h i ) (4.2)
Here the combinatorial term N! L i =1 h i ! represents the number of ways that the h i particles on each site can be chosen from the N particles available. In the same fashion as the Solid-On-Solid, we call this model the Particles-Over-Particles model, since particles are stacked in columns of height h i . The constraint on the particle number makes the computation of the partition function at fixed N complicated both analytically and numerically. However, changing into the grand canonical ensemble using the formula

Ξ = N exp(βµN)Z POP (N) (4.3)
where Ξ is the grand partition function and µ the chemical potential, we find

Ξ POP = h 1 ,h 2 •••h L 1 L i =1 h i ! exp -βJ L i =1 |h i +1 -h i | -βB L i =1 [V(h i ) -µh i ] (4.4)
The model differs from the usual solid on solid model in that a number of particle configurations give rise to the same height configurations. The grand partition function can then be written as

Ξ = h 1 ,h 2 •••h L exp -βH e f f (h 1 , h 2 • • • h L ) (4.5) 
where

H e f f = J L i =1 |h i +1 -h i | + L i =1 [BV(h i ) -µh i + 1 β ln(h i !)] (4.6)
The transfer matrix is

T POP (h, h ) = T SOS (h, h ) exp - ln(h) + ln(h ) 2 (4.7)
Contrary to the SOS model where there needs to be a confining external field in order to localize the interface [START_REF] Burkhardt | Localisation-delocalisation transition in a solid-on-solid model with a pinning potential[END_REF][START_REF] Chui | Pinning and roughening of one-dimensional models of interfaces and steps[END_REF], the entropic term gives a stable position for the interface. In absence of external field B = 0, the effective potential is given by

V e f f (h) = -µh + 1 β ln(h!) (4.8)
If the chemical potential is large enough, the number of particles N is large enough to use Striling's formula and approximate a continuous derivative with the finite-difference in h, so 4.10) becomes accurate. Since 〈h〉 cannot exceed the maximum size of the system, saturation occurs at large µ. SOS mean height is also plotted as a reference, where we see that even in the limit µ = 0, the mean height is equal to 〈h〉(µ = 0) = L 2 . The Kawasaki implementation is straightforward, a particle n is chosen with probability 1 N at each Monte Carlo step, then an attempt to move the particle to the left or right using Metropolis acceptance rate is made. The Glauber case is trickier. At equilibrium, we expect that as many particles are added as subtracted, so an attempt with probability 0.5 to add a particle is made, and the attempt to remove one is done with the same probability. When adding a particle, a site i is chosen with uniform probability 1/L , so the selection rate is

V e f f (h) = -µ + 1 β ln(h) (4.
g (h i → h i + 1) = 1 2L (4.11)
To remove a particle1 , a particle n is chosen with uniform probability 1/N, meaning that the selection probability is

g (h i → h i -1) = h i 2N (4.12)
In the case that there is no particle in the system, that phase is skipped and we immediately proceed to attempt to add a new particle. In order to satisfy detailed balance, acceptance rates need to verify

g (h i → h i + 1) g (h i + 1 → h i ) A(h i → h i + 1) A(h i → h i + 1) = N L (h i + 1) A(h i → h i + 1) A(h i → h i + 1) = exp(-β(E(h i + 1) -E(h i )) (4.13)
Choosing an acceptance rate that satisfies this condition is not as easy as the Metropolis acceptance rate [START_REF] Metropolis | The Monte Carlo Method[END_REF], and we provide no clear answer as to how to solve this problem. Using the Metropolis acceptance rate (A(µ → ν) = 1 if ∆ E 〈0) does not to provide the correct equilibrium averages expected by the transfer matrix.

Here, the combinatoric term is directly taken into account in the selection probability, which is why it is difficult to find a good acceptance rate. Nevertheless, it is possible to use uniform selection probability as with SOS and introduce the combinatoric term in the energy.

M-particles POP system

The Ising model with spins σ = ±1 has a direct mapping with liquid/gas and binary mixtures systems [START_REF] Goldenfeld | Lectures on Phase Transitions and the Renormalization Group[END_REF], which are systems with two types of particles (for the liquid/gas model σ is a "density of particles"). On the contrary, SOS models only need the existence of one type of particles, since everything that is over the interface is not taken into account. We can imagine multi-layering of non-miscible liquids having different densities [START_REF] Wang | Instability of multi-layered liquid films[END_REF][START_REF] Bonizzi | On the simulation of three-phase slug flow in nearly horizontal pipes using the multi-fluid model[END_REF], forming many layers with M -1 interfaces, M being the number of particles' type. We can decide to study one specific interface between two particle types, and in such case the classic SOS model would be enough, with J being the surface energy cost between both liquids.

In this multi-layered system, we consider a model of a surface delimiting a bulk phase of L sites which contains M different particle types p 1 ...p M . N m is the total number of particles of type m and n m,i denotes the number of particles of type m at site i . The interface height is h i = m n m,i . Taking into account the entropic contribution, the effective Hamiltonian for the model is

H[M] = J i |h i -h i +1 | + B i V(h i ) - m µ m i n m,i + 1 β m i ln(n m,i ) (4.14)
We assume that the particles in each column are demixed, i.e. the permitted particle configurations are taken to be stacked vertically such that the stack of p m+1 particles lies on top of the p m particles, as seen in Fig 4 .2 for M = 2. This assumption is not particularly necessary when considering that the energy interaction between layers is zero. The first term in the Hamiltonian corresponds to the surface tension with a gas phase above the stacks of particles. The red line shows the origin z = 0. In the i -th column the interface is at height h i , with n 1,i particles of type p 1 at site i , and same for particles p 2 . There are no particles at the top of the interface.

h i = n 1, i = n 2, i = z = 0
If M = 2, the the statics of the above can be reduced to the study of a single particle model by making the change of variable n 2,i = h i -n 1,i . Using the binomial relation (a

+ b) n 1 = h h =0 h! h !(h-h )! a h b h -
the sum over the variables n 1,i can be trivially carried out and we find

Ξ = h exp -βJ i |h i -h i +1 | -βB i V(h i ) - i ln(h i !) + βµ e i h i = h exp -βH e f f (h 1 , h 2 ...h L ) (4.16) 
where µ e = 1 β ln(exp(βµ 1 ) + exp(βµ 2 ) is the effective chemical potential for the variables h i . If we add a third type of particle, we clearly see that the same reduction can be carried out. Thus, by recursivity, for any number of particle type M, we have the same effective Hamiltonian as the single particle system (4.6), with an effective chemical potential An interesting thing to remark is that even if the chemical potential of a particle type µ m = 0, its contribution to the effective chemical potential is nonzero. This reduced theory can be numerically solved in equilibrium by transfer matrix methods. Now let the subset M of particle types from the M particle types be in the canonical ensemble, while all the other ones are in the grand-canonical one. This is the so-called model C [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF], which describes the coupling between conserved and non-conserved fields, such as impurities in liquids [START_REF] Crisanti | Dynamics of passively advected impurities in simple two-dimensional flow models[END_REF] or ionic conductors moving through a lattice set up by different types of ions [START_REF] Dieterich | Theoretical models for superionic conductors[END_REF][START_REF] Katz | Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors[END_REF]. The total partition function is then where = 〈 m n m 〉. Mixing Glauber and Kawasaki dynamics for different particle types could be implemented using the following algorithm. Each non-conserved particle type possess a kinetic coefficient α m , while each conserved particle type has a diffusive coefficient D m . We set p m = α m if the particle is non-conserved, and p m = D m otherwise, and we normalize it in order to have m p m = 1. At each Monte Carlo step, a particle of type m is chosen with probability p m , and then we proceed with Glauber or Kawasaki dynamics for a single-type particle system, as described in the previous section. To satisfy detailed balance, we have to understand how this coefficient p m changes the selection probability g , and we get the same difficulties as in the single-particle type Glauber case.

µ e = 1 β ln m exp(βµ m ) (4.
Ξ = h exp -βH e f f (h 1 , h 2 ...h L ) m∈ M δ L i =1 h i ,N m
Nevertheless, when all particles are under Kawasaki dynamics and p m = 1/M is a constant, then the ratio between selection rates is equal, which solves all the issues. This algorithm could prove useful for studying multi-particle systems where each particle type is under different potentials (think of an ion in a neutral solvent under magnetic field) or different temperature [START_REF] Grosberg | Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats[END_REF], some of them which are under non-equilibrium forces like shearing.

Continuum Theory

In order to understand the statics of the model we write a continuum version of the theory with M field n m (x) and we take the a Gaussian form for the surface energy

H = d x σ 2 [ d d x ( m n m )] 2 + V(n 1 (x), ..., n M (x)) (4. 20 
)
where σ is the surface tension and where r e = m r m / m r m . We thus find

= T 2σm e = 1 2 Th σ , (4.26) 
where h = m n m .

Conclusion

There are two ways of interpreting the interface's description thought its height {h i }. The first one is to only see the height as the interface's degrees of freedom [START_REF] Gilmer | Computer simulation of crystal surface structure and growth kinetics[END_REF][START_REF] Gilmer | Simulation of Crystal Growth with Surface Diffusion[END_REF], while the second one is to interpret that height as a number of particles of type A which are below the interface with particles of type B, which is the physical phenomenon happening in crystal growth. This interpretation requires the addition of an entropic term [START_REF] Temperley | Statistical mechanics and the partition of numbers II. The form of crystal surfaces[END_REF], which localises the free interface in a semi-infinite geometry, contrary to SOS models [START_REF] Chui | Pinning and roughening of one-dimensional models of interfaces and steps[END_REF]. The system can also be composed of multiple layers of different particles [multilayer], and this new model can take that into account for numerical simulations. The problem lies in the numerical algorithm. Taking a height with non-uniform probability is tricky, as it changes the selection probability g (C → C ), so the acceptance probability A(C → C ) is not as simple as the Metropolis one [START_REF] Metropolis | The Monte Carlo Method[END_REF][START_REF] Newman | Monte Carlo Methods in Statistical Physics[END_REF]. We let the resolution of this problem -and as such the study of new physics through numerical simulations of this model -to the community.

Chapter 5

Driven interfaces

One of the most natural ways of creating a non-equilibrium steady state is by applying external driving forces, as shown in Fig 5 .1. Driving arises naturally in sedimenting systems due to gravity, in systems with free charges under the action of an electric field, and also due to the radiation pressure exerted by a laser. Experiments where a phase separated colloidal system is sheared parallel to the interface show that driving due to shear tends to suppress surface fluctuations [START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF], and similar results are found where Ising models are numerically sheared [START_REF] Smith | Interfaces in confined Ising models: Kawasaki, Glauber and sheared dynamics[END_REF][START_REF] Smith | Lateral transport of thermal capillary waves[END_REF]. These results are somewhat surprising, for instance they are contrary to the observation that wind generates waves on the ocean. One may think that the precise nature of the driving plays a role, for instance uniformly driving a system may be intrinsically diferent to applying a shear field which is manifestly nonuniform.

In this capter we investigate driving using three different methos. In the first sectionwhich is almost a verbatim of a paper we have published [START_REF] Dean | The effect of driving on model C interfaces[END_REF] -we develop model C interfaces (model B interface is invariant under galilian transformation under driving) and find that the height fluctuations are suppressed and the correlation length of the fluctuations is increased. In the second section, we discuss driving in the SOS model, where the galilean invariance is broken by the discrete-time nature of numerical simulations, and find an increase of the interface width with respect to driving.

The effect of driving on model C interfaces

Constructing a continuum model which is analytically tractable and is also affected by uniform driving is straightforward but contains some subtleties. In a continuum system it is clear that uniform driving can only move a system away from equilibrium when the driving acts differently on different particle types. For instance, consider a system of identical interacting Brownian particles driven by a uniform force. The force will induce the same average velocity on all the particles, consequently, in the frame moving with this average velocity, we will recover the unmodified equilibrium state. However, when multiple particle types are present, the mean velocity induced on different species are different and no Galilean transformation is possible. Perhaps the first such study of this phenomenon was due to Onsager [START_REF] Onsager | The Collected Works of Lars Onsager: With Commentary[END_REF], who studied the conductivity of electrolytes and in doing so showed how the correlation functions in the steady state were modified by the electric field. Recently there have been many studies of driven multi-particle Brownian systems [START_REF] Dzubiella | Lane formation in colloidal mixtures driven by an external field[END_REF][START_REF] Chakrabarti | Dynamical instability in driven colloids[END_REF][START_REF] Chakrabarti | Reentrance effect in the lane formation of driven colloids[END_REF][START_REF] Sütterlin | Dynamics of Lane Formation in Driven Binary Complex Plasmas[END_REF][START_REF] Glanz | The nature of the laning transition in two dimensions[END_REF][START_REF] Klymko | Microscopic origin and macroscopic implications of lane formation in mixtures of oppositely driven particles[END_REF], including the elec-trolyte problem, and rich new physics has been found, even in the case of purely Gaussian theories [START_REF] Démery | The conductivity of strong electrolytes from stochastic density functional theory[END_REF][START_REF] Poncet | Universal Long Ranged Correlations in Driven Binary Mixtures[END_REF] based on stochastic density functional theory [START_REF] Dean | Renormalization of drift and diffusivity in random gradient flows[END_REF].

The dynamics of discrete particle systems is however affected by uniform driving of identical particles. The study of driven lattice gases has revealed a wide range of intriguing physical phenomena and indeed shown how driving can even lead to phase separation [START_REF] Katz | Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors[END_REF][START_REF] Zia | Interfacial correlation and dispersion in a non-equilibrium steady state system[END_REF][START_REF] Leung | Anomalous interfacial correlations in non-equilibrium anisotropic systems[END_REF][START_REF] Schmittmann | Driven diffusive systems. An introduction and recent developments[END_REF]. The discrete nature of the dynamics of these systems, both in space and time, means that no Galilean transformation to an equilibrium state exists. Analytical studies of these systems require a phase ordering kinetics description in terms of a continuum order parameter. In order to break Galilean invariance the local mobility of the particles can be taken to be dependent on the local order parameter, this is then sufficient to induce nontrivial steady states under driving [START_REF] Katz | Nonequilibrium steady states of stochastic lattice gas models of fast ionic conductors[END_REF][START_REF] Leung | Anomalous interfacial correlations in non-equilibrium anisotropic systems[END_REF][START_REF] Smith | Interfaces in confined Ising models: Kawasaki, Glauber and sheared dynamics[END_REF][START_REF] Smith | Lateral transport of thermal capillary waves[END_REF]. Interfaces between the separated phases in uniformly driven systems have non capillary behaviors which are, even today, not fully understood [START_REF] Leung | Anomalous interfacial correlations in non-equilibrium anisotropic systems[END_REF]. Taking random driving in a given direction also leads to non-equilibrium steady states, if the noise is Gaussian and white, the fluctuation dissipation theorem is violated and novel interface fluctuations are induced which, again, are not of the capillary type [START_REF] Zia | Interfacial correlation and dispersion in a non-equilibrium steady state system[END_REF].

Driving can also be deterministic but space dependent, for instance if one considers applied shear flows, the spatial dependence of the flow means no Galilean transformation to an equilibrium steady state is possible and this therefore leads to non-equilibrium steady states. The effect of shear on interfaces in these type of systems yields interface equations of the stochastic Burgers type and the statistics are no thus longer Gaussian due to the presence of nonlinearities [START_REF] Bray | Interface fluctuations under shear[END_REF][START_REF] Bray | Interface fluctuations, Burgers equations, and coarsening under shear[END_REF][START_REF] Smith | Interfaces in confined Ising models: Kawasaki, Glauber and sheared dynamics[END_REF][START_REF] Smith | Lateral transport of thermal capillary waves[END_REF][START_REF] Thiébaud | Nonequilibrium fluctuations of an interface under shear[END_REF][START_REF] Thiébaud | Nonlinear Brownian dynamics of interfacial fluctuations in a shear flow[END_REF] In this chapter we analyse what is known, in the classification of Hohenberg and Halperin [START_REF] Hohenberg | Theory of dynamic critical phenomena[END_REF], as model C type dynamics for two fields, one with conserved model B type dynamics, which is in addition convected at a uniform velocity to mimic driving. We refer to this first field as the colloid field. This colloid field is coupled to an additional field which undergoes model A non-conserved dynamics and which is not subjected to the driving. The model A field can be thought of a passive solvent and its coupling to the model B field is chosen in such a way that it has no influence on the non-driven equilibrium steady state. We then derive the effective dynamics between two separated low temperature phases by using a method introduced in [START_REF] Bray | Interface fluctuations under shear[END_REF][START_REF] Bray | Interface fluctuations, Burgers equations, and coarsening under shear[END_REF] for the study of interfaces under shear flow. This method yields a Gaussian theory for the interface statistics and driving introduces interesting new physics, notably we find that the effective surface tension of the system is increased but also the correlation length of interface fluctuations (due to an effective gravitational term) are increased. These observations are in qualitative agreement with experimental results on sheared low tension interfaces in phase separated colloidal systems [START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF]. In this experimental system the interface fluctuations were also found to be well described by Gaussian statistics and this is our principal motivation for studying theories which remain Gaussian but are modified by driving. While the long wavelength theory we find is of a capillary type, we also find new, higher derivative terms, which are generated in the spectrum of the height fluctuations.

As an aside, we also show how the model introduced here can be used to analyse the effect of activity on the dynamics of the surface between two phases of active colloids. The activity is implemented by taking a different temperature for the colloid and solvent fields, this difference in temperatures leads to significantly modified surface statistics which again develop dependencies on static and dynamical variables of the model which otherwise remain hidden for the equilibrium version of the problem.

The underling two field model

We consider a coarse grained model for two scalar fields ψ and φ with Hamiltonian

H[ψ, φ] = H 1 [ψ] + H 2 [ψ, φ] (5.1)
The Hamiltonian H 1 is of the classic Landau-Ginzburg form

H 1 [ψ] = d x κ 2 [∇ψ(x)] 2 + V(ψ(x)) -g zψ(x) (5.2)
The last term represents the energy due to a gravitational field and will introduce a finite correlation length in the fluctuations between the two phases. We assume that the above Hamiltonian has two stable phases with average concentrations of the field φ(x) given by the constant values ψ 1 and ψ 2 , the difference between the order parameter in the two different phases is denoted by by ∆ψ = ψ 2 -ψ 1 > 0. This means that we find the phase 1 as z → ∞ and the phase 2 as z → -∞. The term H 2 is taken to be a simple quadratic coupling between the fields

H 2 = d x λ 2 (1 -ψ(x) -φ(x)) 2 (5.3)
which is an approximative conservation law of total volume fraction of the phases. The field φ can be though of as the local volume fraction of the solvent in a colloidal system. However the presence of this solvent field does not change the effective equilibrium statistical mechanics of the colloid field ψ as the partition function can be written as

Z = d [φ]d [ψ] exp(-βH 1 [ψ] -βH 2 [ψ, φ]) = CZ e f f (5.4)
where Z e f f is the effective partition function for the field ψ, after we have integrated out the degrees of freedom corresponding to the field φ, and C is a constant term resulting from this integration. The effective partition function is thus simply given by

Z e f f = d [ψ] exp(-βH 1 [ψ]) (5.5) 
and, as stated above, we see that the field φ thus has no effect on the equilibrium statistical mechanics of the field ψ.

We now consider the dynamics of the fields. We take local diffusive model B dynamics for the field ψ and non-conserved model A dynamics for the field φ ∂ψ field φ is also diffusive and thus of model B type, the analysis given here can be extended to this case but the analysis of the resulting equations is considerably more complicated. The use of model A dynamics for the solvent is justified by assuming that its dynamics is faster than that of the colloids and that the volume fraction can vary due to local conformational changes rather than diffusive transport. The noise terms above are uncorrelated and Gaussian with zero mean, their correlation functions are given by

(x, t ) ∂t + v • ∇ψ(x, t ) = D∇ 2 δH δψ(x) + 2DT∇ • η 1 (x, t ) (5.6) ∂φ(x, t ) ∂t = -α δH δφ(x) + 2αTη 2 (x, t ). ( 5 
〈η 1i (x, t )η 1 j (x , t )〉 = δ i j δ(t -t )δ(x -x ) (5.8) 〈η 2 (x, t )η 2 (x , t )〉 = δ(t -t )δ(x -x ), (5.9) 
and T is the temperature in units where k B = 1. These dynamical equations are thus explicitly given by .11) Taking the temporal Fourier transform, defined with the convention

∂ψ(x, t ) ∂t + v • ∇ψ(x, t ) = D∇ 2 [ δH 1 δψ(x) + λ(φ(x, t ) + ψ(x, t ))] + 2DT∇ • η 1 (x, t ) (5.10) and ∂φ(x, t ) ∂t = -αλ[φ(x, t ) + ψ(x, t )] + 2αTη 2 (x, t ). ( 5 
F(x, ω) = ∞ -∞ d t exp(-i ωt )F(x, t ), (5.12) 
we can eliminate the field φ which is given by φ(x, ω) = -αλ ψ(x, ω) + 2αT η2 (x, ω) .13) this then gives the closed equation for ψ:

i ω + αλ , ( 5 
1 - λD∇ 2 i ω + αλ i ω ψ(x, ω) + v • ∇ ψ(x, ω) = D∇ 2 μ(x, ω) + ζ(x, ω), (5.14) 
where

µ(x, t ) = δH 1 δψ(x, t ) (5.15)
is the effective chemical potential associated with the field ψ and the noise term is given by

ζ(x, ω) = 2αTDλ i ω + αλ ∇ 2 η2 (x, ω) + 2DT∇ • η1 (x, ω).
(5.16)

Inverting the temporal Fourier transform then gives the effective evolution equation

∂ψ(x, t ) ∂t -λD∇ 2 t -∞ d t exp(-αλ(t -t )) ∂ψ(x, t ) ∂t + v • ∇ψ(x, t ) = D∇ 2 µ(x, t ) + ζ(x, t ).
(5.17)

Effective interface dynamics

Following Sec 1.2.2, we derive the dynamical equation for the interface h(r), where

ψ(x, t ) = f (z -h(r, t )) (5.18) 
and f (z) → ψ 2 as z → -∞ and f (z) → ψ 2 as z → ∞, and we use the sharp interface aproximation f (z) = ∆ψδ(z) (5.19) We also assume that the driving is in the r = (x, y). The dynamical evolution for the field ψ in Eq. (5.17) is first written as

∇ -2 ∂ψ(x, t ) ∂t + v • ∇ψ(x, t ) -λD t -∞ d t exp(-αλ(t -t )) ∂ψ(x, t ) ∂t = Dµ(x, t ) + ∇ -2 ζ(x, t )
(5.20) Using the relations (1.57) and (1.59), where V(ψ(x)) = V(ψ(x))g zψ(x), multiplying both sides by f (zh(r, t )) and integrating over z as in Eq (1.57) and (1.59), we obtain

∞ -∞ d z f (z -h(r, t )µ(x, t ) = κ∇ 2 h(r, t ) ∞ -∞ d z f (z -h(r, t )) 2 - ∞ -∞ d zg z f (z -h(r, t )) = κ∇ 2 h(r, t ) ∞ -∞ d z f (z ) 2 - ∞ -∞ d z g (z + h(r, t )) f (z ) = κ∇ 2 h(r, t ) ∞ -∞ d z f (z ) 2 -∆ψg h(r, t ).
(5.21)

By using the Cahn-Hilliard estimate of the surface tension (1.41), we thus find

∞ -∞ d z f (z -h(r, t )µ(x, t ) = σ[∇ 2 h(r, t ) -m 2 h(r, t )] (5.22)
where m 2 = ∆ψg /σ.

We now carry out the same operation on the left hand side of Eq. (5.20). First we have

∇ -2 ∂ψ(x, t ) ∂t + v • ∇ψ(x, t ) + λD t -∞ d t exp(-αλ(t -t )) ∂ψ(x, t ) ∂t = -∇ -2 f (z -h(r, t ))[ ∂h(r, t ) ∂t + v • ∇h(r, t )] + λD t -∞ d t exp(-αλ(t -t )) f (z -h(r, t )) ∂h(r, t ) ∂t ≈ -∇ -2 f (z)[ ∂h(r, t ) ∂t + v • ∇h(r, t )] + λD t -∞ d t exp(-αλ(t -t )) f (z) ∂h(r, t ) ∂t (5.23)
where in the last line above we have neglected terms quadratic in h. Note that the neglecting of these additional terms is not strictly justified, they could potentially induce non-perturbative effects which render the surface fluctuations non-Gaussian. However we see here that the first order computation we carry out tends to reduce fluctuations with respect to equilibrium or non-driven interfaces and so if the equilibrium theory can be described by an equation which is linear in height fluctuations, it seems physically reasonable to assume that the the approximation also holds for the driven interface. Again, we multiply the above by f (z) and integrate over z.

Putting this all together we obtain

∆ψ 2 d rG(0, r -r )[ ∂h(r, t ) ∂t + v • ∇h(r, t )] + σλD κ t -∞ d t exp(-αλ(t -t )) ∂h(r, t ) ∂t = σ[∇ 2 h(r, t ) -m 2 h(r, t )] + ξ(r, t ) (5 .24) 
where G = -∇ -2 , or more explicitly

∇ 2 G(z -z , r -r ) = -δ(z -z )δ(r -r ) (5.25)
The noise term ξ is given by

ξ(r, t ) = ∞ -∞ d z f (z -h(r, t ))∇ -2 ζ(x, t ). ( 5.26) 
Now, as the equations of motion have been derived to first order in h and we wish to recover the correct equilibrium statistics for the non-driven system, we ignore the h dependence in the noise and make the approximation

ξ(r, t ) ≈ ∞ -∞ d z f (z)∇ -2 ζ(x, t ). ( 5 

.27)

The correlation function of this noise is most easily evaluated in terms of its Fourier transform with respect to space and time defined by 

F(q, ω) = d t d r exp(-i ωt -i q • r)F(r, t ). ( 5 
〈 ξ(q, ω) ξ(q , ω )〉 = 2T(2π) d δ(ω + ω )δ(q + q ) σ κ αD 2 λ 2 ω 2 + α 2 λ 2 + D∆ψ 2 2q (5.29)
In full Fourier space the equation of motion for the field ψ then reads

i (ω + q • v) ∆ψ 2 2q + Dσλ κ
i ω αλ + i ω ĥ(q, ω) = -Dσ(q 2 + m 2 ) ĥ(q, ω) + ξ(q, ω) (5.30)

From this, the full Fourier transform of the correlation function of the interface height is given by

Ĉ(q, ω) = 2TD ∆ψ 2 2q (ω 2 + α 2 λ 2 ) + σαDλ 2 κ i [ αλ∆ψ 2 2q (ω + q • v) + λσD κ ω + Dσ(q 2 + m 2 )ω] + [αλDσ(q 2 + m 2 ) - ∆ψ 2 2q ω(ω + q • v)] 2 
(5.31) Using the above we can extract the equal time height-height correlation function in the steady states. Its spatial Fourier transform can shown to be given by Cs

(q) = 1 2π d ω Ĉ(q, ω) (5.32) 
This integral has the same form as

I( f (ω)) = d ω 2π f (ω) i (Aω + B) + (C -Dω -Eω 2 ) (5.33)
so we see that the integral we need to evaluate can be written in the form

I = aI(ω 2 ) + bI(1) (5.34) 
The calculation of Eq. (5.32) can be carried out in the presence of a forcing term on the height profile in order to compute the response function for the surface which has a denominator of the form Den

= i (Aω + B) + (C -Dω -Eω 2 ) (5.35)
and due to causality the above only has poles in the upper complex plane (due to the convention of Fourier transforms used here). Consequently we find that To evaluate I(1) we now use

d ω 2π 1 i (Aω + B) + (C -Dω -Eω 2 ) = 0 ( 5 
I(1) = -Im d ω 2π 1 Aω + B 1 i (Aω + B) + (C -Dω -Eω 2 )
(5.40)

The integrand above has no poles in the lower half of the complex plane but has a half pole at ω = -B/A on the real axis, thus using standard complex analysis we find

I(1) = 1 2(CA + BD -EB 2 A ) (5.41)
Then after some laborious, but straightforward algebra, we obtain that

Cs (q = T 2Dσq(κ[q 2 + m 2 ] + λ) + ακλ∆ψ 2 2 + κ 2 ∆ψ 4 (q • v) 2 σ[q 2 + m 2 ] 2Dqσ(κ[q 2 + m 2 ] + λ) + ακλ∆ψ 2 2 + κ κσ[q 2 + m 2 ] + λσ ∆ψ 4 (q • v) 2 (5.42)
In the absence of driving, i.e. when v = 0 we recover the equilibrium correlation function

Cs (q) = Ceq (q) = T σ[q 2 + m 2 ] , (5.43) 
here we see that 1/m = ξ eq is the so called capillary length, which is the equilibrium correlation length of the height fluctuations. We also notice that the correlation function for wave vectors perpendicular to the driving direction is simply the equilibrium one.

If we write C s (q) = T/H s (q) we can interpret H s (q) as an effective quadratic Hamiltonian for the height fluctuations, it is thus given by

H s (q) = σ[q 2 + m 2 ] + κλσ∆ψ 4 (q • v) 2 2Dσq(κ[q 2 + m 2 ] + λ) + ακλ∆ψ 2 2 + κ 2 ∆ψ 4 (q • v) 2
(5.44)

For small q we find H s (q) = σm 2 + σq 2 (1 + v 2 cos 2 (θ) α 2 λκ ), (5.45) where θ is the angle between the wave vector q and the direction of the driving. This thus gives a direction dependent surface tension

σ s (θ) = σ(1 + v 2 cos 2 (θ) v 2 0 ) (5.46)
where we have introduced the intrinsic velocity v 0 = α 2 λκ which depends on the microscopic dynamical quantity α associated with the model A dynamics of the field φ, as well as the microscopic static quantities κ (which generates the surface tension) and λ the coupling between the field ψ and φ. This appearance of dynamical and static quantities that are otherwise hidden in equal time correlation functions in equilibrium is already implicit in the works of Onsager [START_REF] Onsager | The Collected Works of Lars Onsager: With Commentary[END_REF] where it is used to compute the conductivity of Brownian electrolytes and the explicit expressions were derived using stochastic density functional theory in [START_REF] Démery | The conductivity of strong electrolytes from stochastic density functional theory[END_REF].

We also note that the universal thermal Casimir effect between model Brownian electrolyte systems driven by an electric field exhibits similar features, developing a dependency on both additional static and dynamical variables with respect to the equilibrium case [START_REF] Dean | Nonequilibrium Tuning of the Thermal Casimir Effect[END_REF] However for this small q expansion we see that the microscopic quantities D, the diffusion constant of the field φ, and the order parameter jump ∆ψ do not appear.

From the above, we see that in the direction of the driving the surface tension increases and the fluctuations of the surface are thus suppressed. We may also write H s (q) = σ s (θ)[q 2 + m 2 e (θ)],

(5.47) with .48) this corresponds to a correlation length

m 2 s (θ) = m 2 1 + v 2 cos 2 (θ) v 2 0 , ( 5 
ξ s = ξ eq 1 + v 2 cos 2 (θ) v 2 0 , (5.49) 
and we see that it is increased in the direction of the driving.

As we have just remarked that the above results appear to be independent of the order parameter jump ∆ψ and the diffusion constant D, however the next order correction to H s for small q is given by H s (q) = σ s (θ)[q 2 + m 2 e (θ)] -

4Dqσ 2 (λ + κm 2 )(q • v) 2 α 3 κ 2 λ 2 ∆ψ 2 , ( 5.50) 
and so the small q expansion breaks down at ∆ψ = 0, indeed one can see that the system has exactly the equilibrium correlation function when ∆ψ = 0. In the limit of large q we see that the effective Hamiltonian is given, to leading order, by the original equilibrium Hamiltonian and so the out of equilibrium driving has no effect on the most energetic modes of the system.

The results here predict that for unconfined surfaces the long range height fluctuations are described by an isotropic form of capillary wave theory with an anisotropic surface tension which is largest in the direction of driving. Numerical simulations of driven lattice gases in two dimensions [START_REF] Leung | Anomalous interfacial correlations in non-equilibrium anisotropic systems[END_REF] show a more drastic change upon driving and find C s (q) ∼ 1/q .66 and thus a strong deviation from capillary wave theory.

A model of active interfaces

We can apply the results derived in the previous section to analyse a simple model for surfaces formed between two phases of active colloids. Activity is modelled by assuming that the colloidal field ψ has a temperature different to that of the solvent field φ. This models the effect that activity leads to enhanced colloidal diffusivity over and above the Brownian motion of particles due to thermal fluctuations [START_REF] Grosberg | Nonequilibrium statistical mechanics of mixtures of particles in contact with different thermostats[END_REF].

In the absence of any driving the dynamical equations for the field ψ and φ become ∂ψ(x, t ) ∂t = D∇ 2 δH δψ(x) + 2DT 1 2q + λσD κ + Dσ(q 2 + m 2 )] + [αλDσ(q 2 + m 2 ) -

∆ψ 2 2q ω 2 ]
2 .

(5.53)

The equal time steady state height fluctuations thus have correlation function

Cs (q) = T 1 σ(q 2 + m 2 )   1 -(1 - T 2 T 1
) λσ κ

1 αλ∆ψ 2
2Dq + λσ κ + σ(q 2 + m 2 )   .

(5.54)

We see, again, that the inclusion of a non-equilibrium driving changes the statistics of height fluctuations and leads to a steady state that depends on both dynamical variables D and α as well as static ones ∆ψ, λ and κ that remain hidden in the equilibrium case. This phenomenon is again seen in the behavior of the universal thermal Casimir force between Brownian conductors held at different temperatures [START_REF] Lu | Out-of-equilibrium thermal Casimir effect between Brownian conducting plates[END_REF].

If we assume strong activity we can take the limit T 1 T 2 , in this case we find Cs (q) = T 1 σ(q 2 + m 2 ) αλ∆ψ 2 2Dq + σ(q 2 + m 2 ) αλ∆ψ 2 2Dq + λσ κ + σ(q 2 + m 2 ) .

(5.55)

Interpreted in terms of an effective Hamiltonian for an equilibrium system at the temperature T 1 the above gives H s (q) = σ(q 2 + m 2 )

  1 + λσ κ q αλ∆ψ 2
2D + qσ(q 2 + m 2 )   .

(5.56) psi In the case of an unconfined interface (where there is no gravitational effect on the surface fluctuations) i.e. m = 0 we see that for small q H s (q) ≈ σq 2 + 2Dσ 2 κα∆ψ 2 q 3 . (5.57)

We see that the effective surface tension is not modified but a reduction of fluctuations due to the presence of the term in q 3 arises. As in the case of a driven system, we see that the large q behavior of the effective Hamiltonian is given by the equilibrium case where T = T 1 = T 2 .

In the case where the interface is confined, we see that for small q one obtains H s (q) ≈ σm 2 1 + 2Dσ κα∆ψ 2 q , (5.58) and thus at the largest length scales of the problem there is a qualitative departure from capillary wave behavior induced by activity, and the correlation length of height fluctuations at the largest length scales is given by ξ a = 2Dσ κα∆ψ 2 .

(5.59)

The above result should be compared with that obtained in [START_REF] Zia | Interfacial correlation and dispersion in a non-equilibrium steady state system[END_REF] for systems with anisotropic thermal white noise, which breaks detailed balance and mimics random driving of the system parallel to the interface; for free interfaces it was found that C s (q) ∼ 1/q.

Conclusion

We have presented a model to analyse the effect of uniform driving on the dynamics of the interface in a two phase system. In order to generate a non-equilibrium state a second hidden order parameter was introduced. This models the behaviour of a local or solvent degree of freedom which is not influenced by the driving field. In this way, we obtain out of equilibrium interface fluctuations which are described by Gaussian statistics as found in the experimental study of [START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF]. The agreement with this experimental study also extends to qualitative agreement with the increase of the effective surface tension in the direction of driving and also an increase in the correlation length of the height fluctuations with respect to a non-driven equilibrium interface. However, we note that numerical simulations of a sheared Ising interface [START_REF] Smith | Interfaces in Driven Ising Models: Shear Enhances Confinement[END_REF][START_REF] Smith | Lateral transport of thermal capillary waves[END_REF] also reveal a reduction of interface fluctuations but the lateral correlation length is found to be reduced.

The basic idea underlying this study would be interesting to apply to a number of possible variants of this model, for instance both the dynamics of the main field φ and the solvent field φ could be varied. To make a direct link with driven colloidal interfaces one should study model H type dynamics for the main field φ and other variants for the dynamics of the solvent field φ could also be considered.

As mentioned above, in lattice based models driving induces non-equilibrium states even in the simple Ising lattice gas. A model analogous to that studied here can be formulated in a lattice based systems using the Hamiltonian H = -J (i j ) S i S j (1 + σ (i j ) ), (5.60) where S i = ±1 are Ising spins at the lattice sites i , and σ (i j ) = ±1 are Ising like dynamical solvent variables associated with the lattice links (i j ). The static partition function is given by Z = Tr σ i j ,S i exp βJ (i j )

S i S j (1 + σ (i j ) ) , (5.61) and the trace over the solvent variables can be trivially carried out to give Z = Tr S i exp βJ

(i j ) S i S j (i j )
2 cosh(βJS i S j ) = [2 cosh(βJ)] L Tr S i exp(βJ (i j )

S i S j ), (5.62) where L is the number of links on the lattice of the model. We thus see that the underlying effective static model is precisely the zero field Ising model. This model can then be driven in a number of ways, for instance using conserved Kawasaki dynamics for the Ising spins to model diffusive dynamics in the presence of a uniform driving field parallel to the surface between the two phases at a temperature below the ferromagnetic ordering temperature T c . The dynamics of the Ising spins on the lattice links can be given by non-conservative single spin flip, for instance Glauber, dynamics to keep the analogy with the continuum model discussed in the paper but diffusive dynamics or indeed a mixture of diffusive and non-conserved dynamics could be implemented. It would be interesting to see to what extent this modification of the driven lattice gas model affects the non-equilibrium driven states that arise.

It is also clear that this lattice model can be used to simulate the effect of activity where the Ising spins S 1 corresponding to the colloid field undergo Kawasaki dynamics at the temperature T 1 where as the link variables σ (i j ) undergo single spin flip non-conserved dynamics at the temperature T 2 .

Driven SOS model

Common experience with wind generated waves shows us that the effective surface tension of driven interfaces decrease with driving, as seen in a homemade wind generation system in Fig 5 .2. The difference in this kind of system comes from the way the interface is driven. In the previous section, the whole system was driven, while in wind generated waves only the upper phase has an hydrodynamic flow, meaning that the velocity field is v(x, t ) = Θ(h(r, t ))e x (5.63) where Θ(•) is the Heaviside step function. While in the previous section, in order to break the Galilean invariance, we were forced to couple the colloidal field φ(x, t ) with a solvent field φ(x, t ), this kind of velocity field does not require such artifact to give out-of-equilibrium steady states only with the colloidal field. Even though the full computation for this new system was not carried, numerical simulations on SOS models under Kawasaki dynamics allows for direct study. In the case of a uniform driving in lattice based numerical simulations, the invariance is broken because of the discrete-time nature of the algorithm. In a SOS model under Kawasaki dynamics, the implementation of a constant driving flow is as follows. From the configuration C a configuration C is chosen as explained is Sec 2.2.2, meaning a random site i and its nearest neighboor i ± 1 are chosen in such a way that the first one give one of its particles to the second. Under a flow, the difference of energy between both states is

∆E d = ∆E eq ± v (5.64)
where v is the intensity of the drive, and the sign depends on the direction of the flow. For example, if the flow goes to the right, then every configuration which moves a particle to the right will have an additional energy +v, while if the particle goes against the flow, it will have an additional energy -v. We suppose here that the uniform driving in SOS systems is equal to driving in Eq. (5.63) since there is no bulk behaviour. Implementing a shear v|L/2 -y| as in Fig 1 .10 is tricky, because it requires to know the height of the particle and thus have access to bulk information which does not exist in SOS models. Here, only the particles at the interface can move and change height accordingly to the interface's height of the neighboring site. The vertical movement of the particle, couple to the horizontal one, is what makes the SOS model different to the Ising one, and physical arguments forbids the use of h i , h i +1 or even the average

h i +h i +1 2
as the shear contribution might be zero depending of the configuration, even though it should always be present.

Under periodic boundary conditions, the direction of the flow should not alter the steady state. The average total energy has thus to be an even function with respect to the drive v, ie 〈E(v)〉 = 〈E(-v)〉

(5.65) where ξ ⊥ (v) is the interfacial correlation length. This interface width has the same qualitative behaviour as the interface width 〈w〉 = 〈h 2 〉 -〈h〉 2 . In Fig 5 .3 we show some snapshots of numerical simulations under Kawasaki dynamics, and visually see how the interface width effectively increases with the driving for the same mean value 〈h〉, while in Fig 5 .4 we plot the interface width and the surface tension with respect to the drive. The first thing we notice is that the interface width increases with the imposed driving in an almost linear way, as does the mean height of wind generated waves with respect to the wind surface velocity [START_REF] Maat | The roughness of wind waves[END_REF]. The second thing we notice is that there are a change of regime at v = 2J and v = 4J, with a net change in the derivative. The change of energy ∆E has values in [-4, -2, 0, 2, 4], so we see that there are three regimes : the weak driving regime for v < 2J , the middle regime for 2J < v < 4J where some moves with adding energy to the system are always accepted, and the strong driving regime for v > 4J where all moves adding energy are accepted, ending with a saturation when the bond energy becomes negligible with respect to the driving. This discontinuity in the derivative of the interface width is not seen in the GSOS model, which exhibits a smoother while qualitatively similar behaviour. 

Conclusions

We presented two models to analyse the effect of uniform driving on the dynamics of the interface in a two phase system. Using dynamics derived from model B [START_REF] Bray | Interface fluctuations under shear[END_REF][START_REF] Bray | Interface fluctuations, Burgers equations, and coarsening under shear[END_REF] and adding a coupling field from model A in order to remove galilean invariance in the equations, we found that the driving does increase the effective surface tension in the direction of driving and increases the correlation length along the interface with respect to a non-driven equilibrium interface, as seen in colloid epxeriments [START_REF] Derks | Suppression of Thermally Excited Capillary Waves by Shear Flow[END_REF] and numerical simulations [START_REF] Smith | Lateral transport of thermal capillary waves[END_REF]. This work resulted in a published article [START_REF] Dean | The effect of driving on model C interfaces[END_REF].

We also studied the effect of driving in SOS models, and found that contrary to Ising systems [START_REF] Smith | Interfaces in Driven Ising Models: Shear Enhances Confinement[END_REF] and model C systems, the driving does reduce the surface tension in a similar fashion as wind generated waves [START_REF] Maat | The roughness of wind waves[END_REF]. We conjecture that solving model B with the velocitiy field v(x, t ) = Θ(h(r, t ))e x would lead to similar behaviour, and that the physicial diference between the two systems is how the interface is sheared : in the model C case the bulk is driven while in wind generated waves only particles at the interface are driven. SOS models provide a direct way to simulation such driving, and we propose the following implementation for the Ising model. At low temperature in a phase separated system, the interface height at point r is defined as h(r) = L z=0 σ(r, z). To mimic wind driving, only spins which are over the interface would be affected by the driving.

In this chapter, we have shown how out-of-equilibrium steady states can exhibit similar behaviour as equilibrium systems, with a rescaling of the system's observables. The primary goal of the thesis was to study the effect of out-of-equilibrium steady states in confined geometry, and the results shown in the chapter show no compeling evidence of new physics to be found there.
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Figure 1 . 1 :

 11 Figure 1.1: Numerical simulations of coarsening from a quench from a disordered state T = ∞ to an ordered state T = T 2D,C[START_REF] Onsager | Crystal Statistics. I. A Two-Dimensional Model with an Order-Disorder Transition[END_REF] for different times, in Monte Carlo steps, for a 600 × 600 system with nonconserved Glauber dynamics and periodic boundary conditions.
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Figure 1 . 2 :

 12 Figure 1.2: Double-well potential (1.19) for λ = 1 in function of the temperature difference with respect to the critical temperature with m 2 = T -T C . In the ordered phase, the minima are at φ C = ± -6m 2λ , while for the ordered phase it is at φ C = 0. In black, the addition of a uniform magnetic field h(x) = 1 makes the positive phase metastable.

40 )Figure 1 . 3 :

 4013 Figure 1.3: Surface tension (1.41) versus ξ for the φ 4 solution (1.43).

Figure 1 . 4 :

 14 Figure 1.4: Snapshot of Monte Carlo simulations of the Ising model for two different temperatures in two dimensions(T = 0.7T C (left) and T = 0.95T C (right)) with periodic boundary conditions in x. The interface between both phases is set by the fixed boundary conditions on y.

Figure 1 . 5 :

 15 Figure 1.5: Possible configuration of the SOS model for a semi-infinite geometry (left) and infinite geometry (right). The red line shows the origin z = 0. In the i -th column the interface is at height h i . Particles under the interface are from the Isingphase, while particles over it are from the + phase.

Figure 1 . 6 :

 16 Figure 1.6: Mean height of the SOS interface (1.132) with respect to -µ through diagonalization of the transfer matrix for β = 1, in the limit L → ∞.

Figure 1 . 7 :

 17 Figure 1.7: Infinite and symmetrical transfer matrix 1.135.

Figure 1 . 9 :

 19 Figure 1.9: Snapshot of the interface a sample of fluorescently labeled poly(methyl methacry-late) (PMMA) colloidal spheres in polystyrene close to the critical point, for different shear rates. The bottom panel schematically shows the flow geometry with the plane of zero velocity located at the interface. From [19].

Figure 1 . 10 :

 110 Figure 1.10: Snapshot of a 2D Ising model with respect to the shear (1.151) with Kawasaki dynamics at T = 0.9T 2D,C .
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Figure 2 . 1 :

 21 Figure 2.1: Snapshot of a Glauber simulation of a SOS system at β = 1, µ = 0.01 and L = ∞.

TFigure 2 . 2 :

 22 Figure 2.2: Plot of the energy per site (top) and the autocorrelation function (bottom) with Glauber dynamics from an initial state where h i = 0, for different temperatures.

Figure 2 . 3 :T

 23 Figure 2.3: Mean height value per site with respect to µ different system size L both by Glauber dynamics and diagonalization of the transfer matrix (which has already been shown in Fig 1.6) for β = 1 and L = 256.

Figure 2 . 4 :

 24 Figure 2.4: Plot of the energy per site (top) and the autocorrelation function (bottom) with Kawasaki dynamics from an initial state where h i = 0, for different temperatures.

Figure 2 . 5 :

 25 Figure 2.5: Progessive decoupling of the k-th layer of the system in order to compute the freen energy through the Crossover Hamiltonian. Blue bonds have an energy of βJ, red ones an energy of λβJ and the green ones an energy of(1 -λ)βJ. Reproduction 2D of [11].
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 126 Interestingly comparison with the thermodynamic calculation giving Eq.(3.120) shows that the identityz 0 = 2 3 α 1 ,(3.127)must hold -this surprising identity can be verified numerically. Here we find that the average height given by 〈h〉 =

Figure 3 . 2 :

 32 Figure 3.2: The scaled probability density function p(z) for the distribution of the height at a single point for the Airy line given in Eq. (3.124)

Figure 3 . 6 :

 36 Figure 3.6: λ 0 and λ 1 as a function of L computed by numerical diagonalisation of the transfer matrix, compared to the analytical approximations for large L: Eq. (3.178) and Eq. (3.181). Here we have chosen for J = 1 and β = 1.

Figure 3 . 7 :

 37 Figure 3.7: Free energy with respect to β for L = 100 and J = 1 in the high-temperature limit, by direct diagonalization of the transfer matrix and by Eq (3.200).
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 9 which gives the mean height 〈h〉 = exp(βµ)(4.10) 

Figure 4 . 1 :

 41 Figure 4.1: Mean height of the SOS (for reference) and POP model with respect the chemical potential µ through transfer matrix with different maximal heights in the thermodynamic limit L → ∞, compared to the Striling's approximation Eq (4.10),at β = 1.

Figure 4 . 2 :

 42 Figure 4.2: Possible POP configuration with two types of particles p 1 and p 2 .The red line shows the origin z = 0. In the i -th column the interface is at height h i , with n 1,i particles of type p 1 at site i , and same for particles p 2 . There are no particles at the top of the interface.
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 112 x), ...n M (x)) = m -µ m n m (x) + Tn m (x)[ln(n m (x)) -1] (4.21) We have used Stirlings formula and thus assumed that the typical value of n m (x) aree large. We now expand V(n 1 (x), ...n M (x)) by writing n m (x) = n m + φ m (x) where (n 1 , ..n M ) is the minimum of V(n 1 , ..n M ). Here we find n m = exp(βµ m ) (4.22) This gives an effective Hamiltonian for the fluctuations of the fiels φ m forward calculation then shows that the Fourier transform of the connected heightheight fluctuation correlation function is Chh (k) = T σ + r e (4.25)

. 7 )Figure 5 . 1 :

 751 Figure 5.1: Schematics of the advection term v • ∇ψ(x, t ) for a field under the interface approximation(5.18). The red and blue phase respectively correspond to φ 2 and ψ 1 , with φ 2 > ψ 1 , and the solid line the interface between phases.
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 36 as one may close the integration contour in the lower half of the complex plane. Taking the real and imaginary part of Eq. (5.36) leads to CI(1) -DI(ω) -EI(ω 2 ) = 0 (5.37) AI(ω) + BI(1) = 0 (5.38) Using this we can express I(ω 2 ) as a function of I(1), and explicitly we have I(ω 2 ) = I

Figure 5 . 2 :

 52 Figure 5.2: Homemade wind generated waves with a hair dryer, where the water has been coloured in blue for contrast. The stronger the wind output, the larger the interface width becomes.

Figure 5 . 3 :

 53 Figure 5.3: Snapshot of the SOS interface with Kawasaki dynamics at β = 1 and 〈h〉 = 4.51 for different drivings using Eq (5.64).

Figure 5 . 4 :

 54 Figure 5.4: Interface width w = 〈h 2 〉 -〈h〉 2 and surface tension σ computed from the integral (5.66) with respect to the drive v, with L = 256, L = 200, 〈h〉 = 4.5, and β = J = 1 for 5 • 10 7 MC steps.
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The first Bernoulli numbers are explicitly given by B 1 = 1 , B

= 1 2 , B 4 = -1

In C++, we can use a st d :: vec t or in which we add or remove particles. After each success attempt, we rebuild the distribution st d :: uni f or m_i nt _d i st r i but i on(0, N -1), where N is the number of particles. This operation is lightweight and should not cause any slowing down. For the next section's algorithm with multiple particle types, we use st d :: d i scr et e_d i st r i but i on〈〉.

Remerciements

An heuristic argument to find a suitable upper limit for integration is when h * (B 2 ) h * (B 1 ). In Fig 3 .3, we see the free energy computed from the matrix transfer, compared to the integration procedure (3.135) for the SOS model for the chemical potential V(h i ) = h i in Monte Carlo simulations, where we see the agreement for B 2 large enough.

Since the order parameter is conserved in model B, the generalized Lopes-Jacquin-Holdswroth method can be used to compute the free energy for Kawasaki dynamics for potentials different from the chemical potential. As a proof of concept, we take a potential of the form

Such potential will press the interface along h = 0 and h = L compared to the classical chemical potential which presses the interface at h = 0, as seen in Fig 3 .4. Far away from L 2 , both potentials are equivalent in symmetric fashion, and shall behave similarly for large B, because the free energy only depends on the interface fluctuations and not about the mean height.

In the B → ∞ limit, the system has two equilibrium positions h = 0 et h = L, which gives the transfer matrix

e -βJL e -βJL 1 (3.142)

The eigenvalues are λ ± = e βB L 2 (1 ± e -βJL ), so the free energy is to study finite-size effects on critical systems under different thermodynamical ensembles, namely the critical Casimir force in Kawasaki Ising systems.

For the confined SOS interface, we followed Švrakić [START_REF] Švrakić | Finite-size corrections for inclined interfaces in two dimensions: Exact results for Ising and solid-on-solid models[END_REF] to obtain the exact eigenvalues and eigenvectors of the transfer matrix in the case V(h) = 0. This gives us a free energy which has a the same dependence to the system's size than the confined elastic line.