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Abstract
Optimization of User-Defined Aggregate Functions: Parallelization and Sharing

by Chao ZHANG

Applications of aggregations for information summary have great meanings in various
fields. System built-in aggregations are not sufficient to cover the needs of new applica-
tions in the age of analytics. UDAFs (user-defined aggregate functions) are becoming a
type of fundamental operators in advanced data analytics. The UDAF mechanism pro-
vided by most of the modern systems suffers however from at least two severe draw-
backs: defining UDAFs requires hardcoding the routine that computes the aggregation
function, and the semantics of UDAFs is totally or partially unknown to the query pro-
cessor which hampers the optimization possibilities. This thesis presents SUDAF (Shar-
ing User-Defined Aggregate Functions), a declarative framework that allows users to
formulate UDAFs as mathematical expressions and use them in SQL statements. SUDAF
comes equipped with the ability to generate efficient parallel implementation from users’
UDAFs automatically and supports dynamic caching and reusing of partial aggregates.
Our experiments show that the proposed sharing technique can lead from one to two
orders of magnitude improvement in query execution times.
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tions, MapReduce
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Résumé
Optimisation des fonctions d’agrégation définies par l’utilisateur: parallélisation et

partage

par Chao ZHANG

Les applications des agrégations pour la synthèse d’informations sont significatives dans
de nombreux domaines. Les agrégations incorporées par défaut dans les systèmes ne
sont pas suffisantes pour satisfaire les besoins qui émergent avec les progrès de l’analyse
de données. Les UDAFs (User-Defined Aggregate Functions ou, en français, fonctions
d’agrégation définies par l’utilisateur) sont en train de devenir un des opérateurs fonda-
mentaux en analyse de données avancée. Le mécanisme UDAF fourni par la plupart des
systèmes modernes souffre cependant d’au moins deux défauts : la définition d’UDAFs
nécessite le codage en dur de la routine qui calcule la fonction d’agrégation, et la sé-
mantique des UDAFs est totalement ou partiellement inconnue des processeurs de re-
quêtes, empêchant leur optimisation. Cette thèse présente SUDAF (Sharing User-Defined
Aggregate Functions), un cadre framework déclaratif qui permet aux utilisateurs de for-
muler des UDAFs sous la forme d’expressions mathématiques et de les utiliser dans des
déclarations SQL. SUDAF est capable de générer automatiquement des implémentations
parallèles efficientes à partir des UDAFs des utilisateurs, et supporte la mise en cache
dynamique et la réutilisation des agrégats partiels. Nos expérimentations montrent que
la technique de partage proposée permet des gains d’un à deux ordres de magnitude sur
les temps d’exécution des requêtes.

Partial aggregations, Query optimization, Query rewriting, User-defined aggregate func-
tions, MapReduce

HTTP://WWW.UCA.FR
http://spi.ed.uca.fr/
https://limos.fr/
https://limos.fr/
https://limos.fr/




vii

For my parents and grandparents.





ix

Acknowledgements
This work is fully funded by University Clermont Auvergne and the department of Puy-
de-Dôme. I appreciate having the opportunity to work on this thesis.

I would like to express my sincere gratitude to my advisor Prof. Farouk Toumani for
his motivation and immense knowledge. I also would like to thank my advisor Dr. Em-
manuel Gangler for his continuous support of this work. Besides my advisors, I would
like to thank the rest of my thesis committee: Dr. Reza Akbarinia, Prof. Dimitris Kotzi-
nos, Prof. Angela Bonifati, and Prof. KANG - Myoung-Ah, for their insightful comments
and valuable suggestions.

Last but not least, I would like to thank my parents and grandparents for supporting
me spiritually and thank my friends for preparing the defense.





xi

Contents

1 Introduction 1

2 Parallelization of UDAFs 5
2.1 A canonical form of UDAFs . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Mapping a canonical form to a massively parallel algorithm . . . . . . . . 9
2.3 Experimental evaluation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 The sharing problem in SUDAF framework 17
3.1 Motivating example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Caching and sharing aggregation . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Practical sharing framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.4 Dealing with the sharing problem in SUDAF . . . . . . . . . . . . . . . . . 27
3.5 Extension to multivariate functions . . . . . . . . . . . . . . . . . . . . . . . 36
3.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 A practical approach to solve the sharing problem 39
4.1 Symbolic representations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Precomputed sharing relationships . . . . . . . . . . . . . . . . . . . . . . . 41
4.3 Organizing the space saggsl(X) . . . . . . . . . . . . . . . . . . . . . . . . . 43
4.4 Anatomy of the SUDAF cache . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.5 Experimental evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5 Prototype implementation 61
5.1 SUDAF architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
5.2 SUDAF API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Generating canonical forms from mathematical expressions . . . . . . . . 65

6 Related works 73
6.1 Partial aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Caching and materializing queries with aggregation . . . . . . . . . . . . . 75

7 Conclusions 77

A 79
A.1 Moving a tuple-wise scalar computation to a final scalar computation . . . 79





xiii

List of Figures

2.1 Data flow in well-formed aggregation . . . . . . . . . . . . . . . . . . . . . 6
2.2 Data flow in the MapReduce framework. . . . . . . . . . . . . . . . . . . . 9
2.3 Computation time and total partial result length of ∑ xi and ∏ xi with dif-

ferent significant digits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Experiments in PostgreSQL with the TPC-DS dataset (scale = 20). UDAFs
theta1() and qm() are created in PL/pgSQL. . . . . . . . . . . . . . . . . . . 18

3.2 Experiments in Spark SQL with the TPC-DS dataset (scale = 100). UDAFs
theta1() and qm() are created using UserDefinedAggregateFunction in Scala. 18

3.3 Plan of the query Q1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.4 Plan of the subquery of RQ1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.5 Plan of the query Q2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.6 Plan of the subquery of RQ2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.7 Plan of the subquery of RQ3. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.8 Plan of the subquery of RQ3’. . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.9 Sharing aggregation pipeline (AP). . . . . . . . . . . . . . . . . . . . . . . . 23
3.10 Injective and even functions in PS◦ and PS�. . . . . . . . . . . . . . . . . . 28
3.11 Transforming aggregate expression trees (AET) using splitting rules . . . . 36

4.1 The digraph G of saggs2(X). . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.2 The simplified digraph G of saggs2(X). . . . . . . . . . . . . . . . . . . . . 43
4.3 SUDAF cache. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Implementation of SUDAF cache. . . . . . . . . . . . . . . . . . . . . . . . . 51
4.5 Total execution time of each query sequence in each query model (exclud-

ing queries with approximate median). . . . . . . . . . . . . . . . . . . . . 55
4.6 Total execution time of each query sequence in each query model (exclud-

ing queries with approximate median). . . . . . . . . . . . . . . . . . . . . 55
4.7 Execution time in PostgreSQL of each query in each query sequence. . . . 57
4.8 Execution time in Spark SQL of each query in each query sequence. . . . . 58

5.1 Workflow of processing UDAFs in SUDAF. . . . . . . . . . . . . . . . . . . 62
5.2 SUDAF prototype architecture. . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3 Parsing expressions of UDAFs to generate canonical forms of UDAFs. . . 68
5.4 Aggregate expression tree (AET) of geometric mean and the corresponding

decomposed AET. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69





xv

List of Tables

2.1 Examples of aggregation in canonical forms. . . . . . . . . . . . . . . . . . 8
2.2 MR(α): a generic MR algorithm for UDAFs. . . . . . . . . . . . . . . . . . 11
2.3 Computation time and total partial result size of ∑ xi and ∏ xi with unlim-

ited precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.1 Classes of functions supported by SUDAF. . . . . . . . . . . . . . . . . . . . 26
3.2 Cases analysis of the sharing problem in SUDAF. . . . . . . . . . . . . . . . 28

4.1 Symbolic inverse s f−1
p̄ (x) of symbolic primitive scalar function s f p̄(x), x > 0. 45

4.2 Compositions of symbolic primitive scalar functions s f2p̄2 ◦ s f1p̄1(x), x > 0. 49

A.1 Cost of computing ∑n
i=1(xi + a)b and its binomial expression. . . . . . . . . 80



xvi



1

Chapter 1

Introduction

An aggregate function has the inherent property of taking several values as input and
generating a single value based on specific criteria [MGP09, GMMP11]. This ability to
summarize information, the intrinsic feature of aggregation, has always been a funda-
mental task in data analysis [GCoS+97, KBY17]. While earlier data management and an-
alytical systems come equipped with a set of built-in aggregate functions, e.g., max, min,
sum and count, it becomes clear that a limited set of predefined functions is not sufficient
to cover the needs of the new applications in the age of analytics. In addition to aug-
menting the set of their built-in functions, most modern systems (e.g., [apaa, apad, apab,
RDBc, RDBa, RDBb]) enable users to extend the system functionalities by defining their
own aggregations. The UDAF (User-Defined Aggregate Function) mechanism provides
a flexible interface to define new aggregate functions that can then be used for advanced
data analytics, i.e., queries with statistical functions or ML workloads.

Efficiently computing aggregate functions (built-in functions or UDAFs) is essential
to processing queries with aggregations. In the age of massively distributed and paral-
lel computing, aggregate functions have to be decomposed into a partial aggregation, a
merging function, and a finalizing function. Partial aggregations are sent to compute at
worker nodes, results of which are collected at a master node. Then, the merging function
and finalizing function are applied subsequently. Obtaining partial aggregations is usu-
ally called decomposition of aggregation functions, which is also an important technique
in various fields related to aggregate query processing. In distributed group-by query
processing, partial aggregation can be applied before the data shuffling phase [YGI09].
This is usually called initial reduce, with which the size of data transmission on a network
can be substantially reduced. In multi-dimensional query processing, partial aggregation
enables computing aggregation by merging summaries of cells with different granularity
across multi-dimensional data, thereby enabling aggregate queries to be executed on pre-
computed results instead of base data [CD97]. An important point of query optimization
in relational databases is to reduce intermediate result size for join [HMJJ00] and partial
aggregations bring interests [YbL95] for group-by and join queries.

The current UDAF mechanism in data management or analytic system requires users
to explicitly implement the routine of computing partial aggregation, the merging func-
tion and the finalizing function for an aggregation function. For example, to write a
custom UDAF in Spark SQL [apad], a user needs to map the UDAF to four methods:
initialize, update, merge and evaluate. The user must ensure that the merge method is
commutative and associative, such that the UDAF can be computed correctly in a dis-
tributed architecture. In other words, to take benefit from distributed computations in
Spark SQL, it is up to the user to identify whether her function supports partial aggre-
gates (i.e., whether it is an algebraic function [GCoS+97]). Such a mechanism pushes
from the side of a data management system to users the effort of obtaining partial aggre-
gations from an aggregation function. Another issue underlying the current mechanism
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of UDAFs is the loss of opportunities to optimize queries with UDAFs, since the seman-
tics of a UDAF, i.e., what properties it has, may not be fully known by the query processor
unless users explicitly define them. For example, PostgreSQL naturally supports paral-
lel aggregation [Par19] for some built-in aggregates, i.e., SQL standard aggregates and
statistical aggregates. However, it does not compute a UDAF in parallel, unless users
explicitly tell the query processor that the UDAF is safe to be paralleled.

As explained previously, partial aggregations are the foundations of efficient com-
puting an (algebraic) aggregation in a distributed architecture, but their computation re-
sults are seldom cached and reused to accelerate queries with aggregations, especially for
UDAFs. It is well-known that evaluating queries from caches can be significantly faster
than computing a query from base data. However, most previous works focus on data
dimension, i.e., the predicate range of the second query is fully or partially contained in
the first query, or the group-by granularity of the second query is bigger than the first
query in OLAP applications. The computation dimension, i.e., sharing opportunities of dif-
ferent aggregation functions, are not widely taken into consideration, which can lead to
the issue that caches can only be reused to queries which have the identical aggregation
to the cached one. The general problem can be summarized as how to compute an aggre-
gate function from another one? Built-in aggregations can be trivially handled since one
can explicitly predefine their relationships of how to compute one from another one, e.g.,
avg can be computed from sum and count. However, when it comes to the scenarios of
UDAFs, how to capture such a computation relationship is a hard nut to crack.

The general objectives of this thesis are twofold: firstly, we aim at automatically gen-
erating efficient partial aggregations from a declarative specification of UDAFs [ZTG17b,
ZTG17a, ZTG18]. Secondly, we aim at identifying when partial aggregations of a UDAF
can be reused to compute partial aggregations of another UDAF [ZTG18, ZT19]. The
above objectives guided the design of SUDAF (Sharing User-Defined Aggregate Func-
tions) [ZT19], a declarative framework that comes equipped with the ability to automat-
ically generate parallel implementation from a mathematical expression of a UDAF and
which supports efficient dynamic caching and reusing of partial aggregates. More pre-
cisely, SUDAF offers full flexibility to users by providing a declarative framework that
allows them to write UDAFs as mathematical expressions and then use them in SQL
statements. Then, SUDAF enables to decompose mathematical expressions of UDAFs and
map them to efficient computations in massively parallel frameworks. Moreover, SUDAF
dynamically caches partial aggregation results and checks whether partial aggregations
in new UDAFs can be computed from the cached ones.

Contributions. Our main contributions, implemented in the SUDAF framework, are as
follows:

• We rely on the notion of a canonical form of UDAF [Coh06] to provide a generic
implementation scheme for aggregate functions in massively parallel architectures.
We identify a practical cost model of MapReduce computations, and we map the
generic implementation schema of aggregations to such a cost model to have effi-
cient MapReduce computations of aggregations.

• We build on the canonical form of aggregate functions to identify the right level of
aggregation to keep in the cache. We formalize the problem of identifying when
a partial aggregate of a given UDAF can be used in the computation of another
UDAF as the sharing problem, and we show that this problem is undecidable in a
general setting.
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• We present SUDAF, a declarative UDAF framework that allows users to formulate
a UDAF as a mathematical expression and use them in SQL statements. When ex-
ecuting a given query with UDAFs, SUDAF identifies appropriate partial aggrega-
tions from the mathematical expression of a UDAF and rewrites them using simple
built-in functions of an underlying data management and analysis system.

• To deal with the undecidability of the sharing problem, we restrict the set of UDAFs
supported by SUDAF. Three classes of predefined primitive functions are proposed:
primitive scalar functions, binary functions and primitive aggregate functions. SUDAF
also provides a composition operator that enables to create new functions by com-
posing existing ones. This practical framework is powerful enough to be used in
practical applications while it makes the sharing problem decidable. From a the-
oretical standpoint, we provide conditions to characterize the sharing problem in
the SUDAF framework (Theorem 3). From a practical standpoint, we design an
approach based on symbolic representations of mathematical expressions to effi-
ciently verify the proposed conditions.

• We describe a sophisticated implementation of the SUDAF cache that allows max-
imizing the sharing possibilities while minimizing the redundancies in the cache.
The SUDAF cache includes a symbolic index that captures the sharing relationships
of symbolic classes of partial aggregations in UDAFs. The symbolic index is pre-
computed in an initialization step during the installation of SUDAF and then it is
used to identify: (i) the unit of computations that are worth to cache, and (ii) when
a cached result can be reused in the computation of a given UDAF.

• We implemented a SUDAF prototype, which can be used on top of existing data
management and analysis systems. We report on experiments using SUDAF with
both PostgreSQL and Spark SQL. Our experiments show that rewriting UDAFs
using built-in aggregates can significantly speed up query execution time. Also, the
proposed sharing technique can yield up to two orders of magnitude improvement
in query execution time.

Thesis organization. The thesis is organized as follows. In Chapter 2, we introduce a
canonical form of aggregation functions and discuss how it can be used to map UDAFs to
massively parallel algorithms. In Chapter 3, we present the SUDAF practical framework.
We first identify the right level of aggregation to keep in caches to enable efficient aggre-
gate sharing across UDAFs. We formalize the problem of reusing partial computation
results of aggregations as the sharing problem, and we show that it is an undecidable
problem in general settings. Therefore, we propose primitive functions to restrict our
study for practical aggregations. We propose in SUDAF for the sharing problem full cate-
gorization, complete sharing conditions and forms of reusing functions. In Chapter 4, we
introduce a practical approach, based on symbolic representations of partial aggregates,
to solve the sharing problem in the SUDAF framework. We also discuss the design prin-
ciples underlying the caching scheme of SUDAF. At the end of the Chapter 4, we present
an experimental evaluation of SUDAF on top of Spark SQL and PostgreSQL, and we re-
spectively compare their performances for different sequences of aggregate queries. In
Chapter 5, we first present the implementation details of SUDAF prototype, and then we
discuss how to generate canonical forms from mathematical expressions of UDAFs. We
discuss related works in Chapter 6 and conclude in Chapter 7.
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Chapter 2

Parallelization of UDAFs

This chapter focuses on the following two problems related to the parallelization of
UDAFs:

(i) How to systematically map a UDAF to a distributed algorithm? We identify a canonical
form of UDAFs, well-formed aggregation [Coh06], which captures how a UDAF
is constructed. The canonical form can be mapped to the MapReduce paradigm,
which yields a generic MapReduce algorithm for computing UDAFs [ZTG17a].

(ii) When the generated MapReduce algorithm is efficient? We identify a class of efficient
MapReduce algorithms,MRC algorithms [KSV10]. We analyze when the generic
MapReduce algorithm for a UDAF obtained by its canonical form can be aMRC
algorithm [ZTG17b, ZTG18].

2.1 A canonical form of UDAFs

In this section, we first present the canonical form of UDAFs used in this thesis, well-
formed aggregation [Coh06]. We also show that an aggregate function having one of
several algebraic properties can be systematically mapped to the canonical form.

An aggregate function takes as inputs several values and produces as an output a
single representative value of the inputs [GMMP11]. In our work, we consider arbitrary
aggregate functions operating on a multiset, X = {{x1, ..., xn}}. The size of X (the number
of values in X) is denoted as |X|, |X| = n, n ∈ N∗. Let Ds and Dt be two domains (i.e. a
set of infinite number of values), and letM(Ds) denote the set of all nonempty multisets
of elements from Ds. An aggregate function α is a function:M(Ds)→ Dt.

We use the notion of well-formed aggregation to define a canonical form of aggregate
functions. Well-formed aggregation was introduced in [Coh06] to capture the manner in
which a UDAF is created.

Definition 1. (Well-formed aggregation [Coh06]) Let α be an aggregate function over the
domainM(Ds) with the target domain Dt. We say that α is well-formed aggregation if there is a
domain Di and a triple (F,⊕, T) where

• F : Ds → Di is a translating function;
• ⊕ is a commutative and associative binary operation over Di and
• T : Di → Dt is a terminating function;

such that ∀X ∈ M(Ds), α(X) = T(F(x1)⊕ . . .⊕ F(xn)) where X = {{x1, ..., xn}}.

F is a scalar function, i.e., a tuple at time function operating on values of some at-
tributes of the same tuple. The binary operation ⊕ accumulates results of F and hence
plays the role of an accumulator. T operates on the accumulated results of ⊕ to finalize
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FIGURE 2.1: Data flow in well-formed aggregation

the computation of α. Figure 2.1 shows the data flow in the well-formed aggregation,
which has a tree-like structure. The intermediate ⊕ nodes have the associative and com-
mutative property, such that this tree-like structure can be any shape. In the sequel, we
use ∑n

i=1,⊕ F(xi) to denote F(x1)⊕ . . .⊕ F(xn), and when it is clear from the context we
simply use ∑ F(xi).

Example 1. The aggregation average (avg), avg(X) =
(∑n

i=1 xi)

n
, can be expressed in the fol-

lowing canonical form, referred to as can-average form:

• F(x) = (x, 1);

• (x, k)⊕ (x′, k′) = (x + x′, k + k′);

• T(s1, s2) = s1/s2.

In this thesis, we consider the well-formed aggregation as the canonical form of UDAFs.
It should be noteworthy that a canonical form of an aggregate function α is not unique
and any aggregation function has at least one canonical form [Coh06]. This latter one is
given by the trivial canonical form (F,⊕, T), where F is the identity function, ⊕ is the set
union and T is α. A trivial canonical form does not lead to efficient computation of ag-
gregation since all corresponding data at worker nodes are sent to a unique master node
where the aggregation is computed. While a non-trivial canonical form brings benefits
since partial aggregation can be computed in parallel and only their computation results
need to shuffle in a cluster.

We investigate below different algebraic properties of aggregation functions leading
to a non-trivial canonical form.

• Associative aggregation. An aggregate function α is associative [GMMP11] if for any
multiset X = X1 ∪ X2, α(X) = α (α(X1), α(X2)) . Associative and commutative
aggregation function can be transformed into a canonical form (F,⊕, T) defined as
follows where id denotes the identity function.

F = α, ⊕ = α, T = id, (2.1)

For example,
√

∑n
i=1 x2

i is an associative and commutative aggregate function, which
has the following canonical form:

– F(x) = |x|;

– |x| ⊕ |x′| =
√

x2 + x′2;
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– T(s) = s.

• Distributive aggregation. An aggregation α is distributive [GCoS+97] if there exists a
combining function C such that α(X) = C(α(X1), α(X2)). Distributive and commu-
tative aggregation can be mapped to the following canonical form:

F = α, ⊕ = C, T = id. (2.2)

Commutative semi-group aggregation [CNS06] is another kind of aggregate func-
tion having the same behavior as commutative and distributive aggregation. An
aggregation α is in this class if there exists a commutative semi-group (H,⊗), such
that α(X) =

⊗
xi∈X α(xi). The corresponding canonical aggregation (F,⊕, T) is il-

lustrated as follows:
F = α, ⊕ = ⊗, T = id. (2.3)

For example, ∑n
i=1(ln(xi))

2 is a distributive aggregate function, which has the fol-
lowing canonical form:

– F(x) = (ln(x))2;
– (ln(x))2 ⊕ (ln(x′))2 = (ln(x))2 + (ln(x′))2;
– T(s) = s.

• Preassociative and commutative aggregation. An aggregation α is preassociative [MLT15],
if it satisfies α(Y) = α(Y′) =⇒ α(X ∪ Y ∪ Z) = α(X ∪ Y′ ∪ Z). A kind of preas-
sociative and commutative aggregation functions has the following form α(X) =
ψ (∑n

i=1 ϕ(xi)), where ψ and ϕ are continuous and strictly monotonic unary func-
tions (these functions satisfy the unarily quasi-range-idempotent and continuous
property [MLT15] ). A canonical form (F,⊕, T) for this kind of preassociative ag-
gregation can be defined as following:

F = ϕ, ⊕ = +, T = ψ. (2.4)

For example, (∑n
i=1 x3

i )
5 is a preassociative and commutative aggregation, which

has the following canonical form:

– F(x) = x3;

– x3 ⊕ x′3 = x3 + x′3;
– T(s) = s5.

• Quasi-arithmetic mean. An aggregate function α is barycentrically associative [MLT16]
if it satisfies α(X ∪Y ∪ Z) = α(X ∪Y′ ∪ Z), with Y′ = {{α(Y), ..., α(Y)︸ ︷︷ ︸

|Y|

}} where |Y|

denotes the number of elements contained in Y. A well-known class of commuta-
tive and barycentrically associative aggregation is quasi-arithmetic mean: α(X) =

f−quasi
(

∑n
i=1 f (xi)

n

)
where f is an unary function and f−quasi is a quasi-inverse of

f . With different choices of f , α can correspond to different kinds of mean func-
tions, e.g., arithmetic mean, quadratic mean, harmonic mean etc. An immediate
canonical form (F,⊕, T) of such functions is given by:

F = ( f , 1), ⊕ = (+,+), T = f−quasi(
∑n

i=1 f (xi)

n
). (2.5)

For example,

√
∑n

i=1 x2
i

n
is a quasi-arithmetic mean function, which has the follow-

ing canonical form:
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Aggregation Formula Canonical form
(

F,⊕, T
)

Count (n) ∑ 1
(
(1), (+), s1

)
Sum ∑ xi

(
(xi), (+), s1

)
Product ∏ xi

(
(xi), (×), s1

)
Average (avg) ∑ xi

n

(
(xi, 1), (+,+),

s1

s2

)
Median −

(
(xi), (∪), median

)
Percentile −

(
(xi), (∪), percentile

)
Power mean (

∑(xi)
p

n
)1/p

(
(xp

i , 1), (+,+), (
s1

s2
)1/p

)
Geometric mean (∏ xi)

1/n
(
(xi, 1), (×,+), (s1)

1/s2

)
Variance

∑ x2
i

n
− (

∑ xi

n
)2

(
(xi, x2

i , 1), (+,+,+),
s2

s3
− (

s1

s3
)2
)

Stddev

√
∑ x2

i
n
− (

∑ xi

n
)2

(
(xi, x2

i , 1), (+,+,+),
√

s2

s3
− (

s1

s3
)2
)

Central moment ∑(xi − avg)k

n

(
((xi − avg)k, 1), (+,+), s1/s2

)
LogSumExp ln(∑ exp(xi))

(
(exp(xi)), (+), ln(s1)

)
Skewness

(∑(xi − avg)3)/n
((∑(xi − avg)2)/n)3/2

(
((xi − avg)3, (xi − avg)2, 1), (+,+,+),

s1/s3

(s2/s3)3/2

)
Kurtosis

(∑(xi − avg)4)/n
((∑(xi − avg)2)/n)2

(
((xi − avg)4, (xi − avg)2, 1), (+,+,+),

s1/s3

(s2/s3)2

)
Covariance ∑(xi × yi)

n
− ∑ xi ×∑ yi

n2

(
(xi, yi, xi × yi, 1), (+,+,+,+),

s3

s4
− s1 × s2

s4

)

Correlation
n×∑(xi × yi)−∑ xi ×∑ yi√

n×∑ x2
i − (∑ xi)2 ×

√
n×∑ y2

i − (∑ yi)2

(
(xi, x2

i , yi, y2
i , xi × yi, 1), (+,+,+,+,+,+),

s6 × s5 − s1 × s3√
s6 × s2 − (s1)2 ×

√
s6 × s4 − (s4)2

)

ε quantile [GDT+18] MS
(

min, max, n, ∑ xi, ..., ∑ xk1
i , ∑ ln(xi), ... ∑ lnk2(xi)

) (
(xi, xi, 1, xi, ..., xk1

i , ln(xi), ..., lnk2(xi)),

(min2, max2,+, ...,+), MS (s1, ..., s3+k1+k2)
)

TABLE 2.1: Examples of aggregation in canonical forms.

– F(x) = x2;

– x2 ⊕ x′2 = x2 + x′2;

– T(s) =
√

s2.

We also list some practical aggregate functions with canonical forms in Table 2.1,
where outputs of ⊕ (the input of T) are denoted as a sequence (s1, ..., sm). It is inter-
esting to be noteworthy that practical aggregates usually have addition or product as an
element of ⊕ function in their non-trivial canonical forms. While holistic aggregation
functions [GCoS+97] can only have trivial canonical forms (median and percentiles).

In the rest of this work, we will explore canonical forms to generate an efficient mod-
ule for computing UDAFs in a distributed and parallel architecture (c.f., Section 2.2). We
will also design a share mechanism for accelerating the computation of various UDAFs
(c.f., Chapter 3). We are also aware that it is not realistic to ask a user to provide UDAFs
in their canonical forms. Since a mathematical expression is a natural way to declare a
UDAF, we allow users to formulate UDAFs as mathematical expressions. We design an
approach to automatically generate a canonical form of a UDAF from its mathematical
expression (c.f., Section 5.3). As a side effect, the semantics of UDAFs can be captured
and exploited to share computations of UDAFs.
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FIGURE 2.2: Data flow in the MapReduce framework.

2.2 Mapping a canonical form to a massively parallel algorithm

This section describes how a UDAF given in its canonical form can be mapped into a
MapReduce algorithm and discusses the efficiency of the algorithm. More precisely, we
first recall the MapReduce framework, then we investigate associated cost models and
identify one of them. Finally, we present a generic MapReduce algorithm based on the
canonical form and study its efficiency according to the identified cost model.

2.2.1 The MapReduce computation framework

The MapReduce [DG04] framework is designed for massively parallel computing over a
cluster of commodity machines. A MapReduce program consists of one or several rounds
of computations, and every round is made up of three phases, the mapper phase, shuffle
phase and reducer phase. At the mapper phase, a tuple-at-a-time function is applied on
every line of input data, and a binary function is applied to aggregate mapper outputs
at the reducer phase. The shuffle phase is proceeded between the mapper and reducer
phase. Given an input of key-value pairs {(k, v)...}, mapper outputs having identical
keys at different machines need to be shuffled to one machine to complete the reducer
phase. Data shuffling is usually a bottleneck for improving the performance of MapRe-
duce algorithm. We present the data flow in the MapReduce framework in Figure 2.2.

2.2.2 Cost models of massively parallel algorithms

We investigate widely used cost models of MapReduce or related computing frame-
works, and we choose one of them to ensure the efficiency of our approach. In order to
illustrate the differences among them, we make the following denotations to show their
different assumptions on parameters in distributed computing. Assuming given a clus-
ter of P machines, let A be the MapReduce program executed on this cluster in rounds
(one round or multiple rounds). The input of A is a finite sequence of pairs < k j; vj >,
for j ∈ [1, n] where k j and vj are binary strings. Hence, A operates on the input of length

nb =
n
∑

j=1
(|k j|+ |vj|) bits. During each round, let C and M be separately the computation

time and machine space at each node.
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The MUD algorithm. The massive, unordered, distributed (mud) algorithmic model
[FMS+10] transforms symmetric sequential algorithm to parallel algorithm. It fixes com-
munication and space to be polylog(nb), and its corresponding time complexity is Ω(2polylog(nb)).
We summarize MUD’s constraints in the following,

• C = Ω(2polylog(nb));

• M = polylog(nb).

Memory Bound MapReduce algorithm. The trade-off between round complexity and
reducer space complexity is analyzed in [GSZ11]. In order to exploit the benefits of paral-
lelism and have decent round complexity, it is necessary to bound reducer space. Unlike
the other works, they did not restrict reducer memory to a fixed bound at the begin-
ning. However, after analyzing several complex problems e.g., prefix sums and multi-
searching, they show that a reducer memory of Θ(n1−ε) for some constant ε > 0 can
solve these problems with high probability. We summarize this as follows,

• C = null;

• M = Θ(n1−ε), ε > 0.

The MPC model. In [BKS17], the massively parallel communication model was pro-
posed to analyze the trade-off between communication load and computation rounds.
Specifically, MPC was used to analyze the distributed processing of conjunctive queries
in two situations, the communication load required to process a given query in one round
and the computation rounds required to process a given query with fixed maximum load.
The constraints made by MPC can be summarized as follows,

• C = null;

• M = O((nb)/p1−ε), ε ∈ [0, 1].

The MRC model. In [KSV10], a model of efficient computation using MapReduce
paradigm is introduced. The proposed model limits the number of machines and the
space per machine to be sub-linear in the length of the input. More precisely, [KSV10] de-
fines the MapReduce class, notedMRC, as the class of efficient MapReduce programs.
Then A belongs to the classMRC i, if A satisfies the following constraints:

• M = O((nb)1−ε), ε > 0;

• C = O((nb)k), for some constant k;

• P = O((nb)1−ε), ε > 0;

• R = O(logi(nb)).

Our goal is to identify when an aggregation function can be efficiently processed us-
ing their canonical forms in one round, therefore our choice focuses on a cost model of
efficient MapReduce algorithm with realistic assumptions. The MUD [FMS+10] model
does not restrict on computation time, which disqualifies MUD as a possible candidate
in our context. The model in [GSZ11] relaxes reducer memory to be an arbitrary num-
ber to solve complex problems, e.g., prefix sums and multi-searching. The MPC model
mainly focuses on analyzing the trade-off between communication load and computation
rounds for conjunctive queries. Finally, the MRC model considers necessary parameters
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MapReduce phase Operation
mapper ∑⊕ F(xi)

combiner ⊕
reducer T(∑⊕Oi)

TABLE 2.2: MR(α): a generic MR algorithm for UDAFs.

for parallel computing, e.g., communication time, machine space and computing time,
and it also makes more realistic assumptions to have a generic algorithm to compute
UDAFs. Hence, a MapReduce algorithm satisfying theMRC constraints is considered
as an efficient parallel algorithm and will be called hereafter aMRC algorithm.

2.2.3 MR(α): a MapReduce algorithm to compute UDAFs

The canonical form provides a generic plan for processing aggregation in massively par-
allel architectures. Indeed, given an aggregate function α = (F,⊕, T), the associative and
commutative property of ⊕ ensures that α(X) can be computed by first applying F and
⊕ on arbitrary subsets of X and then the intermediate results can be aggregated using ⊕
and T to produce the final result α(X). For example, a MapReduce-based implementation
of α can be straightforwardly derived from its canonical form α = (F,⊕, T): processing
F and ⊕ at mapper, ⊕ at combiner, and ⊕ and T at reducer. Table 2.2 depicts the cor-
responding generic MapReduce algorithm, MR(α), to compute α(X), where a mapper
input is a multiset Xi ⊆ X, and the output of a mapper i is denoted by Oi.

According to the above discussion, every aggregation function α given in a canonical
form (F,⊕, T) can be turned into a MapReduce algorithm MR(α). However, the gener-
ated MR(α) algorithm is not necessarily an efficient algorithm (i.e., aMRC algorithm).
For example, the algorithm MR(can-average), derived from the can-average form of the
average function is aMRC algorithm. While, the algorithm MR(naiveaverage), derived
from the trivial canonical form of average, is not aMRC algorithm. Indeed, in the naive
canonical form of average, F is the identity function and ⊕ is the multiset union. Hence,
the total size of the output of mappers is equal to nb (the length of the input), and if, in a
worst case, all the mapper outputs are sent to only one reducer, the reducer will need a
space equal to nb. However, aMRC algorithm requires every reducer uses a sub-linear
space in nb. Therefore, we address in the sequel the following question:

Given an aggregation function α in its canonical form, when the corresponding MR(α) is
efficient?
In other words, we are interested in characterizing under which conditions it can be en-
sured that MR(α) is aMRC algorithm.

Before answering to the above question, we first observe that a MR(α) for a practical
aggregate function α (i.e., examples in Table 2.1) has the following two properties:

(1) a MR(α) is a one-round MR algorithm, which makes a MR(α) always satisfy the
condition of computation round inMRC model;

(2) mapper or reducer computations of a practical MR(α) take no longer time than
O((nb)k), which is the upper bound of local computation time inMRC model.

For example, the algorithm MR(naiveaverage), derived from the trivial canonical form of
average, indeed has these two properties, and we know that MR(naiveaverage) is not a
MRC algorithm because the length of its intermediate results is too large to be stored in
a machine with space M when all the mapper outputs are sent to a unique reducer.

In order to identify when a MR(α) is aMRC algorithm, we consider the following
settings for a MR(α):
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(1) A MR(α) is a one-round MR algorithm.

(2) The mapper and reducer program of a MR(α) operate in O((nb)k) time.

(3) We consider all mapper outputs are sent to one reducer in the computation of
MR(α), which can be seen as the extremely worst (EW) situation in a MapReduce
computation. It is trivial to see that if MR(α) is aMRC algorithm under the EW
case, then MR(α) will be aMRC algorithm in general cases.

(4) We consider a MR(α) with an input X is computed in a cluster of P machines con-
taining M space for each machine, which is referred to asMRC environment E =
(X, P, M), where X = {< k j; vj >, for j ∈ [1, n]} is an input of nb = ∑n

j=1(|k j|+ |vj|)
bits (|vj| is the length of vi, similar for |k j|), the number of machines P in a MapRe-
duce cluster is in O((nb)1−ε1), ε1 > 0, and the storage space for each machine in the
cluster is in O((nb)1−ε2), ε2 > 0.

Note that, in the MRC environment, both the upper bound of P and M are indeed the
upper bound of machine number and machine space inMRC model. Then, the original
problem, whether a MR(α) for a practical aggregate function α is a MRC algorithm,
can be reduced to whether the MR(α) can be successfully computed in MRC environment
E = (X, P, M) under the EW situation.

We propose the following lemma to identify when a MR(α) is a MRC algorithm.
More precisely, the following lemma states that the output length of every mapper needs
to be bounded by a space that is sub-linear in nb. This ensures that the length of the
mapper outputs is smaller enough to make the underlying computation possible at one
machine during the reducer phase under the EW case.

Lemma 1. Let MR(α) be a MR algorithm of an aggregation function α and E = (X, P, M) be
aMRC environment. Then, MR(α) is aMRC algorithm, if the output length of the mapper
function in MR(α) is in O((nb)1−ζ) with ζ > max(ε2, 1− ε1 + ε2).

Proof. W.l.o.g, we consider every machine in the MRC environment will execute one
mapper. Then, the upper bound of mapper output length, O((nb)1−ζ) with ζ > max(ε2, 1−
ε1 + ε2), ensures that MR(α) can be successfully computed in aMRC environment un-
der the EW situation. Indeed, O((nb)1−ζ) 6 O((nb)1−ε2), because ζ > ε2. Then a mapper
output does not overflow a mapper space. Moreover, for the length of total mapper out-
puts P × O((nb)1−ζ), we have P × O((nb)1−ζ) 6 M, because ζ > 1 − ε1 + ε2. Then,
MR(α) can be computed in theMRC environment under the EW case (all mapper out-
puts are sent to one reducer). Therefore, according to the MRC constraints, we have
MR(α) is aMRC algorithm.

Until now, we have seen when MR(α) is a MRC algorithm, that the output length
of ∑⊕ F(xi) needs to be bounded by O((nb)1−ζ) with ζ > max(ε2, 1− ε1 + ε2). In the
follows, we shall discuss which practical aggregate functions can satisfy this condition.
We observe that ⊕ function plays a more important role than F function in the above
condition, i.e., in making ∑⊕ F(xi) satisfy the condition in Lemma 1. Indeed, in the com-
putation of ∑⊕ F(xi), F is applied on every individual value, i.e., a scalar function, and
⊕ is applied to accumulate values. Hence, the output length of ∑⊕ F(xi) is mainly deter-
mined by applying the ⊕ function, i.e., the length increasing by using ⊕ to accumulate
values.

According to the canonical forms of most common used aggregate functions (see Ta-
ble 2.1), the ⊕ function in canonical forms can be one of multiset union, addition, and
multiplication, or a tuple of their combinations, e.g., ⊕ = (+,+) for can-average. W.l.o.g,
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we consider the case that ⊕ is multiset union, addition, or multiplication since the other
cases can be trivially reduced to this case.

It is trivial to see that a MR(α) for an aggregate function having set union as ⊕ is not
efficient because of shuffling all input values from mappers to a reducer. In the following,
we study the left two cases, i.e. when ⊕ = + or ⊕ = ×.

It is noteworthy that, in practice, there is always a trade-off between the length of
results and computation precision. For example, in Java, the primitive data type double
has a fixed 64-bit length, but in this case, the precision is out of control. While, using Big
Decimal one can obtain arbitrary precision in arithmetic computations, but the computa-
tion result has an unfixed length. For the case of using fixed-length data type, a MR(α)
with ⊕ = + or ⊕ = × is always aMRC algorithm, because there is no increase in the
length of intermediate results when accumulating values, in other words, the length of a
mapper output is always the fixed length of data type. Our analysis will focus on com-
puting a MR(α) using unfixed data type, which are the cases of computing with arbitrary
precision, or exact computing with unlimited precision.

MR(α) with ⊕ = +. We identify when a MR(α) is aMRC algorithm for the case that
⊕ = + in the following theorem.

Theorem 1. Let MR(α) be a MR algorithm of an aggregation function α given in a canonical
form with ⊕ = + and E = (X, P, M) be aMRC environment. Then, MR(α) is aMRC algo-
rithm, if the length of F(vmax), where vmax is the maximum value in X, is bounded by O((nb)1−ζ)
with ζ > max(ε2, 1− ε1 + ε2).

Proof. Let vmax be the maximum value in X. Assuming mapper i receives li values, and
the worst case of accumulating these li values with + is that every value vi is the maxi-
mum value vmax, and the corresponding result is li× F(vmax). Then, the maximum length
of a mapper output is |Oi| = log(F(vmax)× li) = log(F(vmax)) + log(li). In fact, we have

log(li) = log(
M

log(F(vmax))
) < log(M) = log(O((nb)1−ε2)). Because log(F(vmax)) is

bounded by O((nb)1−ζ) with ζ > max(ε2, 1 − ε1 + ε2), such that |Oi| is bounded by
log(O((nb)1−ε2)) +O((nb)1−ζ) = O((nb)1−ζ). According to Lemma 1, MR(α) is aMRC
algorithm.

The upper bound of the length of F(vmax) in Theorem 1 is quite generic, which can be
M
P

with respect to aMRC environment. In practice, the machine space in bits divided

by the number of machines in a cluster can be quite large. Then, we can conclude: MR(α)
with ⊕ = + is aMRC algorithm under most realistic cases.

MR(α) with ⊕ = ×. There is a general belief that irrespective of the underlying com-
putation architecture, if an aggregation function is associative and commutative, then the
corresponding partial aggregation can be efficiently processed. However, this widespread
practice is not correct with the consideration of theMRC cost model. Let us consider the
computation of an aggregation function α(X) = ∏ vi, which is indeed associative and
commutative, and let input X = {vi, ∀i ∈ [1, n]} where vi is a binary string. W.l.o.g.,
assume vi > 0. The total length of the input for α is ∑ log(vi), ∀vi ∈ X. α is indeed com-
mutative and associative. Hence the partial aggregation α(Xi), where Xi ∈ X containing
li values, can be computed at the Accumulator. We ignore the Combiner phase since it
does not impact our reasoning. The computation results of a partial aggregation α(Xi)
is ∏ vj, ∀vj ∈ Xi, of which encoding requires log(∏ vj) = ∑ log(vj), ∀vj ∈ Xi, bits. In the
worst case of MapReduce, all mapper results (the case of one mapper at each machine)
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FIGURE 2.3: Computation time and total partial result length of ∑ xi and ∏ xi with different
significant digits.

∑ xi ∏ xi
Time (s) 12 1560
Size (KB) 6.8097e + 4 3.6793029e + 7

TABLE 2.3: Computation time and total partial result size of ∑ xi and ∏ xi with unlimited
precision.

are sent to a reducer. Hence the reducer will need a space equal to ∑ log(vi), ∀vi ∈ X.
In another sense, the computation of the product contains shuffling all input data on all
mappers to one reducer, which is not aMRC algorithm.

As a conclusion of this section, in the case where a MR(α) is computed using unfixed
data types, we can have the following results:

• If the ⊕ function of α contains a multiset union operator ∪ or an arithmetic multi-
plication ×, then a corresponding MR(α) is not aMRC algorithm.

• If the ⊕ function of α is a tuple of arithmetic additions +, then a corresponding
MR(α) is a MRC algorithm in most realistic situations, i.e., the computation of
MR(α) satisfies the condition in Theorem 1.

2.3 Experimental evaluation.

Based on the above analysis, we compare computation time and partial result length in
computing ∑ xi and ∏ xi using an arbitrary precision. We use the store_sales table from
TPC-DS generated by scale 10. We program the following two queries in the way of Spark
RDD with a different predefined precision and unlimited precision.

SELECT Sum(ss_sales_price) FROM store_sales WHERE ss_sales_price != 0;
SELECT Prod(ss_sales_price) FROM store_sales WHERE ss_sales_price != 0;

We run the above two queries on a spark cluster containing one master node and six slave
nodes running Spark 2.2.0. The experiment results for the case of predefined precision
is shown in Figure 2.3. One can observe that the computation time and the length of
all mapper results of computing ∏ xi are exponentially increasing with respect to the
number of digits used to store final computation results. However, in the computation of
∑ xi, the computation time and the length of all mapper results do not increase with the
number of digits. Table 2.3 shows the computation time and partial result length in the
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case of unlimited precision (exact computing). One can observe that computation time
of ∏ xi is two orders of magnitudes larger than the time of ∑ xi, and all the partial result
length of ∏ xi is three orders of magnitudes larger than that of ∑ xi.

To be summarized, both ∑ xi and ∏ xi can be efficiently processed using fewer digits
in precision. When using more digits, or even unlimited digit, ∑ xi stays on the same
execution time and result length, while ∏ xi will dramatically increase in terms of com-
putation time and result length.

2.4 Summary

• We identify the well-formed aggregation function, which provides a generic form
of user-defined aggregation functions. We show that some well-known algebraic
aggregation functions can be systematically mapped into the well-formed aggrega-
tion.

• We consider the well-formed aggregation function as a canonical form of UDAFs,
based on which we present a generic Map-Reduce algorithm MR(α) to compute
UDAFs.

• We identify the upper bound of the length of ∑⊕ F(xi) for a UDAF α given in a
canonical form (F,⊕, T), such that the corresponding MR(α) is aMRC algorithm
(a class of efficient MapReduce algorithm). We further study whether a practical
aggregate function given in a canonical form (F,⊕, T), where ⊕ can only be one of
{∪,×,+}, is a MRC algorithm. We show that when ⊕ is one of {∪,×}, MR(α)
cannot be a MR algorithm. While, if ⊕ = +, it is trivial for MR(α) to be aMRC
algorithm.
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Chapter 3

The sharing problem in SUDAF
framework

In this chapter, we focus on speeding up the execution of queries with UDAFs by reusing
cached answers to previous queries during the evaluation of new queries. Specifically,
we deal with the following issues:

(i) What data should be cached in order to optimize the evaluation of UDAF? We analyze
all possible caching choices based on the pipelines provided in canonical forms of
UDAFs, and we choose to cache partial aggregation results [ZTG18, ZT19].

(ii) How can we identify if a cached answer can be reused in the evaluation of a given UDAF?
We formalize the problem of identifying a reusable answer as the sharing problem.
Then we show that it is an undecidable problem for arbitrary cases [ZTG18, ZT19].

(iii) How to deal with the undecidability of the sharing problem for practical aggregations?
We solve the problem in the context of practical aggregate functions. We propose
SUDAF (sharing user-defined aggregate functions), which is an expression-based
aggregation framework, i.e., creating a UDAF by declaring a mathematical expres-
sion of a UDAF [ZT19].

SUDAF relies on the canonical form of aggregations that enable efficient execution
and sharing of UDAFs. The proposed practical framework is powerful enough
to be useful in many real-world applications while it makes the sharing problem
decidable [ZT19].

3.1 Motivating example

In this section, we present a motivating example demonstrating two SUDAF’s function-
alities: (i) rewriting UDAFs using built-in functions, and (ii) sharing partial aggregation
results between various UDAFs. In the following example, we consider 4 relations of the
TPC-DS [NP06] dataset, store_sales, store, date_dim and stores.

Suppose that a user wants to analyze the price of every item sold by the stores in the
state Tennessee (TN) in the past every year. Specifically, the user has a hypothesis of a
simple linear regression: y = θ1x + θ0, where y represents a value in the sales_price column
and x a value in the list_price column. Using the least square error function, we have

θ1(X, Y) =
n ∑ xiyi −∑ xi ∑ yi

n ∑ x2
i − (∑ xi)2

, and θ0(X, Y) = avg(Y)− θ1avg(X).

To be able to use θ1 in an SQL statement, one needs to hard-code it as a user-defined
function, e.g., in Spark SQL, one writes a piece of Java or Scala code to create θ1. Assume
that a hard-coded user-defined function theta1(), that implements the function θ1(), is
created and the following query Q1 is issued (the corresponding query plan is shown in
Figure 3.3):
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FIGURE 3.1: Experiments in PostgreSQL with the TPC-DS dataset (scale = 20). UDAFs theta1()
and qm() are created in PL/pgSQL.
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FIGURE 3.2: Experiments in Spark SQL with the TPC-DS dataset (scale = 100). UDAFs theta1()
and qm() are created using UserDefinedAggregateFunction in Scala.

Q1: SELECT ss_item_sk, d_year, avg(ss_list_price), avg(ss_sales_price),
theta1(ss_list_price,ss_sales_price)

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and ss_store_sk = s_store_sk

and s_state = ’TN’
GROUP BY ss_item_sk, d_year;

Alternatively, in SUDAF the function theta1() is defined declaratively by providing
its mathematical expression without needs of any programming effort. This way of
defining theta1() is much easier and more compact compared to the procedural way
of hard-coding a user-defined function, for example, using Java or Scala programming
languages. The aggregation function average can also be created in a similar way, i.e.,
avg(X) = ∑ xi/ ∑ 1.

Now, assume that a user defines the expressions of theta1() and avg() and uses them
in the query Q1. We illustrate in the rest of this section two benefits of using SUDAF to
execute the query Q1: (i) the UDAFs theta1() and avg() used in the query Q1 are rewritten
into a set of partial aggregates using the built-in function sum and count, and (ii) the
partial aggregates computed during the execution of Q1 can be cached and reused to
compute various other UDAFs.
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store_sales

store

date_dim

⋈
store_sk

⋈
date_sk

state=‘LA’
𝜎

SELECT item_sk, year, avg(ss_list_price),    
avg(ss_sales_price),
theta1(list_price, sales_price)

GROUP BY item_sk, year

FIGURE 3.3: Plan of the query Q1.

SELECT ss_item_sk, d_year, count(*) s1, sum(list_price) s2,                   
sum(pow(list_price),2) s3, sum(sales_price) s4, 
sum(list_price * sales_price) s5

GROUP BY item_sk,year

store_sales

store

date_dim⋈
store_sk

⋈
date_sk

state=‘TN’
𝜎

FIGURE 3.4: Plan of the subquery of RQ1.

Rewriting UDAFs using built-in functions. The first step of processing Q1 in SUDAF
is to factor out partial aggregates of theta1() and avg() and rewrite them using built-
in functions. More precisely, SUDAF identifies the following 5 partial aggregates in the
expression of θ1: s1 = count(), s2 = ∑ xi, s3 = ∑ x2

i , s4 = ∑ yi and s5 = ∑ xiyi. Hence,
SUDAF rewrites Q1 to the following query RQ1 (the corresponding query plan is shown in
Figure 3.8) where the partial aggregates are first computed and then theta1() is computed

using the partial aggregates as follows: θ1 =
s1s5 − s4s2

s1s3 − (s2)2 .

RQ1: SELECT ss_item_sk, d_year, s2/s1 avg_list_price,
s4/s1 avg_sales_price,
(s1*s5-s4*s2)/NULLIF((s1*s3-power(s2,2)),0) theta1

FROM (SELECT ss_item_sk, d_year, count(*) s1,
sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3,
sum(ss_sales_price) s4,
sum(ss_sales_price*ss_list_price) s5

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and
s_state = ’TN’

GROUP BY ss_item_sk, d_year) TEMP;

Compared to the original query Q1, RQ1 uses only built-in aggregate functions and
hence it is expected to be much more efficient because built-in functions are better han-
dled by existing query optimizers and execution engines than hard-coded user-defined
functions. Figure 3.1 (a) shows that the execution of Q1 using SUDAF on top of Post-
greSQL can be 10X faster compared to running Q1 directly over PostgreSQL. Similar re-
sults can be observed in Figure 3.2 (a) using SUDAF on top of Spark SQL, where Q1 is 0.8X
faster compared to the direct execution of Q1 over Spark SQL. To be fair in our analysis,
we should mention that in the context of PostgreSQL and Spark SQL systems, where the
covariance (cov) and the variance (var) are built-in functions, an alternative and more ef-
ficient implementation of theta1() can be obtained using the formula theta1() = cov/var.
We also report the query time of using cov/var in Q1, respectively in Figure 3.1 (a) and
Figure 3.2 (a), which is at a same order of magnitude as SUDAF execution time. However,
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SELECT item_sk,	year,	
qm(list_price),	stddev(list_price)	

GROUP	BY item_sk,	year

store_sales
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date_dim⋈
store_sk

⋈
date_sk

state=‘TN’
𝜎

FIGURE 3.5: Plan of the query Q2.
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⋈
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𝜎

SELECT item_sk, year, count(*) s1, 
sum(list_price) s2, sum(pow(list_price),2) s3 

GROUP BY item_sk,year

FIGURE 3.6: Plan of the subquery of RQ2.

even in this case, the benefit of using SUDAF comes from the fact that the performance of
SUDAF is independent of the user’s programming skill and, as shown below, the partial
aggregates computed by SUDAF open wider sharing possibilities than the variance and
the covariance functions.

Sharing partial aggregations between UDAFs. Caching the result of Q1, which con-
tains the aggregate values of theta1(), is of little interest from the computation sharing
perspective. However, the partial aggregates s1, . . . , s5 computed by the query RQ1 offer
more possibilities to be reused in future UDAFs computations. We illustrate the shar-
ing idea by the following example. Consider a new query Q2 (the corresponding plan is
shown in Figure 3.5) that computes quadratic mean qm() and standard deviation stddev()
of list prices of every item sold by stores in TN for every year:

Q2: SELECT ss_item_sk, d_year, qm(ss_list_price), stddev(ss_list_price)
FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and s_state = ’TN’
GROUP BY ss_item_sk, d_year;

Using SUDAF, qm() and stddev() are defined using the mathematical expressions given
in Table 2.1. When executing Q2, SUDAF factors out their partial aggregations and gener-
ates the following query RQ2 which uses the same partial aggregates s1, s2 and s3 as the
query RQ1.

RQ2: SELECT ss_item_sk, d_year, sqrt(s3/s1) qm_list_price,
sqrt(s3/s1-power(s2/s1,2)) std_list_price

FROM (SELECT ss_item_sk, d_year, count(*) s1,
sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3

FROM store_sales, store, date_dim
WHERE ss_sold_date_sk = d_date_sk and

ss_store_sk = s_store_sk and s_state = ’TN’
GROUP BY ss_item_sk, d_year) TEMP2;

Consequently, if the partial aggregates of RQ1 are kept in a cache or materialized,
RQ2 can reuse the results of these partial aggregates to avoid computing from base data.
This makes the execution of RQ2 significantly faster than the execution of the original
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query Q2. We report the query time of Q2 when it is executed by SUDAF on top of Post-
greSQL in Figure 3.1 (b) and by SUDAF on top of Spark SQL in Figure 3.2 (b). In both
figures, the execution time of SUDAF is compared w.r.t. the execution time of the query
Q2, respectively over PostgreSQL and Spark SQL. We would like to stress the fact that the
result of the UDAF theta1() computed by the query RQ1 cannot be reused to compute the
UDAF qm() and stddev() of the query RQ2, however identifying the appropriate partial
aggregates of RQ1 and RQ2 enables to increase the sharing possibilities between these
two queries.

It is also noteworthy that we only consider in our example the computation dimen-
sion, i.e., computing a UDAF from other UDAFs. Full implementation of our approach
requires handling the data dimension, i.e., whether a query is semantically contained
in the cached query, which is not addressed in this paper. We point out existing tech-
niques [DRSN98, WWDI17] based on data partitioning that can be used in our context
to handle the data dimension issue. The main idea of such techniques is to partition the
data into predefined chunks and then to map a given query into queries over the data
chunks. Extending SUDAF with such techniques enables to share partial aggregates over
predefined data chunks.

However, the query processing techniques using data chunks can be performed only
on restricted classes of queries, e.g., simple range queries without join in [WWDI17] and
OLAP queries, which are queries expressed over the predefined dimensions of a multidi-
mensional model, in [DRSN98]. As explained below, to handle more expressive queries,
we envision the use of SUDAF to extend existing query rewriting using aggregated views
algorithms (e.g., see [CNS99, CNS00]).

Extending query rewriting using aggregate views. We show that factoring out partial
aggregations of UDAFs can improve traditional query rewriting using aggregate views
algorithms. Assume that a user is interested in computing qm() and stddev() of the list
prices of all items in the category of sports sold by stores in TN for every year since 2000.
This is expressed by the following query Q3.

Q3: SELECT d_year, qm(ss_list_price), stddev(ss_list_price)
FROM store_sales, store, date_dim, item
WHERE ss_sold_date_sk = d_date_sk and ss_item_sk = i_item_sk and

ss_store_sk = s_store_sk and
i_category = ’Sports’ and s_state = ’TN’ and
d_year >= 2000

GROUP BY d_year;

Now, assume that a materialized view VQ1 corresponding to the query Q1 is given.
One can realize that the view VQ1 is useless for rewriting Q3 since it is not possible to
compute qm() and stddev() from theta1() and avg().

However, if a materialized view V1 corresponding to the subquery of RQ1 is given
and if we factor out partial aggregations of qm() and stddev() in Q3 to generate the fol-
lowing query RQ3:

RQ3: SELECT d_year, sqrt(s3/s1) qm_list_price,
sqrt(s3/s1-pow(s2/s1,2)) std_list_price

FROM (SELECT d_year, count(*) s1,
sum(ss_list_price) s2,
sum(power(ss_list_price,2)) s3

FROM store_sales, store, date_dim, item
WHERE ss_sold_date_sk = d_date_sk and
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FIGURE 3.7: Plan of the subquery of RQ3.
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FIGURE 3.8: Plan of the subquery of RQ3’.

ss_item_sk = i_item_sk and
ss_store_sk = s_store_sk and
i_category = ’Sports’ and
s_state = ’TN’and d_year >= 2000

GROUP BY d_year) TEMP3;

Then it is possible to use the rewriting algorithm proposed in [CNS00] to rewrite the
subquery of RQ3 using V1. The obtained rewriting, denoted by RQ3’, is shown below.

RQ3’: SELECT d_year, sqrt(s3/s1) qm_list_price,
sqrt(s3/s1-pow(s2/s1,2)) std_list_price

FROM (SELECT d_year, sum(s1) s1, sum(s2) s2, sum(s3) s3
FROM V1, item
WHERE ss_item_sk = i_item_sk and d_year >= 2000 and

i_category = ’Sports’
GROUP BY d_year) TEMP3;

The key reason that enables such a rewriting comes from the fact that the UDAFs have
been rewritten using built-in aggregates: sum() and count() (we recall that the rewriting
algorithm proposed in [CNS00] supports only the sum and count aggregates). We report
the execution time of Q3 and RQ3’ in PostgreSQL in Figure 3.1 (c) and Spark SQL in
Figure 3.2 (c).

To conclude this section, we would like to emphasis the fact that the main features of
SUDAF, factoring out the partial aggregations of UDAFs, computing partial aggregations
using built-in functions and sharing partial aggregates, provide abundant opportunities
to speed up queries with UDAFs. In the rest of this chapter, we address the following
challenges:

• how to automatically identify appropriate partial aggregations of UDAFs from their math-
ematical expressions?

• how to efficiently determine when cached results of partial aggregations of UDAFs can be
reused to compute other UDAFs? (hereafter, called the sharing problem)
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FIGURE 3.9: Sharing aggregation pipeline (AP).

3.2 Caching and sharing aggregation

We rely on a canonical form (F,⊕, T) to analyze which data should be cached such to
obtain more possibilities to reuse caching results, then we formalize the sharing problem.

3.2.1 Caching aggregate data

As we explained above, the first issue is related to the identification of the right level of
aggregation to keep in the cache. We build on the canonical form of aggregate functions
to address this issue. As illustrated below, the canonical form provides a natural way to
identify the adequate aggregation level that is worth to cache. As an example, Figure
3.9 depicts the workflows corresponding to the executions of two aggregate functions
α = (Fα,⊕α, Tα) and β = (Fβ,⊕β, Tβ). Consider a scenario where an implementation
of α based on its canonical form is executed first. Then, as shown in Figure 3.9, when
the UDAF β is evaluated, there are three possibilities to reuse (partial) computations of
α, respectively, by caching the results of Fα, the result of ∑⊕α

Fα, or the one of α. It is
clear that storing the result of Fα (flow (1) in Figure 3.9) does not provide any added
value to the computation of β since Fα is a scalar function. Similarly, storing the final
result of α (flow (3) in Figure 3.9), computed by Tα, is of little interest as it offers very
restricted possibilities of re-use of the cached result in the computation of other UDAFs.
In fact, Tα should not be expected to have an inverse function [Coh06] since generally,
it has multiple variables as inputs. However, the partial aggregation ∑⊕α

Fα (flow (2) in
Figure 3.9) offers much more reuse potentials than the third one. For example, if α is
variance and β is power mean (p = 2), hence it is not easy to reuse the final result of α to
compute β. However, using the canonical forms described at Table 2.1, one can observe
that it is rather straightforward to efficiently compute the partial aggregation of β from
a partial aggregation of α. Therefore, we compute and cache ∑⊕α

Fα(xi), and the general
optimizing problem is then to explore the possibility of the existence of a function r, such
that β(X) can be computed from ∑⊕α

Fα(xi), i.e., β(X) = Tβ(r(∑⊕α
Fα(xi))).

3.2.2 Sharing aggregation states

Let α be an aggregate function given in a canonical form (F,⊕, T) and ∑⊕ F(xi) be the
partial aggregation of α. As shown in Table 2.1, a typical ⊕ operator produces as an out-
put a tuple of (partially) aggregated results. Hence, a partial aggregation could be written
as ∑⊕ F(xi) =

(
∑⊕1

f1(xi), ..., ∑⊕m
fm(xi)

)
, where the fis are scalar functions and the ⊕is

are commutative and associative binary operations. For example, in the canaverage form,
the binary operation ⊕ = (+,+) produces as an output a pair of aggregate values where
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the first component sums the values and the second component counts the number of
elements.

In the sequel, for an aggregate function α = (F,⊕, T) over a multiset X, with the
following form of partial aggregation:

∑
⊕

F(xi) =
(
∑
⊕1

f1(xi), ..., ∑
⊕m

fm(xi)
)
,

we denote the component sj(X) = ∑⊕j
f j(xi) a (partial) aggregation state of α.

We rely on the notion of aggregation state to define when a partial result of a UDAF
α can be reused in the computation of another UDAF β. More precisely, we define below
when an aggregation state s of α can be shared by an aggregation state s′ of β.

Definition 2. Let s′(X) and s(X) be respectively two aggregation states of two UDAFs. Then,
s′ shares s if and only if there exists a computable function r such that

s′(X) = r ◦ s(X), ∀X ∈ M(D). (3.1)

Note that, if s′(X) = s(X), then r is the identity function. The function r is a scalar func-
tion that enables to compute the aggregation state s′ without scanning the base dataset
X. If an aggregation state s is cached, the sharing problem is then to decide whether s can
be reused in the computation of another aggregation state s′.

We introduce below the notion of a derivable set of an aggregation state s to define
the set of aggregation states that can share the result of s.

Definition 3. Let s be an aggregation state of a UDAF. The derivable set of s, denoted D(s), is
defined as follows: D(s) = {s′|s′ shares s}.

The derivable set has the following two properties:

• Transitive property. Let s, s′ and s′′ be three aggregation states. If s′′ ∈ D(s′) and
s′ ∈ D(s), then we have s′′ ∈ D(s).

• Symmetric property when reusing function is injective. Let s and s′ be two ag-
gregation states and s′ ∈ D(s). Then, there exists a function r such that s′(X) =
r ◦ s(X). In this case, if r is an injection, then we have r−1 ◦ s′(X) = s(X), such that
s ∈ D(s′).

We use a derivable set of aggregation states to define the following decision problem
underlying the issue of sharing aggregation states.

Problem 1. Given two aggregation states s′ and s, the sharing problem, noted share(s′, s), is to
decide whether s′ ∈ D(s)?

As stated by the following theorem, it is not possible to solve the sharing problem in
a general setting.

Theorem 2. The problem share(s′, s) is undecidable.

The proof of this theorem (detailed below), based on Rice’s Theorem [HMU06], shows
that the property of whether an aggregation state belongs to a derivable set is non-trivial
and semantic.

Proof. Let AGG be the set of all aggregation states, which contains infinitive elements
because of infinitive scalar functions and infinitive ∑⊕ functions for aggregation states.
Let s be any aggregation state in AGG, then we prove below D(s) 6= ∅ and D(s) 6= AGG.
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D(s) 6= ∅ since D(s) contains at least one element s.
We explain D(s) 6= AGG as follows. Let s and s′ be two aggregation states. Assuming

s′ ∈ D(s), then s′(X) = r ◦ s(X). W.l.o.g, let X1 be an input multiset, and s(X1) = a and
s′(X1) = b. Then r(a) = b. Assuming X2 is an another input multiset and s(X2) = a.
In this case, s′(X2) must equal to b otherwise r does not exist. In fact, in order to have
s′ ∈ D(s), we have s′ and s at least must satisfy ∀X1, X2, if s(X1) = s(X2) then s′(X1) =
s′(X2). However, there is no guarantee for arbitrary elements s and s′ in AGG to have
this property. Such that, D(s) 6= AGG.

Finally, we have ∀s ∈ AGG, D(s) 6= AGG and D(s) 6= ∅, which infers derivable set
is a non-trivial property. Furthermore, it is straightforward to see ∀X, s′(X) = s′′(X) and
if s′ ∈ D(s), then s′′ ∈ D(s). Then according to the Rice’s Theorem [HMU06], the sharing
problem share(s′,s) is undecidable.

3.3 Practical sharing framework

Since the sharing problem is undecidable in a general context, we deal with it for re-
stricted aggregation functions that are widely used in practice.

We observe that a practical sharing framework of UDAFs should provide the follow-
ing functionalities:

1. The UDAF framework can determine whether a practical aggregation state can
share another practical aggregation state.

2. The UDAF framework should be able to generate partial aggregations of UDAFs.

3. Knowing that the interface for implementing UDAFs in DBMSs or data analytic
systems provides a flexible approach for users to analyze data. Then, a qualified
sharing framework of UDAFs should also allow users to create their UDAFs flexi-
bly.

According to the above requirements, we design an expression model of aggregation
functions, where we automatically generate a canonical form and partial aggregations of
UDAFs (see a general discussion and related algorithms in Section 5.3). More specifically,
we design three sets of functions, primitive scalar functions, primitive binary functions
and primitive aggregation functions which contains restricted elements. Then, end users
are able to create expressions of UDAFs arbitrarily by using elements from these sets. The
three sets of primitive functions are proposed as follows (c.f., Table 3.1):

• Primitive scalar functions. The PS (primitive scalar) class contains six types of func-
tions: constant, identity, linear, power, logarithmic and exponential functions.

• Primitive binary functions. The PB (primitive binary) class contains the following
binary functions: addition +, subtraction −, multiplication ×, division / and exponen-
tiation ∧.

• Primitive aggregate functions. The PA (primitive aggregate functions) class contains
two functions: summation ∑ and product ∏.

As we explained below, primitive functions can be combined using the composition
operator and binary functions to create more complex scalar and aggregation functions.
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Class Functions
PS a; x; ax; xa; logax; ax.
PB +; −; ×; /; ∧.
PA ∑; ∏.

PS◦
g(x) = hl ◦ ... ◦ h1(x),
where hj ∈ PS, for j ∈ [1, ..., l].

PS�
f (x) = gk(x)�k−1 ...�1 g1(x),
where gj ∈ PS◦,�z ∈ PB, for j ∈ (1, ..., k), z ∈ (1, ..., k− 1), k ∈N>0.

PA◦ agg(X) = f ′ ◦∑ ◦ f (xi),
where f , f ′ ∈ PS�, ∑ ∈ PA.

PA�
bagg(X) = T′(aggk(X)�k−1 ...�1 agg1(X)),
where aggj ∈ PA◦,�z ∈ PB for j ∈ (1, ..., k),z ∈ (1, ..., k− 1), k ∈N>1, and T′ ∈ PS�.

TABLE 3.1: Classes of functions supported by SUDAF.

Complex scalar functions: PS◦ and PS�. SUDAF provides a composition operator, de-
noted ◦, that enables creating complex scalar functions from the primitive ones. The
class of such functions is denoted PS◦. A function g(x) ∈ PS◦ can be expressed as a
composition of primitive scalar functions (cf. Table 3.1). The length of g(x), denoted |g|,
gives the number of primitive functions used in the definition of g(x). For example, if
g(x) = hl ◦ ... ◦ h1(x), with hj ∈ PS, then |g| = l. In addition, more complex scalar func-
tions can be expressed by using binary functions to combine scalar functions from PS◦.
The set of such functions, i.e., scalar functions containing binary operations, is denoted
PS�. The shape of functions in PS� is shown in Table 3.1.

Supported UDAF. SUDAF also allows using the composition operator ◦ between scalar
functions and primitive aggregate functions to define UDAFs. More precisely, in this
context, the composition can be used in two ways: (i) to apply a scalar function on an
output of a primitive aggregate function, or (ii) to apply a primitive aggregation on a set
of data transformed using a scalar function. The class of such functions is denoted as
PA◦. The expression of aggregation agg ∈ PA◦ is presented in Table 3.1. Moreover, more
complex UDAFs can be expressed using primitive binary functions to combine several
aggregations in PA◦. The class of such functions is denoted as PA�, and a UDAF bagg ∈
PA� has the expression shown in Table 3.1.

Scope of SUDAF. SUDAF restricts the set of UDAFs that can be declared to the classes
presented in Table 3.1. We shall show in the next section that this restraint enables us to
deal with the undecidability of the sharing problem. However, this restriction does not
hamper the usability of SUDAF in real world applications since the proposed framework
covers a wide range of aggregation functions such as the classes of power mean func-
tions, arbitrary central moments [onl19a], arbitrary standardized moments [onl19b] and other
multivariate aggregations 1 such as covariance and correlation. SUDAF supports also co-
factor aggregates [SOC16] used in optimizing batch gradient descent to train least square
regression model. Although holistic aggregation functions, e.g., the median, cannot be
expressed in our framework, aggregation functions used in their approximation algo-
rithms, e.g., the moment sketch [GDT+18], are supported by SUDAF.

1Multivariate aggregations can be seen as a combination of several uni-variate aggregations, each of which is expressed
using functions in Table 3.1. Moreover, the cofactor aggregate ∑ xiyi computed over columns X and Y can be seen as a
uni-variate aggregate over an abstract column Z = X ·Y with the scalar product ·.
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Mapping SUDAF functions into canonical forms Similarly, we can obtain a generic
form of SUDAF functions, α(X) = T′(

(
f ′k ◦ ∑⊕k

◦ fk(xi)
)
�k−1 ... �1

(
f ′1 ◦ ∑⊕1

◦ f1(xi)
)
),

where f j, f ′j , for j ∈ [1, ..., k], are complex scalar functions from PS�, and ∑⊕j
are one

of the two primitive aggregation functions of the set PA = {∑, ∏}, and �j, j < k, are
primitive binary functions from PB. Given such a function α(X) ∈ PA�, a canonical
form canonical(α) = (F,⊕, T) is derived from the general expression of α as follows:

• F = ( f1, . . . , fk);

• ⊕ = (⊕1, . . . ,⊕k) and

• T = T′
(
( f ′1 ◦∑

⊕1

◦ f1︸ ︷︷ ︸
s1

)�1 . . .�k−1 ( f ′k ◦∑
⊕k

◦ fk︸ ︷︷ ︸
sk

)
)

The aggregation states of a UDAF α, according to its SUDAF canonical form canonical(α),
are defined as follows: sj(X) = ∑⊕j

f j(xi), for j ∈ [1, . . . , k].
For instance, aggregations in Table 2.1 can be defined in SUDAF using their expres-

sions in the second column in Table 2.1 (the composition operator is optional from users’
side because SUDAF can automatically insert it in an expression). SUDAF generates their
canonical forms from their expressions and factors out partial aggregation states, which
are the si elements appearing in the T component in their canonical forms in Table 2.1.

To be summarized, SUDAF contains a limited number of functions for the sets PS, PB
and PA in the expression model of UDAFs (see more details in Section 5.3), and it can
automatically generate partial aggregations from expressions of UDAFs. The restriction
of SUDAF functions does not hamper the flexibility of using SUDAF to create practical
UDAFs. However, as we shall explain in the next section, this restriction can help solve
the sharing problem.

3.4 Dealing with the sharing problem in SUDAF

In the previous section, we present that SUDAF can automatically generate a canonical
form for a UDAF α given in a mathematical expression, and aggregation states of α can
be straightforwardly obtained. It should be noteworthy that, SUDAF captures primitive
functions (either aggregations or scalar functions) used in every aggregation states of α.
As we shall discuss in this section, such kinds of semantics, i.e., what primitive functions
used in aggregation states, can help deal with the sharing problem.

In this section, we present sharing conditions to deal with the sharing problem in
SUDAF. Let s1(X) = ∑⊕1

f1(xi) and s2(X) = ∑⊕2
f2(xi) be two aggregation states of

two UDAFs in the scope of SUDAF. Then both f1 and f2 belong to PS�. We carry out
a case analysis to identify the conditions that characterize situations where s1 shares s2.
Our case analysis is based on the properties of the scalar functions f1 and f2 used by the
aggregation states s1 and s2. In fact, all scalar functions in PS◦, except constant functions,
are either injective, or even (i.e., f (x) = f (−x))), while scalar functions in (PS� \ PS◦)
are not injective because of the presence of the arithmetic binary functions � (cf. Figure
3.10). Therefore, we split the sharing problem share(s1, s2) into four main cases depending
on whether f1 and f2 are injections or even functions. The studied cases are presented
in Table 3.2. Our main results provide a full characterization for the first three cases in
Table 3.2. Specifically, we provide complete conditions, presented in Theorem 3, for the
first two cases in Table 3.2, and we then reduce the third case to the second case in Table
3.2. We also propose an incomplete solution to deal with the fourth case in Table 3.2.
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Case f1 in s1 f2 in s2 Whether s1 ∈ D(s2)
1 Injective Non-injective N (case 1 of Theorem 3)
2 - Injective Case 2 of Theorem 3
3 Even Even Case 2 of Theorem 3
4 Neither injective nor even Neither injective nor even Splitting rules (SR)

TABLE 3.2: Cases analysis of the sharing problem in SUDAF.

: neither injective 
nor even

: injective

: even

𝑷𝑺∘

𝑷𝑺⨀

FIGURE 3.10: Injective and even functions in PS◦ and PS�.

In the sequel, we use the function sgn(x) defined as follows:

sgn(x) =


1, x > 0;
0, x = 0;
−1, x < 0.

3.4.1 Sharing conditions

We propose the following theorem to solve the sharing problem share(s1, s2), where f1
is injective and f2 is non-injective (corresponding to the case 1 in Table 3.2), and f2 is
injective (corresponding to the case 2 in Table 3.2).

Theorem 3. Let X ∈ M(Q) and let s1(X) = ∑⊕1
f1(xi) and s2(X) = ∑⊕2

f2(xi) be two
aggregation states with ∑⊕1

∈ PA and ∑⊕2
∈ PA, f1 a non constant function and s1 6= s2.

Then, we have:

(Case 1) if f1 is injective and f2 is not injective, then s1 does not share s2.

(Case 2) if f2 is injective, then: there exists a computable function r12 such that s1(X) = r12 ◦ s2(X)
if and only if one of the following conditions holds:

(2.1) ∑⊕1
= ∑⊕2

= ∑ and f1 ◦ f−1
2 (x) = ax with a ∈ Q 6=0 a constant. Then we have

r12(x) = f1 ◦ f−1
2 (x).

(2.2) ∑⊕1
= ∑, ∑⊕2

= ∏ and f1 ◦ f−1
2 (x) = a(logb|x|) with b ∈ Q>0, 6=1 and a ∈ Q 6=0

two constants. Then we have r12(x) = f1 ◦ f−1
2 (x).

(2.3) ∑⊕1
= ∏, ∑⊕2

= ∑ and f1 ◦ f−1
2 (x) = bax with b ∈ Q>0, 6=1 and a ∈ Q 6=0 two

constants. Then we have r12(x) = f1 ◦ f−1
2 (x).

(2.4) ∑⊕1
= ∑⊕2

= ∏ and with a constant a ∈ Q 6=0:

(i) when f1 ◦ f−1
2 (−1) = 1, f1 ◦ f−1

2 (x) = |x|a;
(ii) when f1 ◦ f−1

2 (1) = −1, f1 ◦ f−1
2 (x) = sgn(x)× |x|a;

Then we have r(x) = f1 ◦ f−1
2 (x).

We illustrate how Theorem 3 can be applied to deal with the sharing problem share(s1,
s2) in the following example.
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Example 2. Let X be a multiset of rational values, i.e., X ∈ M(Q), and s1 and s2 are two
aggregation states that are computed with X as input.

• Case 1. Given s1(X) = ∑ 3xi and s2(X) = ∑ x2
i . In this case f1(x) = 3x and f2(x) = x2,

then we have f1(x) is an injection and f2(x) is not an injection. According to the case 1 of
Theorem 3, the answer to the problem share(s1, s2) is no.

• Case 2.1. Given s1(X) = ∑ ln(x2
i ) and s2(X) = ∑ log(xi). In this case f1(x) = ln(x2)

and f2(x) = log(x), then we have both f1(x) and f2(x) are injections. Since f2(x) is an
injection and (∑⊕1

= ∑⊕2
= ∑), case 2.1 of Theorem 3 is identified to be used. We have

f1 ◦ f−1
2 (x) = (ln4)x, which satisfies the condition in case 2.1 of Theorem 3. Then, the

corresponding answer to the problem share(s1, s2) is yes. Moreover, the case 2.1 of Theorem
3 also states that r(x) = (ln4)x is the reusing function for s1(X) = r ◦ s2(X).

• Case 2.2. Given s1(X) = ∑ 3xi and s2(X) = ∏ 2xi . In this case f1(x) = 3x and
f2(x) = 2x, then we have both f1(x) and f2(x) are injections. Since f2(x) is an injec-
tion and (∑⊕1

= ∑, ∑⊕2
= ∏), the case 2.2 of Theorem 3 is identified to be used. We have

f1 ◦ f−1
2 (x) = 3log(x), which satisfies the condition in case 2.2 of Theorem 3. Then, the

corresponding answer to the problem share(s1, s2) is yes. Moreover, the case 2.2 of Theorem
3 also states that r(x) = 3log(x) is the reusing function for s1(X) = r ◦ s2(X).

• Case 2.3. Given s1(X) = ∏ x2
i and s2(X) = ∑ ln(xi). In this case f1(x) = x2 and

f2(x) = ln(x), then we have both f1(x) and f2(x) are injections. Since f2(x) is an in-
jection and (∑⊕1

= ∏, ∑⊕2
= ∑), the case 2.3 of Theorem 3 is identified to be used. We

have f1 ◦ f−1
2 (x) = e2x, which satisfies the condition in case 2.3 of Theorem 3. Then, the

corresponding answer to the problem share(s1, s2) is yes. Moreover, the case 2.3 of Theorem
3 also states that r(x) = e2x is the reusing function for s1(X) = r ◦ s2(X).

• Case 2.4. Given s1(X) = ∏ 2xi and s2(X) = ∏ e3xi . In this case f1(x) = 2x and
f2(x) = e3x, then we have both f1(x) and f2(x) are injections. Since f2(x) is an injection
and (∑⊕1

= ∑⊕2
= ∏), the case 2.4 of Theorem 3 is identified to be used. We have

f1 ◦ f−1
2 (x) = x

1
3log(e) , which satisfies the condition in case 2.4 of Theorem 3. Then, the

corresponding answer to the problem share(s1, s2) is yes. Moreover, the case 2.4 of Theorem

3 also states that r(x) = x

1
3log(e) is the reusing function for s1(X) = r ◦ s2(X).

The case 1 of Theorem 3 states that, given two aggregations states s1(X) = ∑⊕1
f1(xi)

and s2(X) = ∑⊕2
f2(xi) in the scope of SUDAF when f1 is injective and f2 is non-injective,

then except the special case of an identify function when s1 = s2, it is not possible to find
a computable function r12 such that s1(X) = r12 ◦ s2(X). A proof is given below.

Proof. (Case 1 of Theorem 3) We prove this case by contradiction.
Assuming r12 exists s.t. s1(X) = r12 ◦ s2(X). Then for any two multisets X and Y, we
have:

if s2(X) = s2(Y), then s1(X) = s1(Y). (3.2)
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Let f−q
2 be a quasi-inverse function2 of f2. Assume two multisets X = {{x1, ..., xn}} and

Y = {{y1, y2}} with y1 = f−q
2 ( f2(x1)⊕2 ...⊕2 f2(xn−1)) and y2 = xn. Therefore, we have

s2(Y) = f2(y1)⊕2 f2(y2)

= f2( f−q
2 ( f2(x1)⊕2 ...⊕2 f2(xn−1))⊕2 f2(xn)

= f2(x1)⊕2 ...⊕2 f2(xn−1)⊕2 f2(xn)

= s2(X).
∴ s1(Y) = s1(X) (the condition in equation (3.2))

Since f2 is not an injection, then it can have several quasi-inverse functions. Let f−q′
2

be another quasi-inverse function of f2, which is different from f−q
2 , such that y′1 =

f−q′
2 ( f2(x1)⊕2 ...⊕2 f2(xn−1)) 6= y1. Let Y′ = {{y′1, y2}}, then, we have:

s2(Y′) = f2(y′1)⊕2 f2(y2)

= f2( f−q′
2 ( f2(x1)⊕2 ...⊕2 f2(xn−1))⊕2 f2(xn)

= f2(x1)⊕2 ...⊕2 f2(xn−1)⊕2 f2(xn)

= s2(X).
∴ s2(Y′) = s2(Y),
∴ s1(Y) = s1(Y′) (the condition in equation (3.2))

As explained below, this is not possible. On another side, since f1 is an injection, we have
f1(y1) 6= f1(y′1) (because y1 6= y′1). Then, for ∑⊕1

∈ PA, there exists f1(y2), such that
f1(y1)⊕1 f1(y2) 6= f1(y′1)⊕1 f1(y2). Therefore, s1(Y) 6= s1(Y′) which contradicts the fact
that s1(Y) = s1(Y′). Such that r12 does not exist.

The case 2 of Theorem 3 provides necessary and sufficient conditions to characterize
solutions of the share(s1, s2) problem when f2 is injective. It carries out a case analysis
for the four possible combinations obtained from the instantiation of ∑⊕1

and ∑⊕2
as op-

erations in PA, i.e., either sum or product. Specifically, we found the form of f1 ◦ f−1
2 (x)

by using Cauchy’s functional equation [Sma07, onl18] in the case 2.1, which is a com-
plete condition for solving the sharing problem in the case 2.1. The other three sub-cases
follows the same structure of the case 2.1. The proof is detailed below.

Proof. (Case 2.1 of Theorem 3)
(Sufficiency) Assume that f1 ◦ f−1

2 (x) = ax. Then, we have:

f1 ◦ f−1
2 ◦ s2(X) = a(∑ f2(xi))

= ∑ a( f2(xi))

= ∑ f1 ◦ f−1
2 ◦ f2(xi)

= s1(X).

Hence, taking r12(x) = f1 ◦ f−1
2 (x) = ax, we have s1(X) = r12 ◦ s2(X).

(Necessity) Assume that there exists a function r12 s.t. s1(X) = r12 ◦ s2(X). Then, we
have ∑ f1(xi) = r12 ◦ ∑ f2(xi). Hence, we can derive that ∑ f1 ◦ f−1

2 (xi) = r12 ◦ ∑ f2 ◦
f−1
2 (xi). Then, ∑ f1 ◦ f−1

2 (xi) = r12 ◦ ∑ xi. If we note g(x) = f1 ◦ f−1
2 (x), we obtain

2Every function has a quasi-inverse function by the Axiom of Choice. If g(x) is a quasi-inverse of f (x), then f ◦ g ◦
f (x) = f (x) or f ◦ g(x) = x.
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∑ g(xi) = r12 ◦∑ xi. Let {{x1, ..., xn}} and {{y1, y2}} be two multisets with y1 = x1 + ... +
xn−1 and y2 = xn. Then, we have:

g(x1) + ... + g(xn) = r12(x1 + ... + xn), and (3.3)
r12(y1 + y2) = g(y1) + g(y2). (3.4)

Knowing that x1 + ... + xn = y1 + y2, and hence r12(x1 + ... + xn) = r12(y1 + y2), and
from equations (3.3) and (3.4), we derive g(x1) + ... + g(xn) = g(y1) + g(y2). Then, from
y1 = x1 + ... + xn−1, we obtain

g(x1) + ... + g(xn−1) = g(x1 + ... + xn−1). (3.5)

Note that, equation (3.5) is a Cauchy’s functional equation [Sma07, onl18]. This im-
plies that g(x) is an additive function having the following form:

g(x) = ax, x ∈ Q, a ∈ Q 6=0. (3.6)

From equation (3.6) and ∑ g(xi) = r12 ◦∑ xi, we have g(x) = r(x). Such that,

f1 ◦ f−1
2 (x) = r12(x) = ax, x ∈ Q, a ∈ Q 6=0.

Proof. (Case 2.2 of Theorem 3)
(Sufficiency) Assume that f1 ◦ f−1

2 (x) = a(logb|x|). Then,

f1 ◦ f−1
2 ◦ s2(X) = a(logb|(∏ f2(xi))|)

= ∑ a(logb| f2(xi)|)
= ∑ f1 ◦ f−1

2 ◦ f2(xi)

= s1(X).

Hence, if we take r12(x) = f1 ◦ f−1
2 (x) = a(logb|x|), we have s1(X) = r12 ◦ s2(X).

(Necessity) Assume that there exists a function r12 s.t. s1(X) = r12 ◦ s2(X). Then, we
have ∑ f1(xi) = r12 ◦∏ f2(xi) and hence ∑ f1 ◦ f−1

2 (xi) = r12 ◦∏ xi. If we note g(x) = f1 ◦
f−1
2 (x), we obtain ∑ g(xi) = r12 ◦∏ xi. Let {{x1, ..., xn}} and {{y1, y2}} be two multisets

with x1 × ...× xn−1 = y1 and xn = y2. Then, we have

r(x1 × ...× xn) = g(x1) + ... + g(xn), and (3.7)
r(y1 × y2) = g(y1) + g(y2). (3.8)

Knowing that y1 × y2 = x1 × ...× xn, and hence r(x1 × ...× xn) = r(y1 × y2), and from
equation (3.7) and (3.8), we derive g(x1) + ... + g(xn) = g(y1) + g(y2). Then from y1 =
x1 × ...× xn−1, we obtain

g(x1 × ...× xn−1) = g(x1) + ... + g(xn−1). (3.9)

Equation (3.9) can be transformed to a Cauchy’s functional equation, which implies:
g(x) = a(logb(x)), x ∈ Q>0, b ∈ Q>0, 6=1, a ∈ Q 6=0. We explain this in details below.

We can derive from equation (3.9) that g(x) does not define on 0, otherwise g(x) = 0,
which is a contradiction to the condition of a non-constant f1. Then we have g(x) can be
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defined on either Q>0 or Q<0. For x > 0, let x = bu, u ∈ Q, and h(u) = g(bu), b ∈ Q>0, 6=1,
then we have:

h(u1 + ... + un−1) =g(bu1+...+un−1)

=g(bu1 × ...× bun−1)

=g(bu1) + ... + g(bun−1)

=h(u1) + ... + h(un−1).

Then, according to Cauchy’s functional equation [Sma07, onl18], we have h(u) = h(1)u,
with a constant h(1) ∈ Q 6=0. Then g(bu) = h(1)u and u = logbx, such that g(x) =
a(logbx), x ∈ Q>0, b ∈ Q>0, 6=1, a = h(1) ∈ Q 6=0. From equation (3.9), we can also have
g(1) = 0 and g(−1) = 0, such that g(x) = g(−x). Then for x < 0, we have g(x) =
a(logb(−x)). Therefore, with constants a ∈ Q 6=0 and b>0, 6=1, we have:

g(x) = a(logb|x|), x ∈ Q 6=0 (3.10)

From equation (3.10) and ∑ g(xi) = r12 ◦∏ xi, we have g(x) = r(x). Such that

f1 ◦ f−1
2 (x) = r12(x) = a(logb|x|), x ∈ Q 6=0, b ∈ Q>0, 6=1, a ∈ Q 6=0.

Proof. (Case 2.3 of Theorem 3)
(Sufficiency) Assume that f1 ◦ f−1

2 (x) = bax. Then, we have:

f1 ◦ f−1
2 ◦ s2(X) = ba(∑ f2(xi))

= ∏ ba( f2(xi))

= ∏ f1 ◦ f−1
2 ◦ f2(xi)

= s1(X).

Then, if we take r12(x) = f1 ◦ f−1
2 (x) = bax, we have s1(X) = r12 ◦ s2(X).

(Necessity) Assume that there exists a function r12 s.t. s1(X) = r12 ◦ s2(X). Then, we
have ∏ f1(xi) = r12 ◦∑ f2(xi) and hence ∏ f1 ◦ f−1

2 (xi) = r12 ◦∑ xi. If we note g(x) = f1 ◦
f−1
2 (x), we obtain ∏ g(xi) = r12 ◦ ∑ xi. Let {{x1, ..., xn}} and {{y1, y2}} be two multisets

with x1 + ... + xn−1 = y1, xn = y2 and g(xn) 6= 0. Then, we have

r(x1 + ... + xn) = g(x1)× ...× g(xn), and (3.11)
r(y1 + y2) = g(y1)× g(y2). (3.12)

Knowing that y1 + y2 = x1 + ... + xn, and hence r(x1 + ... + xn) = r(y1 + y2), and
from equation (3.11) and (3.12), we derive g(x1)× ...× g(xn) = g(y1)× g(y2). Then from
x1 + ... + xn−1 = y1, we obtain

g(x1 + ... + xn−1) = g(x1)× ...× g(xn−1). (3.13)

Equation (3.13) can be transformed to a Cauchy’s functional equation, which implies:
g(x) = bax, x ∈ Q, b ∈ Q>0, 6=1, a ∈ Q 6=0. We explain this in details below.

We can derive from equation (3.13) that ∀x ∈ Q, g(x) > 0. We have g(x) = g(
x
2
+

x
2
) = (g(

x
2
))

2
, which implies g(x) > 0. We can also have ∀x ∈ Q, g(x) 6= 0. W.l.o.g,

let n = 3, x1 = 0, x2 = x, then g(x) = g(0)× g(x), which implies g(0) 6= 0, otherwise
g(x) = 0 and g(x) is a constant function contradicting to a non-constant f1. Then, we
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have g(0) = 1 by g(0) = (g(0))2. Moreover, g(x)× g(−x) = g(x− x) = g(0) = 1, such
that we have ∀x ∈ Q, g(x) 6= 0. Let h(x) = logb(g(x)), x ∈ Q, b ∈ Q>0, 6=1, then we have

h(x1 + ... + xn−1) =logb(g(x1 + ... + xn−1))

=logb(g(x1)× ...× g(xn−1))

=logb(g(x1)) + ... + logb(g(xn−1))

=h(x1) + ... + h(xn−1).

Then, according to Cauchy’s functional equation [Sma07,onl18], we have h(x) = h(1)x, x ∈
Q, h(1) ∈ Q 6=0. Such that,

g(x) = bax, x ∈ Q, b ∈ Q>0, 6=1, a = h(1) ∈ Q 6=0. (3.14)

From equation (3.14) and ∏ g(xi) = r12 ◦∑ xi, we have g(x) = r(x). Such that

f1 ◦ f−1
2 (x) = r12(x) = bax, x ∈ Q, b ∈ Q>0, 6=1, a ∈ Q 6=0.

Proof. (Case 2.4 of Theorem 3)
(Sufficiency) Assume f1 ◦ f−1

2 (−1) = 1 and f1 ◦ f−1
2 (x) = |x|a. Then we have,

r12 ◦∏ f2(xi) = |x|a ◦∏ f2(xi)

= (|∏ f2(xi)|)a

= (∏ | f2(xi)|)a

= ∏(| f2(xi)|)a

= ∏ |x|a ◦ f2(xi)

= ∏ f1 ◦ f−1
2 ◦ f2(xi)

=
n

∏
i=1

f1(xi)

= s1(X).

Assume f1 ◦ f−1
2 (−1) = −1 and f1 ◦ f−1

2 (x) = sgn(x)× |x|a. Then we have,

r12 ◦∏ f2(xi) = sgn(∏ f2(xi))× |∏ f2(xi)|a

= (∏ sgn( f2(xi)))×∏ | f2(xi)|a

= ∏ sgn( f2(xi))× | f2(xi)|a

= ∏ f1 ◦ f−1
2 ◦ f2(xi)

=
n

∏
i=1

f1(xi)

= s1(X).

(Necessity) Assume that there exists a function r12 s.t. s1(X) = r12 ◦ s2(X). Then, we
have ∏ f1(xi) = r12 ◦∏ f2(xi) and hence ∏ f1 ◦ f−1

2 (xi) = r12 ◦∏ xi. If we note g(x) = f1 ◦
f−1
2 (x), we obtain ∏ g(xi) = r12 ◦∏ xi. Let {{x1, ..., xn}} and {{y1, y2}} be two multisets

with x1 × ...× xn−1 = y1, xn = y2 and g(xn) 6= 0. Then, we have

r(x1 × ...× xn) = g(x1)× ...× g(xn), and (3.15)
r(y1 × y2) = g(y1)× g(y2). (3.16)
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Knowing that x1 × ...× xn = y1 × yn, and hence r(x1 × ...× xn) = r(y1 × y2), and from
equation (3.15) and (3.16), we derive g(x1) × ... × g(xn) = g(y1) × g(y2). Then from
x1 × ...× xn−1 = y1, we obtain

g(x1 × ...× xn−1) = g(x1)× ...× g(xn−1). (3.17)

Equation (3.17) can be transformed to a Cauchy’s functional equation [Sma07, onl18],
which implies g(x) = xa, for x > 0. We explain this below in details.

When x > 0, we derive that g(x) > 0. From equation (3.17) we can have g(x) =
g(1) × g(x), then g(1) 6= 0, otherwise g is a constant function contradicting to non-
constant f1. Then we have g(1) = 1 because of g(1) = (g(1))2. Moreover, ∀x 6= 0,

we have g(x) × g(
1
x
) = g(x × 1

x
) = g(1) = 1, then g(x) 6= 0. Furthermore, we

have g(x2) = g2(x). Such that, we have ∀x ∈ Q>0, g(x) > 0. Let x = eu, u ∈ Q and
h(u) = ln(g(eu)), then we have

h(u1 + ... + un−1) =ln(g(eu1+...+un−1))

=ln(g(eu1 × ...× eun−1))

=ln(g(eu1)× ...× g(eun−1))

=ln(g(eu1)) + ... + ln(g(eun−1))

=h(u1) + ... + h(un−1).

Then, according to Cauchy’s functional equation [Sma07,onl18], we have h(u) = h(1)u, u ∈
Q, h(1) ∈ Q 6=0, then ln(g(eu)) = h(1)u. Such that, we have

g(x) = xa, x ∈ Q>0, a ∈ Q 6=0.

When x < 0, from equation (3.17) we have g(x) = g(−1)g(−x) = g(−1)(−x)a. More-
over, we have g(1) = g(−1)× g(−1), such that we have either g(−1) = 1 or g(−1) = −1.
Then, we have for x < 0:

(i) when g(−1) = 1 and x < 0, g(x) = (−x)a;

(ii) when g(−1) = −1 and x < 0, g(x) = −(−x)a.

Therefore, we have the function g(x):

(i) when g(−1) = 1, g(x) = |x|a, x 6= 0;

(ii) when g(−1) = −1, g(x) = sgn(x)× |x|a, x 6= 0.

From ∏ g(x) = r12 ◦∏ x and equation (3.17), we have g(x) = r(x).

3.4.2 The case of even scalar functions

The third case to deal with is when both f1(x) and f2(x) are not injections but even func-
tions (case 3 of Table 3.2). As depicted in Figure 3.10, non-injective scalar functions of PS◦

are even functions. We exploit this property to reduce the study to a sharing problem over a
positive domain of scalar functions and show that the case 2 of Theorem 3 can be applied
in this setting. We denote UX = {ux = |x||x ∈ X}. Then, whatever x is, we have ux > 0.
Let s1(X) = ∑⊕1

f1(xi) and s2(X) = ∑⊕2
f2(xi) be two aggregation states in SUDAF such

that { f1, f2} ⊂ PS◦. Observe that s1(X) shares s2(X) if and only if s1(UX) shares s2(UX).
This is because f1(x) = f1(ux) (since f1 is even), and similarly for f2. Consequently, one
can focus on solving the sharing problem only over positive domains of f1 and f2. In this
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setting (positive domain), all primitive scalar functions of SUDAF (non-constant elements
in PS) are injections and hence the complex scalar functions, elements of PS◦, are also in-
jective functions. Therefore, the case 2 of Theorem 3 can be exploited to solve the sharing
problem in this context.

Example 3. Let X be a multiset of rational values, i.e., X ∈ M(Q). Given s1(X) = ∑ ln(x2
i )

and s2(X) = ∑ log(x4
i ). In this case f1(x) = ln(x2) and f2(x) = log(x4), then we have both

f1(x) and f2(x) are even functions. In the sequel, we consider f1(x) and f2(x) over the positive
domain, where both f1(x) and f2(x) are injections. Since (∑⊕1

= ∑⊕2
= ∑), the case 2.1 of

Theorem 3 is identified to be used. We have f1 ◦ f−1
2 (x) = (

ln2
2

)x, which satisfies the condition
in case 2.1 of Theorem 3. Then, the corresponding answer to the problem share(s1, s2) is yes.

Moreover, the case 2.1 of Theorem 3 also states that r(x) = (
ln2
2

)x is the reusing function for

s1(X) = r ◦ s2(X).

3.4.3 The case of neither even nor injective scalar functions

The last case to deal with is when both f1(x) and f2(x) are neither injections nor even
functions (case 4 of Table 3.2). As depicted in Figure 3.10, such scalar functions are from
(PS� \ PS◦). We propose splitting rules to deal with such cases. W.l.o.g, let s(X) =

∑⊕(g1(xi)� g2(xi)), ∑⊕ ∈ PA, {g1, g2} ∈ PS◦. Then, we define the following two split-
ting rules (SR):

SR1: ∑(g1(xi)� g2(xi)) = ∑(g1(xi))�∑(g2(xi)), � ∈ {+,−};

SR2: ∏(g1(xi)� g2(xi)) = ∏(g1(xi))�∏(g2(xi)), � ∈ {×, /}.

By applying the above two rules 3, aggregation states in (PS� \ PS◦) can be split into new
ones with scalar functions in PS◦, which can still be verified using Theorem 3.

Example 4. Let X be a multiset of rational values, i.e., X ∈ M(Q). Given s1(X) = ∑ x2
i +

ln(x4
i ) and s2(X) = ∑ 3x2

i − log(x3
i ). In this case f1(x) = x2 + ln(x4) and f2(x) = 3x2 −

log(x3), then we have both f1(x) and f2(x) are neither injections nor even functions. As a
consequence of this step, Theorem 3 cannot be directly used in this case. However, we can apply
splitting rules to transform the expression of s1(X) and s2(X). We show the transformation of
aggregate expression trees of s1 and s2 in Figure 3.11. Consequently, both s1 and s2 are split into
two aggregation states shown as follows,

s1(X) = s′1(X) + s′′1 (X), where s′1(X) = ∑ x2
i and s′′1 (X) = ∑ ln(x4

i );

s2(X) = s′2(X)− s′′2 (X), where s′2(X) = ∑ 3x2
i and s′′2 (X) = ∑ log(x3

i ).

Assuming that s1 has been transformed using splitting rule 1, then we compute and cache s′1(X)
and s′′1 (X), from which we compute s1(X). Then, given s2, we also apply splitting rule 1 to
transform s2. Now, the problem share(s1, s2) has been reduced to the following problem, whether
the cache of s′1(X) and s′′1 (X) can be reused to compute s2(X), which includes solving a sharing
problem for s′1, that either share(s′1, s′2) or share(s′1, s′′2 ), and a sharing problem for s′′1 , that either
share(s′′1 , s′2) or share(s′′1 , s′′2 ). Note that, Theorem 3 can be directly used to solve these 4 problems.
Specifically, according to the case 2.1 of Theorem 3, we have the answer to share(s′1, s′2) is yes, and
the answer to share(s′1, s′′2 ) is yes. Therefore, s2 can be computed from the cache s′1(X) and s′′1 (X)
other than the base data.

3In practical implementation, we generate an expression tree for every aggregate function, which is denoted as aggre-
gate expression tree (AET). Then, we apply transformation rules on AETs. See Section 5.3 for more details.
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FIGURE 3.11: Transforming aggregate expression trees (AET) using splitting rules

3.5 Extension to multivariate functions

In Section 3.4, we propose the sharing conditions to deal with sharing problems for ag-
gregation functions that are uni-variate functions, which are computed over one column
in a table. In real-world data analysis, one also needs to compute aggregate functions that
are multivariate, which aggregates data from several columns of a table. In this section,
we briefly discuss the extension of sharing conditions to solve the sharing problem for
multivariate functions.

The general idea is to extract from a multivariate aggregation function a set of ag-
gregation states and reduce such a set of multivariate aggregation states to several uni-
variate ones. We use the following two approaches to accomplish this goal,

• We check whether it is possible to apply splitting rules to obtain uni-variate ag-
gregation states. For instance, given a multivariate aggregation state s(X, Y) =

∑ x2
i + ln(yi), which aggregates values from two columns X and Y. In this case,

s(X, Y) can be split into two uni-variate aggregation states ∑ x2
i and ∑ ln(yi). Then,

we can reuse the approach presented in Section 3.4 to respectively check whether
there is an aggregation state in the cache that can be reused to compute ∑ x2

i , or
∑ ln(yi). Note that, aggregation states are grouped based on their input column,
i.e., ∑ x2

i belongs to a group which is different from the group of ∑ ln(yi) since they
are computed over different columns, and we solve sharing problems for aggrega-
tion states that are from identical group.

• If it is impossible to apply splitting rules, we can annotate a scalar function of a
multivariate aggregation state as an intermediate column. For instance, the covari-

ance, cov(X, Y) =
∑(xi × yi)

n
− ∑ xi ×∑ yi

n2 , has a multivariate aggregation state

s1(X, Y) = ∑ xi × yi. Then, s1(X, Y) can be annotated as a uni-variate aggregation
over an abstract intermediate column Z, that s(X, Y) = s(Z), where Z is the scalar
product of X and Y, i.e., Z = X · Y. As a consequence, if there is another aggrega-
tion state over Z, i.e., s2(Z), then we can reuse the approach in Section 3.4 to deal
with the problem share(s1, s2) over Z. Note that, this approach requires checking
that whether s1 and s2 are computed over an identical intermediate column, or s1
and s2 have the identical scalar function, which is expensive for a scalar function
f ∈ PS� \ PS◦, because f can contain addition and multiplication which is com-
mutative and associative. While a practical and efficient method is to compare the
shape and nodes of expression trees for scalar functions.
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3.6 Summary

• In order to reduce data access during computing various UDAFs, we propose to
cache and reuse aggregation states, which is an intermediate computation result of
the canonical form of UDAFs. We formalize the caching and reusing problem as a
sharing problem on aggregation states of UDAFs, and we show that it is undecid-
able in a general setting.

• We deal with the sharing problem in the context of practical aggregation functions.
We present a practical UDAF framework SUDAF, which is an instance of the aggre-
gation expression model. SUDAF also contains three classes of primitive functions,
PS, PB and PA. One can use elements of them to create expressions of UDAFs. In
each class of primitive functions, SUDAF only contains limit types of functions. We
show that the limited scope of SUDAF functions covers a wide range of practical
aggregations.

• We deal with the sharing problem for UDAFs in SUDAF. We characterize 4 cases
based on scalar functions in aggregation states and identify complete conditions
for sharing problems under the first two cases. Moreover, we show that the other
two cases can be reduced to the first two cases.

• We discuss how to reduce multivariate aggregation states, which aggregates data
over more than one column, to uni-variate ones, such that sharing conditions can
be applied to solve sharing problems for multivariate aggregation states.
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Chapter 4

A practical approach to solve the
sharing problem

We present in this section a practical approach to solve the sharing problem based on the
results provided by Theorem 3. Turning the conditions of Theorem 3 into an algorithm
could be cumbersome because equivalent mathematical expressions may have different
syntactic shapes.

Example 5. Consider the problem whether s1(X) = ∑ 4x2
i shares s2(X) = ∑(3xi)

2. Using
Theorem 3, one needs to construct f1 ◦ f−1

2 (x) = 4x ◦ x2 ◦ 1
3 x ◦
√

x (over the positive domain
since both f1 and f2 are even). Then, according to case 2.1 of Theorem 3, we have to check whether
f1 ◦ f−1

2 (x) = ax, for some constant a. This is not an easy task, since this requires some mathe-
matical transformations of the original expression as follows: f1 ◦ f−1

2 (x) = 4x ◦ x2 ◦ 1
3 x ◦
√

x =

4x ◦ 1
9 x ◦ x2 ◦

√
x = 4

9 x. The first transformation is a reordering of x2 ◦ 1
3 x, which generates

1
9 x ◦ x2, and it is then followed by a removal of the composition x2 ◦

√
x. Finally, f1 ◦ f−1

2 (x) is
transformed to 4

9 x, which satisfies the condition f1 ◦ f−1
2 (x) = ax, with a = 4

9 , of the case 2.1 of
Theorem 3.

In addition, a straightforward implementation of Theorem 3 leads to redundant com-
putations as illustrated below.

Example 6. Checking whether s′1 = ∑ 6x3
i shares s′2 = ∑(5xi)

3 requires redoing identical trans-
formations as in the previous example (i.e., checking whether s1(X) = ∑ 4x2

i shares s2(X) =

∑(3xi)
2). This is because we have as a general property: ∑ a2xa1

i shares ∑(b1xi)
b2 if a1 = b2.

Hence, our general idea [ZT19] to deal with the two previous issues is: (i) to use
symbolic representations of aggregation states to avoid redundant computations, i.e., us-
ing ∑ a2xa1

i and ∑(b1xi)
b2 , where a1, a2, b1 and b2 are parameters, to represent the concrete

states ∑ 4x2
i and ∑(3xi)

2, and (ii) to precompute sharing relationships between symbolic
representations to avoid cumbersome transformations of mathematical expressions at ex-
ecution time. For example, we precompute the relationship stating that ∑ a2xa1

i shares
∑(b1xi)

b2 if a1 = b2. Then, at execution time, this relationship can be used to efficiently
identify that the concrete aggregation state ∑ 4x2

i , an instance of the abstract state ∑ a2xa1
i ,

shares the concrete state ∑(3xi)
2, an instance of the abstract state ∑(b1xi)

b2 , because the
condition a1 = b2 is satisfied.

4.1 Symbolic representations

In this section, we first present symbolic representations of scalar functions and then
use them to introduce symbolic representations of aggregation states. In the sequel, we
assume an infinite set of parameters, distinct from the set of constants. Hereafter, the
parameters are denoted p, p1, . . ..
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Symbolic primitive scalar functions. Intuitively, px with a parameter p is the symbolic
representation of the primitive scalar function 2x. In this case, 2x is an instance of px.
Formally, we consider four symbolic primitive scalar functions with a parameter p: px =
{ax|∀a 6= 0}; logpx = {logax|∀a > 0, 6= 1}; px = {ax|∀a > 0, 6= 1}; xp = {xa|∀a 6= 0}. We
use the notation s f p̄(x) for a symbolic primitive scalar function with a sequence p̄ = (p)
of a parameter p.

Symbolic scalar functions. Intuitively, p2xp1 with a parameter sequence (p2, p1) is the
symbolic representation of the scalar function 3x2, and in this case 3x2 is an instance of
p2xp1 . Formally, let every s fi p̄i(x) for i ∈ [1, . . . , l] be a symbolic primitive scalar function.
Then, s f p̄(x) = s fl p̄l ◦ ... ◦ s f1p̄1(x) is a symbolic scalar function s f p̄(x) with a sequence
p̄ = (pl , ..., p1) of parameters. Similarly, |s f p̄| = l.

Symbolic aggregation states. Intuitively, ∑ p2xp1 is the symbolic representation of the
aggregation state ∑ 3x2. In this case, ∑ p2xp1 is called a symbolic (aggregation) state and
we say that the concrete state ∑ 3x2 is an instance of the symbolic state ∑ p2xp1 . Formally,
let ∑⊕ ∈ PA and s f p̄(x) be a symbolic scalar function. Then, ss(X) = ∑⊕ s f p̄(xi) is a
symbolic aggregation state.

Specifically, we let ∑ xi and ∏ xi be also two symbolic aggregation states, which con-
tain respectively only one instance ∑ xi and ∏ xi, and we define | f | = 0 with f (x) = x.

Mapping an aggregation state to a unique symbolic state. Note that an aggregation
state can be an instance of several symbolic states, which will become an issue when
mapping an aggregation state to a precomputed sharing relationship of symbolic states.
For example, the aggregation state ∑ xa

i , with a = 1, is an instance of the symbolic states
∑ xp

i and ∑ xi. We define below the notion of natural instances of symbolic aggregation
states, which enable us to associate any aggregation state to a unique symbolic state.

Definition 4. An aggregation state s(X) is a natural instance of a symbolic aggregation state
ss(X) = ∑⊕ s f p̄(xi) if and only if ∀ss′(X) = ∑⊕′ s f ′p̄′(xi) ∈ saggsl(X) with |s f ′p̄′ | 6 |s f p̄| and
ss′(X) 6= ss(X), s(X) is not an instance of ss′(X).

In general, given an aggregation state s = ∑⊕ f (xi), it is straightforward to compute
the symbolic state ss such that s is a natural instance of ss: it is in general enough to take
ss = ∑⊕ s f p̄(xi) where s f p̄ is the symbolic function obtained from f by replacing each
constant that appears in f with a fresh parameter. For example, aggregation states of the
form ∑ axi and ∑ xb

i with constants a 6= 1 and b 6= 1 are respectively natural instances
of ∑ pxi and ∑ xp

i . Some particular cases must be treated cautiously because they require
a preprocessing step before applying such a transformation. For example, aggregation

states of the form ∑ a
loga1 xi
2 with a2 = a1 are not natural instances of symbolic states of the

form ∑ p
logp1 xi
2 as it could be expected by applying the previous transformation rule but

are instead natural instances of the symbolic state ∑ xi. Such cases are handled by apply-
ing a set of reduction rules, explained later in this section, on the scalar function of the
aggregation state before generating the corresponding symbolic state. To continue with

our previous example, the state ∑ a
loga1 xi
2 is first rewritten into ∑ xi and then translated

into a symbolic state.
Given an aggregation state s(X) = ∑⊕ f (xi), in order to compute the symbolic state

ss such that s is a natural instance of ss, we reduce | f | using reduction rules. The goal
of this preprocessing step is to obtain a scalar function f ′(x) having the following two
properties: (1) f ′(x) = f (x) and s f ′p̄′(x) 6= s f p̄(x); (2) @ f ′′(x) such that f ′′(x) = f (x),
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s f ′′p̄′(x) 6= s f p̄(x) and | f ′′| < | f ′|. We exhaustively list reduction rules (RRs) for the cases
| f | = 1 and | f | = 2 as follows, where a1 and a2 are constants used in primitive functions.

RR1: a1x → if (a1 = 1) x.
RR2: xa1 → if (a1 = 1) x.
RR3: a2x ◦ a1x → a2a1x.
RR4: a2x ◦ xa1 → if (a2 = 1) xa1 , or if (a1 = 1) a2x.
RR5: a2x ◦ loga1 x → if (a2 = 1) loga1 x.
RR6: a2x ◦ a1

x → if (a2 = 1) a1
x.

RR7: xa2 ◦ a1x → if (a1 > 0) aa2
1 x ◦ xa2 .

RR8: xa2 ◦ xa1 → xa2a1 .
RR9: xa2 ◦ ax

1 → aa2x
2 .

RR10: loga2 x ◦ xa1 → if (a1 6= 2k, k ∈ Z) a1x ◦ loga2 x.
RR11: loga2 x ◦ a1

x → (loga2 a1)x.
RR12: a2

x ◦ a1x → aa1x
2 .

RR13: a2
x ◦ loga1 x → x1/loga2 a1 .

We use the above rules to reduce the length of a scalar function in an aggregation state in
the following example.

Example 7. Given an aggregation state ∑ f (xi) with the scalar function f (x) = loga2 x ◦ xa1

with constants a2 and a1, a1 6= 2k, k ∈ Z. The form of f (x) satisfies the input of the rule
RR10, then through applying the rule RR10 we obtain f (x) = a1x ◦ loga2 x. Now, the form of
f (x) satisfies the input of the rule RR5, then by applying the rule RR5 f (x) can be rewritten as
f (x) = loga1 x. Consequently, we obtain ∑ f (xi) is a natural instance of the symbolic aggregation
state ∑ logp1 xi with a symbolic parameter p1.

The design principle of rewriting rules is reducing the length | f | to | f | − 1, such that
rules for the case of | f | − 1 can be reused. If scalar functions with a same length are
equivalent, i.e. a3x ◦ loga2 x ◦ xa1 = a3x ◦ a1x ◦ loga2 x with constants a3, a2 and a1 where
a1 6= 2k, k ∈ Z, they will be rewritten to one scalar function, i.e. a3x ◦ loga2 x ◦ xa1 →
a3x ◦ a1x ◦ loga2 x, and we only need to maintain one rule to reduce the length, i.e. a3x ◦
a2x ◦ loga1 x → a3a1x ◦ loga1 x.

4.2 Precomputed sharing relationships

Informally, we say that a symbolic state ss1 shares a symbolic state ss2 if and only if
for any instance s1 of ss1, there exists an instance s2 of ss2, such that s1 shares s2. For
example, ∑ pxi shares ∏ pxi , since ∑ 5xi shares ∏ 3xi and if we change 5 to be any other
constant, e.g., 6, we still have ∑ 6xi shares ∏ 3xi . We formally define below such a sharing
relationship as a symbolic derivable set of symbolic aggregation states.

Symbolic derivable set. Let ss be a symbolic aggregation state. The symbolic derivable
set of ss, noted SD(ss), is formally defined as follows:

SD(ss) = {ss′|for any natural instance s′ of ss′, there exists a natural instance s of ss,
such that s′ ∈ D(s)}.

In the sequel, we say ss′ shares ss when ss′ ∈ SD(ss).
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FIGURE 4.1: The digraph G of saggs2(X).

As explained previously, our aim is to precompute and store the sharing relationships
between the symbolic aggregation states. Specifically, we conduct an exhaustive analy-
sis to identify the sharing relationships between symbolic states in a preprocessing step,
which is performed once when SUDAF is deployed, and then the precomputed relation-
ships are reused at runtime to handle the sharing problem between concrete aggregation
states. Note that the space of symbolic states may be very huge (theoretically infinite)
because symbolic scalar functions may be of arbitrary lengths. In addition, aggregation
states having scalar functions with a higher length are useless from the practical point of
view. For example, in our experiments presented in Section 4.5, it was enough to use ag-
gregation states, whose scalar functions have a length of up to 2 to express many useful
and complex aggregation functions used in real-world applications. Therefore, SUDAF
enables a user to bound the space of symbolic aggregation states that is prebuilt in the
preprocessing step using a configuration parameter, denoted by l. The obtained space,
denoted by saggsl(X), is introduced below.

l-bounded symbolic space. Let l > 0 be an integer. We define the space saggsl(X)
of l-bounded symbolic aggregation states as follows: saggsl(X) = {∑⊕ s f p̄(xi)|s f p̄ is a
symbolic scalar function with |s f p̄| 6 l}. We say saggsl(X) is a l-bounded symbolic

space. Note that the size of the set saggsl(X) is bounded by
2(4l+1 − 1)

3
.

Hence, once the parameter l is fixed by the user, SUDAF builds the space saggsl(X)
and precomputes the sharing relationships between every two symbolic aggregation
states in saggsl(X). An excerpt of saggs2(X) is shown in Figure 4.1, where each sym-
bolic aggregation state is depicted as a node labeled with its expression (we shall explain
later the meaning of edges between nodes in Figure 4.1). As it can be observed in Figure
4.1, the space saggs2(X) is organized in three levels, where each level i, with i ∈ {0, 1, 2},
contains the symbolic states of the form ∑⊕ s f p̄(xi) with |s f p̄| = i. Figure 4.1 shows all
the symbolic states of level 0 and 1, and some states of level 2.
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FIGURE 4.2: The simplified digraph G of saggs2(X).

4.3 Organizing the space saggsl(X)

We briefly discuss the organization of a space saggsl(X), w.l.o.g., focusing on the case
l = 2. In the sequel, we first consider that the input multiset X contains only positive
values, i.e., X ∈ M(Q+), then we extend the results to the case where X contains both
negative and positive values.

We represent the sharing relationships between symbolic aggregation states in saggs2(X)
using a digraph G = (V, E) where the set of vertices V = saggs2(X) is the space saggs2(X)
and the set of edges E ⊆ V ×V represent the sharing relationship, i.e., (ss′, ss) ∈ E if and
only if ss′ shares ss. We shall present how to construct a digraph G in Section 4.3.1. Figure
4.1 depicts the digraph associated with the space saggs2(X). We distinguish between two
kinds of sharing relationships in G (two types of edges are depicted in Figure 4.1).

• Strong relationships. The first type of sharing relationships, called strong relationships,
relate two symbolic states (ss′, ss) if ss′ shares ss without requiring any condition
on the parameters. For example, since any instance of ∑ pxi shares any instance of
∏ pxi without conditions on their parameters, then ∑ pxi and ∏ pxi have a strong
sharing relationship denoted as ∑ pxi −→ ∏ pxi .

• Weak relationships. The second type of relationships, called weak relationships, relate
two symbolic states (ss′, ss) if ss′ shares ss under some conditions defined over
the parameters of ss and ss′. For example, the state ∑ xp

i shares ∑ p2xp1 with the
condition p = p1, then ∑ xp

i and ∑ p2xp1 have a weak sharing relationship denoted

as ∑ xp
i

p=p1−→ ∑ p2xp1 .

Figure 4.1 depicts the saggs2(X) space, with the exhaustive states of level 0 and 1, and
an excerpt of states of level 2. The strongly shares relationships are depicted as directed
solid-line edges while the weakly shares relationships are depicted using directed dashed-
line edges. Interestingly, the following lemma states that the shares relationships is an
equivalence relation (Proofs of Lemma 2 is provided in Section 4.3.2).
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Lemma 2. Let X be a multiset of positive values and let l be a positive integer. The shares
relationship on the set saggsl(X) is an equivalence relation.

For example, ∑ pxi ←→ ∏ pxi and ∑ xp
i

p=p1←→ ∑ p2xp1 .
Consequently, the space saggs2(X) can be partitioned into equivalence classes. We de-

fine the equivalent class [ss] associated with a symbolic state ss ∈ saggsl(X) as follows:
[ss] = {ss′ ∈ saggsl(X)|ss′ ∈ SD(ss)}. Intuitively, for a symbolic state ss, its associated
equivalence class [ss] is made of the set of symbolic aggregation states that share (and are
shared by) ss. For example, as depicted in Figure 4.1:

[∑ xi] = {∑ xi, ∑ pxi, ∏ pxi , ∏ pp2xi
1 };

[∑ xp
i ] = {∑ xp

i , ∑ p2xp1
i }.

It is clear that, given an equivalence class [ss], one only needs to focus on the instances of
its representative rep([ss]) since they are able to compute an instance of any other element
in [ss]. Therefore, we propose the notion of a representative of an equivalence class [ss],
noted rep([ss]), which corresponds to a unique element in [ss] whose instances are mate-
rialized in the cache. In our implementation, we use a hash function that maps symbolic
states to integers. A representative rep([ss]) corresponds to the symbolic state of [ss] hav-
ing the smallest hash code. The hash function is designed to ensure the following three
properties of representatives: a representative of an equivalence class is unique, repre-
sentatives are selected among symbolic states with the smallest lengths and the priority
is given to addition w.r.t. product in terms of binary operations ⊕.

We simplify the digraph G presented in Figure 4.2 based on the equivalence relations
derived from the sharing relationships. More precisely, it is only necessary for any state
ss ∈ saggs2(X) to store such a sharing relationship ss → rep([ss]), or ss

pcon−→ rep([ss])
with a parameter condition (pcon). Consequently, when an instance s of ss is given, we
use an edge ss → rep([ss]), or ss

pcon−→ rep([ss]) to get a cached instance of rep([ss]) to
compute s.

Extension to an arbitrary multiset. When a multiset X contains negative values, the
arisen issue is that some symbolic states in saggs2(X) do not exist, e.g., ∑ logpxi. We
deal with this issue by reducing this case to the case where an input contains only pos-
itive values. The main idea is to translate an input X = {x1, . . . , xn} to a multiset
X̂ = {(|x1|, sgn(x1)), . . . , (|xn|, sgn(xn)}, where |xj| denotes the absolute value of xj and
sgn(xj) is its sign. For example, for an arbitrary multiset X, we can keep in the cache
states of the form (∑ ln|xi|, ∏ sgn(xi)) corresponding to the representative ∑ logpxi. By
this way, it is possible to identify that an instance of logp2

(xp1
i ) can be computed from the

instance of ∑ logpxi.

4.3.1 Construction of graph G

In this section, we present an approach of constructing a sharing graph G associated with
a space saggsl(X), X ∈ M(Q+). Constructing a graph G requires to check the property
of symbolic derivable set for every pair of two symbolic aggregation states (ss′, ss) in
saggsl(X)× saggsl(X), X ∈ M(Q+). The key problem is to check whether ss′ ∈ SD(ss).
In order to accomplish this goal, we reuse the sharing conditions in proposition 1 (a
partial result of Theorem 3) to verify ss′ ∈ SDl(ss). We propose complete conditions to
analyze the forms of symbolic scalar functions, such that to identify strong edges, i.e.
when ss′ strongly shares ss. We also propose a sound approach to construct weak edges,
i.e. when ss′ weakly shares ss. At last, we analyze the effect of using a constructed graph
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G to search a natural instance for computing an aggregation state which is an unnatural
instance of a symbolic state.

Symbolic inverse functions. Verifying sharing conditions require to obtain an inverse
function of a scalar function. We define symbolic inverse functions of symbolic scalar
functions as follows. We first assign a symbolic inverse function for each symbolic prim-
itive scalar function in Table 4.1.

s f p̄(x) s f−1
p̄ (x)

px 1/px
logpx px

px logpx
xp x1/p

TABLE 4.1: Symbolic inverse s f−1
p̄ (x) of symbolic primitive scalar function s f p̄(x), x > 0.

Then, given a symbolic scalar function s f p̄(x) = s fl p̄l ◦ ... ◦ s f1p̄1(x), x > 0, where
s fi p̄i(x) is a symbolic primitive scalar function, i ∈ [1, ..., l], we define the symbolic func-
tion s f−1

p̄ (x) = s f−1
1p̄1
◦ ...s f−1

l p̄l
(x) as the symbolic inverse function of s f p̄(x), where s f−1

i p̄i
(x)

is the symbolic inverse of s fi p̄i(x).

Symbolic sharing conditions. We transform the sharing conditions of concrete aggre-
gation states (proposition 1) to the version on symbolic aggregation states, which can be
used in the symbolic context for the case X ∈ M(Q+). We make a decision according to
s f ′p̄′ ◦ s f−1

p̄ (x) based on ∑⊕′ and ∑⊕. If s f ′p̄′ ◦ s f−1
p̄ (x) is equivalent to a specific one in the

set {px, p′(logpx), pp′′x, xp} according to ∑⊕′ and ∑⊕ with symbolic parameters p, p′ and
p′′, then we have ss′ ∈ SDl(ss) and (ss′, ss) is a strong edge.

Identifying strong edges. Let s f ′p̄′ ◦ s f−1
p̄ (x) = s fl p̄l ◦ ... ◦ s f1p̄1(x), l > 2 and s fi p̄i , i ∈

[1, ..., l] be a symbolic primitive scalar function, we present below Lemma 3 to identify
whether s f ′p̄′ ◦ s f−1

p̄ (x) is one in the set {px, p′(logpx), pp′′x, xp}with symbolic parameters
p, p′ and p′′. The proof of Lemma 3 is based on induction, and the details of the proof are
provided in Section 4.3.3.

Lemma 3. Given a symbolic scalar function s f p̄(x) = s fl p̄l ◦ ... ◦ s f1p̄1(x) where s fi p̄i(x), i ∈
[1, ..., l], l > 2, x > 0 is a symbolic primitive scalar function with symbolic parameter pi, then
we have the following conditions to identify when s f p̄(x) is one in the set {px, xp, p′logpx, pp′′x}
with symbolic parameters p, p′ and p′,

• (Case 1) s f p̄(x) = px, if and only if

– ∀s fi p̄i(x) = pix;

– or ∀s fi p̄i(x) 6= pix, s fi p̄i(x) = logpi x, s f j p̄j(x) = pj
x, j = i− 1, i > 1;

– or ∀s fi p̄i(x) 6= pix, s fi p̄i(x) = pi
x, s f j p̄j(x) = logpj x, j = i + 1, i < l.

• (Case 2) s f p̄(x) = xp, if and only if

– ∀s fi p̄i(x) = xpi ;

– or ∀s fi p̄i(x) 6= xpi , s fi p̄i(x) = pi
x, s f j p̄j(x) = logpj x, j = i− 1, i > 1;

– or ∀s fi p̄i(x) 6= xpi , s fi p̄i(x) = logpi x, s f j p̄j(x) = pj
x, j = i + 1, i < l.

• (Case 3) s f p̄(x) = p′logpx, if and only if
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– s fi p̄i(x) = logpi x, s fl p̄l ◦ ... ◦ s fi+1p̄i+1(x) = p′x, and s fl p̄i−1 ◦ ... ◦ s f1p̄1(x) = xp′′ ,
l > i > 1.

– or s fl p̄l (x) = logpl x, and s fl−1p̄l−1 ◦ ... ◦ s f1p̄1(x) = xp′′ .

– or s f1p̄1(x) = logp1 x, and s fl p̄l ◦ ... ◦ s f2p̄2(x) = p′x.

• (Case 4) s f p̄(x) = pp′′x, if and only if

– s fi p̄i(x) = px
i , s fl p̄l ◦ ... ◦ s fi+1p̄i+1(x) = xp′ , and s fl p̄i−1 ◦ ... ◦ s f1p̄1(x) = p′′x,

l > i > 1.

– or s fl p̄l (x) = px
l , and s fl−1p̄l−1 ◦ ... ◦ s f1p̄1(x) = p′′x.

– or s f1p̄1(x) = px
1 , and s fl p̄l ◦ ... ◦ s f2p̄2(x) = xp′ .

We identify a property 1 of strong relationships by using Lemma 3: if (ss′, ss) is a
strong edge, then we have either ss′ ∈ SDl(∑ xi) or ss′ ∈ SDl(∏ xi). Moreover, since sharing
relationship is equivalent, then we can also have ss ∈ SDl(∑ xi) if ss′ ∈ SDl(∑ xi), or ss ∈
SDl(∏ xi) if ss′ ∈ SDl(∏ xi). This property provides a way to identify all strong edges in
saggsl(X) without verifying all pairs from saggsl(X)× saggsl(X). Specifically, we only
need to take every symbolic state ss′ from saggsl(X) and check whether ss′ ∈ SDl(∑ xi)
or SDl(∏ xi). This property also states that there only exist two such equivalent classes
where symbolic aggregate states strongly share each other. Once all strong edges are
constructed in G, ∑ xi and ∑ logpxi are selected to be the representative in each of the two
equivalent classes.

Identification of weak edges. We propose an incremental approach to obtain weak
edges. We first group symbolic aggregation states ss(X) = ∑⊕ s f p̄(xi) based on |s f p̄|,
and we call each group a layer, i.e. the layer l contains all symbolic aggregation states
with |s f p̄| = l. In the following context, we use the notion weak representative to denote
a representative that weakly shares itself. We begin to identify weak edges and weak
representatives in the layer 1. Then, we construct weak edges from symbolic aggregation
states in the layer i, i ≥ 2 to the weak representatives in the layer i− 1, and we identify
weak representatives in the layer i. We explain the incremental approach as follows.

• (Layer 1). As illustrated in Figure 4.1, there exists 4 symbolic aggregation states,
∑ xp

i , ∑ pxi , ∏ pxi and ∏ logpxi, which have the following property by using sharing
conditions in proposition 1: instances of them do not share each other. Therefore,
we construct for each a weak edge pointing to itself, and we maintain for each
weak edge a condition, that an instance only shares itself. These 4 symbolic states
are identified as 4 weak representatives. We shall discuss that they will be reused
to constructed weak edges for elements in the layer 2.

Example 8. ∑ xp
i is identified as a weak representative in the layer 1, and we construct

a weak edge (∑ xp
i , ∑ xp

i ). We also maintain the following condition associated with the
weak edge: given instances of ∑ xp

i , they can share computations unless they have the iden-
tical constant for the symbolic parameter p. For example, ∑ x2

i does not share ∑ x3
i , and

∑ x2
i only shares ∑ x2

i . Note that, if an unnatural instance of ∑ xp
i is given, i.e. ∑ xi, the

unnatural instance will not share any instance besides itself.

• (Layer 2 or higher). Given a symbolic aggregation state ss2 in the layer 2, and let
s2(X) = ∑⊕ f2 ◦ f1(xi) be a natural instance of ss2, we have: if ∑⊕ f2(xi) is one

1This can be verified by exhaustively checking the shape of the symbolic scalar function s f ′p̄′ (x) of ss′.
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in the set {∑ axi, ∑ logaxi, ∏ axi , ∏ xa
i } with a constant a, then s2(X) = f2 ◦ s1(X),

where s1(X) = ∑⊕′ f1(xi) is a natural instance of a symbolic aggregation state ss1
from the layer 1. In this case, if ss1 is a weak representative, i.e. one in the set
{∑ xp

i , ∑ pxi , ∏ pxi, ∏ logpxi}, then we construct a weak edge (ss2, ss1) with the con-
dition of identical f1(x).

Example 9. For an instance ∑ a2xa1
i of the symbolic aggregation state ∑ p2x ◦ xp1

i , we have
∑ a2xa1

i = a2(∑ xa1
i ), and ∑ xa1

i is an instance of the weak representative ∑ xp
i . Such that,

we construct a weak edge (∑ p2x ◦ xp1
i , ∑ xp

i ) with the condition p1 = p.

In the layer 2, we also meet such symbolic states: they do not weakly share any
element from the layer 1, and they do not strongly share any element in a space
saggsl(X), X ∈ M(Q+). For each of such elements, we let it be a weak represen-
tative, and we construct a weak edge pointing to itself with the condition, that an
instance of such symbolic state only shares itself. Then, we terminate for the layer
2.

Example 10. ∑ xp2 ◦ logp1 xi does not weakly share any element from the layer 1, and it
does not strongly share any element in saggsl(X), X ∈ M(Q+). Then, it is identified as a
weak representative, and we construct (∑ xp2 ◦ logp1 xi, ∑ xp2 ◦ logp1 xi) with the condition,
that an instance of ∑ xp2 ◦ logp1 xi only shares itself.

We repeat the above steps to construct weak edges from symbolic aggregation states
in the layer 3 to weak representatives in the layer 2, and we identify weak repre-
sentatives in the layer 3. We incrementally construct weak edges and identify weak
representatives until to the layer l, such that to obtain weak edges and weak repre-
sentatives in a graph G associated with a symbolic space saggsl(X), X ∈ M(Q+).

Complexity and completeness. We separately only need to visit each element in saggsl(X)
at most twice to construct strong edges and weak edges, such that a sharing graph G
is constructed in O(|saggsl(X)|) time, which is O(4l) since |saggsl(X)| is bounded by
2(4l+1 − 1)

3
. The graph G of a space saggsl(X), X ∈ M(Q+) with a general l is partially

complete, because strong edges have been exhaustively identified, but the identification
of weak edges maybe not complete. As a consequence, there may exist aggregation states,
which are natural instances of different weak representatives (representatives weakly
share itself) and can share each other, and such sharing relationship is not identified by
the graph G.

Sharing unnatural instances using edges in G. We analyze what are the consequences
of using edges in G to search a natural instance of a symbolic state for computing an un-
natural instance of a symbolic state. Using strong edges can still share computation and
ensure no redundancies in caches since strong edges do not require a condition to share
a natural instance of a representative. While, weak edges contain a condition to specify
which instance of a representative can be shared, such that using weak edges can share
computation, but an unnatural instance of a symbolic state will be cached which creates
redundancies. For example, if we do not maintain reduction rules, given ∑ xa

i , a = 1, that
is an unnatural instance of ∑ xp

i , it will be cached under the representative ∑ xp
i , and it

cannot be shared by other symbolic aggregations states associated with the representative
∑ xi, i.e. ∑ pxi.
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4.3.2 Proof of Lemma 2

In this section, we provide a proof of Lemma 2. We first recall sharing conditions in the
case 2 of Theorem 3 and propose Lemma 4, based on which we prove Lemma 2.

We refine the sharing conditions in Theorem 3 and propose proposition 1, which can
be seen as partial sharing conditions in the sense that X only contains positive values.

Proposition 1. Let X ∈ M(Q+), and s1(X) = ∑⊕1
f1(xi) and s2(X) = ∑⊕2

f2(xi) be two
aggregation states in aggs(X). Then, we have: s1 ∈ D(s2) iff one of the following conditions
holds:

(2.1) ∑⊕1
= ∑⊕2

= ∑ and f1 ◦ f−1
2 (x) = ax with a ∈ Q 6=0 a constant.

(2.2) ∑⊕1
= ∑, ∑⊕2

= ∏ and f1 ◦ f−1
2 (x) = a(logbx) with b ∈ Q>0, 6=1 and a ∈ Q 6=0 two

constants.

(2.3) ∑⊕1
= ∏, ∑⊕2

= ∑ and f1 ◦ f−1
2 (x) = bax with b ∈ Q>0, 6=1 and a ∈ Q 6=0 two constants.

(2.4) ∑⊕1
= ∑⊕2

= ∏ and f1 ◦ f−1
2 (x) = xa with a constant a ∈ Q 6=0.

Proof. When X ∈ M(Q+), we only need to consider the scalar function f1(x) and f2(x)
over the domain Q+. We can derive that both f1(x) and f2(x) are injections over the
domain Q+. Let f1 ◦ f−1

2 (x) = f3(x), then we have f1(x) = f3 ◦ f2(x). Assuming f1 :
Q+ → D1 and f2 : Q+ → D2, then we have f3 : D2 → D1 is an injection, because in
our context f1 and f2 are constructed by composing primitive scalar functions, and every
primitive scalar function is an injections and bijection over the domain Q+. Such that, we
have f3(x) is also an injection. Then according to the case 2 of Theorem 3, we obtain the
forms of f3(x) when f3(x) is an injection.

Lemma 4. Let ss1 and ss2 be two symbolic aggregation states from saggsl(X), X ∈ M(Q+), if
there exists a natural instance s1 of ss1 shares a natural instance s2 of ss2, then ss1 ∈′ (ss2).

Proof. We prove that, if there exists a natural instance of ss1 shares a natural instance of
ss2, we can obtain that for any natural instance of ss1, there exists a natural instance ss2
that can be shared.

Let ss1(X) = ∑⊕1
s f1p̄1(xi) and ss2(X) = ∑⊕2

s f2p̄2(xi) be two symbolic aggregation
states. Let s1(X) = ∑⊕1

f1(xi) and s2(X) = ∑⊕2
f2(xi) be separately their natural in-

stances. Assuming s1 shares s2, and let f1 ◦ f−1
2 (x) = f3(x), then according to the case 2

of proposition 1, we have:

(i) if ∑⊕1
= ∑⊕2

= ∑, then f3(x) = ax with a constant a.

(ii) if ∑⊕1
= ∑ and ∑⊕2

= ∏, then f3(x) = a(logbx) with constants a and b.

(iii) if ∑⊕1
= ∏ and ∑⊕2

= ∑, then f3(x) = bax with constants a and b.

(vi) if ∑⊕1
= ∑⊕2

= ∏, then f3(x) = xa with a constant a.

We obtain that f3(x) has the following property ∑⊕1
f1(xi) = ∑⊕1

f3 ◦ f2(xi) = f3(∑⊕2
f2(xi)).

For instance, if ∑⊕1
= ∑⊕2

= ∑, then f3(x) = ax with a constant a, then ∑ f1(xi) =
a(∑ f2(xi)).

Knowing that an aggregation state is a natural instance of a unique symbolic aggre-
gation state. Since s1(X) is a natural instance of ss1(X), and s1(X) = ∑⊕1

f3 ◦ f2(xi), such
that we have ss1(X) = ∑⊕1

s f3p̄3 ◦ s f2p̄2(xi), where f3(x) is an instance of s f3p̄3(x) and
f2(x) is an instance of s f2p̄2(x).
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p2x xp2 logp2 x p2
x

p1x p2x ◦ p1x = p2 p1x xp2 ◦ p1x logp2 x ◦ p1x p2
x ◦ p1x = (p2

p1)x

xp1 p2x ◦ xp1 xp2 ◦ xp1 = xp2 p1 logp2 x ◦ xp1 = p1x ◦ logp2 x px
2 ◦ xp1

logp1 x p2x ◦ logp1 x = logp1 x ◦ xp2 xp2 ◦ logp1 x logp2 x ◦ logp1 x p2
x ◦ logp1 x = x1/logp2 p1

p1
x p2x ◦ p1

x xp2 ◦ p1
x = (pp2

1 )x logp2 x ◦ p1
x = (logp2 p1)x p2

x ◦ p1
x

TABLE 4.2: Compositions of symbolic primitive scalar functions s f2p̄2 ◦ s f1p̄1(x), x > 0.

Let ∑⊕1
f ′1(xi) with f ′1(x) = f ′3 ◦ f ′2(x) be any natural instances of ss1, where f ′3(x)

is an instance of s f3p̄3(x) and f ′2(x) is an instance of s f2p̄2(x). Note that, ∑⊕2
f ′2(xi) is

also a natural instance of ss2, otherwise ∑⊕1
f ′1(xi) can not be a natural instance of ss1.

Then, since both f3(x) and f ′3(x) are instance of s f3p̄3(x), we can also obtain ∑⊕1
f ′1(xi) =

∑⊕1
f ′3 ◦ f ′2(xi) = f ′3(∑⊕2

f ′2(xi)). For instance, if ∑⊕1
= ∑⊕2

= ∑, then f ′(x) = a′x with a
constant a′, then ∑ f ′1(xi) = a′(∑ f ′2(xi)).

Consequently, for any natural instance ∑⊕1
f ′1(xi) of ss1, there exists a natural instance

∑⊕2
f ′2(xi) of ss2, such that ∑⊕1

f ′1(xi) shares ∑⊕2
f ′2(xi). Therefore, ss1 ∈ SD(ss2).

4.3.3 Proof of Lemma 3

In this section, we provide the proof of Lemma 3 as follows. The proof is based on induc-
tion, and the initial cases are presented in Table 4.2.

Proof. (Case 1 of Lemma 3)
(Sufficiency) Straightforward.
(Necessity) We prove this case by induction. We first prove it is true for the initial case

l = 2. Then assuming it is true for l, we prove it is also true for l + 1.
The initial case is l = 2, that s f p̄(x) = s f2p̄2 ◦ s f1p̄1(x) = px. We present all composi-

tions of two symbolic primitive scalar functions in Table 4.2. We observe that, s f p̄(x) = px
if and only if s f2p̄2(x) = p2x and s f1p̄1(x) = p1x, or s f2p̄2(x) = logp2 x and s f1p̄1(x) = px

1 .
Then, it is true for this case.

We assume it is true for s f p̄(x) = s fl p̄l ◦ ... ◦ s f1p̄1(x) = px, then we prove it is also true
for the case s f p̄(x) ◦ s f ′1p̄′1

(x) = p′′x, where s f ′1p̄′1
(x) is a symbolic primitive scalar function.

Since, s f p̄(x) = px, such that we have px ◦ s f ′1p̄′1
(x) = p′′x. Then, according to Table 4.2,

we have that s f ′1p̄′1
(x) can only be a symbolic linear scalar function, that s f ′1p̄′1

(x) = p′x.
Therefore, s f p̄(x) ◦ s f ′1p̄′1

(x) = p′′x still has the property.

Proof. (Case 2 of Lemma 3) The proof follows the same structure as the one of case 1.
(Sufficiency) Straightforward.
(Necessity) We also prove this case by induction.
The initial case is l = 2, that s f p̄(x) = s f2p̄2 ◦ s f1p̄1(x) = xp. We present all composi-

tions of two symbolic primitive scalar functions in Table 4.2. We observe that, s f p̄(x) = xp

if and only if s f2p̄2(x) = xp2 and s f1p̄1(x) = xp1 , or s f2p̄2(x) = px
2 and s f1p̄1(x) = logp1 x.

Then, it is true for this case.
We assume it is true for s f p̄(x) = s fl p̄l ◦ ... ◦ s f1p̄1(x) = xp, then we prove it is also

true for the case s f p̄(x) ◦ s f ′1p̄′1
(x) = xp′′ , where s f ′1p̄′1

(x) is a symbolic primitive scalar

function. Since, s f p̄(x) = xp, such that we have xp ◦ s f ′1p̄′1
(x) = xp′′ . Then, we have

s f ′1p̄′1
(x) can only be a symbolic power scalar function, that s f ′1p̄′1

(x) = xp′ . Therefore,

s f p̄(x) ◦ s f ′1p̄′1
(x) = xp′′ still has the property.

Proof. (Case 3 of Lemma 3) The proof follows the same structure as the one of cases 1 and
2.



50 Chapter 4. A practical approach to solve the sharing problem

R
ep

Chunks

∑𝑥𝑖 , 𝑋1, 𝑛𝑢𝑙𝑙

∑𝑥𝑖∈𝑋1
𝑥𝑖 ∑𝑥𝑖∈𝑋𝑗

𝑥𝑖

∑𝑥𝑖 , 𝑋𝑘, 𝑛𝑢𝑙𝑙

∑𝑥𝑖∈𝑋𝑘
𝑥𝑖

. . . 

∑𝑥𝑖
𝑝1 , 𝑋𝑘, 𝑎1∑𝑥𝑖

𝑝1 , 𝑋𝑗, 𝑎1

∑𝑥𝑖∈𝑋𝑘
𝑥𝑖
𝑎1∑𝑥𝑖∈𝑋𝑗

𝑥𝑖
𝑎1

∑𝑥𝑖
𝑝1 , 𝑋1, 𝑎1

∑𝑥𝑖∈𝑋1
𝑥𝑖
𝑎1

∑𝑥𝑖 , 𝑋𝑗 , 𝑛𝑢𝑙𝑙
∑𝑥𝑖∈𝑋𝑗

𝑥𝑖
𝑎1

∑𝑥𝑖∈𝑋𝑘
𝑥𝑖
𝑎1

+

Mergeable 
Aggregation states

FIGURE 4.3: SUDAF cache.

(Sufficiency) Straightforward.
(Necessity) We also prove this case by induction.
The initial case is l = 2, that s f p̄(x) = s f2p̄2 ◦ s f1p̄1(x) = p′logpx. We present all

compositions of two symbolic primitive scalar functions in Table 4.2. We observe that,
s f p̄(x) = p′logpx if and only if s f2p̄2(x) = p2x and s f1p̄1(x) = logp1 x, or s f2p̄2(x) = logp2 x
and s f1p̄1(x) = xp1 . Then, it is true for this case.

We assume it is true for s f p̄(x) = s fl p̄l ◦ ... ◦ s f1p̄1(x) = p′logpx, then we prove it is
also true for the case s f p̄(x) ◦ s f ′′1p̄′′1

(x) = p′′′logpx, where s f ′′1p̄′′1
(x) is a symbolic primitive

scalar function. Since s f p̄(x) = p′logpx, such that we have p′logpx ◦ s f ′′1p̄′′1
(x) = p′′′logpx.

Then, we have s f ′′1p̄′′1
(x) can only be a symbolic power scalar function, that s f ′′1p̄′′1

(x) = xp′′ .
Therefore, s f p̄(x) ◦ s f ′′1p̄′′1

(x) = p′′′logpx still has the property.

Proof. (Case 4 of Lemma 3) The proof follows the same structure as the one of cases 1, 2
and 3.

(Sufficiency) Straightforward.
(Necessity) We also prove this case by induction.
The initial case is l = 2, that s f p̄(x) = s f2p̄2 ◦ s f1p̄1(x) = pp′′x. We present all

compositions of two symbolic primitive scalar functions in Table 4.2. We observe that,
s f p̄(x) = pp′′x if and only if s f2p̄2(x) = px

2 and s f1p̄1(x) = p1x, or s f2p̄2(x) = xp2 and
s f1p̄1(x) = px

1 . Then, it is true for this case.
We assume it is true for s f p̄(x) = s fl p̄l ◦ ... ◦ s f1p̄1(x) = pp′′x, then we prove it is also

true for the case s f p̄(x) ◦ s f ′1p̄′1
(x) = pp′′′x, where s f ′1p̄′1

(x) is a symbolic primitive scalar

function. Since s f p̄(x) = pp′′x, such that we have pp′′x ◦ s f ′1p̄′1
(x) = pp′′′x. Then, according

to Table 4.2, we can have that s f ′1p̄′1
(x) can only be a symbolic linear scalar function, that

s f ′1p̄′1
(x) = p′x. Therefore, s f p̄(x) ◦ s f ′1p̄′1

(x) = pp′′′x still has the property.

4.4 Anatomy of the SUDAF cache

We describe in this section the structure of the SUDAF cache and its associated index.
As depicted in Figure 4.3, conceptually the SUDAF cache can be seen as a 3D structure
(Rep, Chunks, NI), where Rep is the dimension of the representatives of the equiva-
lent classes of the space saggsl(X), Chunks is a data partition dimension, i.e., X1, . . . , Xk,
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where each Xi is a chunk, and NI is the dimension of natural instances actually stored in
the cache. Figure 4.4 shows the implementation of the SUDAF cache. The cache includes
a symbolic index that contains pointers to cached data. More precisely, an entry in a sym-
bolic index associates a symbolic state ss(X) = ∑⊕ s f p̄(xi) of the space saggsl(X) with a
representative rep([ss]) of an equivalent class [ss]. Each representative is also associated
with a set of pointers to lists of cached natural instances. Each list of cached data corre-
sponds to a given chunk Xi and is made of pairs (ā, v) where ā is a sequence of constants
and v is the result of the natural instance ∑⊕ s f ā(xi) of the symbolic state ss(X). In addi-
tion, we implemented a hash function, denoted sHash, that enables to associate a natural
instance to an entry in the symbolic index. The following example illustrates the use of
the symbolic index.

Example 11. Let s′(X3) = ∑ 3x2
i be a new aggregation state to compute. First, SUDAF com-

putes the symbolic state ss′ = ∑ p′2xp′1
i such that s′ is a natural instance of ss′ and then applies

the sHash function to generate the symbolic code of ss′. As shown in the Figure 4.4, its symbolic
hash code is 13 (i.e., sHash(ss′) = 13). The symbolic code enables to identify the representa-
tive rep([ss′]) of the equivalence class [ss′] using the symbolic index. In our example, the key
sHash(ss′) = 13 in the symbolic index matches with the identifier 5, which is the key of the
representative rep([ss′]) = ∑ xp1

i in the symbolic index. Then, using the entry 5 of the symbolic
index, SUDAF uses an associated pointer set to get the pointer corresponding to the chunk X3 in
order to get the list of cached natural instances of the symbolic state rep([ss′]). Note that, this
pointer is depicted in Figure 4.4 using a dot line because it corresponds to a weak sharing relation-
ship between ss′ = ∑ p′2xp′1

i and rep([ss′]) = ∑ xp1
i which means that the natural instances of ss′

share the natural instances of rep([ss′]) under the condition that p′1 = p1. Since in our example
p′1 = 2, this translates to condition ā = (2). To sum up, SUDAF uses the symbolic entry 13 to
get a list of pairs (ā, v) corresponding the the natural instances of the symbolic state rep([ss′])
over the chunk X3 and then selects the pair (ā = (2), v) to be reused to compute s′(X3) = ∑ 3x2

i .
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Note that, SUDAF is able to compute the reuse function p′2x, with p′2 = 3, which is needed to
compute ∑ 3x2

i from the cached state ∑ x2
i .

As another example, assume that s′′(X3) = ∏ 32xi is a new aggregation state to compute.
Following the same procedure, we obtain sHash(ss′′) = 34, which is matched to the identifier 0
corresponding to the representative rep([ss′′]) = ∑ xi in the symbolic index. However, as it can
be observed in Figure 4.4, there is no data cached for the chunk X3 corresponding to the entry 0
in the symbolic index. In this case, a cache miss is detected and a new aggregation state ∑ xi over
the chunk X3 is computed and stored in the cache. The new cached state is then used to compute
the state s′′(X3) = ∏ 32xi . This example shows one interesting functionality of SUDAF: instead
of caching the result of s′′(X3) = ∏ 32xi , SUDAF will compute and cache ∑ xi, the representative
of its equivalence class.

Building the SUDAF cache. Let l be an integer. We explain below how the SUDAF cache
of level l is constructed. We emphasis the fact that the construction of the cache corre-
sponds to an initialization step of the SUDAF which is executed once when the system is
installed. From the practical point of view, to build the SUDAF index, we first construct a
graph G = (V, E) of the space saggsl(X) with the set of nodes V = saggsl(X) and where
the edges E ⊆ V × V represent the shares relationship, i.e., (ss′, ss) ∈ E iff ss′ ∈ SDl(ss).
The construction of the graph (described in Section 4.3.1) uses the sharing conditions pro-
vided in Theorem 3 extended to symbolic states. Note that, while building the graph G,
we obtain for each edge e = (ss′, ss) ∈ E a symbolic reuse function sr p̄ which satisfies the
following property: For any natural instance s of ss and any natural instance s′ of ss′, if
s′ shares s then there exists a constant sequence ā such that s′(X) = srā ◦ s(X). Moreover,
in the case of a weak relationship e, we also compute and store the sharing conditions
associated with e.

Symbolic index. The symbolic index is a 2-columns table (key, krep), where the column
key is used to store the identifiers of symbolic states of saggsl(X) and the column krep
is used to store the identifiers of representatives of equivalent classes of saggsl(X). For
an entry sHash(ss) in the symbolic index, if sHash(ss) is identical to the identifier stored
in the corresponding cell krep, then the entry is associated with a pointer set pset, which
provides a set of pairs (Chunk_id, pt) each of which associate to a chunk Xi, identified by
Chunk_id, and a pointer pt to the list of natural instances of rep([ss]) actually stored in
the cache. Hence, the entries of the symbolic index are given by the symbolic codes of the
symbolic states ss in saggsl(X). The graph G is exploited to construct the symbolic index.
Mapping ss to rep([ss)] is given by the edges of the graph G. We distinguish between
two types of pointers to cached data: strong pointers (depicted by plain lines in Figure
4.4) that map strong sharing relationships and weak pointers (depicted with dotted lines
in Figure 4.4) that map weak sharing relationships. A strong pointer leads to a unique
natural instance while a weak pointer leads to a list of natural instances each of which
identified by its constant sequence ā and a sharing condition derived from the graph G.

The symbolic hash function sHash. SUDAF implements sHash, a function that maps a
symbolic aggregation state ss ∈ saggsl(X) to an integer sHash(ss) that uniquely identify
ss. Given ss(X) = ∑⊕ s fl p̄l ◦ ... ◦ s f1p̄1(xi), the sHash function is defined as follows,

sHash(ss) = encode(s fl p̄l )× 4l−1 + · · ·+ encode(s f1p̄1)× 40 + o f f (∑
⊕
)+ 2× (4l− 4)/3+ 2

where encode() is the following encoding function for symbolic primitive scalar func-
tion: encode(px) = 0, encode(logpx) = 1, encode(px) = 2 and encode(xp) = 3, with p a
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parameter, and o f f () is an offset function for primitive aggregate functions defined as
follows: o f f (∑) = 0 and o f f (∏) = 4l . For the two special elements ∑ xi and ∏ xi, we let
sHash(∑ xi) = 0 and sHash(∏ xi) = 1. For example, sHash(∑ p2xp1

i ) = 13.

Complexity analysis. Let l be an integer. Building the symbolic index of the SUDAF
cache can be done in time O(4l). Given an aggregation state s(Xi) = ∑⊕ f (xi) over a
chunk Xi with | f | 6 l, using the symbolic index of SUDAF to retrieve one of the m cached
aggregation states to compute s takes O(1) time when using strong pointers and takes
O(log(m)) time when using weak pointers.

Data partitioning. Note that, the important issues related to selecting chunk size, data
partitioning and identification of the chunks covered by a given query are not addressed
in this paper. We refer the reader to existing techniques, e.g., proposed in [DRSN98,
WWDI17], to deal with such issues. Caches of aggregation states on chunks can be triv-
ially merged by exploiting the associative and commutative property of ∑⊕, ∑⊕ ∈ PA.

4.5 Experimental evaluation

The general scheme of our experiments is the following. We select 3 query models, and
we instantiate each query model using 11 aggregate functions. We simulate the 11 in-
stances of each query model coming in 2 different orders, i.e., two different sequences
of queries. Thus, the tested workload consists of 6 query sequences, where each se-
quence has 11 queries. We execute the query sequences in three technical contexts (i)
PostgreSQL or Spark SQL, (ii) SUDAF without the sharing functionality, and (iii) SUDAF
with the sharing functionality. In the PostgreSQL environment (case (i)), the aggregations
are either PostgreSQL built-in functions or hard-coded user-defined functions, and simi-
larly for the Spark SQL environment. PostgreSQL UDAFs are created using PL/pgSQL,
and Spark SQL UDAFs are created using the UserDefinedAggregateFunction interface
in Scala code. In the SUDAF environment (cases (ii) and (iii)), UDAFs are provided as
mathematical expressions and used in the SQL queries. Their partial aggregation states
are automatically rewritten using built-in functions by SUDAF, e.g., ∑ x2

i is rewritten as
sum(power(X,2)) and ∏ xi is rewritten as exp(sum(ln(abs(X)))). And in case (iii) of SUDAF
environment, the precomputed sharing relationships in saggs2(X) are exploited to reuse
cached aggregation states to compute new ones, and if an aggregation state s of a UDAF
in query sequences cannot be computed using cached ones, an aggregation state that can
be reused for s will be computed and cached for later query executions. In SUDAF shar-
ing environment, we prefetch a moment sketch (MS) [GDT+18, sta18] under one of the
two selected query orders.

Our main findings are twofold. First, surprisingly, we observed that SUDAF without
the sharing functionality outperforms both PostgreSQL and Spark SQL despite the over-
head in SUDAF due to the analysis and decomposition of UDAF expressions. The main
reason that explains these performances comes from the fact that rewriting of UDAFs by
SUDAF, which is based on canonical forms, leads to implementations that use PostgreSQL
or Spark SQL built-in functions, these later ones being much faster than PostgreSQL or
Spark SQL UDAFs. The second finding is SUDAF with the sharing functionality out-
performs both PostgreSQL and Spark SQL. In particular, the fine-grained unit of caching
used in SUDAF improves the sharing possibilities and increases the gain brought by shar-
ing.
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Experiment setup. All experiments of Spark SQL are performed on a cluster with one
master node and six worker nodes, running Ubuntu server 16.04, Spark 2.2.0 and Hadoop
2.7.4. The master node has a processor of 6 cores (XEON E5-2630 2.4GHz), 16 GB of main
memory and 160 GB of disk space, and every worker node has a processor of 4 cores
(XEON E5-2630 2.4GHz), 8 GB of main memory and 80 GB of disk space. All experi-
ments on PostgreSQL are only performed on the master node running PostgreSQL 11.4
(centralized environment).

Query models. The three query models used in experiments are illustrated below, where
AGG represents an aggregation.

-- Query model 1
SELECT AGG(internet_traffic)
FROM milan_data;

-- Query model 2
SELECT square_id, AGG(internet_traffic)
FROM milan_data
GROUP by square_id
ORDER by square_id
LIMIT 20;

-- Query model 3, the TPCDS query 7 when AGG is avg
SELECT i_item_id, AGG(ss_quantity) agg1,

AGG(ss_list_price) agg2, AGG(ss_coupon_amt) agg3,
AGG(ss_sales_price) agg4

FROM store_sales, customer_demographics, date_dim,
item, promotion

WHERE ss_sold_date_sk = d_date_sk and
ss_item_sk = i_item_sk and
ss_cdemo_sk = cd_demo_sk and
ss_promo_sk = p_promo_sk and cd_gender = ’M’
and cd_marital_status = ’S’ and
cd_education_status = ’College’ and
(p_channel_email = ’N’ or p_channel_event = ’N’)
and d_year = 2000

GROUP BY i_item_id
ORDER BY i_item_id
LIMIT 100;

Datasets. The first two query models are evaluated on the Milan dataset [Ita15] and
the third query model is evaluated on the TPC-DS [NP06] dataset. For the experiments
of PostgreSQL, the Milan dataset consists of 72.6 million rows in total and the TPC-DS
dataset comes with scale = 20. For the experiments of Spark SQL, the Milan dataset
consists of 319 million rows in total and the TPC-DS dataset comes with scale = 100. All
data files in Spark SQL experiments are in Parquet format.

Aggregate functions. We use the following 11 aggregate functions to instantiate our
query models: cubic_mean (cm), quadratic_mean (qm), geometric_mean (gm), harmonic_mean
(hm), min, max, count, sum, average (avg), standard deviation (std), variance (var). In the
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FIGURE 4.5: Total execution time of each query sequence in each query model (excluding
queries with approximate median).
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FIGURE 4.6: Total execution time of each query sequence in each query model (excluding
queries with approximate median).

used PostgreSQL and Spark SQL version, all of these functions are built-in functions ex-
cept the functions cm, qm, gm and hm which are implemented using PL/pgSQL in Post-
greSQL and using UserDefinedAggregateFunction interface in Scala code in Spark SQL.

Query sequences. We instantiate each query model using each of the 11 aggregations
and define the two sequences of query executions for each instantiated query model:
AS1 = [cm, qm, gm, hm, min, max, count, std, var, sum, avg]
AS2 = [max, min, sum, avg, count, std, var, cm, gm, hm, qm]
Thus, we obtain 6 query sequences in total, where each query sequence is made of 11 ag-
gregate queries. In the SUDAF sharing environment (cases (ii)) with the sequence AS2, we
prefetch a moment sketch (MS) [GDT+18,sta18] with parameter k = 10, which consists of
a set of aggregate functions (min, max, count, ∑ xi, ..., ∑ xk

i , ∑ ln(xi), ... ∑ lnk(xi)) and can
be used to approximate a quantile, e.g., median.

Experimental results. We executed the 6 query sequences on PostgreSQL or Spark SQL,
SUDAF without sharing, and SUDAF with sharing, and we report the execution time of
every query. In scenarios with sharing, we use precomputed sharing relationships of
symbolic aggregation states in saggs2(X), and we also add three additional relationships
for SQL standard aggregates, max, min, and count, that they share themselves. Note that
in the reported results we do not take into account the overhead needed to precompute
sharing relationships in saggs2(X) which is part of the initialization of SUDAF and takes
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110 ms. However, the overhead due to the cache access is included in the global execution
time reported for each query. This overhead is about 2ms for query model 1 or 2, and
about 5ms for query model 3.

The total execution time of each query sequence in each query model is presented
in Figure 4.5 for the case of PostgreSQL and in Figure 4.6 for the case of Spark SQL.
Unsurprisingly, we observe that PostgreSQL or Spark SQL (respectively, SUDAF without
sharing) always have the same execution time for the two sequences of the same model.
Also, we observe that SUDAF without sharing outperforms both PostgreSQL and Spark
SQL in all the considered scenarios except query model 3 in Spark SQL. SUDAF with
sharing shows the best performances, whatever the considered sequence or query model.
In the sequel, we discuss the execution time of every individual query depicted in Figure
4.7 for the case of PostgreSQL and in Figure 4.8 for the case of Spark SQL.

SUDAF without sharing. For the case of PostgreSQL, compared to PostgreSQL UDAF
queries, SUDAF speeds up UDAF queries up to 20X in query model 1, 4X in query model
2, and 2X in query model 3, which can be observed in Figure 4.7. For the case of Spark
SQL, compared to Spark UDAF queries, SUDAF speeds up UDAF queries up to 3X in
query model 1, 2X in query model 2, and have identical query time in query model 3,
which is shown in Figure 4.8. The various performance improvements come from the
size of inputs to be aggregated, i.e., query model 1 has the highest number of values to be
aggregated, while query model 3 has the smallest number of values as aggregation input.
The major reason for this improvement is that SUDAF rewrites queries with UDAFs to
queries with partial aggregations that can be evaluated using PostgreSQL or Spark SQL
built-in functions, which are faster compared to PostgreSQL or Spark UDAFs.

SUDAF with sharing. SUDAF shares the computation results of partial aggregations in
every query sequence. For the sequence AS1, we observe in Figure 4.7 (a), (c) and (e)
and in Figure 4.8 (a), (c) and (e) that for all the considered query models the computation
times of count, variance (var), sum and average (avg) decrease drastically w.r.t. the no shar-
ing option. This is because SUDAF is able to reuse cached results from earlier aggregates
in the sequence AS1. As it can be observed in Figure 4.7 (b), (d) and (f) and in Figure 4.8
(b), (d) and (f), the sequence AS2 is more advantageous for sharing due to the prefetched
moment sketch. Indeed, the moment sketch consists of 33 partial aggregates which are
cached by SUDAF and reused for the computation of all the remaining aggregations in
the sequence AS2 except the harmonic mean (hm). Computing queries with the harmonic
mean in AS2 still requires data access since the aggregation state ∑ x−1

i in the harmonic
mean is not evaluated in previous computing.
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FIGURE 4.7: Execution time in PostgreSQL of each query in each query sequence.
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FIGURE 4.8: Execution time in Spark SQL of each query in each query sequence.



4.6. Summary 59

4.6 Summary

• Turning the sharing conditions into an algorithm could be cumbersome and also
lead redundant computations. Thus, we propose to use symbolic representations
of aggregation states to avoid the previous two issues.

• We propose the notion of symbolic aggregation state, which represents symbolic
expressions of concrete aggregation states. Since an aggregation state can be an
instance of several symbolic states, we propose the notion of natural instances, such
that an aggregation state can be mapped to a natural instance of a symbolic state.
Consequently, an aggregation state is uniquely mapped to a symbolic state.

• We define symbolic derivable sets of symbolic aggregation states to capture the
sharing relationships of symbolic states. We found that, when an input is a multiset
of positive values, symbolic derivable sets are equivalence relations in the symbolic
space. Consequently, we only need to store natural instances of representatives,
which is a unique symbolic state in an equivalent class.

• We discuss in detail the construction of sharing relationships of symbolic states.
Specifically, we build a sharing digraph G for a symbolic space of symbolic states,
where the length of the scalar functions of symbolic states is bounded by an inte-
ger l, which is a parameter controlled by users. We use the sharing conditions in
Theorem 3 to identify sharing relationships and build G.

• We propose the 3D structure (Rep, Chunks, NI) of SUDAF cache. Given an aggre-
gation state s that is computed over one or several chunks of an input, we select for
the computation of s in SUDAF cache, the representative of the symbolic state that s
is a natural instance of in the dimension of Rep, the chunks that are covered by the
computation of s, the natural instance of the corresponding representative.

• We propose a symbolic index to search a value in SUDAF caches for an aggregation
state. Every entry of symbolic index is associated with a symbolic aggregation state
in a symbolic space. We use a hash function to map an aggregation state to an entry
in the symbolic index, and each entry is associative with its representative. We also
identify and store a condition on the parameter sequence of symbolic states. Such
a condition is used to select which natural instance of a representative can be used
for computing an aggregation state.
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Chapter 5

Prototype implementation

We implemented a SUDAF prototype in Java and Scala, which can be used on top of
PostgreSQL (through JDBC) and Spark SQL. The SUDAF prototype also comes equipped
with a UDAF editor that enables users to write SUDAF-compatible UDAFs and integrate
them in SQL queries. This prototype has been used in the experimental evaluation in
Section 4.5. In this chapter, we present the implementation details of SUDAF prototype.

5.1 SUDAF architecture

Workflow overview. We present the general workflow of SUDAF in Figure 5.1. Gener-
ally, a user declares and registers a mathematical expression of a UDAF in SUDAF and
then uses the UDAF in an SQL query. When SUDAF receives a query with UDAFs, it
parses the query and mathematical expressions of UDAFs used in the current query. The
expressions of UDAFs are parsed by a UDAF parser in SUDAF to construct aggregate
expression trees (an aggregate expression tree simply represents the logical plan of com-
puting an aggregation, details of which are present in Section 5.3). Then the UDAF op-
timizer applies rules to transform an aggregate expression tree and decomposes it to ob-
tain partial aggregations. The caches are used by the UDAF optimizer to compute partial
aggregations, and if some or all partial aggregations cannot be computed using caches,
they are rewritten using system built-in functions and sent to an underlying system, e.g.,
Spark SQL or PostgreSQL.

Architecture overview. SUDAF prototype adopts a three-tier architecture presented in
Figure 5.2 detailed as follows.

(1) The top layer is the UDAF interface. As depicted in Figure 5.2, end users can de-
clare mathematical expression of aggregate functions at the UDAF interface and
use them in SQL queries at the query interface.

(2) Advanced terminating function interface is put aside to create a T function that
is not possible to be expressed using simple arithmetical operators supported in
SUDAF, i.e., the moment solver used to estimate quantile [sta18, GDT+18]. Gener-
ally, one can define one or several aggregate functions and then write a program
taking the defined aggregations as inputs. Such a ‘plugged’ program can be seen as
a terminating function in the canonical form.

For example, one can define the following set of aggregation functions SA(X) =(
min, max, count(), ∑ xi, ..., ∑ xk1

i , ∑ ln(xi), ... ∑ lnk2(xi)
)

, then she can import the mo-

ment solver (MS) [GDT+18] to define an aggregation function MS(SA(X), 0.5),
which can be used to estimate median.
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(3) At the core of the system is a UDAF processor. The key components of the UDAF
processor are (a) a UDAF catalog, (b) a query parser, (c) a UDAF expression parser,
(d) an aggregation state optimizer, (e) a UDAF rewriter, and ( f ) SUDAF cache.

(4) SUDAF relies on an underlying system to compute queries, e.g., Spark SQL or Post-
greSQL. Generally, SUDAF sends SQL queries with built-in functions to an under-
lying system.

UDAF processor. We present below the key components in the UDAF processor de-
picted in Figure 5.2.

• UDAF Catalog. At the time of defining a UDAF, SUDAF requires users to declare its
mathematical expression and provide the name of the UDAF. UDAF catalog stores
every declared UDAF as ‘key-value‘ pairs, where a ‘key‘ is a name of an aggregate
function, and a ‘value‘ is the expression of the corresponding function.

• Query Parser. We rely on JSqlParser [onl] to parse a SQL query. Query Parser iden-
tifies the UDAFs and aggregate columns (columns that UDAFs are applied on) in a
query.

• UDAF Expression Parser. When UDAF expression parser receives a mathematical
expression of a UDAF α (a sequence of primitive functions), it constructs for α an
AET (aggregate expression tree), which can be seen as a logical plan of computing
α. The AET of α will be sent to the UDAF optimizer.

• UDAF Optimizer. UDAF Optimizer moves a tuple-wise scalar computation to a final
scalar computation by applying transformation rules on aggregate expression trees,
e.g., ∑ 4xi → 4(∑ xi) (we present more details in Appendix A.1). Then, it decom-
poses the transformed AET to obtain the corresponding canonical form and aggre-
gation states. At last, it reuses SUDAF cache to compute obtained aggregate states.

• SUDAF Cache. SUDAF Cache contains symbolic index and cached results. It has a
3D structure (Rep, Chunks, NI). For an aggregation state s, SUDAF computes a
hash code (Section 4.4) and extracts a constant sequence from s. The hash code is
taken to get an entry point in a symbolic index, which can be seen as selecting a
representative in the dimension of Rep of SUDAF 3D Cache. The constant sequence
is used to get a cached aggregation state under a representative, which can be seen
as selecting a natural instance in the dimension of NI of the 3D Cache. We rely
on previous techniques, i.e., [DRSN98, WWDI17] to identify chunks covered by a
current query. If all aggregation states in a current UDAF can reuse caches, then
SUDAF computes the terminating function T of the current UDAF with these ag-
gregation states as inputs and return the final result of the UDAF. If there exists at
least one aggregation state that cannot be computed using caches, SUDAF evalu-
ates the UDAF by scanning base data. In this case, we only send aggregation states,
which cannot be computed using caches, to Query Rewriter, which will rewrite the
current query to launch computation.

• Query Rewriter. Query Rewriter rewrites received queries with UDAFs to one with
built-in functions which are aggregation states of UDAFs. A special case is when an
aggregation state contains ∏ operator. In this case, we transform a product operator
to a summation operator, e.g., if s(X) = ∏ f (xi), then s(X) = e∑ ln(| f (xi)|) × (−1)m

where m is the number of negative f (xi).
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5.2 SUDAF API

In this section, we present a scenario where an end-user creates a geometric mean in
SUDAF and uses it in an SQL query. Knowing that the formula of geometric mean is
gm(X) = (∏ xi)

1/count. Then geometric mean can be defined by an end user in SUDAF
using the following line of Scala code:

val gm = new UDAF.left.prod.right.^.left.cons(1.0)./.count.right

Using SUDAF UDAF interface to implement geometric mean is much compact compared
to the way of using the counterpart one in Spark SQL (see below for a snippet of Scala
code for implementing geometric mean in Spark SQL [dat19], which has the equivalent
meaning as the previous implementation in SUDAF).

class GeometricMean extends UserDefinedAggregateFunction {
override def inputSchema: org.apache.spark.sql.types.StructType =

StructType(StructField("value", DoubleType) :: Nil)

override def bufferSchema: StructType = StructType(
StructField("count", LongType) ::
StructField("product", DoubleType) :: Nil

)

override def dataType: DataType = DoubleType
override def deterministic: Boolean = true

override def initialize(buffer: MutableAggregationBuffer): Unit = {
buffer(0) = 0L
buffer(1) = 1.0

}

override def update(buffer: MutableAggregationBuffer, input: Row): Unit = {
buffer(0) = buffer.getAs[Long](0) + 1
buffer(1) = buffer.getAs[Double](1) * input.getAs[Double](0)

}

override def merge(buffer1: MutableAggregationBuffer, buffer2: Row): Unit = {
buffer1(0) = buffer1.getAs[Long](0) + buffer2.getAs[Long](0)
buffer1(1) = buffer1.getAs[Double](1) * buffer2.getAs[Double](1)

}

override def evaluate(buffer: Row): Any = {
math.pow(buffer.getDouble(1), 1.toDouble / buffer.getLong(0))

}
}

Secondly, a user can use the defined geometric mean in SQL queries. Assuming geomet-
ric mean is registered in UDAF catalog of SUDAF with the name ‘myGM‘, and it is used
in the following query:

SELECT myGM(A) FROM T;

When SUDAF receives this query, it finds the mathematical expression of geometric mean
by its name myGM in the UDAF catalog. Then, the expression is parsed to generate an
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aggregate expression tree, which is decomposed to generate canonical form and the ag-
gregation states ∏ xi and count.

If the caches cannot be used to compute the aggregation states, then the original query
is rewritten as follows,

SELECT exp(sq1.agg1 / sq1.agg2) * pow(-1, MOD(sq2.m,2))) ^ (1/sq1.agg2)
FROM (SELECT sum(ln(abs(A))) agg1, count(A) agg2 FROM T) sq1

(SELECT count(*) m FROM T WHERE A < 0) sq2;

The rewritten query will be sent to Spark SQL to launch the computation, and its result
is returned to a user.

If the two aggregation states, ∏ xi and count can be computed using caches, then
SUDAF simply takes their computation results as the input of T in the canonical form
myGM to compute the geometric mean. Assuming that, only count can be computed
using the cache, and count(A) = n (at this step n can be seen as a constant value). Then,
the original query will be rewritten as follow:

SELECT exp(sq1.agg1 / n) * pow(-1, MOD(sq2.m,2))) ^ (1/n)
FROM (SELECT sum(ln(abs(A))) agg1 FROM T) sq1

(SELECT count(*) m FROM T WHERE A < 0) sq2;

The above inner query only computes the aggregate function ∑ ln(|xi|), which is the
transformed shape of ∏ xi.

5.3 Generating canonical forms from mathematical expressions

In this section, we present how to obtain a canonical form for an aggregation. As ex-
plained previously, it is not realistic to expect users to define an aggregation function in
the (F,⊕, T) framework, such that, we deal with the following problem in this section:
how to automatically generate a canonical form from a mathematical expression of an aggregation
function.

5.3.1 Expression model of aggregation functions

In order to solve the previous problem, we provide primitive functions and composi-
tion operators which can be used to construct mathematical expressions of aggregation
functions.

We identify the following three general sets of primitive functions based on the num-
ber of their input arguments (it should be noteworthy that the three sets that we men-
tioned in Section 3.3 contains fixed classes of operators, but in this section we present
the following sets which can contain arbitrary class of operators as long as an operator
satisfy the property of a class).

• Primitive scalar functions: This class, denoted PS (primitive scalar), contains arbi-
trary scalar functions. As long as a function is a scalar function, then it is an element in
PS, i.e., f (x) = ln(x) can be an element in PS.

• Primitive binary functions: This class, denoted PB (primitive binary), contains arbi-
trary binary functions. As long as a function is a binary function, then it is an element
in PB, i.e., arithmetical subtraction − or arithmetical multiplication × can be an el-
ement in PB. Throughout this thesis, we use � to denote a binary function in PB.
We assign a binary function precedence, a positive integer, for every binary func-
tion in PB, where the minimum precedence of a binary function is 1, and we use
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the function pre(�) to get the precedence of �. For example, if PB only contains −
and ×, then pre(−) = 1 and pre(×) = 2.

• Primitive aggregation functions: This class, denoted PA (primitive aggregation), con-
tains arbitrary associative and commutative aggregation functions. As long as a
function is an associative and commutative aggregation function, then it is an element in
PS, i.e., ∑ xi and ∏ xi can be elements in PA. Throughout this thesis, we use ∑⊕ xi
to denote an associative and commutative aggregation function in this class. For
example, ∑ xi is the case of ⊕ = + and ∏ xi is the case of ⊕ = ×.

As explained below, primitive functions can be combined using the composition operator
and binary functions to create more complex scalar functions and aggregate functions.

Complex scalar functions. We observe that a complex scalar function can be obtained
in two ways, applying the composition operator or binary functions to compose or com-
bine scalar functions, which is detailed as follows.

• Using the composition operator. As a natural way to compose functions in mathe-
matics, the composition operator, denoted ◦, can be used to create complex scalar
functions from the primitive ones. The class of such functions is denoted PS◦. A
function g ∈ PS◦ can be expressed as a composition of primitive scalar functions,
and the length of g(x), denoted |g|, gives the number of primitive functions used in
the definition of g(x), i.e., if g(x) = fl ◦ ... ◦ f1(x), with f j ∈ PS, then |g| = l. For ex-
ample, assuming x2 and ln(x) are primitive functions in PS, then we can construct
g(x) = x2 ◦ ln(x), which is equivalent to (ln(x))2, and g(x) is indeed an element in
PS◦, and |g| = 2.

• Using binary functions. In addition, more complex scalar functions can be expressed
using binary functions to combine scalar functions. The set of such functions, i.e.,
scalar functions that contain at least one binary operation, is denoted PS�. Note
that, we can use a binary function to combine two scalar functions, each of which
can be from either PS, or PS◦, or PS�. For example, assuming x2, x3 and ln(x) are
primitive functions in PS and + is a binary function in PB, then we can construct
g(x) = x2 ◦ ln(x) + x3, by using x2 ◦ ln(x) from PS◦ and x3 from PS, and g(x) is
indeed an element in PS�.

Complex aggregation functions (UDAFs). Similar to the case of constructing complex
scalar functions, we allow using the composition operator and binary functions between
primitive aggregation functions from PA to create complex aggregation functions, which
is detailed below.

• Using the composition operator. We allow to use the composition operator ◦ between a
scalar function which can be from PS, or PS◦, or PS�, and an aggregation function
to define a more complex UDAF. More precisely, in this context, the composition
operators can be used in two ways: (i) to apply a scalar function on an output of a
primitive aggregate function, i.e., x2 ◦ ∑ xi which is equivalent to (∑ xi)

2, or (ii) to
apply a primitive aggregation on a set of data transformed using a scalar function,
i.e., ∑ xi ◦ x2

i which is equivalent to ∑ x2
i (we can also omit the identity function of

a primitive aggregation function, i.e., the example can be simply expressed ∑ ◦x2
i .).

The class of such functions is denoted as PA◦. For example, (∑ xi)
2 and ∑ x2

i can be
elements in PA◦.
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• Using binary functions. More complex UDAFs can be expressed using primitive
binary functions to combine several aggregation functions. The class of such func-
tions is denoted PA�. Note that, we can use a binary function to combine two
aggregation functions, each of which can be from either PA, or PA◦, or PA�. For

example, ∑ xi

n
,

∑ x2
i

n
and

∑ x3
i

n
×
√

∑ x2
i can be elements in PA�.

Scalar functions may simultaneously satisfy the property of PS, PS◦ and PS�, e.g.,
x2 ◦ ln(x) can be from PS or PS◦ since x2 ◦ ln(x) is a scalar function. Similarly, an aggre-
gation function can satisfy the property of PA, PA◦ and PA�. For such a situation, we can
make a decision based on whether a composition operator or a binary function is used
in an expression of a scalar function or an aggregation function. For example, in the ex-
pression of x2 ◦ ln(x), there is a composition operator, then we will consider both x2 and
ln(x) are from PS and x2 ◦ ln(x) is from PS◦. For another example, in the expression of
√

x ◦∑ ◦x2
i , which is equivalent to

√
∑ x2

i and is indeed an associative and commutative
aggregation function, there are two composition operators, then we consider ∑ xi is from
PA and

√
x ◦∑ ◦x2

i is from PA◦.
To be summarized, we model the construction of an expression of a UDAF as picking

arbitrary elements from primitive scalar functions and primitive aggregation functions
and combining them using the composition operator or primitive binary functions.

5.3.2 Mapping mathematical expressions of UDAFs into canonical forms

We explain below how to derive a canonical form from an expression of an aggregation
function. W.l.o.g, we consider the most general expression of an aggregation function.
Such functions are expressed using a terminating functions T′ ∈ PS� applied on com-
positions, using binary functions in PB, of aggregate functions from PA◦ and have the
following general form:

α(X) = T′(
(

f ′1 ◦∑
⊕1

◦ f1(xi)
)
�1 ...�k−1

(
f ′k ◦∑

⊕k

◦ fk(xi)
)

︸ ︷︷ ︸
an aggregation function in PA�

),

where f j(x) and f ′j (x), for j ∈ [1, ..., k − 1], are complex scalar functions from PS� and
∑⊕j

(short for ∑⊕j
xi) are primitive aggregation functions from PA. Given such a function

α(X), a canonical form canonical(α) = (F,⊕, T) is derived from the general expression of
α as follows:

F = ( f1, . . . , fk);
⊕ = (⊕1, . . . ,⊕k);

T = T′
(
( f ′1 ◦∑

⊕1

◦ f1)�1 . . .�k−1 ( f ′k ◦∑
⊕k

◦ fk)
)
.

Example 12. Geometric mean can be expressed as gm(X) = (∏ ◦xi)
∧(1/count), which corre-

sponds to the following canonical form:

F = (xi, 1),⊕ = (×,+), T = (∏ ◦xi)
∧(1/count).

Parsing expressions of UDAFs. In the sequel, we discuss how to automatically gener-
ate a canonical form from a mathematical expression of a UDAF. Our approach can be
summarized as the following two steps (see Figure 5.3):
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FIGURE 5.3: Parsing expressions of UDAFs to generate canonical forms of UDAFs.

Step 1: Every mathematical expression of a UDAF is parsed to construct an aggregate ex-
pression tree (AET), which can be seen as a logical plan of computing a UDAF.

Step 2: An AET is decomposed to obtain a canonical form.

We explain each of the two steps in detail in the following two sections.

5.3.3 Parsing mathematical expressions of UDAFs

In this section, we present the aggregate expression tree (AET) of UDAFs and explain
how to parse a mathematical expression of a UDAF to construct an AET.

Aggregate expression tree. AETs are binary trees, and a node in an AET represents a
primitive function from PS ∪ PB ∪ PA. We denote a node which represents a function
from PS as a PS node, similar for functions from PB and PA. In an AET, PB nodes can
have two children, and if a function is declared at the left side of a � from PB, then
the corresponding node is the left child of � node, similar for a function declared at the
right side of �. For instance, given an expression x2 + 3x, then x2 node and 3x node are
respectively the left and right child of + node. While, PS or PA nodes can only have one
child, and if a function is composed with another function, the latter one is a child (left
child as default) of the former one. For instance, given an expression of 3x ◦ x2, then x2

node is the left child of 3x node. Given another expression ∑ ◦x2
i , then x2

i node is the left
child of ∑ node. Consequently, the evaluation order of primitive functions in a UDAF,
i.e., which function should be first computed, is naturally represented by an AET in a
bottom-up manner. We present the AET of geometric mean in Figure 5.4 (a), where the
node labeled with 1 represents the constant function f (x) = 1.

Constructing an aggregate expression tree. We take a mathematical expression of a
UDAF as an input to generate a corresponding AET. The given mathematical expression
of a UDAF is a sequence of primitive functions, where each one is an element from one
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FIGURE 5.4: Aggregate expression tree (AET) of geometric mean and the corresponding de-
composed AET.

of the following sets PS, PB, PA, and {◦, Le f tBracket, RightBracket}. For example, the ex-
pression of geometric mean, (∏ ◦xi)

∧(1/count), is a sequence of 13 primitive functions:

(Le f tBracket, ∏, ◦, x, RightBracket,∧, Le f tBracket, 1, /, ∑, ◦, 1, RightBracket), (5.1)

where count can be expressed ∑ ◦ f (xi) with a scalar function f (x) = 1.
The input sequence of primitive functions present the infix expression of a UDAF,

which is a natural way of writing a mathematical expression. In order to generate an
AET, an infix expression is transformed into a corresponding post-fix expression, where a
binary function, or a composition operator, is behind its two operands (in our context,
an operand of a binary function can be a scalar function or an aggregation function), i.e.,
the post-fix expression of x2 + ln(x) is x2 ln(x) +, and the post-fix expression of ∑ ◦x2 is
∑ x2 ◦. We continue the previous example of geometric mean, the sequence of primitive
operators in equation (5.1) represents the infix expression of geometric mean, and it can
be transformed into the following sequence of primitive operators, which represents the
post-fix expression of geometric mean:

(∏, x, ◦, 1, ∑, 1, ◦, /,∧). (5.2)

Figure 5.4 (a) depicts the AET constructed from the post-fix expression (equation (5.2)) of
geometric mean.

The details of transforming an infix expression to a postfix expression are shown in
algorithm 1, which follows the general structure of the shunting-yard algorithm [Dij],
and algorithm 2 shows how to construct an AET from a post-fix expression of a UDAF.

5.3.4 Decomposition of aggregate expression tree

In this section, we present algorithm 3 to decompose an AET. We explain the details as
follows: we execute a preorder traversal on an AET to find all nodes which contain prim-
itive functions from PA, where we decompose an AET into three parts corresponding
to the three elements in a canonical form (F,⊕, T). More precisely, if a node in an AET
contains a function ∑⊕i

that is from PA, denoted as ∑⊕i
node, then the function ⊕i will

be added in the ⊕ function of a corresponding canonical form. The child of the ∑⊕i
node

is the root of an expression tree of a scalar function fi(x), and it will be added into the
F function of the canonical form. We also change the ∑⊕i

node to be a node containing
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the identity function and remove its child in an AET. When all ∑⊕i
nodes have been pro-

cessed according to the above procedure, we obtain the F function and the ⊕ function in
a canonical form. Consequently, the left AET, which has been modified, represents the
T function in a canonical form. For example, Figure 5.4 (b) shows the preorder traver-
sal on the AET of geometric mean, and Figure 5.4 (c) presents the decomposed AET of
geometric mean and the obtained canonical form.

Algorithm 1: Transforming an infix expression of a UDAF to a corresponding post-
fix expression

Input: infix, an array of operators representing an infix expression of a UDAF
Output: postfix, an array of operators representing a postfix expression of a UDAF
Algorithm Infix2Postfix(infix)

var OperatorStack os ;
var Operator tp ;
var OperatorArray post-fix ;
for i := 0 to in f ix.length do

tp← infix[i];
if tp.type == PS or tp.type == PA then

postfix.add(tp);
else if tp.type == PB or tp.type == ◦ then

while os.empty == false and predence(tp)6 predence(os.peek) do
postfix.add(os.pop);

end
os.push(tp);

else if tp.type == LeftBracket then
os.push(tp);

else . tp is RightBracket
while os.empty == false and os.peek.type 6= LeftBracket do

postfix.add(os.pop)
end
os.pop;

end
while os.empty == false do

postfix.add(os.pop);
end
return postfix;
end;

proc predence(op)
if op.type == PB then

return pre(op); . pre(op) is a function to get a precedence of a function in PB
end
if op.type == ◦ then

return PB.MP + 1; . PB.MP is the maximum precedence of functions in PB
end
return -1;
end;
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Algorithm 2: Constructing an aggregate expression tree from a post-fix expression
of a UDAF

Input: postfix, an array of operators representing a postfix expression of a UDAF
Output: root, the root node of an aggregate expression tree
Algorithm ConstrctAET(post-fix)

var NodeStack ns;
var Node root;
var Operator tp;
var Node node1;
var Node node2;
for i := 0 to post f ix.length do

tp← postfix[i];
if tp.type == ◦ then

node1← nodeStack.pop;
node← nodeStack.pop;
node2← node;
while node2.leftChild 6= null do

node2← node2.leftChild;
end
node2.leftChild← node1;
nodeStack.push(node);

else
var Node node;
if tp.type == PS or tp.type == PA then

node.operator← tp;
ns.push(node);

else . tp ∈ PB
node.operator← tp;
node.rightChild← ns.pop;
node.leftChild← ns.pop;
ns.push(node);

end
end
root← ns.pop;
return root;
end;
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Algorithm 3: Decomposition of aggregate expression tree
Input: AET, the root node of an aggregate expression
Output: WFA, (F,⊕, T) in well-formed aggregation
Algorithm DecomposeAET(AET)

var NodeStack ns1;
var WellFormedAggregation WFA;
var NodeList F;
var OperatorList ⊕;
var Node node1;
ns1.push(AET);
while ns1.empty == false do . Pre-order traversal on AET

node1← ns1.pop;
if node1.operator.type == PA then . Identifying a PA node

var Node node2← node1.leftChild;
F.add(node2);
⊕.add(node1.operator);
node1.operator← identityFunction;
node1.leftChild← null;
continue;

end
if node1.rightChild 6= null then

ns1.push(node1.rightChild);
end
if node1.leftChild 6= null then

ns1.push(node1.leftChild);
end

end
WFA← (F,⊕, AET);
return WFA;
end;
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Related works

There is a wealth of researches on optimizing queries with aggregate functions, aggregate
query rewriting using views, sharing computations for aggregate queries, caching results
of aggregate queries, distributed computations of aggregate functions. Earlier works fo-
cus on standard or predefined aggregate functions (e.g., [YbL95,CD97,GCoS+97,CNS99,
CN05,HGHS07]) and then extended to UDAFs (e.g., [Coh06,HPK+13,CTK+16,KBY17]).
We categorize the opportunities for optimizing queries with aggregations in the follow-
ing two scenarios: processing a single query and a workload of several queries.

• In the scenario of processing a single query, partial aggregation appeared as an im-
portant technique used to improve the performance of aggregate functions: instead
of computing aggregation on a complete multiset, applying aggregation on subsets
of the multiset and merging intermediate results is an efficient solution in various
situations. We study related works in this category in Section 6.1.

• Using materialized views or caches to accelerate queries with aggregation is also
well studied in the scenario of processing a workload of several aggregate queries
or a case of repetitive data analytic. Most of these works focus on identifying the
reusing opportunities for aggregate queries over various data granularity. Several
works also study the opportunities in the computation dimension, i.e., computing
an aggregate function over another aggregate function. The related works in this
category are studied in Section 6.2.

6.1 Partial aggregation

6.1.1 Optimizing queries with aggregate functions

Aggregate functions are applied over a multiset of values, which is generally computed
after a group-by operator in a query execution plan. Because a group-by operator has
the ability of duplicate elimination, such that applying group-by operator before join can
help reduce the input size of join, which is usually referred to as aggregation push down.
In order to ensure the correctness of query results, group-by with partial aggregations
are pushed before join instead of a final aggregation function.

An early overview pertaining to optimizing queries with standard aggregate func-
tions can be found in [SF95]. We briefly discuss results related to applying partial aggre-
gation. This line of research is started independently in [YL94] and [CS94]. In [YL94],
they proposed the necessary and sufficient condition that an expression of relational al-
gebra need to satisfy for performing a group-by operator before join in the case of queries
with standard aggregate functions (MIN, MAX, SUM, COUNT, AVG), and they extended
the condition to more general functions with an algebraic property (decomposable aggre-
gation, which is similar to partial aggregation). Their later work [YbL95] also studied the
possibilities of computing a group-by after join, since this may help reduce the number of
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rows in a group. The main transformations proposed in these early two works are eager
aggregation (performing group-by operator before join) and lazy aggregation (perform-
ing group-by operator after join), which are two inverse orders of computing group-by
operator and join. The class of eager aggregation also contains three sub-classes: eager
group-by, eager count, and double eager, where the last one is the combination of apply-
ing the first two together. Aggregation used in a query must satisfy the decomposable
property to obtain an equivalent expression of the query using eager group-by transfor-
mation, because after join partial aggregate values in groups with smaller granularity
have to be merged into a group with a bigger granularity. The eager count transforma-
tion is simply used to compress duplicate values in a group. When applying these two
transformations together, an expanding function is required to compute the final aggre-
gate values using duplicate partial aggregate values. Independently, the opportunity of
including a group-by operator in query optimization was also studied in [CS94], and they
proposed three kinds of group-by transformations: (1) invariant grouping, (2) simple coa-
lescing grouping and (3) generalized coalescing grouping. They also discuss a cost-based
solution to apply the transformations. The invariant grouping transformation does not
require any specific properties of aggregate functions, but it can be only applied when
relations are joined on foreign keys, which also need to be grouping attributes in a query
since no duplicate values need to merge after join. While aggregate functions require sat-
isfying the associativity and commutativity to apply simple coalescing grouping. More
transformation rules for aggregate queries were studied in [GHQ95], where coalescing
groups (which they call generalized projection) also require partial aggregation.

The optimizing technique for correlated subqueries with aggregations are unified
with the reordering of join and group-by aggregation in [GLJ01]. The execution plan of an
original correlated subquery with aggregation is to take every row of an outer query and
compute an aggregate value in a subquery, which is a row-oriented strategy. The corre-
lated subquery can be removed by rewriting into another formulation applying an outer
join and aggregation [Day87], then reordering of group-by aggregation and an outer join
can be evaluated by a cost-based solution to generate an efficient execution plan [GLJ01],
which also requires partial aggregation.

A later work [Coh06] extended eager group, eager count and double eager trans-
formations, which are proposed in [YbL95], to queries with user-defined aggregate func-
tions. A canonical form of user-defined aggregation is developed to systematically obtain
partial aggregation in order to leverage previous aggregation push-down (computing
aggregation before join) techniques. Unlike previous works where algebraic properties
are restricted over aggregation to have partial aggregation, the canonical form of user-
defined aggregations captures the construction of a user-defined aggregation, which is a
more general solution to obtain partial aggregation.

Compared to these works, we do not deal with the reordering of group-by aggrega-
tion and join, or propose a cost-based solution to identify when to apply the reordering.
While we concentrate on how to systematically and automatically generate partial aggre-
gation from a mathematical expression of aggregations [ZTG17b, ZTG17a, ZTG18, ZT19].
Since partial aggregation is the essential technique required for the reordering of group-
by and join, we argue that our approach can be integrated with existing solutions to
optimize queries with UDAFs automatically.

6.1.2 User-defined aggregate function API

Most modern data management and analytical systems support UDAFs (e.g., [apaa,apad,
apab,RDBc,RDBa,RDBb]). In original MapReduce (MR) framework [DG04,apac], UDAFs
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are implemented according to the MR paradigm without requiring any specific tem-
plate. This makes the semantics of UDAFs hidden in the implementations and hinders
optimization possibilities (e.g., reordering with relational operators and other UDAFs
[HPK+13]). However, in most of the recent systems, users define UDAFs using an IAME
pattern [Coh06] (Initial values, Accumulating functions, Merging functions and Evalu-
ating functions). Although such an approach enables one to exploit the properties of
the merging functions to allow optimization based on partial aggregation, e.g., paral-
lel computation of the merging functions, part of the UDAF semantics is still hidden in
the implementation which hampers some optimization opportunities such as aggregate
sharing. In addition, implementing UDAF in existing frameworks may be a tedious task
since it is up to the user to map its UDAF to the implementation paradigm (MR or IAME).
In [Coh06], a generic UDAF framework is proposed where partial aggregation can be
systematically derived from a well-formed expression of UDAFs. We build on these later
works to design SUDAF by allowing users to specify UDAFs as mathematical expres-
sions and then automatically generate canonical forms of UDAFs which are compliant
with the IAME pattern. Consequently, with SUDAF, a user does not need to handle the
problem of how to obtain partial aggregation from UDAFs. Moreover, SUDAF knows the
semantics of partial aggregation (primitive operators used in partial aggregation) which
extends the optimization opportunities [ZT19].

6.2 Caching and materializing queries with aggregation

6.2.1 Rewriting aggregate queries using aggregate views

Evaluating an aggregate query using a materialized aggregate view other than base re-
lation can be significantly efficient because the number of tuples in an aggregate view is
usually several orders of magnitude less than the number of tuples in base relations. In
order to obtain this efficient strategy, a query processor transforms an aggregate query
and replaces a subquery with aggregations by a view with aggregations. Generally, a
query processor needs to verify two problems.

• The first one is on whether the view is equivalent to or contained in the query, which
is undecidable for arbitrary queries [AHV95]. Completely determining whether a
conjunctive query can be rewritten using views is an NP-complete problem [LMS95].
Practical solutions apply syntactic comparisons between queries and views. A prac-
tical algorithm for rewriting queries with sum and count can be found in [CNS00],
and a survey can be found in [Coh05].

• The second problem appears when the aggregation in the query is different from
those in the view. In such a case, a query processor should know how aggregate
values in the view can be combined to compute the aggregation in the query. Users
can explicitly program such a sharing relationship of aggregations as a computa-
tion rule [Coh06] to deal with built-in aggregate functions. However, for general
aggregation functions, especially UDAFs, previous solutions for rewriting aggre-
gate queries using views in [GHQ95, CS96, SDJL96, CNS99, GL01, GT00, CNS06] do
not consider the problem of how to identify such a relationship of aggregations.
Consequently, given a query and a set of views, where the aggregation in the query
is different from those in the views, previous solutions may not be complete. We
deal with the problem of how to compute an aggregation (UDAF) from the oth-
ers [ZT19], which can be merged with previous solutions to have more rewriting
candidates in this line of research.
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6.2.2 Caching aggregate queries

Different facets of caching aggregate queries have been studied e.g., reusing caches to
accelerate multi-dimensional queries [CD97, DRSN98], or identifying overlapping parts
for multiple aggregate queries with various selection predicates [HGHS07], group-by
attributes [CN05] and sliding-windows [AW04, KWF06]. Most of these approaches fo-
cus on the data granularity dimension, i.e., they consider the problem of sharing the
same computations across different ranges or granularity of data. Our work [ZT19] does
not consider the data granularity dimension where existing techniques, e.g., [DRSN98,
WWDI17], can be used to extend SUDAF in this direction. [CNS99, CNS06] enables shar-
ing between different aggregations using predefined equivalence rules, while DataCanopy
[WWDI17] caches results of basic aggregates (e.g., ∑ x, ∑ x2, . . . ) and uses predefined de-
composition rules to compute statistical measures from basic aggregates. SUDAF lies in
this research direction, extending existing approaches with the ability to identify more
sharing opportunities among different UDAFs dynamically.

Until the time of writing this thesis, based on our observation, the most related work
is DataCanopy [WWDI17]. Therefore, we present the specific differences between Data-
Canopy and SUDAF [ZT19] as follows. Our approach is complementary to DataCanopy
in the sense that DataCanopy deals with “sharing w.r.t. the data dimension” while
SUDAF deals with “sharing w.r.t. the computation dimension”. DataCanopy “caches the
basic aggregates of statistical measures” and then is able to reuse them for future queries.
Basic aggregates are maintained at a granularity of a chunk (smallest portion of data).
DataCanopy allows sharing between queries over overlapping or partially overlapping
chunks. However, in DataCanopy basic aggregates are fixed in advance (∑ xi, ∑ x2

i and
∑ xi × yi ) and the decomposition of a given aggregate into basic ones is predefined (see
Table 1 of [WWDI17]). SUDAF allows to automate the sharing possibilities with respect to
the computation dimension, i.e., it allows sharing between different aggregates without
using predefined decomposition rules. In addition, SUDAF does not rely on fixed basic
aggregates but uses instead partial aggregates derived from executed queries.
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Conclusions

UDAFs (user-defined aggregation functions) are becoming a type of fundamental oper-
ations in advanced data analytic. UDAFs are generally defined by programming each
function in the IAME framework, i.e., specifying initial functions, accumulating func-
tions, merging functions and evaluating functions. Such a mechanism requires users
to identify these functions from their UDAFs and to ensure that the identified merging
function is associative and commutative. Modern data management systems require a
declarative approach for defining UDAFs and the ability to synthesize partial aggrega-
tions automatically, which can relieve users’ mental overhead. The current UDAF mecha-
nism also has two severe drawbacks, which leads to the loss of opportunities to accelerate
queries with UDAFs. Firstly, computing a UDAF using the current mechanism is much
slower compared to system built-in functions. Moreover, a UDAF defined by the current
mechanism is a black box to a query processor.

In order to overcome these issues, we present SUDAF in this thesis. We target on
designing a declarative approach to define UDAFs, where we automatically generate ef-
ficient partial aggregations, rewrite partial aggregations using built-in functions, cache
and reuse partial aggregations across various UDAFs. In this thesis, we first studied how
to map aggregation functions, in a systematic way, into generic MRC algorithms, and we
identified when aggregations can be efficiently executed on MapReduce-style platforms.
We also discuss how to generate partial aggregations from mathematical expressions of
UDAFs. Then we concentrated on introducing the design principles underlying SUDAF,
a system that provides a set of predefined functions together with a composition opera-
tor to enable users to write their UDAFs by declaring mathematical expressions. SUDAF
comes equipped with the ability to automatically generate parallel implementation from
a mathematical expression of a UDAF and supports efficient dynamic caching and shar-
ing of partial aggregations of UDAFs. We showed experimentally the benefit of sharing
aggregates to improve the performances of queries with UDAFs.

We observe the following research perspectives that can be taken as future works of
SUDAF.

• Our immediate future work is merging the computation dimension of SUDAF with
the data dimension proposed in existing works [DRSN98, WWDI17]. Therefore,
queries with various data, i.e., different range predicates, and various UDAFs can
be computed over caches.

• One of the traditional techniques on optimizing join and group-by queries is ag-
gregation push down. In such a scenario, a query processor needs to know for a
UDAF partial aggregations, merging functions, and expanding functions (recov-
ering the duplicate values caused by pushing down count). As explained in this
thesis, SUDAF has the ability to automatically generate these functions (expanding
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functions can be automatically synthesized by inferring ⊕ functions in the canoni-
cal form of SUDAF). Therefore, one of the future works is to investigate how SUDAF
can help query processors to obtain query plans without users’ explicit interference.

• As a future research direction, we envision to exploit the fact that the semantics of
UDAFs is known by SUDAF to investigate query rewriting problems for join and
group-by queries with UDAFs. Knowing that traditional approaches of query op-
timizations, rewriting queries using materialized views and caching query results
mainly focus on built-in or predefined aggregate functions. We believe that, if a
query processor can capture the semantics of UDAFs, it could identify how to com-
pute a UDAF from others required in answering queries using materialized views
or caches.

• In the problem of aggregate view selection, one usually wants to find some suitable
views to materialize, such that they can be reused to answer more queries in a work-
load. In such a scenario, SUDAF can help identify the overlapping computations of
aggregations in views, i.e., whether an aggregation in a view can be computed from
another view.

• OLAP queries are computed over a data cube instead of base data. Specifically, in
every cell of a data cube, an aggregate summary for the smallest data granularity
is computed and stored. Traditionally, these aggregate summaries are only reused
to compute queries with built-in or predefined functions. Since SUDAF can cap-
ture the relationship of how to compute a UDAF from another one, we envision to
investigate aggregate summaries in data cube to compute queries with UDAFs.
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A.1 Moving a tuple-wise scalar computation to a final scalar com-
putation

In this section, we explain the UDAF optimization principle in SUDAF, moving a tuple-
wise scalar computation to a final scalar computation. W.l.o.g, assuming a UDAF α has the
following shape α(X) = T(s(X)) with an aggregation state s(X) = ∑⊕ f (xi), and the
input X has n tuples, i.e. count(X) = n. During the computation of α, we compute f for
a value xi in every tuple of X, which can be seen as a tuple-wise scalar computation. Con-
sequently, the scalar function f is computed n times. If the UDAF α can be transformed
into the following shape α(X) = T( f (∑⊕ xi)), where the scalar function f is moved out-
side the aggregation operator ∑⊕. Consequently, the scalar function f is computed only
once, which can be seen as a final scalar computation. In a word, if we move a tuple-wise
scalar computation to a final scalar computation for the computation of a UDAF α, we
can avoid n− 1 times of computing a scalar function.

Scalar pull-up transformations. To capture such an optimization opportunity, we pro-
pose the following 3 scalar pull-up (SPU) rules 1,

• SPU 1: ∑ f2 ◦ f1(xi)→ f2(x) ◦∑ f1(xi), where f2(x) = ax with a constant a;

• SPU 2: ∏ f2 ◦ f1(xi)→ f2(x) ◦∏ f1(xi), where f2(x) = xa with a constant a;

• SPU 3: ∏ f2 ◦ f1(xi)→ f2(x) ◦∑ f1(xi), where f2(x) = ax with a constant a.

For example, using SPU 1, ∑ 3x2
i can be transformed into 3(∑ x2

i ), which can avoid n− 1
times of arithmetic multiplication since computing ∑ 3x2

i requires computing 3x2
i for ev-

ery value in X, while 3×∑ x2
i only needs to compute one times of arithmetic multiplica-

tion.

Splitting transformations. In Section 3.4.3, we propose two splitting rules to transform
one aggregation state into two aggregation states. This kind of transformation also has
the property of moving a tuple-wise scalar computation to a final scalar computation. We
recall the splitting rules as follow:

• Split 1: ∑( f1(xi)� f2(xi)) = ∑( f1(xi))�∑( f2(xi)) with � ∈ {+,−};

• Split 2: ∏( f1(xi)� f2(xi)) = ∏( f1(xi))�∏( f2(xi)) with � ∈ {×, /}.

Using the above two rules, the � operator only needs to be computed once instead of
computing it for every tuple. For example, using the rule Split 1, ∑ 3xi + x2

i can be trans-
formed into ∑ 3xi + ∑ x2

i , which can avoid n− 1 times of arithmetic addition.

1We call these rules as scalar pull-up rules because a scalar function can be pulled up a primitive aggregation operator
in an aggregate expression tree. The term ‘scalar‘ is used to distinguish from the traditional pull-up transformations in
aggregate query optimization.
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Expression Number of arithmetic addition Number of arithmetic multiplication

s(X) = ∑n
i=1(xi + a)b 2n n(b− 1)

s(X) = ∑b
k=0 (

b
k)ab−k(∑n

i=1(xi)
k) nb + b n(b− 1) + ( (b+2)(b−1)

2 + b)

PowerSeries(X, b) = (∑ xi, ..., ∑ xb
i ) nb n(b− 1)

TABLE A.1: Cost of computing ∑n
i=1(xi + a)b and its binomial expression.

Binomial transformations. We can combine scalar pull-up rules and splitting rules to
have binomial transformations of aggregation states. We explain this as follows. An ag-
gregation state s(X) = ∑(xi + a)2, which is denoted as an original expression with a
constant a and an exponent 2, can be trivially transformed to s(X) = ∑(x2

i + 2axi + a2).
Then, we have the following shape of s by applying scalar pull-up rules and splitting
rules: s(X) = ∑ x2

i + 2× a × ∑ xi + count(X)× a × a, which is denoted as the binomial
expression. We also denote such a transformation as the binomial transformation over the
original expression of s.

In the sequel, we focus our discussion on binomial transformations of aggregation
states. As explained later, the major benefit of binomial transformation is that caches
in SUDAF can be fully exploited to share computations, i.e., reusing caches to compute
original expressions with various constants a and various exponents that are bigger than
2. However, a binomial expression is more expensive to compute than the correspond-
ing original expression since a binomial expression contains more aggregation states that
need to compute. Note that a binomial expression only needs to compute arithmetic
addition and multiplication. We observe that every aggregation state in a binomial ex-
pression inevitably needs a summation operator. Consequently, the overhead of applying
more arithmetic additions cannot be avoided. While for the computation of arithmetic
multiplication, we show below an algorithm to compute binomial expression which re-
quires an approximately same cost as computing the original expression.

In the following, we first compare the cost of computing an original expression and
the corresponding binomial expression using the proposed algorithm. Then, we show
binomial transformations bring more possibilities of sharing computations.

• Cost analysis. Our cost model is based on the number of (arithmetic) addition and
(arithmetic) multiplication that is required in the computation of original expres-
sion and a binomial expression since these two basic operations are enough to exe-
cute their computations. We consider count(X) is cached in system since count(X)
is a widely used in query optimization, and we let count(X) = n. We begin our
analysis with the initial case, s(X) = ∑(xi + a)2, and then we present the results for
a general case.

Computing the original expression, s(X) = ∑(xi + a)2, needs 2n additions, i.e.,
computing xi + a for every xi and a summation, and n multiplications, i.e., com-
puting (xi + a)2 for every (xi + a). While, the transformed expression, s(X) =

∑ x2
i + 2× a × ∑ xi + count(X) × a × a, requires 2n + 2 additions, i.e., computing

two summations and 2 final additions, and n + 4 multiplications, i.e., computing
x2

i for every xi and 4 final multiplications. Such that binomial expression requires
computing 2 more additions and 4 more multiplications than the original expres-
sion, which are approximately identical since n is quite large in general.

We analyze a general case of binomial transformation in the following, where an
original expression of an aggregation state is s(X) = ∑(xi + a)b with a constant a
and a positive integer b. We summarize the cost of computing the original expres-
sion and its binomial transformation in Table A.1, where the computation cost of
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binomial coefficients are not taken into account, i.e., we consider every (b
k) is a con-

stant value. We explain their costs as follows. In the computation of the original
expression, s(X) = ∑(xi + a)b, we need 2n additions, i.e., a first n for computing
xi + a and a second n for computing a summation, and n(b− 1) multiplications, i.e.,
computing (xi + a)b for every (xi + a). The original expression can be transformed
into the following binomial expression, s(X) = ∑b

k=0 (
b
k)ab−k(∑n

i=1(xi)
k), which we

use the algorithm 4 to compute. We analyze the cost of the proposed algorithm be-
low. In algorithm 4, we need to compute a sequence of aggregation states, which is
(∑ xi, ∑ x2

i , ..., ∑ xb
i ) and is denoted as PowerSeries(X,b). The subroutine to compute

PowerSeries(X, b) stores for every input value xi the result of xl
i and reuse it to com-

pute xl+1
i . Thus, it takes n(b− 1) multiplications in total (see Table A.1). While it

still requires nb additions. Finally, computing the binomial expression takes nb + b
additions and n(b− 1) + ( (b+2)(b−1)

2 + b) multiplications. Since n is generally much
larger than b, the costs of computing multiplication for original and binomial ex-
pressions are approximately the same. Note that the algorithm 4 can be computed
in a distributed architecture since we can merge PowerSeries (see subroutine in al-
gorithm 4). Although we compute approximately (b − 2)n more additions in a
binomial expression, we show later that an intermediate result, a PowerSeries(X,b),
can be used to share computations, which can significantly compensate this addi-
tional cost.

• Sharing PowerSeries. We explain as follows a binomial transformation brings more
possibilities to share computations. Assuming that in a query we need to com-
pute the following m aggregation states (s1, ..., sm) with sj(X) = ∑n

i=1(xi + aj)
bj , j ∈

(1, ..., m) where aj is a constant and bj is a positive integer and bj > 2. According
to the cost analysis, depicted in Table A.1, it requires 2mn additions and n(b1 +
... + bm − m) multiplications. While, if (s1, ..., sm) are transformed using binomial
transformations, then it needs to compute m PSs (PowerSeries), that PSj(X, bj) =

(∑ xi, ..., ∑ x
bj
i ). It is trivial to see that we only need to compute PSmax(X, bmax) with

bmax = max(b1, ..., bm), which can be shared to each of the m PSs. If we do like this,
then it requires nbmax + b1 + ... + bm additions and n(bmax − 1) + f (b1) + ... + f (bm)

multiplications with f (b) = (b+2)(b−1)
2 + b. Since every bj, j ∈ (1, .., m) is much

smaller than n, then we can approximately avoid n(b1 + ... + bm − m − bmax + 1)
multiplications. The problem of whether we can reduce additions, or how many
we can reduce, will depend on bmax and m. If 2m > bmax, the reduced cost is signif-
icant since both additions and multiplications can be reduced. Now, assuming the
m aggregation states are separately computed in m queries. Then, we can cache the
results of earlier PowerSeries and reuse them for later ones. In the best case, where
PSmax comes at first, then we do not need to launch the computation for the latter
ones. Note that, the sharing approach does not have any constraints. Such that, an
aggregate state sj of the m ones can contain an arbitrary aj and ∀bj ∈ Z>2.

We observe that the subroutine PowerSeries in algorithm 4 cannot be expressed by SQL
syntax. Such that, we wrap it using a Spark or PostgreSQL UDAF interface, which is
defined as PS(). If we identify an aggregation state s with an original expression, i.e.,
s(X) = ∑n

i=1(xi + a)b, then we transform s into a binomial expression and use the function
PS() to compute a PowerSeries contained in the binomial expression of s.
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Algorithm 4: Computing BinomialExpression
Input: X, a, b
Output: s(X) = ∑b

k=0 (
b
k)ab−k(∑n

i=1(xi)
k)

Function BinomialExpression(X, n, a, b)
var double ps[b]← PowerSeries(X, b);
var int k;
var double s;
for k:= 1 to b do

s← s + (b
k)× ab−k × ps[k− 1];

end
return s← s + ab × n;

Function PowerSeries(X, b)
var double temp[b];
var double ps[b];
var double x;
var int l;
while X.hasNext() do

x ← X.next();
temp[0]← x;
ps[0]← ps[0] + x ;
for l:= 1 to b− 1 do

temp[l]← x× temp[l − 1]; . Computing xp
i , p > 2

ps[l]← ps[l] + temp[l];
end

end
return ps;

Function Merge(ps1, ps2) . Merging two power series
var int j;
for i:= 0 to b− 1 do

ps1[j]← ps1[j] + ps2[j];
end
return ps1;
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