
HAL Id: tel-02979523
https://theses.hal.science/tel-02979523

Submitted on 27 Oct 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Harvesting commonsense and hidden knowledge from
web services
Julien Romero

To cite this version:
Julien Romero. Harvesting commonsense and hidden knowledge from web services. Artificial Intelli-
gence [cs.AI]. Institut Polytechnique de Paris, 2020. English. �NNT : 2020IPPAT032�. �tel-02979523�

https://theses.hal.science/tel-02979523
https://hal.archives-ouvertes.fr


626

N
N
T

:
20

20
IP

P
A
T
03

2

Harvesting Commonsense
and Hidden Knowledge

From Web Services
Thèse de doctorat de l’Institut Polytechnique de Paris

préparée à Télécom Paris

École doctorale n◦626
École doctorale de l’Institut Polytechnique de Paris (ED IP Paris)

Spécialité de doctorat: Computing, Data and Artificial Intelligence

Thèse présentée et soutenue à Palaiseau, le 5 Octobre 2020, par

Julien Romero

Composition du Jury :

Pierre Senellart
Professor, École Normale Supérieure Président

Tova Milo
Professor, Tel Aviv University Rapporteur

Katja Hose
Professor, Aalborg University Rapporteur

Michael Benedikt
Professor, University of Oxford Examinateur

Andrea Calì
Professor, University of London, Birkbeck College Examinateur

Meghyn Bienvenu
Full-Time CNRS Researcher, University of Bordeaux (LaBRI) Examinateur

Fabian Suchanek
Professor, Télécom Paris Directeur de thèse

Nicoleta Preda
Associate Professor, University of Versailles Co-directeur de thèse

Antoine Amarilli
Associate Professor, Télécom Paris Invité



ii



Harvesting Commonsense
and Hidden Knowledge

From Web Services

Julien Romero

5 Octobre 2020



À mon grand-père



Abstract

In this thesis, we harvest knowledge of two different types from online resources.
The first one is commonsense knowledge, i.e. intuitive knowledge shared by most
people like “the sky is blue”. We extract salient statements from query logs and
question-answering sites by carefully designing question patterns. Next, we validate
our statements by querying other web sources such as Wikipedia, Google Books,
or image tags from Flickr. We aggregate these signals to create a final score for
each statement. We obtain a knowledge base, Quasimodo, which, compared to its
competitors, has better precision and captures more salient facts.

The other kind of knowledge we investigate is hidden knowledge, i.e. knowledge
not directly given by a data provider. More concretely, some Web services allow
accessing the data only through predefined access functions. To answer a user query,
we have to combine different such access functions, i.e. we have to rewrite the query
in terms of the functions. We study two different scenarios: In the first scenario, the
access functions have the shape of a path, the knowledge base respects constraints
called “Unary Inclusion Dependencies”, and the query is atomic. We show that
the problem is decidable in polynomial time, and we provide an algorithm with
theoretical evidence. In the second scenario, we remove the constraints and create
a new class of relevant plans called “smart plans”. We show that it is decidable to
find these plans, and we provide an algorithm.

iii



iv



Remerciements

On ne prend jamais assez de temps pour remercier les gens qui nous sont chers et
qui nous aident à aller de l’avant. Un simple merci me paraît trop ordinaire, mais
nul autre mot ne semble assez fort. Toutes ces personnes donnent un sens à nos
actions et à nos choix: elles mériteraient autant que moi de figurer sur la première
page de cette thèse.

Bien sûr, il me serait impossible de ne pas parler de mes deux directeurs de thèse,
Nicoleta et Fabian, sans qui aucun mot figurant ici n’aurait été possible. Venir faire
ma thèse avec eux a complètement changé ma vie de bien des manières. Ils m’ont
permis de m’épanouir librement et je sens qu’avec eux, je suis allé bien plus loin
qu’un simple doctorat.

Je remercie chaleureusement les rapporteuses Tova Milo et Katja Hose, ainsi
que tous les membres du jury, Pierre Senellart, Michael Benedikt, Andrea Calì et
Meghyn Bienvenu.

Un été de ma thèse s’est déroulé au Max Planck Institute for Informatics à
Saarbrucken, et je remercie Gehard Weikum de m’avoir accueilli dans son équipe,
ainsi que Simon Razniewski et Koninika Pal qui m’ont grandement aidé dans mes
travaux de recherche.

Sans ma famille, jamais je ne serais arrivé jusqu’à la thèse. Ma mère, Catherine,
a tout sacrifié pour moi, malgré les problèmes que nous avons rencontrés. Tout ce
que je sais, c’est grâce à elle. Elle m’a fait découvrir la musique et les arts, elle a
passé d’innombrables heures à m’accompagner dans mon éducation, elle a supporté
mes études, ... Jamais je ne pourrais assez la remercier.

Mon arrière-grand-mère a aussi beaucoup fait pour moi. Aujourd’hui encore, je
me souviens que c’est elle qui m’a appris à lire. J’ai passé de nombreuses heures
devant sa bibliothèque à éplucher chaque livre et devant sa télé à regarder C’est pas
sorcier et les gendarmes de Saint-Tropez.

J’ai beaucoup passé de temps avec mes grands-parents, Firmin et Monique,
surtout durant les étés au bord de la mer. Ils m’ont toujours aidé dans tout ce
que j’ai entrepris et j’espère que de là où il est, mon grand-père est fier de moi.

Il y a aussi Thomas et Mélanie, mon frère et ma sœur qui ont traversé avec moi
les tourments de l’enfance, mon beau-père, Jacques, qui s’est montré très aimant
envers ma famille et enfin, je n’oublie pas ma tante Laurence et mon oncle Yann qui
ont toujours cherché à aiguiser ma curiosité.

Finalement, en même temps que j’ai commencé cette thèse, j’ai agrandi ma
famille un peu plus. La plus grande de mes découvertes s’appelle Oana, et j’espère
bien passer le reste de ma vie avec elle. Elle a toujours été à mes côtés au cours
de ces trois dernières années, et m’a aidé à surmonter toutes les difficultés. Je sens

v



qu’à ses côtés rien ne peut m’arriver.
Je pense aussi à tous les proches amis que j’ai pu avoir et avec qui j’ai passé de

très bons moments. Je ne pourrai tous les nommer ici, mais je citerai Didier et tous
les projets un peu fous de nous avons pu avoir, Jérémie et Daniel, qui ont partagé
ma chambre en prépa et Victor, qui ne m’a pas quitté depuis la maternelle.

La recherche ne se fait pas tout seul dans une chambre. DIG m’a accueilli pendant
toute ma thèse, et je tiens à remercier tous ses membres: Albert, Armand, Arnaud,
Camille, Etienne, Favia, Jacob, Jean-Benoît, Jean-Louis, Jonathan, Julien, Lihu,
Louis, Marc (merci de m’avoir aidé dans tant de projets), Marie, Maroua, Mauro,
Mikaël, Miy-oung, Mostafa, Nathan, Ned, Nicolas, Pierre-Alexandre, Quentin,
Quentin, Samed, Talel, Thomas (le chef), Thomas (le grand frère doctorant),
Thomas (le frère jumeau doctorant, qui a répondu à bien nombre de mes ques-
tions) et Ziad. Je remercie particulièrement Antoine pour son aide précieuse sur
bien des sujets. Merci aussi à tous les enseignants de Télécom et à tous mes élèves
qui m’ont fait aimer transmettre mes connaissances.

vi



Contents

1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Information Jungle . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.2 Knowledge Bases Structure Information . . . . . . . . . . . . 2
1.1.3 A Brief History of Knowledge Bases . . . . . . . . . . . . . . . 3
1.1.4 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.1.5 Accessing Knowledge Bases Through Web Services . . . . . . 7

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2.1 Harvesting Commonsense Knowledge Automatically . . . . . . 7
1.2.2 Decidable, Polynomial and Equivalent Query Rewriting . . . . 8

2 Preliminaries 11
2.1 Knowledge Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.1 Knowledge Representation . . . . . . . . . . . . . . . . . . . . 11
2.1.2 Reasoning Over Knowledge Bases . . . . . . . . . . . . . . . . 17
2.1.3 Defining Knowledge Bases . . . . . . . . . . . . . . . . . . . . 18

2.2 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.1 Motivation and Definition . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Web Service Architectures . . . . . . . . . . . . . . . . . . . . 19

3 Quasimodo: A Commonsense Knowledge Base 21
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.1.1 Motivation and Goal . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 State of the Art and Limitations . . . . . . . . . . . . . . . . 22
3.1.3 Approach and Challenges . . . . . . . . . . . . . . . . . . . . 23
3.1.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.2.1 Commonsense Knowledge Bases (CSKB’s) . . . . . . . . . . . 25
3.2.2 Use Cases of CSK . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2.3 Information Extraction from Query Logs . . . . . . . . . . . . 26

3.3 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.1 Candidate Gathering . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Corroboration . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.3 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.4 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.4 Candidate Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

vii



CONTENTS

3.4.1 Data Sources . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.4.2 Question Patterns . . . . . . . . . . . . . . . . . . . . . . . . . 29
3.4.3 From Questions to Assertions . . . . . . . . . . . . . . . . . . 30
3.4.4 Output Normalisation . . . . . . . . . . . . . . . . . . . . . . 30
3.4.5 Generation of New Subjects . . . . . . . . . . . . . . . . . . . 31

3.5 Corroboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.1 Wikipedia and Simple Wikipedia . . . . . . . . . . . . . . . . 32
3.5.2 Answer Snippets From Search Engine . . . . . . . . . . . . . . 32
3.5.3 Google Books . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.5.4 Image Tags From OpenImages and Flickr . . . . . . . . . . . . 32
3.5.5 Captions From Google’s Conceptual Captions Dataset . . . . 33
3.5.6 What Questions . . . . . . . . . . . . . . . . . . . . . . . . . . 33
3.5.7 Classifier Training and Application . . . . . . . . . . . . . . . 33

3.6 Ranking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.6.1 The Plausibility-Typicality-Saliency Approach . . . . . . . . . 35
3.6.2 The Smoothed Plausibility-Typicality-Saliency Approach . . . 36

3.7 Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.1 Soft Co-Clustering . . . . . . . . . . . . . . . . . . . . . . . . 37
3.7.2 Tri-Factorisation of SO-P Matrix . . . . . . . . . . . . . . . . 38

3.8 Experimental Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8.1 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8.2 Intrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 41
3.8.3 Extrinsic Evaluation . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4 Inside Quasimodo 47
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Quasimodo Web Portal Architecture . . . . . . . . . . . . . . . . . . 48
4.4 Demonstration Experience . . . . . . . . . . . . . . . . . . . . . . . . 50

4.4.1 Exploring and Searching Commonsense Knowledge . . . . . . 50
4.4.2 Extraction Pipeline Visualisation . . . . . . . . . . . . . . . . 50
4.4.3 SPARQL Endpoint . . . . . . . . . . . . . . . . . . . . . . . . 51
4.4.4 Play Taboo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.4.5 Codenames . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4.6 Multiple-Choice Question Answering . . . . . . . . . . . . . . 54

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Equivalent Query Rewritings 57
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.1 Views With Binding Patterns . . . . . . . . . . . . . . . . . . 59
5.2.2 Equivalent Rewritings . . . . . . . . . . . . . . . . . . . . . . 60
5.2.3 Maximally Contained Rewritings . . . . . . . . . . . . . . . . 60
5.2.4 Web Service Orchestration . . . . . . . . . . . . . . . . . . . . 61
5.2.5 Federated Databases . . . . . . . . . . . . . . . . . . . . . . . 61
5.2.6 Web Services . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

viii CONTENTS



CONTENTS

5.3 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.1 Global Schema . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.2 Inclusion Dependencies . . . . . . . . . . . . . . . . . . . . . . 62
5.3.3 Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.3.4 Query Containment . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.5 Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.6 Execution Plans . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.3.7 Atomic Query Rewriting . . . . . . . . . . . . . . . . . . . . . 64

5.4 Problem Statement and Main Results . . . . . . . . . . . . . . . . . . 64
5.4.1 Non-Redundant Plans . . . . . . . . . . . . . . . . . . . . . . 65
5.4.2 Result Statements . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5.1 Defining the Context-Free Grammar of Forward-Backward

Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.5.2 Defining the Regular Expression of Possible Plans . . . . . . . 69
5.5.3 Defining the Algorithm . . . . . . . . . . . . . . . . . . . . . . 70
5.5.4 Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.6 Capturing Languages . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.6.1 Minimal Filtering Plans . . . . . . . . . . . . . . . . . . . . . 73
5.6.2 Path Transformations . . . . . . . . . . . . . . . . . . . . . . . 74
5.6.3 Capturing Language . . . . . . . . . . . . . . . . . . . . . . . 77
5.6.4 Faithfully Representing Plans . . . . . . . . . . . . . . . . . . 77

5.7 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7.1 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7.2 Synthetic Functions . . . . . . . . . . . . . . . . . . . . . . . . 78
5.7.3 Real-World Web Services . . . . . . . . . . . . . . . . . . . . . 80

5.8 Visualisation Demo . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6 Query Rewriting Without Integrity Constraints 85
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3 Defining Smart Plans . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3.1 Introductory Observations . . . . . . . . . . . . . . . . . . . . 88
6.3.2 Smart Plan Definition . . . . . . . . . . . . . . . . . . . . . . 90
6.3.3 Comparison with Susie . . . . . . . . . . . . . . . . . . . . . . 90
6.3.4 Comparison with Equivalent Rewritings . . . . . . . . . . . . 90
6.3.5 Sub-Smart Definition . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 Characterizing Smart Plans . . . . . . . . . . . . . . . . . . . . . . . 91
6.4.1 Web Service Functions . . . . . . . . . . . . . . . . . . . . . . 91
6.4.2 Why We Can Restrict to Path Queries . . . . . . . . . . . . . 92
6.4.3 Preliminary Definitions . . . . . . . . . . . . . . . . . . . . . . 94
6.4.4 Characterising Weakly Smart Plans . . . . . . . . . . . . . . . 95
6.4.5 Characterising Smart Plans . . . . . . . . . . . . . . . . . . . 96
6.4.6 Characterising Weakly Sub-Smart Plans . . . . . . . . . . . . 98
6.4.7 Characterising Sub-Smart Plans . . . . . . . . . . . . . . . . . 100

CONTENTS ix



CONTENTS

6.5 Generating Smart Plans . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.1 Minimal Smart Plans . . . . . . . . . . . . . . . . . . . . . . . 101
6.5.2 Susie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
6.5.3 Bounding the Weakly Smart Plans . . . . . . . . . . . . . . . 103
6.5.4 Generating the Weakly Smart Plans . . . . . . . . . . . . . . . 104
6.5.5 Generating Smart Plans . . . . . . . . . . . . . . . . . . . . . 109
6.5.6 Generating Weakly Sub-Smart Plans . . . . . . . . . . . . . . 109
6.5.7 Generating Sub-Smart Plans . . . . . . . . . . . . . . . . . . . 110

6.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.6.1 Synthetic Functions . . . . . . . . . . . . . . . . . . . . . . . . 112
6.6.2 Real-World Web Services . . . . . . . . . . . . . . . . . . . . . 113

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7 Pyformlang 117
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
7.2 Previous Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
7.3 Pyformlang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.3.1 Regular Expressions . . . . . . . . . . . . . . . . . . . . . . . 119
7.3.2 Finite-State Automata . . . . . . . . . . . . . . . . . . . . . . 121
7.3.3 Finite-State Transducer . . . . . . . . . . . . . . . . . . . . . 122
7.3.4 Context-Free Grammars . . . . . . . . . . . . . . . . . . . . . 123
7.3.5 Push-Down Automata . . . . . . . . . . . . . . . . . . . . . . 126
7.3.6 Indexed Grammar . . . . . . . . . . . . . . . . . . . . . . . . 127

7.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

8 Conclusion 133
8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
8.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

A Résumé en français 137
A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
A.2 Quasimodo . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
A.3 Réécriture de requêtes . . . . . . . . . . . . . . . . . . . . . . . . . . 139
A.4 Pyformlang . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
A.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

B Additional Proofs 143
B.1 Proofs for Section 5.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

B.1.1 Proof of Theorem 5.6.2 . . . . . . . . . . . . . . . . . . . . . . 143
B.1.2 Proof of Property 5.6.9 . . . . . . . . . . . . . . . . . . . . . . 147
B.1.3 Proof of Theorem 5.6.11 . . . . . . . . . . . . . . . . . . . . . 149
B.1.4 Proof of Theorem 5.6.13 . . . . . . . . . . . . . . . . . . . . . 152

B.2 Proofs for Section 5.4 and 5.5 . . . . . . . . . . . . . . . . . . . . . . 154
B.2.1 Proof of Theorem 5.4.7 . . . . . . . . . . . . . . . . . . . . . . 154
B.2.2 Proof of Proposition 5.4.8 . . . . . . . . . . . . . . . . . . . . 155

x CONTENTS



List of Figures

1.1 Timeline of the history of knowledge bases . . . . . . . . . . . . . . . 5

2.1 Example of XML returned by a Web service . . . . . . . . . . . . . . 19

3.1 Quasimodo system overview . . . . . . . . . . . . . . . . . . . . . . . 25
3.2 A glimpse into a search-engine query log . . . . . . . . . . . . . . . . 29
3.3 Correlation of features with statements labelled as true . . . . . . . . 34
3.4 Quality for comparative sampling . . . . . . . . . . . . . . . . . . . . 43
3.5 Quality for horizontal sampling . . . . . . . . . . . . . . . . . . . . . 43
3.6 Recall evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.7 Coverage for word guessing game . . . . . . . . . . . . . . . . . . . . 45

4.1 The Web portal architecture . . . . . . . . . . . . . . . . . . . . . . . 49
4.2 Top Quasimodo statements for elephants . . . . . . . . . . . . . . . . 50
4.3 Top-level view of the extraction pipeline visualisation . . . . . . . . . 51
4.4 A sample SPARQL query . . . . . . . . . . . . . . . . . . . . . . . . 52
4.5 Play Taboo! interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.6 Codenames interface . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.7 Question-answering interface . . . . . . . . . . . . . . . . . . . . . . . 54

5.1 An equivalent execution plan (blue) and a maximal contained rewrit-
ing (green) executed on a database (black) . . . . . . . . . . . . . . . 58

5.2 Percentage of answered queries with varying number of relations . . . 80
5.3 Percentage of answered queries with varying number of functions . . . 80
5.4 Percentage of answered queries with varying number of existential

variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.5 Screenshots of our demo. Left: Our toy example, with the functions

on top and the plan being constructed below. The gray arrows indi-
cate the animation. Right: A plan generated for real Web service
functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 An equivalent execution plan (blue) and a maximal contained rewrit-
ing (orange) executed on a database (black) . . . . . . . . . . . . . . 86

6.2 A non-smart execution plan for the query phone(Anna,x). Top: a
database where the plan answers the query. Bottom: a database
where the unfiltered plan has results, but the filtered plan does not
answer the query . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

xi



LIST OF FIGURES

6.3 A smart plan for the query jobTitle(Anna, ?x), which Susie will not
find . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.4 A bounded plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.5 The forward path may filter solutions . . . . . . . . . . . . . . . . . . 99
6.6 Percentage of answered queries . . . . . . . . . . . . . . . . . . . . . 112
6.7 Percentage of answered queries . . . . . . . . . . . . . . . . . . . . . 113

7.1 Visualisation of a finite-state automaton . . . . . . . . . . . . . . . . 122
7.2 A finite-state transducer . . . . . . . . . . . . . . . . . . . . . . . . . 123
7.3 Parsing tree . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 Visualisation of a push-down automaton . . . . . . . . . . . . . . . . 126

xii LIST OF FIGURES



List of Tables

3.1 Question patterns for candidate gathering . . . . . . . . . . . . . . . 29
3.2 Examples of questions and statements . . . . . . . . . . . . . . . . . 30
3.3 Proportions of candidate triples by sources . . . . . . . . . . . . . . . 33
3.4 Comparison of classifiers rankings . . . . . . . . . . . . . . . . . . . . 35
3.5 Statistics for SO clusters and P clusters for vertical domains Animals

and Occupations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
3.6 Anecdotal examples of coupled SO clusters and P clusters from ver-

tical domains Animals and Occupations . . . . . . . . . . . . . . . . . 39
3.7 Statistics for different full KBs . . . . . . . . . . . . . . . . . . . . . . 41
3.8 Statistics for two slices on animals and occupations on different KBs . 41
3.9 Anecdotal examples (PO) for S elephant (top) and S doctor (bottom) 44
3.10 Accuracy of answer selection in question answering . . . . . . . . . . 44

5.1 Web services and results . . . . . . . . . . . . . . . . . . . . . . . . . 81
5.2 Examples of real functions . . . . . . . . . . . . . . . . . . . . . . . . 82
5.3 Example plans . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.1 Our Web services . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
6.2 Examples of real functions (3 of MusicBrainz, 1 of ISBNdb, 1 of

LibraryThing) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 Percentage of queries with smart plans . . . . . . . . . . . . . . . . . 114
6.4 Example Plans (2 of MusicBrainz, 1 of ABEBooks) . . . . . . . . . . 115

xiii



LIST OF TABLES

xiv LIST OF TABLES



Chapter 1

Introduction

Information is not knowledge.

Albert Einstein

1.1 Motivation

1.1.1 Information Jungle

Last century, the Human race entered the Information age [29]. This historical
period started with the invention of the transistor and the first computers. However,
it is the emergence of the Internet in the 70s, and more particularly of the World
Wide Web [17] in 1991, that pushed Mankind into the Information Jungle.

In January 2000, the Web consisted of around 10 million unique domain names.
In January 2010, this number reached 100 million and in January 2020, 1.3 billion
(https://news.netcraft.com/archives/category/web-server-survey/). This exponen-
tial growth follows the development of computational power and storage capacities.
The Internet Live Stats (https://www.internetlivestats.com/) provides insights that
show how important the Internet has become. Currently, there are:

• more than 4.5 billion people connected to the Internet

• nearly 3 million emails sent per second (67% of them are spam)

• around 85,000 videos viewed on YouTube per second

• more than 80,000 queries on Google per second

• around 9,000 tweets per second

• about 97,000 GB of Internet Traffic per second

Still, these numbers are only the visible part of the iceberg. Many Internet applica-
tions are not indexed by search engines and form what we call the Deep Web [16].
Among these applications, we find, for example, webmails, banking applications,

1

https://news.netcraft.com/archives/category/web-server-survey/
https://www.internetlivestats.com/


CHAPTER 1. INTRODUCTION

web sites with restricted access (like Netflix, Facebook or some newspapers) or ap-
plications with a private domain name (such as an IP or a hostname not indexed in
traditional DNS).

There are two kinds of users on the Internet: humans and machines. Machines
exchange structured information between them or provide services: these are what
we call the Web Services. People use the Internet for two primary goals which are
entertainment and finding information. In the first case, they usually spend time
on social media platforms (more than 3.8 billion people are on social media like
Facebook, Twitter or Reddit) or watch videos (on YouTube or Netflix for example).
In the second case, they generally use search engines to filter the complexity of the
Web.

However, even when using search engines, it is not very easy for people to turn the
amount of information into knowledge. Some websites are specialised in knowledge-
gathering. The most prominent example is Wikipedia, which contains articles about
six million subjects. Nevertheless, outside this “safe zone”, knowledge is lost into an
ocean of conflicting and complicated information. There are several reasons for this
problem.

First, specialised knowledge is rare. Even when requested explicitly on question-
answering forums, people can sometimes provide incorrect answers to questions.
Some websites gather experts and allow the community to grade solutions to prevent
potential mistakes. This is the case for technical questions in the Stack Exchange
Network and more general questions on question answering forums (like Quora or
Reddit). However, it is quite common to observe wrong content, especially on
unfashionable subjects where there are few experts.

Second, people may willingly put wrong information on the Internet. In the
domain of news, this is what we call Fake News (word of the year in 2017 for the
Collins dictionary). There are multiple goals behind such behaviour. Some people
just want to propagate their ideas. However, there are also cases where the attrac-
tiveness motivates the diffusion: false and polemic news generate more visits than
correct ones. The former journalist Paul Horner [118] became famous for creating
many such websites, publishing only fake news to make money through advertise-
ment. Some parody web sites are specialised in funny news (like the Gorafi [71] in
France). The sad consequence is that some politicians diffuse such comic news as if
they were true [64].

The problem of fake news also exists in mainstream media [86]. In many cases,
the authors of the articles do not care about the truth: The goal is to produce
content that gets the interest of readers. The philosopher Harry Frankfurt [66]
called it “Bullshit” and distinguished it from lying because the truth is not the
central point. Sébastien Dieguez [42] applied this concept to our current situation
and explained how “Bullshit” was established as an institution on a global scale.

1.1.2 Knowledge Bases Structure Information

The Internet illustrates perfectly the dichotomy between information and knowledge.
On the one hand, information takes many forms, is noisy, can be either true or false
and is abundant. On the other hand, knowledge is structured, precise, focuses on

2 1.1. MOTIVATION



CHAPTER 1. INTRODUCTION

truth and has limits. However, the two work in synergy and complement each other.
For example, a priori knowledge helps to make sense of information as many

things are implicit, incomplete and potentially incorrect. For example, let us con-
sider the BBC headline: “New York begins reopening after lockdown”. To under-
stand it, we need additional knowledge:

• New York was locked down due to Covid-19

• New York is a major city in the U.S.

• Covid-19 is a pandemic that killed many people

• Covid-19 is disappearing

• The reopening of New York means that people can go out of their house to
work and shops

• People need to work and go shopping

• The lockdown was a difficult period

• ...

With this knowledge, most humans can reason about the headline and draw conclu-
sions. If we want a computer to do the same, we have to provide this background
knowledge in a computer-readable form through a knowledge base, i.e. a technology
that gathers “knowledge”.

1.1.3 A Brief History of Knowledge Bases

Before we continue, it is essential to identify two kinds of knowledge. The first one
is encyclopedic knowledge, which we learn at school. For example, when studying
geography, we learn that the capital of France is Paris. The other type is common-
sense knowledge, which we learn intuitively throughout our life. For example, we all
know that if we drop an object, it falls. Yet, nobody taught it to us. This last kind
of knowledge is tough to get for a computer as people universally share it, never
mention it but use it all the time. Sometimes, the separation between encyclopedic
and commonsense knowledge is blurry, especially when they are mixed in a cultural
context. For example, every French person knows that a corkscrew opens a bottle
of wine. However, in some countries where people do not drink alcohol, this might
be known by much fewer people.

Knowledge bases emerged with the creation of Artificial Intelligence in the 80s.
Interestingly, the first main systems focused on commonsense knowledge, which
seemed to be the key to break human intelligence. The first notable work is Cyc [79].
This long-term project began in 1984 under the direction of Douglas Lenat at the
Microelectronics and Computer Technology Corporation. The goal was to gather as
much knowledge as possible, which other expert systems can then use. Cyc relies
heavily on specialised human labour, and the currently open version OpenCyc4.0
contains two million facts. Besides, Cyc comes with an inference engine that allows
reasoning over the knowledge base.

1.1. MOTIVATION 3



CHAPTER 1. INTRODUCTION

WordNet [87] is another notable early work. This knowledge base was created
in 1985 by the Cognitive Science Laboratory of Princeton University. It focuses on
lexical and semantic properties of words and the relations between them. Like Cyc,
it was handcrafted by specialised humans.

With the rise of the Web at the end of the 90s, more scalable ways of gath-
ering knowledge appeared. In 1999 at the MIT, the Open Mind Common Sense
project [117] began and allowed people from all around the world to contribute to
gathering commonsense knowledge. During the first year of the project, it was able
to collect more than one million facts from 15,000 contributors. Later, Concept-
Net [119] emerged from Open Mind Common Sense by structuring the available
data in a more usable form. Besides, the current versions of ConceptNet leverage
additional sources like DBpedia, Wiktionary, WordNet and OpenCyc.

At the beginning of the millennium, the first automatically-generated knowledge
bases appeared. In 2004, KnowItAll [59] from the University of Washington used
search engines and carefully designed queries to collect knowledge and was able
to produce 55 thousand facts in four days. However, the most notable knowledge
bases emerged thanks to the Wikipedia project, which started the era of extensive
encyclopedic knowledge bases.

Wikipedia was created in 2001 by Jimmy Wales and Larry Sanger and is now
the largest encyclopedia ever created. It contains 50 million pages, written in 285
different languages by 40 million people all around the world. Between the years
2005 and 2008, the number of contributions exploded and thus, many automated
systems tried to leverage this valuable information.

In 2007, the three projects DBpedia (FU Berlin, U Mannheim, U Leipzig, [6]),
Freebase (Metaweb, [130]) and Yago (Telecom Paris, Max Planck Institute, [123])
emerged. They are all based on the same principle: automatically extract and struc-
ture facts from diverse sources, the main one being Wikipedia. The principal goal of
these projects is to gather encyclopedic knowledge. Thanks to the automated meth-
ods, the number of facts exploded: 9.5 billion for DBpedia, 2.4 billion for Freebase,
and 2 billion for Yago. In 2012, La Sapienza released BabelNet [90] which merges
Wikipedia with Wordnet to create a multilingual lexicalised semantic network and
knowledge base.

In 2010, the Never-Ending Language Learning [28] (NELL) system wanted to
expand the automatic extraction to the entire Web. Starting from a seed knowledge
base, the project automatically collected new facts from websites. Although the
noisiness of the data did not allow a precision as high as Wikipedia-based systems,
NELL was able to accumulate over 50 million candidate beliefs on the Web, among
which nearly three million are considered highly accurate.

In 2012, a significant project derived from Wikipedia and with similar principles
appeared: Wikidata [131]. It is partially generated automatically by robots and
manually by contributors, similarly to Wikipedia. This knowledge base currently
contains around 1 billion facts. Due to the rise of popularity and quality of Wikidata,
Yago decided in its fourth version to stop extracting facts from Wikipedia and to
use only Wikidata [128].

Finally, knowledge bases also attracted the interest of industrial groups. Al-
though their content is quite opaque, they are worth mentioning. Google created

4 1.1. MOTIVATION



CHAPTER 1. INTRODUCTION

1985 2012
2010

NELL

20072001
19991984

Cyc

2004

KnowitAll
ConceptNet

Open	Mind
Commonsense

Project
WordNet

Wikidata
BabelNet

Yago
DBpedia
FreebaseWikipedia

2014

Google
Knowledge

Vault

2017

ConceptNet5.5

2020

Yago4

Figure 1.1: Timeline of the history of knowledge bases

the Knowledge Vault [44] partially constructed from Freebase, which they acquired
in 2010. Other famous companies also have their knowledge bases: Microsoft’s
Satori, Amazon’s Evi, LinkedIn’s Knowledge Graph, and the IBM Watson KB [62].

Most of the main open-access knowledge bases are interlinked and form the Web
of Linked Open Data [19]. In Figure 1.1, we summarise the main knowledge bases.

1.1.4 Applications

As knowledge bases contain crisp information about the real world, they have many
applications, mainly centred around interaction with human beings.
Search Engines. Most search engines have a knowledge base running in the back-
ground, which helps them to interpret and answer queries. It is a crucial task to
understand what a query is about when a user submits a query to a search engine.
However, human language is highly ambiguous, and so, the task of guessing the
subject of a query can be difficult. For example, when a user asks for “Paris train
station”, it is primordial to interpret Paris as the capital of France, and not as Paris
Hilton or as the Greek Hero. In many cases, knowledge bases provide enough clues:
the city of Paris is the only subject connected to a train station. Once the search
engine knows what the topic of the query is, it can print additional information
about it. Thus, when typing Georges Brassens on Google or Bing, an infobox pro-
vides information such as his job title, his size, his most famous songs, etc. Google
uses the closed-access Knowledge Vault [44], which is partially powered by Free-
base [130]. Bing has a similar knowledge base, which can be accessed partially by
the Bing Entity Search API (https://blogs.bing.com/search-quality-insights/2018-
02/bing-entity-search-api-now-generally-available).
Question Answering. Another area for which knowledge bases seem perfectly
designed is question answering, in particular for questions about facts. When per-
forming Question Answering over Knowledge bases [41], the key idea is to analyse
the question to extract the subject and the kind of information required. Then,
one can create a tailored request to a knowledge base to retrieve potential an-
swers. Then, a classifier can weight all the answers before providing a final solution.
Most search engines can answer questions, and other systems like Wolfram Alpha
(https://www.wolframalpha.com/) also provide such functionality. One of the most
popular software is IBM’s Watson [62]: In 2011, it won the TV show Jeopardy!
against human champions.
Chatbot. Chatbots are conversational automatic programs. They appear in
many applications, ranging from simple question answering to restaurant rec-
ommendations. For example, Facebook created an API to design chatbots

1.1. MOTIVATION 5

https://blogs.bing.com/search-quality-insights/2018-02/bing-entity-search-api-now-generally-available
https://blogs.bing.com/search-quality-insights/2018-02/bing-entity-search-api-now-generally-available
https://www.wolframalpha.com/


CHAPTER 1. INTRODUCTION

(https://developers.facebook.com/docs/messenger-platform/), which help a com-
pany to answer customers questions. SNCF’s Ouibot (https://www.oui.sncf/bot)
allows travellers to find a train in France. More advanced dialogue systems exist,
including Apple’s Siri, Amazon’s Alexa, Google Assistant, or Microsoft’s Cortana.
All of these systems rely on some knowledge base, used to represent products, train
schedules, restaurants, etc.

Language Comprehension. When humans talk, they make many assumptions
about what the receiver knows. A computer has to use a knowledge base of some
sort to understand each statement. For example, the sentence “The president of
France is currently buying masks” makes total sense if we know that: The president
of France is Emmanuel Macron, masks prevent a virus from spreading, people use
masks, there is currently a pandemic, etc. Thus, knowledge bases can be used to
understand daily news, social media and scholarly publications. The software Am-
biverseNLU (https://github.com/ambiverse-nlu/ambiverse-nlu) implements a tool
for natural language understanding. In particular, it can link groups of words in a
sentence to entities in a knowledge base.

Fact Checking. This category is a particular kind of language comprehension tasks
that involves reasoning to verify whether a fact is true or not. It is becoming more
and more critical due to the multiplication of fake news on the Web. This task
relies on high-quality knowledge about the considered domain [34] from which one
can deduce whether a fact is true or not.

Argumentation Mining. Argumentation mining is a task that involves the au-
tomatic detection of arguments in texts, the decomposition of argument compo-
nents, and the finding of relations between arguments and their components. Ar-
gumentation mining is a complex task, which requires a deep understanding of a
subject, and knowledge bases help to represent and reason about an argument.
Recently, the IBM Debater Project (https://www.research.ibm.com/artificial-
intelligence/project-debater/) proved that it can have a real debate with another
human being. One of its key components is its knowledge base, which allows it to
understand arguments and humans dilemmas.

Visual Comprehension. Knowledge bases can also be used for tasks that do not
involve text. In the case of visual comprehension, having a priori information about
the subjects in the pictures can help better guessing what the items are and what
they are doing. For example, in an image containing both a giraffe and a mountain,
which have the same pixel size, knowing that giraffes are smaller than mountains
help us understand that the mountain is far away.

Explainable IA. The emergence of Deep Learning and complex black-box sys-
tems during the past few years raised the question of explaining the decisions of
an algorithm. In 2016, the General Data Protection Regulation (GDPR) gave a
legal dimension to the quest of relevant explanations. In [5], the authors stress the
fact that knowledge is a crucial component. Indeed, some systems [60] leverage
knowledge bases to explain the choice of a neural network system.

6 1.1. MOTIVATION

https://developers.facebook.com/docs/messenger-platform/
https://www.oui.sncf/bot
https://github.com/ambiverse-nlu/ambiverse-nlu
https://www.research.ibm.com/artificial-intelligence/project-debater/
https://www.research.ibm.com/artificial-intelligence/project-debater/


CHAPTER 1. INTRODUCTION

1.1.5 Accessing Knowledge Bases Through Web Services

As we saw, knowledge bases help many applications thanks to high-quality data. To
provide such knowledge without giving away entirely, some data providers offer Web
services. A web service is a service on the web that can be automatically queried
by a computer. In 2020, the website programmableweb indexes more than 23.000
such Web services. The provider’s goal is to get as much profit as possible out of
their resources. So, the access is often limited, and intensive users have to pay a
subscription fee.

Web service users, on the other hand, have two goals: get an exact and complete
answer to a question (also called a query) and pay a minimal cost. To do so,
they might have to combine access methods from one or several web services. For
example, combining a food web service with a medical one might help to find healthy
diets.

Trying to answer to a query thanks to partial access functions (also called views)
is a well-known problem called query rewriting over views. When the rewriting gives
guarantees that it yields exactly the results of the initial query, we talk about an
equivalent rewriting.

1.2 Contributions

In this thesis, we will tackle two main challenges in the knowledge base community.
The first one is about the automatic extraction of commonsense knowledge, and
the second is about the querying of knowledge bases. These two subjects relate
to the two components of a knowledge base, which are the ABox and the TBox.
The ABox is the assertion component and contains statements about the world.
The commonsense knowledge extraction creates facts which are stored in the ABox.
The TBox is the terminology component and allows representing constraints on
our knowledge base. When data providers give limited access to their knowledge
base, we can try to exploit TBox constraints to reason and get access to additional
information.

1.2.1 Harvesting Commonsense Knowledge Automatically

As we saw in Section 1.1.3, knowledge bases are either handcrafted (as in WordNet)
or automatically extracted (as in Yago). In the second case, the algorithms generally
rely on structured texts such as articles on Wikipedia. As a consequence, these
knowledge bases store mainly encyclopedic knowledge.

In comparison, commonsense knowledge is complicated to harvest automatically
for several reasons. The main one is that people rarely write it down because they
suppose the readers already know it. Thus, information extraction algorithms strug-
gle to find commonsense knowledge and to differentiate it from contextual knowl-
edge, i.e. knowledge true in the context of a document. However, commonsense
knowledge is crucial to understand humans and their interactions. Besides, it also
deals with relevant negative statements, which are missing in most current systems.

1.2. CONTRIBUTIONS 7

https://www.programmableweb.com/


CHAPTER 1. INTRODUCTION

Our research question is the following: How can we build a commonsense knowl-
edge base automatically by querying online resources?

In Chapter 3, we introduce a general method to extract commonsense knowledge
from unusual sources. We analyse the questions asked in query logs and question
answering forums and show that they convey salient information about entities.
From this observation, we gather many questions which we plug into a pipeline and
turn them into statements. The resulting knowledge base is open-source, contains
more than two million facts and is called Quasimodo. Our results were published at
CIKM 2019 [111]:

Romero, J., Razniewski, S., Pal, K., Z. Pan, J., Sakhadeo, A., &Weikum,
G. (2019, November).
Commonsense properties from query logs and question answering forums.
Full Paper at the International Conference on Information and Knowl-
edge Management (CIKM).

It was followed by a demo paper published at CIKM 2020 [110]:

Romero, J. & Razniewski, S.
Inside Quasimodo: Exploring the Construction and Usage of Common-
sense Knowledge.
Demo Paper at the Conference on Information and Knowledge Manage-
ment (CIKM)

1.2.2 Decidable, Polynomial and Equivalent Query Rewriting

As we saw in Section 1.1.5, many knowledge bases can be accessed only through Web
services. In some cases, we need to combine access methods from one or several Web
services to get the answer to a query, a process called query rewriting. In this way,
we access what we call hidden knowledge.

Query rewriting is a challenging problem for many reasons. First, finding if there
exists a query rewriting is not decidable for some categories of query rewriting. This
means that the algorithms can run forever without knowing when to stop looking
for a query rewriting. Second, the algorithms to solve the problem are in general
exponential. So, even in the decidable cases, the computation time can be very long.
Finally, when we look for equivalent rewritings, we need to reason about integrity
constraints. This task comes with challenges of its own, also related to decidability
and computation time.

Querying knowledge bases hidden behind Web Services is an old topic. The
first purpose of requesters is to get as much value as possible from their requests.
So, they want to have guarantees that the returned results answer their queries.
However, this often implies reasoning over access methods and the structure of the
knowledge base. This reasoning is usually very complicated. In general, when we
have constraints, it relies on the chase algorithm. This algorithm often takes very
long to execute and is not guaranteed to terminate in all cases. So, other methods
emerged, but give partial results or restrict themselves to particular scenarios.

8 1.2. CONTRIBUTIONS



CHAPTER 1. INTRODUCTION

Our research questions are the following: When we have access to integrity
constraints, can we find a practical scenario where equivalent query rewriting is
decidable and polynomial? If we do not have integrity constraints, can we create a
practical class of query rewriting that is decidable?

We tackle these questions in several chapters.
In Chapter 5, we study the problem of finding equivalent query rewritings on

views with binding patterns. We isolate a particular setting in which it is tractable
to find the existence of such a rewriting. In this setting, we use what we call path
views and unary inclusion dependencies. Then, we provide an algorithm that can
find out in polynomial time if there exists an equivalent query rewriting and, if it
is the case, enumerate all of them. The algorithm uses notions of formal language
theory: We express the resulting plans as the intersection between a context-free
grammar and a regular expression. Our work was published at ESWC 2020 [108]:

Romero, J., Preda, N., Amarilli, A., & Suchanek, F. (2020, May).
Equivalent Rewritings on Path Views with Binding Patterns.
Full Paper at the European Semantic Web Conference (ESWC)

It was followed by a demo paper at CIKM 2020 [107]:

Romero, J., Preda, N., Amarilli, A., & Suchanek, F.
Computing and Illustrating Query Rewritings on Path Views with Bind-
ing Patterns.
Demo Paper at the Conference on Information and Knowledge Manage-
ment (CIKM)

In Chapter 6, we continue in the same direction as Chapter 5 and analyse what
happens when we drop the integrity constraints. In this situation, equivalent rewrit-
ings are of little interest, and we define a new class of plan called the smart plans.
We describe what their properties are and how we can generate them in finite time.

Romero, J., Preda, N., & Suchanek, F.
Query Rewriting On Path Views Without Integrity Constraints
Workshop paper at Datamod 2020

In Chapter 7, we introduce Pyformlang, an open-source python library for formal
language manipulation. We originally designed it to support the algorithm intro-
duced in Chapter 5. Indeed, existing libraries did not support the operations we
required. Now, Pyformlang contains most of the textbook operations on regular
expressions, finite state machines, context-free grammar and push-down automata.
Besides, it implements some functionalities of finite transducer and operations on
indexed grammars which were never implemented in a public library.

Romero, J.
Pyformlang: An Educational Library for Formal Language Manipulation
Full paper at SIGCSE 2021

1.2. CONTRIBUTIONS 9



CHAPTER 1. INTRODUCTION

10 1.2. CONTRIBUTIONS



Chapter 2

Preliminaries

The only true wisdom is in knowing
you know nothing.

Socrates

Before we enter into the main contributions of this thesis, we first introduce the
fundamentals and recurring concepts that will later appear. The first one is the
concept of a “knowledge base”, which we describe in Section 2.1. The second one is
the concept of “Web services”, which we introduce in Section 2.2.

2.1 Knowledge Bases

Knowledge bases are composed of two main components. The first one is called the
ABox and contains assertions about the world. The way these assertions are stored
depends on the knowledge model. In Section 2.1.1, we introduce the knowledge
representation used by most existing systems. The second component of a knowledge
base is the TBox and contains conceptual information we can use to reason on the
ABox. In Section 2.1.2, we study one possible way to represent the TBox using
schemas.

2.1.1 Knowledge Representation

Knowledge bases store various kinds of data that represent knowledge about a large
variety of topics. We will now see how to represent them. The problem of knowledge
representation is quite complicated, and, in practice, we can only represent simple
information. In what follows, we are going to talk about entity-centric knowledge
bases [124]. They represent:

• Entities, which are elements of the world (like Georges Brassens, The Eiffel
Tower or Inkscape [129])

• Semantic classes and class membership of entities (GeorgesBrassens is a singer,
Inkscape is a software)

11



CHAPTER 2. PRELIMINARIES

• Relationships between entities (GeorgesBrassens won the award GrandPrixDe-
Poésie)

• Time indications about relationship (Inkscape is a member of OpenInvention-
Network Since March 2013 ).

Some knowledge bases have additional information such as a modality or a po-
larity for a relationship, but it is uncommon. Let us now dive into the components
of knowledge bases.

Entities

The cornerstone of knowledge bases is the notion of an entity. Its definition is very
general and we can apply it to many things, but some systems restrict it to fit their
needs. We here give the definition from the Cambridge Dictionary.

Definition 2.1.1 (Entity). An entity is something that exists apart from other
things, having its own independent existence.

All of the following are entities:

• People, like Georges Brassens

• Animals, like elephant

• Events, like The Paris Commune

• Words, like take

• Concepts, like Freedom

• Fictional Characters, like Madame Bovary

• Feelings, like fear

• Situations, like Being a doctor

• Numbers, like 5,271,009

When developers design a knowledge base, they generally choose to restrict them-
selves to a subset of the infinitely many possible entities. WordNet focuses on words,
whereas Wikidata focuses on encyclopedic entities.

An entity can have different names. For example, we could call Georges Brassens
simply Georges, or The singer of Brave Margot, or even The guy with a moustache.
We call these denominations labels. The notion of label in knowledge bases differs
slightly from the common usage and we give here the definition from the RDF
specification [135].

Definition 2.1.2 (Label). A label is a human-readable version of an entity’s name.

12 2.1. KNOWLEDGE BASES



CHAPTER 2. PRELIMINARIES

Note that an entity can have more than one label. For example, Alain Damasio
is the pen name of the French writer Alain Raymond.

An entity that has a label is called a named entity. This category of entities is
the core of many knowledge bases such as Wikidata or Yago. Georges Brassens is a
named entity, but also Harry Potter, The Tower Bridge, and Nintendo Switch. We
notice that there exist entities without a name. For example, the computer or the
paper on which you read this thesis is very unlikely to have one.

From our previous example, we see that Georges Brassens has more than one
label. When we can refer to an entity with several labels, we call them synonymous.
When a label refers to several entities, we call it polysemous. However, knowledge
bases have to represent unique entities. Therefore, they pick a discriminating name
for each entity. We call it an identifier. We adapt here the definition from the
Cambridge dictionary.

Definition 2.1.3 (Identifier). An identifier is a set of numbers, letters, or symbols
that is used to represent a unique entity in a computer program.

In general, the identifier is a number or a string of characters, but other kinds
of objects are sometimes used such as dates. An identifier is unique as it should
refer to a single entity. The format can vary a lot: It can be cryptic as in Wikidata
(Q41777585, Q91970384) or quite explicit like in Yago (yago:Georges_Brassens).

Another notion of knowledge bases is the notion of literals. In a computer pro-
gram, a literal is associated to a type and we give here the definition of [121].

Definition 2.1.4 (Typed Literal). Typed literals are of the form “v”ˆˆu, where v is
a Unicode string, called the lexical form of the typed literal, and u is a URI reference
of a data type.

A URI (Uniform Resource Identifier) is a string that identifies a unique re-
source. We generally use typed literals to represent a string of characters or num-
bers. For example, the full name of Georges Brassens is the literal “Georges Charles
Brassens”ˆˆxs:string, where xs:string is the XML string data type. His year of birth
is the literal “1921”ˆˆxs:gYear, where xs:gYear is the XML date data type. Note
that for this example, we could have modelled the year as an entity (in particular
for recent history).

Relations

Until this point, we have focused on creating the base elements of a knowledge base:
Entities. However, the entities are only the actors, we still need to represent the
actions, i.e. the links between them. To model the interactions, we introduce the
concept of a relation, similar to the one used in mathematics and defined in [1].

Definition 2.1.5 (Relation). A n-ary relation (or relationship) over a set of entities
E is a subset of the Cartesian product En.

When possible, relations are given a name that makes sense in the real-world such
as parent. Although relations can be anything, knowledge bases model real-world
relationships. So, they mainly contain relations whose elements are considered true

2.1. KNOWLEDGE BASES 13

https://www.wikidata.org/wiki/Q41777585
https://www.wikidata.org/wiki/Q91970384
https://yago-knowledge.org/graph/yago:Georges_Brassens


CHAPTER 2. PRELIMINARIES

in the real-world or in one of its representations (like in a novel). Besides, we extend
the notions of labels and identifiers to relations. These two can be different. For
example, in Wikidata, the relation to link a capital to its country is labelled capital
of and has the identifier P1376.

As an example of a relation, let us consider the 3-ary relation parents. In the
real world, it represents the link between a child and her parents. Thus, it contains
triples like 〈 Georges Brassens, Elvira Dagrosa, Jean-Louis Brassens 〉, 〈 Jacques
Brel, Élisabeth “Lisette” Lambertine, Romain Brel 〉 and 〈 Léo Ferré, Marie Scotto,
Joseph Ferré 〉.

Given an n-ary relation R and one of its elements 〈e1, . . . , en〉, it is common to
write R(e1, . . . , en) instead of 〈e1, . . . , en〉 ∈ R. We will adopt this notation in what
follows. There are other standard notions used talk about relations:

• The number n is the arity of the relation R

• R(e1, . . . , en) is a statement, fact or record

• 〈e1, . . . , en〉 is a tuple of R

• e1, . . . , en are the arguments of the fact

In what follows, we will consider sub-classes of relations obtained by fixing the
arity. In particular, we are interested in 1-ary and 2-ary relations.

Classes

The most degenerate type of relation is a class. It represents something about an
entity without referring to anything else. In [8], a concept (or class) “is interpreted
as a set of individuals”, which can also be described as:

Definition 2.1.6 (Class). A class (or concept, type) is a 1-ary relation. An element
of a class is an instance.

Knowledge bases generally use classes to represent groups of entities that share
similar properties. Thus, we could have the class of singers, poets, fictional char-
acters, cities or historical events. Georges Brassens would be an instance of the
class singers and of the class poets, Harry Potter of the fictional characters, Paris
of cities and Paris Commune of historical events.

The choice of the classes depends on the designers of a knowledge bases. Even if
they represent most of the time real groups of similar entities, the question of what
is a relevant class or not is quite open. For example, it is quite natural to have a class
for singers. However, the existence of a class of singers with a moustache (which
contains Georges Brassens) is more questionable in a knowledge base (though it
exists in the real-world). It depends on what is the purpose of the knowledge base.
For example, WordNet has very precise classes, close to a scientific description of
the world.

The distinction between what should be considered a class and what should be
an instance is also a crucial point in the design of a knowledge base. For example,
should we consider that iPhone is an instance of the class smartphone brands or

14 2.1. KNOWLEDGE BASES



CHAPTER 2. PRELIMINARIES

that it is a class of objects containing the iPhone 1 (which could also be a class)?
We could also have both situations in the same knowledge base.

In order to avoid choosing between being a class or being an entity, most knowl-
edge bases choose to consider a class (and more generally any relation) an entity.
Wikidata made this choice: everything is an entity. In that case, we often refer to
entities that are neither classes nor literals as common entities.

Binary Relations

Knowledge bases rarely use the general concept of n-ary relations. Instead, they
restrict themselves to what we call binary relations. In [8], they call them roles,
that “are interpreted as sets of pairs of individuals”.

Definition 2.1.7 (Binary Relation). A binary relation (or role) is a 2-ary relation.

These simplified relationships have many practical advantages.

• Many real-world relations are binary relations: mother, father, capital of, lo-
cated in, wrote, composed, died in, etc.

• We can turn n-ary relations into binary ones (see below)

• We can have partial information about an event or a situation. For example,
if we had the relation parents (in its 3-ary version presented before), it would
not be possible to represent the fact that we know the mother of a person
but not their father. So, it might be a better idea to split parents into two
relations: mother and father.

• We can add more easily facts about an event. For example, if we decide to
add the birth date to the relation parents, the modification is quite heavy as
it requires to modify all parents relations. It is easier to create a new binary
relation birthdate.

• It makes knowledge bases easier to manipulate by many applications: Many
inference systems and rule mining systems use binary relations, we can rep-
resent a knowledge base by an heterogeneous graph, the query systems are
easier to write, we can inverse relations, etc.

Binary relations also come with standard terminology. For a statement R(x, y):

• x is the subject

• R is the predicate or property

• y is the object

• if R has only literals as objects, and maps a subject to at most one object, it
is an attribute (e.g. the relations birthyear and title are attributes)

• R− is the inverse relation of R and contains all tuples 〈y, x〉 such that 〈x, y〉 ∈
R (e.g. the relation sang has issungby as inverse)

2.1. KNOWLEDGE BASES 15



CHAPTER 2. PRELIMINARIES

• if R is a relation over two classes A × B, we call A the domain and B the
range

There exists a trick to turn any n-ary relation (n > 2) into several binary re-
lations. Let us consider an n-ary relation R and a statement R(x1, . . . , xn). For
example, we could have the relation parents and the fact parents(Georges Brassens,
Elvira Dagrosa, Jean-Louis Brassens). We suppose that one of the argument is a
key. The key is a position i independent of a statement such that the ith argument
of R is always associated to a single element of R. For the relation parents, the key
is the first argument: a child has only two parents. Let us assume that the key is
the first argument. Then, we can decompose R into n − 1 relations: R2, ..., Rn,
which are R2(x1, x2), ..., Rn(x1, xn). In our example, we would create the relations
parent1(Georges Brassens, Elvira Dagrosa ) and parent2( Georges Brassens, Jean-
Louis Brassens ). We notice that parent1 is in fact the relation mother and parent2
the relation father.

In case there is no key, it is still possible to apply the trick. Let us consider
the 3-ary relation sang_in which links a singer and a song to a place where the
singer performed the song. For example, sang_in(Georges Brassens, Les Copains
d’abord, Bobino). Obviously, this relation does not have a key. Then, we create an
artificial entity e per statement that we call the event entity and that we connect to
n relations R1, ..., Rn. We then add to our set of facts the new facts R1(e, x1), ...,
Rn(e, xn). For our example, we can create the event entity BrassensCopainsBobino
that represents this performance, and the facts sang_in1(BrassensCopainsBobino,
Georges Brassens), sang_in2(BrassensCopainsBobino, Les Copains d’abord) and
sang_in3(BrassensCopainsBobino, Bobino). In this case, we see that it is com-
plicated to interpret the newly created entity and relations. The entity could have
the label “the fact that Georges Brassens sang Les Copains d’abord at Bobino”, but
this looks very artificial.

Class membership can also be represented with binary relations. Knowledge
bases generally introduce a new relation such as hasProperty, hasClass or type
or reuse the RDF rdf:type relation that links an entity to one of its classes. For
example, if we have that Georges Brassens is in the class of singers, then we could
create the binary fact type(Georges Brassens, singer).

A Standard For Representing Knowledge: RDF

As we mentioned above, most knowledge bases use only binary relations to encode
their content. We explained that we could transform affiliation to a class and n-
ary relations into binary relations. When we are in this case, we generally call the
statements triples. Indeed, we often write statements as (subject, predicate, object),
where subject is the subject of the relation, predicate is the relation and object the
object of the relation.

In this situation, knowledge bases generally use the RDF (Resource Description
Framework) standard to store their data. The W3C (World Wide Web Consortium)
first issued this standard in 1996 to represent and describe web resources. However,
it quickly found a central place in the knowledge representation community.

16 2.1. KNOWLEDGE BASES



CHAPTER 2. PRELIMINARIES

RDF is an abstract model centred around the triple representation of data as we
described above. There is no specified format to save information. For example, we
could use XML (Extensible Markup Language), N-triples (a white space separates
the components of a fact), Turtle (a more compact version of N-triples) or JSON
(JavaScript Object Notation).

RDF comes with a set of predefined relations and classes such as rdf:Property
(the class of all properties) or rdf:type (the instance-of relation). Unique URIs are
used to represent resources (subjects, predicates and objects). These URIs often
link to online resources. In Wikidata, the URI of an entity is its URL on the web-
site, like https://www.wikidata.org/wiki/Q41777585. Schema.org provides a global
vocabulary for online resources. For example, the URL https://schema.org/name
represent the name relationship.

Several standards extend RDF to provide additional functionality. For example,
we have RDFs (RDF Schema) and OWL (Web Ontology Language). They generally
come with new resource descriptions such as rdfs:subClassOf (which represents the
sub-class relationship) or owl:thing (the class of all OWL individuals).

To query data in RDF format, we generally use SPARQL (SPARQL Protocol and
RDF Query Language). It is very similar to SQL (the language to query databases)
except that it is designed to work with triple stores with entities and classes. Most
notorious knowledge bases generally come with a SPARQL endpoint. For example,
for Wikidata, it is https://query.wikidata.org/ and for YAGO4, it is https://yago-
knowledge.org/sparql.

2.1.2 Reasoning Over Knowledge Bases

We are now going to focus on the second kind of information a knowledge base
contains. This will allow us to reason about the statements by adding constraints
respected in the knowledge base. The central notion here is the schema of a knowl-
edge base.

The definition can vary depending on the authors. In [1], they define a database
schema as the set of all relations. Here, we prefer the definition of [15], which
provides additional integrity constraints we will later use.

Definition 2.1.8 (Schema). A schema is a triple (R, E , IC) where:

• R is a set of n-ary relations

• E is a set of entities (or constants)

• IC is a set of integrity constraints, generally described in first-order logic on
R and E.

Example 2.1.9. Let us consider a schema for a knowledge base about artists. We
could define:

• the set of relations as R = {sang, painted, painter, singer, playInstrument,
guitarist, musician, artist }

• the set of constants could be E = { Georges Brassens, Jacques Brel, Edgar
Degas, Andrés Segovia, Guitar }

2.1. KNOWLEDGE BASES 17

https://www.wikidata.org/wiki/Q41777585
schema.org
https://schema.org/name
https://query.wikidata.org/
https://yago-knowledge.org/sparql
https://yago-knowledge.org/sparql


CHAPTER 2. PRELIMINARIES

• the set of integrity of constraints, which contains: ∀x, singer(x) ⇒
∃y, sang(x, y) and ∀x, guitarist(x)⇒ playInstrument(x,Guitar).

2.1.3 Defining Knowledge Bases

We now have all the components to define what is a knowledge base. As we discussed
at the beginning of this section, a knowledge base has two parts: the part that
represents knowledge is called the ABox, and the logical part is called the TBox.
We follow the definitions of [121].

Definition 2.1.10 (Abox). The ABox (A for assertion) is a set of statements that
represent knowledge.

Definition 2.1.11 (TBox). The TBox (T for terminology) is a schema used for
reasoning about knowledge.

The database community uses the word schema, whereas the word TBox is from
the knowledge base community.

Definition 2.1.12 (Knowledge Base). A knowledge base is a couple composed of an
ABox and a TBox.

2.2 Web Services

2.2.1 Motivation and Definition

Web services give access to specialised knowledge on the Web for other machines.
For example, in the music world, MusicBrainz (musicbrainz.org/) gives access to
information about music through an online endpoint. This Web service follows
the REST architecture (see Section 2.2.2 for more details about this architec-
ture) and exposes parametric URLs to access information. For example, to get
the list of all the artists called Elvis is the US, one has to query the URL mu-
sicbrainz.org/ws/2/artist/?query=artist:elvis%20AND%20type:person%20AND%20
country:US. We give in Figure 2.1 the beginning of the XML returned by Mu-
sicBrainz.

The definition of a Web service is very general:

Definition 2.2.1 (Web Service). We call a Web service any service on the World
Wide Web that can be automatically queried and that provides machine-readable
outputs.

The main point of this definition is that a Web service needs to be usable by
other machines. In some case, it might be impossible to access it easily for humans.
Besides, the returned format is first aimed for automated processing. So, a human
might have difficulties reading it (compared to plain text) but a machine can parse
it and turn it into an internal representation. Typically, Web services use formats
like XML or JSON, but also, sometimes, directly compressed data streams.

18 2.2. WEB SERVICES

https://musicbrainz.org/
http://musicbrainz.org/ws/2/artist/?query=artist:elvis%20AND%20type:person%20AND%20 country:US
http://musicbrainz.org/ws/2/artist/?query=artist:elvis%20AND%20type:person%20AND%20 country:US
http://musicbrainz.org/ws/2/artist/?query=artist:elvis%20AND%20type:person%20AND%20 country:US


CHAPTER 2. PRELIMINARIES

Figure 2.1: Example of XML returned by a Web service

2.2.2 Web Service Architectures

We review here the main architectures that are used to design a Web service.

REST Architecture

The REST (Representational state transfer) architecture is a client-server architec-
ture created in 2000 by Roy Fielding [63]. Its main goal is to permit access and
manipulation of textual Web resources. Machines access these resources by a query
to a specific URI (Uniform Resource Identifier). The most common protocol used is
HTTP in which URIs are URLs. In particular, RESTful Web services use HTTP.
Thus, we use HTTP methods such as GET, POST, PUT, DELETE to access, mod-
ify, create and delete resources.

The main property of the REST architecture is that it is stateless. This means
that there are no sessions for the users and, therefore, the requesters must send all
relevant information with each query. This property has many advantages. It makes
RESTful systems:

• Fast, as there is no global state to manage. Speed is a key factor for many
applications.

• Reliable, as the components of the systems can be separated more easily, thus
preventing the propagation of failures.

• Flexible and scalable, as the system and data can be modified without impact-
ing the entire system.

However, REST also comes with drawbacks:

• Being stateless may be a disadvantage for some applications.

2.2. WEB SERVICES 19



CHAPTER 2. PRELIMINARIES

• REST uses HTTP, so a server cannot send a notification to a client, which is
often required.

• REST is limited to HTTP request methods such as GET, POST or PUT.

• From a security point of view, REST only uses SSL/TLS, which is not flexible
in the way we can encrypt the information. As a comparison, WS-Sec* allows
partially encrypted data, which makes content-based routing easier.

In addition to the stateless property, RESTful APIs must respect other design
rules: the client and the server must be separated, caching information should be
provided (to know whether or not a resource is prone to change), the systems must
use abstraction layers (the access to data should be a black box), and the interface
should be uniform.

The formats used in standard RESTful API are JSON, XML, HTML or more
specific formats, depending on the application.

SOAP-based Architecture

SOAP (Simple Object Access Protocol) [21] was introduced in 1998 and is a high-
level messaging protocol for Web services. This protocol extends XML to encode
the interactions between the service provider and the user. SOAP is built on three
principles:

• extensibility: components can be added to the main implementation.

• neutrality: the protocol is high level and is independent of the underlying
layers, which can use protocols such as HTTP, TCP or UDP.

• independence: it works the same way on all machines, all programming lan-
guages or all operating systems.

However, SOAP is relatively slow compared to lower-level systems, mainly due
to the additional workload created by the XML protocol. So, nowadays, most Web
services have a REST interface, since it is faster and easier to use.

In this thesis, we suppose we have Web services implemented with the REST
architecture.

20 2.2. WEB SERVICES



Chapter 3

Quasimodo: A Commonsense
Knowledge Base

Common sense is not so common.

Voltaire, A Pocket Philosophical
Dictionary

In the first part of this thesis, we focus on the extraction of commonsense knowl-
edge from online resources. We build a knowledge base we call Quasimodo. We
mainly focus on the ABox.

This work was published in CIKM 2019 [111]:

Romero, J., Razniewski, S., Pal, K., Z. Pan, J., Sakhadeo, A., &Weikum,
G. (2019, November). Commonsense properties from query logs and
question answering forums. In Proceedings of the 28th ACM Inter-
national Conference on Information and Knowledge Management (pp.
1411-1420).

**********

3.1 Introduction

3.1.1 Motivation and Goal

Commonsense knowledge (CSK for short) is an old theme in AI, already envisioned
by McCarthy in the 1960s [85] and later pursued by AI pioneers like Feigenbaum [61]
and Lenat [79]. The goal is to equip machines with knowledge of properties of every-
day objects (e.g., bananas are yellow, edible and sweet), typical human behaviour
and emotions (e.g., children like bananas, children learn at school, death causes sad-
ness) and general plausibility invariants (e.g., a classroom of children should also
have a teacher).

21



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

In recent years, research on the automatic acquisition of such knowledge has
been revived, driven by the pressing need for human-like AI systems with robust and
explainable behaviour. Essential use cases of CSK include the interpretation of user
intents in search-engine queries, question answering, versatile chatbots, language
comprehension, visual content understanding, and more.

Examples: A keyword query such as “Jordan weather forecast” is ambiguous,
but CSK should tell the search engine that this refers to the country and not to a
basketball player or machine learning professor. A chatbot should know that racist
jokes are considered tasteless and would offend its users; so CSK could have avoided
the 2016 PR disaster of the Tay chatbot (www.cnbc.com/2018/03/17/facebook-
and-youtube-should-learn-from-microsoft-tay-racist-chatbot.html). In an image of a
meeting at an IT company where one person wears a suit, and another person is in
jeans and t-shirt, the former is likely a manager and the latter an engineer. Last
but not least, a “deep fake” video where Donald Trump rides on the back of a tiger
could be easily uncovered by knowing that tigers are wild and dangerous and, if at
all, only circus artists would do this.

The goal of this chapter is to advance the automatic acquisition of salient com-
monsense properties from online content of the Internet. For knowledge represen-
tation, we focus on simple assertions in the form of subject-predicate-object (SPO)
triples such as children like bananas or classroom include teacher. Complex as-
sertions, such as Datalog clauses, and logical reasoning over these are outside our
scope.

A significant difficulty that prior work has struggled with is the sparseness and
bias of possible input sources. Commonsense properties are so mundane that they
are rarely expressed in explicit terms (e.g., countries or regions have weather; people
do not). Therefore, conventional sources for information extraction like Wikipedia
are relatively useless for CSK. Moreover, online contents, like social media (Twitter,
Reddit, Quora etc.), fan communities (Wikia etc.) and books or movies, are often
heavily biased and do not reflect typical real-life situations. For example, exist-
ing CSK repositories contain odd triples such as banana located_in monkey’s_hand,
engineer has_property conservative, child make choice.

3.1.2 State of the Art and Limitations

Popular knowledge bases like DBpedia, Wikidata or Yago have a strong focus on
encyclopedic knowledge about individual entities like (prominent) people, places
etc., and do not cover commonsense properties of general concepts. The notable
exception is the inclusion of SPO triples for the (sub-)type (aka. isa) predicate,
for example, banana type fruit. Such triples are ample especially in Yago (derived
from Wikipedia categories and imported from WordNet). Our focus is on additional
properties beyond type, which are absent in all of the above knowledge bases.

The most notable projects on constructing commonsense knowledge bases are
Cyc [79], ConceptNet [119], WebChild [127] and Mosaic TupleKB [35]. Each of
these has specific strengths and limitations. The seminal Cyc project solely relied
on human experts for codifying logical assertions, with inherent limitations in scope
and scale. Currently, only a small sample of Cyc is accessible: OpenCyc.

22 3.1. INTRODUCTION

www.cnbc.com/2018/03/17/facebook-and-youtube-should-learn-from-microsoft-tay-racist-chatbot.html
www.cnbc.com/2018/03/17/facebook-and-youtube-should-learn-from-microsoft-tay-racist-chatbot.html


CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

ConceptNet used crowdsourcing (mainly originating from the Open Mind Com-
mon Sense project) for scalability and better coverage, but is limited to only a few
different predicates like has_property, located_in, used_for, capable_of, has_part
and type. Moreover, the crowdsourced inputs often take noisy, verbose or unin-
formative forms (e.g., banana type bunch, banana type herb, banana has_property
good_to_eat). Besides, ConceptNet includes more traditional sources, such as a
subset of DBpedia and OpenCyc or synonyms and antonyms from Wikitionary.

WebChild tapped into book n-grams and image tags to overcome the bias in
many Web sources. It has a wider variety of 20 predicates and is much larger, but
contains a massive tail of noisy and dubious triples – due to its focus on possible
properties rather than typical ones (e.g., engineers are conservative, cool, qualified,
hard, vital etc.). Besides, WebChild is only able to generate facts which can be
expressed in a window of five words, which is very limiting. The idea of Webchild is
to use a label propagation algorithm seeded by WordNet over a graph constructed
from the co-occurrence of words in n-grams. Finally, Webchild tries to perform entity
disambiguation by linking its subjects to WordNet synsets. However, it creates too
much noise to be used in practice.

TupleKB is built by carefully generating search-engine queries on specific do-
mains and performing various stages of information extraction and cleaning on the
query results. Despite its clustering-based cleaning steps, it contains substantial
noise and is limited in scope by the way the queries are formulated.

The work in this chapter aims to overcome the bottlenecks of these prior projects
while preserving their positive characteristics. In particular, we aim to achieve high
coverage, like WebChild, with high precision (i.e., a fraction of valid triples), like
ConceptNet. Besides, we strive to acquire properties for a wide range of predicates
– more diverse and refined than ConceptNet and WebChild, but without the noise
that TupleKB has acquired.

3.1.3 Approach and Challenges

This chapter puts forward Quasimodo, a framework and tool for scalable automatic
acquisition of commonsense properties. The name stands for “Query Logs and QA
Forums for Salient Commonsense Definitions”. Quasimodo is the main character in
Victor Hugo’s novel “The Hunchback of Notre Dame” who epitomises human pre-
conception and also exhibits unexpected traits. Quasimodo is designed to tap into
non-standard sources where questions rather than statements provide cues about
commonsense properties. This leads to noisy candidates for populating a com-
monsense knowledge base (CSKB). To eliminate false positives, we have devised a
subsequent cleaning stage, where corroboration signals are obtained from a variety
of sources and combined by learning a regression model. This way, Quasimodo rec-
onciles extensive coverage with high precision. In doing this, it focuses on salient
properties which typically occur for familiar concepts, while eliminating possible but
atypical and uninformative output. This counters the reporting bias - frequent men-
tioning of sensational but unusual and unrealistic properties (e.g., pink elephants in
Walt Disney’s Dumbo).

The new sources that we tap into for gathering candidate assertions are search-

3.1. INTRODUCTION 23



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

engine query logs and question answering forums like Reddit, Quora etc. Query
logs are unavailable outside industrial labs but can be sampled by creatively using
search-engine interfaces. To this end, Quasimodo generates queries judiciously and
collects auto-completion suggestions.

The subsequent corroboration stage harnesses statistics from search-engine an-
swer snippets, Wikipedia editions, Google Books and image tags employing a learned
regression model. This step is geared to eliminate noisy, atypical, and uninformative
properties.

A subsequent ranking step further enhances the knowledge quality in terms of
typicality and saliency. Finally, to counter noisy language diversity, reduce semantic
redundancy, and canonicalise the resulting commonsense triples to a large extent,
Quasimodo includes a novel way of clustering the triples that result from the fusion
step. This is based on a tri-factorisation model for matrix decomposition.

Our approach faces two major challenges:

1. coping with the heavy reporting bias in cues from query logs, potentially lead-
ing to atypical and odd properties,

2. coping with the noise, language diversity, and semantic redundancy in the
output of information extraction methods.

The work shows how these challenges can be (mostly) overcome. Experiments
demonstrate the practical viability of Quasimodo and its improvements over prior
works.

3.1.4 Contributions

This work makes the following original contributions:

1. a complete methodology and tool for multi-source acquisition of typical and
salient commonsense properties with principled methods for corroboration,
ranking and refined grouping,

2. novel ways of tapping into non-standard input sources like query logs and QA
forums,

3. a high-quality knowledge base of ca. 4.4 million salient proper-
ties for ca. 103 thousand concepts, publicly available as a re-
search resource (https://www.mpi-inf.mpg.de/departments/databases-and-
information-systems/research/yago-naga/commonsense/quasimodo/),

4. an experimental evaluation and comparison to ConceptNet, WebChild, and
TupleKB which shows major gains in coverage and quality, and

5. experiments on extrinsic tasks like language games (Taboo word guessing) and
question answering.

Our code is available on Github (https://github.com/Aunsiels/CSK).

24 3.1. INTRODUCTION

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo/
https://github.com/Aunsiels/CSK


CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Figure 3.1: Quasimodo system overview

3.2 Related Work

3.2.1 Commonsense Knowledge Bases (CSKB’s)

The most notable projects on building sizeable commonsense knowledge bases are
the following.
Cyc. The Cyc project, started in 1984 by Douglas Lenat, was the first significant
effort towards collecting and formalizing general world knowledge [79]. Knowledge
engineers manually compiled knowledge in the form of grounded assertions and
logical rules. Parts of Cyc were released to the public as OpenCyc in 2002, but
these parts mostly focus on concept taxonomies, that is, the (sub-)type predicate.
ConceptNet. Crowdsourcing has been used to construct ConceptNet, a triple-
based semantic network of commonsense assertions about general objects [119,120].
ConceptNet contains ca. 1.3 million assertions for ca. 850,000 subjects (count-
ing only English assertions and semantic relations, i.e., discounting relations like
synonym or derivedFrom). The focus is on a small number of broad-coverage pred-
icates, namely, type, locationOf, usedFor, capableOf, hasPart. ConceptNet is
one of the highest-quality and most widely used CSK resources.
WebChild. WebChild has been automatically constructed from book n-grams (and,
to a smaller degree, image tags) by a pipeline of information extraction, statistical
learning and constraint reasoning methods [53, 127]. WebChild contains ca. 13
million assertions, and covers 20 distinct predicates such as hasSize, hasShape,
physicalPartOf, memberOf, etc. It is the biggest of the publicly available common-
sense knowledge bases, with the largest slice being on part-whole knowledge [54].
However, a large mass of WebChild’s contents is in the long tail of possible but not
necessarily typical and salient properties. So it comes with a substantial amount of
noise and non-salient contents.
Mosaic TupleKB. The Mosaic project at AI2 aims to collect commonsense knowl-
edge in various forms, from grounded triples to procedural knowledge with first-order
logic. TupleKB, released as part of this ongoing project, is a collection of triples for
the science domain, compiled by generating domain-specific queries and extracting
assertions from the resulting web pages. A subsequent cleaning step, based on inte-
ger linear programming, clusters triples into groups. TupleKB contains ca. 280,000
triples for ca. 30,000 subjects.
Wikidata. This collaboratively built knowledge base is mostly geared to organise
encyclopedic facts about individual entities like people, places, organisations etc.

3.2. RELATED WORK 25



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

[57,131]. It contains more than 400 million assertions for more than 50 million items.
This includes some world knowledge about general concepts, like type triples, but
this coverage is very limited. For instance, Wikidata neither knows that birds can
fly nor that elephants have trunks.

3.2.2 Use Cases of CSK

Commonsense knowledge and reasoning are instrumental in a variety of applications
in natural language processing, computer vision, and AI in general. These include
question answering, especially for general world comprehension [138] and science
questions [47]. Sometimes, these use cases also involve additional reasoning (e.g.,
[55]), where CSK contributes, too. Another NLP application is dialogue systems
and chatbots (e.g., [58]), where CSK adds plausibility priors to language generation.

For visual content understanding, such as object detection or caption generation
for images and videos, CSK can contribute as an informed prior about spatial co-
location derived, for example, from image tags, and about human activities and
associated emotions (e.g., [56, 136, 137]). In such settings, CSK is an additional
input to supervised deep-learning methods.

3.2.3 Information Extraction from Query Logs

Prior works have tapped into query logs for goals like query recommendation (e.g.,
[49]) and extracting semantic relationships between search terms, like synonymy and
hypernymy/hyponymy (e.g., [10, 52, 94, 134]). The latter can be seen as gathering
triples for CSK, but its sole focus is on the (sub-)type predicate – so the cover-
age of the predicate space is restricted to class/type taxonomies. Moreover, these
projects were carried out on full query logs within industrial labs of search-engine
companies. In contrast, Quasimodo addresses a much wider space of predicates
and operates with an original way of sampling query-log-derived signals via auto-
completion suggestions. To the best of our knowledge, no prior work has aimed to
harness auto-completion for CSK acquisition (cf. [24]).

The methodologically closest work to ours is [95]. Like us, that work used in-
terrogative patterns (e.g. “Why do . . . ”) to mine query logs – with full access to
the search-engine company’s logs. Unlike us, subjects, typically classes/types such
as “cars” or “actors”, were merely associated with salient phrases from the log rather
than extracting complete triples. One can think of this as organizing CSK in SP
pairs where P is a textual phrase that comprises both predicate and object but
cannot separate these two. Moreover, [95] restricted itself to the extraction stage
and used simple scoring from query frequencies, whereas we go further by leveraging
multi-source signals in the corroboration stage and refining the SPO assertions into
semantic groups.

3.3 System Overview
Quasimodo is designed to cope with the high noise and potentially strong bias in
online contents. It taps into query logs via auto-completion suggestions as a non-

26 3.3. SYSTEM OVERVIEW



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

standard input source. However, frequent queries – which are the ones that are
visible through auto-completion – are often about sensational and untypical issues.

Therefore, Quasimodo combine a recall-oriented candidate gathering phase with
two subsequent phases for cleaning, refining, and ranking assertions. Figure 3.1
gives a pictorial overview of the system architecture.

3.3.1 Candidate Gathering

In this phase, we extract candidate triples from some of the world’s largest sources
of the “wisdom of crowds”, namely, search-engine query logs and question answering
forums such as Reddit or Quora. While the latter can be directly accessed via search
APIs, query logs are unavailable outside of industrial labs. Therefore, we creatively
probe and sample this guarded resource using generating queries and observing auto-
completion suggestions by the search engine. The resulting suggestions are typically
among the statistically frequent queries.

As auto-completion works only for short inputs of a few words, we generate
queries that are centred on candidate subjects, the S argument in the SPO triples
that we aim to harvest.

Technical details are given in Section 3.4.

3.3.2 Corroboration

This phase is precision-oriented, aiming to eliminate false positives from the candi-
date gathering. We consider candidates as invalid for three possible reasons: 1) they
do not make sense (e.g., programmers eat python); 2) they are not typical properties
for the instances of the S concept (e.g., programmers drink espresso); 3) they are
not salient in the sense that they are immediately associated with the S concept by
most humans (e.g., programmers visit restaurants). To statistically check to which
degree these aspects are satisfied, Quasimodo harnesses corroboration signals in a
multi-source scoring step. This includes conventional sources like Wikipedia articles
and books, which were used in prior works already, but also non-standard sources
like image tags and answer snippets from search-engine queries.

Technical details are given in Section 3.5.

3.3.3 Ranking

To identify typical and salient triples, we devised a probabilistic ranking model with
the corroboration scores as an input signal. This stage is described in Section 3.6.

3.3.4 Grouping

For this phase, we have devised a clustering method based on the model of tri-
factorisation for matrix decomposition [43]. The output consists of groups of SO
pairs and P phrases linked to each other. So we semantically organise and refine both
the concept arguments (S and O) in a commonsense triple and the way the predicate
(P) is expressed in language. Ideally, this would canonicalise all three components, in
analogy to what prior works have achieved for entity-centric encyclopedic knowledge

3.3. SYSTEM OVERVIEW 27



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

bases (e.g., [67, 125]). However, commonsense assertions are rarely as crisp as facts
about individual entities, and often carry subtle variation and linguistic diversity
(e.g., live in and roam in for animals being near-synonymous but not quite the
same). Our clustering method also brings out refinements of predicates. This is in
contrast to prior work on CSK which has mostly restricted itself to a small number
of coarse-grained predicates like partOf, usedFor, locatedAt, etc. Technical details
are given in Section 3.7.

3.4 Candidate Gathering

The key idea for this phase is to utilise questions as a source of human commonsense.
For example, the question “Why do dogs bark?” implicitly conveys the user’s knowl-
edge that dogs bark. Questions of this kind are posed in QA forums, such as Reddit
or Quora, but their frequency and coverage in these sources alone are not sufficient
for building a comprehensive knowledge base. Therefore, we additionally tap into
query logs from search engines, sampled through observing auto-completion sugges-
tions. Although most queries merely consist of a few keywords, there is a substantial
fraction of user requests in interrogative form [132].

3.4.1 Data Sources

Quasimodo exploits two data sources: (i) QA forums, which return questions in user
posts through their search APIs, and (ii) query logs from major search engines, which
are sampled by generating query prefixes and observing their auto-completions.
QA forums. We use four different QA forums: Quora, Yahoo! An-
swers (https://answers.yahoo.com and https://webscope.sandbox.yahoo.com), An-
swers.com, and Reddit. The first three are online communities for general-purpose
QA across many topics, and Reddit is a large discussion forum with a wide variety
of topical categories.
Search engine logs Search engine logs are rich collections of questions. While
logs themselves are not available outside of industrial labs, search engines allow us
to glimpse at some of their underlying statistics by auto-completion suggestions.
Figure 3.2 shows an example of this useful asset. Quasimodo utilises Google and
Bing, which typically return 5 to 10 suggestions for a given query prefix. In order to
obtain more results, we recursively probe the search engine with increasingly longer
prefixes that cover all letters of the alphabet, until the number of auto-completion
suggestions drops below 5. For example, the query prefix “why do cats” is expanded
into “why do cats a”, “why do cats b”, and so on.

We intentionally restrict ourselves to query prefixes in an interrogative form, as
these are best suited to convey commonsense knowledge. In contrast, simple keyword
queries are often auto-completed with references to prominent entities (celebrities,
sports teams, product names, etc.), given the dominance of such queries in the
overall Internet (e.g., the query prefix “cat” is expanded into “cat musical”). These
very frequent queries are not useful for CSK acquisition.

In total, we collected ca 20 million questions from autocompletion.

28 3.4. CANDIDATE GATHERING

https://answers.yahoo.com
https://webscope.sandbox.yahoo.com


CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Figure 3.2: A glimpse into a search-engine query log

Pattern Frequency
why is 40%
why are 15%
how is 11%
why do 9%
why does 7%
how does 6%
how do 3%
why isn’t 3%
how are 3%
how can 1%
why 1%

why aren’t 1%
why can’t 1%
why don’t <1%
why doesn’t <1%
why can <1%

Table 3.1: Question patterns for candidate gathering

3.4.2 Question Patterns

We performed a quantitative analysis of frequent question words and patterns on
Reddit. As a result, we decided to pursue two question words, Why and How, in
combination with the verbs is, do, are, does, can, can’t, resulting in 16 patterns
in total. Their relative frequency in the question set that we gathered is shown in
Table 3.1. For forums, we performed title searches centred around these patterns.
For search engines, we appended subjects of interest to the patterns for query gen-
eration (e.g., “Why do cats”) for cats as subject. The subjects were chosen from the
common nouns extracted from WordNet [87].

3.4. CANDIDATE GATHERING 29



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Question Statement
(1) why is voltmeter not connected in

series
voltmeter is not connected in se-
ries

(2) why are chimpanzees endangered chimpanzees are endangered
(3) why do men have nipples men have nipples
(4) why are elephant seals mammals elephant seals are mammals
(5) why is becoming a nurse in france

hard
becoming a nurse in france is
hard

Table 3.2: Examples of questions and statements

3.4.3 From Questions to Assertions

Open information extraction (Open IE) [84], based on patterns, has so far focused
on assertive patterns applied to assertive sentences. In contrast, we deal with in-
terrogative inputs, facing new challenges. We address these issues by rule-based
rewritings. As we need to cope with colloquial or even ungrammatical language as
inputs, we do not rely on dependency parsing but merely use part-of-speech tags for
rewriting rules. Primarily, rules remove the interrogative words and re-order subject
and verb to form an assertive sentence. However, additional rules are needed to cast
the sentence into a naturally phrased statement that OpenIE can deal with. Most
notably, auxiliary verbs like “do” need to be removed, and prepositions need to be
put in their proper places, as they may appear at different positions in interrogative
vs assertive sentences. Table 3.2 shows some example transformations, highlighting
the modified parts.

After transforming questions into statements, we employ the Stanford OpenIE
tool [48] and OpenIE5.0 [32,92,112,113] to extract triples from assertive sentences.
We leave the choice of the predicates to these tools. When several triples with the
same S and O are extracted from the same sentence, we retain only the one with
the longest P phrase.

The resulting extractions are still noisy, but this is taken care of by the sub-
sequent stages of corroboration, ranking and grouping, to construct a high-quality
CSKB.

3.4.4 Output Normalisation

The triples produced by OpenIE exhibit various idiosyncrasies. For cleaning them,
we apply the following normalisation steps:

1. Replacement of capital letters with lower case characters.

2. Replacement of plural subjects with singular forms.

3. Replacement of verb inflections by their infinitive (e.g., are eating → eat).

4. Removal of modalities (always, sometimes, occasionally, ...) in the predicate
and object. These are kept as modality qualifiers.

5. Removal of negation, put into a dedicated qualifier as negative evidence.

30 3.4. CANDIDATE GATHERING



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

6. Replacement of generic predicates like are, is with more specific ones like
hasColor, hasBodyPart, depending on the object.

7. Removal of adverbs and phatic expressions (e.g., “so”, “also”, “very much” etc.).

We completely remove triples containing any of the following:

1. subjects outside the initial seed set,

2. personal pronouns (“my”, “we”), and

3. a shortlist of odd objects (e.g., xbox, youtube, quote) that frequently occur in
search results but do not indicate commonsense properties.

The output of this phase are tuples of the form (Subject, Predicate, Object,
Modality, Negativity, Source, Score), for instance, (lion, hunts, zebra, often, positive,
Google, 0.4).

3.4.5 Generation of New Subjects

After the normalisation phase, we only keep subjects that were in a predefined list.
This filtering allows us to consider only non-esoteric subjects as potential subjects
are infinite and often, do not generalise to a more global context. For example, we
removed dancing nun, video help and Twitter user type. However, we also removed
subjects that could be interesting to consider. These ignored subjects that were not
present in ConceptNet nor WordNet are very diverse. We give here some examples
of potentially useful subjects that we manually extracted and classified for this list:

• Fictional characters such as John Snow or Harry Potter

• Notorious people such as Donald Trump or Hillary Clinton

• Actions such as eating asparagus (thus, we can extend ConceptNet actions) or
drinking tea

• Objects such as energy drink or mechanical keyboards

• Concepts such as gas prices or social media

• etc.

These subjects are of primary interest as people often talk about them. So, we
extract them using the following procedure:

• During the subject removal step, count for each ignored subject how often it
appears.

• Filter ignored subjects that appear less than a certain threshold (10 appear-
ances in our experiments)

• Filter subjects that contain personal words (such as my, your and its)

• Filter subjects that start by a determinant (such as an elephant ear)

Finally, we get a list of new subjects that the pipeline is going to use during the
next iteration.

3.4. CANDIDATE GATHERING 31



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

3.5 Corroboration

The output of the candidate gathering phase is bound to be noisy and contains many
false positives. Therefore, we scrutinise the candidate triples by obtaining corrob-
oration signals from a variety of additional sources. Quasimodo queries sources to
test the occurrence and obtain the frequency of SPO triples. These statistics are
fed into a logistic-regression classifier that decides on whether a triple is accepted
or not.

The goal of this stage is to validate whether candidate triples are plausible, i.e.,
asserting them is justified based on several corroboration inputs.

3.5.1 Wikipedia and Simple Wikipedia

For each SPO candidate, we probe the article about S and compute the frequency
of co-occurring P and O within a window of n successive words (where n = 5 in our
experiments). If no evidence can be found, we give a score of zero.

3.5.2 Answer Snippets From Search Engine

We generate Google queries using the S and O arguments of a triple as keywords,
and analyse the top-100 answer snippets. The frequency of snippets containing all
of S, P and O is viewed as an indicator of the triple’s validity. As search engines
put tight constraints on the number of allowed queries per day, we can obtain this
signal only for a limited subset of candidate assertions. We prioritise the candidates
for which the other sources (Wikipedia, etc.) yield high evidence.

3.5.3 Google Books

We create queries to the Google Books API by first forming disjunctions of surface
forms for each of S, P and O, and then combining these into conjunctions. For
instance, for the candidate triple (lion, live in, savanna), the query is “lion OR lions
live OR lives in savanna OR savannas”. As we can use the API only with a limited
budget of queries per day, we prioritised candidate triples with high evidence from
other sources (Wikipedia, etc.).

3.5.4 Image Tags From OpenImages and Flickr

OpenImages is composed of ca. 20.000 classes used to annotate images. Human-
verified tags exist for ca. 5.5 million images. Quasimodo checks for co-occurrences
of S and O as tags for the same image and computes the frequency of such co-
occurrences. For Flickr, we use its API to obtain clusters of co-occurring tags.
Individual tags are not available through the API. We test for the joint occurrence
of S and O in the same tag cluster.

32 3.5. CORROBORATION



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Source Fraction
Google Auto-complete 84%
Answers.com 9%
Reddit 7%
Quora 2%
Yahoo! Answers, Bing
Auto-complete

< 1%

CoreNLP Extraction 80%
OpenIE5 Extraction 27%
Custom Extraction 9%

Table 3.3: Proportions of candidate triples by sources

3.5.5 Captions From Google’s Conceptual Captions Dataset

Google’s Conceptual Captions dataset (https://ai.google.com/research/Conceptual
Captions) is composed of around three millions image descriptions. Using a method
similar to the one used for Wikipedia, we check for a given fact SPO the concurrence
of S with P and O.

3.5.6 What Questions

During the candidate gathering presented in Section 3.4, we focused on why and
how questions. One of their main advantages is that they contain the subject, the
predicate, and the object. As a comparison, what questions generally contain only
two of these three elephants. For example, what does an elephant eat only contains
the subject (elephant) and the predicate (eat) of a triple. Still, what questions can
be used to enforce the relationship between two components of a triple. Thus, we
use it as an additional signal.

Table 3.3 gives the fractions of candidate triples for which each of the sources
contributes to scoring signals.

3.5.7 Classifier Training and Application

We manually annotated a sample of 700 candidate triples obtained in the candidate
gathering phase (In comparison, TupleKB required crowd annotations for 70,000
triples). These are used to train a logistic regression, which gives us a precision of
61%.
Features. The features of our model are the signals from the gathering phase and
the corroboration phase. Besides, we consider the following additional features:

• Number of sentences from which the statement was extracted

• The number of modalities associated with the statement

• The sources that do not generate the statement

• The patterns used to generate a statement

3.5. CORROBORATION 33

https://ai.google.com/research/ConceptualCaptions
https://ai.google.com/research/ConceptualCaptions


CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

N
u
m

b
er sen

ten
ces

S
im

p
le W

ik
ip

ed
ia

 C
o
o
ccu

rren
ce

N
u
m

b
er m

o
d
a
lities

W
ik

ip
ed

ia
 C

o
o
ccu

rren
ce

C
o
n
cep

tu
a
l C

a
p
tio

n

B
in

g
 A

u
to

co
m

p
lete

Is n
eg

a
tiv

e

Im
a
g
e T

a
g

R
ed

d
it Q

u
estio

n
s m

issin
g

W
h
a
t q

u
estio

n
s file

C
o
reN

L
P

 m
issin

g

C
u
sto

m
 ex

tra
ctio

n
 m

issin
g

F
lick

r

Q
u
o
ra

 Q
u
estio

n
s m

issin
g

B
in

g
 A

u
to

co
m

p
lete m

issin
g

Y
a
h
o
o
 Q

u
estio

n
s m

issin
g

O
p
en

IE
5

G
o
o
g
le A

u
to

co
m

p
lete

A
n
sw

ers.co
m

 Q
u
estio

n
s m

issin
g

Im
a
g
e T

a
g
 m

issin
g

O
p
en

IE
5
 m

issin
g

F
lick

r m
issin

g

G
o
o
g
le A

u
to

co
m

p
lete m

issin
g

−0.15

−0.1

−0.05

0

0.05

0.1

C
o
rr

el
a
ti

o
n
 W

it
h
 T

ru
e 

S
ta

te
m

en
ts

Figure 3.3: Correlation of features with statements labelled as true

In Figure 3.3, we display the correlation of some features with the label. As
expected, when a feature is missing, it has a negative impact on a statement. It
is important to notice that Reddit generally generates noisy statements, and thus
harms the final score. Besides, we can see a major difference between OpenIE
and CoreNLP. In Figure 3.3, we noticed that CoreNLP generates more facts than
OpenIE5. However, here we can see that OpenIE5 facts are globally more precise.
Google auto-completion has a negative correlation. This is what we expected as the
score for this feature is the rank of the suggestion.

Classifier Comparison.

When we choose a classifier, we are not only interested in its precision, but
also in its ability to rank salient features. We evaluate the ranking given by three
classifiers (logistic regression, naive Bayes and AdaBoost) by their recall they obtain
on the tasks presented in Section 3.8.2 and Section 3.8.3. The results are presented
in Table 3.4. All in all, the logistic regression outperforms the other classifiers.
AdaBoost beats it in two settings by a small margin. However, the logistic regression
has two advantages over AdaBoost: it is faster, and it gives scores that cover the
entire range between 0 to 1. Thus, it can represent extreme cases, where there
are plenty of evidence. In comparison, AdaBoost scores are generally close to the
decision boundary, 0.5.

34 3.5. CORROBORATION



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Taboo Guessing Game MTurks Recall
Top 5 Top 10 Top 5 Top 10

P and O O only P and O O only strict relaxed strict relaxed
Logistic Regression 8.16% 7.83% 11.8% 11.4% 6.98% 8.69% 9.82% 13.6%

Naive Bayes 5.43% 5.26% 9.70% 9.28% 4.95% 7.66% 7.48% 12.2%
AdaBoost 7.37% 7.11% 10.5% 10.2% 7.03% 8.28% 10.0% 12.8%

Table 3.4: Comparison of classifiers rankings

3.6 Ranking

3.6.1 The Plausibility-Typicality-Saliency Approach

At first, we decided to deduce three metrics out of the score given by the corrobo-
ration phase.

We refer to the scores resulting from the corroboration stage as plausibility scores
π. These plausibility scores are essentially combinations of frequency signals. Fre-
quency is an important criterion for ranking CSK, yet CSK has other vital dimen-
sions.

In this section we propose two probabilistic interpretations of the scores π, re-
ferred to as τ (“typicality”) and σ (“saliency”). Intuitively, τ enables the ranking of
triples by their informativeness for their subjects. Conversely, σ enables the ranking
of triples by the informativeness of their p, o part.

To formalise this, we first define the probability of a triple spo.

P[s, p, o] =
π(spo)

Σx∈KB π(x)
.

Then, we compute τ and σ as:

τ(s, p, o) = P[p, o | s] =
P[s, p, o]

P[s]
.

σ(s, p, o) = P[s | p, o] =
P[s, p, o]

P[p, o]

In each case, the marginals are:

P[p, o] = Σs∈subjects P[s, p, o] (3.6.1)
P[s] = Σp,o∈(predicates,objects) P[s, p, o] (3.6.2)

At the end of this stage, each triple spo is annotated with three scores: an
internal plausibility score π, and two conditional probability scores τ and σ, which
we subsequently use for ranking.

The M-Turks experiments presented in Section 3.8.2 are based on these three
metrics. However, afterwards, we observed limitations in the saliency and typicality
score that pushed us to remove them from the newest versions of Quasimodo.

First, the plausibility score is, in practice, close to what we expect from the
saliency score. Ranking the facts by plausibility gives us the most salient properties
first.

3.6. RANKING 35



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Second, due to the wide variety of predicates and objects, a slight modification of
one of them can have a tremendous effect on all scores. For example, let us consider
the facts (elephants, are afraid of, mice) and (elephants, are dreadfully afraid of,
mice). The first one has a very high corroboration score as it appears a lot in many
sources. However, the second one is much rarer, and so its corroboration score is
lower. In the end, we get a massive gap in scores between the two facts, whereas
they carry the same information.

Finally, the scores given here are probabilities. This means that they can be very
low and difficult to interpret as so. In particular, the saliency makes sense only with
a given predicate-object and the typicality only with a given subject. One way to
overcome the small scores problem would be to normalise them in such a way that
the maximum score is 1. However, the problem of global comparability remains.

3.6.2 The Smoothed Plausibility-Typicality-Saliency Ap-
proach

One way to deal with the problem of the diversity of the predicate-objects would be
to “smooth” the scores by averaging the scores of similar facts.

Let us suppose we are given a distance function dspo that gives us the distance be-
tween two facts. For example, this distance can be a Jaccard distance or a word2vec
cosine distance. We could now adapt our definitions of P[s, p, o] in the following
way:

Psmooth[s, p, o] ∝
∑

dspo(spo,spo′)<λ

P[s, p, o] ∗ simspo(spo, spo
′)

where simspo is a similarity measure based on dspo (here 1− dspo).
In this expression, we sum over all facts that are close enough to the considered

fact (the maximum distance is symbolised by the constant λ). This condition could
also be replaced by a condition over the number of similar facts considered by
defining λ as max({λ′ | size({spo′ | dspo(spo, spo′) < λ′}) < C}) (where C is
the maximum number of facts to consider).

In the same way, one could define Psmooth[p, o] from a distance function dpo that
gives us the distance between two predicate-object pairs:

Psmooth[p, o] ∝
∑

dpo(po,po′)<λ

P[p, o] ∗ simpo(po, po
′)

As subjects allow less variety than the predicates and the objects, we did not
consider smoothing to be useful on them. Finally, one can deduce the smoothed
plausibility, typicality and saliency:

πsmooth(s, p, o) = Psmooth[s, p, o]

τsmooth(s, p, o) = Psmooth[p, o | s] =
Psmooth[s, p, o]

P[s]
.

36 3.6. RANKING



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

σsmooth(s, p, o) = Psmooth[s | p, o] =
Psmooth[s, p, o]

Psmooth[p, o]

Although this approach has the advantage of dealing with the variety of
predicate-objects pairs, some problems remain: The first is that the definitions of
distance functions are not trivial. Indeed, this task is very close to the one of seman-
tic textual similarity, which is addressed through datasets such as SentEval [33] or
the Quora Question Pairs (https://www.kaggle.com/c/quora-question-pairs), and is
known to be quite complicated.

Second, computation problems can arise. Depending on the distance function
and the number of triples generated, computing all similarities can be very expensive.

Third, the problem of global comparison of saliency and typicality is still present.
All in all, we observed that the smoothing improve the ranking for the saliency

and the typicality. However, the problems we mentioned are still present at it would
be future work to investigate scoring methods further.

3.7 Grouping
The corroboration stage of Quasimodo aimed to remove overly generic and overly
specific assertions, but still yields diverse statements of different granularities with a
fair amount of semantic redundancy. For instance, hamsters are cute, hamsters are
cute pets, and hamsters are cute pets for children are all valid assertions, but more
or less reflect the same commonsense property. Such variations occur with both O
and P arguments, but less so with the subjects S as these are pre-selected seeds in
the candidate gathering stage.

To capture such redundancies while preserving different granularities and as-
pects, Quasimodo groups assertions into near-equivalence classes. At the top level,
Quasimodo provides groups as entry points and then supports a meta-predicate re-
fines for more detailed exploration and use-cases that need the full set of diversely
phrased assertions.

3.7.1 Soft Co-Clustering

Our goal is to identify diverse formulations for both predicates P and subject-object
pairs SO. The prior work on TupleKB has used ILP-based clustering to canonicalise
predicates. However, this enforces hard grouping such that a phrase belongs to
exactly one cluster. With our rich data, predicates such as “chase” or “attack”
can refer to very different meanings, though: predators chasing and attacking their
prey, or students chasing a deadline and attacking a problem. Analogously, S and
O arguments also have ambiguous surface forms that would map to different word
senses.

WebChild [53] has attempted to solve this issue by comprehensive word sense
disambiguation (see [89] for a survey), but this is an additional complexity that
eventually resulted in many errors. Therefore, we aim for the more relaxed and – in
our findings – more appropriate objective of computing soft clusters where the same
phrase can belong to different groups (to different degrees). As the interpretation of

3.7. GROUPING 37

https://www.kaggle.com/c/quora-question-pairs


CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

P phrases depends on the context of their S and O arguments, we cast this grouping
task into a co-clustering problem where SO pairs and P phrases are jointly clustered.

3.7.2 Tri-Factorisation of SO-P Matrix

Our method for soft co-clustering of SO pairs and P phrases is non-negative matrix
tri-factorisation; see [43] for mathematical foundations. We aim to compute clusters
for SO pairs and clusters for P phrases and align them with each other when mean-
ingful. For example, the SO pairs student problem and researcher problem could
be grouped together and coupled with a P cluster containing attack and a second
cluster containing solve.

This goal alone would suggest a standard form of factorizing a matrix with SO
pairs as rows and P phrases as columns. However, the number of clusters for SO
pairs and for P phrases may be very different (because of different degrees of diversity
in real-world commonsense), and decomposing the matrix into two low-rank factors
with the same dimensionality would not capture this sufficiently well. Hence our
approach is tri-factorisation where the number of (soft) clusters for SO pairs and for
P phrases can be different.

We denote the set of SO pairs and P phrases, as observed in the SPO triples
after corroboration, as an m × n matrix Mm×n, where element Mij denotes the
corroboration score of the triple with SOi and Pj.

We factorise M as follows:

Mm×n = Um×k ×Wk×l × V T
l×n

where the low-rank dimensionalities k and l are hyper-parameters standing for the
number of target SO clusters and target P clusters and the middle matrixW reflects
the alignments between the two kinds of clusters. The optimisation objective in this
tri-factorisation is to minimise the data loss in terms of the Frobenius norm, with
non-negative U,W, V and orthonormal U, V :

Minimise ‖M − Um×k ×Wk×l × V T
l×n‖F

s.t. UTU = I, V TV = I

U, V,W ≥ 0 (3.7.1)

We can interpret Uiµ as a probability of the membership of the ith SO pair in
the µth SO cluster. Similarly, Vjν represents the probability of cluster membership
of the jth P phrase to the νth P cluster. The coupling of SO clusters to P clusters is
given by the Wk×l matrix, where the µth SO cluster is linked to the νth P cluster if
Wµν > 0.

Each SO pair and P phrase have a certain probability of belonging to an SO
and P cluster, respectively. Hence, using a thresholding method, we assign SOi to
the µth cluster if Uiµ > θ and Pj to the νth cluster if Vjν > θ, in order to arrive at
crisper clusters. In our experiments, we set the thresholds as follows: for the λth SO
cluster, we set θλ = δ ·maxiUiλ, and for the λth P cluster, we set θλ = δ ·maxiViλ.

38 3.7. GROUPING



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

# SO/SO cluster # P/P cluster # P clusters/P
Domains #SPO k l ρ avg. max avg. max avg.
Animals 201942 3500 2000 0.10 38.46 383 2.8 24 1.5
Persons 218924 5000 2000 0.10 11.7 235 4.7 67 1.5
Medicine 91184 3000 1800 0.15 45.17 171 2.91 31 1.3
Sport 30794 1500 400 0.15 13.3 73 3.8 15 1.14

macro-avg. (over all 49 domains) 1457.8 603.7 0.12 33.97 123.0 3.5 24.8 1.24

Table 3.5: Statistics for SO clusters and P clusters for vertical domains Animals and
Occupations

P clusters SO clusters
make noise at, be loud at, make
noises at, croak in, croak at, quack
at

fox-night, frog-night, rat-night, mouse-
night, swan-night, goose-night, chicken-
night, sheep-night, donkey-night, duck-
night, crow-night

misbehave in, talk in, sleep in, be
bored in, act out in, be prepared for,
be quiet in, skip, speak in

student-class, student-classes, student-
lectures

diagnose, check for doctor-leukemia, doctor-reflexes, doctor-
asthma, doctor-diabetes, doctor-pain,
doctor-adhd

Table 3.6: Anecdotal examples of coupled SO clusters and P clusters from vertical
domains Animals and Occupations

By varying the common thresholding parameter δ, we tune the cluster assign-
ments of SO pairs and P phrases based on the empirical perplexity of the resulting
clusters.

This way, we found an empirically best value of δ = 0.1.
The factor matrices in this decomposition should intuitively be sparse, as each

SO pair would be associated with only a few P clusters and vice versa. To re-
ward sparsity, L1 regularisation is usually considered for enhancing the objective
function. However, the L1 norm makes the objective non-differentiable, and there
is no analytic solution for the tri-factorisation model. Like most machine-learning
problems, we rely on stochastic gradient descent (SGD) to approximately solve the
optimisation in Equation 3.7.1.

For this reason, we do not use L1 regularisation. Our SGD-based solver initialises
the factor matrices with a low density of non-zero values, determined by a hyper-
parameter ρ for the ratio of non-zero matrix elements. The overall objective function
then is the combination of data loss and sparseness:

Maximise
fraction of zero elements (W )

data loss by Equation 3.7.1

All hyper-parameters – the factor ranks k and l, and the sparseness ratio ρ – are
tuned by performing a grid search.

3.7. GROUPING 39



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

3.8 Experimental Evaluation

3.8.1 Implementation

Seeds. As seeds for subjects, we use a combination of concepts from ConceptNet,
combined with nouns extracted from WordNet, resulting in a total of around 120,000
subjects.
Candidate Gathering. In this phase Quasimodo collected ca. 1.4 mil-
lion questions from Quora (from the Kaggle “Quora Question Pair Challenge”
https://www.kaggle.com/c/quora-question-pairs), 600,000 questions from Yahoo!
Answers, 2.5 million questions from Answers.com (via its sitemap), and 3.5 mil-
lion questions from a Reddit dump (with a choice of suitable subreddits). From
auto-completion suggestions, we obtained ca. 20 million questions from Google and
200,000 questions from Bing.

After applying the rewriting of questions into statements and running OpenIE,
we obtained 11 million candidate triples; the subsequent normalisation further re-
duced this pool to ca. 4.4 million triples.
Corroboration. The logistic regression model assigned a mean score of 0.23, with
a standard deviation of 0.11. For high recall, we do not apply a threshold in this
phase but utilise the scores for ranking in our evaluations.
Grouping. We performed this step on the top-50% triples, ordered by corroboration
scores, amounting to ca. 1 million assertions. For efficient computation, we sliced
this data into 49 basic domains based on the WordNet domain hierarchy [50]. To this
end, we mapped the noun sense of each assertion subject to WordNet and assigned
all triples for the subject to the respective domain (e.g., animals, plants, earth,
etc.). The five largest domains are earth, chemistry, animal, biology, and person,
containing on average 3.9k subjects and 198k assertions. We performed co-clustering
on each of these slices, where hyperparameters were tuned by grid search.

Table 3.5 gives hyperparameter values and cluster-specific statistics of the co-
clustering for three domains: number of assertions (#SPO); the co-clustering hyper-
parameters SO clusters (k), P clusters (l) and sparseness ratio (ρ); the average
number of elements per cluster for both SO and P clusters; and the average number
of P-clusters per predicate. Additionally, we provide macro-averaged statistics for
all 49 domains. Table 3.6 shows anecdotal examples of co-clusters for illustration.
Quasimodo CSKB. The resulting knowledge base contains ca. 4.4 million as-
sertions for 103,000 subjects. Quasimodo is accessible online (https://www.mpi-
inf.mpg.de/departments/databases-and-information-systems/ research/yago-naga/
commonsense/quasimodo/).
Run-Time. One of the expensive components of Quasimodo is the probing of
Google auto-completions. This was carried out within the allowed query limits over
a long time. Bing auto-completion was accessed through the Azure API. Another
expensive component is co-clustering of all 49 domains, which takes total 142 hours
in an Intel Xeon(R)(2 cores@3.20GHz) server (average 3.14 hours/ slice). All other
components of Quasimodo run within a few hours at most. We use some caching
mechanisms to make the pipeline faster to run again.
About Caching. We cached several components of our pipeline that do not need
to be recomputed every time. First, the result of the autocompletion is cached as we

40 3.8. EXPERIMENTAL EVALUATION

https://www.kaggle.com/c/quora-question-pairs
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo/


CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Full KB
#S #P #P≥10 #SPO #SPO/S

ConceptNet-full@en 842,532 39 39 1,334,425 1.6
ConceptNet-CSK@en 41,331 19 19 214,606 5.2

TupleKB 28,078 1,605 1,009 282,594 10.1
WebChild 55,036 20 20 13,323,132 242.1

Quasimodo 103,218 102,801 7,534 4,369,850 42.3

Table 3.7: Statistics for different full KBs

KB animals occupations
#S #SPO #S #SPO

ConceptNet-full@en 50 2,678 50 1,906
ConceptNet-CSK@en 50 1,841 50 1,495

TupleKB 49 16,052 38 5,321
WebChild 50 27,223 50 26,257

Quasimodo 50 67,111 50 28,747

Table 3.8: Statistics for two slices on animals and occupations on different KBs

suppose it does not change. In future work, we could investigate the potential tem-
poral changes of the autocompletion, in particular when new concepts emerge (like
the coronavirus). Next, we cached the transformation of questions into statements.
This step can be lengthy because we deal with more than ten million questions.
The OpenIE step is also saved as it does not change through time (except if the
version of the software changes) and is very costly. During the corroboration phase,
the calls to APIs such as Wikipedia and Google Books are saved. Finally, we save
intermediate states of the pipeline, so we can run it from a particular step (like
ranking, for example, if we only update the scoring model).

3.8.2 Intrinsic Evaluation

We evaluate four aspects of Quasimodo: 1) size of the resulting CSKB, 2) quality,
3) recall, and 4) cluster coherence.
Size. We compare KBs in Table 3.7 by the number of subjects (#S), the number of
predicates (#P), predicates occurring at least ten times (#P≥10), and the number
of triples (#SPO). For Quasimodo we exclude all triples with isA / type predicate
denoting subclass-of or instance-of relations, as these are well covered in traditional
knowledge resources like WordNet, Wikidata and Yago. We also compare in Ta-
ble 3.8, on two vertical domains: assertions for the 50 most popular animals and 50
most popular occupations, as determined by frequencies from Wiktionary.

For ConceptNet, we report numbers for the full data including isA / type and
related and other linguistic triples (e.g., on etymology) imported from DBpedia,
WordNet and Wiktionary (ConceptNet-full), and for the proper CSK core where
these relations are removed (ConceptNet-CSK).

Table 3.7 and Table 3.8 convey that Quasimodo has more abundant knowledge

3.8. EXPERIMENTAL EVALUATION 41



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

per subject than all other resources except for WebChild. The advantage over the
manually created ConceptNet becomes particularly evident when looking at the two
vertical domains, where ConceptNet-CSK contains less than 10% of the assertions
that Quasimodo knows.
Quality. On the version of Quasimodo from our original paper, we asked MTurk
crowd workers to evaluate the quality of CSK assertions along three dimensions:
1) meaningfulness, 2) typicality, 3) saliency. Meaningfulness denotes if a triple is
conveys meaning at all, or is absurd; typicality denotes if most instances of the S
concept have the PO property; saliency captures if humans would spontaneously
associate PO with the given S as one of the most essential traits of S.

For each evaluated triple, we obtained two judgments for the three aspects, each
graded on a scale from 1 (lowest) to 5 (highest). A total of 275 crowd workers
completed the evaluation, with mean variance 0.70 on their ratings from 1 to 5
indicating good inter-annotator agreement.

We sampled triples from the different CSKBs under two settings: In comparative
sampling, we sampled triples for the same 100 subjects (50 popular occupations and
50 popular animals) across all KBs. For subject and each KB we considered the top-
5-ranked triples as a pool, and uniformly sampled 100 assertions for which we obtain
crowd judgement. For Quasimodo, as the rankings by typicality τ and by saliency
σ differ, this sampling treated Quasimodo-τ and Quasimodo-σ as distinct CSKBs.
This setting provides a side-by-side comparison of triples for the same subjects.

In horizontal sampling, we sampled each KB separately; so they could differ on
the evaluated subjects. We considered the top 5 triples of all subjects present in
each KB as a pool and picked samples from each KB uniformly at random. This
evaluation mode gave us insights into the average quality of each KB. Note that
it gives KBs that have fewer long-tail subjects an advantage, as triples for long-
tail subjects usually receive lower human scores. Again, we considered Quasimodo
rankings by τ and σ as distinct CSKBs.

The results of these evaluations are shown in Figure 3.4 and Figure 3.5. With
comparative sampling, Quasimodo-τ significantly outperforms both WebChild and
TupleKB, and nearly reaches the quality of the human-generated ConceptNet. In
horizontal sampling mode, Quasimodo-τ outperformsWebChild along all dimensions
and outperforms TupleKB in all dimensions but saliency. This is remarkable given
that Quasimodo in our original paper was three times bigger than ConceptNet, and
is therefore penalised with horizontal sampling by its much larger number of long-tail
subjects. In both evaluations, Quasimodo-τ significantly outperforms Quasimodo-σ
in terms of meaningfulness and typicality. Regarding saliency, the results are mixed,
suggesting that further research on ranking models would be beneficial.
Recall. To compare the recall (coverage) of the different CSKBs, we asked crowd
workers at MTurk to make statements about 50 occupations and 50 animals as
subjects. We asked to provide short but general sentences, as spontaneous as possible
to focus on typical and salient properties. Together with these instructions, we gave
three examples for elephants (e.g., “elephants are grey”, “elephants live in Africa”)
and three examples for nurses. For each subject, crowd workers had four text fields
to complete, which were pre-filled with “[subject] ...”. Each task was handed out six
times; so in total, we obtained 2,400 simple sentences on 100 subjects.

42 3.8. EXPERIMENTAL EVALUATION



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

meaningfulness typicality saliency
2.5

3
3.5

4
4.5

qu
al
ity

@
5

ConceptNet WebChild TupleKB Quasimodo-τ Quasimodo-σ

Figure 3.4: Quality for comparative sampling

meaningfulness typicality saliency
2.5

3
3.5

4
4.5

qu
al
ity

@
5

ConceptNet WebChild TupleKB Quasimodo-τ Quasimodo-σ

Figure 3.5: Quality for horizontal sampling

We computed CSKB recall w.r.t. these crowd statements in two modes. In the
strict mode, we checked for each sentence if the KB contains a triple (for the same
subject) where both predicate and object are contained in the sentence and, if so,
computed the word-level token overlap between PO and the sentence. In the relaxed
setting, we checked separately if the KB contains an S-triple whose predicate appears
in the sentence, and if it contains an S-triple whose object appears in the sentence.
The results are shown in Figure 3.6. In terms of this coverage measure, Quasimodo
outperforms the other CSKBs by a large margin, in both strict and relaxed modes
and also when limiting ourselves to the top-5 highest-ranked triples per subject.

strict relaxed
0

20
40
60

R
ec
al
l(
%
)

ConceptNet WebChild TupleKB Quasimodo

strict@5 relaxed@5
0
5

10

R
ec
al
l(
%
)

ConceptNet WebChild TupleKB Quasimodo

Figure 3.6: Recall evaluation

3.8. EXPERIMENTAL EVALUATION 43



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Quasimodo ConceptNet WebChild TupleKB

(hasPhysicalPart, trunk) (AtLocation, africa) (quality, rare) (has-part, brain)
(hasPhysicalPart, ear) (HasProperty, cute) (trait, playful) (drink, water)
(live in, zoo) (CapableOf, remember water source) (size, large) (prefer, vegetation)
(love, water) (HasProperty, very big) (state, numerous) (eat, apple)
(be in, circus) (CapableOf, lift logs from ground) (quality, available) (open, mouth)

Quasimodo ConceptNet WebChild TupleKB

(help, people) (HasA, private life) (emotion, euphoric) (complete, procedure)
(stand long for, surgery) (CapableOf, attempt to cure patients) (quality, good) (conduct, examination)
(learn about, medicine) (AtLocation, golf course) (trait, private) (get, results)
(cure, people) (CapableOf, subject patient to long waits) (atlocation, hospital) (has-part, adult body)
(can reanimate, people) (AtLocation, examination room) (hasproperty, aggressive) (treat, problem)

Table 3.9: Anecdotal examples (PO) for S elephant (top) and S doctor (bottom)

KB Elementary NDMC Middle NDMC CommonsenseQA2 Trivia Examveda All
#Questions (Train/Test) 623/541 604/679 9741/1221 1228/452 1228/765 10974/3659

Random 25.5 23.7 21.0 25.9 25.4 22.0
word2vec 26.2 28.3 27.8 27.4 25.6 27.2
Quasimodo 38.4 34.8 26.1 28.1 32.6 31.3
ConceptNet 28.5 26.4 29.9 (source) 24.4 27.3 27.5
TupleKB 34.8 25.5 25.3 22.2 27.4 27.5
WebChild 26.2 25.1 25.2 25.9 27.1 24.1

Table 3.10: Accuracy of answer selection in question answering

Cluster Coherence. We evaluate cluster coherence using an intruder task. For
a random set of clusters that contain at least three P phrases, we show annota-
tors sampled SO pairs from the cluster and samples of P phrases from the aligned
cluster interspersed with an additional random intruder predicate drawn from the
entire CSKB. For example, we show the SO pairs spider-web, mole-tunnel, rabbit-
hole, along with the P phrases build, sing, inhabit, live in, where sing is the intruder
to be found. We sampled 175 instances from two vertical slices, Animals and Per-
sons, and used crowdsourcing (MTurk) to collect a total of 525 judgments on these
175 instances for the intruder detection task. We obtained an intruder detection
accuracy of 64% for clusters in the Animals domain, and 54% in Persons domain
(compared with 25% for a random baseline). This is supporting evidence that our
co-clustering method yields reasonably coherent groups.
Anecdotal Examples. Table 3.9 provides a comparison of randomly chosen as-
sertions for two subjects in each of the KBs: ( elephant) (top) and doctor (bottom).
WebChild assertions are quite vague, while TupleKB assertions are reasonable but
not always salient. ConceptNet, constructed by human crowdsourcing, features
high-quality assertions, but sometimes gives rather exotic properties. In contrast,
the samples for Quasimodo are both typical and salient.

3.8.3 Extrinsic Evaluation

Answer Selection for QA. In this use case, we show that CSK helps in select-
ing answers for multiple-choice questions. We use five datasets: (i+ii) elementary
school and middle school science questions from the AllenAI science challenge [91],

44 3.8. EXPERIMENTAL EVALUATION



CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

via P or O via O only
0

20

40

C
ov
er
ag
e
(%

)

ConceptNet WebChild TupleKB Quasimodo

via P or O (top 5) via O only (top 5)
0
5

10
15

C
ov
er
ag
e
(%

)

ConceptNet WebChild TupleKB Quasimodo

Figure 3.7: Coverage for word guessing game

(iii) commonsense questions generated from ConceptNet [126], (iv) reading compre-
hension questions from the TriviaQA dataset [51], and (v) exam questions from the
Indian exam training platform Examveda [93]. The baseline are given by AllenAI,
in aristo-mini (https://github.com/allenai/aristo-mini).

To assess the contribution of CSKBs, for each question-answer pair we build a
pair of contexts (ctxquestion, ctxanswer) as follows: for each group of words grp in the
question (resp. the answer), we add all the triples of the form (grp, p, o) or (s,
p, grp) in a KB. Then, we create features based on (ctxquestion, ctxanswer) such as
the number of SPO, SP, SO, PO, S, P, O overlaps, the size of the intersection of a
context with the opposition original sentence, the number of useless words in the
original sentence and the number of words in the original sentences. From these
features, we train an AdaBoost classifier. This is a basic strategy for multiple-choice
QA and could be improved in many ways. However, it is sufficient to bring out the
value of CSK and the differences between the CSKBs.

We compare four CSKBs against each other and against a word2vec baseline
which computes the embeddings similarity between questions and answers. The
results are shown in Table 3.10. Quasimodo significantly outperforms the other
CSKBs on four of the five datasets (ConceptNet performs better on Common-
senseQA dataset as it was used for the generation).
Word Guessing Game. Taboo is a popular word guessing game in which a player
describes a concept without using five taboo words, usually the most reliable cues.
The other player needs to guess the concept. We used a set of 578 taboo cards from
the website playtaboo.com to evaluate the coverage of the different CSKBs.

Given a concept to be guessed, we compute the fraction of Taboo words that a
KB associates with the concept, appearing in the O or P argument of the triples
for the concept. This is a measure of a CSKB’s potential ability to perform in
this game (i.e., not playing the game itself). The resulting coverage is shown in

3.8. EXPERIMENTAL EVALUATION 45

https://github.com/allenai/aristo-mini
http://playtaboo.com


CHAPTER 3. QUASIMODO: A COMMONSENSE KNOWLEDGE BASE

Table 3.7. Quasimodo outperforms all other KBs by this measure. TupleKB, the
closest competitor on the science questions in the multiple-choice QA use case, has
substantially lower coverage, indicating its limited knowledge beyond the (school-
level) science domain. We notice that ConceptNet outperforms Quasimodo on this
task when we consider only the top 5 statements per subject. This shows that even
if ConceptNet contains fewer facts than Quasimodo, they are still salient.

3.9 Conclusion
This work presented Quasimodo, a methodology for acquiring high-quality common-
sense assertions, by harnessing non-standard input sources, like query logs and QA
forums, in a novel way.

As our experiments demonstrate, the Quasimodo knowledge base improves the
prior state of the art, by achieving much better coverage of typical and salient
commonsense properties (as determined by an MTurk study) while having similar
quality in terms of precision. Extrinsic use cases further illustrate the advantages of
Quasimodo.

Quasimodo data is available online (https://www.mpi-inf.mpg.de/departments/
databases-and-information-systems/research/yago-naga/commonsense/quasimodo/)
and our code is available on Github (https://github.com/Aunsiels/CSK).

46 3.9. CONCLUSION

https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo/
https://www.mpi-inf.mpg.de/departments/databases-and-information-systems/research/yago-naga/commonsense/quasimodo/
https://github.com/Aunsiels/CSK


Chapter 4

Inside Quasimodo

La grimace était son visage. Ou
plutôt toute sa personne était une
grimace.

Victor Hugo

In Chapter 3, we constructed Quasimodo, a commonsense knowledge base. To
better understand the data generated by Quasimodo and its internal components,
we present in this chapter a companion Web portal. We also go one step further by
showing applications of Quasimodo data.

This work was originally published as a demo paper at CIKM 2020 [110]:

Romero, J. & Razniewski, S. Inside Quasimodo: Exploring the Con-
struction and Usage of Commonsense Knowledge. In Proceedings of
the 29th ACM International Conference on Information and Knowledge
Management

4.1 Introduction
In the previous chapter, we introduced the commonsense knowledge baseQuasimodo.
The system leverages human curiosity expressed in query logs and question answer-
ing forums to extract commonsense knowledge, and significantly outperformed exist-
ing resources like ConceptNet in terms of coverage. In this chapter, we introduce a
companion Web portal, which enables a comprehensive exploration of Quasimodo’s
content and its construction. In particular, our contributions are:

1. Development of a scalable architecture for knowledge base visualisation;

2. Visualisation of the extraction pipeline of Quasimodo;

3. Implementation of several applications on the Quasimodo data.

First, we review in Section 4.2 the state of the art of the methods used to display
knowledge graphs for the main public knowledge bases. Then, we introduce the
companion Web portal of Quasimodo in Section 4.3, and present the demonstration

47



CHAPTER 4. INSIDE QUASIMODO

experience in Section 4.4. Our Web portal is composed of several parts: an explorer,
a visualisation for the extraction pipeline, a SPARQL endpoint and applications such
as question answering or games like Play Taboo! and Codenames.

4.2 Previous Work

We present here some existing system for knowledge base visualisation. Most of
them allow exploring the raw content and provide a SPARQL endpoint—however,
very few focus on applications.

The most typical way to display a knowledge base is to print it as a table
composed of three columns: Subject, predicate, object. ConceptNet [119], We-
bChild [127], TupleKB [35], Atomic [114], Comet [20] and Quasimodo [31] provide
a CSV file in that style. Often, it is convenient to group the statements by subject
on a separated page, and thus to omit the first column. We also regularly observe
that systems tend to group the statements by predicates.

There exist more exotic ways to display a knowledge base. Yago [96] chooses to
give a glimpse to the relations attached to a given subject through a star-shaped
graph. Their companion Web portal displays an SVG of this graph. The graph struc-
ture is very natural when we deal with knowledge bases. Some third-party websites
such as Geneawiki (https://tools.wmflabs.org/magnus-toolserver/ts2/geneawiki/)
or the Wikidata Graph Builder (https://angryloki.github.io/wikidata-graph-
builder/) use this representation to display relations between entities. However, due
to the size of the graphs, it becomes tough for a human to find relevant information.

In our system, we choose to use a table representation where we added additional
columns such as the polarity of a statement, an attached modality or a score.

Many systems also provide a simple search interface. More interestingly, some
give access to a SPARQL endpoint to write complex queries. Finally, the websites
offer an easy way to download data in different formats. We provide all these
functionalities.

Third-party Web portals generally provide the applications associated with a
knowledge base. For example, Inventaire (https://inventaire.io) uses Wikidata to
extract information about books and The Art Browser (https://openartbrowser.org)
uses Wikidata to display art information. Wikidata groups various projects related
to their website (https://www.wikidata.org/wiki/Wikidata:Tools), and in particular
about visualisation. In this chapter, we include several applications near the data
visualisation, which can make the user more familiar with the knowledge base.

4.3 Quasimodo Web Portal Architecture

Our Web portal is accessible at https://quasimodo.r2.enst.fr. We use Nginx to man-
age connections, obtain HTTPS accesses and perform reverse proxy to the internal
components.

To make our system scalable and reusable, we decomposed it into Docker contain-
ers. Docker containers are light and independent packages that contain everything

48 4.2. PREVIOUS WORK

https://tools.wmflabs.org/magnus-toolserver/ts2/geneawiki/
https://angryloki.github.io/wikidata-graph-builder/
https://angryloki.github.io/wikidata-graph-builder/
https://inventaire.io
https://openartbrowser.org
https://www.wikidata.org/wiki/Wikidata:Tools
https://quasimodo.r2.enst.fr


CHAPTER 4. INSIDE QUASIMODO

HTML
Front	End

Flask
Back	End

Redis
Job	Queue

Quasimodo
Worker

Quasimodo
Worker

PostgreSQL

Oxigraph
SparQL
Endpoint

DISTANT	SERVER
DOCKER	COMPOSE

CONTINUOUS	INTEGRATION

Jenkins

Github

Pytest Selenium

Nginx

Figure 4.1: The Web portal architecture

to run an application. A developer can use them as building blocks for more com-
plex applications deployed on a single or several computers. Our application runs
on a single machine, and so a docker-compose file is used to link the entire system.
Our system can be deployed on several computers as it is compatible with solutions
such as Kubernetes that automatically scale each container according to its needs.

Let us enumerate the different containers present in the application. First, we
wrote the core of the Web portal (we call it the back-end) in Python using Flask.
Flask is a lightweight micro Web framework which comes with numerous additional
packages. The back-end module orchestrates all the actions. In particular, it is
linked to a container encapsulating a PostgreSQL database which stores Quasimodo.
It is also linked to a container running a Redis database and which is used as a
Job Queue (see Section 4.4.2). An arbitrary number of asynchronous workers on
separated containers can connect to this job queue and execute tasks. Finally, we
also have a particular container hosting a SPARQL endpoint: Oxigraph.

A user accesses our companion Web portal through a front end which uses Boot-
strap4 and simple HTML, CSS and Javascript. The SPARQL endpoint is also
accessible independently of the Web portal. We summarise the general architecture
of the Web portal in Fig. 4.1.

We tested most of the components of our system using the Pytest li-
brary and Selenium. Selenium is a framework to emulate a browser
such as Chrome or Firefox. The code is freely accessible on Github
(https://github.com/Aunsiels/demo_quasimodo) where all the containers and the
docker-compose file are also available. Finally, we used Jenkins to run a pipeline
of tests ensuring the validity of each component. This pipeline gets executed every
time the git repository receives a push. A Docker container encapsulates the pipeline
which runs the tests.

The Web portal, the asynchronous workers and the SPARQL endpoint run on a
single virtual machine which has access to 8 Virtual CPU of 2.6GHz and 16GB of
RAM.

4.3. QUASIMODO WEB PORTAL ARCHITECTURE 49

https://github.com/Aunsiels/demo_quasimodo


CHAPTER 4. INSIDE QUASIMODO

Figure 4.2: Top Quasimodo statements for elephants

4.4 Demonstration Experience

4.4.1 Exploring and Searching Commonsense Knowledge

The data generated at the end of Chapter 3 is stored using a relational database
(PostgreSQL) which provides a fast way to retrieve information. We use a single
table to store all statements, with columns for subject, predicate, object, modality,
polarity, example sentences and metrics (scores).

We provide a simple visualisation for the statements in Quasimodo as a table
containing columns for the subject, predicate, object, modality, polarity (is it a
positive or a negative statement) and scores. In Figure 4.2, we give a glimpse at this
table. Different from KBs with fixed predicates, like Wikidata or ConceptNet, we
organise the open predicate space by sorting statements by scores. Besides, we added
the possibility to give positive or negative feedback about a statement, which could
be used to refine supervised models. We also implemented a page per statement to
display all information about it, and in particular the sentences that generated the
statement and which sources they were derived from.

To traverse its content efficiently, a search function is available, which allows fil-
tering the statements by subject, predicate, object and polarity. The search returns
the number of matching statements and a table displaying them as explained above.
In Figure 4.2, we show the top statements for the subject “elephant”.

4.4.2 Extraction Pipeline Visualisation

Quasimodo introduces an extraction pipeline to extract and process commonsense
knowledge from various sources. In Chapter 3, we presented this extraction pipeline.
Each module in this workflow is itself composed of several sub-modules for perform-
ing specialised tasks. The reader can find a list of these components in Chapter 3
and in the code provided with it (https://github.com/Aunsiels/CSK). This extrac-
tion pipeline, however, is very dense, and it can be difficult to understand the effect
of each part. The present Web portal therefore gives further insights into the entire

50 4.4. DEMONSTRATION EXPERIENCE

https://github.com/Aunsiels/CSK


CHAPTER 4. INSIDE QUASIMODO

Figure 4.3: Top-level view of the extraction pipeline visualisation

process. In particular, we offer the possibility to run the extraction pipeline for a
given subject. As most extraction sources must answer in a limited time, we launch
the extraction pipeline in an asynchronous task using Redis Queues. Redis is an
in-memory NoSQL database storing key-value couples. When we want to get the
extraction pipeline information for a subject, we push a new job on a queue. Then,
idle workers specialised in extraction pipeline execution come and read the pending
task and start the extraction pipeline. Once they are done, they write back the
details of the execution in the queue. They record these details every time a module
or sub-module is executed, providing insights even if the extraction pipeline is still
running.

The workers are based on the code given with Quasimodo and are encapsulated
inside Docker containers. So, they can easily be duplicated, even on separated
machines.

The back-end of the Web portal has access to the status of the jobs and the
currently available information. We display the details of the extraction pipeline on
a Web page showing the different stages of the extraction pipeline and the statements
which are generated, modified or deleted. Besides, we also print the time spent in
each module and sub-modules. The information of the extraction pipeline can be
very dense, even for a single subject. So, the user has to choose in the interface a
particular sub-module to display. We display the results as a table for the statements
which were created, modified or deleted by the considered step. Figure 4.3 shows
the beginning of the extraction pipeline of the subject lawyer.

We intentionally omitted the scoring phase as it must access all generated state-
ments, for all subjects. Executing the extraction pipeline for a given subject takes
approximately 30 minutes on our machine.

4.4.3 SPARQL Endpoint

We offer a SPARQL UI and endpoint https://quasimodo.r2.enst.fr/sparql. The
UI is available on the Web portal, and the endpoint is callable by any program.

4.4. DEMONSTRATION EXPERIENCE 51

https://quasimodo.r2.enst.fr/sparql


CHAPTER 4. INSIDE QUASIMODO

Figure 4.4: A sample SPARQL query

In Figure 4.4, we show a possible query. Nginx orientates the query to detect
whether we are accessing the SPARQL interface or the main Web portal. Indeed,
we put these two components on two separated containers. We dockerised Oxigraph
(https://github.com/Tpt/oxigraph), a SPARQL endpoint written in Rust which is
also used by Yago. It has the advantage to be very easy to use and very fast. We
transformed our data into N-triples (https://www.w3.org/TR/n-triples/), at the
cost of losing information such as the modality, the polarity and the scores. This
might seem redundant with the data stored in PostgreSQL, but it helps optimise
SPARQL queries. As no data is written while the application is running, this du-
plication is acceptable. Besides, PostgreSQL contains more information about the
statements that are not compatible with SPARQL.

4.4.4 Play Taboo

Taboo is a game in which a player must make other players guess a word without
using a list of forbidden words. In this demo, we provide an interface to play Taboo
with Quasimodo. When a user starts a new game, the Web portal sends him a card.
Then they must use a chat interface to give clue words to Quasimodo. Every time
the user presses the Make a Guess button, the system tries to a find a relevant word.
This process continues until Quasimodo finds the hidden word. Figure 4.5 shows a
game example.

The algorithm used in the back end is simple. First, the database is filtered
using the words given by the user. Then, we group the results by subjects, and we
aggregate the scores using a sum or a max function, for example. We finally return

52 4.4. DEMONSTRATION EXPERIENCE

https://github.com/Tpt/oxigraph
https://www.w3.org/TR/n-triples/


CHAPTER 4. INSIDE QUASIMODO

Figure 4.5: Play Taboo! interface

the best subject, under the condition that we never tried it before.
In addition to this game, we also provide the functionality to generate Taboo

cards for any subject. We perform this generation by taking the most relevant
objects associated with a subject by combining the scores.

4.4.5 Codenames

Codenames is a game designed by Vlaada Chvátil. It opposes two teams that must
find their special agent before the other team. The agents are hidden behind code-
names, which are simple words. Each team has a spymaster which must give a clue
to the rest of the team (the operatives) to help us reveal the spies. For example, a
spymaster can say blue, 2 to help its companion guess the words sky and sea. The
choice of the word must be made very carefully not to discover the agents of the
other team.

In 2019, the Foundation of Digital Games conference hosted a competition:
The Codenames AI competition (https://sites.google.com/view/the-codenames-ai-
competition). However, we were not able to find the results of this competition.
The presenters suggested that people should use word embeddings. This solution
can be powerful when we make AI play against each other. However, the clues can
become incomprehensible for humans.

Instead, we propose a solution based on Quasimodo to generate clues. We con-
sider that the words to guess are subjects. Then, we take the object associated with
the more subjects that has a score above a certain threshold and does not appear
for the wrong subjects.

In the demonstration scenario, the user plays the role of the operative. He
receives clues and must click on the potential agents. He plays against a bot which
simply guesses one right word per turn. Vlaada Chvátil suggests this strategy for
games with two players. We show in Figure 4.6 a game example.

4.4. DEMONSTRATION EXPERIENCE 53

https://sites.google.com/view/the-codenames-ai-competition
https://sites.google.com/view/the-codenames-ai-competition


CHAPTER 4. INSIDE QUASIMODO

Figure 4.6: Codenames interface

Figure 4.7: Question-answering interface

4.4.6 Multiple-Choice Question Answering

As in the original paper, we added the possibility to perform question answering
using only Quasimodo, i.e. we do not have an underlying language model. We used
the same algorithm: Given a question, an answer and a knowledge base, we generate
a set of features based on the connections between the words in the knowledge graph.
Then, using the same training data as in chapter 3, we train a linear classifier to
predict a score for each answer. We reused the code provided with Quasimodo and
added an interface to ask a question and give possible answers. Then, the system
provides a score for each answer and displays them. In this demo, we also include
the possibility to visualise the triples that might explain the answer. To generate
these triples, we consider that we can use only one triple to answer the questing.
Then we take the probability given by the logistic regression trained previously to
rank the statements. We show in Figure 4.7 an example of a question, the answer
given and the explanations.

54 4.4. DEMONSTRATION EXPERIENCE



CHAPTER 4. INSIDE QUASIMODO

4.5 Conclusion
With this demonstration, we give insights into the commonsense knowledge base
Quasimodo. The user can access in a user-friendly way the raw data of Quasimodo.
Besides, more details are given about the generation of the statements, making the
entire process completely transparent. Finally, we showcased applications such as
Taboo to prove the value of the database. Quasimodo is a scalable system to mine
commonsense knowledge based on a general and adaptive extraction pipeline. We
hope that this work will provide a better understanding of the system and the data
so researchers can keep building on top of it, either on the application side or on the
system side by proposing new extensions.

4.5. CONCLUSION 55



CHAPTER 4. INSIDE QUASIMODO

56 4.5. CONCLUSION



Chapter 5

Equivalent Query Rewritings

The more constraints one imposes,
the more one frees one’s self.

Igor Stravinsky

In Chapter 3 and Chapter 4, we focused on the ABox of a knowledge base. In
particular, we saw how to create it in the case of commonsense knowledge, and
we briefly showed some direct applications. In what follows, we turn our attention
towards the TBox component of a knowledge base. We will study equivalent query
rewriting using views with binding patterns.

A view with a binding pattern is a parameterised query on a database. Such
views are used, e.g., to model Web services. To answer a query on such views, the
views have to be orchestrated together in execution plans. We study a particular
scenario where the views have the shape of a path, the queries are atomic, and
we have integrity constraints in the form of unary inclusion dependencies. For this
scenario, we show how queries can be rewritten into equivalent execution plans,
which are guaranteed to deliver the same results as the query on all databases.
More precisely, we provide a correct and complete algorithm to find these plans.
Finally, we show that our method can be used to answer queries on real-world Web
services.

This work was published in ESWC 2020:

Romero, J., Preda, N., Amarilli, A., & Suchanek, F. (2020, May). Equiv-
alent Rewritings on Path Views with Binding Patterns. In European
Semantic Web Conference (pp. 446-462). Springer, Cham.

and comes with a demo paper, published at CIKM 2020 [107]:

Romero, J., Preda, N., Amarilli, A., & Suchanek, F. Computing and
Illustrating Query Rewritings on Path Views with Binding Patterns, In
Proceedings of the 29th ACM International Conference on Information
and Knowledge Management

57



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

Jailhouse Jailhouse RockElvis Presley

I Walk the Line

onAlbumsang

relatedAlbum

getAlbum

getAlbumDetails

Folsom Prison BluesJohnny Cash onAlbumsang
getAlbumDetails

getRelatedAlbum

Figure 5.1: An equivalent execution plan (blue) and a maximal contained rewriting
(green) executed on a database (black)

5.1 Introduction

In this chapter, we study views with binding patterns [102]. Intuitively, these can
be seen as functions that, given input values, return output values from a database.
For example, a function on a music database could take as input a musician, and
return the songs by the musician stored in the database.

Several databases on the Web can be accessed only through such functions. They
are usually presented as a form or as a Web service. For a REST Web service, a
client calls a function by accessing a parameterised URL, and it responds by sending
back the results in an XML or JSON file. The advantage of such an interface is that
it offers a simple way of accessing the data without downloading it. Furthermore, the
functions allow the data provider to choose which data to expose, and under which
conditions. For example, the data provider can allow only queries about a given
entity, or limit the number of calls per minute. According to programmableweb.com,
there are over 20,000 Web services of this form – including LibraryThing, Amazon,
TMDb, Musicbrainz, and Lastfm.

If we want to answer a user query on a database with such functions, we have
to compose them. For example, consider a database about music – as shown in
Figure 5.1 in black. Assume that the user wants to find the musician of the song
Jailhouse. One way to answer this query is to call a function getAlbum, which returns
the album of the song. Then we can call getAlbumDetails, which takes as input the
album, and returns all songs on the album and their musicians. If we consider among
these results only those with the song Jailhouse, we obtain the musician Elvis Presley
(Figure 5.1, top, in blue). We will later see that, under certain conditions, this plan
is guaranteed to return exactly all answers to the query on all databases: it is an
equivalent rewriting of the query. This plan is in contrast to other possible plans,
such as calling getRelatedAlbum and getAlbumDetails (Figure 5.1, bottom, in green).
This plan does not return the exact set of query results. It is a maximally contained
rewriting, another form of rewriting, which we will discuss in the related work.

Equivalent rewritings are of primordial interest to the user because they allow
obtaining exactly the answers to the query – no matter what the database contains.

58 5.1. INTRODUCTION

http://programmableweb.com


CHAPTER 5. EQUIVALENT QUERY REWRITINGS

Equivalent rewritings are also of interest to the data provider: For example, in the
interest of usability, the provider may want to make sure that equivalent plans can
answer all queries of importance. However, finding equivalent rewritings is inherently
non-trivial. As observed in [13, 15], the problem is undecidable in general. Indeed,
plans can recursively call the same function. Thus, there is, a priori, no bound on
the length of an execution plan. Hence, if there is no plan, an algorithm may try
forever to find one – which indeed happens in practice.

In this chapter, we focus on path functions (i.e., functions that form a sequence of
relations) and atomic queries. For this scenario, we can give a correct and complete
algorithm that decides in PTIME whether a query has an equivalent rewriting or not.
If it has one, we can give a grammar that enumerates all of them. Finally, we show
that our method can be used to answer queries on real-world Web services. After
reviewing related work in Section 5.2 and preliminaries in Section 5.3, we present our
problem statement in Section 5.4, our algorithm in Section 5.5 and some theoretical
background in Section 5.6, concluding with experiments in Section 5.7. Most of the
proofs are given in the Appendix B.1.

5.2 Related Work
Formally, we aim at computing equivalent rewritings over views with binding pat-
terns [102] in the presence of inclusion dependencies. Our approach relates to the
following other works.

5.2.1 Views With Binding Patterns

We will formally introduce the preliminaries for our work in Section 5.3. To first
discuss the related work, we briefly recall here the definitions of [102] of views with
binding patterns. We assume that we have a set of predicates about which the
queries are posed. For example, in Figure 5.1, we have the predicate sang(x, y). A
view (also called query template) is composed of a head and a body. We can divide
the head into three components:

• A predicate denoting the view. For example, getAlbum

• Arguments for the predicate. For example, the arguments of getAlbum are the
song and the album.

• A binding pattern indicating which arguments must be bound and which ar-
guments can be free. For getAlbum, the song is bound, whereas the album is
free.

Then, in our case, the body is a conjunction of predicates that produces a result to
the query. Every variable in the head predicate must also appear in one of the body
atoms.

In our notation, we underline the variables which must be bound and call them
input. The other variables are called output variables. For example, in Figure 5.1,
we have the view getAlbumDetails(a, s,m) ← onAlbum−(a, s), sang−(s,m) that,

5.2. RELATED WORK 59



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

given a binding for a (the album), returns a binding for a song and a singer.
getAlbumDetails(a, s,m) is the head and onAlbum−(a, s), sang−(s,m) is the body.

5.2.2 Equivalent Rewritings

Checking if a query is determined by views [70], or finding possible equivalent rewrit-
ings of a query over views, is a task that has been intensively studied for query
optimisation [15, 65], under various classes of constraints. [45] shows the problem
is undecidable in general for datalog queries. In our work, we are specifically in-
terested in computing equivalent rewritings over views with binding patterns, i.e.,
restrictions on how the views can be accessed. This question has also been studied,
in particular with the approach by Benedikt et al. [13] based on logical interpolation,
for very general classes of constraints. In our setting, we focus on path views and
unary inclusion dependencies on binary relations. This restricted (but practically
relevant) language of functions and constraints had not been investigated. We show
that, in this context, the problem is solvable in PTIME. What is more, we provide
a self-contained, effective algorithm for computing plans, for which we provide an
implementation. We compare experimentally against the PDQ implementation by
Benedikt et al. [14] in Section 5.7.

5.2.3 Maximally Contained Rewritings

When datasources are incomplete, equivalent rewritings might fail to return query
answers. To adress this issue, another line of work has studied how to rewrite
queries against data sources in a way that is not equivalent but maximises the
number of query answers [73]. Unlike equivalent rewritings, there is no guarantee
that all answers are returned. However, due to the incompleteness of databases or
the internal structure of a particular database, maximally contained rewritings might
return more results than equivalent rewritings. For views with binding patterns, a
first solution was proposed in [45, 46]. This work transforms views with binding
patterns into a Datalog program with inverse rules.

Section 5.3.4 gives a formal definition of query containment. [116] shows that the
problem of knowing whether a query q contains another query q′ is undecidable with
datalog queries. However, in the case where q′ is not recursive, it becomes decidable.
In [73] maximally-contained rewritings are defined as follows:

Definition 5.2.1 (Maximally Contained Rewriting). Let q be a query, F be a set
of views and L a query language. The query π is a maximally contained rewriting
of q using F w.r.t L if π is contained in q and there exists no rewriting π′ such that
π ⊆ π′ ⊆ q and π′ is not equivalent to π.

[45] shows that, in the case the rewriting language is Datalog, the queries are
Datalog programs and views that are conjunctive queries, even if the equivalent
rewriting problem is undecidable, it is still possible to find maximally-contained
rewritings in polynomial time. In general, these rewritings must be recursive, so
checking whether a maximally contained rewriting is an equivalent rewriting is un-
decidable.

60 5.2. RELATED WORK



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

The problem has also been studied for different query languages or under various
constraints [25, 27, 39, 88]. We remark that by definition, the approach requires the
generation of relevant but not-so-smart call compositions. These call compositions
make sure that no answers are lost. Earlier work by some of the present authors
proposed to prioritise promising function calls [97] or to complete the set of functions
with new functions [98]. In our case, however, we are concerned with identifying
only those function compositions that are guaranteed to deliver answers.

5.2.4 Web Service Orchestration

Web Service Orchestration or Composition [37, 78] has a broad definition: it repre-
sents the class of systems that add value above one or several Web services. The
idea is to obtain additional information by combining smartly different sources. For
example, let us imagine that we want to find all French singers who play the guitar,
and that we have access to two Web services. The first one contains information
about a musician but does not give access to nationalities. However, we have a
second one which links people to their nationality. So, by combining the two Web
services, we can first obtain all singers who are guitarists and then filter to get the
French ones.

In our setting, however, we are concerned about with a single Web service and
a single schema.

5.2.5 Federated Databases

Some works [100, 115] have studied federated databases, where each source can be
queried with any query from a predefined language. By contrast, our sources only
publish a set of preset parameterised queries, and the abstraction for a Web service
is a view with a binding pattern, hence, a predefined query with input parameters.
Therefore, our setting is different from theirs, as we cannot send arbitrary queries
to the data sources: we can only call these predefined functions.

5.2.6 Web Services

There are different types of Web services, and many of them are not (or cannot be)
modeled as views with binding patterns. AJAX Web services use JavaScript to allow
a Web page to contact the server. Other Web services are used to execute complex
business processes [38] according to protocols or choreographies, often described in
BPEL [122]. The Web Services Description Language (WSDL) describes SOAPWeb
services. The Web Services Modeling Ontology (WSMO) [133], in the Web Ontol-
ogy Language for Services (OWL-S) [83], or in Description Logics (DL) [103] can
describe more complex services. These descriptions allow for Artificial Intelligence
reasoning about Web services in terms of their behavior by explicitly declaring their
preconditions and effects. Some works derive or enrich such descriptions automati-
cally [22,30,99] in order to facilitate Web service discovery.

In our work, we only studyWeb services that are querying interfaces to databases.
These can be modeled as views with binding patterns and are typically implemented

5.2. RELATED WORK 61



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

in the Representational State Transfer (REST) architecture, which does not provide
a formal or semantic description of the functions.

5.3 Preliminaries

5.3.1 Global Schema

We assume a set C of constants and a set R of relation names.
We assume that all relations are binary, i.e., any n-ary relations have

been encoded as binary relations by introducing additional constants (see
https://www.w3.org/TR/swbp-n-aryRelations/).

A fact r(a, b) is formed using a relation name r ∈ R and two constants a, b ∈ C.
A database instance I, or simply instance, is a set of facts. For r ∈ R, we will use
r− as a relation name to mean the inverse of r, i.e., r−(b, a) stands for r(a, b). More
precisely, we see the inverse relations r− for r ∈ R as being relation names in R,
and we assume that, for any instance I, the facts of I involving the relation name
r− are always precisely the facts r−(b, a) such that r(a, b) is in I.

5.3.2 Inclusion Dependencies

A unary inclusion dependency for two relations r, s, which we write r  s, is the
following constraint:

∀x, y : r(x, y)⇒ ∃z : s(x, z)

Note that one of the two relations or both may be inverses. In the following, we will
assume a fixed set UID of unary inclusion dependencies, and we will only consider
instances that satisfy these inclusion dependencies. We assume that UID is closed
under implication, i.e., if r  s and s t are two inclusion dependencies in UID,
then so is r  t.

5.3.3 Queries

An atom r(α, β) is formed with a relation name r ∈ R and α and β being either
constants or variables. A query takes the form

q(α1, ..., αm)← B1, ..., Bn

where α1, ...αm are variables, each of which must appear in at least one of the body
atoms B1, ...Bn. We assume that queries are connected, i.e., each body atom must
be transitively linked to every other body atom by shared variables.

An embedding for a query q on a database instance I is a substitution σ for
the variables of the body atoms so that ∀B ∈ {B1, ..., Bn} : σ(B) ∈ I. A result
of a query is an embedding projected to the variables of the head atom. We write
q(α1, ..., αm)(I) for the results of the query on I. An atomic query is a query that
takes the form q(x)← r(a, x), where a is a constant and x is a variable.

62 5.3. PRELIMINARIES

https://www.w3.org/TR/swbp-n-aryRelations/


CHAPTER 5. EQUIVALENT QUERY REWRITINGS

5.3.4 Query Containment

[1] defines the notion of containment as follows:

Definition 5.3.1 (Query Containment). For two queries q1, q2 over the same
schema S, q1 is contained in q2, denoted q1 ⊆ q2, if for each database I satisfy-
ing S, q1(I) ⊆ q2(I). Moreover, q1 is equivalent to q2, denoted q1 ≡ q2, iff q1 ⊆ q2
and q2 ⊆ q1.

5.3.5 Functions

We model functions as views with binding patterns [102], namely:

f(x, y1, ..., ym)← B1, ..., Bn

Here, f is the function name, x is the input variable (which we underline), y1, ..., ym
are the output variables, and any other variables of the body atoms are existential
variables. In this work, we are concerned with path functions, where the body atoms
are ordered in a sequence r1(x, x1), r2(x1, x2), ..., rn(xn−1, xn), the first variable of
the first atom is the input of the plan, the second variable of each atom is the first
variable of its successor, and the output variables are ordered in the same way as
the atoms.

Example 5.3.2. Consider again our example in Figure 5.1. There are 3 relations
names in the database: onAlbum, sang, and relAlbum. The relation relAlbum links
a song to a related album. The functions are:

getAlbum(s, a)← onAlbum(s, a)

getAlbumDetails(a, s,m)← onAlbum−(a, s), sang−(s,m)

getRelatedAlbum(s, a)← relAlbum(s, a)

The first function takes as input a song s, and returns as output the album a of the
song. The second function takes as input an album a and returns the songs s with
their musicians m. The last function returns the related albums of a song.

5.3.6 Execution Plans

Our goal in this work is to study when we can evaluate an atomic query on an
instance using a set of path functions, which we will do using plans. Formally, a
plan is a finite sequence πa(x) = c1, . . . , cn of function calls, where a is a constant,
x is the output variable. Each function call ci is of the form f(α, β1, . . . , βn), where
f is a function name, where the input α is either a constant or a variable occurring
in some call in c1, . . . , ci−1, and where the outputs β1, . . . , βn are either variables or
constants. A filter in a plan is the use of a constant in one of the outputs βi of a
function call; if the plan has none, then we call it unfiltered. The semantics of the
plan is the query:

q(x)← φ(c1), . . . , φ(cn)

where each φ(ci) is the body of the query defining the function f of the call ci in
which we have substituted the constants and variables used in ci, where we have

5.3. PRELIMINARIES 63



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

used fresh existential variables across the different φ(ci), and where x is the output
variable of the plan.

To evaluate a plan on an instance means running the query above. Given an
execution plan πa and a database I, we call πa(I) the answers of the plan on I. In
practice, evaluating the plan means calling the functions in the order given by the
plan. If a call fails, it can potentially remove one or all answers of the plan. More
precisely, for a given instance I, the results b ∈ πa(I) are precisely the elements b
to which we can bind the output variable when matching the semantics of the plan
on I. For example, let us consider a function f(x, y) = r(x, y) and a plan πa(x) =
f(a, x), f(b, y). This plan returns the answer a′ on the instance I = {r(a, a′), r(b, b′)},
and returns no answer on I ′ = {r(a, a′)}.

Example 5.3.3. The following is an execution plan for Example 5.3.2:

πJailhouse(m) = getAlbum(Jailhouse, a), getAlbumDetails(a, Jailhouse,m)

The first element is a function call to getAlbum with the constant Jailhouse as input,
and the variable a as output. The variable a then serves as input in the second
function call to getAlbumDetails. The plan is shown in Figure 5.1 on page 58 with
an example instance. This plan defines the query:

onAlbum(Jailhouse, a), onAlbum−(a, Jailhouse), sang−(Jailhouse,m)

For our example instance, we have the embedding:

σ = {a = JailhouseRock,m = ElvisPresley}.

5.3.7 Atomic Query Rewriting

Our goal is to determine when a given atomic query q(x) can be evaluated as a plan
πa(x). Formally, we say that πa(x) is a rewriting (or an equivalent plan) of the query
q(x) if, for any database instance I satisfying the inclusion dependencies UID, the
result of the plan πa is equal to the result of the query q on I.

5.4 Problem Statement and Main Results
The goal of this work is to determine when a query admits a rewriting under the
inclusion dependencies. If so, we compute a rewriting. In this section, we present
our main high-level results for this task. We then describe in the next section (Sec-
tion 5.5) the algorithm that we use to achieve these results, and show in Section 5.7
our experimental results on an implementation of this algorithm.

Remember that we study atomic queries, e.g., q(x) ← r(a, x), that we study
plans on a set F of path functions, and that we assume that the data satisfy integrity
constraints given as a set UID of unary inclusion dependencies. In this section, we
first introduce the notion of non-redundant plans, which are a specific class of plans
that we study throughout the chapter; and we then state our results about finding
rewritings that are non-redundant plans.

64 5.4. PROBLEM STATEMENT AND MAIN RESULTS



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

5.4.1 Non-Redundant Plans

Our goal in this section is to restrict to a well-behaved subset of plans that are non-
redundant. Intuitively, a redundant plan is a plan that contains function calls that
are not useful to get the output of the plan. For example, if we add the function
call getAlbum(m, a′) to the plan in Example 5.3.3, then this is a redundant call that
does not change the result of πJailhouse. We also call redundant the calls that are
used to remove some of the answers, e.g., for the function f(x, y) = r(x, y) and the
plan πa(x) = f(a, x), f(b, y) presented before, the second call is redundant because
it does not contribute to the output (but can filter out some results). Formally:

Definition 5.4.1 (Redundant plan). An execution plan πa(x) is redundant if

1. it has no call using the constant a as input; or

2. it contains a call where none of the outputs is an output of the plan or an input
to another call and the input of this call is not the output of the plan; or

3. there exists strictly more than one call that takes the output variable as input.

If the plan does not satisfy these conditions, it is non-redundant.

Non-redundant plans can easily be reformulated to have a more convenient shape:
the first call uses the input value as its input, and each subsequent call uses as its
input a variable that was an output of the previous call. Formally:

Property 5.4.2. The function calls of any non-redundant plan πa(x) can be organ-
ised in a sequence c0, c1, . . . , ck such that the input of c0 is the constant a, every other
call ci takes as input an output variable of the previous call ci−1, and the output of
the plan is in the call ck.

Proof. By definition of a non-redundant plan, there is an atom using the constant a
as input. Let us call this atom c0. Let us then define the sequence c0, c1, . . . , ci, and
let us assume that at some stage we are stuck, i.e., we have chosen a call ci such that
none of the output variables of ci are used as input to another call. If the output
of the plan is not in ci, then ci witnesses that the plan is redundant. Otherwise,
the output of the plan is in ci. If we did not have i = k, then any of the calls not
in c0, c1, . . . , ci witness that the plan is redundant. So we have i = k, and we have
defined the sequence c0, c1, . . . , ck as required.

Non-redundant plans seem less potent than redundant plans, because they can-
not, e.g., filter the outputs of a call based on whether some other call is successful.
However, as it turns out, we can restrict our study to non-redundant plans without
loss of generality, which we do in the remainder of the chapter.

Property 5.4.3. For any redundant plan πa(x) that is a rewriting to an atomic
query q(x)← r(a, x), a subset of its calls forms a non-redundant plan, which is also
equivalent to q(x).

To show this property, we first need to introduce the notion of well-filtering plans.

5.4. PROBLEM STATEMENT AND MAIN RESULTS 65



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

Well-Filtering Plans

In what follows, we introduce well-filtering plans, which are used both to show that
we can always restrict to non-redundant plans (Property 5.4.3, showed in the next
sub-section) and for the correctness proof of our algorithm. We then show a result
(Lemma 5.4.6) showing that we can always restrict our study to well-filtering plans.

Let us first recall the notion of the chase [1]. The chase of an instance I by a
set UID of unary inclusion dependencies (UIDs) is a (generally infinite) instance
obtained by iteratively solving the violations of UID on I by adding new facts. In
particular, if I already satisfies UID, then the chase of I by UID is equal to I itself.
The chase is known to be a canonical database in the sense that it satisfies precisely
the queries that are true on all completions of I to make it satisfy UID. We omit
the formal definition of the chase and refer the reader to [1] for details about this
construction. We note the following property, which can be achieved whenever UID
is closed under UID implication, and when we do the so-called restricted chase which
only solves the UID violations that are not already solved:

Property 5.4.4. Let f be a single fact, and let I be the instance obtained by applying
the chase on f . Then for each element c of I0, for each relation r ∈ R, there is at
most one fact of I0 where c appears in the first position of a fact for relation r.

Remember now that that plans can use filters, which allow us to only consider
the results of a function call where some variable is assigned to a specific constant.
In this section, we show that, for any plan πa, the only filters required are on the
constant a. Further, we show that they can be applied to a single well-chosen atom.

Definition 5.4.5 (Well-Filtering Plan). Let q(x)← r(a, x) be an atomic query. An
execution plan πa(x) is said to be well-filtering for q(x) if all filters of the plan are
on the constant a used as input to the first call and the semantics of πa contains at
least an atom r(a, x) or r−(x, a), where x is the output variable.

We can then show :

Lemma 5.4.6. Given an atomic query q(a, x) ← r(a, x) and a set of inclusion
dependencies UID, any equivalent rewriting of q must be well-filtering.

Proof. We first prove the second part. We proceed by contradiction. Assume that
there is a non-redundant plan πa(x) which is an equivalent rewriting of q(a, x) and
which contains a constant b 6= a. By Property 5.4.2, the constant b is not used as
the input to a call (this is only the case of a, in atom c0), so b must be used as an
output filter in πa.

Now, consider the database I = {r(a, a′)}, and let I∗ be the result of applying
the chase by UID to I. The result of the query q on I∗ is a′, and I∗ satisfies UID
by definition, however b does not appear in I∗ so πa does not return anything on I∗
(its semantics cannot have a match), a contradiction.

We now prove the first part of the lemma. We use the form of Property 5.4.2.
If we separate the body atoms where a is an argument from those where both
arguments are variables, we can write: q′(a, x)← A(a, x1, x2, . . . xn), B(x1, x2, . . . xn)
where A(a, x1, x2, . . . xn) ← r1(a, x1), . . . rn(a, xn) (if we have an atom ri(x, a) we

66 5.4. PROBLEM STATEMENT AND MAIN RESULTS



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

transform it into r−i (a, x)) and a does not appear as argument in any of the body
atoms of B(x1, x2, . . . xn). By contradiction, assume that we have ri 6= r for all
1 ≤ i ≤ n.

Let I0 be the database containing the single fact r(a, b) and consider the database
I∗0 obtained by chasing the fact r(a, b) by the inclusion dependencies in UID, cre-
ating a new value to instantiate every missing fact. Let I∗1 = I∗0 ∪ {r(a1, b1)} ∪
{ri(a1, ci) | ri(a, ci) ∈ I∗0 ∧ri 6= r}∪{ri(b1, ci) | ri(b, ci) ∈ I∗0 ∧ri 6= r−}. By construc-
tion, I∗1 satisfies UID. Also, we have that ∀ri 6= r, ri(a, ci) ∈ I∗1 ⇔ ri(a1, ci) ∈ I∗1 .
Hence, we have that A(a, x1, x2, . . . xn)(I∗1 ) = A(a1, x1, x2, . . . xn)(I∗1 ). Then, given
that B(x1, x2, . . . xn) does not contain a nor a1, we have that q′(a1, x)(I∗1 ) =
q′(a, x)(I∗1 ). From the hypothesis we also have that q′(a, x)(I∗1 ) = q(a, x)(I∗1 ) and
q′(a1, x)(I∗1 ) = q(a1, x)(I∗1 ). This implies that q(a1, x)(I∗1 ) = q(a, x)(I∗1 ). Contradic-
tion.

Proof that we Can Restrict to Non-Redundant Plans (Property 5.4.3)

We can now prove the property claiming that it suffices to study non-redundant
plans. Recall its statement:

Property 5.4.3. For any redundant plan πa(x) that is a rewriting to an atomic
query q(x)← r(a, x), a subset of its calls forms a non-redundant plan, which is also
equivalent to q(x).

Proof. In what follows, we write q(a, x) instead of q(x) to clarify the inner constant.
Let πa(x) be an equivalent plan. From Lemma 5.4.6, we have that its semantics
contains a body atom r(a, x) or r−(x, a). Hence, there is a call c such that r(a, x)
or r−(x, a) appear in its semantics. From the definition of plans, and similarly to
the proof of Property 5.4.2, there is a chain of calls c1, c2, . . . ck such that c1 takes
a constant as input, ck = c, and for every two consecutive calls ci and ci+1, with
i ∈ {1, . . . k − 1}, there is a variable α such that α is an output variable for ci and
an output variable for ci+1. From Lemma 5.4.6, we have that for all the calls that
take a constant as input, the constant is a. Hence, the input of c1 is a. Let π′a(x)
be the plan consisting of the calls c1, c2, . . . ck = c. Note that c ensures that r(a, x)
or r−(x, a) appear in the semantics of π′a(x).

We first notice that by construction π′a(x) is non-redundant. Now, if we consider
the semantics of a plan as a set of body atoms, the semantics of π′a(x) is contained
in the semantics of πa(x). Hence, we have ∀I, πa(x)(I) ⊆ π′a(x)(I). As πa(x) is
equivalent to q(x) ← r(a, x), ∀I, we have πa(x)(I) = q(x)(I). As π′a(x) contains
r(a, x), π′a(x)(I) ⊆ q(x)(I). So, ∀I, q(x)(I) = πa(x)(I) ⊆ π′a(x)(I) ⊆ q(x)(I).
Hence, all the inclusions are equalities, and indeed π′a(x) is also equivalent to the
query under UID. This concludes the proof.

5.4.2 Result Statements

Our main theoretical contribution is the following theorem:

Theorem 5.4.7. There is an algorithm which, given an atomic query q(x) ←
r(a, x), a set F of path function definitions, and a set UID of UIDs, decides in

5.4. PROBLEM STATEMENT AND MAIN RESULTS 67



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

polynomial time if there exists an equivalent rewriting of q. If so, the algorithm
enumerates all the non-redundant plans that are equivalent rewritings of q.

In other words, we can efficiently decide if equivalent rewritings exist, and when
they do, the algorithm can compute them. Note that, in this case, the generation of
an equivalent rewriting is not guaranteed to be in polynomial time, as the equivalent
plans are not guaranteed to be of polynomial size. Also, observe that this result gives
a characterisation of the equivalent non-redundant plans, in the sense that all such
plans are of the form that our algorithm produces. Of course, as the set of equivalent
non-redundant plans is generally infinite, our algorithm cannot actually write down
all such plans, but it provides any such plan after a finite time. The underlying
characterisation of equivalent non-redundant plans is performed via a context-free
grammar describing possible paths of a specific form, which we will introduce in the
next section.

Our methods can also solve a different problem: given the query, path view def-
initions, unary inclusion dependencies, and given a candidate non-redundant plan,
decide if the plan is correct, i.e., if it is an equivalent rewriting of the query. The
previous result does not provide a solution as it produces all non-redundant equiv-
alent plans in some arbitrary order. However, we can show using similar methods
that this task can also be decided in polynomial time:

Proposition 5.4.8. Given a set of unary inclusion dependencies, a set of path
functions, an atomic query q(x) ← r(a, x) and a non-redundant execution plan πa,
one can determine in PTIME if πa is an equivalent rewriting of q.

That proposition concludes the statement of our main theoretical contributions.
We describe in the next section the algorithm used to show our main theorem
(Theorem 5.4.7) and used for our experiments in Section 5.7. Section 5.6 gives
more technical details and the appendix contains the proofs for our theorems.

5.5 Algorithm

We now present the algorithm used to show Theorem 5.4.7. The presentation ex-
plains at a high level how the algorithm can be implemented, as we did for the
experiments in Section 5.7. However, technical details are given in Section 5.6 and
formal proofs are located in the appendix.

Our algorithm is based on a characterisation of the non-redundant equivalent
rewritings as the intersection between a context-free grammar and a regular expres-
sion (the result of which is itself a context-free language). The context-free grammar
encodes the UID constraints and generates a language of words that intuitively de-
scribe forward-backward paths that are guaranteed to exist under the UIDs. As for
the regular expression, it encodes the path functions and expresses the legal exe-
cution plans. Then, the intersection gets all non-redundant execution plans that
satisfy the UIDs. We first detail the construction of the grammar, and then of the
regular expression.

68 5.5. ALGORITHM



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

5.5.1 Defining the Context-Free Grammar of Forward-
Backward Paths

Our context-free grammar intuitively describes a language of forward-backward
paths, which intuitively describe the sequences of relations that an equivalent plan
can take to walk away from the input value on an instance, and then walk back to
that value, as in our example on Figure 5.1, to finally use the relation that consists
of the query answer: in our example, the plan is getAlbum(Jailhouse,a), getAlbum-
Details(a,Jailhouse,m). The grammar then describes all such back-and-forth paths
from the input value that are guaranteed to exist thanks to the unary inclusion
dependencies that we assumed in UID. Intuitively, it describes such paths in the
chase by UID of an answer fact. We now define this grammar, noting that the
definition is independent of the functions in F :

Definition 5.5.1 (Grammar of forward-backward paths). Given a set of relations
R, given an atomic query q(a, x) ← r(a, x) with r ∈ R, and given a set of unary
inclusion dependencies UID, the grammar of forward-backward paths is a context-
free grammar Gq, whose language is written Lq, with the non-terminal symbols S ∪
{Lri , Bri | ri ∈ R}, the terminals {ri | ri ∈ R}, the start symbol S, and the following
productions:

S → Brr (5.5.1)
S → BrrBr−r

− (5.5.2)
∀ri, rj ∈ R s.t. ri  rj in UID : Bri → BriLrj (5.5.3)
∀ri ∈ R : Bri → ε (5.5.4)
∀ri ∈ R : Lri → riBr−i

r−i (5.5.5)

The words of this grammar describe the sequence of relations of paths starting
at the input value and ending by the query relation r, which are guaranteed to
exist thanks to the unary inclusion dependencies UID. In this grammar, the Bris
represent the paths that “loop” to the position where they started, at which we have
an outgoing ri-fact. These loops are either empty (Rule 5.5.4), are concatenations
of loops which may involve facts implied by UID (Rule 5.5.3), or may involve the
outgoing ri fact and come back in the reverse direction using r−i after a loop at a
position with an outgoing r−i -fact (Rule 5.5.5).

5.5.2 Defining the Regular Expression of Possible Plans

While the grammar of forward-backward paths describes possible paths that are
guaranteed to exist thanks to UID, it does not reflect the set F of available func-
tions. This is why we intersect it with a regular expression that we will construct
from F , to describe the possible sequences of calls that we can perform following
the description of non-redundant plans given in Property 5.4.2.

The intuitive definition of the regular expression is simple: we can take any
sequence of relations, which is the semantics of a function in F , and concatenate
such sequences to form the sequence of relations corresponding to what the plan

5.5. ALGORITHM 69



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

retrieves. However, there are several complications. First, for every call, the output
variable that we use may not be the last one in the path, so performing the call
intuitively corresponds to a prefix of its semantics: we work around this by adding
some backward relations to focus on the right prefix when the output variable is
not the last one. Second, the last call must end with the relation r used in the
query, and the variable that precedes the output variable of the whole plan must
not be existential (otherwise, we will not be able to filter on the correct results).
Third, some plans consisting of one single call must be handled separately. Last, the
definition includes other technicalities that relate to our choice of so-called minimal
filtering plans in the correctness proofs that we give in the appendix. Here is the
formal definition:

Definition 5.5.2 (Regular expression of possible plans). Given a set of functions F
and an atomic query q(x) ← r(a, x), for each function f : r1(x0, x1), ...rn(xn−1, xn)
of F and input or output variable xi, define:

wf,i =

{
r1 . . . ri if i = n
r1 . . . rnr

−
n ...r

−
i+1 if 0 ≤ i < n

For f ∈ F and 0 ≤ i < n, we say that a wf,i is final when:

• the last letter of wf,i is r−, or it is r and we have i > 0;

• writing the body of f as above, the variable xi+1 is an output variable;

• for i < n− 1, if xi+2 is an output variable, we require that f does not contain
the atoms: r(xi, xi+1).r

−(xi+1, xi+2).

The regular expression of possible plans is then Pr = W0|(W ∗W ′), where:

• W is the disjunction over all the wf,i above with 0 < i ≤ n.

• W ′ is the disjunction over the final wf,i above with 0 < i < n.

• W0 is the disjunction over the final wf,i above with i = 0.

The intuition of this definition is that we want to get as output xi+1 and to
filter on xi when the last atom is r. Otherwise, we output xi+1 and filter on xi.
Besides, in Section 5.6.1, we will consider execution plans such that the position of
the filter is unambiguous. When a plan ends with a function call containing the
atoms r(xi, xi+1).r

−(xi+1, xi+2) with xi+1 as output of the plan, we prefer to filter
on the latest possible variable, xi+2.

5.5.3 Defining the Algorithm

We can now present our algorithm to decide the existence of equivalent rewritings
and enumerate all non-redundant equivalent execution plans when they exist, which
is what we use to show Theorem 5.4.7:
Input: a set of path functions F , a set of relations R, a set of UID of UIDs, and
an atomic query q(x)← r(a, x).
Output: a (possibly infinite) list of rewritings.

70 5.5. ALGORITHM



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

1. Construct the grammar Gq of forward-backward paths (Definition 5.5.1).

2. Construct the regular expression Pr of possible plans (Definition 5.5.2).

3. Intersect Pr and Gq to create a grammar G

4. Determine if the language of G is empty:

If no, then no equivalent rewritings exist and stop;

If yes, then continue

5. For each word w in the language of G:

• For each execution plan πa(x) that can be built from w (intuitively de-
composing w using Pr, see below for details):

– For each subset S of output variables of πa(x): If adding a filter to a
on the outputs in S gives an equivalent plan, then output the plan
(see below for how to decide this)

We now make more precise the last steps of our algorithm:

• Building all possible execution plans πa(x) from a word w of G: this is specif-
ically done by taking all preimages of w by the path transformation, which
is done as shown in Property 5.6.9. Note that these are all minimal filtering
plans by definition.

• Checking subsets of variables on which to add filters: for each minimal filtering
plan, we remove its filter, and then consider all possible subsets of output
variables where a filter could be added, so as to obtain a well-filtering plan
which is equivalent to the minimal filtering plan that we started with. (As we
started with a minimal filtering plan, we know that at least some subset of
output variables will give a well-filtering plan, namely, the subset of size 0 of 1
that had filters in the original minimal filtering plan.) The correctness of this
step is because we know by Lemma 5.4.6 that non-redundant equivalent plans
must be well-filtering, and because we can determine using Theorem 5.6.2
if adding filters to a set of output variables yields a plan which is still an
equivalent rewriting.

Our algorithm thus decides the existence of an equivalent rewriting by computing
the intersection of a context-free language and a regular language and checking if
its language is empty. As this problem can be solved in PTIME, the complexity of
our entire algorithm is polynomial in the size of its input. The correctness proof of
our algorithm (which establishes Theorem 5.4.7), and the variant required to show
Proposition 5.4.8, are given in the appendix.

5.5. ALGORITHM 71



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

5.5.4 Example

Let us describe our algorithm for the Example 5.3.2. Our relations are
onAlbum, sang, relAlbum and all the opposite relations. We consider that
we have one non-trivial UID: UID = {sang−  onAlbum, sang−  
sang−, sang  sang, onAlbum−  onAlbum−, onAlbum onAlbum, relAlbum 
relAlbum, relAlbum  relAlbum}. The query we want to answer is q(x) ←
sang−(Jailhouse, x).

First, we need to construct the grammar Gq. The terminals are sang, sang−,
onAlbum, onAlbum−, relAlbum and relAlbum−. It contains the following rules:

• S → Bsang−sang
−

• S → Bsang−sang
−Bsangsang

• Bsang− → Bsang−LonAlbum from sang−  onAlbum

• Bsang− → Bsang−Lsang− from sang−  sang−

• Bsang → BsangLsang from sang  sang

• BonAlbum− → BonAlbum−LonAlbum− from onAlbum−  onAlbum−

• BonAlbum → BonAlbumLonAlbum from onAlbum onAlbum

• BrelAlbum− → BrelAlbum−LrelAlbum− from relAlbum−  relAlbum−

• BrelAlbum → BrelAlbumLrelAlbum from relAlbum relAlbum

• Bsang− → ε, Bsang → ε, BonAlbum− → ε, BonAlbum → ε, BrelAlbum− → ε, and
BrelAlbum → ε

• Lsang− → sang−Bsangsang, Lsang → sangBsang−sang
−, LonAlbum− →

onAlbum−BonAlbumonAlbum, LonAlbum → onAlbumBonAlbum−onAlbum
−,

LrelAlbum− → relAlbum−BrelAlbumrelAlbum, and LrelAlbum → relAlbum
BrelAlbum− relAlbum

−

Next, we construct the regular expression Pr of possible plans. To do so, we need
to compute the wf,i:

• wgetAlbum,0 = onAlbum.onAlbum−

• wgetAlbum,1 = onAlbum

• wgetAlbumDetails,0 = onAlbum−.sang−.sang.onAlbum

• wgetAlbumDetails,1 = onAlbum−.sang−.sang

• wgetAlbumDetails,2 = onAlbum−.sang−, which is final.

• wgetRelatedAlbum,0 = relAlbum.relAlbum−

• wgetRelatedAlbum,1 = relAlbum

72 5.5. ALGORITHM



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

Then the regular expression is (wgetAlbum,1 | wgetAlbumDetails,1 | wgetAlbumDetails,2 |
wgetRelatedAlbum,1)

∗.wgetAlbumDetails,2.
We are not going to perform the intersection here as it quickly creates a lot of

rules. However, we notice that this intersection is not empty as both Gq and Pr
contain the word: onAlbum.onAlbum−.sang−. This word matches the execution
plan πJailhouse(x) = getAlbum(Jailhouse, y)getAlbumDetails(y, Jailhouse, x).

5.6 Capturing Languages

In this section, we give more formal details on our approach, towards a proof of
Theorem 5.4.7 and Proposition 5.4.8. We will show that we can restrict ourselves
to a class of execution plans called minimal filtering plans which limit the possible
filters in an execution plan. Finally, we will define the notion of capturing language
and show that the language Lq defined in Section 5.5 is capturing (Theorem 5.6.11);
and define the notion of a language faithfully representing plans and show that the
language of the regular expression Pr faithfully represents plans (Theorem 5.6.13).
This section gives a high-level overview and states the theorem; the Appendix B.1
contains proofs for the present section; and the Appendix B.2 contains the proofs
of the claims made in Sections 5.4 and 5.5.

5.6.1 Minimal Filtering Plans

Remember the definition of well-filtering plans (Definition 5.4.5). We now simplify
even more the filters that should be applied to an equivalent plan, to limit ourselves
to a single filter, by introducing minimal filtering plans.

Definition 5.6.1 (Minimal Filtering Plan). Given a well-filtering plan πa(x) for
an atomic query q(a, x)← r(a, x), let the minimal filtering plan associated to πa(x)
be the plan π′a(x) that results from removing all filters from πa(x) and doing the
following:

• We take the greatest possible call ci of the plan, and the greatest possible output
variable xj of call ci, such that adding a filter on a to variable xj of call ci
yields a well-filtering plan, and define π′a(x) in this way.

• If this fails, i.e., there is no possible choice of ci and xj, then we leave πa(x)
as-is, i.e., π′a(x) = πa(x).

Note that, in this definition, we assume that the atoms in the semantics of each
function follow the order in the definition of the path function. Also, note that
the minimal filtering plan π′a(x) associated to a well-filtering plan is always itself
well-filtering. This fact is evident if the first case in the definition applies, and in
the second case, given that πa(x) was itself well-filtering, the only possible situation
is when the first atom of the first call of πa(x) was an atom of the form r(a, x), with
a being the input element: otherwise πa(x) would not have been well-filtering. So,
in this case, π′a(x) is well-filtering. Besides, note that, when the well-filtering plan
πa is non-redundant, then this is also the case of the minimal filtering plan πmina

5.6. CAPTURING LANGUAGES 73



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

because the one filter that we may add is necessarily at an output position of the
last call.

Finally, note that a well-filtering plan is not always equivalent to the minimal
filtering plan, as removing the additional filters can add some results. However, one
can easily check if it is the case or not. This theorem is proven in Appendix B.1.1.

Theorem 5.6.2. Given a query q(x)← r(a, x), a well-filtering plan πa, the associ-
ated minimal filtering plan πmina and unary inclusion dependencies UID:

• If πmina is not equivalent to q, then neither is πa.

• If πmina is equivalent to q, then we can determine in polynomial time if πa is
equivalent to πmina

This theorem implies that, when the query has a rewriting as a well-filtering
plan, then the corresponding minimal filtering plan is also a rewriting:

Corollary 5.6.3. Given unary inclusion dependencies, if a well-filtering plan is
a rewriting for an atomic query q, then it is equivalent to the associated minimal
filtering plan.

Proof. This is the contrapositive of the first point of the theorem: if πa is equivalent
to q, then so in πmina , hence πa and πmina are then equivalent.

For that reason, to study equivalent rewritings, we will focus our attention on
minimal filtering plans: Theorem 5.6.3 can identify other well-filtering plans that
are rewritings, and we know by Lemma 5.4.6 that plans that are not well-filtering
cannot be rewritings.

5.6.2 Path Transformations

We now show how to encode minimal filtering plans as words over an alphabet
whose letters are the relation names in R. The key is to rewrite the plan so that its
semantics is a path query.

Here is the formal notion of a path query :

Definition 5.6.4. A path query is a query of the form

qa(xi)← r1(a, x1), r2(x1, x2), ..., rn(xn−1, xn)

where a is a constant, xi is the output variable, each xj except xi is either a variable
or the constant a, and 1 ≤ i ≤ n. The sequence of relations r1...rn is called the
skeleton of the query.

We formalise as follows the transformation that transforms plans into path
queries. We restrict it to non-redundant minimal filtering plans to limit the number
of filters that we have to deal with:

Definition 5.6.5 (Path Transformation). Let πa(x) be a non-redundant minimal
filtering execution plan and R a set of relations. We define the path transformation
of πa(x), written P ′(πa), the transformation that maps the plan πa to a path query
P ′(πa) obtained by applying the following steps:

74 5.6. CAPTURING LANGUAGES



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

1. Consider the sequence of calls c0, c1, ..., ck as defined in Property 5.4.2, remov-
ing the one filter to element a if it exists.

2. For each function call ci(y1, yi1 ..., yij , ...yin) = r1(y1, y2), ..., rk(yk, yk+1), ...,
rm(ym, ym+1) in πa with 1 < i1 < ... < in < m + 1, such
that yij is the output used as input by the next call or is the out-
put of the plan, we call the sub-semantics associated to ci the query:
r1...rm.r

−
m...r

−
ij

(y1, ..., yij−1, y
′
ij
, ..., y′m, ym+1, ..., yij), where y′ij , ..., y

′
m are new

variables. We do nothing if ij = m+ 1.

3. Concatenate the sub-semantics associated to the calls in the order of the se-
quence of calls. We call this new query the path semantics.

4. There are two cases:

• If the semantics of πa contains the atom r(a, x) (either thanks to
a filter to the constant a on an output variable or thanks to the
first atom of the first call with a being the input variable), then
this atom must have been part of the semantics of the last call (in
both cases). The sub-semantics of the last call is therefore of the
form . . . , r(xa, x

′), r2(x
′, x2), . . . , rn(xn−1, xn), r−n (xn, xn−1), . . . , r

−
2 (x2, x),

in which xa was the variable initially filtered to a (or was the input to
the plan, in which case it is still the constant a) and we append the atom
r−(x, a) with a filter on a, where x is the output of the path semantics.

• Otherwise, the semantics of πa contains an atom r−(x, a), then
again it must be part of the last call whose sub-semantics looks
like . . . , r−(x′, x′2), r2(x

′
2, x
′
3), ..., rn(x′n−1, xn), r−n (xn, xn−1), ..., r(x1, x), in

which x′2 was the variable initially filtered to a, and we replace the last
variable x1 by a, with x being the output of the path semantics.

We add additional atoms in the last point to ensure that the filter on the last
output variable is always on the last atom of the query. Notice that the second point
relates to the words introduced in Definition 5.5.2.

The point of the above definition is that, once we have rewritten a plan to a path
query, we can easily see the path query as a word in R∗ by looking at the skeleton.
Formally:

Definition 5.6.6 (Full Path Transformation). Given a non-redundant minimal fil-
tering execution plan, writing R for the set of relations of the signature, we denote
by P(πa) the word over R obtained by keeping the skeleton the path query P ′(πa)
and we call it the full path transformation.

Note that this loses information about the filters, but this is not essential.

Example 5.6.7. Let us consider the two following path functions:

f1(x, y) = s(x, y), t(y, z)

f2(x, y, z) = s−(x, y), r(y, z), u(z, z′)

5.6. CAPTURING LANGUAGES 75



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

The considered atomic query is q(x) ← r(a, x). We are given the following non-
redundant minimal filtering execution plan:

πa(x) = f1(a, y), f2(y, a, x)

We are going to apply the path transformation to πa. Following the different steps,
we have:

1. The functions calls without filters are:

c0(a, y) = s(a, y), t(y, z)

c1(y, z, x) = s−(y, z), r(z, x), u(x, z1)

2. The sub-semantics associated to each function call are:

• For c0 : s(a, y′), t(y′, z), t−(z, y)

• For c1 : s−(y, z), r(z, x′), u(x′, z1), u
−(z1, x)

3. The path semantics obtained after the concatenation is:

s(a, y′), t(y′, z), t−(z, y), s−(y, z), r(z, x′), u(x′, z1), u
−(z1, x)

4. The semantics of πa contained r(a, x), so add the atom r−(x, a) to the path
semantics.

At the end of the path transformation, we get

P ′(πa) = s(a, y′), t(y′, z), t−(z, y), s−(y, z), r(z, x′), u(x′, z1), u
−(z1, x), r−(x, a)

and:
P(πa) = s, t, t−, s−, r, u, u−, r−

This transformation is not a bijection, meaning that possibly multiple plans can
generate the same word:

Example 5.6.8. Consider three path functions:

• f1(x, y) = s(x, y), t(y, z),

• f2(x, y, z) = s−(x, y)r(y, z),

• f3(x, y, z) = s(x, x0), t(x0, x1), t
−(x1, x2), s

−(x2, x3), r(x3, y), r−(y, z),

The execution plan π1
a(x) = f1(a, y), f2(y, a, x) then has the same image by the path

transformation than the execution plan π2
a(x) = f3(a, a, x).

However, it is possible to efficiently reverse the path transformation whenever
an inverse exists. We show this in Appendix B.1.2.

Property 5.6.9. Given a word w in R∗, a query q(x) ← r(a, x) and a set of path
functions, it is possible to know in polynomial time if there exists a non-redundant
minimal filtering execution plan πa such that P(πa) = w. Moreover, if such a πa
exists, we can compute one in polynomial time, and we can also enumerate all of
them (there are only finitely many of them).

76 5.6. CAPTURING LANGUAGES



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

5.6.3 Capturing Language

The path transformation gives us a representation of a plan inR∗. In this section, we
introduce our main result to characterise minimal filtering plans, which are atomic
equivalent rewritings based on languages defined on R∗. First, thanks to the path
transformation, we introduce the notion of capturing language, which allows us to
capture equivalent rewritings using a language defined on R∗.

Definition 5.6.10 (Capturing Language). Let q(x) ← r(a, x) be an atomic query.
The language Λq over R∗ is said to be a capturing language for the query q (or we
say that Λq captures q) if for all non-redundant minimal filtering execution plans
πa(x), we have the following equivalence: πa is an equivalent rewriting of q iff we
have P(πa) ∈ Λq.

Note that the definition of capturing language does not forbid the existence of
words w ∈ Λq that are not in the preimage of P , i.e., words for which there does not
exist a plan πa such that P (πa) = w. We will later explain how to find a language
that is a subset of the image of the transformation P , i.e., a language which faithfully
represents plans.

Our main technical result, which is used to prove Theorem 5.4.7, is that we have
a context-free grammar whose language captures q: specifically, the grammar Gq
(Definition 5.5.1):

Theorem 5.6.11. Given a set of unary inclusion dependencies, a set of path func-
tions, and an atomic query q, the language Lq captures q.

5.6.4 Faithfully Representing Plans

We now move on to the second ingredient that we need for our proofs: we need a
language which faithfully represents plans :

Definition 5.6.12. We say that a language K faithfully represents plans (relative
to a set F of path functions and an atomic query q(x)← r(a, x)) if it is a language
over R with the following property: for every word w over R, we have that w is in K
iff there exists a minimal filtering non-redundant plan πa such that P(πa) = w.

We now show the following about the language of our regular expression Pr of
possible plans as defined in Definition 5.5.2.

Theorem 5.6.13. Let F be a set of path functions, let q(x)← r(a, x) be an atomic
query, and define the regular expression Pr as in Definition 5.5.2. Then the language
of Pr faithfully represents plans.

Theorems 5.6.11 and 5.6.13 will allow us to deduce Theorem 5.4.7 and Proposi-
tion 5.4.8 from Section 5.4, as explained in Appendix B.2.

5.6. CAPTURING LANGUAGES 77



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

5.7 Experiments

We have given an algorithm that, given an atomic query and a set of path functions,
generates all equivalent plans for the query (Section 5.5). We now compare our
approach experimentally to two other methods, Susie [98], and PDQ [14], on both
synthetic datasets and real functions from Web services.

5.7.1 Setup

We found only two systems that can be used to rewrite a query into an equivalent
execution plan: Susie [98] and PDQ (Proof-Driven Querying) [14]. We benchmark
them against our implementation. All algorithms must answer the same task: given
an atomic query and a set of path functions, produce an equivalent rewriting, or
claim that there is no such rewriting.

We first describe the Susie approach. Susie takes as input a query and a set of
Web service functions and extracts the answers to the query both from the functions
and from Web documents. Its rewriting approach is rather simple, and we have
reimplemented it in Python. However, the Susie approach is not complete for our
task: she may fail to return an equivalent rewriting even when one exists. What is
more, as Susie is not looking for equivalent plans and makes different assumptions
from ours, the plan that she returns may not be equivalent rewritings (in which
case there may be a different plan which is an equivalent rewriting, or no equivalent
rewriting at all).

Second, we describe PDQ. The PDQ system is an approach to generating query
plans over semantically interconnected data sources with diverse access interfaces.
We use the official Java release of the system. PDQ runs the chase algorithm [1]
to create a canonical database, and, at the same time, tries to find a plan in that
canonical database. If a plan exists, PDQ will eventually find it; and whenever
PDQ claims that there is no equivalent plan, then indeed no equivalent plan exists.
However, in some cases, the chase algorithm used by PDQ may not terminate as
our constraints and views are too general [26]. In this case, it is impossible to know
whether the query has a rewriting or not. We use PDQ by first running the chase
with a timeout, and re-running the chase multiple times in case of timeouts while
increasing the search depth in the chase, up to a maximal depth. The exponential
nature of PDQ’s algorithm means that already very small depths (around 20) can
make the method run for hours on a single query.

Our method is implemented in Python and follows the algorithm presented in
the previous section. For the manipulation of formal languages, we used pyform-
lang (https://pyformlang.readthedocs.io). Our implementation is available online
(https://github.com/Aunsiels/query_rewriting). All experiments were run on a
laptop with Linux, 1 CPU with 4 cores at 2.5GHz, and 16 GB RAM.

5.7.2 Synthetic Functions

In our first experiments, we consider a set of artificial relations R = {r1, ..., rn}, and
randomly generate path functions up to length 4. Then we tried to find a equivalent
plan for each query of the form r(c, x) for r ∈ R. The set UID consists of all pairs

78 5.7. EXPERIMENTS

https://pyformlang.readthedocs.io
https://github.com/Aunsiels/query_rewriting


CHAPTER 5. EQUIVALENT QUERY REWRITINGS

of relations r  s for which there is a function in whose body r− and s appear in
two successive atoms. We made this choice because functions without these UIDs
are useless in most cases.

For each experiment that we perform, we generate 200 random instances of the
problem, run each system on these instances, and average the results of each method.
Because of the large number of runs, we had to put a time limit of 2 minutes per
chase for PDQ and a maximum depth of 16 (so the maximum total time with PDQ
for each query is 32 minutes). In practice, PDQ does not strictly abide by the time
limit, and its running time can be twice longer. We report, for each experiment, the
following numbers:

• Ours: The proportion of instances for which our approach found an equivalent
plan. As our approach is proved to be correct, this is the true proportion of
instances for which an equivalent plan exists.

• Susie: The proportion of instances for which Susie returned a plan which is
actually an equivalent rewriting (we check this with our approach).

• PDQ: The proportion of instances for which PDQ returned an equivalent plan
(without timing out): these plans are always equivalent rewritings.

• Susie Requires Assumption: The proportion of instances for which Susie re-
turned a plan, but the returned plan is not an equivalent rewriting (i.e., it is
only correct under the additional assumptions made by Susie).

• PDQ Timeout: The proportion of instances for which PDQ timed out (so we
cannot conclude whether a plan exists or not).

In all cases, the two competing approaches (Susie and PDQ) cannot be better than
our approach, as we always find an equivalent rewriting when one exists, whereas
Susie may fail to find one (or return a non-equivalent one), and PDQ may timeout.
The two other statistics (Susie Requires Assumption, and PDQ Timeout) denote
cases where our competitors fail, which cannot be compared to the performance of
our method.

In our first experiment, we limited the number of functions to 15, with 20%
of existential variables, and varied the number n of relations. Both Susie and our
algorithm run in less than 1 minute in each setting for each query, whereas PDQ
may timeout. Figure 5.2 shows which percentage of the queries can be answered.
As expected, when the number of relations increases, the rate of answered queries
decreases as it becomes harder to combine functions. Our approach can always
answer strictly more queries than Susie and PDQ.

In our next experiment, we fixed the number of relations to 7, the probability
of existential variables to 20%, and varied the number of functions. Figure 5.3
shows the results. As we increase the number of functions, we increase the number
of possible function combinations. Therefore, the percentage of answered queries
increases both for our approach and for our competitors. However, our approach
answers about twice as many queries as Susie and PDQ.

In our last experiment, we fixed the number of relations to 7, the number of
functions to 15, and we varied the probability of having an existential variable.

5.7. EXPERIMENTS 79



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

5 10 15

0

20

40

60

80

100

Number of Relations

%
 o

f 
A

n
sw

er
ed

 Q
u
er

ie
s

Ours

Susie

PDQ

Susie Requires Assumption

PDQ Timeout

Figure 5.2: Percentage of answered queries with varying number of relations

5 10 15 20

0

20

40

60

80

Number of Functions

%
 o

f 
A

n
sw

er
ed

 Q
u
er

ie
s

Ours

Susie

PDQ

Susie Requires Assumption

PDQ Timeout

Figure 5.3: Percentage of answered queries with varying number of functions

Figure 5.4 shows the results. As we increase the probability of existential variables,
the number of possible plans decreases because fewer outputs are available to call
other functions. However, the impact is not as marked as before, because we have to
impose at least one output variable per function, which, for small functions, results
in few existential variables. As Susie and PDQ use these short functions in general,
changing the probability did not impact them too much. Still, our approach can
answer about twice as many queries as Susie and PDQ.

5.7.3 Real-World Web Services

We consider the functions of Abe Books (https://www.abebooks.fr/), ISB-
NDB (http://isbndb.com/), LibraryThing (http://www.librarything.com/), and
MusicBrainz (http://musicbrainz.org/), all used in [98], and Movie DB
(https://www.themoviedb.org) to replace the (now defunct) Internet Video Archive
used in [98]. We add to these functions some other functions built by the Susie

80 5.7. EXPERIMENTS

https://www.abebooks.fr/
http://isbndb.com/
http://www.librarything.com/
http://musicbrainz.org/
https://www.themoviedb.org


CHAPTER 5. EQUIVALENT QUERY REWRITINGS

0 0.5 1

0

20

40

60

80

Probability existential

%
 o

f 
A

n
sw

er
ed

 Q
u
er

ie
s

Ours

Susie

PDQ

Susie Requires Assumption

PDQ Timeout

Figure 5.4: Percentage of answered queries with varying number of existential vari-
ables

approach. We group these Web services into three categories: Books, Movies, and
Music, on which we run experiments separately. For each category, we manually
map all services into the same schema and generate the UIDs as in Section 5.7.2.
Our dataset is available online (see URL above).

The left part of Table 5.1 shows the number of functions and the number of
relations for each Web service. Table 5.2 gives examples of functions. Some of them
are recursive. For example, the first function in the table allows querying for the
collaborators of an artist, which are again artists. This allows for the type of infinite
plans that we discussed in the introduction, and that makes query rewriting difficult.

For each Web service, we considered all queries of the form r(c, x) and r−(c, x),
where r is a relation used in a function definition. We ran the Susie algorithm,
PDQ, and our algorithm for each of these queries. The runtime is always less than
1 minute for each query for our approach and Susie but can timeout for PDQ. The
time limit is set to 30 minutes for each chase, and the maximum depth is set to
16. Table 5.1 shows the results, similarly to Section 5.7.2. As in this case, all plans
returned by Susie happened to be equivalent plans, we do not include the “Susie
Requires Assumption” statistic (it is 0%). Our approach can always answer more
queries than Susie and PDQ, and we see that with more complicated problems (like
Music), PDQ tends to timeout more often.

In terms of the results that we obtain, some queries can be answered by rather
short execution plans. Table 5.3 shows a few examples. However, our results show
that many queries do not have an equivalent plan. In the Music domain, for example,

Web Service Functions Relations Susie PDQ (timeout) Ours
Movies 2 8 13% 25% (0%) 25%
Books 13 28 57% 64% (7%) 68%
Music 24 64 22% 22% (25%) 33%

Table 5.1: Web services and results

5.7. EXPERIMENTS 81



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

it is not possible to answer produced(c, x) (i.e., to know which albums a producer
produced), hasChild−(c,x) (to know the parents of a person), and rated−(c, x) (i.e.,
to know which tracks have a given rating). This illustrates that the services maintain
control over the data, and do not allow arbitrary requests.

5.8 Visualisation Demo
We have implemented a demo for our system. In our demo, the user can specify a
set of functions and a query. The demo will then draw the functions, search for an
execution plan that answers the query by composing the functions, and animate it
to the user. The functions and the query are specified in textual form – simply by
giving their sequence of relations, as in:

• getAlbum : onAlbum

• getAlbumDetails : onAlbum−, singer

• query : singer

Our demo is shown in Figure 5.5 (left). The query is shown as a red edge. The
input constant to the query is represented by a generic placeholder “IN”. A click on
the “Save&Run” button runs our algorithm, and proposes an execution plan if one
exists. This plan is then animated by moving the graphical function representations
into their place, so that we can see that the plan is equivalent to the query. The
figure shows the second function moving into its place. The user can play with
different function definitions, and also rerun the animation.
It is also possible to load function definitions of real Web services (“Load file” but-
ton). We provide function definitions for Abe Books (https://www.abebooks.fr/),
ISBNDB (http://isbndb.com/), LibraryThing (http://www.librarything.com/), and
MusicBrainz (http://musicbrainz.org/) from Chapter 5. Figure 5.5 (right) shows the
final plan after the user has loaded music-related functions and asked the query re-
leased(x,y). Note how the plan consists of several forward-backward paths. The
stars in the function definitions (and the corresponding empty arrow heads in their
graphical representation) indicate variables that appear in the body of the function,
but are not an output variable.

Technically, our demo is an HTML page with JavaScript that runs in a Web
browser at http://dangie.r2.enst.fr/. Once the user clicks on “Save&Run”, the func-
tion definitions are passed to a Python implementation of our algorithm from [108]

GetCollaboratorsByID(artistId, collab, collabId) ←
hasId−(artistId,artist), isMemberOf(artist,collab), hasId(collab,collabId)

GetBookAuthorAndPrizeByTitle(title, author, prize) ←
isTitled−(title, book), wrote−(book,author), hasWonPrize(author,prize)

GetMovieDirectorByTitle(title, director) ←
isTitled−(title,movie), directed−(movie,director)

Table 5.2: Examples of real functions

82 5.8. VISUALISATION DEMO

https://www.abebooks.fr/
http://isbndb.com/
http://www.librarything.com/
http://musicbrainz.org/
http://dangie.r2.enst.fr/


CHAPTER 5. EQUIVALENT QUERY REWRITINGS

Query Execution Plan
released GetArtistInfoByName, GetReleasesByArtistID, GetArtistInfoByName,

GetTracksByArtistID, GetTrackInfoByName, GetReleaseInfoByName
published GetPublisherAuthors, GetBooksByAuthorName
actedIn GetMoviesByActorName, GetMovieInfoByName

Table 5.3: Example plans

Figure 5.5: Screenshots of our demo. Left: Our toy example, with the functions on
top and the plan being constructed below. The gray arrows indicate the animation.
Right: A plan generated for real Web service functions

to compute the plan. The page then displays the plan as SVG, which is animated
with animation tags.

5.9 Conclusion

In this chapter, we have addressed the problem of finding equivalent execution plans
for Web service functions. We have characterised these plans for atomic queries and
path functions, and we have given a correct and complete method to find them.
Our experiments have demonstrated that our approach can be applied to real-world
Web services and that its completeness entails that we always find plans for more
queries than our competitors. All experimental data, as well as all code, is available
at the URL given in Section 5.7. We hope that our work can help Web service
providers to design their functions, and users to query the services more efficiently.
For future work, we aim to broaden our results to non-path functions. We also

5.9. CONCLUSION 83



CHAPTER 5. EQUIVALENT QUERY REWRITINGS

intend to investigate connections between our theoretical results and the methods
by Benedikt et al. [13], in particular possible links between our techniques and those
used to answer regular path queries under logical constraints [18].

84 5.9. CONCLUSION



Chapter 6

Query Rewriting Without Integrity
Constraints

Le petit Poucet croyait retrouver
aisément son chemin, par le moyen
de son pain qu’il avait semé partout
où il avait passé; mais il fut bien
surpris lorsqu’il ne put en retrouver
une seule miette: les oiseaux étaient
venus, qui avaient tout mangé.

Charles Perrault

In Chapter 5, we studied query rewritings under path views with integrity con-
straints. However, we do not necessarily have integrity constraints over our data.
So, in this chapter, we restrict the TBox to two components: the relations and the
entities. Equivalent rewritings are easy to find in this case. However, as we will see,
they are of little use in practice. Therefore, we propose a new class of plans, the
smart plans, and characterise them.

This chapter comes from [109]:

Romero, J., Preda, N., & Suchanek, F.
Query Rewriting On Path Views Without Integrity Constraints
Workshop paper at Datamod 2020

**********

6.1 Introduction
In this chapter, we consider the example illustrated in Figure 6.1. In this example,
if we want to find the job title of Anna, we first have to find her company (by calling
getCompany), and then her job title (by calling getHierarchy on her company, and
filtering the results about Anna). Chapter 5 and much of the literature concentrates
on finding equivalent rewritings, i.e., execution plans that deliver the same result

85



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Anna The GuardianJournalist

Oxford University

worksForjobTitle

graduatedFrom

getCompany

getHierarchy

JohnAccountant
worksForjobTitle

getHierarchy

getEducation

Figure 6.1: An equivalent execution plan (blue) and a maximal contained rewriting
(orange) executed on a database (black)

as the original query on all databases. Unfortunately, our example plan is not an
equivalent rewriting: it will deliver no results on databases where (for whatever
reasons) Anna has a job title but no employer. The plan is equivalent to the query
only if an integrity constraint stipulates that every person with a job title must have
an employer.

Such constraints are hard to come by in real life, because they may not hold (a
person can have a job title but no employer; a person may have a birth date but no
death date; some countries do not have a capital like the Republic of Nauru). Even
if they hold in real life, they may not hold in the database due to the incompleteness
of the data. Hence, they are also difficult to mine automatically. In the absence
of constraints, however, an atomic query has an equivalent rewriting only if there
is a function that was defined precisely for that query. One solution is to resort to
maximally contained rewritings. Intuitively speaking, these are execution plans that
try to find all calls that could potentially lead to an answer. In our example, the
plan getAlmaMater, getHierarchy is included in the maximally contained rewriting:
It asks for the university where Anna graduated, and for their job positions. If Anna
happens to work at the university where she graduated, this plan will answer the
query.

This plan appears somehow less reasonable that our first plan because it works
only for people who work at their alma mater. However, both plans are equal con-
cerning their formal guarantees: none of them can guarantee to deliver the answers
to the query. This is a conundrum: Unless we have information about the data
distribution or more schema information, we have no formal means to give the first
plan higher chances of success than the second plan – although the first plan is
intuitively much better.

In this chapter, we propose a solution to this conundrum: We can show that
the first plan (getCompany, getHierarchy) is “smart”, in a sense that we formally
define. We can give guarantees about the results of smart plans in the absence of
integrity constraints. We also give an algorithm that can enumerate all smart plans
for a given atomic query and path-shaped functions (as in Figure 6.1). We show
that under a condition that we call the Optional Edge Semantics our algorithm is

86 6.1. INTRODUCTION



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

complete and correct, i.e., it will exhaustively enumerate all such smart plans. We
apply our method to real Web services and show that smart plans work in practice
and deliver more query results than competing approaches.

This chapter is structured as follows: Section 6.2 introduces some additional
preliminaries, and Section 6.3 gives a definition of smart plans. Section 6.4 provides
a method to characterise smart plans, and Section 6.5 gives an algorithm that can
generate smart plans. We provide extensive experiments on synthetic and real Web
services to show the viability of our method in Section 6.6.

6.2 Preliminaries
We use the terminology of Chapter 5. We slightly modify the notation of an ex-
ecution plan as it is more convenient in this chapter. But first, we give example
functions:

Example 6.2.1. Consider our example in Figure 6.1. There are 3 relation names
in the database: worksFor, jobTitle, and graduatedFrom. The functions are:

getCompany(x, y)← worksFor(x, y)

getHierarchy(y, x, z)← worksFor−(y, x), jobTitle(x, z)

getEducation(x, y)← graduatedFrom(x, y)

The first function takes as input a person x, and returns as output the organisation
y. The second function takes as input an organisation y and returns the employees
x with their job title y. The last function returns the university y from where a given
person x graduated.

Calling a function for a given value of the input variable means finding the result
of the query given by the body of the function on a database instance.
Plans. A plan takes the form

πa(x) = c1, . . . , cn, γ1 = δ1, . . . , γm = δm

Here, a is a constant and x is the output variable. Each ci is a function call of the
form f(α, β1, . . . , βn), where f is a function name, the input α is either a constant
or a variable occurring in some call in c1, . . . , ci−1, and the outputs β1, . . . , βn are
variables. Each γj = δj is called a filter, where γj is an output variable of any call,
and δj is either a variable that appears in some call or a constant. If the plan has
no filters, then we call it unfiltered. The semantics of the plan is the query:

q(x)← φ(c1), . . . , φ(cn), γ1 = δ1, . . . , γm = δm

where each φ(ci) is the body of the query defining the function f of the call ci in
which we have substituted the constants and variables used in ci. We have used
fresh existential variables across the different φ(ci), where x is the output variable
of the plan, and where · = · is an atom that holds in any database instance if and
only if its two arguments are identical.

To evaluate a plan on an instance means running the query above. In practice,
this boils down to calling the functions in the order given by the plan. Given an
execution plan πa and a database I, we call πa(I) the answers of the plan on I.

6.2. PRELIMINARIES 87



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Example 6.2.2. The following is an execution plan for Example 6.2.1:

πAnna(y) =getCompany(Anna, x),

getHierarchy(x, z, y), z = Anna

The first element is a function call to getCompany with the name of the person
(Anna) as input, and the variable x as output. The variable x then serves as input
in the second function call to getHierarchy. Figure 6.1 shows the plan with an
example instance. This plan defines the query:

worksFor(Anna, x),worksFor−(x, z),

jobTitle(z, y), z = Anna

In our example instance, we have the embedding:

σ = {x −→ The Guardian, y −→ Journalist, z −→ Anna}.

An execution plan πa(x) is redundant if it has no call using the constant a as input,
or if it contains a call where none of the outputs is an output of the plan or an input
to another call.

An equivalent rewriting of an atomic query q(x) ← r(a, x) is an execution plan
that has the same results as q on all database instances. For our query language,
a maximally contained rewriting for the query q is a plan whose semantics contains
the atom r(y, x) for some variable y.

6.3 Defining Smart Plans

6.3.1 Introductory Observations

Given an atomic query, and given a set of path functions, our goal is to find an
execution plan that answers the query. In our example from Figure 6.1, our goal is
to find an execution plan of the three available functions getHierarchy, getCompany,
getEducation in order to answer the query q(x) ← jobTitle(Anna, x). The plan we
aim at is:

πAnna(z) = getCompany(Anna, x), getHierarchy(x, y, z), y = Anna (6.3.1)

We have already seen that, in the absence of integrity constraints, it may be im-
possible to find an equivalent rewriting for a query on a given set of functions. In
our example from Figure 6.1, there exists no equivalent rewriting. In particular, the
plan 6.3.1 is not an equivalent rewriting, because it will deliver the same results as
the query only on databases where Anna works at a company.

The standard solution is to resort to maximally contained rewritings [73]. The
plan above is part of the maximally contained rewriting, but so is the following plan:

πOxford(y) =getHierarchy(OxfordUniversity, x, y), x = Anna (6.3.2)

88 6.3. DEFINING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

AnnaThe Guardian 01.22.33.44worksAt phone

Economy Section

headO
f

getSection getPhone

getCompany

JamesThe Guardian 01.22.33.44worksAt phone

Economy Section

he
ad

O
f

getSection getPhone

Anna

work
sAtgetC

omp
any ?

phone

Figure 6.2: A non-smart execution plan for the query phone(Anna,x). Top: a
database where the plan answers the query. Bottom: a database where the unfiltered
plan has results, but the filtered plan does not answer the query

This plan will answer the query only if Anna happens to work at Oxford University –
which is a very strong hypothesis. The following plan is also part of the maximally
contained rewriting:

πAnna(t) =getFriends(Anna, x),

getFriends(x, y), getCompany(y, z),

getHierarchy(z, p, t), p = Anna (6.3.3)

This plan asks for the persons y who are friends of the friends of Anna and then
obtains their positions in their respective companies. This plan will work if Anna
happens to have friends at the same company – which is as counter-intuitive as
the previous plan. More worryingly, one can prolong the plan infinitely, or until
the transitive closure is computed, by more calls to the function getFriends. As
shown in [45], unions and recursive plans must be considered in maximally contained
rewritings, and there are no bounds on the size of the recursion. Hence, it seems
that only the first execution plan 6.3.1 is “smart”. The reason appears to be that if
the database contains an answer to the query, and if the plan delivers a result, then
the plan will answer the query. Nevertheless, this definition will not work because
it would also make the plan 6.3.2 smart.

6.3. DEFINING SMART PLANS 89



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

6.3.2 Smart Plan Definition

We propose the following definition of smart plans:

Definition 6.3.1 (Smart Plan). Given an atomic query q and a set of functions, a
plan π is smart if the following holds on all database instances I: If the filter-free
version of π has a result on I, then π delivers exactly the answers to the query.

It is easy to see that this definition separates the wheat from the chaff: Plan 6.3.1 is
smart in this sense, whereas Plans 6.3.2 and 6.3.3 are not. We also introduce weakly
smart plans:

Definition 6.3.2 (Weakly Smart Plan). Given an atomic query q and a set of
functions, a plan π is weakly smart if the following holds on all database instances
I where q has at least one result: If the filter-free version of π has a result on I,
then π delivers a super-set of the answers to the query.

Every smart plan is also a weakly smart plan. Some queries will admit only weakly
smart plans and no smart plans, mainly because the variable that one has to filter
on is not an output variable. Nevertheless, weakly smart plans can be useful: For
example, if a data provider wants to hide private information, they do not want to
leak it in any way, not even among other results. Thus, they will want to design
their functions in such a way that no weakly smart plan exists for this specific query.

6.3.3 Comparison with Susie

The plans generated in Susie [98] are smart according to our definition. However,
they only represent a subset of the smart plans. For instance, consider again the
query holdsPosition(Anna, x), and assume that, in addition to the function get-
Hierarchy, we have the following two functions:

getProfessionalAddress(x, y, z)← worksFor(x, y), locatedIn(y, z)

getEntityAtAddress(x, y)← locatedIn(x, y)

Then the following plan is smart (see Figure 6.3):

πAnna(x) =getProfessionalAddress(Anna, y, z),

getEntityAtAddress(z, y′), getHierarchy(y′, t, x)

However, it will not be discovered by the algorithm in [98].

6.3.4 Comparison with Equivalent Rewritings

We have already seen that there exists no equivalent rewriting of our query in our
example from Figure 6.1, because there are no constraints. Now we could assume
constraints. If we add, e.g., inclusion dependencies between all relations, then the
work of Chapter 5 would indeed find Plan 6.3.1. However, it would also find non-
smart plans. As an example, consider the plan in Figure 6.2. It tries to find the
phone number of Anna. The plan calls the functions getCompany (which delivers

90 6.3. DEFINING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Anna The Guardian, Kings Place, LondonJournalist
worksForjobTitle locatedIn

getProfessionalAddress

getHierarchy getEntityAtAddress

Figure 6.3: A smart plan for the query jobTitle(Anna, ?x), which Susie will not find

The Guardian), and then getSections (which delivers the sections with their heads),
and finally getPhone, which delivers the head of the section with their phone number.
This plan is not smart: If Anna is not the head of a section, the unfiltered plan will
return the phone number of someone else. Hence, the filtered plan will not answer
the query, even though the unfiltered plan returned a result.

6.3.5 Sub-Smart Definition

In the definitions introduced in Section 6.3.2, we focused on plans which are able to
return all results of a query. However, the user may be only interested in getting
only one answer to his query. For example, if we are looking for the email of a
professor, it is enough to find only one of them to contact him. Thus, we introduce
the notion of sub-smart plans, which is a variation of the smart plans.

Definition 6.3.3 (Sub-Smart Plan). Given an atomic query q and a set of functions,
a plan π is sub-smart if the following holds on all database instances I: If the filter-
free version of π has a result on I, then π delivers a non-empty subset of the answers
to the query.

Like for smart plans, we also introduce a weak version of the previous definition:

Definition 6.3.4 (Weakly Sub-Smart Plan). Given an atomic query q and a set
of functions, a plan π is weakly sub-smart if the following holds on all database
instances I where q has at least one result: If the filter-free version of π has a result
on I, then π contains a non-empty subset of the answers to the query.

We note that if a plan is smart (resp. weakly smart) then it is also sub-smart
(resp. weakly sub-smart).

6.4 Characterizing Smart Plans

6.4.1 Web Service Functions

We now turn to recognising smart plans. As previously stated, our approach can
find smart plans only under a certain condition. This condition has to do with the
way Web services work. Assume that for a given person, a function returns the
employer and the address of the working place:

getCompanyInfo(x, y, z)← worksAt(x, y), locatedIn(y, z)

6.4. CHARACTERIZING SMART PLANS 91



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Now assume that, for some person, the address of the employer is not in the database.
In that case, the call will not fail. Rather, it will return only the employer y, and
return a null-value for the address z. It is as if the atom locatedIn(y, z) were
optional. In Chapter 5, we supposed that the function must have a binding for all
its variables (output and existential) to yield a result. Here, with getLifeDates, the
function would not have given any answer for Elvis. To model this phenomenon, we
introduce the notion of sub-functions :

Definition 6.4.1 (Sub-Function). Given a path function f(x0, xi1 , ..., xim) ←
r1(x0, x1), r2(x1, x2), . . . rn(xn−1, xn), 0 < i1 < . . . < im ≤ n, the sub-
function associated to an output variable xik is the function fk(x0, xi1 , ..., xik) ←
r1(x0, x1), . . . rik(xik−1, xik).

Example 6.4.2. The sub-functions of the function getCompanyInfo are
f1(x, y) ← worksAt(x, y), which is associated to y, and f2(x, y, z) ←
worksAt(x, y), locatedIn(y, z), which is associated to z.

We can now express the Optional Edge Semantics:

Definition 6.4.3 (Optional Edge Semantics). We say that we are under the optional
edge semantics if, for any path function f , a sub-function of f has exactly the same
binding for its output variables as f .

The optional edge semantics mirrors the way real Web services work. Its main
difference to the standard semantics is that it is not possible to use a function to
filter out query results. For example, it is not possible to use the function get-
CompanyInfo to retrieve only those people who work at a company with a known
address. The function will retrieve companies with addresses and companies without
addresses, and we can find out the companies without addresses only by skimming
through the results after the call. This contrasts with the standard semantics of
parametrised queries (as used, e.g., in [97, 98, 108]), which do not return a result if
any of their variables cannot be bound.

This has a very practical consequence: As we shall see, smart plans under the
optional edge semantics have a very particular shape.

6.4.2 Why We Can Restrict to Path Queries

Under the optional edge semantics, we can query for all partial results. Now if we
have all sub-functions of a given function f , then f itself is no longer necessary
(except if it is itself a sub-function). We call this substitution by sub-functions the
sub-function transformation:

Definition 6.4.4 (Sub-Function Transformation). Let F be a set of path functions
and Fsub the set of sub-functions of F . Let πa be a non-redundant execution plan
over F . Then, we define the Sub-Function Transformation of πa, written Psub(πa),
as the non-redundant execution plan over the sub-functions Fsub as follows:

• The output is the same than πa

92 6.4. CHARACTERIZING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

a c1 c2 c3c4
u s tr

f1

f2
f3

f4

Figure 6.4: A bounded plan

• Each function call c in πa associated to a path function f is replaced by the
smallest sub-function of f which contains the output variables which are either
the output of the plan, used by other calls or involved in filters.

This transformation preserves smartness.

Property 6.4.5. Let q(x) ← r(a, x) be an atomic query and F be a set of path
functions. Let πa be a non-redundant execution plan composed of the sequence of
calls c1, ..., cn. Then, under the optional edge semantics, πa is smart (resp. weakly
smart, sub-smart, weakly sub-smart) iff its sub-function transformation Psub(πa) is
smart (resp. weakly smart, sub-smart, weakly sub-smart).

Proof. This property follows directly from the optional edge semantics: The outputs
of the sub-function are precisely the same as the outputs of the full function for the
same variables. So, we can apply all the filters and have the same effect.

The property tells us that under the optional edge semantics, we can replace all
path functions by one of their sub-functions.

Finally, in the case of constraint-free plans, we have that the sub-function trans-
formation creates a path query, which will be easier to manipulate.

Property 6.4.6. Let πa be a constraint-free non-redundant execution plan. Then
the semantics of the sub-function transformation Psub(πa) is a path query where the
last variable of the last atom is the output atom.

Proof. This property follows directly the fact that in a constraint-free plan, we
require only one output per function. Therefore, function calls can be chained, and
the last variable of the last atom is the output of the plan (we require nothing else
after that).

We can also deduce from this property that once we have transformed a
constraint-free execution plan (exploited in weakly smart plans) to use only sub-
functions, we can write the semantics of the plan unambiguously as a skeleton. In
particular, we could consider that each sub-function has only one output.

In the end, we can see that it is safe to consider only execution plans whose
semantics is a path query in the case of constraint-free plans. We shall see that this
is also the case for minimal-filtering non-redundant execution plans.

6.4. CHARACTERIZING SMART PLANS 93



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

6.4.3 Preliminary Definitions

Our main intuition is that smart plans under the optional edge semantics walk
forward until a turning point. From then on, they “walk back” to the input constant
and query (see again Figure 6.1). As a more complex example, consider the atomic
query q(x)← r(a, x) and the database shown in Figure 6.4. The plan f1, f2, f3, f4 is
shown in blue. As we can see, the plan walks “forward” and then “backward” again.
Intuitively, the “forward path” makes sure that certain facts exist in the database (if
the facts do not exist, the plan delivers no answer, and is thus trivially smart). If
these facts exist, then all functions on the “backward path” are guaranteed to deliver
results. Thus, if a has an r-relation, the plan is guaranteed to deliver its object. Let
us now make this intuition more formal.

We first observe (and prove in Property 6.4.6) that the semantics of any filter-
free execution plan can be written as a path query. The path query of Figure 6.4
is

q(a, x)←u(a, y1), s(y1, y2), t(y2, y3), t
−(y3, y2), s

−(y2, y1),

s(y1, y2), s
−(y2, y1), u

−(y1, y0), r(y0, x)

Now any filter-free path query can be written unambiguously as the sequence of its
relations – the skeleton. In the example, the skeleton is

u.s.t.t−.s−.s.s−.u−.r

In particular, the skeleton of an atomic query q(x) ← r(a, x) is just r. Given a
skeleton r1r2...rn, we write r1...rn(a) for the set of all answers of the query when a is
given as input. For path functions, we write the name of the function as a shorthand
for the skeleton of the semantics of the function. For example, in Figure 6.4, we have
f1(a) = {c3}, and f1f2f3f4(a) = {c4}. We now introduce two notions to formalise
the “forward and backward” movement:

Definition 6.4.7 (Forward and Backward Step). Given a sequence of relations
r0...rn and a position 0 ≤ i ≤ n, a forward step consists of the relation ri, together
with the updated position i + 1. Given position 1 ≤ i ≤ n + 1, a backward step
consists of the relation r−i−1, together with the updated position i− 1.

Definition 6.4.8 (Walk). A walk to a position k (0 ≤ k ≤ n) through a sequence of
relations r0...rn consists of a sequence of steps (forward or backward) in r0...rn, so
that the first step starts at position n + 1, every step starts at the updated position
of the previous step, and the last step leads to the updated position k.

If we do not mention k, we consider that k = 0, i.e., we cross the sequence of
relations entirely.

Example 6.4.9. In Figure 6.4, a possible walk through r−ust is t−s−ss−u−r. This
walk goes from c3 to c2 to c1, then to c2, and back through c1, c, c4 (as indicated by
the blue arrows).

We can now formalise the notion of the forward and backward path:

94 6.4. CHARACTERIZING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Definition 6.4.10 (Bounded plan). A bounded path for a set of relations R and
a query q(x) ← r(a, x) is a path query P , followed by a walk through r−P . A
bounded plan for a set of path functions F is a non-redundant execution plan whose
semantics are a bounded path. We call P the forward path and the walk though r−P
the backward path.

Example 6.4.11. In Figure 6.4, f1f2f3f4 is a bounded path, where the forward path
is f1, and the backward path f2f3f4 is a walk through r−f1.

6.4.4 Characterising Weakly Smart Plans

Our notion of bounded plans is based purely on the notion of skeletons, and does
not make use of filters. This is not a problem, because weakly smart plans do not
need filters (i.e., if we remove the filters from a weakly smart plan, it will still be a
weakly smart plan). Furthermore, we showed in Section 6.4.2 that we can restrict
ourselves to execution plans whose semantics is a path query. This allows for the
following theorems:

Theorem 6.4.12 (Correctness). Let q(x)← r(a, x) be an atomic query, F a set of
path functions and Fsub the set of sub-functions of F . Let πa be a non-redundant
bounded execution plan over the Fsub such that its semantics is a path query. Then
πa is weakly smart.

Proof. As πa is a constraint-free non-redundant execution plan over the Fsub, its
sub-function transformation can be written as a path query (see Property 6.4.6).
We now consider we have this form.

Let πa be a bounded plan for a query q(x)← r(a, x). Assume a database I such
that q(I) 6= ∅ and πa(I) 6= ∅ (such a database exists). Choose any constant c0 ∈
q(I). We have to show that c0 ∈ πa(I). Since πa is bounded, its consequences can
be split into a forward path F = r1...rm and a following backward path B = r′1...r

′
n

with r′n = r (by definition of a walk). Since πa(I) 6= ∅ it follows that F (a) 6= ∅.
Hence, I must contain r1(a, c2)...rm(cm, cm+1) for some constants c1, ..., cm+1. Since
r(a, c0) ∈ I, the database I must contain r−(c0, a)r1(a, c2)...rm(cm, cm+1). B =
r′1...r

′
n is a walk through r−F . Let us prove by induction that ci ∈ Fr′1...r

′
j(a) if

r′j was generated by a step that leads to position i. To simplify the proof, we call
c1 = a.

The walk starts at position i = m+ 1 with a backward step, leading to position
i = m. Hence, r′1 = r−m. Thus, we have cm ∈ Fr′1(a). Now assume that we have
arrived at some position i ∈ [1,m], and that ci ∈ Fr′1...r′j(a), where r′j was generated
by the previous step. If the next step is a forward step, then rj+1 = ri, and the
updated position is i+1. Hence, ci+1 ∈ Fr′1...r′j+1(a). If the next step is a backward
step, then rj+1 = r−i−1, and the updated position is i−1. Hence, ci−1 ∈ Fr′1...r′j+1(a).
It follows then that c0 ∈ FB(a) as the walk ends at position 0.

Theorem 6.4.13 (Completeness). Let q(x)← r(a, x) be an atomic query, F a set
of path functions and Fsub the set of sub-functions of F . Let πa be a weakly smart
plan over Fsub such that its semantics is a path query. Then πa is bounded.

6.4. CHARACTERIZING SMART PLANS 95



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Proof. As πa is a constraint-free non-redundant execution plan over the Fsub, its
sub-function transformation can be written as a path query (see Property 6.4.6).
We now consider we have this form.

Let πa be a weak smart plan for a query q(x) ← r(a, x), with consequences
r1(x1, x2)... rn(xn, xn+1), rn+1(xn+1, xn+2). Without loss of generality, we suppose
that r1 6= r (the proof can be adapted to work also in this case). Consider the
database I

I = {r−(c0, a), r1(a, c2), ..., rn(cn, cn+1), rn+1(cn+1, cn+2)}

Here, the ci are fresh constants. For convenience, we write a = c1. On this database,
πa(I) ⊇ {cn+2} 6= ∅ and q(I) = {c0}. Since πa is weakly smart, we must have
c0 ∈ πa(I). Let σ be a binding for the variables of πa that produces this result c0,
i.e., σ(x1) = σ(xn+1) = a (as a is the only entity linked to c0). We notice that we
must have rn+1 = r as it is the only relation which leads to c0. Let us define

m = (max {m′ | ∃l : σ(xl) = cm′})− 1

Let us call r−r1...rm the forward path, and rm+1...rnrn+1 the backward path (with
rn+1 = r). We have to show that the backward path is a walk in the forward path.

Let us show by induction that rm+1...rj can be generated by j−m steps (with j ∈
[m+1, n+1]), so that the updated position after the last step is i, and σ(xj+1) = ci.
We first note that, due to the path shape of I, σ(xj) = ci for any i, j always implies
that σ(xj+1) ∈ {ci−1, ci+1}. Let us start with j = m + 1 and position i = m + 1.
Since σ(xj+1) cannot be cm+1 (by definition of m), we must have σ(xj+1) = cm.
Since σ(xj) = cm+1 and σ(xj+1) = cm, we must have rm+1 = r−m. Thus, rm+1 was
generated by a backward step, and we call i − 1 the updated position. Now let us
assume that we have generated rm+1...rj (with j ∈ [m+ 2, n+ 1]) by some forward
and backward steps that have led to a position i ∈ [0,m], and let us assume that
σ(xj+1) = ci. Consider the case where σ(xj+2) = ci+1. Then we have rj+1 = ri.
Thus, we made a forward step, and the updated position is i+ 1. Now consider the
case where σ(xj+2) = ci−1. Then we have rj+1 = r−i−1. Thus, we made a backward
step, and the updated position is i − 1. Since we have rn+1 = r and σ(xn+2) = c0,
the walk must end at position 0. The claim follows when we reach j = n+ 1.

We have thus found a way to recognise weakly smart plans without executing them.
Extending this characterisation from weakly smart plans to fully smart plans consists
mainly of adding a filter. Section 6.5.5 shows how the adaptation is done in practice
and we now give more technical details.

6.4.5 Characterising Smart Plans

When we want to show that a plan is smart, we must first show that its constraint-
free version is weakly smart. Thus, the results of Section 6.4.4 can be applied to
determine the shape of a smart plan. What remains to find are the constrains (or
filters) that we must apply to the execution plan in order to make it smart.

As in Chapter 5, we are going to exploit the notion of well-filtering plan (Def-
inition 5.4.5 and minimal well-filtering plan (Definition 5.6.1). We have a similar
result as in Chapter 5:

96 6.4. CHARACTERIZING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Lemma 6.4.14. Given an atomic query q(a, x)← r(a, x) and a set of path functions
F , any smart plan constructed from sub-functions of F must be well-filtering.

Proof. First, we prove that there cannot be a filter on a constant b different from
the input constant a. Indeed, let us consider a smart plan πa and its constraint free
version π′a. The semantics of π′a is r1(a, x1)...rn(xn−1, xn). We define the database I
as:

I = r(a, c0), r1(a, c1)...rn(cn−1, cn)

where c1, ..., cn are fresh constants different from a and b. On I, we have q(I) 6= ∅
and π′a(I) 6= ∅. So, we must have πa(I) = q(I). However, if πa contained a filter
using a constant b, we would have πa(I) = ∅ (as b is not in I). This is impossible.

Now, we want to show that the semantics of πa(x) contains at least an atom
r(a, x) or r−(x, a). We still consider a smart plan πa and its constraint free version
π′a. The semantics of π′a is r1(a, x1)...rn(xn−1, xn). We define the database I as:

I =r(a, c0), r1(a, c1), r1(c1, c1), ..., rn(c1, c1), r(c1, c1),

r1(c1, c1), ..., rn(c1, c2), r(c1, c2),

r1(c2, c2), ..., rn(c2, c2), r(c2, c2), r1(c0, c1), ..., rn(c0, c1), r(c0, c1),

r1(c0, c2), ..., rn(c0, c2), r(c0, c2)

Let us write the semantics of πa(x) as r1(a, y1)...rn(yn−1, yn) where each yi is
either an existential variable, the output variable x or the constant a. We call B(yi)
the set of possible bindings for yi. We notice that for all i ∈ [1, n], yi is a filter to
the constant a or B(yi) 6= {a}. This can be seen by considering all transitions for
all possible sets of bindings. We consider the atoms containing the output variable
x. They are either one or two such atoms. If there is one, it is rk(yk−1, x) for
some k ∈ [1, n]. If yk−1 is not a filter to a, as we know B(yk) 6= {a}, we have
that {c1, c2} ⊆ {x} due to the structure of I. This is a contradiction so yk−1 must
be a filter to a and rk = r. The same reasoning applies when there are two atoms
containing x, except that we have one of them which is either r(a, x) or r−(x, a).

We have the equivalent of Property 6.4.6 for minimal filtering plans:

Property 6.4.15. Let q(x) ← r(a, x) be an atomic query. Let πa be a minimal
filtering execution plan associated to q. Then the semantics of the sub-function
transformation P(πa) is a path query where the last atom is either r(a, x) or r−(x, a).

Proof. Let us decompose πa into a sequence of calls c0, ..., cn. The only call that
contains a filter must be the last one (as x only appears in one call). So, we require
only one output for the calls c0, ..., cn−1 and thus the semantics of there calls is a
path query. The last function call is a path function, so the semantics of πa is a path
query. We need to show the last atom is either r(a, x) or r−(x, a). By definition
of a minimal filtering plan, the semantics of the plan must contain either r(a, x) or
r(x, a) and at most one filter. If the filter is before x, then the last atom is r(a, x)
and the sub-function can stop there as there are no other filter nor output variable.
If the filter is after x, we must have r−(x, a) as the last atom and the sub-function
can also stop there.

6.4. CHARACTERIZING SMART PLANS 97



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

We also have the equivalent of Theorem 5.6.2 in Chapter 5.

Theorem 6.4.16. Given a query q(x) ← r(a, x), a well-filtering plan πa and the
associated minimal filtering plan πmina :

• If πmina is not smart, then neither is πa.

• If πmina is smart, then we can determine in polynomial time if πa is also smart.

Proof. Let us write π′a the constraint free version of πa which is also the one of
πmina . We first prove the first point. If πmina is not smart, it means that there exists
a database I such that q(I) 6= ∅ and π′a(I) 6= ∅ but πmina 6= q(I). As r(a, x) (or
r−(x, a)) is in πa and πmina and πa might contain more filters than πmina , we have
πa(I) ⊆ πmina (I) ⊂ q(I) and thus πa can be smart.

For the second point, we consider that π′a has the form described in Section 6.4.4,
after the transformation of Property 6.4.15: F.B where F is a forward path and B is
a walk through F . Then the correct filters at filter on a variable which is at position
1 during the backward walk. To see that, we can consider the database I:

I = r(a, c0), r1(a, c1)...rn(cn−1, cn)

where the query was q(x)← r(a, x) and the semantics of the execution plan was
r1(a, x1) . . . rn(xn−1, xn). If we follow a proof similar to the one in Section 6.4.4, we
find that we can keep the result only iff we filter at position 1 during the backward
walk.

This theorem tells us that it is enough to find minimal filtering smart plans.
Given a plan πa, let us consider that we construct the plan π′a as described in

Property 6.4.15 by using only sub-function calls associated with the output variables.
If π′a is smart, it means that its constraint-free version is weakly smart and thus we
follow the description in Section 6.4.4: a forward path F followed by a walk in r−F
ending at position 0. Then, from this construction, one can deduce the minimal-
filtering smart plans. First, we create plans ending by r(a, x) by adding a filter on
the last atom of π′a. Second, we create plans ending by r−(x, a) by adding a new
atom r−(x, a) to the semantics of the plan.

Thus, if we have an algorithm to find weakly smart plans, it can easily be ex-
tended to generate smart plans as we will see in Section 6.5.5.

6.4.6 Characterising Weakly Sub-Smart Plans

In this section, we are interested in characterising weakly sub-smart plans. We
already know that all weakly smart plans are also weakly sub-smart, so Section 6.4.4
gives a partial characterisation. We will see that we can complete it by introducing
loosely bounded plans. These new plans look like reversed bounded plans: We first
cross the query, and then perform a forward path followed by a walk. The idea is
that some results might be filtered out due to the forward path, but, in the end,
if we get a result, some answers had to survive. Indeed, when we reach the end of
the forward path, we obtain entities that are linked to the input though the forward
path and the query. However, these linking path might not contain all the answers

98 6.4. CHARACTERIZING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

IN OUT

OUT

OUT

Forward	Path

Walk

Figure 6.5: The forward path may filter solutions

to the query. In Figure 6.5, we illustrate such a situation where some results are
lost because the forward path filters out solutions.

Definition 6.4.17 (Loosely Bounded Plan). A loosely bounded path for a set of
relations R and a query q(x) ← r(a, x) is either a bounded path or a path query
of the form r.P.B, where r.P is a path query, and B is a walk through r−.P to the
position 1.

A loosely bounded plan for a set of functions F is an non-redundant execution
plan whose consequences are a loosely bounded path.

The difference to bounded plans (Definition 6.4.10) is thus that the query can also
appear at the beginning of the path. As we did for smart plans, we are now going
to show the correctness and the completeness of the loosely bounded plans.

Theorem 6.4.18 (Correctness). Let q(x)← r(a, x) be an atomic query, F a set of
path functions and Fsub the set of sub-functions of F . Let πa be a non-redundant
loosely bounded execution plan over the Fsub. Then πa is weakly sub-smart.

Proof. Let us first prove that every loosely bounded plan is weakly sub-smart. If
the loosely bounded plan is a bounded plan (Definition 6.4.10), then it is a weakly
smart plan (Theorem 6.4.12). Hence, it is also a weakly sub-smart plan. Let us
now consider the plans of the form πa = r.P.B, where r.P is a path query, and
B is a walk through r−.P to the position 1. Take any database I such that
q(I) 6= ∅ and πa(I) 6= ∅. Let C = q(I). Let use write πa(x) = r.P.B(a, x) =
r(a, x1).r1(x1, x2)...rn(xn, xn+1).B(xn+1, x). Let σ be a binding of the variables of πa
in I. We know such binding exists as πa(I) 6= ∅. Let c = σ(x1). We know that c ∈ C
as the first relation is r. Using the same arguments as in Theorem 6.4.12, we can
show that c ∈ P.B(c). Thus, c ∈ r.P.B(a) and so the plan is weakly sub-smart.

Theorem 6.4.19 (Completeness). Let q(x)← r(a, x) be an atomic query, F a set
of path functions and Fsub the set of sub-functions of F . Let πa be a weakly sub-smart
plan over the Fsub. Then πa is loosely bounded.

Proof. Let πa be a weakly sub-smart plan for a query q(x) ← r(a, x), with conse-
quences r1(x1, x2)... rn(xn, xn+1). For convenience, we write a = c1. Consider the
database I:

I = {r−(c0, c1), r1(c1, c2), ..., rn(cn, cn+1)}

6.4. CHARACTERIZING SMART PLANS 99



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Here, the ci are fresh constants. Let us first assume that r1 6= r. Then, πa(I) ⊇
{cn+1} 6= ∅ and q(I) = {c0}. Since πa is weakly sub-smart, we must have c0 ∈ πa(I).
Using the same argument as in Theorem 6.4.13, πa must be a forward path P ,
followed by a walk B in r−P . Hence, πa is a bounded plan.

Let us now suppose that r1 = r. We now have q(I) = {c0, c2}. Since πa is
weakly sub-smart, we must have c0 ∈ πa(I) or c2 ∈ πa(I) (or both). Let us consider
the first case. Using the same argument as before, πa must consist of a forward
path P followed by a walk B in r−.P . That is, πa is a bounded plan. In that case,
πa(I) = {c0, c2}, and πa is actually a weakly smart plan.

Now consider the case where c2 ∈ πa(I) and c0 6∈ πa(I). We can then proceed
the same way we did in Theorem 6.4.13. We take the same notations, with a binding
such that σ(xn+2) = c2. We call r1...rm = r.r2...rm the forward path. The induction
then proceeds the same way. The only difference is that we have to stop at position
1 as we must end on c2.

We see here that weakly smart plans and weakly sub-smart plan are different.
Let us consider the following example to better understand why it is the case.

Example 6.4.20. We continue with the music example. We have access to two path
functions: getAlbumsOfSinger(singer, album) = sing(singer, song), onAlbum(song,
album) which gets all the albums on which a singer sings and getSongsOnAl-
bum(album, song) = onAlbum−(album, song) which gives us the songs on an album.
Our query is qPomme(x) = sing(Pomme, x). The plan πPomme(x) = getAlbumsOf-
Singer(Pomme, album), getSongsOnAlbum(album, x) is weakly sub-smart but not
weakly smart. Indeed, if we consider the database I = {sing(Pomme, Pauline),
sing(Pomme, Itsumo Nando Demo), onAlbum(Pauline, À peu près)}, then the plans
return Pauline but not Itsumo Nando Demo, which was never published on an album.

6.4.7 Characterising Sub-Smart Plans

We proceed like in Section 6.4.5: to show that a plan is sub-smart, we have to
consider its constraint-free version and show it is weakly sub-smart. Then, again,
what remains is to add the appropriate filters. As in Section 6.4.5 we have the
lemma:

Lemma 6.4.21. Given an atomic query q(a, x)← r(a, x) and a set of path functions
F , any sub-smart plan constructed from sub-functions of F must be well-filtering.

and the theorem:

Theorem 6.4.22. Given a query q(x) ← r(a, x), a well-filtering plan πa and the
associated minimal filtering plan πmina :

• If πmina is not sub-smart, then neither is πa.

• If πmina is sub-smart, then we can determine in polynomial time if πa is also
sub-smart.

100 6.4. CHARACTERIZING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

The proofs are similar to the ones in Section 6.4.5.
Now, let us construct sub-smart plans. We start by generating weakly sub-

smart plans using Theorem 6.4.19: we know the sub-function transformation of a
constraint-free weakly sub-smart plan is loosely bounded. The case where the plan
is bounded was treated in Section 6.4.5: It is when we have a smart plan (which is
also sub-smart). Let us now consider the case where the semantics of the plan is a
path query of the form r.P.B, where r.P is a path query, and B is a walk through
r−.P to the position 1. Once we have this plan, the only way to create a minimal
well-filtering sub-smart plan is to append an atom r−(x, a) to the semantics. This
way, the filter is at the position 0 in the walk.

In the cases where the semantics of the plan ends with r(a, x), we have a smart
plan. Indeed, such a situation happens when we finish the walk by going from a
position 0 to a position 1. We obtain a skeleton r.F.B where B is a walk through
r−.F to the position 1. In the case we end by going from a position 0 to 1, it is
similar to have a forward path F ′ = r.F and a backward path B′ = B which is a
walk through r−F ′ to a position 0. In such a case, we have a smart plan which we
already know how to characterise.

Thus, if we have an algorithm to generate weakly sub-smart plans, we can adapt
it to create sub-smart plans.

6.5 Generating Smart Plans

We have shown that weakly smart plans are precisely the bounded plans. We will
now turn to generating such plans. We will later show how to adapt these plans to
generate not just weakly smart plans, but also smart plans. Let us first introduce
the notion of minimal plans.

6.5.1 Minimal Smart Plans

In line with Chapter 5, we will not generate redundant plans. These contain more
function calls, and cannot deliver more results than non-redundant plans. More
precisely, we will focus on minimal plans :

Definition 6.5.1 (Minimal Smart Plan). Let πa(x) be a non-redundant execution
plan organised in a sequence c0, c1, . . . , ck of calls, such that the input of c0 is the
constant a, every other call ci takes as input an output variable of the previous call
ci−1, and the output of the plan is in the call ck. πa is a minimal (weakly) smart
plan if it is a (weakly) smart plan and there exists no other (weakly) smart plan
π′a(x) composed of a sub-sequence ci1 , ..., cin (with 0 ≤ i1 < ... < in ≤ k).

Example 6.5.2. Let us consider the two functions f1(x, y) = r(x, y) and f2(y, z) =
r−(y, t).r(t, z). For the query q(x) ← r(a, x), the plan πa(x) = f1(a, y), f2(y, x) is
obviously weakly smart. It is also non-redundant. However, it is not minimal. This
is because π′a(x) = f1(a, x) is also weakly smart, and is composed of a sub-sequence
of calls of πa.

6.5. GENERATING SMART PLANS 101



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

In general, it is not useful to consider non-minimal plans because they are just longer
but cannot yield more results. On the contrary, a non-minimal plan can have fewer
results than its minimal version, because the additional calls can filter out results.
The notion of minimality would make sense also in the case of equivalent rewritings.
However, in that case, the notion would impact just the number of function calls
and not the results of the plan, since equivalent rewritings deliver the same results
by definition. In the case of smart plans, as we will see, the notion of minimality
allows us to consider only a finite number of execution plans and thus to have an
algorithm that terminates. The following property confirms the intuition that if we
have a non-minimal execution plan, then we can turn it into a minimal one:

Property 6.5.3. Let q be an atomic query and πa a non-redundant weakly smart
plan. Then, either πa is minimal, or one can extract a minimal weakly smart plan
from πa.

This means that even if we can generate only the minimal weakly smart plans (and
not all weakly smart plans), we will be able to generate a plan if a weakly smart
plan exists at all.

6.5.2 Susie

Our first approach to generate bounded plans is inspired by Susie [98]. We call the
resulting plans Susie plans.

Definition 6.5.4 (Susie Plan). A Susie plan for a query q(x) ← r(a, x) is a plan
whose semantics is of the form F.F−.r, where F is a path query, F− is the reverse
of F (with all relations inverted), F−.r is generated by a single function call and the
last atom is r(a, x).

Example 6.2.2 (shown in Figure 6.1) is a simple Susie plan. We have:

Theorem 6.5.5 (Correctness). Every Susie plan is a smart plan.

Proof. Given a Susie plan of the form π = F.F−.r, F− is a walk through F . Hence,
F−.r is a walk through r−.F . Hence, the constraint-free version of π is a bounded
plan (Definition 6.4.10). Then, Theorem 6.4.12 tells us that π is a weakly smart
plan. In addition, it ends with r(a, x), so it is smart.

Theorem 6.5.6 (Limited Completeness). Given a set of path functions so that
(1) no function contains existential variables and (2) no function contains a loop
(i.e., two consecutive relations of the form r.r−), the Susie plans include all minimal
filtering smart plans.

Proof. We first note that the plan cannot end by r−(x, a), because then it would
mean that the two last atoms would be r(y, x).r−(x, a). As no function can contain
two consecutive atoms r.r−, the last function call is r−(x, a) and it is useless as
we could have created the plan that ends with r(a, x) by putting the filter on the
previous atom. Now consider any minimal smart plan P = f1...fn with forward
path F and backward path B for a query q. The last function call (fn) will have

102 6.5. GENERATING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

the form r1...rmq. Thus, F must start with r−m...r
−
1 as fn does not contain loops.

Consider the first functions f1...fk of P that cover r−m...r
−
1 . fk must be of the form

r−i ...r
−
1 r
′
1...r

′
l for some i ∈ [1,m] and some l ≥ 0. Assume that l > 0. Since there are

no existential variables, we also have a function f ′k of the form r−i ...r
−
1 . Then, the

plan f1...fk−1f
′
kfn is smart. Hence, P was not minimal. Therefore, let us assume

that l = 0. Then, P takes the form P = f1...fkfk+1...fn−1fn. If k < n− 1, then we
can remove fk+1...fn−1 from the plan, and still obtain a smart plan. Hence, P was
not minimal. Therefore, P must have the form P = f1...fkfn. Since f1...fn has the
form r−m...r

−
1 , and fn has the form r1...rmq, P is a Susie plan.

Intuitively, Theorem 6.5.6 means that Susie plans are sufficient for all cases where
the functions do not contain existential variables. If there are existential variables,
then there can be minimal smart plans (as introduced in Chapter 5) that Susie will
not find. An example is shown in Figure 6.3, if we assume that the middle variable
of getProfessionalAddress existential.

The Susie plans for a query q on a set of functions F can be generated very
easily: It suffices to consider each function f = r1....rn that ends in rn = q, and to
consider all path function f1...fm that have the semantics r−n−1...r

−
1 . This algorithm

runs in O(|F|k+1), where k is the maximal length of a function, and is typically
small.

6.5.3 Bounding the Weakly Smart Plans

We would like to generate not just the Susie plans, but all minimal smart plans.
This is possible only if their number is finite. This is indeed the case, as we shall
see next: Consider a weakly smart plan for a query q. Theorem 6.4.13 tells us that
the consequences of the plan are of the form r0...rk...rnq, where r0...rk is the forward
path, and rk+1...rn is a walk in the forward path. Take some function call f = ri...rj
of the plan. If j ≤ k, we say that f starts at position i, that it ends at position j,
and that it crosses positions i to j. For example, in Figure 6.4, the forward path
is F = rst. The function f1 starts at position 0, ends at position 3, and crosses
the positions 0 to 3. If i ≥ k, then ri was generated by a step in the backward
path. We say that f starts at the position before that step, and ends at the updated
position after the step that produced rj. In Figure 6.4, f2 starts at position 3, ends
at position 1, and crosses 3 to 1; f3 starts at position 1, ends at position 2, and
crosses 1 to 2; f4 starts at 2, ends at -1, and crosses 2 to -1. Our main insight is the
following:

Theorem 6.5.7 (No Duplicate Ends). Given a set of relations R, a query q(x)←
r(a, x), r ∈ R, and a set of path function definitions F , let π be a minimal weakly
smart plan for q. There can be no two function calls in π that end at the same
position, and there can be no two function calls that start at the same position.

Proof. Assume that there is a weakly smart plan P = f1...fng1...gmh1...hk such that
fn and gm end at the same position. Then f1...fnh1...hk is also a weakly smart
plan. Hence, P is not minimal. Now assume that there is a weak smart plan
P = f1...fng1...gmh1...hk such that g1 and h1 start at the same position. Then
again, f1...fnh1...hk is also a weakly smart plan and hence P is not minimal.

6.5. GENERATING SMART PLANS 103



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

This theorem is easy to understand: If two functions were ending or starting at
the same position, the plan would not be minimal as we could remove the func-
tion calls between them. To turn this theorem into a bound on the number of
possible plans, we need some terminology first. Let us consider the positions on
the forward path one by one. Each position is crossed by several functions. Let
us call the triple of a function f = r1...rn, a position i ∈ [1, n], and a direc-
tion (forward or backward) a positioned function. For example, in Figure 6.4, we
can say that position 2 in the forward path is crossed by the positioned function
〈f1, 3, forward〉. Let us call the set of positioned functions at a given position in the
forward path a state. For example, in Figure 6.4 at position 2, we have the state
{〈f1, 3, forward〉, 〈f2, 2, backward〉, 〈f3, 2, forward〉, 〈f4, 1, backward〉}.

We first observe that a state cannot contain the same positioned function more
than once. If it contained the same positioned function twice, then the plan would
not be minimal. Furthermore, Theorem 6.5.7 tell us that there can be no two
functions that both end or both start in a state. Finally, a plan cannot contain the
same state twice, because otherwise, it would not be minimal. This leads to the
following bound on the number of plans:

Theorem 6.5.8 (Bound on Plans). Given a set of relations R, a query q(x) ←
r(a, x), r ∈ R, and a set of path function definitions F , there can be no more than
M ! minimal weakly smart plans, where M = |F|2k and k is the maximal number of
atoms in a function.

Proof. Theorem 6.5.7 tells us that there can be no two positions in the forward
path where two function calls end. It means that, at each position, there can be no
more than 2 × k crossing function calls. Therefore, there can be only M = |F|2k
different states overall. No minimal plan can contain the same state twice (because
otherwise, it would be redundant). Hence, there can be at most M ! minimal weak
smart plans. Indeed, in the worst case, all plans are of length M , because if a plan
of length < M is weakly smart, then all plans that contain it are redundant.

This bound is very pessimistic: In practice, the succession of states in very con-
strained and thus, the complete exploration is quite fast, as we will show in Sec-
tion 6.6.

6.5.4 Generating the Weakly Smart Plans

Theorem 6.5.8 allows us to devise an algorithm that enumerates all minimal weakly
smart plans. For simplicity, let us first assume that no function definition contains a
loop, i.e., no function contains two consecutive relations of the form rr−. This means
that a function cannot be both on a forward and backward direction. We will later
see how to remove this assumption. Algorithm 1 takes as input a query q and a set
of function definitions F . It first checks whether the query can be answered trivially
by a single function (Line 1). If that is the case, the plan is printed (Line 2). Then,
the algorithm sets out to find more complex plans. To avoid exploring states twice,
it keeps a history of the explored states in a stack H (Line 3). The algorithm finds
all non-trivial functions f that could be used to answer q. These are the functions
whose short notation ends in q (Line 4). For each of these functions, the algorithm

104 6.5. GENERATING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

considers all possible functions f ′ that could start the plan (Line 5). For this, f ′ has
to be consistent with f , i.e., the functions have to share the same relations. The
pair of f and f ′ constitute the first state of the plan. Our algorithm then starts
a depth-first search from that first state (Line 6). For this purpose, it calls the
function search with the current state, the state history, and the set of functions.
In the current state, a marker (a star) designates the forward path function.

Algorithm 1: FindMinimalWeakSmartPlans
Data: Query q(a)← r(a, x), set of path function definitions and all their

sub-functions F
Result: Prints minimal weakly smart plans

1 if ∃f = r ∈ F then
2 print(f)

3 H ← Stack()
4 foreach f = r1...rn.r ∈ F do
5 foreach f ′ ∈ F consistent with r−n ...r

−
1 do

6 search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F)

Algorithm 2 executes a depth-first search on the space of states. It first checks
whether the current state has already been explored (Line 1). If that is the case, the
method just returns. Otherwise, the algorithm creates the new state S ′ (Line 3). For
this purpose, it considers all positioned functions in the forward direction (Lines 5-
7). If any of these functions ends, the end counter is increased (Line 6). Otherwise,
we advance the positioned function by one position. The (∗) means that if the
positioned function happens to be the designated forward path function, then the
advanced positioned function has to be marked as such, too. We then apply the
procedure to the backwards-pointing functions (Lines 8-11).

Once that is done, there are several cases: If all functions ended, we have a
plan (Line 12). In that case, we can stop exploring because no minimal plan can
include an existing plan. Next, the algorithm considers the case where one function
ended, and one function started (Line 13). If the function that ended were the
designated forward path function, then we would have to add one more forward
function. However, then the plan would contain two functions that start at the
current state. Since this is not permitted, we just do not do anything (Line 14), and
the execution jumps to Line 29. If the function that ended was some other function,
then the ending and the starting function can form part of a valid plan. No other
function can start or end at the current state, and hence we just move to the next
state (Line 15).

Next, the algorithm considers the case where one function starts and no function
ends (Line 16). In that case, it has to add another backward function. It tries out
all functions (Line 17-19) and checks whether adding the function to the current
state is consistent (as in Algorithm 1). If that is the case, the algorithm calls itself
recursively with the new state (Line 19). Lines 20-23 do the same for a function
that ended. Here again, the (∗) means that if f was the designated forward path
function, then the new function has to be marked as such. Finally, the algorithm

6.5. GENERATING SMART PLANS 105



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

considers the case where no function ended, and no function started (Line 24). In
that case, we can just move on to the next state (Line 25). We can also add a
pair of a starting function and an ending function. Lines 26-28 try out all possible
combinations of a starting function and an ending function and call the method
recursively. If none of the previous cases applies, then end > 1 and start > 1. This
means that the current plan cannot be minimal. In that case, the method pops the
current state from the stack (Line 29) and returns.

106 6.5. GENERATING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Algorithm 2: Search
Data: A state S with a designated forward path function, a set of states H,

a set of path functions F
Result: Prints minimal weakly smart plans

1 if S ∈ H then return
2 H.push(S)
3 S ′ ← ∅
4 end← 0
5 foreach 〈r1...rn, i, forward〉 ∈ S do
6 if i+ 1 > n then end+ +

7 else S ′ ← S ′ ∪ {〈r1...rn, i+ 1, forward〉(∗)}
8 start← 0
9 foreach 〈r1...rn, i, backward〉 ∈ S do

10 if i = 1 then start+ +
11 else S ′ ← S ′ ∪ {〈r1...rn, i− 1, backward〉}
12 if S ′ = ∅ then print(H)
13 else if start = 1 ∧ end = 1 then
14 if the designated function ended then pass
15 else search(S ′, H,F)
16 else if start = 1 ∧ end = 0 then
17 foreach f ∈ F do
18 S ′′ ← S ′ ∪ {〈f, |f |, backward〉}
19 if S ′′ is consistent then search(S ′′, H,F)

20 else if start = 0 ∧ end = 1 then
21 foreach f ∈ F do
22 S ′′ ← S ′ ∪ {〈f, 1, forward〉(∗)}
23 if S ′′ is consistent then search(S ′′, H,F)

24 else if start = 0 ∧ end = 0 then
25 search(S ′, H,F)
26 foreach f, f ′ ∈ F do
27 S ′′ ← S ′ ∪ {〈f, 1, forward〉, 〈f ′, |f ′|, backward〉}
28 if S ′′ is consistent then search(S ′′, H,F)

29 H.pop()

Theorem 6.5.9 (Algorithm). Algorithm 1 is correct and complete, terminates on
all inputs, and runs in time O(M !), where M = |F|2k and k is the maximal number
of atoms in a function.

Proof. Algorithm 1 just calls Algorithm 2 on all possible starting states. Let us,
therefore, concentrate on Algorithm 2. This algorithm always maintains one posi-
tioned function as the designated forward path function. These designated functions
are chained one after the other, and they all point in the forward direction. No other
function call can go to a position that is greater than the positions covered by the
designated functions (Line 14). Hence, the designated functions form a forward

6.5. GENERATING SMART PLANS 107



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

path. All other functions perform a walk in the forward path. Hence, all gener-
ated plans are bounded. The plans are also valid execution plans because whenever
a function ends in one position, another function starts there (Lines 13, 16, 20).
Hence, the algorithm generates only bounded plans, i.e., only weak smart plans.

At any state, the algorithm considers different cases of functions ending and
functions starting (Lines 13, 16, 20). There cannot be any other cases, because, in a
minimal weak smart plan, there can be at most one single function that starts and
at most one single function that ends in any state. In all of the considered cases, all
possible continuations of the plan are enumerated (Lines 17, 21, 26). There cannot
be continuations of the plan with more than one new function, because minimal
weak smart plans cannot have two functions starting at the same state. Hence, the
algorithm enumerates all minimal weak smart plans.

We have already seen that the number of possible states is bounded (Theo-
rem 6.5.8). Since the algorithm keeps track of all states that it encounters (Line 2),
and since it never considers the same state twice (Line 1), it has to terminate.
Furthermore, since M bounds the size of H, the algorithm runs in time O(M !).

The worst-case runtime of O(M !) is unlikely to appear in practice. Indeed, the
number of possible functions that we can append to the current state in Lines 19, 23,
28 is severely reduced by the constraint that they must coincide on their relations
with the functions that are already in the state. In practice, very few functions
have this property. Furthermore, we can significantly improve the bound if we are
interested in finding only a single weakly smart plan:

Theorem 6.5.10. Given an atomic query and a set of path function definitions F ,
we can find a single weakly smart plan in O(|F|2k), where k is the maximal number
of atoms in a function.

Proof. If we are interested in finding only a single plan, we replace H by a set in
Line 3 of Algorithm 1. We also remove the pop operation in Line 29 of Algorithm 2.
In this way, the algorithm will never explore a state twice. Since no minimal weak
smart plan contains the same state twice, the algorithm will still find a minimal
weak smart plan, if it exists (it will just not find two plans that share a state). Since
there are only |F|2k states overall (Theorem 6.5.8), the algorithm requires no more
than O(|F|2k) steps.

Functions with loops. If there is a function that contains a loop of the form r.r−,
then Algorithm 2 has to be adapted as follows: First, when neither functions are
starting nor ending (Lines 24-28), we can also add a function that contains a loop.
Let f = r1...rir

−
i ...rn be such a function. Then the first part r1...ri becomes the

backward path, and the second part r−i ...rn becomes the forward path in Line 27.
When a function ends (Lines 20-23), we could also add a function with a loop.

Let f = r1...rir
−
i rn be such a function. The first part r1...ri will create a forward

state 〈r1...ri, 1, forward〉. The second part, r−i ...rn will create the backward state
〈r−i ...rn, |r1...ri|, backward〉. The consistency check has to be adapted accordingly.
The case when a function starts (Lines 16-19) is handled analogously. Theorems 6.5.9
and 6.5.10 remain valid, because the overall number of states is still bounded as
before.

108 6.5. GENERATING SMART PLANS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

6.5.5 Generating Smart Plans

To generate smart plans instead of weakly smart plans, we will adapt Algorithm 1.
The intuition is simple: if the query is q(x) ← r(a, x), and if we found a weakly
smart plan that contains the atom r(y, x), then we have to add a filter y = a to
make the plan smart. For this, we have to make sure that y is an output variable.
In Section 6.4.5, we show why this is sufficient to make a weakly smart plan smart.
Besides, we show that we can restrict ourselves to smart plans whose semantics are
path queries ending in r(y, x) or r−(x, y). We now give more details about how we
adapt the generation of weakly smart plans to generate also smart plans.

We begin by considering the case where the semantics of the plan is a path query
ending in r(y, x), y = a. We have to modify Algorithm 1 in such a way that the last
two variables of the sub-function that starts the search must be output variables. If
the algorithm gives no result, we can conclude that no smart plan exists (because
there exists no weakly smart plan). If the algorithm gives a result, then we know
that we can add the filter y = a.

Now let us consider the case where the semantics of the plan is a path query
ending with r−(x, y), y = a. In this case, the restriction to sub-functions will remove
the atom r−(x, a). Therefore, we have to adapt the initialisation of the algorithm
in Section 6.5.4. We have two cases to consider:

• The last function call contains only one atom: r−(x, a). This happens when
there is a sub-function with one atom r− with one input and one output vari-
able. In this case, we just have to find a weakly smart plan as in Section 6.5.4
and add this function at the end.

• The last call contains more than one atom. In this case, we have to look at
all sub-functions ending in r(z, y).r−(y, x) where y and x are output variables.
We then continue the initialisation as if the function was ending in r(z, y),
ignoring the last atom r−(y, x).

If this generation algorithm gives no result, we know there is no smart plan. Oth-
erwise, we apply the filter on the last atom of the semantics to get r−(x, y), y = a.
This is possible because we made sure that y is an output variable.

We give the complete new algorithm in Algorithm 3.

6.5.6 Generating Weakly Sub-Smart Plans

The generation of weakly sub-smart plans follows a similar direction as the creation
of weakly smart plans. First, as we already mentioned, all weakly smart plans are
also weakly sub-smart. Therefore, we can reuse the results of Section 6.5.4 and, in
what follows, we are going to focus on generating weakly sub-smart plans that are
not weakly smart.

We first notice that as a function does not contain two consecutive inverse atoms
r.r−, no function can be both on the forward and backward path. This means that,
in the characterisation given in Section 6.4.6, when we do a walk through the forward
path to a position 1, we never go to position 0. Indeed, in the case of minimal plans,
having a function ending at position 0 would mean that all function calls before

6.5. GENERATING SMART PLANS 109



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Algorithm 3: FindSmartPlans
Data: Query q(a)← r(a, x), set of path function definitions and all their

sub-functions F
Result: Prints minimal smart plans

1 if ∃f(x, y) = r(x, y) ∈ F then
2 print(f)

3 H ← Stack()
4 foreach f(x, y, z) = r1...rn(x, y).r(y, z) ∈ F do
5 foreach f ′ ∈ F consistent with r−n ...r

−
1 do

6 foreach Weak Smart Plan in
search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F) do

7 Add a filter to create r(a, x)

8 foreach f(x, y, z) = r1...rn.r(x, y).r−(y, z) ∈ F do
9 foreach f ′ ∈ F consistent with r−n ...r

−
1 do

10 foreach Weak Smart Plan in
search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F) do

11 Add a filter to create r−(x, a)

12 foreach f(x, y) = r−(x, y) ∈ F do
13 FindMinimalWeakSmartPlans(q, F) + f(x, a)

going back to position 0 were useless (as we have to start a new function), and so
could have been removed.

This observation makes it easy to adapt our algorithm to discover weak sub-
smart plans: We have to filter the first function on the way forward to start with
the query relation and then continue as if the function started at the second atom.
Algorithm 4 gives the modified algorithm.

6.5.7 Generating Sub-Smart Plans

Finally, let us generate sub-smart plans. As we did for the generation of smart plans,
we adapt the initialisation of the algorithm to have the filters at the correct plan.
From Section 6.4.7, we know that the filter that is specific to sub-smart plans and
that is not in smart plans is an atom r−(x, a). As for smart plans, we filter the last
function call such that it is possible to create such a filter. Algorithm 5 gives the
algorithm to find the minimal sub-smart plans.

6.6 Experiments

We have implemented the Susie Algorithm (Section 6.5.2), the equivalent rewrit-
ing [108], as well as our method (Section 6.5.4) in Python. The code is available on
Github (https://github.com/Aunsiels). We conduct two series of experiments – one
on synthetic data, and one on real Web services. All our experiments are run on a

110 6.6. EXPERIMENTS

https://github.com/Aunsiels


CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Algorithm 4: FindMinimalWeakSubSmartPlans
Data: Query q(a)← r(a, x), set of path function definitions and all their

sub-functions F
Result: Prints minimal weakly sub-smart plans

1 if ∃f = r ∈ F then
2 print(f)

3 H ← Stack()
4 foreach f = r1...rn.r ∈ F do
5 foreach f ′ ∈ F consistent with r−n ...r

−
1 do

6 search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F)

7 foreach f = r1...rn ∈ F do
8 foreach f ′ = r.r′1...r

′
m ∈ F with r′1 . . . r′m consistent with r−n ...r

−
1 do

9 search({〈f, n, backward〉, 〈f ′, 2, forward〉∗}, H, F)

Algorithm 5: FindSubSmartPlans
Data: Query q(a)← r(a, x), set of path function definitions and all their

sub-functions F
Result: Prints minimal sub-smart plans

1 if ∃f(x, y) = r(x, y) ∈ F then
2 print(f)

3 H ← Stack()
4 foreach f(x, . . . , y, z) = r1...rn(x, y).r(y, z) ∈ F do
5 foreach f ′ ∈ F consistent with r−n ...r

−
1 do

6 foreach Weak Smart Plan in
search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F) do

7 Add a filter to create r(a, x)

8 foreach f(x, . . . , y, z) = r1...rn.r(x, y).r−(y, z) ∈ F do
9 foreach f ′ ∈ F consistent with r−n ...r

−
1 do

10 foreach Weak Smart Plan in
search({〈f, n, backward〉, 〈f ′, 1, forward〉∗}, H, F) do

11 Add a filter to create r−(x, a)

12 foreach f(x, y) = r−(x, y) ∈ F do
13 FindMinimalWeakSmartPlans(q, F) + f(x, a)

14 foreach f(x, . . . , t, z) = r1...rn(x, y)r−(y, z) ∈ F do
15 foreach f ′ = r.r′1...r

′
m ∈ F with r′1 . . . r′m consistent with r−n ...r

−
1 do

16 foreach Weak Sub-Smart Plan in
search({〈f, n, backward〉, 〈f ′, 2, forward〉∗}, H, F) do

17 Add a filter to create r−(x, a)

6.6. EXPERIMENTS 111



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

laptop with Linux, 1 CPU with four cores at 2.5GHz, and 16 GB RAM.

6.6.1 Synthetic Functions

In our first set of experiments, we use the methodology introduced by Romero
et al [108] to simulate random functions. We consider a set of artificial relations
R = {r1, ..., rn}, and randomly generated path functions up to length 3, where all
variables are existential except the last one. Then we try to find a smart plan for
each query of the form q(x)← r(a, x), r ∈ R.

In our first experiment, we limit the number of functions to 30 and vary the
number n of relations. All the algorithms run in less than 2 seconds in each setting for
each query. Figure 6.6 shows which percentage of the queries the algorithms answer.
As expected, when increasing the number of relations, the percentage of answered
queries decreases, as it becomes harder to combine functions. The difference between
the curve for weakly smart plans and the curve for smart plans shows that it was not
always possible to filter the results to get exactly the answer of the query. (Weakly
smart plans can answer more queries but at the expense of delivering only a super-
set of the query answers.) In general, we observe that our approach can always
answer strictly more queries than Susie and the equivalent rewriting approach.

5 10 15

0

20

40

60

80

100

Smart Plans

Weak Smart Plans

Susie Plans

Equivalent Rewritings

Number of Relations

%
 o

f 
A

n
sw

er
ed

 Q
u
er

ie
s

Figure 6.6: Percentage of answered queries

In our next experiment, we fix the number of relations to 10 and vary the number
of functions. Figure 6.7 shows the results. As we increase the number of functions,
we increase the number of possible function combinations. Therefore, the percentage
of answered queries increases for all approaches. As before, our algorithm outper-
forms the other methods by a wide margin. The reason is that Susie cannot find all
smart plans (see Section 6.5.2 again). Equivalent rewritings, on the other hand, can
find only those plans that are equivalent to the query on all databases – which are
very few in the absence of constraints.

112 6.6. EXPERIMENTS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

10 20 30 40

0

20

40

60

80

100

Smart Plans

Weak Smart Plans

Susie Plans

Equivalent Rewritings

Number of Functions

%
 o

f 
A

n
sw

er
ed

 Q
u
er

ie
s

Figure 6.7: Percentage of answered queries

6.6.2 Real-World Web Services

In our second series of experiments, we apply the methods to real-world Web services.
We use the same functions than in Chapter 5. Besides, as these Web services
do not contain many existential variables, we added the set of functions based on
information extraction techniques (IE) from Preda et al. [98].

Table 6.1 shows the number of functions and the number of relations for each
Web service. Table 6.2 gives examples of functions. Some of them are recursive. For
example, MusicBrainz allows querying for the albums that are related to a given
album – like in Example 6.3.3. All functions are given in the same schema. Hence,
in an additional setting, we consider the union of all functions from all Web services.

Note that our goal is not to call the functions. Instead, our goal is to determine
whether a smart plan exists – before any functions have to be called.

Web Service Functions Relations

MusicBrainz 23 42
LibraryThing 19 32
Abe Books 9 8
LastFM 17 30
ISBNdb 14 20
Movie DB 12 18
UNION 74 82

Table 6.1: Our Web services

For each Web service, we considered all queries of the form q(x) ← r(a, x) and
q(x) ← r−(a, x), where r is a relation used in the function definitions of that Web
service. We ran the Susie algorithm, the equivalent rewriting algorithm, and our

6.6. EXPERIMENTS 113



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

getDeathDate(x, y, z)← hasId−(x, y) ∧ diedOnDate(y, z)
getSinger(x, y, z, t)← hasRelease−(x, y) ∧ released−(y, z) ∧ hasId(z, t)
getLanguage(x, y, z, t)← hasId(x, y) ∧ released(y, z) ∧ language(z, t)
getTitles(x, y, z, t)← hasId−(x, y) ∧ wrote−(y, z) ∧ title(z, t)
getPublicationDate(x, y, z)← hasIsbn−(x, y) ∧ publishedOnDate(y, z)

Table 6.2: Examples of real functions (3 of MusicBrainz, 1 of ISBNdb, 1 of Library-
Thing)

algorithm for each of these queries. The run-time is always less than 2 seconds for
each query. Table 6.3 shows the ratio of queries for which we could find smart plans.
We first observe that our approach can always answer at least as many queries as
the other approaches can answer. Furthermore, there are cases where our approach
can answer strictly more queries than Susie.

Web Service Susie Eq. Rewritings Smart Plans

MusicBrainz (+IE) 48% (32%) 48% (32%) 48% (35%)
LastFM (+IE) 50% (30%) 50% (30%) 50% (32%)
LibraryThing (+IE) 44% (27%) 44% (27%) 44% (35%)
Abe Books (+IE) 75% (14%) 63% (11%) 75% (14%)
ISBNdb (+IE) 65% (23%) 50% (18%) 65% (23%)
Movie DB (+IE) 56% (19%) 56% (19%) 56% (19%)
UNION with IE 52% 50% 54%

Table 6.3: Percentage of queries with smart plans

The advantage of our algorithm is not that it beats Susie by some per-
centage points on some Web services. Instead, the crucial advantage of
our algorithm is the guarantee that the results are complete. If our al-
gorithm does not find a plan for a given query, it means that there cannot exist a
smart plan for that query. Thus, even if Susie and our algorithm can answer the
same number of queries on AbeBooks, only our algorithm can guarantee that the
other queries cannot be answered at all. Thus, only our algorithm gives a complete
description of the possible queries of a Web service.

Rather short execution plans can answer some queries. Table 6.4 shows a few
examples. However, a substantial percentage of queries cannot be answered at all.
In MusicBrainz, for example, it is not possible to answer produced(a, x) (i.e., to
know which albums a producer produced), hasChild−(a,x) (to know the parents of
a person), and marriedOnDate−(a, x) (to know who got married on a given day).
These observations show that the Web services maintain control over the data, and
do not allow exhaustive requests.

114 6.6. EXPERIMENTS



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

Query Plan

hasTrackNumber getReleaseInfoByTitle, getReleaseInfoById
hasIdCollaborator getArtistInfoByName, getCollaboratorIdbyId,

getCollaboratorsById
publishedByTitle getBookInfoByTitle, getBookInfoById

Table 6.4: Example Plans (2 of MusicBrainz, 1 of ABEBooks)

6.7 Discussion
In Chapter 5, the problem of finding equivalent rewritings is reduced to the prob-
lem of finding a word in a context-free grammar. This type of grammar makes it
possible to check the emptiness of the language in polynomial time or to compute
the intersection with a regular language. The emptiness operation can be used to
check in advance if an equivalent rewriting exists, and the intersection can be used
to restrict the space of solutions to valid execution plans.

In this chapter, we also define a language: the language of bounded plans. Un-
fortunately, it turns out that this language is not context-free.

Here we prove that we cannot represent smart plans with a context-free lan-
guage in the general case. To do so, we will use a generalisation of Olden’s Lemma
presented in [9].

Lemma 6.7.1 (Bader-Moura’s Lemma). For any context-free language L, ∃n ∈
N such that ∀z ∈ L, if d positions in z are “distinguished” and e positions are
“excluded”, with d > ne+1, then ∃u, v, w, x, y such that z = uvwxy and:

1. vx contains at least one distinguished position and no excluded positions

2. if r is the number of distinguished positions and s the number of excluded
positions in vwx, then r ≤ ns+1

3. ∀i ∈ N, u.vi.w.xi.y ∈ L

Theorem 6.7.2. For |R| > 4, the language of the smart plans is not context-free.

Proof. We begin with a property for the words of our language.

Lemma 6.7.3. Let q(x)← r(a, x) be an atomic query and R be a set of relations.
For each relation r′ different from r, the number of r′ in a word of the language of
the bounded plans is equal to the number of r′− in this word.

This lemma is easy to verify.
Let us now suppose our language of bounded plans is context-free. We de-

fine n according to the Barder-Moura’s lemma. Let a, b, c be three distinct re-
lations in |R| (they exist as |R| > 4). Let k = n10+1. We consider the word
z = a.bk.a.c.c−.a−.b−k.a−.a.bk.a.a−.b−k.a− in which we distinguish all the b and b−
and exclude all the a, a−, c, and c−.

We write z = u.v.w.x.y. As v.x contains no excluded positions, v contains only
bs or only b−s (and the same is right for x as well). As we must keep the same

6.7. DISCUSSION 115



CHAPTER 6. QUERY REWRITING WITHOUT INTEGRITY CONSTRAINTS

number of b and b− according to the previous lemma, either v = bj and x = b−j or
v = b−j and x = bj (for some j ∈ N).

In z, it is clear that a.bk.a.c is the forward path F as c appears only once. c−
and the last a−.b−k.a− are generated by the B. a−.b−k.a−.a.bk.a is generated by L.

The forward-path defines the number of consecutive bs between two as (and
so the number of consecutive b−s between two a−s). Under these conditions, it is
impossible to make the four groups of b and b− vary the same way, so it is impossible
to define v and x, and so the language is not context-free.

This has two consequences: First, it is not trivial to find the intersection with
the valid execution plans as it was done in Chapter 5. Second, it explains the
exponential complexity bound for our algorithm: our language is more complicated
than a context-free grammar, and therefore, there is a priori no reason to believe
that the emptiness problem is polynomial.

6.8 Conclusion
In this chapter, we have introduced the concept of smart execution plans for Web
service functions. These are plans that are guaranteed to deliver the answers to the
query if they deliver results at all. We have formalised the notion of smart plans,
and we have given a correct and complete algorithm to compute smart plans. Our
experiments have demonstrated that our approach can be applied to real-world Web
services. All experimental data, as well as all code, is available at the URL given in
Section 6.6. We hope that our work can help Web service providers to design their
functions, and users to query the services more efficiently.

116 6.8. CONCLUSION



Chapter 7

Pyformlang

Language is a process of free
creation.

Noam Chomsky

In Chapter 5 and Chapter 6, we have investigated a solution for query rewriting
based on formal languages. During our experiments, we had to use algorithms that
were rarely implemented, or in separated libraries. Therefore, we created a new
Python library: Pyformlang. It implements most of textbooks algorithms and thus,
we imagine it as a perfect companion for a lecture on formal languages.

This chapter comes from a full paper published at SIGCSE 2021 [106]:

Romero, J.
Pyformlang: An Educational Library for Formal Language Manipulation
Full paper at SIGCSE 2021

**********

Formal languages are widely studied and used in computer science. However,
only a small part of this domain is brought to a broader audience, and so its uses
are often limited to regular expressions and simple grammars. In this chapter, we
introduce Pyformlang, a practical Python library for formal languages. Our library
implements the most common algorithms of the domain, accessible by an easy-to-
use interface. The code is written exclusively in Python, with a clear structure, so
as to allow students to play and learn with it.

7.1 Introduction

Python has become one of the most popular programming languages over the past
few years (https://insights.stackoverflow.com/survey/2019) and particularly among
students. These students often start their journey in computer science by attending
a lecture on formal languages. For example, in France, this subject is the first topic

117

https://insights.stackoverflow.com/survey/2019


CHAPTER 7. PYFORMLANG

taught in “classe préparatoire”. However, there are few tools to manipulate formal
languages with Python.

The range of applications of formal languages is infinite: They include infor-
mation extraction with regular expressions for knowledge base construction as in
Yago [123] or Quasimodo in Chapter 3, code parsing with context-free grammars,
video game artificial intelligence using finite automata [101], or even query rewriting
using complex manipulations of context-free grammars and regular expressions as
in Chapter 5.

In this chapter, we present Pyformlang, a Python3 library for manipulating
formal languages. In the first section, we will discuss other libraries for manipulating
formal languages. Then, in the second section, we introduce Pyformlang and its
components. Finally, we show how to use Pyformlang in practice.

7.2 Previous Work
The most used part of formal languages is surely regular expressions. Most pro-
gramming languages implement them natively. In Python, the re library provides
many possibilities to use regular expressions. Text processing is the primary use case
of this library, and therefore it lacks more advanced formal language manipulation
tools: For example, finite automata are missing from the standard library. Thus,
one cannot transform a regular expression into its equivalent finite automaton. More
operations like concatenation, union or Kleene stars are not available at the level of
regular expressions.

For parsing natural language, the most common tool are context-free gram-
mars. Some libraries are specialised in language parsing, such as Lark
(https://pypi.org/project/lark-parser/) or more generally NLTK [81]. However,
they are focused on parsing natural language, make no link with the rest of the
theory, and often rely on an external file format (.lark for instance). As an example,
none of the existing libraries allows the intersection between a context-free grammar
and a regular expression or a finite state automaton (which is also a context-free
grammar).

FAdo [104] is a library that focuses mainly on finite state automata, with
few other functionalities. The language of FAdo is Python2, a deprecated
language (https://www.python.org/dev/peps/pep-0373/) which is not compatible
with Python3. The library implements regular expressions, deterministic, non-
deterministic and general automata and the transformations to go from one to
the other. One can also perform standard operations such as union, intersection,
concatenation or emptiness. However, FAdo does not go further than finite state
automata. For example, there is no link with context-free grammars.

JFLAP [105] is a tool written in Java to manipulate formal languages and it is
the most advanced tool available. It implements regular expressions, deterministic
and non-deterministic automata, context-free grammars, push-down automata, and
Turing Machines. A user can also perform transformations between these structures.
In addition, it provides roughly the same basic operations as FAdo for manipulating
finite state automata. However, some advanced operations are missing (e.g. the
intersection of context-free grammar and a regular expression). Furthermore, the

118 7.2. PREVIOUS WORK

https://pypi.org/project/lark-parser/
https://www.python.org/dev/peps/pep-0373/


CHAPTER 7. PYFORMLANG

usage of Java can be a limiting factor for fresh computer science students, and it
makes fast experimentation harder.

OpenFST [4] is a library to manipulate weighted finite-state transducers written
in C++. Some Python wrappers were also implemented. OpenFST does not support
operations beyond the realm of transducers.

Vaucanson [36] is an open-source C++ platform dedicated to the manipulation
of finite weighted automata. The usage of C++ makes it very fast. It has bindings
for Python3, but it cannot be installed directly from PyPi, making its usage more
complex. The content on automata and transducers is very advanced, but there is
no link with non-regular languages.

Some other tools exist to manipulate formal languages but they are either no
longer available or very specialised. For example, Covenant [68] specialises in the
intersection of context-free grammars (which are not necessary context-free) but is
no longer accessible.

7.3 Pyformlang
Pyformlang is a Python3 library specialised in formal language manipulation. It is
freely available on PyPI (https://pypi.org/project/pyformlang/) and the source code
is on Github (https://github.com/Aunsiels/pyformlang). The full documentation
can also be accessed on ReadTheDocs (https://pyformlang.readthedocs.io).

We chose to implement Pyformlang in Python3 in order to make it easily ac-
cessible. The implementation of each algorithm follows the one presented in the
relevant textbooks. This way, a student can easily follow every detail of the lectures
in Pyformlang. Unless otherwise mentioned, we used Hopcroft [75] as the source of
most algorithms, since it is the most popular textbook for formal languages.

7.3.1 Regular Expressions

Pyformlang implements the operators of textbooks, which deviate slightly from the
operators in Python.

• The concatenation can be represented either by a space or a dot (.)

• The union is represented either by | or +

• The Kleene star is represented by *

• The epsilon symbol can either be epsilon or $

It is also possible to use parentheses. All symbols except the space, ., |, +, *, (, )
and $ can be part of the alphabet. All other common regex operators (such as []))
are syntactic sugar that can be reduced to our operators.

We deviate in one important point from the standard implementation of regular
expressions. Usually, the alphabet consists of all single characters (minus special
ones), thus creating a concatenation when encountering consecutive characters. In
Pyformlang, we consider that consecutive characters are a single symbol. We wanted

7.3. PYFORMLANG 119

https://pypi.org/project/pyformlang/
https://github.com/Aunsiels/pyformlang
https://pyformlang.readthedocs.io


CHAPTER 7. PYFORMLANG

to have a more general approach not bound to text processing. As an example, in
normal Python, na* will be interpreted as all words starting by n and ending by
an indeterminate amount of a (like naaa). In Pyformlang it represents all strings
composed of zero or more repetitions of the letter na (like nanananana). This
deviation allows expressing a wider variety of words. Still, our library also allows
the standard semantics though a wrapper of Python regular expressions.

As most users are familiar with the implementation in the Python standard
library (which follows Perl’s standard), our library can transform a Python regu-
lar expression into a regular expression compatible with our implementation. This
transformation gives access to a more diversified function set for manipulating regu-
lar expressions and also makes it possible to have additional representations (such as
finite automata, see Section 7.3.2) that are missing from the standard library. The
transformation modifies the initial regular expression to reduce it to the fundamen-
tal operators presented above. Then, our parser can take the transformed regular
expression and turn it into the internal representation.

As is the case in most systems, we used a tree structure to represent the reg-
ular expressions, where each node is an operator, and each leaf is a symbol in the
alphabet.

Pyformlang contains the fundamental transformations on regular expressions,
which produce again regular expressions: concatenation, Kleene star and unions.
The transformation of a regular expression into an equivalent non-deterministic
automaton with epsilon transitions gives access to additional operations.

Example 7.3.1. We show here an example of how to use the regular expressions in
our library:

1 from pyformlang.regular_expression import Regex
2

3 regex = Regex("abc|d")
4

5 regex.accepts (["abc"]) # True
6 regex.accepts (["a", "b", "c"]) # False
7 regex.accepts (["d"]) # True
8

9 regex1 = Regex("a b")
10 regex_concat = regex.concatenate(regex1)
11 regex_concat.accepts (["d", "a", "b"])
12

13 print(regex_concat.get_tree_str ())
14 # Operator(Concatenation)
15 # Operator(Union)
16 # Symbol(abc)
17 # Symbol(d)
18 # Operator(Concatenation)
19 # Symbol(a)
20 # Symbol(b)
21

22 # Give the equivalent finite -state automaton
23 regex_concat.to_epsilon_nfa ()
24

25 from pyformlang.regular_expression import PythonRegex
26

120 7.3. PYFORMLANG



CHAPTER 7. PYFORMLANG

27 p_regex = PythonRegex("a+[cd]")
28 p_regex.accepts (["a", "a", "d"]) # True
29 # As the alphabet the composed of single caracters , one
30 # could also write
31 p_regex.accepts("aad") # True
32 p_regex.accepts (["d"]) # False

Listing 7.1: Regular Expression Example

7.3.2 Finite-State Automata

Pyformlang contains the three main types of non-weighted finite-state automata:
deterministic, non-deterministic and non-deterministic with epsilon transitions.

We implemented the necessary possible transformations. First, it is possible to
transform any non-deterministic finite state automaton with epsilon transitions into
a non-deterministic finite without epsilon transitions. Then, it is possible to turn a
non-deterministic finite automaton into a deterministic one. Besides, as finite-state
automata and regular expressions are equivalent, we offer the possibility to go from
one to the other. Finally, our library can transform an automaton into a finite state
transducer, which accepts only the words in the language of the automaton and
outputs the input word (see 7.3.6).

We implemented the fundamental operations on automata:

• Get the complementary, the reverse and the Kleene star of an automaton.

• Get the difference, the concatenation and the intersection between two au-
tomata.

• Check if an automaton is deterministic.

• Check if an automaton is acyclic.

• Check if an automaton produces the empty language.

• Minimise an automaton using the Hopcroft’s minimisation algorithm for de-
terministic automata [74,140].

• Check if two automata are equivalent.

Internally, the automaton is implemented using dictionaries and these dictionar-
ies are accessible to the user who wants to manipulate them.

An advantage of finite-state automata is that they offer a nice visual representa-
tion (at least for smaller automata). Fundamentally, a finite-state automaton can be
represented as a directed graph with two kinds of special nodes: Starting nodes and
final nodes. We offer the possibility to turn a finite automaton into a Networkx [72]
MultiDiGraph. In addition, the user can also save the finite-automaton into a dot
file (https://graphviz.org/doc/info/lang.html) to print it in a GUI. An example is
given in Figure 7.1.

Example 7.3.2. We show here an example of how to use the finite automata in our
library:

7.3. PYFORMLANG 121

https://graphviz.org/doc/info/lang.html


CHAPTER 7. PYFORMLANG

0

1

ab d

5

h

2

a

e

3

epsilon

Figure 7.1: Visualisation of a finite-state automaton

1 from pyformlang.finite_automaton import EpsilonNFA
2

3 enfa = EpsilonNFA ()
4 enfa.add_transitions(
5 [(0, "abc", 1), (0, "d", 1), (0, "epsilon", 2)])
6 enfa.add_start_state (0)
7 enfa.add_final_state (1)
8 enfa.is_deterministic () # False
9

10 dfa = enfa.to_deterministic ()
11 dfa.is_deterministic () # True
12 dfa.is_equivalent_to(enfa) # True
13

14 enfa.is_acyclic () # True
15 enfa.is_empty () # False
16 enfa.accepts (["abc", "epsilon"]) # True
17 enfa.accepts (["epsilon"]) # False
18

19 enfa2 = EpsilonNFA ()
20 enfa2.add_transition (0, "d", 1)
21 enfa2.add_final_state (1)
22 enfa2.add_start_state (0)
23 enfa_inter = enfa.get_intersection(enfa2)
24 enfa_inter.accepts (["abc"]) # False
25 enfa_inter.accepts (["d"]) # True

Listing 7.2: Finite Automata Example

7.3.3 Finite-State Transducer

Pyformlang implements non-weighted finite-state transducers and operators on
them: the concatenation, the union and the Kleene star. Finite state transduc-
ers can be built and used to translate one word into another one. In addition, we

122 7.3. PYFORMLANG



CHAPTER 7. PYFORMLANG

0

1

"I" -> ["Je"]

2

"am" -> ["suis"]

3

"alone" -> ["tout", "seul"] "alone" -> ["seul"]

Figure 7.2: A finite-state transducer

offer an intersection function to intersect a finite-state transducer with an indexed
grammar (see Section 7.3.6).

Just like finite state automata, it is possible to turn a finite-state transducer into
a NetworkX graph and to save it into a dot file. Figure 7.2 shows the finite-state
transducer used in Example 7.3.3.

Example 7.3.3. We show here an example of how to use the finite state transducers
in our library:

1 from pyformlang.fst import FST
2

3 fst = FST()
4 fst.add_transitions(
5 [(0, "I", 1, ["Je"]), (1, "am", 2, ["suis"]),
6 (2, "alone", 3, ["tout", "seul"]),
7 (2, "alone", 3, ["seul"])])
8 fst.add_start_state (0)
9 fst.add_final_state (3)

10 list(fst.translate (["I", "am", "alone"]))
11 # [[’Je’, ’suis ’, ’seul ’],
12 # [’Je’, ’suis ’, ’tout ’, ’seul ’]]

Listing 7.3: Finite State Transducer Example

7.3.4 Context-Free Grammars

Pyformlang implements context-free grammars and the essential operations on them.
One can construct a context-free grammar in two different ways. The first one
consists in using internal representation objects to represent variables, terminals and
production rules. This initialisation process can be quite wordy, and in most cases, it
is not necessary. However, it is close to textbooks representations and allows a better
understanding of context-free grammars. Besides, it is easier to use for a computer

7.3. PYFORMLANG 123



CHAPTER 7. PYFORMLANG

program. The other way, used by most libraries, uses a string representation of the
context-free grammar. Example 7.3.4 shows how this construction looks.

As many algorithms use the Chomsky Normal Form (CNF), our library offers
the possibility to transform a context-free grammar into its CNF.

Context-free grammars are equivalent to push-down automata. So, our library
allows transforming a context-free grammar into its equivalent push-down automa-
ton accepting by empty stack.

Our context-free grammar also contains several operations linked to the closure
properties: The concatenation, the union, the (positive) closure, the reversal and
the substitution of terminals by another context-free grammar. In general, the in-
tersection of two context-free grammars is not a context-free grammar, except if
one of them is a regular expression or a finite automaton. Hopcroft [75] presents in
algorithm that first transforms the grammar into an equivalent push-down automa-
ton accepting by empty stack, and then into an equivalent push-down automaton
accepting by final state. Next, it performs the intersection with the regular ex-
pression (or finite automaton) and transforms the push-down automaton obtained
back into a context-free grammar (by transiting through a push-down automaton
accepting by empty stack). However, this solution is costly, and we preferred the so-
lution given by Bar-Hillel [7,12], which does not require push-down automata and is
much more efficient. The algorithm of Bar-Hillel directly creates new non-terminals
and the transitions between them from the context-free grammar and the regular
expression.

We implemented various other operations, such as:

• Checking if a given context-free grammar produces a word

• Checking if a word is part of the language generated by the grammar

• Generate words in the grammar (through a generator as the language associ-
ated with the grammar is not necessarily finite)

• Checking whether a grammar is finite or not

Finally, we also added a LL(1) parser [3] which allows us to obtain parsing trees
and derivations. Figure 7.3 shows an example of a parsing tree from the grammar
defined in Example 7.3.4.

Example 7.3.4. We show here an example of how to use the context-free grammars
in our library:

1 from pyformlang.cfg import CFG
2 from pyformlang.cfg.llone_parser import LLOneParser
3 from pyformlang.regular_expression import Regex
4

5 cfg = CFG.from_text("""
6 S -> NP VP PUNC
7 PUNC -> . | !
8 VP -> V NP
9 V -> buys | touches | sees

10 NP -> georges | jacques | leo | Det N
11 Det -> a | an | the

124 7.3. PYFORMLANG



CHAPTER 7. PYFORMLANG

S

NP VP PUNC

georges V NP

sees Det N

a gorilla

.

Figure 7.3: Parsing tree

12 N -> gorilla | sky | carrots
13 """)
14 regex = Regex("georges touches (a|an) (sky|gorilla) !")
15

16 cfg_inter = cfg.intersection(regex)
17 cfg_inter.is_empty () # False
18 cfg_inter.is_finite () # True
19 cfg_inter.contains (["georges", "sees",
20 "a", "gorilla", "."]) # False
21 cfg_inter.contains (["georges", "touches",
22 "a", "gorilla", "!"]) # True
23

24 cfg_inter.is_normal_form () # False
25 cnf = cfg.to_normal_form ()
26 cnf.is_normal_form () # True
27

28 llone_parser = LLOneParser(cfg)
29 parse_tree = llone_parser.get_llone_parse_tree(
30 ["georges", "sees", "a", "gorilla", "."])
31 parse_tree.get_leftmost_derivation (),
32 # [[ Variable ("S")],
33 # [Variable ("NP"), Variable ("VP"), Variable ("PUNC")],
34 # [Terminal (" georges "), Variable ("VP"),
35 # Variable ("PUNC")],
36 # [Terminal (" georges "), Variable ("V"), Variable ("NP"),
37 # Variable ("PUNC")],
38 # [Terminal (" georges "), Terminal ("sees"),
39 # Variable ("NP"), Variable ("PUNC")],
40 # [Terminal (" georges "), Terminal ("sees"),
41 # Variable ("Det"), Variable ("N"), Variable ("PUNC")],
42 # [Terminal (" georges "), Terminal ("sees"),
43 # Terminal ("a"), Variable ("N"), Variable ("PUNC")],
44 # [Terminal (" georges "), Terminal ("sees"),
45 # Terminal ("a"), Terminal (" gorilla "),
46 # Variable ("PUNC")],
47 # [Terminal (" georges "), Terminal ("sees"),

7.3. PYFORMLANG 125



CHAPTER 7. PYFORMLANG

q0

q2

"epsilon" -> "Z1" / [] q1

"0" -> "Z0" / ["Z1", "Z0"]

"1" -> "Z1" / []

Z0

Figure 7.4: Visualisation of a push-down automaton

48 # Terminal ("a"), Terminal (" gorilla "), Terminal (".") ]]

Listing 7.4: Context-Free Grammar Example

7.3.5 Push-Down Automata

Pyformlang implements push-down automata accepting by final state or by empty
stack. It also adds the possibility to go from one acceptance to the other. As context-
free grammars are equivalent to push-down automata accepting by empty stack, we
implemented the transformation to go from one to the other. Push-down automata
have the same closure properties as context-free grammars. We implemented the
intersection with a regular language using the native algorithm in Hopcroft [75].

Just like finite automata and finite state transducers, push-down automata can
be visualised as a graph with NetworkX. Figure 7.4 shows the push-down automaton
used in Example 7.3.5.

Example 7.3.5. We show here an example of how to use the push-down automata
in our library:

1 from pyformlang.pda import PDA
2

3 pda = PDA()
4 pda.add_transitions(
5 [
6 ("q0", "0", "Z0", "q1", ("Z1", "Z0")),
7 ("q1", "1", "Z1", "q2", []),
8 ("q0", "epsilon", "Z1", "q2", [])
9 ]

10 )
11 pda.set_start_state("q0")
12 pda.set_start_stack_symbol("Z0")
13 pda.add_final_state("q2")
14

15 pda_final_state = pda.to_final_state ()
16 cfg = pda.to_empty_stack ().to_cfg ()

126 7.3. PYFORMLANG



CHAPTER 7. PYFORMLANG

17 cfg.contains (["0", "1"]) # True

Listing 7.5: Context-Free Grammar Example

7.3.6 Indexed Grammar

Aho [2] introduced indexed grammars, and they are an excellent example of non-
context-free grammars. For example, they have application in natural language
processing [69]. To the best of our knowledge, no library provides an implementation
for this class of grammars. As indexed grammars are less constrained, they do
not allow as many operations as context-free grammars: They can represent more
languages but the languages are harder to manipulate. Still, Pyformlang implements
essential functions such as checking if the grammar is empty or intersecting with a
regular expression or a finite automaton. Indeed, indexed grammars are stable by
this last operation.

As indexed grammars are not well documented, we give here more explanations
about how they work, as well as the emptiness algorithm and the algorithm to
intersect with a regular expression.

Definition

Indexed grammars [2] include the context-free grammars, but are strictly less ex-
pressive than context-sensitive grammars.

They generate the class of indexed languages, which contains all context-free
languages. A nice feature of this class of languages is that it conserves closure
properties and decidability results. In addition to the set of terminals and non-
terminals from the context-free grammars, the indexed grammars introduce the set
of index symbols. Following [75], an indexed grammar is a 5-tuple (N, T, I, P, S)
where

• N is a set of variables or non-terminal symbols

• T is a set of terminal symbols

• I is a set of index symbols

• S ∈ N is the start symbol, and

• P is a finite set of productions.

Each production in P takes one of the following forms:

A[σ]→ a (end rule)
A[σ]→ B[σ]C[σ] (duplication rule)
A[σ]→ B[fσ] (production rule)
A[fσ]→ B[σ] (consumption rule)

7.3. PYFORMLANG 127



CHAPTER 7. PYFORMLANG

Here, A, B, and C are non-terminals, a is a terminal, and f is an index symbol.
The part in brackets [...] is the so-called stack. The left-most symbol is the top of
the stack. σ is a special character that stands for the rest of the stack. For example,
the duplication rule states that a non-terminal with a certain stack gives rise to two
other non-terminals that each carry the same symbols on the stack.

Emptiness

The work of [2] gives an algorithm to determine the emptiness of an indexed grammar
(Algorithm 6). The method takes as input an indexed grammar G = (N, T, I, P, S).
For every non-terminal A ∈ N , the algorithm keeps track of the set of unexpanded
non-terminals from partial derivations that start at A. Every such set EA has the
property that there exists ω ∈ (T ∪ EA)∗ such that A ∗−→

G
ω. For each non-terminal

A, the algorithm maintains these sets in a collection marked(A). This collection is
at first initialised with the non-terminal A itself (Lines 1-2). For the end rules, we
add the set of the empty set (Lines 3-4).

The algorithm then iteratively updates this set for the different types of rules
(Lines 5-15). Only two kinds of rules create updates: duplication rules and pro-
duction rules. For duplication rules, changes in the marked symbols for the right-
hand-side non-terminals change the marked symbols for the non-terminal on the
left-hand side. Production rules are treated in parallel with consumption rules. The
code checks whether a symbol that was pushed will also be popped.

In order to prove that the grammar generates a non-empty language, we need
to show that ∅ ∈ marked(S), where S is the start symbol. In this case, we have
S
∗−→
G

ω, where ω ∈ T . Therefore, we can say that the grammar is non-empty as
soon as ∅ ∈ marked(S) (Lines 15-16). Otherwise, the grammar is empty.
Complexity. Let G = (N, T, I, P, S) be an indexed grammar in reduced form. Let
n = |N | be the number of non-terminals. Let us consider the number of marked
symbols in our algorithm. For each non-terminal, the maximum number of marked
symbols is O(2n) (the number of partitions of N). Then, the number of marked
symbols is O(n2n), which is the complexity of our algorithm. The original variant of
the algorithm [2] had a complexity of Θ(p×(2ln+22n)), where p is the number of non-
consumptions, and l is the maximum number of consumption rules for a production
symbol, because the original variant of the algorithm generates all possible marked
sets and all the rules to mark them in advance.

Intersection with a Regular Language

To perform the intersection of an indexed grammar with a regular expression, [2]
proposed to use Nondeterministic Finite Transducers.

Definition 7.3.6 (Nondeterministic Finite Transducer). A Nondeterministic Finite
Transducer (NFT) is a 6-tuple (Q, T,Σ, δ, q0, F ) such that:

• Q is a set of states

• T is a set of input symbols

128 7.3. PYFORMLANG



CHAPTER 7. PYFORMLANG

Algorithm 6: Emptiness Algorithm
Data: An indexed grammar G = (N, T, I, P, S)
Result: Whether the grammar is empty or not

1 foreach A ∈ N do
2 marked(A)← {{A}}
3 foreach end rule A[σ]→ a do
4 marked(A)← marked(A) ∪ {∅}
5 while new sets are marked do
6 foreach duplication rule A[σ]→ B[σ]C[σ] do
7 marked(A)← marked(A) ∪ {EB ∪ EC | EB ∈ marked(B) ∧ EC ∈

marked(C)}
8 foreach production rule A[σ]→ B[fσ] do
9 if ∅ ∈ marked(B) then

10 marked(A)← marked(A) ∪ ∅
11 foreach EB ∈ marked(B) such that EB = {B1, B2, . . . Br} and

∀i ∈ {1 . . . r},∃ consumption Bi[fσ]→ Ci[σ] do
12 for i = 1, ..., r do
13 let Γi = {C|∃Bi[fσ]→ C[σ]}
14 marked(A)← marked(A) ∪ {

⋃
marked(Ci) |∀i ∈ [1; r], Ci ∈ Γi}

15 foreach consumption rule B[fσ]→ C[σ] do
16 marked(A)← marked(A) ∪marked(C)

17 if ∅ ∈ marked(S) then
18 return The grammar is not empty

19 return The grammar is empty

• Σ is a set of output symbols

• δ is a transition function from Q× T into a finite subset of Q× Σ∗.

• q0 ∈ Q is the initial state

• F ⊆ Q is the set of final states.

In short, NFT are finite state automata which give an output. These tranducers
will be useful to filter our indexed grammar by using an NFT mapping.

Definition 7.3.7 (NFT Mapping). Let M = (Q, T,Σ, δ, q0, F ) be a NFT. For w ∈
T ∗, we define M(w) as the set of words output by M when giving w as an input. A
NFT mapping on a language L ⊆ T ∗ is M(L) = ∪w∈LM(w).

Given a regular language R, and given a NFTM such that for w ∈ R,M(w) = w
and M(w) = ∅ otherwise, the intersection of a language L with R will be M(L).
Our language L is an indexed language, so we need to be able to construct another
indexed grammar from L and R. Luckily, [2] tells us that M(L) is also an indexed
grammar.

7.3. PYFORMLANG 129



CHAPTER 7. PYFORMLANG

Theorem 7.3.8. Let L be an indexed language and M be a NFT. Then M(L) is
an indexed language.

Proof. We present here the construction of L(G′). For the full proof, see [2].
Let G = (N, T, F, P, S) be a indexed grammar in the reduced form and M =
(Q, T,Σ, δ, q0, K). We construct the indexed grammar G′ = (N ′,Σ, F ′, P ′, S ′) such
that L(G′) = M(L(G)), where the non-terminals are of the form (p,X, q) with p, q
in Q and X in N ∪ T ∪ ε, as follows:
For each rule r in P , we do:

• If r is a duplication rule A[σ] → B[σ]C[σ], we add the duplication rules
(p,A, q)[σ]→ (p,B, r)[σ](r, C, q)[σ] to P ′ for all p, q, r in Q.

• If r is a production rule A[σ] → B[fσ], we add the production rules
(p,A,Q)[σ]→ (p,B, q)[fσ] to P ′ for all p, q in Q

• If r is a consumption rule A[fσ] → B[σ], we add the consumption rule
(p,A, q)[fσ]→ (p,B, q)[σ] to P ′ for all p, q in Q.

• If r is an end rule A[σ] → a, we add the duplication rules (p,A, q)[σ] →
(p, a, q)[σ]T [σ] to P ′ for all p, q in Q and the end rule T [σ]→ ε.

Then we add the following duplication rules to P ′:

• (p, a, q)[σ]→ (p, a, r)[σ](r, ε, q)[σ]

• (p, a, q)[σ]→ (p, ε, r)[σ](r, a, q)[σ]

• (p, ε, q)[σ]→ (p, ε, r)[σ](r, ε, q)[σ]

Next, for all transitions in δ from (p, a)[σ] to (q, x)[σ], we add the end rule
(p, a, q)[σ]→ x to P ′. For all p ∈ Q, we add the end rule (p, ε, p)[σ]→ ε to P ′.

Finally, we add the starting duplication rules S ′[σ]→ (q0, S, p)[σ]T [σ] for p ∈ K
and the end rule T [σ]→ ε.

Example 7.3.9. We show here an example of how to use indexed grammars in our
library:

1 from pyformlang.indexed_grammar import Rules ,
2 ConsumptionRule , EndRule , ProductionRule ,
3 DuplicationRule , IndexedGrammar
4 from pyformlang.regular_expression import Regex
5

6 all_rules = [ProductionRule("S", "D", "f"),
7 DuplicationRule("D", "A", "B"),
8 ConsumptionRule("f", "A", "Afinal"),
9 ConsumptionRule("f", "B", "Bfinal"),

10 EndRule("Afinal", "a"),
11 EndRule("Bfinal", "b")]
12 indexed_grammar = IndexedGrammar(Rules(all_rules))
13 indexed_grammar.is_empty () # False

130 7.3. PYFORMLANG



CHAPTER 7. PYFORMLANG

14 i_inter = indexed_grammar.intersection(Regex("a.b"))
15 i_inter.is_empty () # False

Listing 7.6: Indexed-Grammar Example

7.4 Conclusion
In this chapter, we introduced Pyformlang, a modern Python3 library to manipu-
late formal languages, especially tailored for practical and pedagogical purposes. It
contains the main functionalities to manipulate regular expressions, finite state au-
tomata, finite state transducers, context-free grammars, push-down automata and
indexed grammars. The code is fully documented and is open sourced on GitHub
(https://github.com/Aunsiels/pyformlang).

7.4. CONCLUSION 131

https://github.com/Aunsiels/pyformlang


CHAPTER 7. PYFORMLANG

132 7.4. CONCLUSION



Chapter 8

Conclusion

Any fool can know. The point is to
understand.

Albert Einstein

8.1 Summary

In this thesis, we addressed challenges related to knowledge base construction and
exploitation. More precisely, we worked on the following topics:
Commonsense Knowledge Extraction. In Chapter 3, we introduced a method-
ology to automatically extract commonsense knowledge from various untypical Web
resources. Although the problem is complicated, we provided a scalable framework
that outperforms other state-of-the-art approaches in terms of precision and recall,
and that performs as well as manually designed knowledge bases on some tasks. Our
knowledge base Quasimodo contains more than four million facts, with a very high
precision for the top-ranked statements.
Commonsense Knowledge Exploitation. In Chapter 4, we developed a software
to display Quasimodo. Besides, we illustrated many applications that benefit from
a commonsense knowledge base.
Equivalent Rewritings With Integrity Constraints. In Chapter 5, we intro-
duced a practical setting that has many favourable properties when it comes to
query rewritings. It exploits a particular set of integrity constraints, the unary in-
clusion dependencies, and a particular set of functions, the path functions. With
these parameters, we showed that finding if there exists an equivalent rewriting is
polynomial, and we provided an algorithm to enumerate all of them.
Query Rewriting Without Integrity Constraints. In Chapter 6, we extended
the work of Chapter 5 by removing the integrity constraints from the setting. We
then showed that equivalent rewritings are of little interest, and we introduced a
new category of plans: the smart plans. We characterised these plans and gave an
algorithm to find them.
Formal Language Framework In Python. In Chapter 7, we introduced Py-
formlang, a formal language manipulation framework written in Python. It was

133



CHAPTER 8. CONCLUSION

initially written to support the algorithm in Chapter 5 and ended up providing a
set of functionalities that cannot be found in other libraries.

8.2 Outlook
There are still many challenges remaining in the area we worked in. We here give
some possible research directions that would be worth exploring in the future.
Commonsense Knowledge Evaluation. In Chapter 3, we gave a score to each
statement using logistic regression. This classifier is simple and could be improved
a lot. Besides, we could include new features such as linguistic features into the
scoring, especially by using neural networks such as BERT [40] or GPT [23]. The
downside is that training and scoring would become slower and would require more
computation resources. We are also using Web services with limited access, such
as Google Books. We would need a smart strategy to know when to ask for such
additional features. This would be in line with budgeted learning algorithms [80].
However, these approaches often have limiting computation time and would not
scale easily to our data.
Integrating Commonsense Knowledge Into Applications. Currently, neu-
ral network approaches perform exceptionally well on various tasks such as ques-
tion answering [77]. However, these methods are mostly based on statistical
signals and would benefit from external knowledge [82]. For example, when
we ask GPT to autocomplete the sentence “The colour of the sea is” (using
https://transformer.huggingface.co/), it gives us nothing related to colour. How-
ever, a human would most likely finish the sentence with “blue.”. Some work [139]
focused on incorporating commonsense knowledge from ConceptNet into neural net-
works, but hybrid approaches are still rare.
A Pipeline for Stereotype Analysis. The pipeline we created in Chapter 3 could
be reused to analyse stereotypes and their evolution. For example, Google autocom-
pletion gives us “why do white people have thin lips”, from which we can extract the
hypothesis white people, have, thin lips. [11] used Google autocompletion to extract
stereotypes, and we could extend their methods to a larger scale. Besides, we could
also adapt the pipeline to support multiple languages and see how stereotypes vary
depending on the language.
Polynomial Equivalent Rewriting Existence. One of the surprising results of
Chapter 5 is that finding the existence of an equivalent rewriting is polynomial in
some practical settings. We now need to understand how much we can generalise our
setting, while still getting the complexity results. In particular, we could consider
non-atomic queries of a particular shape, such as a path. We could also consider
functions with a more general shape, such as a tree. We could even see what hap-
pens when functions have multiple inputs. Finally, we could try to vary the set of
constraints by adding, for example, role inclusion or Horn rules.
Smart Plans Without Optional Edge Semantics. In Chapter 6, we charac-
terised smart plans when we were under the “optional edge semantics”. This allowed
us to use sub-functions. In the future, we would like to investigate what happens
when we remove this semantics, and to see what conclusions we can draw.
Link To Description Logic. The work in Chapter 5 and Chapter 6 seems related

134 8.2. OUTLOOK

https://transformer.huggingface.co/


CHAPTER 8. CONCLUSION

to work done in description logic [18]. We want to investigate deeper what are the
relations between the two and how one approach could benefit from the other.
Extending Formal Language Manipulation. Currently, Pyformlang contains
most textbook algorithms and operations for formal languages. This is a definite
advantage when it comes to applying Pyformlang in a pedagogical context. However,
it could also be used for research. In Chapter 5, we showed a potential use case.
More advanced functionalities could be implemented, such as weighted transducers
or Turing machines.

Thus, while our work has advanced the state of the art, it has also opened the
door to new challenges. We hope that we and others can build on what we achieved,
so as to tackle these challenges as well.

8.2. OUTLOOK 135



CHAPTER 8. CONCLUSION

136 8.2. OUTLOOK



Appendix A

Résumé en français

Le cosmos est mon campement.

Alain Damasio

A.1 Introduction

Internet est une jungle d’information qui connecte environ 4,5 milliards d’humains.
Cependant, il y est difficile de démêler le vrai du faux tant les sources sont contradic-
toires. Certains sites, comme Wikipédia, se sont spécialisées dans la production de
connaissances, mais, en dehors de ces zones de sécurité, rien n’est sûr. Il y a plusieurs
raisons à cela. Tout d’abord, les experts sont rares dans certains domaines. Même
si des sites comme le réseau Stack Exchange les regroupent sous un même toit, de
nombreuses coquilles subsistent. Ensuite, certaines personnes diffusent intention-
nellement du faux contenu. Dans le domaine des news, nous parlons généralement
de Fake News ou d’Infox. Le but d’une telle démarche est souvent de soutenir une
idéologie ou d’attirer une large audience à travers des titres aguicheurs.

Avec l’internet, nous avons un exemple parfait de la dichotomie entre
l’information et la connaissance. D’un côté, l’information prend de nombreuses
formes, est floue, peut être soit vraie, soit fausse et abonde en ligne. De l’autre, la
connaissance est structurée, précise, se concentre sur la vérité et connaît des limites.
Pourtant, les deux marchent main dans la main, l’un éclairant l’autre. Par exem-
ple, sans connaissance a priori, il serait impossible de comprendre de quoi parle le
moindre article de journal: Qui est Emmanuel Macron? Qu’est-ce que l’Europe?

Conscient de l’importance des connaissances pour clarifier l’information, les infor-
maticiens ont mis au point des systèmes pour les collecter: on parle de bases de con-
naissance. On en trouve très rapidement dans l’histoire, avec, en 1984, l’émergence
du premier projet d’ampleur: Cyc [79]. Ce dernier utilise un effort humain pour
regrouper un maximum de données sur le monde. Plus tard, grâce à l’expansion
de Wikipedia, de nombreuses bases de connaissances ont émergé. Les exemples les
plus emblématiques sont Freebase [130], DBpedia [6], Yago [123] et Wikidata [131].
Ces dernières sont, en partie ou totalement, générées automatiquement, ce qui leur
permet d’atteindre de grandes proportions.

137



APPENDIX A. RÉSUMÉ EN FRANÇAIS

Les bases de connaissances ont des applications dans des domaines très variés.
Google les utilise pour clarifier les requêtes des utilisateurs [44]. Si nous demandons
“train pour Paris” à un moteur de recherche, Paris doit être compris comme étant
la capitale de la France et non le héros grec, qui ne peut être accédé en train. Il est
aussi possible de répondre à des questions grâce à une base de connaissance, et ce
que fit Watson [62], le logiciel d’IBM capable de jouer à Jeopardy!, un quiz inversé
où il faut deviner les questions. Les applications ne s’arrêtent pas là: chatbot,
compréhension du langage, vérification de faits, construction d’une argumentation,
génération d’explications, décryptage d’une image, ... La connaissance est utile dans
chaque activité humaine.

Dans cette thèse, nous nous focalisons sur deux tâches liées aux bases de connais-
sance. Tout d’abord, nous montrons comment en générer une pour le sens commun à
partir de logs de requêtes et de forums de question-réponse. Ensuite, nous étudions
comment répondre à des questions simples quand l’accès à une base de connaissance
est limité.

A.2 Quasimodo
Collecter des connaissances sur le sens commun est un vieux thème de l’IA qui a été
lancé dans les années 60 par McCarthy [85]. Le but est d’obtenir des connaissances
sur les propriétés des objets de tous les jours, comme le fait que les bananes sont
jaunes, sur les comportements humains et leurs émotions, par exemple en disant
que la mort provoque de la tristesse, ou sur des concepts généraux. Par opposition,
les connaissances encyclopédiques, présentes dans les bases de données classiques,
sont en général enseignées: c’est à l’école que nous apprenons que la capitale de
l’Angleterre est Londres.

Le sens commun est primordial dans de nombreuses applications comme celles
que nous avons présentées plus tôt. Pourtant, il est très compliqué de les extraire
automatiquement. En effet, ce genre de connaissance est rarement exprimé (car
partagé par tous) et les sources, que ce soit internet, des livres ou directement des
humains, sont souvent complexes, contextuelles et biaisées.

Dans cette thèse, nous présentons Quasimodo, une base de connaissance constru-
ite automatiquement à partir de sources surprenantes. Les résultats de nos travaux
ont été publiés à CIKM 2019 [111], puis à CIKM 2020 [110] sous forme d’une démo.
L’idée générale est d’utiliser des questions plutôt que des affirmations pour obtenir
des faits. Nous remarquons qu’une question n’est jamais anodine et fait des pré-
suppositions sur le monde. Par exemple, quand nous demandons “Pourquoi le ciel
est bleu?”, nous pouvons déduire que le ciel est bleu. Ce genre d’interrogations se
trouve facilement dans certaines sources telles que les requêtes faites à un moteur
de recherche ou encore les forums de question-réponse. L’humain étant curieux par
nature, il questionne souvent le sens commun et cherche à connaître l’origine des
faits les plus banals.

Une fois cette observation faite, nous collectons des questions traitant de su-
jets donnés et commençant par “pourquoi” et “comment”. Pour cela, nous utilisons
l’autocomplétion de moteurs de recherche comme Google (qui nous donne un accès
indirect à son historique de requêtes) et les questions posées sur des forums tels que

138 A.2. QUASIMODO



APPENDIX A. RÉSUMÉ EN FRANÇAIS

Quora, Answers.com ou Reddit. Ensuite, nous transformons les questions en affir-
mations. Par exemple, de la question “pourquoi les astronautes vont dans l’espace”,
nous obtenons “les astronautes vont dans l’espace”. Puis, nous séparons le sujet, le
verbe (aussi appelé prédicat) et le complément d’objet (ou simplement objet) grâce
un algorithme d’OpenIE. Dans notre exemple, nous obtenons le triplet (astronautes,
vont, dans l’espace). Finalement, nous normalisons les triplets pour les uniformiser.
Ici, nous avons (astronaute, aller, dans l’espace).

Passée l’étape de la génération de faits, nous leur donnons un score qui représente
leur plausibilité. Par exemple, le triplet (banane, être, jaune) devrait avoir un
meilleur score que (banane, être, mauve). Pour cela, nous utilisons des sources
extérieures. En outre, nous vérifions si un fait est sur Wikipédia ou si un sujet et un
objet apparaissent ensemble dans une image. Ces sources sont des signaux positifs
ou négatifs que nous fusionnons afin d’obtenir un score.

Au bout du procédé, nous obtenons Quasimodo, une base de connaissance qui
comporte plus de quatre millions de faits associés à un score. Ce nombre est bien
supérieur à ceux des bases de connaissances construites manuellement telle que Con-
ceptNet. Comparé aux autres bases de connaissance construites automatiquement,
Quasimodo présente une plus grande précision et un plus grand rappel, comme nous
le montrons dans nos expériences. De plus, Quasimodo arrive à surpasser ses con-
currents sur de nombreuses tâches pratiques telles la sélection de réponse à une
question.

Le code et les données de Quasimodo sont mises gratuitement en ligne pour
aider la communauté. De nombreuses questions restent ouvertes. En particulier,
nous pourrions nous demander comment donner un meilleur score à un fait. Une
autre direction serait d’évaluer à quel point les modèles de langage tels que BERT
capturent le sens commun et, si possible, les améliorer pour qu’ils en prennent
compte.

Nous venons de voir comment créer une base de connaissance sur le sens commun.
Maintenant, intéressons nous à notre second problème, à savoir comment obtenir des
données d’une base de connaissance avec un accès limité.

A.3 Réécriture de requêtes
Comme nous l’avons vu plus haut, une base de connaissance apporte une grande
valeur ajoutée à de nombreuses applications. Il est donc logique que certains acteurs
de l’économie construisent et vendent des connaissances précises et spécialisées dans
certains domaines. Quand l’accès se fait en ligne automatiquement par des machines,
nous parlons de services web. Dans le secteur de la musique, MusicBrainz propose un
grand nombre de fonctionnalités qui permettent, par exemple, de trouver l’interprète
d’une chanson.

Toutefois, posséder des données implique de pouvoir en contrôler l’accès. Dès
lors, les services web publient des méthodes d’accès qui donnent une vue partielle sur
la base de connaissance. Celles-ci dépendent en général de l’abonnement payé par le
client. Par exemple, nous pourrions imaginer que MusicBrainz donne gratuitement
la possibilité de trouver l’interprète d’une chanson, mais demande une participation
financière pour trouver les albums d’un compositeur.

A.3. RÉÉCRITURE DE REQUÊTES 139



APPENDIX A. RÉSUMÉ EN FRANÇAIS

Un utilisateur de tels services web va chercher à répondre à ses requêtes le plus
efficacement possible. Il va donc devoir combiner des méthodes d’accès pour, d’une
part, obtenir un résultat correct et, d’autre part, pour optimiser des critères qui lui
sont propres (temporel ou financier par exemple).

Imaginons que nous ayons accès à un service web proposant des données
généalogiques. Nous souhaitons connaître la date de naissance de Marie Curie.
Cependant, seules deux méthodes d’accès nous sont données: une qui nous donne
les parents d’un individu et une autre qui nous donne la date de naissance des
petits-enfants d’une personne. Pour répondre à notre requête initiale, nous devons
demander les parents de Marie Curie, puis leurs parents et enfin nous appelons la
fonction donnant la date de naissance des petits-enfants.

Ce problème est ce que l’on appelle de la réécriture de requête: étant donné
une requête (trouver la date de naissance de Marie Curie) et des méthodes d’accès
(donner les parents d’une personne), peut-on répondre à la requête? Si la réponse
est oui et la réécriture donne exactement les réponses à la requête dans tous les cas,
nous parlons de réécriture équivalente. Cette tâche a été largement étudiée dans
la communauté et nous donnons dans cette thèse une réponse nouvelle à un sous
problème pratique.

En général, réécrire une requête peut être très coûteux. Dans notre cas, nous
considérons des requêtes simples dites atomiques. Cela signifie qu’il y a une con-
nexion directe entre le sujet de la question et la réponse. Dans la requête: “trouver
la date de naissance de Marie Curie”, Marie Curie et le 7 novembre 1867 sont liées
par une relation “date de naissance”. Au contraire, la requête: “trouver les grands-
parents de Marie Curie” n’est pas atomique car Marie Curie et ses grands-parents
sont séparés par deux relations “parent”.

Ensuite, nous considérons des méthodes d’accès qui sont des fonctions chemins
à une seule entrée. Cela signifie que les méthodes suivent un chemin de connexions
dans la base de connaissance. Par exemple, la fonction pour obtenir la date de
naissance des petits-enfants suit le chemin “parent”, “parent”, “date de naissance”.
À l’opposé, une fonction donnant accès aux parents et notre fratrie n’est pas un
chemin. En effet, nous distinguons trois chemins: “parent”, “frère” et “sœur”.

À partir de requêtes atomiques et de fonctions chemins, nous étudions deux prob-
lèmes. Tout d’abord, nous considérons le cas où la base de connaissance respecte des
contraintes sur la structure qui sont appelées des dépendances d’inclusion unitaire.
Par exemple, nous pouvons dire que si une personne a une date de naissance, alors
elle a des parents. Dans cette situation, on peut savoir en temps polynomial si le
problème de la réécriture équivalente admet une solution, puis la générer. À travers
nos expériences, nous montrons que notre approche exacte surpasse les méthodes
plus générales dans notre scénario. Ces travaux ont été publiés à ESWC 2020 [108].
En complément de notre article, nous avons publié une démo [107] accessible à
dangie.r2.enst.fr.

Dans le second problème, nous supposons que la base de connaissance ne respecte
aucune contrainte. Dans ce cas, la notion de réécriture équivalente a peu de sens car
nous ne savons rien a priori qui nous permette de résonner dans toutes les situations.
Nous avons donc défini une notion de “plan intelligent” qui, même sans information
additionnelle, donne des garanties sur les solutions. Dans cette thèse, nous prouvons

140 A.3. RÉÉCRITURE DE REQUÊTES



APPENDIX A. RÉSUMÉ EN FRANÇAIS

que ce nouveau problème admet une solution et nous donnons un algorithme pour
la générer.

En conclusion, nous apportons dans cette thèse un éclairage nouveau sur un
problème de la communauté en exhibant un cas particulier tractable. De plus,
nous avons exhibé une nouvelle notion de “plan intelligent” qui donne des garanties,
même sans information a priori. Dans le futur, nous pourrions chercher à étendre
nos résultats à des requêtes non atomiques ou des fonctions non chemins, mais qui
respectent toujours certaines contraintes.

Avant de conclure cette thèse, nous décrivons ici une dernière contribution plus
pratique: la création d’une bibliothèque Python pour manipuler les langages formels.

A.4 Pyformlang
Notre travail sur la réécriture de requête équivalente a nécessité l’emploi de gram-
maires hors contextes et d’expressions régulières. En particulier, nous avons eu
recours à des algorithmes non implémentés jusque là. Ce manque, et en particulier
dans le paysage de Python, nous a poussé à développer Pyformlang, une bibliothèque
de manipulation de langages formels.

Celle-ci permet d’interagir de manière intuitive avec les expressions régulières,
les automates finis, les grammaires hors contextes, les automates à piles, les trans-
ducteurs finis ainsi que les grammaires indexées. Les algorithmes implémentés sont
ceux des livres de cours classiques, ce qui permet aux étudiants d’ajouter une touche
pratique à la théorie.

A.5 Conclusion
En conclusion, dans cette thèse, nous avons abordé deux problèmes majeurs. Tout
d’abord, nous avons décrit comment construire une base de connaissance sur le
sens commun à partir de sources inhabituelles. Ensuite, nous avons apporté deux
solutions nouvelles et pratiques au problème de la réécriture de requête.

Nous espérons que nos recherches vont inspirer d’autres travaux et permettront
des avancées majeures en informatique. Pour cela, tous nos résultats, codes et
données sont accessibles en open source afin que la communauté puisse en profiter.

A.4. PYFORMLANG 141



APPENDIX A. RÉSUMÉ EN FRANÇAIS

142 A.5. CONCLUSION



Appendix B

Additional Proofs

B.1 Proofs for Section 5.6
Let us first define some notions used throughout this appendix. Recall the definition
of a path query (Definition 5.6.4) and of its skeleton. We sometimes abbreviate the
body of the query (i.e. the part containing the path of relations) as r1...rn(α, x1...xn).
We use the expression path query with a filter to refer to a path query where a body
variable other than α is replaced by a constant. For example, in Figure 5.1, we can
have the path query:

q(m, a)← sang(m, s), onAlbum(s, a)

where m, a and s are variables representing respectively the singer, the album and
the song. which asks for the singers with their albums. Its skeleton is sang.onAlbum.

Towards characterizing the path queries that can serve as a rewriting, it will be
essential to study loop queries :

Definition B.1.1 (Loop Query). We call loop query a query of the form:
r1...rn(a, a) ← r1(a, x1)...rn(xn−1, a) where a is a constant and x1, x2, ..., xn−1 are
variables such that xi = xj ⇔ i = j.

With these definitions, we can show the results claimed in Section 5.6.

B.1.1 Proof of Theorem 5.6.2

Theorem 5.6.2. Given a query q(x)← r(a, x), a well-filtering plan πa, the associ-
ated minimal filtering plan πmina and unary inclusion dependencies UID:

• If πmina is not equivalent to q, then neither is πa.

• If πmina is equivalent to q, then we can determine in polynomial time if πa is
equivalent to πmina

First, let us show the first point. By Definition 5.4.5, we have that πa contains
r(a, x) or r−(x, a). Let us suppose that πa is equivalent to q. Let I be the database
obtained by taking the one fact r(a, b) and chasing by UID. We know that the
semantics of πa has a binding returning b as an answer. We first argue that πmina

143



APPENDIX B. ADDITIONAL PROOFS

also returns this answer. As πmina is formed by removing all filters from πa and then
adding possibly a single filter, we only have to show this for the case where we have
indeed added a filter. But then by definition, the added filter ensures that πmina is
well-filtering. Therefore, it creates an atom r(a, x) or r−(x, a) in the semantics of
πmina and the binding of the semantics of πa that maps the output variable to b is
also a binding of πmina .

We then prove that πmina does not return any other answer. In the first case,
as πmina is well-filtering, it cannot return any different answer than b on I. In the
second case, we know by the explanation after Definition 5.4.5 that πmina is also
well-filtering, so the same argument applies. Hence, πmina is also equivalent to q,
which establishes the first point.

Let us now show the more challenging second point. We assume that πmina is
equivalent to q. Recall the definition of a loop query (Definition B.1.1) and the
grammar Gq defined in Definition 5.5.1, whose language we denoted as Lq. We first
show the following property:

Property B.1.2. A loop query r1...rn(a, a) is true on all database instances satis-
fying the unary inclusion dependencies UID and containing a tuple r(a, b), iff there
is a derivation tree in the grammar such that Br

∗−→ r1...rn.

Proof. We first show the backward direction. The proof is by structural induction
on the length of the derivation. The length of the derivations is the number of rules
applied to get a word. We first show the base case. If the length is 0, its derivation
necessarily uses Rule 5.5.4, and the query ε(a, a) is indeed true on all databases.

We now show the induction step. Suppose we have the result for all derivations
up to a length of n−1. We consider a derivation of length n > 0. Let I be a database
instance satisfying the inclusion dependencies UID and containing the fact r(a, b).
Let us consider the rule at the root of the derivation tree. It can only be Rule 5.5.3.
Indeed, Rule 5.5.4 only generates words of length 0. So, the first rule applied was
Rule 5.5.3 Br → BrLri for a given UID r  ri. Then we have two cases.

The first case is when the next Br does not derive ε in the derivation that
we study. Then, there exists i ∈ {2, . . . , n − 1} such that Br

∗−→ r1 . . . ri−1 and
Lri

∗−→ ri . . . rn (Lri starts by ri). From the induction hypothesis we have that
r1 . . . ri−1(a, a) has an embedding in I. Note that the derivation tree to derive
Br

∗−→ r1 . . . ri−1 is at least of length 3. Indeed, we need to do at least a call to
Rules 5.5.3, 5.5.4 and 5.5.5. So, the length of the derivation of Lri

∗−→ ri . . . rn
is less than n − 3. Also, ri . . . rn(a, a) is true on I if Bri

∗−→ ri . . . rn. Indeed,
Bri

Rule5.5.3−−−−−→ BriLri
Rule5.5.4−−−−−→ Lri

∗−→ ri . . . rn. This derivation is of length less than
n− 1. This shows the first case of the induction step.

We now consider the case where the next Bri derives ε. Note that, as r(a, b) ∈ I,
there exists c such that ri(a, c) ∈ I. The next rule in the derivation is Lri → riBr−i

r−i ,
then Br−i

∗−→ r2 . . . rn−1, and r1 = ri and rn = r−i . By applying the induction
hypothesis, we have that r2 . . . rn−1(c, c) has an embedding in I. Now, given that
r1(a, c) ∈ I and rn(c, a) ∈ I we can conclude that r1 . . . rn(a, a) has an embedding
in I. This establishes the first case of the induction step. Hence, by induction, we
have shown the backward direction of the proof.

144 B.1. PROOFS FOR SECTION 5.6



APPENDIX B. ADDITIONAL PROOFS

We now show the forward direction. Let I0 be the database containing the single
fact r(a, b) and consider the database I∗0 obtained by chasing the fact r(a, b) by the
inclusion dependencies in UID, creating a new null to instantiate every missing fact.
This database is generally infinite, and we consider a tree structure on its domain,
where the root is the element a, the parent of b is a, and the parent of every null
x is the element that occurs together with x in the fact where x was introduced.
Now, it is a well-known fact of database theory [1] that a query is true on every
superinstance of I0 satisfying UID iff that query is true on the chase I∗0 of I0 by
UID. Hence, let us show that all loop queries r1 . . . rn(a, a), which hold in I∗0 are
the ones that can be derived from Br.

We show the claim again by induction on the length of the loop query. More
precisely, we want to show that, for all relation r ∈ R, for all constants a and b,
for all n ≥ 0, for all loop queries r1...rn(a, a) which is true on all database instances
satisfying the unary inclusion dependencies UID and containing a tuple r(a, b) , we
have:

1. Br
∗−→ r1...rn

2. For a match of the loop query on I∗0 , if no other variable than the first and the
last are equal to a, then we have: Lr1

∗−→ r1...rn

In this proof, we index I∗0 by the first relation used to generate it. Thus, I∗r,a,b is
the database obtained by chasing a fact r(a, b).

Let r ∈ R and a and b be two constants. If the length of the loop query is 0, then
it could have been derived by the Rule 5.5.4. The length of the loop query cannot
be 1 as for all relations r′, the query r′(a, a) is not true on all databases satisfying
the UIDs and containing a tuple r(a, b) (for example it is not true on I∗r,a,b).

Let us suppose the length of the loop query is 2 and let us write the loop query
as r1(a, x), r2(x, a) and let r1(a, c), r2(c, a) be a match on I∗r,a,b. The fact r1(a, c) can
exist on I∗r,a,b iff r  r1. In addition, due to the tree structure of I∗r,a,b, we must
have r2 = r−1 . So, we have Br → Lr1 → r1Br−1

r−1 → r−1 and we have shown the two
points of the inductive claim.

We now suppose that the result is correct up to a length n− 1 (n > 2), and we
want to prove that it is also true for a loop query of length n.

Let r ∈ R and a and b be two constants. Consider a match
r1(a, a1), r2(a1, a2), . . . , rn−1(an−2, an−1), rn(an−1, a) of the loop query on I∗r,a,b. Ei-
ther there is some i such that ai = a, or there is none.

If there is at least one, then let us cut the query at all positions where the
value of the constant is a. We write the binding of the loop queries on I∗r,a,b
: (ri0 . . . ri1)(a, a).(ri1+1 . . . ri2)(a, a)...(rik−1+1 . . . rik)(a, a) (where 1 = i0 < i1 <
... < ik−1 < ik = n). As we are on I∗r,a,b, we must have, for all 0 < j < k,
that r  rij (by construction of I∗r,a,b). So, we can construct the derivation :
Br → BrLrik−1

→ BrLrik−2
Lrik−1

∗−→ Lri0 . . . Lrik−1
. We notice that, for all 0 ≤ j < k,

we have rij ...rij+1
(a, a) true on all database instances where r(a, b) is true as it is

true on the canonical database. Then, from the induction hypothesis, we have that,
for all 0 < j < k, Lrij

∗−→ rij ...rij+1
and so we get the first point of our induction

hypothesis.

B.1. PROOFS FOR SECTION 5.6 145



APPENDIX B. ADDITIONAL PROOFS

We now suppose that there is no i such that ai = a. Then, we have r  r1
(by construction of I∗r,a,b). In addition, due to the tree structure of I∗r,a,b, we must
have rn = r−1 and a1 = an−1. We can then apply the induction hypothesis on
r2...rn−1(a1, a1), if it is true on all databases satisfying the unary inclusion depen-
dencies UID and containing a tuple r−1 (a1, a), then Br−1

∗−→ r2...rn−1. To notice
that r2...rn−1(a1, a1) is indeed true on all databases satisfying the unary inclusion
dependencies UID and containing a tuple r−1 (a1, a), we notice that I∗r,a,b contains
I∗r1,a,a1 (up to a renaming of the variables), and that the constant a is never used.
So, r2...rn−1(a1, a1) is true on the canonical database and therefore on all databases
satisfying the unary inclusion dependencies UID and containing a tuple r−1 (a1, a).
Finally, we observe that we have the derivation Br

∗−→ Lr1 → r1Br−1
r−1

∗−→ r1...rn and
so we have shown the two points of the inductive claim.

Thus, we have established the forward direction by induction, and it completes
the proof of the claimed equivalence.

Next, to determine in polynomial time whether πa is equivalent to πmina (and
hence q), we are going to consider all positions where a filter can be added. To do
so, we need to define the root path of a filter:

Definition B.1.3 (Root Path). Let πa be well-filtered execution plan. Given a filter,
there is a unique path query r1(a, x1)...rn(xn−1, a) in the semantics of πa, starting
from the constant a and ending at the filter (which value is also a). We call this
path the root path of the filter.

The existence and uniqueness come from arguments similar to Property 5.4.2:
we can extract a sequence of calls to generate the filter and then, from the semantics
of this sequence of calls, we can extract the root path of the filter.

This definition allows us to characterise in which case the well-filtering plan πa
is equivalent to its minimal filtering plan πmina , which we state and prove as the
following lemma:

Lemma B.1.4. Let q(x) ← r(a, x) be an atomic query, let UID be a set of UIDs,
and let πmina be a minimal filtering plan equivalent to q under UID. Then, for any
well-filtering plan πa defined for q, the plan πa is equivalent to πmina iff for each filter
and its associated root path r1(a, x1)...rn(xn−1, a), there is a derivation tree such that
Br

∗−→ r1...rn in the grammar Gq.

It is easy to show the second point of Theorem 5.6.2 once we have the lemma. We
have a linear number of filters, and, for each of them, we can determine in PTIME if
Br generates the root path. So, the characterisation can be checked in PTIME over
all filters, which allows us to know if πa is equivalent to πmina in PTIME, as claimed.

Hence, all that remains to do in this appendix section to establish Theorem 5.6.2
is to prove Lemma B.1.4. We now do so:

Proof. We consider a filter and the root query r1(a, x1)...rn(xn−1, a) obtained from
its root path.

We first show the forward direction. Let us assume that πa is equivalent to πmina .
Then, πa is equivalent to q, meaning that the loop query r1...rn(a, a) is true on

146 B.1. PROOFS FOR SECTION 5.6



APPENDIX B. ADDITIONAL PROOFS

all database instances satisfying the unary inclusion dependencies and containing a
tuple r(a, b). So, thanks to Property B.1.2, we conclude that Br

∗−→ r1...rn.
We now show the more challenging backward direction. Assume that, for all loop

queries r1...rn(a, a) equal to the root path of each filter, there is a derivation tree
such that Br

∗−→ r1...rn. We must show that πmina is equivalent to πa, i.e., it is also
equivalent to q. Now, we know that πmina contains an atom r(a, x) or r−(x, a), so all
results that it returns must be correct. All that we need to show is that it returns
all the correct results. It suffices to show this on the canonical database: let I be the
instance obtained by chasing the fact r(a, b) by the unary inclusion dependencies.
As πmina is equivalent to q, we know that it returns b, and we must show that πa also
does. We will do this using the observation that all path queries have at most one
binding on the canonical database, which follows from Property 5.4.4.

Let us call πno filter
a the execution plan obtained by removing all filters from

πa. As we have Br
∗−→ r1...rn for all root paths, we know from Property B.1.2

that r1...rn(a, a) is true on all databases satisfying the UIDs, and in particular on
I. In addition, on I, r1...rn(a, x1, ...xn) has only one binding, which is the same
than r1...rn(a, x1, ...xn−1, a). So, the filters of πa do not remove any result of πa
on I relative to πno filter

a : as the reverse inclusion is obvious, we conclude that πa is
equivalent to πno filter

a on I.
Now, if πmina contains no filter or contains a filter which was in πa, we can apply

the same reasoning and we get that πmina is equivalent to πno filter
a on I, and so πmina

and πa are equivalent in general.
The only remaining case is when πmina contains a filter which is not in πa. In this

case, we have that the semantics of πa contains two consecutive atoms r(a, x)r−(x, y)
where one could have filtered on y with a (this is what is done in πmina ). Let us
consider the root path of π to y. It is of the form r1...rn(a, a)r(a, x)r−(x, y). We
have Br

∗−→ r1...rn by hypothesis. In addition, as r  r trivially, we get Br →
BrLr → Brrr

− ∗−→ r1...rn.r.r
−. So, r1...rn.r.r−(a, a) is true on I (Property B.1.2).

Using the same reasoning as before, πmina is equivalent to πno filter
a on I, and so πmina

and πa are equivalent in general. This concludes the proof.

B.1.2 Proof of Property 5.6.9

We show that we can effectively reverse the path transformation, which will be
crucial to our algorithm:

Property 5.6.9. Given a word w in R∗, a query q(x) ← r(a, x) and a set of path
functions, it is possible to know in polynomial time if there exists a non-redundant
minimal filtering execution plan πa such that P(πa) = w. Moreover, if such a πa
exists, we can compute one in polynomial time, and we can also enumerate all of
them (there are only finitely many of them).

We are going to construct a finite-state transducer that can reverse the path
transformation and give us a sequence of calls. To find one witnessing plan, it will
suffice to take one run of this transducer and take the corresponding plan, adding

B.1. PROOFS FOR SECTION 5.6 147



APPENDIX B. ADDITIONAL PROOFS

a specific filter which we know is correct. If we want all witnessing plans, we can
simply take all possible outputs of the transducer.

To construct the transducer, we are going to use the regular expression Pr from
Definition 5.5.2. We know that Pr faithfully represents plans (Theorem 5.6.13), and
it is a regular expression. So we will be able to build an automaton from Pr on
which we are going to add outputs to represent the plans.

The start node of our transducer is S, and the final node is F . The input alphabet
of our transducer is R, the set of relations. The output alphabet is composed of
function names f for f ∈ F , the set of path functions, and of output symbols OUTi,
which represents the used output of a given function. We explain later how to
transform an output word into a non-redundant minimal filtering plan.

First, we begin by creating chains of letters from the wf,i defined in Defini-
tion 5.5.2. For a word wf,i = r1...rk (which includes the reverse atoms added at the
end when 0 ≤ i < n), this chain reads the word r1...rk and outputs nothing.

Next, we construct W0 between two nodes representing the beginning and the
end of W0: SW0 and FW0 . From SW0 we can go to the start of the chain of a final
wf,0 by reading an epsilon symbol and by outputting the function name f . Then,
at the end of the chain of a final wf,0, we go to FW0 by reading an epsilon symbol
and by outputting a OUT1 letter.

Similarly, we construct W ′ between two nodes representing the beginning and
the end of W ′: SW ′ and FW ′ . From SW ′ we can go to the beginning of the chain of
a final wf,i with 0 < i < n (as explained in Definition 5.5.2) by reading an epsilon
symbol and by outputting the function name f . Then, at the end of the chain of
a final wf,i, we go to FW ′ by reading an epsilon symbol. The output symbol of the
last transition depends on the last letter of wf,i: if it is r, then we output OUTi;
otherwise, we output OUTi+1. This difference appears because we want to create a
last atom r(a, x) or r−(x, a), and so our choice of output variable depends on which
relation symbol we have.

Last, using the same method again, we construct W between two nodes repre-
senting the beginning and the end of W : SW and FW . From SW we can go to the
beginning of the chain of a wf,i with 0 < i ≤ n (as explained in Definition 5.5.2) by
reading an epsilon symbol and by outputting the function name f . Then, at the end
of the chain of a final wf,i, we go to FW ′ by reading an epsilon symbol and outputting
OUTi. In this situation, there is no ambiguity on where the output variable is.

Finally, we can link everything together with epsilon transitions that output
nothing. We constructW ∗ thanks to epsilon transitions between SW and FW . Then,
W ∗W ′ is obtained by linking FW to SW ′ with an epsilon transition. We can now
construct Pr = W0|(W ∗W ′) by adding an epsilon transition between S and SW0 , S
and SW , FW0 and F and FW ′ and F .

We obtain a transducer that we call Treverse.
Let w be a word of R∗. To know if there is a non-redundant minimal filtering

execution plan πa such that P(πa) = w, one must give w as input to Treverse. If
there is no output, there is no such plan πa. Otherwise, Treverse nondeterministically
outputs some words composed of an alternation of function symbols f and output
symbols OUTi. From this representation, one can easily reconstruct the execution
plan: The function calls are the f from the output word and the previous OUT

148 B.1. PROOFS FOR SECTION 5.6



APPENDIX B. ADDITIONAL PROOFS

symbol gives their input. If there is no previous OUT symbol (i.e., for the first
function call), the input is a. If the previous OUT symbol is OUTk, then the input
is the second argument of the kth atom from the body. The last OUT symbol gives
us the output of the plan. We finally add a filter with a on the constructed plan to
get an atom r(a, x) or r−(x, a) in its semantics in the last possible atom, to obtain
a minimal filtering plan. Note that this transformation is related to the one given
in the proof of Theorem 5.6.13 in Section B.1.4, where it is presented in a more
detailed way.

Using the same procedure, one can enumerate all possible output words for a
given input and then obtain all non-redundant minimal filtering execution plans πa
such that P(πa) = w. We can understand this from the proof of Theorem 5.6.13 in
Section B.1.4, which shows that there is a direct match between the representation
of w as words of wf,i and the function calls in the corresponding execution plan.
Last, the reason why the set of output words is finite is because the transducer must
at least read an input symbol to generate each output symbol.

B.1.3 Proof of Theorem 5.6.11

In this appendix, we finally show the main theorem of Section 5.6:

Theorem 5.6.11. Given a set of unary inclusion dependencies, a set of path func-
tions, and an atomic query q, the language Lq captures q.

Recall that Lq is the language of the context-free grammar Gq from Defini-
tion 5.5.1. Our goal is to show that it is a capturing language.

In what follows, we say that two queries are equivalent under a set of UIDs if
they have the same results on all databases satisfying the UIDs.

Linking Lq to equivalent rewritings.

In this part, we are going to work at the level of the words of R∗ ending by a r or r−
(in the case q(x)← r(a, x) is the considered query), where R is the set of relations.
Recall that the full path transformation (Definition 5.6.6) transforms an execution
plan into a word of R∗ ending by an atom r or r−. Our idea is first to define which
words of R∗ are interesting and should be considered. In the next part, we are going
to work at the level of functions.

For now, we start by defining what we consider to be the “canonical” path query
associated to a skeleton. Indeed, from a skeleton inR∗ whereR is the set of relations,
it is not clear what is the associated path query (Definition 5.6.4) as there might be
filters. So, we define:

Definition B.1.5 (Minimal Filtering Path Query). Given an atomic query
q(a, x)← r(a, x), a set of relations R and a word w ∈ R∗ of relation names from R
ending by r or r−, the minimal filtering path query of w for q is the path query
of skeleton w taking as input a and having a filter such that its last atom is either
r(a, x) or r−(x, a), where x is the only output variable.

As an example, consider the word onAlbum.onAlbum−.sang−. The minimal
filtering path query is: q′(Jailhouse, x) ← onAlbum(Jailhouse,y), onAlbum−(y,

B.1. PROOFS FOR SECTION 5.6 149



APPENDIX B. ADDITIONAL PROOFS

Jailhouse), sang−(Jailhouse, x), which is an equivalent rewriting of the atomic query
sang−(Jailhouse, x).

We can link the language Lq of our context-free grammar to the equivalent
rewritings by introducing a corollary of Property B.1.2:

Corollary B.1.6. Given an atomic query q(a, x)← r(a, x) and a set UID of UIDs,
the minimal filtering path query of any word in Lq is a equivalent to q. Reciprocally,
for any query equivalent to q that could be the minimal filtering path query of a path
query of skeleton w ending by r or r−, we have that w ∈ Lq.

Notice that the minimal filtering path query of a word in Lq is well defined as
all the words in this language end by r or r−.

Proof. We first suppose that we have a word w ∈ Lq. We want to show that the
minimal filtering path query of w is equivalent to q. We remark that the minimal
filtering path query contains the atom r(a, x) or r−(x, a). Hence, the answers of the
given query always include the answers of the minimal filtering path query, and we
only need to show the converse direction.

Let I be a database instance satisfying the inclusion dependencies UID and let
r(a, b) ∈ I (we suppose such an atom exists, otherwise the result is vacuous). Let
q′(a, x) be the head atom of the minimal filtering path query. It is sufficient to show
that q′(a, b) is an answer of the minimal filtering path query to prove the equivalence.
We proceed by structural induction. Let w ∈ Lq. Let us consider a bottom-up
construction of the word. The last rule can only be one of the Rule 5.5.1 or the
Rule 5.5.2. If it is Rule 5.5.1, then ∃r1, . . . , rn ∈ R such that w = r1 . . . rnr and Br

∗−→
r1 . . . rn. By applying Property B.1.2, we know that r1 . . . rn(a, a) has an embedding
in I. Hence, q′(a, b) is an answer. If the rule is Rule 5.5.2, then ∃r1, . . . , rn, . . . , rm ∈
R such that w = r1 . . . rnrrn+1 . . . rmr

−, Br
∗−→ r1 . . . rn and Br−

∗−→ rn+1 . . . rm. By
applying Property B.1.2 for the two derivations, and remembering that we have
r(a, b) and r−(b, a) in I, we have that r1 . . . rn(a, a) and rn+1 . . . rm(b, b) have an
embedding in I. Hence, also in this case, q′(a, b) is an answer. We conclude that q′
is equivalent to q.

Reciprocally, let us suppose that we have a minimal filtering path query of a
path query of skeleton w, which is equivalent to q, and that q′(a, x) is its head
atom. We can write it either q′(a, x) ← r1(a, x1), r2(x1, x2), ..., rn(xn−1, a)r(a, x)
or q′(a, x) ← r1(a, x1), r2(x1, x2), ..., rn(xn−1, x), r−(x, a). In the first case, as q′
is equivalent to q, we have r1...rn(a, a) which is true on all databases I such that
I contains a tuple r(a, b). So, according to Property B.1.2, Br

∗−→ r1...rn, and
using Rule 5.5.1, we conclude that r1...rn.r is in Lq. In the second case, for similar
reasons, we have Br

∗−→ r1...rnr
−. The last r− was generated by Rule 5.5.5, using a

non-terminal Lr which came from Rule 5.5.3 using the trivial UID r  r. So we
have Br → BrLr → BrrBr−r

− ∗−→ r1...rnr
−. We recognise here Rule 5.5.2 and so

r1...rnr
− ∈ Lq. This shows the second direction of the equivalence, and concludes

the proof.

150 B.1. PROOFS FOR SECTION 5.6



APPENDIX B. ADDITIONAL PROOFS

Linking the path transformation to Lq.

In the previous part, we have shown how equivalent queries relate to the context-
free grammar Gq in the case of minimal filtering path queries. We are now going to
show how the full path transformation relates to the language Lq of Gq, and more
precisely, we will observe that the path transformation leads to a minimal filtering
path query of a word in Lq.

The path transformation operates at the level of the semantics for each function
call, transforming the original tree-shaped semantics into a word. What we want to
show is that after the path transformation, we obtain a minimal filtering path query
equivalent to q iff the original execution path was an equivalent rewriting. To show
this, we begin by a lemma:

Lemma B.1.7. Let πa a minimal filtering non-redundant execution plan. The query
P ′(πa)(x) is a minimal filtering path query and it ends either by r(a, x) or r−(x, a),
where x was the variable name of the output of πa.

Proof. By construction, P ′(πa)(x) is a minimal filtering path query. Let us consider
its last atom. In the case where the original filter on the constant a created an atom
r(a, x), then the result is clear: an atom r−(x, a) is added. Otherwise, it means the
original filter created an atom r−(x, a). Therefore, as observed in the last point of
the path transformation, the last atom is r(a, x), where we created the new filter on
a.

The property about the preservation of the equivalence is expressed more for-
mally by the following property:

Property B.1.8. Let us consider a query q(x) ← r(a, x), a set of unary inclusion
dependencies UID, a set of path functions F and a minimal filtering non-redundant
execution plan πa constructed on F . Then, πa is equivalent to q iff the minimal
filtering path query P ′(πa) is equivalent to q.

Proof. First, we notice that we have πa(I) ⊆ q(I) and P ′(πa)(I) ⊆ q(I) as r(a, x)
or r−(a, x) appear in the semantics of πa(x) and in P ′(πa)(x) (see Lemma B.1.7).
So, it is sufficient to prove the property on the canonical database I0 obtained by
chasing the single fact r(a, b) with UID.

We first show the forward direction and suppose that πa is equivalent to q. Then,
its semantics has a single binding on I0. Let us consider the ith call ci(x1, ..., xj, ...xn)
(xj is the output used as input by another function or the output of the plan) in
πa and its binding: r1(y1, y2), ..., rk(yk, yk+1), ..., rm(ym, ym+1). Then r1(y1, y2), ...,
rk−1(yk−1, yk), rk(yk, yk+1), ..., rm(ym, ym+1), r

−
m(ym+1, ym), ..., r−k (yk+1, yk) is a valid

binding for the sub-semantics, as the reversed atoms can be matched to the same
atoms than those used to match the corresponding forward atoms. Notice that the
last variable is unchanged. So, in particular, the variable named x (the output of
πa) has at least a binding in I0 before at step 3 of the path transformation. In step
4, we have two cases. In the first case, we add r−(x, a) to the path semantics. Then
we still have the same binding for x as πa is equivalent to q. In the second case, we
added a filter in the path semantics, and we still get the same binding. Indeed, by
Property 5.4.4, b has a single ingoing r-fact in I0, which is r−(b, a). This observation

B.1. PROOFS FOR SECTION 5.6 151



APPENDIX B. ADDITIONAL PROOFS

means that, in the binding of the path semantics, the penultimate variable was
necessary a on I0. We conclude that P ′(πa) is also equivalent to q.

We now show the backward direction and suppose P ′(πa) is equivalent to q. Let
us take the single binding of P ′(πa) on I0. Let us consider the sub-semantics of
a function call ci(x1, ..., xj, ...xn) (where xj is the output used as input by another
function or the output of the plan): r1(y1, y2), ..., rk−1(yk−1, y

′
k), rk(y

′
k, y
′
k+1), ...,

rm(y′m, ym+1), r
−
m(ym+1, ym), ..., r−k (yk+1, yk). As all path queries have at most one

binding on I0, we necessarily have yk = y′k, ..., ym = y′m. Thus the semantics of
πa has a binding on I which uses the same values than the binding of P ′(πa). In
particular, the output variables have the same binding. We conclude that πa is also
equivalent to q.

We can now apply Corollary B.1.6 on P ′(πa) as it is a minimal filtering path
query : P ′(πa) is equivalent to q iff P(πa) is in Lq. So, πa is equivalent to q iff P(πa)
is in Lq.

We conclude that Lq is a capturing language for q. As our grammar Gq for Lq
can be constructed in PTIME, this concludes the proof of Theorem 5.6.11.

B.1.4 Proof of Theorem 5.6.13

Theorem 5.6.13. Let F be a set of path functions, let q(x)← r(a, x) be an atomic
query, and define the regular expression Pr as in Definition 5.5.2. Then the language
of Pr faithfully represents plans.

Proof. We first prove the forward direction: every word w of the language of Pr is
achieved as the image by the full path transformation of a minimal filtering non-
redundant plan. To show this, let w be a word in the language of Pr. We first suppose
we can decompose it into its elements from W and W ′: w = wf1,i1 ...wfn−1,in−1 .wfn,in
with wfn,in being final. Let πa be composed of the successive function calls f1, . . . , fn
where the input of f1 is the constant a and the input of fk (k > 1) is the ithk−1 variable
of fk−1. For the output variable and the filter, we have two cases:

1. If the last letter of wfn,in is r, the output of the plan is the ithn variable of fn
and we add a filter to a on the (in + 1)th variable.

2. Otherwise, if the last letter of wfn,in is r−, the output of the plan is the (in+1)th

variable of fn and we add a filter to a on the ithn variable (except if this is the
input, in which case we do nothing).

We notice that πa is non-redundant. Indeed, by construction, only the first function
takes a as input, and all functions have an output used as input in another function.
The added filter cannot be on the input of a function as in > 0. What is more, πa
is also a minimal filtering plan. Indeed, by construction, we create an atom r(a, x)
or an atom r−(x, a) (with x the output of the plan). Let us show that it is the last
possible filter. If we created r−(x, a), it is obvious as x cannot be used after that
atom. If we created r(a, x), we know we could not have a following atom r−(x, y)
where one could have filtered on y: this is what is guaranteed by the third point of
the definition of the final wf,i.

152 B.1. PROOFS FOR SECTION 5.6



APPENDIX B. ADDITIONAL PROOFS

The only remaining point is to show that P(πa) = w. Indeed, for k < n, we
notice that wfk,ik is the skeleton of the sub-semantics of the kth call in πa. What is
less intuitive is what happens for the last function call.

Let us consider the two cases above. In the first one, the output variable is the ithn
variable of fn. We call it x. The semantics of πa(x) contains rin+1(x, a) = r−(x, a)
(as the last letter of wfn,in is r). We are in the second point of step 4 of the path
transformation. The skeleton of the end of the path semantics is not modified and
it is wfn,in .

In the second case, the output variable is the (in + 1)th variable of fn. We call
it x. The semantics of πa(x) contains rin+1(a, x) = r(a, x) (as the last letter of
wfn,in is r−). We are in the first point of step 4 of the path transformation. The
skeleton of the end of the path semantics is modified to append r− and it is now
wfn,in+1r = wfn,in as expected.

This establishes that P(πa) = w in the case where w can be decomposed as
elements of W and W ′. Otherwise, w is in the language of W0, so w = wf,0 where
wf,0 is final, ends by r−, thus starts by r. We define πa as the execution plan
composed of one function call f , which takes as input a. The output of the plan is
the first output variable of the function. The plan πa is non-redundant as it contains
only one function call. It is also minimal filtering. Indeed, by definition of wf,0, the
first output variable is on the first atom. So, the semantics of πa contains an atom
r(a, x) where x is the output variable. Besides, it does not contain an atom r−(x, y)
where y is an output of the f by the third point of the definition of a final wf,i.

Finally, we have P(πa) = w, and this concludes the first implication. The trans-
formation that we have here is what was performed by the transducer and the
method presented in Section B.1.2. The only difference is that the technique in
Section B.1.2 will consider all possible ways to decompose w into wf,i and into final
wf,i to get all possible non-redundant minimal filtering plans.

We now show the converse direction of the claim: the full path transformation
maps non-redundant minimal filtering plans to words in the language of Pr. Suppose
that we have a non-redundant minimal filtering plan πa such that P(πa) = w and
let us show that w is in the language of Pr. For all calls which are not the last one,
it is clear that the sub-semantics of these calls are the wf,ik with ik > 0 (as the plan
is non-redundant). So the words generated by the calls that are not the last call are
words of the language of W ∗.

For the last function call, we have several cases to consider.
First, if πa(x) contains a filter, then it means that either the first atom in the

semantics of πa(x) is not r(a, x) or, if it is, it is followed by an atom r−(x, a).
If we are in the situation where the semantics of πa(x) starts by r(a, x), r−(x, a),

then πa is composed of only one function call f (otherwise, it would be redundant).
Then, it is clear that P(πa) = wf,1 with wf,1 being final, and we have the correct
form.

If we are in the situation where the semantics of πa(x) does not start by r(a, x), we
have the two cases (corresponding to the two cases of the forward transformation).
We suppose that the last function call is on f , and the output variable is the ith one
in f .

If πa does not contain an atom r(a, x), then it contains an atom r−(x, a) and

B.1. PROOFS FOR SECTION 5.6 153



APPENDIX B. ADDITIONAL PROOFS

the result is clear: the skeleton of the path semantics is not modified and ends by
the sub-semantics of f whose skeleton is wf,i and has the correct properties: the
last atom is r, the variable after x is not existential (it is used to filter) and the
atom after r(a, x) cannot be r−(x, y) with y an output variable of f as πa is minimal
filtering.

If πa contains an atom r(a, x), then in the definition of the path transformation,
we append an atom r−(x, a) after the sub-semantics of the f . We then have the
path semantics ending by the atom names wf,i.r− = wf,i−1 and wf,i−1, which is final,
has the adequate properties.

This shows that w is in the language of Pr in the case πa has a filter because the
word generated by the last call is in W ′.

Now, we consider the case when πa does not have a filter. It means that the
semantics of πa starts by r(a, x) and is not followed by an atom r−(x, y) where y is
the output of a function (as πa is well-filtering). Then, πa is composed of only one
function call f and it is clear that P(πa) = wf,0 which is final. So, in this case, the
word w belongs to W0.

So, w is in the language of Pr in the case πa does not have a filter. This concludes
the proof of the second direction, which establishes the property.

B.2 Proofs for Section 5.4 and 5.5
In this section, we give the missing details for the proof of the claims given in the
main text, using the results from the previous appendices. We first show Theo-
rem 5.4.7 in Appendix B.2.1, and show Proposition 5.4.8 in Appendix B.2.2.

B.2.1 Proof of Theorem 5.4.7

In this appendix, we show our main theorem:

Theorem 5.4.7. There is an algorithm which, given an atomic query q(x) ←
r(a, x), a set F of path function definitions, and a set UID of UIDs, decides in
polynomial time if there exists an equivalent rewriting of q. If so, the algorithm
enumerates all the non-redundant plans that are equivalent rewritings of q.

We start by taking the grammar Gq with language Lq used in Theorem 5.6.11
and defined in Definition 5.5.1 and the regular expression Pr used in Theorem 5.6.13
and defined in Definition 5.5.2. We make the following easy claim:

Property B.2.1. Lq ∩ Pr is a capturing language that faithfully represents plans,
and it can be constructed in PTIME.

Proof. By construction, Pr represents all possible skeletons obtained after a full path
transformation (Theorem 5.6.13).

So, as Pr represents all possible execution plans, and as Lq is a capturing language
(proof of Theorem 5.6.11), then Lq ∩ Pr is a capturing language.

The only remaining part is to justify that it can be constructed in PTIME. First,
observe that the grammar Gq for Lq, and the regular expression for Pr, can be com-
puted in PTIME. Now, to argue that we can construct in PTIME a context-free

154 B.2. PROOFS FOR SECTION 5.4 AND 5.5



APPENDIX B. ADDITIONAL PROOFS

grammar representing their intersection, we will use the results of [76] (in particu-
lar, Theorem 7.27 of the second edition). First, we need to convert the context-free
grammar Gq to a push-down automaton accepting by final state, which can be done
in PTIME. Then, we turn Pr into a non-deterministic automaton, which is also
done is PTIME. Then, we compute a push-down automaton whose language is the
intersection between the push-down automaton and the non-deterministic automa-
ton using the method presented in [76]. This method is very similar to the one
for intersecting two non-deterministic automata, namely, by building their product
automaton. This procedure is done in PTIME. In the end, we obtain a push-down
automaton that we need to convert back into a context-free grammar, which can
also be done in PTIME. So, in the end, the context-free grammar G denoting the
intersection of Lq and of the language of Pr can be constructed in PTIME. This
concludes the proof.

So let us now turn back to our algorithm and show the claims. By Property B.2.1,
we can construct a grammar for the language Lq ∩ Pr in PTIME, and we can then
check in PTIME if the language of this new context-free grammar is empty. If it is
the case, we know that is no equivalent plan. Otherwise, we know there is at least
one. We can thus generate a word w of the language of the intersection – note that
this word is not necessarily of polynomial-size, so we do not claim that this step runs
in PTIME. Now, as Pr faithfully represents plans (Theorem 5.6.13), we deduce that
there exists an execution plan πa such that P(πa) = w, and from Property 5.6.9, we
know we can inverse the path transformation in PTIME to gut such a plan.

To get all plans, we enumerate all words of Lq∩Pr: each of them has at least one
equivalent plan in the preimage of the full path transformation, and we know that
the path transformation maps every plan to only one word, so we never enumerate
any duplicate plans when doing this. Now, by Property 5.6.9, for any word w ∈
Lq ∩ Pr, we can list all its preimages by the full path transformation; and for any
such preimage, we can add all possible filters, which is justified by Theorem 5.6.2
and Property B.1.2. That last observation establishes that our algorithm indeed
produces precisely the set of non-redundant plans that are equivalent to the input
query under the input unary inclusion dependencies, which allows us to conclude
the proof of Theorem 5.4.7.

B.2.2 Proof of Proposition 5.4.8

Proposition 5.4.8. Given a set of unary inclusion dependencies, a set of path
functions, an atomic query q(x) ← r(a, x) and a non-redundant execution plan πa,
one can determine in PTIME if πa is an equivalent rewriting of q.

First, we check if πa is well-filtering, which can easily be done in PTIME. If
not, using Lemma 5.4.6 we can conclude that πa is not an equivalent rewriting.
Otherwise, we check if πa is equivalent to its associated minimal filtering plan. This
verification is done in PTIME, thanks to Theorem 5.6.2. If not, we know from
Theorem 5.6.3 that πa is not an equivalent rewriting. Otherwise, it is sufficient to
show that πmina is an equivalent rewriting. To do so, we compute w = P(πmina ) in
PTIME and check if w is a word of the context-free capturing language defined in

B.2. PROOFS FOR SECTION 5.4 AND 5.5 155



APPENDIX B. ADDITIONAL PROOFS

Theorem 5.6.11. This verification is done in PTIME. By Theorem 5.6.11, we know
that w is a word of the language iff πa is an equivalent rewriting, which concludes
the proof.

156 B.2. PROOFS FOR SECTION 5.4 AND 5.5



Bibliography

[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases. Addison-
Wesley, 1995.

[2] Alfred V Aho. Indexed grammars—an extension of context-free grammars.
Journal of the ACM (JACM), 15(4):647–671, 1968.

[3] Alfred V Aho, Ravi Sethi, and Jeffrey D Ullman. Compilers, principles, tech-
niques. Addison wesley, 7(8):9, 1986.

[4] Cyril Allauzen, Michael Riley, Johan Schalkwyk, Wojciech Skut, and Mehryar
Mohri. Openfst: A general and efficient weighted finite-state transducer li-
brary. In International Conference on Implementation and Application of Au-
tomata, pages 11–23. Springer, 2007.

[5] Alejandro Barredo Arrieta, Natalia Díaz-Rodríguez, Javier Del Ser, Adrien
Bennetot, Siham Tabik, Alberto Barbado, Salvador García, Sergio Gil-López,
Daniel Molina, Richard Benjamins, et al. Explainable artificial intelligence
(xai): Concepts, taxonomies, opportunities and challenges toward responsible
ai. Information Fusion, 58:82–115, 2020.

[6] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-
ganiak, and Zachary Ives. DBpedia: A nucleus for a Web of Open Data.
Semantic Web, 2008.

[7] Y. Ba-Hillel, M. Prles, and E. Shamir. On formal properties of simple phrase
structure grammars. z. phonetik, sprachwissen. komm. 15 (i961), 143-172. Y.
Bar-Hillel, Language and Information, Addison-Wesley, Reading, Mass, pages
116–150, 1965.

[8] Franz Baader, Diego Calvanese, Deborah McGuinness, Peter Patel-Schneider,
Daniele Nardi, et al. The description logic handbook: Theory, implementation
and applications. Cambridge university press, 2003.

[9] Christopher Bader and Arnaldo Moura. A generalization of ogden’s lemma.
J. ACM, 29(2), April 1982.

[10] Ricardo Baeza-Yates and Alessandro Tiberi. Extracting semantic relations
from query logs. In KDD, 2007.

157



BIBLIOGRAPHY

[11] Paul Baker and Amanda Potts. ‘why do white people have thin lips?’google
and the perpetuation of stereotypes via auto-complete search forms. Critical
discourse studies, 10(2):187–204, 2013.

[12] Richard Beigel and William Gasarch. A proof that the intersection of a
context-free language and a regular language is context-free which does not use
push-down automata. http: // www. cs. umd. edu/ ~gasarch/ BLOGPAPERS/
cfg. pdf , .

[13] Michael Benedikt, Julien Leblay, Balder ten Cate, and Efthymia Tsamoura.
Generating Plans from Proofs: The Interpolation-based Approach to Query
Reformulation. Synthesis Lectures on Data Management. Morgan & Claypool,
2016.

[14] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. PDQ: Proof-driven
query answering over web-based data. VLDB, 7(13), 2014.

[15] Michael Benedikt, Julien Leblay, and Efthymia Tsamoura. Querying with
access patterns and integrity constraints. PVLDB, 8(6), 2015.

[16] Michael K Bergman. White paper: the deep web: surfacing hidden value.
Journal of electronic publishing, 7(1), 2001.

[17] Timothy J Berners-Lee and Robert Cailliau. Worldwideweb: Proposal for a
hypertext project. CERN, 1990.

[18] Meghyn Bienvenu, Magdalena Ortiz, and Mantas Simkus. Regular path
queries in lightweight description logics: Complexity and algorithms. JAIR,
53, 2015.

[19] Christian Bizer, Tom Heath, Kingsley Idehen, and Tim Berners-Lee. Linked
data on the web (LDOW2008). In WWW, 2008.

[20] Antoine Bosselut, Hannah Rashkin, Maarten Sap, Chaitanya Malaviya, Asli
Çelikyilmaz, and Yejin Choi. COMET: commonsense transformers for auto-
matic knowledge graph construction. In ACL, 2019.

[21] Don Box, David Ehnebuske, Gopal Kakivaya, Andrew Layman, Noah Mendel-
sohn, Henrik Frystyk Nielsen, Satish Thatte, and Dave Winer. Simple object
access protocol (soap) 1.1, 2000.

[22] A. Bozzon, M. Brambilla, and S. Ceri. Answering search queries with crowd-
searcher. In WWW, 2012.

[23] Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Ka-
plan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss, Gretchen Krueger,
Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M. Ziegler, Jeffrey Wu,
Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,

158 BIBLIOGRAPHY

http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf
http://www.cs.umd.edu/~gasarch/BLOGPAPERS/cfg.pdf


BIBLIOGRAPHY

Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are
few-shot learners, 2020.

[24] Fei Cai and Maarten De Rijke. A survey of query auto completion in infor-
mation retrieval. Foundations and Trends in Information Retrieval, 2016.

[25] Andrea Calì, Diego Calvanese, and Davide Martinenghi. Dynamic query op-
timization under access limitations and dependencies. In J. UCS, 2009.

[26] Andrea Calì, Georg Gottlob, and Michael Kifer. Taming the infinite chase:
Query answering under expressive relational constraints. Journal of Artificial
Intelligence Research, 48:115–174, 2013.

[27] Andrea Calì and Davide Martinenghi. Querying data under access limitations.
In ICDE, 2008.

[28] Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam R
Hruschka, and Tom M Mitchell. Toward an architecture for never-ending lan-
guage learning. In Twenty-Fourth AAAI Conference on Artificial Intelligence,
2010.

[29] Manuel Castells. The information age, volume 98. Oxford Blackwell Publish-
ers, 1996.

[30] S. Ceri, A. Bozzon, and M. Brambilla. The anatomy of a multi-domain search
infrastructure. In ICWE, 2011.

[31] Yohan Chalier, Simon Razniewski, and Gerhard Weikum. Joint reasoning for
multi-faceted commonsense knowledge, 2020.

[32] Janara Christensen, Stephen Soderland, Oren Etzioni, et al. An analysis of
open information extraction based on semantic role labeling. In K-CAP, 2011.

[33] Alexis Conneau and Douwe Kiela. Senteval: An evaluation toolkit for universal
sentence representations, 2018.

[34] Niall J Conroy, Victoria L Rubin, and Yimin Chen. Automatic deception
detection: Methods for finding fake news. Proceedings of the Association for
Information Science and Technology, 52(1):1–4, 2015.

[35] Bhavana Dalvi, Niket Tandon, and Peter Clark. Domain-targeted, high pre-
cision knowledge extraction. In TACL, 2017.

[36] Akim Demaille, Alexandre Duret-Lutz, Sylvain Lombardy, and Jacques
Sakarovitch. Implementation concepts in Vaucanson 2. In Stavros Konstan-
tinidis, editor, Proceedings of Implementation and Application of Automata,
18th International Conference (CIAA’13), volume 7982 of Lecture Notes in
Computer Science, pages 122–133, Halifax, NS, Canada, July 2013. Springer.

BIBLIOGRAPHY 159



BIBLIOGRAPHY

[37] Daniel Deutch and Tova Milo. A quest for beauty and wealth (or, business pro-
cesses for database researchers). In Proceedings of the thirtieth ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database systems, pages 1–12,
2011.

[38] Daniel Deutch and Tova Milo. Business Processes: A Database Perspective.
Synthesis Lectures on Data Management. Morgan & Claypool, 2012.

[39] Alin Deutsch, Bertram Ludäscher, and Alan Nash. Rewriting queries using
views with access patterns under integrity constraints. In Theor. Comput.
Sci., 2007.

[40] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert:
Pre-training of deep bidirectional transformers for language understanding.
arXiv preprint arXiv:1810.04805, 2018.

[41] Dennis Diefenbach, Vanessa Lopez, Kamal Singh, and Pierre Maret. Core
techniques of question answering systems over knowledge bases: a survey.
Knowledge and Information systems, 55(3):529–569, 2018.

[42] Sebastian Dieguez. Total bullshit!: au coeur de la post-vérité. Presses Univer-
sitaires de France, 2018.

[43] Chris H. Q. Ding, Tao Li, Wei Peng, and Haesun Park. Orthogonal nonnega-
tive matrix tri-factorizations for clustering. In KDD, 2006.

[44] Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Ni Lao, Kevin
Murphy, Thomas Strohmann, Shaohua Sun, and Wei Zhang. Knowledge vault:
A web-scale approach to probabilistic knowledge fusion. In Proceedings of the
20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 601–610, 2014.

[45] Oliver M. Duschka and Michael R. Genesereth. Answering recursive queries
using views. In PODS, 1997.

[46] Oliver M. Duschka, Michael R. Genesereth, and Alon Y. Levy. Recursive query
plans for data integration. In J. Log. Program., 2000.

[47] Carissa Schoenick et al. Moving beyond the Turing test with the Allen AI
science challenge. Communications of the ACM, 2017.

[48] Christopher Manning et al. The Stanford CoreNLP natural language process-
ing toolkit. In ACL, 2014.

[49] Huanhuan Cao et al. Context-aware query suggestion by mining click-through
and session data. In KDD, 2008.

[50] Luisa Bentivogli et al. Revising the wordnet domains hierarchy: Semantics,
coverage and balancing. In COLING, 2004.

160 BIBLIOGRAPHY



BIBLIOGRAPHY

[51] Mandar Joshi et al. TriviaQA: A large scale distantly supervised challenge
dataset for reading comprehension. In ACL, 2017.

[52] Marius Pasca et al. Weakly-supervised acquisition of open-domain classes and
class attributes from web documents and query logs. In ACL, 2008.

[53] Niket Tandon et al. WebChild: harvesting and organizing commonsense
knowledge from the web. In WSDM, 2014.

[54] Niket Tandon et al. Commonsense in parts: Mining part-whole relations from
the web and image tags. In AAAI, 2016.

[55] Niket Tandon et al. Reasoning about actions and state changes by injecting
commonsense knowledge. In EMNLP, 2018.

[56] Sreyasi Nag Chowdhury et al. VISIR: visual and semantic image label refine-
ment. In WSDM, 2018.

[57] Stanislav Malyshev et al. Getting the most out of Wikidata: Semantic tech-
nology usage in Wikipedia’s knowledge graph. In ISWC, 2018.

[58] Tom Young et al. Augmenting end-to-end dialogue systems with commonsense
knowledge. In AAAI, 2018.

[59] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria
Popescu, Tal Shaked, Stephen Soderland, Daniel S Weld, and Alexander Yates.
Web-scale information extraction in knowitall: (preliminary results). In Pro-
ceedings of the 13th international conference on World Wide Web, pages 100–
110, 2004.

[60] Manaal Faruqui, Jesse Dodge, Sujay K Jauhar, Chris Dyer, Eduard Hovy, and
Noah A Smith. Retrofitting word vectors to semantic lexicons. arXiv preprint
arXiv:1411.4166, 2014.

[61] Edward A Feigenbaum. Knowledge engineering. Annals of the New York
Academy of Sciences, 1984.

[62] David Ferrucci, Eric Brown, Jennifer Chu-Carroll, James Fan, David Gondek,
Aditya A Kalyanpur, Adam Lally, J William Murdock, Eric Nyberg, John
Prager, et al. Building watson: An overview of the deepqa project. AI maga-
zine, 31(3):59–79, 2010.

[63] Roy T Fielding and Richard N Taylor. Architectural styles and the design of
network-based software architectures, volume 7. University of California, Irvine
Irvine, 2000.

[64] Le Figaro. Quand christine boutin cite sans sourciller le site parodique le
gorafi.

[65] Daniela Florescu, Alon Y. Levy, Ioana Manolescu, and Dan Suciu. Query
optimization in the presence of limited access patterns. In SIGMOD, 1999.

BIBLIOGRAPHY 161



BIBLIOGRAPHY

[66] Harry G Frankfurt. On bullshit. Princeton University Press, 2009.

[67] Luis Galárraga, Geremy Heitz, Kevin Murphy, and Fabian M. Suchanek.
Canonicalizing open knowledge bases. In CIKM, 2014.

[68] Graeme Gange, Jorge A Navas, Peter Schachte, Harald Søndergaard, and
Peter J Stuckey. A tool for intersecting context-free grammars and its ap-
plications. In NASA Formal Methods Symposium, pages 422–428. Springer,
2015.

[69] Gerald Gazdar. Applicability of indexed grammars to natural languages. In
Natural language parsing and linguistic theories, pages 69–94. Springer, 1988.

[70] Tomasz Gogacz and Jerzy Marcinkowski. Red spider meets a rainworm: Con-
junctive query finite determinacy is undecidable. In SIGMOD, 2016.

[71] Le Gorafi. Le gorafi - toute l’information selon des sources contradictoires.

[72] Aric Hagberg, Dan Schult, Pieter Swart, D Conway, L Séguin-Charbonneau,
C Ellison, B Edwards, and J Torrents. Networkx. URL http://networkx.
github. io/index. html, 2013.

[73] Alon Y. Halevy. Answering queries using views: A survey. In VLDB J., 2001.

[74] John Hopcroft. An n log n algorithm for minimizing states in a finite au-
tomaton. In Theory of machines and computations, pages 189–196. Elsevier,
1971.

[75] John E Hopcroft, Rajeev Motwani, and Jeffrey D Ullman. Introduction to
automata theory, languages, and computation. Acm Sigact News, 32(1):60–
65, 2001.

[76] John E Hopcroft and 1942 Ullman, Jeffrey D. Introduction to automata theory,
languages, and computation. Reading, Mass. : Addison-Wesley, 1979.

[77] Daniel Khashabi, Tushar Khot, Ashish Sabharwal, Oyvind Tafjord, Peter
Clark, and Hannaneh Hajishirzi. Unifiedqa: Crossing format boundaries with
a single qa system, 2020.

[78] Angel Lagares Lemos, Florian Daniel, and Boualem Benatallah. Web service
composition: A survey of techniques and tools. ACM Comput. Surv., 48(3),
December 2015.

[79] Douglas B Lenat. Cyc: A large-scale investment in knowledge infrastructure.
Communications of the ACM, 1995.

[80] Daniel J Lizotte, Omid Madani, and Russell Greiner. Budgeted learning of
naive-bayes classifiers. arXiv preprint arXiv:1212.2472, 2012.

[81] Edward Loper and Steven Bird. Nltk: the natural language toolkit. arXiv
preprint cs/0205028, 2002.

162 BIBLIOGRAPHY



BIBLIOGRAPHY

[82] Gary Marcus. The next decade in ai: Four steps towards robust artificial
intelligence, 2020.

[83] David L. Martin, Massimo Paolucci, Sheila A. McIlraith, Mark H. Burstein,
Drew V. McDermott, Deborah L. McGuinness, Bijan Parsia, Terry R. Payne,
Marta Sabou, Monika Solanki, Naveen Srinivasan, and Katia P. Sycara. Bring-
ing semantics to web services: The OWL-S approach. In SWSWPC, 2004.

[84] Mausam. Open information extraction systems and downstream applications.
In IJCAI, 2016.

[85] John McCarthy. Programs with common sense. RLE and MIT computation
center, 1960.

[86] Christophe Michel and Patrick Baud. La fiabilité des médias.

[87] George A. Miller. Wordnet: A lexical database for english. Commun. ACM,
1995.

[88] Alan Nash and Bertram Ludäscher. Processing unions of conjunctive queries
with negation under limited access patterns. In EDBT, 2004.

[89] Roberto Navigli. Word sense disambiguation: A survey. ACM Comput. Surv.,
2009.

[90] Roberto Navigli and Simone Paolo Ponzetto. Babelnet: The automatic con-
struction, evaluation and application of a wide-coverage multilingual semantic
network. Artificial Intelligence, 193:217–250, 2012.

[91] Allen Institute of AI. AI2 science questions v2.1, 2017.
http://data.allenai.org/ai2-science-questions.

[92] Harinder Pal et al. Demonyms and compound relational nouns in nominal
open IE. In AKBC, 2016.

[93] Madhavi Parchure, M Sasikumar, and Ankit Garg. Veda: an online assess-
ment and question banking system. International Conference on Management
Technology for Educational Practice, 2009.

[94] Marius Pasca. Open-domain fine-grained class extraction from web search
queries. In EMNLP, 2013.

[95] Marius Pasca. The role of query sessions in interpreting compound noun
phrases. In CIKM, 2015.

[96] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek. Yago
4: A reason-able knowledge base. In Proceedings of the Extended Semantic
Web Conference (ESWC), 2020, 2020.

[97] N. Preda, G. Kasneci, F. M. Suchanek, T. Neumann, W. Yuan, and
G. Weikum. Active Knowledge : Dynamically Enriching RDF Knowledge
Bases by Web Services. In SIGMOD, 2010.

BIBLIOGRAPHY 163



BIBLIOGRAPHY

[98] Nicoleta Preda, Fabian M. Suchanek, Wenjun Yuan, and Gerhard Weikum.
SUSIE: Search Using Services and Information Extraction. In ICDE, 2013.

[99] Ken Q. Pu, Vagelis Hristidis, and Nick Koudas. Syntactic rule based approach
to Web service composition. In ICDE, 2006.

[100] Bastian Quilitz and Ulf Leser. Querying distributed RDF data sources with
SPARQL. In ESWC, 2008.

[101] Steven Rabin. Game AI pro 2: collected wisdom of game AI professionals.
AK Peters/CRC Press, 2015.

[102] Anand Rajaraman, Yehoshua Sagiv, and Jeffrey D. Ullman. Answering queries
using templates with binding patterns. In PODS, 1995.

[103] Jinghai Rao, Peep Küngas, and Mihhail Matskin. Logic-based web services
composition: From service description to process model. In ICWS, 2004.

[104] Rogério Reis and Nelma Moreira. Fado: tools for finite automata and regular
expressions manipulation. https://www.dcc.fc.up.pt/ nam/publica/dcc-2002-
2.pdf, 2002.

[105] Susan H Rodger and Thomas W Finley. JFLAP: an interactive formal lan-
guages and automata package. Jones & Bartlett Learning, 2006.

[106] Julien Romero. Pyformlang: An Educational Library for Formal Language
Manipulation. In SIGCSE, 2021.

[107] Julien Romero, Nicoleta Preda, Antoine Amarilli, and Fabian Suchanek. Com-
puting and illustrating query rewritings on path views with binding patterns.
Proceedings of the 29th ACM International Conference on Information and
Knowledge Management - CIKM ’20, 2020.

[108] Julien Romero, Nicoleta Preda, Antoine Amarilli, and Fabian Suchanek.
Equivalent rewritings on path views with binding patterns, 2020. Extended
version with proofs. https://arxiv.org/abs/2003.07316.

[109] Julien Romero, Nicoleta Preda, and Fabian Suchanek. Query rewriting on
path views without integrity constraints, 2020.

[110] Julien Romero and Simon Razniewski. Inside quasimodo: Exploring construc-
tion and usage of commonsense knowledge. Proceedings of the 29th ACM In-
ternational Conference on Information and Knowledge Management - CIKM
’20, 2020.

[111] Julien Romero, Simon Razniewski, Koninika Pal, Jeff Z. Pan, Archit Sakhadeo,
and Gerhard Weikum. Commonsense properties from query logs and question
answering forums. Proceedings of the 28th ACM International Conference on
Information and Knowledge Management - CIKM ’19, 2019.

164 BIBLIOGRAPHY

https://arxiv.org/abs/2003.07316


BIBLIOGRAPHY

[112] Swarnadeep Saha and Mausam. Open information extraction from conjunctive
sentences. In COLING, 2018.

[113] Swarnadeep Saha, Harinder Pal, and Mausam. Bootstrapping for numerical
open IE. In ACL, 2017.

[114] Maarten Sap, Ronan LeBras, Emily Allaway, Chandra Bhagavatula, Nicholas
Lourie, Hannah Rashkin, Brendan Roof, Noah A Smith, and Yejin Choi.
Atomic: An atlas of machine commonsense for if-then reasoning. AAAI, 2018.

[115] Andreas Schwarte, Peter Haase, Katja Hose, Ralf Schenkel, and Michael
Schmidt. Fedx: Optimization techniques for federated query processing on
linked data. In ISWC, 2011.

[116] Oded Shmueli. Decidability and expressiveness aspects of logic queries. In Pro-
ceedings of the sixth ACM SIGACT-SIGMOD-SIGART symposium on Prin-
ciples of database systems, pages 237–249, 1987.

[117] Push Singh, Thomas Lin, Erik T Mueller, Grace Lim, Travell Perkins, and
Wan Li Zhu. Open mind common sense: Knowledge acquisition from the
general public. In OTM Confederated International Conferences “On the Move
to Meaningful Internet Systems”, pages 1223–1237. Springer, 2002.

[118] Snopes. Donald trump protester speaks out: “i was paid $3,500 to protest
trump’s rally”.

[119] Robyn Speer and Catherine Havasi. ConceptNet 5: A large semantic network
for relational knowledge. In Theory and Applications of Natural Language
Processing, 2012.

[120] Robyn Speer and Catherine Havasi. Representing general relational knowledge
in ConceptNet 5. In LREC, 2012.

[121] Steffen Staab and Rudi Studer. Handbook on ontologies. Springer Science &
Business Media, 2010.

[122] OASIS Standard. Web services business process execution language.
https://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf, April 2007.

[123] Fabian M Suchanek, Gjergji Kasneci, and Gerhard Weikum. Yago: a core of
semantic knowledge. In Proceedings of the 16th international conference on
World Wide Web, pages 697–706, 2007.

[124] Fabian M Suchanek, Jonathan Lajus, Armand Boschin, and Gerhard Weikum.
Knowledge representation and rule mining in entity-centric knowledge bases.
In Reasoning Web. Explainable Artificial Intelligence, pages 110–152. Springer,
2019.

[125] Fabian M. Suchanek, Mauro Sozio, and Gerhard Weikum. SOFIE: a self-
organizing framework for information extraction. In WWW, 2009.

BIBLIOGRAPHY 165



BIBLIOGRAPHY

[126] Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Com-
monsenseqa: A question answering challenge targeting commonsense knowl-
edge. CoRR, abs/1811.00937, 2018.

[127] Niket Tandon, Gerard de Melo, and Gerhard Weikum. WebChild 2.0: Fine-
grained commonsense knowledge distillation. In ACL, 2017.

[128] Thomas Pellissier Tanon, Gerhard Weikum, and Fabian M. Suchanek. Yago
4: A reason-able knowledge base. The Semantic Web, 12123:583 – 596, 2020.

[129] Inkscape team. Inkscape: A vector drawing tool, 2020.

[130] Metaweb Technologies. The freebase project. http://freebase.com.

[131] Denny Vrandečić and Markus Krötzsch. Wikidata: a free collaborative knowl-
edgebase. Communications of the ACM, 2014.

[132] Ryen W. White, Matthew Richardson, and Wen-tau Yih. Questions vs. queries
in informational search tasks. In WWW, 2015.

[133] WSML working group. WSML language reference.
http://www.wsmo.org/wsml/, 2008.

[134] Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Qili Zhu. Probase: a
probabilistic taxonomy for text understanding. In SIGMOD, 2012.

[135] http://www.w3.org/RDF/.

[136] Frank F Xu, Bill Yuchen Lin, and Kenny Zhu. Automatic extraction of com-
monsense locatednear knowledge. In ACL, 2018.

[137] Mark Yatskar, Vicente Ordonez, and Ali Farhadi. Stating the obvious: Ex-
tracting visual common sense knowledge. In NAACL, 2016.

[138] Rowan Zellers, Yonatan Bisk, Roy Schwartz, and Yejin Choi. SWAG: A large-
scale adversarial dataset for grounded commonsense inference. In EMNLP,
2018.

[139] Wanjun Zhong, Duyu Tang, Nan Duan, Ming Zhou, Jiahai Wang, and Jian
Yin. Improving question answering by commonsense-based pre-training. In
CCF International Conference on Natural Language Processing and Chinese
Computing, pages 16–28. Springer, 2019.

[140] Hang Zhou. Implementation of the hopcroft’s algorithm.
https://www.irif.fr/ carton//Enseignement/Complexite/ENS/Redaction/2009-
2010/hang.zhou.pdf, 2009.

166 BIBLIOGRAPHY

http://freebase.com


Titre: Collecte de connaissances cachées et du sens commun à partir de services web

Mots clés: Base de connaissance, sens commun, extraction d’information, réécriture de re-
quête, base de donnée, service web

Résumé: Dans cette thèse, nous collectons
sur le web deux types de connaissances. Le
premier porte sur le sens commun, i.e. des
connaissances intuitives partagées par la plu-
part des gens comme “le ciel est bleu”. Nous
utilisons des logs de requêtes et des forums de
questions-réponses pour extraire des faits es-
sentiels grâce à des questions avec une forme
particulière. Ensuite, nous validons nos af-
firmations grâce à d’autres ressources comme
Wikipedia, Google Books ou les tags d’images
sur Flickr. Finalement, nous groupons tous
les signaux pour donner un score à chaque
fait. Nous obtenons une base de connaissance,
Quasimodo, qui, comparée à ses concurrents,
montre une plus grande précision et collecte
plus de faits essentiels.
Le deuxième type de connaissances qui nous

intéresse sont les connaissances cachées, i.e.
qui ne sont pas directement données par un
fournisseur de données. En effet, les services
web donnent généralement un accès partiel
à l’information. Il faut donc combiner des
méthodes d’accès pour obtenir plus de con-
naissances: c’est de la réécriture de requête.
Dans un premier scénario, nous étudions le cas
où les fonctions ont la forme d’un chemin, la
base de donnée est contrainte par des “dépen-
dences d’inclusion unitaires” et les requêtes
sont atomiques. Nous montrons que le prob-
lème est alors décidable en temps polynomial.
Ensuite, nous retirons toutes les contraites et
nous créons un nouvelle catégorie pertinente
de plans: les “smart plans”. Nous montrons
qu’il est décidable de les trouver.

Title: Harvesting Commonsense and Hidden Knowledge From Web Services

Keywords: Knowledge base, Commonsense, Information Extraction, Query rewritings,
database, web services

Abstract: In this thesis, we harvest knowl-
edge of two different types from online re-
sources. The first one is commonsense knowl-
edge, i.e. intuitive knowledge shared by
most people like “the sky is blue”. We ex-
tract salient statements from query logs and
question-answering sites by carefully designing
question patterns. Next, we validate our state-
ments by querying other web sources such as
Wikipedia, Google Books, or image tags from
Flickr. We aggregate these signals to create
a final score for each statement. We obtain a
knowledge base, Quasimodo, which, compared
to its competitors, has better precision and
captures more salient facts.
The other kind of knowledge we investigate
is hidden knowledge, i.e. knowledge not di-
rectly given by a data provider. More con-

cretely, some Web services allow accessing the
data only through predefined access functions.
To answer a user query, we have to combine
different such access functions, i.e. we have
to rewrite the query in terms of the func-
tions. We study two different scenarios: In
the first scenario, the access functions have the
shape of a path, the knowledge base respects
constraints called “Unary Inclusion Dependen-
cies”, and the query is atomic. We show that
the problem is decidable in polynomial time,
and we provide an algorithm with theoretical
evidence. In the second scenario, we remove
the constraints and create a new class of rele-
vant plans called “smart plans”. We show that
it is decidable to find these plans, and we pro-
vide an algorithm.

Institut Polytechnique de Paris
91120 Palaiseau, France


	Introduction
	Motivation
	Information Jungle
	Knowledge Bases Structure Information
	A Brief History of Knowledge Bases
	Applications
	Accessing Knowledge Bases Through Web Services

	Contributions
	Harvesting Commonsense Knowledge Automatically
	Decidable, Polynomial and Equivalent Query Rewriting


	Preliminaries
	Knowledge Bases
	Knowledge Representation
	Reasoning Over Knowledge Bases
	Defining Knowledge Bases

	Web Services
	Motivation and Definition
	Web Service Architectures


	Quasimodo: A Commonsense Knowledge Base
	Introduction
	Motivation and Goal
	State of the Art and Limitations
	Approach and Challenges
	Contributions

	Related Work
	Commonsense Knowledge Bases (CSKB's)
	Use Cases of CSK
	Information Extraction from Query Logs

	System Overview
	Candidate Gathering
	Corroboration
	Ranking
	Grouping

	Candidate Gathering
	Data Sources
	Question Patterns
	From Questions to Assertions
	Output Normalisation
	Generation of New Subjects

	Corroboration
	Wikipedia and Simple Wikipedia
	Answer Snippets From Search Engine
	Google Books
	Image Tags From OpenImages and Flickr
	Captions From Google's Conceptual Captions Dataset
	What Questions
	Classifier Training and Application

	Ranking
	The Plausibility-Typicality-Saliency Approach
	The Smoothed Plausibility-Typicality-Saliency Approach

	Grouping
	Soft Co-Clustering
	Tri-Factorisation of SO-P Matrix

	Experimental Evaluation
	Implementation
	Intrinsic Evaluation
	Extrinsic Evaluation

	Conclusion

	Inside Quasimodo
	Introduction
	Previous Work
	Quasimodo Web Portal Architecture
	Demonstration Experience
	Exploring and Searching Commonsense Knowledge
	Extraction Pipeline Visualisation
	SPARQL Endpoint
	Play Taboo
	Codenames
	Multiple-Choice Question Answering

	Conclusion

	Equivalent Query Rewritings
	Introduction
	Related Work
	Views With Binding Patterns
	Equivalent Rewritings
	Maximally Contained Rewritings
	Web Service Orchestration
	Federated Databases
	Web Services

	Preliminaries
	Global Schema
	Inclusion Dependencies
	Queries
	Query Containment
	Functions
	Execution Plans
	Atomic Query Rewriting

	Problem Statement and Main Results
	Non-Redundant Plans
	Result Statements

	Algorithm
	Defining the Context-Free Grammar of Forward-Backward Paths
	Defining the Regular Expression of Possible Plans
	Defining the Algorithm
	Example

	Capturing Languages
	Minimal Filtering Plans
	Path Transformations
	Capturing Language
	Faithfully Representing Plans

	Experiments
	Setup
	Synthetic Functions
	Real-World Web Services

	Visualisation Demo
	Conclusion

	Query Rewriting Without Integrity Constraints
	Introduction
	Preliminaries
	Defining Smart Plans
	Introductory Observations
	Smart Plan Definition
	Comparison with Susie
	Comparison with Equivalent Rewritings
	Sub-Smart Definition

	Characterizing Smart Plans
	Web Service Functions
	Why We Can Restrict to Path Queries
	Preliminary Definitions
	Characterising Weakly Smart Plans
	Characterising Smart Plans
	Characterising Weakly Sub-Smart Plans
	Characterising Sub-Smart Plans

	Generating Smart Plans
	Minimal Smart Plans
	Susie
	Bounding the Weakly Smart Plans
	Generating the Weakly Smart Plans
	Generating Smart Plans
	Generating Weakly Sub-Smart Plans
	Generating Sub-Smart Plans

	Experiments
	Synthetic Functions
	Real-World Web Services

	Discussion
	Conclusion

	Pyformlang
	Introduction
	Previous Work
	Pyformlang
	Regular Expressions
	Finite-State Automata
	Finite-State Transducer
	Context-Free Grammars
	Push-Down Automata
	Indexed Grammar

	Conclusion

	Conclusion
	Summary
	Outlook

	Résumé en français
	Introduction
	Quasimodo
	Réécriture de requêtes
	Pyformlang
	Conclusion

	Additional Proofs
	Proofs for Section 5.6
	Proof of Theorem 5.6.2
	Proof of Property 5.6.9
	Proof of Theorem 5.6.11
	Proof of Theorem 5.6.13

	Proofs for Section 5.4 and 5.5
	Proof of Theorem 5.4.7
	Proof of Proposition 5.4.8



