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General Introduction 

Nuclear magnetic resonance (NMR) is a spectroscopic technique and a non-

selective analytical method. Comparing NMR techniques with routine chromatography 

methods, NMR can afford both structural and quantitative information concerning 

molecules in complex samples. Furthermore, the fact that NMR is a holistic (non-

selective) and robust method and has properties like non-destructive and easy 

preparation without isolation regarding the samples make this method well suited for 

the analysis of food, herbals, drugs or other formulations [1, 2].  

However, the routine application of NMR technique is limited by the high cost of 

spectrometers and maintenance expenses, especially for chemists in regulatory control 

laboratories or less developed countries. The recent introduction of benchtop cryogen-

free low-field NMR (LF) spectrometers on the market could play an important role to 

supplement this drawback. Modern LF spectrometers are commercially available with 

relatively low magnetic field strengths (typically 40-100 MHz), and offer NMR 

performance and convenience for analysts. Even though LF NMR has a relatively lower 

sensitivity, it still can give us valuable signals and useful information in the spectra. For 

more complex samples, the application of multivariate statistical analysis can help to 

better extract useful information from LF NMR data. Indeed, with the combination of 

chemometric analysis, including unsupervised and supervised methods, the samples 

diversity and their similarities (i.e. samples grouping and outlier samples), the 

identification of markers and the establishment of predicted models could nevertheless 

be evaluated for complex samples. Recently, a few publications have described the 

method of LF NMR for quality control of various products including edible oil [3], 

meat [4], dietary supplements [5], and drugs [6].  

Herbal dietary supplements are highly valued for various functional activities and 

usually considered as non-harmful for health. However, some of these products could 

be fake with, for instance, erroneous label information on their origin or ingredients. In 

this thesis, we first focused on cinnamon samples. Cinnamon is a famous spice that has 

a long history of use in traditional medicine for its health benefits and is also nowadays 

produced as herbal dietary supplements. Cinnamomum cassia (C. cassia) is the most 
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widespread cinnamon species that has occupied the major cinnamon supply in the 

market for the cheap price [7]. But C. cassia contains a significantly higher content of 

hepatotoxic coumarin compared to other species that would pose a health risk to 

consumers [8]. The cinnamon example illustrates the commercialization of herbal 

products for which the claimed origin or species can be wrong. In some cases, 

irregularities can be more acute. Indeed, unscrupulous manufacturers fraudulently 

added synthetic active pharmaceutical ingredients (API) to improve functional 

efficiency or reduce manufacturing costs [9, 10]. For example, anorexic drug 

sibutramine and laxative substance phenolphthalein have been detected in slimming 

herbal dietary supplements [5]. These problematic products are not only misleading 

consumers, but mostly the adulterants could cause serious health problems [11]. 

Therefore, their safety and efficacy, as well as quality control, have become issues with 

growing concern.  

E-liquids are mixtures that can vapor aerosol for inhalation and widely used with 

the popularity of e-cigarettes. E-liquids usually contain propylene glycol, glycerin, and 

flavorings; most often, nicotine is added as the psychoactive ingredient [12]. Since e-

cigarettes are not well regulated or controlled in many countries, the composition of the 

e-liquids can contain various substances including psychoactive ingredients. Synthetic 

cannabinoids (SCs) are the most rapidly growing class of recreational designer drugs 

adulterated in e-liquids to bring a psychoactive effect. SCs can be designed to have a 

similar structure to natural cannabinoids (e.g. THC in cannabis), but their structures are 

quite diverse and a large number of new SCs have appeared on sale to evade legal 

regulations, thus the quality control of smoking mixtures with SCs adulterated becomes 

more difficult. Moreover, compared to natural cannabinoids, SCs often have a greater 

binding affinity and potency to the cannabinoid receptors in brain [13, 14], many lethal 

cases caused by SCs abuses are reported in Europe [15]. 
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Aim of the thesis 

This doctoral thesis aims to explore the capabilities and limitations of benchtop 

LF NMR spectroscopy and further evaluate its perspective for routine analysis in 

quality control and fraud detection. For the analysis of complex herbal products, we 

particularly focused on the combination of LF NMR data with chemometric analysis, 

which was applied for global exploration of NMR data to obtain relevant and latent 

information. In e-liquids study, LF fluorine NMR was investigated as a selective 

analytical approach in these complex matrices.  

Outline of the thesis 

In this thesis, we begin with a general introduction. Chapter I is the bibliographic 

section that reviews the application of LF NMR for quality control of herbal products 

and fraud detection; it presents the classification and composition of cinnamon species, 

introduces the problem of adulterations in slimming DS and also SCs detected in 

recreational products. These topics are introduced along with the related analytical 

methods. Chapter II reports the quality control of two main cinnamon species (C. 

verum and C. cassia) in commercial culinary products and dietary supplements via both 

HF and LF 1H NMR. The combination of chemometric analysis with LF 1H NMR data 

is used for the classification of cinnamon samples and an approximate quantification is 

discussed. Chapter III explores the LF 1H NMR-chemometrics analysis for quality 

control of herbal slimming supplements adulterated with API. Chapter IV reports the 

detection of SCs in e-liquids by using both proton and fluorine nuclei NMR and 

demonstrates that LF 19F NMR can be an interesting approach to identify adulterated 

SCs in e-liquids. At last, a general conclusion with perspective ends this manuscript. 
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Chapter I Bibliography 

1. Introduction 

Dietary supplements (DS) are products that intend to add nutrients to diet or to 

lower the risk of health problems. These products are usually labeled to have functional 

activities, such as antioxidant, antidiabetic, anticancer, etc. Herbal dietary supplements 

as the most popular DS which are highly valued for a wide range of natural function 

components, such as polyphenols, polysaccharide and fiber, and consumers usually 

accept them as non-harmful for their natural origin. However, in order to improve the 

functional efficiency of herbal products or reduce manufacturing costs; some 

manufacturers illegally add synthetic drugs in their products or replace claimed herbals 

with low-quality herbal DS (misleading origin) and even directly mislabelling [1, 2]. 

 E-cigarettes were invented as an alternative way for quitting smoking and spread 

rapidly during recent years, e-liquid or smoke juice is the mixture that can vapor aerosol 

for inhalation when e-cigarette is activated [3, 4]. However, in order to increase the 

psychoactive effect, recreational designer drugs including synthetic cannabinoids (SCs) 

are more frequently adulterated in e-liquid products. As the prosperity of e-liquids, 

there are many cases and reports about the abuse of SCs [5, 6]. Thus, the safety of these 

products has gained a great deal of attention due to the quality problems and adverse 

cases reported [6-8]. 

Nuclear Magnetic Resonance (NMR) is considered as a universal and quantitative 

analytical method for screening complex mixture, like herbal products, plants, 

pharmaceuticals, etc. Being an unbiased identical and structural tool, NMR is highly 

reproducible, robust, inherently quantitative without specific reference demanded, no 

damage to sample and non-selective for comprehensive analysis [9, 10]. In recent years, 

1H NMR has become a valuable technique for quality control and fraud detection in 

complex herbal products or other mixtures. The combination of 1H NMR and 

multivariate statistical analysis is often used in quality control of bulk products, it leads 

to a spectral fingerprint that can be used for metabolite markers detection, herbal 

species identification and discrimination of adulterated samples [9, 11, 12]. However, 

the expensive cost of equipment and maintenance limits the application of NMR in 
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routine chemical analysis, whereas the release of recent benchtop low-field (LF) NMR 

can be a great supplement to these drawbacks. Modern LF spectroscopies have been 

introduced commercially as a less expensive alternative to higher magnetic field, that 

are available in the discrimination of agricultural species and also the screening of 

adulterants within commercial herbal products [2, 13, 14]. 

This chapter presents a bibliographic review focusing of the keys points of my 

studies: (i) the ability of LF NMR for quality control of herbal products and fraud 

detection, and also the application of chemometrics treatment to LF NMR data (ii) the 

composition and classification of cinnamon (iii) the problematic of adulterations in 

herbal slimming DS (iv) the presentation of novel SCs and their detection in 

commercial products. Analytical methods and particularly NMR studies related to these 

topics will be reviewed. 

 

2. Quality control assessed by NMR, and the use of low-field 

spectroscopy 

Because of the rapid popularity of herbal products and e-cigarettes, many illegal 

manufactures choose to add synthetic drugs (no marked) into their products to improve 

the effects [15-18]. For consumers, these adulterated products pose a great threat to 

health because the content of adulterants or synthetic drugs is unknown. Furthermore, 

many novel drugs or analogues are adulterated in these products to evade governmental 

control, but their pharmacokinetics and pharmacology properties are not clear in the 

body. Therefore, the quality control of these products is quite important to ensure the 

public health and consumer rights [19].  

2.1 Analytical methods used for quality control of complex samples and the application 

of NMR 

The routine analytical methods for screening of complex mixture are 

chromatography methods, such as Thin Layer Chromatography (TLC) [20-22], High-

Performance Liquid Chromatography (HPLC) [16, 21, 23-26] or Gas Chromatography 

(GC) [7, 27, 28] combined with Mass Spectrometry (MS), or capillary electrophoresis. 
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These techniques are widely used in analytical labs and have high sensitivity, especially 

for mass spectrometry with the limit of detection in the pM range [16, 17, 29].  

However, there are still some drawbacks to these gold-standard methods in quality 

control of complex samples. The primary propose of chromatography methods is the 

separation of components, whereas herbal products usually contain a variety of 

ingredients, the separation process would be complicated and time and solvent 

consuming. Moreover, the pre-purification steps would lose targeted constituents, and 

the samples tested would be damaged or hard to recycle. Furthermore, many illegal 

products contain novel synthetic compounds, and also some unexpected herbal 

metabolites are not easy to be identified by conventional approaches without standard 

compounds. Additionally, these methods are highly selective, if only a few components 

are emphasized, some other compounds would be neglected [10].  

The application of NMR can generally complement these drawbacks. NMR as a 

high-throughput analytical method can be used for comprehensive components analysis 

in mixtures, it has become a routine tool for the structural elucidation of natural and 

synthetic compounds. Qualitative and quantitative analysis can be simultaneously 

evaluated, quantitative results are acquired by comparison of the proportional ratio of 

resonating nuclei and signal intensity. Even though NMR has relatively lower 

sensitivity than mass spectrometry, it provides many advantages other than 

chromatography-based methods, including simple method development, easy sample 

process, relatively short analysis time, identical reference-free and no damage to 

samples [8, 10, 30, 31]. 

Large numbers of publications have reported the application of NMR for quality 

control of herbal products, by using (1) conventional 1D & 2D NMR, (2) hyphenated 

NMR, (3) quantitative NMR (qNMR), (4) NMR-based metabolomics, and (5) 

Diffusion Ordered Spectroscopy (DOSY) NMR [10]. Among these NMR approaches, 

1H NMR as a rapid, simple, output method is most frequently applied for the screening 

of herbal products [31]. 

NMR, usually referred to as high-field (HF) NMR, although it can provide a more 

sophisticated answer to the classical chemical questions than many other analytical 

techniques. But it is often considered as complicated, space-consuming and expensive 
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to maintain. The release of recent low-field (LF) NMR can be a great supplement to HF 

NMR and offer NMR performance and convenience for analysts. Although the spectra 

are less resolved, the properties about low maintenance, robustness, small-size and 

user-friendly are more valued [2, 30]. 

2.2 Recent Low-Field NMR 

Modern benchtop spectrometers are commercially available with lower magnetic 

field strengths, there are several typical brands of LF NMR spectrometers available on 

market, including Fourier 80 FT-NMR (80 MHz, Bruker), Spinsolve (43, 60 & 80 MHz, 

Magritek), NMReady-60Pro, 100Pro (60 & 100 MHz Nanalysis), X-Pulse (60 MHz, 

Oxford Instruments) and picoSpin 45II, 80II (45 & 80 MHz, ThermoFisher) [32]. 

Comparing LF NMR with traditional HF NMR, of course, the signals of LF NMR 

appear broader and more likely to be overlapped [13], but recent LF NMR is better 

suitable than its bulky predecessors from 40 years ago in chemical analysis. Modern LF 

spectroscopy can measure multiple nuclei and record two-dimensional (2D) NMR 

spectra. Furthermore, novel algorithms and data treatments have been developed to treat 

the common S/N problems (sensitivity barriers) associated with LF instrumentations. 

For instance, spin effects enhancing methods like hyperpolarisation of nuclear spins 

can greatly enhance signals intensities observed in LF NMR application; ultra-fast LF 

NMR analysis is also achieved depending on the availability of high-performance 

gradient coils. Novel data processing involving lineshape, phase and baseline automatic 

corrections without manual input has been reported to provide more interpretable 

results [33]. Thanks to the progress of superior electronics and advanced sequences, LF 

NMR sensitivity is sufficient to analyze bio-metabolites and to serve as a chemical 

detector in size-exclusion chromatography [14].  

For daily chemical analysis, this technique has several advantages like (1) the less 

expensive instrument and maintenance cost than HF NMR (without requiring any 

infrastructure or liquid cryogens); (2) the small bench-top size of spectrometer means 

it can be placed near the work environment or in-house use; (3) the simple operation 

and troubleshooting of the spectrometers [2, 14]. LF NMR was mainly employed on 

relaxation (T1 & T2) and diffusion measurements in the early period with very low 
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magnetic fields, and now it has been utilized in a wide range of research sectors, like 

food, herbal products, pharmaceutical and bio-fluid analysis [2, 14, 33, 34]. 

2.3 Low-field NMR spectroscopy in food, pharmacy and forensic 

LF NMR has been used for quality control of natural products as an alternative to 

conventional analytical methods, these researches were mainly performed in the field 

of food, pharmacy and forensics analysis [32, 33]. By using LF NMR, the botanical 

species, effective natural components and adulterants in natural products were 

successfully evaluated [2, 30, 35]. 

Recently, benchtop NMR spectroscopy has been available in rapid discrimination 

of the species of agricultural products, such as oil [35-38], beef [39] and hops [40]. 

During these experiments, typical signals of botanical metabolites or special 

components of different species can be identified in LF NMR spectra. Kim et al 

developed a method for perilla oil authenticity by using a 43 MHz LF 1H NMR [35]. 

Significant differences of integration values were acquired through 6 peaks found in 

the spectra from both authentic and adulterated perilla oil samples; 4 peaks containing 

allylic or olefinic protons present in all unsaturated fatty acids (FA) and methylene 

protons present in all FA were integrated as the best variables for oil species 

authenticity. A model established by the mixture of perilla oil and a range concentration 

of soybean oil (0~100 %) also verified the possibility of this method, soybean with a 

concentration higher than 6 vol% can be correctly discriminated. 

LF NMR analysis was also applied to distinguish the species of ground roast 

coffees. As we have known, there are two main species of commercial coffee beans in 

the world, Coffea arabica L. (around 70% of the market) and Coffea canephora Pierre 

ex A (variety robusta). Arabica coffee beans are prized for their smooth taste and 

rounded flavor, this species usually have higher prices on sale; while robusta plants 

exhibit better anti-disease ability, and robusta beans have a lower price because of the 

relatively poor quality. Thus it is potential that unscrupulous manufacturers replace or 

adulterate arabica coffee with robusta coffee beans. Defernez et al explored a method 

to discriminate these two species of coffee by using a 60 MHz benchtop 1H NMR [13]. 

They monitored the signal of 16-O-methylcafestol (16-OMC, a recognized marker 

compound for robusta beans), even though signals at 6.20 and 3.75 ppm were 
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overlapped with kahweol and caffeine respectively in low field spectra, but singlet at 

3.16 ppm was successfully isolated and marked as the best potential signal, and further 

integrated. An authentication protocol was established by 81 authentic coffees and 

mixtures, from which the detection limit of robusta coffee in Arabica was estimated 

between 10% and 20% w/w. All 27 retail sourced coffee samples were confirmed as 

“100% arabica”. These publications indicate that LF NMR can be used as a cost-

effective approach for species discrimination the authenticity of natural products. 

LF NMR as an economic and user-friendly method was recently applied for 

forensic propose and synthetic drug detection. Several publications described the 

identification of psychoactive adulterants in seized drugs by LF NMR [30, 41, 42]. 

Assemat et al detected nine different SCs in forty-one herbal blend samples seized by 

French customs, both HF and LF NMR were applied in this study, the ability of LF 

NMR for rapid identification of SCs was first explored [30]. Antonides et al screened 

432 seized samples including herbal blends through LF NMR data combined with an 

algorithm analysis, the results were then matched to a library of over 300 reference 

spectra form known substances. Samples contained controlled drugs like SCs, cocaine, 

amphetamine, heroin, etc were identified with > 99% correct for classification and > 

95% correct for the compound. The LF NMR results were also supported by GC-MS 

analysis [43]. Zhong et al analyzed 12 known illegal drugs and their derivatives 

including morphine and codeine on 600 MHz 1H NMR and used to create the data 

library, illegal substances were partially recorded on 82 MHz LF NMR as standard 

spectra. Then 2 real case samples were recorded on LF NMR and compared with the 

existed standard spectra on both HF and LF NMR, the results showed that one sample 

contained morphine and acetylcodeine, while another contained methamphetamine 

(MAM) and 3,4-methylenedioxymethamphetamine (MDMA). The authors suggested 

that LF NMR is a reliable and promising approach to rapidly identify illegal drugs in 

case scenes [42].  

Pages et al screened “100% natural” named DS through benchtop LF NMR 

spectroscopy (60 MHz), pharmaceutical substances including desmethylcarbodenafil, 

dithiodesmethylcarbodenafil, sildenafil, tadalafil, etc in sexual enhancement DS, as 

well as sibutramine and phenolphthalein in weight loss DS were efficiently detected. 

Compared to HF 1H NMR, even LF NMR has lower spectral resolution and sensitivity, 
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but valuable signals of synthetic drugs still can be acquired, and quantitative analysis 

was also explored [2]. Sigh et al identified strychnine and its counterions by exploring 

the chemical shift as a signature in different 1D 1H and 13C experiments, the results on 

43 MHz NMR spectrometer were confirmed by combination with 2D experiments 

(COSY, HETCOR, HSQC, HMBC and J-resolved) [44].  

LF NMR can be also used for quality control of substandard and falsified medical 

products, Keizers et al applied LF NMR to assess medical product quality, qualitative 

analysis was explored through chemometric in combination with spectral database, 

active ingredients containing acetaminophen, aspirin, caffeine, diclofenac, ibuprofen, 

naproxen, sildenafil, tadalafil, sibutramine, cocaine, and gamma hydroxybutyric acid 

(GHB) were identified in products, with a limit of detection of about 1 mg/mL [41]. 

2.4 Application of chemometrics in LF benchtop analysis 

1H NMR can be used for screening components in herbal mixtures, but signals 

from all resonating protons make the spectra even complicated. Especially for signals 

overlaps in LF NMR, when the chemical composition of signals is unknown, spectra 

analysis becomes much more difficult. Hence, for the explanation of high-throughput 

and complex 1H NMR spectra, how to improve the processing efficiency is important. 

2.4.1 Chemometric tools and NMR 

In 1H NMR spectra of complex mixtures, the entire information about signals in 

the overlapped region couldn’t be directly obtained, and it is often necessary to analyze 

the data by combining correct mathematical models and effective calculation methods 

[10]. Chemometrics is the science of extracting information from chemical systems by 

data-driven means. Chemometrics is inherently interdisciplinary, using methods 

frequently employed in core data-analytic disciplines such as multivariate statistics, 

applied mathematics, and computer science, in order to address problems in chemistry, 

biochemistry, medicine, biology and chemical engineering. On the other hand, 

chemometrics is a discipline that establishes the relationship between measured values 

and the state of chemical system and applied to both descriptive and predictive 

problems in fields, the essence is the basic theory and methodology of chemical 

measurement [45]. 1H NMR combined with chemometrics can comprehensively 

analyze the spectra data, it maximally extracts the componential and structural 
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information of samples from complex NMR data, obtains effective characteristic data 

and establishes mathematical models [10, 46]. This method can be used for 

interpretation, discrimination, and prediction of measurement data, with the advantages 

of fast calculation speed and good recognition function.  

Generally, chemometric methods include two categories: unsupervised and 

supervised pattern recognition, a supervised scheme identifies an unknown pattern as a 

member of a predefined class, while an unsupervised scheme groups input patterns into 

a number of clusters defined as classes [45]. Principal component analysis (PCA) is one 

of the most commonly used unsupervised exploratory techniques, PCA is usually 

applied to evidence outliers or natural grouping of samples. It visually reflects the 

differences between samples by reducing the data dimensionally with the minimum loss 

of data information. The similarities and differences among samples can be observed 

in specific plot with the new principal components through scores plots with group 

information in 2 or 3-dimensional plots; and the loading plot reveals the influencing 

variables and significant components (NMR signals) concerning scattering behavior. 

PCA is one of the most widely used methods for finding patterns and trends, but it is 

not suitable to assign out the discrimination of unknown test samples [10, 45].   

While commonly used supervised pattern recognition such as partial least squares 

to latent structures-discriminant analysis (PLS-DA) and orthogonal PLS-DA (OPLS-

DA) are required to create classification or prediction models. PLS-DA as a reliable 

and robust multivariate statistical analysis method is well suited for quality control and 

category prediction of complex samples. OPLS-DA is based on PLS-DA with an 

orthogonal signal correction (OSC) filter. Comparing with PLS-DA, the main benefit 

of OPLS-DA is that it can separate predictive from non-predictive (orthogonal) 

variation. Thus it can decrease the impact of NMR data variation that is unrelated to the 

sample class (e.g. age of herbal plant). PLS-DA and OPLS-DA are supervised models 

in which the users assign the identity of each group of samples such that the maximum 

variance of the groups can be attained in the hyperspace. The analytical results are also 

observed as scores and loading plots. Furthermore, the validation is regarded as the 

critical step to ensure the reliability of PLS and OPLS predictable model. Cross-

validation method is routinely employed, with R2Y and Q2 are calculated. The R2Y 

metric describes the percentage of variation explained by the model; Q2 shows the 
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predictive ability of the model. Other validation methods, like CV-ANOVA uses the 

cross-validated predictive residuals of a model as a basis for hypothesis testing  [45, 

47]. 

For quality control of herbal products, a large number of samples are usually 

collected from the market. Because of the complex composition, other abundant 

constituents or unknown compounds present in the extract can affect the identification 

and discrimination of adulterants and active components. Thus, quality control of 

herbal products becomes an even hard task, in facing the huge and complex data, how 

to improve its efficiency becomes even important. 1H NMR together with multivariate 

statistical analysis is therefore attractive to address these issues [10]. Recently, 1H NMR 

combined with chemometrics has been widely used for the characterization of herbal 

species and different plant organs [9, 11], authentication of edible oil species [48, 49], 

geographical origin of wines [50, 51], chemotaxonomy [40, 46], saffron (Crocus 

sativus L.) [52], etc.  

2.4.2 Chemometrics and LF NMR 

Recently, the combination of 1H NMR and chemometric analysis has been applied 

for species authentication and detection adulteration in herbal products [10, 11, 53]. 

Benefit from the development of modern benchtop NMR, publications concerning LF 

NMR combined with chemometrics began to be reported in the field of food quality 

control and fraud detection. Compared to routine HF 1H NMR, LF NMR has lower 

sensitivity and the assignment of compounds becomes hard for complex herbals, but 

valuable signals still can be obtained in the spectra. While considering the advantages 

of economic and handing considerations, with the application of chemometrics, the lack 

of resolution of the LF spectra can be overtaken. This method could be a breakthrough 

for the NMR application in quality control of herbal products and fraud detection. 

In the early stage of LF NMR development, few publications reported the use of 

ultra LF NMR for screening of edible oil (22 MHz for 1H resonance) and honey samples 

(13 MHz) with chemometrics [54-56], but these LF 1H NMR experiments are based on 

relaxation times measurement, for detecting T2 differences variations with adulterants. 

Because relaxation time is highly related to physico-chemical parameters (pH, water 

activity and moisture content), thus pure samples can be discriminated by processing 
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T2 values with chemometrics [56]. Insofar this method has limitations, it is only 

suitable for special liquid formed samples authentication, like edible oil and honey 

products. Furthermore, concerning the samples' components, no chemical structures 

identification nor quantitative analysis were carried out by LF NMR.  

Parker et al evaluated the ability of a 60 MHz pulsar benchtop NMR for detection 

of the adulteration of olive oil with hazelnut oil. By comparing a single internal ratio of 

two isolated groups of peaks, the adulteration of hazelnut oil could be identified in olive 

oil samples with a detection limit at 13 %w/w. Whereas with the combination of whole-

spectrum chemometric analysis, the detection limit can decrease to 11.2 %w/w. The 

authors also proposed that recent benchtop NMR delivered comparable sensitivity and 

improved specificity, making it a superior screening tool by comparison to FTIR [36]. 

Frause et al applied 60 MHz NMR to detect 17 adulterants in patchouli essential oils, 

and 14 adulterants could be identified by visual inspection in spectra. With the 

application of automated chemometric evaluation, 15 adulterants were recognized in 

LF spectra. Furthermore, for quality control of essential oils containing non-volatile 

adulterants, this research proves that LF NMR is more complimentary than GC-MS 

which is only compatible with volatile components [38]. Jakes et al demonstrated that 

60 MHz LF NMR can distinguish beef and horse meat by comparison of triglyceride 

compositions. Bis-allylic, olefinic and the terminal CH3 peak signals were proved to be 

the most significant differences between two meats. Depending on these signals, a PCA 

model was built to further compare training samples, the results showed that 106 

samples of 107 meat extracts were correctly authenticated, thus concluded that LF 

NMR represented a feasible high-throughput approach for screening raw meat [39]. 

Recently, Killeen et al screened different bitter acids in batch hops (important beer 

ingredients). Qualitative and quantitative analyses were explored through various 

approaches, including 400 MHz NMR and a Magritek Spinsolve® 43 MHz NMR 

spectrometer. Compared to HF 1H NMR, LF signals of α-acids including humulone, 

adhumulone and cohumulone; β-acids including lupulone, adlupulone and colupulone 

were well resolved in 18.0-19.4 ppm, and also the ratio of different type acids could be 

calculated. Moreover, the LF signal of cohumulone cannot resolve from adhumulone, 

but the chemometrics process can well separate these signals, and PCA analysis was 

used to separate these compounds and shown in the loading plot. At last, the author 
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suggested that LF NMR combined with chemometrics could rapidly discriminate 

different hops chemotypes, and highlight plants with potential for new flavour cultivars 

[40]. Keizers et al developed an analytical method for the determination of active 

substances in illegal street drugs by 1.4T (60 MHz) benchtop NMR spectroscopy. 

Sildenafil, tadalafil, sibutramine, cocaine, etc were successfully identified and further 

quantified with an error of 10%. Additionally, a chemometric procedure was used to 

identify products, the spectra of reference standards and products were collected to 

build the dataset. New spectra were ranked on similarity and having determined the top 

three candidates, their distance, consensus and tail probability were determined. Then 

the active substance in products can be predicted by the training data obtained. The 

author claimed that LF NMR data combined with chemometric analysis can help to 

identify the active compounds in illegal samples, reducing the need for expert 

interpretation of spectra acquired [41].  

 

3. Cinnamon: From the composition to the authentication 

Cinnamon is an aged-old spice that has been used for thousands of years. 

Cinnamon is originated from the dried inner bark of Cinnamomum which is a genus of 

evergreen aromatic trees and shrubs belonging to the laurel family, distributed over 

South East Asia (around 250 species), China and Australia, many of which are aromatic 

and flavoring [57, 58]. Cinnamon is daily used as an aromatic condiment in cuisines 

and flavor additive for food, like sweet and savory dishes, pastry, snack food, 

confectionery, wine, tea, and traditional food. Furthermore, Cinnamon as one of the 

most important and popular spices not only for its aromatic flavor but also widely 

applied for its health beneficiations in traditional and modern medicines [58]. The 

functional activities of cinnamon are attributed to a wide variety of secondary 

metabolites like other herbal plants. These compounds include essential oil components, 

monoterpenes, sesquiterpenes, phenyl propenes, flavonoids, and other polyphenols. 

Cinnamaldehyde is defined as one of the most important bioactive compounds which 

is rich existed in essential oil (75%) as the trans format. During these two decades, 

cinnamaldehyde and other components in cinnamon have been reported for their 

healthy beneficiations, such as antioxidant [59], antidiabetic [57], anti-inflammatory 

[60], antibacterial [61], antifungal [62], and anticancer [63] effects.  

https://en.wikipedia.org/wiki/Lauraceae
https://www.sciencedirect.com/topics/nursing-and-health-professions/terpene
https://www.sciencedirect.com/topics/nursing-and-health-professions/sesquiterpene
https://www.sciencedirect.com/topics/nursing-and-health-professions/propylene
https://www.sciencedirect.com/topics/medicine-and-dentistry/antidiabetic-agent
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3.1 Overview on species of cinnamon 

Cinnamon is a spice obtained from the dried inner bark of genus Cinnamomum. 

There are more than 300 species of Cinnamomum distributed in tropical and subtropical 

regions [64]. Volatile oil as the chief ingredient amounts to 1% of the bark, and 

principle components cinnamaldehyde, cinnamyl acetate, as well as other constituents, 

including eugenol and toxic coumarin [65]. But only a few species of Cinnamomum in 

the family Lauraceae can be used for spices depending on the special flavor and sweet 

taste, there are 2 major cinnamon species used worldwide. 

3.1.1 Ceylon cinnamon (C. verum) 

Ceylon cinnamon (C. verum) is referred to as true cinnamon which is made from 

the inner bark of Cinnamomum verum tree native to Sri Lanka. Ceylon also indicates 

the species’ center of origin. Even though there are several species of commercial 

cinnamon on sale, C. verum is usually considered as superior quality and with a higher 

price compared with other species [66]. According to the report from the Food and 

Agriculture Organization of the United Nations, Sri Lanka still produces around 80-90% 

of C. verum in the world market, and also cultivated in other origins like Seychelles and 

Madagascar [67].  

3.1.2 Cassia cinnamon (C. cassia) 

Cassia cinnamon is made from the tree bark of Cinnamomum cassia. C. cassia is 

the most widely cultivated Cinnamomum in southern China and south-east Asia. 

Chinese cassia, Indonesian cassia, and Saigon or Vietnam cassia are collectively 

known as cassia cinnamon, and also marketed as cinnamon on sale [64]. 

Compared to C. verum, C. cassia is native to many countries and regions which 

have already occupied the most commercial supply of cinnamon in the world. Because 

of the huge export and lower price, Indonesia and China produced 75% of the world's 

supply of cinnamon in 2016 [68]. For commercial cinnamon products, C. cassia has 

replaced C. verum as the species most widely used [69]. 

3.1.3 Difference between two cinnamon species 

Even though C. verum and C. cassia are both sold as cinnamon in the market, but 

there are still different features between these two species. Primary, the shape and color 

https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
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of these two species are different. Fig I - 1 shows that C. cassia is generally medium to 

light reddish-brown in color, hard and woody in texture, and thicker (2–3 mm (0.079–

0.118 in) thick), as all of the layers of bark are used. C. verum, using only the thin inner 

bark, has a lighter brown color, a finer, less dense and more crumbly texture; it is 

considered to be subtle and more aromatic in flavor than C. cassia that can release much 

of its flavor during cooking. C. cassia is usually sold as broken pieces of thick bark, as 

the bark is not supple enough to be rolled into quills, whereas C. verum is usually sold 

as a cigar shape as rolled inner bark [66, 69, 70]. 

The taste and flavor of two species also have differences, C. cassia has a strong 

and exciting aroma flavor because of the higher content of cinnamon oil, and also made 

a more spicy taste for people. Considering C. verum, because of mild subtle taste with 

hints sweetness as well as it is easy to crash, it is usually used in beverages, such as 

coffee, tea [71].   

 

         

Fig I - 1. Two species of cinnamon, C. verum (left) and C. cassia (right). 

 

The toxicity of cinnamon is also concerned in these years, in 2018,  

Hajimonfarednejad et al reported a systematic review of adverse events caused by 

cinnamon [72]. Coumarin as a secondary metabolite is dominantly discussed, research 

has confirmed that coumarin is toxic to liver and kidney for overtaking and prolonged 

use. The attention that C. cassia contains a significantly higher concentration of 

coumarin. However, C. verum only contains around 0.004% of coumarin (trace), which 

is regarded as generally safe. Due to the different origins of cassia cinnamon, and other 

factors, such as cultivate methods, climate, etc, there is a wide range of coumarin 

concentration in C. cassia, usually, C. cassia contains over 1.0mg/g of coumarin and 

https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
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sometimes up to 12 times more[73]. For example, the coumarin content can reach 6.97 

mg/g in the authentic Saigon cinnamon sample (C. loureiroi) [69]. 

Wang et al screened 4 authentic cinnamon species and 40 commercial sourced 

cinnamons by UPLC-MS in the American market. Cinnamaldehyde is the dominant 

component in all species; the content of cinnamaldehyde in C. cassia is significantly 

higher than C. verum, reaches to 55.8 mg/g to 16.8 mg/g for authentic cinnamon. The 

same result was also required in another research, Farag et al analyzed 10 cinnamon 

species found that C. cassia has a relatively higher content of essential oil, and which 

contributes to the more strong flavor and spicy taste [9]. Quantitative analysis of 

coumarin showed that C. cassia (Vietnam cinnamon) had coumarin content can reach 

to 9.3 mg/g (around 0.54 g/day for 50 Kg body weight) [69]. In contrast, C. verum has 

only trace amounts of coumarin, whereas cinnamon from Vietnam (C. loureiroi) and 

Indonesia (C. burmannii) contained substantial amounts. 

Other bioactive compounds like cinnamaldehyde and styrene in the cinnamon bark, 

powder or essential oil can also be toxic for health if taken at a high dose [74]. 

3.2 Functional activities of cinnamon 

Cinnamon as a worldwide spice and traditional herbal medicine has been used for 

thousands of years. Depending on plenty of researches in vitro and in vivo, cinnamon 

extracts or its components exhibit a wide variety of functional activities, such as anti-

diabetes, anti-oxidant, anti-inflammatory, anti-microbial, anticancer, lipid level 

lowering effects. Moreover, cinnamon was reported to have ability against neurological 

disorders, like Parkinson's and Alzheimer's diseases, and also treating cardiovascular 

diseases. The bio-activities of cinnamon extracts or compounds isolated were 

summarized in Table I - 1 below. 

Table I - 1. Functional activities of cinnamon species. 

Functional 

activities 

Cinnamon 

species 

Material/compounds References 

anti-diabetes C. verum 

C. cassia 

extracts, cinnamon oil, water 

extracts, flavonol and other 

polyphenols compounds, 

procyanidin oligomers, polyphenol 

type-A polymers 

[57, 75-79] 

https://en.wikipedia.org/wiki/Cinnamomum_cassia
https://en.wikipedia.org/wiki/Cinnamomum_cassia
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anti-oxidant C. verum 

C. cassia 
ether, methanol and water extracts, 

essential oil, polysaccharides, 

phenolic constituents, Lignan 

[59, 65, 80-84] 

[71, 85-87] 

anti-inflammatory C. cassia 

C. verum 

water extract, essential oil,  

ethanol extract, cinnamaldehyde  
[60, 88-92] 

 

anti-microbial unspecified  

C. cassia 

C. verum 

essential oils, cinnamaldehyde, [61, 93-95] 

anti-cancer C.cassia water extract (cinnamaldehyde 

mainly), cinnamaldehyde, cinnamic 

acid 

[63, 96, 97] 

lipid level 

lowering effects 

C. verum 

C. cassia 

ethanol extracts,  

aqueous extract,  
[76] 

against 

neurological 

disorders 

C. verum 

C. cassia 

unspeciesed 

cinnamon capsule, aqueous extracts,  [98, 99] 

treat 

cardiovascular 

diseases 

C. cassia 2-methoxycinnamaldehyde,  [100] 

 

3.3 Chemical compositions of cinnamon 

3.3.1 Main essential oil components 

The knowledge on cinnamon powder composition is well established for essential 

oil, cinnamon primarily contains essential oils which consist of a variety of compounds, 

such as cinnamaldehyde, eugenol, cinnamic acid, and cinnamate, these resinous 

compounds contribute to the special spicy aroma flavor and taste [101]. The main 

compound in cinnamon essential oil is cinnamaldehyde which can reach more than 90% 

[101], and it is also the main target ingredient for cinnamon in Chinese pharmacopeia 

[102]. Cinnamaldehyde is also the main active compound in cinnamon, occurring 

naturally as predominantly the trans (E) isomer, but different districts and species of 

cinnamon have a significant variety of concentrations. For example, C. loureiroi 

(Vietnamese cinnamon) had a relatively higher concentration of cinnamaldehyde which 

varied from 12.5 to 76.1 mg/g, whereas C. verum determined from 3.1-22 mg/g [69]. 

Cinnamic acid is also one of the major effective components, the concentration of 

cinnamic acid can reach to 47.60 mg/g in the powder of C. loureiroi [103]. The content 

https://en.wikipedia.org/wiki/Cis-trans_isomerism
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of cinnamic acid can be increased with prolonging storage time because of the oxidation 

of cinnamaldehyde [104]. Eugenol has a pleasant and cloves like scent, that is marked 

as a symbol of C. verum and only detected in C. verum, which contributes to a special 

gentle aromatic and sweet taste different to C. cassia [9]. Fig I - 2 shows the chemical 

structures of major compounds in cinnamon oil [27, 95, 105]. 

 

Fig I - 2. Chemical structures of major compounds present in cinnamon. 

 

There are also other constituents isolated from cinnamon essential oil, like 

terpenoids, aromatic alcohol, phenols, and other compounds, the classification of 

functional groups and components isolated from essential oil are listed in Table I - 2.  

Table I - 2. Classification of functional groups and components isolated from 

Cinnamon Essential Oil. 

Aldehydes Cinnamaldehyde Terpenoids  α-Terpineol 

Methoxy-cinnamaldehyde   Phellandrene 

Hydroxy-cinnamaldehyde   Borneol 

Benzaldehyde   Decanal 

Acetaldehyde   Linalool 

Phenyl-acetaldehyde   Caryophyllene 

Salicylaldehyde   α-humulene 

Cumminic aldehyde   α-cadinol 

4-Anisaldehyde   Terpinolene 

Isovaleric aldehyde   ϒ-Cadinene 
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Phenols Cinnamyl acetate   Copaene 

Phenylpropyl acetate   α-Pinene 

Cinnamic aldehyde Alcohols  2-Phenylethyl alcohol 

Eugenol   Cinnamic alcohol 

Methyl eugenol   Cinnamyl alcohol 

Isoeugenol   Benzyl alcohol 

2-Vinylphenol   Cuminic alcohol 

Eugenol methyl ether Esters  Benzyl benzoate 

Paeonol   Phenylethyl benzoate 

Acids Cinnamic acid   Methyl cinnamate 

Methoxycinnamic acid   Ethyl 2-methoxycinnamate 

Benzoic acid   Benzyl cinnamate 

Caproic acid Other  Sterols 

β-Hydroxybutyric acid    

Isovaleric acid    

Lauric acid    

Myristic acid    

Propionic acid    

Salicylic acid    

Tannic acid    

 

3.3.2 Other cinnamon chemicals 

Cinnamon contains several flavonoid and flavanol compounds, such as gossypin, 

gnaphalin, hesperidin, hibifolin, hypolaetin, oroxindin, quercetin, epicatechin, catechin, 

and procyanidin B2. These compounds have been successfully isolated from cinnamon 

species and proofed to be crucial in anti-inflammatory activities and antioxidant 

activities of cinnamon [106]. The presence of a wide range of other compounds, like 

lignans [87], furocoumarins [69], phenolic acid [84], polysaccharide [83], trace 

inorganic elements [107] were also reported. 

3.4 Analytical approaches for analysis and authentification of raw cinnamon 

Concerning the high content of coumarin in C. cassia, the tolerable daily intake 

(TDI) of coumarin is 0.1 mg of per Kg body-weight in Europe [108]. But consumers 

couldn’t visually distinguish the cinnamon species in cinnamon powder products or 

food, and C. cassia is more often used as the ingredient for the cheaper price and wide 

source. Therefore, the determination of coumarin content and cinnamon species is quite 

important for quality control of cinnamon products. 
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3.4.1 Chromatography methods 

Chromatography method (HPLC or GC) coupled with or without mass 

spectrometry as a routine analytical method, is mostly applied for the analysis of 

components in cinnamon products. Ballin et al analyzed 74 cinnamon food samples in 

Danish market by UPLC-PDA method, the result indicated that nearly 50% of samples 

collected had coumarin content exceeded the EU limit, including one sample even 

reached to 3 times higher than the limit. The author suggested that this exceedance 

maybe because the manufactures were lack of information about the regulatory limits 

about coumarin in food and how to comply with the regulation [73]. Wang et al used 

UPLC-UV/MS analyzed cinnamon and other flavouring compounds in authenticated 

cinnamon bark samples and locally bought cinnamon samples, cinnamon-flavored 

foods as well as cinnamon dietary supplements. The result showed that C. verum bark 

sample contained only a trace of coumarin while C. cassia contained substantial 

amounts, e.g. Vietnamese cinnamon (C. loureiroi) can reach the content of coumarin at 

6.97 g/Kg in the authentic bark sample, and Indonesian cinnamon (C. burmannii) can 

reach to 9.30 g/Kg in commercial source bark sample. Coumarin was detected in all 

locally bought products, their chemical profiles indicated that the cinnamon samples 

and the cinnamon in food supplements and flavored foods were probably C. burmannii 

[69]. 

Li et al screened the volatile compounds of nine cinnamon barks from three 

species in different Chinese habitats. GC-MS results indicated that trans-

cinnamaldehyde was the main compound in the volatile oil of all samples (66.3-82.0%). 

Vietnamese cinnamon (C. loureiroi) contained the highest concentration of volatile oil 

(3.1%), and which consists of a higher percentage of trans-cinnamaldehyde at 82.0%. 

Moreover, the volatile profiles combined with chemometric analysis proved an 

effective way to identify the species and geographical distribution of these cinnamon 

bark samples [27]. Geng et al extracted essential oil from C. cassia bark with different 

tree growth age and position (i.e. 1–3 years old for the branch bark; 5–12 years old for 

the stem bark). These oil samples were screened through GC-MS, the results showed 

that the branch bark fraction had a higher volatile oil yield (2.70-3.11%, w/w) than stem 

bark (0.41-2.61%, w/w), the percentage various because of the age and segment (top, 

center and lower) of the tree. Forty-one volatile compounds were identified in essential 
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oils, the percentages of trans-cinnamaldehyde composition didn’t present high 

fluctuations in both different growth stages and segments, whereas other compounds 

changed significantly. These results can be a good reference to improve the extraction 

efficiency for industrial use [109]. 

3.4.2 NMR approaches  

Few studies reported the application of NMR for screening complex cinnamon 

samples. Killday et al extracted cinnamon samples by CDCl3, extracts of cinnamon 

barks and dietary supplements were then recorded on a Bruker 600 MHz spectrometer. 

Flavouring compounds like cinnamaldehyde, cinnamyl alcohol, cinnamic acid, eugenol, 

cinnamyl acetate and coumarin were identified and further quantified. The result 

showed that C. cassia samples contained significantly higher amounts of coumarin than 

C. verum (nearly trace), with a considerable concentration range from 0.5-3.1 mg/g. 

Cinnamaldehyde as the major flavor compound was highly variable in these cinnamon 

samples with the concentration from 0.8 to 23.9 mg/g [110].  

The combination of 1H NMR and chemometric analysis was performed to 

distinguish two major species of cinnamon (C. verum & C. cassia) used for food 

products [9]. Ten barks samples from different geographical origins and one cassia oil 

were employed for 1H NMR metabolomics analysis, nine key secondary metabolites 

were identified and quantified, with cinnamaldehyde as the main component. 

Multivariate PCA of NMR data revealed that specimens belonging to each species can 

be slightly differentiated through PC2 axes in score plots. The metabolite loading plot 

of PCA which revealed the most significant clues for scattering behavior, exposed that 

1H NMR signals of eugenol, cinnamaldehyde and fatty acids were accounted as the 

most relative components for samples segregation. OPLS-DA was further applied to 

identify metabolic patterns that are correlated with each species. The OPLS-DA score 

plot showed clear discrimination between two different cinnamon species. The loading 

S-plot correlated with 1H NMR signals indicated that eugenol was a marker of C. verum 

for -OCH3 signal at 3.84 ppm and typical aromatic signal at 7.68 ppm, which was 

mostly found in C. verum samples. Otherwise, fatty acids were detected abundance in 

C. cassia, signals at 1.28 and 1.32 ppm of w-2 and w-1 fatty acids were the most 

significant marker in the loading plot. This research successfully explored the NMR 

metabolites fingerprinting of two major cinnamon resources, and provided a novel 
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insight for species authentication of spicy or herbal products through 1H NMR with 

chemometric tools. But there are also limitations about this research, only 9 bark 

samples are involved, the multivariate analysis results would be affected with a small 

sample size; moreover, no NMR quantitative analysis nor a statistical prediction of 

cinnamon metabolites processed concerning the bark samples. 

 

4. Herbal slimming supplements and adulteration 

Obesity has become a global problem associated with many negative effects on 

health, such as cardiovascular diseases, type Ⅱ diabetes, certain types of cancer, 

osteoarthritis, and depression [111]. Depending on the report of WHO, more than 1.9 

billion adults were overweight and 650 million were obese, with the nearly tripled 

number since 1975 [112]. 

Excepting illnesses like endocrine disorders, medications or mental disorders and 

genetic defects, lack of physical activity and excessive food intake are commonly 

considered as the main cause of obesity. Changes to diet and exercising are the main 

approach to lose weight; diet quality can be improved by increasing dietary fiber other 

than high fat and sugars food [112]. To reduce appetite and fat absorption, medicines 

can also be used with a suitable diet [113]. Currently, few drugs are approved by 

countries for the treatment of obesity. Orlistat, liraglutide, naltrexone/bupropion have 

evidence for long term use about losing weight in both Europe and USA, as well as 

lorcaserin and phentermine-topiramate can be used for long term treatment only in USA 

(3 months), a data showed that the weight loss range from 3.0 to 6.7 kg after one year 

of placebo [114]. Moreover, phentermine and diethylpropion are also allowed for short 

duration treatment. In Europe, lorcaserin and phentermine-topiramate were not 

approved by European regulatory authorities, because lorcaserin is associated with 

heart valve problems and phentermine-topiramate for more general heart and blood 

vessel problems [115]. Orlistat was also reported for the high rates of gastrointestinal 

side effects and concerns have been raised about negative effects on the liver [116, 117]. 

Even though these medicines can be used for obesity treatment under medical 

supervision, there is still no exact information on how these drugs affect longer-term 

complications of obesity like cardiovascular disease or death [113]. 
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Because of the serious adverse effects of these medicines above and also strict 

regulations (only orlistat is available as OTC drug at low dosage) [118], herbal 

slimming dietary supplements (DS) are emerging and becoming popular on the market. 

Herbal slimming products are usually claimed as 100% natural products, easy weight 

loss and usually considered as totally safe for health, as they are freely purchased 

through numerous online/offline shops [119]. Slimming or weight loss supplements are 

forms of capsules, tablets, liquid, powders sold in pharmacies, health food stores and 

the Internet, that contain many ingredients like herbs, fiber, and minerals in a variety 

amounts or combinations. The ads of products are usually claimed that the herbal 

ingredients can help people lose weight by blocking the absorption of fat and 

carbohydrates, curbing your appetite, or speeding up your metabolism. Hence, the 

overweight group is tending to buy herbal slimming products to self-treat or prevent 

obesity [120].    

However, there is little scientific evidence to support the ability slimming DS in 

weight loss work, and also three main areas of concern are provided: (1) Misleading 

claims are proposed to improve the selling, (2) absenting of labeled ingredients, (3) 

many products may be adulterated with synthetic active pharmaceutical ingredients 

(API) to improve efficiency, especially for products sold on the Internet. While the first 

two areas only cause economic loss for consumers, whereas the use of API without 

supervision could cause serious health problems [19]. 

4.1 Illegal adulterations in herbal slimming supplements 

Generally, consumers are led to believe that herbal slimming DS are totally safe 

compared to synthetic drugs. Actually, the anti-obesity activity of real herbals products 

is lower than synthetic anorexic compounds. Therefore, with the growing dietary 

supplement market, illegal manufactures frequently added API in slimming agents to 

enhance efficiency and reduce the treatment period [120]. According to literature, there 

are more than 110 illegal drugs detected in slimming DS in 2017 [15]. Currently, the 

leading type of illegal adulterants in slimming DS are anorexic (sibutramine and its 

analogues, rimonabant, fenfluramine, amfepramone, benzocaine, amphetamine, et al), 

anxiolytic (diazepam, bromazepam, flurazepam, midazolam, and chlordiazepoxide), 

antidepressant (fluoxetine, bupropion, paroxetine, citalopram, nefazodone), laxative 

and diuretic (phenolphthalein, spironolactone, furosemide, althiazide, & 
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hydrochlorothiazide) chemicals [15-17].  

Even though products containing these compounds have significant high potent 

for anti-obesity, but the rebound effect is also very obvious after quitting intake. More 

importantly, many reports revealed the side effects and clinical problems from 

consumers who took adulterated slimming DS, like cardiovascular disease, liver and 

renal failure, strokes, mental/mood changes (i.e. excitement, restlessness, confusion, 

depression and occasionally even thoughts of suicide). The development of the most 

frequent synthetic drugs and their adverse effects are briefly introduced below [15-18]. 

4.2 Sibutramine and its analogues 

Sibutramine is a typical anorexic compound derived from amphetamines, the 

principle is that sibutramine acts as a serotonin-noradrenalin reuptake inhibitor can 

stably promote weight loss in the obese group [20]. The main pharmacological effects 

of sibutramine are inducing satiety with reducing appetite and also thermogenesis. Thus, 

sibutramine was widely used for obesity treatment since 1997 and proved by US-FDA. 

However, besides the weight loss ability, sibutramine was reported for the side effects 

that it over-stimulates the central nervous system, and causes headache, xerostomia, 

numbness, nervousness, paraesthesia and increased cardiovascular events such as 

stroke and heart attack in patients (US-FDA, Schedule IV) [20, 119]. A case in China 

reported that users related symptoms of headache, vertigo, and numbness after taking 

the herbal slimming capsules adulterated with sibutramine, at the same time, 

sibutramine components was confirmed in patients’ urine and also the capsules [121]. 

Research also proved that sibutramine can substantially increase blood pressures and 

heart rates in patients after long-term intake of weight-reducing drugs [23]. Due to the 

adverse effects, sibutramine was withdrawn from China, Europe, and America for 

obesity treatment since 2010 [17, 18]. 

However, illegal manufactures intend to modify the structure of sibutramine to 

evade the enforce control. Recently, many publications reported the adulteration of 

sibutramine and its analogues like desmethylsibutramine, didesmethylsibutramine, 

benzylsibutr-amine, chlorosibutramine, and homosibutramine in slimming DS [24-26, 

122, 123].   
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4.3 Phenolphthalein 

Phenolphthalein as a traditional laxative drug has been used for over a century 

[124]. Since the early 1990s, phenolphthalein has been detected as a laxative 

component in slimming food and herbal products [16]. However, the abuse of 

phenolphthalein can cause electrolyte imbalance, severe constipation, lethal cardiac 

arrhythmia, and most serious, it can induce cancer [16, 124, 125]. Because of these 

adverse effects, phenolphthalein was forbidden in slimming products in the late 1990s, 

and currently is being removed from OTC laxatives [126]. In Europe, phenolphthalein 

has been added to the European Chemicals Agency's candidate list for Substances of 

Very High Concern (SVHC) [127]. 

Even though the application of phenolphthalein is controlled in the slimming 

products, but it is usually detected as an adulterant in slimming DS [15-18, 120]. An 

interesting phenomenon is that phenolphthalein as the only laxative substance identified 

in these formulations, which is usually detected associated with sibutramine [17]. 

Hachem et al screened 160 herbal food supplements on the market, phenolphthalein 

was detected in 36 samples, the concentration ranged from 0.05-51 mg per formulation 

unit, and 25 samples were identified with both phenolphthalein and sibutramine 

adulterated [120]. The reason is that phenolphthalein can stimulate the colon and 

increase bowel movements; furthermore, sibutramine as an anorexic reagent can reduce 

appetite and lowering food consumption. Thus, the combination of two adulterants 

could induce a significant effect leading to weight loss in the short term. However, 

consumers undertake a huge risk because of the side effects for health and weight would 

rebound quickly after quitting ingesting. 

4.4 Other synthetic slimming adulterants 

There are also many other synthetic compounds detected in slimming DS without 

the label, like fluoxetine [21, 120, 128], orlistat [1, 120], caffeine [16, 18, 19], 

fenfluramine [16, 17, 29], sildenafil [17, 29, 120], lorcaserin [8, 19, 120], etc. These 

reports also reveal the poor quality control in herbal products manufacturing practices. 
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4.5 Analytical approaches for screening adulterants in herbal slimming supplements. 

According to the abuse of synthetic drugs in a considerable proportion of slimming 

DS, such as products named “super slim”, “loss weight fast”, “extra slim”, and so on, 

various analytical methods are applied to detect adulterants. Conventional 

chromatography methods like HPLC, GC and hyphenated-mass spectrometric are 

widely used for separation and detection of target adulterants in slimming DS. 

Furthermore, the relevance of NMR as a spectroscopic method without complex sample 

preparation and providing structural information has been demonstrated in quality 

control of slimming DS, especially for the identification of novel analogues of synthetic 

drugs.    

4.5.1 Chromatography hyphenated-mass spectrometry techniques  

Recently, Shi et al screened seventeen slimming DS by using liquid 

chromatography/electrospray ionization tandem mass spectrometry (HPLC-ESI-MS), 

15 key chemicals were detected, including the strictly restricted adulterants 

(sibutramine, fenfluramine, phenolphthalein, caffeine, etc) [16]. Wang et al applied 

HPLC-ESI-MS to screen adulterants in herbal weight-reducing dietary supplements, 

six synthetic adulterants, including sibutramine, N-di-desmethyl sibutramine, N-mono-

desmethyl sibutramine, fenfluramine, phenolphthalein, and orlistat were successfully 

detected and the limits of detection for the six synthetic adulterants ranged from 0.0018 

to 0.73 mg/g [1]. Zou et al identified sibutramine and two metabolites plus one analogue 

in slimming DS through liquid chromatography triple quadrupole mass spectrometry 

(HPLC-TQ-MS) and time-of-flight mass spectrometry (HPLC-TOF-MS) [26]. Shekari 

et al analyzed toxic or carcinogen adulterants in herbal slimming pills through gas 

chromatography-mass spectrometry (GC–MS) fingerprinting assisted with 

chemometric methods. Undeclared ingredients, such as phenolphthalein, amfepramone, 

caffeine and sibutramine were effectively identified in the mixture samples [129]. 

Khazan et al analyzed eight slimming DS from Iran and five synthetic drugs were 

identified. Sibutramine, phenolphthalein and phenytoin were investigated and 

quantified by GC-EI-MS; bumetanide and rimonabant by HPLC-ESI-MS [18]. 
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4.5.2 1H NMR approach 

HF NMR especially 1H NMR is routinely used for detection, structural 

characterization and quantification of adulterants in slimming DS. Hachem et al 

detected six active pharmaceutical ingredients among 164 slimming DS by 1H NMR 

(one DS contains 5 different batches in the same packing box), forty-three samples 

(26%) were adulterated by sibutramine only, 9 with phenolphthalein (6%) and 23 

samples (14%) with the mixture of these two adulterants. Results were confirmed by 

mass spectrometry, the quantitative analysis was performed by 1H qNMR [120]. 

Monakhova et al screened sixteen slimming DS from online stores by using 400 MHz 

1H NMR, both qualitative and quantitative analyses were explored with peak-area 

comparison with TSP reference. A wide range of adulterants (unlabelled) was rapidly 

detected, including sibutramine, caffeine, mesterolone, vinpocetine, oxymetholone, 

monacolin K, evodiamine, kavain, and dehydroepiandrosterone. Diffusion ordered 

spectroscopy (DOSY) is a well-established NMR method that reports diffusion 

coefficients for individual resonances in NMR spectra. DOSY is primarily used to 

analyze mixtures of small molecules and the oligomeric state of biomolecules 

depending on the size and shape of the molecules. In this research, DOSY 1H NMR 

allows the virtual separation of multi-components in mixture depending on the 

difference of diffusion coefficients. This method is demonstrated to provide a 

fingerprint of all components in slimming DS. Vaysse et al analyzed twenty slimming 

DS by DOSY 1H and quantitative NMR, both active and in-active components were 

detected, only two samples were strictly herbals and four had correctly declared 

ingredient. Other samples were all adulterated with sibutramine alone (8 samples, 4.4-

30.5 mg/capsule), both sibutramine (5.0-19.6 mg/capsule) and phenolphthalein (4.4-

66.1 mg/capsule) in five samples, the last one left was adulterated with synephrine (19.5 

mg/capsule) [130]. 

For detection of novel adulterations or drug analogues, NMR and other analytical 

approaches like HPLC or GC hyphenated with MS are usually explored as a multi-step 

method for reliable and quick analysis. Csupor et al analyzed sibutramine from 

slimming DS by color tests, TLC, HPLC-DAD, MS and NMR [22]. Yun et al identified 

a novel sibutramine analogue – chlorosipentramine in slimming DS, target compounds 

was first isolated by a preparative-LC system, and structural analysis was further carried 
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out by Fourier transform infrared (FT-IR) and NMR [24]. Kim et al detected a 

suspected sibutramine analogue (chloro-sibutramine) in slimming DS by UPLC-ESI-

TOF/MS method, and structural analysis was explored by NMR after isolation by semi-

preparative column chromatography [119]. Hachem et al first identified lorcaserin, a 

schedule IV anorectic drug in slimming DS. The existence of lorcaserin was proved by 

using LC-UV, NMR, MS, and IR, further quantitative analysis was carried out by NMR 

leading to a content of  6.6 mg/capsule [8].  

LF NMR was recently applied for the rapid screening of adulterants in commercial 

herbal products. Herbal supplements claimed “100% natural” were analyzed by using 

the first implementation of LF 1H NMR. Pagès et al evaluated the capabilities of a 60 

MHz benchtop NMR to identify pharmaceutical adulterants in weight-loss dietary 

supplements [2]. Adulterants including sibutramine and phenolphthalein in slimming 

herbal products were readily detected after rapid and simple sample preparation. The 

authors proved that LF NMR provided valuable clues on the chemical structure of 

adulterants. 22.5 min acquisition time was sufficient to identify signals of adulterants 

with a LOD of 0.9 mM. Quantification analysis of internal sildenafil was also employed 

by LF 1H qNMR with a LOQ around 2 mM, 45 min recording time acquired similar 

results compared to HF 1H qNMR.  

4.5.3 Other methods 

High-performance thin-layer chromatography (HPTLC) is an alternative, easy 

handling and low-cost method for the identification of illegal adulterants in slimming 

DS [20]. Ariburnua et al developed HPTLC-densitometry as a new method, the 

qualification and quantification of adulterated sibutramine were employed at 225nm 

[20]. Capillary electrophoresis (CE) is a rapid, high resolution and low chemical 

consumption analytical technique for separation and determination of adulterants in 

herbal products [17]. Carvalho et al detected eight adulterants in slimming DS through 

capillary electrophoresis with contactless conductivity detection, including 

(sibutramine, fluoxetine, amfepramone, fenproporex, bupropion, sertraline, paroxetine, 

and flurazepam) [128]. A study by Deconinck et al described the detection of 

sibutramine in slimming DS by using attenuated total reflectance-infrared (ATR-IR) 

spectroscopy combined with chemometric techniques, results showed that this method 
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can be able to screen out all adulterated samples with a minimum of false-positive 

results [131]. 

 

5. Synthetic cannabinoids: Illicit drugs in commercial products 

Cannabis (marijuana) has been used long times in history for the treatment of 

headaches, fever reduction, appetite stimulation, and so on [132]. Even though cannabis 

can be applied for medicine use in some countries and areas, many of its non-medical 

users use it extensively, thereby abusing drugs [132, 133]. Until now, Cannabis was 

still classified as a Schedule I controlled drug by the Drug Enforcement Agency (DEA, 

USA) since 1970, along with other drugs include heroin, LSD, peyote and ecstasy in 

the Schedule I meaning “a drug with no currently accepted medical use and a high 

potential for abuse” [134]. 

Cannabis contains a group of cannabinoids which produce mental and physical 

effects when consumed, the most notable cannabinoid is the phytocannabinoid 

tetrahydrocannabinol (THC), as the primary psychoactive compounds in cannabis (i.e. 

responsible for “body high” and “head high” feeling). THC and other cannabinoids can 

bind with cannabinoid receptors 1 and/or 2 (CB1 and/or CB2) in the central nervous 

system [135]. These receptors can inhibit neurotransmitter release from presynaptic 

neurons through retrograde synaptic signaling mechanisms in postsynaptic neuron. 

Whereas the administration of exogenous cannabinoids such as THC or synthetic 

cannabinoids disrupt the subtle endocannabinoid signaling process and may result in 

the common THC tetrad of delusions, hallucinations, paranoia, and sedation [135, 136].  

Until now, cannabis and cannabis-related extracts are still not permitted for 

marketing authorizations by both European Medicines Agency (EMA) and the United 

States Food and Drug Administration (US-FDA). Besides the strict medical use of 

cannabis, its abuse of cannabis for recreation can bring many adverse effects, such as 

the risk of addiction, adverse effects on brain development especially for teenagers, 

inducing mental illness, etc [137]. 

As cannabis is controlled or forbidden during countries, synthetic cannabinoids 

(SCs) have come into sight and appealed attention. SCs are a group of artificial 
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compounds which are designed to mimic cannabis bind to cannabinoid receptors as 

THC, and originally used as therapeutic drugs for its anti-convulsant, anti-nociceptive, 

and anti-psychotic properties [138]. 

Basing on THC structure modification, SCs can be designed to have more potent 

than THC to strongly interact cannabinoids receptors in the brain, and they may also 

bind to other receptors that THC or other natural cannabinoids do not. In the last decade, 

SCs as new designer drugs were detected in e-cigarettes, herbal blends and even 

beverages [139]. Until 2015, 177 SCs were reported by UNODC (United Nations 

Office on Drugs and Crime) early warning system with reports from 58 countries and 

territories. SCs as a new kind of psychoactive substances are often abused as cannabis 

substances in marijuana forbidden or restricted regions, many lethal cases caused by 

SCs abuses were reported in Europe. The Centers for Disease Control and Prevention 

(CDC) found that the number of deaths for SCs abuse tripled between 2014 and 2015 

[6, 139, 140]. 

5.1 Introduction of SCs; 

SCs as a group of THC similar compounds were firstly synthesized for legitimate 

scientific and medical research purposes since the 1970s [138]. But SCs were never 

designed to be abused as they are today. On the other hand, SCs are a chemically diverse 

group of compounds functionally similar to THC to mimic marijuana to induce a 

marijuana-like high. Thus, SCs also have the potential for recreational use as cannabis.  

Unfortunately, clandestine manufacturers began illegally synthesizing some of 

these compounds and distributing them for illicit use in the past decade. The abuse of 

SCs started to impact public health around the world. The first public report about SCs 

was the abuse of JWH-series in the herbal blends for smoking in Germany; as illegal 

manufacture sprayed SCs to the surface of herbals to improve mental stimulation and 

sold as “natural herbals” or “spice” [141]. According to the official report, the number 

of SCs has increased to 257 on the list of UNDOC in September 2018 [140]. SCs have 

become one of the largest and most diverse of NPS (psychoactive substances) reported 

by UNODC with over 251 of the 803 total NPS between 2017-2019 [142]. Because of 

the easy purchase of recreational products, such as ‘Spice’ and other ‘fake pot’ products 

in retail stores and online shops, 17% of responders declared to use SCs products 
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according to a global survey [143]. In 2017, Palamar et al reported that 10% of US high 

school students have used SCs products in the past several years, and 3% admitted to 

used during the past months [144]. Even though SCs have many adverse effects 

reported, like regarding seizures, acute kidney injury, cardiotoxicity and sudden deaths 

[6]; US-DEA has also labeled many SCs as “Schedule I” substances [145]. However, 

it is quite difficult to control the spared of SCs because illegal manufactures already 

can synthesize novel cannabinoids with modified chemical structures to evade 

regulation [146]. 

SCs were designed to have similar structures to natural cannabinoids in the early 

period. In fact, SCs are more dangerous than cannabis. SCs could be designed to have 

the ability to more strongly bind with cannabinoid receptors comparing with THC. As 

a kind of full receptor agonists, illegal SCs can exhibit 4-5 times or even magnitude 

higher binding affinity to the cannabinoid CB1 receptor, and also SCs usually possess 

CB2 receptor affinity [147]; moreover, they may interact with other receptors in the 

brain that natural cannabinoids do not [139]. As the structures of SCs are changing all 

the time in order to escape the restrict laws, thus makes the screening of SCs even more 

difficult without pure reference samples. Consumers do not know the content they have 

taken, the absorption, toxicity, and metabolism of most novel SCs are still unknown in 

humans because of the rapidly changing structures, especially the consequence for long 

time use. Most important, SCs are easily obtained from recreation products in the street, 

like e-liquid for e-cigarette and herbal blends with street names, and also less imitation 

for young people [139].  

5.2 Structure of SCs and their development 

For the rapid structural evolution of SCs, structure characterization becomes 

crucial for the screening of SCs in commercial products. 

5.2.1 SCs structural classifications 

Scientists have classified several groups from popular SCs according to their 

structures: classical cannabinoids, non-classical cannabinoids, hybrid cannabinoids, 

aminoalkylindoles, carboxamideindazoles, eicosanoids, and other unclassified SCs, the 

structures of different groups are given in Fig I - 3 [141, 148]. 
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Classical cannabinoids usually have nabilone or dronabinol skeleton structure with 

strong never stimulation activity. However, they are difficult to synthesize, especially 

for the home productive workshop. As a consequence, this kind of SCs has not been 

often detected in psychoactive products because of the high production cost [149]. 

Non-classical cannabinoids are a group of cyclohexylphenols based SCs, like CP-

47,497, which is the first designed cannabinoids, and the primary purpose was used in 

scientific research [150].  

Hybrid cannabinoids are a group of SCs combined with the structural features of 

both classical cannabinoids and non-classical cannabinoids. For example, AM-4030 as 

a derivative of HU-210, has the dibenzopyran ring and an aliphatic hydroxyl group 

which is common in classical cannabinoids and nonclassical cannabinoids (CP family) 

respectively [151]. 

Aminoalkylindoles are the most common SCs found in illegal herbal blends so far, 

they contain a wide variety of cannabinoid 3-indole derivatives, and the core structures 

are not similar to THC, including benzoyl derivatives (e.g. RCS-4), naphthoyl 

derivatives (e.g. JWH-018), phenylacetyl derivatives (e.g. JWH-250), carboxamide 

derivatives (e.g. ADBICA), ect [141, 152].  

Carboxamideindazolesis the most popular group of SCs recently, many recent 

publications didn’t independently regulate this group of newer SCs. Whereas it is rather 

important that as the rapid evolution of SCs, many carboxamide-indazoles have 

replaced the old SCs detected in illegal products to evade the control [153, 154]. 

Carboxamideindazoles have a similar structure to aminoalkylindoles, with an indazole 

carboxamide structure instead. 5F-ADB is one typical indazole-based synthetic 

cannabinoid from carboxamide indazole derivatives, which is believed to be extremely 

potent based on the very low levels detected in tissue samples, and exhibits more 

significant toxic to humans than previously SCs [155]. Most clandestine manufacturers 

can directly make small changes in the structure to synthesize this group of SCs, such 

as changing an indole to indazole structure (AM-2201 to THJ-2201) or terminal 

fluorine replacement (AKB48 to 5F-AKB48) [156]. 

Eicosanoids represent a group of endocannabinoid analogs [141]. 

Endocannabinoids are natural cannabinoids from the animal body, such as anandamide. 

https://en.wikipedia.org/wiki/Structural_scheduling_of_synthetic_cannabinoids
https://en.wikipedia.org/wiki/Structural_scheduling_of_synthetic_cannabinoids
https://en.wikipedia.org/wiki/Indazole
https://en.wikipedia.org/wiki/Cannabinoid
https://en.wikipedia.org/wiki/AM-2201
https://en.wikipedia.org/wiki/THJ-2201
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Methanandamide as one of the best-known eicosanoids, its psychoactive effect has been 

proved in different organisms, like mammals, fish, etc [157]. 

 
 

Fig I - 3. Chemical structures of the main SCs 
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Apart from the SCs group above, there are still many other classified SCs. These 

SCs are usually detected in recent years, with new structures or slight structural changes. 

Like naphthylmethylindenes, naphthoyl pyrroles, and carboxylate indazole derivatives 

have been detected as a designer drug in illegal products [158]. 

5.2.2 Generations of SCs 

Since the first identification of a CP-47,497 analog in commercial “spice” products 

by German researchers in 2008 [159], Shanks et al have regulated the identified SCs 

into 3 generations during the past decade, these generations are highly relative to 

legislation [160, 161].  

At the end of 2010, US-DEA first announced five JWH compounds (JWH-018, 

JWH-250, JWH-073, as well as CP-47,497 and its C8 homologue) into controlled 

Schedule I classification, because the cases reported by these compounds, many of SCs 

contained products were very popular among teenagers and adults under name of “spice” 

and “K2” [162, 163]. After that, to evade legal supervision, the second generation of 

SCs have come into public vision. Compounds like JWH-210, JWH-122, and AM-2201 

were detected in commercial products and occupied the main illegal market, fifteen SCs 

were added in Schedule I with 3 times increase than 2010, these SCs were controlled 

after first ban products and referred as the second generation [163].  

After 2012, the third generation of SCs caused serious cases, sixteen kidney injury 

cases were reported due to XLR-11 and this compound entered Schedule I list in 2013. 

In 2014, indazole based ADB-PINACA and AB-FUBINACA were detected, and also 

indazole SCs AB-CHMINACA and ADB-CHMINACA, US-DEA scheduled these 

compounds in 2015 [164-166]. Another obvious feature of the third generation SCs is 

that a large part of these compounds contains fluorine nuclei in the structure. The 

addition of fluorine substituent was purposed to evade legal restrictions imposed on 

specified SCs and also can enhance psychoactive potency [167, 168]. The evolution of 

SCs indicates that newer SCs are usually emerged after old SCs been controlled, 

whereas the number of cases caused by SCs is continually increasing. The typical 

structures of different generations of SCs are shown in Fig I - 4. 
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Fig I - 4. Structure of selected SCs: first and second generations(A), third generation 

(B). 

 

A 

B 



Chapter I Bibliography 

39 

 

5.3 Formulations of SCs commercial products 

Even though SCs are scheduled for recreational use, there are still identified as 

psychoactive adulterants in commercial products, like smoking herbal blends, 

electronic-liquid (e-liquid), beverage, cookie and so on; the first two formulations are 

most popular among young people [139, 144, 146], and typical products are shown in 

Fig I - 5.  

                            

Fig I - 5. Two typical commercials with potential SCs adulterated: left, herbal blends 

[169]; right, e-liquid formulations [154]. 

 

The first application of SCs in herbal blends was reported in 2009, while illegal 

manufactures sprayed SCs solution on the surface of herbals to improve the excitement 

and easily to be addictive [159]. These kinds of herbal blends usually named “K2” or 

“Spice” have been sold on the Internet and specialized shops since at least 2006, some 

reports suggested that these illegal products may be already sold around 2004, with 

similar effects as cannabis [170]. Until 2011, 5 of the first-generation SCs were 

scheduled by US-DEA, but more than 140 different spice products have been identified 

on sale; these products were easily available on the Internet and legal in many countries, 

usually marked as natural sources and non-cannabis [171]. After that, even though 

governments have banned laws and regulations to control the abuse of SCs in 

commercial recreations, newer SCs usually detected in herbal blends have replaced the 

banned SCs to evade legal control [153, 162]. 

 E-cigarettes were first invented in China as an alternative way for quitting 

smoking and spread rapidly during recent years. There is no clear evidence that e-

cigarettes could help people quit smoking (WHO) but compared with traditional 

tobacco, they are inexpensive, easy to use and described as a safer role for public health 
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[3, 172]. Electronic liquids (e-liquids) are formulations used in e-cigarettes which can 

vapor aerosol for inhalation. E-liquids usually contain a ratio of propylene glycol (PG) 

and vegetable glycerol (VG), flavors, and in some case pharmaceutical agents and/or 

herbal remedy inside [3, 4]. SCs are the most rapidly growing class of recreational 

designer drugs as psychoactive ingredients used in e-liquids [173, 174]. As the 

prosperity of e-liquids, there are many cases and reports about the abuse of SCs in e-

liquids [145]. Because the wide variety of e-liquid products on sale (i.e. different kinds 

of flavor, color, ingredients), these products are easily purchased on retail and online 

shops, many young people are unknown to buy vaping liquid that selling as a natural 

cannabis-based “CBD vape”, but which is in fact “spice” [175, 176]. Thus the 

regulation of e-liquid is even harder than herbal blends.  

5.4 Analytical methods for identification SCs in commercials 

Because of the rapid structural evolution of SCs and the absence of published data, 

the analytical detection of SCs in adulterated commercials becomes even difficult for 

analysts. LC and GC-MS are the most widely used methods for screening of SCs in 

illegal products. Although their identification and quantitative analysis are limited by 

the availability of pure standards samples, with the open database like SWGDRUG 3.3 

(www.swgdrug.org), verified SCs can be detected even at relatively low concentrations. 

Besides these routine methods above, other methods like immunoassay technique and 

NMR are also applied for screening of SCs in biological specimens and novel SCs 

structural confirmation respectively [140, 152]. The analytical used for identification 

of SCs in herbal blends and e-liquids are summarized in Table I -3. 
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Table I - 3. Analytical methods for quality control of commercial herbal blend and e-

liquid samples. 

Formulation 

Type 
SCs Analytical method Ref 

Herbal blends JWH-018; CP 47.497; CP 47.497 

analogues 

GC-MS, LC-MS/MS, 13C 

NMR 

[159] 

Herbal blends 6-APB, AM-2201, JWH-122, 

JWH-210, JWH-250, etc 

UPLC-MS [160] 

Herbal blends A796,260, MAM-2201, UR-144, 

URB597 and XLR-11 

UPLC-MS [177] 

Herbal blends QUPIC, QUCHIC, ADB-

FUBINACA, ADBICA, etc 

GC-MS, LC-MS/MS, 1H 

&13C NMR 

[158] 

Herbal blends AM-2201, JWH-122, JWH-203, 

JWH-210, and RCS-4 

DART-MS [178] 

Herbal blends 5F-AKB48, AB-FUBINACA, 

BB-22, MAM-2201and UR-144 

GC-MS, 1H NMR [179] 

Herbal blends AM-2201, JWH-122, JWH-203, 

RCS-04, etc 

DART-MS, 1H NMR [180] 

Herbal blends MAM-2201, JWH-210, UR-144, 

XLR-11, 5F-AKB48, etc 

1H NMR, LF 1H NMR [30] 

Herbal blends 5F-ADB and Cumyl-PeGaClone GC-MS, EI/MS, NMR [140] 

Herbal blends 5F-ADB, FUB-AMB, 5Cl-

AKB48, etc 

GC-MS and LC-MS [28] 

Herbal blends AM-694 and 5F-ADB 19F &1H NMR [168] 

Herbal blends  

& E-liquid 

AMB-FUBINACA, 5F-AKB48, 

5F-CUMYL-PINACA, FUB-

AKB48, etc 

HPLC-DAD, HRMS, 1H 

NMR and GC–MS 

[181] 

E-liquid 5F-ADB DART-MS; GC-MS [153] 

E-liquid MDMB-FUBINACA DART-MS, GC–MS [154] 

E-liquid 5F-Cumyl-PINACA GC-MS, 1H &13C NMR [182] 

 

5.4.1 Identification of SCs in herbal blends 

The identification of SCs in herbal blends and named as “spice” since 2004 in 

European countries [159], these researchers also investigated the rapid evolution of SCs 

[7, 28, 140]. GC-MS and LC/UPLC-MS are routinely used for the detection of SCs in 

herbal blends [28, 160, 177], and additional with NMR analysis to ensure their structures 

[140, 158, 159]. Other methods like direct analysis in real-time mass spectrometry 

(DART-MS) as a relatively simple and rapid approach was also used  [178, 180]. 
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1H qNMR was applied to quantify SCs in illegal products [179], Assemat et al first 

used both HF and LF 1H NMR spectroscopies to identify the existence of SCs, and the 

ability of benchtop NMR in quality control of mixtures was discussed [30]. 19F NMR 

as a rapid NMR approach with very low background interference was first applied to 

screen and further quantify SCs in herbal blends in 2019 [168]. 

5.4.2 Identification of SCs in e-liquids 

As the recent popularity of e-cigarette among the world [183, 184], the content of 

psychoactive ingredients including SCs inside e-liquid is quite concerned [185-187]. 

Peace et al identified MDMB-FUBINACA in three available commercial e-liquid by 

using DART-MS and GC-MS, other ingredients like flavor profiles and alcohol were 

also detected in these samples [154]. Poklis et al screened nine CBD labeled e-liquids 

by using DART-MS and GC-MS, 5F-ADB in four samples and dextromethorphan 

(DXM) in one product were unintentionally detected [153].   

Angerer et al identified 5F-Cumyl-PINACA in e-liquid and its metabolites in vitro 

and in vivo though HPLC-MS and NMR [182]. Apirakkana et al identified 6 SCs in 

both herbal blends and e-liquids, the results proved the emerging trends of adulteration 

of SCs in alternative formulations, like e-liquids [181]. 

 

6. Conclusion 

In this chapter, the quality control applications of benchtop LF NMR are 

systemically reviewed. Even though LF NMR has a lower sensitivity and the spectra 

are more likely to be overlapped, useful signals could be nevertheless identified. 

Moreover, with the application of statistical analysis, the latent information form LF 

data can be effectively figured out. 

In the following experimental chapters, LF NMR is first applied for quality control 

of cinnamon products, the botanical species among cinnamon samples would be 

distinguished by the detection of metabolites signals and the statistical analysis of LF 

NMR data. Second, the ability of LF NMR for adulterants detection is also explored, 

LF NMR data combined with chemometric analysis can be used to rapidly identify 

slimming DS adulterated with synthetic substances or drugs. At last, the efficiency of 
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LF NMR for quality control of e-liquid products is evaluated, LF 1H and 19F NMR are 

both applied to characterize SCs adulterated in e-liquid products. 
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Chapter II Evaluation of Low-field versus 

High-field Proton NMR Spectroscopy for 

Quality Control of Cinnamon Samples 

1. Introduction 

As we reported in chapter 1 (section 3.1), there are two main cinnamon species 

including C. verum and C. cassia used worldwide. Besides the flavor and appearance 

differences, C. cassia contains a significantly higher content of hepatotoxic coumarin 

than C. verum. Thus, it’s a great interest to propose the quality control methods for 

cinnamon species and specially coumarin content in commercial products. 

HPLC, GC or UPLC coupled with MS analysis were usually applied for quality 

control of cinnamon products, related publications are reviewed in chapter I (section 

3.4). Compared to chromatographic methods, NMR was also applied to screen complex 

cinnamon, with the key components were structurally characterized and further 

quantified [1, 2]. 

In this study, we identified the key chemicals of cinnamon products by NMR, and 

further classified the two major species of cinnamon in both culinary products and 

dietary supplements via both HF and LF NMR. LF NMR was first explored to screen 

cinnamon products by comparison with HF results, and the LF capabilities and limits 

were assessed and discussed. At last, the statistical model based on LF NMR data was 

successfully established to classify commercial cinnamon samples and further predict 

quantification. 

2. Materials and Methods 

2.1 Materials 

(E)-cinnamaldehyde (Acros Organic, 99%), coumarin (Acros Organic, 99%), 

cinnamyl alcohol (Acros Organic, 99%), dimethyl maleate (Sigma-Aldrich, 99%), o-

methoxy-cinnamaldehyde (Sigma-Aldrich, 98%), (E)-cinnamic acid (Acros Organic, 

98%), eugenol (Sigma-Aldrich, 99%), 3-(trimethylsilyl) propionic-2,2,3,3-d4 acid 
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sodium salt (TSP, Acros Organic, 99.8% D), tetramethylsilane (TMS, Acros Organic, 

99% D), Eu(fod)3 (Sigma-Aldrich, 99%), EuCl3 (Sigma-Aldrich, 99.9%), 

Eu(NO3)3·5H2O (Sigma-Aldrich, 99.9%), dimethyl sulfone (Sigma-Aldrich, 98%) 

were used as received without any further purification unless otherwise described. All 

deuterated solvents (99.80% D) were supplied from Eurisotop. An authentic sample of 

Cinnamomum verum was obtained from Extrasynthese (Lyon, France). 

The fourteen samples of cinnamon for cooking were bought from French malls or 

markets, and the fourteen dietary supplements were purchased online or in French 

specialized shops like organic groceries or dietetic stores. All samples were analyzed 

before their expiry date. 

2.2 Samples Preparation for NMR analysis 

2.2.1 Extraction methodology  

All the preliminary extraction experiments described in this section were analyzed 

with the HF NMR spectrometer. In order to choose the best solvent to extract 

commercial samples, solid-liquid extractions with deuterated methanol (MeOH-d4), 

deuterated chloroform (CDCl3), heavy water (D2O) and mixtures of solvents MeOH-

d4:D2O (50%:50%; 80%:20%) were investigated. A liquid-liquid extraction of an 

aqueous suspension of cinnamon powder with CDCl3 was also tested. 

Briefly, around 100 mg of the powdered commercial cinnamon sample 25 were 

weighed and mixed with 1 mL of the chosen solvent, shaked for 20 s with a vortexer, 

sonicated for 10 min in a stoppered tube and centrifuged at 5000 g for 5 min. For the 

liquid-liquid extraction, 0.5 mL D2O were added to the powdered sample followed by 

1 mL CDCl3. The sample was then mixed, sonicated and centrifuged as described above. 

After centrifugation, the CDCl3 phase was submitted to NMR analysis. In the final step, 

700 µL of supernatant were put into a 5 mm NMR tube and 60 µL of TSP were added 

(10 mM in MeOH-d4) for NMR analysis. For the samples extracted with CDCl3, 10 µL 

of a solution (120 mM) of dimethylsulfone as internal reference were mixed with 500 

µL of supernatant. Each extraction condition was tested in duplicate. 
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Experiments with successive extractions of the powdered samples were also 

implemented. For the first step, the extraction protocol was the same as previously 

described, i.e. around 100 mg of samples 10 (n=2) and 25 (n=2) were mixed with 1 mL 

MeOH-d4, shaked for 20 s with a vortexer, sonicated for 10 min and centrifuged. The 

supernatant was removed and 700 µL were mixed with 60 µL TSP (10 mM, MeOH-d4) 

for NMR analysis. The residual powder was dried on a filter paper to absorb the residual 

liquid and then re-extracted leading to the second extraction sample. This step was 

repeated once to obtain the third extraction sample. The supernatants from the second 

and third extractions were then analyzed by mixing 700 µL of supernatant with 60 µL 

TSP (10 mM, MeOH-d4). The mean results of extraction provided a recovery of 88.2 

± 0.9% and 86.1 ± 1.8% for (E)-cinnamaldehyde and coumarin respectively in the first 

extraction. Residual active compounds were measured at 10.6 ± 0.8% and 12.4 ± 1.6% 

in the second extraction and 1.2 ± 0.1% and 1.5 ± 0.2% in the third extraction. The 

same procedure of three successive extractions was repeated for the two samples 10 

and 25 with only 15 mg of powder. The recoveries were 96.8 ± 0.9% and 97.5 ± 0.7% 

for (E)-cinnamaldehyde and coumarin respectively in the first extraction, 3.2 ± 0.9% 

and 2.5 ± 0.7 % in the second extraction and nothing in the third one.  

2.2.2 Preparation of commercial samples for NMR analysis 

1 mL of MeOH-d4 was added to around 15 or 100 mg exactly weighed of each 

powdered commercial cinnamon sample placed in a stoppered tube. After 20 s of vortex 

mixing and 10 min of sonication, the mixture was centrifuged at 5000 g for 5 min. 700 

µL of supernatant were then collected, mixed with 60 µL of TSP (10 mM) and 

transferred into a 5 mm NMR tube. The extracts from 100 mg of cinnamon powder 

were analyzed with both HF and LF NMR and those from 15 mg only with HF NMR 

for the absolute quantification of (E)-cinnamaldehyde and coumarin. All samples were 

prepared and analyzed in duplicate for both HF and LF NMR. 

2.2.3 Experiments with chemical shift reagents 

100 mg of sample 25 were extracted with MeOD-d4 as described in section 2.2.2. 

The supernatant (700 µL) was mixed with 20 µL of a solution of Eu(fod)3, EuCl3, or 

Eu(NO3)3 in MeOH-d4 at a concentration of 750 mM. TSP (60 µL, 10 mM) was added 
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as an internal reference. The final concentrations for europium salts were 20 mM. For 

the blank sample, 20 µL of MeOD-d4 were used instead of the europium salt solution. 

2.2.4 Standard solutions for statistical analysis 

Solutions of standard (E)-cinnamaldehyde and coumarin in MeOH-d4 at different 

concentrations were prepared as follows. Stock solutions (5 mg/mL) of each standard 

were diluted to obtain concentrations corresponding to real amounts in commercial 

samples: 3, 5, 8, 10, 12, 15, 17, 20, 25 and 30 mg/g for (E)-cinnamaldehyde and 2, 4 

and 6 mg/g for coumarin. The dilution process is explained as follows: i.e. 100mg of 

powder sample (3 mg/g) are extracted by 1 mL of MeOH-d4, 700µL supernatant are 

taken for test, so the content of (E)-cinnamaldehyde is 0.21 mg in tube. To imitate the 

supernantant above, for the standard (E)-cinnamaldehyde solution, it’s equal to 42 µL 

of stock solution mixed with 658 µL of solvent. 

These values take into account a correction factor linked to the extraction yield of 

real samples (see section 3.2.1). A blank MeOH-d4 solution was also analyzed. The 

solution of TSP as internal reference was added for NMR analysis as previously 

described.  

2.3 NMR analysis 

2.3.1 HF NMR analysis 

HF 1H NMR experiments were performed on a Bruker Avance 400 spectrometer 

(Bruker Biospin AG, Fallanden, Switzerland) equipped with a TXO probe at 298 K. 

For qualitative experiments, HF 1H NMR spectra were recorded with the following 

parameters: pulse width 13.5 µs (flip angle 90°), acquisition time 2.56 s, spectral width 

16 ppm, 32 K data points and relaxation delay 1.0 s. The number of scans was 32 or 

128, corresponding to a recording time of ca. 2 or 8 min.  

Typical acquisition parameters for quantitative experiments were as follows: pulse 

width 4.53µs (flip angle 30°), acquisition time 5.12 s (AQ), spectral width 16 ppm, 64 

K data points, and a relaxation delay of 10 s (D1); the number of scans was 256 or 512 

giving a recording time of ca. 65 or 130 min. The signal of TSP set at 0 ppm was used 

as an internal reference for chemical shift measurement and quantification.  
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Before quantitative analyses, the longitudinal relaxation times T1 of protons of 

(E)-cinnamaldehyde, coumarin, and TSP in standard solutions and the commercial 

samples 10 and 25 were measured by the inversion-recovery pulse sequence method 

with recovery delays from 0.001 to 50 s. The T1s found were less than 6 s (i.e. H1 (E)-

cinnamaldehyde 5.0 s, H4 coumarin 5.8 s), whereas the TSP protons have a relaxation 

time of 3.7 s. All 1H resonances were thus considered as fully relaxed since 99% of the 

signal intensity of the proton with the longest T1 (5.8 s) were recovered with a repetition 

time of 15.1 s. 

Need to pay attention that the use of a 90° pulse angle and a 5×T1 relaxation delay 

is also a classical way to proceed for quantitative NMR. Whereas the 30° pulse saves 

recording time because the relaxation delay is lower, the recovery of the signals is 

explained below: 

% relaxation of the signal intensity = 
1−𝑒

− 
𝑅𝑇
𝑇1

1−(𝑒
−

𝑅𝑇
𝑇1)×cos 𝜃

 

RT (s): acquisition time + relaxation delay in the pulse sequence 

T1 (s): longitudinal relaxation time of considered proton 

 (rad): pulse angle (Ernst Angle) 

In our case, RT = 15.12 s (AQ = 5.12 s and D1 = 10 s) and T1 = 5.8 s (proton with 

the longest T1). If  = 90°, the percentage of relaxation of the proton with the longest 

T1 is 92.62%; with  = 30°, it is 98.94%. For the other protons with T1 lower than 5.8s, 

the relaxation is of course superior to 99%. 
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Table II - 1. 1H NMR (400 MHz) characteristics (solvent CD3OD) of standard (E)-

cinnamaldehyde, coumarin, (E)-cinnamic acid, (E)-cinnamyl alcohol, o-methoxy-

cinnamaldehyde and eugenol. 

(E)-cinnamaldehyde Coumarin 

 
 

δ (ppm) m(a) (J) (b) assignment δ (ppm) m(a) (J) (b) assignment 

9.66 d (7.7) H1 7.96 d (9.5) H4 

7.67 m H3, H5, H9 7.62 m H10, H8 

7.45 m H6, H7, H8 7.35 m H7, H9 

6.77 dd (16.0, 7.7) H2 6.44 d (9.5) H3 

                             (E)-cinnamic acid Cinnamyl alcohol 

 
 

δ (ppm) m(a) (J) (b) assignment δ (ppm) m(a) (J) (b) assignment 

7.65 d (16.0) H3 7.40 m H5, H9 

7.57 m H5, H9 7.29 m H6, H8 

7.38 m H6, H7, H8 7.21 m H7 

6.47 d (16.0) H2 6.60 dt (15.9, 1.5) H3 

   6.36 dt (15.9, 5.6) H2 

   4.22 dd (5.6, 1.5) H1 

o-methoxy-cinnamaldehyde  Eugenol  

 
 

δ (ppm) m(a) (J) (b) assignment δ (ppm) m(a) (J) (b) assignment 

9.62 d (7.9) H1 6.74 d (1.9) H3 

7.93 d (16.0) H3 6.70 d (8.0) H6 

7.64 dd (7.7, 1.7) H9 6.60 dd (8.0, 1.9) H5 

7.45 m H7 5.94 
ddt (17.0, 

10.1, 6.7) 
H8 

7.09 d (8.4) H6 5.04 dm (17.0) H10 

7.01 bt (7.6) H8 5.00 dm (10.1) H9 

6.83 dd (16.0, 7.9) H2 3.82 s - OCH3 

3.93 s -OCH3 3.28 dt (6.7, 1.4) H7 

(a) m, multiplicity; d, doublet; t, triplet; dd, doublet of doublet; dt, doublet of triplet; ddt, doublet of 

doublet of triplet; bt, broad triplet; m, multiplet; dm, doublet of multiplet. 

(b) J: coupling constant (Hz). 
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NMR assignments of (E)-cinnamaldehyde, coumarin, (E)-cinnamic acid, o-

methoxy-cinnamaldehyde, (E)-cinnamyl alcohol and eugenol were achieved by 

comparison with spectra of standard compounds and with 2D experiments (gCOSY, 

gHSQC, gHMBC and 13C) to clear up ambiguities. Data are given in Table II -1. 

1D 1H NMR data were processed using the TOPSPIN 3.1 software with one level 

of zero-filling and Fourier transformation after multiplying FIDs by an exponential 

line-broadening function of 0.3 Hz, then phasing and baseline correction were applied. 

T1 values were calculated with the T1/T2 relaxation module included in the TOPSPIN 

software.  

2.3.2 LF NMR analysis 

Spectra were acquired on a PulsarTM benchtop NMR spectrometer (Oxford 

Instruments, Abingdon, UK) operating at a frequency of 59.7 MHz for 1H. The 

temperature inside the spectrometer was 310 K. The acquisition was performed with 

the SpinFlow 1.2.0.1 software (Oxford Instruments) and the processing with MNova 

11.0 (Mestrelab Research, Santiago de Compostela, Spain). FIDs were recorded with a 

flip angle of 90° (12.0 µs), a spectral width of 5000 Hz, and 8K complex points 

(acquisition time of 1.64 s). The relaxation delay was set at 2 s, and 2000 transients 

were recorded leading to a total acquisition time of 2 h. For data processing, the FIDs 

with one level of zero-filling were apodized with an exponential (0.3 Hz) filter and 

automatic Whittaker smoother baseline correction was applied.   

The T1s of standard (E)-cinnamaldehyde (H1), coumarin (left part of the H4 

doublet) and TSP were measured (n=4) in MeOH-d4 by the inversion recovery pulse 

sequence method with 20 recovery delays from 0.001 to 40 s. Values were 3.8 ± 0.1 s, 

4.3 ± 0.2 s and 3.1 ± 0.1 s, respectively. T1 measurements were also performed on the 

commercial samples 10 and 25 in duplicate. Values obtained were 3.5 ± 0.2 s, 3.9 ± 0.4 

s and 3.1 ± 0.1 s for T1 of (E)-cinnamaldehyde (H1), coumarin (H4) and TSP, 

respectively. From these T1 measurements, it was possible to calculate the recovery of 

the signals compared to TSP in our recording conditions. It was 90% for (E)-

cinnamaldehyde and 82% for coumarin with RSD <2% for standard samples but 

reaching 5% for commercial samples for which variability is greater. 
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At last, the LOD and the apparent LOQ were determined by analyzing the diluted 

standard solutions of known concentration for signal-to-noise ratios (S/R) of 3 and 10, 

respectively. We mention here an "apparent" LOQ insofar as we will show later that 

the experimental conditions used were not fully quantitative. The SNR was estimated 

using the SNR peak calculator tool included in the MNova software. The LOD of the 

left signal of H4 of coumarin was 0.096 mg/mL and the apparent LOQ was 0.29 mg/mL 

for the same signal. For the H1 of (E)-cinnamaldehyde, the LOD and apparent LOQ 

values were 0.048 mg/mL and 0.19 mg/mL respectively. The limits of apparent 

quantification thus corresponded to 1.9 mg/g and 2.9 mg/g for (E)-cinnamaldehyde and 

coumarin, respectively, in real samples. 

2.4 HF NMR quantification 

Concentrations were measured by comparing the signal areas of targeted protons 

[i.e. H1 (δ 9.66 ppm, doublet (d)) of (E)-cinnamaldehyde, H4 (δ 7.96 ppm, d) of 

coumarin, H2 (δ 6.47 ppm, d) of (E)-cinnamic acid, right part of the H1 d at 9.62 ppm 

of o-methoxy-cinnamaldehyde, H2 ( 6.36 ppm, doublet triplet) of (E)-cinnamyl 

alcohol, and -O-CH3 ( 3.82 ppm, singlet) of eugenol (Table II - 1)] to the area of the 

reference signal, the area of each NMR peak being directly proportional to the number 

of protons giving rise to it.  

The amount of each compound expressed in mg/g of sample was determined using 

the following general equation:  

𝐴𝑚𝑜𝑢𝑛𝑡 (𝑚𝑔/𝑔) = [𝑅𝐸𝐹] ×
𝐴𝑥

𝐴𝑅𝐸𝐹
×

𝑁𝑅𝐸𝐹

𝑁𝑥
× 𝑉 ×

𝑀𝑊𝑥

𝑊𝑠𝑎𝑚𝑝𝑙𝑒
  (1) 

            [REF] (mM) is the concentration of the internal reference (TSP), 

            Ax and AREF the integrated signal areas of the targeted compound and TSP, 

respectively, 

            Nx and NREF the number of protons giving rise to the signal considered, 

            V (mL) the volume of solution, 

            Mwx (g/mol) the molecular weight of each compound, 

            Wsample (mg) the mass of cinnamon sample used for the NMR assay.  
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2.5 Chemometric analysis of LF spectra 

After Fourier transform and phasing of the LF spectra (commercial samples and 

standard compounds) as described above, a manual multipoint baseline correction 

including the free selection of control points was performed with the algorithm smooth 

segments and a RMS (Root Mean Square) calculation span of 300. 

Next, a total of 19 ± 2 control points was used: 7-9 from 7.96 to 11.00 ppm, 4-6 

around TSP at 0 ppm and 6 specific points at 7.96, 6.38, 6.28, 5.75, 3.00 and 2.48 ppm. 

Data matrix generation was finished by the Chemometrics module (Mnova) with the 

automatic binning approach using the sum method and a bin width of 0.01 ppm. Then 

buckets were normalized by dividing their areas by that of the internal standard TSP for 

standard solutions and also by the correction factor linked to the extraction yield (see 

section 3.2.1) for commercial samples. The new matrix was subjected to multivariate 

statistical analyses using the SIMCA-P+ 13.0 software (Umetrics, Umea, Sweden). 

PrincipalComponent Analysis (PCA) with Pareto scaling on the selected variables was 

first performed with all commercial samples (56 spectra). 

In order to better differentiating the cinnamon products based on the variety 

contents of (E)-cinnamaldehyde and coumarin, a range concentration of standard 

solutions was used to build the PCA training set, i.e. LF NMR spectra of solutions of 

standard (E)-cinnamaldehyde (22 spectra) and coumarin (8 spectra) with known 

concentrations. Then the test data set constituted of all commercial samples (56 spectra) 

was projected therein and the score plots were generated. In the score plots, samples 

with different contents of (E)-cinnamaldehyde or coumarin could be ranked by 

comparison to standard scattering behavior. 

Partial least squares regression (PLS1) were built with the areas of specific LF 

NMR signals of standard (E)-cinnamaldehyde (22 spectra) and coumarin (8 spectra) 

solutions as the set of independent variables (X) and their known concentrations as the 

set of dependent variables (Y). Models were validated using cross-validation method 

(Q2) and CV-ANOVA. The quantification of (E)-cinnamaldehyde and coumarin in 

commercial samples was then predicted according to their respective PLS1 models. The 

predicted results based on PLS1s were compared to quantitative values obtained by HF 

NMR. 
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3. Results and discussion 

3.1 HF and LF NMR assignment of signals 

Fig II - 1 compares the spectra of the same NMR tube containing a solution of 

standard (E)-cinnamaldehyde (A and B) or coumarin (C and D) recorded at 400 (A and 

C) and 60 (B and D) MHz. As the coupling constants are independent of the magnetic 

field, the signals appear obviously much more spread with more overlaps in the 

spectrum at LF. For instance, the H2 doublet of doublet of (E)-cinnamaldehyde 

becomes a second order system with a slight "roof" effect at LF. Likewise, H3 and H4 

of coumarin give two doublets at HF (Δν/J >60) but tend to an AB system at LF with 

Δν/J=9.4.  Besides, some signals overlap, i.e. H7, 8, 9 and 10 of coumarin co-resonate 

as a broad multiplet that spreads from 7.1 to 7.7 ppm at LF. The NMR assignments of 

spectra recorded at 400 MHz are reported in Table II - 1. 

 

Fig II - 1.1H NMR spectra of solutions of standard (E)-cinnamaldehyde (A and B) 

and coumarin (C and D) in MeOH-d4. (A) and (C) spectra are recorded at HF and (B) 

and (D) at LF. Recording times were 2 min at HF and 2 h at LF. See Fig II - 2 for 

chemical structures and proton numbering of (E)-cinnamaldehyde and coumarin. 
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Fig II - 2 illustrates the 1H NMR profiles of the cinnamon food sample 2. The HF 

spectrum shows, in addition to signals of coumarin and (E)-cinnamaldehyde, some 

typical resonances of o-methoxy-cinnamaldehyde, cinnamyl alcohol and (E)-cinnamic 

acid that were assigned by comparison to previous work [2] and by addition of standard 

compounds in the medium. NMR assignments of spectra of standard compounds 

recorded at 400 MHz are reported in Table II - 1. Another flavouring compound, 

eugenol, was detected in HF spectra of some samples (not present in the spectrum 

shown Fig II - 2A) thanks to its characteristic singlet at 3.82 ppm (O-CH3) [2] and other 

signals from its aromatic ring (δ (ppm) 6.72, d 2 Hz; 6.69, d 8.0 Hz; 6.58, dd 8.0, 2.0 

Hz). Only (E)-cinnamaldehyde (H1, δ 9.66 ppm and H2, δ 6.73 ppm) and coumarin 

(H3, δ 6.42 ppm and H4, δ 7.94 ppm) signals are readily observed in the LF spectrum 

of the cinnamon food sample 2 (Fig II - 2B). To complete the samples screening, the 

HF 1H NMR spectrum of an additional sample of an authentic standard of Cinnamomum 

verum is reported in Fig II -3 and compared with sample 2. In this spectrum, signals of 

(E)-cinnamaldehyde, o-methoxy-cinnamaldehyde, cinnamyl alcohol, (E)-cinnamic 

acid and eugenol were observed whereas those of coumarin could not be detected. 

Eugenol as the symbol of this cinnamon species at a low content, the singlet of O-CH3 

is overlapped with other signals in the spectra (Fig II - 3). 
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Fig II - 2. (A) HF and (B) LF 1H NMR spectra of cinnamon food (sample 2) highlight 

typical signals of the main components. Recording times were 8 min at HF and 2 h at 

LF. 
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Fig II - 3. The comparison of HF 1H NMR spectra of the authentic Cinnamomum verum 

sample and a cinnamon food (sample 2).  

3.2 Implementation of the experimental conditions 

3.2.1 Extraction tests and solvent choice 

To select the best extraction procedure, different extraction tests were performed 

on the commercial dietary supplement 25 which contains significant amounts of (E)-

cinnamaldehyde and coumarin as shown later.  

In the literature different solvents have been proposed for the quantification of 

active compounds of cinnamon. The most common are methanol [2-4] and 

methanol/water or ethanol/water mixtures [5-9]. Only one study carried out by NMR 

used CDCl3 as extracting solvent [1]. 

A first set of experiments was thus dedicated to the screening of different solvents. 

MeOH-d4, mixtures MeOH-d4:D2O (80:20 and 50:50) and CDCl3 were tested with 

direct extraction of 100 mg of powder. Moreover, a liquid-liquid extraction of a D2O 

suspension of powder by CDCl3 was also explored. The extraction yields were 

evaluated by integration of the H1 signal of (E)-cinnamaldehyde and H3 and H4 signals 

of coumarin on the HF 1H NMR spectra. Results are reported in Fig II - 4. The solvents 

that extracted the highest quantities of (E)-cinnamaldehyde and coumarin were MeOH-

d4 and the mixture MeOH-d4:D2O in the 80:20 ratio. This better extraction yield with 
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methanol is in agreement with most published studies [2, 5, 6]. The extraction yields 

found in CDCl3 relatively to MeOH-d4 were poor (10.6 and 9.5% for (E)-

cinnamaldehyde and coumarin, respectively) demonstrating that it was not possible to 

implement a quantitative analysis of cinnamon samples in this solvent unlike previously 

reported [1]. For the next steps of the study, since our objective was to propose a method 

on a LF NMR spectrometer, we chose to use MeOH-d4 and not a MeOH-d4:D2O 

mixture as extraction solvent because a single solvent facilitates the implementation of 

the LF NMR experiments. Indeed, the lock procedure is more convenient and less 

additional signals due to residual non-deuterated solvents are observed.  

 

Fig II - 4. Comparison of the amounts of (E)-cinnamaldehyde and coumarin extracted 

from the commercial sample 25 depending on the extraction solvents. The vertical bars 

represent the standard error of the mean. 

In order to establish the extraction procedure, three successive extractions were 

performed on 100 mg or 15 mg of samples 10 and 25. From these preliminary 

experiments (see results in section 2.2.1), we chose to analyze all the commercial 

samples after a single extraction in MeOH-d4. HF NMR analyses were done from both 

15 and 100 mg of powder. The 15 mg samples were considered for the assay of (E)-

cinnamaldehyde and coumarin as we showed that a lower amount of powder ensures a 

better extraction yield, and the 100 mg samples for the assay of the other chemicals 

(eugenol, o-methoxy-cinnamaldehyde, (E)-cinnamyl alcohol, (E)-cinnamic acid) 

whose concentrations are much lower. The LF capabilities were assessed with 100 mg 

of powder only (discussed in section 3.2.3). 
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3.2.2 LF NMR exploratory experiments with Chemical Shift Reagents (CSR) 

CSR have been explored extensively in 1960-1970s when NMR spectrometers 

operated with 1H frequencies around or under 100 MHz. Recently, the use of CSR was 

reported for the new generation of compact LF NMR spectrometers to increase the 

frequency dispersion of the targeted NMR signals [10]. In most experiments with CSR, 

the best solvent for improving spectral resolution is CDCl3. In the context of cinnamon 

analysis, we showed above that CDCl3 did not provide a good extraction yield and that 

MeOH-d4 was the best solvent. Although the interaction of the paramagnetic ion with 

the oxygen atom of MeOH-d4 reduces its availability for interacting with other species, 

we nevertheless decided to test CSR in our experimental conditions. 

 

Fig II - 5. LF 1H NMR spectra of a cinnamon food (sample 2) without CSR (A) and 

after addition of CSR at a final concentration of 20 mM, EuCl3 (B), Eu(NO3)3 (C) and 

Eu(fod)3 (D). Chemical shifts (ppm) of the H1 of (E)-cinnamaldehyde and of the left 

part of the doublet of the H4 of coumarin are reported on the spectra. 

Our aim was to spread the signals and particularly to downfield slightly (≈20 Hz) 

the H4 signal of coumarin thus making its area easier to measure. Three CSR (Eu(fod)3, 

Eu(NO3)3 and EuCl3) were tested (Fig II -5). For a TSP calibrated at 0 ppm, the 
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chemical shift of the H4 signal did not shift significantly. Indeed, the left part of the 

doublet moves from 8.02 ppm without CSR to 8.03 (Δδ = 0.5 Hz), 8.09 (Δδ = 4.4 Hz) 

and 8.18 ppm (Δδ = 9.7 Hz) with the addition of Eu(fod)3, Eu(NO3)3 and EuCl3 

respectively. Moreover, for EuCl3 which induces the highest chemical shift 

modification of the coumarin resonance, a broadening of the signals, as well as a sharp 

decrease of the (E)-cinnamaldehyde signal, were observed because EuCl3 induced 

strongest interaction with the chemicals. From these experiments, it appears that the use 

of CSR for the analysis of cinnamon extracts under our experimental conditions did not 

constitute an interesting tool for better discrimination of signals. Experiments with CSR 

were not thus deeply investigated due to the restricted solvent choice imposed by the 

extraction step. 

3.2.3 LF quantitative analysis: attempt to implement and limitations 

Quantitative HF NMR is nowadays a recognized method for the analysis of 

complex samples [11-13] and was taken as the standard reference method in this study. 

However, the implementation of LF quantitative analysis remains a challenging task 

[14]. In this section, we discuss the attempt to set up and encountered limitations for 

cinnamon analysis. 

The first option was to quantify the samples prepared with a correct extraction 

yield, i.e. using the same solution for both HF and LF NMR quantifications. For HF 1H 

NMR quantitative analysis, 15 mg of commercial sample were sufficient to measure 

accurate concentrations in a reasonable recording time of 1 h with a LOQ of 0.09 mg/g 

and 0.15 mg/g for (E)-cinnamaldehyde and coumarin respectively. With the same 

parameters and recording time on the LF spectrometer, the LOQ was estimated at 6 

mg/g and 10 mg/g due to the decrease of the SNR per unit time by a factor of ≈ 60. This 

means that if we wanted to obtain a correct SNR ratio for coumarin quantification, the 

experimental time would have been superior to 100 h for each analysis of commercial 

samples. Even with extracts from 100 mg of commercial powder, at least 17 h were 

necessary to obtain a SNR of ≈10 for samples containing ≈3 mg/g of coumarin (data 

not shown). It thus appeared that it was not possible to implement correct quantitative 

measurements of coumarin with both a full relaxation of the signals and under a 

reasonable recording time compatible with routine analyses.  
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Another way to proceed was to run LF NMR analysis using concentrated samples, 

i.e. samples extracted from 100 mg of powder, recorded in a reasonable experiment 

time of 2 h in non-fully relaxed conditions, and to consider several correction factors 

as described below: 

(i) The first factor linked to the extraction yield, corresponding to extraction recovery 

of (E)-cinnamaldehyde and coumarin respectively (see experimental section 2.2.1). 

(ii) A second integrating the fact that signals were not fully relaxed in 2 h of recording 

conditions [15]. Indeed, the signal recoveries of (E)-cinnamaldehyde and coumarin 

compared to TSP are discussed in section 2.3.2, with furthermore a great variability of 

the T1 relaxation time between commercials samples due to matrix difference. 

(iii) A third applied to coumarin only, linked to the roof effect of the second order 

system of H4 and H3 protons. On the LF spectra, only one component of the “doublet” 

of H4, the left part, could be measured due to the overlap of signals in this region of the 

spectrum (Fig II - 2B).  Considering that at the spin system tends to an AB system at 

LF (see section 3.1), the ratio between the large (internal) and the small (external) 

signals was experimentally evaluated on the spectra of commercial samples. It was 

found at 124 ± 3 %, in agreement with the ratio calculated from the LF spectra of 

standard coumarin. 

(iv) Finally, LF quantifications were altered by the automatic baseline correction 

procedure that introduces experimental errors related to the SNR of the considered 

signal. This error was experimentally estimated at 10% for an SNR close to 10.  

Taking into account all the correction factors described above, the global resulting 

RSD for quantification would be >15%. We thus concluded that cinnamon samples 

could not be accurately quantified at LF in our experimental conditions. Nevertheless, 

we will further investigate in section 3.3.2, a statistical treatment of LF NMR spectra 

obtained from commercial samples recorded for 2 h after extraction of 100 mg samples. 
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3.3 Analysis of commercial samples 

3.3.1 HF NMR analysis: from profiling to quantitative analysis 

Amounts of (E)-cinnamaldehyde, coumarin, eugenol, o-methoxy-cinnamaldehyde, 

cinnamyl alcohol and (E)-cinnamic acid in cinnamon commercial samples measured 

from HF 1H NMR spectra are reported in Table II - 2. These data allow distinguishing 

several categories of samples. In four dietary supplements (16, 19, 21 and 24), neither 

(E)-cinnamaldehyde nor coumarin was detected but only signals of fatty acids and/or 

sugars. None of the typical chemicals of cinnamon being detected, not even (E)-

cinnamaldehyde, we assess that these dietary supplements did not contain cinnamon 

powder (or at trace level) contrary to what was announced on the label. Eugenol which 

was previously reported as a marker of Cinnamomum verum [2, 4] was observed and 

quantified in samples 5, 6, 9, 17 and 18. Moreover, coumarin was not detected in these 

samples which could be thus classified as "true cinnamon" (Cinnamomum verum) 

samples. Indeed, the amount of coumarin in Cinnamomum verum (0.04 mg/g) is under 

the LOQ of HF NMR for this compound (0.15 mg/g). Two samples of food cinnamon, 

2 and 11, contained the highest amounts of both (E)-cinnamaldehyde and coumarin in 

agreement with the Vietnamese origin claimed by the producers and previously 

reported data on Vietnamese cinnamon (Cinnamomum loureirii) [4]. Samples 

containing detectable levels of coumarin could be classified as cassia cinnamon 

(samples 1-4, 8, 10-15, 20, 25-28) without a more precise classification according to 

geographical origin or species (burmanii, zeylanicum…). Classification of samples 7, 

22 and 23 could not be assessed from NMR data insofar as only (E)-cinnamaldehyde 

was detected. The proposed classification of samples from HF NMR data is reported in 

Table II - 2. Moreover, we can observe that the two samples 22 and 23 contain high 

levels of (E)-cinnamic acid with 4.1 and 3.7 mg/g respectively, which can be due to a 

longer storage of these samples that leads to the oxidation of (E)-cinnamaldehyde [16]. 
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Table II - 2. Quantitative data (mg/g ± SD) of cinnamon products from HF NMR analysis (n=2) and comparison of labelled information to the proposed classification. 

 Sample 
(E)-

cinnamaldehyde 
Coumarin Eugenol 

o-methoxy-

cinnamaldehyde 

Cinnamyl 

alcohol 

(E)-cinnamic 

acid 

Commercial information about origin 

(when available) 
Proposed classification 

Daily dose of 

coumarina /mg 

F
O

O
D

 

1 15.8 ± 0.3 1.7 ± 0.1 - 0.16 ± 0.01 0.24 ± 0.02 0.53 ± 0.03 Southeast Asia Cinnamon Cassia  

2 32.5 ± 0.2 6.1 ± 0.1 - 0.94 ± 0.01 0.24 ± 0.03 0.98 ± 0.07 Vietnam Cinnamon Cassia  

3 7.8 ± 0.1 1.8 ± 0.1 - - - 0.65 ± 0.02 - Cassia  

4 4.7 ± 0.1 1.3 ± 0.1 - - - 0.51 ± 0.01 - Cassia  

5 6.6 ± 0.1 - 0.08 ± 0.01 0.28 ± 0.02 0.12 ± 0.01 0.18 ± 0.01 - C. verum  

6 6.0 ± 0.1 - 0.12 ± 0.01 0.23 ± 0.01 0.12 ± 0.01 0.19 ± 0.01 Ceylon Cinnamon, Madagascar C. verum  

7 10.4 ± 0.1 - - - - 1.39 ± 0.04 - Unclassified  

8 10.7 ± 0.1 2.1 ± 0.1 - - - 0.55 ± 0.03 - Cassia  

9 5.2 ± 0.3 - 0.11 ± 0.02 0.22 ± 0.01 - 0.21 ± 0.01 Ceylon Cinnamon C. verum  

10 11.7 ± 0.1 2.8 ± 0.1 - - - 0.43 ± 0.04 Cinnamomum burmannii, Indonesia Cassia  

11 36.1 ± 0.8 5.4 ± 0.1 - 1.70 ± 0.10 0.20 ± 0.01 0.78 ± 0.07 Vietnam Cinnamon Cassia  

12 9.6 ± 0.4 2.4 ± 0.1 - - - 0.57 ± 0.01 Cinnamomum verum Cassiab  

13 10.8 ± 0.2 1.7 ± 0.1 - - 0.33 ± 0.01 0.79 ± 0.05 Ceylon Cinnamon Cassiab  

14 9.8 ± 0.2 2.6 ± 0.1 - 0.31 ± 0.04 - 0.87 ± 0.02 Cinnamon Cassia, Thailand Cassia  

D
IE

T
A

R
Y

 S
U

P
P

L
E

M
E

N
T

S
 

15 0.2 ± 0.1 1.5 ± 0.1 - - - 0.62 ± 0.04 Cinnamomum zeylanicum Cassia 2.4 

16 - - - - - - Cinnamomum verum No cinnamon detected  

17 6.4 ± 0.1 - 0.08 ± 0.01 0.27 ± 0.02 - 0.28 ± 0.02 Cinnamomum verum C. verum  

18 3.1 ± 0.1 - 0.05 ± 0.01 0.14 ± 0.01 0.13 ± 0.02 0.18 ± 0.01 Ceylon Cinnamon C. verum  

19 - - - - - - Cinnamomum zeylanicum, C. cassia No cinnamon detected  

20 6.0 ± 0.1 1.2 ± 0.1 - - - 0.20 ± 0.01 Cinnamomum cassia  Cassia 0.65 

21 - - - - - - Ceylon Cinnamon No cinnamon detected  

22 1.2 ± 0.1 - - - - 4.10 ± 0.31 Cinnamomum cassia Presl Unclassified  

23 2.0 ± 0.1 - - - - 3.74 ± 0.20 Cinnamomum cassia Presl Unclassified  

24 - - - - - - Ceylon Cinnamon No cinnamon detected  

25 20.0 ± 0.7 3.4 ± 0.1 - - - 0.50 ± 0.08 Cinnamomum burmannii, Indonesia Cassia 3.5 

26 12.9 ± 0.2 2.5 ± 0.1 - - 0.20 ± 0.03 0.43 ± 0.02 Ceylon Cinnamon  Cassiab 4.8 

27 19.0 ± 0.1 2.7 ± 0.1 - - - 0.50 ± 0.06 Cinnamomum cassia Cassia 7.7 

28 17.1 ± 0.1 3.2 ± 0.1 - - 0.19 ± 0.01 0.67 ± 0.03 Cinnamomum cassia Cassia 8.4 
a Calculated from the HF NMR quantification according to the recommended dosage on the dietary supplement label. 
b For these 3 samples, the commercial information does not fit with the NMR analysis; Ceylon cinnamon was replaced by cassia cinnamon.



Chapter II Evaluation of low-field versus high-field proton NMR spectroscopy for quality control 

of cinnamon samples 

83 

 

The toxicity of cinnamon samples is related to their coumarin content and the 

hepatotoxic level of 0.1 mg/kg body weight must be considered. Consumption of 

cinnamon in food is very variable and linked to dietary habits of each country. For 

instance, it was reported that in Germany the consumption of cinnamon present in 

various desserts can reach 17 g over the ten days of the Christmas period, so a mean 

value of 1.7 g/day [17]. In food cinnamon samples reported in Table II - 2, the highest 

concentration of coumarin found was 6.1 mg/g. This kind of spice sample may thus 

present a risk for the health of a big consumer of cinnamon cookies or other Christmas 

desserts. 

The issue is different for dietary supplements for which a dosage is recommended 

by the manufacturer. Indeed, the coumarin content of dietary supplements can be 

discussed considering the daily amount ingested according to the recommended dosage 

indicated on the packaging.  For samples 15, 20, 25-28, it was calculated, from HF 

NMR data, between 0.65 and 8.43 mg (mean 4.6 mg). For the two dietary supplements 

27 and 28, the daily coumarin intake, 7.72 and 8.43 mg respectively, is over the 

hepatotoxic level of 0.1 mg/kg considering an average body weight of 70 kg. Therefore, 

their daily ingestion can be at risk for consumers. 

3.3.2 LF NMR analysis: from statistical approach to quality control 

As shown above (see section 3.2.3), the LF quantification of cinnamon samples 

could not be done correctly. We nevertheless chose to extract 100 mg of powder from 

commercial samples, to record the LF NMR spectra in non-fully relaxed conditions and 

then to apply a statistical treatment.  

PCA is an unsupervisedclustering method that decreases the dimensionality of the 

multivariate data. First, an PCA was built from the LF NMR spectra limited to the 

region of olefinic and aromatic protons (5.7-11 ppm) of all samples (Fig II - 6A). Other 

parts of NMR spectra were excluded in order to remove (i) areas affected by the residuql 

signals of water and methanol at 3.8-5.7ppm respectively, (ii) signals of fatty acids (0.5-

2.5 ppm) and (iii) noise (2.5-2.8 ppm) (seen in Fig II - 2B). Based on the quantitative 

HF analysis, three classes of samples were colored on the PCA score plot: samples 

which contain neither (E)-cinnamaldehyde nor coumarin (16, 19, 21, 24) in red, 

samples in agreement with Ceylan cinnamon i.e. without coumarin but containing 
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eugenol (5, 6, 9, 17, 18) in blue, and all the remaining samples in green. Two compact 

clusters were identified: the first one corresponds to the dietary supplements which 

contain no cinnamon (in red) and the second to samples containing true cinnamon 

(Cinnamomum verum) (in blue). The wide dispersion of the last group (in green) is 

related to the NMR signals at 6.4-7.0 ppm and 7.3-7.7 ppm corresponding to all the 

protons (except H1) of (E)-cinnamaldehyde (Fig II - 1) which is present in varying 

amounts (0.2 to 36 mg/g) (Table II - 2). The score plot of a PCA built from the sole H1 

signal of (E)-cinnamaldehyde (data not shown) was similar to that shown in Fig II - 6A, 

thus demonstrating that it is mainly (E)-cinnamaldehyde which causes the statistical 

differentiation of the samples. 

 

 

Fig II - 6. (A) Three-dimensional score plot of a PCA built from the LF NMR data of 

all the samples using signals in the range 5.7 to 11 ppm. (B) Score plot of a PCA built 

from the LF NMR data focusing on the signals of H3 (right component at 6.34 ppm) 

and H4 (left component at 8.03 ppm) of coumarin. Samples without cinnamon (16, 19, 

21, 24) are colored in red, samples with true cinnamon (5, 6, 9, 17, 18) in blue and other 

samples in green. 
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For coumarin, in order to check if the whoe doublet could be considered for the 

next step, a PCA score plot based on parts of the H3 (right component) and H4 (left 

component) doublets of coumarin was performed. It shows a clear grouping of samples 

where coumarin was not detected (red and blue in Fig II - 6B). Samples 2 and 11 with 

the highest levels of coumarin (6.1 and 5.4 mg/g respectively, Table II - 2) are located 

in the lower right part of the score plot. The two samples 22 and 23 seem atypical 

because they contain significant amounts of (E)-cinnamic acid (Table II - 2) whose H2 

has the same chemical shift than the right resonance of the H3 of coumarin at LF (Fig 

II - 7). In the same way, the broad signal around 8 ppm is only detected in sample 22 

and to a lesser extent in sample 23. For the next steps, the two formulations 22 and 23 

were no longer considered and the analysis was restricted to the left resonance of the 

H4 of coumarin. 

 

 

 

 

 

 

 

 

 

 

Fig II - 7. LF 1H NMR spectra of the cinnamon samples 12, 22 and 23 focused on the 

6.0-8.7 ppm area. The red dotted ellipse identifies the broad signal around 8 ppm 

mentioned in the 3.3.2 section. 
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To provide better separation and further rank the samples according to the variety 

content of (E)-cinnamaldehyde and coumarin, Fig II - 8 proposes an approximate 

ranking based on the LF NMR data focused on typical signals of (E)-cinnamaldehyde 

(H1) or coumarin (left component of the H4 doublet). For this approach, spectra of 

standard and commercial samples were acquired and processed under the same 

conditions. Only the correction factor linked to the extraction yields of commercial 

samples was included in the normalization of the data. PCAs were first built with the 

training set, i.e. LF NMR spectra of solutions of standard (E)-cinnamaldehyde (Fig II - 

8A) and coumarin (Fig II - 8B) with known concentrations correspond to real range in 

commercial samples.  

The projections of the test dataset constituted of the commercial samples were then 

generated (Fig II - 8C and D). The score plot (C) represents a ranking of the samples 

based on their (E)-cinnamaldehyde content. The highest concentrated samples are 

located on the right and those containing no (E)-cinnamaldehyde (in red) on the left, 

aligned with the blank reference sample. Values reported on the scale of the score plot 

fit with the results obtained by quantitative HF NMR: for instance, samples 2 and 11 

contain more than 30 mg of (E)-cinnamaldehyde whereas samples 13, 1 and 25 contain 

10.8, 15.8 and 20.0 mg respectively (Table II - 2). Ceylan cinnamon samples, in blue, 

are included in the range 0-10 mg/g, which is in good agreement with the real 

concentrations of (E)-cinnamaldehyde (3.1-6.5 mg/g, Table II - 2). The same approach 

was applied to coumarin (D). All samples with no coumarin (red and blue) are ranked 

on the left part of the score plot and aligned with the blank sample. All commercial 

samples contain less than 4 mg/g of coumarin except the two samples 2 and 11 that 

have concentrations close to or higher than 6 mg/g. These statistical data are well 

correlated with the quantitative values, i.e. 6.1 and 5.4 mg/g for sample 2 and 11 and 

between 1.2 and 3.4 mg/g for the other samples (Table II - 2). 
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Fig II - 8. Statistics applied to rank the samples from LF NMR data. PCAs were built 

from LF NMR spectra of solutions of standard (E)-cinnamaldehyde (A) and coumarin 

(B). Concentrations correspond to real amounts in commercial samples. The score plots 

(C) and (D) show the projection of the commercial samples on the PCA score plots 

built for (E)-cinnamaldehyde and coumarin respectively. 

 

After the PCA, a supervised PLS method was further applied to predict the content 

of (E)-cinnamaldehyde and coumarin in products. PLS1 models were first built with 

the same LF NMR spectra of standard (E)-cinnamaldehyde and coumarin solutions 

with known concentrations as the PCA above. Fig II - 9 shows that a quantification 

based on the LF NMR data focused on typical signals of (E)-cinnamaldehyde (H1) or 

coumarin (left component of the H4 doublet) can be predicted. Each model was 

validated (Q2> 0.99 and CV-ANOVA<10-8) and used to predict concentrations of these 

compounds in commercial samples. The first scatter plot (Fig II - 9A) shows the good 
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correlation (R2 = 0.98) between the predicted concentrations of (E)-cinnamaldehyde 

and the real concentrations measured with HF NMR for the three classes of samples 

(red, blue and green) from 0 to ≈40 mg/g for the more concentrated samples 2 and 11. 

The same result was obtained for coumarin in food samples (Fig II - 9B). Fig II – 9C 

shows the bar plot of the concentrations of coumarin predicted by the same PLS1 but 

restricted to dietary supplements (without samples 22 and 23). Here, the maximal 

recommended daily dosage was considered for data treatment. This graph highlights 

that the two samples 27 and 28 containing ≈6-8 mg/g of coumarin may lead to the 

ingestion of daily high levels of coumarin by the consumer. They can thus pose a health 

risk because they are located in the hepatotoxic range for a bodyweight of about 70 kg. 

This chemometric approach demonstrates that key information on the quality of 

commercial cinnamon samples can be reached from LF NMR data obtained with a 

quick and easy sample preparation step and 2 h of NMR spectra recording. Moreover, 

it allows a classification of the samples depending on their concentrations in (E)-

cinnamaldehyde and coumarin, and statistical process allows a predicted quantification 

of (E)-cinnamaldehyde and coumarin levels in commercial samples. 
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Fig II - 9. Chemometric analysis of LF NMR data. Representation of predicted values 

obtained from PLS1 models built with LF NMR data versus HF NMR quantitative data 

for (A) (E)-cinnamaldehyde in all samples and (B) coumarin in food samples. (C) Bar 

plot of predicted contents of coumarin in dietary supplement samples according to their 

recommended dosage. 

4. Conclusion 

The present study aimed to evaluate the pros and cons of LF NMR, a technique 

reported here for the first time for quality control of commercial cinnamon samples. 

Although LF NMR spectra of cinnamon samples are crowded and assignments tricky 

due to signal overlaps, characteristic resonances of (E)-cinnamaldehyde and coumarin 

can nevertheless be detected. LF absolute quantification can not be proposed as a 

routine control method for cinnamon analysis but the treatment of LF NMR data with 

a chemometric approach is a promising way to enhance the power of LF NMR and thus 

to consider it as a full analytical technique. These encouraging results must lead to 

continuing the evaluation of benchtop LF NMR spectrometers for quality control 

applications in herbal products and food analysis.  
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Chapter III Chemometric Analysis of Low-field 
1H NMR Spectra for Unveiling Adulteration of 

Slimming Dietary Supplements by 

Pharmaceutical Compounds 

1. Introduction 

As already presented in chapter I (section 4.1-4.4), the illegal adulteration of 

synthetic drugs in slimming dietary supplements (DS) and their adverse effects have 

gained great attention nowadays [1, 2]. Various analytical methods including HPLC, 

GC, hyphenated-MS and NMR were applied for quality control of slimming DS with 

adulterations (chapter I, section 4.5). 

Benchtop LF NMR is an emerging technique based on the new generation of 

compact NMR that can be used for quality control of adulterations in complex mixtures. 

Here, the two most common adulterants sibutramine and phenolphthalein were 

analyzed in slimming DS, alone or in combination [2-4]. We have thus analyzed 

adulterated and non-adulterated slimming DS, previously qualitatively and 

quantitatively characterized by HF 1H NMR, with LF 1H NMR to create statistical 

models in which the LF 1H NMR data of new samples are injected. The interest and 

limitations of this approach are also discussed. 

2. Materials and Methods 

2.1 Sampling and preparation 

Different groups of weight-loss DS were analyzed with LF 1H NMR: (N) without 

adulteration, (S) adulteration with sibutramine, (P) adulteration with phenolphthalein, 

(PS) adulteration with both phenolphthalein and sibutramine, (T) test samples, and (X) 

two atypical samples (Table III - 1). 40 DS were used for building the statistical models 

((N) (n = 19), (S) (n = 12), and (P) (n = 9)) as well as (PS) samples (n = 11), and the 

two DS (X) were previously qualitatively and quantitatively characterized in our lab by 

HF 1H NMR, and would not test again in this study [4]. For testing the statistical models, 
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13 new DS (T1–T13) were bought on the Internet in November 2019 and were analyzed 

by LF and HF 1H NMR upon receipt. 

For sample preparation, around 100 mg of powdered samples were mixed with 1 

mL of deuterated methanol under vortex agitation for 15 s and then sonicated for 5 min. 

The suspension was then centrifuged (5 min, 3000 rpm) and the supernatant (700 µL) 

analyzed. Thirty microliters of sodium 2,2,3,3-tetradeutero-3-(trimethylsilyl) 

propanoate (TSP, 40 mM) as the internal chemical shift reference was added before the 

NMR analysis. Each DS was prepared in duplicate. 

2.2 HF 1H NMR analysis 

Thirteen new slimming DS were analyzed by HF 1H NMR. Qualitative 

experiments were performed on a Bruker Avance 400 spectrometer (Bruker Biospin 

AG, Fallanden, Switzerland) equipped with a TXO probe at 298 K. For qualitative 

experiments, HF 1H NMR spectra were recorded with the following parameters: pulse 

width 13.5 μs (flip angle 90°), acquisition time 2.93 s, spectral width 14 ppm, 32 K data 

points and relaxation delay 1.0 s. The number of scans was 64, corresponding to a 

recording time of ca. 4 min 29 sec. The signal of TSP set at 0 ppm was used as an 

internal reference for chemical shift measurement. 1D 1H NMR data were processed 

using the TOPSPIN 3.1 software with one level of zero-filling and Fourier 

transformation after multiplying FIDs by an exponential line broadening function of 

0.3 Hz, then phasing and baseline correction were applied. 

2.3 LF 1H NMR analysis 

Qualitative LF 1H NMR spectra were acquired on a Pulsar™ benchtop NMR 

spectrometer (Oxford Instruments, Abingdon, UK) operating at a frequency of 59.7 

MHz for 1H. The temperature inside the spectrometer was 310 K. The acquisition was 

performed by using the SpinFlow 1.2.0.1 software (Oxford Instruments) and the 

processing was done with MNova 11.0 (Mestrelab Research, Santiago de Compostela, 

Spain). Free induction decays (FIDs) were recorded with a flip angle of 90° (12.5 μs), 

a spectral width of 5000 Hz (83.75 ppm), and 8 K complex points (acquisition time of 

1.64 s). The relaxation delay was set at 2 s, and 256 transients were recorded leading to 

a total acquisition time of 15.5 min. For data processing, the FIDs were apodized with 

an exponential filter (line broadening (LB) of 0.3 Hz), and a Whittaker smoother was 
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applied for automatic baseline correction. The number of points was increased to 16 K 

in Fourier transformed spectra. The signal of TSP set at 0 ppm was used as an internal 

reference for chemical shift (δ) measurement. 

2.4 LF 1H NMR Data analysis and chemometrics 

First, the data matrix with all LF 1H NMR spectra (132 spectra) of ((N), (S), (P), 

(PS), (T), and (X)) groups was generated in the chemometrics module included in the 

MNova software with a spectral resolution of 0.01 ppm/point. Data were transferred to 

the Matlab® software (R2018a, The Mathworks Inc., Natick, MA, USA) for the 

alignment procedure using the Icoshift algorithm [5] with the following input 

arguments: PS9 as reference spectrum (target vector), data matrix with all spectra, a file 

for local alignment with three specific intervals 8.385–7.495, 7.495–7.275, and 7.275–

6.055 ppm, an optional ‘f’ command for a fast search of the best alignment for each 

interval and no co-shift preprocessing step. Then, the bucketing procedure was 

performed with an optimized bucketing algorithm [6] and a fixed bin width of 0.01 ppm. 

Data were normalized by dividing their areas by that of the internal standard TSP signal 

and by the weight of powder in capsules, tablets, sachet, coffee or tea bags. Multivariate 

statistical analyses were done with the SIMCA-P+ 13.0 software (Umetrics, Umea, 

Sweden). PLS-DA with UV-scaling analyses were performed with two (80 spectra 

corresponding to 19 samples (N) and 21 adulterated samples (P) and (S)) or three 

qualitative variables (19 (N), 9 (P) and 12 (S)). Then (PS), (T) and (X) LF 1H NMR 

data (52 spectra) were projected into the active model and predicted score plots were 

built. Predicted Y-values (YPredPS) were provided by the classification list included 

in the predict module of the SIMCA-P+ software. 

3. Results and discussion 

3.1 HF 1H NMR analysis 

The weight-loss DS used in this study, except the newly purchased test samples 

(T), were previously analyzed and fully characterized by HF 1H NMR, i.e. the nature 

and amount of adulterants by unit (capsule, tablet, or sachet) were known [4]. The full 

list of DS is given in Table III - 1. 
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Table III - 1. Information on slimming dietary supplements analyzed in this 

study. 

Identificationa Formulationname 

 

Form 
Adulterant 

 Sibutramine Phenolphthalein 

N1 7+1                                                             Capsule   

N2 AF6  Capsule   

N3 CiblAction Capsule   

N4 Colodetox  Capsule   

N5 KILO KO   Capsule   

N6 Kilo-Minus     Capsule   

N7 Slim effect 24h   Powder sachet   

N8 Slim fast  Capsule   

N9 Slimula  Capsule   

N10 Cacti-Nea Tablet   

N11 Fruta bio Capsule   

N12 Instant slim Capsule   

N13 La Jiao Shou Shen  Capsule   

N14 Lipo Bomb  Capsule   

N15 Natural Max Slimming  Capsule   

N16 PAI YOU GUO Capsule   

N17 Pure fat 3 days  Capsule   

N18 Sleep and slim Capsule   

N19 Slimming essence  Capsule   

P1 1 day diet   Capsule  × 

P2 Majestic Slimming capsule  Capsule  × 

P3 Royal Slim  Capsule  × 

P4 Citrus'Fit Capsule  × 

P5 Xiushentang  Capsule  × 

P6 Xiyoujiqingzhi capsule  Capsule  × 

P7  Body beauty Coffee bag   × 

P8 Green coffee 1000   Coffee bag   × 

P9 Japan hokkaido slimming pillsb Capsule  × 

S1 A-Slim Capsule ×  

S2 Best Shown coffee  Coffee bag ×  

S3 Dr Mao slimming capsules Capsule ×  

S4 Fruit & plant slimming capsule Capsule ×  

S5 Fruta bio  Capsule ×  

S6 Herbal Flos lonicerae  Capsule ×  

S7 Lingzhi cleansed slim tea   Tea bag ×  

S8 Lipo 8 burn Slim   Capsule ×  

S9 Shoufsy Capsule ×  

S10 Slim-vie Capsule ×  

S11 SLIMXTREM Capsule ×  

S12 Via Slim  Capsule ×  

PS1 7 Days herbal Slim Capsule × × 

PS2 Fruta planta (grape)  Capsule × × 

PS3 Fruta planta (grape)  Capsule × × 
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PS4 Pineapple plus Capsule × × 

PS5 Seven super color Slim & Health  Capsule × × 

PS6 Seven super color Slim & Health  Capsule × × 

PS7 Seven super color Slim & Health  Capsule × × 

PS8 Shape Capsule × × 

PS9 Super Slim  Capsule × × 

PS10 Li Da Capsule × × 

PS11 St Nirvana Capsule × × 

T1 7 days herbal slim Capsule   

T2 Extra slim Capsule  x 

T3 Slim Xtreme Gold Capsule   

T4 Lida daidaihua Capsule   

T5 Apidessum Capsule   

T6  Super slim Capsule  × 

T7 Figure-up Capsule  × 

T8 SlimBio Capsules Capsule   

T9 Nuozitai Capsule ×  

T10 Daidaihua Capsule   

T11 NuoMeiRin Capsule   

T12  Lipo 9 Capsule ×  

T13  St nirvana herbal slimming Capsule ×  

X1  Acaï boost Capsule Raspberry ketone 

X2 Perfect Slim Capsule Fluoxetine 

a N, non-adulterated (natural) group; P, phenolphthalein-adulterated group; S, 

sibutramine-adulterated group; PS, both sibutramine and phenolphthalein-adulterated 

group); T, test samples, newly purchased slimming dietary supplements; X, atypical 

samples. 
b This dietary supplement was erroneously reported as containing sibutramine in the 

paper of our group [4]. It actually contains phenolphthalein as the adulterant.   

 

For the 13 newly purchased samples (T1–T13), HF 1H NMR qualitative analysis 

was first explored to rapid overview of products and the results could be used as 

references for further LF NMR analysis. Fig III - 1 shows the HF 1H NMR spectra of 3 

typical samples. In sample T2, phenolphthalein was detected by the signals of its 

aromatic protons with chemical shifts ranging between 6.80 and 7.91 ppm. The 

presence of sibutramine in sample T9 was identified by its aromatic protons at 7.44 

ppm and methyl protons in the low-frequency zone. Contrastly, sample T8 exhibited 

only weak signals of the natural matrix, which can be distributed as a natural sample. 

The rapid screening by HF 1H NMR was also supported by previous publication [4].
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Fig III - 1. Typical spectra of newly added samples recorded at HF 1H NMR (400 MHz). 

Ph: Phenolphthalein; Sib: Sibutramine; FA: Fatty acids; TSP: Internal reference; *: 

CD2HOD. 

3.2 LF 1H NMR analysis 

All slimming DS were analyzed in duplicate by LF 1H NMR in deuterated 

methanol. The recording time of each spectrum was 15.5 min, and the profiles of typical 

samples are illustrated in Fig III - 2. 

Although LF 1H NMR spectra are rather poorly resolved, the main characteristic 

signals of sibutramine and phenolphthalein, the two most common adulterants of 

slimming DS, are easily detected alone or in combination. As it can be seen in Fig III - 

2, sibutramine is identified in samples S5 and PS2 by the signals of its aromatic protons 

at 7.41 ppm and of its methyl groups at 2.49 (CH3 12 and 13) and 1.02 (CH3 16 and 17) 

ppm. Likewise, aromatic protons of phenolphthalein give a characteristic pattern (6.5-

8.0 ppm) that can be observed in DS P1 and PS2. Sample N5 is a DS without adulterant 

and, except for the reference and solvent signals, only the signal of some CH2 protons 

of fatty acids from plant extracts is readily detected at 1.27 ppm. Minor signals 

corresponding to aromatic protons of natural polyphenols or other natural compounds 

are also detected in a few samples.  
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The LF 1H NMR profile well corresponds to HF 1H NMR, with signals more 

spread and overlap in the spectra. For instance, phenolphthalein exhibits a broad 

multiplet between 7.4 and 8.0 ppm which corresponds to three separated signals on HF 

1H NMR (7.91ppm, m, H-7; 7.78 ppm, td, H-5; 7.63 ppm, m, H-4 & H-6). Another 

significant difference about phenolphthalein is that the AAX’X’ system of two doublets 

on HF 1H NMR (7.14 ppm, H-10, H-15, H-17, H-21; 6.80 ppm, H-11, H-14, H-18, H-

20), transforms to an AA'BB' system centered at 6.94 ppm on LF1H NMR [4, 7]. For 

sibutramine, comparing with HF NMR, two singlets with the broad shape at 7.43 and 

2.49 ppm are detected on LF 1H NMR spectra; and two doublets at 1.03 and 1.06 ppm 

are significantly overlapped. 

 

Fig III - 2. Typical LF 1H NMR spectra of weight-loss dietary supplements recorded 

at 60 MHz (N, non-adulterated (natural) group; S, sibutramine-adulterated group; P, 

phenolphthalein-adulterated group; PS, both sibutramine and phenolphthalein-

adulterated group). Ph: Phenolphthalein; Sib: Sibutramine; FA: Fatty acids; TSP: 

Internal reference; *: CD2HOD. 
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3.3 Chemometrics Analysis of LF 1H NMR data 

To start the chemometric analysis, a statistical model was built by performing a 

two-class comparison: DS without adulterant (natural: N, n = 19) were compared to DS 

containing either sibutramine (S, n = 12) or phenolphthalein (P, n = 9), samples (S) and 

(P) being considered together (n = 21) as “adulterated samples”. After spectra 

processing (6–8 ppm region, see experimental part), bucketing and normalization of the 

data, the Partial Least Squares-Discriminant Analysis (PLS-DA) led to a predictive 

model with two principal PLS components and good validation criteria (Q2 = 0.61, R2Y 

= 0.76, CV-ANOVA = 2.3 × 10−18). All Q2 and R2 values were lower in the permutation 

test than in the model, confirming its goodness. The classification of all samples was 

then obtained from the two-class model based on the predicted Y-values (YpredPS, 

which is the Y value predicted by the model based upon the X block variables 

(resonance intensities at given ppm)) indicating the probability that a sample belongs 

to one class of the model (adulterated or non-adulterated). 

 

Fig III - 3. Predicted Y-values (YpredPS) obtained for the 66 DS analyzed based on 

the two-class PLS-DA model comparing natural samples (N) to adulterated samples 

(samples (P) and (S) considered together as a single class of adulterated samples). 

Samples above the red dashed line (YpredPS = 0.45) are defined as adulterated and 

those below the black dashed line (YpredPS = 0.30) as natural. PS, both sibutramine 

and phenolphthalein-adulterated group; T: test samples, newly purchased DS; X: 

atypical DS. 
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YpredPSvalues for the 66 DS analyzed in this study are reported in Fig III - 3. 

Samples (N), (S) and (P) (n = 40), whose content was previously known [4], were 

considered for the definition of a Y-value threshold between adulterated and non-

adulterated DS. An YPredPS value close or superior to 1 would indicate that the sample 

is likely to belong to the adulterated class while an YPredPS value close to 0 would 

indicate that the sample is likely to be natural. Conventionally, a threshold of 0.65 was 

defined for samples belonging to a defined class and a 0.65–0.35 range for samples 

borderline to the defined class [8]. In our study, it appears that the adulterated samples 

(P) and (S) have YpredPS > 0.65, except P4 and P6 whose YpredPS are 0.30 and 0.32 

respectively, whereas the highest YpredPS for (N) samples is 0.18. Based on the 

knowledge of the content of these two DS, we thus defined the lowest limit of the 

threshold at 0.30 (black dashed line in Fig III - 3). Samples (PS) previously shown as 

adulterated by both sibutramine and phenolphthalein were then injected into the model. 

Their YpredPS values being > 0.47, the upper limit of the threshold was set at 0.45 (red 

dashed line in Fig III - 3). So, DS with YpredPS values > 0.45 were considered as 

belonging to the adulterated class, those with YpredPS values < 0.30 to the non-

adulterated class, and samples with YpredPS values between 0.30 and 0.45 were 

considered as borderline. 

If we apply these criteria to the newly purchased DS (T, test samples), the 

classification shows that samples T6, T9, T12, and T13 are predicted adulterated, and 

samples T2 and T7 borderline, whereas other T samples are predicted natural with Y 

values ≤ 0.18 (Table III - 1). Two atypical DS, X1 (YPredPS = 0.65) and X2 (YPredPS 

= 0.63), which will be discussed later, are predicted adulterated by the two-class model. 

In conclusion, this preliminary rapid analysis with the two-class PLS-DA model can be 

considered as the first screening of adulterated slimming DS leading to classification 

between natural, adulterated or possibly adulterated (borderline) samples. 
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Table III - 1. Classification list showing predicted Y-values (YPredPS) for test samples 

(T) based on the two-class PLS-DA model built with LF 1H NMR data and completed 

by the visual observation of the projection of the samples on the three-class PLS-DA 

model shown in Fig III - 4A. 

Identification 

Predictive Y-value 

classification 

from the two-class PLS-DA 

Projection on the three-class PLS-DA model 

shown in Fig III - 3A 

 YPredPS Classification Class membership  Adulterant 

T1 0.18 natural N -a 

T2 0.37 borderline P phenolphthalein 

T3 0.16 natural N - 

T4 0.17 natural N - 

T5 0.18 natural N - 

T6 0.79 adulterated P phenolphthalein 

T7 0.30 borderline P phenolphthalein 

T8 0.17 natural N - 

T9 0.45 adulterated S sibutramine 

T10 0.17 natural N - 

T11 0.17 natural N - 

T12 0.69 adulterated S sibutramine 

T13 0.65 adulterated S sibutramine 

a Sample without adulterant. 

To go further in the classification of the DS, a new PLS-DA analysis was carried 

out in which samples (N), (P) and (S) were considered as three distinct groups. A good 

predictive model was obtained with two principal PLS components (Q2 = 0.66, R2Y = 

0.74), a p-value of the CV-ANOVA of 3.4 × 10−21, and a permutation test successfully 

performed. The score plot of this three-class PLS-DA shows clear discrimination 

between the three categories of DS (Fig III - 4A). Samples (P) (dark blue) and (S) (green) 

appear more spread out than samples (N) (yellow) because of the variable amount of 

adulterant in each sample ranging from 8 to 16 mg per unit for sibutramine in samples 

(S) and from 5 to 55 mg per unit for phenolphthalein in samples (P) [4]. 

(PS) samples (purple) projected in this three-class PLS-DA model are located 

closer to (P) than to (S) samples (Fig III - 4B). This observation is in agreement with 

higher amounts of phenolphthalein compared to sibutramine contained in most samples 

[4]. The score plot of the projection of test samples (T) in the model confirms the 

classification proposed in Table III - 1 but affords a more precise analysis (Fig III - 4C). 

Indeed, samples T1, T3–5, T8, T10, and T11 overlap with (N) samples and can thus be 

considered as natural. Samples T9, T12, and T13 contain the adulterant sibutramine 

whereas samples T2, T6, and T7 contain phenolphthalein. It can be noticed that none 
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of the (T) samples belong to the (PS) class, i.e. contain a mixture of phenolphthalein 

and sibutramine. The statistical analysis of the (T) samples was done blindly, i.e. 

without a thorough examination of their LF (and HF) 1H NMR spectra, these findings 

were confirmed by the visual analysis of these spectra. 

The fact that the two samples T2 and T7 were considered as borderline in the 

classification established from the predicted Y-values of the previous two-class model 

(Table III - 1) but are now better characterized by the three-class model (Fig III - 4C) 

can also be explained by the visual observation of their LF 1H NMR spectra. Indeed, as 

reported in Fig III - 5, signals of phenolphthalein are detected in samples T2 and T7 but 

with a lower signal-to-noise ratio than in the P1 spectrum due to the low amount of 

adulterant in these DS. We mentioned above that signals corresponding to aromatic 

protons of natural polyphenols or other natural compounds were detected in a few (N) 

samples (as an illustration, the LF 1H NMR spectrum of sample N6 is shown in Fig III 

- 5). Their chemical shifts and intensities close to those observed for phenolphthalein 

in T2 and T7 samples led to the classification of these DS as borderline in the first 

approach (Table III - 1). 
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Fig III - 4. (A) Score plot of the PLS-DA three-class model built from LF 1H NMR 

spectra of samples N (non-adulterated), S (adulterated with sibutramine), and P 

(adulterated with phenolphthalein). Score plots (B), (C) and (D) show the projection of 

samples PS (adulterated with both sibutramine and phenolphthalein), T (test samples) 

and X (atypical samples, see text) respectively on the built model (A). 

A limitation of the present work is illustrated by the examples of the two DS X1 

and X2. These samples appear as adulterated when considering their predicted Y-values 

(0.65 for X1 and 0.63 for X2) (Fig III - 3). Moreover, the projection of their LF 1H 

NMR spectra in the PLS-DA three-class model indicates that the adulterants are 

phenolphthalein for X1 and sibutramine for X2 (Fig III - 4D). In fact, we demonstrated 

in a previous HF 1H NMR study [4] that these two samples contain respectively 

raspberry ketone, a natural phenolic compound (probably intentionally added due to its 

high concentration in this particular DS), and fluoxetine, an antidepressant drug 
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illegally added. As the model was built with only the LF 1H NMR data of DS (N), (S) 

and (P), the chemometric analysis leads to the misclassification of X1 and X2. The 

reason can be found in their LF 1H NMR spectra (Fig III - 5). Indeed, the main aromatic 

signal of fluoxetine has a chemical shift (7.37 ppm) close to that of sibutramine (7.41 

ppm) and the large aromatic multiplet of raspberry ketone overlaps with the resonances 

of phenolphthalein. Although chemical shifts of these chemicals are slightly different 

from those of sibutramine or phenolphthalein, the multi-alignment procedure applied 

before the statistical treatment results in their misclassification. Nevertheless, even if 

the adulterant statistically identified in X2 is not the good one (i.e. sibutramine instead 

of fluoxetine), this DS remains unsafe for the consumer and the goal of the statistical 

screening for detecting dubious samples is thus achieved. 

Fig III - 5. LF 1H NMR spectra of some weight-loss dietary supplements recorded at 

60 MHz. Ph: phenolphthalein; Sib: sibutramine. 
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In conclusion, the three-class PLS-DA works well as it enables a correct prediction 

of the nature of the adulterant sibutramine or phenolphthalein, the two banned drugs 

most commonly added to weight-loss DS to improve their effectiveness. The lowest 

limit of phenolphthalein concentration detected by the model is 3 mg per 100 mg of 

powder, which corresponds to ≈ 6 mg per unit if a mean capsule content weight of 200 

mg is considered. The lowest limit of sibutramine concentration could not be reached 

because all the analyzed DS had YPredPS values > 0.7, very far from the 0.3 value that 

characterizes the limit between adulterated and non-adulterated DS (Fig III - 3). A 

source of classification error is nevertheless possible if an adulterant or a natural 

compound has a structure leading to 1H NMR signals in the resonance frequency areas 

considered to build the model. For example, the characteristic signal of the methyl 

protons 16 and 17 of sibutramine at 1.02 ppm could not be used to create the model 

because it was often overlapped with the resonance of fatty acids. 

4. Conclusion 

Our study shows that applying a chemometric treatment to LF 1H NMR data is a 

means of widening the field of application of the technique, in particular for the analysis 

of complex mixtures. This approach has been successfully proposed in agri-food 

applications for the analysis and authentication of edible oils [9, 10] and meat [11]. 

Very recently, a similar approach was used for the analysis of substandard and falsified 

medicines [12]. Our study expands the field to the adulteration of DS, a problem at the 

crossroads between agri-food and health products. In the case of slimming DS 

adulteration, the analytical process proposed can be useful for the first-line detection of 

samples liable to be adulterated without resorting to expert analysis of the 1H NMR 

spectra. Sample preparation is simple and fast, and LF 1H NMR acquisition is easy, 

user-friendly and does not require specific NMR knowledge. The perspective of this 

study would be to automate the whole process to propose a turnkey method that could 

be implemented in quality control labs. 
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Chapter IV Analysis of Synthetic Cannabinoids in 

E-liquids: A Proton and Fluorine NMR Study from 

a Conventional Spectrometer to a Compact One 

1. Introduction 

E-liquid products are spread worldwide with the popularity of e-cigarettes, especially 

among younger groups, but the psychoactive ingredients in these products have become an 

issue for the health risks [1]. Synthetic cannabinoids (SCs) are one group of new psychoactive 

substances adulterated in smoking agents including e-liquid that have been reviewed in chapter 

I (section 5.1 and 5.3). Moreover, the chemical structures of SCs are quite diverse and a large 

number of new psychoactive SCs have appeared on sale, which makes it even more difficult to 

distinguish them [2]. Until now, there are only a few publications concerning the 

characterization of SCs in e-liquid products (chapter I, section 5.4.2). 

The goal of this study was to evaluate the ability of both high and low-field NMR for the 

characterization of e-liquids content. Proton and fluorine NMR analyses were implemented 

with both high- (400 MHz) and low-field (60 MHz) spectrometers. SCs and other flavouring 

compounds were identified. GC-MS was used as a confirmatory and reference method for the 

identification of SCs and flavouring agents. To the best of our knowledge, this study is the first 

using compact LF NMR for characterization of SCs compounds and flavouring agents in e-

liquids. 

2. Materials and experiments 

2.1 Materials 

13 e-liquid samples from customs seizures were provided by SCL laboratory (French 

Customs). The identification of SCs within each sample was provided by the SCL based on a 

routine GC-MS analysis and was further verified in this study. Standard SCs JWH-210, 5F-

AKB48 and 5F-MDMB-PICA were obtained from Cayman Chemical (Ann Arbor, MI, USA). 

TSP, TFT, vanillin, ethyl maltol, limonene, methoxybenzyl alcohol, raspberry ketone and 

Cr(acac)3 were purchased from Sigma-Aldrich (St. Louis, MO, USA). 
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2.2 GC-MS analysis 

Each sample was stirred by vortex for 30 s before aliquoting. Then 250 µl of each e-liquid 

sample were mixed with 500 µl CHCl3. Analyses were performed using an Agilent 6890 N Gas 

Chromatograph coupled with a GCT Premier CAB109 TOF mass spectrometry (Waters). An 

HP-5MS capillary column (30 m × 0.25 mm, 0.25 μm film thicknesses) was used to perform 

chromatography separation. Helium as carrier gas was delivered at a constant flow of 1.0 

ml/min. The temperature program was used as follows: the initial temperature was 70 ºC with 

2 min holding time, increased to 200 ºC at 5 ºC/min, continue rising to 280 ºC with a rate of 10 

ºC/min, 24 min holding time at 280 ºC, the total run time was 60 min. The injection volume 

was 10 µl including 4 samples with split injection modes (1:20). Mass spectra were recorded in 

the range m/z 30–650. The compounds were identified using SWGDRUG 3.3 

(www.swgdrug.org) and NIST 08 databases. 

2.3 NMR analysis 

2.3.1 Sample preparation for NMR 

200 µl of each e-liquid were diluted with 400 µl of MeOD, and mixed with 30 µl of TSP 

(10 mM, MeOD) as reference for 1H NMR experiments. 19F NMR experiments were run for 

the 10 e-liquid samples (4-13) containing fluorinated SCs 5F-MDMB-PICA, 5F-ADB, 5F-

AKB48 and ADB-FUBINACA. For these 19F experiments, 200 µl of each sample were diluted 

with 400 µl of MeOD and then mixed with 9.1 µl of TFT (1M in MeOD, final concentration 15 

mM). 2 mg of Cr(acac)3 were added inside the NMR tube as relaxation reagent. HF and LF 19F 

NMR experiments were performed by analysis of the same NMR tubes. All quantitative 

experiments were done in triplicate. 

2.3.2 HF NMR analysis 

HF 1H NMR experiments were performed on a Bruker Avance 400 spectrometer (Bruker 

Biospin AG, Fallanden, Switzerland) equipped with a 5 mm Triple resonance probe (TXO) 

with 19F direct detection. Typical acquisition parameters optimized for quantitative experiments 

were as follows: number of scans (NS) 128, pulse width 4.52 µs (flip angle 30°), acquisition 

time 3.40 s, spectral width 12 ppm, 32 K data points, and an additional relaxation delay of 10 

s; the recording time was thus ca. 29 min. The signal of TSP set at 0 ppm was used as an internal 

reference for chemical shift measurement. Three samples with lower concentration of SCs (1-
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3) were recorded by increasing the NS to 1024 for obtaining appropriate S/N. HF 1H NMR data 

were processed by using Bruker TopSpin 2.1 software with one level of zero-filling and Fourier 

transformation after multiplying FIDs by an exponential line-broadening function (LB) of 0.3 

Hz.  

HF 19F NMR experiments were performed on the same spectrometer and probe at 376 

MHz. First, a basic zg sequence allowed to acquire fluorine-coupled proton spectra, then 

quantitative experiments were carried out using inverse gated decoupling sequence with 

following parameters: number of scans (NS) 32, pulse width 4.57 µs (flip angle 30°), acquisition 

time 1.57 s, spectral width 221.36 ppm, 256 K data points, LB at 2.0 Hz and an additional 

relaxation delay of 3 s for complete longitudinal relaxation; the recording time was thus less 

than 3 min. The signal of TFT set at -63.72 ppm was used as an internal reference for chemical 

shift measurement and quantitative analysis. 

2.3.3 LF NMR analysis 

Spectra were acquired on a PulsarTM benchtop NMR spectrometer (Oxford Instruments, 

Abingdon, UK) operating at a frequency of 59.7 MHz for 1H and 56.17 MHz for 19F. The 

temperature inside the spectrometer was 310 K. The acquisition was performed with the 

SpinFlow 1.2.0.1 software (Oxford Instruments) and the processing with MNova 11.0 

(Mestrelab Research, Santiago de Compostela, Spain).  

1H NMR spectra FIDs were recorded with a flip angle of 90° (12.5 µs), a spectral width of 

5000 Hz, and 8 K complex points (acquisition time of 1.64 s). The relaxation delay was set at 

2 s, and 1024 transients were recorded leading to a total acquisition time of 1 h 2min. For data 

processing, the FIDs with one level of zero-filling were apodized with an exponential (0.3 Hz) 

filter and automatic Whittaker smoother baseline correction was applied.   

For LF 19F NMR experiments, FIDs were recorded with a flip angle of 90°, a spectral 

width of 20833 Hz, and 32 K complex points (acquisition time of 1.57 s). The relaxation delay 

was set at 1 s, and 2048 transients were recorded leading to a total acquisition time of 1 h 27 

min. For the data processing, the FIDs were apodized with an exponential (3.0 Hz) filter; an 

automatic baseline correction has been applied.  



Chapter IV Analysis of Synthetic Cannabinoids in E-liquids: A Proton and Fluorine NMR Study from a 

Conventional Spectrometer to a Compact One 

111 

 

2.4 NMR quantification 

The concentrations were measured by comparing the signal areas of convenient nucleus 

(written in bold in Table IV - 2) of targeted compounds with the signal of reference, the area of 

each NMR peak being directly proportional to the number of nuclei giving rise to it. After 

phasing and baseline correction of the spectra, the targeted signals were integrated. The amount 

of each compound expressed in mg/ml of e-liquid sample was determined using the following 

general equation:  

( )   3/ 10SCs SCsREF
total

SCs REF e liquid

A MwN
Amount mg ml REF V

N A V

−

−

=       

[REF] (mM): Concentration of reference (TSP or TFT). 

A SCs and A REF: Integrated signal areas of SCs and reference respectively. 

N SCs and N REF: Number of nuclei giving rise to the signal considered. 

V total (µL): Total volume of solution in NMR tube. 

MwSCs (g/mol): Molecular weight of SCs. 

V e-liquid (µL): Volume of e-liquid used for the NMR assay. 

2.5 Statistical Analysis 

Excel was used for calculation of statistical parameters (mean, standard deviation and 

relative standard deviation), regression analysis and two-way ANOVA analysis. 

3. Results and discussion 

3.1 Qualitative analysis of e-liquids 

In the first step of this study, 13 e-liquid samples were screened by HF 1H NMR in order 

to characterize their SCs content and other chemicals present in the mixtures. In the same time, 

GC-MS was used as a gold standard method to confirm the identification of SCs as well as 

flavouring components. 
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Fig IV - 1. Proton NMR spectra of e-liquids (400 MHz, in methanol-d4) (A) Whole NMR 

spectrum of sample 3 (B) Overlap of 5 spectra of e-liquids containing different SCs (5.7-10.2 

ppm). EM: Ethyl maltol, V: vanillin, RK: Raspberry ketone, Lin: Linalool. 

 

The HF 1H NMR spectra of all 13 samples allow the detection of major signals of 

propylene glycol (PG) and glycerol which constitute the matrix of e-liquids. As illustration, Fig 

IV - 1 (A) shows the complete HF 1H NMR spectrum of one e-liquid sample 3. Matrix signals 

of PG and glycerol have the most significant signals at upfield area. Doublet of the methyl of 
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PG was detected at 1.11 ppm (6.4 Hz), multiplets are detected at 3.77 (<CH) and 3.41 (-CH2) 

ppm as well as broad signals for hydroxyl protons at 4.60 and 5.24 ppm. Glycerol (CH and CH2) 

lead to multiplets in the range of 3.47-3.70 ppm whereas hydroxyl groups resonate as doublet 

and triplet at 5.29 and 5.19 ppm respectively, depending on the rate of hydroxyl proton 

exchange, these signals are more or less board. Moreover, ethylene glycol and/or polyethylene 

glycol are detected in samples 9-12 from the characteristic intense broad signals around 3.6 

ppm.  At last, ethanol was detected in samples 6, 8, 10 and 11 by its methyl signal at 1.2 ppm 

whereas quadruplet of methylene overlaps with signal of glycerol at 3.59 ppm. The presence of 

ethanol in e-liquid increases the solubility of SCs and flavours and can significantly lower the 

viscosity of glycerol, which improves the formation of the aerosol for inhalation. Peace and co-

workers previously evaluated alcohol content in e-liquid by headspace gas chromatography 

with flame ionization detector (HS-GC–FID) [3]. 

In addition to matrix, signals of psychoactive SCs are detected in the NMR spectra. 

Besides NMR analysis, GC-MS was performed for verification of SCs identification which was 

previously given by the Customs Laboratory. GC-MS results were obtained by comparison with 

the SWGDRUG library. Data are reported in Table IV - 1.  Five SCs were identified: JWH-210 

was detected in samples 1-3, 5F-MDMB-PICA in samples 4-6, 5F-ADB in samples 7-9, ADB-

FUBINACA in samples 10-12 and 5F-AKB48 in sample 13. Structures of these SCs are based 

on indole or indazole rings with differently substituted carboxamide and alkyl side chains, four 

SCs being fluorinated. 

The HF 1H NMR profile (5.7-10.2 ppm) of samples 3, 4, 8, 11 and 13 are reported in Fig 

IV - 1 (B) and the assignments of SCs signals are given in Table IV - 2. Characteristic signals 

with close chemical shifts and multiplicity are observed for the indazole protons (H4, H5, H6 

and H7) of 5F-ADB, ADB FUBINACA and 5F-AKB48 whereas signals of the indole ring (H2, 

H4, H5, H6, H7) in JWH-210 and 5F-MDMB PICA have a different spectral signature. For 

SCs bearing fluorine on the alkyl chain, doublet of triplet is observed for H5'' due to both 2J 

coupling with fluorine nucleus and 3JHH with neighbouring methylene. Protons from methylenic 

groups H1'' adjacent to the nitrogen atom of indazole ring give characteristic unshielded triplets 

(≈ 4.3-4.5 ppm). All signals are not reported in Table IV - 2 due to overlap with matrix signals, 

for instance, singlet of methyl ester (5F-ADB or 5F-MDMB PICA) overlaps with the signal of 

propylene glycol around 3.7-3.8 ppm. NMR data characteristics for SCs are corresponding to 

previously published data [4-7]. 
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Table IV - 1: SCs detected in e-liquids by GC/MS analysis. 

Compounds 

 

Formula 

Retention 

time (min) 

Theoretical 

exact mass 

(m/z)* 

Acquired 

accurate mass 

(m/z) 

Mass 

accuracy 

error (ppm) 

Nominal fragments (m/z) CAS 

Synthetic cannabinoids (SCs)       

5F-ADB C20H28FN3O3 36.04 377.2109 377.2106 0.8 233, 289, 321 1838134-16-9 

5F-MDMB PICA C21H29FN2O3 37.76 376.2157 376.2158 0.3 144, 212, 232, 288 1971007-88-1 

ADB-FUBINACA C21H23FN4O2 40.50 382.1800 382.1801 0.3 109, 254, 309, 338 1445583-51-6 

5F-AKB48 C23H30FN3O 43.72 383.2367 383.2368 0.3 145, 233, 294, 355 1400742-13-3 

JWH-210 C26H27NO 45.88 369.2087 369.2094 1.9 214, 312, 352 824959-81-1 

* Theoretical exact mass is calculated by the mass of molecular ion (M+·) with losing one electron. 

 

 

 

  



Chapter IV Analysis of Synthetic Cannabinoids in E-liquids: A Proton and Fluorine NMR Study from a Conventional Spectrometer to a Compact One 

115 

 

TableIV - 2. The high-field 1H NMR (400 MHz) characteristics signals of synthetic cannabinoids detected in e-liquid samples in MeOD. Signals in bold were used 

for quantification. Proton signals mentioned as overlap or missing in the table were not readily detected due to overlap with other signals. 

 

 

 

 

 

 

 

  

  JWH-210 
 

5F-MDMB PICA  5F -ADB  ADB FUBINACA  5F-AKB48 
1H label δ(ppm) Ma J(Hz) 

 
δ(ppm) M J(Hz)  δ(ppm) M J(Hz)  δ(ppm) M J(Hz)  δ(ppm) M J(Hz) 

2 7.56 s  

 
8.06 s               

4 8.31 dd 7.0; 1.3 
 

8.02 d 7.8  8.20 d 8.2  8.22 d 8.2  8.20 d 8.2 

5 7.30-7.60 m  

 
7.21 m   7.31 m   7.31 m   7.26 m  

6 7.30-7.60 m  

 
7.27 m   7.48 m   7.44 m   7.44 m  

7 7.30-7.60 m  

 
7.49 d 8.2  7.68 d 8.6  7.61 d 8.5  7.62 d 8.5 

1'' Overlap 
 

4.26 t 7.1  4.54 t 7.0  5.72 s   4.48 t 7.0 

2" 1.78 qt 7.5 
 

1.92 qt 7.5  2.01 qt 7.5  7.31 m   1.98 qt 7.5 

3'' Overlap 
 

1.42 m   1.43 m   7.06 appt 8.8  1.42 m  
4'' Overlap 

 
1.69 m   1.72 m   

    1.72 m  
5'' 0.82 t 7.0 

 
4.40 dt 47.5/6.0  4.39 dt 47.5/6.0  

    4.39 dt 47.5/6.0 

2' 7.44-7.60 m  

 
Overlap  Overlap  Overlap  2.20 m  

3' 7.44-7.60 m  

 

        
    2.13 bs  

4'    

 

        
    1.78 bs  

5' 8.04 d 8.4 
 

        
       

6' 7.30-7.60 m  

 

        
       

7' 7.30-7.60 m  

 

        
       

8' 8.18 d 8.6 
 

        
       

CH3 1.42 t 7.5 
 

        
       

(CH3)3    

 
1.09 s   1.08 s   1.09 s      

a M: multiplicity; s: singlet; d: doublet; dd: doublet of doublet; t: triplet; dt: doublet of triplet; q: quadruplet; qt: quintuplet; m: multiplet. 



Chapter IV Analysis of Synthetic Cannabinoids in E-liquids: A Proton and Fluorine NMR Study from a 

Conventional Spectrometer to a Compact One 

116 

 

In addition to matrix and SCs signals, other chemicals were detected in the HF 1H NMR 

spectra of samples, flavouring compounds like limonene, vanillin, ethyl maltol, raspberry 

ketone, methoxybenzyl alcohol, linalool and menthol were successfully detected. Indeed, 

flavouring ingredients are widely used in e-liquids to give fruit aromas or other pleasant scents. 

1H NMR assignments of flavouring compounds detected in all samples are reported in Table 

IV - 3, identification of flavouring compounds in e-liquids were confirmed by spiking with 

standard compounds. Vanillin, the most common flavour agent, was detected in 8 out of 13 

samples. The more significant signal is that of the aldehyde proton which has the higher 

chemical shift with a singlet detected at 9.74ppm (Fig IV - 1B), protons on the aromatic ring 

resonate in the range 6.9-7.5 ppm whereas singlet of methoxy group can be detected at 3.92 

ppm. Ethyl maltol which has sweet caramelized sugar smell was detected in six samples. It has 

two characteristic doublets at 8.00 and 6.42 ppm corresponding to aromatic protons, whereas 

protons from ethyl group are detected at 2.74 ppm (q, H2) and 1.22ppm (t, H1).  Characteristic 

signals of raspberry ketone were detected in three samples with doublets of para-substituted 

aromatic ring at 7.00 and 6.68 ppm and singlet of the methyl group at 2.11 ppm. Linalool was 

detected in sample 11, characteristic doublet of doublet at 5.89 ppm is shown in Fig IV - 1B. 

The characteristic up-field signals of menthol allow its detection in sample 13. The 

identification of flavouring compounds is generally supported by previous GC-MS 

characterization of e-liquids [8, 9].  
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Table IV - 3. High-field 1H NMR and GC-MS data of flavouring compounds detected. NMR data were obtained from e-liquid samples spectra in 

MeOD, only signal detected are reported. 

Compound Structure 

1H NMR  GC-MS 

Detected in 

samples 

δ(ppm), multiplicityb (J, 

Hz), 

attribution 

 

Retention 

 time 

Formula 

Measured accurate m/z 

Value (mass error in 

ppm ) 

m/z of major 

characteristic 

fragment ions 

observed 

Ethyl maltol 

 

8.00, d (5.5), H3 

6.42, d (5.5), H4 

2.74, q (7.6), CH2 

1.22, t (7.6), CH3 

 

9.89 

C7H8O3 

140.0467 

(0.7) 

 

55, 69, 71, 97, 139 7-12 

Vanillin 

 

9.74, s, H5 

7.46, m, H4 

7.44, s; H6 

6.96, d (8.5), H3 

3.92, s, -CH3 

 

 

15.00 

C8H8O3 

152.0462 

(3.9) 

81, 151, 109, 123 4-9, 11,12 

Raspberry 

ketone 

 

7.00, d (8.5), H2' 

6.69, d (8.5), H3' 

2.11, s, H1 

 

19.18 

C10H12O2 

164.0834 

(1.2) 

107, 131, 149 8, 10, 11 

Methoxybenzyl 

alcohol 

 

6.88, d (8.7), H2 

4.52, s, H3 

 

12.04 

C8H10O2 

138.0676 

(0.7) 

77, 109, 121 4 
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Limonene 

 

4.68, m, H6 

1.62, broad singlet, H8 

 

5.50 

C10H16 

136.1245 

(1.5) 

68, 79, 93 6 

Linalool 

 

5.89, dd, (17.4;10.8), H2 

5.01, dd (10.8, 1.6), H4(1H) 

1.65, broad s, CH3 7 

1.58, broad s, CH3 6 

1.23, broad s, CH3 8 

 

7.19 
C10H18O 

(3.9) 
71, 93, 121 10,11 

Menthol 

 

1.61, m, H5 (1H) 

0.92, d (7.1), CH3 10 

0.91, d (6.6), CH3 8 

0.84, m, H5 (1H) 

0.79, d (6.9), CH311 

 

 

-c - - 13 

Anisyl acetate 3'

3'

2'

1'

2' 4

O 2 CH3
1

H3CO

O

 

NDa 

 

15.39 
C10H12O3 

(1.1) 
77,91,121 4 

Benzyl acetate 
3'

3'

2'

1'

2' 4

O 2 CH3
1

O

 

ND 

 

8.77 
C9H10O2 

(2.0) 
79, 91, 108 4 
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α-Terpineol 

CH3

H3C CH3

OH

1 2

3 45

6 7

8

 

Overlapb 

 

9.62 
C10H18O 

(2.6) 
59, 93, 121, 136 6 

a  No signals detected in 1H NMR spectra for low concentrations. 
b  Signals overlap with matrix in 1H NMR. 
c  Menthol was not detected in GC-MS analysis. 
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3.2 Low-Field 1H NMR profiling 

All samples were then analyzed by using the benchtop 60 MHz 1H NMR spectrometer 

with the same NMR tubes and solutions as HF. The 1H NMR spectra of sample 8 analyzed on 

both HF and LF spectrometers are shown in Fig IV - 2 (A). Compared to HF spectra, LF signals 

are broader with more signals overlapping due to the lower resolution. Signals are especially 

crowded in the low frequency region (0.5-4.5 ppm) where targeted signals are erased by intense 

matrix signals, but some hints still can be gotten in ethylenic/aromatic region (i.e. above 5.6 

ppm region). Fig IV - 2 (B) shows the five typical LF profiles of samples 3, 4, 8, 11 and 13. 

The reported zoom is the same as in Fig IV - 1(B) in HF spectrum. For sample 3, the SC JWH-

210 being at low concentration, it cannot be detected under the chosen experimental conditions. 

For the four other samples, even if signals are broad and similarities appear, the LF profile of 

each sample differs from the others. For instance, signal of H2 from 5F-MDMB PICA in sample 

4 provides a spectral signature different from H1'' of ADB FUBINACA in sample 11. The SCs 

profile of 5F-ADB and 5F-AKB48 in samples 8 and 13 are closer, even if the multiplet around 

7.2 ppm is more spread out in sample 13. Concerning flavouring compounds content, the singlet 

of vanillin is observed at 9.74 ppm in samples 4 and 8, likewise for the two characteristic 

doublets of ethyl maltol in sample 8. 
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Fig IV - 2. LF (60 MHz) 1H NMR spectra. (A) Comparison of the 1H NMR spectra of sample 

8 recorded in CD3OD on both HF (400 MHz) and LF (60 MH) spectrometers; (B) 5 

superimposed spectra (60 MHz) with different SCs (5.7-10.2 ppm). EM: Ethyl maltol, V: 

vanillin, RK: Raspberry ketone, Lin: Linalool 

According to LF proton analyses of all samples, it appears that despite intense matrix 

signals, the detection of characteristic signals of SCs can be performed if their concentration is 

not too low. These 1H LF NMR experiments constitute a proof of concept that direct profiling 

of e-liquids containing SCs could be relevant and should be applied on a larger number of 

samples before chemometrics treatment as recently proposed in Agri-food and pharmaceutical 

applications [10-12]. However, in this study, we do not further investigate the proton nucleus 

NMR experiments on the compact spectrometer because the method is not suitable for 

quantitative purpose.  

3.3 19F NMR analysis 

It was reported during the last decades an increasing number and rate of emergence of 

fluorinated SCs, this fact is explained by an increased CB1 receptor potency of fluorinated 

analogues [13]. Insofar the 19F nucleus has favourable NMR characteristics (nuclear spin of 1/2, 

relatively narrow lines, 100% natural abundance, good sensitivity (83% that of proton) and 
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large chemical shift range), the fluorine NMR analysis should be of great interest for these 

fluorinated cannabinoids as reported recently by Naqi et al [14]. 

 

Fig IV - 3. 19F NMR signals of TFT and SCs in e-liquids samples recorded at 376 MHz (HF) 

and 56.17 MHz (LF). (A) Signals of TFT and ADB FUBINACA in sample 11; (B) Signals of 

5F-AKB48, 5F-MDMB PICA and 5F-ADB in sample 13, 4 and 7 respectively. 

 

The fluorinated SCs detected in this study can be analyzed using 19F NMR. Spectra were 

recorded for all samples at both HF and LF NMR (376 and 56.2 MHz respectively). Typical 

spectra without proton decoupling are presented in Fig IV - 3, with HF and LF spectra stacked. 

Trifluorotoluene (TFT) was added in all samples as reference for chemical shift (-63.7 ppm) 

and quantification. Fluorine of ADB FUBINACA linked to the aromatic ring lead to a singlet 

at -115.8 ppm (Fig IV - 3A).  Fluorine nuclei in the end position of the alkyl chains for 5F-

AKB48, 5F-MDMB, 5F-ADB give signals around -220 ppm (Fig IV – 3B). The two closer 

resonances are those of 5F-ADB and 5F-MDM-PICA with a Δ(Hz) of 37.8 Hz at HF and 6 Hz 
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at LF. In the HF spectra, they resonate as triplet of triplets due to coupling with methylene H5'' 

(2JHF=47.5 ± 0.1 Hz) and H4'' (3JHF=25.5 ± 0.2 Hz). For the same samples, LF signals are more 

spread as coupling constant values are independent with magnetic fields and their multiplicity 

is close to an apparent septuplet (3JHF≈23.7 ± 0.4 Hz). 

Unlike LF proton NMR analyses of e-liquid that present limitations for quantitative 

purpose and cannot be implemented because of strong signals overlap, 19F NMR opens the 

possibility of setting up quantitative analyzes.  

3.4 Quantitative analysis 

3.4.1 Setting up of quantitative conditions 

The quantitative study aimed to consider proton and fluorine HF qNMR as reference 

quantitative methods to evaluate the ability of quantification of LF NMR using fluorine-19. 

Indeed, HF qNMR is recognized as a powerful method for quantification of compounds in 

various mixture samples for both 1H [4, 15-18] and 19F [17-19]. Recently, HF 19F NMR was 

used for quantification of fluorinated SCs in herbal blends [14]. In this study, in order to 

accurately quantify SCs in e-liquids, MeOH-d4 was chosen as solvent because of good 

miscibility with e-liquids. First, T1 relaxation time was determined by the inversion-recovery 

pulse sequence method to set acquisition parameters of quantitative NMR experiments for both 

proton and fluorine nuclei.  

HF T1 values of protons selected for quantification and internal reference were measured 

in samples 3, 4, 7, 11 and 13. The longest T1 was that of reference signal TSP measured at 3.6 

s in standard solutions and T1 of protons of SCs and TSP measured in samples of e-liquids were 

always shorter. T1 values of targeted signals for quantification were measured in the range of 

0.4-1.80 s in samples. All 1H resonances of SCs were thus considered as fully relaxed since 

more than 99% of the signal intensity of the proton with the longest T1 was recovered in the 

recording conditions used (flip angle of 30° and repetition time of 15.1 s).  

For fluorine HF NMR quantifications, the relaxation agent Cr(acac)3 was added inside the 

NMR tube to reduce the relaxation time of 19F nuclei. The T1 of 4 fluorinated SCs in e-liquids 

were decreased to lower than 200 ms, TFT has the longest T1 but it remains below 300 ms. In 

the same way on the LF spectrometer with the same tubes, T1 of SCs were less than 300 ms 

and that of TFT was below 350 ms. Spectra recording conditions were chosen to reach a full 
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relaxation of signals. Indeed, at HF, we used 4.57 s of repetition time for a flip angle of 30°, so 

all 19F nuclei were completely relaxed since more than 100% of the 19F signals were recovered. 

In LF experiments, with a flip angle of 90° and 2.57 s of repetition time, more than 99.9% of 

the 19F signals were recovered. Experiment time was set at 2.5 min (32 scans) and 90 min (2048 

scans) for HF 19F [12] and LF 19F NMR experiments leading to a S/N of 200 and 50 respectively. 

In the LF analysis, the limit of detection (LOD) and quantitation (LOQ) were estimated by 

analyzing the diluted solutions of standard SCs (5F-AKB48 and 5F-MDMB PICA) with known 

concentrations. The LOD of 5F-MDMB PICA on LF 19F qNMR was evaluated at 0.33 mg/ml, 

and LOQ was 0.92 mg/ml for the same signal. The LOD and LOQ values are 0.25 mg/ml and 

1.0 mg/ml for 5F-AKB48 respectively. The LOQ determined on the standards are significantly 

lower than the concentration of four species of fluorinated SCs in e-liquids (Table IV - 4). 

Moreover, the LOQ of ADB FUBINACA is better due to the multiplicity of the signal (singlet). 

3.4.2 Quantitative analyses of SCs in e-liquids 

Both 1H and 19F qNMR experiments were successfully implemented, the quantitative 

results of SCs in each sample are reported in Table IV - 4. For 1H NMR quantification, although 

some SCs signals overlap, at least one characteristic signal can be integrated for each SC. 

Concerning the 19F qNMR experiments, signals of SCs and reference (TFT) are clearly 

identified and can be easily integrated in both HF and LF experiments. 

HF proton and fluorine NMR are both recognized as quantitative methods [14, 15]. Results 

reported in Table IV - 4 showed that, even if a matrix effect could bias the quantification in 1H 

NMR, data obtained by both techniques are in good agreement. Indeed, the linear regression 

equation of the HF 1H and 19F values displayed a slope of 0.990 ± 0.028, a y-intercept of -0.338 

± 0.455 and a correlation coefficient of 0.980. Then, by comparing LF 19F with HF 19F 

quantifications, we demonstrated the correct agreement. Indeed, the linear regression equation 

of these data set displayed a slope of 1.085 ± 0.035, a y-intercept of -0.942 ± 0.543 and a 

correlation coefficient of 0.975. These results demonstrated that NMR is a useful method to 

quantify SCs in complex e-liquid samples, and that the 19F NMR quantification of fluorinated 

SCs can be achieved by using a compact LF NMR spectrometer without specific standard 

compounds nor purification of targeted compounds.  
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Table IV - 4. Quantification of SCs in 13 e-liquids measured by using HF 1H, 19F NMR and 

LF 19F NMR. Results are expressed as mg/ml of SC ± SD. All experiments were performed in 

triplicate.  

Amount(mg/ml) 

Sampleb 
Cannabinoids 

HF NMR LF NMR 

1H NMR 19F NMR 19F NMR 

1 JWH-210 0.85 ± 0.03 -a - 

2  0.89 ± 0.04 - - 

3  1.12 ± 0.04 - - 

4 5F-MDMB PICA 18.38 ± 0.27 19.33 ± 0.27 18.41 ± 0.25 

5  17.23 ± 0.21 17.98 ± 0.11 17.31 ± 0.26 

6  15.23 ± 0.51 14.88 ± 0.36 14.28 ± 1.22 

7 5F-ADB 15.59 ± 0.21 15.60 ± 0.24 16.04 ± 0.61 

8  7.34 ± 0.07 7.73 ± 0.25 7.98 ± 0.17 

9  10.85 ± 0.36 11.71 ± 0.43 11.78 ± 0.51 

10 ADB FUBINACA 15.12 ± 0.22 15.36 ± 0.06 15.20 ± 0.48 

11  16.56 ± 0.31 17.83 ± 0.41 17.53 ± 0.44 

12  15.67 ± 0.25 16.29 ± 0.21 14.95 ± 0.13 

13 5F-AKB48 24.09 ± 0.03 24.05 ± 0.06 22.69 ± 0.48 

a JWH-210 without fluorine nuclei on the structure. 
b Sample numbering follows the list of Table IV - 3. 

 

As shown in Table IV - 4, thirteen e-liquid products contained various concentrations of 

SCs, sample 1-3 contained a significantly lower dose JWH-210 around 1 mg/mL, whereas 

sample 13 contained more than 20 mg/ml of 5F-AKB48. The contents of other fluorinated SCs 

including 5F-MDMB-PICA, 5F-ADB and ADB-FUBINACA were ranged between 7 to 20 

mg/ml in samples 4-12. Quantitative results of each sample by different approaches were 

verified with acceptable precision (RSD < 10 %). Furthermore, concerning the difference of 

qNMR results from three approaches (HF 1H NMR, HF 19F NMR and LF 19F), the two-way 

ANOVA analysis revealed no statistically significant differences (p > 0.05). The noticeable 

point is that JWH-210 as the second generation of SCs adulterated in smoking agents has been 

banned after 2010 in many countries, and the contents are obviously lower in samples 1-3 

involved in this research [20]. Whereas the newly emerged 3rd generation SCs of 5F-ADB [21], 

5F-AKB48 [22], 5F-MDMB PICA [23] and ADB FUBINACA [24] were detected to have a 

high order of content in illegal products. Such a higher content of newer SCs adulterated in e-

liquid products is alarming. Additionally, these 3rd generations SCs have a significantly higher 

CB1/CB2 binding potent than JWH-210 and predecessor THC (Table IV - 5), and 5F-AKB48 

also binds with nanomolar affinity to these receptors [25], which can pose a great health danger 
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to consumers. In 2018, 5F-ADB, ADB-FUBINACA and 5F-MDMB PICA were the first, third 

and fifth-most common synthetic cannabinoid identified in drugs seized by US-DEA, and 5F-

AKB48 was also noted in this list [26]. Therefore, the quality control of e-liquids containing 

illegal SCs becomes really important and urgent. 

Table IV - 5. EC50 values of different SCs 

Drug CB1 EC50 (nM) CB2 EC50 (nM) 

JWH-210 [27] 25.3 17.5 

5F-MDMB PICA [28] 0.45 7.4 

5F-ADB [28] 0.59 7.5 

ADB FUBINACA [29] 1.2 3.5 

THC [29] 172 -a 

a THC no CB2 agonist activity in the central nervous system. 

In this study, NMR as a powerful analytical method can bring both qualitative and 

quantitative information for quality control of SCs in e-liquid. A phenomenon is that the novel 

SCs usually have fluorinated structures, the reason is that the introduction of 19F into SCs can 

enhance the psychoactive potency, and also to evade the legal control imposed on specified SCs 

[21]. Thus, the increase of 3rd generation SCs including a large part of fluorinated SCs, allows 

proposing 19F NMR for screening samples liable to be adulterated with SCs. Moreover, 

concerning LF NMR application, even if LF 1H NMR quantitative analysis is difficult to 

implement in complex mixtures, LF 19F qNMR as an easy and robust quantitative method 

constitutes a relevant alternative for fluorinated SCs analysis. Thus, we think that LF NMR is 

a "low-cost" NMR method that could act an important role in the forensic lab. 

4. Conclusion 

In this study, 13 commercial e-liquid formulations were screened by both 1H and 19F NMR. 

HF 1H NMR was used for a holistic analysis of SCs and flavouring compounds in e-liquids, 

data were also confirmed by GC-MS. Moreover, the ability of benchtop LF NMR spectroscopy 

for both 1H and 19F nuclei was evaluated. To the best of our knowledge, this is the first study 

dealing with analysis of e-liquid containing SCs by using LF NMR. Even though 1H LF NMR 

has shown limits for quantitative applications particularly due to (i) huge gap of concentration 

between matrix and active compounds and (ii) signals overlaps, some typical signals can 

however be distinguished. The interesting novelty of the study is that LF 19F NMR can easily 

reach the quantification of fluorinated SCs without complex sample preparation and the need 
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of specific standard compounds. Thanks to the detection specificity of LF fluorine NMR, this 

study can open the way to routine detection of illicit fluorinated SCs in various matrices such 

as e-liquids, herbal blends or bath salts. 
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Conclusion and Perspectives 

This doctoral thesis aimed to explore the capabilities and limitations of benchtop LF NMR 

spectroscopy for quality control and fraud detection of complex mixture samples. 

In the first study dedicated to cinnamon samples analysis, we have shown that even though 

LF 1H NMR is less sensitive and spectra much less resolved than HF NMR, the specific signals 

of key compounds (E)-cinnamaldehyde and coumarin still can be assigned. Then, the 

combination of LF NMR data with multivariate PCA analysis has proven to be an interesting 

way for classification of cinnamon species and determines a quantification result of coumarin 

and (E)-cinnamaldehyde. For cinnamon dietary supplements, PCA was further used to identify 

samples with a relatively high content of coumarin. We have thus demonstrated that LF NMR 

can provide valuable clues on the quality control of cinnamon species. 

The second study focused on the quality control of herbal slimming dietary supplements. 

We have shown that LF NMR in combination with chemometric methods allowed detecting 

adulteration with pharmaceutical substances. According to the PLS-DA model built, samples 

containing sibutramine and/or phenolphthalein or non-adulterated samples were successfully 

classified. At last, two atypical samples were analyzed in order to discuss the limitation of the 

approach due to the poor spectral resolution.  

In the third study, LF NMR was applied to the analysis of synthetic cannabinoids in a 

complex matrix of e-liquid products. In that case, proton LF NMR allows detection of typical 

signals of synthetic cannabinoids and signals of flavouring compounds. The huge signal 

intensity difference between the matrix and target compounds was one major issue and the 

quantitative analysis of synthetic cannabinoids with LF 1H NMR couldn’t be reached. However, 

the interest of this study was to focus on the fluorine nucleus that allows detection and 

quantification of the fluorinated cannabinoids. 

Overall, in this thesis, benchtop LF NMR was explored as a simple analytical method for 

quality control of herbal products and e-liquids. Our study broadens the applications of LF 

NMR. Indeed, despite the low sensitivity of the technique and the complexity of mixtures 

analyzed, useful hints for chemical analysis can be obtained from LF NMR. In the case of herbal 

species discrimination and adulterants identification in commercial products, the proposed 
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analytical process and statistical approach could be useful for the first-line detection of products 

liable to be adulterated.  

We have shown that LF NMR spectroscopy can be applied for botanical species 

discrimination and adulterants detection in herbal products, there are still perspectives of this 

field.  

▪ Recent technological or sequence developments can be valuable in the field of LF NMR 

and help improve its potentials. For instance, pulsed field gradients implemented in 

some commercial LF NMR instruments are useful for solvent suppression or two-

dimensional NMR sequences. Moreover, ultrafast 2D NMR recently implemented 

enables the acquisition of a whole 2D spectrum, providing structural information within 

a single scan. A novel method to gain on the sensitivity of observed signals that can be 

applied to LF is to use hyperpolarization of nuclear spins. Indeed, the signal 

amplification by re-versible exchange (SABRE) is considered as a rapid and efficient 

method and can be applied to liquid samples under standard conditions with relatively 

cheap equipment. Finally, to increase the resolution of spectra, pure-shift method offers 

significant advantages to collapse a multiplet to a singlet in 1H NMR spectra. 

▪ The combination of LF NMR data with chemometric treatment is an effective and 

efficient way to overcome the relatively low sensitivity and the signals overlap. It allows 

chemists to classify complex samples and detect fake samples. Significant progress in 

this field will require implementation of share databases, as is done in HF NMR-based 

metabolomics. Then chemometrics or machine learning tools could eventually be used 

for recognition of spectral pattern of a targeted specie or of mixtures. 

▪ In analytical chemistry, the complementarity of techniques and their chemometric 

treatment in an “omic” manner is of course of great interest and has developed 

considerably over the last ten years. Recently, like compact NMR spectrometers, 

benchtop or portable equipment for GC-MS or LC-MS has appeared on the market. It 

can be envisaged that in future years, an efficient integrated analytical process with 

“low-cost” benchtop equipments may be proposed. 
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Résumé 

Introduction générale 

La Résonance Magnétique Nucléaire (RMN) est, outre une puissante méthode de 

détermination structurale, une technique analytique non sélective, qui peut se montrer 

particulièrement adaptée à des applications de contrôle qualité comme par exemple pour 

l'analyse de produits naturels. Comparée à des méthodes chromatographiques de routine, la 

RMN peut fournir à la fois des informations structurales et des résultats quantitatifs. De plus, 

c'est une méthode robuste et non destructrice qui nécessite une préparation d'échantillon 

relativement simple, ce qui la rend bien adaptée à l'analyse directe de milieux complexes tels 

que des produits alimentaires, des extrait de produits naturels, des médicaments ou d'autres 

formulations [1-3]. 

Cependant, le coût élevé des spectromètres RMN à haut champ et de leur maintenance 

cryogénique limite leur utilisation pour l'analyse chimique de routine. La commercialisation 

récente de spectromètre RMN de paillasse à bas champ (LF) pourrait être une alternative 

intéressante pour pallier à ces inconvénients [4, 5]. En effet, bien que les spectres soient moins 

bien résolus, la RMN LF, avec un appareillage nécessitant peu de maintenance et une facilité 

d'utilisation, peut offrir aux analystes des performances suffisantes pour résoudre certaines 

problématiques d'analyse. Elle ouvre ainsi de nombreuses perspectives d'application, en 

particulier comme méthode peu onéreuse de screening rapide. Pour les échantillons les plus 

complexes, des analyses statistiques multivariées des données spectroscopiques peuvent être 

mise en œuvre pour  extraire des informations pertinentes [4-6]. 

Les travaux réalisés au cours de cette thèse portent sur l’exploration de la RMN LF de 

paillasse comme outil d’analyse pour le contrôle qualité de matrices complexe, comme des 

compléments alimentaires ou des mélanges contenant des molécules psychoactives. Le but de 

ces recherches est d’identifier et de quantifier toutes les substances actives, naturelles ou 

synthétiques pouvant être présentes dans ces milieux. 

Les préparations ou compléments alimentaires à base de plantes sont devenus 

incontournables en raison des préoccupations grandissantes des consommateurs pour leur santé 

et de l'image positive des produits naturels. Cependant, il est courant, sur ce marché très lucratif, 
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de trouver des produits falsifiés avec, par exemple, des informations d'étiquetage erronées sur 

leur origine ou sur les ingrédients présent.  

 La première étude porte sur la cannelle qui est une épice très appréciée pour sa saveur 

aromatique et ses possibles bienfaits sur la santé [7, 8].  Il existe principalement deux espèces 

de cannelle : la vraie cannelle de Ceylan ou Cinnamomum verum (C. verum) et la Cannelle 

Casse ou Cinnamomum cassia (C. cassia). Les deux espèces sont largement commercialisées, 

avec une très large prédominance sur le marché de la cannelle Casse à cause de son prix plus 

bas lié aux nombreuses plantations de cette espèce à travers le monde [9]. Elle remplace 

fréquemment la C. verum lors de la conception des produits à base de cannelle sans que le 

consommateur en soit informé. La C. cassia, contient une teneur plus élevée en coumarine que 

la C. verum dans laquelle elle est présente sous forme de trace (0.004% m). Une consommation 

excessive de cette molécule peut entrainer l’apparition d’une hépatotoxicité [7]. Le contrôle et 

l’authentification de la cannelle commercialisée sous forme d’épice ou de complément 

alimentaire, est donc très importante pour la santé du consommateur et nous nous sommes 

intéressés à ces deux catégories d'échantillons.  

La deuxième étude est axée sur  un exemple plus sérieux de falsification. En effet, dans 

certains cas, des fabricants peu scrupuleux ajoutent frauduleusement des molécules 

synthétiques pharmacologiquement actives pour améliorer l'efficacité d'un complément 

alimentaire [5, 10]. Un complément alimentaire est défini comme une denrée alimentaire, 

constituée de produits naturels dont le but est de compléter un régime alimentaire normal, mais 

l’adultération des compléments alimentaires est devenue ces dernières années un problème de 

santé publique [11]. Le contrôle de la qualité de ces produits à base de plantes est donc d’un 

intérêt majeur. Dans ce contexte nous avons utilisé la RMN LF comme outil pour la détection 

de produit frauduleux pour une catégorie de compléments alimentaires dit de « confort », les 

amaigrissants. 

Le dernier projet porte sur l’analyse des produits utilisés pour le vapotage, les e-liquides, 

qui se vaporisent sous forme d'aérosol à inhaler lorsque la cigarette électronique est activée [12, 

13]. Le marché des cigarettes électroniques étant mal contrôlé dans de nombreux pays, il est 

fréquent de trouver en plus de la composition de base en propylène glycol, glycérol et eau, des 

molécules actives ajoutées, comme par exemple des cannabinoïdes de synthèse (SCs). Ce sont 

ces substances, qui solubilisées dans un e-liquide, vont produire des effets psychoactif sur le 

consommateur. De nombreux cas ont déjà été reporté sur l’utilisation de ces SCs [14-16]. Nous 
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avons réalisé une étude par RMN LF pour identifier et quantifier les SCs dans une optique de 

contrôle ou recherche de produits illicites dans ces e-liquides. Lors de cette étude, certaines 

limites de la RMN LF 1H ont été atteintes mais la RMN LF 19F a montré un fort potentiel pour 

l’analyse de SCs fluorés. 

Ce mémoire débute par  une introduction générale. Il se poursuit par le Chapitre 1, une 

partie bibliographique qui présente l'application de la RMN LF pour le contrôle de la qualité 

des produits à base de plantes et la détection des fraudes. Ce chapitre décrit la classification et 

la composition des espèces de cannelle, introduit le problème des adultérations dans les 

compléments alimentaires amaigrissants et présente la problématique des canabinoïdes de 

synthèse détectés dans des produits récréatifs. Tous ces sujets sont présentés en décrivant les 

méthodes analytiques couramment utilisées. Les Chapitre 2 et 3 présentent respectivement le 

contrôle de la qualité des produits commerciaux à base de cannelle et des compléments 

alimentaire amincissants à base de plantes. Le Chapitre 4 décrit la détection de cannabinoïdes 

de synthèse dans des e-liquides en utilisant la RMN du proton et du fluor, sur des spectromètres 

à haut et bas champ. Enfin, une conclusion générale avec des perspectives termine ce manuscrit. 
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Chapitre I Etude bibliographique 

1.1 RMN à bas champ pour le contrôle qualité  

Les spectromètres de paillasse modernes sont commercialisés avec des intensités de champ 

magnétique faibles correspondant à des fréquences de résonance de 40 à 100 MHz. Grâce à un 

ensemble d'évolutions techniques (aimants, électronique, séquence), les spectromètres RMN 

LF offrent actuellement aux analystes une facilité d'utilisation et  des performances 

satisfaisantes. Ils permettent des contrôles de routine, sur un appareillage peu encombrant, pour 

un cout relativement bas et sans maintenance cryogénique [4-6]. En effet, de nombreuses 

applications récentes de RMN LF ont décrit le contrôle qualité de différentes matrices dont des 

huiles alimentaires [17], de la viande [18], des médicaments [19] ou des compléments 

alimentaires [5]. 

Bien sûr, la RMN LF a une résolution spectrale inférieure à la RMN conventionnelle et 

l'attribution des signaux ainsi que l'identification des composés peut devenir délicate dans des 

mélanges complexes ou des extraits de plantes. Cependant, il est souvent possible de repérer un 

ou plusieurs signaux caractéristiques et ainsi d'obtenir des informations pertinentes. Un 

traitement des données RMN LF par des analyses chimiométrique supervisées ou non 

supervisées, comme par exemple l’analyse en composantes principales, va permettre 

d’identifier les similitudes et les différences entre les échantillons malgré la complexité de ces 

mélanges [18, 20, 21]. 

1.2 Cannelle: de la composition à l'authentification 

Comme décrit précédemment, il existe principalement deux espèces de cannelle (Fig I-1) 

utilisées dans le monde. La cannelle Casse (C. cassia) est l'espèce la plus largement répandue 

et donc la moins chère. Toutefois, elle contient une teneur significativement plus élevée en 

coumarine hépatotoxique que la vraie cannelle de Ceylan (C. verum) et la question de 

l'authenticité de la cannelle est donc un point important pour contrôle de la qualité des produits 

à base de cannelle [22]. 
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Fig I-1. Deux espèces de cannelle, C. verum (à gauche) et C. cassia (à droite). 

La cannelle contient divers composés aromatiques tels que le (E)-cinnamaldéhyde, 

l'eugénol, l'acide cinnamique et le cinnamate, l'ensemble des composés contribuent à l'arôme et 

au goût épicé spécifique de la cannelle [23]. Durant les vingt dernières années, différents 

bienfait ou propriétés thérapeutiques ont été rapportés pour le cinnamaldéhyde et les autres 

composants de la cannelle comme des effets antioxydants [24], antidiabétiques [25], anti-

inflammatoires [26], antibactériens [27], antifongiques [28] et même anticancéreux [29].  

Les chromatographies liquides (HPLC) et gazeuses (GC) couplées ou non avec la 

spectrométrie de masse ou d'autres méthodes de détection sont les méthodes qui ont été 

principalement utilisées pour le contrôle de la qualité des produits à base de cannelle. Les 

résultats ont montré que les échantillons de C. verum ne contenaient que des traces de 

coumarine (<0.004%) alors que les C. cassia en contenaient des quantités substantielles (≈0.1-

12%). Seules quelques études ont proposé d’utiliser la RMN comme méthode d’analyse de la 

cannelle. Killday et al ont quantifié les principaux composés aromatiques présents dans des 

échantillons de cannelle en poudre et dans des compléments alimentaires par RMN du proton 

à 600 MHz [8]. Dans une autre étude, les analyses chimiométriques des données RMN 1H ont 

été effectuées pour distinguer les échantillons d'écorce de C. verun et de C. cassia. Une analyse 

supervisée OPLS-DA des signaux RMN a montré que l'eugénol était un marqueur de C. verum 

et que les acides gras étaient présents en plus grande quantité dans les échantillons de C. cassia 

[1]. 

1.3 Compléments amincissants à base de plantes et adultération 

Les compléments alimentaires amincissants à base de plantes sont souvent annoncés 

comme 100% naturels, efficaces pour la perte de poids et sont généralement considérés par les 

consommateurs comme sans danger pour la santé [5, 30]. Cependant, de nombreux cas 

d'adultération avec des substances actives ont été rapportés. Ces ajouts sont réalisés de manière 

intentionnelle dans le but d'améliorer l'efficacité du produit commercialisé. Des adultérants de 
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diverse nature ont déjà été identifiés comme des anorexiques, des anxiolytiques, des 

antidépresseurs, des laxatifs ou des diurétiques présents seuls ou parfois en mélange [31, 32]. 

La sibutramine est un médicament anorexique qui est couramment détecté dans les 

compléments alimentaires amaigrissants. Il a été retiré du marché en 2010 à cause du risque 

d'accident cardiaque lié à ses effets secondaires comme la forte augmentation de la tension 

artérielle et de la fréquence cardiaque chez les patients ayant consommé régulièrement cet 

molécule [33]. La phénolphtaléine est la seule substance laxative identifiée dans les 

formulations amincissante. Elle est souvent associée à la sibutramine pour induire un effet 

amincissant significatif à court terme [34]. Les effets de la phénolphtaléine peuvent être graves 

pour la santé avec notamment des risques de cancers [35-37]. D'autres adultérants ont également 

été signalés dans les compléments alimentaires amincissants comme la fluoxétine [30], l'orlistat 

[10, 30], la caféine [11, 35], la fenfluramine [34, 35], le sildénafil [30, 34] ou  la lorcaserine 

[38]. 

Outre le couplage chromatographie-spectrométrie de masse  (LC/MS  ou LC-MS/MS), la 

RMN et en particulier la RMN 1H HF, peut être utilisée pour la détection et la caractérisation 

structurale des adultérants dans les compléments alimentaires amincissants [30]. Une première 

étude réalisée par Pagès et al a évalué les capacités d'une RMN de paillasse à 60 MHz pour 

identifier les adultérants pharmaceutiques dans des compléments alimentaires. La sibutramine 

et la phénolphtaléine ont été facilement détectées après une préparation simple et rapide des 

échantillons [5]. 

1.4 Cannabinoïdes synthétiques et ajouts illicites dans les produits 

commerciaux 

En raison d'un cadre strict de régulation interdisant dans de nombreux pays la  vente et la 

consommation de cannabis, des cannabinoïdes synthétiques (SCs) utilisés comme produits 

récréatifs psychoactifs ont fait leur apparition ces dernières années dans les produits pour 

fumeurs ou dans d’autres formulations [39-42]. La Fig I-2 présente des mélanges de plantes et 

d’e-liquides à vapoter contenant des SCs. Certaines préparations contiennent des SCs ajoutés 

par imprégnation dans des mélanges d'herbes ou les mélangent directement avec la matrice dans 

le cas des e-liquides. Les SCs peuvent avoir des structures proches des cannabinoïdes naturels 

comme le THC ou des structures totalement différentes. Ils ont cependant tous des activités 

pharmacologiques similaires et une forte affinité pour les récepteurs CB1 et / ou CB2 [14]. 
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Certain SCs peuvent être plus dangereux que la THC, comme par exemple le SC HU-210 avec 

une action 100 à 800 fois plus puissante que le THC [43]. Afin d'échapper à la réglementation, 

de nombreux SCs ont été synthétisés. Il existe à l’heure actuelle, trois générations de composés 

et plus de sept familles structurales [39, 41, 44].  

 

                 

Fig I-2. Exemple de produits commerciaux contenant des SCs: à gauche, mélanges à base de plantes [45]; à 

droite, e-liquides [46].  

En raison de la diversité et de l’évolution rapide des structures des SCs ainsi que de 

l'absence de données publiées, la détection de ces composés est devenue un challenge pour les 

analystes. La RMN est une technique de choix, puisqu’elle fournit à la fois des informations 

structurales et quantitatives. Elle peut être utilisée en complément ou être une alternative aux 

méthodes chromatographiques couplées ou non à la spectrométrie de masse. Si la RMN HF a 

déjà été largement utilisée pour la caractérisation structurales de SCs, peu d'étude ont à notre 

connaissance été réalisées par  RMN LF [4, 47]. 
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Chapitre II Évaluation de la spectroscopie RMN du proton à bas champ 

pour le contrôle de la qualité d'échantillons de cannelle 

Dans cette étude, 28 échantillons, 14 épices et 14 compléments alimentaires ont été 

analysés par RMN HF (400 MHz) et LF (60 MHz). La RMN HF a été utilisée comme méthode 

de référence à la fois pour réaliser une analyse qualitative et quantitative des principaux 

constituants. Ensuite, le potentiel de la RMN LF comme outil de contrôle pour la qualité des 

échantillons de cannelle a été évalué.  

2.1 Profilage RMN des échantillons 

Après des essais préliminaires de préparation des échantillons et d'analyse, le méthanol 

(MeOH-d4) a été choisi comme solvant d’analyse car il permettait d'obtenir un très bon taux 

d'extraction avec une préparation simple des échantillons. Tous les échantillons ont été analysés 

par RMN HF à partir de prises d'essais de 15 et 100 mg de poudre. La prise d'essai de 15 mg 

permet de réaliser une extraction complète des molécules les plus abondantes (≈ 97%) et celle 

de 100mg permet de quantifier les molécules les moins abondantes (≈ 0.1-1 mg/g de poudre). 

Pour les analyses par RMN LF, seule la pesée à 100 mg a été considérée en raison de la 

sensibilité plus faible de l’appareil. 

La Fig II-1(A) présente le spectre RMN HF du proton d'un échantillon de cannelle 

présentant les attributions des principaux signaux, en particulier celles des composés 

aromatiques : le (E)-cinnamaldéhyde avec le H1 de la fonction aldéhyde à 9,66 ppm, la 

coumarine avec les protons éthyléniques H3 et H4 à 6,42 et 7,94 ppm, l'acide (E)-cinnamique, 

le o-méthoxy-cinnamaldéhyde et l'alcool cinnamylique. D'après ces profils RMN, quatre 

compléments alimentaires ne contenaient pas de cannelle (ou à l'état de trace) contrairement à 

ce qui était annoncé sur la notice. L'eugénol qui est un marqueur de C. verum [1, 48], a été 

identifié et quantifié dans 5 échantillons, tandis qu'aucun signal de la coumarine n'a été détecté 

dans ces mêmes échantillons, permettant de le classer dans la famille de la vraie cannelle C. 

verum. Les échantillons contenant un niveau détectable et quantifiable de coumarine (16 au 

total) ont été considérés comme appartenant à la famille des C. cassia sans classification plus 

précise selon l'origine géographique ou l'espèce. Enfin 3 échantillons n’ont pu être classés à 

partir des données RMN, dans la mesure où seul le (E)-cinnamaldéhyde a été détecté. La Fig 

II-1(B) présente le spectre RMN LF du même échantillon de cannelle. Les signaux des protons 
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H1 et H2 du (E)-cinnamaldéhyde ainsi que les protons H3 et H4 de la coumarine ont pu être 

facilement identifiés. 

 

Fig II-1. Spectres RMN 1H HF (A) et LF (B) d’un échantillon de cannelle mettant en évidence 

les principaux signaux des composés aromatiques. La durée d'enregistrement était de 8 min à 

HF et de 2 h à LF. 

L'analyse quantitative n’a pu être réalisée avec précision en RMN LF. En effet, la perte de 

sensibilité par rapport à la RMN HF, nous oblige, pour rester dans des temps d’analyse corrects, 

de travailler avec des quantités plus importantes de poudre (100 mg). La perte de résolution va 

également entrainer des difficultés pour l’intégration des signaux RMN, puisque en plus des 

superpositions de signaux plus fréquentes qu’à HF, certain signaux d’intérêt, comme les protons 

H3 et H4 de la coumarine, résonnent sous forme d’un système AB. Enfin, lors du traitement 

des spectres, la correction de la ligne de base est délicate et aura un impact plus important sur 

les résultats à cause du plus faible rapport signal sur bruit des signaux. Nous avons néanmoins 

choisi d'enregistrer les profils RMN LF de tous les échantillons dans des conditions 

expérimentales non quantitatives puis d'appliquer un traitement statistique pour proposer une 

pseudo-quantification des 2 composés principaux.  
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2.2 Classification des échantillons de cannelle par RMN LF 1H combinée à la 

chimiométrie 

Dans un premier temps, une ACP a été générée à partir de la région des protons oléfiniques 

et aromatiques (5.7-11 ppm) des spectres RMN LF de tous les échantillons commerciaux (Fig 

II-2A). Sur la base de l'analyse quantitative HF, trois classes d'échantillons ont été colorées sur 

le score plot de l’ACP: en rouge, les échantillons qui ne contiennent ni (E)-cinnamaldéhyde ni 

coumarine, en bleu les échantillons classés comme C. verum, c'est-à-dire sans coumarine mais 

contenant de l'eugénol et enfin en vert, tous les autres échantillons. On peut remarquer une très 

bonne séparation de ces 3 classes avec le regroupement des échantillons de C. verum et une très 

grande dispersion des échantillons verts, liée aux proportions très variables de coumarine et de 

(E)-cinnamaldéhyde. 

Le deuxième score plot (Fig II-2B) est uniquement basé sur l’analyse statistique d’une 

partie des doublets H3 et H4 de la coumarine. On distingue le regroupement des échantillons 

bleus et rouges dans lesquels la coumarine n'a pas été détectée. Dans le groupe vert, on distingue 

2 échantillons, dans la partie inférieure droite du score plot le long du premier axe, qui ont une 

quantité plus élevée de coumarine ce qui est en accord avec la quantification à HF (5.4 et 6. 

mg/g) et 2 autres échantillons atypiques situés dans la partie supérieure droite du score plot, le 

long de l’axe 2, en raison de la quantité importante d'acide cinnamique (3.74 et 4.10 mg/g) dont 

le signal du proton H2 se superpose avec celui du proton H3 de la coumarine. 

 

Fig II-2. (A) Score plot 3D de l’ACP générée avec les signaux de la région 5.7 et 11 ppm pour 

tous les échantillons. (B) Score plot de l’ACP générée avec une partie des signaux de la 

coumarine. 
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Par la suite, nous avons proposé de créer une gamme de quantification, focalisée sur des 

signaux spécifique du (E)-cinnamaldéhyde (H1) ou de la coumarine (composante gauche du 

H4). Pour cela, nous avons fait l’enregistrement des spectres LF de solutions standards de ces 

2 composés à des concentrations correspondant à des quantités réelles dans les échantillons 

commerciaux. Nous avons généré une ACP à partir de ces données (appelées données 

d’entrainement) puis projeté les spectres des échantillons commerciaux (appelés données tests) 

sur le score plot de cet ACP. Les résultats sont présentés sur la Fig II-3. Les score plots (A) et 

(B) montrent l’organisation des échantillons standards du (E)-cinnamaldéhyde et de la 

coumarine partant des plus faibles concentrations (à gauche du score plot) aux concentrations 

les plus élevées (à droite du score plot). Ainsi une gamme de concentration a pu être crée, de 0 

à 30 mg/g pour le (E)-cinnamaldéhyde et de 0 à 6 mg/g pour la coumarine. Le score plot (C) et 

(D) de la Fig II-3 représente la projection des données tests, sur le score plot précédent, 

permettant ainsi le classement des échantillons commerciaux en fonction de leur teneur en (E)-

cinnamaldéhyde ou en coumarine. Ils vont se positionner dans la gamme de concentration 

établie, ce qui permet d'atteindre une pseudo-quantification des composés ciblés. 

 

Fig II-3. Classification des échantillons à partir des données RMN LF. Les score plots des ACP 

ont été construits à partir des spectres RMN LF de solutions de standard de (E)-cinnamaldéhyde 

(A) et de coumarine (B). Les score plots (C) et (D) montrent la projection des échantillons 

commerciaux sur les score plots générés en (A) et (B) respectivement. (E) projection des 

compléments alimentaires sur le score plot généré en (B) selon la posologie recommandée. Les 

limites hépatotoxiques (0.1 mg / kg) pour un poids corporel de 60 à 80 kg sont indiquées en 

rouge. 
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Les résultats observés sont en bonne adéquation avec les quantifications obtenues par 

RMN HF. Par exemple, les deux échantillons 2 et 11 qui contiennent le plus de (E)-

cinnamaldéhyde (36,1 et 32,5 mg/g respectivement) se localisent au-delà des 30 mg/g sur le 

score plot (Fig II-3C). Les échantillons 13, 1 et 25 contenant 10.8, 15.8 et 20.0 mg/g se 

retrouvent dans la classe 10-20 mg/g. Enfin les échantillons en rouge qui ne contiennent pas de 

(E)-cinnamaldéhyde, se retrouvent au niveau de la limite de 0 mg/g sur le score plot. La même 

approche a été réalisée sur la coumarine et les résultats sont reportés sur la Fig II-3D. Tous les 

échantillons dépourvus de coumarine (rouge et bleu) se trouvent sur la limite 0 mg/g. La quasi-

totalité des échantillons commerciaux contiennent moins de 4 mg/g de coumarine, à l'exception 

des deux échantillons 2 et 11 qui ont des concentrations proches à 6 mg/g. Ces résultats sont en 

accord avec les valeurs de quantification obtenues à HF. 

Enfin, la figure Fig II-3E propose une classification limitée aux compléments alimentaires 

et  prenant en compte la consommation journalière recommandée sur les notices. Les deux 

échantillons mis en évidence peuvent présenter des risques pour le consommateur (27 et 28) 

car la dose ingérée de coumarine par jour (7,7 et 8,4 mg) se situe au-delà de la limite 

hépatotoxique (0.1 mg/kg par jour) en prenant un poids corporel de référence de 70 kg (7 mg 

par jour). 

Conclusion 

Dans ce projet, nous avons utilisé la RMN LF comme technique de contrôle de la teneur 

en (E)-cinnamaldéhyde, composé majoritaire de la cannelle et surtout de la coumarine, composé 

à risque, permettant ainsi de contrôler la qualité de l’échantillon. Malgré l’indentification de 

signaux caractéristiques pour ces 2 composés, la quantification s’est avérée trop délicate dans 

des conditions raisonnables d’enregistrement des expériences. Nous avons alors utilisé 

l’approche chimiométrique pour créer une gamme de quantification et classer nos échantillons. 

Ces résultats ont permis de mettre en évidence le potentiel du couplage de la RMN LF et des 

analyses statistiques comme outils de contrôle peu onéreux et relativement simple d’utilisation 

pour des mélanges complexes à base de plantes. 
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Chapitre III RMN à bas champ et analyse chimiométriques pour 

détecter l'adultération de compléments alimentaires amincissants  

Dans cette étude, après une préparation simple et rapide des échantillons, 66 

compléments alimentaires amincissants ont été analysés par RMN LF 1H. L'analyse des 

données spectrales RMN LF 1H par une approche chimiométrique a été mise en œuvre pour 

détecter la présence d'adultérants.  

3.1 Analyse RMN LF 1H 

Dans un premier temps, les spectres RMN 1H de tous les compléments alimentaires 

ont été enregistrés dans du méthanol deutéré. Même si la résolution des spectres RMN LF 

1H est relativement faible, les principaux signaux, caractéristiques de la sibutramine et de 

la phénolphtaléine, ont été facilement détectés dans les groupe S (adultéré par de la 

sibutramine), P (adultéré par de la phénolphthaléine) et PS, ce dernier contenant à la fois 

de la sibutramine et de la phénolphtaléine. La Fig III-1 montre les spectres typiques des 

quatre classes de compléments alimentaires analysés. La sibutramine a été identifiée dans 

les échantillons S5 et PS2 par les signaux de ses protons aromatiques à 7.41 ppm et de ses 

groupes méthyles à 2.49 et 1.02 ppm. De même, les protons aromatiques de la 

phénolphtaléine donnent un motif caractéristique entre 6.5 et 8.0 ppm qui a été observé 

dans les échantillons P1 et PS2. Enfin, l'échantillon N5 est un complément alimentaire sans 

adultérant et, à l'exception des signaux de la référence et du solvant, seul les protons des 

d'acides gras d'extraits de plantes ont été facilement détectés, comme les CH2 à 1.27 ppm. 

Des signaux mineurs de protons aromatiques de polyphénols ou d'autres composés naturels 

ont également été détectés dans certains échantillons.  
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Fig III-1. Spectres RMN LF 1H typiques de compléments alimentaires amaigrissants 

enregistrés à 60 MHz (N, groupe non adultéré (naturel); S, groupe adultéré à la sibutramine; 

P, groupe adultéré à la phénolphtaléine; PS, groupe adultéré à la fois par la sibutramine et 

par la phénolphtaléine). Ph: Phénolphtaléine; Sib: Sibutramine; FA: acides gras; TSP: 

référence interne; *: CD2HOD. 

3.2 Analyse chimiométrique 

Des analyses statiques supervisées ont permis de construire un modèle valide de PLS-DA 

à partir des données issues des spectres RMN LF 1H de tous les échantillons. Les valeurs 

YpredPS, qui indiquent la probabilité d’un échantillon d’appartenir à une classe, sont reportées 

sur la Fig III-2. Les échantillons (N), (S) et (P) (n = 40), dont le contenu était précédemment 

connu [30], ont été pris en compte pour générer le modèle et pour définir le seuil de valeur Y 

entre les compléments alimentaires  adultérés et non adultérés. Les échantillons PS et treize 

échantillons (T) nouvellement achetés ont été testés en nous basant sur ce modèle. Nous avons 

pu classer l’ensemble des échantillons avec succès  dans les groupes des « naturels », YpredPS > 

0,45, « adultérés », YpredPS < 0,30 ou « limites » avec des valeurs YpredPS entre 0,30 et 0,45. 

Tous les échantillons PS qui contienne un mélange sibutramine et phénolphtaléine ont tous été 

classés comme « adultérés ». Pour les nouveaux échantillons testés, 4 sont classés comme 

adultérés, 2 limites et tous les autres sont naturels (YpredPS < 0,18). L’analyse des spectres a 

permis de confirmer ces résultats. 
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Fig III-2. Valeurs-Y prédites (YpredPS) obtenues pour les 66 compléments alimentaires  

analysés sur la base du modèle PLS-DA à deux classes comparant des échantillons naturels (N) 

à des échantillons adultérés (échantillons (P) et (S) considérés ensemble comme une seule 

classe d'échantillons adultérés). PS, groupe sibutramine et phénolphtaléine adultéré; T: 

échantillons test (nouvellement achetés) ; X: échantillons atypiques. 

Cette classification a ensuite été affinée avec un nouveau modèle construit à partir des 

mêmes 40 compléments alimentaires mais en considérant cette fois trois classes distinctes (non 

adultérés, adultérés par de la sibutramine et adultérés par de la phénolphtaléine). Le score plot 

de cette PLS-DA à trois classes (Fig III-3A) montre une discrimination claire entre les trois 

familles, les non adultérés sont tous regroupés alors que ceux de la classe P et S sont plus 

éparpillés en raison de leur concentrations très variables en sibutramine et phénolphtaléine. Par 

la suite les trois autres familles ont été projetées sur ce modèle. L’ensemble des PS se localisent 

entre le groupe P et S sur le score plot (Fig III-3B) indiquant clairement la présence de 

sibutramine et de phénolphtaléine dans ces échantillons. Pour les échantillons T, les 7 

précédemment classés comme naturel, se localise bien dans le groupe N (Fig III-3C). Pour les 

4 adultérés, 3 contiennent de la sibutramine et un de la phénolphtaléine. Pour les 2 échantillons 

classés « limite », ils ont pu être classés dans la famille des adultérés avec la présence de 

phénolphtaléine. On peut noter cependant une limite de cette approche illustrée par les exemples 

des deux compléments alimentaires atypiques X1 et X2. Ces échantillons apparaissent comme 

adultérés lorsque l'on considère leurs valeurs YpredPS (0.65 pour X1 et 0.63 pour X2) (Fig III-

2). De plus, la projection de leurs spectres RMN LF 1H dans le deuxième modèle de PLS-DA 

indique que ces échantillons sont adultérés, par de la phénolphtaléine pour X1 et de la 
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sibutramine pour X2 (Fig III-3D). En fait, chacun de ces échantillons contenait respectivement 

de la fluoxétine et de la "cétone de framboise". Les signaux de ces composés sont partiellement 

superposés avec les principaux signaux aromatiques de la sibutramine et de la phénolphtaléine 

dans les spectres LF, les classant par erreur dans les groupes S et P. Cependant, au regard des 

spectres, les profils de ces deux molécules étaient différents de ceux des adultérants analysés. 

Dans ce cas, le screening à l'aveugle mène à une mauvaise classification des échantillons, mais 

l'examen attentif des spectres permet de corriger cette erreur. 

 

Fig III-3. (A) Score plot du modèle PLS-DA (Q2 0,66, R2Y 0,74)à trois classes construit à 

partir des spectres RMN LF 1H des échantillons N (non adultéré), S (adultérés avec de la 

sibutramine) et P (adultérés avec de la phénolphtaléine). Les score plots (B), (C) et (D) 

montrent la projection des échantillons PS (adultérés à la fois avec la sibutramine et la 

phénolphtaléine), T (échantillons tests) et X (échantillons atypiques) respectivement sur le 

modèle construit (A). 
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Conclusion 

Dans ce projet, nous avons montré que malgré les limites de la RMN LF nous avons pu, 

avec succès, appliquer la RMN LF pour le contrôle de la qualité des compléments alimentaires 

amaigrissants. En effet, les concentrations importantes en adultérants permettent de pallier au 

problème de sensibilité alors que le manque de résolution spectrale est compensé par 

l'utilisation de méthodes chimiométriques. Un screening rapide (facilité de préparation des 

échantillons, acquisition inférieure à 20 min) par RMN LF pourrait être considéré comme une 

technique de première ligne pour l’analyse de formulations amincissantes. Des analyses 

chimiomètriques permettront de classer rapidement ces échantillons comme propres à la 

consommation, frauduleux  ou nécessitant des analyses plus approfondies. 
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Chapitre IV Analyse de cannabinoïdes de synthèse dans les e-liquides 

par RMN RMN 1H et 19F.  

Le but de cette étude était d'évaluer la capacité de la RMN à bas champ pour l'analyse de 

cannabinoïdes dans les e-liquides, à la fois pour leur détection et leur quantification. 

Probablement du fait de la complexité de la matrice, il n'est à notre connaissance, pas reporté à 

ce jour d'analyses quantitatives de cannabinoïdes dans des e-liquides, ni par RMN ni par d'autres 

méthodes. Cette étude a porté sur 13 échantillons fournis par le laboratoire SCL de Massy des 

douanes. Nous avons mis en œuvre des analyses RMN haut champ et bas champ complétées 

par des analyses GC-MS. 

4.1 Analyse qualitative des e-liquides  

4.1.1 Analyse par RMN 1H HF 

Les spectres RMN HF 1H des 13 échantillons ont permis de détecter en première approche 

les signaux intenses de la matrice. La Fig IV-IA montre le spectre RMN HF 1H complet d'un 

échantillon d'e-liquide (3) avec l’attribution des signaux majoritaires du propylène glycol et du  

glycérol. Les signaux d'éthylène glycol, de polyéthylène glycol ou encore d'éthanol ont 

également été détectés dans la matrice, pour certain échantillons. La présence d'éthanol dans 

les e-liquides augmente la solubilité des SC et des arômes dans la matrice et peut 

considérablement réduire la viscosité du glycérol, améliorant la formation de l'aérosol pour 

l'inhalation [46].  
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Fig IV-I. Spectres RMN 1H  de e-liquides (400 MHz, méthanol-d4) (A) Spectre complet de 

l'échantillon 3 (B) Partie éthylénique aromatique (5.7-10.2 ppm) de 5 spectres de e-liquides 

contenant différents SCs. EM: Ethyl maltol, V: vanilline, RK: Raspberry ketone (cétone de 

Framboise), Lin: Linalol. 

L’analyse des  spectres RMN a permis  de mettre en évidence les signaux des SCs 

psychoactifs. Cinq SCs dont les structures sont présentées dans la figure Fig IV-1 ont été 

détectés dans ces échantillons: JWH-210 (échantillons 1-3), 5F-MDMB-PICA (échantillons 4-

6), 5F-ADB (échantillons 7-9), ADB-FUBINACA (échantillons 10-12) et 5F-AKB48 

(échantillon 13). Ils possèdent des éléments structuraux cycliques de type indole ou indazole et 

divers subtituants comme les groupes carboxamide, chaînes alkyles etc. On peut remarquer que 

quatre de ces cannabinoïdes sont fluorés. 
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Fig IV-1. Structure chimique des cannabinoïdes de synthèse (SCs) détectés dans les e-liquides. 

Des signaux caractéristiques avec des déplacements chimiques et des multiplicités proches 

sont observés pour les protons indazole (H4, H5, H6 et H7) du 5F-ADB, ADB FUBINACA et 

5F-AKB48 tandis que les signaux du cycle indole (H2, H4, H5, H6 et H7) dans JWH-210 et 

5F-MDMB PICA ont une signature spectrale différente. Pour les SCs portant un fluor sur la 

chaîne alkyle, un triplet dédoublé est observé pour le H5'' dû aux couplages avec le noyau fluor 

(2JHF) et avec le méthylène voisin (3JHH). Les caractéristiques RMN observés pour ces SCs 

étaient en adéquation avec celles récemment publiées [19, 49-51]. 

Outre la matrice et les SCs, les autres signaux RMN détectables dans ces échantillons de 

e-liquides sont ceux d'ingrédients utilisés pour aromatiser ces préparations. Nous avons ainsi 

pu détecter et identifier des signaux du limonène, de la vanilline, de l’'éthyl maltol, de la cétone 

de framboise, de l’'alcool méthoxybenzylique, du linalol ou encore du menthol. 

Nous ne présenterons pas ici les résultats de GC-MS qui complètent nos analyses 

qualitatives par RMN et confirment l'identification des composés. 

4.1.2 Analyse par RMN 1H LF 

L'analyse par RMN 1H LF à 60 MHz, montre qu’une partie des signaux d'intérêts sont 

altérés par les signaux intenses de la matrice, en particulier dans la région des basses fréquences 

(0.5-4.5 ppm). La comparaison des spectres à haut et bas champs pour un même échantillon est 

présentée dans la Fig IV-2 ci-dessous. Même si certains signaux ou profils caractéristiques 
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peuvent être identifiés aussi bien pour les SCs que pour des composés de types arômes, nous 

avons jugé que dans cette application pour laquelle nous visions une analyse quantitative, la 

RMN 1H à bas champ ne permettait pas d'atteindre cet objectif et nous n'avons pas poursuivi 

nos investigations. 

 

Fig IV-2. Comparaison d’un spectre RMN 1H à 400 MHz et à 60 MHz s pour l'échantillon 8 

dans CD3OD. EM: ethyl maltol, V: vanilline, RK: raspberry ketone (Cétone de Framboise), Lin: 

Linalol. 

4.1.3 Analyse par RMN du fluor-19 

Les SCs fluorés détectés dans les e-liquides peuvent être analysés par RMN 19F. Les 

spectres ont été enregistrés pour tous les échantillons sur les spectromètres HF et LF à 

respectivement 376 et 56,2 MHz. Les spectres sans découplage du proton sont présentés dans 

la Fig IV-3. Du trifluorotoluène a été ajouté dans tous les échantillons comme référence de 

déplacement chimique (-63,7 ppm) et de quantification. Le fluor d'ADB FUBINACA lié au 

cycle aromatique conduit à un singulet à -115,8 ppm. Les noyaux de fluor en position terminale 

des chaînes alkyle pour 5F-AKB48, 5F-MDMB PICA, 5F-ADB donnent des multiplets autour 

de -220 ppm. Dans les spectres HF, ils résonnent sous forme de triplet de triplets en raison du 

couplage avec le méthylène H5'' (2JFH)  et H4 '' (3JFH). Pour les mêmes échantillons, les signaux 

LF sont plus étalés car les valeurs des constantes de couplage sont indépendantes des champs 

magnétiques et leur multiplicité est proche d'un septuplet apparent. 
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Fig IV-3. Signaux caractéristiques en 19F NMR de SCs dans des e-liquids. Les spectres ont été 

enregistrés à  376 MHz (HF) et 56.17 MHz (LF). ADB FUBINACA dans l'échantillon 11; 5F-

ADB dans l'échantillon 7. 

Contrairement à la RMN du proton LF des e-liquides, pour laquelle le chevauchement des 

signaux empêche la mise en œuvre d’analyses quantitatives, la RMN 19F ouvre cette possibilité 

à haut et bas champs. 

4.2 Analyse quantitative  

La mise au point des conditions d'analyses quantitatives a été faite en RMN HF pour le 

proton et le fluor et en RMN bas champ pour le fluor. Nous nous sommes placés dans des 

conditions de relaxation totale des signaux, grâce à la mesure des temps de relaxation T1 et 

pour la RMN du fluor, un agent de relaxation, l'acétyl acétonate de chrome III  a été ajouté dans 

les solutions. Les durées des expériences sont de 33 min pour la RMN 1H HF, 3 min pour la 

RMN 19F HF et 1 h 30 pour la RMN 19F LF. En RMN du proton, un signal caractéristique a été 

utilisé pour la quantification pour chaque cannabinoïde. 

Les résultats sont présentés dans le graphe ci-dessous pour les échantillons contenant les 

SCs fluorés. La RMN HF aussi bien fluor que proton sont des méthodes quantitatives reconnues 

[1, 52-55]. Elles sont tout à fait applicables aux e-liquides malgré les signaux intenses de la 

matrice dans le cas de la RMN du proton. Les applications quantitatives en RMN bas champ 

sont encore peu développées et nous montrons ici que la RMN du fluor à bas champ est tout à 

fait pertinente et adaptée à cette quantification. Pour valider ces résultats quantitatifs, nous 

avons vérifié statistiquement la concordance des données 1H HF versus 19F HF et 19F LF versus 

19F HF.  
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Fig IV-4. Histogramme présentant les résultats des analyses quantitatives de SCs dans des e-

liquides. 

Il n'existe pas, à notre connaissance, de données sur les concentrations de SCs dans les e-

liquides. On constate ici que les concentrations de ces composés fluorés se situent entre 7 et 24 

mg/mL. On peut supposer que ces concentrations sont "adaptées" par les fabricants de ces 

produits illicites en tenant compte des effets psychoactifs associés et donc des affinités avec les 

récepteurs CB1 et CB2 des cannabinoïdes.    
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Conclusion 

Cette étude, est à notre connaissance la première étude portant sur l'analyse de SCs dans 

des e-liquides par RMN à bas champ. La RMN 1H LF a montré des limites pour les applications 

quantitatives, en particulier en raison d'un énorme écart de concentration entre la matrice et les 

composés actifs et les chevauchements de signaux. Le point fort de cette étude est que la RMN 

du LF 19F peut facilement permettre la quantification des SCs fluorés sans préparation 

d'échantillon complexe et sans besoin d'un composé standard spécifique. Grâce à la spécificité 

de détection de la RMN du fluor LF, cette étude peut ouvrir la voie à un screening de routine 

pour la détection de SCs fluorés illicites dans diverses matrices telles que les e-liquides, les 

mélanges à base de plantes ou les "sels de bain". 
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Conclusion générales 

Dans cette thèse, la RMN LF de paillasse a été explorée en tant que méthode analytique 

simple à mettre en œuvre dans une optique de contrôle de la qualité ou la détection de fraudes. 

Nos études élargissent le champ d'application de la RMN LF. En effet, malgré la faible 

sensibilité de la technique et la complexité des mélanges analysés, des informations structurales 

et quantitatives sur les constituants peuvent être obtenus. Dans le cas de l'analyse de produits 

naturels et de l'identification des adultérants dans les produits commerciaux, le processus 

analytique incluant une approche statistique pourrait être utile pour la réalisation de premiers 

screening de produits susceptibles d'être falsifiés.  

Il est vraisemblable que dans les années à venir la RMN à bas champ, ne nécessitant pas 

de cryogénie et donc réduisant la consommation de ressources fossiles par rapport à la RMN 

conventionnelle, va encore évoluer et ses champs d'application se diversifier. Ces progrès vont 

s'appuyer sur les développements méthodologiques récents allant des possibilités diverses 

ouvertes par les gradients de champs équipant maintenant les spectromètres bas champ 

commerciaux jusqu'au techniques d'hyperpolarisation qui permettront de significativement 

améliorer les limites de détection des spectromètres bas champ. 
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RMN à bas champ pour le contrôle qualité et la détection de fraudes: applications à 

l'analyse de compléments alimentaires et de e-liquides 

L’objectif de cette thèse était d'explorer la capacité et les limites de la RMN à bas champ (LF) de 

paillasse pour le contrôle de la qualité et la détection de fraude dans des produits commerciaux. Les 

études ont porté sur trois applications. 

Premièrement, la RMN LF a été utilisée pour classer les espèces de cannelle dans de produits 

commerciaux culinaires ainsi que dans des compléments alimentaires. Les spectres de RMN LF 

permettent la détection de signaux typiques et le traitement des données de RMN LF par une analyse 

chimiométrique a été exploré pour classer les espèces de cannelle et prédire la teneur en coumarine 

hépatotoxique dans les produits. 

Deuxièmement, nous avons appliqué la RMN LF à l'analyse d'un lot de compléments alimentaires 

amincissants, les signaux des substances synthétiques ont pu être détectés efficacement et une 

analyse PLS-DA a permis la discrimination rapide des échantillons contenant des adultérants. 

La dernière recherche a évalué l'efficacité de la RMN LF pour le contrôle de la qualité des e-liquides. 

La RMN du proton a été explorée pour détecter les signaux typiques des cannabinoïdes synthétiques 

(SC). Enfin, la RMN du fluor-19, une méthode d'analyse sélective a été développée pour identifier 

et quantifier les SC fluorés dans les e-liquides. 

Mots clés: RMN, RMN bas champ, contrôle qualité, détection de fraude, produits à base de plantes, 

e-liquides, adulteration. 

 

Low-field NMR for quality control and fraud detection: application to the analysis of dietary 

supplements and e-liquids 

The purpose of this thesis was to explore the ability and limitation of benchtop low-field (LF) NMR 

for quality control and fraud detection in commercial products. The studies focused on three 

applications. 

First, LF NMR was used to classify the cinnamon species in cinnamon culinary products and dietary 

supplements. LF NMR spectra allow the typical signals detection and the LF NMR data combined 

with chemometric analysis was further explored to classify cinnamon species and predict the content 

of hepatotoxic coumarin in products.  

Second, we applied LF NMR to screen batch of slimming dietary supplements, signals of synthetic 

adulterants can be effectively detected and the application of PLS-DA allowed the rapid 

discrimination of samples with adulterants. 

The last research evaluated the efficiency of LF NMR for quality control of smoking e-liquids. 

Proton NMR was explored to detect typical signals of synthetic cannabinoids (SC). Finally, fluorine-

19 NMR, a selective analytical method was developed to identify and further quantify fluorinated 

SC in e-liquid. 

Keywords: NMR, low-field NMR, quality control, fraud detection, herbal products, e-liquids, 

adulteration. 


