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ABSTRACT 
 

More than half of the world population is at risk of dengue virus (DENV) infection because of 
the global distribution of its mosquito vectors. There is neither effective vaccine nor 
therapeutics. The only available strategy relies on insecticides, against which mosquitoes are 
developing resistance. Viruses utilize the host metabolome for replication and dissemination. 
This is particularly true for envelope viruses like DENV that relies on host lipid membranes to 
complete their life-cycle. To reach an optimal metabolic environment, viruses subvert the host 
metabolome. Understanding DENV-mosquito metabolic interactions will reveal novel 
strategies to stop DENV transmission. Here, we characterized how DENV hijacks the Aedes 
aegypti mosquito lipidome to identify targets for novel transmission-blocking interventions. To 
describe metabolic changes throughout the mosquito DENV cycle, we deployed a Liquid 
chromatography–high resolution mass spectrometry (LC-HRMS) workflow at different stages 
of vector infection. We revealed a major phospholipid reconfiguration throughout the DENV 
mosquito cycle, in cells, midguts, and whole mosquitoes. To decipher how DENV reconfigures 
phospholipids, we phylogenetically characterized acylglycerolphosphate acyltransferase 
(AGPAT) enzyme isoforms and identified those (i.e., AGPAT1) that catalyze a central rate-
limiting step in phospholipid biogenesis. We found that DENV infection decreased AGPAT1 
expression, which depletion enhances infection by maintaining high aminophospholipid 
(aminoPL) concentrations, especially phosphatidylcholine (PC) and phosphatidylethanolamine 
(PE), during DENV mosquito cycle. By demonstrating that DENV-mediated AGPAT1 
downregulation provides a proviral environment, these results reveal the first metabolic host 
factor in mosquitoes and emphasize the role of aminophospholipids in DENV cellular cycle.  
We then undertook to precise how DENV influences aminoPL biosynthesis and what stage of 
DENV cellular cycle requires aminoPL reconfiguration. De novo biosynthesis of PC and PE is 
known as the Kennedy pathway, where a diacylglycerol (DAG) incorporates either a choline or 
an ethanolamine group. AminoPL remodeling by deacylation/reacylation then ensures 
membrane dynamism that participates in membrane rearrangements. Using isotopic labelling 
through ethanolamine or choline supplementation, we showed that DENV modulates PC and 
PE biosynthesis by interacting with membrane remodeling. Further supporting the importance 
of the Kennedy pathway in DENV infection, ethanolamine supplementation reduced virus titer 
in mosquito cells by altering composition of specific PC and PE. While ethanolamine-mediated 
aminoPL disruption did not alter attachment, internalization or translation, it reduced replication 
and resulted in a lower ratio of infectious particles, likely because of deficient replication. These 
results strongly support the importance of aminoPLs in DENV infection of mosquitoes and 
reveal the importance of aminoPL composition in replication. PC and PE are the most 
abundant phospholipid species in eukaryotic cells and contribute to cell membrane architecture, 
especially in the endoplasmic reticulum, where replication takes place. Disruption of aminoPL 
reconfiguration may represent a novel strategy to interfere with DENV subversion of mosquito 
metabolome.  
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RESUME 
 

Plus de la moitié de la population mondiale est exposée au risque d'infection par le virus de la 
dengue (DENV) en raison de la distribution mondiale de ses moustiques vecteurs. Il n'existe 
ni vaccin ni traitement efficace. La seule stratégie disponible repose sur les insecticides, contre 
lesquels les moustiques développent une résistance. Les virus utilisent le métabolome de 
l'hôte pour la réplication et la dissémination. C'est particulièrement vrai pour les virus 
enveloppés comme le DENV qui dépend des membranes lipidiques de l'hôte pour compléter 
son cycle de vie. Pour atteindre un environnement métabolique optimal, les virus perturbent le 
métabolome de l'hôte. La compréhension de ces altérations chez les moustiques vecteurs 
pourrait révéler de nouvelles stratégies pour bloquer la transmission du DENV. Ici, nous avons 
caractérisé comment le DENV détourne le lipidome du moustique Aedes aegypti. Pour décrire 
les changements métaboliques tout au long du cycle du DENV chez le moustique, nous avons 
débeloppé une méthode de chromatographie liquide et de spectrométrie de masse à haute 
résolution (LC-HRMS) à différents stades de l'infection chez le vecteur. Nous avons révélé une 
reconfiguration majeure des phospholipides tout au long du cycle du DENV chez le moustique, 
dans les cellules, l’intestin moyen et le moustique entier. Pour déchiffrer la façon dont le virus 
reconfigure les phospholipides, nous avons caractérisé phylogénétiquement les isoformes de 
l'enzyme acylglycerol-phosphate acyltransférase (AGPAT) et identifié celles qui catalysent une 
étape limitante dans la biogenèse des phospholipides. Nous avons constaté que l'infection par 
le DENV diminuait l'expression de AGPAT1, dont la déplétion renforce l'infection en 
maintenant des concentrations élevées d'aminophospholipides (aminoPL), en particulier la 
phosphatidylcholine (PC) et la phosphatidyléthanolamine (PE), pendant le cycle du DENV 
chez le moustique. En démontrant que la sous-régulation de AGPAT1, causé par le virus, 
fournit un environnement proviral, nous révèlons le premier facteur métabolique hôte chez les 
moustiques et soulignent le rôle des aminophospholipides dans le cycle cellulaire viral.  Nous 
avons ensuite cherché à confirmer que le virus influence la biosynthèse des aminoPL et 
déterminer à quel stade du cycle viral la reconfiguration des aminoPL est nécessaire. La 
biosynthèse de novo de PC et de PE est connue sous le nom de voie de Kennedy, où un 
diacylglycérol (DAG) incorpore soit un groupe choline, soit un groupe éthanolamine. Le 
remodelage des AminoPL par déacylation/réacylation assure ensuite un dynamisme des 
membranes qui participe aux réarrangements membranaires. En utilisant un marquage 
isotopique avec une supplémentation en éthanolamine ou en choline, nous avons montré que 
le virus module la biosynthèse des PC et des PE en interagissant avec le remodelage 
membranaire. Soulignant l'importance de la voie de Kennedy dans l'infection par le DENV, la 
supplémentation en éthanolamine a réduit le titre du virus dans les cellules de moustiques en 
modifiant la composition de PC et PE. Bien que la supplémentation en éthanolamine n'ait pas 
modifié l'attachement, l'internalisation ou la traduction, elle réduit la réplication et entraîne un 
ratio plus faible de particules infectieuses, probablement en raison d'une réplication déficiente. 
Ces résultats confirment l'importance des aminoPL dans l'infection des moustiques par le 
DENV et révèlent l'importance de la composition des aminoPL dans la réplication. Les PC et 
PE sont les espèces de phospholipides les plus abondantes dans les cellules eucaryotes et 
contribuent à l'architecture de la membrane cellulaire, en particulier dans le réticulum 
endoplasmique, où la réplication a lieu. L'inhibition de la reconfiguration des aminoPL par la 
supplémentation en éthanolamine pourrait représenter une nouvelle stratégie pour interférer 
avec la perturbation du métabolome des moustiques par le virus de la dengue. 
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Popular thesis summary 
 

Dengue is endemic in tropical and subtropical regions, and has now encroached onto 
temperate regions because of the geographic expansion of its vector, Aedes aegypti. In the 
absence of effective treatment and vaccine, the only intervention is vector mosquito 
containment. Here, we explore the changes induced by dengue virus (DENV) in mosquito 
metabolite content, to uncover targets for blocking transmission. DENV relies on host 
metabolism to proliferate, particularly the membrane lipids that compose the architecture of 
the host cell. We described metabolic changes incurred by DENV throughout the mosquito 
cycle. Membrane lipids, called phospholipids, were highly reconfigured through reduction of 
an enzyme involved in their biogenesis to produce a pro-viral environment. Furthermore, we 
showed that the production chain of the two main phospholipid species is altered by DENV to 
promote viral replication. Our work comprehensively describes metabolic changes associated 
with DENV infection, reveal how DENV subdues the host membrane, emphasize the 
importance of phospholipids and identify their role in replication in mosquitoes. 

 

 

Résumé de thèse vulgarisé 
 

La dengue est endémique dans les régions tropicales, et empiète désormais sur les régions 
tempérées en raison de l'expansion géographique de son vecteur, Aedes aegypti. En 
l'absence de traitement et de vaccin efficaces, le confinement des moustiques est le seul 
moyen de contrôle. Ici, nous explorons les changements induits par le virus de la dengue au 
niveau du métabolisme des moustiques tout au long de leur cycle de vie, afin de découvrir des 
cibles pour bloquer la transmission. Le virus s'appuie sur le métabolisme de l'hôte pour 
proliférer, en particulier les lipides membranaires qui composent l'architecture de la cellule 
hôte. Les lipides membranaires, appelés phospholipides, sont fortement reconfigurés, à 
travers la réduction d'une enzyme impliquée dans leur biogenèse pour produire un 
environnement pro-viral. Nous avons montré que la chaîne de production des deux principales 
espèces de phospholipides est modifiée par le virus pour favoriser sa réplication. Nos travaux 
décrivent les changements métaboliques membranaires causés par le virus de la dengue et 
identifient leur rôle dans la réplication chez les moustiques. 
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MSI     Metabolomics standards initiative 

MUFA      Monounsaturated fatty acids 

NS     Non structural 

NIAID      National institute of allergy and infectious diseases 

NHP     Non-human primate 

NADH     Nicotinamide adenine dinucleotide 

NDGA      Nordihydroguaiaretic acid 

NMR      Nuclear magnetic resonance 

ORF      Open reading frame 

PA     Phosphatidic acid 

PAF      Platelet-activating factor 

PC     Phosphatidylcholine 

PCA      Principal component analysis 

PE     Phosphatidylethanolamine 

PE-Cer,     Ceramide Phosphoethanolamine 

PEMT      PE methyltransferase 

PFU     Plaque-forming unit 

PI     Phosphatidylinositol 

PIP     Phosphoinositide 

PIS      PI synthase  

PL     Phospholipid 

PLA     Phospholipase A 

PLB     Phospholipase B 

PLC     Phospholipase C 

PLD     Phospholipase D 

PLS      Partial least squares  
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PG     Phosphatidylglycerol 

PGP      Phosphatidylglycerol phosphate 

PGPS      PGP synthase 

PS     Phosphatidylserine 

PSD      PS decarboxylase 

PSS     PS synthase 

PUFA      Poly-unsaturated fatty acids 

RIDL     Release of insects carrying dominant lethals 

RC     Replication complex 

RNA     Ribonucleic acid 

RNP     Ribonucleoprotein 

dsRNA     Double-stranded RNA 

RNAi     RNA interference 

SIT     Sterile Insect Technique 

SL     Sphingolipid 

SM     Sphingomyelin 

SMS      Sphingomyelin synthase 

SREBP     Sterol regulatory element-binding proteins 

T      Tubular structures 

TBEV     Tick-borne encephalitis virus 

TAG      Triacylglycerol 

TCA      Tricarboxylic acid 

TIC      Total ion current 

TLR      Toll-like receptor 

TNF- α     Tumor necrosis factor-α 

UTR      Untranslated regions  

Ve     Double-membrane vesicle 

VIP     Variable influence on projection 

VP     Vesicle packet 

WHO     World Health Organization 

WNV      West Nile virus 

YFV      Yellow Fever virus  

ZKV      Zika virus 

(+)ssRNA    Positive single strand RNA 

(-)ssRNA    Negative single strand RNA 
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CHAPTER 1 – Introduction to host-virus metabolic 
interactions in dengue virus  

 
 

1. Dengue: a disease in expansion without efficient control 
 
1.1. Dengue  

 
1.1.1. A global burden  

 
Dengue is an arthropod-borne viral disease (arbovirose) that currently infects 

about 400 million people every year throughout the tropical and subtropical world [1]. 

Dengue virus (DENV) is the most widespread arbovirus. It emerged in the second part 

of the 20th century [2], and ever since its incidence has increased 30-fold, according to 

WHO. Asia is the continent the most affected by dengue as it bears 70% of total 

infection. For instance, India represents 34% of the total infection. Africa is estimated 

to contribute 16% of global infections. However, African dengue burden is probably 

underestimated because of poor surveillance and presence of other diseases 

presenting similar symptoms. Americas represents 14% of infections, with majority of 

cases in Brazil and Mexico. The annual global cost incurred by dengue is estimated at 

US$ 8.9 billion, according to a study conducted in 2013 in 142 countries with active 

DENV transmission [3]. The average cost per dengue case is US$152, although actual 

cost varies according to clinical outcome. Estimated hospital admission for dengue 

costs US$70 but rises to US$84,730 for fatal cases. Dengue economic burden is higher 

than for other major infectious diseases, such as cholera, viral gastroenteritis, Chagas 

or rabies, because of the lack of available treatment and insufficient systematic 

diagnosis. Other factors associated to dengue outbreaks worsen the cost. The 

healthcare system can be congested during epidemic episode, resulting in difficulties 
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to provide accurate diagnosis. Loss of productivity, ability to work, impact on tourism 

also increase the economic burden [4].  

DENV is transmitted by the bite of an infected female mosquito of the genus 

Aedes. Because of the Aedes geographical distribution more than 40% of the global 

population is at risk to contract dengue [5], encompassing 128 countries [6]. Aedes 

distribution now extends in all continents, including North America and Europe [5] in 

addition to the usual subtropical regions. Consequences are an expanding distribution 

of DENV (Fig 1).   

1.1.2. From asymptomatic to severe dengue 
 

About 75% of people infected with DENV remain asymptomatic (not registered 

in hospital). The other 25% represents around 100 million patients that experience a 

range of different symptoms from flu-like illness to vascular leakage, hemorrhages, 

organ failure and shock [1].  

1.1.2.1 Clinical phase 
 

The incubation period is usually 5-10 days and up to 14 days, followed by 

sudden onset of symptoms divided in 3 phases: febrile, critical and recovery. 

The febrile phase starts with high fever during 3-7 days, vomiting and multiple 

symptoms (rash, headache, bone pain, retro-orbital pain, flush, hematuria, minor 

bleeding). The liver can be enlarged and sensitive. A decrease in total white cells can 

suggest dengue at this stage. The early febrile phase can be difficult to distinguish from 

other febrile diseases. Moreover, those symptoms can not differentiate an outcome 

into severe and non-severe dengue. 

The critical phase begins when the fever decreases and complications start to 

develop. Most patients improve in this phase, but some can undergo vascular leak 
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syndrome. Increased vascular permeability can result in plasma leakage, intravascular 

volume depletion and lead to dengue shock syndrome (DSS) [7]. In the latter case, 

fluid overload induces respiratory distress. Vascular leak syndrome usually resolves 

within 1 or 3 days.  Patients can also suffer from severe bleeding, especially during 

prolonged shock. Although uncommon, organ impairment can occur and includes 

hepatitis, encephalitis and myocarditis.  

The recovery phase lasts 1-2 weeks with good supportive care. Fluids are 

reabsorbed, then hematocrit, white blood cells and platelets stabilize. Some patients 

may experience rash and remain tired for several days. 
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Figure 1. The global distribution of dengue. Adapted from [1,8], CDC Dengue heatmap (/www.healthmap.org/dengue), and data from the 

European Centre for Disease Prevention and Control (ECDC) (www.ecdc.europa.eu/en/dengue). National and local consensus of complete 

presence (red) or absence (blue) reported by local transmission. This map does not take into account imported dengue cases by travelers.

https://www.healthmap.org/dengue
http://(www.ecdc.europa.eu/en/dengue
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1.1.2.2 Symptom Classification  
 

A previous classification established by WHO in 1997 differentiated dengue 

fever (DF), dengue shock syndrome (DSS) and dengue hemorrhagic fever (DHF). In 

2009, WHO revised the classification in dengue without complications and severe 

dengue. Severe dengue is defined by one of these complications: shock syndrome or 

respiratory distress caused by plasma leakage or fluid accumulation, severe bleeding, 

or organ impairment [9]. 

 
1.1.2.3 Secondary dengue infection 

 
Following DENV infection with one serotype, the adaptive immune response will 

provide long-term immunity to this serotype and short-term protection (3 months to 2 

years) against heterologous serotype infection [10]. However, with vanning 

heterologous protection, the risk of severe dengue with secondary infection increases. 

Cross-reactive antibodies induced by the primary infection bind the heterologous 

serotype and facilitate virus entry into target cells via Fc receptors. This phenomenon 

is called antibody-dependent enhancement (ADE). Antibody-FC receptor interaction is 

an alternative DENV entry mechanism during ADE in the course on secondary 

heterologous infection [11]. ADE also contributes to decreasing immune response and 

antiviral response against the infection, through FC receptor signaling which prevent 

lysosomal degradation of DENV [12]. 

 
1.1.2.4 Diagnosis 

 
Diagnosis will depend on the time after disease onset [9]. Before 5 days, viral 

RNA is detected by nucleic acid amplification, the virus is isolated in cell culture or viral 

protein NS1 is detected by immunoassay. After 5 days, DENV does not persist in blood, 
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but NS1 is still detected for a few days, especially during primary infection. From about 

4 days onwards, IgM antibodies can be detected, with a peak at 10-14 days, before 

decreasing and disappearing after 3 months. IgGs appear later, from day 10 onwards, 

at lower concentration and remains detectable for life. Serological assay may not be 

sufficient for detection due to cross-reactivity with other flaviviruses, especially in 

regions where flaviviruses circulate or for patients vaccinated against yellow fever or 

Japanese encephalitis. 

 

1.2. DENV vectors 
 

1.2.1. Aedes aegypti and Aedes albopictus 
 

The main vector of DENV is Aedes aegypti mosquito. It is highly adapted to 

urban areas as it preferentially breeds in man-made containers with stagnant water. It 

mainly bites humans during the day and can take several blood meals from different 

people, increasing chances of transmission [13]. Aedes albopictus, the second major 

vector of DENV, is found in peri-urban and rural areas and feeds on humans as well 

as other mammals [14]. Both species are quickly colonizing new regions, spreading 

risk of infection to new regions [5]. Multiple factors such as urbanization, globalization, 

trade, population growth, travel and global warming are associated with the enlarged 

distribution of the two vectors [15]. Population growth in urban tropical areas closely 

correlates with the increase in dengue epidemics [16]. Higher population density 

amplifies DENV transmission dynamic, illustrated by the fact that a mosquito can bite 

several people during a blood meal [17]. Urbanization increases larval development by 

providing more oviposition sites and enhancing mosquito survival [18]. Globalization 

and large scale travels spread the virus across different countries and continents 
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[19,20]. The impact of climate change on DENV distribution has been modeled [21]. 

Temperature rise and new precipitation patterns facilitates geographical expansion of 

the vectors. Annual number of people exposed to Aedes vectors was projected to 

increase drastically by 12 to 134% by 2050, depending on different scenario, with new 

territories affected such as Australia, Europe and North America. 

Life cycle of mosquitoes contains four separate stages which takes 

approximately over 8-10 days: egg, larvae, pupae and adult. An adult female mosquito 

lays up to 200 eggs inside containers holding water. When submerged in water, eggs 

hatch into larvae after 1-2 days. Aquatic larvae feed on microorganism and develop 

into pupae after approximately 5 days. Pupae are mobile in water and do not feed. 

They emerge into adult flying mosquitoes after 2-3 days. A couple of days later, male 

and female adults start to mate. The female will need a blood meal to produce eggs. 

Adult Aedes mosquitoes can live for more than 1 month. Mosquitoes can fly about 200 

meters after emerging. A. aegypti females bite almost exclusively humans during 

daylight hours, preferentially early in the morning and in the evening, outdoor and 

indoor. 

DENV is maintained at low level in endemic highly dense urban area. Epidemic 

episodes contribute to the persistence of the virus. Multiple DENV serotypes can 

circulate in the same area. Aedes mosquito will be infected by blood-feeding on a 

human in the viremic phase of DENV infection (Fig 2). Extrinsic incubation period, the 

time taken by the virus to multiply and be present in mosquito saliva, is usually 10-14 

days. Infected mosquitoes can infect several humans during subsequent bites. About 

5-10 days after being bitten by DENV-infected mosquito, a person develops high 

viremia that persists approximately 7 days. During this period, an infected person can 

transmit the virus to a new mosquito.  
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DENV sylvatic cycle exists between Non-Human Primates (NHPs) and Aedes 

forest mosquitoes in rainforests of Southeast Asia (Malaysia) an West Africa (Senegal) 

[22]. Contrary to the YFV, no evidence exist for a sylvatic cycle in America [23]. DENV 

found in NHPs in south America are likely spill back from human viruses [24].  

 
1.2.2. DENV cycle in mosquito  

 
Following a blood meal on an infected human, DENV reach the mosquito midgut 

where it infects and multiplies in epithelium [25] (Fig 2). Blood meal is digested within 

48 hours, while replication in the midgut continues and reach a peak at 7 days after 

ingestion. DENV then disseminates in the whole mosquito body, including salivary 

glands which are fully infected at 10-14 days post infectious blood meal. Mosquitoes 

can then transmit DENV to human via saliva during subsequent blood feeding. 

Throughout its infection cycle in the mosquito, DENV replicates in different tissues and 

cell types, involving specific physiological changes at each stage. 

In mosquitoes, DENV  is confronted to complex barriers from the midgut to 

salivary glands [26]. After the blood meal, the virus needs to infect the midgut 

epithelium and to overpass an extracellular matrix called basal lamina (BL) to 

disseminate from midgut to secondary tissues. After crossing the midgut barrier, 

new virion can infect fat body and nerve tissues, but hemocytes are likely an 

important target for the next step of arbovirus amplification [27]. DENV then infect 

lateral and median lobes of salivary glands [25] where viral replication will lead to 

the release of new viral particles in the excretory canal of the gland. At that point, 

the virus is associated with apoptosis and mosquito saliva containing proteins and 

enzymes having immune response modulating properties [28], which suggest that 

saliva is an important factor in virus transmission to human host. 
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The ability of a mosquito to acquire and propagate DENV through all these 

steps is defined as vector competence. The competence is related to host genetic 

factors such as innate immune response and tissue barriers [29]. For instance, Ae. 

aegypti endogenous RNA interference pathway is involved in arbovirus infection 

in the midgut and can be virus dose-dependent to overtake host defense [30]. 

Enhancing RNAi pathway in mosquito can improve the midgut infection barrier 

(MIB) to DENV after cell entry and decrease the vector competence [31]. Mosquito 

RNAi effector polymorphism is also a key factor to DENV resistance [32]. The MIB 

can also be associated to resistance of midgut epithelial cells to viral infection, due 

to filtration by the extracellular matrix or a lack of host membrane receptor of 

targeted cells. Precisely, the 67kDa protein described as a DENV receptor in 

midgut cells, is identified as a marker of vector competence for DENV in Ae. 

aegypti mosquito [33,34].  Infection of salivary glands is likely receptor-mediated 

and dependent on mosquito strain, similarly to midgut infection. Compatibility 

between mosquito strain and virus strain to bind and infect tissue especially at the 

midgut and salivary gland levels are part of endogenous factor that are 

independent of virus-dose interaction and define vector competence [35].  

Among the host endogenous factor, it can be hypothesized that the 

metabolite composition of certain tissues, especially in lipid constituting cell 

membranes, such as the midgut or the salivary glands play a major role in such 

barriers. Furthermore, exogenous  nutritional content in lipid and sugar could affect 

vector competence for arbovirus, as observed for West Nile virus [36] 
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Figure 2. DENV cycle in humans and mosquitoes. 
 

1.3. Dengue virus (DENV)  
 

1.3.1. DENV biology 
 

DENV belongs to the Flavivirus genus of the Flaviviridae family. Other 

pathogenic Flaviviruses include Yellow Fever virus (YFV), West Nile virus (WNV), 

Japanese encephalitis virus (JEV), tick-borne encephalitis virus (TBEV) and Zika virus 

(ZIKV) (Fig 3). DENV is composed of four antigenically and genetically different 

subtypes, called serotype 1 to 4. DENV has the ability to infect and propagate in two 

different hosts, human and mosquito. 

DENV presumably evolved from sylvatic strains in Africa or Asia from non-

human primates [37,38]. The four independent DENV serotypes likely involved 

different host switch events. 
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Figure 3. Phylogenetic tree of mosquito borne flavivirus. The dendrogram is based 

on amino acid sequence of the virus polyprotein. Colors differentiate the vectors [39]. 

Aedes mosquitoes vector DENV, ZKV, YFV and the Spondweni virus. Culex genus 

mosquitoes vector WNV, JEV and St. Louis encephalitis virus. Ticks (Ixodes genus) 

are vectors of the tick-borne encephalitis virus. 

 

DENV are enveloped viruses with a spherical shape of 50 nm diameter. The 

virus is composed by a lipid envelope associated with 2 structural proteins, the 

envelope (E) and membrane (M) proteins. Within the viral envelope, the RNA viral 

genome is associated with the capsid (C) protein. Importantly, the lipid bilayer is the 

only component that does not come from the viral genome, but from the 

endomembrane compartment of the host cell.  

The genome is a single-stranded positive sense RNA ((+)ssRNA)  of about 11kb 

that encodes ten proteins. The + genome is used as template for the – genome 

synthesis, protein synthesis and for packing into new viral particles. Three structural 

proteins, E, pr-membrane (prM) and C; and 7 non-structural (NS) proteins, NS1, NS2A, 
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NS2B, NS3, NS4A, NS4B and NS5 are encoded in a polyprotein. During assembly, a 

RNA-capsid complex recruits a lipid bilayer membrane, in which the E and prM are 

embedded. Virions exist in mature and immature form depending on the presence of 

pr protein, which is shed during maturation. 

 E protein (53 kDa) is involved in viral entry into targeted cells by binding to 

cellular receptors and triggering viral and cellular membranes fusion [40]. In mature 

form, 90 homodimers of E proteins are arranged on the surface, by sets of 3 E 

homodimers in 30 rafts. E ectodomain is composed of 3 connected domains (DI-III) 

and a fusion loop at the tip of DII [41]. DI is the central structure, DII contains a fusion 

loop important for the fusion of viral and cell membranes, and DIII is exposed at the 

particle surface with cellular-binding motifs. In immature form, E and prM protein are 

associated in heterodimers forming spike. The prM protein (21 kDa) participate in the 

formation and the maturation of new virion. During maturation of newly produced 

particles, pr peptide is cleaved from the M peptide through the secretory pathway 

involving pH-dependent reaction and host protease. In mature virion, M protein is 

anchored into the viral membrane by two transmembrane helices under the E protein. 

It is also important to note that temperature induces structural changes in viral particles. 

A virus incubated at 28°C, daytime mosquito body temperature, will have a smooth 

surface, while at human body temperature of 37°C, the virus has a rough and 

heterogeneous structure due to specific arrangement of the E proteins [42]. This 

underlines that the virus surface is not a static but a dynamic structure. This 

conformational amplitude is called viral breathing [43]. Different conformations can 

exist and this does not have any consequences on the interaction of the virus with 

target cells [44]. The C proteins (12kDa) are associated in homodimer and act as RNA 
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chaperone with RNA-binding activity. This complex forms the viral ribonucleoprotein 

(RNP).  

The NS proteins are involved in viral replication and packing, operating in 

endoplasmic reticulum (ER) and secretory pathway of the cell. NS1 is associated with 

intracellular membrane and can be secreted (sNS1). NS1 participates in early viral 

genome replication [45]. The secretory form activates the innate immune system and 

is associated with vascular leakage in severe dengue [46]. NS2A is a membrane 

protein involved in RNA replication and viral assembly [47]. NS2B act as a cofactor of 

NS3 which has several functions, especially during RNA synthesis with helicase and 

capping activities. NS4A is a membrane protein associated with the formation of the 

replication complex (RC). NS4B has inhibitory capacity against interferon (IFN) 

response [48]. NS5 has the biggest size and is highly conserved. Several functions are 

associated with NS5, such as suppression of IFN system, RNA synthesis and capping. 

DENV genome contains also two untranslated regions UTR: a short 5’ UTR of ~100 

nucleotides and a longer 3’ UTR of ~450 nucleotides, both highly structured. Those 

UTR are involved in genome replication [49]. 

 

1.3.2. DENV cellular life cycle 
 

1.3.2.1   Virus entry 
 

Susceptible cells contain attachment factors on the surface that allow contact 

with viral particles through E binding. This promotes virus entry. Multiple cell types can 

be infected in vitro, including epithelial, endothelial, muscular, dendritic, mast cells and 

hepatocytes, monocytes and mosquito cells [8]. Different DENV receptors have been 

candidates in mammalian and mosquito cells, consistent with the ability of the virus to 
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infect a diversity of cells, as well as 2 different hosts [50,51]. Glycosaminoglycans 

(GAG) such as heparan sulfate, dendritic cells lectin receptor (DC-SIGN), macrophage 

mannose receptor (MR), lipopolysaccharide (CD14), heat-shock protein 70 and 90 

(HSP70/90), binding-immunoglobulin protein GRP78 and TIM/TAM phospholipid 

receptors were identified on mammalian cells. On mosquito cells, the chaperone 

prohibitin protein was identified as receptor by interaction with E [52]. A set of proteins 

and glycoproteins, some of which related to heat shock protein family, were also 

candidates as mosquito cell receptor for DENV [51]. 

After virus adsorption to cell surface, entry occurs mainly by clathrin-dependent 

endocytosis. DENV has been preferentially found on cell surface of clathrin-coated pit 

[53]. Alternative entry pathways exist but are minor and found only on mammalian Vero 

cell line [54]. On mosquitoes cells, only the clathrin-mediated endocytosis pathway was 

observed four the four DENV serotypes [55,56]. An invagination in the plasma 

membrane is created and closed by dynamin to form a clathrin-coated vesicle. The 

endosomal vesicle is transported inside the cell by a mechanism involving actin 

filaments [57]. 

At this step the enveloped virus is contained in a vesicle delimited by a lipid 

bilayer. The endosomal low-pH induces molecular changes on the E proteins leading 

to viral and endosomal membrane fusion and release of the viral RNP into the 

cytoplasm.  The homodimer of E rearranges in trimers under the acidification, which 

makes the fusion loop accessible and facilitates interaction with the outer lipid layer of 

the endosome membrane [40]. The E protein then folds back and induces hemifusion 

of monolayers followed by pore formation. Cellular vacuolar ATPase are important for 

endosome acidification and its inhibition blocks DENV infection [58,59].  
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1.3.2.2      Polyprotein translation 
 

After release from the endosomes, the RNP is in cytoplasm and undergoes 

capsid uncoating. The single open reading frame (ORF) is translated into a long 

polyprotein associated with ER membranes, processed by viral and host proteases 

into the 3 structural proteins (C, prM, E) and the 7 NS proteins (NS1, NS2A, NS2B, 

NS3, NS4A, NS4B, and NS5) [58]. The genome is likely recruited to the ER to initiate 

translation with ribosomes. It is also suggested that translation starts into the cytosol 

and continues in ER when the transmembrane domain of the C protein emerges from 

ribosomes. Actually, the full-length polyprotein has yet to be observed, suggesting 

rapid cleavage of viral proteins. The polyprotein intertwines with the ER membrane: 

NS2A, NS2B, NS4A and NS4B have transmembrane domains and are anchored in 

the ER bilayer. C, NS3 and NS5 are on the cytoplasmic side, when prM, E and NS1 

are on the lumen side. Polyprotein processing is realized by viral and cellular proteases. 

NS3/NS2B complex cleaves proteins on the cytoplasmic side, while a host peptidase 

cleaves those in the lumen. A small part of immature C remains in the ER after the 

cleavage. The cleavage of NS4A and NS4B leave a 2K peptide inserted in the ER 

membrane. The translation process highly involves ER membrane, and several 

proteins remain anchored in ER.  

1.3.2.3      Replication  
 

Viral replication requires viral proteins, host factors and viral RNA. The positive 

strand viral genome ((+)ssRNA) is copied into antigenome ((-)ssRNA), which is then 

used as a template for genome replication. Viral synthesis involves membrane 

rearrangements via lipid membrane invagination to ensure efficient RNA synthesis in 

replication complex (RC) [60,61]. RC may also protect viral replication from host 

defense mechanisms. 
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DENV replication complex structure has been characterized in human and 

mosquito cells [62,63]. In mammalian cells, membrane alterations induced by DENV 

have different shapes, from convoluted membranes (CM), double-membrane vesicles 

(Ve), tubular structures (T) and vesicle packets (VP), derivating from ER. Open pores 

were observed in Ve, allowing probably transport of building block from the cytoplasm 

for RNA synthesis and/or release of newly synthetized RNA for encapsidation. VP are 

composed of small groups of Ve formed by ER membranes rearrangement containing 

viral replication sites. Vesicles induced by DENV contain NS proteins and dsRNA 

intermediates in RC, suggesting active RNA synthesis [63]. Those distinct structures 

were also observed in mosquito cells, except for CM. Formation of different structures 

suggest specific modifications of host membranes induced by DENV replication. 

Vesicle formation may be induced by NS4A protein due to its transmembrane domain 

acting on the luminal leaflet on the ER [64,65]. Membrane invagination close a 

cytoplasmic window containing NS1, NS3 and NS5 [64]. Inside a vesicle, replication 

complex organization is represented as a complex containing dsRNA associated with 

NS3/NS2B protease/helicase and NS5 methyl-transferase-polymerase [66]. NS3 has 

helicase activity to unfold dsRNA during RNA synthesis, while NS5 is the RNA-

dependent-RNA polymerase (RdRp) and methyltransferase involved in newly 

synthetized RNA, that also cap RNA by its triphosphatase activity. NS4B ER-anchored 

protein binds the NS3/NS2B enzymes as factor to support replication. It was observed 

that the cleavage of the 2K peptide associated with NS4A is important to induce 

membrane arrangement in RC [64]. Furthermore, NS4A induces rearrangement and 

phosphorylation of vimentin intermediate filaments to support DENV RC at the 

perinuclear site [67], suggesting the involvement of the cytoskeleton. NS2A 

transmembrane protein is essential for RNA synthesis and involved in the RC 
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organization [47]. NS1 is found in the lumen side of the ER, and connect to the RC via 

transmembrane interactions, probably by interaction with NS4B as shown during WNV 

infection [68]. Role of NS1 in viral replication is currently not reported. 

1.3.2.4      Assembly 
 

DENV assembly occurs at the ER with C, prM and E proteins assembling with 

viral genomes to bud towards ER lumen. NS2A as well may be required for viral 

assembly [47]. NS3 is required for flavivirus RNA packing into viral particles, without 

involving helicase and protease activity [69,70]. The C protein is enough to fold RNA 

and participates in spontaneous encapsidation [71]. Encapsidated viral RNA is 

probably released from RC through the pores, but viral RNA transport to assembly 

sites remain unclear. Once assembled, flaviviruses form immature particles 

characterized by spikes of trimeric prM and E form [72]. Maturation of flaviviruses 

occurs through Golgi and trans-Golgi networks and requires an acidic environment [73]. 

pH induces molecular rearrangement of prM and E protein, enabling access to prM for 

furin host protease. Cleavage of prM releases pr and maintain M on the envelope. 

Immature or partially immature virions are also produced and have alter infectious 

capacity. 

 
 

1.4. Prevention and treatment 
 

1.4.1. Antiviral developments 
 

No antiviral against DENV is currently available and only symptomatic care is 

provided to patients [74]. It is recommended to stay hydrated and avoid anticoagulant 

such as aspirin-containing drugs. For severe dengue patients in shock syndrome, 
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intravenous fluid supplementation is essential and prophylactic platelet transfusion is 

performed, although the latter does not prevent bleeding [75]. 

Multiple drugs with in vitro antiviral activity against DENV have been tested in 

clinical trials (chloroquine, balapiravir, celgosivir, lovastatin), without success in 

preventing disease or lowering viremia [76]. Ivermectin is currently in clinical trial in 

phase II/III in children and adult patients (ClinicalTrials.gov number NCT02045069). 

DENV-2-infected Aedes albopictus mosquito treated with ivermectin have shown a 50% 

decrease in infection rate and almost complete clearance of DENV RNA [77]. 

Ivermectin also inhibits in vitro replication of flaviviruses, mainly YFV and DENV with a 

lower effect for the later, by targeting NS3 helicase activity [78]. Ivermectin is usually 

used to treat parasite infections in humans such as malaria [79,80]. Other drugs that 

target NS proteins such as NS3 and NS5 have been studied, but none reached clinical 

trials [81]. Recently a DENV inhibitor targeting NS4B was under development [82]. 

Neutralizing monoclonal antibodies are also candidates for dengue treatment [83]. 

Several bioactive compounds from natural products display anti-dengue activity, but 

have not been studied further [84–86]. 

 
1.4.2. Vaccines 

 
Dengue vaccine against the four DENV serotypes is needed for the prevention 

and control strategy. Dengue vaccine development have been on the road since the 

end of the first half of the 20th century [87]. 

1.4.2.1. Dengvaxia, a partially efficacious vaccine 
 

Dengvaxia is a DENV vaccine produced by Sanofi-Pasteur. It is a live 

attenuated tetravalent vaccine composed of the nonstructural genes of yellow fever 

vaccine strain 17D and envelope (E) and pre-membrane (prM) genes of the four DENV 
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serotypes. Four chimeric yellow fever dengue (CYD) vaccine are combined into a 

single formulation. The vaccination scheme remains long with 0, 6 and 12 months 

boosters. The vaccine is registered in 20 dengue-endemic countries and in the United 

States of America (USA) in May 2019 [88] and in the European Union [89]. However, 

its use remains low as it has poor efficacy in protecting against all dengue serotypes 

and seronegative people [90–92]. 

During the immunization programs in Brazil and Philippines, an increase risk of 

severe dengue in vaccinated seronegative group was observed, resulting in a low 

vaccine uptake.  In September 2018, WHO recommended that only people with past 

DENV infection be vaccinated, after highly specific screening test, in the age range 9-

45 years [93]. The U.S. Food and Drug Administration (FDA) approved the vaccine in 

people ages of  9-16 years who have laboratory-confirmed previous dengue infection 

and who live in endemic areas of the US [94]. In case when screening is not possible, 

vaccination could be administrated in areas with 80% seroprevalence or more by 9-

year-old. Furthermore, DENV seropositive traveler in a high endemic country could 

consider the vaccination. This vaccine limitations highlights the urgent needs for rapid 

diagnostic of dengue serostatus in endemic countries.  

 
1.4.2.2. Other vaccine in clinical trial 

 
Two other vaccines are currently in clinical trial phase III [89]. The vaccine 

developed by Takeda (TDV) is in clinical trials in several countries in Asia and Latin 

America (ClinicalTrials.gov, NCT02747927). This vaccine is a live attenuated 

tetravalent dengue vaccine based on the backbone of DENV-2 and contains the E and 

prM genes of the other three serotypes. The vaccine developed by National Institute 

of Allergy and Infectious Diseases (NIAID) and Butantan Institute (TV003/TV005) and 
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licensed by Merck in the USA, is currently in clinical trials in Brazil (ClinicalTrials.gov, 

NCT02406729). This vaccine is a live attenuated tetravalent vaccine with mutations in 

3’ UTR, while DENV-2 is a chimeric virus containing the capsid and NS protein genes 

from DENV-4 and prM and E genes from DENV-2. The vaccine induces 

seroconversion to four serotypes up to 90% of naïve adults [95]. Estimated study 

completion are respectively by 2021 and 2025 for Takeda and NIAID vaccines. These 

new candidate vaccines will be challenged on seronegative patients with particular 

scrutiny on safety issues. 

 
 

1.4.3. Vector control 
 

Control of mosquito vectors and diminution of human-vector contact is a 

strategic approach to reduce DENV infection [9]. Vector management targets the two 

main vectors, A. aegypti and A. albopictus. Vector control includes environmental, 

biological and chemical methods.  

 
1.4.3.1. Environmental methods 

 
Environmental methods intent to reduce mosquito breeding sites by elimination 

of larval habitats [9]. Modification of water supply and water storage in household is 

essential to control vector population. It implies the use of water pipes instead of free 

access water such as wells and traditional water-storage systems. Otherwise, water-

storage containers need improvement to avoid mosquito access for oviposition by 

using covers or polystyrene beads. Solid waste such as used tires and plastic 

containers need efficient environmental management to decrease larval habitats in 

urban areas.  
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Some urbanization programs, such as in Singapore [96], take into account the 

urban disease vector problem during housing construction, on construction sites and 

through specialized infrastructure. For example, roof gutters are prohibited and home 

owners must ensure maintenance of water storages. 

Vector control can also be managed by using mosquito traps. Mosquito traps 

use carbon dioxide or ultraviolet-A as attractants and aspirate mosquitoes with a 

vacuum fan [74]. Other traps use water or organic lure. 

 
1.4.3.2. Biological method 

 
Wolbachia-infected mosquitoes 
 

Wolbachia is a gram-negative bacteria naturally present in 70% of insect 

species [97], including certain mosquito disease vectors [98]. The bacteria modify host 

reproduction to ensure its dispersion. Males infected with Wolbachia produce a sterile 

progeny, meaning no hatching, after mating with non-infected females. The 

phenomenon is called Cytoplasmic Incompatibility (CI). Wolbachia-induced sterility is 

a population suppression strategy used to eradicate A. aegypti populations [99]. 

Release of Wolbachia-infected A. aegypti males, exploiting the CI phenotype, is used 

in programs in Singapore [100], US and China. Furthermore, Wolbachia infection in 

female mosquitoes reduces virus multiplication [101] and is transmitted maternally. 

Because of these two traits, replacement of the wild population with Wolbachia-

infected mosquitoes has been used to decrease transmission. Wolbachia-infected 

mosquitoes have been released in large scales in Australia, Brazil, Colombia [102], 

Vietnam and Indonesia [103]. 
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Genetically modified mosquitoes 
 
Insect genetic engineering is another strategy used to control mosquito populations 

[104]. The most common genetically modified mosquitoes make use of a lethal gene 

insertion to sterilize progeny with wild populations, hence reduce population sizes. 

Male A. aegypti are introgressed with dominant lethal gene (i.e., RIDL) [105]. When 

engineered males mate with wild-type females, offspring are not viable and die at larval 

stages. This strategy has been tested in the field and showed encouraging result to 

suppress local mosquito population [106]. These strategies require very large 

quantities of modified mosquitoes, as well as increased knowledge of the vector 

ecology to foresee impacts of the modifications. 

 
Larvicide organisms 
 
Mosquito larvae control is conducted using bacteria and animals. Bacillus thuringiensis 

israelensis (Bti) produced endotoxins are able to kill mosquito larvae, by permeabilizing 

cell membranes and inducing cell death [107]. However, mosquitoes that survived Bti 

treatment will have fitness benefit compared to congeners not under larvicide pressure 

[108]. Larvivorous fish and small crustaceans (Copedod) have been used to reduce 

larvae in container [74]. Some fish species (Gambusa affinis) are insecticide tolerant, 

allowing combination with chemical control. Nevertheless, those species do not target 

specifically Aedes larvae and can affect other insect species, and their introduction into 

a new environment can affect biodiversity. 
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1.4.3.3. Chemical methods 
 

Insecticides 
 
Insecticide use is the most common method to control mosquito population. Chemical 

control targets either the larval or adult stage, mainly by neurotoxic insecticides. 

However, insecticides have adverse environmental and health effects and are less 

effective due to evolution of insecticide resistance. 

Larvicides are used to control larval stage and are amenable for water 

containers [9]. Those compounds are complementary to environmental interventions 

and restricted to area where water containers are difficult to reach. The challenge is to 

target only mosquito vector and not to alter water quality. Three classes of larvicides 

are generally used. Insect growth regulators affect hormones and disrupt the 

development of young insect. Organophosphates act as nerve agents by disrupting 

acetylcholine action, resulting in mosquito death. Biopesticides from bacteria toxin 

such as Bti toxin or the neurotoxin Spinosad can be used. Some larvicides are used 

for treatment of drinking-water, such as pyriproxyfen, temephos and methoprene at 

specific dosages. 

Adulticides target adult vector to impact mosquito densities in large scale by 

spraying or fogging [9]. Space spraying is used to prevent epidemic or in emergency 

situation. Spraying is usually focused where dengue cases have been reported or in 

high-density population area (school, hospitals, housing). In emergencies, treatments 

can be applied every 2-3 days for 2 weeks. Significant suppression of adult mosquito 

populations in high risk area may require application once or twice a week. 

Organophosphates (Fenitrothion, Malathion) and pyrethroids (cyphenothrin, 

metofluthrin) are generally used for spraying application against vector. Pyrethroids 

alter signaling in nervous system by alteration of sodium channels. Insecticide derived 
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from bioactive compounds (terpenoids, alkaloids, pyrethrins, anthraquinones, 

saponins, monoterpenes) have also shown larvicidal, ovicidal and insecticidal activities 

[74]. Carbamates, organochlorines (i.e., DDT) are other classes of insecticides but are 

now rarely used. 

Individual protection against vector uses mosquito repellent or Insecticide-

treated materials (ITMs). The most widely used repellents are DEET (N, N-diethyl- 3-

methylbenzamide), IR3533 (3-[N-acetyl-N-butyl]-aminopropionic acid ethyl ester) or 

Picardin (1-piperidinecarboxylic acid, 2-(2-hydroxyethyl)-1-methylpropylester). Oil 

extract from lemongrass (Cymbopogon nardus, Cymbopogon citratus) have repellant 

activity against A. aegypti and are used in sprays, lotion and bracelet for temporary 

individual protection [109]. Insecticide-treated bed nets (ITN) and long-lasting 

insecticides-nets (LLIN) incorporate insecticide in the fabric and reduces vector borne 

disease transmission. 

 
Insecticide resistance  

 
Chemical control with insecticides has been efficient in controlling Aedes 

mosquito population before resistance to all four classes of insecticides occurred [110–

114]. Rising of mosquito resistance to insecticides have been observed in more than 

60 countries, with resistance to 2 or more classes [115]. It is proposed that low density 

of mosquito carry resistance genes that allow them to survive after insecticide 

exposure. The offspring of resistant mosquitoes will have a fitness advantage  and be 

the dominant group of mosquito population [116].  

Multiple resistance mechanisms have been identified in A. aegypti mosquito 

[117], including metabolic detoxification and modification of the insecticide-target site. 

More precisely, mutations in the sodium channel, on acetylcholinesterase or on GABA 
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receptors will induce insecticide resistance against pyrethroids, organophasphate and 

cyclodiene, respectively. Metabolic detoxification is due to overexpression/modification 

of cytochrome P450 genes, esterases and glutathione transferases (GST), which are 

able to metabolize different types of insecticides [110]. 

The variety of insecticides for public health is limited and their use led to 

evolution of resistant populations. Insecticide resistance management is essential to 

slow down the evolution of resistance and maintain efficiency of vector control. 

Reduction of insecticide pressure in vector control, agriculture and domestic use is 

essential. Alternation of insecticides with different modes of action, spread over 

different areas, use of mixture of insecticides, and nonchemical alternatives are 

strategies to manage resistances [118]. Development of novel chemicals focusing not 

on annihilating the vector but on blocking viral transmission is another unexploited 

strategy to fight the dengue global burden. 

 

Vector competence and tolerance to infection 
 

It is commonly reported that viral infection barely impacts physiology and fitness 

of mosquitoes [119,120]. However, rather than resisting infection, it seems that the 

mosquito tolerates infection by limiting damages [121]. This tolerance allows mosquito 

survival and high viral load, essential for virus transmission to humans. Different 

tolerance mechanisms have been suggested in midgut, such as immune pathways, 

tissue repair via stem cell division, metabolic adaptation, stress responses and 

microbiota-induced tolerance [122].  
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2. The metabolome 
 
2.1. Overview 

 
Metabolites are small molecules that determine the physiological state of cells 

and include carbohydrates, amino acids, lipids, nucleotides, hormones and vitamins. 

The metabolome is the set of all metabolites. Metabolites are usually presented as the 

end product of processes related to genes, transcripts and proteins. Consequently, any 

upstream bio cellular alterations result in metabolic changes and metabolome profiling 

brings information about the phenotype.  

The metabolism is separated in several pathways, which are interconnected and 

converge on the tricarboxylic (TCA) cycle (Fig 4). TCA produces metabolic 

intermediates and contributes to energy production in the form of adenosine 

triphosphate (ATP). TCA cycle starts with acetyl-CoA, which is produced by catabolism 

of carbohydrates, mainly glucose, via glycolysis. In the TCA cycle, the acetyl group is 

oxidized to produce energy. Acetyl-CoA is also used for fatty acid and lipid biosynthesis, 

including phospholipids, sphingolipids and glycerolipids. Acetyl-CoA can be reversely 

produced by fatty acid catabolism via the β-oxidation. TCA cycle is connected with 

amino acid metabolism through shared intermediates and, thus, indirectly influences 

protein translation. Eventually, nucleic acids originate from the pentose phosphate 

pathway, which derives from glycolysis. 
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Figure 4. Overview of the metabolism. The general metabolism is composed of 

metabolic pathways that converge onto the tricarboxylic cycle (TCA) via acetyl-CoA 

intermediate production. Breakdown of carbohydrates by the glycolysis, oxidation of 

fatty acids and amino acids pathways lead to acetyl-CoA production. Acetyl-CoA is 

used as precursor for fatty acids generation and structural lipid pathways. Glycolysis 

results in the production of pentose phosphates involved in nucleotide production. The 

TCA cycle produces precursors of amino acids and the reducing agent NADH, which 

feeds into the electron transport chain to produce chemical energy in the form of ATP. 

TCA, tricarboxylic cycle; PL, phospholipid; SL, sphingolipid; GL, glycerolipid; NADH, 

nicotinamide adenine dinucleotide; ADP, adenosine diphosphate: ATP, adenosine 

triphosphate. 
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2.2. Energy pathways 
 

The central energy pathways are the glycolysis, beta-oxidation and citric acid cycle 

[123]. The first two aim to break down glucose and lipids to provide acetyl-CoA, a 2-

carbon molecule donor, which drives electron donor production and generates energy 

in the form of ATP. 

The TCA pathway is central for many metabolite turnovers [124]. The reactions 

occur in the matrix of the mitochondria over eight different steps. The first step is the 

fusion of acetyl-CoA with oxaloacetate by a citrate synthase to form citrate. Citrate is 

converted in 2 steps in isocitrate by an aconitase enzyme. Isocitrate dehydrogenase 

next catalyzes dehydrogenation and decarboxylation of isocitrate into alpha-

ketoglutarate. This reaction generates NADH, the electron donor used for oxidative 

phosphorylation. Alpha-ketoglutarate is converted into succinyl-CoA by an alpha-

ketoglutarate dehydrogenase, producing an another NADH molecule. Succinyl-CoA 

produces succinate via a succinate thiokinase, which generates one GTP molecule 

used for ATP production. Succinate is transformed into fumarate by a succinate 

dehydrogenase, generating one FADH2 molecule, another electron donor. A fumarase  

converts fumarate into malate, which is finally transformed in oxaloacetate by malate 

dehydrogenase, producing a third NADH molecule. TCA cycle intermediates are used 

by other pathways such as gluconeogenesis, lipid and amino acid pathways. Electron 

donors, NADH and FADH2 produced in the TCA cycle then feeds into the electron 

transport chain, also called oxidative phosphorylation, to produce ATP by ATP 

synthase. 
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2.3. Lipid metabolism 
 

2.3.1. Overview 
 

The lipidome is the set of all lipids in an organism. In eukaryotic cells, thousands 

of different lipids are produced and 5% of the genes are involved in their synthesis 

[125]. Lipid metabolism fulfills different important functions for cell homeostasis. Lipids 

play roles in energy storage, essentially via triacylglycerol stored in lipid droplets, and 

energy conversion pathway. Membrane biogenesis is another important process, 

involving sterols and fatty acids. It allows intracellular elements to be 

compartmentalized by boundaries. Membrane lipids are associated with critical cellular 

events such as cell division, fusion, membrane trafficking, endocytosis and exocytosis. 

Various chemical properties of lipids enable protein anchorage, dispersion, 

aggregation and multiple enzymatic reactions. Lipids can also act as secondary 

messengers when degraded, in cellular recognition processes and signal transduction. 

Furthermore, lipidic membranes are closely associated with virus life cellular cycle, 

especially for enveloped virus. 

Lipid classification is dictated by hydrophobic and hydrophilic characteristics 

[126]. Their chemical structure is divided in eight large categories: fatty acyls, 

glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol lipids, 

saccharolipids and polyketides. 

 
2.3.2. Lipid biogenesis 

 
Lipid biogenesis or lipogenesis is the process by which acetyl-CoA is 

synthesized into fatty acids. The synthesis starts with the formation of malonyl-CoA 

from acetyl-CoA, via two acetyl-CoA carboxylases (ACC) [127]. In the cytoplasm, fatty 

acid synthase (FAS) then catalyzes repeated additions of acetyl-CoA to produce 
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mainly palmitic acid (palmitate), a 16-carbon saturated fatty acid (C16:0), and in minor 

amount a 18-carbon stearic acid (C18:0). Palmitic or stearic acids undergo elongation 

or unsaturation to generate other types of fatty acids [128]. Chain elongation is 

happening mainly in the endoplasmic reticulum (ER) and produces acyl chains greater 

than 16 carbons for membrane lipids, by successive 2-carbon condensation. 

Mitochondrial elongation is less important and is required for mitochondrial membrane 

biogenesis. These fatty acids are used as components of membrane lipids or can be 

esterified in triacylglycerol for energy storage. 

Mono-unsaturated fatty acids (MUFA) are produced through oxidative 

desaturation by desaturase; hydrogen removal results in double bond formation. The 

first double bond introduced is in carbon position 9 (Δ9). In animals, poly-unsaturated 

fatty acids (PUFA) result from the insertion of other double bonds between the existing 

bond and the end carbon. Insects, however, can desaturate on either side of the 

existing bond. Consequently, different PUFA species are found in insect and mammals. 

Unsaturated fatty acids have naturally cis double bonds. 

Oxidation of fatty acids occurs in mitochondria and peroxisomes via the 

mechanism of β-oxidation [129]. Fatty acids need first to be activated by conversion 

into fatty acyl-CoA thioesters via an acyl-CoA synthetase. In mitochondria, this reaction 

occurs at the outer membrane. The inner mitochondrial membrane is impermeable to 

CoA, so the acyl residues have to be carried by carnitine via carnitine 

palmitoyltransferase I to cross this barrier and reach the mitochondrial matrix where β-

oxidation is located. At this place, acylcarnitine are transformed in acyl-CoA thioesters 

by carnitine palmitoyltransferase II to enter the β-oxidation spiral. Oxidative 

degradation is composed of four steps: dehydrogenation, hydration, second 

dehydrogenation and a final thiolytic cleavage. The final product of one cycle of β-
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oxidation are 2 carbon shortened acyl-CoA. Complete degradation continues until the 

carbon chain is completely cut into acetyl-CoA. Mitochondrial oxidation generates 

acetyl-CoA for energy metabolism and ketogenesis, and provides energy for oxidative 

phosphorylation. The peroxisome is specialized in oxidation of long and very long fatty 

acid. 

 
2.3.3. Phospholipid metabolism 

 
Phospholipids are major constituent of cellular membranes [130]. They are 

composed of one hydrophilic head group, a glycerol backbone and two hydrophobic 

fatty acyl chains, which combine through the hydrophobic parts in a bilayer. 

Phospholipids provide a barrier between cellular content and external environment, 

enabling intracellular organelle formation and compartmentalization of different cellular 

activities. Phospholipids are mainly produced in the endoplasmic reticulum. The most 

abundant phospholipids in eukaryotic membranes are phosphatidylcholine (PC), 

representing up to 50% of phospholipid content, phosphatidylethanolamine (PE), 

phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylglycerol (PG), 

cardiolipin (CL) and phosphatidic acid (PA). Each categories are distinguished by their 

different head group [131] (Fig 5). While PCs are the main phospholipids in mammalian, 

PEs are the preponderant ones in mosquito cells PE [132–134]. 
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Figure 5. Phospholipid composition of cell membranes. Composition of 

phospholipid species expressed as percentage of the total phospholipids in mammals. 

The distributions in plasma membrane, endoplasmic reticulum, mitochondria, Golgi 

and late endosome are shown. Molar ratio of cholesterol to phospholipid is presented 

in the same membranes. 
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The fatty acyl chains of phospholipids can have different carbon number and 

degree of saturation. Those variable structures give them different biochemical 

proprieties. Sphingolipid (SL) belong to a different lipid membrane species, although 

their structure function in cell membranes are similar to PC [135]. Most abundant SL 

are ceramides and sphingomyelins (SM). 

Endoplasmic reticulum is where the bulk of structural lipids (i.e., phospholipids, 

ceramides and cholesterols) are produced [136]. A subfraction of the ER attached to 

the mitochondria, the mitochondria-associated membranes (MAM), contains also 

specific enzyme for lipid biosynthesis [137]. The ER, as the first secretory organelle, 

contains all intermediates and endproducts of complex lipid pathways, except for sterol 

and sphingolipids which are rapidly transported into other membranes. Mitochondria is 

also a major site of lipid biosynthesis, especially for LysoPA, PA and PG used for CL 

synthesis, a product that is unique to this organelle. Mitochondrial PEs are produced 

by PS decarboxylation. Mitochondrial inner membrane is composed of high density PG 

and CL and a high PE/PC ratio [138]. The golgi is more specialized in sphingolipid 

production and the final steps of PC synthesis [139]. Plasma membranes and early 

endosome contain more sterol and sphingolipid than PL, due to the required property 

of resistance to mechanical stress. Plasma membrane is not a major place for 

structural lipids synthesis, even if lipid regulation can occur by sphingolipid turnover, 

lipid degradation and signaling [140]. Plasma membrane contain PS on the inner side. 

Flipping of PS and their exposure on the cell surface is a marker for apoptosis that 

leads to recognition and uptake by macrophages [141]. Late endosome contains less 

PS and sterol but a high concentration of bis(monoacylglycerol)phosphate (BMP), a 

lipid associated with fusion and sphingolipid degradation [142,143]. 
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2.3.3.1. Phospholipid (PL) biogenesis 
 

PL biogenesis is a highly conserved pathway. It involves multiple enzymes in 

different organelles and results in the production of hundreds of different PL species. 

PL de novo biogenesis is initiated by two types of acyl-transferases that sequentially 

add two acyls to one glycerol-3-phosphate (G3P) (Fig. 6) [130,144,145]. The first 

addition is realized in the ER or mitochondria membrane by glycerol-3-phosphate 

acyltransferase (GPAT) to produce lysophosphatidic acid (LysoPA). LysoPAs formed 

in mitochondria are transferred to the ER prior to the second acylation [149]. The 

second addition is catalyzed by 1-acyl-sn-glycerol-3-phosphate O-acyltransferases 

(AGPAT) that transform LysoPA in phosphatidic acid (PA), in the ER principally [146].  

The PA produced is composed of fatty acid (FA) at first and the second carbons 

of the glycerol molecule, called sn1 and sn2 positions respectively . FA in sn1 is 

generally saturated or monounsaturated, while FA in sn2 is polyunsaturated (PUFA) 

with long chains. The most abundant FAs in PA are palmitic acid (16:0), stearic acid 

(18:0), and oleic acid (18:1) at sn1; and linoleic acid (LA; 18:2), arachidonic acid (ARA; 

20:4), eicosapentaenoic acid (EPA; 20:5), or docosahexaenoic acid (DHA; 22:6) at sn2 

(Fig 7). The diversity of FA in PA produces a multiplicity of unique PL species. PAs are 

then used to produce all PLs, positioning AGPATs as rate-limiting enzymes of PL 

biogenesis. PA forms either DAG or CDP-DAG, each generating a different set of PL.  

Synthesis of CDP-DAG involves condensation of cytidine triphosphate (CTP) 

with PA, via CDP-diacylglycerol synthase. This reaction occurs in ER and mitochondria 

membrane. CDP-DAG produces PI and PG, the latter being transformed in CL by 

combination with a second PG. Inositol and CDP-DAG are condensed in PI by PI 

synthase. Inositol is originated from diet, recycling or biosynthesis from glucose. PI is 

the precursor of several phosphorylated derivates (PIPs) called also phosphoinositides 
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that are involved in cell signaling. PG is synthesized from a phosphatidylglycerol 

phosphate intermediate (PGP) by PGP synthase and PGP phosphatase in both ER 

and mitochondria. CL or diphosphatiylglycerol is produced by combination of PG and 

CDP-DG via cardiolipin synthase. PG induces another PL synthesis called 

bis(monoacylglycerol)phosphate (BMP), via a complex biosynthetic pathway of 

acylations. 

DAG is synthesized by phosphatidic acid phosphatase (PAP) from PA. DAG is 

required for triacylglycerol (TAG) and biosynthesis of the aminophospholipids 

(AminoPL), namely PC, PE and PS [130]. De novo PC and PE synthesis is conducted 

mainly through the Kennedy pathway [147] within the ER, using the CDP-choline and 

CDP-ethanolamine intermediates. Choline and ethanolamine are first rapidly 

phosphorylated by choline/ethanolamine kinases (CK/EK). Phosphocholine and 

Phosphoethanolamine then form CDP-choline and CDP-ethanolamine with CTP by the 

rate-limiting enzyme CTP:phosphocholine/ethanolamine cytidyltransferase (CT/ET). 

Diacylglycerol (DAG) incorporates the phosphocholine/ethanolamine group from 

cytidine-diphosphocholine/ethanolamine by DAG:CDP-choline 

cholinephosphotranferase (CPT) or DAG:CDP-ethanolamine 

ethanolaminephosphotranferase (EPT) to produce PC and PE. PS is produced by 

head exchange reaction from PC or PE and is catalyzed by PS synthase (PSS1 or 

PSS2). PS biosynthesis directly via CDP-DAG pathway was found only in plants and 

yeast [148]. PCs are also involved in SM synthesis with ceramide by sphingomyelin 

synthase (SMS). 

Alternative pathways exist for PC and PE syntheses. The alternative pathway 

for PE biosynthesis is the Psd pathway in mitochondria inner membrane. It involves 

PS decarboxylation to PE by a PS decarboxylase (PSD) [149,150]. PC can also be 
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synthetized in a minor pathway via ethanolamine methylation of PE by PE 

methyltransferase (PEMT), principally in hepatocytes. AminoPLs such as PC and PE 

are also produced by reacylation of LysoPLs [151]. 

Choline is an essential nutrient and must be imported from the diet to meet 

metabolic needs. Methylation of PE into PC and hydrolysis of the choline part is a minor 

mechanism for choline recycling . Inside cells, choline is rapidly phosphorylated by CK. 

Choline can also be converted in acetylcholine in neurons or in betaine in the liver and 

kidney for methionine biosynthesis [151]. The CT reaction limits the rate of PC 

biosynthesis, making phosphocholine present in higher concentration than CDP-

Choline. CT enzyme, and DAG and PC components modulate PC biosynthesis by 

feed-back and feed-forward mechanism.  

Ethanolamine used for PE biosynthesis derives from the diet in the form of lipids 

[152]. Smaller amount of ethanolamine is produced by PE degradation. Gut-associated 

bacteria can convert ethanolamine in acetaldehyde, a precursor for acetyl-CoA 

generation [153]. 

 

 



   53 
 

 
Figure 6:  Biosynthetic pathway of phospholipids
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Figure 7. Structures of common fatty acids in phospholipids. The commonly FA 
present in sn-1 and sn-2 acyl chain of PL are represented in linear form and 2D 
conformation structure. 

 

 
2.3.3.2. Phospholipid remodeling 

 
Diversity of fatty acyls in PL does not only result from de novo synthesis pathway, 

but also from remodeling through the Land’s cycle [154]. Newly synthetized PL can be 

hydrolyzed at the sn-2 position by phospholipase A2 (PLA2) to produce 1-acyl 

lysophospholipid (Fig 8). This LysoPL is reacylated by lysophospholipid 

acyltransferase (LPLAT) via incorporation of another fatty acid in sn-2 position and 

form a new PL species [154]. Remodeling ensures maintenance of PL membrane 

composition and cell signaling. LysoPL and FA released by PLA2 activity can serve as 

intermediates for lipid signaling synthesis, such as platelet-activating factor (PAF), 

eicosanoids and prostaglandins [155].  

Among LPLAT, lysophosphatidylcholine acyltransferases (LPCATs) were 

discovered for their PC remodeling activity. LPCATs actually have also LysoPE, 

LysoPS and LysoPG acyltransferase activities used in PL remodeling. Four members 

of LPCAT were identified. LPCAT1 and LPCAT2 are member of the AGPAT family and 

are found in ER membrane and lipid droplets. Remodeling by LPCAT1-2 are important 

in lipid droplet size regulation and their lipid surface organization [156]. LPCAT3 and 
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LPCAT4 membrane-bound O-acyltransferase (MBOAT) family, are also in ER 

membrane. Each LPCAT have specific acyl substrate preference, enzymatic activity 

and tissue localization in mammals. LPCAT3 is the most expressed LPCAT in different 

cell types and is responsible for the majority of LysoPC acyltransferase activity.  

PLA2 enzymes have a multitude of isoforms and functions, other than in the 

Land’s cycle [157]. Four main categories of PLA2 exist: secreted PLA2 is most studied 

in bees and snake venoms and in pancreatic juices in mammals; cytosolic PLA2 is 

recruited in membrane by Ca2+-dependent translocation; calcium-independent PLA2 

[158,159];  and platelet activating factor (PAF) lipoprotein associated PLA2. Another 

impact of PLA2 during PL hydrolysis is the release of PUFA for eicosanoids 

biosynthesis such as prostaglandin, thromboxane and prostacyclin, all active lipid 

mediators.  

Others phospholipase enzymes can hydrolyze PL (Fig 8A), [160]. 

Phospholipase A1 (PLA1) hydrolyze the sn-1 to produce 2-acyl lysophospholipid. 

PLA1 function is largely unknow but they likely have role in production of LysoPS, 

LysoPI and LysoPA. Phospholipase B (PLB) is able to hydrolyze both the sn-1 and sn-

2 fatty acids of PC, PE and PI [161]. Phospholipase C (PLC) and Phospholipase D 

(PLD) are phosphodiesterase. PLC cleaves the glycerophosphate bond, while PLD 

removes the headgroup. PLC produce DAG and phosphorylated headgroup, in a 

specific way on PC or PI depending of the enzyme. PLD releases headgroup and 

produces PA, but can also catalyze exchange of the headgroup by 

transphophatidylation to produce a new PL. In mammals, PLD is important for cell 

signaling due to PA remodeling, the central lipid of PL biosynthesis and a lipid mediator 
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Figure 8. Phospholipid remodeling. A. sites of cleavage by the different 
phospholipases, B. Land’s cycle showing remodeling of PC and LysoPC. 
 
 
 

2.3.3.3. Phospholipid structure and biochemical property 
 
Structure and membrane curvature 
 

Nature of PL molecular composition confers specific structural proprieties, 

impacting membrane comportment and organization inside the cell (Fig. 9). Structure 

of PL depends on the headgroup size and acyl chain composition [162].  

PC and PS have a polar headgroup and parallel fatty acyl chains that confer a 

cylindrical geometry and enable linear bilayer formation. Usually, they have one cis 

unsaturated acyl chain, making the membrane fluidic at room temperature. 

Sphingolipids are composed of only one acyl chain, resulting in a cylindrical geometry 

as well. When inserted in lipid bilayers however, sphingolipids produce a tighter 

membrane because of their smaller steric hinderance than PC and PS.  

PE, PA, DAG and CL have a small headgroup and two fatty acyls that result in 

inverted conical geometry. When inserted in the inner layer of a lipid bilayer, those lipid 

species impose a negative curvature. Conversely, LysoPC, LysoPE and PI confers 

positive curvature in the same condition due to large headgroups and small acyl chains. 
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Sterols and non-polar lipids are highly abundant in cell membranes. Cholesterol, 

the main sterol species in mammals and insects, consists of a small polar headgroup 

and a large apolar body, enables to integrate among the non-polar fatty acid chains of 

PL in membrane. Cholesterols are preferentially associated with SM and PC in 

membranes and increase fluidity [163,164]. Lipid rafts are enriched in SM and 

cholesterol, and are involved in the assembly of signaling proteins. 

Insertion of PE in mostly PC bilayers induces membrane curvature, allowing 

phenomena of fusion, fission and budding [165]. The curvature is also induced by lipid 

asymmetric distribution among both lipid leaflets. Abundance of PE and PS on the 

inner monolayer of plasma membrane induces neutral to negative curvature [166]. 

 
Membrane asymmetry 
 

Lipid asymmetry refers to a non-random distribution of lipid species in lipid 

bilayers. It induces biophysical properties that promotes certain cellular functions 

[166,167]. A well-known example is the organization of negative PS in plasma 

membrane. In normal cells, PS are found in the cytoplasmic side where they associate 

with numerous enzymes such as kinase proteins. During specific event, PS move to 

the outer leaflet, exposing their negative polar head to the extracellular side and 

inducing signaling such as apoptosis. 

In plasma membrane, PC and SM are generally found in the outer leaflet, while 

PE, PS and PI are found in the inner leaflet [131]. Lipids in the ER are symmetrically 

distributed between the two leaflets, while Golgi, endosome and plasma membranes 

have asymmetric distribution. 

Phospholipid asymmetry is maintained by lipid transporters [168]. Flippases are 

ATP-dependent aminoPL translocases that transport lipids inward. Floppases are 
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ATP-binding cassette (ABC) transporters that transport lipids outward. PL scramblases 

induce lipid asymmetry by migrating lipids between the two-membrane layers. PL 

scramblases induce PS externalization in apoptotic cells or to start coagulation process 

[167].  

 
Electrostatics 
 

Electrostatic charges depend on negatively charged lipids, i.e. PS and 

phosphoinositides PIPs. They are highly present in plasma membrane, especially on 

the cytosol side, and are low abundance in ER membranes [168,169]. Distribution of 

the membrane electric changes is associated with lipid asymmetry. Furthermore, the 

charge of different PL is pH-dependent. PC and PE are zwitterionic, while PS, PA, PG, 

CL an PI are anionic at pH 7 [170]. Consequently, pH gradient modifies electric charges 

and consequently lipid distribution on inner and outer leaflet [171]. Electric charges are 

critical to orientate transmembrane proteins. Positively-charged peptides will interact 

with negatively-charged lipids in the inner leaflet to integrate the protein in the lipid 

bilayer and position it adequately [166]. 

 

Packing defects 
 

Lipid packing defects refer to heterogenous lipid arrangements that loosen lipid 

bilayer and increase fluidity, facilitating protein insertion [172] (Fig 8). Ratio between 

small and large headgroups and ratio between saturated and unsaturated acyl chains 

influence lipid packing. Low packing in the ER is induced by high concentration of 

unsaturated PL and lack of cholesterol [173], while plasma membrane has high 

packing due to saturated structural lipids and sterols. Packing defects also influence 

fluidity [132]. 
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Lipid phase 
 

Membrane lipid organization is induced by the different characteristic described 

previously, provoke different membrane phase behavior [131]. External factors such 

as temperature, pressure, composition of the aqueous phase influence the assembly 

of the different lipid phases. 

The lamellar phase, known as the lipid bilayer, is found in biological membranes 

with polar headgroups of lipids face the aqueous environment on both sides and acyl 

chains associated inside [174]. Most biomembranes are organized in lamellar liquid 

phase with a liquid disordered (Ld) phase which contains floating “rafts” of liquid 

ordered (Lo) phase. Liquid phases are characterized by the lateral mobility of lipids 

within the bilayer. Gel phase, also called solid phase, can exist in in vitro system, where 

lipid lose lateral mobility and become more packed. 

Membrane lipids are also able to form non-lamellar transitory phase, like 

hexagonal or cubic phases, making specific local structures within membranes [175]. 

Hexagonal phase can be type I (HI) consisting of cylinder or spheric micelles with the 

polar head outside of the tubules, and type II (HII) with inverted micelles where the 

fatty acyl chains are directed outward from the tubules. Combination of HII phase and 

lamellar phase can form cubic phase. HII and cubic phase establish aqueous channel.  

Lamellar phase is formed by non-curvature lipids PC, PG, PI. The Ld phase is 

enriched in saturated lipids, especially SM, and cholesterol, while the Lo phase in 

enriched in unsaturated PL. Gel or solid-like phase is induced by lipids with long and 

saturated chains, high amount of cholesterol and low temperature. Non-lamellar phase, 

hexagonal and cubic phases exist temporarily during fusion, fission and pore formation 

and may be important for enzymatic activity [175]. Negative curvature lipids, PE, PS, 
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PA form hexagonal II and cubic phase, while positive curvature lipids LysoPL form 

hexagonal I phase. 

 
Protein insertion 
 

Membrane proteins modify the behavior of lipid membranes and should not be 

overlooked when discussing lipid properties. Insertion of these proteins is influenced 

by the physicochemical parameters of membrane, such as curvature, electrostatics 

and lipid packing [176]. Once inserted, the proteins perturb the hydrophobicity and 

provoke a mismatch between protein and lipid, then affecting the thickness and 

membrane organization [172]. Consequently, protein function is tightly regulated by 

lipid interactions.  
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Figure 9. Phospholipid structure and biochemical properties. 
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2.3.4. Lipid droplet: a lipid storage constrained by phospholipids 
 

Lipid droplets (LD) are essential for the cell storage of carbons via neutral lipids, 

TAG and sterol esters. These storage bodies are constrained by a layer of PL (mainly 

PC an PE) and proteins [177]. The LD monolayer composition is closed to the one in 

ER, showing a common origin [178]. LD are mobilized by lipases, perilipin, to provide 

lipid substrate for PL synthesis, fatty acid pathway and lipid mediator production [179]. 

LD also contain enzymes of the PC biosynthesis pathway that allows the production of 

CDP-Choline [180]. However, LD lack of CPT to finalize PC production, suggesting a 

role as an intermediary donor to the ER where PC biosynthesis is completed. LD can 

also perform PL remodeling through phospholipase PLA2 and LPCAT.  

 
2.3.5. Specificity of mosquito lipid metabolism 

 
There exist important differences in the way insects metabolize lipids [181]. 

Insects obtain cholesterol and essential fatty acids from their diet. For blood feeders, 

ingested blood provides numerous lipid species, mainly TAG, PL, cholesterylesters 

and FA. In the midgut, lipolysis takes place with lipases that hydrolyze TAG and several 

phospholipases. Fatty acids are absorbed in midgut cells and used to produce 

phospholipids, TAG and DAG via the PA pathway. DAG is transported through 

hemolymph in association with a lipophorin carrier to reach the fat body for conversion 

in TAG and lipid storage. Lipids stored in the fat body are then mobilized and delivered 

to targeted tissues that require energy or FA metabolic process, such as oocyte 

development and flight muscle [182]. Lipophorin is also involved in A. aegypti mosquito 

immune response and is regulated by parasite infection [183]. 

Fatty acids are also synthesized from glucose and amino acids, which is 

important given the mosquito's diet that feeds on sugar and high-protein blood. FA, 
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phospholipid and Glycerolipid synthesis have the same pattern as in mammals, with 

difference on the number of enzyme isoforms [182]. One particularity of insect is the 

capacity to produce Poly-unsaturated fatty acids (PUFA) with specific desaturase, 

contrary to mammals, given a wide range of PL species insect-specific [184]. The 

phospholipids composition of A.aegypti cells have confirmed a major abundance of PC 

and PE, and detection of all other PL species [134,185]. Subcellular fractions isolated 

from mosquito cells show a common system to the mammalian phospholipid pathway. 

Furthermore, membrane composition is analogous to mammals [186], suggesting an 

highly conserved metabolism. 

 

2.3.6. PL mediated signaling and innate immunity 
 

Insect and mosquito developed several immune systems in antiviral defense 

[187–189]. Several major immune signaling pathways are involved in antiviral 

protection, including the Janus kinase/signal transducers and transcription activator 

pathway (JAK-STAT), immune deficiency pathway (IMD), the Toll pathway, the Jun-N-

terminal Kinase (JNK) pathway and the RNA interference pathway (RNAi). 

The JAK-STAT pathway is triggered by Dome transmembrane receptor via Upd or 

Vago binding and induces phosphorylation of STAT transcription factor by Janus 

kinases (JAKs) and activates JAK-STAT-regulated genes [187]. IMD pathway is 

activated by PGRP membrane receptor through binding with ligand and trigger 

signaling via IMD and several kinases and caspases which induce phosphorylation of 

Rel2 transcription factor and activate transcription of anti-microbial effectors.  Toll 

pathway signal transduction is triggered by the recognition of pathogen derived ligands 

by pattern recognition receptors (PRR) and leads to the cleavage of the cytokine 
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Spaetzle which binds the Toll membrane receptor and induces association with MyD88, 

Tube and Pelle adaptors proteins. This leads to activation of Rel1 transcription factor 

and activates subsequent transcription of antimicrobial peptides genes (AMPs). The 

RNAi pathway is stimulated by dsRNA inside infected cells and uses enzymes 

expressed in the cytoplasm. Dicer-2 recognized dsRNA and associates with RISC 

complex in order to degrade RNA [190].  

RNAi is continually activated and modulates DENV infection in Ae. aegypti and 

is an important factor of vector transmission [191]. Those pathways are part of the 

mosquito anti-DENV defense and restricts DENV replication in mosquito midgut 

tissues, where effectors are up-regulated by infection [189,192–196]. However, DENV 

also induces suppression of mosquito immune responses such as down-regulation of 

AMPs in early infection in mosquito [195]. For instance, DENV NS proteins can 

suppress RNAi  and STAT signaling in mammalian and insect cells [197,198]. 

Interactions have been described between Ae. aegypti immune responses to 

pathogens and lipid metabolism. Bacterial Gram +, fungi and parasite infection induce 

fat body genes expression related to lipid metabolism through regulation by the Toll 

signaling pathway [183]. In DENV-infected A. aegypti mosquitoes [199], gene 

associated with LD biosynthesis are regulated. Furthermore, activation of both the Toll 

and IMD pathways increase LD number in mosquito cells.  

The increase of lipid species during DENV infection in mosquito [200], 

especially fatty acids related to lipid mediators, such as prostaglandin, can be 

involved in the mosquito immune defense against viral infection. Prostaglandin (PG) 

are produced by phospholipid hydrolysis containing C20 polyunsaturated fatty 

acids, via phospholipase A2. PG play a role in the regulation of immunity and 

inflammation [201] and have be found regulated by bacterial and parasites infection 
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in mosquito [202]. 

Inflammatory response, autophagy, apoptosis, coagulation and T-cell 

recognition are all mediated by PLs and their degradation products [155]. Activated 

immune cells are known to produce several PL-derivated species, such as 

phosphoinositides (PIPs), oxidized phospholipids or plasmalogen-PC known as the 

platelet activating factor (PAF). PLA2 hydrolysis activity is involved in platelet activation, 

inflammation with prostaglandin produced by the release of the ARA fatty acid, and 

cyclooxygenase-mediated pathways of ARA in immune cells [155,203]. 

LD accumulation is often reported in response to bacterial or viral infection. In 

mammalians cells, activation of the Toll-like receptor (TLR) induces the production of 

LD that participate in the interferon (IFN) response [204,205]. Anionic PLs, such as PG 

and PI, negatively modulate TLR signaling, likely to prevent inflammatory processes 

[206]. Stimulation of acyltransferase activity by AGPAT overexpression to convert 

LysoPA to PA induces enhancement of tumor necrosis factor-α (TNF-α) and 

interleukin-6 (IL-6) cytokines, in mammalian cells [207]. TNF- α and IL-6 are both cell 

signaling pro-inflammatory cytokines, emphasizing the link between PL and 

inflammatory response. 

 

2.4. Metabolomics 
 

Metabolomics is an emerging “omics” that identifies and quantifies metabolites 

from cells, biofluids, tissues and organisms [208]. Metabolomics is a powerful method 

to detect altered metabolic pathways upon infection [209,210]. Metabolomics can 

reveal major changes in the four main metabolite groups: nucleotides, carbohydrates, 

lipids and amino acids [211]. 
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There are two metabolomics strategies: untargeted and targeted metabolomics 

[208,212]. Untargeted metabolomics is the comprehensive analysis of all known and 

unknown measurable compounds in a sample. Annotation with in silico libraries or 

experimental database is then primordial. The untargeted approach allows the 

discovery of new compounds and exploration of non-model organism metabolome. 

Targeted metabolomics focuses on annotated molecular species. This requires a priori 

knowledge of the targeted metabolites. It is generally associated with internal 

standards for quantitative or semi-quantitative assay. Sample preparation and 

metabolite extractions will depend on the metabolites classes targeted and the strategy 

[212–215]. 

Different analytical methods are used separately or in combination to qualify 

changes in metabolite concentrations. The three main methods are nuclear magnetic 

resonance (NMR) spectroscopy, liquid chromatography-mass spectrometry (LC-MS) 

and gas chromatography-mass spectrometry (GC-MS). NMR spectroscopy, commonly 

proton (1H-NMR) or carbon -13 NMR, is based on the spin states of nuclei and their 

transition upon exposure to a magnetic field [216]. NMR has high reproducibility, does 

not require complex sample preparation, is nondestructive and noninvasive and high 

number of metabolites can be detected rapidly in a single measurement [217]. Mass 

spectrometry (MS) is generally coupled with chromatographic separation method such 

as liquid chromatography (LC) or gas chromatography (GC) to simplify separation and 

identification of compounds. MS-based metabolomics provide higher sensitivity (even 

more so when different ionization techniques are used) and selectivity than NMR. MS 

analysis required more sample preparation than NMR [218]. GC and LC separates 

compound based on their specific mass-to-charge ratio (m/z). GC-MS aims to detect 

volatile metabolites, while LC-MS provide detection of a wide range of compounds 
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based on ion property and metabolite polarity [219]. Reversed-phase LC-MS (RPLC-

MS) is used to separate apolar or semi-polar compounds, while hydrophilic interaction 

liquid chromatography (HILIC) separates polar metabolites [220]. Tandem MS (MS/MS) 

is used for optimal metabolite annotation. In MS/MS, the first MS allows the selection 

of an ion that is then decomposed in the second MS, providing more in-depth ion 

characteristics of the compound [220,221]. 

Spectral data acquired are pre-processed and normalized before annotation [222]. 

Common processing steps include baseline correction, spectral alignment, 

normalization and scaling. Baseline correction is essential to correct signal intensity 

deviation. Alignment is performed in order to correct peak shifts between samples. 

Normalization is used to correct variations between samples to make them more 

comparable to each other. Normalization in the total ion current (TIC) is commonly 

applied. Scaling allow to make the features more comparable. Commonly used scaling 

methods include range scaling, autoscaling, and Pareto scaling [223]. Metabolite 

differences between sample groups are calculated by statistical analysis. Multivariate 

methods such as principal component analysis (PCA) and partial least squares 

discriminant analyses (PLS-DA) are widely used for metabolic fingerprinting [224]. 

PCA is used to visualize trends and detect outliers, while PLS-DA helps to predict 

metabolite classification and identify biomarkers [222]. Accurate metabolite annotation 

is crucial for functional interpretations of perturbed metabolic pathways. The 

Metabolomics Standards Initiative (MSI) proposes four levels of identification [225]:  

identified compounds, putatively annotated compounds, putatively characterized 

compound classes and unknown compounds. Compounds are identified based on 

similar mass with databases and support from retention time and spectral 

fragmentation [226]. Comparison with databases from Human Metabolome Database 
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HMDB [227], METLIN [228], ChEBI [229], PubChem [230], MassBank [231], LIPID 

MAPS [232] and LipidBlast [233] are used. However, there is a lack of non-model 

organism metabolite database (i.e., for mosquitoes) that complicates metabolomic 

studies in Aedes. Determination of unknown metabolite classes based on their spectral 

similarity with annotated metabolites is a useful strategy for non-model organisms, 

such as mosquitoes. For spectral similarity, MS/MS spectra are aligned to one other in 

order to construct molecular similarity networks. Metabolites are then connected 

according to their fragmentation similarity, generating clouds of same-class 

compounds [234]. 

 

3. Metabolic alterations upon DENV infection 
 

Viruses depend on host metabolism to provide energy and molecules for their 

multiplication. Infection may dramatically disrupt host metabolic pathways through 

virus metabolic diversion for its own benefits or through host response against the 

pathogen. The use of metabolomics to study DENV interaction with the metabolome is 

relatively recent. Identification and quantification of modulated metabolites will shed 

light on DENV-host interactions and reveal potential targets to block mosquito 

transmission. 

 
3.1. Alteration of energy pathways 
 

Energy conversion pathways are highly perturbed during DENV infection in human 

hepatic cell line [235]. Specifically, DENV down regulates TCA-associated proteins 

such as aconitase, ATP citrate synthase, pyruvate dehydrogenase, and upregulates 

citrate synthase. The mitochondrial energy function is also altered through 
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downregulation of important proteins (such as dihydrolipoamide dehydrogenase) [235], 

resulting in structural alteration and decrease of ATP content and energy charge [236].  

DENV induces and requires carbon metabolism, particularly glycolysis, for 

efficient replication [237]. The glycolytic pathway is altered at the beginning of DENV 

infection in human fibroblasts, while its inhibition decreased DENV replication and 

virion production. Mechanistically, DENV NS1 enhances the activity of the glycolytic 

enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a major enzyme in 

glucose catabolism [238]. GAPDH was also up regulated in hepatocellular infected 

cells, whereas several glycolysis enzyme were down regulated (phosphoglycerate 

kinase, pyruvate kinase, aldose reductase) [235].  

TCA is affected by DENV infection in Aedes albopictus mosquitoes [239]. 

Protein expression of several enzymes associated to TCA cycle (aconitase, isocitrate 

dehydrogenase and malic enzyme) and oxidative phosphorylation (ATP synthase, 

ATPase and NADH dehydrogenase) were significantly down or up regulated after 

DENV infection in C6/36 cells and in salivary glands, midgut and, especially, in the fat 

body. Other proteins, enolase and α-glucosidase, involved in carbohydrate metabolism, 

are also up-regulated after DENV infection in Aedes albopictus [239] and Aedes 

aegypti [240]. Those studies suggest changes in global metabolism and energy 

pathways in Aedes mosquitoes. DENV1-4 increased secretion of essential amino acids 

isoleucine, tryptophan, and phenylalanine [241], suggesting interference with the 

phenylalanine and alanine pathways, which contribute to TCA cycle.  
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3.2. Lipids as biomarker of dengue infection  
 

 
Metabolomics is widely used for to profile human sera and to explore disease impact 

on physiology. Human serum from patients infected by DENV1-3 revealed strong 

alterations of lipids during early stages and a reversion to normal at the recovery phase 

[242]. The two main classes of structural membrane lipids, PL and SL, are highly 

perturbed. The PL phosphatidylcholine (PC), lysophosphatidylcholine (LysoPC) and 

lysophosphatidylethanolamine (LysoPE) decreased simultaneously with platelet count. 

Increase of sphingomyelin (SM) correlated with decrease of lymphocytes. PC, lysoPC 

and SM thus show potential as prognostic markers. LysoPC and LysoPE are usually 

decreased during severe dengue and DHF [243–245]. Even if other PL classes, such 

as phosphatidylinositol (PI) and as phosphatidyserine (PS), were also detected and 

modulated on dengue serum patients, PC species are the most altered in the sera of 

DENV-infected patients [246].  

Phospholipase A2 (PLA2), the enzyme catalyzing the degradation of PL in 

lysophospholipids (LysoPL), was highly increased in sera of DENV-3 patients [247]. 

Modulation of PL and LysoPL observed in different studies may be attributed to PLA2 

activation by DENV. The other products resulting from PL hydrolysis are free fatty acids, 

such as arachidonic acid (ARA), and are also elevated in serum of infected patients 

[242,243].  

Triacylglycerol (TAG) is elevated in serum of DENV-infected patients 

[244,246,248]. TAG are important molecules species for lipid storage and can provide 

fatty acid for energy metabolism or lipogenesis. Compounds involved in lipid 

degradation for energy metabolism, such as acylcarnitine, are highly modulated in 

dengue severe patients [242,249,250]. The levels of such metabolites associated with 
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severe dengue correlate with liver damage and alteration of liver enzymes 

transaminases.  

Fatty acid (FA) synthesis is perturbed in humans upon DENV infection. NS3 

protein interacts with fatty acid synthase (FAS) to relocalize the enzyme to DENV 

replication complexes and enhances its activity, possibly to increase FA availability for 

replication [251]. Autophagy in Huh-7 cells is elevated by DENV infection, also 

contributing to increase fatty acid production [252]. Conversely, fatty acid catabolism 

is also activated through increase in β-oxidation with DENV-induced autophagy [252] 

and increase in ω-oxidation [241], the latter being a rescue pathway for fatty acid 

synthesis [253]. These mechanisms corroborates fatty acid results in serum of dengue 

patients. 

Studies with humanized mice confirmed that DENV decreased PC, PE and 

LysoPE, while it increased SM and acylcarnitine [254]. These studies established the 

potential of lipids, particularly PL, as biomarkers to predict dengue clinical outcome 

[255]. Beyond the use of lipid biomarkers to predict dengue infection, the mechanisms 

associated to such alteration of membrane lipids remain to be elucidated.  

3.3. Lipid regulations in DENV-infected mosquito  
 

Few studies have reported lipid alterations by DENV in mosquitoes. Lipidomics in 

mosquito cells showed that DENV reconfigures the lipid profile, altering the membrane 

lipids such as phospholipids (PL) and sphingolipids (SL) [256]. Among PL, PC was the 

most regulated class, followed by LysoPC, the product of its hydrolysis. A similar 

alteration is observed in DENV-infected midguts, with a particular alteration in SL [257]. 

Functional characterization of lipids was obtained by chemical inhibition of lipid 

synthesis. As observed in human cells, inhibition of FAS by C75 in mosquito cells, 
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decreased DENV replication at early stage of infection [256]. As observed on human 

sera and human cell line, membrane lipid remains one of the most altered class upon 

DENV-infection on Aedes mosquito 

 
3.4. DENV cellular cycle is intricately linked to membrane lipids  

 
3.4.1. Lipid virus structure 

 
Composition of flavivirus lipid envelope is only characterized for WNV [258]. The 

envelope is rich in sphingolipid (SM and ceramide) and PL. Among PL, PC is the most 

abundant, followed by PS and plasmalogen-PC. PE, plasmalogen-PE, LysoPE and 

LysoPC are present in lower proportions. Moreover, the charge distribution of C protein 

suggests its capacity to interact with lipid membranes [259] and LD, the latter plays an 

important role in virus particle formation [260]. 

3.4.2. Attachment and entry 
 

Phospholipids mediate DENV attachment to host cells. TIM/TAM phospholipid 

receptors are entry factors in mammalian cells and bind directly or indirectly to PS on 

the lipid viral envelope, acting as coreceptors [261]. PE at the surface of the virus 

bilayer is a ligand for human TIM, and promotes entry of DENV and WNV [262].  

Human CD300a is another phospholipid receptor that binds directly DENV particle 

through viral PE and PS association and mediates virus entry [263].  

Cholesterol is highly present in plasma membrane, where it associates with 

phospholipids and sphingolipids in lipid-ordered raft domains. Cholesterol depletion 

inhibits flavivirus entry and replication, as shown for DENV and JEV [96]. DENV entry 

is also reduced by cell supplementation with cholesterol or by pretreating the virus with 

cholesterol [264]. It suggests that cholesterol incorporate into the viral lipid bilayer 

envelope, subsequently altering entry. Cholesterol inhibition or cell supplementation 
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suggest that cholesterol homeostasis in cell membrane is a critical factor for DENV 

entry [265].  

Early endosome membranes have a lipid composition close to plasma 

membrane, containing sphingolipids, PS and sterols [131]. Late endosome contains 

less sterol and higher abundance of anionic lipid PS and BMP. The DENV fusion 

process was reported to be PL-dependent, especially for anionic PS and BMP in late 

endosome [266]. 

 
3.4.3. Translation 

 
DENV polyprotein translation takes place in ER lipid membranes. Cholesterol-

rich lipid rafts present in ER are important in DENV polyprotein processing [267]. The 

membrane protein complex (EMC) in the ER in association with transmembrane NS4A 

and NS4B are required for DENV polyprotein folding and post-translational stability 

[268,269]. In absence of EMC, viral membrane protein adopts an incorrect topology in 

the ER membrane that leads to NS4A-B viral protein degradation. However, little is 

known about the phospholipid alteration of the ER caused by the translation process. 

3.4.4. Replication and assembly 
 

The DENV replication complexes (RC) drastically modify the lipid membrane of 

the ER [60,61]. Membrane lipids and host cellular proteins are essential for formation 

of the RC. A cellular chaperone protein DNAJC14 acts as a protein scaffold to 

modulate and maintain the vesicle packet formation [270]. RTN3.1A is also localized 

in the flavivirus RC and is associated directly or indirectly with NS4A protein to promote 

membrane remodeling [271]. LysoPC species is required for the formation of WNV 

replication complex and is involved in membrane curvature [272]. In WNV-infected 
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cells, phospholipase A2 (PLA2) activity is increased to produce LysoPC and contribute 

to the flaviviral replication complex formation [256].  

The virus demand for lipids required for membrane remodeling is 

mechanistically illustrated by the redistribution of the fatty acid synthase (FAS) at 

replication site by NS3 interaction [273]. FAS is activated by NS3 and stimulates 

malonyl-CoA incorporation into fatty acids. This activity should produce palmitate that 

is then used for complex lipid biogenesis. This redistribution of FAS is mediated by 

Rab18, a host Rab GTPase located in ER and lipid droplets (LD) [274]. LD, the lipid 

storage organelle, might act as a source of lipid for energy and membrane 

reorganization. Autophagy is another process required for efficient DENV replication 

via viral NS protein induction [275], which generates free fatty acids, likely for energy 

supply or to provide structural lipids [276]. LD lipophagy is activated by NS4A 

interaction with AUP1, a LD-associated acyltransferase [277]. AUP1 acyltransferase 

activity is enhanced by NSA4 and may provide PL for DENV infectious process.   

Lipid droplets originating from ER are modified and involved in DENV assembly 

via C protein [260]. The number of LD increases during DENV infection, requiring 

production of lipids constituent such as DAG and PL.  

 
 

In summary, we have seen that all stages of the DENV cellular cycle require the 

host membrane environment (Fig 10). From attachment to the release of new virions, 

the virus is constantly interacting with multiple species of structural lipids. Mature viral 

particles attach to the targeted cells through multiple host receptors that involve PL as 

co-factors. Viral entry is achieved mainly by endocytosis in a fine-balanced cholesterol 

membrane context. In late endosome, the viral E protein undergoes pH-dependent 
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rearrangement and promotes viral and endosomal membranes fusion to release the 

nucleocapsid, which is uncoated and release the positive strand-RNA ((+)ssRNA). The 

genomic RNA is translated in a single polyprotein by the host machinery in the bilayer 

ER membrane at cholesterol-enriched lipid rafts. Post-translational process stabilizes 

and ensures proper folding of new viral proteins by interacting with the host membrane 

protein complex (EMC). Individuals transmembrane NS proteins provoke formation of 

Vesicle Packets (VP), which derive from ER membrane. Fatty acids and PL 

productions are induced by Lipid droplet (LD) autophagy via NS4A-AUP1 interaction. 

Fatty acid synthesis is relocalized at replication site via NS3 and Lipid Droplet (LD) 

trafficking mediated by Rab18. LysoPC that allow membrane curvature and 

invagination are produced by enhancement of PLA2 activity and redirected to RC. 

Combination of NS4A interaction with Host Factors (HF: RTN3.1A and DNAJC14) 

maintain vesicle formation for efficient Replication Complex (RC) establishment. NS 

proteins are associated into the RC with RNA to initiate transcription. New ((+)ssRNA) 

produced is released from vesicles and assemble with capsid, membrane (prM) and 

envelope (E) proteins embedded into the host ER bilayer. Immature particles bud off 

from the ER lumen through the trans-Golgi network, in which low pH induces prM and 

E rearrangement that exposes prM to furin host protease and induces pr cleavage. 

Mature virions are released into the extracellular space with pr peptide through 

interaction with the plasma membrane.   

3.5. Lipids as targets for DENV antivirals 
 

Given the importance of the membrane environment and the host lipid metabolism, 

lipids appear as a promising target to block DENV infection. Inhibitor of fatty acid 

synthase (C75) can alter DENV infection, while direct inhibition of certain lipid species 

or lipid supplementation disrupt DENV multiplication. Inhibition of the first enzyme 
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involved in lipid biogenesis, acetyl-Coenzyme A carboxylase (ACC) reduces DENV 

infection in human cell lines and infected mice [278]. Activators of adenosine 

monophosphate-activated protein kinase (AMPK), an important pathway regulating 

lipid metabolism and glycolysis, has anti-DENV activity [279]. Sphingolipid and 

cholesterol metabolism are also targeted to block flavivirus infection [280]. Inhibition 

by nordihydroguaiaretic acid (NDGA) compounds of the sterol regulatory element-

binding proteins (SREBP) pathway that regulates expression of enzymes involved in 

cholesterol and FA biosynthesis disrupts flavivirus infection [281,282]. It is interesting 

to observe that the phospholipid pathways and PL are a less preferential target to 

develop DENV antivirals.  
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Fig 10. DENV life cycle. 
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4. Aim of the thesis 
 

Multiple evidences demonstrate the paramount roles of host lipids in DENV infection 

both in the mammalian and insect hosts. Recent studies characterized the lipidome 

modulations in mosquito cell lines and midguts at early stages of the DENV cycle. 

However, there is a dearth of information about the molecular mechanisms that 

orchestrate these lipidome modulations.  

The objective of this work is to characterize the metabolomic changes in Aedes aegypti, 

to decipher how the virus reconfigures the lipidome and characterize the molecular 

function of the altered lipids. To this end, we designed a high-resolution metabolomics 

pipeline to profile metabolome alterations and used molecular and cell biology to 

characterize the function. 

In chapter 2, we revealed a major phospholipid reconfiguration throughout the 

DENV mosquito cycle, in cells, midguts, and whole mosquitoes. We further identified 

the mosquito gene AGPAT1, involved in PL de novo biosynthesis, as a host factor 

altered by DENV to promote the infection, associated with major regulation of AminoPL, 

especially PC and PE. In chapter 3, we demonstrated the importance of the Kennedy 

pathway and PC/PE biogenesis for DENV multiplication. By isotope labeling 

throughout ethanolamine and choline supplementation, we showed that a PL 

remodeling is induced by DENV infection. We further focus on different step of the 

DENV cellular life cycle and showed that the viral replication step is associated with 

the aminoPL biosynthetic pathway. 

This work extends our understanding of mosquito-virus interaction and 

metabolic requirement for DENV infection. It reveals the importance of phospholipids 

needs and host biosynthetic factor regulation during the DENV mosquito cycle. In 
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addition, it describes a novel model of virus-induced lipid membrane reorganization by 

a balance between PE/PC biogenesis and PL remodeling. Finally, it underlines the key 

role of aminoPL in the DENV replication mechanism. Decipher interactions between 

DENV and lipids in mosquitoes can help to identify compounds to block transmission. 
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CHAPTER 2 – Dengue virus reduces AGPAT1 expression to 
alter phospholipids and enhance infection in Aedes aegypti 

1. Presentation of the publication

The chapter 2 aims to expand our understanding of mosquito-virus interaction 

by studying the metabolic changes induced during DENV infection in Aedes aegypti 

mosquito. We combined a metabolomic approach by Liquid chromatography–high 

resolution mass spectrometry and gene silencing to underline the role of lipid 

membrane for DENV transmission. We highlighted the importance of 

aminophospholipids metabolites and their reconfiguration during DENV infection. We 

further identified a mechanism associated with the phospholipid metabolism, where 

DENV regulates a mosquito host factor to enhance its infection. The results of this work 

are presented in the following research article, which was published on December 9, 

2019 in the Plos Pathogens journal. 
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1 UMR 152 PHARMADEV-IRD, Université Paul Sabatier-Toulouse 3, Toulouse, France, 2 Programme in
Emerging Infectious Diseases, Duke-NUSMedical School, Singapore, 3 MIVEGEC, IRD, CNRS, Univ.
Montpellier, Montpellier, France

☯ These authors contributed equally to this work.
* guillaume.marti@univ-tlse3.fr (GM); julien.pompon@ird.fr (JP)

Abstract

More than half of the world population is at risk of dengue virus (DENV) infection because of
the global distribution of its mosquito vectors. DENV is an envelope virus that relies on host
lipid membranes for its life-cycle. Here, we characterized how DENV hijacks the mosquito
lipidome to identify targets for novel transmission-blocking interventions. To describe meta-
bolic changes throughout the mosquito DENV cycle, we deployed a Liquid chromatogra-
phy–high resolutionmass spectrometry (LC-HRMS) workflow including spectral similarity
annotation in cells, midguts and whole mosquitoes at different times post infection. We
revealed a major aminophospholipid reconfiguration with an overall early increase, followed
by a reduction later in the cycle. We phylogenetically characterized acylglycerolphosphate
acyltransferase (AGPAT) enzyme isoforms to identify those that catalyze a rate-limiting
step in phospholipid biogenesis, the acylation of lysophosphatidate to phosphatidate.We
showed that DENV infection decreasedAGPAT1, but did not alter AGPAT2 expression in
cells, midguts and mosquitoes. Depletion of either AGPAT1 or AGPAT2 increased amino-
phospholipids and partially recapitulated DENV-induced reconfiguration before infection
in vitro. However, only AGPAT1 depletion promoted infection by maintaining high amino-
phospholipid concentrations. In mosquitoes, AGPAT1 depletion also partially recapitulated
DENV-induced aminophospholipid increase before infection and enhanced infection by
maintaining high aminophospholipid concentrations. These results indicate that DENV
inhibition of AGPAT1 expression promotes infection by increasing aminophospholipids,
as observed in the mosquito’s early DENV cycle. Furthermore, in AGPAT1-depleted mos-
quitoes, we showed that enhanced infection was associated with increased consumption/
redirection of aminophospholipids. Our study suggests that DENV regulates aminopho-
spholipids, especially phosphatidylcholine and phosphatidylethanolamine, by inhibiting
AGPAT1 expression to increase aminophospholipid availability for virus multiplication.
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Author summary
Dengue is endemic in tropical and subtropical regions, and has now encroached onto
temperate regions because of the geographic expansion of its vector, Aedes aegypti. In the
absence of effective vaccine and curative drug, the sole intervention relies on containment
strategies using insecticide. However, occurrence of insecticide resistance diminishes vec-
tor control efficacy. Here, we explore the nascent field of mosquito metabolomics as part
of our discovery effort for new transmission-blocking targets. Dengue virus (DENV) relies
on host metabolome, specifically the lipid membrane to complete its life-cycle. However,
little is known about how DENV subverts the mosquito physiology. Using high-resolution
mass spectrometry, we described metabolic changes incurred by DENV throughout the
mosquito cycle, from cellular replication onset to systemic infection. Membrane phospho-
lipids were highly reconfigured and were associated with reduced expression of AGPAT1,
an enzyme involved in their biogenesis. AGPAT1 depletion partially recapitulated DENV-
induced metabolic reconfiguration and enhanced infection by maintaining high phospho-
lipid concentrations. These phospholipids were then consumed/redirected later in the
mosquito DENV cycle. Our work comprehensively describes metabolic changes associ-
ated with DENV infection. In addition, we reveal how DENV subdues the lipidome for its
benefit by demonstrating the role of phospholipids in mosquito infection.

Introduction
Increased global distribution of dengue virus (DENV) is driven by the expansion of its mos-
quito vectors, mainly Aedes aegypti [1]. An estimated 400 million infections occur yearly in
over 100 countries [2] and cause a range of symptoms from flu-like illness to potentially lethal
complication called severe dengue. Without approved antiviral drug, treatment is limited to
supportive care. Although dengue vaccine is now licensed in several countries, it has variable
efficacy against all dengue serotypes [3], and is only suitable for dengue-seropositive patients
[4]. To curb dengue epidemics, containment strategy mainly relies on vector control that
includes the use of insecticides [5]. However, insecticide resistance is rapidly developing,
compromising the efficacy of the only available intervention [6]. Characterization of viral met-
abolic requirements in mosquitoes will identify targets for novel chemical-based control strate-
gies [7].

As obligate and intracellular parasites, viruses rely on the host to fulfill their metabolite
requirements. Glycolysis, amino acid and lipid pathways provide the energy and structural
compounds necessary for multiplication. In human cells, DENV alters energy [8,9], glycolysis
[10], nucleic acid [11], mitochondrial [12] and lipid metabolisms [13–15]. As an envelope
virus, DENV is particularly dependent on host-derived lipid membranes, with which it
interacts for entry, replication, translation, assembly and egress [7,16]. In mosquito cells and
midgut, DENV reconfigures the lipid profile as indicated by lipidomics [17,18] and transcrip-
tomics [19], particularly altering the membrane lipids such as phospholipids (PL) and sphin-
golipids. Chemical inhibition of lipid synthesis confirmed the DENV requirements for lipids
in human and mosquito cells [20]. Several mechanisms related to elevated autophagy [13] and
recruitment of lipogenesis enzymes to the replication complex [21] have been elucidated in the
mammalian host. However, how DENV reconfigures lipids in mosquitoes remains unknown.

PL de novo biogenesis is initiated by two types of acyl-transferases that sequentially add two
acyls to one glycerol-3-phosphate (G3P) [22,23]. The second addition is catalyzed by 1-acyl-
sn-glycerol-3-phosphate O-acyltransferases (AGPAT) that transform lysophospatidate
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(lysoPA) in phosphatidate (PA) [24]. PAs are then used to produce all PLs, positioning
AGPATs as rate-limiting enzymes of PL biogenesis. PLs are produced within the endoplasmic
reticulum and subject to swift reconfiguration to meet the cell needs [25,26]. DENV transla-
tion, replication and assembly harness the endoplasmic reticulum membranes, suggesting
potential alteration of PL biogenesis.

Following an infectious blood meal, DENV infects the mosquito midgut, multiplies, and
propagates to the whole mosquito body, including salivary glands, from where it is expecto-
rated during subsequent blood feeding [27]. Throughout various infected tissues, the virus
modifies its metabolic environment. In this study, we aim to understand how DENV modifies
mosquitoes’ metabolome. Using high-resolution mass spectrometry, we explored the meta-
bolic changes throughout the DENV cycle, in Ae. aegypti Aag2 cell line, midguts and whole
mosquitoes at different times post infection. Infection-induced metabolic alteration mostly
affected PLs and was associated with AGPAT expression regulations. Combining metabolomic
profiling with RNAi-mediated AGPAT depletions, we partially recapitulated the infection-
induced PL reconfiguration and demonstrated its pro-viral impact. Eventually, PL profiling
upon infection both in vitro and in vivo in PL-altered environments indicated that increased
PL redirection/consumption favored virus multiplication. Our study reveals how DENV
reconfigures the metabolome and identifies PLs as important components in the virus life-
cycle.

Results
Mosquito phospholipidome is reconfigured throughout DENV infection
To describe the metabolic changes in Ae. aegypti, we designed an untargeted multidimensional
approach that covered the different stages of DENV cycle (Fig 1A). Extracts from Aag2 cells at
6, 12, 24 and 48 h post infection (hpi) represented changes caused by entry, initiation of repli-
cation, replication and virion production (S1A and S1B Fig) [28]. Extracts from midguts at 1
and 7 days post oral infection (dpi) represented infection onset and replication peak, respec-
tively (S1C and S1CD Fig) [27]. Extracts from whole mosquitoes at 1, 7 and 14 dpi represented
the different dissemination stages in the mosquito body (S1C and S1CD Fig) [27]. The extracts
were analyzed using a Liquid Chromatography-High Resolution Mass Spectrometry
(LC-HRMS) metabolomic workflow that detects polar and nonpolar metabolites (S2 Fig). We
detected 667, 486 and 1121 compounds in the cells, midgut and whole mosquitoes, respectively
(Table 1). Comparison of MS spectra with available non-mosquito databases enabled the
annotation of 77% of the peaks. To annotate the remaining mosquito-specific metabolites, we
deployed MS spectral similarity network (S3 Fig; S1 Table) [29]. Based on the spectral similar-
ity with database-identified features, we identified the class of 20 MS features without homo-
logues in the databases, increasing the identification coverage to 77, 70 and 82% in the cells,
midguts and whole mosquitoes, respectively (Table 1). Among all annotated metabolites, we
detected 29% of PLs, 21% of non-PL lipids, 8% of amino acids and peptides, 5% of organic
acids, 4% of carbohydrates and 33% of other minor classes (fewer than 3 occurrences). The dis-
tribution of metabolite classes indicates that the metabolomic workflow had a broad coverage,
although slightly biased towards lipids.

Infection regulated 67, 24 and 181 unique metabolites in cells, midguts and whole mosqui-
toes, respectively (Fig 1B; S2 Table). The PL class had the highest number of regulated metabo-
lites in the midgut and mosquito, and the third most regulated in cells. Fatty acyls were also
differentially regulated in the three tissue levels, while amino acids and carbohydrates were
regulated in cells and mosquitoes.
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Several classes of PLs were regulated in all three tissues (Fig 1C, S4 Fig). Aminophospholi-
pids (aminoPL) are the major constituents of membranes and are synthesized in the endoplas-
mic reticulum [30]. AminoPLs include phosphatidylethanolamine (PE), phosphatidylcholine
(PC) and phosphatidylserine (PS) [31]. Although infection altered different species of ami-
noPLs in the different tissue-time combinations, we observed a general increase at the begin-
ning of DENV cycle, followed by a reduction at the end. In cells, the majority of regulated
aminoPLs (3 out of 5) were upregulated at 48 hpi. In midguts and mosquitoes a total of 9 ami-
noPLs were increased at 1 dpi, whereas 15 and 14 were reduced at 7 and 14 dpi, respectively.

Phosphatidylglycerols (PG) are another group of PL. Although PGs have a lower abundance
than aminoPLs, they are also constituents of membranes and synthesized in the mitochondria
[32]. Although only detected in mosquito extracts, PGs responded differently to infection
when compared with aminoPLs (Fig 1C). Two shorter PGs decreased at 1 dpi and increased at
14 dpi, and three longer PGs were upregulated at 1 dpi.

Lysophopholipids (lysoPL) are produced from fatty acid remodeling of the different PL
classes [33]. In cells, one lysoPG was downregulated at 48 hpi (Fig 1C). In mosquitoes, the
lysoPCs followed the same trend as aminoPLs, with 6 increasing at 1 dpi and decreasing at 14
dpi.

Different types of PL precursors were regulated. PA, the direct precursor of all PLs [24,31],
was upregulated at 1 dpi in midgut, similar to aminoPLs. Two diacylglycerols (DAG), interme-
diates for PE and PC productions, were up and downregulated in mosquitoes at 7 and 14 dpi,
respectively. Fatty acyls can be incorporated into a glycerol head to produce PL and were regu-
lated. Fatty acyls with an ethanolamine group can be related to PE either via degradation or as
a precursor. Similar to aminoPLs, two acyl-ethanolamine increased at 1 dpi and decreased at
14 dpi in mosquitoes. In accordance with previous studies [34], one sphingomyelin was regu-
lated in mosquitoes and one cholesterol compound was depleted in midgut.

Our comprehensive metabolomic profiling revealed that DENV infection profoundly
reconfigures the phospholidome. The aminoPLs including PE, PC and PS increased at the

Fig 1. Aminophospholipid composition is altered throughout DENV infection in mosquitoes. (A) Schematic of the
multidimensional strategy deployed to profile the mosquito metabolome after DENV infection. Aag2 mosquito cells were infected with
DENV at an MOI of 5 and collected at 6, 12, 24 and 48 h post infection (hpi). Mosquitoes were orally infected with 107 pfu/ml of DENV.
Midguts and whole mosquitoes were collected at 1, 7 and 14 days post infection (dpi). Metabolic extracts were analyzed by LC-HRMS as
in S2 Fig. (B) Venn diagrams show regulated metabolites at the different time points and bars indicate class distribution within tissue
levels. Triangles indicate direction of regulation and are color-coded with regards to the time point. Uninfected condition was used as
control. (C) Fold changes of annotated and significantly regulated metabolites (|log2 fold change|> 1 and p-value< 0.05) by DENV in
cells, midguts and mosquitoes as compared to mock infection. Only metabolites from the general metabolism (i.e., lipid, carbohydrate,
amino acid and peptide, nucleotide and nucleoside, sialic acid) are shown. �, indicates metabolite annotations determined by spectral
similarity. Carbo., carbohydrate; SA, sialic acid; PL, phospholipid; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PS,
phosphatidylserine; PA, phosphatidic acid; PI, phosphatidylinositol; PG, phosphatidylglycerol; LysoPS, lysophosphatidylserine; LysoPC,
lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine; LysoPG, lysophosphatidylglycerol; LysoPI, lysophosphatidylinositol;
SM, Sphingomyelin; DAG, Diacylglycerol; MAG, Monoacylglycerol; FAHFA, Fatty Acid ester of Hydroxyl Fatty Acid; NAE, N-
acylethanolamine; HEA, Heneicosanoic acid; pep., peptides.

https://doi.org/10.1371/journal.ppat.1008199.g001

Table 1. Summary of metabolites detected across mosquito tissues. ¶MS Finder (HMDB, ChEBI, LipidMAPS, LipidBlast) score annotation� 5; � p-value< 0.05 as
indicated by unpaired t-test and |log2 Fold Change|� 1.

Tissue Aag2 cells A. aegyptiMidgut A. aegyptiMosquito
Unique peak detected with MS/MS 667 486 1121
Annotated peaks (%)¶ 77% 70% 82%
Metabolites significantly regulated� 6 hpi 12 hpi 24 hpi 48 hpi 1 dpi 7 dpi 1 dpi 7 dpi 14 dpi
Total 54 3 4 9 8 18 63 59 119
Annotated (%) 83% 100% 100% 89% 75% 72% 73% 78% 79%

https://doi.org/10.1371/journal.ppat.1008199.t001
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beginning of DENV cycle and decreased later on. A large phospholipidome reconfiguration
was previously observed in DENV-infected midguts at 3, 7 and 11 dpi [18]. However, in this
previous kinetic study, PLs were mostly up-regulated throughout the infection cycle. They
reported a decrease in lysoPL abundance, which we observed at 14 dpi in mosquitoes. The
authors also noted an increase in sphingolipids, which we saw in mosquitoes but only for one
species. Those variations between the studies can stem from methodological differences in
extraction and analyses, or from biological differences in mosquito colony and virus strain.
Taken together, our results and those of others indicate that DENV infection reconfigures
lipid membrane composition.

DENV infection modulates expression of AGPAT1 that is involved in PL
biogenesis
To determine how PLs are reorganized upon DENV infection, we first characterized the rate-lim-
iting AGPAT enzymes in Ae. aegypti (Fig 2A). In humans, there are five AGPAT isoforms with
different activities depending on four motif sequences [35]. Motifs I and IV bind to acyl-CoA and
catalyze lysoPA to PA acylation, while motifs II and III bind to lysoPA. Human AGPAT (hAG-
PAT) 1 and 2 are localized in the endoplasmic reticulum and have the highest acyltransferase
activity and lysoPA affinity [36]. hAGPAT3-5 have lower transferase activity and target different
substrates that lysoPA such as lysoPL, participating in PL remodeling [37]. Aedes aegypti also
has five AGPAT isoforms: AGPAT1 (AAEL011898), AGPAT2 (AAEL001000), AGPAT3
(AAEL011902), AGPAT4 (AAEL014026) and AGPAT5 (AAEL011901). Based on amino acid
similarity, AGPAT1, 2, 3 and 5 cluster with hAGPAT1 and 2, whereas AGPAT4 clusters with
hAGPAT3-5 (Fig 2B; S5 Table). Further classification based on functional motifs that are define
the biochemical activity [38] establishes AGPAT1, 2, 3 as homologues of hAGPAT1 and 2
(Table 2), suggesting that they all share the acyltransferase activity and lysoPA affinity.

To test whether infection-induced phospholipidome reconfiguration is associated with
AGAPT regulation, we quantified AGPAT1 and 2 expressions. Interestingly, we observed that
AGPAT1 was downregulated at 24 and 48 hpi in cells, at 1 and 7 dpi in midguts and at 1, 7 and
14 dpi in mosquitoes (Fig 2C–2E). In contrast, AGPAT2 was not significantly regulated in
cells, midguts and mosquitoes (Fig 2C–2E). This partially corroborates a transcriptomic study
[39] that shows AGPAT1 downregulation and AGPAT2 upregulation at 1, 2 and 7 days post
DENV-inoculation in mosquitoes (S5 Fig). To test whether virus replication was required for
AGPAT1 down-regulation, we incubated cells with UV-inactivated virus (S6A Fig). AGAPT1
expression did not vary between mock and UV-inactivated DENV at 24 and 48 hpi (S6B Fig),
indicating that active infection is required.

Altogether, our results and those of others suggest that AGPAT1 down-regulation correlates
with DENV phospholipidome reconfiguration.

Depletion of AGPAT1 but not AGPAT2 promotes DENV infection by
increasing aminoPL concentrations in cells
Based on the association between the infection-induced phospholipidome reconfiguration and
AGPAT1 down-regulation, we hypothesized that AGPAT1 mediates the phospholipidome
reconfiguration that promotes DENV infection. First, we described how both AGPAT1 and 2,
the latter used as control, regulate PL biogenesis in non-infected mosquito cells. LC-HRMS
polar mode detection was used to target phospholipid metabolites (S2 Fig). Depletion of either
AGPAT1 or 2 increased the concentrations of aminoPLs (Fig 3A–3C; S6 Table), as previously
observed in human cells [40]. Strikingly, PC (34:1), PC (38:5) and G3P were upregulated by
both AGPAT1 and 2 depletion. AGPAT2 depletion also increased two other PCs and
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decreased two forms of sphinganine, a precursor of sphingolipid biosynthesis [41] (Fig 3D;
S7A Fig), and six amino acids or nucleoside (arginine, cysteine, methionine, glutamic acid,
oxidized glutathione and adenosine) (S6 Table). Of note, depletion of one of the AGPATs did
not alter expression of the other (S8 Fig), indicating the enzyme-specificity of the aminoPL

Fig 2. DENV infection decreases AGPAT1 but not AGPAT2 expression. (A) An overview of phospholipid biogenesis. Sequential additions of two acyl-coA to
one G3P produce a LysoPA and a PA. Several AGPATs mediate the second addition. PA forms either DAG or CDP-DAG, each generating a different set of
phospholipids. DAG produces aminophospholipids by addition of a Cho or Eth group. Aminophospholipids are also produced by acylation of lysoPL and base
group modifications. CDP-DAG produces PI and PG, the latter being transformed in CL by combination with a second PG. Phospholipases cleave off an acyl
chain from PL to produce lysoPL. G3P, glycerol-3-phosphate; LysoPA, lysophosphatidate; PA, phosphatidate; AGPAT, acyl-sn-glycerol-3-phosphate
acyltransferases; DAG, diacylglycerol; CDP-DAG, cytidine diphosphate diacylglycerol; PC, phosphatidylcholine; LPC, lysophosphatidylcholine; Cho, choline;
PE, phosphatidylethanolamine; LPE, lysophosphatidylethanolamine; Eth, ethanolamine; PS, phosphatidylserine; LPS, lysophosphatidylserine; PI,
phosphatidylinositol; LPI, lysophosphatidylinositol; PG, phosphatidylglycerol; LPG, lysophosphatidylglycerol; CL, cardiolipin; LCL, lysocardiolipin. (B)
Maximum likelihood tree between AGPATs from Ae. aegypti and humans. (C) AGPAT1 and AGPAT2 expressions in DENV-infected cells at 24 and 48 hpi
with an MOI of 5. Expressions of AGPAT1 and AGPAT2 (D) in midguts at 1, 7 dpi and (E) in whole mosquitoes at 1, 7 and 14 dpi with DENV at 107 pfu/ml.
(C-E) Actin expression was used for normalization. Bars show means ± s.e.m from 4 independent wells or 3 pools of 5 midguts or 5 mosquitoes. �, p-
value< 0.05; ��, p-value<0.01; as indicated by unpaired t-test.

https://doi.org/10.1371/journal.ppat.1008199.g002
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alterations. These results confirm the roles of AGPAT1 and 2 in PL biogenesis, and reveal dif-
ferences between the two enzymes.

To test whether AGPAT-mediated reconfiguration of aminoPLs promotes DENV infection,
we quantified infection in cells depleted of either AGPAT1 or 2. While DENV titer was not
altered by AGPAT2 depletion, it increased 2.09 ± 0.36 fold (p-value = 0.0012) following
AGPAT1 depletion (Fig 3E). Next, we described how DENV infection altered the lipidome in
cells depleted of either AGPAT1 or 2. Infection in AGPAT1-depleted cells, but not in
AGPAT2-depleted cells, mostly increased aminoPLs as compared to infected wild-type cells
(Fig 3C, S7 Table). Specifically, two PEs, two PCs, two PSs, and one lysoPE were upregulated
(Fig 3F; S7B Fig). These results indicate that: (i) depletion of AGPAT1 prior infection amplifies
the aminoPL increase observed in early mosquito DENV infection (Fig 1C), and (ii)
AGPAT1-mediated aminoPL reconfiguration is associated with increased DENV production.
Therefore, AGPAT1 downregulation by infection generates a pro-viral environment.

To test whether AGPAT1 effect on DENV was related to aminoPLs, we modified the
AGPAT1-induced reconfiguration of aminoPLs by media supplementation. In PL biogenesis,
PA produces DAG, which is transformed into PE by addition of ethanolamine (Fig 2A). Extra-
cellular source of ethanolamine influences phospholipid metabolism [42], especially PEs that
were altered by AGPAT1 depletion (Fig 3F). Therefore, we measured the impact on DENV
gRNA of ethanolamine supplementation upon AGPAT1 depletion. Controls were non-
depleted cells without supplementation (standard media that does not contain ethanolamine),
non-depleted cells with ethanolamine supplementation and AGPAT1-depleted cells without
supplementation. While ethanolamine supplementation did not alter gRNA in non-depleted
cells, the increase observed upon AGPAT1-depletion was reverted to non-depleted non-sup-
plemented control when ethanolamine was supplemented (S9 Fig). These results confirm the
role of AminoPLs in AGPAT1 increase of DENV multiplication and incriminate metabolites
downstream of DAG as important for DENV.

Table 2. Acyltransferase motif comparison between human and Ae. aegypti AGPAT homologues. Purple indicates amino acid residues highly conserved across all
hAGPATs and yellow in hAGPAT1 and 2 only.

Specie Protein RefSeq Amino
acids

Motif I
acyl-CoA binding and

catalysis

Motif II
LPA binding

Motif III
LPA binding

Motif IV
acyl-CoA binding and

catalysis
Homo
sapiens

hAGPAT1 (alpha) NP_006402 283 VSN H QS S L D LL G M A GV I F I D R K R V FPEGT RN H VPIV P I V M SS

Homo
sapiens

hAGPAT2 (beta) NP_006403 278 VSN H QS I L D MM G L G GV F F I N R Q R IY PEGT RN D VPIV PV V Y SS

Homo
sapiens

hAGPAT3 (gamma) NP_064517 376 IL N H NFEI D FLCG LEIV F CK R KW LYC EGT R FT YHLL P RTKGF

Homo
sapiens

hAGPAT4 (delta) NP_064518 378 V L N H KFEI D FLCG TEMV F CS R KW IHC EGT R FT HHLL P RTKGF

Homo
sapiens

hAGPAT5 (epsilon) NP_060831 364 LA N H QS TV D WIVA QHGGIYVKRS I FPEGT R YN HVLT P RIKAT

Ae. aegypti AGPAT1
(AAEL011898)

EAT35978 273 LM N H QS A L D LVVL WGTL F I N R KN F FPEGT R GD GY I Q PV V I S K

Ae. aegypti AGPAT2
(AAEL001000)

EAT47921 398 V A N H QS S L D IL G M S G LI F I D R KN V FPEGT R RN L PI M PV V Y SS

Ae. aegypti AGPAT3
(AAEL011902)

EAT35981 308 MA N H QS SM D IL G L A G IT F I N R KN IY PEGT R FP VPI I PV V F S H

Ae. aegypti AGPAT4
(AAEL014026)

EAT33698 387 LM N H TYEV D WLVG AEFV F LE R SF LNA EGT R FT HHLI P RTKGF

Ae. aegypti AGPAT5
(AAEL011901)

EAT35980 280 LI N H QS AI D IVML V GV V F I D R KN I FPEGT R HD SI I QSIIV S K

https://doi.org/10.1371/journal.ppat.1008199.t002
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AGPAT1 depletion promotes DENV infection by amplifying aminoPL
reconfiguration in mosquitoes
To further characterize how AGPAT1-mediated PL alteration increases DENV infection, we
depleted AGPAT1 in mosquitoes (Fig 4A). We first described how AGAPT1 regulates PLs in
mosquitoes that fed on a non-infectious blood meal (Fig 4B; S10 Fig; S8 Table). As in cells,
AGPAT1 mostly regulated aminoPLs and their derivatives (S8 Table). At 2 days post oral feed-
ing, one DAG and one PA, two key precursors of PLs, and one PS were increased. At 7 days
post oral feeding, eight lysoPLs (one lysoPI, two lysoPGs, one lysoPS, two lysoPEs and two
lysoPCs) were downregulated, similarly to those in DENV-infected wild-type mosquitoes at 14
dpi (Fig 1C). Strikingly, some metabolites were similarly regulated by either AGPAT1-deple-
tion or DENV infection. PS (34:2) was upregulated by either AGPAT1-depletion at 2 days post
oral feeding or DENV infection at 1 dpi. LysoPI (20:4), lysoPE (18:1), lysoPC (16:1) and lysoPC

Fig 3. AGPAT1 but not AGPAT2 depletion increases DENVmultiplication and aminoPL in cells. Aag2 cells were transfected with either dsRNA against
AGPAT1 or 2 (dsAGPAT1 or 2) or with dsRNA control (dsControl). At 24 h post transfection, cells were infected with DENV at MOI of 1 or mock infected.
Supernatant was collected at 48 hpi. Expressions of (A) AGPAT1 and (B) AGPAT2 in mock-infected cells at 72 h post transfection. Actin expression was used
for normalization. Bars show mean ± s.e.m. (C) Number of phospholipid-related metabolites significantly regulated. (D) Impact of AGPAT1 or 2 depletion on
the lipidome of mock-infected cells at 72 h post transfection. �, p-value<0.05 and |log2 fold change|> 1. (E) Impact of AGPAT1 or 2 depletion on DENV
production at 48 hpi as determined by plaque forming unit (pfu) assay. Bars show mean ± s.e.m. and each point represents independent wells. (F) Impact of
AGPAT1 or 2 depletion on the lipidome of infected cells at 48 hpi. �, p-value< 0.05 and |log2 fold change|> 1. (A, B, D and F) result from three biological
replicates. (A, B) ���; p-value< 0.001; ����, p-value< 0.0001, as indicated by unpaired t-test. (E) ��, p-value< 0.01, as indicated by Dunnett’s test. PE,
phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; LPE, lysophosphatidylethanolamine.

https://doi.org/10.1371/journal.ppat.1008199.g003
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(20:4) were reduced by either AGPAT1-depletion at 7 days post oral feeding or DENV infec-
tion at 14 dpi. At 7 days post oral feeding in AGPAT1-depleted mosquitoes, one fatty acyl, two
acylcarnitines, oleoylcarnitine (18:1) and acetyl-L-carnitine, were decreased. Of note, one of
the regulated acylcarnitines (i.e., oleoylcarnitine) was inversely regulated by DENV infection
at 14 dpi (Fig 1C). These results show that AGPAT1 depletion partially reproduces the ami-
noPL reconfiguration caused by DENV infection.

Next, we found that AGPAT1-depletion increased DENV gRNA (p-value = 0.0004) and
titer (p-value< 0.0001) at 7 dpi in whole mosquito (Fig 4C and 4D), confirming that AGPAT1
depletion induces a pro-viral environment in vivo. However, the pro-viral impact of AGPAT1
depletion was not observed on infection rate (S11A Fig) and at 2 dpi on gRNA (S11B Fig). We

Fig 4. AGPAT1 depletion increases DENVmultiplication and consumption of aminoPLs in mosquitoes. Mosquitoes were injected with either dsRNA against
AGPAT1 (dsAGPAT1) or dsRNA control (dsControl). Two days later, mosquitoes were orally fed with non-infectious blood or infectious blood containing DENV
at 107 pfu/ml. (A) Validation of AGPAT1 silencing in non-infected mosquitoes at two days post dsRNA injection. Actin expression was used for normalization.
Bars show mean ± s.e.m. from 3 pools of 5 mosquitoes each. ����, p-value< 0.0001 as indicated by unpaired t-test. (B) Impact of AGPAT1 depletion on the
lipidome of mosquitoes at 2 and 7 days post non-infectious blood feeding (dpb). Impact of AGPAT1 depletion on (C) DENV gRNA copies and (D) viral load
measured as pfu/ml at 7 days post oral infection (dpi). Bars indicate mean (C) or geometric means ± 95% CI (D) with each dot representing one mosquito. ���, p-
value< 0.001 ����, p-value< 0.0001 as indicated by unpaired t-test (C) or Mann-Whitney test (D). (E) Impact of AGPAT1 depletion on the lipidome of infected
mosquitoes at 7 dpi. (F) Impact of infection on the lipidome of AGPAT1-depleted mosquitoes at 7 dpi. (B, E, F) Only regulated metabolites are shown (p-
value< 0.05 and |log2 fold change|> 1). PL, phospholipid; FA; fatty acyl; AC, acylcarnitine; DAG, diacylglycerol; PA, phosphatidic acid; PS, phosphatidylserine;
LPE, lysophosphatidylethanolamine; LPC, lysophosphatidylcholine; LPS, lysophosphatidylserine; LPG, lysophosphatidylglycerol; LPI, lysophosphatidylinositol; PE,
phosphatidylethanolamine; PC, phosphatidylcholine; PI, phosphatidylinositol; GPEtn, glycerophosphoethanolamine.

https://doi.org/10.1371/journal.ppat.1008199.g004
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repeated the experiment using a lower inoculum for oral infection and similarly observed no
effect at 2 dpi but a moderate increase of gRNA (p = 0.0421) at 7 dpi (S11C–S11E Fig). It is
intriguing that AGPAT1 depletion only increased infection at 7 dpi. This may indicate that
DENV infection is necessary to amplify AGPAT1-mediated alteration in establishing a pro-
viral environment. To characterize the AGPAT1-induced proviral environment, we compared
the lipidome of infected mosquitoes that were AGPAT1 depleted or not. AGPAT1-depletion
increased aminoPL concentrations at 7 dpi (Fig 4E; S9 Table). Specifically, one PC, four PEs
and one glycerophosphoethanolamine were upregulated. By artificially modulating the meta-
bolome, we revealed that AGPAT1 depletion favors DENV by increasing aminoPL
concentrations.

When profiling metabolic changes throughout mosquito DENV cycle, we observed that
aminoPLs were reduced at the end of DENV cycle (Fig 1C). To test whether this reduction
occurred when aminoPL concentrations were increased by AGPAT1 depletion (Fig 4E), we
examined how DENV modifies the lipidome in AGPAT1-depleted mosquitoes. Control mos-
quitoes were depleted of AGPAT1 and fed a non-infectious blood meal. At 7 dpi, aminoPLs
were drastically decreased by DENV despite AGPAT1-depletion enhancement (Fig 4F; S10
Table). Specifically, three PEs and five PCs were reduced more than 100 folds. These results
suggest that, by reproducing infection-induced aminoPL reconfiguration, AGPAT1 depletion
amplifies the DENV reconfiguration, thereby promoting infection. Altogether, our results
indicate that DENV inhibits AGPAT1 expression to increase the amplitude of aminoPLs con-
sumption/redirection for virus multiplication.

Discussion
By combining observational and manipulative approaches in vitro and in vivo, we deciphered
how DENV hijacks the mosquitoes’ metabolome. We deployed metabolomic profiling
throughout the mosquito DENV cycle, and revealed an overall increase in aminoPLs, followed
by a reduction at the end of the cycle. We next showed that aminoPL reconfiguration is par-
tially mediated by infection-induced AGPAT1 down-regulation, which increases aminoPL
concentrations. Because AGPAT1 depletion promotes virus multiplication, our study discov-
ers a mechanism whereby DENV reconfigures the metabolome to its benefit. Furthermore, we
show that in an environment richer in aminoPLs (AGPAT1 depletion), infection reduces ami-
noPL concentrations at a higher and earlier rate than in a wild-type organism, while increasing
virus production. This suggests that DENV consumes/redirects aminoPLs, although this is
based on correlations between indirect lipidome alteration and virus multiplication. Alto-
gether, we propose a model whereby DENV regulates aminoPL enzymes to increase aminoPL
concentrations early during the cycle and consumes/redirects them for its multiplication.

We revealed that DENV-induced phospholipidome reconfiguration is partially mediated
by lowering AGPAT1 expression. Indeed, AGPAT1 was downregulated upon infection and its
depletion partially recapitulated DENV-induced aminoPL reconfiguration both in vitro and in
vivo. That we only partially recapitulated the DENV-induced phospholipidome reconfigura-
tion suggests that other enzymes, such as those directly producing and those hydrolyzing ami-
nophospholipids [43], play a role. AGPAT enzymes can influence PL composition at several
levels. By catalyzing the second acylation that produces PA (Fig 2A), AGPAT enzymes are
responsible for a rate-limiting step in PL biogenesis [35]. However, we did not observe PA
reduction upon AGPAT1 depletion and instead reported an alteration of aminoPLs. This pat-
tern was previously observed in hAGPAT-depleted human cells [40] and was attributed to
compensation by other AGPAT isoforms. Lack of AGPAT1 may unbalance substrate competi-
tion with other isoforms with different lysoPA and acyl affinity [44]. Consequently, this can
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influence PA structure and subsequent PL composition. In addition, certain AGPAT isoforms
can transfer acyls to lysoPL, thus, participating in PL remodeling independently of de novo
synthesis [45]. In mosquito cells, AGPAT2 depletion also altered PL profile. However,
AGPAT2 expression is not reduced by DENV infection and its depletion does not impact virus
multiplication. The correlation between expression of AGPAT isoforms and their impacts on
infection indicates a fine regulation of metabolism by DENV, and identifies a new mechanism
by which the virus hijacks the host phospholipidome.

The expression of AGPATs is regulated either directly through their transcription factors or
indirectly by altering the endoplasmic reticulum topology. Sterol regulatory element binding
proteins (SREBP) coordinate fatty acid, sterol and phospholipid metabolisms by transcription-
ally regulating enzymes, such as acyl transferases [46]. DENV protein interaction with SREBP,
as described with other transcription factors [47], could alter AGPAT expressions. In support
of this, chemical inhibition of SREBP blocks DENV replication [48]. Alternatively, AGPAT
activity is influenced by substrate accessibility, which depends on membrane topology [36].
Several DENV proteins are embedded in the endoplasmic reticulum membrane and modify
its topology [49,50]. This can alter endoplasmic reticulum-located AGPAT activity, PL profile
and activate acyl-transferase expressions to restore homeostasis [51].

DENV intricately interacts with aminoPL-containing membranes and a change as we
report can alter several stages of its life-cycle, such as entry, replication, translation, assembly
and egress [7,16]. DENV interacts with the plasma membrane for entry and fusion, and with
the endoplasmic reticulum membrane for translation, replication and assembly [28]. These
membranes are mostly composed of PE and PC, and PS in lower proportions [52]. Their fluid-
ity and topology are determined by the aminoPL structure and concentration. The cylindrical
shape of PCs stabilizes lipid bilayers, whereas the conical shape of PEs induces curvature. Sev-
eral flavivirus-aminoPL interactions have been described in human cells. PLs present in the
DENV envelope are recognized by cellular ligands and mediate entry [53,54]. Replication of
flaviviruses induce the invagination of the endoplasmic reticulum by altering PE [55,56] and
lysoPC compositions [43]. Alternatively, AGPAT expressions could alter anti-viral immune
response [57]. In mammalian cells, AGPAT overexpressions amplify cellular signaling of cyto-
kine [58] that can reduce DENV infection in mosquito cells [59]. Although the precise func-
tion of AGPAT1-regulated aminoPLs is unknown and may be multifactorial, previous studies
and ours indicate that membrane aminoPL reconfiguration influences DENV multiplication.

In conclusion, our study determines the importance of aminoPL reconfiguration for
DENV infection. We also reveal the underlying mechanism for viral phospholipidome recon-
figuration. The intricate metabolic interactions between DENV and mosquitoes represents a
target to control transmission.

Materials andmethods
Aedes aegyptimosquitoes and cell line
The Aedes aegypti colony was established in 2010 from Singapore and was reared at 28˚C and
60% relative humidity with 12h:12h light:dark cycle. Eggs hatched in milliQ water were fed
with a mix of fish food (TetraMin fish flakes), yeast and liver powder (MP Biomedicals). Adults
were held in rearing cages (Bioquip) supplemented with water and 10% sucrose solution.
Aedes aegypti Aag2 cells [60] were grown in RPMI-1640 medium (Gibco) with 10% filtered
fetal bovine serum (FBS) (Hyclone) and 1% Penicillin-Streptomycin (Gibco). For media sup-
plementation, 2 mM of ethanolamine (Sigma) was added to Aag2 growth medium. Cells were
maintained in vented culture flasks in a humidified incubator with 5% CO2 at 28˚C. BHK-21
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(baby hamster kidney) (ATCC CCL-10) cells were grown in the same media and maintained
at 37˚C with 5% CO2.

Dengue virus
Dengue virus serotype-2 strain ST (DENV) was collected from the Singapore General Hospital
in 1997 [61]. DENV was propagated alternatively in Vero (ATCC CCL-81) and C6/36 (ATCC
CRL-1660) cells. Virus titer was determined by plaque assay using BHK-21 cells. DENV super-
natant was exposed to UV light from biosafety cabinet (Sterilgard III advance, the Baker Com-
pany) for 1h at room temperature for inactivation.

Oral infection of mosquitoes
Two- to four-day-old adult female mosquitoes were starved for 24h before oral feeding on a
blood meal containing 40% volume of washed erythrocytes from SPF pig’s blood (PWG
Genetics, Singapore), 5% of 100 mM ATP (Thermo Fisher Scientific), 5% of human serum
(Sigma-Aldrich) and 50% of DENV-2 in RPMI media (Gibco). The virus titer in the blood
meal was 2 x 107 pfu/ml and validated by plaque assay. Blood was maintained at 37˚C using
hemotek membrane feeder system (Discovery Workshops) with sausage casing for 1.5 h. A
control group was allowed to feed on the same mix of SPF pig blood meal without virus.
Engorged mosquitoes were visually selected and maintained at 28˚C with water and 10%
sucrose solution.

Cell inoculation
5 x 106 cells were inoculated with DENV at an MOI of 5 in serum-free RPMI media for 1h.
The inoculum was then replaced with 2% FBS RPMI media. Mock infection was used as nega-
tive control.

Metabolite extraction frommosquitoes, midguts and cells
At 1, 7 and 14 days post-oral feeding, 10 mosquitoes in 500 µl of ice-cold methanol and water
ratio of 80:20 (LCMS grade, Thermo Fisher) were homogenized with bead Mill homogenizer
(FastPrep-24, MP Biomedicals) and sonicated for 15 min in an ultrasonic bath (J.R. Selecta) at
4˚C. Homogenates were centrifuged at 10,000 rpm for 1 min at 4˚C to collect 400 µl superna-
tant. Pellets were further extracted twice by addition of 500 µl of methanol:water (80:20), fol-
lowed by centrifugation. Supernatants were combined and vacuum-dried (Speed-Vac,
Thermo-Scientific) before storage at -20˚C. At 1 and 7 days post-oral feeding, 10 midguts were
homogenized in 200 µl of the methanol:water (80:20) solution and 120 µl of supernatant was
collected three times with the same protocol. At 6, 12, 24 and 48 h post-inoculation, cells were
washed with room temperature 0.9% NaCl and collected in 2 ml of ice-cold methanol:water
(80:20) by scraping. Cells were homogenized by ultrasound and extracted thrice as detailed
above by adding 500 µl of ice-cold methanol:water (80:20). Three biological replicates were
conducted per condition.

LC-HRMSmetabolism profiling
Dry extracts were normalized at 2 mg/mL in methanol:water 80:20 solution and metabolites
were detected using two methods. Compounds from medium range polarity to lipophilic sub-
stances were detected using a UPLC-UV-QTOF-MSE instrument (Xevo G2 QTof, Waters)
mounted on an electrospray ionization (ESI) source, with a UPLC BEH C18 Acquity column
(100 × 2.1 mm i.d., 1.7 µm, Waters) equipped with a guard column. Mobile phase A was of
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0.1% formic acid in water, B was 0.1% formic acid in acetonitrile. The flow rate was 400 µl/min
and the gradient ran with 98% A for 0.5 min to 20% B over 3.5 min, 98% B for 8 min, held at
98% B for 3 min, and returned in 0.5 min to initial conditions (98% A), finally held for 3.5 min
to assure equilibration before the subsequent analysis. Detection was performed at 254 nm by
TOF-MS in both electrospray (ESI) negative mode with voltage at 2.5 kV and positive mode
with voltage at 3.0 kV. The m/z range was 100–1200 Da with a scan time of 0.1 s. All detected
ions were fragmented using MSE scan with an energy collision ramp from 20 to 50 eV. All
analyses were acquired using leucine enkephalin as the lock mass at a concentration of 400 pg/
µl and flow rate 7 µl/min. The injection volume was 2 µl and samples were kept at 10˚C during
the whole analysis.

Polar metabolites were profiled using a UPLC-LTQ Orbitrap XL instrument (Ultimate
3000, Thermo Fisher Scientific, Hemel Hempstead, UK) set at 15,000 resolution, with a Zic-
pHilic column (150 × 2.1 mm i.d., 5 µm, SeQuant, Merck). Mobile phase A was 20 mM ammo-
nium acetate buffered at pH 9 and B was acetonitrile. The flow rate was 250 µl/min and the
gradient ran from 90% B for 0.5 min to 40% B over 18 min, held at 40% B for a further 3 min,
and then returned in 0.5 min to initial conditions (90% B) finally held for 5 min before subse-
quent analysis. The m/z range was 100–1500 and ISpray voltage at 4.2 kV (positive mode) and
3.0 kV (negative mode). Each full MS scan was followed by data dependent MS/MS on the two
most intense ions using stepped CID fragmentation mode at 35% normalized collision energy,
isolation width of 2 u and activation Q set at 0.250.

Data analysis and visualization
Peak detection and alignment were performed using MS-DIAL (ver. 3.12) [62]. Peak annota-
tion was done using MS-finder (ver. 3.04) [63] with HMDB, ChEBI, LipidMAPS and Lipid-
Blast databases, allowing a level 2.2 of metabolite identification [64,65]. Data were normalized
by total ion chromatogram (TIC) and features lower than 2-fold average blank were removed.
Each LC-HRMS condition was analyzed separately before concatenation. Data were normal-
ized by auto-scaling before selecting regulated metabolites with more than 2-fold intensity
change and a p-value< 0.05 with FDR adjustment as indicate by unpaired t-test using Meta-
boAnalyst (ver. 4.0) [66]. To account for physiological variations between the different time-
tissue combinations, the t-tests were done by comparing the same tissue in infected and unin-
fected conditions within each time. Uninfected condition was used as control. PCA for quality
control was performed with MetaboAnalyst (ver. 4.0). MS/MS similarity metabolic networks
with cut-off> 60% were generated with MS-Finder for each LC-HRMS mode-tissue
combination.

dsRNA-mediated RNAi
Templates for dsRNA against AAEL011898 and AAEL001000 were PCR amplified with prim-
ers flanked with a T7 promoter (S3 Table) from mosquito cDNA. dsRNA was synthetized with
megaScript T7 transcription kit (Thermo Fisher Scientific), extracted in DEPC-treated water
and annealed by slowly cooling down from 95˚C. Control dsRNA targeting LacZ was pro-
duced [67]. Two- to five-day-old cold-anesthetized female mosquitoes were intrathoracically
injected with 69 nl of 3 mg/ml of dsRNA by using Nanoject II injector (Drummond Scientific).
Mosquitoes were then maintained at 28˚C with water and 10% sucrose solution before oral
infection as detailed above. Cells were seeded at 2 x 105 per 24-well plate and transfected after
24h with 1 µg of dsRNA by using TransIT-mRNA Transfection kit (Mirusbio). Infection with
DENV was done one day post transfection.
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Quantification of DENV genomic RNA
Single mosquitoes or tissues were homogenized in 350µl of TRK lysis buffer (Omega Bio-tek)
using a bead Mill homogenizer (FastPrep-24, MP Biomedicals). Total RNA was extracted
using E.Z.N.A. Total RNA kit I (Omega Bio-tek) and eluted in 30µl of DEPC-treated water.
Genomic RNA (gRNA) was quantified with one-step RT-qPCR using iTaq Universal probe kit
(Bio-Rad) and primers and probes targeting the DENV Envelope [68]. The 12.5 µl reaction
mix contained 1 µM of forward and reverse primers, 0.125 µM of probe and 4 µl of RNA
extract. Quantification was conducted on a CFX96 Touch Real-Time PCR Detection System
(Bio-Rad). Thermal profile was 50˚C for 10 min, 95˚C for 1 min and 40 cycles of 95˚C for 10
sec and 60˚C for 15 sec.

An absolute standard curve was generated by amplifying fragments containing the qPCR
target using a forward primer tagged with T7 promoter; forward: 5’-CAGGATAAGAGGTT
CGTCTG-3’ and reverse: 5’-TTGACTCTTGTTTATCCGCT-3’, resulting in a 453bp fragment.
The fragment was reverse transcribed using MegaScript T7 transcription kit (Ambion) and
purified using E.Z.N. A. Total RNA kit I. The total amount of RNA was quantified using a
Nanodrop (Thermo Fisher Scientific) to estimate copy number. Ten times serial dilutions
were made and used to generate absolute standard equation for gRNA. In each subsequent
RT-qPCR plate, five standards were added to adjust for threshold variation between plates.
The infection rate was calculated by dividing the number of samples with detectable gRNA
over total number of samples.

Titration
Titration was conducted by plaque assay with BHK-21 cells as described previously [69].
Briefly, 80–90% confluent cells were inoculated with serial 10-fold dilutions of samples for 1h.
Cells were then incubated with 1% carboxyl-methyl cellulose (CMC) (Merck) for 5 days, fixed
with 4% formaldehyde (Merck) -PBS and stained with 1% crystal violet (Sigma-Aldrich) solu-
tion to count plaque forming units (pfu).

Quantification of gene expression
Total RNA from five mosquitoes was extracted using E.Z.N.A. Total RNA kit I, treated with
RapidOut DNA Removal kit (Thermo Fisher Scientific) and reverse transcribed with iScript
cDNA Synthesis Kit (Bio-Rad). Gene expression was quantified using iTaq Universal SYBR
Green Supermix (Bio-Rad) and primers detailed in S4 Table. Actin expression was used for
normalization. Quantification was conducted in a CFX96 Touch Real-Time PCR Detection
System (Bio-Rad). Thermal profile was 95˚C for 1 min and 40 cycles of 95˚C for 10 sec and
60˚C for 15 sec. Three biological replicates were conducted.

Statistical analysis
Differences in gRNA copies per infected mosquito were tested on values using unpaired t-test
or Mann-Whitney test depending on the normal distribution estimated with D’agostino and
Pearson normality test. Differences in percentages were tested using χ2 test. Tests were per-
formed with GraphPad PRISM software (ver. 6.01).

AGPAT sequence alignment
Amino acid sequence homology was determined by MEGA X software (ver. 10.0.5), using
Maximum Likelihood and bootstrapping. FASTA sequences (S5 Table) were retrieved from
ncbi.nlm.nih.gov.
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Supporting information
S1 Fig. Quantification of DENV infection in Aag2 cells, A. aegyptimosquito and midgut.
(A) DENV gRNA copies in Aag2 cells at 6, 12, 24 and 48h post-infection with DENV at
MOI = 5. Points from 4 repeat and standard errors show geometric mean ± 95% CI. (B) Plaque
titer (plaque forming unit—pfu) in supernatant from Aag2 cells at 6, 12, 24 and 48h post-infec-
tion. Aag2 cells were infected with DENV at MOI = 5 and virus titer was calculated using pla-
que assay. Each point represents one well. (C) DENV gRNA copies per infected mosquitoes
and dissected midguts at 1, 7 and 14 days post-oral infection with 107 pfu/ml. Each point rep-
resents one mosquito or midgut. Bars show geometric mean ± 95% CI. (D) Infection rate in
whole mosquito and midgut at 1, 7 and 14 days post-oral infection. Bars represent
percentages ± s.e.
(TIF)

S2 Fig. LC-HMRS analytical pipeline. Liquid Chromatography-High Resolution Mass Spec-
trometry (LC-HRMS) pipeline used to detect polar and nonpolar metabolites.
(TIF)

S3 Fig. Spectral similarity network frommosquito MS features. Example of a molecular
spectral network for Ae. aegypti mosquito at 14 days post-infection using MS features detected
with the non-polar LC condition and MS negative mode. Line length represents the MS/MS
score similarity. Ontology for unknown features was determined based on the proximity with
database-identified features.
(TIF)

S4 Fig. Ion intensity of regulated metabolites in cells, midguts and mosquitoes infected
with DENV and mock. Normalized ion intensity was calculated after total ion chromatogra-
phy normalization and auto scaling from three biological replicates. Conditions with signifi-
cantly regulated metabolites (p-value<0.05 and |log2 fold change| >1) were indicated with an
asterisk. Only metabolites from the general metabolism (i.e., lipid, carbohydrate, amino acid
and peptide, nucleotide and nucleoside, sialic acid) are shown. †, indicates metabolite anno-
tated by spectral similarity. Carbo., carbohydrate; SA, sialic acid; PL, phospholipid; PE,
phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; PA, phospha-
tidic acid; PI, phosphatidylinositol; PG, phosphatidylglycerol; LysoPS, lysophosphatidylserine;
LysoPC, lysophosphatidylcholine; LysoPE, lysophosphatidylethanolamine; LysoPG, lysopho-
sphatidylglycerol; LysoPI, lysophosphatidylinositol; SM, Sphingomyelin; DAG, Diacylglycerol;
MAG, Monoacylglycerol; FAHFA, Fatty Acid ester of Hydroxyl Fatty Acid; NAE, N-acyletha-
nolamine; HEA, Heneicosanoic acid; pep., peptides.
(TIF)

S5 Fig. AGPAT genes are regulated by DENV infection, from Colpitts transcriptomic
data. Ae. aegypti female mosquitoes were inoculated with DENV serotype 2 and collected at 1,
2 and 7 days post inoculation for transcriptomic analysis using microarray. Data from 3 sepa-
rate infections. AGAPAT 1–5 were found significantly regulated by DENV infection. Data
retrieved from (Colpitts et al., 2011, PMID: 21909258).
(TIF)

S6 Fig. UV-inactivated DENV does not regulate AGPAT1 expression. Aag2 cells were
infected with an MOI of 5 of DENV (DENV-WT), UV-inactivated DENV (DENV-UV) or
mock. Cells were analyzed at 24 and 48 hours post-infection (hpi). (A) DENV gRNA copies.
Bars show geometric means ± 95% C.I. (B) AGPAT1 expression relative to Actin level. Bars
show arithmetic means ± s.e.m. (A-B) Each point represents an independent well. ���, p-
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value< 0.001 as determined by unpaired t-test.
(TIF)

S7 Fig. Metabolomic impact of AGPAT1 and AGPAT2 depletion and infection in cells as
measured by ion intensity. Aag2 cells were transfected with dsRNA against AGPAT1 (dsAG-
PAT1) or AGPAT2 (dsAGPAT2) or a dsRNA control (dsControl). 24h later, cells were infected
with DENV at MOI of 1. (A) Ion intensity of regulated metabolites in mock cells at 72h post
transfection. (B) Ion intensity of regulated metabolites in infected cells at 24 hpi. Normalized
ion intensity was calculated after total ion chromatography normalization and auto scaling
from three replicates. Conditions with significantly regulated metabolites (p-value<0.05 and |
log2 fold change| >1) were indicated with an asterisk. PE, phosphatidylethanolamine; PC,
phosphatidylcholine; PS, phosphatidylserine; LPE, lysophosphatidylethanolamine.
(TIF)

S8 Fig. AGPAT1 and 2 expression in cells after the other AGPAT depletion. Aag2 cells were
transfected with dsRNA against AGPAT1 or 2 (dsAGPAT1 or 2). Control cells were trans-
fected with dsRNA control (dsControl). Cells were collected 72h post dsRNA. (A) AGPAT1
expression in AGPAT2-depleted cells. (B) AGPAT2 expression in AGPAT1-depleted cells.
Bars show mean ± s.e.m from 3 biological replicates. ns, non-significant, as indicated by
unpaired t-test.
(TIF)

S9 Fig. Ethanolamine supplementation partially rescued infection increase upon AGPAT1
depletion. 24h before infection, Aag2 cells were transfected with dsRNA against AGPAT1
(dsAGPAT1) or with dsRNA control (dsControl) and reared in standard growth media or the
same media supplemented with 2mM ethanolamine. Cells were infected with DENV at MOI
of 1 and gRNA copy was quantified 48h later. Bars show geometric means ± 95% C.I. Each
point represents an independent well. �, p-value< 0.05; ��, p-value< 0.01 as determined by
unpaired t-test.
(TIF)

S10 Fig. Metabolomic impact of AGPAT1 and AGPAT2 depletion in uninfected mosqui-
toes as measured by ion intensity. Two days post dsRNA injection against AGPAT1 (dsAG-
PAT1) or control (dsControl), mosquitoes were orally infected with DENV at 107 pfu/ml.
Metabolomic analyses were performed at 2 and 7 dpi. Normalized ion intensity was calculated
after total ion chromatography normalization and auto scaling from three replicates. Condi-
tions with significantly regulated metabolites (p-value<0.05 and |log2 fold change| >1) were
indicated with an asterisk.
(TIF)

S11 Fig. Impact of AGPAT1-depletion in mosquitoes on DENV infection rate and gRNA
copies. Mosquitoes were injected with either dsRNA against AGPAT1 (dsAGPAT1) or dsRNA
control (dsControl). Two days post injection, mosquitoes were orally fed with either non-
infectious blood or DENV infectious blood. Impact of AGPAT1 depletion on (A) infection
rate and (B) DENV gRNA copies at 2 days post oral infection (dpi) with 107 pfu/ml. (C-E)
Impact of AGPAT1 depletion on infection rate (C) and DENV gRNA copies at 2 (D) and 7 (E)
dpi with 106 pfu/ml. Bars indicate percentage ± s.e. (A, C) or geometric means ± 95% C.I. (B,
D, E) with each dot representing one mosquito. �, p-value< 0.05 as indicated by Mann-Whit-
ney test.
(TIF)
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S1 Table. Identification of mosquito specific metabolites by spectral similarity.
(DOCX)

S2 Table. Metabolites detected from cell, midgut and whole mosquito with differential reg-
ulation upon DENV infection. The three tabs contain compound detected on cell, midgut
and mosquito with the following information: ionization mode (positive and negative), phase
detection (polar and non-polar), the mass average m/z between replicate, the retention time
average Rt in minutes between replicates, the MS/MS spectrum fragmentation and intensity,
adducts [M+H]+ and [M-H]-, metabolites of importance in Fig 1C, regulated compound with
abundance between DENV-infected and uninfected samples (p-value< 0.05 and |log2 fold
change|� 1) and annotation classes with the first 3 ranks of identification by MS-Finder.
(XLSX)

S3 Table. Primers for dsRNA.
(DOCX)

S4 Table. Primers for Real-Time qPCR.
(DOCX)

S5 Table. AGPAT FASTA protein sequences.
(DOCX)

S6 Table. Metabolites detected from uninfected cell, after AGPAT1 or AGPAT2 depletion.
The table contains compound detected on cell with the following information: ionization
mode (positive and negative), the mass average m/z between replicate, the retention time aver-
age Rt in minutes between replicates, the MS/MS spectrum fragmentation and intensity,
adducts [M+H]+ and [M-H]-, metabolites of importance in Fig 3C, regulated compound with
abundance between dsAGPAT1 or 2 and dsControl samples (p-value< 0.05, |log2 fold
change|� 1) and annotation classes with the first 3 ranks of identification by MS-Finder.
(XLSX)

S7 Table. Metabolites detected from DENV-infected cell at 48 hpi, after AGPAT1 or
AGPAT2 depletion. The table contains compound detected on cell with the following infor-
mation: ionization mode (positive and negative), the mass average m/z between replicate, the
retention time average Rt in minutes between replicates, the MS/MS spectrum fragmentation
and intensity, adducts [M+H]+ and [M-H]-, metabolites of importance in Fig 3E, regulated
compound with abundance between dsAGPAT1 or 2 and dsControl samples (p-value< 0.05, |
log2 fold change|� 1) and annotation classes with the first 3 ranks of identification by
MS-Finder.
(XLSX)

S8 Table. Metabolites detected from uninfected mosquito after AGPAT1 depletion. The
two tabs contain compound detected on cell after 2 or 7 days post blood feeding with the fol-
lowing information: ionization mode (positive and negative), the mass average m/z between
replicate, the retention time average Rt in minutes between replicates, the MS/MS spectrum
fragmentation and intensity, adducts [M+H]+ and [M-H]-, metabolites of importance in Fig
4B, regulated compound with abundance between dsAGPAT1 and dsControl samples (p-
value< 0.05, |log2 fold change|� 1) and annotation classes with the first 3 ranks of identifica-
tion by MS-Finder.
(XLSX)

S9 Table. Metabolites detected from DENV-infected mosquito after dsAGPAT1 depletion
or dsControl. The table contains compound detected on cell with the following information:
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ionization mode (positive and negative), the mass average m/z between replicate, the retention
time average Rt in minutes between replicates, the MS/MS spectrum fragmentation and inten-
sity, adducts [M+H]+ and [M-H]-, metabolites of importance in Fig 4E, regulated compound
with abundance between dsAGPAT1 and dsControl samples (p-value< 0.05, |log2 fold
change|� 1) and annotation classes with the first 3 ranks of identification by MS-Finder.
(XLSX)

S10 Table. Metabolites detected from DENV-infected or uninfected mosquito after
AGPAT1 depletion. The table contains compound detected on cell with the following infor-
mation: ionization mode (positive and negative), the mass average m/z between replicate, the
retention time average Rt in minutes between replicates, the MS/MS spectrum fragmentation
and intensity, adducts [M+H]+ and [M-H]-, metabolites of importance in Fig 4F, regulated
compound in dsAGPAT1 condition only, regulated compound with abundance between
DENV-infected and Mock samples in dsControl or dsAGPAT1 condition (p-value< 0.05, |
log2 fold change|� 1) and annotation classes with the first 3 ranks of identification by
MS-Finder.
(XLSX)
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3. Supplement information

Figure S1. Quantification of DENV infection in Aag2 cells, A. aegypti mosquito 
and midgut. (A) DENV gRNA copies in Aag2 cells at 6, 12, 24 and 48h post-infection 
with DENV at MOI = 5. Points from 4 repeat and standard errors show geometric mean 
± 95 % CI. (B) Plaque titer (plaque forming unit - pfu) in supernatant from Aag2 cells 
at 6, 12, 24 and 48h post-infection. Aag2 cells were infected with DENV at MOI = 5 
and virus titer was calculated using plaque assay. Each point represents one well. (C) 
DENV gRNA copies per infected mosquitoes and dissected midguts at 1, 7 and 14 
days post-oral infection with 107 pfu/ml. Each point represents one mosquito or midgut. 
Bars show geometric mean ± 95 % CI. (D) Infection rate in whole mosquito and midgut 
at 1, 7 and 14 days post-oral infection. Bars represent percentages ± s.e. 
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Figure S2. LC-HMRS analytical pipeline. Liquid Chromatography-High Resolution 
Mass Spectrometry (LC-HRMS) pipeline used to detect polar and nonpolar metabolites.
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Figure S3. Spectral similarity network from mosquito MS features. Example of a 
molecular spectral network for Ae. aegypti mosquito at 14 days post-infection using 
MS features detected with the non-polar LC condition and MS negative mode. Line 
length represents the MS/MS score similarity. Ontology for unknown features was 
determined based on the proximity with database-identified features. 
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Figure S4. Ion intensity of regulated metabolites in cells, midguts and 
mosquitoes infected with DENV and mock. Normalized ion intensity was calculated 
after total ion chromatography normalization and auto scaling from three biological 
replicates. Conditions with significantly regulated metabolites (p-value <0.05 and |log2 
fold change| >1) were indicated with an asterisk. Only metabolites from the general 
metabolism (i.e., lipid, carbohydrate, amino acid and peptide, nucleotide and 
nucleoside, sialic acid) are shown. †, indicates metabolite annotated by spectral 
similarity. Carbo., carbohydrate; SA, sialic acid; PL, phospholipid; PE, 
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phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; PA, 
phosphatidic acid; PI, phosphatidylinositol; PG, phosphatidylglycerol; LysoPS, 
lysophosphatidylserine; LysoPC, lysophosphatidylcholine; LysoPE, 
lysophosphatidylethanolamine; LysoPG, lysophosphatidylglycerol; LysoPI, 
lysophosphatidylinositol; SM, Sphingomyelin; DAG, Diacylglycerol; MAG, 
Monoacylglycerol; FAHFA, Fatty Acid ester of Hydroxyl Fatty Acid; NAE, N-
acylethanolamine; HEA, Heneicosanoic acid; pep., peptides. 

 

 
Figure S5. AGPAT genes are regulated by DENV infection, from Colpitts 
transcriptomic data. Ae. aegypti female mosquitoes were inoculated with DENV 
serotype 2 and collected at 1, 2 and 7 days post inoculation for transcriptomic analysis 
using microarray. Data from 3 separate infections. AGAPAT 1-5 were found 
significantly regulated by DENV infection. Data retrieved from (Colpitts et al., 2011, 
PMID: 21909258).    
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Figure S6. UV-inactivated DENV does not regulate AGPAT1 expression. 

Aag2 cells were infected with an MOI of 5 of DENV (DENV-WT), UV-inactivated DENV 
(DENV-UV) or mock. Cells were analyzed at 24 and 48 hours post-infection (hpi). (A) 
DENV gRNA copies. Bars show geometric means ± 95 % C.I. (B) AGPAT1 expression 
relative to Actin level. Bars show arithmetic means ± s.e.m. (A-B) Each point 
represents an independent well. ***, p-value < 0.001 as determined by unpaired t-test. 

 
 

Figure S7. Metabolomic impact of AGPAT1 and AGPAT2 depletion and infection 
in cells as measured by ion intensity. Aag2 cells were transfected with dsRNA 
against AGPAT1 (dsAGPAT1) or AGPAT2 (dsAGPAT2) or a dsRNA control 
(dsControl). 24h later, cells were infected with DENV at MOI of 1. (A) Ion intensity of 
regulated metabolites in mock cells at 72h post transfection. (B) Ion intensity of 
regulated metabolites in infected cells at 24 hpi. Normalized ion intensity was 
calculated after total ion chromatography normalization and auto scaling from three 
replicates. Conditions with significantly regulated metabolites (p-value <0.05 and |log2 
fold change| >1) were indicated with an asterisk. PE, phosphatidylethanolamine; PC, 
phosphatidylcholine; PS, phosphatidylserine; LPE, lysophosphatidylethanolamine.  
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Figure S8. AGPAT1 and 2 expression in cells after the other AGPAT depletion. 
Aag2 cells were transfected with dsRNA against AGPAT1 or 2 (dsAGPAT1 or 2). 
Control cells were transfected with dsRNA control (dsControl). Cells were collected 
72h post dsRNA. (A) AGPAT1 expression in AGPAT2-depleted cells. (B) AGPAT2 
expression in AGPAT1-depleted cells. Bars show mean ± s.e.m from 3 biological 
replicates. ns, non-significant, as indicated by unpaired t-test. 

 

 
Figure S9. Ethanolamine supplementation partially rescue wild-type infection 
after AGPAT1 depletion. Aag2 cells were transfected with dsRNA against AGPAT1 
(dsAGPAT1) or with dsRNA control (dsControl), with standard growth media or media 
supplemented with 2mM ethanolamine (Eth). At 24 h post transfection, cells were 
infected with DENV at MOI of 1. DENV gRNA copies were analyzed at 48 hours post-
infection (hpi). Bars show geometric means ± 95 % C.I. Each point represents an 
independent well. *, p-value < 0.05, **, p-value < 0.01 as determined by unpaired t-test. 
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Figure S10. Metabolomic impact of AGPAT1 and AGPAT2 depletion in uninfected 
mosquitoes as measured by ion intensity. Two days post dsRNA injection against 
AGPAT1 (dsAGPAT1) or control (dsControl), mosquitoes were orally infected with 
DENV at 107 pfu/ml. Metabolomic analyses were performed at 2 and 7 dpi. Normalized 
ion intensity was calculated after total ion chromatography normalization and auto 
scaling from three replicates. Conditions with significantly regulated metabolites (p-
value <0.05 and |log2 fold change| >1) were indicated with an asterisk. 
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Figure S11. Impact of AGPAT1-depletion in mosquitoes on DENV infection rate 
and gRNA copies. Mosquitoes were injected with either dsRNA against AGPAT1 
(dsAGPAT1) or dsRNA control (dsControl). Two days post injection, mosquitoes were 
orally fed with either non-infectious blood or DENV infectious blood. Impact of AGPAT1 
depletion on (A) infection rate and (B) DENV gRNA copies at 2 days post oral infection 
(dpi) with 107 pfu/ml. (C-E) Impact of AGPAT1 depletion on infection rate (C) and 
DENV gRNA copies at 2 (D) and 7 (E) dpi with 106 pfu/ml. Bars indicate percentage ± 
s.e. (A, C) or geometric means ± 95% C.I. (B, D, E) with each dot representing one 
mosquito. *, p-value < 0.05 as indicated by Mann-Whitney test. 
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Table S1. Identification of mosquito specific metabolites by spectral similarity. 

 

  Suggested 
annotation Mass m/z Time 

course 
Similarity 
score 

Similarity 
features 
mass 

Similarity features 
Ontology 

Cells Phospholipid 1004.0799 48 hpi 
0.67 227.2018 Long-chain fatty acids 

0.64 171.0119 Glycerophosphates 

Midgut 

Phospholipid 695.311 1 dpi 

0.97 716.4861 Phosphatidylserines 

0.96 742.5027 Phosphatidylserines 

0.95 714.5056 Phosphatidylethanolamines 

0.90 740.5221 Phosphatidylethanolamines 

0.89 711.2864 Saccharolipids 

0.88 729.4831 Xanthophylls 

0.81 715.5099 Acyclic diterpenoids 

0.80 716.5167 Phosphatidylethanolamines 

0.76 719.4855 Phosphatidylglycerols 

0.71 740.5191 Phosphatidylethanolamines 

0.67 717.4706 Phosphatidylglycerols 

Phospholipid 701.4858 7 dpi 

0.83 711.2864 Saccharolipids 

0.81 716.5167 Phosphatidylethanolamines 

0.78 715.5099 Acyclic diterpenoids 

0.78 729.4831 Xanthophylls 

0.74 253.2168 Long-chain fatty acids 

0.68 740.5221 Phosphatidylethanolamines 

0.68 716.4861 Phosphatidylserines 

0.62 717.4706 Phosphatidylglycerols 

Phospholipid 707.1689 7 dpi 

0.97 219.175 Sesquiterpenoids 

0.95 469.3869 Stilbenes 

0.94 284.2951 Carboximidic acids 

0.93 481.3505 Brassinolides and derivatives 

0.87 553.2563 Benzodioxoles 

0.85 775.5345 Glycosyldiacylglycerols 

0.85 850.5543 Phosphatidylserines 

0.76 437.1938 3'-prenylated isoflavanones 
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0.66 522.3557 Lysophosphatidylcholines 

0.66 427.3893 Cycloartanols and derivatives 

Mosquito 

Phospholipid 846.5413 7 dpi 

0.93 794.5101 Glycosphingolipids 

0.94 818.5106 Phosphatidylethanolamines 

0.98 820.5248 Oligopeptides 

Phospholipid 628.3821 14 dpi 0.84 466.3301 Lysophosphatidylethanolamines 

Phospholipid 754.5367 14 dpi 

1.00 312.3264 Morpholines 

0.99 516.307 Lysophosphatidylcholines 

0.99 758.5696 Phosphatidylcholines 

0.91 778.5354 Phosphatidylcholines 

0.91 802.5355 Phosphatidylcholines 

0.73 808.5806 Phosphatidylcholines 

0.69 566.323 Benzoic acids 

0.67 522.356 Lysophosphatidylcholines 

0.67 284.2961 Carboximidic acids 

0.66 808.5842 Phosphatidylcholines 

0.66 780.5518 Phosphatidylcholines 

Phospholipid 611.3975 7 dpi 

0.67 281.2477 Long-chain fatty acids 

0.67 659.5121 Phosphoethanolamines 

0.65 564.3434 Resorcinols 

0.64 687.4951 Phosphatidic acid 

0.64 714.4923 Phosphatidylethanolamines 

0.63 775.5479 Phosphatidylglycerols 

0.60 734.533 Phosphatidylserines 

Phospholipid 768.4946 7 / 14 
dpi 

0.97 469.2935 Withanolides and derivatives 

0.95 428.3731 Acyl carnitines 

0.90 359.1749 Phenylpiperazines 

0.89 311.2584 Fatty alcohols 

0.88 518.2646 Harmala alkaloids 

0.87 453.1676 Sulfated steroids 

0.76 480.3088 Lysophosphatidylethanolamines 

0.61 463.2568 Fatty acyl glycosides 

534.2963 0.95 630.4976 Aralkylamines 
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Lysophospholipid  
/ Acylcarnitine 

1 / 14 
dpi 

0.99 339.2893 Glycidol esters 

0.98 398.3265 Acyl carnitines 

0.66 426.3578 Acyl carnitines 

0.97 428.3731 Acyl carnitines 

0.61 452.277 Acyl carnitines 

0.62 480.3088 Lysophosphatidylethanolamines 

0.98 518.2646 Harmala alkaloids 

0.64 520.3402 Lysophosphatidylcholines 

Lysophospholipid 534.2963 1 / 14 
dpi 

0.64 544.3403 Lysophosphatidylcholines 

0.64 558.2961 Diphenylethers 

0.94 560.312 Macrolactams 

N-acylethanolamines 376.2597 1 / 14 
dpi 0.83 376.3156 N-acylethanolamines 

Lipid 107.086 1 / 14 
dpi 

0.87 219.1751 Sesquiterpenoids 

0.72 337.1053 Coumestans 

0.95 135.0809 Alkylthiols 

0.90 425.1364 Ginkgolides and bilobalides 

Fatty acid 192.16 1 / 14 
dpi 

0.96 216.1964 Medium-chain fatty acids 

0.94 156.1386 Indolizidines 

Carbohydrate 198.1861 14 dpi 
0.69 839.3719 Sugar acids and derivatives 

0.80 359.1749 Phenylpiperazines 

Acyl-Amino acid 616.1778 7 / 14 
dpi 0.64 164.0408 N-acyl-L-alpha-amino acids 

Pyrazinecarboxamides 789.4676 1 / 14 
dpi 0.66 414.2152 Pyrazinecarboxamides 

Hydroxypyrimidines 234.9183 14 dpi 0.75 184.0742 Hydroxypyrimidines 

Hydroxypyrimidines 376.2597 1 / 14 
dpi 

0.78 184.0739 Hydroxypyrimidines 

0.80 184.0742 Hydroxypyrimidines 

Hydroxypyrimidines 768.4946 7 / 14 
dpi 

0.94 184.0739 Hydroxypyrimidines 

0.97 184.0742 Hydroxypyrimidines 
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Table S3. Primers for dsRNA. 
Gene 
name Gene code Fragment 

size Forward primer Reverse primer 

AGPAT
1 AAEL011898 

364 TAATACGACTCACTATAGGGTTAA
GCGCATGCCGTAAAAA 

TAATACGACTCACTATAGGGTTG
GTACAGAGATAGGCGGG 

AGPAT
2 AAEL001000 346 TAATACGACTCACTATAGGGGGCC

TACTTTTGCAGTTTGAA 
TAATACGACTCACTATAGGGCGA
GTTGATCATCAGCACAAA 

LacZ / 370 TAATACGACTCACTATAGGGTACC
CGTAGGTAGTCACGCA 

TAATACGACTCACTATAGGGTAC
GATGCGCCCATCTACAC 

 

Table S4. Primers for Real-Time qPCR 

Gene name Gene code Forward primer Reverse primer 

AGPAT1 AAEL011898 TAAGCGCATGCCGTAAAAAT GTGGCCGTAAAAGCATGAG 

AGPAT2 AAEL001000 GGCCTACTTTTGCAGTTTGAA CGAGTTGATCATCAGCACAAA 

Actin AAEL011197 GAACACCCAGTCCTGCTGACA TGCGTCATCTTCTCACGGTTAG 
 

 

Table S5. AGPAT FASTA protein sequence. 

>NP_006402.1 1-acyl-sn-glycerol-3-phosphate acyltransferase alpha [Homo sapiens] 

MDLWPGAWMLLLLLFLLLLFLLPTLWFCSPSAKYFFKMAFYNGWILFLAVLAIPVCAVRGRV
ENMKILRLMLLHIKYLYGIRVEVRGAHHFPPSQPYVVVSNHQSSLDLLGMMEVLPGRCVPIA
KRELLWAGSAGLACWLAGVIFIDRKRTGDAISVMSEVAQTLLTQDVRVWVFPEGTRNHNGS
MLPFKRGAFHLAVQAQVPIVPIVMSSYQDFYCKKERRFTSGQCQVRVLPPVPTEGLTPDDV
PALADRVRHSMLTVFREISTDGRGGGDYLKKPGGGG 

>NP_006403.2 1-acyl-sn-glycerol-3-phosphate acyltransferase beta isoform a precursor 
[Homo sapiens] 

MELWPCLAAALLLLLLLVQLSRAAEFYAKVALYCALCFTVSAVASLVCLLRHGGRTVENMSII
GWFVRSFKYFYGLRFEVRDPRRLQEARPCVIVSNHQSILDMMGLMEVLPERCVQIAKRELL
FLGPVGLIMYLGGVFFINRQRSSTAMTVMADLGERMVRENLKVWIYPEGTRNDNGDLLPFK
KGAFYLAVQAQVPIVPVVYSSFSSFYNTKKKFFTSGTVTVQVLEAIPTSGLTAADVPALVDTC
HRAMRTTFLHISKTPQENGATAGSGVQPAQ 

>NP_064517.1 1-acyl-sn-glycerol-3-phosphate acyltransferase gamma [Homo sapiens] 

MGLLAFLKTQFVLHLLVGFVFVVSGLVINFVQLCTLALWPVSKQLYRRLNCRLAYSLWSQLV
MLLEWWSCTECTLFTDQATVERFGKEHAVIILNHNFEIDFLCGWTMCERFGVLGSSKVLAKK
ELLYVPLIGWTWYFLEIVFCKRKWEEDRDTVVEGLRRLSDYPEYMWFLLYCEGTRFTETKH
RVSMEVAAAKGLPVLKYHLLPRTKGFTTAVKCLRGTVAAVYDVTLNFRGNKNPSLLGILYGK
KYEADMCVRRFPLEDIPLDEKEAAQWLHKLYQEKDALQEIYNQKGMFPGEQFKPARRPWT
LLNFLSWATILLSPLFSFVLGVFASGSPLLILTFLGFVGAASFGVRRLIGVTEIEKGSSYGNQE
FKKKE 

>NP_064518.1 1-acyl-sn-glycerol-3-phosphate acyltransferase delta [Homo sapiens] 

MDLAGLLKSQFLCHLVFCYVFIASGLIINTIQLFTLLLWPINKQLFRKINCRLSYCISSQLVMLLE
WWSGTECTIFTDPRAYLKYGKENAIVVLNHKFEIDFLCGWSLSERFGLLGGSKVLAKKELAY
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VPIIGWMWYFTEMVFCSRKWEQDRKTVATSLQHLRDYPEKYFFLIHCEGTRFTEKKHEISM
QVARAKGLPRLKHHLLPRTKGFAITVRSLRNVVSAVYDCTLNFRNNENPTLLGVLNGKKYHA
DLYVRRIPLEDIPEDDDECSAWLHKLYQEKDAFQEEYYRTGTFPETPMVPPRRPWTLVNWL
FWASLVLYPFFQFLVSMIRSGSSLTLASFILVFFVASVGVRWMIGVTEIDKGSAYGNSDSKQK
LND 

>NP_060831.2 1-acyl-sn-glycerol-3-phosphate acyltransferase epsilon [Homo sapiens] 

MLLSLVLHTYSMRYLLPSVVLLGTAPTYVLAWGVWRLLSAFLPARFYQALDDRLYCVYQSM
VLFFFENYTGVQILLYGDLPKNKENIIYLANHQSTVDWIVADILAIRQNALGHVRYVLKEGLKW
LPLYGCYFAQHGGIYVKRSAKFNEKEMRNKLQSYVDAGTPMYLVIFPEGTRYNPEQTKVLS
ASQAFAAQRGLAVLKHVLTPRIKATHVAFDCMKNYLDAIYDVTVVYEGKDDGGQRRESPTM
TEFLCKECPKIHIHIDRIDKKDVPEEQEHMRRWLHERFEIKDKMLIEFYESPDPERRKRFPGK
SVNSKLSIKKTLPSMLILSGLTAGMLMTDAGRKLYVNTWIYGTLLGCLWVTIKA 

>EAT35978.1 AAEL011898-PA [Aedes aegypti] 

MTTTNSELLGLAFMAFFIITLSSTARYYFKFFCFIILSVVCAVGPVPLMLLRPRDYRNALLPAYL
CTKFGKMLGASFEVRGRENVNRQHGGVVLMNHQSALDLVVLAYLWPIVGRATVVAKREVL
YMFPFGLACWLWGTLFINRKNQRSAKSAINNESKAINEKQAKILFFPEGTRGDGDSLLPFKK
GSFHVAIEAQGYIQPVVISKYHFLNSKAKLFNRGQNIIKILPEVSCVGLTKDDMPQLMDRVQR
MMQSEYEALSDESLAINNLSKSL 

>EAT47921.1 AAEL001000-PA [Aedes aegypti] 

MKAYFCSLKLFSLFPTLRHATWPHFLFLQRDDISAAITSEPTSSCDDRVLLFYFQNVGGMNT
TLAKYLLACKGTMASYYEIFLICGIILMPIFYETSHKFRYFFKFFIYYFVLMINSIILIPAMMFRAK
DVRNLIWAGTFCRPISTVLGIKWELRGADILSRDEAYVIVANHQSSLDILGMFDFWHVMNKC
TVIAKKELLYTGPFGVAAWLSGLIFIDRKNAEKAHVAMNECTDMLKEKRIKLWVFPEGTRRN
TNEIHPFKKGAFHTAVRSQLPIMPVVYSSYGSFLDDKAKILNNGHVIVTTLEPIETKGLTSDDI
PELMERVRNVMMDTFKATTKEVENKYSVNSTKNGGVGLSGSKLRLRCIDDLIKPKLASSRRL
NASANGSPTKESAVYRRKE 

>EAT35981.1 AAEL011902-PA [Aedes aegypti] 

MTDCTLCHYVGLLVKYYLYAWIIGVGVWFLLIIASKVGSDGNKFRYYAKYGMIYYATQAFTTL
FAPFSLLRPRNPANAGIICAVASKASSLLPITWELRNARILREAEGAVVMANHQSSMDILGLEI
LWSTMRNVISIAKKEMLFIVPFGPAAWLAGITFINRKNRPSAMKTLDGCKRKMVEQGFKMYI
YPEGTRFPERGMLPFKKGGFHTAIEAGVPIIPVVFSHIYFIDAKKYSFKPGHVIMNVLEPIPTK
GLTKDNLDALITRTRDAMMAEYERLSAEMDANLANPKWVKASRPRFVTYDGKKTN 

>EAT33698.1 AAEL014026-PA [Aedes aegypti] 

MHLCFAISYFTSGLIINTAQCILYFGLKPFNKRLYRKIGYYLCYSFYSQLVFLADWWSGSTLYI
YISDEDLKHCGKEHVLLLMNHTYEVDWLVGWMFCEKVKVLGNCKAYAKKVIQYIPTVGWA
WKFAEFVFLERSFDKDKEIIGRQIKEIMDYPDPVWLLLNAEGTRFTEKKHEASIKFARDRGMV
ELKHHLIPRTKGFTASLPELRNKSTILDIQLAISKDSPVKPTIFNILNGKPIEAHMHIRRIPFDQV
PEDEGQAAEWLQELFRQKDVMQESFHKHGDFFTGSNVTRKVPVKLHPRLHTLINMVAWNV
LTVVPMFYYLIQLLISGEIMYFSIGTSILIAFYGLMVKAIGMSKISKASSYGSEKKNGQSVHNGP
SSNETTKNK 

>EAT35980.1 AAEL011901-PA [Aedes aegypti] 

MAMEAIISTIKDVFLGSTCVQIMVVSILLSLVWPTFKYYAKLTAILMMSFMVMVVPIPLYFFKPR
WPLNALIPGIVACEIIRWFGVEYEIRGKENINVKNGGVALINHQSAIDIVMLSRLLREFRNIVPV
VKKELFYALPFGIASYLVGVVFIDRKNITSAKDVMKREAVAIQRDNLKLAIFPEGTRHDKDTLL
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PFKKGSFHVAIDSQSIIQSIIVSKYGFLDHKKKRFGRGRVIIKILPEISTKGMTKDDINSLVEKCQ
TTMQAEFDALSAEAKQYCHL 

 

 

 

 

 

 

 

 



   119 
 

CHAPTER 3 – DENV activates phospholipid remodeling for 
replication 

 

1. Presentation 
 

The chapter 3 is intended to deepen the PL reconfiguration mechanism induced 

by DENV and to provide insight into the function of PL in DENV cellular life cycle in 

mosquito. We deployed our metabolomic workflow associated with isotope labelling to 

study the impact of either activation or inhibition of the aminophospholipid biosynthetic 

and remodeling pathway on DENV infection. By studying different stages of the cellular 

viral cycle, we revealed a PL modification by remodeling to ensure DENV replication 

process. Advanced results of this work are presented in the following section and are 

intended to be submitted for later publication. 

 

2. Advanced results  
 
2.1. Abstract 

 
Dengue virus (DENV) is a re-emerging arbovirus present in all continent. The virus life 

cycle involves two different hosts, humans and mosquito species as vector responsible 

for DENV transmission and epidemics. DENV infection induces host metabolic 

disorder, by affecting particularly the lipid membrane metabolism. Here, we explored 

how DENV exploits phospholipids to complete its viral cellular cycle in mosquito. We 

demonstrated that inhibition of the Kennedy pathway, involved in phosphatidylcholine 

(PC) and phosphatidylethanolamine (PE) biosynthesis, favors DENV multiplication, 

while ethanolamine supplementation has the reverse effect by decreasing the infection. 
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Combining isotope labelling and ethanolamine or choline supplementation, we showed 

that DENV increases PC and PE biosynthesis by phospholipid remodeling. We further 

demonstrated that ethanolamine reduced viral replication, without affecting attachment, 

internalization or translation. These findings support the importance of PC and PE in 

DENV infection on mosquito and reveal a major role of aminophospholipid remodeling 

during the replication process. 

 

2.2. Introduction 
 

Dengue virus (DENV) is transmitted by Aedes aegypti mosquito[1] and is a global 

public health concern due to the wide and expanding distribution of its vector[283]. 

DENV is an enveloped single-stranded positive-sense RNA ((+)RNA) virus[8] that 

relies on host membrane for its cellular cycle. Lipids in DENV envelope attach to 

plasma membrane receptors to enter cells through endocytosis[8][53]. Upon 

internalization, DENV envelope fuses with plasma membrane, releasing the viral RNA 

genome into the cytosol[40]. The single open reading frame is translated into a 

transmembrane polyprotein by ribosomes associated with endoplasmic reticulum (ER) 

membrane[58]. After cleavage by host and viral proteases, non-structural viral proteins 

reconfigure the ER through membrane invagination to form a replication complex (RC) 

that encompasses vesicle packets (VP) where replication occurs[60,61]. Inside VP, 

first is produced the negative-sense RNA genome (-ssRNA), which is used as a 

template for +ssRNA replication. RC and VP structures enable efficient replication and 

protect from the host defense system. In ER membrane, newly synthetized +ssRNA is 

assembled into virion with viral structural proteins anchored in a lipid bilayer envelope. 

Viral particles bud in the ER lumen and undergo maturation through the Golgi and 
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trans-Golgi membrane networks[72], before being released into extracellular space by 

fusion between endosome and plasma membranes.  

Plasma and endosomal membranes are mainly composed of phospholipids 

(PL)[284]. PLs contain one hydrophilic head group, a glycerol backbone and two 

hydrophobic fatty acyl chains. Because of their amphiphilic nature, bilayer associations 

of PL form cellular barriers. Phosphatidylcholine (PC) and phosphatidylethanolamine 

(PE) represent more than 50% of cellular PL content. PC and PE de novo biosynthesis 

is conducted in the ER through the highly conserved Kennedy pathway, which is 

composed of the parallel cytidine 5'-diphosphate (CDP) intermediates, CDP-choline 

and CDP-ethanolamine branches[147,156,284]. In these, choline (Cho) and 

ethanolamine (Etn) are integrated into a diacylglycerol (DAG) to form PC and PE, 

respectively[130]. Both PE and PC then form phosphatidylserine (PS) by head group 

exchange reaction[149,150]. PC, PE and PS are called aminophospholipids (AminoPL) 

based on their amine head group. Remodeling of PLs occurs through the Land’s 

cycle[154,156] by deacylation of one acyl chain, forming lysophospholipid 

(LysoPL)[154], and reacylation to incorporate another fatty acid in the free position of 

the glycerol backbone, forming different PL species[154]. Together, de novo synthesis 

and remodeling of PLs ensures maintenance and rearrangement of membrane 

composition, which determine membrane properties and structures[162]. The polar 

headgroup and parallel acyl chains of PC results in a cylindrical geometry that form 

planar bilayer membrane. The small headgroup of PE confers an inverted conical 

geometry, which induces negative curvature[285]. Conversely, LysoPC and LysoPE 

with one acyl chain promote positive curvature and membrane permeability[285]. PL 

acyl chain composition is also important for membrane behavior, where high 

concentration of unsaturated PL leads to low lipid packing which increase membrane 
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fluidity[173]. Cellular membrane undergoes drastic modifications during DENV 

infection[62,63], as illustrated by the large PL reconfiguration in both humans and 

mosquitoes[200,286,287]. Understanding how DENV alters PL composition and the 

function of these membrane alterations will provide insight into the virus biology and 

transmission. 

Recently, we described a major aminoPL reconfiguration throughout the DENV 

cycle in Ae. aegypti mosquitoes[286]. This reconfiguration is partially caused by DENV-

mediated downregulation of AGPAT1, the enzyme responsible for synthesis of 

phosphatidic acid (PA), which feeds into the Kennedy pathway through DAG. We 

further showed that such inhibition of de novo AminoPLs generated a pro-viral 

environment in mosquitoes. Here, we aim to decipher how DENV reconfigures 

AminoPL – especially the role of de novo synthesis and remodeling - and the function 

of aminoPL in the viral cellular cycle. Using enzyme depletion to inhibit and precursor 

supplementation to activate the Kennedy pathway, we showed that de novo AminoPL 

synthesis is detrimental to DENV. Pioneering lipid isotope labelling in mosquitoes, we 

revealed that DENV aminoPL reconfiguration is initiated through remodeling. 

Eventually, we showed that activation of the Kennedy pathway does not alter virus 

attachment, internalization, translation and particle production but hampers replication, 

resulting in a lower number of infectious particles.  

 

2.3. Results 
 

2.3.1. Inhibition of the Kennedy pathway favors DENV multiplication  
 

To determine how de novo AminoPL synthesis influences DENV infection, we depleted 

the enzymes from different steps of the two branches (CDP-Cho and CDP-Etn) of the 
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Kennedy pathway in Aag2 mosquito cells (Fig 1A; Fig S1). Both branches have parallel 

synthesis and, in insects, certain enzymes have overlapping activities, recognizing 

substrates from either branches[147]. We depleted the kinase responsible for Cho and 

Etn transformation into phosphocholine (CK) and phosphoethanolamine (EK), 

respectively; the two transferases that synthesize CDP-Cho (CT) and CDP-Etn (ET); 

the two transferases identified in Diptera that synthesize both PC and PE by 

introgression of DAG (E/CPT1 and E/CPT2), which have dual specificity for both CDP-

choline and CDP-ethanolamine[288,289]. We also depleted the synthetase (PSS1) 

and decarboxylase (PSD) responsible for PC transformation into PS and PS 

transformation into PE, respectively. Upon gene depletion, we measured DENV 

infection by quantifying gRNA in cells and infectious particle production (plaque-

forming unit, pfu) in supernatant at 48 h post infection (hpi). Both parameters showed 

identical pattern. Whereas the first step (EK/CK) of the Kennedy pathway and the 

second step (ET) of the CDP-Etn branch did not alter virus multiplication, synthesis 

inhibition of CDP-choline and de novo PC and PE by E/CPT1 and 2 increased gRNA 

and pfu/ml (Fig. 1B and C). Of note, E/CPT enzymes catalyze the rate-limiting step in 

the Kennedy pathway[147]. Alteration of PS synthesis and decarboxylation did not 

significantly influence particle production, however, PSD depletion, resulting in a 

decrease of alternative PE synthesis, moderately increased DENV gRNA.  

 To characterize the pro-viral metabolic environment induced by inhibition of de 

novo AminoPL synthesis, we quantified changes in PLs in enzyme-depleted mosquito 

cells as compared to wild-type upon DENV infection. Overall, pro-viral conditions (CT, 

E/CPT1 and E/CPT2 and to a lower extent PSD) induced a major AminoPL increase, 

including several compounds from PC, PE, PS, sphingomyelin (SM), LysoPC, LysoPE 

and lysophosphatidylinositol (LysoPI) classes (Fig 1D; Fig S2). However, neutral 
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conditions (EK/CK and ET) also induced a large AminoPL reconfiguration with several 

metabolites overlapping with pro-viral conditions. To correlate unique metabolite 

profiles with DENV titer in the different conditions, we performed a partial least squares 

regression (PLS)[290,291]. Higher concentration in PC(30:1) and PS(34:0) were the 

best predictors (highest VIP scores) of higher DENV titer (Fig 1E). Then, three 

LysoPCs, one LysoPE, one LysoPI, SM(34:1) and PS(40:4) correlated with DENV 

production. Altogether, those results demonstrate that inhibition of de novo AminoPL 

synthesis favors DENV production. This is in accordance with our previous observation 

that synthesis inhibition of precursors for the Kennedy pathway favors virus production 

in cells and mosquitoes[286]. More specifically, the new results show that reduction of 

PC and PE de novo synthesis but not PS synthesis promote DENV. In spite of Kennedy 

pathway inhibition, DENV infection increases concentrations of PC and PS, which 

associate with higher viral production. Importantly, LysoPLs are also largely increased, 

suggesting initiation of PL remodeling, which can produce these pro-viral PC and PS. 
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Fig 1. Impact of Kennedy pathway inhibition on DENV and phospholipid 

reconfiguration. Aag2 cells were transfected with dsRNA targeting different enzymes 

of the Kennedy pathway or control dsRNA (Ctrl). 24 h later, cells were infected with 

DENV at a MOI of 1 or mock. Samples were collected at 48hpi. (A) Scheme of the 



   126 
 

Kennedy pathway and Land’s cycle. Ethanolamine (Etn) and choline (Cho) are 

phosphorylated by ethanolamine/choline kinase (EK/CK) and then integrate a cytidine 

diphosphate group by CTP:phosphocholine/ethanolamine cytidyltransferase (CT/ET). 

The CDP-ethanolamine and CDP-choline formed incorporate a diacylglycerol (DAG) 

by DAG:CDP-choline cholinephosphotranferase (CPT) or DAG:CDP-ethanolamine 

ethanolaminephosphotranferase (EPT) to produce PC and PE, respectively. In 

mosquitoes, these enzymes catalyze both PE and PC. PS is produced by head 

exchange reaction from PC or PE by PS synthase (PSS). PE is reversely produced by 

PS decarboxylase (PSD). PL remodeling starts with deacylation by phospholipase A2 

(PLA2) to produce lysophospholipids (LysoPL). LysoPL are then reacylated by 

lysophospholipid acyltransferase (LPLAT) via incorporation of another fatty acid to 

form a new PL species. (B) Impact of gene depletion on DENV gRNA copies. Bars 

show mean ± s.e.m. and each point represents one well-repeat. (C) Impact of gene 

depletion on DENV plaque-forming unit (pfu) assay. Bars show mean ± s.e.m. and 

each point represents one well-repeat. (D) DENV phospholipidome reconfiguration 

upon gene depletion. Fold changes of annotated and significantly regulated 

metabolites (|log2 fold change| > 1 and p-value < 0.05) upon DENV as compared to 

dsRNA control. (E) Variable influence on projection (VIP) for each metabolite. Bars 

show VIP score > 1.5 as determined by PLS analysis with DENV production (pfu/ml). 

(B, C) *, p-value < 0.05; ***, p-value < 0.001; **** p-value < 0.0001 as determined by 

Dunnett's multiple comparison test. PC, phosphatidylcholine; LysoPC, 

lysophosphatidylcholine; PE, phosphatidylethanolamine; LysoPE, 

lysophosphatidylethanolamine; PS, phosphatidylserine; LPI, lysophosphatidylinositol; 

SM, sphingomyelin. 
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2.3.2. Activation of the CDP:Ethanolamine branch of the Kennedy 
pathway reduces DENV multiplication 
 

To test whether de novo AminoPL synthesis alters DENV multiplication, we activated 

the Kennedy pathway by supplementing mosquito cells with either Etn or Cho (Fig. 

1A)[292]. While Etn was too small and apolar to be detected in our metabolomics 

workflow, uptake of Cho was confirmed in Cho supplemented cells (Fig. 2A). 

Interestingly, Cho was also increased upon Etn supplementation. This could be 

explained by induction of PC recycling and choline homeostasis[293], and is indicative 

of Etn uptake. Overall, AminoPLs were similarly regulated by either Cho or Etn 

supplementations, suggesting interconnections and compensation mechanisms 

between the two branches of the Kennedy pathway[293]. We observed an increase of 

two PC and one PS species. Interestingly, LysoPLs were largely decreased (7 

downregulated out of 11 regulated). These results show that supplementation with 

Kennedy pathway precursors activates de novo AminoPL synthesis and inhibits 

partially PL remodeling. 

 We then quantified the effect of Etn and Cho supplementations on DENV gRNA 

at 6, 24 and 48 hpi (Fig 2B), and on DENV production (pfu/ml in supernatant) at 48 hpi 

(Fig 2C). At 48 hpi, Cho supplementation significantly increased gRNA replication and 

slightly enhanced pfu/ml, whereas Etn supplementation drastically inhibited both gRNA 

and pfu/ml (Fig 2B and C). However, while supplementation did not influence 

replication at 6 hpi, both Etn and Cho supplementation inhibited gRNA at 24 hpi (Fig 

2B). The difference in the impact of Cho supplementation at 24 and 48 hpi may reflect 

the balance between precursor-mediated and DENV-mediated PL reconfiguration. If 

this is the case, higher pressure from DENV infection should revert the negative impact 
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of Cho. Accordingly, at a higher MOI, Cho supplementation did not alter gRNA quantity 

at 24 hpi (Fig S3).  

 To characterize DENV-mediated PL reconfiguration when Kennedy pathway is 

activated, we profiled the phospholipidome of Etn- and Cho-supplemented cells upon 

DENV infection at 6, 24 and 48 hpi. At 6 hpi, Kennedy pathway precursors (Cho and 

phosphocholine) increased in cells supplemented with either Etn or Cho (Fig 2D; Fig 

S4). Together with the observed decrease in PC, PE and PS, it is suggestive of 

inhibition of the Kennedy pathway. At 24 hpi, two LysoPCs and several sphingomyelin 

(SM), the latter being produced from LysoPCs, increased in both supplementations, 

indicating activation of PC remodeling. At the same time point upon Etn 

supplementation, only PC(34:1) and two PEs increased, while all other regulated PCs 

and PEs were downregulated upon Cho supplementation. At 48 hpi, all regulated PCs, 

PSs, SMs and LysoPCs were similarly upregulated in both supplementations. However, 

while nine PEs were similarly upregulated in both supplementations, three other PEs 

only increased upon Etn supplementation. Altogether, these observations indicate that 

DENV induces PL remodeling through deacylation of PC. Consequently, activation of 

de novo PC and PE synthesis restricts the proportion of remodeled PLs that favor 

DENV and reduces early virus infection. There exists a balance between de novo 

synthesis and remodeling of PL[294]. In our conditions, DENV-mediated PC 

remodeling counterbalances the negative effect of de novo PCs at 48 hpi. Inversely, 

de novo PEs forced by Etn supplementation are less efficiently remodeled by DENV 

and hamper infection. In accordance, LysoPEs that indicate PE remodeling were 

downregulated upon both supplementations at 48 hpi.  
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Fig 2. Impact of Kennedy pathway activation on DENV and phospholipid 

reconfiguration. Aag2 cells were supplemented with either ethanolamine (Etn) or 
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choline (Cho) for 24h before infection with DENV at a MOI of 1 or mock. (A) Impact of 

the supplementations on the phospholipidome before infection. Fold changes of 

significantly regulated metabolites (|log2 fold change| > 1 and p-value <0.05) as 

compared to control media are shown. (B) Impact of the supplementations on DENV 

gRNA at 6, 24 and 48 hpi. Bars show geometric means ± 95% C.I. Each point 

represents an independent well-repeat. ***, p-value < 0.001; ****, p-value < 0.0001 as 

determined by Dunnett's multiple comparison test. (C) Impact of the supplementations 

on DENV production as determined by plaque forming unit (pfu). Bars show mean ± 

s.e.m. *, p-value < 0.05, as determined by unpaired t-test.  (D) Impact of the 

supplementations on the phospholipidome at 6, 24 and 48 hpi. Fold changes of 

significantly regulated metabolites (|log2 fold change| > 1 and p-value <0.05) as 

compared to media control within same time-point are shown. Cho; choline 

intermediates; PE, phosphatidylethanolamine; PC, phosphatidylcholine; PS, 

phosphatidylserine; LysoPC, lysophosphatidylcholine; LysoPE, 

lysophosphatidylethanolamine; SM, Sphingomyelin. 

2.3.3. DENV reconfigures PLs through remodeling first and then de novo 
synthesis 
 

To determine the effect of DENV on the biosynthesis of PE and PC, separately, we 

isotopically labeled each branch of the Kennedy pathway (i.e., CDP:Etn and CDP:Cho 

branches) and monitored changes in isotopically labeled metabolites. Aag2 cells were 

supplemented with 13C-Etn, 13C-Cho or non-isotopic precursors. Isotopically labeled 

metabolites were detected and annotated by comparing retention time (RT) and mass 

m/z between labeled and non-labeled metabolites (Fig 3A; Fig S5; Table S1). 

Isotopically labeled metabolites have similar RT as the same non-labeled metabolites 

and a m/z + 2. Before infection, in 13C-Etn supplemented cells, we detected five 
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labeled-PE and, in 13C-Cho supplemented cells, we detected labeled-Cho and three 

labeled-PCs (Table S1). This confirmed that our labeling strategy differentiated the two 

branches of the Kennedy pathway and that isotopes were incorporated in PE and PC 

before infection. 

 Upon infection, we monitored changes in labeled PLs at 1, 6, 24 and 48 hpi as 

compared to mock. Many new PLs were labeled in both 13C-Etn and 13C-Cho 

supplemented cells, indicating activation of PL reconfiguration in both branches (Fig 

3B and C; Table S1 and S2). In 13C-Etn samples, two LysoPEs were first induced at 1 

hpi, and then at 24 and 48 hpi (Fig 3D; Table S2), suggesting that pre-labelled PE were 

deacylated to form LysoPE early and throughout infection. At 24 and 48 hpi, four 

monounsaturated PEs and three polyunsaturated PEs were increased by DENV. This 

increase in PE can stem from de novo synthesis (incorporation of 13C-Etn through the 

Kennedy pathway) or remodeling (reacylation of LysoPE through the Lands cycle). 

However, because de novo synthesis does not produce polyunsaturated PL[295], it is 

highly probable that remodeling is activated by DENV to reconfigure PE. In support of 

DENV-activated deacylation, one PE-Ceramide that is generated by PE deacylation 

and incorporation of ceramide[135] was increased at 24 hpi. We also observed an 

increase in two polyunsaturated PCs in 13C-Etn cells at 24 hpi. PE conversion into PC 

has not been reported in insects but exists in other organisms[296].  In 13C-Cho 

supplemented cells (Fig 3E; Table S2), we did not detect LysoPC despite the previous 

observation of DENV activation of PC remodeling (Fig 2). This may reflect a technical 

limitation. Indeed, the lower number of labeled PC than labelled PE prior infection 

(Table S1) indicates that fewer PCs were labeled. Deacylation may have occurred for 

non-labeled PC. At 24 hpi, labeled-Cho increased, indicating activation of the Kennedy 

pathway, which is supported by increase of four monounsaturated PCs (Fig 3E; Table 
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S2). Altogether, the isotopic labeling strategy confirms PL reconfiguration and indicates 

that DENV induces first remodeling and then de novo synthesis. 

 

 

Fig 3. Impact of DENV on each of the branches of Kennedy pathway. Aag2 cells 

were supplemented with either isotope labeled 13C ethanolamine (Etn) or choline (Cho). 

24 h later, cells were infected with DENV at MOI 1 or mock. 13C enrichment was 

quantified at 1, 6, 24 and 48h post infection. (A) Experimental design of isotope labeling 

tracking. Position in the Kennedy pathway of labeled PL upon (B) 13C-Etn and (C) 13C-

Cho supplementation. Impact of DENV on labeled metabolites at 1, 6, 24 and 48 hpi 

upon (B) 13C-Etn and (C) 13C-Cho supplementation. Fold changes of annotated and 

significantly regulated metabolites (|log2 fold change| > 1 and p-value < 0.05) as 

compared to mock. PE, phosphatidylethanolamine; PC, phosphatidylcholine; PS, 
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phosphatidylserine; LysoPE, lysophosphatidylethanolamine; LysoPC, 

lysophosphatidylcholine; LysoPS, lysophosphatidylserine; SM, Sphingomyelin; Cer, 

Ceramide, DAG; diacylglycerol, CDP; cytidine -5'- diphosphate. 

2.3.4. Kennedy pathway activation hampers replication 
 

To determine what step(s) of DENV cellular cycle requires PL reconfiguration, we 

evaluated the impact of Etn and Cho supplementations on virus attachment, 

internalization, translation, replication and infectivity. PLs are present in plasma 

membrane and could influence attachment and internalization. To estimate attachment 

and internalization, we quantified attached and internalized gRNA from DENV grown 

in control media in cells supplemented with Cho or Etn. Attached and internalized 

gRNA were not altered by cell supplementations (Fig 4A). To investigate translation, 

we quantified production of NS3 as early as we detected it (3 hpi) and every hour until 

6 hpi. NS3 expression did not change between supplemented and control cells (Fig 

4B). DENV replication is initiated by antigenome (-ssRNA) production in PL-rich ER. 

We performed a kinetic of -ssRNA production from 1 to 24 hpi every 3 h and first 

detected it at 9 hpi (Fig 4C). Strikingly, from 9 hpi for Cho supplementation and from 

12 hpi for Etn supplementation, -ssRNA was reduced and remained lower than control 

until the end of the kinetic. We then quantified +ssRNA, used for translation and virus 

packaging at the same time points, which roughly encompass the first replication 

cycle[58]. +ssRNA decreased from 1 to 9 hpi in all conditions and increased from 12 

hpi (Fig 4D). In accordance with –ssRNA template appearance, it indicates that 

production of +ssRNA does not start before 12 hpi in Aag2 cells. From 12 and until 21 

hpi, both supplementations reduced +ssRNA quantity. At 24 hpi, while Etn 

supplementation still reduced replication, Cho supplementation did not significantly 

alter replication anymore. We previously observed a similar difference between Etn 
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and Cho supplementations for gRNA (i.e., +ssRNA) and infectious particles (pfu/ml) at 

48 hpi (Fig. 2B and C). We then quantified the attachment and internalization efficiency 

of DENV produced from Etn and Cho supplemented cells. DENV envelope contains 

PLs that are involved in these processes and could have been modified in 

supplemented cells. While attached and internalized gRNA from Etn-produced viruses 

was identical to control, Cho-produced DENV attached better but did not internalize 

better (Fig 4E). DENV envelope can exchange lipids with the media[265]. To control 

that attachment and internalization reflected changes due to assembly, we quantified 

attachment and internalization for control-grown DENV that were pre-incubated with 

Etn or Cho before attachment and internalization assays. Quantity of attached and 

internalized gRNA was no longer changed between treatments (Fig S6). Eventually, 

we quantified virus infectivity by calculating the ratio of gRNA to pfu in supernatant at 

24 and 32 hpi. Importantly, while infectious particles (pfu/ml) was reduced upon Etn 

supplementation, gRNA copies were not significantly altered by supplementation (Fig 

4F and G). This discrepancy resulted in an increase of gRNA/pfu ratio upon Etn 

supplementation (Fig 4H). Altogether, our analysis indicates that alteration of DENV-

mediated PL reconfiguration by Etn and Cho supplementation chiefly hampers 

replication by reducing –ssRNA and +ssRNA productions and decreasing infectivity, 

the latter likely caused by genome defects. While replication deficiency occurs for both 

Etn and Cho supplementation, Cho-mediated alteration is temporary and Etn-mediated 

alteration lasts at least until 48 hpi in mosquito cells.  
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Fig 4. Impact of Kennedy pathway activation on DENV cellular cycle.  Aag2 cells 

were supplemented with either Etn or Cho or control media (Ctrl) for 24 h before 

infection with DENV at a MOI of 1. Impact of supplementations (A) on attachment and 

internalization; (B) on translation as measured by NS3 level normalized to b-actin at 3, 

4, 5 and 6 hpi; on replication as measured by (C) -ssRNA and (D) +ssRNA per well at 

1, 3, 6, 9, 12, 15, 18, 21 and 24 hpi; (E) on attachment and internalization for virus 

grown in supplemented media; on virus infectivity as measured by (F) pfu/ml, (G) 

gRNA/ml and (H) ratio of gRNA/pfu in supernatant at 24 and 32 hpi. (A, E, F, G) Bars 

show geometric means ± 95% C.I. Each point represents an independent well. (B, H) 

Bars show mean ± s.e.m. (C-D) Tukey box plots. (C-D, F-H) Six biological replicates 

were collected from 2 independent experiments. *, p-value < 0.05; **, p-value < 0.01; 

***, p-value < 0.001; ****, p-value < 0.0001 as determined by Dunnett's multiple 

comparisons test. 

 

2.4. Discussion 
 

Several studies, including ours[286], support that DENV infection in 

mosquitoes[200,256] and mammals[243–245] is associated with PL reconfiguration. 

Here, we address two important questions to understand the metabolic interactions 

between DENV and its vector: how DENV reconfigures PLs and what is the function of 

the PL alterations? There are two ways PL are generated: de novo synthesis through 

the Kennedy pathway and remodeling through the Land’s cycle. Using enzyme 

depletion to inhibit and precursor supplementation to activate the Kennedy pathway, 

we robustly demonstrate the negative effect of de novo synthesis on DENV 

multiplication. By monitoring the phospholipidome upon Kennedy pathway alterations 

and by using PL isotope labeling in mosquito cells, we showed that DENV induced PL 
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deacylation, the first step of the Land’s cycle. PL synthesized from the Kennedy and 

Land’s pathway have different saturation levels. The Kennedy pathway incorporates 

saturated or monounsaturated acyl chains, whereas Land’s cycle removes saturated 

chains and replaces them with polyunsaturated chains[295]. Our findings suggest a 

model whereby de novo synthetized PLs do not favor DENV multiplication and DENV 

induces remodeling to reconfigure PLs for its multiplication. Of note, the pro-viral 

reconfiguration induced by infection depends on infection intensity and is, thus, 

expected to amplify with infection. There is probably not one specific PL species that 

is required for DENV multiplication. For instance, the PC(30:0) and PS(34:1) that were 

associated with higher DENV multiplication upon Kennedy pathway inhibition were 

also associated with unfavorable conditions upon Kennedy pathway activation. Further, 

while PE and PC de novo synthesis reduces DENV, PE de novo synthesis is more 

resistant to DENV-mediated reconfiguration, despite DENV-induced deacylation as for 

PC. PEs have an inverse conic shape that induces negative curvature, whereas 

LysoPLs have a conic shape that induces a positive curvature of different angle 

depending on the head group[295]. Adequate metabolic environment relies on a 

combination of the different PLs. Our results reveal the role of aminoPL remodeling in 

DENV multiplication. 

 By testing the impact of Kennedy pathway activation on each step of the DENV 

cellular cycle, we determine that PL reconfiguration is required for replication.  Another 

flavivirus member, West Nile Virus (WNV), induces LysoPC generation in human cells 

by activation of phospholipase A2 (PLA2)[297]. Because LysoPC localizes to RC and 

inhibition of PLA2 blocks DENV replication by altering RC shape, the authors proposed 

that a certain LysoPC species is required for replication. Although for another flavivirus, 

we propose a more complex picture for PL requirements for replication. A new role for 
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PLA is emerging in reacylation of LysoPLs and, thus, in remodeling new PLs[295]. 

Additionally, DENV recruits the fatty acid synthase (FAS), the main enzyme for 

lipogenesis, at replication site by interaction with NS3 viral protein[273]. The need for 

FA at replication site may be required to feed new FA into PL remodeling. The 

conservation in remodeling enzymes may also represent an evolution towards 

replication in two different hosts, human and mosquito. VP where replication occurs 

contain NS proteins and viral RNA[63]. It is proposed that the joint actions of 

transmembrane NS4A and NS4B, and NS2 and NS1 assist in the formation of 

invaginated ER membrane that results in RC and VP[298]. Perturbation of ER 

membrane homeostasis by introgression of viral proteins induces the ER stress 

response, which promotes membrane expansion by PL synthesis[299] and is required 

for replication[300]. PL remodeling not only modifies ER membrane curvature and 

fluidity required for RC and VP formations, but also increases permeability, which 

facilitates protein introgression. 

 We identified that Kennedy pathway activation through Etn 

supplementation reduced DENV multiplication. Etn cannot be synthesized by insects 

and has to be provided by the food source, most probably blood, which contains it at 2 

µM[153]. Etn may represent another blood source that influence DENV infection in 

mosquitoes and could be a targeted for transmission-blocking strategy. 

 

2.5. Materials and methods 
 

Cell line 

Aedes aegypti Aag2 cells[301] were cultured in RPMI-1640 medium (Gibco) with 10% 

filtered fetal bovine serum (FBS) (Hyclone) and 1% Penicillin-Streptomycin (Gibco). 
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For media supplementation, 2mM of either choline chloride (Sigma), ethanolamine 

(Sigma), choline-13C2 chloride (Sigma) or ethanolamine-13C2 (Sigma) was added to 

Aag2 growth medium 24 h before infection. Cells were maintained in vented culture 

flasks in a humidified incubator with 5% CO2 at 28°C. BHK-21 (baby hamster kidney) 

(ATCC CCL-10) cells were cultured in the same media and maintained at 37°C with 5% 

CO2. 

Dengue virus  

Dengue virus serotype-2 strain ST (DENV) was collected from the Singapore General 

Hospital in 1997[302]. DENV was propagated alternatively in Vero (ATCC CCL-81) 

and C6/36 (ATCC CRL-1660) cells. Virus titer was determined by plaque assay using 

BHK-21 cells[286].  

 

dsRNA-mediated RNAi  

Templates for dsRNA against AAEL009765 (EK/CK, ethanolamine/choline kinase), 

AAEL011564 (CT, CTP:phosphocholine cytidyltransferase), AAEL014395 (E/CPT1, 

DAG:CDP-choline ethanolamine/cholinephosphotranferase 1), AAEL011841 (E/CPT2, 

DAG:CDP-choline ethanolamine/cholinephosphotranferase 2), AAEL005651 (ET, 

CTP:phosphoethanolamine cytidyltransferase), AAEL010223 (PSD, PS 

decarboxylase) and AAEL008393 (PSS, PS synthase) were PCR amplified from Ae. 

aegypti cDNA with primers (Table S3) flanked with T7 promoter. dsRNA was 

synthetized with megaScript T7 transcription kit (Thermo Fisher Scientific), purified 

with E.Z.N.A. Total RNA kit I (Omega Bio-tek) in DEPC-treated water and annealed by 

slowly cooling down. Control dsRNA targeting LacZ was produced similarly from a 

plasmid[303]. 2 x 105 Aag2 cells were transfected with 1 µg of dsRNA by using TransIT-

mRNA Transfection kit (Mirusbio).  
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Quantification of gene expression 

Total RNA from Aag2 cells was extracted using E.Z.N.A. Total RNA kit I, treated with 

RapidOut DNA Removal kit (Thermo Fisher Scientific) and reverse transcribed with 

iScript cDNA Synthesis Kit (Bio-Rad). Gene expression was quantified using iTaq 

Universal SYBR Green Supermix (Bio-Rad) and primers detailed in Table S4. Actin 

expression was used for normalization. Quantification was conducted in a CFX96 

Touch Real-Time PCR Detection System (Bio-Rad). Thermal profile was 95°C for 1 

min and 40 cycles of 95°C for 10 sec and 60°C for 15 sec. Three biological replicates 

were conducted. 

 

Quantification of DENV genomic RNA (gRNA) 

Total RNA from cells was extracted using E.Z.N.A. Total RNA kit I (Omega Bio-tek) 

and eluted in 30µl of DEPC-treated water. Total RNA from supernatant was extracted 

using QIAamp Viral RNA Mini Kit (Quiagen) and eluted in 40µl of AVE buffer. gRNA 

was quantified with one-step RT-qPCR using iTaq Universal probe kit (Bio-Rad) and 

primers and probes targeting the DENV Envelope[304]. The 12.5 µl reaction mix 

contained 1 µM of forward and reverse primers, 0.125 μM of probe and 4 μl of RNA 

extract. Quantification was conducted on a CFX96 Touch Real-Time PCR Detection 

System (Bio-Rad). Thermal profile was 50˚C for 10 min, 95˚C for 1 min and 40 cycles 

of 95˚C for 10 sec and 60˚C for 15 sec. An absolute standard curve was generated by 

amplifying the qPCR target using a forward primer tagged with a T7 promoter; forward: 

5’-CAGGATAAGAGGTTCGTCTG-3’ and reverse: 5’-TTGACTCTTGTTTATCCGCT-3’, 

resulting in a 453bp fragment. The fragment was reverse transcribed using MegaScript 

T7 transcription kit (Ambion) and purified using E.Z.N. A. Total RNA kit I. The total 

amount of RNA was quantified using a Nanodrop (Thermo Fisher Scientific) and used 
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to estimate copy number. Ten times serial dilutions were made and used to generate 

absolute standard equation. In each subsequent RT-qPCR plate, five standards were 

added to adjust for threshold variation between plates.  

 

Titration 

Titration was conducted by plaque assay with BHK-21 cells as described 

previously[305]. Briefly, 80-90% confluent cells were inoculated with serial 10-fold 

dilutions of samples for 1h. Cells were then incubated with 1% carboxyl-methyl 

cellulose (CMC) (Merck) media for 5 days, fixed with 4% formaldehyde (Merck)-PBS 

and stained with 1% crystal violet (Sigma-Aldrich) solution to count plaque forming 

units (pfu). 

 

Metabolite extraction  

Cells were washed with room temperature 0.9 % NaCl, collected in 500 µl of ice-cold 

80:20 methanol(LCMS grade, Thermo Fisher):water by scraping and sonicated for 15 

min in an ultrasonic bath at 4°C. Homogenates were centrifuged at 10,000 rpm for 1 

min at 4°C and 400 µl of supernatant was collected. Pellets were extracted a second 

time by addition of 500 µl of 80:20 methanol:water, then sonicated and centrifugated 

before collecting 400 µl of supernatant. Combined supernatants were vacuum-dried 

(Speed-Vac, Thermo-Scientific) and stored at -20°C. Three biological replicates were 

conducted per condition.  

 

LC-HRMS metabolic profiling   

Dry extracts were normalized at 2 mg/mL in 80:20 methanol:water solution. 

Metabolites were profiled using a UPLC- Q Exactive Plus hybrid quadrupole-Orbitrap 
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instrument (Ultimate 3000, Thermo Fisher Scientific, Hemel Hempstead, UK) set at 

15,000 resolution, with a Zic-pHilic column (150 × 2.1 mm i.d., 5 µm, SeQuant®, Merck). 

Mobile phase A was 20 mM ammonium acetate buffered at pH 9 and B was acetonitrile. 

The flow rate was 200 μl/min and the gradient ran from 90 % B for 0.5 min to 40 % B 

over 18 min, was held at 40 % B for an additional 3 min, returned in 0.5 min to initial 

condition (90 % B) finally and was held for 5 min before subsequent analysis. The m/z 

range was 100–1500, ISpray voltage at 4.2 kV in positive mode and 3.0 kV in negative 

mode. Each full MS scan was followed by data dependent MS/MS on the two most 

intense ions using stepped CID fragmentation mode at 35 % normalized collision 

energy, isolation width of 2 u and activation Q set at 0.250. 

 

Data analysis and visualization 

Raw data were converted to abf files (Reifycs, Japan). Peak detection and alignment 

were performed using MS-DIAL (ver. 4.12) [306]. Peak annotation was done using MS-

finder (ver. 3.26) [307] with HMDB, ChEBI, LipidMAPS and LipidBlast databases, 

allowing a level 2.2 of metabolite identification [225,308]. Data were normalized by total 

ion chromatogram (TIC) and features lower than 2-fold average blank were removed. 

Data were normalized by auto-scaling before selecting regulated metabolites with 

more than 2-fold intensity change and a  p-value < 0.05 as indicated by unpaired t-test 

with FDR adjustment using MetaboAnalyst (ver. 4.0) [309]. PCA was performed for 

quality control with MetaboAnalyst (ver. 4.0). Isotope tracking analysis was performed 

using MS-DIAL. Peak detection and alignment were achieved first on the non-labelled 

sample data to build a library of compounds with known mass (M), retention time (RT) 

and annotation. Peak detection and alignment were then performed on 13C labelled 

sample data and compared with non-labelled sample data. Peaks exclusively detected 
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in 13C labelled sample data with a similar RT and a M+2 compared to a compound from 

non-labelled samples were considered isotopically labelled. 

 

Attachment and internalization assays 

2 x 105 Aag2 cells were chilled at 4°C for 15 min and inoculated with DENV at a MOI 

of 1 in serum-free media for 30 min at 4°C. Cells were washed with pre-chilled 2% FBS 

media. To quantify attached viruses, cells were lysed in 350 µL of TRK lysis buffer 

(E.Z.N.A. RNA kit I) and total RNA was extracted to quantify gRNA. To quantify 

internalization, cells were incubated with 350µl of 2% FBS medium at 28°C, 5% CO2 

for 1h. The medium was then replaced with 200µl of 2mg/ml pronase (Sigma) in serum 

free medium for 5 min on ice to remove virus particles on cell surface. Cells were 

washed twice with 10% FBS media and lysed in 350 µL of TRK lysis buffer to extract 

RNA and quantify gRNA from internalized viruses. 

 

Translation assay 

106 Aag2 cells were inoculated with DENV at a MOI of 1 in serum-free media for 1h. 

After infection, cells were washed with PBS before adding new fresh pre-warmed 

complete media with respective supplementation. At 3, 4, 5 and 6 hours post-infection, 

cells were washed twice with PBS, scrapped in 70 µL of RIPA lysis buffer 

(ThermoFisher) and sonicated for 10 min in an ultrasonic bath (J.R. Selecta) at 4°C. 

Protein concentration was measured by BCA assay (ThermoFisher) and 20µg was 

fractioned under denaturing conditions in 10% polyacrylamide gel (Bio-Rad). 

Antibodies used were anti-DENV-2 NS3 (CTX124252, Genetex) and anti-beta-actin 

(SC-47778, Santa-Cruz). 
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Replication assay 

2.5 x 105 Aag2 cells were inoculated with DENV at a MOI of 1 or 5 in serum-free RPMI 

for 1h at 28°C. After infection, cells were washed with PBS before adding new fresh 

pre-warmed complete media with respective supplementation. At 1, 3, 6, 9, 12, 15, 18, 

21 and 24 hours post-infection, cells were washed twice with PBS and lysed in 350 µL 

of TRK lysis buffer to extract RNA and quantify +strand and –strand gRNA. 

 

Statistical analysis 

Differences in gRNA copies were tested on log-transformed values using unpaired t-

test or Dunnett's multiple comparisons test. Tests were performed with GraphPad 

PRISM software (ver. 8.02). For multivariate analysis, data were imported into SIMCA-

P (ver. 15.0, Sartorius Stedim Biotech, Umetrics, Umeå, Sweden). To check for data 

consistency and outliers, data were analyzed with principal component analysis (PCA). 

The data were then pareto scaled for the partial least squares (PLS) regression 

analysis with DENV activity in PFU as the Y input. Variable importance for the 

projection (VIP) scores were used to rank variables according to their correlation with 

DENV activity. 
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3. Supplement information 
 

  

Fig S1. Kennedy pathway gene expression after silencing. Aag2 cells were 

transfected with either dsRNA against 7 genes of the Kennedy pathway or with dsRNA 

control (Control). Validation of Kennedy pathway gene silencing in in mock-infected 

cells at 72 h post transfection. Actin expression was used for normalization. Bars show 

mean ± s.e.m. ****, p-value < 0.0001 as indicated by Dunnett's multiple comparisons 

test or unpaired t-test. EK/CK, ethanolamine/choline kinase; ET, 

CTP:phosphoethanolamine cytidyltransferase; CT, CTP:phosphocholine 

cytidyltransferase; E/CPT, DAG:CDP-ethanolamine/choline 

ethanolamine/cholinephosphotranferase; PSS1, PS synthase; PSD, PS 

decarboxylase. 
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Fig S2. Ion intensity of regulated metabolites in DENV-infected cells after 

Kennedy pathway gene depletion. Normalized ion intensity was calculated after total 

ion chromatography normalization and auto scaling from three biological replicates. 

Conditions with significantly regulated metabolites (p-value <0.05 and |log2 fold 

change| >1) were indicated with an asterisk. PE, phosphatidylethanolamine; PC, 

phosphatidylcholine; PS, phosphatidylserine; LysoPC, lysophosphatidylcholine; 

LysoPE, lysophosphatidylethanolamine; LysoPI, lysophosphatidylinositol; SM, 

Sphingomyelin. 
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Fig S3. Impact of ethanolamine and choline supplementation on DENV 

replication at MOI 5. Aag2 cells were supplemented with either ethanolamine (Etn) or 

choline (Cho) and compared to standard growth media (control). At 1-day post 

supplementation, cells were infected with DENV at MOI 5. Quantification of DENV 

gRNA at 6 and 24 hpi. * p-value < 0.05, as determined by Dunnett's multiple 

comparisons test. 
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Fig S4. Ion intensity of regulated metabolites in choline or ethanolamine 

supplemented cells infected with DENV. Normalized ion intensity was calculated 

after total ion chromatography normalization and auto scaling from three biological 

replicates. Conditions with significantly regulated metabolites (p-value <0.05 and |log2 

fold change| >1) were indicated with an asterisk. Cho, choline; PE, 

phosphatidylethanolamine; PC, phosphatidylcholine; PS, phosphatidylserine; LysoPL, 

lysophospholipid LysoPC, lysophosphatidylcholine; LysoPE, 

lysophosphatidylethanolamine; SM, Sphingomyelin;  
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Fig S5. Isotope labeled 13C ethanolamine (Etn) or choline (Cho) incorporation 

on phospholipid metabolites on mock-infected cells. 
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Fig S6. Impact of ethanolamine and choline pre-treated virus on attachment and 

internalization. (A) Attachment and internalization evaluation by gRNA quantification 

on DENV infected cells by pre-incubated for 30 min DENV with ethanolamine (Etn), 

choline (Cho) or with standard growth media (control).  

 

Table S1. Isotope labeled 13C ethanolamine (Etn) or choline (Cho) incorporation on 

phospholipid metabolites in mock-infected cells 24 hours after supplementation. 

  13C fully labeled Non-labeled 

Supplementation RT Mass m/z Annotation RT Mass 
m/z 

Ethanolamine 2.976 692.5139 PE(18:1(9Z)/14:0) 2.939 690.5084 
Ethanolamine 2.842 718.5323 PE(16:0/18:2(9Z,12Z)) 2.895 716.5224 
Ethanolamine 3.155 720.5444 PE(18:1(9Z)/16:0) 3.229 718.5375 
Ethanolamine 2.897 720.5446 PE(18:1(9Z)/16:0) 2.944 718.5377 
Ethanolamine 6.446 744.5445 PE(16:0/20:3(8Z,11Z,14Z)) 6.499 742.5374 
Choline 11.184 106.1078 Choline 11.167 104.1067 
Choline 7.634 668.4445 PC(16:0/9:0(COOH)) 7.635 666.4341 
Choline 6.527 706.5334 PC(14:0/16:1(9Z)) 6.514 704.5219 
Choline 6.503 734.5647 PC(14:0/18:1(11Z)) 6.501 732.5535 
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Table S2. Isotope labeled 13C ethanolamine (Etn) or choline (Cho) incorporation on 

phospholipid metabolites in DENV and mock-infected cells between 25 and 72 hours 

after supplementation. 

  13C fully labeled Non-labeled 
Supplementation RT Mass 

m/z 
DENV 

regulated Time Annotation RT Mass 
m/z 

Ethanolamine 2.485 766.5332 yes (Up) 24h PE(16:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 2.544 764.5216 

Ethanolamine 2.614 770.5588 yes (Up) 24-
48h PE 38:4|PE 18:1_20:3 2.536 768.5520 

Ethanolamine 2.757 776.6061 yes (Up) 24-
48h PE 38:1 2.652 774.5992 

Ethanolamine 2.942 734.5592 yes (Up) 48h PE(20:1(11Z)/15:0) 2.736 732.5531 

Ethanolamine 2.925 718.5321 yes (Up) 6-24-
48h PE(16:0/18:2(9Z,12Z)) 2.892 716.5224 

Ethanolamine 3.168 692.5135 yes (Up) 48h PE(18:1(9Z)/14:0) 3.323 690.5065 
Ethanolamine 3.006 692.5134 yes (Up) 24h PE(14:0/18:1(9Z)) 3.039 690.5067 
Ethanolamine 6.358 810.5977 yes (Up) 24h PC 38:3 6.356 812.6126 
Ethanolamine 6.435 802.6281 yes (Up) 24h PC 37:2 6.392 800.6150 
Ethanolamine 5.231 719.5968 yes (Up) 24h PE-Cer(d16:1(4E)/22:0) 5.22 717.5901 

Ethanolamine 5.852 482.3155 yes (Up) 6-24-
48h LysoPE(18:1(9Z)/0:0) 5.869 480.3085 

Ethanolamine 5.929 456.2997 yes (Up) 6-24-
48h LysoPE(16:0/0:0) 5.928 454.2927 

Choline 11.2 106.1135 yes (Up) 24h Choline 11.189 104.1068 
Choline 5.786 120.0807 no / Betaine 7.531 118.0861 
Choline 7.635 668.4404 no / PC(16:0/9:0(COOH)) 7.634 666.4340 
Choline 6.525 706.5344 no / PC 30:1 6.511 704.5210 
Choline 6.505 720.5438 no / PC O-32:1 6.526 718.5772 
Choline 6.498 734.5615 no / PC(18:0/14:1(9Z)) 6.494 732.5531 
Choline 6.465 748.5726 yes (Up) 24h PC O-34:1 6.511 746.6069 
Choline 6.445 762.5900 yes (Up) 24h PC 34:1 6.465 760.5835 
Choline 6.446 776.6052 yes (Up) 24h PC 35:1 6.444 774.5966 
Choline 6.434 818.6527 yes (Up) 24h PC 38:1 6.456 816.6458 

 

 

Table S3. Primers for dsRNA synthesis 

Gene 

name 
Gene code 

Fragment 

size 
Forward primer Reverse primer 

EK/C

K AAEL009765 
301 GGCTTAGGGGATCGAGAGAC  GTCATCGTTGGCGTTATTGTT 

CT AAEL011564 305 CCGGTACGGTTGTACGGA CGCCTCAAGGTTTCGATTTA 

CPT1 AAEL014395 395 ATCATCGCGAATGCAATTTT CAGCTGTAGGGCATGGACTT 

CPT2 AAEL011841 312 GACCCTGTTCTACTGTGCCC AACAGGAACGGTATGATGGG 

ET AAEL005651 313 ACGGAGCTCGGAGGCTTACT TCGTCAACCCATTTAATGCC 



   152 
 

PSD AAEL010223 314 GGTCTGTACTCGACCGCTTT GCATTGTCGGGTGATTTCTT 

PSS AAEL008393 337 GTGGACGATATTTCGCTGGA TAAAATTCCGTAACGTGGGG 

LacZ / 370 TACCCGTAGGTAGTCACGCA TACGATGCGCCCATCTACAC 

 

Table S4. Primers for RT-qPCR 

 

Gene 

name 
Gene code Forward primer Reverse primer 

EK/CK AAEL009765 GGCTTAGGGGATCGAGAGAC GTCATCGTTGGCGTTATTGTT 

CT AAEL011564 CCGGTACGGTTGTACGGA CGCCTCAAGGTTTCGATTTA 

CPT1 AAEL014395 ATCATCGCGAATGCAATTTT CAGCTGTAGGGCATGGACTT 

CPT2 AAEL011841 GACCCTGTTCTACTGTGCCC AACAGGAACGGTATGATGGG 

ET AAEL005651 ACGGAGCTCGGAGGCTTACT TCGTCAACCCATTTAATGCC 

PSD AAEL010223 GGTCTGTACTCGACCGCTTT GCATTGTCGGGTGATTTCTT 

PSS AAEL008393 GTGGACGATATTTCGCTGGA TAAAATTCCGTAACGTGGGG 

Actin AAEL011197 GAACACCCAGTCCTGCTGACA TGCGTCATCTTCTCACGGTTAG 
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CHAPTER 4 – Discussion 
 

The work presented here enabled the exploration of the role of lipid mosquito 

metabolism in the DENV infectious. As a first step, we deployed a metabolomics 

approach using liquid-chromatography-mass spectrometry workflow, to study the 

reconfiguration of phospholipid by DENV across the mosquito cycle. The phospholipid 

regulation was partially due to DENV-mediated reduction of a host metabolic factor, an 

acylglycerophosphate acyltransferase (AGPAT1) involved in phospholipid biogenesis. 

Such AGPAT1 downregulation provides a beneficial environment for the viral infection. 

Reconfiguration of phosphatidylethanolamine (PE) and phosphatidylcholine (PC) were 

highly associated with DENV multiplication. We then refine the role of DENV in the PC 

and PE biogenesis pathway and support the importance of aminophospholipids for the 

replication of DENV infection in mosquito. We revealed that PL remodeling is more 

beneficial for DENV infection than de novo PL synthesis. Altogether, our study 

highlights the potential for disruption of phospholipid reconfiguration through aminoPL 

pathway interference as a strategy to block DENV mosquito transmission. 
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1. DENV alters the phospholipid metabolism for its benefits in mosquito 
 
 
1.1. Mosquito phospholipid species reconfiguration during DENV infection 

 
Lipid profiling of DENV infection is widely reported in human patients by analyzing 

alteration of serum and blood samples. Phospholipids, glycerolipids and sphingolipids 

families have been reported as lipid biomarkers of DENV infection [242–245]. Two 

studies have shown lipid perturbation in the Aedes vector, in mosquito cell line and 

midgut [200,256]. Membrane lipids were globally increased in DENV-infected Aedes 

albopictus cell line and on blood-fed Ae. aegypti midguts. In the present report, we 

described the lipid alteration in Ae. aegypti mosquito cell line, in midgut and in whole 

Ae. aegypti mosquito at strategic time points of the infection cycle to profile DENV 

metabolic alteration throughout the main mosquito vector life cycle. It is interesting to 

compare the DENV infectious profiles described in Aedes mosquito. 

Perera and al., showed the impact of high DENV infection (multiplicity of 

infection of 20) at 36 and 60 hours post-infection in Ae. albopictus cell line, to quantify 

peak and late stage of replication as well as cellular stress increase [256]. In our study, 

we choose to represent the early stages of DENV-infection in Ae. aegypti mosquito cell 

between 6 and 48 hours (multiplicity of infection of 5), encompassing the changes 

induced during the first cycle of infection. We showed a very early decrease of lipid 

intermediates such as fatty acid and glycerolipid, while unsaturated phospholipid PC 

and PS species were increased at 48 hours. In Ae. albopictus cell, an increase of 

phospholipids and sphingolipids species, PC, LysoPC, LysoPE, SM and ceramides, 

was observed mainly at 36 hpi in infected cell and endomembrane fractions containing 

the DENV replication complex. Majority of PC species upregulated had unsaturated 

fatty acyl chains, likely synthetized from PL remodeling[154], which contributes to PL 
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recycling with incorporation of polyunsaturated fatty acid. LysoPL, resulting from PL 

hydrolysis by phospholipase activity, were highly increased in infected cells at 36 hpi, 

which is consistent with the remodeling and unsaturated PL regulation. It is interesting 

to note that PE, a major PL in insect that is involved in membrane curvature, was not 

regulated in global cell extract, but increased in isolated endomembrane fractions. PL 

intermediates, were increased in endomembrane fraction. Sphingolipid species, such 

as SM and ceramides were increases in Ae. Albopictus cells. While SM and ceramides 

were detected, we did not observe regulation on Ae. Aegypti cells. Those lipid species 

are evidence of both lipogenesis and lipolysis and indicate a renewal within the lipid 

membrane metabolism. The difference observed between Perera group and our 

results can be explained by the different mosquito species, the intensity of DENV 

infection and the collection time. However, it is clear that infection perturbs lipid 

homeostasis in both mosquito cell type and induces PL increase as the infection 

progress. 

DENV-infection on Aedes aegypti midgut showed also membrane lipid 

modulation. Perera group described global upregulation of phospholipids PC, PE, PS, 

PG, lysophospholipid LysoPI, glycerolipids and sphingolipids, on midgut between 2 

and 11 days after infectious blood-feeding [200]. In our study, we studied infected 

midgut between 1 and 7 days and showed an early increase of PA, the central 

intermediate in PL biogenesis. Lipid intermediates, PE and PC were also elevated, 

while anionic PS were decreased. PC and PE, the main cellular PLs were increased 

in both studies, emphasizing their modulation in infected midgut. However, PS has a 

different behavior. PS is generally associated with cell signaling and apoptosis. 

Difference in mosquito and DENV strain and physiological state of mosquito may result 

in different cellular phenomena which results in metabolic differences. We described 
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on whole mosquito the global increase of PL and especially LysoPL early in the 

infection and then a decrease of PL and LysoPL as the infection progress. By going 

further in the mosquito infectious cycle, we underline the consumption/ redirection of 

the PL content as the infection progresses. Finally, a lipid enrichment/consumption with 

functions in membrane architecture and membrane expansion is generally observed 

on DENV-infected mosquito. 

 

1.2. DENV reduces the phospholipid biogenesis AGPAT1 gene  
 

Acyltransferase enzymes are considered as major enzymes in lipid metabolism [310]. 

Phosphatidic acid is known to be the common intermediate for the synthesis of 

phospholipid and glycerolipid [146].  GPAT and AGPAT localized into membranes are 

involved in PA synthesis by two successive step of free fatty acyl incorporation into a 

glycerol molecule. Most fatty acids are “transferred” by these two enzymes. Several 

enzymes have been identified in the GPAT/AGPAT family [311]. Four well-conserved 

domains are involved in acyltransferases activities of these enzymes. The acyl-CoA 

specificity of GPAT/AGPAT determines the acyl composition of all de novo synthesized 

phospholipids and glycerolipids. Human AGPAT1 and AGPAT2 possess the highest 

affinity for LysoPA and acyltransferase activity involve in the conversion of LysoPA to 

PA [312]. Those enzymes are localized in the endoplasmic reticulum. Nevertheless, 

other role have been assigned to human AGPATs. It has been shown that AGPAT may 

be associated with cellular signaling by cytokine induction [207]. In the work presented 

previously, we phylogenetically characterized several mosquito AGPATs based on 

functional motifs defining substrates affinity and acyltransferase activity [313] as 

compared to human AGPAT. We identified 2 mosquito AGPATs with sequence 

similarity to human AGPAT1 and human AGPAT2, suggesting PA biosynthesis activity 
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of the mosquito AGPATs a potential immune signaling properties. We demonstrated 

that DENV reduced AGPAT1 expression in vitro and in vivo on mosquito and midgut, 

throughout the mosquito life cycle. Interestingly, mosquito AGPAT2 was not reduced 

upon DENV infection. Aedes aegypti transcriptome study showed a downregulation of 

AGPAT1 and an upregulation of AGPAT2 during DENV infection [314]. This difference 

in virus impact between the two AGPAT isoforms involved in the same mechanism of 

PA generation suggests a viral specific regulation depending on the sequence of the 

targeted proteins.  

It is known that the endomembrane, and more specifically the endoplasmic 

reticulum membrane is used as a platform for translation, replication and assembly 

processes during DENV infection [315]. Furthermore, the endoplasmic reticulum is the 

site of structural lipids production [136], as it contains enzymes, intermediates and 

endproducts of the lipid pathways. Mitochondrial membranes also contain lipid 

biosynthesis enzyme involved in LysoPA and PA generation. The mitochondria-

associated membranes (MAM) attached to the ER contains the lipid synthesis 

machinery [137]. This membrane network undergoes drastic modification upon viral 

infection. Viral polyprotein is anchored in the ER membrane after its translation and is 

then processed by host and viral proteases to produce single viral proteins, many of 

which remain anchored to the membrane such as prM, E, NS2A, NS2B, NS4A and 

NS4B and can modify membrane topology [64,316]. Viral replication then recruits host 

protein and induce membrane arrangement for the biogenesis of the replication 

complex. Those viral modifications made to the ER membrane might affect the pre-

existing host protein-lipid environment. Membrane topology alteration may impair 

transmembrane protein function. Lipid bilayer stress can disrupt ER-resident proteins 

[317]. ER stress is characterized by accumulation of unfolded or misfolded proteins in 
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the ER, known as the unfolded protein response (UTR) [318]. ER induced-stress can 

disrupt lipid metabolism, such as glycerolipid and cholesterol biosynthesis [319]. 

Conversely, aberrant lipid metabolism and saturated fatty acids can induce ER stress 

leading to dramatic effect on cell survival [320–322]. All these suggest that ER 

membrane stress imposed by DENV infectious process might affect AGPAT1 activity, 

by membrane anchorage alteration, acyl substrate specificity modification or 

transferase activity impairment. In our work we showed the reduction of AGPAT1 gene 

expression during DENV infection, which implies a regulation at the gene or mRNA 

level. Moreover, an active infection was necessary to reduce AGPAT1 gene 

expression, as showed with inactivated virus which did not modify AGPAT1 regulation.  

AGPAT2, another mosquito isoform of acyltransferase was not subject to regulation of 

its expression, suggesting a specific DENV regulation on AGPAT1. 

In this context, we can question how acylglycerophosphate acyltransferase are 

transcriptionally regulated. The expression of AGPAT is regulated either directly by 

transcription factor or indirectly by alteration of PL content, ER stress response or 

endoplasmic reticulum topology modification. It is know that several lipid metabolism 

pathways are regulated transcriptionally by the sterol regulatory element binding 

proteins (SREBP) [310,323]. Evidence of SREBP role in DENV infection was shown 

by inhibiting viral replication using chemical inhibition of SREBP [282]. However, the 

role of SREBP pathway in the ER membrane rearrangement induced during DENV 

infection was not demonstrated [324]. ER modification was independent of SRBEP 

activation, but dependent of viral protein expression and lipid reabsorption into the ER. 

This suggest that phospholipid metabolism alteration upon DENV infection, through 

the modulation of central lipid biosynthetic enzyme, may be impacted directly by host 

PL species and viral proteins. AUP1, a membrane protein localized in ER and lipid 
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droplets, contains acyltransferase domain and enable generation of phospholipids 

which is dependent on ubiquitylation. DENV exploits the acyltransferase activity of 

AUP1 through NS4A and NS4B interaction, which trigger lipophagy and induce DENV 

production [277]. This underlines the viral requirement of lipid modulation as observed 

with AGPAT1 reduction and phospholipid reconfiguration.  Taken together, AGPAT1 

enzyme regulation and PL reconfiguration upon DENV infection show a specific viral-

host interaction within the PL metabolism. 

 

1.3. Phospholipid remodeling contributes to DENV infection 
 

De novo synthetized phospholipid and pre-existing phospholipids are known to have 

different acyl species diversity. The fatty acid remodeling system regulates the acyl 

compositions of de novo synthetized phospholipids [295,325]. While saturated or 

monounsaturated C16 and C18 fatty acid are commonly incorporated in de novo 

produced lipids, polyunsaturated fatty acids such as arachidonic acid, are usually 

introduced during the fatty acid remodeling. Remodeling enable to meet the cell needs 

for new PL species which are not produced upstream. As PA biosynthesis, the 

remodeling process requires acyltransferase reactions. Isoforms of GPAT/AGPAT can 

possess acyltransferase activity for lysophospholipids, contributing to PL remodeling. 

Human AGPAT3-5 target different substrates that LysoPA, such as other LysoPL, 

which contributes to phospholipid remodeling. Phospholipid can be hydrolyzed and 

lose one acyl chain under phospholipase activity. This reaction generates 

lysophospholipid and free fatty acid. Lysophospholipid transferase (LPLAT) can 

incorporate a new fatty acid species, to form different phospholipids. This remodeling 

process known as the Land’s cycle [154], is crucial for cell membrane maintenance 

and diversity [154]. 
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In the presented work, we found that AGPAT1 gene depletion enhanced DENV 

infection in vivo and in vitro on mosquito. This pro-viral phenotype was associated with 

an increase in aminoPL concentration. We hypothesized that the depletion of AGPAT1 

expression, and consequently a decrease of the acyltransferase process for de novo 

PL synthesis, contributes to the DENV infectious cycle.  Inhibition of the Kennedy 

pathway showed also an increase of DENV replication, more specifically on the choline 

branch of the Kennedy pathway. We could hypothesize that a diminished metabolic 

activity of de novo phospholipids biosynthesis induces a balance towards the 

remodeling of existing PL. DENV infection may not contributes only to the de novo 

phospholipid generation, but rather modify existing PLs and change their fatty acid 

composition in order to modulate a membrane architecture conducive to infection. As 

detailed above, this dynamic PL remodeling was shown in our work and in recent 

studies in mosquitoes with the modulation of lipid species such as LysoPL and 

unsaturated PL [200].  

 

1.4. DENV NS proteins recruit metabolic host protein 
 

Beyond metabolomic alteration and gene expression modulation, it is known that 

DENV regulates directly host metabolic proteins via NS proteins interaction. Cellular 

energy metabolism is affected upon DENV infection via NS1 protein [326]. The 

glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a multifunctional enzyme 

involved in the glycolysis [327], interacts with intracellular NS1. GAPDH glycolytic 

activity can be enhanced by NS1 addition in vitro and by DENV infection. Moreover, 

DENV relocalized GAPDH is the perinuclear region near NS1 expression site. 

Recruitment and modulation of major glycolytic enzyme by NS protein is consistent 

with energy alteration and glycolysis requirement in DENV-infected cells [328,329]. 
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Others viruses such as Hepatitis  C virus (HCV) and herpes simplex virus-1 enhance 

glucose consumption and glycolytic flux [330,331]. HCV NS5 protein induces energy 

modulation through interaction with the glycolytic hexokinase enzyme [331]. Glycolytic 

metabolites were also found increased during DENV infection [329], demonstrating the 

link between direct host protein regulation and metabolites modulation. DENV NS3 

regulates another major metabolic pathway, by interacting with the fatty acid synthase 

(FAS) enzyme involved in lipogenesis. FAS is relocalized to DENV replication sites 

and its activity is enhanced [251]. NS1 and NS3 may be directly responsible for host 

metabolism modulation by increasing glycolytic and lipogenesis activity. Interestingly, 

both NS proteins relocalized the targeted metabolic host proteins to perinuclear 

regions, where viral replication occurs. This recruitment by DENV viral proteins may 

contribute to energetic needs during viral translation, replication assembly but also for 

membrane rearrangement induction. Another aspect for host metabolic factor 

enrolment is the capacity to produce building block necessary for DENV infection. FAS 

recruitment by NS3 on replication sites can be useful to provide free fatty acid bulk for 

incorporation into hydrolyzed phospholipid and enhancing PL remodeling. New fatty 

acids produced, usually saturated, can be further transformed into polyunsaturated 

fatty acid by fatty acid desaturases, which can be used to diversify the PL composition 

by remodeling. Simultaneous metabolic pathway could be affected by either direct viral 

proteins interaction or indirect lipid species alteration, which enable PL remodeling and 

construction of biochemical platforms for DENV infectious cycle. 
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2. The DENV viral life cycle is intimately associated with the 
phospholipids 
 
 
2.1. Alteration of membrane PL composition for the replication step 

 
Incorporation of ethanolamine in phospholipid showed and increased in LysoPE early 

during DENV infection, suggesting early remodeling. We also demonstrated the PC/PE 

reconfiguration during DENV infection on mosquito. DENV-mediated remodeling and 

aminoPL balance modification could contributes to the optimal concentration of PC, 

PE, LysoPL in endomembrane hosting the important stages of the viral cycle. PC as a 

cylindrical lipid, induces a planar membrane and restrict membrane curvature. PC has 

to be associated with other PL species to induce membrane rearrangement. PE with a 

small headgroup results in inverted conical geometry, imposing a negative curvature 

when inserted in a lipid bilayer. LysoPL with large headgroup compared to the small 

acyl chain, is the reverse of PE by inducing positive membrane curvature. Different 

association of those PL-induced curvature into a PC membranes can lead to the 

membrane alteration observed into DENV-infected mammalian and mosquito cells 

[62,63]. DENV replication occurs in association with virus-induced endomembrane 

structure that fold around the replication mechanism containing host and viral proteins 

and viral RNA. LysoPL increases the membrane permeability [285], which can be 

favorable for molecule incorporation during DENV replication complexes formation.  

As we seen with the remodeling, DENV-mediated synthesis of curvature PL may 

ensure the membrane architecture enable the efficient infectious environment. 

Construction of different morphology of membranes alterations, such as convoluted 

membranes, tubular structures and vesicle packets derivate from the ER membrane 

system, provide the support for viral proteins, genome transport between ribosomes, 



   163 
 

replication vesicle and virus assembly sites. Conversely, by supplementing cells with 

either ethanolamine or choline we showed a modification of the PL cell profile and an 

activation of PC and PE biogenesis. We can then hypothesize that PL precursor 

supplementation modify the PL membrane content. By these modifications, we 

impacted negatively the step of DENV replication, but not the entry neither the 

translation step. Even if the steps of translation, replication and assembly are intimately 

associated with intracellular membrane [63], we established a distinct impact on viral 

replication, which persists with exogenous ethanolamine and impacts the production 

of viral particles. Otherwise, the replication of West Nile Virus, another member of 

flavivirus, was affected by the inhibition of LysoPL generation [297]. This inhibition was 

rescued by LysoPL exogenous addition. Moreover, LysoPL generation was linked to 

subcellular sites of viral replication. Our work extends the previous understanding of 

how flavivirus manipulate the PL balance to favor specifically the step of viral 

replication. 

 

2.2. Model of phospholipid needs in DENV life cycle 
 

In order to complete its infectious cycle, the virus must adjust the cell lipid homeostasis 

to provide the platform for its translation, replication and assembly steps. To do this, 

the virus uses several strategies. It regulates the expression of genes involved in 

phospholipid metabolism such as AGPAT1. It interacts directly with host factors, such 

as the interaction of NS3 with FAS, which contributes to fatty acid synthesis and 

provide substrate for efficient PL synthesis/remodeling. DENV induces enrollment of 

cellular proteins to maintain membrane structures (RTN3.1A and DNAJC14), and 

recruits lipid reserve structures such as lipid droplet by NS4-AUP1 and NS3-Rab18 for 

lipid bulk reserve. These virus-host associations are localized at the site of genome 
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replication. It results in inducing the biosynthesis and degradation of phospholipids, as 

well as their remodeling in order to reveal the optimal membrane composition that will 

lead to membrane rearrangement for the proper conduct of infectious cycle. Viral 

replication is particularly demanding on this redesigned lipidic environment to build the 

membrane structures necessary for the establishment of the replication complex, 

which ensures both the good performance of genome synthesis and protection against 

cellular factors. PC, PE and LysoPL balance induce the curvature and membrane 

permeability necessary to maintain this environment. 

 

3. Host lipid metabolism alteration confirms potential antiviral target 
strategy 
 

As showed in our work with ethanolamine, lipid-related metabolites may be candidates 

to disrupt DENV replication. We demonstrated relative alteration on DENV particle 

production on mosquito cells with exogenous ethanolamine. A phospholipid compound, 

belonging to the phosphatidylinositol (PI) family, showed anti-DENV activity [332]. The 

PI molecule did not impair DENV entry but blocked the viral replication. The PI 

suppressed cytokines induced during DENV infection, showing inflammatory 

responses alteration in DENV-infected cells. Interestingly, the PI did not bind directly 

to DENV particle which indicates an indirect effect of inhibition mechanism. It would be 

interesting to follow the impact of lipid-modified blood meal on DENV development in 

mosquito.  

Previous studies have reported other viral infection alteration by lipid molecules. 

Influenza virus infection is blocked by a lipid derived from the polyunsaturated fatty 

acid docosahexaenoic acid (DHA), by acting on viral transcript transport [333]. Other 

PL compound, such as phosphatidylglycerol (PG) and phosphatidylinositol (PI) can 
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suppress influenza A virus infection and syncytial virus infection [334–336]. The PG 

compound was also associated with inflammatory signaling. Targeting PL by antibody 

was applied to treat arenavirus and cytomegalovirus infection in animal models, 

against phosphatidylserine (PS) [337]. Neutralization of HIV-1 on peripheral blood 

mononuclear cells was established by anti-phospholipid monoclonal antibodies, which 

do not neutralize directly the virus but induce effective immune response [338]. 

Conversely, structural lipid can be important for flavivirus infection. Sphingolipid such 

as sphingomyelin and glycosphingolipid GM3 are essential in West Nile virus and 

DENV infection [339,340].  

Several studies showed chemical inhibition of host metabolic factors altering 

DENV infection. Fatty acid synthase inhibition by C75 chemical compound is able to 

impair DENV infection [260]. C75 inhibitor was able to reduce fatty acid incorporation 

into lipid [251]. Chemical inhibition of phospholipase A2, involved in PL deacylation, 

can also impair flaviviral infection [297]. Cholesterol, major component of cell 

membrane is also a target in antiviral strategy. U18666A drug is an intracellular 

cholesterol inhibitor which blocks DENV and HCV infection [341,342]. Furthermore, 

the direct involvement of NS protein in host metabolic factor modulation, such as NS3 

with FAS and AUP1, provides new insights for further drug conception as antiviral 

therapies against DENV infection. The need of antiviral therapy due to the absence of 

treatment and effective vaccines, and the major role of lipid metabolism in DENV 

infection on mosquito could enhance lipid-targeted strategy to block the transmission.  
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4. Exogenous factor linked to PL in vector transmission 
 

Human host blood taken during the female mosquito’s meal is a large source of 

lipid and its composition could contribute to the transmission from host to vector as 

seen with other blood amino acid metabolites enhancing arbovirus replication in 

mosquito [343]. Blood is composed of fluid plasma and floating cells. Plasma contains 

water, ions, metabolites such as glucose, amino acids, lipids, proteins (albumin, 

globulin, fibrinogen, immunoglobulin, heparin, lysozyme, properdin), excretory 

substances (ammonia, uric acid, creatine) and hormones. Blood cells composition 

contains erythrocytes carrying hemoglobin, leucocytes and thrombocytes. 

Blood contains a wide variety of lipid, with free fatty acids, TAG mainly carried 

in very low density lipoprotein particles (VDDL), PL in high density lipoprotein (HDL) 

and in blood cells, and lipoprotein-cholesterol [344]. The most abundant fatty acids in 

whole blood are C16:0, C18:1 and C18:2 [345,346]. In blood lipid fractions, PC and 

SM are the main PL classes in the plasma followed by a small concentration of 

phosphatidylethanolamine [344]. Erythrocytes and thrombocytes contained mainly PC, 

PE and SM and smaller abundance of PS and PI. For instance, the proportion of PC 

in blood lipid fractions, which is the main PL in human, is 70-72% in the plasma, 30-

36% in erythrocytes, 35-40% in thrombocytes. PC and PE are the main source of 

choline and ethanolamine to produce de novo and remodeled PL. However, several 

determinants can influence blood lipids composition, such as diet, age, gender, genetic 

background, smoking and exercise and therefore may induce variability in the 

mosquito blood meal associated with lipids depending on the host donor [344]. Blood 

cells are also a major source of PL, and their concentration, composition and viability 

are other factors that may influence lipids uptaken by the mosquito.  
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It would be interesting to assess the impact of different diets on populations with 

high lipid intake containing ethanolamine carried by PE on DENV transmission from 

humans to mosquitoes and its ability to transmit to an uninfected host. It could give 

insight to lipid and especially aminoPL as a factor for vector competence to transmit 

DENV. It should also be considered that infection in humans induces strong lipid 

remodeling with an increase in many species of fatty acids and phospholipids in the 

blood [255,287]. This change in the lipid content of the blood may also be a human 

factor influencing transmission. 

It should important to note that the mosquito's blood meal is usually carried out 

in several times due to interruption by the host[347]. These multiple blood intakes can 

therefore successively modify the host's metabolism through the nutrients and 

properties of the blood and through intrinsic stimulation of mosquito metabolic 

pathways. A study of the mosquito lipidome in its natural condition is likely to give 

significantly different information in terms of phospholipid reorganization kinetics. 

Mosquito microbiome is another external factor involved on the modulation of 

pathogen acquisition and transmission [348]. Midgut microbiota is known to enhance 

protection against pathogen and stimulate mosquito immune system [349,350], 

however mosquito bacteria were also linked to mosquito metabolism. In Ae. aegypti 

mosquito, midgut bacteria could play a role in the carbohydrates metabolism [351] and 

in the digestion process of the blood meal by the lysis of red blood cells and digestion 

of blood proteins [352]. Given that red blood cells and lipoprotein carrying lipid are a 

major source of PL, their digestion are highly important for the intake of lipid-derived 

species such as ethanolamine, choline et fatty acids. It would be interesting to 

determine this microbial activity upon DENV infection and the bacterial role in the 
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organization of the lipidome. Midgut bacterial communities was not identified as a 

factor which explains the susceptibility of the Ae. aegypti mosquito to DENV infection 

[353,354], however midgut bacteria composition could contributes in PL modulation 

during DENV infection. 

From a general viewpoint, the role of lipid metabolism and PL in mosquito 

infection and transmission of DENV must take into account the mosquito's bloodmeal 

behavior, the characteristics of the blood donor and the mosquito microbiota, which 

plays an essential role in the absorption of external lipid metabolites. 

 

5. A metabolomics approach to vector-pathogen interaction 
 

The work presented in this thesis has expanded the understanding of the lipid 

metabolism in mosquitoes. We have highlighted the presence of genes involved in 

phospholipid biosynthesis, which until now had not been studied in mosquitoes. In 

addition, we were able to describe the mosquito lipidome under different conditions, 

such as DENV infection and gene depletion of the phospholipid pathway. We 

confirmed with previous study, the implementation of the metabolomic approach to 

study a non-model organism without mosquito specific metabolites databases [200]. 

This method may be applicable to other entomology studies to further investigate the 

interaction of pathogens with their vectors, and to complement transcriptomic and 

proteomic studies. The metabolome study strategy was already deployed in Anopheles 

mosquito [355,356]. Targeted phospholipid approach appears as an interesting 

strategy to adjust the view on the mosquito metabolic alteration upon viral infection. 
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