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ABSTRACT

Contribution to graph-based manifold learning with application to
image categorization
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Graph-based Manifold Learning algorithms are regarded as a powerful technique for
feature extraction and dimensionality reduction in Pattern Recogniton, Computer Vision
and Machine Learning fields. These algorithms uzilize sample information contained in
the item-item similarity and weighted matrix to reveal the intrinstic geometric structure of
manifold. It exhibits the low dimensional structure in the high dimensional data. This moti-
vates me to develop Graph-based Manifold Learning techniques on Pattern Recognition,
specially, application to image categorization. The experimental datasets of thesis corre-
spond to several categories of public image datasets such as face datasets, indoor and
outdoor scene datasets, objects datasets and so on. Several approaches are proposed
in this thesis: 1) A novel nonlinear method called Flexible Discriminant graph-based Em-
bedding with feature selection (FDEFS) is proposed. We seek a non-linear and a linear
representation of the data that can be suitable for generic learning tasks such as classifi-
cation and clustering. Besides, a byproduct of the proposed embedding framework is the
feature selection of the original features, where the estimated linear transformation matrix
can be used for feature ranking and selection. 2) We investigate strategies and related
algorithms to develop a joint graph-based embedding and an explicit feature weighting for
getting a flexible and inductive nonlinear data representation on manifolds. The proposed
criterion explicitly estimates the feature weights together with the projected data and the
linear transformation such that data smoothness and large margins are achieved in the
projection space. Moreover, this chapter introduces a kernel variant of the model in order
to get an inductive nonlinear embedding that is close to a real nonlinear subspace for a
good approximation of the embedded data. 3) We propose the graph convolution based
semi-supervised Embedding (GCSE). It provides a new perspective to non-linear data



6 Abstract

embedding research, and makes a link to signal processing on graph methods. The pro-
posed method utilizes and exploits graphs in two ways. First, it deploys data smoothness
over graphs. Second, its regression model is built on the joint use of the data and their
graph in the sense that the regression model works with convolved data. The convolved
data are obtained by feature propagation. 4) A flexible deep learning that can overcome
the limitations and weaknesses of single-layer learning models is introduced. We call
this strategy an Elastic graph-based embedding with deep architecture which deeply ex-
plores the structural information of the data. The resulting framework can be used for
semi-supervised and supervised settings. Besides, the resulting optimization problems
can be solved efficiently.

KEY WORDS: Machine Learning, Manifold Learning, Graph-based Embedding, Semi-
supervised Learning, Feature Selection, Image Categorization, Pattern Recognition,
Computer Vision
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ScIENTIFIC BACKGROUND






INTRODUCTION

1.1/ BACKGROUND

Feature extraction from high-dimensional data is a difficult problem in several fields such
as pattern recognition, machine learning, and computer vision. In order to tackle these
difficulties, Graph-based Manifold Learning techniques [104] [92] [2] are developed to
extract relevant features from the raw ones.

Two of the most popular feature extraction algorithms for dimensionality reduction ap-
plications might be Principal Component Analysis (PCA) [105] and Linear Discriminant
Analysis (LDA) [1] before Graph-based Manifold Learning methods came out. Principal
Component Analysis uzilizes eigenvectors of sample data’s covariance to perform di-
mensionality reducing. It projects the original d-dimensional data onto the m-dimensional
(m < d) subspace. PCA focuses on finding mutually orthogonal basis functions for obtain-
ing the maximum variance’s directions in sample data. It will preserve pairwise Euclidean
distances. LDA is based on Fisher Score [26] and generates separated categories in
low-dimensional subspace when sample data are linearly separable. But in real-world,
datasets may contain nonlinear structures. They are invisible to such as PCA and LDA
classical dimensionality reduction methods.

This motivates us to consider graph-based manifold learning techniques for feature
extraction. Various of Graph-based Manifold Learning techniques, such as the most clas-
sical methods that ISOMAP [104], Locally Linear Embedding (LLE) [92] and Laplacian
Eigenmap (LE) [2] have been proposed.

All of these algorithms metioned above are based on manifold space and graph the-
ory. The manifold is a locally Euclidean topological space, i.e., each point of a manifold
has a neighborhood that can be continuously mapped to the Euclidean space of the
same dimensions and vice-versa. In this sense, manifold learning refers to a class of
techniques that learn a low-dimensional embedding of the data points lying in a high di-
mensional space, while preserving original characteristics of the data. These techniques
are motivated by suggestions that any interesting high-dimensional sample data could be
regarded as genmetrically set. The points of set are near to surface of low-dimensional
manifold structure. Manifold learning techniques have been primarily used for unsuper-
vised dimensionality reduction transformations at beginning, where the local relationships
between the data points in the original space are preserved during the transformation.
Fig. 1.1 illustrates the concept of manifold smoothness. This figure shows the classical
"Swiss Roll” experiment introduced by Locally Linear Embedding firstly [92]. The left part

11



12 CHAPTER 1. INTRODUCTION

of this figure depicts the data that live in a 3D space. The right part depicts a non-linear
embedding of the data in a low dimensional space (a 2D space). The manifold smooth-
ness concept stipulates that any pair of data samples that are close in the original space
they should be also close in the low-dimensional space. The graph-based for feature
extraction methods could be explained as follows.

The other basic is graph theory. We regard G(V,E) as Graph, where V (V =
{vy,vo,---,vn}) denotes the set of vertices or nodes and E is the set of edges. If each
node v; has the relationship with the other node v;, which also means that their edge
weight S;; > 0. On the contrary, if v; and v; are non-connected then S;; = 0. When
the graph is undirected, S;; = S;;. In general, S;; is regarded as a measure of similar-
ity between the vertices v; and v;. Besides, more similar two vertices v; and v;, usu-
ally, the higher weigh value of S;;. The Graph Embedding is treated as a mapping of f:
v; e R* - z; ¢ R", where i € (1,2,---,N) and d > m. For the data depicted in Fig.
1.1, an embedding can map each node to a low-dimensional feature vector and tries to
preserve the connection strengths between vertices. The mapping function f reserves
proximity measure defined on Graph G(V, E).

-
B eids
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Figure 1.1: The classical Synthetic "Swiss Roll” example. The left part of this figure
depicts the data that live in a 3D space. The right part depicts a non-linear embedding of
the data in a low dimensional space (a 2D space). The manifold concept stipulates that
any pair of data samples that are close in the original space they should be also close in
the low-dimensional space.

We utilize the manifold theory and graph-based learning theory to develop our re-
search. This thesis focuses on graph-based manifold learning with application to image
categorization. According to the availability of label information, Learning-based Pattern
Recognition algorithms usually could be classified into Unsupervised Learning, Super-
vised Learning and Semi-supervised Learning algorithms. The standard concept of Su-
pervised Learning, Unsupervised Learning and Semi-supervised Learning are as follows.

Supervised Learning. The learning system observes a labeled training set consisting
of features and labels, denoted by X = [x,---,xy] € RN and yi €{1,2,.,C}, i =
1,2,..N, respectively. Where y; is the label of x;, d is that dimensionality of original data,
N is the number of data samples and C is the number of classes. The goal is to predict
the label y; for any new input with feature x;.

Unsupervised Learning. The learning system observes an unlabeled set of items,
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represented by their features X = [x;,---,xy] € R™N. We do not know the labels
yi € {1,2,..,C} of the features in advance. The goal is to organize the items. Typical
unsupervised learning tasks include clustering, dimensionality reduction and so on.

Semi-supervised Learning. The training data consists of both I labeled samples and
u unlabeled samples, denoted by X; = [x;,---,x] € R™ and X, = [Xj41, - , Xiu] € R,
respectively. The whole dataset could be regarded as X = [X;, X,] € R™H4 where
N = I+u. Usually, we regard that the ublabeled sample data are much more than labeled
sample data, namely, u > [ or u > [. Semi-supervised classification learning aims at
training a classifier from unlabeded sample data and labeled sample data together. It
avoids expensive human labour for labelling data. So semi-supervised learning is more
suitable for applications in real-world than supervised learning.

The Graph-based Manifold Learning techniques on Pattern Recognition, specially,
application to image categorization are the fields that we focus on in the thesis. The
related topics are Graph Construction and Large-Scale Graphs, Unsupervised Graph-
Based Manifold Learning methods, Semi-supervised/Supervised Graph-Based Manifold
Learning methods, Label Propagation methods, Dimensionality Reduction methods, Fea-
ture Selection methods. We also introduce several of state-of-the-art topics on Graphs,
such as Deep Learning on Graphs and Manifolds, Graph-based application on Learning
to Hash.

As described above, Graph Construction is a crucial step in graph-based manifold
learning which is the conversion of data into a weighted graph. Supervised, Semi-
supervised and Unsupervised Learning tasks can uzilize graphs in order to estimate
their models. Graph-based Label Propagation algorithms rely on generating the graph
where the labeled and unlabeled data points from the nodes V of Graph G(V, E) and
similarities between points are edges E of Graph. We uzilize labeled sample data for
propagating information to unlabel sample data though the Graph. Dimensionality reduc-
tion learns to project high-dimensional sample data onto low-dimensional subspace and
avoiding losing discriminant information as much as possible. Feature Selection focuses
on selecting a subset of features. Specially, Feature Selection minimizes redundancy
and maximizes relevance to the target. Deep Learning on Graphs and Manifolds aims
at generalizing deep learning apporachs to non-Euclidean domains ( e.g. graph the-
ory and manifold learning). Learning to Hash are motivated by Graph-based Manifold
Learning algorithm (Laplacian Eigenmaps algorithm [2]) and Semantic Hashing [93] for
efficient nearest neighbor search in massive databases [116]. We will introduce all of
these Graph-based Manifold Learning techniques in Chapter 2 for details.

The experimental datasets of the thesis correspond to several categories of applica-
tions. The thesis findings deployed diverse public image datasets such as Face Datasets,
Indoor and Outdoor Scene datasets, Objects datasets, etc. Figs. 1.2, 1.3, 1.4 show some
samples in three different datasets. The supervised learning handwritten digits recogni-
tion will be used as an illustrative example of problem statement that is adopted in image
categorization. Consider handwritten digits recognition, image samples are shown in in
Fig. 1.5. We assume that the size of handwritten digits images is 28 x 28. If it is rep-
resented by a vector x; € R™N, where d = 28 x 28 and i = 1,2,--- ,N. There are N
images in the whole dataset (X = [x1,---,xx]). We aim at generating a classifier that
uzilizes the input sample x; to produce the sample label (0,1,2,3,4,5,6,7,8,9). How to
obtain a better recognition result? We uzilize machine learning techniques that dataset
X = [x1,---,xn] is regarded as training set, and it is used for estimating the parameters
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of suitable model. The labels of digits in training set are known. The target label y; is
regarded as the category of digit.

Figure 1.2: Several images from the 8 Sports Event Categories Dataset. The images in
the first row are from Bocce Sport category and the ones in the second row are from the
Rock Climbing category.

Figure 1.3: Several examples from the ORL Face Dataset. The images contain frontal
images under differentfacial expression and pose per individual.
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Figure 1.4: Several examples from the COIL-20 Object Dataset.
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Figure 1.5: Several examples from the MNIST handwritten digits Dataset.

1.2/ CoNTRIBUTIONS AND OUTLINE

In this thesis, we focus on the study of the Graph-based Manifold Learning and its Applica-
tions to image categorization. More precisely, we target the graph-based semi-supervised
learning for categorizing images. The thesis introduces several flexible schemes that can
provide data representations using both linear and nonlinear projections. Several of our
proposed methods also integrate the concept of original feature ranking in order to make
a better use of the data. The main contributions are summarized as follows:

e A novel nonlinear method called Flexible Discriminant graph-based Embedding with
feature selection (FDEFS). We seek a non-linear representation of the data that can
be suitable for generic learning tasks such as classification and clustering. Besides,
a byproduct of the proposed embedding framework is the feature selection of the
original features, where the estimated linear transformation matrix W can be used
for feature ranking and selection.

e We investigate strategies and related algorithms to develop a joint graph-based
embedding and feature weighting for getting a flexible and inductive nonlinear data
representation on manifolds. The proposed criterion explicitly estimates the feature
weights together with the projected data and the linear transformation such that data
smoothness and large margins are achieved in the projection space. Moreover, the
chapter introduces a kernel variant of the model in order to get an inductive nonlin-
ear embedding that is close to a real nonlinear subspace for a good approximation
of the embedded data.

e We propose the graph convolution based semi-supervised Embedding (GCSE). It
provides a new perspective to non-linear data embedding research, and makes
a link to signal processing on graph methods. The proposed method utilizes and
exploits graphs in two ways. First, it deploys data smoothness over graphs. Second,
its regression model is built on the joint use of the data and their graph in the sense
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that the regression model works with convolved data. The resulting scheme can
solve and address the problem of over-fitting on local neighborhoods for image data
of various types like faces, outdoor scenes, and man-made objects.

e The flexible deep learning that can overcome the limitations and weaknesses of
single-layer learning models is introduced, that we call this strategy an Elastic
graph-based embedding with deep architecture which deeply explores the structural
information of the data. The resulting framework can be used for semi-supervised
and supervised settings. Besides, the resulting optimization problems can be solved
efficiently.

The thesis is organized as follows: Graph-based Manifold Learning techniques are in-
troduced in the Chapter 2. Chapter 3 discusses a novel nonlinear method called Flexible
Discriminant graph-based Embedding with feature selection (FDEFS). Chapter 4 intro-
duces a joint graph-based embedding and explicit feature weighting for getting a flexible
and inductive nonlinear data representation on manifolds. Chapter 5 proposes an algo-
rithm of graph convolution based semi-supervised Embedding (GCSE). Chapter 6 de-
scribes an Elastic graph-based embedding with deep architecture which deeply explores
the structural information of the data. Finally, the conclusions of the work and some
perspectives are given in the Chapter 7.
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REeLAaTED WORK

In this chapter, we introduce some backgrounds on Graph-based Manifold Learning for
Pattern Recognition applications, including Graph Construction and Large-Scale Graphs,
Unsupervised Methods, Graph-based Manifold Learning on Semi-supervised Methods,
Label Propagation Methods, Dimensionality Reduction Methods, Feature Selection Meth-
ods and the other state-of-the-art topics on Graphs in recent years (e.g., Deep Learning
on Graphs and Manifolds, Graph-based application on Learning to Hash).

First of all, we introduce the notations adopted in this chapter and the whole thesis. We
define the graph G(V, E) with vertices (or nodes) V and edges E. Let sample data matrix
as X = [X1, X0, ..., X, Xja1y - -+, X4yl € R where x; |§:1 and x; g:;‘ﬂ are the labeled
training samples and unlabeled test samples, respectively, I and u are the numbers of
labeled train samples and unlabeled test samples data, respectively, and d is the sample
dimension. Let N = [+ u be the total number of samples data and . is the total number of
labeled samples in the cth class. We represent the labeled training samples by the matrix
X; = [x1,%2,...,x] € R, The label of each sample x; is denoted by yi€f{1,2,..,Ci=
1,2,---,1, where C is the total number of classes. Xy, = [X141, Xj42, - - - , X1+4] € R®* denotes
the unlabeled test data matrix.

Define similarity matrix S, a Laplacian matrix L can be computed. If we assume that
the similarity matrix S is symmetric, then the classic Laplacian matrix is givenby L = D-S
where D is a diagonal matrix whose elements are the row or column (since the matrix is
symmetric) sums of S matrix, namely D = diag(S - 1). 1 or 0 mean that the vector with all
ones or zeros. The normalized Laplacian matrix L is defined by L = I-D~1/2SD1/2 where
I denotes the identity matrix. Tab. 2.1 summarizes the main notations. For the other
notations used in the thesis, we usually emphasize their meanings near by the equations
or at the beginning of Subsection, and keep their meanings consistently in the whole
thesis as possible.

17
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Table 2.1: Main notations used in the thesis.

Notation Description

d Dimensionality of original data

N Number of data samples

[ Number of labeled samples

u Number of unlabeled samples

C Number of classes

e Number of labeled samples in the c-th class
x; € RY The i-th original data sample
yi€i{1,2,..,C The label of x;

X; = [x1,--,x] € R¥ Labeled training samples matrix

X, = [X141, -, X4u] € R?# | Unlabeled test samples matrix

X = [X;, X, ] € R&(+w) Original data matrix

D Diagonal matrix

I Identity matrix

L Laplacian matrix

1or0 Vector with all ones or zeros entries

2.1/ GRAPH CONSTRUCTION AND LARGE-ScALE GRAPHS

For researchers in graph theory field, they mainly focus on analyzing and mining infor-
mation patterns from graph. Graph construction will be defined or provided at first. If we
uzilize graph in real world scenarios, it becomes not certain, especially, the sample data
in real world scenarios are noise, multi-distribution, high-dimensionality and uncertain
definition. So the graph construction becomes an important research in manifold learning
field. In this Section, we focus on three aspects to introduce Graph Construction meth-
ods which are classical Graph Construction algorithms, data self representation Graph
Construction and Large-Scale Graphs.

Classical Graph Construction algorithms were introduced by Tenenbaum, J. B., De
Silva, V., and Langford, J. C. in [104]. k-nearest neighbors graph (kNN) and e-
neighborhoods graph are two of the most typical methods for Graph Construction. We
focus on any two points to compute their distance (d(x;, x;)) or simlarity (sim(x;, x;)), which
could be given by:

2.1
0 otherwise. (2.1)

Wi = {Sim (xi, x]-) if x; is the nearest neighbor of x; or vice versa,

According to Eq. 2.1, W is a symmetric matrix since x; is the nearest neighbor of x; or

x; is the nearest neighbor of x;. We have to say, kNN graph needs a large of computing

ability and resource when dataset is huge and k is a big number. So we need the more

novel and advantage algorithms to compute the large-scale graph that will be discussed
in the end of this section (such as Anchor Graph [68]).

In k-nearest neighbors graph, we regard that x; and x; are connected, while x; is among
k nearest neighbors of x; or x; is among k nearest neighbors of x;. In e-neighborhoods

graph, we regard that x; and x; are connected, while [x; - xj||2 < € where |||| is the Eu-
clidean norm in R. An example of k-nearest neighbors graph is shown in Figure 2.1(a)
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for k = 2. Another example of e-neighborhoods graph is shown in Figure 2.1(b). After
obtaining adjacency graph, heat kernel usually is chosen to be the function of weights as
following:

lsill® , ,
j=Je T i f nodes i and j are connected (2.2)
0 otherwise
where t € R.
O.. Q o

")
o’
(a) (b)

Figure 2.1: lllustrations of k-nearest neighbors graph and e-neighborhoods graph. (a)
k-nearest neighbors graph with k = 2. (b) e-neighborhoods graph.

The other typical classical method is Simple-minded. There is no parameter in this
algorithm. Define Wy = 1 if and only if vertices x; and x; are connected by an edge.
Otherwise, W;; = 0. As the following shown,

Wi = {1 if nodes x; and x; are connected (2.3)

0 otherwise

In Graph Construction field, most of algorithms are based on data self representation
methods, including with the k-nearest neighbors graph and e-neighborhoods graph. As
the mathmatics model of graph is descripted in the previous section, to define the graph
G(V,E) with vertices (or nodes) V and edges. E. A weight W;; is assigned to each edge
for measuring the link strength, which is usually a necessary step for graph learning.
Therefore, it also describes a graph by a three-tuple G(V,E, W). In the graph, data is
associated with the vertices. So two main steps are generally conducted to construct
a graph which to effect the data self representation Graph Construction. The first is to
Determine the topological structure of the graph, especially for the edge set E. Then,
Based on the current edge set, determine the weight matrix W [87].

Different from e-neighborhoods graph and k nearest neighbors graph (kNN), {1-Graph
[4] aims at automatic sparsity, better robustness for the noise and adaptive neighbor-
hood. ¢;-norm optimization problem is used for robust sparse coding. Define sample
set X = [x,x2,---,xy] and x; € R%. In Robust Sparse Representation [117], suppose
x; = Ya, where x; € R? is needed to be approximate, & € R is unknown reconstruction
coefficients, Y € R™" is the overcomplete dictionary (d < m). So ¢;-Graph construction
is descripted as following:

min||ai|1, st. x;=Bal (2.4)
e



20 CHAPTER 2. RELATED WORK

where of € R™*N-1 and B =[x, Xy, -+, Xi—1, Xiz1, - , XN, I] € R&X@+N-1),

The graph weight setting is to define G = {X, W} as the ¢;-based graph. W is graph
weight matrix and sample data X is graph nodes. We regard that W; ; = a; if i > jand

Wij= 0‘;—1 if i < j. After obtaining W, it could be used for £;-Graph weight.

Motivated by £;-based graph, a £,-based graph construction [84] via a sparse similarity
graph method is proposed. It is used for robust subspace learning and subspace cluster-
ing. This method measures the similarity among data points through the reconstruction
coefficients with £,-norm. To further capture the global data structure, Liu et al. [66] pro-
pose the LRR-graph, which seeks a Low-Rank Representation(LRR) of the data. By
jointly obtaining the representation of all the data under the low-rankness assumption,
LRR-graph effectively impose global constraints on the data structure (e.g., multiple sub-
spaces). Moreover, since each sample can be used to represent itself, there always exist
a feasible solution for LRR-graph even if the data sampling is insufficient. These prop-
erties make LRR-graph become a good candidate for various learning tasks including
Semi-Supervised Learning. Non-Negative Low-Rank and Sparse (NNLRS) Graph is an-
other optional data self representation graph construction for semi-supervsied learning
method [135]. In NNLRS-graph, the weights in graph are generating via finding a non-
negative low-rank and sparse matrix. The NNLRS-graph could obtain joint global mixture
of subspace structure and locally linear structure of sample set. So its advantages in-
clude generative and discriminative. In [136], it explicitly incorporates the label informa-
tion into ¢1-graph, LRR-graph and NNLRS-graph to extend graph construction methods
for Semi-Supervised(SS) learning, these algorithms are SS ¢;-graph, SSLRR-graph and
SSNNLRS-graph.

The Graph Construction decides neighborhood structure and strength of association
between the nodes in the whole graph G(V,E). The typical Graph Construction algo-
rithms mentioned above usually can not be used for Large Scale Graph Construction of
large dataset. A series of algorithms proposed to solve Large Scale Graph Construction
problems.

Among all of these methods, Anchor Graph is one of the typical representative as large
graph construction algorithm proposed by W. LIU et al. in 2010 [68]. In Anchor Graph,
it defines a small categories of anchor points that could cover the whole point nodes.
The anchor points are able to nonparametric regression. As locally weighted average of
labels, the processing on anchor points could predict the label for each data point.

The anchor graph tries to use smaller set of k points, which are called by anchors. They
are defined by U = {u1,us, - - - ui) € R for approximating the structure of neighborhood
underlying sample data X= {x1,x2, - - X, X141, - - Xizu) = (X1, Xu) € RN where k < N.. Af-
ter computing theh similarities of the whole sample points with respect to k anchors by
linear time O(d - k - N). We approximate the true affinity matrix S;,. € RNV via uziliz-
ing these affinities. Detailedly, the anchor graph exploits the nonlinear data-to-anchor
projection, namely, R? — RF as follow:

[61 exp (_w), cee 6k eXp (_ diSt2EX'uk) )]T

F

where t means band width (¢t > 0), 6; € (1,0) and 6; = 1 if and only if the anchor u; is
one of s « k closest anchors of x in U according to distance function dist(-)(such as ¢,

z(x) = (2.5)
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k .
distance). F = Y ; exp(—w) leads to [lz(x)ll, = 1.
j=1

The anchor graph generates data-to-anchor affinity matrix Z = [z (x1), -,z (x,)]' €
RN*k which defines highly sparse. In the end, anchor graph obtains the data-to-data
affinity matrix S = ZA7'1ZT € RMN that A = diag(ZT1) € R™¥. It could be used for
approximating true affinity matrix S.,,.

Large scale graph construction also could be used for efficient nearest neighbor search
in massive databases, which is also used in Learning to Hashing [114]. In [69], a graph-
based hashing method which automatically discovers the neighborhood structure inher-
ent in the data to learn appropriate compact codes and uzilize Anchor Graphs to obtain
tractable low-rank adjacency matrices. Furthermore, a series of methods also utilized
large scale graph construction on Graph-based Learning to Hashing algorithms [63] [50].
This will be discussed in Subsection 2.7.2.

2.2/ UNsupPeRviISED GRAPH-BASED MANIFOLD LEARNING

In this Section, we aim at two aspects to introduce Unsupervised Graph-Based Manifold
Learning methods which are classical Unsupervised Graph-based Manifold Learning and
the development of Unsupervised Manifold Learning algorithms.

2.2.1/ CurassicaL UNsuPERVISED GRAPH-BASED MANIFOLD LEARNING ALGORITHMS

We begin with a brief review of Locally Linear Embedding (LLE) [92], Laplacian Eigen-
maps (LE) [2] and ISOMAP [104] that the most classical manifold learning techniques.
They began a new era of Graph-based Manifold Learning domain for Pattern Recogni-
tion.

2.2.1.1/ LocaALLy LINEAR EMBEDDING

Locally Linear Embedding (LLE) [92] is the representative method of manifold learning on
unsupervised learning. It aims on exploiting the local symmetries of linear reconstructions
for learning the global structure of nonlinear manifolds. LLE computes neighborhood-
preserving and low-dimensional embeddings of high-dimensional inputs.

Define neighbors to sample data x; using the e-neighborhoods or k nearest neighbors.
We have already introduced the details about how to obtain a graph in Section 2.1. We
define

2

N N
P(W) = Z Xi — Z Wijx;
i=1 p=

where W;; is weighted matrix of G(V, E). Hence, we can obtain the embedding matrix
Z = (z1,22, - ,zn) € R™N by minimizing

N
s.t. Z Wi =1 (2.6)
j=1
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N
Z ijZj

j=1

00-1

i=1

s.t. —ZTZ—I Y zi=0 (2.7)

i

The optimization problem of Eq. 2.7 could be solved by eigen decomposition.

2.2.1.2/ LapLAcIAN EIGENMAP

Laplacian Eigenmaps (LE) [2] method is joint graph laplacian, laplace beltrami operator
on manifold and relations to heat equation. LE is a geometric method for tracing high-
dimensional sample data, which focuses on maintaining the mapping of nodes as close
as together when weighted matrix W;; is high. Here W could be obtained by two steps that
(i) Setting the edges, and (ii) Estimating the weights of those edges. The first step utilize k
nearest neighbors method and e-neighborhoods method. The second step that choosing
the weighs could to utilize Heat Kernel method (only parameter ¢ € IR) and Simple-minded
method (No parameter). Specifically, Laplacian Eigenmaps algorithm mainly minimize the
following objective function:

1w 2
0@ =5 ) llei—zi[ W

i,j=1
=tr(z'Lz) st.2'DZ=1 (2.8)

where L is the Laplacian matrix. The optimization problem of Eqg. 2.8 could be solved
by eigen decomposition.

2.2.1.3/ A GroeaL GeoMeTRIC FRAMEWORK FOR NONLINEAR DIMENSIONALITY RepucTion (ISOMAP)

A global geometric framework for nonlinear dimensionality reduction (ISOMAP) is a repre-
sentive nonlinear manifold learning method. It focuses on finding optimal subspace which
preserves geometric distance among sample data. ISOMAP obtains a globally optimal
solution and is guaranteed to coverge asymptotically to real structure. ISOMAP aims
on discovering the nonlinear degrees of freedom, which underlies in real-world scenar-
ios. Let X = (x1,x2,---,xn) € R™N denote a set of N points in the original d-dimensional
space, and Z = (z1,z,--- ,zn) € R™N be a set of the reduced representations in the m-
dimensional space (m <« d). Then, ISOMAP can perform manifold feature learning using
the following.

To determine the nearest neighbors of each sample by using k-nearest neighbors
graph and e-neighborhoods, and set edge lengths equal to d(x;, x;); Furthermore, to con-
struct undirected graph G(V, E), where each node v; € V corresponds to a point x;. Define
dc(x;, x;) as the shortest path distance between x; and x; over G. The classical Dijkstra’s
algorithm and Floyd’s algorithm can be applied to find the shortest paths. Finally, to obtain
the low-dimensional embedding Z by solving the following problem minimizing:
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(i)(Z): Z (d (Zl’, Z]') - dG (X,‘, Xj))z (2.9)

i,j

which can be similarly solved as the classical multidimensional scaling (MDS) algorithm
in [104] for details.

2.2.2/ THE pDEVELOPMENT OF UNSUPERVISED MANIFOLD LEARNING

The research of Unsupervised Learning or Clustering methods always accompany
Graph-based representations of the relationships among data points. The typical algo-
rithms include Spectral Clustering [73] and Normalized Cut [100].

Since Laplacian Eigenmap (LE) [2], ISOMAP [104] and Locally Linear Embedding
(LLE) [92] came out, a series of Unsupervised Graph-Based Manifold Learning methods
as follows. Locality Preserving Projection (LPP) [41] is a classical linear version of LE,
where a linear transformation is recommended between the original data and their pro-
jections. On one hand, the problem of out-of-sample is naturally avoided. On the other
hand, the efficiency using LPP for data classification is also improved. Unfortunately, due
to introducing the linearity compulsively, the global nonlinear geometry in data may be
destroyed, which makes failure to detect the nonlinear geometry structure and cannot
well carry out geometry-aware learning. He et al. proposed a novel subspace learning
algorithm that is Neighborhood Preserving Embedding (NPE) [39]. It focuses on preserv-
ing the structure of local neighborhood on the sample data manifold. NPE is not only
defined on the train sample data, but also in the reproducing kernel Hilbert space into
which data points are projected. Isometric Projection [8] is also a novel linear dimen-
sionality reduction algorithm. It constructs a weighted data graph, and the weighs are
discrete approximations of the geodesic distances on the data manifold. Int the end, a
linear subspace is obtained via preserving the pairwise distance.

The follows two Unsupervised Graph-Based Manifold Learning Methods will be in-
troduced details and some of these methods and formulas are also used for the other
chapters.

The work described in [46] proposed a graph-based non-linear embedding framework
for unsupervised feature selection, termed Joint Embedding Learning and Sparse Re-
gression (JELSR). With this method, the embedding and sparse regression are jointly
estimated. JELSR is an unsupervised method that aims to rank the original features
via a simultaneous non-linear embedding and sparse regression estimation. Aiming at
a graph-based embedding and sparse regression for feature ranking, JELSR solves the
following optimization problem:

argmin tr(Z"LZ) + B (|[X"W - z||§ +a|Wllp1) (2.10)
W,Z s.t.ZTZ=1

where a and 8 are two regularization parameters. W = [wq, wWa,..., Wy] € R is the
linear transform matrix, m is the dimensionality of the embedding, and Z = [z;;2z5; .. .;

zy] € RNX" denotes the data matrix of embedding (i.e., the non-linear projection of X).
The ;1 norm of W is given by [[W|,; = Zf’zl |[W;ll, where w; denotes the ith row of W.
This norm promotes row sparsity of the linear transform W. According to [46], the JELSR
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algorithm could be used for unsupervised feature selection by computing the scores for
all features of data, where each score is given by the £, norm of the corresponding row in
the matrix W. It also can be used for graph-based data embedding using the estimated
Z matrix.

The Manifold Regularized Deep Learning Algorithm (MRDL) in [127] estimates a Non-
linear Sparsity Preserving Projections [53]. It can be considered as an improved variant
of the unsupervised Local Linear Embedding (LLE) method. The main differences are
as follows. First, it is based on a kernel sparse graph. Second, it adopts a cascade of
layers. In each layer, a sparse graph is computed and then the non-linear projections are
estimated using sparsity preserving property.

The objective function allows the estimation of the similarity matrix S (the graph matrix)
is given by:

. 1
min||X - XS|f; +a[IS|I* + 8ISl (2.11)

where a and 8 are two positive regularization parameters. Details on how to solve the
above optimization can be found in [127].

Once the graph matrix S is computed, the non-linear projections Z= (z,,z,, ... zy) are
estimated by solving the following optimization problem:

2
. 1 _
mzmz 7~ > Z (D7Y(ST +8),2))
i j 2
= min (2 D2(I-§)*D2Z7) (2.12)

where tr(.) denotes the trace of a matrix.

The optimal solution is given by Z* = GTDz where § = %(ST +S)D~!, and G is given
by the eigenvectors of (I — S) associated with its smallest eignevalues.

2.3/ SEMI-SUPERVISED GRAPH-BASED MANIFOLD LEARNING

Supervised Learning and Unsupervised Learning are two traditional techniques in ma-
chine learning domain. When we talk about Supervised Learning, it means that each of
data sample consists of some input data and a corresponding output value or label. It fo-
cuses on constructing a regressor or classifier which estimate the output values or labels
for unseen inputs as truely as possible. In Unsupervised Learning domain, we should try
to deduce a few of underlying structures from the inputs instead of specific output value
provided. One of examples in Unsupervised Learning domain is clustering, it focuses on
deducing a mapping from given inputs to group into the same cluster. Semi-supervised
Learning is to combine supervised and unsupervised learning in machine learning field.
Semi-supervised classification learning aims on training classifier via unlabeled and la-
beled data. It avoids to lots of experienced human annotators working ahead of schedule.

Semi-supervised Graph-Based Manifold Learning is one of the most important
branches in Semi-supervised Learning domain. We thought that the sample data is em-
bedded within a low dimensional manifold as a graph structure. Furthermore, every sam-
ple data is regarded as a vertex in weighted graph. It includes a measure of similarity
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among different vertices. In general, how to solve Semi-supervised Learning problem
via Graph-based Manifold Learning approaches need to complete a series of steps in
the next: First and foremost, graph construction, such as k Nearest Neighbors Graph or
e-neighborhoods Graph. Moreover, give several of labels in a set of nodes. The last,
to classify labels on the unlabeled nodes in the whole graph. Most of Semi-supervised
Graph-Based Manifold Learning algorithms happen in the first and third step above, which
are Graph Structure and extracting feature from labeled to classify unlabeled samples.

We also realize that why Semi-supervised Graph-Based Manifold Learning methods
are attractive the researchers to develop related fields as following. First of all, BEING
GENERIC. Categories of data naturally constructed by graphs, e.g. Internet Web, Social
Media, Protein Structure and Communication Networks. Moreover, EFFECTIVE. Several
of application backgrounds have already demonstrated the effective of graph-based man-
ifold learning methods outperform semi-supervised and supervised learning techniques
fields, such as face recognition, object recognition, text classification and so on. The third,
SCALABILITY. Many application domains need to handle large scale dataset, especially
for the computing ability is tremendously increasing since GPU-based deep learning tech-
nique developing. Fortunately, Graph-based techniques can be easily parallelized pro-
cessing and to generate large scale graphs. Finally, CONVEXITY. Graph-based Manifold
Learning on Semi-supervised machine learning methods usually need to consider that
optimizing convex objective after obtaining objective function, and Graph-based Manifold
Learning algorithms usually could be ideal optimization result.

Categories of selected topics in Semi-supervised Graph-Based Manifold Learning will
be introduced as following.

We will introduce some graph-based semi-supervised inference that can be transduc-
tive methods or inductive methods. The goal of a transductive algorithm is to learn a
function that is able to predict the labels for only the unlabeled data. The inductive meth-
ods use the graph structure to estimate a function which can then be applied to new data
instances.

Semi-Supervised Learning Using Gaussian Fields and Harmonic Functions(GFHF)
[134] is one of the typical algorithms in transductive semi-supervised methods that based
on a Gaussian random field model. GFHF uzilizes Gaussian fields on the continuous state
space, instead of random fields on a discrete label set. The result classification methods
for Gaussian fields could be regarded as a form of k Nearest Neighbor (KNN) method,
it means that the nearest labeled samples are obtained in terms of random walk over
graph. The algorithms introduced here have relation with spectral graph, random walks,
heat kernels, electric networks and normalized cuts. The GFHF minimize the objective
function as following:

N 1
minz Y JF: ~ B[Sy + A Y IE: - Yol (2.13)
=1 i=1

where Y = (Y, Y,)T € *WxC is a binary label matrix associated with the samples with
Y(i, j) = 1 if x; has label y; = j; Y(i, j) = 0, otherwise. We also define an unknown label
matrix denoted by F = (F, F,)T € (+XC_|n a semi-supervised setting, F; = Y; and F, is
unknown labels matrix. We denote F; and Y; as the ith row ofF; and Y;, respectively.
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I
Since A is a large number such that Y ||F; — Y;|? = 0, or F;=Y;, Eqg. 2.13 could be
i=1
transformed into:

min trace (F'LF) s.t.F =Y, (2.14)

The goal is to derive the labels of unlabeled samples F,. It can be shown that the
matrix of unknown labels are given by:

F, = -L L, Y; € R (2.15)

L; Ly

where L,,, and L,; come from Laplacian matrix L =
Lul Luu

L, € R¥¥,

) € RV*N that L; € R and

Local and Global Consistency (LGC) [132] is an optimal method for semi-supervised
transductive learning. LGC aims on obtaining a classifying function, that is sufficiently
smooth with respect to the intrinsic structure collectively revealed by known labeled and
unlabeled points. LGC minimizes the objective function as following:

SZ]+AZ||F —Y; | (2.16)

1N
vit

where D is a diagonal matrix that D = diag(S - 1). 1 means the vector with all 1 entries.
A > 0 is the regularization parameter.

]

Eqg. 2.16 could be transformed into:

min |trace (FTLF) + utrace ((F - V)" (F - Y))] (2.17)

where the normalized Laplacian L is defined by L=1-D2SD:. Eqg. 2.17 could be
solved by closed-form solution as follow:

A

F=(1I+ %)—W (2.18)

Recently, the Graph-based transductive semi-supervised methods always attract re-
searchers. Predicting Labels And Neighbors with Embeddings Transductively Or Induc-
tively from Data (Planetoid) [122] propose a novel graph-based semi-supervised learning
framework. The ebmedding of instance in Planetoid merges context and class label of
intance in the graph. In the next, to joint the hidden layers and embedding of the classifier.
Then, to input a softmax layer for prediction. Planetoid obtains a good performance on
distantly supervised entity extraction, entity classification, and text classification experi-
ments. The Graph Convolutional Networks [52] propose a deep neural network approach
for semi-supervised learning on graph-structured data. This approach provides a deep



2.3. SEMI-SUPERVISED GRAPH-BASED MANIFOLD LEARNING 27

architecture in order to learn the soft label in a transductive setting. We will introduce
more details about related topics in Subsection 2.7.1. In [115], Graph-based Transductive
Learning is used for brain disorder disease with multi-modal transductive semi-supervised
classification learning method. Motivated from the sparse representation of graph, Mini-
mum Tree Cut(MTC) [128] uzilize a spanning tree to approximate. It exploits a linear-time
method to label the tree so that cut size of the tree minimizes. In [49], a scalable graph-
based Semi-supervised Learning framework uzilizes sparse Bayesian model for defining
the graph-based sparse prior. In graph-based semi-supervised inductive methods, Man-
ifold Regularization [3] is the representative example of this class of methods. Manifold
Regularization (MR) proposed a data-dependent regularization framework. It aims on ex-
ploiting non-Euclidean of the probability distribution, which to uzilize reproducing kernel
Hilbert spaces to prove novel representer theorems. MR extends Support Vector Me-
chine (SVM) and ridge regression to Laplacian Support Vector Machine (LapSVM) and
Laplacian Regularized Least Squares (LapRLS). We explain LapRLS and LapSVM as
examples to review Manifold Regularization for semi-supervised learning inductive appli-
cations.

Let f(-) be a function which projects the input to the output. Every Mercer kernel K :
XxX —» R hasan associated RKHS (Hk) of functions X — IR with the corresponding norm
(Fllg)- (xi, y1) i = -+, means labeled examples set, where [ means labeled samples
and u means unlabeled samples. The optimization problem for Laplacian Regularized
Least Squares (LapRLS) is given by:

!

f@=m 21 f 4l =

fTLf (2.19)

I+u

fx) = Z a;i" - K(x,x;) (2.20)

i=1

where y4 and y; are hyperparameters that determine the relative importance of these

penalties, ||f||i is the regularizer that ensures the smoothness of possible solutions. L
is laplacian matrix. The minimizer of above optimization problem accepts an expansion
as Eq. 2.20, where a = [ay, a2, ,ap4,]T and K € R is classical Gram matrix that
Kij = K(x;, x;). According to the details of [3],

yi-l
(u+1)

=] - K+yal - T+ L-K| Y (2.21)

where J is (I + u) x (I + u) diagonal matrix given by J = diag(1,---,1,0,---,0) € REwx{+u)
— —
1 u

and Y is (I + u) dimensional label vector that Y = [y,--- ,1,,0,---,0] .

Using a hinge loss instead of the square loss (box shown in Eq. 2.22), LapSVM solves
optimization problem as followings:
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VI

l
“(¥) = min + — vy f(x 2 T
f() = min ; A=y £ O, |+ vallflle + e (2.22)
I+u
fix)= Z a;" - K(x, x;) (2.23)

i=1

Unlike LapRLS, we do not have closed form solution for «; in LapSVM. It could be
implemented by using SVM [16] solvers the quadratic form. [3] could find the details.

A series of graph-based semi-supervised inductive methods have been proposed
recent years [91] [32]. Inductive methods GraphSAGE presented by Hamilton et al
[34], which provides categories of methods such as GraphSAGE-LSTM (aggregating
by feeding the neighborhood features into an Long short-term memory (LSTM) [44]),
GraphSAGE-GCN (which extends a graph convolution-style operation to the inductive set-
ting), GraphSAGE-pool (taking the elementwise maximization operation of feature vectors
transformed by a shared nonlinear multilayer perceptron) and GraphSAGE-mean (taking
the elementwise mean value of feature vectors). Graph Attention Networks (GATs) [106]
is also one of novel neural network architectures. Besides, categories of algorithms are
used for two types of semi-supervised learning models: transductive learning models and
inductive learning models [107] [106] [122] [90].

2.4/ GRAPH-BASED LABEL PROPAGATION

Graph-based Label Propagation (LP) has been used for categories of real-world applica-
tions successfully. Based on the intrinsic geometry relationships of samples data, Label
Propagation is a processing that propagating label information from labeled samples data
to unlabeled data. The performance of LP is via two terms that manifold smoothness term
makes Label Propagation to decide theh sample labels via label information from neigh-
bours and label fithess term. Label fitness term is used for meaturing the uncertain soft
labels.

Existing graph based LP algorithms usually can be divided into two categories that
are transductive and inductive algorithms. The notion of transductive and inductive label
propagation methods is similar as the classification ways of the Semi-supervised Graph-
Based Manifold Learning (Subsection 2.3). In transductive label propagation field, we
focus on classifing a particular set of sample data points rather than a general decision
function for unseen examples classification problem, which means inductive label propa-
gation field need to solve unseen examples.

One of the most typical algorithms in Graph-based transductive Label Propagation
method is Gaussian Fields and Harmonic Function (GFHF) [134], that we have already in-
troduced this algorithm in Subsection 2.3. In [134], GFHF algorithm uzilizes graph-based
method to model the similarity between pairs of examples. This is called graph trans-
duction technique. The other popular label embedding based transductive algorithms
include Learning with Local and Global Consistency (LGC) [132], Special Label Propaga-
tion (SLP) [78], Linear Neighborhood Propagation (LNP) [110], Robust multi-class graph
transduction (RMGT) [67] and Positive and Negative Label Propagation (PN-LP) [137].
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Flexible Manifold Embedding (FME) [79] is one of representative Graph-based Induc-
tive Label Propagation algorithms in recent years. FME can effectively utilize manifold
structure from both labeled and unlabeled data. In addition, a simplified version of FME
(called FME/U) for unsupervised dimensionality reduction. We can regared FME as a
framework that merges LapRLS [3] and LGC [132] for solving inductive problems. We
define that sample set X = [x, X, - , X, X1, -+, Xi4u] € RPN, a binary label matrix
Y € BV*C with Y;j; = 1 if x; has label y; = j; Y;j = 0, otherwise. F € RNXC is prediction
labels. The Flexible Manifold Embedding minimizes the following criterion:

F,W*, b") = i F-Y)UF-Y
(F, W', b") = arg min trace(F - Y)' U(F - Y)
+ trace(FTLF) + u(W2 + y|[X"W +1- b7 — F[[") (2.24)

where U € RV s a diagonal matrix whose first I diagonal elements are set to 1 and the
rest u = N — [ elements are set to 0 and p and y are two balance parameters. Define L is
graph Laplacian matrix that L = D — S. 0,1 € RN*! as a vector with all elements as 0 and
a vector with all elements as 1, respectively. b € R“*! is the bias term. W € R™C is the
projection matrix.

Vanish the derivative of Eq. 2.24 (F*, W*, b*) with respect to W and b. We can obtain F
and W. In the next, vanish the derivative with respect to F. These functions are given as
followings:

_ 1 T T
b= (F'1-w'x1) (2.25)
W = y(yXHXT +1) XH.F = AF (2.26)
F = (U+L+uyH, — iy*?M)”'0Y (2.27)

-1
where A = y(yXHCXT + I) XH, and H. = I - 117 are used for centering the data by
subtracting the mean of the data, X, = XH..

Except for FME, the other representative inductive label propagation algorithms re-
cently include Laplacian Linear Discriminant Analysis (LapLDA) [102], Embedded Label
Propagation (ELP) [13]. All of ELP, LapLDA and FME could solve theh out-of-sample
problem via learning linear mapping explicitly. ELP and FME add regressive error term
to encode the mismatch which are different from LapLDA. Consider that LapLda, ELP
and FME are linear projection algorithms. So theh dimensionality of data will effect the
computing. It is hard to deal with high-dimensional sample data for these methods.

2.5/ GRAPH-BASED DIMENSIONALITY REDUCTION

Dealing with high-dimensional data is a difficult problem in several fields such as pattern
recognition, machine learning, and computer vision. The goal of dimensionality reduction
is to map high-dimensional data into lower dimensional subspace without losing discrim-
inant information. Numerous dimensionality reduction approaches have been proposed
in the past several decades. Principal Component Analysis (PCA) [105] and Linear Dis-
criminant Analysis (LDA) [1] are well-known as linear dimensionality reduction methods.
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Let us also consider a linear transformation mapping the original d-dimensional image
space into m-dimensional feature space, where m <« d. PCA learns a projection matrix
such that the variance of low-dimensional data is maximized.

Wopt = argmvsx |WTSTW| =[wi wa -+ Wyl

N
Sr=Y (xi—p)xi— ) (2.28)
i=1

where W € R%*" js a matrix with orthonormal columns. The total scatter matrix St is the
mean of all samples. w; (i=1,2,---,m) is the set of d-dimensional eigenvectors of St
corresponding to the m largest eigenvalues. The new feature vectors y; € R™ are defined
by the following linear transformation that y; = Wix; i=1,2,---,N).

The disadvantage of unsupervised algorithms for dimensionality reduction is not to
uzilize label information when performing works of classification. Due to the training sam-
ple data are labeled, supervised dimensionality reduction will uzilize label information for
developing efficient and better algorithms, and applying on categories of backgrounds,
e.g., text classification, handprint classification and face recognition. LDA maps the data
into low-dimensional subspace, which to maxmize the ratio of between-class to within-
class distance. The object function of LDA could be solved by eigendecomposition on the
scatter matrices to achieve the maximum discrimination.

The classical dimensionality reduction techniques are to discover the data structure
lying on linear subspace of high-dimensional input sample data. In real-world, categories
of datasets contain nonlinear structures. They are invisible to such as PCA or LDA clas-
sical dimensionality reduction methods. Graph-base Manifold Learning algorithms for
dimensionality reduction came out.

Graph-based Manifold learning called Locality Preserving Projections (LPP) [40] that
is a linear technique has been proposed for dimensionality reduction that preserves local
relationships within the data set and uncovers its essential manifold structure. LPP algo-
rithm finds a transformation matrix W € IR that maps N original samples to a set of
low-dimensional data points (x; — y; = WTx;). LPP method is of particular applicability in
the special case where {x1,x,--- ,xn} € M and M is a nonlinear manifold embedded in
IR™. The linear transformation W can be obtained by minimizing an objective function as
follows:

n
min Y [lyi - yi|'sti. (2.29)
ij=1

The weight matrix S (called heat kernel) is constructed through the nearest neighbor
graph.

The minimization problem can be converted to solve a generalized eigenvalue problem
as follows:

XLX'W = AXDX'W (2.30)

where the classic Laplacian matrix is given by L = D — S where D is a diagonal matrix
whose elements are the row or column (since the weight matrix S is symmetric) sums
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of S matrix. Besides, we could choose to utilize the normalized Laplacian matrix L is
defined by L = I-D~1/2SD1/2 where I denotes the identity matrix. Let the column vectors
{wo,w1,---,wy,_1} be the solutions of Eq. 2.30, ordered according to their eigenvalues
Ag < Ay < -++ < Ay_1. Thus, the embedding is as follows: x; — y; = W'x;.

After a series of research in the recent years, Graph-based dimensionality reduc-
tion methods have been developed with tremendous achievements.The variants of lo-
cality preserving projection algorithms also have been introduced to resolve dimension-
ality reduction problems. Supervised Locality Preserving Projection [131] is a variant
of Locality Preserving Projection, where the known class labels of the data points are
used. Unlike LPP, Supervised Locality Preserving Projection projects high-dimensional
data to the embedded low space taking class membership relations into account. This
allows obtaining well-separated clusters in the embedded space. It is worthwhile to
highlight the discriminant power of Supervised Locality Preserving Projection by using
class information besides inheriting the properties of LPP. Therefore, Supervised Local-
ity Preserving Projection demonstrates powerful recognition performance when applied
to some pattern recognition tasks. W. Yang et al. [120] proposed a Graph-based Sub-
space Semi-supervised Learning Framework(SSLF) for dimensionality reduction. It in-
cludes with three Semi-supervised dimensionality reduction methods: Subspace Semi-
supervised Locality Preserving Projection (SSLPP), Subspace Semi-supervised Marginal
Fisher Analysis (SSMFA) and Subspace Semi-supervised Linear Discriminant Analysis
(SSLDA). SSLF uzilize a mapping subspace via applying supervised learning method
and embedding the unlabeled and labeled data into subspace. In the subspace, to en-
sure the homogeneous points are as close as together and heterogeneous points are
apart from each other. In the end, the weight matrix is obtained by the projection points in
subspace and the labels. A two-dimensional extension of locality preserving projections
(2DLPP) is proposed by S. Chen et al. [14]. It overcomes the disadvantage of LPP that
the singularity of matrix when the dimensionality of matrix is high. 2DLPP aims at com-
puting based on two dimension image matrices, which is different from LPP that based
on 1D vectors. The other two linear projection methods for dimensionality reduction that
2DPCA [119] and 2DLDA [61] preserve the Euclidean structure of image space, while
2DLPP finds an embedding that preserves local information and detects the intrinsic im-
age manifold structure. As the one of authors of LPP, X. He proposed Orthogonal Locality
Preserving Projection (OLPP) [9]. For overcoming the weakness of nonorthogonal LPP,
which is hard to reconstruct the data, OLPP obtains orthogonal basis functions so that
OLPP owns better ablility of locality preserving that LPP. Besides, discriminating power
is related to the ablity of locality preserving. It results in OLPP is more discriminative
than LPP. Kernel locality preserving projections [15] utilizes the nonlinear kernel map-
ping is used to map the data into an implicit feature space, which is successfully used in
Support Vector Machine(SVM), and then a linear transformation is performed to preserve
within-class geometric structures in implicit feature space. Thus, it can gain a nonlinear
subspace that can approximate the intrinsic geometric structure of the face manifold.

2.6/ (GRAPH-BASED FEATURE SELECTION

The revelant information and features effect the result of pattern recognition in the real-
world. For solving this problem, Feature Selection is employed to select features and re-
duce dimensionality. It aims to extract subset of relevant features from raw samples. Fea-
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ture Selection obtains better learning accuracy, low computing and model interpretability.
Fig. 2.2 descripts the basic processing framework of Feature Selection for classification
task. Usually, the tranditional categorization of Feature Selection algorithms are super-
vised, semi-supervised and unsupervised learning methods via class labels in the classi-
fication problems. Furthermore, under the data feature perpective, the categorization of
Feature Selection algorithms could be classified into flat features, structured features and
streaming features. Mostly of Graph-based Manifold Learning algorithms are developed
in Flat features models. Filter models, Wrapper models and Embedding models are three
mainly directions of Flat features models.

| Labels
Trgirling N\Features A Machine
ata i
Featur_e . Featu_re ) Leaming |——>
Generation Selection Algorithm
y, J

Figure 2.2: The basic processing framework of Feature Selection for classification task

Laplacian Score for Feature Selection [38] was the early stage and classical algo-
rithm for jointly Graph-based Manifold Learning and Feature Selection method. Lapla-
cian Score is a filter-based algorithm in Feature Selection, that focuses on independent
of learning algorithm and could react in supervised and unsupervised setting. The basic
idea of LSFS uzilizes locality preserving to evaluate the features. We regards L, as r-th
feature in each sample data, f,; as i-th sample of r-th feature (i = 1,--- ,N). The following
function represents Laplacian Score of r-th feature:

-, _f:D1
T 1T.D 1
.11
L,=—4——= (2.31)
fl-D-f,

where the matrix L is often called graph Laplacian that L = D — S, D = diag(S - 1) and
1=1[1,---,1]T. S here is a weight matrix same as S in Eq. 2.29. Then the top k-th ranked
features with high scores are selected as selected features for classification or clustering
tasks.

Trace Ratio Criterion for Feature Selection [77] is another typical algorithm of Graph-
based Manifold Learning on Feature Selection. It optimizes the subspace score and finds
score is maximized. The Trace Ratio Criterion could be descripted as following:

y = Wix (2.32)

where W € R™"(m < d) means selection matrix. We regard w; € R! as w; =
T

0,---,0,1,0,---,0] . So W could be rewritten as W = [wk1, Wko, -+, Wk], where K
S—— S——

i—1 d—i
is is a permutation of {1,2,---,d}. Denote data matrix by X = [x1,Xp,--- ,xn] € RN,
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{F1,F2,--- ,F;} represents d features in each data x;. Feature subset ([Fx1,Fx2, -+, Fxm])
is denoted as ®(K). Likewise, we regard Wi = [wk 1, Wk2, -+, Wk,n], where w; is defined
as above.

If we suppose ®(K) is selected, the sample data x is transformed into y = WIT<x. The
score of feature subset ®(K) is defined:

Y |y —Yj||2 (Se),; tr (WI{XbeTwK)

> =
Zi]‘ ”y: - y;” (Sw)i]- tr (WIEXLMXTWK)
where (Sw)ij means within-class matrix and (Sb)ij is between-class matrix. L, and L,
are Laplacian matrices, that L, = D, — S;, and (Dw)i]- = Z]- (Sw)ij, L, = D, - S, and
(Db)ij = Zj (Sb)z’j-

The Trace Ratio Criterion for Feature Selection is to find the feature subset with maxi-
mum score via the optimization as following:

score (D(K)) = (2.33)

tr (WﬁXbeTWK)
®(K) = argmax (2.34)
(K) tr (WIXLyXTWy)
[77] supports a graph-based Feature Selection Framework via Trace Radio Criterion
as above shown. Besides, [77] provide an novel optimal solution for solving Eq. 2.34.

Joint £, 1-norms Minimization and Graph-based for Feature Selection [76] uzilized reg-
ularization on least square regression for supervised and semi-supervised categorization
tasks as following:

min J(W) = [XTW = Y|, + Wi, (2.35)

where W is also called transformation matrix or selection matrix, but its dimension
changes by W € R%C| class labels matrix Y = [y1,y2,---,yn]" € RN*C, samples data
X € RN,

Eqg. 2.35 seems that solving this joint ¢, ;-Norms problem is difficult as both of the
terms are non-smooth. An efficient iterative algorithm to solve the optimization problem
with proved convergence descripted in [76] detailedly. Once W is obained, it could be
used for feature selection problem.

Categories of Unsupervised Learning feature selection methods are also proposed re-
cently years [121] [10] [45] [86] [64]. Besides, Semi-supervised Learning feature selection
methods include with [129] [36] [20] recently.

2.7/ THE OTHER STATE-OF-THE-ART TOPICS ON (GRAPHS

2.7.1/ Deep LEARNING oN GRAPHS AND MANIFOLDS

In recent years, Deep Learning [56] is learnt complicated concepts from simple ones from
multi-layer architechture, which Artificial Neural Networks (ANN) are one of the popular
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techniques for realizating this deep multi-layer hierarchies. We also notice that the power
of Deep Learning in serval fields, e.g. Speech, Image, Video signals and so on [54] [58].
These fields also exist underlying non-Eclidean structure. Deep Learning on Graphs and
Manifolds are a field that to uzilize Deep Learning techniques to operate on Graph Theory
and Manifold Learning [42] [19] [52] [6].

However, Deep Learning on Graphs and Manifolds topic still needs to solve several
problems as follows. First and foremost, Deep Learning on Graphs and Manifolds is
mainly to focus on solving theh static homogeneous graphs. Due to graph structures are
usually fixed. Besides, edges and vertices of graph structure regard that they come from
single source. But in some of real-world scenarios, these two assumptions are not exist-
ing usually. For example, in the social networks, someone could come into a network and
quit the network at anytime. The other example is recommender system, different input
forms (e.g. images, texts or videos) may mean same product which they just have differ-
ent types. So Deep Learning on Graphs and Manifolds topic should consider to develop
dynamic and heterogeneous graph stuctures. The second, a receptive field of vertices
means vertices set. It includes the neighbors of central node and itself. However, the
number of neighbors of central node are quite different, sometimes single and sometimes
thousands. It needs to explore that to select a suitable receptive field of vertices.

With the success of Deep Learning, researchs have abtained categories of algorithms
from recurrent networks, deep autoencoders and convolution networks to achieve the
related algorithms about Deep Learning on Graphs and Manifolds. In the next, a brief
review of Deep Learning on Graphs and Manifolds is introduced.

The pioneer work of Deep Learning on Graphs and Manifolds is proposed by Scarselli
et al. [96] on the year of 2008, which it obtains Neurals Networks on Graphs. After a
few of years sleeping, non-Euclidean Neural Networks field is developed via merging
Machine Learning (Special for Deep Learning), Computer Vision and Natural Language
Processing since [42]. Bruna et al. [42] uzilize Convolutional Neural Networks (CNN) on
graphs in spectral domain. In [19], it proposes the CNNs in spectral graph that to design
fast localized convolutional filters on graphs. The Graph Convolutional Networks (GCN)
algorithm in [52] presents an approach for semi-supervised learning on graph-structured
data. This approach provides a deep architecture in order to learn the soft label in a
transductive setting. GCN brings a new round of fervor in Deep Learning on Graphs
and Manifolds. Graph Auto-encoders [11], Graph Spatial-temporal Networks [97], Graph
Generative Networks [124] and Graph Attention Networks [106] descript that to uzilize
GCN as central algorithm to capture structural dependencies. Since above algorithms
proposed, categories of representative extensions and improvements on spectral graph
convolutional networks [62] [59] [34] [71] [80] [27]. The GCN algorithm is introduced as
following.

Spectral convolutions on graph are defined as the multiplication of a signal x € RN
with a filter g = diag(w) where w € RV is parameterized in Fourier domain that g * x =
Ug,U"x. UTx and g, could be regarded respectively as the graph Fourier transform
of x and a function of A which is g(A), A being the diagonal matrix of the eigenvalues
of the graph Laplacian L. For solving the problem of expensive computing cost, [35]

K
proposed Chebyshev polynomials to unfold g,,: g ~ Y, wy Tx(A). Where Ty refer to
k=0

Chebyshev polynomials. Ti(x) = 2x Tj_1(x) — Tyo(x) , and To(x) = 1, Ty(x) = x. The
largest eigenvalue of the Laplacian matrix L is denoted by An,.c. The diagonal matrix A
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is given by A = t2-A — L. w, is Chebyshev coefficients.

So the spectral convolutions on graphs with a truncated expansion in terms of Cheby-
shev polynomials could be rewritten:

K
gxxw~ Z wi - Te(L) x (2.36)
k=0
where - can represent the scalar product, L = —L ~IandL = 1-D":SD2. If we

just expand 14-order polynomial in (2.36) to limit convolutlon operation, and according to
further approximate in the linear formulation where K=1 and A, = 2 in the (2.36), w
get:

8w X XX W( - X+ Wy - ( L-Dx

/'max

= wo-x—w; - D 28D Ix (2.37)

where wy and w; are free parameters. If we constrain the number of parameters to
address over-fitting and to minimize the number of matrix multiplications, w = wy = —wy
could be used in (2.37). We get the first order graph convolution as: g, * x = w- (I +

D~:SD?)x.

We approximate Anax =~ 2 which means that the eigenvalues of 1 + D-2SD~: are
between 0 and 2. This operator will lead to numerical unstable. So the renormaliza-
tion trick is introduced which replaces I + D-2SD~2 by D-28D-%, where § = S + 1 and
D; = Z].Si,». The Graph Convolutional Networks (GCN) algorithm in [52] presented a
deep neural network approach for semi-supervised learning on graph-structured data.
For semi-supervised label propagation, and with two layers, the GCN model has the fol-
lowing form:

E = f(X, A) = softmax (AReLUAX" W®)w(®) (2.38)

where X' € RV*? denotes the input data with N samples and d dimensions, A is a renor-
malized graph matrix A = D-28D-2, WO e R™H js an input-to-hidden weight matrix
for a hidden layer with H features, RelLU () is the rectified linear activation function, and
WO e RFXC s a hidden-to-output weight matrix with C feature maps. C denotes the
number of classes. Softmax denotes the softmax activation function. E € RNXC is the
matrix of labels associated with all samples. The work in [52] estimates the model pa-
rameters WO W) using deep learning tools in which the loss function is given by the
cross-entropy error between the known labels and the output of the model.

Thanks to lots of researchers and companies make the code toolboxes open source,
such as PyTorch has PyG library [25] for geometric deep learning extension and Graph
Signal Processing(GSP) toolbox [101] [85] is based on Matlab and Python which imple-
ments categories of operation on graphs from simple ones like filtering to advanced ones
like interpolation or graph learning, they help researchers to learn and implement Deep
Learning on Graphs and Manifolds experiments faster.

2.7.2/ THE GRAPH-BASED APPLICATION ON LEARNING TO HASH

Nowadays, the tremendous data dimensionality and quantity increasing in the real world,
especially the Internet and World Wide Web time coming. A series of Internet compa-
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nies collect dramatic dataset increasing quickly, such as videos of Youtube, images of
Instagram, messages of Wechat and blogs of Twitter. We have to face data searching
accuracy, computing ability and search time cost.

Nearest Neighbor Searching [24] is one of the typical methods to focus on searching
similar (even the same) samples from a specific dataset. The query sample defined by g
and specific dataset defined by y with N entries. The time complexity of Nearest Neighbor
Searching is O(N). Approximate Nearest Neighbor (ANN) Searching [123] came out
to improve the time consuming when the number of data entries N is huge. Hashing
theory was introduced into Nearest Neighbor Searching by Locality-Sensitive Hashing
(LSH) [47] [31] since 1998. Locality-Sensitive Hashing obtains binary codes for high
dimensional sample data points. Besides, it preserves the similarity of original data.
We regard hashing algorithm as generating /-bits code, also meaning that own [ hash
functions. The original feature space could be partitioned into 1 code and 0 code via hash
functions. We conclude that [ hash functions bring I-bits code, then to partition feature
space into 2! parts, that is also regarded as hash buckets. In the end, the whole points
fall into various hash buckets.

Learning to hash is a data dependent approach that different from such Locality-
Sensitive Hashing algorithm as data independent. It focused on learning hash function
from a particular data set. Learning to hash could make the result of nearest neighbor
searching in hashing space is as close as possible to the result in original result. Besides,
the search cost will also small that in original result. Motivated by Graph-based Man-
ifold Learning algorithm (Laplacian Eigenmaps [2]) and Semantic Hashing [93], Spec-
tral Hashing (SH) [116] brings Learning to Hash method proposed by Yair Weiss, An-
tonio Torralba and Rob Fergus since 2009. In SH, it performs to keep neighborhoods
in space of input via hamming space, and desiring the hashing code to be uncorre-
lated and balanced. We suppose that the input sample data x € R?. We employ hash
fuctions H = {hy,hy,--- ,hx} for computing K-bit binary codes y = {y1,y2,---, yx} for x
asy = {y1,v2,-- ,yx} = {hi(x), ha(x),- -+, hx(x)}. So the k-th bit could be computed for
Y = hi(x).

Define {y;}YY, as codewords list for N data points. W € RN*N means affinity matrix as

the usual manifold learning algorithms, which W(, ) = exp(~||x; - x,»||2/ez) (e is a balance
parameter). L is Laplacian matrix L=D-W. The objective of spectral hashing is formu-
lated as /1 : R — IB*. We could project the input sample data X = {x;}}, € R*¥ to binary
codes as Y = {1 (X), ha(X),--- , hx(X)} = H(X). The following is the objective function of
SH:

min }" Wyyi -y

ij
= min trace (YTLY) (2.39)
subjectto: Y(,j) e (-1,1}; Y'Y=1I

where Y'Y = I imposes orthogonality between hash bits to minimize the redundancy and
Y"1 = 0 ensures that the hash bit reaches a balanced partitioning of the data. Eq. 2.40
is hard to optimize without removing Y(i, j) € {—1,1}. After removing Y(i, j) € {-1,1}, the
solution is simply K eigenvectors of D—W with minimal eigenvalue (after excluding the
trivial eigenvector 1 which has eigenvalue 0).
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With the help of Anchor Graph [68], anchor graph hashing (AGH) [69] uzilized Large
Graph Construction algorithm for hashing searching. In Section 2.1, Eq. 2.5 descripts
how to construct anchor graph. Finally, the anchor graph gives a data-to-data affinity
matrix as S = ZA~1ZT € RN*N, The definition of Z and A could be found near by Eq.
2.5. The final binary codes can be obtained through calculating the sign function over a
spectral embedding as

Y = sgn(ZA?VE?) (2.40)

where the matrix V = [vy, -+, vy, -, vk] € R®™Kand £ = diag(oy, -+, 0y, -+, 0k) € RE¥K,
that lower-case k is the number of anchors and {vy, o1} are the eigenvector—eigenvalue
pairs that Section 2.1 about Anchor Graph part and [69] show detail context.

According to the introduction of spectral hashing and anchor graph hashing, Learning
to hash aims at learning a hash function (y = h(x)) which to project the input points (x)
into compact code (y). For a query g, to ensure the result of Nearest Neighbor search
as close as the real result of nearest neighbor search. However, Learning to hash needs
to face five problems [111] as followings. 1) what hash function h(x) is adopted. 2)
what similarity is provided in the input space. 3) what similarity in the coding space is
used. 4) what loss function is chosen for the optimization objective. 5)what optimization
technique is adopted. Most of Graph-based Learning to hash algorithms happen in the
third problem that is similarity matrix problem, which is the most important link between
Graph-based Manifold Learning and Learning to hash, and also the same problem need
to solve in the two domains. Inductive Hashing on Manifolds (IHM) [98] [99] describes the
inductive solution for out-of-sample via non-parametric manifold learning as the basis of
hash function. Locally Linear Hashing (LLH) [48] focuses on preserving the locally linear
manifold structures of high-dimensional data in a low-dimensional Hamming space.

Recently, several graph-based semi-supervised hashing methods [112] [113][118] are
proposed to take advantage of the information of both labeled and unlabeled data. The
traditional Graph Cuts technique [5] is also used for Supervised Hashing Coding [28] [65].
A series of algorithms publish in the top conferences and journals which graph-based
manifold learning technique on learning to hash. They show the novel, effective, and
excellent experiment results in this domain.

2.8/ CONGCLUSION

In this chapter, categories of Graph-based Manifold Learning techniques are introduced.

Specifically, Graph Construction and Large-Scale Graphs in Section 2.1, Unsuper-
vised Graph-Based Manifold Learning in Section 2.2, Semi-supervised Graph-Based
Manifold Learning in Section 2.3, Graph-based Label Propagation in Section 2.4, Graph-
Based Dimensionality Reduction in Section 2.5, Graph-based Feature Selection in Sec-
tion 2.6 and the other State-of-the-art topics on Graphs in Section 2.7 ( e.g. Deep Learn-
ing on Graphs and Manifolds in Subsection 2.7.1, Graph-based application on Learning
to Hash in Subsection 2.7.2).

Graph Construction is a crucial step in graph-based manifold learning which is the con-
version of data into a weighted graph. Supervised, Semi-supervised and Unsupervised
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Learning tasks can use graphs in order to estimate their model. Graph-based Label
Propagation rely on the idea of building a graph whose nodes are data points (labeled
and unlabeled) and edges represent similarities between points. Known labels are used
to propagate information through the graph in order to label all nodes. Dimensionality
reduction is to map high-dimensional data into lower dimensional subspace without los-
ing discriminant information. Feature Selection approaches aim to select a small subset
of features that minimize redundancy and maximize relevance to the target such as the
class labels in classification. Deep Learning on Graphs and Manifolds is an umbrella
term for emerging techniques attempting to generalize (structured) deep neural models
to non-Euclidean domains that are graphs and manifolds. Learning to Hash is motivated
by Graph-based Manifold Learning algorithm (Laplacian Eigenmaps algorithm [2]) and
Semantic Hashing [93] for efficient nearest neighbor search in massive databases [116]..

In the following chapter, Chapter 3 discusses a novel nonlinear method called Flexible
Discriminant graph-based Embedding with feature selection (FDEFS). Chapter 4 intro-
duces a joint graph-based embedding and explicit feature weighting for getting a flexible
and inductive nonlinear data representation on manifolds. Chapter 5 proposes an algo-
rithm of graph convolution based semi-supervised Embedding (GCSE). Chapter 6 de-
scribes an Elastic graph-based embedding with deep architecture which deeply explores
the structural information of the data. Finally, the conclusions of the work and some
perspectives are given in the last Chapter 7.
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3

LEARNING A SEMI-SUPERVISED DISCRIMINANT
(GRAPH-BASED EMBEDDING AND FEATURE
SELECTION VIA L21 CONSTRAINED LINEAR

TRANSFORM

In this chapter, we introduce a novel graph-based learning algorithm called flexible dis-
criminant graph-based embedding feature selection (FDEFS), which is used for image
categorization. We propose a novel graph-based embedding technology for reducing di-
mension of high dimensional data and for extracting the feature of data. Our proposed
algorithm FDEFS includes Manifold Smoothness, Margin Discriminant Embedding and
the Sparse Regression for feature selection, which could be used for semi-supervised
and supervised learning setting. The ¢, 1-norm regularization is being brought into for im-
plicit feature weighting . We also utilize the sparse regression to select the feature on the
original features and to provide an inductive projection model. The optimization shows
efficient processing for the objective function. The experiments implement on various
public datasets such as scene dataset, face dataset and object dataset demonstrate the
success of proposed algorithm competing with the other compared algorithms.

3.1/ REevIEwW oF FLEXIBLE SEMI-SUPERVISED EMBEDDING

In [21], the authors introduced a flexible semi-supervised feature extraction method. It
used a margin that is defined in two local neighborhoods. This is a sample-based margin
that relies on intra-class and inter-class samples. Thus, for every labeled data sample x;
€ {xq,x2,...,x;} amargin is defined in the non-linear space.

Any labeled sample x;(i € C,k =1,2,...,C) has I intra-class distances and [ — I inter-
class distances. Cj is the set of indices of samples from the same class and [, = |Cy|.
Assuming that the non-linear subspace has one dimension, i.e., the whole dataset is
projected onto an axis (X; = z). Two similarity matrices S and S" associated with the
labeled samples are introduced. These are defined as follows. S;}f’ = 1/, ifi € C and

j € Cr, S = 0 otherwise. Sfj =1/(I-1),ifi e Cyand j ¢ Cy, Sg = 0 otherwise. The average
margin & for the whole labeled dataset is defined by:

41
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where D; = I+ D! e R* and M; = 31 + D" + 8" + (S")T — 28 € R, The diagonal matrix
D! with the entries being the column sums of S’. Besides, z"S"z = z7(S")7z is used in
Eq.(3.1). More details can be found in [21]. A non-linear projection is then obtained by
maximizing the above margin. Thus, we have:

Z = arg min z2'M;z st.z2'Djz=1 (3.2)

Since we have [ labeled samples for training and u unlabeled samples for testing,
the above criterion can be written as: z = argminz'Mjz s.t. zZ'D;z = 1, where M; =
z

(M;, 0;0,0) e RN*N D, = (D, 0; 0, 0) € RNV the dimension of z is N.

Based on the analysis above, the work of [21] extended it to the multi-dimension em-
bedding case using the following:

min #r(Z"LZ) + Ar(Z" M) +u( WG +y [XTW + 167 - Z||>)

s.t.Z2™DZ =1 (3.3)

where A, u and y are positive balance parameters, Z € RN*N denotes the non-linear em-
bedding of all data samples and I € RN*N denotes the identity matrix. L = I-D~1/2SD1/2,
The main strength of the model presented in Eq. (3.3) is the fact that the non-linear
embedding and the linear model are simultaneously estimated.

3.2/ OVERVIEW OF PROPOSED APPROACH

The FDEFS algorithm inherits the partly advantages of JELSR and [21], extends to semi-
supervised and supervised learning setting. And provides an embedding framework with
feature selection the feature selection of the original features. Moreover, FDEFS owns
two methods to estimate the graph-based embedding data. The first is a non-linear pro-
jection of the available training data. The other method via the linear regressor model
represented by the matrix W and the shift vector b, specially, this method could be used
for yielding the possibility of the method to work with unseen samples. FDEFS maintains
the margin-based discriminant embedding and manifold smoothness for increasing the
image classification recognition rate.
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3.2.1/ MODEL OF THE PROPOSED METHOD

The work of 3.3 in [21] proposed an inductive feature extraction method that retains the
advantages of flexible manifold embedding and margin based discriminant embedding for
the non-linear graph based embedding. With joint the advantages of JELSR and [21], we
propose to minimize the following criterion under the constraint Z'D,Z = I: A tr(Z"M,Z)

f(Z,W,b) = tr(Z"LZ) + A tr(Z"™MZ) + 11 (|W]lo1
+y [XTW + 167 - Z|[)
2
= tr(Z L Z) + p (Wil + 7 [|[X"W + 167 - Z[|)) (3.4)

where Ly = L+ AM;, and 1 = [1,1,---,1]T € RN*. L is Laplacian Matrix that L =
I - D-1/2SD'/2, S means the similarity matrix that is symmetric, D is a diagonal matrix
whose elements are the row or column (since the matrix is symmetric) sums of S matrix,
I denotes the identity matrix. M; from the concept of margin among classes has been
already used for getting discriminant projections in the literature [21,108]. Wang et al.
[108] used a margin that is defined in two local neighborhoods. This is a sample-based
margin that relies on a specific neighborhood size for intra-class and inter-class samples.
In [21], the authors introduce a margin for the semi-supervised case.

W = [wq,Ws,...,wy,] € R™™" s the linear transform matrix, m is the dimensionality of
embedding, and Z = [z;;z,;...;zy] € RNX" denotes the data matrix of embedding (i.e.,
the non-linear projection of X). The ¢, ; norm of W is given by [[W]||,, = E‘le [[W;ll, where
w; denotes the iy, row of W. This norm promotes row sparsity of the linear transform W.
b is the bias vector. The regression model regresses the original samples X to the non-
linear projection data Z by imposing that Z = X"W + 1b” € RV*?. In the above criterion,
there are three balance parameters: u, A and y.

In the above criterion, there are three different terms to be minimized. The first term
(tr(ZTLZ)) imposes locality preserving of the non-linear projection for manifold smooth-
ness. Besides, the second term (A t7(ZTM;Z)) is used for maximizing a margin via the

label samples. The last term ([Wll; +y [X"W +1b7 - Z||§) will get a linear regression
model via {, 1-norm regularization which the norm performs feature ranking and feature
selection [46,133].

3.2.2/ SOLUTION TO THE PROPOSED MODEL

The processing of optimization steps are shown as following. At first, we try to vanish the
derivatives of the objective function 3.4 with respect W and b,

af

% =0=>

b= %(le -W'X1) (3.5)
af

ow 0=

URUW +2y(XXTW + X(1bT - Z))] =0 (3.6)
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where U is a diagonal matrix whose diagonal elements are given by:
Ui =1/2-IWil) (=12,...,d) (3.7)

w; denotes the ith row of W € R™”. When U is fixed, the derivative ;_v{r (3.6) can also be
regarded as the derivative of the following objective function:

L(Z,W,b,U) = r(Z"L,Z) + p (r(WTUW) + 3 |[XTW + 1b7 - Z|[}) (3.8)
Consequently, we will solve the following problem to approximate the solution to Eq.(3.4):

min L(Z,W,b,U) =
Z,W,b,U

tH(ZTL1Z) + p (t(WTUW) + y [X"W + 17 - Z|[) (3.9)
In details, by inserting Eq.(3.5) into (3.6), we get:

UW + p(XXTW + X(%I(ITZ -1"X"™W)-27))=0 (3.10)

By using X, = X-H, withH, =1— %1 -1" (H. is the centring matrix), Eq. (3.10) can be

written as:
UW +y(X X)W = yX.Z
= W= U+pXX )1 yXZ=AZ (3.11)

where A; = y(U + pXX.T)1X..

We have ||W]|,; =2 tr(WTUW) when w; is not equal to zero. By plugging Eq.(3.5) and
(3.11) into XTW + 1b7, we get:

X'W +1b" = XTA1Z + I%]nTz - %llTZXTAlz

1 1
=(I-=-1H)X"Az+—=11"2
( N ) 12+

=HX"AZ + %nTz
=B,Z (3.12)
where By = H.XTA; + £117.
By inserting Eq. (3.12) into Eq. (3.4), the latter becomes:
f(Z) = tH(Z" L1 Z) + 2u tr(Z"A]UA, Z)
+uy tr((B1Z - ) (B1Z - Z))
= t(ZT(Ly + pATUA; + uy By - ) (B1 - 1))Z)
=tr(2"KZ) (3.13)
where K = Ly + yATUA; + py(B; - DT (B; - I).

Thus, the non-linear embedding Z is estimated by minimizing the above criterion under
the constraint ZTD,Z = I that also used in the criterion (3.4):

f(Z)=tr(Z"KZ) s.t.Z2"DZ =1 (3.14)
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Therefore, Z can be solved by a generalized eigenvalue decomposition. Once Z is esti-
mated, the linear model W and b will be given by (3.5) and (3.11).

In order to estimate Z one should solve the generalized eigen decomposition problem
presented in (3.14). At this stage, this problem requires the matrix K = L; + yAfUAl +
ty(B1 — I)T(B; — I) to be known, which is not the case since the matrix U depends on the
entries of W and this latter is unknown. Thus, we will adopt an iterative scheme in which
the matrix U is initialized and then an estimate for Z, W, b, and U will be computed.

At the beginning of the iterative process, by fixing the diagonal matrix U, the remaining
unknowns Z, W, and b can be estimated using closed form solutions given by Egs. (3.14),
(3.11), (8.5). Once W is known, the matrix U can be updated using Eq. (3.7). This
process is repeated until convergence. The proof of convergence is given in the appendix.

The estimated W at convergence can be used for feature ranking and selection. The
score of the rth feature is given by score(r) = ||Wylh, (r = 1,2,---,d), where W,. denotes
the rth row of W. These scores are used for ranking the original features as well as
the rows of W. Thus, we can select the most relevant features in original samples data
matrix X and their corresponding rows in the estimated W matrix. An illustrative example
(3.1) showing how the computed W can be used for feature ranking and selection. In our
proposed algorithm, the final non-linear embedding matrix Z; is given by Z, = XW, + b”
where X; and W, are the selected matrices using the computed scores ||Wr*||f=1.

The main steps that allow the simultaneous estimation of the non-linear embedding
and its linear regression are given by Algorithm 2.

We emphasize the fact that the JELSR method does not exploit label information in
order to compute the selection and the non-linear embedding. On the other hand, our
proposed method exploits the label information in order to compute both the non-linear
projection and the feature selection.

Wi1 Wiz W3 ”wl*”Z Descending sorting ”WZ*HZ
Wa1 Waz W | Rowsnom | [|Wi, ||5 [scoretr) = 1w,. 1L, = 12345 | [|Wa.ll2
W= W31 W3z W33 m [[Wa. || m Wl
Wa1 Wiz Waz | Wa.ll2 |Ws. |2
Ws1 Ws2 Wss | Ws.l2 |Wa.ll2

Figure 3.1: The figure illustrates a simple example in which the number of the original fea-
tures is five, and the number of new features is three. Following the procedure described
above the ranked features are (2, 3, 1, 5, 4).

3.2.3/ CONVERGENCE ANALYSIS

The proposed FDEFS algorithm uses an iterative scheme (third step in Algorithm 1) in
order to minimize the objective function (3.4). In this section, we prove that the proposed
iterative process will converge. First, we provide the following lemma [74]:

Lemma .

a2
2 ||q|,

Ip|l
2% ||q|,

= [lpll, > = lall, (3.15)
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Algorithm 1 Flexible and Discriminant Non-linear Embedding with Feature Selection Al-
gorithm (FDEFS)

Input: Data samples: X; Initial matrix: U=I4xq4; Regularization parameters: u, A and y;
Number of selected feature (optional): s

Output: Non-linear embedding matrix Z;; linear transform W, and b;

1: Compute the sparse graph matrix S using Eq. (2.11);

2: Compute the normalized graph Laplacian matrix L;

3: Iteratively update until convergence Z, W, b and U (in that order) using Eqgs. (3.14),
(8.11), (3.5), and (3.7), respectively. ;

4: Optionally, estimate the scores of all features using score(r) = Wl (r = 1,2,...,4d).
Sort these scores by descending order and select the s features that have the largest
values. This ranking is used for selecting the original features in both the data matrix
X and the estimated linear transform W. Compute the final non-linear embedding
matrix Zs as Z; = X W, + 1b7;

where p and q are two arbitrary nonzero vectors having the same dimension.

Proposition 1. The objective of the problem (3.4) in each iteration is non-increasing by
using the optimization process in the third step of Algorithm |.

Proof. We fix U as U! in the tth iteration and compute the solution Z*!, Wi*! and b**!
at iteration t + 1 using the Equations presented in step 3 in Algorithm 1. Since this step
minimizes the objective function (3.9) for a fixed U, the following inequality holds:

L(Zt+1,wt+1,Ut,bt+1) < L(Zt,Wt, Ut,bt) (316)
This yields:
L(Zt+1,wt+1,Ut, bt+1) + ullwt+l||2’1 _ ‘ullwt+1||2’1 <
LZ', WU b + a””wt”m B a””Wt”m (3.17)
d |lwt+1
We have: () HiWlhy = 3 T e, ) r(woruwen) = £ BEE ang i
P

wi|
”W 2

(W‘TUt Wt = Z 2“||AJ|”2 where w; denotes the ith row of W.
2

By using these three expressions in the functional £ (given by (3.9)) and in the in-
equality (3.17), the latter becomes

tr((Zt“)TL Zt+1) +[u(||wt+l||2,1 +y XTWit! +1(bt+1)T_Zt+1 i) +
. d ||’\t+1||2 _ ”;;,&1” ) <
i=1 2||At||2 l :

@) L)+ W, W s -2

2|
Z 2 =) (3.18)

wi
= 2w,
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From Lemma (1), we have:

d t+1 "t
L RN o LTS

it it
= 2lwil, o,

Based on the above inequality, the inequality (3.18) yields:

T 2
tT((Zt+1)Tlet+l) +‘U(||Wt+1||2,1 +y||xth+l +1(bt+l) _Zt+l 2) <

(21 Z) + (W, + 7 [XTWE 1009 - zf||z) (3.19)

Thus, we have

f(Zt+1’ Wt+1,bt+1) < f(Zt, Wt, bt) (320)

This indicates that the objective function (3.4) is monotonically decreasing in each
iteration. Since the objective function has zero as a lower bound, the iterative process will
converge. m]

3.3/ EXPERIMENTS AND RESsuLTS

The proposed method is evaluated with six different public image datasets that include
three scene datasets, two face datasets and one object dataset. These are as follows: 8
Sports Event Categories Dataset [60], Scene 15 Dataset [55], MIT 67 Indoor Scene [88],
Extended YALE Face Dataset B [30], ORL Face Dataset [95] and COIL-20 Object dataset
[72]. The following describes the details of every dataset.

3.3.1/ DamASETS

8 Sports Event Categories Dataset: The 8 sports event categories dataset is provided
by Li and Fei-Fei [60]. The dataset contains 8 sports event categories: rowing (250 im-
ages), badminton (200 images), polo (182 images), bocce (137 images), snowboarding
(190 images), croquet (236 images), sailing (190 images), and rock climbing (194 im-
ages). These images are high-resolution. We use 130 images in every category. The
total number of images is 1040 images. We randomly select 50% and 70% of data as the
training dataset and use the remaining 50% and 30% of data as the test dataset.

Scene 15 Dataset: Scene 15 dataset [55] contains 4485 gray images of 15 different
scenes including both indoor scenes and outdoor scenes. The dataset does not provide
separated training and test sets. We use 130 images in every category. The total number
of images is 1950 images. We randomly select 50% and 70% of data as the training
dataset and use the remaining 50% and 30% of data as the test dataset.

MIT 67 Indoor Scene Dataset: MIT Indoor 67 [88] is a challenging indoor scene
dataset, which contains 67 scene categories and 15,620 color images. We use 50 images
in every category giving 3350 images. We randomly select 40 images per category (80%
of each category) for training. The remaining 10 images are used for testing.
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Extended YALE Face Dataset B: The cropped version that contains 38 individu-
als [30] has been used in our experiments. The images of the cropped version contain
illumination variation and facial expression variation. The images are in gray scale, and
we have rescaled them to 32x32 pixels. We use a subset of this database containing 50
images for each person. We randomly select 20% and 40% of data as the training set
and use the remaining 80% and 60% of data as the test set.

ORL Face Dataset: The ORL dataset [95] depicts the face images of 40 subjects.
Each subject has ten different face images. For some subjects, the images were taken
at different times, varying the lighting, facial expressions (open / closed eyes, smiling /
not smiling) and facial details (glasses / no glasses). All the images were taken against
a dark homogeneous background with the subjects in an upright, frontal position (with
tolerance for some side movement). We randomly select 10% and 20% of data as the
training dataset and use the remaining 90% and 80% of data as the test dataset.

COIL-20 Object Dataset: This dataset (Columbia Object Image Library) [72] consists
of 1440 images of 20 objects. Each object has 72 images. Between each image and its
following, the object rotated by an angle of 5 degrees. We use a subset of the database
containing 70 images for each object. We randomly select 10% and 20% of data as the
training dataset and use the remaining 90% and 80% of data as the test dataset.

3.3.2/ EXPERIMENTAL SETUP

Local Binary Patterns descriptor [81] is used on the outdoor scene datasets, such as 8
Sports Event Categories Dataset, Scene 15 Dataset and MIT 67 Indoor Scene Dataset.
The local LBP descriptor is the uniform one having 59 features. Thus, for an image
with b non-overlapping blocks, the length of the image descriptor is 59 b. The raw image
data is used on Extended YALE Face Dataset B, ORL Face Dataset and COIL-20 Object
Dataset. All results are obtained with ten random splits of the data into a training set
and a testing set. For the training sets, two different percentages are considered that are
stated in Section 3.3.1.

We select several of state-of-the-art graph-based algorithms which including with
Semi-Supervised Discriminant Analysis (SDA) [7], Semi-Supervised Discriminant Em-
bedding (SDE) [12], Laplacian eigenmaps (LE) [2], Gaussian fields and harmonic func-
tions (GFHF) [134], Robust multi-class graph transduction (RMGT) [67], Locally Lin-
ear Embedding (LLE) [92], Manifold Regularized Deep Learning Architecture Algorithm
(MRDL) [127], JELSR [46], Kernel Flexible Model Embedding (KFME) [22], Flexible Semi-
Supervised Embedding algorithm (FSSE) [21]. In the graph-based embedding algo-
rithms(SDA, SDE, LE, LLE, MRDL, JELSR and FSSE), we will use the same processing
steps that the embedding matrix is computed, then to utilize Nearest Neighbor Classifier
(NN) to compare the performance of image classification accuracy rate. We use the nor-
malized Laplacian matrix L = I - D~1/2SD'/2, |t is noteworthy that we obtain two layers in
the MRDL algorithm as [127] descripted. Besides, for comparing the performance of two
different graphs that used in FSSE [21] and in our algorithm 2.11, we report the results
of them. According to [46], JELSR algorithm is used for unsupervised feature selection
by computing the scores of all features. It also can be used for graph-based embedding.
In our proposed algorithm, there are three different parameters that A, y, and y. Each
parameter scans the following set {1072,1071,1,10', 102, 10%}. We report the best average
recognition rate of all methods from the best parameter configuration.
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3.3.3/ MeTHOD COMPARISON

We compare the proposed method with the competing ones on various categories
datasets including with the 8 Sports Event Categories Dataset, Scene 15 Dataset, MIT 67
Indoor Scene Dataset, Extended YALE Face Dataset B, ORL Face Dataset and COIL-20
Object Dataset. Tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 summarize the obtained aver-
age recognition rate obtained by our proposed algorithms and 12 competing methods:
SDE [12], SDA [7], LE [2], GFHF [134], RMGT [67], LLE [92], MRDL [127], KFME [22],
JELSR [46], JELSR (KNN Graph), FSSE [21], FGSE (KNN Graph).

We can observe that the FDEFS method gave the best results. Furthermore, in gen-
eral, the FDEFS method was superior to all competing methods. This observation holds
true for all six datasets and for different percentages of training data, except for KFME
method in COIL-20 Object Dataset corresponding to the 10% training samples data ex-
priment.

We have visualized the distribution of the images after the non-linear projection of
the FDEFS using t-SNE [70]. Figure 3.5.a illustrates the distribution of the Extended Yale
images (1900 images) in the original feature space. Figure 3.5.b illustrates the distribution
of the same images in the non-linear space given the embedded data matrix Z. In this
case, the two plots depict the same 1900 images in a 2D space. For the FDEFS algorithm,
50 % of images were labeled. From this figure, it can be seen that by using our proposed
projection method the images of the same class distribute closely and the samples of
different classes are pushed far away as much as possible.

Figures (3.2), (3.3) and (3.4) depict the average performances of the competing meth-
ods, (SDA, SDE, LLE, MRDL, JELSR, FSSE and our proposed algorithm (FDEFS)), as
a function of the number of non-linear features. These figures correspond to 8 Sports
dataset, Scene 15 dataset and Extended YALE Face Dataset B, respectively. The KFME
algorithm does not depend on the feature dimension since it is a label embedding method.
In fact, the used competing methods are either linear or nonlinear. For the nonlinear meth-
ods, the maximum feature dimension is the number of samples N. For the linear methods,
the maximum feature dimension is the number of original features d. In the above figures,
we presented the accuracy curves till dimension 200 in the projection space. This is mo-
tivated by the fact that highest performance are reached with a low number of features.

3.3.4/ ANALYSIS OF RESULTS

From the obtained tables and figures, we can see that the proposed methods achieve
superior recognition performance on different types of images. Based on these experi-
mental results, a number of interesting observations can be made. These are as follows:

e According to Tables 3.1, 3.2, 3.3, 3.4, 3.5 and 3.6 we can observe that our pro-
posed methods Flexible Discriminant graph-based Embedding with feature selec-
tion (FDEFS) outperformed all compared state-of-the-art methods on six public im-
age datasets (including scene datasets, object and face datasets). The proposed
methods have also given the best recognition rate for different percentages for
the training part. The only outperformed by the KFME method on the COIL-20
dataset corresponding to the 10% training samples data experiment is adopted.
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The method was outperformed in one configuration out of 198 configurations (de-
picted in Tables 3.1-3.6 ).

e The performance of the two competing methods, JELSR and FGSE when used
with a sparse graph (kernelized sparse nonnegative graph Similarity matrix) is bet-
ter than their performance obtained with a KNN Graph. Nevertheless, this better
performance is still outperformed by our methods.

e As it can be seen from the recognition accuracy curves in Figures 3.2, 3.3 and
3.4, by increasing the number of features in the projection subspace the recognition
accuracy of the proposed methods will not necessarily increase. Consider that the
proposed methods will provide good performance without using a lot of features,
this is one of advantages of the proposed FDEFS method.

e The performance of all methods on the MIT 67 dataset is relatively poor. There are
many reasons for that observation. First, the training images used in each class are
very few. Second, the used image descriptor may not be suited to this dataset. We
recall that our objective here is to compare different projection methods in the same
context and not to look for the best image descriptor for this dataset.

3.3.5/ EFFECT OF THE NUMBER OF SELECTED ORIGINAL FEATURES

In this section, we study the effect of the number of selected original features s used for
recomputing the non-linear embedding matrix Z; = X!W, + b’, where W, and X, are
the selected matrix using the computed scores ||W“||‘f:1. Considering that the non-linear
embedding with feature selection is one of the merits in our method, we aim to study the
performance of the proposed method as a function of s. Figure (3.6) and (3.7) depict
the obtained recognition rate as a function of s (number of the selected original features)
for the 8 Sports dataset and Scene 15 dataset, respectively. The test samples per class
were 50%.

These figures show that the number of the selected original features, s, can be any
value above 70 % of the original size in order to guarantee the superiority of the proposed
method. We emphasize that any value above will give similar performances. We can also
note that the feature selection in our proposed FDEFS method is implicit in the sense that
it does not need any explicit setting of s (i.e., ranking and selecting s original features)
since the non-linear embedding and its linear regression are obtained with a row sparsity
of the linear transform. This was also shown empirically since our method is still superior
to other competing methods even in the case where all original features were used.

3.3.6/ PARAMETER SENSITIVITY ANALYSIS

In this section, we study the effect of the regularization parameters on the classification
performance of the proposed methods: FDEFS. More precisely, the proposed methods
have three parameters: A, u, and y. For studying the influence of these parameters (A, u
and y) on the performance of the proposed methods, we quantified the performance when
these parameters varied. For a given dataset, we conducted two different experiments. In
the first experiment, we set ; and y to a sub-optimal value, we then study the performance
as a function of the third parameter A. The latter varies within a certain range. Figures
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Table 3.1: Best average recognition rate (%) obtained on the 8 Sports Event using 10
random splits with two different percentages for the training part.

Dataset 8 Sports Event
Method P=50% | P=70%
SDE [12] 51.98 | 55.96
SDA [7] 63.46 | 66.06
LE [2] 51.48 | 54.07
GFHF [134] 62.25 | 64.29
RMGT [67] 62.58 | 64.20
LLE [92] 5492 | 59.10
MRDL [127] 58.48 | 60.51
KFME [22] 62.58 | 65.03
JELSR [46] 55.92 | 57.60
JELSR (KNN) 52.46 | 55.48
FSSE [21] 64.72 | 67.18
FSSE (KNN) 59.96 | 63.24
FDEFS 66.98 | 70.00

(3.8) and (3.9) depict the variation of the recognition rate of the proposed method as a
function of A for the 8 Sports and Extended Yale B datasets, respectively.

In the second experiment, we fix A and vary p and y by a grid search within a certain
range. Figures (3.10) and (3.11) depict the variation of the recognition rate of the pro-
posed method as a function of 1 and y for the 8 Sports and Extended Yale B datasets,
respectively. From Figures (3.8) and (3.9), it turns out that the parameter A is not signifi-
cantly affecting the final recognition rate in most of the experimental results. It means that
u and y are more important parameters. From Figures (3.10) and (3.11), one can deduce
the optimal domain for the balance parameters u and y. On the two datasets, the best
domain for y is the interval [0,50]. On the other hand, the performance is less sensitive
to the choice of u. We can observe that the proposed method has actually two balance
parameters since the third one can be fixed, which is exactly the same number of balance
parameters used by existing graph-based semi-supervised embedding techniques.

3.3.7/ CONVERGENCE ANALYSIS

In this section, we empirically study the convergence property of the proposed optimiza-
tion algorithm. Figures 3.12 and 3.13 show the objective function value and the classifi-
cation accuracy versus the number of iterations of the proposed method on the 8 sports
and 15 scene datasets. As it can be seen a real convergence is reached with less than 10
iterations. we provided a proof of convergence of the proposed algorithm on subsection
3.2.3.
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Table 3.2: Best average recognition rate (%) obtained on the Scene 15 dataset using 10
random splits with two different percentages for the training part.

Dataset Scene 15 Dataset
Method P=50% | P=70%
SDE [12] 46.10 48.07
SDA [7] 61.52 63.73
LE [2] 41.47 43.68
GFHF [134] 61.58 63.57
RMGT [67] 61.59 63.49
LLE [92] 44.26 47.42
MRDL [127] 52.16 54.64
KFME [22] 60.89 63.74
JELSR [46] 51.83 58.59
JELSR (KNN) 41.37 44 .24
FSSE [21] 64.78 68.17
FSSE (KNN) 50.96 55.62
FDEFS 66.53 69.91

Table 3.3: Best average recognition rate (%) obtained on the MIT 67 Indoor dataset using
10 random splits with two different percentages for the training part.

Dataset 67 Indoor
Method P=80%
SDE [12] 11.91
SDA [7] 11.87
LE [2] 9.33
GFHF [134] 16.46
RMGT [67] 16.46
LLE [92] 11.15
MRDL [127] 11.42
KFME [22] 16.33
JELSR [46] 12.42
JELSR (KNN) 9.45
FSSE [21] 16.46
FSSE (KNN) 10.06
FDEFS 17.58
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Table 3.4: Best average recognition rate (%) obtained on the Extended YALE-B using 10
random splits with two different percentages for the training part.

Dataset Extended YALE-B
Method P=20% P=40%
SDE [12] 85.92 92.76
SDA [7] 89.96 96.54
LE [2] 80.01 86.39
GFHF [134] 89.26 92.74
RMGT [67] 89.82 93.04
LLE [92] 91.47 95.75
MRDL [127] 92.20 96.32
KFME [22] 90.39 92.85
JELSR [46] 85.31 90.13
JELSR (KNN) 75.03 84.54
FSSE [21] 93.71 98.31
FSSE(KNN) 93.36 98.18
FDEFS 95.23 98.75

Table 3.5: Best average recognition rate (%) obtained on the ORL dataset using 10 ran-
dom splits with two different percentages for the training part.

Dataset ORL

Method P=10% | P=20%
SDE [12] 55.27 64.18
SDA [7] 60.92 75.94
LE [2] 66.78 75.34
GFHF [134] 68.33 79.66
RMGT [67] 68.72 80.00
LLE [92] 68.50 80.91
MRDL [127] 69.33 81.28
KFME [22] 67.82 79.22
JELSR [46] 68.31 77.81
JELSR (KNN) 49.69 63.84
FSSE [21] 70.08 81.91
FSSE(KNN) 50.42 74.44
FDEFS 73.67 84.31
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Table 3.6: Best average recognition rate (%) obtained on the COIL-20 datasets using 10
random splits with two different percentages for the training part.

Dataset COIL-20

Method P=10% | P=20%
SDE [12] 89.10 95.33
SDA [7] 95.33 98.07
LE [2] 90.39 96.38
GFHF [134] 96.01 98.14
RMGT [67] 96.06 98.18
LLE [92] 91.81 94.71
MRDL [127] 93.02 96.10
KFME [22] 96.98 98.56
JELSR [46] 93.80 96.88
JELSR (KNN) 75.03 84.54
FSSE [21] 93.60 97.83
FSSE(KNN) 86.19 93.61
FDEFS 96.04 98.89
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3.4/ CoONCLUSION

This chapter presented a novel graph-based discriminant embedding method for both
supervised and semi-supervised settings. It can be used with various categories of image
classification tasks for which labeled data can have a small size. The proposed algorithm
combines the advantages of Margin Discriminant Embedding and Sparse Regression in
order to get a flexible non-linear graph embedding method. A byproduct of the framework
is feature selection which is a straightforward application of the sparse regression. All of
these advantages are put into a common framework that tackles the problem of image
recognition. The learned data representations are more informative and discriminative in
comparison with other competing methods. The resulting problem was efficiently solved
by an iterative optimization strategy, in which its convergence property is demonstrated
from both theoretical and experimental perspectives. The conducted experiments show
the superiority of the proposed method with respect to the competing methods.
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Figure 3.2: Recognition accuracy vs. feature dimension for the 8 Sports Event Categories
Dataset. Test samples per class were 50%. The classifier used was the NN.
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Figure 3.3: Recognition accuracy vs. feature dimension for the Scene 15 dataset. Test
samples per class were 50%. The classifier used was the NN.
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Figure 3.4: Recognition rate as a function of the number of selected original features in

the Extended YALE Face Dataset B. Test samples per class were 20%. The classifier
used was the NN.
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Figure 3.5: t-SNE visualization of (a) the original features and (b) non-linear projection
obtained by using our FDEFS algorithm on Extended YALE Face Dataset B. In this case,
the two plots depict the same 1900 images in a 2D space. For the FDEFS algorithm, 50

% of images were labeled.
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Figure 3.6: Recognition rate as a function of the number of selected original features for
the 8 Sports Event Categories Dataset. Test samples per class were 50%.
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Figure 3.7: Recognition rate as a function of the number of selected original features for
the Scene 15 dataset. Test samples per class were 50%. The classifier used was 1-NN.
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Figure 3.8: Recognition accuracy of the proposed method as a function of A on the 8
Sports Event Categories Dataset. The test samples per class were 50%. The classifier
used was 1-NN.
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Figure 3.9: Recognition accuracy of the proposed method as a function of A on Extended

YALE Face Dataset B. The test samples per class were 20%. The classifier used was
1-NN.
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Figure 3.10: Recognition accuracy as a function of u and y for the proposed method on

the 8 Sports Event Categories Dataset. Test samples per class were 50%. The classifier
used was 1-NN.
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Figure 3.11: Recognition accuracy of the proposed method as a function of u and y on

the Extended YALE Face Dataset B. Test samples per class were 20%. The classifier
used was 1-NN.
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Figure 3.12: The convergence of the proposed FDEFS algorithm on the 8 Sports Event

Categories Dataset. Test samples per class were 50%. The classifier used was the NN.

The red curve depicts the objective function as a function of the iteration number. The
blue curve depicts the recognition rate.

Scene 15 Dataset %1012
; ‘ 1.25
70
1.2
Q
— =
8:‘;60 S
= 1115 5
« 3
C c
Qo uj_
Es0f .
e 111 2
o 3
o o)
O
40 11.05
O S . . |
23456 8 10 15 20 30

Number of Iterations

Figure 3.13: The convergence results of the proposed FDEFS algorithm on the Scene
15 Dataset. Test samples per class were 50%. The classifier used was the NN. The red
curve depicts the objective function as a function of the iteration number. The blue curve
depicts the recognition rate.






4

JOINT GRAPH BASED EMBEDDING AND
FEATURE WEIGHTING FOR |IMAGE
CLASSIFICATION

In this chapter, we propose a joint graph-based embedding and feature weighting for
getting a flexible and inductive nonlinear data representation on manifolds. Moreover, the
chapter introduces a kernel variant of the model in order to get an inductive nonlinear
embedding that is close to a real nonlinear subspace for a good approximation of the
embedded data. The proposed criterion explicitly estimates the feature weights together
with the projected data and the linear transformation such that data smoothness and
large margins are achieved in the projection space. Experiments on image classification
via shown on six public scene and face datasets, in a semi-supervised setting, show that
our proposed methods can have a performance that is better than that of many state-of-
the-art methods including linear and nonlinear methods.

4.1/ OvERVIEW OF PROPOSED APPROACH

In this section, we will introduce our proposed novel algorithm and its kernel variant al-
lowing the estimation of an inductive nonlinear embedding.

4.1.1/ Basic mobEL: GRAPH BASED SEMI-SUPERVISED EMBEDDING

The work described in [21] proposed on inductive feature extration method. It includes the
advantages of flexible manifold embedding and margin based discriminant embedding,
meanwhile, to simultaneously estimate the nonlinear projection and the linear regression
model by minimizing the following criterion:

Let us introduce the first objective function. This is given by the work described in [21].
This work proposed an inductive feature extraction method that retains the advantages
of flexible manifold embedding and margin based discriminant embedding. The authors
propose to simultaneously estimate the nonlinear projection and the linear regression
model by minimizing the following criterion:

63
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e(Z,W,b) = tr(Z"LZ) + At(ZTMLZ) + u (IWIP + ¥|[X"W + 16T - z||2)
= tr(Z"L1Z) + u (IWIP + 7 [[XTW + 167 - Z|[") (4.1)

where L; = L+ AM; and 1 € RN is a column vector of 1s. u, ¥, and A are positive
balance parameters. In the above objective function, the matrix Z represents the non-
linear embedding, W and b are the linear transform that embed the data X such that
Z~X"W +1b".

The objective function includes with four different terms previous to combine with L; =
L + AM;. The first term in the Eq.(4.1) is the graph smoothness criterion that imposes
locality preserving on the unknown Z. The second term maximizes the margin associated
with all labeled samples (as it is shown in [109]). The third one means regularization
terms. The last term simultaneously forces the nonlinear Z projection to be as close as
possible to a linear one and provides the linear regression model. Eq.(4.1) includes a non-
linear approximation .Unfortunately, this method misses the importance of the original
features. The next we introduce an unknown weight vector, denoted by z, in which every
element should encode the relevance of a feature.

4.1.2/ Pnroposebp MODEL: JOINT GRAPH Basep EmMBEDDING AND FEATURE WEIGHTING

The objective function in Eq.(4.1) includes a non-linear embedding and its linear approx-
imation. However, the importance of the original features is not taken into account. In
data mining, it is well known that feature selection or weighting can avoid, on one hand,
over-fitting problems while improving classification performance, and on the other hand,
can provide efficient and more cost-effective learning models [33].

The next we introduce an unknown weight vector, denoted by 7, in which every element
should encode the relevance of a feature. Since we have d original features, the size of
the unknown weight vector will be d. This vector is given by 7 = (71, 12,... 74)" and subject

d
to Y 7; = 1. The diagonal matrix T = diag(t) € R™>“ is given by
i=1

T1 0..0
0 T2 ... 0
T =diag(t) = L
0001y

This method could take into consideration the relevance of every original feature in
the data matrix X and improve their influence on the final estimation of both the non-
linear embedding and the regression model. How to estimate the feature weights 7, the
nonlinear projection Z and the linear regression model given by W and b, are the mainly
considered work in the next processing. To this end, we minimize the following objective
function:
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e(Z, W, b, 1) = tH(Z"L.Z) + u (WP + | X" TW +1b" — 2|
d
s.t. Z2'DiZ =1, 7,=1, and7; >0 (4.2)
=1

The above objective function Eq.(4.2) not only provides a non-linear graph based em-
bedding with discriminant information, but also takes into account the relevance of the
original features in the criterion itself.

To the best of our knowledge, the problem defined in Eq.(4.2) does not have a closed-
form solution. Thus, we will use an alternating optimization. We iterate two steps. In the
first step, the vector of weights 7 is fixed, thus allows to get a closed form solution for
Z, W and b. In the second step, these variables are fixed and the vector of weights 7 is
estimated.

STEP 1. Fix 7, estimate Z, W, and b.

Let TX = X. To obtain the optimal solution, we vanish the derivatives of the objective
function Eq.(4.2) with respect to W and b. This yields £ = 0 and % = 0.

After some algebraic manipulations, we have:

b= %(ZTI -WTX1) (4.3)

W= y(X X +1)71X.Z2 = AZ (4.4)

where A = y(yXCX;F +I)X.. X, is the centered data matrix, i.e., X, = XH, with H, being
the centering matrix H, = I — ﬁllT. We use the above expression for W and b in the
regression function:

N . 1 1 n
X"™W +1b" = XTAZ + NnTz - N11TxTAz

1 . 1
=(I-=11DH)X"AZ + =1172
( N ) N

= HXTAZ + %nTz
=BZ (4.5)
where B = H.X"AZ + £117.
e=tr(Z'LZ) + u - tr(Z'ATAZ) + uy - tr(BZ — Z)T (BZ — Z))
=tr(Z"(Ly + uATA + uy(B -1 (B - 1))Z)
=tr(Z"(L; + E)Z) (4.6)
where E = pATA + uy(B - 1)T(B - I).

Thus, the non-linear embedding Z is estimated by minimizing the above criterion under
the constraint used in the criterion happened in [21]:

Z = argmin tr(ZT(L; + E)Z) s.t. ZTD)Z = 1 (4.7)
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where D, is the augmented diagonal matrix associated with [21]. Thus, Z can be solved
by generalized eigenvalue decomposition. Once Z is estimated the corresponding re-
gression W, b are estimated by Eq.(4.4), and (4.3), respectively.

STEP 2. Fix Z, W, and b, estimate 7. In this step, by fixing Z, W, and b, the feature
weight vector can be updated. We can note that only the third term in Eq.(4.2) depends
ont. Let1b’ —Z =M, and X = [x1,Xp,--- ,xn] = [f1;£2;--- ;£5] and W = (Wy; Wo; ..., W,).
Thus, f; is a row vector representing the ith row of the data matrix X, and w; is a row
vector denoting the ith row of the matrix W.

The third term in Eq.(4.2) can be written as:

h= ||XTdiag(T1, T T)W + M”i

d 2
= Z flTT,'W,' +M
i=1 2

tr[Z 2ATA, +ZZA AjTiTj +2 ZMTATT, +M'M]

i=1 j#i
d

= Z ngii + i i 8ijTiTj + 2 Zdzpz'[z + tr(MTM) (4.8)
i=1

i=1 i=1 j#i

where A; = flw;, g; = tr(A]Ay), gij = tr(ATA;) and p; = tr(M" A;). Since the weights sum
to one, we can construct the following Lagrangian:

By vanishing the derivative of the Lagrangian (given in Eq.(4.9)) with respect to t;, we
have:

oL .

T, —2g,1T,+2;g,]T]+2p, n=0, i=1,....4d (4.10)

The d linear equations given in Eq. (4.10) can be written in the following matrix form:
2GTt+2p-n1=0 (4.11)

Thus, the solution for 7 is given by:

= G_l(%nl -p) (4.12)

where G = (gij) € R™, p = (p;) € R%.
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d
The constraint Y, t; = 1 can be written in a matrix form as follows:
i=1

17r=1 (4.13)

By substituting Eq.(4.12) into Eq.(4.13), we can get the expression of n as:

lTG_l(%q-l—p) =1 (4.14)
2(1+17G1p)

Skl £4 4.15

=1 17G11 (4.15)

Finally, we can get the formula that updates 7 by substituting Eq.(4.15) into Eq.(4.12)
as follows:

(4.16)

1+17G!?
e

17G11
Steps 1 and 2 are repeated until a stable solution is reached. Given an unseen sample
Xtest, itS embedding (a column vector) is given by z;.s = WTdiag(r)xtest +b.
The main steps are given in Algorithm 2.

Algorithm 2 Joint graph-based Embedding with Feature Weighting (JEFW)

Input: Data samples: X; Initial feature weights: 7= (1,1,...,1)" € R?; Regularization
parameters: u, A and y.

Output: Non-linear embedding matrix Z; linear transform W and b; feature weights 7.

1: Compute the sparse graph matrix S using Eq. (2.11), note that S is symmetric. The
normalized graph Laplacian matrix L = I - D~1/28D'/2;

2: Fix feature weight vector , update Z, W, b using Egs. (4.7), (4.4), and (4.3), respec-
tively;

3: Fix Z, W, and b, update t using Eq. (4.16);

4: Repeat steps 2 and 3 until the solution for Z, W, b, and 7 becomes stable.

From the summarization of Algorithm 2, there are three main steps. The first step
concerns the graph estimation using criterion (2.11). The computational complexity of this
process is O(N?) where N is the number of samples. For step 2, the main computational
cost is the eigenvalue decomposition of a N x N matrix (Eq.(4.7)). Thus, its computational
complexity is O(N?). For step 3, the main computational cost is the inversion of a N x
N matrix (Eq. (4.16)). Thus, its computational complexity is O(N?®). Let T denote the
number of iteration of Algorithm 2, it follows that the total computational complexity of the
proposed JEFW method is O(N?) + T O(N®).

4.1.3/ CONVERGENCE ANALYSIS

We can prove that the proposed Algorithm 2 makes the value of the objective function in
Eqg.(4.2) monotonically decrease. At iteration ¢, the solution is denoted by Z;, W;, b;, and
T;. At iteration t + 1, step 2 in Algorithm 2 estimates Z;,1, W;,1, b;11, by minimizing the
functional e(Z, W, b, t;). Thus, we have:

e(Ziy1, Wiy, by, ) <e(Zy, Wy, by, 1)
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Step 3 estimates ;.1 by minimizing e (Z;1, W41, biy1, 7). Thus, we have:

e(Zf+1/ Wt+1/ bt+1/ Tt+1) < e(Zt+1/ Wt+1/ bt+1/ Tt)

From the above two inequalities, we will have:

e(Zis1, Wiit, by, ti4) <e(Zy, Wy, by, 1))

The above shows that the objective function in Eq.(4.2) monotonically decreases. We
found empirically that this algorithm usually needs about five iterations in order to reach
convergence.

4.1.4/ KERNEL VARIANT

Consider that the nonlinearity of data cannot be close to a linear subspace [130], [103].
In such cases, the flexibility introduced by the linear regression term may not lead to
good represenation in the nonlinear subspace. To tackle this limitation, we propose a
kernel varaint of the above model that aims at a flexibility in which the regression itself is
nonlinear. Thus, the role of the kernel trick is to seek an inductive nonlinear embedding
that is close to a real nonlinear subspace. We were inspired by the kernel method [3]
associated with the linear LapRLS algorithm. In this method, the optimized criterion is
given by:

1
min )" F(A(x), yi) + A4l + Arldll. (4.17)
i=1

where ||d||i and ||d||. are the RKHS-norm and the graph-based smoothness of the model
d, respectively. F(.,.) is a loss function. The model d could expand over all the N data
sample in the form of:

N
d(x) = Z vITiK(x, X)) (4.18)
j=1

where T € RN has a similar role to that included in Eq.(4.16). However, in the kernel
variant the features correspond to the kernel function between a data sample and a set
of N reference samples. d is a row vector having N elements, K € RNV is a kernel Gram
matrix, and the matrix V € RN*C is the unknown matrix of multipliers (V € [vy, vy, ..., va]7).
The entries of the Gram matrix are given by K(x;, x;) that represents a dot product in
feature space. This kernel function can be Gaussian or polynomial. In our experiment,
we choose the Gaussian kernel to test the performance of our algorithm.

The mapping of all data samples (based on the one given in Eq.(4.18)) can be written
in a matrix form as:
Z=K-diag(t)-V (4.19)

where 7= [11,13,...,tn] in kernel method. Our proposed kernel method defines the row
vector z; as the nonlinear embedding of the sample x;. The dimension of z; is N. We
should make sure that the non-linear embedding of x; is close to its kernel embedding. In
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other words, Eq. (4.19) should be as satisfied as possible. The unknown of the problem
are given by the nonlinear embedding Z and the matrix of multipliers V.

We introduce the kernelized version by minimizing the following criterion:

e(Z,V) = trace(Z"L1 Z) + p [trace(VTKV) +
y trace(KV — Z)T(KV - Z))] (4.20)
where K = K - diag(7).

For fixed weights 7, We vanish the derivatives of the objective function e with respect
toV:

2KV+2yK(KV-2)=0 (4.21)
This can written in the following form:

V=yI+yK)'Z=AZ (4.22)
where A; = y (I + y K)~1. By plugging the above expression in Eq.(4.20), this becomes:

e(Z) = tr(Z"L1Z) + p tr(Z" AT A Z) + py - tr(Z"B{ B, Z)
=tr(Z"(L1 + u A]KA; + uy BIB)Z) (4.23)

where B; = KA; + I, thus, the non-linear embedding Z with kernelized is estimated by
minimizing the above criterion under the constraint used in the criterion Eq.(4.7):

Z = argmin tr(Z"(Ly + uATKA; + pyBlBy)Z)
st 2Dz =1 (4.24)

where Z can be solved by generalized eigenvalue decomposition.

Similarly to the iterative process introduced in Section 4.1.2, the solution for Z, V,
proceeds by repeating the following two steps. In the first step, fix T and estimate Z, V
using Egs. (4.24) and (4.22), respectively. In the second step, update 7 using Eq. (4.16).
In this expression, the matrices X*, W, and M are replaced by K, V, and Z, respectively.

Given an unseen sample x its embedding (a column vector) is given by

Ziest = VT [T1 K(Xtest, X1), -y TN K(Xtest, Xn)]T (4.25)

4.2/ EXPERIMENTS AND RESuLTS

Our method will be evaluated on six different public datasets including four scene datasets
and one face dataset. These are as follows: 8 Sports Event Categories Dataset [60],
Scene 15 Dataset [55], MIT 67 Indoor Scene Dataset [88], Caltech 101 Object Dataset
[23], Extended YALE Face Dataset B [30] and ORL Face Dataset [95], which have already
been introducted in the previous chapters.
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4.2.1/ EXPERIMENTAL SETUP

For the Extended YALE Face Dataset B and ORL dataset, we use image raw bright-
nesses. For the datasets depict outdoor scenes, we use the block-based Local Binary
Patterns [81] as the image descriptor that is a well-known image descriptor that is fast
and invariant to monotonic illumination changes. The local LBP descriptor is the uniform
one having 59 features. Thus, for an image with b non-overlapping blocks, the length of
the image descriptor is 59 b.

We compare our proposed methods with some well-known art-of-state algorithms in-
cluding Supervised-ISOMAP (S-ISOMAP) [29], Semi-Supervised Discriminant Embed-
ding (SDE) [12], Semi-Supervised Discriminant Analysis (SDA) [7], Kernel Flexible Model
Embedding (KFME) [22], Locally Linear Embedding (LLE) [92], Laplacian Eigenmaps
(LE) [2], Gaussian Fields and Harmonic Functions (GFHF) [134], Robust multi-class
graph transduction (RMGT) [67], Joint Embedding Learning and Sparse Regression
(JELSR) [46], Manifold Regularized Deep Learning Architecture Algorithm (MRDL) [127]
and Flexible Graph based Semi-supervised Embedding(FGSE) [21]. For the MRDL
method, we used two layers.

For the FGSE and JELSR method, we report the performance with two graphs that
one is KNN graph as it is used in the original FGSE [21] and JELSR [46], the other one is
the kernel sparse graph. We report the best average recognition rate of all methods from
the best parameter configuration. The proposed method has three balance parameters:
A, u, and y. Each parameter scans the following set {102,107, 1,10!,102, 10%}. All results
are obtained with ten random splits of the data into a training set and a testing set. For the
training sets, two different percentages are considered that are stated in last section. For
a fair comparison, we use the same graph that is obtained by the kernel sparse algorithm
described in [127]. We use the normalized Laplacian matrix L = I - D~1/2SD'/2,

4.2.2/ METHOD COMPARISON

We compare the proposed method with the competing ones on the six image datasets in
this section. Tables 4.1, 4.2, 4.3, 4.5, 4.4 and 4.6 summarize the average performances
obtained by the different methods on the six image datasets. These results correspond to
an average over 10 random splits on the training data and testing data. For each dataset,
two train percentages were considered except for Caltech 101 Object and MIT 67 Indoor
Scene dataset were 80% for training data. We can observe that the JEFW method and
its kernel variant gave the best results. Furthermore, in general, the JEFW method was
superior to all competing methods. This observation holds true for all six datasets and for
different percentages of training data.

Figures 4.1, 4.2, 4.3 and 4.4 depict the average performance of the competing meth-
ods, (KFME, LLE, GFHF, JELSR, FGSE, FGSE with sparse graph and our proposed al-
gorithms(JEFW and KJEFW)), as a function of the number of non-linear features. These
figures correspond to 8 Sports dataset, Scene 15 dataset, Extended YALE Face Dataset
B, Caltech 101 Object and MIT 67 Indoor Scene dataset respectively. The KFME algo-
rithm does not depend on the feature dimension since it is a label embedding method.
For the nonlinear methods, the maximum feature dimension is the number of samples N.
For the linear methods, the maximum feature dimension is the number of original features
d. In the above figures, we presented the accuracy curves till dimension 200 in the pro-
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jection space. This is motivated by the fact that highest performance are reached with a
low number of features.

4.2.3/ ANALYSIS OF RESULTS

From the obtained tables and figures, we can see that the proposed algorithm achieves
superior recognition performance on different applications. Based on these experimental
results, a number of interesting observations can be made. These are as follows:

e Our proposed non-linear embedding method provided better performances than
those of state-of-art algorithms on the different datasets. This holds true whether
the competing method was a graph-based embedding method or graph-based label
propagation method.

e By comparing the performances of JELSR and JELSR (KNN), FGSE and FGSE
(KNN), we can conclude that the use of the kernelized sparse nonnegative graph
matrix S is able to produce an embedding that can be much better than the embed-
ding obtained by the KNN graph.

e As it can be seen from the recognition accuracy curves, by increasing the num-
ber of features in the projection subspace (obtained by the proposed method), the
recognition accuracy does not necessarily increase. Thus, in practice, the proposed
method will provide good performance without using a lot of features. According to
the figures depicting the performances on 8 Sports Event, Scene 15 datasets, Cal-
tech 101 Object and MIT 67 Indoor Scene dataset, the proposed method already
provided an optimal performance with just quit low features.

e In general, the kernel variant has given better performance than the non-kernel
method.

e The performance of the proposed methods JEFW and KJEFW is better than that of
the FGSE method. This can be explained by the fact that the proposed methods
(JEFW and KJEFW) explicitly quantify the relevance of the original features via the
use of a weight vector that is estimated by the method. Since the weighted version
of the features in the data are used in deriving the nonlinear embedding and its
linear regression, these ones will lead to better features in the projection space.
This explains that a better discrimination can be achieved with the explicit weighting
of the original features.

e The performance of all methods on the MIT 67 dataset is relatively poor. There are
many reasons for that observation. First, the training images used in each class are
very few. Second, the used image descriptor may not be suited to this dataset. We
recall that our objective here is to compare different projection methods in the same
context and not to look for the best image descriptor for this dataset.

4.2.4/ STABILITY WITH RESPECT TO BALANCE PARAMETERS

In this section, we study the effects of the balance parameters on the classification per-
formance. More precisely, the proposed method has three balance parameters which are
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Table 4.1: Best average recognition rate (%) obtained on the 8 Sports Event using 10
random splits with two different percentages for the training part.

Dataset 8 Sports Event
Method P=50% | P=70%
GFHF [134] 62.25 64.29
RMGT [67] 62.58 64.20
KFME [22] 62.58 65.03
SDE [12] 51.98 55.96
SDA [7] 63.46 66.06
LLE [92] 54.92 59.10
LE [2] 51.48 54.07
S-ISOMAP [29] 51.88 54.68
MRDL [127] 58.48 60.51
JELSR [46] (KNN Graph) || 52.46 55.48
JELSR (Sparse Graph) 55.92 57.60
FGSE [21] (KNN Graph) || 59.96 63.24
FGSE (Sparse Graph) 64.72 67.18
JEFW 65.81 68.56
KJEFW 67.48 69.71

A, u, and y. For studying the influence of the balance parameters (A, u and y) on the
proposed algorithm, we quantified its performance when these parameters varied. For a
given dataset, we conducted two types of experiments. In the first type of experiments,
we fixed p and y to a rough sub-optimal value, we then study the performance as a func-
tion of the third parameter A. The latter varies within a certain range. Figures 4.5 and 4.6
depict the variation of the recognition rate of the proposed method as a function of A for
the 8 Sports and Scene 15 dataset, respectively.

In the second type of experiments, A is fixed. We report the recognition rate by vary-
ing p and y using a given grid search. Figures 4.7 and 4.8 depict the variation of the
recognition rate of the proposed method as a function of y and y for the 8 Sports and
Scene 15 dataset, respectively. From Figures 4.7 and 4.8, it turns out that the parameter
A is not significantly affecting the final recognition rate in most of the experimental results.
It means that y and y are more important parameters. From Figures 4.7 and 4.8, one
can deduce the optimal domain for the balance parameters y and y. This is not surpris-
ing since the residual error term, which is responsible for feature section and regression
model, is controlled by the product p1y. Nevertheless for the used two image datasets,
and for the two proposed methods, the optimal performance was obtained when p and y
were around 10.
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Table 4.2: Best average recognition rate (%) obtained on the Scene 15 dataset using 10
random splits with two different percentages for the training part.

Dataset Scene 15 Dataset
Method P=50% | P=70%
GFHF [134] 61.58 63.57
RMGT [67] 61.59 63.49
KFME [22] 60.89 63.74
SDE [12] 46.10 48.07
SDA [7] 61.52 63.73
LLE [92] 44.26 47.42
LE [2] 41.47 43.68
S-ISOMAP [29] 42.74 45.28
MRDL [127] 52.16 54.64
JELSR [46] (KNN Graph) || 41.37 44.24
JELSR (Sparse Graph) 51.83 58.59
FGSE [21] (KNN Graph) || 50.96 55.62
FGSE (Sparse Graph) 64.78 68.17
JEFW 65.74 69.93
KJEFW 68.24 70.91

Table 4.3: Best average recognition rate (%) obtained on the Caltech 101 using 10 ran-
dom splits.

Dataset Caltech 101
Method P=80%
GFHF [134] 31.22
RMGT [67] 31.19
KFME [22] 31.04
SDE [12] 26.70
SDA [7] 30.56
LLE [92] 24.52
LE [2] 22.28
S-ISOMAP [29] 22.51
MRDL [127] 26.60
JELSR [46] (KNN Graph) || 22.95
JELSR (Sparse Graph) 25.61
FGSE [21] (KNN Graph) || 25.26
FGSE (Sparse Graph) 34.27
JEFW 35.54
KJEFW 37.36
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Table 4.4: Best average recognition rate (%) obtained on the ORL dataset using 10 ran-
dom splits.

Dataset ORL
Method P=50% | P=70%
GFHF [134] 90.60 93.92
RMGT [67] 90.55 94.17
KFME [22] 90.65 94.12
SDE [12] 91.15 93.67
SDA [7] 90.60 94.75
LLE [92] 93.35 97.08
LE [2] 84.00 87.25
S-ISOMAP [29] 88.35 93.92
MRDL [127] 93.50 97.42
JELSR [46] (KNN Graph) || 83.54 89.86
JELSR (Sparse Graph) 91.40 95.42
FGSE [21] (KNN Graph) || 94.75 98.00
FGSE (Sparse Graph) 96.30 98.67
JEFW 96.10 98.58
KJEFW 96.90 99.42

Table 4.5: Best average recognition rate (%) obtained on the MIT 67 Indoor using 10
random splits.

Dataset MIT 67
Method P=80%
GFHF [134] 16.46
RMGT [67] 16.46
KFME [22] 16.33
SDE [12] 11.91
SDA [7] 11.87
LLE [92] 11.15
LE [2] 9.33
S-ISOMAP [29] 11.21
MRDL [127] 11.42
JELSR [46] (KNN Graph) || 9.45
JELSR (Sparse Graph) 12.42
FGSE [21] (KNN Graph) || 10.06
FGSE (Sparse Graph) 16.46
JEFW 18.85
KJEFW 19.67
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Table 4.6: Best average recognition rate (%) obtained on the Extended Yale B dataset
using 10 random splits.

Dataset Extended Yale B
Method P=20% | P=40%
GFHF [134] 89.26 92.74
RMGT [67] 89.82 93.04
KFME [22] 90.39 92.85
SDE [12] 85.92 92.76
SDA [7] 89.96 96.54
LLE [92] 91.47 95.75
LE [2] 80.01 86.39
S-ISOMAP [29] 85.12 89.93
MRDL [127] 92.20 96.32
JELSR [46] (KNN Graph) || 75.03 84.54
JELSR (Sparse Graph) 85.31 90.13
FGSE [21] (KNN Graph) || 93.36 98.18
FGSE (Sparse Graph) 93.71 98.31
JEFW 94.26 98.46
KJEFW 94.85 99.49
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4.3/ CONCLUSION

This chapter presented two joint graph-based embedding and feature weighting meth-
ods for recognition and classification tasks. The two methods can be applied either in
a semi-supervised setting or in a supervised setting. More precisely, we proposed a
flexible graph-based semi-supervised embedding as well as its kernel variant. The pro-
posed schemes retained the merits of Flexible Manifold Embedding and the discrimant
graph-based nonlinear embedding. The proposed methods simultaneously estimate a
discriminant nonlinear embedding as well as its inductive regression model while, at the
same time, estimating the weights of the original features. The first proposed criterion
aims at getting a smooth and discriminant nonlinear subspace that is very close to a lin-
ear subspace. The second proposed criterion (kernel variant) aims at getting a discrim-
inant nonlinear subspace that is very close to a kernel based mapping. The proposed
methods were evaluated on six public image databases. We provided a comparison with
several competing linear and nonlinear methods performing label propagation or graph-
based embedding. Our proposed methods outperformed the competing methods. This
indicates that the embedding provided by the proposed methods was more discriminative
than that provided by the competing graph-based embedding techniques.
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Figure 4.1: Recognition accuracy as a function of the feature dimension in the embedded
space for the 8 Sports Event Categories Dataset. The training samples were set to 50 %
of the whole dataset. The classifier used was the nearest neighbor classifier.
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Figure 4.2: Recognition accuracy as a function of the feature dimension for the Scene 15
Dataset. The training samples were set to 50 % of the whole dataset. The classifier used
was the nearest neighbor classifier.
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Caltech 101 Object
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Figure 4.3: Recognition accuracy as a function of the feature dimension in the embedded
space for Caltech 101 Object. The training samples were set to 80 % of the whole dataset.
The classifier used was the nearest neighbor classifier.
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Figure 4.4: Recognition accuracy as a function of feature dimension for MIT 67 Indoor
Scene. The training samples were set to 80 % of the whole dataset. The classifier used
was the nearest neighbor classifier.
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Figure 4.5: Recognition accuracy as a function of A for the proposed method JEFW (a)
and the kernel variant KIEFW (b) on the 8 Sports Event Categories Dataset. The training

samples were set to 50 % of the whole dataset. The classifier used was the nearest
neighbor classifier.
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Figure 4.6: Recognition accuracy as a function of A for the proposed method JEFW (a)
and the kernelized variant KIEFW (b) on the Scene 15 Dataset. The training samples
were set to 50 % of the whole dataset. The classifier used was the nearest neighbor
classifier.
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Figure 4.7: Recognition accuracy as a function of yu and y for the proposed method
JEFW (a) and the kernel variant KIEFW (b) on the 8 Sports Event Categories Dataset.
The training samples were set to 50 % of the whole dataset. The classifier used was the
nearest neighbor classifier.
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Figure 4.8: Recognition accuracy as a function of 1 and y for the proposed method JEFW
(a) and the kernel variant KIEFW (b) on the Scene 15 Dataset. The training samples were
set to 50 % of the whole dataset. The classifier used was the nearest neighbor classifier.
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INDUCTIVE SEMI-SUPERVISED LEARNING WITH
GRAPH CoNvoLUTION BAsSeED REGRESSION

This brief chapter introduces a framework for supervised and semi-supervised learning by
estimating a non-linear embedding that incorporates Spectral Graph Convolutions struc-
ture. The proposed algorithm exploits data-driven graphs in two ways. First, it integrates
data smoothness over graphs. Second, its regression loss function jointly uses the data
and their graph in the sense that the regressor model sees convolved data samples. The
resulting framework can solve the problem of over-fitting on local neighborhood struc-
tures for image data having varied natures like outdoor scenes, faces and man-made
objects. The proposed Graph Convolution based Semi-supervised Embedding (GCSE)
not only provides a new perspective to non-linear embedding research but also induces
the standpoint on Spectral Graph Convolutions methods. A series of experiments are
conducted on four image datasets in order to compare the proposed method with some
state-of-art semi-supervised methods. This evaluation demonstrates the effectiveness of
the proposed embedding method.

5.1/ RELATED WORK

5.1.1/ SpectraL ConvoLuTioN NETWORKS: THEORETICAL BACKGROUND

Spectral convolutions on graph are defined as the multiplication of a signal x € RN with a
filter g = diag(w) where w € RN is parameterized in Fourier domain:

gxx=Ug,UTx (5.1)

where UTx and g, could be regarded respectively as the graph Fourier transform of x
and a function of A which is g(A), A being the diagonal matrix of the eigenvalues of the
graph Laplacian L. For solving the problem of expensive computing cost, [35] proposed
Chebyshev polynomials to unfold gy,:

K
9~ ) wiTi(A) (5:2)
k=0

where Ty refer to Chebyshev polynomials. Ty(x) = 2x Tx_1(x) — Tx_o(x) , and To(x) = 1,
T1(x) = x. The largest eigenvalue of the Laplacian matrix L is denoted by Apa.x. The

83
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diagonal matrix A is given by A = A—A I. wy is Chebyshev coefficients. So the spectral
convolutions on graphs with a truncated expansion in terms of Chebyshev polynomials
could be rewritten:

K
g*x~ Zwk-Tk(i)x (5.3)
k=0
where - can represent the scalar product, L = \—L ~IandL =1-D:SDz. If we

just expand 14-order polynomial in (5.3) to limit convolution operation, and according to
further approximate in the linear formulation where K=1 and A.x = 2 in the (5.3), we get

8w X XX W0 - X+ Wy - ( L-I)x

/\max

=wo-x—w; - D 2SD 1x (5.4)

where wy and w; are free parameters. If we constrain the number of parameters to
address over-fitting and to minimize the number of matrix multiplications, w = wy = —w
could be used in (5.4). We get the first order graph convolution as:

goxx=w-(I+D2SD7)x

We approximate An.x ~ 2 which means that the eigenvalues of T + D~:SD": are
between 0 and 2. This operator will lead to numerical unstable. So the renormalization
trick is introduced which replaces I+ D-2SD~z by D-28D~2, where § =S + I and D;; =
%8

)

5.1.2/ GrapH ConvoLuTioNAL NETWORKS (GCN) FOR TRANSDUCTIVE SEMI-SUPERVIZED LEARN-
ING

The Graph Convolutional Networks (GCN) algorithm in [52] presented a deep neural
network approach for semi-supervised learning on graph-structured data. For semi-
supervised label propagation, and with two layers, the GCN model has the following form:

E = f(X,A) = softmax (AReLUAX" W®)w(®) (5.5)

where X' € R¥*4 denotes the input data with N samples and d dimensions, A is a renor-
malized graph matrix A = D-28D-2, WO® e R™H js an input-to-hidden weight matrix
for a hidden layer with H features, RelLU () is the rectified linear activation function, and
WO e RFXC s a hidden-to-output weight matrix with C feature maps. C denotes the
number of classes. Softmax denotes the softmax activation function. E € RN*C is the
matrix of labels associated with all samples. The work in [52] estimates the model pa-
rameters WO WO using deep learning tools in which the loss function is given by the
cross-entropy error between the known labels and the output of the model.

5.2/ OvVERVIEW OF PROPOSED APPROACH

The GCN concept which is briefly introduced in the previous section motivates us to
jointly use the data and their associated graph in order to derive a non-linear embedding
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of the data and not only their labels as it is the case in [52]. The basic idea is to replace
data samples by their convolution with a certain graph. To this end, we may use a first
order approximation of spectral graph convolutions to replace the original samples data
in regression model. Our goal is to estimate an inductive non-linear embedding in which
the regressor is based on graph convolution.

In our proposed scheme, the sought non-linear projection should be as close as pos-
sible to a GCN model. Thus, we should impose that Z ~ D-2§D-2XTW. Thus, the
proposed linear regression model is given by the unknown matrix W € RN*N which can
be seen as filter parameters or transform matrix. The non-linear projection Z is the con-
volved signal matrix. We also could add a bias term b to the regression model. Thus, we
have:

Z~D 28D :XTW +1b7 (5.6)

Our proposed model not only inherits the latent advantages of spectral graph convo-
lutions in reducing the problem of over-fitting on local neighborhood structures for graphs
with wide node degree distributions, (e.g., scene and face images), but also provides the
advantages of margin-based discriminant embedding and manifold smoothness. So the
objective function focuses on the joint estimation of the non-linear projection data Z, the
linear transform matrix W and the shift vector b. Thus, these unknowns are estimated by
minimizing the following criterion:

- N A A 2
WZ,W,b) = trZT (L + AMDZ) + u (IWIE +7 [D-28D2XTW + 17 - z||2)
st.Z'DZ =1 (5.7)

In the sequel, L + A M; will be denoted by V. A, u and y are regularization parameters.
The above criterion simultaneously provides graph smoothness in locality preserving (im-
posed by the term tr(Z" L Z), margin maximization of labeled data samples (imposed by
the term tr(Z'M, Z), and spectral graph convolution based regression. The above citerion
imposes ¢, regularization on the transform matrix W.

In the sequel, we show how the optimal solution for function (5.7) can be derived. We
vanish the derivatives of the objective function (5.7) with respect to W and b. This yields:

b= %(ZTI -WTX") (5.8)

W = y(X"H.H!X + I)"'X"H.Z (5.9)

where X = D728D72X” and H. = I - £117. Besides, let P denotes the matrix

y(yXTHHIX + I)"'XTH,, thus Eq. (5.9) can be rewritten as W = PZ. So the spectral
graph regression could be deduced by:

1

. . 1 .
XW+1bT =XPZ + —-1172 - —117XPZ
N N

1 . 1
=(I-=-11HXPZ+=11"Z
( N ) N

= HC)A(PZ+%11TZ (5.10)
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Algorithm 3 Proposed GCSE algorithm
Input: Data matrix: X; graph matrix S; parameters: u, A and y.
Output: Non-linear embedding matrix Z; linear transform W and bias term b;
1: Renormalize the matrix § = 1 + S using D~-28D~z;
2: Compute the spectral graph convolutions matrix X = D-28D-z XT;
3: Estimate Z, W and b using Egs. (5.11), (5.9) and (5.8) respectively;

Let Q = (I- £111)XP + £117, thus Eq. (5.10) can be written in a more compact form
XW +1bT = Q Z. By plugging Egs. (5.8), (5.9) and (5.10), into (5.7), this one becomes:

h=tr(Z"VZ)+utr(Z"P"PZ) + uy tr(QZ - Z)'(Q Z - Z))
= tr(Z"(V + uPTP + uy(Q - D'(Q - 1))Z)

The constrained optimization problem becomes:
Z = argmin tr(ZT(V+uPTP+uy(Q -11(Q-1)2)
st 2Dz =1 (5.11)

The optimization problem in (5.11) is a generalized eigen-decomposition problem that
can be solved efficiently. The solution for the Z matrix is given by the eigenvectors corre-
sponding to the smallest eigenvalues.

Once the non-linear projection Z is estimated, the associated regression model (W and
b) are obtained using Egs. (5.9) and (5.8), respectively. Algorithm 3 summarizes the main
steps of the proposed graph convolution based semi-supervised embedding (GCSE). A
graphical illustration of the proposed method is given in Figure 5.1. The inductive property
of the proposed method allows to project an unseen test data sample x,, € R?. This is
given by z, = W%, + b. The convolved version %, is computed as follows. First, we
compute the edge weights between x, and the original data samples X. This allows
expanding the original graph matrix, S, by one row and one column. This expanded
graph matrix is then renormalized in the same way described above. %, is obtained
by ! = an4 X’T where ay,; denotes the last row of the normalized graph matrix and
X" = [X";x,T].

5.2.1/ DIFFERENCES WITH DEEP LEARNING MODELS

A convolutional neural network (CNN) [54, 58] is a special neural network that has been
widely applied to a variety of pattern recognition problems, such as computer vision,
speech recognition, etc. The architecture of CNNs consists of a cascade of layers where
each layer can be a convolutional layer, a sub-sampling layer, or a fully connected layer.
The CNNSs can provide an end-to-end solution to the image analysis and classification.

On the other hand, the Graph Convolutional Networks are a family of algorithms for
semi-supervised learning that use the collection of data samples together with their as-
sociated graph. It motivates the convolution via a localized first-order approximation of
spectral graph convolutions. It is worth noting that although our model is inspired by the
concept of Graph Convolution presented in [52], our work has several differences with the
latter. First, our work addresses flexible non-linear data embedding while the work in [52]
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addresses label estimation using several layers of Graph Convolutions. Second, our work
provides an inductive model that is able to embed unseen data samples, whereas the
work in GCN is a transductive model. Third, our model is obtained using a closed-form
solution, whereas the solution in GCN is based on iterative schemes. Fourth, the main
application domain in GCN is the semi-supervised document classification for which bi-
nary graphs are already defined and fixed. In our work, we analyze image datasets for
which similarity graphs are more challenging to estimate.

(@) (b)
X Zz
®
X5 @ @ Zse z;
(©) (d)

Figure 5.1: Different steps of the proposed method. (a) Original image data. (b) Con-
structed pairwise similarity graph. (c) Blended data samples using D-28D-2XT. (d) The
obtained nonlinear projections.

5.3/ EXPERIMENTS AND RESULTS

This section presents the performance of the proposed embedding on different kinds of
image data which include scene, face and object datasets. We use the semi-supervised
setting since it is more challenging than the supervised one. The datasets used are
8 Sports Event Categories dataset [60], Scene 15 dataset [55], Extended YALE Face
dataset [30] and COIL-20 object [72] dataset, which have already been introducted in
the previous chapters. In the 8 Sports Event Categories and Scene 15 datasets, we
use block-based Local Binary Patterns (LBP) [81] as image descriptor. For these two
datasets, the number of blocks is set to 10x10 and the LBP descriptor is the uniform one
having 59 features. For the face datasets, due to the small size of the face images, we
use image raw brightness as image descriptor.

5.3.1/ EXPERIMENTAL SETUP

We compare our proposed GCSE method with several state-of-the-art algorithms: Flex-
ible Graph-based Semi-supervised Embedding algorithm (FGSE) [21], Manifold Regu-
larized Deep Learning Architecture Algorithm (MRDL) [127], Kernel Flexible Model Em-
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bedding (KFME) [22], Joint Embedding Learning and Sparse Regression (JELSR) [46],
Supervised Laplacian Eigenmaps (SLE) [89], Semi-Supervised Discriminant Analysis
(SDA) [7], Semi-Supervised Discriminant Embedding (SDE) [126], LLE [92]. All the above
methods provide data embedding except the KFME method which is a label propagation
method. Once the embedding is obtained, the data are classified in the obtained space
using the Nearest Neighbor Classifier (NN). The MRDL method is used with two layers
in our tests. The sparse graph S is computed using the method proposed in [127] which
proposes a kernel sparse algorithm for the similarity matrix estimation. We use the nor-
malized graph Laplacian matrix L = I — D-2SD~z. For the JELSR and FGSE methods,
we use two types of graphs: the classic KNN graph and the kernel sparse graph of [127]
to compare the performance of the different graphs. The proposed method has three
balance parameters: A, u and y. We set each parameter to a subset of values belong-
ing to {1073,102,107%,1,10%,10%,10%,10° 10%}. We then report the recognition accuracy
(using the best average recognition rate) of all methods from the best parameter configu-
ration. All results are obtained with ten random splits of the data into a labeled set and an
unlabeled set. For the labeled sets, two different percentages are considered for every
dataset. According to [46], JELSR algorithm is used for unsupervised feature selection
by computing the scores of all features. It also can be used for graph-based embedding.

5.3.2/ METHOD COMPARISON

The performance of the different competing methods is summarized in Tables 5.1, 5.2,
5.3 and 5.4. The results correspond to four different datasets and different labeling per-
centages. These results correspond to an average over 10 random splits. In these tables,
the two methods JELSR and FGSE were used with two types of graph: KNN graphs and
sparse graphs.

Figures 5.2 depicts the average performance of the competing methods (KFME, LLE,
JELSR, MRDL, FGSE and our proposed algorithm (GCSE)) as a function of the number
of the features in the projection space. This figure corresponds to the 8 Sports and Scene
15 datasets. The KFME algorithm does not depend on the feature dimension since it is
a label propagation method. The maximum dimension of SDA method is given by C — 1,
where C is the number of classes.

From the obtained results depicted in the previous tables and figures, we can draw the
following conclusions:

e Our proposed algorithm GCSE has achieved very good performance in all four
datasets: 8 Sports Event Categories Dataset, Scene 15 Dataset, Extended YALE
Face Dataset and COIL-20 Object Dataset. For the first two datasets, the supe-
riority of the proposed method is obvious. This can be explained by the fact the
use of Graph Convolution principle in the regression function can tackle the class
high variability. The proposed method was slightly outperformed by KFME on the
COIL-20 dataset corresponding to the case of 20% of labeled data.

e By inspecting the results obtained by the FGSE (sparse), FGSE (KNN), JELSR
(sparse), JELSR (KNN), we can observe that the kernel sparse graph used in graph
smoothness has significantly improved the performance of the same frameworks
that use the classic KNN graph.
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Table 5.1: The best average recognition rate in (%) on the 8 Sports Event Categories
dataset (10 random splits).

Method /8 Sports |P =50% P =70%
LLE [92] 54.92 59.10
SLE [89] 51.40 50.90
SDA [7] 63.46 66.06
SDE [126] 51.98 55.96
MRDL [127] 51.77 | 52.85
KFME [22] 62.58 65.03
JELSR (KNN) [46] 52.46 55.48
JELSR (sparse) 55.92 57.60
FGSE (KNN) [21] 60.96 63.24
FGSE (sparse) 64.72 67.18
GCSE 67.04 | 69.97

e From Figure 5.2, we can observe that by increasing the feature dimension the per-
formance cannot be improved. In fact, the highest rate is always reached with very
few features indicating that the proposed method has achieved a very good dimen-
sionality reduction.
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Table 5.2: Average recognition rate in (%) on the Scene 15 dataset (10 random splits).

Method / Scene 15|/ P =50% P = 70%
LLE [92] 44,26 | 47.42
SLE [89] 50.48 | 50.65
SDA [7] 61.52 | 63.73
SDE [126] 46.10 | 48.07
MRDL [127] 46.59 | 47.91
KFME [22] 60.89 | 63.74
JELSR (KNN) [46] 41.37 | 44.24
JELSR (sparse) 51.83 58.59
FGSE (KNN) [21] 50.96 | 55.62
FGSE (sparse) 64.78 68.17
GCSE 67.26 | 70.36

Table 5.3: Average recognition rate in (%) on the Extended Yale dataset (10 random
splits).

Method / Extended YALE ||P = 20% |P = 40%
LLE [92] 91.47 | 95.75
SLE [89] 83.20 93.39
SDA [7] 89.96 96.54
SDE [126] 85.92 92.76
MRDL [127] 76.78 78.97
KFME [22] 90.39 92.85
JELSR (KNN) [46] 75.03 84.54
JELSR (sparse) 85.31 90.13
FGSE (KNN) [21] 93.36 98.18
FGSE (sparse) 93.71 98.31
GCSE 94.74 | 98.53

Table 5.4: Average recognition rate in (%) on the COIL-20 Object dataset (10 random
splits).

Method / COIL20(|P = 10%|P = 20%
LLE [92] 91.81 94.71
SLE [89] 82.03 | 88.56
SDA [7] 95.33 | 98.07
SDE [126] 89.10 | 95.33
MRDL [127] 88.00 | 88.86
KFME [22] 96.98 | 98.56
JELSR (KNN) [46] || 85.48 | 93.01
JELSR (sparse) 93.80 96.88
FGSE (KNN) [21] 86.19 | 93.61
FGSE (sparse) 93.60 97.83
GCSE 96.60 | 99.50
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Figure 5.2: Recognition accuracy vs. feature dimension for 8 Sports Event Categories
Dataset and Scene 15 Dataset. The unlabeled samples per class were 50%. The classi-

fier used was 1-NN.
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5.4/ CoNcLUSION

We proposed a framework for discriminative non-linear Graph-based embedding with
Spectral Graph Convolutions Structure in this chapter. This framework can solve the over-
fitting on local neighborhood structures for graphs. The framework combines many crite-
ria: manifold smoothness, Margin Discriminant Embedding and regression with Graph
Spectral Convolutions. Experiments on scene, face and object image datasets have
shown the superiority of this model with respect to many competing algorithms.



6

SEMI-SUPERVISED ELAsTIC MANIFOLD
EMBEDDING WITH DEEP LEARNING
ARCHITECTURE

Graph-based embedding aims to reduce the dimension of high dimensional data and
to extract relevant features for learning tasks. In this letter, we propose an Elastic graph-
based embedding with deep architecture which deeply explores the structural information
of the data. We introduce a flexible deep learning that can overcome the limitations and
weaknesses of single-layer learning models. The proposed deep architecture incorpo-
rates the geometrical manifold structure of the data. The resulting framework can be
used for semi-supervised and supervised settings. Besides, the resulting optimization
problems can be solved efficiently. We apply the algorithm on five public image datasets
including scene, face and object datasets. These experiments demonstrate the effec-
tiveness of the proposed embedding method, and also show that the proposed method
compares favorably with many competing state-of-the-art graph-based methods.

6.1/ SHorT REVIEW OF DEEP LEARNING

Deep learning has fueled great strides in a variety of computer vision problems, such as
object detection, motion tracking, action recognition, human pose estimation, and seman-
tic segmentation. It allows computational models of multiple processing layers to learn
and represent data with multiple levels of abstraction mimicking how the brain perceives
and understands multi-modal information, thus implicitly capturing intricate structures of
large-scale data. The ambition to create a system that simulates the human brain fueled
the initial development of neural networks. Table 6.1 summarizes some important mile-
stones in the history of neural networks and machine learning, leading up to the era of
deep learning.
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Table 6.1: Important milestones in the history of neural networks and machine learning,
leading up to the era of deep learning.

Milestone/contribution Contributor year

MCP model McCulloch & Pitts, 1943
Backpropagation Werbos, 1974

Boltzmann Machine Ackley, Hinton & Sejnowski, 1985
Recurrent Neural Network Jordan, 1986

Autoencoders Rumelhart, Hinton et al., 1986

LeNet [57] LeCun, 1990

LSTM [44] Hochreiter & Schmidhuber, 1997
Deep Belief Network [43] Hinton, 2006

Deep Boltzmann Machine [94] | Salakhutdinov & Hinton, 2009
AlexNet [54] Krizhevsky, Sutskever, & Hinton, 2012
ResNet [37] Kaiming He, Xiangyu Zhang et al., 2016
GCN [52] Thomas N. Kipf, & Max Welling, 2017

6.2/ OvVERVIEW OF PROPOSED APPROACH

In this section, we will introduce the Elastic Manifold Embedding with deep architecture.
The main idea is to utilize deep architecture learning to extract useful high-level features
from low-level ones. Part of works have already be introduced on Chapter 3. In Subsec-
tion 3.1, the authors introduced a flexible semi-supervised feature extraction method [21].

Our learning proceeds layer by layer. Each layer has two main steps: (i) Estimating a
data graph over the current data representation, and (ii) Computing the Elastic embedding
(i.e., the nonlinear embedded data). We proceed as follows:

STEP 1. Kernelized and sparse graph.

In this step, we construct a kernelized and sparse graph over the current layer data.
Let S denote the current graph. We were inspired by the graph construction method that
is presented in [127]. This method provides a kernelized sparse graph by minimizing the
following objective function:

. 2 2
min 000 = ) S[|, + aliSlly + BIISIE (6:1)
where a and f are two positive regularization parameters. ¢(X) is the kernel representa-
tion of the current input data X.

The basic idea is to compute a non-negative graph affinity matrix using data self
representation in kernel space with two regularization terms. The first regularization
term, ||S||% = va Zﬁy \/S(i, j), is responsible for the graph sparsity. The second term,

||S||§ =) Zj Sz(z', j) , is responsible for the stability of the estimated graph. Details on how
to solve the above optimization can be found in [127].
STEP 2. Elastic manifold learning.

This step estimates the nonlinear embedded data Z from the current input data rep-
resentation X and its associated graph S. In order to compute the non-linear embedding
matrix Z one should optimize the objective function in Eqg. (3.3). In this elastic manifold
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learning paradigm, the non-linear embedded data and the linear model are simultane-
ously estimated.

We vanish the derivatives of the objective function Eq. (3.3) with respect to W and b.
This yields 9% = 0 and 42 = 0.

After some algebraic manipulations, we have:

b= %(le -WTX1) (6.2)

W= yX X +1)71X.Z2 = AZ (6.3)

where A = y(yX. X! + I)™'X.. X, is the centered data matrix, i.e., X, = XH, with H, being
the centering matrix H, = I — ﬁllT. We use the above expression for W and b in the
regression function:

1 1
X"™W +1bT = XTAZ + N11Tz - N11TxTAz

1 1
=(1-=11"HX"AzZ + =11"Z
=HX'AZ + %nTz
=BZ (6.4)
where B = HXTA + 117,
Finally, Eq. (3.3). can be written as
tr(ZTL1Z) + u - tr(ZTATAZ) + py - tr(BZ — Z)'(BZ - Z))
=tr(Z"(Ly + uATA + uy(B -0 (B -1))Z)
=tr(ZT (L + E)Z) (6.5)
where E = yATA + uy(B-DT(B-I)and L; = L + A M,.
Thus, the non-linear embedding Z is estimated by minimizing the above criterion under
the constraint used in the criterion Eq. (3.3):

Z = argmin tr(ZT(Ly + E)Z) s.t. ZTD)Z =1 (6.6)

where D; is the augmented diagonal matrix associated with Eq. (3.3).

Thus, Z can be solved by generalized eigenvalue decomposition. Once Z is estimated,
the corresponding regression model (W, b) is estimated by Eqg. (6.3) and (6.2), respec-
tively.

Algorithm 4 shows the main steps of the proposed Semi-supervised Elastic Manifold
Embedding with Deep Architecture.

We emphasize that the proposed framework also provides a deep linear model repre-
sented by the cascade of all linear models {(W1,by), ..., (W, b)}.
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Algorithm 4 Semi-supervised Elastic Manifold Embedding with Deep Architecture
Input:

- Data samples: X € RIXN;

- Number of layers, L

- Regularization parameters: u, A and y.
Output:

- Non-linear embedding matrix Z € R™N (m is the embedding dimensionality, m < N);

- Linear model {(W1, by), ..., (W, bp)}

Process:

- Initialize the current layer number, ¢l =1

- Initialize the current layer input data X; = X;

1: while ¢/ < L do
2: Based on the current layer data, X, compute the kernelized sparse graph matrix S

using Eq. (6.1). Compute the normalized graph Laplacian matrix L = I - D~1/2SD'/?;
3 Based on the current Laplacian matrix, compute the non-linear embedded data
Z € RN*N ysing Eq. (6.6). Estimate W,; and b, using Eq. (6.3), and (6.2), respec-
tively;

c«—cl+1;

Set the next layer input data by using X; = ZT(1 : N,1 : m) € R™N(m is the next
layer embedding dimensionality, m < N).

AN

Table 6.2: Best average recognition rate (%) obtained on the 8 Sports Event dataset using
10 random splits with two different percentages for the training part.

Dataset 8 Sports Event
Method P=50% | P=70%
LLE [92] 54.92 | 59.10
SDA [7] 63.46 | 66.06
LE [2] 51.48 | 54.07
GFHF [134] 62.25 | 64.29
RMGT [67] 62.58 | 64.20
SDE [12] 51.98 | 55.96
MRDL [127] 58.48 | 60.51
KFME [22] 62.58 | 65.03
MLAN [75] 56.30 | 59.84
JELSR [46] 55.92 | 57.60
JELSR (KNN) [46] 52.46 | 55.48
FSSE (KNN) [21] 59.96 | 63.24
Proposed (one layer) 64.72 | 67.18
Proposed (two layers) 65.96 | 68.53
Proposed (three layers) || 66.46 | 69.33
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Table 6.3: Best average recognition rate (%) obtained on the Scene 15 dataset using 10
random splits with two different percentages for the training part.

Dataset Scene 15
Method P=50% | P=70%
LLE [92] 4426 | 47.42
SDA [7] 61.52 | 63.73
LE [2] 41.47 | 43.68
GFHF [134] 61.58 | 63.57
RMGT [67] 61.59 | 63.49
SDE [12] 46.10 | 48.07
MRDL [127] 52.16 | 54.64
KFME [22] 60.89 | 63.74
MLAN [75] 40.71 | 42.53
JELSR [46] 51.83 | 58.59
JELSR (KNN) [46] 41.37 | 44.24
FSSE (KNN) [21] 50.96 | 55.62
Proposed (one layer) 64.78 | 68.17
Proposed (two layers) 65.93 | 68.41
Proposed (three layers) || 66.43 | 69.01

Table 6.4: Best average recognition rate (%) obtained on the COIL-20 dataset using 10
random splits with two different percentages for the training part.

Dataset COIL-20
Method P=10% | P=20%
LLE [92] 91.81 | 94.71
SDA [7] 95.33 | 98.07
LE [2] 90.39 | 96.38
GFHF [134] 96.01 | 98.14
RMGT [67] 96.06 | 98.18
SDE [12] 89.10 | 95.33
MRDL [127] 93.02 | 96.10
KFME [22] 96.98 | 98.56
MLAN [75] 92.26 | 95.21
JELSR [46] 93.80 | 96.88
JELSR (KNN) [46] 75.03 | 84.54
FSSE (KNN) [21] 86.19 | 93.61
Proposed (one layer) 93.60 | 97.83
Proposed (two layers) 96.33 | 98.38
Proposed (three layers) | 96.32 | 98.50
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Table 6.5: Best average recognition rate (%) obtained on the Extended Yale B dataset
using 10 random splits with two different percentages for the training part.

Dataset Extended Yale B
Method P=20%| P=40%
LLE [92] 91.47 | 95.75
SDA [7] 89.96 | 96.54
LE [2] 80.01 | 86.39
GFHF [134] 89.26 | 92.74
RMGT [67] 89.82 | 93.04
SDE [12] 85.92 | 92.76
MRDL [127] 92.20 | 96.32
KFME [22] 90.39 | 92.85
MLAN [75] 76.27 | 85.96
JELSR [46] 85.31 | 90.13
JELSR (KNN) [46] 75.03 | 84.54
FSSE (KNN) [21] 93.36 | 98.18
Proposed (one layer) 93.71 | 98.31
Proposed (two layers) 94.71 | 98.93
Proposed (three layers)|| 95.04 | 99.09

Table 6.6: Best average recognition rate (%) obtained on the PFO1 dataset using 10
random splits with two different percentages for the training part.

Dataset PFO1 dataset
Method P=30% | P=50%
LLE [92] 67.91 | 78.53
SDA [7] 78.29 | 89.12
LE [2] 45.17 | 52.72
GFHF [134] 52.66 | 61.92
RMGT [67] 53.15 | 62.50
SDE [12] 66.04 | 72.93
MRDL [127] 67.80 | 76.63
KFME [22] 56.67 | 66.01
MLAN [75] 43.31 | 55.30
JELSR [46] 59.33 | 68.86
JELSR (KNN) [46] 52.16 | 63.31
FSSE (KNN) [21] 77.67 | 89.77
Proposed (one layer) 80.39 | 90.56
Proposed (two layers) 82.66 | 92.54
Proposed (three layers) | 83.05 | 92.50
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6.3/ EXPERIMENTS AND RESULTS

6.3.1/ DAaraseTs

Our method will be evaluated on six different public datasets including four scene datasets
and one face dataset. These are as follows: 8 Sports Event Categories Dataset [60],
Scene 15 Dataset [55], Extended YALE Face Dataset B [30], COIL-20 Object dataset [72]
and Postech Faces 01’ Face Dataset (PF01) [51], which all datasets except PFO1 have
already been introducted in the previous chapters. For PFO1, it contains the true-color
face images of 103 people, representing 17 various images per person. All of the people
in the database are Asians. We randomly select 30% and 50% of data as the training set.

6.3.2/ EXPERIMENTAL SETUP

For the datasets depicting outdoor scenes, we use the block-based Local Binary Pat-
terns as the image descriptor. The utilization of the LBP descriptor was motivated by its
efficiency. Indeed, the LBP descriptor is a well-known image descriptor that is fast and
invariant to monotonic illumination changes. The local LBP descriptor is the uniform one
having 59 features. Thus, for an image with b non-overlapping blocks, the length of the
image descriptor is 59 b. In our implementation, we used 100 blocks. For the COIL-20
Object, Postech Faces 01’ Face and Extended YALE Face Dataset, we use image raw
brightnesses.

We compare the proposed framework with several state-of-the-art algorithms: Lo-
cally Linear Embedding (LLE) [92], Semi-Supervised Discriminant Analysis (SDA) [7],
Laplacian Eigenmaps (LE) [2], GFHF [134], RMGT [67], Semi-Supervised Discriminant
Embedding (SDE) [125], Manifold Regularized Deep Learning Architecture Algorithm
(MRDL) [127], Kernel Flexible Model Embedding (KFME) [22], Multi-View Learning With
Adaptive Neighbors (MLAN) [75], Joint Embedding Learning and Sparse Regression
(JELSR) [46], Flexible Semi-Supervised Embedding (FSSE) [21]. Note that MLAN [75]
was proposed for multiview cases (i.e., each image has several types of descriptors). It
is used for unsupervised clustering and semi-supervised learning. In our experiments,
we only use one single view when MLAN is used. All the above methods provide data
embedding except the GFHF, RMGT, KFME and MLAN methods which are label propa-
gation methods. Once the embedding is computed, data are classified in the obtained
space using the Nearest Neighbor (NN) Classifier. In MRDL algorithm, two layers are
used in our tests. According to [46], JELSR algorithm is used for unsupervised feature
selection by computing the scores of all features. It also can be used for graph-based
embedding. For the JELSR method, we use two types of graphs: the classic KNN graph
and the kernel sparse graph of [127] to compare the performance of the different graphs.
Our proposed method has three balance parameters: A, u and y. We set each parameter
to a subset of values belonging to {1,10%,10%, 10%}. In addition to the regularization param-
eter, the intermediate layers need to fix the dimension m. This belonged to {C,2C,3C,4C}
where C is the number of classes. We then report the best recognition accuracy (best
average recognition rate) of all methods from the best parameter configuration. All results
are obtained with ten random splits of the data into a train set and a test set. For train
sets, two different percentages are considered for every dataset.
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6.3.3/ METHODS COMPARISON

In this section, we compare our proposed method with the state-of-the-art methods on
the five public datasets. Tables 6.2, 6.3, 6.4, 6.5 and 6.6 summarizes the obtained av-
erage recognition rate obtained by our proposed algorithm and the competing methods:
LLE, SDA, LE, GFHF, RMGT, SDE, MRDL, KFME, MLAN, JELSR, JELSR (KNN), FSSE
(KNN). The results are associated with the five image datasets.

Figures 6.1 depicts the performance of the competing methods LLE, SDA, SDE,
KFME, JELSR and MRDL as well as that of our proposed method as a function of the
number of non-linear features, for the two image datasets: 8 Sports Event Categories
Dataset and Extended YALE Face Dataset. The framework has been tested with one,
two, and three layers. In the figure, one curve is associated with each case. We empha-
size that the KFME algorithm does not depend on the feature dimension since it is a label
embedding method. In fact, the used competing methods are either linear or nonlinear.
For the nonlinear methods, the maximum feature dimension is the number of samples
N. For the linear methods, the maximum feature dimension is the number of original
features d. In the figure, we presented the accuracy curves till dimension 100 in the pro-
jection space. This is motivated by the fact that highest performances are reached with a
low number of features.

6.3.4/ EFrFecT oF THE MopEeL DepTH

In these experiments, we investigate the influence of model depth (number of layers) on
classification performance. We report results on the 8 Sports Event Categories Dataset
and Extended YALE Face Dataset. Figures 6.2 illustrates the recognition rate versus the
number of layers.

6.3.5/ ANALYSIS OF RESULTS

From the obtained tables and figures, we can see that the proposed method has achieved
superior recognition performance on different types of images. Based on these experi-
mental results, a number of interesting observations can be made. These are as follows:

e According to Tables 6.2, 6.3, 6.4, 6.5 and 6.6, we can observe that our proposed
method outperformed all compared state-of-the-art methods for different percent-
ages for the training part on four public image datasets, except for the COIL-20
Object Dataset. The proposed method was slightly outperformed by KFME on the
COIL-20 dataset corresponding to the 10% and 20% train data experiment.

e From Figures 6.1, we can observe that by increasing the feature dimension, the rate
cannot be improved. In fact, the highest rate is always reached with very few fea-
tures indicating that the proposed method has achieved a very good dimensionality
reduction. Unlike many non-linear embedding methods whose performance deteri-
orates by increasing the number of features, ours do not have such disadvantage.

e From Figures 6.2, we can observe that with the increase of layers of the deep archi-
tecture, the recognition accuracy will increase with the best results being obtained
with four or five layers. We also observe that for models deeper than eight layers on
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the 8 Sports Event Categories and Extended YALE Face Dataset, the performance
cannot be increased.

6.4/ CONCLUSION

We proposed a framework for Elastic graph-based embedding with deep learning archi-
tecture which explores the structural information of the data in this chapter. This frame-
work can solve the over-fitting on local neighborhood structures in graphs. The framework
integrates many criteria like Manifold Smoothness, Elastic Manifold Embedding and Deep
Learning architecture. Experiments on the scene, face and object image datasets have
shown the superiority of the proposed method with respect to many competing algorithms.
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Figure 6.1: Recognition accuracy as a function of the feature dimension in the embedded
space for 8 Sports Event Categories Dataset and Extended YALE Face Dataset. The
training samples were set to 50 % and 20 % of the two datasets, respectively. The
classifier used was the nearest neighbor classifier.
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Figure 6.2: Influence of model depth (number of layers) on classification performance
for 8 Sports Event Categories Dataset and Extended YALE Face Dataset. The training
samples were set to 50 % and 20 % of the two datasets, respectively. The classifier used
was the nearest neighbor classifier.
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CONCLUSION AND PERSPECTIVES

7.1/ CONCLUSION

In this thesis, we focused on Graph-based Manifold Learning techniques and its applica-
tions to image recognition and classification.

First, we introduced and reviewed some state-of-the-art methods in Graph-based Man-
ifold Learning in Chapters 1 and 2. This included topics about Graph Construction and
Large-Scale Graphs in Section 2.1, Unsupervised Graph-Based Manifold Learning in
Section 2.2, Semi-supervised Graph-Based Manifold Learning in Section 2.3, Graph-
based Label Propagation in Section 2.4, Graph-Based Dimensionality Reduction in Sec-
tion 2.5, Graph-based Feature Selection in Section 2.6 and the other State-of-the-art top-
ics on Graphs in Section 2.7 (e.g., Deep Learning on Graphs and Manifolds in Subsection
2.7.1, Graph-based application on Learning to Hash in Subsection 2.7.2).

A series of related algorithms are introduced in Chapters 3, 4, 5 and 6. These algo-
rithms focus on nonlinear and inductive algorithms (i.e., the proposed methods are able
to estimate the embedding of unseen samples). They are suitable for working in super-
vised and semi-supervised learning settings. While the proposed techniques are generic
pattern recognition tools, our experimental evaluation was mainly conducted on image
datasets. The specific context is as follows:

In Chapter 3, a novel nonlinear method called Flexible Discriminant graph-based Em-
bedding with feature selection (FDEFS) is proposed. We seek a non-linear ans a linear
representation of the data that can be suitable for generic learning tasks such as classifi-
cation and clustering. Besides, a byproduct of the proposed embedding framework is the
feature selection of the original features, where the estimated linear transformation matrix
can be used for feature ranking and selection.

In Chapter 4, we investigate strategies and related algorithms to develop a joint graph-
based embedding and an explicit feature weighting for getting a flexible and inductive
nonlinear data representation on manifolds. The proposed criterion explicitly estimates
the feature weights together with the projected data and the linear transformation such
that data smoothness and large margins are achieved in the projection space. Moreover,
this chapter introduces a kernel variant of the model in order to get an inductive nonlinear
embedding that is close to a real nonlinear subspace for a good approximation of the
embedded data.

In Chapter 5, we propose the graph convolution based semi-supervised Embedding
(GCSE). It provides a new perspective to non-linear data embedding research, and
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makes a link to signal processing on graph methods. The proposed method utilizes and
exploits graphs in two ways. First, it deploys data smoothness over graphs. Second, its
regression model is built on the joint use of the data and their graph in the sense that the
regression model works with convolved data. The convolved data are obtained by fea-
ture propagation. The resulting scheme can solve and address the problem of over-fitting
on local neighborhoods for image data of various types like faces, outdoor scenes, and
man-made objects.

In Chapter 6, a flexible deep learning that can overcome the limitations and weak-
nesses of single-layer learning models is introduced. We call this strategy an Elastic
graph-based embedding with deep architecture which deeply explores the structural in-
formation of the data. The resulting framework can be used for semi-supervised and su-
pervised settings. Besides, the resulting optimization problems can be solved efficiently.

7.2/ PERSPECTIVES

Based on the methods proposed in this thesis, we can highlight several future tracks.

e The thesis work proposes several methods that are able to simultaneously derive
linear and non-linear models for the semi-supervised and supervised learning set-
ting. However, while these models are flexible and can be used for out-of-sample
cases, most of the propsoed models are still shallow ones. Thus, it would be very
appealing to replace the shallow non-linear and linear models by deep neural net-
works in the future work.

e The work mainly focuses on Graph-based Manifold Learning for Semi-supervised
or Supervised applications. When we do not use the label information in the training
stage, the proposed methods can be easily extended to the unsupervised case.

e The thesis work addresses single-view data where each sample or image is rep-
resented by one type of descriptors. Thus, it would be very interesting to extend
the developed methods to the case of multi-view embedding or any other learning
task. Indeed, image data can be represented by multiple views. Very often data can
be collected from multiple sources or represented by several types of descriptors.
For instance, images and videos can be described by various types of descriptors,
e.g. HoG [17], LBP [82], GIST [83], Gabor [18], and any type of deep features that
can be obtained trough transfer learning. These descriptors can capture different
aspects of data and can be complementary to each other.

e In our work, we deploy the concept of feature propagation (usually used in Graph
Convolution Networks) in order to get an enhanced linear regression that allows the
embedding of unseen samples. Future work would investigate more sophisticated
regression models by using advanced tricks like the use of iterative feature propa-
gation or the joint performing of the graph estimation and the feature propagation. In
general, future work can also target sophisticated GCNs for semi-supervised learn-
ing. Indeed, deep learning on graphs and manifolds is considered as a hot research
topic.

e In our work, the ranking of the original features is obtained as a by product of the
proposed learning models. Future work would assess this selection more thor-
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oughly. In particular, performance will be quantified in several learning tasks like
clustering and classification on the original selected features.

e Motivated by the graph-based label propagation methods (e.g., Gaussian Fields
and Harmonic Function (GFHF) [134] and Flexible Manifold embedding (FME)), the
label information can be retrieved by adopting a given criterion that involves the
graph. Future work would modify the proposed frameworks such that they can deal
directly with label distribution and their explicit mapping instead of data embedding.

¢ In this work, we consider that the graph matrix that describes the inter-connections
of different samples is given as input. Future work would consider more sophisti-
cated learning models in which both the graph and the embedding parameters are
simultaneously estimated. By doing so, more optimal solutions are expected.

¢ Although the proposed methods are scalable to large-scale training datasets thanks
to their inductive property, it would be of great interest to upgrade their learning
models so that they can easily construct a graph over very large datasets. Indeed,
the typical graph construction algorithms usually can not be used for large scale
datasets since the size of the graph matrix is equal to the square of the training
dataset size. Improving the scalability of the proposed approaches (i.e., we use the
entire training set with labeled and unlabeled samples for model learning) could be
carried out by adopting a bipartite graph via the use of Anchors. The use of anchors
allows to have small graphs that can be efficiently constructed.

The plans of research career should can consider near-term prospect (< 3 years),
medium-term prospect (< 10 years) and long-term prospect (> 10 years).

e Near-term prospect stage. In fact, the related activities can address some topics
described in Sections 2.1, 2.3, 2.2, 2.4, 2.5 and 2.6 of Chapter 2. These are re-
lated to various fields in Graph-based Manifold Learning. However, those topics
have already experienced a long time development and research since LLE [92]
and ISOMAP [104] methods published. More exactly, Semi-supervised learning
using Gaussian fields and harmonic functions (ICML, 2003) [134] is the pioneer-
ing method in Graph-Based Semi-supervised Manifold Learning and Graph-based
Label Propagation fields. LLE (Nature, 2000) [92], ISOMAP (Nature, 2000) [104],
Laplacian Eigenmaps (NIPS, 2002) [2] and Locality Preserving Projection (NIPS,
2004) [40] are representative algorithms in the Unsupervised Graph-Based Man-
ifold Learning field. Laplacian Score for Feature Selection [38] seems to be the
pioneering work in Graph-based Feature Selection field. Even the topic of Graph-
based Learning to Hash was developed since 2009 by Spectral Hashing [116]. It
has to say | have already missed the bonus time of those fields above. These fields
could be an opportunity to extend this thesis work in the a few year future.

Deep Learning on Graphs and Manifolds is a novel field since the work by [42]
(2015) that joint Deep Learning and Graph-based Manifold Learning. The work
described in [52] proposed a spotlighting algorithm that is Graph Convolutional
Networks (GCN) [52] since 2017. Due to its convincing performance and high in-
terpretability, it has been a widely applied graph analysis method recently. Deep
Learning on Graphs and Manifolds could be the major work in the near-term future.

e Medium-term prospect stage. Graph Theory and Manifold Learning are ones of
the tools in Machine Learning field. The Medium-term prospect stage us t choose
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fundamental, progressive and evolutionary field to utilize machine learning tech-
niques, including Graph Theory, Manifold Learning, Deep Learning and other effec-
tive and novel tools, to develop Computer Vision. We realize that several advanced
Computer Vision directions have been already launched along with the increasing
computing ability of GPUs and CPUs. Which directions are suitable for my future
research? | choose to focus on the Computer Vision related to Persons and Objects
in the medium-term prospect stage. The human related tracks include Person (or
Pedestrian and Vehicle) Re-identification, Crowd Counting, 3D Human (or Hand)
Pose Estimation, Action Recognition (or Segmentation, Detection, Localization, An-
ticipation, Prediction, Forecasting). The object related tracks include Static Object
(or Video-based Object) Recognition (or detection, segmentation and searching).

e Long-term prospect stage. In this stage, the goal is to build am academic team that
to develop multiple research fields in Artificial Intelligence, and own industrial and
engineering ability. Moreover, | will be committed to cultivating elite researchers in
Information Technique field who will also follow my steps in striving for the scientific
progress of my country in this stage.

7.3/ PusLicaTions DURING PHD Stupy

¢ Ruifeng Zhu, Fadi Dornaika* and Yassine Ruichek, Learning a discriminant graph-
based embedding with feature selection for image categorization. Neural Net-
works(NN, Elsevier, IF: 7.197), 2019, 111: 35-46.

¢ Ruifeng Zhu, Fadi Dornaika* and Yassine Ruichek, Joint graph based embedding
and feature weighting for image classification, Pattern Recognition(PR, Elsevier, IF:
5.785), 2019, 93: 458-469.

¢ Ruifeng Zhu, Fadi Dornaika® and Yassine Ruichek, Inductive Semi-supervised
Learning with Graph Convolution Based Regression, Neurocomputing(Elsevier, IF:
4.072), Major Revise and Resubmit, 2019.

¢ Ruifeng Zhu, Fadi Dornaika* and Yassine Ruichek, Semi-supervised Elastic Mani-
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IF: 5.898), Accapted, 2019.
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Abstract:

Graph-based Manifold Learning algorithms are regarded as a powerful technique for feature extraction and dimensionality reduction in
Pattern Recogniton, Computer Vision and Machine Learning fields. These algorithms uzilize sample information contained in the item-
item similarity and weighted matrix to reveal the intrinstic geometric structure of manifold. It exhibits the low dimensional structure in
the high dimensional data. This motivates me to develop Graph-based Manifold Learning techniques on Pattern Recognition, specially,
application to image categorization. The experimental datasets of thesis correspond to several categories of public image datasets such
as face datasets, indoor and outdoor scene datasets, objects datasets and so on. Several approaches are proposed in this thesis: 1)
A novel nonlinear method called Flexible Discriminant graph-based Embedding with feature selection (FDEFS) is proposed. We seek a
non-linear and a linear representation of the data that can be suitable for generic learning tasks such as classification and clustering.
Besides, a byproduct of the proposed embedding framework is the feature selection of the original features, where the estimated linear
transformation matrix can be used for feature ranking and selection. 2) We investigate strategies and related algorithms to develop a joint
graph-based embedding and an explicit feature weighting for getting a flexible and inductive nonlinear data representation on manifolds.
The proposed criterion explicitly estimates the feature weights together with the projected data and the linear transformation such that
data smoothness and large margins are achieved in the projection space. Moreover, this chapter introduces a kernel variant of the model
in order to get an inductive nonlinear embedding that is close to a real nonlinear subspace for a good approximation of the embedded
data. 3) We propose the graph convolution based semi-supervised Embedding (GCSE). It provides a new perspective to non-linear data
embedding research, and makes a link to signal processing on graph methods. The proposed method utilizes and exploits graphs in two
ways. First, it deploys data smoothness over graphs. Second, its regression model is built on the joint use of the data and their graph in the
sense that the regression model works with convolved data. The convolved data are obtained by feature propagation. 4) A flexible deep
learning that can overcome the limitations and weaknesses of single-layer learning models is introduced. We call this strategy an Elastic
graph-based embedding with deep architecture which deeply explores the structural information of the data. The resulting framework can
be used for semi-supervised and supervised settings. Besides, the resulting optimization problems can be solved efficiently.

Keywords: Machine Learning, Manifold Learning, Graph-based Embedding, Semi-supervised Learning, Feature Selection, Image
Categorization, Pattern Recognition, Computer Vision



